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ABSTRACT  I 

ABSTRACT 

Plant viruses are well known as disease causing agents in a large number of wild and 

crop plant species. However, there are also large communities of putatively benign 

viruses which co-exist with the host over generations without causing obvious 

symptoms and diseases: so called “persistent viruses”. The recent study sheds light on 

the biodiversity of persistent viruses of plants, which includes viruses from the families 

Partitiviridae, Endornaviridae and the proposed new family Amalgaviridae. All of 

these dsRNA viruses are widespread in plants. They cause generally no significant 

effects on their hosts and are only transmitted by cell division and through gametes at 

very high rates. 

The largest family Partitiviridae includes plant (Alphacryptovirus and Betacryptovirus), 

fungal (Partitivirus) and protozoan (Cryspovirus) infecting viruses with bisegmented 

dsRNA genomes (CP, RdRp) and isometric virions. Cryptic viruses commonly occur in 

different plant species often in mixed infections without causing any symptoms. So far, 

numerous sequences have been determined for viruses of the genus Alphacryptovirus, 

but no sequence was available for any assigned member of the genus Betacryptovirus. 

Following extraction, cloning and sequence analysis of double-stranded RNA in this 

study, we report the molecular properties of three members of the genus 

Betacryptovirus, White Clover Cryptic Virus 2, Red Clover Cryptic Virus 2 and Hop 

Trefoil Cryptic Virus 2, and two new putative betacryptoviruses found in crimson clover 

and dill. The results close a gap in the actual taxonomy and provide evidence for a 

distinct evolutionary lineage of dsRNA viruses of plants and fungi. 

Our knowledge on the biology of cryptic viruses such as the influence on the host and 

molecular characteristics of their replication is very limited. Aside from sequence and 

structural analyses, the investigation of protein interactions is another step towards virus 

characterization. Therefore, ORFs of two type members White Clover Cryptic Virus 1 

and 2, as well as the related viruses from Red Clover and dill were introduced into a 

bimolecular fluorescence complementation assay. We showed different kinds of protein 

dimerizations and observe the localization in planta of Nicotiana benthamiana leaf 

epidermal cells. We showed CP-CP dimerization with different localizations for all 

tested viruses. CP-deletion mutants were created to determine internal interaction sites. 

Moreover, RdRp self-interaction was found for all viruses, whereas CP-RdRp 

interactions were only detectable for the alphacryptoviruses. An intra-genus test of CPs 
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was successful in various virus combinations, whereas an inter-genus interaction was 

absent. This is the first report of in vivo protein interactions of members in the family 

Partitiviridae, indicating distinct features of the alpha- and betacryptoviruses. 

To illuminate the large diversity of the persistent viruses in plants, two screening 

techniques were combined: Nucleic acid enrichment of RNA containing viruses by 

dsRNA isolation and a deep sequencing approach. So far metagenomic studies of plant 

infecting viruses have focused on experimentally or naturally infected plant material. In 

this study the target was to access the biodiversity of persistent viruses of plants. 

Therefore we isolated dsRNA from seed grown White Clover, Red Clover, Hop Trefoil 

and dill plants, cultivated under controlled greenhouse conditions. Deep sequencing 

resulted in 42 determined contigs fitting to persistent viruses. These contigs represent 

52% of all reads. 15 putative new virus species belonging to persistent viruses could be 

identified as tentative members of the families Partitiviridae, Endornaviridae and 

Amalgaviridae. For the first time the suitability of a combination of dsRNA-screening 

and deep sequences techniques for the determination of the virome of persistent viruses 

was shown. 
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ZUSAMMENFASSUNG  III 

ZUSAMMENFASSUNG 

Pflanzenviren sind  in der Regel  als krankheitsauslösende Faktoren in vielen Wild- und 

Kulturpflanzen bekannt. Dennoch gibt es eine Vielzahl an Viren die mit ihrem Wirt seit 

Generationen hinweg in einer Art Koexistenz zusammen leben und offenbar keine 

Symptome und Erkrankungen hervorrufen:  sogenannte „persistierende Viren“. In 

dieser Arbeit wird die Biodiversität persistierender Viren in Weiß-, Rot- und Gelbklee 

sowie Dill untersucht. Die dabei beleuchteten Viren gehören zu den Familien 

Partitiviridae, Endornaviridae und in die neu vorgeschlagene Familie Amalgaviridae. 

Diese dsRNA enthaltenden Viren sind in den untersuchten Pflanzen weitverbreitet, 

verursachen im Allgemeinen aber keine signifikanten Effekte bezogen auf ihren Wirt. 

Sie werden nur durch Zellteilung und die Keimzellen in hoher Rate übertragen.  

Die größte Familie der Partitiviridae schließt Pflanzen-infizierende (Alphacryptovirus 

und Betacryptovirus), Pilz-infizierende (Partitivirus) und Protozoen-infizierende 

(Cryspovirus) Viren mit zweiteiligem dsRNA Genom und isometrischen Partikeln ein. 

Kryptische Viren kommen in der Regel in verschiedenen Kulturpflanzen vor, oftmals in 

Mischinfektionen ohne Symptome zu verursachen. Bisher konnten zahlreiche 

Sequenzen für Viren des Genus Alphacryptovirus bestimmt werden, jedoch waren keine 

Sequenzen für die bislang ausgewiesenen Mitglieder des Genus Betacryptovirus 

verfügbar. Nach Reinigung der dsRNA, gefolgt von Klonierungen und der 

anschließenden Sequenzanalyse konnten die molekularen Charakteristika von 3 

Mitgliedern des Genus Betacryptovirus aufgedeckt werden. Dabei handelt es sich um 

White Clover Cryptic Virus 2, Red Clover Cryptic Virus 2 und Hop Trefoil Cryptic 

Virus 2 und vermutliche weitere zwei Betakryptoviren in Inkarnat Klee und Dill. Die 

Ergebnisse schließen dabei eine Lücke in der aktuellen Virustaxonomie und geben 

Hinweise auf eine ausgeprägte Verbindung zwischen dsRNA Viren von Pflanzen und 

Pilzen.  

Unser Wissen über die Biologie kryptischer Viren, wie der Einfluss auf den 

Wirtsorganismus und die molekulare Charakteristik ihrer Replikation, ist sehr begrenzt. 

Abgesehen von Sequenz- und Strukturanalysen stellt die Untersuchung von 

Proteininteraktionen einen weiteren Schritt bezüglich der Viruscharakterisierung dar. 

Folglich wurden die offenen Leseraster von zwei Referenzmitgliedern White Clover 

Cryptic Virus 1 und 2, genauso wie die ihrer verwandten Viren aus Rotklee und Dill in 

ein bimolekulares Fluoreszenz-Komplementations-System überführt. Hiermit konnten 
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verschiedene Arten der Proteindimerisation aufgezeigt und deren Lokalisation in 

Epidermiszellen von Nicotiana benthamiana in planta beobachtet werden. Wir konnten 

für alle getesteten Viren eine CP-CP Dimerisation mit verschiedener Lokalisation 

nachweisen. CP-Deletionsmutanten wurden erstellt um interne Interaktionsstellen zu 

bestimmen. Darüber hinaus konnte für alle Viren RdRp- Selbstinteraktionen 

nachgewiesen werden, wohingegen CP-RdRp  Interaktionen nur für Alphacryptoviren 

feststellbar waren. Ein CP intra-genus Test war in einer Vielzahl von 

Viruskombinationen erfolgreich, während eine inter-genus Interaktion fehlte. Dies ist 

die erste Studie über in vivo Proteininteraktionen von Mitgliedern der Familie 

Partitiviridae, wobei unterschiedliche Interaktionen von Alpha- bzw. Betacryptoviren 

aufgezeigt werden.  

Um die große Diversität persistierender Viren in Pflanzen zu beleuchten wurden zwei 

Screeningverfahren kombiniert: Nukleinsäuren von RNA-Viren wurden durch dsRNA-

Isolation angereichert und anschließend einer Hochdurchsatzsequenzierung unterzogen. 

Bisher wurden metagenomische Studien nur an gesammelten, virusinfizierten 

Umweltproben bzw. absichtlich infizierten Pflanzen vorgenommen. Das Ziel dieser 

Studie war es einen Zugang zur Biodiversität persistierender Viren in Pflanzen zu 

erhalten. Dafür wurde dsRNA aus Weiß-, Rot- und Gelbklee sowie Dill Pflanzen, die 

unter kontrollierten Gewächshausbedingungen aus Samen kultiviert wurden, isoliert. 42 

ermittelte Contigs, auf die 52% sämtlicher Reads entfielen, konnten persistierende 

Viren zugeordnet. Hieraus resultierten 15 neue persistierende Viren, die als vorläufige 

Mitglieder in die Familien Partitiviridae, Endornaviridae und Amalgaviridae 

eingeordnet werden können. Die Ergebnisse zeigen erstmals die Eignung der 

Kombination von dsRNA-Screening Verfahren und Techniken der 

Hochdurchsatzsequenzierung für die Bestimmung des Viroms persistierender Viren. 

 

Schlagworte: 

Kryptische Pflanzenviren, Taxonomie, Protein-Interaktionen, Hochdurchsatz-

Sequenzierung 
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1 General introduction 

1.1 Cryptic viruses – met with little response in plant virology 

Cryptic viruses are members of the family Partitiviridae including the plant infecting 

genera Alphacryptovirus and Betacryptovirus. Each monocistronic segment of the 

dsRNA genome is encapsidated separately in an isometric particle of 30-38 nm in 

diameter (Boccardo, 1987). These viruses have several properties that distinguish them 

from classical pathogenic viruses. Cryptic viruses occur only in low concentrations in 

their hosts, without showing any visible symptoms and apparently have less or no 

economic impact. These viruses can only be transmitted through gametes, but not by 

grafting, mechanical or vector inoculation. Nevertheless, the transmission by seeds and 

pollen occurs in very high rates and was found in a broad range of monocotyledonous 

and dicotyledonous plant species, such as alfalfa, beans, carnation, carrot, clover 

species, fire trees, pepper, radish, ryegrass, spinach and sugar beet (Milne, 1999). 

Because of being non-pathogenic and limited in their transmission, cryptic viruses do 

not fit into the classical definition of a virus. First descriptions characterized them as 

virus-like particles (VLPs) in apparently healthy plants from seven species of beet 

(Pullen, 1968). These particles were inoculated to other herbaceous plants but did not 

cause an infection. Moreover, the particles could not be removed by heat therapy from 

meristem cultures, a method which works with other plant viruses. Therefore the VLPs 

were assumed to be part of the plants until a few beet plants were found to be free of 

VLPs (Kassanis, 1977) leading to the name Beet cryptic virus. Kassanis suggested the 

name “cryptic” to distinguish these viruses from the latent viruses which also caused no 

symptoms but were transmissible to other plants. Independent work groups in Japan 

described also the same VLPs in other cultivars and chose the name temperate viruses 

due to their resistance to thermotherapy (Natsuaki, 1984). Nevertheless, currently the 

putative virus does not meet the requirements for a clear virus description according to 

the Koch’s Postulates for viruses (Rivers, 1937). To fulfill these postulates: 

1. The virus must be isolated from a diseased host and 

2. cultivated in an experimental host or host cells. 

3. A prove of lack of larger pathogens must be given and 
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4. the virus must produce comparable disease symptoms in the original host 

species or in related ones. 

Due to the lack of detectable diseases and transmission, the term VLPs was still used up 

to until (Boccardo, 1983). Therefore, the requirements for virus characterization were 

revised (Kassanis, 1984) and resulted in a more modern and general virus definition 

(Hull, 2013). According to this definition a virus is: 

1. dependent on the hosts protein-synthesizing machinery, 

2. organized from pools of the required materials rather than by binary fission, 

3. located at sites that are not separated from the host cell contents by a continuous 

lipoprotein bilayer membrane and 

4. continually giving rise to variants through various kinds of change in the viral 

nucleic acid. 

However, the progress of new technologies to detect viral sequences makes further 

criteria necessary to identify new viruses. Especially, the findings of a large number of 

potential viruses by the use of metagenomic approaches are in conflict to the strictness 

of the Koch’s Postulates. It will be a major challenge in virology to keep the established 

taxonomy, and to integrate the advantages of the upcoming “viromic” studies (Mokili, 

2012). 

1.2 Genome organization and replication of cryptic viruses 

Plant-infecting members of the family Partitiviridae encode the genome in two 

monocistronic segments of dsRNA. Findings of viruses with three or more fragments 

mostly represent mixed infections, or should be classified as satellite elements, due to 

the absence of a larger open reading frames (Ghabrial, 2008). The molecular weight of 

the individual components is between 0.8 to 1.6x106 Da at a fragment length of1.4 to 

2.3 kbp (Boccardo, 1987). While the smaller dsRNA encodes for a viral coat protein 

(CP), the larger one encodes for a viral RNA-dependent RNA polymerase (RdRp). 

The genome organization and replication of cryptic viruses is especially interesting in 

the context of dsRNA, which is acting as the genetic information storage. Naturally, 

dsRNA is not found in plants. For the dsRNA processing of the virus it has to contain 

its own RdRp or it depends on the presence of a helper virus. Cryptic viruses code for a 

virus-specific RdRp which is probably associated with the envelope protein (Buck, 
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1973). Plants are using the RNA interference (RNAi) as protection against RNA viruses 

by recognizing dsRNA and degrading it into smaller fragments (Hannon, 2002). Other 

plant viruses are known to avoid this counterstrike by using suppressor proteins 

(Carrington, 2001; Chapman, 2004). However, the CP and RdRp proteins of the cryptic 

viruses do not affect the RNA interference and other proteins were not reported 

(Yaqoob, 2006). It is assumed that dsRNA viruses provide all necessary enzymatic 

components for replication and transcription within the particle to circumvent the action 

of RNA interference (Bamford, 2002; Ghabrial, 2008). Required pores to interchange 

materials for transcription/replication can be observed by structural analyzes of the 

particle of the Partitivirus (Ochoa, 2008). As outlined in Figure 1 the dsRNA only 

occurs in the virus particle itself and serves here as a template for the also encapsidated 

RdRp (Boccardo, 1987). 

 

Figure 1:  Replication strategy of cryptic viruses in the plant cell 

 

The transcribed single-stranded RNAs pass from the particle into the cytoplasm by 

pores, where the CP and RdRp are translated. During the particle assembly, RNA and 

RdRp are packaged together by protein-protein and protein-RNA interaction within the 

CP. Only inside the assembled particle the RdRp switches to an active mode and starts 

to synthesize new dsRNA (Nibert, 2013) as illustrated in Figure 2. 
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Figure 2: Proposed particle assembly of cryptic viruses in the plant cell 

1.3 Particle morphology of cryptic viruses 

Cryptic viruses have a relative simple particle morphology. The nucleic acids are 

enclosed by an isometric protein shell; additional lipid layers are not present. The outer 

diameter of the particles of the genus Alphacryptovirus is around 30 nm and of the 

genus Betacryptovirus around 38 nm. In electron microscope images the smaller 

particles appear featureless, whereas the greater particles of the genus Betacryptovirus 

show morphologically protruding subunits. From the results of the analysis via 

ultracentrifugation it is assumed that each one of the dsRNA bipartite genome is 

packaged separately into one particle. The molecular weight of the individual 

components is between 0.8 to 1.6 x 106 Da (Boccardo, 1987). 

Recent X-ray diffraction studies focused on the structural analysis of the virus particles. 

A 3D-model was established for Penicillium stoloniferum virus F (PSV-F), a member of 

the genus Partitivirus, which is closely related to plant infecting alpha- and 

betacryptoviruses. Analyses showed a molded helix-rich envelope-protein with distinct 

surface curvatures consisting of 120 subunits, which is composed of 60 quasi symmetric 

coat protein dimers. Further possible pores could be modulated onto the particle surface. 

These could serve for the release of positive single-stranded RNA (ssRNA) after 
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transcription, which has been postulated for other dsRNA viruses (Prasad, 1996; 

Caston, 1997; Dryden, 1998; Zhang, 2003). However, the necessary RdRp protein could 

not be found in the viral particles in this structure analysis, maybe because of a weak 

link to the capsid protein (Ochoa, 2008).   

Distinctive surface structures may be possible starting points for a host-parasite 

interaction, but experimental evidence is currently missing (Ochoa, 2008). Whether the 

particles allow an enzymatic activity as presented in other dsRNA viruses such as the 

Reovirus, has not be proven so far (Boccardo, 1987; Reinisch, 2002). 

 

 

Figure 3: Immunosorbent electron microscopy of WCCV-2 particles trapped from a 

virus preparation from white clover (Trifolium repens), kindly provided by Dr. Frank 

Rabenstein, Julius Kuehn Institute, Quedlinburg 
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1.4 Interaction of Partitiviridae with their hosts 

The presence of cryptic viruses generally does not result in pathological changes. Plants 

carrying cryptic viruses are usually symptomless. In previous works only a few cases 

have been described in which an infestation led to changes in the plant phenotype; these 

studies are summarized in table 1. However, some factors can cause to eventually 

misleading results: 

1. Contamination of plants with fungi 

Cryptic viruses occur in plants only in very low concentrations of 200 g per kg in 

various tissues, mainly detectable in the mesophyll (Abou-Elnasr, 1985; Kuehne, 1989; 

Boccardo, 1989). In fungi, especially in older mycelium, significantly higher 

concentrations, such as 1 mg per g of tissue in the Penicilliumstoloniferum virus S are 

possible (Ghabrial, 2008). Therefore, overlooked infections with fungi, especially with 

endosymbiotic ones, can result in the misleading determination of the origin of the 

detected viruses even at low contamination levels (Kozlakidis, 2006). 

2. Accumulation of cryptic viruses in the presence of pathogenic viruses 

In mixed infections with other viruses present in the plant the concentration of cryptic 

viruses may increase in host plants. This might be a side effect of the down regulated 

defense mechanism of the plant by the viral suppressor proteins. An accumulation was 

shown for the Beet cryptic virus 1 and 2 in combination with Beet mild yellowing virus 

and Beet yellows virus infections (Kühne, 1989). Also in mixed infections of ryegrass 

cryptic virus with Ryegrass mosaic virus this effect was observed (Plumb, 1981). 

In addition, interactions with other pathogens or environmental circumstances can result 

in misinterpretation of observed symptoms. Also, the infestation of cryptic viruses in 

fungi (Partitivirus) remains usually asymptomatic (Tavantzis, 2008). Studies on root 

sponge (H. annosum) showed, however, that the germination rate of basidiospores was 

reduced when the fruit body contained Partitivirus dsRNA (Ihrmark, 2004). Other tests, 

such as the infection of protoplasts by Rosellinianecatrix with purified particles of 

Partitivirus RnPV1 -W8 (Sasaki, 2006) showed no effect on the host. On the other hand, 

the lack of the availability of a cryptic virus free plant and the limited transmission of 

cryptic viruses can prevent further comparisons. Nevertheless, cryptic viruses interact 

with their host plant and can cause beneficial effects under special conditions. In future, 
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modern molecular techniques will shed light on the characteristics of cryptic viruses 

(Nakatsukasa, 2005). 

 

Table 1: Studies with a reported influence of Partitiviridae to their host plants 

 
Virus name Host Effect Comments References 

Beet cryptic virus Sugar Beet mild chlorosis 

of leaves, 

reduced root 

fresh weight 

could not be shown in 

other studies 

Kassanis, 

1978 

White, 1978 

Moir, 1983 

Kühne, 1989 

 

Radish yellow edge 

virus 

Radish yellow edging 

of leafs 
weak, pathological 

change 

Natsuaki, 

1979 

 

Beet cryptic virus Sugar Beet reduced yield not detectable under 

drought conditions 

Xie, 1994 

White clover cryptic 

virus 1 (CP) 

Lotus 

japonicus 

root nodulation led to an increased in 

the endogenous 

phytohormone abscisic 

acid and the suppression 

of root nodule formation 
 

Suzuki, 2001 

Nakatsukasa, 

2005 

Cherry chlorotic rusty 

spot / Amasya cherry 

disease associated 

partitivirus 

 

Cherry chlorotic rusty 

spots 

disease presumed of 

fungal aetiology infecting 

with viruses 

Coutts, 2004 

Kozlakidis, 

2006 

Raphanus sativus 

cryptic virus 1 

 

Radish yellow edging 

of leafs 
relationship to Radish 

yellow edge virus unclear 

Chen, 2005 

Curvularia thermal 

tolerance virus 

(unclassificated virus 

shows similarties to 

Partitiviridae) 

 

Panic grass 

infected with 

Curvularia 

protuberata 

three-way 

symbiosis result 

in thermal 

tolerance 

association with a 

fungal endophyte 

Márquez, 

2007 

Primula malacoides 

virus 1 

Primula yellowing-edge 

symptoms 
authors described 

similar symptoms with 
Raphanus sativus cryptic 

virus 1 

 

Chen, 2009 

Pittosporum 

cryptic virus 1 

Pittosporum 

tobira 

chlorotic vein 

banding 

symptoms 

interaction with the 

Eggplant mottled dwarf 

virus 

 

Alabdullah, 

2010 

Citrullus lanatus 

cryptic virus 

Watermelon unclear, co-

accumulation 

with Melon 

necrotic spot 

virus 

not detectable in healthy 

watermelon plants 

Sela, 2013 
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1.5 Origin and evolution of cryptic viruses 

Because of their non-pathogenicity and limited transferability cryptic viruses, hold a 

special position in the field of virology. Kassanis (1984) formulated a new concept of 

viral definition contrary to classical virus definitions (see point 1.1). Molecular genetic 

analysis of cryptic viruses could contribute interesting aspects to the formation and 

evolution of viruses. Concerning the origin of viruses three possibilities are currently 

discussed (Forterre, 2006): 

1.5.1 Origin of self-replicating molecules (coevolution) 

According to the reduction theory, cryptic viruses could belong to a group of very old 

viruses descended from primitive pre-cellular life forms (RNA world). Later, they 

parasitized the earliest cells and reached co-evolution. These ancient viruses have lost 

their capability for infections, vector transmission and cell-to-cell transport in the course 

of time. Therefore, the virus participates in the binary fission of cells and reaches a high 

seed transferability (Kassanis, 1984). The non-pathogenicity of these viruses support 

this theory. Viruses increasingly adapt to their host during evolution to avoid destroying 

the host by the consequences of diseases so the outcome would be disadvantageous to 

themselves (see also Infect-and-Persist Strategy reviewed by Hilleman, 2004). 

