Marker-trait associations for early season cold tolerance in sorghum

Von der Naturwissenschaftlichen Fakultät der

Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktorin der Gartenbauwissenschaften

Dr. rer. hort.

genehmigte Dissertation

von

M. Sc. Karin Elisabeth Fiedler

geboren am 19.04.1982 in Hannover

2014

Referent: Prof. Dr. Ralf Uptmoor

Korreferent: Prof. Dr. Hartmut Stützel

Tag der Promotion: 14.2.2014

Dedicated to my father

Abstract

Early season cold tolerance is an important breeding goal towards the establishment of sorghum as an alternative to maize for bioenergy production. Sorghum is mainly grown in the semi-arid tropics and subtropics but the adaptation to subtropical highlands gives hint for certain genetic variation in cold tolerance. To achieve high biomass yields, high and uniform emergence rates in combination with high growth rates during juvenile development are essential. The objectives were to detect marker-trait associations for parameters describing (a) the emergence process under different temperature regimes, (b) the temperature response of leaf area and dry matter growth rates and chlorophyll fluorescence and content, and (c) to verify marker-trait associations for cold tolerance during juvenile development in two F2populations. Emergence and juvenile development of a diversity set and the F2 populations were tested in growth chamber experiments under different temperature regimes. The diversity set was fingerprinted with 171 diversity array technology (DArT), 31 simplesequence repeat (SSR), and 2620 single nucleotide polymorphism (SNP) markers. SNP markers were available for the third part of the present study. F2-populations were only fingerprinted with SNP markers. Emergence parameters like onset or uniformity of emergence were derived from a piecewise linear regression model and final emergence rates were used to carry out stability analysis across different temperature regimes. Parameters, describing emergence as well as the temperature response of growth rates and photosynthesis related traits during juvenile development, were used as input traits for association mapping and quantitative trait loci (QTL) analysis. Already known QTL for emergence under low temperatures were verified on chromosome SBI-01, while promising new marker-traits associations for emergence were identified on chromosomes SBI-03, SBI-04, SBI-06, SBI-08, and SBI-09. Promising marker-trait associations for growth related temperature response parameters were detected on chromosomes SBI-01, SBI-03, SBI-07, and SBI-10. Many significant loci were also associated to growth rates per se in individual low-temperature environments. Several marker-trait associations for mean growth rates and temperature response parameters of chlorophyll content and fluorescence were validated by QTL detected in population 1 or 2. Promising QTL regions were found on chromosomes SBI-01, SBI-02, SBI-03, and SBI-06. Interesting candidate genes involved in the abiotic stress response are located in promising QTL regions. In conclusion, several genome regions highly influencing cold tolerance during emergence and juvenile development were identified. These regions are suitable for the development of stable markers for marker-assisted selection. However, regional association studies have to be carried out and allelic diversity of candidate genes needs to be analyzed in order to reach these future goals.

Keywords: early season cold tolerance, association mapping, QTL analysis, temperature response

Kurzfassung

Kühletoleranz ist ein wichtiges Zuchtziel für die Etablierung von Sorghum als Alternative zu Energiemais für die Biogasproduktion. Sorghum wird hauptsächlich in den semi-ariden Tropen und Subtropen angebaut, die Anpassung an das subtropische Hochland gibt jedoch Hinweise auf eine gewisse genetische Variation hinsichtlich der Kühletoleranz. Wichtige Merkmale, um hohe Biomasseerträge zu erreichen, sind hohe und gleichmäßige Auflaufraten sowie rasches Wachstum während der Jugendphase. Ziele dieser Studie sind die Detektion von Marker-Merkmals Assoziationen für Parameter, die (a) das Auflaufverhalten bei verschiedenen Temperaturen und (b) Temperatureffekte auf Blattflächenentwicklung und Wachstumsraten sowie auf Chlorophyllfluoreszenz und -gehalt beschreiben, welche (c) anhand von in F2- Populationen detektierten quantitativen Merkmalsloci (QTL) verifiziert werden sollen. Ein Diversitätsset und F2 Populationen zwei wurden in Klimakammerexperimenten bei verschiedenen Temperaturstufen bezüglich ihres Auflaufverhaltens und der Jugendentwicklung getestet. Genetische Fingerabdrücke wurden im Diversitätsset mit 171 Diversity array technology (DArT), 31 Mikrosatelliten (SSR) Markern und 2062 Einzelnukleotid-Polymorphismen (SNP) erstellt. Für die F2 Populationen wurden nur SNP-Marker genutzt. Auflaufparameter, wie z.B. Beginn oder Gleichmäßigkeit des Auflaufs, die mithilfe eines schrittweisen, linearen Modells geschätzt wurden, sowie Auflaufraten wurden für Stabilitätsanalysen über verschiedene Temperaturstufen verwendet. Neben diesen Parametern wurden Parameter, die Temperatureffekte auf Wachstumsraten sowie Chlorophyllfluoreszenz und -gehalt beschreiben, für Assoziationskartierungen und QTL-Analysen verwendet. Bekannte QTL für Auflaufraten bei niedrigen Temperaturen konnten auf Chromosom SBI-01 verifiziert werden, vielversprechende Marker-Merkmals Assoziationen für Auflaufparameter konnten auf den Chromosomen SBI-03, SBI-04, SBI-06, SBI-08 und SBI-09 identifiziert werden. Interessante Marker-Merkmals Assoziationen für Temperatureffekte auf Wachstumsraten beschreiben, Parameter. die wurden auf

Chromosomen SBI-01, SBI-03, SBI-07 und SBI-10 detektiert. Viele dieser Genomregionen konnten auch bei der Analyse der entsprechenden Merkmale in unabhängigen, niedrigen Temperaturstufen wiedergefunden werden. Einige Marker-Merkmals Assoziationen für mittlere Wachstumsraten sowie für Chlorophyllfluoreszenz und -gehalt wurden durch identifizierte QTL in den F2 Populationen validiert. Vielversprechende Genomregionen konnten auf den Chromosomen SBI-01, SBI-02, SBI-03 und SBI-06 identifiziert werden, in denen bekannte Kandidatengene für abiotische Stresstoleranz liegen. Schlussfolgernd scheint es mehrere Genomregionen zu geben, die sich für regionale Assoziationskartierung eignen sowie interessant für die Entwicklung von stabilen Markern für die Marker-gestützte Selektion sind.

Schlagworte: Kühletoleranz, Assoziationskartierung, QTL-Analysen, temperaturabhängige Wachstumsparameter

Contents

Abstractii
Kurzfassungiv
List of Tablesviii
List of Figuresx
Abbreviationsxii
Chapter 11
General introduction1
Background1
Identification of genome regions influencing cold tolerance
Objectives4
Chapter 25
Genetic dissection of the temperature dependent emergence processes in sorghum using a
cumulative emergence model and stability parameter
Abstract
Introduction7
Material and Methods10
Plant material
Experimental design and data collection10
Data analysis
Results
Discussion
Statistical models and crop models for QTL detection27
Genome regions affecting the germination process
Power and reliability of QTL detection
Conclusions
Chapter 3
Genetic dissection of temperature dependent sorghum growth during juvenile development 35
Abstract
Introduction
Material and Methods
Plant material
Experimental design40
Determination of growth rates and physiological traits

Data analysis	
Results	
Discussion	
Multi-environment data in association mapping	
Identification of physiological mechanisms, which promote growth at low t	emperatures
Comparison of results to earlier QTL studies	61
Conclusions	
Chapter 4	
Combining linkage analysis and association mapping to validate QTL for	cold tolerance
during juvenile development	
Abstract	
Introduction	
Material & Methods	
Plant material	
Experimental design	
Determination of growth rates and physiological traits	
Data analysis	
Results	
Discussion	
Promising genome regions involved in cold response	
Conclusion	
Chapter 5	
General discussion	
Future research needs	
Concluding remarks	
Supplementary Material	
References	
Curriculum Vitae	

List of Tables

- Table 2.1Average daily mean, night and day air and mean soil temperatures in the nine
temperature treatments.11
- **Table 2.2**Genotype mean, minimum and maximum across all nine environments and the mean,
minimum, maximum and average R² of Finlay-Wilkinson slopes for the parameters
final emergence percentage (FEP), emergence rate (ER), onset (T_1) and end (T_{100}) of
emergence, the median of emergence time (T_{50}) and uniformity (T_{100} - T_1). Genotype
mean, minimum and maximum for FEP under cold and normal conditions, base
temperature (T_b) and thermal time (E_{TS}).16
- **Table 2.3**Covariance analysis for final emergence percentage (FEP), emergence rate (ER), onset
 (T_1) and end (T_{100}) of emergence, the median of emergence time (T_{50}) and uniformity
 $(T_{100}-T_1)$.**18**
- **Table 2.4**Variance components and heritability of final emergence percentage (FEP), emergence
rate (ER), onset (T_1) and end (T_{100}) of emergence, the median of emergence time (T_{50})
and uniformity $(T_{100}-T_1)$.**19**
- Table 2.5Analysis of variance (ANOVA) for final emergence percentage under cold (FEPcold)
and normal (FEPnormal) conditions.19
- Table 2.6Mean squared difference (MSD) of generalized linear model (GLM) without
permutation test and a mixed linear model (MLM) data, number of significant marker-
trait associations using GLM with permutation test and MLM and number of
significant marker-trait associations using both models.24
- **Table 3.1** Genotype means, ranges and coefficients of variation among (CV_g) and within genotypes (CV_e) for averages across all environments, the parameters regression slope (sl) and base temperature (T_b) of leaf appearance rate (LAR), chlorophyll content (SPAD), and chlorophyll fluorescence $(F_v'/F_m'$ and Φ_{PSII}), and for exponents (*a*) and initial growth rates (DMGR₀ or LGR₀) of dry matter growth rate (DMGR) and leaf area growth rate (LGR). Mean R² values of regression analyses are shown. **46**
- **Table 3.2**Variance components and heritabilityfor dry matter growth rate (DMGR), leaf area
growth rate (LGR), leaf appearance rate (LAR), chlorophyll content (SPAD), and
chlorophyll fluorescence (Φ_{PSII} and F_v '/ F_m ').47
- **Table 3.3**Pearson's correlation coefficients between the traits dry matter growth rate (DMGR),
leaf area growth rate (LGR), leaf appearance rate (LAR), chlorophyll content (SPAD)
and chlorophyll fluorescence $(F_v'/F_m' and \Phi_{PSII})$ measured in each temperature regime
and means across environments, exponents (*a*), initial growth rates (DMGR₀ and
LGR₀), temperature effects (*sl*) and base temperatures (T_b).**49-50**
- Table 3.4Coefficients of variation among genotypes (CV_g) and within genotypes (CV_e) for dry
matter growth rate (DMGR), leaf area growth rate (LGR), leaf appearance rate (LAR),
chlorophyll content (SPAD), and chlorophyll fluorescence (Φ_{PSII} and F_v'/F_m') in
different temperature regimes.51
- **Table 3.5** Number of marker-trait associations for dry matter growth rate (DMGR), leaf area growth rate (LGR), leaf appearance rate (LAR), chlorophyll content (SPAD), and chlorophyll fluorescence $(F_v'/F_m'$ and Φ_{PSII}) in each environment and number of marker-trait associations for means across environments, exponents (*a*), initial growth rates (DMGR₀ and LGR₀), temperature effects (*sl*), and base temperatures (T_b). **54**

Table 4.1	Number of filtered SNP markers per chromosome for QTL analysis (Population 1 and 2) and association panel. 68
Table 4.2	Average daily mean, night and day air temperatures in four temperature treatments and the duration of temperature treatment for population 1 and 2. 69
Table 4.3	Variance components and heritability for dry matter growth rate (DMGR), leaf appearance rate (LAR), chlorophyll content (SPAD) and chlorophyll fluorescence (Φ_{PSII} and F_v'/F_m') of population 1 and 2. 75
Table 4.4	QTL for mean across environments (m), exponents (a) and initial growth rate (DMGR ₀) for dry matter growth rate (DMGR) and for (m), (<i>sl</i>) and base temperatures (T _b) for leaf appearance rate (LAR), chlorophyll content (SPAD), and fluorescence (F_v '/ F_m ' and Φ_{PSII}) of population 1 and 2. 79-80
Table 4.5	Summary of the most promising marker-trait associations, QTL regions, and candidate genes. 88

Table 5.1Summary of the most promising DArT-marker associations, and candidate genes for
emergence and juvenile development.96

List of Figures

- Figure 2.1Piecewise linear regression for calculating onset (T_1) and end (T_{100}) of emergence,
uniformity $(T_{100}-T_1)$, emergence rate (ER) (regression slope) and the median of
emergence time (T_{50}) (a) and T_1 , T_{100} , $T_{100}-T_1$, T_{50} and FEP of the population mean in
nine temperature treatments (b).15
- **Figure 2.2** Final emergence percentage under cold (FEP_{cold}) and normal (FEP_{normal}) conditions (a), Finlay-Wilkinson regression for calculating Finlay-Wilkinson slope (FW) and across environment mean (M) for FEP (b), onset (T₁) (c), median time to emergence (T₅₀) (d), end of emergence (T₁₀₀) (e), uniformity (T₁₀₀-T₁) (f) and emergence rate (ER) (g) in nine environments and the relationship between development rates and mean air temperatures for calculating base temperature (T_b) and thermal time for emergence (E_{TS}) (h). E_{TS} is the inverse of regression slope (sl). Filled symbols indicate the genotype with highest FEP (a, b) or emergence rate (g) and development rates of T₅₀ (h) or the shortest duration of T₁ (c), T₅₀ (d), T₁₀₀ (e) and uniformity (f) respectively. Unfilled symbols represent the worst performing genotype. Selection was done for each trait separately while selection criterion for T_b and E_{TS} was T₅₀.
- Figure 2.3
 Population structure (a) and neighbor-joining dendrogram (b) of the diversity set. The population structure shows two distinct groups: Group 1 is represented by grey boxes (______) (a) or a grey ellipse (b) and group 2 is represented by white boxes (_____).

 21
- Figure 2.4 Mean R² values for different centimorgan (cM) classes (a). Linkage disequilibrium parameter R² plotted against the genetic distance in cM for the whole population (b), group 1 (54 genotypes) (c) and group 2 (140 genotypes) (d). The bottom black line shows the second degree LOESS curve. Boxplots show the distribution of R² derived from pairwise LD of unlinked loci, dotted lines indicate the median and straight lines represent the mean. Boxes show the 25% and 75% percentile, whiskers the 95% and 5% percentile. The critical R² is given by horizontal black lines.
- **Figure 2.5** Marker-trait associations for final emergence percentage (FEP) under cold (\blacksquare) and normal (\blacksquare) conditions and for genotype mean (filled symbols) and Finlay-Wilkinson slope (unfilled symbols) of FEP (\blacksquare), onset (\blacklozenge) and end (\diamondsuit) of emergence, uniformity (\blacktriangle), emergence rate (\diamondsuit) and the median of emergence time (\blacktriangle) and marker-trait associations for base temperatures (\bigstar) and thermal time of T₅₀ (Σ). **26**
- Figure 2.6 Alignment of the genetic map of chromosome SBI-01 from Burow et al. (2011) (a), the present study (b) and Knoll et al. (2008) (c). Underlined and italic markers represent flanking markers of QTL for early field emergence or germination at 30°C (a) and early vigor, early and late emergence (b). Symbols indicate final emergence percentage of over all environments (■), under cold (∞) and normal conditions (∞).
- Figure 3.1Relationship between dry matter growth rates (DMGR) (a), leaf area growth rates
(LGR) (b), leaf appearance rates (LAR) (c), chlorophyll contents (SPAD) (d),
fluorescence $[\Phi_{PSII}$ (e) and F_v'/F_m' (f)] and temperature for calculating the exponent
(a), initial growth rates (DMGR₀, LGR₀), temperature effects (*sl*) and base
temperatures (T_b). Black circles (\odot) indicate population means, unfilled circles (O)
represent the best and grey circles (\odot) the worst performing genotype. Selection
criterion was mean across environments.45

- Figure 3.2Percentage deviations for the best (\mathbb{O}) and worst (\mathbb{O}) performing genotype compared
to the population mean (\bullet) for the traits dry matter growth rate (DMGR), leaf
appearance rate (LAR), leaf area growth rate (LGR), chlorophyll content (SPAD), and
fluorescence (Φ_{PSII} and F_v'/F_m'). Selection criterions were highest or lowest DMGR at
13.5°C.52
- Figure 3.3
 Estimated population structure for 194 individuals of a diversity set using 31 SSR markers and 171 DArT markers. Both marker systems distinguish between group 1 (_____) and group 2 (_____).
- Figure 3.4 Marker-trait associations for dry matter growth rate (DMGR), leaf area growth rate (LGR), leaf appearance rate (LAR), chlorophyll content (SPAD), and fluorescence and different temperature $(F_v'/F_m'$ Φ_{PSII}) in eight regimes $(9.4 \ 10.5 \ 13.5 \ 14.7 \ 16.8 \ 17.6 \ 18.6 \ 20.8 \ ^{\circ}C)$ and for means across environments (\times), exponents or temperature effects (\bullet) and initial growth rates or base temperatures $(\mathbf{\nabla})$. Pale colors were used for marker-trait associations significant in only one environment. 55-56
- Figure 4.1Boxplots for mean across environments (m), exponents (a) and initial growth rate
 $(DMGR_0)$ for dry matter growth rate (DMGR) (a,b,c) and m, regression slopes (sl),
and base temperatures (T_b) for leaf appearance rate (LAR) (d,e,f), chlorophyll content
(SPAD) (g,h,i), and fluorescence $(F_v'/F_m'$ and $\Phi_{PSII})$ (j,k,l,m,n,o) of population 1, 2
and the association panel.74
- **Figure 4.2** Pearson's correlation coefficients for mean across environments (*m*), exponents (*a*) and initial growth rate (DMGR₀) for dry matter growth rate (DMGR) and *m*, regression slopes (*sl*) and base temperatures (T_b) for leaf appearance rate (LAR), chlorophyll content (SPAD), and fluorescence (F_v '/ F_m ' and Φ_{PSII}) of the association panel, population 1 and 2. Shadings show significant correlations at the 0.001 (**■**), 0.01 (**■**), and 0.05 (**■**) probability level. **76**
- Figure 4.3Principal component analysis for genetic relatedness of the association panel (green
circles), population 1 (red circles) and population 2 (blue circles). P1 and P2
indicate the parents of population 1, pop2P1 and pop2P2 indicate the parents of
population 2.77
- **Figure 4.4** Marker-trait associations (A) and QTL for population 1 (B) and population 2 (C) for mean across environments (m), exponents (a) and initial growth rate (DMGR₀) for dry matter growth rate (DMGR) and m, regression slopes (sl), and base temperatures (T_b) for leaf appearance rate (LAR), chlorophyll content (SPAD) and fluorescence (F_v'/F_m' and Φ_{PSII}). Only markers significantly associated with a trait or present in at least two populations are presented. Bold and italic markers are present in all three populations. Positions of markers of the association panel are given in 2*10⁻⁶ bp. Distances between markers in the cross populations are given in cM. Red markers are associated with a trait and located in a genome region of a candidate gene. **81-84**

