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Abstract

Gravitational waves (GWs) are one of the few remaining predictions of Einstein’s theory
of general relativity for which no direct evidence has yet been discovered. They promise
to open up a completely new window for astronomy. GW signals are expected to be very
weak, so that highly sensitive detectors and data-analysis methods are required.

Currently, laser-interferometric detectors provide the most promising way for direct
GW detection, although the first generation of these detectors has not detected any
GWs yet. A second generation with increased sensitivity will come online in the next
few years, making these exciting times in GW research.

The majority of this thesis is concerned with data analysis for continuous gravit-
ational waves (CWs) with ground-based detectors: long-lasting, narrow-band signals
which could be produced by rotating neutron stars with non-axisymmetric deformations.
Most CW data-analysis methods assume a Gaussian distribution for the detector noise.
Non-Gaussian artefacts of instrumental and environmental origin can decrease the per-
formance of these methods if they are “signal-like”, i.e. also narrow-band and sufficiently
long-lasting. Such artefacts are referred to as “lines”.

The main research work presented in this thesis consists of the development of a
Bayesian model-selection approach to mitigate this problem and to increase the line-
robustness of CW searches. An explicit, yet simple, “signal-like” line model is used to
derive new line-robust detection statistics. Simple approaches to tuning these new detec-
tion statistics for improved performance are presented, along with extensive numerical
tests both on synthetic data sets and with injections of simulated CW signals into real
data from the LIGO (Laser-Interferometric Gravitational-wave Observatory) detectors.

These newly developed methods for CW data analysis are already in use on the
distributed-computing project Einstein@Home.

Additional research work presented in this thesis covers an extended investigation
of the behaviour of these line-robust statistics under extreme conditions, such as large
differences in the relative sensitivities of different detectors. Preliminary results are
presented for an alternative line model based on unmodulated sinusoids.

This thesis also contains a concept study for a space-based GW detector with six space-
craft in an octahedron-shaped constellation, allowing for displacement-noise-cancelling
measurements of long-wavelength GWs.

Keywords: gravitational waves, neutron stars, data analysis
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Kurzfassung

Gravitationswellen (GW) sind eine der wenigen verbleibenden Vorhersagen aus Einsteins
Allgemeiner Relativitdtstheorie, fiir die es noch keine direkten Nachweise gibt. Ihre zu-
kiinftige Entdeckung verspricht, der Astronomie ein véllig neues Beobachtungsfenster zu
6ffnen. Man erwartet, dass GW-Signale sehr schwach sind, sodass duflerst empfindliche
Detektoren und Datenanalysemethoden bendtigt werden.

Laser-interferometrische Detektoren bieten den derzeit vielversprechendsten Ansatz
zur direkten GW-Messung, jedoch hat die erste Generation solcher Detektoren noch keine
Signale nachweisen konnen. Eine zweite Generation mit verbesserter Messgenauigkeit
wird in den folgenden Jahren die Beobachtung aufnehmen, sodass eine spannende Zeit
in der GW-Forschung ansteht.

Der Grofsteil dieser Doktorarbeit behandelt die Datenanalyse kontinuierlicher Gravi-
tationswellen (engl.: continuous waves, CWs) mit terrestrischen Detektoren: langandau-
ernde, in der Frequenz schmalbandige Signale, die von rotierenden Neutronensternen mit
nicht-axisymmetrischen Verformungen ausgestrahlt werden konnen. Die meisten CW-
Datenanalysemethoden basieren auf der Annahme einer Gaufs-Verteilung des Detektor-
rauschens. Nicht-Gaufsche Storsignale oder “Artefakte”, die im Detektor selbst oder sei-
nem Umfeld entstehen, kénnen jedoch die Detektionswahrscheinlichkeit dieser Methoden
verringern, falls diese Artefakte “signal-artig” ausfallen, also ebenfalls schmalbandig und
hinreichend langandauernd sind. Derartige Artefakte werden auch als “Lines” bezeichnet.

Das Hauptforschungsergebnis dieser Dissertation ist ein Ansatz zur Minderung dieses
Problems und Verbesserung der Line-Robustheit von CW-Analysen mittels Bayesscher
Modellauswahl. Ein explizites, dabei einfaches, “signal-artiges” Line-Modell dient der
Herleitung neuer, Line-robuster Teststatistiken. Aufierdem werden einfache Ansétze zur
Anpassung dieser Statistiken prisentiert, die die Detektionswahrscheinlichkeit erhéhen,
sowie ausfiihrliche numerische Tests mit synthetischen Daten und Injektionen simulierter
CW-Signale in echte Messdaten der LIGO-Detektoren (engl.: Laser-Interferometric Gra-
vitational-wave Observatory). Diese neuentwickelten Methoden zur CW-Datenanalyse
werden bereits im Verteiltes-Rechnen-Projekt Einstein@Home verwendet.

Zusitzliche Forschungsarbeiten, die in dieser Dissertation beschrieben werden, bein-
halten eine Untersuchung des Verhaltens der Line-robusten Statistiken unter extremen
Bedingungen wie sehr ungleichen relativen Messgenauigkeiten mehrerer Detektoren, so-
wie vorldufige Ergebnisse fiir ein alternatives Line-Modell mittels unmodulierter harmo-
nischer Funktionen.

Diese Arbeit enthélt auferdem eine Konzeptstudie fiir einen GW-Detektor aus sechs in
Form eines Oktaeders angeordneten Weltraumsonden, der das "Verschiebungsrauschen®
(engl.: displacement noise) bei der Messung langwelliger GW eliminieren kann.

Schlagworte: Gravitationswellen, Neutronensterne, Datenanalyse
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1 Introduction

Gravitational waves (GWs) are one of the few remaining predictions of Einstein’s theory
of general relativity for which no direct evidence has yet been discovered, and they
promise to open up a completely new window to astronomy.

GWs can be understood as ripples in space-time, propagating at the speed of light.
Produced by high-energy astrophysical phenomena, their direct detection could provide
information that is complementary to that from observations in “photon astronomy” and
particle astrophysics.

Gravity is a weak force, when compared to electro-magnetism or nuclear forces, and space-
time can be cousidered as a very “stiff fabric”, which even for huge energy inputs only
carries small GW amplitudes. Hence, practical research on GW detection has focussed for
decades on the construction of highly sensitive detectors, and on the development of data-
analysis methods that can extract the extremely weak signals from the measurements of
these detectors.

The most sensitive GW detectors constructed so far are laser interferometers with arm-
lengths of hundreds of meters to several kilometres, including the Laser-Interferometric
Gravitational-wave Observatory (LIGO). The first generation of these detectors has
provided interesting upper limits on the GW emission for a variety of source types,
but has not detected any GWs yet. A second generation of interferometric detectors,
with increased sensitivity, will come online in the next few years, making these exciting
times in GW research.

The majority of this thesis is concerned with the specific topic of continuous-wave data
analysis. Continuous gravitational waves (CWs) are a class of possible astrophysical
signals that are narrow-band in frequency and can typically be described by a relatively
stable signal model over years of observation. In the frequency band covered by terrestrial
interferometric detectors, such as LIGO, CWs could be produced by rotating neutron
stars — extremely compact remnants of massive stars — if they have sufficiently large
non-axisymmetric deformations.

Most CW data-analysis methods assume a Gaussian distribution for the detector noise.
Indeed, in current interferometers this is a good description over most of the observation
time and frequency range. However, the detector data also contains non-Gaussian dis-
turbances and artefacts of instrumental and environmental origin. Transient disturbances
are typically only relevant in searches for equally transient signals, while CW searches



are mainly affected by so-called “lines”: narrow-band disturbances that are present for a
sizeable fraction of the observation time.

Line artefacts are so problematic because they can be “signal-like” in the sense of being
more similar to a CW signal than to Gaussian noise. Hence, they can cause significant
outliers in a CW search that is based on the comparison of the signal model to Gaussian
noise only, leading to false alarms and therefore to decreased chances of confidently
detecting an actual signal.

Many ad-hoc approaches to mitigate the problem of lines have been developed in the
past. The main research work presented in this thesis is the development of a Bayesian
model-selection approach to line mitigation. The idea is to use a simple “signal-like”
model for line disturbances, which does not require additional information about the
characteristics of GW detectors, but only uses the main data stream already in use by
the standard search methods. This way, line-robust detection statistics can be defined
that reproduce the performance of standard methods in Gaussian data, but work better
in line-affected frequency bands. This is intended as a “first line of defence” against the
most common noise artefacts, but still assuming that additional post-processing steps
will handle other types.

This thesis is structured as follows, with an introductory summary of background know-
ledge followed by several parts containing the results of original research work, conducted
together with several collaborators.

Secs. give a summary of established knowledge that is necessary as a background for
the work presented later on: general relativity, astrophysical GW sources, GW detectors,
probability theory and statistics, as well as standard methods of CW data analysis.
The material in these chapters is based on standard literature, and contains no original
results. I usually point the reader towards a few comprehensive books or review articles
at the beginning of each chapter or section, and give additional references where they
are relevant for the specific content.

The central part of the thesis, Secs. presents the first stage of results from the line-
robustness project described above. This material is based on the publication “Search
for continuous gravitational waves: Improving robustness versus instrumental artifacts”,
by D. Keitel in collaboration with R. Prix, M. A. Papa, P. Leaci and M. Siddidqi,
Phys. Rev. D 89.6, 064023 (2014), abbreviated as KPPLS14 in the following.

The material in this thesis is an extension of that in the original paper, including addi-
tional details of the derivations and the tuning procedures. I also present more compre-
hensive versions of the original numerical tests, covering both synthetic draws of detection
statistics and injections of simulated CW signals into real data from the fifth science run
of the LIGO detectors. also contains a more detailed justification of the specific
simple line model used here and by [KPPLS14.

The following Secs. cover additional material from this research project. In
I briefly summarise my contributions to the distributed computing project Ein-



stein@Home with relation to line robustness. Results from these Einstein@Home searches
will be the subject of upcoming publications by the LIGO Scientific Collaboration and
the Virgo Collaboration.

In [Sec. 12] I investigate a generalisation of the assumptions made in KPPLS14 and the
preceding chapters on line-robustness: if a CW analysis uses data from two or more
detectors with very different sensitivities, the line-robust statistics could be less effective.
I investigate the boundaries within which they are still safe to use, and also explore
a simple idea on improving their behaviour. Tests with synthetic draws indicate that
this new approach is of limited practical use, but that the optimally-tuned version of
the original line-robust statistic is already safe in most cases of practical interest. Since
the original submission of this thesis in August 2014, a paper based very closely on the
results and text of [Sec. 12 has been published in Class. Quant. Grav. 32:035004, titled
“Line-robust statistics for continuous gravitational waves: safety in the case of unequal
detector sensitivities” (Keitel & Prix 2015).

An independent, though formally similar approach to line-robustness is presented in
based on the modelling of lines as unmodulated sinusoids. This project is still
in early stages, with no corresponding publication yet. Here, I only present preliminary
analytical results and some thoughts on the related topic of marginalising detection
statistics over the phase-evolution parameter space of CW signals.

The two projects mentioned last, unequal-sensitivity investigations and the unmodulated-
sinusoid line-model, are based on ideas originally proposed to me by R. Prix, and he has
played an important role in discussing the implementation and results.

Concluding this thesis, presents a contribution to another central topic of GW
research: the development of new detector concepts. This is an idea originally developed
by Y. Wang, myself and other Ph. D. students from AEI Hannover and then expanded
into a research paper titled “Octahedron configuration for a displacement noise-canceling
gravitational wave detector in space” by Y. Wang, D. Keitel, S. Babak et al., published
in Phys. Rev. D 88.10, 104021 (2013). The material in this chapter is reproduced from
that paper with only minor modifications. I give a summary of my contributions to this

project in [Sec. 14.1.2]






2 Gravitational Waves

This chapter is intended as a quick introduction to the most important concepts around
the topic of gravitational waves (GWs). It contains neither full derivations of all math-
ematical relations, nor an exhaustive discussion of these concepts, nor an extensive liter-
ature review. However, I give references to more detailed review articles and textbooks
wherever possible.

After a short survey of the history of GW research in I present a bare min-
imum of theoretical foundations in Secs. I also describe possible astrophysical
sources for GWs in as well as concepts for GW detection, and their practical

implementation, in Secs. and

2.1 History of GW research

2.1.1 Before Einstein

Most modern accounts of the historical development of GW research begin with Albert
Einstein’s prediction of this phenomenon (Einstein 1916, [1918) based on his theory of
general relativity (GR, Einstein |1915). However, Einstein was already using the term
“Gravitationswellen” (gravitational waves) in such an offhand manner that it was clearly
an established term at this time.

And in fact, the concept (or, more exactly, some concept, as we will see) of GWs was
so widespread, before Einstein, that it even made its way into popular science-fiction
novels:

Die Martier hatten entdeckt, daft die Gravitation, ebenso wie das Licht, die
Wirme, die Elektrizitét, sich in Form einer Wellenbewegung durch den Welt-
raum und die Korper fortpflanzt. Wihrend aber die Geschwindigkeit der
strahlenden Energie, die wir als Licht, Warme und Elektrizitdt beobachten,
300000 Kilometer in der Sekunde betrigt, ist diejenige der Gravitation eine
millionenmal grofere. — Lafwitz (1897)

Translation: The Martians had discovered that gravitation, just as light, warmth
and electricity, propagates through space and through bodies in the form of a
wave motion. But while the speed of the radiative energy that we observe as
light, warmth and electricity 1s 300 000 km per second, that of gravitation is a
mallion times higher.



Apart from this egregious claim about the speed of GWs, the novel also has the Martians
building an entire technology on GW manipulation, and invokes GWs as the basis of
normal gravitational attraction as well:

Die Kérper sind darum schwer, weil sie die Gravitationswellen absorbieren.
Korper ziehen sich nur dann gegenseitig an, wenn sie die von ihnen wechsel-
seitig ausgehenden Gravitationswellen nicht durch sich hindurchtreten lassen.
— Labwitz (1897)

Translation: Bodies are heavy because they absorb gravitational waves. Bodies
attract each other only when they do not let the mutually emitted gravitational
waves pass through each other.

These properties are completely incompatible with a modern understanding of gravity
and of GWs, as we will see in the following section based on Einstein’s GR. However,
they are a nice summary of primitive ideas about GWs that circulated in the centuries
before Einstein.

Whereas the phenomenological aspects of gravity were sufficiently well-described by New-
ton’s laws (Newton [1687) for almost 300 years, the underlying mechanism of gravitational
attraction and the actual physical source of gravitational potentials were always matters
for debate. Newton’s inverse-square law implicitly required instantaneous action-at-a-

distance, though he himself sometimes expressed discomfort with that concept (Newton
1692).

Analogies between gravity and light soon brought on the idea that gravitational force
was mediated by finite-speed perturbations in an “athereal” medium. Hooke (1705)
introduced the idea of a “propagated pulse” as “the Cause of the Descent of Bodies
towards the Earth” (p.185), which is probably the first instance of GW-like language
and concepts.

Later, Laplace (1805) also considered the propagation of gravity, itself understood as a
fluid, at finite speed. To avoid orbital decay due to friction between planets and the
“gravity fluid”, he found it necessary that the GW speed should be orders of magnitude
higher than the speed of light. This notion became commonplace for a century, as
evidenced by the Lafwitz quote.

Similar sether-based ideas for explaining gravitational attraction by the exchange of GWs
reached their height in the 19th century with a multitude of “mechanical” or “kinetic” the-
ories of gravity. A contemporary review was given by Taylor (1877), who also cites Hooke
as the originator of the concept, an another example is the work by Challis (1869)).

But these theories were never very successful at actually describing gravitational phe-
nomena in the laboratory or in celestial mechanics, and today they appear to us as very
ad-hoc and unphysical. When the experiment of Michelson & Morley (1887)) and Ein-
stein’s theory of special relativity (Einstein 1905) did away with the related concept of
a “luminiferous aether” as the medium for electromagnetic radiation, mechanical gravity

theories also became untenable.



2.1.2 Einstein and the theoretical era

Attempts to unify gravity with a finite speed of light, and thus with special relativity,
again hinted at the existence of gravitational waves, as mentioned for example by Poincaré
(1905). Einstein then developed the first true successor to Newtonian gravity, general
relativity (Einstein [1915), which is still the standard classical theory of gravity today. I
will briefly describe that theory, or at least the parts directly relevant to GW science,
in the following sections, but for now I continue with the 20th and early 21st century
history of GWs. For more details about this era, see §3 of Damour ({1983)), Sec. 9.1.2 of
Thorne (1987), as well as the more sociological work by Collins (2004)).

Einstein’s first GR-based publication on GWs (Einstein |1916|) still contained errors: he
later called it “nicht geniigend durchsichtig und auferdem durch einen bedauerlichen
Rechenfehler verunstaltet”, not sufficiently penetrating, and also marred by a deplorable
error in calculation (Einstein 1918). But he followed it up with the correct results two
years later (Einstein 1918). In this modern understanding of GWs, there are (at least)
three fundamental differences to the 19th-century ideas:

1. GWs require no medium to propagate, being “ripples” in space-time itself, and in
vacuum they move at the same speed as electromagnetic waves.

2. GWs are neither responsible for nor directly related to the mutual attraction of
heavy bodies. Whereas Newton’s law of attraction can be derived from the weak-
field limit of a static solution of Einstein’s field equations, GWs are propagating
solutions and can be produced only by time-varying mass distributions.

3. Due to the very weak coupling strength of gravity, compared to other fundamental
forces, GWs of detectable strength can only be emitted by very massive and ener-
getic astrophysical objects, and will still be extremely weak.

In fact, in the first few decades after Einstein’s work on GWs, it was expected that they
must be too weak to ever be detectable. There was even still debate on the question
whether GWs could actually carry energy and deposit it in a detector, or if they were
just a coordinate-dependent mathematical artefact (e.g. Infeld & Scheidegger 1951]).

Nonetheless, fundamental theoretical work on GW emission, propagation and interaction
was carried out in the 1920s and 1930s, e.g. by Weyl (1922) and Eddington (1924).
Consistent results about the energy content of GWs became available with work by
Bondi (1957)), Bondi, Pirani & Robinson (1959)), Bondi (1960)) and Bondi, van der Burg &
Metzner (1962), and with further papers of that series. Thus, the coordinate-independent
existence of GWs and their in-principle detectability was considered established after the
1962 Jablonna/Warsaw GR3 conference — see Infeld (1964) for the original proceedings
and Ashtekar (2014)) for a retrospective. Another essential development was the high-
frequency-limit formalism of Isaacson (1968alb) and his introduction of the GW stress-
energy tensor.



2.1.3 The era of GW searches

Practical work on GW detection only began with the work of Joseph Weber, who first
tried to detect GWs from astrophysical sources with resonant metal-bar detectors (Weber
1960, [1966| see also . Weber claimed the detection of GW events several
times (Weber (1969, 1970, 1986)), based on simultaneous excitations of spatially-separated
detectors. Additional resonant-mass detectors, operated by independent groups, followed
through the 1980s and 1990s, but could not verify Weber’s results.

However, despite the discovery of strong indirect evidence for the existence of GWs
from the orbital decay of a binary pulsar (Hulse & Taylor 1975, Taylor & Weisberg
1982), a direct detection by resonant-mass detectors looked increasingly unlikely, as the
astrophysical predictions for expected signal strengths and event rates were corrected
ever downwards during these decades.

The best prospects for detection were then seen in large-scale laser-interferometric de-
tectors, a concept pioneered by Weiss (1972). I will discuss these in more detail in
[Sec. 2.6l The first generation of ground-based interferometers, in operation during the
2000s, did not detect any gravitational waves so far. The main results are upper limits
on source populations, which in several cases have reached informative levels when com-
pared to the astrophysical predictions. Some data is still undergoing analysis, with the
work presented in this thesis being part of that effort. Improved sensitivity, and therefore
realistic chances of detection, are expected from the second generation currently under
construction.

Space-based interferometric detectors (see have been under discussion since
the 1990s as well, but are still a long-term project: the most mature proposal, LISA,
is currently scheduled for a launch in the 2030s. On a shorter time-scale, pulsar timing
arrays (see offer an alternative approach to GW detection.

Meanwhile, an indirect detection of primordial GWs through the observation of primor-
dial B-mode polarisation in the cosmic microwave background (CMB) was claimed by the
BICEP2 collaboration (Ade et al. [2014). However, Planck measurements (Adam et al.
2014) and many other studies seem to indicate that the signal can be explained purely
by galactic dust foregrounds.

2.2 General relativity

The theory of general relativity (Einstein (1915) describes the dynamical interaction
between space-time, energy and matter. What has been known classically as the “gravit-
ational force” is, in this picture, the effect of the space-time curvature on the movement of
masses, particles and energy flows. This curvature of space-time, in turn, is determined
by its energy content. GR is based on the principle of equivalence and usually expressed
in the language of differential geometry pioneered by Gauss, Riemann and others.



Here, T only very briefly summarise the central properties of the full theory of GR, and
then I will specialise my discussion to two cases of particular relevance to GW science
in Secs. and [2.4] In this summary, I follow the classic texts by Weinberg (1972) and
Misner, Thorne & Wheeler (1973)), hereafter referred to as MTWT73.

Like special relativity, GR works with a four-dimensional space-time consisting of the
familiar three spatial dimensions, together with a time direction, conventionally used as
the 0-coordinate. In any covariantly transformed coordinate frame, where space and time
coordinates can be mixed, distances can be measured locally with a metric tensor g,

3 3
ds2:gﬂydx“dx”:ZZguydx“dxl’. (2.1)
pn=0r=0

I use the common notation with Greek indices p,v, ... running over all four space-time
coordinates, while Latin indices ¢, k, ... are restricted to the three spatial dimensions.
Repeated indices, Greek or Latin, at “opposite positions” (one covariant, one contrav-
ariant) automatically imply summation over their respective range, as in the example
above. My sign conventions are those of Weinberg (1972), so that for example the flat
Minkowski metric of special relativity is given by

-1 0 0 O
0 1 0 0

guV|SRT =N = 0 010 (22)
0 0 0 1

The central quantity in differential geometry is the four-index Riemann tensor, which
fully describes the curvature of a manifold. However, for the field equations of GR we
actually only need a contracted form, the two-index Ricci tensor

Ry = Ry, = 0,1, — 0,19, + T0, T, — T4 T | (2.3)

where 0,, = a% is a shorthand for partial derivatives and the second part of this equation
is written explicitly in terms of the affine connection I', also called the Christoffel symbol.
This quantity is defined through its usage in the geodesic equation for the movement of
a test particle along a 4-D world-line parametrised by the proper time

dr2 modr dr

Its components are related to those of the metric through

= 0. (2.4)

1
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Further contraction of the Ricci tensor yields the curvature scalar, R = R",,.

Using these quantities, the central finding of GR is that the metric g, for a general
curved space-time must be a solution of Einstein’s field equations,

1 8rG
RN/V - igMVR—AgMV = _CTTH’V7 (26)



where c is the speed of light, G'is Newton’s constant and 7}, is the stress-energy tensor,
related to the mass-energy density p of all particles and fields through

p=ul'T,u” (2.7)

for an observer with four-velocity u. The cosmological constant A is not relevant in the
following applications and will be considered zero.

Even though these field equations look deceptively simple, they are very hard to solve
analytically, and GR is a theory with an abundant phenomenology. I will not go into
the details of classical strong-field solutions such as the Schwarzschild metric for spher-
ical and point masses (Schwarzschild [1916]) and the Kerr metric for rotating black holes
(Kerr 1963)), nor into cosmological applications. Instead, in the following two sections
1 discuss only two of the limits of GR most relevant for GW science: the weak-field,
linearised gravity regime for GW propagation and detection, and the quadrupole form-
alism which can describe GW emission from a variety of sources. For more detailed
studies of GW waveforms, especially when considering binary inspirals (see ,
the post-Newtonian approzimation is also very important; but it is not needed in this
thesis.

Note that I have used somewhat sloppy notation and language throughout this section,
for example equating a tensor with its components, using “covariant” and “contravariant”
simply as labels for “upstairs” and “downstairs” indices instead of properly referring to
the different spaces for each type of vector, and so on. As I will now turn to a simpli-
fied, strictly coordinate-dependent description of GWs, these subtleties, although very
important in the general picture, are of no acute concern.

2.3 GW propagation: linearised gravity

A fully coordinate-invariant treatment of propagating GWs and their interaction with a
detector is possible (see Koop & Finn 2014), as well as a non-linear treatment including
back-reaction of the GWs on the “background” space-time (see §35.8 of MTWT73| and
references therein). However, in almost all cases of interest, the treatment of GWs does
not require the full formalism of GR. Mostly due to the weakness of typical GWs, several
approximations and simplifications can be made, so that a linear treatment on a flat
background is sufficient. I only present the most essential steps, while more detailed
versions of this standard derivation can be found, for example, in chapter 10 of Weinberg
(1972), chapter 18 of MTWT73 or chapter 1 of Jaranowski & Krolak (2009), hereafter
referred to as JKQ9L

Let us first assume that the GW is so weak that there exists a coordinate system where
the metric is close to Minkowski, with a small correction |, | < 1:

uv = Nuv + huu . (28)
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Thus, terms of order h? can safely be ignored, including those arising in raising and
lowering indices: we can therefore use 7, for that purpose, instead of the full g,,. For
example, the trace of hy, is simply h = nt"h,,,.

The linearised field equations and the expressions for the GWs themselves take on a
particularly simple form if we use the gauge invariance of GR to choose a particular
coordinate system which is harmonic and transverse-traceless (“T'T”).

First introducing the quantity l_zw, = hy — %nw,h, with the trace h = h",, the harmonic
gauge condition is J,h*” = 0. It already fixes four of the ten degrees of freedom that
huv, as a symmetric 4 x 4 matrix, could have.

In harmonic coordinates, the field equations from [Eq. (2.6)| reduce to a linear form:

16nGr . (2.9)

cl

Ohyy = 0% Ohy = —

Propagating GWs are vacuum solutions of GR, ie. T, =0. Just as in Maxwellian
electromagnetisim, we therefore have a simple 4-D wave equation, whose simplest solutions
are plane waves. Any more complicated GWs of arbitrary shape and spectral structure
can be expressed as a superposition of monochromatic plane waves.

The combined harmonic and TT gauges give the constraints that the metric is purely
spatial, h,o = 0, that the wave is excited transversely to its direction of propagation,
Ojh;; = 0, and that it is “traceless”, ht = 0. They reduce the degrees of freedom in Py
to only two. Aligning the coordinate system so that the wave propagates in the 4z
direction, we arrive at a simple expression for the metric perturbation of a plane wave:

00 0 0

|0 hy hx 0
e P Y (2.10)

00 0 0

where hy and hy are the two remaining degrees of freedom. These are also called “plus”
and “cross” polarisations of the GW. As basic solutions of the wave equation [Eq. (2.9)]
they can be expressed by periodic functions

z
hy(t,z) = A cos (w <t - E> + ¢+) , (2.11a)
z
hy(t,z) = Ay cos (w (t—g) —|—qb><) , (2.11b)
with angular frequency w, amplitudes A4, Ax and phases ¢, P«.

Each of hi(t,z), hx(t,2) by itself corresponds to a linearly polarised wave. A general,
elliptically-polarised GW as in [Eq. (2.10)| can be expressed as

h(t,z) =hi(t,z)er + hy(t,z)ex, (2.12)
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with a basis of polarisation tensors defined by unit vectors T, -

I=ETRT-YRY, (2.13a)
 =ERTHTRE. (2.13b)
Alternatively, a circular polarisation basis is given by
= (e4 +iex) (2.14a)
er = ——(e iex), 14a
T \/§ —+ X
1
e = —(ex —iex). 2.14b

2.4 GW emission: quadrupole formalism

The amplitude of a GW decreases linearly with the distance between source and observer
(while the power decreases quadratically, just as optical luminosities do). We know that
there are no very strong GWs reaching Earth, since we would already have detected
them by experiments such as those by Weber. So any GWs we hope to observe are weak,
and linearised gravity is a good description for the observation, far from any strong
gravitational field sources. However, distances to astronomical objects are huge, and
hence for the GW to be detectable at all, the source must indeed have a strong field.
Therefore, we need a different formalism to describe GW emission.

This task still does not require full GR: it turns out that a treatment of GW emission
only requires knowledge of the field at distances from the centre of the source where
the field is already weakened, but still dominates over contributions from the rest of the
universe. This is called the “local wave zone” by Thorne (1987). Similar approximations
are known for the emission of dipole antennas in electromagnetism. Since gravitation
is a spin-2 field with a quadrupole as the lowest moment in a multipole expansion, this
approach is called the quadrupole formalism. It is described in detail in Sec. 9.3.2 of
Thorne (1987), chapter 36 of MTWT73, Sec. 3 of Maggiore 2008|and Sec. 1.7 of JK09.

The central quantity here is the (traceless) quadrupole moment of the mass distribution,
which in the Newtonian limit — for sources with weak internal fields and slow internal
motions — is given by

Zij(t) = / p(t, T) <mg - ;7"25@) d’z (2.15)

at a distance r from the centre of the source with a mass distribution p.

To leading quadrupole order, it is then relatively straightforward to compute the local
GW amplitude, which in the T'T gauge is found as

hij = iiGat ( f). (2.16)

C
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On average over several cycles of the GW-generation process, the emitted luminosity is

G BT\
L:5c5izj<(dt3>>' (2.17)

Egs. |(2.16)| and [(2.17)| remain valid for sources with a strong internal field, as long as
the internal motions are slow. It is only necessary to replace Z from m with the
quadrupole coefficient from an expansion of the Newtonian potential, with the dipole
term vanishing in the centre-of-mass frame of the source (Thorne |1980)),

M 3G ZTIi:(t)x'zd  5G T (t)xtai k
b oM IGT G Tttt
r 2 r 2 r

(2.18)

and, possibly, to include higher-order terms for the amplitude and luminosity.

Here, I am glossing over the issue of radiation reaction, i.e. the effects of the emitted
GW on the source itself, which is discussed briefly in Sec. 9.3.2 of Thorne (1987), and in
more detail in Damour (1983) and in the references therein.

The most relevant example for this thesis is the GW emission from a spinning compact
object, such as a neutron star (see [Sec. 3)), with rotational frequency fror and “ellipti-
city”
¢ = [Lzw — Lyl ’ (2.19)
IZZ
where I is the moment-of-inertia tensor. More precisely, this corresponds to the devi-
ation from axisymmetry around the spin axis. At a distance d from the observer, the

quadrupole formalism predicts a GW amplitude (at fow = 2frot, Prix |[2009) of

_ 4m?G e Izzfr0t2

h
0 ct d

(2.20)

2.5 Astrophysical sources of gravitational waves

Although gravity is the force of nature which is most directly experienced in everyday
life, as well as the dominant force over cosmic scales, it is in fact a much weaker force
than electromagnetism - in other words, the coupling between gravitation and matter
is weak. Hence, GWs tend to be much weaker than electromagnetic waves. Emitters
of non-negligible GW energy must be extremely massive and energetic systems, making
GWs an intrinsically astrophysical topic.

Furthermore, the results of tell us that any GW source must have a time-
varying mass quadrupole. Spherically symmetric sources, such as a simple radially-
pulsating star, cannot produce GWs. The simplest systems which fulfil the quadrupole
requirement are (i) two or more orbiting objects and (ii) rotating individual objects with
non-axisymmetric deformations. Promising candidates are typically compact objects
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with high masses, where the density is high enough to create strong-field effects, and
with high orbital or rotation speeds.

This line of reasoning leads us to two of the most interesting candidate sources for ter-
restrial GW detectors: compact binaries and rotating compact stars. In the following, I
describe these sources, and some others which are also relevant for terrestrial interfero-
metric GW detectors (see . I refer only tangentially to sources for other types

of detectors (see [Sec. 2.7)).

2.5.1 Compact binaries

The most promising sources for the detection of GWs with ground-based interferometers
are compact binary systems. “Compact” here refers both to small separations of the
system components and to the components themselves. For ground-based interferometric
detectors, these include neutron stars (NSs) and stellar-mass black holes (BHs). (See
Abadie et al. |2010c, and Secs. II.A,B of Andersson et al. [2013.) Both are remnants of
supernova explosions of massive stars. I will give some details about NS properties and
physics in but will not go into any details about BHs in this thesis.

When two such objects orbit each other, this constitutes a time-varying mass quadrupole,
and the system will radiate away energy in GWs. This emission is compensated by
a reduction in gravitational binding energy, which corresponds to a shrinking orbital
separation and, according to Kepler’s laws, to increased orbital speed.

This orbital evolution can in some cases be observed directly by conventional electromag-
netic astronomy. The observation of orbital decay in the binary system PSR B1913-+16,
consisting of a pulsar (see and another NS, by Hulse & Taylor (1975) and
Taylor & Weisberg (1982) gave the first indirect evidence for GWs, as the measured
orbital tightening matches the predictions of GR very well.

However, a GW signal strong enough for direct detection is expected only from the
final phase of an inspiral, much later than the current stage of PSR B1913+416. This
final phase, shortly before and including the actual collision of the two objects, is called
coalescence. Hence, this type of signal is referred to as a “compact binary inspiral” or
“compact binary coalescence” (CBC). The typical signal shape before coalescence is a
“chirp”, since the increasing orbital speed produces an increasing GW frequency. CBCs
are short, transient events, as the signal frequencies in the final inspiral phase evolve
rapidly when entering the sensitive range of terrestrial detectors.

Long-arm-length detectors, such as the third-generation ground-based ET (see
or space missions (see , are more sensitive towards lower frequencies. Hence,
they could observe earlier phases of binary inspirals, as well as binaries containing white
dwarfs — the burned-out remnants of stars not massive enough to ignite supernovae
(Sathyaprakash et al. 2012, Amaro-Seoane et al. 2013). Space-based detectors, as well as
pulsar-timing arrays (PTAs, see, could also observe, at even lower frequencies,
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the coalescences of super-massive black holes (SMBHs), which can follow a galaxy merger
(Begelman, Blandford & Rees |1980, Volonteri, Haardt & Madau 2003)).

2.5.2 Rotating compact stars

Among solitary objects, the only promising candidates for GW detection with ground-
based detectors are neutron stars. These are heavy, extremely compact and, from electro-
magnetic observations, some of them are known to rotate rapidly (Owen, Reitze & Whit-
comb [2009, Prix [2009). The missing piece of evidence is for quadrupolar deformations,
though models predict that NSs can support significant asymmetries (Johnson-McDaniel
& Owen 2013)).

The GW emission of a rotating NS would typically have a much slower frequency evol-
ution than a CBC event, as even over long observation times only a small part of the
rotational energy is converted to GW emission, and since there is no self-enhancing effect
as for CBCs — on the contrary, a GW-emitting NSs will “spin down” and hence become a
less efficient GW emitter over time. This is the reason why GW emission from rotating
NS is referred to as “continuous waves” (CWs): the signals last for a long time, with only
slow changes in frequency.

Hence, the data analysis problem is very different from the CBC case: one looks for
long-lasting, narrow-band signals instead of short, broad-band transients. Integration
over long observation times can increase the signal-to-noise rate of the intrinsically very
weak signals.

As CWs are the main topic of this thesis, gives more details about NS physics,
and contains an introduction to CW data analysis.

2.5.3 Stellar explosions

Supernova (SN) explosions at the end of the life of massive stars are among the most
energetic events known in the universe. Models of SN explosion mechanisms require
asymmetries, which indicates that some fraction of this energy will get converted into
GWs (Janka et al. 2007). SNe would produce transient signals, similar to CBCs (see
Sec. I1.C of Andersson et al. [2013). However, due to the complicated internal physics,
the shape of waveforms is much harder to predict. Therefore, “unmodelled” searches for
excess strain power are the usual method, which are also called burst searches.

Even more energetic phenomena have been discovered as gamma-ray bursts (GRBs).
Long-duration GRBs are thought to be extremely powerful SN explosions (“hypernovae”,
see Woosley & Bloom 2006, Hjorth & Bloom [2012)), while the leading scenario for short
GRBs is the collision of two NSs, i.e. a coalescence event (Perna & Belczynski 2002,
Belczynski et al. 2006, Troja, Rosswog & Gehrels [2010). Hence, burst and CBC searches
share a common target.
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2.5.4 Early universe

A completely different class of expected GW signals is of cosmological origin (Brustein
et al. 1995, Turner (1997, Maggiore 2000a, Ananda, Clarkson & Wands 2007)). According
to the hot big bang model, the early universe was so energetic that many processes
leading to GW emission can be imagined. Most importantly, such primordial GWs are
expected as the tensor component of initial quantum fluctuations, complementing the
scalar density perturbations which seeded the large-scale cosmic structure and are still
observable today as anisotropies in the cosmic microwave background (CMB). After the
rapid cosmic expansion during the inflationary phase, these GWs would propagate, almost
without interaction, to the present day and, though diluted by expansion, could still be
detectable. An indirect detection of such a signal, imprinted on the B-mode polarisation
component of the CMB, was recently claimed by the BICEP2 team (Ade et al. 2014).

Together with the superposition of signals from binary systems and rotating NS which are
not resolvable as individual sources (Rosado 2011, 2012}, the primordial GWs constitute
a stochastic background (Allen & Romano [1999). This is another very promising source
for direct detection with PTAs and space-based interferometric GW detectors (Phinney
et al. 2004 Jenet et al. [2005, Amaro-Seoane et al. 2013). It is most likely too weak at
the frequencies of terrestrial detectors, but chances of detection are still non-zero and
are pursued by stochastic search techniques, such as cross-correlation of the strain from
multiple detectors.

2.5.5 Exotic sources

As GWs open a completely new window of observations, they also have the potential to
discover exotic sources unknown to electromagnetic astronomy. Among these candidates,
the most “mundane” are intermediate-mass black holes (IMBHs, see Miller & Colbert
2004)), for which no direct electromagnetic evidence exists yet. These could show up as
CBC or burst events, either from IMBH binaries (Fregeau et al. 2006), or when a single
IMBH captures a smaller (stellar) object, or is in turn captured by a SMBH (Mandel
et al. 2008]).