However, this might be only applicable to some groups of cryptic viruses. Looking at 

sequence comparisons, some viruses are very similar to each other, although they were 

found in very distinct but related plant families. Moreover, phylogenetic studies rather 

anticipate a younger common ancestor for a related virus cluster as an origin from 

ancient viruses. 

1.5.2 Virus emergence from host cell RNA or DNA molecules (escape 

hypothesis) 

A different approach would be possible in the light of the escape hypothesis (Hendrix, 

2000). It was suggested that viruses arise from some cell genes that escaped from the 

normal control mechanisms and become self-replicating entities (Hull, 2013). Cryptic 

viruses could represent a new group of viruses that evolutionarily have to be classified 

in front of the development of vector transmissibility (Kassanis, 1984). The starting 

point could be a self-replicating cellular mRNA (Koonin, 1993) which evolved through 

adoption of cellular proteins for packaging in a virus. A corresponding model for the 

Partitivirus was proposed by Ghabrial (1998). The Totiviridae which have a similar 
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genome structure to the cryptic viruses with only CP and RdRp, but with a non-

segmented genome, are postulated as a possible intermediate. Another aspect supporting 

this theory are viral sequences which can be found in many plant genomes. Many of 

them are expressed as functional genes (Chiba, 2011; Liu, 2010). However, most plant 

genomes include only a part of the coat protein sequences, and RdRp sequences have 

not been reported so far. This fact together with phylogenetic analyses indicate that the 

integration of CP genes started from viruses to plants (Chiba, 2011). Moreover, no 

integrated sequences were found in plants which harbor the same cryptic viruses 

themselves (Roossinck, 2012). 

1.5.3 Virus origin by degeneration of parasites 

The reduction theory is based on the derivation of viruses from degenerated cells that 

eventually have parasitized normal cells. For the cryptic viruses in this model the 

presence of a pathogenic or endosymbiotic fungus could be helpful. A fungal or 

common origin for cryptic viruses is still an outstanding question (Kassanis, 1984; 

Ghabrial, 2008; Roossinck, 2010). Fungal infecting viruses have similar structural 

properties as cryptic plant viruses and also use mainly dsRNA genomes (Tavantzis, 

2008). Similar approaches were discussed for the definition of fungal viruses and their 

evolutionary history (Buck, 1975; Frost, 1980). Fungal dsRNA viruses are widespread, 

mainly asymptomatic and dispersed in the mycelium over the contact to other hyphae 

and spores (Kassanis, 1984). Due to the lack of cell walls in fungal species, no viral 

movement proteins are needed. Phylogenetic analysis of cryptic plant viruses and the 

fungal cryptic viruses indicate a strong linkage (Ghabrial, 2008).This could erroneously 

lead to the belief that all findings of cryptic viruses in plant sources came from a 

contamination with an endosymbiotic fungus harboring the virus. However, this 

hypothesis could not be confirmed. Treatment of plants with systemic and superficial 

acting fungicides had no effect on the subsequent concentration of White Clover 

Crypticvirus 1 and 2 (WCCV) in Trifolium repens. Furthermore, no cross-reaction to 

the WCCV antiserum against mycoviruses of the group D and E was found (Boccardo, 

1985). Nevertheless, it was possible to isolate cryptic viruses from protoplast cultures of 

Vicia faba (Abou-Elnasr, 1985) and sterile micro-plants of Raphanus L. (Natsuaki, 

1985). Moreover, a fungal contamination was not detected in those plants in which 

dsRNA and particles were found (Boccardo, 1985). Also, in the betacryptovirus-

harboring plants primula and hemp, no evidence for a fungal infection was found (Li, 
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2009; Ziegler, 2011). Recently, the observation of related viruses in distinctly related 

plants, does not support the notion that these plant species are infected or contaminated 

by a common specific endosymbiotic fungus (Boccardo, 1987). 

1.6 Taxonomy of persistent infecting viruses 

Viruses are well known as disease causing agents, but there is also a large community 

of benign viruses. These viruses have distinct features compared to the “classical” acute 

viruses summarized in table 2. This virus group includes the most studied viruses of 

plant infecting members of the family Partitiviridae which are called “cryptic viruses” 

due to the hidden lifestyle or “temperate viruses” due to their resistance to 

thermotherapy (Boccardo, 1987). Some other viruses show similar characteristics such 

as the Endornaviruses (Gibbs, 2005) and the newly proposed Amalgaviruses 

(Tzanetakis, 2013). These groups are now summarized according to their permanent 

infection as “persistent viruses” or due to their limited transmission ability as 

“uncultivable viruses” (Roossinck, 2011, 2013). 

1.6.1 Definition of persistent viruses 

Viruses are well known as disease causing agents, but there is also a large community 

of benign viruses. These viruses have distinct features compared to the “classical” acute 

viruses summarized in table 2. This virus group includes the most studied viruses of 

plant infecting members of the family Partitiviridae which are called “cryptic viruses” 

due to the hidden lifestyle or “temperate viruses” due to their resistance to 

thermotherapy (Boccardo, 1987). Some other viruses show similar characteristics such 

as the Endornaviruses (Gibbs, 2005) and the newly proposed Amalgaviruses 

(Tzanetakis, 2013). These groups are now summarized according to their permanent 

infection as “persistent viruses” or due to their limited transmission ability as 

“uncultivable viruses” (Roossinck, 2011, 2013). 
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Table 2: Properties of acute and persistent infecting viruses (adopted to Roossinck, 

2011) 

characteristic acute lifestyle persistent lifestyle 

impact on host symptomatic, may lethal or latent 

in different hosts 

no obvious symptoms 

infection periods may be resolved by recovery maintains for host lifetime 

and ongoing by their gametes 

in plant distribution use virus-encoded protein to 

moves systemically to host 

passive via cell division, no 

active transport  

transmission horizontal via vectors, rarely by 

invasion of gametes 

vertical nearly 100% via seed 

and pollen  

virus titer may establish very high 

concentration 

generally low titer, may 

controlled by the host 

 

 

1.6.2 Plant cryptic viruses 

Cryptic viruses of plants are widespread in mono- and dicotyledonous plant species and 

are currently classified in the genera Alphacryptovirus and Betacryptovirus of the 

family Partitiviridae by the International Committee on Taxonomy of Viruses (ICTV). 

In addition, the family contains the genera Partitivirus and Cryspovirus which include 

viruses that infect fungi and protozoan, respectively (Ghabrial, 2012). 

Phylogenetic analyses divided viruses of the genera Alphacryptovirus and Partitivirus 

into two clearly distinct clusters (Ghabrial, 2008; see Figure 4). Further characteristics 

such as dsRNA size, presence of interrupted poly(A) stretches and particle sizes support 

the clustering  (see Table 3). Therefore, a revision of the taxonomic structure of the 

family Partitiviridae is needed. An actual ICTV proposal (Nibert, 2013) recommends 

an assignment of the clusters Alphacryptovirus II and Partitivirus II into two new genera 

(Gammapartitivirus and Deltapartitivirus) within the family Partitiviridae. 

Furthermore, the recent genera Betacryptovirus is proposed to be combined with the 

Partitivirus I cluster to the new genus Betapartitivirus. Also the cluster 

Alphacryptovirus I will be assigned to the genus Alphapartitivirus. 

1.6.3 Amalgavirus 

A new group of plant viruses have been identified in the last decade. Their genome 

comprises of one dsRNA fragment containing two overlapping ORFs with putative CP 

function and RNA-dependent RNA polymerase motifs (Martin, 2006; 2011; Liu, 2009; 
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Sabanadzovic, 2009; 2010), see also Table 3 for details. These viruses share several 

properties with plant infecting cryptic viruses: 

- associated with symptomless infections in their respective hosts, 

- transmission via grafting and mechanical inoculation attempts failed, and they 

show 

- very high rates of seed transmission. 

The OFR2 is likely expressed via +1 translational frameshift or a stoprestart mechanism 

resulting in a fusion protein, similar to viruses of the fungal family Totiviridae. 

However, phylogenetic analysis shows a distant relatedness to members of the family 

Partitiviridae (Martin, 2011). 

1.6.4 Endornavirus 

The genomes of endornaviruses consist of a linear dsRNA of 10–18 kbp in length with 

only one open reading frame (ORF) (Roossinck, 2010). These ORFs likely encode a 

single polypeptide that is thought to be processed by a proteinase, and at least one 

conserved motif of an RdRp can be found (Gibbs, 2000). Endornaviruses seem not to 

form true virions and are usually present at low numbers of copies (Horiuchi, 2004). 

Besides in plant host, these viruses have been found in fungi and protests (Roossinck, 

2011). Also endornaviruses share several properties with plant infecting cryptic viruses 

(symptomless, only transmitted thought their gametes). 

 

Table 3: Genomic features of genera with persistent viruses (* new genera in ICTV 

review) 

Genus Particle size 

(nm) 

genome size (kbp) 

RdRp + CP 

poly-a-

stretch 

RdRp size CP size 

AS kDa AS kDa 

Alphapartitivirus* 30 2.0 + 1.8 + 616 72 488 54 

Betapartitivirus* 38 2.3 + 2.3 + 715 83 666 74 

Gammapartitivirus* 30 1.8 + 1.6 - 537 62 433 47 

Deltapartitivirus* 30 1.7 + 1.5 - 483 55 366 41 

Cryspovirus 31 1.7 +1.4 - 524 62 319 37 

Amalgavirus* ? 3.5 - 798 91 377 41 

Endornavirus ? 13 - ? ? ? ? 
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Figure 4: Neighbor-joining phylogenetic tree based on the complete amino acid 

sequences of RdRps of members and probable members of the family Partitiviridae. 

The amino acid sequences were aligned using the program CLUSTAL W. For virus 

names and abbreviations, see Table 4. The phylogenetic tree was generated using the 

MEGA4 phylogenetic package. Bootstrap percentages out of 1000 replicates are 

indicated at the nodes.  
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Table 4: Viruses of the family Partitiviridae with their actual and proposed future 

genus assignment  

Virus name Acronym GenBank accession Proposed new genus 
    

Genus Partitiviruses    
    

Aspergillus ochraceous virus 1 AoV1 EU118277, EU118278 Gammapartitivirus 

Atkinsonella hypxylon virus AhV L39125, L39126, L39127 Betapartitivirus 

Ceratocystis resinifera virus 1 CrV1 AY603051, AY603052 Betapartitivirus 

Discula destructiva virus 1 DdV1 AF316992, AF316993, 

AF316994, AF316995 

Gammapartitivirus 

Discula destructiva virus 2 DdV2 AY033436, AY033437 Gammapartitivirus 

Fusarium poae virus 1 FpV1 AF047013, AF015924 Betapartitivirus 

Fusarium solani virus 1 FsV1 D55668, D55668 Gammapartitivirus 

Gremmeniella abietina RNA virus MS1 GaRV-MS1 AY089993, AY089994, 

AY089995 

Gammapartitivirus 

Helicobasidium mompa virus HmV AB025903 Betapartitivirus 

Heterobasidion annosum virus HaV AF473549 Betapartitivirus 

Ophiostoma partitivirus 1 OPV1 AM087202, AM087203 Gammapartitivirus 

Penicillium stoloniferum virus F PsV-F AY738336, AY738337 Gammapartitivirus 

Penicillium stoloniferum virus S PsV-S AY156521, AY156522 Gammapartitivirus 

Pleurotus ostreatus virus 1 PoV1 AY533036, AY533038 Betapartitivirus 

Rhizoctonia solani virus 717 RhsV-717 AF133290, AF133291 Betapartitivirus 

Rosellinia necatrix virus 1 – W8 RnV1 AB113347, AB113348 Betapartitivirus 
    

Tentative Partitiviruses    
    

Botryotinia fuckeliana partitivirus 1 BfPV1 AM491609, AM491610, 

AM491611 

Gammapartitivirus 

Ceratocystis polonica partitivirus 1 CpPV1 AY247204, AY247205 Betapartitivirus 

Helicobasidium mompa partitivirus V1-1 HmV-V1 AB110979 Betapartitivirus 

Helicobasidium mompa partitivirus V1-2 HmV-V1-2 AB110980 Betapartitivirus 
    

Genus Alphacryptovirus    
    

Beet cryptic virus 1 BCV-1 EU489061, EU489062 Alphapartitivirus 

Beet cryptic virus 3 BCV3 S63913  

Vicia cryptic virus VCV AY751737, AY75138 Alphapartitivirus 

White clover cryptic virus 1 WCCV1 AY705784, AY705785 Alphapartitivirus 
    

Tentative Alphacryptovirus    
    

Black raspberry cryptic virus BrCV EU082132 Deltapartitivirus 

Carrot cryptic virus CaCV FJ550604, FJ550605 Alphapartitivirus 

Fragaria chiloensis cryptic virus FCCV DQ093961, DQ355440, 

DQ355439 

Deltapartitivirus 

Pepper cryptic virus 1 PCV1 DQ361008 Deltapartitivirus 

Pinus sylvestris cryptovirus PSCV AY973825 Deltapartitivirus 

Pyrus pyrifolia cryptic virus PpV AB012616 Deltapartitivirus 

Raphanus sativus cryptic virus 2 RsCV2 DQ218036, DQ218037, 

DQ218038 

Deltapartitivirus 

Raphanus sativus cryptic virus 3 RsCV3 FJ461349, FJ461350 Deltapartitivirus 

Rose cryptic virus 1 RoCV1 EU413666, EU413667, 

EU413668 

Deltapartitivirus 

    

Genus Cryspovirus    
    

Cryptosporidium parvum virus 1 CSpV1 U95995, U95995 Cryspovirus 
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1.7 Methods to classify cryptic viruses on a molecular level 

In this thesis a broad range of techniques was used to characterize cryptic plant viruses. 

Therefore, the three main procedures will be shortly presented here. 

1.7.1 DsRNA-Screening as a universal tool for unspecific virus diagnosis 

In the history of plant virology a wide spectrum of diagnostic tools has been developed. 

These tests of virus infection can be subdivided into four categories: First, attempts 

based on the symptomatology on host or indicator plants. Next, methods depending on 

physical properties of the virus particle, which can be determined by microscopy 

techniques. And last, other methods using properties of viral proteins for serological 

procedures. Most modern approaches involve properties of the viral nucleic acid for 

specific amplification and detection of viruses (Hull, 2013). 

However, most of these techniques need already some knowledge for the detection of 

the virus infection. Viruses lack any similar properties, like ribosomal RNA in pro- or 

eukaryotes, which could be used for the development of a universal detection method. 

Therefore, different approaches have to be utilized to address this problem in the 

discovery of novel viruses (Roossnick, 2011) see table 5: 

 

Table 5: Methods for discovery of viruses and their ability to detect new viruses 

(adapted from Roossnick, 2011) 

Method Specificity Sensitivity Labor Cost Comment 

Indicator plants moderate moderate slow low need of virus transmission  

problem of latent infection  

Electron microscopy low moderate slow high virus particles needed 

purification required 

Serology moderate moderate fast moderate detection of related virus with 

polyclonal antibodies 

(RT)PCR high high fast high use of degenerate primer for 

conserved virus motif 

Hybridization none moderate fast high need of comparative sample 

e.g. healthy plant  

Deep sequencing none high fast high use of total RNA or virus 

enriched nucleic acids 

 

After looking at the available techniques it is obvious that the deep sequencing 

technique offers the greatest potential to detect unknown viruses. Despite the 

development of new technologies in this field, it is not efficient to start the sequencing 

of the whole transcriptome of a plant and search for RNA molecules obtained from viral 

infections. Therefore, different methods can be used for virus enrichment in a sample: 
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- subtractive hybridization (Adams, 2009) 

- purification of particles by ultracentrifugation (Hugenholtz, 2008) 

- isolation of siRNAs (Kreutze, 2009) 

- isolation of dsRNA (Roossnick, 2010) 

For the characterization of cryptic viruses and other persistent viruses the isolation of 

dsRNA is the method of choice: There is no virus-free host plant available, particles are 

not reported for all viruses and cryptic viruses use dsRNA as their genome. Due to the 

“cryptic lifestyle” of these viruses appropriate concentrations of siRNAs cannot be 

expected. Moreover using dsRNA for sequence determination will have additional 

advantages: 

- The genome or intermediates of a broad range of plant viruses can be tackled. 

- DsRNA has a high stability and 

- Covers the entire genome sequence of a virus. 

- DsRNA is less prone to errors than a single transcripts of the virus (due to the 

double stranded structure) 

1.7.2 Application of deep sequencing for virus determination 

Metagenomic studies assess the diversity of life forms by sequencing approaches. The 

invention of deep sequencing methods allows studying microbial populations, even of 

uncultivable ones, by the use of universal genes like ribosomal RNA or ITS regions. 

This enables the assessment of the biodiversity of higher organisms by amplicon 

sequencing in a cost and time effective way. 

However, there is a lack of such universal targets in virus sequences. Therefore 

additional virus enrichment steps are needed to obtain viruses in environmental 

samples. Recent studies use filtration and centrifugation approaches to isolate viruses 

from different sources (Roossinck, 2012). Many viral related sequences were found in 

different water sources (Djigeng, 2009; Rosario, 2009; Tamaki, 2012), human body 

parts (Zhang, 2006; Nakamura, 2009; Reyes, 2010) and animal excrements (Blinkava, 

2010; Li, 2010). However, the greatest restriction regarding virus metagenomics is the 

missing determination of the original host of the identified viral sequences. 

Further studies put their focus on plant virology (summarized in Table 6). Most 

approaches use selected plant sources to analyze an individual plant virome. Such 

“ecogenomic” studies allow a more detailed view on biodiversity of viruses spread over 
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different cultivars. However, none of these approaches put their focus on persistent 

infections. 

Table 6: Plant ecogenomic deep sequencing studies: 

Culture Enrichment Study aim / output Reference 
    

Tomato (infected), 

Liatris spicata 

subtractive 

hybridization 

proof of principle; determination of new 

Cucumovirus 

Adams, 

2009 
    

Sweetpotato (infected) siRNA proof of principle; obtain unexpected 

viruses 

Kreuze, 

2009 
    

Cucumis melo, N. benthamiana, 

A. thaliana, S. lycopersium 

(infected) 

siRNA proof of principle; detection of 9 different 

viruses 

Donaire, 

2009 

    

diverse cultivars form field dsRNA massive parallel sample sequencing; 

several thousand new plant viruses 

Roossinck, 

2009 
    

Grapevine (naturaly infected) dsRNA full genome assembly of gapevine viruses, 

determination of new viruses 

Coetzee, 

2010 
    

Grapevine dsRNA reveals a virome dominated by 

mycoviruses 

Rwahnih, 

2011 
    

Nicotiana tabacum 

Xanthi (infected with Cucumber 

Mosaic virus) 

CP amplicons deep sequencing of a recombinant virus 

populations in transgenic and 

nontransgenic plants 

Morroni, 

2013 

    

Sweet orange siRNA determination of a new Enamovirus Vives, 2013 

 

The techniques of sequencing methods are constantly evolving. The choice of a 

technology depends on different factors such as the number of samples, sample 

throughput and the available capital (Mardis, 2013). However, the following aspects are 

important for the user: 

- depths of sequencing for sensitivity 

- sufficient read lengths for a good assembling 

- accuracy of reads for correct sequences 

- cost efficacy for multiplexing samples 

- time for sample preparation 

From the perspective of virologists it is rather crucial to gain useful information from 

the data. The first objective is the identification of viruses in the pool of sequences, 

ideally from the determination of the full genome lengths. Moreover, other questions 

can be answered like the relative concentration or sequence variation of the viruses 

within the sample. The biggest challenge is to eliminate the contamination of other 

sources, mainly sequences from microorganisms and the host. There is a wide range of 

bioinformatics applications, which can be combined for the evaluation of deep 
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sequencing data. Therefore an own bioinformatics pipeline was established, 

summarized in Figure 5: 
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Local BLAST (Blast+, Blaststation, Bioedit) 

against viral genome reference database 

(filtering of plant genome contigs)* 

↓ 
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↓ 

 

Online BLAST (NCBI BLASTn/x, Blast2go)      

discard of non-viral sequences 

↓ 
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    virus hits 
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 Annotation of viral contigs 

selection of new reference sequences form GeneBank 

↓ 
 

Mapping all reads against viral contings and new reference sequences 

error correction of ambiguous sequences 

contig enlargement 

coverage calculations 

↓ 
 

Phylogenetic (MEGA5) 

taxonomic association  

CP and RdRp assignment to one Partitivirus 
 

Figure 5: Bioinformatics pipeline (*optimal, not used in this study) 
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One major advantage of the pipeline is the use of different programs and parameters for 

the main de novo assembly step, which resulted in different pools of contigs. The 

further combination of the single contigs results in a new super assembly, including 

improvements to lengths and numbers of contigs as shown in Figure 6. Once a genome 

has been assembled, a number of further analyses are possible, like quality control, 

comparison to reference sequences, variant detection and annotation. 

 

Figure 6: Contig lengths comparison of single assemblies with the combination 

assembly 

 

1.7.3 Bimolecular fluorescence complementation to determinate protein 

interaction of cryptic viruses 

Our knowledge about the biology of cryptic viruses like the influence on the host and 

molecular characteristics of their replication is very limited. Most recent studies have 

put their focus on sequence determinations and the evolutionary relationship of fungal 

Partitiviruses (Ghabrial, 2008; Lesker 2013a).  Aside from structural analyses, the 

investigation of protein interactions is a next step towards virus characterization. 

Proteins are involved in almost all biological processes in living cells and their 

interactions play also a key role in viral life cycles.  
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Several methods were established to identify and characterize protein-protein 

interactions. Besides different in vitro methods (Phizicky, 1995), the popular in vivo 

yeast two-hybrid (YTH) system (Fillds, 1989) the bimolecular fluorescence 

complementation (BiFC) analysis became a powerful alternative for studying protein-

protein interactions (Hu, 2002; Walter, 2004). Major advantages of this system are the 

high specificity and great stability of the reconstituted chromophore complex and its 

intrinsic fluorescence under natural conditions. Furthermore, it is possible to localize the 

protein interactions in the cell. 

The two proteins of interest (POI) are fused to the non-fluorescent N-terminal or C-

terminal fragment of a fluorescent protein. If the POI interact with one another, both 

parts of the reporter become reconstituted and fluorescence can be detected (Figure 7). 