Abbreviations

a	exponent
ANOVA	Analysis of variance
bp	base pairs
Bt	Bacillus thuringiensis
°C	degree Celsius
CBF	C-repeat binding pathway
°Cd	Thermal time [°d]
CEP	Cumulative emergence percentages [%]
cM	Centimorgan
cm ²	Square centimeters
COR	Cold responsive genes
CSP	Cold shock proteins
СТАВ	Cetyl trimethylammonium bromide
CV	Coefficient of variation [%]
CV_{g}	Coefficient of variation among and within genotypes [%]
CV _e	Coefficient of variation for averages across all environments [%]
d	Days
DArT	Diversity Array Technology markers
DAS	Days from sowing [d]
dF	Rate of change in the fluorescence
df	Degree of freedom
DM_{d6}	Dry weight 6 days after sowing [g]
DM_{dn}	Dry weight at the end of the experiment [g]
DMGR	Dry matter growth rate [g d ⁻¹]
DMGR ₀	Initial dry matter growth rate [g d ⁻¹]
DMGR _(a)	exponent of dry matter growth rate
DMGR _(mean)	mean dry matter growth rate across environments [g d^{-1}]
DNA	Deoxyribonucleic acid
DREB	Dehydration responsive element

dt	Rate of change in temperature
Е	Environment
env	Environmental effects
ER	Emergence rate [% d ⁻¹]
ER _(FW)	Finlay-Wilkinson slope of Emergence rate [% d ⁻¹]
E _{TS}	Thermal time of emergence [°Cd]
F ₀ '	Ground fluorescence of light adapted leaves
FEP	Final emergence percentage [%]
FEP _{cold}	Final emergence percentage under cold conditions [%]
FEP _(FW)	Finlay-Wilkinson slope of final emergence percentage [%]
FEP _(M)	Mean of final emergence percentage [%]
FEP _{normal}	Final emergence percentage under normal conditions [%]
Φ_{PSII}	Quantum yield of photosystem II
$\Phi_{\text{PSII}(sl)}$	Regression slope for quantum yield of photosystem II
$\Phi_{\text{PSII}(m)}$	Mean across environments of quantum yield of photosystem II
F_v'/F_m'	efficiency of energy harvesting by oxidized PSII reaction centers in the light
$F_v'/F_m'(sl)$	Regression slope for efficiency of energy harvesting by oxidized PSII reaction centers in the light
$F_v'/F_m'(m)$	Mean across environments of efficiency of energy harvesting by oxidized PSII reaction centers in the light
FW	Finlay-Wilkinson slopes
G	Genotype
g	Gram
GEI	Genotype x environment interaction
gen	Genotype effect
gen*env	Interaction of genotype and environment
gen*temp	Interaction of genotype and temperature
GLM	Generalized linear model
GR_0	Estimated growth rate in the lowest temperature environment $[g d^{-1}]$
GR_{ij}	Growth rate of the i^{th} genotype in the j^{th} environment [g d ⁻¹]

h^2	heritability
ha	Hectare
LA_{d6}	Leaf area 6 days after sowing [cm ²]
LA_{dn}	Leaf area at the end of the experiment [cm ²]
LAR	Leaf appearance rate [d ⁻¹]
LAR(mean)	Mean leaf appearance rate [d ⁻¹]
LAR _(sl)	Regression slope of leaf appearance rate [d ⁻¹]
LAR _(Tb)	Base temperature of leaf appearance rate [°C]
LD	Linkage disequilibrium
LGR	Leaf area growth rate [cm ²]
LGR ₀	Initial leaf area growth rate [cm ²]
LGR _(a)	exponent of leaf area growth rate
LGR _(mean)	Mean of leaf area growth rate [cm ²]
LOD	Logarithmic odds ratio
LOESS	locally weighted scatterplot smoothing
LN_{d6}	Leaf number 6 days after sowing
LN_{dn}	Leaf number at the end of the experiment
m	mean
MLM	Mixed linear model
MSD	Mean squared difference
MW	mean across environments
n	Number of days of the temperature treatment
n	Number of environments
NES _i	Number of seeds emerged on day i
р	p-Value
PC	Principal component
PCA	Principal component analysis
PSII	Photosystem II
QTL	Quantitative trait loci
r	Number of replications

R	Pearson's correlation coefficient
R ²	coefficient of determination
REML	Restricted maximum likelihood
RIL	Recombinant inbred lines
RNA	Ribonucleic acid
σ^2_E	Variances of the environment
σ^2_G	Variances of the genotype
$\sigma^2 _{GxE}$	Variances of the genotype x environment interactions
σ^2	Error variances
SD	Standard deviations
sl	Regression slope
SNP	Single nucleotide polymorphism markers
SPAD	Leaf greenness, chlorophyll content,
SPAD _(sl)	regression slope of leaf greenness
SPAD _(Tb)	Base temperature of leaf greenness
SQR	Shan Qui Red
SSR	Simple-sequence repeat markers
Т	Temperature
t	Number of days
T_1	Onset of emergence [DAS]
T _{1(M)}	Mean of onset of emergence [DAS]
T _{1(FW)}	Finlay-Wilkinson slope of onset of emergence [DAS]
T ₅₀	Median time to emergence [DAS]
T _{50(M)}	Mean of median time to emergence [DAS]
T _{50(FW)}	Finlay-Wilkinson slope of median of emergence
T ₁₀₀	End of emergence [DAS]
T _{100(M)}	Mean of end of emergence [DAS]
T _{100(FW)}	Finlay-Wilkinson slope of end of emergence [DAS]
T ₁₀₀ -T ₁	Uniformity of emergence [d]
T _b	Base temperature [°C]

temp	Temperature effect
US	United states of America
μ	overall population mean
eta_i	linear regression coefficient for the i^{th} genotype
e_j	effect j^{th} environment
g_i	effect of the i^{th} genotype

Chapter 1

General introduction

Background

The development of cold tolerant sorghum is a major breeding goal in order to provide farmers an alternative crop to maize for bioenergy production. The acreage cultivated to bioenergy crops increased in Germany from 700.000 ha in 2000 up to 2,526.000 ha in 2011. Currently, 21 % of the cropping area is used for energy production (FNR 2012). In Germany, nearly 1/3 of the 2,6 mio ha maize are used for energy production. Due to increasing maize production areas, missing crop rotations and the expansion of the western corn borer (*Diabrotica vigifera* LeConte) in Central Europe, a diversification is needed. Sorghum has the potential to be an alternative crop to maize due to its high biomass yields even under drought stress conditions (Farre and Faci 2006). Hence, sorghum is interesting for areas with low rainfall, a deep groundwater level, and sandy soils.

However, Sorghum is a thermophilic crop, mainly grown in the semi-arid tropics and subtropics, which has to be adapted to temperate regions. Low and non-uniform emergence rates caused by low soil temperatures in spring in combination with low growth rates during juvenile development result in a late soil coverage and canopy closure (Richards 2000), which reduces competitiveness and promotes weed growth. Early sowing dates are required to increase the vegetation period and biomass yield potential. Hence, a major issue in sorghum breeding for temperate regions is the improvement of cold tolerance.

Identification of genome regions influencing cold tolerance

The adaptation of sorghum to tropical and subtropical highlands gives hint for certain genetic variation needed for the improvement of cold tolerance. Sorghum accessions, originated from China and Russia have shown to be promising genetic resources for the improvement of cold tolerance during emergence and juvenile development (Tiryaki and Andrews 2001). Kaoling sorghum landraces from China possess higher emergence rates and seedling vigor than commercial hybrids but lack desirable agronomic trait (Cisse and Ejeta 2003). Chinese kaoling accessions exhibited higher shoot growth rates in comparison to US inbred lines under low temperature conditions (12 °C) (Franks et al. 2006). Mapping populations derived from a cross between the Chinese kaoling type 'Shan Qui Red' and an African caudatum were used to identify QTL for seedling emergence and vigor under controlled cold stress conditions (Knoll et al. 2008a). These QTL were validated in two newly developed populations under field conditions (Knoll and Ejeta 2008b). Cold tolerance during juvenile development is mainly described by shoot dry matter growth rates and photosynthesis related traits e.g. chlorophyll content and fluorescence, which were successfully used for cold tolerance selection in maize breeding programs (Fracheboud et al. 1999). A major QTL for photosynthetic performance of maize was identified only at low temperatures. The QTL colocalized to a QTL for shoot dry matter accumulation (Fracheboud et al. 2004). Thus, emergence and growth rates as well as photosynthetic related traits during juvenile development are key traits for breeding to improve cold tolerance.

In contrast to conventional QTL analyses, association studies were carried out on structured or unstructured populations, potentially carrying more than two alleles on certain loci (Flint-Garcia et al. 2003). An advantage of association mapping over conventional QTL analysis is that the time consuming and expensive development of a bi-parental crosses is not necessary (Zhu et al. 2008). Limiting factors for genome-wide association mapping is the availability of the required number of marker loci covering the whole genome and large numbers of false positive associations. False positive marker-trait associations were reduced if analyses accounted for population structures and used kinship methods (Stich et al. 2008). The combination of association mapping and conventional QTL analyses methods enables the confirmation of major QTL and may narrow down large genome regions to those in which candidate genes are located.

The integration of genotype by environment interactions into the analysis of the genetic basis of complex traits like abiotic stress responses has always been difficult. Coupling crop models with statistical QTL models is a promising tool to overcome this problem (Collins et al. 2008). Stability analysis, as commonly used for multi-environmental trial data, is disadvantageous because of many varying factors (e.g. temperature, rainfall, radiation etc.) in field experiments controlling the traits. Using stability parameters derived from cumulative emergence model data evaluated in controlled growth chamber as input parameters for association mapping enables the detection of truly temperature response QTL due to only one varying environmental factor e.g. temperature. Likewise, response curve parameters derived for leaf elongation rate of maize in relation to temperature and soil water deficit (Reymond et al. 2003), flowering time in barley (Yin et al. 2005) and leaf senescence in potato (Malosetti et al. 2006) were successfully used as input parameters for QTL analysis. The advantage of response curve parameters is that genotype performance over a growing season or across different environments is taken into account. QTL for parameters describing the adaptability across different temperature regimes and QTL for mean genotype performance enable to distinguish between genome regions responsible for temperature dependant control of a trait and the trait itself (Via et al. 1995). QTL for the genotype specific response to temperature might be an important step in developing stable markers for marker-assisted selection for cold tolerance.

Objectives

The overall aim was to identify marker-trait associations or QTL for cold tolerance during emergence and juvenile development. Each of the following chapters focuses on a specific part of this topic, but can be read individually. Specific goals of the chapters are:

- Identification of marker-trait associations for emergence parameters derived from a cumulative emergence model and analysis of stability parameters (chapter 2).
- Identification of marker-trait associations for photosynthesis and growth related traits during juvenile development under different temperature regimes and for temperature dependant parameters describing sorghum growth (chapter 3).
- Validation of marker-trait associations for temperature dependant parameters describing sorghum growth during juvenile development using bi-parental populations (chapter 4).

Chapter 2

Genetic dissection of the temperature dependent emergence processes in sorghum using a cumulative emergence model and stability parameter

Karin Fiedler¹, Wubishet A. Bekele², Wolfgang Friedt², Rod Snowdon², Hartmut Stützel¹, Arndt Zacharias³, Ralf Uptmoor^{1,4}

¹ Institute of Biological Production Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany

² Department of Plant Breeding, Justus-Liebig-University Giessen, Heinrich-Buff Ring 26-32,
35392 Gießen, Germany

³ KWS Saat AG, Grimsehlstr. 31, 37555 Einbeck, Germany

⁴ Present address: Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg
6, 18059 Rostock, Germany

Published in: Theoretical Applied Genetics (2012): 125 1647-1661

Abstract

Among the major limitations for cultivating biomass sorghum in temperate regions is low temperature in spring that results in low and non-uniform emergence. The adaptation of sorghum to tropical and subtropical highlands gives hint of genetic variation in cold tolerance during emergence. The objective of the present study was to detect marker-trait associations for parameters describing the emergence process under different temperature regimes. A diversity set comprising 194 genotypes was tested in nine controlled environments with temperatures ranging from 9.4 to 19.9 °C. The genotypes were fingerprinted with 171 DArT markers. A piecewise linear regression model carried out on cumulative emergence was used to estimate genotype mean performance across environments and to carry out stability analysis on the parameters of the regression model. Base temperature (T_b) and thermal time required for emergence (E_{TS}) were determined based on median time to emergence data. Identified QTL positions were compared to marker-trait associations for final emergence percentages under low (FEP_{cold}) and normal (FEP_{normal}) temperatures. QTL for mean final emergence percentage (FEP), FEP_{cold} and FEP_{normal}, T_b and E_{TS} were detected on SBI-01. Other QTL-rich regions were located on SBI-03, SBI-04, SBI-06, SBI-08, and SBI-09. Marker-trait associations for T_b and E_{TS} co-localized to QTL for the across environment stability of FEP and the median time to emergence or emergence rate, respectively. We conclude that genome regions on six chromosomes highly influencing cold tolerance during emergence are promising for regional association studies and for the development of stable markers for marker assisted selection.

Keywords: sorghum, cold tolerance, emergence, piecewise linear regression model, stability parameters, association mapping

Introduction

Developing cold tolerant biomass sorghum genotypes is an important breeding goal in order to have an alternative crop to maize, which presently dominates the area cultivated for methane production in Central Europe. Sorghum is a thermophilic crop, mainly grown in the semi-arid tropics and subtropics. Low soil temperature in spring may delay planting time or result in low and non-uniform emergence. Planting is recommended when stable seedbed temperatures of more than 10°C are achieved (Anda and Pinter 1994; Brar and Stewart 1994).

Agronomists and plant physiologists used different approaches to describe germination and emergence: final germination or emergence rate (Tiryaki and Buyukcingil 2009), germination indices (Afzal et al. 2008) and time to onset (T_1) , end (T_{100}) and median time to emergence (T_{50}) or germination derived from functions describing the germination process regressed against time (Snapp et al. 2008). Several single-value germination indices, e.g. Kotowski's coefficient of velocity (Kotowski 1926) or Timson's cumulative germination index (Timson 1965) are widely used but final values cannot be traced back to direct measures for T₁, emergence rate (ER) and time span of emergence $(T_{100}-T_1)$, which describe the germination or emergence process (Brown and Mayer 1988a). The emergence process is important since both final percentage of emergence and the time, when emergence occurs, are temperature dependant, and good field emergence requires high rates of uniformly germinating seeds under both optimum and low temperature conditions (Kanemasu et al. 1975). Logistic regressions carried out on cumulative germination rates are commonly used to describe germination (Hsu et al. 1984; Schimpf et al. 1977). Several functions describing the germination process were compared by Brown and Mayer (1988b) who recommended the Weibull function (Weibull 1951). However, comparability of germination curves computed from data of different temperature regimes is limited (Dumur et al. 1990). The Weibull function for instance has a parameter describing the shape of the regression, which has an

effect on the rate of increase of germination but no biological meaning. An alternative approach is the use of piecewise linear regression models (Kempenaar and Schnieders 1995). The advantages are (1) the possibility to directly compare model parameters from different datasets since parameters are not interrelated, i.e., the change of one model parameter does not necessarily lead to a change of a second parameter and (2) model parameters describe physiological processes or are simple statistical measures.

Genotypic differences in temperature response and base temperatures ranging from 5.9 to 9.8°C were reported for germination of 16 sorghum cultivars (Wade et al. 1993). Genetic variation in base temperature and emergence rates at low temperatures was assumed to be the result of adaptation processes (Tiryaki and Andrews 2001). Chinese landraces had higher germination percentages and shorter time to 50% germination at low temperatures than US breeding lines (Franks et al. 2006).

Quantitative trait loci (QTL) analysis for cold tolerance is a useful tool and a first step towards marker-assisted selection of cold tolerant genotypes (Knoll and Ejeta 2008). QTL for germination rate were found in rice (Ji et al. 2009), wild barley (Vanhala and Stam 2006) and sorghum (Burow et al. 2011; Knoll et al. 2008). Knoll et al. (2008) identified QTL for field emergence in sorghum recombinant inbred lines (RIL) developed from a cross between a caudatum of African origin and the cold tolerant Chinese kaoliang 'Shan Qui Red' on chromosome SBI-01. Cold tolerance QTL were detected in the same region of SBI-01 by Burow et al. (2011).

For identifying QTL for adaptation processes, multi-environment trials are needed. Lacaze et al. (2009) carried out QTL analysis in a bi-parental barley population on the slope of individual genotype trait values regressed against the population mean in different environments. Kraakman et al. (2004) used a set of modern spring barley cultivars in order to detect marker-trait associations for mean yield and yield stability across environments. El

Soda et al. (2010) used stability parameters to detect QTL for drought tolerance in wild barley introgression lines. It has been suggested that stability parameters can be used to distinguish between loci, in which constitutive genes are directly influenced by the environment and loci distinct from the constitutive genes but regulating them.

In contrast to QTL mapping in bi-parental crosses, association studies can be carried out on structured and unstructured populations, potentially carrying more than two alleles on a certain locus (Flint-Garcia et al. 2003). Advantages of association studies are that time consuming and expensive development of bi-parental crosses is not needed and a wider gene pool can be analyzed (Neumann et al. 2010). Genome-wide association studies were carried out, e.g., on traits like days to heading, culm diameter, leaf length and width in sorghum using SSR simple sequence repeat markers (Shehzad et al. 2009). Association mapping with Diversity Array Technology markers (DArT) was reported for barley (Pswarayi et al. 2008) and wheat (Crossa et al. 2007). The disadvantages are that DArT-markers are bi-allelic and dominant and are based on unknown sequences (Mace et al. 2008). However, compared to SSRs, DArT markers allow a cost efficient and fast genome-wide genotyping.

The objective of the present study was to detect marker-trait associations for emergence across different temperature regimes in sorghum. The process of emergence in the different temperature regimes was described by cumulative emergence percentages (CEP) over time in order to derive traits like FEP, T_{100} - T_1 and ER from piecewise linear regressions carried out on CEP. Since superior genotypes show high emergence percentages in a wide range of environments while emergence takes place shortly after sowing and all plants emerge nearly at the same time, the parameters FEP, ER, T_1 , T_{50} , T_{100} and T_{100} - T_1 are relevant. To evaluate the temperature effect on emergence, across environment means (M) and Finlay-Wilkinson slopes (FW) (Finlay and Wilkinson 1963) were estimated. FEP were computed separately for low and normal temperatures and base temperature (T_b) and thermal time (E_{TS}) were

calculated based on T_{50} data. Genome wide association studies were carried out on these parameters.

Material and Methods

Plant material

The study was carried out on a diverse set of genotypes comprising 194 biomass sorghum lines. The set includes *Sorghum bicolor* and *S. bicolor sudanense* genotypes. DNA was extracted from leaf tips using the cetyl trimethylammonium bromide (CTAB) method. The genotypes were fingerprinted with 688 polymorphic DArT markers. Marker positions were taken from Mace et al. (2008). Unmapped markers and completely linked markers were excluded from the study and further 115 markers with frequencies <5% of the rare allele were also removed. Association studies were carried out using the remaining 171 polymorphic DArTs.

Experimental design and data collection

The experiment was conducted in growth chambers set to 9 temperature regimes ranging from 9.4 to 19.9°C. Overall mean, mean night and day air and soil temperatures are shown in Table 2.1. A mean temperature of 9.4°C was used as lowest temperature treatment since pretests on a population subset revealed that the base temperature of emergence is expected to be higher than 8°C and lower than 11°C for most of the lines. Air and soil temperature was measured every 5 minutes directly above the trays and at 10 mm depth using TinyTag View 2 data loggers (Gemini Data Loggers Ltd., West Sussex, U.K.) during the entire duration of the study.

	Air temperature	Soil temperature
Environment	mean (night/day)	mean
	°C	°C
1	9.4 (8.3/10.2)	10.0
2	10.3 (9.2/11.0)	10.3
3	10.7 (9.8/11.4)	10.7
4	10.8 (9.6/11.6)	11.0
5	11.6 (10.4/12.2)	11.6
6	12.3 (11.7/12.8)	12.5
7	16.7 (11.2/24.0)	_a
8	17.2 (10.0/26.0)	-
9	19.9 (15.4/25.7)	-
Cold conditions ^b	10.3	
Normal conditions ^c	17.9	

Table 2.1: Average daily mean, night and day air and mean soil temperatures in the nine temperature treatments.