Getting more exotic, phase transitions in the early universe could yield stronger and
sharper signatures than the tensor-perturbation background. Another often-discussed
class of exotic sources are cosmic strings — one-dimensional topological defects, not to
be confused with the elementary superstrings of string theory. These could emit GWs
when rearranging their shape (e.g. spontaneous straightening of “kinks” in the string, see
Damour & Vilenkin 2001)) or colliding with each other.

Finally, GW detectors, especially through the unmodelled searches of the burst and
stochastic types, are also looking out for the vast class of “unknown unknowns”.
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Figure 2.1: Schematic illustration of the
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Abbott et al. (2009¢)).
2.6 Terrestrial laser-interferometric detectors

The main part of this thesis is concerned with data analysis for terrestrial laser-inter-
ferometric detectors, so I will focus on those here. However, there are some other classes
of GW detectors that deserve at least a short description, which I will give in [Sec. 2.7
non-terrestrial, i.e. space-based, interferometric detectors, as well as terrestrial non-
interferometric detectors, and a more indirect approach, pulsar timing arrays (PTAs).
The following introduction to terrestrial interferometers is based on the much more thor-
ough treatments in classic texts by Drever ({1983]) and Saulson (1994)) and the more recent
reviews by Maggiore (2008]) and Pitkin et al. (2011)).

2.6.1 General concepts

In principle, the passage of a GW of sufficient amplitude could be detected by monitoring
the relative distances of any set of spatially separated test masses. The classical thought
experiment to visualise the effect of the two linear GW polarisations given in Eqs.
requires a ring of test particles. In imagine a GW with + polarisation
travelling perpendicularly to the plane of the figure. If the ring is perfectly circular in
the absence of a GW (not pictured), it gets stretched along alternating axes at each
half-phase of the wave. For the x polarisation, imagine the same effect, but rotated by
45 degrees.

Fig. 2.1)also includes a simplistic sketch of a Michelson interferometer. This demonstrates
that a whole ring of test masses is not required, but that the distorting effect of a GW
can also be measured by the differential arm-length change AL between the two arms of
such an L-shaped detector. For an interferometer of arm-length L, the relation of AL to

a GW strain h, given for example by [Eq. (2.20)) is

_AL

h
L

(2.21)

Sensitivity to arbitrarily-polarised GWs from arbitrary directions can be increased with
a global network of L-shaped detectors or with different shapes, such as a triangle.

17
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An L-shaped Michelson geometry is the basis of the Laser-Interferometric Gravitational
Observatory (LIGO, see Abbott et al. 2009¢), which T discuss here as a representative for
all terrestrial interferometers. Just as in the original experiment by Michelson & Morley
(1887), an interferometer allows very sensitive measurements by converting a length
change to a phase modulation of the propagating light beam. A laser provides a high-
coherence, high-power light source, which is important for stable phase measurements

and for low noise levels (see [Sec. 2.6.2]).

A more detailed schematic of a LIGO-type Michelson interferometer is given in [Fig. 2.2]
although this does not include most details of the optical and isolation systems. The laser
beam is sent into two 4 km-length arms by means of a beam splitter, with the two mirrors
at the remote ends of the arms serving as test masses for the GW measurement. After
returning through the beam splitter, the received power at a photo detector, positioned at
90 degrees from the laser source, yields the main output signal. All of these components
are suspended, to isolate the detector from its environment.

Three additional mirrors are used to increase the sensitivity of the interferometer. The
power-recycling mirror between the laser and the beam splitter forms a resonant cavity
with the main part of the interferometer, which for this purpose can be considered as
an “effective mirror”. This is used to increase the incident power on the beam splitter
without having to actually increase the laser power. Similarly, the additional, partially
transmissive test-mass mirrors in the arms, close to the beam splitter, allow the build-
up of enhanced light power in arm cavities and also increase the effective arm-length,
thereby enhancing the measurable phase modulation. The varying widths of the schem-
atic laser beams in illustrate the circulating power in the different parts of the
interferometer.

In the classical readout scheme for the LIGO detectors, the interferometer is configured
such that destructive interference of the laser carrier mode occurs at the photo detector.
It is therefore referred to as operating at a “dark port” or “dark fringe”. Thus, even
when all cavities are in resonance, the received power at the photo detector is very small,
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providing tenable working conditions for a high-sensitivity photo detector. Incident GWs
induce phase modulations in the arms, producing constructive interference at the photo
detector. The interferometer is kept near the dark operating point, which is also referred
to as “locking”, by feedback controls on the mirrors and the beam-splitter and by phase-
modulation of the incident laser beam. The associated “error signal” also provides the GW
strain measurement, extracted by heterodyning with a radio-frequency (RF) oscillator
(see Abbott et al. [2009¢, and Sec. 5.4 of Pitkin et al. 2011).

2.6.2 Noise sources

To measure low-amplitude GWs, we need a very sensitive detector, meaning that all
non-GW contributions to differential phase-modulations in the interferometer arms must
be minimised. However, there are several influences from the terrestrial environment of
the detector and from the involved components, as well as from fundamental physical
properties of laser light, which make any detector a noisy system.

Most of these noise sources have frequency-dependent contributions, so that together
with the optical properties of the interferometer (its transfer function) they dictate a
sensitivity curve for the detector, in the sense of an equivalent strain from m as a
function of frequency. A measured LIGO sensitivity curve, compared with the expected
contributions from various noise sources, is shown in [Fig. 2.4l The relative contributions
from each noise source are different for different detectors and configurations, so I only
describe them qualitatively. A more formal definition of noise spectra in terms of power

spectral densities follows in [Sec. 5.1]

Following Abbott et al. (2009¢)), let me first list sources of displacement noise that couple
to differential motions of the test masses:
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Figure 2.4: Typical noise spectrum of the LIGO H1 detector during its fifth science
run (S5, see , along with the major known noise components. In the low-
frequency part (left panel), displacement-noise contributions dominate, while for higher
frequencies (right panel) mostly sensing-noise sources are relevant. The black curve is
the total measured strain noise, the dashed grey curve the theoretical design goal and
the cyan curve the root-square-sum of all the labelled components. The letters identify
the strongest narrow line artefacts, which I will discuss in [Sec. 6.2} ¢, calibration line;
p, power line harmonic; s, suspension wire vibrational mode; m, mirror (test mass)
vibrational mode. Figure credit: LIGO Scientific Collaboration, Abbott et al. (2009¢).

o Seismic noise includes all kinds of environmental vibrations coupling into the de-
tector, such as seismic activity of the Earth itself, but also coming from the weather
and human activity. It can be reduced by many orders of magnitude by using sus-
pensions, i.e. by hanging all major detector components on wires and multi-stage
pendulums, and possibly with active control. Still, this is the main limiting factor
at low frequencies, producing a steep increase of noise power below ~ 45 Hz for
LIGO and in general limiting the lowest sensitive frequencies of current-technology
terrestrial interferometers to a few tens of Hz.

o Thermal noise is present in all components of a detector, most notably in the
mirrors and the suspensions. Thermal fluctuations cause the excitation of resonant
modes, but also, through dissipation, a broad-band noise contribution.

o Auziliary length noise, angle control noise and actuator noise are all related to the
sensors and control loops used in locking the interferometer and damping other
types of noise. Even though these loops improve the overall sensitivity of the
detector, they also introduce additional, sub-dominant noise components.

Not pictured is gravity gradient noise from fluctuations of the terrestrial gravitational

field, which gives a fundamental limit to low-frequency sensitivity at a few Hz. This is not
yet relevant for current interferometers, due to the dominant seismic noise. However, with
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improved seismic isolation, this can become more important, and is of central interest
for third-generation detectors.

Another class is sensing noise, influencing the phase-modulation measurement;:

e Shot noise is due to the quantum nature of the laser beam, or more specifically to
the intrinsically random fluctuations of the number of photons in the beam. Thus,
it can be suppressed by using a high laser power and resonant cavities. Shot noise is
the main limiting factor at high frequencies, so that the astrophysically interesting
range of sensitivity ends at a few kHz.

e The laser itself contributes additional laser-frequency noise and laser-amplitude
notse components. These couple to both arms, but still yield differential noise due
to unavoidable small differences in the mirror properties.

o RF local-oscillator noise is contributed by electronics that produce modulated
radio-frequency side-bands, used for generation of the “error signals”.

e The photo diode contributes a dark noise due to its internal thermal fluctuations.

Apart from shot noise, another fundamental quantum contribution is radiation-pressure
noise, which increases with laser power and mainly affects sensitivity at low frequencies.
It is expected to become relevant only in future interferometer generations.

Besides these broad-band noise components, which mostly are relatively stable over time,
there are also transient disturbances (called “glitches”) and persistent, but narrow-band
features (“lines”), which I will discuss in [Sec. 6

2.6.3 Existing and planned detectors

The first generation of interferometric GW detectors was constructed in the 1990s and
produced first scientific results in the 2000s. The largest of these are the LIGO detectors
(Abbott et al. 2004a; [2009¢]) at Hanford (Washington, USA; one with 4 km arms, labelled
H1, and one with 2km arms, labelled H2) and Livingston (Louisiana, USA; 4km, L.1) as
well as the Virgo detector at Cascina (Italy, 3km, V1, see Bradaschia et al.|1990} Acernese
et al. 2008). Smaller detectors include GEO600 near Hannover (Germany, 600m, G1,
see Grote 2010) and TAMA in Tokyo (Japan, 300 m, see Tsubono (1995, Kuroda [1997,
Ando et al. 2001).

All of these detectors follow the basic Michelson layout, but with significant differences in
the practical implementation. For example, Virgo uses a special seismic isolation system
called “super-attenuators” (Braccini et al. [1993)), GEOG600 uses squeezed light to reduce
shot noise (Abadie et al. 2011a, Khalaidovski et al. 2012, Grote et al. [2013) and TAMA
was placed in underground tunnels to reduce environmental effects. For most of this
thesis, I will concentrate on the two LIGO detectors H1 and L1.
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Figure 2.5: Time-line of science runs, or data-taking periods, of the first-generation
interferometric GW detectors. Figure credit: Pitkin et al. (2011).

A time-line of all science runs of first-generation detectors is shown in and details
for initial-LIGO science runs follow below. The references variously give run descriptions,
detector status reports or descriptions of calibration and sensitivity.

S1: 2002/08/23 — 2002/09/09 (Abbott et al. |[2004al)
S2: 2003/02/14 — 2003/04/14 (Secs. 11, IV, II of Abbott et al.|[2005albld, respectively)

(
(
S3: 2003/10/31 — 2004/01/09 (Sec. IT of Abbott et al. 2007b)
S4: 2005/02/22 — 2005/03/23 (Sigg [2006))

(

S5: 2005/11,/04 — 2007/09/30 (Sigg 2008, Abadic et al. 2010d)
S6: 2009/07/07 — 2010/10/20 (Abadie et al. 2012¢, Aasi et al. 2014c)

The second-generation network of terrestrial interferometric GW detectors is currently
under construction. While GEO600 keeps running in an “Astrowatch” mode for nearby
supernovae or GRBs, the larger LIGO and Virgo detectors are receiving upgrades towards
their Advanced LIGO (Shoemaker et al. 2011, Aasi et al. 2014a) and Advanced Virgo
(Acernese et al. 2009} 2015) configurations. Plans exist for an additional LIGO detector
in India (Aasi et al. 2013c¢). Another completely new detector is being built in Japan: the
cryogenic 3-km interferometer KAGRA (Kamioka Gravitational wave detector, previously
also called LCGT, see Somiya 2012, Aso et al. 2013, Punturo & Somiya [2013)). The
respective first science runs can be expected in 2015-2020 (Aasi et al. 2013c)).

Several concepts for third-generation detectors are under investigation (Punturo et al.
2010b, Punturo & Liick [2011)). The most mature proposal is called the Einstein Telescope
(ET, see Punturo et al. [2010a, Abernathy et al. 2011, Punturo, Liick & Beker 2014). It
would yield an order-of-magnitude increase in sensitivity over the second generation.
With longer arms and better seismic isolation, it would also significantly bring down the
low-frequency end of the sensitive range, opening a new window for additional sources,
some of them shared with space-based detectors (Sathyaprakash et al. 2011}, 2012]).
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Figure 2.6: Estimated sensitivity curves for various GW detectors and concepts.
Figure credit and references for the individual curves: Pitkin et al. (2011]).

2.7 Other GW-detector types

2.7.1 Space-based laser-interferometric detectors

Laser-interferometric detectors in space can avoid terrestrial noise sources, most import-
antly the “seismic barrier” which fundamentally limits the low-frequency sensitivity of
terrestrial detectors at a few Hz to tens of Hz. Space-based interferometers can also have
longer arms, as no vacuum tubes are needed — instead, the laser beams propagate freely
through space itself. On the other hand, spacecraft hardware is much more difficult
and expensive to build and cannot be serviced and tuned on site, which makes it very
challenging to equal the absolute sensitivities of ground-based detectors. Yet, the expec-
ted GW sources in the lower frequency band of such detectors, especially super-massive
black-hole (SMBH) binaries, should be so strong that comparatively lower sensitivities
(see would be enough to reach much higher signal-to-noise ratios than current
ground-based detectors.

The earliest and most mature concept for a GW detector in space is the Laser Interfer-
ometer Space Antenna (LISA, see Danzmann et al. [2003, 2011)), currently scheduled for
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launch as an ESA L3 mission around 2034. Variations of the concept were and are known
as eLISA (for “European LISA” or “evolved LISA” see Amaro-Seoane et al. 2013 and
NGO (“New Gravitational-wave Observatory”, see Jennrich et al. 2012). The basic idea
is a triangle of three spacecraft exchanging laser light, where the original plan included
three identical spacecraft with six links, and the scaled-down version one mother and two
daughter spacecraft with four links only.

With an arm-length of millions of km, either a heliocentric or geocentric orbit and a target
peak sensitivity of ~ 10~21y/Hz, LISA would be an enormously powerful observatory for
SMBH binaries, for EMRIs and IMRIs (eztreme/intermediate mass-ratio inspirals), for
white-dwarf and neutron-star binaries and cosmological backgrounds.

Even more ambitious concepts are the Japanese Decimeter Gravitational Observatory
(DECIGO, see Kawamura et al. 2006, Ando et al. 2010al, Kawamura et al. [2011)) and the
American Big Bang Observer (BBO, see Phinney et al. 2004, Harry et al. [2006).

Another concept for a space-based detector is the Octahedral Gravitational Observatory
(OGO) by Wang, Keitel, Babak et al. (2013), referred to in the following as |OGO13|
This is not at the stage of a full mission study, but a concept mostly motivated by the-
oretical considerations. Based on the displacement-noise-free interferometry concept of
Kawamura & Chen (2004)), Chen & Kawamura (2006) and Chen et al. (2006]), a constel-
lation of six spacecraft in the form of an octahedron provides 24 measurement channels.
Time-delayed combinations of these measurements can be used to construct GW strain
channels that analytically cancel displacement-noise contributions, which most import-
antly includes acceleration and laser-frequency noise. As I have contributed significantly
to this work, in parallel to the projects described in the main part of this thesis (Secs. @»
, a detailed description of this concept follows in essentially reproducing the
content from [OGO13l

2.7.2 Non-interferometric detectors

There is another GW detector concept, older than interferometric detectors, which I
have already mentioned in [Sec. 2.1} resonant-mass detectors. In principle, GWs can dir-
ectly excite the internal mechanical modes of any extended object. As the expected GW
amplitudes are weak, this effect could be very hard to measure. Low-dissipation detect-
ors using large test masses, very good isolation, cryogenic temperatures and electronic
readout have made the approach viable, typically with resonance frequencies in the kHz
regime. For an early review of the physics of such detectors, see Blair (1983).

After the original attempts by Weber (1960, (1966, (1969, 1970, |1986), more recent ex-
amples of resonant-bar detectors include the American experiment ALLEGRO (Mauceli
et al.|1996) and the three Italian detectors AURIGA (Cerdonio et al.|1997), EXPLORER
(Astone et al. 1993| |2008)) and NAUTILUS (Astone et al. (1997, 2008)). Nowadays, how-
ever, interferometric detectors reach much better sensitivities over a wider frequency
bandwidth, and are generally considered the more promising approach.
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A wvariation of the resonant-mass concept are spherical detectors such as the Dutch
MiniGRAIL (de Waard et al. 2003, Gottardi et al. 2007) and the Brazilian “Mario Schen-
berg” (Aguiar et al. 2002, 2006)). Recently, torsion-bar antennas (TOBAs, see Ando et al.
2010b) have also been investigated.

Yet another concept for high-frequency GW detection makes use of radio-frequency elec-
tromagnetic cavities. (Pegoraro, Picasso & Radicati |1978| Pegoraro et al. |[1978, Bernard
et al. 2001}, Ballantini et al. 2003)). In contrast to mechanical resonators, this could allow
for dynamical tuning of the resonance range. So far, however, only small prototypes
exist.

2.7.3 Pulsar timing arrays

At the moment, the most promising alternative way for GW detection is provided by
pulsar timing arrays (PTAs, see Foster & Backer |1990)). The term refers to the long-time
observation of several (“an array of”) millisecond radio pulsars (see[Sec. 3.3). The central
idea for GW detection with PTAs (Jenet et al. 2005) relies on the modulation of the times
of arrival of pulses from each individual pulsar on Earth by any GWs interacting with
the radio waves along their trajectory. In a simplified picture, a PTA can therefore be
imagined as replacing the km-scale arms of terrestrial interferometers, or the million-km
arms of missions like LISA, with galaxy-scale arms. Hence, PTAs are sensitive to GWs
of much lower frequencies than even space-based interferometers, aiming mostly for the
range from 10~? Hz to 1076 Hz.

On the other hand, PTAs do not require space missions, as the pulsars can simply be
observed by terrestrial radio telescopes. Current efforts on the establishment of suf-
ficiently sensitive PTAs are distributed over an European (EPTA, see Ferdman et al.
2010), a North American (NANOGrav, see Jenet et al. 2009) and an Australian (PPTA,
see Manchester et al. 2013) collaboration. Intercontinental collaboration is in preparation
under the IPTA project (Hobbs et al. 2010]).

The detection of GWs from cosmological sources, especially from SMBH binaries (Rajago-
pal & Romani (1995, Jaffe & Backer 2003, Wyithe & Loeb 2003)), with PTAs is considered
realistic in the current decade, although it is unclear yet whether the most likely first
detection would be a single, strong source or a stochastic background (Maggiore 2000b,
Sesana, Vecchio & Colacino 2008, Rosado 2011)) — this question is discussed by Sesana,
Vecchio & Volonteri (2009)), Mingarelli et al. (2013), Sesana (2013) and Rosado & Ses-
ana (2014)). Future large-scale radio-telescope networks, especially the Square Kilometer
Array (SKA, see Carilli & Rawlings 2004, Dewdney et al. 2013)), are expected to bring
an enormous increase in PTA sensitivity.
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3 Neutron stars and pulsars

Among the possible GW sources discussed in neutron stars (NSs) are the most
relevant for this thesis, as they can potentially produce continuous-wave emission that
would be detectable by terrestrial interferometers. NSs are characterised by the extreme
density and compactness of the matter in their interior, with masses in the range of 1 to 2
Mg (solar masses) compressed into ~ 10km radii, resulting in extreme densities. Their
strong surface gravity makes them promising GR laboratories and GW emitters, and
their strong magnetic fields create a rich phenomenology in electromagnetic observations
— especially the appearance of many NSs as pulsars.

In this chapter, I give a short introduction to the formation of NSs, as well as the current
understanding of their internal structure and of the most relevant emission processes.
For more details, I refer the reader to the references given in each section, as well as the
general references Lorimer & Kramer (2004), Haensel, Potekhin & Yakovlev (2006)) and
Becker (2009)).

3.1 Formation

The idea of extremely compact stellar-mass objects, which have densities similar to that
of atomic nuclei and therefore should actually be composed of nuclear matter, originated
in the early 1930s with Landau (1932) and Baade & Zwicky (1934a.b). A historical
perspective can be found in Baym (1982).

NSs are created in supernova (SN) explosions of massive stars, a notion which goes back
to Baade & Zwicky. When a heavy star has exhausted its fuel of light elements, it suffers
core collapse because fusion no longer provides enough pressure to counteract gravity
and to stabilise the core. This collapse increases the central density by so much that,
in a simplified picture, most protons and electrons are converted to neutrons, leading to
an extremely neutron-rich remnant, the proto-neutron star. The outer layers of the star
bounce back from this stiff, compact core and are blown off, although additional mech-
anisms, including asymmetry, neutrino interactions and hydrodynamics, are believed to
be required for successful modelling of such a SN explosion (Janka et al. 2007).

The ejecta expand and thin out to form a supernova remnant (SNr) nebula. The remain-
ing NS is initially even much hotter than its stellar-core progenitor and though it cools
very rapidly, mostly through neutrino emission (Yakovlev & Pethick 2004)), surface tem-
peratures can still still exceed 106 K after hundreds of years (Yakovlev et al. 2011). The
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discovery of several young, hot NSs in SNrs is currently the best proof for this formation
scenario (Pavlov, Sanwal & Teter 2004).

NSs can only be formed by progenitor stars in a certain mass range. The viable fusion
chains in a star depend on the nuclear binding energies of different nuclei and the star’s
ability to ignite the various steps in each chain, in turn depending on its mass (and initial
composition). For masses < 8 Mg, the final stages of nuclear fusion towards iron-group
elements never ignite, and no SN follows. (Iron-group elements have the most-tightly-
bound nuclei, with nickel-56 and the stable iron-56 being produced most efficiently, see
Sec. 4.7 of Woosley & Weaver (1995, and Woosley & Janka [2005.) Instead, at the end
of the red-giant phase, the outer shells are shed and the core remains as a white dwarf
(WD), which is not nearly as compact as a NS.

On the other hand, for much higher masses — above several dozen Mg, though the exact
boundary depends on chemical composition and stellar-wind losses — the proto-NS which
forms at the centre of a SN becomes too massive and continues collapsing into a black
hole. Very high-mass stars can also be completely disintegrated by powerful SNe.

An important aspect of NS formation is the behaviour of stellar magnetic fields. It is
usually assumed that during the SN most of the initial magnetic field remains attached to
the dense core, and gets amplified by several orders of magnitude by the collapse, reaching
up to 10'2 G. However, in a field-line picture, these can get “buried” inside the remnant
NS during the core collapse (Ho 2011]), and according to current models are expected to
re-emerge on time-scales of thousands of years. Young NSs found in SNrs and with low
magnetic fields, which therefore lack some of the electromagnetic phenomena discussed
in are also known as central compact objects (Pavlov, Sanwal & Teter 2004, de
Luca 2008)).

Even higher magnetic fields have been found in a class of NSs called magnetars, exceeding
10* G. These can be explained by dynamo processes during the NS formation (Duncan
& Thompson (1992, Thompson & Duncan (1993] Spruit [2008).

The evolution of NSs in binary systems is more complicated than for isolated stars, as
mass transfer between the stellar components and orbital effects have to be taken into
account (Canal, Isern & Labay 1990). SNe can also deliver a “kick” to the forming NS,
potentially disrupting the binary (Lyne & Lorimer [1994, Brandt & Podsiadlowski [1995|
Podsiadlowski et al. [2004)).

3.2 Structure

The modern understanding of NS structure is much more sophisticated than the original
“giant nucleon” ideas by Landau (1932) and Baade & Zwicky (1934alb). Generally, NSs
are assumed to have a multi-layered structure, as illustrated in Still, the details
are an active matter of research with many competing models. For general reviews, see
Haensel, Potekhin & Yakovlev (2006) and Weber, Negreiros & Rosenfield (2009).
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The surface layer consists of relatively standard matter, mostly heavy nuclei, though with
their electrons removed and forming a degenerate gas — similar to the interior of WDs,
and with metal-like properties. With increasing depth and density, the neutron content
of these nuclei increases, at at some point gets so high that “neutron drip” occurs, where
free neutrons outside the nuclei appear. Going further down, the admixture of these free
neutrons increases.

Below this crust lies the main interior part of the NS, its core. The outer core is con-
ventionally believed to be dominated by neutrons, with only a small proton and electron
fraction. Between the crust and core might exist a boundary layer in a “pasta phase”,
consisting of extremely deformed nuclei embedded in a liquid neutron phase (Pethick &
Potekhin 1998 Newton, Gearheart & Li [2013]).

The outer core has very interesting properties from a condensed-matter point of view:
the majority component of neutrons is most likely in a superfluid state (Baym, Pethick &
Pines 1969, Pines & Alpar (1985 Lombardo & Schulze [2001), while the proton admixture
may be superconducting (Glampedakis, Andersson & Samuelsson [2011, Lander 2013)).

The most uncertain region is the inner core. In the most conservative model, the neutron
phase reaches all the way to the centre of the NS. However, alternative models predict the
existence of more exotic phases, including heavier baryons (or “hyperons”, Schaffner &
Mishustin [1996)), meson condensates (Haensel & Proszynski|1982) or pure quark matter in
a variety of models, including “colour superconductors” (Alford et al. 2008)) and “strange
stars” (Weber 2005)). In some exotic models, these phases might even reach to the NS
surface (Alford et al. 2006]). Models with both conventional and exotic phases are also
referred to as hybrid stars (Alford, Han & Prakash 2013).
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The difference between the various models is important mostly because they predict
different equations of state (EoS) for the NS, relating pressure and density. Different
EoS also imply different mass-radius relations (Lattimer & Prakash 2001). A generic
property is that neutron star radii decrease with increasing mass, because the strong
gravity compresses heavy NSs even more.

Direct measurements of NS masses constrain the allowed range of EoS, and thereby can
select between the different models. Notably, many exotic models have difficulties ex-
plaining the discovery of NSs with M 2 2 Mg (Demorest et al. 2010, Lattimer & Prakash
2011, Antoniadis et al. 2013)). For reviews of NS equations of state, the observed NS mass
distribution and their relation, as well as mass determination techniques, see Lorimer &
Kramer (2004), Stairs (2006), Lattimer (2012) and Kiziltan et al. (2013]).

3.3 Electromagnetic emission

Young NSs have thermal emission from their surface in the keV range, making them
bright X-ray sources. For NSs close to Earth, thermal emission is detectable across a
wide range of the electromagnetic spectrum, including infra-red, optical, UV and X-rays
(Kaplan 2004). However, older NSs, which have already cooled down significantly, are
very difficult to observe as thermal sources at larger distances.

Yet there are several kinds of strong non-thermal emission that a NS can produce. The
first extra-galactic X-ray source, Scorpius X-1, was discovered by Giacconi et al. (1962)
and first interpreted as a NS by Shklovsky (1967)), though this was not widely recognised
at the time. Today, its emission is known to be powered by accretion off a companion star,
so that it is classified as a low-mass X-ray binary (LMXB, Benacquista & Downing 2013)).
Meanwhile, the first radio pulsar was discovered (PSR B1919+21, discovered in 1967
and published as Hewish et al. [1968). These rapidly and regularly pulsed sources were
connected to rotating magnetised NSs by Gold (1968]), with a similar model previously
published by Pacini (1967)). For details of the early observational history, see chapter 10
of Shapiro & Teukolsky (1983)) and Sec. 1.2 of Haensel, Potekhin & Yakovlev (2006).

The details of the pulsar emission process are intricate (see Kramer et al. (1997, and the
general descriptions in Lorimer & Kramer [2004], Lorimer 2008), but the general picture
is as follows: The strong rotating magnetic field of a pulsar accelerates charged particles
away from the surface, in a beam formed by the field lines. Electromagnetic radiation is
then produced by these particles and emitted along the magnetic field axis. If this beam
points towards Earth, but the magnetic field axis and the rotational axis do not coincide,
we observe pulsed radiation with a frequency equal to that of the rotation.

Most pulsars are observed to spin down over time, as rotational energy is converted into
heat, particles and radiation. However, this loss is dominated not by the pulsed radio or
high-energy emission, but by low-frequency dipole radiation (Graham-Smith [2003)).
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Figure 3.2: Population of currently-known pulsars in the frequency-spin-down plane. The
sub-population in the lower right-hand corner are the millisecond pulsars. Data for this
plot was taken from the ATNF catalogue (Manchester et al. 2005) on July 18, 2014.
2011 pulsars are shown, while 317 with missing fmt measurements were omitted.

Today, over 2300 pulsars are known (Manchester et al. 2005)). Their frequency-spin-
down distribution is shown in A special class of pulsars are the millisecond
pulsars (MSPs), which have the shortest known periods (in the ms range, hence the
name; see Lorimer 2008/ for a review). They reside, predominantly, in binary systems, as
the standard evolution scenario requires accretion from a companion which “spins up” an
old NS to these high frequencies (Alpar et al. 1982)). MSPs also have extremely regular
pulsations, making them ideally suited for pulsar-timing arrays (see . Double-
NS binaries, with one or both components observable as pulsars, are especially valuable
for high-precision tests of general relativity (Kramer et al. 2006, Kramer 2014)).

Although the frequency evolution of most older pulsars is very regular, with a slow and
continuous spin-down, some young pulsars exhibit so-called glitches, sudden increases in
frequency. These events are not fully understood yet, with competing models relating
them to “star-quakes” in the NS crust, rearrangements of the magnetic field, superfluid
vortices in the interior or two-stream instabilities (Ruderman, Zhu & Chen [1998|, Larson
& Link 2002, Link & Cutler 2002, Andersson, Comer & Prix [2003)).

Pulsed emission from some NSs is also observed in the optical (Shearer & Golden 2002),
X-ray (Caballero & Wilms [2012) and gamma-ray bands (Abdo et al. 2013)). Emission
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mechanisms vary — for example, gamma-ray beams can be much broader than radio
beams, and their emission region is usually considered to be higher in the magnetosphere
than for radio emission (Abdo et al. 2009). Hence, the observed pulsar populations in
the various bands are not identical, with an increasing number of radio-quiet pulsars
discovered in other bands.

The pulsar population also includes exotic classes which are related to magnetars, with
their pulsations powered by magnetic-field decay instead of rotational energy: soft gamma
repeaters and anomalous X-ray pulsars (Mereghetti|2008). NSs can also produce a variety
of transient electromagnetic phenomena, including glitch-associated outbursts, magnetar
flares (Hurley et al. 2005) and X-ray burst events in accreting binaries (Lewin, van
Paradijs & Taam (1993).

3.4 Gravitational-wave emission

The most popular model for a non-axisymmetric NS that could produce observable GWs
involves a quadrupolar deformation referred to as a “mountain”, sustained either mech-
anically or by magnetic forces (Ushomirsky, Cutler & Bildsten [2000). For a NS rotating
with a frequency frot, this model predicts GW emission at faow = 2frot, and a strength

given by [Eq. (2.20)

The maximum ellipticity, defined as in that a NS could realistically support
depends on the complex modelling of its internal structure and magnetic field. These
estimates have changed significantly over recent years, with the current state of knowledge
(Johnson-McDaniel & Owen 2013)) favouring epax ~ 107° for the standard nucleon-only
NS model. More exotic structures could support higher ellipticities: €payx ~ 1073 for
quark-baryon hybrid stars and €yax ~ 107! for colour-superconducting quark stars.

For very young NSs, such mountains could simply be residuals of the intrinsic asym-
metries of the SN creating the NS (Janka et al. |2007). For older NSs, possible physical
reasons for deformations could be episodes of accretion in binary systems (Ushomirsky,
Cutler & Bildsten [2000, Watts et al. [2008) and spontaneous breaking of the crust due to
spin-down-induced stress (Ruderman |1969, (1976|, Carter, Langlois & Sedrakian 2000).

An additional component to CW emission can come from free precession (Zimmermann
& Szedenits 1979, Zimmermann [1980, Cutler & Jones |2001, Jones & Andersson 2002)
in the case of misaligned rotational and symmetry axes. This would produce additional
signals at fow = frot + fprec and faw = 2(frot + fprec) (Van Den Broeck 2005)).

Alternatively, CW-type emission could also be produced by oscillatory modes in the
NS interior. Several classes of such modes are known, including f-, g-, p- and r-modes
(Kokkotas & Schmidt 1999, Stergioulas [2003). Of these, r-modes (rotational modes, An-
dersson, Kokkotas & Stergioulas|1999, Friedman & Lockitch |1999) are the most promising
GW emitters (Owen [2000, Owen & Lindblom [2002). These circulatory fluid modes are
relevant mostly in very rapidly rotating NSs (hundreds of Hz and upwards), i.e. young
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NSs shortly after their birth, or in recently spun-up old NSs. As GW emission can ac-
tually drive the r-modes through the CFS instability (Chandrasekhar (1970, Friedman &
Schutz(1978), r-modes could result in strong CW emission at fow = % frot- However, the
physical details of these modes, especially of damping processes, and therefore the actual
predictions are quite uncertain (Ho, Andersson & Haskell 2011). Some of these modes
could also be associated with short burst-like events, or intermediate-duration transients
(Prix, Giampanis & Messenger |2011)).

Furthermore, NSs in close binary systems can accrete matter from their companion,
leading to a temporary asymmetry and possibly to associated GW emission (Bildsten
1998, Melatos & Payne 2005 Payne & Melatos 2006, Watts et al. [2008], Watts & Krishnan
2009). The most promising sources of this type are those binaries known from X-ray
observations as LMXBs (Ushomirsky, Bildsten & Cutler 2000, Chakrabarty et al. 2003,
Benacquista & Downing 2013]).

Returning to the simple model of CW emission due to simple non-axisymmetries, two
simple arguments can be made to obtain upper limit estimates for realistically expected
CW signal strengths. An argument first put to record by Thorne (1987)) and credited to
Blandford (1984)), makes use of statistics for the Milky Way pulsar population and of a
hypothetical class of as-of-yet unobserved NSs. These gravitars would convert almost all
of their spin-down power into GWs, instead of most of it going into EM emission as for the
observed pulsar population. An updated version of this argument (Abbott et al. [2007a)
leads to the estimate that, with 50% probability, one could expect a strongest CW signal
of A = 4 - 10724 — if all NSs were gravitars. Knispel & Allen (2008)) have considered
more realistic assumptions for this argument, arriving at more realistic estimates in the
range of ~ 10726 to ~ 10724, depending on the typical frequencies and ellipticities of the
NS population.

Another important upper limit can be obtained for individual NSs, if their distance d,
rotational frequency fror and frequency derivative fro; are known from electromagnetic
observations. If the entire spin-down energy loss were converted into GWs,
would yield (Prix 2009)

5GIZZ ‘f.rot‘
203 frot

as an upper limit. The spin-down upper limits for several known pulsars are comparable
to the sensitivity of first- and second-generation interferometric GW detectors (Aasi et al.
2014e), and for the Crab and Vela pulsars have already been beaten by LIGO and Virgo
searches (Abbott et al. 2008b, Abadie et al. 2011b).

1
ho < 5 (3.1)

More extensive reviews of GW emission from NSs can be found in Owen, Reitze &
Whitcomb (2009)) and Prix (2009). Those references also cover the topic of continuous
wave data analysis, which I will discuss in [Sec. 5|
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4 Probability theory and statistics

This thesis belongs to the field of data analysis, which makes use of mathematical stat-
istics to derive knowledge from measured data. In this chapter, I will briefly introduce
those concepts from probability theory, statistics and inference that will be used in the
main part of this work, along with the corresponding notation. This does not constitute
a full review of standard statistical methods, but is only intended as the minimum set of
knowledge needed for the discussions in the ensuing chapters.

Statisticians, both theoretical and applied, are often divided into two camps, frequent-
ists and Bayesians. The principal difference is one of philosophical interpretation of
probability: while frequentist probability is understood as the idealised fractional oc-
currence over infinitely repeated trials, Bayesian probability is a subjective “degree of
plausibility”. This immediately leads to a more practical distinction: while frequentists
may assign probabilities only to measurable quantities and must frame problems such
as hypothesis testing in a different language, Bayesians also talk about the probability
of hypotheses or, in general, of any kind of statements about the data. More on the
philosophical differences between the schools can be found in Loredo (1989) and Jaynes
(2003).

Thus, I first give some comments on the general notion of “probability” from both ap-
proaches and a slightly longer introduction to Bayesian statistics and hypothesis
testing (Sec. 4.2)). Using this framework, I introduce the general concepts of detection
statistics and likelihood-ratio tests , focussing on the application to
time-series analysis. Then, I focus on the special case of the detection of periodic signals
in time series , which leads naturally to the topic of continuous gravitational
wave data analysis in [Sec. 5 T also include, in [Sec. 4.6] definitions of some elementary
probability distributions which will be used later on.

4.1 Elementary probability theory

The concepts of randomness and probability have long been some of the thorniest in the
history of mathematics and philosophy of science. Traditional, intuition-based definitions
of probability run into many difficulties and paradoxes. In a strict Bayesian approach for
the purpose of scientific inference, probability can be derived entirely as a generalisation
of Boolean logic when allowing for incomplete information. Such an approach is presented
in great clarity in chapters 1 and 2 of Jaynes (2003), based on Cox (1946, 1961).
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Alternatively, a robust framework for defining probabilities comes from measure theory,
the branch of mathematical analysis concerned with assigning ”sizes” to sets. This can
serve as a foundation for frequentist statistics, where the sets are taken as the repeated
trials of the intuitive picture. However, it is also fully compatible with the Bayesian
interpretation and can indeed be used for a more formal foundation of Bayesianism
(Chang & Pollard [1997, Orbanz & Teh 2010, Culbertson & Sturtz 2014)) than the one
by Jaynes. I will skip the details here, as in-depth treatments can be found in many
standard textbooks, for example in Bass (1966) and DeGroot (1970).