 

 
 

Figure 7: Reconstituted chromophore complex by a protein interaction 

 

 

It has been suggested that each target protein is fused to both the N- and C-terminal 

fragments of the fluorescent reporter protein in turn, and that the fragments are fused at 

each of the N- and C-terminal ends of the target proteins. This allows for a total of four 

different permutations, when protein self-interactions is being tested (Figure 8): 
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Figure 8: Possible permutations of a protein self-interaction 

 

This difference can be used as internal control for the assay. Depending on the different 

conformation of fusion protein, each combination has to be tested, to exclude false 

negative results. Cryptic viruses consist of two proteins, this result in 16 permutations to 

explore all possible RdRp/CP combination and CP/RdRp self-interaction for each virus 

as shown in Figure 9: 

 

 

Figure 9: Interaction matrix to investigate CP-RdRp protein interactions 

 

To test all possible combination will reduce false-negative results trigger by potential 

blocking of interactions-sites due to fusion of the reporter parts (Takashi, 1999). All 

observed interactions were localized in epidermal leaf cells of Nicotiana benthamiana 

after agroinoculation. 
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1.8 Objectives 

Cryptic viruses are members of the family Partitiviridae which are widespread in 

mono- and dicotyledonous plant species. Although they do not cause economic losses, 

they can be responsible for misleading results in diagnostic approaches (Boccardo, 

1987). Partitiviruses infecting plants have no known natural vectors nor can them be 

transmitted by mechanical means or grafting. However, they are transmissible at very 

high rates through seed and pollen. Therefore, classical virological methods, such as 

transmission experiments or reverse genetic systems are difficult to perform. So the 

information on the biology of cryptic viruses is very limited. 

The first objective in the study of cryptic viruses was the verification of the status of the 

genus Betacryptovirus in the taxonomy. The last study of viruses of this genus was 

published about 28 years ago (Boccardo, 1985) and so far no sequence information is 

available. Other phylogenetic studies reported a distant relationship between members 

of Partitiviridae and recommended a reconsideration of the taxonomy (Ghabrial, 2008). 

However, this was not appropriate, due to the lack of sequences of the previously 

assigned genus. Therefore, dsRNAs of descriped host plants (White Clover, Red Clover, 

and Hop Trefoil) were isolated and were used for the sequence determination of 

Betacryptoviruses. 

The second part of this work covers a protein interaction approach to shed light on the 

biological characteristics of cryptic viruses. The dsRNA nature and their limited 

transferability reduce the opportunities to analyze the virus group. Aside from 

performed sequence and structural analyses (Ochoa, 2008) the investigation of protein 

interactions is another step towards the characterization of this virus group. The aim 

was to verify expected and hypothesized protein interactions of CP and RdRp proteins. 

For the reproducibility and clarification of functional relationships among the cryptic 

viruses, three alphacryptoviruses and three betacryptoviruses from White Clover, Red 

Clover and Dill were submitted to a Bimolecular Fluorescence Complementation 

Analysis. 

The last part of this thesis focuses on the biodiversity of persistent virus infections of 

plants. Therefore a metagenomic approach was performed by using the next generation 

sequencing technique to access unknown viral infections in plants. Most plant infecting 

viruses use single-stranded RNA as their genome and generate double-stranded RNA 

during replication. A specific isolation of dsRNA offers an easy way for RNA-virus 
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screening in plants without previous knowledge about the virus. However, additional 

and laborious work steps are necessary for a determination of the viral sequences. High 

throughput sequencing technologies can omit time-consuming manual sequencing 

analyses. In addition, they enable the detection of lowest target amounts even in mixed 

infections. Therefore, dsRNA purification in combination with deep sequencing 

analysis was used to analyze known cryptic viruses of plants described above and 

determine the full virome to evaluate the phylogenetic relationship of the family 

Partitiviridae.  

Together these studies will help to understand the relevance of the diversity of these 

persistent infecting viruses, regarding their interaction with the host and the linkage to 

fungal viruses. 
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2 Molecular characterization of five 

betacryptoviruses infecting four clover species 

and dill 

2.1 Abstract 

The family Partitiviridae includes plant (Alphacryptovirus and Betacryptovirus), fungal 

(Partitivirus) and protozoan (Cryspovirus) viruses with bisegmented dsRNA genomes 

and isometric virions. Cryptic viruses commonly occur in different plant species 

without causing any symptoms. So far numerous sequences are determined and 

assigned to the genus Alphacryptovirus, but no sequence is available for the described 

members of the genus Betacryptovirus. In this study, we report the molecular properties 

of the betacryptoviruses White clover cryptic virus 2, Red clover cryptic virus 2 and 

Hop trefoil cryptic virus 2 and two new putative members found in crimson clover and 

dill by extraction, cloning and sequence analyses of double-stranded RNA. Members of 

Betacryptovirus show common sequence motifs with members of the Partitivirus. In 

phylogenetic analyses members of the genus Betacryptovirus forms a new sub-cluster 

within the clusters of the genus Partitivirus. The results support a distinct evolutionary 

lineage of dsRNA viruses of plants and fungi. 

2.2 Introduction 

Cryptic viruses in plants are widespread in mono- and dicotyledonous plant species and 

are currently classified in the genera Alphacryptovirus and Betacryptovirus of the 

family Partitiviridae (Brunt, 1996; Ghabrial,  2012). In addition, the family contains the 

genera Partitivirus with the fungi infecting viruses, and Cryspovirus with the protozoan 

infecting viruses (Boccardo, 1983; Ghabrial, 2012). In general the genome of cryptic 

viruses is composed of two monocistronic dsRNA segments of approximately 1.5 to 2.5 

kbp in size. The larger segment encodes a putative RNA-dependent RNA polymerase 

(RdRp) and the smaller one the coat protein (CP). Both dsRNA molecules are 

individually encapsidated in non-enveloped isometric particles measuring 30 - 40 nm in 

diameter (Boccardo, 1987; Ghabrial, 2008; Ghabrial, 2012). 
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Plant infecting cryptic viruses have no known natural vectors and are also not 

transmitted by mechanical means or grafting. Nevertheless, they are transmitted at very 

high rates, nearly 100%, through the gametes if both parents are infected (Ghabrial 

1998). Because they do not encode proteins which have homologies to movement 

proteins of other viruses, the transmission occur in a passive way by cell division, 

thereby also infecting seed and pollen (Ghabrial, 2008). Cryptic viruses seem to be well 

adapted to their hosts, they even persisting for years in tissue cultures and surviving 

thermotherapy (Szego, 2010). A very low concentration of cryptic viruses in their host 

plants does not lead to any visible symptoms and has apparently no drastic impact on 

quality and yield in crop plants. Although they do not cause economic losses in their 

host plants, they can be responsible for misleading results in diagnostic approaches 

based on the detection of RNA (Boccardo, 1987; Suzuki, 2001). Plant cryptic viruses of 

the family Partitiviridae are widely spread in various species, often in mixed infections 

with different cryptic viruses and other kinds of dsRNA viruses, like endornaviruses 

(Fukuhara, 2008) and viruses similar to southern tomato virus (Mel'nichuk , 2005; 

Szego, 2010). 

Based on a restricted transmissibility and the nature of dsRNA of cryptic viruses 

interesting aspects regarding their evolution, genetics and interaction with their hosts 

arise. The reduced set of proteins, consisting only of coat protein (CP) and RNA-

dependent RNA polymerase (RdRp), and the absence of any further proteins for virus 

movement might point to the origin of these viruses. The nature of dsRNA is rather 

common for viruses occurring in various fungi. Here, no movement proteins are 

necessary because of the absence of cell walls separating the cells in fungi (Ghabrial, 

2008). Furthermore the relationship between e.g. cryptic viruses of plants and fungal 

viruses, as determined by phylogenetic analysis, is evident. Sequence analyses of 

viruses in the genera Alphacryptovirus and Partitivirus show a high degree of diversity 

of cryptic viruses (Ghabrial, 2008). It is remarkable that some plant infecting cryptic 

viruses reveal more similarity to the fungal viruses of the genus Partitivirus than to the 

plant viruses belonging to the genus Alphacryptovirus. Both genera can be split into two 

major clusters (Ghabrial, 2012). Therefore, a reconditioning of the current taxonomy 

should be considered. However, the classification of the genus Betacryptovirus is still 

unsolved, because of missing sequence information. To elucidate the relationship of the 

above mentioned genera we determined and analyzed additional sequences of 

alphacryptoviruses and putative betacryptoviruses.  
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Viruses of the genus Betacryptovirus were described in white clover, red clover, hop 

trefoil and carrots (Ghabrial, 2012). Comparing to other members of the Partitiviridae a 

betacryptovirus genome is consisting of two dsRNA segments of 2.1 to 2.4 kbp, which 

is slightly bigger than that of viruses grouped into the genus Alphacryptovirus. 

Furthermore the particles, measuring 38 nm, are larger than those of the genus 

Alphacryptovirus that are only 30 nm in diameter. Additionally, a serological 

discrimination of viruses of the different genera Alphacryptovirus and Betacryptovirus 

is possible (Boccardo, 1987). 

The last time the genus Betacryptovirus has been described is about twenty years ago 

(Boccardo, 1985). In the present study described host plants were analysed by dsRNA 

extraction concerning conceivable infections by viruses of the genus Betacryptovirus. It 

was possible to isolate dsRNA with the mentioned size out of white clover (Trifolium 

repens), red clover (Trifolium pratense), hop trefoil (Medicago lupulina) and dill 

(Anethum graveolens), and getting the first sequence information demonstrating a 

linkage to fungal viruses of the genus Partitivirus. In addition a comparative immune-

capture RT-PCR using a betacryptovirus specific antibody confirmed the results. 

Moreover the increased use of deep sequencing screening in plant diagnostics discovers 

more and more latent and cryptic virus infections in plants. A well classified sequence 

pool of wide spread cryptic viruses could be helpful to avoid incorrect assignments of 

viral sequences (Suzuki, 2001; Liu, 2012). 

2.3 Materials and methods 

2.3.1 Plant material 

Seedlings of white clover (Trifolium repens cv. Lirepa; Bruno Nebelung GmbH, 

Münster, Germany), red clover (Trifolium pretense cv. Nemaro; Bruno Nebelung 

GmbH, Münster, Germany), hop trefoil (Medicago lupulina, Samenkiste Karlsruhe, 

Germany), crimson clover (Trifolium incarnatum, Samenkiste Karlsruhe, Germany), 

persian clover (Trifolium resupinatum Bruno Nebelung GmbH, Münster, Germany), dill 

(Anethum graveolens var hortorum; Borena Köln, Germany) and six cultivars of carrot 

(Daucus carota; Lange rote stumpfe ohne Herz 2, Rossmann GmbH, Burgwedel, 

Germany; Nantaise 2; Pariser Markt 5, Quedlinburger Saatgut GmbH, Quedlinburg, 

Germany; Rothild, REWE GmbH, Köln, Germany; Rote Riesen 2; Sugarnax 54, 
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Gartenland GmbH, Aschersleben, Germany) were grown under standard greenhouse 

conditions. A total weight of 20 g of fresh leaves was used for each dsRNA extraction. 

2.3.2 Extraction of dsRNA 

Leaves were homogenized in liquid nitrogen and stored at -80°C until use. Extraction of 

dsRNAs was carried out as described by Morris and Dodds (Morris, 1979) with some 

modifications. To enrich dsRNAs and eliminate most of contaminating ssDNA, dsDNA 

and ssRNA, a phenol/chloroform extraction and chromatography through a CF-11 

cellulose column was done in the presence of 16.5% ethanol followed the elution by 

digestion with RNase-free DNase I (Roche) and with RNase T1 (Roche). After further 

purification by another round of CF-11 column chromatography and ethanol 

precipitation the dsRNA pellet was dissolved in 50 µl TE (10/0.1). The purity and 

concentration of dsRNAs was estimated by agarose gel electrophoresis. Gel separated 

dsRNAs were excised from the gel and purified by extraction with NucleoSpin 

(NucleoSpin MACHEREY-NAGEL GmbH, Düren, Germany) and subsequently used 

for cloning. 

2.3.3 Amplification, cloning and sequence determination 

Complementary DNA (cDNA) was synthesized using purified dsRNA as a template. 

The cDNA clones were obtained by RT-PCR with tagged random primers (Grothues, 

Cantor et al. 1993) using RevertAid Reverse Transcriptase (Fermentas) and Phusion 

Flash PCR Master Mix (Finnzymes) according to the manufacturer’s instructions. The 

amplified PCR-fragments were ligated into the CloneJET Vector (Fermentas) and 

transformed into Escherichia coli NM522 cells (Hanahan, 1983). Plasmids were 

isolated according to Birnboim and Doly (Birnboim , 1979) and sequenced by SEQLAB 

(Göttingen, Germany). Initial sequence information formed the basis for designing 

sequence specific oligonucleotides for further gene walking steps. Complete sequences 

of the ends were determined by a modified RACE procedure (Roche, Applied Science) 

based on oligo(dT) and oligo(dG) primed cDNA by using a terminal deoxynucleotidyl 

transferase (Thermo Scientific). Similar sequences of cloned cDNAs and their 

corresponding putative proteins were identified by BLAST searches in the GenBank 

database. Multiple alignments of nucleotide and amino acid (aa) sequences were done 

by ClustalW (Thompson, 1994). Phylogenetic analysis and construction of neighbor 

joining phylogenetic trees were done with MEGA version 5 (Tamura, 2011). 
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2.3.4 Immunocapture RT-PCR and immunoelectron microscopy (IEM) 

Plant extracts were prepared form 1 g leaves homogenized in 500 µl extraction buffer 

(20 mM Tris-HCl, 138 mM NaCl, 1 mM PVP, 0.05% Tween-20, 3 mM KCl; pH 7.4) 

and centrifuged for 5 min at 12.100 x g. The resulting supernatant was used for sample 

coating.  

Sterile 200 µl PCR-Tubes (Biozym) were coated with 50 µl of 1:200 diluted antibody 

(provided by Dr. Piero Caciagli from the Institute of Plant Virology, Turin, Italy) in 

coating buffer (15 mM Na2CO3, 35 mM NaHCO3; pH 9.6) overnight at 4°C. After three 

washes with PBS-T buffer (138 mM NaCl, 1.5 mM KH2PO4, 8 mM Na2HPO4, 3 mM 

KCl, 0.05% Tween-20; pH 7.4) 50 µl of plant extracts were added and incubated again 

overnight at 4°C and washed three times. For cDNA synthesis, all components were 

purchased from Thermo Scientific,  19 µl water, 6 µl 5xRT-Buffer, 1 µl Random 

Hexamer Primer, 3 µl 10 mM dNTP mix were added directly in the sample coated 

tubes. After an incubation for 5 min at 95°C 100 Units RevertAid Reverse Transcriptase 

and 10 Units RiboLock RNase Inhibitor were added to the tubes and incubate for 60 

min at 42°C. 3 µl of cDNA was added to 10 µl Phusion Flash High-Fidelity PCR 

Master Mix (Thermo Scientific), 5 µl water, 1 µl 10mM Primer BetaUniCPs (5’-

CCGCTTAGAAATTAAGAATTCACATTCGTCTA-3’) and 1 µl 10mM Primer 

BetaUniCPas (5’-ATCATTGAGCAAGAAGTAGCCATA-3’). The tubes were heated 

at 98°C for 10 s, followed by 30 reaction cycles (1 s at 98°C, 15 s at 56°C and 15 s at 

56°C) and a final step of 15 s at 72°C. The PCR products obtained were analyzed on 1% 

agarose gels containing 0.5 mg/l ethidium bromide. 

For electron microscopy, 50 g of leaf material from white clover was subjected to a 

virion purification method as described by Boccardo (1987). The preparation, which 

proved to contain only a few spherical virus particles after negative staining with 2 % 

aqueous uranyl acetate, was tested by immunosorbent electron microscopy (ISEM) and 

decorated as described by Milne (1984). For the coating of grids (ISEM) and 

decoration, the WCCV-2 antiserum was diluted 1:1000 and 1:50, respectively. 
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2.4 Results 

2.4.1 DsRNA analysis 

The aim of this study was to verify the presence of the formerly described 

betacryptoviruses and putative betacryptoviruses by including additional clover species 

and herbs. For sequence analyses of putative betacryptoviruses from white clover, red 

clover, hop trefoil, dill, persian clover and seven carrot cultivars a dsRNA extraction 

was performed. In about 80 % of the samples different dsRNA patterns were detected 

with 1 to 8 segments ranging in size from approx. 0.5 to 14 kbp. However, most of the 

bands were located in the range of approx. 1.5 kbp to 3.5 kbp. DsRNAs of putative 

betacrypticviruses were detectable in the size range from 2.2 to 2.4 kbp for white clover, 

red clover, hop trefoil, crimson clover and dill (Fig. 1). No dsRNA in the predicted 

range of 2.2 to 2.4 kbp for betacryptoviruses could be found in any of the seven 

varieties in the described host plant carrot. 

 

Figure 1: Electrophoretic analysis of dsRNA in 1% agarose gels with TAE buffer. The 

gels were stained with ethidium bromide. Lanes: Lambda - PstI DNA-Marker; TMV 

(dsRNA-Marker); purified dsRNA from 1: dill (Anethum graveolens), 2: hop trefoil 

(Medicago lupulina), 3: crimson clover (Trifolium incarnatum), 4: red clover (Trifolium 

pratense), 5: white clover (Trifolium repens) 
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2.4.2 Nucleotide sequence analysis 

DsRNA bands in the size range of the putative betacryptoviruses were gel purified and 

used for RT-PCR. Two dsRNAs deriving from white clover, red clover, hop trefoil, 

incarnate clover and dill were further analysed. The larger segment, representing RNA 1 

was approx. 2.4 kbp in size, while the smaller one (RNA 2) was about 77-90 bp shorter 

(Table 1). Each segment includes a single open reading frame (ORF) with untranslated 

regions (UTR) at the 5’- and 3’- ends. RNA 1 encodes an RNA-dependent RNA 

polymerase (RdRp) and RNA 2 the respective coat protein (CP). The 5-UTR consists of 

103-110 bp in case of RNA1 and 91-96 bp in case of RNA 2. Aligning of the 5’UTRs 

revealed a high degree of sequence similarities: all newly determined dsRNAs start with 

the sequence AGAUU followed by short stretches of U and C. In addition, a strictly 

conserved sequence motif of 18 nucleotides AGAAUUCACAUUCGUCUA was 

identified at position 39 to 57 (Fig. 2).  

 

Virus   RNA        ---------->     <------------    --->    <--- 
CanCV  CP  -GAUUUUUCUAAAGC-GCCCCGC-CUU-UAGUUAUUAAGAAUUUACAUUCGUCUAUAUUA 

CrCV2  CP  AGAUUUAUUUAAAGCCGCCCCAAGCUC-UAAAUAUUAAGAAUUCACAUUCGUCUAAGUUA 

DCV2  CP  AGAUUUUAUUAAAGC-GCCCCGAACUU-UAGUAAUUAAGAACUCACAUUCGUCUAAAUUA 

HTCV2  CP  AGAUUUUUCUAAAGC-GGCCC---CGC-UAGAAAUUAAGAAUUCACAUUCGUCUACAUUA 

PrMCV  CP  -GAUUUUUUUAAACCGGCCCCCCGCU--UAAAAAUUUAGAAUUUACAUUCGUCUACAAAA 

RCCV2  CP  AGAUUUUUCUUAAGC-GCCCCGC-CUC-AAGAAAUUAAGAAUUCACAUUCGUCUAAAUUA 

WCCV2  CP  AGAUUAUUCUUAAUC-GGCCC-C-CGA-AAGAAUUUAAGAAUUCACAUUCGUCUAUAUUA 

CanCV  RdRp  -GAUUUUUUAUAAGCGCCCCCCGCC-UUAUUUAACUAAGAAUUAACAUUCGUCUAAGUUA 

CrCV2  RdRp  AGAUUUAUUUAAAGCCGCCCCGUGC-UCUGAAUAUUAAGAAUUCACAUUCGUCUAACCUC 

DCV2  RdRp  AGAUUUUAUUAAAGCGCCCACC----UUUAAUAUUUGAGAAUUCACAUUCGUCUAAAUUA 

HTCV2  RdRp  AGAUUUUUUAUAAGCGGCCCCCGCC--UAUAAUAUUUAGAAUUCACAUUCGUCUAAUUUU 

PrMCV  RdRp  -GAUUUUUUUAAACCGGCCCCCCGA-CUUAAAAAUUUAGAAUUCACAUUCGUCUACGAUA 

RCCV2  RdRp  AGAUUUAUUUAAAGCGGCCCCCGCC---CUAAUAUUUAGAAUUCACAUUCGUCUACUAAU 

WCCV2  RdRp  AGAUUUAUUUAAGACGGCCCCCCCCGUUCUAAUAUUUAGAAUUCACAUUCGUCUAUCCAU 

     ****:   * *: *   *:*             :* ****:* *********** 

Figure 2: Consensus sequences of the 5-UTR-regions of the genomic segments of 

putative betacryptoviruses. Arrows above indicate the ability to form potential stem-

loop-structures (mfold). “*” indicates identical positions and “:” conserved positions 

with only one substitution. 

 

Secondary structure analyses of the 5’ UTRs revealed two conserved stem-loop 

structures at position 4-36 and 40-52 (see Fig. 2). These structures were found in all 

RNAs except for WCCV2-RNA1. Figure 3 shows the putative secondary structure of 

RNA1 of the putative betacryptoviruses from RCCV-2-RNA1 and WCCV2-RNA2. 

These stem-loop structures are likely to have an important role in dsRNA replication 

and virus assembly (Li, 2009).  
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Figure 3: Potential conserved stem-loop-structures in 5-UTRs. Structure A: WCCV-2 

CP coding strand (RNA2) structure B: RCCV-2 RdRp coding strand (RNA1) predicted 

by mfold 

 

Open reading frames of 2235-2238 bp in RNA1 and 2019-2021 bp in RNA2 were 

identified. The ORFs were followed by 3‘-UTRs and a conserved C-rich region at the 

very 3’-terminal end of the RNAs consisting of a 3-5 nucleotide poly C-stretch. The 3-

UTR of RNA1 is about 88 bp larger than the corresponding sequence of RNA2, which 

has a length of about 236 bp. The same applies to the length of interrupted poly A-

stretches. In RNA2 these regions are about 78 bp and therefore more as twice as long as 

in RNA1 where they reached 37 bp. RNA1 codes for a protein with 745-746 aa with a 

calculated molecular mass of 87 kDa. The protein displays typical domains on aa-

position 390-600, described for viral RdRps (Marchler-Bauer, 2009). RNA2 codes for a 

protein with 673-674 aa and a calculated molecular mass of 75-76 kDa. Further 

analyses did not reveal any conserved regions. 

