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Abstract 

Black spot disease, caused by the hemibiotrophic ascomycete Diplocarpon rosae, is 

the most severe disease in field-grown roses. The Rdr1 locus, comprising nine highly 

similar TNL-genes, was previously characterised in roses and it is known to confer 

resistance to black spot. To identify the active Rdr1 gene, we analysed stable 

transgenic roses harbouring single members of the Rdr1 locus in a disease assay. 

muRdr1A was identified as the functional Rdr1 and it provides resistance to 13 different 

single-spore isolates of Diplocarpon rosae belonging to six different races; so far, Rdr1 

is only overcome by two races. The identification and phylogenetic analysis of Rdr1-

family members from the two recently available genomes of the diploid old Chinese 

Rosa chinensis cultivar ‘Old Blush’, together with nine different rose species, resulted 

in a genomic organisation of the Rdr1-family in two major clusters at the distal end of 

chromosome 1 with different ancient origins. Genes belonging to cluster 2, like the 

functional muRdr1A, were subjected to a faster evolution compared to genes from 

cluster 1 due to known processes, such as higher rates of recombination, gene 

conversion, and birth and death processes. In addition, phylogenetic analysis with 

additional Rdr1 homologues identified in other Rosaceae, i.e. Fragaria, Malus, Prunus 

and Rubus, resulted in the hypothesis that the Rdr1-family moved to its current position 

after the split of Rubeae from other groups within Rosoideae. Transcriptomic analysis 

during the compatible interaction of roses and D. rosae indicated an initial PTI reaction 

which is either insufficient, avoided or suppressed by D. rosae. As for the incompatible 

interaction of roses and D. rosae caused by Rdr1, two genes (peroxidase superfamily 

protein and Kunitz family trypsin and protease inhibitor protein) showed significant 

higher expressions in the incompatible interaction compared to the compatible 

interaction, independently of the genetic background.  

In conclusion, Rdr1 can be used as the starting point for the breeding of rose varieties 

with a durable broad spectrum resistance against D. rosae. Furthermore, the genomic 

organisation and the sequence information of the Rdr1-family provided in this study is 

a valuable source to analyse the role of Rdr1 homologs in disease resistance in other 

species.  

Keywords: Diplocarpon rosae, TIR-NBS-LRR, R-gene, evolution, RT-qPCR  
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Zusammenfassung 

Sternrußtau, hervorgerufen durch den hemibiotrophen Ascomyceten Diplocarpon 

rosae, gilt als eine der bedeutendsten Krankheiten an Gartenrosen. Der erste kartierte 

Resistenzlokus gegen Sternrußtau in Rosen, der Rdr1- Lokus, wurde bereits als ein 

Cluster von neun Resistenzgenanaloga der TIR- NBS- LRR-Familie charakterisiert. 

Eine Analyse von stabilen transgenen Rosen, die einzelne Mitglieder des Rdr1- Lokus 

tragen, ergab, dass muRdr1A das funktionelle Rdr1- Gen ist und eine breite Resistenz 

gegenüber 13 D. rosae Isolate aus mindestens sechs verschiedenen Rassen 

vermittelt. Die kürzlich veröffentlichten Rosegenome der diploiden Sorte ‘Old Blush’, 

zusammen mit Sequenzdaten neun weiterer Rosenarten, erlaubten eine 

Identifizierung von weiteren Rdr1- Familienmitgliedern, die in zwei großen Clustern am 

distalen Ende von Chromosom 1 organisiert sind. Eine phylogenetische Analyse der 

Rdr1- Homologen ergab, dass die zwei großen Cluster unterschiedliche Ursprünge 

haben, wobei muRdr1A in dem sich schneller entwickelnden Cluster liegt. Eine 

Analyse mit zusätzlichen Rdr1- Homologen aus anderen Rosengewächsen, wie 

Fragaria, Malus, Prunus und Rubus, führt zu der Annahme, dass die Rdr1- Familie 

nach der Spaltung von Rubeae von anderen Gruppen innerhalb der Rosoideae an ihre 

derzeitige Position verschoben wurde. Die Analyse von transkriptomischen 

Unterschieden während einer kompatiblen Interaktion von Rosen und D. rosae mittels 

MACE- Analyse zeigte eine Hochregulierung von Genen, die auf eine erste PTI-

Reaktion hindeuten, die entweder unzureichend ist oder von D. rosae umgangen wird. 

Mittels Standard RT-qPCR konnte während der inkompatiblen Interaktion von Rosen 

und D. rosae eine Induktion von zwei Genen, wovon eines für ein Peroxidase-

Superfamily-Protein und das andere für ein Trypsin- und Protease-Inhibitor-Protein der 

Kunitz-Familie kodiert, beobachtet werden. Durch die Analyse in transgenen Rosen 

(PC::muRdr1A) und deren Nachkommen konnte die Induktion beider Gene 

unabhängig vom genetischen Hintergrund in Verbindung mit der Rdr1 vermittelten 

Resistenz gebracht werden. Die transgenen Rosen bieten somit eine gute Basis für 

weitere transkriptomische Analysen um die inkompatible Interaktion von Rosen und D. 

rosae besser zu verstehen. Weiterhin kann Rdr1 als Startpunkt für die Züchtung von 

Rosensorten mit einer dauerhaften breiten Sternrußtauresistenz verwendet werden. 

Schlagwörter: Diplocarpon rosae, TIR-NBS-LRR, R-gene, Evolution, RT-qPCR  



Content 

 

III 
 

Content 

 
Abstract ...................................................................................................................... I 

Zusammenfassung ................................................................................................... II 

Content ..................................................................................................................... III 

Abbreviations ........................................................................................................... VI 

1 General Introduction ......................................................................................... 1 

1.1 Roses ............................................................................................................ 1 

1.1.1 Taxonomy and geographic distribution ............................................................... 1 

1.1.2 Genetics ............................................................................................................. 2 

1.1.3 Breeding and propagation of cultivars ................................................................ 3 

1.1.4 Genetic transformation ....................................................................................... 3 

1.2 Diplocarpon rosae .......................................................................................... 3 

1.2.1 Discovery and Taxonomy ................................................................................... 3 

1.2.2 Life cycle of D. rosae .......................................................................................... 4 

1.2.3 Distribution, genetics and control of black spot ................................................... 5 

1.3 Characterised resistances against D. rosae .................................................. 6 

1.4 Discovery and cloning of Rdr1 ....................................................................... 7 

1.5 Plant defence mechanisms .......................................................................... 11 

1.5.1 Hormone signalling ...........................................................................................13 

1.5.2 Pathogen related (PR) proteins .........................................................................14 

1.5.3 Transcription factors ..........................................................................................15 

1.6 NBS-LRR resistance genes ......................................................................... 15 

1.6.1 Evolution of NBS-LRRs .....................................................................................17 

1.7 Objectives .................................................................................................... 20 

2 The TNL gene Rdr1 confers broad-spectrum resistance to Diplocarpon 

rosae ................................................................................................................ 21 



Content 

 

IV 
 

3 Analysis of the Rdr1 gene family in different Rosaceae genomes reveals an 

origin of an R-gene cluster after the split of Rubeae within the Rosoideae 

subfamily ......................................................................................................... 34 

3.1 Introduction .................................................................................................. 36 

3.2 Results ......................................................................................................... 38 

3.3 Discussion ................................................................................................... 47 

3.4 Material and methods .................................................................................. 49 

3.4.1 Origin of sequences ..........................................................................................49 

3.4.2 Analysis of the Rd1LRR microsatellite marker in ‘Old Blush’ .............................50 

3.4.3 Gene prediction and annotation ........................................................................51 

3.4.4 Sequence alignment and construction of phylogenetic trees .............................51 

3.4.5 Synteny analysis ...............................................................................................52 

3.5 Acknowledgements ...................................................................................... 52 

3.6 References .................................................................................................. 52 

3.7 Supplementary information .......................................................................... 57 

4 Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen 

leads to differences in defense transcriptome activation ........................... 60 

5 A comparison of transcriptomic changes during incompatible and 

compatible interactions between roses and D. rosae .................................. 79 

5.1 Introduction .................................................................................................. 79 

5.2 Material and Methods .................................................................................. 80 

5.2.1 Plant material ....................................................................................................80 

5.2.2 Infection with D. rosae .......................................................................................80 

5.2.4 Expression analysis using RT-qPCR .................................................................81 

5.3 Results ......................................................................................................... 83 

5.4 Discussion ................................................................................................... 92 

5.4.1 High-throughput RT-qPCR ................................................................................92 

5.4.2 Standard RT-qPCR ...........................................................................................95 

6 General Discussion ......................................................................................... 97 



Content 

 

V 
 

6.1 Identification of the active Rdr1 gene ........................................................... 97 

6.2 Identification, genomic organisation and evolution of Rdr1-family members ... 

  ................................................................................................................. 100 

6.3 Response of roses to D. rosae infection .................................................... 102 

6.4 Rdr1 initiated transcriptomic changes during incompatible interactions 

between roses and D. rosae ...................................................................... 103 

6.5 Conclusion ................................................................................................. 106 

References ............................................................................................................ 107 

Electronical appendix .......................................................................................... 124 

Lebenslauf ............................................................................................................. 125 

Danksagung .......................................................................................................... 127 

 

 

 

 



Abbreviations 

 

VI 
 

Abbreviations 

A  

AB Rose variety ‘Arthur Bell’  

AFLP  amplified fragment length polymorphism 

ATP adenosine triphosphate 

Avr avirulence 

  

B  

BAC Bacterial Artificial Chromosome 

  

C  

CC coiled-coil  

CNL CC-NBS-LRR  

COMT caffeic acid 3-O-methyltransferase 

  

D  

DEGs differentially expressed genes 

DRR Disease Resistance Response 

  

E  

EFR EF-Tu receptor  

ET ethylene 

ETI effector-triggered immunity 

  

F  

FLS2 fagellin-sensing 2  

  

G  

GA Gibberellin 

  

H  

Hsf heat shock factors  

  

J  

JA jasmonic acid  

  

K  

Ka non-synonymous nucleotide substitution 

Ks synonymous substitution  

  

L  

LPS lipopolysaccharides 

LRR leucine rich repeat 

LysM lysine motif  



Abbreviations 

 

VII 
 

  

M  

MACE   Massive Analysis of cDNA Ends  

MAMP microbe-associated molecular pattern 

MUSCLE Multiple sequence comparison by log- expectation 

  

N  

NBS nucleotide binding site 

NLR nucleotide-binding leucine-rich repeat receptors  

  

O  

OB Rose variety 'Old Blush' 

  

P  

PAMP pathogen-associated molecular pattern 

PC Rose variety 'Pariser Charme' 

PER peroxidase 

PG polygalacturonase 

PGN peptidoglycans 

PRRs pattern recognition receptors  

PTI PAMP-triggered immunity  

  

R  

R-gene resistance gene 

RK receptor kinases  

RLKs receptor-like kinases 

RLPs receptor-like transmembrane proteins 

  

S  

SA salicylic acid  

SI self-incompatibility 

STAND signal transduction ATPases with numerous domains 

STKs serine-theorine kinases 

  

T  

TF transcription factor 

TIR Toll/interleukin-1 receptor 

TNL TIR-NBS-LRR  

TTSS type III secretion system  

 



1 General Introduction 

 

1 
 

1 General Introduction 

1.1 Roses 

Among ornamentals, roses are the most popular plants due to a high symbolic and 

cultural value. They are characterized by a high diversity in flower characteristics like 

flower colour and petal number. As cultivated ornamentals, e.g. as cut flowers, potted 

plants and garden plants, they are economically very important. FloraHolland 

(https://www.royalfloraholland.com/en), the world biggest auction company for 

ornamentals, ranks roses on the first place of cut-flowers in the year 2016, with a 

turnover of 746 million € and 3,377 million sold units. In the top 10 house plants, potted 

roses are ranked on place three, with a turnover of 60 million € and 47 million sold 

units. In 2003, approximately 220 million garden roses were sold (Roberts, 2003). 

Besides that, roses are also used as sources for perfume and vitamin C (Zlesak, 2007). 

 

1.1.1 Taxonomy and geographic distribution  

Together with species from the genera Fragaria, Rubus, Potentilla, and Geum, roses 

belong to the Rosaceae family and are therefore related to economically important fruit 

crops, such as apple, pear, cherry and peach (Table 1.1) (Debener and Linde, 2009).  

The genus Rosa comprises about 200 species and is subdivided in Hulthemia, 

Platyrhodon, Hesperrhodos and Rosa, with the latter comprising around 95 % of all the 

species (Wissemann, 2003; Wissemann and Ritz, 2005). Many interspecific 

hybridizations resulted in thousands of cultivars, classified as old garden roses (before 

1867) and modern roses (after 1867), which are further subdivided into horticultural 

classes. With regard to the cultivar numbers, the most popular horticultural class of 

modern roses today is the hybrid tea with over 10,000 registered cultivars. 

Interestingly, in most of the modern rose cultivars only about seven to ten rose species 

are found in their genetic background (Cairns, 2000; Zlesak, 2007). The natural 

distribution of the genus Rosa originally lies in the northern hemisphere, but today, 

roses are present in Canada, the United States and Mexico. In Europe, they are spread 

across the entire continent as far as the Arctic Circle. The Near East and Asia are also 

homes to numerous rose species, whereas China is undoubtedly the greatest (Brichet, 

2003). Nonetheless, cultivated roses are grown all around the world in almost all 

climates (Debener and Linde, 2009). 
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Table 1.1: Taxonomic classification of roses (acc. to Brands (1989-present)).. 

Kingdom Plantae 

Subkingdom Viridiplantae 

Phylum Tracheophyta 

Subphylum Euphyllophytina 

Class Spermatopsida 

Order Rosales 

Family Rosaceae 

Genus Rosa 

 

1.1.2 Genetics 

Rose species have a basic chromosome number of seven and ploidy levels ranging 

from diploid (2n=2x=14) to octoploid (2n=8x=56), whereas the majority of modern rose 

cultivars are tetraploid, highly heterozygous and can be genetically classified as 

‘segmental’ allopolyploids - a mixture between allopolyploid and autopolyploid (Bourke 

et al. 2017; Cairns, 2000; Crane and Byrne, 2003; Gudin, 2000; Krüssmann and 

Hemer, 1974). 

Raymond et al. (2018) assembled a rose genome (513 Mb) from a homozygous 

genotype, generated from a heterozygous diploid modern rose progenitor, Rosa 

chinensis ‘Old Blush’, using single-molecule real-time sequencing and a meta-

assembly approach. The final assembly was composed of 82 contigs with an N50 of 

24 Mb. 

In addition, Hibrand Saint-Oyant et al. (2018) also developed a high-quality reference 

genome sequence for the genus Rosa by sequencing a doubled haploid rose line 

(‘HapOB’) from Rosa chinensis ‘Old Blush’. The generated rose genome assembly 

anchored to seven pseudo-chromosomes (512 Mb with N50 of 3.4 Mb and 564 

contigs), whereas the length of 512 Mb represents 90.1–96.1% of the estimated 

haploid genome size and 95% of the assembly is contained in only 196 contigs. 

Moreover, the rose genome displays extensive synteny with the Fragaria vesca 

genome with only two major rearrangements (Hibrand Saint-Oyant et al. 2018). 

Gametophytic self-incompatibility (SI), characterized by the lack of seeds after self-

pollination, is present in roses and many diploid species. However, within the group of 

tetraploid modern cultivars and several polyploid species self-fertilization is a common 

phenomenon, indicating a breakdown of the SI system in tetraploids (Debener and 

Linde, 2009; Rajapakse et al. 2001; Zlesak, 2007). 

http://taxonomicon.taxonomy.nl/TaxonTree.aspx?src=0&id=997466
http://taxonomicon.taxonomy.nl/TaxonTree.aspx?src=0&id=997467
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1.1.3 Breeding and propagation of cultivars 

Rose plants can be propagated either by seed or vegetatively. The modern rose is a 

product of many years of selection and their progeny tend to segregate widely for traits; 

therefore rose cultivars are propagated asexually by bud-grafting or cuttings (Mattock, 

2003; Zlesak, 2007). For most of the genotypes, an easy and rapid vegetative in vitro 

propagation is also possible (Davies, 1980). 

In contrast, sexual propagation of roses is primarily used for the development of new 

cultivars and for the production of some rootstocks (Zlesak, 2007).  

In the past, breeding objectives became more specific and are quite different 

depending on their use as garden, cut-flower, landscape, pot or rootstock roses. 

Ornamental characters, productivity and long vase-life are more important breeding 

goals of cut roses, whereas, apart from ornamental values, disease resistance became 

one of the most important breeding goals for garden roses (Gudin, 2000). 

Depending on the trait, the use of different wild species as crossing partners might be 

valuable to broaden the genetic base of cultivated roses (Smulders et al. 2011). 

 

1.1.4 Genetic transformation 

Successful transformation of roses with genes encoding for diverse traits (such as 

disease resistance, plant habit, flower colour and root characteristics), as well as 

different transformation protocols (Agrobacterium tumefaciens-mediated gene transfer 

and particle bombardment), has been established for several rose cultivars (Dohm, 

2003). However, these transformation protocols are restricted to specific genotypes 

and are highly dependent on the in vitro regeneration system. Dohm et al. (2001) 

observed a regeneration rate of 69 % via somatic embryogenesis in 50 tested 

genotypes. Somatic embryogenesis in roses is a very time-consuming process, where 

the regeneration of transformed plants takes around one year and shows a low 

transformation frequency of approximately 3 % (Dohm, 2003). 

 

1.2 Diplocarpon rosae 

1.2.1 Discovery and Taxonomy 

The hemibiotrophic ascomycete Diplocarpon rosae Wolf (conidial stage: Marssonina 

rosae (Lib.) Died.) causes rose black spot, a disease of major importance for field 
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grown roses (Drewes-Alvarez, 2003; Horst et al. 2007). The conidial stage was first 

reported by Fries in 1815 in Sweden, with further reports in Belgium, France and 

Germany in the second half of the nineteenth century (Aronescu, 1934; Drewes-

Alvarez, 2003). Diplocarpon rosae is classified as Ascomycota and belongs, together 

with other Rosaceae family pathogens such as D. mali (host: Malus), D. mespili (host: 

Mespili) or D. earlianum (host: Fragaria), to the genus Diplocarpon (Table 1.2) 

(Ainsworth, 2008). 

 

Table 1.2: Genomic classification of D. rosae (acc. to Brands (1989-present)). 

Kingdom Fungi 

Subkingdom Dikarya 

Phylum Ascomycota 

Subphylum Pezizomycotina  

Class Leotiomycetes  

Order Helotiales  

Family Dermateaceae  

Genus Diplocarpon  

Species Diplocarpon rosae F. A. Wolf 

 

1.2.2 Life cycle of D. rosae 

D. rosae infected plants typically show dark spots at the site of infection, often followed 

by the development of heavy chlorosis and loss of foliage very early in the vegetation 

period. Repeated infection cycles can lead to reduced growth and eventually death of 

the plant (Malek and Debener, 1998). First infections in spring are caused by spores 

that overwintered in fallen leaf material or in acervuli - fruiting body structures where 

new conidia are formed - on stems. The spores stick to the leaf surface and start to 

germinate after 8 hours under favourable conditions. The penetration of the cuticle can 

be either direct or via the development of an appressorium at the distal end of the germ 

tube. After two days and after the penetration into the epidermal cells, the fungus grows 

deeper into the leaf with subcuticular and intercellular hyphae, where the latter is 

responsible for sending nutrient-absorbing structures called haustoria into the plant 

cells. Around six days after the infection, the formation of necrotrophic intracellular 

hyphae is followed by a fungal reproductive stage in which acervuli with new conidia 

are formed. A new infection cycle begins with conidia released from acervuli through 

the ruptured cuticle (Figure 1.1) (Blechert and Debener, 2005; Drewes-Alvarez, 2003; 

Gachomo et al. 2006; Gachomo and Kotchoni, 2007). In contrast to this asexual 

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=946123&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=446949&lvl=3&lin=f&keep=1&srchmode=1&unlock
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lifecycle, the sexual life cycle of D. rosae, which involves the formation of ascospores 

via meiosis in apothecia, is rarely described and it is assumed to occur only under 

unfavourable conditions, e.g. during winter (Frick, 1943).  