Here, as a tool for "translation between the two interpretations, I will give the central
results of any definition of probability: the rules or axioms of probability, usually attrib-
uted to Kolmogorov (1933). These are obtained from the measure-theoretical approach
by identifying a random variable A with a mapping from a probability space to a target
space, for example the real numbers. The outcome of A taking on any specific value
can be considered a random event, and its probability P(A) is a function (induced by a
probability measure) that fulfills P(A) € [0, 1]. For ease of notation, I do not distinguish
explicitly between a random variable and its values.

From the Bayesian point of view, these rules can be considered as simple corollaries
to what Jaynes called the three "desiderata” for a useful definition of probability, with
random variables reinterpreted as objects of inference and assumed implicit dependence
of all probabilities on prior information — see and Jaynes (2003) for details.

The first important law about probabilities is the law of unitarity: If T = {A;} is
the (discrete) set of all possible outcomes of a random experiment, and P(A4;) is the
probability of event A;, then the total probability must be unity:

Y P4 =1. (4.1)
T

For continuous sets of events and under the assumption that a probability density function
(pdf) p(z) exists, the equivalent is

/ dzp(z)=1. (4.2)
zel

From the differential p(x), the cumulative distribution function F(zx) is obtained (in the
one-dimensional case) as

F(z) = / da’ p(a'). (4.3)
' <z
However, F'(x) can exist even in cases where p(x) does not, i.e. when it is non-differentiable
— it must then be redefined straight from measure theory. The term probability distribu-

tion function can be used to mean either p(x) or F(x), depending on the source. I will
generally use it for p(z) in this work.
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The second important rule is the additivity of probabilities for independent events:
P (U Ai> => P(4). (4.4)
iel iel
Additivity does not hold for events which are not independent - that is, in general
P(AuB)=P(A)+ P(B) — P(AB), (4.5)

where P(AB) is the joint probability of A and B, sometimes also written as P(A, B),
corresponding to the overlap in the supports of the two events.
This is related to the conditional probability p(B|A) of B given A by

p(AB)
p(B)

P(B|A):p(AB) and p(A|B) =

D . (4.6)

4.2 Bayesian inference

The Bayesian concept of assigning probabilities to hypotheses, in the sense of "how likely
is it that a statement H is true?”, leads to a specialised nomenclature in the case of
inference problems, that is when we want to infere a physical statement from a set of
observed data z.

The probability P (H) which we assign to a hypothesis H without taking into account
the data, based either purely on theoretical considerations or also on previous data, is
called the prior on H. In principle, it should be written more explicitly as a conditional
probability P (#H|Z), where Z contains all prior information. However, for simplicity
of notation I will, after this initial discussion, omit the Z dependence and simply use
P (H) as a shortcut for P (#H|Z), and similarly P (A|B) for conditional probabilities,
which in full notation would always read P (A|B,Z). Note that, in this sense, Bayesian
probabilities are always conditional.

In contrast to the prior, the new assessment of a hypothesis when considering the data
is the posterior probability P (H|x) or, more explicitly, P (H|z,Z). It is often useful to
think of the step from prior to posterior as an “update” of the degree of belief.

4.2.1 Bayes' theorem

The relation that tells us how the data "updates” the prior to the posterior is called Bayes’
theorem and follows directly from the definition of conditional probability, [Eq. (4.6)F

P (|2, T) = P(H’?(Z%W’I) |

(4.7)
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Here, P (z|H,T) is called the likelihood of the data under H and the denominator P (z|Z)
is sometimes called the evidence. For a complete set of hypotheses {H;}, defined by
the hypotheses being mutually exclusive, P (H;, H;|Z) = 0;;P (H;|Z), and exhaustive,
> P (H;|Z) =1, the evidence can be expressed as

(2

PMQ:ZPM%ﬂH%m. (4.8)

In applications in parameter estimation and hypothesis testing (see |Sec. 4.2.3)), it can
often be ignored as a proportionality factor, and in some quantities of interest, such as
the odds ratios later considered in [Sec. 4.2.3] it cancels out.

4.2.2 Priors

Proper treatment of priors is an important part of Bayesian data analysis. Ideally, a
prior includes all knowledge available about the problem without looking at the data,
including mathematical constraints, predictions from theoretical physics and the results
of other measurements. However, in practice often no previous measurements may exist,
and theoretical guidance may be vague. In such cases, priors are often chosen to represent
the state of "ignorance”, meaning that they should not put any stringent bounds on the
support of the posterior, and should be weak enough so that even moderately constraining
data sets can easily dominate the posterior.

Within the freedom of this requirement, specific priors can often be chosen based on
considerations of simplicity. Therefore, some of the most popular priors are simple flat
and uniform distributions.

Uniform priors can, however, be disadvantageous in the inference of scale parameters,
such as the width of a distribution. Without additional constraints, it should intuitively
be equally likely to be very narrow or very wide — but a uniform prior puts little weight on
values close to zero. For such scale parameters, 6 € (0,00), it is often more appropriate
to use a log-uniform prior , which can be expressed as P (0| Z) «x 1/6 and assigns equal
prior probability to equal intervals in log(0).

In fact, this is a special case of the Jeffreys prior (Jeffreys|1946, and see also Secs. 6.15 and
12 of Jaynes 2003)), which is designed to express maximum ignorance in a reparametrisation-
invariant way. Letting 6 stand for a whole set of model parameters, it is given by

P(0|Z) x +/det F(0), (4.9)
where det F'(6) is the determinant of the Fisher information matriz of the  parameters:

02 log(P (z]0T))
00; 00,

F;=-F (4.10)
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Here, E [] denotes an expectation value, given for a pdf p(x) and some function f(z) by

E[f(x) = / f(@) plz) dz (4.11)

The Jeffreys prior is reparametrisation-invariant in the sense that, if P (6| Z) o /det F'(6)
for some 6, then also P (9| Z) o /det F(¢) for some transformed parameters J(6).

4.2.3 Hypothesis testing

The problem of hypothesis testing, or, more specifically, of binary hypothesis testing, can
be stated as the following question: When two hypotheses are given, which one provides
a better fit to the data?

In the Bayesian approach, hypothesis testing can be stated extremely simply as the
computation of a single quantity: The ratio of probabilities between the competing hy-
potheses. Traditionally, due to the usage in betting, this is also referred to as their
relative odds or odds ratio.

After measuring some data x, the prior odds

P(Hi|Z)
=—° 4.12
2= PLIT) 12
are updated to the posterior odds
P(Hilz,Z P(x|H1,Z
012 = M =0 ( ’ ! ) = 012 Blg, (4.13)

P (Halz,Z) ~ " P (a|Ha, 1)
where Bis is often called the Bayes factor between the two hypotheses and corresponds
simply to the likelihood ratio
P (z|H1,T)

By = ——AtL =)
27 P(2[Hs, T)

(4.14)
Hence, the Bayes factor tells us directly how much more likely (or unlikely) #; has
become in contrast to Hy by virtue of the data, and Oj5 gives the best current estimate
of which hypothesis should be preferred.

The machinery and formalism for hypothesis testing is thus very simple; all the real work
lies in formalising the competing hypotheses and their respective likelihoods, in the honest
and comprehensive compilation of priors and in the actual likelihood computations. This
approach also remains valid for composite hypotheses, with model functions depending
on some parameters 6. If the likelihood under H(€) for fixed 6 is P (z|H(6),Z), then the
likelihood for the composite hypothesis H is given by a marginalisation integral

P(z]H,I)z/P(x,GH-[,I) a0 :/P(:E]H(H),I) POH,T) 40 . (4.15)

Likelihood computation can be very computationally expensive for real-world data ana-
lysis problems, especially for hypotheses with large parameter spaces.
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4.3 Detection statistics and Neyman-Pearson optimality

A special case of binary hypothesis testing is the so-called detection problem. In the
simplest and, at the same time, most idealised case, there is a data set x, a noise hypo-
thesis corresponding to a model including all sources of instrumental and physical noise,
and a signal hypothesis for a tentative signal, which is often a composite hypothesis
depending on some parameters.

In this thesis, I am mostly concerned with the detection problem for continuous wave sig-
nals and not with more complicated forms of hypothesis testing with several competing
signal hypotheses, nor with parameter estimation. Also, this work is not a fully Bayesian
analysis, even though it starts from a Bayesian approach in [Sec. 71 Instead, the Bayesian
odds are used as a stepping stone to a more conventional, frequentism-compatible quant-
ity: a detection statistic.

In general, any scalar, orderable quantity computed from the data could be used as a
detection statistic. In this sense, the concept is very similar to a ranking statistic, with
the common understanding that a ranking statistic is an ordered set of integers, whereas
a detection statistic could have any arbitrary scaling. The main criterion for a "good“
detection statistic in a frequentist sense is that, over many random trials, it should yield
a clear separation of noise and signal candidates.

In a practical frequentist approach, a detection statistic can be defined by any ad-hoc
method. There are two fundamentally different classes: either the statistic is a function
of the data only, and therefore only measures how much of an outlier any given data
point is from the expected noise distribution; or the statistic also depends on the signal
model parameters. I will mostly refer to the latter approach from now on, which usually
is computationally expensive, but more informative.

The general problem of constructing a detection statistic comnsists in finding a one-
dimensional function which is a projection of the full noise-and-signal parameter space,
but with the detection-statistic values from the two different populations separating as
neatly as possible. This would allow to put a threshold value on the detection statistic
so that most signals fall above and most noise events fall below it.

To formally discuss the performance of a detection statistic S(x), when drawing candid-
ates from a noise distribution (written as x ~ A) and a signal distribution (z ~ S), a
false-alarm probability associated with a threshold Si,, can be defined as

pra = P (S(z) > S|z ~ N) (4.16)
and a detection probability as

Pdet = P (S(z) > Stnelz ~ S) . (4.17)

A detection statistic S(z) is considered optimal if, out of all possible statistics {S’(z)},
it has the highest pget at a given value of ppa. It may happen that there is a globally
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optimal statistic, i.e. that pget(pra) for a given S(x) is higher than for all other S'(x)
over the whole ppa range, but in general this is not guaranteed and optimality must
be stated at a fixed ppa. This criterion is called Neyman-Pearson optimality after its
introduction by Neyman & Pearson (1933)).

The function pget(pra) is also commonly called a ROC, standing for either receiver-
operating characteristic or receiver-operator characteristic, depending on the source. This
name derives from the field of radar engineering, where the pget(pra ) of airplane and ship
detection by radar receivers was considered.

4.4 Likelihood-ratio test

In a detection problem for two simple signal and noise hypotheses, without free para-
meters, the Neyman-Pearson criterion can be used to show that an optimal statistic is
given by a likelihood-ratio test between the two hypotheses (see Sec. 3.3 and Appendix
B of |JK09 and references therein). It therefore agrees with the Bayesian approach from
Instead of the likelihood ratio A itself, which is simply equivalent to the Bayes

factor from |[Eq. (4.14)] often the log-likelihood ratio log A is used.

From now on, I assume that the data set is a time series x(t) consisting of additive
contributions from zero-mean Gaussian noise and from a deterministic signal,

x(t) = n(t) + s(t), (4.18)
and that it is measured over an interval of ¢ € [0, T'.

A general expression for the log-likelihood ratio follows (see Sec. 3.4.1 of |JK09), via the
theory of Gaussian stochastic processes (see Sec. V of Lifshits [2012), from a general
result of measure theory, the Cameron-Martin formula (Cameron & Martin [1944):

log A(z)

N |

T T
(/q@ﬁdﬂdt— (/q@)dﬂdt, (4.19)
0 0

where ¢(t) is a function solving the integral equation

T
s(t) = /ﬁ(t,t’)q(t') dt’, (4.20)
0

which contains the auto-correlation function

K(t,t) = E [n(t)n(t)] . (4.21)
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As the second term in [Eq. (4.19)| does not depend on individual noise realisations n(t),
a likelihood-ratio-test statistic is given by just

T

Glz) = / o) (t) dt (4.22)

0

Under the additional assumption that the noise is stationary and therefore the auto-
correlation is translation-invariant,

k(t,t) =kt -1, (4.23)
the solution of [Eq. (4.20)|is easily given in the Fourier domain as

{2§(f) for f >0,

) (4.24)

s(f
25(—f) for f <0,

with the single-sided noise power spectral density (PSD) given by

oo

S(f)=2 / k() e 2T dr (4.25)

—00

Alternatively, the power spectrum can be defined by the second-order expectation of the
Fourier-transformed noise,

SSUANS(S — 1) = B [ ()] (4.26)

The equivalence of these two definitions is a special case of the Wiener-Khintchine the-
orem (Wiener 1930, Khintchine 1934)).

For a time series as in [Eq. (4.18) inserting [Eq. (4.24)|into [Eq. (4.19)| and using a scalar
product on the time-series space defined by

<)y (f)
xly) = 43‘%/ ——Z 2 df 4.27
whyy=an [ ap (127
a simple result follows for the log-likelihood ratio of signal and noise hypotheses:
1
log A(x) = (z|s) — 5 (s]s) . (4.28)

This is also often referred to as "matched filtering®, since a detection statistic can also be
considered as applying a linear-filter operator to the input data, and an optimal statistic
corresponds to a filter that maximises the SNR of the transformed output. Through
the scalar products, log A(x) tests for the "match* between signal model and data. This
approach is discussed in Sec. 3.4.3 of |JK09L
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Adapting the likelihood-ratio test for composite hypotheses H () poses a problem in a
classical frequentist approach, as the optimality proofs only work for simple hypotheses.
A standard solution is mazimum-likelihood estimation, where the likelihood function
P (z|H(0),T) is mazimised over all parameters § and the likelihood ratio at this point is
used as a detection statistic.

As we have seen in[Sec. 4.2.3] the Bayesian approach is completely general when it comes
to composite hypothesis, and due to marginalisation over all possible 6 can sometimes
outperform a maximum-likelihood statistic. When the priors accurately match the actual
noise and signal distributions — which of course can only be tested for sure in simulated
data sets, often referred to as Monte-Carlo studies — the marginalised Bayes factor still
gives a Neyman-Pearson optimal statistic. For the specific case of GW data analysis,
this point is discussed by Searle (2008)) and Prix & Krishnan (2009)).

4.5 Detection of quasi-periodic signals

As discussed, for example, in chapters 3 and 4 of|JK09| the likelihood-ratio test translates
well to such diverse signal types as the "chirped* GW waveform of inspiralling binaries
(see and stochastic signals. However, in this thesis I am only interested in the
detection of quasi-periodic signals in time series, for which an extensive discussion based
on Bayesian methods is given by Bretthorst (1988]). This is also called the problem
of spectral estimation or spectral analysis. For a historical perspective, see Sec. 1.1
of Bretthorst (1988) and the more extensive reviews by Robinson (1982) and Marple
(1987).

Most approaches to spectral analysis rely, in one way or the other, on the Fourier trans-
form. In its continuous version, it gives the relation between the PSD and auto-correlation
function of the noise time series, as in For discretely sampled time series, a
discrete Fourier transform (DFT) can be used., for which efficient numerical methods
exist (the Fast Fourier Transform, FE'T, popularised by Cooley & Tukey|1965). A simple
estimator for the power spectrum of a time series z(t) sampled at Ngymples points ¢, in
time is given by the periodogram (Schuster 1898))

N 2
- 1 samples )
() = | S alta)e (4.29)
samples o

Peaks of the periodogram can be considered as estimators for signal frequencies in the
data. However, this is an optimal estimator only under certain conditions, listed in Sec.
2.3 of Bretthorst (1988). Problems with this simple approach occur especially for data
sets with non-uniform sampling, a small number of samples, non-Gaussian components
or multiple signals.

Classical frequentist modifications to the periodogram include the use of windowing
(Blackman & Tukey 1958, Harris [1978) or (multi- )tapering (Thomson [1982)) of the data,
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or methods such as the Lomb-Scargle periodogram (Lomb (1976, Scargle [1982)). Extens-
ive studies of this problem, focussing on astronomical applications, were conducted by
Scargle ({1981}, 11982, 1989, {1990, 1998]).

A Bayesian approach, as presented in Bretthorst (1988]), allows to rediscover the peri-
odogram as a frequency estimator, but also to find much more general results, making
some of the existing frequentist machinery seem superfluous. However, in many cases of
practical application, it is still considered a more robust approach to combine a detection
statistic, derived either from a maximum-likelihood or a Bayesian approach, with some
classical tools, such as windowing.

For a time series with multiple signals at well-separated frequencies (with respect to
the sampling rate of the data), it makes sense intuitively that these can be studied
by separating the data into frequency bands and doing separate analyses under the
assumption of a single signal. In a rigorous Bayesian formulation, this rule was shown
by Jaynes (1987) and is discussed further in chapter 6 of Bretthorst (1988). Continuous-
wave data analysis (see routinely makes use of this property, as it seems very
unlikely that two detectable CW sources could be nearby in frequency.

4.6 Probability distributions

In this thesis, T will mostly work with continuous probability distributions. And among
these, two famous distributions occur quite often. For reference, I will state here their
distribution functions and lower-order moments, along with a brief description of their
occurrences and importance.

4.6.1 Gaussian distribution

The Gaussian or normal distribution is part of the large exponential family of probability

distributions. Written as
1 _(@—w)?
pn(z) = R (4.30)
oV 2

it is completely defined by its first two moments, the mean of the distribution p and the
variance o2. For a random variable A drawn from such a Gaussian distribution, it is

customary to write A ~ N'(u, o).

The Gaussian distribution is ubiquitous in practical data analysis because of the central
ltmit theorem, which in one of its simpler forms tells us that the distribution of any
observable which is the sum of sufficiently many independent random variables (from
arbitrary distributions) tends towards a Gaussian. It is also special from the point of
view of inference as the natural choice when the knowledge about a distribution cannot
reasonably be constrained beyond its mean and variance. See Secs. 7.6 and 11 of Jaynes
(2003) for a "maximum entropy“ justification of this principle.
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4.6.2 Y’-distribution

Another rather simple member of the exponential family is the x2-distribution, named
after the usage by Pearson (1900) in hypothesis testing. In general, the x2-distribution
pertains to any random variable A which is the sum of k£ squares of independently
Gaussian-distributed variables {A;}:

k 2
Ai :
A= g <0i> with  A; ~N(0,0;) = A~xi. (4.31)
i=1

Hence, p(x) = x3(z) for a y?-distributed variable is defined only for x > 0, and reads

roc’ (4.32)
22T (3)

The parameter k is called the number of degrees of freedom of the distribution. The
expectation of a random variable A ~ X% is simply p4 = k and the variance is UE‘ = 2k.

Higher moments also have simple expressions, but will not be needed in this thesis.

An important generalisation is the non-central x2-distribution, contrasted to the central
distribution of [Eq. (4.32)] Here, the Gaussian variables are allowed to have different and

non-zero means:

k N\ 2
A=) é.l with  Aj ~ N(pi, 1) = A~ xi(A). (4.33)
i—1 \7i

The distribution now has two parameters, the degrees of freedom k as before, and also

the non-centrality parameter
k 2
Hi
A= — ] . 4.34
> (Uz> (4.34)

i=1

The mean of A ~ x2(\) is pa = k + A, the variance is 04 = 2k + 4 and the full distri-
bution function is

Xi(,A) = %e‘% (i)i_; I, (\/ﬂ) , (4.35)

with the modified Bessel function

[e.9]

1 T\ a+2m
Ta(w) = T;) m! T'(a+m+1) (5) ' (4:36)

Both variants of y2-distributions tend towards a Gaussian for large k, due to the central
limit theorem.
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5 Continuous-Wave data analysis

While the later parts of this thesis are concerned with a particular advancement in
the field of Continuous Wave (CW) data analysis, this chapter should serve as a brief
summary of basic concepts and of the state of the art in the field. It is by no means an
exhaustive survey, and more ambitious reviews can be found in |[JK09, Prix (2009) and
Jaranowski & Krolak (2012).

Many of these concepts were pioneered by Jaranowski, Krolak & Schutz (1998), which
I will refer to as |JKS9§| from now on. However, my notation mostly follows the more
recent conventions of Cutler & Schutz (2005) and Prix (2007b, [2011b]).

The focus of this thesis is on CWs from isolated neutron stars (NSs). For extensions
to CWs from NSs in binary systems, see Dhurandhar & Vecchio (2001)), Goetz & Riles
(2011) and Aasi et al. (2014d).

As the input data set, I always consider a time series of properly calibrated (Abadie et al.
2010a) GW strain from one or more detectors, often referred to as h(t) in the literature.
For a single detector, I write this as X (¢), where the index X indicates the detector. In
most cases, I will omit the time dependence.

For multi-detector quantities, I use boldface, so that x(t) is the multi-detector vector of
time-series data, {x(t)}* = 2X(t). For example, for two detectors X € {H1,L1}:

o= (L)) 6.1

The measured detector strain can be written in terms of a noise and a signal contribu-
tion,

x(t) =n(t) + s(t). (5.2)

In this chapter, T will first describe the standard Gaussian noise model for n(t) in
and possible parametrisations for a CW signal model, s(t), in[Sec. 5.2 After the introduc-
tion of some technical concepts in Secs.[5.3H5.6] the central part consists of the description
of the standard detection statistic for CW searches, the F-statistic, in

Further useful concepts are the notion of a metric on the signal-parameter space, see
Sec. 5.8 and various optimisations and generalisations for F-statistic-based searches,
described in Secs. and [5.10] T conclude this chapter with brief descriptions of the
CW data-analysis software package LALSuite in and the distributed computing

project Einstein@Home in [Sec. 5.12]
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5.1 Gaussian noise model

As described in [Sec. 2.6.2] ground-based laser-interferometric GW detectors, such as
LIGO, are subject to a variety of noise sources. The total effect of these contributions,
in the absence of a signal, is usually well-described by a simple Gaussian distribution.
Strong disturbances are typically well constrained in either time or frequency, so that
the Gaussian approximation holds well for the majority of the time-frequency plane.

For CW data analysis, which is concerned with long-duration data sets (from days up to
years), transient disturbances are less of a problem. However, narrow-band disturbances
that are persistent over long time-scales and that stay in the same frequency region, i.e.
lines in the sense of reduce the applicability of the Gaussianity assumption for
a CW analysis. See for an estimation of the ratio of disturbed to undisturbed
bands in recent LIGO data, all of for a general discussion of the problem of lines,
and the remainder of this thesis for a proposal on how to improve data analysis in their
presence. For the rest of this chapter, I will concentrate on the more common case of
Gaussian or nearly-Gaussian frequency bands.

For a more quantitative justification of the Gaussian noise assumption, see for example
Fig. 3 of Abbott et al. (2004b)), Fig. 3 of Aasi et al. (2013b) and the detailed discussion
of statistical expectations for a search on LIGO S5 data in Sec. 5.8 of Behnke (2013).

A Gaussian distribution, as defined in is fully described by its mean and
variance. For zero-mean strain data, it is sufficient to specify the standard deviation
o of the distribution, which is directly related to the single-sided power-spectral density
(PSD) S, for a frequency band of width Af and a sampling rate At, by

0_2

_0 52
S—Af 202 At . (5.3)

Gaussian noise data is then described by x(t) = n(t) with samples n; ~ N (0, o).

Requiring only stationary noise (for example, by considering a single short Fourier trans-
form, see |Sec. 5.3, but still allowing for arbitrary correlations between detectors, the
(single-sided) noise PSD can be expressed as a Nge; X Nger matrix SXV defined, simil-

arly to [Eq. (4.25) by

SXY(f) =2 / XY (1) e Tdr (5.4)
where
Y(r) = E [0S (t+71)nY ()] (5.5)

is the correlation matrix of the per-detector noise time-series.

It is possible to estimate the noise PSD as a free parameter alongside the main signal
detection and parameter estimation steps of a data-analysis pipeline, as described in
Chapter 4 of Bretthorst (1988). However, as in most of the CW data-analysis literature,
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I will assume from now on that the noise PSD has already been estimated before any
hypothesis test. This is usually done with a running-median estimator, which I will

describe in

Adapting [Eq. (4.27)[to the multi-detector time-series space, and assuming a finite obser-
vation time T, yields a scalar product

Naet Ndet

(@ly) = 4RSS / L) a () ar (5.6)

X=1Y=1Y

with Fourier-transformed 7% (f), ¢ (f), inverse matrix Sy3(f) to SXY(f).

Assuming uncorrelated noise for the individual detectors X, the cross-terms in SXY (f)
vanish, leaving only the per-detector spectra S (f). Usually, one considers narrow fre-
quency bands, or scalar products where at least one of the time series is a narrow signal
or disturbance. In such cases, the frequency-dependent variation of the “coloured” noise
spectra SX(f) is negligible, so that constant values S¥ can be assumed. The scalar
product then simplifies, approximately, to the following time-domain integral:

Ndet

T

let 1

(x|y) ~2 SX/Z'X(t) yX(t)dt . (5.7)
X=1 s

5.2 CW signal model

In we have seen that a weak and monochromatic gravitational wave, expressed
in the TT gauge and in a coordinate system where the z direction coincides with the
wave’s propagation direction, is fully described by only two components, hy and hy.
Now we are interested not only in the instantaneous passage of a short GW, but in the
continuous observation of a CW signal. Hence, we have to take into account the possible
amplitude and frequency modulations from the source evolution and from the relative
motion of source and detector, so that the amplitudes and phases of the induced strain
in the detector are modulated.

5.2.1 Reference frames and geometry

The full specification of a CW model function requires several geometrical ingredients.
Most of the quantities introduced in this section are also illustrated in [Fig. 5.1} Additional
details can be found, for example, in Sec. 1 of Prix (2011b).

First, consider a reference frame fixed in the solar system barycentre (SSB), given by an
orthonormal set of vectors {Z,y, z} corresponding to the equatorial coordinate system. I
then denote the wave-propagation direction as —n for a unit vector n pointing from the
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Figure 5.1: Tlustration of the SSB, detector, source and wave frames. In addition to the
definitions in [Sec. 5.2.1] here ¢ is the inclination angle of the source against the line of
sight, and the vector 7 pointing from the SSB to the detector has been decomposed
into orbital and spin components.

Figure credit: M. Shaltev (2013).

SSB to the source location. In terms of the equatorial right ascension o and declination
¢ of the source, this vector reads:

Cos d Cos
n=|cosdsina | . (5.8)
sin

A full wave-frame basis is given by {u,v, —n}, where the vectors @ and v span a plane
transversal to the wave propagation. They also define a tensorial polarisation basis for

elliptically-polarised GWs, in analogy with [Eq. (2.13)

(5.9a)

e+
€x (5.9b)
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& &
& ®
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Additionally, a polarisation-independent reference frame in the wave plane is {E, n,—n}

20



Figure 5.2: Definition of the polarisation
angle 1 in relation to the wave-plane
bases {1, 0} and {&,7}.

Figure credit: J. Whelan.

3
n
with vectors
~ nXxXz
= 5.10
€= (5.100)
n=E&xn, (5.10b)

so that E is in the equatorial plane and 7 points northwards. These define a second
polarisation basis,

e =(@E-T®n (5.11a)
ex=ERN+NRE. (5.11b)

These wave-plane frames are related by a polarisation angle 1, also illustrated in[Fig. 5.2}
siny) =u-7. (5.12)

We also introduce a detector tensor d* depending on the orientation of the detector
arms. For an interferometer with arms along the unit vectors l1 and l2, it is given by

1 /e o~ o~ o~
dX:§(h®h—b®b). (5.13)

When a given wave-front arrives at the position 7~ (¢) of detector X at time t, the
timing relation for its arrival-time 7% (¢) at the SSB is given, in first-order Newtonian
approximation, by

n- X (t)

X)) ~t+ (5.14)

This transformation, also called the Rgmer delay, is the basis of barycentring, which is
the process of translating the measured time series from the detector frame to the SSB.
For the full relation, including relativistic terms, see for example the brief discussion in
Sec. IV.A of Abbott et al. (2007al), chapter 5 of JK09 as well as a classical reference from
the field of radio-pulsar data analysis, Taylor & Weisberg (1989)).
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5.2.2 Signal waveform and phase-evolution model

If the GW wavelength £ is large compared to the detector arm-length, ¢ > 27L, the
general plane-wave solution from [Eq. (2.12)|can be translated into a strain at the detector
written as a contraction of the metric perturbation with the detector tensor:

WY (8) = di () WY (7)) = FE () b (77%) + F2(8) hu (7)) (5.15)

where the beam-pattern functions Ff (t) and FX(t) can be expressed in either of the two
wave-plane polarisation bases (Egs. [(5.9)[and |(5.11))) as

FX(t,n, ) = dfjf-(t) efﬁ (7)) = a (t,7) cos(2¢) + bX (t,7) sin(24)) (5.16a)

FX(t7,¢) = d¥ (1) € () = b¥ (¢, 7) cos(20) — a* (¢, ) sin(20)) , (5.16b)

with the antenna-pattern functions aX (t,n) and b¥ (¢,7), which I will discuss in more
detail in giving the source-location dependence of the detector response:

aX(t,7) = dX(t) €1 (R), (5.17a)
bX (¢, 1) = dX (t) € (n) (5.17b)

Note that [Eq. (5.15)|is completely general and not limited to CW signals: h(7X) and
hy (7%) could be arbitrary functions. However, I will now specialise to CW waveforms,
which can be expressed, in SSB time 7, as

hy(T) = Ay cos®(T1), (5.18a)
hy(T) = Ay sin®(7), (5.18b)

with a phase-evolution model ®(7) related to the frequency evolution of the source:

@(7):¢0+27r/f<7'>d7', (5.19)

Tref

with ¢g = ®(7er) at an arbitrary reference time Tf. For a typical CW signal with
slowly-varying frequency, it can be Taylor-expanded around 7ye¢:

B Smax f(S) (Teet) o1
q)(T) - ¢0 + 2T ;0 W(T - Tref) . (520)

The expansion coefficients are the frequency and spin-down parameters at Tief,

d*f(7)

e = S0 (521)
For the lowest-order spin-downs, in the following I also use the shorthands
f=fY, f=f@ and f=59. (5.22)
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Note that the phase model in is given in the SSB reference frame, whereas
for each detector the data is a time series sampled according to the detector-frame time.
From the barycentring relation, we see that the translation depends on the
sky location of the source, so that the full phase-evolution model is determined by a set

A= {a,8, {f® (Ter) smax} of 24+ 1 4 smax parameters.

5.2.3 Signal amplitude and JKS factorisation

Now that we have a phase-evolution model, let us consider the amplitude of the measured
strain A (t). As seen from Egs. |(5.15)H(5.18)| it depends on four amplitude parameters:
the polarisation angle v, the reference phase ¢g and the coefficients for the two polar-
isation components, A, and Ax. To be more physically explicit, the latter two can be
replaced by the scalar signal amplitude hg from and the inclination angle ¢ of
a triaxial NS with respect to the line of sight:

Ay = ho(1 +cos? 1), (5.23a)
Ay = hgcost. (5.23b)

While the full expressions for h(t) in either of these parametrisations are not particularly
edifying, JKS98 introduced a particular reparametrisation A" = A*(hg, cost, 1, ¢p), with
p=1...4, that allows for an elegant factorised form for [Eq. (5.15)f

h(t, A, N) = A" hy(t, ) | (5.24)

using automatic summation convention over repeated amplitude indices p. This is often
referred to as the JKS factorisation.

The four new amplitude parameters A* are related to the physical source parameters by

A= AL cospgcos2ihp — Ay sin ¢ sin 20, (5.25a)
A% = A cospgsin2y + Ay sin ¢ cos 21, (5.25b)
A3 = — A, sin ¢y cos 20 — Ay cos ¢ sin 21, (5.25¢)
At = — A sin ¢gsin 2y + Ay cos ¢ cos 20, (5.25d)

and for each detector the basis functions are given by

R (t) = a™ (t) cos O(T5 — Thet) (5.26a)
hiy (t) = b¥ (1) cos ¢(T% — Tref) (5.26b)
Ry (t) = a* () sin (7% — Tef) (5.26¢)
hy () = b (t) sin (77 — Tref) (5.26d)
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5.3 Short Fourier Transforms

For most CW searches, the original strain data a(t) is converted into the frequency
domain by the application of Short-baseline Fourier Transforms, or simply “Short Fourier
Transforms” (SFTs). These are simply discrete Fourier transforms (DFTs) over a short
baseline Tspr, with a frequency resolution of §f = 1/Tgpr. SFTs have the advantage
that “narrow-band” subsets of the data, i.e. a limited frequency range Af, can easily be
extracted.

The use of SFTs was introduced by Schutz (1998)), Schutz & Papa (1999) and Williams
& Schutz (2000). When Tspp is small enough, each SFT can be analysed coherently
without “demodulation” for the effects of barycentring and intrinsic source spin-down.

However, the sensitivity of a CW search can be increased by longer coherence times,
referring to the length for which consistent amplitude and phase-evolution parameters
are required. Hence, many search algorithms coherently combine the information from
a number Ngpr of SFTs. Many quantities, including the noise PSD S, can be assumed
as constant over the duration of each SFT. Indexing per-SFT quantities with «, the
narrow-band scalar product from can be generalised as

Ndct NX Tspr

(wly) ~2 gx [ XeE@ar (5.27)
X=1la=1 "% §

defining 22X (t') = 2% (to +t') for SFTs starting at times t,.

In searches for isolated NSs, typically Tspr = 1800s is chosen, whereas some binary
searches use much shorter baselines. See Krishnan et al. (2004) and Sec. V.C of Abbott
et al. (2007a) for a discussion of the unmodulated-search-per-SFT approach compared
to longer coherence times, and for a motivation of the default value of Tgpr = 1800s.

SFTs are usually created from “science-quality” data only, i.e. from time stretches when
no strong disturbances were found in the auxiliary channels and no other data-quality
vetoes apply. The file format used for SFTs in the LIGO and Virgo collaborations is
defined in Mendell (2002).

5.4 Noise-PSD estimation

To compute the scalar product from Egs. |(5.7)|or|(5.27), we need the noise PSDs SX. In
practice, an exact determination according to [Eq. (5.4)|is impossible, as an expectation
value cannot be computed from a single data set. One possible solution, as mentioned
in is to consider the PSDs as additional free parameters of a Bayesian analysis.
However, the more common approach is to include an explicit noise-estimation step in
the search pipeline.

o4



An average of SX(f) over the whole spectrum would be a bad choice, considering the
obviously non-constant noise spectrum of LIGO as illustrated in Instead, the
method of choice is a running-median estimator, which only assumes that the PSD SX(f)
at each frequency f can be reasonably well approximated by an average over a certain
frequency interval around it. Using the median (instead of the arithmetic mean) and a
sufficiently wide frequency interval allows for the suppression of narrow spectral features,
which are expected from both CW signals and instrumental artefacts.

Formally, the estimator for SX(f) is defined through a periodogram, adapting [Eq. (4.29)
to SFT-based data:

NEFT o (X |2
1 2|75 (f)]

S*(f) =

: (5.28)
NS)%T a1 TSFT

The median is then computed over Nipgmed frequency bins, corresponding to a range

frelf- Qr;sgg‘;d Jf+ Qr;smed] Throughout this thesis, I use a running median window

of Ningmed = 101 SF'T bins, which at Tspr = 1800 s corresponds to a band of ~ 56 mHz.

5.5 Noise weighting

The sensitivity of each detector varies over the length of a science run, and we only need
to assume it to be approximately constant over each SF'T. Furthermore, sensitivities can
be different between detectors. Hence, any detection statistic computed from a coherent
length longer than Tspr, and from multiple detectors, may have contributions from SFTs
with different SZX.

This effect can be naturally absorbed in our formalism by introducing notse weights for
each detector X and SFT «, defined as

(5.29)

In this definition, S could in principle be an arbitrary normalisation constant. However,
noise weighting is especially useful when defining the weights in such a way that most
quantities in sums and integrals are translated to numerically manageable scales. To
achieve this, a normalisation constraint

Naet Ngior Nyet
> wi =" Neor = Nepr (5.30)
X=1 a=1 X=1

fixes § to be the harmonic mean of the per-detector and per-SFT PSDs; which can be
interpreted as the overall sensitivity of the data set:

Naet Ngior

St = D> s (5.31)

NSFT —~ =
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We can then define a noise-weighted time-average of any quantity Q:

1 Naet Nger

SN wr ), (5.32)

~ Ngpr
SET Y21 a=1

properly normalised so that (1)qpps = 1. The same normalisation convention is used for
single-detector quantities @~ in a multi-detector search:

X
NSFT

1

SFT =1

Using noise weights, the scalar product from [Eq. (5.27) can be rewritten as

Neer Nger Tspr
STY N w) / (t) yX (t)dt . (5.34)
X=1 a=1

5.6 Antenna patterns

An important quantity in CW data analysis is the antenna-pattern matriz
M, = (hy|hy) , (5.35)

where h,, = {hff} are the basis functions from [Eq. (5.26)] M, can be considered as a
metric on the space of amplitude parameters A*, or as their Fisher matrix (see|Sec. 4.2.2)),
which I will show in

For GWs with f > 1/(1day), the antenna-pattern matrix is approximately given by

A C 0 O
_ C B 0 0

Muw S8 Taaa | o g a4 o (5.36)
0 0 C B

where in the spirit of the previously introduced noise-weighting convention the common
scaling factor S™1Tya1a was pulled out, with

Nyet

Taata = TsprNspr = TsFT Z Ngpr (5.37)
X=1

denoting the total amount of data from all detectors. The quantities

A= (a®)gprs » (5.38a)
= (b*)gpps » (5.38b)
C = (ab)gprs (5.38¢)
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Figure 5.3: Overall antenna-pattern-matrix determinant D for the H1-L1-G1-V1 net-
work, averaged over Tyasa = 12h (24 SFTs per detector) in panel (a) and Tyata = 24h
(48 SFTs per detector) in panel (b). Tyata starts at GPS time 852443819 (Jan 10, 2007,
05:56:45 UTC; start of the SBR5 segment selection from Aasi et al. .

are called the antenna-pattern matriz elements, with the antenna-pattern functions a(t)

and b(t) defined in and the noise-weighted averaging from [Eq. (5.32)}

Defining the determinant of the reduced antenna-pattern matrix,
D=AB-(C?, (5.39)
the determinant of the full matrix is
M| = (8 Tata)' D (5.40)

This depends on both the quality of the data set at a given frequency, through the
factor ST1(f), and on the sky-dependent detector response, through D. Hence, it gives
a measure for the sensitivity of a data set, specific to each template A = {«, 0, f, f,... }.