^a Soil temperature was not measured in treatments 7-9.

^b mean over environment 1 to 4

^c mean over environment 7 to 9

Individual temperature regimes were arranged as randomized complete block designs with 2 replications. Light was applied for 12 h with 10 h full light and 2 h twilight. The genotypes were sown in trays filled with 50% Klasmann Potgrond P (Klasmann-Deilmann, Groß-Hesepe, Germany) and 50% loamy humic sand. A total of 18 seeds per line, treatment and replication were sown at 10 mm depth.

The number of emerged seeds was counted daily until no further seeds emerged. A plant was defined as emerged if the coleoptile was visible. Cumulative emergence percentage (CEP) for each day was calculated using the following equation:

$$CEP = \Sigma NES_i / 18 \times 100,$$

where NES_i is the number of seeds emerged on day *i* and 18 is the total number of seeds. Mean CEPs of the two replications were calculated and used for parameter estimation.

Data analysis

A piecewise linear regression was fitted to cumulative emergence percentages (Figure 1) in order to derive the parameters onset of emergence (T_1) , median time to emergence (T_{50}) , emergence rate (ER) and end of emergence (T_{100}) using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). The equation used was:

$$\begin{split} \text{CEP} &= 0 & t \leq T_1 \\ \text{CEP} &= \text{ER} \ (t - T_1) & T_1 < t < T_{100} \\ \text{CEP} &= \text{ER} \ (T_{100} - T_1 \) & t \geq T_{100}, \end{split} \tag{2.2}$$

where t is the actual number of days from sowing (DAS). CEP equals to final emergence percentage (FEP) if $t \ge T_{100}$. The regression slope between between T_1 and T_{100} is the estimator for the daily emergence rate (ER). T_{50} was estimated as follows:

$$T_{50} = T_1 + 0.5 \text{ FEP / ER.}$$
(2.3)

Time span of emergence or uniformity of emergence was defined as T_{100} - T_1 .

For comparing the genotypes over a series of environments, stability analysis was carried out according to Finlay and Wilkinson (1963). Genotype performance across environments was estimated by regressing individual genotypes against the population mean:

$$Y_{ij} = \mu + \beta_i e_j + g_i, \tag{2.4}$$

where μ is the overall population mean, β_i is the linear regression coefficient for the *i*th genotype, e_i is the effect of the *j*th environment and g_i is the effect of the *i*th genotype.

Data was subjected to analysis of covariance using the following model for i = 1, 2, 3, ..., kgenotypes and j = 1, 2, 3, ..., n environments:

$$Y_{ij} = \mu + \tau_i + \beta x_{ij} + \gamma_i x_{ij} + \varepsilon_{ij}, \qquad (2.5)$$

where $\mu_i = \mu + \tau_i$ is the intercept of the *i*th genotype, FW_i = $\beta x_{ij} + \gamma_i x_{ij}$ is the slope of the genotype performance of genotype *i* in nine environments regressed against the population means of the environments (Finlay and Wilkinson 1963) and ε_{ij} is the random error of the *i*th genotype in the *j*th environment. Analysis of covariance was carried out on the parameters T₁, T₅₀, T₁₀₀, T₁₀₀-T₁, ER and on FEP. FEP was arcsine-square root transformed prior to carrying out analysis of covariance.

Mean final emergence percentage over environments 1, 2, 3, and 4 was considered as FEP under low temperature conditions (FEP_{cold}) while FEP of environments 7, 8, and 9 was averaged to define FEP under normal conditions (FEP_{normal}). Two factorial analysis of variance (proc GLM SAS 9.1) was carried out on arcsine-square root transformed data considering FEP_{cold} and FEP_{normal} as two treatments with the individual temperature regimes as 4 or 3 replications.

Linear regression analysis was carried out on developmental rates $(1/T_{50})$ of the 9 temperature regimes. Base temperature (T_b) was estimated by linear extrapolation to define the temperature at which the development rate becomes 0:

$$T_{bi} = -\beta_{0i}/\beta_i. \tag{2.6}$$

where β_i is the regression slope and β_{0i} is the *y*-axis intercept of the *i*th genotype. The temperature sum required for emergence (E_{TS}) was defined as $1 / \beta_i$.

Pearson's correlation coefficients were calculated between parameters and across environment means of traits. Variance components were assessed using restricted maximum likelihood (REML) estimates (proc MIXED, SAS 9.1). Broad sense heritability (h^2) was calculated according to Hill et al. (1998):

$$h^{2} = \frac{\sigma_{G}^{2}}{\sigma_{G}^{2} + \sigma_{GXE}^{2} \frac{1}{n} + \sigma^{2} \frac{1}{n}},$$
(2.7)

where σ_G^2 is the genotypic variance, σ_{GxE}^2 is the genotype x environment interaction variance, σ^2 is the error variance, and *n* is the number of environments.

The population structure of 194 individuals was determined using the software package STRUCTURE assuming an admixture model (Pritchard et al. 2000). We used a burn-in phase of 10,000 iterations followed by 10,000 Markov chain Monte Carlo iterations in order to detect the "true" number of *K* groups in the range of *K*=1-20 possible groups. δK was calculated according to Evanno et al. (2005). The cluster analysis was carried out with TASSEL 2.01 using the neighbor-joining method.

Linkage disequilibrium (LD) parameters were estimated by using the software TASSEL 2.01 (Bradbury et al. 2007). The p-values of pairwise LD were computed using 1,000 permutations. LD was calculated for all pairs of loci. The critical R² for unlinked loci was estimated after square root transformation of the R² values (Breseghello and Sorrells 2006). The 95% percentile of this distribution is the threshold beyond which LD was likely to be caused by genetic linkage. A second degree LOESS curve was plotted through the R² data and the point of intersection with the threshold value was used as the genome-wide estimate of LD among loci (Breseghello and Sorrells 2006).

TASSEL 2.01 (Bradbury et al. 2007) was used for identifying significant associations between the 171 markers and a total of 16 traits. The data were subjected to both a general linear model (GLM) and a mixed linear model (MLM) (Zhang et al. 2010). The Q-matrix,

which shows the probability that a genotype belongs to a subpopulation, was estimated with STRUCTURE and used in both models. A kinship matrix was computed with TASSEL 2.01 and used in MLM. An F-test with 1,000 permutations was carried out in order to adjust p-values of GLM (Churchill and Doerge 1994).

For verification of significant marker-trait associations the population was divided into two subpopulations at each relevant locus according to the allelic state of the individuals and pairwise t-tests (p<0.05) were performed in order to test if the marker genotypes differ significantly for the respective trait.

Results

Figure 2.1b shows that FEP increased with increasing temperature. FEP of the population mean was 95.7% at 19.9°C but less than 80% if air temperature was below 10.8°C. Lowest FEP was 35.8% at 9.4°C. Mean FEP_{cold} was 61.6% and ranged between 12.5 and 93.1% while mean FEP_{normal} was 93.3% (Table 2).

Figure 2.1 Piecewise linear regression for calculating onset (T_1) and end (T_{100}) of emergence, uniformity $(T_{100}-T_1)$, emergence rate (ER) (regression slope) and the median of emergence time (T_{50}) (a) and T_1 , T_{100} , T_{100} - T_1 , T_{50} and FEP of the population mean in nine temperature treatments (b).

T_{100} - T_1 decreased with increasing temperatures and both onset and end of emergence occurred
earlier at higher temperatures. Mean T_{100} - T_1 was 8.1 d across all temperature regimes (Table
2.2). Emergence started on average 10.2 DAS and ended 18.3 DAS. The population mean of
ER averaged over environments was 15.4% d^{-1} and ranged between 6% d^{-1} at 9.4°C and 27%
d^{-1} at 19.9°C. T ₅₀ of the population mean was achieved 18.5 DAS at 9.4°C and 11 DAS at
19.9°C. T _b ranged from 5.1 to 8.7°C, mean E_{TS} was 54.2°Cd and ranged between 41.6 and
93.3°Cd.

Table 2.2: Genotype mean, minimum and maximum across all nine environments and the mean, minimum, maximum and average R² of Finlay-Wilkinson slopes for the parameters final emergence percentage (FEP), emergence rate (ER), onset (T₁) and end (T₁₀₀) of emergence, the median of emergence time (T₅₀) and uniformity (T₁₀₀-T₁). Genotype mean, minimum and maximum for FEP under cold and normal conditions, base temperature (T_b) and thermal time (E_{TS}).

		Genotype			Average R ²
		mean	max	min	
	Cold	61.6	93.1	12.5	
FEP	Normal	93.3	100	60.2	
[%]	MW	77.0	95.7	35.8	
	FW	1	1.8	-0.06	0.80
ER	MW	15.4	27	6.0	
$[\% d^{-1}]$	FW	1	2.4	0.3	0.78
T_1	MW	10.2	13.6	7.7	
[DAS]	FW	1	1.5	0.6	0.95
	MW	14.3	18.5	11.0	
T_{50}	FW	1	1.3	0.6	0.98
[DAS]	T_b	7.7	8.7	5.1	
	E_{TS}	54.2	93.3	41.6	
T_{100}	MW	18.3	22.8	13.6	
[DAS]	FW	1	1.3	0.5	0.96
T100-T1	MW	8.1	11.4	4.8	
[d]	FW	1	1.8	0.2	0.77

DAS days after sowing

Analysis of covariance revealed that both the genotype and the genotype x environment interaction (GEI) effect were significant for all analyzed traits (Table 2.3). Genotype effects were highly significant for FEP, T₁, T₅₀ and ER (p<0.001) but also significant for T₁₀₀ (p<0.05) and T₁₀₀–T₁ (p<0.01). Estimated h^2 was highest for FEP (0.92) (Table 2.4). For all other traits h^2 ranged between 0.73 and 0.86. Analysis of variance for FEP_{cold} and FEP_{normal} revealed that genotype and temperature effects were significant while genotype x temperature interaction effect was not statistically significant (p=0.07) (Table 2.5).

Results of FEP_{cold} and $\text{FEP}_{\text{normal}}$, stability analysis for FEP, T₁, T₅₀, T₁₀₀, ER, and T₁₀₀-T₁ as well as T_b and E_{TS} are shown in Figure 2.2. For FEP (b) and ER (g), a high genotype mean and a small FW illustrates the superiority of a genotype. A small genotype mean and FW is desirable for the traits T₁ (c), T₅₀ (d), T₁₀₀ (e) and T₁₀₀-T₁ (f). Ranges of FW are shown in Table 2.2. Highest variation of FW among genotypes was observed for ER. ER_(FW) ranged from 0.3 to 2.4. Average R² for FW ranged between 0.77 for T₁₀₀-T₁ and 0.98 for T₅₀ (Table 2.2). A low T_b in combination with a short E_{TS} indicates a desirable genotype (h).

Correlations between mean genotype performance and FW were significant for T_1 , T_{50} and T_{100} (Table S 2.1) while correlation between $FEP_{(M)}$ and $FEP_{(FW)}$ was statistically not significant. T_b was significantly correlated to $T_{50(FW)}$ (0.54 p<0.001) and E_{TS} (-0.78, p<0.001) while correlations between $T_{50(FW)}$ and E_{TS} were statistically not significant.

Maximum value of δK occurred at K=2. Accordingly, each of the 194 lines was assigned to one of the K=2 groups, 54 lines (28%) belong to group 1 while the remaining 140 lines (72%) belong to group 2 (Figure 2.3a). Most genotypes of group 1 are members of the *S. bicolor sudanense* clusters of Figure 3b. These are the clusters from genotype 9 to 189 at the bottom and from genotype 117 to 28 on the right hand.

		Covariance analysis			
		df	Sum of Squares	Mean Squares	р
	gen	193	85754	444	<.0001
FEP	env	1	470152	470152	<.0001
	gen*env	193	52165	270	<.0001
	gen	193	14514	75	<.0001
ER	env	1	212626	212626	<.0001
	gen*env	193	47954	248	<.0001
	gen	193	573	3	<.0001
T_1	env	1	52035	52035	<.0001
	gen*env	193	2122	11	<.0001
T ₅₀	gen	193	503	3	<.0001
	env	1	99248	99248	<.0001
	gen*env	193	1926	10	<.0001
	gen	193	1063	6	0.0419
T_{100}	env	1	157010	157010	<.0001
	gen*env	193	3031	16	<.0001
T ₁₀₀ -T ₁	gen	193	1459.2	7.6	0.0136
	env	1	29162.1	29162.1	<.0001
	gen*env	193	2754.0	14.3	<.0001

Table 2.3: Covariance analysis for final emergence percentage (FEP), emergence rate (ER), onset	$t(T_1)$
and end (T_{100}) of emergence, the median of emergence time (T_{50}) and uniformity $(T_{100}-T_1)$.	

df degree of freedom, gen genotype effect, env environment effect, gen*env interaction of genotype and environment
	Vari	heritability		
	σ^2_G	σ^2_{GxE}	σ^2	h²
FEP	119.7	19.2	78.4	0.92
ER	7.9	1.1	46.4	0.60
T_1	6.0	4.2	4.9	0.86
T ₅₀	5.6	8.0	6.5	0.78
T_{100}	7.4	12.7	12.2	0.73
T_{100} - T_1	3.8	2.2	8.5	0.76

Table 2.4: Variance components and heritability of final emergence percentage (FEP), emergence rate (ER), onset (T_1) and end (T_{100}) of emergence, the median of emergence time (T_{50}) and uniformity (T_{100} - T_1).

***,**,* significant at the 0.001, 0.01 and 0.05 probability level, σ_{E}^2 , σ_{G}^2 , σ_{GxE}^2 and σ_{T}^2 are variances of the environment, genotype, genotype x environment interactions and error variances

Table 2.5: Analysis of variance	(ANOVA)	for final	emergence	percentage	under	cold	(FEP_{cold})	and
normal (FEP _{normal}) conditions.								

	Variance analysis								
	df	Sum of Squares	Mean Squares	р					
gen	193	106821	553	<.0001					
temp	1	229320	229320	<.0001					
gen*temp	193	20724	107	0.07					
block	1	10675	10675	<.0001					

df degree of freedom, gen genotype effect, temp temperature effect, gen*temp interaction of genotype and temperature

Figure 2.2 Final emergence percentage under cold (FEP_{cold}) and normal (FEP_{normal}) conditions (a), Finlay-Wilkinson regression for calculating Finlay-Wilkinson slope (FW) and across environment mean (M) for FEP (b), onset (T₁) (c), median time to emergence (T₅₀) (d), end of emergence (T₁₀₀) (e), uniformity (T₁₀₀-T₁) (f) and emergence rate (ER) (g) in nine environments and the relationship between development rates and mean air temperatures for calculating base temperature (T_b) and thermal time for emergence (E_{TS}) (h). E_{TS} is the inverse of regression slope (sl). Filled symbols indicate the genotype with highest FEP (a, b) or emergence rate (g) and development rates of T₅₀ (h) or the shortest duration of T₁ (c), T₅₀ (d), T₁₀₀ (e) and uniformity (f) respectively. Unfilled symbols represent the worst performing genotype. Selection was done for each trait separately while selection criterion for T_b and E_{TS} was T₅₀.

Figure 2.3 Population structure (a) and neighbor-joining dendrogram (b) of the diversity set. The population structure shows two distinct groups: Group 1 is represented by grey boxes (() (a) or a grey ellipse (b) and group 2 is represented by white boxes ().

LD in relation to the genetic distance of marker pairs on the same chromosome is shown for the whole population (Figure 2.4b) and for the two subpopulations group 1 and 2 (Figure2.4c and d). LD of marker pairs from different chromosomes is illustrated by box and whisker plots. For the whole population, significant LD (p<0.05) was observed for 723 marker pairs (50.6%) located on the same chromosome. Mean R² for all intrachromosomal marker pairs was 0.08. Group 2 showed less marker pairs (19.5%) significantly in LD compared to group 1 (28.5%). Mean R² for all intrachromosomal marker pairs of group 1 was 0.08 (1427 marker pairs) and 0.05 in group 2 (1222 marker pairs). The critical R² value was 0.53 for the whole population and 0.54 and 0.40 for group 1 and 2, respectively. Beyond this value LD was likely to be caused by genetic linkage. Mean distance of marker pairs showing an LD beyond this threshold was 13.2 cM in the whole population while in the groups mean distance was 30 cM (group 2) and 24.4 cM (group 1). The LOESS curve did not cross the critical R² baseline in all cases, which gives hint that LD decayed fast. Another indicator for fast LD decay is that mean R² fell constantly below 0.15 if the distance was larger than 8 cM (Figure 2.4a).

A comparison of both methods, GLM without permutation test and MLM using the rank sum method according to Stich et al. (2008) shows that mean squared difference (MSD) between observed and expected p-values of GLM are for all traits higher than MSD of MLM (Table 2.6).

Table 2.6 shows the number of significant marker-trait associations identified with GLM after carrying out the permutation test and MLM. A total of 102 marker-trait associations was congruently detected by both models while 174 loci were significantly associated to one of the analyzed traits using MLM and 196 loci using GLM. The highest number of significant marker-trait associations was detected for E_{TS} and $T_{1(M)}$. Application of GLM revealed 39 marker-trait associations for E_{TS} while 14 marker-trait associations were detected using

MLM. Only 11 of the loci turned out to be significant in both models. Only 3 loci were significant applying both models on T_{100} - $T_{1(M)}$ data.

Figure 2.4 Mean R² values for different centimorgan (cM) classes (a). Linkage disequilibrium parameter R² plotted against the genetic distance in cM for the whole population (b), group 1 (54 genotypes) (c) and group 2 (140 genotypes) (d). The bottom black line shows the second degree LOESS curve. Boxplots show the distribution of R² derived from pairwise LD of unlinked loci, dotted lines indicate the median and straight lines represent the mean. Boxes show the 25% and 75% percentile, whiskers the 95% and 5% percentile. The critical R² is given by horizontal black lines.

		Μ	ISD	Number of marker-trait associatio			
	-	GLM	MLM	GLM	MLM	GLM &MLM	
	Cold	0.069	0.156	7	12	5	
FEP	Normal	0.021	0.003	8	14	8	
LLL	MW	0.019	0.006	7	9	6	
	FW	0.663	0.002	18	12	8	
ED	MW	0.018	0.0006	7	9	6	
EK	FW	0.312	0.001	9	9	6	
T	MW	0.402	0.0002	12	13	9	
11	FW	0.139	0.031	8	11	7	
	MW	0.688	0.003	11	12	7	
т	FW	0.288	0.001	9	10	6	
I 50	T _b	0.744	0.001	35	10	4	
	E _{TS}	0.513	0.002	39	14	11	
T	MW	0.351	0.182	10	14	6	
I ₁₀₀	FW	0.193	0.003	7	10	5	
тт	MW	0.008	0.001	3	7	3	
1 ₁₀₀ -1 ₁	FW	0.009	0.001	5	8	5	

Table 2.6: Mean squared difference (MSD) of generalized linear model (GLM) without permutation test and a mixed linear model (MLM) data, number of significant marker-trait associations using GLM with permutation test and MLM and number of significant marker-trait associations using both models.

FEP final emergence percentage, ER emergence rate, T_1 onset of emergence,

 $T_{\rm 50}$ median time to emergence, $T_{\rm 100}$ end of emergence, $T_{\rm 100}$ - $T_{\rm 1}$ uniformity, FW Finlay-Wilkinson slope, MW mean across environments , cold FEP under cold conditions, normal FEP under normal conditions, $T_{\rm b}$ base temperature , $E_{\rm TS}$ thermal time

Table S 2.2 shows marker-trait associations that were significant using both GLM and MLM models. Means and standard deviations for the trait values of the two groups of marker genotypes are shown. The common allele is defined as the predominant allele. Pairwise t-tests

comparing the rare and common allele revealed that 17 marker-trait associations significant in both models, GLM and MLM, were not significant. E.g., all the traits $T_{1(M)}$, $T_{1(FW)}$ and $T_{50(M)}$ were associated to marker loci sPb-6748 and sPb-3298 on chromosome SBI-09 according to GLM and MLM but the t-test showed no significance between trait values of the marker-genotype groups.