 

 

Figure 1.1: Life cycle of black spot (Drewes-Alvarez, 2003). 

 

1.2.3 Distribution, genetics and control of black spot 

The conidia of D. rosae are disseminated mainly by splash water or direct contact, thus 

causing the distribution to be localized and thus reducing the risks for the evolution of 

new races (Lühmann et al. 2010). However, to date, eleven different pathogenic races 

of D. rosae can be distinguished and it is assumed that more races exist (Table 1.3, 

Whitaker et al. (2010b)). The control of black spot in the field relies on fungicide 

treatment and cultivation of resistant varieties (Malek and Debener, 1998; Reddy et al. 

1992). The application of fungicides is often used as a preventive measure and leads 

to high costs, environmental contamination and the development of pesticide resistant 

pathogens (Debener and Byrne, 2014).  
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Table 1.3: New race nomenclature for 11 races of Diplocarpon rosae (1–11) using nine differential rose 
genotypes (Whitaker et al. 2010b). Compatible interactions = +; incompatible interactions = -. 

 

 

The genome size of the isolate DortE4 is estimated to range from 70 to 90 Mb and 

contains 4,004 predicted gene models, with 88.5% of the predicted genes being 

expressed during the early stages of infection. The genome size is outstandingly large 

for a fungal genome, which is explained with a relatively recent whole genome 

duplication event (Neu et al. 2017). This provides a useful working tool to study the 

plant-host interaction mechanisms of D. rosae. 

Analysis of global black spot populations for their gene diversity revealed no unique 

alleles from any of the locations, indicating a slow evolution of new alleles in the D. 

rosae/rose pathosystem and that global trading of rose varieties led to an admixture of 

the pathogen. In Germany, the highest gene diversity was observed in older rose 

collections managed without fungicide application and the lowest diversity occurred in 

the two- to three-year-old testing sites of German rose breeders. Thus, gene diversities 

of the D. rosae populations are dependent on the age of the host populations and the 

application of fungicides. Therefore, breeding of new cultivars with broad spectrum 

resistances against D. rosae is a major goal for rose production, since they could be 

successfully used over several years in different countries throughout the world 

(Münnekhoff et al. 2017). 

 

1.3 Characterised resistances against D. rosae 

Breeding rose cultivars which are resistant to D. rosae is a time-consuming process 

due to the complex genetic constitution of roses (Drewes-Alvarez, 2003). Information 

on the genetic complexity of black spot disease resistance would simplify the breeding 

for resistant varieties; however, this information is scarce. Cultivated and wild roses 

have been evaluated in the field and laboratory for their black spot resistance in 
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previous studies (Byrne et al. 2010; Debener et al. 1998; Mangandi et al. 2013; Schulz 

et al. 2009). A detached leaf assay, using different single spore isolates and field 

collected samples of D. rosae, demonstrated that the highest level of resistance occurs 

in wild species, especially within the subgenus Cinnemomeae (Schulz et al. 2009). The 

resistance levels classified as ‘good’ to ‘excellent’ observed in cultivated roses are 

assumed to originate from a wide range of rose species, including Rosa wichurana, R. 

rugosa, R. multiflora, R. carolina, R. virginiana, R. laxa, and R. spinossisima. In 

contrast, the popular cultivated rose groups, like hybrid teas or floribundas, lack the 

resistance against black spot (Byrne et al. 2010). Up to now, three resistance loci, 

named Rdr1, Rdr2, and Rdr3, have been found, with Rdr1 being the best characterised 

one (Hattendorf et al. 2004; Malek and Debener, 1998; Whitaker et al. 2010a). 

 

1.4 Discovery and cloning of Rdr1  

As the highest level of black spot resistance occurs in wild species, a diploid R. 

multiflora Thunb. (2n=2x=14) was crossed with a tetraploid garden rose (2n=4x=28) to 

introgress black spot resistance from wild species into garden roses. The resulting 

triploid hybrid ̀ Goldfinch` was also crossed with a diploid R. multiflora and after several 

rounds of open pollination, progeny were selected based on garden rose 

characteristics, e. g. lack of thorns, high petal number and black spot resistance. Due 

to the high level of observed black spot resistance, the diploid R. multiflora hybrid 

88/124-46 was selected for a colchicine treatment in order to double the chromosomal 

set. The resulting tetraploid line CT50-4 was crossed with several varieties with 

different susceptibilities against black spot to generate a set of genotypes differing in 

black spot resistance. From the crossing with the susceptible hybrid tea variety 

‘Caramba’, the genotype 91/100-5 was selected out of ten hybrids. The genotype 

91/100-5 was tested to be resistant against the D. rosae isolate DortE4, but still 

displayed many unwanted characteristics of the wild species R. multiflora. Therefore, 

91/100-5 was crossed with the susceptible varieties ‘Caramba’ (progeny 95/1), ‘Pariser 

Charme’ (progeny 95/2) and ‘Heckenzauber’ (progeny 95/3) (Debener et al. 1998; 

Drewes-Alvarez, 1992; Malek and Debener, 1998).  

The segregation ratios for black spot resistance in the BC, F1 and F2 progenies of 

91/100-5 provided evidence for the presence of a single dominant resistance gene in 

duplex configuration (RRrr) in the rose genotype 91/100-5 (Figure 1.2). This gene, 
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named Rdr1, was the first resistance gene described in roses (Malek and Debener, 

1998) and it has shown to confer resistance against five races of D. rosae (Debener et 

al. 1998). 

Malek et al. (2000) identified seven AFLP (amplified fragment length polymorphism) 

markers linked to Rdr1. The most closely linked marker was used to locate Rdr1 on a 

chromosome map of diploid roses, indicating a position near the telomere. Later, Rdr1 

was finely mapped to a telomeric position in rose linkage group 1 (Biber et al. 2010; 

Kaufmann et al. 2003).  

With the application of the AFLP markers, the resistant genotype 95/3-23 with a small 

donor fraction was selected for further crosses as a male parent with ‘Caramba’, 

resulting in the population 99/18, and ‘Heckenzauber’, resulting in the population 99/20 

(Debener et al. 2003).  

 

 

Figure 1.2: Crossing scheme for the introgression of black spot resistance from wild species into garden 
roses (modified after Debener et al. (2003)). 

 

In order to clone Rdr1, BAC clones were isolated from a R. rugosa insert library and 

then assembled to a contig spanning the genomic region around the gene locus 

(Kaufmann et al. 2003). However, the R. rugosa contig did not contain the resistant 

allele, and another BAC contig from a new BIBAC library of R. muliflora spanning the 

Rdr1 locus was constructed (Biber et al. 2010). High-resolution mapping narrowed 

down the region around the Rdr1 locus to four overlapping BAC clones (29O9, 94G8, 

20F5 and 69E24) and by sequencing these four BAC clones a complete sequence of 
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265,477 bp was obtained (Biber et al. 2010; Kaufmann et al. 2010). Out of 40 predicted 

genes with significant matches to GenBank entries, nine showed highly significant 

similarities to resistance genes of the TIR-NBS-LRR (Toll/interleukin-1 receptor-

nucleotide binding site-leucine rich repeat, TNL) type (Kaufmann et al. 2010; Terefe-

Ayana et al. 2011), thus, being considered to be the most likely candidates for Rdr1 

and designated as muRdr1A- muRdr1I (Figure 1.3).  

 

 

Figure 1.3: Physical positions of the Rdr1 gene region and schematic representation of positions of 
predicted genes in the R. multiflora genotype (acc. to Terefe-Ayana et al. (2011)). (A) Nine TNLs (black 
pentagon) and 10 transposable-elements (unfilled pentagon). (B) Other genes distributed along the Rdr1 region. 
(C) The completely sequenced four overlapping BAC clones carrying the Rdr1 gene. The broken-line indicates 
Rdr1-linked SSR markers. The vertical unbroken line indicates a recombination break point (69Mic) on the right 
side of the region.  

 

Except for muRdr1D, all genes have a size in the range of 4085 to 5920 bp and 

sequence similarities of 87.8 to 99.5 % with four exons and three introns. The first exon 

contains a toll/interleukin-1 receptor (TIR) domain, the second one has a nucleotide-

binding site (NBS) domain and the fourth one has a leucine- rich repeat (LRR) domain 

(Figure 1.4) (Kaufmann et al. 2010; Terefe-Ayana et al. 2011).  
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Figure 1.4: The structure of the nine TNLs (acc. to Terefe-Ayana et al. (2011)). The majority of the TNLs are 
characterised by four exons and three introns. The fourth TNL (muRdr1D) is interrupted by a 6957-bp transposable-
element at intron 1. 

 

For the identification of the functional Rdr1, the expression of all nine muRdr1- family 

members was tested in different rose organs (Terefe-Ayana et al. 2011). Due to no 

detectable expression in leaves and petals, muRdr1B, D, E, and F were excluded as 

likely candidates for Rdr1. On the other hand, muRdr1A, C, G, H, and I were expressed 

in both leaves and petals, and thus were further analysed in transient infiltration 

experiments. Each of the genes were subcloned, transformed and co-infiltrated with D. 

rosae single spore isolates DortE4 and R6 in the susceptible genotype ‘Pariser 

Charme’ (PC). While none of the muRdr1 genes showed effects against the isolate R6, 

leaf areas infiltrated with DortE4 and the muRdr1H gene showed significant reduction 

of fungal growth in each of the nine experiments (Figure 1.5). Although muRdr1A also 

showed effects in six of the nine experiments, muRdr1H was considered to be the most 

likely candidate for Rdr1.  
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Figure 1.5: Transient complementation disease assay with individual muRdr1 TNLs and DortE4 (acc. to 
Terefe-Ayana et al. (2011)). This graph represents average data of nine independent experiments ± SEM. Results 

with same letters are not significantly different (P < 0.05). 

 

1.5 Plant defence mechanisms 

Due to their sessile way of living, plants are constantly exposed to a number of potential 

pathogens, such as fungi, bacteria, nematodes and insects. Therefore, plants evolved 

mechanisms to perceive such attacks, and to translate this perception into an adaptive 

response. Passive protection against pathogens that are not specialized to a specific 

host is provided by barriers like the cell wall, the waxy cuticle or preformed anti-

microbial compounds (Dangl and Jones, 2001). To initiate immunity, the ability to 

recognize and respond to potential pathogens is necessary and two different forms of 

immunity in plants are described; the pathogen-associated molecular pattern (PAMP)-

triggered immunity (PTI) and the effector-triggered immunity (ETI).  

PTI is elicited by the activation of pattern recognition receptors (PRRs) by microbe-

associated molecular patterns (MAMP; or also called pathogen-associated molecular 

pattern (PAMP)), which are highly conserved molecular signatures characteristic for a 

whole class of microbes, such as fungal chitin or bacterial lipopolysaccharides (LPS), 

peptidoglycans (PGN) and flagellins (Boller and Felix, 2009). PRRs are typically 

leucine-rich repeat kinases and lysine motif (LysM) kinases, with leucine-rich-repeat 

receptor kinases (LRR-RKs) flagellin-sensing 2 (FLS2) and EF-Tu receptor (EFR) 
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being the two best characterised PRRs (Boller and Felix, 2009). For fungi and 

oomycetes, fungal chitin or the Pep13-domain of the cell wall transglutaminase and 

heptaglucosides of oomycetes are known (Zipfel and Felix, 2005). PRRs do not act 

alone but rather function as part of multi-protein complexes at the plasma membrane, 

where the activation of PRRs leads to intracellular signalling, transcriptional 

reprogramming, and biosynthesis of a complex response that limits microbial 

colonization (Dangl et al. 2013; Monaghan and Zipfel, 2012) (Figure 1.6, step 1). 

To suppress PRR-dependent responses, pathogens with diverse life styles use 

effectors to facilitate nutrient acquisition and to contribute to pathogen dispersal. 

Effectors are virulence factors (proteins or toxins) which do not have a “housekeeping” 

function in microbial growth and development outside of the host (Bent and Mackey, 

2007). They are secreted into host cells from extracellular plant bacterial pathogens by 

the type III secretion system (TTSS). For fungi or oomycetes, this is done by haustoria, 

and for aphids and nematodes, the secretion occurs during the feeding process (Dangl 

et al. 2013) (Figure 1.6, step 2). 

If an effector is recognized by a host defense receptor, the intended virulence function 

is often overshadowed by a dominant avirulence function (Bent and Mackey, 2007). 

Some effectors from evolutionary different pathogens target an overlapping subset of 

plant proteins, including well-connected cellular hubs, so that they are likely to 

suppress effective host defence and facilitate pathogen fitness (Mukhtar et al. 2011) 

(Figure 1.6, step 3).  

The recognition of pathogen effectors by plant receptors, encoded by resistance genes 

(R-genes), induces ETI and limits the pathogen proliferation (Figure 1.6, step 5). Most 

of the R-genes encode nucleotide-binding leucine-rich repeat receptors (NLR), 

whereas specific NLR proteins are activated by specific pathogen effectors. The 

interaction between NLR and effector can be direct, as receptor or ligand (Figure 6, 

step 4a), but such interactions have been rarely reported (Caplan et al. 2008; Dangl et 

al. 2013; McHale et al. 2006). Direct interactions have been described in flax (Linum 

usitatissimum) for the NLR proteins L5, L6 and L7 and the corresponding AvrL567 

avirulence proteins from flax rust (Dodds et al. 2006), and in rice for the pi-ta protein 

and the AVR-Pita(176) protein from rice blast fungus (Jia et al. 2000).  

In an indirect interaction, the effectors modify its host cellular target (or a molecular 

decoy of that target), and this modification activates a specific NLR (Dangl et al. 2013; 

Dangl and Jones, 2001; van der Hoorn, R. A. L. and Kamoun, 2008) (Figure 1.6, steps 
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4b and 4c). Cladosporium fulvum, for example, secretes the Avr2 protein during 

infection into the apoplast of tomato leaves, which is a protease inhibitor of the Rcr3 

protein and necessary for the Cf2-mediated resistance (Rooney et al. 2005). RIN4 is a 

negative regulator of basal defence that is targeted by multiple Pseudomonas syringae 

effectors (AvrRpm1, AvrRpt2, and AvrB) and monitored by RPM1 and RPS2 (Mackey 

et al. 2002; van der Hoorn, R. A. L. and Kamoun, 2008).  

 

 

Figure 1.6: Schematic overview of the plant immune system (acc. to Dangl et al. (2013)). Pathogens of all 

lifestyle classes express PAMPs and MAMPs as they colonize plants. Plants perceive these via extracellular PRRs 
and initiate PRR-mediated immunity (PTI; step 1). Pathogens deliver virulence effectors to the plant cell (step 2). 
These effectors are addressed to specific subcellular locations where they can suppress PTI and facilitate virulence 
(step 3). Intracellular NLR receptors can sense effectors in three ways (steps 4a, 4b and 4c), each results in NLR-
dependent effector-triggered immunity (ETI) (step 5).  

 

The recognition of a pathogen attack either by PTI or ETI, triggers common defence 

responses such as oxidative burst, hormonal changes and transcriptional 

reprogramming in varying magnitude (Tao, 2003; Tsuda and Katagiri, 2010).  

 

1.5.1 Hormone signalling 

Plant hormones, like salicylic acid (SA), ethylene (ET), brassinosteroids, auxin, 

cytokinins, gibberellins, abscisic acid, and jasmonic acid (JA), are key determinants in 



1 General Introduction 

 

14 
 

plant-pathogen interactions (Vleesschauwer et al. 2013). However, the effect of each 

hormone on the defense response depends on the pathogen lifestyle (Robert-

Seilaniantz et al. 2011). Auxin induces susceptibility to (hemi-)biotrophic rice 

pathogens in a SA- and JA-independent fashion, whereas cytokinins enhance SA-

dependent rice immunity (Vleesschauwer et al. 2013). The SA-dependent response is 

triggered by biotrophic and hemibiotrophic pathogens, which obtain nutrients from 

living plant tissue. In contrast, the ET–JA-dependent defense is activated by 

necrotrophic pathogens, which kill plant cells to obtain nutrients (Glazebrook, 2005; 

McDowell and Dangl, 2000). It is suggested that JA and ET pathways usually work 

together in a cooperative way and that they are antagonistic to the SA-pathway 

(Derksen et al. 2013). 

 

1.5.2 Pathogen related (PR) proteins 

PR-proteins, pathogen or related stress induced plant proteins, are main indicators of 

a defence response (Bowles, 1990) and are classified into 17 families based on their 

structural or functional similarities. For example, the PR-2 family consists of β-1,3-

endoglucanases and the PR-3, -4, -8, and -11 families are endochitinases, whereas 

the PR-6 family are proteinase inhibitors. Additionally, there are defensins (PR-12), 

thionins (PR-13), lipid transfer proteins (PR-14), thaumatin-like (PR-5), ribonuclease-

like (PR-10) and peroxidases (PR-9) (van Loon et al. 2006).  

The peroxidase superfamily is divided in three distantly related structural classes: i) 

mitochondrial yeast cytochrome c peroxidase, chloroplast and cytosol ascorbate 

peroxidases, and gene duplicated bacterial peroxidase (class I); ii) secretory fungal 

peroxidases (class II); and iii) secretory plant peroxidases (class III) (Welinder, 1992). 

Proteases cleave internal peptide bonds of polypeptides or single amino acid residues 

from the terminal ends and have been classified into four major groups based on their 

active site: serine proteinase, cysteine or sulphydryl proteinases, metalloproteinases 

and acid proteinases (Casaretto and Corcuera, 1995; Hartley, 1960; Ryan, 1973). 

Proteins that form complexes with proteases and inhibit their proteolytic activity are 

widespread in nature and have been found to be specific for each of the four protease 

groups (Ryan, 1990). 

It has been shown that both peroxidase superfamily proteins and protease inhibitor 

proteins are involved in plant defence responses to pathogen/pest attacks. In 
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Arabidopsis, resistance to B. cinerea was observed in transformed plants 

overexpressing class III peroxidase (PER) family proteins and protease inhibitor (PI) 

family proteins. However, no correlation between the level of expression and the 

degree of resistance could be observed (Chassot et al. 2007). 

 

1.5.3 Transcription factors  

Transcription factors (TFs) are essential for the regulation of gene expression and 

several TFs have been identified as key regulators of various plant functions, including 

growth, development and stress signalling. They are divided in proteins containing a 

DNA-binding domain (DBD), which regulate the first step of gene expression, and 

proteins without a DBD, which interact with a DNA-binding protein to form a 

transcriptional complex (Mitsuda and Ohme-Takagi, 2009).  

