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Kurzfassung

In den letzten Jahrzehnten wurde eine Vielzahl von Ansätzen entwickelt, um Nichtlinearitäten

in Zeitreihenmodelle zu integrieren. Motiviert werden diese Ansätze durch empirische Beobach-

tungen wie Blasen, Rezessionen oder Politikwechsel. Weiterhin implizieren viele ökonomische

Theorien nichtlineare Zusammenhänge. Diese Arbeit enthält Beiträge zur Spezifikation dieser

Zeitreihenmodelle. Dabei werden zwei eng verzahnte Literaturstränge betrachtet: nichtlineare

Regimewechselmodelle und die Schätzung zeitabhängiger Parameter.

In Kapitel 2 wird eine bootstrap-basierte Version des Spezifikationstests von Cox vorgestellt,

um eine Entscheidung zwischen dem exponentiellen Smooth Transition Autoregressive Modell

(STAR) und dem Markov Switching Modell treffen zu können. Beide Modelle werden häufig

genutzt, um reale Wechselkurse zu modellieren. Wir zeigen, dass der Test gute Eigenschaften in

endlichen Stichproben aufweist. Weiterhin wird der Test auf 24 reale Wechselkurse angewendet,

um eine Modellempfehlung aussprechen und die dominierenden Einflüsse bewerten zu können. In

Kapitel 3 wird ein einfaches Prozedere vorgestellt, um zwischen verschiedenen Übergangsfunktio-

nen in nichtlinearen autoregressiven Modellen zu unterscheiden. Der Ansatz basiert komplett auf

Hilfsregressionen von Einheitswurzeltests und nutzt Informationskriterien zur Modellselektion.

Monte-Carlo-Simulationen zeigen, dass der Ansatz in realistischen Szenarien gut funktioniert.

Zwei Anwendungen (S&P500 Preis-Gewinn-Verhältnis und US-Zinsspanne) verdeutlichen die

empirische Relevanz. Kapitel 4 betrachtet Linearitätstests gegen STAR Modelle unter Berück-

sichtigung eines potentiellen deterministischen Trends in den Daten. Linearitätstests sind ein

elementarer Schritt zur Modellbildung, besonders bei der Frage, ob ein komplexes nichtlineares

Modell angemessen ist. Im Gegensatz zu den Ergebnissen in Zhang (2012) zeigen wir, dass

Linearitätstests in diesem Modellrahmen zu nützlichen Resultaten führen.

Kapitel 5 steuert einen umfassenden Monte-Carlo-Vergleich zwischen verschiedenen Verfahren

bei, welche den Schätzbias in autoregressiven Modellen korrigieren. Wir betrachten stationäre,

nicht-stationäre und mild explosive Szenarien. Unsere Ergebnisse zeigen, dass ein Schätzer

beruhend auf indirekter Inferenz die ausgewogensten Eigenschaften aufweist. Eine empirische

Anwendung auf die US-Verschuldungsquote unterstreicht die Ergebnisse. Kapitel 6 liefert em-

pirische Evidenz für zeitvariierende Persistenz im S&P500 Preis-Dividenden-Verhältnis. Die

Persistenz verhält sich prozyklisch und ist abhängig von volkswirtschaftlichen Fundamentalwer-

ten. Neben erwarteter Inflation sind der Zustand des Bankensektors sowie die Verbraucherstim-

mung wichtige Indikatoren. In Übereinstimmung mit dem Fed-Modell finden wir einen negativen

Zusammenhang zu Anleiherenditen. Außerdem sind die Resultate in Einklang mit einem hete-

rogenen Agentenmodell zur Bewertung von Wertpapieren.

Schlagwörter: Bias Korrektur, explosives Verhalten, Nichtlinearität, Modellselektion, Persistenz,

Spezifikationstests
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Short summary

In the last decades many approaches have been proposed to include nonlinearities in time series

models. The approaches are motivated by the empirical observation of structural instabilities

caused by bubbles, recessions or policy changes. Moreover, economic theory often implies a

nonlinear relationship of variables. This thesis contributes to the specification of these time se-

ries models in a univariate framework. Two closely related strands of literature are considered:

nonlinear regime switching models and time-varying parameter estimation.

Chapter 2 offers a bootstrap-based version of the Cox specification test for non-nested hypoth-

esis to discriminate between exponential smooth transition autoregressive (STAR) and Markov

switching models. Both models are commonly used for modeling real exchange rate dynamics.

We show that the proposed test has good size and power properties in finite samples. In an

application, we analyze 24 real exchange rates to shed light on the question which model is

more appropriate. This allows us to draw conclusions about the driving forces of real exchange

rates. In Chapter 3 a simple specification procedure for the switching mechanism in nonlinear

autoregressive models is provided. The approach entirely relies on OLS estimation and is based

on auxiliary regressions of unit root tests. We use information criteria for the selection of the

unknown transition function. Monte Carlo simulations reveal that the approach works well in

practice. The procedure is applied to the S&P500 price-earnings ratio and an US interest rate

spread. Chapter 4 considers linearity testing against STAR models when there is the potential

that deterministic trends are present in the data. Testing for linearity is an elementary step in

the modeling cycle and of great importance when it comes to nonlinear model building. In con-

trast to results recently reported in Zhang (2012), our findings show that linearity tests against

STAR models lead to useful results in this framework.

Chapter 5 provides a comprehensive Monte Carlo comparison of different finite-sample bias-

correction methods for autoregressive processes. We consider situations where the process is

stationary, exhibits a unit root or is mildly explosive. Our findings suggest that the indirect

inference approach has the most balanced properties in terms of bias and root mean squared

error. An empirical application of the US Debt/GDP series underlines its usefulness. Chapter 6

provides empirical evidence for time-variation in the persistence of the S&P500 price-dividend

ratio and shows that the persistence is pro-cyclical and related to macroeconomic fundamentals.

Besides expected inflation, the main drivers are the condition of the banking sector and consumer

sentiment. Consistent with the Fed model, we find persistence being negatively related to bond

yields via expected inflation. In addition to that, the results are in line with a heterogenous

asset pricing model.

Keywords: Bias correction, explosive behavior, non-linearity, model selection, persistence, spec-

ification testing
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Introduction

Until the end of the 1980s, linear time series models dominated in applied econometrics. One es-

sential characteristic of these models is that the impact of previous observations is constant over

time. Although this way of modeling has the advantage of simplicity, limits are easily reached.

Examples for such limits are structural instabilities caused by bubbles, recessions or around

policy changes – time periods where economic or financial time series behave differently. More-

over, economic theory often implies non-linear relationship of variables. For instance, market

imperfections such as transportation costs or taxes lead to a non-linear behavior of real exchange

rates and interest rate spreads. In the last two decades many approaches have been proposed

to include these events and theoretical considerations into modeling economic time series. This

thesis contributes to the specification of these time series models in a univariate framework.

Two closely related strands of literature are considered (see Granger, 2008): nonlinear regime

switching models and time-varying parameter estimation.

Nonlinear regime switching models have become increasingly popular in applied econometrics

since the works of Hamilton (1989), Tong (1990) and Teräsvirta (1994). The basic idea of these

models is the connection of two or more linear models with a transition function. This transition

function can be the indicator function, so that the process shifts abruptly from one regime to

another if a pre-specified threshold is exceeded. It can be a continuous function in the unit

interval, which allows for an infinite amount of combinations of the regimes. Whereas the latter

case results in a so called smooth transition autoregressive or STAR model, an abrupt change

characterizes the class of threshold autoregressive or TAR models. The state might also depend

on the outcome of an unobservable Markov chain (the Markov switching autoregressive or MSAR

model). These models are not only able to connect different linear processes and thereby change

the behavior (and persistence) over time; they also allow for local non-stationarity while main-

taining global stationarity. Although the behavior seems relatively similar in this regard, the

detailed dynamics driving these models differ: endogenous versus exogenous regime switching

and visible versus latent transition variables lead to completely different economic interpreta-

tions. A recent reference for nonlinear modeling is Teräsvirta et al. (2010). The first three

chapters of this work focus on the specification of the aforementioned nonlinear models.

Chapter 2 offers a bootstrap-based version of the Cox specification test for non-nested hypothesis

to discriminate between exponential STAR and MSAR models. Both models are commonly used

for modeling real exchange rate dynamics. We show that the proposed test has good size and

power properties in finite samples. In an application, we analyze several major real exchange

rates to shed light on the question of which model describes the data best. This allows us to

draw conclusions about the driving forces of real exchange rates.
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In Chapter 3 a simple specification procedure for the switching mechanism in nonlinear au-

toregressive models is provided. The approach entirely relies on OLS estimation and is based

on auxiliary regressions of unit root tests. Therefore, it is applicable to a variety of transition

functions. We use standard information criteria for the selection of the unknown transition

function. Monte Carlo simulations reveal that the approach works well in practice. Empirical

applications to the S&P500 price-earnings ratio and an US interest rate spread highlight the

limits and merits of the suggested technique. In contrast to other procedures, complicated and

computer-intensive estimation of the candidate models is not necessary.

Chapter 4 considers linearity testing against STAR models when deterministic trends are poten-

tially present in the data. Testing for linearity is an elementary step in the modeling cycle and

of great importance when it comes to nonlinear model building. In contrast to results recently

reported in Zhang (2012), our findings show that linearity tests against STAR models lead to

useful results in this framework. Additionally, the power of the specification test is analyzed in

empirical settings.

The second strand of literature to which this thesis contributes is the analysis of time-varying

persistence in a rolling window scheme. The work by Stock and Watson (1996) tests against the

instability of parameters using a comprehensive data set. These authors find that the persis-

tence of most economic time series is instable over time. Rolling window estimation is a simple

setup to address this stylized fact. A specific model is estimated several times using only some

portion, i.e. a window of the observations. Going from the very beginning to the end of the

sample with this window leads to an estimation of the persistence of the series over time. Due

to estimation uncertainty a perfectly stable persistence cannot be expected. However, a linear

model is clearly misspecified if the persistence follows a dynamic path. An interesting issue is

the change between stationarity, unit roots and explosiveness over time. In particular, mild

explosiveness in time series has received some attention in the last two decades since the work

of Phillips (1987). A recent and important contribution using rolling window estimation is the

detection of bubbles, see Phillips et al. (2011). This improves the classic linear analysis which

is not able to model events like the dot-com bubble or the recent financial crisis appropriately,

where explosiveness instead of unit root behavior can be observed. Other popular examples are

commodity and food prices. But the investigation of economic time series in a rolling window

scheme is less straightforward as it seems in the first place. The high persistence of economic

time series in general and the small number of observations per window lead to a serious esti-

mation bias that needs to be addressed in applications. Another recent research question is the

relation of time-varying persistence and the business cycle.

Chapter 5 provides a comprehensive Monte Carlo comparison of different finite-sample bias-

correction methods for autoregressive processes. We consider classic situations where the process

is either stationary or exhibits a unit root. Importantly, the case of mildly explosive behavior

is studied as well. We compare the empirical performance of an indirect inference estima-
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tor (Phillips et al., 2011), a jackknife approach (Chambers, 2013), the approximately median-

unbiased estimator by Roy and Fuller (2001) and the bootstrap-aided estimator by Kim (2003).

Our findings suggest that the indirect inference approach offers a valuable alternative to other

existing techniques. Its performance (measured by its bias and root mean squared error) is

balanced and highly competitive across many different settings. A clear advantage is its applica-

bility to mildly explosive processes. In an empirical application to a long annual US Debt/GDP

series we consider rolling window estimation of autoregressive models. We find substantial evi-

dence for time-varying persistence and periods of explosiveness during the Civil War and World

War II. Further applications to commodity and interest rate series are considered as well.

Chapter 6 provides empirical evidence for pronounced time-variation in the persistence of the

S&P500 price-dividend ratio. It addresses the question whether these movements can be di-

rectly related to cyclical macroeconomic activity. A flexible econometric framework is applied

to study the role of 138 variables including survey data. We handle the high dimensional data

set by model averaging techniques. The persistence is found to be pro-cyclical and related to

macroeconomic fundamentals. Besides expected inflation, the main drivers are the condition of

the banking sector and consumer sentiment. In general, favorable economic conditions are tied

to high levels of persistence and vice versa. Consistent with the Fed model, we find persistence

being negatively related to bond yields via expected inflation. Moreover, the results are con-

sistent with a heterogenous asset pricing model, where a positive economic outlook leads to an

increased fraction of chartists through lowered risk premia.
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Bias-corrected estimation in potentially mildly explosive
autoregressive models

Co-authored with Robinson Kruse.

CREATES Research Paper 2013-10, submitted to Computational Statistics and Data Analysis.

5.1 Introduction

Measuring and estimating the persistence of time series is a long standing issue in econometrics.

The most common framework for assessing the persistence is the autoregressive model. But, a

major practical problem is the inherent bias of the conventional OLS estimator. Its bias increases

amongst two dimensions: a small sample size and a true autoregressive parameter in the vicinity

of unity are disadvantageous. Given a relatively small sample size, it is a complicated task to

estimate the persistence if the process is (i) either stationary, but highly persistent, (ii) exhibits

a unit root or (iii) is mildly explosive. As we argue, these situations are likely to occur in practice.

In economics, it is a well established fact that most time series are characterized by high persis-

tence or even stochastic trends, see e.g. Nelson and Plosser (1982) and Schotman and van Dijk

(1991). Another important empirical issue is the instability of parameters, which is often ob-

served and documented (see e.g. Stock and Watson, 1996). During the past decade, a literature

on structural changes in persistence emerged, see e.g. Chong (2001), Kim (2000), Leybourne

et al. (2007) and Harvey et al. (2006) amongst many others. In order to cope with potential

time-variation in the parameters, users often apply the popular rolling window technique. Un-

der these empirically relevant circumstances, the issue of unbiased and efficient estimation of

persistence becomes particularly important: Typically, a relatively small window size is chosen.

If a bubble or a crisis occurs in this particular window, some economic time series are likely to

exhibit explosive behavior. Leading examples for time series with at least local explosive roots

are stock prices (as caused by bubbles, see Diba and Grossman, 1988), price-dividend and price-

earnings ratios (as caused by a dominant regime of chartist traders, see Lof, 2012), house and

oil prices (due to speculation, see Homm and Breitung, 2012, Clark and Coggin, 2011 and Shi

and Arora, 2012), hyperinflation (due to a collapse of a country’s monetary system, see Casella,

1989), exchange rates (due to speculation, see van Norden, 1996 and Pavlidis et al., 2012) and

the US Debt/GDP ratio (due to unsustainable fiscal policies, see Yoon, 2011) amongst others.

The complicated estimation of autoregressive processes in finite-samples sparked a fruitful area

of research. Kendall (1954), Shaman and Stine (1988), Tjøstheim and Paulsen (1983), Tanaka

(1984) and Abadir (1993) provide analytic derivations of asymptotic expansions which can be

used for bias-correction. Approximately median-unbiased estimation is proposed in e.g. Andrews

mailto: kruse@statistik.uni-hannover.de
ftp://ftp.econ.au.dk/creates/rp/13/rp13_10.pdf
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(1993), Andrews and Chen (1994) and Roy and Fuller (2001). Restricted maximum likelihood

estimation is considered in Cheang and Reinsel (2000). Bootstrap-based bias-correction pro-

cedures have been suggested by e.g. Hansen (1999) and Kim (2003). Recently, Engsted and

Pedersen (2011) compare analytical bias formulas and bootstrapping for stationary VAR mod-

els. Indirect inference has been put forward in MacKinnon and Smith (1998) and Gouriéroux

et al. (2000). Jackknifing based on Efron (1979) is recently studied in Chambers (2013). Impor-

tantly, we note that the main body of the literature focusses on stationary autoregressive models

and on the unit root case while the case of (mildly) explosive behavior has received less attention.

This work compares the analytic median-bias-correction by Roy and Fuller (2001), the bootstrap

technique by Kim (2003) and the Jacknife approach by Chambers (2013) to the indirect inference

approach by Phillips et al. (2011), who propose a technique for autoregressive processes, based

on the work of MacKinnon and Smith (1998) and Gouriéroux et al. (2000). Indirect inference es-

timators to correct the small sample bias have a long tradition, e.g. see Gouriéroux et al. (1993)

and Smith (1993). In a recent contribution, Gouriéroux et al. (2010) extend this principle to

dynamic panel data models. The indirect inference estimator allows for explosiveness in addition

to highly persistent and unit root behavior, see also Phillips (2012) for a recent contribution

on its limit theory. Most competing methods rule out explosive behavior by construction (i.e.

Roy and Fuller, 2001 and Kim, 2003). This feature renders the indirect inference estimation

approach to autoregressive models particularly attractive. However, the finite-sample properties

of the indirect inference estimator are not fully explored and a comprehensive comparison to

other popular and successful bias-correction techniques has not been conducted yet.

In our Monte Carlo study, we consider various sample sizes, normal and fat-tailed innovations,

ARCH disturbances and misspecification of the autoregressive lag structure. Furthermore, we

also study the case where a linear deterministic trend is included in the autoregressive model.

We evaluate the performance of the estimators by means of bias and root mean squared errors

(RMSE). Our results suggest that all procedures lead to a substantial bias-reduction in most

non-explosive cases. The best procedure in terms of bias-reduction is the jackknife, but comes

with the costs of an increase in the variance. The indirect inference estimator provides almost

the same level of bias-reduction with a remarkably low variance.

We provide a detailed empirical application to a long annual US Debt/GDP ratio from 1791-2011,

where we use rolling window estimation to investigate potential instabilities. Our results suggest

that persistence is characterized by strong time-variation. Episodes of stationarity, unit root and

explosive behavior are observed. These episodes are related to major wars, peace movements

during the Sixties and Seventies, and recent activities in the aftermath of 9/11. Moreover, we

consider three further applications to Oil prices, Gold prices and the spread between long-term

interest rates in Germany and Greece. All applications stress the importance of bias-correction.

In addition, accounting for locally explosive behavior is relevant in all cases.
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The paper is organized as follows. Section 5.2 briefly describes the different estimation tech-

niques. Our simulation results are presented in Section 5.3. The empirical applications are

located in Section 5.4 while conclusions are drawn in Section 5.5. The Appendix contains fur-

ther simulation results.