If marker-trait associations, which were not significant according to the t-test, are excluded, a total of 85 marker-trait associations are remaining for 16 traits (Figure 2.5). Out of them, 24 markers were associated with only one trait and 20 markers were associated with between two and six traits. A total of 42 temperature response QTL, marker-trait associations for FW, T_b and E_{TS}, were found while 14 of them were detected on chromosome SBI-08. Some markertraits associations were detected for genotype mean and FW at the same position, e.g. for T₁₀₀-T₁ on chromosome SBI-01, T₁ on chromosomes SBI-03, SBI-06 and SBI-09, T₅₀ on chromosomes SBI-03, SBI-04 and SBI-09 and T₁₀₀ on chromosomes SBI-04, SBI-08 and SBI-09. Marker-trait associations for FEP(M) and FEP(FW) did not co-localize. Four markertrait associations for FEP_(M) were located on chromosome SBI-01 between 25 and 66 cM. Marker-trait associations for FEP_(FW) were found on SBI-03, SBI-04, SBI-05, SBI-08, SBI-09 and SBI-10. Co-localization of marker-trait associations for FEP_{cold} and FEP_(M) was detected on chromosome SBI-01 and SBI-03 while marker-trait associations for FEP_{normal} did not colocalize with FEP_{cold}, FEP_(M) or FEP_(FW). Marker-trait associations for T_b and T_{50(FW)} were colocated on chromosome SBI-01 and SBI-08, while E_{TS} and ER_(FW) were associated with sPb-0258, sPb-1661 and sPb-1881 on chromosome SBI-08.

Figure 2.5 Marker-trait associations for final emergence percentage (FEP) under cold (\blacksquare) and normal (\blacksquare) conditions and for genotype mean (filled symbols) and Finlay-Wilkinson slope (unfilled symbols) of FEP (\blacksquare), onset (\blacklozenge) and end (\blacklozenge) of emergence, uniformity (\blacktriangle), emergence rate (\diamondsuit) and the median of emergence time (\blacktriangle) and marker-trait associations for base temperatures (\bigstar) and thermal time of T₅₀ (Σ).

A positive effect of the rare allele on across environment means (reducing T_1 , T_{100} and T_{100} - T_1 and increasing FEP and ER) was observed for 21 markers. The rare allele of sPb-7795 on chromosome SBI-03 increased FEP_(M) while the rare allele of sPb-7290 on chromosome SBI-06 caused an earlier $T_{1(M)}$. Reducing T_{100} - $T_{1(M)}$ was associated with the rare alleles of sPb-3801, sPb-4081 and sPb-9894 on SBI-01, SBI-02 and SBI-03 while sPb-4081 and sPb-1925 on chromosome SBI-02 increased ER_(M).

Discussion

Statistical models and crop models for QTL detection

The objective of the present study was to identify marker-trait associations for sorghum emergence under a broad range of temperature regimes. Sorghum cultivation in temperate climates requires the development of genotypes with high FEP under both low and optimum temperature conditions, such ideotypes should emerge uniformly and shortly after sowing. The latter makes it necessary to understand emergence as a process, which is described best by CEP, allowing a precise estimation of T_1 , T_{100} , T_{50} , ER and T_{100} - T_1 . Using piecewise linear regressions allowed us to describe the variability of the emergence process of 194 sorghum genotypes grown in nine temperature regimes, while it was not possible to generate model parameters for all genotypes in any environment if the Weibull function was applied (data not shown). Generally, Weibull is highly recommended for describing germination and emergence data (Brown and Mayer 1988b). However, simplicity and flexibility as well as independence and biological interpretability of all parameters (Vieth 1989) make piecewise linear regressions the model of choice, enabling the direct comparison of largely contrasting genotypes cultivated under a broad range of environmental conditions (Trudgill et al. 2000).

For marker-assisted selection it is necessary to identify QTLs that are stable across environments (Burow et al. 2011). Under situations of environmental stress, reproducibility of phenotypic data and QTL detection are low. Traits that are highly influenced by environmental factors can by definition not produce the same results in different environments. A challenge is to carry out QTL analysis directly on parameters of the response curves of a trait to its influencing factors, thus, genetic dissection of adaptation processes is done best by using mathematical functions (e.g. growth functions) for QTL detection (Reymond et al. 2003). Stability parameters are good statistical estimators for such a situation and they have already been used to distinguish between QTL for the trait itself and for GEI effects (Kraakman et al. 2004; Lacaze et al. 2009).

In contrast to stability parameters, T_b and E_{TS} are broadly used crop modeling parameters and theoretically can be used for predicting mean emergence time of any genotype in different environments. Predicting the performance of different genotypes in different environments is a major goal for combining crop-modeling approaches with quantitative genetic analyses. However, the use of stability parameters has several advantages. Detailed environmental and climatic data is lacking in many state of the art breeding trials. Multi-environment trials with many factors, which cannot be controlled completely (e.g. temperature, soil type and structure, rainfall), are commonly used to carry out stability analyses. The linear regression model for estimating T_b and E_{TS} works since $1/T_{50}$ data of all genotypes is within the linear increase of emergence time in relation to temperature for the sampled environments. This does not hold true for all traits. Functions that fit the temperature response of FEP of individual genotypes used in the present study would include exponential, linear and monomolecular ones since not all temperatures from the minimum to the optimum for the individuals were sampled. As parameters of different functions (e.g., exponential and monomolecular) cannot be used simultaneously for QTL detection, stability parameters, which have the disadvantage not to represent real physiological responses to the environment, are an adequate compromise in many situations (El Soda et al. 2010). Stability analyses applied on data from controlled environments, e.g. varying only in temperature, are not common but have the main advantage that different reactions of genotypes can be traced back to a single influencing factor. In conclusion, QTL for FW in our study are truly temperature response QTL which did not interact with and were not affected by other environmental variables.

In our study, eleven of 32 marker-trait associations for FW co-locate with genotype mean performance QTL of the analogous trait. The only trait with no co-localization of FW and genotype mean performance was FEP. According to Kraakmann et al. (2004) the colocalization of QTL for mean trait performance and stability parameters is an indicator for genotypic differences in the allelic sensitivity, while QTL for stability parameters which are far from any QTL for the trait itself, suggest a gene regulatory network in which adaptive genes switch on or off the constitutive genes influenced by the environment. In the present study, there is always a strong positive correlation between FW and mean genotype performance of T₁, T₅₀, and T₁₀₀, since all genotypes emerge relatively fast under favorable conditions, while those with a low cold tolerance, emerge late at low temperatures. The same relation holds also true for T_{100} - T_1 but not for FEP. The absence of co-localization of FW and mean genotype performance QTL for FEP suggests a gene regulatory network but another reason could be that FEP is influenced by seed quality. Negative effects on seed quality may result from some extremely late flowering genotypes, i.e. seeds may not have reached maturity at harvest time and immature seeds have a reduced FEP (Shepard et al. 1996). In contrast to FEP, time of emergence includes only those seeds, which do emerge, and FEP QTL may also include QTL for flowering time. A common approach to separate seed quality QTL from QTL for cold tolerance is to use relative values (FEP at low temperatures over FEP at normal temperatures). The use of FW can be seen as a different approach to correct FEP data for differences in seed quality. A small slope indicates that FEP is not or only slightly affected by temperature regardless of FEP at higher temperatures, i.e. cold tolerant genotypes have a small FEP_(FW) value.

Genome regions affecting the germination process

Results of the present study confirm earlier QTL studies and show that most promising regions for emergence and cold tolerance during emergence are located on SBI-01 (Knoll et al. 2008; Burow et al. 2011). Burow et al. (2011) found QTL for early emergence close to

Xtxp350 in the same region of a QTL for $FEP_{(M)}$ and FEP_{normal} at DArT markers sPb-3891 and sPb-2583, respectively (Figure 2.6). Knoll et al. (2008) described QTL for early field emergence flanked by SSR markers OPA19 and umc83. The latter was mapped close to sPb-8947 (Mace et al. 2008), which is associated with $FEP_{(M)}$ in the present study. Another interesting region is between Xtxp043 and Xtxp032, where sPb-0090 was mapped according to Mace et al. (2008). sPb-0090 is associated with $FEP_{(M)}$ and Xtxp043 is a flanking marker of a QTL detected by Burow et al. (2011). High-resolution SNP maps allowing regional association studies are needed to identify candidate genes within these important QTL regions.

Figure 2.6 Alignment of the genetic map of chromosome SBI-01 from Burow et al. (2011) (a), the present study (b) and Knoll et al. (2008) (c). Underlined and italic markers represent flanking markers of QTL for early field emergence or germination at 30° C (a) and early vigor, early and late emergence (b). Symbols indicate final emergence percentage of over all environments (\blacksquare), under cold (\blacksquare) and normal conditions (\blacksquare).

The rare allele of sPb-3801 on SBI-01 reduces $T_{100}-T_{1(M)}$ and $T_{100}-T_{1(FW)}$ and thus homogenizes the emergence process. Improving emergence percentage and uniformity leads to a better canopy establishment resulting in higher and more stable yields (Cisse and Ejeta 2003). However, low seedling vigor and a prolonged juvenile development at low temperatures may lead to a delayed canopy closure and yield reduction despite high FEPs and uniformly emerging seeds. Thus, improving cold tolerance of a crop is not simply done by improving seed emergence. QTL for early vigor and field emergence were identified between Xtxp043 and Xtxp032 by Knoll et al. (2008). QTL regions affecting emergence and seedling vigor at the same time in the same direction may be the most promising ones for improving the cold tolerance of a crop.

The QTL for T_b on SBI-01 is difficult to interpret since the marker allele, which decreases T_b , increases E_{TS} . The parameters are negatively correlated and both T_b and E_{TS} depend on the regression slope β_i (eq. 6) of the rates of development of T_{50} regressed against temperatures. If a marker allele has an effect on E_{TS} and the intersection between the regression lines of the negative and the positive allele is > 0, the increase in E_{TS} leads to a decreasing T_b and vice versa. Selection for T_b makes only sense if E_{TS} is not significantly affected (Figure 2h) or positively affected (intersection < 0) at the same time.

Knoll et al. (2008) detected a QTL for germination at high (30°C) and low (13°C) temperatures on SBI-03. The QTL region is not the same as that one we identified on SBI-03 for FEP. Flanking markers of the earlier identified QTL mapped according to Mace et al. (2008) in the large gap our map shows on SBI-03. Anyway, the region between 4 and 5cM on SBI-03 is a promising QTL region. The rare allele of sPb-7795 is associated with a positive effect on FEP_(M) and FEP_{cold} and the rare allele of the very close marker sPb-5454 decreases FEP_(FW), i.e., improves cold tolerance. Srinivas et al. (2009) detected QTL for maturity close

to sPb-7795 on SBI-03 (Mace and Jordan 2011), which may support the hypothesis that maturity affects seed quality.

Zhang et al. (2005) detected in a rice RIL population two QTL for germination under low temperature on chromosomes 3 and 8. Rice chromosomes 3 and 8 are widely homologous to SBI-01 and SBI-07 according to Ventelon et al. (2001) and following the nomenclature of Kim et al. (2005). A major QTL for germination at optimal temperatures was found on rice chromosome 2 in a F_2 population (Li et al. 2011), chromosome 2 is globally homologous to SBI-04 (Ventelon et al. 2001). We found marker-trait associations for FEP_(M) on SBI-01, SBI-03 and SBI-09 and for FEP_(FW) on SBI-04. The rare allele of sPb-4851 decreases FEP_(FW) and T_b. Probably a reduction of T_b leads to less reductions of FEP under low temperatures.

QTL for maize germination percentage under low temperature conditions were identified on maize chromosome 4 (Hund et al. 2004). Liu et al. (2011) found QTL for maize germination percentage related to seed vigor on chromosomes 4, 7 and 10. We detected a QTL for $FEP_{(FW)}$ on SBI-04 but no QTL for $FEP_{(M)}$, FEP_{normal} , or FEP_{cold} on SBI-04 and SBI-05, which contain homologous regions of maize chromosome 4 (Whitkus et al. 1992) and for $FEP_{(FW)}$ on SBI-08 carrying homologous regions of maize chromosome 10. Another promising region on SBI-08 between 73 and 111 cM carries no FEP QTL but three marker-trait associations with a positive effect of the rare allele on $ER_{(FW)}$, E_{TS} , one QTL for T_b , and several QTL for traits related to emergence time. Limami et al. (2002) found QTL for T_{50} on maize chromosome 2, which is homologous to regions of SBI-02 and SBI-06 (Whitkus et al. 1992) and on maize chromosome 4, which is homologous to regions for $T_{50(M)}$ and/or $T_{50(FW)}$ on SBI-04 and SBI-06. Possibly the same genes regulate cold tolerance during emergence of maize, sorghum and rice. Also here, the identification of candidate genes is required to provide more detailed information about the genetic background.

Power and reliability of QTL detection

LD of the present sorghum population decayed within 8 cM, while average marker distance was 8.7 cM and the largest gap between markers was 66 cM. Large gaps in combination with fast LD decay make it impossible to screen the whole genome for significant marker-trait associations. However, mean LD values are useful but give no information about its local extent since high variation of LD among the genome occurs (Sorkheh et al. 2008) and LD varies also between groups of a population. We observed a higher mean R² and critical R² threshold for group 1 than for group 2. One reason could be the different population size of the groups but also differences in the number of polymorphic markers in the groups. Mean R² of the whole population was higher compared to values obtained by Bhosale et al. (2011) and Hamblin et al. (2004). Both studies included wild sorghum accessions. Wild sorghums have higher out-crossing rates than cultivated ones and high out-crossing rates decrease the extent of LD.

Different strategies like integrating the population structure (Pritchard et al. 2000) and familial relatedness (Yu et al. 2006) have been used to reduce false positive marker-trait associations. Kinship coefficients are used to correct association studies for familial relatedness and show the probability that homologous loci are identical by descent. The MLM approach takes both population structure and kinship matrix into account while GLM as implemented in TASSEL 2.01 uses only the population structure (Casa et al. 2008; Shehzad et al. 2009). Our results show that type I error rates of GLM are higher than those of MLM, which is in accordance with Neumann et al. (2010). Neumann et al. (2010) concluded that some associations can only be detected by GLM but, since GLM may result in many false positive marker-trait associations, both approaches GLM and MLM should be used together.

We observed that controlling GLM type I error rates with a permutation test (Churchill and Doerge 1994) reduces the number of detected marker-trait associations to a similar level as

MLM. However, approximately 50% of the identified loci were shared by applying both methods and a subsequently carried out t-test revealed that 16 of the shared marker-trait associations were not significant. In conclusion, even taking the population structure and/or familial relatedness into account both GLM and MLM may result in spurious marker-trait associations and comparing the results of different models may presently be the most useful way for detecting reliable associations (Shezad et al. 2009).

Conclusions

In accordance to previous studies we conclude from the present work that one of the most promising regions for improving FEP is located on SBI-01. However, the time-point at which emergence occurs as well as across environment stability of FEP is likely be regulated by distinct QTL regions. Piecewise linear regressions gave a good estimate of the emergence process of different genotypes. However, the emergence model in combination with stability analysis was able to precisely describe the emergence process across different temperature regimes. This combination enabled the detection of QTL for GEI effects. An interesting alternative approach is to use physiologically more meaningful parameters like T_b and E_{TS} as input traits for QTL detection. A shift in T_b without negatively affecting development processes is the most promising avenue to adapt crops to new cultivation areas with lower temperatures. However, the identification of stable markers and candidate genes for sorghum cold tolerance during emergence requires the development of high-density genetic maps.

Chapter 3

Genetic dissection of temperature dependent sorghum growth during juvenile development

Karin Fiedler^{1,3}, Wubishet A. Bekele², Ria Duensing¹, Susann Gründig^{1,3}, Rod Snowdon², Hartmut Stützel¹, Arndt Zacharias³, Ralf Uptmoor⁴

¹ Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany

² Department of Plant Breeding, Justus-Liebig-University, Heinrich-Buff Ring 26-32, 35392 Gießen, Germany

³ KWS Saat AG, Grimsehlstr.31, 37555 Einbeck, Germany

⁴ Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany

Abstract

Developing fast growing sorghum seedlings is an important breeding goal for temperate climates since low springtime temperatures are resulting in a prolonged juvenile development. The adaptation of sorghum to tropical and subtropical highlands gives hint for certain genetic variation. The goals of the present study were to detect marker-trait associations for leaf area (LGR) and dry matter growth rate (DMGR) and for chlorophyll fluorescence and content (SPAD) in relation to temperature. A diversity set comprising 194 genotypes was tested in eight controlled environments with temperatures ranging from 9.4 to 20.8 °C. Marker-trait associations were identified for each individual temperature regime and on the parameters of regression analyses describing the responses of growth or chlorophyll related traits on temperatures. The diversity set was fingerprinted with 171 diversity array technology (DArT) and 31 simple-sequence repeat (SSR) markers. SSRs were used to analyze the population structure while association studies were performed on DArT markers. Promising marker-trait associations for growth rates in relation to temperature were detected on chromosomes SBI-01, SBI-03, SBI-07, and SBI-10. Many promising loci were also significantly associated to the results obtained in individual low-temperature environments. Marker-trait associations for chlorophyll content and fluorescence did occasionally co-locate to those for growth during juvenile development but there was no evidence supporting our hypothesis that seedling growth at low temperatures is largely influenced by SPAD or fluorescence.

Keywords: sorghum, cold tolerance, juvenile development, growth rates, chlorophyll fluorescence, association mapping

36

Introduction

Improving sorghum cold tolerance is an important issue for breeders in order to provide farmers an alternative crop to maize for bioenergy production in temperate regions. Sorghum shows small early stage growth rates at low springtime temperatures and has high base temperatures for DMGR and LGR (Lafarge et al. 1998). However, the adaptation of sorghum to tropical and subtropical highlands gives hint for certain genetic variation in cold tolerance during juvenile development. Genotypes with high dry matter accumulation at low temperatures have early soil coverage and canopy closure (Richards 2000), which improves competitiveness with weeds, reduces water losses due to evaporation and may increase the vegetation period at the same time. Significant genotypic differences in dry matter of sorghum hybrids at early development stages were found in growth chamber experiments carried out at different temperatures (Yu and Tuinstra 2001). The authors suggested the selection of cold tolerant genotypes from growth chamber experiments since results obtained were highly correlated to field evaluation data.