A single TF can control the expression of many target genes through specific binding 

of the TF to the cis-acting element in the promoters of respective target genes 

(Nakashima et al. 2009). To alter the activation of physiological and metabolic 

responses, complex regulatory networks are established that lead to stress tolerance 

or enhanced disease resistance (Buscaill and Rivas, 2014; Erpen et al. 2018; 

Nakashima et al. 2009). In plants, different TFs, such as WRKYs (Pandey and 

Somssich, 2009), heat shock factors (Hsf) (Pajerowska-Mukhtar et al. 2012), zinc 

finger proteins (Ciftci-Yilmaz and Mittler, 2008; Yu et al. 2016), MYBs (Vailleau et al. 

2002) and NACs (Sun et al. 2013) are known to be important regulators of plant 

defence responses. 

 

1.6 NBS-LRR resistance genes 

Plant R-genes encode for proteins which specifically interact with Avr-proteins of the 

pathogens and elicit a defence response. R-genes encode only five classes of 

proteins: NBS-LRRs, RLKs (receptor-like kinases), RLPs (receptor-like 

transmembrane proteins), STKs (serine-theorine kinases) and a final class containing 

all other types (Dangl and Jones, 2001; Zhong et al. 2015). The largest class of R-

genes encodes for NBS-LRR proteins, which are also some of the largest proteins 

known in plants, ranging from about 860 to 1,900 amino acids (Dangl and Jones, 2001; 

McHale et al. 2006). They are characterised by three domains, all sharing a nucleotide-

binding site (NBS) domain and a leucine-rich repeat (LRR) domain. By their domain at 
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the N-terminus, they can be subdivided in two classes: many have a domain with 

homology to the intracellular signalling domains of the Drosophila Toll and mammalian 

interleukin (IL)-1 receptors (TIR-NBS-LRR, or: TNL), whereas others contain putative 

coiled-coil domains (CC-NBS-LRR, or: CNL) (Dangl and Jones, 2001). CNL proteins 

are generally encoded in single exons, whereas TNL proteins are encoded in modular 

exons with conserved intron positions separating distinct protein domains (Meyers, 

2003).  

The three domains of a NBS-LRR protein have different functions (Figure 1.7). The N-

termini are thought to be involved in protein-protein interactions with an adaptor 

protein, probably with the proteins being guarded or with downstream signalling 

components (Belkhadir et al. 2004; McHale et al. 2006). The NBS domain contains 

several defined motifs of the ‘signal transduction ATPases with numerous domains’ 

(STAND) family of ATPases and is required for adenosine triphosphate (ATP) binding 

and hydrolysis (Leipe et al. 2004; McHale et al. 2006). ATP hydrolysis is thought to 

result in conformational changes that regulate downstream signalling (McHale et al. 

2006). The LRR domain is a common motif found in various species, from viruses to 

eukaryotes, and is involved in protein-protein interactions and ligand binding (Jones 

and Jones, 1997). LRRs comprise a core of about 26 amino acids containing the Leu-

xx-Leu-xx-Leu-x-Leu-xx-Cys/Asn-xx motif (where x is any amino acid), which forms a 

ß-sheet, and each core region is separated by a section of variable length that varies 

from zero to 30 amino acids (McHale et al. 2006). The N-terminal and C-terminal 

domains within the LRRs appear to have different functions. The N-terminal domain of 

the LRR appears to modulate activation, whereas the C-terminal domain of the LRR 

works as an interaction platform for upstream activators (Belkhadir et al. 2004).  

Compared to CNL proteins, TNL proteins contain larger and more variable C-terminal 

domains. CNL proteins have conserved motifs present in the 40– to 80–amino acid C-

terminal domain. In contrast, the C-termini of the TNL proteins have a large number of 

non-LRR conserved motifs spanning 200 to 300 amino acids, corresponding to the 

size of the LRR domain. Several TNLs have extensions with similarity to other proteins; 

nevertheless, the functional roles of these C-terminal motifs are still unclear. Due to 

their conservation and wide distribution, it is assumed that these domains are important 

for protein function (McHale et al. 2006; Meyers, 2003). 
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Figure 1.7: Domain structure of NBS–LRR proteins (acc. to Belkhadir et al. (2004)). A schematic representation 

of NBS–LRR proteins shows a domain-based platform for the assembly of various putative regulatory factors (i.e. 
CC, TIR, NBS and amino-terminal [N-terminal] LRR regions) necessary for controlled signalling. These domains 
also link to a possible intramolecular regulatory region on the carboxy-terminal (C-terminal) LRR. The cartoons in 
yellow represent putative interactors assembled on and carboxyl to the CC/TIR domains. The blue square 
represents ATP, but could also be GTP. The gray cartoons that are associated with the amino-terminal part of the 
LRR domain represent another set of putative interactors that might be positive regulators.  

 

1.6.1 Evolution of NBS-LRRs 

Compared to CNLs, TNLs are largely over-expressed in dicot genomes. For instance, 

the Arabidopsis genome comprises nearly double the number of TNLs than CNLs 

(Meyers, 2003). Furthermore, the presence of TNLs in pine and moss indicate an 

evolution prior to the angiosperm–gymnosperm split, which occurred at least 200 

million years ago (Joshi and Nayak, 2013). According to Joshi and Nayak (2013) and 

Pan et al. (2000), the evolution of TNLs and CNLs occurred in two stages (Figure 1.8). 

In stage I, both CNLs and TNLs were present with broad-spectrum specificity, which 

evolved during the divergence of angiosperms and gymnosperms around 200 million 

years ago. Stage II took place after the monocot-dicot separation, around 100 million 

years ago and was dominated by gene duplication and diversification. This stage 

characterized the evolution of TNLs and CNLs and led to the degeneration of TNL 

genes in cereals and possibly in monocots in general. Across different plant species, 

there is a greater degree of diversity among non-TNLs than TNLs (Cannon et al. 2002).  
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Figure 1.8: Evolutionary pattern of NBS-LRR class resistance genes in plants (acc. to Joshi and Nayak 
(2013)). Diversification of TIR-NBS-LRR (group I) and non-TIR-NBS-LRR (group II) took place during differentiation 

of angiosperms and gymnosperms. The separation of monocot and dicot was followed by extensive gene 
duplication and diversification resulting in NBS-LRR genes with diverse recognition specificities 

 

Many NBS-LRR genes reside in local multigene families, but they can be also be 

present in the genome as single-copy genes (Dangl and Jones, 2001; van der Biezen, 

E. A. and Jones, 1998). The organisation of NBS-LRR genes can be either as tight 

clusters with little intervening sequence, like the 90 kb spanning RPP5 cluster in 

Arabidopsis thaliana (Noel, 1999), or they can be spread over several megabases, like 

the resistance gene candidates 2 (RGC2) locus in lettuce (Meyers, 1998). The R-gene 

clustering may facilitate diversity to keep pace with newly evolving virulent races of a 

pathogen and to counteract with their newly emerging Avr-protein variants (Hulbert et 

al. 2001; Terefe-Ayana et al. 2012). The R-gene diversity is generated by genetic 

mechanisms such as unequal crossing‐over, insertions/deletions, gene conversion, 

point mutations and illegitimate recombination (Kuang et al. 2004; Wicker et al. 2007). 

The rate of evolution of NBS-LRR-encoding genes can be rapid or slow, even within 

an individual cluster of similar sequences (McHale et al. 2006).  

Kuang et al. (2004) reported two patterns of evolution for genes of the major cluster of 

NBS-LRR encoding genes in lettuce. Type I genes evolve rapidly with frequent 
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sequence exchanges between them, whereas type II genes evolve slowly with 

infrequent sequence exchange between paralogous sequences. This heterogeneous 

rate of evolution within the same cluster is consistent with a birth- and death-model of 

R-gene evolution (Kuang et al. 2004; McHale et al. 2006; Michelmore and Meyers, 

1998).  

Protein variation among NBS-LRR genes can be assessed by comparing non-

synonymous nucleotide substitution (Ka) and synonymous substitution (Ks) in the 

nucleotide sequence from orthologues or paralogues. Non-synonymous nucleotide 

substitutions result in changes at the amino acid level, whereas synonymous 

substitutions do not. A ratio between Ka and Ks significantly greater than one, leads to 

amino acid diversity (Joshi and Nayak, 2013; Leister, 2004). In this case, a positive 

selection for amino acid substitution can be realized (Stahl and Bishop, 2000). 

Experiments in various plant species, such as tomato, rice and lettuce, showed that 

LRR-encoding regions in many NBS-LRR genes are subject to strong diversifying 

selection due to high ratios of non-synonymous compared to synonymous nucleotide 

substitutions (Meyers, 1998; Parniske et al. 1997; Wang, 1998). Compared to the other 

species, only moderate increased Ka/Ks ratios could be observed in the LRR regions 

of roses (Terefe-Ayana et al. 2012). The same authors identified a 340.4-kb region 

from R. rugosa orthologous to the Rdr1 locus in R. multiflora and the two loci, except 

for some deletions and rearrangements, displayed a high degree of synteny. An 

analysis of 20 TNL genes obtained from both species revealed illegitimate 

recombination, gene conversion, unequal crossing over, indels, point mutations and 

transposable elements as mechanisms of diversification. 

Additionally, strawberry, peach and apple were screened for Rdr1 orthologous regions. 

In strawberry, an orthologous locus with less pronounced synteny was found, whereas 

in peach and apple genes from the Rdr1 locus are distributed on two different 

chromosomes. Furthermore, a complete set of 53 TNL genes from the five Rosaceae 

species was used in a phylogenetic analysis. The resulting species-specific clusters 

indicate that recent TNL gene diversification began prior to the split of Rosa from 

Fragaria in the Rosoideae, and peach from apple in the Spiraeoideae and continued 

after the split in individual species.  



1 General Introduction 

 

20 
 

1.7 Objectives 

Black spot is the most severe disease in field-grown roses in temperate regions with a 

worldwide distribution. Intensive analyses resulted in the identification of the first 

resistance gene - Rdr1. Since Rdr1 belongs to a cluster of nine highly similar TNL-

genes, various experiments have been already performed to identify the functional 

Rdr1 gene. Initial transient expression assays indicated that either muRdr1H or 

muRdr1A is the most likely candidate for Rdr1. Previous experiments showed that Rdr1 

cluster genes do not segregate within the progeny. Therefore, stable transgenic roses 

were generated to analyse the function of the muRdr1A and muRdr1H single Rdr1 

family members. 

Due to these findings, the first part of the thesis focuses on the following objectives: 

 Expression analysis and copy number identification of muRdr1A and muRdr1H 

genes in stable transgenic roses  

 Identification of the functional Rdr1 gene 

 Specificity analysis of the Rdr1 conferred resistance in a disease assay with a 

broad spectrum of D. rosae isolates 

 Analysis of the Rdr1 function in different genetic backgrounds 

Furthermore, an Rdr1 homologous locus was identified in R. rugosa and strawberry. 

Thus, the second part of the thesis aimed to identify and phylogenetically analyse Rdr1 

family members in a large set of rose species in comparison to other Rosaceae family 

members. 

The last parts of the thesis focus on the characterisation of transcriptomic changes in 

rose leaves during D. rosae infection. Stable transgenic roses and their progeny 

harbouring Rdr1 allow transcriptomic analysis of compatible and incompatible 

interaction in the same and also in a different genetic background. 
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2.1 Supporting Information 

Table S1: Interaction of population 07/57 with different single-spore isolates of Diplocarpon rosae. The 

tetraploid population 07/57 is the sexual progeny of the multi-resistant Rosa majalis genotype 93/09-01 and the 
susceptible cultivar ‘König Stanislaus’. The subset of genotypes shown is representative of the segregation of the 
resistance against the different isolates in the population 07/57. Compatible interactions are represented by ‘1’; 
incompatible interactions are represented by ‘–’. 

 Isolates of D. rosae 

Genotype DortE4 X122 S009 F004 R6 Ab13 

Rosa majalis (93/09-01) - - - - - - 

`König Stanislaus` + + + + + + 

07/57-2 + + + + + + 

07/57-4 + - - + + + 

07/57-9 - - - - + + 

07/57-10 - - - - - - 

07/57-12 - - - - + - 

07/57-21 - - - + + + 

07/57-64 - - - + - - 

07/57-67 - - - - + - 

07/57-75 + - - + + - 

07/57-82 - - - + + - 

07/57-84 - + + + + + 

07/57-86 + - + + + - 

07/57-100 + - - - + - 

 

 

Figure S1: Southern blot analysis of muRdr1A transgenics. For Southern blot analysis, DNA from the non-

transgenic ‘Pariser Charme’ and ‘Pariser Charme’ transformed with muRdr1A (PC::muRdr1A-38, -43, -53, -57, -58) 
was digested with HindIII and hybridized with an NPTII probe. All PC::muRdr1A transgenics show the same 
integration pattern with seven copies of muRdr1A. The patterns of PC::muRdr1A-38 and PC::muRdr1A- 43 are 
shifted in their position because of the high content of carbohydrates. M, DNA molecular weight marker. 
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Figure S2: Results from muRdr1A-specific polymerase chain reaction (PCR). The susceptible genotype 
‘Pariser Charme’, the Rdr1 donors 88/124-46 and 91/100-5, and the transgenic clones harbouring muRdr1A 
(PC::muRdr1A-38) and muRdr1H (PC::muRdr1H-50) were used in a PCR with the specific primers 180-forward and 
428-reverse. The products (248 bp) were separated on a 1.5% agarose gel. 100 bp, Gene RulerTM 100-bp DNA 
Ladder (Thermo Fisher Scientific Inc., Waltham, MA, USA). 

 

 

Figure S3: Results from muRdr1A-specific polymerase chain reaction (PCR). The cDNAs of the Rdr1 donors 
88/124-46 and 91/100-5, the susceptible genotype ‘Pariser Charme’ and the transgenic clones harbouring muRdr1A 
(PC::muRdr1A-38, -43, -53, -57, -58) and muRdr1H (PC::muRdr1H-50) were used in a PCR with the specific 
primers 3071-forward and 3485-reverse. The products (414 bp) were separated on a 1.5% agarose gel. 1 kb, Gene 
RulerTM 1-kb Plus DNA Ladder (Thermo Fisher Scientific Inc., Waltham, MA, USA).
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Abstract  

The Rdr1 gene confers resistance to black spot in roses and belongs to a large TNL 

gene family, which is organized in two major clusters at the distal end of chromosome 

1. We used the recently available chromosome scale assemblies for the R. chinensis 

‘Old Blush’ genome, re-sequencing data for nine rose species and genome data for 

Fragaria, Rubus, Malus and Prunus to identify Rdr1 homologs from different taxa within 

Rosaceae.  

Members of the Rdr1 gene family are organized into two major clusters in R. chinensis 

and at a syntenic location in the Fragaria genome. Phylogenetic analysis indicates that 

the two clusters existed prior to the split of Rosa and Fragaria and that one cluster has 

a more recent origin than the other. Genes belonging to cluster 2, such as the 

functional Rdr1 gene muRdr1A, were subject to a faster evolution than genes from 

cluster 1. As no Rdr1 homologs were found in syntenic positions for Prunus persica, 

Malus x domestica and Rubus occidentalis, a translocation of the Rdr1 clusters to the 

current positions probably happened after the Rubeae split from other groups within 

the Rosoideae approximately 70-80 million years ago during the Cretaceous period.  
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3.1 Introduction 

Roses, together with species from the genera Fragaria, Rubus, Potentilla, and Malus, 

belong to the family Rosaceae and are therefore related to economically important fruit 

crops such as apple and peach [1, 2]. The genus Rosa, which includes approximately 

200 species, shows a complex evolutionary history due to frequent hybridizations, 

multiple polyploidizations and recent radiation. The genus is subdivided into four 

subgenera (Hulthemia, Plathyrhodon, Hesperhodos and Rosa) by some authors, 

whereas others question the subgeneric status of Hulthemia and Plathyrhodon and 

propose to include them with the subgenus Rosa. The subgenus Rosa itself includes 

up to 10 sections and approximately 95 % of the species [1–5]. 

Until recently, only fragmented rose genomes were available [6,7]. Recently, two 

chromosome scale reference sequences for the diploid Rosa chinensis cultivar ‘Old 

Blush’ have been published [8,9]. The rose genome displays extensive synteny with 

the Fragaria vesca genome with only two major rearrangements [9]. Synteny between 

Fragaria and Rosa genes has been observed for TNL genes (TIR (Drosophila Toll and 

mammalian interleukin (IL)-1 receptors), NBS (nucleotide-binding site) and LRR 

(leucine- rich repeat)) [10]. 

NBS-LRR genes, which include TNLs and CNLs (CC (coiled-coil)-NBS-LRR), are the 

largest classes of R-genes in plants. They are characterized by three domains with 

different functions: the N-termini are thought to be involved in protein-protein 

interactions, the NBS domain is required for ATP (adenosine triphosphate) binding and 

hydrolysis, and the LRR-domain is involved in protein-protein interactions and ligand 

binding [11–14]. NBS-LRR genes have been detected in organisms from green algae 

to flowering plants and often occur in clusters of related paralogues or as single loci. 

The number of NBS coding genes in the genome varies widely between different 

species within the dicots and monocots. Whereas CNLs are found in both monocots 

and dicots, TNLs occur only in dicots [15]. Among the dicots, the Caricaceae (Carica 

papaya: 54) and Cucurbitaceae (Cucumis sativus: 59-71, C. melo: 80, C. lanatus: 45) 

families have very low numbers of NBS-encoding genes, whereas the number seems 

to be greater for some members of Rosaceae (198 NBS genes in F. vesca [16] and up 

to 1303 NBS genes in Malus x domestica [17,18]). The number of NBS-encoding 

genes also varies considerably within species, as shown for Oryza sativa lines (328-

1120 NBS genes) or Gossypium herbaceum (268-1465 NBS genes) [19]. Different 
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evolutionary dynamics have been postulated, with some clusters comprising fast-

evolving genes and others comprising slow-evolving genes [20,14]. 

In grapevine and poplar, the number of NBS-LRR genes in multi-gene clusters varies 

between 2 and 10 (mean 4.43) and between 2 and 23 (mean 5.33), respectively [21]. 

In Medicago truncatula approximately 50% of NBS domains occur in clusters of at least 

five genes; the largest cluster (14 genes) occurs on chromosome 6, with a sliding 

window size of 100 kb. The phylogenetic tree for the 333 non-redundant NBS-LRRs of 

M. truncatula showed that most groups were dominated by sequences from one 

chromosome and usually from one or a small number of genomic clusters [22]. 

Molecular characterization of the soybean Rsv3 resistance locus against multiple 

soybean mosaic virus strains revealed a cluster of seven highly homologous CNL 

genes intermixed with 16 other genes in the genotype Williams 82. All seven were also 

identified in the same order in the genotype Zaoshu 18. The five most likely resistance 

gene candidates (NBS_A-E) were also sequenced in ten additional soybean cultivars 

and showed very high sequence similarities [23]. 

In an R. multiflora hybrid (88/124-46), the single dominant TNL gene Rdr1 (muRdr1A), 

a member of a multigene family of at least nine highly similar clustered TNLs 

(muRdr1A-muRdr1I), confers broad-spectrum resistance against black spot [24,25]. 

