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Abstract

Since Adam Smith’s “The Wealth of Nations” the division of labor and special-
ization of workforce have been viewed as an elementary organizational principle.
Recent theoretical and empirical research has brought into consideration broader el-
ements of organizational design, focusing on flexible workplace practices, the struc-
ture of incentives, and the behavioral aspects of workplace interactions. However,
the theoretical literature mainly considers team building and organizational design
as exogenous parameters. This dissertation endogenizes these choice variables, fo-
cusing on organizational design and teams from three divergent perspectives: that
of agents, that of managers, and that of firms.

The first chapter develops a group work model with endogenous team size and an-
alyzes how overconfidence influences optimal size and welfare of teams. The second
chapter endogenizes a manager’s optimal number of direct reports and shows how
managers can exploit their organizational authority to shield themselves against re-
placement. The third chapter investigates a firm’s optimal organizational strategy
and offers a new informational and incentive-based explanation for the use of job
rotation.

This dissertation enriches the debate on factors relevant to decisions about team
size, contributes to the literature on incentives created by organizational change
and, more generally, to the research on endogenous job design. Our results outline
that overconfidence fosters team formation and can increase the welfare of agents
in team settings. Team size and task allocation also play roles in maintaining man-
agerial power through the strategy of “divide et impera”. Questions of optimal task
assignment and organizational design show how in the presence of implicit incentives
job rotation may emerge endogenously.

Keywords: Team size, Overconfidence, Implicit incentives, Task delegation, Job
rotation
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Zusammenfassung

Seit Adam Smith und “Der Wohlstand der Nationen” gelten Arbeitsteilung und
Arbeitsspezialisierung als ein elementares Organisationsprinzip von Unternehmen.
In der neueren theoretischen und empirischen Forschung wird über weitergehende
Aspekte einer optimalen organisatorischen Struktur diskutiert. Diese fokussieren sich
beispielsweise auf flexible Arbeitsmethoden, die Gestaltung von Anreizen wie auch
auf verhaltenspsychologische Aspekte. Dennoch betrachtet die theoretische Literatur
Teambildung und Organisationsgestaltung als exogene Faktoren. Die vorliegende
Dissertation endogenisiert diese Entscheidungsvariablen und untersucht Teams und
die Frage des optimalen Organisationsdesigns aus drei verschiedenen Perspektiven:
der von Agenten, der von Managern und der von Firmen.

Das erste Kapitel präsentiert ein Modell koordinierter Zusammenarbeit mit endoge-
ner Teamgröße und analysiert, wie sich Selbstüberschätzung auf die optimale Team-
größe und Wohlfahrt der Teammitglieder auswirkt. Das zweite Kapitel untersucht,
wie Manager ihre organisatorische Weisungsbefugnis durch Aufgabendelegation zum
Zwecke persönlicher Machterhaltung im Unternehmen nutzen können. Das dritte
Kapitel befasst sich mit der Frage der optimalen Organisationsstruktur in Unter-
nehmen und zeigt eine neue anreiz- und informationsbasierte Erklärungsgrundlage
für die Implementierung von Arbeitsplatzrotation.

Die vorliegende Dissertation bereichert die kontroverse Debatte hinsichtlich der re-
levanten Entscheidungsfaktoren für die Wahl der optimalen Teamgröße, trägt zur
Literatur über Anreizsteuerung durch organisatorische Veränderungen sowie allge-
mein zur Forschung über endogene Arbeits- und Organisationsgestaltung bei. Unse-
re Modellergebnisse belegen, dass Selbstüberschätzung Teambildung fördert und die
Wohlfahrt von Agenten in Teams erhöhen kann. Aspekte der optimalen Teamgröße
und Aufgabenallokation spielen auch in der Frage der Machtbefugnis und -erhaltung
von Managern durch die Strategie von “divide et impera” eine Rolle. Die Proble-
matik der optimalen Aufgabenallokation und Organisationsgestaltung zeigt, wie bei
impliziten Anreizen Arbeitsplatzrotation endogen entstehen kann.

Schlagworte: Teamgröße, Selbstüberschätzung, Implizite Anreize, Aufgabendele-
gation, Arbeitsplatzrotation
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Introduction

Since Adam Smith’s “The Wealth of Nations” the division of labor and special-
ization of workforce have been viewed as an elementary organizational principle.
Recent theoretical and empirical research has brought into consideration broader el-
ements of organizational design, focusing on flexible workplace practices, the struc-
ture of incentives, and the behavioral aspects of workplace interactions. However,
the theoretical literature mainly considers team building and organizational design
as exogenous parameters. This dissertation endogenizes these choice variables, fo-
cusing on organizational design and teams from three divergent perspectives: that
of agents, that of managers, and that of firms. Specifically, this dissertation consists
of three theoretical models that are a joint work with Hendrik Hakenes.

The first chapter develops a basic group work model with endogenous team size.
In teams that are too small, complementarities cannot develop properly, whereas
in teams that are too large, the free-rider problem becomes overwhelming. If team
members are overconfident, effort levels increase, and the free-rider problem is par-
tially resolved. Under certain conditions, optimal team size increases. However, even
if coworkers’ efforts are substitutes, overconfidence can drive team-building. Agents
are then prevented from overinvesting in effort, leading to welfare improvements at
the individual level.

The second chapter endogenizes a manager’s optimal number of direct reports and
shows how managers can exploit their organizational authority to shield themselves
against replacement. Although the probability of hiring a star performer increases
with the number of direct reports, each employee completes a smaller fraction of
the overall task, such that learning about the employees’ individual abilities occurs
more slowly. We show that a manager maximizes the probability of retaining his job
if he delegates a task to an infinite number of employees. Through the trade-off for
the manager between decreasing his private costs of being replaced and increasing
labor coordination costs, our model derives predictions of when managers tend to
choose an excessively large number of direct reports, creating inefficiencies at the
firm level.

The third chapter analyzes a firm’s optimal organizational strategy and offers a new
informational and incentive-related explanation for the use of job rotation. The
longer an agent is employed in a job, the more the principal will have learned about
his ability through the history of performance. With implicit incentives, influence
perceptions and effort incentives decrease over time. Rotating agents to a different
job deletes learning effects about ability, creating fresh impetus for effort. However,
job rotation also reduces the time horizon, and thus reduces rents from working
and also incentives. In this trade-off, we derive conditions for the desirability of job
rotation and show how in the presence of career concerns job rotation may emerge
endogenously. Finally, our model allows for more general comments on the optimal
rotation frequency as well as the preferred organizational design of a firm.

This dissertation enriches the debate on factors relevant to decisions about team
size, contributes to the literature on incentives created by organizational change
and, more generally, to the research on endogenous job design. Our results outline

5



Contents

that overconfidence fosters team formation and can increase the welfare of agents
in team settings. Team size and task allocation also play roles in maintaining man-
agerial power through the strategy of “divide et impera”. Questions of optimal
task assignment and organizational design show how in the presence of implicit in-
centives job rotation may emerge endogenously. Thus, going beyond traditional
views of organizational structure, this dissertation takes a broader perspective, one
that encompasses the behavioral effects of workplace interactions, informational and
incentive-based considerations, to offer insights relevant to an expanded concept of
optimal organizational structure.
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1 Optimal Team Size and
Overconfidence1

Abstract

How large should a team be? We develop a basic group work model
with endogenous team size. In teams that are too small, complementar-
ities cannot develop properly, whereas in teams that are too large, the
free-rider problem becomes overwhelming. If team members are over-
confident, effort levels increase, and the free-rider problem is partially
resolved. Under certain conditions, optimal team size increases. How-
ever, even if coworkers’ efforts are substitutes, overconfidence can drive
team-building. Agents are then prevented from overinvesting in effort,
leading to welfare improvements at the individual level.

1We would like to thank Matthias Kräkel, David Knoke, Steffen Seemann, and Stefan Wielenberg
for helpful comments. Participants in the 7th UK Social Networks Conference in London, the
10th Brucchi Luchino Labor Economics Workshop in Rome, the 15th Colloquium on Personnel
Economics in Paderborn, the Scottish Economic Society 2012 Annual Conference in Perth, and
the 74th Annual Conference of the German Academic Association for Business Research in
Bolzano also provided helpful suggestions.
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1 Optimal Team Size and Overconfidence

1.1 Introduction

Teams are an important organizational structure, both inside and outside of corpora-
tions. In professional life, teams of varying sizes are increasingly common throughout
organizations. Some teams are small: start-up businesses are initially small, and in
the professions, partnerships often have only two members. Some are extremely
large: international accounting firms may comprise thousands of partners. So how
large should a team optimally be? On the one hand, complementarities can be better
exploited in larger teams, increasing productivity. On the other hand, a large team
size can occasion productivity losses due to free-rider problems. The existing liter-
ature, starting with the seminal work of Marschak and Radner (1972), emphasizes
that team size is an elementary structural variable determining team performance.
However, this literature views team size as an exogenous parameter. In reality, the
size of teams is often a choice variable influenced by various economic factors. Sur-
prisingly, the question of the optimal size of a team has seldom been addressed by
economic theory.

In this paper, we first construct a basic model with rational agents who can form
teams to benefit from complementarities. Nevertheless, because effort levels are
unobservable, there is a free-rider problem that increases with team size, and as a
result, there is an optimal team size. We incorporate into our model the finding that
people tend to be overconfident about their skills and, therefore, may not behave
as predicted by standard economic theory. Behavioral characteristics are especially
influential in the context of teams, as overconfidence affects individual comparisons
and, therefore, influences the behavior of each team member. Intuitively, an agent
who believes that his personal ability is greater than that of his coworkers might not
be interested in teamwork. Consequently, with overconfidence, teams may poten-
tially be too small. So, why do overconfident agents join teams at all? One obvious
answer is that, although overconfidence is not individually optimal in teams, agents
can benefit from the increased effort of their overconfident team members through
complementarities. However, from the perspective of agents’ welfare, overconfidence
can drive team-building, even if individual contributions act as substitutes for each
other, as it prevents agents from making costly overinvestments in effort. Therefore,
the aim of our paper is to identify the factors relevant to decisions about team size
and, thus, contribute to the debate on optimal team design.

Teams of varying size are prevalent in a wide range of contexts. They can occur
as independent economic entities, consisting only of team members, or they may
be components within firms. In contrast to the standard agency framework, where
principal and agents are integrated into a hierarchical organizational structure, part-
nership members have joint ownership of assets and simultaneously act as agents
in production. According to Levin and Tadelis (2005), partnerships emerge as a
desirable organizational form when production is largely based on human capital, as
profit sharing structures make agents more selective with regard to whom they ac-
cept as partners. Precisely because behavioral biases can affect agents’ expectations
regarding (relative) ability, overconfidence determines team formation and optimal
team size in partnerships. Thus, overconfidence has been shown to be character-
istic of entrepreneurs (Cooper, Woo, and Dunkelberg (1988), Camerer and Lovallo
(1999), Koellinger, Minniti, and Schade (2007), Cassar (2010), Townsend, Busenitz,
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1.1 Introduction

and Arthurs (2010)) and more prevalent among firm owners than managers within
firms (Busenitz and Barney (1997), Forbes (2005)). Therefore, this study mainly
pertains to interdependent self-managed teams of entrepreneurs, including profes-
sionals or business partnerships in law, architecture, or investment banking. How-
ever, our work can also be relevant to teams within corporations, including engineers
who share bonuses on projects, sales teams with group bonuses, or also professional
sport teams. More generally, our model also pertains to other types of cooperation,
such as strategic alliances or networks, where teams collaborate on a cross-company
basis. Prominent examples of the latter include airline alliances, networks in the
automotive industry, and intra-firm partnerships in the computer and communica-
tion industry. Co-partnership is also adopted by public agencies or governmental
institutions. In between, public-private partnerships of public authorities and pri-
vate industry are, for example, widely used in the fields of R&D, infrastructure, and
health care.

Although partners operate as firm owners, they are exposed to moral hazard. If effort
is unobservable, profit sharing may lead to free-rider problems in teams. While a
smaller partnership size can reduce free-riding, it may also entail synergy losses.
Correspondingly, partnerships in medical practices usually consist of small teams.
In comparison, in accounting or consulting, they often operate as medium-sized
and large partnerships relying on international expertise that requires extensive
cooperation among team members. In addition, academic authorship shows large
variations in team size: in large-scale scientific experiments, as in physics or clinical
trials, heavy collaboration is required, with teams often consisting of thousands
of members. By contrast, in economics, teams of two or three authors are much
more common. Therefore, we seek to shed light in the analysis below on why these
differences in team size exist.

Literature. This paper is relevant to the literature on teams and team size as well
as to research on overconfidence in groups. Beginning with the conception of Alchian
and Demsetz (1972) that the existence of complementary activities may encourage
team formation, Holmström (1982) considers the problem of free-riding when team
members’ individual contributions are not perfectly observable. Similarly, Kandel
and Lazear (1992) focus on profit sharing in partnerships, finding that free-rider
problems lead to declining equilibrium effort levels when team size increases. In
contrast, profit sharing is a widely applied and favorably regarded reward system
for providing effort incentives in teams (Weitzman and Kruse (1996), Prendergast
(1999)). Consequently, complementarities may benefit firm-wide incentives in part-
nerships, even in the presence of free-riding (Adams (2006)).

Although the literature on teams has a lengthy history, it continues to view team size
as an exogenous parameter. Only recently have contributions sought to endogenize
the determination of optimal team size. Qian (1994) investigates the optimal span of
control and wage levels for different hierarchical tiers of a firm. Similarly, Ziv (1993,
2000) analyzes the relationship between internal information structure, optimal size,
and the hierarchical composition of a firm. Related to our work, Huddart and Liang
(2005) study optimal task assignment and team size in partnerships in which agents
exert effort in both production and monitoring. Although monitoring activities may

9



1 Optimal Team Size and Overconfidence

increase incentives in production, they are also subject to free-riding. As a result,
small teams are optimal if task assignment is symmetric. Otherwise, specialization
of agents into either production or monitoring can contain shirking in both tasks and
benefit large teams. Similarly, Liang, Rajan, and Ray (2008) analyze optimal team
size, monitoring activity, and incentive contracts for managers and workers. In their
principal-agent framework, the variance of performance measurement increases with
team size, requiring higher levels of monitoring to sustain productivity. To derive
the basic trade-offs with respect to the size and performance of groups, this paper
abstracts from monitoring activities and from interdependencies between managers
and a principal and focuses on the fundamental idea of group work as the interaction
of coequal agents. In addition, our model accounts for behavioral effects that are
fundamental to the question of optimal organizational design.

Recent economic literature has introduced the psychological finding that agents tend
to overestimate their relative abilities (Taylor and Brown (1988), De Bondt and
Thaler (1995)) and are overoptimistic about future outcomes (Weinstein (1980)).
The core idea is built on the insight that a positive self-image and optimistic goal-
setting correlate with increased motivation and greater effort (Felson and Reed
(1986), Latham and Locke (1991), Benabou and Tirole (2002)). Specifically, even
though informed agents should anticipate personal overconfidence in equilibrium,
empirical evidence suggests that individuals evaluate themselves more optimisti-
cally than do others (Lewinsohn, Mischel, Chaplin, and Barton (1980)), believe
that they are better than other people (Taylor and Brown (1994)), expect others to
have overoptimistic self-perceptions (Krueger (1998)), and “agree to disagree” with
the perspectives of other individuals (Hales (2009)). In addition, in the theoreti-
cal literature, heterogeneous prior beliefs are not only assumed to be essential to
understanding economic problems (Morris (1995)) but may reflect overconfidence,
as in Van den Steen (2004), where individuals disagree about the individual prob-
abilities of success. Similarly, overconfidence is modeled as agreement to disagree
about skill perceptions (Odean (1998), Fang and Moscarini (2005), Gervais and
Goldstein (2007), Santos-Pinto (2008, 2010), Gervais, Heaton, and Odean (2011))
or also the likelihood of favorable outcomes (de la Rosa (2011)). While recognition
of discrepant beliefs helps us abstract from screening and signaling devices in our
model and, thereby, extract a pure overconfidence effect, Squintani (2006) shows the
existence of an equilibrium in which overconfident players correctly anticipate each
others’ strategies.

With regard to business settings, Hvide (2002) emphasizes that overconfidence in-
creases an agent’s expectations of his outside opportunities in the job market and
therefore can raise his bargaining power vis-à-vis the firm. Gervais and Odean
(2001) present a multiperiod learning model in which overconfidence is endogenous.
In their model, perceptions of ability increase with success and decrease with failure,
so that self-evaluations become more accurate over time. Goel and Thakor (2008)
analyze the interaction between managerial overconfidence and investment choices,
effort incentives, promotion prospects, and compensation contracts. Related to over-
confidence effects in teams, Bernardo and Welch (2001) show that overconfident
entrepreneurs utilize their own information and are less likely to engage in herd be-
havior, which provides valuable information to their social group. However, groups
in which many entrepreneurs rely on personal information make more mistakes and

10



1.2 The Model

therefore suffer from attrition. As a result, moderate levels of overconfidence can be
valuable if groups are sufficiently large to benefit from the information externality.
Corgnet (2010) investigates the role of information in the formation of partnerships
in the presence of overconfidence. Claims of excessive output shares induced by over-
confidence negatively affect cooperation. Only with incomplete information about a
partner’s ability can overconfidence enable efficient team formation, as it reduces the
informational rent of workers. Santos-Pinto (2010) analyzes overconfidence effects
in tournaments. In his model, overconfidence can increase a firm’s welfare, while it
decreases the individual utilities of agents. Fang and Moscarini (2005) investigate
the effect of overconfidence on optimal incentive contracts when a principal faces
many agents. First, an independent wage policy allows the firm to tailor contracts
to agents’ expected abilities (sorting effect). Second, overconfident agents may react
asymmetrically to good vs. bad outcomes (morale effect) such that, given overcon-
fidence, a non-differentiation wage policy may be optimal. Similarly, Santos-Pinto
(2008) considers a principal agent setting in which two agents have correct beliefs
about personal ability but mistaken beliefs about coworker abilities. In this case, the
principal can benefit from overconfidence if both agents are offered interdependent
incentive schemes.

This paper mostly pertains to Gervais and Goldstein (2007), who develop a team-
work model with one rational and one overconfident agent. In the presence of com-
plementarities, the enhanced effort of the biased agent increases the rational agent’s
effort incentives, resulting in increased profits for both workers. In our work, the
advantageousness of teamwork in the presence of overconfidence is not necessarily
based on the existence of complementarities between agents. As we endogenize team
size, our model suggests that, even if team members’ outputs are substitutes, team
formation can benefit overconfident agents. Altogether, we are able to apply behav-
ioral effects to a wider range of settings of team interaction, analyze the implications
of varying group sizes on individual performance with overconfidence, and model the
impact of overconfidence on the choice of optimal team size.

The remainder of this paper is organized as follows. Section 1.2 develops the ba-
sic model with rational agents, and section 1.3 provides the equilibrium analysis.
Section 1.4 introduces overconfidence into the model, followed by a welfare analysis
in section 1.5. Section 1.6 provides evidence regarding overconfidence and discusses
the implications of the model. Section 1.7 contains our conclusions. All proofs are
in the Appendix.

1.2 The Model

We consider an infinite pool of identical risk-neutral agents who can form teams
for the purpose of production. The size of each team is endogenously chosen at an
initial stage. Outcomes are independent between teams. Let n ≥ 1 denote the set
of agents on a team that generate a joint one-period output of

Y =
n∑
i=1

yi + κ
n∑
i=1

n∑
j 6=i

yi yj, (1.1)

11



1 Optimal Team Size and Overconfidence

where the individual contributions are given by

yi = ai ei.

Joint output Y is the sum of two components: the first component is the sum of
individual outputs yi of all team members. The choice of effort ei ≥ 0 of each agent
is endogenous. The parameter ai > 0 measures an agent’s ability. Hence, for the
same effort and cost of effort, workers of high ability contribute more than those
of low ability, with skill and effort representing complements in production.2 We
assume that ability is equal for all agents, ai = a, in situations where the production
technology requires workers of a certain quality level. The second component is an
interaction term measuring synergies obtained from group work, determined by the
parameter κ. Thus, team output is additive in individual outputs and multiplicative
in the combined outputs of two team members at a given time, additive over all pairs
of agents in a team, yielding n (n−1)/2 combinations. Thus, if κ > 0, team members’
outputs are complements in production, with the output of one agent raising the
productivity of each coworker.3 In contrast, if κ < 0, the productivity of an agent
decreases through the interaction with other team members in which case agents’
outputs are substitutes. In the absence of any externalities, κ = 0, joint output is
the sum of the team members’ individual contributions.4 Each worker exerts effort
at a private cost of

c(ei) = c
e2i
2
. (1.2)

We assume that effort decisions are non-contractible, as they are made simultane-
ously and are not observable by other agents. The joint output of a team, given
in (1.1), is the only observable measure of inputs. Focusing on symmetric equilib-
ria, joint output is equally divided among all team members. Hence, agents are
rewarded not only on the basis of their own performance but also on the basis of the
performance of fellow team members: this is the source of the free-rider problem.
The extent of the free-rider problem is determined by the cost factor c > 0 of the
effort cost function.

Agents are effort-averse and benefit from compensation. Team output is Y , as in
(1.1); hence, the per-person expected end-of-period output is E[Y ]/n. Agents thus

2Synergetic effects between ability and effort are outlined in the effort-performance literature
(see, Bonner and Sprinkle (2002), for an overview) and commonly applied in teamwork models
(see, for example, Gervais and Goldstein (2007), Liang, Rajan, and Ray (2008) or Santos-Pinto
(2008)).

3To simplify our analysis, we assume constant returns to scale. However, our general results also
apply to the case of decreasing returns to scale.

4In less collaborative teams, joint output mostly depends on the team members’ individual con-
tributions, and complementarities are small. As an example, in a team of call center agents,
calls are served independently, and only a small amount of coordination is required. In con-
trast, a software development team involves extensive coordination among analysts, database
administrators, support engineers, designers, architects, and programmers. In this case, joint
output mainly depends on the combined outputs of all team members rather than on their
individual contributions. Possibly, team members can also reduce each other’s positive effects.
An example is a team of emergency physicians. Increasing team size can increase coordination
requirements and reduce the effectiveness of emergency assistance.