2.4.3 Immunocapture RT-PCR 

The IC-RT-PCR was successfully performed leading to an estimated band size of 413 

bp for the detection of WCCV-2 and RCCV-2 (Fig. 5). However, an omission of the 
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antibody coating step revealed also bands of the expected sizes. To prevent binding of 

virus particles to uncoated surfaces, we used an additional blocking step (incubation 

with 5% milk in PBS-T overnight a 4°C after coating with the antibody) to ensure the 

specific trapping of virus particles by the antibody. RT-PCR with primers specific to 

WCCV1 after immunocapture failed to detect this virus, indicating the specific 

detection of WCCV-2 only. 

M 1 2 3 4 

 

Figure 4: Electrophoretic analysis of Immunocapture RT-PCR fragments. Lanes: M: 

Lambda - PstI DNA-Marker; 1: white clover (Trifolium repens); 2: red clover 

(Trifolium pratense); 3: negative control, Nicotiana benthamiana; 4: white clover 

(Trifolium repens) without antibody coating step 

 

When adsorption preparations were used in electron microscopy, the preparation from 

white clover plants contained very few isometric particles after negative staining with 

uranyl acetate. In ISEM, however, numerous isometric particles measuring 38 nm in 

diameter were visualized on grids coated with the WCCV-2 antiserum, resulting in an 

approximately 100-fold increase in the number of virions on the grids (Fig. 5). 

Moreover, these particles were densely decorated after incubation with the WCCV-2 

antiserum, further supporting the assignment of this virus to the genus Betacryptovirus. 
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Fig. 5 Immunosorbent electron microscopy of particles trapped from a preparation from 

white clover (Trifolium repens) on a grid coated with WCCV-2 antiserum. Virions 

obtained after isopycnic centrifugation in Cs2SO4 gradients were negatively stained 

with 2 % uranyl acetate. The bar represents 100 nm 

2.4.4 Phylogenetic analysis 

A BLASTP search with RNA1 (RdRp) as well as RNA2 (CP) showed a strong 

sequence similarity to Primula malacoides virus (Li, 2009) and Cannabis cryptic virus 

(Ziegler, Matousek et al. 2011). Furthermore, additional homologies to viruses of the 

genus Partitivirus that infect the plant pathogenic fungus Rhizoctonia solani 

(Rhizoctonia solani virus 717 (RhsV-717) (Strauss,2000) and Rosellinia necatrix 

(Rosellinia necatrix partitivirus 1-W8 (RnV1) (Sasaki, 2005) were found.  

Phylogenetic trees based on RdRp as well as on CP sequences showed a wide diversity 

of viruses in the family Partitiviridae whereas plant and fungal viruses of the genera 

Alphacryptovirus and Partitivirus, respectively, were each divided into two clusters (I + 

II) as already described (Ghabrial, 2012) (Fig. 4). Distinctive features are homologies of 

RdRp sequences which are closer between the clusters Alphacryptovirus I and 

Partitivirus I and Alphacryptovirus II and Partitivirus II than between the clusters within 

the individual genera. 

This is also shown for other sequence parameters like larger RNAs and protein sizes 

and the presence of poly A-stretches (not described for members of clusters II) in 3-
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UTRs of viruses grouped in cluster I comparing to those belonging to cluster II (Table 

1). 

Table 1: Overview of the molecular characteristics of selected members within the 

family of Partitiviruses, new sequences in bold letters 

     RdRp coding RNA  CP coding RNA 
Genus (Clusters) / Virusnames  Genbank (RdRp; CP)  bp ORF AS kDa  bp ORF AS kDa 
             

Betacyptovirus             
 Cannabis Cryptic Virus (CaCV)  JN196536; JN196537  2420 109-2343 745 87.2  2290 92-2107 672 74.9 

 
Crimson Clover Cryptic 
Virus 2 (CCCV-2) 

 
JX971982; JX971983 

 
2444 109-2347 746 87.2 

 
2354 96-2118 674 75.4 

 Dill Cyptic Virus 2 (DCV-2)  JX971984; JX971985  2430 103-2338 745 87.1  2354 96-2115 673 75.3 

 
Hop Trefoil Cyptic Virus 2 
(HTCV-2) 

 
JX971980; JX971981 

 
2431 110-2348 746 87.2 

 
2349 91-2110 673 75.4 

 
Primula Malacoides Virus 1 
(PmV1) 

 
NC_013109; NC_013110 

 
2390 110-2282 724 84.2 

 
2344 94-2113 673 74.8 

 
Red Clover Cryptic Virus 2 
(RCCV-2) 

 
JX971984; JX971985 

 
2430 107-2342 745 86.7 

 
2353 94-2113 673 75.7 

 
White Clover Cryptic Virus 2 
(WCCV-2) 

 
JX971976; JX971977 

 
2435 109-2347 746 87.1 

 
2348 92-2111 673 75.6 

             

Partitivirus I             

 
Atkinsonella hypoxylon 
partitivirus (AhV) 

 
NC_003470; NC_003471 

 
2180 40-2035 665 77.6 

 
2135 72-2028 652 73.7 

 
Ceratocystis polonica 
partitivirus (CpPV1) 

 
NC_010705; NC_010706 

 
2315 53-2042 663 76.9 

 
2252 92-2075 661 73.2 

 
Ceratocystis resinifera 
partitivirus (CrV1) 

 
NC_010755; NC_010754 

 
2207 53-2042 663 76.8 

 
2305 93-2076 661 73.3 

 
Fusarium poae virus 1 (FUPO-
1) 

 
NC_003884; NC_003883 

 
2203 54-2073 673 78.3 

 
2185 112-2023 637 70.5 

 
Pleurotus ostreatus virus 1 
(PoV1) 

 
NC_006961; NC_006960 

 
2296 79-2197 706 82.2 

 
2223 115-2023 636 71.1 

 
Rhizoctonia solani virus 717 
(RhsV-717) 

 
NC_003801; NC_003802 

 
2363 86-2276 730 85.8 

 
2206 79-2128 683 76.4 

 
Rosellinia necatrix partitivirus 
1-W8 (RnV1) 

 
NC_007537; NC_007538 

 
2299 76-2203 709 83.8 

 
2279 80-2138 686 76.6 

             

Alphacryptovirus I             
 Beet cryptic virus 1 (BCV-1)  NC_011556; NC_011557  2008 94-1942 616 72.5  1783 123-1590 489 53.4 
 Carrot cryptic virus (CaCV)  FJ550604; FJ550605  1971 95-1943 616 72.7  1776 119-1589 490 54.4 
 Vicia cryptic virus (VCV)  NC_007241; NC_007242  2012 93-1941 616 72.9  1779 119-1580 487 53.9 

 
White clover cryptic virus 1 
(WCCV-1) 

 
NC_006275; NC_006276 

 
1955 75-1923 616 72.9 

 
1708 105-1566 487 54.2 

             

Partitivirus II             

 
Aspergillus ochraceous virus 
(AoV1) 

 
EU118277; EU118278 

 
1754 67-1684 539 62.3 

 
1555 101-1400 433 47.0 

 
Botryotinia fuckeliana 
partitivirus 1 (BfPV1) 

 
NC_010349; NC_010350 

 
1793 62-1682 540 62.6 

 
1566 102-1410 436 46.8 

 
Discula destructiva virus 1 
(DdV-1) 

 
NC_002797; NC_002800 

 
1787 65-1682 539 62.4 

 
1585 99-1407 436 47.6 

 
Discula destructiva virus 2 
(DdV-2) 

 
NC_003710; NC_003711 

 
1781 62-1679 539 62.4 

 
1611 103-1429 442 47.9 

 Fusarium solani virus 1 (FsV-1)  NC_003885; NC_003886  1645 16-1573 519 59.7  1445 40-1279 413 44.2 

 
Gremmeniella abietina RNA 
virus (GaRV-MS1) 

 
NC_004018; NC_004019 

 
1782 63-1680 539 62.1 

 
1586 100-1429 443 47.1 

 
Ophiostoma partitivirus 1 
(OPV1) 

 
AM087202; AM087203 

 
1744 70-1687 539 62.7 

 
1567 109-1399 430 46.3 

 
Penicillium stoloniferum virus S 
(PsV-S) 

 
NC_005976; NC_005977 

 
1754 66-1683 539 62.3 

 
1582 113-1415 434 46.8 

             

Alphacryptovirus II             

 
Fragaria chiloensis cryptic 
virus (FCCV) 

 
NC_009519; NC_009521 

 
1734 183-1620 479 55.8 

 
1479 191-1235 348 38.8 

 
Pepper cryptic virus 1 Jal-01 
(PCV1) 

 
JN117276; JN117277 

 
1563 93-1530 479 54.5 

 
1512 96-1332 412 47.6 

 
Raphanus sativus cryptic virus 
2 (RsCV2) 

 
NC_010343; NC_010344 

 
1717 179-1610 477 55.3 

 
1521 209-1247 346 38.2 

 
Raphanus sativus cryptic virus 
3 (RsCV3) 

 
NC_011705; NC_011706 

 
1609 101-1544 481 54.9 

 
1581 94-1216 374 42.7 

 Rose cryptic virus 1 (RoCV1)  NC_010346; NC_010347  1749 183-1674 497 55.9  1485 190-1234 348 38.8 
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Members of the genus Betacryptovirus form a sub-cluster within cluster Partitivirus I. 

A pair-wise sequence identity among representative members of the different clusters 

shows high similarities up to 50% identity in the RdRp Proteins (see Tab. 2). They also 

show similar sequence parameters, e.g. similar RNA-sizes, presence of interrupted poly 

A-stretches, and similar deduced sizes of the capsid proteins. Also, the estimated 

particle sizes of 34-35 nm (Li, 2009; Ziegler, 2011) clearly differ from that estimated 

for alphacryptoviruses (30 nm), which are lying in a size range of the cluster Partitivirus 

I. 

 

Table 2: Summary of pair-wise amino acid sequence identities in percent of selected members 

within the family Partitiviridae 
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CaCV - 73 76 73 74 74 73 32 32 33 46 46 43 50 19 19 17 17 13 14 

CCCV-2 57 - 76 76 75 77 75 33 33 33 46 46 44 50 21 21 16 17 16 15 

DCV-2 69 59 - 79 77 78 76 35 35 35 48 49 45 51 21 21 17 17 15 15 

HTCV-2 61 61 64 - 76 84 82 34 35 35 47 48 45 50 20 21 16 17 15 15 

PmV1 60 58 61 61 - 77 76 34 33 34 46 46 44 48 20 20 16 17 14 13 

RCCV-2 59 59 60 73 56 - 90 34 35 35 46 48 44 50 20 21 17 18 15 14 

WCCV-

2 
59 57 58 68 56 77 - 34 34 35 47 47 44 49 20 21 17 18 15 15 

AhV 16 15 17 16 15 15 15 - 56 55 37 37 38 35 20 22 16 15 14 16 

CpPV1 17 16 16 17 17 16 16 41 - 96 34 35 36 35 20 20 16 17 16 15 

CrV1 16 15 15 16 16 15 15 40 88 - 34 36 37 35 20 20 17 18 16 16 

FUPO-1 20 18 20 20 21 19 20 18 21 20 - 60 47 50 18 19 16 16 12 13 

PoV1 19 19 20 19 20 20 19 18 22 21 58 - 45 54 20 20 16 16 13 16 

RhsV-
717 

34 32 34 34 33 33 32 16 16 15 20 20 - 45 23 22 18 18 15 15 

RnV1 31 30 29 31 31 30 29 14 14 14 18 18 33 - 20 20 16 16 14 14 

VCV 8 8 8 8 9 8 7 6 10 9 7 6 6 7 - 84 14 15 14 13 

WCCV-

1 
11 10 10 8 10 10 9 8 9 9 9 8 8 7 56 - 15 16 13 14 

DdV-1 8 8 6 7 8 8 9 7 7 7 6 6 6 8 9 9 - 70 17 17 

PsV-S 8 8 8 7 9 8 8 9 7 6 8 7 6 8 9 9 54 - 17 18 

PCV1 9 11 9 10 10 10 10 5 8 7 6 7 9 7 11 8 9 8 - 34 

RsCV2 8 8 9 8 10 9 8 6 9 10 10 10 10 8 8 8 8 10 4 - 

 



Part 2: Betacryptoviruses   36 

A: RdRp B: CP 

 

 

 

 

Figure 4: Evolutionary relationship of taxa. The evolutionary history was inferred using the Neighbor-Joining method. The percentage of replicate trees associated 
taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The evolutionary distances were computed using the Maximum 
Composite Likelihood method. Bar represent in the units of base substitutions per site. All ambiguous positions were removed for each sequence pair. Abbreviations 
see table 1 except of BCV-3: Beet Crytic Virus 3 [AAB27624], BrCV: Black raspberry cryptic virus [EU082132], Pyrus pyrifolia cryptic virus [AB012616], PSCV-
NL2005: Pinus sylvestris partitivirus [AY973825], HmV-V1 Helicobasidium mompa partitivirus [AB110979] 
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2.5 Discussion 

In this study the complete sequences of 5 viruses were determined and classified into 

the genus Betacryptovirus. Three dsRNAs pairs from well-known hosts such as white 

clover (Boccardo, 1985), red clover (Boccardo, 1983) and hop trefoil (Luisoni, 1987) 

with sizes of about 2.4 kbp described for a typical betacryptovirus (Boccardo, 1985) 

were isolated, cloned and their sequences were determined leading to white clover 

cryptic 2, red clover cryptic 2 and Hop trefoil virus 2. In addition two new unexpected 

putative viruses of the genus Betacryptovirus were identified in dill (Anethum 

graveolens) tentatively named dill cryptic virus 2 (DCV2) and crimson clover 

(Trifolium incarnatum) tentatively named crimson clover cryptic virus 2 (CrCV2). 

Furthermore two potential members of the genus Betacryptovirus were identified from 

Primula and Canabis by searching the GenBank using comparative sequence analyses. 

For these viruses, particle sizes with a diameter of 35 nm were described, equivalent to 

the size of well-known betacryptoviruses (Li, 2009; Ziegler, 2011; Ghabrial, 2012). The 

separation of different cryptic viruses out of mixedly-infected plants can be difficult 

(Boccardo, 1985, 1987) and a classification by particle size should be used only if 

plants containing a single virus infection. DsRNAs from white clover at 2 kbp could be 

assigned to WCCV-1. Moreover, additional dsRNAs in dill were classified as belonging 

to the Alphacryptovirus cluster I (~2 kbp) and Alphacryptovirus cluster II (~1.6 kbp; 

results not shown). A clear demarcation of viruses belonging to the genus 

Betacryptovirus to those of the genera Alphacryptovirus and Partitivirus can be made 

by sequence similarities and differences. Already described putative betacryptoviruses 

have essentially larger dsRNAs and protein sizes (Table 1). Approximate similarities to 

viruses of the genus Partitivirus can be found. Sequences of the viruses RnV1 and 

RhsV-717 that infect plant-pathogenic fungi show high similarities to the sequences of 

the genus Betacryptovirus. 

Phylogenetic analyses have shown the division of viruses in the genera 

Alphacryptovirus and Partitivirus into two clusters (Ghabrial,  2008, 2012). Viruses of 

the genus Betacryptovirus generate an own sub-cluster, which relates to the Partitivirus 

cluster I. The current taxonomic classification does not reflect those findings in an 

adequate way. So the type member of the genera Betacryptovirus (WCCV2) and 

Partitivirus (AhV) are closer to each other, than viruses of different clusters of the 
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genus Alphacryptovirus and Partitivirus. Further characteristics such as dsRNA size, 

presence of interrupted poly A-stretches and particle size support a reorganization of the 

taxonomic units. Therefore the clusters Alphacryptovirus II and Partitivirus II should be 

assigned to two new genera within the family Partitiviridae. The sequence information 

collected now for betacryptoviruses should eliminate any uncertainties in classification 

of newly identified cryptic viruses (Li, 2009; Ziegler, 2011), especially those, where 

data are generated by further use of deep sequencing methods.  

The strong similarity of plant cryptic viruses to mycoviruses could lead to the 

possibility that the described potentially betacryptoviruses were associated with 

endosymbiotic fungi which have been found in several plants. This opportunity was 

already discussed in previous publications (Boccardo, 1985). A fungal contamination 

was not detected in those plants in which dsRNA and particles have been found 

(Boccardo, 1985). Even in the betacryptovirus-harboring host plants primula and hemp, 

no evidence for fungi was found (Li, 2009; Ziegler, 2011). Beside different kinds of 

clover mentioned above betacryptoviruses were also found in unrelated plants like dill, 

Primula and hemp. This argument is contradictory to a contamination by a common 

specific endosymbiotic fungus (Boccardo, 1987). Furthermore viruses of the genus 

Alphacryptovirus, obtained from protoplast cultivation show high sequence similarities 

to fungal partitiviruses (Abou-Elnasr, 1985). 

The close genetic relationship of fungal and plant viruses within the family 

Partitiviridae might be an evidence of horizontal virus transmission (Ghabrial, 1998; 

Roossinck, 2010), particularly because closely genetically related partitiviruses were 

found in pathogenic fungi. Additionally, the high sequence similarity of individual 

viruses that were found in different plant families could be explained by a vector 

mediated transmission. Phytopathogenic fungi can act as vectors for a couple of 

different plant viruses (Rochon, 2004; Lubicz, 2007). An uptake and/or delivery of 

viruses by fungi may also apply for viruses of the family Partitiviridae provided that the 

virus is somehow succeeding to enter the gametes to establish a permanent infection. 

However, experimental approaches supporting such a transmission of cryptic viruses 

(Mel'nichuk, 2005) were unable to provide sufficient evidence for a horizontal 

transmission (Szego, 2010). Nevertheless, the high sequence identity of cryptic viruses 

within different plant families supports the idea of vector transmission (Ghabrial, 1998; 

Roossinck, 2010). A drawback to verify this theory is probably the low virus titer within 

the plant, which could be influenced by the host plant as shown for endornaviruses 



Part 2: Betacryptoviruses   39 

(Urayama, 2010). An additional aspect is the horizontal gene transfer from parts of 

cryptic viruses to eukaryotic nuclear genomes (Liu, 2010; Chiba, 2011). This gene 

transfer was found for the partitivirus (cluster I) member RnV1, which is phylogenetic 

closely related to the described betacryptovirus cluster, to the genome of Acyrthosiphon 

pisum. The integration of sequence parts most likely occurred when the viruses were 

first introduced into noninfected species, probably as a result of an antiviral immunity 

response (Liu, 2010,  2012). Concerning that no integration of betacryptovius-like 

sequences could be found in genomes of plants or fungus, suggests an ancient origin for 

these viruses rather than an out coming from their hosts. However, based on the close 

genetic relationship of the genera Betacryptovirus and Partitivirus further investigations 

concerning plant-fungus interaction might provide evidence for the potential of 

horizontal interkingdom transmission of cryptic viruses. 
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3 In planta protein interactions of three 

Alphacryptoviruses and three Betacryptoviruses 

from White Clover, Red Clover and Dill by 

Bimolecular Fluorescence Complementation 

Analysis 

3.1 Abstract 

Plant-infecting viruses of the genera Alpha- and Betacryptovirus within the family 

Partitiviridae cause no visible effects on their hosts and are only transmitted by cell 

division and through gametes. The bipartite dsRNA genome is encoding an RNA-

dependent RNA polymerase (RdRp) and a coat protein (CP). Aside from sequence and 

structural analyses, the investigation of protein interactions is another step towards virus 

characterization. Therefore, ORFs of two type members White Clover Cryptic Virus 1 

and 2 (WCCV-1 and WCCV-2), as well as the related viruses from Red Clover and Dill 

were introduced into a bimolecular fluorescence complementation assay. We showed 

CP-CP dimerization for all tested viruses with localization for alphacryptoviruses at the 

nuclear membrane and for betacryptoviruses close to cell walls within the cytoplasm. 

For CPs of WCCV-1 and WCCV-2 deletion mutants were created to determine internal 

interaction sites. Moreover, RdRp self-interaction was found for all viruses, whereas 

CP-RdRp interactions were only detectable for the alphacryptoviruses. An intra-genus 

test of CPs was successful in various virus combinations, whereas an inter-genus 

interaction of WCCV-1CP and WCCV-2CP was absent. This is the first report of in 

vivo protein interactions of members in the family Partitiviridae, indicating distinct 

features of the alpha- and betacryptoviruses. 

3.2 Introduction 

Cryptic viruses, widespread in mono- and dicotyledonous plant species, are currently 

classified in the genera Alpha- and Betacryptovirus of the family Partitiviridae (Brunt, 

1996; Ghabrial, 2012). Additionally, the family contains the genera Partitivirus and 

Cryspovirus, which include viruses infecting fungi and protozoa, respectively 
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(Boccardo, 1983; Ghabrial, 2012). The genome of cryptic viruses is composed of two 

monocistronic dsRNA segments of approximately 1.5 to 2.5 kbp in size. While the 

larger segment encodes a putative RNA-dependent RNA polymerase (RdRp), the 

smaller one encodes the coat protein (CP). Both dsRNA molecules are individually 

encapsidated in non-enveloped isometric particles measuring 30-40 nm in diameter 

(Boccardo, 1987; Ghabrial, 2008; Ghabrial, 2012). There are no known natural vectors 

of plant-infecting cryptic viruses, and they are not transmitted by mechanical means or 

grafting. Nevertheless, a very high rate of transmission by the gametes is found, nearly 

100 %, if both parents are infected (Ghabrial, 1998). Cryptic viruses do not encode 

proteins with homology to so far known movement proteins of other viruses. Hence 

their transmission occurs in a passive way by cell division, thereby also infecting seed 

and pollen (Ghabrial, 2008). There seems to be a good adaption of cryptic viruses to 

their hosts, reaching only a low virus titer, persisting for years in tissue culture and 

withstanding thermotherapy (Boccardo, 1987). No visible symptoms are caused by 

cryptic viruses, and apparently they do not lead to drastic impact on quality and yield in 

crop plants. Although economic losses in their host plants are not obvious, they can be 

responsible for misleading results in diagnostic approaches based on RNA detection 

(Boccardo, 1987; Suzuki, 2001). Plant viruses of the family Partitiviridae frequently 

occur in various species, often in mixed infections with different cryptic viruses and 

other kinds of dsRNA viruses, such as Endornaviruses (Fukuhara, 2008) and viruses 

similar to Southern tomato virus (Sabanadzovic, 2009; Martin, 2011). 

