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Zusammenfassung 

Kohlenwasserstoffe (KW) sind die am häufigsten vorkommenden organischen 
Verbindungen in der Biogeosphäre unserer Erde. Viele Mikroorganismen besitzen die 
Fähigkeit Kohlenwasserstoffe abzubauen. Die Folge mikrobieller Abbauprozesse in 
Öllagerstätten ist eine Akkumulation von schwerem, mit konventionellen Fördermethoden 
nicht extrahierbaren Rohöls in den Lagerstätten. Vor diesem Hintergrund stellt die 
mikrobielle Umwandlung von schwer extrahierbarem Rohöl in Methan eine neue Strategie 
zur besseren KW-Nutzung dar. Auch Grubengas aus aktiven und stillgelegten Kohleminen 
kann als Energiequelle zur Strom- und Wärmeerzeugung genutzt werden. Desweiteren 
trägt das erweiterte Wissen über KW-abbauende Prozesse und der daran beteiligten 
mikrobiellen Gemeinschaften zur effektiveren biologischen Sanierung und Eliminierung von 
toxischen Substanzen aus kontaminierten Böden, Sedimenten und Aquiferen bei.  

Ziel dieser Studie ist der Nachweis mikrobieller KW-Abbauprozesse in anoxischen 
Ökosystemen. Neuartige anaerobe mikrobielle Gemeinschaften, welche fähig sind 
Braunkohle- und Rohölbestandteile sowie ausgewählte Alkane und aromatische KW unter 
methanogenen Bedingungen abzubauen, konnten aus unterschiedlichsten Ökosystemen 
angereichert werden. Anhand dieser Anreicherungskulturen wurde der Abbau von 
verschiedenen KW zu Methan und CO2 nachgewiesen. Es konnte das parallele 
Vorhandensein von putativ syntrophen Bakterienpopulationen und methanogenen 
Archaeen beim KW-Abbau aufgezeigt werden. In Braunkohle-assoziierten 
Sedimentschichten und dem daran angrenzenden tiefen Aquifer wurden putativ KW-
abbauende Vertreter der Familie Syntrophaceae und die Gattungen Pseudomonas, 
Acinetobacter und Arthrobacter sowie Sulfat-reduzierende Bakterien identifiziert. In beiden 
Ökosystemen konnte die Dominanz von hydrogenotrophen und methylotrophen Archaeen 
durch phylogenetische Analysen der mikrobiellen Gemeinschaft sowie durch die 
Isotopensignatur des gebildeten Methans nachgewiesen werden. 

Die in dieser Arbeit präsentierten geochemischen Untersuchungen von Rohöl-, Fluid- 
und Gasproben des Dagang Ölfeldkomplexes (China) wiesen auf mikrobielle Abbauprozesse 
von aliphatischen und aromatischen KW in der Lagerstätte hin. δ13C-Messungen von CH4 
und CO2 bestätigen, dass das vorhandene biogene Methan durch hydrogenotrophe 
Archaeen produziert wurde. In den Fluidproben konnten Methanosarcina, 
Methanosphaera und Methanobacterium als dominierende methanogene Vertreter  
identifiziert werden.  

Weiter wurden in dieser Arbeit die Einflüsse von verschiedenen abiotischen Faktoren 
sowie die Verfügbarkeit von Elektronenakzeptoren auf die Zusammensetzung der 
mikrobiellen Gemeinschaften und syntrophen Interaktionen beim Abbau von 
unterschiedlich strukturierten Kohlenwasserstoffen untersucht und diskutiert. Zum Beispiel 
führte die Zugabe von bestimmten Elektronenakzeptoren oder Spurenelementen zu den 
untersuchten mikrobiellen Gemeinschaften zu einem gesteigerten methanogenen 
KW-Abbau. Desweiteren zeigten Untersuchungen an KW-abbauenden mikrobiellen 
Gemeinschaften, dass eine Anpassung an erhöhte Temperaturen und Drücke, wie sie in 
Lagerstätten vorherrschen, möglich ist. 

Erstmalige geochemische Untersuchungen sowie quantitative und phylogenetische 
Analysen verschiedener Mikroorganismengruppen in Sedimentproben der nördlichen 
Baffin Bay zeigten die mikrobielle Reduktion von Eisen, Mangan und Sulfat. Zusätzlich zu 
den stark verlangsamten mikrobiellen Reduktionsaktivitäten an den drei 
Beprobungsstandorten dieses nähstoffarmen marinen Ökosystems konnte nur im 
küstennahen Sediment Potential zum KW-Abbau nachgewiesen werden. 
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Summary 

Hydrocarbons (HC) are among the most abundant organic compounds in earth´s 
biogeosphere. A great number of microorganisms are able to degrade hydrocarbons. In 
consequence of microbial biodegradation in oil reservoirs, heavy crude oil accumulates 
within the oil reservoirs and is not extractable with conventional technologies. Because of 
that, the microbial conversion of heavy and not accessible oil into methane might provide a 
new strategy for enhanced HC recovery. Additionally, coalbed methane from active and 
abandoned mining areas is usable for heat and power production. Furthermore, the 
knowledge of HC-degrading processes and involved microbial communities can lead to 
more efficient bioremediation of toxic petroleum compounds in contaminated soils, 
sediments, and aquifers. 

The goal of this study is the detection of microbial HC-degradation processes in 
anoxic ecosystems. A broad range of novel anaerobic microbial communities from samples 
of different ecosystems which are able to degrade coal, oil or selected alkanes and 
aromatic HC under methanogenic conditions could be enriched. These enrichment cultures 
showed the degradation of different HC to methane and CO2. Additionally, the concurrent 
presence of HC-degrading putative syntrophic bacterial communities and methanogenic 
Archaea is established.  

In coal-associated sedimentary layers and adjacent deep aquifer, potential 
HC-degrading members of the family Syntrophaceae and relatives of Pseudomonas, 
Acinetobacter and Arthrobacter as well as sulfate-reducing bacteria were identified. The 
isotopic signature of the produced methane as well as phylogenetic analyses of the 
microbial communities showed the dominance of hydrogenotrophic and methylotrophic 
Archaea in both ecosystems. 

The presented geochemical investigations of samples from crude oil, fluids and 
gasses collected from the Dagang oil field complex (China) indicated microbial degradation 
processes of aliphatic and aromatic HC. δ13C measurements of CH4 and CO2 confirmed that 
the measured biogenic methane is of hydrogenotrophic origin. The methanogenic 
community found in the fluids is dominated by relatives of Methanosarcina, 
Methanosphaera and Methanobacterium species. 

Furthermore, the influence of different abiotic factors on, as well as the availability of 
electron acceptors to the microbial community composition and syntrophic interactions 
during the degradation of differently structured HC was investigated and discussed in this 
study. For example, the addition of certain electron acceptors or trace elements to 
examined microbial communities resulted in an enhanced methanogenic HC-degradation. 
Moreover, HC-degrading microbial communities showed an adaption to increased 
temperatures and pressures like those found in reservoirs. 

First-time geochemical investigations as well as quantitative and physiological 
analyses of different microbial groups occurring in sediment samples from the northern 
Baffin Bay showed the microbial reduction of iron, manganese and sulfate. In addition to 
the slowed microbial reduction activity at the investigated three sampling sites of this poor 
nutrient marine ecosystem, only at the Shelf site a HC-degradation capability could be 
attested. 
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1. Introduction 

1.1. Hydrocarbons 

1.1.1. Structure and natural occurrence 

Hydrocarbons (HC) are among the most abundant organic compounds in the earth´s 

biogeosphere. They consist exclusively of carbon and hydrogen and play an important role 

in the global carbon cycle (Wilkes and Schwarzbauer, 2010). According to their structures 

they can be divided into four different types: saturated HC (alkanes), unsaturated HC 

(alkenes, alkynes), cycloalkanes and aromatic HC.  

Saturated and unsaturated HC exist as different structural types: linear, branched and 

cyclic (non-aromatic) compounds (Figure 1.1). Then, these compounds are termed aliphatic 

hydrocarbons. Alkanes (CnH2n+2; paraffin series) are the simplest form of hydrocarbons; the 

linear chains with single bonds are saturated with hydrogen. Alkane molecules are 

chemically stable and therefore very inert. Mid-chain length n-alkanes (C23 - C25) occur as 

major constituents of leaf waxes of aquatic plants; terrestrial vegetation is typically 

dominated by long-chain length homologues (>C29) (Ficken et al., 2000). Consequently, 

n-alkanes are the main components of undegraded crude oil. Examples for branched 

alkanes are isobutane, isopentane, 3-methylhexane, and phytane - common constituents 

of fossil fuels.  

Unsaturated HC have double or triple bonds between the carbon atoms, called 

alkenes (CnH2n; olefin and di-olefin series) or alkynes (CnH2n-2; acetylene series), 

respectively, and are of great structural diversity. These structures allow the addition of H2 

and make them more reactive. The majority of alkenes in the nature is formed by living 

organisms and includes the enormous variety of monoterpenes found in higher plants. 

Monoterpenes may function as deterrents, inhibitors of fungal or bacterial growth or 

attractants, but often their role is unknown (Widdel and Rabus, 2001). Two highly 

abundant alkenes occurring in higher plants are ethylene, released as a ripening hormone 

in the life cycle of higher plants, and some carotenoids, plant photosynthetic pigments 

involved in energy transfer. 

Cycloalkanes (also called naphthenes) contain one or more carbon rings, attached 

with hydrogen atoms. They are relatively stable.  
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Aromatic HC contain alternating double and single bonds between carbon atoms 

forming an aromatic ring. The simplest aromatic HC is benzene. Benzene consists of a 

hexagonal ring and three delocalized π-orbitals, which make the molecule inert. Aromatic 

HC can be monocyclic (MAH) or polycyclic (PAH) and often occur with aliphatic 

hydrocarbon chains as alkyl-substituted aromatic HC. The natural occurrence of aromatics 

is widespread. For example, steroids, hopanoids, and other eukaryotic and prokaryotic 

lipids are based on annulated cyclohexane and cyclopentane rings. These biomass 

constituents in turn are source of the structurally diverse mixtures of naphthalenes found 

in fossil fuels (Wilkes and Schwarzbauer, 2010). Moreover, toluene, ethylbenzene, and 

xylene are benzene derivatives and highly abundant components of fossil fuels, as well. 

In addition to hydrocarbons only consisting of carbon and hydrogen, carbon atoms 

may also form covalent bonds with functionalized organic compounds such as the halogens 

fluorine, chlorine, bromine, iodine, or with the hetero elements nitrogen, sulfur, and 

oxygen (Wilkes and Schwarzbauer, 2010). The majority of natural halogenated compounds 

(so-called organohalogens) are produced by living organisms. A diverse collection of 

organohalogens are synthesized by seaweeds, sponges, corals, terrestrial plants, fungi, 

lichens, bacteria, and higher animals and humans. Some well-known class-members are 

morphine, penicillin and quinine (Gribble, 2003). On the other hand, a number of 

halogenated organic compounds are among important anthropogenic environmental 

contaminants (dioxins) such as hexachlorobenzene (PCB).  

    

Figure 1.1: Representative hydrocarbon structures. Alkanes: (1) n-hexane, monocyclic aromatics: 

(2) benzene, (3) toluene, (4) ethylbenzene, (5) xylene, polycyclic aromatics: (6) naphthalene.  

 

Hydrocarbons can be present as gases, liquids and solids. Gaseous HC are 

characterized by low-molecular weights (< C4), while liquid HC are characterized by 

molecular weights more than C5. Naturally occurring gaseous HC (e.g. shale gas, coalbed 
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methane, gas hydrates) are often dominated by methane and are by far the largest pool of 

hydrocarbons in the geosphere (Wilkes and Schwarzbauer, 2010).  

 

1.1.2. The formation of crude oil and natural gas 

The majority of hydrocarbons found on earth occur in fossil fuels, particularly in 

crude oil (often referred to as petroleum). Crude oil is a complex mixture of hydrocarbons 

and other organic compounds.  

Two major classes of kerogens exist. Kerogen is the portion of organic matter in 

sedimentary rocks formed from formerly living organic materials (Dow, 1977). Kerogen, the 

precursor material of petroleum, originates from marine or aquatic organic matter and has 

a higher hydrogen content than the humic kerogen. The humic kerogens based on organic 

matter of terrestrial plants and turn into coal. The amount and the composition of the 

mixture of generated hydrocarbons strongly depend on the chemical structures of the 

source of biomolecules and the specific maturation conditions (Libes, 2009). 

The formation of crude oil and gas (Figure 1.2) starts with dead marine lower plants 

and plankton and their remains which become buried under silt, sand or mud. During 

diagenesis, organic compounds (lipids, proteins, carbohydrates and lignin-humic 

compounds) are buried at temperatures less than 50°C in a time scale of a few thousand 

years and converted into kerogen. Kerogen in sediments of various ages is by far the most 

abundant form of organic carbon on earth (Widdel and Rabus, 2001). Microorganisms are 

involved in this maturation process by converting the biopolymers into biomonomers 

under anoxic conditions. During microbial degradation, oxygen and most of the nitrogen 

and sulfur is removed from kerogen material (Libes, 2009).  

As the kerogens get buried by sediments over time, elevated temperature and 

pressure conditions, the catagenetic process has formed a mixture of hydrocarbons – 

petroleum, bitumen and gases. The hydrophobic character of kerogen increases by further 

defunctionalization, parts of the organic carbon are released as aliphatic and aromatic 

hydrocarbons (Widdel and Rabus, 2001). The resulting HC with different carbon chain 

lengths are able to migrate out of the source rock into the ambient porous geological layers 

until they are trapped under a non-permeable cap rock layer to build an oil reservoir or 

move further on to the surface. 
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At the end of the maturation process (during the metagenesis) another increase of 

pressure and temperature up to 150°C cracks the residual kerogen into dry gas, including 

methane (CH4) and other gases such as hydrogen sulfide (H2S), carbon dioxide (CO2) and 

nitrogen (N2). The total maturation process can take from 10 to several hundred million 

years (Connan, 1974). 

The major compounds of petroleum are saturated aliphatic and aromatic 

hydrocarbons (around 86 %) next to low concentrations of organic compounds containing 

nitrogen, oxygen, sulfur, chlorine, as well as in the petroleum dissolved gases such as CO2, 

H2S and N2 and a few trace metals e.g. vanadium (V), zinc (Zn), nickel (Ni) and mercury (Hg) 

(Tissot and Welte, 1984). Resins and asphaltenes are solid components of petroleum, and 

are high-molecular-weight polycyclic organic molecules containing nitrogen, sulfur and 

oxygen atoms (Tissot and Welte, 1984). The composition of petroleum from different 

global regions or even within geological formations can vary enormously depending on 

where and how the petroleum was formed.  

 

 

 

Figure 1.2: General scheme of hydrocarbon formation during diagenesis, catagenesis and 

metagenesis. Depth and temperature are only indicative and vary according to the particular 

geological conditions. Figure modified from Tissot and Welte (1984). 
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1.1.3. The formation of coal 

Coal is a solid, brittle, combustible, carbonaceous rock formed by the decomposition 

and alteration of terrestrial higher plants that grew in swamp ecosystems. The plants 

biomass was deposited in anaerobic, swamp environments where low oxygen levels 

prevented its reduction. Coals were formed by huge amounts of such deposits, which were 

subsequently successively covered by sediments. After processes of microbial action, 

burial, compaction, geothermal heating and elevated pressure over geologic time the 

organic matter was transformed into ‘higher rank’ such as lignite, subbituminous, 

bituminous or anthracite coal (Speight, 2005). This process from low- to high-rank coals is 

referred to as coalification, it constitutes diagenesis, catagenesis and metagenesis. High-

ranked coals are characterized by an increased heating value, decreased volatile matter 

and moisture content (Tissot and Welte, 1984) (Figure 1.3). 

 

Figure 1.3: Scheme of different types of coal, UN-ECE: United Nations Economic Commission for 

Europe; ASTM: American Society for Testing and Materials; * ash free; ** water and ash free; 

modified after Weniger and Krooss (2012) and Bundesverband Braunkohle (DEBRIV; 

www.braunkohle.de). 
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Coal is found in all geologic periods and is an extremely complex material that 

exhibits a variety of physical properties. Different coal types were classified from the 

American Society for Testing and Materials (ASTM), and the United Nations Economic 

Commission for Europe (UN-ECE).  

Coal consists of more than 50 % by weight of carbonaceous material beside variable 

quantities of hydrogen, sulfur, nitrogen, and oxygen (Killops and Killops, 2005). Oxygen is 

present is many functional groups like carboxyl, ketone, hydroxyl and methoxy groups. The 

distribution of these groups varies in the different burial stadia of coal. Nitrogen is found in 

amines and pyridyl units of aromatic rings. Thiophenic units of aromatic rings contain 

sulfur, as well as thiols and sulfides. The inorganic material components of coal comprises 

pyrites and aluminosilicates, containing sulfur or aluminum. Additionally, coal can contain a 

variety of metals (Killops and Killops, 2005).  

The Westphalian coal of northern Europe is classified as vitrinite coal, the most 

abundant class of coal. It is formed mainly from woody material (vascular plant remains), 

thus this kind of coal is extremly rich of complex organic matter which could be a very 

attractive carbon source for microbial biodegradation. The main molecular structures 

provided from the terrestrial organic matter are the high-molecular-weight biopolymers 

cellulose and lignite. In the maturated coal these aromatic structured material is often 

interlinked by oxygen bridges and includes carboxyl, hydroxyl or ketone functional groups 

which are metabolizable by different microbial communities. 

 

1.1.4. Methane – the simplest hydrocarbon 

Methane is a hydrocarbon containing four hydrogen atoms covalently bond to 

carbon, and belongs to the alkane family. It is the simplest molecule of all organic 

compounds. Methane is the most abundant hydrocarbon in the atmosphere and the 

second most important greenhouse gas after carbon dioxide. The comparative impact of 

methane on climate change is over 25 times greater than carbon dioxide over a 100 year 

period (Shindell et al., 2009). The reason is that the CH4 molecules are much more effective 

at trapping the infrared radiation reflected from the earth´s surface (Reay et al., 2007). 

Because methane is a non-polar molecule, it is slightly soluble in water, depending on 

salinity, temperature and hydrostatic pressure (Yamamoto et al., 1976). 
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According to its origin methane can be biogenic, thermogenic, or abiogenic. Biogenic 

methane is produced from organic matter by microbial reduction of organic monomers 

such as acetate, formate, methanol, or methylamine (acetoclastic methanogenesis) or by 

CO2-reduction (hydrogenotrophic methanogenesis) in the absence of oxygen or other 

oxidants (e.g. nitrate, sulfate, ferric iron) in anaerobic environments. The produced 

methane is released from anaerobic environments and can re-enter the global cycle 

(Deppenmeier and Müller, 2008). Most of the methane which is emitted into the 

atmosphere has a biogenic origin. Wetlands, including bogs, tundra, swamps, alluvial areas, 

and ponds, are the largest source of microbial methane emission on earth. Furthermore 

rice agriculture, microbial symbionts in ruminants and termites, and landfills have a large 

impact on the atmosphere. More than 69 % of the global total of the atmospheric methane 

is the result of microbial processes (Conrad, 2009; Solomon et al., 2007). On the other 

hand, it has been noted that microbial methane oxidation has a large influence on the 

overall atmospheric budget before methane is emitted into the atmosphere. Reeburgh 

(2007) valuates the amount of microbial oxidation for more than half of the estimated 

methane production. And Conrad (2009) postulates that the global CH4 sources are 

balanced by sinks and sources of similar magnitude. 

Thermogenic methane is formed by heat and pressure-induced decay of organic 

matter. These conditions occur during the metagenesis stage of oil and coal production. 

About 25 % of all CH4 sources are associated with mining and combustion of fossil fuels 

from oil and coal deposits or with biomass burning. 

The isotopic signature of CH4 from biogenic sources is isotopically lighter than CH4 

from geological or thermogenic sources. Carbon or hydrogen stable-isotope signatures in 

thermogenic methane seem to be controlled by the extent of conversion of organic matter, 

the timing of gas expulsion and trapping. The different characters of methane in individual 

sedimentary basins may be a result of the geologic history (Schoell, 1988).  

Methane is called abiogenic when it is formed through geological processes within 

Earth's crust (Horita and Berndt, 1999), i.e. inorganic reactions independent of organic 

matter. To date, little is known about the mechanisms of abiogenic methane formation or 

about isotopic fractionation during such processes. 
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1.1.5. Isotope composition of methane and carbon dioxide and fractionation 

processes 

Most of the chemical elements exist as two or more isotopes. They have the same 

chemical behavior, but different atomic weights caused by a variable number of neutrons. 

Carbon, hydrogen, nitrogen, sulfur and oxygen are the main elements of organic biomass 

with great importance for the biological cycle of life. The isotopes of each element appear 

naturally in relatively fixed ratios. The ratio of abundances of the stable carbon isotope 12C 

to 13C is about 99.89 % to 1.11 %, i.e. the light isotope is naturally much more abundant. 

Hydrogen has the two stable isotopes 1H and 2H (or D for deuterium) and the ratio of 

abundance is 99.98 % (1H) to 0.015 % (2H) (Boutton, 1996). The standard used for the 

analysis of the stable isotopes of carbon (12C / 13C) is PDB (Pee Dee Belemnite). It is a fossil 

of Belemnitella americana from the Cretaceous Peedee formation in South Carolina. As a 

standard for hydrogen the SMOW (Standard Mean Ocean Water) was defined. The ratio of 

heavy and light isotopes with a particular compound is termed the isotopic signature (δ). 

The δ-value describes the deviation of isotopic composition of the substance relative to the 

isotopic composition of a certain standard. The δ-value, expressed in parts per million (‰), 

is defined in the following equation (Whiticar, 1999): 

 

 δ X [‰] = [ (Rsample / Rstandard)  -1 ] x 1000 

 

X is the usually less-abundant isotope of the element and R is the ratio of heavy to 

light isotope of the sample (e.g., 13C / 12C or 2H / 1H) and the international standard, 

respectively. A positive δ-value means that the substance is isotopically heavy – heavier 

than the standard. A negative δ-value corresponds to light isotopes – lighter than the 

standard.  

The isotopic fractionation of carbon and hydrogen during the microbial 

transformation can be used as an indicator for the biodegradation of hydrocarbons. 

Microorganisms prefer the isotopically lighter stable isotope for their metabolization, 

because the activation energy for the formation and cleavage of chemical bonds during the 

initial step of microbial transformation is greater for the heavy isotope. Thus, the 

substrates become isotopically heavier (Whiticar, 1999).  



20 

Therefore, the fractionation of stable isotopes can be used as an indicator for 

microbial degradation reactions in situ e.g. in petroleum reservoirs or contaminated sites, 

as well as under laboratory conditions (Feisthauer et al., 2011; Meckenstock et al., 1999; 

Richnow et al., 2003b). Furthermore, the microbial degradation pathway and the stage of 

biodegradation are determinable by measuring the extent of isotopic fractionation.  

 

 

Figure 1.4: Diagram for classification of biogenic and thermogenic methane by the isotopic 

combination of δ13CCH4 and δDCH4 information. The term “bacterial” in the figure replaces the term 

“biogenic” and means the microbial produced methane (Whiticar, 1999; Whiticar et al., 1986). 

PDB - Pee Dee Belemnite; SMOW – Standard Mean Ocean Water. 

 

Because of the depletion process during the heat-and pressure-induced decay of 

organic matter to oil and gas, the isotopic signature of thermogenic methane typically 

results in δ13C-values between -50 and -35 ‰, while the isotopy of thermogenic hydrogen 

shows highly varying δD-values of -275 to -100 ‰. Whereas δ13C CH4-values which are more 

negative than -50 ‰ (-110 to -50 ‰) and in combination with δDCH4-values more negative 

than about -150 ‰ (-400 to -150 ‰), are strongly indicative of pure microbial methane 

(Whiticar, 1999). Carbon and hydrogen isotope signatures and ranges are presented in 

Figure 1.4 for comparison.  
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1.2. The biodegradation of hydrocarbons 

In the history of microbial life, microorganisms have acquired a broad range of 

pathways to make use of hydrocarbons which are manifold present in the biosphere as 

growth substrates (Widdel and Rabus, 2001). Since the beginning of the 20th century, the 

utilization of hydrocarbons in the presence of oxygen has been known. Later, in the 1980s, 

microorganisms were discovered which were able to degrade hydrocarbons under strictly 

anoxic conditions. Such microorganisms use biochemical mechanisms for activating 

hydrocarbons without using oxygen that differs completely from those employed in 

aerobic hydrocarbon metabolism (Widdel and Rabus, 2001). These microorganisms can 

couple the metabolism of hydrocarbon molecules to the reduction of soluble anions or 

metals such as nitrate, Fe(III) and Mn(IV) depending on specific environmental conditions. 

The consumption of the available electron acceptors follows a predictable metabolic series, 

according to the free energy change (∆G°) yielded by their reduction (Table 1.1). The so 

produced microbially catalyzed oxidant-depletion profile first shows the reduction of O2, 

followed by nitrate, Mn(IV), Fe(III), sulfate, and finally CO2 (DeLong, 2004). In comparison 

to the other redox-reactions, methanogenesis has the lowest free energy change (∆G°), so 

that methanogenic microorganisms live close to the thermodynamic limit (Deppenmeier 

and Müller, 2008). If the presence of nitrate, Mn(IV), Fe(III), sulfate as electron acceptors is 

higher, the methanogenic processes are out-competed by anaerobic respiration reactions 

with higher energy yields (Thauer et al., 2008).  

 

Table 1.1: Microbial reaction pathways and its free energy change modified after McKinley (2001) 

Reaction    ∆G°´ (kJ mol
-1

) Type 

CH2O + O2  →  CO2 + H2O  -475 Aerobic respiration 

5CH2O + 4NO3
-
  →  2N2 + 4HCO3

-
 + CO2 + 3H2O -448 Denitrification 

CH2O + 3CO2 + H2O + 2MnO
2+

  →  2Mn2+ + 4HCO3
-
 -349 Mn(IV)-reduction 

CH2O + 7CO2 + 4Fe(OH)3  →  4Fe
2+

 + 8HCO3
-
 + 3 H2O -114 Fe(III)-reduction 

2CH2O + SO4
2-

  →  H2S + 2HCO3
-
 -77 Sulfate-reduction 

2CH2O  →  CH4 + CO2 -58 Methanogenesis 

 

1.2.1. Aerobic hydrocarbon degradation 

The utilization of hydrocarbons as growth substrates for bacteria, yeasts and 

filamentous fungi in the presence of molecular oxygen is well-known for many decades 

(Harayama et al., 1999; Leahy and Colwell, 1990; Rehm and Reiff, 1981). Under aerobic 
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conditions HC are always transformed to polar intermediates using molecular oxygen as 

reactive co-substrate. Aerobic microorganisms initiate the metabolism of alkanes by 

monooxygenase reactions, while aromatic HC are attacked by monooxygenases or 

dioxygenases (Heider et al., 1998). Derived from molecular oxygen, these enzymes 

incorporate hydroxyl groups into the aliphatic chain or the aromatic ring. The alcohols 

formed from aliphatic hydrocarbons are then oxidized to the corresponding acids; the 

phenolic compounds generated by ring hydroxylation of aromatic hydrocarbons are direct 

precursors for oxidative ring cleavage (Harwood and Parales, 1996; Heider et al., 1998). 

During aerobic biodegradation of n-alkanes the enzyme catalyzed terminal oxidation result 

in an alkanol which further oxidized by dehydrogenase to aldehydes and then to fatty 

acids. Fatty acids in turn are metabolized through the β-oxidation pathway. 

 

1.2.2. Anaerobic hydrocarbon degradation  

In the most hydrocarbon-rich environments such as oil reservoirs, coal deposits, 

marine sediments, or hydrocarbon-contaminated aquifers in the subsurface, oxygen is not 

available. Despite of the low aqueous solubility and fairly high toxicity, several studies over 

the last decade have demonstrated that many different classes of hydrocarbons are 

degradable by microbial attack coupling with sulfate-, nitrate-, or iron(III)-reduction or 

methanogenesis under anaerobic conditions (Davidova and Suflita, 2005; Grbić-Galić and 

Vogel, 1987; Kropp et al., 2000; Townsend et al., 2004; Ulrich et al., 2005; Ulrich and 

Edwards, 2003; Zengler et al., 1999; Zhang and Young, 1997).  

The vast majority of these bacteria couple the biodegradation of a hydrocarbon to 

the reduction of either nitrate or sulfate (Davidova and Suflita, 2005). Well-studied are the 

genera Thauera aromatic and Azoarcus toluyticus, both are able to degrade toluene under 

nitrate-reduction conditions, whereas A. toluyticus also utilizes m-xylene and ethylbenzene 

(Elmén et al., 1997; Shinoda et al., 2004). For complete mineralization of ethylbenzene only 

few nitrate- or sulfate-reducing bacteria affiliated to Deltaproteobacteria were discovered 

(Ball et al., 1996; Kniemeyer et al., 2003; Rabus and Widdel, 1995). Pseudomonas balearica 

utilizes n-alkanes (C15-C18) with the reduction of nitrate (Grossi et al., 2008). Another 

nitrate-reducer which utilizes C18-alkanes is Marinobacter sp. (Bonin et al., 2004). Further, 

toluene mineralization was also observed in sulfate‐reducing cultures including 

Desulfobacula toluolica (Rabus et al., 1993) and Desulfotomaculum sp., the latter also 
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utilizes m-xylene and o-oxylene (Morasch et al., 2004). Desulfatiferula olefinivorans 

metabolizes n-1-alkenes (C14-C23) with sulfate as electron acceptor (Schink, 1985; Widdel et 

al., 2010). Representative for anaerobic hydrocarbon degradation coupled to 

iron(III)-reduction is Geobacter metallireducens, known to metabolizes toluene (Lovley et 

al., 1993; Lovley and Lonergan, 1990). 

Until today, only limited information could be obtained for the anaerobic 

biodegradation of benzene. Benzene is, based on its structure, most hardly to degrade, but 

Coates et al. (2001) described two Dechloromonas strains that can completely mineralize 

anaerobically various mono-aromatic compounds to CO2 with nitrate as the electron 

acceptor. However, the mechanism by which anaerobic benzene degradation occurs is 

unclear (Coates et al., 2002). 

According to their potential to carbon-oxidation, sulfate-reducing bacterial 

communities are categorized into the group of complete oxidizers which are capable of 

complete mineralization of organic substrates to CO2 (members of Desulfobacteraceae) 

and the group of incomplete oxidizers which produce acetate as a final by-product 

(members of Desulfobulbaceae) (Canfield et al., 2005; Kuever et al., 2005). Because of their 

ability to activate and metabolize alkanes and aromatic hydrocarbons these 

sulfate-reducing bacteria play an important role in the global carbon cycle.  

The free energy change of the anaerobic degradation of hydrocarbons with sulfate or 

nitrate as electron acceptor has been calculated according to the following equations 

exemplified with hexadecane (Widdel et al., 2010): 

 

5 C16H34  +  98 NO3
-  +  18 H+      80 HCO3

-  +  49 N2 + 54 H2O ∆G°´ = -9677 kJ mol-1 C16H34 

 

4 C16H34  +  49 SO4
2-  +  34 H+      64 HCO3

-  +  49 H2S + 4 H2O ∆G°´ = -559 kJ mol-1 C16H34 

 

Furthermore, several studies demonstrated the hydrocarbon degradation by 

methanogenesis. Methanogenesis is performed by strictly anaerobic methanogenic 

Archaea currently classified into the well-established orders Methanobacteriales, 

Methanococcales, Methanomicrobiales, Methanopyrales and Methanosarcinales (Thauer 

et al., 2008). Methanogenesis is the final methane-producing step of the biodegradation of 

organic material like hydrocarbon mixtures in anaerobic environments where the 

concentrations of nitrate, Mn(IV), Fe(III), or sulfate are low (Thauer et al., 2008). Most of 
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the methanogenic archaea which are not able to degrade hydrocarbons directly use 

C1-compounds (e.g. acetate, formate, methylamine, CO2) as electron acceptors which are 

provided by manifold prior microbial mineralization processes. 

Harder and Foss (1999) have shown that the anaerobic biodegradation of alpha-

pinene and 2-carene supported methanogenesis. Moreover, Schink (1985), observed the 

complete degradation of 1-hexadecene and identified Methanospirillum hungatei and 

Methanothrix soehngenii as prevalent methanogenic microorganisms. Additionally, the 

rapid conversion of hexadecane to methane in the absence of sulfate-reducing bacteria 

was described by Anderson and Lovley (2000a), while Zengler et al. (1999) showed that the 

anaerobic conversion of hexadecane to methane was performed by groups of anaerobic 

hydrocarbon-degrading bacteria in syntrophic associations with methanogens (see 

following equations). 

 

Syntrophic n-alkane oxidation: 

4 C16H34  +     64 H2O →     32 CH3COO–  +  32 H+  +  68 H2 ∆G = -929 kJ mol-1 C16H34 

 

32 CH3COO– +     32 H+ →     32 CH4 +     32 CO2  ∆G = -385 kJ mol-1 C16H34 

 

68 H2  +     17 CO2 →     17 CH4 +     34 H2O  ∆G = -282 kJ mol-1 C16H34 

 

Methanogenic hydrocarbon degradation (net reaction): 

4 C16H34  +     30 H2O →     15 CO2 +     49 CH4  ∆G = -1596 kJ mol-1 C16H34 
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1.2.3. Microbiological anaerobic hydrocarbon activation 

The anaerobic biodegradation of hydrocarbons requires activation of the certain 

substrate. The detailed metabolic processes of alkane degradation seem to function 

differently and are not completely understood so far (Hassanshahian and Cappello, 2013). 

Widely reported is the activation through the addition to fumarate by glycyl-radical 

enzymes. Additional known oxygen-independent hydrocarbon activation reactions 

comprise the hydroxylation with water by molybdenum cofactor containing enzymes, the 

‘reverse methanogenesis’ is a anaerobic methane-oxidizing process involving variants of 

methyl-coenzyme M reductase - the key enzyme of methanogenesis, the methylation, and 

the carboxylation catalyzed by yet-uncharacterized enzymes (Boll and Heider, 2010). The 

available knowledge about the involved enzymes varies greatly. 

Their anaerobic degradation and activation mechanisms are manifold and depending 

on hydrocarbon structures. Several studies investigated anaerobic degradation 

mechanisms of different hydrocarbons. Biegert et al. (1996), Beller and Spormann (1997) 

researched in anaerobic toluene biodegradation and revealed the radical-catalyzed 

mechanism of the addition to fumarate as co-substrate yielding substituted succinates 

(Figure 1.5.). Biegert et al. (1996) describes that the first step of alkylbenzenes (e.g. toluene 

or xylene) activation is redox-neutral and coenzyme A-independent formation of 

benzylsuccinate as first intermediate by addition of the methyl group of an alkylbenzene to 

the double bond of fumarate. Aromatic molecules such as alkylbenzenes with a methyl 

group as a side chain undergo an enzyme addition of fumarate, most likely via a radical 

mechanism, while alkylbenzenes with side chains of two or more carbon atoms are 

activated by dehydrogenation of the side chain (Hassanshahian and Cappello, 2013). 

This fumarate addition is catalyzed by the large subunit of benzylsuccinate synthase 

(BssA) activating toluene and xylene, a fumarate-adding enzyme (FAE) (von Netzer et al., 

2013). Benzylsuccinate is further oxidized to benzoyl-CoA and benzoate, depending on the 

presence of coenzyme A and nitrate. 
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Figure 1.5: Anaerobic hydrocarbon activation of alkanes via fumarate addition and subsequent 

reactions. (A) Pathway for the biodegradation of n-alkanes and potentially for isoalkanes (dotted 

lines) (Widdel and Grundmann, 2010), (B) Proposed pathway for the biodegradation of cyclic 

alkanes (Musat et al., 2010). Compounds marked with asterisks indicate fumarate addition 

metabolites that are most diagnostic of in situ anaerobic biodegradation of alkanes (Gieg and 

Agrawal, 2013). 

 

Analog to the formation of benzylsuccinate, in the anaerobic activation process of 

n-alkanes, the carbon-carbon bond addition to fumarate activates the alkane and form 

alkylsuccinates (the alkyl substituents match of the alkane substrate) (Kropp et al., 2000; 

Rabus et al., 2001). This reaction is catalyzed by the alkylsuccinate synthase (Ass; also 

referred to as 1-methylalkyl-succinate synthase (Mas)) (Callaghan et al., 2008). Fumarate 

addition occurs primarily at the subterminal carbon (C-2) atom of the n-alkanes (Widdel 

and Grundmann, 2010). But studies from Rabus et al. (2001) suggested the activation of 
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n-hexane at the C-3 atom and Kniemeyer et al. (2007) the activation of propane at the C-1 

atom, most likely in side-reactions. Further, alkylsuccinates are transformed by 

decarboxylation yielding branched fatty acids that can be in turn β-oxidized and 

subsequently mineralized to CO2 (Callaghan et al., 2006; Gieg and Agrawal, 2013). 

This mechanism was observed for sulfate- reducing bacteria (Aitken et al., 2013; 

Cravo-Laureau et al., 2005; Davidova et al., 2005; Kropp et al., 2000) and for a denitrifying 

isolate (Rabus et al., 2001; Wilkes et al., 2003; Wilkes et al., 2002). In contrast, the 

anaerobic transformation of isoalkanes is scarcely reported so far. Pristane and phytane, 

both are branched alkanes and therefore more recalcitrant than n-alkanes, were frequently 

used as biomarkers indicating the extent of biodegradation of alkanes in crude oils (Huang 

and Larter, 2005). 

The key enzyme of the oxygen-independent, stereospecific hydroxylation (Figure 

1.6.) of ethylbenzene to (S)-1-phenylethanol is the ethylbenzene dehydrogenase (EBDH), 

characterized from the denitrifying bacterium Azoarcus sp. strain EbN1 (to be renamed 

Aromatoleum aromaticum) (Szaleniec et al., 2007). Then, (S)-1-phenylethanol is oxidized to 

acetophenone by a (S)-1-phenylethanol dehydrogenase (Kniemeyer and Heider, 2001b). 

Acetophenone is further carboxylated to benzoylacetate by an ATP-dependent carboxylase 

which is finally activated to benzoylacetyl-CoA and thiolytically cleaved to acetyl-CoA and 

benzoyl-CoA (Heider, 2007; Rabus et al., 2002). 

 

 

Figure 1.6: Hydrocarbon activation reactions via oxygen-independent hydroxylation (Kaser and 

Coates, 2010). 

 

The methylation of naphthalene was observed in a sulfate-reducing culture N47 

which can metabolize naphthalene or 2-methylnaphthalene as the sole carbon source and 

electron donor. Initially, naphthalene is methylated to 2-methylnaphthalene which in turn 

is subsequent oxidized to the central metabolite 2-naphthoic acid. Finally fumarate 

addition and β-oxidation lead to succinyl-CoA and naphthoyl-CoA (Heider, 2007; Safinowski 

and Meckenstock, 2006). Three enzymes are involved in anaerobic degradation of 
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2-methylnaphthalene to 2-naphthoic acid, a naphthyl-2-methyl-succinate synthase, a 

succinyl-CoA:naphthyl-2-methyl-succinate CoA-transferase and a naphthyl-2-methyl-

succinyl-CoA dehydrogenase (Safinowski and Meckenstock, 2006). 

 

The alkane activation via carboxylation pathway (Figure 1.7.) as alternate mechanism 

to fumarate addition is proposed by So et al. (2003) in that alkanes are anaerobically 

oxidized to fatty acids by a sulfate-reducing bacterium strain Hxd3. The alkane activation 

starts with the subterminal carboxylation step at the C-3 position leading to the elimination 

of the two adjacent terminal carbon atoms of the alkane by an unknown mechanism. They 

established further that C-odd and C-even alkanes are indeed transformed to C-even and C-

odd fatty acids, respectively. The initially formed fatty acids can be β-oxidized and 

subsequently mineralized to CO2 (So et al., 2003). A study from Callaghan et al. (2009) 

confirmed this mechanism by a n-hexadecane-degrading, nitrate-reducing enrichment 

culture producing similar intermediates. Further, it is conceivable that both alkane 

degradation pathways, fumarate addition and carboxylation reactions, occur 

simultaneously in anaerobic ecosystems (So et al., 2003). 
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Figure 1.7: Proposed pathway for the alkane-oxidation to fatty acid. An alkane (A) is subterminally 

carboxylated at C-3 (step I) to form an intermediate (B). Two adjacent terminal carbon atoms are 

then eliminated (step II) to form a fatty acid one carbon shorter than the original alkane (C). This 

fatty acid can be beta oxidized (step III) and subsequently mineralized to CO2 or undergo 

transformation, such as chain elongation and C-10 methylation (step IV). Compound B (in brackets) 

is only a hypothetical intermediate. Atoms originating from the alkane are shown in bold type (So 

et al., 2003). 

 

1.2.4. Syntrophic interactions and in situ hydrocarbon biodegradation  

Syntrophy is the thermodynamic-based interaction between microbial species, and 

plays an essential role in the anaerobic degradation of organic matter or hydrocarbons to 

CH4 and CO2, along with the fermentative and methanogenic microorganisms (McInerney 

et al., 2007) (Figure 1.8.). Even though the understanding of the metabolism of syntrophs is 

extremely little because so few strains are available in pure co-culture (only harbors the 

syntrophic partners) it is known that Syntrophus sp., a member of the Deltaproteobacteria 

lineage, lives in syntrophy with hydrogen / formate-using methanogens or sulfate-reducing 

bacteria. The genome sequence from Syntrophus sp. suggests the ability of metabolism of 

aromatic and aliphatic compounds (McInerney et al., 2007). Moreover, members of the 
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family Syntrophaceae, especially Syntrophus sp., have been identified as dominant 

organisms in hydrocarbon-associated systems like biodegraded oil reservoirs (Grabowski et 

al., 2005), deep coal seam groundwater (Shimizu et al., 2007), freshwater sediment 

(Zengler et al., 1999), or petroleum-contaminated sediment (Allen et al., 2007). 

Jones et al. (2008) found out that in petroleum reservoirs methanogenic hydrocarbon 

degradation occurs predominantly via syntrophic oxidation of n-alkanes to acetate and 

hydrogen. Then, commonly acetate is oxidized syntrophically to CO2 and H2 before the 

conversion to methane through hydrogenotrophic methanogenesis is performed. The 

syntrophic oxidation of acetate has been suggested as an alternative to acetoclastic 

methanogenesis and it converts a large proportion of the acetate generated from 

hydrocarbon degradation. This process occurs at mesophilic conditions but is more 

thermodynamically favorable at higher temperatures (Schink, 1997).  

The growth of syntrophic bacteria is thermodynamic sustainable only with the 

efficiently removal of the intermediates by the methanogens (Dolfing et al., 2008). 

Depending on thermodynamic conditions, homoacetogenesis or syntrophic acetate 

oxidation are possible reactions within this syntrophic degradation process. With increasing 

H2 concentration, increasing pH of more than 7 and low temperature, the free energy 

change benefits the homoacetoclastic bacteria converting H2 / CO2 to acetate. Vice versa, 

low H2 concentrations, a pH of less than 7 and high temperature promote the formation of 

H2 / CO2 from acetate by syntrophic acetate oxidation (Thauer et al., 2008).  

Consequently, a close contact is essential for the metabolite transfer between the 

different syntrophic partners (Schink, 1997) and some of them are able to form aggregates 

or biofilms with each other. 

 

 

1.2.5. Hydrocarbon biodegradation in petroleum reservoirs 

Not only the microbiology and metabolic pathways of the anaerobic utilization of 

individual single hydrocarbons have been studied so far. Moreover, the ability to 

metabolize complex hydrocarbons mixtures such as petroleum with or without sulfate or 

nitrate as electron acceptor are described in numerous studies (Anderson and Lovley, 

2000a; Jones et al., 2008; Rabus and Widdel, 1996; Reuter, 1994; Zengler et al., 1999). 
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Worldwide, crude oil in subsurface petroleum reservoirs is degraded over geological 

time by anaerobic microorganisms. The consequence of biodegradation is the decline in oil 

quality and value through the decrease of aliphatic and aromatic hydrocarbons and the 

relative increase of heavy oil fractions containing heterocyclic sulfur-, oxygen- and 

nitrogen-rich compounds. Through the increase of viscosity, metals content, total acid 

numbers and other non-hydrocarbon compounds, the in situ biodegradation leads to an 

increase in the costs of recovery and refining of that oil (Meyer, 1987; Wenger et al., 2001). 

Based on high alteration level through biodegradation and limits of conventional 

technology of exploitation, circa 50 % of the initial oil is unrecoverable (Youssef et al., 

2009). Examples for highly degraded reservoirs are the Alberta tar sands (Canada) and 

Eastern Venezuelan Foreland Basins - the largest single accumulations of supergiant tar 

sands. Tar sands are sandstones saturated with heavy or super-heavy oil (Head et al., 

2003).  

Wenger and Isaksen (2002) pointed out that the first attack of biodegradation is on 

the n-alkanes in the approximately C8-C15 range, heavy polar and asphaltene are left behind 

in the residual oil. In non-degraded petroleum reservoirs (possibly prevented through 

reservoir temperatures above 90°C) the complete range of n-alkanes are intact. With 

increasing biodegradation, the n-alkanes are more and more depleted. In heavy and 

severely degraded oil n-alkanes and isoprenoids are completely removed (Figure 1.9.). 

According to Head et al. (2003), the general sequence of removal of saturated 

hydrocarbon types during biodegradation is n-alkanes, alkylcyclohexanes, acyclic 

isoprenoid alkanes and bicyclic alkanes-steranes-hopanes. During the degradation of 

aromatic hydrocarbons, alkylbenzenes are earlier removed than diaromatic and triaromatic 

hydrocarbons (Volkman et al., 1984). Aromatic steroid hydrocarbons are 

biodegradable-resistant until very severe levels of biodegradation are achieved (Head et 

al., 2003; Peters and Moldowan, 1993). Consequently, methane as well as non-

hydrocarbon products like carbon dioxide, sulfide, low-molecular-weight compounds and 

naphthenic acids, phenols, and high-molecular-weight oxidized compounds are possible 

products of petroleum biodegradation (Wenger and Isaksen, 2002).  