High biomass accumulation is driven by high photosynthetic rates and rapid leaf growth, which may result from both high leaf appearance rates (LAR) and LGR. In general, LAR is positively linear related to temperature increases from the base (T_b) to optimum temperature. T_b is the temperature below which no growth or development takes place and temperatures above the optimum do not lead to a further increment in development rates per time unit, i.e., the temperature optimum equals to the maximum growth or development rate. Genotype specific T_b of maize varies between 2.9 and 5.0 °C and LAR, the regression slope of leaf number plotted against thermal time, ranges between 48.6 and 65.5 °Cd (Padilla and Otegui 2005). Superiority of exotic maize cultivars in LAR compared to European germplasm was observed until the third leaf stage but got lost at later development stages (Soldati et al. 1999). Genotypic differences in LAR were also observed for sorghum (Kumar et al. 2009). In

contrast to LAR, DMGR at early growth stages generally increases exponentially with increasing temperatures (Thornley and Johnson 1990). A rapid leaf area development enhances light harvesting to maximize assimilate production. Hund et al. (2008) found a high correlation between dry matter and leaf area at warm temperatures. At low temperatures dry weight was closest related to the operating efficiency of photosystem II (Φ_{PSII}). Under cold stress, photosynthetic rates may decrease due to a reduction in the membrane fluidity (Steponkus 1984), photoinhibition (Foyer et al. 2002) and changes in enzyme activities (Kocova et al. 2009). Photoinhibition affects mainly the photosystem II (PSII) while the effect on PSI is small (Krause 1988; Savitch et al. 2011). Chlorophyll fluorescence, as an indicator for the efficiency of the PSII in using photons for carbon fixation, and SPAD, which is closely related to the chlorophyll content and photosynthesis rate per unit leaf area, are useful traits to describe the photosynthetic performance of a crop under suboptimal conditions. Fluorescence was successfully used as a selection tool for cold tolerance in maize (Fracheboud et al. 1999). Trachsel et al. (2010) assumed that stage specific genetic regulation seems to play an important role since maize QTL for chlorophyll content detected during different growth stages did not co-locate. A major QTL for photosynthetic performance of maize identified only at low temperatures co-localized to a QTL for shoot dry matter accumulation, suggesting that the genetic control for photosynthesis differs depending on the temperature regime (Fracheboud et al. 2004).

Dealing with GxE interactions occurring in association studies on complex traits is important since some QTL can be found over a broad range of environments while many seem to be environment specific. Maccaferri et al. (2011) found only one stable grain yield QTL in durum wheat lines tested in environments with different soil water availability. Since the number of significant associations decreased with increasing drought stress conditions they concluded that there is limited effectiveness of association mapping under extreme conditions.

Promising tools to overcome this problem are (1) to integrate GxE interactions into the statistical framework or (2) to combine crop models with QTL analysis (Collins et al. 2008). QTL for crop model parameters were identified in bi-parental populations for maize leaf elongation rate (Reymond et al. 2003), for flowering time in barley (Yin et al. 2005), and leaf senescence in potato (Malosetti et al. 2006). QTL for parameters describing the adaptability across different temperature regimes and QTL for mean genotype performance enable to distinguish between genome regions responsible for temperature dependent control of a trait and the trait itself (Via et al. 1995; van Euwijk et al. 2010). QTL for the genotype specific response to the environment might be an important step in developing stable markers for marker-assisted selection.

The objectives of the present study were (1) to identify marker-trait associations for SPAD, chlorophyll fluorescence, and traits directly related to juvenile growth and development in eight individual environments and for simple parameters describing the adaptation to different temperature conditions, (2) to identify genetic links between chlorophyll content and fluorescence related traits and crop growth during juvenile development, (3) and to compare the results obtained by analyzing each environment separately to those of the joint analysis through regression parameters.

Material and Methods

Plant material

The study was carried out on 194 biomass sorghum lines. The diversity set includes *Sorghum bicolor* and *S. bicolor sudanense* genotypes. DNA was extracted from leaf tips using the cetyl trimethylammonium bromide (CTAB) method. The genotypes were fingerprinted with 688 polymorphic DArT markers. Marker positions were taken from Mace et al. (2008). Unmapped

markers, completely linked markers, and markers with frequencies of one allele < 5 % were removed. The final map comprised 171 informative DArT markers.

Experimental design

An experiment with eight temperature regimes was conducted in climate chambers at the Leibniz Universität Hannover. The diversity set was sown in pots with a diameter of 7 cm and filled with 50 % Klasmann Potgrond P (Klasmann-Deilmann, Groß-Hesepe, Germany) and 50 % loamy sand. Three seeds per pot and genotype were sown at 10 mm depth. All plants were grown at an optimal temperature of 25/22 °C (day/night) until most plants were in the three-leaf stage (6 d). After thinning to one plant per pot, plants were moved to different climate chambers representing the eight temperature treatments (Table S 3.1). Each single temperature treatment was designed as randomized complete block design with 3 replications of the diversity set within one climate chamber. Air temperature was measured every 5 minutes directly above the pots using TinyTag View 2 data loggers (Gemini Ltd., West Sussex, U.K.) during the entire duration of the study. Plants were grown at a photoperiod of 12 h with 10 h full light (455 μ mol m⁻² s⁻¹) and 1 h twilight in the morning and evening.

Determination of growth rates and physiological traits

The number of leaves of every plant was counted at the beginning and end of each temperature treatment. Leaf appearance rate (LAR) was calculated as follows:

$$LAR = (LN_{dn} - LN_{d6}) / n, \tag{3.1}$$

where LN_{d6} is the number of leaves 6 d after sowing, LN_{dn} is the number of leaves at the end of the experiment, and *n* is the number of days of the temperature treatment.

The dry matter growth rate (DMGR) was estimated as follows:

$$DMGR = (DM_{dn} - DM_{d6}) / n, \qquad (3.2)$$

where DM_{dn} is the dry weight at the end of the experiment, DM_{d6} is the dry weight 6 d after sowing and *n* represents the number of days of temperature treatments. DM_{d6} was recorded in an additional set of plants harvested 6 d after sowing. The dry weight of leaves and stems was measured after drying at 105 °C.

Leaf area was measured at the end of temperature treatments with a leaf area meter (LICOR 3100, USA). LGR was estimated using the following equation:

$$LGR = (LA_{dn} - LA_{d6}) / n, \tag{3.3}$$

where LA_{dn} is the leaf area at the end of the experiment, LA_{d6} is the leaf area 6 d after sowing and *n* is the number of days of temperature treatments. An LA_{d6} of 2.2 cm² was assumed for all genotypes of the diversity set.

The greenness of the fourth leaf was recorded as mean of three measuring points using a SPAD-502plus chlorophyll meter (Konica Minolta Sensing Inc., Osaka, Japan). Chlorophyll fluorescence was measured at the fourth leaf of light adapted plants with an LI-6400 instrument equipped with the LI-6400-40 pulse amplitude modulation fluorometer (LICOR, Lincoln, NE, USA) using a modified measuring protocol from Fracheboud et al. (1999). The temperature in the measurement chamber was kept at the corresponding temperature inside the growth chamber. Steady-state fluorescence (F_s ') was recorded when the rate of change in fluorescence in relation to temperature (dF/dt) was < 5, indicating a stable signal. In order to

obtain the maximum fluorescence (F_m ') a saturation flash of > 8000 µmol m⁻² s⁻¹ was applied for 1 s. Actinic light was turned off and leaves were illuminated with far red light to measure the ground fluorescence of light adapted leaves (F_0 '). The fraction of absorbed photons used in photochemistry (Φ_{PSII}) was calculated as (F_m '- F_s ')/ F_m ' (Genty et al. 1989). The efficiency of energy harvesting of the oxidized PSII (F_v '/ F_m ') was calculated as (F_m '- F_0 ')/ F_m '.

Data analysis

Coefficients of variation (CV_g) were determined for the parameters and for each trait in every environment to describe the variation among genotypes. In addition to that, mean CVs within genotypes (CV_e) were computed based on the replications as an indicator for the error. Variance components were estimated using SAS 9.2 and broad sense heritability (h^2) was calculated according to Hill et al. (1998):

$$h^{2} = \frac{\sigma_{G}^{2}}{\sigma_{G}^{2} + \sigma_{GXE}^{2} \frac{1}{n} + \sigma^{2} \frac{1}{rn}}$$
(3.4)

where σ_{G}^{2} is the genotypic variance, σ_{GxE}^{2} is the genotype x environment interaction variance, σ^{2} is the error variance, *r* is the number of replications, and *n* is the number of environments. Analysis of variance (ANOVA) was carried out using the following model with *i* = 1,2,3,...,*a* genotypes, *j* = 1,2,3,...,*n* environments and *k* = 1,2,3,...,*b* genotype x environment interactions:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, \tag{3.5}$$

where μ is the overall mean, α_i is the effect of the *i*th genotype, β_j is the effect of the *j*th environment, γ_{ij} is the genotype x environment interaction, and ε_{ijk} is the random error.

Linear regression analysis was carried out on LAR, SPAD, F_v'/F_m' and Φ_{PSII} data from the nine temperature regimes using the following model:

$$y_{ij} = \beta_i + sl_i x_j + \varepsilon_{ij}, \tag{3.6}$$

where y_{ij} is trait value of the *i*th genotype in the *j*th temperature regime, β_i is the estimated intercept and *sl_i* the regression slope of the *i*th genotype, x_j is the temperature of the *j*th environment and ε_{ij} is a random error. Base temperature (T_b) was estimated by linear extrapolation to define the theoretical temperature below which LAR, SPAD, F_v'/F_m' , and Φ_{PSII} become 0:

$$T_{bi} = -\beta_i / sl_i, \tag{3.7}$$

An exponential function was used to describe the relation between DMGR or LGR, respectively, and temperature:

$$GR_{ii} = GR_{0i} e^{(a (T - T_0))}, (3.8)$$

where GR_{ij} is the growth rate of the *i*th genotype in the *j*th environment, GR_0 is the estimated *GR* in the lowest temperature environment T_0 (9.4 °C for DMGR and 13.5 °C for LGR), *a* is the exponent and *T* the temperature. Pearson's correlation coefficients were calculated between parameters and the respective trait values of the individual environments and between regression parameters and across environment means of the traits using SAS 9.2.

171 DArT markers and 31 SSR markers were used to analyze the population structure of 194 individuals with the software package STRUCTURE assuming an admixture model (Pritchard et al. 2000) and using a burn-in phase of 10,000 iterations followed by 10,000 Markov chain Monte Carlo iterations in order to detect the "true" number of *K* groups in the range of K = 1000

1–20 possible groups. *dK* was calculated according to Evanno et al. (2005). Prior to association mapping data were arcsine-square root transformed in order to achieve approximately normal distribution. For identifying significant associations between 171 DArT markers and the traits Tassel 2.1 was used (Bradbury et al. 2007). The SSR based Q-matrix and a kinship matrix were used in a mixed linear model (MLM) (Zhang et al. 2010). Association studies were carried out for all traits in each individual environment, for mean genotype performance across all environments, and for regression parameters.

Results

Figure 3.1 shows that LAR, SPAD, F_v '/ F_m ' and Φ_{PSII} are linearly related to temperature while DMGR and LGR increase exponentially with increasing temperatures within the range of environmental conditions used in the experiments. DMGR of the population mean across all environments was 0.009 g d⁻¹ and ranged between 0.0003 at 9.4 °C and 0.037 g d⁻¹ at 20.8 °C. LGR of the best performing genotype was on average over all environments 6.6 cm² d⁻¹ while LGR of the worst performing genotype was 1.09 cm²d⁻¹ (Figure 3.1). At 20.8 °C population mean for LAR was 0.32 d⁻¹. No increase in leaf number was observed at 9.4 °C (Table 3.1).

Figure 3.1: Relationship between dry matter growth rates (DMGR) (a), leaf area growth rates (LGR) (b), leaf appearance rates (LAR) (c), chlorophyll contents (SPAD) (d), fluorescence (Φ_{PSII} (e) and F_v'/F_m' (f)] and temperature for calculating the exponent (*a*), initial growth rates (DMGR₀, LGR₀), temperature effects (*sl*) and base temperatures (T_b). Black circles (\bullet) indicate population means, unfilled circles (O) represent the best and grey circles (\bigcirc) the worst performing genotype. Selection criterion was mean across environments.

Table 3.1: Genotype means, ranges and coefficients of variation among (CV_g) and within genotypes (CV_e) for averages across all environments, the parameters regression slope (*sl*) and base temperature (T_b) of leaf appearance rate (LAR), chlorophyll content (SPAD), and chlorophyll fluorescence (F_v'/F_m' and Φ_{PSII}), and for exponents (*a*) and initial growth rates (DMGR₀ or LGR₀) of dry matter growth rate (DMGR) and leaf area growth rate (LGR). Mean R² values of regression analyses are shown.

	Genotype	Genotype mean, min and max across all environments		all		<i>sl</i> or <i>a</i>				T_b or LGR_0 or $DMGR_0$				R^2				
	mean	min	max	CV _g [%]	CV _e [%]		mean	min	max	CV _g [%]	CV _e [%]		mean	min	max	CV _g [%]	CV _e [%]	
DMGR	0.009	0.003	0.014	25.3	16.5	DMGR _(a)	0.41	0.27	0.56	11.8	11.2	DMGR ₀	0.0003	0.0001	0.0007	36.1	35.8	0.97
LGR	3.78	1.09	6.59	23.8	13.5	LGR _(a)	0.44	0.26	0.77	15.4	19.5	LGR ₀	0.57	0.09	1.24	36.7	38.5	0.94
LAR	0.15	0.11	0.18	9.0	6.4	LAR _(sl)	0.03	0.02	0.04	8.6	10.4	LAR _(Tb)	10.2	9.2	10.9	2.8	4.8	0.95
SPAD	15.76	11.17	19.41	9.9	9.0	SPAD _(sl)	3.55	2.05	4.94	16.7	17.2	SPAD _(Tb)	12.5	9.4	13.7	5.7	7.9	0.90
F_v'/F_m'	0.47	0.34	0.58	9.3	6.2	$F_v'/F_m'_{(sl)}$	0.07	0.04	0.09	11.4	12.2	$F_v'/F_m'_{(Tb)}$	10.5	8.0	13.1	9.6	12.3	0.89
$\Phi_{ m PSII}$	0.32	0.23	0.45	11.3	21.5	$\Phi_{\mathrm{PSII}(sl)}$	0.06	0.03	0.09	17.4	13.0	$\Phi_{PSII(Tb)}$	11.3	8.0	14.0	9.7	10.2	0.79

Estimations for T_b of LAR (LAR_(Tb)) varied between 9.2 and 10.9 °C. SPAD of the population mean averaged over the environments was 15.8 and ranged between 11.2 and 19.4. Mean F_v'/F_m' and Φ_{PSII} across treatments were 0.47 and 0.32, respectively. CV_g of the estimated DMGR at the lowest temperature (DMGR₀) was 36 %, and CV_g of a of DMGR (DMGR_(a)) was 11.8 % (Table 3.1). CV_e of DMGR_(a) and *a* of LGR (LGR_(a)) were also relatively low, while the comparatively high CV_g for DMGR₀ and for the estimated LGR at the lowest temperature (LGR₀) corresponded to a high CV_e .

Analysis of variance (ANOVA) revealed that both environment and genotype effects were significant for all analyzed traits (Table 3.2). Genotype x environment interaction effects were highly significant for DMGR, LGR, LAR, SPAD and F_v'/F_m' (p < 0.001) but not significant for Φ_{PSII} (p = 0.06). Estimated h^2 was lowest for Φ_{PSII} (0.34). For all other traits h^2 ranged between 0.46 and 0.67.

		heritability			
_	σ_{E}^{2}	σ^2_{G}	σ^2_{GxE}	σ^2	h^2
$DMGR [g d^{-1}]$	0.00017***	0.000003***	0.000017***	0.000003	0.60
LGR [cm2 d-1]	16.09***	0.56***	1.03***	1.81	0.67
LAR $[d^{-1}]$	0.01166***	0.00014***	0.00013***	0.00117	0.62
SPAD	94.42***	1.37***	1.75***	12.57	0.58
F_v'/F_m'	0.0453***	0.0005***	0.0027***	0.0003	0.53
$\Phi_{ m PSII}$	0.0293***	0.0004***	0.0013n.s.	0.0056	0.46

Table 3.2: Variance components and heritability for dry matter growth rate (DMGR), leaf area growth rate (LGR), leaf appearance rate (LAR), chlorophyll content (SPAD), and chlorophyll fluorescence (Φ_{PSII} and F_v'/F_m').

***, **, * significant at the 0.001, 0.01, or 0.05 probability level

 $\sigma_{E_{c}}^{2}$, σ_{GxE}^{2} , and σ_{xE}^{2} are environment, genotype, genotype x environment interaction and error variances

Pearson's correlation coefficients between response curve parameters and trait values of single temperature regimes are presented in Table 3.3. Highest correlation coefficients were found between mean DMGR (DMGR_(mean)) and mean LGR (LGR_(mean)) and DMGR and LGR at 20.8 °C. DMGR₀ and LGR₀ were highly correlated with DMGR and LGR at 9.4 or 13.5 °C, respectively. DMGR_(a) and LGR_(a) were negatively correlated to DMGR and LGR at low temperature regimes. In case of LAR and SPAD, highest correlations were found between the slopes of LAR (LAR_(sl)) and SPAD (SPAD_(sl)) and the respective trait values at 20.8 °C. Highly negative correlations were observed between T_b and the low temperature environment trait values of LAR, SPAD, F_v'/F_m' , and Φ_{PSII} . Pearson's correlation coefficients between across environment means of the traits revealed that DMGR and LGR were highly correlated while both traits were not significantly correlated to LAR (Table S 3.2). Mean SPAD was significantly correlated to all other traits except LAR_(mean) and LAR_(Tb). The genotype with the highest DMGR across all environments had a much higher LGR, SPAD and Φ_{PSII} in comparison to the population mean, while LAR and F_v'/F_m' were only slightly increased (Figure 3.2).

There was for all traits a strong negative correlation between temperature and CV_g (Table 3.4). The correlation between temperature and CV_e was always negative as well and there was a strong correlation between CV_g and CV_e (R = 0.96).

	Temperature		DMGR			LGR			LAR	
	[°C]	mean	а	DMGR ₀	mean	а	LGR ₀	mean	sl	T_{b}
S	20.8	0.95***	0.38***	0.22**	0.94***	0.15*	0.43***	0.72***	0.82***	0.21*
nment	18.6	0.82***	0.29***	0.27***	0.79***	0.09n.s.	0.42***	0.62***	0.60***	-0.02n.s.
nviro	17.6	0.77***	0.24***	0.37***	0.78***	-0.05n.s.	0.56***	0.52***	0.48***	-0.04n.s.
ngle e	16.8	0.75***	0.14*	0.46***	0.77***	-0.04n.s.	0.55***	0.63***	0.47***	-0.21**
R in si	14.7	0.57***	0.01n.s.	0.46***	0.65***	-0.41***	0.74***	0.47***	0.25**	-0.32***
[R/LA]	13.5	0.47***	0.02n.s.	0.45***	0.47***	-0.74***	0.92***	0.60***	0.23**	-0.56***
GR/LG	10.5	0.26***	-0.47***	0.70***				0.24***	-0.20**	-0.68***
DMG	9.4	0.34***	-0.61***	0.86***						

Table 3.3: Pearson's correlation coefficients between the traits dry matter growth rate (DMGR), leaf area growth rate (LGR), leaf appearance rate (LAR), chlorophyll content (SPAD) and chlorophyll fluorescence (F_v'/F_m') and Φ_{PSII}) measured in each temperature regime and means across environments, exponents (*a*), initial growth rates (DMGR₀ and LGR₀), temperature effects (*sl*) and base temperatures (T_b).