First studies dealing with cryptic viruses were done in the early 1980´s, followed by the 

first description of their genome structure and particle sizes (Boccardo, 1987). Various 

attempts of virus transmission were made but only an exclusive transmission by seeds 

and pollen was found. The relationship to mycoviruses was proven by several 

serological investigations; based on these findings together with particle and genome 

sizes the classification into the genera Alphacryptovirus and Betacryptovirus was 

established. RdRp polymerase activity linked with virus particles was confirmed by 

enzyme assays (Marzachi, 1988). The first viral sequence became available for Beet 

cryptic virus 3 (Xie, 1993). The first complete sequence of an alphacryptovirus, namely 

White clover cryptic virus 1 (WCCV-1) was published by Boccardo in 2005 (Boccardo, 

2005), the first betacryptovirus White clover cryptic virus 2 (WCCV-2) was determined 

in 2013 (Lesker, 2013a). Phylogenetic analyses revealed further subdivision of the 

genus Alphacryptovirus in two clusters and a relationship between herbal and fungal 
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viruses in the family Partitiviridae was shown (Ghabrial, 2008; Lesker, 2013). Several 

studies suggest a viral influence on its host. For example, dsRNA patterns were linked 

to yellow edge symptoms in radish (Chen, 2006). In addition, an artificial expression of 

the WCCV-1CP gene in Lotus japonicus influenced the growth of the roots 

(Nakatsukasa-Akune, 2005). However other studies in crop plants were not able to 

demonstrate any symptoms despite a virus infection or significant impact on yield 

(Ghabrial, 2008). In some cases an increase of dsRNA concentration has been observed 

when an additional plant virus was present together with a cryptic virus (Boccardo, 

1987). 

A cryptic virus with a dsRNA genome, but also any other RNA containing virus using 

dsRNA as a replication intermediate, faces a problem during its replication cycle. Plants 

natural defense mechanisms generally recognize dsRNA, which is subsequently 

degraded. RNA viruses have evolved special proteins - suppressors of silencing - to 

protect themselves in various ways from RNA degradation (Waterhouse, 2001). Cryptic 

viruses do not have such kinds of proteins, so they have to hide their dsRNA from the 

plants natural defense. It is assumed that the dsRNA only occurs in the virus particle 

itself and here serves as a template for the also encapsidated RdRp (Boccardo, 1987; 

Ghabrial, 2008). The transcribed single-stranded RNA passes from the particle through 

pores into the cytoplasm, where CP and RdRp are translated (Nibert, 2013). During 

particle assembly RNA and RdRp are packaged by protein-protein and protein-RNA 

interaction together with the CP. Only inside the assembled particle the RdRp switches 

to an active mode and starts to synthesize new dsRNA (Nibert, 2013). 

Recent X-ray diffraction studies focused on the structural analyses of virus particles. A 

3D model was established for Penicillium stoloniferum virus F (PSV-F) a member of 

the genus Partitivirus, which is closely related to plant infecting alpha- and 

betacryptoviruses. The particle composition follows a T=1 symmetry consisting of 120 

subunits (Ochoa, 2008). Furthermore, pores were found suitable for mRNA transfer; 

however RdRp was not localized in particles (Pan, 2009). A biological characterization 

of cryptic viruses is difficult because of their features, like a limited transmission. This 

also applies to the establishment of reverse genetic systems due to the dsRNA nature of 

these viruses.  

After genetic studies concerning plant cryptic viruses (Ghabrial, 1998; Lesker, 2013) 

identification and investigation of protein–protein interactions present a further step in 
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understanding the virus biology of the alpha- and betacryptoviruses. Several methods 

were established to identify and characterize protein–protein interactions. Besides 

different in vitro methods (Phizicky, 1995), the yeast two-hybrid (YTH) system (Fields, 

1989) is the most popular in vivo method to detect protein interactions. However, this 

system relies on the yeast nucleus under artificial conditions. Protein interactions 

requiring biologically relevant modifications or a specific subcellular localization are 

not detectable (Stolpe, 2005). Therefore, bimolecular fluorescence complementation 

(BiFC) analysis was developed and became a powerful alternative for studying protein-

protein interactions (Hu, 2002; Walter, 2004). The two proteins of interest (POI) are 

fused to the non-fluorescent N-terminal or C-terminal fragment of a fluorescent protein. 

If the POI interacts with each other, both parts of the reporter become reconstituted and 

fluorescence can be detected. Significant advantages of this system are the high 

specificity and great stability of the reconstituted chromophore complex and its intrinsic 

fluorescence under natural conditions. Furthermore, it is possible to localize the protein 

interactions in the cell. 

In this study, an optimized BiFC-system (Zilian, 2011) was used to investigate for the 

first-time protein interactions of viruses belonging to the family Partitiviridae in planta. 

The aim was to verify expected and hypothesized protein interactions. Firstly, we 

focused on the CP dimerization, which is the starting point of virus assembly. Sixty of 

these dimers are building the particle structure of Partitiviridae with a T=1 symmetry, 

whereas no additional viral components are needed for this domain swapping. 

Furthermore, we hypothesized an interaction of CP and RdRp. This interaction is 

proposed for the last steps of the virus assembly to introduce the RdRp in the particle 

and to activate the transcription (Ghabrial, 2008). Additionally, self-interaction of the 

RdRp was tested. For clarification of functional relationships among the cryptic viruses 

and to establish negative controls for the BiFC-system the CP and RdRp of one virus 

were tested versus proteins of two other virus members of the same genus (interspecies 

interactions). Moreover, an intergenus interaction with the CPs of WCCV-1 and 

WCCV-2 was performed. Additionally, we used deletion mutants to narrow down the 

part involved in the CP-CP interaction of the two type members of alphacryptovirus, 

WCCV-1 and betacryptovirus, WCCV-2, respectively.  
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3.3 Results and Discussion 

Due to the formerly described infection cycle of the cryptic viruses in plants, different 

protein-protein and protein-RNA interaction could be expected. The primary domain 

shaping of CP proteins to dimers forms the basis of the final capsid structure. Multiple 

interaction sites were found by structural analyses (Pan, 2009; Tang, 2010), so a CP 

self-interaction could be expected in different permutations, as well as in distinct 

deletions mutants. Moreover, due to the fundamental similarities, interactions between 

CPs from viruses found in related host plants (intra genus) are most likely. The only 

other encoded protein, the RdRp, has to be packaged into the particle, where it is 

assumed to recognize higher CP- or RNA-structures to start transcription and the 

synthesis of the dsRNA genome  (Ghabrial, 2008). The viral genome within the particle 

is hidden from the plant defense mechanisms centered on the recognition of dsRNA. 

Another important step in the virus life cycle is to ensure the passive transport of cryptic 

viruses during cell division, especially to the gametes. Due to the lack of movement 

proteins for active transport via plasmodesmata, the cryptic viruses had to develop 

mechanisms to establish in meristem cells, which enable them to withstand 

thermotherapy (Boccardo, 1983). An interaction and in planta localization approach 

could be the first step to provide more hints to understand the “cryptic strategy”. 

An optimized BiFC system was used to elucidate protein interactions of six different 

cryptic viruses from the genera Alphacryptovirus and Betacryptovirus. For this purpose, 

the type members WCCV-1 and WCCV-2 from Trifolium repens (Boccardo, 1985) and 

two closely related cryptic viruses from Trifolium pratense, namely Red clover cryptic 

virus 1 and Red clover cryptic virus 2 (Luisoni, 1987) were used. In addition, the more 

distantly related Dill cryptic virus 1 and Dill cryptic virus 2 (Lesker, 2013a) from 

Anethum graveolens of the family Apiaceae are also included in the study. 

3.3.1 Establishment of internal controls 

Initially, the Plum pox virus coat protein and deletion mutants thereof served as positive 

and negative controls, i.e. to verify protein-protein interactions detected by the BiFC 

system. The development of controls with proteins of cryptic viruses is limited, because 

these viruses encode only two proteins, which largely reduces the number of possible 

interaction partners. To circumvent this drawback, proteins of closely and distantly 

related cryptic viruses from two different genera were used in this study to broaden up 
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the spectrum of potential interaction partners. To ensure the association of the 

monomeric red fluorescent protein (mRFP) fragments each CP and RdRp protein was 

fused to the N- as well as the C-terminal fragment. This allowed a screening of multiple 

combinations of fusion proteins for fluorescence complementation in all permutations. 

(Figure 1 and Figure 2). A total of four different BiFC binary vectors (BiFC 1-4) 

resulted, which carry the RdRp and CP genes, respectively, of distinctive cryptic 

viruses. Finally, for each CP and RdRp self-interaction four constructs and for the 

RdRp-CP interaction eight-constructs were available to test the interactions. 

 In at least one combination of each construct (Virus - CP/ RdRp – BiFC-Vector 1-4) an 

interaction was found (Figure 1 and Figure 2). This indicates a correct translation of 

fusion proteins, because in case of binary vectors BiFC3 and BiFC4 the GOI was fused 

upstream to the reporter gene. In the BiFC1 and BiFC2 vectors identical GOI-fragments 

from BiFC3 and BiFC4 were used, and the final constructs were verified by restriction 

enzyme digest and sequencing. Therefore, the different permutation and cross species 

tests of each construct served also as either additional positive or negative control. In 

case of BiFC2 mRFPC-RCCV-1CP only positive interactions with all test partners were 

identified, whereas with all other constructs, at least one negative interaction was 

determined. Thereby, additional control measurements with BiFC2 mRFPC-RCCV1CP 

were performed to exclude false-positive results, e.g. testing without any interacting 

partner, which reveals no fluorescence (data not shown). In addition, different 

localizations with BiFC2 mRFPC-RCCV1CP were found in several interactions, 

indicating the correct and specific determination of interactions and no general and 

unspecific interaction of the test partners. 

Interestingly, in several cases interactions were not found in all kinds of permutations. 

Especially RdRp self-interactions were only found in combinations when the RdRp was 

fused N-terminal as well as C-terminal to the mRFP with the BiFC2/3 vectors or vice 

versa with the BiFC1/4 vectors (Figure 1 and 2). This indicates that testing of all 

permutations might be beneficial in case of all BiFC systems. If only one permutation is 

tested with a negative result, all other permutations should also be tested to avoid the 

oversight of possible interacting partners. This applies to studies on the localization of 

interactions, too. In case of self-interactions of RCCV-1CP and DCV-1CP an 

association with the nuclear membrane was evident (Figure 1) with all BiFC 

combinations. However, the same expected localization of WCCV-1CP was found only 

in one permutation (BiFC2/3). 
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Figure 1. Interactions of the RNA-dependent RNA polymerase (RdRp) and coat protein 

(CP) of alphacryptoviruses WCCV-1, RCCV-1 and DCV-1. Grey shaded areas indicate 

self-interactions of CP and/or RdRp. Symbols: “−”: no fluorescence; “n.t.”: not tested; 

“+++”/“++”/“+”: for strong/medium/low fluorescence signals; “###”/“##”/“#”: almost 

all/mean number of/only a few cells detected with fluorescence; capital letters indicate 

localization of fluorescence in the cell: “C”: cytoplasm, “I”: inclusions in the cytoplasm, 

“N”: nucleus, “NM”: nuclear membrane. Bimolecular fluorescence complementation 

(BiFC) constructs are represented in the vertical line with BiFC3 (CP-mRFPN): “CP-●”, 

BiFC1 (mRFPN-CP): “●-CP”; or BiFC3 (RdRp-mRFPN): “RdRp-●”, BiFC1 (mRFPN-

RdRp)”: ●-RdRp” and in the horizontal line with BiFC4 (CP-mRFPC): “CP-●”, BiFC2 

(mRFPC-CP): “●-CP” or BiFC4 (RdRp-mRFPC): “RdRp-●”, BiFC2(mRFPC-RdRp): 

“●-RdRp”. 
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Figure 2. Interactions of RdRp and CP of betacryptoviruses WCCV-2, RCCV-2 and 

DCV-2. Grey shaded areas indicate self-interactions of CP and/or RdRp. Symbols: “−”: 

no fluorescence; “n.t.”: not tested; “+++”/“++”/“+”: for strong/medium/low 

fluorescence signals; “###”/“##”/“#”: almost all/mean number of/only a few cells detected 

with fluorescence; capital letters indicate localization of fluorescence in the cell: “C”: 

cytoplasm, “I”: inclusions in the cytoplasm, “N”: nucleus, “NM”: nuclear membrane. 

BiFC constructs are represented in the vertical line with BiFC3 (CP-mRFPN): “CP-●”, 

BiFC1 (mRFPN-CP): “●-CP”; or BiFC3 (RdRp-mRFPN): “RdRp-●”, BiFC1 (mRFPN-

RdRp): “●-RdRp” and in the horizontal line with BiFC4 (CP-mRFPC): “CP-●”, BiFC2 

(mRFPC-CP): “●-CP” or BiFC4 (RdRp-mRFPC): “RdRp-●”, BiFC2(mRFPC-RdRp): 

“●-RdRp”. 
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3.3.2 CP dimer formation 

The particles of the Partitiviridae are composed of 120 CP subunits forming 60 dimers, 

which corresponds to a T=1 symmetry (Ghabrial, 2012). For virus assembly of cryptic 

viruses, interactions between CP subunits, the RdRp and RNA are necessary. A certain 

degree of self-assembly without any other viral element occurs for the CP subunits of 

viruses. Furthermore, even entire particles without encapsidated RNA were found in 

case of isometric viruses (Buck, 1973, 1974). CP dimers act as starting points for the 

assembly process (Pan, 2009). 

An interaction of the CP was detected for all alpha- and betacryptoviruses (Table 1 and 

Table 2). Detection of WCCV-1 CP-CP interaction depended on the localization of the 

fused protein in relation to the mRFP-fragment as described above. Furthermore, 

differences in the number of cells showing fluorescence and also in the intensity of the 

fluorescence were observed. A strong fluorescence signal was found in the majority of 

epidermal cells within the analyzed leaf regions (Figure 1).  

The CP interaction of viruses of the same genus in plant cells was localized in as similar 

manner, but differs in the alpha- and betacryptoviruses. Concerning the 

alphacryptoviruses all three tested viruses showed CP homo-dimer formation. A 

localization of CP-CP homo-dimers at the membrane surrounding the nucleus were 

visualized (Figure 1; Figure 3A,B), in regard to RCCV-1 and DCV-1 even in all four 

permutations. Prominent deposits could be found associated with the outer membrane 

without fluorescence inside the nucleus. In addition, CP-CP hetero-dimers were 

detected between WCCV-1, RCCV-1 and DCV-1 (Figure 3E), respectively, but again 

not in all permutations. 

In a similar way, all intragenus permutations of the CP of the betacryptoviruses were 

tested. A distinct localization for CP interactions of viruses from the genus 

Betacryptovirus was absent (Figure 2). In contrast to the alphacryptoviruses protein-

protein interactions were mainly detected in marginalized deposits in the cytoplasm 

close to the cell wall (Fig.4A). These inclusion bodies in the cytoplasm can consist of 

biologically inactive proteins. However, CP-CP interactions were also detected by 

fluorescence in the cytoplasm and the nucleus for WCCV-2 and DCV-2. Moreover, CP-

CP interspecies interactions were as well detected between WCCV-2, RCCV-2 and 

DCV-2 (Figure 4C), respectively, but similar to alphacryptoviruses not in all 

permutations.  
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Lastly, no intergenus interaction between the CP of alphacryptovirus WCCV-1 and the 

betacryptovirus WCCV-2 was detected independent of BiFC permutations (results not 

shown). 

However, except for WCCV-1 a CP interaction was demonstrated in all permutations of 

the tested viruses, which indicates interacting domains or areas independent of free N- 

and C-termini of the CPs. The 40 N-terminal amino acids of Partitivirus CPs were not 

involved in the structure of the particle resolved by 3D structure analyses (Pan, 2009; 

Tang, 2010). Probably, they are located at the inside of the virus particle and ensure the 

arrangement of the dsRNA within the particle (Nibert, 2013) or they are located at the 

surface of the virion. 

A more precise localization in cell compartments could be reached with other 

techniques like immune labeling electron microscopy in the host plants or in situ 

hybridization. However, the distinctive location of primary virus assembly sites showed 

in this study may indicate that the viruses of the genera Alphacryptovirus and 

Betacryptovirus use different compartments to co-exist in one cell. 

3.3.3 Localization of protein interaction sites in the CPs 

The putative interaction domain within the WCCV-1CP and WCCV-2CP was 

approximated by dividing the coding frame into three parts. The fragments vary from 

150 to 273 amino acids, so that protein structures should be formed. However, possible 

secondary structures were not taken into consideration for the choice of the selected 

regions. Moreover, each potential interaction of different fragments was tested with 

only two fusion permutations, resulting in a limited degree of freedom for protein 

adjustments. The particle structure, as outlined above, implied multiple interactions 

within a single CP for dimer formation. In addition, protein regions are known that are 

probably not at the surface of viral particles (Pan, 2009; Tang, 2010) and more likely 

bind RNA inside the particle (Nibert, 2013). 

To narrow down the interacting domains in the CP of WCCV-1 and WCCV-2, six 

different deletion mutants were created (Tab. 1). We obtained only a few interactions 

for the alphacryptovirus WCCV-1CP mutants, similar to the findings for the full-length 

CP permutation tests. In the used BiFC2/3 permutation (mRFPC-F/F-mRFPN) only 

seven interactions out of 48 possible combinations tested positively. The full-length CP 

in the BiFC3 vector was interacted with all other BiFC2 (mRFPC-CP) fragments except 

for BiFC2-F2. Additionally, we also detected interactions for BiFC2-F1/2 with BiFC3-
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F2 and BiFC3-F2/3. Furthermore, the localization of the observed fluorescence in the 

BiFC2-F1 and BiFC2-F1/2 combination changed from the nuclear membrane to the 

cytoplasm and nucleus compared to the interaction of the full-CP used as a positive 

control (Table 1). 

 

Table 1. Schematic overview of the tested alphacryptovirus WCCV-1CP deletion 

mutants; “−” no interaction visible; “+++”/“++”/“+”: for strong/medium/low 

fluorescence signal; “###”/“##”/“#”: almost all /mean number of /only few cells 

detected with fluorescence; capital letters for localization in the cell: “C”: cytoplasm, 

“N”: nucleus, “NM”: nuclear membrane. 
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Tab 2: Schematic overview of the tested Betacryptovirus WCCV-2CP deletion 

mutants; “−“no interaction visible; “+++”/”++”/”+”: for strong/medium/low 

fluorescence signal; “###”/”##”/”#”: almost all /mean number of /only few cells 

detected with fluorescence; capital letters for localization in the cell: "C": cytoplasm, 

"I": Inclusion in cytoplasm 
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The orientation of the fusion in respect to the reporter part seems to be critical for the 

dimerization. The association with the C-termini of the full-length CP resulted in five 

detected interactions with CP fragments, whereas the opposite direction did not. It is 

particularly interesting to note that only if both partners include the F3-part the 

fluorescence was located on the nuclear membrane. This might be an indication that the 

C-terminus is involved in the protein localization perhaps it provides its own signal 

peptide sequence for the protein targeting.  

A similar approach was performed for the betacryptovirus WCCV-2 (BiFC3/4 

permutation; F-mRFPN-F/F-mRFPC; Table 2). Overall thirteen interactions out of 48 

possible combinations were identified. Fluorescence was mainly located in inclusions 

within the cytoplasm of the plant cells. Most interactions were detected for mutants still 

including the F2 part. In contrast, no interactions were observed in any combination 

with F1 and F1/3 fragments. Furthermore, BiFC3-F3 mutant interacts with BiFC4-F2 
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and BiFC4-F3 with the BiFC3 full length CP, but F3 in BiFC3 and BiFC4 did not 

interact with itself (Figure 4E). Conversely, almost all positive combinations of 

interaction required the F2 part in both partners, and additionally, for the F2 fragment 

an interaction with the F3-mRFPN fusion was shown. This furthermore indicates that 

the middle part - F2 - of the WCCV-2 protein is particularly important for primary 

dimerization and probably also for the forming of inclusions within the cytoplasm. 

3.3.4 RdRp dimerization 

The RdRp of Partitiviridae is located within the virus particle and produces transcripts 

of the dsRNA genome. The transcripts are delivered through pores of the particle into 

the cytoplasm (Ghabrial, 2012). The tested viruses have only one dsRNA per particle 

and accordingly just one RdRp molecule will be packaged (Buck, 1973, 1974). So 

RdRp self-interaction seems not necessary. However, in all alpha- and 

betacryptoviruses a potential RdRp interaction was found, almost always in the BiFC1/4 

permutation (mRFPN-RdRp with RdRp-mRFPC) and BiFC2/3 (mRFPC-RdRp with 

RdRp-mRFPN) combination, in which the RdRp was fused N- and C-terminal to the 

mRFP. 

The fluorescence was predominantly observed in the cytoplasm and the nucleus as 

shown for WCCV-1 (Figure 3C) and WCCV-2 (Figure 4B). For DCV-1, an RdRp 

interaction was detected with all permutations except BiFC1/4 (mRFPN-RdRp with 

RdRp-mRFPC). The fluorescence was observed equally distributed throughout the 

cytoplasm but also in inclusions within the cytoplasm. Additionally, an RdRp 

interaction of RCCV-2 and DCV-2 was shown resembling the homologous interaction 

(Figure 4D).  

However, RdRp interactions were less frequent than CP interactions. Overall, also the 

fluorescence intensity and frequency of cells showing fluorescence was lower compared 

to the CP interactions (Figure 1 and Figure 2), indicating for a weak and fragile self-

interaction. Furthermore, a close proximity of overexpression, aggregation and mis-

localization of RdRp proteins may contribute to the interaction determined by the BiFC-

system. Dimer formation of RdRps was also described for other virus families (Qin, 

2002). However, these clearly differ in their replication cycle from Partitiviridae. 