In this role, |M| will become important in

For the moment, I conclude the discussion of antenna patterns with a visual represent-
ation of the sky-dependent variations of D and the per-detector DX, depending on the
length of observation time. Using the lalapps_ComputeAntennaPattern code, I have
computed DX and D for a network of four detectors: LIGO HI in Hanford, Washington,
USA; LIGO L1 in Livingston, Louisiana, USA; GEO600 near Hannover, Germany and
Virgo in Cascina, Italy. Here, I assume equal noise PSDs S¥X for all detectors.

Sky maps of the multi-detector D, averaged over 30-minute SFTs spanning a total of
either 12 hours or 24 hours, are given in The set of four DX for each time-span
is shown in Figs. and respectively. We see that for a whole day of observation (or
integer multiples of a day), most of the variation in right ascension « is averaged out.
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Figure 5.4: Per-detector antenna-pattern-matrix determinant DX (colour scale), aver-
aged over Tyaen = 12h (24 SFTs), as a function of sky location (e, § in rectangular
projection) for LIGO Hanford (H1), LIGO Livingston (L1), GEO600, Hannover (G1),
Virgo, Cascina (V1).
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Figure 5.5: Per-detector antenna-pattern-matrix determinant DX (colour scale), as in
but averaged over Tyata = 24 h (48 SFTs). The small remaining a-dependence
would only average out over a sidereal day (= 23.9344 hours) and when using finer time
resolution.
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5.7 The F-statistic

Now, all necessary tools are available to introduce one of the standard detection statistics
of CW data analysis, the F-statistic. Here 1 will give the classical maximum-likelihood
derivation, with a Bayesian re-derivation to follow in [Sec. 7.2.1]

This statistic was first introduced by JKS98, and the multi-detector generalisation was
given by Cutler & Schutz (2005). As before, I follow the notation of Prix (2011b)), but
with details of the derivation taken mostly from |JKO9L

In [Sec. 4.4] we have already seen that the log-likelihood ratio between two simple hypo-
theses gives an optimal test statistic. Specialising to a CW signal with fixed amplitude
parameters A4 and phase-evolution parameters A and inserting the JKS factorisation

Eq. (5.24)| for the signal s(¢) into [Eq. (4.28) the log-likelihood ratio between the CW

signal and Gaussian noise hypotheses follows in terms of scalar products as

log A, A,3) = { |4 () — 5 (A y(3) |4 Ry (V)
= A (o (V) — S A (V) [ (0)) A° (5.41)

= A (N) — A My (3) A

Here we see the previously-defined antenna-pattern matrix M,, occurring naturally,
along with projections

Nyet

2u(N) = (@ [hu(N) = > (2 |y ) (5.42)

X=1

of the data on the basis functions. Rewriting the antenna-pattern matrix as the scalar

product
oh | Oh
Muy = <hu |h1/> == <8AM aAV > 5 (543)

a comparison with [Eq. (4.10) demonstrates that the antenna-pattern matrix (or, more
precisely: its expectation value) is the Fisher matrix for the amplitude parameters A.

If we now generalise to the detection problem for CW signals with unknown parameters,
it is (7+ Smax)-dimensional — with 4 amplitude parameters, 2 sky coordinates and 1+ Spmax
spin-down parameters. This dimensionality can be reduced by analytically mazimizing
over the amplitude parameters. The maximum can be found by solving

Olog A(x, A, \)
OAX

Using the inverse matrix defined by MH7 M,,, = §*,, this yields

= 2,(A\) = M (M) A =0, (5.44)

AL (2, )) = MPY(A) (M) (5.45)
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as the maximum-likelihood estimator of the amplitudes, given the data @ and a specific
set of phase-evolution parameters A\. That this extremum is indeed a maximum follows
from M, being positive definite.

Inserting these estimators into [Eq. (5.41)|gives a maximum-likelihood detection statistic,
which is the well-known F-statistic:

2F(x, \) =z, MM (N) z,, . (5.46)

Note that there is some ambiguity in the literature about whether the term “the F-
statistic” refers to F or 2F. Of course, this is only important when discussing specific
numerical values, while as detection statistics both are equivalent in the Neyman-Pearson

sense (see [Sec. 4.3 In this thesis, it usually means 2.F.

After the maximisation over A, only the phase-evolution parameters A remain. In the
special case of a targeted search, where X is assumed to be fully known from astrophysical
priors, computing at this fixed A would be sufficient. On the other hand, for
unknown )\, since we have already started with a maximum-likelihood approach, the
logical next step is to also maximise the log-likelihood over A\. However, this can only
be done numerically. A simple-minded, yet computationally expensive, search over all
possible A values can deliver the maximum 2F(x, A) over the whole parameter space,
together with maximum-likelihood parameter estimates Ay, 1 will return to the topic
of F-statistic-based searches for unknown CW sources in the next section.

It is important to note that the F-statistic is not actually optimal in the Neyman-Pearson
sense as a detection statistic for physical CW signals, even in pure Gaussian noise. As
pointed out by Prix & Krishnan (2009)), the signal hypothesis is not fully specified when

just the model function [Eq. (5.24)|is given.

The frequentist maximum-likelihood approach used to derive the F-statistic translates,
in Bayesian language, to an implicit prior distribution for the amplitude parameters A,
which T will discuss in more detail in chapters [7] and This “F-statistic prior” does
not correspond to realistic assumptions: the spins of galactic NSs are rather expected to
be randomly oriented, described by uniform priors in the angular variables cost and .
Hence, the F-statistic is slightly suboptimal for realistic signal populations.

Prix & Krishnan (2009) have derived a Bayesian “B-statistic” with improved sensitivity,
for which however the amplitude parameters cannot be treated analytically, making it
computationally more expensive. Further investigation of alternative priors that are
physically motivated, yet still allow for analytical treatment, was presented by Whelan
et al. (2014).

The statistical properties of the F-statistic can be found by using two useful facts: From
the definitions of the correlation matrix, noise PSD and scalar product in Egs. |[(5.4)H(5.6)|
we have E[(n|p) (n|q)] = (p|q) for Gaussian noise n and arbitrary time series p, g, so
that E[(n|h,) (n|h,)] = (hy|h,). (See Eq. (39) of Prix |2011b for a detailed proof.)
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Also, M* does not depend on the data x and can be pulled out of any expectation
values.

Hence, the expectation value of 2F in Gaussian noise, defining n, = (n|h,) in analogy
with z,, from [Eq. (5.42)| follows as
E[2F], = E [ny M"™ n,] = M" E [n, n,)
=M™ E[(n|h) (n|hy,)] (5.47)
=M" (h,h,) =M M, =4.

In the presence of a signal, with s, = (s|h,), this changes to

E2F], = E[(ny + su) M" (ny, + s,)]
= M (E[nyn,] +2E [s,n,] + E[s, s)]) (5.48)
=4+,

where the noise-signal cross-term vanishes due to E [n,] = (E'[n]|h,) = 0. The signal-
signal term, with E [s, s,] = s, s, yields the signal-to-noise ratio (SNR) p defined by

PP =(s]s) = A" M, A = 5, MM s, . (5.49)

The F-statistic is a quadratic function in the four Gaussian-distributed noise compon-
ents n,. It can be shown that its distribution in the noise case is given by a central
x2-distribution with 4 degrees of freedom, 2F|, ~ x%(0), and by a non-central y>-
distribution with non-centrality parameter p? in the signal case, 2F|s ~ x3(p?). See
for the respective probability distribution functions.

For practical computation, the F-statistic can be related to per-SFT quantities through
the relations

1

_ 2 2 *
2F = 7D8_1Tdata (B]:J:a| + Alxy|® — 2C§‘E(:paxb)) (5.50a)
2
= B|F,|? + A|F, |2 — 20R(F,FY)) 5.50b
DNspr ( | a’ ’ b| ( a b)) ( )

with complex projections of the data on the basis functions,

Ty = <:12 ’ha> = <:I) |h1 — ih3> and Iy = <ZIZ ’hb> = <ZI3 ’hz — ih4> s (551)
and the sum over all SF'Ts of the so-called F-statistic atoms FaXa, Fga:

Naet, Néior Naer Ngpp T5ET .
=S S EL=Y Y / (O\/wX X e Odr . (55%)
X=1 a=1 X=1 a=1
Naet, Néier Naet, Néior TFT .

=) > F.=> Y / wX bX (1) e %M gz . (5.52D)
X=1 a=1 X=1 a=1
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This definition uses the antenna-pattern matrix elements A, B, C' and determinant D
from Egs. |(5.38)| and [(5.39)}, the noise weights w?X from [Eq. (5.29)| the antenna-pattern
functions from [Eq. (5.17)| and normalised data v (¢) as described in Sec. 4.1 of Prix
2011bl

The phase factors in [Eq. (5.52)| indicate that the F-statistic, even if its computation is
split into per-SF'T steps, still is a coherent detection statistic in the sense that amplitudes
and phases of the signal templates are kept consistent across SF'T boundaries.

Furthermore, it is useful to rewrite the SNR from [Eq. (5.49)|in a similar, more explicit
way, obtaining the source-orientation dependent relation between hg and SNR:

p* = hd (a1 A+ aaB + 2030) S Tyata , (5.53)

with three auxiliary functions

ay(cost, ) = i(l + cos? 1)? cos?(2¢)) + cos? 1sin?(2¢)) (5.54a)
ag(cos ) = i(l + cos? 1) sin%(2¢)) 4 cos? 1 cos?(2¢)) (5.54b)
as(cost, ) = i(l — cos? 1)%sin(24)) cos(2¢)) . (5.54c)

5.8 Parameter-space metric and template banks

For a so-called “blind search”, where some or all of the phase-evolution parameters A
of putative CW sources are not known, the optimal sampling of the parameter space
is a non-trivial problem. Even after the amplitude parameters are analytically maxim-
ised over, a brute-force numerical exploration of a template bank covering the remaining
phase-evolution parameter space is so expensive that blind CW searches are computation-
ally limited: the available computing power determines the maximum number of search
templates. A template bank must be constructed in a way that gives the maximum
sensitivity under this constraint.

The density of a template bank can be quantified by the mismatch between the perfectly-
matched results — that would be obtained if a search template A exactly matches the
actual physical source parameters As — and the result at another point A, corresponding
to a relative loss of squared SNR:

_ PP = PP
B p*(As)

Note that this is not a symmetric function, and does not define a global distance measure
on the (generally curved) parameter space. But at least locally around a given g, a Taylor
expansion in small parameter offsets dA allows to express the mismatch through a metric
tensor g;j:

m(As; A) (5.55)

m(As; As +dX) & gij(As) dA dAT + O (dA?) . (5.56)
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Thus, the metric forms the basis for constructing “efficient” template banks in the sense
that the available computing power should be translated into an optimum sensitivity.
Template densities in all dimensions must be fine enough to limit the maximum mismatch,
while not being “wasteful” in using more templates than necessary.

The concept of a parameter-space metric was first introduced in the CBC context by
Balasubramanian, Sathyaprakash & Dhurandhar (1996) and Owen (1996) and translated
to the CW field by Brady et al. (1998)) and Prix (2007b)). For recent developments to
find global, numerically well-behaved expressions for the CW metric, see Wette & Prix
(2013). For template bank construction, see Prix (2007a) and Messenger, Prix & Papa
(2009). Also, for the prediction and optimisation of sensitivities for wide-parameter-space
searches, see Prix & Shaltev (2012)) and Wette (2012).

I will not go into the, rather complicated, details of the CW metric parametrisations.
Suffice it to say that in I will be using the flat “super-sky metric” from Wette &
Prix (2013).

5.9 Semi-coherent searches

The computing cost for a fully coherent F-statistic search for signals with unknown
phase-evolution parameters scales at least with Tffata f?, for a search over A = {«, 9, f, f }
(Brady et al. [1998] Prix 2007b, 2009). Hence, a coherent search with fixed computing
power over a given parameter space must have a limited data volume Ty,¢, and parameter-
space resolution, leading to a limited sensitivity. To achieve a better sensitivity, the
scaling of the cost with Tya, must be reduced. This can be achieved by semi-coherent
methods, which for long observation times have been shown to be more sensitive at fixed
computing cost (Brady & Creighton 2000, Cutler, Gholami & Krishnan 2005, Prix &
Shaltev [2012).

In general, a semi-coherent algorithm computes a coherent detection statistic, for example
the F-statistic, over short segments of the data x, which I denote as {wk}g:f’ These
are then combined, in the incoherent step (typically by summation), to obtain the semi-

coherent statistic over the whole data set.

For my work, the most relevant semi-coherent approach is the so-called StackSlide method
discussed by Brady & Creighton (2000), Cutler, Gholami & Krishnan (2005]) and Prix &
Shaltev (2012). The name comes from “stacking” the results of the individual segments
while “sliding” the templates from each segment to line up with each other. The segments
typically consist of many SFTs. In the most general form of a StackSlide search, the
semi-coherent statistic F (a:,X) in a template ) can be constructed as a sum over Naeg

coherent statistics:
Nscg

F (m,X) = Z]?k (5’3k7xk(:\\)> : (5.57)

k=1
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The simplest choice would be to compute Fj, on the same template in each segment, i.e.
)\k:()\) = \. But in fact this is not optimal in terms of sensitivity at fixed computing cost,
as can be shown by a semi-coherent extension of the metric approach (Brady & Crelghton
2000, Pletsch 2010)): this would generally require a very dense template bank, while high
sensitivities can also be reached with a coarse grid of templates in each segment and a
much denser fine grid which is only used in the incoherent summing step.

Hence, to fully specify the semi-coherent statistic F (w )\) requires an algorithm to pick
the right coarse-grid )\k()\) for each fine-grid point X. This can be achieved by picking
nearest neighbours with the metric distance of [Eq. (5.56)] m with a semi-coherent metric
mi;. 1 will discuss one such approach in the following section. The construction of a
fine grid by increasing the resolution of an initial coarse grid along some or all of the
phase-evolution parameters is called refinement.

Alternative semi-coherent algorithms include the Hough transform (Papa et al. 1998,
Krishnan et al. 2004}, Krishnan 2005| Sintes & Krishnan 2006), the PowerFlux algorithm
(Dergachev 2006, Abbott et al. 2008al, | 2009a, Dergachev 2009, 2011)), cross-correlation
searches (Dhurandhar et al. [2008, Chung et al. [2011) and sliding coherence windows
(Pletsch [2011)).

A related concept are hierarchical searches, which combine multiple semi-coherent and
coherent stages with increasing sensitivity, while in each step narrowing down the para-
meter space. The current state of the art in F-statistic-based searches is to have one main
semi-coherent stage over the full parameter space, taking most of the computing power,
and several semi-coherent and coherent “follow-up” stages for smaller parameter regions
around the most significant candidates (Shaltev & Prix [2013|, Shaltev et al. 2014)).

5.10 Global-correlations method

An optimal refinement strategy and incoherent combination algorithm for a StackSlide-
based semi-coherent search has to be based on the behaviour of the detection statistic,
e.g. the F-statistic, over the phase-evolution parameter space. As discussed in [Sec. 5.8]
the metric gives a good description of the local F-statistic surface, or, equivalently, the
mismatch distribution. However, Prix & Itoh (2005) and Pletsch (2008) found, by also
analysing the global picture, that strong global correlations exist, in the sense that a
given CW signal leads to elevated F-statistic values in large regions of the parameter
space.

For observation times less than a month and when the parameter space consists of fre-
quency and sky coordinates only (no spin-down parameters), as considered by Prix &
Itoh (2005), these regions are (approximately) “circles in the sky”. Including the first
spin-down parameter, as done by Pletsch (2008)), turns these into hypersurfaces in a 4-D
parameter space.
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Based on the analytical equations for these hypersurfaces, a “global correlations trans-
form” (GCT) to a new set of parameters and the accompanying coherent and semi-
coherent metrics were found by Pletsch & Allen (2009) and Pletsch (2010). Most semi-
coherent methods, including the current implementation of the Hough transform (Krish-
nan et al. 2004), use refinement in the parameters (spin-down and sky coordinates). In
contrast, the GCT coordinates, under certain approximations and for limited observation
time, allow to use one-dimensional refinement in the spin-down parameter only, which
leads to increased sensitivity at fixed computing cost.

However, it was later found (Manca et al. 2014)) that for longer observation times of a few
months or more, the lack of sky-refinement is no longer justified, and that the GCT-based
search code lalapps_HierarchSearchGCT in its current implementation loses sensitivity
in this regime.

5.11 GW data-analysis software: LALSuite

The LIGO scientific collaboration (LSC) has collected many algorithms, helper functions
and entire search pipelines in the Free and open-source software package LALSuite (LSC
Algorithm Library Suite). For this thesis, I have used several of the LALApps applications
and LALpulsar library functions contained in this suite, mostly written by other authors,
but some also containing my own contributions and extensions. I list these here, along
with very brief descriptions of their usage, and the main authors.

e lalapps_ComputePSD by B. Krishnan, I. Gholami, R. Prix, A. Sintes, K. Wette,
which I use for the computation of noise power spectral densities and normalised

SFT power for the line-prior tuning in

e lalapps_HierarchSearchGCT, a semi-coherent StackSlide CW search code based
on the global correlations method described in The tests on real and
simulated LIGO data in are done with this program. It was written mostly
by H. Pletsch, with later contributions by K. Wette, R. Prix, B. Machenschalk and
myself.

e lalapps_Makefakedata_v4 by R. Prix, M. A. Papa, X. Siemens, B. Allen and C.
Messenger, which T use in for the generation of simulated noise time series
and CW signals, and the injection of simulated signals into real LIGO data.

e lalapps_FstatMetric_v2 by R. Prix and K. Wette, which computes coherent and
semi-coherent metrics, and which I use in for the identification of neigh-
bouring sky templates.

e lalapps_SynthesizeLVStats for the generation of synthetic statistic draws in
written by myself, based on the lalapps_SynthesizeTransientStats code
and the LALpulsar-SynthesizeCWDraws module, both by R. Prix.
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e lalapps_ComputeAntennaPattern, a simple stand-alone code for the computa-
tion and output of antenna-pattern functions, [Eq. (5.17)l and matrix elements,
written by myself, based on library functions from LALpulsar by S. J.
Berukoff, R. Prix and J. T. Whelan.

Due to the collaborative nature of the LALSuite project, other authors may have con-
tributed as well, and all of these codes also use library functions provided by additional
authors. The full author contributions and version history can, as of the writing of this
thesis, be found at the following URL:

https://ligo-vcs.phys.uwm.edu/cgit/lalsuite/

5.12 Einstein@Home

As discussed in Secs. and the sensitivity of large-parameter-space CW searches
scales with the available computational power. Resources beyond that of most high-
performance computing clusters — like ATLAS at AEI Hannover, which I have used for
the studies in [Sec. 10]— can be obtained by distributed computing. This means running the
analysis software on computers across the world, operated both by participating scientific
institutions and by volunteers from the general public. The Einstein@Home project (Al-
len et al.|2005a) does this, based on the BOINC framework ( Berkeley Open Infrastructure
for Network Computing, see Anderson, Walton, Fenton et al. 2002, Anderson [2004]).

As of the writing of this thesis, the sustained average computing power of Einstein@Home
from over 10° actively contributing host computers was in excess of 10'° floating point
operations per second (one PFLOPS), which would correspond to a place among the
upper 40 on the June 2014 Top500 list (Strohmaier et al. 2014).

Wide-parameter CW searches for unknown sources are well-suited to distributed comput-
ing, as the computation of a detection statistic over a template bank is a set of mostly
independent computations, which therefore is easily parallelised. Hosts are assigned
workunits of limited run-time and data volume, each covering a subset of the parameter
space

After an initial run on LIGO S3 data (Allen, Abbott et al. [2005b)), several CW analyses
of data sets from the LIGO science runs S4 and S5 (see have been published
based on Einstein@Home results and different search methods: S4 data was analysed
with coherent F-statistic searches on 17 segments of 30 h each, with a simple coincidence
criterion over all results (Abbott et al. 2009d). For the first eight months of S5 data, a
semi-coherent Hough-based search was performed (Abbott et al. 2009¢). The full S5 data
set was then also analysed using the Hough-transform method (Krishnan et al.|2004) and
the results (Aasi et al. |2013b|) are currently the most constraining all-sky upper limits
on CW emission from isolated NSs yet, reaching a best sensitivity of th% <7.6-107%
near 152.5 Hz and covering a [50, 1190] Hz frequency range and [—20,1.1] - 10710 Hz 5!
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spin-down range. Analyses of S6 data using the GCT method are still ongoing, and I
will briefly describe these in

The distributed-computing nature of Einstein@Home brings with it some special chal-
lenges. In any CW search over a long time baseline and a large parameter space, the
total number of templates needed to cover the parameter space at sufficient sensitivity
is huge: for example, in Aasi et al. (2013b), Niempl ~ 10" were required for a single
0.5Hz band near 100 Hz, and Nyemp ~ 10' per band near 1000 Hz. Hence, not all
candidates can be returned and used for post-processing, so that the list of candidates
gets truncated to the most significant subset, or “toplist“. For Einstein@Home searches,
this subset has to be particularly restrictive, in order to limit the upload volume from
volunteers to the servers. In the case of Aasi et al. (2013b), for each workunit only the
top 10* candidates were returned.

Furthermore, special care is taken to avoid erroneous or faked results. The host computers
which run the Einstein@Home software do not necessarily have hardware of the highest
standards, and their operating-system environment is not tightly controlled. Hence,
computational errors and corruption of result files on the hosts, or during internet transfer
to the Einstein@Home servers, happens at some small rate. For this reason, each workunit
is computed by at least two hosts, and a validation code checks for any inconsistencies
between the sets of results.

Since 2009, Einstein@Home is also searching electromagnetic data for radio pulsars (see
Sec. 3.3), where the detection problem with current technology is much easier than
in the GW case. In data from the surveys PMPS (Parkes Multi-beam Pulsar Survey,
see Manchester et al. 2001) and PALFA (Arecibo Pulsar Survey Using ALFA, where
ALFA is the Arecibo L-Band Feed Array, see Cordes et al. 2006), Einstein@Home has,
as of the writing of this thesis, discovered about 50 previously unknown radio pulsars.
After additional follow-up from the world-wide network of radio telescopes, 26 have been
published by Knispel et al. (2010}, 2011), Allen et al. (2013) and Knispel et al. (2013).

A third type of search on Einstein@Home analyses gamma-ray data from the Large
Area Telescope (LAT, see Atwood et al. 2009) on board the Fermi Gamma-ray Space
Telescope. With methods originally developed for GW searches (Pletsch 2011)), and
already used successfully before for blind gamma-ray pulsar discovery (Pletsch et al.
2012albllc), this search on Einstein@Home has so far found at least 4 new gamma-ray
pulsars (Pletsch et al.|2013]). Also see Abdo et al. (2013) for the current Fermi gamma-ray
pulsar catalogue.

The Einstein@Home project can be found under the following URL:

http://www.einsteinathome.org/
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6 The problem of lines

In this chapter, I provide the main motivation for the work presented in this thesis:
while in the previous chapter I had mostly assumed pure Gaussian noise, real data
from interferometric GW detectors contains many non-Gaussian artefacts. The type of
disturbances most relevant for continuous wave searches are so-called “lines”, which T will
discuss in detail here. I also briefly review mitigation techniques that have previously
been developed to deal with lines.

6.1 What do we mean by “lines”?

When we talk about “lines”, the central idea is that these disturbances are similar to
continuous wave signals: long-lasting and confined to narrow frequency bands. Hence,
these are spectral artefacts, which appear as line-like deviations from the background
noise distribution in a frequency-domain representation of the data, for example in the
power spectrum. These characteristics are in contrast to disturbances which are localised
in the time domain, usually called glitches. In[Fig. 6.1} the prevalence and typical shapes
of lines in first-generation interferometer data can be seen.

The simplest type of line is a stationary, monochromatic sinusoidal disturbance, so that it
contributes noise power at a specific frequency, with both this frequency and the strength
of the disturbance remaining constant over time.

Representative Spectra for LIGO/Virgo Detectors in S6/VSR2-3

1020

— H1
Figure 6.1:  Representative amplitude —w

spectral density curves for the LIGO
detectors H1 and L1 during their sixth
science run (S6) and Virgo (V1) during
its VSR2-3 runs. Strong lines are visible
as peaks in the spectrum.

Figure credit: LIGO Scientific Col- ¥ "
laboration and Virgo Collaboration, \*w[
Abadie et al. (2012e).
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However, in real data, a single line may contain power over a certain band in frequency,
its strength may change over time, or even its central frequency may change. The latter
effect is called wandering. The spectra in already clearly contain a variety of line
morphologies.

Furthermore, the population of lines is not limited to those clearly observable in the
power spectrum. There are also weaker lines which only show up in the results of highly
sensitive CW searches.

For the purpose of this thesis, I will consider as “line-like” any disturbances that are
localised in a frequency region smaller than the typical subdivisions of an analysis, and
which are present for long enough to have an effect on a given quantity of interest, be
this the PSD or a detection statistic. Any line-mitigation techniques should ideally help
against this wide class of disturbances, including broad lines and wandering lines.

Two more terms often appear in the context of lines: a collection of several lines at nearby
frequencies is called a forest, and several lines equally spaced in frequency (including, but
not limited to, integer multiples of the same frequency) are called a comb. While the lines
in a forest do not necessarily share a common physical origin, the lines in a comb are
mostly harmonics of each other, i.e. a single physical effect couples into the interferometer
GW strain channel at the base frequency, but the disturbance also appears in the higher
harmonics.

6.2 Physical origin of lines

Lines can have very diverse physical origins, and these are typically known in only a few
cases. In general, lines can be considered as the effect of periodic physical processes in
the interferometer, or its surrounding, coupling into the GW-strain channel. Here is a
list of a few known sources of lines in the initial LIGO detectors:

e Power lines (or mains lines): Detectors are powered by the standard electrical
power grid of their host country, which influences the detector readout through
electromagnetic couplings. This produces strong lines at the grid AC frequency
and its harmonics. For the LIGO detectors, in the USA, these are at ~ 60Hz,
while for European detectors they are at ~ 50Hz. Since the power-grid frequency
is not exactly stable, and since it couples into the detector through a variety of
systems, these lines are usually very broad and non-stationary.

o Suspension lines (also called wire lines or violin modes): These are a side-effect of
trying to decouple the detector from environmental vibrations through suspending
the mirrors from wires (see Sec. 4.3 of Abbott et al. 2009¢ and references therein).
Even though these are very effective at broad-band noise reduction, there neces-
sarily remain strong disturbances near the resonance frequencies of the suspensions
themselves.
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e Besides the main suspensions, other components of the detector are also prone to
mechanical vibration resonances — for example, the test mass mirrors themselves.

e A large collection of analogue-to-digital converters and other electronics, which are
used in the detector control and readout, induce lines at their operating frequencies.

o Pulsed-heating lines are another common family of lines where the periodic workings
of the thermal compensation system (Ballmer et al. 2005) produce a magnetic
coupling with the magnets on the test masses.

e There are also calibration lines deliberately injected into the detector data, to allow
calibration of the strain-data stream h(t) at known amplitudes. (See Sec. 4.6 of
Abbott et al. 2009e, as well as Abadie et al. [2010a, and references in both.)

Some examples of the strongest of these well-known line families (calibration lines, power
line harmonics, suspension wire vibrational modes, test mass vibrational modes) are
labelled on a typical LIGO H1 spectrum from the fifth science run in taken from
Abbott et al. (2009¢).

Lines can be either confined to a single detector, or coincident between several detectors.
For example, the exact frequency of the wire lines depends on the details of each detector’s
suspension system, while the power lines are the same for all American detectors. For
the rest of this chapter, as well as most of this thesis, I will focus on non-coincident lines
only. Coincident lines will be discussed only in [Sec. 6.8

6.3 Line cataloguing

The identification of lines is one of the goals of detector characterisation projects at the
LIGO, Virgo and GEO600 detectors (Acernese et al. 2007, Christensen |2010, Coughlin
2010, Accadia et al.|2012a)), though the main focus of these projects is on improving the
overall noise floor and on mitigating glitches that affect time-domain analysis (Blackburn
et al. 2008, Abadie et al. 2010d, Aasi et al. [2012, Abadie et al. 2012e]).

Lines can be identified either purely on the instrumental side, by analysing the auziliary
channels, like magnetometers and vibration sensors, and directly identifying the phys-
ical origin of strong spectral peaks. In a complementary approach, peaks in the main
h(t) GW-strain channel can be correlated with the auxiliary channels, and significant
correlations are considered as lines even if the physical origin remains unclear.

One method employed in the LIGO and Virgo collaborations, called Fscan, is based on
coincident outliers in the SFT power of h(t) and auxiliary channels. This is similar to
the “line flagging” approach which I describe in Secs. [6.5.1] and [B.1.1] A second approach
uses the spectral coherence between channels. Both are described in Coughlin (2010).
For an account of how Fscan identified new lines in early S6 data and how some of these
could be removed from the instruments, see Aasi et al. (2014c]).
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In the past, the most complete line catalogues have been those produced in collaboration
between instrument scientists and CW data analysts during the post-processing of CW
searches, such as Tables VI and VII of Aasi et al. (2013b) for LIGO S5 data. These
combine lines identified by the methods above with those found in the CW searches
themselves and then investigated further by instrumentalists.

An advanced noise monitoring framework, specifically designed to catalogue lines and
called the Noise Frequency Event Miner (NoEMI, see Accadia et al. 2012b), has recently
been introduced in the Virgo collaboration. Just as the Fscan and coherence methods,
this software uses data from the GW-strain channel as well as from auxiliary channels
to identify lines. It then creates a database that can be used to mitigate the lines either
at the detector level or later on in the analyses. However, NoEMI has greater flexibility
in tracking the frequency evolution of lines over time. NoEMI or similar software is also
envisioned to be used at adVirgo, as well as aLIGO, together with the other established
methods.

6.4 Influence of lines on CW searches

If lines are present in the data, any CW detection statistic that assumes pure Gaussian
noise can produce spurious candidates from signal templates whose frequency evolution
crosses a line artefact. Hence, follow-up procedures are needed to separate interesting
signal candidates from these line-related false alarms. In addition, some bands of data
may be so heavily affected by lines that no astrophysically relevant statements (detection
claims or upper limits) may be possible at all.

These effects can be seen, for example, in the results from a recent Einstein@Home ana-
lysis of LIGO S5 data (Aasi et al. 2013b), shown in No tenable GW candidates
were found in this analysis, and upper limits on the expected astrophysical hg at 90%
confidence were reported. The plot shows these upper limits as a function of frequency.
However, 156 bands of 50mHz width are excluded, indicated by black vertical bars. These
bands were too heavily affected by disturbances for the calculation of meaningful upper
limits.

Many narrow bands had already been excluded from the analysis beforehand, because
of known instrumental artefacts. This usage of the line cleaning approach, which I will
discuss below in affected a total of 27 Hz of bandwidth. On the other hand,
many of the lines resulting in excluded bands in the upper-limits plot were not previously
known, and were only identified during follow-up. These led to the exclusion of about
25% of all candidates returned by the search. The full set of all known lines for that
search is listed in Tables VI and VII in Aasi et al. (2013b]).

Here, and in similar searches, the effect of lines is increased because of the use of toplists of
candidates, which I have briefly described in If a line is present in a frequency
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Figure 6.2: Upper limits from the S5R5 Einstein@Home search (Aasi et al. 2013b, red
dots), as well from as the previous Einstein@Home search, called S5R1, which used
early S5 data (Abbott et al. 2009¢, blue dots). The three stars correspond to hardware-
injected simulated pulsars which were recovered in the S5R5 search. The curves rep-
resent the source strain amplitude hg at which 90% of simulated signals would be
detected. The vertical bars represent 156 half-Hz frequency bands contaminated by
instrumental disturbances for which no upper limits are provided. The cyan curve
shows a prediction for the th% upper limits.

Figure credit: LIGO Scientific Collaboration and Virgo Collaboration,
Aasi et al. (2013b).

band, the toplists of all corresponding workunits can easily become saturated by line-
related candidates. In such a case, even if there were enough unaffected candidates in the
band to achieve a detection (or a confident upper-limit statement) after post-processing
line removal, this would no longer be possible due to the limited toplist.

As a quantitative estimate of the prevalence of lines in initial LIGO data, consider the lists
provided in Tables VI and VII of Aasi et al. (2013b)): In a [50.00, 1190.00] Hz frequency
band, there are 1060 known individual lines (including harmonics) in H1, and 1035 in L1.
The actual width of each line is not perfectly known, but according to the post-processing
exclusion limits, these lines span a total of 8.88 Hz in H1 and 8.02 Hz in L1. Note that
these are only ~ 0.78% and ~ 0.70% of the total bandwidth, respectively, but that they
contributed ~ 25% of the most significant candidates.
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Hence, the nominal amount of line-affected bandwidth of GW data is typically small, so
that the approach of treating lines as exceptional "disturbances” to an otherwise mostly-
Gaussian data set is justified. However, lines can have a disproportionate influence on
the set of candidates returned by a search. This makes mitigation strategies important
in obtaining meaningful results and improving sensitivity.

6.5 Existing line-mitigation techniques

The ideal method of dealing with lines is to remove their physical sources from the de-
tector system. In Accadia et al. (2012b)), this is referred to as “line mitigation”. However,
here T will concentrate on those cases where detector-level mitigation was not possible,
or the lines were not found early enough, and where the mitigation has to take place at
the data-analysis level instead.

There are two fundamentally different approaches to artefact mitigation: Bayesian model-
selection and ad-hoc, heuristic methods. The former is based on ezplicit alternative
models for the noise distribution, extending the standard (Gaussian) broad-band model
to include the artefacts. On the other hand, data can be excluded from the analysis on
heuristic grounds, and ad-hoc statistics can be constructed to match certain deviations
from the GW signal model that have been observed in previous search results. In the
Bayesian picture, this latter approach corresponds to a test against implicit (and often
unknown) alternative hypotheses.

It is also instructive to consider the order in which a search pipeline uses the two prop-
erties of coherence and coincidence between detectors. If the first step in the search
is a coherent multi-detector statistic (as is the case for most CW searches), then the
noise-artefact-mitigation strategy may use subsequent consistency checks between the
individual detectors. On the other hand, if the first step consists of single-detector
searches, followed by a selection of coincident triggers between the individual detectors,
an additional multi-detector coherent statistic can serve as an artefact-mitigation tech-
nique. This is the case in many CBC and burst searches, which I will discuss later on in
Secs. and , as well as some early CW searches (Abbott et al. [2009d)) and a recent
generalisation to CWs from binary systems (Aasi et al. 2014d)).

So far, the most commonly used approaches to deal with instrumental lines in CW
searches are heuristic. I will briefly describe these in the following.

6.5.1 Line cleaning

One possibility is to completely exclude frequency bands from the search when they are
known or believed to be affected by instrumental lines. Different variants of this approach
were used in various LIGO and Virgo searches, such as Abbott et al. (2008al), Abadie
et al. (2010b} 2012b) and Aasi et al. (2013ayb).

74



The identification of lines for cleaning can be the result of previous detector character-
isation work, i.e. from an existing catalogue of “known lines” as discussed in [Sec. 6.3]
It can also be done through line flagging of disturbed frequency bands identified in the
data as it is prepared for analysis.

The most popular method for line flagging is based on counting outliers in the normalised
average power from the data SF'Ts. This is described in detail in Sec. 9.3 of Wette (2009)
and I will also introduce it in of this thesis.

Once line-affected bands (or individual SFT bins) have been identified, the search can
either skip these altogether, or they can be replaced by simulated Gaussian noise. In the
latter case, bands with a significant contribution of replaced bins cannot be used for as-
trophysical statements any more, and are used for sensitivity estimates and sanity checks
only. However, there may also be templates that, due to their frequency evolution, only
overlap with the cleaned bins for short periods. Detection statistics in these templates
are still dominated by real detector data, and hence the search can produce valid results
with better sensitivity than without the cleaning.

A downside of this method is that it typically eliminates a relatively large fraction of the
total frequency band. For example, in the analysis of Abadie et al. (2012b), it excluded
a total of 270 Hz out of the 1140 Hz searched, corresponding to ~ 24% of the data. This
problem can be reduced by a relaxed cleaning approach introduced by Behnke, Papa &
Prix (2014).

Furthermore, this method is either limited to known instrumental lines or, when the line-
flagging variant is used, its efficacy is limited to strong disturbances. The reason is that
weaker disturbances can often only be identified by using time baselines much longer than
those typical for line-flagging algorithms. A simple Fourier-transform-based line-flagging
algorithm is also not optimally suited to detect lines with non-constant frequency, which
might nevertheless affect CW signal templates.

6.5.2 S-veto

Most astrophysical CW signals will have significant frequency modulation due to the
movement of the Earth relative to the source, while lines occur at the location of the
detector. Thus, a viable assumption is that lines should be mostly stationary. However,
depending on the phase-evolution parameters, some signals can also appear as almost
monochromatic in the detector frame, in particular when there is a cancellation between
an intrinsic spin-down of the source and the Doppler effect due to the detector motion.

Hence, the idea of the S-veto is to veto any candidates which too closely resemble an
unmodulated, stationary signal. This amounts to removing any candidates from a fre-
quency and spin-down dependent region of the sky, or equivalently from a sky-dependent
part of the frequency-spin-down space.
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The S-veto was initially developed for an incoherent PowerFlux analysis (Abbott et al.
2008al) and subsequently adapted to F-statistic searches (Abbott et al. 2009d). In the
latter case, it is also known as the generalised S-veto.