***, **, * significant at the 0.001, 0.01, and 0.05 probability level

Table 3.3: continued

	Temperature	SPAD				F_v '/ F_m '		Φ_{PSII}				
	[°C]	mean	sl	T _b	mean	sl	T _b	mean	sl	T _b		
ients	20.8	0.74***	0.85***	0.49***	0.25***	0.16*	0.02n.s.	0.43***	0.77***	0.47***		
nvironm	18.6	0.73***	0.65***	0.27***	0.25***	0.13n.s.	-0.01n.s.	0.37***	0.18*	-0.07n.s.		
single e	17.6	0.65***	0.31***	-0.08n.s.	0.71***	-0.09n.s.	-0.35***	0.68***	0.11n.s.	- 0.29***		
, Ф _{PSII} in	16.8	0.55***	0.23***	-0.09n.s.	0.76***	-0.21**	-0.45***	0.54***	-0.08n.s.	- 0.36***		
, F _v '/F _m '	14.7	0.29***	0.32***	-0.55***	0.58***	-0.71***	-0.76***	0.52***	-0.40***	- 0.67***		
SPAD	13.5	0.33***	0.45***	-0.74***	0.48***	-0.69***	-0.67***	0.38***	-0.32***	- 0.48***		

***, **, * significant at the 0.001, 0.01, and 0.05 probability level

Toursesseture	DM	DMGR		LGR		LAR		SPAD		F_v'/F_m'			$\Phi_{ m PSII}$	
Temperature	CV_{g}	CV _e	CV_{g}	CV _e	CV	g CV _e	C	CVg	CV _e	 CV_{g}	CV _e	_	CV_{g}	CV _e
20.8	29.5	23.5	28.0	22.6	10.	5 8.5	1	1.5	10.2	11.5	1.7		14.8	18.7
18.6	28.9	28.1	28.9	30.7	14.	2 13.4	1	4.9	17.9	14.9	2.4		12.0	12.0
17.6	27.7	27.2	29.6	28.4	13.	0 15.6	1	9.4	23.7	19.4	13.5		26.5	25.4
16.8	32.7	25.8	31.0	28.5	12.	6 11.9	1	6.6	21.1	16.6	16.0		30.3	31.0
14.7	33.8	40.4	33.5	39.6	16.	6 21.4	2	2.8	30.7	22.8	27.4		34.6	34.8
13.5	37.5	47.2	45.4	53.3	27.	6 30.2	4	3.3	63.2	43.3	33.9		32.8	33.7
10.5	31.9	44.0			106	.1 117.7								
9.4	51.7	37.2												
R	-0.74	-0.79	-0.84	-0.90	-0.8	0 -0.82	-0).85	-0.87	-0.94	-0.97		-0.86	-0.82

Table 3.4: Coefficients of variation among genotypes (CV_g) and within genotypes (CV_e) for dry matter growth rate (DMGR), leaf area growth rate (LGR), leaf appearance rate (LAR), chlorophyll content (SPAD), and chlorophyll fluorescence (Φ_{PSII} and F_v'/F_m') in different temperature regimes.

R: Pearson's correlation coefficient between temperature and CV

Figure 3.2: Percentage deviations for the best (\bigcirc) and worst (\bigcirc) performing genotype compared to the population mean (\bigcirc) for the traits dry matter growth rate (DMGR), leaf appearance rate (LAR), leaf area growth rate (LGR), chlorophyll content (SPAD), and fluorescence (Φ_{PSII} and F_v'/F_m'). Selection criterions were highest or lowest DMGR at 13.5°C.

Figure 3.3 shows the estimated population structure for 194 individuals based on 31 SSR or 171 DArT markers, respectively. The population consists of two distinct groups. According to DArT marker data, 140 lines (72 %) belong to group 1 while 54 lines (28 %) belong to group 2. Using SSRs, 131 genotypes (68 %) were considered to belong to group 1 while 61 genotypes (32 %) were part of group 2.

Figure 3.3: Estimated population structure for 194 individuals of a diversity set using 31 SSR markers and 171 DArT markers. Both marker systems distinguish between group 1 (

A total of 138 marker-trait associations were identified for the response curve parameters and 449 QTL were detected in the individual environments (Table 3.5). The highest number of significant marker-trait associations was found for DMGR; 22 marker-trait associations for DMGR were found at 13.5 °C. The number of significant marker-trait associations for response curve parameters ranged between four ($\Phi_{PSII(sl)}$) and 18 (DMGR₀).

Temperature	Number of marker-trait associations										
[°C]	DMGR	LGR	LAR	SPAD	F_v '/ F_m '	Φ_{PSII}					
20.8	5	8	8	14	15	3					
18.6	10	10	10	12	10	13					
17.6	9	7	7	13	15	12					
16.8	11	11	8	17	12	11					
14.7	15	14	8	11	14	15					
13.5	22	15	11	13	8	12					
10.5	18		6								
9.4	16										
Mean	11	9	9	14	12	12					
a or sl	11	16	6	13	15	4					
T _b /DMGR ₀ / LGR ₀	18	15	9	12	10	9					

Table 3.5: Number of marker-trait associations for dry matter growth rate (DMGR), leaf are growth rate (LGR), leaf appearance rate (LAR), chlorophyll content (SPAD), and chlorophyll fluorescence (F_v'/F_m') and Φ_{PSII} in each environment and number of marker-trait associations for means across environments, exponents (*a*), initial growth rates (DMGR₀ and LGR₀), temperature effects (*sl*), and base temperatures (T_b).

The marker with the highest number of associations to the traits was sPb-4874 on chromosome SBI-07 (Figure 3.4, Table S 3.3). The marker was significantly associated with DMGR in seven of the eight environments while 32 marker-trait associations for DMGR were found in only one environment. Marker-trait associations found in only one environment were rarely co-located with QTL for response curve parameters. 29 marker-trait associations for DMGR in individual environments were co-located with QTL for DMGR_(mean) while only 12 QTL for LAR in the different temperature regimes coincided with QTL for LAR_(mean).

Figure 3.4: Marker-trait associations for dry matter growth rate (DMGR), leaf area growth rate (LGR), leaf appearance rate (LAR), chlorophyll content (SPAD), and fluorescence $(F_v'/F_m' \text{ and } \Phi_{PSII})$ in eight different temperature regimes (9.4 10.5 13.5 14.7 16.8 17.6 18.6 20.8 °C) and for means across environments (\times), exponents or temperature effects (\odot) and initial growth rates or base temperatures (∇). Pale colors were used for marker-trait associations significant in only one environment.

QTL for DMGR_(*a*) were found at the same positions of markers associated with DMGR at low temperature regimes. Nine marker-trait associations for DMGR₀ co-located with QTL for DMGR at 9.4 °C. The highest number of co-localizations of *sl* and trait QTL detected in only one environment was observed for SPAD. Eight SPAD_(*sl*) marker-trait associations co-located with QTL for SPAD at 20.8 °C. Likewise, QTL for LAR_(*sl*) often co-located with QTL for LAR obtained in the high temperature treatments. Most of the significant marker-trait associations for T_b of LAR, SPAD, F_v'/F_m' and Φ_{PSII} coincided with QTL for the same traits at low temperatures regimes.

Marker-trait associations for DMGR and LGR were co-localized on all chromosomes. Promising regions were identified on chromosome SBI-01 between 74 and 107 cM and on chromosome SBI-03 between 30 and 56 cM. The region on SBI-03 carries also QTL for LAR and F_v'/F_m' . Another interesting region was identified on chromosome SBI-07. sPb-4874 was associated with DMGR in many temperatures and with SPAD_(*sl*) and SPAD_(Tb). Further co-localizations between QTL for DMGR and SPAD temperature response parameters were detected on chromosome SBI-10 between 42 and 46 cM.

Discussion

Multi-environment data in association mapping

For analyzing juvenile development, a certain leaf number is often the harvest time criterion, which makes results comparable. Testing many different lines in different environments makes the use of a fixed leaf number as harvest time criterion nearly impossible. To work with growth rates, as done in the present study, has the advantage of being widely independent of exactly identical harvest times, if the goal is to compare results or analyze them together. Plant growth rates change during different development stages (El-Lithy et al. 2004), however, within short periods during certain development stages as the juvenile phase

or later pre-flowering development stages, growth rates can assumed to be constant. Relating growth rates to temperature enabled us to dissect the genetic basis of processes regulated by temperature, and parameterizing simple functions allowed us to characterize the genotype specific temperature response of sorghum during juvenile development.

For marker-assisted selection, the identification of QTL, which are stable across environments, is required (Burow et al. 2011) but the detection of stable QTL across experimental conditions is difficult even in controlled experiments, varying only in one environmental factor. In the present study, one QTL on SBI-07 for DMGR was found in seven of eight environments while many marker-trait associations were environment specific. Maccaferri et al. (2011) suggested that the lack of stable marker-trait associations is due to similar phenotypes of genotypes, which have different physiological mechanisms to cope with stress, if complex traits like grain yield are analyzed in diverse populations. They detected less QTL under more stressful situations. Since the plant material of the present study shows strong variation in the adaptation to low temperatures and more similar phenotypes under optimum growing conditions, we detected a decreased number of markertrait associations with increasing temperatures. However, if the chance for the detection of a QTL was highest due high phenotypic variation, the increasing error or variation within genotypes in the more stressful environment made the circumstances for the identification of a marker-trait association sub-optimal. Consequently, it might be useful to find the optimum compromise between the variation within and among genotypes for each trait or to increase the number of observations if stress increases.

It was suggested that QTL mapping approaches using repeated measurements on growth curves and functions describing the adaptation to environmental factors, provide maximum information about QTL effects and positions and reduce random errors (Ma et al. 2002; Reymond et al. 2003; Uptmoor et al. 2009). Our results show a very similar trend for the model parameters sl, a, T_b , DMGR₀, and LGR₀. A high CV_g, which is advantageous for the detection of significant marker-trait associations, came always along with an increasing CV_e. Using more observations from extreme environments as carried out by Fiedler et al. (2012) may increase the accuracy of parameter estimations if linearity can be assumed. We often found non-significant correlations between a or sl and the trait values at intermediate temperature regimes, suggesting that mainly the high and low temperature environments contributed to the parameter estimation.

Sadok et al. (2007) found no co-localization of QTL for response parameters and QTL detected in stress environments and concluded that trait QTL, which were detected in stress environments, might have another genetic network than QTL for response parameters. We found co-localizations between low-temperature and response curve QTL especially for LGR but also for other traits. Most co-localizations were found between QTL for treatments at low temperatures and T_b or DMGR₀ and LGR₀, respectively. These parameters are closely correlated to the response parameters *sl* and *a*, i.e, small *sl* or *a* parameters lead to a low T_b , DMGR₀, or LGR₀ and co-localizations between QTL for the parameters and/or low temperature QTL are likely to occur.

Identification of physiological mechanisms, which promote growth at low temperatures

We analyzed plant growth and several chlorophyll content and fluorescence related traits and LAR in order to see if these traits may have positive impacts on crop performance under low temperatures. We assumed high correlations between these traits and plant growth and that the co-localization of marker-trait associations are strong indicators for significant influences on cold tolerance. Across environment means of SPAD values were significantly correlated with DMGR and LGR. QTL for mean SPAD and DMGR co-localized on SBI-01 and SBI-07. In both cases the reduced mean SPAD value of one marker allele was associated with a smaller mean DMGR, i.e. higher chlorophyll contents may have improved photosynthesis and growth. However, there was no strong evidence that the preservation of high chlorophyll contents under unfavorable conditions promoted growth at low temperatures since both SPAD_(3l) and SPAD_(Tb) were positively correlated to mean DMGR, i.e., a strong increase in SPAD with increasing temperatures was correlated with high DMGR_(mean). As mentioned before, the marker-trait association for DMGR on SBI-07 was found to be significant in seven environments, while a marker-trait association for SPAD was detected at the same locus only in the two environments with highest temperatures. Fracheboud et al. (2004) identified overlapping positions of SPAD and carbon exchange rate QTL but no co-localizations of QTL for SPAD and shoot dry-matter in maize.

 T_b and *sl* of F_v'/F_m' were negatively correlated with DMGR₀, i.e., higher energy harvesting efficiencies at low temperatures may promote growth in low temperature environments. However, at sPb-1631 on SBI-02, the only locus at which QTL for T_b and *sl* of F_v'/F_m' and DMGR₀ were co-located, the same allele was associated with increasing DMGR₀ and T_b as well as *sl* of F_v'/F_m' . SPAD_(Tb) was significantly correlated with $F_v'/F_m'(Tb)$. Accordingly, high chlorophyll contents at low temperatures may improve the efficiency of PSII. The marker alleles on SBI-10, which were associated with an decreasing SPAD_(Tb) were also associated with decreasing $F_v'/F_m'(Tb)$ or $\Phi_{PSII(Tb)}$, respectively. However, one of the alleles was also associated with an increasing DMGR₀ (Table S3). Trachsel et al. (2010) found a QTL allele with positive effects on $\Phi_{PSII(Tb)}$ close to a QTL allele with negative effects on shoot dry weight in maize. Pleiotropic effects of a single gene seem less likely than the

occurrence of different genes, which affect growth, SPAD and fluorescence, and are associated to the same marker loci on SBI-10.

Comparison of results to earlier QTL studies

Rami et al. (1998) and Ritter et al. (2008) found QTL for plant height and Haussmann et al. (2002) detected QTL for stay green on SBI-01. Mace and Jordan (2011) integrated the flanking markers of QTL from different studies into a consensus map. txp-37, a flanking marker of the mentioned QTL was mapped within the genomic region spanning from 71 to 107 cM, where nine marker-trait associations for DMGR were identified. Another co-localization of marker trait associations for DMGR and a stay green QTL identified by Haussmann et al. (2002) was described on chromosome SBI-10 between 64 and 68 cM (Mace and Jordan 2011). Shiringani et al. (2010) detected a QTL for plant height on SBI-08 in the region where sPb-0325 was mapped. sPb-0325 showed significant marker-trait associations with DMGR in four environments of the present study. Since plant height is closely correlated to biomass, the same genetic mechanisms may regulate growth during early and later development stages.

Stay green is closely related to traits like SPAD and fluorescence, which are relevant for photosynthesis (Thomas and Howarth 2000). Marker-trait associations for SPAD and fluorescence of the present study were detected in genomic regions, where stay green QTL were found in earlier studies. We detected marker-trait associations for SPAD in five environments, for SPAD_(mean) and SPAD_(*sl*) on SBI-04 between 71 and 85 cM. A stay green QTL was found by Kebede et al. (2001) in the same region. The authors found another QTL for stay green on chromosome SBI-05. The flanking markers were mapped close to sPb-6855 (Mace and Jordan 2011), a significant locus for F_v'/F_m' and Φ_{PSII} . A QTL for stay green

found by Subudhi et al. (2000) was mapped in the region of sPb-6518 on SBI-07 (Mace and Jordan 2011), which was associated to Φ_{PSII} in two and with LGR in four temperature regimes. The same genetic mechanisms may have effects on leaf growth at early development stages and on a delayed senescence. Between 43 and 46 cM on SBI-10, four QTL for Φ_{PSII} , five for SPAD and six for $F_v{'}/F_m{'}$ were identified. Tao et al. (2000) found a QTL for stay green and Ritter et al. (2008) detected a QTL for time to maturity in the same region. The QTL for Φ_{PSII} , SPAD, and $F_v{'}/F_m{'}$ co-localized with marker-trait associations for DMGR and LGR in the present study. However, as mentioned before, situations are less clear at this locus. The alleles associated to increased photon harvesting efficiencies were also associated to decreased growth rates (Table S3).

Sugars play an important role in the cold acclimation of plants (Stitt and Hurry 2002). sPb-0319 was associated with DMGR, LGR, and SPAD at low temperatures. In the region on SBI-03, where sPb-0319 was mapped (Mace and Jordan 2011), QTL for glucose content were detected by Shiringani et al. (2010). However, the allele, which was associated with higher SPAD values in our study, was associated with smaller growth rates (Table S 3.3). Shiringani et al. (2010) identified another QTL for sugar content on chromosome SBI-09 between 100 and 108 cM. We detected QTL for SPAD, SPAD_(*sl*), and SPAD_(Tb) in the same region.

Conclusions

Several loci with effects on sorghum growth at low temperatures were identified. Most marker-trait associations for $DMGR_0$ did co-locate with those for DMGR at low temperatures, so that association studies carried out on a regression parameter like $DMGR_0$ might be advantageous only if the response to an environmental factor is more important than the development in an extreme environment itself. An important application for marker-trait

association based modeling approaches may arise if the behavior of progenies in response to environmental factors can be predicted by parameter estimates of their parental lines. While DMGR and LGR were highly correlated and marker-trait associations for the traits often colocalized, marker-trait associations for chlorophyll content and fluorescence co-localized only occasionally with those for plant growth during juvenile development and gave no hint for a major direct contribution to dry matter and leaf area accumulation. Since earlier studies on maize described the influence of these traits on carbon exchange rates, it has to be verified if high leaf greenness and the efficiency of PSII positively influence seedling survival in the field.

Chapter 4

Combining linkage analysis and association mapping to validate QTL for cold tolerance during juvenile development

Karin Fiedler^{1,3}, Wubishet A. Bekele², Friederike Köhn³, Rod Snowdon², Hartmut Stützel¹, Silke Wieckhorst³, Arndt Zacharias³, Ralf Uptmoor^{1,4}

¹ Institute of Biological Production Systems, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany

² Department of Plant Breeding, Justus-Liebig-University Giessen, Heinrich-Buff Ring 26-32, 35392 Gießen, Germany

³ KWS Saat AG, Grimsehlstr. 31, 37555 Einbeck, Germany

⁴ Present address: Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg
6, 18059 Rostock, Germany

Abstract

Cold tolerance of sorghum during the juvenile phase is a major breeding goal for the development of new sorghum varieties to have an alternative for maize as energy crop in temperate regions. Existing genetic variation can be used to develop breeding populations, which segregate for cold tolerance. The objective of the present study was to identify markertrait associations for cold tolerance in a sorghum diversity panel fingerprinted with 2620 single nucleotide polymorphism (SNP) markers and to verify the quantitative trait loci (QTL) in two F2- populations. Traits of interest were dry matter growth rates (DMGR), leaf appearance rates (LAR), chlorophyll contents (SPAD) and chlorophyll fluorescence $(F_v)/F_m$ and Φ_{PSII}) in relation to temperature. The association panel comprised 194 genotypes, while the F2 populations comprised 80 and 92 genotypes, respectively. All populations were tested in a minimum of four temperature regimes ranging from 9.8 to 20.8 °C. QTL were identified for mean across environments and regression parameters describing temperature effects. Several marker-trait associations for mean (m) DMGR, base temperature (T_b) of SPAD and Φ_{PSII} , and temperature effect on LAR were validated by QTL detected in population 1 or 2. Promising QTL regions were found on chromosome SBI-01, SBI-02, SBI-03 and SBI-06 where candidate genes involved in the C-repeat binding (CBF) pathway or encode cold shock proteins are located.

Keywords: sorghum, cold tolerance, juvenile development, growth rates, association mapping, QTL analysis

Introduction

The maize acreage in Central Europe increased dramatically during the last decade. The bioenergy boom boosted maize cultivation and the range expansion of pests like the western corn rootworm (*Diabrotica vigifera* LeConte) accompanied by missing crop rotations makes its cultivation more difficult and endangers crop yields. Recent studies have shown that the western corn rootworm is evolving a Cry3Bb1 resistance in *Bt*-maize (Gassmann et al. 2011). Hydrocyanic acid has lethal effects on western corn rootworm larvae feeding on sorghum roots (Branson et al. 1969) and sorghum can be cultivated and harvested with the same machinery and technique as maize. Consequently, sorghum has the potential to replace a part of the maize acreage and diversify cropping systems in temperate climates. However, the sorghum growing area is limited due to the low cold tolerance of the crop.

Promising genetic resources for improving cold tolerance in sorghum are known. Chinese landraces showed higher emergence rates and improved early seedling vigor under low temperature conditions; however, they also have undesirable agronomic characteristics (Knoll et al. 2008a). Quantitative trait loci (QTL) for sorghum cold tolerance during emergence were detected in several studies (Knoll et al. 2008a; Burow et al. 2011; Fiedler et al. 2012). Early season crop vigor is characterized by high DMGR and leaf expansion rates. Nondestructive indirect selection criteria, suitable for high throughput phenotyping like chlorophyll fluorescence were successfully used for QTL detection in a bi-parental maize population segregating for cold tolerance (Fracheboud et al. 2004). Chlorophyll content (SPAD) and the operating efficiency of photosystem II (Φ_{PSII}) are nowadays routinely used for selecting maize genotypes at low temperatures since the traits are involved in the maintenance of photosynthetic performance under chilling stress (Trachsel et al. 2010). It was shown that QTL can be detected on the parameters of mathematical functions describing the response of agronomic or physiological traits to environmental factors (Reymond et al. 2003). Marker-

trait associations for growth as well as chlorophyll fluorescence and content related traits in response to temperature at early growth stages were identified in a recent study carried out on a sorghum diversity panel (chapter 3).