Former publications gave no evidence of a RdRp self-interaction. Therefore, further 

analyses like yeast two hybrid analyses concerning the weak but clearly detectable 

RdRp self-interaction might confirm the results.  
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Fig 3: Selected interactions of proteins of alphacryptoviruses. BiFC of mRFP in N. 

benthamiana epidermal cells at 3 days p.i. CLSM images for the mRFP fluorescence, 

the transmitted light mode of chlorophyll and merged pictures with the transmitted light 

mode of cells. Bars, 30 µm.  
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Fig 4: Selected interactions of proteins of betacryptoviruses. BiFC of mRFP in N. 

benthamiana epidermal cells at 3 days p.i. CLSM images for the mRFP fluorescence, 

the transmitted light mode of chlorophyll and merged pictures with the transmitted light 

mode of cells. Bars, 30 µm.  
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3.3.5 CP-RdRp interactions 

During particle assembly of cryptic viruses, RNA and RdRp have to be assembled with 

the CP (Ghabrial, 2012). 3D structural analyses have shown pores within the particle 

that might support the transfer of newly synthesized RNA by RdRp from the particle 

(Pan, 2009; Tang, 2010). These pores are small but flexible, so that an interaction 

between RNA and / or RdRp resulting in a transfer of RNA can be supposed (Pan, 

2009; Nibert, 2013). RdRp could not be shown in structural analyses (Pan, 2009). It is 

postulated that RdRp is not covalently attached to the inside of the particle (Ghabrial, 

2012). Nevertheless, the RdRp should be localized within the particle to transcribe and 

to convert ssRNA into dsRNA (Ghabrial, 2008). 

An interaction of CP and RdRp has been observed in at least one permutation of all 

alphacryptoviruses. Several permutations showed a medium fluorescence in a few cells. 

In regard to WCCV-1 only the BiFC1/2 combination (mRFPN-RdRp with mRFPC-CP) 

delivered a positive signal (Tab.1). Three interactions were found in fusions of RdRp 

with mRFPN and CP with mRFPC in the closely related RCCV-1 but these interactions 

were not detectable in the opposite orientation of the tested proteins. In contrast, we 

observed plenty of intensely fluorescent cells in case of DCV-1, in all permutations of 

the C-terminal RdRp fusions (Figure 1). The localization of the proteins within the cell 

was not homogeneous; positive fluorescence signals were mainly found in inclusions in 

the cytoplasm (Figure 1; Figure 3D), in some permutations in the cytoplasm itself and in 

the nucleus and nuclear membrane. 

So the localization, in case of WCCV-1 and RCCV-1, clearly differs from RdRp and CP 

self-interactions, where greater deposits in the cells were missing. A localization of CP-

RdRp interaction at or near the outer nuclear membrane as described for the primary 

dimer fusion was found in one permutation only. This might be an indication for a later 

CP-RdRp interaction step within the framework of virus assembly in the cytoplasm. 

In contrast to alphacryptoviruses no interaction between CP and RdRp was found in the 

three viruses of the genus Betacryptovirus (see Figure 2). One reason could be that the 

CP-RdRp interaction is weaker in manifestation and therefore, harder to verify with the 

used BiFC-system. The particles differ from those of the alphacryptovirus in particle 

size - 38 vs. 30 nm - and the presence of prominent subunits on the particle surface 

(Ghabrial, 2008). Other factors like higher structures of CPs or the presence of full-

length RNA may be a prerequisite and essential for CP-RdRp interaction. Concerning 



Part 3: Protein-Interactions   56 

these points further analyses like trimolecular fluorescence complementation analysis 

(Rackham, 2004) might be helpful. 

3.3.6 Cross species interaction of CP and RdRp 

Cryptic viruses are interesting regarding their evolutionary relationship to one another, 

because a horizontal transmission of those viruses via vectors is not known (Ghabrial, 

2012). However, there is a high sequence homology in these viruses, even though they 

occur in different plant families (Ghabrial, 2008). From the phylogenetic point of view, 

a horizontal transmission with a vector is more likely than a coevolution between the 

virus and the host before primeval times (Lesker, 2013a). Besides using interspecies 

tests as internal controls it was interesting to find out if protein interactions can also be 

established among the viruses within one genus.  

We tested the CP and RdRp hetero dimerization of related viruses within one genus 

from white clover and red clover, furthermore, of more distantly related viruses from 

dill. CP dimers were detected between all viruses within one genus (Figure 1 and Figure 

2). Concerning the alphacryptoviruses a strong fluorescence was found in almost all 

cells, localized in analogy to the already described CP dimers in the membrane of the 

nucleus (Figure 3E). Nevertheless, also a different localization in the nucleus for the 

dimers RCCV-1 CP and DCV-1 CP was visible. Moreover, eight permutations with 

WCCV-1 revealed no interaction and in another three permutations only a few cells 

were detected with low fluorescence signals from inclusions located in the cytoplasm. 

In regard to the betacryptoviruses a similar localization for CP hetero-dimers were 

observed and overall fewer combinations showed a positive signal with a lower number 

of cells and fewer intensities of fluorescence, especially in combination with the more 

distantly related DCV-2. Interactions occurred in all tested virus combinations. In 

particular, it was noticed that interactions were not found with all permutations, 

compared to self-interactions, the fluorescence was weaker and the localization 

changed. This was also the case for the RdRp hetero dimerization detected within the 

genus Alphacryptovirus for DCV-1 with WCCV-1 and RCCV-1, respectively, in the 

BiFC1/4 (mRFPN-RdRp with RdRp-mRFPC) combination as already described above, 

but not between WCCV-1 and RCCV-1. In addition, a dimerization for all RdRps of the 

betacryptoviruses was observed. 

However, in case of WCCV-1 only a few permutations were found to react positive, 

which could indicate that RCCV-1 and DCV-1 with much more interactions could be 
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better analysed in our BiFC system in N. benthamiana. Furthermore, an imperfect 

assembly of virus CPs might cause a malfunction in the further localization. In case of 

heterologous tests CP subunits of the same virus might preferentially interact, thereby 

not leading to a fluorescence signal, because of missing one reporter part. Heterologous 

protein interactions can also induce different localizations like the occurrence of 

deposits within the cytoplasm in case of the alphacryptovirus. Concerning this, further 

data are needed for the precise localization and description of steps involved in the virus 

replication cycle. 

3.4 Experimental Section 

3.4.1 Construction of the expression plasmids for BiFC 

The pCB:GOI-mRFPN (BiFC 1), GOI-mRFPC (BiFC 2), pCB:mRFPN-GOI (BiFC 3) 

and pCB:mRFPC-GOI (BiFC 4) expression plasmids were generated as described by 

Zilian and Maiss (2011). 

3.4.2 Construction of the plasmids for full-length protein interaction 

The coding sequence of the CP or RdRp, respectively of WCCV-1, WCCV-2, RCCV-1, 

RCCV-2, DCV-1, DCV-2 were RT-PCR-amplified using dsRNA preparations from 

White Clover, Red Clover and Dill with RevertAid Premium Reverse Transcriptase and 

Phusion Flash Master Mix (Thermo Scientific) as described previously (Lesker, 2013). 

New Sequences are stored in Genbank under accession numbers: RCCV-1RdRp: 

KF484724, RCCV-1CP: KF484725, DCV-1RdRp: KF484726 and DCV-1CP: 

KF484727. Fragments were generated by using primers, which include specific 

restriction endonuclease sites (BamHI or BglII and SalI or XhoI) for cloning into the 

BiFC vectors (Supplementary Table S1). Fragments were first cloned into pJET1.2 

(Thermo Scientific) according to the manufacturer's protocol, digested with the 

appropriate restriction enzyme and ligated into the binary BiFC-plasmids, which were 

digested with BamHI/SalI or were cloned by a Gibson Assembly (New England 

Biolabs) approach (Gibson, 2011). The sequences were verified by sequencing and 

restriction enzyme digests. 
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3.4.3 Construction of the plasmids for deletion mutants of WCCV-1CP 

and WCCV-2CP 

The open reading frame of each CP was divided into six fragments by PCR mutagenesis 

using Phusion Flash DNA polymerase (Thermo Scientific). The F1, F3, F1/2, F2/3 and 

F1/3 fragments of WCCV-1CP, encoding aa 1–150, 151–338 and 339–487, respectively 

were generated using the BiFC2:mRFPC-WCCV-1CP and BiFC3:WCCV-1CP-mRFPN 

vectors as templates. The same fragments of WCCV-2CP, using aa 1-200, 201-473 and 

474-673 were created from the BiFC3: WCCV-2CP-mRFPN and BiFC4: WCCV-2CP-

mRFPNC vectors. 

3.4.4 Transient protein expression in N. benthamiana leaf epidermal cells 

and CLSM 

The BiFC plasmids and pCB:p35TBSVp19, encoding the TBSV p19 protein as a 

suppressor of gene silencing, were used for the electroporation into A. tumefaciens 

strain GV2260 (Hoekema, 1983). Agrobacteria cultures harbouring the plasmids were 

prepared for infiltration according to Zilian & Maiss (2011) (Zilian, 2011). The 

infiltration of young leaves of N. benthamiana plants 4 to 5 weeks old was performed 

by using A. tumefaciens mixtures containing the BiFC1-4 plasmids and 

pCB:p35TBSVp19 binary plasmid. All infiltrated plants were incubated at room 

temperature for 3 days. Discs of infiltrated N. benthamiana leaves were investigated 

with a Leica TCS SP2 confocal laser scanning microscope. The excitation at 543 nm of 

the mRFP domain was performed by using the green neon laser. The emitted light was 

captured at 600–610 nm, thus creating consistent-recording conditions. Visualization of 

the chlorophyll autofluorescence was made by excitation at 488 nm with the 

argon/crypton laser and subsequent fluorescence detection at 690–740 nm. Digital 

capture and processing of the images were performed by using the Leica confocal 

software. 

3.5 Conclusions 

Our results revealed various differences in protein interactions between alpha- and 

betacryptoviruses which are not only caused by different protein and particle sizes. As 

already described, betacryptoviruses differ from alphacryptovirus in terms of the 

presence of prominent arches on the virus particle surface (Boccardo, Lisa et al. 1987). 

For the betacryptoviruses a related Partitivirus the Fusarium poae virus 1 was analyzed 
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by X-ray crystallography (Pan,  2009; Tang, 2010). As long as no 3D structure for the 

alphacryptoviruses is described, it will be difficult to compare these structures of the 

two genera in a meaningfull way. However, it is assumed that they share distinctive 

features, including a quasi-symmetric CP protein dimerization and formation of a T=1 

capsid structure by 60 dimers by domain swapping (Nibert, 2013). Nevertheless, in this 

protein interaction study, we are able to find differences between the viruses of two 

plant infecting genera of the family Partitiviridae. We obtained expected CP – RdRp 

interactions only for the members of the genus Alphacryptovirus. The localization of the 

CP dimers were observed for WCCV-1, RCCV-1 and DCV-1 in the nuclear membrane, 

whereas the fluorescence signals for the WCCV-2, RCCV-2 and DCV-2 was located in 

inclusions within the cytoplasm of epidermis cells. CP mutants of WCCV-1 and 

WCCV-2 showed a different localization of interaction sites in the CP. 

From the perspective of the evolutionary relationship, it is interesting to verify protein 

interactions between viruses in one genus infecting distant host plants and to find no 

interaction between the type members of genus Alphacryptovirus and Betacryptovirus 

in the same host. Together with the different localization of the CP -CP interactions and 

findings of the CP - RdRp interactions only in the alphacryptoviruses primary 

indications are given for striking differences in the molecular life cycle of these two 

virus genera. However, this study is the first protein interaction approach in planta for 

viruses of the family Partitiviridae so far and merely one further step to understand the 

biology of the viruses of the family Partitiviridae. 
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Appendix 

Table A1. Oligonucleotides used for amplification of plant cryptic virus ORFs.  

Virus-specific sequences are shown in lower case at the 3'end; Restriction enzyme 

recognition sequences/Gibson Assembly sites in upper-case characters. 

Virus/Vector Primer name Primer sequence 

WCCV1 BiFC_WCCV1_CP_s cgGGATCCatgaatcaagacactcctctcgcc 

 BiFC_WCCV1_CP_as acgcGTCGACttcagcacggttggcagcttg 

 BiFC_WCCV1_R_s gaAGATCTatggattacctaatcactgcatttaaccg 

 BiFC_WCCV1_R_as acgcGTCGACctcgcctggagcattgataaacaa 

RCCV1 BiFC_RCCV1_Rs gaAGATCTatggattacttcatatccgcatttaac 

 BiFC_RCCV1_Ras ccgCTCGAGctcgccaggtgcattgatg 

 BiFC_RCCV1_Cs cgGGATCCatgaatcacaacactcctcctgc 

 BiFC_RCCV1_Cas acgcGTCGACttcagcacggttggcagc 

DCV1 BiFC_DCV1CPs cgGGATCCatggaccccaacgtccctattgc 

 BiFC_DCV1CPas acgcGTCGACttcggcgcggttcgcggcct 

 
GA12_GA_DCV1Rs GGATCTGGTGGAGGTGGATCCatggattacctcacaac

cgcattc 

 
GA12_GA_DCV1Ras GAGGATCGATCCTTAGTCGACctcagcaggatccttaa

gaaataag 

 
GA34_GA_DCV1Rs GAAGGAGATATAACAATGGGATCCatggattacctc

acaaccgcattc 

 
GA34_GA_DCV1Ras CCAGATCCACCTCCGTCGACctcagcaggatccttaag

aaataag 

WCCV2 BiFC_WCCV2_R_s cgGGATCCatgcctcacaactccactcgc 

 BiFC_WCCV2_R_as acgcGTCGACcgggaaatttcttgtggcaggca 

 
GA12_WCCV2CP_s GGATCTGGTGGAGGTGGATCCatgtctcctgatgagaa

ccccac 

 
GA12_WCCV2CP_as GAGGATCGATCCTTAGTCGACgacagcggggtagga

ttcatag 

 
GA34_WCCV2CP_s GAAGGAGATATAACAATGGGATCCatgtctcctgat

gagaaccccac 

 
GA34_WCCV2CP_as CCAGATCCACCTCCGTCGACgacagcggggtaggattc

atag 

RCCV2 BiFC_RCCV2_R_s gaAGATCTatgccgttcaactctgctcg 

 BiFC_RCCV2_R_as ACGCgtcgacCGGGAAATTTCTTGTGGCGGG 

 BiFC_RCCV2_CP_s cgGGATCCatgtctactgaagagacccttcct 

 BiFC_RCCV2_CP_as ACGCgtcgacAACAGCGGGGAAGGACTCATA 
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4 Deep Sequencing of double-stranded RNA as a 

tool to assess the presence of unknown RNA 

viruses in plants 

4.1 Abstract 

So far metagenomic studies of plant infecting viruses have used experimentally or 

naturally infected plant material. In this study we put the focus on the biodiversity of 

persistent viruses of plants, which include viruses from the families Partitiviridae, 

Endornaviridae and the proposed new family Amalgaviridae. All of these dsRNA 

containing viruses are widespread in plants. Generally, they cause no significant effects 

on their hosts and are only transmitted by cell division and through gametes at very high 

rates. 

Therefore we isolated dsRNA obtained from seed grown White Clover, Red Clover, 

Hop Trefoil and dill plants, cultivated under controlled greenhouse conditions. The 

dsRNA was pooled and introduced to a cost effective benchtop sequencing technology. 

The resulting 15 million read-pairs were assembled and compared to GenBank via 

BLAST searches. 42 contigs fit to persistent viruses which cover 52% of all reads. 

Viruses were assigned to the four individual plant species using specific primers 

generated from the contigs for RT-PCRs of dsRNA and total RNA preparations. 

Phylogenetic analyses suggest at least five clusters of different plant infecting cryptic 

viruses in the family Partitiviridae. A total of eight putative new virus members were 

determined. Furthermore, three new putative Endornaviruses and four putative 

members of the new genus Amalgavirus were discovered. Almost all contigs cover at 

least 97% of the corresponding reference sequences, missing only about 20 bp on the 

5’- and 3’- end, respectively. 

These results show for the first time the suitability of the combination of dsRNA-

screening and deep sequences techniques for the determination of persistent viruses 

from seed-grown plants.  
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4.2 Introduction 

For a period of nearly 100 years studies concerning plant viruses focused mainly on 

crop plant infecting viruses. However, from a metagenomic point of view this is just the 

tip of an iceberg of viromes of plants. As with non-cultivatable microbes in biodiversity, 

persistent viruses in plants are the vast unknown in viral ecology (Rosario, 2011). Most 

of the viruses make use of a dsRNA genome and belong to cryptic viruses of the family 

Partitiviridae, Endornaviridae and the proposed family Amalgaviridae (Martin, 2011).  

Currently there are no known natural vectors of persistent viruses, and they are not 

transmitted by mechanical means or grafting (Brunt, 1996). Nevertheless, persistent 

viruses have a very high rate of transmission which occurs passively by cell division, 

thereby also infecting seed and pollen (Boccardo, 1987). It appears that persistent 

viruses are very well adapted to their hosts, reaching only a low virus titer, persisting in 

tissue culture for years and withstanding thermotherapy (Boccardo, 1985). No visible 

symptoms are caused by cryptic viruses, and apparently they do not have a drastic 

impact on the quality and the yield of crop plants. 

However, recent studies indicate an influence of persistent viruses on their hosts under 

special environmental conditions and/or an involvement in plant defense reactions 

leading to hypervirulence (Nakatsukasa-Akune, 2005; Marquez, 2007; Chiba, 2013). 

Moreover, in many plant species an integration of viral coat protein sequences into the 

host genome was detected (Liu, 2010; Chiba, 2011). This, together with the knowledge 

about strong virus–fungi relationships, a complex interaction between plants, fungi and 

residing persistent viruses has been suggested (Roossinck, 2010, 2013).  

Although the ICTV recognizes currently over 900 plant virus species, many of the 

persistent viruses are not included in the current taxonomy. This is caused by the fact 

that for proper taxonomic classification of these viruses rules like Koch’s postulates, 

determination of host range and elucidation of transmission roads are difficult to fulfill. 

New developments in the field of molecular biology, especially in high throughput 

sequencing, allow us a close look inside the plant sequence pool today (Roossinck, 

2011). 

There is a broad spectrum of techniques which can be applied to detect viruses in plants, 

such as electron microscopy, ELISA and PCR. However, with the exception of electron 

microscopy the other diagnostic tools require previous knowledge of the expected virus, 

for instance, the availability of specific antibodies or sequence information for the 

design of the detection oligonucleotides. To gain access to an unknown virus, classical 
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approaches such as indicator plants and electron microscopy can give first clues to a 

specific group. But not all viruses are detectable via a host range study or can be 

classified by their particle structures. Moreover, these methods are laborious and time 

consuming. Other techniques focus on the enrichment of viral agents in a sample. Virus 

purification by ultracentrifugation (Prata, 2012) does not cover all types of viruses and 

depends on the presence, stability and the type of virus particles. Techniques focusing 

on determination of the viral sequence, such as subtractive hybridization, can reduce 

host sequences from the gene pool. Nevertheless, in the past it was very expensive and 

time consuming to find viral sequences by random sequence determinations in those 

pools (Hull, 2013). 

The invention of deep sequencing methods allows us to study microbial populations, in 

a cost and time effective way. Universal genes, such as ribosomal RNA or ITS regions, 

permit the assessment of the biodiversity of higher organisms by amplicon sequencing 

and identification by barcoding. The lack of such universal targets in viral sequences 

hampers this kind of approach. A possible way to find a potential virus infection in 

plants is the isolation of the total RNA. Considering not all viruses have a poly-A tail 

the number of further purification steps can be reduced. Therefore, it is uneconomical to 

always sequence a full transcriptome of a plant for virus detection. In recent 

metagenomic studies of viruses three approaches were applied to reduce the complexity 

of a sample: 

1) The subtractive hybridization of cDNAs from an infected versus a healthy plant can 

remove the majority of expressed host genes. The approach depends on the availability 

of a respective peer plant with the identical genotype, which was grown under the same 

environmental conditions. Furthermore, the infection with a virus has an influence on 

the transcription of host genes, which reduces the efficacy of the elimination of host 

nucleic acids. However, in a recent study the approach was used to identify known and 

unknown viruses in Liatris spicata. Approximately 20-40 % of the reads were related to 

viral sequences, covering 97 % of the genome of the previous infected virus (Adams, 

2009). 

2) Viruses are targets and inducers of RNA silencing (RNAi) that constitutes the basic 

antiviral defense mechanism in plants. The resulting small interfering RNAs (siRNAs) 

can be used as a universal target to detect virus infections in the plant (Kreuze, 2009). 

However, one limitation of the method is the small size of the resulting sequences of 

around 24 base pairs (bp), which limits its specificity and the possibility to generate full 
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coverage contigs of the virus genome. Moreover, plants use their own small micro 

RNAs (miRNAs) derived from its own genome for the regulation of transcription and 

translation. In a study focusing on viruses in sweet potatoes, 15-40 % of the obtained 

siRNA sequences delivered hits to the infecting viruses. The largest contig covers 3115 

bp of a virus genome with the total size of 10996 bp (Kreuze, 2009). 

3) The viral infection of a plant can also be assessed with the extraction of double-

stranded RNA (dsRNA). Most plant infecting viruses use RNA as genetic material, and 

dsRNA as an intermediate form for their replication (Weber, 2006). Even some DNA 

viruses use RNA intermediates for replication and RNA transcripts for their gene 

expression (Gu, 2006). However, because large dsRNAs (>30 bp) are not common in 

plant cells, a specific isolation of dsRNA will allow a broad screening for viral RNAs in 

a given plant. Different studies used deep sequencing of dsRNA to reveal viral 

infections of grapevine plants. Most reads (70 %) fit to viral sequences, whereas contigs 

cover at least 90 % of the compared reference genomes. Additionally, different virus 

strains can be determined (Coetzee, 2010), such as the 26 putative fungus infecting 

viruses that were identified by Rwahnih (2011) using this method. These results identify 

dsRNA-sequencing as a suitable method to assess viral infections, covering even cryptic 

and latent viruses of plants. 

