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Abstract

We analyze whether one can construct a spectral triple for a Carnot manifold M , which
detects its Carnot-Carathéodory metric and its graded dimension. Therefore we construct
self-adjoint horizontal Dirac operators DH and show that each horizontal Dirac operator
detects the metric via Connes’ formula, but we also find that in no case these operators
are hypoelliptic, which means they fail to have a compact resolvent.

First we consider an example on compact Carnot nilmanifolds in detail, where we present
a construction for a horizontal Dirac operator arising via pullback from the Dirac operator
on the torus. Following an approach by Christian Bär to decompose the horizontal Clifford
bundle, we detect that this operator has an infinite dimensional kernel. But in spite of this,
in the case of Heisenberg nilmanifolds we will be able to discover the graded dimension from
the asymptotic behavior of the eigenvalues of this horizontal Dirac operator. Afterwards we
turn to the general case, showing that any horizontal Dirac operator fails to be hypoelliptic.
Doing this, we develop a criterion from which hypoellipticity of certain graded differential
operators can be excluded by considering the situation on a Heisenberg manifold, for which
a complete characterization of hypoellipticity in known by the Rockland condition.

Finally, we show how spectral triples can be constructed from horizontal Laplacians via
the Heisenberg pseudodifferential calculus developed by Richard Beals and Peter Greiner.
We suggest a few of these constructions, and discuss under which assumptions it may
be possible to get an equivalent metric to the Carnot-Carathéodory metric from these
operators. In addition, we mention a formula by which the Carnot-Carathéodory metric
can be detected from arbitrary horizontal Laplacians.

Keywords: Spectral triple, Carnot-Carathéodory metric, Hypoellipticity.
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Zusammenfassung

Wir untersuchen, inwiefern man auf einer Carnot-Mannigfaltigkeit M ein spektrales Tripel
konstruieren kann, welches die Carnot-Carathéodory Metrik und die gradierte Dimension
von M erkennen soll. Zu diesem Zweck konstruieren wir selbst-adjungierte horizontale
Dirac Operatoren DH und zeigen, dass zwar jeder horizontale Dirac Operator über Connes’
Formel die Metrik erkennt, allerdings in keinem Fall hypoelliptisch ist und somit keine
kompakte Resolvente besitzen kann.

Zunächst betrachten wir ein Beispiel auf kompakten Carnot Nilmannigfaltigkeit detailliert,
wobei wir eine Konstruktion für einen horizontalen Dirac Operator über den Pull-back des
Dirac Operators auf dem Torus durchführen. Einer Methode von Christian Bär folgend
können wir das horizontale Clifford Bündel dieses Operators zerlegen und erkennen, dass
der Operator einen unendlich dimensionalen Kern besitzt. Dennoch können wir im Fall von
Heisenberg Nilmannigfaltigkeiten die gradierte Dimension aus dem asymptotischen Verhal-
ten der Eigenwerte dieses horizontalen Dirac-Operators erkennen. Anschließend wenden
wir uns dem allgemeinen Fall zu, indem wir zeigen dass ein beliebiger horizontaler Dirac
Operator nicht hypoelliptisch ist. Dazu entwickeln wir ein Kriterium mit dem man die
Hypoelliptizität von bestimmten gradierten Differentialoperatoren ausschließen kann in-
dem man die Situation auf einer Heisenberg Mannigfaltigkeit betrachtet, für welche eine
vollständige Charakterisierung der Hypoelliptizität durch die Rockland-Bedingung gegeben
ist.

Schließlich zeigen wir wie man spektrale Tripel aus horizontalen Laplace Operatoren mit
Hilfe des Heisenberg Pseudodifferentialkalküls, das von Richard Beals und Peter Greiner
entwickelt wurde, konstruieren kann. Wir stellen ein paar explizite Konstruktionen vor
und diskutieren, unter welchen Voraussetzungen es möglich sein kann aus diesen Opera-
toren eine zu der Carnot-Carathéodory Metrik äquivalente Metrik zu erhalten. Zusätzlich
erwähnen wir eine Formel, mit der die Carnot-Carathéodory Metrik aus beliebigen hori-
zontalen Laplace Operatoren erkannt werden kann.

Schlüsselwörter: Spektrales Tripel, Carnot-Carathéodory Metrik, Hypoelliptizität.
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Du sollst dich zu einer Stadt begeben, die den Namen Tsnips-Eg’N-Rih trägt!

(Walter Moers)



Introduction

In the 1980s, Alain Connes presented the concept of non-commutative geometry as an
extension of the usual notion of a topological space (see e.g. [Con94], [Con85], [Con89]).
The idea goes back to the 1940s, when Israel Gelfand and Mark Naimark showed that every
commutative C∗-Algebra is isomorphic to the C∗-algebra C0(X) of continuous functions on
a locally compact Hausdorff space X vanishing at infinity (see [GN43]). From this starting
point, one sees that a lot of properties of the space X can be translated into properties of
its C∗-algebra C0(X). Motivated by this, in non-commutative geometry one considers a
general C∗-algebra as a non-commutative space˝.

To describe geometry on a non-commutative space, Connes introduced so-called spectral
triples. The definition of a spectral triple is suggested by the fact that many geometric
properties of a compact connected Riemannian spin manifold M without boundary can be
obtained from the Dirac operator D acting on a Clifford bundle ΣM over M . For example,
one can reproduce the dimension of M by the asymptotic growth of the eigenvalues of D
via

dimM = inf
{
p ∈ R :

(
D2 + I

)− p
2 is trace class

}
,

and one can detect the geodesic distance on M by the formula

dgeo(x, y) = sup
{
|f(x)− f(y)| : f ∈ C∞(M), ‖[D, f ]‖L2(ΣM) ≤ 1

}
.

These properties can be transported to the picture of C∗-algebras: A spectral triple is a
triple (A,H,D) where A is a C∗-algebra, H is a Hilbert space carrying a faithful action
of A on B(H) and D is a self-adjoint operator on H such that [D, a] is bounded for a
belonging to a dense sub-algebra of A and such that the resolvent (D2 + I)−1/2 of D is
compact. For a general spectral triple, one can define notions of dimension and metric in
analogy to the formulas above. Hence on a closed Riemannian spin manifold with Dirac
operator D, a spectral triple which detects the dimension and the geodesic metric on M
is given by the triple (C(M), L2(ΣM), D).

During the last decades there have been several approaches to construct spectral triples for
more examples than the one of a closed Riemannian spin manifold. In particular there are
some constructions for certain fractals which have a non-integer Hausdorff dimension, done
for example by Erik Christensen, Christina Ivan and their collaborators (see e.g. [CIL08],
[CIS12]): For some fractals, it is possible to detect the Hausdorff dimension as well as
the geodesic distance of the space from a spectral triple. A more general approach has
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been suggested by Ian Palmer ([Pal10]) and by John Pearson and Jean Bellissard [PB09]).
Palmer shows that under mild conditions the Hausdorff dimension of every compact metric
space can be discovered by a spectral triple. For these triples one can also find an estimate
from above for the metric. But the constructions Palmer is considering lead away from
the geometry of the space, since these constructions make use of an approximation of the
space by a discrete subset.

From the aspect of dimension, it is also interesting to note that there has been a con-
struction by Erik Christensen and Christina Ivan showing that to any given positive real
number s, one can construct a spectral triple of dimension s, where A is a limit of finite-
dimensional C∗-algebras and D is a limit of finite-dimensional operators ([CI06]). Hence at
least theoretically it is possible to define spectral triples of arbitrary dimension on certain
spaces.

The question we are dealing with in this thesis is whether it is possible to define two
different spectral triples on one space, which both give reasonable geometries (in terms of
dimension and metric). Therefore we consider so-called sub-Riemannian manifolds (or in a
more specialized setting Carnot manifolds), which are Riemannian manifolds M equipped
with a bracket-generating horizontal sub-bundle HM of their tangent bundle TM . It
has been detected by Wei-Liang Chow ([Cho39]) in 1939 that in this case and if M is
connected, any two points on M can be connected by a curve which is tangent to the
horizontal distribution HM . This means that we obtain a metric on M via the formula

dCC(x, y) := inf

{∫ 1

0

‖γ̇(t)‖ dt : γ horizontal path with γ(0) = x and γ(1) = y

}
,

which differs from the metric induced by the geodesic distance on M . In addition, the
Hausdorff dimension of the metric space (M,dCC) turns out to be strictly greater than
the Hausdorff dimension of the metric space (M,dgeo). This result is due to John Mitchell
([Mit85]) and is also known as Mitchell’s Measure Theorem.

The most important example for such a sub-Riemannian manifold is the (2m+1)-dimensional
Heisenberg group H2m+1. It can be represented as the matrix group consisting of matrices
of the form

H2m+1 =


1 xt z

0 1 y
0 0 1

 : x, y ∈ Rm, z ∈ R

 ,

where the group composition is given by matrix multiplication. Note that as a point set
H2m+1 is isomorphic to R2m+1, and that H2m+1 has the structure of a graded nilpotent Lie
group. The grading is induced by the Lie algebra h2m+1 of H2m+1, which is of the form
h2m+1 = V1 ⊕ V2 such that dimV1 = 2m, dimV2 = 1 and [V1, V1] = V2. More generally, we
will consider Carnot groups. A Carnot group is a nilpotent Lie group G whose Lie algebra
is carrying a grading such that g = V1 ⊕ . . .⊕ VR with [VS, V1] = VS+1 for S ≤ R − 1 and
[VS, VR] = 0 for all 1 ≤ S ≤ R. For our work, we will consider Carnot manifolds which
will be defined to be Riemannian manifolds which carry such a grading structure on their
tangent bundle.
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In this thesis, we will use the geometric approach by Dirac operators to discuss whether one
can construct spectral triples on compact Carnot manifolds, which furnish the Hausdorff
dimension of (M,dCC) and the Carnot-Carathéodory metric of dCC . We will indeed be able
to construct so-called horizontal Dirac operators DH acting on a horizontal Clifford bundle
ΣHM over a Carnot manifold M in analogy to classical Dirac operators in a quite general
setting. In a frame {X1, . . . , Xd} of the horizontal distribution of a Carnot manifold such
an operator will have the form

DH =
d∑
j=1

cH(Xj)∇ΣH

Xj
+ γ,

where cH denotes the Clifford action of HM and γ is an endomorphism on the bundle.
Then indeed the Carnot-Carathéodory metric can be detected from DH , as we will show in
detail, and it does not matter if one uses the Lipschitz functions with respect to the Carnot-
Carathéodory metric or the smooth functions for the dense sub-algebra of C(M) appearing
in Connes’ metric formula. But we will see that these operators are not hypoelliptic, which
means that they do not have a compact resolvent (arising from pseudodifferential calculus).
Hence they do not furnish a spectral triple, providing us the unexpected result that the
theory of spectral triples does not apply to the Carnot manifolds (M,dCC) in the way one
would expect.

After introducing horizontal Dirac operators and proving the metric formula, we will con-
struct a class of examples. To this end we consider local homogeneous spaces of Carnot
groups, which arise from the left-action of a lattice sub-group Γ of a Carnot group G. We
call these closed Carnot manifold M = Γ\G compact Carnot nilmanifolds. Then the idea
is to consider the submersion

π : Γ\M → Td

and to define a horizontal Clifford module and a horizontal Dirac operator DH by pulling
back the spinor bundle and the Dirac operator from a spin structure on Td. For the
case where G ∼= H2m+1 × Rn, we will be able to calculate the spectrum of this horizontal
Dirac operator completely. To do this, we adapt an argument by Christian Bär to our
situation([Bae91]): Bär decomposes the spinor bundle belonging to a classical Dirac op-
erator on a Heisenberg nilmanifold Γ\H2m+1 into its irreducible components under which
the operator is invariant. From these irreducible components, he is able to calculate the
spectrum of the Dirac operators by means of the representation theory of the Heisenberg
group.

In our case, the horizontal Clifford bundle decomposes in the same way. We will present
these calculations in detail, and afterwards we will deduce that our horizontal pull-back
Dirac operator DH on a compact Carnot nilmanifold possesses at least one infinite dimen-
sional eigenspace, hence it cannot have a compact resolvent. In spite of that we will be
able to detect the Hausdorff dimension of (M,dCC) in the Heisenberg group case from the
asymptotic behavior of the non-degenerate eigenvalues of DH . We will also extend this
approach to the setting of the compact nilmanifold of a general Carnot group G, where we



xii

will show that in the spectral decomposition of such a group there is at least one infinite
dimensional eigenspace. The reason for this is that in the spectral decomposition of DH

there is at least one subspace isomorphic to the space of L2-sections on a horizontal Clifford
bundle belonging to a group of nilpotency step 2. On this subspace, we will be able to
detect an infinite dimensional eigenspace of the horizontal pull-back Dirac operator from
the Heisenberg case.

Further we will see that the problem we detected in this concrete example is not due to
a bad choice of the horizontal Dirac operator. In fact it is a general phenomenon: We
will argue for that using techniques from pseudodifferential calculus. There is a calculus
invented by Richard Beals and Peter Greiner (see [BG84]) on Heisenberg manifolds, from
which it can be derived that hypoellipticity of a (self-adjoint) operator of positive order
implies that it has a compact resolvent and that furthermore the Hausdorff dimension of
the Heisenberg manifold can be detected by the eigenvalue asymptotics of this operator.
We will prove in this thesis that any horizontal Dirac operator on an arbitrary Carnot
manifold cannot be hypoelliptic. This is a big difference to the classical case, where any
Dirac operator is elliptic.

On the way, we will develop a criterion for the non-hypoellipticity of an arbitrary graded
differential operator of the from

D = D(X1, . . . , Xn) ∈ U(g),

where {X1, . . . , Xn} is a frame of Rn which is forming a graded nilpotent Lie algebra g.
As soon as there is a graded differential operator

D̃ = D̃(X̃1, . . . X̃m) ∈ U(g̃) for m < n,

induced by a projection pr : Xj 7→ X̃j of g onto a lower dimensional Lie algebra g̃,
which is not hypoelliptic, then D cannot be hypoelliptic. This criterion will serve us
well, since we will be able to reduce the problem of showing general non-hypoellipticity
of a horizontal Dirac operator to the Heisenberg case. In the Heisenberg case we have
a complete characterization of hypoellipticity of horizontal Laplacians arising from the
representation theory of the Heisenberg group, from which we will be able to exclude that
a horizontal Dirac operator is hypoelliptic.

Finally, once having introduced the Heisenberg pseudodifferential calculus, we make use of
this calculus and show how hypoelliptic Heisenberg pseudodifferential operators furnishing
a spectral triple and detecting in addition the Hausdorff dimension of the Heisenberg
manifold can be constructed. We will suggest a few concrete operators, but it remains
unclear whether one can detect or at least estimate the Carnot-Carathéodory metric from
them. But we will show that the Carnot-Carathéodory metric can be detected by horizontal
Laplacians instead of horizontal Dirac operators via the formula

dCC(x, y) = sup

{
|f(x)− f(y)| : f ∈ C∞(M),

∥∥∥∥1

2

[[
∆hor, f

]
, f
]∥∥∥∥ ≤ 1

}
.
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Hence, maybe in this case the second order operators are the right operators to look at
when we want to do non-commutative geometry on Carnot manifolds.

We conclude the thesis with some approaches from which one may be able to estimate or
to approximate the Connes metric by first order Heisenberg pseudodifferential operators,
and we present some criteria from which such an estimate would follow.

The structure of this thesis will be the following.

• In Chapter 1, we introduce the notion of spectral triples, their metric dimension and
the Connes metric, and state a few well-known examples. Then we will turn to the
more general approach by Mark Rieffel of compact quantum order-unit spaces and
prove a few criteria to detect convergence of a family of spectral triples to such a
compact quantum metric space (which does not necessarily have to be a spectral
triple).

• In Chapter 2, we give an overview of sub-Riemannian geometry and Carnot manifolds.
We introduce the Carnot-Carathéodory metric and state some important theorems
in this context. The Sections 2.3 and 2.4 serve to introduce the concept of a Levi
form and of certain submersions between Carnot groups which will be of importance
later.

• In Chapter 3, we construct the horizontal Dirac operator. We start by analyzing
horizontal connections, which will be the connections we want a horizontal Clifford
bundle to be compatible with. Then we construct a self-adjoint horizontal Dirac
operator on these bundles. In preparation of what we need later we will calculate
its square locally and we will state a proposition about the eigenvalues of certain
sums of Clifford matrices. Finally, in Section 3.3, we will show that any horizontal
Dirac operator on a Carnot manifold M detects the Carnot-Carathéodory metric via
Connes’ metric formula, since the norm of the commutator [DH , f ] coincides with the
Lip-norm of f with respect to the Carnot-Carathéodory metric. We will also show
that the metric is already detected by the smooth functions on M .

• In Chapter 4, we treat in detail the example of nilmanifolds M = Γ\G from Carnot
groups, arising from the left action of the standard lattice. First we construct a
horizontal Dirac operator on M by pulling back the spinor bundle of the horizontal
torus. Then it is our aim to show that this horizontal Dirac operator possesses
infinite dimensional eigenspaces. Therefore we use an approach which was presented
by Christian Bär and Bernd Amman ([Bae91], [AB98]) for the case of the classical
Dirac operator on Heisenberg nilmanifolds to find a spectral decomposition of the
horizontal Clifford bundle ΣHM which is invariant under DH . For the case of a
general Carnot group, we find that one part of this decomposition is isomorphic
to the horizontal Clifford bundle belonging to a horizontal pull-back operator of a
Carnot nilmanifold of lower commutator step. For the case of Heisenberg nilmanifold
(where the horizontal distribution is of co-dimension 1) we will be able to calculate
all eigenvalues of DH from the approach by Bär and Ammann, and we will detect
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that DH has an infinite-dimensional kernel. But in spite of that we will show that
the Hausdorff dimension of M can still be detected by these eigenvalues for the case
G ∼= H2m+1. In section 4.4 we will put all these results together to show that on any
Carnot nilmanifold arising from the left-action of the standard lattice sub-group of
G the horizontal Dirac operator we constructed has an infinite dimensional kernel.

• In Chapter 5, we introduce the Heisenberg pseudodifferential calculus while referring
to Richard Beals and Peter Greiner ([BG84]) and to Raphaël Ponge. We will discuss
symbol classes, composition of operators, parametrices and the role of hypoellipticity.
Finally we mention the well-known results that hypoellipticity in the Heisenberg
calculus implies the existence of complex powers and certain eigenvalue asymptotics.

• In Chapter 6, we show that the absence of a compact resolvent detected in Chapter
4 for a specific class of examples is of general nature. In particular we show that any
horizontal Dirac operator is not hypoelliptic. Therefore we first review some classical
hypoellipticity theorems with special attention to the case of Heisenberg manifolds.
Then in Section 6.2 we prove a theorem from which hypoellipticity can be excluded for
certain graded differential operators by going back to a graded differential operator
acting on a lower dimensional Carnot group. We will present some consequences
which arise from going back to the Heisenberg case via this reduction: This reduction
criterion provides us with the possibility to exclude hypoellipticity of an arbitrary
graded differential operator by looking at the Levi form of its underlying graded Lie
algebra. Finally, we will apply the reduction criterion to show that an arbitrary
horizontal Dirac operator cannot be hypoelliptic.

• In Chapter 7, we discuss the possibility of constructing spectral triples by taking
square roots of horizontal Laplacians and the question if one can get any metric
information from these spectral triples. First we show how the application of Heisen-
berg calculus furnishes spectral triples, and we suggest a few operators being not
too far away from the horizontal Dirac operator which produce spectral triples. In
Section 7.2, we show that the Carnot-Carathéodory metric can be detected by any
horizontal Laplacian, while the business is much more difficult if we want to de-
tect the metric from an arbitrary first-order hypoelliptic and self-adjoint Heisenberg
operator. Unfortunately, all we can present concerning the last question are some
criteria and some ideas which might approximate the Carnot-Carathéodory metric
by metrics arising from spectral triples, but so far we have not been able to prove
such an approximation or estimate completely.
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Chapter 1

Non-commutative Metric Spaces

The intention of the first chapter of this thesis is to introduce the concepts of non-
commutative geometry we want to consider. In Section 1.1 we will present the concept
of a spectral triple introduced by Alain Connes, which describes the geometry of a space
in non-commutative geometry. This will only be a rough introduction covering only the
notion of dimension and metric arising from a spectral triple, since these are the objects
we are interested in. After defining these objects, we will give a few classical examples for
commutative spectral triples to motivate the work of this thesis. The Carnot-Carathéodory
spaces which we want to examine from the point of view of non-commutative geometry
will be treated in Chapter 2.

Since it will turn out that we do not get spectral triples in the sense of Connes from our
constructions, we will state a modified definition of a degenerate spectral triple, to denote
an object being a spectral triple except for a degeneration of certain eigenspaces of its Dirac
operator. Later in Chapter 4 we will see that this definition fits in our situation. Besides
that, in Section 1.2 we will present the more general concept of compact quantum metric
spaces, which was introduced by Mark Rieffel and which only provides metric information
in the abstract setting of Lip-norms. A Lip-norm can arise from an operator which does
not provide a spectral triple, as it will be the case for our situation.

We will close Section 1.2 by some simple observations we made leading to a sufficient
criterion for the convergence of a sequence of compact quantum metric spaces to a certain
given space. In detail, we show that the metrics ρθ arising from a family of Lip-norms
Lθ converge to a given metric ρ, if the corresponding Lip-norms converge to the Lip-norm
L corresponding to ρ in a uniform way. We will refer to these observations in the final
chapter of this thesis, where we will be in the situation that we have a family of spectral
triples providing metrics close to the metric we want to discover. But the desired metric
itself will be detected by an operator which does not furnish a spectral triple.

1



2 CHAPTER 1. NON-COMMUTATIVE METRIC SPACES

1.1 Spectral Triples

We will give a rough overview about the theory of spectral triples now, mentioning only the
concepts we will use in this thesis. Most of the definitions and examples we give are well
known and can be found in any textbook on non-commutative geometry, see e.g. [Con94],
[GVF01] or [Lan97]. First of all we define what a spectral triple is.

Definition 1.1.1
Let A be a unital C∗-algebra and letH be a Hilbert space which carries an injective unitary
representation π : A → B(H). Furthermore let D be an unbounded self-adjoint operator
on H such that

(i) The algebra

A′ := {a ∈ A : [D, π(a)] is densely defined and bounded } (1.1)

is a dense sub-algebra of A.

(ii) For any number λ /∈ spec(D) the operator (D − λI)−1 is compact.

Then the triple (A,H, D) is called a spectral triple. C

Remark: Considering condition (ii), it follows from the Hilbert identity that the property
of (D − λI)−1 being compact for one λ /∈ spec(D) implies that (D − λI)−1 is compact for
every λ /∈ spec(D). Hence one often reformulates condition (ii) in the sense that(

D2 + I
)− 1

2 ∈ K(H),

or by simply demanding that D has a compact resolvent. C

For a spectral triple we can define a notion of dimension.

Definition 1.1.2
A spectral triple (A,H,D) is called s-summable for some s ∈ R, if we have(

D2 + I
)− s

2 ∈ L1(H), (1.2)

where L1(H) ⊂ K(H) denotes the ideal of trace-class operators on H. The number

s0 = inf
{
s ∈ R :

(
D2 + I

)− s
2 ∈ L1(H)

}
(1.3)

is called the metric dimension of (A,H,D). C

Remark: Like in Definition 1.1.1, one can replace the operator (D2 + I)−s/2 in (1.2) and
(1.3) by any operator of the form (D − λI)−s for λ /∈ spec(D). C
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One can also define a metric from a spectral triple (A,H,D) on the state space S(A) of
its C∗-algebra A, equipped with the weak ∗-topology. It is not hard to check that the
expression

dD(φ, ψ) := sup {|φ(a)− ψ(a)| : a ∈ A′, ‖[D, π(a)]‖ ≤ 1} , (1.4)

where A′ is the dense sub-algebra (1.1) from condition (i) of the definition of a spectral
triple, gives a metric on S(A).

Definition 1.1.3
Let (A,H,D) be a spectral triple, S(A) be the state space of its C∗-algebra A. Then the
metric dD on S(A) from (1.4) is called the Connes metric arising from (A,H,D). C

It turns out that it is sufficient to consider the expression (1.4) only for the positive elements
of A. We cite this proposition here, for a proof we refer to [IKM01], Section 2, Lemma 1.

Proposition 1.1.4
Let (A,H,D) be a spectral triple, and let A+ denote the subset of positive elements of the
C∗-algebra A. Then the Connes metric (1.4) on the state space S(A) is given by

dD(φ, ψ) = sup {|φ(a)− ψ(a)| : a ∈ A+, ‖[D, π(a)]‖ ≤ 1}

for all φ, ψ ∈ S(A). �

Spectral triples can be defined on arbitrary C∗-algebras. In non-commutative geometry,
the notion of a C∗-algebra replaces in a way the notion of a space. This is motivated by the
Gelfand-Naimark theory: The famous theorem of Israel Gelfand and Mark Naimark (see
[GN43]) states that every unital commutative C∗-algebra A is isometrically isomorphic to
the C∗-algebra C(X) of the continuous functions on some compact Hausdorff space X. In
this case the state space of A is exactly the space X, which turns (1.4) into the expression

dD(x, y) := sup {|f(x)− f(y)| : f ∈ A′ ⊂ C(X), ‖[D, π(a)]‖ ≤ 1} , (1.5)

defining a metric on X. In this thesis, we will only consider this commutative situation.

We will now state the classical (and most important) example of a commutative spectral
triple, where X is a compact Riemannian manifold. The central point of this thesis is
to construct another commutative spectral triple on this manifold X which describes a
different geometry, meaning that one gets a different dimension and a different metric
from it.

Example 1.1.5
Let M be an n-dimensional closed Riemannian manifold equipped with a Clifford bundle
ΣM and a Dirac operator D. We further consider the algebra C(M) of continuous functions
on M and the Hilbert space L2(ΣM) of L2-sections in the spinor bundle, on which C(M)
has a representation by left multiplication. Then we have the following (see e.g. [GVF01],
[Lan97] or [Con94]):
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• The triple (C(M), L2(ΣM), D) is a spectral triple. A dense sub-algebra of C(M),
which furnishes a bounded commutator with D, is given by C∞(M) or also by the
Lipschitz functions Lip(M) on M . And since D is an elliptic and self-adjoint differ-
ential operator of order 1 with discrete spectrum, it has a compact resolvent.

• The metric dimension of this spectral triple is exactly the dimension n of the manifold:
By Weyl asymptotics we have λk ∼ k1/n for the eigenvalues of D (since it is an elliptic
and self-adjoint differential operator of order 1), which implies that for λ /∈ spec(D)
the operator (D − λI)−s is trace class if and only if s > n.

• The geodesic distance dgeo on M can be detected by the formula

dgeo(x, y) = dD(x, y) = sup {|f(x)− f(y)| : f ∈ Lip(M), ‖[D, π(f)]‖ ≤ 1} .

This is the case, since ‖[D, π(f)]‖ is exactly the essential supremum of the gradient
of f : One can show

|f(x)− f(y)| =
∫
γ

df ≤ ess sup ‖df‖
∫ 1

0

‖γ̇(t)‖ dt

for every geodesic curve connecting x and y, which gives dgeo(x, y) ≥ dD(x, y). On
the other hand we have dD(x, y) ≥ dgeo(x, y) since for a fixed y ∈ M the essential
supremum norm of the gradient of the function g(x) := dgeo(x, y) is bounded by 1.

C

In the commutative world, one can detect further examples for spectral triples which give a
meaningful geometry by considering the Hausdorff dimension of a metric space. We briefly
sketch its construction.

Definition 1.1.6
Let (X, d) be a metric space, Ω ⊂ X.

(i) Let s > 0. For ε > 0 we set

µsε(Ω) := inf

{∑
α

(diam(Uα))s : U = {Uα} open cover of Ω, sup
α

(diam(Uα)) < ε

}
.

Then the s-dimensional Hausdorff measure of Ω is given by the number

µs(Ω) = lim
ε→0

µsε(Ω).

(ii) The unique number 0 ≤ dimH(Ω) ≤ ∞ such that µs(Ω) = ∞ for all s < dimH(Ω)
and µs(Ω) = 0 for all s > dimH(Ω) is called the Hausdorff dimension of Ω.

C
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The Hausdorff dimension is in particular used in fractal geometry, where one gets metric
spaces of non-integer Hausdorff dimension. One classical example for a spectral triple by
Alain Connes is a spectral triple for the Cantor set (see [Con94], Chapter 3.4.ε), whose
metric dimension coincides with the Hausdorff dimension of this set. During the last years,
spectral triples were constructed for fractals, detecting the Hausdorff dimension and the
geodesic distance on this fractal. We refer for example to the work of Erik Christensen,
Christina Ivan and their collaborators for that (see e.g. [CIL08] or [CIS12]).

Under mild conditions, it is indeed possible to construct a spectral triple for an arbitrary
compact metric space X. The idea is to approximate the space by finite sets of points.
Since X is assumed to be compact, one can find a sequence of open covers of X whose
diameter decreases to zero. Then one chooses two points in any open set belonging to one
of the covers. Using this sequence, it is possible to define a Dirac operator of a spectral
triple on the Hilbert space of l2-sequences indexed by the sets belonging to the covers with
values in C2. This construction can be found in detail in the PhD Thesis of Ian Christian
Palmer (see [Pal10]) and has also been used by John Pearson and Jean Bellissard (see
e.g. [PB09]). It is shown that there exists such a sequence such that the corresponding
spectral triple gives back the Hausdorff dimension of the space ([Pal10], Theorem 4.2.2),
and that the Connes metric provided by this spectral triple dominates the original metric
on X ([Pal10], Proposition 5.2.1).

In this thesis, we will consider compact Riemannian manifolds which carry a second metric
besides the geodesic one: These so-called Carnot manifolds will be introduced in Chapter
2. Indeed we will be able to construct a differential operator detecting the second metric,
but it will turn out that this operator does not provide a spectral triple. But we can modify
the definition of a spectral triple a little bit, such that it will fit to our situation.

Definition 1.1.7
Let A be a unital C∗-algebra and letH be a Hilbert space which carries an injective unitary
representation πA → B(H). Furthermore let D be an unbounded self-adjoint operator on
H such that

(i) The algebra

A′ := {a ∈ A : [D, π(a)] is densely defined and bounded }

is a dense sub-algebra of A.

(ii) The spectrum of the operator D is discrete. If in addition Λ denotes the set of all
eigenvalues λ of D which have an infinite dimensional eigenspace (λ) ⊂ H, then for
any number µ /∈ spec(D) the operator(

(D − µI)

∣∣∣∣
(
⊕
λ∈Λ E(λ))

⊥

)−1

is compact.
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Then we call the triple (A,H,D) a degenerate spectral triple. C

1.2 Compact Quantum Order Unit Spaces

In this section we consider a more general version of a non-commutative metric space. The
idea is that for any compact metric space (X, d), on can associate a Lipschitz semi-norm
to the space C(X) of continuous functions on X via

L(f) := sup
x 6=y

|f(x)− f(y)|
d(x, y)

.

Now since a non-commutative space can be viewed as a generalization of the (commutative)
C∗-algebra C(X), the idea is to introduce the notion of a Lip-norm on a general unital
C∗-algebra, from which one gets a metric on the state space of A. This approach has been
introduced by Mark Rieffel in [Rie98] and [Rie99]. In his approach, instead of C∗-algebras,
Rieffel works in the more abstract setting of order-unit spaces (see [Rie04]).

Definition 1.2.1
An order-unit space is a real partially ordered vector space A with a distinguished element
e (the order unit), which satisfies

(i) For each a ∈ A there is an r ∈ R such that a ≤ re.

(ii) If a ∈ A and if a ≤ re for all r ∈ R with r > 0, then a ≤ 0.

Furthermore, the norm of an order-unit space is given by

‖a‖ := inf {r ∈ R : −re ≤ a ≤ re} .

C

Note that the self-adjoint elements of a unital C∗-algebra A form an order unit space, such
that the non-commutative spaces in the sense of Alain Connes are included in this setting.
Now we introduce a semi-norm on these spaces.

Definition 1.2.2
Let (A, e) be an order-unit space. Then a Lip-norm on A is a semi-norm L on A with the
following properties.

(i) We have L(a) = 0 ⇔ a ∈ Re.

(ii) The topology on the state space S(A) of A from the metric

ρL(φ, ψ) := sup {|φ(a)− ψ(a)| : L(a) ≤ 1} (1.6)

is the w∗-topology.
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We call a pair (A,L), consisting of an order-unit space A and a Lip-norm L on A a compact
quantum metric space. C

We recognize that the metric (1.6) looks similar to the metric (1.4) arising from a spectral
triple. Indeed, if (A,H,D) is a spectral triple, where the dense sub-algebra of A for which
[D, a] is bounded is denoted by A′, then the term

L(a) := ‖[D, a]‖

gives a Lip-norm on the order unit space A consisting of self-adjoint elements of A′. By
Proposition 1.1.4, the Connes metric (1.4) does only depend on the positive elements of
A′, and hence it is in particular determined by the self-adjoint elements of A′ forming the
order-unit space A.

Remark 1.2.3
It is shown in [Rie99], Section 11, that for any essentially self-adjoint operator D on a
Hilbert space H, which carries a faithful representation π of an order-unit space A such
that [D, π(a)] is bounded for a dense subspace A′ of A, furnishes a Lip-norm via

L(a) := ‖[D, π(a)]‖.

On the other hand, in [Rie04], Appendix 2, it is shown that for any lower semi-continuous
Lip-norm L on an order-unit space A one can define such an operator D describing L via
L(f) = ‖[D, f ]‖ on the space C(S(A)) of continuous functions on the state space of A.

Note that in both cases the operator D does not need to have a compact resolvent. In
particular, the operator D constructed to a given semi-norm L is in general far away from
having a compact resolvent. C

We will see that for the compact spaces we study in this thesis, the metric will be detected
by a Dirac operator which does not have a compact resolvent. But it will fit into the setting
of a compact quantum metric space. And in addition, we will detect that we can repair
the lack of not being a spectral triple by disturbing the operator a little bit. Then the
question arises whether the metrics from the disturbed spectral triples are equivalent to
the original metric or whether they even converge towards this metric as the perturbation
goes to zero. Sadly we have not been able to give a satisfying answer to this in the later
chapters of this thesis. But nonetheless we have made some simple observations, which
give criteria for the convergence of a series of compact quantum metric spaces, which we
will present now.

We will see that the metric convergence of a family of compact quantum metric spaces will
follow from the condition that the corresponding family of Lip-norms is uniformly con-
tinuous. Our version of uniform continuity of Lip-norms is characterized by the following
definition:
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Definition 1.2.4
Let A be a commutative order unit space (which means that it can be realized as the set
of continuous real-valued functions on a compact metric space), and for θ ∈ [0, 1] let Lθ be
a family of Lip-norms on A. We set

Σ0 := {f ∈ A : L0(f) = 1} . (1.7)

Then we call the family θ 7→ (A,Lθ) of compact quantum metric spaces uniformly contin-
uous towards (A,L0), if

∀ε > 0 ∃δ > 0 : 0 < θ < δ ⇒ |Lθ(f)− L0(f)| < ε ∀f ∈ Σ0. (1.8)

C

We will see now that the property of uniform continuity of a family of Lip-norms implies
the fact that the metrics ρθ corresponding to (A,Lθ) converge to ρ0, and that they are
equivalent in case θ is small enough. Remember that ρθ is defined on the state space S(A)
of A, which is isometrically isomorphic to a compact metric space X with A ∼= C(X). In
this case the metric is given via the formula

ρθ(x, y) = sup {|f(x)− f(y)| : Lθ(f) ≤ 1} .

Then we have the following proposition.

Proposition 1.2.5
Let A be a commutative order unit space and for θ ∈ [0, 1] let Lθ be a family of Lip-norms
on A, such that the family θ 7→ (A,Lθ) of compact quantum metric spaces is uniformly
continuous in the sense of (1.8).

Then for every ε > 0 with ε < 1 there is a δ > 0 such that

(1− ε) ρθ(x, y) ≤ ρ0(x, y) ≤ (1 + ε) ρθ(x, y) ∀x, y ∈ S(A) (1.9)

for every 0 < θ < δ.

Proof: Since A is commutative, we consider

A = {f ∈ C(X) : f = f ∗} ⊂ C(X)

for a compact metric space X such that S(A) ∼= X. Note that we can forget about the
constant functions when calculating ρθ since in this case we have |f(x)− f(y)| = 0 for any
two points x and y.

Now assume θ 7→ (A,Lθ) is uniformly continuous, and let ε > 0. Then we find a δ > 0
such that

(1− ε) ≤ Lθ(f̃) ≤ (1 + ε) ∀θ < δ



1.2. COMPACT QUANTUM ORDER UNIT SPACES 9

for every f̃ ∈ A with L0(f̃) = 1. For an arbitrary function f which is not constant on X
we have L0(f) > 0. Therefore we can set

f̃ :=
f

L0(f)
∈ Σ0,

such that Lθ(f̃) = Lθ(f)/L0(f) and the above estimate becomes

L0(f) (1− ε) ≤ Lθ(f) ≤ (1 + ε)L0(f) (1.10)

uniformly for all f ∈ A which are not constant.

Now for given points x, y ∈M , (1.10) leads to the estimates

ρθ(x, y) = sup {|f(x)− f(y)| : Lθ(f) ≤ 1}{
≤ sup {|f(x)− f(y)| : (1− ε)L0(f) ≤ 1}
≥ sup {|f(x)− f(y)| : (1 + ε)L0(f) ≤ 1} .

Since for every constant C := 1± ε > 0 one has

sup {|f(x)− f(y)| : CL0(f) ≤ 1} = sup

{
|f(x)− f(y)|

C
: L0(f) ≤ 1

}
=

ρ0(x, y)

C
,

this shows (1.9), and therefore the proposition is proved. �

We note a similar observation, which gives equivalence of the metrics in case one can
estimate the difference of two Lip-norms against one of them.

Proposition 1.2.6
Let A be a commutative order unit space and let L1, L0 be two Lip-norms on A. Assume
that there is a C < 1 such that we have an estimate

|L0(f)− L1(f)| ≤ CL0(f)

for all f ∈ A. Then the metrics ρ0 and ρ1, arising from L0 and L1, are equivalent.

Proof: On the one hand, we have the estimate

L1(f) ≥ L0(f)− |L0(f)− L1(f)| ≥ (1− C)L0(f),

and on the other hand we have

L1(f) ≤ L0(f) + |L1(f)− L0(f)| ≤ (1 + C)L0(f).

Now the equivalence of the metrics follows by an argument analogous to the argument
given in the proof of Proposition 1.2.5, using C instead of ε in (1.10). �
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Now one can keep on playing the game and show that the statement of Proposition 1.2.5
(and therefore the uniform continuity of the family of Lip-norms) implies that the sequence
of compact quantum metric spaces (C(X), Lθ) converges to the compact quantum metric
space (C(X), L0) in the so-called quantum Gromov-Hausdorff convergence. The concept of
quantum Gromov-Hausdorff convergence was introduced by Mark Rieffel (see [Rie04]) as
an quantum analogy to the Gromov-Hausdorff convergence of classical metric spaces. To
prove this, one can adopt the arguments given by Rieffel in [Rie04], Section 11, where this
convergence is proved for a field of Lip-norms on finite-dimensional vector spaces.

In our situation, we have to assume the uniform continuity condition from Definition 1.2.4,
which can be shown to be fulfilled in the finite dimensional case. But since this does
not affect the questions we are considering in this thesis, we will not write down the
argumentation here.



Chapter 2

A Review of Sub-Riemannian
Geometry

This chapter is devoted to the introduction of the spaces for which we want to construct
spectral triples. On some Riemannian manifolds M it is possible to establish another
metric besides the geodesic one. One can define the so-called Carnot-Carathéodory dis-
tance, determined by shortest paths tangent to a certain sub-bundle of the tangent bundle.
Whenever this distance gives a metric on M (meaning that any two points of M can be
connected by such a path), the Hausdorff dimension of this metric space differs from the
usual dimension of M .

In the first section we will introduce these sub-Riemannian spaces and review the properties
mentioned above. Then, we will turn to the example of Carnot groups, which are nilpotent
Lie groups carrying a certain grading inside their Lie algebras, and define Carnot manifolds.
These will be the central objects to construct spectral triples on in this thesis; and they
are fundamental within sub-Riemannian geometry since the tangent space of Riemannian
geometry is generalized to a Carnot group in the sub-Riemannian case. The last two
sections of this chapter are meant to provide some techniques we will take advantage of
later: Section 2.3 deals with the case of Heisenberg manifolds, which have a horizontal
distribution of co-dimension 1 and occur at different points in mathematics and physics,
and introduces the tool of the Levi form to describe the Lie group structure. Finally, in
Section 2.4, we will construct submersions between Carnot groups which will allow us to
reduce certain problems for general Carnot groups to lower dimensional cases.

Throughout this section, (M, g) will denote a Riemannian manifold with tangent bundle
TM . Since most parts of this chapter are intended to sum up things which are already
known, we will refer to the basic literature, which includes in our case the books and
monographs by Richard Montgomery [Mon02], by Luca Capogna, Donatella Danielli, Scott
D. Pauls and Jeremy T. Tyson [CDPT07] and by Mikhael Gromov [Gro96]. In addition,
we refer to books by Ovidiu Calin and Der-Chen Chang [CC09] and by A. Bonfiglioli, E.
Lanconelli, F. Uguzzoni [BLU07].

11
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2.1 Sub-Riemannian Manifolds

We start this chapter by giving the definition of a horizontal distribution, on which a
sub-Riemannian geometry is based on.

Definition 2.1.1
Let M be a Riemannian manifold with a Riemannian metric g ∈ Γ∞(T ∗M ⊗ T ∗M).

(i) A horizontal distribution of the tangent bundle TM is given by a sub-bundle HM ⊂
TM together with a fiber wise inner product 〈·, ·〉H , such that at each point x0 ∈M
we have

g(X, Y )|x0
= 〈X(x0), Y (x0)〉H

for all X, Y ∈ HM .

A vector field X ∈ TM is called horizontal if X ∈ HM .

(ii) A (smooth) path γ : [0, 1]→ M is called horizontal if at any point t ∈ [0, 1] we have
γ̇(t) ∈ Hγ(t)M .

(iii) If, for d ∈ N, HM = span{X1, . . . , Xd} and X1, . . . , Xd are linearly independent at
each point x ∈ M , the integer d is called the Rank of HM . In this case we call
{X1, . . . , Xd} a frame for the horizontal distribution HM .

(iv) Let {X1, . . . , Xd} be a frame for HM . Then for f ∈ C1(M), the vector field

gradHf :=
d∑
j=1

Xj(f)Xj

is called the horizontal gradient of f .

(v) A horizontal distribution HM is called involutive if [X, Y ] ∈ HM for any X, Y ∈
HM .

(vi) A horizontal distribution HM is called bracket-generating if the Lie hull of HM ,
which is the collection of all vector fields of HM and their (multi-step) commutators,
generates the tangent bundle TM . The smallest number R ∈ N, such that HM
together with all its R-step commutators generates TM , is called the step of a bracket
generating distribution.