During the last decades several studies investigated the biodegradation of 

hydrocarbons in many different oil reservoirs all over the world and described general 

trends and the specific parameters of biodegradation (Aitken et al., 2004; Atlas and Atlas, 
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1991; Davidova and Suflita, 2005; Gieg et al., 2010; Head et al., 2003; L'Haridon et al., 1995; 

Lenchi et al., 2013; Magot et al., 2000; Milkov, 2011). But until today, little is known about 

how the associated microbial populations utilize oil hydrocarbons under extreme 

conditions and whether oil reservoirs harbor an truly indigenous microbiota (Magot et al., 

2000), because it is difficult and costly to obtain uncontaminated samples from deep oil 

reservoirs where no microbes have been introduced into the reservoir by processes like 

drilling or water-flooding. (Gray et al., 2010). For example, the injection of marine, 

meteoric, or natural formation waters is used to preserve the reservoir pressure for oil 

production (Foght, 2010). 
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Figure 1.8: Schematic diagram of physical and chemical changes occurring during crude oil and 

natural gas biodegradation, previously published by Head et al. (2003). Further, data were used for 

this figure published by Peters and Moldowan (1993); Wenger et al. (2002); * Thorn and Aiken 

(1998); † Peters and Fowler (2002). 
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The oil recovery practice of water-flooding with marine waters introduces sulfate, nitrogen 

and phosphor into the reservoirs and thereby creates a condition for the growth of 

sulfate-reducing bacteria which leads to the production of hydrogen sulfide (H2S) and to 

reservoir souring and/or corrosion problems (Vance and Thrasher, 2005).  

Considering the large alteration patterns and deleterious effects on degraded 

petroleum reservoirs, it is obviously important to better understand microbial hydrocarbon 

degradation processes in subsurface petroleum reservoirs in order to minimize the 

negative effects. Moreover, with this knowledge, positive microbial effects can be 

generated such as the prevention of reservoir souring. Additionally, in many reservoirs a 

frequent increase of biogenic methane was observed, pointing to the presence and activity 

of methanogenic microorganisms and the fact that methane is the major end-product of 

the in situ oil biodegradation (Gray et al., 2009; Head et al., 2003; Jones et al., 2008). The 

microbial conversion of parts of unaccessible residual oil in petroleum systems into 

methane might provide a new strategy for microbial enhanced oil recovery (MEOR) (Gray 

et al., 2010; Kaster et al., 2009). Moreover, the anaerobic biodegradation of hydrocarbons 

is further important for the intrinsic remediation of spilt fuels, due to aged pipelines, 

storage tank leaking, or natural oil leakage and for the earth´s carbon cycle (Suflita and 

Duncan, 2011).  

In general, the biodegradation of hydrocarbons depends on many factors such as the 

structures and concentrations of oil and gas, the presence of water, nutrients, oxidants, 

microbial community and the prevailing temperature, salinity and acidity in the oil 

reservoir (Wenger et al., 2002). It is to notice that different microbes degrade different 

kinds of hydrocarbons under various ranges of conditions. For biodegradation in oil 

reservoirs, water, nutrients and hydrocarbons are most likely available near the oil-water 

contact in the reservoir (Head et al., 2003). Temperature and salinity are very important 

parameters, as the microbial degradation activity is greatly higher in reservoirs below 50°C 

and decreases with increasing temperatures and ceases around 80°C (Larter, 2003). 

Moreover, the salinity affects the tolerable temperature, higher salt contents lower the 

maximum temperature at which biodegradation can occur. The maximum limits of salinity 

and temperature for microbial degradation are difficult to assign (Wenger and Isaksen, 

2002).  
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With the combination of culture-dependent and culture-independent methods a 

broad diversity of microbes are detected in mesophilic (15-40°C) and thermophilic 

(45-80°C) petroleum reservoirs as well as in highly saline oil well waters at mesophilic 

temperatures; a huge part of them are novel bacteria and archaea species (Gieg et al., 

2010; Li et al., 2007; Nazina et al., 2006; Orphan et al., 2000). The discovered anaerobic 

microorganisms include several physiological groups such as diverse fermentative bacteria, 

nitrite-, iron-, manganese- and sulfate-reducing bacteria, acetogens, and methanogenic 

archaea are believed to be linked to hydrocarbon degradation but relatively few of them 

have been isolated (Aitken et al., 2004; Lovley, 1989; Magot et al., 1994; Reuter, 1994; 

Zengler et al., 1999) 

 

1.2.6. Hydrocarbon biodegradation in coal deposits 

Several studies investigated the microbial degradation of coal deposits and formation 

water, and, moreover, the biogenic gas generation via methanogenesis.  

Formolo et al. (2008), Flores et al. (2008) and Ulrich and Bower (2008) showed the 

natural microbial gas production in the Powder River Basin and San Juan Basin (USA), two 

of the most productive coalbed methane reserves in the world. The investigated coalbed 

reservoirs in the Powder River Basin range from lignite to low-volatile subbituminous coal; 

the San Juan Basin is characterized by higher rank coals. The authors noticed that the 

biogenic gas generation is linked to incursion of meteoric water.  

The influx of water brings in nutrients, essential minerals and microbes through the 

seam stimulates the microbial biodegradation of hydrocarbons in particular zones 

depending on stratigraphic variations and fractures in the subsurface of the coal seam 

system (Formolo et al., 2008). In different zones of biodegradation which are dispersed in 

particular depths of the Powder River Basin, an extensive removal of short-, medium-, and 

long-chain n-alkanes and acyclic isoprenoids was observed, concurrent with conventional 

biodegraded petroleum (Formolo et al., 2008). 

Furthermore, Flores et al. (2008) emphasized the importance of geological factors 

like the direction of groundwater recharge, depth of burial, thermal and maturation 

history, lateral and vertical continuity of stratigraphic units, degree of faulting and 

fracturing, and coalification processes, affect the generation and composition of microbial 

hydrocarbon degradation processes in the coal seam.  
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The aromatic structured high-molecular-weight biopolymers cellulose and lignite, the 

main compounds of the maturated coal, are fermentable by bacteria to important 

intermediates such as succinate, propionate, formate, acetate, methanol, CO2 and H2. 

(Stra poć et al., 200 ). Methanogens, all of which are archaea, are able to utilize these 

intermediates (C1- and C2-substrates) for methane production via two common 

methanogenic pathways. In the acetoclastic pathway, acetate is converted to methane and 

CO2. In the hydrogenotrophic pathway (CO2-reduction methanogensis) CO2 is reduced 

using H2 to produce methane and water. A simplified illustration as a example of lignite 

structure and the possible biodegradation pathways are shown in Figure 1.10. 

 

 

 

 

Figure 1.9: Scheme of proposed mechanisms of stepwise biodegradation of organic matter in coal 

showing potentially capable microbial degradation processes: (F) defragmentation of coal 

geomacromolecular structure predominately by fermentation targeted at oxygen-linked moieties 

and oxygen-containing functional groups (this process detaches some of the oxygen-linked 

aromatic rings and generates some short organic acids); (AO) anaerobic oxidation of available 

aromatic and aliphatic moieties, derived from coal defragmentation or from dispersed oil; (F2) 

fermentation of products available from step F described above to H2, CO2, and acetate; and (R) 

methanogenesis utilizing H2 and CO2 likely predominating over homoacetogenesis and acetoclastic 

methanogenesis. The dark area represents a droplet of oil. This scheme is modified after Stra poć et 

al. (2008). 
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Several studies taken around the world based on isotopic measurements, cultivation 

and molecular biological approaches showed similarities of the origin of coalbed methane. 

Nowadays, hydrogenotrophic methanogenesis (CO2-reduction pathway) is generally 

believed to be the dominant methanogenic pathway in subsurface coal associated 

sediments and/or formation waters (Adams et al., 2006). Examples supporting this 

assumption are the Powder River and San Juan Basin (Wyoming and Colorado, USA) (Flores 

et al., 2008; Formolo et al., 2008), Illinois Basin (Indiana, USA) (Strąpoć et al., 2007), Jharia 

coal field (Parbatpur, India) (Singh et al., 2012), Gippsland Basin (Victoria, Australia) 

(Midgley et al., 2010), Sydney and Bowen Basin (Australia) (Ahmed and Smith, 2001), Surat 

Basin (Queensland, Australia) (Papendick et al., 2011), or Ishikari coal field (Hokkaido, 

Japan) (Shimizu et al., 2007).  

Reasons for the abundance of hydrogenotrophic methanogenic activity in coal seams 

could be the availability of CO2 through microbial oxidation and decarboxylation processes 

during degradation of organic matter and hydrocarbons. The supply of high amounts of 

CO2 promotes hydrogenotrophic methanogens. Only few studies described the presence of 

acetoclastic methanogenesis next to hydrogenotrophic methanogenesis in coal seams. 

Examples are given by the Alberta coal beds (Alberta, Canada) (Penner et al., 2010), and 

Powder River Basin (Wayoming, USA) (Green et al., 2008).  

Whereas the biodegradation in petroleum reservoirs is well established (Head et al., 

2003), the anaerobic biodegradation processes in the coal-bearing sediments and the 

aquatic systems lying beneath these coal-rich layers are less well known. Moreover, 

geochemical and isotopic indicators are established to detect and classify microbial 

methane in the coal basins (Formolo et al., 2008), but the combustion of organic matter 

leading to methanogenesis and the indigenous microbial consortia which are involved in 

biodegradation processes remain poorly understood. 

Furthermore, the majority of investigated coal reservoirs are composed of a range of 

subbituminous to low-volatile bituminous coal (e.g. (Beckmann et al., 2011a; 2011b; 

Dawson et al., 2012; Krüger et al., 200 ; Strąpoć et al., 2011b)). The knowledge about 

anaerobic biodegradation, methanogenic processes and microbial community composition 

in lignite-containing coal beds is still scarce. A more profound understanding about 

indigenous coal-associated microbial consortia and methanogenesis processes could help 
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to control and modify in situ conditions in order to enhance microbial methane production 

resulting in increased methane recovery on economic levels. 

 

 

1.3. Methanogenic processes 

Methanogenic archaea are widespread in anoxic environments, such as freshwater 

lakes, marine sediments, wetlands, rice field soils, landfills, and intestinal tracts of 

ruminants and termites (Banning et al., 2005; Brune, 2010; Janssen and Kirs, 2008; Krüger 

et al., 2005a; Thauer, 1998; Zengler et al., 1999) and play, therefore, an important role in 

the global carbon cycle.  

 

1.3.1. Hydrogenotrophic methanogenesis 

Most of the methanogens are hydrogenotrophs, which reduce CO2 to CH4 with H2 as 

the primary electron donor (Equation I). Also many of them are able to use formate as the 

major electron donor (Liu and Whitman, 2008). 

 

4 H2   +   CO2    CH4   +   2 H2O   ∆G°´ = -135 kJ mol-1 (I) 

 

Members of the orders Methanopyrales, Methanobacteriales, Methanococcales and 

Methanomicrobiales only use H2 / CO2 as substrate to conserve energy for growth. An 

exception is Methanosphaera stadtmanae; it is a human intestinal archaeon and depends 

on methanol and H2 as energy sources (Thauer et al., 2008). These hydrogenotrophic 

methanogens grow with a H2 threshold concentration of 1-10 Pa. Many hydrogenotrophic 

methanogens are able to grow under hyperthermophilic conditions (Thauer et al., 2008).  

The novel order of Methanocellales, affiliated with the clone lineage Rice Cluster I 

(RC-I), was isolated 2008 by Sakai et al. (2008) from an anaerobic, propionate-degrading 

enrichment culture, which was originally established from rice paddy soil. Members of 

Methanocellales are mesophilic and able to utilize H2 / CO2 and formate for growth and 

methane production. 
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1.3.2. Acetoclastic methanogenesis 

The genera Methanosaeta and Methanosarcina are the only methanogens which are 

able to metabolize acetate as substrate for methanogenesis (Kendall and Boone, 2006). 

These two genera have different affinities to acetate and use different mechanisms for 

acetate activation. Methanosaeta, the only genus within the Methanosaetaceae family, 

uses only acetate as energy source even at concentrations as low as 5-20 µM (Jetten et al., 

1992). Methanosarcina prefers methanol and methylamine over acetate for methanogenic 

growth, and many species are able to utilize H2, as well (Liu, 2010). For acetoclastic 

methanogenesis Methanosarcina needs a minimum concentration of about 1 mM acetate 

(Jetten et al., 1992). Other relatives of Methanosarcinaceae family are Methanococcoides, 

Methanohalobium, Methanohalophilus, Methanolobus, Methanomethylovorans, 

Methanosalsum, and are able to grow by utilization of methylated compounds to produce 

CH4 and CO2 (Liu, 2010). 

The free energy yield of the conversion of acetate to methane (Equation II) is 

considerable lower than that from CO2-reduction. Moreover, the rate of acetoclastic 

methanogenesis is considerably slower than the rate of hydrogenotrophic methanogenesis 

(Blaut, 1994). Remarkably, even as acetate provides the smallest change of free energy of 

all substrates, these acetoclastic methanogens produce the most methane in anaerobic 

food chains (Deppenmeier and Müller, 2008). The conversion of H2 and CO2 is only possible 

with a H2 partial pressure more than 10 Pa (Thauer et al., 2008).  

 

CH3COO-   +   H+    CH4   +   CO2  ∆G°´ = -33 kJ mol-1 (II) 

 

Furthermore, the species Methanosarcina acetivorans is able to use the acetyl-CoA 

pathway to conserve energy for growth by utilizing carbon monoxide to form acetate and 

formate, rather than methane. Moreover, with increasing CO partial pressure, the methane 

production decreased. Thus, CO is an inhibitor of methanogenesis for M. acetivorans 

(Deppenmeier and Müller, 2008). 

 

1.3.3. Methylotrophic methanogenesis 

The most versatile methanogenic archaea are the members of the order 

Methanosarcinales, which are capable of growing on H2 / CO2, acetate, methanol, methyl 
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group-containing compounds such as methylamines, and methylthiols as energy substrates 

(Deppenmeier, 2002). These methylotrophic methanogens are limited to the order 

Methanosarcina, except for Methanosphaera sp. as mentioned above. Equations III and IV 

show the methylotrophic conversion of methanol or methylamine to CH4 (Liu and 

Whitman, 2008; Thauer, 1998).  

 

4 CH3OH    3 CH4   +   CO2 + 2 H2O ∆G°´ = -105 kJ mol-1 (III) 

4 CH3-NH2   +   2 H2O   3 CH4   +   CO2 + 4 NH3 ∆G°´ = -75 kJ mol-1 (IV) 

 

1.3.4. The seventh order of methanogens 

In addition to the orders of methanogens mentioned above, a seventh order has 

been proposed. Investigations of Paul et al. (2012) showed robust evidence for the 

presence of mcrA genes, a functional marker for methanogenesis, in environmental clones 

affiliated to uncultured Thermoplasmatales. In enrichment cultures, methanogenesis was 

stimulated by the simultaneous supply of H2 and methanol. The provisional name 

“Methanoplasmatales” is suggested (Paul et al., 2012). 

 

1.3.5. Enzymatic reactions during methanogenesis 

This is a short overview of the most important steps within the three different 

methane formation pathways. Since the 1980s, a number of researchers investigated 

enzyme kinetics, structure and activity of methanogenesis in detail. So far, the concept of 

the different methanogenic pathways is well understood. Thauer (1998) reported the 

uniqueness of the metabolic pathways of methane formation and the involvement of a 

number of unusual enzymes and coenzymes. Some time ago, Deppenmeier and Müller 

(2008) published a summary about the life close to thermodynamic limits and the specific 

way of methanogenic energy production. They postulated that the metabolism of H2 / CO2, 

formate, methylated C1-compounds and acetate proceeds along a central, partly reversible 

pathway.  

Methyl-S-CoM is the central intermediate of all metabolic pathways of 

methanogenesis. Through the catalytic influence of methyl-coenzyme M-reductase (MCR), 

methyl-S-CoM is reductively demethylated to CH4. Electron donor is HS-CoB, providing the 

two electrons required in this process. The nickel-containing tetrapyrrole F430 is the 
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prosthetic group of MCR and it is necessary for its activity (Ermler, 2005). Finally, a 

heterodisulfide CoM-S-S-CoB is formed from HS-CoM (Coenzyme M, 

2-mercaptoethanesulfonate) and HS-CoB (Coenzyme B, 

7-mercaptoheptanoylthreoninephosphate) (Beifuss et al., 2000; Thauer, 1998). The 

membrane-bound heterodisulfide reductase catalyzes the reduction of the electron 

acceptor CoM-S-S-CoB back to the thiol-containing cofactors HS-CoM and HS-CoB 

(Deppenmeier and Müller, 2008).  

Different proton-translocating enzyme systems are involved in the membrane-bound 

electron transfer (Beifuss et al., 2000). In the methanogenesis HS-CoB and coenzyme F420 

function as electron carries. F420, a central electron carrier in the cytoplasm of 

methanogens, replaces nicotinamide adenine dinucleotides in many reactions. For 

example, the F420-nonreducing hydrogenase is part of the electron transport system, the 

H2:heterodisulfide oxidoreductase system, and channel electrons to the heterodisulfide 

reductase in the presence of hydrogen (Deppenmeier and Müller, 2008). 

Methanophenazine, another membrane integral electron carrier (similar to quinones found 

in Bacteria and Eukarya), is exclusively found in cytochromes of Methanosarcinales and is a 

hydrophobic cofactor. HS-CoM, methanofuran (MFR), and tetrahydromethanopterin 

(H4MPT) (Figure 1.11) work as carriers for C1-moieties of intermediates in the 

methanogenic pathway (Deppenmeier and Müller, 2008). 

 During the hydrogenotrophic methanogenesis CO2 is bound to MFR and is then 

reduced to formyl-MFR (Deppenmeier and Müller, 2008). The electrochemical ion gradient 

across the cytoplasmic membrane provides the energy for this endergonic reaction. Next, 

the formyl group is transferred to H4MPT to form a formyl-H4MPT bond, which is stepwise 

reduced to methyl-H4MPT. Afterwards, the methyl-group is transferred to HS-CoM by a 

membrane-bound methyl-H4MPT:HS-CoM-methyltransferase. This exergonic reaction is 

used to generate a electrochemical sodium ion gradient. In the final step the 

methyl-coenzyme M reductase (MCR) catalyzes the reduction of methyl-S-CoM with the 

electron donor HS-CoB in the presence of the coenzyme F430 (Ermler, 2005). The products 

are methane and the corresponding heterodisulfide CoM-S-S-CoB (Deppenmeier and 

Müller, 2008).  

In the methylotrophic pathway trimethylamine (TMA), dimethylamine (DMA) and 

monomethylamine (MMA) are metabolized. By substrate-specific soluble 
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methyltransferases different cognate corriniod proteins are methylated that transfer the 

methyl group to coenzyme M (Paul et al., 2000). Consequently, the methyl groups are 

channeled into the central pathway which is split into a branch of reduction and one of 

oxidation. Methane is formed via HS-CoB-dependent reduction of methyl-S-CoM catalyzed 

by MCR, according to the hydrogenotrophic pathway. In the oxidative branch, the methyl 

group is transferred to H4MPT catalyzed by the membrane-bound methyl-H4MPT:HS-CoM-

methyltransferase followed by the stepwise oxidation of methyl-H4MPT to formyl-H4MPT. 

Finally, the formyl group is transferred to MFR and the formyl-MFR dehydrogenase 

catalyzes the oxidation of formyl-MFR to CO2 and MFR. Thus, the oxidative branch of the 

methylotrophic pathway is the reversal of CO2-reduction to methyl-CoM as already 

mentioned in the hydrogenotrophic pathway (Deppenmeier and Müller, 2008). 

At the beginning of the acetoclastic pathway, acetate is activated via phosphorylation 

and exchange of inorganic phosphate with CoA. Acetyl-CoA is produced. The cleavage of 

the acetyl-CoA is performed by the nickel-containing carbon monoxide 

dehydrogenase/acetyl-CoA synthase, yielding enzyme-bound methyl and carbonyl groups 

(Drennan et al., 2004). During the oxidation of the enzyme-bound CO to CO2, the methyl 

group of acetate is transferred to H4MPT. The yielding electrons are used for ferredoxin 

(Fd) reduction. The resulting methyl-H4MPT is converted to methane catalyzed by a Na+-

translocating methyl-CoM methyltransferase and the methyl-S-CoM reductase, which is 

used HS-CoB as the electron donor for the reduction of the methyl group. The CoM-S-S-CoB 

and the reduced ferredoxin are recycled by an electron transport system referred to as 

Fd:heterodisulfide oxidoreductase (Welte et al., 2010). 

The methyl-coenzyme M reductase (MCR) is exclusive to methanogens, excluding the 

methane-oxidizing Archaea (ANME). Members of the ANME groups are related to each 

other and to methanogenic Archaea, specifically the Methanosarcinales (Nunoura et al., 

2006). They own a nickel protein similar to methyl-coenzyme M reductase and are possibly 

able to perform reverse methanogenesis (Krüger et al., 2003; Scheller et al., 2010).  

In addition to 16S rRNA genes, the methyl-coenzyme M reductase alpha-subunit 

(mcrA) gene has been applied as a phylogenetic marker for methanogens (Springer et al., 

1995).  
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Figure 1.10: Schemes of enzymatic pathways of methanogenesis from formate or H2 / CO2 (A), 

methyl group containing substrates (B) or acetate (C); grey arrows denote reactions catabolyzed by 

membrane-bound, ion-translocated enzymes; MFR: methanofuran; H4MPT: 

tetrahydromethanopterin; CoM: Coenzym M; CoB: Coenzyme B; MCR: methyl-coenzyme M 

reductase; modified after (Deppenmeier and Müller, 2008). 
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1.3.6. Cultivation methods and phylogenetic analysis of anaerobic microbes 

To study the microbial diversity, the community composition, or individual 

microorganisms which are able to degrade hydrocarbons several approaches are available. 

To get a detailed and reliable data set it is recommended to combine the particular 

information which is offered by each approach. 

Based on the different atomic weights, the slightly different physicochemical 

behaviors of the discovered stable isotopes in the nature or in laboratory microbial cultures 

lead to a better scientific understanding of how and where these isotopes were formed 

(see also Section 1.1.5.). Consequently, through the measurement of the isotopic signature 

of organic compounds such as carbon or hydrogen, the biogenic or geothermal origin can 

be provided. Furthermore, with the analysis of stable isotope composition of fossils, rocks 

and minerals the reconstruction of the carbon cycles and prevalent redox reactions during 

earth´s history can be performed.  

With cultivation based approaches, the physiological and environmental parameters 

which influence a microbial community are simulated or amended with additions like 

alternative substrates, electron acceptors, trace elements, vitamins or inhibitors. Then, the 

microbial adaption, growth and activity are studied by measuring alteration of the initial 

conditions e.g. hydrocarbon composition of crude oil, CH4 and CO2 production, sulfate 

concentration, fractionation factor of methane. Previous studies showed the cultivation of 

methanogenic microorganisms and their associated (syntrophic) bacterial community. But 

most of the methanogens are fastidious organisms that are very difficult to cultivate under 

laboratory conditions, one reason for the nowadays huge number of microorganisms, 

which are uncultivable and not describable. Moreover, the knowledge about the 

characteristics and abilities of cultivated microbial communities cannot simply be 

transferred to complex biological systems, because microbial communities are commonly 

influenced by environmental factors and other microorganisms harboring an environment.  

Molecular biological techniques such as the quantitative real time PCR (Q-PCR) or 

terminal restriction fragment polymorphism (T-RFLP) can be used to quantify the microbial 

community, within certain environment or laboratory culture, but they give no information 

about the microbial activity of the different groups or species. Q-PCR is a highly sensitive 

method, in which universal primers for 16S rRNA genes are applied or functional primers 

for genes coding for specific key enzyme to identify and quantify groups of microorganisms 
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like bacteria, archaea, sulfate-reducers or methanogens. T-RFLP is a genetic fingerprinting 

method used for inferring the relative composition of microbial communities; in 

combination with 16S rRNA sequence analysis the identification of single T-RFs, i.e. single 

community members, is possible. 

With 13C-labeled compounds as substrates for the laboratory microcosms the 

hydrocarbon degradation pathways, the kinetics and their conversion to metabolic 

intermediates can be studied. Moreover, in situ experiments with 13C-labeled compounds 

incubated directly in the environment are possible.  

To identify the active hydrocarbon-degrading microorganisms and their benefit from 

the added substrates, samples from the enriched microcosm or environment are taken in 

time intervals and DNA, RNA or proteins are extracted and analyzed via stable isotope 

probing technique (SIP). The incorporation of the 13C-label from the substrate into the 

microbial metabolism and biomass is shown. The SIP technique is a powerful tool to 

increase the understanding of the role of specific microbial community members in diverse 

environments and the key microbes of hydrocarbon degradation (Lueders et al., 2004). 

Furthermore, the labeled carbon atoms which originate from 13C-labeled substrates which 

have passed the microbial metabolism and are converted into intermediates (e.g. formate, 

acetate or CO2) and end products (e.g. CH4 or CO2) are measurable and reveal the microbial 

hydrocarbon degradation activity and the methane formation pathways.  

To identify the phylogentic affiliation of microbial species, the molecular analysis of 

16S rRNA is used (Woese et al., 1975). The 16S rRNA sequence analysis allows the rapid 

description of a phylogenetic variety of microbial communities. Additionally, 

16S rRNA sequences obtained from communities that occur in different environments can 

be clustered into “operational taxonomic units” (OTUs). Sequences from organisms sharing 

less than 97 % identity of their ribotypes are summarized into clusters, e.g. Rice Cluster, 

Marine Benthic Group or Miscellaneous Crenarchaeotic Group.  
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1.4. Motivation and main objectives of this work 

This thesis was accomplished in the framework of the DFG priority program SPP 1319 

“Biological transformations of hydrocarbons without oxygen: from the molecular to the 

global scale”. The SPP started in July 2008 as a joint interdisciplinary collaboration of 

research groups in the fields of ecophysiology, microbiology, biogeochemistry, 

biochemistry, chemistry, structural biology and biophysics of microbial anaerobic 

hydrocarbon degradation. The biological transformation and degradation of hydrocarbons 

as well as the formation of methane are playing an important role in the global carbon 

cycle. In many cases, methanogenesis is a final step of the microbial hydrocarbon 

degradation to methane under anaerobic conditions, occurring e.g. in oil reservoirs, coal 

mines, and anoxic sediments and soils.  

 

In particular, the objectives of this thesis are: 

 

(I) The basis of this work is the enrichment of anaerobic microbial communities from 

samples of different ecosystems able to degrade coals, oils or selected alkanes and 

aromatic hydrocarbons under methanogenic conditions. 

 

(II) Furthermore, molecular genetic analyses from original and cultured hydrocarbon-

enrichment samples will be used to compare the microbial community composition 

of the enrichments with those in hydrocarbon-rich geosystems (e.g. oil reservoirs and 

coal-bearing sediments), pristine nutrient-rich (e.g. pristine limnic and marine 

sediments) and nutrient-poor habitats (e.g. arctic sediments). 

  

(III) The investigation of physiological characteristics of selected hydrocarbon-degrading 

enrichment cultures will be carried out to determine possible limiting and stimulating 

factors, and the impact of varying environmental conditions, like the changes of 

temperature and pressure or the availability of electron acceptors, on the conversion 

of hydrocarbons to methane.  
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1.5. Overview of publications and author contributions 

In the following chapters the results of the conducted research summarized in 

articles for scientific journals are given. 

 

Chapter 2: Evidence for in situ methanogenic oil degradation in the Dagang oil field 

Nuria Jiménez, Brandon E.L. Morris, Minmin Cai, Friederike Gründger, Jun Yao, Martin 

Krüger, Hans H. Richnow 

Published in Organic Geochemistry 09/2012; 52: 44–54 

 

Author contributions: M. Krüger and H. Richnow designed the project. F. Gründger and M. 

Krüger planned and performed the cultivations experiments and the analytical 

measurements. M. Cai assisted in the experiment set up and measurements. F. Gründger 

carried out the molecular analysis, and together with B. Morris and N. Jiménez evaluated 

and interpreted the data. M. Cai and N. Jiménez performed the isotopic analysis of 

reservoir fluids, the chemical analysis of oil, and the subsequent evaluation and 

interpretation of the data. B. Morris, H. Richnow, M. Krüger and N. Jiménez wrote the 

manuscript. 

 

 

Chapter 3: Microbial methane formation in deep aquifers of a coal-bearing sedimentary 

basin, Germany 

Friederike Gründger, Hans H. Richnow, Thomas Thielemann, Martin Krüger 

Manuscript in preparation (for submission to Frontiers in Microbiology) 

 

Author contributions: M. Krüger and T. Thielemann designed the project. F. Gründger 

planned, performed parts of the cultivation, the analytic measurements, the molecular 

analyses and the interpretation of the data. H. Richnow accomplished the isotopic 

measurements. F. Gründger and M. Krüger wrote the manuscript. 
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Chapter 4: Similar features of microbial consortia from different ecosystems degrading 

hexadecane under methanogenic conditions 

Friederike Gründger, Michael Siegert, Hans H. Richnow, Frederick v. Netzer, Tillmann 

Lüders, Martin Krüger 

Manuscript in preparation (for submission to FEMS Microbiology Ecology) 

 

Author contributions: M. Krüger designed the project. F. Gründger planned and performed 

parts of the cultivation, the analytic measurements, the molecular analyses, the evaluation 

and interpretation of the respective results. M. Siegert assisted in cultivation. H. Richnow 

accomplished the isotopic measurements. F. Gründger and F. v. Netzer performed the 

T-RFLP analysis, the 454-pyrosequences and F. v. Netzer helped with interpretation of the 

data set under supervision of T. Lüders. F. Gründger and M. Krüger wrote the manuscript. 

 

 

Chapter 5: Isotopic fingerprinting of methane and CO2 formation from aliphatic and 

aromatic hydrocarbons 

Stefan Feisthauer, Michael Siegert, Martin Seidel, Hans H. Richnow, Karsten Zengler, 

Friederike Gründger, Martin Krüger 

Published in Organic Geochemistry 05/2010; 41 (5): 482–490  

 

Author contributions: S. Feisthauer prepared the manuscript and was in charge of the field 

sampling and isotope measurements of the field samples. M. Seidel performed the isotope 

measurements. K. Zengler and M. Krüger conducted the cultivation approaches and 

contributed to the preparation of the manuscript. F. Gründger performed parts of the 

enrichment cultures and a part of the molecular experiments. M. Siegert and H. Richnow 

contributed to data interpretation and manuscript preparation. H. Richnow and M. Krüger 

designed the project and reviewed the manuscript. 
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Chapter 6: Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under 

iron- and sulfate-reducing conditions 

Michael Siegert, Danuta Cichocka, Steffi Herrmann, Friederike Gründger, Stefan Feisthauer, 

Hans H. Richnow, Dirk Springael, Martin Krüger 

Published in FEMS Microbiology Letters 02/2010; 315 (1): 6–16 
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Abstract 

In situ biotransformation of oil to methane was investigated in a reservoir in Dagang, 

China using chemical fingerprinting, isotopic analyses, and molecular and biological 

methods. The reservoir is highly methanogenic despite chemical indications of advanced oil 

degradation, such as depletion of n-alkanes, alkylbenzenes, and light polycyclic aromatic 

hydrocarbon (PAH) fractions or changes in the distribution of several alkylated polycyclic 

aromatic hydrocarbons. The degree of degradation strongly varied between different parts 

of the reservoir, ranging from severely degraded to nearly undegraded oil compositions. 

Geochemical data from oil, water and gas samples taken from the reservoir are consistent 

with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon 

degradation. Microcosms were inoculated with production and injection waters in order to 

characterize these processes in vitro. Subsequent degradation experiments revealed that 

autochthonous microbiota are capable of producing methane from 13C-labeled n-

hexadecane or 2-methylnaphthalene, and suggest that further methanogenesis may occur 

from the aromatic and polyaromatic fractions of Dagang reservoir fluids. The microbial 

communities from produced oil-water samples were composed of high numbers of 

microorganisms (on the order to 107), including methane-producing Archaea within the 

same order of magnitude. In summary, the investigated sections of the Dagang reservoir 

may have significant potential for testing the viability of in situ conversion of oil to methane 

as an enhanced recovery method, and biodegradation of the aromatic fractions of the oil 

may be an important methane source.  

 

Keywords: oil chemistry, biodegradation, methanogenic Archaea, MEOR, oil biomarkers, 

qPCR 
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2.1. Introduction 

Microbial activity in oil reservoirs affects the quality and economic value of recovered 

petroleum products, not only by decreasing the n-alkane content of the oil, but also by 

increasing oil density, sulfur content, acidity, and viscosity (Connan, 1984; Röling et al., 

2003). Unlike shallow subsurface reservoirs, deeper petroleum reservoirs are not commonly 

connected to meteoric water cycles, resulting in low nitrate and oxygen availability. 

Consequently, oil degradation by aerobic or facultative anaerobic organisms is limited. In 

addition, the supply of large amounts of Fe (III) or manganese (IV) via the water cycle is also 

unlikely due to poor solubility and slow water recharge rates in subterranean cycles. 

Moreover, although, iron and manganese oxides from sandstone could be used as electron 

acceptors for oil oxidation, they are unlikely to be responsible for significant compositional 

changes in the oil, due to their limited availability in the reservoir. However, oil degradation 

linked to sulfate-reduction is possible when sulfate arises from geological sources, such as 

evaporitic sediments and limestone, or from the injection of seawater for pressure 

stabilization, and may lead to significant oil degradation and increased residual-oil sulfur 

content. 

Methanogenic oil degradation, on the other hand, does not require external electron 

acceptors and leads to less overall souring of the oil reservoir. Several studies have described 

methanogenic degradation of crude oil-related compounds in vitro (Gieg et al., 2008; Jones 

et al., 2008) including n-alkanes (Jones et al., 2008; Zengler et al., 1999) and mono- and 

polyaromatic hydrocarbons (for a review see Gieg et al. (2010)). To sustain the process in an 

oil-bearing reservoir, the only requirements would be adequate amounts of N and P for 

biomass production, trace metals and vitamins for enzymes, and a sufficient water supply 

delivered over geological time scales for biodegradation to occur. This water and nutrient 

supply may also be provided during secondary production involving waterflood. Methane 

may be recovered relatively easily using extant production infrastructure and used as a 

downstream energy source. Therefore, the transformation of residual oil to methane is 

being considered as a tertiary recovery method for abandoned reservoirs with high water 

cuts and low oil recovery. According to estimates more than 50 % of the initial oil is 

unrecoverable by conventional technology (Youssef et al., 2009) and will remain entrenched 

in the reservoir matrix. Therefore, methanogenesis could be an interesting strategy for 

microbially enhanced recovery of carbon from exploited reservoirs. 
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Previous experiments performed in the area of microbial enhanced oil recovery have 

been intent on increasing oil degradation by stimulating in situ production of biosurfactants 

after addition of an oxidant (O2 or H2O2; e.g. Nazina et al. (2008)). However, these 

experiments resulted in a slight enhancement in oil recovery upon formation of surfactants 

by aerobic, thermophilic microbiota, or biomass that helped to indirectly solubilize the oil. 

However, this strategy requires constant addition of electron acceptors to sustain the 

metabolic activity of aerobic microbial communities, and may be limited over longer periods 

of time. Consequently, recent attention has focused on the potential of anaerobic microbial 

processes for microbially enhanced oil recovery (MEOR) applications. 

In light of these situations, the aim of this study was to assess the ability of indigenous 

microbial communities from a water-flooded thermophilic oil reservoir to produce methane 

under reservoir conditions using laboratory microcosms and molecular biological analyses. 

As an incremental step towards this goal, we have conducted a geochemical study 

employing isotopic analyses of reservoir fluids to characterize microbial methanogenesis. In 

addition, the oil was analyzed using GC-MS fingerprinting techniques to assess the effects of 

biodegradation on the distribution of oil constituents. 

 

2.2. Materials and methods/experimental details 

 

2.2.1. Site description 

The Dagang oil field complex is located in the Huanghua depression of the Bohai Bay 

Basin. It comprises a total area of 24 km2 in Cang County, roughly 200 Km SE of Beijing, and 

consists of series of sandstone oil-bearing strata of the Paleogene and Neogene (Li and Wu, 

1991; Vincent et al., 2009). The sampling campaign for this study included four trips in 2010 

and 2011 to the Hebei Province in NE China. The sampled oil complex contains different 

production blocks ranging in age from approximately 3 to more than 40 years, and well 

depths from 800 m to 2600 m. Production methods for sampled wells range from primary 

production to tertiary enhanced-recovery methods (i.e. polymer flooding) (Nazina et al., 

2007). The average reservoir temperature ranged from 35 to 80°C at the time of sampling. 

Within the oil field complex, several production wells are serviced by one injection well 

during secondary recovery/waterflood and range in distances from 50-300 m to the injection 

well. Hydraulic residence times for injected waters are typically on the order of 40-80 days, 
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as previously determined (Nazina et al., 2007). A description of the sampled blocks and wells 

is in Table 2.1. Three different production blocks were sampled during the campaigns and 

are labeled as Block I, II and III.  

 

2.2.2. Sampling and establishment of microcosms 

Samples were collected directly from the wellhead of production and injection wells 

(Table 1) in sterile glass bottles, flushed with formation gases, and transported back to the 

laboratory in Leipzig, Germany. All samples were cooled to around 4°C until further analysis. 

Anaerobic incubations were established in an anaerobic chamber, using oil field fluids as 

inoculum. Glass serum bottles containing 10-30 mL of a sulfate-free mineral medium 

(Widdel and Bak, 1992) were inoculated with 5-10 mL of formation water respectively, and 

sealed with butyl rubber stoppers and aluminum crimp seals. Controls included autoclaved 

fluids to assess residual degassing of methane from the fluids, as well as replicates without 

any added hydrocarbon substrates to determine potential methanogenesis from organic 

matter present in the fluids. Sulfate was added from a sterile anoxic stock solution to several 

replicates to a final concentration of 2mM sulfate. The salinity of the microbial medium was 

adjusted to mimic the conditions in Dagang (Appendix 2.A). Sample headspace was flushed 

with nitrogen to remove residual hydrogen (from the anaerobic chamber), and replicates 

were incubated statically at 30°C and 60°C. The enrichments were amended individually with 

non-labeled components to compare with the labeled ones, [13C16] hexadecane, 

ethylbenzene, [13C7] toluene, 2-[13C]-methylnaphthalene, or 2-carboxynaphthalene as a sole 

carbon source. The labeled hexadecane was synthesized from uniformly 13C-labeled palmitic 

acid, (Campro Scientific, Berlin, Germany) by reduction of the carboxyl group to an alcohol 

(with LiAlH4), conversion to the p-tosylate ester, and reduction to the hydrocarbon (with 

LiAlH4). 2-[13C]-methylnaphthalene was synthesized by the Institute of Organic Chemistry at 

the University of Leipzig, using a two-step methylation of naphthalene: acetylation to 

2-[13C]-naphthol (analogous to Coombs et al. (2000)), and reduction with Pd/C/H2 (analogous 

to Ofosu-Asante and Stock (1987)). Purity was confirmed via gas chromatography mass 

spectrometry (GC-MS). 

Methane and CO2 production rates were calculated by preforming a linear regression 

of the methane increase with incubation time, and the values were expressed in µmol CH4 or 

CO2 per day-1 mL-1 sample, as described previously in Krüger et al. (2001). 
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2.2.3. Analytical methods (isotopes and headspace gases) 

Methane production was analyzed by measuring microcosm headspace isocratically 

at 60°C using a GC-FID equipped with a 6’ Hayesep D column (SRI  610C, SRI Instruments, 

USA). Carbon dioxide concentrations were determined using a methanizer-equipped FID 

detector, after reduction of the CO2 to methane. The stable isotopic composition of methane 

and CO2 was measured using a gas chromatography-combustion-isotope ratio monitoring 

mass spectrometry system (GC-C-IRM-MS). The system consisted of a gas chromatograph 

(6890 series; Agilent Technology), fitted with a CP-pora BOND Q column coupled to a 

combustion or high-temperature pyrolysis interface (GC-combustion III or GC/C-III/TC; 

Thermo Finnigan, Bremen, Germany), and a MAT 252 IRMS for the carbon analysis or a MAT 

253 IRMS for hydrogen analysis (both from Thermo Finnigan, Bremen, Germany) (Herrmann 

et al., 2010). The carbon and hydrogen isotopic compositions (R) are reported as delta 

notation (13C and 2H) in parts per thousand (‰) relative to the Vienna Pee Dee Belemnite 

(VPDB) and Vienna Standard Mean Ocean Water (VSMOW), respectively (Feisthauer et al., 

2011; Richnow et al., 2003a). 

Headspace samples were injected directly into the GC using a split mode for the 

analysis of 13C and 2H for methane (for details, see Feisthauer et al. (2011)). Water 

subsamples were used for the isotopic analysis of carbonates and deuterium in the H2O as 

outlined below. For the carbonate analysis, an aliquot of each sample was collected with a 

syringe, transferred to a crimped vial and acidified to < pH 2 using pure HCl. The gas phase 

was then injected into the GC-IRMS for isotope analysis. The error associated with the 

system (accuracy and reproducibility) was around 0.5 ‰ and 4 ‰, for carbon and hydrogen, 

respectively. The standard deviation of at least three independent measurements is 

reported. For the H2O analysis, an aliquot (5 mL) of each sample was cleaned with activated 

carbon to remove any possible organic contamination prior to the determination of isotope 

ratios. 

 

2.2.4. Gas-chromatography mass-spectrometry of oil 

Samples from the reservoir and from degradation experiments were extracted with 

dichloromethane and dehydrated through a 2-g anhydrous Na2SO4 column. The oil content 

in the sample was determined by gravimetry in 1.0 mL of the eluate, and carefully 

evaporated until dryness. An aliquot (10 mg) of the eluate was cleaned by passing it through 
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2 g of Al2O3 (5 % w/w deactivated), concentrated and exchanged to hexane (1.0 mL) by a 

gentle solvent evaporation under a stream of nitrogen gas. GC-MS analysis was performed 

using a 7890A gas chromatograph (Agilent Technologies), fitted with a capillary column (J&W 

Scientific, Folsom, CA, USA) HP-5 MS (30 m × 0.25 mm i.d., 0.25 μm film), coupled to a 5975C 

MS spectrometer equipped with a triple-axis detector (Agilent Technologies) as reported 

elsewhere (Jiménez et al., 2006). 

 

Table 2.2: Diagnostic ratios for source and weathering assessment for the oil samples 

Index1 
Diagnostic ion 

m/z 
Definition Structures 

%29aaS 217 100*29ααS/(29ααS+29ααR) 29αα: 24-ethyl-14α(H),17α(H)-cholestane (20S and R) 

%29bb(R+S) 217 
100*29ββ(R+S)/[29ββ(R+S)+ 
29αα(R+S)+29ααR)] 

29ββ: 24-ethyl-14β(H),17β(H)-cholestane (20S and R) 

%27bb 217 
100*27ββ/[27ββ(R+S) 
+2 ββ(R+S)+29ββ(R+S)] 

27ββ: 14β(H),17β(H)-cholestane (20S and R) 

   
2 ββ: 24-methyl-14β(H),17β(H)-cholestane (20S and R) 

%26TA 231 100*26TAS/(26TAS+28TAS) aromatized cholestane (20S) and 24-ethylcholestane (20S) 

%27Ts 191 100*Ts/(Ts+Tm) Ts: 1 α(H)-22,29,30-trisnorhopane 

   
Tm: 17α(H)-22,29,30-trisnorhopane 

%29ab 191 100*29αβ/(29αβ+30αβ) 29αβ: 17α(H),21β(H)-30-norhopane 

   
30αβ: 17α(H),21β(H)-hopane 

%32abS 191 100*32αβS/(32αβS+32αβR) 30αβ: 17α(H),21β(H)-bishomohopane (22S and R) 

2-3MD/1MD 198   

D2/P2 212/206 100*D2/(D2+P2) D2, D3: dimethyl and trimethyldibenzothiophenes 

D3/P3 226/220 100*D3/(D3+P3) P2, P3: dimethyl and trimethylphenanthrenes 

D2/C2 212/256 100*D2/(D2+C2) Py2, Py3: dimethyl and trimethylpyrenes 

D3/C3 212/270 100*D3/(D3+C3) C2, C3: dimethyl and trimethylchrysenes 

C2/Py2 256/230 100*C2/(Py2+C2)  

C3/Py3 270/240 100*C3/(Py+C3)  

1 The indexes %29ab, %32ab, %27Ts, D2/P2 and D3/P3 have been selected for source 

identification, whereas changes in the other indexes may indicate different degrees of 

degradation. 

 

2.2.5. Assessment of oil degradation 

To assess the extent of microbiological oil degradation, the distribution of n-alkanes or 

polycyclic aromatic hydrocarbons was calculated with relation to 17α(H),21β(H)-hopane 

(m/z 191), used as internal conservative molecular marker (Prince et al., 1994). Sample 3’ 

was used as a reference to calculate the relative degradation for the rest of the samples. The 

quantification of n-alkanes was determined by using the m/z 85 fragment ion. Linear 

alkylcyclohexanes, alkylbenzenes and alkyltoluenes were quantified by monitoring their 
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characteristic ions (m/z 82, 92 and 106, respectively). Quantification of individual aromatic 

compounds was based on the molecular ion for each: N-N4, naphthalenes (m/z 128, 142, 

156, 170, 184); F-F3, fluorenes (m/z 166, 180, 194, 208); P-P3, phenanthrenes (m/z 178, 192, 

206, 220); D-D3, dibenzothiophenes (m/z 184, 198, 212, 226); Py-Py3, fluoranthenes and 

pyrenes (m/z 202, 216, 230, 244); C-C3, chrysenes (m/z 228, 242, 256, 270). In addition, 

several molecular markers were used to calculate indexes for fingerprinting and weathering 

assessment: triaromatic steroids (m/z 231), steranes and diasteranes (m/z 217 and 218) and 

triterpanes (m/z 191). The different diagnostic ratios are specified in Table 2.2. 

 

2.2.6. Molecular methods 

For molecular characterization and cloning experiments, DNA from the microcosms was 

extracted after incubation with individual hydrocarbons using a modified protocol from 

Lueders et al. (2004). For further purification of crude DNA, ethidium bromide was added to 

0.6 mg mL-1 and ammonium acetate to 2.6 M final concentration (Lovell and Piceno, 1994). 