For a coherent F-statistic search up to first spin-down order f only, the veto region is

defined by the condition

(wxv)-n
c

f+ fl <e, (6.1)
where w is the angular velocity and © the average linear velocity of the Earth (both as
vectors), 7 is the unit vector from the SSB to the source location (see and e is
a tolerance defining the veto threshold. This condition can also be derived by specialising
the global correlations (see to the case of vanishing spin-down and Doppler
modulation, as shown in Sec. VI of Pletsch (2008]).

The fraction of the total parameter space vetoed through this approach can again be
quite large: for example, about 15% for H1 and 26 % for L1 in Abbott et al. (2008a), as
well as &~ 30% in Abbott et al. (2009d)).

A somewhat related idea is used in the Bayesian unmodulated-sinusoid model, for which

I present preliminary work in

6.5.3 F-statistic consistency veto

Whereas the previous two methods work equally well with single- and multi-detector
searches and can veto both single-detector and coincident lines, another powerful veto
can be obtained by focussing on single-detector lines in multi-detector searches. The idea
behind the F-statistic consistency veto is that a true CW signal must affect all detectors.
The multi-detector F-statistic should therefore be larger than any of the single-detector
FX statistics. Hence, if max{FX} > F, a candidate gets vetoed as a likely instrumental
line. This approach was introduced and tested in Aasi et al. (2013a,b)), and described in
more detail in Sec. 6.3 of Behnke (2013]).

The strength of this veto is that it makes no assumptions on which parts of the data
or the signal parameter space are contaminated by lines. It only removes candidates
which appear, a-posteriori, as incompatible with the signal model. Therefore, the false-
dismissal risk is much lower than, for example, with the S-veto. However, this veto is also
an ad-hoc prescription and has no tunable threshold, making it somewhat unflexible. A
Bayesian generalisation of this idea forms the basis of the main work presented in this
thesis, as detailed in [Sec. 7} Results on this veto are given in chapters[d] and [10] where I
compare its performance to that of the pure F-statistic and to new Bayesian line-robust
detection statistics.
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6.6 The analogous problem in transient searches: glitches

As discussed in[Sec. 2.5, CW signals are not the only interesting targets for GW detection:
comparatively strong short-lived GW signals are expected from the late phase of the
inspiral of binaries of compact objects such as neutron stars and black holes ("CBCs"), as
well as from catastrophic events such as supernovae ("bursts”). Searches for such short-
lived signals, or transients, have to deal with their own set of instrumental artefacts:
short-lived noise transients or glitches in the time-domain. Similarly to lines in CW
searches, these lead to an increase in the false-alarm rates with respect to purely Gaussian
noise: for the standard detection statistics, they resemble signals more than Gaussian
noise.

6.7 Glitch-mitigation techniques

A number of glitch-mitigation techniques exist for CBC and burst searches. As this thesis
focuses on CW searches, I will only briefly mention a few of these, in order to illustrate
some parallels to the case of lines. Again, I can divide the existing methods into ad-hoc
methods with implicit model assumptions and into explicit, Bayesian noise-modelling
approaches.

The most popular methods are ad-hoc glitch-vetos, which are routinely used in typical
CBC searches (e.g. Harry & Fairhurst 2011, Abadie et al. 2012d, Babak et al. 2013) and
burst searches (e.g. Abbott et al. 2009f, Sutton et al. 2010, Abadie et al. 2012a)). These
include the x2-veto (Allen 2005), where the frequency range of an analysis is split into
several subsets and consistency of a candidate across these smaller bands is required.
Note that this should not be confused with another “x2-veto” in the CW literature (Itoh
et al. 2004, Sancho de la Jordana & Sintes 2008, Aasi et al. [2014b), which is concerned
with the consistency of a signal across subsets in time, for example the segments of
a semi-coherent search. The CW version was actually derived from the CBC y2-veto.
Other standard methods in the CBC field are the null-stream veto (Wen & Schutz [2005))
and several varieties of signal-amplitude-consistency vetoes (Abbott et al. 2005c]).

It is again instructive to observe the different combinations of coincident and coherent
analysis steps. For instance, in current low-mass CBC searches the first step is a separate
search in each detector. After a cut on single-detector x? values, glitches are mitigated
with a coincidence criterion and the construction of a new multi-detector statistic for the
surviving candidates. This new statistic folds in the original single-detector statistics and
the x? values. Significance thresholds are set based on Monte-Carlo studies on actual
data and injections.

The situation is different in typical “unmodelled” searches for signals for which there is
no waveform model (“bursts”). Here, a main statistic is multi-detector-coherent, i.e. it
accounts appropriately for time delays and antenna responses of the different detectors
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to the same putative GW. This statistic is then augmented by additional statistics (see
Sutton et al. 2010| for details) specifically designed for checking signal consistency across
the detectors, by means of appropriate veto conditions.

Following the Bayesian approach, various explicit glitch models have been considered,
including sine-Gaussians (Clark et al. 2007, Dal Canton et al. [2014) and wavelets (Lit-
tenberg & Cornish 2010). Proposals to use these in constructing full glitch-robust search
pipelines include those by Clark et al. (2007) and Littenberg & Cornish (2010). Notably,
Veitch & Vecchio (2010) have defined a glitch model that describes coincident single-
detector candidates with independent amplitude parameters in different detectors. On
the other hand, the signal model requires candidates to be both coincident and coherent
across all detectors. Both hypotheses would fit a true signal equally well, but the glitch
hypothesis would be weighed down by its larger prior volume (“Occam’s razor”). In the
case of glitches, however, the glitch hypothesis will generally provide a much better fit,
allowing it to overcome its larger prior volume. This approach is very similar to the one
I will be following in for lines in CW searches.

6.8 Coincident lines in multiple detectors

The comparison of the approach to line-robustness described in with the glitch-
robust method of Veitch & Vecchio (2010)) leads me to the topic of coincident lines. In the
standard (incoherent) CBC pipelines, any candidate is already required to be coincident
between detectors, so the method of Veitch & Vecchio (2010) adds the requirement of
multi-detector coherence to distinguish GW signals from glitches. On the other hand, in
the CW case, we will start from the inherently coherent multi-detector F-statistic and
introduce an additional coincidence requirement to distinguish CW signals from lines.

The method is therefore limited to non-coincident lines, or at least to lines which do not
trigger the same templates in multiple detectors. Including coincident lines in the altern-
ative hypothesis, without changing the general approach, would substantially weaken the
detection power of this method. Hence, additional work is required to deal with coin-
cident lines, probably involving a different line model, such as the unmodulated sinusoid
model which I will briefly introduce in [Sec. 13]

However, the present approach of focussing on non-coincident lines can still yield useful
results, as the prevalence of coincident lines in actual detector data is quite limited.
For example, the lines of known instrumental origin in the LIGO S5 data, as listed in
Tables VI and VII of Aasi et al. (2013b) for the H1 and L1 detectors, overlap for a
total bandwidth of only 1.6 Hz, corresponding to about 11% of the total contaminated
bandwidth and 0.14% of the analysis range.

For another estimate, consider the final high-significance candidates from the Hough-
based analysis of Aasi et al. (2013b). In the step before the F-statistic consistency veto
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was applied, there were 172038 candidates. After the veto, a threshold of 2F = 6.5 was
applied, retaining only 184 candidates.

If I go back to the original candidate lists of that search and permute these two steps,
applying the threshold before the F-veto, this yields another 2427 candidates above
threshold, but which fail the veto. Hence, only 184 of 2611 candidates above threshold,
or 7.05%, had 2F > max{2FX}, and therefore could be due either to CW signals or to
coincident lines. After removing the 172 candidates associated with hardware injections
(simulated CW signals directly added to the detector data through test mass actuation,
as a check of the detector systems and data analysis pipelines), this number is corrected
down to 12 candidates out of 2439, or 0.46%. These remaining candidates were ruled out
as possible CW signals by follow-ups (Shaltev et al. 2014)), and thus are most likely due
to coincident lines.

In addition, I can justify the rather simple line model, which does not account for coin-
cident lines, by considering not just a single CW search step, but a full pipeline such as
that used in Aasi et al. (2013b]). A line-robust statistic only needs to succeed as a cheap
and simple “first line of defence” against the most common noise artefacts, in order to
reduce the number of spurious candidates, especially avoiding toplist saturation. More
sophisticated steps to remove rarer types of artefacts, such as transient disturbances and
coincident lines, can be applied to the surviving candidates in later stages of the pipeline,
including follow-ups.
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7 Line-robust statistics

After the preceding summary of the state of the art in the field of continuous gravitational
wave (CW) data analysis, starting with this chapter I present original results of my four-
year research project culminating in this thesis. Together with chapters [ [9] and
(and the preceding Secs. it forms an extended version of ideas and results first
presented in Keitel et al. (2014)), in collaboration with R. Prix, M. A. Papa, P. Leaci and
M. Siddigi. In the following, I refer to that publication as KPPLS514|

In this chapter, T will present — in more detail than in the journal paper — the derivation
of a new set of detection statistics for CW data analysis. Compared to the standard F-
statistic (see, they promise increased robustness against line artefacts, while also
relying on a more solid framework than the ad-hoc line-mitigation techniques described
in [Sec. 6.5] This approach is, however, limited to lines which are not coincident in all
detectors.

I will begin by describing, in [Sec. 7.1] a set of hypotheses for a given set of GW detector
data. These include the standard Gaussian noise and CW signal hypotheses, as briefly
introduced before in Secs. and The novelty here lies in the addition of a simple
heuristic hypothesis designed to catch single-detector line-like disturbances. This is not
directly guided by physical knowledge about line behaviour, as discussed in but
by the observation from previous CW data analyses that non-coincident disturbances
cause a large fraction of noise outliers.

Next, I will introduce Bayesian hypothesis tests between these three options, rederiving
the F-statistic this way, and obtaining two variations of line-robust statistics, in[Sec. 7.2
After first concentrating on the case of a coherent analysis of the whole data set, I
will then give the semi-coherent generalisation in [Sec. 7.3l In [Sec. 7.4] T also present a
tangential result about the expectation value of the conventional F-statistic.

As already established in my notation mostly follows that of Cutler & Schutz
(2005) and Prix (2007b, 2011b). Two works which I refer to heavily from here on are
those of Prix & Krishnan (2009), hereafter referred to as PK09, and of Prix, Giampanis
& Messenger (2011), referred to as PGMI11}
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7.1 Hypotheses and their likelihoods

Given a multi-detector data set zX (t) and a model equation for a hypothesis, one can
calculate the likelihood of X (t) under that hypothesis. I will now present this calculation
for a baseline Gaussian noise hypothesis Hq, the standard CW signal hypothesis Hg and
a simple single-detector “line” hypothesis Hr..

7.1.1 The Gaussian noise hypothesis Hg

As discussed in [Sec. 5.1 Gaussian noise is a good model for undisturbed bands of data
in a CW analysis. The Gaussian-noise hypothesis Hq states that the data x(t) is fully
specified by a Gaussian-distributed time series n(t):

He :x(t) =n(t). (7.1)

Using the standard Gaussian probability distribution function M and the scalar
product , the probability for measuring a data set @ (t) under this hypothesis is
given by

P(z|Hg) = ke z(@e) (7.2)
where k is a data-independent normalisation constant, and from now on I will suppress
the explicit ¢ dependence.

Posterior probability for Hg

With Bayes’ theorem from [Eq. (4.7)] it immediately follows that the posterior probability
for Hg, given the observed data x, is

P (HolT) P (wlHe) _ P(HolD) 3 aia)
P(aT) P (a]T) |

P (Hg|z,T) = (7.3)

In general, this cannot be calculated directly, as it also contains the prior probability
P (H|T) for the Gaussian-noise hypothesis and a normalisation factor P (z|Z). Whereas
we could make an informed choice for the prior, or at least for its ratio to that for other
hypotheses, P (|Z) appears to pose a problem. This “probability of the data” would
be given by a sum over a complete set of exhaustive and mutually exclusive hypotheses
{H;}:

P(x|T) =) P(x|H:) P(HilT) (7.4)

(2

if such a set were known.

However, in practice we usually do not have a complete set of hypotheses. And when
we limit ourselves to hypothesis tests between a finite set of hypotheses, we do not need
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the absolute values of any posterior probabilities, but only the odds between different
hypotheses. In such ratios, P (x|Z) always cancels. Hence, in the present approach with
three hypotheses, we only need the likelihoods and prior ratios to succeed. is
thus all we need to know about the Gaussian noise hypothesis.

As a final remark, let me note that for an unknown noise PSD, the hypothesis [Eq. (7.1
should be more generally written as

Hg :x(t) =n(t) with prior P (S|Hg) . (7.5)

Assuming S to be known beforehand corresponds to a delta prior

P(S|Hc) =0 (5 - 3) (7.6)

so that we recover [Eq. (7.3)| after a marginalisation integral over S as a nuisance para-
meter.

In the following, I drop the explicit mention of prior information Z, writing P (Hg) for
P (Hg|Z), and so on.

7.1.2 The CW signal hypothesis #g

The presence of an astrophysical CW signal in the data x, in addition to Gaussian noise,
is formally expressed by the signal hypothesis

Hs : z(t) =n(t) + h(t; A, \)  with prior P (A, A\|Hs) , (7.7)

where h(t; A, \) is the signal waveform as discussed in Again, I have split up
the signal parameters into the set of four amplitude parameters A and the remaining
phase-evolution parameters . Prescribing a specific prior distribution P (A, A\|Hs) is an
essential part of stating this hypothesis. Also, as a composite hypothesis. Hg can be
considered as the union of simple hypotheses Hg(A, \).

Priors

In principle, the priors on A and A could be interdependent. For example, a population of
down-spinning NS with fixed-size “mountains” would place a specific frequency-dependent
prior on the signal strength hg. However, our present knowledge about the CW source
population does not clearly favour any specific assumptions. Hence, we can reasonably
simplify the following derivation by assuming that the prior factorises into

P (A NHs) = P (A[Hs) P (AHs) . (7.8)

The phase-evolution parameters A are fixed by the search setup in a targeted pulsar
search, whereas in a wide-parameter space search, these are free parameters. So for
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the general case, we want to obtain any detection statistics as a function of A, or to
marginalise over A only at the very end of the analysis.

Therefore, it is convenient to follow the approach of PK09/and PGM11|and start by form-
ally assuming a single-template search, A = Ag, but to keep the values of \; completely
arbitrary, so that the results hold for any parameter space. We can formally express this
with a delta prior, so that the full parameter space prior is

P (A NHs) = P (A[Hs) () — As). (7.9)

For increased simplicity, I will drop the phase-evolution parameters A from all following
expressions. Hence, these should be understood as functions of A, with possible margin-
alisation or some other evaluation over the whole parameter space to follow at a later
stage.

For the amplitude parameters, let us use the reparametrisation of JKS98, going from
physical parameters {hg,cost, 1, ¢o} to the new set A* = A¥(hg,cost, ), ¢o), with in-
dices p = 1...4. This allows for factorising the waveform:

h(t; A N) = AP By (8 )) (7.10)

with four simple basis functions h,(t; A) (see again [Sec. 5.2)). Note again that here, and
in the following, automatic summation over repeated Greek indices is used.

Likelihood for Hs(A)

Before discussing the amplitude prior P (A|Hg) in detail, let me proceed one more step
towards obtaining the likelihood under the signal hypothesis, which will help in informing
the prior choice. In this step, let us assume some arbitrary, but specific values for A, so
that we can write down the likelihood for a simple hypothesis Hg(.A).

From [Eq. (7.7), after subtracting the template waveform from the data time series,
x — h(A) should be described by Gaussian noise. Thus, adapting the Gaussian likelihood

yields the signal likelihood
P (z|Hs, A) = ke 2@ h(Ale—h(A) (7.11)

With the signal factorisation from [Eq. (7.10)| this yields
P (x|Hs, A) = ke 2@ hAz=h(A)
= P (z|Hg) eA @lhu) =g At hu b ) A" (712)

Now, we can use the four projections z, of the data unto the basis functions and the
antenna pattern matrix M, , defined as in Secs. and [5.6}

z, =(x|h,) and My, = (h,|h,) . (7.13)
These allow us to rewrite [Eq. (7.12)[ as
P (z[Hs, A) = P (x|Hg) e Tuma A Muv A (7.14)
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Marginal likelihood for Hg

Next, we want to obtain the likelihood of the composite signal hypothesis Hg, which we
can get by marginalising over A:

P (x[Hs) = /P (2, A[Hs) dA . (7.15)
Using Bayes’ theorem and the unitarity condition on the prior,
/P(Ams, L)dA =1, (7.16)
we can rewrite this as

P (2| Hs) = /P(m|Hs,A) P (A[Hs) dA . (7.17)

Given the A-dependent likelihood P (x|Hg, A) from this integral cannot, in
general, be solved analytically. However, such a solution is possible for certain choices of
amplitude priors P (A|Hg), as was shown by PK09 and PGM11. A particularly simple,
yet somewhat unphysical, choice is a uniform prior in a bounded region in the A" space,
which vanishes outside that region:

C for ho(A) < hj
P ({A"}|Hs) = { 0 otherwoige .) ’

(7.18)
Here, C' is a normalisation constant to be fixed by the unitarity condition [Eq. (7.16)]
while the cut-off h{ need not be a constant, but could for example depend on .

In fact, for this and the following few chapters (i.e. the parts of this thesis corresponding
to KPPLS14), let us pick a prior which seems rather arbitrary, but allows for the signal-
versus-Gaussian hypothesis test to reproduce the standard F-statistic. As was first found
by [PGM11, this is not achieved by a simple cut-oft hj = hmax = const, but by a prior

VIML

P A" Hg) = @ & o hi(A) < T0ee
0

M|’ (7.19)

otherwise ,

where | M| is the determinant of the antenna-pattern matrix M,, and the remaining
free parameter has been absorbed into the constant c,. Note that this translates to the
Pmax parameter used in PGM11|via ¢, = =5 P

Such a prior has the advantage that existing numerically efficient implementations of
the F-statistic can be used. The alternative of using physical priors on the amplitude-
parameter space (uniform in cost, ¥ and ¢o and a Jeffreys prior in hy) has been in-
vestigated by [PK09|and found to yield a B-statistic with improved sensitivity, yet at an
increased computational cost that at the moment does not make this B-statistic appear
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preferable. Even with further investigation of alternative priors by Whelan et al. (2014)),
this issue has not been settled yet.

The point of amplitude priors will be revisited in more detail in [Sec. 12.2.1] but for now
let us work with the prior [Eq. (7.19)l Going back to the marginal likelihood [Eq. (7.17)}

it yields a significant simplification:

P (x|Hs) =

M
(27r)2’ it [ P(x|Hs, A) dA , (7.20)
A

with the amplitude parameters limited to the set A = {A D hi(A) < 70|/\c/1}

Inserting [Kq. (7.14)|and in the limit of a large integration boundary, ¢, > 1, the integral
becomes an analytically solvable Gaussian integral:

Here, M*" is the inverse matrix to M, so that M, M* =4,.

This is where the introduction of the /| M| factor in the prior pays off, as it cancels
exactly with that from the integral volume. Thus, we obtain the final likelihood of the
composite signal hypothesis in the simple form

1

P (z|Hs) = P (z|Hg) ¢ te2®s Mo (7.22)

This looks familiar from the definition of the coherent multi-detector F-statistic in

Bec 57
2F(x) =y MM ), (7.23)

so that we can rewrite it again as

P (x|Hs) = P (x|Hg) ¢;'te” @ (7.24)

Posterior probability for Hg

Under Bayes’ theorem, this transforms into the posterior probability for the signal hy-
pothesis as
P (Hs|x) = osq ¢ ' P (Hg|z) ™ @ (7.25)

where ogq are the prior odds between the signal and Gaussian-noise hypotheses:

P (Hs)
P(Ha)

0sG = (7.26)
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7.1.3 Simple line hypothesis: a CW-like disturbance in a single detector

As already described quantitatively, our simple approach to modelling lines is based on
the observation that many lines appear only in one detector, or at least are not exactly
coincident in frequency between detectors over long time-scales. Therefore, we focus on
single-detector lines which, in that one detector, closely mimic the phase evolution of a
CW signal.

This will not be completely true for real lines, as they are associated with the terrestrial
reference frame of the detector and not with the astrophysical frame which introduces
part of the modulation of a real CW signal. However, such a model can be considered the
worst-case scenario for single-detector lines, and will therefore catch those components of
a real line which contribute the most power to a false alarm in a CW-signal template.

Single-detector line model: H;X

Mathematically, we can express such a model by a single-detector line hypothesis identical
to the signal hypothesis [Eq. (7.7)[ when restricted to a single detector X:

HY = HE X (t) = n¥(t) + h¥ (5, AY)  with prior P (AX|H£() . (7.27)

Before deciding on the prior P (AX |7—l£( ), let me first note that the physical amplitude
parameters {hg, cost, ¥, ¢o} of an astrophysical CW signal have no physical meaning
for an instrumental line. However, we can still use these, or the transformed A*, simply
as free numerical parameters of the heuristic line model.

The amplitude prior for signals, [Eq. (7.19)] was not informed by physical knowledge
about the CW sources either, but instead chosen to simplify the marginal likelihood

computation. As not much is known about the amplitude distribution of lines, either,
and to keep to the approach of greatest simplicity, we just use the same prior [Eq. (7.19)
for P (AX|H{).

There remains the possibility to choose a cut-off ¢, for the line amplitude prior different
from that for signals. Here, we also make the choice to fix these to the same value. This
value remains unconstrained for the moment, but will be revisited in

The calculations of the A-dependent likelihood, marginal likelihood and posterior prob-
ability for 7-[5 are completely analogous to the signal case. Similarly to |[Eq. (7.25)) the

result is
P (H{ |2%) = ;' P (HE|2X) offg ™™ @), (7.28)

We have already encountered the single-detector F-statistic F~ (zX) in [Sec. 6.5.3 and
it is simply given by [Eq. (5.46)| restricted to the single detector X.
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This posterior contains another prior line-odds factor, namely

o = PO (7.29)
= > .
P (Hg)

Possible ways to quantify our prior knowledge about how often lines occur in a detector
X, as opposed to purely Gaussian data, will be another subject of discussion in [Sec. 8
Meanwhile, note that all quantities here still depend on the template parameters .
Therefore, oi(G represents the prior line-versus-Gaussian odds in a specific template A,
not for the whole parameter space.

Model for a line in an arbitrary detector: #;,

Even though we are using a single-detector line model, we still want to model a line in
any arbitrary single detector, while also analysing the data from the remaining detectors.
Hence, we construct a generalised line hypothesis Hy, as a CW-like disturbance, Hff , in
any single detector X, while the data from all other detectors, Y # X, is consistent with
Gaussian noise, Hg:

Hi, = (’Hi and ’Hé and 7—[% .. ) or

7.30
(H& and Hf and HE,...) or ... . (7.30)

As mentioned before, Hy, does not cover coincident lines, which would require Hff and Hf
with Y # X. Specifically, lines that are present in several detectors for an overlapping
data span at least need to have different phase-evolution parameters A. Otherwise, they
might fit the full multi-detector signal hypothesis Hg better.

It is also worth noting that, if we had allowed for coincident, then even the case were all
detectors contain a line, i.e.

(Hi and H and H} .. ) , (7.31)
would not be identical to Hg: for lines, no consistency of amplitude parameters AX for

all detectors is required, while a signal should have AX = AYV X, Y.

Posterior probability for H,

In order to obtain the posterior probability of Hr,, we assume — as was already implicitly
the case for Hq and Hg — that the Gaussian-noise distributions of the individual detectors
are independent. Then, as the various alternatives in [Eq. (7.30) are mutually exclusive,
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the total probability of Hy, is the sum of these contributions, which in turn factorise into
the single-detector probabilities:

P (Hy|z) = P (Hi|z') P (HE|2?) P (HE]2®) x ...
+ P (Hgla') P (Hi|2?) P (HE|2®) x
+

=Y PH{Y) [T P(HEI) . (7.32)
X Y#X

Inserting the single-detector probabilities for H;¥ and Hg from [Eq. (7.28)|and [Eq. (7.3)|
and simplifying the result by using the relation

[1P (®&12Y) = P(Halz) | (7.33)
X
the full posterior probability for the line hypothesis Hy, is
P(Hilz) = ;' P (Halz) Y ofge” @) (7.34)
X

The total prior odds between lines and Gaussian noise are

P(H
oG =) olg = (Hz) (7.35)
X

P(Ha)
applying again to a given template A.
As prior odds with their range from zero to infinity can be unintuitive and difficult to

handle numerically, a reparametrisation of these quantities is more convenient. For each
detector X of a total number Ngo of detectors, the quantity
X o
rt = —== (7.36)
OLG / Net

can be understood as a relative weight of per-detector line probability. These weights
are non-negative, with a range of [0, Nget] and a normalisation condition

Z X = Nyet - (7.37)
X

If all detectors are equally likely to contain a line, these simplify to X =1 for all X.

Instead of the sum in [Eq. (7.34), we can also use an average over detectors. For an
arbitrary quantity Q¥ let us denote the average as

1
N 759

For the prior line-weights, this definition yields <TX>X =1
The rewritten posterior probability for Hy, from [Eq. (7.34)| then reads:

P(Hp|x) = ;' P (Hg|x) o <7"X efX(xX)>X : (7.39)
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7.1.4 Extended noise hypothesis: Gaussian noise and lines

Instead of treating Gaussian noise and lines as two separate hypotheses, Hg and Hi,
we can also combine the two into a single noise hypothesis. After all, the main interest
of a CW analysis lies in detecting astrophysical CW signals, and thus lines are just
another kind of noise, even if they are distinct from Gaussian noise in their properties
and origin.

Formally, we can write this extended noise hypothesis simply as
Har : (Hg or Hy) - (7.40)

From the definition of Hy,, it is mutually exclusive with Hg — except in the limit of zero
line amplitudes, which however is a null set and therefore not relevant in probability
summations. Hence, the posterior probability for Hgr, is simply the sum of the two
contributions from Egs. (7.3)| and |(7.39);

P (Hgrlz) = P (Hg|x) + P (Hi|x)
=P (Hgl|z) (1 + ¢ tora <rXeFX(wX)>X> ) (7.41)

7.2 Coherent detection statistics

As discussed in Secs. and [£.3] the posterior odds from a Bayesian hypothesis test
can be used as a classical detection statistic. More generally, any monotonic function of
the odds is an equivalent detection statistic in the Neyman-Pearson sense, as only the
ranking of candidates influences the detection efficiency, and ranking is invariant under
monotonic transformations.

With the set of hypotheses just introduced, we can perform three binary hypothesis tests
with the goal of detecting CW signals, and then construct the corresponding detection
statistics:

1. Testing the CW signal hypothesis Hg against the Gaussian noise hypothesis Hg
reproduces the standard F-statistic, when using the amplitude priors discussed in
This is already known to have close-to-optimal performance in pure
Gaussian noise, limited only by the unphysical prior choice (PK09).

2. Instead, the null hypothesis for pure noise can be replaced by the simple heuristic
line hypothesis Hr,. Testing Hg against this defines a new line-veto statistic. This
should be well suited for data sets dominated by strong lines, where the Gaussian-
noise contribution is negligible. Also, it could be used in a two-stage approach
where a threshold has already been placed on the multi-detector F-statistic to
remove most candidates from the bulk of the Gaussian distribution.
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3. A more general line-robust statistic follows from allowing the noise to contain both
a Gaussian contribution and single-detector lines. We achieve this by testing Hg
against the combined hypothesis Hgr, : (Hg or Hi,).

In the following, to simplify notation, I will usually neglect the dependencies of multi-
or single-detector detection statistics and other posterior quantities on x and ¥, after
the quantities are first introduced, and unless there is a specific need to highlight the
dependence on the data in some context.

7.2.1 Rederiving the F-statistic

Traditionally, the F-statistic has been derived in a frequentist way by maximising over
amplitude parameters, as presented in [Sec. 5.7 However, as was first shown by [PK09
and as we have seen in it also arises naturally from the posterior probability
for the CW signal hypothesis, In the posterior odds between Hg and Hg

(with probability from [Eq. (7.3))), the factor P (Hg|x) cancels:

_P(Hsle) 1 F@)
Osc(x) = P (He|z) =08GCy € .

(7.42)
As the prior odds ogg are fixed before the start of an analysis, the prior cut-off factor
¢+ is a constant and e’ is a monotonic function of F, Osg(x) as a detection statistic is
equivalent to F(x).

It is notable that the cut-off parameter ¢, from the unphysical “F-statistic prior” of
Eq. (7.19)| (corresponding to non-isotropic spin orientations) appears explicitly in the
posterior odds Ogg(x). This makes the strangeness of this prior more obvious than in
the frequentist derivation, where it was used only implicitly. However, this value does not
influence the performance of Ogg () as a detection statistic, and as noted it is equivalent
to F(x) itself.

We also find the corresponding (marginal) likelihood ratio or Bayes factor (see[Eq. (4.14))),

P($|HS) — C—l e]:(m) (743)

Bsg(z) = P (zHe)

which is again an equivalent detection statistic to F.

7.2.2 Line-veto statistic Og,
Signal-versus-line odds ratio

Next, let us consider the odds between signal and line hypothesis, corresponding to the
assumption that all the noise consists of lines. The posterior odds simply follow from the
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probabilities in Eqs. |(7.25)| and [(7.39)}

P (Hgl|x) e (@)
= = ———— 7.44
Ogr(z) P (Hi|z) osL <’I”X e]:X(ch)>X ( )
Here another prior odds factor appears,
P(Hs) osc
os1, = === 7.45
LT P(HL) o (7.45)

Meanwhile, in contrast to Ogg, the amplitude-prior cut-off ¢, does not appear in Ogy,,
as it cancels out. However, had we used different cut-offs ¢ and ¢l for the signal and
line case, respectively, the result would be

L F@

(o) = - 7.46

SL(m) osL C§ <7’X e]:X(xX)>X ( )
This introduces a mere proportionality factor, so that Osy, and Og, still are equivalent
detection statistics.

Log-odds and Bayes factor

While the signal-to-Gaussian-noise test yields the odds Osg o e”, it is often more con-
venient to use the F-statistic values themselves, due to numerical difficulties with the
huge range of an exponential. To get a quantity that scales similarly to JF, let us consider
the logarithm of the signal-to-line odds from m

InOgp, =Inogy, + F —In <7"Xe]:X>X . (7.47)

Recalling that the multi-detector average ()5 from [Eq. (7.38)|is basically a sum, we can
split the last term using the "log-sum-exp formula“, which is a common trick in numerical
computation (Press et al. 2007):

N N
In (Z eQ"> = max {Qn} +1n (Z eQnmﬁLX{Q"}> : (7.48)
n=1

n=1

Thus, defining the maximum single-detector contribution — in terms of FX-statistics
weighted by prior line-odds — as

_ X b's
Fl s = max {F*+Inr*}, (7.49)
the log-odds turn into
In Ogr, =Inogr, + F — Fla — In <rXeFX_FI,naX>X . (7.50)
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This form is useful to get an intuitive understanding of how Ogy, behaves as a function of
the multi- and single-detector F- and FX-statistic values. Per definition, e max > pX efx,
and so all of the terms in the detector-average in are bounded within [0, 1].
With Nget terms in total, the logarithmic average In(...)y is then bounded within
[— In Ndet; 0]

When one of the single-detector terms is much larger than all others,
InOsy, ~ Inosp, + F — Fhax s (7.51)
while when all terms are equal,
InOgy, = Inosy, + F — Frpoxe + 10 Nget - (7.52)

In all cases of practical interest, when Nyt is not huge, the logarithmic correction is at
most of order 1.

max are very large. In that case, the bounded
logarithmic correction is negligible, independent of the relative ratios of the FX/. The
full odds ratio is then well approximated by

Another interesting case is when F or F

In Os,(x) ~ Inos, + F(x) — Fl (). (7.53)

If there is no prior knowledge about differing line probabilities in each detector, the
natural assumption is X = 1. Then, the leading term is simply F’ . = max{FX} and
thus

In Ogp,(x) = F(x) — m)?x{}"x(acX)} +Inogy, . (7.54)

Considering In Ogy, as a detection statistic, we can ignore the constant prior odds. In this
limit, the computation therefore reduces to a comparison of the multi-detector F-statistic
with the highest single-detector contribution.

Again, we can equivalently use the Bayes factor as a detection statistic:

P(x|Hs) Ogp(x) e’ (@)
B = = = , 7.55
su(@) = 5 (x| H1,) osL, (rX F XN (7.55)
or, most conveniently for numerical implementations, its logarithm:
In Byt (@) = F = Fiygye = In (7567 ) (7.56)
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Relation to the F-statistic consistency veto

The limiting behaviour of Ogy, from [Eq. (7.54)|is especially interesting because we can
use it to re-obtain the F-statistic consistency veto, which has been used as an ad-hoc line
mitigation technique before (see(Sec. 6.5.3| and also Aasi et al. 2013a.b|, Behnke 2013).

Let us consider the limit of large F and F.\,. and assume 7~ = 1 for all X. Fixing the
detection threshold on Ogr,(x) to a value equal to the prior odds ogr,, any candidate

counts as detected exactly if F > FX

max*

An equivalent formal prescription is to start with a set of candidates and then to apply
a veto at that threshold, i.e.

if F(x) < m)?x{}'x(x)} = veto the candidate, (7.57)

and to accept all candidates passing this veto step.

We can again turn this into a detection statistic, the F1V¢*°_statistic, by ranking the
unvetoed candidates by their original multi-detector F-statistic, while assigning a zero
value to all vetoed candidates:

F(x) if F(x) > m)?x{]:X ()},

_ (7.58)
0 otherwise .

I_-—&—veto (m) = {

There is an important subtlety here: Indeed we can express the single-step F-statistic
consistency veto prescription as a special threshold on the Ogy-statistic (in a limiting
case). However, as a detection statistic F TV is not in general equivalent to any form of
the Ogp-statistic. Specifically, as soon as arbitrary thresholds on both Ogy, and F1V¢t© are
allowed, their detection power can be different, as the ranking of candidates is different.
The two statistics are not monotonic functions of each other and therefore not equivalent.
I will also demonstrate this difference with simulated data in [Sec. 9] see for example
Fig. 9.8

7.2.3 Line-robust detection statistic Oggr,
Signal-versus-extended-noise odds ratio

Another detection statistic results from testing the signal hypothesis against the com-
bined noise hypothesis Hqr, from [Sec. 7.1.4] i.e. when we allow for both Gaussian and
line components in the noise model. With the posteriors from Eqgs.[(7.25)|and [(7.41)] the
corresponding odds are

P (Hs|lx) osc e (@)
P(Herlz) e+ ona (r¥e?™)

OscL(x) (7.59)

94



There are some interesting observations to be made about this line-robust statistic. First,
these odds are the harmonic sum of the two others we have previously considered:

OscL(z) = [0gd(m) + Ogf (z)]

This relation illustrates the conceptual difference to an ad-hoc two-stage approach with
two independent thresholds on Ogg and on Ogy,: Instead, as Ogqr is the straightforward
result of a Bayesian derivation, a single threshold on this combined statistic should be
preferable in all cases where the data is well described by a mixture of Hg and Hy,.

Second, the amplitude-prior cut-off parameter ¢, from becomes interesting at
this point. It is only a scale factor in Ogg and thus not relevant for the performance as
a detection statistic, and it cancels out completely in Ogp,. However, shows
that this parameter does affect the properties of Ogqy,, since it determines the scaling
between the constant denominator term (coming from the Hg contribution) and the
FX_dependent terms (coming from Hr,).

To better understand this effect, let us first rewrite [Eq. (7.59)| into a clearer form. We
introduce the signal-versus-extended-noise prior odds

_ P(Hs)
OSGL = % ) (7.61)

which are related to previously defined prior odds through

- (7.60)

osG = osaL (1 + oLg) - (7.62)
Furthermore, it is useful to define a prior "line probability”

P (Hy) _ o
P (Hgr) l14+ong’

measuring the relative prior weight of lines versus “lines plus Gaussian noise”. Whereas all
previously introduced prior odds are unbounded towards positive infinity, pr, corresponds
to the odds between a hypothesis Hi, and another Hgr, which contains the first, so that
it is also a true probability, with values in [0,1]. The relation to the corresponding
single-detector quantities

pL =P (HL|Har) = (7.63)

X
X:P(HL) _ OfG 7.64
pbL = P HX - 1 X ( . )
(Her) + o1
though, is more complicated than for the prior odds:
X
2w
pL = o (7.65)
1+ ; o~
using the inverse relations
X
pPL X Py,
oL = , Ofg = . 7.66
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. . . X ..
As a third step, the constant term becomes more similar to the e/ -like terms when we
introduce a new “tuning” or transition scale parameter

FO =me,. (7.67)

Using these three redefinitions, we can then rewrite [Eq. (7.59)| as
F(x)

(1—pr) e’ +pp (PXeF¥E@0)

OscL(x) = osGL (7.68)

Limiting cases of Ogcr, log-odds and Bayes factor

This new form of Ogqy, is well-suited to investigate its behaviour as a function of the line
prior pr, and of the single-detector FX values, as well as its limiting cases.