Remark: A horizontal distribution can also be defined by a set of 1-forms: If {X1, . . . , Xn}
is a frame of TM such that for d < n {X1, . . . , Xd} spans HM , we denote by {dω1, . . . , dωn}
the corresponding dual frame of T ∗M . Then we have

HM = Ker
(
span{dωd+1, . . . , dωn}

)
.

C
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The Frobenius theorem (see for example [CC09], Theorem 1.3.1) asserts that HM is in-
volutive if and only if it is integrable, which means that the set of all horizontal paths
through a fixed point x ∈ M sweeps out a smooth immersed sub-manifold N of M with
dimN = Rank HM . In this thesis we are interested in non-involutive, but bracket gener-
ating horizontal distributions: One can define a distance between two points x, y ∈ M by
considering the length of the shortest horizontal part connecting these points.

Definition 2.1.2
Let (M, g) be a Riemannian manifold which is equipped with a horizontal distribution
HM = span{X1, . . . , Xd}.

(i) The horizontal length of a smooth horizontal path γ : [0, 1] → M is given by the
number

LCC(γ) :=

∫ 1

0

(
d∑
j=1

g 〈γ′(t), Xj(γ(t))〉H

) 1
2

dt.

Here, 〈·, ·〉H denotes the fiber wise inner product of HM induced by the Riemannian
metric of M , see Definition 2.1.1.

(ii) The Carnot-Carathéodory distance between to points x, y ∈ M is given by the (not
necessarily finite) number

dCC(x, y) := inf {LCC(γ) : γ horizontal path with γ(0) = x and γ(1) = y} .

(iii) If dCC(x, y) is finite for any x, y ∈M , we call (M,dCC) a sub-Riemannian manifold.

In general, this distance needs of course not to be finite, but a famous theorem by Chow
says that this distance is indeed finite for arbitrary x, y ∈M if HM is bracket-generating
(see also [Mon02], Theorem 1.17):

Theorem 2.1.3
If HM is a bracket-generating horizontal distribution on a connected manifold M , then
any two points x, y ∈M can be joined by a horizontal path. �

In particular this means that if the horizontal distribution HM is bracket-generating, then
(M,dCC) is a metric space. This leads us to the question whether one can compare the
metric spaces (M,dCC) and (M,dgeo), where dgeo denotes the usual geodesic distance. First
of all, it is obvious that for any x, y ∈M we have dgeo(x, y) ≤ dCC(x, y), but in general the
metrics are not equivalent. But they do indeed induce the same topologies on M , as the
following theorem shows (see [Mon02], Theorem 2.3).

Theorem 2.1.4
If HM is a bracket-generating horizontal distribution on M , then the topology on M in-
duced by the Carnot-Carathéodory distance dCC is the same as the usual manifold topology
induced by dgeo. �
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An unexpected observation is that the metric spaces (M,dCC) and (M,dgeo) have a differ-
ent Hausdorff dimension (see Definition 1.1.6 for the construction of this measure theoretic
dimension). While the Hausdorff dimension of (M,dgeo) coincides with the (usual) topolog-
ical dimension n of M , the Hausdorff dimension of (M,dCC) is in general strictly greater
than n: We will see that the Hausdorff dimension of (M,dCC) is exactly the so-called
graded dimension of the horizontal distribution.

To define the graded dimension of a sub-Riemannian manifold, we need a little bit of
preparation. Since the horizontal distribution HM is bracket generating of step R, we
have a sequence of vector bundles

HM ⊂ H2M ⊂ . . . ⊂ HRM = TM,

where
HS+1M := HSM + [HM,HSM ]

with [HM,HSM ] := span
{

[X, Y ] : X ∈ HM,Y ∈ HSM
}

for 1 ≤ S ≤ R − 1 (using the
convention that H1M = HM). Now we assume that for a given 1 ≤ S ≤ R the dimension
of the space HS

xM is the same for every point x ∈M (this will be an assumption throughout
this thesis). In this situation, we are able to make the following definition.

Definition 2.1.5
Let M be a sub-Riemannian manifold with horizontal distribution HM of rank d and step
R as above. For 1 ≤ S ≤ R− 1 we denote by d1 := d := Rank HM and by

dS+1 := Rank HS+1M − Rank HSM

the ranks of the spaces HS+1M
/
HSM . Then the graded dimension (or homogeneous

dimension) of M is the number

dimG(M) :=
R∑
S=1

S · dS.

Remark: Note that the topological dimension of M is given by the number
∑R

S=1 dS in
this context. C

Now we are ready to formulate the so-called Mitchell‘s Measure Theorem, from which it
follows that the Hausdorff dimension of (M,dCC) differs from its topological dimension
(see also [Mon02], Theorem 2.17).

Theorem 2.1.6
The Hausdorff dimension of a sub-Riemannian manifold M is equal to its graded dimension,
i.e. under the notations of Definition 2.1.5 we have

dimH(M) =
R∑
S=1

S · dS.
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This means in particular, that in general the Hausdorff dimension of the metric space
(M,dCC) is strictly greater than the Hausdorff dimension of the metric space (M,dgeo). �

We now finish this basic section by giving the most important example for a sub-Riemannian
manifold: The (2m + 1)-dimensional Heisenberg group. In dimension 3 this is the easiest
example where we have one space on which two different (with respect to metric and di-
mension) geometries can be established, and it will also be an example for a Carnot group,
which we will introduce in the next section.

Example 2.1.7
For m ∈ N, we consider the space R2m+1 equipped with a Riemannian metric g such that
the vector fields

Xj = ∂xj −
1

2
xm+j∂x2m+1 , Xm+1 = ∂xm+j

+
1

2
xj∂x2m+1 , X2m+1 = ∂x2m+1

for 1 ≤ j ≤ m form an orthonormal frame of TR2m+1. Note that [Xj, Xm+j] = X2m+1,
such that HR2m+1 = span{X1, . . . , X2m} forms a non-involutive, 2-step bracket generating
horizontal sub-bundle of TR2m+1. Therefore (R2m+1, dCC) is a metric space of Hausdorff
dimension 2m+ 2 = 2m · 1 + 1 · 2.

Since at each point, the tangent space generated by {X1, . . . , X2m+1} has the structure of
a 2-step nilpotent Lie algebra h2m+1 the exponential mapping furnishes a simply-connected
nilpotent Lie group H2m+1 = exp h2m+1. H2m+1 is called the 2m+1-dimensional Heisenberg
group. It is a well known fact that H2m+1 can be realized as the space of upper triangle
((m+ 2)× (m+ 2))-matrices which have the form

H2m+1 =


1 xt z

0 1(m×m) y
0 0 1

 : x, y ∈ Rm; z ∈ R

 ,

where the group rule is given by matrix multiplication. On R2m+1, this multiplication can
be written as

(x, y, z) · (x̃, ỹ, z̃) = (x+ x̃, y + ỹ, z + z̃ +
m∑
j=1

xj ỹj). (2.1)

The Lie algebra h2m+1 of H2m+1 can be realized by strictly upper triangle matrices

h2m+1 =


0 xt z

0 0(m×m) y
0 0 0

 : x, y ∈ Rm; z ∈ R

 ,

where the algebra multiplication is once again the matrix multiplication. C

Remark: The composition rule (2.1) of the Heisenberg group is written down in the so-
called polarized coordinates. These are exactly the coordinates derived from the matrix
model of this Lie group. On the other hand, one can describe points of H2m+1 by their
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exponential coordinates, which are the coordinates of the corresponding Lie algebra having
a one-to-one correspondence with the coordinates of H2m+1 by the exponential mapping.
We will introduce both kinds of coordinates in the next section in the context of Carnot
groups. C

2.2 Carnot Groups and Carnot Manifolds

The Heisenberg group H2m+1 introduced in Example 2.1.7 is an example for a greater class
of nilpotent Lie groups, which are called Carnot groups.

Definition 2.2.1
A Carnot group of step R ∈ N is a simply connected Lie group G whose Lie algebra g has
a stratification (or grading)

g =
R⊕
S=1

VS,

such that V1, . . . , VR are vector spaces satisfying the conditions

(i) [V1, VS] = VS+1 for S = 1, . . . , R− 1

(ii) [VS, VR] = 0 for S = 1, . . . , R.

We call the number d1 := dimV1 the bracket-generating dimension of G and the number
dimG− d1 the bracket-generating co-dimension of G. C

Carnot groups are the canonical generalization of the Euclidean space Rn in sub-Riemannian
geometry, since the tangent space (or better the tangent cone) of a Carnot manifold has
the structure of a Carnot group. This can be seen as a generalization of the Riemannian
case, where the tangent space at any point is isomorphic to the (1-step nilpotent) Carnot
group Rn. Without going into detail, the situation is as follows: Let X be any metric
space, x0 ∈ X. Then we define the tangent cone as the pointed Gromov-Hausdorff limit
of the family (λX, x0) of pointed metric spaces for λ→∞, if it exists. It has been proved
by John Mitchell [Mit85] that in the case where (M,dCC) is a Carnot manifold, this limit
exists and has the structure of a Carnot group (see also [Mon02], Theorem 8.8):

Theorem 2.2.2
Let x be a regular point of a Carnot manifold (M,dCC). Then, at every x ∈ M , the
tangent cone exists and is a Carnot group, which is arising from the nilpotentization of the
horizontal distribution at x. �

Remark: We will not explain the details of the process of nilpotentization here and refer
to [Mon02] or [Bel96] instead, since the technical details will not affect this thesis. C
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Now getting back to the objects we are considering, we finally define a Carnot manifold
as a sub-Riemannian manifold, which has globally a Carnot group structure on its tangent
bundle.

Definition 2.2.3
Let (M, g) be an n-dimensional Riemannian manifold, whose tangent bundle TM carries
a grading

TM =
R⊕
S=1

VSM (2.2)

such that V1M, . . . , VRM are vector bundles satisfying the conditions

(i) [V1M,VSM ] = VS+1M for S = 1, . . . , R− 1

(ii) [VRM,VRM ] = 0 for S = 1, . . . , R.

Then we call M a Carnot manifold of step R ∈ N. We further call the number d1 =
Rank V1M the bracket-generating dimension of M and the number n − d1 the bracket-
generating co-dimension of M . C

Remark: It is clear that every Carnot group is a Carnot manifold. It is also clear by
the conditions (i) and (ii) on the brackets of the vector fields that every Carnot manifold
contains the structure of a sub-Riemannian manifold, where the horizontal distribution is
given by HM = V1M . It should be mentioned that every Carnot manifold has locally
the structure of a Carnot group, while for a general sub-Riemannian manifold this is a bit
more involved (see Theorem 2.2.2).

Note that we have not fixed the geometry we are considering in the above definition. So
by Section 2.1 we can establish at least two different geometries on a Carnot manifold M :
The Riemannian one (equipped with the geodesic distance dgeo) and the sub-Riemannian
one (equipped with the Carnot-Carathéodory distance dCC). C

When working on a Carnot manifold, we will always assume that we have a Riemannian
metric g on M such that the spaces VSM appearing in the grading (2.2) are mutually
orthogonal. For S = 1, . . . , R we set dS := Rank VSM and denote by {XS,j : j = 1, . . . , dS}
an orthonormal frame of VSM . Hence, a frame of TM is given by

{X1,1, . . . , X1,d1 , X2,1, . . . , X2,d2 , . . . , XR,1, . . . , XR,dR} .

We will sometimes use the abbreviation X(S) = (XS,1, . . . , XS,dS) to denote the frame of
VSM .

From the grading of its Lie algebra g, one can introduce coordinates on a Carnot group G.
Thereby we make use of the fact that because of the nilpotency the exponential mapping
exp : g→ G is a diffeomorphism. We present two different types of coordinates here, where
it will be depending on the situation which type is more comfortable to work with.
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Definition 2.2.4
Let G be a Carnot group with grading g = V1 ⊕ . . . ⊕ VR of its Lie algebra, such that for

1 ≤ S ≤ R, X(S) denotes a basis of VS.

(a) The coordinates

x =
(
x(1), . . . , x(R)

)
= (x1,1, . . . , x1,d1 , . . . , xR,1, . . . , xR,dR) ,

given by

x↔ exp

(
R∑
S=1

dS∑
j=1

xS,jXS,j

)
, (2.3)

are called exponential coordinates or canonical coordinates of the first kind of G.

(b) The coordinates

y =
(
y(1), . . . , y(R)

)
= (y1,1, . . . , y1,d1 , . . . , yR,1, . . . , yR,dR) ,

given by

y ↔
d1∏
j=1

exp (y1,jX1,j) .

d2∏
j=1

exp (y2,jX2,j) . . . . .

dR∏
j=1

exp (yR,jXR,j) (2.4)

are called polarized coordinates or canonical coordinates of the second kind of G.

Thereby, x.y denotes the group composition on G, and the products are taken with respect
to this group composition. C

Remark: It is known that there is an isomorphism between the exponential and the po-
larized coordinates of a Carnot group. For example, in the case of the (2m+1)-dimensional
Heisenberg group H2m+1 this isomorphism is given via

φ(x1, . . . , x2m, x2m+1) =

(
x1, . . . , x2m, x2m+1 +

1

2

m∑
j=1

xjxm+j

)
,

where (x1, . . . , x2m, x2m+1) denote the exponential coordinates (see [Fol89], Section 1.2). C

When calculating a group composition on G, one uses the Baker-Campbell-Hausdorff for-
mula. This formula is given on g by

expX. expX = exp (X + Y +B(X, Y )) , (2.5)

where B(X, Y ) is a sum of multi-step commutators of order 2, 3, . . . , R, see [Kna05]. There-
fore, B(X, Y ) is a polynomial of degree smaller or equal to the step of G, which does not



2.2. CARNOT GROUPS AND CARNOT MANIFOLDS 19

depend on vectors belonging to VR since VR commutes with every X ∈ g. In the case of a
2-step Carnot group, we have

expX. expY = exp

(
X + Y +

1

2
[X, Y ]

)
.

Using this expression on the Lie algebra, one can derive the composition rule in exponential
or polarized coordinates on the Carnot group G.

Maybe the most important property of a Carnot group is its homogeneity, which is ex-
pressed by a weighted dilation of it. Once again there is a one-to-one relation between
the dilation on a Carnot group and the corresponding weighted dilation on its graded Lie
algebra, given by the exponential map.

Definition 2.2.5
(i) Let G be a Carnot group with coordinates x = (x(1), . . . , x(R)) (exponential or polar-

ized), λ > 0. Then we define by

δλ : G→ G, x =
(
x(1), . . . , x(R)

)
7→ λ.x :=

(
λx(1), λ2x(2), . . . , λRx(R)

)
(2.6)

the (weighted) dilation on G by λ.

A function f : G→ R is called homogeneous of degree µ ∈ R with respect to δλ if we
have

f(δλ(x)) = λµ · f(x)

for all x ∈ G, λ > 0.

(ii) Let g be a graded nilpotent Lie algebra with grading g ∼= V1⊕ . . .⊕ VR, λ > 0. Then
we define by

δ̂λ : g→ g, X =
R∑
S=1

dS∑
j=1

xS,jXS,j 7→ δ̂λ.X :=
R∑
S=1

dS∑
j=1

λSxS,jXS,j (2.7)

the (weighted) dilation on g by λ.

A function f : g → R is called homogeneous of degree µ ∈ R with respect to δ̂λ of
degree µ if we have

f(δ̂λ(X)) = λµ · f(X)

for all X ∈ g, λ > 0.

(iii) Let M be a Carnot manifold, δλ and δ̂λ the weighted dilations by λ > 0 defined
point-wise on TM . A vector field X ∈ Γ(TM) is called homogeneous of degree µ ∈ R
if we have

δ̂λX = λµ ·X (2.8)

for every λ > 0.

Remark: Note that if the grading of TM is given by TM ∼= V1M ⊕ . . .⊕ VRM , we have
that X ∈ TM is homogeneous of degree S if and only if X ∈ VSM . C
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We remark that the weight S of δλ (or δ̂λ) belonging to certain coordinates reflects exactly
the commutator step of the space VS of g which belongs to x(S) (or X(S)). These weighted
dilations play an important role when one wants to describe a symbol calculus with respect
to a Carnot group structure: Asymptotic expansions are given in terms of homogeneous
functions with respect to weighted dilations. Furthermore one can use weighted dilations to
define a Carnot group, see for example [BLU07], Definition 2.2.1, where a (homogeneous)
Carnot group is defined to be a Lie group structure on Rn which respects these dilations and
has a bracket generating structure. In [BLU07] it is also shown that these two definitions
are equivalent (up to isomorphisms).

Let us mention now how every Carnot group can be realized as a certain Lie group structure
on Rn, using certain vector fields to represent the basis of its Lie algebra. We have already
seen this in Example 2.1.7 for the case of the Heisenberg group. The idea is to find a
frame of vector fields X1, . . . Xn which satisfies the grading conditions of Definition 2.2.1
and which has the property that Xj(0) = ∂xj

∣∣
x=0

for each j. This is indeed possible, and
the requested vector fields Xj have polynomial coefficients, as the following proposition
shows (see [BLU07], Remark 1.4.6).

Proposition 2.2.6
Let G be a Carnot group with Lie algebra g, where the grading of g is given by g =

⊕R
S=1 VS

with dS = dimVS. Then for each VS there exists a frame of vector fields {XS,1, . . . , XS,dS}
such that

XS,j = ∂xS,j +
R∑

L=S+1

dL∑
k=1

p
(S,L)
j,k

(
x(1), . . . , x(L−S)

)
∂xL,k . (2.9)

Here, p
(S,L)
j,k is a polynomial which is homogeneous with respect to the dilations δλ from

(2.6) of degree L− S, which means

p
(S,L)
j,k

(
δλ
(
x(1), . . . , x(L−S)

))
= λL−Sp

(S,L)
j,k

(
x(1), . . . , x(L−S)

)
.

�

Now one can consider the homogeneous vector fields from (2.9) as homogeneous differential
operators. Thus any polynomial of these vector fields is a differential operator. These
so-called graded differential operators will play a big role in this thesis: The horizontal
Dirac operators we will construct in Chapter 3 fall into this category, and the horizontal
Laplacians of (homogeneous) degree 2 will also turn out to be very important.

Definition 2.2.7
Let g ∼= V1⊕ . . .⊕VR be a graded Lie algebra with dS = Rank VS, which is represented by
vector fields on Rd1+...+dR as in Proposition 2.2.6. A frame for VS shall consist of the vector
fields {XS,1, . . . , XS,dS}, where we write {X1, . . . , Xd} for the frame of V1 (with d = d1).

Then a graded differential operator is a differential operator of the from

L = p (X1, . . . , Xd, X2,1, . . . , XR,dR) ,
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where p is a polynomial with matrix-valued C∞ coefficients. If p is homogeneous of degree
µ ∈ R we call L homogeneous of degree µ. C

In particular, a horizontal Laplacian is a graded differential operator of order 2, which
means it is an operator of the form

∆hor = −
d∑
j=1

X2
j +

d2∑
j=1

b2,jX2,j +
d∑
j=1

b1,jXj + b0,

where all the bS,j and b0 are smooth (matrix valued) functions on Cn. C

The above definition suggests to consider a graded differential operator L as an ele-
ment of the universal enveloping algebra U(g) of the graded Lie algebra g generated by
{X1, . . . , Xd}. This interpretation will be used in Chapter 6 when we analyze graded
differential operators using the representation theory of their underlying Lie algebras g.

We return once again to the dilations from Definition 2.2.5: For our purposes we should
mention an additional another property of δλ: For arbitrary points x, y ∈ G we have

dCC(δλ(x), δλ(y)) = λ · dCC(x, y),

so the Carnot-Carathéodory metric on G respects these dilations. Now we will introduce
a quasi-norm (or gauge norm) ‖ · ‖G on a Carnot group G, which is homogeneous with
respect to these dilations and provides us with a quasi-metric on G which is equivalent to
dCC . It will rather be a quasi-norm than a norm since the triangle inequality on G must
be replaced by the condition

‖x.y‖G ≤ C ‖x‖G ‖y‖G .
This quasi-norm will play an important role when we define a symbol calculus according
to Carnot groups.

Definition 2.2.8
Let G be a Carnot group of step R. The quasi-norm ‖·‖G on G, defined by

‖x‖2R!
G :=

R∑
S=1

dS∑
j=1

|xS,j|
2R!
S , (2.10)

is called the Koranyi gauge of G. The quasi-metric

dG(x, y) :=
∥∥y−1.x

∥∥
G

arising from the Koranyi gauge will be called the Koranyi (quasi-)metric on G. C

Remark: Note that in the case G = H2m+1 the Koranyi gauge is given by the formula

‖x‖H2m+1 =

(
2m∑
j=1

|xj|4 + |x2m+1|2
) 1

4

. (2.11)
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We also note that there are several definitions of the Koranyi gauge on a Carnot group
which are equivalent, for example in [Ste93] the Koranyi gauge on H2m+1 is defined via

ρ(x) := max
{
‖(x1, . . . , x2m)‖ , |x2m+1|1/2

}
,

where ‖ · ‖ denotes the Euclidean norm of the corresponding vector. C

As noted in [CDPT07], the Koranyi quasi-metric on a Carnot group G is equivalent to the
Carnot-Carathéodory metric on G.

Proposition 2.2.9
Let G be a Carnot group, and let dG denote the Koranyi quasi-metric and dCC the Carnot-
Carathéodory metric on G. Then there are constants c > 0 and C > 0 such that for all
x, y ∈ G we have

c · dCC(x, y) ≤ dG(x, y) ≤ C · dCC(x, y).

�

Now having finished a rough review about the theory on Carnot groups and Carnot man-
ifolds, we want to finish this section by giving some simple examples for compact Carnot
manifolds. We consider the local homogeneous space of a discrete lattice subgroup of a
Carnot group G. In a way, this is the analogous object to the torus Tn, which arises as the
quotient by Zn on Rn. Since it is quite comfortable to do calculations on these objects,
they will serve as the main example for the considerations of this thesis.

Example 2.2.10
Let G be a Carnot group, equipped with a (left-invariant) Riemannian metric, with grading
g = V1⊕ . . .⊕VR, where {X1, . . . , Xd} is a frame for V1. We consider the discrete subgroup
Γ of G generated by the basis vectors of V1, that is

Γ := 〈 {γj = exp(Xj) : 1 ≤ j ≤ d} 〉G . (2.12)

Γ acts on G via the left multiplication (γ, x) 7→ γ.x for all x ∈ G. It follows easily that Γ
is a lattice in G (see [Mon02], Section 9.3), which we will call the standard lattice of G.

Since Γ is a lattice, the local homogeneous space Γ\G, consisting of the orbits of this
group action, is a compact Riemannian manifold which is locally isometric to G. Hence
M := Γ\G is a compact Carnot manifold, where the grading of the tangent bundle TM
comes from the grading of g. We will call M := Γ\G the (standard) compact Carnot
nilmanifold of G. C

Remark 2.2.11
The group Γ defined via (2.12) can also be viewed as a discrete nilpotent group. From the
grading of G one can detect a so-called central descending series

0 = ΓR+1 ⊂ ΓR ⊂ . . . ⊂ Γ2 ⊂ Γ1 = Γ,
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which means we have ΓS+1 = [Γ,ΓS], where ΓS is the standard lattice of the Carnot group
exp(VS⊕. . .⊕VR). One can check that for the graded dimension (and therefore by Theorem
2.1.6 also for the Hausdorff dimension) of G we have the identity

dimG(G) =
R∑
S=1

S · Rank
(
ΓS/ΓS+1

)
. (2.13)

Now there is a famous theorem by Bass, Milnor and Wolf (see [Mon02], Theorem 9.3)
which states that the right hand side of (2.13) is equal to the polynomial growth of Γ.
So, altogether, the Hausdorff dimension of G coincides with the polynomial growth of its
standard lattice subgroup. See [Mon02], Sections 9.2 and 9.3, for details on this. C

2.3 Heisenberg Manifolds and Levi Forms

We will now pay attention to the most important class of Carnot manifolds: It is the
case where the graded co-dimension is equal to 1. Those manifolds are also known as
Heisenberg manifolds. In the context of non-commutative geometry, they were treated in
details in the work of Raphaël Ponge (see for example [Pon08] and the references there),
and recently they have also been a big research area in index theory, for which we refer to
Erik van Erp and his collaborators (see e.g. [BE11]). For most of the following definitions
and proposition, we refer to Ponge ([Pon08]).

Definition 2.3.1
A Heisenberg manifold is a smooth Riemannian manifold (M, g) of dimension n = d + 1
equipped with a hyperplane bundle HM ⊂ TM of rank d, which is bracket-generating. C

Remark: One can formulate the definition of a Heisenberg manifold a little bit more gen-
eral by dropping the assumption that HM has to be bracket generating, see e.g. [Pon08].
In this case, objects like contact manifolds or CR manifolds are included in the class of
Heisenberg manifolds. But since we are following more or less theoretical aspects and want
to consider manifolds on which we have the Carnot-Carathéodory geometry, we make this
further assumption. C

An important tool to handle Heisenberg manifolds is the so called Levi form. In case M is
a Carnot manifold of graded co-dimension 1, this is the 1-form describing the Lie algebra
structure of the (graded) tangent bundle.

Definition 2.3.2
Let M be a Carnot manifold of co-dimension 1, where the grading of its tangent bundle
is given by TM = V1M ⊕ V2M , with Rank V2M = 1 and V2M = [V1M,V1M ]. Let
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{X1, . . . , Xd} be a frame of V1M and let {Xd+1} be a frame of V2M . Then the Levi form
L of M is the (antisymmetric) bilinear form

L : V1M × V1M → V2M, (Y1, Y2) 7→ [Y1, Y2] mod V1M. (2.14)

For L(Xj, Xk) = LikXd+1 with Lik ∈ R for j, k ∈ {1, . . . d}, we denote by L = (Ljk) the
antisymmetric (d× d)-matrix describing L according to the basis {X1, . . . , Xd}.

Now one can define a Levi form on any Heisenberg manifold M the same way: On can see
rather easily that from the Lie bracket of vector fields on HM one gets a 2-form

L : HM ×HM → TM/HM,

such that for any section X, Y ∈ HM we have

Lx0 (X(x0), Y (x0)) = [X, Y ](x0) mod Hx0M

near a point x0 ∈M (see [Pon08]). But this allows us to define a bundle of graded 2-step
nilpotent Lie algebras gM ∼= HM ⊕ (TM/HM), which gives rise to a bundle of Carnot
groups GM of step 2 and graded co-dimension 1 over M via the exponential mapping.
This bundle GM is also called the tangent Lie group bundle of M .

We can even say how this tangent Lie group bundle looks like:

Proposition 2.3.3
Let (M, g) be a Heisenberg manifold. Then for any point x0 ∈M , the point-wise Levi form
Lx0 has rank 2m if and only if Gx0M

∼= H2m+1 × Rd−2m. In especially, this means L has
constant rank 2m if and only if GM is a fiber bundle with typical fiber H2m+1 × Rd−2m.

In addition, if Rank L = 2m, it is always possible to find an orthonormal basis {X1, . . . , Xd}
of V1M such that the matrix representation L = (Ljk) of L becomes

L =

 0 D 0
−D 0 0

0 0 0

 , (2.15)

where D ∈ Matm×m(R) is a diagonal matrix carrying the absolute values λ1, . . . , λm of the
non-zero eigenvalues on its diagonal.

Proof: The first statement is exactly the statement of [Pon08], Proposition 2.1.6. The
second statement follows by linear algebra, since L is a skew-symmetric matrix, so it is
known to have the non-zero eigenvalues ±iλ1, . . . ,±iλm. Then for any orthonormal frame
of HM the form (2.15) can be reached by an orthonormal basis transformation at every
point of HM . �

Remark: By our assumption of HM being bracket-generating, we always have Rank L ≥
2 and therefore m ≥ 1. Of course the case m = 0 also fits into the theory: In this case the
hyperplane bundle HM induces a foliation on M . C
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We can further introduce Levi forms on arbitrary Carnot manifolds: Since [V1M,V1M ] =
V2M for the first two summands appearing in the grading of the tangent space of any
Carnot manifold, the following definition is well-defined.

Definition 2.3.4
Let M be a Carnot manifold with grading TM =

⊕R
S=1 VSM of its tangent bundle. We

denote by {X1,1, . . . , X1,d} an orthonormal frame of V1M and by {X2,1, . . . , X2,d2} an or-
thonormal frame of V2M . Then for ν ∈ {1, . . . , d2}, the ν-Levi form of M is given by the
bilinear form

Lν : V1 × V1 → span{X2,ν}, (Y1, Y2) 7→ [Y1, Y2] mod (span{X2,ν})⊥ .

For Lν(Xj, Xk) = L
(ν)
ik Xν with L

(ν)
ik ∈ R, we denote by L(ν) = (Ljk) the antisymmetric

matrix describing Lν . C

In other words, the collection of ν-Levi forms Lν describes the structure of the first step
commutators of a Carnot manifold. We will use this notation later when we look for
structures of Heisenberg manifolds inside a Carnot manifold.

2.4 Submersions of Carnot Groups

In the final section of this chapter we will introduce a technique which will play an im-
portant role in our later considerations: We will show how one gets a submersion from a
given Carnot group G1 onto a lower dimensional Carnot group G2. This will provide us
the possibility to pull back objects defined on G2 to objects on G1, such that statements
about G2 can be transported to G1.

Once again we consider a Carnot group G whose Lie algebra has the grading g =
⊕R

S=1 VS.
Let Ṽ ⊂ g be a linear subspace of (the vector space) g which has the structure

Ṽ :=
M−1⊕
S=1

VS ⊕ ṼM , where ṼM ⊂ VM is a linear subspace, (2.16)

for some 1 ≤M ≤ R. We take a look at the canonical orthogonal projection

pr : g→ Ṽ , v 7→ v mod Ṽ ⊥. (2.17)

We show now that pr induces a homomorphism of Lie algebras, which gives rise to a
submersion (and also to a homomorphism) of Lie groups.

Proposition 2.4.1
Let G, g, Ṽ and pr be as above. Then the vector space g̃ := pr(g) ∼= Ṽ can be equipped
with a Lie algebra structure via

[X, Y ]pr := pr ([X, Y ]) ∀X, Y ∈ Ṽ (2.18)
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such that pr : (g, [·, ·])→ (g̃, [·, ·]pr) is an homomorphism of graded Lie algebras.

Further, if we set n := Ker(pr), the spaces N := exp(n) and G̃ := exp(g̃) are Carnot groups
such that G̃ ∼= G /N and hence G ∼= G̃×N . The resulting map

ψ := expG̃ ◦ pr ◦ expG−1 : G→ G̃ (2.19)

is a homomorphism of Carnot groups and a submersion of Riemannian manifolds.

Proof: First of all, one checks that the Lie brackets defined via (2.18) are indeed Lie
brackets: The bilinearity of [·, ·]pr is obvious because of the bilinearity of [·, ·] and the
linearity of pr; and the Jacobi identity also follows from these properties in connection
with the Jacobi identity of [·, ·].
To check that pr is a homomorphism of Lie algebras, one has to check that

[pr(X), pr(Y )]pr = pr ([X, Y ]) ∀ X, Y ∈ g. (2.20)

This is by definition true for all X, Y ∈ Ṽ . Now let (without loss of generality) X ∈ Ṽ ⊥. In
this case, pr(X) = 0 and therefore the left hand side of (2.20) is zero. But the right hand
side is also zero, since X ∈ Ṽ ⊥ ⊂

⊕R
S=M VS and therefore [X, Y ] ∈

⊕R
S=M+1 VS because

of the graded structure of g. Therefore (2.20) is true, which shows that the linear map pr
is a Lie algebra homomorphism. But this means that n := Ker(pr) is an ideal in g and
therefore also a graded Lie algebra. The grading structures of g̃ follows immediately from
the grading structure of g since

g̃ ∼=
M−1⊕
S=1

VS ⊕ ṼM .

Thus g̃ is obviously a graded Lie algebra of step M .

Now we consider the map ψ from (2.19). Because of the nilpotency the exponential maps
from the Lie algebras g̃ and g to their Lie groups G̃ and G are diffeomorphisms, and since
pr is a surjective linear map (which is smooth because of its linearity) we have the result
that ψ is a submersion. To check that it is a group homomorphism, we calculate, using
the Baker-Campbell-Hausdorff formula (2.5):

ψ(x.Gy) = expG̃ ◦pr

(
exp−1

G (expG

(
R∑
S=1

dS∑
j=1

xS,jXS,j

)
.G expG

(
R∑
S=1

dS∑
j=1

yS,jXS,j

)
)

)

= expG̃ ◦pr

(∑
S,j

(xS,j + yS,j)XS,j +B(
∑
S,j

xS,jXS,j,
∑
S,j

yS,jXS,j)

)

= expG̃

(∑
S,j

xS,jpr(XS,j) +
∑
S,j

yS,jpr(XS,j) + B̃(
∑
S,j

xS,jpr(XS,j),
∑
S,j

yS,jpr(XS,j))

)

= expG̃

(∑
S,j

xS,jpr(XS,j)

)
.G̃ expG̃

(∑
S,j

yS,jpr(XS,j)

)
= ψ(x).G̃ψ(y).
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In this calculation we have used the fact that pr is a Lie algebra homomorphism. In
particular, the third equation is true since B is a sum of (multi-step) commutators of the
vector fields XS,j, such that applying pr to B furnishes the polynomial B̃ in the Baker-
Campbell-Hausdorff formula on G̃.

Finally we have
N = exp n = Kerψ,

such that N is a normal Lie subgroup of G. But this shows in addition that G̃ ∼= G/N
and that G ∼= G̃×N . Now every statement of the proposition is proved. �

We now show briefly that such a submersion can be lifted to the compact nilmanifolds
arising from G from Example 2.2.10. Let Γ be generated by the images of the basis vector
fields of V1 under the exponential mapping, and let M = Γ\G be the local homogeneous
space of the left action of Γ on G. Since the submersion ψ from (2.19) is a Lie group
homomorphism, the image ψ(Γ) under ψ is a discrete subgroup of ψ(G), and by the
definition of ψ it is clear that ψ(Γ) is generated by the image of the basis vectors of V1

under the corresponding projection pr : exp−1
G (G) → exp−1

ψ(G)(ψ(G)) of the Lie algebras.

Therefore, we get a compact Carnot nilmanifold M̃ := ψ(Γ)\ψ(G).

For the action of ψ(Γ) on ψ(G) we have

ψ(γ.x) = ψ(γ).ψ(x)

for any γ ∈ Γ and x ∈ G, therefore any orbit of the action of Γ on G is mapped to a orbit
of the action of ψ(Γ) on ψ(G). Let [x]Γ denote the orbit belonging to an element x ∈ G
under the action of Γ. Because ψ is a submersion by Proposition 2.4.1, this means that
the mapping

π : M = Γ\G→ M̃ = ψ(Γ)\ψ(G), [x]Γ 7→ [ψ(x)]ψ(Γ) (2.21)

is also a submersion. We summarize the above argumentations in the following corollary:

Corollary 2.4.2
In the above situation, the map π from (2.21) is a submersion of Riemannian manifolds.
Locally, π coincides with the submersion ψ : G → ψ(G) from (2.19) of the corresponding
Carnot groups.

Proof: The fact that π is a submersion has already been deduced in the discussion ahead
of this corollary. Since the nilmanifolds Γ\G and ψ(Γ)\ψ(G) are locally isometric to the
Carnot groups G and G̃ (see Example 2.2.10), the second statement is obvious by the
construction of π from ψ. �
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Chapter 3

Horizontal Dirac-Operators

The intention of this chapter is to find a first order differential operator which detects
the Carnot-Carathéodory metric via Connes’ formula. Therefore we follow an approach
analogous to the standard example for a spectral triple on a Riemannian manifold: We con-
struct a so-called horizontal Dirac operator, arising from the Clifford action of a horizontal
distribution of a Carnot manifold.

To really cover the horizontal geometry, we want our horizontal Dirac operator to be
compatible with the horizontal part of the Levi-Civita connection on a Carnot manifold
M . We thus define and discuss a (partial) connection ∇H according to the sub-bundle
HM of TM in Section 7.1 from the Levi-Civita connection on M . Then in section 7.2, we
introduce horizontal Clifford bundles arising from the Clifford action of the bundle HM ,
which carry a connection compatible with ∇H . On these bundles, we will be able to define
horizontal Dirac operators DH in a general sense (in analogy to classical Dirac operators
on Clifford bundles), and we will be able to modify these operators such that they are
self-adjoint. In the end of Section 7.2, we calculate the square of DH and proof a technical
proposition concerning the eigenvalues of a sum of certain Clifford matrices in preparation
for future arguments.

Finally in Section 3.3, we will show that the horizontal Dirac operators we constructed are
indeed the right operators to detect the Carnot-Carathéodory metric on a Carnot manifold
M : We show that the norm of [DH , f ] coincides with the Lipschitz norm of f with respect
to the Carnot-Carathéodory metric, such that we can apply Connes’ metric formula to the
sub-algebra of C(M) consisting of these Lipschitz functions. In addition we show that this
metric is already detected by the sub-algebra of C∞-functions. In the following chapters,
we will seen that in spite of all these good properties this operator does not define a spectral
triple.

Throughout this section, M will be a compact Carnot of step R with Carnot-Carathéodory
metric dCC of dimension n. We will use the notation {X1, . . . , Xd} for a frame of the
horizontal distribution HM of M , and if not stated otherwise the Riemannian metric g on
M will be chosen such that this frame is orthonormal. The horizontal Dirac operator will
be defined on closed (meaning compact without boundary) Carnot manifolds.

29
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3.1 Horizontal Connections

To define a horizontal Dirac operator using the Clifford module arising from the horizontal
distribution HM we need to introduce a connection on HM . This happens straight forward
and can be found at various parts of the literature (see e.g. [DGN07], but a horizontal
connection is also mentioned in the textbooks [CDPT07] and [CC09]). The idea is simply
to start with the Levi-Civita connection on M and to project it onto the horizontal bundle.
This approach is justified by the following proposition (see [CDPT07], Proposition 4.2; not
that the case of Carnot manifolds follows directly from the case of Carnot groups formulated
there).

Proposition 3.1.1
Let M be a Carnot manifold with horizontal distribution HM ⊂ TM which carries a
smoothly varying inner product 〈·, ·〉H . Let VM ⊂ TM be a sub-bundle which is comple-
mentary to HM . If g1 and g2 are Riemannian metrics which make VM and HM orthogonal
such that for j = 1, 2

gj(X, Y )|x0
= 〈X(x0), Y (x0)〉H ∀X, Y ∈ HM ∀x0 ∈M,

then the associated Levi-Civita connections ∇1 and ∇2 coincide when projected to HM :
We have

g1 (∇1XY, Z) = g2 (∇2XY, Z) (3.1)

for all sections X, Y, Z of HM . �

This proposition allows us to define a connection only depending on the horizontal bundle,
and it shows that it is in fact well defined when constructing it from any Levi-Civita
connection of the extension of the horizontal inner product. We follow [CDPT07], where
this is done for the Heisenberg group.

Definition 3.1.2
Let M be a Carnot manifold with horizontal distribution HM ⊂ TM , which carries
a smoothly varying inner product 〈·, ·〉H . Let πH : Γ∞(TM) → Γ∞(HM) denote the
projection of a tangent vector field onto its horizontal component. We then define

∇H : Γ∞(HM)× Γ∞(HM)→ Γ∞(HM), (X, Y ) 7→ ∇H
X(Y ) := πH∇X(Y ), (3.2)

where ∇ denotes the Levi-Civita connection of any extension of the horizontal inner prod-
uct. ∇H is called the horizontal (Levi-Civita-)connection of M . C

Proposition 3.1.3
The map ∇H defined in Definition 3.1.2 is indeed a (partial) connection defined on the
horizontal bundle, which means we have
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(i) For all X,X ′, Y ∈ Γ∞(HM) and for all f, g ∈ C∞(M):

∇H
fX+gX′Y = f · ∇H

XY + g · ∇H
X′Y.

(ii) For all X, Y, Y ′ ∈ Γ∞(HM) and for all f, g ∈ C∞(M):

∇H
X(fY + gY ′) = f · ∇H

XY + g · ∇H
XY

′ + (Xf) · Y + (Xg) · Y ′.

∇H is metric with respect to the point-wise inner product 〈·, ·〉H of HM , which means that
we have

(iii) For all X, Y, Y ′ ∈ Γ∞(HM):

X 〈Y, Y ′〉H =
〈
∇H
XY, Y

′〉
H

+
〈
Y,∇H

XY
′〉
H
.

∇H is torsion free in the horizontal direction, which means that we have

(iv) for all X, Y ∈ Γ(HM):

πH
(
∇H
XY −∇H

Y X
)

= πH([X, Y ]).

Proof: Let ∇ be the Levi-Civita connection corresponding to any Riemannian metric g
on TM which is an extension of 〈·, ·〉H . The conditions (i) and (ii) which show that ∇H

is indeed a connection follow immediately from the corresponding properties of the Levi-
Civita connection after projection onto the horizontal distribution. The metric property
(iii) follows immediately from the metric property of ∇ since 〈·, ·〉H is just a restriction of
the Riemannian metric g.

Finally, the torsion freeness into the horizontal direction follows because

πH
(
∇H
XY −∇H

Y X
)

= πH
(
πH (∇XY −∇YX)

)
= πH (∇XY −∇YX)

= πH ([X, Y ])

for all X, Y ∈ Γ∞(HM), since π2
H = πH because πH is a projection and since the Levi-

Civita connection ∇ is torsion free. Hence the proposition is proved. �

Remark: We note that we cannot expect to have torsion freeness in the sense that
∇H
XY − ∇H

Y X = [X, Y ] for all X, Y ∈ Γ∞(HM), as it is the case for the Levi-Civita
connection: Since HM is not involutive, we have [X, Y ] /∈ HM for some X, Y ∈ HM , but
by definition of the horizontal connection the vector field ∇H

XY −∇H
Y X must be horizontal

again. C
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Remark 3.1.4
We have only defined our horizontal connection to be a partial connection, which means
we only allow differentiation into horizontal directions. There are several possibilities to
extend ∇H to a connection

∇̃H : Γ∞(TM)× Γ∞(HM)→ Γ∞(HM) :

For instance, the expression (3.2) makes sense for any X ∈ Γ∞(TM), and Proposition
3.1.3 would also hold for this case with the same proof. Another possibility of defining a
connection is given by setting ∇H

X := 0 for all X ∈ VM . C

Remark 3.1.5
We cannot get rid of the vertical directions completely as soon as we want to apply horizon-
tal covariant derivatives more than one time: By the tensorial property (ii) of Proposition
3.1.3 we have for any X1, X2, Y ∈ HM and for any f ∈ C∞(M):(

∇H
X1
∇H
X2
−∇H

X2
∇H
X1

)
f · Y = ∇H

X1

(
f · ∇H

X2
Y + (X2f) · Y

)
−∇H

X2

(
f · ∇H

X1
Y + (X1f) · Y

)
= f · ∇H

X1
∇H
X2
Y + (X1f) · ∇H

X2
Y + (X2f) · ∇H

X1
Y

+ (X1X2f) · Y − f · ∇H
X2
∇H
X1
Y − (X2f) · ∇H

X1
Y

− (X1f) · ∇H
X2
Y − (X2X1f) · Y

= f ·
(
∇H
X1
∇H
X2
−∇H

X2
∇H
X1

)
Y + ([X1, X2]f) · Y,

and since HM is not involutive we have [X1, X2] /∈ Γ∞(HM).