Genes of interest were quantified by real-time PCR using an ABI Prism 7000 (Applied 

Biosystems, Life Technologies Corporation, Carlsbad, California, USA). The 16S rRNA gene 

copy numbers for Archaea and Bacteria were determined as described previously (Nadkarni 

et al., 2002; Takai and Horikoshi, 2000). Methanogen abundance was assessed using the 

methyl-CoM reductase gene A (mcrA) (Steinberg and Regan, 2009). Microorganisms capable 

of dissimilatory sulfate-reduction were quantified using dsrA gene copy number. This gene 

codes for the alpha subunit of the dissimilatory (bi)sulfite reductase (Kondo et al., 2004; 

Schippers and Neretin, 2006). All PCR reactions were run in triplicate at three dilutions. Copy 

numbers are expressed as DNA copies mL-1 sample. 

 

 

2.3. Results 

2.3.1. Oil chemical analysis 

The majority of the oil-water samples taken from the reservoir present an elevated 

content heavy and polar oil fractions (resins and asphaltenes, up to 29 %), whereas the 

saturated fraction represents 43 to less than 50 % of the bulk oil. These values are slightly 

higher and lower, respectively, than values previously reported by Nazina and coworkers 
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(around 20 % of resins and asphaltenes and >53 % saturated hydrocarbons) and might 

suggest higher biodegradation levels than previously described (Nazina et al., 2007). In 

addition, most samples are completely depleted of n-alkanes, as revealed by GC-MS analysis 

(Figure 2.1). The degree of degradation compared to a relatively non-degraded sample from 

the same reservoir was higher than 90 % (considering C10-C35). Oil profiling revealed that 

alkylbenzenes and alkyltoluenes are severely degraded. However, branched alkanes and 

alkylcyclohexanes are still present to a varying extent in most of the samples. 

Polycyclic aromatic hydrocarbon (PAHs) degradation varied significantly among 

samples and within compound families, ranging from around 10 % to nearly 100 % for 

naphthalenes, fluorenes, dibenzothiophenes, phenanthrenes (Table 2.3). Compound 

removal decreased with increasing molecular weight, as generally expected. Tetra-aromatic 

hydrocarbons (e.g. pyrenes and chrysenes) were slightly affected, as reflected by the relative 

decrease of C2- and C3-dibenzothiophenes with respect to C2- and C3-pyrenes (D2/C2 and 

D3/C3) (Figure 2.2). This observation is consistent with heavy to severe biodegradation (4-7 

using the scale of Peters and Moldowan (1993) and Head et al. (2003)). 

 

Table 2.3: Degradation percentages of different hydrocarbon families with respect to the non-

biodegraded sample (Block I, sample 3). Samples have been ordered according to the extent of 

biodegradation 

 3 7 11 12 8 10 5 13 1 14 

C17/Pr 65 15 NA NA NA 15 NA NA NA NA 

C18/Ph 63 11 NA NA NA 8 NA NA NA NA 

 % Degradation relative to sample 3 of block I 

n-alkanes  92 100 100 100 99  100 100 100 

N-N3  20 10 15 48 86 92 99 94 100 

F-F3  13 15 18 30 56 60 60 67 100 

P-P3  9 14 16 16 45 57 40 76 96 

D-D3  31 35 39 43 54 52 56 63 100 

Py-Py3  - - - - 18 - 14 37 59 

C1-C3  - - - - - - - 30 55 

NA: Not available due to the lack of n-alkanes. 
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Peak 
Diagnostic ion 
(m/z) 

Identification Peak 
Diagnostic ion 
(m/z) 

Identification 

Pr 85 pristane 8 184 1,2,3,6-TMN 

Ph 85 phytane 9 184 1,2,5,6- + 1,2,3,5-TMN 

29 ab 191 17α(H),21β(H)-30-norhopane 10 192 3-MP 

30ab 191 17α(H),21β(H)-hopane 11 192 2-MP 

   
12 192 4+9-MP 

1 184 1,3,5,7-TMN 13 192 1-MP 

2 184 1,3,6,7-TMN 14 216 2-MF 

3 184 
1,2,4,6 + 1,2,4,7- +  
1,4,6,7-TMN 

15 216 BaF 

4 184 1,2,5,7-TMN 16 216 B(b+c)F 

5 184 2,3,6,7-TMN 17 216 2-MPy 

6 184 1,2,6,7-TMN 18 216 4-MPy 

7 184 1,2,3,7-TMN 19 216 1-MPy 

 

Figure 2.1: A) GC-MS total ion current (TIC) profiles of representative samples with different degrees 

of biodegradation. Each sample corresponds to a different sampling well. The non-degraded profile 

corresponds to sample Bannan 3 from block I. The numbers 10, 20 and 30 refer to n-alkane chain 

lengths. B) Ion chromatograms of the C4-naphthalenes (m/z 184), C1-phenanthrenes (m/z 206) and 

C1-pyrenes and fluoranthenes (m/z 216) for the same samples. Each profile is presented on a scale 

relative to the largest peak. The identification of the different isomers is given below. 
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Figure 2.2: Molecular marker indices for source and biodegradation assessment. Stars represent 

sample 3, Block I, which was used as a control. The other samples are represented as shaded circles, 

going from dark grey (less degraded) to white (more degraded). 

 

For alkylated PAHs, we have detected changes in the isomeric distributions of 

tetramethylnaphthalenes (TMN), methylphenanthrenes (MP), methyldibenzothiophenes 

(MD) and higher molecular weight PAHs like methyl-pyrenes (MPy). This observation 

suggests that biodegradation of these oil components in this reservoir occurs via 

stereospecific biological processes. Specifically, 1,3,6,7- and 1,2,3,6-TMN are the most easily 

degraded isomers and, like 1,2,6,7-TMN, their relative abundance decreases with increasing 

biodegradation. On the other hand, 1,3,5,7- and 1,2,5,7-TMN seem to be more recalcitrant 

(Figure 2.1). 3- and 1-methylphenanthrene exhibit higher levels of biodegradation compared 

to the other isomers, whereas the 4/9-MP relative abundance increased over a wide range 

(Figure 2.1). This pattern was however not consistent among the most degraded samples, as 

reported in other studies (Williams et al., 1986). The abundance of 2- and 3-MD decreased in 

relation to 1-MD (Figure 2.2). Persistence of 4-methylpyrene (4-MPy) was noted, while all 

other methylpyrenes were significantly degraded (Figure 2.1). 

Aliphatic and aromatic biomarker patterns (hopanes, steranes and triaromatic steroid 

hydrocarbons) varied with the extent of degradation (Figure 2.2). Steranes and triaromatic 

steroid hydrocarbons followed a similar trend, whereby degradation decreased when 
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increasing side chain length, as reflected in the ratios of %27bb and %26TA. In addition, a 

preferential removal of several C-29 steranes was observed: The 14α(H),α(H) and 20R 

isomers were more readily degraded compared to the 14β(H), β (H) and 20S isomers, 

respectively (%29aaS and %29bb(R+S)). On the other hand, diagnostic ratios, such as the 

relative abundance of C2- and C3-phenanthrenes compared to C2- and 

C3-dibenzothiophenes (D2/P2 and D3/P3) or the distribution of bishomohopane S and R 

isomers (%32abS), suggest that all oils from this study belong to the same source. In 

addition, the lack of significant differences in the Tm/Ts index (%27Ts) among the samples 

indicates that they have a similar thermal maturity and imply a similar genesis, with the lone 

exception of sample 14. 

 

2.3.2. Gas analysis 

Gas phases recovered from the reservoir consisted mainly of CH4, while C2 and C3 

were less abundant and other light n-alkanes (C4-C6) were rarely detected, as reflected by 

the ratio of C1/Σ(C1-C5) (Table 2.4). However, samples from Block I (wells 2 and 3) were 

particularly wet, with values below 0.6. The C1/(C2+C3) ratios varied from 2 to nearly 600, 

and indicate either thermogenic origin, according to the Bernard diagram (Bernard et al. 

(1976); Appendix 2.B) or a mixture of biodegraded and secondary microbial gas (Milkov, 

2011). The ratio of CH4/CO2 ranged from 1 to around 200. Methanogenic alkane degradation 

produces methane to CO2 ratios of about 3.27:1. However, our values are generally much 

higher, which could be related to the diversity of carbon sources, a further degradation of 

CO2 or the solubility of CO2 in formation water or precipitation of carbonates in the 

reservoir. 

The isotopic composition of methane carbon (13C) from different wells ranged 

from -39 ‰ to -68 ‰ relative to VPDB, and averaged around -47 ‰ (Table 2.4). These values 

are consistent with biogenic methane production (Larter et al., 2005; Pallasser, 2000), and 

similar to values from other degraded reservoirs in China (Dai, et al. 2004). Two of the 

samples (1 and 14) have a lighter value (below -55 ‰) and, according to Milkov (2011), are 

typical for primary microbial gas. Carbon dioxide was highly enriched in 13C for most of the 

samples, with values observed up to +17.2 ‰. The lightest value corresponded to sample 14 

from block III (-12.  ‰), followed by samples from blocks I and II (up to -7.6 ‰). The bulk 

isotopic discrimination (Δδ13C) between methane and CO2 was between 32 and 65 ‰ 
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(Figure 2.3), in accordance with previously reported results for methane formation during 

hydrocarbon degradation (Feisthauer et al., 2010; Morris et al., 2012). They are also typical 

of values found in highly biodegraded subsurface oils from marine systems (Larter and di 

Primio, 2005) and may indicate that extensive reduction of CO2 to methane has occurred 

(Jones et al., 2008; Milkov, 2011). However, no clear correlation can be established between 

the isotopic discrimination of methane/carbon dioxide and the degree of biodegradation at 

this time. 

 

Table 2.4: C and H isotopic composition of the fluids (*) from the reservoir, together with their 

dryness. (*) relative to the VPDB and VSMOW standards 

 

Block Sample 
 

C1/(C2+C3) C1/Σ(C1-C5) δ¹³C (‰) δ²H (‰) 

     CH4 CO2 CH4 H2O 

B
lo

ck
 I 1 prod 585 0.998 -69.8 ± 0.4 -7.6 ± 0.1 NA -75.2 ± 0.9 

2 prod 3 0.589 -40.8 ± 0.4 -7.6 ± 0.1 -219.4 ± 1.3 -60.0 ± 0.3 

3 prod 2 0.492 -41.3 ± 0.3 -4.5 ± 0.2 -223.3 ± 1.1 -60.5 ± 0.5 

B
lo

ck
 II

 4 prod NA NA -40.2 ± 0.4 -7.6 ± 0.1 NA -71.7 ± 0.7 

5 prod 25 0.961 -43.7 ± 0.1 -5.1 ± 0.1 -241.9 ± 1.6 -73.0 ± 0.5 

6 prod 31 0.968 -43.8 ± 0.9 9.1 ± 0.1 -237.1 ± 0.8 -68.1 ± 0.4 

B
lo

ck
 II

I 

7 prod NA NA -39.5 ± 0.3 11.2 ± 0.0 -238.9 ± 0.3 -69.2 ± 0.7 

8 
prod 14 0.920 NA 11.2 ± 0.2 NA -72.8 ± 0.7 

inj 32 0.954 NA 9.3 ± 0.1 NA -71.7 ± 0.9 

9 prod NA NA -43.1 ± 0.4 15.5 ± 0.2 -224.8 ± 3.3 -69.6 ± 0.5 

10 
prod 

214 0.995 -48.5 ± 0.2 13.8 ± 0.2 -222.1 ± 1.6 -76.5 ± 1.6 

73 0.986 -48.7 ± 0.2 13.7 ± 0.0 -227.7 ± 0.3 -72.0 ± 0.5 

inj NA NA NA 13.4 ± 0.3 NA -70.6 ± 1.6 

11 prod 
11 0.925 -46.9 ± 0.2 3.6 ± 0.1 -246.3 ± 0.3 -70.4 ± 1.2 

NA NA -47.2 ± 0.6 NA -241.5 ± 0.3 NA 

12 prod 
NA NA -47.6 ± 0.2 6.7 ± 0.2 -237.9 ± 2.3 -72.1 ± 1.5 

24 0.959 -47.6 ± 0.3 9.9 ± 0.2 -240.0 ± 0.8 -73.1 ± 2.5 

13 prod 
NA NA -46.9 ± 0.4 17.5 ± 0.2 -235.5 ± 1.5 -72.0 ± 1.6 

176 0.994 -46.9 ± 0.4 16.4 ± 0.2 -229.4 ± 1.4 -69.4 ± 2.9 

14 prod 541 0.998 -59.0 ± 0.2 -12.8 ± 0.2 -241.8 ± 10.5 -72.4 ± 1.0 

NA: not available. 
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Figure 2.3: Hydrogen isotopic discrimination between methane and water (Δδ2H) vs. carbon isotopic 

discrimination between methane and CO2 (Δδ
13C). Error bars represent the standard deviation of 

three independent analyses. 

 

The 2H values for methane and water ranged from -220 ‰ to -246 ‰ and -69 ‰ 

to -73‰ relative to the VSMOW, respectively. These values are on the lower range of 

previously reported statistics from marine sediments (Whiticar et al., 1986) (-250 ‰ 

to -170 ‰). The 2H discrimination between methane and water (Δ2H(CH4-H2O)) varied 

between -145 ‰ and -170 ‰, and were found to be significantly lower than values from 

enrichment cultures studied by Feisthauer et al. (2010) (Δ2H(CH4-H2O) -336 ‰ to -257 ‰) 

(Figure 2.3). 

 

2.3.3. Microbial abundance 

Thirteen production wells and three injection wells were sampled intermittently over 

a period of two years throughout the Dagang field complex. A thorough microbiological 

survey using qPCR was conducted to characterize the bacterial and archaeal numbers at the 

site via amplification of the 16S rRNA gene. Further insight into biogeochemical processes 
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was achieved by determining mean copy number of the dissimilatory sulfate reductase 

(dsrA) and methyl-CoM reductase (mcrA) genes. Reservoir temperatures in Dagang usually 

range from 35-60°C and can reach 80°C in the deeper section (Table 2.1). Average bacterial 

numbers for injection and production wells, based on 16S rRNA, ranged from 105 to 

108 copies mL-1 sample. Archaeal numbers were between 103 to 107 copies mL-1 sample. 

Generally, bacterial and archaeal copy numbers were on the same order of magnitude for 

individual wells. The exception to this rule occurred when wells with high water cuts were 

sampled (above 90 %, Well 13). In this case, bacteria outnumbered archaea by two orders of 

magnitude. Clone libraries of 16S rRNA genes were constructed to assess the dominant 

archaeal genera within nine Dagang production/injection wells (Appendix 2.C). Production 

water samples from wells 10 and 15 were dominated by Methanosarcina (100 %) and 

Methanobacterium (47 %) sequences, respectively. The dominant archaea in well 14 were 

the crenarchaeotal genus Hyperthermus (80 %) and the euryarchaeotal genus Archaeoglobus 

(15 %). Interestingly, no methanogenic genera were detected in this sample. 

Methanosphaera, Methanosarcina, and Methanobacterium were the dominant genera in 

samples from the other wells. 

The dsrA numbers ranged from 104 to 107 copies mL-1 sample, and seem to indicate 

that the Dagang field could quickly become sulfidogenic if sulfate-containing injection waters 

were added to the formation. In addition, if sulfide oxidation is promoted by adding of O2 or 

H2O2 to the injection water, biogenic sulfate-reduction may occur (Nazina et al., 2008). Copy 

numbers for mcrA were comparable to dsrA numbers. In several wells, the mcrA copy 

number was higher than the 16S bacterial number (Figure 2.4), but this pattern was not 

correlated with higher rates of methane generation. Several wells were sampled during both 

the November 2010 and April 2011 campaigns. Overall, bacterial gene copy numbers were 

generally higher in April 2011, especially for injection well 10 (Figure 2.4). This may indicate 

seasonal variation in reservoir bacterial numbers, most likely associated with the water 

management of the reservoir, but longer-term study would be needed to validate these 

trends. 
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Fig 2.4: Abundance of bacteria, archaea, sulfate-reducing prokaryotes, and methanogens in samples 

as determined by qPCR. The error bars represent the standard deviation of three replicates. 

 

2.3.4. In vitro methane production from labeled hydrocarbons 

Microbial enrichment cultures were established from Dagang production fluids and 

amended with 13C-labeled aliphatic and aromatic hydrocarbons to provide unequivocal 

evidence of methanogenic hydrocarbon degradation by in vitro microbial populations from 

this reservoir. The isotopic composition (13C) of methane and CO2 from enrichment cultures 

containing 13C-labeled n-hexadecane and 13C-methylnaphthalene (provided as sole carbon 

sources) became continuously enriched during the incubation. After 90 days of incubation, 

samples amended with 13C-labeled 2-methylnaphthalene produced methane with 13C 

signatures above 30 per mil (versus VPDB, Figure 2.5B). Labeled methane continued to be 

produced over the investigation time of 150 days (Figure 2.5B). Isotopically heavy methane 

was also observed in the enrichments containing 13C-labeled n-hexadecane, and methane 


13C values were approximately 50 ‰ PDB after 40 days (Figure 2.5A). Although a higher 

rate of n-alkane degradation is expected compared to 2-MN, the n-alkanes used in this study 

were uniformly labeled while the 2-MN was labeled at the methyl position. This in and of 

itself can account for the earlier emergence of labeled methane in the n-alkane amended 
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samples. Carbon dioxide however became much more enriched in the n-alkane samples, 

with 13C values observed at 40 days of over 60 ‰ (Figure 2.5). After 400 days, methane and 

CO2 were both highly labeled (Figure 2.5). Methane production rates were quantified for 

microcosms inoculated with production fluids from Well 15, and were found to be between 

0.83 and 1.02 µmol mL-1d-1. 

 

Figure 2.5: Isotopic values for the methane and CO2 produced from (A) n-hexadecane and (B) methyl-

naphthalene in vitro. 13C-CH4 and 13C-CO2 correspond to the gases obtained in the labeled 

microcosms, whereas 12C-CH4 and 12C-CO2 represent the gases obtained in the unlabeled ones. Error 

bars represent the standard deviation of three independent injections. 

 

 

2.4. Discussion 

The majority of worldwide oil reservoirs show evidence for biodegradation (Jones, 

2008). However, we still understand very little about the underlying reservoir microbiology, 

especially under methanogenic conditions. Understanding these processes might facilitate 

the development of methods for either reducing biodegradation, or stimulating metabolic 

processes for microbially enhanced oil recovery (MEOR). 

 

2.4.1. The microbiological potential of the Dagang oilfield for in situ methane 

production 

As a way to increase or sustain oil production, secondary recovery by waterflood has 

been used since its development in the 1930s, and is still a common production method in 

many countries. This method entails water injection into the oil-bearing strata using a 

network of injection wells to maintain reservoir pressure (Belyaev et al., 2004). In the 

Dagang oilfield complex, injection water is separated from production fluids and 
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continuously reinjected into the formation in a cyclical fashion. The process of oil and water 

separation before injection takes, on average, two to three hours. Consequently, the 

chemical composition of the formation and injection waters is very similar at this location 

(Nazina et al., 2007). This demonstrates that the water cycle is closed and environmental 

water injection is minimal. Overall geochemical conditions in the Dagang oil field complex 

represent a favorable environment for the recruitment and sustainability of microbial 

populations. The sulfate concentrations are relatively low and sulfate is probably not a 

relevant electron acceptor for biodegradation, as sulfide production was not witnessed in 

the field during sampling campaigns. Elevated HCO3 concentrations indicate higher microbial 

activities in some of the production blocks (Nazina et al., 2007). 

We hypothesize that secondary recovery methods including water recycling and 

reinjection select for, and maintain, microbial populations that can degrade crude oil 

constituents to methane under in situ temperature and pressure. Tracer studies using 

13C-labeled aliphatic and polyaromatic hydrocarbons demonstrated that microorganisms in 

the Dagang formation waters have the intrinsic ability to produce methane from these 

compounds (Figure 2.5). These results are consistent with those obtained by Wang et al. 

(2011) using a mixture of n-alkanes (C15-C20) and high amounts of methane were detected in 

samples collected from the oil complex. Large methane accumulations are commonly 

associated with biodegraded oil (Horstad and Larter, 1997; Milkov, 2010, 2011) and attest to 

our conclusion of biogenic methane production concomitant with anaerobic hydrocarbon 

degradation. In this respect, the 13C signatures for formation methane are consistent with 

the mixing of secondary microbial and thermogenic gases (Fuhua, 1987; Larter et al., 2005; 

Milkov, 2011; Pallasser, 2000; Whiticar et al., 1986). The high 13C values for CO2 found in 

most of the samples from the reservoir are consistent with the model proposed by Jones et 

al. (2008) for hydrogenotrophic methanogenesis, although it was established for 

methanogenesis under mesophilic conditions (below 35°C). The Dagang reservoir has 

prevailing mesophilic to thermophilic conditions of around 30-60°C, except in the deeper 

sections, in which the temperature is much higher. Nevertheless, thermophilic 

hydrogenotrophic methanogens predominate in high-temperature oil reservoirs, for 

example the Kondiang oil field (Nazina et al., 2006), and our clone libraries suggest that 

thermophilic, hydrogenotrophic methanogens related to Methanobacterium (Smith et al., 

1997) are dominant in the Dagang fields. Detected Methanosarcina-related organisms also 



71 

have the potential to produce methane using electrons from hydrogen. Nazina et al. (2007) 

observed methane production from acetate from a hydrogen and carbon dioxide mixture by 

cultures from the same reservoir, paralleling the results obtained by Gray et al. (2009) using 

samples from a gas field in the North Sea. However Gray et al. (2009) did not detect 

acetoclastic methanogenesis in their cultures. Thermodynamic considerations also suggest 

that acetoclastic methanogenesis will become less favored under higher temperatures 

(Dolfing et al., 2008; Larter, 2005). 

The blocks sampled during this study have a production history between 3 and about 

around 40 years, and clear differences were observed between the total ion chromatogram 

(TIC) profiles and specific oil biomarkers in the well under primary production (Block I, 

well 3) and the wells under production by water flood (Figures 2.1 and 2.2). Among the wells 

under secondary production there are differences in the degradation extent. These results 

may suggest that changes in oil composition could be observable within the same formation 

on a human timescale, and can be related at least partly to oil production processes. Nazina 

et al. (1995a) identified anaerobically active microbial biodegradation processes in water-

flooded mesophilic and thermophilic oil reservoirs from Kazakhstan and Western Siberia, 

and concluded that the injection of surface waters helped to facilitate biogenic oil 

degradation. In addition, Whelan et al. (2001) reported significant decreases in the C11-C19 

n-alkanes, and to a lesser extent heavier components (up to n-C32), in less than 8 years 

within oil and gas reservoirs along the Gulf of Mexico coastline. However, it cannot be fully 

excluded that oil mixing and geological complexity in the Dagang region (Fajing and Shulin, 

1991) affect these oil profiles to an unknown extent.  

Injection and productions waters from Dagang were filtered to collect microbial 

biomass for DNA extraction, and analyzed using qPCR. Large numbers of bacterial and 

archaeal 16S rRNA genes were detected in addition to dsrA and mcrA genes (Figure 2.4). 

Anaerobic microcosms incubated under temperature regimes of 55-60°C also produced 

labeled methane within 40 days after inoculation (Figure 2.5). Taken together, this 

information suggests that a specialized community exists that is capable of completely 

mineralizing aliphatic, aromatic, and polyaromatic hydrocarbons to methane. Methanogenic 

hydrocarbon degradation has recently become an area of intense interest from both 

biological and industrial points of view (Gieg et al., 2008; Gray et al., 2010). From a 

biochemical perspective, little is understood about the enzymatic pathways involved in 
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hydrocarbon activation for polyaromatic degradation under reduced conditions, while some 

progress has been made towards our understanding of n-alkane and substituted-aromatic 

activation (i.e. addition of the hydrocarbon to fumarate, Beller and Edwards (2000); Heider 

(2007)). Development of enrichment cultures able to degrade PAHs under methanogenic 

conditions will encourage further study, and a primary understanding of the microbial 

ecology and diversity involved in oil field systems will help to provide groundwork for further 

biochemical study. 

 

2.4.2. Chemical evidence for in situ oil biodegradation 

An extensive fingerprinting of Dagang oil was carried out using GC-MS analyses. 

These results suggest that the crude oil is heavily degraded within this complex, like in most 

of the reservoirs at this temperature range (Pepper and Santiago, 2001), and that the 

degradation of several compound classes is especially severe. For example, n-alkanes are 

almost completely depleted, as normally observed in heavily degraded reservoir. However, 

we also observed substantial losses of aromatic fractions in the oil, specifically 

alkylbenzenes, alkyltoluenes, and low-molecular-weight polyaromatic hydrocarbons. 

Preferential losses of specific alkylated PAH isomers suggest that these compounds are also 

being degraded biologically. Changes in the distribution of trimetylnaphthalenes or 

methylphenanthrenes are consistent with previously reported results of oil biodegradation 

in a reservoir (Huang et al., 2004). The relative abundance of these compounds can be 

associated with their thermal stability. However, in samples with a common source and 

similar thermal maturity (reflected by the Ts/Tm indices), as in this case, differences in the 

chemical distributions are most likely due to biodegradation (Huang et al., 2004). Isomeric 

specificity for aerobic biodegradation of PAHs has been extensively studied and is well 

known. For instance, isomers with β-substituents (like 2- or 3-methyl-) are more readily 

degraded than others. However, trends for PAH degradation under reduced reservoir 

conditions have not been clearly established. Huang et al. (2004) reported that 2,3,6- and 

1,3,6-trimethylnaphthalenes, 1,7- and 2,6- + 3,5-dimethylphenanthrenes, or 

1,2,8-trimethylphenanthrene were preferentially degraded. Nevertheless, these trends are 

likely affected by oil chemistry, formation conditions or oil charging/migration (Larter, 2003), 

along with microbial variability among wells.  
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Selective methylphenanthrene and methyldibenzothiophene biodegradation was 

observed. For example, 4/9-MP and 1-MD, usually the most conserved in biodegraded 

samples under aerobic conditions (Bayona et al., 1986), were retained in several heavily 

degraded samples from our study. This parallels the results obtained by Huang et al. (2004) 

for samples from other oil reservoirs. Similarly, preferential degradation of several sterane 

epimers has been observed here, consistent with results from the previously mentioned 

study. Our GC-MS results, taken together with the microcosm study, indicate that, although 

n-alkane degradation occurs before any significant degradation of aromatics takes place 

(Elias et al., 2007; Jones et al., 2008), PAH degradation is responsible for a significant fraction 

of the methane produced in this oil field complex. Further experiments will contribute to the 

assessment of metabolic pathways for methanogenic PAH degradation and identify the 

microorganisms involved, with hope of establishing new indices for the assessment of oil 

biodegradation under methanogenic conditions. 
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2.5. Appendix 

 

Appendix 2.A: Chemical composition of the formation waters of the Dagang reservoir. 

  8p 8i 9 10i 10p 13 
pH      8.8  8.8  

EC 
µS/c

m     9610  6190  
K+ mg/l 25.4 35.9 57.8 33.2 47.4 22.9 33.0 12.2 

Na+ mg/l 1821 1803 2884 2012 2205 1366 1421 1133 
Cl- mg/l 1161 1152 1027 1494 1841 935 1014 662 

Mg2+ mg/l 31.4 30.1 21.3 41.4 84.6 60.0 78.8 22.9 
Ca2+ mg/l 25.9 29.8 23.1 48.3 28.5 46.4 73.1 23.8 
SO42- mg/l 4.56 12.4 2.24 12.4 41.9 3.01 24.0 2.06 
HCO3 mg/l 3120 3117 6451 3174 3012 2570 2509 2048 
Fe(II) mg/l 0.11 0.91 1.19 1.03 0.235 0.08 0.089 0.26 
Mn2+ mg/l 0.01 0.05 0.04 0.07 0.001 -0.01 0.135 0.01 

Br mg/l ND ND ND ND 4.8 ND 2.4 ND 
BO2 mg/l 9.42 11.0 7.78 22.4 26.1 3.11 3.68 2.04 
Ba mg/l 2.53 1.28 1.01 2.16 0.866 1.30 1.09 1.03 
Li mg/l 0.38 0.54 1.07 0.61 0.653 0.39 0.394 0.17 

SiO2 mg/l 27.4 36.9 41.1 41.3 62.4 53.8 74.6 35.7 
Sr mg/l 1.25 0.83 0.36 1.61 1.27 0.54 0.586 0.66 

Total 
salinity 

g/l 6.2 6.2 10.5 6.9 7.4 5.1 5.2 4.0 

ND: below detection limit. 
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Appendix 2.B: Genetic diagrams for gases of the different wells. A) Carbon vs. hydrogen isotopic 

composition of methane. B) A Bernard diagram (Bernard et al., 1976). C) Carbon isotopic composition 

of methane and CO2. D) Dryness C1/(C2+C3) vs. isotopic composition of CO2. All genetic fields have 

been defined according to Whiticar et al. (1999) and Milkov (2010 and 2011). Error bars represent 

the standard deviation of replicate samples. 

 



76 

Appendix 2.C. Archaeal clone library community profiles derived from nine Dagang 

production/injection wells. 

Well 8 8 9 10i 10p 11 13 14 15 

Methanosphaera 27 25 3 36 0 57 0 0 26 

Methanosarcina 0 0 0 0 88 0 0 0 0 

Hyperthermus 8 0 1 0 0 0 0 73 0 

Methanomethylovorans 19 6 40 14 0 0 0 0 0 

Methanobacterium 0 2 0 0 0 27 1 0 41 

Methanosaeta 7 0 13 9 0 0 15 3 0 

Thermofilum 2 3 0 0 0 2 37 1 5 

Methanosalsum 1 1 0 0 0 6 2 0 13 

Methanolobus 0 0 0 0 0 0 24 0 0 

Thermogymnomonas 11 1 1 2 0 1 8 0 2 

Thermococcus 0 0 19 0 0 0 0 0 0 

Archaeoglobus 0 1 0 0 0 0 0 14 0 

Methermicoccus 13 0 0 0 0 1 0 0 0 

Caldisphaera 0 9 0 0 0 0 0 0 0 

Methanococcus 0 7 0 0 0 0 0 0 0 

Methanocella 0 0 0 0 0 0 6 0 0 

Methanothermobacter 0 0 4 0 0 0 1 0 0 

Haladaptatus 0 0 0 0 0 1 0 0 0 

Fervidicoccus 1 0 0 0 0 0 0 0 0 

Total 89 55 81 61 88 95 94 91 87 
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Abstract 

In this study we investigated the specific microbial community inside anoxic cenozoic 

sediments, in particular its contribution to hydrocarbon degradation processes in a 

lignite-bearing sedimentary basin located in Germany. The stable isotope signature of 

methane measured in groundwater and coal-rich sediment samples indicated methanogenic 

activity. Analysis of 16S rRNA gene sequences showed the presence of methanogenic 

Archaea predominantly belonging to the orders Methanosarcinales and Methanomicrobiales 

capable of acetoclastic or hydrogenotrophic methanogenesis. Additionally, members of 

Crenarchaeota belonging to unclassified Thermoprotei were detected. Furthermore, we 

identified fermenting, sulfate-, nitrate- and metal-reducing, or acetogenic Bacteria clustering 

with the phyla Proteobacteria, complemented by members of the classes Actinobacteria, 

Anaerolineae, and Clostridia. The indigenous community of microbes found in the 

groundwater as well as in the coal-rich sediments, are able to degrade coal-derived organic 

components and to produce methane as the final product. 
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3.1. Introduction 

Coal is extremely rich in complex organic matter and therefore a very attractive carbon 

source for microbial biodegradation (Fakoussa and Hofrichter, 1999). It is a sediment formed 

from the remains of dead plant material that has been buried under elevated temperature 

and pressure conditions over geological times. Coal consists primarily of carbon (50-98 % by 

weight) beside variable quantities of hydrate, oxygen, sulfur, nitrogen (Libes, 2009). Lignite is 

soft brown sediment with high moisture content and the relatively low heating value. These 

characteristics put it somewhere between peat and sub-bituminous coal. Based on the high 

organic matter concentrations, the coal-derived sediments are potential important microbial 

sources of energy (Fry et al., 2009). 

The biodegradation of coal components, containing carbon, hydrogen, sulfur and 

nitrogen, is primarily performed by bacterial fermentation of polymers and monomers to 

fatty acids, organic acids, alcohols and/or hydrogen and carbon dioxide. The products can 

then be used by methanogens via two common methanogenic pathways: the acetoclastic 

(acetate is converted to methane and carbon dioxide) and the hydrogenotrophic 

methanogenesis, in which carbon dioxide (CO2) is reduced using hydrogen (H2) to the final 

products methane (CH4) and water. Thus, the successful conversion of coal to methane 

depends on the syntrophic interaction of both groups of fermenting bacteria and 

methanogenic archaea. Furthermore, methylotrophic methanogens take part at the 

degradation of complex organic matter. These methanogens are able to utilize a wide range 

of one-carbon compounds like methanol, the methylamines, halomethanes, and 

methylated-sulfur compounds as the carbon source for their growth. Biogenic methane 

generation from coal material under anoxic conditions, mostly in association with coalbed 

methane, has been documented previously by different working groups over the world. 

Recently, the microbial conversion of hard coal into methane by a complex microbial 

consortium in reservoirs has been described in numerous previous studies (Beckmann et al., 

2011a; Guo et al., 2012; Krüger et al., 2008). The Gippsland Basin (Midgley et al., 2010), the 

Illinois Basin (Stra poć et al., 200 ), northern Japan (Shimizu et al., 2007) and western Canada 

(Penner et al., 2010) mostly revealed the presence of the archaeal genera Methanosarcina, 

Methanolobus, Methanobacteria, Methanocorpusculum, Methanosaeta, Methanococci, 

Methanoculleus, and Methanoregula. The dominant Bacteria, published by Strąpoć et al. 

(2011b), include the phyla Firmicutes, Spirochaetes, Bacteroidetes and members of all 
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subgroups of Proteobacteria. In subsurface groundwater from a pristine aquifer with lignite 

layers Detmers et al. (2001) showed the presence of an anaerobic food chain in the aquifers. 

They observed that the presence of fermenting Betaproteobacteria and the activity of 

sulfate-reducing bacteria (Desulfotomaculum spp.) reached highest population values at the 

interface between aquifer and lignite seam. 

To date, little is known about the microbial diversity and geochemical influences of 

hydrocarbon biodegradation combined with the interference of putative microbial 

substrates in ligniteous coal-rich sediments and coal-associated aquifers in the subsurface. 

The aim of this work was to study the importance of coal-derived organic substrates 

for microorganisms present in sediment and water samples, with special focus on 

methanogenesis. Additionally, investigations of microbial syntrophic interactions and 

degradation pathways contribute to a better understanding of metabolic processes in 

coal-associated habitats - known to lead to biogenic gas generation. To study this, we 

sampled groundwater from an aquifer and coal-rich sediments from a coal-associated 

sedimentary basin. Isotopic signatures of methane (δ13CCH4 and δ13DCH4) in the groundwater 

of coal-associated aquifer and in coal-rich sediments were measured. Furthermore, 

geochemical investigations were combined with microbiological and molecular biological 

approaches leading to the identification and characterization of the bacterial and archaeal 

community composition in coal-rich sediment and groundwater samples as well as 

methanogenic enrichment cultures with hydrocarbons as sole carbon source. Combining 

these methods we were able to show a close interaction between organic substrates and 

microbial population in coal-rich sediments with the groundwater aquifer system.  

 

 

3.2. Materials and methods 

 

3.2.1.  Sampling and sample preparation 

Groundwater samples and samples of coal-bearing sediments were collected in 

February 2009. Groundwater samples were taken from ten different fresh water wells in the 

proximity of an open-cast mine. Coal-rich sediment samples were collected from freshly 

mined heaps of brown coal (sample 1), air-dried coal from the bottom of the mine 

(sample 2) and coal slurry from a wet spot (sample 3). Collected groundwater and coal-rich 
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sediment samples were transferred into sterile glass bottles and immediately flushed with 

N2. Directly after collection of groundwater samples, pH-value, temperature, conductivity 

and salinity of the waters were determined. All samples were stored and transported at 4°C.  

 

3.2.2.  Cultivation methods 

To prevent the intrusion of air, samples used as inoculum for incubations as well as the 

medium were handled in an anaerobic glove box. 

For first incubations 3 g of coal-rich sediment and 10 mL of groundwater sample were 

transferred into autoclaved aseptic Hungate vials (19 mL volume) and 5 mL freshwater 

medium after Widdel and Bak (1992) with 10 mM SO4 was added. The glass vials were sealed 

with sterile butyl rubber stoppers and aluminum crimps caps. Cultures amended with 

acetate (10 mM) or a H2 / CO2-mix (80 / 20 %) were prepared to investigate the different 

methanogenic degradation pathways. To study the methanogenic activity, methane and CO2 

formation in the headspace of the microcosms were measured by gas chromatography 

repeatedly every month. In addition, cultures were either grown without any additives or 

with 2-bromoethanesulfonate (BES; 10 mM), a specific inhibitor for methanogenic 

microorganisms for the detection of possible non-microbial methane emission from the 

water or coal-rich sediment samples. Cultures with the addition of sodium azide (NaN3, 

50 mM), a strong microbial toxin, were performed to show feasible methane degassing from 

non-microbial origin. 

In a second step of cultivation, cultures were re-inoculated into fresh medium and 

amended with 13C-labeled substrates to investigate the transformation of selected 

hydrocarbons into methane and CO2. 13C-labeled or unlabeled substrates, particularly 

hexadecane, ethylbenzene (both 0.1 % v/v), toluene or methylnaphthalene (0.5 mg) were 

added into the anaerobic enrichment cultures, containing 25 mL fresh sterile medium and 

5 mL transferred pre-culture from groundwater or coal-rich sediment samples (as described 

previously) in 56-ml serum bottles. U-13C-hexadecane was synthesized as described by 

Feisthauer et al. (2010). The other labeled and unlabeled single hydrocarbons (ethylbenzene, 

toluene and methylnaphthalene) were obtained from Campro Scientific GmbH Germany. 

Each incubation was set-up in triplicates and incubated at 30°C in dark. Methane and 

CO2 production rates were calculated by linear regression and expressed in µmol day-1 mL-1 

groundwater or µmol day-1 gDW-1 (dry weight) of the coal-rich sediment (Krüger et al., 2001).  
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3.2.3.  Analytical methods 

From ten different groundwater samples, the elemental composition was analyzed 

using an inductively-coupled-plasma mass-spectrometry instrument (ICP-MS ELAN 5000, 

Perkin Elmer Sciex, USA) (Dekov et al., 2007). Concentrations of potassium, sodium, chloride, 

magnesium, calcium, sulfate, bicarbonate, ferrous iron, manganese, nitrate, ammonium, 

nitrite, phosphate, aluminum, arsenic, borate, barium, cadmium, chromium, lithium, nickel, 

lead, silica and strontium were measured. Furthermore, the electrical conductivity (EC), the 

total inorganic carbon content (TIC) and the non-purgeable organic carbon (NPOC) were 

determined. 

Isotopic analyses of 13C- and 13D-values from methane and carbon dioxide of the 

emanation of the gases released from the coal-rich sediment samples in the bottles were 

performed.  

Methane in the headspace of the microcosms was analyzed using a gas chromatograph 

with flame ionization detector (GC-FID) equipped with a 6´ Hayesep D column (SRI 8610C, 

SRI Instruments, USA) continuously running at 60°C. Carbon dioxide concentrations were 

determined by a methanizer-equipped GC with FID detector. The stable isotopic composition 

of methane and CO2 was analyzed using a gas-chromatography-combustion-isotope ratio 

mass spectrometry system (GC-C-IRM-MS) (Feisthauer et al., 2010; Herrmann et al., 2010). 

The δ13C- and δ13D-values are expressed as ‰ vs. Vienna Pee Dee Belemnite (VPDB) and 

Standard Mean Ocean Water (SMOW). 

 

3.2.4.  Molecular biological methods 

Total cell numbers were counted after staining with SYBR Green II under the 

fluorescence microscope as described by Weinbauer et al. (1998). 

Genomic DNA from the coal-rich sediments and from the microcosms amended with 

hydrocarbons was extracted by bead-beating and a phenol-chloroform extraction using 

protocols from Gabor et al. (2003) and Lueders et al. (2004). For further purification of crude 

DNA extracts, ethidium bromide was added to 0.6 mg mL-1 DNA extract and ammonium 

acetate to 2.6 M final concentration. More particular purification steps were carried out 

following Lovell and Piceno (1994). Groundwater were aseptically filtered with membrane 

filters (0.22 µm) (Whatman, General Electric Company, Munich, Germany) and DNA was 
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extracted from the filters using the bead-beating and phenol-chloroform extraction method 

as mentioned above without the ethidium bromide washing steps. 

The quantity of 16S rRNA gene copy numbers of Archaea and Bacteria were 

determined as described previously (Nadkarni et al., 2002; Takai and Horikoshi, 2000) using 

the Q-PCR instrument ABI Prism 7000 (Applied Biosystems, Life Technologies Corporation, 

USA). Concentrations of methyl-coenzyme M reductase subunit alpha gene (mcrA) (using 

mlas and mcrA-rev primers) and dsrA gene coding for the alpha subunit of the dissimilatory 

(bi)sulfite reductase of sulfate-reducing prokaryotes were determined according to 

Steinberg and Regan (2008); (2009) and Schippers and Neretin (2006). The quantification of 

Crenarchaea was performed by using method and primer set described by Schleper et al. 

(1997). All Q-PCR reactions were measured in three parallels and three dilutions. To perform 

Q-PCR quantification, a StepOne detection system (StepOne version 2.0, Applied Biosystems, 

USA) coupled with the StepOne v2.1 software was used. 

For terminal restriction fragment length polymorphism (T-RFLP) analysis, extracted 

DNA was used as template for PCR amplification of phosphoramidite fluorochrome 

5-carboxyfluorescein (FAM)-labeled amplicons. Amplifications were generated with the use 

of the primer sets Ar109f and 912rt-FAM, or Ba27f-FAM and 907r. To account for possible 

inhibitor effects in environmental DNA extracts, a dilution series of each fresh extract was 

used. T-RFLP analysis of PCR products was done using the restriction endonucleoases TaqI 

(archaeal assay) and MspI (bacterial assay), respectively. The procedure was described by 

Winderl et al. (2008); (2010). Capillary electrophoresis and data collection were operated on 

an ABI 3730 Genetic Analyzer (Applied Biosystems, USA). The electropherograms were 

processed with sequence analysis software PeakScanner 1.0 and GeneMapper 4.0 (Applied 

Biosystems, USA). T-RFLP histograms were performed with the use of the T-REX online 

software using the default settings (Culman et al., 2009). Terminal restriction fragments 

were compared to theoretical predictions from 16S rRNA gene sequences for a preliminary 

identification of specific groups of bacteria. The particular T-RF length represents the most 

abundant microorganisms within the bacterial community. 

Clone libraries were created using DNA extract from the original coal-rich sediment 

samples and the derived microcosms amended with hydrocarbons. 16S rRNA gene 

fragments were amplified by PCR using the domain specific primer pairs 21f (5`-TTC CGG TTG 

ATC CYG CCG GA) and 958r (5`-YCC GGC GTT GAM TCC AAT T) for Archaea (DeLong, 1992), 
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and GM3f (5`-AGA GTT TGA TCM TGG C) and GM4r (5`-TAC CTT GTT ACG ACT T) for Bacteria 

(Lane, 1991). Cloning and sequencing of the archaeal and bacterial 16S rRNA amplicons was 

performed by Microsynth AG (www.microsynth.ch, Switzerland). Sequences were assembled 

use the Geneious ProTM 5.3 software (www.geneious.com). Prior to phylogenetic analysis, 

vector sequences flanking the 16S rRNA gene inserts were removed. Chimeric sequences 

were detected using the DECIPHER´s Find Chimeras online software (Wright et al., 2012) 

from the University of Wisconsin Madison (http://decipher.cee.wisc.edu/FindChimeras.html) 

and were excluded from further analysis. Sequences were compared to GenBank BLASTn 

algorithm from the National Center for Biotechnology Information (Altschul et al., 1990) 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the Ribosomal Database Project Classifier (Wang 

et al., 2007) (RDP; http://rdp.cme.msu.edu/classifier/classifier.jsp) to select closely related 

species. Sequences were aligned with their nearest neighbors in the SSU dataset using SINA 

Alignment Service (www.arb-silva.de/aligner/) (Pruesse et al., 2012).  

Amplicon pyrosequencing, amplicon treatment, and downstream analysis for the 

domain Bacteria was performed as described in Pilloni et al. (2011).  

Cloning sequences and contigs originate from pyrosequencing were grouped into 

operational taxonomic units (OTUs) based on a sequence similarity cutoff of 97 % (Yu et al., 

2006) using mother software (www.mothur.org) (Schloss et al., 2009).  

 

 

3.3. Results 

 

3.3.1.  Geochemical characterization of groundwater samples 

All groundwater samples showed pH-values of ~7, the salinity ranged between 5 and 

9 ‰. The locally measured water temperature was ~29°C, the air temperature ~0°C; only in 

well site 3 a water temperature of 15°C was detected. Groundwater from sampling sites 2, 4, 

5, 10 smelled sulfurous, the other samples were odorless. The dissolved CH4 concentrations 

ranged from 10 µM in well 1 to 100 µM in well 5 (Table 3.1). The isotopic signature of carbon 

from the dissolved methane (δ13C-CH4) in the water samples ranged from -71 to -80 ‰. 