The aim of our study was to determine the spectrum of mixed cryptic infections of 

known host plants, utilizing dsRNA extraction and a deep sequencing approach with the 

Ilumina MiSeq platform performed by GATC Biotech. We used clover species in which 

mixed cryptic infections had been described before (Boccardo, 1987; Lesker, 2013a): 

White clover (Trifolium repens) is infected by the type members White Clover Cryptic 

virus 1 and 2 from the genus Alphacryptovirus and Betacryptovirus, and at least one 

other cryptic virus (Boccardo, 1985). The full sequences of both viruses had been 

determined before (Boccardo, 2005; Lesker, 2013a) and were used as an internal control 

to verify sequencing results. For a further analysis of the cryptic virus diversity in 

different plants, we included more cultivars: The closely related red clover (Trifolium 

pratense), the distantly related clover species hop trefoil (Medicago lupulina) and as an 

out-group species from a far related plant family dill (Anethum graveolens). To turn 

limited financial resources into high revenues we pooled the individually extracted 

dsRNA for the use in one cDNA library preparation. This library was then mixed 

together with another library 1:1 and sequenced in a 2x150 bp MiSeq run. We expected 
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that this should result in a depth of 1.8 mio reads (500 megabases) for each individual 

cultivar to assess the virome from seed-grown cultivars. 

4.3 Materials and methods 

4.3.1 Plant material 

Seeds of white clover (Trifolium repens cv. Lirepa), red clover (Trifolium pretense cv. 

Nemaro), hop trefoil (Medicago lupulina) and dill (Anethum graveolens var. hortorum), 

from different breeders, were germinated and grown under controlled greenhouse 

conditions. 

4.3.2 RNA extraction 

Double stranded RNA was isolated from 20 g plant material of each plant species using 

a cellulose extraction protocol, as described previously in Lesker (2013a). The total 

RNA was extracted from 0.1 g fresh weight leaf material with the peqGOLD Plant RNA 

kit (Peqlab, Erlangen, Germany) and TRIzol Reagent (Life Technologies, Carlsbad, 

USA) following the instruction manuals. 

4.3.3 Sequencing 

Sequencing was performed by GATC Biotech (Konstanz, Germany) using the Illumina 

Miseq platform. The concentrations of the dsRNA from the four plant species were 

determined by photometric measurements (Nanodrop, Thermo) and by agarose gel 

analysis. Samples were pooled by mixing equal amounts of dsRNAs from the different 

species. Of the mixed dsRNA material, 1μg was used for the library preparation 

(Ilumina TruSeq Stranded Total RNA Sample Preparation kit) by GATC using standard 

conditions and including a heat step for 8 min at 95° C leading to the denaturation and 

fragmentation of the dsRNA. Together with another library sample, the resulting DNA 

template was quantified, diluted and hybridized to the flow cell. Clusters were 

generated using the MiSeq v2 2x150bp sequencing kit. 

4.3.4 Bioinformatics 

Generated paired-end sequence data were analyzed using an own pipeline: Adaptor 

cleaned sequences that passed quality filtering were subjected to an error correction by 
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BayesHammer. Corrected reads were assembled using different assemblers (Ray, 

SOAPdenove, SPAdes and MaSuRCA). Combined scaffolds were used to search the 

NCBI database for viral sequence similarities with BLASTn, BLASTx and the Blast2go 

software (Conesa, 2005). Selected sequences of putative cryptic viruses were further 

analysed by MEGA5 (Tamura, 2011) to obtain evolutionary relationships. Mapping was 

performed to enlarge and correct contigs, and to determine the shares of the reads that 

belong to virus and host genes using Geneious R7 (Biomatters, Auckland, New 

Zealand). 

4.3.5 RT-PCR detection of viral sequences 

Selected contigs were used to design specific oligonucleotides to detect each putative 

virus fragment from the original dsRNA extractions as well as from independent total 

RNA purifications. Different cDNA libraries from each plant species were prepared 

with RevertAid Premium Reverse Transcriptase components (Thermo Scientific, 

Waltham, USA): 5 µl RNA, 10 µl 5X Reaction Buffer, 5 µl 10 mM dNTP Mix, 1 µl 

Reverse Transcriptase, 1 µl RiboLock RNase Inhibitor, 1 µl Random Hexamer Primer, 

and 27 µl nuclease-free water. For dsRNAs a 5 min 95°C denaturation step including 

the Hexamer Primer preceded cDNA synthesis was also included. After 60 min 

incubation at 50°C, 1 µl of cDNA was added to 5 µl Phusion Flash High-Fidelity PCR 

Master Mix (Thermo Scientific), 3 µl water, 2 µl 10 mM specific oligonucleotide mix. 

The tubes were heated at 98°C for 10 s, followed by 30 reaction cycles (1 s at 98°C, 15 

s at 58°C and 15 s at 72°C) followed by a final elongation step of 15 s at 72°C. The 

PCR products were analyzed on 1 % agarose gels containing 0.5 mg/l ethidium 

bromide. 

4.4 Results 

4.4.1 Sequencing, de novo assembly and annotation 

We received preformatted fastaq data form GATC Biotech. The 2x150 bp paired-end 

data yielded in 15,220,100 reads with 4,566,030,000 sequenced bases. Processing with 

the bioinformatics pipeline resulted in an assembly of 1567 contigs with a size 

distribution between 214 and 23,666 bp. Contigs were annotated via BlastX and 

grouped in host genomic, microorganisms and viruses of the family Partitiviridae 

(subdivided in the proposed genera Alphapartitivirus, Betapartitivirus, 
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Deltapartitivirus), the family Endornaviridae, the proposed family Amalgaviridae and 

other viruses. Annotated sequences are summarized in Tables 1 to 3. 

4.4.2 Mapping of total reads 

Grouped contigs were used as reference sequences for a re-mapping of the 30.4 million 

unpaired MiSeq reads. Despite the use of a specific dsRNA-isolation method most reads 

map to plant genes (11,653,920) and fewer reads (320,920) identify contigs of 

microorganism (see also Figure 1). A share of 7 % of reads (2,053,634) could not be 

mapped to the reference sequences. The largest cluster of viral reads fit to genus 

Alphapartitivirus: 6,666,771 reads map to 16 contigs. Further shares of the reads were 

assigned to the genus Deltapartitivirus (11 contigs with 4,594,566 reads) and 

Betapartitivirus (8 contigs with 3,199,731 reads) resulting in 48 % of the total reads 

being mapped into the family of Partitiviridae. Three contigs of putative 

Endornaviruses could be determined with a total of 3 % of the reads (1,042,179), and 

four contigs grouped to the genus Amalgavirus with 77,904 reads (0.3 %). Additionally, 

contigs of other viruses were found (results not shown) which fit about 1 % of the total 

reads. The individual coverage of the contigs varied from 9x (contig Nr. 167) to 

250,000x for the contig Nr. 457 (for details see Tables 1 to 3). 

 

Figure 1: Share of contigs mapping to plants, Partitiviridae, Endornavirus and 

Amalgavirus 
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4.4.3 Sequence analysis and phylogenetic classification 

For the analyzed cultivars several cryptic viruses have been already described. 

Sequences of two cryptic viruses, one of the genus Alphapartitivirus and one of the 

genus Betapartitivirus, are available for White Clover, Red Clover and Dill. A further 

Betapartitivirus was isolated from Hop Trefoil (Boccardo, 2005; Lesker, 2013a, 2013b). 

All related 14 genomic fragments were found in the present study with nearly 100 % of 

sequence identity and genome coverage. Furthermore, an additional 21 contigs with 

similarities to viruses belonging to the family Partitiviridae were identified. After 

generating of specific primer pairs for each of the contigs, each dsRNA and total RNA 

preparation of the 4 cultivars were tested by RT-PCR allocating each new putative virus 

of the family Partitiviridae to the different cultivars: 7 viruses were found in Dill and 

Hop Trefoil, respectively, 6 viruses were identified in Red Clover and an additional one 

in White Clover (see also Table 1). Together with the already assigned viruses we 

identified in Dill at least 6, in Hop Trefoil 5, in Red Clover 6 and White Clover 3 

putative cryptic viruses by the presence of CP and RdRp sequences. 

Obtained contigs fitting to the family Partitiviridae were used together with selected 

GeneBank genomes for a separate global alignment of RdRp (Figure 2) and CP 

sequences (Figure 3) using the muscle aligner in MEGA5.2. The resulting phylogenetic 

trees show a diverse relationship of viruses, even of viruses detected in the same host: 4 

main clusters of the proposed genera Alphapartitivirus, Betapartitivirus, 

Gammapartitivirus and Deltapartitivirus. No contigs fit to the fungal 

Gammapartitivirus cluster, even if contig-1 from White Clover cannot be clearly 

assigned to a cluster. All expected 8 Betapartitivirus sequences were found in one 

cluster. The branch of the genus Alphapartitivirus is very diverse, whereby at least 3 

subclusters can be recognized. Viruses in the first subcluster (A1) are closely related to 

plant infecting alphacryptoviruses with homology to the type member White Clover 

Cryptic Virus 1. The second subcluster (A2) consists of more distantly related viruses of 

plant as well as fungal hosts. The third subcluster (A3) includes the plant pathogenic 

fungus Rosellinia necatrix partitivirus 2 and clearly separates from A1 and A2. Because 

this subcluster also contained viral sequences which were found within the genome of 

different host plants, we included a genomic sequence from Arabidopsis thaliana 

(GeneBank gi: 4757414) in the CP phylogenetic analyses (Figure 3). Most of the newly 

determined sequences were assigned to the subcluster A3. Also the main cluster of the 

genus Deltapartitivirus can now be split into 2 subclusters (D1, D2). This becomes 
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particularly evident from the RdRp tree (Figure 2). However, in case of D1 and D2 

more variability is recognized within the CP tree. We were also able to assign different 

virus sequences from one host plant to the different subclusters, e.g. contig 65 and 

contig 457 from Dill. 

The assessment of contigs with complete open reading frames from one host plant into 

the various RdRp and CP subclusters enabled us to establish new potential bipartite 

viral genomes resulting in 8 new putative cryptic viruses tentatively named Dill Cryptic 

Virus 3 (CP: contig 18, RdRp: contig 457), Dill Cryptic Virus 4 (CP: contig 175, RdRp: 

contig 65), Hop Trefoil Cryptic Virus 1 (CP: contig 1, RdRp: contig 84), Hop Trefoil 

Cryptic Virus 3 (CP: contig 673, RdRp: contig 749), Hop Trefoil Cryptic Virus 4 (CP: 

contig 25 and 27, RdRp: contig 2), Red Clover Cryptic Virus 3 (CP: contig 52, RdRp: 

contig 15), Red Clover Cryptic Virus 4 (CP: contig 760, RdRp: contig 688) and Red 

Clover Cryptic Virus 5 (CP: contig 19, RdRp: contig 755). 
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Table 1: Contigs match to the family Partitiviridae 
 

Genus Host plant Contig Nr. length (bp) Protein Best BlastX hit – Virus name (GenBank Accession) Ident  coverage Nr. of Reads 

Alphapartitivirus Dill 506 1859 CP Dill Cryptic Virus 1 (NC022615) 100% 99% 644 

  626 1991 RdRp Dill Cryptic Virus 1 (NC022614) 100% 98% 26.796 

  680 1798 CP Rosellinia necatrix partitivirus 2 (NC020235) 38% 98% 27.924 

  766 1999 CP Rosellinia necatrix partitivirus 2 (NC020235) 30% 99% 1.013 

 Hop Trefoil 1 1827 CP Vicia cryptic virus (EF173390) 72% 99% 13.492 

  84 1939 RdRp Vicia cryptic virus (EF173392) 91% 99% 133.116 

  673 1967 CP Rosellinia necatrix partitivirus 2 (NC020235) 35% 99% 43.930 

  749 1907 RdRp Vicia faba partitivirus 1 (DQ910762) 75% 99% 561.751 

 Red Clover 757 2238 CP Red Clover Cryptic Virus 1 (NC022617) 100% 99% 49.270 

  747 2030 RdRp Red Clover Cryptic Virus 1 (NC022616) 100% 99% 737.985 

  52 1909 CP Diuris pendunculata cryptic virus (JX891460) 32% 99% 3.902 

  15 1043 RdRp Chondrostereum purpureum cryptic virus 1 (AM999771) 39% 54% 15.510 

  760 2098 CP Rosellinia necatrix partitivirus 2 (NC020235) 37% 99% 80.540 

  688 1965 RdRp Vicia faba partitivirus 1 (DQ910762) 74% 99% 143.842 

 White Clover 744 1849 CP White Clover Cryptic Virus 1 (NC006276) 99% 99% 3.947 

  634 1960 RdRp White Clover Cryptic Virus 1 (NC006275) 99% 97% 81.716 

Betapartitivirus Dill 649 2375 CP Dill Cryptic Virus 2 (NC021148) 100% 99% 19.628 

  8 2579 RdRp Dill Cryptic Virus 2 (NC021147) 100% 99% 625.948 

 Hop Trefoil 48 1246 CP Hop Trefoil Cryptic Virus 2 (NC021099) 100% 53% 9.476 

  597 1967 RdRp Hop Trefoil Cryptic Virus 2 (NC021098) 100% 76% 46.064 

 Red Clover 585 2290 CP Red Clover Cryptic Virus 2 (NC021097) 100% 97% 98.306 

  694 2445 RdRp Red Clover Cryptic Virus 2 (NC021096) 100% 99% 991.009 

 White Clover 637 2285 CP White Clover Cryptic Virus 2 (NC021095) 100% 97% 78.130 

  492 2576 RdRp White Clover Cryptic Virus 2 (NC021094) 100% 99% 1.330.826 

Deltapartitivirus Dill 18 1556 CP Pepper cryptic virus 1 (JN117277) 46% 99% 108.294 

  457 1649 RdRp Pepper cryptic virus 1 (JN117276) 71% 99% 2.725.723 

  175 1053 CP Raphanus sativus cryptic virus 2 (NC010345) 38% 71% 502 

  65 1729 RdRp Raphanus sativus cryptic virus 2 (NC010343) 68% 99% 4.155 

  13 1224 RdRp Persimmon cryptic virus (NC017989) 70% 78% 3376.70 

 Hop Trefoil 25 1560 CP Beet cryptic virus 2 (HM560702) 44% 98% 82.450 

  2 1580 RdRp Beet cryptic virus 2 (HM560703) 78% 99% 482.616 

  27 1635 CP Beet cryptic virus 2 (HM560704) 40% 99% 12.321 

 Red Clover 19 1855 CP Pepper cryptic virus 1 (JN117277) 35% 99% 146.448 

  755 1728 RdRp Pepper cryptic virus 1 (JN117276) 56% 99% 692.789 

 White Clover 118 1884 RdRp Penicillium stoloniferum virus F (NC007221) 27% 99% 1.451 
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Table 2 Contigs match to the family Amalgaviridae 

Genus Host plant Contig Nr. leghts (bp) Protein Best BlastX hit – Virusname (GenBank Accession) Ident  coverage Nr. of Reads 

Amalgavirus Hop Trefoil 590 3488 Fusion Southern tomato virus (NC011591) 52% 99% 8,617 

 Red Clover 858 1467 Fusion Southern tomato virus (NC011591) 59% 43% 369 

 White Clover 167 3471 Fusion Southern tomato virus (NC011591) 51% 99% 204 

 White Clover 32 3296 Fusion Southern tomato virus (NC011591) 46% 96% 31,159 

 
 
 

Table 3 Contigs match to the family Endornaviridae 

Genus Host plant Contig Nr. leghts (bp) Protein Best BlastX hit – Virusname (GenBank Accession) Ident  coverage Nr. of Reads 

Endornavirus Red Clover 177 7495 Poly Grapevine endophyte Endornavirus (NC019493) 79% 61% 1,088 

 Red Clover 759 12862 Poly Astrovirus MLB1 (FJ402983) 24% 99% 428,563 

 White Clover 7 15110 Poly Bell pepper Endornavirus (AB597230) 45% 99% 661,195 
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Figure 2: Evolutionary relationship of taxa using RdRp sequences. The evolutionary 

history was inferred using the Neighbor-Joining method. The percentage of replicate 

trees associated taxa clustered together in the bootstrap test (1000 replicates) are shown 

next to the branches. The evolutionary distances were computed using the Maximum 

Composite Likelihood method. Bar represents base substitutions per site. All ambiguous 

positions were removed for each sequence pair. Putative plant infecting viruses are in 

green color. New sequences are in bold letters.   
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Figure 3: Evolutionary relationship of taxa using CP sequences. The evolutionary 

history was inferred using the Neighbor-Joining method. The percentage of replicate 

trees associated taxa clustered together in the bootstrap test (1000 replicates) are shown 

next to the branches. The evolutionary distances were computed using the Maximum 

Composite Likelihood method. Bar represents base substitutions per site. All ambiguous 

positions were removed for each sequence pair. Putative plant infecting viruses are in 

green color. New sequences are in bold letters. 

Dill Cryptic Virus 1 (NC022615)

Carrot cryptic virus segment (FJ550605)

White clover cryptic virus 1 (AY705785)

Beet cryptic virus 1 (EU489062)

Red Clover Cryptic Virus 1 (NC022617)

Hop Trefoil Cryptic Virus 1 (contig 1)

Vicia cryptic virus (AY751738)

Raphanus sativus cryptic virus 1 (NC008190)

 Chondrostereum purpureum cryptic virus 1 (AM999772)

Red Clover Cryptic Virus 3 (Contig 52)

 F lammulinavelutipes browning virus (AB465309)

Amasya cherry disease-associated mycovirus (NC006440

 Heterobasidion RNA virus 1 isolate HetRV1-ab1 (HQ541324)

Diuris pendunculata cryptic virus isolate SW3.3 (JX891460)

Dill sequence (Contig 766)

 Rosellinia necatrix partitivirus 2 CP (NC020235)

 Arabidopsis thaliana chromosome 3 P1 cloneMYF24 (gi4757414)

Dill sequence (Contig 680)

Red Clover Cryptic Virus 4 (Contig 760)

Hop Trefoil Cryptic Virus 3 (Contig 673)

 Sclerotinia sclerotiorum partitivirus S (NC013015)

 Discula destructiva virus 2 (AY033437)

 Botryotinia fuckeliana partitivirus 1 (AM491610)

 Discula destructiva virus 1 (AF316993)

 Ophiostoma partitivirus 1 (AM087203)

 Gremmeniella abietina RNA virus MS1 (AY089994)

 Aspergillus ochraceous virus (EU118278)

 Penicillium stoloniferum virus S (AY156522)

 Mycovirus FusoV (from Fusarium solani) (D55669)

Raphanus sativus cryptic virus 2 (DQ218037)

Rose cryptic virus 1 (EU413667)

Fragaria chiloensis cryptic virus (DQ355440)

Beet cryptic virus 2 (HM560702)

Dill Cryptic Virus 4 (Contig 175)

Citrullus lanatus cryptic virus (KC429583)

Pepper cryptic virus 1 (JN117277)

Dill Cryptic Virus 3 (Contig 18)

Raphanus sativus cryptic virus 3 (FJ461350)

Red Clover Cryptic Virus 5 (Contig 19)

Hop Trefoil Cryptic Virus 4 CP1 (Contig 27)

Beet cryptic virus 2 (HM560704)

Hop Trefoil Cryptic Virus 4 CP2 (Contig 25)

 Ceratocystis resinifera partitivirus (AY603051)

 Atkinsonella hypoxylon virus (L39126)

 Fusarium poae virus 1 (AF015924)

 Pleurotus ostreatus virus (AY533036)

 Rosellinia necatrix partitivirus 1-W8 (AB113348)

 Rhizoctonia solani virus (AF133291)

Crimson clover cryptic virus 2 (JX971983)

Primula malacoides virus (EU195327)

Cannabis cryptic virus (JN196537)

Dill Cryptic Virus 2 (NC021148)

Hop Trefoil Cryptic Virus 2 (NC021099)

Red Clover Cryptic Virus 2 (NC021097)

White Clover Cryptic Virus 2 (NC021095)

 Outgrouper Human picobirnavirus RNA1 (NC007026)

98

99

56

72

83

74

74

64

99

92

99

27

36

53

8

16

56

99

57

95

99

58

96

43

79

76

60

86

30

37

98

85

58

37

93

51

94

95

62

66

45

41

35

43

35

16

23

18

9

30

15
9

3

0.2

Alphapartitiviruses
(subcluster A1)

Alphapartitiviruses
(subcluster A2)

Alphapartitiviruses
(subcluster A3)

Gammapartitiviruses

Deltapartitiviruses
(subcluster D2)

Betapartitiviruses

Deltapartitiviruses
(subcluster D1)



Part 4: Deep Sequencing of persistent plant viruses  74 

4.4.4 Discussion 

We successfully performed deep sequencing using from dsRNA as starting material to 

assess the cryptic virome of 3 clover species and dill. This was the first metagonomic 

approach focused on persistent plant viruses from the family Partitiviridae, the genus 

Endornavirus and the proposed genus Amalgavirus. We used non infected plant 

material grown from seeds under controlled greenhouse conditions, to prevent infection 

with natural occurring common viruses.  

Suitability of sequence purity for virus determination 

The Illumina MiSeq platform provided by GATC delivered over 15 million paired-end 

reads. To limit costs, four samples were mixed to create one library, where theoretically 

each virome consists of 3.8 million read pairs. Despite the use of a specific dsRNA 

isolation method, 39 % of all reads aligned to plant genes, mostly to chloroplast derived 

nucleic acids. This was also the case in other studies, dealing with dsRNA sequencing. 

After a deep sequencing of dsRNA isolated form grapevine, 14 % of the reads mapped 

to the host genome (Coetzee, 2010). Our percentage is at least twice as high although 

we did not use infected plant material from fields, where dsRNA may occur in larger 

amounts. However, at least 0.7 to 1.9 million read pairs fit to viruses found in each 

cultivar. In total, 53 % of all reads match to viral sequences. This share of viral 

sequences is higher as reported in other studies using siRNA or virus enriched total 

RNA, with a maximum of 40 % in case of infected plant material (Kreuze, 2009; 

Adams, 2009). Persistent viruses are in general quite lower in titer (Roossinck, 2011, 

Lifestyle) underlining the suitability of deep sequencing approaches for these entities. 

Besides Partitiviridae and Endornaviruses no other viruses were found which could be 

clearly assigned to mycoviruses. This likely indicates a plant origin of the found viruses. 