12



1.3 Equilibrium Analysis with Rational Agents

maximize their individual profit net of effort costs,

max
ei

E[Πi] =
E[Y ]

n
− c(ei) =

1

n

(
n∑
i=1

yi + κ

n∑
i=1

n∑
j 6=i

yi yj

)
− c e

2
i

2
. (1.3)

Because the incentive problems facing each agent and team are identical, we can
limit our analysis to one exemplary team with n ≥ 1 agents.5 The timing of the
model is as follows.

t = 0 Agents form production teams. The team size n ≥ 1 is endogenously chosen
by the agents.

t = 1
2

All agents simultaneously exert effort ei, based on the expected efforts of fellow
team members.

t = 1 Joint output Y is realized and equally distributed among team members.

The formation of teams is similar to the formation of coalitions in cooperative game
theory. Therefore, we solve for coalition-proof Nash equilibria (see Bernheim, Peleg,
and Whinston (1987)). The idea is that a set of teams is an equilibrium if no team
has an incentive to break apart in order for members to join other teams.

1.3 Equilibrium Analysis with Rational Agents

In order to determine the optimal team size of rational agents, we first determine the
agents’ equilibrium effort levels. More specifically, we examine a situation in which
agents cannot observe their coworkers’ efforts and in which they thus anticipate the
equilibrium values. In equilibrium, each agent’s effort is the best response to the
expected effort of his fellow team members. Let us consider the decision problem
from the perspective of a representative agent i = 1 collaborating with n − 1 ≥ 0
identical coworkers. Then, replacing y1 by a e1 and yj by a ej for j 6= 1 in the
individual profit function and solving for agent 1’s first-order condition, we have

e∗1 =
a

n c

(
(n− 1)κ a e∗j + 1

)
, (1.4)

where “starred” variables denote equilibrium values. As all agents are of the same
ability level, they anticipate that peers will exert the same effort level that they
themselves exert. Then, in a symmetric equilibrium, all effort choices are identical,
e∗1 = e∗j = e∗. This yields the following lemma.

5We abstract from the problem of integrity, except in cases where n falls below 1. As aggregate
output is the only contractible variable, note that for n = 1, output is completely assignable
to the agent producing it. Consequently, there is no free-riding. It follows that if the algebraic
term falls below 1, output would be more than assignable, which would result in a negative
free-rider problem. Intuitively, this equilibrium is not feasible. The general intuition is that
for n < 1, one would prefer smaller teams. In this case, we focus on the boundary solution of
n = 1.
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1 Optimal Team Size and Overconfidence

Lemma 1 The equilibrium effort of rational agents is

e∗ =
a

n c− (n− 1)κ a2
(1.5)

for κ < c/a2 if n > 1. For κ ≥ c/a2 and n > 1, the equilibrium effort is infinitely
large.

Lemma 1 outlines several characteristics of rational agents’ equilibrium effort. Intu-
itively, for n > 1, the synergy term κ raises the productivity of each coworker in a
team and therefore increases each agent’s chosen effort level. In addition, as skill and
effort are complements in production, optimal effort increases with ability level a.
Consequently, if κ > 0, the positive impact of complementarities (and ability level)
on output increases with team size. However, the larger the team is, the smaller
the feedback effect of personal effort on the equally-divided team output. That is,
the free-rider problem increases with team size. For κ < c/a2, the equilibrium effort
decreases with team size. This result holds even more strongly if agents’ efforts
are substitutes, κ < 0, as then both κ and c reduce effort incentives as team size
increases.

If each agent chooses e∗, we can incorporate the equilibrium effort into the aggregate
output function, where y1 = a e∗, and yj = a e∗ for all j 6= 1. This entails that
rational agents’ expected individual profit depends on team size:

E[Π] =
a2 (2n c− c− (n− 1)κ a2)

2 (n c− (n− 1)κ a2)2
. (1.6)

Similarly to the equilibrium effort e∗, both ability level a and the interaction term κ
increase expected individual profit, whereas c leads to an increased marginal cost of
effort and lower profit. Again, ability level not only increases each team member’s
individual productivity, it also influences individual profit through complementari-
ties.

How large should a team optimally be? Consider a team composed of n of agents.
Under what conditions is n the coalition-proof Nash equilibrium team size? The
team will include an additional (marginal) team member if each existing team mem-
ber expects that he will be better off as a result, that is, if each agent’s expected
individual profit increases. On the one hand, profit sharing implies that the free-
rider problem increases with team size, so that both individual contributions and the
private costs of effort decrease. Furthermore, the loss in output outweighs savings
associated with the decreased cost of effort; therefore, each team member’s profit
declines. On the other hand, if κ > 0, then the value of complementarities increases
with team size such that each team member can benefit from the additional synergy
created by the interaction between the additional agent and each current team mem-
ber. Overall, the optimal team size increases, provided that the negative effect on
output share is outweighed by the additional synergy gain. Thus, the coalition-proof
Nash equilibrium team size is reached when the first-order condition, ∂E[Π]/∂n = 0,
holds, yielding

0 =
a2 (2 c− κ a2)

2 (n∗ c− (n∗ − 1)κ a2)2
− a2 (c− κ a2) (2n∗ c− c− (n∗ − 1)κ a2)

(n∗ c− (n∗ − 1)κ a2)3
. (1.7)
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1.4 The Model with Overconfidence

There are two marginal effects on an individual team member: the first term is
positive and shows that each agent can benefit from lower effort costs if team size
increases. Moreover, for κ > 0, each additional team member increases the value of
complementarities. However, due to the free-rider problem, the effect of complemen-
tarities between each pair of agents decreases with each additional team member.
Thus, for κ < c/a2, the complementarity effect increases at a decreasing rate. The
second term is negative and shows that the larger is the team size, the smaller is
each team member’s share in both individual contributions and joint complemen-
tarities. Moreover, the forgone output outweighs the reduction in the cost of effort.
However, complementarities and ability level reduce the decline in marginal effort
and, therefore, also reduce the loss in each agent’s output share. In equilibrium, the
positive effect (complementarities) exactly offsets the negative effect (loss in output
share). This yields the following proposition.

Proposition 1 In a coalition-proof Nash equilibrium, rational agents choose the
team size

n∗ =
2 c2 − 2 c κ a2 + κ2 a4

2 c2 − 3 c κ a2 + κ2 a4
(1.8)

for κ < c/a2. For κ ≥ c/a2, the optimal team is infinitely large. Furthermore, for
κ < 0, the above term falls below 1, in which case the optimal solution is n∗ = 1.

Proposition 1 shows that team formation, n∗ > 1, is only beneficial if there is a
positive complementarity effect that can compensate for the decrease in each agent’s
output share; that is, if κ > 0. In this case, the agents’ optimal team size increases
with the interaction term κ and the ability level a but decreases with the cost factor
c. In contrast, if κ ≤ 0, the optimal team size is always n∗ = 1. Intuitively, if
coworkers’ efforts are substitutes, i.e., κ < 0, joint output decreases with team size.
A second effect is that output is negatively affected by the free-rider problem, so
that team-building remains suboptimal even in the absence of synergies, κ = 0.
Altogether, efficient team formation can be ensured only if coworkers’ individual
outputs are complements in production.

1.4 The Model with Overconfidence

To analyze the effects of overconfidence on both agents’ incentives to exert effort
and the choice of optimal team size, we assume that agents are overconfident in
their abilities. More specifically, each agent perceives his own ability to be â = b a,
although his actual ability is a. The parameter b > 1 measures the degree of
overconfidence, assumed to be equal for all agents. Consequently, each agent chooses
some effort level but, due to overconfidence, believes that output will be larger for
a given effort level. More specifically, each agent believes that he is the only high-
ability agent and that the other team members are overconfident. That is, each
agent believes that he can generate a large output with only a small effort but that
his coworkers believe that they are themselves highly productive. On the one hand,

15



1 Optimal Team Size and Overconfidence

this causes him to believe that he is the most able member of the team, giving
rise to an asymmetry in the composition of team members’ expected ability levels.
As an increase in team size would increase the fraction of low ability agents, the
incentives to build the team might be reduced. On the other hand, in the presence
of complementarities, each agent can benefit from overconfidence and the increased
efforts of his coworkers, such that for our representative agents, it also makes sense
to increase effort, and team-building may be beneficial.

In teams, overconfidence is relevant not only in absolute terms but also through indi-
vidual comparisons. Accordingly, overconfidence is modeled as an asymmetric belief
regarding ability that incorporates not only an overestimation of one’s own abilities
but also of one’s abilities relative to coworkers. Thus, our modeling methodology
employs an “agree to disagree” approach. That is, each agent is unaware of his own
overconfidence; otherwise, he would not be biased. Aware that his teammates expect
him to be overconfident, he agrees to disagree with them. From an ex ante perspec-
tive, a rational agent would benefit most from teamwork if his fellow team members
were overconfident. In that case, he could benefit from the increased effort of his
coworkers and free-ride on their overconfidence. If, additionally, the overconfident
team members assume that the rational agent is overconfident, they would expect
him to exert a greater effort in equilibrium and, therefore, would further increase
their own efforts in order to exploit complementarities. Similarly, for an overconfi-
dent agent, it is advantageous to convince coworkers of one’s high expectations of
one’s own ability in order to increase coworkers’ efforts through the channel of com-
plementarities. With symmetric beliefs, each agent correctly assesses his coworkers’
overconfidence, recognizing that his team members are similarly aware of the biases
of their coworkers.

More specifically, each agent perceives his personal ability to be â = b a but is
aware of the overconfidence of fellow team members and, therefore, knows that their
ability is a. Due to team members’ overconfidence, each agent anticipates that his
coworkers will overinvest in effort and choose an effort level that corresponds to the
ability level â, each agent believing that this effort level is optimal only for oneself
and not for one’s coworkers. Although agents are identical, their expectations are
asymmetric, and thus, they may anticipate a different effort level from their peers.
However, as all agents agree to disagree, they are aware of this asymmetry in ability
expectations. Given that the degree of overconfidence b is equal for all agents, and
the biases of team members are symmetrically known to all agents, each agent faces
an identical maximization problem. Consequently, we can consider the decision
problem from the perspective of a representative agent i = 1. Thus, we replace y1
by â e1 = b a e1 (because agent 1 believes he is more able than the others) and yj by
a ej for j 6= 1 (because agent 1 believes the others are not very able, although they
believe that they are) in the expected individual profit function of (1.3). Solving for
agent 1’s first-order condition yields

eB1 =
b a

n c

(
(n− 1)κ a eBj + 1

)
, (1.9)

where the superscript B indicates that agents are biased. Now, agent 1 knows
that the other agents also believe that he himself is overconfident and less able
than he believes he is. He also knows that his coworkers all know that the other
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1.4 The Model with Overconfidence

coworkers are overconfident. Thus, the maximization problem is symmetric: each
agent believes that his personal ability is b a and that the coworkers’ abilities are a
but that each coworker will choose an effort level that corresponds to ability level
b a. Moreover, agent 1 knows that each coworker will attribute ability level a to each
of his coworkers’ abilities, including to agent 1. Consequently, agent 1 expects other
agents to exert the same level of effort that he himself exerts. Thus, in equilibrium,
each agent will choose the same effort and anticipate this effort level from each of
the other agents, eBj = eB1 = eB. This yields the following lemma.

Lemma 2 The equilibrium effort of overconfident agents is

eB =
b a

n c− (n− 1)κ b a2
(1.10)

for κ < c/ (b a2) if n > 1. For κ ≥ c/ (b a2) and n > 1, the equilibrium effort is
infinitely large.

The main result here is that overconfidence increases the equilibrium effort for all
team sizes, eB > e∗, and thus mitigates the free-rider problem. The rationale is that
biased agents overestimate their marginal product of effort and, therefore, increase
their equilibrium effort relative to the rational model. Additionally, if κ 6= 0 and
n > 1, positive or negative interaction effects arise from the increased efforts of
team members, depending on whether coworkers’ outputs are complements (κ >
0) or substitutes (κ < 0) in production. Specifically, if κ > 0, each agent will
work more because he sees that his colleagues are overconfident and, consequently,
will themselves work more; thus, coworkers’ efforts are complements. However, for
κ < c/ (b a2), equilibrium effort decreases with team size. That is, as the free-rider
problem increases, the effect of overconfidence on the equilibrium level of effort
diminishes.

As there are no principals in our model, agents choose a team size that maximizes
their expected individual profits. Ex post, the profit function of the standard model
given in (1.3) holds, as the agents’ true abilities do not change. Nevertheless, we must
assess overconfident agents’ decisions from the perspective of their ex ante expected
profit, as the choice of the optimal team size relies on their biased expectations.
Specifically, agent 1 believes the equilibrium effort eB is optimal for him, and he also
believes that the other agents are fooled into choosing a too high effort level because
they believe they are of high ability. If everyone chooses eB, then this effort level can
be substituted into the aggregate profit function, where again y1 = â eB = b a eB,
and yj = a eB for all j 6= 1. Agent 1 believes he contributes more to aggregate
output than the others, owing to his uniquely high abilities (although this is untrue,
in fact). With symmetric beliefs, we obtain the overconfident agents’ expected
individual profits as a function of team size n,

E
[
ΠB
]

=
b a2 ((2n+ b− 2) c− (n− 1)κ b a2)

2 (n c− (n− 1)κ b a2)2
. (1.11)

Based on each agent’s overestimation of his or her personal productivity and the
resulting increase in equilibrium effort, expected individual profitability increases
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1 Optimal Team Size and Overconfidence

in the presence of overconfidence for all team sizes, E[ΠB] > E[Π]. Thus, over-
confidence influences expected individual profitability in four ways. First, expected
profitability increases because agents (mistakenly) believe that their personal pro-
ductivity is higher than their true productivity. Second, agents (correctly) expect
increased profitability for n > 1 to result from an increase in effort induced by the
overconfidence of all team members. Third, if κ 6= 0 and n > 1, expected individual
profit (correctly) incorporates additional positive (κ > 0) or negative (κ < 0) inter-
action effects between all team members. Forth, due to personal bias, each agent
(mistakenly) overvalues the extent of synergy effects. All four effects are interlinked
and, thus, feed back on overconfident agents’ optimal team size.

To illustrate the decision problem, consider a team consisting of n = 1 + (n − 1)
agents. Agent 1 believes that he is especially skilled and that the other n− 1 agents
are less skilled, even though they believe they are highly skilled. Thus, agent 1
believes that an additional (marginal) team member will increase the share of less
skilled but overconfident agents. Consequently, agent 1 believes that he is the only
team member who chooses his effort level correctly and that, although the fraction
of less skilled agents will increase with each additional team member, he will benefit
from the overinvestment in effort of his overconfident coworkers (and consequently
also from the overinvestment in effort of each additional overconfident coworker).
That is, he believes that his coworkers’ overconfidence causes incorrect decision
making not only regarding optimal effort but also regarding optimal team size.
However, all team members must agree upon each additional marginal team member.
Consequently, when deciding the optimal team size, each agent has different beliefs
about the source of aggregate profits. In particular, each agent believes that he
contributes more to the joint output than the other team members. Nevertheless,
as each coworker is symmetrically aware of each coworker’s overconfidence (including
the overconfidence of agent 1), all agents agree that their additional benefit from
an additional (marginal) team member is ∂E[ΠB]/∂n. In a coalition-proof Nash
equilibrium, this derivative must vanish. We have a standard first-order condition:

0 =
b a2 (2 c− κ b a2)

2 (nB c− (nB − 1) κ b a2)2

−
b a2 (c− κ b a2)

((
2nB + b− 2

)
c−

(
nB − 1

)
κ b a2

)
(nB c− (nB − 1) κ b a2)3

. (1.12)

Similarly to the basic model with rational agents, (1.12) indicates the two marginal
effects on each individual team member: the first term, which is positive, shows that
each agent’s cost in effort decreases with team size, while, for κ > 0, the value of
complementarities increases with team size. As overconfidence raises each agent’s
equilibrium effort, the decline in the marginal cost of effort is larger relative to the
rational model. For the same reason, the value of complementarities also increases,
and, similarly to the rational model, the complementarity effect increases at a de-
creasing rate. The second term, which is negative, shows that, for κ < c/(b a2), each
agent’s output share decreases with team size, thus reducing each agent’s profit. As
complementarities, ability level, and degree of overconfidence increase equilibrium
effort, this negative effect is moderated to a greater degree than in the rational
model. However, as each agent overestimates his or her personal contribution to the
joint output as well as to the complementarity effect, the expected marginal loss in
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profit exceeds the overconfident agent’s real marginal profit loss. While the negative
effect lowers incentives for team formation, the increased positive complementarity
effect increases the benefits of teamwork. In equilibrium, these two marginal effects
exactly offset each other, yielding the following proposition:

Proposition 2 In a coalition-proof Nash equilibrium, overconfident agents choose
a team size of

nB =
−2 c2 (b− 2) + 2 c κ (b− 2) b a2 + κ2 b2 a4

2 c2 − 3 c κ b a2 + κ2 b2 a4
(1.13)

for κ < c/(b a2). For κ ≥ c/(b a2), the optimal team is infinitely large. Furthermore,
for

κ <
2 c (b− 1)

(2 b− 1) b a2
, (1.14)

the above term falls below 1, in which case the optimal solution is nB = 1.

Proposition 2 shows that, although overconfident agents believe that their personal
contribution to the joint output is the highest among team members, team forma-
tion can nevertheless be beneficial. This is the case if joint output mainly depends
on team members’ combined contributions rather than on their individual outputs,
that is, if κ is positive and sufficiently large. Intuitively, as overconfidence increases
agents’ equilibrium efforts, it also increases the value of complementarities, poten-
tially outweighing the negative effect of team size. In contrast, as n ≥ 1, the optimal
team size remains nB = 1 if κ ≤ 0. The rationale for this is that biased agents believe
that, due to their superior abilities, their individual profits will exceed the profits of
rational agents, irrespective of the actual size of the team. As the free-rider problem
increases with team size, cooperation only appears beneficial if it involves additional
advantages through complementarities.

Let us now compare the optimal team sizes of rational and overconfident agents.
While in the absence of complementarities, κ ≤ 0, both rational and biased agents
choose to work alone, n∗ = nB = 1, this is not the case when κ > 0. Intuitively, as
overconfident agents only build teams when complementarities are sufficiently large,
they reduce their optimal team size relative to the rational model if κ is positive
but below the threshold of (1.14). We obtain the following result.

Proposition 3 Assume that

κ >
2 c (b− 1)

(2 b− 1) b a2
(1.15)

and let κ < c/(b a2). Thus, overconfidence increases agents’ optimal team size,
nB > n∗, if and only if

b >
2 (2 c3 − 4 c2 κ a2 + c κ2 a4)

κ a2 (4 c2 − 6 c κ a2 + κ2 a4)
(1.16)

for κ < (3 −
√

5) c/a2. For κ ≥ (3 −
√

5) c/a2, the optimal team size increases for
all values of the degree of overconfidence b.

19
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Although increasing team size increases the expected proportion of agents with
(only) ability a, overconfidence also increases agents’ equilibrium effort, incentivizing
team formation in the presence of complementarities. That is, if complementarities
are sufficiently strong, overconfident agents increase their optimal team size for all
values of the degree of overconfidence b and nB > n∗. Otherwise, the optimal
team size increases only if b exceeds the threshold (1.16). Thus, for large values
of b, the complementarity effect is determined by the increase in effort induced
by overconfidence rather than by the value of synergy parameter κ > 0. Stated
differently, if the synergy term κ > 0 is small, a large overestimation of ability b,
and thus a large increase in coworkers’ equilibrium effort, is required to increase
optimal team size, and vice versa. Thus, the larger is the initial ability a, the larger
is the effect of overconfidence on biased agents’ optimal team size. By contrast, the
larger is the cost factor c, the larger is the free-rider problem and the smaller is
the effect of overconfidence and thus also the increase in team size. If follows that,
although overconfident agents view themselves as superior to all other coworkers,
their optimal team size increases for both sufficiently high degrees of overconfidence
and sufficiently large complementarities.

1.5 Overconfidence and Welfare

One can examine the effects of overconfidence on agents’ welfare from two perspec-
tives. While the ex ante approach considers welfare evaluations that are based on
agents’ expectations, the ex post approach incorporates realized rather than antici-
pated welfare (Starr (1973), Harris and Olewiler (1979), Sandmo (1983)). Although
ex post optimality is not considered a standard measure in welfare economics (see,
for example, Hammond (1981)), it has gained importance in measurements of wel-
fare in overconfidence models. As overconfidence stems from ex ante disagreement
about skill levels, expected outcomes, or the interpretation of performance signals,
a measure of ex ante welfare fundamentally depends on the definition and extent
of such biases. Moreover, it reflects the anticipated, rather than realized, utility of
biased agents and therefore is not applicable to measuring, comparing, and evalu-
ating the consequences of overconfidence. Accordingly, the welfare criterion of ex
post optimality is assumed to be more appropriate if agents differ in their beliefs
(Nielsen (2003), Kurz (2009)) and, in particular, if overconfidence effects prevail
(Nielsen (2009)).6

The model with overconfidence considers overconfident agents’ decision problem
based on their ex ante expected welfare. However, in contrast to the model with
rational agents, the ex ante expected profit of overconfident agents deviates from
the individual profit that is realized at the end of the period. Therefore, to ana-
lyze overconfident agents’ well-being at the end of the period, it is convenient to
consider the ex post welfare perspective. This concept, moreover, allows us to com-
pare the welfare of rational and overconfident teams and to assess the circumstances

6Consistent with this approach, the impact of overconfidence on agents’ ex-post experienced
utility is considered, for example, in the models of Gervais and Goldstein (2007), Sandroni and
Squintani (2007), Santos-Pinto (2008), and Gervais, Heaton, and Odean (2011).
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under which overconfidence may be beneficial or detrimental to agents. Our main
purpose is to determine whether overconfidence may be desirable in teamwork, for
example, through the mitigation of team-related free-rider problems, or whether the
effects of wrong decision-making associated with overconfidence outweigh the asso-
ciated benefits. While, with rational expectations, it appears natural to use agents’
preferences to evaluate team formation and optimal team size, with overconfidence,
possible policy implications must account for the incorrect decision making of bi-
ased agents. For example, if overconfidence generally results in welfare losses, public
policy may be designed to encourage individuals to more accurately evaluate their
skills. If there are (potential) team-related benefits to overconfidence, policy mak-
ers may wish to facilitate teamwork and encourage the formation of partnerships.
For instance, governments may create start-up subsidy programs and support other
forms of partnership formation.