5.2 Bias-correction procedures

Point of departure is the inherent bias of the OLS estimator. In order to illustrate the problem,

we simulate the empirical performance of the OLS estimator. Therefore, we focus on finite

samples and the possibility of mild explosiveness in a simple autoregressive framework:

yt = µ+ρyt−1 +εt . (5.1)

We consider the cases of stationarity and unit roots, i.e. |ρ| < 1 and ρ = 1, and the case where ρ

satisfies ρ = 1 + c/kT , with c > 0 and kT being a sequence tending to infinity such that kT = o(T )

as T →∞. In the latter case, the autoregressive parameter is local-to-unity in the sense that

ρ→ 1 as T →∞. For finite T (as considered in this work), ρ deviates moderately from unity.

Asymptotic theory for this case is developed in Phillips and Magdalinos (2007).

The left panel of Figure 5.1 shows the AR(1) case as in equation (5.1) for four different sample

sizes, i.e. T = {30,60,120,240}. The true autoregressive parameter ρ (on the x-axis) ranges from

0.6 to 1.2 which measures the persistence of the process. The bias is given on the y-axis. The

results confirm the theoretical finding that the bias depends on the true value of the autore-

gressive parameter. The smaller the sample size, the more severe is the bias. The vicinity of

unity is the region where the bias is strongest. Furthermore, it can be seen that the bias reduces

for explosive processes and approaches zero at some point, but that the estimation of mildly

explosive processes is still heavily biased.

As expected, the bias problem persists if we consider the AR(2) process, i.e.

yt = µ+φ1yt−1 +φ2yt−2 +εt . (5.2)

Since our primary interest is the persistance of the time series, we work with an alternative

representation which gathers the persistence in the parameter ρ:

yt = µ+ρyt−1 +β∆yt−1 +εt , (5.3)

where ρ = φ1 +φ2 and β = −φ2. The usefulness of this approach stems from the fact that a direct

relationship to the cumulative impulse response (1/(1−ρ)) exists (for stationary autoregressive

processes). Moreover, it is also directly connected to the spectrum at frequency zero which

measures the low-frequency autocovariance. It is given by var(εt)/(1− ρ)2.1 The right panel

1Alternative measures of persistence are the largest autoregressive root, see Stock (1991) for its median-unbiased
estimation, and the half life of a unit shock, see Rossi (2005).
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Figure 5.1: OLS Bias for different values of ρ, β and sample sizes for AR(1) and AR(2) processes (constant
included).

of Figure 5.1 shows the bias for ρ for three different values of β: -0.2, 0 and 0.3. The bias

depends substantially on the value of β. Positive values decrease the bias and vice versa. A

comparison between the AR(1) case for T = 60 and the AR(2) case for T = 60 and β = 0 shows

that the estimation of an additional, but unnecessary, parameter increases the bias slightly.

These results motivate the development of bias-correction techniques. Four different methods

are briefly discussed in the following.

5.2.1 Roy-Fuller median-unbiased estimator

The first bias-correction method we consider is the approximately median-unbiased2 Roy-Fuller

estimator which has been proven to be of empirical usefulness (see Kim, 2003). The Roy and

Fuller (2001) estimator provides an analytic modification of the OLS estimator for the persistence

parameter ρ. Let ρ̂ denote the OLS estimator for ρ in ȳt = ρȳt−1 + β∆ȳt−1 + εt, where ȳt is the

previously de-meaned time series yt, i.e., ȳt ≡ yt − (1/T )
∑T

t=1 yt. Furthermore, σ̂ denotes the

standard error of ρ̂ and λ̂ = (̂ρ−1)/σ̂ is the usual Dickey and Fuller (1979) unit root test statistic.

The Roy-Fuller estimator3 ρ̂RF is now given by ρ̂RF = min(̃ρ,1), where

ρ̃ = ρ̂+C(̂λ)σ̂ .

2An estimator ρ̃ for ρ is said to be median-unbiased if P(ρ̃ ≥ ρ) ≥ 1/2 and P(ρ̃ ≤ ρ) ≥ 1/2.
3The original Roy-Fuller estimator corrects positive and negative autocorrelation bias in AR(p) processes. In
this work only substantial positive autocorrelations of AR(1) and AR(2) processes are considered. The given
formulas are simplified for this case.



5.2. Bias-correction procedures 16

Related to the asymptotic bias of the OLS estimator, the function C(̂λ) is constructed to make

ρ̃ approximately median-unbiased at ρ = 1. The function is given by

C(̂λ) =



0, if λ̂ ≤ −
√

2T

T−1λ̂− 2̂λ−1, if −
√

2T < λ̂ ≤ −K

T−1λ̂−2
[̂
λ+ k(̂λ+ K)

]−1
, if −K < λ̂ ≤ λ0.5

−λ0.5 + dn(̂λ−λ0.5), if λ̂ > λ0.5 ,

where λ0.5 = −1.57 denotes the median of the limiting distribution of λ̂ if ρ = 1 and data is

demeaned prior to testing, K is some fixed number (set to 5), dn is a slope parameter (set to

0.1111) and k =
(
2−T−1λ2

0.5

) [
(1 + T−1)λ0.5(λ0.5−K)

]−1
. The function C(̂λ) accounts for different

asymptotics and convergence rates for different persistence levels of ρ. Further details can be

found in Roy and Fuller (2001). After the bias-corrected estimation of ρ the other parameters

of the process, µ in the AR(1) case given in equation (5.1) and µ,φ1 and φ2 in the AR(2) case

given in equation (5.2), can be estimated subject to the restriction ρ = ρ̂RF .

5.2.2 Bootstrap bias-corrected estimator

The second competitor is the bootstrap-based procedure by Kim (2003). This method involves

the generation of a large number of pseudo-data sets using the estimated coefficients and re-

sampled residuals. Pseudo-data sets shall resemble the dependence structure that is present in

the original data set. The bias of the OLS estimator can be estimated as follows: Estimate the

model via OLS and obtain the estimates θ̂ =
(̂
µ, ρ̂, β̂

)′
. Generate a pseudo-data set {yb

t }
T
t=1 based

on these estimates according to

yb
t = µ̂+ ρ̂yb

t−1 + β̂∆yb
t−1 + ub

t ,

where ub
t is a random draw with replacement from the OLS residuals {̂ut}

T
t=1. B sets of pseudo-

data are generated. Each pseudo-data set gives a bootstrap parameter estimate θ̂b = (̂µb, ρ̂b, β̂b)′

by estimating the model yb
t = µ+ ρyb

t−1 + β∆yb
t−1 + vt, b = 1, . . . ,B. We obtain the sequence {̂θb}Bb=1

and the average bias of θ̂b is estimated as θ̃− θ̂, where θ̃ is the sample average of {̂θb}Bi=1, i.e.

θ̃ ≡
1
B

B∑
b=1

θ̂b .

Using this bootstrap-based estimator for the bias, a bias-correction for θ̂ can be directly obtained

via

θ̂KIM = θ̂−
(̃
θ− θ̂

)
= 2̂θ− θ̃ .

If θ̂KIM does not fulfill the stationarity condition ρ̂ < 1, the iterative filter

θ̂KIM
i = θ̂−

i∏
j=1

(1−0.01i)
(̃
θ− θ̂

)
, i = 1,2,3, . . .



5.2. Bias-correction procedures 17

is applied until ρ̂ < 1 is ensured. Denote by ī the index where the iteration stops. Thus,

θ̂KIM = θ̂KIM
ī

. For further details regarding this estimator, the interested reader is referred to

Kim (2003). This estimator computes the OLS estimation bias for a process with parameter

values θ̂ and uses this bias as approximation for the true bias of θ̂. In contrast to the former

procedure all parameters of the model are estimated simultaneously.

5.2.3 Indirect inference estimator

We now turn to a simulation-based estimator relying on the concept of indirect inference. The

following exposition draws heavily from Phillips et al. (2011). The basic idea of this simulation-

based estimator is to consider initially the OLS estimator labeled as ρ̂. Consider a set of simulated

series with AR(1) coefficient equal to some ρ, i.e. {yh
t (ρ)}Hh=1, h = 1,2, . . . ,H. H denotes the total

number of available simulation paths.4 For each single h ∈ 1,2, ...,H, we obtain an OLS estimate

denoted as ρ̂h(ρ). The indirect inference estimator (which belongs to the class of extremum

estimators) is given by

ρ̂II
H = argmin

ρ∈Θ

∥∥∥∥∥∥∥ ρ̂−
1
H

H∑
h=1

ρ̂h(ρ)

∥∥∥∥∥∥∥ ,
where Θ is a compact parameter space and ‖ · ‖ is a distance metric. For H→∞ one obtains

ρ̂II = argmin
ρ∈Θ

∥∥∥ ρ̂−q(ρ)
∥∥∥ ,

where q(ρ) = E
(̂
ρh(ρ)

)
is the so-called binding function. Given invertibility of q, the indirect

inference estimator results as

ρ̂II = q−1(̂ρ) .

So the idea of this estimator is to have a grid of possible true values for ρ and the correspond-

ing average OLS estimates (1/H)
∑H

h=1 ρ̂
h(ρ). The estimate ρ̂ is compared to the average OLS

estimates. ρ̂II is now the value which leads to the average OLS estimate with the minimal

distance to ρ̂. The finite-sample bias-correction stems from the simulation of q(ρ). Precision

is naturally expected to be increased with rising H, although it can be computationally costly.

Nonetheless, the binding function has to be simulated only once and can thus be applied after-

wards without any further simulation or re-sampling. This is a fundamental difference to the

bootstrap approach. Furthermore, the indirect inference estimator is applicable even for mildly

explosive processes. This is not the case for the Roy-Fuller and the bootstrap-based estimator

by Kim (2003). Estimation of all other parameters of the process can be done analogously to

the Roy-Fuller estimator.

4In order to generate {yh
t (ρ)}Hh=1, we assume normal errors in the following. The importance of this assumption is

investigated later in Section 5.3.2.
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5.2.4 Jackknife estimators

In general, Bao and Ullah (2007) show that the expected value of the OLS estimator θ̂ =
(̂
µ, ρ̂, β̂

)
has the form

E
(̂
θ
)

= θ+
a
T

+ O
(
T−2

)
.

Shaman and Stine (1988) show that the vector a = −(1 + 3ρ) for ρ̂ in the AR(1) process and

a = −(1 + ρ,2− 4β)′ for
(̂
ρ, β̂

)′
in the AR(2) process. If the full sample y is divided into m sub-

samples Y j of same length l, j = 1, . . . ,m, and θ̂ j is the OLS estimate for θ in sub-sample Y j then

the jackknife statistic

θ̂J =

( T
T − l

)
θ̂−

(
l

T − l

)
θ̃

with θ̃ = 1
m
∑m

j=1 θ̂
j satisfies E(̂θJ) = θ+ O(T−2) and is thus able to reduce the bias. Chambers

(2013) proposes and compares various jackknife techniques to reduce the small sample bias. In

this work we focus on one of the methods in the comparison of Chambers (2013): the non-

overlapping sub-samples jackknife. This estimator has good bias-correction properties without

the considerable increase of the RMSE of higher order jackknife estimators. Here the time series

is splitted in m non-overlapping sub-samples,

Y j = (y[( j−1)T/m+1], . . . ,y[ jT/m])′, j = 1, . . . ,m.

In the following we work with m = 2 sub-samples, because the procedure with this particular

choice of m has the best bias-correction properties according to Chambers (2013), see his Table

1. This simplifies the jackknife statistic to

θ̂J = 2̂θ− θ̃ .

The intuition behind this approach is almost the same as in the bootstrap approach of Kim

(2003). The average bias in the sub-samples is higher because of the smaller sample size and

therefore a bias-reduction is induced. The difference to the bootstrap procedure is that the

average bias is calculated on sub-samples of the true process and not on pseudo-data. In the

following we abbreviate this procedure as J(2). It should be noted that the introduced jackknife

procedure is only valid as long as the process is stationary, see Chambers (2013). The unit root

case is tackled in Chambers and Kyriacou (2012). To our best knowledge, the (mildly) explosive

case has not been under consideration so far.

5.3 Finite-sample properties

In this section we investigate the properties of various bias-correction methods via Monte Carlo

simulation. The foci of this analysis are the bias-reduction and the RMSE of these estimators

for AR(1) and AR(2) models in various settings. The simulation setup is as follows: We consider
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autoregressive models of the structure

yt = µ+ρyt−1 +β∆yt−1 +εt,

with εt ∼ N(0,1). Non-normal and heteroscedastic errors are studied in Section 5.3.2. The case of

a linear deterministic trend in addition to the intercept µ is located in Section 5.3.3. The autore-

gressive parameter ρ measures the persistence of yt and takes values ρ= {0.85,0.9,0.95,0.99,1,1.01,

1.02}. The considered samples sizes are T = {30,60,120,240}. The mildly autoregressive process

is characterized by ρ = 1 + c
T γ with 0 < γ < 1 and c > 0. Following Breitung and Kruse (2013)5,

γ = 0.75 corresponds to c = {0.13,0.22,0.36,0.61} and c = {0.26,0.43,0.73,1.22} for ρ = 1.01 and for

ρ = 1.02, respectively. Thus, the degree of explosiveness is in fact very mild in our setup. The

intercept µ is set equal to zero without loss of generality. If the data is generated by an AR(2)

process, β is set to β = {−0.2,0.3}. The number of Monte Carlo repetitions is set to 10,000 for

each single experiment. The number of bootstrap repetitions for the procedure of Kim (2003)

is set to 499. The binding function for the indirect inference estimator was simulated with

ρ = {0.60,0.61, . . . ,1.20} and β = {−0.90,−0.89, . . . ,0.90}. The number of simulation paths H equals

10,000 in the AR(1) case and H = 100 for AR(2) models. In an unreported comparison between

different values for H, we find that there are only marginal changes in the results as long as

H ≥ 100. That means that the indirect inference procedure can be applied at low computational

costs with negligible loss of precision.

Summary results are reported in Section 5.3.5. Detailed results are reported in Tables 5.1–5.7.

Table 5.1 shows the results for the case where the estimated model coincides with the true DGP

which is an AR(1). The next subsection discusses the performance for GARCH and heavy-tailed

innovations (see Tables 5.2 and 5.6). Results for processes with deterministic trends are given in

Table 5.3. Finally Tables 5.4, 5.5 and 5.7 contain results for correctly specified AR(2) models,

under-fitted AR(2) models and over-fitted AR(1) models.

5.3.1 First-order autoregressive model with i.i.d. Normal innovations

Our benchmark case is the AR(1) process with a constant as in equation (5.1). The left-hand

side of Table 5.1 provides the average bias of the OLS estimator and all discussed bias-correction

procedures. Every procedure leads to a substantial bias-reduction compared to the OLS estima-

tor. For T = 60, the jackknife estimator J(2) has the best bias-correction capabilities in nearly

all cases. The indirect inference estimator is second-best followed by the approximately median-

unbiased Roy-Fuller estimator and the bootstrap-based approach (Kim). In smaller samples

(T = 30), the jackknife is still the best procedure for unit root and explosive cases, but the re-

sults for stationary autoregressive models are mixed. In larger samples (T = 120), the indirect

inference estimator is the best method for stationary processes whereas the jackknife wins for

ρ = 1 and ρ = 1.01. Interestingly, for ρ = 1.02 the bias of the J(2) approach changes its sign and

5Breitung and Kruse (2013) consider values for c in the range of one half to five when simulating the empirical
performance of Chow-type tests for bursting bubbles.
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Bias RMSE

T ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.85 -0.135 0.012 0.000 -0.028 -0.002 0.201 0.145 0.165 0.162 0.218

0.90 -0.148 -0.002 -0.018 -0.044 -0.010 0.206 0.141 0.153 0.155 0.217

0.95 -0.162 -0.019 -0.043 -0.067 -0.020 0.213 0.135 0.143 0.153 0.217

0.99 -0.168 -0.029 -0.065 -0.089 -0.021 0.214 0.128 0.138 0.155 0.214

1.00 -0.166 -0.030 -0.069 -0.094 -0.018 0.212 0.125 0.136 0.156 0.211

1.01 -0.163 -0.030 - - -0.014 0.209 0.122 - - 0.207

1.02 -0.157 -0.028 - - -0.009 0.204 0.117 - - 0.203

60 0.85 -0.066 0.004 0.007 -0.006 0.003 0.113 0.097 0.104 0.098 0.123

0.90 -0.072 0.001 0.004 -0.011 0.002 0.113 0.093 0.095 0.091 0.121

0.95 -0.081 -0.006 -0.010 -0.023 -0.003 0.114 0.084 0.081 0.083 0.119

0.99 -0.088 -0.016 -0.029 -0.041 -0.007 0.114 0.072 0.070 0.078 0.113

1.00 -0.086 -0.016 -0.033 -0.046 -0.005 0.111 0.068 0.068 0.078 0.111

1.01 -0.081 -0.015 - - 0.000 0.106 0.063 - - 0.107

1.02 -0.071 -0.012 - - 0.004 0.099 0.058 - - 0.101

120 0.85 -0.032 0.000 0.001 -0.002 0.002 0.065 0.059 0.061 0.059 0.069

0.90 -0.034 0.001 0.003 -0.002 0.002 0.062 0.055 0.057 0.054 0.066

0.95 -0.038 0.000 0.003 -0.005 0.002 0.059 0.048 0.048 0.046 0.063

0.99 -0.045 -0.007 -0.012 -0.018 -0.003 0.059 0.038 0.037 0.040 0.059

1.00 -0.044 -0.009 -0.017 -0.023 -0.002 0.058 0.036 0.036 0.040 0.057

1.01 -0.036 -0.006 - - 0.003 0.051 0.031 - - 0.052

1.02 -0.021 -0.002 - - 0.009 0.037 0.023 - - 0.043

240 0.85 -0.015 0.000 0.000 0.000 0.001 0.040 0.038 0.038 0.038 0.042

0.90 -0.016 0.000 0.001 0.000 0.001 0.036 0.033 0.034 0.033 0.038

0.95 -0.018 0.001 0.002 0.000 0.001 0.032 0.028 0.029 0.027 0.034

0.99 -0.022 -0.002 -0.003 -0.006 -0.001 0.030 0.020 0.019 0.020 0.030

1.00 -0.022 -0.004 -0.008 -0.011 -0.001 0.029 0.018 0.017 0.020 0.029

1.01 -0.011 -0.001 - - 0.005 0.019 0.011 - - 0.022

1.02 -0.002 0.000 - - 0.008 0.009 0.006 - - 0.017

Table 5.1: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife (J(2))
estimation procedures for different AR(1) processes and sample sizes (constant included).

yields a very small, but positive bias. While this behavior may not seem striking at first sight,

it becomes more important when ρ > 1.02 (not reported). The higher ρ, the more obvious is the

overcorrection even in small samples. For T = 240, the OLS bias is quite small and the need

for bias-correction procedures becomes less important. Nevertheless, a reduction of the bias to

levels very close to zero is possible with any method.