Hydrogen isotopic values ranging from -234 to -376 ‰ (Table 3.1). 
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Table 3.1: Methane content and stable isotope signatures of natural methane and carbon dioxide in 

groundwater samples from deep aquifers of coal-rich sedimentary basin. VPDB – Vienna PeeDee 

Belemnite; SMOW – Standard Mean Ocean Water 

groundwater 

site 

CH4-content 

[µM] 

δ
13

C-CH4 

[‰, VPDB] 

δD-CH4 

[‰, SMOW] 

δ
13

C-CO2  

[‰, VPDB] 

well 1 10.237 -79.8 -244.7 -19.9 

well 2 24.229 -72.8 -246.2 -16.5 

well 3 22.099 -72.0 -233.5 -16.8 

well 4 37.518 -74.4 -248.6 -17.3 

well 5 99.412 -71.0 -236.8 -14.8 

well 6 51.016 -72.5 -239.4 -16.0 

well 7 13.368 -79.7 -376.4 -20.1 

well 8 71.299 -75.9 -258.6 -14.7 

well 9 16.516 -73.4 -300.4 -19.1 

well 10 24.890 -76.0 -345.5 -16.8 

 

The geochemical analysis of the groundwater samples revealed that concentrations of 

sulfate between 0.5 in well 4 to 14.2 mg l-1 in well 3 (Table 3.2). Ferrous iron showed 

concentrations from 0.1 to 2.0 mg l-1 and manganese was measured with concentrations of 

0.01 to 0.2 mg l-1. Nitrate and ammonium were present in low concentrations from 0.01 to 

0.3 mg l-1 (NO3
-) and from 0.4 to 0.8 mg l-1 (NH4

+), respectively. No nitrite was detected. 

Further, relatively high concentrations of total inorganic carbon (TIC) (64-117 mg l-1) were 

measured, while the groundwater samples showed a relatively low content of 

non-purgeable organic carbon (NPOC) (3-11 mg l-1). 

 

3.3.2.  Isotopic signatures of gasses from coal-rich sediments  

The C and H isotopic signatures of natural gas originated from coal-rich sediments 

were determined. The geochemical analysis of collected gas samples revealed 13CCH4-values 

of -70.8 ‰ (surface location 1), -72.3 ‰ (surface location 2), and -63.4 ‰ (surface 

location 3). 13C-values of carbon dioxide showed signatures of -16.8, -15.6, and -24.1 ‰.  
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3.3.3.  Methanogenic and hydrocarbon degradation activity 

Groundwater and coal-rich sediment samples were incubated in microcosms 

under methanogenic conditions and with several additions over a time of 94 days. No 

methane production was measured in the cultures incubated with the inhibitors BES 

and sodium azide (data not shown). Microcosms cultivated without any additives 

showed no significant methane production rates, as well. However, microcosms with 

the addition of H2 / CO2-mix as substrate for hydrogenotrophic methanogenesis 

showed methane production in all microcosms inoculated with groundwater and 

coal-rich sediments (Figure 3.1). Further, only in the groundwater sample 8 acetate 

served as substrate for acetoclastic methanogenesis, while all the other incubations 

showed no methane production with acetate as substrate. 

Additionally, in hydrocarbon amended microcosms exclusively those inoculated 

with coal-rich sediment and amended with hexadecane showed significantly 

increased methane production rates.  

 

 

Figure 3.1: Methane production rates from anaerobic cultured groundwater samples 1-10 

amended with H2 (grey) or acetate (black). All cultures were incubated 73 days at 30°C. 

 

 

3.3.4.  Quantification of microbial groups 

The total number of cells in the groundwater samples, determined by staining 

with SYBR Green, was in the samples 4, 5 and 10 around 1 x 107 cells mL-1. 
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Groundwater sample 3 showed with 1 x 104 cells mL-1 the lowest numbers. 

Groundwater samples 1, 2, 6, 7, 8 and 9 showed intermediate cell numbers ranging 

from 2 to 9 x 106 cells mL-1. 

The abundance of selected microbial groups was determined in the coal-rich 

sediment samples via quantitative (real time) PCR (Q-PCR) (Figure 3.2). The Bacteria 

were detected with 16S rRNA gene copy numbers ranging between 2 x 109 and 

1 x 1010 copies g-1. Archaea only were present in a range of 104 to 105 copies g-1. 

Crenarchaeota were found in all three coal samples in nearly similar 16S rRNA gene 

copy numbers (6 x 106, 8 x 106, and 1 x 106 copies g-1 in coal-rich sediment sample 1, 

2, and 3). The quantitative detection of the dissimilatory sulfite reductase gene (dsrA) 

revealed sulfate-reducing prokaryotes in the range of 2 x 106 (coaly sediment 3) and 

1 x 107 copies g-1 in coaly sediment 1 and 2. The methyl-coenzyme M reductase gene 

(mcrA) as a proxy for methanogenic Archaea was quantified in coaly sediment 

sample 1 with 1 x 105 copies g-1 and in coaly sediment 2 and 3 with 2 x 105 copies g-1.  

 

Figure 3.2: Quantitative analysis from the different coal-rich sediment samples 1, 2, 3, and 

their derived enrichment cultures amended with hexadecane. Relative abundance of 

Bacteria, Archaea, Crenarchaeota and the functional genes of sulfate-reducing prokaryotes 

(dsrA) and methanogens (mcrA) were determined by quantitative PCR. The error bars 

represent the standard deviation of three replicates. 
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In comparison to the coal-rich sediments, the bacterial 16S rRNA gene copy 

numbers in the coal-rich sediment enrichments amended with hexadecane showed a 

slight decreased quantitative abundance of 3 x 108, 6 x 108, and 4 x 108 copies mL-1 in 

samples 1, 2, 3 (Figure 3.2). Whereas copy numbers of Archaea and methanogens 

were 3-4 orders of magnitude higher than those of the coal-rich sediments. 

Moreover, the amounts of copy numbers of Crenarchaeota as well as 

sulfate-reducing prokaryotes were nearly similar in all three enrichments and 

revealed a higher abundance compared to coal-rich sediments.  

 

3.3.5.  Phylogenetic analysis of the microbial community composition  

The diversity of the microbial community in the groundwater samples was 

analyzed using T-RFLP and cloning. The bacterial community showed characteristic 

profiles for each sample, although most groundwater samples showed only one or 

two predominant peaks (Figure 3.3). Dominant T-RFs were assigned to the bacterial 

genera Arthrobacter (161-bp T-RF), related to the order Actinomycetales within the 

phylum Actinobacteria, Sulfurospirillum (467-bp T-RF), a member of the 

epsilonproteobacterial order of Campylobacterales, and Arcobacter (476-bp T-RF) 

within the class of Epsilonproteobacteria. One of the most abundant T-RF in 

groundwater sample 8 and 9 is the 492-bp T-RF and correspond to more than one 

group of bacteria. This T-RF could be assigned to members of Pseudomonadales 

(Pseudomonas sp. and Acinetobacter sp. within the Gammaproteobacteria), as well 

as to members affiliated to several families within the Betaproteobacteria (e.g. 

Methylophilaceae, Oxalobacteraceae, and Comamonadaceae). Beside these 

identifiable peaks, the community showed a couple of unknown fragments with 

varying lengths and quantities (Figure 3.3).  

The archaeal community composition was highly reduced in all groundwater 

samples. Most of the 16S rRNA gene sequences were related to members of the 

Methanomicrobia and unclassified Crenarchaeota within the class of Thermoprotei. 

The respective T-RFLP fingerprints (Figure 3.4) showed only in groundwater sample 2 

and 3 more than one T-RF peak. 

In groundwater sample 2 and 3 the detected T-RFs were assigned to 

Methanosarcina horonobensis (183-bp T-RFs), Methanosaeta concilii (282-bp T-RFs) 
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and Methanoregula formicicum (392-bp T-RFs). In sample well 2 and well 3 a not 

assignable but dominant peak with the fragment length of 227 bp was observed. It is 

not clear which archaeal species is concealed behind the 87-bp T-RF, the only 

dominant peak in groundwater samples 1, 4, 5, 7, 8, and 10.  

The community composition in the groundwater samples showed high 

similarity with the coaly sediment community. According to groundwater samples, 

T-RFLP fingerprints of the three different coal-rich sediment samples (Figure 3.3) 

revealed a community which consists of species represented by two dominant 

fragment lengths. The 476-bp T-RF, assigned to Arcobacter sp. and the 492-bp T-RF, 

identified as species belonging to the genus Methylotenera, a Betaproteobacteria. 

Additionally, T-RFs with the length of 492 bp also matched with betaproteobacterial 

species affiliated to relatives of the orders Burkholderiales (e.g. Oxalobacteraceae 

and Comamonadaceae) and with the gammaproteobacterial order of Pseudomonales 

(mostly Pseudomonas sp.). Furthermore, the 467-bp T-RF with less abundance could 

identified as the genus Sulfurospirillum. Arthrobacter sp. (161-bp T-RF) was also 

detected in coal samples and takes part at the bacterial community. 

The phylogenetic analysis of archaeal 16S rRNA gene fragments (Table 3.3; 

Figure 3.4) confirmed the presence of methanogenic Euryarchaeota in the coal-rich 

sediment samples, mainly Methanosaeta sp. (24 %). In lower abundance affiliations 

to Methanosarcina (1 %; 183-bp T-RF) and Methanomethylovorans (1 %; 790-bp T-RF) 

were identified. Furthermore, 46 % of sequences were affiliated to unclassified 

representatives of Thermoprotei within the phylum Crenarchaeota.  

In contrast to the coal-rich sediment samples, the phylogenetic analysis of the 

bacterial lineages of enrichments amended with hexadecane (Figure 3.3) revealed a 

higher bacterial diversity and a shift of the bacterial dominance towards the 

Deltaproteobacteria and the Anaerolineae (Chloroflexi). Within the 

Deltaproteobacteria, Desulfobacterales, Desulfuromonadales and 

Syntrophobacterales were predominantly detected. The remaining sequences fell in 

the classes of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, 

Clostridia and Actinobacteria. 
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The phylogenic analysis of Archaea (Table 3.3; Figure 3.4) showed that the majority of 

the generated sequences from enrichment culture 1 and 2 belonged to unclassified 

Thermoprotei. The residual sequences arise from enrichment culture 2 showed a similarity to 

members of the genus Methanomethylovorans (790-bp T-RF). Most of the sequences from 

the enrichment culture 3 were matched with members belonging to the Methanomicrobia. 

Sequences affiliated to members of Methanosaeta concilii (282-bp T-RF) and Methanoregula 

formicicum (392-bp T-RF) were detected. The other part of sequences affiliated to 

unclassified Thermoprotei, as well. 

 

 

3.4. Discussion 

 

3.4.1.  Geochemical links between groundwater and coal-bearing sediments 

The isotopic signatures of methane (δ13CCH4) measured in the groundwater samples are 

indicative for a biogenic origin of methane. Furthermore, the isotopic signature of the gases 

released from the coal-rich sediment samples and produced in laboratory microcosms 

showed similar 13C-values with the methane measured from the groundwater. Whiticar 

(1999) postulated the isotope ratios for biogenic methane originated from different 

methanogenic pathways and indicated that the range of carbon and hydrogen isotopic ratios 

varying from -50 to -110 for 13C and from -150 to -400 for 13D (Figure 3.5). The examined 

groundwater fell within the range of methanogenic CO2-reduction pathway, except three 

groundwater samples which showed δ13CCH4-values correlated with acetoclastic 

methanogenesis. The varieties of δ13CCH4-values correlate well with the identified 

methanogens which are able to use different pathways for methane production. These 

methanogens might be adapted to their directly affecting environmental conditions - the 

composition of electron acceptors, organic and inorganic carbon come from the coal-rich 

sediment, and the hydrolytic fermenting bacterial community, which provides the substrates 

for the methanogens.  

The analysis of the water geochemistry revealed a sufficient presence of trace 

elements and electron acceptors to support microbial growth. Electron acceptors such as 

nitrate, manganese, ferrous iron, and sulfate are indicative of potential microbial reaction 

pathways, i.e. nitrate-, iron-, and sulfate-reduction. Many bacteria can couple the 
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degradation of hydrocarbon molecules to the reduction of soluble anions under anoxic 

conditions, and typically representatives are bacteria within the classes Beta-, Gamma-, and 

Deltaproteobacteria (Kaser and Coates, 2010). We identified several sulfate-, nitrate-, and 

metal-reducers within the bacterial communities of groundwater and coal-rich sediments 

which could be involved in hydrocarbon metabolism. Because of the high similarity of the 

microbial communities in both geosystems, we suppose that the indigenous microbes of coal 

seam layers were leached out into the groundwater by dewatering processes in the coal 

mine area or by the movement of meteoric water and thus affected the microbial 

groundwater community.  

 

 

Figure 3.5: Diagram of isotopic composition (δ13CCH4 and δDCH4) of natural methane in groundwater 

samples from deep aquifers of coal-rich sedimentary basin. Zoning after (Schoell, 1980, 1983; 

Whiticar et al., 1986). VPDB – Vienna PeeDee Belemnite; SMOW – Standard Mean Ocean Water. 

 

Until today, little is known about microbial metabolisms and the availability of 

potential substrates in subsurface coal-associated aquifer systems. A study from Vieth et al. 

(2008) demonstrated that some low-molecular-weight organic acids such as acetate, 

formate, and oxalate were released from low rank ligniteous coals into surrounding water. 

The reason for this might be the degree of diagenetic alteration (the impact of heat and 
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time) of the macromolecular organic material, leading to a depletion in such easily available 

small molecules in the macromolecular structure. Furthermore, this study also showed that 

the water soluble acids were transported by diffusion and/or advection from the coal layers 

to the adjacent carrier lithologies to support the deep biosphere (Vieth et al., 2008). 

According to Bergmann (1999) the main source of organic carbon in the aquifers are the 

lignite seams. Available low-molecular-weight organic acids in subsurface aquatic systems 

have the potential for providing a sufficient energy source for microbial life, especially for 

methanogenic activity (Vieth et al., 2008). Moreover, low-molecular-weight organic 

compounds could also be produced by microbial degradation of high organic carbon material 

from low rank coals (Fakoussa and Hofrichter, 1999; Laborda et al., 1997). Further, several 

studies have also demonstrated that the natural microbial activity was stimulated at 

lignite-rich/sediment interfaces (Ulrich et al., 1998) additionally at the interface between 

aquifer and lignite seam (Detmers et al., 2001). In both studies the microbial fermentation of 

organic matter in lignite-rich sediments provides low-molecular-weight organic acids that in 

turn feed the sulfate-reducing bacteria. 

In this coal-associated aquifer the input of low-molecular-weight organic compounds 

produced by biodegradation of organic matter from the underlying lignite-rich sediments 

seems likely, because fermenting as well as sulfate-reducing bacteria were found in the 

lignite-rich sediment samples. Their activity was demonstrated by cultivation in enrichment 

cultures amended with coal or hydrocarbons as sole carbon sources. 

The high total inorganic carbon (TIC) content in all groundwater samples, 

demonstrated the presence of active microbial metabolization processes. 

 

3.4.2.  The bacterial community in groundwater 

To identify the microorganisms responsible for the degradation of complex organic 

matter of ligniteous coals to substrates for methanogenesis, we used T-RFLP fingerprinting 

combined with pyrosequencing of 16S rRNA gene fragments. 

We detected many genera and functional groups in the groundwater samples similar 

to those obtained from other coal- or hydrogen-associated environments. Playing a role in 

the degradation of organic matter of lignite and sub-bituminous coals (Machnikowska et al., 

2002), the typically aerobic Pseudomonadales, known as a very diverse and widespread 

genus capable of utilizing hydrocarbons as carbon and energy sources (Das and Chandran, 
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2011) was found in the groundwater. Furthermore, Pseudomonas species, isolated from 

marine sediment are well known as nitrate-dependent alkene- and polycyclic aromatic 

hydrocarbon-degraders (Rockne et al., 2000). This correlates well with the nitrate content, 

the absence of oxygen, and with the close association of groundwater to coal-rich 

sediments, where different hydrocarbons are available as substrate for microbial reactions. 

Additionally, Lemay and Konhauser (2006) found Pseudomonas spp. in groundwater 

associated with coal bed methane wells in Alberta. Acinetobacter species has been identified 

as oil degraders in soil and sediments contaminated with crude oil firstly by Reisfeld et al. 

(1972). They are also commonly found in hydrocarbon-rich environments like petroleum 

reservoirs (Li et al., 2007; Tang et al., 2012). Acinetobacter stains are able to degrade 

efficiently short- and long-chain alkanes, branched-chain alkanes, and various aromatics and 

connect the anaerobic degradation via oxidation with the reduction of nitrate (Li et al., 

2012b; Mbadinga et al., 2011).  

Betaproteobacteria are also clearly important players in the turnover of hydrocarbons 

in many environments, but especially in soils and aquifers. The most common genera that 

are known to degrade hydrocarbons and related substituted molecules under aerobic 

conditions include Acidovorax, Burkholderia, Comamonas, Delftia, Polaromonas, and 

Ralstonia (Parales, 2010).  

Further, the betaproteobacterial relatives Acidovorax, Massilia, and Georgfuchsia were 

corresponded to 488-bp T-RF and detected in groundwater sample 9. Acidovorax species are 

hydrogen-utilizing members of the Comamonadaceae family and were also detected in 

studies performed by Li et al. (2008), Midgley et al. (2010) and Penner et al. (2010). But they 

assume that this facultative anaerobic Acidovorax spp. are not directly involved in 

degradation of hydrocarbons or complex organics found in coal.  

The betaproteobacterial hydrocarbon degrader Georgfuchsia toluolica (within the 

Rhodocyclaceae family) has been isolated from a BTEX-contaminated aquifer by Weelink et 

al. (2009) and degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron 

acceptor.  

The groundwater well 3 revealed a bacterial community consisting of the predominant 

161 and 517-bp T-RFs affiliated to members of Arthrobacter sp. and Desulfatiferula sp.. 

Relatives of Arthrobacter sp. (161-bp T-RF) are Gram-positive aerobic soil actinomycetes, 

able to degrade cellulose and other polysaccharides (Li et al., 2008). Actinomycetales also 
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reduces nitrate to nitrite and are able to degrade polycyclic aromatic hydrocarbons. 

Kallimanis et al. (2009) characterized the novel phenanthrene-degrading bacterium 

Arthrobacter phenanthrenivorans, isolated from a creosote-contaminated soil in Greece. The 

presence of Actinobacteria in coal samples as well as in coal-associated formation water in 

Australia and Canada has been previously reported by Midgley et al. (2010) and Penner et al. 

(2010). It is known that several sulfate-reducing bacteria are able to oxidize aliphatic 

hydrocarbons under anaerobic conditions (Widdel et al., 2007). Arthrobacter sp., also 

predominantly present in several groundwater samples, possibly plays an important role in 

biodegradation of coal-associated hydrocarbon compounds at the coal-water-boundary 

layer within the sites investigated here. Desulfatiferula olefinivorans (517-bp T-RF), a 

mesophilic sulfate-reducing bacteria belonging to the family of Desulfobacteraceae and 

isolated from oil-polluted sediment, exclusively oxidizes long-chain alkenes and fatty acids 

incompletely to acetate; only sulfate is used as electron acceptor (Cravo-Laureau et al., 

2007). Desulfatiferula sp. was exclusively found in groundwater sample 3 where the sulfate 

concentration was higher than in the other groundwater samples. The denitrifying 

Arcobacter species was previously found in an activated sludge basin, which is a bioreactor 

with biomass recycling (Snaidr et al., 1997), and further in petroleum-related environments 

(Voordouw et al., 1996).  

The bacterial community identified in the groundwater samples consists of lot of 

putative hydrocarbon degraders able to degrade complex organic compounds such as long-

chain alkenes, polycyclic aromatic hydrocarbons, BTEX, and other coal-associated 

compounds (e.g. fatty acids) to lower molecular weight compounds which are utilizable by 

methanogens. The results show the natural recycling capability for carbon compounds in the 

sedimentary sequence examined here. 

 

3.4.3. The archaeal community in groundwater 

The T-RFLP fingerprints of the groundwater samples showed a reduced archaeal 

community composition consisting mainly of Methanomicrobiaceae. 16S rRNA gene 

sequences showed strong affiliations to Methanosarcina horonobensis (183-bp T-RF), 

Methanosaeta concilii (282-bp T-RF), and Methanoregula formicicum (392-bp T-RF). 

Methanosarcina sp. and Methanosaeta sp. are the only two genera which can utilize acetate 

as a substrate for methanogenesis. Methanosarcina horonobensis was isolated from deep 
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subsurface groundwater from a mudstone formation and metabolize methanol, methylated 

compounds (e.g. di- and trimethylamine, dimethylsulfide) or acetate as sole energy source 

(Shimizu et al., 2011). Methanosarcina is not strongly abundant in the groundwater, with the 

exception of water sample 9 where Methanosarcina was the sole detectable archaeon. The 

genus Methanosaeta, found in water sample 2 and 3, exclusively use acetate as sole source 

for energy and as substrate for acetoclastic methanogenesis (Patel and Sprott, 1990). The 

hydrogenotrophic methanogen Methanoregula formicicum, detected in nearly all 

groundwater samples, is able to use H2 / CO2 and formate as substrates for growth (Yashiro 

et al., 2011). 

The T-RFLP plots of the archaeal community composition from groundwater sample 2 

and 3 showed strong abundance of both acetoclastic and hydrogenotrophic methanogens 

and were likely to have contributed to methane production. Acetoclastic produced methane 

was also observed in other coal seams characterized by the movement of meteoric water, 

which contained nutrients and microbes e.g. by Flores et al. (2008) and Klein et al. (2008). 

In contrast to sequence analysis results, the distribution of the δ13C-values of methane 

(Figure 3.5) indicated a dominance of CO2-reducing methanogens in most of the 

groundwater wells, suggesting that the acetoclastic methanogens, observed via sequencing 

and fingerprinting methods are admittedly present but not or less methanogenic active 

under environmental conditions. However, in groundwater sample 9, the δ13C-value 

indicated that the measured methane has an acetoclastic origin and the sequence analysis 

confirmed the dominance of acetoclastic Methanosarcina sp.  

 

3.4.4.  The bacterial community in the coal-rich sediments and derived enrichment 

cultures 

In contrast to the groundwater community, the samples from the freshly collected 

coal-rich sediments showed a bacterial community composition dominated by only two 

phyla, Actinobacteria and Proteobacteria, and a minor part consisting of Clostridia and 

Anaerolineales. Like in the groundwater samples, most of the Bacteria found in the coal-rich 

sediment samples are classified as hydrogenotrophic archaea or nitrate-reducing bacteria – 

such as the genera Acidovorax (488-bp T-RF) or Pseudomonas (490-bp T-RF), 

Janthinobacterium (490-bp T-RF), Arthrobacter (161-bp T-RF), Arcobacter (476-bp T-RF), and 

Methylotenera (490-bp T-RF). Moreover, relatives of the families Comamonadaceae, 



103 

Oxalobacteraceae, Rhodocyclaceae and Geobacteraceae including sulfate- and iron-reducing 

hydrocarbon degraders were also found in the coal-rich sediments. A relatively high 

abundance of relatives of the Sulfurospirillum spp. (467-bp T-RF) and Arcobacter spp. point 

to an important role in sulfur and nitrogen cycling through the co-occurrence of these 

genera. Some Arcobacter species are able to reduce nitrate and oxidize sulfide, while 

Sulfurospirillum species have extremely diverse metabolic features and possibly reduce 

sulfur and oxidize nitrite (Tang et al., 2012). A major part of sequences showed affiliations to 

Methylotenera spp., classified as aerobic Gram-negative bacteria within the family 

Methylophilaceae. The methylotrophic Methylotenera spp. are able to utilize methylamine 

as a single source of energy, carbon and nitrogen. They were isolated from Lake Washington 

sediment and characterized by Kalyuzhnaya et al. (2006).  

The bacterial community composition of the enrichment cultures amended with 

hexadecane showed resemblance rather with groundwater than with coal-sediment 

samples. The majority of Bacteria were relatives of the Proteobacteria, followed by 

members of Actinobacteria, Anaerolineae, and Clostridia. In contrast to coal samples, in the 

enrichment cultures Deltaproteobacteria and Anaerolineae were present. The detected 

deltaproteobacterial sulfate-reducers belonging to Desulfobacterales, Desulfuromonadales, 

Desulfovibrionales and Syntrophobacterales are known for their ability to degrade long-chain 

fatty acids (Sousa et al., 2009). The high abundance of sulfate-reducing bacteria identified via 

sequence analysis correlated well with the detection of high amounts of dsrA genes via 

Q-PCR in the enrichment cultures. Furthermore, members of the family of Geobacteraceae, 

exclusively identified in the enrichment cultures, are known as anaerobic metal-reducing 

organisms and relatively common coal associated microbes, published by several authors 

(Beckmann et al., 2011b; Jones et al., 2010; Li et al., 2008). The class of Anaerolineae 

contains a vast number of environmental 16S rRNA gene sequences derived from mesophilic 

and thermophilic environments, but only a few cultured strains growing under strictly 

anaerobic conditions (Yamada et al., 2006). The sequence analysis of enrichment cultures 

only revealed the presence of unclassified relatives of Anaerolineaceae. Additionally, 

sequences affiliated to not specified members within the order Actinomycetales, already 

described in the previous chapter as an aerobic Bacteria which can typically degrade 

cellulose and other polysaccharides (Li et al., 2008) were identified. 
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3.4.5.  The archaeal community in coal-rich sediments and derived enrichment 

cultures 

As a strong similarity to groundwater samples, the microbial community in coal-rich 

sediments is divided into methanogenic Archaea solely affiliated to Methanomicrobia and 

unclassified members of the Crenarchaeota. In comparison to the groundwater samples, the 

community composition of the coal-rich sediments showed a higher diversity of 

methanogenic Archaea extend through the presence of Methanomethylovorans species and 

a few of not identifiable T-RFs. The identified archaeal community composition of all three 

coal-rich sediment samples consists of acetoclastic and hydrogenotrophic methanogens 

affiliated to Methanosarcina horonobensis, Methanosaeta concilii, Methanoregula 

formicicum, and Methanomethylovorans sp. Relatives of Methanomethylovorans were 

described by Lomans et al. (1999) and Jiang et al. (2005) and utilize methanol, methylated 

amines, dimethyl sulfide and methane-thiol for methanogenic activity. M. hollandica was 

isolated from eutrophic fresh water sediment (Lomans et al., 1999). Methanomethylovorans 

species were also detected in rice field soil (Lueders et al., 2001) and oil contaminated 

groundwater (Watanabe et al., 2002).  

The methanogenic archaeal community including Methanosaeta concilii, 

Methanoregula formicicum, and Methanomethylovorans sp. together with their syntrophic 

bacterial partners as well as unclassified Crenarchaeota were successfully enriched in 

enrichment cultures amended with hexadecane. Because the added hexadecane was the 

sole carbon source for the enriched microbial community commonly inhabits the coal-rich 

sediments the microbial ability to degrade hexadecane to methane has been proven. 

Additionally, in comparison to the quantitative analysis of the coal-rich sediments, the 

enrichment cultures amended with hexadecane showed a significant increase of the 

archaeal, crenarchaeal, methanogenic, and sulfate-reducing population in all enrichments. 

Together with the observed methane production rates, these results revealed the formation 

of a highly adapted microbial community, whereas the archaeal community consists of the 

acetoclastic and the more dominate hydrogenotrophic methanogens. Related results 

regarding methanogenic pathways and involved microorganisms were previously reported in 

several coalbed methane formations (Faiz and Hendry, 2006; Papendick et al., 2011; Penner 

et al., 2010; Shimizu et al., 2007; Strąpoć et al., 2011b). 



105 

Interestingly, the very strong abundance of 16S rRNA gene sequences affiliated to the 

unclassified Thermoprotei, a subgroup within the phylum Crenarchaeota, was found all 

coal-rich sediment samples and in enrichment cultures. Recently, relatives of 

hyperthermophilic Thermoprotei were detected in production waters from high-

temperature petroleum reservoirs in China (e.g. Li et al. (2007); Ren et al. (2011); Tang et al. 

(2012)) that suggest a capability of hydrocarbon degradation or a close contribution to the 

degradation process. The fact that these hyperthermophilic unclassified Thermoprotei could 

highly enriched in cultures amended with hexadecane confirm the suggestion of the ability 

of hydrocarbon degradation. Furthermore, Kemnitz et al. (2007) in turn showed that 

Crenarchaeota are ubiquitous and affect low temperature environments as a common 

microbial part. But little is known about their physiological characteristics and their 

ecological importance, because the majority of this group of microorganisms has not been 

cultivated yet. 

 

3.5. Conclusion 

The investigated coal-rich sediments provide an important source of organic material 

and electron acceptors, essential for natural microbial life in the subsurface biosphere. This 

organic material possibly includes low-molecular-weight organic acids derived from coal 

biodegradation, and then partly transferred into the coal-associated aquifer system. The 

detected fermenting and sulfate-reducing bacterial consortia are able to degrade complex 

organic material from coal to lower molecular weight compounds which consequently 

influence directly the microbial interaction in the groundwater system. The 

low-molecular-weight organic acids are potential substrates for methanogenic archaea. The 

identified methanogenic archaea point to the simultaneous occurrence of both 

methanogenic pathways, whereas hydrogenotrophic methanogenesis dominates. This 

assumption was supported by δ13CCH4- and δDCH4-values in coal-rich sediment and 

groundwater samples.  

Finally, the large number of unclassified bacterial and archaeal sequences showed that 

the microbial ecosystem in the examined coal-bearing sedimentary basin contains a greater 

wealth of microbial life than originally thought and the coal-associated aquifers 

accommodate a lot new and to date not described indigenous microbial species whose 

metabolic potential is far from being completely understood.   



106 

Acknowledgement 

This work was supported by funding from German Research Foundation (DFG) within 

the SPP1319 (projects KR3311 6-1, 6-2). We would like to thank Daniela Zoch, Holger Probst 

and Michaela Blank for collecting samples and for technical assistance.  

  



107 

 

 

 

 

 

Chapter IV 

 

Similar features of microbial consortia from 

different ecosystems degrading hexadecane 

under methanogenic conditions  



108 

4. Similar features of microbial consortia from different 

ecosystems degrading hexadecane under methanogenic 

conditions 

 

Friederike Gründger1, Hans-Hermann Richnow2, Frederick von Netzer3, Tillmann Lüders3, 

Martin Krüger*1 

 

Manuscript in preparation 

Running title: Hexadecane degrading microbial consortia 

 

1Federal Institute for Geosciences and Natural Resources - BGR, Stilleweg 2, D-30655 

Hannover, Germany 

2Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - 

UFZ, Permoserstraße 15, D-04318 Leipzig, Germany 

3Institute of Groundwater Ecology, Helmholtz Zentrum München – German Research Center 

for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany 

 

 

Keywords: methanogenic hydrocarbon degradation, methanogenesis, bioremediation, 

Q-PCR, T-RFLP, physiology 

 

*Correspondence: Dr. Martin Krüger, Federal Institute for Geosciences and Natural 

Resources, Stilleweg 2, D-30655 Hannover, Germany. Email: Martin.Krueger@bgr.de 

 

  



109 

Abstract 

Since almost two decades it is known from stable isotope studies that large amounts of 

biogenic methane are formed in oil and coal reservoirs or contaminated aquifers. However, 

still only little knowledge has been gained about the metabolic processes and the 

microorganisms involved in methanogenic hydrocarbon degradation in these and other 

ecosystems. Consequently, we established enrichment cultures obtained from polluted and 

pristine brackish water and freshwater sediments as well as from terrestrial mud volcano 

soil, degrading hexadecane under methanogenic conditions. These showed high methane 

production rates after the addition of hexadecane, and were also capable of converting 

added oil or coal. The enrichment cultures showed a broad tolerance against environmental 

parameters, like salinity, temperature and pressure, even at assumed reservoirs conditions. 

The addition of specific inhibitors and 13C-labeled hexadecane indicated that acetate was an 

important intermediate for methane production. Also, low sulfate and elevated trace 

element concentrations had stimulating effects on methane production. The quantitative 

community analysis showed equally high abundances of Archaea and Bacteria in all 

enrichment cultures. Another common feature independent of the original habitat was the 

presence of functional genes indicative of sulfate-reduction and methanogenesis in high 

numbers in all incubations. The diversity analysis via terminal restriction fragment length 

polymorphism fingerprinting, amplicon pyrosequencing and cloning showed a large bacterial 

diversity with Smithella, Syntrophomonas and Gammaproteobacteria species dominating. In 

contrast, the archaeal diversity was always limited to three or four dominant species, mainly 

acetoclastic Methanosarcinales. In conclusion, an active hydrocarbon-degrading community 

with similar physiological and compositional features could be established from different 

habitats, independent of former hydrocarbon exposure. 
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4.1. Introduction 

Major world oil reserves, such as the Athabasca oil sands (Yergeau et al., 2012), other 

foreland basins as well as many offshore reservoirs, contain heavily biodegraded crude oil. 

The occurrence of biodegraded oil is indicative of indigenous subsurface microbial 

communities and points to in situ biodegradation in petroleum reservoirs as a globally 

significant biogeochemical process. Around 50-98 % of a typical crude oil consists of readily 

biodegradable hydrocarbons such as alkanes, cycloalkanes and alkylated aromatic 

compounds (Townsend et al., 2003). The removal of aliphatic and aromatic hydrocarbons 

during in situ biodegradation enriches heavy oil fractions containing heterocyclic sulfur-, 

oxygen- and nitrogen-rich compounds, thus decreasing oil quality and value. Today about 

only ~40 % of existing crude oil can be recovered using conventional technologies, resulting 

in large amounts of inaccessible oil remaining within the world’s oil deposits (U.S. 

Department of Energy, 2006). Consequently, the microbial conversion of parts of these not 

accessible resources into methane might provide a new strategy for enhanced hydrocarbon 

recovery. 

Besides in oil, coal and gas reservoirs, hydrocarbons are also important compounds in 

other environmental systems. Either originating from the degradation of organic material, 

like plants, or being introduced by human activities, like oil spills, waste removal, traffic, etc. 

(Coates et al., 1996b; Feisthauer et al., 2012; Gray et al., 2010; Meckenstock et al., 2004), 

they constitute important substrates for phylogenetically and physiologically diverse 

microbial communities in freshwater, terrestrial as well as brackish water habitats. 

Still, the factors controlling in situ biodegradation in the different oil-associated 

environments and the specific microorganisms responsible remain poorly understood. Since 

electron acceptors for anaerobic metabolism, like nitrate, sulfate and oxidized metal species 

are largely absent or sequestered (e.g. as iron silicates), methanogenesis is the most relevant 

process for in situ biodegradation of hydrocarbons. Interestingly, the addition of small 

amounts of alternative electron acceptors, like sulfate, nitrate, ferric iron or manganese 

oxide in many cases accelerated the microbial conversion of hydrocarbons to methane 

(Siegert et al., 2010). 

Until today, a broad range of hydrocarbons has been shown to be biodegradable under 

anoxic conditions and with various electron acceptors. For example, n-alkanes comprise a 

major fraction of most crude oils and have been found to be biodegradable under 
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methanogenic conditions, both as pure substrates, e.g. hexadecane (Anderson and Lovley, 

2000a; Zengler et al., 1999) and in crude oils (Gieg et al., 2008; Jones et al., 2008; Siddique et 

al., 2006; Townsend et al., 2003). Simple aromatic compounds, such as BTEX and phenols, 

can also degrade under methanogenic conditions (Head et al., 2003; Schöcke and Schink, 

1997; Weiner and Lovley, 1998). Feisthauer et al. (2010) investigated the stable carbon and 

hydrogen isotopic signature of methane, carbon dioxide and water during microbial 

formation of methane from alkanes, BTEX and PAH (or during methane oxidation) in order to 

examine the variability in the carbon and hydrogen isotope signatures of methane. The 

observed carbon and hydrogen isotope signatures and discrimination factors fell in a 

relatively narrow range, suggesting common mechanisms independent of the habitat and 

hydrocarbon source, and involving the coupling of fermentation with acetoclastic and 

CO2-reducing methanogenesis. The degradation of oil or coal components under 

methanogenic conditions requires the interaction of fermenting and methanogenic 

microorganisms in a microbial community (Beckmann et al., 2011a; Beckmann et al., 2011b; 

Gray et al., 2011; Head et al., 2003; Jones et al., 2008; Zengler et al., 1999). 

Both, methanogenesis and to a lesser extent sulfate-reduction, generally depend on 

fermentation reactions that degrade complex organic compounds into smaller electron 

donors (e.g., short organic acids or hydrogen), as catalyzed by syntrophic and fermentative 

anaerobes often observed in oil and coal reservoir habitats (Beckmann et al., 2011a; 

Beckmann et al., 2011b; Gray et al., 2011). The presence of methanogens and 

methanogenesis is well known for water-flooded oil reservoirs (Edwards and Grbić-Galić, 

1994; Gieg et al., 2011; Mueller and Nielsen, 1996; Nazina et al., 1995a; Orphan et al., 2000). 

In contrast to the archaea, the metabolic diversity of the bacterial communities involved in 

the anaerobic biodegradation of petroleum hydrocarbons both in situ and in vitro is large, 

including nitrate-, ferric iron- or sulfate-reducing, acetogenic and fermenting 

microorganisms, partially living syntrophically with methanogens (Gieg et al., 2011; Gray et 

al., 2011; Gray et al., 2010; Hubert et al., 2012; Jones et al., 2008).  

However, the distribution, structure, and activity of these methanogenic communities 

capable of hydrocarbon degradation in different geosystems still remain widely unknown. In 

this study, we performed a combination of physiological, biogeochemical and molecular 

biological analyses of a set of hexadecane-degrading methanogenic enrichment cultures 

obtained from a range of different ecosystems, including brackish water, terrestrial and 
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freshwater habitats. This led to a detailed investigation of the microbial diversity and 

metabolism of involved microorganisms and to the identification of common patterns and 

differences across the diverse ecosystem types studied. 

 

 

4.2. Experimental procedures 

 

4.2.1. Sample description and experimental set-up 

Sediment samples for enrichment cultures were obtained from different 

methanogenic environments, including eutrophic lake (Lake Plußsee), freshwater 

(Kuhgraben), brackish water (Eckernförde Bay), mangroves (Brazilian mangrove forests) and 

terrestrial (Romanian mud volcanoes, coal and timber) environments. Details and acronyms 

are provided in table 4.1. 

After sampling, sediments were stored at 4°C. Sediment slurries from each sample 

(1:1 mix of sediment and medium) were transferred under anaerobic conditions into 

autoclaved serum bottles. Sulfate-free minimal medium after Widdel and Bak (1992) with 

different salinities similar to environmental conditions of each sampling site was added. 

Serum bottles were sealed with sterile butyl rubber stoppers and aluminum crimps caps. The 

headspace of the serum bottles was flushed with nitrogen.  

For the investigation of microbial growth with 13C-labeled and unlabeled hexadecane, 

the substrates were added directly, or demobilized on filter, into the enrichment cultures. 

2-5 mg U-13C-hexadecane was added to 100 mL medium. U-13C-hexadecane was synthesized 

as described by Feisthauer et al. (2010).  

For investigation of physiological aspects enrichment cultures amended with different 

concentrations of sodium chloride, trace element solution, sulfate, and phosphate. The 

sterile anoxic stock solution of trace elements (SL10) was added as usual during medium 

preparation in increasing volumes of 1, 2 to 10 mL per liter (normal medium contains 1 mL). 

As another potentially limited nutrient, phosphate was added in concentrations of 1, 2, 5 

and 10 mM. Salinity was changed by varying NaCl concentrations (1 – 100 g l-1). To study the 

effect of sulfate on the conversion of hexadecane to methane enrichments were established 

by adding sulfate from a sterile anoxic stock solution to yield initial concentrations between 

0-20 mM. Elevated hydrostatic pressures (from atmospheric to 200 bar) to mimic reservoir 
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conditions were applied using a high-pressure incubation device described by Nauhaus et al. 

(2002). In the same line, incubation temperatures were varied between 20 to 70˚C.  

Cultures were incubated at 30°C or room temperature in darkness. Methane and CO2 

formation in the headspace of the cultures were measured regularity. Methane and CO2 

production rates were calculated by linear regression of the methane increase with 

incubation time, and expressed in µmol day-1 mL-1 sample (Krüger et al., 2001).  

 

4.2.2. Analytical methods 

Methane in the headspace of the microcosms were analyzed using a gas 

chromatograph with flame ionization detector (GC-FID) equipped with a 6´ Hayesep D 

column (SRI 8610C, SRI Instruments, USA) continuously running at 60°C. Carbon dioxide 

concentrations were determined by a methanizer-equipped FID detector after reduction of 

the CO2 to methane using the same instrument as for methane measurements. Sulfide 

concentrations in the cultures were measured with a Nicolet evolution 100 photometer 

(Thermo electron corporation, Madison, WI, USA) by the Cord-Ruwisch-method (Cord-

Ruwisch, 1985). The stable isotopic composition of methane and CO2 was measured using a 

gas-chromatography-combustion-isotope ratio monitoring mass spectrometry system 

(GC-C-IRM-MS, MAT252, Thermo Fisher Scientific Inc., USA) (Herrmann et al., 2010). The 

δ 13C-values are expressed in ‰ vs. Vienna Pee Dee Belemnite (VPDB). 

Concentrations of acetate in the liquid phase of the sediment incubations were 

analyzed by a HPLC Agilent 1200 system (Agilent Technologies, Santa Clara, CA, USA), 

consisting of a diode-array detector, a micro-vacuum degasser, and a binary pump. The 

analytes were separated on an Agilent Eclipse Plus C8 4 column (4.6 x 250 mm) kept at 20°C 

and using 5 mM H2SO4, as eluant at a flow rate of 1.0 mL min-1. A 10 µL injection of each 

sample was loaded on to the column.  
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4.2.3. Molecular biological methods 

Genomic DNA from hydrocarbon enriched microcosms was extracted by bead-beating 

and a phenol-chloroform extraction using protocols from Gabor et al. (2003) and Lueders et 

al. (2004). For molecular analysis and cloning experiments, crude DNA extracts were purified 

by Wizard® DNA Clean-Up Resin (Promega Corporation, Madison, WI, USA). Recovery was 

routinely >80 %. 

Via quantitative real-time PCR genes of interest were quantified using the Q-PCR 

instrument ABI Prism 7000 (Applied Biosystems, Life Technologies Corporation, CA, USA). 

16S rRNA gene copy numbers of Archaea and Bacteria were determined as described 

previously by Takai and Horikoshi (2000) and Nadkarni et al. (2002). By using functional 

primer sets for detection of the methyl-coenzyme M reductase gene (mcrA) the quantity of 

methanogenic microorganisms was collected (Nunoura et al., 2006). The abundance of 

sulfate-reducers was determined by quantifying the copy number of the dsrA gene coding 

for the alpha subunit of the dissimilatory (bi) sulfite reductase (Neretin et al., 2007). All PCR 

reactions were measured in three parallels and three dilutions. To perform Q-PCR 

quantification, a StepOne detection system (StepOne version 2.0, Applied Biosystems, CA, 

USA) coupled with the StepOne v2.1 software was used. 16S rRNA gene copy numbers are 

expressed as copies mL-1 sample. 

For terminal restriction fragment length polymorphism (T-RFLP) analysis, extracted 

DNA was used as template for PCR amplification of phosphoramidite flourochrome 

5-carboxyflourescein (FAM)-labeled amplicons. Amplifications were generated by using the 

primer sets Ar109f and 912rt-FAM, or Ba27f-FAM and 907r. To account for possible inhibitor 

effects in DNA extracts, a dilution series of each fresh extract was prepared. T-RFLP analysis 

of PCR products was done using the restriction endonucleases TaqI and MspI, respectively. 

The procedure was described by Winderl et al. (2008), (2010). Capillary electrophoresis and 

data collection were operated on an ABI 3730 Genetic Analyzer (Applied Biosystems, CA, 

USA). The electropherograms were processed with sequence analysis software PeakScanner 

1.0 and GeneMapper 4.0 (Applied Biosystems, CA, USA). T-RFLP histograms were performed 

with the help of the T-REX online software using the default settings (Culman et al., 2009). 

Clone libraries were created using DNA from enriched microbial communities 

amended with hexadecane. 16S rRNA gene fragments were amplified by PCR using domain 

specific primer pairs 21f (5`-TTC CGG TTG ATC CYG CCG GA) and 958r (5-YCC GGC GTT GAM 
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TCC AAT T) for Archaea (DeLong, 1992), and GM3f (5-AGA GTT TGA TCM TGG C) and GM4r 

(5-TAC CTT GTT ACG ACT T) for Bacteria (Lane, 1991). Cloning and sequencing of the 

archaeal and bacterial 16S rDNA amplicons was performed by Microsynth AG 

(www.microsynth.ch, Switzerland). Sequences were assembled use the Geneious ProTM 5.3 

software (www.geneious.com). Prior to phylogenetic analysis, vector sequences flanking the 

16S rDNA gene inserts were removed. 

Amplicon pyrosequencing was performed as described in Pilloni et al. (2011). With the 

primer pair Ba27f and Ba519r (Lane, 1991) extended as amplicon fusion primers with 

respective primer A or B adapters, key sequence and multiplex identifiers (MID) bar-coded 

amplicons for multiplexing were prepared. Emulsion PCR, emulsion breaking and sequencing 

were performed applying the GS FLX Titanium chemistry following protocols and using a 454 

GS FLX pyrosequencer (Roche). With the use of the automatic amplicon pipeline of the GS 

Run Processor (Roche) coupled with the valley filter (vfScanAll-Flows false instead of TiOnly) 

quality filtering of the pyrosequencing reads was performed.  

After quality-trimming using the TRIM function of GreenGenes software (DeSantis et 

al., 2006), the retrieving of forward and reverse reads with inferior read length (> 250 bp) 

with BIOEDIT software (Hall, 1999). 

Chimeric sequences were detected using the DECIPHER´s Find Chimeras online 

software (Wright et al., 2012) from the University of Wisconsin Madison 

(http://decipher.cee.wisc.edu/FindChimeras.html) and were excluded from further analysis. 

Sequences were compared to GenBank BLASTn algorithm from the National Center for 

Biotechnology Information (Altschul et al., 1990) (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and 

the Ribosomal Database Project Classifier (Wang et al., 2007) (RDP; 

http://rdp.cme.msu.edu/classifier/classifier.jsp) to select closely related species. Unique 

patterns were considered to be operational taxonomic units (OTUs) of at least 97 % distance 

matrix identity using mother software (http://www.mothur.org) (Schloss et al., 2009). The 

phylogenetic tree was constructed with the ARB software package (Ludwig et al., 2004) with 

Maximum-Parsimony (version 102) correlation provided by Pruesse et al. (2007).  

 

  

http://decipher.cee.wisc.edu/FindChimeras.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://rdp.cme.msu.edu/classifier/classifier.jsp
http://www.mothur.org/
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4.3. Results 

 

4.3.1. Microbial activities 

In all enrichment cultures significant elevated methane production rates in microcosms 

amended with hexadecane compared to substrate-free and sterile conditions were 

observed. With increasing numbers of transfers during the cultivation procedure, methane 

production rates increased. 