False positive marker-trait associations hamper the power of association studies. Association mapping approaches routinely take population structures into account in order to reduce false positives. Kinship methods were shown to reduce false positive marker-trait associations more effectively than others but had also deficiencies in the effectiveness (MacKenzie and Hackett 2012). Linkage mapping based QTL analyses have the disadvantage of large confidence intervals even for major QTL (Collard and Mackill 2008), which makes the identification of candidate genes difficult. Brown et al. (2003) highlighted the importance of using multiple genetic backgrounds to verify QTL identified in single populations.

The goal of the present study was to verify significant marker-trait associations for cold tolerance during juvenile development identified in a sorghum diversity panel (chapter 3) by QTL analyses for cold tolerance in two F2 populations. The parental lines of one of the populations were taken from the diversity panel, while the other population was developed from completely independent parental lines. The diversity panel and the two bi-parental crosses were genotyped using a recently developed 3k SNP array (Bekele et al. 2013). The phenotype data from the diversity panel (chapter 3) was reanalyzed based on SNP markers and the two F2 mapping populations were phenotyped in four temperature regimes.

Material & Methods

Plant material

The study was carried out on two F2 mapping populations, comprising 80 (pop. 1) and 92 (pop. 2) genotypes, respectively, and a diversity set of 194 breeding lines including *Sorghum bicolor* and *S. bicolor sudanense* genotypes. DNA was extracted from leaf tips using the cetyl

trimethylammonium bromide (CTAB) method. All genotypes were fingerprinted with 2620 SNP markers. Monomorphic markers and markers where the parental genotype has no allele or is heterozygote were removed. 307 and 714 remaining SNP marker for population 1 and 2, respectively, were used to create a genetic map with JoinMap 4.0 (van Ooijen 2006) Additional markers were excluded if more than one marker was mapped at the same locus. Grouping was based on recombination frequency and the Haldane function was used as regression mapping algorithm. The final maps comprised 255 or 544 markers covering 1053 cM or 1211 cM for population 1 and 2, respectively (Table 4.1). The average interval length was 6.3 cM for population 1 and 5.3 cM for population 2. Markers with frequencies of one allele < 5% were removed from the diversity panel, 803 polymorphic markers were used for association mapping. Only 72 markers were present in all three populations.

	Number of SNP marker									
Chromosome	Association panel	Population 1	Population 2	Shared marker						
SBI-01	89	32	77	15						
SBI-02	91	37	85	12						
SBI-03	100	39	55	6						
SBI-04	67	20	65	8						
SBI-05	99	32	56	7						
SBI-06	54	14	58	7						
SBI-07	42	10	27	2						
SBI-08	71	18	23	2						
SBI-09	94	32	44	5						
SBI-10	96	21	54	8						
Total	803	255	544	72						

Table 4.1: Number of filtered SNP markers per chromosome for QTL analysis (population 1 and 2) and association panel.

Experimental design

Experiments with four temperature regimes for populations 1 and 2 and eight temperature regimes for the diversity set were conducted in climate chambers at the Leibniz Universität Hannover (Germany). The genotypes were sown in pots with a diameter of 7 cm and filled with 50% Klasmann Potgrond P (Klasmann-Deilmann, Groß-Hesepe, Germany) and 50% loamy sand. Three seeds per pot and genotype were sown at 10 mm depth. All plants were grown at an optimal temperature of 25/22 °C (day/night) until most plants were in the three-leaf stage (6 d after sowing). After thinning to one plant per pot, plants were moved to different climate chambers representing four (Table 4.2) or eight temperature regimes ranging from 9.8 and 20.8 °C (chapter 3). Each single temperature treatment was designed as randomized complete block design with 3 replications within one climate chamber. Air temperature was measured every 5 minutes directly above the pots using TinyTag View 2 data loggers (Gemini Ltd., West Sussex, U.K.) during the entire duration of the experiment. Plants were grown at a photoperiod of 12 h with 10 h full light (385 μ mol m⁻² s⁻¹ on canopy level) and 1 h twilight in the morning and evening.

	A	ir temperatur	e	Duration of temperature			
Environment	Mean	Night	treatment				
		[°C]	[d]				
1	13.5	12.2	15.5	15			
2	14.4	13.5	16.6	14			
3	17.0	15.7	18.7	14			
4	20.8	18.8	23.6	13			

Table 4.2: Average daily mean, night and day air temperatures in four temperature treatments a	und the
duration of temperature treatment for population 1 and 2. Temperature treatments for the associ	ation
panel are shown in Table S 3.1.	

Determination of growth rates and physiological traits

The number of leaves of every plant was counted at the beginning and end of each temperature treatment. Leaf appearance rate (LAR) was calculated as follows:

$$LAR = (LN_{dn} - LN_{d6}) / n, \tag{4.1}$$

where LN_{dn} is the number of leaves at the end of the experiment, LN_{d6} is the number of leaves 6 d after sowing, and *n* is the number of days of the temperature treatment.

The dry matter growth rate (DMGR) was estimated as follows:

$$DMGR = (DM_{dn} - DM_{d6}) / n, \tag{4.2}$$

where DM_{dn} is the dry weight at the end of the experiment, DM_{d6} is the dry weight 6 d after sowing and *n* represents the number of days of temperature treatments. DM_{d6} was recorded in an additional set of plants harvested 6 d after sowing. The dry weight of leaves and stems was measured after drying at 105 °C.

The greenness of the fourth leaf was recorded as mean of three measuring points using a SPAD-502plus chlorophyll meter (Konica Minolta Sensing Inc., Osaka, Japan). Chlorophyll fluorescence was measured at the fourth leaf of light adapted plants with an LI-6400 instrument equipped with the LI-6400-40 pulse amplitude modulation fluorometer (LICOR, Lincoln, NE, USA) using a modified measuring protocol from Fracheboud et al. (1999). The temperature in the measurement chamber was kept at the corresponding temperature inside the growth chamber. Steady-state fluorescence (F_s ') was recorded when the rate of change in fluorescence in relation to temperature (dF/dt) was < 5, indicating a stable signal. In order to obtain the maximum fluorescence (F_m ') a saturation flash of > 8000 µmol m⁻² s⁻¹ was applied for 1 s. Actinic light was turned off and leaves were illuminated with far red light to measure the ground fluorescence of light adapted leaves (F_0 '). The fraction of absorbed PSII photons

used in photochemistry (Φ_{PSII}) was calculated as (F_m '- F_s ')/ F_m ' (Genty et al. 1989). The efficiency of energy harvesting of the oxidized PSII (F_v '/ F_m ') was calculated as (F_m '- F_0 ')/ F_m '.

Data analysis

Variance components were estimated using SAS 9.2 and broad sense heritability (h^2) was calculated according to Hill et al. (1998):

$$h^{2} = \frac{\sigma_{G}^{2}}{\sigma_{G}^{2} + \sigma_{GxE}^{2} \frac{1}{n} + \sigma^{2} \frac{1}{rn}},$$
(4.3)

where σ^2_G is the genotypic variance, σ^2_{GxE} is the genotype x environment interaction variance, σ^2 is the error variance, *r* is the number of replications, and *n* is the number of environments. Analysis of variance (ANOVA) was carried out using the following model with *i* = 1,2,3,...,*a* genotypes, *j* = 1,2,3,...,*n* environments and *k* = 1,2,3,...,*b* genotype x environment interactions:

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}, \tag{4.4}$$

where μ is the overall mean, α_i is the effect of the *i*th genotype, β_j is the effect of the *j*th environment, γ_{ij} is the genotype x environment interaction, and ε_{ijk} is a random error.

Linear regression analysis was carried out on LAR, SPAD, F_v'/F_m' and Φ_{PSII} data from the nine temperature regimes using the following model:

$$y_{ij} = \beta_i + sl_i x_j + \varepsilon_{ij}, \tag{4.5}$$

where y_{ij} is the trait value of the *i*th genotype in the *j*th temperature regime. β_i is the estimated intercept of the *i*th genotype and *sl_i* is the estimated regression slope of the *i*th genotype, x_j is the temperature of the *j*th environment and ε_{ij} is a random error. Base temperature (T_b) of the

 i^{th} genotype was estimated by linear extrapolation to define the theoretical temperature below which LAR, SPAD, F_v'/F_m' , and Φ_{PSII} become 0:

$$T_{bi} = -\beta_i / sl_i, \tag{4.6}$$

An exponential function was used to describe the relation between DMGR and temperature:

$$GR_{ij} = GR_{0i} e^{(a (T-T_0))}, (4.7)$$

where GR_{ij} is the growth rate of the *i*th genotype in the *j*th environment, GR_0 is the estimated GR in the lowest temperature environment T_0 , *a* is the exponent and *T* the temperature. Pearson's correlation coefficients were calculated between across environment means of the traits using SAS 9.2 for each population separately. Coefficients of variation (CV) were determined for all traits. For the determination of genetic relatedness between the populations, principal component analysis (PCA) was performed using R (R Development Core Team 2008) assuming 5 components.

QTL analyses and association studies were carried out on mean genotype performance across all environments and on regression parameters. QTL were detected with PLABQTL 1.2 (Utz and Melchinger 2006) by composite interval mapping with cofactors. The logarithmic odds ratio (LOD) threshold was set 2.5. Tassel 3.0 (Bradbury et al. 2007) was used for identifying significant associations between 803 SNP markers and the traits described above. The SSR based Q-matrix and a kinship matrix were used to account for the population structure as described in chapter 3. A mixed linear model (MLM) was assumed to detect significant marker-trait associations (Zhang et al. 2010). Locus positions were subjected to BLAST analysis using Phytozome v 9.1 (Goodstein et al. 2011).

Results

Figure 4.1 shows box plots for all analyzed traits of each population. The mean daily increase in dry weight across all environments of population 2 was approximately two-fold less compared to population 1 and the association panel (Figure 4.1a), however, SPAD(*m*) of population 2 was highest (Figure 4.1g) and mean SPAD(T_b) was lowest compared to the other populations (Figure 4.1i). The highest DMGR₀ was identified in population 1 (Figure 4.1c). Minimum T_b for LAR of the association panel was 4 °C higher compared to the other populations (Figure 4.1f). The highest CV of 16 % and 23 % for F_v'/F_m' (*sl*) and F_v'/F_m' (T_b), respectively, was found for population 2 (Figure 4.1k, 1), while the highest CV for Φ_{PSII} (*sl*) and $\Phi_{PSII}(T_b)$ was detected in the association panel (Figure 4.1n, o). Average R² for fitting linear and exponential functions ranged between 0.80 for F_v'/F_m' and 0.95 for DMGR in population 1 (data not shown).

Figure 4.1: Boxplots for mean across environments (*m*), exponents (*a*) and initial growth rate (DMGR₀) for dry matter growth rate (DMGR) (a,b,c) and *m*, regression slopes (*sl*), and base temperatures (T_b) for leaf appearance rate (LAR) (d,e,f), chlorophyll content (SPAD) (g,h,i), and fluorescence (F_v '/ F_m ' and Φ_{PSII}) (j,k,l,m,n,o) of population 1, 2 and the association panel.

Analysis of variance (ANOVA) revealed that the environmental and genotypic effects were significant for all analyzed traits (Table 4.3). Genotype x environment interaction effects were highly significant for DMGR, LAR, F_v'/F_m' and Φ_{PSII} but not significant for SPAD. Estimated h^2 ranged between 0.10 for Φ_{PSII} and 0.73 for SPAD.

Table 4.3: Variance components and heritability for dry matter growth rate (DMGR), leaf appearance rate (LAR), chlorophyll content (SPAD) and chlorophyll fluorescence (Φ_{PSII} and F_v'/F_m') of population 1 and 2.

		heritability			
	σ_{E}^{2}	σ^2_G	σ^2_{GxE}	σ^2	h²
DMGR [g d ⁻¹]	0.000046***	0.000003***	0.000006***	0.000007	0.56
$LAR \\ [d^{-1}]$	0.0059***	0.00008***	0.00016***	0.0016	0.32
SPAD	43.5***	3.74***	0.42 n.s.	15.59	0.73
F_v'/F_m'	0.05***	0.00025***	0.0017***	0.0064	0.21
Φ_{PSII}	0.04***	0.0001***	0.002***	0.004	0.10

a***,**,* significant at the 0.001, 0.01 and 0.05 probability level

 $\sigma^2_{E,}$ $\sigma^2_{G,}$ σ^2_{GxE} and σ^2 are variances of the environment, genotype, genotype x environment interactions and error variances

The highest correlation coefficients were found between mean across environments of F_v '/ F_m ' and Φ_{PSII} in all populations (Figure 4.2). DMGR(*m*) of the association panel was highly significantly correlated to SPAD (0.34, p < 0.0001), the traits were moderately correlated in population 2 (0.23, p < 0.05) but not significantly correlated in population 1. DMGR(*m*) was significantly negatively correlated with F_v '/ F_m ' and Φ_{PSII} in population 2.

	_				-					_					
Association panel	DMGR(m)	DMGR(a)	$DMGR_0$	LAR(m)	LAR(sl)	$LAR(T_b)$	SPAD(m)	SPAD(sl)	$SPAD(T_b)$	Fv'/Fm'(m)	Fv'/Fm'(sl)	$Fv'/Fm'(T_b)$	$\Phi_{PSII}(m)$	$\Phi_{\mathrm{PSII}}(sl)$	$\Phi_{pSII}(T_{\rm b})$
DMGR(m)	1											-			
DMGR(a)	+	1													
$DMGR_0$	Ļ	1	1												
LAR(m)			-	1											
LAR(III)				1	1										
LAR(3i)	i.				-	1									
SPAD(m)	i.					-	1								
SPAD(s)	ï						1	1							
SIAD(31)	Ĭ				Ţ	Ţ	Ŧ	1	1						
SFAD(1b) $Eu^{2}/Em^{2}(m)$		- T						Ť	1	1					
FV /Fill (ill)	-				-		Ŧ			1	1				
FV/Fm(st)		+			+	+			*		1	1			
$FV/Fm(1_b)$		+	-		+	+			+		+	1			
ΦPSII(m)				+		-	+		-	+			1		
ΨPSII(sl)					+	+					+	+	+	1	
$\Psi PSII(T_b)$						+	-		+		+	+		+	1
Population 1	DMGR(m)	DMGR(a)	DMGR_0	LAR(m)	LAR(sl)	$LAR(T_b)$	SPAD(m)	SPAD(sl)	$SPAD(T_b)$	Fv'/Fm'(m)	Fv'/Fm'(sl)	$Fv^{\prime}/Fm^{\prime}(T_b)$	$\Phi_{PSII}(m)$	$\Phi_{PSII}(sl)$	$\Phi_{PSII}(T_b)$
DMGR(m)	1														
DMGR(a)	+	1													
DMGR ₀		-	1												
LAR(m)				1											
LAR(sl)					1										
LAR(T _b)					+	1									
SPAD(m)							1								
SPAD(sl)	+			-				1							
SPAD(T _b)	+					+		÷	1						
Fv'/Fm'(m)								+	+	1					
Fv'/Fm'(sl)										+	1				
$Fv^{2}/Fm^{2}(T_{b})$										_	+	1			
ΦPSII(m)								+	+	+	-	-	1		
DPSII(s/)											+	+	-	1	
ΦPSII(T _k)								-		-	+	+	+	+	1
410H(1 _b)													_	<u> </u>	-
Population 2	DMGR(m)	DMGR(a)	$DMGR_0$	LAR(m)	LAR(sl)	$LAR(T_b)$	SPAD(m)	SPAD(sl)	$SPAD(T_b)$	Fv'/Fm'(m)	Fv'/Fm'(sl)	$Fv'/Fm'(T_b)$	$\Phi_{PSII}(m)$	$\Phi_{\text{PSII}(sl)}$	$\Phi_{PSII}(T_b)$
DMGR(m)	1														
DMGR(a)	+	1													
DMGR ₀			1												
LAR(m)				1											
LAR(sl)				+	1										
LAR(T _b)					+	1									
SPAD(m)				+			1								
SPAD(sl)	+	+						1							
SPAD(T _b)							-	÷	1						
Fy'/Fm'(m)										1					
Fy'/Fm'(s/)	+ -			-						F	1				
$Fv^{2}/Fm^{2}(T_{c})$				-							1 ×	1			\square
$\Phi PSII(m)$				-								1	1		
DPSII(a)			\vdash	-							1	1	1	1	
			-	-										1	
ΨΓ 3 Π(1b)	+										+	+		+	1

Figure 4.2: Pearson's correlation coefficients for mean across environments (*m*), exponents (*a*) and initial growth rate (DMGR₀) for dry matter growth rate (DMGR) and *m*, regression slopes (*sl*) and base temperatures (T_b) for leaf appearance rate (LAR), chlorophyll content (SPAD), and fluorescence (F_v'/F_m' and Φ_{PSII}) of the association panel, population 1 and 2. Shadings show significant correlations at the 0.001 (**■**), 0.01 (**■**), and 0.05 (**■**) probability level.

The principal component analysis revealed that population 2 had no close relation to the association panel (Figure 4.3) while population 1 and the association panel were closely related. 52.8 % of the relatedness between the genotypes was explained by component 1 (PC 1) and 8% by component 2 (PC 2).

PC1 52.79 %

Figure 4.3: Principal component analysis for genetic relatedness of the association panel (green circles), population 1 (red circles) and population 2 (blue circles). P1 and P2 indicate the parents of population 1, pop2P1 and pop2P2 indicate the parents of population 2.

Results of QTL analysis for population 1 and 2 are presented in Table 4.5 and marker-trait associations are shown in Table S 4.1. A total of 32 and 37 QTL were identified for population 1 and 2, respectively. Most of them were detected on SBI-03 (Figure 4.4), 7 in population 1 and 8 in population 2. On chromosome SBI-06 no QTL were identified in population 1, but two QTL were detected in population 2. A total of 434 marker-trait

associations were identified, 66 of them were found on chromosome SBI-03. 38 markers were associated with $\Phi_{PSII}(T_b)$, only 22 marker-trait associations were detected for LAR(*m*).

Co-localizations between QTL identified in population 1 and marker-trait associations were observed 31 times, only 16 QTL co-localizations were found between the association panel and population 2. Several QTL were identified in population 1 on SBI-03 in a QTL-hotspot region of population 2, however, only one trait SPAD(T_b) was significant in both populations.

QTL for DMGR(*m*) were often co-located with temperature response (*sl* and T_b) QTL for SPAD. On chromosome SBI-01, UGSDI_03647 was associated with SPAD(T_b) and was located in the support interval of a QTL for DMGR(*m*) detected in population 1. UGSDI_07470 on chromosome SBI-02 was associated with SPAD(*m*), QTL for $F_v'/F_m'(m, sl, T_b)$ were identified in population 1 at UGSDI_07470. On chromosome SBI-03, marker-trait associations for DMGR(*a*) and SPAD(T_b) were found in a region of a QTL for $\Phi_{PSII}(sl)$ identified in population 1. Another interesting region was identified on chromosome SBI-06. Marker- trait associations for DMGR₀ and $F_v'/F_m'(m)$ are co-located with a QTL for $\Phi_{PSII}(m)$ identified in population 2.