The second important statistic we investigate is the RMSE. It is reported at the right-hand

side of Table 5.1. For T = 60, the bootstrap procedure has the highest RMSE reduction for

stationary cases, the Roy-Fuller method for processes close to and at the unit root and the

indirect inference estimator for explosive cases. All three techniques are highly competitive in

terms of variance reduction whereas the J(2) causes an increase in the variance compared to

the OLS estimator. This pattern remains the same for larger samples. For T = 30, the indirect

inference estimator is always the best procedure in terms of the RMSE. This shows that the

jackknife estimator provides the best bias-correction on average, but comes along with a fairly

large variance. This result is in line with Chambers (2013) where only stationary autoregressive
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Bias RMSE

T ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.85 -0.141 0.007 -0.007 -0.035 -0.007 0.208 0.147 0.170 0.168 0.227

0.90 -0.153 -0.007 -0.024 -0.051 -0.014 0.213 0.144 0.158 0.162 0.226

0.95 -0.167 -0.024 -0.049 -0.074 -0.024 0.220 0.139 0.149 0.160 0.225

0.99 -0.173 -0.034 -0.070 -0.095 -0.026 0.221 0.133 0.144 0.163 0.220

1.00 -0.171 -0.035 -0.074 -0.100 -0.023 0.220 0.130 0.143 0.165 0.218

1.01 -0.168 -0.034 - - -0.019 0.216 0.127 - - 0.215

1.02 -0.162 -0.032 - - -0.015 0.212 0.123 - - 0.210

60 0.85 -0.068 0.002 0.005 -0.008 -0.001 0.116 0.099 0.107 0.101 0.126

0.90 -0.074 -0.001 0.002 -0.013 -0.002 0.115 0.095 0.097 0.094 0.123

0.95 -0.083 -0.008 -0.012 -0.025 -0.007 0.117 0.086 0.084 0.086 0.121

0.99 -0.091 -0.018 -0.032 -0.044 -0.011 0.117 0.076 0.075 0.083 0.117

1.00 -0.089 -0.019 -0.036 -0.049 -0.007 0.115 0.072 0.072 0.082 0.116

1.01 -0.083 -0.017 - - -0.003 0.110 0.068 - - 0.111

1.02 -0.073 -0.013 - - 0.002 0.101 0.061 - - 0.103

120 0.85 -0.033 -0.001 0.000 -0.003 0.000 0.069 0.063 0.064 0.062 0.074

0.90 -0.036 -0.001 0.002 -0.004 0.000 0.064 0.057 0.059 0.056 0.069

0.95 -0.040 -0.001 0.001 -0.006 0.000 0.061 0.050 0.050 0.048 0.065

0.99 -0.046 -0.008 -0.013 -0.019 -0.004 0.061 0.040 0.039 0.042 0.062

1.00 -0.045 -0.009 -0.018 -0.024 -0.001 0.059 0.037 0.036 0.042 0.060

1.01 -0.037 -0.007 - - 0.003 0.051 0.031 - - 0.053

1.02 -0.022 -0.002 - - 0.009 0.038 0.023 - - 0.045

240 0.85 -0.017 -0.001 -0.002 -0.002 -0.001 0.044 0.042 0.042 0.042 0.047

0.90 -0.018 -0.001 -0.001 -0.002 0.000 0.040 0.036 0.037 0.036 0.042

0.95 -0.019 -0.001 0.001 -0.002 0.000 0.034 0.030 0.031 0.029 0.036

0.99 -0.022 -0.003 -0.004 -0.007 -0.001 0.031 0.022 0.021 0.022 0.032

1.00 -0.023 -0.005 -0.009 -0.012 0.000 0.030 0.019 0.018 0.021 0.031

1.01 -0.011 -0.001 - - 0.005 0.019 0.012 - - 0.023

1.02 -0.002 0.000 - - 0.008 0.009 0.006 - - 0.018

Table 5.2: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife (J(2)) es-
timation procedures for different AR(1) processes and sample sizes (constant included) with GARCH(1,1)
errors.

models are considered. Our results indicate that the general conclusion remains to hold for unit

root and mildly explosive autoregressive models as well. On the contrary, the indirect inference

estimator offers a similar performance in terms of bias-reduction (even though somewhat less

effective) and does not suffer from an increased variance.

5.3.2 Heteroscedastic and heavy-tailed innovations

So far all results are based on εt ∼ N(0,1) innovations. As a robustness check on the nor-

mality assumption we also investigate the performance of the bias-reduction methods under

heteroscedasticity and heavy-tailed error distributions. In order to investigate the influence of

heteroscedasticity we generate highly persistent GARCH disturbances as follows:

εt = σtzt

σt = a0 + a1ε
2
t−1 + b1σ

2
t−1,
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where zt ∼ N(0,1) and the parameters are set equal to a0 = 0.05, a1 = 0.1 and b1 = 0.85. The

simulation results for those DGPs are given in Table 5.2. For T = 60, the OLS bias is slightly

higher (in absolute value) than in the standard iid case. All procedures still offer a substantial

bias-reduction, and the remaining bias is usually smaller than in the benchmark case. This

means that the GARCH disturbances affect all estimators in a similar way. The general ranking

of the bias-correction methods stays the same as in the benchmark case. For all other sample

sizes in this setup, the jackknife estimator has the best bias-correction abilities. The RMSE is

on average slightly higher than in the benchmark case, but the pattern remains exactly the same.

In order to investigate whether heavy-tailed innovations may lead to problems, we use stable

distributed errors which are generated as εt ∼ S (α = 1.85,β = 0,γ = 1, δ = 0). This distribution

exhibits much fatter tails than the standard Normal distribution: P(|εt| > 2.5758) = 8.6% instead

of 1% as for the N(0,1) distribution. Remarkably, the change in the error distribution has

hardly any impact on the bias and RMSE results compared to the benchmark case. Therefore,

the corresponding Table 5.6 is located in the Appendix.

5.3.3 Inclusion of a linear deterministic trend and misspecified AR(1)

In this subsection we study autoregressive models with an additional linear trend term of the

form

yt = µ+δt +ρyt−1 +εt .

In all simulations we set δ = 0 (in addition to µ = 0) without loss of generality. Table 5.3 shows

that the additional uncertainty about the trend parameter causes a rise of the OLS bias. As

expected, all procedures perform worse than in the benchmark case (see Table 5.1). Further devi-

ations from the benchmark case are the better overall performance of the Roy-Fuller estimator in

stationary setups and the superior performance of the J(2) procedure in small samples (T = 30).

An interesting development is the reduction of the variance of the indirect inference, Roy-Fuller

and Kim’s bootstrap estimator. The performance in terms of RMSE is not as convincingly good

as in the benchmark case, but the average raise of the RMSE for the OLS estimator is higher

than for the bias-correction procedures. Even the J(2) estimator is now able to a lower RMSE

than the OLS estimator in most cases, although not in a competitive way.

Almost the same pattern is visible if the AR(1) process is misspecified as an AR(2) process.

This means that the data is generated as in the benchmark case, but an AR(2) model with the

additional parameter β is estimated. Instead of the trend parameter δ an additional autoregres-

sive parameter adds uncertainty to the estimation. All the effects caused by the inclusion of a

linear trend are also visible in the misspecified case, but in a much milder form. The detailed

results are gathered in Table 5.7 in the Appendix.
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Bias RMSE

T ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.85 -0.227 0.027 -0.033 -0.074 0.002 0.282 0.183 0.200 0.200 0.278

0.90 -0.247 0.008 -0.056 -0.096 -0.005 0.297 0.178 0.195 0.203 0.283

0.95 -0.271 -0.018 -0.086 -0.124 -0.018 0.317 0.175 0.197 0.212 0.291

0.99 -0.300 -0.048 -0.117 -0.156 -0.040 0.342 0.178 0.208 0.229 0.297

1.00 -0.309 -0.057 -0.127 -0.165 -0.049 0.350 0.180 0.214 0.236 0.299

1.01 -0.320 -0.068 - - -0.059 0.359 0.184 - - 0.302

1.02 -0.331 -0.079 - - -0.072 0.369 0.188 - - 0.305

60 0.85 -0.109 0.010 0.001 -0.018 0.009 0.148 0.119 0.119 0.111 0.150

0.90 -0.119 0.007 -0.008 -0.028 0.008 0.153 0.116 0.109 0.107 0.152

0.95 -0.134 -0.005 -0.027 -0.046 0.004 0.163 0.107 0.101 0.105 0.155

0.99 -0.155 -0.026 -0.053 -0.072 -0.008 0.179 0.104 0.104 0.114 0.160

1.00 -0.163 -0.034 -0.062 -0.081 -0.016 0.187 0.106 0.108 0.119 0.161

1.01 -0.174 -0.045 - - -0.027 0.196 0.109 - - 0.162

1.02 -0.183 -0.053 - - -0.034 0.204 0.113 - - 0.164

120 0.85 -0.049 0.002 0.002 -0.002 0.007 0.078 0.066 0.067 0.064 0.080

0.90 -0.054 0.004 0.004 -0.005 0.008 0.078 0.065 0.064 0.060 0.080

0.95 -0.062 0.004 -0.002 -0.012 0.008 0.080 0.060 0.056 0.054 0.081

0.99 -0.075 -0.009 -0.021 -0.030 0.002 0.089 0.053 0.050 0.055 0.083

1.00 -0.083 -0.017 -0.030 -0.039 -0.005 0.096 0.054 0.054 0.059 0.084

1.01 -0.093 -0.027 - - -0.014 0.105 0.057 - - 0.085

1.02 -0.063 -0.013 - - 0.037 0.081 0.043 - - 0.099

240 0.85 -0.025 0.000 -0.002 -0.001 0.002 0.046 0.040 0.040 0.040 0.046

0.90 -0.026 0.000 -0.001 -0.001 0.003 0.043 0.036 0.037 0.036 0.044

0.95 -0.029 0.001 0.001 -0.003 0.005 0.041 0.033 0.033 0.031 0.042

0.99 -0.036 -0.002 -0.008 -0.012 0.004 0.044 0.027 0.026 0.027 0.043

1.00 -0.042 -0.009 -0.015 -0.020 -0.001 0.049 0.027 0.028 0.030 0.044

1.01 -0.032 -0.007 - - 0.020 0.041 0.022 - - 0.052

1.02 -0.004 0.001 - - 0.028 0.014 0.008 - - 0.040

Table 5.3: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife (J(2))
estimation procedures for different AR(1) processes and sample sizes (constant and trend included).

5.3.4 Higher-order and misspecified autoregressive models

Finally, we extend our analysis to the AR(2) model as in equation (5.3). As visible in Figure

5.1, the OLS bias depends on the value of β. We work with β = {0.2,−0.3}, typical values in

macroeconomic time series. In order to save space only results for T = 60 are reported in Table

5.4, results for all other sample sizes can be found in Table 5.8 in the Appendix. All procedures

are able to reduce the OLS bias for higher order models and the order in terms of bias-correction

does not deviate from the AR(1) case. The jackknife is the best method, in particular for the

unit root and stationary near unit root setups. The procedure is also the only one which does

not depend on β. All other methods gain strictly better results for β = 0.2. The same pattern

appears if T = 30. For larger sample sizes the results are more mixed in favor of the indirect

inference estimator.

The RMSE results show that the indirect inference estimator has the highest RMSE reduction

for most cases. In comparison to the benchmark case, the typical pattern appears only for sam-

ples sizes of T = 120 or larger, in smaller samples the indirect inference estimator is the best
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Bias RMSE

T β ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

60 0.2 0.85 -0.059 0.001 0.004 -0.004 0.010 0.102 0.089 0.095 0.089 0.117

0.90 -0.063 -0.001 0.002 -0.008 0.009 0.099 0.083 0.086 0.081 0.112

0.95 -0.069 -0.006 -0.008 -0.017 0.005 0.099 0.074 0.073 0.072 0.109

0.99 -0.075 -0.014 -0.025 -0.035 -0.001 0.098 0.063 0.062 0.068 0.104

1.00 -0.073 -0.014 -0.029 -0.039 0.004 0.095 0.059 0.059 0.067 0.102

1.01 -0.067 -0.012 - - 0.006 0.090 0.055 - - 0.097

1.02 -0.054 -0.007 - - 0.010 0.079 0.047 - - 0.089

-0.3 0.85 -0.099 0.002 0.005 -0.012 0.010 0.155 0.119 0.133 0.126 0.172

0.90 -0.106 -0.006 -0.005 -0.022 0.007 0.154 0.115 0.119 0.116 0.168

0.95 -0.113 -0.015 -0.021 -0.037 0.002 0.153 0.105 0.103 0.106 0.163

0.99 -0.117 -0.024 -0.041 -0.057 -0.002 0.152 0.095 0.095 0.104 0.158

1.00 -0.114 -0.023 -0.044 -0.060 0.002 0.147 0.090 0.091 0.103 0.154

1.01 -0.111 -0.024 - - 0.004 0.146 0.089 - - 0.151

1.02 -0.102 -0.020 - - 0.009 0.139 0.083 - - 0.144

Table 5.4: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife (J(2))
estimation procedures for different AR(2) processes (constant included).

procedure in terms of RMSE reduction. It is also notable that the J(2) estimator leads to a

significant raise in the variance compared to the OLS estimator in all setups.

This result changes if the order of the model is underestimated. The results for a simulated

AR(2) process but an estimated AR(1) model are given in Table 5.5 and for other sample sizes

in Table 5.9 in the Appendix. For T = 60, the jackknife is the best bias-correction method. In

particular, if β = −0.3 it is significantly better than its competitors. Although the ranking of the

other bias-correction procedures remains the same, it is not as obvious as before. All methods

perform worse than in the correctly specified model. In one setup, β = 0.2 and ρ = 0.85, all

bias-corrected estimators have a higher bias than the OLS estimator. For larger samples the

results depend on the value of β. If β = 0.2, no best procedure can be identified but in more

and more setups bias-correction is not successful at all. If β = −0.3, the J(2) estimator offers the

highest bias-reduction.

In terms of RMSE the standard pattern from the AR(1) case is visible for β = 0.2, whereas for

β = −0.3 the indirect inference estimator is the best procedure. But, no procedure is able to

offer a constant reduction of the RMSE and if this reduction is much less than in the correctly

specified model. These results lead to the recommendation to choose the model order with a

parameter friendly information criterion like the AIC when bias-correction should be applied.

5.3.5 Summary of simulation results

Our main results are as follows: (i) bias-correction plays an important role for all considered

levels of persistence (i.e. stationarity, unit roots and explosive behavior), in particular for sam-

ples sizes up to T = 120, (ii) the most effective bias-correction is obtained when applying the

jackknife estimator for small and moderate sample sizes; in terms of RMSE, the indirect infer-

ence approach is generally recommendable. It performs particulary well for small sample sizes
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Bias RMSE

T β ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

60 0.2 0.85 -0.023 0.051 0.056 0.040 0.030 0.073 0.093 0.097 0.085 0.097

0.90 -0.034 0.043 0.044 0.029 0.023 0.073 0.082 0.081 0.073 0.095

0.95 -0.048 0.027 0.019 0.007 0.013 0.078 0.066 0.058 0.057 0.095

0.99 -0.062 0.008 -0.013 -0.024 -0.002 0.084 0.051 0.047 0.056 0.094

1.00 -0.062 0.005 -0.020 -0.033 -0.002 0.084 0.047 0.046 0.061 0.092

1.01 -0.058 0.004 - - 0.002 0.079 0.043 - - 0.087

1.02 -0.047 0.005 - - 0.006 0.071 0.039 - - 0.082

-0.3 0.85 -0.189 -0.108 -0.129 -0.137 -0.086 0.236 0.156 0.202 0.203 0.206

0.90 -0.179 -0.105 -0.113 -0.124 -0.069 0.224 0.161 0.188 0.189 0.197

0.95 -0.172 -0.099 -0.103 -0.115 -0.055 0.212 0.157 0.171 0.175 0.186

0.99 -0.161 -0.087 -0.095 -0.108 -0.036 0.197 0.144 0.153 0.158 0.174

1.00 -0.154 -0.081 -0.091 -0.104 -0.027 0.191 0.139 0.147 0.153 0.169

1.01 -0.145 -0.073 - - -0.016 0.182 0.131 - - 0.163

1.02 -0.132 -0.064 - - -0.007 0.171 0.122 - - 0.155

Table 5.5: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife (J(2))
estimation procedures for different AR(2) processes when the model is misspecified as AR(1).

and explosive processes. (iii) Under the presence of a unit root, the Roy-Fuller and the indirect

inference estimator perform best in terms of RMSE, while the bootstrap-based estimator by Kim

(2003) performs well for stationary models. (iv) Heteroscedastic and heavy-tailed errors hardly

affect the former conclusions. (v) In case of correct specification, the exact order of the autore-

gressive model does not alter our main findings. Overfitting of the autoregressive model is not

harmful, while underfitting turns out to be an important issue. Therefore, the lag length shall

be carried out on the basis of liberal selection procedures like the AIC. (vi) The performance of

all estimators weakens when a deterministic trend in addition to an intercept is included. But,

the ranking of estimators remains unaffected.

5.4 Empirical applications

We apply the different bias-correction methods to four economic time series using the popular

rolling window technique. In Section 5.4.1 we analyze a long annual ratio of the US Debt/GDP

series in detail. Recently, there has been an extensive discussion on lifting the US government

debt ceiling. The sustainability of US fiscal policy hinges on the persistence properties of the

US Debt/GDP series: only when the series exhibits stationarity, fiscal policies are sustainable.