The genome coverage of obtained contigs concerning comparison with their reference 

sequences is better when using dsRNA as a template than with contigs from total or 

siRNA. Moreover, dsRNA represents the full genome or replicative intermediate forms 

of a virus, leading to an increase of correctness and completeness of the determined 

sequences. In our study only 7 contigs out of 42 missed substantial genome parts, the 

vast majority (83 %) of the genome fragments seem to be nearly complete with a 

method-inherent absence of approx. 20 bp from the 5’- and 3’-end, respectively. 

Therefore, dsRNA sequencing is most suitable for the detection of unknown plant 

viruses.  

http://www.linguee.de/englisch-deutsch/uebersetzung/most+suitable.html
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Large diversity of cryptic infection 

We were able to detect at least 8 putative new members of the family Partitiviridae, 4 

putative new viruses of the proposed genus Amalgavirus and 3 putative new members 

of the genus Endornavirus. Four additional sequences, which were assigned to the 

genera Alphapartitivirus and Deltapartitivirus were also found, indicating that 

additional cryptic viruses may be present in the virome of these cultivars. A large 

diversity of persistent viruses was identified in the tested cultivars: Dill contains at least 

6 persistent viruses of the family Partitiviridae, Hop Trefoil harbors 5 viruses (4 from 

genera of the Partitiviridae and 1 from the genus Amalgavirus), Red Clover contains 8 

persistent viruses (5 belonging to the Partitiviridae, 1 belonging to Amalgavirus and 2 

belonging to Endornavirus) and White Clover contains 6 viruses (3 from the 

Partitiviridae, 2 fitting to the Amalgavirus and 1 to Endornavirus). Mixed infections 

with up to 5 plant cryptic viruses in one host have been reported before, for example in 

clover and carrot (Boccardo, 1987). However, reporting the present study we report for 

the first time sequences of more than 3 viruses of the family Partitiviridae in one host 

plant. For fungal hosts, multiple sequences of up to 9 Partitiviruses have also been 

reported before (Vainio, 2013; Yaegashi, 2013). This data imply a more in-depth picture 

of the large diversity of persistent viruses in their hosts, which might be extended by 

further studies. 

Putative horizontal transmission events 

The significance of such diversity can be discussed from different points of view. The 

basis of the theory is an interaction triangle consisting of the viruses, their hosts: plants, 

pathogenic or symbiotic fungi and the environmental conditions. One, so far unresolved 

point is the putative source or origin of these plant persistent viruses. The high sequence 

similarity of individual viruses found in different plant families strengthens the 

hypothesis of a vector mediated transmission. This could be evidence of horizontal virus 

transmission from a plant pathogenic or symbiotic fungus, especially when the close 

genetic linkage to the fungal viruses within the family Partitiviridae (Ghabrial, 1998; 

Roossinck, 2010, Lifestyle) is considered. This applies in particular for the subcluster 

A1 in genus Alphapartitivirus and the group of plant borne viruses within the fungal 

Betapartitiviruses (see Picture 3 -4). Phytopathogenic fungi can act as vectors for a 

number of different plant viruses (Lubicz, 2007; Rochon, 2004). However, to establish a 

permanent infection a virus has to enter the germ line cells, e.g. by exchange during 

plant-fungus interaction (Kankanala, 2009). This event would be rarer than a 
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transmission from a plant to a fungus. Because once the virus transmitted from a plant 

to fungal cells, the virus could go through the cell wand free mycel into cells which 

produce spores to become persistent (Roossinck, 2012). 

Horizontal gene transfer of viral sequences into plant genomes 

Another aspect is the insertion of viral sequences into the plant host genome. Many of 

these genome integrations contain parts similar to the coat protein open reading frames 

of the fungal Rosellinia necatrix pratitivirus 2 (Liu, 2010). We determined 5 contigs 

(see Figure 3, subcluster A3) that show a strong relationship to genomic sequences, e.g. 

of the chromosome 3 from Arabidopsis thaliana. These newly characterized sequences 

could be helpful to detect more of such integrations. However, phylogenetic data 

indicate a transfer of sequences to the plant genomes (Chiba, 2011). Most genomic 

integrations encode only parts of viral references. Moreover no integration of viral 

sequences could be found in the genome of plants, which harbor the virus themselves 

(Rossinck, 2012). This suggests an ancient origin for these viruses rather than a release 

from their hosts. 

Host influence of cryptic viruses 

Nevertheless, many of the viral integrations in genomes seem to be expressed like 

genes, indicating a potential function for the plant. The role of plant viruses in plant 

ecology, including potential beneficial effects was proven by other studies (Xu, 2008; 

Roossinck, 2011, Nat Rev). An interaction can be advantageous for plants in special 

environmental conditions. A transcription of the coat protein of the White Clover 

Cryptic Virus 1 can regulate root nodulation in the presence of adequate nitrogen 

(Nakatsukasa-Akune, 2005). Moreover, in plants the additional presence of an 

endophytic fungus resulted in an increased thermal tolerance after viral infection 

(Marquez, 2007). Furthermore, persistent viruses are involved in the plant defense 

mechanism. Infections by cryptic viruses can result in hypervirulent effects through the 

interaction of the pathogenic fungus with a host plant. The same studies speculate about 

a potential use of persistent viruses to control fungal diseases (Ghabrial, 1998). 

Although this metagenomic study reveals a more detailed picture of the plant cryptic 

virus diversity, further investigations are needed  to understand the biology of these and 

other persistent viruses. 
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5 General discussion 

5.1 Revision of the taxonomy of the family Partitiviridae 

The first part of this thesis had its focus on the sequence determination of members of 

the genus Betacryptovirus in the family Partitiviridae. Numerous sequences have been 

determined for viruses of the genus Alphacryptovirus so far, but no sequence was 

available for any assigned member of the genus Betacryptovirus (Ghabrial, 2008). In 

this study the complete sequences of five viruses were determined and classified into 

the genus Betacryptovirus. Three dsRNA pairs with typical sizes of Betacryptoviruses 

(Boccardo, 1985) were isolated from already known hosts: white clover, red clover and 

hop trefoil (Boccardo, 1983, 1985; Luisoni , 1987). Furthermore, two new putative 

viruses of the genus Betacryptovirus were unexpectedly identified from dill (Anethum 

graveolens) and crimson clover (Trifolium incarnatum). Additionally, comparative 

sequence analyses indicated that viruses identified from Primula and Cannabis (Li, 

2009; Ziegler, 2011) are potential members of the genus Betacryptovirus. 

Previous phylogenetic analyses of the family Partitiviridae divided the genera 

Alphacryptovirus as well as the genus Partitivirus into two clearly distinct clusters 

(Ghabrial, 2008, 2012). Additionally, the findings of this thesis show that the genus 

Betacryptovirus forms an own sub-cluster, which is closely related to the Partitivirus I 

cluster. Therefore, the type members of the genera Betacryptovirus (WCCV2) and 

Partitivirus (AhV) are closer related to one another than viruses of different clusters of 

the genera Alphacryptovirus and Partitivirus. The current taxonomic classification does 

not satisfactorily reflect these findings. Further characteristics such as dsRNA size, 

presence of interrupted poly(A) stretches and particle sizes support the need for a 

revision of the taxonomic structure of the family Partitiviridae. 

The results gathered in this study fill a gap in the virus taxonomy of Partitiviridae 

revealing a relationship of plant cryptic viruses to fungal viruses. In collaboration with 

US-American colleagues a proposal was submitted to the ICTV which suggests an 

adaption of the taxonomy of these viruses based on the findings of this thesis (Nibert, 

2013). 
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However, further phylogenetic analyses of sequences stored in GenBank indicate more 

putative members of the family Partitiviridae. In most cases sufficient data about the 

host, particle size and further relationships are missing. Therefore, these sequences 

cannot be assigned officially to viruses within the family Partitiviridae by the ICTV. 

This problem is especially acute for putative viral sequences obtained from deep 

sequencing approaches (Brister, 2010). Nevertheless, metagenomic data of viral 

populations provide important information for taxonomic approaches.  

Cryptic viruses are widespread in mono- and dicotyledonous plant species, in some 

cultivars up to five viruses were detected. Because of the missing transferability of 

cryptic viruses, each virus that can be found in one host represents a new species in the 

family. If we push our thinking to the increasing upcoming sequence data of viruses, 

this will result in an inflation of newly described viruses. To circumvent this problem, it 

might be helpful to define a quasi-species for each cluster in a virus family. All new 

determined cryptic-like sequences in the future could be assigned directly to synthetic 

template species if relevant thresholds are reached (Fauquet, 2005; MacDiamid, 2013). 

5.2 Biodiversity of cryptic viruses 

The deep sequencing results obtained from seed grown cultivars under controlled 

conditions show a large diversity of viruses belonging to the family Partitiviridae 

within each host plant. Up to five sequence pairs in a single host plant represent five 

individual viruses, which is in accordance with other observations in cultivars such as 

carrots (Natsuaki, 1990). Each virus can be assigned to a specific sub cluster in 

phylogenetic analyses. Interestingly some clusters contain plant host as well as fungal 

host infecting viruses (Alphapartitivirus, Betapartitivirus), whereas other clusters 

include only plant or fungal host infecting viruses (Gammapartitivirus, 

Deltapartitivirus). Moreover the viruses of each sub cluster are sometimes very similar 

to one another even if the harboring host plants belong to different plant families (sub 

cluster A1, cluster of betacryptoviruses, see 4.4.3 Figure 1), whereas other clusters 

contain very distinct members (sub cluster A2). High sequence similarities can indicate 

a common origin, especially when looking at isolated sub clusters. However, the 

information on the sequence stability of cryptic viruses is very limited. Therefore, we 

should exercise a degree of caution when evaluating phylogenetic approaches like 

molecular clocks. Sequence determinations of Blueberry latent viruses, a member of the 
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putative cryptic like genus Amalgavirus, show an extremely stable population structure. 

The diversity does not exceed 0.5% among all isolates obtained from all over the USA 

and Japan (Martin, 2012). However, a sub cluster of plant infecting cryptic viruses 

within a main cluster which includes hosts of numerous plant pathogenic fungi suggests 

the possibility of a potential horizontal transmission event. 

Another point is the diversity in the composition of types of cryptic viruses which were 

found in different cultivars. Some plant species e.g. carrot (Natsuaki, 1990) contain 

almost all members of the different sub cluster, whereas in other host plants e.g. spinach 

(Natsuaki, 1983) only one cryptic virus could be determined (Boccardo, 1987). 

Furthermore, a change in the occurrence of cryptic viruses is also observed. While in 

earlier studies Beet Cryptic Virus1 (BCV-1) occurred frequently in sugar beet cultivars 

(Lukacs, 1994), it is now very rarely found in actual cultivars (Szego, 2010). This drift 

in a viral population may be explained by human influences with changing varieties 

and/or potential interaction with altered fungal species or pathotypes. The disappearance 

of BCV-1 might be connected with the parallel introduction of rhizomania-resistant beet 

cultivars using the Rz1 gene (Szego, 2010). However, it is purely speculative to draw a 

connection between these two phenomena. Nevertheless, in the context of results from 

other studies (see Introduction point 1.4), it can be hypothesized that the diversity of 

cryptic viruses is influenced by environmental conditions and not only by their 

capability of seed transmission. 

5.3 Transmission routes of cryptic viruses – throughout the 

plant, to a fungus and into the plant genome 

5.3.1 Vertical transmission in the host plant - the hitchhiker strategy 

The cryptic lifestyle of plant infecting Partitiviridae is one key feature of their wide 

distribution throughout the plant kingdom (see introduction point 1.6.1). The 

deprivation of plant defenses via in-particle transcription ensures the virus propagation 

in the cell, but also prohibits any active transport mechanism for the distribution within 

the plant (Roossinck, 2010). This feature abolishes the necessity of any further protein, 

and only the RdRp for genome replication and transcription and CP as the protecting 

capsid are needed to build up a full virus. However, cryptic viruses have to become 

hitchhikers during cell propagation, even in the meristem up to the gametes to ensure 
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their “survival”. Meristems are normally devoid of systemic pathogens, probably due to 

the absence of differentiated conducting tissues (Alam, 2013). However, cryptic viruses 

even overcome thermotherapy. Thermal treatment that produces a greater viral 

degradation when repeated over time can lead to elimination of “classical” viruses 

(Kassanis, 1957; Boccardo, 1987). The underlying mechanisms, which could stabilize 

cryptic viruses have not yet been resolved. Structural analysis of the virus particle 

confirms hidden transcription and replication. The results of the protein-interaction 

study (Part 3) verified the necessary CP self-interactions for the assembly of the virus. 

However, the propagation during cell division is still unclear. In recent studies cryptic 

particles were localized in the cytoplasm (Natsuaki, 1985) or seem to be associated with 

the nucleus (Boccardo, 1987). The localization of protein-interactions in our BiFC 

approach confirms these findings. The association with cell components may indicate a 

passive distribution during cell division. However, cryptic viruses seem to be well 

adapted to their hosts and fit best to the infect-and-persist strategy (Hillemann, 2004). 

5.3.2 Horizontal transmission between plant and fungi – a chicken-and-

egg problem 

A linkage of plant infecting cryptic viruses to fungal viruses of the genus Partitivirus 

has been demonstrated by numerous phylogenetic studies. Also the sequence 

determination of the genus Betacryptovirus (Part 2) and the additional deep sequencing 

approach (Part 4) indicate a common origin of Partitiviridae from plant and fungal 

hosts. However, experimental approaches to analyze such a transmission of cryptic 

viruses (Mel'nichuk, 2005) were unable to provide sufficient evidence for a horizontal 

transmission (Szego, 2010). On the other hand, phytopathogenic fungi can act as vectors 

of a diverse range of different plant viruses (Rochon, 2004). Therefore, an uptake or 

delivery of viruses by fungi may also apply for viruses of the family Partitiviridae 

provided that the virus is capable of entering the gametes to establish a permanent 

infection. Nevertheless, such an event seems very rare or only has taken place in ancient 

times. Overall, there is no evidence for a direct transmission of cryptic viruses from 

plants to fungi, no virus was found in both kingdoms via sequencing approaches so far. 

Despite of large amounts of determined sequences of cryptic viruses from fungal origin, 

most studies put their focus on pathogenic mushrooms. However, it is more likely that 

an endosymbiotic species acts as a vector. However, the endosymbionts could be very 

different and host-specific. Findings of similar viruses in different distinct families do 
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not support the notion that these plant species are infected or contaminated by a 

common specific endosymbiotic fungus (Boccardo, 1987). Furthermore, viruses of the 

genus Alphacryptovirus obtained from plant protoplasts show high sequence similarities 

to fungal partitiviruses (Abou-Elnasr, 1985). 

Even if horizontal transmission occurs, the question about the origin still remains. Is the 

plant the original host or the vector of cryptic viruses? DsRNA viruses are commonly 

found in fungi without the need of any movement protein (see Introduction point 1.2). 

However, such a virus can only become persistent by an interaction of the harboring 

fungus with the plant gametes. The opposite case appears more likely: An infected plant 

will release the virus through an interaction with a pathogenic or endosymbiotic fungus. 

Once the viruses or viral transcripts enter a fungal cell, it can be easily speared through 

the mycelium to the spore producing cells and therefore become persistent (Roossnick, 

2012). 

Despite of the fungal linkage of plant cryptic viruses, other possible vectors should be 

kept in mind. Plant feeding insects can or other viruses can serve as a vector for plant 

cryptic viruses. In a study of the Melon necrotic spot virus (MNSV), which is naturally 

transmitted by the fungus vector (Olpidiumradicale), a new cryptic virus was found 

only in mechanical with MNSV inoculated melons but not in MNSV free plants (Sela, 

2013). 

Nevertheless, an experimental evidence for all putative transmission routes is still 

missing. Upcoming studies with the use of reverse genetic approaches, like infection 

assays (Potgieter, 2013) and further localizing studies in planta, e.g. with the applied 

BiFC system, will shed light on these transmission events. 

5.3.3 Insertions of sequences of cryptic viruses in plant genomes – the 

transmission terminus 

An additional aspect of cryptic viruses is the horizontal gene transfer (HGT) to 

eukaryotic nuclear genomes. Coat protein-like sequences of cryptic viruses were found 

in different plants, such as Arabidopsis, Brassica ssp. and Nicotiana ssp. (Chiba, 2011; 

Liu, 2010). It is generally assumed that the direction of the HGT is from the virus into 

the host, and not by the virus capturing genes: Most insertions represent pseudo genes 

that include deletions, internal stops and frame shifts. The patchy phylogenic 

distribution indicates a recently occurred introduction, rather than an escaped gene. 
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Cryptic RdRps belong to the picorna-like superfamily, and have similar topologies as 

the Totiviruses, which suggest an ancient origin (Liu, 2010). Moreover, no integrated 

sequences were found in plants which harbor cryptic viruses themselves (Roossinck, 

2012). 

The integration of genome parts most likely occurred when the viruses were first 

introduced into non-infected species, probably as a result of an antiviral immune 

response. The mechanism is quite unclear, because the integration of viral RNA 

sequences into the host genome has to involve reverse transcription and recombination 

events (Liu, 2010). Nevertheless, cryptic viruses intimately associated with their host 

cell over a long evolution time (Ghabrial, 1998). This increases the likelihood of an 

integration event, for example triggered by a helper virus, which uses revers 

transcription or during cell division mechanisms (Liu, 2010). Observations of virus 

particles and protein-interactions associated with the nucleolus may indicate the 

subcellular site for such events (Boccardo, 1987; Part 3). 

However, based on the close genetic relationship between viruses from genera of the 

family Partitiviridae that infect plants and fungi, further investigations concerning 

plant-fungus interactions will provide evidence for the potential of horizontal inter-

kingdom transmission and integration of cryptic viruses. The findings of this study 

delivered new viruses that show similarities to potential plant genome localized 

sequences. This applies in particular for subcluster A3 (see point 4.4.3, Figure 2), 

where, for the first time, four new CP sequences were identified from plant hosts which 

show similarities to sequences in the genome of Arabidopsis. 

5.4 Significance of diversity of persistent viruses in plants 

In the past, viruses were commonly described as pathogens. Their negative impact is 

mainly caused by the effect on plant defense suppression and interference with plant 

metabolic processes during replication and transmission. The “persistent strategy” 

avoids such significant influences on their hosts, because no active transport or 

suppressor activities are needed. Cryptic viruses seem to be almost perfectly adapted to 

their harboring host plants. However, our knowledge concerning the origin and 

importance of the large diversity of persistent viruses in plants is incomplete. Recent 

studies have led to another view on viruses other than a cause of disease associated 

patterns. Viruses may interact with their hosts like epigenetic elements in nature, 
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providing characteristic features to them which are beneficial under specific conditions 

(Márquez, 2007; Roossinck, 2010). Therefore, also an integration of viral sequences 

into the host genome can be justified. Many of the viral integrations in genomes seem to 

be expressed like regular genes, indicating a potential function for the plant (Liu, 2010). 

The role of plant viruses in plant ecology was elegantly shown by other studies (Xu, 

2008; Roossinck, 2011). At first an interaction with viruses can be helpful for plants in 

case of special environmental conditions. An expression of the coat protein of the White 

Clover Cryptic Virus 1 in lotus can regulate root nodulation in the presence of adequate 

nitrogen supply through the plant hormone abscisic acid. In the opposite direction the 

level of the virus titer was reduced during nodulation in white clover (Nakatsukasa-

Akune, 2005). Beet plants infected with cryptic viruses show reduced yield under 

normal conditions, but no effect could be found if the plant were exposed to drought 

stress (Xie, 1994). Moreover, the additional presence of an endophytic fungus resulted 

in a thermal tolerance of plants after viral infection (Marquez, 2007). 

Also other persistent viruses which belong to the family Endornaviridae have an impact 

on their hosts. The presence of an Endornavirus is correlated with male sterility in Vicia 

faba by an unknown mechanism (Pfeiffer, 1998).  

Another issue concerns the involvement of persistent viruses in the plant defense 

mechanism. In the presence of other pathogenic viruses, the amount of dsRNA is 

increased (Boccardo, 1987) which makes it even possible for the cryptic viruses to 

infect the plant (Sela, 2013).Infections by cryptic viruses can result in hypervirulence 

effects as demonstrated by the interaction of a pathogenic fungus with a host plant. This 

may have the potential for controlling fungal diseases (Ghabrial, 1998).Therefore, the 

diversity of cryptic viruses in specific hosts might be an adaptation to the presence of a 

fungal pathogen like the disappearance of the Beet cryptic virus 1 by the introduction of 

rhizomania-resistant cultivars (Szego, 2010). 

Even if metagenomic studies reveal a more detailed picture of the plant virus diversity, 

further investigations are needed to understand the biology of persistent viruses. 

Interaction and in planta studies e.g. with the BiFC system will shed more light on this 

interesting virus group. These viruses could have the potential to play an important role 

in interactions between plants, endophytes, pathogens under specific environmental 

conditions. 
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6 Outlook 

Although persistent viruses are very common, the knowledge about the biology is very 

limited. Future research will go undoubtedly in the direction of their potential role as 

mutualists rather than agents of diseases (Roossinck, 2010). Even if more and more 

metagenomic data will become available the main pitfall of studies concerning plant 

cryptic viruses is the lack of a revers genetic system. Firstly isogenic virus free lines of 

a model plant, which naturally harbors cryptic viruses is needed. Due to the lack of a 

response to the usual virus elimination methods like thermotherapy, new techniques e.g. 

the use of artificial micro RNAs in combination with callus regeneration may help to 

achieve a breakthrough (Ossowski, 2008). Moreover, an efficient infection system has 

to be established for testing the effect on the hosts, like it was performed for the related 

fungal viruses (Sasaki, 2006). Due to the fact of a limited transmission of persistent 

viruses further ecogenomic studies may be able to provide an evidence for a putative 

vector transmission event. Deep sequencing approaches may be able to detect proposed 

endosymbioic of pathogenic fungi, which can be tested for the presence of viral 

sequences that were previously determined from their host plant. This step will help to 

evaluate the biological potential of persistent viruses, which may lead to a probable use 

as cross-protection agents against plant-pathogenic fungi (Ghabrial, 2008) or as 

inducers of stress-tolerance to environmental conditions (Marquez, 2007; Roossinick, 

2012). Therefore further approaches are needed to establish viromics as an interface to 

optimize plant cultivation systems. 
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