This has consequences when one wants to define some kind of curvature belonging to the
horizontal connection: It turns out that this curvature shows into the transversal direction
of TM . But we will not discuss this aspect any further and refer to [CC09] and [Mon02]
instead. C

We close this short section with a proposition which shows us how the calculate a horizontal
covariant derivative in local coordinates respecting the grading structure of our Carnot
manifold M . This is more or less trivial, since after calculating the covariant derivative with
respect to the Levi-Civita connection we simply project onto the horizontal distribution.

Proposition 3.1.6
LetM be a Carnot manifold with a horizontal distributionHM of rank d. Let {X1, . . . , Xn}
denote an orthonormal frame for TM such that for d ≤ n {X1, . . . , Xd} is an orthonormal
frame for HM . Then we have locally

∇H
Xj
Xk =

d∑
l=1

ΓljkXl,

where the Γljk are the Christoffel symbols of the Levi-Civita connection ∇ of TM with
respect to the frame {X1, . . . , Xn}. �
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3.2 Construction of Horizontal Dirac Operators

We want to construct a horizontal Dirac operator in analogy to the (classical) Dirac oper-
ator. In the classical case this construction is outlined for example in [Roe98] or [LM89].

We start with a review about the definition of a Clifford algebra and Clifford action.
Remember that for each vector space V equipped with a symmetric bilinear form 〈·, ·〉
there exists an (up to isomorphisms) unique Clifford algebra A = Cl(V ) which is a unital
algebra, equipped with a map ϕ : V → A such that

ϕ(v)2 = −〈v, v〉 · 1. (3.3)

In addition, ϕ is supposed to fulfill the universal property in the sense that for any other
unital algebra A′ equipped with map ϕ′ : V → A′ satisfying (3.3), there is a unique
algebra homomorphism α : A → A′ such that ϕ′ = α ◦ ϕ (see [Roe98], Definition 3.1 and
Proposition 3.2). Multiplication in this unique algebra is determined by the rule

ϕ(v1)ϕ(v2) + ϕ(v2)ϕ(v1) = −2〈v1, v2〉, (3.4)

and we know that for dimV = n we have dim Cl(V ) = 2n. Using this map ϕ to define
multiplication, we can construct a left module over the complex algebra Cl(V )⊗RC which
will be called a Clifford module. In other words, a Clifford module S for a real inner product
space V is a complex vector space S equipped with an R-linear map

c : V → EndC(S) (3.5)

such that c(v)2 = −〈v, v〉 · 1 for all v ∈ V . The map c is called the Clifford action.

Now the question arises what the minimal possible dimension of such a Clifford module
S is, depending on the dimension of V ; in other words, we are looking for irreducible
representations of A. Such an irreducible representation is given by the so-called spin
representation Σ, and it is known that for n = dimV we have

dim Σ = 2[n2 ],

where [n/2] denotes the Gaussian bracket which gives the greatest integer smaller or equal
then m/2 (see [Roe98], Chapter 4, or [LM89]).

The idea for our situation is now to take a look at the Clifford algebras generated by
the fibers of the horizontal distribution HM = span{X1, . . . , Xd}. Since the Riemannian
metric on M is chosen in a way that {X1, . . . , Xd} forms an orthonormal frame at each
point, we immediately get the fundamental properties of this horizontal Clifford action,
which we will denote by cH , from the above discussion.

Proposition 3.2.1
For x ∈ M , let Sx be a Clifford module for HxM with (horizontal) Clifford action cH :
HxM → EndC(Sx). Then we have:
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(i) cH(Xj)
2 = −Id for all j ∈ {1, . . . , d}.

(ii) cH(Xj)c
H(Xk) + cH(Xk)c

H(Xj) = 0 for all j, k ∈ {1, . . . , d}, j 6= k. �

Now let SHM be a bundle of Clifford modules for the horizontal distribution HM . We
need to equip SHM with an point-wise (hermitian) inner product and with a connection,
for which we claim certain compatibility conditions. For a classical Dirac operator, we
ask the connection on SM to be compatible with the Levi-Civita connection ∇ on TM ,
see e.g. [Roe98], Definition 3.4. Hence to define a suitable bundle and connection where
a horizontal Dirac operator can act on, we would like to have compatibility with the
horizontal connection ∇H on HM defined in Section 3.1 via

∇H : Γ∞(HM)× Γ∞(HM)→ Γ∞(HM), (X, Y ) 7→ ∇H
XY := πH∇XY, (3.6)

where πH is the orthogonal projection onto the horizontal distribution. For this horizontal
connection we formulate the compatibility conditions in the following way:

Definition 3.2.2
Let SHM be a bundle of horizontal Clifford moduls over M which is equipped with a fiber-

wise Hermitian metric (·, ·)H and a metric connection ∇SH . SHM is called a horizontal
Clifford bundle if

(i) For each x ∈M we have(
cH(Xx)σ1(x), σ2(x)

)
H

+
(
σ1(x), cH(Xx)σ2(x)

)
H

= 0

for all Xx ∈ HxM , σ1, σ2 ∈ Γ∞(SHM).

(ii) If ∇H is the horizontal Levi-Civita connection (3.6) on HM , we have

∇SH

X (cH(Y )σ) = cH(∇H
XY )σ + cH(Y )∇SH

X σ

for all X, Y ∈ Γ∞(HM) and for all sections σ ∈ Γ∞(SHM).

C

Now, still in analogy to the classical Dirac operator, we can define a horizontal Dirac oper-
ator. Later we will see that this operator has to be modified by adding an endomorphism
in order to be symmetric.

Definition 3.2.3
The formal horizontal Dirac operator D̃H of SHM is the first order differential operator
on Γ∞(SHM) defined by the composition

Γ∞(SHM)→ Γ∞(H∗M ⊗ SHM)→ Γ∞(HM ⊗ SHM)→ Γ∞(SHM).
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Here the first arrow is given by the connection ∇SH , the second arrow is given by the
identification of H∗M and HM via the horizontal metric, and the third arrow is given by
the Clifford action.

If we choose a local orthonormal frame {X1, . . . , Xd} of sections of HM , we can write

D̃Hσ =
d∑
j=1

cH(Xj)∇SH

Xj
σ. (3.7)

C

Before we go on with our construction to get a self-adjoint operator from D̃H , we have a
look at the most natural example.

Example 3.2.4
Consider the exterior bundle ΩM :=

∧
T ∗M ⊗ C on a compact Riemannian manifold

M without boundary equipped with its natural metric and connection. It is well known
(see for example [Roe98], 49ff.) that (in the classical sense) this is a Clifford bundle with
multiplication given by the wedge product and Clifford action of e ∈ T ∗M ∼= TM given by

c(e)σ = e ∧ σ + e y σ.

The Dirac operator of this Clifford bundle is given by d+ d∗. Remember that the interior
product is defined by

e y σ = (−1)nk+n+1 ∗ (e ∧ ∗σ)

via the Hodge star operator ∗σ, which (for a k-form σ) is defined to be the unique (n−k)-
form α such that

(σ, α)vol = α ∧ ∗σ.
Using this Hodge star operator, the operator d∗ is defined by

d∗σ = (−1)nk+n+1 ∗ d ∗ σ.

Now a horizontal Clifford bundle can be constructed analogously. We assume M to be a
Carnot manifold with horizontal distribution HM = span{X1, . . . , Xd} such that the frame
{X1, . . . , Xd, Xd+1, . . . , Xn} is orthonormal, Hence we can identify this frame with its dual
frame {dω1, . . . , dωn}. We further identify H∗M with the sub-bundle of T ∗M annihilating
(HM)⊥, which means H∗M = span{dω1, . . . , dωd}. Then ΩHM :=

∧
H∗M ⊗ C is a

horizontal Clifford bundle: The Clifford action of e ∈ H∗M ∼= HM is again given by

cH(e)σ := e ∧ σ + e y σ;

note that in case σ ∈ SHM and e ∈ H∗M the right side of this equation lies still in SHM .
If we use the horizontal exterior derivative

dH(σ) := πH(dσ),
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where πH is the orthonormal projection onto H∗M , we get a connection which is compatible
with the horizontal Levi-Civita connection is defined on H∗M . Using this, we can define
the formal horizontal Dirac operator on SHM and see that it is given by

DHσ =
d∑
j=1

dHωj ∧ σ + dHωj y ω = dHσ +
(
dH
)∗
σ.

C

Our approach of constructing a horizontal Clifford bundle and a horizontal Dirac oper-
ator can be found in the literature in a greater generality. Igor Prokhorenkov and Ken
Richardson recently introduced a class of so-called transversally Dirac operators in [PR11]
by considering a distribution QM ⊂ TM of the tangent bundle (which may be integrable
or not), which furnishes a Cl(QM)-module structure on a complex Hermitian vector bun-
dle EM over M with Clifford action c : QM → EndC(EM) and a connection ∇E on
EM fulfilling the requirements of Definition 3.2.2. Hence our construction of a horizontal
Clifford bundle fits into this setting.

It turns out that the gap of this construction so far is that the operator D̃H is not sym-
metric: When one wants to calculate the L2-adjoint of D̃H , Stokes’ theorem causes an
additional term of mean curvature into the vertical direction, projected to HM via the
horizontal connection. Hence to get a symmetric operator, we have to add the (horizon-
tal) Clifford action by the mean curvature of the orthogonal complement of the horizontal
distribution. This was shown by Prokhorenkov and Richardson for the general case of a
distribution of the tangent bundle ([PR11]), such that we refer to their work formulating
the following theorem. It shows in addition that the resulting operator is essential self-
adjoint, which follows by a theorem of Paul Chernoff about the self-adjointness of certain
differential operators ([Che73]).

Altogether, we have the following theorem (see [PR11], Theorem 3.1), which will finally
provide us with the possibility to define (essential self-adjoint) horizontal Dirac operators.

Theorem 3.2.5
Let D̃H be a formal horizontal Dirac operator, acting on the smooth sections of a horizontal
Clifford bundle SHM over a compact Carnot manifold M without boundary. Then we have

(i) The formal L2-adjoint of D̃H is given by

(
D̃H
)∗

= D̃H − cH
(

n∑
j=d+1

πH∇XjXj

)
, (3.8)

where πH : TM → HM is the orthogonal projection onto the horizontal distribution
and ∇ is the Levi-Civita connection of TM .
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(ii) The operator

DH :=
k∑
j=1

cH(Xj)∇SH

Xj
− 1

2
cH

(
n∑

j=d+1

πH∇XjXj

)
(3.9)

is essentially self adjoint on L2(SHM).

�

Definition 3.2.6
Let SHM be a horizontal Clifford bundle over a closed Carnot manifold M . Then the
operator defined by (3.9), acting on Γ∞(SHM), is called the horizontal Dirac operator of
SHM . C

At this point, we want to state another example which is due to [PR11]. It states that on
any (classical) Clifford bundle EM over a closed Carnot manifold M one can implement
the structure of a horizontal Clifford bundle by adjusting the bundle connection. We refer
to [PR11], Section 2, for the following proposition.

Proposition 3.2.7
Let M be a Carnot manifold with horizontal distribution HM , such that {X1, . . . , Xd} is
an orthonormal frame for HM and {Xd+1, . . . , Xn} is an orthonormal frame for HM⊥. Let
in addition EM be a Clifford bundle over M with Clifford action c and bundle connection
∇E, and let cH denote the restriction of c to the horizontal distribution HM .

Then there is a connection ∇̃E on E such that E equipped with cH and ∇̃E is a horizontal
Clifford module. This connection ∇̃E is given by

∇̃E
X = ∇E

X +
1

2

n∑
j=d+1

cH
(
πH∇XXj

)
c(Xj), (3.10)

where πH denotes the orthogonal projection of TM onto HM and ∇ denotes the Levi-
Civita connection on TM . �

In Chapter 4, we will consider another example in detail: On the local homogeneous space
of a Carnot group G of rank d under the action of a lattice subgroup, there is a submersion
π : Γ\G→ Td onto the d-dimensional torus by Section 2.4. Then one can define a horizontal
Clifford bundle and a horizontal Dirac operator by pulling back the objects from Td, which
does not depend on the non-horizontal directions of TM . We will discuss this example
extensively in Chapter 4, since it serves well as a toy model to the question whether one
can define spectral triples from horizontal Dirac operators.

For further considerations it will be important to work with the square of the horizontal
Dirac operator. Especially it will follow in Section 6.3 that this operator, considered as an
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operator on L2(SHM), is not hypoelliptic, and we will conclude from that that a horizontal

Dirac operator in not hypoelliptic. Hence we calculate
(
DH
)2

, whose principal term will
be a horizontal Laplacian, in a local expression.

Proposition 3.2.8
Let M be a Carnot manifold, and let {X1, . . . , Xd} be an orthonormal frame for its hor-
izontal distribution HM . Let DH be a horizontal Dirac operator acting on a horizontal
Clifford bundle SHM over M . Then we have locally

(
DH
)2

= −
d∑
j=1

X2
j +

∑
j<k

cH(Xj)c
H(Xk) [Xj, Xk] +OH(1), (3.11)

where Xj is to be understood as a component-wise directional derivative in a local chart
and OH(1) denotes a graded differential operator of order smaller or equal to 1 (which only
depends on the differential operators X1, . . . , Xd and endomorphisms on the bundle).

Proof: We work with the local expression of DH , given by (3.9). From this we get for
σ ∈ SHM (

DH
)2
σ =

d∑
j=1

cH(Xj)∇SH

Xj

(
d∑

k=1

cH(Xk)∇SH

Xk
σ − 1

2
cH (Z)σ

)

− 1

2
cH(Z)

(
d∑

k=1

cH(Xk)∇SH

Xk
σ − 1

2
cH(Z)σ

) (3.12)

where

Z =
n∑

j=d+1

πH∇XjXj ∈ HM

is the mean curvature of the bundle HM⊥ like in Theorem 3.2.5. Note that we have
cH(Z) ∈ EndC(SHM). We observe that the second summand on the right hand side of
(3.12) consists only of differential operators of graded order 1 or 0 applied to σ, so it is
contained in the expression OH(1). Further we have

∇SH

Xj

(
cH (Z)σ

)
= cH

(
∇H
Xj
Z
)
σ + cH (Z)∇SH

Xj
σ

by Definition 3.2.2, since SHM is a horizontal Clifford bundle, so this expression is also
contained in OH(1).

Now we cannot assume ∇H
Xj
Xk = 0 as one does when calculating the square of an ordinary

Dirac operator in this case, since our frame is fixed and therefore cannot be chosen to be
synchronous at a point x ∈ M . We calculate for j, k ∈ {1, . . . , d}, using once again the
properties of a horizontal Clifford bundle:

cH(Xj)∇SH

Xj

(
cH(Xk)∇SH

Xk
σ
)

= cH(Xj)
(
cH
(
∇H
Xj
Xk

)
∇SH

Xk
σ + cH(Xk)∇SH

Xj
∇SH

Xk
σ
)

= cH(Xj)c
H(Xk)∇SH

Xj
∇SH

Xk
σ +OH(1)σ.
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Since we are working in local charts, ∇SH

Xj
is locally given by the expression Xj + Γj with

Γj ∈ End(SHM). Applying this to the last expression, we find

∇SH

Xj
∇SH

Xk
= (Xj + Γj) (Xk + Γk)σ

= XjXk (σ) +Xj (Γkσ) + ΓjXk(σ) + ΓjΓkσ

= XjXk (σ) +OH(1)σ

and therefore

d∑
j=1

d∑
k=1

cH(Xj)∇SH

Xj

(
cH(Xk)∇SH

Xk
σ
)

=
d∑
j=1

d∑
k=1

cH(Xj)c
H(Xk)XjXk (σ) +OH(1)σ

=
∑
j=k

−X2
j (σ) +

∑
j 6=k

cH(Xj)c
H(Xk)XjXk (σ) +OH(1)σ

= −
d∑
j=1

X2
j (σ) +

∑
j<k

cH(Xj)c
H(Xk) (XjXk −XkXj) (σ) +OH(1)σ,

since cH(Xj)
2 = −1 and cH(Xj)c

H(Xk) = −cH(Xk)c
H(Xj) by the characterization of the

Clifford algebra. Finally we plug this into (3.12) and find together with the discussion
above (

DH
)2
σ =

d∑
j=1

cH(Xj)∇SH

Xj

(
d∑

k=1

cH(Xk)∇SH

Xk
σ

)
+OH(1)σ

= −
d∑
j=1

X2
j (σ) +

∑
j<k

cH(Xj)c
H(Xk) [Xj, Xk] (σ) +OH(1)σ.

This proves the proposition. �

Remark: The proof of this proposition shows that the leading term

−
d∑
j=1

X2
j +

∑
j<k

cH(Xj)c
H(Xk) [Xj, Xk]

in the local expression (3.11) of (DH)2 will not change if we modify DH by an term of
graded order zero. For an operator which is locally of the type

D̃H = DH + γ(x)

with γ ∈ C∞(M,EndC(SHM)) we still have(
D̃H
)2

= −
d∑
j=1

X2
j +

∑
j<k

cH(Xj)c
H(Xk) [Xj, Xk] +OH(1).
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In particular this shows that for a modified connection

∇̃SH

Xj
= ∇SH

Xj
+ γ0(x)

with γ0 ∈ C∞(M,EndC(SHM)) the leading term of the local expression of (DH)2 according
to this connection will not change. We will refer to this remark when we check DH for
hypoellipticity in Section 6.3, since the property of being hypoelliptic only depends of the
leading term of a horizontal Laplacian. C

Before we conclude this section, we want to prove a rather technical lemma about the
eigenvalues a certain combination of Clifford matrices can have. This will be needed in the
following chapters, and since it will be needed more than one time we decided to put it
here. Its statement is quite general, since it can be applied to the Clifford action arising
from any vector bundle, horizontal or not.

Proposition 3.2.9
Let V be a vector space of dimension d, and let A = Cl(V )⊗ C denote its (complexified)
Clifford algebra, which is represented by matrices on a complex vector space S via (3.5).
We assume that we have an m ∈ N such that 2m ≤ d and such that {e1, . . . , e2m, . . . , ed}
is a basis of V .

Then we have the following:

(i) For any k 6= l with 1 ≤ k, l ≤ d, all the eigenvalues of the matrix c(ek)c(el) are given
by the numbers ±i, where both eigenvalues have the same multiplicity.

(ii) The eigenvalues of the matrix

m∑
j=1

c(ej)c(em+j) (3.13)

are exactly the numbers

µl = i (−m+ 2l) with l = 0, . . . ,m.

In the case where d = 2m and the Clifford action of V on S is irreducible, which
means we have dimS = 2m, each eigenvalue µl has the multiplicity

(
m
l

)
.

(iii) For λj ∈ R with λj > 0 (with j ∈ {1, . . . ,m}), all the eigenvalues of the matrix

m∑
j=1

λjc(ej)c(em+j). (3.14)

are included in the interval [
−i

m∑
j=1

λj, i

m∑
j=1

λj

]
⊂ iR

on the imaginary line. Thereby, the numbers i
∑m

j=1 λj and−i
∑m

j=1 λj are eigenvalues
of the matrix (3.14).
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Remark: Although this proposition has been formulated for vector spaces, it can be
transferred to Clifford bundles immediately, since point-wise we have the eigenvalues noted
above. In particular, the situation of the proposition occurs for the horizontal Clifford
action on a Clifford bundle on a Carnot manifold M , where M is locally diffeomorph to
a Carnot group of the type H2m+1 × Rd−2m. In this case we will identify the horizontal
frame {X1, . . . , Xd} at each point x ∈ M with the vector space spanned by {e1, . . . , ed},
for which the proposition is formulated. C
Proof: First of all, since

(c(ek)c(el))
2 = c(ek)c(el)c(ek)c(el)

= − (c(ek))
2 (c(el))

2

= −id ∀1 ≤ k, l ≤ d,

each of the products c(ek)c(el) has eigenvalues i and −i. Furthermore, the matrices
c(ek)c(el) and c(el)c(ek) commute since

c(ek)c(el)c(el)c(ek) = c(el)c(ek)c(ek)c(el) = id,

and are thus simultaneously diagonalizable. Because of the relation c(ek)c(el) = −c(el)c(ek)
this means that we have the same number of i- and −i-eigenvalues, and therefore statement
(i) is proved.

The next observation is that for j 6= k and 1 ≤ j, k ≤ m, the matrices c(ej)c(em+j) and
c(ek)c(em+k) commute: We have

[c(ej)c(em+j), c(ek)c(em+k)]

= c(ej)c(em+j)c(ek)c(em+k)− c(ek)c(em+k)c(ej)c(em+j)

= c(ek)c(em+k)c(ej)c(em+j)− c(ek)c(em+k)c(ej)c(em+j)

= 0

by the commutation rules of the horizontal Clifford action, see Proposition 3.2.1. But
this means that all the summands of the matrix

∑m
j=1 λjc(ej)c(em+j) are simultaneously

diagonalizable. Let S be a matrix diagonalizing these summands simultaneously, this
means its diagonal matrix is given by

S−1

(
m∑
j=1

λjc(ej)c(em+j)

)
S =

m∑
j=1

λjS
−1c(ej)c(em+j)S. (3.15)

Using this, we can prove the rest of the statements by induction over m.

From this point on, we will assume for a moment that the representation of our Clifford
algebra is irreducible. This means that we have a map

c : V → EndC(S)
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for a vector space S with dimS = 2[d/2], [·] denoting the Gaussian bracket, such that for
every j ∈ {1, . . . , d} we have

c(ej) ∈ Mat2[d/2]×2[d/2](C)

(see the discussion in the beginning of this section for this). We further denote the (unique)
complexified Clifford algebra arising from a (complex) vector space of dimension n by
ClC(n). For the proof by induction, we will use the isomorphism

ClC(n+ 2) ∼= ClC(n)⊗ ClC(2), (3.16)

see [LM89], Theorem I.4.3.

Now we start with the induction argument: For the case m = 1 the statements (ii) and
(iii) already follow from statement (i). Now we assume the statements to be true for m−1.
In detail, this means the following: For a vector space Ṽ ∼= Rd−2 with basis {ẽ1, . . . , ẽd−2},
we have a Clifford algebra Clm−1(Ṽ )⊗C ∼= ClC(d− 2). Since we assumed irreducibility of
the Clifford action, the elements cm−1(ẽk) are given by (2[d/2]−1 × 2[d/2]−1)-matrices, such
that the statements (ii) and (iii) are true for sums of the form

m−1∑
j=1

λjc(ẽj)c(ẽm−1+j),

considering m− 1 instead of m.

Now for a vector space V ∼= Rd we have Cld(V ) ⊗ C ∼= ClC(d) and consider a basis
{e1, . . . , ed}. Hence after using the isomorphism from (3.16), we can work with the following
representations of the elements e1, . . . , ed:

cm(ej) =



cm−1(ẽj)⊗

(
i 0

0 −i

)
for 1 ≤ j ≤ m− 1

id2[d/2]−1 ⊗

(
0 i

i 0

)
for j = m

cm−1(ẽj−1)⊗

(
i 0

0 −i

)
for m+ 1 ≤ j ≤ 2m− 1

id2[d/2]−1 ⊗

(
0 −1

1 0

)
for j = 2m

cm−1(ẽj−2)⊗

(
i 0

0 −i

)
for 2m+ 1 ≤ j ≤ d,

(3.17)

where cm−1 denotes the Clifford action by Clm−1(Ṽ )⊗C and cm denotes the Clifford action
by Clm(V )⊗ C on the corresponding vector spaces. Note that the matrices

E1 =

(
i 0
0 −i

)
, E2 =

(
0 i
i 0

)
, E3 =

(
0 −1
1 0

)
,
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together with the (2× 2)-unit matrix, form a basis for the Clifford algebra ClC(2). For the
representations from (3.17) we get by the rules of the tensor product for matrices:

m∑
j=1

λjcm(ej)cm(em+j)

=
m−1∑
j=1

λjcm(ej)cm(em+j) + λmcm(em)cm(e2m)

=
m−1∑
j=1

λj

(
cm−1(ẽj)⊗

(
i 0
0 −i

))
·
(
cm−1(ẽm−1+j)⊗

(
i 0
0 −i

))
+λm

(
id2[d/2]−1 ⊗

(
0 i
i 0

))
·
(

id2[d/2]−1 ⊗
(

0 −1
1 0

))
=

m−1∑
j=1

λj

(
cm−1(ẽj)cm−1(ẽm−1+j)⊗

(
−1 0
0 −1

))
+ λm · id2[d/2]−1 ⊗

(
i 0
0 −i

)

=

(
m−1∑
j=1

λjcm−1(ẽj)cm−1(ẽm−1+j)

)
⊗
(
−1 0
0 −1

)
+ λm · id2[d/2]−1 ⊗

(
i 0
0 −i

)
.

Now let S̃ be the matrix diagonalizing the matrices cm−1(ẽj)cm−1(ẽm+j) simultaneously,
such that we have (3.15) in this situation. But then we see from the above calculation that
the matrix

S := S̃ ⊗
(

1 0
0 1

)
diagonalizes

∑m
j=1 λjcm(ej)cm(em+j) simultaneously, which means we have because of the

above calculation

S−1

m∑
j=1

λjcm(ej)cm(em+j)S

=

(
S̃−1 ⊗

(
1 0
0 1

))
·

(
m∑
j=1

λjcm(ej)cm(em+j)

)
·
(
S̃ ⊗

(
1 0
0 1

))

=S̃−1

(
m−1∑
j=1

λjcm−1(ẽj)cm−1(ẽm−1+j)

)
S̃ ⊗

(
−1 0
0 −1

)
+ λm · id2[d/2]−1 ⊗

(
i 0
0 −i

)
.

(3.18)

Since all these matrices are diagonal matrices, we immediately see that for each eigenvalue
µ̃l, l ∈ {0, . . . ,m− 1}, of

∑m−1
j=1 λjcm−1(ẽj)cm−1(ẽm−1+j) with multiplicity ν̃l the numbers

µ+
l := −µ̃l + iλm and µ−l := −µ̃l − iλm (3.19)

are eigenvalues of
∑m

j=1 λjcm(ej)cm(em+j). But from (3.19) we can prove the statements
(ii) and (iii) by induction:
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• Statement (iii) can be seen immediately from (3.19). If µ̃0 := i
∑m−1

j=1 λj is the

greatest and µ̃m−1 := −i
∑m−1

j=1 λj is the lowest eigenvalue of
∑m−1

j=1 λjc(ẽj)c(ẽm−1+j),
then the greatest and lowest eigenvalue of (3.14) are given by the numbers

µ+
m+1 = µ̃m−1 + iλm and µ−0 = µ̃0 − iλm,

which proves both statements of (iii).

• Statement (ii) follows after choosing λ1 = . . . = λm = 1 in (3.19). By the assumption
that (ii) is true for m− 1, we have

µ+
l = i((m− 1) + 1− 2l) = i(m− 2l)

and
µ−l = i((m− 1)− 1− 2l) = i(m− 2(l + 1))

for 0 ≤ l ≤ m− 1, where each µ±l has multiplicity
(
m−1
l

)
. We observe for l ≤ m− 2

that
µm−l+1 := µ+

l+1 = µ−l ,

hence each of these eigenvalues has multiplicity
(
m−1
l

)
+
(
m−1
l+1

)
=
(
m
l+1

)
. In addition

we have the eigenvalues µ0 := µ−m−1 = −im and µm := µ+
0 = im, which are both of

multiplicity 1.

We finally drop the restriction that the representation of the Clifford algebra is irreducible:
We do not get any new eigenvalues, because every (reducible) representation is a direct
sum of irreducible ones, and hence (ii) and (iii) are also true for this case. But we cannot
make a general statement about the multiplicity of the eigenvalues in the reducible case.

Altogether, every statement of this proposition is proved. �

3.3 Detection of the Carnot-Carathéodory Metric

Throughout this section we will assume that M is a compact Carnot manifold without
boundary, such that the algebra C(M) is a unital C∗-algebra which can be represented on
L2(M) via left multiplication. Our intention is to show that the operator DH from the
previous section detects the Carnot-Carathéodory metric via the Connes metric formula

dCC(x, y) = sup
{
|f(x)− f(y) : f ∈ A′,

∥∥[DH , f ]
∥∥ ≤ 1

}
, (3.20)

where A′ is a dense sub-algebra of C(M). This means that although DH does not furnish
a spectral triple (which we will see in general in Chapter 6), we can consider the triple
(C(M), L2(M), DH) as a compact quantum metric space in the sense of Mark Rieffel, see
Definition 1.2.2, with the corresponding Lip-norm L(f) :=

∥∥[DH , f ]
∥∥, whose metric is

exactly the Carnot-Carathéodory metric on M .
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The key observation is that, in analogy to the classical case from the standard example for
a spectral triple, the commutator [DH , f ] acts as Clifford action by the horizontal gradient
of a function f . Remember that on a Carnot manifold M the horizontal gradient of a
function f ∈ C1(M) is given by the vector field

gradH(f) =
d∑
j=1

Xj(f) ·Xj,

where, like before, HM = span{X1, . . . , Xd} ⊂ TM is a horizontal distribution of M .

Proposition 3.3.1
Let DH be a horizontal Dirac operator acting on a horizontal Clifford bundle SHM with
horizontal Clifford action cH over a closed Carnot manifold M . Then, for any function
f ∈ C1(M), we have [

DH , f
]

= cH(gradHf).

Proof: Let us first show that the horizontal Dirac operator fulfills the Leibniz rule. This
is just an easy calculation using the properties of the connection and the Clifford action:
For any σ ∈ Γ∞(SHM) we have

DH(f · σ) =
d∑
j=1

cH (Xj)∇SH

Xj
(f · σ)

=
d∑
j=1

cH (Xj)
(
f · ∇SH

Xj
σ +Xj(f) · σ

)
= f ·DHσ +

(
d∑
j=1

cH (Xj)Xj(f)

)
σ

= f ·DHσ + cH

(
d∑
j=1

Xj(f) ·Xj

)
σ

= f ·DHσ + cH
(
gradHf

)
σ.

Now the statement follows immediately:[
DH , f

]
σ = DH(f · σ)− f ·DHσ = cH

(
gradHf

)
σ,

and the proposition is proved. �

Using this proposition, we have to show that the Lip-norm defined by the Connes metric
coming from DH coincides with the supremum of the horizontal gradient of a function f .
But yet it is not clear how the sub-algebra A′ of C(M) has to look like such that the
Connes metric formula (3.20) is true. In the classical case, this is exactly the algebra of
Lipschitz functions, and it will turn out that in the Carnot case this will be the algebra of
functions which are Lipschitz with respect to the Carnot-Carathéodory metric.
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Definition 3.3.2
Let (M,dCC) be a Carnot manifold, f ∈ C(M). Then we call the number

LipCC(f) := sup

{
|f(x)− f(y)|
dCC(x, y)

: x, y ∈M,x 6= y

}
the Carnot-Carathéodory-Lipschitz constant of f . If LipCC(f) is finite, we call f a Carnot-
Carathéodory-Lipschitz function.

We denote the algebra of all Carnot-Carathéodory-Lipschitz functions on M , equipped
with the semi-norm LipCC(f), by LipCC(M). C

The proof that the horizontal Dirac-operator DH detects the Carnot-Carathéodory metric
works similar to the classical one that a Dirac operator detects the geodesic metric on a
Riemannian spin manifold (see e.g. [Con94], [GVF01] or [Lan97]): If we assume that for
f ∈ LipCC(M) the horizontal gradient gradHf(x) exists almost everywhere, we show that
the number LipCC(f) coincides with the essential supremum of gradHf . After that we will
show that the Carnot-Carathéodory metric can be described via the Carnot-Carathéodory-
Lipschitz constant, such that we can apply Proposition 3.3.1 to get the result.

We need to show that the assumption that gradHf(x) exists almost everywhere for f ∈
LipCC(M). Note that the analogous statement for classical Lipschitz functions is well
known (see e.g. [Fed69]). The horizontal case is shown in [CDPT07] for the case of the
Heisenberg group (see [CDPT07], Proposition 6.12), and this result can be generalized
easily to arbitrary Carnot manifolds as we show in the following proposition. In a greater
generality, this is also a consequence of the Pansu-Rademacher theorem ([Pan89]; see also
for example [CDPT07], Theorem 6.4), which states that a Lipschitz map between two
Carnot groups, the so-called Pansu differential (see [Pan89]), exists.

Proposition 3.3.3
Let M be a closed Carnot manifold with horizontal distribution HM = span{X1, . . . , Xd}
and let f : M → R be a Carnot-Carathéodory-Lipschitz function. Then the horizontal
gradient

gradHf =
d∑
j=1

Xj(f) ·Xj

exists almost everywhere on M .

Proof: We consider the case where M = Ω ⊂ G is an open subset of a Carnot group
G; then the general case follows after restricting ourselves to local coordinates (on which
we have a Carnot group structure) since the coordinate changes are smooth and therefore
do not affect the regularity of f . Thus we choose an arbitrary point x0 ∈ Ω. We fix a
j ∈ {1, . . . , d}. After an affine change of coordinates on Ω (such that 0 ∈ Ω) we can assume

x0 ∈
{(

(x1,1, . . . , x1,d, x
(2), . . . , x(R)

)
∈ Ω : x1,j = 0

}
=: Ω0,j, (3.21)
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where the coordinates on Ω ⊂ G are meant to be either exponential or polarized coordi-
nates, see Section 2.2.

The idea is to consider the integral curves arising from x0 into the direction of the vector
field Xj via the exponential map, which means we have a curve

γx0 : [0, a]→ G, t 7→ x0. exp tXj (3.22)

for any a > 0. We denote by Lx0 := γx0([0, a]) ∩ Ω the path of γx0 . Since this path is
horizontal, the map

fx0 : R→ R, t 7→ f (x0 · exp tXj)

is a (classical) Lipschitz function on R because of the Carnot-Carathéodory Lipschitz prop-
erty of f . Since fx0 is Lipschitz, it is differentiable almost everywhere (see e.g. [Fed69]),
and its derivative is given by

f ′x0
(t) = Xjf (x0 · exp tXj) .

But this shows that Xjf exists almost everywhere on Lx0 . This is true for any starting
point x0 ∈ Ω0,j, such that we can conclude that Xjf exists almost everywhere on Ω because
any point of a Carnot group G can be reached from the hyperplane Ω0,j by a horizontal
curve of the type (3.22).

Now the above argument is true for any j ∈ {1, . . . , d}, and hence any horizontal partial
derivative Xjf and therefore also the horizontal gradient exists almost everywhere on Ω.
�

To show that the Carnot-Carathéodory-Lipschitz constant coincides with the supremum
norm of the horizontal gradient, we work with the corresponding object from the cotangent
bundle of M . We assume we have a Riemannian metric g on M such that {X1, . . . , Xn}
is an orthonormal frame with respect to g, which respects the grading structure of TM .
Remember from Section 2.1 that we can choose a basis {dω1, . . . , dωn} of T ∗M such that

HM = span{X1, . . . , Xd} = Ker
(
span

{
dωd+1, . . . , dωn

})
. (3.23)

According to this basis, the horizontal differential of f is given by

dHf =
d∑
j=1

Xj(f)dωj.

Obviously we have supx∈M ‖gradHf(x)‖ = supx∈M ‖dHf(x)‖ for any function f ∈ C1(M),
where ‖ · ‖ denotes the (Euclidean) norm of a horizontal tangent (or cotangent) vector on
M , coming from the Riemannian metric g.
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Lemma 3.3.4
Let M be a closed Carnot manifold with Riemannian metric g as above, and let f ∈
LipCC(M) such that, by Proposition 3.3.3, the horizontal gradient gradHf of f exists
almost everywhere. Then we have

LipCC(f) = ess sup
x∈M

∥∥gradHf(x)
∥∥ .

Proof: For f ∈ LipCC(M) we show that LipCC(f) ≤ ess supx∈M
∥∥gradHf(x)

∥∥ and that

ess supx∈M
∥∥gradHf(x)

∥∥ ≤ LipCC(f).

Let x, y ∈M , and let γ : [0, 1]→M be a smooth horizontal curve connecting x and y, which
means γ(0) = x, γ(1) = y and γ̇(t) ∈ Hγ(t)M for all t ∈ [0, 1]. Note that because of (3.23)
and the characterization of the horizontal differential this means df(γ̇(t)) = dHf(γ̇(t)) for
all t, and we have for f ∈ C1(M)

f(x)− f(y) = f(γ(1))− f(γ(0))

=

∫ 1

0

d

dt
f(γ(t))dt

=

∫ 1

0

df (γ̇(t)) dt

=

∫ 1

0

dHf (γ̇(t)) dt

=

∫ 1

0

g
(
gradHf(γ(t)), γ̇(t)

)
dt.

≤
∫ 1

0

∥∥gradHf(γ(t))
∥∥ · ‖γ̇(t)‖ dt

≤ sup
x∈M

∥∥gradHf(x)
∥∥ · ∫ 1

0

‖γ̇(t)‖ dt,

where we have used the Cauchy-Schwarz inequality. Taking the infimum over all horizontal
curves connecting x and y, we find

|f(x)− f(y)| ≤ sup
x∈M

∥∥gradHf(x)
∥∥ · dCC(x, y). (3.24)

Now the above calculation holds not only for C1-functions f , but for all functions which
have a horizontal gradient almost everywhere, such that gradHf is defined as an essentially
bounded vector field on M . Hence for every f which fulfills the assumptions of the Lemma,
(3.24) becomes

|f(x)− f(y)| ≤ ess sup
x∈M

∥∥gradHf(x)
∥∥ · dCC(x, y),

and since x and y can be chosen arbitrarily we see

LipCC(f) = sup
{x,y∈M : x 6=y}

|f(x)− f(y)|
dCC(x, y)

≤ ess sup
x∈M

∥∥gradHf(x)
∥∥ . (3.25)
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On the other hand, we choose an x0 ∈ M such that gradHf(x0) exists and consider
the integral curve along the vector field gradHf(x0) arising from the exponential map
expx0

: Tx0M →M from Riemannian geometry, that is

γx0(t) := x0. exp
(
t · gradHf(x0)

)
.

For a small ε > 0 we set x := γx0(ε) and denote the length of a horizontal curve γx0([0, ε])
which is connecting x0 and x by Lγx0

(x, x0). We observe that we have

lim
x→x0

∣∣∣∣f(x)− f(x0)

Lγx0
(x, x0)

∣∣∣∣ = lim
ε→0

∣∣∣∣∣f
(
x0. exp

(
ε · gradHf(x0)

))
− f(x0)

ε

∣∣∣∣∣
=
∥∥gradHf(x0)

∥∥ . (3.26)

Now, since γx0 is a horizontal curve connecting x and x0 we have dCC(x0, x) ≤ Lγx0
(x, x0),

and hence we get from (3.26)

∥∥gradHf(x0)
∥∥ ≤ lim

x→x0

∣∣∣∣f(x)− f(x0)

dCC(x, x0)

∣∣∣∣
≤ lim

x→x0

LipCC(f) · dCC(x, x0)

dCC(x, x0)
= LipCC(f)

by definition of the Carnot-Carathéodory-Lipschitz constant. But since this works for every
x0 ∈M where gradHf(x0) exists (which is almost every x0 ∈M), we have

ess sup
x∈M

∥∥gradHf(x)
∥∥ ≤ LipCC(f). (3.27)

Altogether (3.25) and (3.27) prove the statement of the lemma. �

To make use of the above Lemma, one has to show that the Carnot-Carathéodory dis-
tance can be expressed using the Carnot-Carathéodory-Lipschitz constant. This should be
obvious, since it is just the Lipschitz semi-norm belonging to the compact metric space
(M,dCC), but for completeness we write down the proof. From our point of view it is im-
portant that the function describing the Carnot-Carathéodory distance from a fixed point
x0 ∈ M is a Carnot-Carathéodory-Lipschitz function, which has Lip-norm bounded by 1
and is differentiable into horizontal directions almost everywhere. But note that this is not
a C1-function.

Lemma 3.3.5
On a closed Carnot manifold M the Carnot-Carathéodory distance between two points
x, y ∈M is given by

dCC(x, y) = sup {|f(x)− f(y)| : f ∈ LipCC(M),LipCC(f) ≤ 1} .
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Proof: For every f ∈ C(M) such that LipCC(f) ≤ 1 we have for all x, y ∈M :

|f(x)− f(y)| ≤ LipCC(f) · dCC(x, y) ≤ dCC(x, y). (3.28)

On the other hand, we define a function h : M → R via h(y) := dCC(x, y) for a given
x ∈M . Obviously h is continuous, and since dCC is a metric on M we have for any z ∈M

|h(y)− h(z)| = |dCC(x, y)− dCC(x, z)| ≤ dCC(y, z).

This shows LipCC(h) ≤ 1, and since |h(x)− h(y)| = dCC(x, y) we get

dCC(x, y) ≤ sup {|f(x)− f(y)| : LipCC(f) ≤ 1} . (3.29)

From (3.28) and (3.29) the statement of the lemma follows. �

Remark: The fact that the function h appearing in the proof is differentiable almost
everywhere can also be deduced from the fact that any two points x, y ∈ M can be joint
by a so-called minimizing geodesic, which is a part from x to y realizing the Carnot-
Carathéodory distance; fulfilling the additional property that it has a derivative for almost
all t whose components are measurable functions (see [Mon02], Theorem 1.19). We do not
need this argument, since the proof above shows that h is a Carnot-Carathéodory-Lipschitz
function which has the property mentioned above by Proposition 3.3.3. C

Now we simply have to put everything together to get the identity of the metrics.

Theorem 3.3.6
Let M be a closed Carnot manifold and DH the horizontal Dirac operator acting on a
horizontal Clifford bundle SHM over M . Then the Carnot-Carathéodory metric of M can
be detected via the formula

dCC(x, y) = sup
{
|f(x)− f(y)| : f ∈ LipCC(M),

∥∥[DH , f ]
∥∥ ≤ 1

}
. (3.30)

Proof: By Lemma 3.3.4 and Lemma 3.3.5 we have

dCC(x, y) = sup

{
|f(x)− f(y)| : f ∈ LipCC(M), ess sup

x∈M

∥∥gradHf(x)
∥∥ ≤ 1

}
.

Now Proposition 3.3.1 tells us that

[DH , f ] = cH(gradHf) (3.31)

for every f ∈ C1(M), where cH : HM → EndC(SHM) denotes the horizontal Clifford
action, and the norm of the operator cH(gradHf) is given by∥∥cH (gradHf

)∥∥ = sup
x∈M

∥∥cH (gradHf(x)
)∥∥ .
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But since because of (cH)2 = −id the map cH : HxM → SHx M is an isometry for any
x ∈M , this shows ∥∥cH (gradHf

)∥∥ = sup
x∈M

∥∥gradHf(x)
∥∥ .

Hence together with (3.31) we see that the identity

sup
x∈M

∥∥gradHf(x)
∥∥ =

∥∥[DH , f
]∥∥ (3.32)

is true for any f ∈ C1(M). Since for f ∈ LipCC(M) the horizontal gradient gradHf exists
almost everywhere by Proposition 3.3.3, (3.32) implies

ess sup
x∈M

∥∥gradHf(x)
∥∥ =

∥∥[DH , f
]∥∥ ∀f ∈ LipCC(M),

and therefore the theorem is proved. �

In Theorem 3.3.6 we have seen that any horizontal Dirac operator detects the Carnot-
Carathéodory metric via Connes metric formula, where the supremum is taken over the
Carnot-Carathéodory-Lipschitz functions on M . We will see now that it suffices to take
the supremum over all C∞-functions, since each f ∈ LipCC(M) can be approximated by
functions fε ∈ C∞(M) with smaller LipCC-norm by a standard approximation argument.