Further empirical applications are considered in Section 5.4.2 where the following three series

are studied: (1) log Oil price, (2) log Gold price and (3) spread between long-term interest rates

in Germany and Greece. Figure 5.2 contains time series plots of all four variables. All series are

strongly autocorrelated. The first three series are even likely to exhibit locally explosive behavior

due to expansions during war times (US Debt) and speculation (Oil and Gold). The situation

is different for the interest rate series whose persistence properties have not been studied exten-

sively yet. Data for the debt series is available at http://www.econ.ucsb.edu/∼bohn/data.html

while the remaining data has been obtained from the FRED and the ECB database. Bias-

http://www.econ.ucsb.edu/~bohn/data.html


5.4. Empirical applications 26

US Debt/GDP ratio

D
eb

t/G
D

P
 in

 %

1800 1850 1900 1950 2000

0
20

40
60

80
10

0

Oil price

lo
g 

U
S

D
/B

ar
re

l

1985 1990 1995 2000 2005 2010

2.
5

3.
0

3.
5

4.
0

4.
5

Gold price

lo
g 

U
S

D
/o

z

1970 1980 1990 2000 2010

4
5

6
7

10Y interest rate spread Germany−Greece

S
pr

ea
d 

in
 %

1995 2000 2005 2010

0
5

10
15

20
25

Figure 5.2: Time series under consideration.

corrected rolling window estimation (with 60 observations per window) is compared to classic

OLS estimation. The lag length is chosen via the Akaike information criterion as underfitting is

a problematic issue. For each series, an intercept is included in the autoregressive model due to

a non-zero mean.

5.4.1 US Debt/GDP ratio

The US Debt/GDP ratio series is measured in percent. The sample ranges from 1791-2011,

yielding 221 annual observations. Given a window size of 60, we obtain the first estimates for

the period from 1791 to 1850.6 The second estimates are based on the sample ranging from

1792-1851 and so on. The last estimates use the sample from 1952 to 2011. According to the

AIC, an AR(2) model is fitted to the data.

The estimated values of ρ for the different bias-correction techniques are given in Figure 5.3,

each in comparison to the OLS estimator. First, bias-correction obviously plays an important

role in this application as differences between OLS and bias-corrected estimates are clearly vis-

ible. Second, the Roy-Fuller, bootstrap and indirect inference estimator agree on the general

6The choice of 60 observations has been made in accordance to the simulations in the previous section. However,
our calculations for 50 observations (half a century of data per window) lead to very similar conclusions.
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Figure 5.3: Rolling window AR(2) estimation for the US Debt/GDP series with different bias-correction
methods.

evolution of the persistence over time, whereas the jackknife estimator shows a more volatile

behavior. An obvious shortcoming of the Roy-Fuller bias-correction and the bootstrap tech-

nique by Kim (2003) is their limitation to the parameter space ρ̂ ≤ 1. The results for the OLS,

indirect inference and jackknife estimator clearly suggest the need of relaxing this restriction for

obtaining meaningful estimates of the persistence. Therefore, we focus on the indirect inference

estimator in comparison to the jackknife estimator.

The indirect inference estimator displays explosiveness during major wars (Civil War and World

War II), where the autoregressive parameter estimates reach a maximum of ρ̂II = 1.036. After

1950, persistence dropped remarkably, but recovered during the recent years since 2001 possibly

in response to the patriot act and related policies after 9/11. The very last point estimates

indicate a high persistence and a possible unit root. Parameter estimates for the J(2) bias-

correction method show explosive behavior during the Civil War, in the late 18th century and

both World Wars. Estimated persistence is relatively close around the unit root with an interval

from ρ̂J,2 = [0.818,1.483].7 These results support the Monte Carlo analysis, where the jackknife

estimators show a very good bias-reduction but at the costs of high standard errors. The OLS

7The higher-order J(2,3) bias-correction (not reported to conserve some space) yields very volatile results with
many highly explosive phases but also some major drops down to ρ̂J(2,3) = 0.558.
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Figure 5.4: Rolling window AR(2) estimation for the log Oil price series with different bias-correction
methods.

estimation results only indicate a single period of explosive behavior, i.e. the second World War.

Moreover, the OLS results for the Civil War period are in clear discrepancy to the ones obtained

by bias-corrected estimators.

Our results suggest that a lifting of the US government debt ceiling may easily end up in

unsustainable fiscal policies as the persistence of the series is non-stationary and nearly explosive

during the most recent years. In general, our findings are in line with Yoon (2011) who applies

the recursive right-tailed unit root test of Phillips et al. (2011) to test the hypothesis of a unit

root against explosive behavior. His main result is that the US Debt/GDP ratio is explosive and

that the explosiveness is linked to the high increase in the ratio during and after the World War

II. Our study complements Yoon (2011) as the author did not consider bias-corrected estimation

for the series.

5.4.2 Further applications: Oil, Gold and European interest rates

In this subsection we analyze some further time series which potentially exhibit phases of ex-

plosiveness due to pronounced growth rates. We start with the spot oil price series (West Texas

Intermediate), which is measured in US Dollars per barrel. Episodes of explosive behavior hint
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Figure 5.5: Rolling window AR(1) estimation for the log Gold price series with different bias-correction
methods.

at strong speculation activities in the market. The sample ranges from 1983:01 to 2013:01

(T = 361). An AR(2) model is fitted to the data. The window size equals 60 months (5 years).

The estimated values of ρ for the different bias-correction techniques are given in Figure 5.4,

each in comparison to the OLS estimator. The general evolution of all estimators suggests that

persistence has undergone remarkable changes. Bias-correction is of importance in this applica-

tion, too. The OLS estimates do not indicate explosive behavior (and thus phases of pronounced

speculation) at all. When looking at the results for the indirect inference estimator, one observes

that oil prices have been much less persistent (and presumably stationary) during the Nineties.

Persistence increased towards the year 2000 and stayed above, but close to, unity. Around 2004,

persistence dropped again whilst recovering quickly to high levels indicating mild explosiveness.

Interestingly, there has been another drop to values around 0.9 in the recent years. The rolling

window estimation results reflect the movements in the series, see Figure 5.2 (upper right panel).

The Roy-Fuller and the bootstrap bias-correction techniques suggest similar findings expect of

the important periods of explosiveness. The jackknife estimator provides results which are in

general accordance to the ones for the indirect inference estimator. However, estimated persis-

tence is much higher in explosive phases and the persistence path is more volatile. This behavior

is confirmed by our simulation results which show that the jackknife estimator has a fairly large
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Figure 5.6: Rolling window AR(1) estimation for the interest rate spread series with different bias-
correction methods.

variance.

Next, we study another important commodity series. The presence of bubbles (characterized

by explosive price paths) in gold prices (measured in US Dollars per ounce) has implications

with respect to its safe haven property, see Baur et al. (2012) and Baur and McDermott (2010).

During periods of explosive behavior, the stabilizing effect of Gold vanishes which may endanger

the financial system to a certain extent. Monthly data is sampled from 1968:04 to 2013:01,

yielding 539 observations. An AR(1) model is fitted to the data.

The results are reported in Figure 5.5. As a first clear result, the series is strongly persistent and

exhibits many and long phases of mild explosiveness. Even the rolling window OLS estimates

clearly indicate two such phases in the beginning of the Seventies and the Eighties, respectively.

When comparing different bias-correction techniques, we find a similar picture as for the previous

applications. The importance of bias-correction and the simultaneous allowance for explosive

behavior is further underlined.

Finally, we consider the spread between long-term interest rates in Germany and Greece. The

series spans 1993:01–2013:02, thereby giving a total number of 242 observations. The selected
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lag length equals one. The spread has remarkably declined during the European economic

integration and reached levels near zero after the Euro introduction. During the following years

(up to 2007), long-term interest rates remained nearly the same in Germany and Greece and

only a minor risk premium for investing in Greece has been paid. After the beginning of the

financial crisis, however, the spread reached historic values above 25% reflecting the increased

default risk. Results for bias-corrected estimation of persistence in this series are reported in

Figure 5.6. In the beginning of the sample, estimated persistence indicate a unit root followed by

lower persistence caused by European monetary integration efforts. But, the results also show a

dramatic increase in persistence at the beginning of the global financial crisis and even the OLS

estimates take values above 1.3 which is remarkably high. Obviously, it is of major importance to

allow for explosiveness in this application. Towards the end of the sample, persistence lowered

considerably to values near unity indicating one of the outcomes of the European Stability

Mechanism. The indirect inference estimator and the jackknife estimator yield similar results

as they agree on the general evolution of persistence.

5.5 Conclusion

This paper compares four different bias-correction techniques for autoregressive processes. Among

these are the approximately median-unbiased estimator by Roy and Fuller (2001), a bootstrap-

based estimator by Kim (2003), an indirect inference estimator by Phillips et al. (2011) and a

jackknife estimator suggested in Chambers (2013). We thus compare established techniques to

newly proposed procedures in a comprehensive way. In particular, we focus on situations where

the sample size is relatively small and data is highly persistent, exhibits a unit root or is even

mildly explosive. When the popular rolling window framework is applied for assessing the pos-

sibly time-varying persistence of a time series, sample sizes are typically small. Moreover, it is

reasonable to expect that time series undergo changes in persistence during different regimes and

episodes. These changes can be either driven by episodes of speculation (leading to temporary

bubbles) or policy induced (typically leading to a reduction in persistence). Therefore, we study

an empirically relevant situation and provide practical recommendations for further applications.

A large-scale simulation study of bias and root mean squared errors of estimators reveals the

following results: The substantial bias of the OLS estimator can be remarkably reduced across

the whole range of considered autoregressive parameter values. The most promising approaches

are the indirect inference estimator and the jackknife estimator. The indirect inference estimator

provides excellent bias-correction in various settings (i.e. heavy-tailed errors, GARCH errors,

linear trend and misspecified autoregression) together with a reasonably low variance, while the

jackknife estimator performs often best in terms of bias-correction, but has a clearly larger vari-

ance rendering this estimator less recommendable in terms of RMSE.

As the main empirical application, we consider a long annual US Debt/GDP series in a rolling

window estimation framework. Remarkable evidence for time-varying persistence and periods of
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explosiveness during the Civil War and World War II are documented. The results clearly suggest

substantial differences for various estimation techniques and thus, different policy implications.

Further empirical applications consider Oil prices, Gold prices and the spread between long-term

interest rates in Germany and Greece. In all cases, the importance of bias-correction and the

simultaneous allowance for locally explosive behavior is further stressed.
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5.A Appendix

5.A.1 Stable errors

Bias RMSE

T ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.85 -0.135 0.012 0.000 -0.030 -0.008 0.199 0.144 0.163 0.160 0.220

0.90 -0.148 -0.002 -0.017 -0.046 -0.014 0.205 0.140 0.150 0.155 0.221

0.95 -0.162 -0.018 -0.042 -0.069 -0.023 0.213 0.134 0.142 0.154 0.222

0.99 -0.167 -0.028 -0.064 -0.090 -0.022 0.215 0.127 0.139 0.160 0.221

1.00 -0.166 -0.029 -0.068 -0.095 -0.019 0.213 0.125 0.137 0.160 0.219

1.01 -0.162 -0.029 - - -0.015 0.210 0.123 - - 0.215

1.02 -0.157 -0.028 - - -0.012 0.206 0.120 - - 0.210

60 0.85 -0.064 0.006 0.010 -0.005 0.002 0.108 0.094 0.100 0.093 0.119

0.90 -0.070 0.004 0.007 -0.009 0.001 0.108 0.089 0.091 0.087 0.118

0.95 -0.078 -0.003 -0.006 -0.021 -0.003 0.109 0.080 0.077 0.079 0.116

0.99 -0.086 -0.014 -0.028 -0.041 -0.008 0.112 0.071 0.071 0.079 0.116

1.00 -0.085 -0.015 -0.033 -0.046 -0.006 0.111 0.068 0.070 0.081 0.115

1.01 -0.079 -0.013 - - -0.001 0.104 0.062 - - 0.107

1.02 -0.069 -0.010 - - 0.003 0.095 0.056 - - 0.099

120 0.85 -0.030 0.002 0.003 0.000 0.002 0.062 0.057 0.059 0.057 0.068

0.90 -0.033 0.002 0.005 -0.001 0.002 0.059 0.053 0.055 0.052 0.065

0.95 -0.037 0.002 0.004 -0.004 0.002 0.057 0.047 0.047 0.045 0.062

0.99 -0.044 -0.006 -0.011 -0.018 -0.003 0.059 0.038 0.037 0.040 0.061

1.00 -0.044 -0.008 -0.016 -0.022 -0.002 0.057 0.035 0.035 0.040 0.059

1.01 -0.035 -0.005 - - 0.003 0.049 0.028 - - 0.051

1.02 -0.021 -0.002 - - 0.009 0.037 0.022 - - 0.044

240 0.85 -0.015 0.000 0.000 0.000 0.001 0.039 0.036 0.037 0.036 0.041

0.90 -0.016 0.001 0.001 0.000 0.001 0.035 0.032 0.032 0.032 0.038

0.95 -0.017 0.001 0.003 0.000 0.002 0.031 0.027 0.028 0.026 0.034

0.99 -0.021 -0.001 -0.002 -0.006 0.000 0.029 0.020 0.019 0.020 0.031

1.00 -0.022 -0.004 -0.008 -0.011 0.000 0.030 0.019 0.019 0.022 0.032

1.01 -0.010 -0.001 - - 0.005 0.018 0.011 - - 0.022

1.02 -0.002 0.000 - - 0.008 0.009 0.006 - - 0.017

Table 5.6: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife (J(2))
estimation procedures for different AR(1) processes and sample sizes (constant included) with stable error
distribution.
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5.A.2 Misspecified AR(1) process

Bias RMSE

T ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.85 -0.162 0.003 -0.021 -0.044 0.024 0.237 0.151 0.190 0.186 0.280

0.90 -0.173 -0.014 -0.038 -0.061 0.013 0.240 0.149 0.178 0.180 0.273

0.95 -0.183 -0.030 -0.060 -0.083 0.003 0.242 0.145 0.167 0.176 0.269

0.99 -0.186 -0.039 -0.078 -0.105 0.002 0.241 0.140 0.160 0.179 0.262

1.00 -0.182 -0.037 -0.079 -0.106 0.009 0.236 0.136 0.155 0.177 0.259

1.01 -0.178 -0.036 - - 0.009 0.232 0.134 - - 0.255

1.02 -0.170 -0.033 - - 0.016 0.226 0.130 - - 0.254

60 0.85 -0.075 0.002 0.004 -0.007 0.008 0.125 0.104 0.113 0.106 0.141

0.90 -0.080 -0.003 -0.001 -0.013 0.007 0.123 0.099 0.102 0.098 0.137

0.95 -0.086 -0.010 -0.013 -0.025 0.004 0.121 0.087 0.085 0.086 0.130

0.99 -0.094 -0.020 -0.034 -0.045 -0.003 0.122 0.079 0.078 0.085 0.127

1.00 -0.090 -0.018 -0.036 -0.048 0.003 0.116 0.072 0.073 0.083 0.123

1.01 -0.086 -0.018 - - 0.004 0.114 0.070 - - 0.118

1.02 -0.074 -0.013 - - 0.009 0.103 0.062 - - 0.112

120 0.85 -0.035 -0.001 0.001 -0.002 0.003 0.069 0.063 0.064 0.062 0.075

0.90 -0.037 0.000 0.002 -0.003 0.003 0.065 0.057 0.059 0.056 0.071

0.95 -0.041 -0.001 0.001 -0.006 0.003 0.062 0.050 0.050 0.048 0.066

0.99 -0.046 -0.008 -0.013 -0.019 -0.001 0.061 0.040 0.038 0.041 0.063

1.00 -0.045 -0.009 -0.017 -0.023 0.000 0.059 0.036 0.036 0.040 0.060

1.01 -0.037 -0.006 - - 0.005 0.051 0.031 - - 0.055

1.02 -0.022 -0.002 - - 0.010 0.039 0.024 - - 0.046

240 0.85 -0.017 0.000 0.000 0.000 0.001 0.043 0.040 0.040 0.040 0.044

0.90 -0.018 0.000 0.000 -0.001 0.001 0.038 0.034 0.035 0.034 0.040

0.95 -0.019 0.000 0.002 -0.001 0.002 0.033 0.029 0.030 0.028 0.035

0.99 -0.022 -0.003 -0.003 -0.007 0.000 0.031 0.021 0.020 0.021 0.031

1.00 -0.022 -0.004 -0.008 -0.011 0.000 0.029 0.017 0.017 0.020 0.030

1.01 -0.011 -0.001 - - 0.005 0.019 0.012 - - 0.023

1.02 -0.002 0.000 - - 0.008 0.009 0.006 - - 0.018

Table 5.7: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife (J(2))
estimation procedures for different AR(1) processes when the model is misspecified as AR(2) (constant
included).
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5.A.3 AR(2) process

Bias RMSE

T β ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.2 0.85 -0.134 -0.001 -0.015 -0.032 0.023 0.199 0.138 0.165 0.160 0.239