More specifically, as all agents are overconfident, we must account for the fact that
our representative agent i = 1 only has ability a. Then, for overconfident agents’
equilibrium effort eB, we replace y1 by a eB, and for all j 6= 1 in the initial profit
function of (1.3), we replace yj by a eB. This yields the expected real individual
profit of overconfident agents as a function of team size:

E
[
ΠW
]

=
b a2 (2n c− b (c+ (n− 1)κ a2))

2 (n c− (n− 1)κ b a2)2
, (1.17)

where the welfare perspective is denoted by the superscript W . Intuitively, as the
overconfident agent’s ex ante expected individual profit is based on an overestimation
of one’s personal outcome, it exceeds the ex post expected individual profit for all
team sizes, E[ΠB] > E[ΠW ]. Consequently, it is of interest to determine which team
size maximizes (1.17) as the expected real individual profit, given overconfidence.
Thus, from the perspective of each agent’s individual welfare, we must account for
the fact that the agent has mistaken beliefs about the source of aggregate profits.
Specifically, as all agents are identical, each team member contributes equally to
the joint output. Consequently, agent 1 has ability a instead of â = b a. Again,
we can separate the positive effect of complementarities from the negative effect of
team size on each agent’s fraction of the joint output. The first order condition,
∂E[ΠW ]/∂n = 0, yields

0 =
b a2

(
2 c− κ b a2

)
2
(
nW c−

(
nW − 1

)
κ b a2

)2 − b a2
(
c− κ b a2

) (
2nW c− b

(
c+

(
nW − 1

)
κ a2

))(
nW c−

(
nW − 1

)
κ b a2

)3 .

(1.18)

Given that all agents are symmetrically informed of coworkers’ overconfidence, the
marginal positive team size effect corresponds to (1.12). However, with overconfi-
dence, each agent believes that he contributes more to the joint output than others
and consequently also to the complementarity effect. Thus, the marginal loss to each
agent’s output share, given by the second (negative) term, is less than each agent’s
expectations. Consequently, the overconfident agents’ optimal team size might be
too small. By equating the positive and (real) negative marginal effects, we obtain
the welfare-optimal team size with overconfidence. Proposition 4 outlines the result.
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1 Optimal Team Size and Overconfidence

Proposition 4 Under the equilibrium effort choice eB, overconfident agents’ indi-
vidual welfare is maximized by a team size of

nW =
b (2 c2 − 2 c κ b a2 + κ2 b a4)

2 c2 − 3 c κ b a2 + κ2 b2 a4
(1.19)

for κ < c/(b a2). For κ ≥ c/(b a2), the optimal team is infinitely large. Furthermore,
for b < 1.5 and

κ <
2 c (b− 1)

(2 b− 3) b a2
(1.20)

the above term falls below 1, in which case the optimal solution is nW = 1.

In the numerical example of Figure 1.1, the welfare-optimal team size nW exceeds
both the rational and the overconfident agents’ optimal team sizes, n∗ and nB,
respectively, for positive and, under certain conditions, negative values of κ. One
major difference is that, while, for κ ≤ 0, both rational and overconfident agents
choose to work alone, n∗ = nB = 1, this does not necessarily hold for the welfare-
optimal team size nW . Therefore, it is of interest to compare the optimal team sizes
of Propositions 1, 2, and 4. This also involves the question of the values of κ for
which team formation is beneficial with respect to agents’ welfare. Proposition 5
outlines the result.
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Figure 1.1: Optimal Team Size n∗ as a Function of the overconfidence degree b

The graphs indicate the optimal team sizes of rational agents n∗ ( dashed line) and of overconfi-
dent agents nB (red line) and the welfare-optimum, given overconfidence, nW (green line). The
parameters are a = 1.5 and c = 3.5.

Proposition 5 Assume that κ < c/(b a2). Then the welfare-optimal team size nW

exceeds the overconfident agents’ optimal team size nB if and only if

κ >
2 c (b− 1)

(2 b− 3) b a2
(1.21)

for b < 1.5. For b ≥ 1.5, nW > nB for all values of κ.
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Proposition 5 shows that the welfare-optimal team size nW exceeds overconfident
agents’ optimal team size nB if the degree of overconfidence is high, b ≥ 1.5, or if κ is
not excessively negative and (1.21) holds. In this case, the welfare-optimal team size
increases in the degree of overconfidence. Intuitively, even if overconfident agents
increase their optimal team size, misinterpretation of individual outcomes makes
each team member believe that he or she is more productive than his or her peers,
so that the incentive to build the team is reduced. In fact, Figure 1.1 shows that, for
sufficiently large values of complementarities, κ > 0, and the overconfidence level,
b, biased agents increase their optimal team size relative to the rational model but
choose a team size that is too small, nW > nB > n∗. Without complementarities,
κ ≤ 0, biased and rational agents always choose to work alone, whereas under certain
conditions, the welfare-optimal team size exceeds this choice and team-building is
welfare-optimal, nW > nB = n∗ = 1.

The rationale behind this result is that, without teamwork, overconfidence leads to a
costly overinvestment in effort. Intuitively, this overinvestment in effort increases in
the degree of overconfidence. If team size increases, the free-rider problem emerges
and reduces the level of overinvestment in effort. Additionally, with complemen-
tarities, κ > 0, agents can benefit from the increased effort of all team members.
If coworkers’ outputs are substitutes, κ < 0, team-building reduces effort and the
costs of overinvestment in effort but, on the other hand, causes losses in profitabil-
ity. While this first effect dominates for a high degree of overconfidence b, if there
is extensive overinvestment in effort, the contrary holds if b is small and κ is highly
negative. Accordingly, for b < 1.5, team-building remains beneficial, provided ef-
fort interaction is not highly negative, so that (1.21) holds. Note that, if κ < 0,
the reduction in the cost of effort in teams arises through two channels. First, the
free-rider problem emerges in teams and reduces equilibrium effort levels. Second, a
negative κ further reduces effort and effort costs. These two effects are linked: the
larger is the free-rider problem, the more it reduces the costs of effort in teams, and
the smaller is the lost profitability associated with a negative κ. Hence, the larger
are the marginal costs c, the more negative κ can be, with team-building remaining
beneficial. Overall, our results suggest that team-building should be incentivized
when overconfidence is present.

With the optimal team size results of Propositions 1, 2, and 4, we can derive the ex
post expected equilibrium individual profits for rational and overconfident agents.
This enables us to examine the conditions under which overconfidence increases
agents’ individual welfare relative to the rational equilibrium and thus determine
whether overconfidence is desirable for teamwork. Substituting n for the optimal
team size of rational agents n∗ in (1.6), we obtain rational agents’ expected equilib-
rium individual profit of

E [Π (n∗)] =

(κ a3−2 c a)
2

8 c2 (c−κ a2) , if κ > 0,
a2

2 c
, otherwise.

(1.22)

Similarly, substituting n for the optimal team size of biased agents nB in (1.17)
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yields overconfident agents’ expected equilibrium individual profit of

E
[
ΠW

(
nB
)]

=


b (κ b a3−2 c a)

2
(3κ (b−1) b a2−c (3 b−4))

8 c (c−κ b a2) (c (b−2)−κ (b−1) b a2)2 , if κ > 2 c (b−1)
(2 b−1) b a2 ,

− (b−2) b a2
2 c

, otherwise.
(1.23)

Note that (1.23) combines biased agents’ optimal team size nB with their expected
real individual profit E[ΠW ]. This allows us to examine the impact of the opti-
mal team size of overconfident agents on their individual profit levels, as these will
be experienced ex post. Finally, incorporating the welfare-optimal team size with
overconfidence, nW , into (1.17), we obtain the equilibrium individual profit of

E
[
ΠW

(
nW
)]

=

 (κ b a3−2 c a)
2

8 c (c−κ (b−1) a2) (c−κ b a2) , if b ≥ 1.5 or if κ > 2 c (b−1)
(2 b−3) b a2 ,

− (b−2) b a2
2 c

, otherwise.
(1.24)

The above equations show that κ plays a decisive role in the question of team-
building, including with respect to the welfare implications of rational versus over-
confident teams. Given the optimal team sizes of rational and overconfident agents,
we can determine the values of κ under which overconfidence can increase individual
welfare relative to the rational model. The result is summarized in Proposition 6.

Proposition 6 (i) For n = nW , individual welfare is higher (lower) or equal for
overconfident agents than for rational agents only if κ ≥ 0 (κ < 0).
(ii) For n = nB, there is a cut-off value κ > 0 such that individual welfare is higher
(lower) or equal for overconfident agents than for rational agents only if κ ≥ κ
(κ < κ).
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Figure 1.2: Effect of Overconfidence b and Output Interaction κ on Agents’ Welfare

The graphs show the ex post expected individual profits E[Π(n∗)] for the optimal team size of
rational agents (dashed line), E[ΠW (nB)] for the optimal team size of overconfident agents (red
line), and E[ΠW (nW )] for the welfare-optimal team size with overconfidence (green line). The
parameters are a = 1.5, c = 3.5, as before, and b = 1.5.

As exemplified in Figure 1.2, for κ < 0, overconfidence always leads to a lower profit
than in the rational equilibrium. Proposition 2 shows that overconfident agents
refrain from teamwork in this case, nB = 1. On the other hand, Proposition 5 shows
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that, under certain conditions, overconfident teams are beneficial even in the absence
of effort complementarities, nW > 1. It follows that, although the individual profits
of biased agents cannot exceed individual profits in the rational equilibrium in this
case, team-building can reduce the profitability losses of overconfident agents and
increase their welfare relative to individual work. Thus, facilitating team-building in
the presence of overconfidence can increase agents’ welfare, especially if the relative
degree of overconfidence is high or if κ is not excessively negative.

If κ > 0, the welfare-optimal team size nW increases the welfare of overconfident
agents compared with rational ones. Given biased agents’ optimal team size nB,
individual welfare increases and approaches the welfare optimum only if comple-
mentarities are sufficiently strong, κ > κ. This finding has the following economic
implication: although the optimal team size of overconfident agents is based on
an overestimation of individual profits, it can make overconfident agents better off
compared with rational ones. That is, overconfidence and the misinterpretation of
individual outcomes need not be detrimental to agents. Moreover, as our model
allows for endogenously-determined team size, it shows that in the presence of com-
plementarities, overconfidence can be welfare-improving, even given large degrees of
overconfidence.

1.6 Implications and Discussion

A result of our model is that in partnerships, overconfidence regarding ability in-
creases the effort provisions of agents, mitigates team-related free-rider problems,
and increases biased agents’ expected individual profits for all team sizes. Indeed,
overconfidence effects appear to be typical of entrepreneurs and appear likely to ex-
plain excessive entry into new businesses. In a laboratory experiment, Camerer and
Lovallo (1999) provide evidence that excessive business entry is based on an “inside
view” of entrepreneurs that ignores past statistics in evaluating the current situation
and, therefore, may lead to overoptimistic forecasts. By contrast, the “outside view”
produces more accurate forecasts, as it relies on past situations of similar types and,
therefore, allows one to draw conclusions regarding the likelihood of future success
(Kahneman and Lovallo (1993)). Excessive entry is shown to be more likely when
performance depends on skill and, thus, is likely to result from overconfidence of
individuals in their personal abilities relative to those of other market participants,
a phenomenon known as “reference group neglect”. Specifically, Cooper, Woo, and
Dunkelberg (1988) show that new business owners are overly optimistic about their
future prospects and attribute a higher probability to their personal success than
to that of other entrepreneurs of similar types. Overconfidence is thus also associ-
ated with heavy workloads, and decisions to start new businesses are perhaps based
by larger perceived outcomes than agents expect to obtain inside firms. In effect,
the empirical literature confirms that entrepreneurs of start-up firms exhibit higher
levels of overconfidence than managers in large organizations (Busenitz and Barney
(1997), Forbes (2005)).

Consequently, while new market entry of entrepreneurs is attributed to the “inside
view” of overoptimism, the impact of overconfidence on subsequent performance is
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less clear-cut. Obviously, overoptimism about ability and future success may in-
duce myopic decision making that ignores the past performance of other market
entrants. Therefore, overconfidence and excessive business entry are expected to
be linked to high failure rates of new businesses (Camerer and Lovallo (1999)). In
our model, overconfident agents believe they are overly productive and, therefore,
overestimate their expected end-of-period profits. From an ex post perspective, en-
trepreneurs should realize lower profits compared with their ex ante expectations.
Moreover, the overestimation of personal contributions dampens team formation in-
centives, so that overconfident agents tend to choose team sizes that are too small.
In particular, if complementarities (and thus optimal team size) are small, over-
confident agents are worse off relative to rational ones, while the relationship is
reversed if complementarities are sufficiently large. That is, the business entry of
larger partnerships should be associated with lower failure rates than the business
entry of smaller partnerships. In effect, numerous studies conducted in different
countries and markets find high failure rates of entrepreneurs within their first years
of activity and that business failures are especially prevalent among small start-
ups (Dunne, Roberts, and Samuelson (1988, 1989), Wagner (1994), Geroski (1995),
Mata, Portugal, and Guimaraes (1995)). Similarly, entrepreneurs experience lower
initial earnings and lower earnings growth compared with employees inside firms
(Hamilton (2000)). Consistent with our results, overconfidence may have ambigu-
ous overall effects on entrepreneurial performance. While Koellinger, Minniti, and
Schade (2007) and Hmieleski and Baron (2008, 2009) confirm a negative relation-
ship, Prussia, Anderson, and Manz (1998) show that entrepreneurs’ self-efficacy has
a positive performance effect. Similarly, Chandler and Jansen (1992) find that “the
most successful entrepreneurs are strongly convinced of their ability”.

Our general results are consistent with the experimental evidence of Rulliere, Santos-
Pinto, and Vialle (2011) confirming that in teams, overconfidence increases the effort
provision of agents, mitigates moral hazard problems, and raises team output if com-
plementarities exist. At the same time, we emphasize that, even in the presence of
effort substitutes, overconfident agents can increase their welfare relative to individ-
ual work if they choose to form teams. At the aggregate level, our results propose
that supporting the creation of partnerships can improve economic performance. In
effect, entrepreneurship and new firm foundations are perceived as determining fac-
tors in economic performance (for recent contributions, see Wennekers and Thurik
(1999), Audretsch and Keilbach (2004), Stel, Carree, and Thurik (2005), Audretsch,
Bönte, and Keilbach (2008)). For example, R&D alliances and research networks are
frequently promoted by governmental subsidy programs, including tax interventions
and direct government participation through public private partnerships (see, for ex-
ample, Hagedoorn (1993, 2002), Osborn and Hagedoorn (1997), Sakakibara (1997),
Narula and Dunning (1998), Narula and Duysters (2004)). From a performance-
based perspective, complementarities and synergy generation are seen as the main
reasons for R&D cooperation, while partnership formation is acknowledged to ad-
vance performance (Hagedoorn and Schakenraad (1994), Mitchell and Singh (1996),
Ahuja (2000), Baum, Calabrese, and Silverman (2000), Sampson (2007), Lin, Yang,
and Arya (2009)). Similarly, related to our theoretical results, Becker and Dietz
(2004) confirm that the likelihood of project innovation increases with the number
of partners cooperating in an R&D project. Nevertheless, according to Hagedoorn,
Link, and Vonortas (2000), public intervention should carefully consider possible
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adverse aspects of partnership formation and firm collaboration that, for example,
can lead to decreased market competition and the creation of monopolies in existing
and future markets.

1.7 Conclusion

By incorporating free-riding effects, synergies, and behavioral effects into a group
work context, our paper focuses on three key elements that determine the optimal
size of a team. As the free-rider problem increases with team size, rational agents
only form teams if certain complementarities can be exploited. The introduction
of overconfidence increases agents’ equilibrium efforts and mitigates team-related
free-rider problems. Nevertheless, because overconfident agents overestimate their
individual profits, they increase optimal team size for a sufficiently high degree of
overconfidence and sufficiently large complementarities. From agents’ welfare per-
spective, overconfident agents tend to choose team sizes that are too small. Although
overconfidence is only welfare-optimal if complementarities are present, it can drive
team-building, even if coworkers’ efforts are substitutes. In this case, overconfidence
prevents agents from making costly overinvestments in effort and increases their
welfare relative to individual work.

One main result is that the misinterpretation of individual profits somewhat dimin-
ishes the welfare of overconfident agents. Nevertheless, their optimal team size can
be welfare-increasing relative to the rational model if complementarities are suffi-
ciently strong. More generally, our results suggest that overconfident agents are
more likely to self-select themselves into teamwork if the production technology re-
quires coordination among team members. Considering the decision problem from
the opposite perspective, our model proposes that teamwork should expand when
overconfidence is present. With overconfidence, team size should be larger and,
under certain conditions, exceed biased agents’ optimal team size choice.

Based on these considerations, this analysis could be expanded further, under alter-
native assumptions concerning coworkers’ abilities, expected levels of overconfidence,
or also divergent information structures. Another direction for further research
would be to analyze the interaction of overconfidence with other (costly) incen-
tive systems, such as monitoring activities. By mitigating the free-rider problem
in teams, monitoring can increase effort incentives and consequently also optimal
team size of both rational and overconfident agents. However, even if costless, it
can reduce the overconfident agents’ welfare if it leads to an excessive effort over-
investment, especially if coworkers’ efforts are substitutes. A further aspect would
be to extend the model to a multi-period setting. This could yield novel insights
with regard to the choice of optimal team size from a dynamic perspective. Related
to this topic, Gervais and Odean (2001) show that traders’ overconfidence increases
with success and decreases with failure, such that over time, traders learn to have
more accurate assessments of their ability. Likewise, in our model, the ex post in-
dividual profit of overconfident agents deviates from their ex ante expected value.
Therefore, biases could diminish over time and shift optimal team size toward the
rational equilibrium in a long-term consideration.
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In light of the rising importance of team structures in modern organizational set-
tings, our paper contributes to fundamental research on optimal team design. By
incorporating overconfidence effects into our model, we relate the research on team
size with that on overconfidence effects in teams. In addition to previous work on
overconfidence in teams, we show that biased agents can benefit from cooperation
without any effort interaction and even when individuals’ efforts are substitutes,
especially if the relative degree of overconfidence is high. In addition to accounting
for existing empirical research, our results provide new testable predictions related
to overconfidence effects in teams, contribute to the literature on endogenous orga-
nizational design, and speak to the efficient provision of incentives to agents.

1.8 Appendix

Proof of Lemma 1. In deciding his labor supply, each agent balances his end-of
period profit, E[Πi], with his costs of effort, c(ei). As joint output is equally divided
among team members, each agent’s output Y/n depends on the contributions of his
coworkers. For a team with n ≥ 1 agents, consider the decision problem from the
perspective of a representative agent i = 1 cooperating with n − 1 ≥ 0 identical
coworkers. According to (1.3), agent 1’s maximization problem is

max
e1

E[Π1] =
E[Y ]

n
− c(e1) =

1

n

(
n∑
i=1

yi + κ
n∑
i=1

n∑
j 6=i

yi yj

)
− c e

2
1

2
. (1.25)

As all coworkers are identical, the sum of individual outputs of all team members is
given by y1 + (n− 1) yj. Accordingly, agent 1 interacts with n− 1 coworkers, while
the n − 1 coworkers additionally interact with (n − 2)/2 coworkers. Hence, for a
team consisting of n = 1 + (n− 1) agents, there are n (n− 1)/2 interactions. Then,
with individual output y1 = a1 e1 and coworkers’ individual outputs yj = aj ej for
j 6= 1, agent 1 solves

max
e1

E[Π1] =
y1 + (n− 1) yj + (n− 1)κ yj (y1 + (n− 2) yj/2)

n
− c e

2
1

2

=
a1 e1 + (n− 1) aj ej + (n− 1)κ aj ej (a1 e1 + (n− 2) aj ej/2)

n
− c e

2
1

2
.

(1.26)

With equal abilities, ai = aj = a, the maximization problem is

max
e1

E[Π1] =
a (e1 + (n− 1) ej + (n− 1)κ a ej (e1 + (n− 2) ej/2))

n
− c e

2
1

2
. (1.27)

As coworkers’ efforts ej cannot be observed, agent 1’s equilibrium effort, denoted e∗1,
is the best response to the conjectured efforts of his coworkers, e∗j . The first-order
condition, ∂E[Π1]/∂e1 = 0, yields

0 =
(n− 1)κ a2 e∗j + a

n
− c e∗1,

e∗1 =
a

n c

(
(n− 1)κ a e∗j + 1

)
, (1.28)
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which corresponds to (1.4). As all agents are identical, e∗1 = e∗j = e∗ holds, and we
can rewrite (1.28) as

e∗ =
a

n c− (n− 1)κ a2
. (1.29)

Note that (1.29) applies for κ < c/a2 if n > 1; otherwise, the equilibrium effort is
infinitely large. �

Proof of Proposition 1. Incorporating the equilibrium effort of Lemma 1 into
(1.26), with y1 = yj = a e∗ for all j 6= 1, renders rational agents’ individual profit
E[Π] as a function of team size n. Thus, corresponding to (1.6), each agent solves
for the optimal team size n∗:

max
n

E[Π] =
a2 (2n c− c− (n− 1)κ a2)

2 (n c− (n− 1)κ a2)2
. (1.30)

The first-order condition, ∂E[Π]/∂n = 0, yields

0 = κ a3 + 2 c a
( c

n∗ c− (n∗ − 1)κ a2
− 1
)
,

n∗ =
2 c2 − 2 c κ a2 + κ2 a4

2 c2 − 3 c κ a2 + κ2 a4
. (1.31)

Note that (1.31) applies for κ < c/a2; otherwise, the optimal team size is infinitely
large. Additionally, as n ≥ 1, the optimal team size is n∗ = 1 for κ < 0; that is, in
cases when the algebraic term in (1.31) is less than 1. �

Proof of Lemma 2. With overconfidence, agent 1 believes that his personal ability
is â1 = b a1 = b a. Agent 1 is aware of his coworkers’ overconfidence. Consequently,
he knows that the abilities of his coworkers are aj = a, even though each coworker
believes that his personal ability is âj = b aj = b a. Thus, the (expected) individual
contribution is y1 = b a1 e1 = b a e1, and the coworkers’ individual contributions are
yj = aj ej = a ej for j 6= 1. Similarly to the proof of Lemma 1, we can rewrite agent
1’s maximization problem of (1.26) as

max
e1

E
[
ΠB

1

]
=
E
[
Y B
]

n
− c(e1)

=
y1 + (n− 1) yj + (n− 1)κ yj (y1 + (n− 2) yj/2)

n
− c e

2
1

2

=
b a1 e1 + (n− 1) aj ej + (n− 1)κ aj ej (b a1 e1 + (n− 2) aj ej/2)

n
− c e

2
1

2

=
a (b e1 + (n− 1) ej + (n− 1)κ a ej (b e1 + (n− 2) ej/2))

n
− c e

2
1

2
.