The comparison of methanogenic activity between the different enrichment cultures 

obtained from sediments originated from brackish water, mangrove, eutrophic lake and 

freshwater environments as well as from a terrestrial mud volcano, revealed an increased 

potential to hexadecane degradation performed by mangrove and freshwater ditch 

sediment enrichments. 

To comprehend the microbial conversion of hexadecane as sole carbon source to 

methane and CO2 microcosms were amended with U-13C-hexadecane. The stable isotope 

composition of CH4 and CO2 in the headspace of the Brazilian mangrove enrichment cultures 

amended with U-13C-hexadecane showed δ13CCH4-values changed from -98.0 ‰ to -40.2 ‰ 

after 44 days and at last to final -4.9 ‰ after 205 days incubation time. The isotopic value of 

δ13CCO2 increased from -18.8 ‰ to 8.2 ‰. In the control experiment with unlabeled 

hexadecane the δ13CCH4-value showed -49.6 ‰ over total incubation time and the 

δ13CCO2-value ranged from -11.1 ‰ to 21.3 ‰. Extended isotope fractionation data have 

already been published at Feisthauer et al. (2010). 

 

4.3.2. Physiological aspects  

Increasing the amounts of trace elements in the enrichments lead to an increase in 

methane production rates with highest rates observed for 10 times the initial 

concentrations. A methane production rate of 5 µmol mL-1 d-1 was measured in microcosms 

containing medium with 1 mL TE solution. Methane production changed after addition of 

2 x TE (8 µmol mL-1 d-1) and 5 x TE (16 µmol mL-1 d-1). In incubations with 10 x TE the rates 

were doubled compared to the normal medium (1 mL TE). Higher amounts were not tested. 

These findings were the same for all three enrichments tested, i.e. freshwater, brackish 

water and mexico.  
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The rates of methane production from hexadecane increased with increasing 

phosphate concentration in the medium (data not shown). To indicate whether this process 

functions also under reservoir conditions, the effects of increased salinity, pressure and 

temperature were tested. An increase of the salinity in the incubation leads immediately to a 

decrease in methane production (data not shown). The variation of incubation pressure or 

temperature in contrast showed a relatively broad tolerance of the selected enrichment 

cultures against these important parameters (data not shown). 

The addition of increasing concentrations of the potential alternative electron acceptor 

sulfate lead in the incubations to a shift from methane to CO2 production, indicating a 

change in the community composition (Figure 4.1). 

 

 

Figure 4.1: Methane and CO2 production rates from the brackish water enrichments (Eckernförde 

Bay) amended with hexadecane and different sulfate concentrations. The error bars represent the 

standard deviation of three replicates (Siegert et al., 2010). 

 

4.3.3. Quantitative community composition of enrichment cultures 

The quantitative analysis of the community composition showed high abundances of 

Bacteria and Archaea in all enrichment cultures amended with hexadecane (Figure 4.2). 

After 480 day of incubation the enrichment cultures inoculated with brackish water and 

mangrove sediments contained 6.1 x 106 and 1.3 x 107 (brackish water) and 4.1 x 105 and 

7.6 x 106 DNA copies mL-1 sample (mangrove) for Bacteria and Archaea. The microcosms 

with eutrophic lake and freshwater sediments showed values of 1.4 x 107 and 1.1 x 107 
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(eutrophic) and 3.7 x 106 and 3.5 x 106 DNA copies mL-1 sample (freshwater), and 

microcosms incubated with terrestrial sediments contained 2.6 x 107 and 7.9 x 107 (mud 

volcano), 2.7 x 108 and 9.6 x 107 (coal), 5.0 x 107 and 1.9 x 107 DNA copies mL-1 sample 

(timber) for Bacteria and Archaea. Furthermore, a significant amount of functional genes of 

methanogens (mcrA) and sulfate-reducers (dsrA) were detected and showed a high variation 

between the different cultures. In enrichment cultures amended with hexadecane incubated 

with freshwater and brackish water sediments the detectable methanogens slightly 

exceeded the presence of sulfate-reducers. In enrichment cultures containing mangrove and 

terrestrial sediments the amounts of sulfate-reducers were higher than the amounts of 

methanogens. Enrichments from mangrove sediments showed the highest distinction 

between sulfate-reducers (1.0 x 106 DNA copies mL-1 sample) and methanogens 

(3.92 x 103 DNA copies mL-1 sample). 

 

 

Figure 4.2: Quantitative community composition of eutrophic lake, freshwater, brackish water, 

mangrove forest, terrestrial mud volcano, and coal & timber enrichment cultures amended with 

hexadecane. Bacteria and Archaea were determined via universal 16S rRNA genes. Functional genes 

of methanogens (mcrA) and sulfate-reducing prokaryotes (dsrA) were determined by quantitative 

PCR. Error bars were calculated from standard deviations of three parallel PCR reactions. 
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4.3.4. Phylogenetic analysis of the enriched hexadecane degrading microbial 

communities 

With the use of amplicon pyrosequencing and the construction of clone libraries a 

more detailed community analysis was conducted. Further to sequencing data sets, 

investigations of terminal restriction fragments (T-RFs) were performed to get a second 

qualitative, but not strictly quantitative overview of the diversity of the present microbial 

community. Almost all significant peaks present in the electropherograms (Figure 4.3) 

showed concurrences to sequencing data (Tables 4.2 and 4.3). 

The bacterial 16S rRNA gene T-RFLP fingerprints from DNA extracted from enrichment 

cultures inoculated with eutrophic lake, brackish water and mangrove sediments as well as 

terrestrial mud volcano samples exhibited a broad diversity, while enrichment cultures 

derived from freshwater sediments showed only two dominant T-RF peaks. The enrichment 

communities were mainly composed of sequences related to Betaproteobacteria, 

Gammaproteobacteria, Deltaproteobacteria, Clostridia, Anaerolineaceae (Chloroflexi) and 

Bacteroidetes incertae sedis. The most dominant T-RFs in freshwater enrichment cultures 

were related to deltaproteobacterial Smithella (both 164- and 509-bp T-RF) and 

betaproteobacterial Azospira sp. (492-bp T-RF). Furthermore we identified the 162-, 

491- and 508-bp T-RFs as members of Syntrophorhabdus, Acinetobacter and relatives of the 

family Anaerolineaceae. The same fragment lengths and affiliations to Smithella, 

Syntrophorhabdus, Acinetobacter and Anaerolineaceae were found in T-RFLP fingerprints of 

eutrophic lake enrichment cultures, but they were overtopped by relatives of Thiorhodospira 

(139-bp T-RF), Syntrophomonas (305-bp T-RF), Ralstonia (436-bp T-RF) and Pseudomonas 

(490-bp T-RF). 

As distinct from the fingerprinting results and sequence data from the eutrophic lake 

and freshwater sediment enrichments, sequences affiliated to Pseudomonas species 

(490-bp T-RF) and Bacteroidetes incertae sedis (93-bp T-RF) formed the dominant part in the 

brackish water sediment enrichment cultures. Furthermore, T-RFs affiliated to Desulfovibrio 

sp. (164-bp T-RF), Thermanaeromonas sp. (314-bp T-RF) and Syntrophomonas spp. 

(399-bp T-RF) were identified as members of the bacterial community composition. In 

mangrove sediment enrichment cultures, the 315-bp T-RF, identified as Thermanaeromonas 

sp. played the main role in the community, followed by Marinobacter sp. (145-bp T-RF), 

Ectothiorhodosinus sp. (490-bp T-RF) and Desulfovibrio sp. (164-bp T-RF). 
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Figure 4.4: Parsimony tree assembled for Archaea from 16S rRNA gene sequences 

summarizing all sampling sites. Sampling sites are: Eckernförde Bay (E-Bay), Brazilian 

mangrove forests (Man), Lake Plußsee (LakeP), Kuhgraben (Kuh) and Terrestrial mud volcano 

(Rov). The tree is based on the SILVA database version 102 provided by Pruesse et al. (2007). 
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Bootstrap support (in %, 1000 replicated trees) is indicated at each branching point. 

Bootstrap values less than 50 % are not shown, between 50-75 percent are marked with 

blank circle and between 75-95 percent are marked with filled circle. Reference species are 

italic and clone sequences are bold. Numbers of OTUs for each phylotype are shown in 

parentheses. Numbers in boxes indicate numbers of sequences which were assigned to the 

respective cluster. The tree was rooted using Nitrosopumilus maritimus as an out-group 

(Figure 4.4, continued from previous page). 
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Quite different from these analyzed enrichments the enriched samples from the 

terrestrial mud volcano revealed high accounts of relatives to Desulfuromonas sp. with 125 

and 511-bp T-RFs, which corresponded with one of the dominant peak in the fingerprint 

plot. Desulfohalobium sp., Desulfovibrio sp. (both 133-bp T-RF) and Desulfosalsimonas sp. 

(168-bp T-RF) were identified and formed a minor part of the enriched mud volcano 

community. 

As compared with the bacterial 16S rRNA gene T-RFLP fingerprints analysis the 

archaeal one revealed a community limited to two or four dominant families, mainly 

methanogens. In eutrophic enrichment cultures the 282 bp fragment identified as 

Methanosaeta concilii was one of two dominant peaks. Additionally, members of 

Methanocalculus sp. (185 / 390-bp T-RF) were identified, the archaeal fingerprint showed 

the 185-bp T-RF as the second dominant peak. The community was complemented by 

Methanoculleus sp. (183 / 390-bp T-RF), Methanogenium sp. (390-bp T-RF) and 

Methanosaeta harundinacea (493-bp T-RF). The archaeal community of the freshwater 

enrichment cultures was dominated completely by members of Methanosaeta sp. Both 

highest T-RFs, 283 and 392-bp T-RF were identified as Methanosaeta concilii. The species 

Methanosaeta harundinacea (225-bp T-RF) and Thermogymnomonas sp. (380-bp T-RFs) 

complemented the community composition. The terrestrial mud volcano enrichment 

cultures were dominated by members of Methanoplanus sp., Methanocalculus sp. (both 

185-bp T-RF) and Methanosaeta harundinacea (494-bp T-RF). The 391-bp T-RF was identified 

as Methanogenium sp. and correspond with the fourth peak of the fingerprinting plot.  

The 183-bp T-RF and 390-bp T-RF, the highest peaks in brackish water enrichment 

cultures were assigned to Methanosarcina mazei and Methanogenium sp. In cultures 

enriched with mangrove sediments the main members of the community were identified as 

members of Thermoprotei, dedicated to the Crenarchaeota phylum, and Methanosaeta 

harundinacea (494-bp T-RF). The sequence analysis showed minimum amounts of members 

of Thermoprotei in all enrichment cultures amended with hexadecane, excluding freshwater 

enrichments. The phylogenetic placement of significant archaeal sequences recovered from 

the hexadecane degrading enrichment cultures is illustrated in Figure 4.4. 
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4.4. Discussion 

 

4.4.1. Physiological aspects of hexadecane degradation under methanogenic 

conditions 

The aim of this study was the enrichment and characterization of 

hydrocarbon-degrading methanogenic communities in different environmental habitats such 

as eutrophic lake, freshwater, brackish water, mangrove and terrestrial mud volcano sites, 

independent on their hydrocarbon contamination history. Furthermore, we studied the 

influence of sulfate on hexadecane-dependent methanogenesis in enrichment cultures 

inoculated with brackish water sediment. These enrichment cultures showed that the 

addition of 2 mM sulfate stimulated the growth of methanogens. But sulfate is not 

obligatory for the growth of methanogenic microorganisms. However, higher sulfate 

concentrations of more than 5 mM influenced the conversion of hexadecane to methane 

negatively. The sulfate-reducing hexadecane-degrading community was stimulated in 

growth, resulting changes in the community composition lead to the displacement of the 

methanogenic part of the community.  

The bacterial reduction of sulfate in anoxic sediments is the most important process in 

the mineralization of organic matter. The process is mediated by a phylogenetically and 

physiologically diverse group of microorganisms which all use sulfate as the terminal 

electron acceptor. Sulfate-reducing prokaryotes are able to oxidize all the major 

fermentation products completely to CO2 and H2O and inhibit the methanogens by 

competing with them for common substrates (Leloup et al., 2009). This suggests that these 

groups of microorganism found in these different habitats are widespread within 

hydrocarbon degradation and may have significant impact on the carbon cycle in anoxic 

sediments worldwide.  

The tested effects of increased salinity, pressure and temperature simulating reservoir 

conditions showed that the enriched microbial communities in vitro are adapted to these 

special reservoir conditions. Salinity was the limiting factor in this composition of 

physiological effects. The increase of the salinity leads immediately to a decrease in methane 

production, an adverse effect likely caused by an increase in maintenance energy demand of 

the microorganisms to cope with the higher salt concentrations. The increased phosphate 



128 

concentration in the medium during methane production from hexadecane indicates an 

important role for this nutrient.  

This shows an abundant potential of the laboratory microbial communities to degrade 

hydrocarbons under reservoir conditions. The knowledge of hydrocarbon-degrading 

methanogenic communities in different environments can lead to promote efficient 

bioremediation processes in soils and sediments after oil spills or tanker accidents. Or to 

develop more effective treatments to prevent biodegradation in oil reservoirs. 

 

4.4.2. Bacterial community composition in enrichment cultures amended with 

hexadecane 

The bacterial community found in the enrichment cultures amended with hexadecane 

consists of members related to Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes. 

Their quantitative contribution differs strongly among the cultures enriched from several 

environments. Relatives of the classes Actinobacteria and Synergistetes were also found, but 

only in minor amounts.  

The syntrophic bacteria of the genus Smithella were identified as dominant species in 

freshwater and eutrophic enrichment cultures, and are also present in mangrove cultures. 

The abundant presence of species belonging to Syntrophaceae was frequently observed in 

hydrocarbon-associated environments such as oil-contaminated soils, sediments, oil tailings 

ponds and aquifers (Allen et al., 2007; Gray et al., 2011; Shimizu et al., 2007). Zengler et al. 

(1999) gave the first evidence for a direct role of relatives of Syntrophaceae in hydrocarbon 

degradation, in particular in the activation and oxidation of hexadecane to lower molecular 

fatty acids or acetate and hydrogen which is then metabolizable by acetoclastic 

methanogens. Thus, they form a syntrophic partnership with the methanogenic archaea.  

Additionally, other syntrophic candidates (Syntrophorhabdus sp. (162-bp T-RF) and 

Syntrophomonas sp.) were detected in freshwater and eutrophic lake enrichment cultures. 

The obligatory anaerobic mesophilic Syntrophorhabdus is able to oxidize aromatic 

compounds, such as benzoate in syntrophic association with hydrogenotrophic 

methanogens. The genus is not able to use sulfate, sulfite, thiosulfate, nitrate, nitrite, 

elemental sulfur, or ferric iron as an electron acceptor (Qiu et al., 2008). Moreover, 

sequences affiliated to Syntrophomonas sp., adapted for syntrophic growth with 
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methanogens and other hydrogen- and formate-using microorganisms were predominantly 

detected in eutrophic lake and, in minor quantity, in brackish water enrichment cultures.  

Detected additional in freshwater and eutrophic enrichment cultures the 

Acinetobacter species, known as oil-degraders in soil and sediments contaminated with 

crude oil, were firstly described by Reisfeld et al. (1972). Acinetobacter stains are able to 

degrade efficiently short- and long-chain alkanes, and even aromatics, connect the anaerobic 

oxidation of hydrocarbons with the reduction of nitrate (Li et al., 2012b; Mbadinga et al., 

2011). They are commonly found in hydrocarbon-rich environments like petroleum 

reservoirs (Li et al., 2007; Tang et al., 2012). Another Gammaproteobacteria, found 

predominantly in eutrophic and brackish water enrichments, are members of the typically 

aerobic Pseudomonadales, known as a very diverse and widespread genus capable of 

utilizing hydrocarbons as carbon and energy sources (Das and Chandran, 2011). 

Pseudomonas species were observed and isolated from brackish water sediment and are 

well known as nitrate-dependent alkene- and polycyclic aromatic hydrocarbon-degraders 

(Rockne et al., 2000). Moreover, specific bacterial community structures consisted of both 

aerobic and anaerobic hydrocarbon-degraders including Alteromonadales, 

Pseudomonadales, Burkholderiales, Rhodobacteriales, and Rhodocyclales were mainly 

detected in sediment sites with high level of hydrocarbon pollution (Greer, 2010). These 

findings correlate well with the identified relatives of the Proteobacteria in the freshwater 

and eutrophic enrichments. 

In brackish water and mangrove enrichment cultures members of the species 

Desulfovibrio, an incompletely oxidizing and H2-utilizing sulfate-reducing bacterium (Widdel 

and Bak, 1992), Thermanaeromonas, an thermophilic, anaerobic thiosulfate-reducing 

bacterium (Mori et al., 2002), and different members of the class Gammaproteobacteria 

were detected and formed the specific community composition of both enrichments. The 

presence of sulfate-reducing bacteria (primarily Desulfovibrio spp. and Desulfobacterium 

spp.) in the absence of sulfate in the cultures may be explained by their ability to function as 

proton-reducing acetogens and/or fermenters, as described by Raskin et al. (1996).  

In enrichments inoculated with mangrove sediment members belonging to 

gammaproteobacterial Marinobacter species (145-bp T-RF) take part in the community 

composition. Marinobacter species were detected previously in several anoxic hydrocarbon 

contaminated and subsurface environments (Dunsmore et al., 2006; Gray et al., 2011; 
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Inagaki et al., 2003b; Orphan et al., 2000) and a number of Marinobacter isolates were 

characterized as facultative anaerobes, which were able to grow fermentative and 

participate in syntrophic interactions (Köpke et al., 2005 ). Gray et al. (2011) argued for some 

Marinobacter the capability of anaerobic oxidation of minor components of crude oil in 

partnership with methanogens. This could explain the comparatively high presence of 

Marinobacter sp. in mangrove hexadecane enriched microcosms. The mangrove enrichment 

community was completed by the presence of Thermanaeromonas sp. (315-bp T-RF), 

Smithella sp. (164-bp T-RF), and other members of Gammaproteobacteria. 

 In contrast to the other enrichment cultures described above, the bacterial 

community of the terrestrial mud volcano enrichments were exclusively represented by 

members of Deltaproteobacteria, affiliated to Desulfuromonadales, Desulfobacterales and 

Desulfovibrionales. The genera Desulfosalsimonas sp., Desulfohalobium sp., Desulfovibrio sp., 

and Desulfuromonas sp. were identified, while the latter of whom showed the highest 

abundance within the bacterial community. The genus Desulfuromonas was first described 

by Pfennig and Biebl (1976). They isolated the marine species Desulfuromonas acetoxidans, 

which oxidize acetate with elemental sulfur or Fe(III) as terminal electron acceptor (Roden 

and Lovley, 1993). The most abundant sequences in the clone library showed strong 

affiliations to Desulfuromonas palmitatis, oxidize multicarbon organic compounds 

completely to CO2 with Fe(III) as an electron acceptor, and long-chain fatty acids coupled to 

Fe(III)-reduction (Coates et al., 1995). Moreover, members of the sulfate-reducing 

Desulfobacteraceae family are known for their ability to oxidize carbon comlete to CO2 

(Kuever et al., 2005). Relatives of Desulfobacteraceae family were also found in samples 

from terrestrial mud volcanoes of Azerbaijan (Green-Saxena et al., 2012). This produced CO2 

built the substrate for the hydrogenotrophic methanogens which takes part of the 

community of the terrestrial mud volcano enrichment culture.  

The presence of members of Prolixibacter affiliated to Bacteroidetes showed a 

similarity between the eutrophic lake, freshwater, brackish water and mud volcano 

enrichment cultures. Prolixibacter bellariivorans, available in minor quantity in the bacterial 

community of eutrophic lake, freshwater, mud volcano and dominant of the brackish water 

enrichment cultures, represents a unique phylogenetic cluster within the phylum 

Bacteroidetes. Prolixibacter bellariivorans is a facultative anaerobe that ferment sugars by 

using a mixed acid fermentation pathway and grow over a wide range of temperatures 
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(Holmes et al., 2007). Under anaerobic conditions Prolixibacter isolates cannot utilize 

acetate, benzoate, ethanol, formate, fumarate or hydrogen and several other compounds. Li 

et al. (2012a) described the distribution of Prolixibacter in microbial BTEX-enrichments with 

a wide range of salinity.  

In summary, our results showed the presence of bacteria related to Proteobacteria, 

Firmicutes, Chloroflexi, and Bacteroidetes in all enrichments. The community composition of 

eutrophic lake and freshwater enrichments showed closely resemble to each other, while 

the brackish water and mangrove enrichment community in turn was also similar. The 

terrestrial mud volcano community composition differs from all other enrichments, because 

their bacterial community consists nearly exclusive of sulfate-reducers affiliated to the 

Desulfuromonadales, Desulfobacterales and Desulfovibrionales families, supplemented 

through minor abundant members of Bacteroidetes and Firmicutes which were also found in 

the enrichments from the other sites. These different bacterial community structures found 

in our environments deviated from each other especially through their salinities and further 

though their input of organic matter and nutrients, besides abiotic factors like temperature. 

The high abundance of sulfate-reducers found in all enrichments showed the 

importance of this bacterial group in these very different habitats. We suggest that the main 

degradation of organic matter and hydrocarbons in these observed sediments were 

performed by sulfate-reducing bacteria. Furthermore, the presence of syntrophic bacteria 

found in eutrophic lake / freshwater (Smithella sp. and Syntrophorhabdus sp.) and brackish 

water / mangrove (Syntrophomonas sp. / Marinobacter sp.) environments point to a close 

association to methanogenic archaea, thus to an efficient conversion of hydrocarbons to 

methane and CO2. 

 

4.4.3. Archaeal community composition in enrichment cultures amended with 

hexadecane 

The quantitative contribution of archaea and bacteria was nearly similar within a 

culture, but vary gently in their copy numbers between the different enrichment cultures. In 

the eutrophic lake, freshwater and brackish water enrichment cultures the detected 

quantities of sulfate-reducers showed higher copy numbers as the methanogens (Figure 4.3). 

In the case of the mangrove enrichments the numbers of bacteria are outnumbered by the 

amounts of sulfate-reducers. An explanation for this could be the presence of sequences 
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affiliated to sulfate-reducing archaea. The low copy numbers of mrcA genes in the mangrove 

enrichments showed a contrast to the phylogenetic results in which the abundant presence 

of methanogens and other archaea could be determined. The majority of the archaeal 

community composition of the enrichment cultures incubated with the variety of sediment 

samples was decrypted by the combination of T-RFLP data and investigation in clone 

libraries. Methanogenic archaea were present in all enrichment cultures amended with 

hexadecane.  

All hexadecane enrichments inoculated with eutrophic, freshwater, and mangrove 

sediments and with samples from the terrestrial mud volcano contained Methanosaetaceae 

as prevalent archaeal members. Most of them were related to the species Methanosaeta 

concilii and Methanosaeta harundinacea. Enrichment cultures inoculated with brackish 

water sediment were dominated by the species Methanosarcina mazei, but contained also a 

small amount Methanosaeta concilii. Both Methanosarcinaceae and Methanosaetaceae are 

known as obligate acetoclastic methanogens. The dominant presence of members of the 

Methanosarcinales (Methanosaeta sp. and Methanosarcina sp.) in all enrichments suggests 

acetoclastic methanogenesis and a close interaction with syntrophic fermenting bacteria. 

Zengler et al. (1999) demonstrated the conversion of hexadecane via syntrophic anaerobic 

alkane-degraders to acetate and hydrogen, coupled to acetoclastic and hydrogenotrophic 

methanogenesis in a freshwater ditch. In this study we showed the hexadecane degradation 

in all enrichment cultures derived from different ecosystems. The absolute key intermediate 

during the anaerobic degradation of hydrocarbons used by a variety of different groups of 

microorganisms is acetate. More than 70 % of biological methanogenesis in flooded soil 

results from acetate consumption (Conrad and Klose, 1999). Syntrophic interactions 

between microorganisms are essential in anaerobic biodegradation of complex organic 

matter, in this case of hydrocarbons, into CH4 and CO2 and for the carbon flux in 

methanogenic ecosystems (Schink, 1997). The isotopic measurements of δ13CCH4-values 

revealed the conversion of the 13C-labeled hexadecane to methane. Simultaneously, the 

isotopic value of δ13CCO2 showed a strongly increase over the time of incubation, and 

indicated in this way that CH4 was mainly formed by acetoclastic methanogenesis. Isotope 

fractionation values from enrichment cultures inoculated with freshwater and brackish 

water sediments analyzed in this study were published by Feisthauer et al. (2010). 
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The fact that further archaeal genera closely related to the order Methanomicrobiales 

(Methanoculleus sp., Methanogenium sp., Methanocalculus sp. and Methanoplanus sp.) 

were detected in all enrichment cultures amended with hexadecane, except freshwater 

microcosms, gave a hint to CO2-reduction to methane. The first proposition of the genus 

Methanocalculus sp., with Methanocalculus halotolerans as the type species for a 

hydrogenotrophic halotolerant methanogen, came from Ollivier et al. (1998). The genus was 

isolated from an oil-producing well, produced methane from H2 / CO2 or formate, and 

acetate is required in addition for growth (Lai et al., 2004; Ollivier et al., 1998). 

Methanogenium, the proposed genus, and Methanogenium cariaci, the type species, 

catabolize formate or H2 / CO2 and were isolated for the first time from Black Sea sediments 

by Romesser et al. (1979).  

The exemption formed the enrichment cultures derived from terrestrial mud volcano 

samples. These cultures were dominated by the acetoclastic Methanosaeta harundinacea 

and the hydrogenotrophic members of Methanocalculus sp., Methanolinea sp., and 

Methanoplanus sp. Two species of Methanoplanus were identified in the terrestrial mud 

volcano community - M. petrolearius and M. limicola. M. petrolearius was isolated from an 

African offshore oil field and produced methane from H2 / CO2, formate, and CO2 / 2-

propanol, could not utilize acetate, but acetate is required for growth (Ollivier et al., 1997). 

M. limicola was isolated from swamp by Wildgruber et al. (1982), used H2 / CO2 or formate 

as source for methane production and acetate was required for growth. Consequently, the 

archaeal community of the terrestrial mud volcano cultures amended with hexadecane was 

the only one of our sample collection which was dominated by acetoclastic and 

hydrogenotrophic methanogens to equal shares. This findings correlates with the previous 

work by Zengler et al. (1999). They showed the possibility that methane was formed by 

acetoclastic and CO2-reducing processes simultaneously. Additionally, the phylogenic tree 

revealed close affiliations to uncultured archaea clustering in the methanomicrobial group of 

ANME 1 and into the Thaumarchaeota group C 3 for sequences found in the archaeal 

community of cultures enriched from terrestrial mud volcano. 

Moreover, the sequences found in mangrove enrichments showed a high ratio of 

uncultured archaea clustering in the Marine Benthic Group D and Deep-sea Hydrocarbon 

Vent Environment Group 1 (DHVEG 1), Marine Group 3, Terrestrial Miscellaneous Group 

(TMEG), or accordance with other uncultured archaea (CCA47) all affiliated to 
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Thermoplasmatales. Sequences revealed high affiliations to the uncultured Thaumarchaeota 

cluster Miscellaneous Crenarchaeotic Group were found in mangrove, brackish water and 

eutrophic lake enrichments. This high number of uncultured archaea conceals a lot new and 

to date not described microorganisms with completely unknown metabolic potential. 

In conclusion, laboratory microcosms from different habitats showed high methane 

production rates after the addition of hexadecane. Quantitative analysis of these enrichment 

cultures revealed equally large numbers of bacterial and archaeal 16S rDNA genes in all 

cultures. Phylogenetic analyses of the archaeal community showed the abundant presence 

of methanogenic archaea related to the orders Methanomicrobiales and Methanosarcinales, 

whereas each enrichment culture in turn showed phylogenetic characteristics in their 

specific archaeal community composition on the genera level. The eutrophic lake, 

freshwater, brackish water and mangrove communities were dominated by acetoclastic 

methanogens. An exceptional position was found in the community composition of the 

terrestrial mud volcano enrichment cultures that was composed of equal shares of 

hydrogenotrophic and acetoclastic methanogens. Another similarity showed the detection 

of Thermoplasmatales and uncultured Thaumarchaeota in all these enrichments, except of 

the freshwater enrichments, whereas the mangrove enrichments were dominated by these 

both uncultured groups. The exclusive detection of Methanocalculus halotolerans in 

mangrove and mud volcano enrichment cultures indicated the special adapting to saline 

environmental conditions, in comparison to the other observed sites where this genus was 

not detectable. The mud volcano sampling site showed high salinity around 40 ‰ (Alain et 

al., 2006). 

 

4.4.4. Ecological environmental aspects of hydrocarbon degradation 

Hydrocarbon pollution in such environments we have referred in this study is 

attributable to human activities like petroleum extraction, transportation, and processing 

including oil tanker accidents and oil spills, but also to natural oil and gas seeps. We showed 

that microbial communities inhabit pristine environments such as the freshwater ditch or 

the eutrophic lake, are able to degrade hydrocarbon. On the other hand, in the investigated 

sampling site of the brackish water sediments, the Eckerförde Bay, we assumed the 

presence of hydrocarbons. The semi-enclosed Eckernförde Bay is part of the German Baltic 

Sea coast there several harbors and marinas are located. Harbors are point sources for 
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chronic hydrocarbon pollution derived from boat traffic, accidental spills, discharge of ballast 

water, and bilge oil (Nogales, 2010). In such chronic hydrocarbon-polluted environments, 

microbes are the key players in hydrocarbon degradation processes, are adapted to the 

hydrocarbons and form stable communities (Berthe-Corti and Nachtkamp, 2010). Additional 

to our study, Coates et al. (1996b) demonstrated the high rate hydrocarbon degradation in 

marine harbor sediments under sulfate- and iron-reducing conditions, comparable to 

aerobic degradation rates. The rate and the efficiency of hydrocarbon biodegradation 

depend mainly on the microbial syntrophic interactions. The syntrophic interaction efficiency 

in turn were influenced by composition, activity, and interspecies cooperation of the 

hydrocarbon-degrading communities as well as by abiotic factors of the geographical 

location, such as temperature, concentration of inorganic nutrients, electron acceptors, and 

presence and structure of hydrocarbons. 

 

4.4.5. Syntrophic interactions 

As anaerobic hydrocarbon-degrading microorganisms, a lot of groups were identified 

including sulfate-reducing, denitrifying, dissimilatory iron(III)-reducing, and syntrophic 

bacteria that link hydrocarbon degradation to methanogenesis (Kniemeyer et al., 2007; 

Widdel and Rabus, 2001; Yuan and Chang, 2007). Many studies investigated anaerobic 

biodegradation of hydrocarbons in aquifers, sediments, soils, oil reservoirs and coal seams 

(Do ka et al., 199 ; Kim and Crowley, 2007; Nazina et al., 2006; Stra poć et al., 200 ; 

Watanabe et al., 2002; Winderl et al., 2008). The most abundant microorganisms found in all 

of these hydrocarbon-associated environments were identified as relatives of the 

fermentative Firmicutes (e.g. Clostridia and Thermoanaerobacter), Chloroflexi (class 

Anaerolinea), Bacteroidetes, and syntrophic populations of the Deltaproteobacteria which 

includes iron- and sulfate-reducing bacteria. Relatives of these groups were also found in our 

enrichment cultures. Moreover, relatives of Betaproteobacteria are dominant in freshwater 

environments, in this study in eutrophic lake and freshwater enrichments, but are virtually 

absent in marine environments including brackish water and mangrove enrichments. That 

evidence was confirmed by Greer (2010).  

Typical syntrophic associations are characterized by strictly syntrophic relationships of 

two metabolically different types of microorganisms in which both partners depend on each 

other for energetic reasons and together perform a fermentation process that neither could 
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run on its own (Schink, 2006). In most syntrophic methanogenic associations the involved 

microorganisms live close to the thermodynamic limit, because the obtain energy for growth 

yielding from the conversion of substrates like H2 / CO2 or acetate to CH4 is extremely low 

(Deppenmeier and Müller, 2008). Mostly hydrogen is the electron carrier between these 

oxidative and reductive metabolic processes (Schink, 2006). An example for hydrogen 

transfer is the ethanol-oxidizing sulfate-reducer Desulfovibrio vulgaris which oxidize ethanol 

in the absence of sulfate by hydrogen transfer to a hydrogen-oxidizing methanogenic 

partner. In the freshwater and eutrophic lake sediment enrichments, described in this study, 

the organic acid intermediates of anaerobic hydrocarbon degradation are converted 

syntrophically by members of the family Syntrophaceae (Syntrophus sp. and Smithella sp.) 

into CO2, H2, and formate, which in turn are substrates for hydrogenotrophic methanogens 

(Schink, 1997) like the members of the family Methanomicrobiaceae (e.g. Methanocalculus 

sp.). Furthermore, the syntrophic fermenting bacteria Syntrophomonas wolfei oxidizes 

butyrate and Smithella propionica propionate to acetate (and butyrate) in close cooperation 

with the methanogenic partner organism e.g. Methanospirillum hungatei, which has to 

lower the hydrogen partial pressure to keep the degradation reactions thermodynamically 

favorable (de Bok et al., 2001; Schmidt et al., 2013). 

Despite of manifold research investigations in the field of hydrocarbon biodegradation, 

the complex interactions of these parameters proceeding under environmental conditions 

are not yet understood in detail. Wherefore, the complex interactions of these parameters 

in the environmental systems as well as the composition, structure, and role of 

hydrocarbon-degrading microbial communities are needs to research, prospectively. This 

developing knowledge could be improves the potential to bioremediate contaminated 

environmental sites, could lead to the identification of bioindicator taxa, enhance the 

dynamic of anaerobic digestion process for biomethane production, and reveal new 

strategies for highly efficient microbial enhance oil recovery.  

In addition, the large number of unknown sequences clustered with uncultured 

environmental archaea and bacteria sequences indicating new microbial types providing 

important new biochemical pathways and enzymes with potential biotechnological 

applications. 
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Abstract 

We investigated the stable carbon and hydrogen isotopic signatures of methane, CO2 

and water during microbial formation of methane from mineral oil-related compounds in 

order to determine the variability in the methane signatures. The isotopic discrimination for 

carbon and hydrogen between substrate and methane was calculated and resulted in εCDIC-

CH4 26–60‰, εCsubstrate-CH4 16–33‰, εHH2O-CH4 257–336‰ and εHsubstrate-CH4 174–31 ‰, 

respectively. These carbon and hydrogen isotope signatures fell in to a relatively narrow 

range, suggesting a coupling of fermentation with acetoclastic and CO2 reducing 

methanogenesis. In order to characterize the microbial consortia involved in the 

methanogenic degradation of hexadecane, a methanogenic enrichment culture was 

incubated with 1-13C–hexadecane and its biomass was analyzed for the pattern and isotopic 

signature of carboxylic acids. The highest extent of labeling was detected in the n-C17 fatty 

acid with methyl groups at C-4, presumably indicative of Syntrophus sp. To determine if the 

isotope composition of methane can be used as an indicator for methanogenesis during 

growth with oil-related compounds in field studies, we analyzed the isotope composition of 

methane in a confined mineral oil contaminated aquifer. The variability in carbon and 

hydrogen isotope composition was almost identical to the values obtained from enrichment 

cultures, thereby providing a tool for screening for microbial methane formation during 

hydrocarbon exploration. 
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5.1. Introduction 

 

Methanogenesis is the terminal electron accepting process for degradation of organic 

matter (OM) after the depletion of other organic and inorganic electron acceptors in a 

closed environmental system. This unique metabolic pathway may explain the frequently 

observed hydrocarbon biodegradation in petroleum reservoirs (e.g., Dolfing et al., 2008; 

Gieg et al., 2008; Gray et al., 2009; Grigoryan and Voordouw, 2008; Head et al., 2003; Jones 

et al., 2008). Except for CO2, formed stoichiometrically with CH4, no external electron 

acceptors are required to sustain the degradation process over long-term periods. Thus, only 

water and essential nutrients may be required for methanogenesis in oil reservoirs. CH4 

formation from oil-related compounds in petroleum reservoirs may provide an opportunity 

for enhanced recovery of fossil fuels from previously exploited oil reservoirs and coal bed 

strata (Finkelstein et al., 2005; Gieg et al., 2008; Grigoryan and Voordouw, 2008). Even in 

times of intense exploration for alternative energy sources, the worldwide demand for 

hydrocarbons, the most readily available energy and carbon source, persists and may even 

grow as a result of the increase in world population. At the same time, easily accessible 

petroleum reserves are declining. Roughly 40 % of existing crude oil can be recovered using 

conventional technologies, resulting in large amounts of inaccessible oil remaining within the 

world’s oil deposits (US Department of Energy, 2006). Around 50–98 % of a typical crude oil 

consists of hydrocarbons such as alkanes, cycloalkanes and alkylated aromatic compounds 

(Townsend et al., 2003). Different constituents within the hydrocarbon fraction have been 

shown to be biodegradable under anoxic conditions with various electron acceptors (e.g., 

Wilkes et al., 2000, 2003). For example, n-alkanes comprise a major fraction of most crude 

oils and have been found to be biodegradable under methanogenic conditions, both as pure 

substrates, e.g. n-hexadecane (Anderson and Lovley, 2000b; Zengler et al., 1999) and in 

crude oils (Gieg et al., 2008; Jones et al., 2008; Siddique et al., 2006; Townsend et al., 2003). 

Converting at least a portion of currently unrecoverable oil biotechnologically into methane 

may provide an opportunity to increase the recovery of energy from oil reservoirs. This 

represents an emerging research area for biotechnology and fuel production. Gieg et al. 

(2008) estimated an additional CH4 production potential in the USA of up to 2.8 x 1010 m3 per 

year from exploited oil reservoirs. This would mean that up to 16 % of the annual gas 

consumption in the USA could be offset by enhanced methanogenesis (Energy Information 
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Administration, 2007). In addition, natural gas is a cleaner-burning alternative to gasoline 

and reduces CO2 emissions by 25 % (DeLuchi, 1991). 

Zengler et al. (1999) showed that methane can be produced from hexadecane by 

methanogenic microorganisms in a syntrophic consortium with acetogenic bacteria. Acetate, 

CO2 and H2 are intermediates in the process of methanogenic alkane degradation. Acetate is 

cleaved by methanogenic Archaea to form CH4 and CO2. Furthermore, CO2 reducing 

methanogenic Archaea maintain a low hydrogen partial pressure, a thermodynamic 

prerequisite to make the overall reaction energetically favorable. The transformation of 

hexadecane to CH4 occurs via the following net reaction (Zengler et al., 1999), showing that 

ca. 77 % of the carbon can be transformed to CH4 when neglecting biomass formation and 

energy demands of the cell: 

 

2423416 1549304 COCHOHHC         (5.1) 

 

The carbon and hydrogen stable isotopic signatures of methane provide clues for 

characterizing the origin of methane and may allow for a better description of methanogenic 

processes in the field (Whiticar et al., 1986; Whiticar, 1999). In order to describe the level of 

conversion of alkane-derived carbon to methane, Jones et al. (2008) linked the stable carbon 

isotopic composition of CO2 to biogenic methane from a degraded oil reservoir.  

The objective of our study was to elucidate the processes involved in microbial gas 

generation during growth on oil-related compounds. To analyze the isotopic fractionation 

processes during CH4 production from n-alkanes, we incubated several enrichment cultures 

of anaerobic oil degraders from methanogenic environments with n-hexadecane as a model 

aliphatic hydrocarbon. Also, we described the structure of the syntrophic consortium 

involved in CH4 production by tracking the carbon isotope label from 1-13C–hexadecane into 

microbial biomarkers such as the carboxylic acid fraction. Finally, to characterize the origin 

of CH4 in situ and in vitro, we investigated the isotopic composition (13C/12C; D/H) of gases 

(CH4 and CO2) and water at a contaminated aquifer field site. The comparison of in vitro and 

in situ results confirmed that the variability in carbon and hydrogen isotope enrichment 

factors between the CO2 and CH4, as well as between H2O and CH4, respectively, may be 

used to monitor biogenic CH4 formation from crude oil-related compounds in situ. The tool 
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may contribute to a better understanding of methanogenic processes in the field that result 

in altered oil phases and CH4 and CO2 production in petroliferous formations. 

 

 

5.2. Materials and methods 

 

Reagent grade solvents were obtained from Merck (Darmstadt, Germany). 

Hexadecane was acquired from Sigma Aldrich; 1-13C– hexadecane and U-13C–hexadecane 

were synthesized from 1-13C– hexadecanoic and U-13C–hexadecanoic acid, both obtained 

from Campro Scientific (Berlin, Germany). The hexadecanoic acid samples were: (i) 

converted to the methyl ester (with Me2SO4); (ii) reduced to hexadecanol (with NaAlH4) and 

(iii) converted to the p-tosylate ester and further reduced to hydrocarbons (with NaAlH4; 

Zengler et al., 1999). The purity was confirmed using gas chromatography–mass 

spectrometry (GC–MS). 

 

5.2.1. Experimental setup and growth conditions 

For the investigation of microbial growth with labeled and unlabeled hexadecane, the 

substrate was immobilized onto the surface of Teflon filters (pore size 0.45 µm). The 

microbial enrichment cultures obtained from Kuhgraben (Bremen, Germany) were cultivated 

in anoxic mineral medium buffered at pH 7 with HCO3
- (30 mM) plus CO2 and reduced with 

sulfide (1 mM) (Widdel and Bak, 1992). Cultures were incubated at 28°C. Further culture 

conditions and handling protocols are described elsewhere (Zengler et al., 1999). The 

unlabeled hexadecane (50 µL, equating to 0.17 mmol) had a carbon isotope signature 

of -32.4‰. For the experiments with labeled hexadecane, either fully labeled 

U-13C-hexadecane (100 µL, equating to 0.32 mmol) or 1-13C–hexadecane (50 µL, equating 

0.17 mmol) with an isotope composition of 5960 ‰ vs. VPDB (Vienna Pee Dee Belemnite) 

were applied. 

For the two dimensional isotopic analysis of CH4, several microcosms from different 

methanogenic environments were set up anoxically using inocula obtained from different 

methanogenic field sites. Sediment samples for enrichment cultures were obtained from a 

range of habitats, including freshwater (Lake Plussee, Kuhgraben), marine (Gulf of Mexico, 

Eckernförde Bay, Mangroves) and terrestrial (Romanian mud volcanoes) environments. 
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Kuhgraben, a non-contaminated creek in Bremen, Germany, has been described by Zengler 

et al. (1999). Plussee is a eutrophic lake in northern Germany with relatively stable 

stratification and significant CH4 production in the sediment (Eller et al., 2005). Eckernförde 

Bay is a marine site on the Baltic Sea side of Schleswig–Holstein (Germany) and is 

characterized by CH4 production in the sediment (Treude et al., 2005; Whiticar, 2002). 

Weissandt–Gölzau (Saxony-Anhalt, Germany) represents a mineral oil contaminated aquifer 

with high rates of microbial CH4 production within the contamination source zone. The oil 

phase in the source zone consists mainly of aliphatic hydrocarbons similar to those in diesel 

fuel, with a low contribution from gasoline-related compounds (benzene, toluene, 

ethylbenzene and xylenes). Details and acronyms are provided in Table 5.1. The set up and 

transfer of the enrichment cultures was carried out as described by Zengler et al. (1999). 

Mineral medium was prepared according to Widdel and Bak (1992) and the salinity was 

adjusted to the respective in situ conditions with NaCl. Hexadecane was added immobilized 

on Teflon filters (0.5 mL/100 mL medium (Zengler et al., 1999)), methylnaphthalene was 

dissolved in 5–7 mL of the inert carrier HMN (2,2,4,4,6,8,8-heptamethylnonane, 10 mg 

methylnaphthalene/ml HMN) as described elsewhere (Musat et al., 2009). Incubation of the 

enrichments was carried out in the dark at in situ temperatures (Table 5.1). CH4 and CO2 

were analyzed quantitatively in headspace samples using GC-flame ionization detection 

(GCFID; Kruger et al., 2001). Samples for stable isotope analysis were stored on saturated 

NaCl. Contaminated groundwater (30 mL) was added to a 50 mL flat glass bottle and sealed 

gas tight using butyl rubber stoppers and Al screw caps. Hexadecane was added at a final 

concentration of 0.03 % (v/v). All microcosms were incubated horizontally without shaking. 

Gas samples from a methanogenic site in Weissandt–Gölzau were taken for the isotopic 

analysis of methane and CO2. 

 

Table 5.1: Overview of sampling sites for sediments used in enrichment cultures 
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5.2.2. Isotope analysis 

An isotope ratio mass spectrometry system (Finnigan MAT 253, Thermofinnigan 

Bremen) was used. The system was coupled to a gas chromatograph (HP 6890 Series, Agilent 

Technology, USA) either via a combustion device (for carbon analysis; Richnow et al., 2003b) 

or via a pyrolysis unit (for hydrogen analysis; Fischer et al., 2007). For the GC separation of 

CH4 and CO2, headspace samples (from 50 to 500 µL) were injected into the GC instrument 

equipped with a CP-Porabond Q column (50 m x 0.32 mm x 0.5 µm, Varian, USA) held at 

constant temperature of 40°C and flow rate of He (2 mL min-1 for carbon and 1.6 mL min-1 

for hydrogen). 

For the isotope analysis of CO2 in liquid samples, the culture samples were acidified to 

pH 2 to avoid fractionation via the carbonate system. For carbon isotope measurement, each 

sample was analyzed at least two times and the statistical standard deviation of the 

measurements was always better than 0.5 ‰ STD (1σ). For analysis of the hydrogen isotope 

composition, at least three measurements for each sample were conducted and the STD (1σ) 

was reported. 

The carbon isotope signature of all substrates (unlabeled hexadecane, 

methylnaphthalene and toluene) were analyzed with an elemental analyzer (Euro EA, 

HEKAtech GmbH, Wegberg) coupled to an isotope ratio mass spectrometry system (Finnigan 

MAT 253, Thermofinnigan, Bremen, Germany). The same system was used for hydrogen 

isotope analysis. In addition, the hydrogen isotope composition of water from the field site 

(Weissandt–Gölzau), as well as water used for incubation experiments, was analyzed (Gehre 

et al., 2004). This analysis required the addition of activated carbon to liquid samples in 

order to adsorb dissolved OM from the water phase. 