0.90 -0.142 -0.012 -0.028 -0.045 0.017 0.201 0.136 0.153 0.152 0.235

0.95 -0.151 -0.025 -0.047 -0.065 0.012 0.201 0.128 0.140 0.146 0.232

0.99 -0.153 -0.030 -0.063 -0.084 0.008 0.200 0.120 0.132 0.147 0.224

1.00 -0.150 -0.030 -0.066 -0.089 0.011 0.196 0.118 0.129 0.150 0.222

1.01 -0.144 -0.027 - - 0.018 0.191 0.113 - - 0.219

1.02 -0.139 -0.026 - - 0.018 0.188 0.111 - - 0.214

-0.3 0.85 -0.217 -0.001 -0.040 -0.072 0.008 0.304 0.167 0.232 0.232 0.335

0.90 -0.229 -0.022 -0.063 -0.093 -0.007 0.309 0.167 0.222 0.229 0.329

0.95 -0.240 -0.043 -0.087 -0.119 -0.016 0.311 0.168 0.213 0.228 0.328

0.99 -0.237 -0.048 -0.101 -0.135 -0.007 0.303 0.163 0.202 0.226 0.320

1.00 -0.231 -0.045 -0.101 -0.137 0.003 0.297 0.158 0.196 0.227 0.317

1.01 -0.228 -0.046 - - 0.005 0.295 0.157 - - 0.313

1.02 -0.224 -0.046 - - 0.007 0.293 0.157 - - 0.309

120 0.2 0.85 -0.029 -0.001 -0.001 -0.002 0.001 0.060 0.055 0.057 0.055 0.064

0.90 -0.029 0.000 0.001 -0.002 0.002 0.055 0.049 0.051 0.048 0.059

0.95 -0.032 0.000 0.002 -0.003 0.003 0.050 0.042 0.043 0.041 0.055

0.99 -0.037 -0.006 -0.009 -0.014 -0.001 0.050 0.033 0.032 0.034 0.051

1.00 -0.036 -0.007 -0.014 -0.019 0.002 0.047 0.029 0.029 0.033 0.050

1.01 -0.027 -0.004 - - 0.004 0.040 0.024 - - 0.042

1.02 -0.012 0.000 - - 0.011 0.027 0.017 - - 0.036

-0.3 0.85 -0.048 -0.001 0.002 -0.004 0.003 0.087 0.076 0.080 0.076 0.092

0.90 -0.050 -0.001 0.004 -0.005 0.004 0.082 0.070 0.073 0.069 0.088

0.95 -0.054 -0.004 -0.002 -0.011 0.002 0.080 0.061 0.060 0.059 0.084

0.99 -0.059 -0.011 -0.017 -0.025 0.000 0.078 0.051 0.048 0.053 0.081

1.00 -0.059 -0.012 -0.022 -0.030 -0.001 0.076 0.047 0.047 0.053 0.078

1.01 -0.050 -0.009 - - 0.005 0.069 0.042 - - 0.072

1.02 -0.037 -0.005 - - 0.009 0.058 0.035 - - 0.064

240 0.2 0.85 -0.013 0.000 0.000 0.000 0.001 0.037 0.035 0.035 0.035 0.038

0.90 -0.013 0.000 0.000 0.000 0.001 0.032 0.030 0.030 0.030 0.034

0.95 -0.015 0.000 0.001 0.000 0.002 0.028 0.025 0.025 0.024 0.029

0.99 -0.017 -0.001 -0.002 -0.004 0.000 0.024 0.017 0.016 0.017 0.025

1.00 -0.018 -0.003 -0.007 -0.009 0.000 0.023 0.014 0.014 0.016 0.024

1.01 -0.006 0.000 - - 0.006 0.013 0.008 - - 0.017

1.02 0.000 0.000 - - 0.006 0.005 0.004 - - 0.013

-0.3 0.85 -0.023 -0.001 -0.001 -0.002 0.000 0.051 0.047 0.047 0.047 0.053

0.90 -0.024 -0.001 0.000 -0.001 0.000 0.046 0.041 0.042 0.041 0.048

0.95 -0.024 0.001 0.003 -0.001 0.002 0.041 0.034 0.036 0.033 0.043

0.99 -0.029 -0.004 -0.006 -0.010 -0.001 0.040 0.027 0.025 0.027 0.041

1.00 -0.029 -0.005 -0.011 -0.015 0.000 0.037 0.023 0.022 0.025 0.038

1.01 -0.019 -0.003 - - 0.004 0.029 0.017 - - 0.031

1.02 -0.006 0.000 - - 0.011 0.016 0.010 - - 0.026

Table 5.8: Bias and RMSE for OLS, indirect inference (II), Roy-Fuller (RF), Kim and jackknife (J(2))
estimation procedures for different AR(2) processes (constant included).
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5.A.4 Misspecified AR(2) process

Bias RMSE

T β ρ OLS II RF Kim J(2) OLS II RF Kim J(2)

30 0.2 0.85 -0.081 0.066 0.054 0.027 0.028 0.147 0.142 0.140 0.131 0.184

0.90 -0.097 0.047 0.027 0.002 0.015 0.154 0.127 0.119 0.119 0.185

0.95 -0.116 0.024 -0.009 -0.032 -0.002 0.164 0.112 0.105 0.116 0.187

0.99 -0.126 0.007 -0.040 -0.065 -0.009 0.169 0.100 0.101 0.128 0.186

1.00 -0.126 0.005 -0.046 -0.075 -0.008 0.168 0.097 0.101 0.136 0.185

1.01 -0.123 0.003 - - -0.005 0.166 0.094 - - 0.182

1.02 -0.118 0.003 - - -0.001 0.162 0.091 - - 0.177

-0.3 0.85 -0.314 -0.122 -0.202 -0.223 -0.145 0.382 0.187 0.325 0.329 0.340

0.90 -0.313 -0.136 -0.197 -0.219 -0.134 0.378 0.205 0.315 0.320 0.334

0.95 -0.309 -0.143 -0.193 -0.215 -0.120 0.372 0.217 0.301 0.309 0.327

0.99 -0.298 -0.141 -0.186 -0.209 -0.098 0.360 0.218 0.286 0.296 0.316

1.00 -0.292 -0.137 -0.182 -0.205 -0.090 0.354 0.216 0.280 0.291 0.311

1.01 -0.285 -0.133 - - -0.080 0.348 0.213 - - 0.306

1.02 -0.277 -0.128 - - -0.070 0.340 0.209 - - 0.300

120 0.2 0.85 0.002 0.036 0.038 0.034 0.026 0.043 0.058 0.061 0.056 0.058

0.90 -0.007 0.030 0.034 0.027 0.018 0.039 0.052 0.055 0.049 0.052

0.95 -0.017 0.023 0.024 0.016 0.011 0.038 0.042 0.041 0.037 0.048

0.99 -0.029 0.008 -0.001 -0.006 0.001 0.041 0.026 0.022 0.026 0.046

1.00 -0.031 0.003 -0.009 -0.015 0.000 0.041 0.022 0.021 0.030 0.045

1.01 -0.023 0.003 - - 0.003 0.035 0.019 - - 0.041

1.02 -0.008 0.006 - - 0.014 0.023 0.015 - - 0.035

-0.3 0.85 -0.124 -0.092 -0.095 -0.097 -0.069 0.153 0.125 0.134 0.134 0.130

0.90 -0.108 -0.076 -0.076 -0.079 -0.047 0.136 0.113 0.116 0.116 0.116

0.95 -0.095 -0.060 -0.058 -0.063 -0.029 0.120 0.098 0.099 0.099 0.105

0.99 -0.086 -0.049 -0.049 -0.056 -0.016 0.107 0.083 0.083 0.085 0.096

1.00 -0.080 -0.043 -0.046 -0.052 -0.007 0.100 0.075 0.076 0.079 0.091

1.01 -0.068 -0.033 - - 0.002 0.089 0.066 - - 0.084

1.02 -0.051 -0.024 - - 0.007 0.075 0.055 - - 0.072

240 0.2 0.85 0.014 0.030 0.030 0.030 0.025 0.031 0.041 0.042 0.041 0.040

0.90 0.006 0.023 0.023 0.022 0.018 0.025 0.033 0.034 0.033 0.033

0.95 -0.003 0.016 0.018 0.014 0.010 0.020 0.026 0.028 0.025 0.026

0.99 -0.012 0.007 0.004 0.001 0.003 0.020 0.015 0.013 0.013 0.023

1.00 -0.015 0.002 -0.004 -0.007 0.000 0.020 0.011 0.010 0.015 0.022

1.01 -0.004 0.003 - - 0.007 0.012 0.007 - - 0.018

1.02 0.004 0.005 - - 0.010 0.006 0.006 - - 0.015

-0.3 0.85 -0.093 -0.079 -0.079 -0.079 -0.066 0.110 0.099 0.100 0.100 0.094

0.90 -0.074 -0.059 -0.059 -0.059 -0.044 0.091 0.080 0.080 0.080 0.076

0.95 -0.056 -0.039 -0.039 -0.040 -0.022 0.071 0.060 0.060 0.060 0.061

0.99 -0.046 -0.026 -0.026 -0.029 -0.008 0.057 0.045 0.045 0.046 0.051

1.00 -0.041 -0.022 -0.023 -0.026 -0.002 0.052 0.039 0.039 0.040 0.048

1.01 -0.026 -0.012 - - 0.004 0.038 0.028 - - 0.038

1.02 -0.012 -0.007 - - 0.008 0.022 0.016 - - 0.028

Table 5.9: Bias and RMSE for OLS. indirect inference (II), Roy-Fuller (RF), Kim and jackknife (J(2))
estimation procedures for different AR(2) processes when the model is misspecified as AR(1) (constant
included).
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Macroeconomic determinants of time-varying persistence
in the S&P500 price-dividend ratio

Co-authored with Robinson Kruse.

6.1 Introduction

Asset pricing models are mainly concerned with the connection between prices and dividends.

According to standard models, asset prices are determined by discounted expected future div-

idends which is a measure of the fundamental value. A key variable receiving much attention

in the academic and the financial world is the price-dividend ratio (PD ratio). Financial theory

suggests under a set of standard assumptions and by imposing a no-bubble condition that the

PD ratio is stationary as prices and dividends are cointegrated in the long-run. When stock

prices escalate their fundamental value in a systematic (and possibly rational) way, the PD ratio

is no longer stationary. This fact arises from stock prices becoming explosive and dividends still

being difference-stationary. It is natural to assume that the persistence (and thereby the order

of integration) of the PD ratio exhibits a dynamic structure. Time-varying persistence of the PD

ratio is consistent with e.g. the existence of periodically collapsing bubbles, see Evans (1991).

Popular tests for (rational) asset price bubbles are built directly on the persistence properties

of the PD ratio, see e.g. Craine (1993).

Another field where the PD ratio and its time-varying persistence are of importance is the pre-

diction of stock returns, see Campbell and Shiller (1988) and Fama and French (1988). The

ability of the PD ratio to successfully predict stationary future stock returns is still controver-

sial, see e.g. Spiegel (2008). However, recent studies investigating the link between stock returns

and the dividend yield emphasize that the evidence for the predictive relationship is heavily de-

pendent on the considered sample period. The general finding that the PD ratio has been an

important predictor before the 1990s, but lost its predictive abilities afterwards is supported

by a number studies in this field, see for instance Chen (2009) and Park (2010). Dangl and

Halling (2012) find that time-variation in the coefficients of return prediction models is very

important. Moreover, they argue that return predictability appears to be linked to the business

cycle, whereas decreasing risk premia are associated with expansions and vice versa. During the

1990s, the relationship between the PD ratio and stock returns became fragile, presumably due

to the emergence and burst of the dot-com bubble. A possible explanation is that risk premia

are time-varying and may be related to business cycles, see Guidolin et al. (2013). Welch and

Goyal (2008) find that increased persistence is related to declined predictive power. In a recent

contribution, Kim and Park (2013) explain the highly persistent dynamics in the PD ratio by a

time-varying long-run relationship between stocks and dividends. They argue that the change in

persistence arises from the decreasing number of firms with a traditional dividend-payout policy.

mailto: kruse@statistik.uni-hannover.de
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Figure 6.1: Dynamic persistence of the S&P500 PD ratio. Time spans from 1890:Q4 to 2012:Q4 (T = 489).
Grey areas mark NBER recession periods.

For illustration of the time-varying nature of the PD ratio, we show its dynamic persistence

in Figure 6.1. The estimates are based on a rolling window regression with a window size of

20 years corresponding to a long-run perspective. A detailed description on how the estimates

are obtained is given in Section 6.3. Eyeballing the series suggests a clear pattern: From the

beginning of the sample in the late 19th century until the beginning of the 1990s, the PD ratio

appears to be strongly dependent, but stationary most of the time. There are only two devia-

tions, a short peak in 1929 just before the Black Thursday and persistence around the unit root

during the 1960s. Moreover, we observe that persistence declines during recession periods in

almost all recessions since the 1930s. However, from the 1990s onwards, the PD ratio is clearly

non-stationary. There is even some indication for the series to be mildly explosive. Therefore,

this period can be seen as the most remarkable in terms of persistence. Recently, Phillips et al.

(2013b) propose a testing procedure for multiple bubbles and provide evidence for a bubble

emerging in November 1996 and lasting until May 2002. Further evidence is provided in Phillips

et al. (2013a).

This work addresses the empirical question if movements in persistence of the PD ratio can

be directly related to cyclical macroeconomic activity. A possible channel is the so-called Fed

model which is based on the empirical regularity that US government bond yields are surprisingly
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highly correlated with the S&P500 earnings and dividend yields. This finding has been seen as

incompatible with rational valuation of the stock market. In a recent contribution, Bekaert and

Engstrom (2010) find that “[...] expected inflation is indeed the primary bond yield component

responsible for the high stock–bond yield correlation.” Besides, the authors provide an expla-

nation (alternative to money illusion) that is based on their finding that high levels of expected

inflation are connected with pronounced economic uncertainty. Recessions take a special role

as stagflation periods are responsible for these high correlations. The Fed model immediately

suggests a link between the PD ratio (which is highly correlated with its persistence) and factors

driving long-term interest rates in the US. According to the Gordon model and to the results

in Bekaert and Engstrom (2010), this would be expected inflation and inflation risk premia. In

addition, based on Fama’s (1981) proxy hypothesis, stock returns and inflation are negatively

linked. In a related study Ludvigson and Ng (2009) find that the risk premium of bonds can be

predicted by macroeconomic fundamentals. By taking all these results together, macroeconomic

fundamentals have the potential to affect persistence in multiple ways.

We apply a flexible econometric framework to study the role of some of the most important

US macroeconomic variables for movements in the persistence of the S&P500 PD ratio. In par-

ticular, we first estimate the time-varying persistence in a rolling window scheme. Estimation

of persistence is a complicated task as a heavy bias is present when the sample size is small

and the true and unknown persistence is simultaneously in the vicinity of the unit root. Both

features are predominant in our analysis and we tackle the bias problem by applying a suitable

indirect inference estimator, recently proposed by Phillips et al. (2011). As a second step, we

relate the estimated persistence over time to a large number of potential macroeconomic de-

terminants measuring the condition of the monetary system (by using e.g. inflation series and

term spreads), condition of the banking sector (as measured by return on average equity and net

interest margin for all US banks) and general business cycle variables (i.e. industrial production

and consumption amongst others). Moreover, we exploit the Survey of Professional Forecasters

(SPF) which serves as a rich data set on forecasts (one to four quarters ahead) for many macroe-

conomic and financial variables. Thus, in addition to the current state of the economy we also

investigate the role of its expected future development which is probably even more important.

We deal with the high dimensional data set by model averaging techniques. The main advantage

is that the final results are not driven by a single model which can be easily biased. Instead,

the final outcome is a weighted average of all estimated models including all possible subset

combinations of variables. By using this approach, we can handle a large set of economic variables

and still retain the standard interpretation of estimated coefficients, which is an advantage in

comparison to e.g. factor models. The fact that dynamic persistence is not observed, but a

generated regressand is taken into account by a correction of standard errors and the coefficient of

determination based on Dumont et al. (2005). In total, we have 138 variables at our disposal and

we provide a comprehensive study of whether estimated persistence varies with macroeconomic

fundamentals.
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We find a pronounced pro-cyclical variation in the persistence. Moreover, the movements can be

linked to US macroeconomic fundamentals. In particular, a low expected inflation, high asset

returns of all banks, positive expected consumption growth and increasing consumer sentiment

are related to high levels of persistence. For some of these variables, the effect changes during

recession periods. Around 66% of the variation in persistence (estimated over rolling windows

covering 20 years of data) can be explained. Our results are robust to several variations in the

data set and to changes in specifications. The findings are new to the literature and are discussed

in the light of the Fed model. We argue that our main finding, namely the positive link between

expected inflation and the persistence of the PD ratio, is consistent with the Fed model. Most

of our findings are also consistent with a heterogenous agent asset pricing model that features

chartist and fundamentalist traders. In a paper related to ours, Lof (2012) finds strong evidence

in favor of the hypothesis that financial agents base their expectation about future stock market

outcomes on macroeconomic information. He studies a nonlinear dynamic time series model and

finds that persistence increases during favorable economic conditions and vice versa.

The rest of this article is organized as follows: We review further related literature in Section

6.2. In Section 6.3 the econometric procedure is presented in detail. Section 6.4 describes the

data set while the empirical results including discussion are presented in Section 6.5. Robustness

checks are given in Section 6.6. Section 6.7 concludes.

6.2 Further related literature

Our paper is also related to another strand of literature featuring the macro-finance link. In

particular, many of the related papers consider the link between financial volatility and economic

variables. Paye (2012) and Christiansen et al. (2012) investigate the importance of economic

variables for the prediction of realized financial volatility measures. Their main result is that

evidence for the predictive power of macroeconomic determinants is given. We follow their

approach to a certain extent and also consider a dimension reduction of the initial set of deter-

minants. Secondly, we also make use of model averaging techniques in our study. Conrad and

Loch (2012) use a GARCH-MIDAS model to investigate the relationship between the business

cycle and stock market volatility. They find a strong counter-cyclical behavior using FRED data

and SPF survey data.

Other articles are investigating the connection between (time-varying) persistence and economic

variables: Imbs et al. (2003) follow up on Obstfeld and Taylor (1997) and analyze the impact

of economic variables on estimated persistence of relative prices. Spierdijk et al. (2012) provide

evidence for time-varying persistence in stock markets by using rolling window methods. Their

results suggest that the speed at which stocks revert to their fundamental value is higher in pe-

riods of high economic uncertainty. Conrad and Eife (2012) consider rolling window estimation

of persistence for inflation-gap series. They relate its time-varying persistence to estimated reac-

tion coefficients on inflation and the output gap in the context of a forward-looking Taylor rule.
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Stengos and Yazgan (2013) consider long memory models and find trade variables and sticky

prices to be mainly responsible for the slow adjustment of real exchange rates to Purchasing

Power Parity. Rengel et al. (2013) use a nonlinear state space model to allow for a time-varying

steady state in the PD ratio. They conclude that the current state of the PD ratio can be linked

to macroeconomic factors.

The OLS estimator is known to be heavily downward-biased for autoregressive processes in

small samples. This is especially the case when using rolling window techniques. The bias

increases when the roots of the process are close to unity. The problem persists for mildly

explosive processes. We apply the indirect inference estimator as proposed by Phillips et al.

(2011) to correct the bias. In a companion paper, Kaufmann and Kruse (2013) compare a

variety of different approaches for bias-correction in a large-scale Monte Carlo study. They

compare an analytic correction method (see Roy and Fuller, 2001), a bootstrap-based estimator

(see Kim, 2003) and jackknifing (see Chambers, 2013) to the indirect inference estimator. Their

results demonstrate the usefulness of the indirect inference estimator over the other approaches,

in particular in empirical applications. The estimator is also robust against various kinds of

misspecifications. Furthermore, it shows excellent performance in terms of mean squared error

(MSE) for highly persistent and possibly mildly explosive processes.