Corollary 3.3.7
Let M be a closed Carnot manifold and DH the horizontal Dirac operator acting on a
horizontal Clifford bundle SHM over M . Then the Carnot-Carathéodory metric of M can
be detected via the formula

dCC(x, y) = sup
{
|f(x)− f(y)| : f ∈ C∞(M),

∥∥[DH , f ]
∥∥ ≤ 1

}
. (3.33)

Proof: Let G be the tangent Carnot group G of the Carnot manifold M , where like before
R is the nilpotency step of G and for 1 ≤ S ≤ R the number dS denotes the dimension of
the vector space VS belonging to the grading g = V1 ⊕ . . .⊕ VR of G. We show that each
function f ∈ LipCC(G) can be approximated uniformly by a sequence of C∞-functions
fε such that LipCC(fε) ≤ LipCC(f) for all ε. Then the statement for LipCC-functions on
the manifold M follows, since M is compact, by considering local charts, and hence the
corollary follows immediately from Theorem 3.3.6.

Let f ∈ LipCC(G). We use the Koranyi gauge

‖x‖G =

(
R∑
S=1

dS∑
j=1

|xS,j|
2R!
S

) 1
2R!

,

see Definition 2.2.8, and consider the unit ball

BG(0, 1) = {x ∈ G : ‖x‖G ≤ 1}
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with respect to this semi-norm. Then we can consider the smooth function

u : R→ R, u(t) =

{
e−

1
t , t > 0

0 otherwise
.

and set

ϕ(x) := c · u
(

1− ‖x‖2R!
G

)
,

where we choose the constant c > 0 such that
∫
G ϕ(x)dx =

∫
BG(0,1)

ϕ(x)dx = 1. But this

means that we have for all ε > 0∫
G
ϕ (δε−1(x)) dx =

(
εdimH(G)

)−1
, (3.34)

where δε−1 denotes the weighted dilation on G by ε−1 (see Definition 2.2.5), and

dimH(G) =
R∑
S=1

S · dimVS

is the Hausdorff dimension of G (see Theorem 2.1.6). Note that because of the smoothness
of u the function ϕ is a smooth function on G, which is compactly supported in the unit
ball with respect to the Koranyi gauge on G.

We finally define

ϕε(x) := εdimH(G)ϕ (δε−1(x)) , (3.35)

which provides us a family of functions ϕε ∈ C∞c (G) with ϕε ≥ 0 such that
∫
G ϕε(x)dx = 1

for all ε > 0 (because of (3.34)) and limε→0 ϕε = δ0 in the sense of distributions. Because of
the equivalence of the Koranyi gauge and the Carnot-Carathéodory metric (see Proposition
2.2.9) there is a C > 0 such that each of these functions ϕε is supported in C · BCC(0, ε),
where

BCC(0, ε) := {x ∈ G : dCC(0, x) < ε}

denotes the Carnot-Carathéodory ball with radius ε.

Using the compactly supported smooth functions ϕε from 3.35, we consider

fε(x) := f ∗G ϕε(x) :=

∫
G
f(y−1.x)ϕε(y)dy,

where . denotes the composition on G. It is clear from the rules of convolution that we
have fε ∈ C∞(G). Further, since f in continuous (with respect to the Carnot-Carathéodory
metric on G), we know that for any compact subset K ⊂ G and any δ > 0 there is an
ε′ > 0 such that |f(x)− f(z)| < δ for all x ∈ K and for all z ∈ C ·BCC(x, ε′), where

BCC(x, ε′) := {y ∈ G : dCC(x, y) < ε′}
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and the constant C > 0 is chosen such that ϕε′ is supported in C ·BCC(0, ε′). But this shows
that for all ε < ε′ we have because of the translation invariance of the Carnot-Carathéodory
metric with respect to the composition on G (see [CDPT07]) and the properties of ϕε

|f(x)− fε(x)| =

∣∣∣∣C · ∫
BCC(0,ε)

(
f(x)− f(y−1.x)

)
ϕε(y)dy

∣∣∣∣
≤

∫
C·BCC(0,ε)

∣∣f(x)− f(y−1.x)
∣∣ϕε(y)dy

< δ

∫
C·BCC(0,ε)

ϕε(y)dy

= δ,

for all x ∈ K. Since M is a compact manifold (hence we can restrict ourselves to compact
subsets in any chart), this shows that any LipCC-function f on M can be approximated
by these C∞-functions fε in the supremum norm.

Finally, we show that for any ε > 0 we have LipCC(fε) ≤ LipCC(f). This follows once
again because the Carnot-Carathéodory metric is translation invariant with respect to the
composition on the Carnot group G (see e.g. [CDPT07]). From the definition of the
Carnot-Carathéodory-Lipschitz constant this invariance in connection with the properties
of ϕε leads to the estimate

LipCC(fε) = sup
x1 6=x2

∣∣∣∣fε(x1)− fε(x2)

dCC(x1, x2)

∣∣∣∣
= sup

x1 6=x2

∣∣∣∣∫
G

f(y−1.x1)ϕε(y)− f(y−1.x2)ϕε(y)

dCC(x1, x2)
dy

∣∣∣∣
≤ sup

x1 6=x2

∫
G

∣∣∣∣f(y−1.x1)− f(x2.y
−1)

dCC(y−1.x1, y−1.x2)

∣∣∣∣ϕε(y)dy

≤ sup
x1 6=x2

∫
G

LipCC(f)ϕε(y)dy

= LipCC(f).

Altogether we have proved that any function f ∈ LipCC(Rn) can be approximated uni-
formly by a sequence of C∞-functions fε such that LipCC(fε) ≤ LipCC(f) for all ε, and the
statement of the corollary follows. �

Since LipCC(M) (or C∞(M)) is a dense sub-algebra of C(M), Proposition 3.3.1 shows that
[DH , f ] is bounded for a dense sub-algebra of C(M) and therefore DH fulfills condition
(i) for a spectral triple (see Definition 1.1.1. But as we have already mentioned (and will
see in the next chapter for a concrete class of examples and in Chapter 6 in general), DH

fails to have a compact resolvent, and therefore (C(M), L2(SHM), DH) is not a spectral
triple. But on the other hand, Theorem 3.3.6 and the preceding lemmas suggest that
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DH seems to be the logical candidate for a first order differential operator to detect the
Carnot-Carathéodory metric.

We will now show that at least (C(M), L2(ΣM), DH) gives rise to a compact quantum
metric space in the sense of Mark Rieffel (see Definition 1.2.2) if we consider the real-
valued functions of C(M) as an order-unit space.

Corollary 3.3.8
The pair (A,L), where

A := {f ∈ C(M) : f ∗ = f} and L(f) :=
∥∥[DH , f ]

∥∥ ,
is a compact quantum metric space which detects the Carnot-Carathéodory metric on a
closed Carnot manifold M .

Proof: It is obvious that A is an order-unit space with norm

‖f‖ := sup
x∈M
|f(x)|.

Now for calculating the Connes metric from L it suffices to consider only the self-adjoint
elements of C(M) (see Proposition 1.1.4, which is exactly the space A. We have to show
that L is a Lip-norm on A, i.e.

(i) For every f ∈ A we have L(f) = 0 ⇔ f ∈ R · 1.

(ii) The topology on the state space S(A) of A from the Connes metric defined by L is
the w∗-topology.

The non-trivial part of condition (i) follows from Proposition 3.3.1: Since

[DH , f ] = cH(
(
gradHf

)
,

[DH , f ] = 0 implies gradHf = 0 almost everywhere, which implies Xj(f) = 0 for all
j ∈ {1, . . . , d} almost everywhere. But this also means Xk(f) = 0 almost everywhere
for every k ∈ {d + 1, . . . , n} because every vector field of the Xk’s can be written as a
commutator consisting of the Xj’s. Since {X1, . . . , Xn} spans the tangent space of M and
f is continuous by assumption, this implies that f must have been a constant. Therefore
(i) is proved.

For condition (ii), note that S(A) = S(C(M)) ∼= M by Gelfand-Naimark theory, where the
w∗-topology on M is exactly the usual manifold topology. Now, by the sub-Riemannian
theorem on topologies (see Theorem 2.1.4), this topology coincides with the topology in-
duced by the Carnot-Carathéodory metric dCC . But by Theorem 3.3.6,

dCC(x, y) = ρL(x, y) := sup {|f(x)− f(y)| : L(f) ≤ 1} ,

which shows condition (ii).
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Hence (A,L) is a compact quantum metric space, and the statement about the metric is
just the statement of Theorem 3.3.6. �

Remark: Note that the Carnot-Carathéodory-Lipschitz constant L also provides a Lip-
norm on A. As we have seen in Lemma 3.3.5, this is exactly the Lip-norm which belongs
to the Carnot-Carathéodory metric dCC . In this context, Corollary 3.3.8 shows that the
compact quantum metric spaces (A,LipCC(·)) and

(
A,
∥∥[DH , ·]

∥∥) are identical. C
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Chapter 4

Degenerate Spectral Triples on
Nilmanifolds

In the previous chapter we constructed horizontal Dirac operators more or less analogous
to classical Dirac operators and we saw that they detect the Carnot-Carathéodory metric.
Therefore they seem to be a natural candidate to construct a spectral triple which covers
the horizontal geometry of a Carnot manifold.

In this chapter we will do a concrete construction of horizontal Dirac operators DH on local
homogeneous spaces of Carnot groups which arise from the action of a lattice subgroup,
namely compact Carnot nilmanifolds M = Γ\G. This can be seen as a generalization of
the torus in the non-abelian case. We will make use of the spin structures of the horizontal
torus, arising as the image of a submersion from M , and observe that we obtain a horizontal
Clifford structure via pullback where the representation of the horizontal Clifford algebra
is irreducible. Afterwards we will use an approach developed by Christian Bär and Bernd
Ammann (see [Bae91] and [AB98]) to get information about the spectrum of DH . It
will follow that our horizontal Dirac operator has an infinite dimensional eigenspace. In
particular its resolvent in not compact and thus it does not furnish a spectral triple. The
strategy is to decompose the L2-space of horizontal Clifford sections for the case where
the horizontal distribution has co-dimension 1: In this case we can use well-known results
from the representation theory of Heisenberg groups to calculate the eigenvalues of DH .
Using this, we will be able to deduce the statement for the general case. These calculations
on Carnot nilmanifolds can be seen as an example of a more general statement: In later
chapters, we will use this idea of transferring the problem to the co-dimension 1 case to
show that on any Carnot manifold a horizontal Dirac operator is not hypoelliptic.

Despite this lack, as an additional result we are still able to extract the Hausdorff dimension
of (M,dCC) from the asymptotic behavior of the non-degenerate eigenvalues of DH in the
case where G = H2m+1 is a Heisenberg group.

We will use the notion of a compact Carnot nilmanifold introduced in Example 2.2.10.
Throughout this chapter, we assume that Γ is the standard lattice of a Carnot group G.
We denote the resulting local homogeneous space by M = Γ\G.

57
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4.1 The Pullback Construction

Let G be a Carnot group with horizontal distribution of rank d and nilpotency step R, and
let Γ C G be its standard lattice given by

Γ := 〈 {γj = exp(Xj) : 1 ≤ j ≤ d} 〉G ,

see Example 2.2.10. We consider the local homogeneous space M = Γ\G, where the action
of Γ on G is given by the group composition from the left. We equip M with a Riemannian
metric g such that the vector bundles V1M ⊕ . . .⊕ VRM , forming the grading of TM , are
pairwise orthogonal at each point.

To construct an example for a horizontal Clifford connection on M , we start by calculating
the Christoffel symbols for the horizontal connection on M arising from the Levi-Civita
connection (see Section 3.1).

Proposition 4.1.1
Let ∇H be the horizontal connection arising from the Levi-Civita connection ∇ on the
compact Carnot nilmanifold M = Γ\G. If {X1, . . . , Xd} is an orthonormal frame for the
(bracket generating) horizontal distribution HM = V1M , then we have

Γljk = 0

for all Christoffel symbols Γljk of ∇H , j, k, l ∈ {1, . . . , d}, corresponding to this basis.

In addition, if we extend the horizontal frame {X1, . . . , Xd} to an orthonormal tangent
frame {X1, . . . , Xn} of M which respects the grading of TM , then all Christoffel symbols
of ∇ belonging to this frame satisfy

Γljj = 0

for j = d+ 1, . . . , n and l = 1, . . . , d.

Proof: By the construction of the horizontal connection the horizontal Christoffel symbols
are exactly the horizontal Christoffel symbols of the Levi-Civita connection on M , see
Proposition 3.1.6. If g is a Riemannian metric on M such that {X1, . . . , Xd} forms an
orthonormal frame at every point, they can be calculated using the properties of the Levi-
Civita connection. We have locally ∇XjXK =

∑n
l=1 ΓljkXl (with n = dimM), and hence

we get by the Koszul formula for the Levi-Civita connection because of the orthonormality
of the frame {X1, . . . , Xd}

Γljk =g(∇XjXk, Xl)

=
1

2

(
∂Xjg(Xk, Xl) + ∂Xkg(Xl, Xj)− ∂Xlg(Xj, Xk)

)
+

1

2
(−g(Xk, [Xj, Xl])− g(Xl, [Xk, Xj]) + g(Xj, [Xk, Xl]))

=
1

2
(−g(Xk, [Xj, Xl])− g(Xl, [Xk, Xj]) + g(Xj, [Xk, Xl]))

(4.1)
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for all 1 ≤ j, k, l ≤ d. Since for any choice of vector fields X, Y, Z ∈ V1M the vector fields
X ∈ V1M and [Y, Z] ∈ V2M are orthogonal with respect to g, the right hand side of (4.1)
vanishes. Therefore all the horizontal Christoffel symbols are 0.

The fact that Γljj = 0 for all d+1 ≤ j ≤ n and for all 1 ≤ l ≤ d can also be seen immediately
from (4.1): If Xj ∈ VSM for S ≥ 2, we have [Xj, Xj] = 0 and [Xj, Xl] ∈ VS+1M for
l = 1, . . . , d (which means Xl ∈ V1M) by the grading structure of TM . But this means
that we also have g(Xj, [Xj, Xl]) = 0 since Xj ⊥ VS+1. Hence every term on the right hand
side of (4.1) is 0, and the additional statement of the proposition follows. �

Remark: Using formula (4.1), we can also calculate all the other Christoffel symbols
belonging to the Levi-Civita connection of M as soon as we know the commutator relations
of the Lie algebra generated by the vector fields {X1, . . . , Xd}. C

We now construct an irreducible horizontal Clifford bundle over M only involving the
horizontal distribution of M . The idea is to consider the submersion ψ : G → Rd from
Section 2.4, which is given in exponential coordinates via

ψ : G→ Rd, ψ
(
x(1), . . . , x(R)

)
= x(1).

We have seen in Corollary 2.4.2 that ψ can be lifted to the nilmanifold given by the action
of Γ on G. This means we have a submersion

π : M → Td ∼= Zd\Rd (4.2)

of M onto the d-dimensional torus, which (by Corollary 2.4.2) coincides locally with the
submersion ψ of the Carnot groups. If {X̃1, . . . , X̃d} is a local frame for TTd such that we
have ψ(expG(Xj)) = expR̃d(X̃j) locally on the Carnot groups, then the differential of the
submersion π applied to our orthonormal frame {X1, . . . , Xd, . . . , Xn} is given by

Dπ : TM → TTd, Dπ(Xj) =

{
X̃j, 1 ≤ j ≤ d

0 otherwise
. (4.3)

We choose the Riemannian metric gT
d

on Td such that {X̃1, . . . , X̃d} forms an orthonormal
frame.

The idea for our construction of a horizontal Dirac operator is now to exploit the fact that
Td is a spin manifold. The starting point for our constructions is the following theorem,
which summarizes the well known facts about the spin structures on Td and the realization
of their corresponding spinor bundles.

Theorem 4.1.2
There are 2d different spin structures ΣTd

δ on Td, which are in one-to-one correspondence
to the group homomorphisms

ε : Zd → Z/2Z. (4.4)
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They are indexed by
δ = (δ1, . . . , δd) ∈ (Z/2Z)d ,

where δj is the image of the generator ej of Zd under ε.

Furthermore, for each spin structure the spinor bundle ΣδTd is a (complex) vector bundle
of rank 2[d/2], where [·] denotes the Gaussian bracket, and the space of sections of Γ∞(ΣδTd)
can be identified with functions σ̃ ∈ C∞(Rd,C2[d/2]

) such that

σ̃(a+ x) = ε(a)σ̃(x) for all x ∈ Rd, a ∈ Zd. (4.5)

Proof: The spin structures of a connected Riemannian manifold M (if they exist) are
characterized by group homomorphisms from the fundamental group of M to Z/2Z (see
e.g. [LM89], Theorem II.2.1). In the case of the d-dimensional torus Td, the fundamental
group is Zd, and since a group homomorphism ε : Zd → Z/2Z is uniquely determined by
the images δj = ε(ej) of the d generators ej of Zd, there are 2d possibilities for such a
homomorphism.

The second statement of the theorem follows from the construction of the spinor bundle
corresponding to a spin structure (see e.g. [LM89] or [Roe98]). �

Remark: Note that (4.5) is also true for σ ∈ L2(ΣδTd to be an L2-spinor, since Γ∞(ΣδTd)
is dense in L2(ΣδTd).

For a given spin structure ΣTd
δ on the torus Td, we have a corresponding spinor bundle

ΣδTd, equipped with a spinor connection ∇ΣδTd . Since π is a submersion, there exist
unique pullbacks of these objects on M (see e.g. [AH11]). In detail, we have the following:

• The sections of the pullback π∗ΣδTd of the spinor bundle have the form

π∗ΣδTd =


2[d/2]∑
j=1

fjπ
∗ϕj : fj ∈ C∞(M), ϕ1, . . . , ϕ2[d/2] basis sections of ΣδTd

 .

(4.6)

• If 〈·, ·〉ΣδTd is the bundle metric on ΣδTd, a metric on π∗ΣδTd is given via the pullback

〈π∗ϕ1, π
∗ϕ2〉π∗ΣδTd := 〈ϕ1, ϕ2〉ΣδTd . (4.7)

• The pullback π∗∇ΣδTd of the spinor connection to π∗ΣδTd has the form

π∗∇ΣδTd
Xj

(π∗ϕ) = π∗
(
∇ΣδTd
DXj

ϕ
)

=

{
π∗
(
∇ΣδTd

X̃j
ϕ
)

for 1 ≤ j ≤ d

0 otherwise
(4.8)

on the pull-backs of sections of ΣδTd. For an arbitrary element of Γ∞(π∗ΣδTd)
described by (4.6) π∗∇ΣδTd is defined by using the linear and tensorial behavior of a
connection.
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Considering the Clifford action cT : TTd → EndC(ΣδTd) on ΣδTd, we can use the iden-
tification HM ∼= π∗TTd given by the differential Dπ from (4.3) to define a horizontal
Clifford action on π∗ΣδTd. This is done by the pull-back of the endomorphism bundle: For
X ∈ HM we define

cH(X) := π∗
(
cT

d

(Dπ(X))
)
,

which is an endomorphism on π∗ΣδTd since cT
d

is an endomorphism on ΣδTd. In detail,
point-wise we have by the definition of the pull-back of an endomorphism

cH(X)(π∗ϕ) = π∗
(
cT

d

(Dπ(X))
)

(π∗ϕ) = π∗
(
cT

d

(Dπ(X))ϕ
)

(4.9)

for any basis section ϕ of ΣδTd, which extends to the whole bundle via linearity. From the
identification HM ∼= π∗TTd via Dπ we can conclude that the restriction of the Riemannian
metric g on M to HM is exactly the pull-back of the Riemannian metric gT

d
on Td, which

was chosen such that {Dπ(X1), . . . , Dπ(Xd)} forms an orthonormal frame for TTd.
By writing

ΣH
δ M := π∗ΣδTd and ∇ΣHδ := π∗∇ΣδTd ,

we will now show that this structure indeed gives a horizontal Clifford bundle. Furthermore,
we can write down the horizontal Dirac operator for this bundle.

Theorem 4.1.3
Let M = Γ\G be the nilmanifold of a Carnot group G, and let ΣH

δ M , ∇ΣHδ and cH be

as above. Then ΣH
δ M equipped with the connection ∇ΣHδ and the horizontal Clifford

multiplication cH is a horizontal Clifford bundle over M .

L2-sections σ ∈ L2(ΣH
δ M) can be identified with C2[d/2]

-valued functions σ on G such that

σ
((
a(1), . . . , a(R)

)
.x
)

= ε
(
a(1)
)
σ(x) (4.10)

for all a ∈ Γ and x ∈ G, where ε is the group homomorphism (4.4) describing the spin
structure of Td and a.x denotes the group operation on G.

The horizontal Dirac operator DH acting on Γ∞(ΣH
δ M) is given in local coordinates by

DHσ =
d∑
j=1

cH(Xj)∂Xj , (4.11)

where ∂Xj denotes the partial derivative belonging to a local coordinate chart of M .

Proof: First of all, it is clear that the action of HM on ΣH
δ M via cH furnishes a Clifford

module over M : Since cT
d

furnishes a Clifford module structure on ΣTd
δ M , we have for any

X ∈ HM (
cH(X)

)2
(π∗ϕ) = π∗

(
cT

d

(Dπ(X))
)2

(ϕ)

= −gTd(Dπ(X), Dπ(X))π∗ϕ

= −g(X,X)π∗ϕ
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for the basis sections π∗ϕ of ΣH
δ by (4.9). Note thereby that the restriction of the Rie-

mannian metric g on M to the horizontal distribution HM is exactly the pull-back of the
Riemannian metric gT

d
we chose above.

Analogously, the condition (i) and (ii) of Definition 3.2.2 follow because the (classical)
Clifford bundle ΣδTd on the torus fulfills these conditions: For the metric (4.7) on ΣH

δ

we have point-wise for any basis sections π∗ϕ1, π∗ϕ2 and for any horizontal vector field
X ∈ HM 〈

cH(X)π∗ϕ1, π
∗ϕ2

〉
ΣHδ M

=
〈
cT

d

(Dπ(X))ϕ1, ϕ2

〉
ΣδTd

=
〈
ϕ1, c

Td(Dπ(X))ϕ2

〉
ΣδTd

=
〈
π∗ϕ1, c

H(X)π∗ϕ2

〉
ΣHδ M

by (4.7) and (4.9), and hence the metric compatibility (i) follows.

To show the compatibility of ∇ΣHδ with the horizontal connection ∇H , we first calculate
this for any basis section π∗ϕ of ΣH

δ M . For any X, Y ∈ HM we have

∇ΣHδ
X (cH(Y )π∗ϕ) = ∇ΣHδ

X (π∗cT
d

(Dπ(Y ))ϕ)

= π∗∇ΣδTd
Dπ(X)(c

Td(Dπ(Y ))ϕ)

= π∗
(
cT

d
(
∇Td
Dπ(X)Dπ(Y )

)
ϕ+ cT

d

(Dπ(Y ))∇ΣδTd
Dπ(X)ϕ

)
= cH

(
∇H
XY
)
π∗ϕ+ π∗

(
cT

d

(Dπ(Y ))∇ΣδTd
Dπ(X)ϕ

)
= cH

(
∇H
XY
)
π∗ϕ+ cH(Y )π∗

(
∇ΣδTd
Dπ(X)ϕ

)
= cH

(
∇H
XY
)
π∗ϕ+ cH(Y )∇ΣHδ

X π∗ϕ

by (4.8), (4.9) and since the compatibility condition is true on the spinor bundle ΣδTd,
using the Levi-Civita connection ∇Td over Td. Thereby the fourth equation needs a bit
more explanation. The crucial point is that for all X, Y ∈ HM we have

∇H
XY = π∗∇Dπ(X)Dπ(Y ) (4.12)

under the identification HM ∼= π∗TTd via Dπ from (4.3): If we write both sides of (4.12)
in local coordinates, we see that they coincide since the Christoffel symbols of Td with
respect to frame {Dπ(X1), . . . , Dπ(Xd)} vanish as well as the Christoffel symbols of the
horizontal Levi-Civita connection on M with respect to the frame {X1, . . . , Xd} do. But
this means by (4.9)

π∗
(
cT

d
(
∇Td
Dπ(X)Dπ(Y )

)
ϕ
)

= cH
(
∇H
XY
)
π∗ϕ

for all ϕ ∈ Γ∞(ΣδTd) by linearity of cT
d

and cH and by (4.9).
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We still need to show the compatibility with the connection for an arbitrary element
σ ∈ Γ∞(ΣH

δ M). By (4.6), such a σ can be written in the form

σ(x) =
d∑
j=1

fj(x)π∗ϕj(x), (4.13)

where ϕ1, . . . , ϕd is a local spinor basis for ΣδTd and fj ∈ C∞(M) for 1 ≤ j ≤ d. But then
the general compatibility follows from the above calculation and by the linearity and the
tensorial behavior of the connection ∇ΣH , since for each j we have

∇ΣHδ
X (cH(Y )fjπ

∗ϕj) = X(fj)c
H(Y )π∗ϕj + fj∇

ΣHδ
X cH(Y )π∗ϕj

= X(fj)c
H(Y )π∗ϕj + fjc

H(∇H
XY )π∗ϕj + fjc

H(Y )∇ΣHδ
X π∗ϕj

= fjc
H(∇H

XY )π∗ϕj + cH(Y )∇ΣHδ
X fjπ

∗ϕj

Altogether we have shown that ΣH
δ M is a horizontal Clifford bundle over M .

Turning to the representation (4.10) of our horizontal spinors, we use (4.13) to describe
a general section σ ∈ Γ∞(ΣH

δ M). Since M = Γ\G is a local homogeneous space, each
fj ∈ C∞(M) can be considered as a function f ∈ C∞(G) such that f(a.x) = f(x) for all
a ∈ Γ and x ∈ G. And since the submersion π is a Lie group homomorphism according to
the group operations on G and Rd, we have for each π∗ϕj

π∗ϕj(a.x) = ϕj(π(a.x)) = ϕj(a
(1) + x(1)) = ε

(
a(1)
)
ϕj(x

(1))

= ε
(
a(1)
)
π∗ϕj(x)

by Equation (4.5) from Theorem 4.1.2. From this, (4.10) follows for sections σ ∈ Γ∞(ΣH
δ M),

and since Γ∞(ΣH
δ M) is dense in the Hilbert space L2(ΣH

δ M) of L2-sections of this vector
bundle, the second statement of the theorem is proved.

Finally we prove the local description (4.11) of the horizontal Dirac operator from this
Clifford module. Let Γ̃ljk denote the Christoffel symbols of TTd according to the frame

{X̃1, . . . , X̃d} = {Dπ(X1), . . . , Dπ(Xd)}, which are all zero. Then the formula (4.11) fol-
lows, because it is known that we have locally

∇ΣδTd

X̃j
σ = ∂X̃jσ −

1

4

d∑
k,l=1

Γ̃ljkc
Td(X̃k)c

Td(X̃l)σ = ∂X̃jσ (4.14)

for the spinor connection in the torus (see e.g. [Bae91], Lemma 4.1): Using once again the
representation (4.13) for elements of Γ(ΣH

δ M), we get from the definition (4.8) of ∇ΣHδ for
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every j ∈ {1, . . . , d}:

∇ΣHδ
Xj

(
d∑
j=1

fjπ
∗ϕ

)
=

d∑
j=1

(
Xj(f) · π∗ϕ+ fj · π∗

(
∇ΣδTd

X̃j
ϕj

))
=

d∑
j=1

(
Xj(f) · π∗ϕ+ fj · π∗

(
∂X̃jϕj

))
=

d∑
j=1

(
Xj(f) · π∗ϕ+ fj · ∂Xjπ∗ϕj

)
= ∂Xj

(
d∑
j=1

fjπ
∗ϕ

)
.

Now by Definition 3.2.6, the horizontal Dirac operator is given locally via

DH =
d∑
j=1

cH(Xj)∇
ΣHδ
Xj
− 1

2
cH

(
n∑

j=d+1

πH∇XjXj

)
, (4.15)

where ∇ is the Levi-Civita connection on TM and πH denotes the orthonormal projection
of TM onto the horizontal distribution HM . For the first term on the right hand side of
(4.15) we can plug in the result from the above calculation, and for the second term we
can use the additional statement of Proposition 4.1.1 which states that all the Christoffel
symbols Γljj for j = d+ 1, . . . , n and l = 1, . . . , d are zero: By definition of the Levi-Civita
connection this implies that we have locally

πH∇XjXj = πH

(
n∑
l=1

ΓljjXl

)
=

d∑
l=1

ΓljjXl = 0

for any j ∈ {d+ 1, . . . , n}. Altogether, the local expression (4.11) for the horizontal Dirac
operator we constructed follows. �

Definition 4.1.4
Let M = Γ\G be a compact Carnot nilmanifold, equipped with the objects ΣH

δ M , ∇ΣHδ ,
cH and DH from Theorem 4.1.3. Then we call

DH : Γ∞(ΣH
δ M)→ Γ∞(ΣH

δ M)

the horizontal pull-back Dirac operator on M . Further, we call ΣH
δ M the horizontal spinor

bundle and ∇ΣHδ the horizontal spinor connection on M . C

Let us summarize what we have done in this section: We have constructed a horizontal
Clifford bundle together with a horizontal Dirac operator on an arbitrary compact Carnot



4.2. SPECTRAL DECOMPOSITION FROM THE CENTER 65

nilmanifold M = Γ\G only depend on the horizontal distribution of this manifold. For
dimensional reasons this representation of the (bundle of) Clifford algebras over HM is
irreducible, since our Clifford bundle ΣHM has rank 2[d/2] whenever d is the rank of HM .
Therefore we can claim we have constructed a natural candidate for a horizontal Dirac
operator on M .

We remark that one can also construct horizontal Dirac operators from already existing
(classical) Clifford or spinor bundles of M . For this we take a look at Proposition 3.2.7
and note that the horizontal connection in this case depends on the Clifford action of
the whole tangent bundle TM . But nonetheless, whenever we choose an orthonormal
frame {X1, . . . , Xn} of TM we will get a local expression similar to (4.11) for the resulting
horizontal Dirac operator, which only differs by a matrix term arising from the Clifford
action. Therefore, methods similar to the ones described in the following sections can also
be applied to this situation, and we expect similar results.

4.2 Spectral Decomposition from the Center

Our aim is to show that the horizontal pull-back Dirac operator constructed in the preced-
ing section, which detects the Carnot-Carathéodory metric by Section 3.3, does not have a
compact resolvent. This will be the case if we find an eigenvalue of DH which possesses an
infinite dimensional eigenspace. Therefore we are interested in getting information about
the spectrum of this operator.

We intend to use the local expression (4.11) of the horizontal pull-back operator DH we
constructed in the last section. From this expression, we will be able to use techniques
involving the representation theory of its underlying Carnot group: The following proposi-
tion shows that DH can be expressed using the right regular representation of G (see also
[Bae91] for the case of the classical Dirac operator).

Proposition 4.2.1
Let M = Γ\G be a compact Carnot nilmanifold, and let DH be the horizontal pull-back
Dirac operator defined on the horizontal spinor bundle ΣH

δ M , arising from a spin structure
ΣTd
δ on Td.

We denote by R : G → L2(ΣH
δ M) the right regular representation of the Carnot group G

on the Hilbert space L2(ΣH
δ M), which is defined by

(R(x0)σ) (x) := σ (x.x0) (4.16)

for all x0 ∈ G. Then DH can be expressed locally using R via

DHσ(x) =
d∑
j=1

cH(Xj)
d

dt
(R(exp tXj)σ) (x)

∣∣∣∣
t=0

(4.17)

for any σ ∈ Γ∞(ΣH
δ M).
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As a consequence, a closed subspace H′ ⊂ L2(ΣH
δ M) is invariant under DH if it is invariant

under R and under the Clifford action of HM .

Remark: The expression (4.16) is well-defined since elements of L2(ΣH
δ M) can be viewed

as periodic functions on G by Theorem 4.1.3. C

Remark: For an element X ∈ g, where g is the Lie algebra of the Carnot group G, we
can define

R∗(X)σ(x) :=
d

dt
(R(exp tX)σ) (x)

∣∣∣∣
t=0

.

This is the so-called right-regular representation of the Lie algebra g on L2(ΣH
δ M) adopted

from R. Using this representation R∗, we can rewrite (4.17) in the form

DH =
d∑
j=1

R∗(Xj)⊗ cH(Xj).

C

Proof: The local expression of the horizontal pull-back Dirac operator follows immediately
from the expression of the directional differentiation along a vector field X on a Lie group,
which is

∂Xσ(x) =
d

dt
σ (x. exp(tX))

∣∣∣∣
t=0

.

The statement about the invariance is straight forward. �

The idea, which has been used by Christian Bär and Bernd Amman for the classical Dirac
operator on compact nilmanifolds of Heisenberg groups and which we will adopt to our
situation, is now to find a direct sum decomposition of the horizontal Clifford bundle
L2(ΣH

δ M), which is invariant under the horizontal Dirac operator. Thus the determination
of the spectrum of DH splits into parts which are easier to handle. Remember that by (4.10)
from Theorem 4.1.3 we can consider elements of L2(ΣH

δ M) as functions on G which have
certain periodicity properties. We intend to use these properties to decompose L2(ΣH

δ M).
In the language of representation theory and in view of Proposition 4.2.1 this is just the
decomposition of the unitary right-regular representation R, acting on the Hilbert space
L2(ΣH

δ M), into its irreducible components.

Let g = V1⊕ . . .⊕ VR be the grading of the Lie algebra belonging to G. We start with the
decomposition of L2(ΣH

δ M) using the periodicities arising from the subgroup expG(VR) of
G.

Definition 4.2.2
For the grading g = V1 ⊕ . . .⊕ VR of the Carnot group G = expG g, we call

Z(G) := expG(VR) ⊂ G

the Carnot center of G. C
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Remark: Note that the center of a general Lie group G is the maximal (normal) subgroup
of G commuting with every element of G. In the case G is a Carnot group, the center of
G needs not to coincide with the Carnot center of G defined above. Consider for example
the Carnot group G = H2m+1 × Rd−2m for d > 2m, where the components belonging to
Rd−2m belong to the center but not to the Carnot center of G. C

Now the decomposition of L2(ΣH
δ M) from the Carnot center works as follows. In addition,

we will detect that the horizontal spinor space of a compact Carnot nilmanifold of lower
step can be found in this decomposition.

Theorem 4.2.3
Let M = Γ\G be the compact nilmanifold of a Carnot group G with center Z(G) ∼= RdR ,
and let ΣH

δ M be the horizontal Clifford bundle arising via pull-back from a spin structure
ΣH
δ on Td.

Then there is a decomposition

L2
(
ΣH
δ M

)
=
⊕
τ∈ZdR

Hτ (4.18)

into Hilbert spaces Hτ , which are invariant under the pull-back horizontal Dirac operator
DH acting on ΣH

δ M . The elements σ ∈ Hτ are exactly those elements σ ∈ L2(ΣH
δ M)

fulfilling

σ
(
x(1), . . . , x(R)

)
= e2πi〈τ,x(R)〉 · σ

(
x(1), . . . , x(R−1), 0

)
. (4.19)

In addition, the space H0 is isomorphic to the space L2(ΣH
δ M̃), where

M̃ = (Γ/Z(Γ)) \(G/Z(G))

is the compact nilmanifold of the Carnot group G̃ := G/Z(G) of step R − 1. Under this
isomorphism, the restriction of the pull-back horizontal Dirac operator DH to H0 can be
identified with the pull-back horizontal Dirac operator D̃H acting on ΣH

δ M̃ .

Proof: Throughout this proof we will use the characterization of a horizontal spinor
σ ∈ L2(ΣH

δ M) as a map σ : G→ C2[d/2]
such that

σ
((
a(1), . . . , a(R)

)
.x
)

= ε
(
a(1)
)
σ(x) (4.20)

for every a = (a(1), . . . , a(R)) ∈ Γ given by Theorem 4.1.3. Note that this σ, considered as
a periodic function on G, is an L2-function on any fundamental domain for the action of
Γ on G by left translation.

We will work with the projection πG̃ : G → G/Z(G). The Carnot center of G can be
described via (exponential or polarized) coordinates by

Z(G) = exp(VR) =
{(

0, . . . , 0, x(R)
)
∈ G : x(R) ∈ RdR

} ∼= RdR ,
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where g ∼= V1 ⊕ . . . ⊕ VR is the grading of the Lie algebra g of G with dR = dimVR. The
image G̃ ∼= G/Z(G) of πG̃ has the structure of a Carnot group of step R− 1: This follows
from Proposition 2.4.1, using the inherited group composition from G. We can realize G̃
the subset

G̃ =
{(
x(1), . . . , x(R)

)
∈ G : x(R) = 0

}
(4.21)

of G, which leads to the coordinate expression

πG̃ : G→ G̃,
(
x(1), . . . , x(R−1), x(R)

)
7→
(
x(1), . . . , x(R−1), 0

)
(4.22)

of πG̃. In this description, the group composition on G̃ is given by executing the group
composition on G first and projecting the result to G̃ afterwards, i.e.

x.G̃y := πG̃ (x.Gy) .

For the rest of the proof we will work with this coordinate description.

In addition, the Carnot center of the standard lattice Γ C G of G is given by

Z(Γ) := Z(G) ∩ Γ ∼= ZdR .

Hence, and since the generators of the Lie algebra of G can be identified with the generators
of the Lie algebra of G̃ via πG̃, the discrete Carnot group Γ̃ := Γ/Z(Γ) is the standard lattice
of G̃ := G/Z(G). This means that we can form the local homogeneous space M̃ = Γ̃\G̃,
which is a compact Carnot nilmanifold of G̃. From the projection πG̃ : G → G/Z(G)
we see that M has the structure of a principle TdR-bundle over M̃ , since TdR is the local
homogeneous space of RdR ∼= Z(G) under the action of ZdR ∼= Z(Γ).

After this preparation, we can finally prove the statements of the theorem. We fix a point
y = (y(1), . . . , y(R)) ∈ G. Then for any σ ∈ L2(ΣH

δ M), we can define a map ϕy via

ϕy : Z(G) ∼= RdR → C2[d/2]

, z 7→ σ (y.G(0, . . . , 0, z)) . (4.23)

As one can calculate using the Baker-Campbell-Hausdorff formula, we have for each z ∈
RdR (

y(1), . . . , y(R)
)
.G (0, . . . , 0, z) =

(
y(1), . . . , y(R−1), y(R) + z

)
since (0, . . . , 0, z) lies in the Carnot center of G, which means it commutes with any other
element of G. Thus, since ε(0) = 1 for any homomorphism ε characterizing a spin structure
ΣH
δ on Td (see Theorem 4.1.2), (4.20) provides us the periodicity

ϕy(z + a) = σ (y.(0, . . . , 0, z).(0, . . . , 0, a))

= ε(0)σ (y.(0, . . . , 0, z))

= ϕy(z)

(4.24)

for each a ∈ ZdR . Furthermore, ϕy is an L2-section on TdR ∼= ZdR\RdR (or on a correspond-
ing fundamental domain of ZdR on RdR , which is any cube of edge length 1): This follows
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from the fact that M is a TdR-principle bundle over M̃ and hence integration over M is
integration over the fiber TdR followed by integration over the base space M̃ . But since σ
is an L2 section on M , it must also be an L2-section on TdR . Together with the periodicity
(4.24) this means that we can develop ϕy into a Fourier series

ϕy(z) =
∑
τ∈ZdR

ϕτ (y) · e2πi〈τ,z〉 (4.25)

with Fourier coefficients ϕτ . If we choose z = 0 in (4.23) and (4.25), we find

σ(y) = ϕy(0) =
∑
τ∈ZdR

ϕτ (y) (4.26)

for any y ∈ G, which proves the decomposition (4.18).

To find an explicit description of the elements of the spaces Hτ , we use the expression of
the Fourier coefficients from (4.25) via the integral

ϕτ (y) =

∫
[0,1]dR

σ (y.(0, . . . , 0, t)) e−2πi〈τ,t〉d̄dRt. (4.27)

Assume σ ∈ Hτ , which means σ(y) = ϕτ (y) by (4.26). Let the coordinates of G belonging
to the Carnot center be denoted by z ∈ RdR , which means we set z := y(R). Since we have

(y(1), . . . , y(R−1), z).(0, . . . , 0, t) = (y(1), . . . , y(R−1), 0).(0, . . . , 0, z + t)

from the group rule in G, we have the following calculation using the substitution u := t+z
in the integral and the periodicity (4.20) of σ:

ϕτ (y) =

∫
[0,1]dR

σ
(
(y(1), . . . , y(R−1), 0).(0, . . . , 0, z + t)

)
e−2πi〈τ,t〉d̄dRt

= e2πi〈τ,z〉
∫

[z1,z1+1]×...×[zdR ,zdR+1]

σ
(
(y(1), . . . , y(R−1), 0).(0, . . . , 0, u)

)
e−2πi〈τ,u〉d̄dRu

= e2πi〈τ,z〉
∫

[0,1]dR
σ
(
(y(1), . . . , y(R−1), 0).(0, . . . , 0, u)

)
e−2πi〈τ,u〉d̄dRu

= e2πi〈τ,z〉 · σ
(
y(1), . . . , y(R−1), 0

)
,

where we used the identity (4.27) once again in the last line. But from this we get the
description (4.19) for any element σ ∈ Hτ .

On the other hand, for any σ ∈ L2(ΣH
δ M) fulfilling

σ
(
x(1), . . . , x(R)

)
= e2πi〈τ,x(R)〉 · σ

(
x(1), . . . , x(R−1), 0

)
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we fix y ∈ G and write down the Fourier series of the corresponding function ϕy(z) from
(4.23). For any τ ′ ∈ ZdR we calculate the Fourier coefficients ϕτ ′(y) from (4.27):

ϕτ ′(y) =

∫
[0,1]dR

σ (y.(0, . . . , 0, t)) e−2πi〈τ ′,t〉d̄dRt

=

∫
[0,1]dR

e2πi〈τ,y(R)+t〉 · σ
(
y(1), . . . , y(R−1), 0

)
e−2πi〈τ ′,t〉d̄dRt

= e2πi〈τ,y(R)〉 · σ
(
y(1), . . . , y(R−1), 0

) ∫
[0,1]dR

e2πi〈τ−τ ′,t〉d̄dRt

=

{
σ(y) for τ = τ ′

0 otherwise
.

This shows immediately that we must have σ ∈ Hτ .

Using this description, we also see the invariance under DH : By Proposition 4.2.1 we have
to check the invariance of σ ∈ Hτ under the Clifford action of HM and the right-regular
representation R. While the first invariance is trivial, the invariance under R follows from
a small calculation: Let σ ∈ Hτ . For an x0 ∈ G we set

σ̃(x) := (R(x0)σ)(x) = σ(x.x0).