The sizes of all TNLs for the Rdr1 locus, except muRdr1D (interrupted by 6957-bp 

transposable-element insertion within intron), range from 4085 to 5920 bp with 

sequence similarities between 78.0 % and 99.5 %. The domain structure of typical TNL 

proteins is reflected by the following intron-exon structure: the first exon contains the 

TIR domain, the second exon contains the NBS domain, and the fourth (or in case of 

TNL–muRdr1I, the third exon) contains an LRR domain [25].  

A region from R. rugosa (subsection Cinnamomeae), homologous to the Rdr1 locus in 

R. multiflora (subsection Synstylae), was identified with a high degree of synteny that 

included some flanking non-TNL genes coding for a yellow stripe-like protein, ubiquitin 

and a TOPLESS-RELATED protein [10]. An analysis of 20 TIR-NBS-LRR (TNL) genes 

obtained from R. rugosa and R. multiflora revealed illegitimate recombination, gene 

conversion, unequal crossing over, indels, point mutations and transposable elements 

as mechanisms of diversification. Additionally, an orthologous locus in F. vesca 

(strawberry) was identified that contains a homologous TNL gene family and the 

flanking genes. In contrast, in Prunus persica (peach) and Malus x domestica (apple), 
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only the flanking genes can be detected in syntenic positions, and the genes 

homologous to the Rdr1 family are distributed on two different chromosomes. 

Phylogenetic analysis of TNL genes from five Rosaceae species showed that most of 

the genes occur in single species clades, indicating that recent TNL gene 

diversification began prior to the split of the Rosoideae (Rosa, Fragaria) from the 

Spiraeoideae (Malus, Prunus) [26,18]. 

With the availability of chromosome scale assemblies of the R. chinensis ‘Old Blush’ 

genome, we were interested in analysing the full complexity of the Rdr1 gene family at 

the genomic level and elucidating the dynamics of Rosaceae using data from different 

taxonomic levels, including re-sequencing data for nine rose species recently 

published along the with the ‘Old Blush’ genome sequences. 

 

3.2 Results 

3.2.1 Rdr1 homologs in ‘Old Blush’ and F. vesca 

The screening of the haploid genomes derived from ‘Old Blush’ for TNLs homologous 

to Rdr1 from R. multiflora resulted in seven complete TNLs for HapOB1 (OB1-A-G) 

and 21 for HapOB2 (OB2-A-U). A comparative analysis of TNLs from HapOB1 and 

HapOB2 showed that the following are identical: OB1-B and OB2-D, OB1-C and OB2-

I and OB1-D and OB2-G. The sequences of all Rdr1 homologs are listed in Table S 3.3.  

Phylogenetic analysis of the TNLs from R. multiflora, HapOB1 and HapOB2 using the 

maximum likelihood method resulted in the tree shown in Figure S3.1. The phylogram 

shows that a group of three TNLs (OB1-G, OB2-T, OB2-U) are clearly separated from 

all other TNLs. OB1-G is located on chromosome 5, and OB2-T and OB2-U are located 

on chromosome 2. All other TNLs from HapOB1 and HapOB2 are located on 

chromosome 1 and are clustered in two distinct groups (1 and 2) that are highly 

supported by a bootstrap value of 100 %. TNLs from the R. multiflora Rdr1 cluster are 

clustered in group 2. 
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The genomic organization of HapOB1- and HapOB2-TNLs on chromosome 1 is shown 

in Figure 3.1. For HapOB2, all but three (OB2-A, -B, -I) of the 16 complete TNLs are 

organized in two clusters at the distal end of the chromosome. Cluster 1 (with a size of 

76 kb) contains 37 protein-coding genes, of which 28 displayed significant similarities 

to entries in the GenBank database, including six complete TNL genes (OB1-C to OB1-

H) and some truncated TNL genes (three TIR-domains, one LRR-domain and two 

NBS-LRR genes). Cluster 2 (with a size of 163 kb) contains 28 protein coding genes, 

of which 23 displayed significant similarities to entries in the GenBank database, 

including ten TNL genes (OB1-J to OB1-S) and one additional LRR-domain. TNLs from 

HapOB1 are also organized in two clusters at the distal end of chromosome 1. Gene 

prediction identified three TNLs (OB1-B through OB1-D) for cluster 1 and two TNLs 

(OB1-E and OB1-F) for cluster 2. Additionally, two TIR-domains, two NBS-LRR genes 

and one LRR-domain could be found within the cluster. 

To determine the reasons for the unusually small number of Rdr1-TNLs at the two 

cluster positions in the HapOB1 genome, the Rd1LRR microsatellite marker from the 

LRR region of the gene family was analysed with DNA from haploid tissue that had 

been used for sequencing of the HapOB2 genome as well as DNA from the original 

diploid OB cultivar. Seven of the 19 genes of HapOB2 contained perfect primer binding 

sites and were detected on high resolution polyacrylamide gels, whereas 21 fragments 

were detected in DNA of the diploid OB (Figure S 3.2). The small number of Rdr1 

genes in the HapOB1 genome are likely to be an artefact, possibly due to a problem 

with the assembly; therefore, this sequence was not considered in further analyses. 

The genomic organization of the TNLs on the chromosome in the two clusters 

corresponds to the two groups formed in the phylogenetic tree shown in Figure S 3.1. 

OB2-C through OB2-H are clustered in group 1, whereas OB2-J through OB2-S are 

clustered in group 2. 

Analysis of the genes surrounding the clusters revealed a high level of synteny 

between HapOB1, HapOB2 and F. vesca (Table S 3.1).  

The separation of the clusters in two different groups in the phylogenetic tree is further 

supported by a number of diagnostic sites in the derived amino acid sequences. At two 

positions (90 and 166), sequences of groups 1 and 2 display unique differences. At 

three additional positions (348, 688 and 868), one of the two groups displays unique 

amino acids that are replaced by two or more different sites in the other group. 
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In addition, the nucleotide diversity differs within each group. Though averages within 

the group total nucleotide differences are similar for both groups (327 for group 1 and 

339 for group 2), the ratio of non-synonymous to synonymous sites is higher in group 

2 (2.75) than in group 1 (1.81).  

In addition to the TNLs from HapOB1 and HapOB2, the F. vesca genome was 

screened for Rdr1 homologs. A total of 19 Rdr1 homologs were found in F. vesca, of 

which 17 are located on chromosome 7 and two are located on chromosomes 1 and 2 

(F.ve-19 and F.ve-18, respectively). The 17 TNLs on chromosome 7 are organized in 

clusters at the distal end of the chromosome: cluster 1 contains seven TNLs, and 

clusters 2 and 3 contain four TNLs (Figure 3.1). Phylogenetic analysis of the TNLs from 

HapOB1, HapOB2 and F. vesca shows that the rose genes for the two clusters from 

chromosome 1 are grouped with the Fragaria genes from the clusters on chromosome 

7, whereas the genes located on other chromosomes are clearly separated from this 

group (Figure 3.2). Chromosome 1 of rose is syntenic with chromosome 7 of Fragaria 

[9]. Furthermore, the rose genes in cluster 2 form a group (group 2) with Fragaria genes 

in cluster 2 and 3, and each of them build a distinct single species clades within this 

group. In contrast, the genes from cluster 1 do not form strictly single species clades 

within group 1, but one clade with mixed species and two single species clades. 
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Figure 3.1: Genomic organization for Rdr1 homologs in HapOB1, HapOB2, Fragaria and Rubus. Shown are: 

chromosome 1 of HapOB1 and HapOB2 with the upper cluster 1 (OB1-B through OB1-D; OB2-C through OB2-H) 
and the lower cluster 2 (OB1-E and OB1-F; OB2-J through OB2-S); chromosome 7 of F. vesca with cluster 1 (F.ve-
1 through F.ve-8) and cluster 2 (F.ve-9 through F.ve-17); and chromosome 7 of Rubus occidentalis (no Rdr1 
homologs found). Positions of three syntenic genes (glucan synthase-like 3, RING/U-box superfamily protein, 
protein kinase superfamily protein) and the Rdr1 flanking genes YSL (yellow-stripe-like protein), Ubiquitin and 

TOPLESS-RELATED protein are shown in grey. 
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Figure 3.2: Phylogenetic analysis of the amino acid sequence of HapOB1-, HapOB2- and F. vesca-TNLs 
homologous to Rdr1 in R. multiflora. The Maximum Likelihood method based on the JTT matrix-based model 

was used to calculate the phylogenetic tree. Test of phylogeny was performed using the bootstrap method with 500 
replicates. Branches reproduced in less than 75 % of bootstrap replicates are collapsed. Bootstrap values are 
indicated as triangles, whereas the smallest value represents 82 % and the largest 100 %.  
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3.2.2 TNL structure in other Rosaceae 

In a previous study [10], no Rdr1 homologs could be observed in P. persica and M. 

domestica genomes at syntenic positions. Updated genome assemblies have been 

released since then, and these might have been corrected for assembly errors around 

repeat regions. We therefore analysed the genomes again for the presence of Rdr1 

homologs at syntenic positions. Rose chromosome 1 (where Rdr1 is located) presents 

a good synteny with chromosome 2 in peach and chromosomes 1, 2 and 7 in apple 

[9]. Nevertheless, no homologous sequences for the Rdr1 gene were found at these 

positions, confirming the previous results.  

In addition, we also analysed syntenic positions in Rubus occidentalis, a species from 

the Rosoideae sub-family, for which a chromosome scale assembly recently became 

available [27]. Synteny analysis of the genes surrounding the TNL clusters revealed 

no Rdr1 homologs in syntenic positions for P. persica, M. x domestica and R. 

occidentalis (Table S 3.1). In Prunus and Malus, more distantly related Rdr1 homologs 

were only detected in non-syntenic positions (Figure S 3.3), whereas in a draft genome 

from Potentilla micrantha, another species from the Rosoideae, several contigs 

contained Rdr1 homologs. The genes P.mi-12 and -13 are located on contig 1260 

together with genes coding for a yellow stripe-like protein, ubiquitin and a TOPLESS-

RELATED protein flanking the Rdr1 locus in R. multiflora and R. rugosa, indicating that 

Rdr1 homologs are present at syntenic positions in P. micrantha. Analysis for Rdr1 

homologs identified 19 for F. vesca, three for R. occidentalis, 10 for Malus x domestica, 

17 for P. persica and 11 for P. micrantha (Table S 3.2). 

Phylogenetic analysis showed that the non-syntenic Rdr1 homologs from P. persica, 

M. x domestica and R. occidentalis are clearly separated from Rdr1 homologs of OB 

and F. vesca, which are located on chromosome 1 (OB) and 7 (F. vesca) (Figure 3.3). 

Furthermore, some of the P. micrantha Rdr1 homologs are grouped together with the 

TNLs from OB and F. vesca, which are located on chromosome 1 (OB) and 7 (F. vesca) 

consistent with clusters of these genes in syntenic positions for the Rdr1 clusters. 
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Figure 3.3. Phylogenetic analysis of the amino acid sequence of TNLs from different Rosaceae family 
members homologous to Rdr1 of R. multiflora. The Maximum Likelihood method based on the JTT matrix-based 

model was used to calculate the phylogenetic tree. Test of phylogeny was performed using the bootstrap method 
with 500 replicates. Branches reproduced in less than 60 % of bootstrap replicates are collapsed. Bootstrap values 
are indicated as triangles, whereas the smallest value represents 70 %, and the largest value represents 100 %. 
For a better visualization, Rdr1 homologs for the different Rosaceae family members are coloured as follows: 
HapOB1/2 (OB1+2: dark green), M. domestica (M.do: red), F. vesca (F.ve: black), P. persica (P.pe: orange), P. 
micrantha (dark blue), R. occidentalis (purple). The protein alignments are shown in Table S 3.4. 
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3.2.3 Rdr1 homologs from other rose species 

Analysis of seven additional recently available genome sequences [8] identified 15 

Rdr1 homologs for R. damascena, three for R. persica, eight for R. moschata, 13 for 

R. xanthina spontanea, 13 for R. chinensis var. spontanea, nine for R. laevigata and 

12 for R. minutifolia alba (Table 3.1). Until recently, only highly fragmented genomes 

have been available for these rose species, which makes a chromosomal classification 

for TNLs homologs in Rdr1 difficult.  

Based on the observation that Fragaria Rdr1 homologs from syntenic clusters form 

phylogenetic groups with rose homologs for Rdr1, we computed a phylogenetic tree to 

identify homologs from other rose species (Figure 3.4). For R. multiflora and R. rugosa 

TNLs already obtained by [25] were used. The most conspicuous group (group 3), with 

high bootstrap support, contains single TNLs from HapOB1/2 and Fragaria located on 

different chromosomes outside the two syntenic clusters. They are grouped together 

with two R. chinensis, two R. minutifolia, two R. moschata genes and one R. xanthina 

gene, which also most likely represent genes from outside the syntenic clusters. All 

Rdr1 homologs of HapOB, R. multiflora [25], R. rugosa [10] and Fragaria, known to 

derive from cluster 2, fall into one highly supported large group (group 2) that also 

includes sequences from all other rose species.  

Within group 2, Rdr1 homologs from Fragaria form a distinct sub-group, whereas most 

of the other rose sequences form mixed sub-groups with no clear single species 

clades. In contrast, sequences clustered in group 1 do not form genus-specific sub-

groups, but Fragaria and rose sequences form mixed sub-groups. 

 

Table 3.1: List of Rdr1 homologs found in different rose species. 

Species Abbreviation TNLs 

R. multiflora (from[25]) R.mu (A-I) 9 

R. rugosa (from [10]) R.ru (A-K) 11 

HapOB1 OB1 (A-G) 7 

HapOB2 OB2 (A-U) 21 

Rosa damascena R.da (1-15) 15 

Rosa persica R.pe (1-3) 3 

Rosa moschata R.mo (1-8) 8 

Rosa xanthina spontanea R.xa (1-13) 13 

Rosa chinensis var. spontanea R.ch (1-13) 13 

Rosa laevigata R.la (1-9) 9 

Rosa minutifolia alba R.mi (1-12) 12 
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Figure 3.4: Phylogenetic analysis of the amino acid sequence of Rdr1 homologs from different rose species 
and Fragaria. The Maximum Likelihood method based on the JTT matrix-based model was used to calculate the 

phylogenetic tree. Test of phylogeny was performed using the bootstrap method with 500 replicates. Branches 
reproduced in less than 75 % of bootstrap replicates are collapsed. Bootstrap values are indicated as triangles, 
whereas the smallest value represents 76 %, and the largest value represents 100 %. For better visualization, Rdr1 
homologs for the different species are coloured as follows: HapOB1/2 (OB1/2: dark green), R. multiflora (R.mu: 
red), F. vesca (F.ve: black), R. rugosa (R.ru: orange), R. damascena (R.da: dark blue), R. persica (P.pe: grey), R. 
moschata (R.mo: pink), R. xanthina (R.xa: dark purple), R. chinensis (R.ch: neon green), R. laevigata (R.la: purple), 
R. minutifolia (R.mi: light blue). The protein alignments are shown in Table S 3.5.  
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3.3 Discussion 

More than 50 % of the NBS-encoding genes are organized in clusters in the genome 

for many species such as Arabidopsis (64-71 %), rice (50-74 %), potato (73 %), 

Medicago (80 %) and apple (80 %) [17,28]. Furthermore, these clusters are not evenly 

distributed between chromosomal positions. In Medicago truncatula, chromosome 6 

contains approximately 34 % of all TNLs, and chromosome 3 harbours approximately 

40 % of all CNLs [22]. In apple, approximately 56 % of all identified RGAs are located 

on six of the 17 chromosomes, with 25 % on chromosome 2 alone; whereas in 

grapevine, 80 % of TNLs were located on chromosomes 5, 12 and 18 [28,21]. In 

tomato, the majority of NBS-LRRs are located close to the telomeres, where 

recombination occurs frequently, while few were detected in regions called “cold spots” 

for recombination [29]. An accumulation of RGAs in sub-telomeric regions was also 

described for apple [28]. 

Previously, we characterized members of the Rdr1 gene family, among which the Rdr1 

gene confers resistance to black spot [24,25] and forms a cluster of closely related 

genes. As no complete genome was available at that time, our analyses were 

constricted to the region captured by BAC contigs and previous versions of the 

Fragaria genome (and others). This research used the high-quality chromosome-scale 

assembly of the OB genome to analyse the structure of this gene family in more detail. 

Recently, two high-quality sequences at the chromosome scale from two independent 

haploids from the same cultivar ‘Old Blush’ were obtained [8,9]. However, even a high-

quality assembly might contain assembly errors around regions of highly similar 

paralogues for large gene families. Evidence for this is provided by our analysis of the 

HapOB1 genome [8], which only predicts seven Rdr1 paralogues at the chromosome 

1 positions in contrast to the situation in the HapOB2 genome [9], where 21 TNLs were 

annotated. Our access to source DNA was restricted to the original ‘Old Blush’ diploid 

genotype and the haploid material used to generate the HapOB2 genome; therefore, 

we can only state that the total number of amplified copies of the Rdr1 paralogues from 

the original diploid is twice as high as that from the HapOB2 genome (Figure S 3.2). 

Thus, the HapOB1 genome is unlikely to contain only seven paralogues; rather, 

assembly errors likely led to this small number. However, this remains unclear because 

only a fraction of the Rdr1 paralogues can be amplified with our primer combination 

and we do not have access to the HapOB1 DNA. 
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Our analysis shows that two major clusters and two single genes are located on 

chromosome 1 and further relatives are located on chromosome 2 of OB. Phylogenetic 

analysis shows that the two major clusters form different groups, which indicates an 

independent development of the two clusters. Related sequences found on 

chromosome 2 are clearly distinct from those on chromosome 1 and are therefore not 

treated as members of the same family. 

Re-analysis of the Fragaria genome reveals a similar structure with TNL clusters at 

syntenic positions. A phylogram of complete Rdr1 sequences for the Fragaria and OB 

genomes show that Fragaria group 2 and rose group 2 are closer to each other than 

to Fragaria group 1 and rose group 1. Furthermore, genes from group 1 only form 

mixed groups with single species clades, whereas the genes from group 2 form single 

species clades. As both clusters were present before the taxa emerged, the likely 

cause is a faster evolution within group 2. This could be due to the known processes 

by which R-genes evolve (including higher rates of recombination, gene conversion 

and birth and death processes), which led to a concerted evolution of genes in group 

1. A similar observation has been made for inbred lines of maize, in which some 

paralogues are organized in genotype-specific subgroups [30]. 

A re-analysis of the latest versions of the apple and peach genomes confirmed earlier 

results [10] that there are no Rdr1-like TNL clusters at syntenic positions in these 

genomes. The former conclusion remains that the emergence of the Rdr1 clusters 

must have formed after the Amygdaloideae split from the Rosoideae. A high-quality 

genome of R. occidentalis recently became available; therefore, we also checked for 

the presence of our cluster in Rubus, which was not present at a syntenic position.  

Genome information for P. micrantha, identifies a larger number of fragments, which 

shows that there are 5 contigs with Rdr1 homologs.  

One of these contigs (contig no. 1260) contains two Rdr1 homologs and conserved 

genes flanking group 1 in roses [10]. This indicates that Rdr1 homologs in Potentilla 

are in a putative syntenic position to the group 1 cluster in roses.  

The other genes fall into groups of OB sequences that are in both clusters as well as 

on chromosome 2 in roses. This agrees with the Rosaceae phylogeny which places 

Potentilla and Fragaria into sister groups of the Potentilleae within the Rosoideae. The 

timeline for the evolution of the Rosaceae [26] led us to conclude that the Rdr1 cluster 
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was translocated to its current position after the Rubeae split from other groups within 

the Rosoideae approximately 70-80 million years ago during the Cretaceous period. 