6.3 Econometric approach

The central goal of this work is to select variables explaining the time variation in the persistence

of the PD ratio. Because of the large number of possible potential determinants, we set up a

three step procedure. The matrix of determinants is denoted by Z, which is a T ×K matrix

with possibly K > T , where K denotes the number of variables and T is the length of the series.

Typically, T depends on the particular variable, i.e. T differs across variables leading to an

unbalanced data set. With the PD ratio and this type of explanatory data the procedure can

be summed up as follows:

Step 1: Estimate the dynamic persistence ρt of the PD ratio via indirect inference using a rolling

window scheme.

Step 2: Run OLS on the regression model

ρ̂t = γiZi
t + εi

t

for i = 1,2, ...,K and select

Z =
{
Zi

∣∣∣|tγi=0| > cvα
}

with k = dim(Z) ≤ dim(Z) = K, tγi=0 being the t-statistic of the hypothesis H0 : γi = 0 and

cvα denoting the critical value for a chosen significance level α.
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Step 3: Run M = 2k−1 OLS regressions of all possible combinations of subsets of Z on ρ̂t. Then

do model averaging across all estimated models.

In the following, we describe the steps of the procedure in more detail.

Step 1: Persistence estimation

For our rolling window estimation scheme, an autoregressive (AR) model of order p is specified:

yt = µ+ρyt−1 +

p−1∑
i=1

τi∆yt−i + vt, (6.1)

where yt denotes the price-dividend ratio and ρ equals the sum of autoregressive coefficients.

Lag selection is done via AIC based on the full sample as suggested in Kaufmann and Kruse

(2013). The window size w is set to 80 (corresponding to 20 years of quarterly recorded data)

in the benchmark case.

The OLS estimation of ρ in the AR model (6.1) is heavily biased in small samples and if

ρ ∈

(
1−

c
T
,1 +

d
T δ

)
,

with c,d > 0, δ ∈ (0,1) (i.e. in the vicinity of unity), see Phillips and Magdalinos (2007). In order

to cope with the OLS bias, we apply the indirect inference estimator. In particular, the indirect

inference estimator (see Phillips et al., 2011) is given by

ρ̂II
H = argmin

ρ∈Θ

∥∥∥∥∥∥∥ ρ̂−
1
H

H∑
h=1

ρ̂h(ρ)

∥∥∥∥∥∥∥ ,
where Θ is a compact parameter space and ‖ ·‖ is a quadratic distance metric. The h-th simulated

OLS estimate depending on the true and unknown parameter value ρ is denoted as ρ̂h(ρ). H

denotes the total number of simulated paths and for H→∞ one obtains

ρ̂II = argmin
ρ∈Θ

∥∥∥ ρ̂−q(ρ)
∥∥∥ ,

where q(ρ) = E
(̂
ρh(ρ)

)
is the so-called binding function. In our empirical analysis, the number of

simulated paths equals 1,000. Given invertibility of q, the indirect inference estimator results as

ρ̂II = q−1(̂ρ) .

For convenience, we use the short-hand notation ρ̂t instead of ρ̂II
t in the following.

Step 2: Dimension reduction of Z

We regress every single element of Zt on the dynamic persistence. The estimation of the regression

model ρt = γiZi
t + ui

t is infeasible because ρt is unobserved. From step 1, we obtain ρ̂t = ρt + εt,

where εt is the estimation error. Let σ2
ρ denote its variance. Therefore, a feasible regression is
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(see Dumont et al., 2005)

ρ̂t = γiZi
t + (ui

t +εt).

Neglecting the fact that the regressand is estimated leads to an upward-bias in absolute t-

statistics and the R2. Under the assumption that ui
t and εt are independent of each other, a

correction factor for the t-statistics and for the coefficient of determination R2 can be constructed

along the lines of Dumont et al. (2005):

λi =
σ2
ρ +σ2

ui

σ2
ui

≥ 1.

As ρ is estimated in a rolling window fashion, a sequence of estimated variances for ρ̂ is obtained.

We use the median of the sequence to measure the overall estimation uncertainty. Another issue

is the widely acknowledged problem of heteroscedasticity and autocorrelation in the residuals.

We additionally employ HAC standard errors following the suggestions made in Andrews (1991).

The intercept is omitted as data are standardized.

Dimension-reduction is achieved by considering the absolute value of the robust t-statistic for

testing H0 : γi = 0. We construct the reduced set of determinants as follows: Z = {Zi
∣∣∣|tγi=0| > cvα}

meaning that only variables with a t-statistic being significant at the nominal α = 30% level are

further considered. Typically, we obtain k = dim(Z) < dim(Z) = K and k < T . As some variables

in Z are likely to be highly correlated with each other, we also exclude further variables from

Z. A variable is dropped from the final set if:

1. the correlation between the variable and any variable with a larger absolute t-value exceeds

0.7,

2. if another forecast horizon from the same variable exhibits a larger absolute t-value,

3. it has less than 100 non-NA observations.

The first restriction deals with the potentially upcoming multi-collinearity problem in the subse-

quent multiple regression models. The second restriction ensures that we only consider the most

important variable amongst different horizons for data, while the third requirement ensures a

balanced sample in the end for ease of comparison.1

Step 3: Estimation of all possible models and model averaging

We achieve final results by model averaging. In contrast to model selection, where a single model

is selected and interpreted, all models contribute to the final parameter estimates. For the con-

struction of a model averaging estimator all possible models are estimated and a smoothed

weight is assigned to each model. The weight depends on the relative performance of the model

in terms of an information criterion. The appeal of this method stems from the fact that it

1As these values are carefully chosen but quite liberal, we experiment with more conservative settings as a
robustness check. It has hardly any impact on the estimated coefficients and conclusions.
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provides some kind of insurance against the selection of a poor model without losing the stan-

dard and straightforward interpretation of estimated regression coefficients. The smoothed AIC

model averaging approach has been suggested by Buckland et al. (1997) and is further developed

in contributions by Burnham and Anderson (2002) and Hjort and Claeskens (2003).

Following the model averaging approach, all possible sub-models of the reduced data set Z are

estimated via OLS. This leads to M = 2k′ −1 models, where k′ denotes the number of variables

in Z. The model containing only an intercept is dropped due to standardization. For each esti-

mated model, we compute information criteria (AIC and BIC) and the corresponding smoothed

weight. The weight for a model m ∈ {1,2, ...,M} is given by, see e.g. Hansen (2007):

ωm =
exp(− 1

2 ICm)∑M
m=1 exp(− 1

2 ICm)
∈ (0,1),

where ICm denotes the value of an information criterion for model m and
∑M

m=1ω
m = 1. The

model averaging (MA) estimator for the k′-dimensional parameter vector is given by:

γ̂MA =

M∑
m=1

ωmγ̂m
0 ,

with γ̂m
0 being γ̂m augmented with zeros in the case of m < M (due to zero-restrictions on a

number of coefficients). For comparison, we also consider the best performing models in terms

of AIC and BIC.

6.4 Data

We obtain publicly available data from Robert Shiller’s website at Yale University (iedata.xls,

see http://www.econ.yale.edu/∼shiller/data.htm), the Federal Reserve of St. Louis database

(FRED, see http://research.stlouisfed.org/fred2/) and the Survey of Professional Forecasters

(SPF, see http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional

-forecasters/). Regarding the SPF data, we use the mean of all individual forecasts. The

data spreads broadly over the following categories: stock market data, banking sector, mone-

tary system, economic activity and sentiments. In total we have 138 explanatory variables at

our disposal. We use quarterly data from 1984:Q1 to 2012:Q4 (T = 116 observations) for our

explanatory variables (FRED and SPF) and 195 observations for the PD ratio to account for the

rolling window estimation. In principle, we could have started our analysis from 1968:Q4, but

some important variables are only available from 1984:Q1 onwards. Monthly data is aggregated

to quarterly frequency by averaging. All series are differenced if needed to ensure stationarity.

Besides, a recession dummy according to the NBER dating is included. A detailed description

of all series is provided in the Appendix 6.A.1 to this paper.

http://www.econ.yale.edu/~shiller/data.htm
http://research.stlouisfed.org/fred2/
http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-forecasters/
http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-forecasters/
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Figure 6.2: PD ratio (left) and estimated persistence (right). Time span from 1984:Q1 to 2012:Q4
(T = 116).

6.5 Empirical results

6.5.1 Dynamic persistence

We obtain the dynamic persistence of the PD ratio in a rolling window scheme with w = 80

observations. The autoregressive lag structure equals p̂ = 2 according to AIC.2 The PD ratio

and the time series of estimated persistence are presented in Figure 6.2. In the very beginning

of the sample relatively strong persistence is observed (around 0.97) with a considerable degree

of fluctuations. During the mid to late Nineties, persistence increases remarkably. Towards

the end of the 1990s, two spikes at 1.06 are suggesting mild explosiveness. Such behavior indi-

cates that prices and dividends are presumably no longer cointegrated rendering the PD ratio

non-stationary. The period of significant explosiveness (based on a 95% confidence interval, see

Phillips et al. (2011) and Phillips (2012) for details on the exact construction) lasts 13 quar-

ters and ranges from 1997:Q3 to 2000:Q3. During this period, point estimates of the indirect

inference estimator are significantly different from unity. This finding is in line with previous

results on the emergence and the burst of the dot-com bubble. Confirmative results are ob-

tained by running the Phillips et al. (2011) test on the individual price and dividend series.

The persistence of the PD ratio lowered considerably after the burst of the dot-com bubble in

2The maximal lag length is given by pmax = [12(T/100)0.25] = 14 with T = 195.
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Min Median Mean Max n

PD ratio 16.6492 33.2925 38.9521 89.6442 195

Estimated persistence 0.9450 1.0105 1.0045 1.0600 116

. . . during recessions 0.9690 1.0110 1.0069 1.0260 11

. . . during non-recessions 0.9450 1.0100 1.0042 1.0600 105

Table 6.1: Summary statistics for the PD ratio and estimated persistence.

2000. During the recent global financial crisis the persistence appears to be close to unity and

the last three years (2010-2012) indicate that it tends against the level as in early Nineties again.

The summary statistics in Table 6.1 indicate high persistence on average. Moreover, when

splitting the sample into recession and non-recession periods, it becomes clear that persistence

is near unity during recessions. In contrast, explosive and stationary regimes are present during

non-recession periods. Figure 6.2 suggests that both the PD ratio and its persistence drop during

ongoing recessions as expected. There are three recessions (according to the NBER classification)

in this sample and the total duration equals eleven quarters. We investigate the asymmetric

behavior of persistence below in more detail. When estimating the persistence over the entire

sample period, i.e. by using a single window with size of T = 195 observations, the resulting

estimate is ρ̂II = 1.01. This result indicates high persistence in general and is in line with the

mean and median statistics for the window size of 80 observations.

6.5.2 Preliminary analysis

In a next step, we consider simple regression models, see Section 6.3 Step 2. In these regressions,

only a single element of Z is analyzed. The regression model without recession dummy Dt is

given by:

ρ̂t = γiZi
t + εt.

De-standardized OLS point estimates and corrected t-statistics of all variables which are sig-

nificant at the nominal level of α = 0.3 are given in Table 6.2. Further results are located in

the Appendix 6.A.2. The reported coefficient estimates can be interpreted via the relation-

ship γ̂i = ∂ ρ̂t/∂Zi
t . All variables Zi

t except of one-year ahead consumer sentiment (UMCSENT)

are measured in percentages which eases interpretation. For example, a one-unit increase in

one-quarter ahead expected inflation (e.g. dpgdp3) comes along with a decrease of persistence

by 0.018. The corresponding t-value is -5.467 and the estimated correction factor equals 1.035

suggesting a highly significant variable and a mild increase in the variance due to first-stage

estimation of persistence.

The variables are sorted by the absolute value of the t-statistic in descending order. Amongst

the 51 significant variables are mostly series measuring (i) inflation (dpgdp2-6, CPI2-6, MICH,



6.5. Empirical results 48

Variable γi t-stat λi Variable γi t-stat λi

dpgdp3 -0.018 -5.467 1.035 drresinv4 -0.002 -1.669 1.012

dpgdp6 -0.018 -5.358 1.029 SPR-Tbond-Tbill6 -0.013 -1.659 1.003

dpgdp5 -0.018 -5.287 1.030 BOND4 -0.006 -1.659 1.005

dpgdp4 -0.018 -5.217 1.030 drnresin5 0.003 1.647 1.011

CPI6 -0.018 -5.033 1.027 dhousing3 -0.001 -1.640 1.012

CPI5 -0.018 -4.712 1.026 SPR-Tbond-Tbill2 -0.010 -1.619 1.003

CPI4 -0.017 -4.589 1.026 drresinv5 -0.002 -1.617 1.014

dpgdp2 -0.017 -4.535 1.025 SPR-Tbond-Tbill5 -0.012 -1.593 1.003

CPI3 -0.016 -4.316 1.026 CUSR0000SA0L2 -0.006 -1.581 1.009

PSAVERT -0.009 -3.774 1.016 SPR-Tbond-Tbill4 -0.011 -1.559 1.003

dhousing2 -0.001 -3.375 1.050 GS10 -0.005 -1.556 1.005

CPILFESL -0.015 -2.865 1.009 SPR-Tbond-Tbill3 -0.011 -1.547 1.003

PCEPI -0.015 -2.633 1.009 BOND3 -0.006 -1.534 1.004

USROA 0.041 2.561 1.008 STLFSI -0.003 -1.473 1.039

MICH -0.020 -2.368 1.016 dhousing4 -0.001 -1.445 1.011

drconsum6 0.018 2.351 1.028 RCBI6 0.001 1.439 1.005

CPI2 -0.008 -2.148 1.013 BOND2 -0.006 -1.394 1.004

drnresin6 0.004 2.106 1.022 drfedgov2 -0.001 -1.388 1.054

drconsum4 0.012 2.090 1.023 drconsum2 0.004 1.337 1.022

drresinv3 -0.001 -2.084 1.028 drconsum3 0.007 1.317 1.018

USROE 0.003 2.019 1.011 RCBI5 0.001 1.263 1.004

BAA -0.007 -1.927 1.006 SP500-ABS-RET 0.001 1.232 1.013

BOND6 -0.007 -1.806 1.005 drnresin4 0.002 1.109 1.008

BOND5 -0.007 -1.781 1.005 drnresin3 0.002 1.099 1.009

USACPIALLQINMEI -0.009 -1.761 1.008 UMCSENT 0.001 1.098 1.004

GDPDEF -0.018 -1.721 1.004

Table 6.2: Regression of dynamic persistence on a single variable.

USACPIALLQINMEI, CPILFESL, PCEP, CUSR0000SA0L2, GDPDEF), (ii) conditions of the

banking sector (USROA, USROE, STLFSI, SP500-ABS-RET), (iii) interest rates (BAA, BOND2-

6, SPR-Tbond-Tbill2-6, GS10), investments (drnresin6, drresinv3), (iv) consumer related vari-

ables (PSAVERT, drconsum6, dhousing3, UMCSENT) and (v) others (RCBI6, drfedgov2).

Somewhat surprising, prominent variables like industrial production, real GDP growth, term

spreads and credit risk variables are apparently not significant. However, related variables are

contained in the list. For example, the correlation between industrial production and significant

investment variables is up to 0.74 and real GDP growth has a correlation of over 0.70 with

consumer sentiment, real consumption growth and investment.

The left panel of Table 6.3 reports all selected variables after imposing restrictions on correlation,

balancedness and sample size as described in Section 6.3. The estimation uncertainty factor λ

is moderate (i.e. less than 1.05) for most series. The dimension-reduced data set now covers

eight variables. These are inflation expectations (one quarter ahead), housing starts, return

on average assets for all US banks, expected real personal consumption expenditures (one year

ahead), expected changes in private inventories (one year ahead), expected real federal govern-

ment consumption and gross investment, absolute returns of the S&P500 index and University

of Michigan: Consumer Sentiment (one year ahead). A visualization of these variables (and
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Rec. dummy excluded Rec. dummy included

Variable γi t-stat λ ηi t-stat γi t-stat δi t-stat γi +δi F-pval

dpgdp3 -0.018 -5.467 1.035 -0.015 -0.699 -0.019 -4.482 0.005 0.850 -0.013 0.000

dhousing2 -0.001 -3.375 1.050 0.001 0.040 -0.001 -3.077 0.001 1.266 0.000 0.044

USROA 0.041 2.561 1.008 0.043 2.284 0.050 3.368 -0.035 -2.136 0.014 0.003

drconsum6 0.018 2.351 1.028 0.008 0.212 0.018 2.170 -0.001 -0.093 0.017 0.329

RCBI6 0.001 1.439 1.005 0.033 1.665 0.001 1.923 -0.001 -0.944 0.001 0.036

drfedgov2 -0.001 -1.388 1.054 0.004 0.550 -0.001 -1.384 0.000 -0.239 -0.001 0.089

SP500-ABS-RET 0.001 1.232 1.013 0.005 0.276 0.001 1.076 0.000 -0.310 0.000 0.269

UMCSENT 0.001 1.098 1.004 0.070 1.244 0.001 1.924 -0.001 -0.952 0.001 0.986

Table 6.3: Selected variables from single regressions.

some others, appearing in robustness checks later on) is given in Figure 6.3.

We briefly describe the patterns: (i) There is some discrepancy amongst expected inflation mea-

sures over different horizons in the second half of the sample. Expected consumer price inflation

is considerably higher than GDP deflator growth. (ii) Expected real growth of private business

inventories shows a clear cyclical pattern with a dramatic drop to negative values in the last

and most severe recession. (iii) There is only little difference between the actual and expected

growth rate of housing starts, but during recessions, the expectations are too optimistic. The

dynamic pattern of the series shows an important jump right after the end of the last recession.