(1.32)

Again, agent 1’s equilibrium effort, denoted eB1 , is the best response to the conjec-
tured efforts of his biased coworkers, eBj . The first-order condition, ∂E[ΠB

1 ]/∂e1 = 0,

29



1 Optimal Team Size and Overconfidence

thus yields

0 =
b a+ (n− 1)κ b a2 eBj

n
− c eB1 ,

eB1 =
b a

n c

(
1 + (n− 1)κ a eBj

)
, (1.33)

which corresponds to (1.9). Agent 1 knows that each coworker expects the per-
sonal contribution to be yj = b a ej, although the actual contribution is yj = a ej.
Moreover, agent 1 knows that his coworkers believe that he has only ability a. He
also knows that the coworkers are aware of all the other coworkers’ overconfidence.
Consequently, each agent believes that his own ability is b a and that other agents’
abilities are a. However, each coworker will choose an effort level that corresponds
to the ability level b a. Moreover, agent 1 knows that each coworker will attribute
ability level a to his coworkers, including agent 1. Thus, the “agree to disagree” ap-
proach implies that, in equilibrium, each agent will choose the same effort level but
believes that this effort level is only optimal for oneself and not for the coworkers.
Thus, for eB1 = eBj = eB, we can rearrange (1.33) to obtain

eB =
b a

n c− (n− 1)κ b a2
. (1.34)

Note that (1.34) applies for κ < c/(b a2) if n > 1; otherwise, the equilibrium effort
is infinitely large. �

Proof of Proposition 2. Incorporating the equilibrium effort of Lemma 2 into
(1.32), with the (expected) individual contribution of y1 = b a eB, and the coworkers’
contributions of yj = a eB for j 6= 1, yields agent 1’s expected individual profit,
E[ΠB

1 ], as a function of team size n. Note that each agent believes that his personal
contribution to the joint output is the highest compared to one’s coworkers. That
is, agents disagree about the source of the joint output. However, all agents choose
the same effort level, and the biases of the coworkers are symmetrically known to
all team members. With symmetric beliefs, E[ΠB

1 ] = E[ΠB
j ] = E[ΠB] holds and

agents agree upon each additional team member’s contribution to this joint output,
∂E[ΠB]/∂n. Each agent then solves

max
n

E
[
ΠB
]

=
b a2 ((2n+ b− 2) c− (n− 1)κ b a2)

2 (n c− (n− 1)κ b a2)2
. (1.35)

The first-order condition, ∂E[ΠB]/∂n = 0, yields

0 =
b a
(
2
(
nB + b− 2

)
c2 −

(
3nB + 2 b− 4

)
c κ b a2 +

(
nB − 1

)
κ2 b2 a4

)
(nB − 1) κ b a2 − nB c

,

nB =
−2 c2 (b− 2) + 2 c κ (b− 2) b a2 + κ2 b2 a4

2 c2 − 3 c κ b a2 + κ2 b2 a4
. (1.36)

Similarly, (1.36) applies for κ < c/(b a2); otherwise, the optimal team size is infinitely
large. Additionally, as n ≥ 1, the optimal team size is nB = 1 for

κ <
2 c (b− 1)

(2 b− 1) b a2
, (1.37)

that is, if the algebraic term of (1.36) is less than 1. �
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Proof of Proposition 3. From a comparison of Propositions 1 and 2, it follows
that, with overconfidence, b > 1, the agents’ optimal team size increases, n∗ < nB,
if

2 c2 − 2 c κ a2 + κ2 a4

2 c2 − 3 c κ a2 + κ2 a4
<
−2 c2 (b− 2) + 2 c κ (b− 2) b a2 + κ2 b2 a4

2 c2 − 3 c κ b a2 + κ2 b2 a4
,

0 <
2

2 c− κ a2
− 1

c− κ a2
+

1

c− κ b a2
− 2 b

2 c− κ b a2
. (1.38)

Note that, as n∗ > 1 only if κ > 0, and nB > 1 only if κ is positive and sufficiently
large, (1.38) can only be fulfilled if

κ >
2 c (b− 1)

(2 b− 1) b a2
, (1.39)

hence, if (1.15) holds and κ < c/(b a2). Equating (1.38) to zero and solving for b
yields n∗ < nB if

b >
2 (2 c3 − 4 c2 κ a2 + c κ2 a4)

κ a2 (4 c2 − 6 c κ a2 + κ2 a4)
(1.40)

for κ 6= (3−
√

5) c/a2. Otherwise, the algebraic term becomes infinitely large within
the feasible parameter range. From this, it is easy to see that, for c/(b a2) > κ >
2 c (b− 1)/((2 b− 1) b a2), (1.38) holds for all values of the degree of overconfidence
b if κ ≥ (3−

√
5) c/a2. Consequently, the threshold of (1.40) is applied in the range

of κ < (3−
√

5) c/a2 for c/(b a2) > κ > 2 c (b− 1)/((2 b− 1) b a2). �

Proof of Proposition 4. As, given overconfidence, agents’ true abilities do not
change, a1 = aj = a, their individual profit function is consistent with the profit
function of the rational model and is therefore given by (1.26) and (1.27). Conversely,
when taking overconfident agents’ expected individual profit of (1.32) as a basis, we
must take into account that agent 1’s ability is a rather than â = b a. Consequently,
we obtain

E
[
ΠW

1

]
=
E[Y ]

n
− c(e1)

=
y1 + (n− 1) yj + (n− 1)κ yj (y1 + (n− 2) yj/2)

n
− c e

2
1

2

=
a1 e1 + (n− 1) aj ej + (n− 1)κ aj ej (a1 e1 + (n− 2) aj ej/2)

n
− c e

2
1

2

=
a (e1 + (n− 1) ej + (n− 1)κ a ej (e1 + (n− 2) ej/2))

n
− c e

2
1

2
. (1.41)

Combining the overconfident agents’ equilibrium effort of Lemma 2 in (1.41) with
the contribution of y1 = a eB and the coworkers’ contributions of yj = a eB for
j 6= 1, we obtain the overconfident agents’ real individual profit E[ΠW ] as a function
of team size n. The new maximization problem is then

max
n

E
[
ΠW
]

=
b a2 (2n c− b (c+ (n− 1)κ a2))

2 (n c− (n− 1)κ b a2)2
, (1.42)

31



1 Optimal Team Size and Overconfidence

which corresponds to (1.17). The first-order condition, ∂E[ΠW ]/∂n = 0, yields the
welfare-optimal team size with overconfidence,

0 =
b a2

(
−2

(
nW − b

)
c2 +

(
3nW − 2 b

)
c κ b a2 −

(
nW − 1

)
κ2 b2 a4

)
2 (nW c− (nW − 1) κ b a2)3

,

nW =
b (2 c2 − 2 c κ b a2 + κ2 b a4)

2 c2 − 3 c κ b a2 + κ2 b2 a4
. (1.43)

In addition, (1.43) applies for κ < c/(b a2); otherwise, the optimal team size is
infinitely large. Additionally, as n ≥ 1, the optimal team size is nW = 1 for b < 1.5
and

κ <
2 c (b− 1)

(2 b− 3) b a2
, (1.44)

that is, if the algebraic term of (1.43) is less than 1. �

Proof of Proposition 5. A comparison of the optimal team sizes nB and nW of
Propositions 2 and 4 yields

nW − nB =
b (2 c2 − 2 c κ b a2 + κ2 b a4)

2 c2 − 3 c κ b a2 + κ2 b2 a4
− −2 c2 (b− 2) + 2 c κ (b− 2) b a2 + κ2 b2 a4

2 c2 − 3 c κ b a2 + κ2 b2 a4

=
4 c (b− 1)

2 c− κ b a2
. (1.45)

As (1.45) is positive for κ < c/(b a2), we obtain nW > nB, provided that nW > 1
holds. According to the proof of Proposition 4, nW > 1 holds for all values of κ if
b ≥ 1.5. Otherwise, if b < 1.5, then nW > 1, and consequently also nW > nB if and
only if

κ >
2 c (b− 1)

(2 b− 3) b a2
, (1.46)

hence, if (1.21) holds. �

Proof of Proposition 6. As in the proposition, the proof consists of two parts.
(i) The first part of Proposition 6 compares the expected equilibrium profit of ra-
tional agents, E[Π(n∗)], with the ex post expected individual profit of overconfident
agents that is based on the welfare-optimal team size nW , E[ΠW (nW )]. In particular,
according to (1.22) and (1.24), we obtain the following results:

First, for 0 < κ < c/(b a2), team formation is optimal for both rational and over-
confident agents such that n∗ > 1 and nW > 1 holds. This yields

E
[
ΠW
(
nW
)]
− E

[
Π
(
n∗
)]

=
(κ b a3 − 2 c a)

2

8 c (c− κ (b− 1) a2) (c− κ b a2)
− (κ a3 − 2 c a)

2

8 c2 (c− κ a2)
> 0.

(1.47)

From this, it is easy to see that for 0 < κ < c/(b a2), (1.47) is strictly positive for all
values of the degree of overconfidence b > 1, so that E[ΠW (nW )] > E[Π(n∗)] holds.
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Second, for κ ≤ 0, we obtain n∗ = 1, while nW > 1 if either b ≥ 1.5 or if

κ >
2 c (b− 1)

(2 b− 3) b a2
, (1.48)

hence, if (1.21) holds. In this parameter range, the expected profit difference is

E
[
ΠW
(
nW
)]
− E

[
Π
(
n∗
)]

=
(κ b a3 − 2 c a)

2

8 c (c− κ (b− 1) a2) (c− κ b a2)
− a2

2 c

=
κ a4 (4 c (b− 1) + κ (4− 3 b) b a2)

8 c (c− κ (b− 1) a2) (c− κ b a2)
≤ 0. (1.49)

For κ < 0, (1.49) is negative within the feasible parameter range. The threshold
value is κ = 0, where (1.49) equals zero, and consequently E[ΠW (nW )] = E[Π(n∗)].

Third, for κ < 0 and nW = 1; hence, if (1.48) is not fulfilled, and b < 1.5, we obtain

E
[
ΠW
(
nW
)]
− E

[
Π
(
n∗
)]

= −(b− 2) b a2

2 c
− a2

2 c
= −(b− 1)2 a2

2 c
< 0. (1.50)

In this parameter range, E[ΠW (nW )] < E[Π(n∗)]. That is, for a team size of n = nW ,
overconfidence increases (decreases) individual welfare only if κ > 0 (κ < 0).

(ii) The second part of Proposition 6 compares the expected equilibrium profit of
rational agents, E[Π(n∗)], with the ex post expected individual profit based on
overconfident agents’ optimal team size nB, E[ΠW (nB)]. Comparing (1.22) and
(1.23) entails the following:

First, both n∗ > 1 and nB > 1 if

κ >
2 c (b− 1)

(2 b− 1) b a2
, (1.51)

hence if (1.15) holds, and κ < c/(b a2). In this parameter range, we obtain

E
[
ΠW
(
nB
)]
− E

[
Π
(
n∗
)]

=
b (κ b a3 − 2 c a)

2
(3κ (b− 1) b a2 − c (3 b− 4))

8 c (c− κ b a2) (c (b− 2)− κ (b− 1) b a2)2

− (κ a3 − 2 c a)
2

8 c2 (c− κ a2)

=
1

8 c2

(
(κ b a3 − 2 c a)

2

(c− κ b a2)
c b (3κ (b− 1) b a2 − c (3 b− 4))

(c (b− 2)− κ (b− 1) b a2)2

− (κ a3 − 2 c a)
2

c− κ a2

)
. (1.52)

From this, it is easy to see that as b > 1, the first bracketed fraction of (1.52)
is positive and always greater than the third negative fraction. Depending on the
parameter values, the second bracketed fraction can be positive or negative. How-
ever, κ reduces the denominator and increases the numerator of the second fraction
within the given parameter range. Thus, the second fraction is strictly increasing in
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κ. Moreover, for κ → c/(b a2), the second fraction tends to b > 1. There is then a
threshold value κ > 0 with E[ΠW (nB)] = E[Π(n∗)]. It follows that (1.52) is positive
for κ > κ, while it is negative for κ < κ.

Second, if 0 < κ < c/(b a2), but (1.51) is not fulfilled, overconfident agents choose to
work alone, nB = 1, while the optimal team size of rational agents is some n∗ > 1.
In this parameter range, we obtain

E
[
ΠW
(
nB
)]
− E

[
Π
(
n∗
)]

= −(b− 2) b a2

2 c
− (κ a3 − 2 c a)

2

8 c2 (c− κ a2)

=
a2 (κ a2 − c (3 + 4 (b− 2) b+ c/ (c− κ a2)))

8 c2
< 0.

(1.53)

For κ < c/(b a2), (1.53) is strictly negative such that E[ΠW (nB)] < E[Π(n∗)] holds.

Third, for κ ≤ 0, both rational and overconfident agents refrain from teamwork,
n∗ = nB = 1. We obtain

E
[
ΠW
(
nB
)]
− E

[
Π
(
n∗
)]

= −(b− 2) b a2

2 c
− a2

2 c
= −(b− 1)2 a2

2 c
< 0, (1.54)

which corresponds to (1.50) because nW = nB = n∗ = 1. Consequently, for nW =
nB = 1, overconfidence is always welfare-decreasing. Overall, for a team size of
n = nB, overconfidence increases (decreases) agents’ individual welfare only if κ > κ
(κ < κ). �
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2 Divide et Impera: Curbing Agents’
Duties to Remain in Office1

Abstract

By endogenizing a manger’s optimal number of direct reports, we show
how managers can exploit their organizational authority to shield them-
selves against replacement. Although the probability of hiring a star
performer increases with the number of direct reports, each employee
completes a smaller fraction of the overall task, such that learning about
the employees’ individual abilities occurs more slowly. We show that a
manager maximizes the probability of retaining his job if he delegates a
task to an infinite number of employees. Through the trade-off for the
manager between decreasing his private costs of being replaced and in-
creasing labor coordination costs, our model derives predictions of when
managers tend to choose an excessively large number of direct reports,
creating inefficiencies at the firm level.

1We thank Matthias Kräkel, Stefan Wielenberg, and Ian Jewitt for helpful comments. Partici-
pants in the 11th Brucchi Luchino Labor Economics Workshop in Trento, the 16th Colloquium
on Personnel Economics in Tübingen, and the 75th Annual Conference of the German Academic
Association for Business Research in Würzburg also provided helpful suggestions.
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2.1 Introduction

In January 2010, Sara Mathew became CEO of Dun & Bradstreet Corporation, the
world’s leading provider of commercial information. This change was accompanied
by an increase of direct subordinates from six agents under the direction of her
predecessor to sixteen direct reports. One of the main reasons for this sudden more
than doubling of the number of direct reports was that Sara Mathew “wanted to
stay on top”. After gaining experience and becoming more secure in her position,
Sara Mathew feels more “comfortable” with only seven direct reports.2

The example of Sarah Mathew suggests that the number of subordinates seems to
be an instrument for protecting a manager’s position. By increasing the number
of direct reports, a manager can reduce the influence and the visibility of each
subordinate and thus strengthen the personal power inside the firm. This can be
especially important for new managers, who are primarily confronted with a high
level of job uncertainty. Sarah Mathew indicates a general trend in the “being the
boss”-strategy of top executives. The findings of empirical analyses also indicate
that managers have substantially expanded their number of direct reports over the
past two decades, strengthening their power at the top hierarchy level (Rajan and
Wulf (2006) and Guadalupe, Li, and Wulf (2012)).

In this paper, we present a novel conception of how top executives can exploit
their personal working position to protect themselves from being replaced. More
specifically, in his seminal work Mintzberg (1973) highlights that, by definition, a
manager has formal authority over organizational decisions. In this work, we return
to the roots of this definition and theoretically explore the possible consequences
of allocating this authority to managers when they face career concerns. Career
concerns are associated with biased actions on the part of the manager with a focus
on the objective of not being replaced. We examine the nature of these incentives
by endogenizing the question of a manager’s optimal number of direct reports, if
a principal assigns him responsibility over task delegation. Given our choice to
focus on managerial career concerns and optimal organizational design, our model
principally applies to diverse corporate structures and different hierarchy types,
where a principal has to delegate part of his authority to a manager. Furthermore,
since its famous implementation by Julius Caesar, the “divide et impera”-strategy
has played an important role, not only in the field of economics but also for the
protection of the personal power of top-ranking politicians.3

In the theoretical model, a principal hires a manager, who chooses the number of ex-
ante identical employees to perform a task. While the manager has authority over

2Description and citations based on Nielsen, G. R., and Wulf, J.: “How Many Direct Reports?”,
Harvard Business Review, April 2012.

3In the German political system, the number of Parliamentary State Secretaries is not limited
by law and, hence, is selected by the respective minister. Although the scope of work does not
change, the number of these secretaries has frequently increased, most recently since Angela
Merkel took office in 2005. The example of the Federal Minister of Health, Daniel Bahr, who
was appointed Parliamentary State Secretary by the former Federal Minister of Health, shows
that Parliamentary State Secretaries can replace incumbent ministers and, therefore, represent
a potential threat to their positions.
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organizational decisions, the principal has the authority to replace the manager.
Although the probability of hiring a star performer increases with the number of
employees, each employee performs a smaller fraction of the overall task such that
learning about employees’ individual abilities occurs more slowly. The model shows
that a manager minimizes the probability of his or her replacement if he delegates
a task to an infinite number of employees.

Although increasing the number of direct reports can increase tenure and with it
the on-the-job benefits of managers, task coordination becomes more costly. Thus,
the manager’s optimal number of direct reports results from a trade-off between
decreasing his personal cost of being replaced and increasing labor coordination
costs. Therefore, an increase in the number of employees leads to various sources of
inefficiencies. This involves not only direct costs of task coordination, but can also be
associated with indirect costs of possible suboptimal internal recruitment decisions.
Consequently, managerial career concerns and the choice of the optimal number of
direct reports are not only a private concern of the manager, they moreover represent
a source of inefficiencies in the firm’s global context.

We provide comparative static results on the formation and extent of these ineffi-
ciencies. The complex interactions between different exogenous variables and their
impact on the manager’s endogenous team size choice generate new insights in the
provision of managerial incentives. One such insight is that, for a comparatively low
labor cost factor, the optimal number of employees is inversely related to the man-
ager’s ability level. Consequently, an efficient organizational design assigns managers
that face a low probability of replacement, such as high-ability managers, to high
cost sectors and assigns complex tasks to them and vice versa.

Literature. This work relates to many other fields of the existing literature. First,
it is relevant to the literature on managerial incentives arising from career concerns.
Based on the seminal work of Fama (1980) and Holmström (1999), who outline the
limitations on explicit payment structures, this literature primarily focuses on im-
plicit incentives arising from career concerns and their implications for effort levels,
investment decisions, or also compensation contracts (Holmström and Ricart i Costa
(1986), MacLeod and Malcomson (1989), Scharfstein and Stein (1990), Gibbons
and Murphy (1992), Dewatripont, Jewitt, and Tirole (1999a), Kräkel and Sliwka
(2009)). This work mostly pertains to models that investigate the influence of ca-
reer concerns on organizational decisions (Dewatripont, Jewitt, and Tirole (1999b),
Bar-Isaac (2007)), and focuses on a novel consideration, the consequences of career
concerns on a manager’s choice of task delegation.

Second, this work refers to studies on the optimal allocation of authority, begin-
ning with Fama and Jensen (1983) who analyze the factors facilitating separation
of ownership and control. Similarly, based on the approach of Grossman and Hart
(1986) and Hart and Moore (1990), Aghion and Tirole (1997) distinguish between
formal authority as the right to decide and real authority as the effective control
over decisions. Delegation of formal authority increases an agent’s incentives for
information acquisition, but also encourages the agent’s participation. Related to
our topic, formal authority is more likely to be delegated for decisions that are rel-
atively more important to agents compared to principals, for example if the former
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can utilize extensive private benefits. Similarly, Baker, Gibbons, and Murphy (1999)
investigate the role of information for the delegation of informal authority arguing
that formal authority is only entitled to principals having the final say about deci-
sions. Additionally, Stole and Zwiebel (1996) analyze intra-firm bargaining between
principal and agents on a firm’s organizational decisions. Our work is also tied to
the general analysis on the optimal hierarchical composition of a firm (Williamson
(1967), Calvo and Wellisz (1978), Rosen (1982), Qian (1994), Rajan and Zingales
(2001)). Besides exploring technological issues for the optimal span of control or
wage scales at different hierarchical tiers, this literature also offers incentive-based
explanations. In our work, the choice of the optimal number of direct reports is
not primarily motivated by technological reasons. Furthermore, we do not focus
on managerial task delegation as a mechanism to provide incentives to agents, but
moreover as a strategic instrument for managers to secure their personal working
position.