A larger phylogram, including 137 sequences from ten species of Rosa, shows that all 

rose sequences form mixed clusters with few exceptions. Therefore, single species 

clades for the rose genes within group 1 have not been developed yet. Not all rose 

species can be easily differentiated taxonomically, and most are highly interfertile; this 

underlines a close relationship between these taxa and may be one reason for the lack 

of differentiation of group 1 genes.  

This study is a first step in the analysis of the evolution of genes from the Rdr1 family 

in roses. However, we must keep in mind that assembly processing for clustered 

duplicated genes can lead to assembly errors. We can then hypothesize that some 

genes which were studied could represent consensus sequences for several real 

existing genes. As shown with HapOB2, an assembly obtained from long reads should 

result in a high-quality chromosome scale assembly for these regions. However, the 

lower than expected number of Rdr1 homologs in the HapOB1 assembly, developed 

from PacBio reads, shows that this is only a general principle. 

 

3.4 Material and methods 

3.4.1 Origin of sequences 

For R. multiflora (HQ455834.1) and R. rugosa (JQ791545), previously published 

contigs spanning the Rdr1 locus were used [10,25]. The genomes of ‘Old Blush’, 

HapOB1 [8] and R. damascena Mill. were downloaded from NCBI 

(https://www.ncbi.nlm.nih.gov/), whereas the haploid genome of ‘Old Blush’, HapOB2 

[9] was downloaded from a genome browser (https://iris.angers.inra.fr/obh/). The 

whole genomes of F. vesca, Malus x domestica, P. persica, R. occidentalis and P. 

micrantha were downloaded from the Genome Database for Rosaceae 

(https://www.rosaceae.org/). 

Additionally, sequences of the rose species R. persica, R. moschata, R. xanthina 

spontanea, R. chinensis var. spontanea, R. laevigata and R. minutifolia alba were used 

([9], assemblies unpublished). The origins of all used sequences are listed in Table 

3.2. 

 

https://www.ncbi.nlm.nih.gov/
https://iris.angers.inra.fr/obh/
https://www.rosaceae.org/
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Table 3.2: Origin of sequences used in this study. 

Species Reference Information 

R. multiflora [25] HQ455834.1 

R. rugosa [10] JQ791545 

HapOB1 [8] NC_037088.1-NC_037094.1 

HapOB2 [9] PRJNA445774 

R. damascena Unpublished LYNE00000000.1 

F. vesca [31] v4.0.a1 

M. x domestica [32] GDDH13 v1.1 

P. persica [33,34] v2.0.a1 

R. occidentalis [27] v3.0 

P. micrantha [35] v1.0 

R. persica [9] SRP143586 

R. moschata [9] SRP143586 

R. xanthina spontanea [9] SRP143586 

R. chinensis var. spontanea [9] SRP143586 

R. laevigata [9] SRP143586 

R. minutifolia alba [9] SRP143586 

 

3.4.2 Analysis of the Rd1LRR microsatellite marker in ‘Old Blush’ 

The Rdr1-TNLs in the ‘Old Blush’ genome were amplified from DNA for the haploid 

tissue that had been used for sequencing the HapOB2 genome as well as from DNA 

of the original diploid OB cultivar using the Rd1LRR microsatellite marker, presented 

in the coding sequences for the NBS-LRR members, and analysed on a LiCor 4300 

DNA-analyser as previously described [3]. 
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3.4.3 Gene prediction and annotation 

Regions homologous to the Rdr1 locus were identified for all species using local 

BLAST searches implemented in Bioedit [36]. The BLASTn method was conducted 

with the muRdr1A-sequence as a query and an E-value of 1.0E-20.  

Gene prediction and annotation was performed using FGENESH and AUGUSTUS 

(http://www.softberry.com; http://augustus.gobics.de/). The protein domains were 

determined using PfamScan ([37], https://www.ebi.ac.uk/Tools/pfa/pfamscan/). Only 

genes with a size larger than 2 kb and coding for all three protein domains (TIR, NB-

ARC, LRR) were used for further phylogenetic analyses.  

 

3.4.4 Sequence alignment and construction of phylogenetic trees 

The predicted amino acid sequences of the Rdr1 homologs of R. multiflora, R. rugosa, 

F. vesca, HapOB1, HapOB2, R. damascena, R. chinensis var. spontanea, R. laevigata, 

R. minutifolia alba, R. persica, R. moschata and R. xanthina spontanea were aligned in 

MEGAX using MUSCLE (Multiple sequence comparison by log- expectation, [38]) with 

default options.  

For the aligned Rdr1 homologs from the different species, phylogenetic trees were 

constructed in MEGAX [39] using the maximum likelihood (ML) method with the Jones-

Taylor-Thornton matrix-based model using a discrete gamma distribution with 

empirical frequencies (JTT+G+F) [40]. The best model was estimated using MEGAX. 

Initial trees for the heuristic search were obtained automatically. The tree topology was 

tested via a bootstrap analysis with 500 replicates. For a better visualization of the 

phylogenetic trees the software Tree Of Life (iTOL) version 4.2.3 [41] 

(https://itol.embl.de/) was used. Nucleotide diversity within groups of sequences was 

computed in MEGAX using nucleotide differences among aligned sequences. 

The analysis of synonymous and non-synonymous sites was performed in MEGAX by 

aligning the amino acid sequences of sets of coding DNA-sequences and analysing 

the DNA differences with the Nei-Gobojori model [42] for 1314 positions in the final 

dataset. 

 

http://augustus.gobics.de/
https://www.ebi.ac.uk/Tools/pfa/pfamscan/
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3.4.5 Synteny analysis 

For the synteny analysis of the two clusters, genes surrounding the clusters were 

selected based on the rose reference sequence [9]. Reciprocal BLAST were performed 

against the most recent available Rosaceae genomes: Fragaria vesca [31], Prunus 

persica [34], Malus domestica [32] and Rubus occidentalis [43]. The order of the 

homologous genes was checked on the genome browser of the GDR website 

(https://www.rosaceae.org/tools/jbrowse, [44]). 
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3.7 Supplementary information  

Table S 3.1.xlsx: Results of micro-synteny analysis outside the Rdr1 family clusters. 

Table S 3.2.docx: Positions and annotation of TNLs homologous to Rdr1 on the 

different chromosomes of Old Blush (OB1+2), F. vesca (F.ve), Prunus persica (P.pe), 

Malus domestica (M.do), Rubus occidentalis (R.oc) and Potentilla micrantha (P.mi). 

Table S 3.3.txt: Coding sequences of all used genes in this study. 

Table S 3.4.txt: Muscle alignment of protein sequences used for the phylogram shown 

in Figure 3.3. 

Table S 3.5.txt: Muscle alignment of protein sequences used for the phylogram shown 

in Figure 3.4. 

 

 

FigureS 3.1: Phylogenetic analysis of the amino acid sequence for R. multiflora Rdr1-TNLs and homologous 
TNLs of HapOB1 and HapOB2. The maximum likelihood method based on the JTT matrix-based model was used 

to calculate the phylogenetic tree. A test of phylogeny was performed using the bootstrap method with 500 
replicates. Branches reproduced in less than 75 % of bootstrap replicates are collapsed. Bootstrap values are 
indicated as triangles, whereas the smallest value represents 87 % and the largest 100 %. 
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Figure S 3.2: Results from Rd1LRR microsatellite PCR. DNA from haploid tissue that had been used for 

sequencing the OB2 genome as well as DNA of the original diploid OB cultivar was used in a PCR with Rd1LRR 
microsatellite primers (Terefe and Debener, 2011). PCR products were separated on a 6 % polyacrylamide gel. 
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Figure S 3.3: Genomic organizations of TNLs homologous to Rdr1. Shown are chromosome 8 of Prunus 
persica and chromosome 10 of Malus x domestica. 
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5 A comparison of transcriptomic changes during incompatible and 
compatible interactions between roses and D. rosae  

5.1 Introduction 

R-genes, like Rdr1, are known to activate defense responses such as transcriptional 

induction of pathogenesis-related (PR) genes, production of reactive oxygen species, 

fortification of the cell wall, synthesis of antimicrobial compounds and hypersensitive 

response (HR) (Dangl and Jones, 2001; Hammond-Kosack and Jones, 1997; 

Kombrink and Somssich, 1997; Nürnberger et al. 2004; Xiao et al. 2008). In rice, 

transcriptomic analysis of the incompatible interaction with the hemibiotrophic fungus 

Magnaporthe oryzae resulted in an induction of genes related with the cell wall, beta-

glucanase, proteolysis, receptor-like kinases, PR genes, WRKY genes, several MAPK 

and Myb TFs, as well as signalling-related genes. Genes related to redox state, 

peroxidase and glutathione-S-transferase also showed an up-regulation in infected 

tissues (Wang et al. 2014). In the incompatible interaction of chickpea and Fusarium 

oxysporum f. sp. ciceris, defense-related genes, such as PR10, PR4, LRR protein 

kinase, cinnamate 4 hydroxylase, proline-rich cell wall, cysteine proteinase, superoxide 

dismutase and squalene monooxygenase, were significantly higher expressed 

compared to the compatible interaction (Saabale et al. 2018). In wheat, genes coding 

for a caffeoyl-CoA O-methyltransferase, PR-5-like protein, protein kinase, ethylene-

responsive RNA helicase, peroxidase and peroxisomal membrane protein were 

induced in the incompatible interaction with Puccinia striiformis f. sp. Tritici (Wang et 

al. 2010). 

In chapter 4 (Neu et al. 2019), MACE analysis were used to analyse differences in the 

manipulation of the rose leaf transcriptome in the early infection with either the 

hemibiotrophic fungus D. rosae or the biotrophic fungus P. pannosa. Here, the existing 

MACE, RNA-Seq and high-throughput RT-qPCR data generated by Neu (2018) and 

Neu et al. (2019) were used as a starting point for the analysis of transcriptomic 

changes during the incompatible interaction between roses and D. rosae caused by 

the R-gene Rdr1. The identification of muRdr1A as the functional R-gene against a 

broad spectrum of D. rosae was followed by the transformation of muRdr1A in the 

susceptible genotype PC (Menz et al. 2018, chapter 2). The use of transgenic roses 

harbouring muRdr1A allows the simultaneous analysis of the resistant compared to 

the susceptible genotype in the same genetic background.  
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5.2 Material and Methods 

5.2.1 Plant material 

For the multiplication of the fungal isolates as well as for the RT-qPCR analysis, the 

rose genotypes ‘Pariser Charme’ (PC), ‘Arthur Bell’ (AB), 14/29-9 and PC::muRdr1A-

38 were propagated in vitro as previously described (Davies, 1980; Debener et al. 

1998), rooted, transplanted into fertilized Einheitserde T substrate (Einheitserdewerke 

Gebr. Patzer, Sinntal-Altengronau, Germany) in 9 cm pots and cultivated in climate 

chambers under short-day conditions (8 h light/16 h darkness) at 22 °C. PC and AB 

are susceptible genotypes not carrying the Rdr1 locus and the progeny 14/29-9 

resulted from a cross of AB x PC::muRdr1A-58 (Menz et al. 2018, chapter 2). 

 

5.2.2 Infection with D. rosae 

The single conidial isolate DortE4 (Malek and Debener, 1998) was used to infect young 

unfolded leaves of the genotypes ‘Pariser Charme’ (PC), ‘Arthur Bell’ (AB), 

PC::muRdr1A-38 and 14/29-9. For the infection, a suspension of 500,000 conidia/mL 

was applied to the leaves using a vaporizer. Leaves were kept on moist tissue paper 

in translucent plastic boxes in an air-conditioned laboratory at 20 °C. Samples were 

taken from three biological replicates of inoculated and mock-inoculated leaves after 0 

h, 24 h and 72 h. Successful infection was tested via microscopic analysis. D. rosae 

inoculated and mock-inoculated leaves were stained with Alexa Fluor 488 conjugated 

wheat germ agglutinin (Invitrogen, Carlsbad, USA) and examined as previously 

described by Menz et al. (2018) (chapter 2). 

 

5.2.3 MACE data and high-throughput RT-qPCR 

In addition to the transcriptomic data presented in chapter 4 (Neu et al. 2019), MACE 

data were generated from the incompatible interaction between D. rosae and the 

resistant genotype 91/100-5, as well as between D. rosae and the transgenic PC 

genotype carrying the muRdr1A gene of the Rdr1-locus (PC::muRdr1A-43) (Neu, 

2018). For the genotype PC::muRdr1A-43, only one biological replicate was used to 

generate MACE data. Additionally, the same RNAs of PC and 91/100-5 inoculated with 

D. rosae (72hpi) used for the MACE approach were used for the application of 

conventional RNAseq (Neu, 2018) .To validate the results of the MACE analysis, three 

additional inoculation experiments, including the transgenic genotype PC::muRdr1A-
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57, were conducted with subsequent analysis by a high-throughput RT-qPCR system. 

The samples used for MACE, RNASeq and high-throughput RT-qPCR are shown in 

Table 5.1.  

For the validation, a set of significantly up- and down-regulated genes was chosen 

based on the MACE results (Neu et al. 2019). Additionally, genes known to have a 

function in the defense response of plants were chosen (Table S 5.2). 

 

Table 5.1: Overview of the samples used for MACE, RNASeq and high-throughput RT-qPCR (Neu, 2018). 

Genotype Treatment Time point Method Biological 

repetitions 

PC Mock-inoculation 0 hpi, 24 hpi, 72 hpi MACE 3 

PC D. rosae 0 hpi, 24 hpi, 72 hpi MACE 3 

PC No treatment 0 hpi MACE 3 

91/100-5 D. rosae 24 hpi, 72 hpi MACE 3 

PC::muRdr1A-43 D. rosae 24 hpi, 72 hpi MACE 1 

PC D. rosae 72 hpi RNA-Seq 3 

91/100-5 D. rosae 72 hpi RNA-Seq 3 

PC Mock-inoculation 0 hpi, 24 hpi, 48 hpi, 72 hpi High-throughput 

RT-qPCR 

3 

PC D. rosae 0 hpi, 24 hpi, 48 hpi, 72 hpi High-throughput 

RT-qPCR 

3 

91/100-5 Mock-inoculation 0 hpi, 24 hpi, 48 hpi, 72 hpi High-throughput 

RT-qPCR 

3 

91/100-5 D. rosae 0 hpi, 24 hpi, 48 hpi, 72 hpi High-throughput 

RT-qPCR 

3 

PC::muRdr1A-57 Mock-inoculation 0 hpi, 24 hpi, 48 hpi, 72 hpi High-throughput 

RT-qPCR 

3 

PC::muRdr1A-57 D. rosae 0 hpi, 24 hpi, 48 hpi, 72 hpi High-throughput 

RT-qPCR 

3 

 

5.2.4 Expression analysis using RT-qPCR 

Genes showing an up-regulation in the MACE analysis during the incompatible 

interaction between 91/100-5 and D. rosae as well as in the incompatible interaction 

between PC::muRdr1A-43 and D. rosae (Neu, 2018) were selected for the RT-qPCR 

analysis. Specific primers for each gene were designed with Primer3plus (Rozen and 

Skaletsky, 2000) and are listed in Supplementary Table S 5.1. As internal control, 

specific primers for the gene encoding the ubiquitin conjugating protein (UBC) 

(JN399227.1) and the SAND-family protein (SAND) (JN399228.1) (Klie and Debener, 

2011) were used.  

Total RNA was isolated using the Quick-RNA™ Miniprep Plus Kit (Zymo Research, 

Irvine, USA) according to the manufacturer’s protocol. For cDNA synthesis, 500 ng of 
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total RNA was processed with the High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems VR, Carlsbad, USA) according to the manufacturer’s instructions. 

The amplification was performed in a 10 µL volume with 2.5 µL cDNA (1:8 diluted) 

using qPCRBIO SyGreen Mix Lo-ROX (Nippon Genetics Europe GmbH, Dueren, 

Germany) according to the manufacturer’s instructions. The cycling conditions were: 

95 °C for 2 min, 40 cycles of 95 °C for 5 s, and 30 s at 60 °C, which was performed in 

a StepOnePlusTM System (Applied Biosystems, Austin, USA). Baseline correction was 

performed using the StepOneTM Software, and a common threshold of 0.5 was set for 

the quantification cycle (Cq). The primer efficiencies were estimated for each reaction 

using LinRegPCR 11.1 (Ruijter et al. 2009), and Ct-values were used to calculate the 

relative expression quantities (RQs) using the REST 2009 software v2.0.13 (Qiagen, 

Hilden, Germany) according to Pfaffl (2001). 

Due to the high number of genes, only biological replicates without technical replicates 

were tested in the first round of gene expression analysis. Genes with differences in 

expression higher than twofold between the compatible (PC+DortE4) and incompatible 

interaction (PC::muRdr1A-38+DortE4) were further tested with three technical 

replicates and in a different genetic background (AB and 14/29-9). 
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5.3 Results 

For the analysis of transcriptomic changes during the incompatible interaction between 

roses and D. rosae, existing MACE, RNASeq and high-throughput RT-qPCR data were 

used. An overview of the number of used genes and the results of the expression 

analysis via RT-qPCR and high-throughput RT-qPCR is given in Figure 5.1.   

 

Figure 5.1: Overview of the expression analysis via high-throughput RT-qPCR and conventional RT-qPCR. 

MACE data were used to select differentially expressed genes (DEGs) in the incompatible interaction compared to 
the compatible interaction with D. rosae (or P. pannosa). DEGs were either tested via high-throughput RT-qPCR 
(A+B) or via conventional RT-qPCR (E-H). Results are shown for high-throughput RT-qPCR in C+D and for 
conventional RT-qPCR in I+J. The genotype 91/100-5 carrying the Rdr1 locus is resistant against the D. rosae 
isolate DortE4. ‘Pariser Charme’ (PC), not carrying the Rdr1 locus, was transformed with the Rdr1 family member 
muRdr1A, resulting in clones PC::muRdr1A-38, PC::muRdr1A-43 and PC::muRdr1A-57.   
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To validate the results of the MACE analysis, a set of 55 differently expressed genes 

(DEGs) in either the compatible or incompatible interaction of roses with D. rosae or 

P. pannosa was selected by Neu et al. (2019) (Chapter 4). The expression of the 

selected genes during the infection of roses with either D. rosae or P. pannosa were 

analysed by high-throughput RT-qPCR (Supporting Information, Table S 5.2). In the 

following, only the data related to D. rosae resistance are interpreted (Figure 5.1-A+B). 

From the chosen 55 genes, 17 genes were up-regulated and 12 genes down-regulated 

in the incompatible interaction with D. rosae (91/100-5+DortE4 vs PC+DortE4). Only 

one of the chosen up-regulated genes (6G96) and three of the down-regulated genes 

(4G16, 4G79, 4G89) in the incompatible interaction with D. rosae and the transgenic 

rose (PC::muRdr1A-57) showed a positive correlation with the MACE results (Figure 

5.1-C, Table 5.2). The expressions (Log2FC) of the four genes during the incompatible 

and compatible interaction are shown in Figure 5.2. Similar to the MACE results, 6G96 

was significant up-regulated (3.8-fold) at 24 hpi in the incompatible interaction 

PC::muRdr1A-57+DortE4 compared to the compatible interaction PC+DortE4 (Table 

5.2). At 0 hpi, a significantly 2.9-fold up-regulation was observed in the interaction 

PC::muRdr1A-57+DortE4 compared to PC+DortE4. In the mock-inoculated 

PC::muRdr1A-57, 6G96 was also significantly up-regulated compared to PC (mock-

inoculated) at all time points. 