In the limit of a-priori certainty that there are no lines in the data, pr, — 0, comparison
of [Eq. (7.68)| with [Eq. (7.42)|shows that Ogqr, reduces to the F-statistic:

OsaL(z) — Osg(x) < @ for pp,—0. (7.69)

In the other extreme, when believing for certain that the noise is completely dominated

by lines, it reduces to the pure line-veto statistic of [Eq. (7.44);

OSGL(:ZZ) — OSL(CC) for p, — 1. (7.70)

Complementarily, we can consider any fixed py, value in (0,1) and analyse the trans-

ition between these two extremes depending on the data, that is on the FX(2X ) val-

ues compared to the prior parameter .7{50). To illustrate this behaviour more clearly,

Fq. (7.68) can be rewritten in yet another form, using the relations osqr, = pr, 0osr, and
(1 —pr)/pL = o1 Introducing a “transition scale”

Fo=F" o , (7.71)

we obtain
F(x)

oFr 4 (rXeFX @)

OSGL(QZ) — 0sL, (772)

This reparametrisation shows that F, gives the scale of a transition of Oggr,(x) between

Osc(z) o ¢ ®) and Ogp(x), depending on the values of FX: The “line-veto term”
X FX
e

in [Eq. (7.72)| only starts to play a role when it is comparable to e”*. Note,

X
however, that while this transition can be very steep, it is in principle smooth, not a
discrete switch between the limiting odds.
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As a last step to make this behaviour more explicit, let us again consider the log-odds:

In Osgr(z) = Inogy, + F(x) — Flay(z) — In (efr]:f/{lax + <7“XeFX(xX)*fgax(w)>X> ,

(7.73)
where the largest denominator term is
Fllox(®) = max {Fo, F*(z¥) + Inr¥} . (7.74)

Again, as in the In Ogy, case in [Eq. (7.50) the logarithmic correction is of order unity.
Therefore, In Osqy, approximately corresponds to In Ogy, when max{F¥ +Inr¥X} > F,,
and to In Ogq otherwise.

The transition scale F, from [Eq. (7.71)| is mostly determined by the arbitrary prior

parameter .7-:50), and then corrected by the more physically meaningful Inorg. Thus,

choosing a value for ]{EO) has a critical influence on the behaviour of Ogqr,: for high ]-ZSO),
it becomes more similar to the F-statistic and more sensitive in nearly-Gaussian data;

while for low ]__950)7 it becomes more similar to Ogy, and better in line-heavy data.

Ideally, we would choose this tuning parameter depending on expected signal and noise
populations. But there is no such physical guidance, as it derives from the unphysical
choice of amplitude priors in Hence, some empirical method has to replace
it. I will discuss this issue, and a proposed method, in more detail in

However, outside of this analysis of limiting and transition behaviour, the parametrisation
of [Eqg. (7.68)|is preferable to that of [£q. (7.72)], mostly because [Eq. (7.68)|is explicitly of

the form
OsaL = osaL BsaL - (7.75)

Hence, the function XLALComputeLRstat () in the LALSuite software package is imple-
mented to compute, as “LRstat” values, the (decadic) log-Bayes-factor log,o Bsar. Using
log,, instead of In make the resulting values more intuitive.

Again, consider the difference to a two-stage line-veto approach. In that case, Ogy, as a
veto would be applied only to candidates that are “strong” in terms of Ogg o e’ , for which
the Gaussian-noise hypothesis is already considered unlikely with high confidence. On the
other hand, for OgqL, the transition from Ogg to Ogr, is smooth and, more importantly,
it depends on the single-detector statistics X rather than the multi-detector F. Thus,
even in the limiting cases of strong signals or disturbances, the ranking as determined by
Ogqr is different than that of a two-stage approach.

7.3 Semi-coherent detection statistics

As discussed in semi-coherent methods are often used when a coherent-in-time
analysis of the full data set is prohibitive in terms of computing cost. Now I present
the generalisation of our previous results to the semi-coherent case, where the data @
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is divided into Ngeg segments of shorter duration, denoted as {wk}g:f

coherent quantities with a hat: ™.

. I refer to semi-

7.3.1 Semi-coherent F-statistic

In a StackSlide semi-coherent approach, the semi-coherent F (x; \)-statistic in a template
A is an incoherent combination of the coherent statistics Fj(xx; A) in each segment k,
typically as a summation over all segments:

Nseg
Flz\) =D Fila ). (7.76)
k=1

As before, 1 consider statistics in a single template, and will therefore mostly simplify
the notation by dropping any dependence on the phase-evolution parameters A.

As shown by PGM11], F can also be derived in the Bayesian way, similarly to the coherent
F in by relaxing the requirement of consistent signal amplitudes A across
different segments. In other words, gets modified to allow for a set of Ngeg
independent amplitude parameters Ap. This defines the semi-coherent signal hypothesis
Hg as

Hs : xp = ny + Ahy,, fork=1,...Ngg, with priors P (Ak, /\|7:Zs) . (7T

For the per-segment amplitude priors P (Ak|’ﬁs , we reuse the amplitude prior given by
Eq. (7.19)l Hence, by marginalisation as in [Eq. (7.17), we obtain the posterior
P f}/_z _ =~ 7 _Nseg ]‘/:(m)
sle) =0sc P (Ha|x) cx e . (7.78)

For Gaussian noise, the segment boundaries are just a formality, and there is no actual
difference between semi-coherent and coherent hypotheses: ﬁ(; = Hg. For consistency
of notation, I still write 7-ALG throughout this section. The semi-coherent posterior odds
between the signal and Gaussian-noise hypotheses across all Ngeg segments is

N P (ﬁs|m> _N ~
Osg(x) = ———~4 =0sg ¢ el @) (7.79)
P (Hgym)

Note that the prior cut-off parameter c, enters to the power of Ny, due to the inde-
pendent priors in each segment.
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7.3.2 Semi-coherent line-veto statistic 6SL

Similarly, we can now generalise the single-detector line hypothesis of [Eq. (7.30)| to the

semi-coherent case:

Hy, = (ﬁi and ﬁé and 7/-2% . ) or

R R R (7.80)
<’Hé and H} and?—[%...) or ...
The probability of the line hypothesis in detector X across all segments is then
P (’ﬁi{\xx) =P (ﬁgﬂxx) ey Nees ot o7 @) , (7.81)
where the semi-coherent line-odds in detector X are given by
P (%)
opy = ——L. (7.82)
P (%)

Similarly to [Eq. (7.39)] the posterior probability for the full semi-coherent line-hypothesis
Hy, is

P (ﬁL\x) —p (ﬁG|m) N5 G <?X efX<$X>>X , (7.83)

where the line-prior odds and line weights are defined, in analogy to Eqs. [(7.35)| and

P(f)
o= ——% = (e 7.84
OLG P (ﬁG) ; oLG ( )
Yo Ol (7.85)
orc/Ndet

As in the coherent case, the odds ratio between signal and line hypotheses gives a, now
semi-coherent, line-veto statistic:

5 P (ﬁs|m) R F@) -
" ) " ), o

X

Also, we can define a semi-coherent FVe*°_statistic as

~

F(x) if .7?(32) > maxX{J?X(ac)},

0 otherwise . (7.87)

Frhveto () = {

with the same relation to 6SL and the F-statistic consistency veto as discussed in

for the coherent case.
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7.3.3 Semi-coherent line-robust statistic 5SGL

Combining Gaussian noise and semi-coherent line hypotheses, we arrive again at an
extended noise hypothesis,

HaL = (7-7(; or ﬁL) , (7.88)

with a posterior probability given by

P <7—ALGL\39) =P (ﬁg\w) (1 + c;Nseg oLG <?Xefx(xx)>x) ) (7.89)

From this follows a semi-coherent line-robust detection statistic as

2) P (ﬁS"m) AH—1 A—1 -t
Osar(@) =~ = [Ogh(@) + O3l (@)] . (7.90)
P (Aalz)
which we can write explicitly as
Osc (@) = 5 i (7.91)
sGL(T) = osaL o = .
1—5)eF0 4 5 (X eFX(2X)
(1—-pn)er* + L <r e >X
Here, R
~ AT OLG
=P (HulHoL) = —=— € [0,1 7.92
pL ( L GL) [ foa [0, 1] (7.92)

is the prior line probability, with single-detector versions

P (ﬁf) W

~X uel
Pln) 1o
and inverse relations
. pL ~x P (7.94)
OLG = 77— = OLg =7 =x- ‘
I
Also, in analogy to [Eq. (7.67)| the prior cut-off was reparametrised as
FO = 1 s (7.95)

Similarly to [Eq. (7.72)} we can thus write the semi-coherent line-robust statistic as

Oscr(x) = 6 7 (7.96)
SGL\L) = 0SL, — PY N .
oFe 4 <?Xe]-'x(xx)>
X
defining a semi-coherent transition scale ]?* as
Fo=F9 _mog, (7.97)
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which generalises [Eq. (7.71)l Hence, we find that 6SGL(:I:) transitions from the standard
semi-coherent statistic Ogg () o ¢’ to the line-veto statistic Ogp () when

<?XefX>X ~er (7.98)

Again, as in the coherent case, the previous parametrisation from [Eq. (7.91)| has the
advantage of being in the

OsaL = dsar Bsar (7.99)

form, so that the log-Bayes-factor is
In Bscr(®) = F(x) — Flo() (7.100)

—In ((1 —pL) eﬁio)—f[/{)ax(w) + pL, <?Xe]?x(xx)—]?{r’mx(w)> ) ’
X
with the denominator maximum

Fr (@) = max{ FO 41— pr), FX(@X) + Inm¥ + mﬁL} . (7.101)

Note that, in the semi-coherent case, the numerical values of F are typically large, due to
its definition as a sum over segments in [Eq. (7.76)l However, the logarithmic correction
term is still of order unity. This implies that the transition from Ogg to the line-veto

odds Oy, is expected to be sharper than in the coherent case of [Eq. (7.73)

7.4 Expectation value of the F-statistic under the line
hypothesis

In a small aside from the main direction of this chapter, this section presents the deriva-
tion of a quantity which will become useful later on in this thesis: the expectation value
of the F-statistic under the hypothesis Hy,.

As demonstrated in [Sec. 7.2.1] the F-statistic can be obtained from a hypothesis test
between Hg and Hg. Thus, the standard results for the distribution and moments of
the F-statistic, as given in translate only to the case of CW signals in purely
Gaussian noise.

However, the F-statistic as defined by can also be computed in other cases,
and we have used this quantity as the basis for the new detection statistics Ogp, and
Oscr- In most applications, we do not need the full distribution of the F-statistic in
an arbitrary data set, but the expectation value under the line hypothesis Hy, is an
interesting quantity.

Let us start by considering the more general case of a signal with arbitrary detector-
dependent amplitude parameters A’.. For a real CW signal, amplitudes must be consist-
ent across all detectors, corresponding to the case of A‘)‘( = A* for all X. On the other
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hand, for a line according to the simple model of , amplitudes are non-zero for a
single detector Y only. Using here, and in the following, automatic summation only over
repeated amplitude-space indices p, v, ... and not over detector indices X,Y, X', ..., the
line case corresponds to Ay = Al.dxy.

The JKS factorisation of [Eq. (7.10)| allows expressing a general data set of a single
detector X, containing Gaussian noise and some harmonic signal-like components, as

aX =0+ hX =X+ AL R (7.102)

Hence, the projections of the data onto the basis functions, as defined in[Eq. (7.13)} are

oX = (@ |hY) = nf + AL M (7.103)

pv

where nff = <nX }hl)f > From the definition of the scalar product, [Eq. (5.7), it follows
that the multi-detector results are simply

T, = Za:ff , and My, = ZMffV (7.104)
X X

Recalling that the F-statistic is given by 2F = x, M*” z,, and noting that the antenna-
pattern matrix components M* do not depend on the data, the expectation value in

general reduces to
EQR2F]) = M"E [z, x,] . (7.105)

Then, we can use |Eq. (7.103)| to expand

xu:cl, ZE[ X X/}

XX’
=3 B X |+ 3 B [ A M (7.106)
XX XX
+ B [ A M|+ DT B [ A% ME M AR
XX’ XX

X X! X sXX'
Wy | =My, o

noise between detectors) and E [nff | = 0 (assuming zero-mean noise n
data-independence of M and A, this reduces to

(for uncorrelated
*)

Further using the noise expectation values F [n

as well as the
Elzpm)) = My + > A% Moy, M5 A%, (7.107)
XX/

Next, with the well-known result that M* M, = 4 (see[Sec. 5.6), the general result for
the expectation value of the F-statistic under arbitrary amplitude parameters is

E2F]| =4+ M"™ Y A% MY, M5 AL, (7.108)

XX
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From this, we obtain the standard result for a CW signal with SNR pg, as given in
[Sec. 5.7, by specialising to consistent amplitudes in all detectors, i.e., A = A*:

E[2F]y, =4+p§, with p§ = A" M,, A", (7.109)

On the other hand, under the line hypothesis Hp, the amplitudes are Ay, = .A’{/ dxy, and
thus the expectation value is

E[2F)y, =4+ MM A$ MY, MY A (7.110)

To get a better feeling for this unwieldy result, consider the special case of identical
antenna-pattern matrices for all detectors, i.e. /\/lff,, = MZL/,,. The multi-detector antenna-
pattern matrix is then M, = Nqet /\/l}fl,, and therefore MM = ﬁ M@'j. Hence, the
expectation value in this case is

1
E[2F]y, :4+mpi, (7.111)

with the (single-detector) “line SNR” in detector Y given by

pr = AL M), AL (7.112)

This result shows that a CW-like disturbance with SNR py, in a single detector is not
completely suppressed in the multi-detector F-statistic, but is only reduced to an effective
multi-detector SNR of approximately pr,/v/Net-

In general, the scaling of [Eq. (7.111)| will not hold exactly; but as the antenna-pattern

matrices Mffy are typically not very different between detectors, it should remain approx-

imately true. However, cases of large differences in antenna patterns and in per-detector

sensitivity are the topic of
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8 Choice of prior parameters

During the derivation, in , of the new detection statistics Ogy, (“line-veto statistic”)
and Oggr, (“line-robust statistic”), T have briefly mentioned the ill-constrained prior para-
meters which appear explicitly in the final expressions|[Eq. (7.86)|and [Eq. (7.91)|for these
statistics.

In this section, I will further investigate their impact on the statistics’ behaviour, and
introduce two simple methods to choose values for these parameters. There is no guar-
antee that these procedures are optimal, and the priors are unphysical anyway. However,
I will demonstrate good performance of these parameter choices through the numerical
simulations presented in [Sec. 9| and [Sec. 10|

Regarding notation, let me note at this point that the coherent statistics described in
are simply special cases of the semi-coherent expressions given in for
a single segment, i.e. for Ny, = 1. Hence, in the following I use the semi-coherent
notation, without loss of generality.

First, consider the pure line-veto statistic Ost, of Eq. (7.86)] For data from Nget detectors,

it depends on Nget values of the prior line weights 7. So it seems, at first glance, that
Ogr, has Nget free parameters. However, the normalisation condition [Eq. (7.37)[ on the
X corresponds to a sum constraint, reducing the effective number of free parameters to

Ndct -1

Interestingly, the 7 can be computed from the prior odds 6;%, (or prior line probabilities
Py, but the overall prior odds oG (or, equivalently, pr,) do not actually appear in OsL.
Gaussian noise is not considered at all in this hypothesis test, so that only relative line
probabilities in the different detectors are relevant.

The situation is more complicated for the line-robust statistic aSGLa which in addition to
7X also depends on the total prior line probability pr, and on the amplitude-prior cut-off
parameter c.. Notably, these are not just prefactors, which would be irrelevant for the
performance as a detection statistic, but enter into the functional form of 5SGL. Thus, a
naive count gives Nqet + 2 parameters. However, the reparametrisation of 6SGL given in
demonstrates that the transitioning behaviour is actually determined by the

combination

F=FY —hog=F"-In < PL_ > . (8.1)
1 —pL
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Hence, a change in pr, could also be compensated by changing .7?50), and vice versa, and

the two parameters are not independent. The argument about the sum constraint on the
X also still applies. Thus, Ogqr, effectively has Nget free parameters.

Interpreting these prior parameters is not very straightforward. The line probability
pr, and the weights 7% have clear intuitive interpretations as the prior estimate for the
prevalence of lines in total, and in a given detector, respectively. This immediately
suggests determining these parameters from previous experience with the detectors, or
from independent measures of the data quality. In[Sec. 8.1] I present a simple approach
to this kind of “adaptive tuning”.

Less clear is the meaning of the prior amplitude cut-off parameter ¢, and the parameter
io) derived from it, as defined in [Eq. (7.95)] This parameter results from the rather
unphysical choice of the amplitude prior in [Eq. (7.19)] as discussed in more detail by

PKO09| and |PGM11l There is no known way to give a physics- or experience-motivated
estimate for this parameter.

Instead, empirical “tuning” will be required to determine a reasonable value for ]EEO),
based on probing a range of values on a limited subset of data and picking the one for
which Ogqr, performs best. I will discuss this approach in and give arguments
as to why a value obtained that way should be “safe”, though not necessarily optimal, for
the full data set.

8.1 Simple estimate of prior line probabilities from the data

In the absence of any prior information on line prevalence in the detectors, maximally
uninformative line-priors are appropriate: 7% =1 and pr, = 0.5. In terms of the other
parameters used so far, these correspond to piX = H’ijlvdet’ oy = ﬁ and oy, = 1. Such
a choice means to consider the presence of lines, over the whole multi-detector data set,
as just as likely as pure Gaussian noise, and each detector as equally likely to be affected

by lines.

A more informed choice should be based on prior characterisation of the detectors, either
from previous data-taking runs, engineering and commissioning knowledge or even from
an analysis of the current data set which is sufficiently independent from the actual
F-statistic based CW analysis. Existing line catalogues usually make no claims to com-

pleteness, see [Sec. 6.3

Thus, we intend to judiciously use the observed data @ itself for a simple “proxy” estimate
of the per-detector prior line probabilities ﬁf . It seems convenient to adapt one of the
established simple line-vetoing procedures reviewed in[Sec. 6.5 Indeed, empirical results
are promising when adopting the line-flagging method of Wette (2009), based on outliers
in the normalised SF'T power.
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8.1.1 Line flagging through Fourier power

In short, the method works as follows: First, for a set of search templates spanning a
contiguous frequency band (and the full associated parameter space in spin-down para-
meters and sky positions), one works out the full data-span in terms of frequency bins
which potentially contribute to the detection statistics for these templates. Then, one
computes the time-averaged normalised power over these bins and counts how many of
them exceed a pre-determined threshold. Finally, the measured fraction of such outliers
is used as a proxy estimate for the prior line probability.

More specifically, recall from that the data for F-statistic based CW searches is
usually prepared in the form of Short Fourier Transforms (SFTs) of the original time-
domain data. For these, the data is most often split into stretches of Tspr = 1800s (e.g.,
see Krishnan et al. [2004)), though different Tspr are used for specialised searches, too.

For a single-detector SFT, the normalised average SFT power PX(f) as a function of
frequency f is given by (e.g., see Abbott et al. [2004b, Wette 2009)

Nspr ~X )‘2

> Sxf , (82)

PX
()= NSFT Tsrr ‘=

where the sum goes over all SF'Ts in the data set from the detector X, totalling a number
of Ngpr. For each SFT a and frequency bin, 7 (f) denotes the Fourier-transformed data
and SX(f) is the noise PSD.

In well-behaved noise, the normalised SFT power is expected to have a smooth distri-
bution with few outliers. Specifically, in pure Gaussian noise, the quantity 2NSXFT73X
follows a y2-distribution with k = 2NS)%T degrees of freedom, so that the expectation
value is

E [2N&. . PX k
E[PX] = [2]\§§{T l_ NE = (8.3)
SFT SFT
with standard deviation
2NX X
U(PX):U( seTP >: V2k _ 1 . (8.4)

X X
2Ngpr 2Ngpr ,/NSXFT

For large Ngp, We can also approximate this by a Gaussian distribution for PX(f) with

unit mean and standard deviation o = 1/4/Nghr. In practice, this limit is almost always
valid for CW purposes.

An excess of PX(f) outliers above the statistically expected level of fluctuations is thus
a sign for non-Gaussian contamination of the data band. For long-baseline CW searches,
such contaminations are mostly lines or “forests” of narrow line-like features. Hence,
counting such outliers gives a rough proxy of line contamination.
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8.1.2 OQutlier counts as prior estimator

The specific algorithm proposed here is to count the number N7)>(>Pthr of bins for which
PX(f) crosses a given threshold PF , with N7)’(>7’m € [0, Nbins]- Then, the estimated
prior line-probability ﬁf for that frequency band is

X
5 = PP (8.5)
Nbins

The total data range associated with a search band (taking into account Doppler mod-
ulation and NS spin-down) depends on the search setup. For most of the examples and
applications in this thesis (e.g. the 50 mHz-wide physical search bands in [Sec. 10)), it is of
the order of 100 mHz, corresponding to a few hundred bins for a typical SFT bin-width
of Af =1/Tspr ~ 5.6 x 1074 Hz.

In order to avoid many false alarms in line flagging, the threshold Pt)ﬁr has to be safely
above the typical noise fluctuations in the data. We can fix a certain acceptable false-
alarm probability pra p and use the Gaussian distribution of PX to determine Pt)ﬁr. As
the width o = 1/4/Ngpr of the distribution depends on the number of SFTs used per
detector, the thresholds Ptth can in general be different for each detector, as typical
data selection procedures for CW searches (e.g. see Sec. 5.2.2 of Shaltev 2013) do not
guarantee data sets of equal length.

In comparison, Wette (2009) and Abadie et al. (2010b) used a fixed and detector-
independent threshold of Py, = 1.5. With Ngpr ~ 500 for each detector, this is rather
high, corresponding to an extremely small false-alarm probability, equivalent to an ~ 110
deviation. This conservative choice was made because, in that analysis, any frequency
bands flagged as line-affected through this method were completely excluded from all
following analysis steps, which was desirable only for very strong artefacts.

On the other hand, the proposal here is to use the PX-based line-flagging only to estimate
priors for how heavily a given template A may be affected by lines. At the same time, we
also want to include weaker lines, to make the method more powerful. This allows for a
significantly lower false-alarm level. For the PX distributions of typical “quiet” bands of
LIGO data, ppap = 10~ turns out to work well. Examples can be found in a later part
of this thesis, see Figs. [10.3H10.6]

Finally, the per-detector line weights 7% and the overall line probability py, follow from
the pX by Eqs. |(7.85) |(7.92)| and |(7.94)|

8.1.3 Validity and limitations of the estimator
As stressed before, this proxy-estimate method is not a classical way of determining

priors, as it does not strictly rely on information independent from the present analysis.
Thus, it might at first appear that such a data-dependent prior estimation could be
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prone to the “sample re-use fallacy”, as discussed in Sec. 8.12.1 of (Jaynes 2003): Using
the same data twice in a Bayesian inference procedure cannot improve the posterior
estimates. This is obvious when one just repeats the probability-updating step with
Bayes’ theorem twice, using an identical copy of the data. But Jaynes also showed that
a “data-dependent prior” can very often be reformulated as just such a step, proving that
generating prior estimates from the same data set (or a strictly dependent one) is usually
pointless.

However, this argument does not apply in this case, as we actually use different subsets
of what I sloppily call “the data set” for the prior estimation and for the main analysis,
which only have a small overlap. This becomes clear by demonstrating that the proxy
estimate for ﬁLX is sufficiently independent from the posterior for the line hypothesis Hy:
On the one hand, the simple line hypothesis H1, used throughout this work is based on the
signal hypothesis Hg and thus for each template describes a narrow-band signal, which
over the duration of each 1800s-SFT is confined to a few bins (though it slowly moves
through the frequency range with time). For the current F-statistic implementation
(see Prix 2011b), only 16 frequency bins per SFT are used to construct the detection
statistic, and they are very heavily weighted toward a few central ones. On the other
hand, the line-flagging prior estimate determines the line prevalence in a whole frequency
band, using ~ O (100 — 200) frequency bins over the full observation time, each counting
equally in the estimate.

Thus, the small overlap of the two data subsets may lead to a minor reduction in the
prior-estimation effectiveness, but not to a full negation via the sample re-use fallacy.
And as we do not claim the method to be optimal, but just easy and convenient, this
should be enough for the purpose at hand. An actual gain in detection probabilities, i.e.
posterior information, is demonstrated by the results in as well as safety in the
presence of (injected) signals.

The latter point is important because strong signals can also produce outliers in PX,
which will then be counted as lines by the flagging procedure. However, the flagging
is only used to shift prior weight between Hg and Hy,, while any data containing such
strong signals will generally provide so much evidence for Hg that this slight shift is
irrelevant.

A final modification to the tuning procedure becomes necessary because the line-flagging
proxy cannot be considered as a direct estimator of ﬁff . Rather, it provides only an
indication for the presence of lines, based on spectral features that can be robustly
identified. It could miss other types of lines, or identify features that may not map
directly to actual disturbances in F-statistic searches. This is again due to the different
spectral width of the estimator’s and the detection statistic’s supports on the data set.

Specifically, the time evolution of signal templates and lines has to be considered: For
example, a weak “wandering” line, with a frequency that decreases over time, may not
show up as an outlier in PX, but it may severely affect a signal template with similar
spin-down behaviour. The opposite effect, in a long-integration-time search, would be a
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monochromatic but very narrow line that produces a PX outlier, but may actually be
harmless for the F-statistic of a template with rapid frequency evolution, as the affected
frequency bin only contributes a negligible amount of power to the template.

Hence, observing no threshold crossings in the average SFT power PX does not neces-
sarily imply that the JF-statistic could not be affected by instrumental artefacts, while
seeing many outliers in P¥ does not always yield high values of F. T herefore, we want
to avoid values of ﬁf , or equivalently /o\ffG, which suggest more confidence than seems
justifiable. This is achieved by truncating the estimator’s range. In principle, the trunca-
tion rule introduces additional “meta-tuning parameters”, but as long as the boundaries
are low/high enough, the difference in the effect on Oggr, or Ogy, is small. A somewhat
flexible rule is to truncate ﬁi( to an interval

~X Ntrunc Ntrunc

PL S Nbins7 ! Nbins ’ (86)
where Nipune < 1 ensures that the minimum (or maximum) corresponds to less than
one outlier bin (or one undisturbed bin) in the whole band, respectively. In current
Einstein@Home runs, this rule is used with Nyune = 0.1, see For example, for
Npins = 100, this gives 6i(G € [~ 0.001001, 999].

In the following examples and application studies (in[Sec. 10)), Npins ~ O (100) is typically
the case and the tuning stays very similar when using a simpler, fixed-interval rule

op €10.001, 1000] . (8.7)

8.1.4 Example on simulated data

To illustrate the method, I provide an example of a simulated data set. It was pro-
duced using the Makefakedata_v4 code from LALSuite (see [Sec. 5.11f). T have simu-
lated a 60 mHz wide band over 50 contiguous SFTs of Tgpr = 1800s each for two de-
tectors X € {H1,L1}, where H1 and L1 stand for the LIGO detectors at Hanford and
Livingston, respectively. The data set contains white Gaussian noise with a PSD of
SX =3.10722Hz /2 in both detectors. In addition, a monochromatic stationary line
of amplitude hg = 2 - 10723 Hz /2 at 50 Hz is injected in H1 only. shows spectra
of PX(f) for this data set.

In this example, the line-prior estimation proceeds as follows: For the given number
of SFTs, the fixed false-alarm probability of prap = 1072 corresponds to a threshold
Ptlﬂ = Ptthr = Pine(Prap = 1079, Ngpr = 50) ~ 1.84, identical for both detectors. There
are Npips = 127 frequency bins in the band. As also shown by the per-detector histograms
of PX in[Fig. 8.2 the distribution in L1 is compatible with Gaussian noise, while there
is a single bin crossing Py, in H1. Hence, I can estimate the line priors as

il — max {0.001 M} ~ 0.008

» T-1/127
5%t = max {0.001, {4251 = 0.001. (8.8)
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Figure 8.2: Example histograms of the normalised SFT power PX for LIGO H1 and L1
for simulated Gaussian data containing a line in H1. The red, solid curves give the
theoretical expectation from a A(1,1/4/50) distribution and the red, dashed, vertical
lines show the threshold Py, at a false-alarm level of ppa p = 1079,

The simulated line in H1 is visible as a single bin at PH! > 4.5, indicated by an arrow.

More realistic and diverse examples will be provided with the tests on LIGO data presen-
ted in Sec. 10l

8.2 Empirical choice of transition-scale parameter FO

While the adaptive tuning of the prior line WeightsA?X is sufficient to fix the line-veto

statistic Ogr,, and while for the line-robust statistic Osqr,, as expressed in [Eq. (7.91)] the
same procedure also delivers an estimator for py,, there is an additional free parameter

in GSGL, namely ﬁfo).

As discussed in [Sec. 7.2.3 .7?50) set, together with pr, through the relation (7.97) a

scale which any F~ values must reach for the transition of Oggy, from the signal-versus-
Gaussian-noise odds Osg x e’ to the signal-versus-line odds Os..
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7(0)

Hence, we can interpret F, ’ as the transition scale in the case of indecisive prior inform-
ation on line prevalence, i.e. pr, = 0.5. The data-dependent effect of pr,, obtained from
the estimation method described in the previous section, is then to shift the transition
scale up or down from this baseline, depending on whether the “prior” knowledge gives
lines lower or higher odds, respectively.

As the parameter ]/-\]EO) ultimately goes back to the unphysical amplitude prior from
i,(? 19)

introduced to re-obtain the F-statistic from the Bayesian approach, there is
no physical insight available to choose a value for it. Nor is there a direct, deterministic
way to obtain it from the complex composite population of Gaussian noise, signal and
line distributions.

7(0)

Therefore, an empirical approach is required, choosing F,’ in a way that delivers good
detection performance of OSGL. Even if it were computationally feasible, it would not be
admissible to try all possible values (or a representative subset) on the whole data set and
then to choose the one yielding the highest detection probabilities: This would constitute
pure post-hoc tuning of the detection statistic, invalidating the statistical significance of
any results, as they could just be the result of a single-realisation fluctuation.

Instead, ]250) can be tuned on a small “training set” of data. Constructing such a set that
is representative for the whole distribution of line-affected data would be very difficult.
But luckily, this is not necessary, because an additional requirement on our detection
statistic suggests using a much simpler approach.

In introducing a new detection statistic (a tuned 6SGL) which can be used over a whole
LIGO data set (as opposed to Ogr,, which would be appropriate only in strongly disturbed
bands), we want to be conservative in the sense that any gains in disturbed bands must
not be countered by significant losses in the more prevalent quiet, nearly Gaussian bands
when compared to the plain F-statistic. This is because in typical CW searches, most of
the data is approxnnately Gaussian — as discussed in m Hence, a non-conservative
tuning of OSGL would be worse than keeping the F-statistic for most bands, and only
using OSL or a tuned OSGL for the disturbed bands.

Due to this argument, we can tune ]ig ) on a simple training set consisting only of
Gaussian noise plus signal injections, without lines, by requiring it to reproduce the
performance of the F-statistic on that set.

It is a good approximation to ignore the smoothness of 5SL around F, and consider it

simply as a threshold on the F FX values. T hen, for Gaussian noise, we can express JFy FLO
in terms of a false-alarm probability

P, =P (ﬁX > ﬁﬁo)mg) . (8.9)

As introduced for the F-statistic in general in , this follows a central y2-distribution
with 4Nge degrees of freedom. To remove the Ngo-dependence, we can fix a single value

for p(F(X* and use it to determine ]?,50) (pgg*, Nseg>.
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In practice, we want to set ﬁgo) low enough (pgz* high enough) to suppress even weak

lines (when applied, later on, to disturbed bands outside of the training set), but not so
low as to compromise the performance in Gaussian noise. Thus, a reasonable choice is to
use the lowest .7?>£0) (highest pgg*) that does not yet adversely affect the detection power
in Gaussian noise.

I will demonstrate this approach for synthetic data in For practical use on real
detector data, as described in I will perform Monte-Carlo simulations on a small
set of Gaussian data to determine the highest pgz* with near-F performance. Additional
Monte Carlos on a few disturbed bands will verify that this conservative tuning still
yields a significant improvement over F.

Note that the relation m between ]’_:io) and pgi* only makes sense for ]/_:#EO) > 0,
while the parameter can take on negative values, and 55L even corresponds to the limit
of 6SGL = —oo. However, as it turns out — see |Sec. 9.3.2| and |Sec. 10| — the tuning
method usually does result in positive values.
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9 Tests with synthetic draws

For the first set of tests of the new detection statistics Ogr, and Osar,, I will use completely
synthetic draws of detection statistics. These are removed one step further from the
analysis of real detector data than typical studies on simulated data: No full GW-strain
time-series and SFTs are generated and passed through an F-statistic based pipeline.
Instead, the synthesis algorithm introduced by [PKO09| and [PGM11| directly generates
random draws of the various statistics of interest from the underlying noise and signal
distributions.

In the following, T will first describe the algorithm in some detail ([Sec. 9.1)), then present
results on Gaussian noise in and on noise containing disturbances in I
will also compare the results of tuned and untuned statistics in In this chapter,
for simplicity, I consider the coherent case only, i.e. the statistics as derived in[Sec. 7.2

9.1 Synthesis algorithm

As stated in , the F-statistic follows a central x2-distribution in pure Gaussian
noise, and a non-central x2-distribution in the presence of a CW signal. However, simply
drawing the multi-detector F-statistic from its distribution would not be sufficient to
test the line-veto and line-robust statistics, as they also require the single-detector val-
ues FX. These are of course not statistically independent from the multi-detector F.
Hence, random draws must be done for more fundamental quantities that contain all the
probabilistic information. After optionally adding the deterministic signal information,
these will allow computation of the full set of statistics {.7-", FX, Osr,, OSGL}.

An appropriate algorithm has been described by [PK09| and [PGM11] and is implemented
in the LALpulsar-SynthesizeCWDraws module of LALSuite, which for my purposes I
have wrapped in the application lalapps_SynthesizeLVStats.

In the definition of the F-statistic from [Eq. (5.46)] 2F(x) = x, M* z,, the antenna-
pattern matrix M, = (h, |h,) is a purely deterministic object depending on the basis
functions only. The randomness is all inside the projected data components x,, = (x |h, ).

Hence, the algorithm generates random draws of four noise components nff o, ber detector
and SF'T from a multivariate Gaussian distribution, with the antenna-pattern matrix as
the covariance matrix:

Mo ~ N0, MY, ). (9.1)

Qo
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These are used to compute the so-called “ F-statistic atoms”, introduced before in[Eq. (5.52
through the relations

Ngier Nior
an = Z (n{(a - inéfa) and Fy, = Z (ng(a - infﬁa) . (9.2)
a=1 a=1
A signal, parametrised by its amplitudes A* as
X X | X X | X v X v
s, = <s {hu > = <hl, {hu >A =M, A, (9.3)
can be added through
SFT SFT

Z —isy) and FX an+ Z —isy) . (9.4)

Internally, the codes in LALpulsar-SynthesizeCWDraws perform the computation in
Eq. (9.3) under the assumption of unit noise PSDs, S¥ = S = 1, to make it numer-
ically more stable. The correct scaling of the atoms is done in a subsequent step.

In fact, as long as the S¥ are equal for all X, the absolute scaling by S does not affect the
statistics output at all — as long as the signal strength is scaled appropriately, with the
relevant quantity being h/ V/S. Thus, S = 1 can be assumed in general for the synthesis
approach. However, unequal per-detector sensitivities S, as studied later in [Sec. 12|
do affect the results. These are handled through noise-weighting the antenna pattern

matrix, see [Sec. 5.5

In the next step, the atoms and the antenna-pattern matrix elements A%, BX, 6 CX
and determinant DX are used to compute the per-detector FX-statistics through the

relation
2

X
DNgpr
For the multi-detector statistic, the atoms and matrix elements from all detectors are

summed up, as in [Eq. (5.50b)} Computing Ogy, and Oggy, is then straightforward, using
Eqs. [(7.44)| and [(7.68)]

2FY = (BIFX]? + A|FY[? — 20 R (FY X)) . (9.5)

In the following, I refer to each draw of {J:ff }, together with the resulting statistics, as
a candidate. Note that, for a general CW signal, the synthetic statistics depend on the
four amplitude parameters {hg,cost, ¥, ¢o} through the A” in and on the sky
location (e, 6) through M, (see expressions in , but not on the other phase-
evolution parameters {f, f, f,...}. Hence, results from studies on synthetic statistics
should be representative for any frequency band of interest, as long as the noise spectra
SX are chosen appropriately, which for equal-sensitivity detectors only influences the

scaled amplitude h§ = ho/+/S[1/Hz].

In all the synthetic studies presented in this thesis, three of the signal amplitude para-
meters are drawn uniformly from their full support, i.e. cost € [—1,1], ¥ € [—7/4, 7 /4]
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and ¢g € [0,27]. The set is completed with either a fixed value of hS or a fixed (multi-
detector) signal-to-noise ratio pg, defined as in The latter is directly related
to the expectation value of the F-statistic as E[2F|yy = 4 + pZ (see and the
two quantities are related through . The sky position is drawn isotropically
over the sky, unless otherwise noted.

In this approach, lines are simulated exactly according to Hy, of as a CW
signal in a single detector. Specifically, the amplitude parameters are drawn from the
same prior distributions as for the signal case, but then used only for a single set of
AX?while AYY =0 for Y # X. As shown in [Sec. 7.4 the expectation value of the
multi-detector F-statistic in this case is approximately

1 , ,
E[2Fly, ~4+ pi with pf = Ap MY, AL (9.6)

det

with a (single-detector) “line SNR” pr,.

9.2 Notes on studies with synthetic draws

The following studies require both a set of noise draws, including pure Gaussian noise
and, possibly, line-affected candidates, and a set of signal candidates. For the noise
draws, in each detector a fraction ff( of draws contains a line and the remaining fraction
1-— fﬁ( are pure Gaussian noise. I will also refer to fﬁf as the line contamination.

In analysing these data sets, I use the noise draws to estimate, for each statistic, a
threshold corresponding to a particular false-alarm probability pra. Applying this thresh-
old to the signal candidates yields, for each statistic, the detection probability pget(pra)
at that false-alarm level ppa. This is known as the receiver-operating characteristic
(ROC).

Unless otherwise noted, candidates are generated for a network consisting of two detect-
ors, LIGO H1 and L1, assuming identical sensitivity. Lines are only injected into HI,
without loss of generality under the non-coincident line hypothesis Hy,. A total data
length of T' = 25h, corresponding to NS)%T = 50 and Ngpr = 100, is usually used.