The growth rate switched its sign and rose by about eighty percentage points. (iv) Changes

in federal government expenditures are volatile in the beginning, but much smoother after the

beginning of the 1990s where the series fluctuates around zero percent. In response to the wors-

ened economic situation in the US, the growth rates reached positive values and stayed above the

zero line most of the time until 2010. (v) The average returns on assets and equities for all US

banks show an interest-related pro-cyclical pattern. The first out of two distinct periods is the

stock market crash of 1987, where the series took negative values. Returns rose smoothly during

the 1990s and did not respond to recessions. During the recent global financial crisis, however,

returns dropped in a dramatic way over several quarters reaching its lowest value during this

period towards the end of the last recession. Afterwards, a quick recovery of the returns can be

observed. (vi) Absolute returns of the S&P500 stock market index are quite volatile and reflect

the stock market crash in the late Eighties, the emergence and burst of the dot-com bubble

and the ups and downs of the stock prices during the global financial crisis. (vii) Real expected

consumption growth and consumer sentiment share a related cyclical path in particular during

the last ten years. Before 2003, the relationship between these two series is less pronounced.

The estimated coefficients reported in Table 6.3 hint to the following connection between persis-

tence of the S&P500 PD ratio and the (expected) state of the US economy: Favorable economic

conditions (i.e. low inflation, high returns for banks and large consumption growth) are associ-

ated with high persistence and vice versa. The positive signs of the coefficients for the expected

changes in private business inventories and the University of Michigan Consumer Sentiment In-

dex further support this notion. The positive coefficient estimate for absolute returns can be
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Figure 6.3: Selected explanatory variables.
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interpreted as follows: As traders are not restricted to hold long positions in their portfolios

only, the one-period absolute returns reflect the role of short-term investment on the S&P500

which positively impacts persistence. This result is in line with the return on average assets for

all US banks, which captures different types of investments and horizons.

Expected increases in government expenditures appear to have a stabilizing effect on the per-

sistence of the price-dividend ratio. A possible explanation is that expected increases in growth

rates of government spending can be seen as a sign of upcoming unfavorable economic circum-

stances which requires governmental actions. In fact, when considering the path of governmental

consumption, one observes that growth rates increase particularly during recessions and shortly

afterwards. Moreover, a clear time trend in growth rates can be seen for the period after the

burst of the dot-com bubble until 2003 when the economy was stabilized again. Housing starts

played an important role in the recent financial crisis: according to a recent study by Phillips

and Yu (2011), “A bubble emerged in the real estate market in February 2002. After the sub-

prime crisis erupted in 2007, the phenomenon migrated selectively into the commodity market

and the bond market, creating bubbles which subsequently burst at the end of 2008, just as the

effects on the real economy and economic growth became manifest.” During the housing bubble,

housing starts and housing prices were rising by a large extent. This high degree of co-movement

outlived the end of the recession, where both series were rapidly rising again after their dramatic

fall in the previous quarters. Therefore, the negative sign of the estimated coefficient for the

growth rate of housing starts is in line with the previous conclusions.

In order to investigate the influence of recessions, we also run augmented regressions including

the recession dummy Dt and an interaction term, see also Guidolin et al. (2013) for a similar

regression,

ρ̂t = ηiDt +γiZi
t +δiDtZi

t + εt. (6.2)

Results for these regressions are given in the right panel of Table 6.3. In addition to point esti-

mates and t-values of the coefficients, we also report the sum γi +δi which measures the impact

of Zi
t on persistence in recession periods. Finally, we test the null hypothesis H0 : γi + δi = 0 by

using a corrected F-statistic (p-values are given in the last column of Table 6.3). A non-rejection

of H0 would indicate that the variable Zi
t has no impact on persistence during recession periods.

The signs of γ̂i do not change in comparison to the previous regression results. The intercept

shift dummy variable is significant in three cases, for the return on average assets for all US

banks, private inventories and consumer sentiment. The slope change is only important for

housing starts and the banking variable. The most striking results are obtained for the average

return of all US banks. In this case, all regressors are significantly impacting persistence. During

recession periods, the impact of the return on average assets drops remarkably as the sum of

γ̂i and δ̂i indicates, but the p-value of the F-statistic suggest that the impact is non-zero even

during recession periods. The F-statistic further indicates that most variables are important
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Recession dummy excluded Recession dummy included

Model Averaging Model selection Model Averaging Model selection

Variable γAIC γBIC γAIC γBIC γAIC γBIC γAIC γBIC

dpgdp3 -0.0097 -0.0097 -0.0190 -0.0200 -0.0092 -0.0091 -0.0169 -0.0169

dhousing2 -0.0002 -0.0002 -0.0004 -0.0004 -0.0002 -0.0002

USROA 0.0144 0.0144 0.0122 0.0165 0.0164 0.0181 0.0181

drconsum6 0.0014 0.0014 -0.0060 0.0014 0.0014

RCBI6 0.0001 0.0001 0.0002 0.0002

drfedgov2 -0.0003 -0.0003 -0.0003 -0.0003

SP500-ABS-RET 0.0003 0.0003 0.0002 0.0002

UMCSENT 0.0004 0.0004 0.0008 0.0010 0.0005 0.0005 0.0012 0.0012

dhousing2-rec 0.0000 0.0000

USROA-rec -0.0159 -0.0157 -0.0312 -0.0312

dummy-rec 0.0283 0.0282 0.0458 0.0458

λ 1.0427 1.0426 1.0572 1.0891 1.0421 1.0420 1.0340 1.0340

R2 0.6612 0.6600 0.7291 0.7116 0.7021 0.7009 0.7472 0.7472

AIC -1.2286 -1.2005 -1.2978 -1.2978

BIC -1.1099 -1.1293 -1.1791 -1.1791

100 ·ωAIC 0.5065 0.4994 0.5069 0.5069

100 ·ωBIC 0.5014 0.5063 0.5141 0.5141

Table 6.4: Model averaging and model selection results.

during both, recession and non-recession periods. We find for the majority of series that γ̂i

and δ̂i are of different sign and that the intercept shift dummy is positive which confirms our

descriptive statistics in Table 6.1.

While most of the selected variables come along with an increase in persistence during favorable

economic conditions and vice versa, some kind of asymmetric behavior is found when considering

recession periods separately. The next step is to extend the regression setup and analyze all

possible subsets of combinations of the variables collected in Table 6.3 via model averaging.

6.5.3 Main results

The model averaging approach is conducted in two versions: one is based on the smoothed AIC,

while the other one uses the BIC. Moreover, we consider the two different cases where a recession

dummy and its interaction terms are either excluded or included. Interaction terms are only

included for those variables whose t-statistic for H0 : δi = 0 is significant, see Table 6.3. In addi-

tion to the model averaging results, we report the outcome for the best performing individual

model in terms of AIC and BIC. This allows a direct comparison between the model averaging

and the model selection approach. Results are reported in Table 6.4. In addition to the OLS

point estimates γ, we report the average correction factor λ, the coefficient of determination R2,

the AIC and BIC themselves as well as scaled model weights ωm. The left panel presents results

where the recession dummy and its interactions with regressors are excluded, while the right

panel contains extended regression results.
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Figure 6.4: Model averaging weights.

The model averaging results are mainly in line with the previous analysis. We observe that the

outcomes are robust in the sense that they do not depend on the particular information criterion

in use. This finding continues to hold throughout the whole analysis. In order to judge the im-

portance of different variables, we consider the standardized regression coefficients. They suggest

the following ranking: expected inflation (-0.348), average returns over assets (0.212), consumer

sentiment (0.174), housing starts (-0.142), absolute returns (0.097), real business inventories

(0.062), federal expenditures (-0.046) and lastly, expected consumption (0.024). Thus, the three

important determinants are expected inflation, average returns of all US banks and consumer

sentiment. The first one has a negative impact on persistence, while the latter two have a posi-

tive one. The averaged point estimate for absolute returns is in line with the sign for the average

returns for all US banks. A positive economic outlook with a horizon between a quarter and a

year (e.g. consumption growth, consumer sentiment and private business inventories) has also

a positive effect on the persistence properties of the S&P500 PD ratio. Governmental activity

is found to have a down-calming effect on persistence and thereby supporting mean reversion

in stock markets. Housing starts have a negative effect on persistence which is in line with our

preliminary analysis.

The model weights ωm are shown in Figure 6.4. As k′ = 8, we estimate 255 models in total.

The graph shows weights of the individual models, sorted from the best to the worst performing

model. It is clearly seen that even the model weights for the best performing models are rather

small which is due to the fact that we consider all possible subset combinations of the variables.

Essentially, each variable enters the
(
2k′ −1

)
different models 2k′−1 times. Because the informa-

tion criteria of all models are very close to each other, the model selection via AIC or BIC is a

rather risky task. Therefore, model averaging is of great importance to achieve robust results.3

When looking at the results for the individually top performing models in terms of AIC and

3One could expect larger differences between the model weights when considering the full data set. We have
selected a number of eight promising variables in an automatic way before entering the step of model averaging
and thus it is obvious that all variables bear some relation to the estimated persistence. It is therefore less
surprising that the model weights are small and close to each other. This is supported by the R2, which is greater
than 0.5 for more than half of the models.
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Figure 6.5: Model averaging fit (AIC and BIC,
recession dummies included).
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Figure 6.6: Fit of the best model chosen by AIC
(recession dummies included).

BIC, we find that expected inflation, housing starts and consumer sentiment are included. The

best AIC model also includes the average returns of all US banks and consumption growth. All

signs of estimated coefficients are the same except of consumption in the best AIC model. The

main conclusions remain unchanged when considering these models, but the model averaging

approach provides more insights in the relation between persistence and economic variables.

We now turn to the right panel of Table 6.4 and consider the results when the regression models

are augmented with a recession dummy and its interactions with some regressors. The results

for the model averaging approach are fairly robust. Signs do not change and averaged point

estimates remain nearly the same as before. Newly included are the recession dummy with an

expected positive coefficient estimate and the interaction term of the average return of all US

banks and housing starts. The effect of the banking variable on persistence during recessions is

close to zero, but still positive. An opposite picture is drawn for housing starts: the effect of

recessions is nearly invisible and the effect is still negative. The recession dummy and its inter-

action with the return on average assets of all US banks are also included in the top performing

models according to AIC and BIC model selection. For these we find that the effect of the bank

returns is negative during recessions, which is partly accommodated by a large point estimate

for the recession dummy. Similar to the case without the recession dummy, we find inflation and

consumer sentiment to be important in all models.

Figures 6.5 and 6.6 present the fit of the model averaging approach and for the best AIC model,

respectively, with included recession dummies. Unsurprisingly, the fit of the best AIC model

is better than the one of the model averaging. The corresponding coefficients of determination

are 0.75 and 0.70, respectively. The general evolution is, however, quite similar. The best AIC

model is driven by three variables: inflation, average returns of all US banks and consumer

sentiment. While the impact of bank returns is almost the same as in the model averaging case,

it is doubled for the other two. The dynamic persistence is well captured with some pronounced

deviations in the end of the Eighties, around 2003 and after the recession in 2009. Both models

underestimate the persistence during the explosive period, which might indicate that bubbles
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are not explainable by macroeconomic determinants. Another interesting point is the deviation

in 1987. Both models expect a fall in persistence a quarter before the Black Monday, basically

the macroeconomic indicators are one quarter ahead around this point in time. This is another

example of the difficulty to model such an extreme event.

6.5.4 Discussion

We discuss our results in the light of the Fed model and an asset pricing model with heteroge-

nous beliefs. The Fed model describes a relation between nominal bond yields and real equity

yields. The observed strong correlation between the dividend or earnings yields and long-term

government bond yields (as measured by bonds with a maturity of ten years) is reported and

discussed in many studies, see e.g. Bekaert and Engstrom (2010). For our data set, we com-

pute correlations between (i) the dividend yield (i.e. the inverse of the PD ratio) and bond

yields which gives 0.754, (ii) the PD ratio and bond yields resulting in -0.564, (iii) the PD ratio

and its dynamic persistence (0.824) and finally, (iv) the dynamic persistence and bond yields

(-0.469). The results confirm previous findings on older data sets. The last correlation coefficient

is negative and close to the one for case (ii), which is in line with our results reported in Table

6.2: All estimated coefficients for (expected) bond yield variables are negative. In addition, the

estimated coefficients are pretty stable over the expectation horizon.

As suggested by the Gordon model, the components of the equity cash yield (EY) and the

nominal bond yield (BY) are as follows:

EY = −EDIV + RRF + ERP

and

BY = EINF + RRF + IRP

respectively. EDIV denotes expected growth of real equity dividends, RRF is the real risk free

interest rate, ERP is the equity risk premium and EINF stands for expected inflation and IRP is

the corresponding inflation risk premium. According to this decomposition, expected inflation

(EINF) should also have a negative impact on persistence as BY and EINF are positively related.

In fact, long-term government bond yields reflect long-term inflation expectations to a certain

degree. Our findings are fully consistent with this interpretation.

In contrast to BY, EY is driven by real components instead of nominal ones.4 The positive co-

movement between EINF and ERP, as found by Bekaert and Engstrom (2010), links bond yields

to equity yields. Furthermore, expected inflation correlates positively with risk aversion (based

4According to the financial literature it is not possible to rationally argue why expected inflation shall impact
real components determining the equity yield. So far, the main explanations are money illusion and behavioral
biases of investors, see Bekaert and Engstrom (2010).
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on consumption) and real economic uncertainty (based on GDP forecast dispersion) which both

can be seen as a rational time-varying risk premia. These two variables are key ingredients of

sophisticated asset pricing models, see Bansal and Yaron (2004) and Campbell and Cochrane

(1999), where risk premia rise when the economy is growing slowly or even contracting. It is

reasonable to assume that consumption-based risk aversion is negatively related to consumer

sentiment, see Cooper and Priestley (2009). Our results for the consumer confidence over the

next year suggest a positive impact on persistence. Therefore, risk aversion is expected to neg-

atively impact persistence, similar to expected inflation. Regarding real economic uncertainty,

we use a cross-sectional forecast dispersion measure from the SPF data set.5 The correlation

between expected inflation and real economic uncertainty is found to be equal to 0.337, thereby

confirming a mild positive relationship. Importantly, persistence and uncertainty are negatively

correlated (-0.340). We conclude that our results are consistent with the Fed model and the

predictions made by Bekaert and Engstrom (2010).

We provide an alternative explanation for our results which builds on a heterogenous agent model

for financial markets, see Brock and Hommes (1997, 1998). The model features two distinct types

of traders with bounded rationality. Chartists and fundamentalists react differently to observed

mispricings in the market: while chartists believe in continued and even larger mispricings in

the next period, fundamentalists expect a correction towards the fundamental value. Therefore,

chartists would take a long position in an over-valued asset, whereas fundamentalists would take

a short position instead. The model leads to a dynamic equation for the price-dividend ratio,

yt = αCyt−1 ·Gt +αFyt−1 · (1−Gt) + ut,

where αC ≥ 1 and αF < 1 are autoregressive parameters depending on the demand function of

chartists and fundamentalists, respectively. The time-varying fraction of traders is denoted by

Gt ∈ [0,1]. The previous equation can be slightly re-written as yt = ρtyt−1 + ut, where ρt denotes

a time-varying autoregressive parameter in the model for the PD ratio. As long as ρt ≥ 1 holds,

chartists are dominating the market in period t. If ρt < 1, the market is dominated by the group

of traders believing in pricing error correction.

A first and important insight form this model is that the persistence of the PD ratio can be

time-varying due to a dynamic composition of traders in the market with heterogenous beliefs

about future developments. Second, this model is also able to explain asset price bubbles which

would be possible when chartists are dominant for a certain while and when their demand

function parameters are large enough to generate further mispricings in the market. Empirical

evidence for the model and its ability to explain the bubble-type characteristics during the 1990s

is provided in Boswijk et al. (2007). While the main strand of the literature followed the idea

that the fraction of traders Gt is entirely based on evolutionary dynamics (i.e. past realized

profits of the trading strategies), Lof (2012) investigates the possibility that traders update

5It is defined as the difference between the 75th percentile and the 25th percentile of the individual projections
for real GDP growth one year ahead, expressed in annualized percentage points.
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their beliefs according to macroeconomic factors like e.g. inflation, real GDP growth and the

term spread. His main findings are that the persistence of the PD ratio increases during times

of positive economic conditions (as measured by industrial production growth) due to chartists

dominance. On the contrary, persistence decreases in times of bad economic news and the degree

of mean reversion is strengthened due to traders who believe in the importance of fundamentals.

The results can be explained by traders being less risk averse during economic upswings and

following chartism, see Cooper and Priestley (2009) and Chiarella et al. (2009). An increased

speed of mean reversion during times of high uncertainty, possibly due to an enlarged fraction

of fundamentalists, is found also by Spierdijk et al. (2012). Our results are consistent with these

findings and conclusions.

6.6 Robustness checks

In order to investigate the robustness of the main results, we consider a variety of different set-

tings. The first robustness check deals with the stability of estimated coefficients over time. To

this end, a recursive analysis of the multiple regressions is undertaken. It can possibly happen

that the relationship between expected inflation, average returns over assets for banks and the

consumer sentiment is unstable. The second robustness check is concerned with the possibility

that lagged macroeconomic fundamentals have predictive power. Therefore, one-quarter ahead

predictive regressions are studied.

Due to specific settings in the data construction and the econometric modeling approach, some

variations are considered. A key issue regarding the SPF data set is the aggregation of individual

forecasts. In contrast to using the mean, we use median forecasts which are less influenced by

a stronger disagreement among the professional forecasters. This might be especially impor-

tant during recessions. Next, we tackle the measurement of recession periods by using recession

probabilities instead. The merit of using these stems from the fact that they provide further

information on the strength of recessions. Moreover, the rolling window size for estimating the

persistence is varied.

The observation from all considered variations is that the results are robust and that main

conclusions are not changing. The notion that increases in persistence over time can be linked

to favorable economic expectations regarding the monetary sector, the banking industry and

consumption is supported throughout the whole analysis. Moreover, the role of asymmetry

during recession periods persists.

6.6.1 Recursive regression

We start by estimating the best AIC model including the recession dummy and its interaction

with banking returns for the period 1984:Q1 to 1996:Q2 (T = 50). Next, we add the observations

for the subsequent period to our data set and re-estimate the model. We proceed in this way until

we obtain the full sample estimates reported already in Table 6.4. The evolution of estimated
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Figure 6.7: Recursive regression of the best AIC model.

coefficients over time is displayed in Figure 6.7. In general, the point estimates are stable. The

recession periods, however, clearly influence the results as suggested by our previous findings.

First, return on average assets has a strikingly distinct behavior when recession periods are

included in the sample. Second, inflation remains nearly unaffected. Third, consumer sentiment

has no different impact in recessions than in non-recession periods. These findings are consistent

with our single regressions with recession dummys provided in Table 6.3.