 

5.2.3. Analysis of carboxylic acid fraction 

The microbial carboxylic acid fraction was isolated and methylated according to Bligh 

and Dyer (1969) and Morrison and Smith (1964), respectively. The fatty acid methyl esters 

(FAMEs) were separated on a BPX-5 column (30 m x 0.32 mm x 0.25 µm, SGE, Germany) 

using a HP 6890 gas chromatograph coupled to a HP 5973 quadrupole mass spectrometer 

(Hewlett Packard, Wilmington, USA). The temperature programme for GC–MS was: 120°C 

(held 4 min) to 250°C at 4°C min-1, to 300°C (held10 min) at 20°C min-1. The injector was set 

to 280°C and 1 µL of sample was injected splitless. The transfer line was held at 250°C and 
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the He flow was set to 2 mL min-1. The isotopic composition of individual FAMEs was 

determined using gas chromatography–combustion-isotope ratio mass spectrometry 

(GC-C-IRMS; Finnigan MAT 253 Thermofinnigan, Bremen, Germany). The isotopic values of 

the fatty acids (FAs) have been corrected for the methyl groups introduced by methylation. 

The FAMEs were separated on a BPX-5 column (50 m x 0.32 mm x 0.25 µm, SGE, Germany) 

using a HP 6890 gas chromatograph with the following temperature programme: 70°C (held 

1 min) to 120°C at 20°C min-1, then to 265°C at 2°C min-1 and then to 300°C (held 2 min). 

Samples (2 µL) were injected with a split ratio of 1:1. The injector temperature was 250°C. 

The He flow rate was 2 mL min-1. Vienna Pee Dee Belemnite [VPDB, 13C/12C = (11237.2 ± 2.9) 

x 10-6] was the standard for calibration of carbon isotope signatures (Coplen et al., 2006) and 

Vienna Standard Mean Ocean Water [VSMOW, 2H/1H = (155.76 ± 0.05) for calibration of 

hydrogen isotope ratio values. 

 

 

5.3. Results 

 

5.3.1. Long term incubation with labeled hexadecane 

In a long term incubation experiment (ca. 500 days) with enrichment cultures obtained 

from Kuhgraben sediment, CH4 and CO2 formed during the degradation of U-13C-labeled 

n-hexadecane (100 µL corresponding to 0.32 mmol, in 100 mL of 30 mM carbonate buffer of 

natural isotopic composition) were monitored to elucidate the active methanogenic 

pathway in the system. During the first 158 days, only low amounts of labeled CH4 were 

formed, indicating a lag phase with low CH4 production. After the initiation of CH4 

production at day 158, up to 2.7 mmol were produced until day 499. Simultaneously, the 

carbon isotope composition of CH4 and CO2 rose to about 66 and 37 atom% 13C, respectively, 

at day 499, demonstrating the conversion of labeled substrate to CH4 and CO2 (Fig. 5.1). The 

formation of 2.7 mmol CH4 was consistent with a yield of ca. 70 %, in relation to a 

stoichiometric transformation of 5.1 mmol of the n-hexadecane carbon into a maximum of 

3.9 mmol CH4. A sterile control incubated under the same conditions did not show labeling 

of CO2 or CH4. 
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Figure 5.1: Carbon isotope ratio of CH4 and CO2 in an oil degrading enrichment culture obtained from 

Kuhgraben (Bremen, Germany) incubated with 13C labeled n-hexadecane (100 atom%). ●, carbon 

isotope ratio of methane; o, carbon isotope ratio of CO2; ♦, amount of methane produced; Δ, amount 

of methane in the sterile control. 

 

5.3.2. Carbon flux in the microbial community 

A similar batch experiment with enrichment cultures obtained from Kuhgraben, 

amended with 1-13C–hexadecane as the sole source for carbon and energy, was conducted 

to analyze the flux of carbon through the microbial community. The incorporation of an 

isotopic label into biomarkers such as carboxylic acids might provide evidence of direct 

usage of the labeled substrate as a carbon source. Such labeled acids might provide 

information about the structure of the methanogenic microbial community. The same 

enrichment culture as above was cultivated using 1-13C–hexadecane (5,960 ‰) and 

unlabeled hexadecane (-32.4 ‰) as carbon substrate and the pattern and isotopic 

composition of carboxylic acids were analyzed. The isotopic composition of carboxylic acid 

carbon allowed us to identify three groups of different labeling intensity (Fig. 5.2). The non-

specific acids, n-C16 and n-C18, had an isotope value ranging from 50 ‰ to 500 ‰. Values 

from 2,100 ‰ to 2,700 ‰ combined n-C15 and i,a-C15 to a second group. Their isotopic 

composition indicates that ca. 50 % of the carbon used for the biosynthesis of these FAs was 

derived from 1-13C–hexadecane. The highest labeling intensities, ranging from 4,700 ‰ to 

5,800 ‰, were observed in the n-C17 and all 4-methyl FAs. The very extensive label showed 

that the parent organisms almost exclusively used the 1-13C–hexadecane (5,960 ‰) as a 

carbon source for the biosynthesis of the n-C17 and all of the 4-methyl FAs. In contrast to this 
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labeling experiment, the isotopic values of FAs synthesized with unlabeled hexadecane 

(-32.4 ‰) ranged from -30 ‰ to -37 ‰. 

 

Figure 5.2: (A) Carboxylic acid fraction as biomarkers for a methanogenic consortium grown on 
13C labeled n-hexadecane (5960 ‰ vs. VPDB); ●, n-alkanoic acids; 4-me, 4-methyl alkanoic acids; i,a, 

iso- and anteiso-alkanoic; 15, etc., carbon numbers. (B) Classification of microbial carboxylic acids 

according to carbon isotope ratio and biomarker function.  

 

5.3.3. Isotope fractionation during methanogenic hydrocarbon degradation 

In order to study the isotopic fractionation during methanogenic growth, the stable 

carbon isotopic composition of CH4 and CO2 was monitored over time in an enrichment 

culture obtained from Kuhgraben sediments incubated with hexadecane of natural carbon 

isotope composition (-32.4 ‰) (Fig. 5.3). After a lag phase of ca. 240 days of low CH4 

formation, CH4 production strongly increased during the following 200 days to more than 

1,000 µmol (equivalent to transformation of 36.8 % of the added hexadecane carbon to 

CH4). For the remaining 400 days of the experiment, the CH4 formation rate decreased 

slightly but resulted in an overall CH4 production of more than 1,300 µmol after 850 days 

incubation. This equates to a transformation of 47.8 % of the hexadecane carbon to CH4. 

During the lag phase, CH4 with a carbon isotopic composition of about -40 ‰ was formed. 

The isotopic signal of CH4 during the first 50 days was influenced by isotopically light CH4 

(-60 ‰) introduced with the inoculum and the freshly produced CH4 (-40 ‰). The influence 
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of the inoculum on the isotope signature of CH4 disappeared after ca. 80 days. During the 

main phase of CH4 formation (days 240–440), the carbon isotopic composition of CH4 

decreased to -65 ‰, while the CO2 signature increased to -16 ‰, leading to an isotope 

discrimination of about 33 ‰ and 49 ‰ compared to hexadecane and CO2, respectively. In 

the later phase of CH4 formation, the carbon isotope value of both CH4 and CO2 slightly 

increased, maintaining a discrimination of ca. 54 ‰ at the end of the experiment ( 50 days). 

This may be the result of strong isotopic fractionation during CO2-reduction. 

 

 

Fig. 5.3: Carbon isotope signature of CH4 and CO2 and methane production in an oil degrading 

enrichment culture obtained from Kuhgraben (Bremen, Germany) incubated with n-hexadecane 

(δ13C, -32.4 ‰ vs. VPDB; ●, carbon isotope ratio of methane; o, carbon isotope ratio of CO2; ♦, 

amount of methane produced. 

 

5.3.4. Environmental variability in isotope enrichment factors 

In order to examine the variability in carbon and hydrogen isotope enrichment factors 

for CH4, we investigated the isotopic signature of CH4, CO2 and H2O during microbial 

formation of CH4 from mineral oil-related compounds. The investigation included 41 samples 

from oil degrading enrichment cultures from diverse methanogenic environments amended 

with different carbon sources, as well as six gas samples from different monitoring wells 

within a CH4-producing, contaminated field site (Table 5.1). Slurry samples from freshwater 

(Kug, LakeP), marine (Man, GoM, E-Bay) and terrestrial (Rov) sites were used. The carbon 

and hydrogen isotope values of the biologically produced CH4 in all enrichment cultures 

were clustered closely together. The variability ranged from -40 ‰ to -66 ‰ for carbon and 
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from -317 ‰ to -390 ‰ for hydrogen, respectively (Table 5.2). The corresponding carbon 

isotope values for CO2 exhibited a range of -18 ‰ to -1 ‰.  

Apart from these ranges, gas samples from a contaminated field site (Göl) ranged from 

-57 ‰ to -70 ‰for carbon and from -329 ‰ to -373 ‰ for hydrogen, respectively. 

In order to calculate the isotope enrichment factors εDIC-CH4, εsubstrate-CH4 and εH2O-CH4 for 

carbon and hydrogen, we determined the carbon isotope value for the applied carbonate 

buffer (-13.4 ± 0.1 ‰ vs. VPDB), hexadecane (-23.2 ± 0.1 ‰ vs. VPDB; -99.5 ± 1.9 ‰ vs. 

SMOW), toluene (-26.1 ± 0.5 ‰ vs. VPDB; -88 ± 1.0 ‰ vs. SMOW) and methylnaphthalene 

(-25.3 ± 0.1 ‰ vs. VPDB; -57.5 ± 0.7 ‰ vs. SMOW) as well as the hydrogen isotope value of 

the H2O (-59.0 ± 3.3 ‰ vs. SMOW). The calculated enrichment factors ranged from 26 ‰ to 

60 ‰ and from 257 ‰ to 336 ‰ for carbon and hydrogen, respectively (Table 5.2). The 

enrichment factor representing the substrates ranged from 16 ‰ to 33 ‰ for carbon and 

from 174 ‰ to 31  ‰ for hydrogen. 

 

 

Figure 5.4: Carbon isotope enrichment factor εDIC-CH4 and hydrogen isotope enrichment factor εH2O-CH4 

of 41 oil degrading enrichment cultures from different methanogenic environments and 6 gas 

samples from a contaminated methanogenic field site (Weissandt-Gölzau, Germany; ●, marine 

enrichments; ■, terrestrial enrichments;▲, freshwater enrichments; ♦, gas samples). 
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Table 5.2: Variability in carbon and hydrogen enrichment factors during methanogenic growth with 

crude oil (n.d., not detected).a,b,c
 

 
Code 

 
Substrate 

Methane CO2 Water 
εC  

DIC-
CH4 

εC  
sub-
CH4 

εH  
H2O-
CH4 

εH  
sub-
CH4 

13
C/

12
C 

2
H/

1
H 

13
C/

12
C 

2
H/

1
H 

[‰ vs. V-PDB] [‰ vs. SMOW] [‰ vs. V-PDB] 
[‰ vs. 

SMOW] 

Kug1 C16 -53.3 ± 0.5 -364.0 ± 5.8 -13.4 ± 0.1 -59.0 ± 3.3 39.9 30.1 305 264 

Kug2 C16 -52.3 ± 0.5 -353.1 ± 17.4 -13.4 ± 0.1 -59.0 ± 3.3 38.9 29.1 294 254 

Kug3 C16 -50.7 ± 0.5 -365.1 ± 18.2 -13.4 ± 0.1 -59.0 ± 3.3 37.3 27.5 306 266 

Kug4 C16 -49.6 ± 0.5 -377.2 ± 9.2 -13.4 ± 0.1 -59.0 ± 3.3 36.2 26.4 318 278 

Kug5 C16 -54.3 ± 0.5 -316.9 ± 3.2 -5.4 ± 0.5 -59.2 ± 2.6 48.9 21.9 258 174 

Kug6 C16 -57.9 ± 1.2 -389.7 ± 17.3 -5.4 ± 0.5 -53.9 ± 1.3 52.5 25.5 336 247 

Kug7 C16 -65.6 ± 0.7 -389.7 ± 10.6 -5.4 ± 0.5 -53.9 ± 1.3 60.2 33.2 336 247 

Kug8 toluene -52.4 ± 0.6 -374.5 ± 3.0 -5.4 ± 0.5 -53.9 ± 1.3 47.0 26.3 321 287 

LakeP1 C16 -47.2 ± 0.1 -365.7 ± 11.3 -4.6 ± 0.1 -65.7 ± 1.1 42.7 24.0 300 266 

LakeP2 C16 -44.0 ± 0.5 -369.4 ± 7.0 -13.4 ± 0.1 -59.0 ± 3.3 30.6 20.8 310 270 

LakeP3 C16 -43.9 ± 0.5 -377.4 ± 2.7 -13.4 ± 0.1 -59.0 ± 3.3 30.5 20.7 318 278 

LakeP4 C16 -43.6 ± 0.5 -355.6 ± 3.8 -13.4 ± 0.1 -59.0 ± 3.3 30.2 20.4 297 256 

LakeP5 Me-Naph -49.3 ± 0.5 -375.3 ± 6.1 -13.4 ± 0.1 -59.0 ± 3.3 35.9 24.0 316 318 

LakeP6 Me-Naph -47.5 ± 0.5 -374.7 ± 7.2 -13.4 ± 0.1 -59.0 ± 3.3 34.1 22.2 316 317 

Göl1 oil contam. -59.1 ± 0.1 -343.1 ± 6.5 -19.2 ± 0.3 -71.8 ± 2.1 39.9 n.d. 271 n.d. 

Göl2 oil contam. -56.9 ± 0.1 -328.5 cooling -17.8 ± 0.1 -71.2 ± 3.3 39.1 n.d. 257 n.d. 

Göl3 oil contam. -69.8 ± 0.1 -359.8 cooling -21.1 ± 0.2 -69.1 ± 1.6 48.7 n.d. 291 n.d. 

Göl4 oil contam. -57.1 ± 0.0 -373.3 cooling -15.3 ± 0.3 -75.7 ± 1.5 41.8 n.d. 298 n.d. 

Göl5 oil contam. -66.3 ± 0.2 -340.1 cooling -20.3 ± 0.0 -72.8 ± 1.6 46.0 n.d. 267 n.d. 

Göl6 oil contam. -62.9 ± 0.0 -346.3 cooling -11.0 ± 0.2 -71.3 ± 6.4 51.9 n.d. 275 n.d. 

Man01 C16 -42.0 ± 0.5 -374.4 ± 6.1 -13.4 ± 0.1 -59.0 ± 3.3 28.6 18.8 315 275 

Man02 C16 -42.5 ± 0.5 -371.0 ± 7.4 -13.4 ± 0.1 -59.0 ± 3.3 29.1 19.3 312 272 

Man03 C16 -48.6 ± 0.5 -359.1 ± 19.3 -13.4 ± 0.1 -59.0 ± 3.3 35.2 25.4 300 260 

Man04 C16 -44.5 ± 0.5 -330.3 ± 10.5 -13.4 ± 0.1 -59.0 ± 3.3 31.1 21.3 271 231 

Man05 C16 -50.0 ± 0.5 -382.0 ± 9.6 -13.4 ± 0.1 -59.0 ± 3.3 36.6 26.8 323 283 

Man06 C16 -45.8 ± 0.5 -359.7 ± 1.8 -13.4 ± 0.1 -59.0 ± 3.3 32.4 22.6 301 260 

Man07 C16 -42.9 ± 0.5 -325.5 ± 14.8 -13.4 ± 0.1 -59.0 ± 3.3 29.5 19.7 267 226 

Man08 C16 -48.9 ± 0.1 -345.2 ± 8.1 -2.4 ± 0.4 -67.0 ± 0.8 46.5 25.7 278 246 

Man09 C16 -48.6 ± 0.5 -354.1 ± 5.6 -13.4 ± 0.1 -59.0 ± 3.3 35.2 25.4 295 255 

Man10 C16 -44.2 ± 0.5 -331.6 ± 12.4 -13.4 ± 0.1 -59.0 ± 3.3 30.8 21.0 273 232 

Man11 C16 -46.9 ± 0.5 -343.9 ± 14.2 -13.4 ± 0.1 -59.0 ± 3.3 33.5 23.7 285 244 

Man12 C16 -39.8 ± 0.5 -369.6 ± 14.6 -13.4 ± 0.1 -59.0 ± 3.3 26.4 16.6 311 270 

Man13 C16 -46.5 ± 0.5 -363.3 ± 15.4 -13.4 ± 0.1 -59.0 ± 3.3 33.1 23.3 304 264 

Man14 C16 -39.6 ± 0.5 -360.5 ± 7.5 -13.4 ± 0.1 -59.0 ± 3.3 26.2 16.4 302 261 

Man15 C16 -45.7 ± 0.5 -361.5 ± 14.9 -13.4 ± 0.1 -59.0 ± 3.3 32.3 22.5 302 262 

Man16 C16 -42.1 ± 0.5 -372.7 ± 6.2 -13.4 ± 0.1 -59.0 ± 3.3 28.7 18.9 314 273 

Man17 C16 -45.4 ± 0.5 -343.3 ± 10.7 -13.4 ± 0.1 -59.0 ± 3.3 32.0 22.2 284 244 

Man18 C16 -48.3 ± 0.1 -367.8 ± 0.3 -0.8 ± 0.2 -65.0 ± 1.1 47.5 25.1 303 268 

Man19 Me-Naph -46.0 ± 0.5 -354.5 ± 6.4 -13.4 ± 0.1 -59.0 ± 3.3 32.6 20.7 295 297 

Man20 Me-Naph -44.8 ± 0.5 -346.1 ± 18.6 -13.4 ± 0.1 -59.0 ± 3.3 31.4 19.5 287 289 

Man21 Me-Naph -46.1 ± 0.5 -359.9 ± 12.5 -13.4 ± 0.1 -59.0 ± 3.3 32.7 20.8 301 302 

GoM1 C16 -56.1 ± 0.5 -348.5 ± 2.0 -13.4 ± 0.1 -59.0 ± 3.3 42.7 32.9 290 249 

E-Bay1 C16 -51.5 ± 0.5 -354.5 ± 11.5 -13.4 ± 0.1 -59.0 ± 3.3 38.1 28.3 296 255 

Rov1 C16 -48.8 ± 0.1 -364.6 ± 4.3 -6.7 ± 0.3 -67.3 ± 3.6 42.1 25.6 297 265 

Rov2 C16 -49.9 ± 0.6 -356.0 ± 7.2 -6.8 ± 0.3 -75.3 ± 0.6 43.1 26.7 281 256 

Rov3 C16 -42.2 ± 0.1 -355.0 ± 5.3 -7.4 ± 0.3 -79.5 ± 2.2 34.8 19.0 275 255 

Rov4 C16 -47.3 ± 0.1 -345.9 ± 16.7 -6.1 ± 0.1 -70.6 ± 1.5 41.2 24.1 275 246 
a
The standard deviation of carbon isotope signatures was always better than the analytical 

accuracy of 0.5 ‰. 
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b
The samples for hydrogen analysis were measured at least in triplicate. 

c
C16, hexadecane; Me-Naph, methylnaphthalene; oil contam., crude oil contamination. 

d
Cooling, single injection with cryo focusing at -160°C with liquid N2. 

 (to Table 5.2) 

 

In order to assess the dependence of enrichment factors on the methanogenic environment 

from which the samples originated, both carbon and hydrogen enrichment factors were 

plotted in a box-and-whisker-plot (Fig. 5.5). The overall variability indicated by the whiskers 

for all habitats together ranged from 26 ‰ to 53 ‰ (εCCO2-CH4 ), 257 ‰ to 336 ‰ (εHH2O-CH4), 

16 ‰ to 30 ‰ (εCC16-CH4) and 228 ‰ to 2 0 ‰ (εHC16-CH4). 

 

 

Figure. 5.5: Enrichment factors sorted by methanogenic environments: εCO2-CH4 (A), εH2O-CH4 (B), 

εCC16-CH4 (C), and εHC16-CH4 (D). The 25 and 75 % quartiles are drawn using a box. The median is shown with a 

horizontal line inside the box. The whiskers are drawn from the top of the box up to the largest data point 

less than 1.5 times the box height from the box, and similarly below the box. ○, values outside the inner 

fence; ٭, values further than 3 times the box height from the box considered as outliers. 
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5.4. Discussion 

 

We performed a series of experiments designed to investigate CH4 generation during 

hydrocarbon degradation. First, we conducted experiments with 13C-labeled hexadecane to 

elucidate the degradation pathway and to characterize the methanogenic community. In a 

parallel experiment with unlabeled hexadecane, the carbon isotopic discrimination pattern 

over time was investigated. In a third set of experiments, we investigated the carbon and 

hydrogen discrimination pattern in order to characterize the biodegradation of different 

hydrocarbons in a variety of enrichment cultures from various ecosystems by means of 

isotopic analysis of CH4, CO2, H2O and the carbon source. 

 

5.4.1. Metabolism of 13C-labeled hexadecane 

In the experiment with fully labeled 13C–hexadecane, the 13C label in CH4 and CO2 

demonstrates the transformation of hexadecane to CH4 and CO2 by a consortium consisting 

of fermenting Bacteria and acetoclastic and CO2 reducing Archaea, as described previously 

(Zengler et al., 1999). A stoichiometric calculation performed according to Zengler et al. 

(1999) would result in a production of 3.9 mmol CH4, if 0.32 mmol of hexadecane were 

provided. Thus, a final CH4 production of 2.7 mmol after 499 days incubation implies a yield 

of ca. 70 %. The fact that the CH4 did not show a complete labeling (100 atom%) suggests 

that a fraction of the CH4 was formed by the reduction of CO2. This process lowers the 

isotope composition of the CH4 because of the unlabeled carbonate buffer (3 mmol) being 

used as the main source for CO2. On one hand, CH4 formed by CO2-reduction should 

therefore exhibit an isotopic signature similar to that of the buffer. On the other hand, the 

buffer represents a carbon reservoir that becomes enriched in 13C as a result of CO2 

formation during methanogenesis from intermediates, such as acetate, formed during the 

oxidation of labeled hexadecane. 

In order to assess the extent to which 13CO2 derived from acetoclastic methanogenesis 

influences the isotopic label of the carbonate buffer, we assumed that unlabeled 12CO2 

(0.9 mmol) from the carbonate buffer is used to form unlabeled CH4 (0.9 mmol) via CO2-

reduction. This reduces the residual carbonate buffer to 2.1 mmol. Based on a 70 % yield, a 

maximum of 1.8 mmol of labeled 13CO2 would be added to the 2.1 mmol of unlabeled 

carbonate buffer (cf. Eq. 2 in Zengler et al. (1999)). According to the following simple dilution 
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equation (Eq. (2)), this would result in an isotopic value for the carbonate buffer of 

47 atom%: 

 

accbCO cRbRaR 
2

         (5.2) 

 

where RCO2, Rcb and Rac are the isotope ratio values [atom%] of the measured CO2, 

carbonate buffer, and acetate derived CO2, respectively, and a = b + c, where a, b and c are 

the amounts [mmol] of the corresponding CO2 pools. 

The difference between the calculated isotope value for the carbonate buffer of 

47 atom% and the actually determined isotope value of 37 atom% may be explained by the 

fact that CO2 reduction may not exclusively consume unlabeled 12CO2 from the carbonate 

buffer, but may also consume the acetate-derived 13CO2, resulting in a 13C-depleted isotopic 

value for the carbonate buffer in comparison with the theoretical calculated value. Assuming 

that the 12CO2-reduction dominates the reduction of 13CO2, the isotopic signature of CH4 

(66 atom%) reflects the stoichiometric calculations of 65 % and 35 % for acetoclastic 

methanogenesis and CO2-reduction quite well, respectively. This supports the assumptions 

of the authors that a cooperative community of fermentative Bacteria and methanogenic 

Archaea is responsible for CH4 formation from hexadecane (Zengler et al., 1999). 

 

5.4.2. Microbial consortia involved in hexadecane degradation 

In order to characterize the microbial consortia involved in methanogenic degradation 

of hexadecane, the above enrichment culture was incubated with 1-13C–hexadecane and the 

biomass analyzed for the pattern and isotopic signature of carboxylic acids. Their isotope 

composition demonstrates the extent to which the microbial community used the carbon 

from the 1-13C–hexadecane for the biosynthesis of lipids. Membrane lipids of Archaea 

consist of isoprenoids ether-linked to glycerol or other carbohydrates rather than ester-

bonded carboxylic acids (De Rosa and Gambacorta, 1988; Jones et al., 1987; Langworthy, 

1985). These were not detected with the method used. The carboxylic acids could be divided 

into three different groups on the basis of isotope signatures. The lowest extent of label, 

50-500‰, was seen in the n-C16 and n-C18 FAs, suggesting that the parent organisms of these 

taxonomically relatively unspecific biomarkers did not use the amended hexadecane as a 

major carbon source. These organisms were possibly transferred by the inoculation and may 
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grow on dead cells or other unlabeled carbon sources. Microbes using detritus from dead 

cells as a carbon substrate will become labeled in a later phase of the experiment compared 

to organisms using the 1-13C–hexadecane directly. Since n-C16 and n-C18 FAs represent 

abundant species, despite a relatively low extent of labeling, a significant part of the 13C is 

bound to this FA fraction. For an estimate of the absolute carbon flux by means of the 

13C-label, the concentration and the 13C label in the respective FA have to be considered. The 

low extent of labeling may therefore be interpreted as a result of relatively low usage of the 

1-13C–hexadecane by organisms synthesizing these compounds. 

A second group, with more extensive carbon labeling ranging from 2,100 ‰ to 

2,700 ‰, consisted of n-C15 and i,a-C15 FAs. These FAs may be characteristic for sulfate-

reducers like Desulfovibrio spp., Desulfococcus spp. or Desulfosarcina spp. (Kohring et 

al.,1994). The findings support the results obtained by Zengler et al. (1999). In a similar 

degradation experiment, the 16S ribosomal RNA gene sequences of the sulfate-reducers 

affiliated with the delta subclass of Proteobacteria, such as Desulfovibrio desulfuricans, 

Desulfobacter postgatei, Syntrophobacter wolnii and Desulfobulbus elongatus, were 

detected (Zengler et al., 1999). 

The greatest extent of labeling was found in the n-C17 FA or FAs with methyl groups at 

C-4 (from 4,700 ‰ to 5, 00 ‰). In the investigation by Zengler et al. (1999), some 

synthrophic bacteria of the genus Syntrophus were detected by way of 16S ribosomal RNA 

gene sequences. In addition, Jones et al. found Synthrophus spp. by means of 16S rRNA 

sequences. These organisms are commonly recovered in methanogenic alkane-degrading 

systems, whereas controls without oil amendment also lacked detectable levels of 

Synthrophus spp. (Jones et al., 2008). These bacteria likely perform the degradation of 

hexadecane to acetate and hydrogen. In further steps, the acetate can then be used by 

acetoclastic archaea for methanogenesis. The extensive incorporation of a 13C-label into the 

carboxylic acid fraction clearly demonstrates a substantial usage of the labeled hexadecane 

as carbon source. Methylated branched FAs at C-2, -4 or -6 have been identified as 

metabolites during growth of sulfate-reducing bacteria with alkanes of different chain length 

(Grossi et al., 2008; So and Young, 1999; So et al., 2003). However, the highly labeled 

4-methyl FAs detected in our investigation had chain length >18 carbons and cannot be 

considered as intermediates in the degradation of hexadecane. In addition to the cellular FA 

composition of Synthrophus aciditrophicus revealed by Jackson et al. (1999), the highly 
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labeled 4-methyl and n-C17 FAs might be suggested as tentative biomarkers for the alkane 

consuming syntrophic partners in an oil degrading methanogenic consortium, such as 

Syntrophus spp. 

 

5.4.3. Isotope fractionation during methanogenic growth with hexadecane 

To further characterize the isotopic fractionation during methanogenic growth with 

hexadecane, we cultivated an enrichment culture from Kuhgraben with unlabeled 

hexadecane (-32.4 ‰). The carbon isotope signature for methane of -62 ‰ after  50 days 

clearly demonstrates that the gas arises from microbial origin (Whiticar, 1999). The isotope 

value for CO2 increased in two steps. The first increase (from -18 ‰ to -16 ‰) coincided with 

the start of CH4 production after 240 days. The second increase (from -16 ‰to -8 ‰) then 

signaled the initiation of CO2-reduction (after 450 days) as a complementary CH4 production 

to acetoclastic methanogenesis that predominantly occurred from day 240 to day 450. 

During the first 240 days, an enrichment factor of 22 ‰ between CO2 and CH4 was 

calculated. The value falls within the range of enrichment factors reported as indicative of 

acetoclastic methanogenesis (Conrad, 2005; Whiticar et al., 1986; Whiticar, 1999), whereby 

it is assumed that the isotope fractionation between organic carbon and fermentatively 

produced acetate (methyl group) is negligible (Blair et al., 1985; Blair and Carter, 1992). With 

increasing CH4 production, the influence of CO2-reduction became more distinct, increasing 

the enrichment factor to 54 ‰. The discrimination of >40 ‰ between CO2 and CH4 may be 

indicative of CO2-reduction and supports the thermodynamic assumptions and molecular 

biological conclusions made by Zengler et al. (1999) that CH4 was formed by acetoclastic and 

CO2 reducing processes simultaneously. These two methanogenic pathways are considered 

to be associated with two different groups of Archaea. Members of the genus Methanosaeta 

have been found to be involved in the cleavage of acetate to CO2 and CH4. The second 

archaeal genera, Methanospirillum and Methanoculleus, respectively, reduce the CO2 to CH4 

(Zengler et al., 1999). The same authors suggested that the acetate for CH4 generation is 

provided by bacteria of the Deltaproteobacterial genus Syntrophus breaking the 

hydrocarbon chain of hexadecane down to acetate. The carbon enrichment factor e 

between CO2 and CH4 of 54 ‰ lies within a range that suggests that both methanogenic 

pathways influence the isotopic signal of microbially derived CH4 in our system. In contrast, a 

clear dominance of CO2-reduction in methanogenic enrichment cultures from gas field 
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formation waters has recently been shown (Gray et al., 2009). The authors reported that 

methanogenic growth with acetate as a sole carbon source did not occur. The enrichment 

factor in our enrichment culture between hexadecane and CH4 resulted in a value of 30 ‰. 

 

5.4.4. Enrichment factors in the environment 

These enrichment factors might be influenced not only by the two different major 

methanogenic pathways, but also by the abiotic conditions in different environments, such 

as substrate concentration (e.g. Goevert and Conrad, 2009) or energy status (Penning et al., 

2005). In order to examine the variability in carbon and hydrogen isotope enrichment factors 

during microbial formation of CH4 from crude oil-related compounds, the isotope signatures 

of CH4, CO2, and H2O were determined in 41 samples from different oil degrading 

methanogenic environments grown on several substrates (hexadecane, toluene and 

methylnaphthalene). The two dimensional isotope signature fell in a narrow range for both 

hydrogen and carbon isotopes (Fig. 5.4). The relative CO2 isotope signatures were enriched 

in 13C with regard to the carbon sources (Table 5.2). During aerobic degradation of jet fuel, 

organic contamination or oil spills in groundwater, CO2 isotope values close to those of the 

carbon source have been reported (Aggarwal and Hinchee, 1991; Baedecker et al., 1993; 

Suchomel et al., 1990; Van de Velde et al., 1995). With decreasing redox potential, CO2 

became enriched in 13C due to CO2-reduction during methanogenic activity (Baedecker et al., 

1993). At sites where methanogenesis occurs, carbon isotope signatures of dissolved 

inorganic carbon were reported to range from -30 up to +12 ‰ (Conrad et al., 1997; 

Landmeyer et al., 1996). The model introduced by Jones et al. (2008) predicts a stable 

carbon isotopic composition for CO2 of ca. -16 or 21 ‰ for acetoclastic or hydrogenotrophic 

methanogenesis, respectively. However, the large range of carbon isotope values for CO2 

during methanogenesis lends difficulties to the characterization of the degradation process. 

In order to distinguish between the two major methanogenic pathways related to 

freshwater and marine environments, Whiticar et al. (1986) reported carbon and hydrogen 

signatures for CO2, CH4 and H2O. In freshwater sediments, CH4 production from acetate is 

the major methanogenic process, with a contribution of 30–70 % (Koyama, 1955; Takai, 

1970; Schutz et al., 1989). In marine sediments, it has been assumed that CH4 is 

predominantly produced from CO2 and H2 (Whiticar et al., 1986). According to that data set, 

the isotopic signatures of CH4 observed in our incubation exhibit a range typical for 
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acetoclastic methanogenesis in freshwater systems. However, the results from our 

enrichment culture incubated with fully labeled hexadecane lead to the assumption that the 

isotopic signature of CH4 is influenced not only by acetoclastic methanogenesis but also by 

CO2 reducing methanogenesis occurring simultaneously. This assumption should be 

considered for the observed enrichment factor ε for CO2 and CH4 ranging between 26 ‰ and 

60 ‰ in our incubation. Based on the data set of Whiticar (1999), fractionation factors 

εCDIC-CH4 for acetoclastic methanogenesis and CO2-reduction can be separated and exhibit a 

typical range from 40 ‰ to 55 ‰ and from 49 ‰ to 100 ‰, respectively. The range of εH 

between H2O and methane from 25 7‰ to 336 ‰ is slightly larger than one would expect 

using regression curves obtained for acetoclastic methanogenesis and CO2-reduction (e.g. 

Sugimoto and Wada, 1995), as well as for cultures from landfill material with both 

methanogenic pathways occurring simultaneously at unknown relative proportions (e.g. 

Waldron et al., 1988). However, one has to consider a considerable impact of the hydrogen 

isotope signature for the environmental water and the partial pressure of hydrogen on the 

stable hydrogen composition of CH4 (e.g. Burke, 1993). Additionally, one has to take into 

account that the approximation of the isotopic fractionation factor is feasible for Δε <100 ‰ 

(Fry, 2003). Thus, the larger ε for hydrogen found here may imply some uncertainty. 

In order to test the influence of different methanogenic communities on e values, we 

plotted the calculated values in a box whisker plot sorted by locations of the enrichment 

cultures (Fig. 5.5). In addition to the enrichment factors between CO2 and CH4 and between 

H2O and CH4, respectively, this also includes the enrichment factors between hexadecane 

and CH4. By comparing the variability in enrichment factors to each other, any influence of 

the methanogenic environment was apparent. Since the cooperation of fermenting Bacteria 

and methane producing Archaea was shown by Zengler et al. (1999) and supported by our 

findings, it can be assumed that similar oil degrading pathways are taking place and result in 

similar enrichment factors independent of the methanogenic environment. 

In conclusion, these e values might be used to characterize hydrocarbon-driven 

methanogenesis during exploration in oil, coal and gas reservoirs, as well as in shale and 

contaminated aquifers, and may enable researchers to gain a better understanding of 

methanogenic microbial processes in situ. 

The microbial conversion of crude oil to methane in mature oil reservoirs may enable 

recovery of an additional fraction of the large energy pool left behind after conventional 
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recovery techniques. It has also been shown recently by Gieg et al. (2008) that heavy crude 

oils stranded in mature reservoirs can be converted to methane by hydrocarbon-degrading 

methanogenic consortia. This microbially enhanced oil recovery provides a novel 

biotechnological perspective for enhancing the recovery of hydrocarbons. The data provided 

here may contribute to a better characterization of methanogenic processes in oil fields and 

help to develop further tools for tracing methanogenesis in situ. 
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Abstract 

The impact of four electron acceptors on hydrocarbon induced methanogenesis was 

studied. Methanogenesis from residual hydrocarbons may enhance exploitation of oil 

reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first 

hydrocarbon-oxidizing steps for conversion of hydrocarbons into methanogenic substrates 

are crucial. Thus, the electron acceptors ferrihydrite, manganese dioxide, nitrate or sulfate 

were added to sediment microcosms acquired from two brackish water locations. 

Hexadecane, ethylbenzene or 1-13C-naphthalene were used as model hydrocarbons. 

Methane was released most rapidly from incubations amended with ferrihydrite and 

hexadecane. Ferrihydrite enhanced only hexadecane-dependent methanogensis. The rates 

of methanogenesis were negatively affected by sulfate and nitrate at concentrations of more 

than 5 and 1 mM, respectively. Metal-reducing Geobacteraceae and potential sulfate-

reducers as well as Methanosarcina were present in situ and in vitro. Ferrihydrite addition 

triggered growth of Methanosarcina-related methanogens. Additionally, methane was 

removed concomitantly by anaerobic methanotrophy. ANME-1 & 2 methyl coenzyme A 

reductase genes were detected, indicating anaerobic methanotrophy as an accompanying 

process. The experiments presented here demonstrate the feasibility of enhancing 

methanogenic alkane degradation by ferrihydrite or sulfate addition in different geological 

settings. 
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6.1. Introduction 

 

Roughly, one third of oil in reservoirs remains inaccessible (U.S. Department of Energy, 

2006). Since Zengler et al. (1999) reported the conversion of hexadecane to methane, it has 

been suggested that remaining energy can be recovered as methane gas (Anderson and 

Lovley, 2000a; Head et al., 2003). Moreover, the conversion of hydrocarbons to carbon 

dioxide (CO2) or methane represents a useful tool for bioremediation of oil-impacted 

ecosystems. The overall reaction kinetics of hydrocarbon biodegradation are controlled by 

the initial attack on hydrocarbons, where hydrocarbon biodegradation with oxygen as an 

electron acceptor is the energetically most favorable process. However, microbial 

methanogenesis usually requires anoxic conditions and methanogenesis, including the 

conversion of hexadecane to methane, is a slow process (Zengler et al., 1999). 

The initial anaerobic activation of hexadecane may be irreversible and a removal of 

reaction products is unlikely to accelerate the initial steps or the overall degradation 

(Callaghan et al., 2006; Cravo-Laureau et al., 2005). However, β-oxidation and the release of 

electrons are essential steps in hydrocarbon biodegradation pathways (Figure 6.1; (Callaghan 

et al., 2006; Kniemeyer et al., 2003; Rabus, 2005)). It is commonly accepted that the removal 

of reducing power from the reaction system drives β-oxidation. Examples for this are 

fermentative hydrogen (H2)-releasing microorganisms, which require low H2 partial pressure 

to effectively unload electrons from the system. One can deduce that electron acceptors are 

required to accelerate oxidation of hydrocarbons and their intermediate reaction products 

to transform them into substrates for methanogens, for example acetate, CO2 and H2 

(Figure 6.1; (Zhang et al., 2010)). For activation and processing biochemical hydrocarbon 

degradation, the presence of oxidants is not necessary (Zengler et al., 1999). However, it is 

plausible to indirectly stimulate the activity of the methanogenic community by providing 

oxidants other than oxygen for the hydrocarbon-degrading microorganisms (Zengler et al., 

1999; Zhang et al., 2010). 
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Figure 6.1: Conceptual figure depicting proposed pathways of hydrocarbon degradation. A removal 

of electrons [H] by adding electron acceptors such as Fe(III), Mn(IV), nitrate or sulfate may accelerate 

the overall reactions to yield substrates for methanogens. This may accelerate all ß-oxidation 

reactions, for example at numbers 4-7. R may be an aliphatic or an aromatic residue. Note that 

besides fumarate addition, hydroxylation was shown for R = phenyl (Kniemeyer and Heider, 2001a). 

1, Fumarate addition to the hydrocarbon [e.g. hexadecane (Callaghan et al., 2006; Cravo-Laureau et 

al., 2005) or ethylbenzene (Kniemeyer et al., 2003)]. 2, Fumarate addition to methylnaphthalene 

after methylation (Annweiler et al., 2000; Safinowski and Meckenstock, 2005). This may possibly be 

achieved by CO2-reduction/acylation in a reversed carbon monoxide dehydrogenase pathway 

(Safinowski and Meckenstock, 2005). Intermediate succinate adducts and carbon skeleton 

rearrangements (Callaghan et al., 2006) are not shown because they may be indirectly driven by 

electron acceptor addition. 3, Carboxylation and further ring reduction (Zhang and Young, 1997). 

4 and 5, Proposed ß-oxidation yielding four electrons (Annweiler et al., 2000; Callaghan et al., 2006). 

6, ß-oxidation yielding acetate. Propionate would only be released when R = aliphatic. 7, Ring 

cleavage would precede further ß-oxidation to yield acetate and CO2 analogous to a proposed ring 

cleavage of toluene (Boll and Fuchs, 1995). Steps 4-7 and all subsequent ß-oxidations may be 

accelerated by electron acceptor addition. 8, The substrates acetate and CO2/H2 are finally converted 

to methane by methanogenic Archaea. Question marks indicate debated mechanisms. Succ., 

succinate. 
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Sulfate-reduction is well described in oil spills and oil field souring, where the latter can 

result in substantial economic losses (Sunde and Torsvik, 2005). Research on trivalent iron-

reduction by hydrocarbon oxidation emerged during the last 20 years (Kunapuli et al., 2007; 

Lovley, 2000; Rabus, 2005), but was not studied in detail in conjunction with 

hydrocarbon-induced methanogenesis. Hydrocarbon-associated manganese-reduction has 

only been described in few reports so far (Greene et al., 1997; Greene et al., 2009; 

Langenhoff et al., 1997a; Langenhoff et al., 1997b). Alkane biodegradation to methane is 

well documented and some reports for methanogenesis from aromatics and polyaromatics 

are available (Chang et al., 2006; Feisthauer et al., 2010; Grbić-Galić and Vogel, 19 7; 

Herrmann et al., 2010; Jones et al., 2008; Kazumi et al., 1997; Townsend et al., 2003; Zengler 

et al., 1999). However, detailed research on the impact of electron acceptors on 

hydrocarbon-dependent methanogenesis remains elusive. Our central hypothesis is that 

electron acceptors can accelerate hydrocarbon-dependent methanogenesis. Thus, we tested 

their stimulating effect on the rates of hydrocarbon-dependent methanogenesis in different 

sediments. 

 

 

6.2. Materials and methods 

 

6.2.1. Site descriptions and sampling 

Sediment samples were obtained from two different sites. One sampling site was 

contaminated by hydrocarbons (Zeebrugge) and the other site was pristine (Eckernförde 

Bay, Supporting Information, Appendix S1). 

The sea port of Zeebrugge (Belgium; NW: 51°19'59 N 3°11'57 E, SE: 51°19'55 N 

3°12'12 E, approx. 0.1 km2) comprised several sediment sections with anoxic conditions and 

was contaminated with hydrocarbons and heavy metals (Ministerie van de Vlaamse 

Gemeenschap, 2002). The water depth was 3 m during ebb. A constant freshwater influx 

was maintained by the irrigation system of Brugge. In September 2008, samples were 

obtained from three locations within the harbor basin using a manual sediment grabber. 

Sample bottles were filled completely and closed using butyl rubber stoppers and screw 

caps. Surface water samples were also collected. 
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Chemical analyses were performed by SGS, Mol, Belgium. Typical contaminants in the 

harbor mud originated from protective boat paints and fuel leakages. Besides metals such as 

nickel, zinc, lead, copper, mercury and chromium, the concentrations of mineral oil ranged 

from 5 to 400 µg cm-3 sediment. Iron, manganese and sulfate were detected in 

concentrations of up to 85, 0.1 or 2 µmol cm-3, respectively. The pH was between 8.0 and 8.5 

and the in situ water temperature was 14°C. 

 

6.2.2. Preparation of microcosms 

For incubations established from the Zeebrugge samples, filter-sterilized harbor water 

(using 0.2-µm membrane filters) served as a medium to mimic in situ conditions. However, 

the harbor water naturally contained 2 mM sulfate and sediment microcosms without 

electron acceptors were therefore impossible to prepare. Basal salts were not added. 

Dissolved oxygen was removed by nitrogen gassing of 1 L filtered water. All additional 

manipulations were performed in an anaerobic glove box. To homogenize the sediment 

sample, a 1/1 mix of sediment and medium was stirred. The slurry was sampled for DNA 

extraction and 20 mL were used to inoculate 40 mL medium in 120-mL serum bottles. These 

were sealed with butyl rubber stoppers and aluminum crimp caps. Triplicate microcosms 

were incubated under a nitrogen headspace at atmospheric pressure at 25°C. 

Before inoculation, 2.5 mM ferrihydrite, 1.25 mM manganese dioxide, 1 mM 

potassium nitrate or 20 mM sodium sulfate were added to the medium. Ferrihydrite was 

precipitated by neutralization of an FeCl3 solution (Lovley and Phillips, 1986) and manganese 

dioxide was obtained by oxidation of an MnCl2 solution with KMnO4 (Lovley and Phillips, 

1988). To determine indigenous methanogenesis, controls without additional hydrocarbons 

and electron acceptors were prepared. Controls without hydrocarbons, but with electron 

acceptors were set up as single incubations. 

The final hexadecane or ethylbenzene concentrations were 0.1 % v/v in 60 mL total 

liquid volume. To test polyaromatic hydrocarbon (PAH) degradation, 1.6 mg 

1-13C-naphthalene or 12C-naphthalene were added to 100 mL medium containing 20 mL 

sediment in 120-mL serum bottles sealed with butyl rubber stoppers and aluminum crimp 

caps. Manganese dioxide was not used in case of naphthalene. To examine the activity of 

anaerobic methanotrophs, the headspace of separate microcosms was flushed with a 1/1 

methane-nitrogen mix without additional higher hydrocarbons.. 
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6.2.3. Methane and CO2 measurements 

Methane and CO2 in headspace samples were analyzed using a GC-FID (+ nickel 

catalyst methanizer, SRI 8610C, SRI Instruments) equipped with a 6-foot Hayesep D column 

(SRI Instruments) running continuously at 60°C. Methane and CO2 formation from 12C- and 

1-13C-naphthalene was also measured using a Thermo Fisher MAT252 GC-IRMS (Herrmann 

et al., 2010). The rates were calculated based on the formation of 13CH4 measured in the 

headspace and subtracted from the δ13CCH4 of indigenously produced methane. δ13C values 

are expressed as ‰ vs. Vienna Pee Dee Belemnite (VPDB) 

The rates in unamended control experiments, hexadecane, ethylbenzene, and 

methane incubations were calculated for a timeframe of 178 days with an intermediate 

measurement at day 155. For naphthalene incubations, the rates were calculated in a 

timeframe of 435 days without an intermediate measurement. 