Third, our model relates to the research on managerial turnover and entrenchment.
In detail, Shleifer and Vishny (1989) analyze the problem of manager-specific in-
vestments that increase the cost of replacement of the manager. In Stulz (1988)
managers strategically exert influence on their voting rights which impacts capital
structure and firm value. Also Zwiebel (1996) and Fluck (1999) analyze the interac-
tion between capital structure decisions and the extent of managerial entrenchment.
Related to this topic, Hermalin and Weisbach (1998) focus on the establishment
of personal loyalty that reduces the intensity by which entrenched managers are
monitored, making it difficult to replace them. Further models analyze interrela-
tions between severance pay and managerial entrenchment (Almazan and Suarez
(2003)), or also the implications of entrenchment on risk-management (Kumar and
Rabinovitch (2010)). While the literature on managerial entrenchment outlines how
managers can use their decision autonomy to promote private benefits, the litera-
ture on on managerial turnover primary considers the advantages and consequences
of managerial turnover with respect to efficiency (Höffler and Sliwka (2003), Sli-
wka (2007)). Our work primary focuses on organizational inefficiencies resulting
from managerial entrenchment, based on learning about agents’ abilities and the
probability of managerial replacement.

Forth, there are models that directly explore managerial career concerns and inef-
ficiencies in organizational design as they relate to employment, task assignment
and delegation. Carmichael (1988) shows that tenure plays a key role in creating
incentives to hire individuals who prove more suited to the position than them-
selves. Prendergast (1995) presents a theory of responsibility in organizations. He
argues that if a manager collects skills by performing tasks, he then delegates too
few tasks to his subordinates and thereby hoards responsibility to increase his future
wages. Related to this topic, Sliwka (2001) shows that delegation reduces the power
of middle managers, as subordinates become able to demonstrate their ability. He
focuses on the resulting problem of managers becoming reluctant to delegate. In
this paper, we explore how a manager’s endogenous team size choice can be used
as an instrument to protect his personal working position. We thereby offer a new
understanding of how organizational authority can lead to managerial inefficiencies
through incentives related to their career concerns.

The remainder of the paper is organized as follows. Section 2.2 develops the ba-
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sic model, followed by an equilibrium analysis of the pure information problem in
section 2.3. Section 2.4 incorporates coordination costs into the model. Section 2.5
provides a comparative static analysis. Finally, section 2.6 concludes. All proofs are
available in the Appendix.

2.2 The Model

Consider a risk-averse firm (the principal) that employs a manager of a publicly
known ability A ≥ 0 to perform a one-period task. The task has the “length”
L > 0, standing for the amount of labor required. In general, L is the aggregate
task, consisting of a set of small subtasks that can be assigned to agents i = 1, . . . , n,
where the number n is endogenous. The manager can choose the number of agents
at the beginning of the period.4 Without loss of generality, let us assume that
the task is an interval of subtasks, [0; L], and subtasks are subintervals of length
li, such that L =

∑n
i=1 li. Then, agent i performs the subtask li, with

⋃n
i=1 li =

L. Each agent has an unobservable ability ai, independent and standard normally
distributed, ai ∼ N (0, 1). Aggregate output Y is the sum of the outputs of single
agents, Y =

∑n
i=1 yi. Outputs of single agents are observable, they consist of the

ability and an error term, yi = li ai + εi, where the error terms are independent
random variables with zero mean and a standard deviation that depends on the
length of the task assigned to the agent.

An agent’s output yi can be used as a signal of his ability. The longer an agent
works on his subtask, the more obvious his true abilities will become; the less noise
there will be. We assume that εi has standard deviation σ ·

√
li. This assumption

has the following micro-foundation. For integer li, one can say that the agent carries
out li atomic work steps. If the output for each work step is 1 · ai + ε, and each
error term ε is independently and identically distributed with ε ∼ N (0, σ), then the
aggregate yi is exactly like above, yi = li ai + εi, where εi has variance li σ

2 and thus
standard deviation σ ·

√
li.

5 We assume that output measures are observable to all
parties. That is, manager and principal have the same level of information at every
point in time.

Potentially, subtasks could be asymmetric. In the extreme case, some agents are
then assigned to subtasks of zero size, which is equivalent to a reduction in team
size n. Let us therefore concentrate on the symmetric case, where the manager’s
team size corresponds to the relevant number of agents. Then, agent i completes a
share of li = L/n of the overall task and produces an output of

yi = li ai + εi = L/n · ai + εi. (2.1)

In the symmetric case, the measurement error εi decreases with task size L and
increases with the number of agents n. All subtasks have an identical marginal

4We abstract from integer problems, except that n ≥ 1.

5For non-integer li, the micro-foundation is similar, one only needs to start from smaller atomic
tasks. For continuous li, one can model the noise as a Wiener process.
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effect on the signal yi. The resultant output is a noisy indicator of ability, and
measurement becomes noisier if the number of agents grows. The intuition is that if
the manager increases his team size, each agent completes a smaller fraction of the
overall task and the variance of the measurement error increases. This weakens the
precision of each signal and, in turn, the updating of each agent’s ability.

The manager receives private benefits that are associated with the job.6 However,
the principal may replace the manager with an agent with expected ability âi(yi),
conditional on observed output.7 To incorporate the downside associated with the
expectation of an agent’s ability, we use an exponential utility function to value the
principal’s utility,

U(a) = −e−ρ a.

The parameter ρ represents a constant absolute risk aversion. The cut-off rule for
managerial replacement derives from individual comparisons of the known utility
provided by the manager and the ex-post expected utility provided by the agent.
Consequently, the manager retains his job if U(A) ≥ E[U(âi(yi))] holds for each
individual comparison.8 It follows that by choosing his optimal span of control, the
manager seeks to retain his position.

The timing of the model is as follows:

1. Principal : employs a manager with a known ability of A > 0 to perform a
task.

2. Manager : chooses the number of agents n ≥ 1 with a priori unknown abilities
ai ∼ N (0, 1) to complete the task.

3. Agents : complete subtasks. Individual outputs yi are realized to update the
agents’ expected abilities.

4. The principal decides on managerial replacement:

a) The manager is retained and enjoys private benefits if U(A) ≥ E[U(âi(yi))]
holds for all i = 1, ..., n.

b) The manager is replaced by the agent with the highest expected utility
E[U(âi(yi))], otherwise.

6For the sake of simplicity, private benefits are normalized to zero in the model.

7Rosen (1982) argues that managerial ability is a crucial determinant of firm productivity. The
basic rationale for focusing on ability as a decision criterion for managerial replacement refers
to Meyer (1991), who argues that the output in the manager’s position can be more related
to ability than in the previous hierarchical levels. Additionally, the promotion of an intra-firm
agent can have advantages over hiring an external worker. One aspect is that the market wage
only reflects the general human capital of a worker, while specific human capital represents an
additional costless benefit to a firm (Ortega (2003)). Although we do not explicitly model these
relationships, their intuitions support our theoretical approach.

8Arya and Mittendorf (2011) show that without effort incentives, the choice of individual per-
formance metrics produces the most informative signal of an agent’s ability. As aggregation
reduces the relative informativeness of each agent’s signal, our results could also be applied to
the case of aggregate performance measures.
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2.3 The Pure Information Problem

To determine the manager’s optimal span of control, we will initially analyze the
problem set from the perspective of a representative agent. As, initially, all agents
have identically unknown abilities and complete an equal share of the overall task,
the results are valid for any agent. We will investigate the determinants of the
probability of managerial replacement, given the signal of a single agent. Based on
these results, we will extend our analysis by incorporating the signals of all agents
and their impact on the manager’s replacement probability. Therefore, this second
analysis accounts both for the effects of 1) the signal of each agent and of 2) the
number of signals produced.

According to (2.1), the distribution of each signal yi results from the distributions
of ai ∼ N (0, 1) and εi ∼ N (0, σ2 li) = N (0, σ2 L/n). Then, updating follows from

yi = li ai + εi ∼ N
(
0, l2i + σ2 li

)
= N

(
0, L2/n2 + σ2 L/n

)
. (2.2)

The variance of each signal is the sum of the variances of the prior and the error
term. It follows that the variance of a signal always exceeds the variance of an agent’s
ability, as it also incorporates measurement error, which increases with team size and
decreases with task complexity. Consequently, the measurement variance decreases
with the size of each subtask L/n. The output yi determines the updating of an
agent’s ability according to the Bayes’ theorem for normally distributed random
variables. Accordingly, an agent’s ex-post expected ability equals

âi(yi) =
1

1 + li/σ2
0 +

li
li + σ2

yi

=
nσ2

L+ nσ2︸ ︷︷ ︸
=:q

0 +
L

L+ nσ2︸ ︷︷ ︸
=:1−q

yi =
L

L+ nσ2
yi. (2.3)

The posterior variance of an agent’s ability results from the precision of both the
prior and the conditional variances. Therefore, the a posteriori distribution of an
agent’s ability, given the signal yi, is

âi|yi ∼ N
( li
li + σ2

yi,
1

1 + li/σ2

)
= N

( L

L+ nσ2
yi,

n σ2

L+ nσ2

)
. (2.4)

The ex-post expected ability of an agent âi(yi) consists of a weighted average of the
prior ai (which equals zero) and the output yi. The weight on the prior, denoted q,
corresponds to the variance of the ex-post estimation of an agent’s ability. Equiva-
lently, the weight on the output measure is 1−q. Both weights sum to 1, and hence,
an increase in the measurement precision reduces the weight on the prior estimation
of ability and vice versa. Equivalently, a smaller weight on the prior corresponds
to a smaller variance in the ex-post estimation of ability and therefore to a larger
weight on the signal yi. Furthermore, learning decreases the variance of an agent’s
expected ability in comparison to the variance of the prior

(
nσ2

L+nσ2 < 1
)

and increases
the precision of ai. Updating increases with the number of observations, determined
by task size L, and decreases with team size n and with the variance of the error
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term σ2. The opposite holds for the variance of the a posteriori distribution of an
agent’s ability.

The cut-off rule for managerial replacement derives from individual comparisons
of the known utility provided by the manager and the ex-post expected utility of
an agent. Consequently, for a single signal yi, the manager will retain his job if
U(A) ≥ E[U(âi(yi))] or, correspondingly, if

−e−ρA ≥
∫ ∞
−∞
−e−ρ ã f(ã) dã. (2.5)

Incorporating (2.4), we can rearrange (2.5) to

−e−ρA ≥ −e−
ρ (2 L yi−n ρ σ2)

2 (L+n σ2) , (2.6)

or, equivalently, to

A ≥ 2Lyi − n ρ σ2

2 (L+ nσ2)
. (2.7)

Rearranging (2.7) yields the principal’s optimal replacement rule. Lemma 3 outlines
the result.

Lemma 3 Define

ȳ = A+
n (2A+ ρ)σ2

2L
, (2.8)

and let Y = {y1, .., yn}. Then, the principal replaces the manager only if the best
signal yi exceeds the critical ȳ, that is if max{y1, .., yn} > ȳ.

The critical signal ȳ increases with the manager’s ability A, the principal’s risk
aversion ρ, the variance of performance measurement σ2, and the team size n and
decreases with task size L. The higher the manager’s ability A, the higher is the
buffer range for the manager, dȳ/dA > 1. In consideration of the principal’s risk
aversion ρ, a change in manager only occurs if the expectation of an agent’s uncertain
type significantly outweighs the manager’s type. The higher the risk aversion of the
principal, the greater the extent that the manager’s ability has to be surpassed by
an agent. Thus, risk aversion increases the benefits of the manager concerning his
objective of not being replaced. The variance of the error term σ2 increases the
uncertainty of performance measurement and therefore decreases the updating of
an agent’s ability. The lower the weight on the signal yi, the higher is the maximum
possible ȳ. If the team size n increases, the precision of each signal and consequently
the level of updating decrease and ȳ rises. For an infinite number of agents, ȳ also
converges to infinity. In contrast, ȳ decreases with the task size L. That is, L
positively relates to the size of the subtask li = L/n performed by each agent
and therefore strengthens the task precision that, in turn, decreases ȳ. Thus, task
complexity and team size have precisely opposite effects on ȳ. However, there is
one essential difference: the larger the team size, the higher is the maximum ȳ,
but simultaneously, the more numerous the signals and thereby the greater is the
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probability of hiring a star performer. Thus, by considering the probability of being
replaced, the manager has to account for the impact of his team size choice on 1)
the precision of a single signal and 2) the number of signals produced.

The distribution of an agent’s signal is given by (2.2). Let Φ(y) be the distribution
function of the standard normal distribution. Then, the distribution function of one
signal yi equals

F (yi) = Φ

(
yi

√
1

1 + σ2 n/L

)
. (2.9)

As the number of signals increases with the span of managerial control, we derive
the distribution of the maximum of n signals, Φ(y)n. By incorporating (2.8), we can
derive the probability that the maximum of the n signals will fall below the critical
ȳ. We obtain the probability that the manager will be retained of

Pr{max
i≤n

yi ≤ ȳ} =
n∨
i=1

Pr(yi ≤ ȳ) =
n∏
i=1

Pr(yi ≤ ȳ) = Pr(y ≤ ȳ)n

= Φ

((
A+

n (2A+ ρ)σ2

2L

) √
1

1 + σ2 n/L

)n

. (2.10)

The complementary probability that the maximum of the n signals will exceed the
critical ȳ, that is, the probability that the manager will be replaced, multiplied by
the cost factor k > 0, determines the manager’s replacement costs of CR(n) =
k (1− Φ(y ≤ ȳ)n). Without loss of generality, we set k = 1. This yields

CR(n) = Pr{max
i
yi > ȳ} = 1− Pr(y ≤ ȳ)n

= 1− Φ

((
A+

n (2 A+ ρ)σ2

2L

) √
1

1 + σ2 n/L

)n

. (2.11)

As a next step, we can analyze the effect of team size on the manager’s costs of the
personal replacement CR(n). Proposition 7 outlines the result.

Proposition 7 Managerial replacement costs CR(n) are maximized at some strictly
positive number of agents n̂. As n ≥ 1, CR(n) is minimized when n∗ →∞.

As exemplified in figure 2.1, the replacement cost curve CR(n) is not monotonically
decreasing with team size n. In the hypothetical case of n = 0, CR(n) is zero and
increases (decreases) with n for n < n̂ (n > n̂). The slope of CR(n) results from the
basic trade-off between the increasing probability of hiring a star performer and the
decreasing probability of identifying one. On the one hand, if the manager increases
the number of agents, the probability of employing an agent of superior ability
increases, which in turn increases the probability that the manager will be replaced.
On the other hand, if the manager divides the task among a large number of agents,
each agent can only complete a small fraction of the overall task. This decreases
the updating of each agent’s ability and hence the probability of identifying a star
performer. While this first effect dominates for small team sizes (n < n̂), for large
team sizes (n > n̂), this relationship is reversed and replacement costs are negatively
related to team size. For n → ∞, CR(n) tends to zero. Consequently, as n ≥ 1 by
definition, the manager optimally hires as many agents as possible.
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Figure 2.1: Managerial Replacement Costs CR(n) as a Function of Team Size n

The parameters are L = 1, ρ = 5, σ = 1 and A = 0.1. The vertical dotted line represents the
minimal team size frontier of n = 1.

2.4 Introducing Coordination Costs

To obtain an interior optimum, the equilibrium of n∗ →∞ must be expensive. Here,
we focus on labor coordination costs CLC(n) and assume that the larger the team
size n, the more coordination is required for integrating the individual contributions
of team members.9 To provide some intuition, suppose that each infinitesimal task
requires an information input from each other task. If the task is performed by the
same agent, this coordination becomes less costly.10 Then, with the cost parameter
c > 0, coordination costs can take the form of

CLC(n) =
n∑
i=1

n∑
j 6=i

c li lj =
n∑
i=1

∑
j 6=i

c
L

n

L

n
= c

n− 1

n
L2. (2.12)

Coordination costs measure the divisibility of the task. If the cost factor c is high, the
division of tasks between different agents results in complex combinations, while, for
a small c, agents are easily exchangeable.11 Therefore, coordination is required for
two subtasks at a time, for all pairs of tasks, which yields n (n− 1)/2 combinations.

9The consideration of labor coordination costs represents a standard approach in the team produc-
tion literature. In their seminal work, Becker and Murphy (1992) emphasize that specialization
and the division of labor fundamentally depend on coordination costs that increase with the
number of agents. Therefore, coordination costs can be associated with different sources of
inefficiencies, such as principal agent conflicts, problems of task coordination and monitoring
or communication difficulties.

10Our results also apply in more complex cases, for example, if we assume that information is only
required with some probability or only for higher stages of the overall task.

11For example, coordination costs can be low in companies, where divisions are geographically
proximate and production can be coordinated easily. Additionally, the nature of the task itself
can be subject to divergent marginal coordination costs. Considering the example of a call
center, it is expected that marginal costs for coordinating different calls are comparatively low,
while the development of a complex software system may require extensive coordination among
team members.
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Furthermore, the larger the size of the subtask li, the more input is required for
subtask lj and vice versa. That is, total coordination costs increase with the number
of tasks n and with the subtask size li = L/n. More generally, if coordination costs
subproportionally increase with subtask size, determined by the parameter α, with
0 < α ≤ 1, we obtain

CLC(n) =
n∑
i=1

n∑
j 6=i

c li l
α
j =

n∑
i=1

∑
j 6=i

c
L

n

Lα

nα
= c

n− 1

nα
L1+α. (2.13)

Consequently, α measures the extent of the task coordination problem. That is, for
every pair of subtasks li and lj, the smaller the α and the larger the subtask size lj,
the lower is the cost increase for coordinating the subtasks. In the symmetric case,
li = L/n, marginal coordination costs therefore increase (decrease) with α for L > n
(L ≤ n). Overall, according to (2.11) and (2.13), the manager chooses an optimal
team size, denoted n∗, that minimizes his total costs as the sum of 1) the costs of
the personal replacement CR(n) and of 2) the costs of labor coordination CLC(n).
The manager solves

min
n

(CR(n) + CLC(n))

= 1− Φ

((
A+

n (2 A+ ρ) σ2

2 L

) √
1

1 + σ2 n/L

)n

+ c
n− 1

nα
L1+α. (2.14)

This objective function reveals the two costs, CR(n) and CLC(n), that the manager
has to trade-off. On the one hand, the costs of labor coordination CLC(n) are strictly
increasing with the number of agents n and therefore limit the manager’s optimal
span of control. On the other hand, as n ≥ 1, the manager minimizes his replacement
costs CR(n) by choosing an infinite number of agents. Moreover, as CR(n) is not
monotonically decreasing with n, the manager has to account for both the effect
of the increasing probability of hiring a star performer, which dominates for small
team sizes (n < n̂), and the effect of a decreasing visibility of each agent’s ability,
which dominates for large team sizes (n > n̂). More specifically, it is important to
determine the cases in which the manager optimally chooses n∗ = 1 compared to
the equilibrium of n∗ > 1. As the single agent equilibrium represents a technically
feasible option, the manager causes inefficiencies in terms of labor coordination costs
if he chooses n∗ > 1. Consequently, it is important to derive conditions in which
the manager is incentivized to create these inefficiencies. Proposition 8 outlines the
result.

Proposition 8 There is a cost factor c̄ > 0 such that for c ≥ c̄, it is optimal to
employ only one agent, n∗ = 1. For c < c̄, the optimal number of agents is some
n∗ > 1 that is characterized implicitly by

∂CR(n)

∂n
= −∂CLC(n)

∂n
= c

L1+α

n1+α
(n (α− 1)− α). (2.15)

Figure 2.2 depicts the interaction of replacement costs CR(n) and labor coordination
costs CLC(n) for the two results of n∗ > 1 and n∗ = 1. Obviously, a local minimum
of total costs can only be located in the range of n > n̂, where CR(n) decreases

45



2 Divide et Impera: Curbing Agents’ Duties to Remain in Office

1 2 3 4 5 6 7 8
n

0.05

0.10

0.15

0.20

0.25
C

c=0.015

n*

Total costs

Coordination costs

Replacement costs

1 2 3 4 5 6 7 8
n

0.1

0.2

0.3

0.4

0.5
C

c=0.04

n*

Total costs

Coordination costs

Replacement costs

Figure 2.2: Managerial Replacement Costs CR(n) and Labor Coordination Costs
CLC(n) as Functions of Team Size n

The parameters are L = 1, ρ = 5, σ = 1, A = 0.1, as before, and α = 0.5.

with n. Here, the effect of a decreasing signal precision outweighs the effect of
an increasing probability of hiring an agent of superior ability. In this range, the
manager has to trade-off increasing labor coordination costs CLC(n) and decreasing
replacement costs CR(n). If the labor cost factor c is comparatively small, marginal
labor costs are low and the manager is incentivized to increase his span of control.
The optimal team size is n∗ > 1 (left figure). Conversely, a large cost factor can
prevent the manager from increasing his span of control. This is the case if the labor
cost increase from hiring an additional agent outweighs the associated decrease in
replacement costs in the range of n > n̂. Then, total costs are strictly increasing
with team size, n∗ = 1 (right figure). High marginal labor costs may also cause
higher total costs at the minimum of the total cost curve than under the single
agent equilibrium and n∗ = 1. Overall, labor costs represent a key factor concerning
the inefficiencies resulting from a manager’s choice of his optimal span of control and,
more generally, from his organizational authority. By assigning managers to different
coordination cost sectors, the principal can indirectly influence the occurrence and
the extent of these inefficiencies. Therefore, an efficient organizational design assigns
managers that face a low probability of replacement, such as high-ability managers,
to high coordination cost sectors, as these managers are less likely to choose a high
span of control and thus are less likely to create extensive inefficiency costs.

2.5 Comparative Static Results

Implicit differentiation of (2.14) enables us to study how the manager adjusts his
optimal team size n∗ to changes in the exogenous parameters A, ρ, σ2 or L. Propo-
sition 9 outlines the results.

Proposition 9 For c sufficiently small, the optimal number of agents n∗ is de-
creasing with the manager’s ability A, the principal’s risk aversion ρ, the variance
of performance measurement σ2, or increasing with task size L.

First, if the manager’s ability A increases, replacement costs CR(n) decrease and the
manager enjoys a larger buffer range. As labor coordination costs CLC(n) increase
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Parameters n∗

A↗ ↘
ρ↗ ↘
σ2 ↗ ↘
L↗ ↗

Table 2.1: Effects of Variations of Parameters

with team size, the manager is incentivized to decrease the optimal number of agents
n∗. Conversely, if A decreases, the manager has to increase his team size to maintain
the former replacement probability. However, labor costs increase with team size,
and the two cost functions have opposite effects. Overall, if the cost factor c is
sufficiently small, the manager’s optimal team size n∗ negatively relates to A. While
this economic intuition holds, no general expression for the cost factor c can be
derived because of the implicit function governing the optimal team size (see the
appendix).12 However, if this equilibrium is ensured, then high-quality managers
prefer smaller teams, as for them the probability of being replaced is lower compared
to low quality managers.