Because of the Baker-Campbell-Hausdorff formula we have in (exponential or polarized)
coordinates

(x.x0)(R) = x(R) + x
(R)
0 +B(x, x0), (4.28)

where B(x, x0) is a polynomial in the coordinates of x(1), . . . , x(R−1) and x
(1)
0 , . . . , x

(R−1)
0

(see Section 2.2). Then we have because of (4.19) and (4.28)

σ̃(x) = e2πi〈τ,(x.x0)(R)〉σ
(
(x.x0)(1), . . . , (x.x0)(R−1), 0

)
= e2πi〈τ,x(R)〉σ

(
(x.x0)(1), . . . , (x.x0)(R−1), x

(R)
0 +B(x, x0)

)
= e2πi〈τ,x(R)〉σ

(
(x(1), . . . , x(R−1), 0).(x

(1)
0 , . . . , x

(R−1)
0 , x

(R)
0 )
)

= e2πi〈τ,x(R)〉σ̃(x(1), . . . , x(R−1), 0),

since B(x, x0) does not depend on the components x(R) and x
(R)
0 . This shows σ̃ ∈ Hτ and

therefore the invariance of Hτ under R.

The next step is to show that H0
∼= L2(ΣH

δ M̃): First of all, the horizontal distributions
of the compact Carnot nilmanifolds M = Γ\G and M̃ = (Γ/Z(Γ))\(G/Z(G)) can be
identified using the Carnot group homomorphism πG̃ : G → G/Z(G) from (4.22), which

means that for a given spin structure ΣTd
δ on the horizontal torus Td we find horizontal

spinor bundles ΣH
δ M and ΣH

δ M̃ on both manifolds. Now for any σ̃ ∈ L2(ΣH
δ M̃) we find

can define
σ(x) := σ̃(πG̃(x)),
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which is an element of H0: If we consider πG̃(G) as the subset (4.21) of G, we have
σ(πG̃(x)) = σ(x), which is exactly the characterization of the space H0 from (4.19). And
since elements of H0 are uniquely determined by its values on πG̃(G), the map

ϕ : L2(ΣH
δ M̃)→ H0, σ̃ 7→ σ = σ̃ ◦ πG̃ (4.29)

is an isomorphism.

Finally, we show that the restriction of the pull-back horizontal Dirac operator DH on
L2(ΣH

δ M) to H0 can be identified with the pull-back horizontal Dirac operator D̃H on
L2(ΣH

δ M̃), coming from the same spin structure ΣTd
δ on the horizontal torus Td. Note

that by the characterization (4.21) of G̃ as a subset of G, a horizontal frame {X1, . . . , Xd}
of HM is also a horizontal frame of HM̃ , and since the horizontal spinor bundles on M
and M̃ are constructed from the same horizontal torus Td the horizontal Clifford action
from elements of this frame coincides in both cases. Then the identification of the operators
follows immediately from the isomorphism (4.29) when we use the local expression (4.17) of
the pull-back horizontal Dirac operator from Proposition 4.2.1: We have for every σ ∈ H0

DHσ(x) =
d∑
j=1

cH(Xd)
d

dt
σ (x. expG(tXj))

∣∣∣∣
t=0

=
d∑
j=1

cH(Xd)
d

dt
σ̃ (πG̃ (x. expG(tXj)))

∣∣∣∣
t=0

=
d∑
j=1

cH(Xd)
d

dt
σ̃ (πG̃(x). expG̃(tXj))

∣∣∣∣
t=0

= D̃H σ̃ (πG̃(x)) ,

and since H0 is invariant under DH this shows ϕ(D̃H σ̃) = DHσ for the isomorphism ϕ
from (4.29).

Altogether every statement of the theorem is proved. �

Remark: Note that the coordinate expressions we used in the proof do not depend on
whether we choose exponential or polarized coordinates on the Carnot group G. This is
the case since only actions by the Carnot center are involved. In the next section, it will
turn our to be more comfortable to work with polarized coordinates. C

The above theorem reduces the problem of showing that the horizontal Dirac operator
has an infinite dimensional eigenspace to the corresponding horizontal Dirac operator on
a Carnot group of a lower step. We are interested in using this theorem inductively until
M̃ is the compact nilmanifold of a Carnot group of step 2. As we will see in the next
section, for a compact Heisenberg nilmanifold M̃ we will be able to do a complete spectral
decomposition of L2(M̃) and detect infinite dimensional eigenspaces from this. Then in
Section 4.4, we will use Theorem 4.2.3 to lift these infinite dimensional eigenspace to
compact nilmanifolds of general Carnot groups.
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4.3 The Case of Compact Heisenberg Nilmanifolds

We will now do the complete spectral decomposition of the horizontal pull-back Dirac
operator on compact nilmanifolds M = Γ\G, where G ∼= H2m+1×Rd−2m is a Carnot group
of step 2 and rank d for some integer 1 ≤ m ≤ d/2. Hence the horizontal distribution is of
co-dimension 1.

For our spectral decomposition we will follow an argument of Christian Bär (see Section II.2
of his PhD thesis [Bae91]), which was used to determine the spectrum of Dirac operators
on nilmanifolds from Heisenberg groups. This method was also used by Christian Bär
and Bernd Ammann in [AB98] for the case of the Dirac operator on the 3-dimensional
Heisenberg group. Although the situation in case of our horizontal Dirac operator differs
a bit, the space L2(ΣH

δ M) can be decomposed in exactly the same way since our local
expression of DH from (4.11) is quite similar to the local expression of the Dirac operator
Bär is considering. In this thesis, we have to consider a slightly more general case where
G ∼= H2m+1 × Rd−2m, but the commutative part of the group will not effect the general
strategy too much. After doing the decomposition, we will be able to detect infinite-
dimensional eigenspaces ofDH ; and as an additional result we will show that the asymptotic
behaviors of the non-degenerate eigenvalues gives back the homogeneous dimension of M .

We start by introducing some notation. Let the grading of TM be given by TM =
V1M ⊕V2M , where {X1, . . . , Xd} is an orthonormal frame of V1M such that the Levi form
according to this frame is given by

L =

 0 D
−D 0

0d−2m

 , where D =

λ1

. . .

λm

 withλj > 0.

Note that this can always be achieved by Proposition 2.3.3 and that the numbers λ1, . . . , λm
are exactly the absolute values of the non-zero eigenvalues ±iλj of the Levi form of M . If
V2M is spanned by Xd+1, this means that we have the commutator relations

[Xj, Xk] =


λjXd+1 for 1 ≤ j ≤ m, k = m+ j

−λjXd+1 for 1 ≤ k ≤ m, j = k +m

0 otherwise

. (4.30)

In what follows, it will be more comfortable to use the polarized coordinates instead of the
exponential coordinates of G (see Definition 2.2.4). We will use polarized coordinates with
respect to the frame {X̃1, . . . , X̃d+1} of TM , where

X̃j =
1√
λj
Xj and X̃m+j =

1√
λj
Xm+j for 1 ≤ j ≤ m (4.31)

and X̃k = Xk otherwise. We denote these polarized coordinates on G by (x, y, z, t) with
x ∈ Rm, y ∈ Rm, z ∈ Rd−2m and t ∈ R, where

(x, y, z, t) =
m∏
j=1

exp(xjXj) .
m∏
j=1

exp(yjXm+j) .
d−2m∏
k=1

exp(zkX2m+k) . exp(tXd+1).
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Obviously,
∏

denotes the product according to the group composition . of G. In other
words, the coordinates (x, y, t) describe the H2m+1-part of G and z describes the Rd−2m-part
of G.

Now let us calculate the composition rule on G in these coordinates. In exponential
coordinates corresponding to the frame {X̃1, . . . , X̃d+1} we set for abbreviation

V :=
m∑
j=1

ajX̃j +
m∑
j=1

bjX̃m+j +
d−2m∑
j=1

cjX̃2m+j + sX̃d+1

and

W :=
m∑
j=1

xjX̃j +
m∑
j=1

yjX̃m+j +
d−2m∑
j=1

zjX̃2m+j + tX̃d+1,

such that we have because of (4.30)

[V,W ] =
m∑
j=1

(
ajyj ·

1

λj
[Xj, Xm+j] + bjxj ·

1

λj
[Xm+j, Xj]

)

=

(
m∑
j=1

ajyj − bjxj

)
X̃d+1.

By the Baker-Campbell-Hausdorff formula (see Section 2.2), we calculate

(a, b, c, s).(x, y, z, t) = expV. expW

= exp

(
V +W +

1

2
[V,W ]

)
= exp

(
m∑
j=1

(aj + xj)X̃j +
m∑
j=1

(bj + yj)X̃m+j +
d−2m∑
j=1

(cj + zj)X̃2m+j ×

× +
1

2

(
s+ t+

m∑
k=1

(akyk − bkxk)

)
Xd+1

)

=

(
a+ x, b+ y, c+ z, s+ t+

1

2

m∑
k=1

(akyk − bkxk)

)

for the composition rule on G in exponential coordinates. We can now use the isomorphism
between the exponential and the polarized coordinates on a Heisenberg group (see the
remark after Definition 2.2.4) and conclude that for the composition rule in coordinates
according to the frame {X̃1, . . . , X̃d+1} we have

(a, b, c, s).(x, y, z, t) =

(
a+ x, b+ y, c+ z, s+ t+

m∑
j=1

ajyj+m

)
. (4.32)
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Using this composition rule, we can start with the spectral decomposition of L2(ΣH
δ M).

The first decomposition of L2(ΣH
δ M) is already given by Theorem 4.2.3. In the situation

G ∼= H2m+1 × Rd−2m we have

L2(ΣH
δ M) ∼=

⊕
τ∈Z

Hτ , (4.33)

which is invariant under DH according to the theorem, where elements of Hτ are identified
by the relation

σ(x, y, z, t) = e2πiτt · σ(x, y, z, 0). (4.34)

We set

fσ(x, y, z) := σ(x, y, z, 0), (4.35)

considered as a function on Rd. Note that fσ must be an L2-function on the torus Td since
σ is an L2-function on M , and that any σ ∈ Hτ is fully determined by fσ.

The strategy is to look for periodicities of fσ in order to find a further decomposition of
the spaces Hτ . These periodicities can be detected from the lemma below.

Lemma 4.3.1
Let ε : Zd → Z/2Z be the group homomorphism characterizing the spin structure ΣTd

δ on
Td from Theorem 4.1.2, which induces the horizontal spinor bundle ΣH

δ M on the compact
Heisenberg nilmanifold M . For τ ∈ Z, we assume σ ∈ Hτ according to the decomposition
(4.33) of L2(ΣH

δ M). Then for any c ∈ Zd we have

fσ ((x, y, z)) = ε(c)e2πi〈∑m
j=1 cjyj ,τ〉 · fσ ((x, y, z) + c) . (4.36)

Proof: We use the periodicities of σ from (4.10) of Theorem 4.1.3 and the composition
rule (4.32) to calculate for every c ∈ Zd:

fσ(x, y, z) = ε(c) · σ((c, 0).(x, y, z, 0))

= ε(c)σ(

(
(x, y, z) + c,

m∑
j=1

cjyj

)
)

= ε(c)e2πiτ(
∑m
j=1 cjyj) · σ((x, y, z) + c, 0)

= ε(c)e2πiτ(
∑m
j=1 cjyj) · fσ((x, y, z) + c).

Thereby, in the third equation we have used the characterization (4.34) of σ ∈ Hτ . �

From this lemma, we can detect further decompositions of the spaces Hτ . We start with
the case τ = 0:
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Lemma 4.3.2
For the space H0 from the decomposition (4.33) of L2(ΣH

δ M) we have the further decom-
position

H0
∼=

⊕
{α∈ 1

2
Zd: e2πiαj=δj}

Hα
0

with Hα
0
∼= C2[d/2]

for every α, where each of the spaces Hα
0 is invariant under the horizontal

pull-back Dirac operator DH on M .

Proof: Let σ ∈ H0, which means we have by (4.34) and (4.35)

σ(x, y, z, t) = fσ(x, y, z)

with fσ as in Lemma 4.3.1. If we set τ = 0 in (4.36), we immediately see that fσ is
2Zd-periodic, and therefore can be developed into a Fourier series

fσ(x, y, z) =
∑
α∈ 1

2
Zd

aαe
2πi〈α,(x,y,z)〉

with aα ∈ C2[d/2]
. Now the homomorphism ε : Zd → Z/2Z from (4.36) is given by

ε(c) = δc11 · . . . · δ
cd
d ,

see Theorem 4.1.2, such that Lemma 4.3.1 provides us further∑
α∈ 1

2
Zd

aαe
2πi〈α,(x,y,z)〉 = ε(c)

∑
α∈ 1

2
Zd

aαe
2πi〈α,(x,y,z)+c〉

=
∑
α∈ 1

2
Zd

aαe
2πi〈α,(x,y,z)〉 · δc11 . . . δcdd e

2πi〈α,c〉

for every c ∈ Zd. But this leads to the constraint that for every j ∈ {1, . . . , d} we must
have δje

2πiαj = 1 and therefore e2πiαj = δj. This means that we have

αj ∈ Z ⇔ δj = 1 and αj ∈ Z +
1

2
⇔ δj = −1,

and so the Fourier series of fσ becomes

fσ(x, y, z) =
∑

{α∈ 1
2
Zd: e2πiαj=δj}

aαe
2πi〈α,(x,y,z)〉, (4.37)

with aα ∈ C[d/2]. Therefore we have the decomposition

H0
∼=

⊕
{α∈ 1

2
Zd: e2πiαj=δj}

Hα
0 , (4.38)
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where each Hα
0 is spanned by e2πi〈α,(x,y,z)〉 and hence isomorphic to C2[d/2]

.

Now we immediately see that each Hα
0 is invariant under the Clifford action of any Xj ∈

HM (which only acts on the coefficient aα) and also under the right regular representation
of G: Since σ ∈ Hα

0 , we have for every given (x0, y0, z0, t0) ∈ G

σ ((x, y, z, 0).(x0, y0.z0, t0)) = σ (x+ x0, y + y0, z + z0, 0)

= aαe
2πi〈α,(x0,y0,z0,0)〉 · e2πi〈α,(x,y,z,0)〉,

with aα ∈ C[d/2]. But this shows that R(x0, y0, z0, 0)σ ∈ Hα
0 , and altogether every statement

of the lemma is proved. �

Remark: Since G/Z(G) ∼= Rd, we already know by Theorem 4.2.3 that the space H0 is
isomorphic to the space L2(ΣH

δ Td), which is by construction exactly the space L2(ΣδTd),
and the horizontal pull-back Dirac operator acting on L2(ΣδTd) is exactly the classical
Dirac operator DTd on the torus. Since the spectral decomposition of the Dirac operator
on the torus is well-known, we could have deduced the statement of this lemma directly
from Theorem 4.2.3. C

For the cases τ 6= 0 the spectral decomposition is a bit more involved.

Lemma 4.3.3
Let τ 6= 0. Then for the space Hτ from the decomposition (4.33) of L2(ΣH

δ M) we have the
decomposition

Hτ
∼=

⊕
{γ∈ 1

2
Zd−2m: e2πiγj=δ2m+j}

|τ |m⊕
J=1

HJ
τ,γ, (4.39)

with HJ
τ,γ
∼= L2(Rm,C2[d/2]

), where each of the spaces HJ
τ,γ is invariant under the horizontal

pull-back Dirac operator DH on M .

Proof: Once again we use the identity (4.36) for fσ from Lemma 4.3.1, looking for pe-
riodicities in the case τ 6= 0. We write b = (ξ, β, γ) ∈ Zd with ξ ∈ Zm, β ∈ Zm and
γ ∈ Zd−2m to distinguish the periodicities which belong to x, y and z. Remember that
we have G ∼= H2m+1 × Rd−2m for our Carnot group G, such that the coordinates x and y
(together with the coordinate from the center) belong to the Heisenberg part and z forms
the (commutative) Rd−2m-part of G.

From (4.36) we see immediately that for any γ ∈ Zd−2m we have

fσ(x, y, z) = ε(0, 0, γ) · fσ(x, y, z + γ),

with ε : Zd → Z/2Z describing the spin structure of Td from which DH is constructed.
Therefore fσ is 2Zd−2m-periodic in z and after fixing x and y we can develop fσ in a Fourier
series

fσ(x, y, z) =
∑

γ∈ 1
2
Zd−2m

aσγ(x, y)e2πi〈γ,z〉, (4.40)
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where aσγ(x, y) is a C2[d/2]
-valued function. We note that aσγ must be an L2-function on T2m,

since fσ is an L2-function on Td ∼= T2m × Td−2m.

As we did before we can put further conditions on the indices γ over which we sum up in
(4.40): For any c ∈ Zd−2m we have

ε(0, 0, c) = δc12m+1 · . . . · δ
cd−2m

d ,

and thus from Lemma 4.3.1 we can deduce the restriction∑
γ∈ 1

2
Zd−2m

aσγ(x, y)e2πi〈γ,z〉 = ε(0, 0, γ)
∑

γ∈ 1
2
Zd−2m

aσγ(x, y)e2πi〈γ,z+c〉

=
∑

γ∈ 1
2
Zd−2m

aγ(x, y)σe2πi〈γ,z〉 · δc12m+1 . . . δ
cd−2m

d e2πi〈γ,c〉

for every c ∈ Zd−2m by (4.36), which leads to the constraint that for all j ∈ {1, . . . , d−2m}
we must have δ2m+je

2πiγj = 1 and therefore e2πiγj = δ2m+j. But this means that we have

γj ∈ Z ⇔ δ2m+j = 1 and γj ∈ Z +
1

2
⇔ δ2m+j = −1,

and so the Fourier series of fσ becomes

fσ(x, y, z) =
∑

{γ∈ 1
2
Zd−2m: e2πiγj=δ2m+j}

aσγ(x, y)e2πi〈γ,z〉. (4.41)

In Equation (4.36) we also see that we have the same periodicity properties for fσ in the
variable y (since the β-components of b = (ξ, β, γ) ∈ Zd do not appear in the exponent of
e), so we can repeat the above argument to show that

fσ(x, y, z) = ε(0, β, 0)fσ(x, y + β, z),

which gives us
aσγ(x, y) = ε(0, β, 0)aσγ(x, y + β)

together with (4.41). But therefore we can develop aσγ into a Fourier series with respect
to y, and after taking care of the restrictions arising from the components δm+1, . . . , δ2m of
the spin structure similarly to the way we did above we find that

aσγ(x, y) =
∑

{β∈ 1
2
Zm: e2πiβj=δm+j}

bσγ,β(x)e2πi〈β,y〉

for a C2[d/2]
-valued function bσγ,β on Rm. Plugging this into (4.41), we can write

fσ(x, y, z) =
∑

{γ∈ 1
2
Zd−2m: e2πiγj=δ2m+j}

∑
{β∈ 1

2
Zm: e2πiβj=δm+j}

bσγ,β(x)e2πi〈β,y〉e2πi〈γ,z〉. (4.42)
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We continue to find periodicities for fσ by considering dilations by ξ ∈ Zm of the x variable.
This will lead to a further characterization of the functions bσγ,β appearing in (4.42). Let
σ ∈ Hτ . We use the the composition rule (4.32) on G, the characterization (4.34) of
elements belonging to Hτ and the Fourier series development (4.42) to calculate for any
ξ ∈ Zm

σ((ξ, 0, 0, 0).(x, y, z, t)) = σ(

(
ξ + x, y, z, t+

m∑
j=1

ξjyj

)
)

= e2πiτ(t+
∑m
j=1 ξjyj) · fσ(ξ + x, y, z)

= e2πiτ(t+〈ξ,y〉) ·
∑
γ

∑
β

bσγ,β(x+ ξ)e2πi〈β,y〉e2πi〈γ,z〉

= e2πiτt ·
∑
γ

∑
β

bσγ,β(x+ ξ)e2πi〈β+τξ,y〉e2πi〈γ,z〉,

where the summation over γ and β is given as in (4.42). Now, since τξ ∈ Zm and therefore
e2πiβ = e2πi(β+τξ), we can use the substitution η := β+ τξ in the last equation of the above
calculation and find

σ((ξ, 0, 0, 0).(x, y, z, t)) = e2πiτt ·
∑
γ

∑
{η∈ 1

2
Zm: e2πiηj=δm+j}

bσγ,η−τξ(x+ ξ)e2πi〈η,y〉e2πi〈γ,z〉.

Because of σ((ξ, 0, 0, 0).(x, y, z, t)) = ε(ξ, 0, 0)σ(x, y, z, t) for every element σ ∈ L2(ΣH
δ M)

this means

ε(ξ, 0, 0)σ(x, y, z, t) = e2πiτt ·
∑
γ

∑
{η∈ 1

2
Zm: e2πiηj=δm+j}

bσγ,η−τξ(x+ ξ)e2πi〈η,y〉e2πi〈γ,z〉. (4.43)

On the other hand we have because of (4.34) and (4.42)

σ(x, y, z, t) = e2πiτtfσ(x, y, z)

= e2πiτt
∑
γ

∑
{β∈ 1

2
Zm: e2πiβj=δm+j}

bσγ,β(x)e2πi〈β,y〉e2πi〈γ,z〉, (4.44)

and together with (4.43) this leads to the identity bσγ,β(x) = ε(ξ, 0, 0) · bσγ,β−τξ(x + ξ) or,
equivalently,

bσγ,β(x+ ξ) = ε(ξ, 0, 0)bσγ,β+τξ(x) (4.45)

for all ξ ∈ Zm. But this means that for a given γ we have altogether |τ |m independent
functions bσγ,β which characterize Hτ .

Now we can choose |τ |m independent functions which determine σ ∈ Hτ completely. After
fixing a β1 ∈ {β ∈ 1

2
Zm : e2πiβj = δm+j}, we consider the set

B :=

{
β1 +

m∑
j=1

bjej : bj ∈ {0, . . . , |τ | − 1}

}
,
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where e1, . . . , em are the generators of Zm. Obviously we have #B = |τ |m, and after
enumerating the elements of B by β1, . . . , β|τ |m we have the identity{

β ∈ 1

2
Zm : e2πiβj = δm+j

}
=
⋃̇|τ |m

J=1

{
βJ + τξ : ξ ∈ Zd

}
for the index set over which the β’s are summated. Note that the union on the right hand
side of this identity is disjoint, and after using the property (4.45) we see that for every
ξ ∈ Zm we have

bσγ,βJ+τξ(x) = ε(ξ, 0, 0)bσγ,βJ (x+ ξ).

Plugging this into the expression (4.44) for elements σ ∈ Hτ , we see that every σ ∈ Hτ is
uniquely determined by the functions bσγ,β1

, . . . , bσγ,β|τ |m via

σ(x, y, z, t) = e2πiτt ·
∑
γ

aσγ(x, y)e2πi〈γ,z〉

= e2πiτt ·
∑
γ

|τ |m∑
J=1

∑
ξ∈Zm

ε(ξ, 0, 0)bσγ,βJ (x+ ξ)e2πi〈βJ+τξ,y〉e2πi〈γ,z〉
(4.46)

We further make use of the fact that for any γ aσγ(x, y) is an L2-function on T2m to derive

that bσγ,βJ ∈ L
2(Rm,C2[d/2]

). We can argue using the expression (4.46) as follows: For any
γ we have

∫
[0,1]2m

∣∣aσγ(x, y)
∣∣2 dydx =

∫
[0,1]m

∫
[0,1]m

∣∣∣∣∣∣
|τ |m∑
J=1

∑
ξ∈Zm

ε(ξ, 0, 0)e2πi〈βJ+τξ,y〉

∣∣∣∣∣∣
2

dydx

=

∫
[0,1]m

∫
[0,1]m

|τ |m∑
J=1

∑
ξ∈Zm

∣∣bσγ,βJ (x+ ξ)
∣∣2 dydx

=

|τ |m∑
J=1

∫
[0,1]m

∑
ξ∈Zm

∣∣bσγ,βJ (x+ ξ)
∣∣2 dx

=

|τ |m∑
J=1

∫
Rm

∣∣bσγ,βJ (x)
∣∣2 dx,

and from the last line we can conclude bσγ,βJ ∈ L
2(Rm,C2[d/2]

).

Since elements of Hτ are fully characterized by the values of

σ(x, y, z, 0) =
∑
γ

|τ |m∑
J=1

∑
ξ∈Zm

ε(ξ, 0, 0)bσγ,βJ (x+ ξ)e2πi〈βJ+τξ,y〉e2πi〈γ,z〉,
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from the above calculation it furthermore follows that there is an isometry

Hτ
∼=

⊕
{γ∈ 1

2
Zd−2m, e2πiγj=δ2m+j}

|τ |m⊕
J=1

L2(Rm,C2[d/2]

).

But this shows the decomposition (4.39) stated in the theorem.

To finish the proof, we have to show that this decomposition is invariant under DH . While
once again the invariance under the Clifford action is trivial, the invariance under the right
regular representation R follows after a simple calculation. Remember that in the polarized
coordinates we are using on G, for a given point x̄0 = (x0, y0, z0, t0) ∈ G the right regular
action on L2(ΣH

δ M) is given via

(R(x̄0)σ) (x, y, z, t) = σ((x+ x0, y + y0, z + z0, t+ t0 + 〈x, y0〉)),

see (2.1). Now since σ ∈ Hτ , we can use the characterization (4.46) of σ and find that

(R(x̄0)σ) (x, y, z, t) = e2πiτ(t+t0+〈x,y0〉) · ×

×
∑
γ

|τ |∑
J=1

∑
ξ∈Zm

ε(ξ, 0, 0)bσγ,βJ (x+ x0 + ξ)e2πi〈β,y+y0〉e2πi〈γ,z+z0〉

= C(x0, y0, z0, t0)e2πiτt · ×

×
∑
γ

|τ |∑
J=1

∑
ξ∈Zm

ε(ξ, 0, 0)e2πiτ〈x,y0〉bσγ,βJ (x+ x0 + ξ)e2πi〈β,y〉e2πi〈γ,z〉.

But since for bσβ,γJ ∈ L2(Rm,C2[d/2]
) we also have e2πiτ〈·,y0〉bσγ,βJ (· + x0) ∈ L2(Rm,C2[d/2]

),
this proves the invariance of this decomposition (4.39) under R, which means that it is also
invariant under DH . Hence the lemma is proved. �

The arguments for the decomposition of L2(ΣH
δ M) used so far (except for the small mod-

ification of including the commutative part Rd−2m) are exactly the arguments Bär uses to
decompose the (not horizontal) spinor bundle on M in [Bae91]. But now we are ready to
make some interesting observation for our situation by looking at the eigenvalues resulting
from this decomposition. We can calculate all eigenvalues of DH , and first of all we will
see that DH does not have a compact resolvent, and therefore does not provide a spectral
triple.

Theorem 4.3.4
Let G ∼= H2m+1×Rd−2m be a Carnot group of step 2, rank d and co-rank 1 of its horizontal
distribution with compact nilmanifold M = Γ\G. The non-zero eigenvalues of the Levi
form of G shall be given by the numbers ±λj with λj > 0 for 1 ≤ j ≤ m. Let DH be a

horizontal pull-back Dirac operator on M arising via pullback from a spin structure ΣTd
δ

with δ = (δ1, . . . , δd) ∈ (Z/2Z)d on the torus Td.
Then we have the following statements about the spectrum of DH :
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(a) In any case, the spectrum of DH is discrete. The absolute values of the eigenvalues of
DH are of the types

(i) |µ0,α| = 2π
√∑m

j=1 λj(α
2
j + α2

m+j) +
∑d

j=2m+1 α
2
j of multiplicity 2[d/2] for α =

(α1, . . . , αd) ∈ 1
2
Zd such that e2πiαj = δj.

(ii) |µτ,γ,κ| ∼
√

2π|τ |
∑m

j=1 λj(2κj + 1) + 4π2
∑d

j=2m+1 γ
2
j of multiplicity 2[d/2]|τ |m

for κ ∈ Nm, τ ∈ Z \ {0} and γ ∈ 1
2
Zd−2m such that e2πiγj = δ2m+j.

(b) In the case 2m = d, DH has an infinite dimensional kernel, and any eigenspace belong-
ing to an eigenvalue µ 6= 0 of DH is finite dimensional.

(c) In the case 2m < d, there are infinitely many eigenvalues of DH which have an infinite
dimensional eigenspace.

In particular, since DH has in any case an infinite-dimensional eigenspace, it does not have
a compact resolvent.

Proof: The strategy is to use the decomposition of L2(ΣH
δ M) we get from Theorem 4.2.3,

Lemma 4.3.2 and Lemma 4.3.3, which is invariant under DH . Then we can use Proposition
4.2.1 to write DH locally in the form

DHσ(x) =
d∑
j=1

cH(Xd)
d

ds
(R(exp sXj)σ) (x)

∣∣∣∣
s=0

. (4.47)

To shorten notation in what follows, we set

λ̃j = λ̃m+j :=
√
λj for 1 ≤ j ≤ m and λ̃j = 1 for 2m+ 1 ≤ j ≤ d+ 1. (4.48)

We will keep on working in the polarized coordinates according to the frame {X̃1, . . . , X̃d+1}
from (4.31), such that the group composition on G is given by (2.1). By (4.48) we have
Xj = λ̃jX̃j for all 1 ≤ j ≤ d + 1, and the representation of DH with respect to the frame
{X̃1, . . . , X̃d+1} becomes

DHσ(x) =
d∑
j=1

cH(Xd)
d

ds

(
R(exp sλ̃jX̃j)σ

)
(x)

∣∣∣∣
s=0

. (4.49)

Since each of the spaces Hα
0 from Lemma 4.3.2 and HJ

τ,γ from Lemma 4.3.3 is invariant
under the right regular representation R, this decomposition also provides a decomposition
of R into its irreducible parts. For τ = 0 these will be the trivial representations, which
can be calculated directly, and for τ 6= 0 we can make use of the fact that the represen-
tation theory for the Heisenberg group is fully known to detect the corresponding infinite
dimensional representations.

For σ ∈ Hα
0 , which means by (4.37)

σ(x, y, z, t) = aαe
2πi〈α,(x,y,z)〉
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with aα ∈ C2[d/2]
, we calculate from (4.49) (using the notation (x1, . . . , xd+1) instead of

(x, y, z, t) for the coordinates of G) by (2.1)

DHσ(x1, . . . , xd+1) =
d∑
j=1

cH(Xj)
d

ds
aαe

2πi〈α,(x1,...,xj+λ̃js,...,xd)〉
∣∣∣∣
s=0

=
d∑
j=1

cH(Xj)2πiαjλ̃jσ(x1, . . . , xd+1).

(4.50)

This shows that the spectrum of DH restricted to each Hα
0 consists of the eigenvalues of

the matrices
∑d

j=1 2πiαjλ̃jc
H(Xj). To calculate the absolute values of these eigenvalues,

we calculate the eigenvalues of (DH)2 restricted to Hα
0 :

(
DH
)2
σ =

(
d∑
j=1

cH(Xj)2πiαjλ̃j

)2

σ

=
d∑
j=1

d∑
k=1

−4π2αjαkλ̃jλ̃kc
H(Xj)c

H(Xk)σ

=
d∑
j=1

4π2α2
j λ̃

2
jσ,

since cH(Xj)c
H(Xk) + cH(Xk)c

H(Xj) = 0 for j 6= k and (cH(Xj))
2 = −id by the rules of

the Clifford action. But this shows that on each Hα
0 the absolute values of the eigenvalues

of DH are given by

|µ0,α| = 2π

√√√√ d∑
j=1

λ̃2
jα

2
j = 2π

√√√√ m∑
j=1

λj
(
α2
j + α2

m+j

)
+

d∑
j=2m+1

α2
j , (4.51)

each one with multiplicity 2[d/2] because ΣH
δ M is a vector bundle of rank 2[d/2]. Note that

this also shows that the part of the spectrum belonging to H0 coincides with the spectrum
of the Dirac operator DTd on the torus Td (equipped with a Riemannian metric such that
{X̃1, . . . , X̃d} is orthonormal), from which DH was constructed. This can also be deduced
from Theorem 4.2.3.

To determinate the spectrum on the spaces HJ
τ,γ
∼= L2(Rm,C2[d/2]

), we use results from
the representation theory of the Heisenberg group. It is known that L2(Rm) is the repre-
sentation space of irreducible unitary representations of H2m+1, and what we have done
so far is to decompose the right regular representation R : H2m+1 × Rd−2m → L2(ΣH

δ M)
into its irreducible components. Thereby, the frame {X̃1, . . . , X̃d+1} exactly corresponds
to the Carnot group H2m+1 × Rd−2m, while the frame {X1, . . . , Xd+1} only corresponds to
a Carnot group isomorphic to H2m+1 × Rd−2m.
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Now it is well known by the theorem of Stone and von Neumann how they have to look
like on L2(Rm) (see e.g. [Fol89], Theorem (1.50)): In the polarized coordinates we are
using, the infinite dimensional unitary irreducible (Schrödinger) representations of H2m+1

are given by

πr : H2m+1 → U(L2(M)), πr(x, y, t)f(u) = e2πir(t+〈u,y〉)f(x+ u) (4.52)

for any r ∈ R\{0}. In our case, for σ ∈ HJ
τ,γ
∼= L2(Rm)⊗C2[d/2]

, we have r = τ . From now

on, we write f instead of σ whenever we consider an element of L2(Rm,C2[d/2]
). Hence using

the expression (4.49) of the horizontal Dirac operator via the right-regular representation
R we have, after plugging in (4.52),

d

ds
R(exp sλ̃jX̃j)f(u)

∣∣∣∣
s=0

=


d
ds
f(u+ sλ̃jej)

∣∣∣
s=0

j ∈ {1, . . . ,m}
d
ds
e2πiτ〈u,sλ̃j−mej−m〉f(u)

∣∣∣
s=0

j ∈ {m+ 1, . . . , 2m}

=

{
λ̃j

∂
∂uj
f(u) j ∈ {1, . . . ,m}

2πiτuj−mλ̃j−mf(u) j ∈ {m+ 1, . . . , 2m}
.

We still need to express the action of X2m+j = X̃2m+j for 1 ≤ j ≤ d − 2m on HJ
τ,γ. But

this is just multiplication by 2πiγj, since σ ∈ Hτ is characterized via

σ(x, y, z, t) = e2πitτ
∑
γ

∑
β

bσγ,β(x)e2πi〈β,y〉e2πi〈γ,z〉

(see (4.3.4) in the proof of Lemma 4.3.3), and therefore we get

d

ds
R(exp sX̃2m+j)σ(x, y, z, t)

∣∣∣∣
s=0

= 2πiγj · σ(x, y, z, t).

Plugging everything into the expression (4.49) we see that the action of DH on every

HJ
τ,γ
∼= L2(Rm)⊗ C2[d/2]

is given by

DHf(u) =
m∑
j=1

λ̃j

(
cH(Xj)

∂

∂uj
+ 2πiτujc

H(Xm+j)

)
f(u) +

d∑
k=2m+1

2πiγkc
H(Xk) · f(u)

=
m∑
j=1

√
λj

(
cH(Xj)

∂

∂uj
+ 2πiτujc

H(Xm+j)

)
f(u) +

d∑
k=2m+1

2πiγkc
H(Xk) · f(u).

(4.53)

To calculate the absolute values of the eigenvalues of DH restricted to HJ
τ,γ, we once again
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consider the square of the operator. From (4.53) we get

(
DH
)2
f(u) =

(
m∑
j=1

√
λj

(
cH(Xj)

∂

∂uj
+ 2πiτujc

H(Xm+j)

))2

f(u)

+

(
d∑

k=2m+1

2πiγkc
H(Xk)

)2

f(u)

+
m∑
j=1

√
λj

(
cH(Xj)

∂

∂uj
+ 2πiτujc

H(Xm+j)

)
·

d∑
k=2m+1

2πiγkc
H(Xk)

+
d∑

k=2m+1

2πiγkc
H(Xk) ·

m∑
j=1

√
λj

(
cH(Xj)

∂

∂uj
+ 2πiτujc

H(Xm+j)

)
,

(4.54)

and because of the Clifford relation cH(Xl)c
H(Xl′) + cH(Xl′)c

H(Xl) = 0 for any l 6= l′, the
sum of the third and the forth term on the right hand side of (4.54) vanish. For the same
reason, and since c(Xl)

2 = −id for any l, we get

(
d∑

k=2m+1

2πiγkc
H(Xk)

)2

= 4π2

d∑
k=2m+1

γ2
k

for the second term. Finally, using again the rules of Clifford action and the Leibniz rule
for differentiation, we calculate

m∑
j=1

√
λjc

H(Xj)
∂

∂uj

m∑
k=1

√
λk

(
cH(Xk)

∂

∂uk
f(u) + 2πiτukc

H(Xm+k)f(u)

)

=
m∑
j=1

m∑
k=1

√
λjλkc

H(Xj)c
H(Xk)

∂

∂uj

∂

∂uk
f(u) +×

×
m∑
j=1

m∑
k=1

2πiτ
√
λjλkc

H(Xj)c
H(Xm+k)

∂

∂uj
(ukf(u))

= −
m∑
j=1

λj
∂2

∂u2
j

f(u) +×

× 2πiτ

(
m∑
j=1

m∑
k=1

uk
√
λjλkc

H(Xj)c
H(Xm+k)

∂

∂uj
f(u) +

m∑
j=1

λjc
H(Xj)c

H(Xm+j)f(u)

)
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and

2πiτ
m∑
j=1

uj
√
λjc

H(Xm+j)
m∑
k=1

√
λk

(
cH(Xk)

∂

∂uk
f(u) + 2πiτukc

H(Xm+k)f(u)

)

= 2πiτ
m∑
j=1

m∑
k=1

uj
√
λjλkc

H(Xm+j)c
H(Xk)

∂

∂uk
f(u)×

× − 4π2τ 2

m∑
j=1

m∑
k=1

ujuk
√
λjλkc

H(Xm+j)c
H(Xm+k)f(u)

= 2πiτ
m∑
j=1

m∑
k=1

uj
√
λjλkc

H(Xm+j)c
H(Xk)

∂

∂uk
f(u) + 4π2τ 2

m∑
j=1

λju
2
jf(u).

Because of the identity cH(Xk)c
H(Xm+j)+cH(Xm+j)c

H(Xk) = 0 for any k, j ∈ {1, . . . ,m},
we have

m∑
j=1

m∑
k=1

uk
√
λjλkc

H(Xj)c
H(Xm+k)

∂

∂uj
f +

m∑
j=1

m∑
k=1

uj
√
λjλkc

H(Xm+j)c
H(Xk)

∂

∂uk
f = 0,

and thus get for the first term of (4.54) from these two calculations(
m∑
j=1

√
λj

(
cH(Xj)

∂

∂uj
+ 2πiτujc

H(Xm+j)

))2

f(u)

= −
m∑
j=1

λj
∂2

∂u2
j

f(u) + 4π2τ 2

m∑
j=1

λju
2
jf(u) + 2πiτ

m∑
j=1

λjc
H(Xj)c

H(Xm+j)f(u)

=
m∑
j=1

λj

(
− ∂2

∂u2
j

+ 4π2τ 2u2
j + 2πiτcH(Xj)c

H(Xm+j)

)
f(u).

Now after plugging everything into the expression (4.54) for the restriction of (DH)2 onto

the space HJ
τ,γ
∼= L2(Rm,C2[d/2]

) we see that

(
DH
)2
∣∣∣
HJτ,γ

=
m∑
j=1

λj

(
− ∂2

∂u2
j

+ 4π2τ 2u2
j + 2πiτcH(Xj)c

H(Xm+j)

)
+ 4π2

d∑
k=2m+1

γ2
k (4.55)

on these spaces.

From (4.55) we observe that we can calculate the eigenvalues of DH from the eigenvalues
of the harmonic oscillator. It is well known that the operator

m∑
j=1

λj

(
− ∂2

∂u2
j

+ 4π2τ 2u2
j

)
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possesses the eigenvalues ητ,κ = 2π|τ |
∑m

j=1 λj(2κj + 1), where κ = (κ1, . . . , κm) ∈ Nm (see

e.g. [Fol89], Section 1.7). Since this operator is acting on the L2-space of C2[d/2]-valued
functions, each of these eigenvalues has the multiplicity 2[d/2]. In addition, for each κ ∈ Nm

we have to add the eigenvalues of the operator

−
m∑
j=1

2πiτλjc
H(Xj)c

H(Xm+j).

By Proposition 3.2.9 from Section 3.2, every eigenvalue ητ,κ,l, l ∈ {1, . . . , 2[d/2]} of this
(2[d/2] × 2[d/2])-matrix is included in the set

{−2π|τ |
m∑
j=1

λj, . . . , 2π|τ |
m∑
j=1

λj}.

The third term of (4.55) is just an additive constant (since γ is fixed by choosing a space
HJ
τ,γ), and hence on each HJ

τ,γ the operator (DH)2 from (4.55) has the eigenvalues

µ̃τ,γ,κ,l = 2π|τ |

(
m∑
j=1

λj(2κj + 1) + η̃κ,l

)
+ 4π2

d∑
k=2m+1

γ2
k (4.56)

with κ ∈ Nm and −
∑m

j=1 λj ≤ η̃κ,l ≤
∑m

j=1 λj for l ∈ {1, . . . , 2[d/2]}. But since each number
η̃κ,l is bounded by constants depending only on the constants λ1, . . . , λm which are given
by the Levi form on M , they do not change the asymptotic behavior of the eigenvalues
from (4.56). Therefore we can say that

(µτ,γ,κ)
2 ∼ 2π|τ |

m∑
j=1

λj(2κj + 1) + 4π2

d∑
k=2m+1

γ2
k, (4.57)

where each (µτ,γ,κ)
2 has the multiplicity 2[d/2], for the eigenvalues of (DH)2 restricted to

HJ
τ,γ.

From (4.57) we get for the absolute values of the eigenvalues of DH

|µτ,γ,κ| ∼

√√√√2π|τ |
m∑
j=1

λj(2κj + 1) + 4π2

d∑
k=2m+1

γ2
k (4.58)

for τ ∈ Z \ {0}, γ ∈ 1
2
Zd−2m such that e2πγj = δ2m+j and κ ∈ Nm. Each of these

(asymptotic) eigenvalues has the multiplicity 2[d/2]|τ |m, since there are |τ |m copies of the

spaces HJ
τ,γ
∼= L2(Rm,C2[d/2]

). Thus we have proved statement (a).

We still have to show the statements (b) and (c) about the degeneracy of DH . This will be
done by showing that for each τ ∈ Z\{0}, the first term of the operator (DH)2 from (4.55)
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has at least one 0-eigenvalue on HJ
τ,γ: From that it will follow that for every γ ∈ Zd−2m

the number

4π2

d∑
k=2m+1

γ2
k

appears as an eigenvalue on each space HJ
τ,γ, and is thus an eigenvalue of infinite multiplic-

ity. Furthermore all the degenerate eigenvalues of DH are of this form, since every other
eigenvalue on HJ

τ,γ depends on τ and is of finite multiplicity on this space. This shows
statement (c), and since for G ∼= H2m+1 the term

d∑
k=2m+1

2πiγkc
H(Xk)

does not appear in the expression (4.53) of DH on HJ
τ,γ the statement (b) also follows.

Indeed the first term

m∑
j=1

λj

(
− ∂2

∂u2
j

+ 4π2τ 2u2
j

)
−

m∑
j=1

2πiτλjc
H(Xj)c

H(Xm+j) (4.59)

of (4.55) has at least one 0-eigenvalue. As we already noted, the eigenvalues of the harmonic
oscillator are the numbers

µ̃κ = 2π|τ |
m∑
j=1

λj(2κj + 1),

where κ = (κ1, . . . , κm) ∈ Nm, and the eigenvalues of the matrix

−
m∑
j=1

2πiτλjc
H(Xj)c

H(Xm+j)

belong to the set {
−2π|τ |

m∑
j=1

λj, . . . , 2π|τ |
m∑
j=1

λj

}
.