 

6.2.4. DNA analytical methods 

Sediment DNA was extracted using a FastDNA Spin Kit for Soil DNA extraction kit (MP 

Biomedicals). Genes of interest were quantified using an Applied Biosystems StepOne 

thermocycler. 16S rRNA gene copy numbers of Archaea and Bacteria were determined as 

described previously (Nadkarni et al., 2002; Takai and Horikoshi, 2000). Concentrations of 

mcrA and dsrA genes were investigated according to Nunoura et al. (2006) and Schippers 

and Nerretin (2006), respectively. Members of the Geobacteraceae were quantified using 

the method described by Holmes et al. (2002). Copy numbers are expressed as copies cm-3 

sediment. 

Members of the microbial community in the Zeebrugge sediment were identified by 

the incorporation of 16S rRNA gene sequence fragments of a clone library into an existing 

maximum-parsimony tree (version 102) provided by Pruesse et al. (2007). Fragments of 16S 

rRNA genes were obtained using the modified primer sets Ar109f 

(5’-ACKGCTCAGTAACACGT) and Ar912r (5’-CTCCCCCGCCAATTCCTTTA) for Archaea and 27f 

(5’-AGAGTTTGATCCTGGCTCAG) and 907r (5’-CCATCAATTCCTTTRAGTTT) for Bacteria (Liesack 

and Dunfield, 2004). Subsequently, cloning was performed using the pGEM-T vector system 

according to the manufacturer’s instructions (Promega). All sequencing was conducted at 

Seqlab Göttingen (Germany). Sequences were deposited at the GenBank online database 

under accession numbers HM598465 to HM598629 
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6.3. Results 

 

6.3.1. Aliphatic hydrocarbon dependent methanogenesis and CO2 release 

Methanogenesis was observed in all Zeebrugge microcosms after 178 days. Without 

added hydrocarbons, the methanogenesis rates were 2.9, 0.8, 0.6, 0.3 or 

0.8 nmol methane cm-3 day-1 for ferrihydrite, manganese dioxide, nitrate, 2 or 22 mM 

sulfate-amended microcosms, respectively. The respective CO2 release rates in these 

controls ranged from 35.5 nmol CO2 cm-3 day-1 for ferrihydrite to 73.8 nmol CO2 cm-3 day-1 

for nitrate. 

In microcosms containing Zeebrugge sediment with hexadecane, a significant increase 

of methanogenesis was observed compared to control experiments without hexadecane 

(Figure 6.2a). Moreover, hexadecane-dependent methanogenesis rates were significantly 

different between microcosms with and without added electron acceptor (Figure 6.2a). Most 

prominently, ferrihydrite accelerated hexadecane-dependent methanogenesis to 

87.3±2.3 nmol methane cm-3 day-1 compared with 37.8±6.6 nmol methane cm-3 day-1 in 

2 mM sulfate incubations (natural harbor water). The increase of methanogenesis in 

manganese dioxide incubations to 45.9±1.9 nmol methane cm-3 day-1 was insignificant 

compared to 2 mM sulfate incubations (Figure 6.2a). Adding 20 mM sulfate decreased 

methanogenesis to 2.1±1.1 nmol methane cm-3 day-1. Nitrate inhibited methanogenesis 

completely. However, the addition of hexadecane triggered CO2 release from the 

microcosms (Figure 6.2a). The CO2 release rates ranged from 64.6±5.8 nmol CO2 cm-3 day-1 

for 2 mM sulfate to 139.6±3.0 nmol CO2 cm-3 day-1 for 22 mM sulfate. 
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Figure 6.2: Effect of the type of electron acceptor on hydrocarbon-dependent methanogenesis in 

Zeebrugge sediments. Hexadecane (a) and ethylbenzene (b) were used as substrates. Ninety-five 

percent confidence intervals of the triplicate regression slopes against time were calculated. SEs 

within this confidence limit are shown. 

 

The addition of 1 mM nitrate or 10 mM sulfate almost completely inhibited 

methanogenesis in Eckernförde Bay microcosms (Figure 6.3a). Hexadecane-dependent 

methanogenesis (46.5±3.5 nmol methane cm-3 day-1) was higher than naturally occurring 

methanogenesis without hexadecane of no more than 10 nmol methane cm-3 day-1 in the 

sediment layer of the highest methanogenesis (Figure 6.3a; (Treude et al., 2005)). While 

hexadecane-dependent methanogenesis occurred without additional electron acceptors at a 

rate of 24.5±1.7 nmol methane cm-3 day-1, the process was significantly slower than in 

incubations with 2 mM sulfate concentrations 46.5±3.5 nmol methane cm-3 day-1 

(Figure 6.3b). 
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Figure 6.3. Shift from methane production towards CO2 upon hexadecane addition depending on 

increased sulfate and/or nitrate concentrations in Eckernförde Bay microcosms. Error bars indicate 

SEs of three incubations. (a) Nitrate concentrations from 1 to 10 mM are displayed on the x-axis. 

Additionally, 0 mM and 1 mM nitrate were tested with 2 mM sulfate present (left). All other 

microcosms were incubated without nitrate. (b) Sulfate concentrations are displayed on the x-axis. 

Nitrate was not added. 
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6.3.2. Aromatic hydrocarbon-dependent methanogenesis and CO2 release 

Also, the addition of ethylbenzene significantly increased methanogenesis in 

microcosms containing Zeebrugge sediment (Figure 6.2b). Compared to 2 mM sulfate, the 

addition of ferrihydrite or manganese dioxide reduced methanogenesis from 58.1±0.6 to 

39.6±0.9 or 28.2±12.1 nmol methane cm-3 day-1, respectively (Figure 6.2b). Like in 

hexadecane incubations, an increase of sulfate concentrations to 22 mM decreased the 

methanogenesis rate to10.0±0.5 nmol methane cm-3 day-1. Nitrate inhibited methanogenesis 

completely. The addition of ethylbenzene inhibited CO2 release (Figure 6.2b) compared with 

unamended controls. The lowest CO2 production rate was detected with nitrate 

(19.5±0.6 nmol CO2 cm-3 day-1), while 22 mM sulfate led to an increase in CO2 release to 

45.9±0.3 nmol CO2 cm-3 day-1. 

Methanogenesis depending on 1-13C-naphthalene commenced between days 124 and 

235 in 2 mM sulfate incubations, with maximum rates of 12.5±0.3 pmol methane cm-3 day-1 

(Table 6.1). At the same time, the δ13CCH4
 was -37.1±1.6 ‰ (unamended control: 

δ13CCH4 = -43.2±1.1 ‰; Figure 6.4d). At day 435, 1-13C-naphthalene-derived 13CH4 formation 

was also detected as indicated by the elevated δ13CCH4 values compared with unamended 

controls. Methanogenesis rates were, however, within the same order of magnitude in all 

microcosms (Table 6.1). Furthermore, a strong enrichment in 13CO2 was observed already 

after 42 days of incubation in all setups amended with 1-13C-naphthalene (Figure 6.4e-h). 

The δ13CCO2 values ranged from +34.9±2.6 ‰ (nitrate addition) to +6 .4±23.5 ‰ (iron 

addition), which was significantly different from the δ13CCO2 values produced in microcosms 

amended with unlabeled naphthalene (total mean -26.6±0.2 ‰). In the 

1-13C-naphthalene-degrading cultures, the δ13CCO2 values further increased to a maximum at 

day 235 (total mean δ13CCO2 +419 ± 21 ‰; Figure 6.4e-h). The CO2 release rates were at least 

200 times higher than the methane formation rates (Table 6.1). Ferrihydrite addition 

resulted in relatively low CO2 formation rates from 1-13C-naphthalene of 

236.7±3.4 pmol CO2 cm-3 day-1, while the highest rate was observed with nitrate 

(499.4±0.54 pmol CO2 cm-3 day-1). 
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Figure 6.4: Time course of 13CH4 (top, a-d) and 13CO2 (bottom, e-h) formation upon 1-13C-naphthalene 

addition to microcosms prepared from contaminated Zeebrugge harbor mud. Error bars are SDs from 

the mean of three parallel microcosms. Error bars of control experiments (no naphthalene, dead 

controls) are SDs from the mean of two parallel microcosms. Dead controls were killed with 8 % final 

concentration formaldehyde. 

 

6.3.3. Anaerobic methanotrophy 

In parallel experiments, anaerobic oxidation of methane (AOM) was observed in 

Zeebrugge microcosms. Incubations with 22 mM sulfate showed the highest AOM rates 

(1216.0±135.3 nmol methane cm-3 day-1), while cultures with ferrihydrite or manganese 

dioxide displayed slightly lower rates (1117.3±0.2 and 1070.9±37.8 nmol methane cm-3 day-1, 

respectively). The AOM rates were lower with nitrate (881.3±0.7 nmol methane cm-3 day-1) 

or with 2 mM sulfate (479.0±6.4 0.0 nmol methane cm-3 day-1). 

 

6.3.4. Hydrocarbon-degrading microbial community 

The original Zeebrugge sediment contained 16S rRNA gene copy numbers of 

2.6 x 109 copies cm-3 for Bacteria and 3.1 x 108 copies cm-3 for Archaea (Figure S1 in 

Appendix S1). Compared to the sediment used as inoculum, a significant increase of the 

methanogenic (Methanosarcina mcrA) and the methanotrophic (ANME-1 and -2 mcrA) 

populations was observed in microcosms with ferrihydrite and hexadecane (Figure 6.5). With 

sulfate and methane, only the number of ANME-2 copies increased. The growth of 

Geobacteraceae – although present in significant numbers – was not initiated by addition of 

hexadecane or electron acceptors compared to the inoculum (Figure 6.5). In contrast, the 
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addition of sulfate and/or ferrihydrite increased the growth of the sulfate-reducing 

community in the microcosms. Enrichments with ethylbenzene, naphthalene, nitrate or 

manganese were not monitored by real-time PCR. 

 

Table 6.1. Change of the δ13CCH4 and δ13CCO2 values during 435 days of incubation with 

1-13C-naphthalene, 12C-naphthalene or without naphthalene. Errors are SDs from the mean of 

samples within 95 % confidence intervals. Methane formation rates (MFR, top) and CO2 formation 

rates (CFR, bottom) were calculated based on the difference between the isotopic ratios of day 0 and 

day 435 related to the total amount of methane in the headspace measured by GC-FID. Of the two 

δ13CCH4 errors (day 0 and 435), the greater error was selected for the calculation of rate errors. NA, 

not available. 

 δ
13

CCH4 [‰ VPDB]   

electron 
acceptor 

day 0 day 435   MFR 
13

C1-naphthalene 
13

C1-naphthalene 
12

C-naphthalene without 
naphthalene 

[pmol cm
-3

 d
-1

] 

mean error mean error mean error mean error 

ferrihydrite -48.4 ±1.5 -35.5 ±0.1 -52.4 ±2.1 -52.1 8.3 ±1.0 

nitrate -48.6 ±0.4 -30.7 ±0.4 -50.1 ±1.0 -53.5 11.8 ±0.3 

2 mM sulfate -48.7 ±0.5 -30.0 ±0.1 -58.5 ±4.0 -53.6 12.5 ±0.3 

22 mM sulfate -48.7 ±0.1 -30.5 ±0.4 -50.2 n/a -55.3 12.4 ±0.3 

  δ
13

CCO2 [‰ VPDB] CFR 

ferrihydrite -24.8 ±0.3 374.5 ±5.8 -30.3 ±0.0 -27.7 236.7 ±3.4 

nitrate -24.8 ±0.1 363.4 n/a -28.9 ±0.1 -26.6 499.4 ±0.5 

2 mM sulfate -24.5 ±0.2 336.9 ±3.6 -29.4 ±0.3 -27.2 285.0 ±2.9 

22 mM sulfate -24.3 ±0.5 317.3 n/a -28.7 ±0.0 -27.8 338.6 ±0.1 

 

 

16S rRNA gene clone libraries of Bacteria (n=82) and Archaea (n=93) of the Zeebrugge 

sediment revealed a broad microbial diversity (Figures S2-S4 in Appendix S1). Among 

Bacteria, Alpha-, Gamma- and Deltaproteobacteria 16S rRNA gene sequences were 

recovered as well as sequences associated with Campylobacterales, Planctomycetes, 

Clostridia, Actinobacteria and Chloroflexi. 16S rRNA gene sequences associated with 

potential pathogens, such as Neisseria and Coxiella, were also found as well as sequences 

associated with Geobacteraceae. Seven potential aerobic iron oxidizers of the family 

Acidithiobacillaceae and another seven of the Acidimicrobinea could be identified. Some 

sequences were closely related to sequences recovered in other potentially hydrocarbon 

influenced environments such as the Victoria Harbour in Hong Kong, China (Zhang et al., 

2008), the Belgian coast off Zeebrugge (Gillan and Pernet, 2007), the Milano mud volcano 

(Heijs et al., 2005) as well as the Gullfaks and Tommeliten oil fields of the North Sea 

(Wegener et al., 2008c) (Figure S2 in Appendix S1). The phylogenetic diversity of Archaea 
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comprised Crenarchaeota and Euryarchaeota. In the latter, members of the Methanosarcina 

prevailed. 

 

 

 

Figure 6.5: Logarithmic plots of community composition in microcosms of a contaminated harbor 

mud of Zeebrugge. DNA was extracted from the sediment microcosms after 178 days of incubation 

with 2 mM sulfate without any additional hydrocarbon (hc), ferrihydrite and hexadecane or methane 

and 20 mM sulfate. ANME-1, ANME-2 and Methanosarcina-specific mcrA genes were quantified. 

Sulfate-reducers were detected targeting their dsrA gene and Geobacteraceae were quantified by 

amplification of their 16S rRNA genes. When given, error bars were calculated from SD of the mean 

of two extracted incubations, each determined in three parallel PCR reactions. 

 

 

  

c
o
p
y 

n
u
m

b
e
rs

 [
lo

g
1

0
 c

m
-3
]

Zeebrugge
sampling event

2 mM SO
4

2-

no hc

Fe(III) +
hexadecane

22 mM SO
4
2-

CH
4

9

4

10

8

7

6

5

Methanosarcina

ANME-1

ANME-2

mcrA-genes

dsrA

Geobacteraceae



176 

6.4. Discussion 

Electron acceptors may accelerate hydrocarbon degradation, thus providing an 

increased substrate supply for methanogenesis. In this work, we evaluate the hypothesis 

that the addition of electron acceptors leads to accelerated hydrocarbon-dependent 

methanogenesis. This process may be useful to stimulate the recovery of oil-related carbon 

as methane from reservoirs or for bioremediation of contaminated sites. Our aim was to 

stimulate the initial steps in hydrocarbon degradation and thus the formation of 

methanogenic substrates such as acetate, CO2 and H2. Four different electron acceptors 

were added to sediment microcosms. Two different ecosystems – contaminated harbor mud 

and pristine marine sediment – were investigated to show that this approach is generally 

applicable. 

 

6.4.1. Hydrocarbon-dependent methanogenesis 

Methane evolved upon hexadecane, ethylbenzene or naphthalene addition in different 

sediment microcosms (Figure 6.2 and Table 6.1). In most cases, conversion of hexadecane to 

methane was faster compared with aromatic hydrocarbons (Figure 6.2, Table 6.1). 

Exceptions were ethylbenzene microcosms with 2 mM sulfate, in which conversion to 

methane was faster (58.1±0.6 nmol methane cm-3 day-1) than that in the respective 

hexadecane incubation (37.8±6.6 nmol methane cm-3 day-1). The observed rates were 

approximately one order of magnitude lower than those observed in a study of an 

inoculated oil field sediment core (Gieg et al., 2008). Apparently, inoculation using an 

enriched consortium was more efficient that the stimulation of indigenous hydrocarbon 

degraders. In another study of a sediment-free methanogenic hexadecane-degrading 

enrichment culture, hexadecane-dependent methanogenesis was lower 

(13 nmol methane mL-1 day-1) than the rates observed in our experiments (Feisthauer et al., 

2010). Presumably, a sediment-free enrichment culture never reaches cell densities of 

sediments (approximately 109 cells cm-3 sediment, Figure S2 in Appendix S1), resulting in 

lower volume-related rates.  

Methanogenesis from naphthalene was in a picomolar range while other hydrocarbons 

induced methane release in nanomolar ranges (Figure 6.2 and Table 6.1). The time lag 

between 13CO2 and 13CH4 evolution as well as the significant difference in δ13C-signature 

shifts (Figure 6.4) indicate that methanogenesis played a minor role in 
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naphthalene-degrading microcosms. Primarily, naphthalene seems to have been mineralized 

to CO2. Anaerobic oxidation of naphthalene and subsequent formation of CO2 was 

demonstrated under nitrate- (Bregnard 1996) and sulfate-reducing conditions (Coates et al., 

1996a; Hayes et al., 1999; Langenhoff et al., 1989; Musat et al., 2009). Nevertheless, 

methanogenesis occurred in our naphthalene-degrading microcosms, a process that was 

suggested (Chang et al., 2006; Sharak Genthner et al., 1997), but hitherto never confirmed. 

Sharak Genthner et al. (1997) observed an inhibition of methanogenesis after 

naphthalene addition and concluded that naphthalene may be toxic to methanogens. In our 

microcosms, this seems unlikely because they were naturally exposed to various mineral oil 

compounds found in the sediments (Ministerie van de Vlaamse Gemeenschap, 2002). 

Regardless of naphthalene toxicity, methanogens possibly had better access to degradation 

products of hexadecane and ethylbenzene than not those of naphthalene. We therefore 

postulate that methanogens themselves were directly involved in the degradation chain of 

hexadecane and ethylbenzene degradation, but not of naphthalene degradation. The 

observed increase in the methanogenic population and the finding of a rich methanogenic 

community in 16S rRNA gene clone libraries support this assumption (Figure 6.5; Figure S4 in 

Appendix S1). 

 

6.4.2. Impact of electron acceptors on hydrocarbon-dependent methanogenesis 

We studied the impact of ferrihydrite, manganese dioxide, nitrate and sulfate on 

hydrocarbon-dependent methanogenesis. Ferrihydrite accelerated hexadecane-dependent 

methanogenesis compared to sulfate or nitrate. Nitrate almost completely inhibited 

methanogenesis from hexadecane and ethylbenzene (Figure 6.2 and Figure 6.3a). This is not 

surprising because nitrate is a well-known inhibitor of methanogenesis (Klüber and Conrad, 

1998). Furthermore, nitrate and high sulfate concentrations negatively influenced 

conversion rates of hexadecane to methane (Figure 6.2 and Figure 6.3a). However, in the 

presence of 2 mM sulfate, nitrate was not inhibitory (Figure 6.3a), indicating that a 

sulfate-reducing hexadecane-degrading community prevailed. 

Adding sulfate in concentrations up than 5 mM to the sediment microcosms of 

Eckernförde Bay resulted in a significant increase of hexadecane-dependent methanogenesis 

(Figure 6.3b). In contrast, concentrations higher than 5 mM strongly inhibited 

hexadecane-dependent methanogenesis. Possibly, sulfate addition stimulated the growth of 
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new or other sulfate-reducers, dominating substrate competition for intermediates with 

methanogens. In contrast, a previous study reported no inhibition of methanogenesis by 

sulfate of up to 10 mM (Gieg et al., 2008). The inhibitory effect of 22 mM sulfate on 

ethylbenzene-dependent methanogenesis was less pronounced compared to hexadecane. 

For naphthalene, neither inhibition nor stimulation of methanogenesis was found with 

either electron acceptor (Figure 6.4 and Table 6.1). This agrees with a recent study of 

contaminated sediments, where no stimulating effect of Fe(III) on PAH degradation was 

observed (Li et al., 2010). 

The impact of electron acceptors on hydrocarbon-dependent methanogenesis 

demonstrates that (1) the concentration of the added electron acceptor is crucial for 

hexadecane-fed methanogenesis and (2) the solubility of the electron acceptor appears to 

be important. Indeed, insoluble electron acceptors such as ferrihydrite or manganese 

dioxide had a stimulating effect on hexadecane-dependent methanogenesis (Figure 6.2a). 

However, these electron acceptors are only locally bioavailable, which may result in 

microscale compartment formation. In contrast, theoretically possible products of 

hexadecane degradation, such as carbonate, acetate and H2, can freely diffuse and become 

available for methanogens in niches where other electron acceptors are depleted. 

In Zeebrugge microcosms, the observed increase of the total archaeal community and 

mcrA gene copies suggests that Methanosarcina species account for iron-reduction as 

demonstrated by (van Bodegom et al., 2004) (Figure 6.5 and Supporting Information). 

Moreover, neither ferrihydrite or sulfate nor hexadecane or methane addition triggered the 

growth of Geobacteraceae. In conclusion, members of this family are probably less 

important for the respective processes (Figure 6.5). This is not surprising because 

Geobacteraceae are known for their aromatic metabolism, while alkane degradation has not 

been reported. Instead, other members of the Proteobacteria, known for hosting many 

known hydrocarbon degraders (Widdel and Rabus, 2001), were identified (Figure S2 in 

Appendix S1). One sequence was closely related to a clone identified at the Gullfaks and 

Tommeliten oil field methane seeps of the North Sea (Wegener et al., 2008a). 

 

6.4.3. Methanogenesis vs. AOM 

AOM rates were determined to assess potential methane losses during incubation 

time. The rates were in good agreement with those observed typically in methane-fed 
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environments (Knittel and Boetius, 2009). However, methane seepage was apparently not 

the major energy source of Zeebrugge sediments. Therefore, in situ AOM possibly depended 

on hydrocarbon-derived methane, as indicated by the growth of the AOM community in 

hexadecane-amended microcosms (Figure 6.5). Based on the methane partial 

pressure-dependent and cell-specific AOM rate constant reported by Thauer and Shima 

(2008), we calculated a loss of no more than 12 % of the produced methane in 

hydrocarbon-amended microcosms. 

 

 

6.5. Conclusions and possible practical implications 

To fully exploit exhausted oil reservoirs, the conversion of residual oil to methane 

seems to be a viable technique to recover energy that would otherwise be lost. As a possible 

contribution for this application, our experiments demonstrated that additional sulfate or 

trivalent iron accelerated methanogenesis in aliphatic and aromatic hydrocarbon (e.g. 

BTEX) -degrading communities. In contrast, the inhibitory effect on nitrate, commonly used 

to suppress sulfate-reducers in oil fields, most likely prohibits its application for oil recovery 

as methane. Additionally, we present convincing evidence for the conversion of a PAH to 

methane. 

Consequently, our results also provide novel insights for bioremediation, where the 

conversion of hydrocarbon contaminants to volatile methane seems to be an option. 

Nevertheless, methane is a much more potent greenhouse gas than CO2. Therefore, the 

addition of high amounts of nitrate or sulfate may be preferred to stimulate biodegradation 

when methanogenesis is unwanted and oxygen treatment is impossible. 
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6.6. Appendix S1 

 

Eckernförde Bay: 

Samples of Eckernförde Bay were taken to demonstrate that hydrocarbon dependent 

methanogensis accelerated by electron acceptor addition is not restricted to the Zeebrugge 

site. 

Materials and methods: 

Site description 

The Eckernförde Bay is located at the German coast of the western Baltic Sea. Its 

pristine sediment was methane rich and was sampled in autumn 2001 (Treude, et al., 2005). 

This site and sampling procedures were described in detail by Treude et al. (2005). Briefly, 

this marine site was characterised by the absence of tides, a stratified water column and a 

resulting thermocline and halocline. Sediment samples were derived from the sediment 

surface at 28 m water depth. Sulfate concentrations ranged from 16 mM to 21 mM at the 

sediment-water interface. 

Sampling 

After sampling in September 2001, sediment microcosms of Eckernförde Bay were 

maintained by several transfers in sulfate containing artificial sea water medium amended 

with hexadecane as described previously (Feisthauer et al., 2010; Treude et al., 2005; Widdel 

and Bak, 1992). 1/10 transfers were prepared after methane evolved from the previous 

incubation. To study the effect of nitrate and sulfate concentrations on hexadecane 

dependent methanogenesis, nitrate concentrations ranged from 0-10 mM KNO3 and sulfate 

concentrations from 0-20 mM MgSO4. In case of 1 mM nitrate, the stimulating effect of 

sulfate was compared to microcosms without sulfate by adding 2 mM MgSO4. All 

Eckernförde Bay microcosms were incubated for 70 days at room temperature. 

Gas chromatography 

Methane and carbon dioxide in Eckernförde Bay microcosms were determined in 

weekly intervals. Methane and CO2 were detected by GC-FID (+ nickel catalyst methanizer) 

headspace measurements (SRI 8610C, SRI Instruments, USA) equipped with a 6 foot Hayesep 

D column (SRI Instruments, USA running continuously at 60°C.  
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Figure S1: Archaeal (A) and bacterial (B) 16S rDNA copy numbers of Zeebrugge harbour mud in situ 

(sampling event) and after incubation of 178 days. Error bars represent the error of two parallel 

incubations. Each incubation was determined in three parallel PCR reactions. Only error bars of the 

domains (Archaea, Bacteria) are displayed. 
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Figure S2: Parsimony tree assembled for Bacteria from a 16S rDNA clone library (n=87) of Zeebrugge 

harbour mud according to Pruesse et al. (2007). Duplicate sequences of 100 % identity were 

removed before constructing the final tree. The SILVA database version 102 was used. Numbers in 

boxes indicate the number of clones which could be affiliated to the respective group. Numbers in 

clusters indicate numbers of Zeebrugge 16S rRNA gene sequences which were assigned to the 

respective cluster. References are 1(Beal, et al., 2009), 2(Mußmann et al., 2005), 3(Zhang, et al., 2008), 
4(Hirayama et al., 2007), 5(Gillan & Pernet, 2007) and 6(Wegener et al., 2008b). 
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Figure S3: Parsimony tree assembled for Archaea from a 16S rDNA clone library (n=98) of Zeebrugge 

harbour mud according to (Pruesse et al., 2007). Duplicate sequences of 100 % identity were 

removed before constructing the final tree. The SILVA database version 102 was used. Numbers in 

boxes indicate the number of clones which could be affiliated to the respective group. Numbers in 

clusters indicate numbers of Zeebrugge 16S rRNA gene sequences which were assigned to the 

respective cluster. References are 1(Ye et al., 2009), 2(LOPEZ-ARCHILLA et al., 2007), 3(Inagaki et al., 

2006a) and 4(Beal et al., 2009) 
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Figure S4: 16S rRNA gene Maximum Likelyhood tree excerpted from the SILVA database 102. The 

excerpt contains sequences of a proposed metal reducing AOM community sampled in the Eel River 

basin (Beal, et al., 2009). OTUs of at least 80 % distance matrix identity with clones obtained from 

Zeebrugge sediment are displayed in the tree. Reference species are italic, Zeebrugge clones bold 

and Eel River clones are asterisk (*) marked. 
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Figure S5: Rarefaction curve of the diversity coverage of a 16S rDNA clone library with primers 

specific for Archaea (Ar109f & Ar912r) or Bacteria (27f & 907r; Liesack & Dunfield, [2004]). The 

number of operational taxonomic units (OTUs) with a sequence identity of less than 97 % is plotted 

versus the number of sequenced clones. The Mothur software package was employed for the 

calculation of the rarefaction curve (Schloss et al., 2009). 
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Abstract 

The Northern Baffin Bay between Greenland and Canada is a remote Arctic area 

restricted in primary production by seasonal ice cover, with presumably low sedimentation 

rates, carbon content and microbial activities in its sediments. Our aim was to study the so 

far unknown subseafloor geochemistry and microbial populations driving seafloor 

ecosystems. Shelf sediments had the highest organic carbon content, numbers of Bacteria 

and Archaea, and microcosms inoculated from Shelf sediments showed highest sulfate-

reduction and methane production rates. Sediments in the central deep area and on the 

southern slope contained less organic carbon and overall lower microbial numbers. Similar 

16S rRNA gene copy numbers of Archaea and Bacteria were found for the majority of the 

sites investigated. Sulfate in pore water correlated with dsrA copy numbers of 

sulfate-reducing prokaryotes and differed between sites. No methane was found as free gas 

in the sediments, and mcrA copy numbers of methanogenic Archaea were low. 

Methanogenic and sulfate-reducing cultures were enriched on a variety of substrates 

including hydrocarbons. In summary, the Greenlandic shelf sediments contain vital microbial 

communities adapted to their specific environmental conditions.  
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7.1. Introduction 

Microorganisms in marine sediments are important drivers of global elemental cycles 

(Fuhrman, 2009; VanCappellen and Wang, 1996). This is not only the case in temperate or 

warm climates, but also in cold environments, like the Arctic or Antarctic regions, where sun 

energy is low resulting in a characteristic climatic, geological and biological situation. Arctic 

regions experience highly contrasting sun irradiance changes throughout the year in addition 

to extremely low air temperatures resulting in sea-ice formation. Both sun irradiance and 

sea-ice restrict primary production during prolonged time periods, and therefore the organic 

matter supply to the seafloor (Hulth et al., 1996). 

In the last three decades, numerous studies have demonstrated the existence of active 

microbial processes and active prokaryotes in shallow and deep marine sediments all over 

the world (D'Hondt et al., 2002; Hamdan et al., 2011; Inagaki et al., 2003a; Jørgensen et al., 

2006; Nunoura et al., 2009; Schippers et al., 2005; Webster et al., 2009; Wilms et al., 2006). 

Evidence of ongoing microbial processes in deep sediment cores from hundreds of meters 

below the seafloor has also been provided by pore water analysis of released and consumed 

dissolved metabolites in depth profiles (D'Hondt et al., 2004; D'Hondt et al., 2002; Engelen et 

al., 2008; Heuer et al., 2009; Lever et al., 2010).  

Because sulfate-reduction is one of the main processes of organic matter degradation 

in marine sediments due to high sulfate concentration in seawater, it has been intensively 

studied in marine sediments worldwide (D'Hondt et al., 2002).  

In permanently cold Arctic sediments organic matter mineralization is catalyzed by 

cold-adapted microorganisms (Knoblauch et al., 1999; Sahm et al., 1999). However, the 

metabolic processes are not temperature-limited, since substantial activities have been 

observed even under thermophilic conditions (Hubert et al., 2009). Rather, the availability 

and reactivity of the present organic matters seems to determine in situ microbial activities 

(Arnosti et al., 1998; Hubert et al., 2010). Apart from sulfate-reduction and methanogenesis, 

Mn4+ and Fe3+-reduction are important geochemical processes as respiratory pathways for 

the carbon mineralization in Arctic sediments (Vandieken et al., 2006), contributing 70-90 % 

to mineralization of organic matter in surface sediments of the Barents Sea.  

The area investigated in the present study, the Baffin Bay, is an arctic oceanic basin 

located between the coasts of Baffin Island/Ellesmere Island (Canada) and Greenland, 

connecting the Arctic Ocean to the Labrador Sea and the North Atlantic Ocean (Srivastava et 
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al., 1989). The Baffin Bay is sea-ice covered most of the year and completely free of sea-ice 

only in August and September (Tang et al., 2004), restricting access for sampling. 

Consequently, until today only few geochemical and microbiological studies have been 

performed in this region.  

In 1985, the Ocean Drilling Program (ODP) Leg 105 sampled the southern Baffin Bay 

subsurface at site 645 down to depths of 1,147 mbsf for geological and geochemical 

purposes. The analyzed cores indicated sedimentation rates with an average of 60 m Ma-1 

and Total Organic Carbon (TOC) values from 0.1 % to 2.8 % increasing with sediment depths 

to 900 mbsf (Srivastava et al., 1989). In 2007, Galand and co-workers sampled the southern 

Baffin Bay water column at 1,000 m water depth to study how the hydrography affects 

bacterial community distribution in deep Arctic water bodies (Galand et al., 2010).  

Since 90 % of the seafloor worldwide is – as in the Baffin Bay - exposed to 

temperatures below 4˚C (Levitus and Boyer, 1994), it is important to gain insights in 

microbial life in such permanently cold environments. Especially important are its ecology, 

abundance, spatial distribution, as well as regulatory factors, like porewater chemistry, 

organic matter availability, sedimentology, etc.  

Therefore, we conducted a comprehensive study on the sediment characteristics and 

the microbial populations within the Baffin Bay using sediment cores collected in three areas 

of the Northern Baffin Bay during the ARK XXV/3 expedition with the research vessel 

Polarstern in the year 2010. We investigated the depth- and site-dependent distribution of 

microbial populations as well as activities using molecular biological and microbiological 

methods, together with a detailed porewater and solid phase biogeochemical analysis. This 

combined study contributes to the understanding of the microbial and geological nature of 

this and other remote Arctic areas and provide data for the evaluation of the global 

distribution and importance of microorganisms and their role in major elemental cycles. 
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7.2. Materials and methods 

 

7.2.1. Sampling locations 

The present study was conducted as part of the research cruise ARK XXV/3 to the 

Northern Baffin Bay covering an area from the Kane Basin in the North to Disko Island in the 

South in Greenland territorial waters. The expedition took place with the research vessel 

Polarstern from August to mid October 2010 (Damm, 2010). Near-surface sediments were 

cored along seismic refraction and reflection profile lines. These profile lines extended from 

Greenland coastal areas into the central part of the Baffin Bay. Water depths at the sampling 

sites ranged from 598 m to 2,300 m (Table 7.1). 

 

Table 7.1: Overview of the oceanographic data of the sampling sites in the Baffin Bay 

Site Area Latitude Longitude Water Depth 

 (m) 

Core depth  

(m) 

363 Shelf 76° 52.92' N 71° 34.01' W  938 4.69 

371 Shelf 75º 58.24' N 70° 34.86' W  598 4.05 

389 Central Deep 

Basin 74° 37.05' N 69º 13.75' W  1,716 4.24 

391 Central Deep 

Basin 74° 23.36' N 69º 01.22' W  1,864 4.27 

453 Central Deep 

Basin 73° 19.37' N 64° 58.11' W  2,300 4.69 

486 Southern Slope 72° 24.51' N 60° 48.85' W  645 4.69 

488 Southern Slope 72° 08.80' N 60° 58.86' W  1,493 4.69 

 

 

 To investigate how the different bathymetric and physiographic characteristics may 

affect the sediment geochemistry and microbiology, we collected sediment cores in three 

distinct areas of the Baffin Bay. These three areas were referred to as (a) “Shelf” which 

includes sites 363 and 371, located in the Northern Greenlandic continental margin with less 

than 1,000 m of water column; (b) the “Central Deep Basin” which includes sites 3 9, 391 

and 453, all located in the central Baffin Bay basin with water depths of more than 1,500 m; 

and (c) the “Southern Slope” with the sites 4 6, and 4   with variable water depths (see 

Figure 7.1 and Table 7.1). 
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Figure 7.1: Map of the Northern Baffin Bay indicating sites where sediments were cored. The 

symbols shown for the different sites are used for all graphs in this study. Sites are grouped into 

three areas on the basis of their bathymetric and physiographic characteristics: sites 363 and 371 

were grouped to the ‘Shelf Area’; sites 3 9, 391 and 453, to the ‘Central Deep Basin Area’; and sites 

4 6 and 4   to the ‘Southern Slope Area’.  

 

7.2.2. Core sampling and processing 

Core sampling at the different sites was performed with a gravity corer, using a 4.70 m 

core barrel (Rehau AG & Co.) equipped with a 90 mm (outside diameter) PVC liner. Collected 

cores were cut into 1 m sections and kept at 4°C until further analysis and subsampling. 

From all sediment cores, four different types of samples were taken: (a) sediment samples 

for analysis of free gases, (b) pore water samples, (c) sediment samples for molecular 

biological analyses and (d) sediment samples for solid phase analysis of elemental 

composition and organic carbon content. 

Samples for sediment gases were collected at intervals of 50 cm along each core 

starting at 25 cm below the sediment surface. Five mL sediment samples were placed in 
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50 mL glass serum vials pre-filled with 20 mL 1 M NaOH and immediately closed with 

gastight rubber stoppers and aluminum crimp caps. The vials were then vortexed until the 

sediment was completely suspended and stored at 4°C until GC analysis. 

Immediately after gas sampling, 8 − 10 mL pore water were extracted from all cores at 

4°C at the same sample ports used for gas sampling with a rhizon sampler (CSS-F 5 cm or 

10 cm porous length, 2.5 mm tip diameter, Rhizosphere Research Products, Wageningen, 

NL). The pore water samples were stored in polypropylene vials preconditioned by rinsing 

with 1 % (vol/vol) nitric acid solution and washing with distilled water, preserved with 1 % 

(vol/vol) of a 65 % (vol/vol) concentrated nitric acid, and stored at 4°C. 

One half from each core was used for stratigraphic studies and stored as archive while 

the other half was used for microbiological sampling. All samples for microbiological analysis 

were taken from the interior of the core immediately after slicing. Molecular biological 

samples were taken with cut sterile 5 mL syringes every 25 cm along the core. Samples were 

placed in 15 mL Falcon tubes that were immediately frozen and kept at -80°C until analysis. 

Sediment for incubations was collected at 50 − 100 cm intervals and stored in sterile glass 

bottles sealed with butyl septa and screw caps under an N2 atmosphere at 4°C. 

 

7.2.3. Geochemical characterization  

Sediment samples from sites 363, 389 and 486 were selected for solid phase analyses 

to identify the mineral material. These samples (1 − 2 g) from several depths along the core 

were freeze-dried and homogenized in an Agate mortar. X-Ray Powder Diffraction (XRD) 

patterns were recorded with a PANalytical X'Pert PRO MPD θ-θ diffractometer (PANalytical 

B.V., The Netherlands) (Cu–Kα radiation generated at 40 kV and 30 mA), equipped with a 

variable divergence slit (20 mm irradiated length), primary and secondary soller slit, 

Scientific X´Celerator detector (active length 0.59°), and a sample changer (sample diameter 

28 mm). The qualitative evaluation of the powder patterns was performed using the 

search/match software HighScore Plus (PANanalytical B.V.) and the ICDD PDF-2 database.  

The elemental compositions of sediment samples were determined by wavelength 

dispersive x-ray fluorescence spectrometry (WD-XRFS) using PANalytical AXIOS WD-XRF 

(PANanalytical B.V., The Netherlands), with Rh anode x-ray tubes. Samples were prepared by 

milling to less than 40 µm particle size. Then, 1,000 mg per sample were mixed with 5.0 g 

lithium meta-borate and 25 mg lithium bromide, and fused at 1,200°C for 20 minutes. Loss 
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on ignition (LOI) was determined by heating to 1,030°C for 10 minutes. For samples with a 

LOI greater than 25 %, 2.5 g lithium meta-borate and 2.415 g lithium tetraborate were used. 

Pt95-Au5 crucibles and a commercial automatic fluxer (Herzog 12/1500) were used for the 

fusion. The calibration was constructed using 130 certified reference materials and 

corrections applied to correct for matrix and spectral interferences.  

Total sedimentary sulfur (TS) and total organic carbon (TOC) were determined on a 

LECO CS-200 elemental analyzer (LECO Corporation, USA). Determination of organic carbon 

requires the removal of carbonate carbon from the samples through adding a 10 % solution 

of hydrochloric acid to the sediment, and subsequent drying at 80°C for 24 hours. 

Reproducibility of S- and C-measurements was ± 0.01 %. All values are reported as weight 

percentages.  

For 13C analysis of organic carbon, 5 mg freeze-dried sediment was decarbonated, 

transferred in zinc (3.5 x 5 mm, HEKAtech, Germany) or silver caps for solids (5 x 9 mm Lüdi, 

Switzerland) and measured with an elemental analyzer (EuroEA3000, Euro Vector, Italy) 

coupled via a ConFlo III (Thermo Fisher Scientific, Germany) to a MAT 253 isotope ratio mass 

spectrometer (Thermo Fisher Scientific) (Badea et al., 2011). Stable carbon isotopic values 

are expressed in δ-notation (‰) relative to the Vienna PeeDee Belemnite (VPDB) standard.  

 

δ13C = [((13C/12C)sample / (13C/12C)VPDB-standard )-1] x 1000 

Methane concentrations in fixed sediment samples and in incubations were analyzed 

by measuring headspace samples at 60°C using a GC-FID equipped with a 6’ Hayesep D 

column (SRI 8610C, SRI Instruments, USA). Carbon dioxide concentrations were determined 

using a methanizer-equipped FID detector, after reduction of the CO2 to methane. The stable 

isotopic composition of methane and CO2 was measured using a gas chromatography-

combustion-isotope ratio monitoring mass spectrometry system (GC-C-IRM-MS). The system 

consisted of a gas chromatograph (6890 series; Agilent Technology), fitted with a CP-pora 

BOND Q column, coupled with a combustion or high-temperature pyrolysis interface 

(GC-combustion III or GC/C-III/TC; Thermo Finnigan, Bremen, Germany) to a MAT 252 IRMS 

for the carbon analysis and to a MAT 253 IRMS for hydrogen analysis (both from Thermo 

Finnigan, Bremen, Germany) (Herrmann et al., 2010). 
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To analyze the elemental composition of the pore water, samples were measured 

using an inductively-coupled-plasma mass-spectrometry (ICP-MS) instrument (Perkin Elmer 

Sciex Elan 5000, USA) as previously described (Dekov et al., 2007). 

 

7.2.4. DNA isolation from sediment samples 

For molecular analyses, sediment samples frozen at -80°C were slowly thawed on ice. 

DNA was isolated from 0.86 g of sediment using the FastDNA Spin Kit for Soil (MP 

Biochemicals, Solon, OH, USA) with a FastPrep instrument (FastPrep FP120; Savant 

Instruments, Holbrook, NY, USA) according to the manufacturer’s instructions with minimal 

modifications (silica matrix was allowed to settle for 30 min, yields were increased by 

incubation for 15 min at 42°C in an incubator). DNA was eluted in 100 µL DNase/pyrogen-

free ultra-pure water supplied with the kit. For each sediment sample, triplicate DNA 

isolation was done. Triplicates were pooled and analyzed for DNA concentration using a 

NanoDrop spectrophotometer (NanoDrop Technologies Inc., USA) and stored at -20°C. 

 

7.2.5. Quantitative analysis of microbial populations via Q-PCR 

For quantitative PCR (Q-PCR) analysis, DNA template (1 µL) was diluted 10-fold to 

prevent interference of co-extractable organic material from the sample. The Q-PCR mix for 

the quantification of Bacteria 16S rRNA gene copy numbers (20 µL final reaction volume) 

consisted of 10 µL of SensiMix SYBR (Bioline, UK), which included DNA polymerase, dNTPs, 

SYBR Green I dye, stabilizers and ROX, 7 µL of PCR-grade water, and primers. The primers 

341f and 534r (1 µM each) (Muyzer et al., 1993) were used to amplify variable regions of 

16S rRNA genes of Bacteria in a touchdown PCR program with the following parameters: 

initial denaturation of 15 min at 95°C; denaturation of 30 s at 95°C, annealing temperature 

of 65°C decreasing every cycle by 0.4°C for 5 cycles and the remaining 33 cycles at 63°C, 

elongation of 45 s at 72°C. After amplification a melting curve was run from 60°C to 95°C 

with the following parameters: initial denaturation for 15 min at 95°C, renaturation for 1 min 

at 60°C followed by a gradient until 95°C was reached, followed by 15 min at 95°C. The 

Q-PCR for quantification of Archaea and Geobacteraceae 16S rRNA gene copy numbers was 

performed as previously described (Holmes et al., 2002; Schippers and Neretin, 2006; Takai 

and Horikoshi, 2000). Standard curves to determine the 16S rRNA gene copy numbers of 

total Bacteria were constructed by 10-fold serial dilutions of PCR-amplified 16S rRNA genes 
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of the Dehalococcoidetes group amplified from sediment samples and cloned into a pGEM-T 

vector. Linear calibration curves were produced by triplicate serial dilutions ranging over six 

orders of magnitude, from 107 to 102 copies. Standard curves for the determination of 

Archaea and the Geobacteraceae family were done as described (Schippers and Neretin, 

2006). Q-PCR amplifications were performed on triplicate samples using a StepOne 

detection system (StepOne/ StepOnePlus version 2.0, Applied Biosystems, Foster City, CA, 

USA) and analyzed with the StepOne v2.1 software. Amplification efficiencies were 

calculated from the slope of each calibration curve according to the formula 10(-1/slope). 

Amplification efficiencies ranged between 90 and 100 %. All SYBR Green I assays were 

followed by a melting curve stage checking for amplicon specificity. 

The quantitative amplification of dissimilatory sulfite reductase gene of sulfate-

reducers (dsrA) was carried out as described (Schippers and Neretin, 2006). For the 

quantification of the methyl coenzyme M reductase subunit α gene (mcrA), the ME1F and 

ME3R primer set was used (Hales et al., 1996). The PCR mix for the quantification of mcrA 

copy numbers (10 µL final reaction volume) consisted of 5 µL SYBR Green Real-Time PCR 

Master Mix (Invitrogen, Life Technology, USA) which included DNA polymerase, dNTPs, SYBR 

Green I dye, and ROX, 0.5 µL of Bovine Serum Albumin (3 µg/µL stock solution) (BSA; VWR 

International, Germany), 2.7 µL of PCR-grade water and 0.4 µL of each primer (200 nM of 

each). The standard curve was done by triplicate 10-fold serial dilutions of Methanosarcina 

DNA.  

The presence of anaerobic methanotrophs (ANME) was examined by Q-PCR using 

specific primers for the mcrA genes of ANME-1 and ANME-2 organisms as described 

(Nunoura et al., 2006). 

 

7.2.6. Microcosm incubations and measurement of potential microbial activities 

To determine potential rates of selected microbial processes, sediments from different 

cores (363, 389, 486) and three different depths (roughly top, middle and bottom of each 

core) were selected. 

For the preparation of the microcosms, autoclaved Hungate tubes were filled with 

7 mL of sterile anoxic sulfate-free minimal medium (Widdel and Bak, 1992). Sediment 

slurries from each sample (1:1 mix of sediment and anaerobic medium) were anaerobically 

prepared and three mL were added to the Hungate tubes. Then the tubes were purged with 
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N2 (100 %) and sealed with sterile butyl rubber stoppers and screw caps. Microcosms were 

set up at least in triplicate and incubated vertically in the dark with gentle shaking at 4°C.  