At 24 hpi, 4G79 was significantly down-regulated (15.6-fold) in the interaction 

PC::muRdr1A-57+DortE4 compared to PC+DortE4, whereas the interaction 

PC+DortE4 compared to the mock-inoculation was 62-fold up-regulated. At 48 hpi, 

4G79 was significantly up-regulated (7.5-fold) in the interaction PC::muRdr1A-

57+DortE4 compared to PC+DortE4. A significant up-regulation was also observed in 

the interaction PC::muRdr1A-57+DortE4 compared to mock-inoculation and 

PC+DortE4 compared to mock-inoculation at 48 hpi and 72 hpi . 

4G89 was significantly down-regulated (5.6-fold) at 24 hpi in the interaction 

PC::muRdr1A-57+DortE4 compared to PC+DortE4, but significantly up-regulated (4.3-

fold) at 48 hpi.  

4G16 was significantly down-regulated (4-fold) at 48 hpi and 72 hpi in the interaction 

PC::muRdr1A-57+DortE4 compared to PC+DortE4, but also significantly down-

regulated in the mock-inoculated PC::muRdr1A-57 compared to the mock-inoculated 

PC at all time points. 
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The regulations of all 55 DEGs in the incompatible interaction and compatible 

interaction in MACE analysis and high-throughput RT-qPCR are listed in Table 5.2. 

Unlike the MACE results four genes were significantly up-regulated and nine genes 

were significantly down-regulated in both incompatible interactions with D. rosae 

(91/100-5+DortE4 and PC::muRdr1A-57+DortE4) (Figure 5.1-D). For example, 7G046 

encoding for gibberellin-regulated 6 was significantly up-regulated in both incompatible 

interactions with D. rosae at 24 hpi and 72 hpi. In contrast, no up-regulation could be 

observed at 48 hpi and the MACE data showed a 5-fold down-regulation at 72 hpi. 

Gene 4G88, coding for a probable polygalacturonase non-catalytic subunit JP650, is 

3-fold up-regulated in both incompatible interactions with D. rosae at 24 hpi. Gene 

7G12, coding for caffeic acid 3-O-methyltransferase, was 3-fold down-regulated in both 

incompatible interactions with D. rosae at 24 hpi and 72 hpi. Gene 7G68, coding for 

disease resistance response 206-like, was more than 10-fold down-regulated in both 

incompatible interactions with D. rosae at 72 hpi. 

1G40, coding for laccase-15-like isoform X1, was 10-fold down-regulated in both 

incompatible interactions with D. rosae at 24 hpi, but 7-fold up-regulated at 48 hpi in 

the incompatible interaction (PC::muRdr1A-57+DortE4) compared to PC+DortE4. 

For 2G17 (encoding a lactoylgutathione lyase glyoxylase I family protein), new primers 

were designed due to unspecific amplification in the qPCR in one genotype and tested 

in RT-qPCR (see below, Figure 5.3). 

The results of the other genes, including those known to have functions in the defense 

response of plants, e. g. pathogen or related stress induced plant proteins (PR-

proteins) or transcription factors are shown in Table 5.2. A large number of these genes 

showed high variations in their regulation between the time points and the different 

methods used. Further, high standard deviations could be also observed between the 

biological replicates for many of the genes. 
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Figure 5.2: High-throughput RT-qPCR expression analysis of four genes in an incompatible and compatible interaction at different time points. ‘Pariser Charme’ (PC), 
not carrying the Rdr1 locus, was transformed with the Rdr1 family member muRdr1A, resulting in clone PC::muRdr1A-57 (1-57). Both genotypes were inoculated with the D. 
rosae isolate DortE4 (D) and mock-inoculated with water (H). Samples were taken after 0 hpi, 24 hpi, 48 hpi and 72 hpi. For better visualisation, the logarithm base 2 of the fold-

change (Log2FC) was used (Fold changes are listed in Table 5.2 or Supplementary Table 2). Log2FC are averages of three independent biological replicates with three technical 
replicates. The reference genes TIP, UBC and SAND were used for normalization. Standard errors are indicated by error bars and significant expression differences (p-value 
<0.005) are indicated by an asterisk.  
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Table 5.2:Comparison of the regulation of 55 DEGs in the incompatible interaction and compatible interaction in MACE analysis and high-throughput RT-qPCR. The 
resistant genotype 91/100-5 (91), the susceptible genotype ‘Pariser Charme’ (PC) and the resistant clone PC::muRdr1A-57 (1-57) were inoculated with the D. rosae isolate DortE4 
(D). Samples were taken after 0 hpi, 24 hpi, 48 hpi and 72 hpi. The fold-changes (FC) are averages of three independent biological replicates with three technical replicates. The 
reference genes TIP, UBC and SAND were used for normalization in high-throughput RT-qPCR. Significant expression differences (p-value <0.005) are indicated by an asterisk. 

HT-qPCR: High-throughput RT-qPCR. Genes mentioned in Text are highlighted in red. 

   0 hpi 24 hpi 48 hpi 72 hpi 

Name Contig Sequence Description 

HT-
qPCR 
91D/ 
PCD 
[FC] 

HT-
qPCR 
1-57D/ 
PCD 
[FC] 

MACE 
91D/ 
PCD 
[FC] 

HT-
qPCR 
91D/ 
PCD 
[FC] 

HT-
qPCR 
1-57D/ 
PCD 
[FC] 

HT-
qPCR 
91D/ 
PCD 
[FC] 

HT-
qPCR 
1-57D/ 
PCD 
[FC] 

MACE 
91D/ 
PCD 
[FC] 

HT-
qPCR 
91D/ 
PCD 
[FC] 

HT-
qPCR 
1-57D/ 
PCD 
[FC] 

0G07 RC0G0060700 Inhibitor of trypsin and hageman factor 0.11* 1.77 1.74 0.25* 2.10* 0.35* 2.74* 0.30 0.06* 0.27* 

0G070 RC0G0107000 pathogenesis-related PR-1 0.97 1.14 1.39 1.85 0.55 0.51 1.67 0.18 2.45 1.05 

0G45 RC0G0034500 IAA-amino acid hydrolase ILR1-like 4 1.16 2.00* 3.26* 1.30 1.16 2.68* 1.73 2.93 1.36* 0.65* 

0G670 RC0G0067000 4-coumarate-- ligase 2-like 0.37* 1.34 4.08* 0.32* 1.36 0.28* 0.34* 0.50 0.17* 0.40* 

1G01 RC1G0100100 transcription factor TGA2-like 0.54* 0.90 1.45 0.45* 1.01 0.45* 0.52* 0.67 0.36* 0.60* 

1G21 RC1G0272100 ---NA--- 3.22* 4.42* 22.64* 5.72* 1.97 2.90* 1.65 0.12* 1.21 0.83 

1G40 RC1G0594000 laccase-15-like isoform X1 0.84 4.07 0.58 0.13* 0.14* 1.26 7.08* 1.00 0.88 0.50 

1G63 RC1G0586300 caffeic acid 3-O-methyltransferase 1.46* 0.87 0.95 0.62 0.90 0.50* 0.29 0.35 0.44* 0.60* 

2G15 RC2G0141500 cytochrome P450 84A1-like 1.10 0.72 4.02* 1.23 1.36 2.04* 0.56 1.99 2.26* 1.40* 

2G17 RC2G0441700 Lactoylglutathione lyase glyoxalase I family 0.17* 0.79 0.67 2.28* 3.89* 1.87* 1.39 2.26 0.43 0.77 

2G19 RC2G0071900 inositol oxygenase 2-like 0.69 6.29* 1.23 2.26 1.60 0.68 2.70* 5.84* 0.46 0.64 

2G33 RC2G0413300 cinnamoyl- reductase 0.63 1.00 1.40 0.81 1.20 0.57* 0.44* 0.68 0.47* 0.61* 

2G47 RC2G0334700 sigma factor binding chloroplastic 0.68 0.33* 0.15* 1.28 0.38* 0.43* 0.35* 0.17* 0.30* 0.41 

2G51 RC2G0585100 PREDICTED: uncharacterized protein LOC105352727 0.04* 0.34 0.32* 2.38 3.65 0.74 0.42* 0.20* 0.13* 0.38 

2G91 RC2G0389100 peroxidase P7-like 7.08* 1.65 18.82* 0.64 1.08 1.08 1.86 3.11 0.62 0.97 

3G02 RC3G0390200 Pathogenesis-related P2 0.45 2.65 0.47 0.23 0.17* 0.43* 3.44* 1.22 0.14* 0.57* 

3G11 RC3G0391100 Pathogenesis-related P2 0.93 2.57 0.10* 0.24 0.15* 0.45* 3.82* 0.86 0.14* 0.61* 

3G26 RC3G0282600 probable anion transporter chloroplastic 1.27 2.80* 4.94* 0.33 0.76 0.63* 1.93* 0.82 0.96 1.04 

3G27 RC3G0212700 phenylalanine ammonia lyase 0.34* 0.41 1.67 0.29* 0.55* 0.34* 0.30* 0.28 0.79 0.32* 

3G36 RC3G0223600 thaumatin 2.39* 20.59* 0.13* 0.21 0.04* 0.16* 1.57 1.32 0.11* 1.12 

3G63 RC3G0376300 serine threonine- kinase EDR1 0.59* 1.10 1.29 0.73* 0.92 0.83* 0.58 0.83 0.70* 1.00 

4G16 RC4G0481600 probable serine threonine- kinase At1g18390 0.38* 0.30* 0.21* 0.36* 0.59 0.29* 0.24* 0.13* 0.47* 0.26* 

4G21 RC4G0292100 pathogenesis related PR10 1.26 3.48 1.22 1.55* 1.36* 1.13 0.89 1.75 1.05 1.22* 

4G28 RC4G0292800 major allergen Pru av 1-like 0.79 3.20 1.03 0.61* 0.90 0.76 1.42* 0.58 0.28* 0.53* 

4G30 RC4G0473000 MLP 423 0.08* 0.08* 0.77 1.35 5.11* 0.38* 0.47 0.49 0.70 2.60* 

4G40 RC4G0344000 probable WRKY transcription factor 75 0.51 1.07 1.72 0.76 0.35* 3.26* 3.42* 0.64 0.50* 0.41* 

4G51 RC4G0045100 Phosphate transporter 1,7 isoform 1 1.80 10.39* 0.71 2.87* 2.36* 1.66 1.72 0.66 0.20* 1.08 

4G79 RC4G0137900 chitinase 5-like 1.57* 1.14 0.17* 0.17* 0.06* 1.44 7.50* 1.49 0.25* 0.91 
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Continuation Table 5.2: Comparison of the regulation of 55 DEGs in the incompatible interaction and compatible interaction in MACE analysis and high-throughput 
RT-qPCR. The resistant genotype 91/100-5 (91), the susceptible genotype ‘Pariser Charme’ (PC) and the resistant clone PC::muRdr1A-57 (1-57) were inoculated with the D. 
rosae isolate DortE4 (D). Samples were taken after 0 hpi, 24 hpi, 48 hpi and 72 hpi. The fold-changes (FC) are averages of three independent biological replicates with three 
technical replicates. The reference genes TIP, UBC and SAND were used for normalization in high-throughput RT-qPCR. Significant expression differences (p-value <0.005) are 

indicated by an asterisk. HT-qPCR: High-throughput RT-qPCR. Genes mentioned in Text are highlighted in red. 

   0 hpi 24 hpi 48 hpi 72 hpi 

Name Contig Sequence Description 

HT-
qPCR 
91D/ 
PCD 
[FC] 

HT-
qPCR 
1-57D/ 
PCD 
[FC] 

MACE 
91D/ 
PCD 
[FC] 

HT-
qPCR 
91D/ 
PCD 
[FC] 

HT-
qPCR 
1-57D/ 
PCD 
[FC] 

HT-
qPCR 
91D/ 
PCD 
[FC] 

HT-
qPCR 
1-57D/ 
PCD 
[FC] 

MACE 
91D/ 
PCD 
[FC] 

HT-
qPCR 
91D/ 
PCD 
[FC] 

HT-
qPCR 
1-57D/ 
PCD 
[FC] 

4G88 RC4G0468800 probable polygalacturonase non-catalytic subunit JP650 0.57 0.16* 1.14 3.02* 2.90* 1.00 0.60* 0.78 1.95* 0.83 

4G89 RC4G0128900 cinnamoyl- reductase-related family 0.51* 2.36* 0.24* 0.25* 0.18 0.73 4.37* 1.36 0.59 0.63 

4G99 RC4G0469900 probable xyloglucan endotransglucosylase hydrolase 33 5.03* 2.04 47.11* 3.40* 2.27 1.10 0.59 145.94* 1.08 0.52 

5G10 RC5G0421000 probable receptor kinase At5g24010 3.18* 1.38 n.a. 4.13* 1.06 4.26* 1.05 20.39* 3.04* 0.71* 

5G12 RC5G0381200 ---NA--- 0.56 4.51* 0.36* 0.36* 0.79 0.54 1.26 0.47 0.08* 1.08 

5G35 RC5G0063500 ---NA--- 2.95* 0.76 0.16* 1.72* 0.44* 1.32 0.49 0.16* 1.49 0.29* 

5G58 RC5G0005800 heavy metal transport detoxification superfamily 1.29 1.10 0.85 1.78* 2.99* 0.83 0.32* 0.61 0.79 1.69 

5G59 RC5G0235900 G-type lectin S-receptor-like serine threonine- kinase  0.85 4.92* n.a. n.a n.a 0.73 n.a 10.26* 0.28 0.20* 

6G062 RC6G0106200 caffeoyl- O-methyltransferase 0.76 0.79 3.09* 0.73 1.10 0.34* 0.25* 0.38 0.21* 0.30* 

6G09 RC6G0380900 inorganic phosphate transporter 1-4 1.39 3.18* 1.26 2.12* 1.57 2.04* 1.68* 0.72 0.51* 1.10 

6G158 RC6G0415800 sugar transporter ERD6-like 7 0.94 5.95* 1.52 2.62* 1.62 3.97* 0.93 3.83 1.07 1.22 

6G51 RC6G0405100 TIME FOR COFFEE-like isoform X2 4.73* 4.35* 2.17 0.74 0.57* 2.68* 1.45 0.90 1.06 1.17 

6G53 RC6G0055300 pathogenesis-related 1-like 1.10 1.35 0.34* 0.35 0.08* 0.57* 1.07 0.86 0.37* 0.77 

6G558 RC6G0055800 pathogenesis-related leaf 6-like 1.22 9.04* 1.25 0.31 0.21 0.52 2.67* 0.69 0.41* 0.38* 

6G562 RC6G0256200 peroxidase 12-like 0.98 1.83* 0.31* 0.76 0.78 1.14 0.97 1.07 1.34* 2.16* 

6G76 RC6G0197600 MATE efflux family chloroplastic 0.44* 0.20* 3.78 1.48 1.59* 4.06* 1.25 2.79 1.71 0.93 

6G96 RC6G0269600 transcription elongation factor SPT6 5.80* 2.86* 5.00* 4.88* 3.80* 4.59* 1.26 4.67* 4.73* 1.43 

7G09 RC7G0550900 phosphate-responsive 1 family 0.82 1.25 3.07* 0.42* 0.96 0.54* 0.62* 1.32 0.85 0.54* 

7G12 RC7G0101200 caffeic acid 3-O-methyltransferase 0.38* 3.07* 1.15 0.32* 0.35* 1.25 1.60 0.35 0.13* 0.35* 

7G16 RC7G0031600 lipase-like PAD4 0.77 1.02 1.17 0.49 0.57 0.43* 0.41* 0.39 0.21* 0.42* 

7G20 RC7G0182000 probable WRKY transcription factor 29 isoform X1 4.62* 11.33* 3.15* 0.82 1.28 3.16* 4.69* 1.79 1.02 0.85 

7G22 RC7G0352200 probable inorganic phosphate transporter 1-9 1.99 3.80* 1.41 0.60* 0.74 0.41* 0.58 0.56 0.37* 0.50* 

7G23 RC7G0012300 SPX and EXS domain-containing 1-like isoform X1 2.87* 3.28* 6.62* 4.82* 1.17 2.96* 1.36 6.64* 1.43 0.79 

7G046 RC7G0046000 gibberellin-regulated 6 3.85 0.63 1.18 13.88* 6.70* 3.36 0.68 0.18* 79.85* 11.44* 

7G68 RC7G0176800 disease resistance response 206-like 0.23* 1.98* 3.68* 0.47 1.14 0.57* 0.81 0.37 0.04* 0.10* 

7G98 RC7G0109800 ethylene-responsive transcription factor ERF113-like 1.34 4.39* 2.56 0.60 1.03 2.11 3.17* 2.68 0.86 1.18 

7G99 RC7G0109900 ethylene-responsive transcription factor ERF113-like 0.77 2.21 4.07* 0.39 1.61 1.42 2.73* 2.96 0.63 0.84 
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In addition to the gene set analysed by high-throughput RT-qPCR, a set of 137 genes 

significantly up-regulated in the incompatible interaction between roses and D. rosae 

(91/100-5+DortE4 and PC::muRdr1A-43+DortE4) was selected based on the MACE 

and RNASeq results for gene expression analysis using standard RT-qPCR (Figure 

5.1-E).  

Out of 137 genes, ten were chosen for further gene expression analysis. The remaining 

127 genes were excluded due to unspecific amplifications in the qPCR, high deviations 

between the biological replicates or contradicting results (Figure 5.1-G). Further gene 

expression analysis revealed five genes showing stable expression differences higher 

than two-fold between the compatible (PC+DortE4) and incompatible interaction 

(PC::muRdr1A-38+DortE4) at 24 hpi and 72 hpi, respectively (Figure 5.1-G-I, Table 

5.3). The results between the incompatible interaction (PC::muRdr1A-38+DortE4 vs 

mock-inoculation) compared to the compatible one (PC+DortE4 vs mock-inoculation) 

at 24 hpi are shown in Figure 5.3. Gene 0G56 was up-regulated in both compatible 

and incompatible interactions, with the incompatible interaction showing a 1,5-fold 

higher up-regulation. Gene 2G17 was 3,5-fold up-regulated during the incompatible 

interaction, whereas during the compatible interaction no differential regulation was 

observed. For 5G51, a significant up-regulation was observed only during the 

compatible interaction. No regulation or a down-regulation was observed for the genes 

1G80 and 4G01. Further, no up-regulation of the genes 0G56 and 2G17 was observed 

in another incompatible system (14/29-9+DortE4 vs. mock-inoculation) (data not 

shown). 

 

Table 5.3: List of ten genes further analysed by RT-qPCR. 