Hence, the only chance for the operator (4.59) to have a 0-eigenvalue is that κ = 0 and that
the number −2π|τ |

∑m
j=1 λj is indeed an eigenvalue of −

∑m
j=1 2πi|τ |λjcH(Xj)c

H(Xm+j).
But the last statement is true by Proposition 3.2.9 from Section 3.2, and hence the above
argumentation proves the statements (b) and (c) of the theorem. �

As mentioned before, the results of Theorem 4.3.4 imply that DH does not furnish a
spectral triple on M = Γ\G. But it fits into our definition of a degenerate spectral triple
and it detects the Carnot-Carathéodory metric of our Carnot manifold M , which we write
down in the following corollary.
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Corollary 4.3.5
Let M = Γ\G be the compact nilmanifold of a Carnot group G ∼= H2m+1 × Rd−2m. Let

DH be a horizontal Dirac operator on M arising via pull-back from a spin structure ΣTd
δ

on the torus Td. Then the triple (C(M), L2(ΣH
δ M), DH) is a degenerate spectral triple,

which detects the Carnot-Carathéodory metric via Connes’ metric formula.

Proof: Since DH is a horizontal Dirac operator in the sense of Section 3.2, it has been
shown in Section 3.3 that it detects the Carnot-Carathéodory metric on M via Connes
metric formula. In particular it has also been shown that

‖[DH , f ]‖ = ess sup
x∈M

∥∥gradHf
∥∥

for every f ∈ LipCC(M), and since the number on the right hand side is bounded and
LipCC(M) is a dense sub-algebra of C(M), condition (i) for a spectral triple (see Definition
1.1.1) is fulfilled.

Now from Theorem 4.3.4 we know that the spectrum of DH is discrete. If we exclude the
eigenvalues of infinite multiplicity, then for a given number Λ ∈ R there are only finitely
many eigenvalues in the spectrum of DH which are smaller than Λ. This shows us that DH

has a compact resolvent if we restrict it to the orthonormal complement of the degenerate
eigenspaces, which means we have a degenerate spectral triple according to Definition 1.1.7.
�

As a further consequence of Theorem 4.3.4, we show that besides the Carnot-Carathéodory
metric we can also detect the Hausdorff dimension of the metric space (M,dCC) from the
degenerate spectral triple (C(M), L2(ΣH

δ M), DH). Therefore we consider the asymptotic
behavior of the non-degenerate eigenvalues of DH .

To detect the asymptotic behavior in our case, we will make use of the following proposition,
which shows the equivalence about the growth function of the number of eigenvalues within
a certain radius and their asymptotic growth. We write down the statement in a very
general matter, since for its proof it is not important what exactly the elements of the sets
whose growth rate we analyze describe. For a proof, we refer to [Shu01], Proposition 13.1.

Proposition 4.3.6
Let Λ := {λ0, λ1, λ2, . . .} ⊂ R+ be a discrete ordered set of positive real numbers, which
means we have λ0 ≤ λ1 ≤ . . .. For t ∈ R+, we denote by

NΛ(t) :=
∑

{k∈N:λk≤t}

1 = # {λk ∈ Λ : λk ≤ t}

the number of all elements of Λ which are bounded by t. In addition, we consider numbers
V0 ∈ R and n ∈ N+. Then the following statements are equivalent:

(i) NΛ(t) ∼ V0t
n as t→∞.
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(ii) λk ∼ V
−1/n

0 · k1/n as k →∞. �

Using this proposition, we can show that the Hausdorff dimension on (M,dCC) coincides
with the metric dimension of the degenerate spectral triple (C(M), L2(ΣH

δ M), DH).

Corollary 4.3.7
Let G ∼= H2m+1 be isomorphic to the 2m+ 1-dimensional Heisenberg group, and let M =
Γ\G be its compact nilmanifold. Let DH be a horizontal Dirac operator on M arising via
pull-back from a spin structure ΣTd

δ on the torus Td with d = 2m.

Then the metric dimension of the degenerate spectral triple(
C(M), L2(ΣH

δ M), DH
)

is d+ 2, i.e. it coincides with the Hausdorff dimension of the metric space (M,dCC).

Proof: By Theorem 4.3.4, the only degenerate eigenvalue of DH on M = Γ\H2m+1 is 0.
Hence let Λ denote the set of all eigenvalues of DH which are not 0. We have to show by
Definition 1.1.2: ∑

µ∈Λ

1

|µ|p
<∞ ⇔ p > 2m+ 2. (4.60)

Now we can decompose Λ into two disjoint sets

Λ = Λ1∪̇Λ2, (4.61)

where Λ1 contains all the eigenvalues of DH listed under (i) and Λ2 contains all the eigen-
values of DH listed under (ii) in Theorem 4.3.4 which are not 0. The set Λ1 contains exactly
the eigenvalues of the classical Dirac operator, acting on the spinor bundle ΣδTd of the torus
Td (with respect to a Riemannian metric on Td such that the vector fields X̃1, . . . , X̃d from
(4.31) used in the proof of the theorem form an orthonormal frame for Td), and since this
classical Dirac operator is elliptic it is known that they grow proportional to the function
kd by Weyl asymptotic. But this shows∑

µ∈Λ1

1

|µ|p
<∞ ⇔ p > d = 2m. (4.62)

Therefore the crucial point of the asymptotic behavior of our eigenvalues lies in the set Λ2.

Applying Theorem 4.3.4 to our situation where G ∼= H2m+1, we see that the eigenvalues
belonging to Λ2 are given asymptotically by

|µτ,κ| ∼

√√√√2π|τ |
m∑
j=1

λj(2κj + 1) ∼
√
|τ |

√√√√ m∑
j=1

κj (4.63)

for τ ∈ Z \ {0} and κ ∈ Nm \ {0}. We make a further (disjoint) decomposition

Λ2 =
⋃̇

τ∈Z\{0}
Λ2,τ
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with Λ2,τ containing exactly the eigenvalues µτ,κ with κ ∈ Nm. Note that each of these
eigenvalues occurs with the multiplicity 2[d/2]|τ |m. For a fixed τ ∈ Z \ {0} we denote the
absolute values of these elements belonging to Λ2,τ by

µ̃τ,0 ≤ µ̃τ,1 ≤ . . . , (4.64)

such that we can work with the number NΛ2,τ (t) from Proposition 4.3.6. It is well known
that for any C ∈ R+ we have

#

{
κ ∈ Nm :

m∑
j=1

κj ≤ C

}
∼ #

κ ∈ Nm :

√√√√ m∑
j=1

κ2
j ≤ C

 ∼ Cm

(one can consider these numbers as the eigenvalues of the elliptic Dirac operator on the
m-dimensional torus, and then this statement follows from Weyl asymptotic), which means

#

κ ∈ Nm :

√√√√ m∑
j=1

κj ≤ C

 ∼ C2m,

and hence for every τ ∈ Z \ {0} it follows from (4.63) that

NΛ2,τ (t) ∼ #

κ ∈ Nm :
√
|τ |

√√√√ m∑
j=1

κj ≤ t


= #

κ ∈ Nm :

√√√√ m∑
j=1

κj ≤
t√
|τ |


∼

(
t√
|τ |

)2m

=
1

|τ |m
t2m.

(4.65)

At this point we can apply Proposition 4.3.6, which tells us that (4.65) is equivalent to the
fact that

µ̃τ,k ∼ |τ |
1
2k

1
2m (4.66)

for the elements of Λ2,τ denoted by (4.64), where we do not care about the multiplicity
2[d/2]|τ |m of these numbers as eigenvalues of DH for a moment.

With these results, we can check (4.60) for the set Λ2 which will prove the corollary:
Because of our decomposition of Λ2 and (4.66) we have∑

µ∈Λ2

1

|µ|p
=

∑
τ∈Z\{0}

∑
µ∈Λ2,τ

1

|µ|p

∼
∑

τ∈Z\{0}

∑
k∈N

2[ d2 ] |τ |m · 1(
|τ | 12k 1

2m

)p
=

∑
τ∈Z\{0}

2[ d2 ] 1

|τ |
p
2
−m ·

∑
k∈N

1

k
p

2m

,
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where we have taken care of the multiplicity 2[d/2]|τ |m of every eigenvalue µ̃τ,k in the second
equation. Now the second geometric series in the last line of this calculation converges if
and only if p > 2m, and the first geometric series in this line converges if and only if
p > 2m+ 2. But this, together with (4.62) tells us that the series∑

µ∈Λ

1

|µ|p
=
∑
µ∈Λ1

1

|µ|p
+
∑
µ∈Λ2

1

|µ|p

converges if and only if p > 2m+2, which shows that (4.60) is true and hence the corollary
is proved. �

Remark: The same statement should also be true for the case G ∼= H2m+1 × Rd−2m, but
in this case the argument is a bit more involved. C

Remark 4.3.8
From the argumentation of Theorem 4.3.4 it is also possible to calculate the eigenvalues
of the horizontal pull-back Dirac operator exactly for given numbers m ∈ N and d ∈ N
(after determining the matrices cH(Xj) describing the Clifford action). The idea is to use
the orthonormal basis of L2(Rm) consisting of the Hermite functions

hk(v) = e‖v‖
2/2 ∂k1+...+km

∂vk1
1 . . . vkmm

e−‖v‖
2

, (4.67)

which allows us to decompose HJ
τ,γ into finite dimensional subspaces which are invariant

under DH . On these subspaces the determination of the spectrum is done by calculating
eigenvalues of matrices.

In the case m = 1 where G ∼= H3 is the 3-dimensional compact Heisenberg nilmanifold, this
has been done in [Bae91] and [AB98] for an ordinary Dirac operator. The argument used
there can be transfered to our case. After these calculations, we find that the eigenvalues
of DH are exactly the numbers

(i) µ±α,β = ±2π
√
α2 + β2 for α, β ∈ Z such that e2πiα = δ1, e2πiβ = δ2 of multiplicity 1,

(ii) µ±τ,κ = ±2
√
κπ|τ | for κ ∈ Z+, τ ∈ Z \ {0} of multiplicity |τ |,

(iii) µτ,0 = 0 for τ ∈ Z \ {0} of multiplicity |τ |.

Considering the inverses of the absolute values of these eigenvalues which are not zero, we
find (for the set Λ2 from (4.61) in the proof of Theorem 4.3.4) that∑

τ∈Z\{0}

∑
κ∈N

1∣∣µ±τ,κ∣∣p ≤ ∞ ⇔ p > 4,

which shows the statement of Corollary 4.3.7 for this example.
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Using the Hermite functions from (4.67), it is possible to describe the kernel of DH on the

sub-spaces L2(Rm,C2[d/2]
) of the decomposition (4.39) of each space Hτ from Lemma 4.3.3.

In the case m = 1 and G ∼= H3, one finds that on each space L2(R,C2) belonging to Hτ

the kernel of DH is spanned by the C2-valued functions

f0(t) = h0(
√

2π|τ |t)
(

1
0

)
= e−π|τ |t

2

(
1
0

)
for τ > 0 and

f0(t) = h0(
√

2π|τ |t)
(

0
1

)
= e−π|τ |t

2

(
0
1

)
for τ < 0. In particular we observe that these functions are smooth.

This observation leads to the idea that DH may be an example for a so-called weakly
hypoelliptic operator, in the sense that DHϕ = 0 implies that ϕ is smooth. Recently, these
weakly hypoelliptic operators have been considered by Christian Bär in [Bae12]. C

To close this section, let us once again summarize the results we achieved so far: We
have seen that for the case G ∼= H2m+1 × Rd−2m, the horizontal pull-back Dirac operator
on Γ\G does not have a compact resolvent. Hence it only furnishes a degenerate spec-
tral triple, but from this degenerate spectral triple the most important ingredients of the
Carnot-Carathéodory geometry on M , which are the Carnot-Carathéodory metric and the
Hausdorff dimension, can be detected.

In the next section, we will deduce from this co-dimension 1 case that the absence of a
compact resolvent of DH occurs on any compact Carnot nilmanifold.

4.4 Degeneracy of DH in the General Case

This section will provide the most general result of this chapter concerning compact Carnot
nilmanifolds: On an arbitrary compact Carnot nilmanifold the horizontal pull-back Dirac
operator has (at least one) infinite dimensional eigenspace and does therefore not have a
compact resolvent. Later we will prove that any horizontal Dirac operator on an arbitrary
Carnot manifold fails to be hypoelliptic, which can be seen as a generalization of this
statement.

The starting point is Theorem 4.2.3, which allows us to reduce the problem from an
arbitrary Carnot group to a 2-step nilpotent one. In the last section we have made a
detailed treatment of compact Heisenberg nilmanifolds, which are exactly those 2-step
nilmanifolds whose horizontal distribution has co-dimension 1, and seen that we have a
degenerate eigenspace in this case. So the only step missing is to get from an arbitrary
space of step 2 to a compact Heisenberg nilmanifold.

To do this, we consider a submersion of the type introduced in Section 2.4. Let M2 = Γ2\G2

be the compact nilmanifold of a Carnot group G2 of rank 2. We assume that the Lie algebra
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g2 of G has the grading g2 = V1 ⊕ V2, where {X1,1, . . . , X1,d1} is an orthonormal frame for
V1 and {X2,1, . . . , X2,d2} is an orthonormal frame for V2. For a ν ∈ {1, . . . , d2} we consider
the orthonormal projection

prν : g2 → g2,ν ' V1 ⊕ span{X2,ν},
v 7→ v mod span ({X2,1, . . . , X2,d2} \ {X2,ν}) .

(4.68)

We have seen in Section 2.4 that the vector space g2,ν can be canonically equipped with a
Lie bracket, such that it is a graded nilpotent Lie algebra of rank 2, where V1 is bracket
generating of step 2 and co-dimension 1 for g2,ν . We denote the Carnot group arising from
g2,ν by G2,ν , and the Lie group homomorphism arising from prν by

ψν := expG2,ν
◦prν ◦ exp−1

G2
: G2 → G2,ν . (4.69)

For Γ2,ν := ψν(Γ2), we further define the compact Carnot nilmanifold M2,ν := Γ2,ν\G2,ν

over G2,ν .

Assume that a horizontal Clifford bundle ΣH
δ M2 and a horizontal pull-back Dirac operator

DH
M2

on Γ2\G2, arising from a spin structure ΣTd
δ on Td, are given. Now ΣTd

δ also defines
a horizontal Clifford bundle ΣH

δ M2,ν on M2,ν , which is a vector bundle of the same rank
as ΣH

δ M2; and since the horizontal distributions of M2 and M2,ν can both be identified
with TTd we have a horizontal Clifford action on M2,ν which coincides with the horizontal
Clifford action on M2, meaning cHM2

(X1,j) = cHM2,ν
(prν(X1,j)) for all 1 ≤ 1 ≤ d as endomor-

phisms on the vector bundles of rank 2[d/2]. Hence we have a horizontal pull-back Dirac
operator

DH
M2,ν

:=

d1∑
j=1

cHM2,ν
(prν(X1,j))∂prν(X1,j) (4.70)

on M2,ν . But this operator allows us to prove the following lemma.

Lemma 4.4.1
Let DH

M2
be the horizontal pull-back Dirac operator on the compact Carnot nilmanifold

M2 = Γ2\G2, where G2 is a Carnot group of nilpotency step 2, and for a ν ∈ {1, . . . , d2} let
DH
M2,ν

be the horizontal pull-back Dirac operator from (4.70) on the compact Heisenberg
nilmanifold M2,ν = Γ2,ν\G2,ν constructed above.

Then if there is a ν ∈ {1, . . . , d2} such that the section σν ∈ Γ∞(ΣH
δ M2,ν) lies in the kernel

of DH
M2,ν

, the section

σ := σν ◦ ψν

is an element of the kernel of DH
M2

.

Proof: The idea is to use the expression from Theorem 4.2.1 of the horizontal Dirac
operators involving the right-regular representation R of the Carnot groups G2 and G2,ν

on the spaces L2(ΣH
δ M2) and L2(ΣH

δ M2,ν). This means in the current situation that the
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operators DH
M2

and DH
M2,ν

, applied to σ and σν , are given by

DH
M2
σ =

d1∑
j=1

cHM2
(X1,j)

d

dt
R(expG2

tX1,j)σ

∣∣∣∣
t=0

(4.71)

and

DH
M2,ν

σν =

d1∑
j=1

cHM2,ν
(prν(X1,j))

d

dt
R
(

expG2,ν
tprν(X1,j)

)
σν

∣∣∣∣
t=0

. (4.72)

We want to show that for any σν such that DH
M2,ν

σν = 0 we have DH
Mσ = 0, where

σ = σν ◦ ψν .

Following the discussion preceding this lemma, we have cHM2
(X1,j) = cHM2,ν

(prν(X1,j)) as

endomorphisms on the vector bundles of rank 2[d/2]. Hence, from the expressions (4.71)
and (4.72) the desired statement will follow if we have(

R(expG2
tX1,j)σ

)
(x) =

(
R
(

expG2,ν
tprν(X1,j)

)
σν

)
(ψν(x)) (4.73)

for any x ∈M2. Will check this via a small calculation.

Let t ∈ R. Then for the left hand side of (4.73) we get for every σ ∈ Γ∞(ΣH
δ M2), using

exponential coordinates of G2 and the Baker-Campbell-Hausdorff formula (see Equation
(2.5) in Section 2.2),

R(expG2
tX1,j)σ

(
x(1), x(2)

)
= σ

((
x(1), x(2)

)
. expG2

tX1,j

)
= σ

(
expG2

(
d1∑
k=1

x1,kX1,k +

d2∑
µ=1

x2,µX2,µ

)
. expG2

tX1,j

)

= σ

(
expG2

(
d1∑
k=1

x1,kX1,k +

d2∑
µ=1

x2,µX2,µ + tX1,j +
1

2

[
d1∑
k=1

x1,kX1,k, tX1,j

]))
.

Now we can calculate the commutators occurring in the last line using for 1 ≤ µ ≤ d2 the
µ-Levi forms (see Definition 2.3.4) L(µ) of G2, which gives us the identity

[X1,k, X1,j] =

d2∑
µ=1

L
(µ)
jk X2,µ

for all 1 ≤ k ≤ d. Plugging this into the above calculation we get

R(expG2
tX1,j)σ

(
x(1), x(2)

)
= σ

(
expG2

(
d1∑
k=1

x1,kX1,k +

d2∑
µ=1

x2,µX2,µ + tX1,j +
1

2
t

d2∑
µ=1

d2∑
k=1

x1,kL
(µ)
kj X2,µ

))
.

(4.74)
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Now we set
σ = σν ◦ ψν = σν ◦

(
expG2,ν

◦prν ◦ exp−1
G2

)
in (4.74) and get from the definition (4.68) of prν

R(expG2
tX1,j)σ

(
x(1), x(2)

)
= σν

(
expG2,ν

(
d1∑
k=1

x1,kprν(X1,k) + x2,νprν(X2,ν) + tprν(X1,j) +
1

2
t

d1∑
k=1

x1,kL
(ν)
kj prν(X2,ν)

))
(4.75)

since pr(X2,µ) = 0 for all µ 6= 0. Since prν is a Lie algebra homomorphism, we have

[prν(X1,j), prν(X1,k)] = prν([X1,j, X1,k])

for all 1 ≤ j, k ≤ d1. Thus we see immediately (after using the Baker-Campbell-Hausdorff
formula on G2,ν in the same way we did above on G2) that (4.75) is exactly the right hand
side of (4.73), and therefore we have

DH
M2
σ(x) = DH

M2,ν
σν(πν(x)) = 0.

This shows the statement of the lemma. �

Now we can put the things together to prove that the horizontal pull-back Dirac operator
we constructed has an infinite dimensional eigenspace on any Carnot group one can choose.

Theorem 4.4.2
Let M = Γ\G be the compact nilmanifold of a Carnot group G of rank d and step R. Let
DH be the horizontal pull-back Dirac operator acting on the horizontal Clifford bundle
ΣH
δ M which is arising from a spin structure ΣTd

δ of the torus Td.
Then the kernel of DH is infinite-dimensional. This means in particular that DH does not
have a compact resolvent.

Proof: Let g =
⊕R

S=1 VS be the grading of the Lie algebra of G. We consider the
decomposition

L2(ΣH
δ M) = H0 ⊕

⊕
τ∈ZdimVR\{0}

Hτ

of L2(ΣH
δ M) from Theorem 4.2.3, where all the spaces Hτ are invariant under DH . By the

second statement of Theorem 4.2.3, we have

H0
∼= L2(ΣH

δ MR−1),

where MR−1 is the compact nilmanifold of the Carnot group GR−1
∼= G/ZR(G) and the

restriction of DH to H0 can be identified with a horizontal pull-back Dirac operator D̃H

acting on ΣH
δ MR−1. But this means that we can apply the same decomposition to the space
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H0, which contains a Hilbert space isomorphic to L2(ΣH
δ MR−2), with MR−2 the compact

nilmanifold of the step R− 2 Carnot group GR−2
∼= GR−1 /ZR−1(GR−1) , and so on.

Inductively, we find a Hilbert space H̃ ∼= L2(ΣH
δ M2), where M2 is the compact nilmanifold

of a Carnot group G2 of step 2, which is invariant under DH and on which DH can be
identified with a horizontal pull-back Dirac operator DH

M2
, acting on ΣH

δ M2. But for this
operator, we find an infinite dimensional kernel by Lemma 4.4.1: Since G is not abelian,
we find a ν ∈ {1, . . . , d2}, where d2 is the dimension of the space V2 from the grading
g2 = V1 ⊕ V2 of the Lie algebra of G2, such that

G2,ν = ψν(G2) ∼= H2m+1 × Rd−2m

for some m ≥ 1. We can define a horizontal Clifford bundle ΣH
δ M2,ν and a horizontal pull-

back operator DH
M2,ν

from the corresponding objects on M2 like we did in the discussion
preceding Lemma 4.4.1.

Now we know by Theorem 4.3.4 that DH
M2,ν

has an infinite dimensional kernel, and that
we can choose a basis {σ̃1, σ̃2, . . .} of this kernel. Using Lemma 4.4.1, we can lift this basis
to an orthonormal system of infinitely many independent sections of L2(ΣH

δ M2), given by
σj := σ̃j ◦ ψν , which all lie in the kernel of DH . (Note that these sections are indeed
linear independent since this is the case for the σ̃j’s and ψν is a submersion.) Hence we
have shown that DH has an infinite-dimensional kernel on L2(ΣH

δ M2), and from the above
argumentation this is also the case on L2(ΣH

δ M).

The statement that DH cannot have a compact resolvent follows trivially from the fact
that KerDH is infinite-dimensional. �

We have shown by Theorem 4.4.2 that the horizontal pull-back Dirac operator DH does
not furnish a spectral triple on arbitrary compact Carnot nilmanifolds. Theoretically it is
possible to do spectral decompositions like in Section 4.3 for any given Carnot group and
thus get statements about the asymptotic behavior of the non-degenerate eigenvalues: We
have to know about the representation theory of G.

Now there is an algorithm to determine all the irreducible unitary representation of a
Carnot group G (up to equivalence) developed by Alexander Kirillov ([Kir62]), which is
also referred to as the orbit method (see e.g. [CG89] or [Kir04]). But since this algorithm
makes use of the concrete structure of G it is hard to get general results in our context.
And even for a given Carnot group which is not isomorphic to H2m+1 × Rd−2m we expect
the calculations to be very long and complicated.

But anyway we will show in the following chapters that the phenomenon of the degeneracy
of the horizontal Dirac operator occurs in general, such that the description of the Carnot-
Carathéodory geometry via spectral triples does not work as one would expect.



Chapter 5

Calculus on Heisenberg Manifolds

In the previous chapter we presented an explicit construction for horizontal Dirac oper-
ators on compact Carnot nilmanifolds and we saw that these operators do not have a
compact resolvent. To put these observations into a greater generality, we want to adopt
tools from pseudodifferential calculus. In the classical case, the Dirac operator D on a
compact manifold is an elliptic operator of order 1, and therefore it follows from pseudod-
ifferential theory that it admits a parametrix of order −1, which is compact because of
the Sobolev embedding theorem. The existence of a parametrix leads to the possibility to
construct complex powers within the calculus, which shows that the resolvent (D2 + I)−1/2

of D is compact. Now we intend to present something analogous for operators on Carnot
manifolds, respecting the grading of a graded nilpotent Lie algebra.

Indeed there is a pseudodifferential symbol calculus for Heisenberg manifolds: It has been
developed simultaneously by Richard Beals and Peter Greiner (see [BG84]) and Michael
Taylor (see [Tay84]) in the 1980s. In the last decade, some properties which are important
for our work have been presented by Raphaël Ponge (see [Pon08]). We will see that in
this calculus hypoellipticity takes the place of ellipticity, since hypoellipticity implies the
existence of complex powers. In addition, we will see that on a compact manifold operators
of negative order are compact, such that one can get a compact resolvent for a given
operator of positive Heisenberg order. For hypoelliptic self-adjoint horizontal Laplacians
on compact Heisenberg manifolds it is also known that their eigenvalues grow polynomial
with a rate which gives back the graded dimension of the manifold. This can be seen as
an analogy to the Weyl asymptotics in the elliptic case.

In this chapter we give an overview over the Heisenberg calculus developed by Richard Beals
and Peter Greiner, explain the composition of symbols and explore the role of hypoellip-
ticity. For details we refer to the books by Beals and Greiner ([BG84]) and by Raphaël
Ponge ([Pon08]). Afterwards we present results concerning the asymptotic growth of the
eigenvalues and the existence of complex powers of hypoelliptic operators, which can be
derived by an expansion of the heat kernel of the operator similarly to the classical case.
Here we refer to [BGS84] and also to [Pon08]. It is expected that there are analogous
results for arbitrary Carnot manifolds, see [Pon08], but we did not find this generalization
worked out in the literature and hence we restrict ourselves to Heisenberg manifolds.
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5.1 The Heisenberg Calculus

Let M be a Heisenberg manifold of dimension n = d+ 1, which means by Section 2.3 that
we have a grading TM = HM ⊕ VM of the tangent bundle such that HM is a bracket
generating horizontal distribution of rank d and VM = [HM,HM ] is of rank 1. An
orthonormal frame for HM shall be given by the vector fields {X1, . . . , Xd}, while {Xd+1}
shall span VM . As we know by Section 2.2, the graded (and therefore the Hausdorff)
dimension of the metric space (M,dCC), where dCC is the Carnot-Carathéodory metric, is
equal to d+ 2.

In Section 2.3 we have seen how one can identify the tangent space of M with a bundle gM
of graded nilpotent Lie algebras, and hence we also have this structure on the cotangent
bundle T ∗M which we denote by g∗M . At a point x0 ∈ M , we have gx0M

∼= Rn (as a
vector space), and we have the dilations

λ.(ξ + ξd+1) = λξ + λ2ξd+1. (5.1)

for coordinates (ξ, ξd+1) ∈ Rn (with ξ = (ξ1, . . . , ξd)). We will further use the Koranyi
gauge

‖ξ‖H =

(
d∑
j=1

|ξj|4 + |ξd+1|2
) 1

4

, (5.2)

see Definition 2.2.8.

First we will consider M = U ⊂ Rn to be an open subset of Rn; the generalization to
vector bundles and manifolds will be the content of a theorem we mention at a later point
of this section. Let σj(x, ξ) = σ(−iXj) denote the (classical) symbol of the vector fields
−iXj, and set σ(x, ξ) := (σ1(x, ξ), . . . , σn(x, ξ)). Note that by Proposition 2.2.6 we can
detect ξ from the symbol σ of the homogeneous operator. Using the Koranyi gauge ‖ · ‖H
and the notation

〈α〉 =
d∑
j=1

αj + 2αd+1 (5.3)

for a multi-index α ∈ Nd+1 we take care of the homogeneity of the Xj considered as
differential operators. We can define the following symbol classes on which the Heisenberg
calculus will be based (see [BG84], (10.5)-(10.18), and [Pon08], Section 3.1.2).

Definition 5.1.1
Let U ⊂ Rn be an open subset. Then:

(i) For m ∈ Z, we set

FH,m(U) := {f ∈ C∞(U × Rn \ {0}) : f(x, λ.σ) = λmf(x, σ) ∀λ > 0} .

We will further denote the class of these homogeneous functions, which do not depend
on x, by FH,m.
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(ii) For m ∈ Z, we set

Fm
H (U) :=

{
f ∈ C∞(U × Rn) : f ∼

∞∑
j=0

fm−j, fk ∈ FH,k(U)

}
,

where the asymptotic expansion f ∼
∑
fm−j is meant in the sense that for all multi-

indices α, β ∈ Nn and all N > 0, we have∣∣∣∣∣Dα
xD

β
ξ

(
f(x, σ)−

∑
j<N

fm−j(x, σ)

)∣∣∣∣∣ ≤ CαβN(x)‖σ‖m−N−〈β〉H , (5.4)

for a locally bounded function CαβN on U .

We will further denote the class of these functions, which do not depend on x, by
Fm
H :

f ∈ Fm
H ⇔ f ∼

∞∑
j=0

fm−j, fk ∈ FH,k.

(iii) For m ∈ Z, we set

SH,m(U) := {q ∈ C∞(U × Rn \ {0}) : ∃f ∈ FH,m(U) with q(x, ξ) = f(x, σ(x, ξ))} .

(iv) For m ∈ Z, we set

SmH (U) := {q ∈ C∞(U × Rn) : ∃f ∈ Fm
H (U) with q(x, ξ) = f(x, σ(x, ξ))} .

For f ∼
∑∞

j=0 fm−j, the asymptotic expansion of q(x, ξ) = f(x, σ(x, ξ)) is given by

q ∼
∞∑
j=0

qm−j with qk(x, ξ) = fk(x, σ(x, ξ)). (5.5)

We call elements belonging to the class SmH (U) Heisenberg symbols of order m.

(v) The symbol class

S∞H (U) :=
⋃
m∈Z

SmH (U)

induces the class of Heisenberg pseudodifferential operators on U , which we denote
by ΨH(U).

In detail, for q ∈ Sm(U), the corresponding operator Op(q) ∈ Ψm
H (U) is given by

Op(q)u(x) =

∫
Rn
ei〈x,ξ〉q(x, ξ)û(ξ)d̄ξ (5.6)

for any function u ∈ C∞c (U). On the other hand, if an operator Q can be written in
the form (5.6) for a function q ∈ C∞(U × Rn), we call σH(Q) := q the Heisenberg
symbol of Q.
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(vi) The class

S−∞H (U) :=
⋂
m∈Z

SmH (U)

is called the class of smoothing operators in the Heisenberg calculus.

C

Before we go on with the theory, we will state an example for Heisenberg pseudodifferential
operators we already know.

Example 5.1.2
Let M = Rn equipped with a frame {X1, . . . , Xd+1} such that {X1, . . . , Xd} forms a bracket
generating horizontal distribution. Then any graded differential operator

D = p(X1, . . . , Xd, Xd+1)

of order µ ∈ N with respect to this frame (see Definition 2.2.7) is a Heisenberg pseu-
dodifferential operator of Heisenberg order µ. Its Heisenberg symbol is a polynomial
p(σ1, . . . , σd+1) ∈ F µ

H(Rn) of (homogeneous) degree µ, and its asymptotic expansion is
given by the homogeneous terms of this polynomial. In case the coefficients of D are
constant, we have a Heisenberg symbol belonging to the class F µ

H .

In particular, a horizontal Laplacian is a Heisenberg pseudodifferential operator of Heisen-
berg order 2. C

We do not know yet if the expression (5.6) from the last item of Definition 5.1.1 makes
sense. But this will be the case, since a symbol of SmH (U) belongs to a Hörmander symbol
class

Smρ,δ(U) =
{
q ∈ C∞(U × Rn) :

∣∣∣Dα
xD

β
ξ q(x, ξ)

∣∣∣ ≤ Cαβ(x) (1 + |ξ|)m+δ|α|−ρ|β|
}
, (5.7)

where Cαβ is again a locally bounded function on U . These symbol classes were established
by Lars Hörmander in [Hoe66], where it was also shown that the corresponding operators
can be extended to bounded operators on certain Sobolev spaces. For the following theo-
rem, we refer to [BG84], Proposition (10.22).

Theorem 5.1.3
For every m ∈ Z, we have

SmH (U) ⊂

S
m
1
2
, 1
2

(U) for m ≥ 0

S
1
2
m

1
2
, 1
2

(U) for m < 0
.

�
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From this embedding, we see that the operator from equation (5.6) is well defined for every
test function u ∈ C∞c (U). Moreover, we immediately get some regularity properties for
Heisenberg pseudodifferential operators, which follow immediately from the corresponding
regularity properties of operators belonging to the class Sm1/2, 1/2(U).

Corollary 5.1.4
Let m ∈ Z, q ∈ SmH (U). We can define an operator

Qu(x) :=

∫
Rn
ei〈x,ξ〉q(x, ξ)û(ξ)d̄ξ

which has the following properties:

(i) Q : C∞c (U)→ C∞(U) is a continuous linear operator.

(ii) For every s ∈ R, Q can be extended to a bounded linear operator

Q : Hs+m(U)→ Hs(U),

where Hs+m(U) and Hs(U) denote the L2-Sobolev spaces.

In particular, this means Q ∈ B(L2(U)) if m ≤ 0. �

In [BG84], it is also shown that the class SmH (U) does not depend on the choice of the
frame {X1, . . . , Xd, Xd+1} of TM , as long as it respects the grading structure (see [BG84],
Proposition (10.46)).

After defining our symbol classes, we show that they induce a meaningful calculus. This
is in general not the case for symbols of the class S1/2, 1/2(U), but it turns out that the
composition of two Heisenberg pseudodifferential operators gives a ΨHDO again. We briefly
sketch how this composition is defined, referring to [BG84], Chapters 12-14, and to [Pon08].
Section 3.1.3, for the details. Assume first that the symbols of the operators which shall be
composed are given by p1 ∈ SH,m1(U) and p2 ∈ SH,m2(U), where pk(x, ξ) = fk(x, σ(x, ξ))
for homogeneous functions fk ∈ FH,mk .

• We fix an x ∈ U and choose coordinates on U which are centered at x. This provides
us with symbols

f
(x)
k (σ) := fk (x, σ)

with f
(x)
k ∈ FH,m1 for k ∈ {1, 2}, defined on the dual g∗xU of the tangent graded

Lie algebra gxU at x, which corresponds to a Carnot group Gx via the exponential
mapping. Then Gx can be identified with the tangent Carnot group GxU of U .

• After these identifications, we can use the Lie group composition . of the tangent
Carnot group GxM to define a convolution product

∗(x) : FH,m1 × FH,m2 → FH,m1+m2 (5.8)
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in the following way: For f
(x)
k , k = 1, 2, the operator associated to the symbol is

simply the convolution operator

Op
(
f

(x)
k

)
u(z) =

∫
GxM

f̌
(x)
k (y)u(z.y−1)d̄y,

acting on the Carnot group GxU . The composition of two convolution operators of
this type gives the bilinear mapping (5.8) (see [BG84], Proposition (12.14)).

• Finally, one finds that the product ∗(x) from (5.8) depends smoothly on x (see [BG84],
Proposition (13.3)), which gives us a continuous bilinear product

∗ :SH,m1(U)× SH,m2(U)→ SH,m1+m2(U)

(p1 ∗ p2) (x, ξ) =
(
f

(x)
1 ∗(x) f

(x)
2

)
(σ(x, ξ)).

(5.9)

The above construction shows how homogeneous symbols can be composed. Now ev-
ery Heisenberg symbol has an asymptotic expansion (5.5) into homogeneous symbols, and
therefore one can find an asymptotic expansion for the composition of two arbitrary Heisen-
berg symbols, which is again a Heisenberg symbol and furnishes a ΨHDO. The details for
this expansion are formulated within the next theorem (see [BG84], Theorems (14.1) and
(14.7), and [Pon08], Proposition 3.1.9).

Theorem 5.1.5
For j = 1, 2 let Pj ∈ Ψ

mj
H (U) have the symbol

pj ∼
∑
k≥0

pj,mj−k

in the sense of (5.5) and assume that one of these operators is properly supported. Then
for the operator P = P1P2 we have P ∈ Ψm1+m2

H (U), and its symbol p is given by

p ∼
∑
k≥0

pm1+m2−k

in the sense of (5.5), where

pm1+m2−k(x, ξ) =
∑

k1+k2≤k

(k−k1−k2)∑
α,β,γ,δ

hα,β,γ,δ(x) ·
(
Dδ
ξp1,m1−k1(x, ξ)

)
∗
(
ξγ∂αx∂

β
ξ p2,m2−k2(x, ξ)

)
.

(5.10)

In (5.10),
∑(l)

α,β,γ,δ denotes the sum over all the indices such that

|α|+ |β| ≤ 〈β〉 − 〈γ〉+ 〈δ〉 = l and |β| = |γ|,

and the functions hα,β,γ,δ are polynomials in the derivatives of the coefficients of the vector
fields X1, . . . , Xd, Xd+1. �
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So far, we have developed the Heisenberg calculus on open subsets of Rn. To define this
calculus for operators acting on vector bundles over arbitrary Heisenberg manifolds, one
has to show that the class of ΨHDOs is invariant under the change of charts respecting the
Heisenberg structure. In detail, we have the following theorem which shows us that we are
able to extend the theory to the manifold case (see [BG84], Theorem (10.67), and [Pon08],
Proposition 3.1.18).

Theorem 5.1.6
Let U1 and U2 be open subsets on Rd+1 together with hyperplane bundles HU1 ⊂ TU1 and
HU2 ⊂ TU2, and let φ : (U1, HU1) → (U2, HU2) be a Heisenberg diffeomorphism, which
means we have DφHU1 = HU2 for the differential of φ.

Then if P2 ∈ Ψm
H is a Heisenberg pseudodifferential operator of order m on U2, the pullback

P1 := φ∗P2 of this operator to U1 is a Heisenberg pseudodifferential operator of order m
on U1. �

Because of this theorem, we can consider Heisenberg pseudodifferential operators on Heisen-
berg manifolds M , acting on vector bundles E from now on, and write ΨH(M,E) for this
class of operators. In particular, we can derive the following consequence from Corol-
lary 5.1.4 which states that ΨHDOs of negative order defined on a compact manifold are
compact. It can be used if we want to show that a certain Heisenberg pseudodifferential
operator has a compact resolvent.

Corollary 5.1.7
For m < 0, let Q ∈ Ψm(M,E) be a Heisenberg pseudodifferential operator acting on a
vector bundle E over a Heisenberg manifold M . Then Q is a compact operator on the
Hilbert space L2(M,E).

Proof: By Corollary 5.1.4 and Theorem 5.1.6, for every s ∈ R the operator

Q : Hs+m(M,E)→ Hs(M,E)

is bounded on the L2-Sobolev spaces Hs+m(M,E). We can now choose s = −m and use
the fact that the embedding H−m(M,E) ↪→ H0(M,E) = L2(M,E) is compact by the
Sobolev embedding theorem to derive that that operator

Q : L2(M,E)→ H−m(M,E) ↪→ L2(M,E)

is compact as the composition of a bounded and a compact operator. �

After having established a composition rule inside the class of ψHDOs in Theorem 5.1.5,
the next thing to examine is the existence and the regularity of parametrices inside this
class. First of all let us recall the definition of a parametrix.
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Definition 5.1.8
Let E be a vector bundle over a Heisenberg manifold M , and let P : C∞c (M,E) →
C∞(M,E) be a ΨHDO. Then an operator Q : C∞c (M,E) → C∞(M,E) with Q ∈
ΨH(M,E) is called a Heisenberg parametrix or a Heisenberg pseudodifferential inverse
of P , if we have

QP = PQ = I mod Ψ−∞H (M,E),

which means that the operators PQ− I and QP − I are smoothing. C

In the classical calculus for symbols of the type S1,0, a parametrix for a pseudodifferential
operator P exists if the operator is elliptic. We will see that a necessary condition for the
existence of a parametrix in the Heisenberg calculus is the hypoellipticity of the operator.
The following classical definition of hypoellipticity is due to Lars Hörmander and can also
be found in [Pon08] and [BG84].

Definition 5.1.9
Let P be a ΨHDO of order m ∈ Z, acting on a vector bundle E over a Heisenberg manifold
M . Then P is called hypoelliptic, if for any distribution u ∈ D′(M,E) we have

Pu ∈ C∞(M,E) ⇒ u ∈ C∞(M,E).

In more detail, we call P hypoelliptic with the loss of k derivatives, if we have for any
s ∈ R:

Pu ∈ Hs(M,E) ⇒ u ∈ Hs+k(M,E).

C

In the classical case, a pseudodifferential operator is elliptic if its principal symbol is in-
vertible. This generalizes to the case of Heisenberg pseudodifferential operators in terms
of hypoellipticity: The main result will be that a ΨHDO is hypoelliptic if the ΨHDO as-
sociated to the principal part in the asymptotic (Heisenberg) expansion of its symbol is
invertible in the Heisenberg calculus. We first introduce the notion of the principal symbol
and the model operator, as it is done in [BG84] and [Pon08].

Definition 5.1.10
Let P be a ΨHDO of order m ∈ Z with Heisenberg symbol p ∈ SmH (M,E), acting on a
vector bundle E over a Heisenberg manifold M . For a point a ∈ M , we choose an open
subset U 3 a of M and local coordinates of U centered at a to consider the asymptotic
expansion

p ∼
∞∑
j=0

p̃m−j with p̃m−j ∈ SH,m(U,E) (5.11)

in the sense of Definition 5.1.1.
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For σ(x, ξ) = (σ1(x, ξ), . . . , σd+1(x, ξ)) with σj(x, ξ) = σ(−iXj) the classical symbol of
−iXj, we find a pm ∈ Fm

H (U) such that in (5.11) p̃m(x, ξ) = pm(x, σ(x, ξ)). Then the
symbol

p(a)
m (σ) := pm(a, σ(a, ξ)) ∈ FHm(U).

is called the (homogeneous) principal symbol of P at a. The corresponding operator

P (a) := Op
(
p(a)
m

)
: C∞c (GaM,Ea)→ C∞(GaM,Ea), (5.12)

where GaM is the tangent Carnot group at a, is called the (homogeneous) model operator
of P at a. C

Remark: It is also possible to define a global principal symbol σm(P ) ∈ FH,m(M,E) on
M using the kernel representation of Heisenberg pseudodifferential operators, for which we
refer to [Pon08], Theorem 3.2.2. C

Example 5.1.11
For a graded differential operator

D = p(X1, . . . , Xd+1)

from Example 5.1.2, the principal symbol of D at a point a ∈ M is given by the leading
homogeneous term of the polynomial p after freezing the coefficients of p in a. Hence
the model operator of D is given by the homogeneous graded differential operator with
constant coefficients belonging to this homogeneous term.

In particular, for the case of a horizontal Laplacian of the form

∆hor = −
d∑
j=1

X2
j +B(x)Xd+1 +

d∑
j=1

aj(x)Xj + a(x),

the model operator of ∆hor at a ∈M is the operator

∆hor
mod = −

d∑
j=1

X2
j +B(a)Xd+1.