Second, if the principal’s risk aversion ρ concerning the workers’ uncertain expected
abilities increases, the manager enjoys a greater buffer range: the ex-post expected
ability of an agent has to substantially surpass the manager’s ability, and hence the
manager’s probability of retaining the job increases. Therefore, he can decrease the
number of agents to reduce labor costs. Conversely, if ρ decreases, the manager is
incentivized to increase his optimal team size if c is comparatively low. Therefore,
risk aversion increases the job security of the manager, which encourages an increase
in organizational efficiency.

Third, if the variance of performance measurement σ2 decreases, the manager is
incentivized to increase his optimal team size if marginal labor costs are not exces-
sively high. Conversely, if σ2 increases and performance measurement becomes less
precise, the manager can benefit from the decreased informativeness of the agents’
signals. The decreased probability of replacement adjusts the manager’s optimal
team size downwards, thereby reducing his organizational inefficiencies.

Fourth, if task complexity L rises, the size of each agent’s subtask li = L/n increases
and with it the precision of the ex-post estimation of each agent’s ability. This, in
turn, increases the probability that the manager will be replaced, providing him in-
centives to increase his optimal team size. However, while a change in the manager’s
ability A, the principal’s risk aversion ρ or the variance of performance measurement
σ2 directly influences replacement costs CR(n) and only indirectly influences labor

12This general result also holds for the comparative static results of the remaining exogenous
parameters ρ, σ2, and L. Furthermore, note that our comparative static results do not apply
for the equilibrium of n∗ = 1, that is, for c ≥ c̄. Then, using the example of an increase in
managerial ability A, the manager cannot further reduce the optimal team size n∗, as n ≥ 1
by definition. In contrast, if A decreases, the manager may not be incentivized to increase his
team size if marginal labor costs c are high, such that n∗ = 1.
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costs CLC(n) through a change in n∗, the task size L, in addition, directly influences
CLC(n). While, from the standpoint of the replacement costs, the optimal team size
has to increase to maintain the former replacement probability, from the standpoint
of the labor costs, an increase in n results in a twofold increase in labor costs: first,
labor costs increase due to an increase in n and, second, due to an increase in L.
This, in turn, implies that, when considering the four exogenous parameters A, ρ,
σ2 and L, the task size represents the most influential variable in restricting man-
agers’ organizational inefficiencies. Furthermore, as task size L and marginal labor
costs c have a multiplicative effect on overall labor costs, labor costs and organiza-
tional inefficiencies resulting from a manager’s “divide et impera”-strategy can be
minimized by allocating managers facing a low probability of replacement, such as
high-ability managers (high A), to high cost sectors (high c) and assigning complex
tasks (high L) to them and vice versa. Related to our example of Sarah Mathew,
our comparative static results account for the observation that new managers with
a lower managerial ability are incentivized to increase their span of control, while,
if managerial ability increases, replacement costs decrease and managers decrease
their optimal team size and with it also the costs of labor coordination.

2.6 Conclusion

In this paper, we present a new source of inefficiencies resulting from managerial
discretion over organizational decisions. Although the probability of hiring a star
performer increases with the number of agents, the opposite holds for the probability
of identifying one. Our model shows that a manager decreases the probability of
being replaced by a subordinate, if he delegates a task to a sufficiently large number
of agents. However, because labor costs increase with team size, the manager’s
optimal span of control results from the trade-off of decreasing replacement costs
and increasing labor coordination costs.

Of particular note, our work derives the following implications: in settings with low
marginal labor costs team sizes will be larger, especially if the manager faces a high
probability of replacement. Moreover, for a sufficiently small labor cost factor, the
optimal team size negatively relates to managerial ability, the principal’s risk aver-
sion concerning the agents’ unknown abilities and the uncertainty of performance
measurement. Conversely, the optimal team size increases with task complexity.
Therefore, our work yields clear predictions on the optimal internal design of orga-
nizations to limit organizational inefficiencies resulting from a manager’s “divide et
impera”-strategy. Accordingly, an efficient organizational structure allocates man-
agers facing a low probability of replacement, for example high-ability managers, to
high cost sectors and assigns complex tasks to them, and vice versa.

The results of our work provide several hypotheses that may guide future research.
First, related to the result that a larger span of control decreases the agents’ probabil-
ity of promotion, it would be of interest to reconsider the consequences of managerial
actions by incorporating the agents’ explicit and implicit incentives regarding pro-
duction and wages. Second, analyzing the model from a dynamic perspective could
generate new insights on the manager’s optimal team size choice and the preferred
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allocation of agents to tasks. Especially with respect to further learning effects about
agents’ abilities, a manager may be incentivized to regroup agents among different
jobs or tasks or even to exchange them completely. Third, a restriction on the span
of control can be used as an instrument to exert pressure on the manager. The
investigation of its effectiveness and comparing it to other instruments could yield
interesting insights on the optimal provision of managerial incentives.

By endogenizing a manager’s optimal team size choice, our paper helps to explain the
recent empirical puzzle concerning the remarkable shift to greater spans of manage-
rial control (Guadalupe, Li, and Wulf (2012)). The results of our work generate new
insights on the optimal allocation of managers to organizations and derive testable
predictions concerning the impact of environmental variables on the optimal span of
managerial control. Overall, our work highlights how organizational authority can
reinforce the power of managers through the strategy of “divide et impera”.

2.7 Appendix

Proof of Lemma 3. In the general case of the normal distribution, with a prior
distribution of a ∼ N (µa, σ

2
a), the posterior, given the observation y, is

â | y ∼ N (µâ(y), σ
2
â(y)),

with

µâ(y) = µa + (y − µy)
σ2
a

σ2
a + σ2

y

.

The posterior variance of an agent’s ability is the sum of the prior variance and the
conditional variance on the basis of their inverses and equals

σ2
â(y) =

1

1/σ2
â(y)

=
1

1/σ2
a + 1/σ2

y

.

In our case, with ai ∼ N (0, 1) and εi ∼ N (0, σ2 li) = N (0, σ2 L/n), and yi = li ai+ε,
the ex-post expected ability is

âi(yi) = 0 + (yi − 0)
1

12 + σ2

li

=
1

1 + σ2

L/n

yi =
L

L+ n σ2
yi, (2.16)

which corresponds to the result of (2.3). The variance of the posterior is

σ2
â(y) =

1

1/12 + 1/
(
σ2

li

) =
1

1 + 1/
(
σ2

L/n

) =
nσ2

L+ nσ2
. (2.17)

It follows that the posterior of an agent’s ability is distributed according to (2.4).
Using this result, with an exponential utility function of the form U(a) = −e−ρ a,
U(A) ≥ E[U(âi(yi))] is fulfilled if (2.7) holds. Solving for y gives ȳ of Lemma 3 as
the upper threshold for an individual signal yi for the manager to retain his position.

�
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Proof of Proposition 7. The first derivative of CR(n) with respect to n equals

∂CR(n)

∂n
=− (1− CR(n))

(
log[(1− CR(n))

1
n ]

+
z(n)nσ2 (2A (L+ nσ2) + ρ (2L+ nσ2))

L
√

2 π (L+ nσ2)
√

1 + nσ2/L

)
, (2.18)

with

z(n) =
e
− (n ρσ2+2A (L+nσ2))2

8L (L+nσ2)

Φ
((
A+ n (2A+ρ)σ2

2L

)√
1

1+σ2 n/L

) =
e
− (n ρσ2+2A (L+nσ2))2

8L (L+nσ2)(
1 + erf [

A+
n 2 (A+ρ)σ2

2L√
2+2nσ2/L

]
)

=
e
− (n ρσ2+2A (L+nσ2))2

8 L (L+nσ2)

2 (1− CR(n))
1
n

. (2.19)

A range of 0 < z(n) ≤ 1 applies for (2.19). Furthermore, z(n) increases with L and
decreases with ρ, σ, n, and A. The denominator represents the probability that the
critical ȳ will not be met, given a single signal yi. This probability decreases with
L and increases with ρ, σ, n, and A. Accordingly, this relationship is reversed for
the whole equation (2.19), as its numerator is positive.

To see that CR(n) is maximal at some strictly positive value of n̂, note that for

n = 0, CR(n) = 0 and for n > 0, we obtain 1 > CR(n) > 0. That is, ∂CR(n)
∂n

> 0 for

small values of n (n < n̂). Conversely, according to (2.18), ∂CR(n)
∂n

> 0 if

0 >
z(n)nσ2 (2A (L+ nσ2) + ρ (2L+ nσ2))

L
√

2π (L+ n σ2)
√

1 + nσ2/L
+ log[(1− CR(n))

1
n ]. (2.20)

The second term of the right-hand side of (2.20) becomes arbitrarily close to 0 for
large values of n. Therefore, this inequality is not fulfilled if n is sufficiently large
and ∂CR(n)

∂n
< 0 holds for n > n̂. Therefore, for n→∞, CR(n) tends to zero. �

Proof of Proposition 8. According to (2.14), the manager minimizes CR(n) +

CLC(n). For n = 1, we obtain CLC(n) = 0, and for n > 1, ∂CLC(n)
∂n

> 0 holds.
According to the proof of Proposition 7, for n = 0, we obtain CR(n) = 0, and for

n > 0, CR(n) > 0 holds. The replacement cost curve is concave, with ∂CR(n)
∂n

> 0 for

n < n̂ and ∂CR(n)
∂n

< 0 for n > n̂. For n→∞, we obtain CR(n)→ 0. As ∂CLC(n)
∂n

> 0,
then, for n→∞, we obtain CLC(n)→∞ and therefore also CR(n) +CLC(n)→∞.

For n < n̂, both ∂CR(n)
∂n

> 0 and ∂CLC(n)
∂n

> 0 and therefore we obtain ∂CR(n)+CLC(n)
∂n

>

0. For n > n̂, we obtain ∂CR(n)
∂n

< 0 and ∂CLC(n)
∂n

> 0. In this range, there can
be a local minimum of total costs at some strictly positive value of n∗, where the
positive slope of the labor cost curve equals the negative slope of the replacement
cost curve, implicitly characterized by (2.15). The underlying implicit function

g(n, x) = ∂CR(n)+CLC(n)
∂n

= 0 is derived in the proof of Proposition 9, equation (2.21).

50



2.7 Appendix

Next, we will determine the cases in which the manager optimally chooses n∗ = 1,
so that we can derive conditions required for n∗ > 1. If c is comparatively large,
total costs at the local minimum can be higher than for the single-agent equilibrium,
CR(n) +CLC(n) |n=nmin> CR(n) +CLC(n) |n=1, such that n∗ = 1. Alternatively, if c

is sufficiently large, then ∂CLC(n)
∂n

> ∂CR(n)
∂n

for n > n̂ and n∗ = 1. Consequently, for
sufficiently small values of the cost factor (c < c̄), the manager optimally chooses
n∗ > 1, while, for comparatively large values of the cost factor (c ≥ c̄), the optimal
team size is n∗ = 1. �

Proof of Proposition 9. We use the Implicit Function Theorem to prove the
comparative static results. The first order condition for a minimum requires that
∂(CR(n)+CLC(n))

∂n
= 0. Differentiating (2.14) with respect to n and equating to zero

yields our implicit function g(n, x) = 0 of

g(n, x) =
∂(CR(n) + CLC(n))

∂n
= 0

= −c L
1+α

n1+α
(n (α− 1)− α)− (1− CR(n))

(
log[(1− CR(n))

1
n ]

+
z(n)nσ2 (2A (L+ n σ2) + ρ (2L+ nσ2))

L
√

2 π (L+ nσ2)
√

1 + nσ2/L

)
, (2.21)

with x standing for one of the exogenous parameters A, L, ρ or σ2.

From the proofs of Propositions 7 and 8, it follows that ∂CLC(n)
∂n

> 0 and ∂CR(n)
∂n

< 0

for n > n̂. The first order condition requires that −∂CLC(n)
∂n

= ∂CR(n)
∂n

, or equivalently,
that

c
L1+α

n1+α
(n (α− 1)− α) =

∂CR(n)

∂n
. (2.22)

The comparative static results follow from ∂n∗

∂x
= −

∂g(n,x)
∂x

∂g(n,x)
∂n

. The second order condi-

tion for a minimum requires that the sign of the denominator is positive, ∂g(n,x)
∂n

=
∂2(CR(n)+CLC(n))

∂n2 > 0. Therefore, as ∂g(n,x)
∂n
6= 0, we fulfill the conditions of the Implicit

Function Theorem. Now it is sufficient to consider the sign of the numerator −∂g(n,x)
∂x

for each exogenous parameter. If the first derivative is negative, n∗ is increasing with
x or vice versa. The results are given in the following steps.

Part 1. Consider the case of x = A. The optimal team size n∗ decreases with A

if ∂n∗

∂A
= −

∂g(n,A)
∂A

∂g(n,A)
∂n

< 0 or, equivalently, if ∂g(n,A)
∂A

> 0. Differentiating (2.21) with

respect to A, rearranging terms and using the result of (2.22) yields the condition

0 <− 4L

(
nσ2 + 2 (L+ nσ2)

(
1− c L1+α (n (α− 1)− α)

nα (1− CR(n))

))
+ nσ2

(
2A+ ρ+

Lρ

L+ nσ2

)(
2AL+ n (2A+ ρ)σ2

+ 2 z(n)L

√
2

π

√
1 +

nσ2

L

)
. (2.23)
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As z(n) is in the positive term of (2.23), we set z(n) = 0. As (2.23) has to be positive
overall, this replacement corresponds to our worst-case condition for the fulfillment
of the comparative static result. Furthermore, for the purpose of simplification, we
prove our results given the special case of L ≤ 1, such that L ≤ n holds and labor
coordination costs decrease with α. Therefore, we can set α = 0, as α is in the
negative term of (2.23) and obtain our worst-case condition of

0 < SA(A) =− 4L

(
nσ2 + 2 (L+ nσ2)

(
1 +

c Ln

1− CR(n)

))
+ nσ2 (2AL+ n (2A+ ρ)σ2)

(
2A+ ρ+

Lρ

L+ nσ2

)
. (2.24)

It is convenient to define the right-hand side of (2.24) as SA(A). We complete our

proof by deriving conditions for which SA(A = 0) > 0 and ∂SA(A)
∂A

> 0. Then, the
right-hand side of (2.24) is positive for A = 0 and is increasing with A, and hence
is positive for any value of A. First, SA(A = 0) > 0 if

c <
(1− CR(n)) (−8L3 − 20L2 nσ2 + 2Ln2 (ρ2 − 6)σ4 + n3 ρ2 σ6)

8L2 n (L+ nσ2)2
. (2.25)

Note that (1−CR(n)) corresponds to the result of (2.10) and represents the proba-
bility that the manager will retain his job. As n ≥ 1, we obtain 0 < (1−CR(n)) < 1.
From this it is simple to show that, for any 0 < (1−CR(n)) < 1, the first derivative
of (2.25) with respect to n is positive and, therefore, (2.25) is increasing with n.
That is, for any 0 < (1 − CR(n)) < 1, we can set n = 1 and obtain our worst-case
condition for the cost parameter c of

c <
(1− CR(n)) (−8L3 − 20L2 σ2 + 2L (ρ2 − 6)σ4 + ρ2 σ6)

8L2 (L+ σ2)2
. (2.26)

From (2.26) follows that, for any 0 < (1 − CR(n)) < 1, SA(A = 0) > 0 if c is
sufficiently small. Finally, for any 0 < (1−CR(n)) < 1, the first derivative of (2.24)
with respect to A equals

∂SA(A)

∂A
= 4n (2A+ ρ)σ2 (L+ nσ2) > 0. (2.27)

As (2.27) is positive, n∗ is decreasing with A for any 0 < (1− CR(n)) < 1 if (2.27)
holds.

Part 2. Consider the case of x = ρ. The optimal team size n∗ decreases with ρ if

∂n∗

∂ρ
= −

∂g(n,ρ)
∂ρ

∂g(n,ρ)
∂n

< 0 or, equivalently, if ∂g(n,ρ)
∂ρ

> 0. Differentiating (2.21) with respect

to ρ, rearranging terms and using the result of (2.22) yields the condition

0 <− 4L (4L+ 3nσ2) +
8 c L2+α (n (α− 1)− α) (L+ nσ2)

nα (1− CR(n))

+ nσ2

(
2A+ ρ+

Lρ

L+ nσ2

)(
2AL+ n (2 A+ ρ)σ2

+ 2 z(n)L

√
2

π

√
1 +

nσ2

L

)
. (2.28)
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As z(n) is in the positive term of (2.28), we set z(n) = 0. As (2.28) has to be
positive overall, this replacement corresponds to our worst-case condition for the
fulfillment of the comparative static result. For the same reason, in the special case
of L ≤ 1, we can set α = 0, as α is in the negative term of (2.28). We obtain

0 < Sρ(A) =− 4L (4L+ 3nσ2)− 8 c L2 n (L+ nσ2)

1− CR(n)

+ nσ2 (2AL+ n (2A+ ρ)σ2)

(
2A+ ρ+

Lρ

L+ nσ2

)
. (2.29)

We define the right-hand side of (2.29) as Sρ(A). We complete our proof by deriving

conditions for which Sρ(A = 0) > 0 and ∂Sρ(A)

∂A
> 0. Then, the right-hand side

of (2.29) is positive for A = 0 and is increasing with A, and hence is positive for
any value of A. First, Sρ(A = 0) > 0 if

c <
(1− CR(n)) (−16L3 − 28L2 nσ2 + 2Ln2 (ρ2 − 6)σ4 + n3 ρ2 σ6)

8L2 n (L+ nσ2)2
. (2.30)

For any 0 < (1 − CR(n)) < 1, the first derivative of (2.30) with respect to n is
positive and (2.30) is increasing with n. That is, for any 0 < (1 − CR(n)) < 1, we
can set n = 1 and obtain our worst-case condition for the cost parameter c of

c <
(1− CR(n)) (−16L3 − 28L2 σ2 + 2L (ρ2 − 6)σ4 + ρ2 σ6)

8L2 (L+ σ2)2
. (2.31)

From (2.31), it follows that, for any 0 < (1 − CR(n)) < 1, Sρ(A = 0) > 0 if c is
sufficiently small. Finally, for any 0 < (1−CR(n)) < 1, the first derivative of (2.29)
with respect to A equals

∂Sρ(A)

∂A
= 4 n (2 A+ ρ) σ2 (L+ n σ2) > 0. (2.32)

As (2.32) is positive, n∗ is decreasing with ρ for any 0 < (1 − CR(n)) < 1 if (2.31)
holds.

Part 3. Consider the case of x = σ2. The optimal team size n∗ decreases with σ2

if ∂n∗

∂σ2 = −
∂g(n,σ2)

∂σ2

∂g(n,σ2)
∂n

< 0 or, equivalently, if ∂g(n,σ2)
∂σ2 > 0. Differentiating (2.21) with

respect to σ2, rearranging terms and using the result of (2.22) yields the condition

0 <− 8 +
9 c L1+α (n (α− 1)− α)

nα (1− CR(n))
+

6nσ

L+ nσ
− 4n (2A+ ρ)σ

2L (A+ ρ) + n (2A+ ρ)σ

+
z(n)n

√
2
π
σ
√

1 + nσ
L

(2L (A+ ρ) + n (2A+ ρ)σ)

(L+ nσ)2

+
nσ

(
2A+ ρ+ Lρ

L+nσ

) (
2A+ nρσ

L+nσ

)
2L

. (2.33)

As z(n) is in the positive term of (2.33), we set z(n) = 0. As (2.33) has to be
positive overall, this replacement corresponds to our worst-case condition for the
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fulfillment of the comparative static result. For the same reason, in the special case
of L ≤ 1, we can set α = 0, as α is in the negative term of (2.33). We obtain

0 < Sσ2(A) =− 9 c Ln

1− CR(n)
+

1

2

(
− 12 +

n (2A+ ρ)2 σ

L
+

L2 ρ2

(L+ nσ)2

− L (12 + ρ2)

L+ nσ
+

16L (A+ ρ)

2L (A+ ρ) + n (2A+ ρ)σ

)
. (2.34)

We define the right-hand side of (2.34) as Sσ2(A). We complete our proof by deriving

conditions, for which Sσ2(A = 0) > 0 and
∂Sσ2 (A)

∂A
> 0. Then, the right-hand side

of (2.34) is positive for A = 0 and is increasing with A, and hence is positive for
any value of A. First, Sσ2(A = 0) > 0 if

c <
(1− CR(n))

18L2 n (L+ nσ)2 (2L+ nσ)
(−32L4 − 64L3 nσ

+ 4L2 n2 (ρ2 − 11)σ2 + 4Ln3 (ρ2 − 3)σ3 + n4 ρ2 σ4). (2.35)

For any value of 0 < (1− CR(n)) < 1, the first derivative of (2.35) with respect to
n is positive and (2.35) is increasing with n. That is, for any 0 < (1− CR(n)) < 1,
we can set n = 1 and obtain our worst-case condition for the cost parameter c of

c <
(1− CR(n))

18L2 (L+ σ)2 (2 L+ σ)
(−32L4 − 64L3 σ

+ 4L2 (ρ2 − 11)σ2 + 4L (ρ2 − 3)σ3 + ρ2 σ4). (2.36)

From (2.36), it follows that, for any 0 < (1 − CR(n)) ≤ 1, Sσ2(A = 0) > 0 if c is
sufficiently small. Finally, for any 0 < (1−CR(n)) < 1, the first derivative of (2.34)
with respect to A equals

∂Sσ2(A)

∂A
=

1

2

(
4n (2A+ ρ)σ

L
− 32L (A+ ρ) (L+ nσ)

(2L (A+ ρ) + n (2A+ ρ)σ)2

+
16L

2L (A+ ρ) + n (2A+ ρ)σ

)
. (2.37)

From that it is simple to show that, for any 0 < (1− CR(n)) < 1, (2.37) is positive
if (2.37) or, equivalently, if (2.36) holds. Therefore, for any 0 < (1−CR(n)) < 1, n∗

is decreasing with σ2 if (2.35) holds.