Name Contig Annotation 

0G56 RC0G0085600 cytochrome P450 

1G80 RC1G0508000 NA 

2G17 RC2G0441700 Lactoylglutathione lyase / glyoxalase I family protein 

3G44 RC3G0304400 Peroxidase superfamily protein 

4G01 RC4G0450100 MLP-like protein 31 

4G21 RC4G0432100 Glucose-methanol-choline (GMC) oxidoreductase family protein 

5G51 RC5G0265100 Leucine-rich repeat transmembrane protein kinase 

5G73 RC5G0257300 Kunitz family trypsin and protease inhibitor protein 

7G23 RC7G0092300 Pyruvate kinase family protein 

7G46 RC7G0454600 serine-type endopeptidase inhibitors 
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Figure 5.3: RT-qPCR expression analysis of selected genes for PC and PC::muRdr1A-38 at 24 hpi. ‘Pariser 

Charme’ (PC), not carrying the Rdr1 locus, was transformed with the Rdr1 family member muRdr1A, resulting in 
clone PC::muRdr1A-38. Both genotypes were inoculated with the D. rosae isolate DortE4 and mock-inoculated with 
water. The relative expression values (RQ) of each gene (0G56, 1G80, 2G17, 4G01, 5G51) are averages of three 
independent biological replicates with three technical replicates after inoculation compared to mock-inoculation. 
The reference genes UBC and SAND were used for normalization. RQmin and RQmax (95% confidence interval) are 
indicated by error bars and significant expression differences (p-value <0.05) are indicated by an asterisk. 

 

At 72 hpi, four of the five genes were significantly up-regulated with a minimum of 

eightfold in the incompatible interaction (PC::muRdr1A-38+DortE4 vs mock-

inoculation) (Figure 5.4). Comparing another incompatible interaction (14/29-9+DortE4 

vs mock-inoculation) with another compatible interaction (‘Arthur Bell’+DortE4 vs 

mock-inoculation) (Figure 5.5), gene 4G21 was up-regulated in both interactions, and 

the genes 7G23 and 7G46 showed no differential regulation. However, an up-

regulation of the 3G44 and 5G73 genes was also observed in the incompatible 

interaction (14/29-9+DortE4) compared to the compatible interaction (‘Arthur 

Bell’+DortE4 vs mock-inoculation). Thus, an up-regulation of two genes during the 

infection of D. rosae (72 hpi) could be detected in two different resistant genotypes 

compared to the susceptible ones (Figure 5.1-J). 
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Figure 5.4: RT-qPCR expression analysis of selected genes for PC and PC::muRdr1A-38 at 72 hpi. ‘Pariser 

Charme’ (PC), not carrying the Rdr1 locus, was transformed with the Rdr1 family member muRdr1A, resulting in 
clone PC::muRdr1A-38. Both genotypes were inoculated with the D. rosae isolate DortE4 and mock-inoculated with 
water. The relative expression values (RQ) of each gene (3G44, 4G21, 5G73, 7G23, 7G46) are averages of three 
independent biological replicates with three technical replicates after inoculation compared to mock-inoculation. 
The reference genes UBC and SAND were used for normalization. RQmin and RQmax (95% confidence interval) are 
indicated by error bars and significant expression differences (p-value <0.05) are indicated by an asterisk. 

 

 

Figure 5.5: RT-qPCR expression analysis of selected genes for AB and 14/29-9 at 72 hpi. ‘Arthur Bell’ (AB), a 
susceptible genotype not carrying the Rdr1 locus, and a progeny (14/29-9), resulting from a cross of AB x 
PC::muRdr1A-58, were inoculated with the D. rosae isolate DortE4 and mock-inoculated with water. The relative 
expression values (RQ) of each gene (3G44, 4G21, 5G73, 7G23, 7G46) are averages of three independent 
biological replicates with three technical replicates after inoculation compared to mock-inoculation. The reference 
genes UBC and SAND were used for normalization. RQmin and RQmax (95% confidence interval) are indicated by 

error bars and significant expression differences (p-value <0.05) are indicated by an asterisk. 
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5.4 Discussion 

For the MACE analysis, in addition to the susceptible genotype PC (Neu et al. 2019, 

chapter 4) the resistant genotype 91/100-5 without mock-inoculation and one biological 

replicate of the transgenic genotype PC::muRdr1A-43 without mock-inoculation were 

used (Neu, 2018). These MACE data, in combination with existing RNASeq data 

generated by Neu (2018) and high-throughput RT-qPCR data were used as the 

starting point for the analysis of transcriptomic changes during the incompatible 

interaction compared to the compatible interaction between roses and D. rosae. 

 

5.4.1 High-throughput RT-qPCR 

In the high-throughput RT-qPCR analysis, only four genes showed a positive 

correlation with the MACE results in the resistant genotypes PC::muRdr1A-57 and 

91/100-5. The transcript 6G96, coding for the transcription elongation factor SPT6, 

showed a significant up-regulation at 24 hpi in the incompatible interaction 

PC::muRdr1A-57+DortE4 compared to the compatible interaction PC+DortE4. 

However, a similar up-regulation at 0 hpi as well as in the mock-inoculated 

PC::muRdr1A-57 compared to PC (mock-inoculated) at all time points was observed, 

leading to the assumption, that 6G96 is not induced by D. rosae infection, but may 

have an effect on the resistance against D. rosae due to an altered basic expression 

level effected by Rdr1. The transcript 4G16, coding for probable serine threonine- 

kinase At1g18390, showed a significant down-regulation at 48 hpi and 72 hpi in the 

interaction PC::muRdr1A-57+DortE4 compared to PC+DortE4, but also at 0 hpi. 

Therefore, expression of 4G16 is not effected by D. rosae infection, but a role in the 

resistance against D. rosae due to an altered basic expression level effected by Rdr1 

is possible. Nevertheless, expression of Stpk-V, a putative serine and threonine protein 

kinase gene, led to high and broad-spectrum powdery mildew resistance after 

transformation into a susceptible wheat variety (Cao et al. 2011).  

The fact that 4G79, coding for chitinase 5-like, showed a significant up-regulation at 

24 hpi, 48 hpi and 72 hpi in the interaction PC+DortE4 compared to the mock-

inoculation indicates a general defense response. The up-regulation of 4G79 only after 

48 hpi in the interaction PC::muRdr1A-57+DortE4 compared to mock-inoculation could 

be due to a slower infection process. The selected infection method offers a high 
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standardization, but effects of abiotic factors (e. g. temperature and humidity) that 

could slow down the infection process cannot be excluded.  

In addition, due to the unstable regulation of 4G89, coding for a cinnamoyl- reductase-

related family, it is unclear whether this gene plays a role in the resistance against D. 

rosae or not. 

In contrast to the MACE results, the significant up- and down-regulation of some genes 

in both incompatible interactions with D. rosae (91/100-5+DortE4 and PC::muRdr1A-

57+DortE4 compared PC+DortE4) makes them to interesting candidate genes. For 

example, 7G046, encoding a gibberellin-regulated 6, showed a significant 5-fold down-

regulation at 72 hpi in the MACE data, but was significantly up-regulated in both 

incompatible interactions with D. rosae at 24 hpi and 72 hpi. For both genotypes, three 

independent inoculations were performed and tested in high-throughput RT-qPCR with 

three technical replicates and three reference genes. Therefore, these results are 

probably more reliable than the MACE results. Gibberellins (GAs) are known as key 

determinants in plant-pathogen interactions (Vleesschauwer et al. 2013). However, 

inconsistent results concerning the role of gibberellins in the resistance against fungi 

have been obtained in previous studies: In rice, GA was shown to enhance the 

resistance against the necrotrophic root pathogen Pythium graminicola 

(Vleesschauwer et al. 2012) and induce susceptibility to hemibiotrophic pathogens like 

Xanthomonas oryzae pv. oyrzae and Magnaporthe oryzae (Yang et al. 2008). In 

contrast, in Arabidopsis, GAs promote susceptibility to virulent biotrophs and 

resistance to necrotrophs (Navarro et al. 2008; Vleesschauwer et al. 2014). 

Nevertheless, these results indicate that the induction of 7G046, encoding a 

gibberellin-regulated 6, could be related to the Rdr1-mediated resistance against D. 

rosae.  

Transcript 1G40, coding for laccase-15-like isoform X1, was 10-fold down-regulated in 

both incompatible interactions with D. rosae at 24 hpi, but 7-fold up-regulated at 48 hpi 

in the incompatible interaction. Due to this unstable regulation, it is also unclear 

whether this gene plays a role in the resistance against D. rosae or not.  

In wheat, the transcriptional level of a caffeic acid 3-O-methyltransferase (TaCOMT-

3D) in sharp eyespot-resistant lines was higher when compared to the susceptible 

ones and significantly increased after inoculation with Rhizoctonia cerealis (Wang et 

al. 2018). This is in contrast to the results of transcript 7G12, also coding for caffeic 
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acid 3-O-methyltransferase, which was 3-fold down-regulated in both incompatible 

interactions with D. rosae at 24 hpi and 72 hpi. However, 7G12 is up-regulated in both, 

the compatible and incompatible interaction compared to the respective mock-

inoculation (Electronical appendix, Table S 5.2). Caffeic acid 3-O-methyltransferases 

(COMT) are involved in the synthesis of primary components of lignin in dicots and 

lignin is thought to play a role as physical barrier against the entry of the pathogen 

(Miedes et al. 2014; Vanholme et al. 2010). This leads to the assumption, that the up-

regulation of 7G12 during the infection with D. rosae compared to the mock-inoculation 

could be part of an early defense response, which is not related to the Rdr1 mediated 

resistance.  

The 10-fold down-regulation of 7G68, coding for disease resistance response 206-like, 

in both incompatible interactions with D. rosae at 72 hpi is also in contrast to other 

studies where the pea gene DRR206 (Disease Resistance Response-206) was shown 

to be induced to high, sustained levels very early in the successful resistance response 

of pea to F. solani f. sp. phaseoli (Culley et al. 1995) and constitutive expression of 

DRR206 conferring resistance to Leptosphaeria maculans in Brassica napus (Wang et 

al. 1999). However, 7G68 showed a 7-fold (48 hpi) and 18-fold (72 hpi) up-regulation 

in the compatible interaction and a 19-fold (48 hpi) and 6-fold (72 hpi) up-regulation in 

the incompatible interaction compared to the respective mock-inoculation (Electronical 

appendix, Table S 5.2). The up-regulation of 7G68 in the incompatible interaction at 

an earlier time point could be related to the Rdr1 resistance. 

Transcript 4G88, coding for a probable polygalacturonase non-catalytic subunit JP650 

is up-regulated in both incompatible interactions with D. rosae at 24 hpi. This is in 

contrast to the results observed in tomatoes, where reduced polygalacturonase (PG) 

levels increased resistance to the fungal pathogens Geotrichum candidum and 

Rhizopus stolonifer (Kramer et al. 1992). The contradictory results to other studies and 

the inconsistent results between MACE and high-throughput RT-qPCR make a 

statement about a putative role in the Rdr1-mediated resistance difficult. 

In other studies, the analysis of transcriptional changes during the incompatible 

interaction of plants with a hemibiotrophic fungal pathogen resulted in the up-regulation 

of receptor-like kinases, PR genes, WRKY genes, several MAPK and Myb TFs, 

caffeoyl-CoA O-methyltransferases, peroxidases and glutathione-S-transferases 

(Wang et al. 2010; Wang et al. 2014). In high-throughput RT-qPCR, several genes with 
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known functions in defence response, such as PAD4 (phytoalexin-deficient 4), WRKY 

75, PR 10, peroxidases, a caffeoyl- O-methyltransferase, receptor-like kinases were 

tested. However, no correlation to D. rosae resistance was observed. In most of 

studies, it is not clear if the data arrived from three independent biological replicates. 

This is of great importance, considering only one biological replicate can lead to 

contradictory results. For example, considering only biological replicate 2 for 7G046, 

encoding a gibberellin-regulated 6, would result in a down-regulation at 24 hpi instead 

of an up-regulation (data not shown).  

 

5.4.2 Standard RT-qPCR 

To expand the gene set for the analysis of transcriptomic changes caused by Rdr1, 

137 genes were selected for standard RT-qPCR due to a significant up-regulation in 

the incompatible interactions 91/100-5+DortE4 and PC::muRdr1A-43+DortE4 

compared to the compatible interaction PC+DortE4 in the MACE analysis and in the 

interaction 91/100-5+DortE4 compared to PC+DortE4 in the RNASeq analysis. From 

this gene set, only ten genes were chosen for further gene expression analysis due to 

their stable expression differences (> 2-fold) between the compatible and incompatible 

interaction in the first round of gene expression analysis.  

At 24 hpi, only two of the five tested genes (0G56 and 2G17) showed a significant up-

regulation (> 2-fold) in an incompatible interaction compared to a compatible 

interaction (PC+DortE4 and PC::muRdr1A-38+DortE4). However, four of the five 

tested genes showed a significant up-regulation higher than eight-fold at 72 hpi. The 

up-regulation of the genes 0G56, 2G17, 4G21, 7G23 and 7G46 seems to be genotype-

specific, since no up-regulation was observed in the incompatible interaction of a 

progeny of ‘Arthur Bell’ and PC::muRdr1A-58 (14/29-9) inoculated with DortE4. 

Nonetheless, the up-regulation of the genes 3G44 and 5G73 was also observed in the 

incompatible interaction (14/29-9+DortE4), leading to the assumption that they might 

play a role in the resistance reaction against D. rosae. The gene 3G44 (RC3G0304400) 

encodes a peroxidase superfamily protein and 5G73 (RC5G0257300) a Kunitz family 

trypsin and protease inhibitor protein. Therefore, both belong to the class of PR-genes. 

Peroxidase superfamily proteins and protease inhibitor proteins are known to be 

involved in plant defence responses to pathogen attacks. In Arabidopsis, resistance to 

B. cinerea was observed in transformed plants overexpressing class III peroxidase 
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(PER) family proteins and protease inhibitor (PI) family proteins (Chassot et al. 2007). 

Furthermore, peroxidase activity was increased as a disease resistance response 

more rapidly in resistant (Hibiscus trionum) compared to susceptible (Althea 

armeniaca) species in the family Malvaceae (Golubenko et al. 2007). Enhanced 

resistance against the fungus R. solani was also observed in transgenic tobacco 

overexpressing NtKTI1, a member of the Kunitz plant proteinase inhibitor family 

(Huang et al. 2010). Furthermore, genes related to redox state, peroxidase and 

glutathione-S-transferase showed a higher up-regulation at 48 hpi compared to 12 hpi, 

indicating an increase of ROS in infected tissues (Wang et al. 2014). In the 

incompatible interaction of roses with D. rosae, the up-regulation of gene 3G44, coding 

for a peroxidase superfamily protein, was also observed at the later time point (72 hpi). 

In summary, out of 137 tested genes only two genes (3G44 and 5G73) were identified 

to play a role in the D. rosae resistance in roses, independently of their genetic 

background. This small number might be due to the incomplete set of MACE data for 

the resistant genotypes (transgenic genotype PC::muRdr1A-43 and 91/100-5) used to 

select the genes. Both MACE and RNASeq data were only generated for three 

biological replicates of genotype 91/100-5 inoculated with DortE4 and not for a mock-

inoculation. The finding of mainly genotype-specific regulations was probably due to 

the fact that the resistant genotype could only be compared with the susceptible one 

for the selection of the resistance related DEGs. Although a transgenic genotype 

(PC::muRdr1A-43) was also used for the selection, it was only based on one biological 

replicate. These results show that the identification of resistance related DEGs on the 

basis of the comparison between a resistant and a susceptible genotype can be 

challenging. In most of the studies, a resistant cultivar is compared to a susceptible 

cultivar; this can lead to artefacts as the transcriptomic differences may be caused by 

genotypic differences rather than by fungal infection. For this reason, it is extremely 

important to confirm the results in other genotypes. For future experiments, a 

comparison with a mock-inoculation, or preferentially an analysis in the same genetic 

background, would help to identify D. rosae resistance related DEGs. 
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6 General Discussion 

Previous studies on black spot resistance in roses have characterised Rdr1 as a single 

dominant resistance gene belonging to a cluster of nine highly similar TNL-genes 

(Biber et al. 2010; Kaufmann et al. 2003; Kaufmann et al. 2010; Malek and Debener, 

1998; Terefe-Ayana et al. 2011). Earlier experiments to identify the functional Rdr1 

gene resulted in either muRdr1H or muRdr1A as the most likely candidate for Rdr1 

(Terefe-Ayana et al. 2011; Yasmin, 2011). 

Experiments with the Rd1LRR microsatellite marker, present in the coding sequences 

of most NBS-LRR members (Terefe and Debener, 2011), showed that Rdr1 cluster 

genes do not segregate into progeny. To analyse the function of the muRdr1A and 

muRdr1H single Rdr1 family members, stable transgenic roses harbouring these 

genes were generated. Additionally, transgenic roses harbouring the functional Rdr1 

gene allow the simultaneous analysis of the resistant genotype compared to the 

susceptible one in the same genetic background. Therefore, the first part of the thesis 

was focused on the analysis of the stable transgenic plants harbouring muRdr1A and 

muRdr1H for their expression level, transgene copy number and their resistance 

against a broad spectrum of D. rosae isolates in order to identify the active Rdr1 gene. 

 

6.1 Identification of the active Rdr1 gene 

muRdr1A and muRdr1H were introduced on somatic embryos of the susceptible 

genotype PC through Agrobacterium tumefaciens-mediated gene transformation. The 

number of regenerated transgenic shoots obtained was very low. Out of 4,926 

(muRdr1A) and 6,295 (muRdr1H) embryo clusters used for transformation, only 22 

(muRdr1A) and 14 (muRdr1H) regenerated shoots were positive for the integration of 

the transgene. Similar low transformation frequencies (around 3%) were observed for 

the same genotype (Dohm, 2003), where the process is highly dependent on the in 

vitro regeneration system (Dohm et al. 2001). Southern blot analysis of the transgenic 

plants revealed that they were derived from a single event per gene. Due to the time-

consuming generation of transgenic roses with a minimum of 9 months (Dohm, 2003), 

crossings were performed, instead of making new transformations, to analyse 

independent integration events. The use of another susceptible genotype (‘Arthur Bell’) 
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as crossing partner also offered the advantage of analysing the Rdr1 function in a 

different genetic background.  

In chapter 2 (Menz et al. 2018), muRdr1A, acting as a single TNL gene, was identified 

to be the functional Rdr1 gene. As it remained unclear how the Rdr1 resistance works, 

the spectrum of the Rdr1 mediated resistance was analysed. Inoculations performed 

with 15 single conidial isolates belonging to six different races (classified by Whitaker 

et al. (2010b)) showed that Rdr1 confers a broad spectrum resistance against 13 of 

the tested isolates. The isolates were collected in several countries in Europe as well 

as in Australia and South Africa.  

According to McDonald and Linde (2002), a major part of the durability of resistance 

genes is due to the nature of the pathogen population rather than to the nature of the 

resistance gene. The risk of pathogens to overcome a resistance is dependent on their 

mutation rate, population size, gene flow and reproduction system. Pathogens 

producing airborne asexual spores, e. g. Phytophthora infestans, have a high potential 

for gene flow, whereas pathogens distributed mainly by splash water, e. g. Diplocarpon 

rosae, exhibit limited gene flow and thus a lower risk for plants. Furthermore, 

outcrossing pathogens create more new genotypes and therefore pose a greater risk 

than inbreeding pathogens. The propagation of D. rosae is mainly due to asexually 

produced conidia and a global analysis of black spot populations for their gene diversity 

indicated a slow evolution of new alleles in the D. rosae/rose pathosystem (Horst et al. 