6.6.2 Predictive regression

We expect a certain degree of predictability of persistence by lagged determinants for the follow-

ing reasons: (i) the selected variables mainly stem from the SPF data set and reflect expectations

which are important in asset pricing models and (ii) the series of dynamic persistence and regres-

sors are autocorrelated. The results are reported in Table 6.5. We find only minor differences

when comparing these results to the benchmark case. The composition of variables for the model

averaging approach is almost the same. We comment on two minor differences: (i) for expected

inflation a shorter horizon (one quarter ahead) becomes most relevant and (ii) when accounting

for asymmetry, consumer sentiment is found to play an opposite role during recessions. The

individual models selected by AIC and BIC are richer in terms of included variables. The model

weights are also somewhat higher and the coefficient of determination suggests a good degree of

predictability.

6.6.3 SPF data set

The results for median SPF forecasts are given in Table 6.6. In comparison to the mean fore-

casts, two new variables from the SPF data set enter the final selection, namely the change
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Recession dummy excluded Recession dummy included

Model Averaging Model selection Model Averaging Model selection

Variable γAIC γBIC γAIC γBIC γAIC γBIC γAIC γBIC

dpgdp5 -0.0111 -0.0110 -0.0223 -0.0223 -0.0108 -0.0108 -0.0207 -0.0191

USROA 0.0156 0.0156 0.0166 0.0166 0.0174 0.0173 0.0193 0.0188

dhousing2 -0.0002 -0.0002 -0.0002 -0.0002 -0.0001 -0.0001

drconsum6 -0.0006 -0.0006 -0.0087 -0.0087 -0.0002 -0.0002 -0.0067 -0.0070

RCBI6 0.0001 0.0001 -0.0004 -0.0004 0.0001 0.0001 -0.0002

drfedgov2 -0.0003 -0.0003 -0.0003 -0.0003

UMCSENT 0.0005 0.0005 0.0011 0.0011 0.0007 0.0006 0.0013 0.0013

SP500-ABS-RET 0.0002 0.0002 0.0002 0.0002

USROA-rec -0.0049 -0.0050 0.0195 0.0119

dhousing2-rec 0.0001 0.0001

UMCSENT-rec -0.0008 -0.0008 -0.0018 -0.0017

dummy-rec 0.0766 0.0758 0.1370 0.1384

λ 1.0526 1.0524 1.0854 1.0854 1.0442 1.0440 1.0378 1.0426

R2 0.7105 0.7091 0.8088 0.8088 0.7492 0.7474 0.8257 0.8217

AIC -1.5594 -1.5594 -1.6175 -1.6120

BIC -1.4170 -1.4170 -1.4276 -1.4458

100 ·ωAIC 0.5680 0.5680 0.5637 0.5621

100 ·ωBIC 0.5560 0.5560 0.5556 0.5607

Table 6.5: Model averaging and model selection results, predictive regression.

Recession dummy excluded Recession dummy included

Model Averaging Model selection Model Averaging Model selection

Variable γAIC γBIC γAIC γBIC γAIC γBIC γAIC γBIC

dpgdp5 -0.0102 -0.0102 -0.0174 -0.0195 -0.0097 -0.0097 -0.0181 -0.0176

dhousing2 -0.0002 -0.0002 -0.0003 -0.0003 -0.0001 -0.0001

drnresin6 0.0001 0.0001 0.0002 0.0002

USROA 0.0132 0.0132 0.0128 0.0143 0.0142 0.0121 0.0137

drresinv6 -0.0004 -0.0004 -0.0004 -0.0004

drconsum4 -0.0005 -0.0005 -0.0046 0.0006 0.0006

RCBI6 0.0002 0.0002 0.0003 0.0003

drfedgov2 -0.0003 -0.0003 -0.0003 -0.0003 -0.0002

SP500-ABS-RET 0.0003 0.0003 0.0002 0.0002 0.0002

UMCSENT 0.0005 0.0005 0.0011 0.0012 0.0006 0.0006 0.0014 0.0013

dhousing2-rec 0.0000 0.0000

drnresin6-rec -0.0018 -0.0018

USROA-rec -0.0096 -0.0096 -0.0262 -0.0328

drfedgov2-rec -0.0008 -0.0008 -0.0051

dummy-rec 0.0320 0.0319 0.0516 0.0417

λ 1.0555 1.0553 1.0786 1.1158 1.0589 1.0586 1.1000 1.0538

R2 0.7197 0.7185 0.7870 0.7669 0.7531 0.7520 0.8061 0.7928

AIC -1.4516 -1.4133 -1.5285 -1.4964

BIC -1.3092 -1.3421 -1.3624 -1.3778

100 ·ωAIC 0.1325 0.1300 0.1341 0.1320

100 ·ωBIC 0.1312 0.1334 0.1360 0.1370

Table 6.6: Model averaging and model selection results, SPF data (median).
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Figure 6.8: Additional explanatory variables from robustness regressions.

in real (non)-residential fixed investment (RNRESIN and RRESINV). Both are one-year-ahead

forecasts and presented in Figure 6.8. Residential investment is much more volatile and has, in

contrast to non-residential investments, no clear downward trend before and in the beginning

of recessions. In addition to these variables, the recession interaction terms of nonresidential

investment and government spending are selected. The estimated coefficients of the formerly

selected variables are very close to the benchmark case, with consumption being the only ex-

ception. Non-residential investment growth impacts persistence positively during non-recession

periods which is in line with our previous results. During recessions, however, the effect vanishes.

Residential investments are positively correlated with housing starts and therefore, the negative

sign is not surprising. Interestingly, the coefficient of determination is larger even though the

estimation uncertainty arising from persistence estimation is larger as well. This observation

can be explained from the fact that median forecasts are less volatile.

6.6.4 Measuring recessions

Our main results demonstrate the importance of recessions. Obviously, the results hinge on

the classification of recession periods. To this end, we consider smoothed recession probabili-

ties (FRED code RECPROUSM156N). The results are reported in Table 6.7. The selection of

variables in comparison to the benchmark case is unchanged and their coefficients are nearly

the same. Moreover, the overall effect of recessions is somewhat smaller. This can be explained
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Model Averaging Model selection

Variable γAIC γBIC γAIC γBIC

dpgdp3 -0.0097 -0.0096 -0.0192 -0.0182

dhousing2 -0.0001 -0.0001 -0.0001

USROA 0.0163 0.0162 0.0158 0.0162

drconsum6 0.0012 0.0012 -0.0050

RCBI6 0.0002 0.0002

drfedgov2 -0.0003 -0.0003

SP500-ABS-RET 0.0002 0.0002

UMCSENT 0.0006 0.0006 0.0011 0.0012

dpgdp3-rec 0.0041 0.0041 0.0093 0.0091

USROA-rec -0.0050 -0.0050 -0.0061 -0.0103

dummy-rec 0.0151 0.0151 0.0056 0.0149

λ 1.0403 1.0402 1.0643 1.0508

R2 0.7002 0.6988 0.7708 0.7613

AIC -1.3440 -1.3377

BIC -1.1541 -1.1953

100 ·ωAIC 0.5096 0.5080

100 ·ωBIC 0.4991 0.5095

Table 6.7: Model averaging and model selection results, recession probabilities.

by the relatively low recession probabilities in the first two recessions in the sample (around

70% and 50%) in comparison to the last one (around 100%). This exercise also uncovers an

asymmetric effect of expected inflation during recessions: we find a considerable decline of the

effect when recession probabilities increase.

Due to a different weighting of a small fraction of data points, the AIC for instance selects a

model with three more variables than before (housing, real consumption growth and the recession

interaction term with inflation). This is a clear indication that model selection is less robust

than model averaging.

6.6.5 Rolling window sizes

In this robustness check the window size w is lowered to 15 years of data and increased to 25

years, corresponding to 60 and 100 observations. These choices are typical for many related

applications. To ensure a fair comparison, we use T = 175 and T = 205 observations of the PD

ratio to compute 116 persistence estimates matching with our explanatory data. The results are

presented in Tables 6.8 and 6.9. The estimated persistence is shown in Figure 6.9. As expected,

the smaller the window size the more volatile the persistence estimation. In particular, the Black

Monday in 1987:Q4 is clearly visible if w = 60. Remarkable differences can be observed after this

major event: only for w = 60 a mild degree of explosiveness is suggested. From the year of 2000

onwards, the persistence paths are strikingly similar. This is reflected by the estimation results

where many similarities are visible. New selected variables are (see Figure 6.8): (i) the personal

savings rate (PSAVERT), which is strongly co-moving with expected inflation, (ii) industrial

production growth (dindprod6) which shows a clear cyclical behavior and (iii) the net interest

margin (USNIM), which peaked in the Nineties and followed inflation on a linear downward
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Recession dummy excluded Recession dummy included

Model Averaging Model selection Model Averaging Model selection

Variable γAIC γBIC γAIC γBIC γAIC γBIC γAIC γBIC

USROE 0.0016 0.0015 0.0029 0.0031 0.0020 0.0020 0.0028 0.0034

drfedgov2 -0.0007 -0.0007 -0.0011 -0.0011 -0.0007 -0.0007 -0.0009

PSAVERT -0.0032 -0.0032 -0.0048 -0.0052 -0.0033 -0.0033 -0.0065 -0.0078

MICH -0.0044 -0.0044 -0.0081 -0.0084 -0.0084 -0.0090

dhousing3 -0.0001 -0.0001 0.0000 0.0000 0.0006 0.0007

drconsum6 0.0034 0.0034 0.0044 0.0044 0.0070

USNIM 0.0053 0.0053 0.0077 0.0077 0.0162 0.0189

dindprod6 0.0018 0.0018 0.0017 0.0017

UMCSENT 0.0002 0.0002 0.0005 0.0005 0.0009 0.0009

USROE-rec -0.0021 -0.0021 -0.0052 -0.0059

MICH-rec 0.0088 0.0088 0.0128

dummy-rec 0.0123 0.0123 0.0381 0.0846

λ 1.0691 1.0691 1.0897 1.0935 1.0748 1.0751 1.0730 1.0690

R2 0.4595 0.4589 0.4822 0.4619 0.5702 0.5688 0.6473 0.6085

AIC -0.5980 -0.5767 -0.8612 -0.8259

BIC -0.5030 -0.5055 -0.6001 -0.6597

100 ·ωAIC 0.2161 0.2138 0.2335 0.2294

100 ·ωBIC 0.2176 0.2178 0.2217 0.2284

Table 6.8: Model averaging and model selection results, w = 60.

Recession dummy excluded Recession dummy included

Model Averaging Model selection Model Averaging Model selection

Variable γAIC γBIC γAIC γBIC γAIC γBIC γAIC γBIC

dpgdp5 -0.0096 -0.0096 -0.0147 -0.0140 -0.0094 -0.0094 -0.0142 -0.0166

drconsum6 0.0008 0.0008 -0.0055 0.0007 0.0008

dhousing2 -0.0002 -0.0002 -0.0003 -0.0004 -0.0002 -0.0002 -0.0004 -0.0004

USNIM -0.0041 -0.0041 -0.0027 -0.0027

USROA 0.0135 0.0134 0.0187 0.0150 0.0144 0.0143 0.0152 0.0158

RCBI6 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0003

SP500-ABS-RET 0.0003 0.0003 0.0004 0.0005 0.0003 0.0003 0.0005 0.0005

drfedgov6 0.0005 0.0005 0.0012 0.0004 0.0004

USROA-rec -0.0071 -0.0071 -0.0197 0.0065

RCBI6-rec -0.0001 -0.0001 0.0006

drfedgov6-rec 0.0010 0.0010

dummy-rec 0.0105 0.0104 0.0050 -0.0124

λ 1.0318 1.0317 1.0457 1.0464 1.0327 1.0326 1.0389 1.0537

R2 0.7159 0.7149 0.7779 0.7678 0.7276 0.7265 0.7691 0.7573

AIC -1.3924 -1.3827 -1.3364 -1.3211

BIC -1.2262 -1.2641 -1.1465 -1.1786

100 ·ωAIC 0.5181 0.5157 0.4987 0.4949

100 ·ωBIC 0.5010 0.5106 0.4910 0.4990

Table 6.9: Model averaging and model selection results, w = 100.
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Figure 6.9: Estimated persistence for different window sizes.

trend afterwards. Main differences arise from the distinct behavior of persistence during the late

Eighties and mid-Nineties: The rapid rise in persistence can be related to industrial production

growth and interest rate margins for banks which both affect persistence positively.

6.7 Conclusion

This work investigates the connection between the persistence of the price-dividend ratio and

macroeconomic determinants. We capture the time-varying persistence with a rolling window

approach using the indirect inference estimator. This bias-corrected estimator is suitable for

stationary, unit root and even mildly explosive time series. The results show that the persistence

is in the local-to-unity region most of the time, but displays explosive behavior during the late

1990s. We study the role of more than a hundred macroeconomic and financial variables for the

dynamics of persistence. Importantly, our data set covers expectations from SPF survey data

which turn out to be influential. We deal with the comprehensive data set by model averaging

techniques. The persistence is pro-cyclical and connected to macroeconomic fundamentals. The

main drivers are expected inflation, the average returns of banks and consumer sentiment. Our

results are discussed in the light of the Fed model which originally relates the dividend-price

ratio to bond yields. Additionally, we provide an alternative explanation by linking our result

to an asset pricing model with heterogeneous agents. Both ways show that the determinants

explaining the persistence of the price-dividend ratio are in line with economic theory. Various

robustness checks underline these results.
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6.A.2 Insignificant variables from single regressions

Variable γi t-stat λi Variable γi t-stat λi

drresinv6 -0.001 -1.019 1.011 USNIM -0.005 -0.271 1.008

drnresin2 0.001 1.008 1.008 HOUSING4 0.005 0.269 1.007

RCBI4 0.001 1.004 1.003 RR1 TBILL CPI 2 -0.001 -0.266 1.008

drconsum5 0.006 0.928 1.038 CMDEBT -0.001 -0.255 1.004

dhousing6 0.000 -0.889 1.015 USRECQ 0.003 0.249 1.032

SPR AAA TBOND4 -0.011 -0.875 1.010 drfedgov5 0.000 -0.226 1.031

SPR AAA TBOND3 -0.010 -0.873 1.010 GDPC1 0.001 0.225 1.007

drgdp6 0.007 0.866 1.016 HOUSING5 0.004 0.220 1.008

SPR AAA TBOND5 -0.011 -0.836 1.009 RR3 TBILL CPI 2 -0.001 -0.181 1.004

dhousing5 0.000 -0.831 1.009 M2 pc1 0.001 0.171 1.004

UNEMP6 -0.010 -0.822 1.001 drfedgov3 0.000 0.169 1.023

SPR AAA TBOND2 -0.008 -0.814 1.010 HOUSING6 0.004 0.167 1.008

RCBI3 0.000 0.808 1.003 dindprod5 -0.001 -0.144 1.005

RCBI2 0.000 0.790 1.004 RR2 TBILL CPI 2 -0.001 -0.124 1.002

UNEMP5 -0.009 -0.769 1.001 dindprod3 0.000 -0.118 1.026

drgdp2 0.002 0.734 1.030 RR1 TBILL CPI 3 -0.001 -0.093 1.002

SPR AAA TBOND6 -0.011 -0.725 1.008 RR1 TBILL PGDP 2 -0.001 -0.088 1.003

UNEMP4 -0.009 -0.702 1.001 drfedgov4 0.000 -0.088 1.020

TB3MS -0.003 -0.693 1.003 RR3 TBILL PGDP 2 -0.001 -0.080 1.002

TBILL2 -0.003 -0.686 1.003 RR2 TBILL PGDP 2 -0.001 -0.080 1.003

TBILL6 -0.003 -0.676 1.003 RR3 TBILL CPI 3 -0.001 -0.065 1.002

TBILL5 -0.003 -0.668 1.003 RR1 TBILL CPI 6 0.000 -0.065 1.003

EQTA 0.005 0.660 1.002 RR1 TBILL CPI 4 0.000 -0.063 1.002

UNEMP3 -0.009 -0.657 1.001 RR1 TBILL CPI 5 0.000 -0.052 1.002

UNRATE -0.009 -0.647 1.001 RR2 TBILL CPI 3 0.000 -0.052 1.002

TBILL4 -0.003 -0.642 1.003 RR3 TBILL CPI 4 0.000 -0.044 1.002

TBILL3 -0.003 -0.639 1.003 drgdp5 0.000 0.043 1.014

UNEMP2 -0.009 -0.617 1.001 RR2 TBILL PGDP 5 0.000 0.043 1.003

PCECC96 0.003 0.581 1.005 RR1 TBILL PGDP 3 0.000 -0.042 1.003

ANFCI 0.004 0.581 1.014 dindprod2 0.000 -0.042 1.041

dindprod6 0.002 0.552 1.013 RR3 TBILL CPI 5 0.000 -0.040 1.002

drresinv2 0.000 -0.546 1.030 dindprod4 0.000 -0.036 1.015

HOUSING2 0.009 0.534 1.008 RR2 TBILL CPI 4 0.000 -0.029 1.002

drgdp3 0.002 0.486 1.028 PPIACO pc1 0.000 -0.024 1.004

drgdp4 0.002 0.453 1.027 RR2 TBILL CPI 5 0.000 -0.023 1.002

USNUM -0.003 -0.446 1.006 RR3 TBILL PGDP 3 0.000 -0.018 1.002

USSTHPI 0.001 0.418 1.009 RR1 TBILL PGDP 5 0.000 -0.017 1.004

HOUSING3 0.007 0.385 1.007 RR2 TBILL PGDP 4 0.000 0.015 1.004

UMCSENT 0.000 0.330 1.029 RR3 TBILL PGDP 5 0.000 0.014 1.003

RECPROUSM156N 0.000 0.301 1.032 RR1 TBILL PGDP 6 0.000 0.007 1.003

INDPRO 0.001 0.300 1.005 RR1 TBILL PGDP 4 0.000 -0.003 1.002

drfedgov6 0.001 0.299 1.028 RR2 TBILL PGDP 3 0.000 0.003 1.002

SP500 0.000 0.295 1.004 RR3 TBILL PGDP 4 0.000 0.003 1.002

PPIFGS -0.001 -0.285 1.005

Table 6.10: Regression of dynamic persistence on a single variable.
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