C

One can show that the convolution of two principal symbols gives the principal symbol of
the composition of the corresponding operators, and hence the composition of two model
operators gives the model operator of the composition of the original operators. See for
example [Pon08], Proposition 3.2.9.

In particular, the existence of a parametrix for a Heisenberg pseudodifferential operator
implies the existence of a parametrix of its model operator at each point. We even have
equivalence for these two statements, and both statements imply the hypoellipticity of each
model operator, which is formulated in the next theorem (see [Pon08], Proposition 3.3.1,
Theorem 3.3.18 and Proposition 3.3.20).
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Theorem 5.1.12
Let E be a vector bundle over a Heisenberg manifold M , and let

P : C∞c (M,E)→ C∞(M,E)

be a ΨHDO of order m ∈ N. Then the following statements are equivalent.

(i) P has a Heisenberg parametrix Q with symbol q ∈ S−mH (M,E).

(ii) At each point a ∈ M , the model operator P (a) from (5.12) of P has a Heisenberg
parametrix Q(a) with symbol q(a) ∈ FH,−m.

(iii) The global principal symbol σm(P ) of P is invertible with respect to the convolution
product for homogeneous symbols.

If any of these conditions is fulfilled, P is hypoelliptic with loss of m
2

derivatives. �

We note that in [Pon08] it is only shown that hypoellipticity is implied by the conditions (i)
- (iii) of Theorem 5.1.12. But in the case of a graded differential operator D with constant
coefficients, the hypoellipticity of D is equivalent to the invertibility of D in the Heisenberg
calculus. This can be seen by the so-called Rockland condition, which we will introduce in
Chapter 6: It is shown in [Pon08], that this Rockland condition (in a more general version
compared to the one we will introduce) for a Heisenberg pseudodifferential operator P is
equivalent to the statements (i) - (iii) of Theorem 5.1.12 (see [Pon08], Theorem 3.3.18).
But for graded differential operators with constant coefficients, the Rockland condition is
equivalent to the hypoellipticity of D, as we will see in Section 6.1.

In case of a horizontal Laplacian of the form

∆hor = −
d∑
j=1

X2
j +B(x)Xd+1 +

d∑
j=1

aj(x)Xj + a(x) (5.13)

it was proved in [BG84] that the hypoellipticity of this operator is equivalent to its in-
vertibility in the Heisenberg calculus. Since we will work in particular with horizontal
Laplacians, we state this theorem here (see [BG84], Theorem (18.4)).

Theorem 5.1.13
For the horizontal Laplacian ∆hor from (5.13), the following statements are equivalent:

(i) ∆hor has a Heisenberg parametrix Q ∈ Ψ−2
H (U)

(ii) At each a ∈ U , the model operator of ∆hor has a Heisenberg pseudodifferential inverse.

(iii) ∆hor is hypoelliptic with loss of one derivative. �
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We will see in the next section that from the point of view of constructing and analyzing
spectral triples using the techniques of Heisenberg calculus indeed hypoellipticity is the
central property. Right now, we close this section with a remark concerning a possible
generalization to arbitrary Carnot manifolds.

Remark 5.1.14
Let M be an arbitrary Carnot manifold of step R with grading TM ∼= V1M ⊕ . . .⊕ VRM
such that for any 1 ≤ S ≤ R XS,1, . . . , XS,dS forms an orthonormal frame for VSM (with
dS = Rank VSM). Then we assume that we can generalize Definition 5.1.1 as follows:
For the Carnot group G corresponding to M we consider the exponential coordinates
ξ ∈ g = exp−1 G with ξ = (ξ(1), . . . , ξ(R)), where ξ(S) ∈ RdS , the dilations

λ.ξ =
(
λξ(1), λ2ξ(2), . . . , λRξ(R)

)
and the Koranyi gauge

‖x‖G :=

(
R∑
S=1

dS∑
j=1

|xS,j|
2R!
S

) 1
2R!

,

see Definition 2.2.8. In addition, for multi-indices α ∈ Nd1+...+dR we set

〈α〉G :=
R∑
S=1

S ·
dS∑
j=1

αS,j.

Then we can define symbol classes in analogy to Definition 5.1.1, and it seems natural
that it is possible to generalize the further definitions and theorems of this section to the
general Carnot case. The proofs should work more or less analogous to the presentation in
[BG84] and [Pon08], but it would by very laborious to write everything down in detail. C

5.2 Complex Powers and Eigenvalue Asymptotics

In this short section we present some results in Heisenberg calculus which open the door
to constructing meaningful spectral triples from this calculus. As we will see, the crucial
assumption in all these results is the hypoellipticity of the operator.

First of all, we provide a theorem from which it can be shown that the operator (D2+I)−1/2

is compact for a hypoelliptic self-adjoint operator D of Heisenberg order 1. We formulate
a combinations of the Theorems 5.3.1 and 5.4.10 from [Pon08].

Theorem 5.2.1
Let M be a Heisenberg manifold. Suppose that P is a hypoelliptic self-adjoint Heisenberg
pseudodifferential operator of order ν ∈ Z which is bounded from below and which is
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satisfying KerP = {0}. Then, for any s ∈ C, the operator P s defined via functional
calculus is a ΨHDO of order νs. �

Remark: Note that we have not introduced ΨHDOs of non-integer order properly in this
thesis. For this, we refer to [Pon08]. Since in our case every operator appearing in this
context will be of integer order, the theorems formulated in Section 5.1 are sufficient.

Note also that the formulation in [Pon08] of this theorem is more general in the sense that
he does not assume that the kernel of P is only assumed to be finite dimensional, which
is the case because of the hypoellipticity of P . In this general case, one can also construct
complex powers using projections onto the orthonormal complement of the kernel. C

The next thing is to discover the asymptotic behavior of the eigenvalues of a self-adjoint
Heisenberg pseudodifferential operator, from which one can detect the metric dimension
of a spectral triple. In classical pseudodifferential calculus, one can consider the heat
kernel of a positive self-adjoint elliptic operator P to get asymptotics for the growth of its
eigenvalues. This is done by expanding the trace of the operator e−tP . Now something
similar works for hypoelliptic self-adjoint horizontal Laplacians which are bounded from
below: Mostly, this is the content of the paper [BGS84] by Richard Beals, Peter Greiner
and Nancy Stanton. Some further considerations have been carried out by Raphaël Ponge
(see e.g. [Pon08]). Without going into the details, we just state the results here.

The following theorem shows how the trace expansion of the heat kernel of such a horizontal
Laplacian looks like (see [BGS84], Theorem (5.6), or [Pon08], Proposition 6.1.1).

Theorem 5.2.2
Let ∆hor be a hypoelliptic and self-adjoint horizontal Laplacian which is bounded from
below, acting on a vector bundle E over a Heisenberg manifold M of dimension d + 1
(which means that the horizontal distribution of M has rank d). Then for t→ 0+ we have
the expansion

Tr e−t∆
hor ∼ t−

d+2
2

∞∑
j=0

t
2j
mAj(∆

hor) (5.14)

with Aj(∆
hor) =

∫
M

trEaj(∆
hor)(x)dx, where aj can be computed from the term of degree

−2 − 2j in the asymptotic expansion of the symbol of the parametrix of ∆hor in local
coordinates. �

Now we denote by

λ0(∆hor) ≤ λ1(∆hor) ≤ . . .

the eigenvalues of ∆hor, counted with multiplicity. A consequence of (5.14), in connection
with Karamata‘s Tauberian Theorem, is that the following asymptotic behavior of these
eigenvalues holds (see [Pon08], Proposition 6.1.2).
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Theorem 5.2.3
Let ∆hor be a hypoelliptic and self-adjoint horizontal Laplacian which is bounded from
below, acting on a vector bundle E over a Heisenberg manifold M of dimension d + 1.
Then for j →∞ we have

λj(∆
hor) ∼

(
j

ν0 (∆hor)

) 2
d+2

(5.15)

for the eigenvalues λj of ∆hor, where ν0(∆hor) is a constant depending on the dimension d
of the horizontal distribution and the term A0(∆hor) in the heat trace expansion (5.14) of
∆hor. �

Note that the above theorem just gives a qualitative statement about the growth of the
eigenvalues, which suffices to detect the metric dimension of a spectral triple constructed
from a first order hypoelliptic and self-adjoint operator on M . We will carry out this
construction in Section 7.1. But first of all, we want to return to the horizontal Dirac
operator and show that this theory cannot be applied to DH , since DH is not hypoelliptic.
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Chapter 6

Hypoellipticity of Graded Differential
Operators

As we saw in the last chapter, the condition of hypoellipticity allows us to define com-
plex powers of a self-adjoint Heisenberg pseudodifferential operator within the Heisenberg
calculus. Since operators of negative Heisenberg order on a compact Carnot manifold
are compact, one can argue that a hypoelliptic graded differential operator has a com-
pact resolvent. This means that if a horizontal Dirac operator DH acting on a compact
Carnot manifold M is hypoelliptic, condition (ii) for a spectral triple will be fulfilled on
(C(M), L2(M), DH). But in Chapter 4 we already constructed a horizontal Dirac operator
on an arbitrary compact Carnot nilmanifold which does not have a compact resolvent.

The aim of this chapter is to show a generalization of the results of Chapter 4 in the setting
of pseudodifferential calculus: We show that any horizontal Dirac operator on a Carnot
manifold is not hypoelliptic. From this we will draw the conclusion that a horizontal Dirac
operator does not have a compact resolvent, and hence does not furnish a spectral triple.

We start this chapter by reviewing some well-known hypoellipticity criteria, starting with
Hörmanders Sum-of-Squares Theorem and leading to the Rockland Condition, which states
an equivalence between hypoellipticity of a graded differential operator and the non-
degeneracy in the irreducible representations of its associated Lie algebra. Then we will
draw special attention to the situation where this Lie algebra is a Heisenberg algebra, since
in this situation one has a good classification for the hypoellipticity of horizontal Lapla-
cians. This will pay off, because in the second section we develop a criterion to exclude
hypoellipticity of a graded differential operator by reducing the case to the co-dimension 1
case. Similar to the argument given in Chapter 4 for a specific example on compact Carnot
nilmanifolds, we will make use of the submersions between graded nilpotent Lie algebras
introduced in Section 2.4.

Finally, in Section 6.3 we prove that any horizontal Dirac operator is not hypoelliptic. This
follows quickly from the previous work by considering its square.

111
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6.1 Some Classical Theorems

The development of hypoellipticity criteria for certain differential operators was a great
matter in the 1970s and 1980s, and there are some celebrated results. The origin of all
these criteria is the famous sum-of-squares theorem by Lars Hörmander (see [Hoe67]).

Theorem 6.1.1
Let X0, X1, . . . , Xd be homogeneous vector fields on Rn with real C∞-coefficients on an
open set Ω ⊂ Rn and c ∈ C∞(Ω) real valued. Then the operator

P =
d∑
j=1

X2
j +X0 + c

is hypoelliptic, if among the operators Xj and all their commutators there exist n which
are linearly independent at any given point in Ω. �

The problem is that this theorem only works for vector fields with real coefficients, so it will
not apply to our case of the square of a horizontal Dirac operator where the Clifford action
causes complex coefficients. During the following years there were several generalizations
of Hörmander’s theorem, for example by Kohn ([Koh70] and [Koh71]) or Rothschild and
Stein ([RS77]). Rothschild and Stein developed a close-to-complete characterization for
the hypoellipticity of horizontal Laplacians of the form

∆hor
RS = −

d∑
j=1

X2
j −

i

2

d∑
j,k=1

bjk[Xj, Xk], (6.1)

where the Xj are homogeneous vector fields on Rn and b = (bjk) ∈ Skewd×d(R) is assumed
to be a real skew-symmetric matrix. Then Rothschild and Stein proved the following
theorem in a slightly more general version (see [RS77], Theorem 1’ and Theorem 2):

Theorem 6.1.2
Consider the space

R :=

{
r = (rjk) ∈ Skewd×d(R) :

d∑
j,k=1

rjk[Xj, Xk] = 0

}
, (6.2)

and its orthonormal complement R⊥ with respect to the inner product (s1, s2) = −tr(s1s2)
on Skewd×d(R).

(i) If
sup

ρ∈R⊥, ‖ρ‖1≤1

|tr (bρ)| < 1,

then ∆hor
RS from (6.1) is hypoelliptic.
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(ii) Assume that the Lie algebra g spanned by {X1, . . . , Xd} is graded, which means
g =

⊕R
S=1 VR such that [VS, VT ] ⊂ VS+T if S + T ≤ R and [VS, VT ] = 0 if S + T > R

(see also Section 2.2). Then if

sup
ρ∈R⊥, ‖ρ‖1≤1

|tr (bρ)| ≥ 1

and if the algebra g2 := g
/⊕R

S=3 VS is not the Lie algebra of a Heisenberg group

H2m+1, ∆hor
RS from (6.1) is not hypoelliptic.

�

Remark: For exp g2
∼= H2m+1, the situation is more involved: It can be shown that there

are situations where g2 is the Lie algebra of a Heisenberg group, in which the operator
∆hor
RS is hypoelliptic, even though

sup
ρ∈R⊥, ‖ρ‖1≤1

|tr (bρ)| = 1.

For a more detailed treatment of the co-dimension 1 case, we refer to Theorem 6.1.4 below.
C

The idea for the proof of the second statement of this theorem is to reduce the situation to
the case R = 2, and to describe the operator ∆hor on g2 via irreducible unitary representa-
tion of g2. Doing this, it is possible to write down a function which is not C∞ but belongs
to the kernel of ∆hor, which is a contradiction to the hypoellipticity of the operator.

Remember that we already used techniques from representation theory for the case of
horizontal Dirac operators on compact Carnot nilmanifolds in Chapter 4, and it turned
out that there is indeed a close connection between the hypoellipticity of graded differential
operators and the representation theory of the underlying Carnot group. We will describe
this connection now.

As we noted in Section 2.2, a graded differential operator is an operator of the form

D = p (X1, . . . , Xd, X2,1, . . . , XR,dR) ,

where p is a polynomial with matrix-valued C∞ coefficients and where {XS,1, . . . , XS,dS} is
a frame for the vector space VS appearing in the grading g = V1⊕ . . .⊕ VR of a graded Lie
algebra g. If the coefficients of D are constant, This suggests to consider D as an element
of the universal enveloping algebra U(g) of g. Since g is nilpotent, the exponential mapping
is an isomorphism from g onto its Lie group G which is a Carnot group. Now let π be an
irreducible unitary representation of G on a Hilbert space H, consisting of L2-functions.
Since π gives rise to an irreducible, unitary representation of g on H via

(dπ(X)ϕ)(x) =
d

dt
π(exp tX)ϕ(x)

∣∣∣∣
t=0

,
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we obtain a representation dπ(D) of the graded differential operator D.

Let Ĝ denote the unitary dual of G, which is the space of all irreducible unitary repre-
sentations of G. Using the above concept, there is a representation theoretic criterion
which characterizes the hypoellipticity of graded differential operators completely. We will
now state this criterion, which is called the Rockland condition since it was developed by
Charles Rockland [Roc78] for Heisenberg algebras. B. Helffer and J. Nourrigat extended
the Rockland condition to the case of arbitrary graded nilpotent Lie algebras (see [HN79]
or also [Rot83]).

Theorem 6.1.3
Let g be a graded nilpotent Lie algebra, G = exp(g), and let L ∈ U(g) be a graded
differential operator which is homogeneous of degree m. Then L is hypoelliptic if and only
if π(L) is injective for all nontrivial π ∈ Ĝ. �

Although there is a way to determine the irreducible unitary representations of an arbitrary
nilpotent Lie group (see e.g. [CG89], we also mentioned this at the end of Section 4.4),
this is a quite difficult task for specific examples. Hence we follow the same approach as in
Chapter 4: For the co-dimension 1 case, it is not too difficult to formulate hypoellipticity
criteria deduced from the Rockland condition. Then in the next section, we will see how
this case enables us to make more general statements.

For the rest of this section, we assume n = d + 1 and g ∼= V1 ⊕ V2 with d = dimV1. Let
{X1, . . . , Xd+1} be a frame for TRn such that V1 = span{X1, . . . , Xd} and V2 = span{Xd+1}
for the representation of this Lie algebra as vector fields on Rn from Proposition 2.2.6. We
want to check horizontal Laplacians of the form

∆hor := −
d∑
j=1

X2
j − iAXd+1 +OH(1), (6.3)

acting on a vector bundle E of rank p ∈ N over an open subset Ω ⊂ Rd+1 with A ∈
Matp×p(C) for hypoellipticity. Here, the term OH(1) denotes a graded differential operator
of order smaller or equal to 1 (which means it is a differential operator of order 1 only
depending on the horizontal vector fields X1, . . . , Xd). To formulate the criterion we recall
the notion of the Levi form from Chapter 2.3 (see Definition 2.3.2), which is the bilinear
form

L : V1 × V1 → V2, (Y1, Y2) 7→ [Y1, Y2] mod V1.

For L(Xj, Xk) = LikXd+1 with Lik ∈ R, we denote by L = (Ljk) the antisymmetric matrix
describing L.

The following result states that the hypoellipticity of ∆hor from (6.3) only depends on how
the eigenvalues of A behave in comparison with the eigenvalues of L. It is well known and
can be found at various places in the literature (see e.g. [Pon08] or [BG84]), but because of
its importance for our future arguments we give a proof, orientated towards the one given
in [Pon08].



6.1. SOME CLASSICAL THEOREMS 115

Theorem 6.1.4
Let ∆hor be the horizontal Laplacian given by (6.3) with corresponding graded nilpotent
Lie algebra g = span{X1, . . . , Xd} ⊕ span{Xd+1}, Carnot group G = exp g and Levi form
L, which is described by the Levi matrix L ∈ Skewd×d(R) corresponding to this basis.
The non-zero eigenvalues of L are denoted by ±iλ1, . . . ,±iλm (including multiplicity) with
λj > 0 for all j ∈ {1, . . . ,m}, where 2m ≤ d is the rank of L..

Then the hypoellipticity of ∆hor can be characterized as follows:

(i) If G ∼= H2m+1 with H2m+1 the (2m+1)-dimensional Heisenberg group (with d = 2m),
then ∆hor is hypoelliptic if and only if no eigenvalue of A belongs to the set

Λ :=

{
±

(
1

2
‖L‖1 + 2

∑
1≤j≤m

αj |λj|

)
: αj ∈ Nm

}
. (6.4)

(ii) If G ∼= H2m+1 × Rd−2m with 2m < d, then ∆hor is hypoelliptic if and only if no
eigenvalue of A belongs to the set

Λ :=

(
−∞,−1

2
‖L‖1

]
∪
[

1

2
‖L‖1 ,∞

)
. (6.5)

In both cases, ‖L‖1 = tr(|L|) = 2
∑m

j=1 |λj| denotes the trace norm of L.

Proof: Since ∆hor is a horizontal Laplacian, by Theorem 5.1.13 its hypoellipticity is
equivalent to the hypoellipticity of its model operator, which is in this case the homogeneous
horizontal Laplacian

∆hor
mod = −

d∑
j=1

X2
j − iAXd+1. (6.6)

Hence we only have to check the operator (6.6) for hypoellipticity to prove the theorem,
which can be done by the Rockland condition (see Theorem 6.1.3).

First of all, for every Carnot group G of co-dimension 1 we have G ∼= H2m+1 × Rd−2m,
where 2m = Rank L ≤ d, by Proposition 2.3.3. By the same proposition, there exists
an orthonormal basis transformation of V1 = span{X1, . . . , Xd} ∼= Rd such that after this
transformation we have

L =

 0 D 0
−D 0 0

0 0 0

 (6.7)

for the Levi matrix of L, where D is a diagonal matrix with diagonal entries λ1, . . . , λm > 0.
Since an orthonormal change of the frame of V1 does not change the form of the horizontal
Laplacian (6.6), as one can see after a small calculation, we can assume (6.7) to be the
matrix of the Levi form L of G. But this gives the commutator relations

[Xj, Xj+m] = λjXd+1 and [Xj+m, Xj] = −λjXd+1
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if 1 ≤ j ≤ m, while all the other commutators are zero. For λ1 = . . . = λm = 1 these
are exactly the commutator relations for the Lie algebra of H2m+1 × Rd−2m. Thus, the
isomorphism φ : H2m+1 × Rd−2m → G is coordinate-wise defined by

φ(xj) =


√
λj xj for 1 ≤ j ≤ m√
λj−m xj for m+ 1 ≤ j ≤ 2m

xj for j > 2m

, (6.8)

where we work on exponential coordinates of the Carnot groups.

The next step is to show that the general case of ∆hor
mod acting on a vector bundle E of rank

p can be restricted to the scalar case: We can choose (point-wise) a basis of E such that
in this basis the matrix A in (6.6) is given by

A =

µ1 ∗ ∗
0

. . . ∗
0 0 µp

 ,

where µ1, . . . , µp are the eigenvalues of A. With respect to this basis the operator ∆hor
mod

takes the form

∆hor
mod =

∆hor
1 ∗ ∗
0

. . . ∗
0 0 ∆hor

p

 , (6.9)

where for each j with 1 ≤ j ≤ p we have a horizontal Laplacian

∆hor
j = −

d∑
j=1

X2
j − iµjXd+1

acting on scalar valued functions. Now it is obvious that the operator (6.9) fulfills the
Rockland condition from Theorem 6.1.3 if and only if each of the scalar operators ∆hor

j does
(because otherwise the matrix would not be invertible which would be a contradiction to
the injectivity of the corresponding irreducible representations). Therefore we can restrict
our considerations to the scalar case, working with the eigenvalues µ1, . . . , µp of A. From
now on, we will assume A is scalar.

After the above simplifications, our task is to check the Rockland condition for the scalar
case with Levi form of G given by (6.7). We start with the situation where 2m = d (which
means G ∼= H2m+1)). For the Lie algebra of the Heisenberg group the representation theory
is well known: Up to equivalence, the nontrivial irreducible representations of the operators
X1, . . . , Xd+1, considered as basis vectors of the Heisenberg algebra h2m+1 are of two types
(see e.g. [Pon08], (3.3.5) - (3.3.7), or [Fol89]; compare also to the proof of Theorem 4.3.4):
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(i) The infinite dimensional representations πt : H2m+1 → U(L2(Rm)) of H2m+1, parametrized
by t ∈ R \ {0}, give rise to the representations

dπt(Xj)f(ξ) = |t|∂ξjf(ξ) for 1 ≤ j ≤ m

dπt(Xm+j)f(ξ) = itξjf(ξ) for 1 ≤ j ≤ m

dπt(X2m+1)f(ξ) = it|t|f(ξ).

(ii) The one dimensional representations πζ : H2m+1 → C of H2m+1, parametrized by
ζ ∈ R2m \ {0}, give rise to the representations

dπζ(Xj) = iζj for 1 ≤ j ≤ 2m

dπζ(X2m+1) = 0.

Under the Lie group isomorphism φ : H2m+1 → G given by (6.8), the representations of the
basis vectors of the Lie algebra g we are interested in are given by the above representations
applied to

√
λjXj and

√
λjXm+j for 1 ≤ j ≤ m. Hence all the irreducible representation

for ∆hor are

dπt,ξ
(
∆hor

mod

)
= −

m∑
j=1

λj

(
|t|2 ∂2

ξj
− t2ξ2

j

)
+ At|t| for t ∈ R \ {0} (6.10)

and

dπζ
(
∆hor

mod

)
= −

2m∑
j=1

ζ2
j for ξ ∈ R2m \ {0}. (6.11)

Obviously (6.11) is injective for any ζ ∈ R2m \ {0}, so we only have to check the opera-
tors given by (6.10) for the Rockland condition. For these operators, their injectivity is
equivalent to the injectivity of the operators

−
m∑
j=1

λj

(
∂2
ξj
− ξ2

j

)
± A. (6.12)

It is known that the spectrum of the harmonic oscillator
∑m

j=1 λj

(
∂2
ξj
− ξ2

j

)
is exactly the

set
∑m

j=1 λj (1 + 2N) (see e.g. [Pon08], Section 3.4, or [Fol89]; compare also to the proof
of Theorem 4.3.4), and therefore the invertibility of (6.12) is equivalent to the condition

A /∈

{
±

m∑
j=1

λj (1 + 2N)

}
=

{
±

(
1

2
‖L‖1 + 2

m∑
j=1

αj |λj|

)
: αj ∈ Nm

}
.

But this shows statement (i) of the theorem for a scalar A ∈ C, and because of the above
simplifications statement (i) is also proved for A ∈ Matp×p(C).

The second statement where G ∼= H2m+1 × Rd−2m with 2m < d can be proved via the
Rockland condition in a similar way: One can use that the irreducible representations of
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the abelian group Rd−2m are simply the trivial ones. Note that for the case A ∈ R the
second statement can also be proved using Theorem 6.1.2, if we set

bj,k =


|λj |A∑m
j=1 |λj |

for 1 ≤ j ≤ m, k = m+ j

− |λk|A∑m
k=1 |λk|

for 1 ≤ k ≤ m, j = k +m

0, otherwise

in (6.1). This works for both directions of the equivalence we want to prove since in this
situation G is not a Heisenberg group. By a more general version of the Theorem by
Rothschild and Stein (see [RS77]), the case A = B + iC ∈ C is also covered. �

Remark: If we look at the proof of this theorem, we note that the strategy is very similar
to the strategy of proving Theorem 4.3.4: In both cases, we make use of the fact that we can
describe our operator using the irreducible representations of G. While in Theorem 4.3.4
we deduced that the horizontal pull-back Dirac operator on a compact Carnot nilmanifold
has infinite dimensional eigenspaces, we will deduce from this theorem that the square of
any horizontal Dirac operator (and hence the operator DH itself) on a Heisenberg manifold
is not hypoelliptic in Section 6.3. C

Before we close this section, we remark that of course one can combine Theorem 6.1.4
with Theorem 6.1.2 to deduce a better characterization of hypoellipticity for horizontal
Laplacians of the form (6.1), acting on scalar-valued functions. Since this is straight-
forward, we will not write it down here.

6.2 A Reduction Criterion for Non-hypoellipticity

In this section, we want to develop a criterion which we can use to show that any horizontal
Dirac operator on a Carnot manifold is not hypoelliptic. Note that Theorem 6.1.2 is not
very practical for this situation: First of all, it has to be extended to the case of vector
bundles, and even after doing this is seems to be a quite complicated task to work with
the spaces R from (6.2), which depends heavily on the concrete structure of the Carnot
group, in a general setting. But on the other hand Theorem 6.1.4 can be applied easily to
the square of such a horizontal Dirac operator, as long as we are in the case of Heisenberg
manifolds.

Thus the idea we want to follow is to reduce the general problem of excluding hypoellipticity
on an arbitrary Carnot manifold to the co-dimension 1 case. We have already seen that
this approach works for the case of horizontal pull-back Dirac operators on compact Carnot
nilmanifolds in Chapter 4: It was possible to lift the infinite dimensional eigenspaces of
DH to a higher dimensional nilmanifold. In Chapter 4 we used the submersions between
the corresponding Carnot group introduced in Section 2.4, and for our current (and more
general) situation this strategy will also work.
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Like in Section 6.1, we consider a graded differential operator with constant coefficients

D = D(X1, . . . , Xn) ∈ U(g)⊗ Cp

as an element of the universal enveloping algebra of a graded Lie algebra g =
⊕R

S=1 VS
belonging to a Carnot group G of step R. The (vector-valued) functions DH is acting on
are supposed to be defined on a Carnot group G, realized as a non-abelian group structure
on Rn. We remember the orthogonal projection

pr : g→ Ṽ , v 7→ v mod Ṽ ⊥, (6.13)

from Section 2.4, where

Ṽ :=
M−1⊕
S=1

VS ⊕ ṼM

for a linear subspace ṼM ⊂ VM for some 1 ≤M ≤ R. By Proposition 2.4.1, g̃ = pr(g) has
the structure of a nilpotent graded Lie algebra which is induced by g. After applying the
map pr to the elements of g, we get a new differential operator

pr(D) := D (pr(X1), . . . , pr(Xn)) ∈ U(g̃)⊗ Cq

considered as an element of the universal enveloping algebra of g̃. Note that of course the
operator pr(D) is supposed to act on the (compared to G lower dimensional) Carnot group
G̃ = exp(g̃), realized on the Euclidean space Rdim g̃.

By Proposition 2.4.1 the projection pr gives rise to a submersive Lie group homomorphism

ψ := expG̃ ◦ pr ◦ expG−1 : G→ G̃

between the Carnot groups G = exp g and G̃ = exp g̃. The operator pr(D) is supposed
to act on vector-valued functions living on the Carnot group G̃. Since ψ is a submersion,
a function or distribution on G̃ can be extended to a function or distribution on G via
pullback along ψ. This observation leads us to the idea to deduce that D is not hypoelliptic
if pr(D) is not hypoelliptic for some projection of the type (6.13), as we will do via the
following theorem.

Theorem 6.2.1
Let G be a Carnot group with grading g =

⊕R
S=1 VS of its Lie algebra, and letD ∈ U(g)⊗Cp

be a graded differential operator with constant coefficients.

Assume that for some 2 ≤ M ≤ R there is a linear space ṼM ⊂ VM such that the
corresponding orthonormal projection

pr : g→ g̃ := Ṽ =
M−1⊕
S=1

VS ⊕ ṼM , X 7→ X̃ = pr(X)
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defined by (6.13) furnishes a graded differential operator

pr(D) = D(X̃1, . . . , X̃n) ∈ U(g̃)⊗ Cq,

which is not hypoelliptic. Then D is not hypoelliptic.

Proof: We write down the argument for the case p = 1 where D is acting on complex-
valued functions functions; the vector-valued case works analogously. Assume the operator
D̃ constructed above is not hypoelliptic, which means that there exists a distribution
ϕ̃ ∈ D′(G̃) such that ϕ̃ /∈ C∞(G̃), but D̃ϕ̃ ∈ C∞(G̃) for the Carnot group G̃ = exp(g̃). We
have to find a ϕ ∈ D′(G) which is not a C∞-function, such that Dϕ ∈ C∞(G).

We consider the submersive Lie group homomorphism

ψ := expG̃ ◦ pr ◦ exp−1
G : G→ G̃ (6.14)

arising from pr, see (6.2). In addition we use the projection pr⊥ : g → Ker (pr), which is
given by pr⊥(v) = v mod Ṽ , of g onto the kernel of pr. Then from Proposition 2.4.1 we
get an isomorphism

α : G →̃ G̃×N, x 7→ (x̃, n) = (ψ(x), ν(x)) (6.15)

from ψ, where N = Ker(ψ) and

ν := expN ◦ pr⊥ ◦ exp−1
G : G→ N

is the projection onto the kernel of ψ, arising from pr⊥. From now on, we will use the
coordinates (x̃, n) on G ∼= G̃×N which are induced by the isomorphism α from (6.15).

If x = expGX are exponential coordinates (corresponding to a vector field X ∈ g) on G,
then we have

α (expGX) =
(
expG̃ pr(X), expN pr⊥(X)

)
, (6.16)

as one sees immediately from the definition of α via pr. But from these exponential
coordinates we see that for the differential of α we have

Dα(X) =
(
pr(X), pr⊥(X)

)
,

and hence we see how the application of a vector field X ∈ g to a function f ∈ C∞(G)
carries over to the push-forward α∗f of f on G̃×N : We have

Xf(x) =
(
pr(X), pr⊥(X)

)
α∗f(x̃, n), (6.17)

where (x̃, n) = α(x). From now on, we will consider functions and distributions on G as
functions and distributions on G̃×N , where the identification is given via the isomorphism
α.

After these preparations, we are ready to prove the theorem. Let ϕ̃ ∈ D′(G̃) be given such
that ϕ̃ /∈ C∞(G̃), but pr(D)ϕ̃ ∈ C∞(G̃) for our graded differential operator D. For a test
function f ∈ C∞c (G̃×N) we can define the push-forward ψ∗f of f along ψ via

ψ∗f(x̃) :=

∫
N

f(x̃, n)dµ(n), (6.18)
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where µ(n) is the Haar measure on the nilpotent Lie group N . Note that the expression
(6.18) is well-defined since N is a normal subgroup of G as the kernel of the Lie group
homomorphism ψ, and that ψ∗f is a C∞-function with compact support on G̃ since this
is the case for f on G̃×N . But this means we get a distribution ϕ ∈ D′(G̃×N) via

〈ϕ, f〉 := 〈ϕ̃, ψ∗f〉. (6.19)

Obviously, since we assumed ϕ̃ /∈ C∞(G̃), we have ϕ /∈ C∞(G̃ × N). We will show now
that Dϕ ∈ C∞(G), from which the theorem will be proved.

If we apply a vector field X ∈ g to the distribution, which means by (6.17) to apply
(pr(X), pr⊥(X)) ∈ g̃× n to ϕ ∈ D′(G̃×N), we get from (6.19)〈(

pr(X), pr⊥(X)
)
ϕ, f

〉
=
〈
ϕ,
(
pr(X), pr⊥(X)

)
f
〉

=
〈
ϕ̃, ψ∗

[(
pr(X), pr⊥(X)

)
f
]〉 (6.20)

for any test function f ∈ C∞c (G̃ × N). Now for the push-forward of (pr(X), pr⊥(X))f to
G̃ via ψ we calculate, using (6.18),

ψ∗
[(

pr(X), pr⊥(X)
)
f
]

(x̃) =

∫
N

(
pr(X), pr⊥(X)

)
f(x̃, n)dµ(n)

=

∫
N

d

dt
f
(
x̃ .G̃ expG̃ tpr(X), n .N expN tpr⊥(X)

)∣∣∣∣
t=0

dµ(n)

=
d

dt

∫
N

f
(
x̃ .G̃ expG̃ tpr(X), n .N expN tpr⊥(X)

)
dµ(n)

∣∣∣∣
t=0

=
d

dt

∫
N

f (x̃ .G̃ expG̃ tpr(X), n) dµ(n)

∣∣∣∣
t=0

=
d

dt
ψ∗f (x̃ .G̃ expG̃ tpr(X))

∣∣∣∣
t=0

= pr(X)ψ∗f(x̃).

Here we are allowed to interchange differentiation and integration since f is a test function,
and the forth equation is true since the Haar measure is translation invariant. The same
calculation works if we apply another vector field Y to Xϕ, which provides

ψ∗
[(

pr(Y ), pr⊥(Y )
) (

pr(X), pr⊥(X)
)
f
]

(x̃) = pr(Y )pr(X)ψ∗f(x̃), (6.21)

and we can go on inductively for higher order applications of vector fields. Now we can
apply these identities to (6.20) to find that〈(

pr(X), pr⊥(X)
)
ϕ, f

〉
= 〈ϕ̃, pr(X)ψ∗f〉 = 〈pr(X)ϕ̃, ψ∗f〉,

and because of (6.21) the same identity is true if we apply further vector fields to Xϕ. But
this means that for any graded differential operator D we get

〈Dϕ, f〉 = 〈pr(D)ϕ̃, ψ∗f〉. (6.22)
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Now we assumed pr(D)ϕ̃ ∈ C∞(G̃) to be a smooth function. But from this it follows
immediately from (6.22) that Dϕ is a smooth function on G̃×N : We have by this equation
and by the definition of ψ∗f

〈Dϕ, f〉 = 〈pr(D)ϕ̃, ψ∗f〉

=

∫
G̃

pr(D)ϕ̃(x̃)

∫
N

f(x̃, n) dµ(n)dµ(x̃)

=

∫
G̃×N

pr(D)ϕ̃ (x̃) f(x̃, n) dµ(n)dµ(x̃),

where dµ(n) and dµ(x̃) are the corresponding Haar measures on N and G̃. But this shows
that we must have

Dϕ(x̃, n) = pr(D)ϕ̃ (ψ(x̃, n)) ,

and since pr(D)ϕ̃ is smooth this must also be the case for Dϕ.

Altogether we have found a distribution ϕ on G ∼= G̃×N , for which we have Dϕ ∈ C∞(G),
but ϕ /∈ C∞(G), whenever there is a projection pr of the type (6.13) such that pr(D) is
not hypoelliptic. But this shows that the graded differential operator D is not hypoelliptic
in this situation, such that the theorem is proved. �

Remark 6.2.2
We did the proof of Theorem 6.2.1 in the very general setting of distributions. If in a
more specific sense the operator pr(D) is assumed to be hypoelliptic in the sense that
there is a function ϕ̃ on G̃, which lies in the domain of D but which is not C∞, such that
pr(D)ϕ̃ ∈ C∞(G̃), then the hypoellipticity ofD is neglected by the function ϕ(x) = ϕ̃(ψ(x))
on G. The calculation is straight forward, making use of the isomorphism G ∼= G̃×N like
in the proof of the above theorem.

Via the same calculation one can show that pr(D)ϕ̃ = 0 implies Dϕ = 0. But from this,
we immediately get Theorem 4.4.2, which states the degeneracy of the horizontal pull-back
operator on any compact Carnot nilmanifold (if we use the degeneracy in the Heisenberg
case). This is no surprise, since the techniques of lifting an operator from a low-dimensional
Carnot manifold to a higher dimensional one work very similar in both cases. In this way,
the results from this chapter are the more general ones, while we get some extra features
(like the detection of the metric dimension) from the specific examples in Chapter 4 which
we were not able to derive in the general case. C

In the next section, we want to use Theorem 6.2.1 to show that any horizontal Dirac oper-
ator constructed in Section 3.2 is not hypoelliptic. The idea is to use Theorem 6.2.1 after
reducing the operator to an operator acting on a Carnot group of co-dimension 1, which
will be assumed to be of the type H2m+1 × Rd−2m. For this operator, the hypoellipticity
can be neglected by Theorem 6.1.4.
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Like before, let dS := dimVS be the dimension of VS and let {XS,1, . . . , XS,dS} be an

orthonormal basis of VS for the grading g =
⊕R

S=1 VS of g. Then a projection of g onto
a graded nilpotent Lie algebra of co-dimension 1 can be constructed as follows: For any
ν ∈ {1, . . . , d2}, consider the 1-dimensional linear subspace Ṽ2,ν := span{X2,ν} of V2. We
then define Ṽν := V1 ⊕ Ṽ2,ν ⊂ g, such that our orthogonal projection (6.13) becomes

prν : g→ Ṽν , v 7→ v mod
(
Ṽν

)⊥
. (6.23)

We can apply Proposition 2.4.1 to prν , which gives us graded nilpotent Lie algebras g2,ν :=
prν(g) and nν := Ker(prν) with corresponding Carnot groups G2,ν and Nν .

Now let

∆hor = −
d1∑
j=1

X2
j − i

∑
j<k

Aj,k[Xj, Xk] +OH(1) ∈ U(g)⊗ Cq (6.24)

be a horizontal Laplacian acting on a vector bundle E of rank p, which is considered as an
element of the universal enveloping algebra of g tensored with Cp. The term OH(1) denotes
a graded differential operator of order smaller or equal to 1 (which is a first order differential
operator depending only on the vector fields X1, . . . , Xd). The Aj,k are (p × p)-matrices
with complex valued entries.

Using the Lie algebra homomorphism prν from (6.23) we can define a horizontal Laplacian
∆̃hor
ν ∈ U(g2,ν)⊗Cp, acting on a Carnot group with a horizontal distribution {X̃1, . . . , X̃d}

of co-dimension 1: For X̃j := prν(Xj) we get

∆̃hor
ν := pr(∆hor) = −

d1∑
j=1

X̃2
j − i

∑
j<k

Aj,k

(
[X̃j, X̃k]

)
+OH(1) ∈ U(g2,ν)⊗ Cp.

After calculating the commutators we have an Aν ∈ Matp×p(C) such that (for d = d1)

∆̃hor
ν = −

d∑
j=1

X̃2
j − iAνX̃d+ν +OH(1), (6.25)

with X̃d+ν = prν(X2,ν), which is a horizontal Laplacian for which its hypoellipticity can be
determined by Theorem 6.1.4.

This argument enables us to formulate non-hypoellipticity criteria involving the ν-Levi
form introduced in Section 2.3: In the above situation, for ν ∈ {1, . . . , d2} this is the
bilinear form

Lν : V1 × V1 → span{X2,ν}, (Y1, Y2) 7→ [Y1, Y2] mod (span{X2,ν})⊥ . (6.26)

If we fix a basis for V1, Lν is described by an antisymmetric matrix Lν =
(
L

(ν)
jk

)
, such

that Lν(Xj, Xk) = LjkX2,ν . Now we can use Theorem 6.2.1 together with Theorem 6.1.4
to formulate the following criterion.
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Corollary 6.2.3
Let G be a Carnot group with corresponding Lie algebra g =

⊕R
S=1 VS. For any number

ν ∈ {1, . . . , dimV2}, we consider the projection prν from (6.23) of g onto the Lie algebra
g2,ν = prν(g) together with its corresponding Carnot group G2,ν . Let ∆hor ∈ U(g)⊗Cp be a
horizontal Laplacian of the type (6.24), such that the horizontal Laplacian ∆̃hor

ν = prν(∆
hor)

on G2,ν is given via

∆̃hor
ν = −

d∑
j=1

X̃2
j − iAνX̃d+ν +OH(1),

like in (6.25), where Aν ∈ Matp×p(C) and OH(1) denotes a graded differential operator of
order smaller or equal to 1.

Assume there is a ν ∈ {1, . . . , dimV2} such that there is an eigenvector of Aν which is
contained in the singular set Λν defined as follows:

(i) If G2,ν
∼= H2m+1 is isomorphic to the (2m + 1)-dimensional Heisenberg group (with

2m = d), we define

Λν :=

{
±

(
1

2
‖Lν‖1 + 2

∑
1≤j≤m

αj |λj|

)
: αj ∈ Nm

}
,

where ±iλ1, . . . ,±iλm denote the non-zero eigenvalues and ‖Lν‖1 = 2
∑m

j=1 |λj| de-
notes the trace norm of the ν-Levi form Lν .

(ii) If G ∼= H2m+1 × Rd−2m with 2m < d is not isomorphic to a Heisenberg group, then
we define

Λν :=

(
−∞,−1

2
‖Lν‖1

]
∪
[

1

2
‖Lν‖1 ,∞

)
,

where ‖Lν‖1 denotes the trace norm of the ν-Levi form Lν .

Then ∆hor is not hypoelliptic.

Remark: Note that for an arbitrary ν ∈ {1, . . . dimV2}, the cases G2,ν
∼= H2m+1 and

G2,ν
∼= H2m+1 × Rd−2m, with m ≥ 1, are indeed the only possible cases since G2,ν is a

Carnot group of step 2 and horizontal co-dimension 1.

Proof: By Theorem 6.2.1, ∆hor is not hypoelliptic if ∆̃hor
ν is not hypoelliptic for some

ν ∈ {1, . . . , dimV2}. But to the operator ∆̃hor
ν we can apply Theorem 6.1.4, which states

that the operator ∆̃hor
ν is not hypoelliptic if and only if there is an eigenvalue of Aν belonging

to one of the singular sets Λν from (i) and (ii), depending on how the structure of G2,ν

concretely looks like. �

From Corollary 6.2.3, we can immediately derive a simple criterion which ensures us that
a horizontal Laplacian is not hypoelliptic if one of the matrices from (6.25) has a certain
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eigenvalue. In detail we can use the matrices L(ν) of the ν-Levi forms Lν from (6.26) ac-
cording to the frame {X1, . . . , Xd} of V1, such that for all j, k ∈ {1, . . . , d} the commutators
have the form

[Xj, Xk] =

d2∑
ν1

L
(ν)
jk X2,ν .