2007; Münnekhoff et al. 2017). Thus, the risk of D. rosae to overcome resistance is 

rather low and rose cultivars with broad-spectrum resistance against D. rosae could 

be successfully used over several years in different countries throughout the world 

(Lühmann et al. 2010; Münnekhoff et al. 2017). 

For almost complete resistance against D. rosae in roses, the Rdr1 resistance can be 

stacked with only a few race-specific R-genes against pathogenic races overcoming 

the Rdr1 mediated resistance, such as R6 and AB13. In rice, broad-spectrum and 

durable resistance can be achieved by R-gene pyramiding (Cho et al. 2013; Ellur et al. 

2016). In potato, the transfer of three R-genes from wild potato species provided 

complete resistance against late blight in the field over several seasons (Ghislain et al. 

2018). Moreover, functional stacking of three broad-spectrum potato R-genes (Rpi) led 

to a resistance spectrum corresponding to the sum of the spectra of the three individual 

Rpi genes (Zhu et al. 2012).  
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In addition to ‘Arthur Bell’, the genotypes ‘Ausmas’ (15/1), ‘Papageno’ (15/2), ‘König 

Stanislaus’ (15/3) and ‘George Vancouver’ (14/33) were used as crossings partners 

for PC::muRdr1A-58. ‘Papageno’, ‘Ausmas’ and ‘König Stanislaus’ were susceptible 

against all tested isolates, whereas ‘George Vancouver’ was resistant (including R6 

and AB13). All four progeny of 14/33 carried Rdr1 and showed the Rdr1 mediated 

resistance, but were susceptible against R6 and AB13 (data not shown). Nevertheless, 

this shows the potential of Rdr1 for resistance breeding in roses. The resistance 

mediated by Rdr1 can easily be detected in rose varieties by standard PCR. Rose 

varieties carring Rdr1 can then be used as crossings partners with varieties carring R6 

resistance. Such combinations of Rdr1 with R-genes providing resistance to R6 are 

currently underway. However, this is a time consuming process, because the 

resistance to R6 has to be tested in an elaborate disease assay. The identification of 

the R-gene providing resistance to R6 would help to facilitate the gene pyramiding with 

Rdr1. However, gene pyramiding does not always lead to improvement of the 

resistance spectrum (Wu et al. 2019). Xiao et al. (2016) showed that after pyramiding 

of two resistance genes, the resistance level against rice blast was lower than that of 

the monogenic lines.  

Furthermore, the secretome of the D. rosae published by Neu and Debener (2019) 

could help to identify the effector/Avr gene that is recognised by Rdr1 and to identify 

new R-genes. 

Due to the fact that the single TNL gene muRdr1A confers a broad spectrum resistance 

against D. rosae, it is also an interesting resistance gene regarding other rose species 

and other Rosaceae, since the genus Diplocarpon also contains pathogens infecting 

other members of the Rosaceae family, such as Malus (D. mali) or Fragaria (D. 

earlianum) (Ainsworth, 2008). Therefore, the next parts of the thesis were focused on 

the identification, genomic organisation and evolution of Rdr1 family members in roses, 

as well as in other Rosaceae.  
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6.2 Identification, genomic organisation and evolution of Rdr1-family members  

A locus homologous to Rdr1 has been already identified at syntenic positions in R. 

rugosa and Fragaria (Terefe-Ayana et al. 2012). However, the analysis of the Rdr1 

family in roses (R. multiflora and R. rugosa) were restricted to the region captured by 

BAC contigs (Biber et al. 2010; Kaufmann et al. 2010; Terefe-Ayana et al. 2012). The 

recently published chromosome scale assemblies of the R. chinensis ‘Old Blush’ 

genomes HapOB1 (Raymond et al. 2018) and HapOB2 (Hibrand Saint-Oyant et al. 

2018) allowed the identification and analysis of more Rdr1 family members. The 

number of identified Rdr1 homologues varied from 7 (HapOB1) to 21 (HapOB2). Along 

with the ‘Old Blush’ genome, several sequences from rose species from different 

subgenera were also published (Hibrand Saint-Oyant et al. 2018). In nine analysed 

rose species, the number of identified Rdr1 homologues varied from 3 (R. persica) to 

15 (R. damascena). The variation of identified Rdr1 homologues could be due to the 

quality of the assemblies since the assembly of clustered duplicated regions is error-

prone. However, the number of TNLs varies between and within genera (van Eck and 

Bradeen, 2018). In potato, large variations in the number of R1 homologues within a 

sub-cluster were found among three haplotypes. In haplotype B, six homologues were 

found, whereas, in haplotype A and C, only one and two homologues were observed, 

respectively (Kuang et al. 2005).  

The use of the high-quality chromosome scale assemblies of the ‘Old Blush’ genomes 

(Hibrand Saint-Oyant et al. 2018; Raymond et al. 2018) to analyse the structure of the 

Rdr1 gene family resulted in a genomic organisation in two major clusters at the distal 

end of chromosome 1. In Fragaria, NBS-LRR genes were shown to occur as single 

loci and in clusters with an unequal distribution across the genome, often at the distal 

ends of chromosomes (van Eck and Bradeen, 2018). A similar structure of Rdr1 

homologues in roses was found in an updated version of the Fragaria genome at 

syntenic positions, indicating a presence of the clusters prior to the split of Fragaria 

and Rosa.  

Phylogenetic analysis of Rdr1 homologues identified for ‘Old Blush’ led to the 

assumption that the two clusters developed independently. With the addition of Rdr1 

homologues found in Fragaria vesca, genes from cluster 1 formed mixed groups, while 

the genes from cluster 2 (including muRdr1A) formed species-specific subgroups, 

indicating a faster evolution within cluster 2. It has been shown that the evolution of 
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NBS-LRR-encoding genes can be rapid or slow, depending on genetic mechanisms 

such as unequal crossing‐over, insertions/deletions, gene conversion, point mutations, 

illegitimate recombination and birth and death processes (Kuang et al. 2004; McHale 

et al. 2006; Wicker et al. 2007). In lettuce, rapid (type I) and slow (type II) evolving 

genes belong to the major cluster of NBS-LRR encoding genes (RGC2) (Kuang et al. 

2004). The R1 resistance-gene cluster in Solanum demissum contains three groups of 

independently evolving type I R-genes with >90% nucleotide identity within each group 

(Kuang et al. 2005).  

For the identification of Rdr1 homologues in other Rosaceae genomes, Malus and 

Prunus showed no Rdr1 homologues at syntenic positions (confirming earlier results 

of (Terefe-Ayana et al. 2012)). Thus, the emergence of the Rdr1 clusters must have 

been after the Amygdaloideae split from the Rosoideae. Furthermore, the Rdr1 

clusters were not present at syntenic positions in Rubus, indicating an insertion to their 

current positions probably after the Rubeae split from other groups, like Roseae or 

Potentilleae, within the Rosoideae (after Xiang et al. (2016)). 

The genus Rosa is subdivided in four sub-genera, with the subgenus Rosa comprising 

most of the species, including the ones analysed in this study (R. xanthina, R. rugosa, 

R. damascena, R. moschata, R. multiflora, R. chinensis and R. laevigata). In addition, 

R. minutifolia belongs to the subgenus Hesperhodos and R. persica belongs to the 

monotypic subgenus Hulthemia (Wissemann, 2003). A cluster analysis of the Rdr1 

family members from the ten species belonging to different subgenera showed mixed 

clusters for all rose sequences, with a few exceptions, indicating a close relationship 

between these species.  

The sequence information and genomic organisation of the Rdr1 family members 

described in this study may be used as a valuable source to analyse the role of related 

genes concerning their disease resistance in other species within Roseae, Colurieae, 

Potentilleae or Agrimonieae. The sequence identity of the Rdr1 homologues could be 

used in gene-silencing approaches to investigate if any member of the Rdr1 family 

encodes for other resistance traits. R‐genes from one cluster were previously found to 

confer resistance to different pathogens (e.g. virus and nematode) as well as against 

different isolates from a fungus (Botella et al. 1998; Ellis, 1999; Kuang et al. 2005; van 

der Vossen et al. 2000). 
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6.3 Response of roses to D. rosae infection 

Transcriptomic analysis of the compatible interaction of D. rosae and roses with the 

MACE approach showed an up-regulation of genes related to common defence 

mechanisms, while leaves inoculated with P. pannosa showed a down-regulation of 

genes related to photosynthesis and cell wall modification (Neu et al. (2019), chapter 

4). A general response to both pathogens (D. rosae and P. pannosa) was mainly 

characterized by the up-regulation of PR10 genes, major allergens (Pru av1, Pru ar1, 

and Mal d 1) and chitinases, indicating a PTI reaction caused by fungal chitin or the 

penetration of the cuticle. 

D. rosae, as a hemibiotrophic fungus, employs both biotrophic and necrotrophic 

infection strategies. An initial biotrophic stage is followed by the transition from 

biotrophy to necrotrophy and a later necrotrophic state, which is characterised by cell 

death. The transcriptional changes during the infection stages of hemibiotrophic fungi 

have been already analysed in tomato (Jupe et al. 2013; Zuluaga et al. 2016). In the 

compatible interaction between tomato and the hemibiotrophic fungus Phytophthora 

capsici, two major transcriptional switches associated with early infection and the 

biotrophy to necrotrophy transition were observed (Jupe et al. 2013). 

With the analysis of the transcriptomic changes from 0-72 hpi, only the early stages of 

infection, and thus the biotrophic stage and probably also the transition stage, of D. 

rosae were analysed. At 24 hpi, the spores germinated and the first haustoria were 

formed; after 72 hpi, long-range hyphae and numerous haustoria were formed. Only 

about six days after the infection, necrotrophic intracellular hyphae were formed 

followed by a fungal reproductive stage in which acervuli with new conidia are formed 

(Blechert and Debener, 2005; Drewes-Alvarez, 2003; Gachomo et al. 2006; Gachomo 

and Kotchoni, 2007). For a precise characterisation of the stages, further analyses are 

necessary to determine the exact time point of the respective phase. Additionally to 

microscopic and macroscopic analysis of the fungus development, Zuluaga et al. 

(2016) performed an expression analysis of P. infestans genes used as markers for 

biotrophy and necrotrophy. 

The majority of responses during the interaction with D. rosae occurred at 24 hpi and 

included the up-regulation of many genes encoding enzymes in the lignin biosynthetic 

and flavonoid pathways. The synthesis of lignin or lignin-like phenolic polymers was 

previously observed in response to other pathogens (Eynck et al. 2012; Zhang et al. 

https://www.dict.cc/englisch-deutsch/approximately.html
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2007). Similar to the early response to D. rosae, WRKY-type transcription-factor 

families were also found to be induced upon the infection with P. capsici in tomato 

(Jupe et al. 2013). Additionally, Jupe et al. (2013) identified many down-regulated 

receptor-like kinases (RLKs) in the biotrophic stage, which may enhance the virulence 

of the fungus. During the transition stage in the interaction of Phytophthora infestans 

and tomato, genes including an endo‐β‐1,3‐glucanase (GH‐17), lipoxygenase, 

chitinase (GH‐19) and PR1 showed the highest transcript abundance (Zuluaga et al. 

2016). Similar results were found in the interaction of D. rosae and roses, where PR1 

was among the most highly up-regulated genes. The transcriptional changes found 

during the early stages of infection with the hemibiotrophic fungi in tomato are thought 

to be due to an initial PAMP or an effector induced-response, which is either 

insufficient, avoided or suppressed by the fungi (Jupe et al. 2013; Zuluaga et al. 2016). 

Therefore, a similar conclusion can be made for the early infection with D. rosae. The 

genotype PC also contains a number of Rdr1 homologous with unknown function 

(unpublished results). Thus, an initial response could be triggered by other Rdr1 family 

members, which are broken by the D. rosae isolate DortE4. Stable transgenic RNAi-

plants of the susceptible genotype PC, where the Rdr1 family is down-regulated, were 

already generated (data not shown). These plants might be used for further 

transcriptomic experiments in order to prove if the early response to D. rosae is partially 

mediated by Rdr1 family members. 

 

6.4 Rdr1 initiated transcriptomic changes during incompatible interactions 

between roses and D. rosae  

In addition to the common immune responses of roses to D. rosae infection, specific 

responses caused by Rdr1 in the incompatible interaction between roses and D. rosae 

were analysed. The presence of stable transgenic roses harbouring Rdr1 (Menz et al. 

(2018), chapter 2) allowed a transcriptomic analysis of an incompatible compared to a 

compatible interaction in the same genetic background. As transcriptomic differences 

can be genotype-specific, crosses with the stable transgenic roses harbouring Rdr1 

allowed an additional analysis in a different genetic background. However, for the 

MACE analysis, the resistant genotype 91/100-5 was compared to the susceptible 

genotype ‘Pariser Charme’. The use of a resistant cultivar compared to a susceptible 

cultivar for transcriptomic analysis during an incompatible interaction like in other 
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studies, e. g. in rice (Zhang et al. 2017) or chickpea (Saabale et al. 2018), can lead to 

artefacts as the transcriptomic differences may be caused by genotypic differences 

rather than by fungal infection. The use of stable transgenic plants rule out possible 

artefacts caused by genotypic differences, but the transformation process and the long 

in vitro culture can also introduce genetic mutations that can lead to artefacts (Arnold, 

2008; Latham et al. 2006).  

Another approach for transcriptomic analysis during the interaction of roses and D. 

rosae could be the use of one rose genotype harbouring Rdr1 (e. g. 91/100-5 or one 

of the stable transgenics harbouring Rdr1) and two different isolates of D. rosae, one 

for a incompatible (e.g. DortE4) and one for the compatible interaction (e.g. R6). A 

similar approach was used for the analysis of the interaction of rice with the 

hemibiotrophic fungus M. oryzae (Wang et al. 2014). 

In this study, MACE data were used to select genes with a potential role in the defence 

response of roses against D. rosae. From a set of 55 differently expressed genes 

analysed in a high-throughput RT-qPCR system and 137 genes analysed by standard 

RT-qPCR, two genes showed significantly higher expression in the incompatible 

interaction compared to the compatible interaction, independently of the genetic 

background. Both genes, one encoding a peroxidase superfamily protein and the other 

encoding a Kunitz family trypsin and protease inhibitor protein, belong to the class of 

PR-genes and are known to be involved in plant defence responses (Chassot et al. 

2007; Golubenko et al. 2007; Huang et al. 2010). This low number of genes 

significantly up- or down-regulated in the incompatible interaction could be due to the 

selection of genotypic differences from MACE analysis rather than transcriptomic 

differences caused by Rdr1. Additionally, because of high variations between the 

biological replicates, many genes had to be excluded for further analysis. However, 

this also shows how challenging it is to analyse the complex interaction system of plant 

and pathogen.  

In contrast to the MACE results, some genes were significantly up- or down-regulated 

in both incompatible interactions with D. rosae (91/100-5+DortE4 and PC::muRdr1A-

57+DortE4 compared to PC+DortE4) in high-throughput RT-qPCR. The results of both, 

MACE analysis and high-throughput RT-qPCR are highly dependent on several 

factors, such as RNA quality, reference sequences/genes or bioinformatic challenges. 

In chapter 4 (Neu et al. 2019), the MACE technique could be validated using high-
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throughput RT-qPCR with a correlation coefficient of 0.82. However, the variability 

between MACE and high-throughput RT-qPCR results seems to be higher than 

expected. Therefore, the high-throughput RT-qPCR results are probably more reliable 

than the MACE results, because three independent inoculations with three technical 

replicates and three reference genes were tested for all genotypes. In addition, the 

quality of the MACE results is dependent on the quality of the sequence assemblies. 

For complex genomes, like the tetraploid rose genotypes PC and 91/100-5, highly 

redundant sequences can lead to false positive results and it is more difficult to 

distinguish isoforms or splice variants. Furthermore, sequenced 3’ ends of cDNAs, 

which include larger parts of the untranslated region (UTR) cannot be annotated (Kahl 

et al. 2012; Wang et al. 2009). However, the results of the genes coding for a 

gibberellin-regulated 6, a probable polygalacturonase non-catalytic subunit, a caffeic 

acid 3-O-methyltransferase, a disease resistance response 206-like and a laccase-15-

like are mostly in contrast to other studies, thus it remains unclear whether these genes 

play a role in the resistance against D. rosae or not.  

Further, the analysis of transcriptomic changes during a plant-pathogen interaction is 

dependent on the successful infection process. Abiotic factors (e. g. temperature and 

humidity) can slow down the infection process and lead to a time-shift in gene 

expression when two interaction systems are compared.  

In rice, among the up-regulated genes in the incompatible interaction with the 

hemibiotrophic fungus M. oryzae, many genes showed increased expression at 12 hpi 

(Wang et al. 2014). In our study, the first time point was 24 hpi; thus, the use of an 

earlier time point (e.g. 12 hpi) could help to identify more DEGs related to D. rosae 

resistance in roses. 

In contrast to other studies in which genes such as PR-proteins (Saabale et al. 2018; 

Wang et al. 2010; Wang et al. 2014), transcription factors (Buscaill and Rivas, 2014; 

Erpen et al. 2018; Nakashima et al. 2009), WRKYs (Wang et al. 2014), receptor-like 

kinases (Wang et al. 2014) were shown to have a function in the resistance to fungal 

pathogens, no correlation to D. rosae resistance was observed in this study. This could 

be due to the set of selected genes. In further experiments, the gene set could be 

extended to more genes known to have a function in the resistance to hemibiotrophic 

fungi. However, transcriptomic differences caused by D. rosae may be completely 

different from other hemibiotrophic fungi. Further, in most of the studies, it is not clear 
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if the data arrived from three independent biological replicates and the inconsistent 

results obtained in this study show that in some cases three biological replicates may 

be insufficient. 

 

6.5 Conclusion  

In this study, muRdr1A, a member of a cluster with nine highly similar TNL-genes, was 

identified to be the functional Rdr1 resistance gene against D. rosae. In a disease 

assay, muRdr1A showed to confer a broad-spectrum resistance against D. rosae 

independently of the genetic background. Thus, Rdr1 can be used as a tool for the 

breeding of rose varieties with a durable broad-spectrum resistance against D. rosae. 

The analysis of Rdr1 family members in other rose species, as well as in other 

Rosaceae, revealed a genomic organisation of the family in two major clusters with 

different ancient origins. This information and the sequence information provided in 

this study can be used as a valuable source to analyse the role of Rdr1 homologs 

concerning their disease resistance in other species. 

The transcriptomic analysis during the compatible interaction of roses and D. rosae 

indicated an initial PTI reaction elicited by chitin or the penetration of the cuticle, which 

is either insufficient, avoided or suppressed by D. rosae.  

This study also provides first insights in transcriptional changes during the incompatible 

interaction of roses and D. rosae caused by Rdr1. However, due to the selection of 

candidate genes based on the MACE results, most of the observed DEGs were 

probably due to genotypic differences and not by D. rosae infection. In addition, the 

high variability between the biological replicates indicates, that three replicates are 

insufficient to analyse transcriptomic changes during plant-pathogen interactions. 

Nonetheless, the transgenic roses harbouring Rdr1 provide a tool for analysis of 

incompatible and compatible interactions of roses and D. rosae in the same genetic 

background and, thus, should be used for further transcriptomic approaches to analyse 

the Rdr1 mediated defence response. Furthermore, the transgenic roses harbouring 

Rdr1 and their progeny offer a tool for basic research on the function of TNL genes. 

https://www.dict.cc/englisch-deutsch/insufficient.html
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