Anaerobic enrichments were set up under methanogenic conditions without the 

addition of electron acceptors, and under sulfate-reducing conditions, where sulfate was 

added from an anoxic stock solution to a final concentration of 20 mM. Without additional 

carbon sources added, these incubations were used to measure potential rates of methane 

production and sulfate-reduction of the indigenous microorganisms.  

In a second set of incubations under both conditions, combinations of typical 

sedimentary substrates were added as monomer or polymer mix (Batzke et al., 2007) to 

enrich methanogenic or sulfate-reducing microorganisms, respectively. In a separate set of 

vials with sulfate, the headspace was flushed with 100 % methane to measure 

sulfate-dependent anaerobic oxidation of methane (AOM). 

Third, the potential for hydrocarbon degradation under methanogenic conditions was 

studied in incubations with hexadecane, hexadecanoic acid, ethylbenzene or 

methyl-naphthalene, which were all added directly to the medium in concentrations of 0.1 % 

(v/v). Finally, a number of parallels were incubated under aerobic conditions to assess the 

potential for aerobic methane oxidation (air:methane, 95:5 %). 

Sulfide concentrations were determined photometrically by the formation of copper 

sulfide (Cord-Ruwisch, 1985). Rates for anaerobic oxidation of methane (AOM) were 

measured and calculated as previously described (Krüger et al., 2005b; Nauhaus et al., 2002; 

Treude et al., 2005). Aerobic methane oxidation rates (MOR) in microcosms were measured 

following the depletion of methane in the aerated slurry samples (Krüger et al., 2002). 

Methane production and oxidation rates were calculated by linear regression of the increase 

or decrease of these gases in the headspace over incubation time (Krüger et al., 2001). All 

rates are given in µmol per day-1 g-1 of dry sediment. 

 

 

7.3. Results  

 

7.3.1. Sediment description  

Sediment stratigraphy differed among the three areas. Dropstones from glacier 

transport were commonly found in the sediments in the majority of the cores. Shelf sites 
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363 and 371 were mainly composed of homogeneous olive grey silty mud except in the 

deepest core sections where color changed into greyish brown or dark yellowish brown and 

the grain size became coarser. Central Deep Basin Area sites 389 and 391 showed layers of 

diatomaceous silty mud in the first 60 centimetres below surface (cmbsf). The lithology 

downwards of the diatomaceous silty muds for site 389 was composed of silty muds of from 

olive grey to dark yellowish brown and brownish color with intercalations of sandy mud and 

various coarser or finer grained intervals of dropstone granules.  

For site 391 and downwards of the diatomaceous layer, the sediment was composed 

of silty muds with a pale brown coarser grained intercalated layer of sandy and silty muds 

from 120 to 145 cmbsf. The rest of the site 391 core was brownish silty muds. In the Central 

Deep Basin site 453, the whole 100 first cmbsf had a diatom influence in the silty mud 

lithology of the core. The rest of the core was silty muds until 273 − 300 cmbsf which was 

silty marl until 430 cmbsf that was composed of silty mud again. Southern Slope Area sites 

486 and 488 lithology was featureless olive grey silty mud changing color to brownish grey or 

greenish grey along the core.  

 

7.3.2. Geochemistry of sediments  

The sites 363, 389 and 486 were selected for detailed depth profile analyses of total 

carbon (TC), total organic carbon (TOC) and bulk organic carbon stable isotopic composition. 

Of all the measured sites, the Shelf site 363 had the highest organic carbon content with 

mean TOC values of 1.2 % (Figure 7.2). At this site, TOC values decreased with depth 

gradually from 1.7 % at 10 cmbsf to 0.9 % at 415 cmbsf and a pronounced decrease to 0.2 % 

at 460 cmbsf was observed. The Central Deep Basin site 389 and the Southern Slope site 486 

contained similar amounts of TOC around 0.5 % but no trend with depth. TC values 

demonstrated an important contribution of carbonates in the Central Deep Basin site 389, 

especially in layers deeper than 160 cmbsf and in the Shelf site 363 at its deepest sediment 

point at 460 cmbsf.  

Stable isotope values of organic carbon through depth profiles of the sediment 

revealed values lighter than -24 ‰ in all cases. Shelf site 363 δ13Corg values were on 

average -25 ‰, and became lighter in sediments deeper than 400 cmbsf. Both Central Deep 

Basin and Southern Slope sites showed lighter overall δ13Corg values compared to the Shelf. 

Central Deep Basin site 3 9 showed δ13 Corg values of -2  ‰ which decreased to -31 ‰ by 
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130 cmbsf and increased to -24 ‰ at 400 cmbsf. In the Southern Slope site 4 6 δ13C values 

were -29 ‰ and became lighter with depth.  

The solid phase chemistry of major sediment components showed remarkably high 

contents of manganese oxide, which were one order of magnitude higher in near-surface 

sediments from 40 − 63 cmbsf compared to deeper sediments at the Central Deep Basin 

Area site 389. Total sulfur (TS) values increased with depth for the Shelf site 363 peaking at 

200 cmbsf and prominently decreasing in sediments deeper than 400 cmbsf. TS values at the 

Central Deep Basin site 389 were the lowest measured in all cores with mean values of 

0.15 % and showed no clear trend. TS values at the Southern Slope site 486 were patchy. 

  

Figure 7.2: Depth profiles of carbon (TOC – total organic carbon, TC – total carbon) and sulfur (TS – 

total sulfur) content (wt %) and carbon isotopic composition (‰ vs. VPDB) at three selected sites. 

 

7.3.3. Porewater geochemistry 

Depth-dependent porewater concentrations of sodium (Na+), chloride (Cl-) (data not 

shown for Na+ and Cl-), potassium (K+), magnesium (Mg2+), sulfate (SO4
2-), ferrous iron (Fe2+) 

and manganese (Mn2+) (Figure 7.3) were measured for all sites in the selected areas. Na+ and 
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Cl- concentrations were stable with increasing depth for all sites with mean values of 

461 mM ± 10 mM and 534 mM ± 13 mM, respectively. K+ concentrations were around 

10 mM in near-surface samples from all sites and decreased by 1 − 2 mM with increasing 

depth. Mg2+ concentrations were 45 − 50 mM near the surface in all sites. While in some 

samples Mg2+ concentrations decreased with depth, in other sites Mg2+ concentrations were 

stable. Major decreases in Mg2+ with increasing depth were observed for the Shelf site 363 

and the Central Deep Basin site 453.  

Near-surface sediment concentrations of SO4
2- of 25 − 27 mM gradually declined with 

increasing depth for all sites except the Central Deep Basin sites 389 and 391. Shelf 

sediments showed a gradual decrease of SO4
2- concentrations in the first 225 cm of the 

profiles. Southern Slope SO4
2- depth profiles showed slighter but steadier SO4

2- decreases 

with depth compared to Shelf SO4
2- depth profiles. Only the Central Deep Basin site 453 

showed a strong decrease in SO4
2- , reaching concentrations close to depletion at 450 cmbsf.  

Fe2+ concentration profiles differed substantially among the different study areas. Shelf 

depth profiles showed considerably increased Fe2+ concentrations at the deepest measured 

core sections. Fe2+ profiles in the Central Deep Basin sites increased slightly with depth 

reaching levels of about 20 µM at about 225 − 275 cmbsf. However, single measurements 

reached highest profile Fe2+ concentrations in samples from sites 389 and 391 at depths of 

75 and 175 cmbsf, respectively.  

The Southern Slope Area showed near the surface Fe2+ concentrations of 28 µM and 

47 µM for sites 486 and 488, respectively, subsequently decreasing with depth down to 

275 cmbsf. In deeper sediment layers, Fe2+ concentrations increased at site 486 while it 

further decreased at site 488. Similarly, Mn2+ concentration profiles showed different trends 

among the three study areas. Shelf sediment Mn2+ concentration profiles slightly increased 

with depth. Central Deep Basin sites 389 and 391 sediment profiles showed pronounced 

increased concentrations between 75 to 175 cmbsf, decreasing to 20 µM at 275 cmbsf which 

remained steady with depth. Site 453 showed a gradual increase in Mn2+ with depth 

reaching 20 µM at 375 cmbsf. In the Southern Slope, Mn2+ depth profiles for site 486 showed 

stable concentrations of 20 µM. Site 488 depth profiles decreased from 50 µM to 20 µM at 

its deepest section.  

Concentrations of dissolved methane in porewater generally were low, ranging 

between 0.05 and 0.1 mM at the sediment surface, then slightly increasing to 0.1 to 0.3 mM 
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in deeper parts of the cores, and finally decreasing at the bottom of the cores (Figure 7.3). 

The isotopic composition of methane and CO2 in the porewater was between -62 to -7  ‰ 

and -18 to -21 ‰, respectively, indicating a biogenic origin of the gases. 

 

 

  

 

Figure 7.3 (continued on next page) 
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Figure 7.3: Depth profiles of major porewater constituents, for the Shelf Area (left), the Central Deep 

Basin Area (middle), and the Southern Slope Area (right).  
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7.3.4. Potential microbial activities in sediment microcosms 

Sediments from the sites 363, 389 and 486 collected at various depths were used for 

the setup of microcosms under diverse cultivation conditions and incubated for up to 160 

days to determine potential rates of selected activities, and to study the potential of 

indigenous microorganisms to react to a range of added substrates.  

The potential for sulfate-reduction (SRR) without additional carbon sources was 

detected in all microcosms inoculated with Shelf site 363 and Southern Slope site 486 

sediments, while Central Deep Basin site 389 microcosms showed no sulfide production. In 

both cores the SRR were highest in surface samples and decreased with increasing sediment 

depths. At site 363 the SRR decreased from 2.38 ± 0.59 at the top to 

0.84 ± 0.28 µmol day-1 gdw
-1 at the bottom of the core, at site 389 from 1.69 ± 1.25 to 

0.32 ± 0.27 µmol day-1 gdw
-1, respectively. In all sediment samples from the three cores the 

addition of carbon sources in the form of the monomer and polymer mix led to an increase 

of the SRR by a factor of roughly 5-7 in surface and 2-3 in bottom samples.  

Also, the addition of hexadecanoic acid and hexadecane stimulated SRR in the surface 

samples of cores 363 and 389. The SRR increased after hexadecane addition to 4.86 ± 0.47 

and 3.24 ± 0.55 µmol day-1 gdw
-1, respectively. The stimulation after the addition of 

hexadecanoic acid was in a similar range. However, no increased sulfate-reduction was 

observed with ethylbenzene or methyl-naphthalene. 

From all microcosms, only those inoculated with Shelf sediments from site 363 at 

depths 6 − 14 cmbsf showed methanogenic activity without the addition of C-sources. 

Potential methane production rates without sulfate reached 0.75 ± 0.26 nmol day-1 gdw
-1. The 

methane production rates in microcosms containing an initial concentration of 20 mM of 

sulfate were around 0.47 ± 0.16 nmol day-1 gdw
-1. Microcosms amended with the polymer 

and the monomer mix as substrates were monitored over a time period of up to 350 days. If 

amended with sulfate, methane production rates in these microcosms were 3.26 ± 0.96 and 

6.61 ± 2.35 nmol day-1 gdw
-1 for the polymer and the monomer mix, respectively. Without 

sulfate, the rates were 3.24 ± 0.91 and 7.47 ± 2.59 nmol day-1 gdw
-1 for the polymer and the 

monomer mix.  

To evaluate the potential of Baffin Bay sediment microorganisms to use hydrocarbons 

as an electron donor for methanogenesis, microcosms were amended with hexadecane, 

hexadecanoic acid, ethylbenzene, and methyl-naphthalene, and monitored over a time 
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period of up to 350 days. Again, only microcosms inoculated with Shelf site 363 sediments 

from the depths of 6 – 14 cmbsf showed methane production. Methane production rates in 

microcosms amended with sulfate were 2.71 and 3.7 nmol day-1 gdw
-1 for hexadecane and for 

hexadecanoic acid, respectively. Those microcosms without sulfate showed methane 

productions rates of 2.17 and 1.87 nmol day-1 gdw
-1 for hexadecane and hexadecanoic acid, 

respectively. No increased methanogenesis was observed with ethylbenzene or 

methylnaphthalene. 

Neither aerobic nor anaerobic methane oxidation activity was found in any of the 

tested sediment samples from these three cores. 

 

7.3.5. Quantification of Bacteria and Archaea 

The depth profiles for bacterial 16S rRNA gene copy numbers showed clear differences 

among the three study areas (Figure 7.4). In the Shelf Area, bacterial 16S rRNA gene copy 

numbers were steady with depth showing around 107 copies gram-1 of sediment. Only core 

sections deeper than 300 cmbsf for site 371 and deeper than 425 cmbsf for site 363 showed 

decreased copy numbers. The uppermost sediment depth of Shelf site 371 showed the 

highest bacterial 16S rRNA gene copy numbers of the Shelf sites with 6 x 107 g-1. In the 

Central Deep Basin Area, total Bacteria copy numbers in samples from 25 cmbsf were 6 x 107 

to 4 x 107 copies g-1 for sites 389 and 391, respectively, and drastically decreased with depths 

to 105 − 104 g-1 at 175 cmbsf. Central Deep Basin site 453 showed a different pattern than 

sites 389 and 391, with 16S rRNA gene copy numbers of 5 x 106 g-1 at 25 cmbsf which only 

slightly decreased with depth reaching 106 g-1 at 425 cmbsf. In the Southern Slope Area, 

highest 16S rRNA gene copy numbers were not observed at the shallowest depths like in the 

Shelf and Central Deep Basin areas but in samples from 125 cmbsf at site 486 with 

8 x 107 g -1. Sediment of site 486 deeper than 125 cmbsf had 107 g-1 16S rRNA gene copies, 

which decreased in samples deeper than 375 cmbsf. Southern Slope site 488 showed near 

surface 16S rRNA gene copy numbers of 3 x 106 g-1, which increased to 6 x 106 copies g-1 by 

75 cmbsf to subsequently decrease for 105 and remain around 106 copies g-1 for the rest of 

the depth profile.  

Archaeal 16S rRNA gene Q-PCR analysis revealed a distribution of Archaea in all 

sediment samples similar to those of Bacteria (Figure 7.4). In the Shelf Area, archaeal 16S 

rRNA gene copy numbers were about 107 g-1 of sediment and decreased at the same core 
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depths where bacterial 16S rRNA gene copy numbers also declined. In the Central Deep 

Basin Area, highest archaeal 16S rRNA gene copy numbers of 108 g-1 were observed at site 

389 at 25 cmbsf and declined to 107 g-1 at 75 cmbsf and 106 g-1 at 125 cmbsf. Central Deep 

Basin’s site 391 had highest Archaea 16S rRNA gene copy numbers of 5 x 106 g-1 at 25 cmbsf 

and lowered dramatically down in depths of 125 cmbsf and deeper core sections. Archaea in 

Central Deep Basin site 453 decreased from about 106 to 5 x 104 over the measured core.  

In general, Archaea were very rare in layers of the Central Deep Basin deeper than 

175 cmbsf and often below the detection limit in samples from sites 389 and 391. In the 

Southern Slope Area, lower numbers of Archaea than Bacteria were found in all depth 

samples. In particular, site 488 showed a strong decrease of more than an order of 

magnitude in 125 cmbsf and deeper sediments.  

 

 

Figure 7.4: Depth profiles of 16S rRNA gene copy numbers per gram of sediment (wet weight) of 

Bacteria and Archaea for each site under investigation. 
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7.3.6. Quantification of functional genes and/or physiological groups  

Quantification based on the 16S rRNA gene for the bacterial family of the 

Geobacteraceae often able to use Fe3+ and Mn4+ as terminal electron acceptors (e.g. 

Geobacter spp., Desulfuromonas spp.), was used as a proxy for these well-known metal 

reducers, which may play an important role in the sediments. The distribution of 

Geobacteraceae 16S rRNA gene copy numbers (Figure 7.5) followed a similar trend like the 

numbers of total Bacteria.  

At the shelf sites 363 and 371 16S rRNA gene copy numbers were 106 g-1 along the 

depth profiles except in deepest core sections of the profile which showed a decline in 

numbers. Geobacteraceae 16S rRNA gene copy numbers at the Central Deep Basin sites 389 

and 391 were highest in the shallowest measured depth of 25 cmbsf, with about 107 g-1 for 

site 389 and 106 g-1 for site 391 but were below detection limits from 125 cmbsf downwards. 

Geobacteraceae 16S rRNA gene copy numbers in site 453 were very low throughout the 

core. Southern Slope sediments showed very few Geobacteraceae 16S rRNA gene copy 

numbers for both sites. The depth profile of site 486 showed stable copy numbers of 105 g-1 

and site 488 revealed numbers lower than 105 g-1.  

Q-PCR of the functional genes dsrA and mcrA was performed to quantify the key 

functional genes of the environmentally important enzymes dissimilatory sulfite 

(bi) -reductase (dsrA) and the α-subunit of the methyl coenzyme M reductase (mcrA). The 

two enzymes are used as proxies to quantify the physiologically important groups of 

prokaryotic sulfate-reducers and methanogens, respectively.  

In addition, the mcrA of the anaerobic methanotrophs ANME-1 and ANME-2 were 

specifically targeted and quantified. dsrA copy numbers in Shelf sediments were about 

108 g -1 along the depth profile except in deepest core sections which showed 107 – 106 g-1. 

Shelf sediments had the highest dsrA copy numbers of all areas. Shelf site 371 showed the 

maximum dsrA copy numbers with 109 g-1 at 25 cmbsf. In the Central Deep Basin site 389 

dsrA copy numbers were only detected in the upper 125 cmbsf and with values of 108 g-1 at 

25 cmbsf and decreased to 107 g-1 at 75 cmbsf and further to 106 g-1 at 125 cmbsf. Central 

Deep Basin site 391 showed only amplification in the first 75 cmbsf and dsrA copy numbers 

were around 107 g-1. The Central Deep Basin site 453 showed overall stable dsrA copy 

numbers with depth of approximately 106 g-1. At the Southern Slope site 486, dsrA copy 

numbers were around 107 g-1 and stable within the depth profile. At site 488 they were 
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about 106 g-1 for the uppermost 75 cmbsf and decreased downwards with dsrA copy 

numbers between 105 – 106 g-1.  

The mcrA copy numbers were in general very low in all sediments from all areas. Only 

the Central Deep Basin site 389 at its uppermost depth showed mcrA copy numbers higher 

than 105 g-1. ANME-1 and ANME-2 mcrA genes were not detected by Q-PCR in any of the 

samples. 

 

 

 

Figure 7.5. Depth profiles of copy numbers of the 16S rRNA gene of the Geobacteraceae family and 

the functional genes dsrA and mcrA of sulfate-reducing and methane producing microorganisms, 

respectively.  
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7.4. Discussion 

The Baffin Bay is a remote Arctic area ice-covered most of the year and permanently 

cold sediments, about which nothing was yet known about the sediment microbiology. Here, 

we present microbial community and biogeochemical data to survey element cycling in 

different sites of the Baffin Bay sediments. We could show a major role of sulfur and metal 

cycling and a minor role of the methane cycle. Interestingly, depth profiles of Archaea and 

Bacteria showed different trends depending on the location within the Baffin Bay. The 

Greenlandic shelf sediments contain vital microbial communities adapted to their specific 

environmental conditions and a range of different substrates and electron acceptors. 

 

7.4.1. Distribution of Bacteria and Archaea  

Overall, in the analyzed sites of the Baffin Bay, archaeal and bacterial 16S rRNA gene 

copy numbers were similar in each specific site showing no clear predominance of either 

Archaea or Bacteria. Similar numbers of Archaea and Bacteria at a particular site were 

previously found by numerous Q-PCR-based studies from marine sediments worldwide e.g. 

sediments from the Porcupine Seabight at the continental margin of Ireland (Webster et al., 

2009), in various sediments from the eastern Juan de la Fuca ridge flank (Engelen et al., 

2008), in sediments from the forearc basin at the subduction zone along the southeast off 

Sumatra (Schippers et al., 2010) and in sediments from the Black Sea and the coast off 

Namibia (Schippers et al., 2012). Our results with arctic sediments support the hypothesis 

that generally both prokaryotic domains inhabit marine sediments in similar abundances. 

This is in agreement with Q-PCR data for surface sediments from the Peru continental 

margin and the Cascadia Margin, but in contrast to deeper sediment layers at these sites, 

where Bacteria have been observed as the predominant domain inhabiting the subsurface 

(Inagaki et al., 2006b; Schippers and Neretin, 2006).  

Overall, archaeal and bacterial numbers decreased with depth in Baffin Bay sediments. 

This decline differed among the three study areas and was exponential for the Central Deep 

Basin Area sites 389 and 391. A similar observation was reported by Sahm et al. (1999), who 

found decreasing cell numbers down to 30 cm depth in sediment cores collected off 

Svalbard. This is a common trend in marine sediments (Parkes et al., 1994; Parkes et al., 

2000; Schippers and Neretin, 2006) which has been related to a decrease in sediment 
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porosity and progressive mineralization of organic matter with increasing depth (Parkes et 

al., 2000; Rebata-Landa and Santamarina, 2006).  

In our study, this decline in numbers was somehow also associated with the sediment 

characteristics for Shelf sediments and in Central Deep Basin sites 389 and 391. In these 

latter sites, core sections deeper than 175 cmbsf, which corresponded with sandy and silty 

mud sediments, showed very low cell numbers and near-surface sediments of diatomaceous 

silty muds showed the highest cell numbers of all profiles.  

Generally, the total numbers of microorganisms determined in our study was in 

accordance with results from other studies on Arctic surface sediments collected off 

Svalbard, using microscopic techniques, like DAPI cell counts and FISH, which had similar 

contents of organic matter as in the Baffin Bay (Hubert et al., 2010; Ravenschlag et al., 2001; 

Sahm et al., 1999). 

 

7.4.2. Mn and Fe as important terminal electron acceptors in the Central Deep 

Basin  

In marine sediments, the mineralization of organic matter follows a sequence of 

oxidants where oxygen is firstly consumed as it yields the highest energy (Froelich et al., 

1979). Here, we did not measure oxygen as we focused on the anaerobic mineralization of 

the organic matter. Once oxygen is depleted, Mn+4 and Fe+3 become preferable oxidants for 

the carbon mineralization (D'Hondt et al., 2004; Froelich et al., 1979). In our study, pore 

water profiles showed the occurrence of the Mn+4 and Fe+3-reduction pathways for the 

carbon mineralization in the Baffin Bay.  

This was most pronounced for the Central Deep Basin sites 389 and 391 sediments. 

Furthermore, high abundances of Geobacteraceae in the Baffin Bay sediments indicated the 

presence of metal reducing microbial key players. Previous studies (Nickel et al., 2008; 

Vandieken et al., 2006) showed that Mn+4 and Fe+3-reduction is the major pathways for 

carbon mineralization (up to 98 % of the anaerobic organic matter oxidation) in Arctic near-

surface sediments, when low organic matter content due to extended seasonally periods of 

sea cover and the presence of Mn+4 and Fe+3 occurs.  

However, Geobacteraceae abundances could not be correlated to Mn+2 and Fe+2 

porewater profiles. Similarly, in a previous study in sediments from Sumatra, 

Geobacteraceae abundances showed no correlation with metal pore water profiles 
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(Schippers et al., 2010), indicating that other metal reducers not targeted by the primers 

used in the present study, apart from the genera Geobacter or Desulfuromonas, may be 

involved.  

 

7.4.3. Sulfate as main terminal electron acceptor in Shelf and Southern Slope 

sediments 

Sulfate is a key terminal electron acceptor for the mineralization of organic matter in 

marine sediments due to its high concentration in seawater (D'Hondt et al., 2002; Froelich et 

al., 1979; Jørgensen et al., 2001; Muyzer and Stams, 2008; Schulz and Zabel, 2006). Our pore 

water depth profiles suggested sulfate-reduction as a major pathway for the carbon 

mineralization in the Shelf, Southern Slope and Central Deep Basin 453 sites. Sulfate 

concentrations decrease at the majority of the sites, especially at 453, where it was almost 

completely reduced towards the bottom of the core. Previous pore water studies at the 

Baffin Bay ODP site 645 showed pore water sulfate concentrations which depleted only at 

35 mbsf (Srivastava et al., 1989). 

Correspondingly, potential rates of sulfate-reduction without substrate addition, i.e., 

based on substrates available in the original sediments, were highest in samples from the 

sites with highest organic matter content. Potential rates of methane production were 

significantly lower than rates of sulfate-reduction, indicating that the latter is the dominant 

process for mineralization in these sediments.  

Fitting to this, only very low and steady methane concentrations were found at all 

sites, indicating that the sulfate methane transition zone (SMTZ) was deeper than the 

bottom of the cores. The methane concentrations observed were comparable to values 

found in other normal (i.e., without underlying strong sources like gas hydrates or mud 

volcanoes) marine sediments, like in the Baltic or North Sea (Iversen and Jørgensen, 1985). 

Differences in SRR - or microbial activity more generally - between different sites and 

depths in marine sediments may be explained by a decreasing reactivity and availability of 

sediment organic matter during burial (Hubert et al., 2010; Westrich and Berner, 1984). It 

has been demonstrated that in situ sulfate-reduction in Arctic sediments is limited by organic 

matter availability (Arnosti and Jørgensen, 2006; Arnosti et al., 1998; Kostka et al., 1999; 

Vandieken et al., 2006). Despite permanently cold temperatures (-2 to +4°C), in situ 

processes in Svalbard sediments are not temperature limited, i.e. metabolic rates are similar 
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to those measured in warmer shelf sediments at lower latitudes (Arnosti et al., 1998; Kostka 

et al., 1999; Hubert et al., 2009 & 2010). 

Such deep SMTZ in Baffin Bay sediments might be a consequence of the low to 

intermediate TOC content in its sediments caused by seasonal ice-cover in arctic waters 

restricting the marine primary production to the summer months. This marine organic 

matter produced in the photic zone might be quickly mineralized in the water column as 

sediment carbon isotope values indicated a predominantly terrestrial influence of the 

organic matter for all our studied sites (values of -25 ‰ have been reported for terrestrial 

organic matter (Sackett, 1964)). Similarly, Baffin Bay ODP site 645 carbon isotope data 

reported a terrestrial origin of its organic matter (Srivastava et al., 1989). Moreover, the 

higher TOC content in the shelf sediments compared the other areas indicated that the 

vicinity to the shore of Greenland contributes to an increased supply of organic matter. The 

isotopic data implies that such a terrestrial runoff of organic matter most likely accounts for 

the majority of the organic matter reaching the seabed in the Baffin Bay. 

The distribution of sulfate-reducing microorganisms has previously been studied to 

elucidate the importance of sulfate-reduction in both the carbon and sulfur cycles in Arctic 

environments off Svalbard (D'Hondt et al., 2002; Jørgensen, 1982; Muyzer and Stams, 2008). 

Using FISH, it has been shown in these studies that SRB accounted for up to 70 % of the 

microorganisms in surface sediments down to 30 cm depth.  

Here, we used the dsrA gene as proxy for the quantification of sulfate-reducing 

microorganisms. The disulfite reductase (Dsr) is the enzyme catalyzing the last step in 

sulfate-reduction (Wagner et al., 1998). Due to its presence in all sulfate-reducing 

microorganisms, the dsrA gene has been used as a biomarker to assess the presence of 

sulfate-reducers in marine sediments (Kondo et al., 2004). The generally high abundance of 

dsrA in all sediment samples revealed an important role of sulfate-reducing microorganisms 

in the microbial communities, especially in Shelf sediments and Southern Slope site 486.  

This correlates well with the sulfate concentrations in porewater and observed TOC 

depth profiles. Furthermore, substantial potential sulfate-reduction rates were detected in 

sediment incubations from sites 363 and 389, and to a lesser extent in Southern Slope 486 

sediments. These observations correlate with higher abundances of dsrA gene copy 

numbers, indicating an active in situ community of sulfate-reducing microorganisms.  
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Central Deep Basin site 453 did not show significantly higher dsrA numbers compared 

to the abundances found at the other sites, even though decreasing sulfate concentrations 

in the porewater point to the occurrence of sulfate-reduction as an important 

biogeochemical process in its sediments. Similarly, relatively low dsrA numbers have been 

previously observed in sediments despite the fact that sulfate depth profiles showed 

decreased sulfate concentrations, such as in the Peru margin ODP Leg 201 (D'Hondt et al., 

2004; Inagaki et al., 2006b; Schippers and Neretin, 2006), the Porcupine Seabight carbonate 

mound IODP Leg 307 (Webster et al., 2009) and for microbial communities in the subsurface 

of two basins with turbidite deposition on the continental slope of the Gulf of Mexico 

(Nunoura et al., 2009). In general, dsrA numbers in the Baffin Bay are higher than previously 

reported for other habitats such as tidal flats in the German Wadden Sea (Wilms et al., 

2007), sediments from the Peru continental margin ODP site 1227 and similarly abundant to 

the near-surface Peru margin SO147 site 2MC (Blazejak and Schippers, 2011; Schippers and 

Neretin, 2006).  

 

7.4.4. Minor role of the methane cycle in the Baffin Bay 

The coenzyme M methyl reductase gene (mcrA), encoding for the key enzyme of 

methanogenesis and methanotrophy, was used here as a proxy to quantify abundances of 

methanogenic Archaea in the sediment depth profiles low abundances in the Baffin Bay. The 

low abundances of mcrA genes correlated with the low concentrations of methane in the 

porewater depth profiles. Higher mcrA gene copy numbers, which are stable with depth, 

were found in the Shelf sediments compared to the other study areas, indicating that 

methanogens are present even though with a relatively low abundance. This methanogenic 

community is alive as evidenced by the production of methane in the upper-most Shelf 

sediment microcosms. The still high concentrations of sulfate together with the 

simultaneous occurrence of high cell numbers of SRB and methanogens in the top sediment 

layers indicates the availability of non-competitive substrates, like methyl-amines or methyl-

thiols (Oremland et al., 1982), for the latter group. In these layers, usually SRB outcompete 

methanogens due to their much lower threshold for e.g. acetate or hydrogen (Oremland et 

al., 1982). Only in deeper sediment layers depleted of sulfate, these substrates then become 

available for methanogens. Interestingly, the microbial communities inhabiting Shelf 

sediments showed the potential for aliphatic hydrocarbon (hexadecane, hexadecanoic acid) 



216 

conversion into methane but not for aromatic hydrocarbons. This is of interest in case that 

an oil spill occurs in these pristine sediments. Then the autochthonous microbial 

communities could potentially contribute to oil biodegradation and bioremediation of 

impacted areas.  

Neither aerobic nor sulfate-dependent anaerobic methane oxidation activity was 

observed in the microcosm experiments. Congruent with the latter, also the Q-PCR assay 

targeting the mcrA gene of anaerobic methanotrophic Archaea (ANME) did not give 

evidence for the presence of respective AOM-communities. Also the stable carbon isotopic 

signature of CH4 and CO2 in the porewater gave no indication for methane oxidation. 

Altogether, the low mcrA numbers, the undetected ANME-1 and ANME-2 methyl 

coenzyme M reductase gene copies, and the low methane concentrations in the porewater 

indicate only a minor a role of methanogenesis and methanotrophy, and thus a minor role of 

the methane cycle in the Baffin Bay. This has also been observed for other marine sites 

limited in nutrient content (Krüger et al., 2005b). 

In conclusion, this comparative study of three different areas within the Baffin Bay 

revealed that the Shelf sediments are the most active and genetically diverse, which 

correlate with higher TOC values thus emphasizing the heterotrophic nature of the microbial 

communities in the subsurface. Knowledge on the element cycles in its sediments and the 

key microbial players driving them is of great relevance for the future investigation and 

understanding of important global elemental cycles. In the future, a more exhaustive study 

on the microbial community structure and diversity with high throughput sequencing 

analysis, for understanding the changes in marine sediment microbial communities across 

depth and space within the different areas of the Baffin Bay will be conducted. 
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8. Final discussion 

The focus of this thesis is to show whether and how methanogenic degradation 

processes of hydrocarbons are performed in different ecosystems. This work makes a 

comparison between various ecosystems and their inhabiting hydrocarbon-degrading 

microbial communities distinguished by specific hydrocarbon degradation mechanisms and 

physiological requirements. 

 

 

8.1. Methanogenic hydrocarbon degradation processes in coal-rich 

ecosystems 

The knowledge about anaerobic hydrocarbon biodegradation, indigenous 

methanogenic processes and microbial community composition in lignite-containing 

coal-bearing basins in Germany (e.g. Beckmann et al., 2011a; Freudenberg et al., 1996; 

Krüger et al., 2008; Thielemann et al., 2004) as well as worldwide (e.g. Dawson et al., 2012; 

Flores et al., 2008; Klein et al., 2008; Shimizu et al., 2007; Strąpoć et al., 2011a) is still scarce. 

Chapter 3 complemented very well the previous work of Thielemann et al. (2000), both 

studies focused on the lignite deposits in the Lower Rhine Embayment, next to the Ruhr 

River Basin, one of the most important mining areas in Germany. Thielemann et al. (2000) 

calculated methane emission rates from biogenic and thermogenic methane, and 

documented processes of microbial methane consumption and production as well as abiotic 

factors which are influence the microbial processes. In the present study, the isotopic 

composition of CH4 and CO2 indicated microbial methane production by acetoclastic 

methanogenesis. Chapter 3 gives first evidence of the high indigenous microbial diversity of 

the coal-associated aquifer system and the adjacent ligniteous coal-bearing sediments. With 

the detailed data set of geochemical analyses, cultivation-based and molecular biological 

approaches, it was shown that indigenous microbial communities in both ecosystems 

comprised fermentative, sulfate-, nitrate-, metal-reducing and acetogenic bacteria, as well 

as acetoclastic and hydrogenotrophic methanogenic archaea. Additionally, relatives 

affiliated to uncultured Crenarchaeota belonging to the Thermoprotei subgroup were found 

in the ligniteous coal-bearing sediments. Similar results showed a study from Krüger et al. 

(2008) and Beckmann et al. (2011a); (2011b) where both acetoclastic and hydrogenotrophic 
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methanogens as well as uncultured Crenarchaeota were detected in incubations amended 

with mine timber and hard coal.  

The diverse microbial communities enriched from ligniteous coal-bearing sediments 

were shown to be are able to degrade in vitro coal and selected hydrocarbons to methane as 

the final product. Hitherto, only a limited number of enrichment studies demonstrated the 

presence of methanogenic archaea and the direct bioconversion of coal to methane (Green 

et al., 2008; Harris et al., 2008; Krüger et al., 2008; Penner et al., 2010; Thielemann et al., 

2004; Ünal et al., 2012; Wawrik et al., 2012). For example, living populations of 

hydrogenotrophic archaea were reported for coal-mine water collected in the Ruhr River 

Basin during incubation with hydrogen and fatty acids (Thielemann et al. 2004). Additionally, 

Harris et al. (2008) incubated low-rank coal under methanogenic conditions and found 

hydrogenotrophic methanogenesis as dominant methanogenic pathway, as well. 

Low-rank coal like lignite and subbituminous coals found in the Lower Rhine 

Embayment and the Ruhr River Basin are characterized by an high moisture content and 

high amounts of low-molecular-weight hydrocarbons which are favorable degradable by 

microorganisms. Thus, these low-rank coals have high potential for coalbed methane 

exploration (Strąpoć et al., 2011b). A more profound understanding about indigenous 

coal-associated microbial consortia and methanogenesis processes could help to control and 

modify in situ conditions in order to enhance microbial methane production resulting in 

increased methane recovery on economic levels. 

The here detected microbial community compositions in both groundwater and 

sediments, and their ability to degrade coal and selected single hydrocarbons substantially 

increases today´s knowledge about the presence and activity of hydrocarbon-degrading 

microbial communities in situ in coal-associated aquifer systems and the adjacent ligniteous 

coal-bearing sediments. 

 

 

8.2. Insights into microbial biodegradation processes in a 

biodegraded oil reservoir 

Oil field microorganisms are subjects of investigation since the beginning of 

commercial oil production. These investigations focus on the understanding of the 

transformation of petroleum hydrocarbons by subsurface microbial communities. Todays it 
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is known that the world’s petroleum inventory is dominated by deposits which have been 

degraded microbially over geological time scales (Roadifer, 1987). Because of that, studies of 

microbial hydrocarbon degradation strategies are required for the development of microbial 

technologies for enhanced oil recovery, for countering the effects of biocorrosion of the 

metal oil field equipment, and to prevent reservoir souring (Nazina et al., 2012). 

Furthermore, the knowledge of the activity of hydrocarbon-degrading microbial 

communities and their limits in the different anaerobic ecosystems is central to 

understanding the global carbon cycle and important processes such as organic matter 

preservation and subsequent oil formation (Head et al., 2010). Despite of considerably 

advanced understanding of biodegraded petroleum reservoirs in recent years, the 

knowledge of the factors which control in-reservoir oil biodegradation, and therefore, the 

determining microbial processes that led to the biodegradation of crude oil hydrocarbons 

remains far from being complete (Head et al., 2010).  

The results of this thesis get in line with the systematic comparison of the microbial 

communities associated with biodegraded and non-biodegraded petroleum reservoirs 

examined in recent years by researchers worldwide. 

The Dagang oil field complex located in the Huanghua depression of the Bohai Bay 

Basin is characterized by mesophilic to thermophilic conditions, relatively low sulfate 

concentrations, and heavily degraded crude oil. This heavily degraded oil field is an example 

for the high potential of microbial consortia inhabiting such extreme environment to 

degrade n-alkanes, aromatic fractions of crude oil, specifically alkylbenzenes, alkyltoluenes 

and light polycyclic aromatic hydrocarbons (PAH), and to use these as energy sources for 

their survival growth. In this study quantitative analysis of 16S rRNA genes revealed the 

presence of large numbers of Bacteria and Archaea, mostly sulfate-reducers and 

methanogenic archaea. Thermophilic, hydrogenotrophic methanogens related to 

Methanobacterium and relatives of Methanosarcina were detected in predominant amounts 

in the Dagang oil field. These phylogenetic results are complemented with very light 

δ13C-values of CH4 and CO2 indicating that the large methane accumulations originated from 

hydrogenotrophic methanogenesis.   
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8.3. Microbial biodegradation of aliphatic and aromatic 

hydrocarbons under methanogenic conditions 

This work shows the successful enrichment of a broad range of novel anaerobic 

microbial communities growing under methanogenic conditions, from samples of different 

ecosystems, independent of previous hydrocarbon exposure. These enrichment cultures are 

amended with selected alkanes and aromatic hydrocarbons as model for oil-related 

compounds. They are the basis for investigations of the special physiological characteristics, 

e.g. possible limiting and stimulating factors, and the impact of varying environmental 

conditions on the conversion of hydrocarbons to methane.  

The enrichment cultures obtained from eutrophic lake, freshwater, brackish water, 

mangroves sediments and from sediments of a terrestrial mud volcano were amended with 

hexadecane. High methane production rates and stable carbon and hydrogen isotopic 

signatures of methane, carbon dioxide and water demonstrated the microbial 

transformation of U-13C-hexadecane to CH4 and CO2 in the methanogenic enrichment 

cultures. The physiological characterization of anaerobic microbial communities in the 

established enrichment cultures showed a broad tolerance compared to environmental 

parameters such as salinity, temperature, pressure and the effect of electron acceptors. It 

was found that low sulfate and elevated trace element concentrations stimulates the 

methanogenesis. Further, phylogenetic examinations showed equally high abundances of 

Bacteria and Archaea and a broad diversity of sulfate-reducing bacteria, methanogenic 

archaea and uncultured Thermoplasmatales and Thaumarchaeota. The abundance and 

widespread distribution of uncultured Archaea such as Thaumarchaeota in the enrichments 

of the here studied environments indicate that they play important, still unknown roles in 

the global ecosystem (Dawson et al., 2006). 

The comparison of the diversity of the microorganisms between the enrichment 

cultures on different hydrocarbons showed varying abundances of the detected 

microorganisms. Enrichment cultures amended with hexadecane mostly showed the 

presence of both hydrogenotrophic and acetoclastic methanogens, while the latter 

dominates. Furthermore, the isotopic discrimination for carbon and hydrogen between 

substrate and methane was calculated, suggesting a coupling of acetoclastic and 

hydrogenotrophic methanogenic pathways. The isotopic signatures of carboxylic acids 

showed the highest extent of labeling during microbial degradation of U-13C-hexadecane in 
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the n-C17 fatty acid with methyl groups at C-4, presumably indicating the involvement of 

syntrophic bacteria (Syntrophus sp.).  

Additionally, more extensive physiological analyses of selected enrichment cultures 

from two different ecosystems were performed and compared, to determine possible 

limiting and stimulating factors affecting microbial hydrocarbon degradation processes. The 

impact of the addition of ferrihydrite, manganese dioxide, nitrate or sulfate as ‘competitive’ 

electron acceptors on hydrocarbon-induced methanogenesis in enrichment cultures 

obtained from hydrocarbon-contaminated harbor mud from the sea port of Zeebrugge 

(Belgium) and pristine brackish sediment from the Eckernförde Bay (Germany) were studied. 

Enrichment cultures were amended with hexadecane, ethylbenzene or naphthalene used as 

oil-related model compounds. Essential for the hexadecane-induced methanogenesis are the 

concentration and the solubility of the added electron acceptors. Both ferrihydrite and 

manganese dioxide are insoluble and stimulated the hexadecane-dependent 

methanogenesis. It could be shown that ferrihydrite triggered the growth of 

Methanosarcina-related methanogens. Furthermore, nitrate in general and high 

concentrations of sulfate (>5 mM) inhibited methanogenic conversion of hexadecane and 

ethylbenzene to methane, while lower concentrations of sulfate (<5 mM) or trivalent iron 

accelerated methanogenesis in aliphatic and aromatic hydrocarbon-degrading communities. 

In the naphthalene-degrading enrichment cultures amended with sulfate or nitrate as 

electron acceptor the methanogenesis played a minor role. Thus, methanogens themselves 

might be directly involved in the degradation of hexadecane and ethylbenzene, but not of 

naphthalene degradation. Additionally, methane was removed by anaerobic methanotrophy 

as an accompanying process. It was demonstrated that the enhanced methanogenic alkane 

degradation is feasible by the addition of ferrihydrite or sulfate in different geological 

settings. Metal-reducing Geobacteraceae and potential sulfate-reducers as well as 

Methanosarcina could be stimulated.  

The study of anaerobic microorganism that degrade aliphatic and aromatic 

hydrocarbons is of interest for the long-term fate of hydrocarbons as globally abundant 

forms of organic carbon in anoxic sediments, petroleum reservoirs and other subsurface 

environments, also for hydrocarbon-contaminated deep aquifers, groundwater and the sea 

floor after oil spills, for the biogeochemical cycling of methane, and for very reactive 

intermediates derived from the biodegradation of hydrocarbons (Callaghan, 2013; Widdel et 
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al., 2006). The functional dynamics of microbial communities are largely responsible for the 

clean-up of hydrocarbons in the environment (Smith et al., 2013). Because of that, the 

widespread physiological characterization of hydrocarbon-degrading microbial communities 

of a given ecosystem is of special interest. The identification of metabolic pathways and the 

directly involved microorganisms lead to a greater understanding on how the microbial 

consortia are adapting and responding to environmental changes such as an abrupt 

hydrocarbon contamination event. Hence, as a future extension to the work presented in 

this thesis, selected active hexadecane-degrading enrichment cultures were used for 

continuative experiments investigating stable isotope labeling of DNA and proteins to 

identify the members of the microbial community benefiting from hydrocarbon degradation, 

and of the methanogenic key players which are directly involved in this process. Cultures 

were enriched with the substrates hexadecane, hexadecanoic acid, CO2 and acetate, all 

13C-labeled, to study the several steps of the methanogenic degradation pathways. The 

results of this experiment will be published soon. 

 

Despite a considerable amount of literature on microbial hydrocarbon degradation, 

until recently knowledge about which organisms are the most important hydrocarbon 

degraders in the anoxic environment was still lacking (Head et al., 2006). The widespread 

comparison among the microbial compositions of the novel hydrocarbon-enriched anaerobic 

communities obtained from different ecosystems and their special physiological 

characteristics present in this thesis is performed for the first time. This work gives new 

insights into methanogenic degradation pathways and possible metabolites, fractionation 

factors, and the carbon flow in selected hydrocarbon-degrading communities. 

 

 

8.4. Geochemical and microbiological investigations of Northern 

Baffin Bay sediments 

Because of the extreme northern location and the fact that this region is sea-ice 

covered most of the year the Northern Baffin Bay is only marginally explored. Until today 

only few geochemical and microbiological studies have been performed (e.g. Galand et al., 

2010; Srivastava et al., 1989). This study was the first comprehensive investigation of 

sediment collected in this region. The resulting data for the geochemistry of porewater and 
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sediments along transects within the Bay as well as in several meters long sediment cores, 

and of the parallel molecular biological investigations are unique. 

The Northern Baffin Bay is a remote Arctic area restricted in primary production by 

seasonal ice cover, with presumably low sedimentation rates, carbon content and microbial 

activity in its sediments. This study focused on a biogeochemical and microbiological 

comparison of three different sediment sampling sites – the Shelf region, the Central Deep 

Basin and the Southern Slope. The Shelf sediments revealed a vital microbial community 

adapted to their specific environmental conditions based on the high organic carbon content 

from the close Greenlandic continent consists of highest numbers of Bacteria and Archaea 

related to sulfate-reducing prokaryotes and methanogens. The Central Deep Basin and 

Southern Slope sediments contained less organic carbon and overall lower microbial 

numbers. In general, all three sampling sites showed evidence for sulfate-reducing activities 

at the sediment surface because sulfate in major electron acceptor in these marine 

sediments, but low abundances of methanogenic microorganisms and low concentrations of 

methane in the sediments. Thus, methanogenesis may play only a minor role in the carbon 

cycle in the Baffin Bay. Additionally, enrichment cultures amended with Shelf sediment and 

hexadecane or hexadecanoic acid revealed a potential for microbial degradation of aliphatic 

hydrocarbons. Future investigations of microbial diversity using 16S rDNA gene analysis are 

necessary. These deep marine sediments harbor numerous novel phylogenetic lineages of 

Archaea and Bacteria which are unknown or uncultured so far. The here presented results of 

geochemistry and of quantities of microbial groups therefore fill a little but important gap in 

the global investigations of subsurface microbiology, and at the same time indicates the 

need for further research on Arctic marine sediments. 
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