Finally, note that for synthetic statistics the line-prior estimation method for oi(G of
cannot be used, as no SFTs are ever generated and therefore no PX values are
available. Instead, the proportion of Gaussian and line candidates in the noise sample is
exactly known, so that I can simply assume “perfect-knowledge tuning”: In pure Gaus-
sian noise examples, I set OECI; = of%; = 0.001, corresponding to the truncation rule from

H1
Eq. (8.7)l In the presence of lines, T use pgl = 51, so that 0{% = liLle, and oﬂ} = 0.001,
L

as no lines were injected into L1.
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9.3 Behaviour for Gaussian draws

9.3.1 Example ROCs

Let me begin the presentation of results from the synthesis approach with the detection
performance of various statistics in pure Gaussian noise. ROC curves for different signal
populations and statistics are shown in for fixed SNRs of pg € {2,4,6} and in
for fixed scaled amplitudes h§ € {0.025,0.05,0.075}. The fixed-h5 candidates
have similar average SNRs as the fixed-SNR populations: using and averaging
over the Nypaws = 107 candidates with uniformly distributed cos¢, ¥ and ¢y, these are
ps (h§ =0.025) ~ 2, ps (h§ = 0.05) ~ 4 and pg (h§ = 0.075) ~ 6.

In both figures, the left-hand column shows ROC curves for the F-statistic, the FTVeto.
statistic, Ogr, and OSGL(}",EO) = 10), as well as the analytical Gaussian-noise expectation
from a x2-distribution of the F-statistic. In the right-hand column, these are contrasted
with ROCs for Ogqr,, using several values of .REO).

These results confirm the expectation that the multi-detector F-statistic should be (close
to) optimal in pure Gaussian noise (see and |JKS98, [PK09). Its detection prob-
abilities closely follow the prediction from a y?-distribution with 4 degrees of freedom
and non-centrality parameter p%.

The ROCs for fixed scaled amplitude h‘g deviate from the y? expectation for the corres-
ponding pg. For example, in the hg = 0.05 population, there is a deficit of pgey at high
pra and an excess at low ppa. With the individual signal candidates covering a range in
ps and therefore a wider range in F than for the fixed-pg population, the lower outliers
can fall even below the low threshold corresponding to a high pra; while the higher out-
liers remain detectable at much lower ppa (high thresholds). For a demonstration, see
the comparison of the 2F histogram to that for fixed pg = 4 in

In all examples, the F V% statistic performs very similarly to plain F at low ppa, as
most Gaussian and signal candidates pass the veto step unmodified. At higher ppa, the
ROC curve for FTVe glants away from that for F. This is due to intrinsic upper bounds
on the achievable prpa and pqet, as a result of vetoing a finite fraction of candidates. At
the highest ppa, the curve vanishes, as F V' never reaches these values. For practical
CW searches, where low ppa are required, this behaviour is not particularly relevant.

Ost,, on the other hand, is notably less powerful in these examples. It suffers from the
bad fit between the lines-only noise model Hi, and the purely Gaussian actual noise
population. The effect of this can be seen in a scatter plot of the 2F and Ogp, values for
all noise and signal candidates, shown for the pg = 4 case in [Fig. 9.4

As shown in the right-hand column of Figs. and the line-robust statistics Ogqr,
increasingly approach the F-statistic performance with increasing ]-ZEO). In particular, at
.7-",50 ~ 10, there are no appreciable losses in detection probability pget over the analysed
false-alarm range pra € [1075,1].
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Figure 9.1: Detection probability pget as a function of false-alarm probability ppa of dif-
ferent synthetic statistics, for pure Gaussian noise and signal populations with pg = 2
(first row), ps = 4 (second row), ps = 6 (third row).
Each column shows ROCs for the statistics listed in the legend of the respective top
panel: with the first column comparing F, FTVe%° Ogy,, OSGL(]{EO) = 10) (labelled
simply Oscr) and the theoretical expectation for F (labelled x?); and the second

column comparing Oggr, with several ]{EO) values.
Statistical errors are not drawn; for Nyraws = 107 these are similar to the line widths.
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Figure 9.2: Detection probability pget as a function of false-alarm probability ppa of
different synthetic statistics, for pure Gaussian noise and signal populations with
fixed scaled signal amplitudes h§ = 0.025 = pg ~ 2 (first row), h§ = 0.05 = pg ~ 4
(second row), h§ = 0.075 = pg ~ 6 (third row).
See the caption of and the legends in the top row for further details. Here,
the x? expectation is computed using the average SNRs.
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Figure 9.3: Comparison of 2F histograms
for signals with fixed pg =4 (blue)
and with fixed h§ =0.05 (red). The
two vertical lines give the thresholds
corresponding to ppa = 1071, where
Pdet,ps < pdet7h57 and to ppa =0.1,

where paet,ps > Paet, s -

# candidates

Figure 9.4: Comparison of 2F and
log Ogt, values for 10* candidates from
Gaussian noise (blue crosses) and from
signals with pg =4 (red stars). The
vertical and horizontal lines give the
respective  ppa = 0.01 thresholds for ! ! ! ! ! !
both statistics. 0 10 20 30 40 50 60 70

2F

log Osgt,

X

9.3.2 Optimisation of transition-scale parameter FO

The Gaussian-noise ROCs have already indicated an “optimum” value of .7-150) ~ 10 for the
data sets considered here. However, I will now assess this question more quantitatively,
with a variant of the optimisation scheme discussed in

To that end, I have synthesised signal populations with 21 different fixed SNRs, ps € [0, 12].
To save on computation time, only 10% candidates were drawn for each population. The
very simple optimisation algorithm consists of starting with a high .7-'50)
detection probabilities for Oggar, (f,SO)) and 2F and accepting the value if the difference is
below a certain tolerance 7. The two panels of show the resulting optimum EEO)
as a function of ppa for tolerances of 1% and 2.5%, respectively. Values below ]__io) =0
were not considered, so that the white areas possibly allow for even lower values.

, comparing the

I find in that the constraint on F\”) comes from a band at intermediate ps. At
high pg, both pget(2F) and pget (OscL (.REO))) go towards 1, so that the absolute difference
becomes negligible; the same happens at low pr, with both going to 0. So at the extremes,
any value of ]{EO) is accepted, and the same would hold true even for the limiting case

Os1, = OsaL (J'"»EO) = —OO>-

Meanwhile, in the intermediate regime, low pra values require high .FEO) values, in keep-

ing with the individual ROC results seen before. A value of ]{go) =10 is good down
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Figure 9.5: Optimisation results for .7-',50) in synthetic Gaussian noise. Shown are the
lowest ]-',EO) values that still satisfy pget (2F) — Pdet (OSGL <]§£O))> < T, where the tol-

erance is 7 = 0.01 in panel (a) and 7 = 0.025 in panel (b). 21 values for ps with 10°
draws each, 100 logarithmic steps in ppa and a resolution of 0.5 in ]-ZEO) were used.

to pra ~ 1072 for 7 = 0.01 and down to ppa ~ 10~% for 7 = 0.025, while at ppa ~ 0.1
already ]-:EO) ~ 4 — 5 is enough in both cases.

9.4 Behaviour for draws with disturbances

9.4.1 Example ROCs

For the next set of ROCs, I consider only one signal population, with fixed pg = 6.
Meanwhile, I change from pure Gaussian noise to noise populations with 90% Gaussian
candidates and 10% lines, of the Hjy, type defined in in H1: ie., 10% line
contamination, fﬁﬂ =0.1. I consider three data sets, where the lines have strengths
oL, € {6,9,15}. While the signals have an expected multi-detector F-statistic value of

E[2F(ps = 6)], = 40, gives for the multi-detector expectation of the line
candidates:

E[2F(pr = 6)ly, ~ 22, E[2F(p = 9)]y, ~44.5 and E [2F (py, = 15)],, ~ 116.5.

In these studies, I use perfect-knowledge line priors, i.e. pEl = fﬁﬂ =0.1= 05(1} =1/9
and, since no lines were injected into L1, oIﬁé = 0.001 (according to the truncation rule
from [Eq. (8.7))). The results, for the same set of statistics as before in the Gaussian case,

are shown in [Fig. 9.6
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Figure 9.6: Detection probability pge; as a function of false-alarm probability ppa of
different synthetic statistics, for signals with pg = 6 and noise that is 90% Gaussian
with 10% line contamination, with line strengths pr, = 6 (first row), pp, = 9 (second
row), pr, = 15 (third row). See the caption of and the legends in the top row
for further details.
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Here the F-statistic performs substantially worse than in Gaussian noise at all false-
alarm probabilities below ppa < 0.1. This already happens in the pr, = 6 case, where
the expected F-statistic of the lines is still smaller than that of the signal, because a
few strong outliers dominate the setting of a threshold at low ppa — as can be seen in
the 2F-Ogqr, scatter plot in [Fig. 9.7, Then, at higher pr,, the slope of pget(F) becomes
very steep, as crossing the F-values of the bulk and even the lower outliers of the noise
populations becomes very difficult (pr, = 9) and then almost impossible (for p;, = 15) for
the signal candidates.

Figure 9.7:  Comparison of 2F and
log OSGL(.REO) =10) values for 10*
candidates from Gaussian noise (blue
crosses), lines with p, = 6 (green plus
signs) and signals with ps =6 (red
stars).  The vertical and horizontal
lines give the respective ppa = 0.01
thresholds for both statistics.

0 20 40 60 80 100 120

Meanwhile, the F Vet statistic stays close to the Gaussian-noise-only performance if ppa
is high or the lines are strong, while it is bad at distinguishing weak lines from signals
at low prpa. Let us look at this effect in more detail for the pr, = 9 example. The veto
step itself is independent of pra, which instead influences the threshold on the resulting
Frveto statistic. Here, a fraction of ~ 6 x 1074 of line candidates survive the veto.
Given that lines are present in 10% of the noise cases, this means that still a fraction of
~ 6x107° of all noise candidates are line candidates which have survived the consistency
veto, though sometimes only marginally. Given that these still have their high F-statistic
values according to the pr, distribution, any signal candidates can hardly surpass them,
and thus the detection probability drops toward zero at ppa < 6 x 1075, This effect is
also visible in the 2F V% — Ogy, scatter plot of [Fig. 9.8 where a few outliers move the
2F tveto threshold at ppa = 107° far to the right.

20 Figure 9.8: Comparison of 2F V¢ and

10 i log Ogy, values for 10* candidates from

2 N ) Gaussian noise (blue crosses), lines with
S pL = 9 (green plus signs) and signals
g 0F 7 with ps = 6 (red stars). The vertical
-20 +~ . and horizontal lines give the respective

-30 ! | I I ! pra = 107° thresholds for both statist-

0 20 40 60 80 100 120 ics. Note the four line outliers pushing

9 F Fveto the 2F Vet threshold far to the right.

This “failure threshold” of the F Ve statistic is a function of line strength: For py, = 6,
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it already happens at prpa ~ 1073, for p, = 12 at ppa < 107¢ and for pr, = 15 it is too
low to be resolvable by 107 random draws.

In comparison, Ogr, performs better in the sense that it is almost independent of pp,,
and much better than the F-statistic, in all these line-affected examples. However, it
still loses 10-20% compared to the Gaussian noise optimum performance, and similarly
compared to the FTVe%._gtatistic above its “failure threshold”. This is not surprising,
given that at most 10% of noise draws contain a line, while Ogr, would only be optimal
for a noise population consisting exclusively of lines.

Indeed, these shortcomings can be remedied by using a properly-tuned line-robust stat-
istic OsqL, as seen in the second column of Again, the behaviour depends on
the choice of transition scale. For the two stronger-line cases, .7:,50) = 10 yields a perform-
ance similar to the FTVe%._gtatistic at high ppa, but loosing less towards the low end,
thus staying close to the Gaussian-noise optimum. At first glance, it might be surprising
that the low-pr, case is the most difficult detection problem, in the sense that even Ogar
cannot match its performance in pure Gaussian noise. However, this makes sense, as
stronger lines are easier to separate from signals, while for pg & pr, the two populations
have a certain overlap in all statistics. Ogqr, still outperforms both Ogp, and FTVete in
this case, as well.

9.4.2 Dependence on population parameters

After having highlighted the most important features of the new detection statistics in
the selected ROC curves shown so far, I will now explore their dependence on the signal
and noise parameters more systematically by considering pget of the four statistics F,
Ftveto Ogr, and Osqr, (]{EO) = 10) over a wide range of signal and noise populations. In
[Fig. 9.9 I have plotted these over a 2-D-grid of pr, and pg at fixed line contamination

Eﬂ = 0.1 and false-alarm probability ppa = 0.001, with both Ogi, and Osgr, using
OECI; =1/9, oﬁé = 0.001. The Gaussian-noise case corresponds to the pr, = 0 limit at the

left edge of each plot.

While the F-statistic needs rapidly increasing pg to achieve the same pqe; when pr, rises,
the other three statistics seem almost immune against these disturbances. The only
exception is a region with 2 < ps < 6 and 3 < pr, < 7, where F V' and Oggr, lose some
power compared to Ogr,. This is just where E [2F], =~ E[2F],.

For one such parameter combination, pr, = 6 and pg = 3, histograms of Ogp, and
OSGL(}ZgO) = 10) are shown in There are large overlaps between the Gaus-
sian, line and signal populations for both detection statistics. However, Ogr, achieves a
cleaner separation between line and signal candidates in this case.

The kind of plot shown in is not ideally suited for direct comparisons of detection

statistics. Therefore, I also show differences of pget for OSGL(.REO) = 10) compared to the

other statistics in |[Fig. 9.11] at three different ppa values.
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Figure 9.9: Detection probability pget as a function of pr, and pg, at fixed line contam-
ination fIIjIl = 0.1 and false-alarm probability ppa = 0.001. The panels show different
synthetic statistics: 2F, FTve° Ogy, and OSGL(]{EO) = 10).

Both Ogp, and Osgr, use o', = 1/9, oFd, = 0.001.
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Figure 9.10: Detection-statistic histograms for Gaussian noise (blue), signals with
fixed ps =3 (red) and lines with fixed p, = 6 (green). Panel (a): Ogy, panel (b):
OscL (.REO) = 10). In each panel, the two vertical lines are thresholds corresponding to
pra = 10~* and to ppa = 0.1.

Against 2F, the improvement is clear, reaching Apge; ~ 0.8 for high pr,. The region of
largest differences shifts towards lower pg with increasing pra simply because the pger =~ 1
regime cannot not yield big differences.

Against FtV'° and Ogy, the interesting behaviour in the E [2F]; = F[2F]y, region
is visible, again. Still, considered as an integral over the whole (pr,, pg) parameter space
and ppa range, it is clear that OSGL(]{EO) = 10) is the most robust and most efficient
detection statistic of the set.

Yet, the full parameter space of the Hg, Ha, Hi, models has more dimensions. In[Fig. 9.12
and [Fig. 9.13] I show the same kind of graphs as in the last two figures, but now along
the x-axis the variable is f{u instead of pr,, at fixed pr, = 9.

Here, I find a qualitatively similar picture, with all statistics except the pure F-statistic
performing decently towards high fi,, with some intermediate cases where F1V¢'° or Ogy,
are slightly better than Oggr,, but with the latter clearly being the most robust over the
whole parameter space and ppa range.

As aresult of these studies, I can conclude that Oggr, with a properly chosen ]-ZEO) (which
in this case turns out as .FEO) ~ 10, although this value may depend on the data set) is a
very robust detection statistic over a wide range of signal and noise populations. However,
the behaviour of all the statistics studied here, depending on population parameters and
PFA, 18 non-trivial, and picking a detection statistic for any well-defined detection problem

can still require detailed studies of this kind.
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Figure 9.11: Difference of detection probabilities pqet(Oscr, (]__io) = 10)) and pget(F) as
a function of pr, and pg, at fixed line contamination f{n = 0.1. The three column are
for false-alarm probability of prpa € {107°,1073, ppa = 0.1}.

First row: compared with pget(F), second row: pget (FTV6), third row pget(OsL).
Both Ogr, and Ogqr, use ogé =1/9, oﬁé = 0.001.
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Figure 9.12: Detection probability pqe; as a function of f]IJ{1 and pg, at fixed line strength
pr, = 9 and false-alarm probability ppa = 0.001. The panels show different synthetic
statistics: F, FTVe° tuned Ogp, and tuned OSGL(.EEO) = 10).

Though f{I! changes over the z-axis, here for convenience I have kept fixed
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Figure 9.13: Differences of detection probabilities pdet(OSGL(}}gO) = 10)) to other stat-
istics as a function of fﬁﬂ and pg, at fixed line strength pr, = 9. The three column are
for false-alarm probabilities of ppa € {107°,1073,0.1}.

First row: compared with pget(F), second row: pget(F V%), third row pget(Osr)-
Though f{n changes over the z-axis, here for convenience I have kept fixed equal-odds
line priors OE(I; = 0%%; = 0.5.
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9.5 Effectiveness of line-prior tuning

In all of the previous studies, I have computed the line- veto and line-robust statistics
with “perfect—knowledge tuning” of the line priors OE(I; = OLG = 0.001 in and,

in pit = =0.1 = oll}, =1/9 and ok, = 0.001 (no hnes 1nJected mto L1).
Here, I will compare this tuning to the equal-odds prior OE(I; = oLG = 0.5, for which I

write the statistics as Oé(i) and OggL.

First, [Fig. 9.14) shows the influence in Gaussian noise, for the pg = 6 case. Note that
here, where 0{% = OL%; holds also in the perfect tuning case, the behaviour of Ogy, is not

influenced by scaling OLG with a common factor, as any such Ogy, are equivalent detection

statistics. However, I find that Ogqr,, at fixed ]-150), can improve due to the tuning by
up to 10% over some ranges in ppa.

Another way of interpreting this finding is that a tuning of ofG to low values allows to
use a lower .FEO) value. In this example, .7{5 ) =10 yields results equal to the F-statistic
expectation only if OLG = LG = 0.001, while for the equal-odds prior a higher .FEO) i

necessary. That would, in turn, reduce the performance of such a statistic in perturbed

data. Hence, the tuning allows for a more robust statistic in general.

Figure 9.14: Synthetic ROCs for sig-

nals with pg=6 and pure Gaus- 1

sian noise. The dashed lines are 0.8

for untuned” equal-odds line pri-

ors, ofll =oll, =0.5, and the solid % 0.6 ]
lines for “perfect-knowledge” priors, = 04 T
ogé = OLG = 0.001. Statistics with the 0.2 .
same ]-ZE ), but different line priors, 0

share the same symbols. The x? ex- 1071075 107* 107* 1072 107" 10°
pectation for the F-statistic is given for DFA

comparison.
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Figure 9.15: Synthetic ROCs for signals with pg = 6 and noise that is 90% Gaussian with
10% line contamination, with different line strengths. Panels (a) and (c) have py, =9,
but two different sets of statistics, where again dashed lines are for “untuned”, equal-

odds line priors, ogé = oﬁé = 0.5, the solid lines are for “perfect-knowledge” priors,

OECI; = oﬂ; = 0.001. Statistics with the same }]SO), but different line priors, share the

same symbols.
Panels (b) and (d) use the same statistics as (a), but for p, = 6 (b) and pr, = 15 (c).

Next, [Fig. 9.15|shows similar results for line-affected candidates. These demonstrate that
the ofG—tuning can sometimes actually decrease the detection power. However, this is
the case only when the statistic is badly matched to the noise population, as seen here
for Ogy, and for Ogqr, with a badly chosen ]__50)7 e.g. for ]{EO) = 15 with lines of SNR
pr, = 9. Still, applied to Osgr, with ]{EO) chosen for good Gaussian noise performance
(.F,EO) = 10 in these examples), the tuning of o\, can yield gains in detection power of
5-10%, particularly at low ppa.

Considering a large parameter space of pr, and pg in [Fig. 9.16] the results are similar to
the ROCs. It also becomes clear that the effect of tuning depends strongly on the chosen
pra: At ppa = 1073, the improvements for OSGL(]{EO) = 10) are very small (~ 1%) and
limited to those parts of the parameter space where not E [2F],, ~ E[2F]; — in that
region, there are actually losses of up to 6%. For Ogy,, the picture is reversed. On the
other hand, at ppa = 107, tuning brings improvements of 2-8% over a large part of
the parameter space for Osar, (.7{50) = 10), and Og, even has improvements of 5-10% at
intermediate pr,, with only mild losses elsewhere.
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Figure 9.16: Comparison of tuned and untuned Ogr, in the left-hand column, and

OSGL(]{EO) = 10), in the right-hand column, at fixed f{' = 0.1 over varying line
and signal strengths pr, and ps.
The first row is for ppa = 1072, and the second row for ppa = 107°.

The result of these studies is that ofG tuning is a valid method to improve the per-

formance of the line-robust statistics, but must be combined with a good }'),EO) tuning
appropriate to the chosen pga.
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10 Tests with LIGO S5 data

In this chapter, I extend the tests of the line-robust statistics to data sets and analysis
methods which are closer to those used in current CW searches, such as those on Ein-
stein@Home. To that end, I take several small subsets of data from the fifth science run
of the LIGO detectors, or S5 for short (see . These have been analysed by
the LIGO scientific collaboration before, without finding any CW signals (Abbott et al.
2009¢, Abadie et al. 2012b}, Aasi et al. 2013b)). Hence, I consider them as pure-noise sets
for the injection of simulated signals, searching for those with established codes from

LALSuite (see|Sec. 5.11J).

The goal is to assess improvements in sensitivity due to the new statistics, expressed
in terms of the weakest signal hg detectable with a certain confidence pget. Therefore,
the injection and detection procedures are modelled after those commonly employed for
estimating upper limits on hg in CW searches (e.g., see Aasi et al. 2013alb).

For each frequency band of data, I have performed two analyses: one over approximately
one year of data using a semi-coherent approach and with the corresponding statistics
from and one over a stretch of 25h of data, with the fully-coherent statistics
from [Sec. 7.2

The semi-coherent results are the main point of this chapter, and the coherent part
should be considered mostly as a sanity check, and to bridge the gap from the coherent
synthetic tests in Hence, statements about the particular characteristics of each
band of data are mostly geared towards the larger data set, and the coherently analysed
subsets may differ slightly in some cases.

In the following, I will first describe the data-selection procedure in Next,
Secs. and describe the set-up of the search pipeline, including template banks,
search parameter space, injection procedure and the definition of a detection criterion.
After describing the set of tested statistics in I present results for the coherent
statistics in and for the semi-coherent ones in

10.1 Data selection

A first data set, in the following labelled (a), consists of simulated pure Gaussian noise.
It is used to check the injection and analysis pipeline in a controlled environment. In
addition, I use five narrow frequency bands of real interferometer-strain data from the
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first year of S5, using segments from the “S5R3” Einstein@Home run (Aasi et al. 2013b),
from both the LIGO detectors at Hanford (H1) and Livingston (L1).

The five real-data bands were selected to be representative of different degrees of dis-
turbance from lines, based on by-eye inspection of PX(f) spectra (shown in Figs. [10.1

and :

(b) a “quiet” band where the distribution of the data is very close to Gaussian,

(c) a band with a single, slightly broadened line in L1,

e

)
)
(d) a band with a single line in L1, narrower than in (c),
) a band with a broad disturbance feature in L1,

)

(
(f) a band with multiple disturbances in H1.

This wide diversity of disturbances is used to check the robustness of the new detection
statistics even in cases like (e) and (f) which are not obviously compatible with the

narrow-line model Hj, from [Eq. (7.30)}

Data for bands (b-f) covers Nz = 84 segments, while Ngee = 121 for the simulated
band (a, S5R5 selection from Aasi et al. 2013b). E] In both cases, each segment spans
T =25h.

All of the coherent searches use data sets spanning 7' = 25h, corresponding to a single
segment of the semi-coherent data selection. Since some of the line features seen in
the full data set occur only sporadically over time, I have selected a different segment
for each band, so that each 25h-stretch has a similar line-characteristic to that of the
corresponding full set.

These time spans, along with the frequency ranges and some additional information, for
each of the sample frequency bands are given in Tbls. and for the coherent
and semi-coherent cases, respectively. Note that in these tables and in the following
figures, I have extended the notation for coherent and semi-coherent quantities to labels
for the example bands, i.e. (a) is the coherent simulated noise example and (2) is the
corresponding semi-coherent example. A label like (a) is used when referring to common
properties of the band in both cases.

There are two kinds of width associated with each frequency band: Physical CW template
frequencies are placed in A fin; for the injection step, while the search requires data from
a wider range A fgpr. This is due to Doppler modulation and the spin-down evolution
of the signal, as well as the algorithmic requirements of the F-statistic implementation
LALDemod (see Prix 2011b) and the HierarchSearchGCT search code.

!The corresponding Gaussian test data for the S5R3 segment selection was unusable due to bugs in its
generation. Instead of generating a new 84-segment set, the SS5R5 set was chosen to minimise the
potential for introducing new errors.
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Label A finj [Hz] A fspr [Hz| tstart [S] NG [HZ_]/Q] max 2Foise  Detector X N;%T VS§X [HZ_I/Q] Pt)fn, oﬁ(G
(@  [60.00,60.05] [59.99,60.06] 852443819 2.50 x 10~ 22 36.30 H1 45 243 x 10722 1.894 0.001
L1 35 257x107%2 2014 0.001

(b)  [54.20,54.25] [54.19,54.26] 835120582 1.80 x 1022 38.04 H1 47 251x 1072 1.875 0.001
L1 39 148 x 10722 1.960 0.001

(@)  166.50,66.55] [66.49,66.56] 844876223 1.28 x 10722 81.68 H1 47 119x 1072 1.875 0.001
L1 36 1.41x107%2 2,000 0.073

(d)  [69.70,69.75] [69.69,69.76] 821912087 1.42x 10722  122.54 H1 46 1.35x 10722 1.884 0.001
L1 40 1.50x 1072 1.948 0.015

()  [53.20,53.25] [53.19,53.26] 826439677 3.77 x 10722 50.36 H1 42 3.12x1072  1.925 0.001
L1 38 5.13x107%2  1.973 0.085

(f)  [58.50,58.55] [58.49,58.56] 827366996 2.48 x 10~ 22 104.46 H1 48 2.58x 10722 1.866 0.585
L1 40 240x 1072 1.948 0.001

Table 10.1: Data sets used for tests of the coherent statistics. Band (a) is simulated
Gaussian noise, while bands (b)-(f) are LIGO data from the first year of the S5 run.
CW signals are injected with frequencies f € Afiyj, while Afspr denotes the data
range used for the search and the line-prior estimation. Fach data set starts at a GPS
time of tgart and containg NSXFT SFTs of duration Tspr = 1800 s from each detector.
The multi-detector noise PSD S and per-detector SX are harmonic means over SFTs
and arithmetic means over frequency bins. The column labelled max 2, 4ise Shows the
highest multi-detector 2F value without injections.

The column Pt)ﬁr gives the threshold on the normalised SFT power P¥ at DFA,P = 1079

for the estimation of the line-priors ofG.

For the six coherent and six semi-coherent data sets, I have used lalapps_ComputePSD
to compute the per-detector and multi-detector power spectra (PSD) SX(f) and S(f).
The code also computes the normalised SFT power PX(f), as defined in m Plots
of this quantity are shown in for the coherent case, and in for the

semi-coherent case.

From these plots, it is apparent that the “quiet” band (b) is very similar in character
to the simulated Gaussian noise of (a). The maximum P¥X values observed in the two
(near-)Gaussian cases, max(P*) = 1.5 for a single segment and max(P*X) ~ 1.05 for the
semi-coherent cases, are in accordance with theoretical expectations from a (Gaussian
distribution.

The same is true for the full distributions, as shown by the histograms in Figs.[10.3H10.6]
A slight bias of APX Nr;émed ~ (.01 exists due to the fact that E [%} #* ﬁ when
normalising by the estimated noise PSD (see[Sec. 5.4)). The same effect for the F-statistic
is discussed in LPrix 2011a). This is only visible in the semi-coherent Gaussian-noise

examples (2)+(b), and unproblematic in comparison with the thresholds P .

These distributions are also used to determine the line-flagging thresholds at ppa p = 107,
as introduced in [Sec. 8.1} the horizontal lines in the spectra, or equivalently the vertical
lines in the histograms, give the corresponding thresholds, which are evidently above the
bulk of the Gaussian distributions.
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Figure 10.1: Normalised average SFT power PX(f) of as a function of fre-
quency f for LIGO H1 (solid blue) and L1 (dashed red), from data used in the co-
herent searches. The horizontal lines mark, for each detector, the threshold Pt)ﬁr at
DFA,P = 1079, as used in the line prior estimation.

The panels show: (&) simulated Gaussian noise, (b) a quiet band, (¢)+(d) two bands
with comparatively narrow lines in L1, (&) a band with a broad disturbance in L1, (f)
a band with multiple disturbances in H1.

See [Thl. 10.1| for more details on these data sets.
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Figure 10.2: Normalised average SFT power PX(f) of as a function of fre-
quency f for LIGO H1 (solid blue) and L1 (dashed red), from data used in the semi-
coherent searches. The horizontal lines mark, for each detector, the threshold Pt)ﬁr at
DFA,P = 1079, as used in the line prior estimation.

The panels show: (3) simulated Gaussian noise, (b) a quiet band, (¢)+(d) two bands
with comparatively narrow lines in L1, (€) a band with a broad disturbance in L1, (?)

a band with multiple disturbances in H1.

See [Thl. 10.2|for more details on these data sets.
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Figure 10.3: Histograms of normalised average SFT power P (f) for the first four single-
segment bands from [TbI. 10.1]and [Fig. 10.1} The solid curves gives the expected Gaus-
sian distributions, and the dashed vertical lines are the threshold Ptth at ppap = 1077,
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Figure 10.5: Histograms of normalised average SFT power PX (f) for the first two semi-
coherent bands from |Tb1. 10.2| and |Fig. 10.21
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Label A fiy; [Hz] A fspr [Hz] totars 8] Neeg VS[Hz V% max2F,ese Detector X Ngop VSX[Hz V2] PY 6%,

(@)  [60.00,60.05] [59.96,60.09] 852443819 121 1.96 x 10~ 2 6.03 HI 5550 1.65 x 1022 1.081 0.001
1 5010  2.54 x 10722 1.085 0.001
(b)  [54.20,54.25] [54.15,54.30] 818845553 84  2.09 x 10~ 22 6.51 H1 3781 254 x 10722 1.098 0.001
L1 3456 1.81x 10722 1.102 0.001
(@  [66.50,66.55] [66.44,66.61] 818845553 84  1.14 x 1072 10.83 H1 3781 1.35x 10722 1.098 0.001
1 3456 1.00 x 10722 1.102 0.047
(d)  [69.70,69.75] [69.64,69.81] 818845553 84  1.01 x 10~22 83.48 H1 3781 1.15x 1072 1.098 0.001
L1 3456 9.08 x 10723 1.102 0.017
(8  [53.20,53.25] [53.15,53.30] 818845553 84 2.82x 1072 8.85 H1 3781 2.67x 10722 1.098 0.001
L1 3456 3.00 x 10722 1.102 0.288
(@ [58.50,58.55] [58.45,58.60] 818845553 84  2.12 x 10722 8.35 H1 3781 22010722 1.098 1.743
L1 3456 2.05x 10722 1.102 0.001

Table 10.2: Data sets used for tests of the semi-coherent statistics. Data for bands (B)—(?)
corresponds to the Einstein@Home segment selection S5R3 (Aasi et al. |2013b)), span-
ning 381 days and containing Nz = 84 segments, each 25 hours long. For band (a),
the simulated pure Gaussian noise has timestamps corresponding to the S5R5 segment
selection.

The column labelled max2F oice refers to the highest multi-detector F-statistic
_ Nseg  _
without injections, averaged over segments: 2F = ﬁ > 2F.
se; k:l

The remaining labels are identical to those in [I'bl. 10.1

10.2 Template banks and pure-noise searches

Although I reuse a subset of the data and the segment lists from Aasi et al. (2013b)), my
search setup is quite different. This is mostly because I use, instead of a search code based
on the Hough-transform (Krishnan et al. [2004), the lalapps_HierarchSearchGCT code
(HSGCT) that is based on the “global correlations” method of Pletsch & Allen (2009),
which I have described in [Sec. 5.10] HSGCT was first used in an LSC publication in
Aasi et al. (2013a) and is also in use for ongoing Einstein@Home searches (Allen et al.
2005al). Hence, it was natural to implement the line-robust statistics in this code, and
to use studies very similar to those presented here and in [KPPLS14| as preparations for
Einstein@Home set-ups, for which see

Now, let me first describe the search setup for the raw (“pure noise”) data without any
signal injections. For each of the six frequency bands, I performed a search covering
Af = Afinj = 50 mHz (see Tbls. and , the whole sky and a fixed band [~Af, 0]
in the first spin-down parameter f, with a width of Af ~ 2.6 x 107 Hz/s. T have not
considered higher-order spin-down parameters f, f, ... in this study.

The sky coverage was determined by a grid file constructed in a similar way to the
Einstein@Home runs S5GC1 and S6Bucket, which also use the HSGCT code, but are
currently still undergoing post-processing and are not published yet. Such a grid is the
union of an all-sky square lattice in the equatorial plane, projected onto both hemispheres,
and a uniform grid around the equator over the range « € [0,27], § € [—0.5,0.5]. This
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construction was necessary in order to avoid under-covering of the equatorial region by
the HSGCT code. The lattice is constructed with a nominal mismatch of mg, = 0.3,
corresponding to an expected relative loss of squared SNR, see The effective
angular spacings are approximately 0.15rad at f = 54 Hz.

The sky-template spacings need to scale with frequency as 1/f in order to maintain the
same mismatch, leading to a quadratically increasing number of sky-grid points. An

example sky-grid for f = 54 Hz, where Ny, = 548, is given in [Fig. 10.7

For each band, I have used a grid computed at the next integer-Hz step in frequency.
At the highest value considered here, f = 69 Hz, the grid already has Ng, = 924 points.
I have selected all example bands at low frequencies (f < 100Hz) specifically to avoid
searches over much larger sky grids.

Together with grid spacings in frequency and spin-down of 6f ~ 1.6 x 107%Hz and
§f ~ 5.8 x 10711 Hz/s, the full template bank yields empirically measured mismatches
of m ~ 0.6 in the semi-coherent searches and of m < 0.05 in the coherent searches.

For each sky point, the grid has

AfAf
Niempl = 61{5; ~1.4-10° (10.1)

points in frequency and spin-down. Multiplied with Ngy, this is large enough to yield
very impractical days-long computing times for the semi-coherent searches. Therefore,
I had to split up the search into several jobs submitted to the ATLAS cluster at AEI
Hannover, using the Condor parallelisation scheduler (Thain, Tannenbaum & Livny 2005,
Thain et al. 2014). For simplicity, jobs were split into a single sky-point each.

I then collected the results from all jobs for a band (coherent and semi-coherent runs
separately) and obtained, for each of the statistics under consideration (see ,
the respective loudest noise candidate over the whole template grid. Maximum values
for the F-statistic are listed in Thls. and [10.21
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Figure 10.8: Examples of injection points (red stars) on the same f = 54 Hz, Ny, = 548
sky grid as in [Fig. 10.7] with the 10 nearest-neighbour grid-points marked with blue
crosses. Note how, in the second example, the nearest neighbours wrap around in .

10.3 Signal injection and detection criterion

To inject CW signals, I used the lalapps_Makefakedata_v4 code, which can add a
deterministic signal waveform, according to the signal model introduced in to
the provided noise SFTs.

The Doppler parameters were drawn randomly from uniform distributions, with ranges
corresponding to the respective full search range: a € [0,27], 6 € [-7/2,7/2], f € A finj
and f € [-Af, 0]. Of the amplitude parameters, the inclination angle cost € [—1,1],
polarisation angle ¢ € [—m/4,7/4] and initial phase ¢g € [0,27] were drawn uniformly
from those ranges. The signal strength hg was given special treatment: here I chose
several discrete values, intended to roughly cover the range of detection probabilities

DPdet S [07 1]

As we only need the loudest candidates, the search-parameter-space volume was then
limited to a small region around the signal injection point. This search region consists
of a frequency band of Af = 1mHz, a spin-down band of Af ~ 2.3 x 10719 Hz/s and of
the 10 sky-grid points closest to the injection. To avoid a bias from always having the
exact injection values (f, f) as a grid point, the centre of Af and Af was set to the
nearest point of the original pure-noise search grid, instead of centring it on the injection
point. For identification of the closest sky-grid points, T used the metric distance (see
and Prix [2007b)) with the flat “super-sky metric” from Wette & Prix (2013). Two

examples for this are shown in [Fig. 10.8

For 1000 injections per band and hg value, I have recovered the highest value for each
detection statistic. I have counted a signal as detected with a given statistic if the highest
value found with an injection, exceeds the maximum value from the full pure-noise search.
This detection criterion is similar to the common method of setting loudest-event upper
limits per 50 mHz band, as employed for example in Aasi et al. (2013b)).
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An interesting effect of the small signal-search bands is that, in bands (c), (d) and (e),
some of these injection searches do not actually use any of the SF'T bins that contain
the narrow disturbances. The results from these bands are therefore averages over both
disturbed and undisturbed templates. Hence, the performances of detection statistics
as evaluated in this chapter do actually apply to the wider class of bands that contain
disturbances, and not only to sets of disturbed candidates.

10.4 Detection statistics used in the tests

The HSGCT code, which was originally implemented to compute only the multi-detector
F- statistic, has been extended by R. Prix, myself and others to also compute the single-
detector ]-'X values and the new statistics Osr, and OSGL from Eqs. |(7 86 |and| 7.91 l The
code can output two simultaneous toplists (see ordered by different statistics.

To get optimal results for each statistic, I have rerun the code several times to produce
toplists ordered by ]? 5SL and 5SGL with different .7? o the latter required for tuning
on Gaussian noise, and for sanity checks on the other bands. Furthermore, computing
the Fveto_statistic from the output of F and FX is easy to do in post-processing scripts;
for this, I have used the F-sorted toplist.