Part 4. Consider the case of x = L. The optimal team size n∗ increases with L

if ∂n∗

∂L
= −

∂g(n,L)

∂σ2

∂g(n,L)
∂n

> 0, or, equivalently, if ∂g(n,L)
∂L

< 0. Differentiating (2.21) with

respect to L, rearranging terms and using the result of (2.22) yields the condition

0 >4L

(
2A+ ρ+

Lρ

L+ nσ2

)(
− 2 c L1+α (n (α− 1)− α) (L+ nσ2)

nα (1− CR(n))

+ 3 (2L+ nσ2)

)
− nσ2

(
2A+ ρ+

Lρ

L+ nσ2

)2

(
2AL+ n (2A+ ρ)σ2 + 2 z(n)L

√
2

π

√
1 +

nσ2

L

)
− 16L2

(
A+ ρ+

c L1+α
√

2π (n (α− 1)− α) (1 + α) (L+ nσ2)
√

1 + nσ2

L

n2+α z(n) (1− CR(n))σ2

)
. (2.38)
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First, it is simple to see that, for a sufficiently small value of c, the last term of (2.38)
is strictly negative and decreases with A. Therefore, we can exclusively focus on the
first two terms of (2.38). Here, we set z(n) = 0, as z(n) is in the negative part of
the second term, which represents our worst-case condition. For the same reason,
assuming our special case of L ≤ 1, we set α = 0, as α is in the positive part of the
first term. This yields

0 > SL(A) =4L

(
6L+ 3nσ2 +

2 c Ln (L+ nσ2)

1− CR(n)

)
− nσ2 (2AL+ n (2A+ ρ)σ2)

(
2A+ ρ+

Lρ

L+ nσ2

)
. (2.39)

We define the right-hand side of (2.39) as SL(A). We complete our proof by deriving

conditions for which SL(A = 0) < 0 and ∂SL(A)
∂A

< 0. Then, the right-hand side
of (2.39) is negative for A = 0 and is decreasing with A, and hence is negative for
any value of A. First, SL(A = 0) < 0 if

c <
(1− CR(n)) (2L+ nσ2) (−12L2 − 12Lnσ2 + n2 ρ2 σ4)

8L2 n (L+ nσ2)2
. (2.40)

For any 0 < (1−CR(n)) ≤ 1, the first derivative of (2.40) with respect to n is positive
and therefore (2.40) is increasing with n. That is, for any 0 < (1− CR(n)) < 1, we
can set n = 1 and obtain our worst-case condition for the cost parameter c of

c <
(1− CR(n)) (2L+ σ2) (−12L2 − 12Lσ2 + ρ2 σ4)

8L2 (L+ σ2)2
. (2.41)

From (2.41), it follows that, for any 0 < (1 − CR(n)) ≤ 1, SL(A = 0) < 0 if c is
sufficiently small. Finally, for any 0 < (1−CR(n)) ≤ 1, the first derivative of (2.39)
with respect to A equals

∂SL(A)

∂A
= −4n (2A+ ρ)σ2 (L+ nσ2) < 0. (2.42)

As (2.42) is negative, n∗ is increasing with L for any 0 < (1 − CR(n)) ≤ 1 if c is
sufficiently small. �
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3 On the Incentive Effect of Job
Rotation1

Abstract

The longer an agent is employed in a job, the more the principal will
have learned about his ability through the history of performance. With
implicit incentives, influence perceptions and effort incentives decrease
over time. Rotating agents to a different job deletes learning effects
about ability, creating fresh impetus for effort. However, job rotation also
reduces the time horizon, and thus reduces rents from working and also
incentives. In this trade-off, we derive conditions for the desirability of
job rotation and show how in the presence of career concerns job rotation
may emerge endogenously. Finally, our model allows for more general
comments on the optimal rotation frequency as well as the preferred
organizational design of a firm.

1We would like to thank Matthias Kräkel, Martin Peitz, Barbara Schöndube-Pirchegger, Jens
Robert Schöndube, Christian Lukas, Stefan Wielenberg, and Ian Jewitt for helpful comments.
Participants in the 5th Doctoral Meeting of Montpellier, and the XIV. GEABA symposium in
Magdeburg also provided helpful suggestions.
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3.1 Introduction

Job rotation is a management strategy of periodically transferring employees to
different jobs within an organization. Recent empirical research reports a rapid
increase in flexible workplace practices, with job rotation as one of the three main
characteristics of those practices.2 For example, workers are rotated through various
projects, between tasks in a single department, or even between business units in
different regions or countries. Job rotation is not only a tool to fill temporary
assignments, but also to rotate people at their regular job on a monthly, weekly,
or actually daily basis. Traditional wisdom suggests that there are direct costs
and benefits to job rotation that relate to technical aspects of specialization and
learning. Obviously, even though rotating an engineer into a sales department can
develop new skills, job-specific human capital will be lost and the acquisition of
new knowledge is time-consuming. In this paper, we present a new explanation
for the use of job rotation and argue that job rotation also has indirect costs and
benefits through the effects of information and incentives that relate to a worker’s
career concerns. We highlight that job rotation is a tool for limiting the amount
of performance information available to the market and therefore for modifying the
effort incentives of workers.

By investigating the informational and incentive-related role of job rotation, the
main contribution of this paper is to emphasize how erasing past performance infor-
mation by job rotation can create new incentives. More specifically, related to the
seminal work of Fama (1980) and Holmström (1999), firms often have to commit
themselves to provide implicit incentives to their employees. The attempt to shape
the personal skill perceptions serves as an incentive device. If an agent works in a
job for a long time, the principal will have learned much about his abilities and thus
the incentives to increase the principal’s beliefs decrease over time. Job rotation
results in an information loss about the agent’s abilities and therefore increases his
incentives to incur costly effort. However, anticipating rotation, an agent will cut
back on his effort in the first place, due to a smaller pay-back period of his effort.
These divergent effort interrelations create novel insights into the optimal provision
of incentives to workers. One such insight is that, under certain conditions, the
agent’s average utility is non-monotonic in his rotation frequency.

To formally analyze the incentive role of job rotation, we formulate a principal
agent setting with an infinite horizon. A risk-neutral firm owner and an agent
with an ex-ante unknown ability engage in an employment relationship where the
agent exerts effort to improve the market expectations of his skill and consequently
his future compensation. Job rotation deletes past performance signals in drawing
inference about the agent’s skill and therefore relocates his incentives to incur costly
effort. Ex-ante, when the agent’s type is little known, effort incentives and influence

2Osterman (1994, 2000) documents establishment rates of about 35% for U.S. manufacturing firms
with 50 or more employees. Pil and MacDuffie (1996) provide evidence on the adoption of job
rotation for assembly plant workers around the world. Based on data in the U.S., Gittleman,
Horrigan, and Joyce (1998) report adoption rates of about 40%. In a survey of Danish private
sector firms, Eriksson and Ortega (2006) outline that rotation schemes were implemented for
nearly 20% of hourly paid workers.
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perceptions about ability are large. As time goes by, the agent’s type is partially
revealed and the incentives to exert effort decrease. Also, when the agent comes
closer to the rotation date, he becomes lazy because his type is virtually revealed by
then, and the information will be erased soon, so why bother to work? Hence, for
long maturities, there is overworking in the beginning and underworking towards
the rotation date. Furthermore, for a too large rotation frequency, the agent knows
that he will not stay on the task for long, so he will not exert much effort in the
first place. Consequently, a positive but finite rotation frequency is optimal.

We explore how job rotation influences the agent’s effort incentives and average
utility in a dynamic perspective. Specifically, if the agent’s ability is virtually known
ex ante, then firms place less reliance on output when forecasting the agent’s type
and the incentives to incur costly effort are small. A large duration until rotation
can raise the agent’s incentives to increase beliefs about his type and prevents him
from underinvesting in effort. In contrast, the more dispersed the prior, the larger
is the impact of the agent’s effort on the firms’ estimate of his ability. If time
until rotation is long, then effort incentives can be inefficiently large, until more
information is revealed. The agent can then only achieve the optimal workload
by increasing the frequency of rotation. In light of such phenomena, this paper
investigates the determinants for an agent’s optimal assignment and characterizes
the impact of this choice on learning about types and the incentives given to workers.

Altogether, our work contributes to the literature on incentives provided by orga-
nizational change and, more generally, to the research on endogenous job design.
It allows us to shed light on the complex relationships between organizational as-
signment, learning effects about ability, the effort incentives given to workers, and
their consequences on overall utility within an economic model. Our results offer
a novel theoretical approach for the lack of empirical evidence for existing expla-
nations to job rotation that relate to learning about abilities and the motivation
of employees, emphasizing that job rotation is less common for incentivizing long-
tenured employees with limited future prospects (Campion, Cheraskin, and Stevens
(1994), Eriksson and Ortega (2006)).3 In a more general context, our results may
also explain the recent trends on workplace reorganizations, including the increased
dissolution of long-term contracts, rising inter-firm job changes, limited employment
durations, the use of flexible staffing, and the adoption of triangular employment
relations with many employers and temporary or contingent contracts.4

Literature. Our paper relates to other fields within the existing literature. First,
it refers to models on implicit incentives in the presence of career concerns, orig-
inating from the seminal work of Fama (1980) and Holmström (1999), who offer
explanations for the limitations on explicit payment structures. This work is mostly

3This employee motivation argument was elaborated in the context of so-called plateaued em-
ployees (see Stites-Doe (1996)).

4Several studies provide evidence on workplace restructuring and the implementation of flexible
staffing arrangements, primary referring to the US labor market (see, for example, Kalleberg
(2000), Gramm and Schnell (2001), Houseman (2001), or Kalleberg, Reynolds, and Marsden
(2003)).
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connected to models that study the influence of career concerns on organizational
decisions (Dewatripont, Jewitt, and Tirole (1999b), Bar-Isaac (2007)), as well as
the role of information on the strengths of implicit incentives (Dewatripont, Jewitt,
and Tirole (1999a), Mukherjee (2008, 2010), Koch and Morgenstern (2010), Koch
and Peyrache (2011)). Related to our approach, Arya and Mittendorf (2011) an-
alyze the impact of organizational decisions as the choice between aggregated and
disaggregated performance measures on the incentives given to workers. Although
aggregation results in informational drawbacks, it increases the sensitivity of perfor-
mance measurement to the updating of an agent’s ability and with it the incentives
to incur costly effort. In line with the basic result that improved information may
reduce the strengths of implicit incentives, this paper newly investigates the role of
a firm’s organizational design as the choice between specialization and job rotation
on learning about types and the incentives provided to workers.

Second, several models study the incentive effects of information disclosure and per-
formance feedback when agents face career concerns and effort is history-dependent
(Acemoglu, Kremer, and Mian (2008), Gershkov and Perry (2009), Aoyagi (2010),
Casas-Arce (2010), Ederer (2010), Goltsman and Mukherjee (2011)). Most con-
nected to our work, Kovrijnykh (2007) presents a model of career uncertainty and
analyzes how reputational incentives interact with the possibility of career change.
Martinez (2009) investigates how employment history and beliefs about future pro-
ductivity affect motivation. Similarly, Hansen (2012) studies the effects of interim
performance evaluations on agents’ incentives to influence beliefs about future effort.
While these models primary examine how an agent’s effort incentives are influenced
by the market expectations of the agent’s effort, our work analyzes the relationship
between performance information that is determined by an agent’s assignment and
the strengths of implicit incentives. More specifically, by investigating the effect
of current effort on future expectations of an agent’s ability, we show how limiting
the amount of information available through job rotation impacts learning about an
agent’s type and therewith relocates the incentives to incur costly effort.

Third, there are parallels to the literature on optimal task assignment (Ricart i
Costa (1988), Meyer (1991, 1994), Bernhardt (1995), Ortega (2003), Bar-Isaac and
Hörner (2011)). These models concentrate on technological questions related to the
optimal task assignment and its implications for learning about agents’ abilities,
wage levels, promotion decisions, and the associated incentives, including consider-
ations regarding the external labor market. Our approach is also tied to the general
analysis on optimal contract length that is based on implicit contracting. Here, our
work most closely relates to Jovanovic (1979) who studies a model of optimal job
matching where an agent learns his productivity through the observation of output.
Turnover is created when the agent’s job-specific productivity turns out to be low,
while the agent remains in the current job if he forms a good match with the firm.
Similarly, Cantor (1988) analyzes how a worker’s effort incentives and recontracting
costs relate to the length of a labor contract when agents face career concerns. The
impetus behind this work is to investigate the information- and incentive-based role
of job rotation. Therefore, an agent’s task assignment and the optimal retention du-
ration in a job are considered as strategic instruments to shift the effort incentives
provided to agents, influenced by learning effects about their abilities and therefore
by future compensation.
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Forth, several models directly address the reasons why job rotation is useful. With
regard to incentive-based explanations, Ickes and Samuelson (1987) argue that if
higher efforts yield more demanding future remuneration schemes, agents are in-
centivized to cut back on their effort. Job rotation resolves this ratchet effect by
disentangling the influence of current performance on future incentives. However,
it results in a loss of specific human capital. Carmichael and MacLeod (1993) show
that if workers are trained in more than one job, they will be motivated to reveal
labor-saving technical change compared to single-skilled workers, as the former can
be transferred to other jobs inside the firm and therefore are not threatened with
dismissal. Cosgel and Miceli (1999) assume that job rotation reduces the boredom
of monotonous jobs, but, on the other hand, suffers the loss of job-specific human
capital. Eguchi (2005) outlines that job rotation can prevent agents from performing
private activities within their regular work, as these become more profitable as tenure
increases. Recent literature analyzes informational benefits of job rotation, either
related to learning about the productivity of tasks (Arya and Mittendorf (2004)),
or about the productivity of employees ((Meyer, 1994), Ortega (2001), Arya and
Mittendorf (2006a,b), Prescott and Townsend (2006), Müller (2011)). Specifically,
Arya and Mittendorf (2004) argue that job rotation helps to extract information
about the productivity of tasks from employees, as this information can no longer
be used against them in the case of rotation. In contrast, Ortega (2001) analyzes
job rotation as an instrument to learn a few traits about many dimensions of a
worker’s ability instead of to learn a great deal about only a few dimensions. Arya
and Mittendorf (2006a) focus on sorting benefits of job rotation, based on the result
that only versatile employees optimally self-select themselves into rotation programs.
Finally, Müller (2011) argues that job rotation leads to multiple performance eval-
uations of workers. This resolves confirmatory bias problems faced by supervisors,
although job rotation sacrifices job-specific human capital. Our work relates to
the incentive-based role of information with regard to job rotation and presents a
complementary approach that is not linked to typical technological reasons for and
against job rotation. Moreover, in contrast to the previous literature, job rotation
represents an instrument for reducing the information about agents’ abilities and
thereby for systematically channeling their efforts towards increases in the benefits
of a company’s workforce.

From the standpoint of the literature on employee turnover, our paper most closely
relates to Höffler and Sliwka (2003), who analyze the impact of managerial replace-
ment on effort incentives provided to workers. In their paper, the dismissal of a
manager results in a positive effort effect, based on an increased uncertainty about
the subordinates’ relative abilities. On the other hand, it reduces the quality of
task allocation due to the loss of information. This work contributes to the grow-
ing literature on information and incentives provided by organizational change and
highlights how in the presence of implicit contracts job rotation may emerge en-
dogenously. Therefore, in addition to positive effort effects, our paper also focuses
on negative effort incentives caused by the loss of past performance information.
We consider a firm’s optimal organizational assignment, clarify the advantages and
drawbacks of job rotation programs, and present a new instrument for influencing
learning effects about ability. Altogether, our paper focuses on the efficient provision
of incentives to workers and creates novel insights into the longstanding debate on
the optimal internal design of organizations.
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The remainder of this paper is organized as follows. Section 3.2 develops the main
model, and section 3.3 investigates the trade-offs of an agent’s optimal rotation
frequency. Section 3.4 provides evidence regarding job rotation and discusses the
implications of the model. Section 3.5 contains our conclusions. All proofs are
available in the Appendix.

3.2 The Model

We develop a dynamic principal agent setting with an infinite horizon. Consider
a competitive labor market where, at some point in time, t = 0, one out of many
identical firms (the principal) employs an agent for the purpose of production. At
heart of this model we study the agent’s optimal organizational assignment that
is given by some T : after T periods the agent will be rotated to a different job
inside the firm. To abstract from integer problems, we assume that the agent works
continuously on a task. Aggregate output Y (t) after time t, with 0 ≤ t ≤ T , is
an additively linear function of the agent’s unobservable ability, a, his endogenous
effort choice e, and an error term, ε, and is given by

Y (t) = a t+

∫ t

0

e dt+ ε. (3.1)

To avoid signaling issues associated with mixed strategies, we assume that all market
participants share common prior beliefs about the agent’s ability a that is normally
distributed with zero mean and variance α2. This implies that the agent himself
does not know his type as, otherwise, a high type could go for different contracts
than low types. By working on a task, principal and agent learn about the agent’s
ability over time through the observation of output. The agent’s ability a and the
error term ε are independently distributed, where ε follows a normal distribution
with zero mean and a variance that depends on the time span t. We assume that
ε has variance σ2 t. This assumption has the following micro-foundation. Suppose
that aggregate working time can be divided into infinitesimal time intervals. Then,
with independent increments, for a time span of length dt, output is given by

dY (t) = a dt+ e dt+ σ dW (t), (3.2)

where W (t) is a Wiener process generating noise. According to the basic properties
of the standard Wiener process, W (t) has zero mean and variance t. Then, output
Y (t) after time t is normally distributed with mean a t +

∫ t
0
e dt and with variance

σ2 t. It follows that the larger the interval of observation, the smaller is the variance
of the output measure relative to time t, and the more precise is then the updating
of an agent’s ability. Consequently, the longer the agent works on a task, the more
obvious his true abilities will become; the less noise there will be.

Our main focus is to analyze the incentive effect of rotating the agent to a different
job. Therefore, we investigate the informational role of job rotation that relates
to the observability of the history of an agent’s productivity. We assume that job
rotation deletes previous performance information in drawing inference about the
agent’s skill and take complete deletion of information as the extreme case. This
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independence assumption guarantees that no information about past performance
signals is transmitted to the new working department as well as to the outside
labor market and involves drawing a new value of the agent’s ability. Moreover, as
information that is once inside the market cannot be unlearned at a later period,
this assumption implies that the market cannot observe past performance signals,
but rather that performance signals are private information of principal and agent.
Consequently, we refer to an evaluation system where the final working department
completes an agent’s written character at the end of employment.5

To capture incentives of career reputation, we assume contract incompleteness in
that output is observable, but not verifiable. That is, the principal cannot write
a pay-for-performance contract based on output and is restricted to fixed wage
payments, determined by a competitive labor market and conditioned on observed
output. The desire to shape the principal’s expectation of the agent’s skill may
therefore provide an impetus for effort. However, effort is costly with a quadratic
cost structure of

c(e) = c
e2

2
. (3.3)

Then, in each period of length dt, an effort e ≥ 0 increases output by e dt, but has
a cost of c(e) dt = c e2/2 dt.

Competition for the worker is modeled as follows. We assume that the agent has
all bargaining power at contract negotiation, reflecting a competitive labor market
that consists of many homogeneous firms. In this case, the agent proposes the
initial contract and is free to choose any period length T until rotation. Moreover,
we assume that at each renegotiation stage t ∈ [0, T ], the firm faces sufficiently
large delay costs if a consensus decision is not achieved. These delay costs reflect
the firm’s impatience in ex post renegotiation implying that the agent keeps all the
bargaining power to propose subsequent contracts.6 Thus, at each date t ∈ [0, T ],
the agent makes a take-it-or-leave-it offer to the firm. The firm can either accept
the offer or dismiss the agent. This condition requires that at each renegotiation
stage, the minimum expected utility necessary to induce a firm to hire the agent
must yield the firm at least zero expected utility. Stated differently, as the agent
has bargaining power over pay, he ultimately reaps all the benefits from employment
and becomes residual claimant of the aggregate surplus. Hence, at each date, the
agent’s wage moves up and down. The agent dislikes spending effort and benefits
from compensation. Consequently, at each date t, the agent’s utility is represented

5Similarly, Prescott and Townsend (2006) analyze a principal-agent model with multiple-stage
production and assume that job rotation hinders agents in becoming informed about a project’s
interim performance measures. Also Höffler and Sliwka (2003) assume that after dismissing a
manager, the successor receives no information about an agent’s past performance signals, nei-
ther from the old manager, nor from the principal. Likewise, in a dynamic model of reputation,
Bar-Isaac (2007) assumes that an agent’s productive history is only observable at the location
where it is produced, while the agent’s reputation is lost if he moves to a different location.

6Aghion, Dewatripont, and Rey (1994) outline that the allocation of full bargaining power in ex
post renegotiation to one contractual party represents a well-founded assumption, as it can be
achieved by established contractual instruments, such as penalties, or default options.
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by

Ut = wt − c
e2t
2

= E[at + et + εt]− c e2t/2 = E[at + et]− c
e2t
2
, (3.4)

as E[εt] = 0 for all t.

As the agent himself learns his ability over time, his ex ante commitment to T might
turn out to be suboptimal. In detail, to limit the visibility of his type, an agent
who turns out to be of low ability might choose to rotate more frequently than in
the initial steady state. Contrary, a high ability type might prefer to stay in the job
for a longer time period such that his abilities will remain apparent. We refer to T
as the choice of technology and assume that the agent’s ex ante rotation decision is
irreversible ex post. That is, once chosen, it is prohibitedly costly for the agent to
change his rotation date at a future period t < T .7 Given that all job separations
are at the agent’s initiative, this also applies for the case where the agent induces the
firm to dismiss him purely for the purpose of recontracting his rotation frequency.
This assumption strengthens the trade-off between information and incentives that
relates to the agent’s employment without affecting bargaining and the information
structure with respect to the outside labor market.

The timing of the model is as follows.

t = 0 One of many identical firms employs an agent with an unknown ability a.

The agent commits to a binding duration until rotation T .

t < T The agent works continuously on a task and exerts effort e.

At each date, firm and agent learn output Y (t) to update the agent’s expected
ability.

The agent continuously renegotiates his wage wt by making a take-it-or leave-
it-offer to the firm.

t = T Payoffs are realized.