Thus the horizontal Laplacian (6.24) can be rewritten in the form

∆hor = −
d1∑
j=1

X2
j − i

d2∑
ν=1

∑
j<k

Aj,kL
(ν)
jk X2,ν +OH(1)

= −
d1∑
j=1

X2
j − i

d2∑
ν=1

AνX2,ν +OH(1),

(6.27)

such that the matrices Aν are given by

Aν =
∑
j<k

Aj,kL
(ν)
jk . (6.28)

But from these matrices one can check immediately that a given horizontal Laplacian is
not hypoelliptic:

Corollary 6.2.4
If there is a ν ∈ {1, . . . , dimV2} such that there is an eigenvalue µ of the (p × p)-matrix
Aν from (6.27) with

µ = ±1

2
‖Lν‖1 = ±

m∑
j=1

|λj|,

then the operator ∆hor is not hypoelliptic. Here, for j ∈ {1, . . . ,m} the numbers ±iλj are
supposed to be the non-zero eigenvalues of the ν-Levi form Lν of G.

Proof: Using the projection prν for any ν ∈ {1, . . . , d2} from (6.23), we get from (6.27)

prν
(
∆hor

)
= −

d1∑
j=1

prν(Xj)
2 − iAνprν(X2,ν) +OH(1).

Now we can apply Corollary 6.2.3 to this operator and see that it is not hypoelliptic if
one of the eigenvalues of Aν belongs to one the sets Λν from Corollary 6.2.3. Since the
numbers ±1

2
‖Lν‖1 are included in both sets, the operator ∆hor fails to be hypoelliptic if

one of them is an eigenvalue of one of the matrices Aν , no matter how the Carnot groups
G2,ν = ψν(G) looks like. �
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6.3 Non-hypoellipticity of DH

Using the preparing work done in the last section we are finally ready to show that the
horizontal Dirac operators we constructed in Chapter 3 cannot be hypoelliptic.

We have constructed our horizontal Dirac operatorsDH more or less analogously to classical
Dirac operators, acting on a horizontal Clifford bundle which is arising from the natural
horizontal connection on a Carnot manifold M . We have seen that these operators detect
the Carnot-Carathéodory metric and that they are therefore also a generalization of the
classical case from the Connes metric point of view. If DH would be hypoelliptic, it would
follow that it has a compact resolvent by Heisenberg calculus (which is developed for the
case of Heisenberg manifolds in Chapter 5), and hence it would give a spectral triple. But
this is not the case: We will prove that DH is not hypoelliptic, and therefore the machinery
of graded pseudodifferential calculus does not work. We have already seen this in detail
for a specific example in Chapter 4, and from the following theorems it will follow that
these results fit into the general situation.

To prove the non-hypoellipticity of DH , we will consider its square calculated locally in
Proposition 3.2.8 from Chapter 3. This strategy is justified by the following simple obser-
vation.

Proposition 6.3.1
Let D be a (pseudo-)differential operator acting on a vector bundle E over a manifold M .
Then D is hypoelliptic of and only if D2 is hypoelliptic.

Proof: Assume D is hypoelliptic, which means for any distribution ϕ we have that Dϕ ∈
C∞(M,E) implies ϕ ∈ C∞(M,E). This gives the implication

D2ϕ ∈ C∞(M,E) ⇒ Dϕ ∈ C∞(M,E) ⇒ ϕ ∈ C∞(M,E),

and hence D2 is hypoelliptic.

On the other hand, let D2ϕ ∈ C∞(M,E) imply that ϕ ∈ C∞(M,E). We have to show that
D is hypoelliptic. But this follows immediately since for Dϕ ∈ C∞(M,E), we also have
D2ϕ ∈ C∞(M,E), which shows ϕ ∈ C∞(M,E) by assumption. Altogether the proposition
is proved. �

Since (DH)2 is a horizontal Laplacian, we can use Theorem 6.1.4 to decide about its
hypoellipticity for the case it is acting on a Heisenberg manifold. For the case of a general
Carnot manifold, we can use the criterion developed in Section 6.2 to get a corresponding
horizontal Laplacian on a Heisenberg manifold to which we can apply Theorem 6.1.4. We
have already fulfilled this reduction step in Section 6.2, such that we can simply use the
Corollaries 6.2.3 and 6.2.4 to prove the following theorem.

Theorem 6.3.2
Let M be a Carnot manifold with horizontal distribution HM , equipped with a horizontal
Clifford bundle SH arising from the horizontal connection on M , and let DH be any
horizontal Dirac operator acting on SHM . Then DH is not hypoelliptic.
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Proof: Assume the grading of TM is given by

TM ∼= HM ⊕ V2M ⊕ . . .⊕ VRM,

and that we have a Riemannian metric on M such that these sub-bundles are point-wise
orthogonal to each other. Further we assume {X1, . . . , Xd} (with d = Rank HM) to be
an orthonormal frame for HM and {X2,1, . . . , X2,d2} to be an orthonormal frame for V2M
(with d2 = Rank V2M). After fixing a ν0 ∈ {1, . . . , d2} we can assume the frame of HM
to have the additional property that the matrix L(ν0) ∈ Skewd×d(R) describing the ν0-Levi
form Lν0 with respect to this frame is given by

L(ν0) =

 0 D 0
−D 0 0

0 0 0

 , (6.29)

where D is a diagonal matrix carrying the absolute values λ1, . . . , λm of the non-zero
eigenvalues of Lν0 on its diagonal. This can always be achieved by on orthonormal trans-
formation of the horizontal frame because any ν-Levi matrix is skew symmetric. For the
proof of this theorem, we work with the expression of DH according to this horizontal
frame {X1, . . . , Xd}, see e.g. Equation (3.9) from Theorem 3.2.5.

We show that (DH)2 is not hypoelliptic, then the non-hypoellipticity of DH follows from
Proposition 6.3.1. Note that it suffices to show the non-hypoellipticity locally in an envi-
ronment of any point x ∈M . By Proposition 3.2.8 we have locally

(
DH
)2

= −
d∑
j=1

X2
j +

∑
j<k

cH(Xj)c
H(Xk) [Xj, Xk] +OH(1) (6.30)

with horizontal Clifford action cH : HM → EndSHM on the horizontal Clifford bundle
SHM . As before Xj is to be understood as a component wise directional derivative in a
local chart and OH(1) denotes a graded differential operator of order smaller than or equal
to 1.

For any ν ∈ {1, . . . ,Rank V2M} let L(ν) denote the matrix of the ν-Levi form corresponding
to the frame {X1, . . . , Xd} of V1M . Hence for any pair j, k ∈ {1, . . . , d} we have

[Xj, Xk] =

d2∑
ν=1

L
(ν)
j,kX2,ν ,

and plugging this into (6.30) we find that

(
DH
)2

= −
d∑
j=1

X2
j +

d2∑
ν=1

∑
j<k

cH(Xj)c
H(Xk)L

(ν)
j,kX2,ν +OH(1)

= −
d∑
j=1

X2
j − i

d2∑
ν=1

∑
j<k

icH(Xj)c
H(Xk)L

(ν)
j,kX2,ν +OH(1).
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Now we can use Corollary 6.2.4 applied to the matrix

Aν0 =
∑
j<k

icH(Xj)c
H(Xk)L

(ν0)
j,k ,

where ν0 ∈ {1, . . . , d2} is the number we chose in the beginning of the proof such that the
ν0-Levi matrix L(ν0) has the form (6.29). But this means that we have

Aν0 =
m∑
j=1

icH(Xj)c
H(Xj+m)λj, (6.31)

where λ1, . . . , λm denote the absolute values of the non-zero eigenvalues of Lν .
According to Corollary 6.2.4, we have to show that there is an eigenvalue of the matrix
Aν from (6.31) with absolute value

∑m
j=1 λj. But this has already been done by Propo-

sition 3.2.9 from Section 3.2: This proposition states that i
∑m

j=1 λj and −i
∑m

j=1 λj are
eigenvalues of the matrix

∑m
j=1 λjc(Xj)c(Xm+j). Hence the Theorem is proved because of

Corollary 6.2.4. �

Remark: The property of being hypoelliptic only depends on the leading term of the local
expression (6.30) for the square of DH . As we already noted in the remark after Proposition
3.2.8, this term does not change if we modify DH by adding a section of the endomorphism
bundle of SHM , meaning an order zero term in the language of differential operators. Hence
there is no chance of getting a hypoelliptic first order horizontal differential operator on
SHM via a modification of the connection on SHM by an endomorphism. C

In Chapter 5, Theorem 5.2.1 we have seen that on a compact Heisenberg manifold M we
need the condition of being hypoelliptic to get a resolvent for a Heisenberg pseudodiffer-
ential operator of positive order which is compact. On the other hand, it is clear that
from the existence of a compact resolvent of a differential operator D of order m one can
expect this operator to be hypoelliptic: For every s ∈ R, D can be extended to a bounded
operator

D : Hs(M)→ Hs−m(M)

between the L2-Sobolev spaces Hs(M) and Hs−m(M). Hence we expect a (compact)
resolvent of D to be a mapping from Hs−m(M) to Hs(M) for any s ∈ R. Now assume
D is not hypoelliptic, i.e. that there is an element ϕ /∈ C∞(M) such that Dϕ ∈ C∞(M).
But this means that the resolvent of D maps the C∞-function Dϕ (which is an element
of Hs(M) for every s ∈ R) to a distribution which does not belong to Hs−m(M) for one
s ∈ R. This is a contradiction.

From the above discussion, we can formulate the following corollary.

Corollary 6.3.3
Let M be a Carnot manifold with horizontal distribution HM , equipped with a horizontal
Clifford bundle SH arising from the horizontal connection on M , and let DH be any
horizontal Dirac operator acting on SHM . Then DH does not have a compact resolvent.
�
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We emphasize once again that Theorem 6.3.2 is true for any example of a horizontal Dirac
operator according to the horizontal Levi-Civita connection on HM one can imagine. It
is true for the horizontal pull-back Dirac operators we discussed in Chapter 4, and it is
also true for horizontal Dirac operators defined on classical Clifford or spinor bundles (by
skipping the non-horizontal derivatives), see Proposition 3.2.7. In particular, it is true for
the operator dH +(dH)∗, where dH is the horizontal exterior derivative (see Example 3.2.4).
Note that all these constructions are based on the horizontal connection on M , which is
induced by the Levi-Civita connection.

This shows that the degeneracy we detected in Chapter 4 for the horizontal pull-back Dirac
operator on compact Carnot nilmanifolds is not because of a bad choice for DH . Rather it
reflects a general phenomenon: The natural differential operator, which detects the Carnot-
Carathéodory metric on a Carnot manifold via Connes’ formula, does not give a spectral
triple, and the classical construction of a spectral triple on a compact spin manifold cannot
be transported to the Carnot case.
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Chapter 7

Spectral Triples from Horizontal
Laplacians

In the last chapter we saw that the canonical candidate for a spectral triple over a Carnot
manifold detecting the horizontal geometry, the horizontal Dirac operator DH , reproduces
the Carnot-Carathéodory metric but is not hypoelliptic, and therefore does not have a
compact resolvent in the Heisenberg calculus. But on the other hand the classical hypoel-
lipticity criteria imply that there are a lot of horizontal Laplacians which are hypoelliptic,
and in addition (at least in the Heisenberg case) give back the Hausdorff dimension of
(M,dCC) via their eigenvalue asymptotics.

Now this chapter is devoted to studying horizontal Laplacians and to discussing how they
furnish the geometry in the sense of Connes. In the first section we show explicitly how one
can construct a spectral triple from a positive hypoelliptic horizontal Laplacian using the
Heisenberg calculus. We present some operators which are induced by a small perturbation
of the square of a horizontal Dirac operator. Then in Section 7.2 we will show that any
horizontal Laplacian detects the Carnot-Carathéodory metric of a Carnot manifold via a
formula similar to Connes’ one. We also discuss what this means for a first order operator
whose square is a horizontal Laplacian.

The last section of this chapter is rather speculative: We intend to give some ideas how
one can find estimates for the Connes metric of spectral triples arising from horizontal
Laplacians towards the Carnot-Carathéodory metric (which is exactly detected by a hori-
zontal Dirac operator DH). Therefore we use some of the observations we made in Section
1.2 concerning the convergence of the metrics belonging to compact quantum order unit
spaces. But sadly we have not been able to prove such an estimate, so there are a few open
problems formulated in that section.

131
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7.1 Spectral Triples via Heisenberg Calculus

We now point out how we can construct spectral triples on compact Heisenberg manifolds
using the Heisenberg calculus we introduced in Chapter 5. The idea is to start with a
hypoelliptic, positive horizontal Laplacian ∆hor and to consider the operator Dhor =

√
∆hor,

defined via functional calculus.

To show that such a construction indeed furnishes a spectral triple, we check that the com-
mutator of any Heisenberg pseudodifferential operator of order 1 with a smooth function
f is bounded.

Proposition 7.1.1
Let M be a Heisenberg manifold and P ∈ Ψ1

H(M,E) a Heisenberg pseudodifferential op-
erator of order 1 acting on a vector bundle E over M . For any function f ∈ C∞(M) we
denote by Mf the operator of multiplication by f on the Hilbert space L2(M,E). Then
the commutator [P,Mf ] is bounded.

Proof: We assume that E is the trivial line bundle over M , the general case works
analogously. Our strategy is to show that the symbol of the commutator [P,Mf ] lies in
S0
H(M), and hence provides a Heisenberg pseudodifferential operator of order 0. Since
S0
H(M) ⊂ S0

1/2, 1/2 for the Hörmander class S0
1/2,1/2 by Theorem 5.1.3, this implies by

classical pseudodifferential calculus that [P,Mf ] is bounded (see also Corollary 5.1.4).

First of all we note that the multiplication operator Mf is a Heisenberg pseudodifferential
operator of order 0, and its symbol is exactly the function f by the definition of the
symbol classes (see Definition 5.1.1). Let p ∈ S1

H(M) denote the symbol of P . Then we
can calculate the symbol of the commutator [P,Mf ] using Theorem 5.1.5: For general
Heisenberg symbols q1 of order m1 and q2 of order m2, the asymptotic expansion of the
symbol

q = q1#q2 ∼
∑
k≥0

qm1+m2−k,

denoting the symbol of the composition of Op(q1)Op(q2), is given by the terms

qm1+m2−k(x, ξ) =
∑

k1+k2≤k

(k−k1−k2)∑
α,β,γ,δ

hα,β,γ,δ(x) ·
(
Dδ
ξq1,m1−k1(x, ξ)

)
∗
(
ξγ∂αx∂

β
ξ q2,m2−k2(x, ξ)

)
,

(7.1)

where
∑(l)

α,β,γ,δ denotes the sum over all the indices such that

|α|+ |β| ≤ 〈β〉 − 〈γ〉+ 〈δ〉 = l and |β| = |γ|, (7.2)

and the functions hα,β,γ,δ are polynomials in the derivatives of the coefficients of the vector
fields X1, . . . , Xd, Xd+1 forming a graded frame for TM . The operation ∗ denotes the
operation of point-wise convolution, varying smoothly over x (see Equations (5.8) and (5.9)
from Section 5.1). See the discussion before Theorem 5.1.5 for a more detailed explanation.
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To get the boundedness of the commutator we only have to show that the order 1 part of this
asymptotic expansion vanishes, since all the lower order terms have maximal Heisenberg
order 0 which gives rise to a bounded operator by Corollary 5.1.4. Since m1 + m2 = 1
in our situation, these are exactly the terms in (7.1) such that k = 0. But this means
k1 = k2 = 0 and therefore also α, β, γ, δ = 0 by (7.2). Now the Heisenberg symbol of the
commutator [P,Mf ] = Pf − fP is given by

σH([P,Mf ]) = p#f − f#p,

and for its leading (Heisenberg order 1) symbol we have because of the above argumentation

(p#f − f#p)1 (x, ξ) = h0,0,0,0(x) · (p1(x, ξ) ∗ f(x)− f(x) ∗ p1(x, ξ)) , (7.3)

where p1 denotes the leading term of the Heisenberg symbol of P . Note that the polynomial
h0,0,0,0(x) only depends on the coefficients of the vector fields X1, . . . , Xd+1, but not on the
symbols of the operators to be composed.

Hence all we have to show is that the convolution of p1 and f commutes. But this is
clear by the definition of the convolution: Whenever we fix an x ∈M , the terms commute
point-wise in x since in this case f(x) is a constant. Now since ∗ varies smoothly in x, this
shows that

p1(x, ξ) ∗ f(x)− f(x) ∗ p1(x, ξ) = 0,

and from (7.3) we get (p#f − f#p)1 = 0.

We have seen that the leading term in the asymptotic expansion of the symbol belonging
to the commutator [P,Mf ] has mostly Heisenberg order zero, and we can conclude that
this commutator is bounded by Corollary 5.1.4. Therefore the proposition is proved. �

To check the compactness of the resolvent, we refer to Theorem 5.2.1, which states that
for a hypoelliptic self-adjoint ΨHDO P of order ν the operator P s is a ΨHDO of order νs.
Then it is clear that ΨHDOs of order one can provide spectral triples.

Theorem 7.1.2
Let M be a compact Heisenberg manifold, and let P be a hypoelliptic self-adjoint ΨHDO
of order 1 acting on a vector bundle E over M , which is bounded from below.

Then the triple
(A,H, D) =

(
C(M), L2(M,E), P

)
is a spectral triple, where the representation π : C(M) → B(L2(M,E)) is given by left
multiplication of a function f ∈ C(M).

Proof: We have to show that

(i) There is a dense sub-algebra A′ ⊂ C(M) such that [P, π(f)] is bounded for any
f ∈ A′.

(ii) The operator P has a compact resolvent.
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Statement (i) is immediately clear from Proposition 7.1.1, since C∞(M) is a dense sub-
algebra of C(M). And statement (ii) follows immediately from Theorem 5.2.1: By this
theorem, the operator (P 2 + I)−1/2 exists in the Heisenberg calculus and is a ΨHDO of
order −1. Since M is compact, this is a compact operator by Corollary 5.1.7, and therefore
P possesses a compact resolvent. �

From the above considerations we find that it is in general possible to construct spectral
triples via the Heisenberg calculus. We will see that concrete examples can be comfortably
derived from horizontal Laplacians, and by the results stated in Section 5.2 concerning the
eigenvalue asymptotics we will also see that the metric dimension of these spectral triples
provides the Hausdorff dimension of (M,dCC).

Theorem 7.1.3
Let M be a compact Heisenberg manifold equipped with a horizontal distribution of rank
d, and let ∆hor be a hypoelliptic self-adjoint horizontal Laplacian which is bounded from
below, acting on a vector bundle E over M . Then the triple(

C(M), L2(M,E),
(
∆hor

) 1
2

)
(7.4)

is a spectral triple of metric dimension d+ 2.

In particular, the metric dimension of this spectral triple coincides with the Hausdorff
dimension of the Carnot manifold (M,dCC).

Proof: Without loss of generality we assume ∆hor to be invertible (since it is bounded
from below, this can always be achieved by adding a constant). Thus, by Theorem 5.2.1,(
∆hor

)1/2
exists and is a ΨHDO of order one, which is hypoelliptic, self-adjoint and positive.

Then the statement that (7.4) is a spectral triple follows from Theorem 7.1.2.

To get the additional statement about the metric dimension of this spectral triple, we can
apply Theorem 5.2.3, which says that the eigenvalues of ∆hor have the asymptotic behavior

λk
(
∆hor

)
∼
(

k

ν0 (∆hor)

) 2
d+2

,

which gives us

λk

((
∆hor

) 1
2

)
∼
(

k

ν0 (∆hor)

) 1
d+2

.

This asymptotic behavior shows that
(
∆hor

)−p/2
is trace class if and only if p > d+2. Thus

the metric dimension of the spectral triple is d+ 2, which is also the Hausdorff dimension
of (M,dCC) by Theorem 2.1.6. �

From now on, we consider once again the orthonormal frame {X1, . . . , Xd, Xd+1} of the
tangent bundle of our Heisenberg manifold M , such that {X1, . . . , Xd} span the horizontal
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distribution HM . We assume that the Levi form of M according to this frame is given by
the matrix

L =

 0 Dm 0
−Dm 0 0

0 0 0

 with Dm =

λ1

. . .

λm

 , λ1, . . . , λm > 0 (7.5)

for an m ≤ d/2. Note that such a Levi-form can always be achieved by an orthonormal
change of the frame (see Proposition 2.3.3). But this means we have G ∼= H2m+1 × Rd−2m

for the underlying Carnot group, and the commutator relation of the vector fields belonging
to the frame of M become

[Xj, Xk] =


λj, for 1 ≤ j ≤ m, k = m+ j

−λk for 1 ≤ k ≤ m, j = k +m

0 otherwise

.

Now an obvious candidate for a horizontal Laplacian which provides a spectral triple is the
sum-of-squares operator

∆H = ∇∗X1
∇X1 + . . .+∇∗Xd∇Xd , (7.6)

where ∇ is any connection acting on a vector bundle E over M . This operator is obviously
self-adjoint, and after applying Hörmander’s sum-of-squares theorem (see Theorem 6.1.1)
in any local chart we see that is is hypoelliptic. It is also known that this operator is
bounded from below, as it is the case for any self-adjoint horizontal Laplacian, whose
principal symbol is invertible in the Heisenberg calculus. See [Pon08], Remark 5.2.10 for
that.

As we have seen in the previous chapters, the horizontal Dirac operator DH detecting the
Carnot-Carathéodory metric on M is not hypoelliptic and therefore does not provide a
spectral triple. To see why the hypoellipticity fails, we take a look at the proof of Theorem
6.3.2 adapted to this situation: The square of DH is (locally) given by

(
DH
)2

= −
d∑
j=1

X2
j +

d∑
j=1

λjc
H(Xj)c

H(Xm+j)Xd+1 +OH(1), (7.7)

and this operator fails to be hypoelliptic since i
∑m

j=1 λj and −i
∑m

j=1 λj are eigenvalues

of the matrix
∑d

j=1 λjc(Xj)c(Xm+j). This is the content of Theorem 6.1.4, but the same
theorem also states that the operator from (7.7) would be hypoelliptic if the absolute value
of every eigenvalue of the matrix coefficient of Xd+1 would be smaller than

∑m
j=1 λj. Since

this is fulfilled for any other eigenvalue of
∑d

j=1 λjc(Xj)c(Xm+j) (see Proposition 3.2.9),
one can disturb this operator by a small number θ > 0 and conclude that the operator

(
DH
θ

)2
:= −

d∑
j=1

X2
j + (1− θ)

d∑
j=1

λjc
H(Xj)c

H(Xm+j)Xd+1 +OH(1)
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is hypoelliptic for any 0 < θ ≤ 1.

We thus construct a spectral triple which shall be a small perturbation of the horizontal
Dirac operator, using the sum-of-squares operator from (7.6). The connection we are using
is the horizontal Clifford connection ∇SH from Section 3.2, acting on a Clifford bundle
SHM over M on which the horizontal Dirac operator DH is defined.

Corollary 7.1.4
Let M be a closed Heisenberg manifold, and let SHM be a horizontal Clifford bundle over
M on which a horizontal Dirac operator DH is acting. We further define the horizontal
Laplacian

∆H =
(
∇SH

X1

)∗
∇SH

X1
+ . . .+

(
∇SH

Xd

)∗
∇SH

Xd
.

Then for any 0 < θ ≤ 1 the operator

DH
θ :=

(
(1− θ)

(
DH
)2

+ θ∆H
) 1

2
(7.8)

provides a spectral triple (C(M), L2(SHM), DH
θ ) of metric dimension d+ 2.

Proof: We have to show that for any θ ∈ (0, 1] the operator

∆H
θ := (1− θ)

(
DH
)2

+ θ∆H ∈ Ψ2
H(SHM) (7.9)

is positive (which also means that (7.8) is well-defined) and hypoelliptic. In this case we
can apply Theorem 7.1.3 to get that DH

θ provides a spectral triple of metric dimension
d+ 2 and the corollary is proved.

We assume that ∆H ≥ 0, which can always be achieved by adding a constant because it is
bounded from below. Since the horizontal Dirac operator DH is self-adjoint by Theorem

3.2.5, its square
(
DH
)2

is positive, and therefore ∆H
θ from (7.9) is positive as a convex

combination of positive operators.

To show that ∆H
θ is hypoelliptic, we note that

∆H
θ = θ∆H + (1− θ)

(
DH
)2

= ∆H + (1− θ)
((
DH
)2 −∆H

)
. (7.10)

We consider this operator in the local frame {X1, . . . , Xd+1} introduced above, such that
HM = span{X1, . . . , Xd} and the matrix of the Levi form corresponding to this basis is
given by (7.5). But in these local coordinates, the argument we sketched in the discussion
preceding this corollary applies: We have locally ∆H = −

∑d
j=1X

2
j and therefore

(
DH
)2 −∆H =

m∑
j=1

cH(Xj)c
H(Xm+1)Xd+1 +OH(1)

by the local expression of (DH)2 from Proposition 3.2.8. Hence (7.10) has locally the form

∆H
θ = −

d∑
j=1

X2
j + (1− θ)

m∑
j=1

cH(Xj)c
H(Xm+1)Xd+1 +OH(1), (7.11)
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where like in the previous chapters OH(1) denotes a graded differential operator of order
smaller than or equal to 1. Now by Proposition 3.2.9, the eigenvalues of the matrix

(1− θ)
m∑
j=1

λjc
H(Xj)c

H(Xm+j)

are included in the interval[
−(1− θ)i

d∑
j=1

λj, (1− θ)i
d∑
j=1

λj

]
⊂ Ri

on the imaginary line, and since 1 ≥ θ > 0 the absolute value of any of these eigenvalues
is smaller than

∑d
j=1 λj = 1

2
tr|L|. But this means by Theorem 6.1.4 that ∆H

θ is (locally)
hypoelliptic.

The global hypoellipticity then follows by Theorem 5.1.13, and the theorem is proved. �

7.2 Detection of the Metric via Horizontal Laplacians

After we have constructed spectral triples from horizontal Laplacians, we ask ourselves
whether one can detect the Carnot-Carathéodory metric from these spectral triples. While
we postpone the discussion of estimates for the Connes metric formula of these operators to
Section 7.3, we want to show now that there is a formula to detect the Carnot-Carathéodory
metric directly from any horizontal Laplacian. In the case where we have an ordinary
Laplacian ∆ = −

∑n
j=1 X

2
j , it is known that for f ∈ C∞(M) we have

[[∆, f ], f ] = −2 ‖df‖2 ,

see for example [BGV04], Proposition 2.3. Now an analogous result is true for horizontal
Laplacians: The key observation is the following lemma.

Lemma 7.2.1
Let ∆hor be a horizontal Laplacian, acting on a vector bundle E over a Carnot manifold
M . Then we have for any function f ∈ C∞(M)

1

2

[[
∆hor, f

]
, f
]
σ = −

∥∥gradHf
∥∥2
σ (7.12)

for σ ∈ Γ∞(M,E). Here, ‖ · ‖ denotes the (point-wise) norm of a vector in ExM induced
by the Riemannian metric g on M .

Proof: Let TM = V1M ⊕ . . .⊕ VRM be the grading of M , such that {X1, . . . , Xd} is an
orthonormal frame of V1M and {Xd+1, . . . , xd+d2} is an orthonormal frame of V2M . We
prove the statement locally, meaning that ∆hor is given in the form

∆hor = −
d∑
j=1

∂2
Xj

+B(∂X1 , . . . , ∂Xd+d2 ) + b, (7.13)
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where ∂Xk denotes the partial derivative along Xk in any chart, B(∂X1 , . . . , ∂Xd+d2 ) is any
differential operator of (classical) order 1 and b is a (matrix-valued) function.

We now plug the expression (7.13) term by term into the double commutator of (7.12) and
use the linearity of the commutator. Since b commutes with any smooth function f , this
is zero for the last summand. It is also zero for the second summand of (7.13), since for
any first order differential operator B = B(∂X1 , . . . , ∂Xd+d2 ) we have because of the Leibniz
rule

[[B, f ] , f ]σ = [Bf − fB, f ]σ

= B(f 2σ)− 2f ·B(fσ) + f 2 ·Bσ
= 2(Bf) · fσ + f 2Bσ − 2f · (Bf) · σ − 2f 2 ·Bσ + f 2 ·Bσ
= 0

locally for any section σ ∈ Γ∞(M,E).

Calculating the first term of (7.13), we find that for the double commutator applied to any
∂2
Xj

we have[[
∂2
Xj
, f
]
, f
]
σ

= ∂2
Xj

(f 2σ)− 2f · ∂2
Xj

(fσ) + f 2 · ∂2
Xj
σ

= ∂Xj
(
2(∂Xjf) · fσ + f 2 · ∂Xjσ

)
− 2f · ∂Xj

(
(∂Xjf) · σ + f · ∂Xjσ

)
+ f 2 · ∂2

Xj
σ

= 2(∂2
Xj
f) · fσ + 2(∂Xjf)2 · σ + 4(∂Xjf) · f · ∂Xjσ + f 2 · ∂2

Xj
σ

−2f · (∂2
Xj
f) · σ − 4f · (∂Xjf) · (∂Xjσ)− 2f 2 · ∂2

Xj
σ + f 2 · ∂2

Xj
σ

= 2(∂Xjf)2 · σ.

Finally, we plug everything together into the double commutator expression (7.13), which
shows us that

1

2
[[∆, f ] , f ]σ = −1

2

d∑
j=1

[[
∂2
Xj
, f
]
, f
]
σ

= −
d∑
j=1

(∂Xjf)2 · σ

= −
∥∥gradHf

∥∥2
σ.

Hence the statement of the lemma is proved. �

From the identity (7.12) we get an expression depending on a horizontal Laplacian instead
of a horizontal Dirac operator which can detect the Carnot-Carathéodory metric, following
the theory from Section 3.3. By Corollary 3.3.7, we have for the Carnot-Carathéodory
metric

dCC(x, y) = sup

{
|f(x)− f(y)| : f ∈ LipCC(M), ess sup

ξ∈M

∥∥gradHf(ξ)
∥∥ ≤ 1

}
. (7.14)
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Using this expression, we can prove the following theorem.

Theorem 7.2.2
Let ∆hor be a horizontal Laplacian, acting on a vector bundle E over a closed Carnot
manifold M . Then we have for any x, y ∈M

dCC(x, y) = sup

{
|f(x)− f(y)| : f ∈ C∞(M),

∥∥∥∥1

2

[[
∆hor, f

]
, f
]∥∥∥∥ ≤ 1

}
, (7.15)

where dCC is the Carnot-Carathéodory metric on M .

Proof: By Lemma 7.2.1 we have∥∥∥∥1

2

[[
∆hor, f

]
, f
]∥∥∥∥ = sup

x∈M

∥∥gradHf(x)
∥∥2
.

In addition, we have shown in Section 3.3 that∥∥[DH , f ]
∥∥ = sup

x∈M

∥∥gradHf(x)
∥∥

for any smooth function f ∈ C∞(M). Thus (7.14) provides us

dCC(x, y) = ess sup

{
|f(x)− f(y)| : f ∈ C∞(M), sup

ξ∈M

∥∥gradHf(ξ)
∥∥ ≤ 1

}
.

Since
∥∥gradHf(x)

∥∥2 ≤ 1 if and only if
∥∥gradHf(x)

∥∥ ≤ 1, the statement of the theorem
follows from Lemma 7.2.1. �

Theorem 7.2.2 states that it is possible to detect the Carnot-Carathéodory metric by
arbitrary positive horizontal Laplacians. In the case DH is a horizontal Dirac operator
constructed in Chapter 3, both DH and (DH)2 detect the Carnot-Carathéodory metric via
the corresponding formulas.

Now it is a natural question whether one can use the metric detection by a positive hori-
zontal Laplacians to find estimates for the Connes metric given by its square root operator.
For the rest of this section, we take the algebra C∞(M) as the dense sub-algebra of C(M)
over which the Connes metric is defined, i.e. we consider the metric

dD(x, y) = sup {|f(x)− f(y)| : f ∈ C∞(M), ‖[D, f ]‖ ≤ 1} (7.16)

for an operator D defining a spectral triple. Then we can note the following criterion.

Proposition 7.2.3
Let D̃ be a self-adjoint operator acting on a closed Carnot manifold M and defining a

spectral triple such that D̃2 = ∆hor is a horizontal Laplacian. Let dD̃ denote the Connes
metric defined by D̃ via (7.16).
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Then if the condition [
D̃, f

]2

=
1

2

[
[∆hor, f ], f

]
(7.17)

is fulfilled, we have the estimate

dD̃(x, y) ≤ dCC(x, y)

for all points x, y ∈M .

Proof: This follows immediately from the formulas for the metrics. By (7.17) we see that∥∥∥∥1

2

[
[∆hor, f ], f

]∥∥∥∥ =

∥∥∥∥[D̃, f]2
∥∥∥∥ ≤ ∥∥∥[D̃, f]∥∥∥2

. (7.18)

But this shows that ‖[D̃, f ]‖ ≤ 1 implies ‖[[∆hor, f ], f ]‖ ≤ 1, which gives together with
Theorem 7.2.2 the desired estimates for the corresponding metrics:

dD̃(x, y) = sup
{
|f(x)− f(y)| :

∥∥∥[D̃, f]∥∥∥ ≤ 1
}

≤ sup

{
|f(x)− f(y)| :

∥∥∥∥1

2

[
[∆hor, f ], f

]∥∥∥∥ ≤ 1

}
= dCC(x, y).

�

Now in case DH is a horizontal Dirac operator, condition (7.17) is fulfilled as we will see
in a minute. In this situation we even have equality of the metrics, since estimate (7.18)
in the proof of the proposition is an equality. The reason for this is that [DH , f ] is exactly
the horizontal Clifford action cH of the horizontal gradient of f , and that at each point
x ∈M cH : HxM → EndC(SHM) is an isometry.

We now develop a condition equivalent to (7.17) from elementary commutator calculations.

Proposition 7.2.4
Let A,B be linear operators on a Hilbert space. Then we have

[A,B]2 =
1

2

[[
A2, B

]
B
]

if and only if
A [[A,B], B] + [[A,B], B]A = 0 (7.19)

Proof: This is just a simple calculation involving commutator rules:[[
A2, B

]
B
]

= [A[A,B] + [A,B]A,B]

= [A[A,B], B] + [[A,B]A,B]

= A [[A,B], B] + [A,B][A,B] + [A,B][A,B] + [[A,B], B]A.

From this equation, we see the equivalence of the two statements. �
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From the aspect of spectral triples, we choose in Proposition 7.2.4 A = D (the Dirac
operator of the triple) and B = f (the representation of the corresponding algebra on the
Hilbert space, which is multiplication by functions in the commutative case). Hence it is
obvious that (7.19) is fulfilled if D is a first-order differential operator, since in this case
we have [D, f ] = 0.
More generally, (7.19) is fulfilled if the operator D fulfills the order-one condition for a
spectral triple by Alain Connes (see e.g. [Con96]), or [GVF01], Section 10.5), which states
in the commutative situation that [[D, f ], g] = 0 for all f, g ∈ C∞(M). Therefore we can
write down the following corollary.

Corollary 7.2.5
Let M be a closed Carnot manifold. If (C(M), L2(ΣM), D̃) is a spectral triple such that

D̃2 = ∆hor is a horizontal Laplacian, which fulfills the order one condition, then we have
for any points x, y ∈M

dCC(x, y) ≥ sup
{
|f(x)− f(y)| : f ∈ C∞(M),

∥∥∥[D̃, f ]
∥∥∥ ≤ 1

}
.

Proof: This follows immediately by Proposition 7.2.4 and Proposition 7.2.3 together with
the above discussion. �

But despite this corollary, we note that the condition (7.17) or, equivalently by Proposition
7.2.4,

D̃
[
[D̃, f ], f

]
+
[
[D̃, f ], f

]
D̃ = 0

seem to be rather strong conditions for the case where D̃ is not a differential operator.

7.3 Approaches for Approximation of the Metric

Although the horizontal Dirac operator, which detects the Carnot-Carathéodory metric,
does not furnish a spectral triple, we have seen in Section 7.1 that there are quite a lot of
spectral triples arising from Heisenberg calculus which give at least the right dimension. In
particular the spectral triples constructed in Corollary 7.1.4 only differ by a small parameter
from the horizontal Dirac operator. But sadly we do not know how their Connes metric
behaves with respect to the Carnot-Carathéodory metric.

Now in this final section we want to present a few ideas how one can approximate the
Carnot-Carathéodory metric by a family of spectral triples. Therefore we use the observa-
tions made in Section 1.2 concerning arbitrary compact quantum metric spaces to develop
criteria for this approximation. First of all, we give a reformulation of Proposition 1.2.5
and Proposition 1.2.6 for our setting.
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Proposition 7.3.1
Let M be a closed Carnot manifold, where dCC is the Carnot-Carathéodory metric on M .
Let further DH denote a horizontal Dirac operator on M , acting on a horizontal Clifford
bundle SHM .

(i) Let D̃ be an operator on L2(SHM) such that (C(M), L2(SHM), D̃) is a spectral
triple. If there exists a constant 0 < C < 1 such that∥∥∥[D̃ −DH , f ]

∥∥∥ ≤ C
∥∥[DH , f ]

∥∥ (7.20)

for any f belonging to a suitable sub-algebra of C(M), then the Connes metric dD̃
arising from D̃ is equivalent to dCC .

(ii) Let for 0 < θ ≤ 1 the family D̃θ be a family of operators on SHM with the property
that

∀ε > 0 ∃δ > 0 : 0 < θ < δ ⇒
∥∥∥[D̃θ −DH , f ]

∥∥∥ < ε ∀f ∈ Σ0, (7.21)

where Σ0 := {f ∈ A′ : LipCC(f) = 1} for a suitable sub-algebra A′ of C(M). Then
for every ε > 0 with ε < 1 there is a δ > 0 such that

(1− ε) dD̃θ(x, y) ≤ dCC(x, y) ≤ (1 + ε) dD̃θ(x, y) ∀x, y ∈M (7.22)

for every 0 < θ < δ.

Proof: We set L0(f) := ‖[DH , f ]‖, which is a Lip-norm on C(M) coinciding with the
Carnot-Carathéodory-Lipschitz constant LipCC(f) of f by Corollary 3.3.8. Further L1 :=
‖[D̃, f ]‖ in (i) and Lθ := ‖[D̃θ, f ]‖ in (ii) are also Lip-norms on C(M), since they arise
from spectral triples. But in this context (i) is just a reformulation of Proposition 1.2.6
and (ii) is just a reformulation of Proposition 1.2.5. �

This proposition implies that we would be able to prove good metric approximations by
spectral triples for the Carnot-Carathéodory metric if the following (far more general)
assumption is true.

Assumption 7.3.2
Let P be a first order Heisenberg pseudodifferential operator, acting on a Heisenberg
manifold M , and let f ∈ C∞(M) or (more generally) f ∈ LipCC(M). Then there exists a
C > 0 such that

‖[P, f ]‖ ≤ C · LipCC(f), (7.23)

where LipCC(f) denotes the Carnot-Carathéodory-Lipschitz constant of f from Definition
3.3.2. C
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This assumption is motivated by the fact that something analogous is true for the classical
Lipschitz functions Lip(M) and for classical pseudodifferential operators of order 1 belong-
ing to the class S1

1,0. For this classical situation, the statement can be found in [Tay91],
Section 3.6. But the proof presented in the book by Taylor is quite involved, such that it
is far away from being trivial to transfer this proof to the Carnot-Carathéodory situation.

Unfortunately, we have not found a way to prove the estimates (7.20) or (7.21), and
the proof of the above assumption (if possible) seems to be an even harder and much
involved problem. But we assume that the Connes metrics arising from the spectral triples
constructed in Corollary 7.1.4 are a good approximation of the Carnot-Carathéodory metric
(note that we have in the formulation of the corollary DH

0 = |DH | with DH the horizontal
Dirac operator).

As an open problem, we present an approximation of the degenerate spectral triple

(C(M), L2(ΣH
δ M), DH)

for the case where M is the compact nilmanifold of a Heisenberg group H2m+1, and DH

is the horizontal pull-back Dirac operator arising from a spin structure δ of the 2m-
dimensional torus constructed in Chapter 4. Let {X1, . . . , Xd} be an orthonormal frame
of the horizontal distribution HM of M (with d = 2m), such that the horizontal pull-back
Dirac operator is given by

DH =
d∑
j=1

cH(Xj)∇ΣH

Xj
,

see Section 4.1 for the explicit construction. We have seen in Section 4.3 that the only
space where this horizontal Dirac operator degenerates is its infinite dimensional kernel,
but otherwise it has all the properties we ask for (see Corollary 4.3.5 and Corollary 4.3.7).

The idea is now to fix the gap of degeneracy on the kernel ofDH by using the sum-of-squares
operator

∆H =
d∑
j=1

(
∇ΣH

Xj

)∗
∇ΣH

Xj
.

It is known that ∆H is hypoelliptic and bounded from below (see also Section 7.1 for this).
Now let P denote the orthogonal projection onto the kernel of DH . Since the spectrum of
DH is discrete, this projection operator is a pseudodifferential operator of order 0, and it
is also an order-zero operator in the Heisenberg calculus. Then for a small θ > 0 we define
an operator DH

θ via

DH
θ := DH + θ · P

(
∆H
) 1

2 P. (7.24)

By the above argumentation, this is a hypoelliptic Heisenberg pseudodifferential operator,
and hence it does define a spectral triple. In addition it detects the metric dimension of
(M,dCC) via its eigenvalue asymptotics, since we have the right eigenvalues asymptotics
on (kerDH)⊥ by Corollary 4.3.7 and on kerDH) because of the eigenvalue asymptotics of
∆H (see Theorem 5.2.3).
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Now if Assumption 7.3.2 is true, we have a constant C > 0 such that∥∥∥[P
(
∆H
) 1

2 P, f ]
∥∥∥ ≤ C · LipCC(f). (7.25)

Note that in this situation it would be enough to have the estimate (7.25) on the kernel of
DH , which may be much easier to prove than the general case of (7.23). This would lead
to the estimate ∥∥[DH −DH

θ , f ]
∥∥ ≤ ∥∥∥θ[P (∆H

) 1
2 P, f ]

∥∥∥ ≤ θC · LipCC(f),

because of the definition (7.24) of DH
θ , and we could use Proposition 7.3.1 to show that

dDHθ (x, y)→ dCC(x, y) for θ → 0 for all points x, y ∈M .
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[Hoe67] L. Hörmander, Hypoelliptic second order differential equations. Acta Math.
119 (1967), 147-171.

[IKM01] B. Iochum, T. Krajewski, P. Martinetti, Distances in finite spaces from non-
commutative geometry. J. Geom. Phys. 37 (2001), no. 1-2, 100-125.

[Kir62] A.A. Kirillov, Unitary representations of nilpotent Lie groups. Russ. Math.
Survey 17 (1962), 53-104.

[Kir04] A.A. Kirillov: Lectures on the orbit method. American Mathematical Society,
2004.

[Kna05] A.W. Knapp: Lie groups beyond an introduction, 2nd edition., Birkhäuser,
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