For GSGL, I have used the tuning of the line priors ’o\fG as described in specifically
Egs. |(8 5 | and | 8.7 | I find that the effect of 6\, tuning on pge; is usually limited to
about 5-10%, which is compatible with the synthetic tests in [Sec. 9.5] This is lower than
typical differences between F or the FHveto_gtatistic and OSGL in most cases. Thus, I do
not explicitly compare tuned and untuned versions in the result plots in this chapter.

Furthermore, the transition-scale parameter ]?io) was tuned, as explained in , us-
ing an extra set of injections on the simulated Gaussian noise set (a). These indicated safe

Gaussian-noise performance (in comparison to the F-statistic) for f( )( Ngeg = 1) = 16.7,

f,go)(Nseg = 84) ~ 237.0 and .F(O)( Ngeg = 121) = 323.3, all corresponding to a false-alarm

level of p%A)* = 1079, so that I denote the corresponding statistic as = )OSGL.

In summary, I will present results for the following set of statistics: the multi-detector
f—statlstlc the FTVeto_gtatistic; OéL) with ogé = OLG = 0.5; and 9 O0gqr, with

p(F(X* = 1075 and with 07 determined from P¥.

10.5 Comparison of detection probabilities - coherent case

Here I present results from the injection and search process as detailed above, in the
form of efficiency plots: the detection efficiency pget as a function of the scaled signal
amplitude h§ = ho/+/S[1/Hz]. An important benchmark in this kind of plot is the signal
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strength at which pqer reaches 95%, corresponding to the typical level at which upper
limits are quoted.

The results for the single-segment coherent statistics on the six example bands are shown
in [Fig. 10.9] When comparing them with those from synthetic draws in note that
the detection criterion defined in — setting the threshold to the highest noise
outlier — fixes the false-alarm probability to an extremely low level, on the order of the
inverse number of templates.

The results from pure simulated Gaussian noise (a) and from the quiet band of real
data (b) are very similar, again demonstrating that the data in this band of real LIGO
data is very close to Gaussian noise. Here, the detection probabilities demonstrate the
expected near-optimality of the unmodified F-statistic. In fact, the line-veto statistic
O(S(i) has noticeably less detection power here, with a 5-10% loss at fixed hg and reaching
Pdet = 0.95 about a factor of 1.5 in hg later. This behaviour is expected, since Hi, does
not match the noise population, leading to an inefficient separation of noise and signal

candidates when setting thresholds on Ogi).

Meanwhile, the conventional F V% statistic is safer than Oé%) in the sense that it per-

forms just as well as the pure F-statistic. Just as in the purely Gaussian synthetic tests,
(0)

the line-robust statistic Oggr, is also safe in this sense: at pF%* = 1079, it performs
equally well as F and F1V¢'° on this undisturbed data set.

When comparing the results for the disturbed bands (E&) to the Gaussian cases, the first
impression is that all statistics lose some detection power, generally reaching pqet = 0.95
at higher hg. However, they do so to varying degrees. As expected, the pure F-statistic
suffers heavy losses in the highly disturbed bands (&) and (?), and still performs noticeably
worse in the remaining two cases. The ]—"Jrveto—statisti(; is often able to recover most of

the losses of the pure F-statistic, but at least in case (d) it still leaves a lot of room for
improvement.

The line-veto statistic Ogi) performs similarly to the FTV¢'°_statistic in case (¢) and yields

an improvement over it in cases (d) and (f), while in case (€) it does worse than both F
and FTVeto_gstatistic — probably because the amplitude of the disturbance is less than in
all other cases (see and hence the full noise population is still dominated by
candidates from the Gaussian distribution.

The main result is that Oggr, is more robust than any of the other statistics, yielding
the top performance in all cases. In the clearest example, band (d) which has a very
strong and narrow line in the data, Ogqy, improves over F by about 30% at fixed hbs and
reaches pge; = 0.95 almost a factor of 2 earlier. Compared to the F1Ve'°_statistic, the

comparison still yields about 20% and a factor of 1.6.

In summary, the line-robust statistic Oggr, consistently shows the best performance over
a wide range of data types: it is more robust to varying kinds of disturbances than FTvet

. ) . 0
and safer in Gaussian noise than OéL)

147



3 b
@ T f ,
» - = 0.6 -
s s
F o
= N = 0.4 ]_—Jrveto 77i77 N
. 0.2 e
| 0 Lyp2 . | <76)O§GL |
0.00 0.04 0.08 0.12 0.16 0.20 0.00 0.04 0.08 0.12 0.16 0.20
ho/+/STL/H] ho/+/STL/H7]
(a 1 T T T (d) 1 B =2 4z -
0.8 |- 0.8 |- e -
foF X
- 06 - 06 -
E 5
S04+ S04+ o X -
0.2 | 02f Yo .
| 0 Lt " | | \
0.00 0.04 0.08 0.12 0.16 0.20
ho/+/S[1/Hz]
(€) ® 4
0.8
- = 0.6 -
T s
S & 04 -
0.2 /
s 0 ‘ L | |
0.00 0.04 0.08 0.12 0.16 0.20 0.00 0.04 0.08 0.12 0.16 0.20
ho, +/STL/H] ho//STLJz]

Figure 10.9: Detection efficiency pget as a function of scaled signal amplitude
h§ = ho/+/S[1/Hz] for four coherent statistics: F, FHveto, Ogi), and (=% 0gqr..
Statistical errors are similar to the size of the symbols. The dashed horizontal line
marks the 95% detection probability level.

The panels show: (a) simulated Gaussian noise, (b) a quiet band, (€)+(d) two bands
with comparatively narrow lines in L1, (&) a band with a broad disturbance in L1, (f)
a band with multiple disturbances in H1.

See |Fig. 10.1| and |Tb1. 10.1| for more details on these data sets.
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10.6 Comparison of detection probabilities — semi-coherent
case

Similarly to the coherent results, [Fig. 10.10] shows the detection efficiency pget as a func-
tion of hbs for the semi-coherent statistics over the full, year-long data sets. Qualitatively,
I find very similar results as before.

For the quiet bands — simulated Gaussian noise in (a) and real data in (b) — the simple

AO)

line-veto statistic Og; again loses a significant fraction of detection power compared to

both the F-statistic and to TV, while the line-robust statistic Oggr, does not show
any noticeable degradation.

On the other hand, in the bands containing noise disturbances (/c\@), the F-statistic suffers
the most. These examples show the line-robust statistic Ogqr, consistently performing
better than F and as well as or better than either Oé(i) or FTVet in all the disturbed
bands.

The largest improvement is again in band (H), with a strong and narrow line artefact,
which for the longer data set has an even more severe effect on the performance of the
other statistics. Here, the signal amplitude required at 95 % detection probability is
nearly two times smaller for Oscr, than for FHvete, The performance of the unmodified
F-statistic in this band is so bad that I refrained from doing injections for such high hS
that pget = 0.95 could be reached. Here, 63@L could give an improvement of an order of
magnitude.

Again, the results from this study indicate that a properly tuned 6SGL, i.e. in this case
(=6)Ogq1,, can be a reliable universal detection statistic for a wide range of LIGO data
with diverse noise characteristics.
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See |Fig. 10.2| and |Tb1. 10.2| for more details on these data sets.
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11 Application to Einstein@Home

Application to the distributed-computing project Einstein@Home was one of the main
drivers behind the developments presented in this thesis. I have given an overview of
the project in and will now describe recent progress in the use of line-robust
statistics in relation to Einstein@Home.

As of the writing of this thesis, the most recent published CW results from Einstein@Home
are those of Aasi et al. (2013b)), using data from the fifth LIGO science run (S5, see
Sec. 2.6.3). It set the currently most constraining all-sky upper limits for CWs from
isolated neutron stars in the 50-1190 Hz range, also shown in

The analysis used the lalapps_HierarchicalSearch code based on the Hough transform
method (Krishnan et al. 2004). Lines were handled with an initial cleaning step (see
and application of the F-statistic consistency veto (see during post-
processing — no results from this thesis were used for this analysis, although I contributed
to a LALApps progam used in producing the FX_values for the veto step.

This discussion covers several Einstein@Home runs, i.e. separate searches on different
parameter spaces and with different set-ups. The results of the runs discussed in[Sec. T1.1|
are currently undergoing post-processing, while covers searches that are still
running or in preparation.

Here, I give only short descriptions of the general search set-ups, focussing mostly on
the aspect of line-robust statistics. Detailed descriptions of the data selection, search
parameter spaces, analysis procedures and results will be given in upcoming publications
of the LIGO Scientific Collaboration and the Virgo Collaboration.

11.1 S6 all-sky searches

With data from the sixth LIGO science run (S6), an Einstein@Home all-sky search has
been carried out in three runs, each using the lalapps_HierarchSearchGCT (HSGCT) code
based on the global-correlations method (see and Pletsch 2008, Pletsch & Allen
2009, Pletsch 2010)):

e The first run covered 50-450 Hz, corresponding to the best region or “bucket” of the
LIGO sensitivity curve, and is therefore called S6Bucket. Just as the previous GCT
run on S5 data, it used the semi-coherent multi-detector F-statistic as a toplist
ordering statistic. No on-host line-vetoing was implemented in this run. However,
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for the first time, single-detector FX _statistics were also computed directly on the
host, for use in post-processing.

e A second run covered the same frequency range Wlth an identical search set-up,
except for using the semi-coherent line-veto statistic Osgt, from Mfor toplist
ordering, instead of F. This run is called S6LV1.

e Finally, the S6LVE run (“E” for extension) covered an additional frequency range
of 450-510Hz. The HSGCT code was modified to simultaneously produce two
toplists, one ordered by F and one by 5SL. Thus, the results from both the
S6Bucket and the S6LV1 runs were extended to higher frequencies.

For the S6Bucket run, the FX _values were computed in an additional recalculation step
at the end of each workunit, for the candidates in the final toplist only. The HSGCT code
uses a coherent coarse grid and a semi-coherent fine grid, as discussed in Each
toplist entry corresponds to a candidate at a fine-grid template. According to,
the semi-coherent F-statistic at a fine-grid point A is the sum of per-segment Fj-statistics
at the closest coarse-grid point Ay in each segment k. In the recalculation step, however,
the exact fine-grid was used. Hence, both the set of {F, ]?X}—Values returned by the
hosts, and any line-robust statistics computed from them during post-processing, have
profited from the increased fine-grid resolution.

For the S6LV1 run, the HSGCT code was modified to directly compute the FX values
and also Ogg, or 5SGL (see at each fine-grid point, thus enabling toplist sorting
based on those statistics. At the time when the run was set up, the tuning of the free
parameters of the line-robust statistic, as described in [Sec. 8, had not been developed
yet. For this reason, it was decided to use the simple hne veto statistic OSL 1nstead of the
potentially more powerful OSGL The prior line-odds o OLG were set to OE&; = OLG =1.

From Egs. , it is clear that everything needed to compute the F¥ values
already exists as intermediate results in the computation of F. Hence, returning these
additional numbers from the hosts did require a modification to the code, but comes at
a negligible additional computational cost. On the other hand, due to the huge number
of templates in an Einstein@Home search, the computation of a new statistic at each
fine-grid point is expensive, especially if it includes exponentials and logarithms, as 6SL
does. Hence, we chose to save computing power by neglecting the logarithmic correction
in the semi-coherent version of . In Monte-Carlo studies, this was found to
have only a very small effect on detection probabilities.

The two data sets obtained from these runs, one with 2 F-sorted toplists and one with
6SL—sorted toplists, both covering 50-510 Hz, are currently in joint post-processing. This
means that a joint set of most significant candidates is created by combining the toplists
for each part of the search parameter space. As of the writing of this thesis, the favoured
approach is to compute the line-robust statistic 6SGL on all candidates and to use this
for a re-ranking of the joint set.
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For this purpose, I have computed the required transition-scale-parameter ]-]E according
to the prescription from using Monte-Carlo studies similar to those presented
in [Sec. 10, but using S6 data and the same search set-up as the S6LV1 run. I have
also estimated prior line-odds 55(; for the S6 data set with the SF'T-power-based method

from m These values were then used in [Eq. (7.96)| to compute Oggr, over all
candidates.

11.2 S6 directed searches

The most recent Einstein@Home run, which is currently still running on the host ma-
chines, is different from all previous runs because it is not an all-sky search, but directed
towards a single sky-position. The run is called S6CasA because the target is the super-
nova remnant (see Cassiopeia A.

CasA, at an estimated distance of 3.3kpc, was originally discovered as one of the first
extrasolar radio sources (Ryle & Smith 1948). With an age of around 300 years, it is
one of the youngest known SN remnants, and the neutron star identified as its central
compact object (de Luca |2008) is one of the most promising candidate CW sources (Aasi
et al. 20141)).

It has already been the target of a 12-day coherent analysis of LIGO S5 data (Wette
et al. 2008, Wette 2009, Abadie et al. [2010b), setting 95%-confidence upper limits of
ho = (0.7-1.2) - 10~2* in the 100-300 Hz range. A first search for CW emission from
CasA with LIGO S6 data (Aasi et al. 2014f)) in the 91-573 Hz range, coherently analysing
only 8.4 days, already marginally improved over these results, with a best upper limit of
ho=06- 10725,

The semi-coherent Einstein@Home S6CasA run covers the range of 50-1000 Hz and, in
contrast to the all-sky searches, searches explicitly not only for the first spin-down term
f, but also for f As in the S6LVE run, dual toplists are produced on the hosts: one
sorted by the F-statistic and one accordlng to the fully tuned OSGL Again, I performed
the SF'T-power-based tuning of line priors OLG and Gaussian-noise Monte Carlos for the

0)

transition scale ]?,E , both adapted to the new search set-up.

Additional directed searches on S6 data are planned for upcoming Einstein@Home runs,
investigating other young and nearby compact objects with unknown rotation frequency
that could contain a strong CW emitter. These will probably use a setup similar to the
CasA search and primarily use the 6SGL—0rdered toplists.

153






12 Line-robust statistics in the case of
unequal detector sensitivities

In this chapter, I investigate the behaviour of the line-robust statistics under a set of
conditions which have not yet been tested in [KPPLS14 nor in chapters of this
thesis. Since the original submission of this thesis in August 2014, a paper based on this
chapter has been published in Class. Quant. Grav. (Keitel & Prix [2015).

The idea of using a comparison between multi- and single-detector statistics, F and FX,
to distinguish CW signals from (non-coincident) lines implicitly relies on all detectors
having similar sensitivities. Indeed, for the synthetic tests in [Sec. 9| I explicitly assumed
equal noise PSDs SX, and in the tests on LIGO S5 data in the largest deviation
between the two detectors H1 and L1 was v/SH1 /ST & 1.7 (coherent example (b), see
. In addition, all tests so far have been for all-sky searches, averaging out the
different antenna patterns of the individual detectors.

However, very different sensitivities may make signals and lines difficult to distinguish,
which would lead to decreased detection power of our line-robust statistics both in the
presence of lines and in pure Gaussian noise. In [Sec. 12.1] I will investigate this concern
about their safety under these generalised conditions, in the sense that they should never
have worse detection probabilities than the standard F-statistic. Using synthetic draws,
it turns out that this issue only really affects Ogp, (of and Oggr, (of
with a transition-scale parameter .7{50) that is too low. An optimally-tuned Oggy, (in the
sense of still seems to be safe under most circumstances of practical relevance,
though it cannot provide large improvements over F in extreme cases.

Then, in [Sec. 12.2] I discuss an attempt to improve upon this behaviour. Based on
changing the amplitude-prior distribution used in [Sec. 7] it leads to sensitivity-weighting
factors in the detection statistics, taking into account the noise PSDs, amount of data
and sky-location-dependent detector responses. Additional synthetic tests in
show that this weighting recovers the losses of Ogr, and Oggr, with low ffo), but that it
brings no further improvement for an optimally-tuned Ogsqr,-

All numerical results in this chapter are produced with the same synthesis approach
as described in Osr, and Ogqr, always use “perfect-knowledge” line priors:
o = max{0.001, X /(1 — f{)} for line contaminations f;¥. Receiver-operating char-
acteristic (ROC) curves are based on Ngraws = 107 each for noise and signal populations,
while the two-dimensional parameter-space exploration plots have Ngaws = 10° per
parameter combination. The discussion in this chapter is limited to coherent quantities,
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similarly to Secs. and [9] A generalisation to semi-coherent searches along the lines

of would be straightforward.

12.1 Investigation of safety concerns at unequal sensitivities

Consider two detectors X and Y, with X being much more sensitive than Y. There may
be CW signals that are strong enough to cause a significant outlier in the single-detector
FX_statistic, but fail to do so in FY, because the signal is still buried in the higher noise
level of detector Y. Also, in this case the multi-detector F-statistic is dominated by the
contribution of the more sensitive detector X, so that for a strong line in that detector,
F ~ FX holds.

Hence, in this case both an actual astrophysical CW signal and an instrumental line
can have very similar signatures in terms of {F, FX, F¥'} values. The line-veto statistic
Og, and line-robust statistic Oggr, as given in Egs. [(7.44)] and [(7.68)] are completely
determined by this set of values (apart from the prior parameters discussed in .
Therefore, it can be expected that these, too, have problems distinguishing lines from
signals in such an unequal-sensitivity case, losing detection power due to increased false
dismissals.

The line-robust statistics are intended to suppress “signal-like” lines and thus they always
include a test of tentative signals against the line hypothesis. If, however, weaker signals
appear as “line-like”, they receive low odds, and the signal population is less distinct from
noise — even in the absence of actual lines — so that fixed-ppa thresholds remove a larger
fraction of signal candidates, thus lowering pge-

The approach of tuning Ogqr, to reproduce the detection performance of the F-statistic,
as described in [Sec. 9.3.2] should in principle keep us safe from this effect; but whether
it actually works under these relaxed assumptions will be tested in the following.

In order to quantify under which conditions a problem may occur, recall the definition
of the multi-detector F-statistic from

2F(x, \) =z, MM (N) 2y, . (12.1)

The sensitivity of a detector network is encoded in the antenna-pattern matrix M,
discussed in Its scale is given by its determinant,

|M| = S_4TcilataD2 ’ (122)

where S is the multi-detector noise PSD from Egs. [(5.4)|and [(5.31)] Tyata is the effective
amount of data and D quantifies the antenna-pattern-based sensitivity to a particular
sky location — see Egs. [(5.17)] [(5.38)] and [(5.39)]
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Figure 12.1: Detection probability pget as a function of false-alarm probability ppa for
different synthetic statistics, for detectors H1 and H2, a signal population with fixed
SNR of pg = 4 in Gaussian noise without line contamination. The panels show relative
detector sensitivities of (a) V.ST2 = v/SHI (b} v/SH2 = 10v/SHT,

For Oggr,, different values of .RSO) are given in brackets.

Using the same normalisation convention as in Secs. and the corresponding
single-detector quantity is

(M| =571, (DX)7 (12.3)

where DX, through the noise-weighted average from [Eq. (5.33)] depends quadratically
on (S*)7! and T3,

Thus, for two given detectors, their relative sensitivities are given by their noise PSDs
SX | the respective amount of data and the relative sky-position sensitivities DX. In the
following, I will only consider the first and third of these contributions, since ngta enters
to the same power as (SX )_1 and is therefore equivalent to a corresponding change in
that quantity. I first consider the case of two colocated detectors, for example H1 and
H2, for different SX and various noise distributions in Secs. and then the
case of non-colocated detectors H1 and L1 with different DX in

12.1.1 Synthetic tests in Gaussian noise

ROC curves for synthetic draws from a signal population with fixed SNR of pg = 4
and pure Gaussian noise without line contamination are shown in In panel
(a), both detectors have the same PSD, V/SH2 = \/SHL The results are very similar to
those from panel (c) of [Fig. 9.1]for an H1-L1 network and otherwise identical parameters.
Oscr, with an optimal tuning of .7-",50) = 10 reproduces the detection probabilities of the

F-statistic, while Ogr, and OSGL(}:EO) = 0) have up to 20% lower pget.

For extremely unequal sensitivities, v/ SH2 = 10v/ SH1 | as shown in panel (b), the losses
of Ogr, and OSGL(]{EO) = 0) become much more pronounced, due to false dismissals of
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Figure 12.2: Detection probabilities pget of different statistics, for an H1-H2 network
with v/SH2 = 10V SH! as a function of line SNR pr, and signal SNR pg at fixed line
contamination fﬁ{g = 0.1 and false-alarm probability ppa = 0.001.

“line-like” signals lowering pge; even in the absence of lines. However, OSGL(}",EO) =10)
is not affected, because it still lends more weight to the Gaussian-noise hypothesis over
the line hypothesis, thus being less likely to confuse signals with lines. This shows that
the “safety”-tuning approach of still works even in this extreme example.

12.1.2 Synthetic tests with lines in the less sensitive detector

For the extreme case of v SH2 =10V SH! lines in the less sensitive detector H2 are
already strongly suppressed in the multi-detector F-statistic, resulting in an F-statistic
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Figure 12.3: Detection probability pget as a function of false-alarm probability ppa for
different synthetic statistics, for detectors H1 and H2, a signal population with fixed
SNR of ps = 4 and noise that is 90% Gaussian with 10% line contamination in H1,
with line strength pr, = 6. The panels show relative detector sensitivities of

(a) V/SHZ = /SHIL (1) v/SH2 = 10v/SHI.

noise population that is quite similar to the case of pure Gaussian noise up to high line

SNRs pr,. Hence, we expect a behaviour similar to the Gaussian-noise ROCs in [Fig. 12.1]
with losses in sensitivity for Ogp, and Ogqr, for low .FSO) while OSGL(.EEO) ~ 10) should

also be safe in this case.

In [Fig. 12.2] detection probabilities at fixed ppa = 0.001 are shown for the statistics 2.F,
Osr, OSGL(]{EO) =0) and OSGL(]iEO) = 10) over a wide range in pg and pr, and with a line
contamination of fIIJ{2 = 0.1. This can be compared to the similar plots for an equal-PSD
H1-L1 network in

The results show a very weak dependence on pr,. Both the F-statistic and the line-robust
OSGL(}",EO) = 10) perform as well as they did in Gaussian noise or for equal sensitivities
over most of the range, and the tuned line-robust statistic outperforms the F-statistic
only for very high pr,.

Meanwhile, Ogr, and Ogcr (]{EO) = 0) show a mostly pr-independent deficiency in detec-
tion power, only approaching pget = 1 for extremely high pg of 40 or higher.

12.1.3 Synthetic tests with lines in the more sensitive detector

Next, I consider the case where still VSH2 = 10\/@, but there is a line contamination
of fﬁﬂ = 0.1 in the more sensitive detector. The ROCs in contrast this case
(panel b) with the equal-sensitivity case V.12 = /ST (panel a), both for signals with
ps = 4 and lines with pr, = 6. As found before in the examples in [Sec. 9| all variants
of the line-robust statistics give large improvements over the F-statistic in the equal-
sensitivity case. However, in panel (b) most of these improvements disappear, though

OSGL(]{EO) = 10) is still safe compared to 2F at all ppa.
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Figure 12.4: Detection probabilities pget of different statistics, for an H1-H2 network
with v/SH2 = 10V SH! as a function of line SNR pr, and signal SNR pg at fixed line
contamination fﬁﬂ = 0.1 and false-alarm probability ppa = 0.001.

For the same detector network, a systematic investigation of detection probabilities over
the same range of ps and pr, as in is shown in at fixed ppa = 0.001.
This demonstrates that OSGL(]Z,EO) = 10) is safe at very low pr, where the data is still
almost Gaussian, matching the F-statistic for all pg. This range also includes the example
from [Fig. 12.3] At very high py,, it performs much better than F and almost equally well
as in the low-py, regime.

In parts of the main region of interest, namely for intermediate to high pr,, OsaL (]-ZEO) = 10)
is not safe, performing worse than the F-statistic when pg > pr,, i.e. just when the detec-
tion problem should actually be comparatively easy. However, this is also compensated
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by regions where Ogqr, (.REO) = 10) performs better than 2F, namely for pg < pr..

A direct comparison of pget for these two statistics, OSGL(}]EO) = 10) and 2F, is shown in
[Fig. 12.5] Among the results presented in this section, this plot gives the clearest picture
of the potential problem related to the simple line hypothesis introduced in [Sec. 7-1.3
whereas the line-robust statistics improve over the F-statistic by suppressing “signal-like
lines”, the approach can fail when there are also “line-like signals” in the data because of
a much less sensitive detector not picking up the signal.

Typical CW searches with ground-based detectors operate in the regime of low signal
SNRs ps, so that the unsafe region for Ogqr, (.7{50) = 10) is likely of little practical relev-
ance. On the other hand, gains from Oggy, in this case are limited to the high-pr, range,
but such strong lines are still more likely to occur in real data than strong signals are.

12.1.4 Synthetic tests of sky-location dependence

For non-colocated detectors, different antenna patterns lead to sky-location-dependent
sensitivity differences, through the determinant factors DX. From Figs. and , we
see that these differences are rather limited, and that they partially average out over
longer observation times. For example, the maximum ratio of antenna-pattern determ-
inants between the H1 and L1 detectors and for a 12-hour observation time (starting
from a GPS time of 852443819) occurs at a sky location of (a,0) ~ (4.2523, —0.0793),
where DM /D1l ~ 5.84. For a 24-hour observation, this decreases to a maximum ratio
of DM /DM ~ 2,67 at (a,8) ~ (2.4117,0.0159).

In comparing this discrepancy in sensitivities to those considered in the preceding tests,
the scale of DX ratios can be translated to an equivalent scale of square-roots of the noise
PSDs. Through the noise-weights (see [Sec. 5.5), DX depends on (S%)72, so that these

161



maximum ratios would correspond to equivalent square-root-PSD ratios v .S /v SHL of
only about 1.55 and 1.28, respectively.

Hence, we expect only a very small effect on detection probabilities from this most
extreme case of different antenna patterns, and even less for other sky locations or for
all-sky searches. Synthetic-ROC tests at “worst-case” sky positions have confirmed this,
resulting in no significant losses in detection power and no safety concerns for either
Ogqy, or even Og,.

12.2 Sensitivity-weighted detection statistics

In this section, I describe an attempt to improve the line-robust statistics in the case
of detectors with different sensitivities. The idea is to re-weight the contribution of
each detector in the denominators of Ogr, and Ogqr, with a factor corresponding to its
respective sensitivity, including its PSD, amount of data and sky-location dependence —
as seen in . By down-weighting contributions with higher sensitivity, this should
intuitively decrease the chance of considering candidates with unequal FX-statistics as
lines, thus decreasing the risk of false dismissals. A simple approach to include such
a sensitivity weighting relies on revisiting the amplitude-parameter prior introduced in
Sec. T.1.2

12.2.1 More on amplitude priors

The derivation of the posterior probability for the signal hypothesis Hg, [Eq. (7.25)]

contains an integral for the marginalisation over amplitude parameters .4, namely
P (a|Hs) = /P (| Hs, A) P (A[Hs) dA . (12.4)

As discussed in this integral cannot be solved analytically for general paramet-
risations of A and prior distributions P (A|Hs). However, as previously demonstrated
by PK09| and PGM11], it becomes a simple Gaussian integral for the “JKS factorisation”
from and with a uniform prior in the four JKS amplitude parameters A*.

Such a uniform prior would be “improper” (non-normalisable), unless we introduce a
cut-off. One possibility for such a cut-off was introduced by [PGM11] and adapted by

KPPLS14l as described in [Sec. 7.1.2

C for hj(A) < T2
P ({A"}|Hs) = Ml (12.5)
0 otherwise,
with a free parameter ¢, € (0,00). Equivalently, it can be written as
C for p(A) < Pmax
% _ )
P (A"} Hs) = { 0 otherwise, (12.6)
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, . NP 1/8 _ Dmax

with an SNR-like quantity p = ho [M|/", so that c, = P5g=.

However, |PK09| originally used a different prior distribution, directly placing a fixed
cut-off homax € (0,00) on the signal strength parameter hg:

C fOI" ho (./4) < hOmaX

m _ y

P ({A"}Hsm) _{ 0 otherwise.

Here, I use Hgm as a shorthand for the signal hypothesis with modified amplitude prior,
the meaning of which will become clear in the next section.

(12.7)

This variant was discarded by PGMT11]due to poor performance of the resulting detection
statistic on medium-duration “transient CW” signals. However, for classical CW signals,
the effect of such a prior has not been explicitly analysed yet, especially not in the context
of comparing several detectors for robustness against line artefacts.

12.2.2 Sensitivity weighting for signals in pure Gaussian noise?

Before considering lines, it clarifies matters to first investigate the effect of these prior
choices in the simpler case of CW signals in pure Gaussian noise. The difference between

the two prior choices is that results in a signal-hypothesis posterior
P (Mglz) = osc ;' P (Hal|w) ™ @) (12.8)
and therefore in signal-to-Gaussian-noise odds of
_ P(Hslz) 7

Osa(z) = W xe ) (12.9)
while leads to a signal-hypothesis posterior
P (M) = osouc g P (Hal) M1~/ o712 (12.10)
and odds of P (o) e
Ogmg(x) = P (Halz) x |M]| e : (12.11)

As discussed before, the antenna-pattern determinant |M]| is a measure of the overall
sensitivity of a network of detectors. I therefore refer, in the following, to any statistic
derived from the prior [Eq. (12.7)| so that it has an explicit factor of [ M| in the odds, as

a sensitivity-weighted statistic.

Inserting the explicit expression from [Eq. (12.2)]

Ogmg(z) oc @ S?12 D71 (12.12)

demonstrates that any candidate coming from a particularly good set of data (low S,
large Tyata), or from a point on the sky where the detector is most sensitive over the
observation time (large D), is actually down-weighted. Thus, intuitively this statistic
should be worse than the pure F-statistic, and in general I will not consider using Hgm
instead of Hs.
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12.2.3 Sensitivity-weighted line-veto statistic

On the other hand, the effect of down-weighting outliers from more sensitive data could be
useful in the case of line-vetoing. Consider again two detectors, one much more sensitive
than the other (e.g., having lower S¥X), and a signal that is strong enough to produce
an elevated FX-statistic in the better detector, but not strong enough to be seen in the
other one. This signal is likely to trigger the simple line hypothesis Hj, from [Sec. 7.1.3]
as the signature is similar to that of a line in one of two equally sensitive detectors.

When I now introduce the sensitivity-weighting from above in a modified line hypothesis,
an outlier in the more sensitive detector will be considered less likely to come from a line.
Such a reduction of false positives for the line hypothesis should then lead to less false
dismissals of signals by the signal-versus-line odds.

Hence, I define a sensitivity-weighted single-detector line hypothesis ’HfM that uses the
single-detector version of the prior from [Eq. (12.7)

C for ho(AX) < hf

P ({AX“HHI)“(M) - { 0 otherwise. e (12.13)

The line hypothesis Hym for a non-coincident line in any detector is constructed as in

Eq. (7.30)l Sensitivity-weighted line-veto odds are then given by the unweighted signal
hypothesis Hg and the weighted Hym:

P (Hg|z Pk (@)
Ogima(a) = oS

= =0 , 12.14
P (la) ~ S (e )k a2 ey

Omax

X

where ¥ are the line-prior weights defined in [Eq. (7.36)

This expression contains various prior-cut-off parameters: pmax from Hg and a set of
{hé(max} from HfM. In W’ PmaxS = Pmaxl, = ﬁﬁaXL was assumed for all X, so that
any such parameters cancelled out. Here, I first assume hé(max = homax, again for all
X, justified by the general absence of detailed physical knowledge about different line-
strength populations in different detectors. This reduces the effect of the cut-offs to a

common pre-factor to the odds:

(12.15)

Pmax

homax 4 e]-'(a:)
0 = =
SLM(m) OsLM ( > <TX|MX|—1/2 e]—'X(xX)>
X

As the only requirement for these cut-offs is that they should be large enough for the
marginalisation integral to become Gaussian, I can choose to keep only one of them as a
free parameter and to fix the ratio between them. For convenience of notation, I define

~ 8
M= ( Pmax > = const. (12.16)
hOmax
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Pulling M into the denominator, the weighted line-veto statistic becomes

Ogpr () 7 i (12.17)
SIM L) = Og M — = Og[,M - R .
<rX M//\l/lix\ e;X(xX)>X <rXqu]-‘X( X)>X

with a per-detector relative sensitivity-weighting factor

| M
= x| (12.18)

Now, let us consider the Bayes factor

Ogpm(z) .

12.19
-y (12.19)

Bgpm(x) =
It should give an unbiased answer to the question of how much more likely Hg becomes
in comparison with Hym by considering the data x. It should therefore produce numbers

on the same scale as for the unweighted Bgsy(x). Hence, the parameter M should be
similar to typical ‘MX | values, making the denominator terms in [Eq. (12.17)[ similar in

scale to those in [Eq. (7.44)

An obvious choice is to use an average of the determinants ’MX (v, 5)’ over all detectors
X and sky positions («,d):

M= (|M¥(@,0)]) o = S (Tt (D¥ (0,6))%) (12.20)

X,a,8 '

There are several possible orderings for taking the averages over X and («,d), as well as
the noise-weighted average over SFTs that is implicit in the DX themselves. Due to the
non-linearities involved, these averages do not generally commute.

However, as we are only interested in getting the scale of M right, I will use a particularly
simple prescription. As the sky-dependent variations in DX, and thus }MX ‘, never reach
an order of magnitude, I relax the conditions on M and allow it to be a function M(«, )
of sky position. This way, only the average over detectors remains:

M(a,5) = (|M¥(,8)]), = S <(Tj§ta)4 (DX(a,é))2>X . (12.21)

12.2.4 Sensitivity-weighted line-robust statistic

Furthermore, I construct an extended noise hypothesis, in analogy to [Eq. (7.40) but this
time using the modified line-amplitude prior from [Eq. (12.13)

Hom = (Hg or Hym) . (12.22)
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This gives the sensitivity-weighted line-robust odds as an analogue to Ogqar, of[Eq. (7.68)

P H X e]:(w)
Osgrm(x) = (#s|z)

= S USI®) (12.23)
P (Hgim|z) sal (1—pp) o + pL <rXqufX($X)>X

Here, the transition-scale parameter FO g unchanged from its definition in [Eq. (7.67)}
as only the per-detector terms are modified.

Comparing the relative scale between the constant term and the per-detector terms, a

change in sensitivity-weighting factors ¢ would only be compensated by a logarithmic
change in F”. Since I already defined ¢¥ in [Eq. (12.18)| and M in [Eq. (12.16)|in such
ways as to reduce the numerical range of ¢, an empirical tuning of ]_-*0 , as described in

can be expected to yield similar values as for the unweighted Oggr,. Numerical
tests in analogy to those presented in indeed show only small changes in the

optimal }}SO) over typical ranges in false-alarm probabilities.

12.3 Synthetic tests of the sensitivity-weighted statistics

In this section, I present results from synthetic-draw comparisons of the sensitivity-
weighted detection statistics Ogpm and Oggpm against their unweighted counterparts
Ogt, and Oggr,, covering a similar range of noise populations as in [Sec. 12.1]

12.3.1 Gaussian noise

To determine the effect of sensitivity-weighting on the detection performance of the
line-robust statistics, I first revisit the same case as covered in [Fig. 12.1] but including
additional sensitivity ratios. For a colocated network of H1 and H2, signals with pg = 4
and pure Gaussian noise, the corresponding set of ROCs is shown in [Fig. 12.6]

Panel (a) shows the case of equal sensitivity, where Og; m and Ogapm (.FEO) = 10) perform
exactly as their unweighted counterparts. This is expected from the analytical expressions
in Egs. |(12.17)| and |(12.23)| as in this case ¢¥ = 1 and so the statistics revert back to
the unweighted forms, Egs. [(7.44)| and [(7.68)|

For increasing ratios of v/SH2/v/SHL € {2 510}, there is still no difference between

Osgr, and Oggrm with both at ]-ZSO) = 10. However, pqe; for the unweighted Ogr,
decreases, while Ogpm actually improves and approaches the performance of 2F and

OSGL(]—?EO) = 10). ROCs for intermediate values of .7-:£0) would fall between the curves
for Ogr, (which corresponds to ]{SO) — —o0) and ]{EO) = 10.
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Figure 12.6: Detection probability pget as a function of false-alarm probability ppa for
different statistics, for a signal population with fixed SNR of pg = 4 in Gaussian
noise without line contamination. The panels show relative detector sensitivities
of (a) V/SH2 = \/SHI (b) v/SH2 = 2/GHL (c) v/SH2 = 5/SHL (d) v/SH2 = 10+/SHL,

Oscr, and Oggpm both use FO = 0.

12.3.2 Lines in the less sensitive detector

The case of an H1-H2 network with v/SH2 = 10v/SH! and a line contamination f{u =0.1
in the weaker detector were considered before in [Sec. 12.1.2]for the unweighted statistics,
and the results were similar to pure Gaussian noise: significant losses in pget for Ogy,
and Oggqy, for low .F,SO), while OSGL(]ZEO) = 10) in this case is still completely safe when
compared to the F-statistic.

To illustrate the effect of sensitivity weighting for this noise population, [Fig. 12.7] shows
differences of pget between weighted and unweighted statistics over the same range in pg

and pr, as in [Fig. 12.2] Similarly to the Gaussian-noise ROCs in |[Fig. 12.6] Og;m and

OgqrMm (.FEO) = 0) can regain 20-30% of pget in comparison to their unweighted counter-

(0)

parts, whereas for high 7 such as 10 the changes are negligible.
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Figure 12.7: Detection probability differences between weighted and unweighted statist-
ics, for an H1-H2 network with v SH2 = 10V SH!  as a function of line SNR pr, and
signal SNR pg, at fixed f{m = 0.1 and ppa = 0.001.

(2): Pdet (Ospm) — Pdet(OsL),

(b): Paet(Osgrm) — Pact(Osar) at FL¥ =0
(¢): Pdet(Osgrm) — Pdet(OscL) at ]__io) 4,
(d): pact(Oggrm) — pdet(Osar) at FO =10,
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12.3.3 Lines in the more sensitive detector

On the other hand, as we have alr