The firm rotates the agent to a different job, and past performance signals are
deleted.

3.3 Timing of Rotation

In order to investigate how incentives and output interact with the agent’s assign-
ment, we will analyze how the timing of rotation relates to learning about the agent’s

7Similarly, Mukherjee (2008, 2010) analyzes a firm’s optimal disclosure policy and assumes that
a firm’s ex ante choice of job design is irreversible ex post. Also in the model of Mukherjee
and Vasconcelos (2011) a firm’s task assignment decision is binding and cannot be revised at
a future date. Likewise, Poutvaara, Takalo, and Wagener (2012) study a model of optimal
contract duration where the possibility of premature contract renegotiation is excluded.
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ability. From a dynamic perspective, as job rotation deletes past performance infor-
mation in drawing inference about the agent’s skill, it may have ambiguous effects
on expected future wages, the incentives to incur costly effort, and with it also on
the agent’s utility. Specifically, the agent’s incentives to exert costly effort stem
from the desire to increase his productivity in order to improve the market expec-
tation of his ability. That is, the agent maximizes his expected utility, given the
market expectations of his effort. Being aware of the agent’s utility function, the
market anticipates the agent’s effort level. Consequently, in equilibrium, the agent’s
optimal effort corresponds with the market expectation of his effort. As ability and
effort additively increase the agent’s productivity, learning is not affected by the
market expectation of the agent’s effort. That is, taking the market expectation of
the agent’s effort as given, we can only look at whether the agent has an incentive
to unobservedly increase efforts. In detail, if the agent increases his efforts while the
market believes he does not, his future wages increase because the market partly as-
signs the resulting productivity increase to an increase in his ability. However, even
though the agent’s efforts can’t be observed, one essential equilibrium condition is
that there are no asymmetries between the agent who knows his effort choice and
the market in anticipating the agent’s unobservable actions. Only this condition
implies that in equilibrium, the market is not fooled such that learning effects and
the expectations of the agent’s ability are consistent for both the market and the
agent. This, in turn, implies that if the agent increases his efforts (beyond the mar-
ket expectations) to establish a favorable reputation of being a high type, the market
will anticipate the agent’s actions and attribute the increase in productivity to an
increase in effort. However, the agent’s effort is also chosen accurately to the effect
that any effort reduction would be recognized as a signal of lower ability. Further-
more, as the agent is paid his expected productivity, effort is incentive-compatible.
That is, the agent receives all the benefits from employment and profits from the
resulting output increase in the end, but has to bear the effort costs.

To begin with, assume that the agent is at date t < T , and he has already produced
Y (t). Then, according to (3.1), the distribution of the output Y (t) results from
the distributions a ∼ N

(
0, α2

)
and ε ∼ N

(
0, σ2 t

)
. Consequently, updating follows

from

Y (t)−
∫ t

0

ê dt = a t+ ε ∼ N
(
0, α2 t2 + σ2 t

)
, (3.5)

where ê denotes the market conjecture of the agent’s effort. The variance of the
output is the sum of the variances of the prior and of the error term. It follows that
the variance of the output always exceeds the variance of the agent’s ability as it also
incorporates measurement error. However, the larger the interval of observation, the
smaller is the variance of the output measure relative to the time span t and the
updating of the agent’s ability is then more precise. As the agent’s equilibrium
effort is anticipated, the market uses Y (t) −

∫ t
0
ê dt to forecast the agent’s ability.

According to the Bayes’ theorem for normally distributed random variables, the
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agent’s perceived type is then normally distributed with mean (expected type)

â = E

[
a | Y (t)−

∫ t

0

ê dt

]
=

1

t

(
σ2 t

α2 t2 + σ2 t︸ ︷︷ ︸
:=q

0 +
α2 t2

α2 t2 + σ2 t︸ ︷︷ ︸
:=1−q

(
Y (t)−

∫ t

0

ê dt

))

=
α2

α2 t+ σ2

(
Y (t)−

∫ t

0

ê dt

)
. (3.6)

The posterior variance of the agent’s ability results from the precisions of both the
prior and of the conditional variances and equals

α̂2 =
1

t2

(
1

1/(α2 t2) + 1/(σ2 t)

)
=

α2 σ2

α2 t+ σ2
. (3.7)

Then, the a posteriori distribution of the agent’s ability, after observation of Y (t),
is given by

â = E

[
a | Y (t)−

∫ t

0

ê dt

]
∼ N

(
α2

α2 t+ σ2

(
Y (t)−

∫ t

0

ê dt

)
,

α2 σ2

α2 t+ σ2

)
. (3.8)

The agent’s expected ability in period t consists of a weighted average of the prior â0
(which equals zero), and of the signal Y (t)−

∫ t
0
ê dt. The sum of both weights is 1 in

each case; thus, the weight on the prior, denoted q, increases if the new information
is very noisy (large σ). Contrary, if the prior is very noisy (large α), more weight is
put on the output measure 1− q. Furthermore, learning reduces the variance of the
agent’s expected ability such that its estimation becomes more precise. Equivalently,
the increase in Y (t)−

∫ t
0
ê dt is approximately proportional to a t such that if tenure

tends to infinity, t → ∞, the agent’s expected ability converges to the real ability,
â → a, and its variance converges to zero, α̂2 → 0. That is, updating reduces
the uncertainty about the agent’s ability α, it consequently reduces further learning
effects, and with it also the strengths of implicit incentives. Based on this basic
result that increased information may reduce future incentives, the main focus of
our work is to analyze how job rotation can disentangle future output from past
learning effects and therefore relocate the agent’s incentives to incur costly effort.

Taking the firms’ expectations of the agent’s effort as given, assume that at date t,
the agent increases his effort by an infinitesimal de for an infinitesimal time span dt.
That is, for the remaining T − t periods until rotation, aggregate output is increased
by de dt. Hence, the agent expects that for all dates t′ ∈ [t, T ], the firms’ expected
value of the agent’s type is

α2

α2 t′ + σ2
(Y (t′) + de dt) . (3.9)

That is, it is increased by

α2

α2 t′ + σ2
de dt. (3.10)

As, at each date t, the agent is paid his expected marginal product, his aggregate
wage from t to T increases by

de dt

∫ T

t

α2

α2 t′ + σ2
dt′ = de dt log

[
α2 T + σ2

α2 t+ σ2

]
. (3.11)
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The agent will increase his effort as long as the perceived benefits exceed the costs
associated with this increase. The cost function is c e2/2, hence the additional cost
for this effort increase is c de2/2 dt. The first order condition thus yields

c de2/2 dt = de dt log

[
α2 T + σ2

α2 t+ σ2

]
. (3.12)

This gives the following lemma.

Lemma 4 The agent’s equilibrium effort is

e∗ = log

[
α2 T + σ2

α2 t+ σ2

]
/c. (3.13)

Lemma 4 outlines a few basic characteristics of the agent’s optimal effort e∗. In-
tuitively, as job rotation deletes past performance information in drawing inference
about the agent’s skill, effort is only worthwhile for t < T . Consequently, when the
duration until rotation is extended, the wage derived from effort increases. Hence,
the optimal effort increases with the payback period T − t. The effect of career
concerns incentives implies that if skill is known, α = 0, the optimal effort is zero,
e∗ = 0. That is, the larger the prior type uncertainty (large α) and the more precise
the performance measurement (small σ), the larger are the incentives to invest in
increasing visibility and the more effort the agent spends in equilibrium.

0 1 2 3 4 5 6
t

0.5

1.0

1.5

2.0

2.5

3.0

3.5
e*

Α=1

0 1 2 3 4 5 6
t

0.5

1.0

1.5

2.0

2.5

3.0

3.5
e*

Α=2

Figure 3.1: Optimal effort e∗ as a function of time t

The parameters are σ = 1, c = 1, α = 1 (left figure), and α = 2 (right figure). We have T = 6 for
the blue curve, and T = 3 for the purple curve.

Figure 3.1 shows the equilibrium effort e∗ as a function of time t when varying the
duration until rotation T and given different values of the prior type uncertainty α.
Three things are visible. First, by comparing the left and right figures, the higher
the uncertainty about the agent’s type α, the more the agent has to prove, and the
more effort he spends. Second, the longer the time until rotation T − t, the higher
the uncertainty about the type, and the longer the agent can benefit from a wage
increase from effort. Thus, for small t, effort is high. As time reaches t = T , the
agent does not spend any effort at all. Third, the functions are convex in t. If the
second effect were the only time effect prevalent, then the effort should be linear in
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T − t. It is not. This means that the additional information that is aggregated over
time plays an important role. In detail, firms not only place less weight on output
when prior type uncertainty decreases, but they also are less likely to change their
old estimate. Thus, at the beginning (for small t), the agent’s type is little known,
hence incentives to exert effort and influence perceptions about the type are large.
As time goes by (for larger t), the agent’s type is partially revealed, hence incentives
to exert effort decrease.

Our results indicate that the strengths of career concerns decline as performance
information accumulates such that learning effects about ability and the worker’s
future wage become less sensitive to output over time. First, for long maturities,
an agent might overinvest in effort at the beginning, but underinvest in effort when
coming closer to the rotation date, as all performance information will be erased
soon. Second, for a too large rotation frequency, an agent might exert less effort in
the first place as effort pays off for not very long. This yields the final question: how
large is the optimal duration until rotation T ∗? As the firm’s profit is zero, we need
to aggregate the agent’s utility over time and calculate the agent’s average. This
is because the number of assignments increases with the agent’s rotation frequency.
At each date t, the agent is paid his expected productivity, hence his utility is

wt − c
e2t
2

= E [at + et]− c
e2t
2
.

The average is then

Ū =
1

T

∫ T

0

[
E [at + et]− c

e2t
2

]
dt

=
1

T

∫ T

0

[
E

[
at + log

[
α2 T + σ2

α2 t+ σ2

]
/c

]
− log

[
α2 T + σ2

α2 t+ σ2

]2
/(2 c)

]
dt

=
σ2

2 c α2 T
log

[
1 +

α2 T

σ2

]2
. (3.14)
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Figure 3.2: Agent’s average utility Ū as a function of the duration until rotation T

The parameters are σ = 1, c = 1, and α = 1, as before. The dashed line gives the optimal duration
until rotation T ∗.

This average depends on the cost factor c, of course, and on the fraction α2 T/σ2.
Intuitively, if performance measurement is very noisy (large σ), learning effects are
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small and the effect of effort is low. A large duration until rotation T increases
the payback period of the agent’s effort and can incentivize him to spend more
effort. Contrary, if the prior is highly dispersed (large α), learning effects and
effort incentives are large. Cutting back the duration until rotation can prevent
the agent from overworking such that smaller values of T are optimal. In other
words, job rotation smooths effort incentives over time and therefore may increase
the agent’s utility due to convex effort costs. Figure 3.2 shows the agent’s average
utility over time, as dependent on the duration until rotation T . We are interested
in the optimal duration T ∗ (in the picture, a little smaller than 4). The first order
condition, ∂Ū/∂T = 0, yields

0 =

(
1 +

α2 T ∗

σ2

)
log

[
1 +

α2 T ∗

σ2

]
− 2

α2 T ∗

σ2
,

T ∗ =
σ2

α2
T1, (3.15)

where T1 is the solution to

0 = (1 + T1) log [1 + T1]− 2T1,

T1 ≈ 3.9215. (3.16)

This proves the following proposition.

Proposition 10 The optimal duration until rotation is T ∗ = 3.9215 · σ2/α2.

The optimal rotation frequency is thus 1/T ∗ = 1/T1 · α2/σ2 ≈ 0.2550 · α2/σ2. The
better the agent’s type is already known ex ante, in comparison to the variance of
the noise ε, the smaller is α, and the less he should be rotated within the firm. Why?
If the agent’s type is virtually known (small α), then his incentives to work are small
and suboptimal. Therefore, he needs to be incentivized to spend more effort, and
this can be achieved by giving him a long horizon, so the incentives to increase
beliefs about his type are higher. In fact, not only does he need to be incentivized,
he also wants to be incentivized more because ultimately, he reaps all the benefits
himself. If his type is virtually unknown (large α), he has an incentive to work like
crazy especially in the beginning, until more information is revealed. Potentially,
he might even overwork. If time until rotation is long, incentives to work can be
inefficiently large. The agent can then only achieve the optimal workload by cutting
down the duration until rotation, hence by increasing the rotation frequency.

Considering the perspective of the (unmodeled) periods beyond rotation, t ≥ T ,
suggests that the optimal duration until rotation T ∗ may become subject to mixed
strategies, as the agent will have superior information about his abilities compared
to other market participants if human capital is not job-specific. Otherwise, the
optimal duration until the following rotation will always remain the same as in the
first equilibrium and therefore will maximize the agent’s infinite horizon profits.

Our general results indicate that the optimal rotation frequency 1/T ∗ is small, when
noise is primary induced by the uncertainty about external shocks σ rather than
by the uncertainty about the agent’s type α. That is, the optimal duration until
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rotation T ∗ increases when the noise of performance measurement increases, or the
variance of ability decreases. For any such change, learning effects about ability
decrease and the market is less likely to change the initial perception about the
agent’s type. Consequently, incentives to invest in visibility decrease such that the
agent needs to be incentivized by a longer pay-back period of his effort; that is,
a larger duration until rotation. In the extreme case, when prior type uncertainty
tends to zero, α→ 0, the optimal time until rotation tends to infinity, T ∗ →∞, and
thus the optimal rotation frequency tends to zero, 1/T ∗ → 0. Consequently, a major
result is that job rotation can only be beneficial in case when career uncertainty
exists.

3.4 Implications and Discussion

With regard to empirical evidence, a study by Eriksson and Ortega (2006) reap-
praises three major explanations for the adoption of job rotation: employee learn-
ing, employer learning, and employee motivation. While our model rules out the
possibility of typical technological arguments to job rotation, such as the acquisition
of new knowledge through exposure to different tasks (employee learning hypothe-
sis), it is consistent with stylized facts that relate to the employer learning and the
employee motivation hypothesis. The employee motivation argument assumes that
job rotation should incentivize long-tenured employees with limited advancement
opportunities. Contrary, the employer learning argument focuses on job rotation as
an instrument to learn different traits of a worker’s ability. Abstracting from such
multi-branched learning effects, our results propose a complementary explanation,
one that connects learning effects about ability with incentive-related evidence for
job rotation. In the argumentation of our model, a firm learns more about an agent’s
ability if prior type uncertainty is large and if performance measurement is relatively
precise. In this case, agents should rotate more frequently. Consequently, of interest
is, when the prior type uncertainty is likely to be large in comparison to the noise of
performance measurement. First, at lower hierarchical levels, job design takes the
form of standardized tasks and routine work is more common. That is, exogenous
shocks are more likely to persist at higher hierarchical tiers, as projects become
more complex and also may include or at least depend on the contributions of other
agents. Here, performance measurement is less precise and thus learning effects
about ability are small. Second, type uncertainty should decrease with an agent’s
work experience in the labor market. Consequently, the frequency of rotation should
be smaller for senior workers and higher for new hires and employees at lower hierar-
chical levels of a firm. Consistent with this result, Campion, Cheraskin, and Stevens
(1994) identify a negative relationship between self-selection into rotation programs
and organizational tenure. With regard to different hierarchical occupations, em-
ployees with more routine work, like clerical workers, secretaries, and administrative
assistants generally prefer higher rotation rates than executives. Similarly, Eriksson
and Ortega (2006) emphasize that the implementation of job rotation negatively
relates to employees’ tenure. Moreover, promotion prospects and rotation rates are
shown to be higher at new or fast-growing firms. Likewise, our model accounts
for the finding that firms with flatter hierarchical structures and therefore limited
prospects of promotion generally face lower rates of rotation. Therewith, our results
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offer a novel theoretical explanation for the lack of empirical evidence for existing
motivational approaches to job rotation identifying that job rotation is less com-
mon for motivating plateaued employees without future prospects, but more plays
a role for agents with shorter employee tenure, such as young professionals, who are
primarily incentivized by career concerns objectives.

3.5 Conclusion

In this paper, we offer a new information- and incentive-based explanation for the use
of job rotation. By considering the question of an agent’s optimal task assignment,
we highlight how in the presence of implicit incentives job rotation may emerge
endogenously. More specifically, our model shows that learning about an agent’s
ability and the incentives to incur costly effort decrease over time. Rotating agents
to a different job results in an information loss about past performance signals,
creating new impetus to effort. However, job rotation also reduces the time horizon
and thus reduces rents from working and incentives. In this trade-off, our model
analyzes the impact of environmental variables on the desirability and the optimal
extent of job rotation. As a result, the optimal duration until rotation increases
as incentives to increase beliefs about the agent’s type decline. Thus, the more
dispersed the prior relative to the noise of performance measurement, the more
often agents should be rotated inside the firm.

By analyzing a firm’s optimal organizational strategy, the main contribution of our
work is to characterize how implicit contracts impact optimal job design and how
employees may benefit from job rotation programs. Therefore, we offer a new ex-
planation for the lack of empirical evidence connecting employer learning arguments
with existing motivational approaches to job rotation. In line with the findings that
job rotation is more common among young employees and therefore is not appro-
priate for reducing the boredom of long-tenured workers (Campion, Cheraskin, and
Stevens (1994), Eriksson and Ortega (2006)), we present a novel motivational expla-
nation for the use of job rotation, confirming that job rotation can be advantageous
in the presence of implicit incentives and hence is more effective in early careers
of employees. More generally, abstracting from the traditional view that technical
factors, such as the implementation of a new technology, can promote the implemen-
tation of job rotation (see, for example, Gittleman, Horrigan, and Joyce (1998)), we
propose that information and incentives also play a pivotal role in the desirability of
job rotation and the question of the optimal organizational strategy of firms. Our
results are consistent with recent empirical evidence emphasizing the role of infor-
mation with regard to job rotation and the incentives given to workers (Hertzberg,
Liberti, and Paravisini (2010), Hentschel, Muehlheusser, and Sliwka (2012)).8

8Hertzberg, Liberti, and Paravisini (2010) find evidence that job transfers and the anticipation
of rotation can remove loan officers’ incentives to withhold bad news, as self-reporting has
a smaller negative effect on their career than if bad news is uncovered by the successor. In
relation to the literature on employee turnover, Hentschel, Muehlheusser, and Sliwka (2012)
identify that managerial replacement can increase the subordinates’ incentives to demonstrate
their skills.
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Our model implies that job rotation is not meant to be a panacea for the provision
of incentives to workers; rather it is a means that should be used in moderation to
establish a proper balance between effort incentives in the early and later periods
of an agent’s employment. This is because job rotation is related to both positive
and negative incentives that are based on learning effects about ability. Based on
these results, several theoretical extensions of this model can be considered. One
aspect would be to extend the model framework by analyzing the interaction of
job rotation with other forms of incentive-enhancing policies, such as monitoring
activities. Specifically, monitoring could increase the precision of output measure-
ment and therefore complement the incentive effect of rotation programs. Another
consideration would be to investigate the implementation of job rotation in team
settings. The entering of a new team agent would introduce uncertainty concerning
the relative abilities of all team members and therefore can create effort incentives
even for non-rotating employees, especially in the presence of aggregated or relative
performance evaluations.

Taking a broader view of the results, our work contributes to the debate on the
optimal internal design of organizations. Although the implementation of job ro-
tation can also be affected by other factors, such as organizational requirements,
our model offers a new understanding of how job rotation impacts learning effects
about abilities and influences the behavior of agents through their career concerns
incentives.

3.6 Appendix

Proof of Lemma 4. At date t, the agent can spend effort costs c e2/2 such that for
the remaining time period of t′ ∈ [t, T ] output is increased by e. More specifically,
at date t, an effort cost of c de2/2 dt increases output from t to T by de dt. Thus, as
the agent’s wage proportionally increases with his expected ability, it is increased
for all dates t′ ∈ [t, T ] by

(1− q) de dt =
α2

α2 t′ + σ2
de dt, (3.17)

where 1 − q denotes the weight on the output measure when updating the agent’s
ability. Consequently, according to (3.10), (3.11), and (3.12), the agent balances the
resulting benefits with his costs of effort. Thus, the agent solves

max
e

de dt

∫ T

t

α2

α2 t′ + σ2
dt′ − c de2

2
dt = de dt log

[
α2 T + σ2

α2 t+ σ2

]
− c de2

2
dt. (3.18)

The first-order condition yields the equilibrium effort of

e∗ = log

[
α2 T + σ2

α2 t+ σ2

]
/c, (3.19)

which corresponds to the result of (3.13). Note that as e∗ is free of the market
conjectures, the existence of a unique equilibrium is ensured. �
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Proof of Proposition 10. According to (3.4), at each date t ∈ [0, T ], the agent is
paid his expected productivity, wt = E[at + et + εt] = E[at + et]. Then, applying
the equilibrium effort e∗ of Lemma 4, and given the distributions a ∼ N

(
0, α2

)
and

ε ∼ N
(
0, σ2 t

)
, the agent’s average utility is given by

Ū =
1

T

∫ T

0

[
E

[
at + log

[
α2 T + σ2

α2 t+ σ2

]
/c

]
− log

[
α2 T + σ2

α2 t+ σ2

]2
/(2 c)

]
dt

=
σ2

2 c α2 T
log

[
1 +

α2 T

σ2

]2
, (3.20)

which corresponds to the result of (3.14). The agent solves for the optimal duration
until rotation T ∗,

max
T

Ū =
σ2

2 c α2 T
log

[
1 +

α2 T

σ2

]2
. (3.21)

The first order condition, ∂Ū/∂T = 0, yields

0 =

(
1 +

α2 T ∗

σ2

)
log

[
1 +

α2 T ∗

σ2

]
− 2

α2 T ∗

σ2
, (3.22)

which corresponds to the result of (3.15). With T ∗ = σ2/α2 T1, we can rewrite (3.22)
to

0 = (1 + T1) log [1 + T1]− 2T1,

T1 ≈ 3.9215. (3.23)

That is, the optimal duration until rotation is T ∗ = σ2/α2 ·T1 ≈ 3.9215 ·σ2/α2. The
optimal frequency of rotation then equals 1/T ∗ = 1/T1 · α2/σ2 ≈ 0.2550 · α2/σ2. �
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