Population 1									
Trait	Chr.	Pos. [cM]	Nearest marker	LOD intervall	LOD	R²	Additiv effects		
	SBI-01a	110	UGSS_01261	108-114	3.81	19.9	-0.007		
-	SBI-09b	8	UGSS_05885	2-14	3.08	16.4	0.01		
DMGR(m)	SBI-09b	24	UGSDII_14662	18-28	3.61	19	-0.01		
	SBI-010	16	UGSDI_51874	10-18	4.16	21.5	-0.008		
	SBI-01b	0	UGSDI_00509	0-2	2.59	14.3	-0.017		
DMGR(<i>a</i>)	SBI-02b	24	UGSS_02293	18-28	2.95	16	0.018		
	SBI-04a	26	UGSDII_05715	17-38	2.6	14.2	-0.018		
\mathbf{DMGR}_0	SBI-10	42	UGSS_00364	38-44	5.06	25.3	-0.123		
	SBI-05a	94	UGSDI_21008	85-100	10.23	44.9	0.014		
	SBI-07a	32	UGSS_05156	25-33	5.74	28.8	0.009		
LAK(m)	SBI-09a	50	UGSDII_14970	48-52	3.34	17.7	0.006		
	SBI-09b	12	UGSDI_33946	6-18	3.03	16.2	-0.005		
	SBI-02c	18	UGSS_02113	12-31	5.69	28.2	2.085		
_	SBI-03a	2	UGSDI_11887	0-4	5.26	28.9	-3.479		
LAR(sl)	SBI-03a	62	UGSDI_09649	54-66	2.5	13.6	1.771		
	SBI-04c	24	UGSDI_18656	20-43	3.48	18.4	-3.173		
	SBI-08a	24	UGSDII_14222	16-36	3.04	16.2	-1.7		
	SBI-01b	0	UGSDII_01536	0-2	2.67	14.6	-0.494		
	SBI-02c	18	UGSS_02113	14-31	6.78	32.7	0.801		
	SBI-03a	0	UGSDI_12252	0-4	3.16	18.6	-0.937		
$LAK(1_b)$	SBI-03a	14	UGSDI_12395	6-18	2.51	13.6	0.959		
	SBI-04c	42	UGSDI_17190	20-48	2.99	16	-0.667		
	SBI-05a	94	UGSDI_21008	85-102	3.5	18.5	-0.686		
SPAD(<i>m</i>)	SBI-01a	4	UGSDI_00509	0-10	2.81	15	-0.799		
SPAD(sl)	SBI-03a	66	UGSS_02698	60-66	4.03	21	-0.281		
$SPAD(T_b)$	SBI-03a	66	UGSS_02698	60-66	4.26	24.4	-1.091		
$F_v'/F_m'(m)$	SBI-02b	46	UGSDI_07470	44-47	3.9	20.1	0.019		
$F_v'/F_m'(sl)$	SBI-02b	44	UGSDI_07470	38-46	2.33	12.9	-0.395		
$F_v'/F_m'(T_b)$	SBI-02b	46	UGSDI_07470	44-47	2.98	16.1	-0.644		
$\Phi_{\text{PSII}}(m)$	SBI-01a	54	UGSDII_00664	42-60	3.77	19.8	0.015		
$\Phi_{\mathrm{PSII}}(sl)$	SBI-03b	14	UGSDI_12780	6-16	2.77	15.1	-0.04		
$\Phi_{\text{PSII}}(T_{\text{b}})$	SBI-01a	126	UGSDII_01356	122-126	3.44	18.4	-0.36		

Table 4.4: QTL for mean across environments (*m*), exponents (*a*) and initial growth rate (DMGR₀) for dry matter growth rate (DMGR) and for *m*, regression slopes (*sl*) and base temperatures (T_b) for leaf appearance rate (LAR), chlorophyll content (SPAD), and fluorescence (F_v '/ F_m ' and Φ_{PSII}) of population 1 and 2.

Table 4.4: continued

	Population 2							
Trait	Chr.	Pos.	Nearest marker	LOD intervall	LOD	R²	Additiv effects	
DMGR(<i>m</i>)	SBI-03a	48	UGSDI_09749	46-58	2.72	13.1	0.617	
	SBI-01a	60	UGSDI_02342	54-66	4.19	19.1	0.022	
DMGR(a)	SBI-05	16	UGSS_03995	12-22	5.52	24.4	0.031	
-	SBI-03a	22	UGSDI_10780	16-28	2.84	13.2	-0.063	
DMGR ₀	SBI-05	44	UGSDI_25362	40-47	2.72	12.7	0.128	
	SBI-05	66	UGSDI_22978	62-68	4.37	19.6	-0.107	
	SBI-02	102	UGSDII_03978	98-109	2.52	12.2	-0.081	
LAR(m)	SBI-02	116	UGSDI_06880	112-122	4.48	20.7	0.129	
	SBI-02	186	UGST_00195	178-189	4.34	20.1	-0.083	
LAR(sl)	SBI-09	80	UGSDI_41002	76-80	2.57	12.3	0.214	
	SBI-07	26	UGSDI_30920	20-32	2.94	14.3	-1.039	
$LAR(1_b)$	SBI-10	60	UGSDI_44150	54-64	2.78	13.5	-0.742	
SPAD(<i>m</i>)	SBI-07	24	UGSDI_30920	16-32	3.47	16	1.054	
SPAD(sl)	SBI-08b	10	UGSDII_11548	8-16	2.82	13.3	-0.213	
SPAD(T _b)	SBI-02	30	UGSDI_04854	26-36	2.62	13.5	-0.815	
	SBI-02	170	UGSDI_08529	162-178	3.27	16.6	1.631	
	SBI-03a	60	UGSDII_04396	50-66	3.67	18.4	1.143	
	SBI-06	104	UGSDI_26836	102-119	3.66	18.4	1.777	
	SBI-07	16	UGSDI_31029	2-18	2.75	14.2	-0.893	
	SBI-01a	144	UGSDII_01530	142-152	3.16	14.8	0.024	
$\mathbf{E}^{\prime}/\mathbf{E}^{\prime}$	SBI-03a	12	UGSS_02500	6-18	2.65	12.6	0.026	
$\Gamma_v / \Gamma_m (m)$	SBI-03a	34	UGSDI_10436	28-38	6.09	26.5	-0.04	
	SBI-04a	88	UGSDI_17961	80-97	3.49	16.2	0.023	
	SBI-03a	34	UGSDI_10436	28-38	3.4	17.8	0.007	
$F_v'/F_m'(sl)$	SBI-08a	24	UGSDII_14277	16-30	3.03	16	0.01	
	SBI-10	86	UGSS_00181	74-96	2.77	14.7	-0.006	
E'/E'(T)	SBI-08a	26	UGSDII_14277	16-34	3	15.9	0.926	
$\Gamma_{\rm v} / \Gamma_{\rm m} (\Gamma_{\rm b})$	SBI-10	78	UGSDI_43636	74-94	3.59	18.7	-1.053	
	SBI-01a	140	UGSDII_01530	128-146	2.81	13.3	0.021	
Φ (m)	SBI-03a	40	UGSDI_10250	36-46	2.84	13.4	-0.018	
$\Psi_{\rm PSII}(m)$	SBI-04a	94	UGSDI_18462	82-98	2.55	12.1	0.018	
	SBI-06	22	UGSS_04975	14-26	3.68	17	0.021	
$\Phi_{\mathrm{PSII}}\left(sl ight)$	SBI-10	56	UGSS_00319	54-61	6.71	32	-0.023	
	SBI-01a	142	UGSDI_01530	128-146	2.92	15.7	-0.474	
መ (ፒ)	SBI-03a	30	UGSDI_10674	20-34	3.03	16.2	0.576	
$\Psi_{\rm PSII}$ (1 _b)	SBI-04b	22	UGSDII_05715	20-26	3.87	20.2	-0.493	
	SBI-07	56	UGSDI_30425	52-62	4.33	22.3	-0.657	

Figure 4.4: Marker-trait associations (A) and QTL for population 1 (B) and population 2 (C) for mean across environments (*m*), exponents (*a*) and initial growth rate (DMGR₀) for dry matter growth rate (DMGR) and *m*, regression slopes (*sl*), and base temperatures (T_b) for leaf appearance rate (LAR), chlorophyll content (SPAD) and fluorescence (F_v'/F_m' and Φ_{PSII}). Only markers significantly associated with a trait or present in at least two populations are presented. Bold and italic markers are present in all three populations. Positions of markers of the association panel are given in 2*10⁻⁶ bp. Distances between markers in the cross populations are given in cM. Green markers are associated with a trait and located in a QTL region of population 1 or 2 or in both populations. Red markers are located in a genome region of a candidate gene.

Discussion

One of the goals of the present study was to validate marker-trait association detected in a diversity panel with QTL found in bi-parental crosses. Using parameters derived from regression analyses enabled us to compare the temperature effect on growth and photosynthesis of three populations tested in several temperature conditions.

The combination of conventional QTL analysis, a well established method in plant breeding, and association mapping is an option to verify QTL positions (Breseghello and Sorrel, 2006). However, several problems are obvious in the present study: (1) The small number of markers present in all populations makes it difficult to verify many significant marker-trait associations in one of the two F2 populations. (2) The low genetic relatedness of population 2 to population 1 and to the diversity panel makes it even more difficult to verify QTL (Figure 4.3). Knoll et al. (2008b) validated QTL for cold tolerance in two F3 sorghum populations; however, both populations shared one parent, a cold tolerant "Shan Qui Red" (SQR) line. Nevertheless, the genetic background of the progeny is different but the favorable alleles for cold tolerance will be contributed from the SQR line. In the present study, the two populations shared no parental line and the progenies differ in their genetic variability depending how diverse the parents are (Figure 4.3). Reduced allele variability between the parents of population 2 could be one reason of the lack for QTL verification. Another reason might be population specific epistatic effects. Reyna and Sneller (2001) argued that epistasis and recombination might be a reason for the lack of confirmation of yield QTL in near isogenic populations developed from crosses with a high yield adapted soybean parent. The chance of validating marker trait associations by classical QTL analysis would have been higher if both bi-parental crosses were developed from parental lines taken from the association panel.

Promising genome regions involved in cold response

Exposure of plants to cold stress cause rapid inhibition of growth due to the reduction of membrane fluidity (Orvar et al. 2000) and photoinhibition, the imbalance between light harvesting and consumption of the energy results in a damage of the photosystem II (PSII) (Oquist and Huner 2003). Low temperature stress responses are regulated by many interacting genes involved in different pathways. Best described are C-repeat binding factor/dehydration responsive element (CBF/DREB) based pathways, which play a key role in the regulation of cold responsive (COR) genes (Zhou et al. 2011). UGSDI_07462 and UGSDI_07470 are located on chromosome SBI-02 and were associated with SPAD(m) in the present study (Table 4.5, Figure 4.4). UGSDI_07470 is also a flanking marker of a QTL for Φ_{PSII} (sl and T_b). Both markers are located next to loci described as "similar to SbCBF 6". Jurczyk et al. (2012) showed that the expression of *CBF6* in *Festuca pratensis* Huds. cv. Skra is strongly affected by an interaction between light and low temperature. Besides of the light quality, day length seems to play a role in the expression of CBF6 suggesting that the cold acclimation process might be linked to the circadian clock. UGSS_02833 on chromosome SBI-03 is associated with DMGR(a) and $SPAD(T_b)$. A QTL identified in population 2 was found for Φ_{PSII} (sl) next to the marker-trait associations. In the same genome region a locus annotated as "similar to the cold acclimation protein COR413-TM1" is located. Breton et al. (2003) speculated that COR413 proteins found in wheat are targeted to plasma and thylakoid membranes and may, thus, play important roles in the improvement of cold tolerance.

Besides of photoinhibition, membrane changes to maintain fluidity play a role in cold responsiveness. In particular, the ratio of unsaturated to saturated fatty acids in plasma membranes affects the fluidity (Steponkus 1984). On chromosome SBI-01 and SBI-03 several marker-trait associations and QTL for DMGR(*m*), DMGR(*a*) and SPAD(*sl*) were located next to loci annotated as "similar to Lipase, similar to OSIGBa0111L12.4"

(belonging to cytochrome P450 enzymes), and "similar to an acid phosphatase-like gene" belonging to the fatty acid hydroxylase superfamily (Figure 4.4). These findings underline that lipids and fatty acids are involved in plant response under low temperatures.

UGST_00515 on chromosome SBI-06 is associated with DMGR₀ and $F_v'/F_m'(m)$. In the same genome region a flanking marker (UGSS_04975) of a QTL for $\Phi_{PSII}(m)$ identified in population 2 and a locus annotated as "similar to putative cold shock protein-1" are located. The function of plants cold shock proteins (CSP) is poorly understood, however CSP in *E. coli* are well known as up-regulated proteins when a fast drop of temperature occurs (Jones and Inouye 1994). CSP were identified in *Arabidopsis thaliana* (Sasaki et al. 2007), *Brassica rapa* (Ryzhova et al. 2013) and wheat (Nakaminami et al. 2006) as well. CSP may act as RNA chaperone and play a role in translation under low temperatures (Nakaminami et al. 2006). The identified marker-trait association for dry matter growth under low temperatures, which are closely located to putative *CSP* genes, may support the hypothesis of the involvement of CSP in the improvement of cold tolerance in addition to CBF/DREB pathway.

Gene				Ma	rker-Trait Associat	ion	QTL		
Chr.	Locus name	Description	Position [bp]	Trait	Locus	Position [bp]	Trait	Locus	Position [bp]
SBI-01	Sb01g039970	similar to Lipase, putative, expressed	63,402,298 – 63,405,523	SPAD (T _b)	UGSDI_034647	64,449,310	DMGR(<i>m</i>) (Pop. 1)	UGSS_01261	63,405,482
SBI-01	Sb01g040500	similar to OSIGBa0111L12.4 protein,Cytochrome P450	63,835,078 – 63,839,162	DMGR(<i>m</i>) DMGR(<i>a</i>)	UGSDII_01141	63,852,726			
SBI-02	Sb02g030330	similar to SbCBF6	65,390,448 – 65,391,233	SPAD(<i>m</i>)	UGSDI_07462	65,391,657			
SBI-02	Sb02g03034	similar to SbCBF6	65,399,042 – 65,399,776	SPAD(<i>m</i>)	UGSDI_07470	65,397,174	$F_v'/F_m'(m, sl, T_b)$ (Pop.1)	UGSDI_07470	65,397,174
SBI-03	Sb03g030030	similar to Acid phosphatase- like, Fatty acid hydroxylase superfamily	58,323,038 – 58,325,931	SPAD(sl)	UGSDII_05216	58,207,290			
GDI 02	SI 02, 020 420	similar to Cold acclimation	58,665,766 -	DMGR(a) SPAD(T _b)	UGSS_02833	58,838,889	$\Phi_{PSII}(sl)$	UGSDI 12780	58,691,855
2RI-03	5003g030420	protein COR413-TM1	58,666,964	$\Phi_{\mathrm{PSII}}(m)$ $\Phi_{\mathrm{PSII}}(\mathrm{T_b})$	UGSDI_12802	59,222,133	(Pop.1)	UGSDI_12802	59,222,133
SBI-06	Sb06g029650	similar to Putative cold shock protein-1	58,229,032 – 58,230,131	$\frac{\text{DMGR}_0}{\text{F}_v'/\text{F}_m'(m)}$	UGST_00515	58,367,647	$\begin{array}{c} \Phi_{\rm PSII}\left(m\right)\\ ({\rm Pop.}\ 2) \end{array}$	UGSS_04975	58,149,192

Table 4.5: Summary of the most promising marker-trait associations, QTL regions, and candidate genes.

Conclusion

The verification of marker-trait associations using classical QTL analysis was partly successful. QTL, which were identified in different mapping populations, may serve as a powerful tool for the identification of candidate genes. A main benefit of the concurrent application of classical QTL studies with association mapping approaches is that the advantages of QTL mapping in cross populations (e.g. low rate of false positives) is combined with the advantages of association studies, which, e.g., make QTL fine mapping in relatively small populations much easier. The regression approach for phenotype data analysis turned out to be useful if several populations are analyzed at the same time. Since a comparison of parameters describing the temperature effect over a range of environments is more reliable than the comparison of data from single environments if different populations have to be phenotyped separately. However, a large number of polymorphic markers should be present in all populations, parental lines of cross populations should be carefully selected from the association panel, the diversity panel should be genetically diverse and unstructured, and include as much as variation for the traits of interest as possible. The results of the present study are a first step towards marker-assisted selection for cold tolerance in sorghum. Allele diversity of the most promising candidate genes should be determined and regional association studies have to be done to develop stable markers.

Chapter 5

General discussion

The ideotype of an energy plant exhibits a fast and uniform emergence with high emergence rates under low temperature conditions. Chapter 2 presents the application of parameter derived from a cumulative emergence model and stability parameters to identify markers associated with cold tolerance during emergence. Piecewise linear regression models are suitable to describe the emergence process in a more detailed way and to determine parameters related to uniformity and speed of emergence. The combination of emergence models and stability analysis allows characterizing the temperature response of the emergence model parameters. These parameters are used in association mapping for the identification of genome regions involved in the temperature regulation of the emergence process.

Improving cold tolerance means both improving emergence and growth during juvenile development. Therefore chapter 3 deals with the application of temperature response curve parameter in association mapping studies to detect stable marker across different temperature regimes. Finally chapter 4 examines the validation of marker-trait associations using conventional QTL analysis in order to identify stable marker across different genetic backgrounds. Relating developmental and growth rates as well as chlorophyll fluorescence and content to temperatures enable the estimation of base temperatures and temperature response parameters, i.e., regression slope describing temperature effects (chapter 3 and 4). Response curve parameters allow the identification of QTL for genotype x environment interactions (GEI), which may describe crop development in a wide range of environments. However, these QTL did not often coincide with environment specific QTL as shown in chapter 3. Besides describing GEI effects, temperature response parameters are suitable to
describe genotype specific reactions even if not all populations evaluated in exactly the same environments (chapter 4).

To estimate temperature response parameters, experiments under controlled conditions are necessary in order to ensure that only one environmental factor, e.g. temperature, influences growth and development of plants. QTL detected from field experiments data have the disadvantage of many varying environmental factors which make interpretation quite difficult. Field experiments with different temperatures regimes can only be realized by different sowing dates in one location. Whereas e.g. early sown plants may have experienced lower temperatures but also different radiation intensities and soil water contents. A major problem of cold-tolerance trials in the field are unpredictable weather conditions especially during the phase of juvenile development. Further disadvantages of field emergence trials are the insufficient plant densities of cold sensitive genotypes resulting from low emergence rates and making the trial unusable for biomass evaluation. However, irregular plant densities can be neglected for the evaluation of cold tolerance at juvenile development because during early growth stages row closure and competition between plants for resources did not affect plant growth.

QTL detected on the data basis of growth chamber experiments with different temperatures can be considered as true temperature response QTL, which did not interact and were not affected by other environmental factors. Growth chamber experiments guarantee stable conditions during cultivation time but are expensive and have limited growing areas. However, cold tolerance means also coping with fluctuating environmental conditions in field experiments which are difficult to imitate in growth chamber experiments due to daily and annually changing temperature ranges. However, Yu et al. (2004) demonstrated that growth chamber experiments with only one cold and one warm treatment are suitable to pre-select sorghum genotypes with improved cold tolerance during emergence and juvenile development. As presented in chapter 3 marker-trait associations for temperature response parameter of growth rates and chlorophyll related traits coincided often with QTL for the traits detected under stable low temperature conditions. Hence, QTL for temperature response parameter increase the knowledge about the temperature regulation of a trait across a broad range of stable temperature regimes, but cold tolerance under fluctuating temperature conditions have to be verified in field experiments (Burow et al. 2010). If temperature response parameters evaluated in growth chamber experiments will be integrated into the breeding process a minimum of four temperature regimes in growth chamber experiments is required to derive adequate temperature response parameters from regression analysis, if responses are not linear or cannot be linearized, more than four temperature regimes will be needed. In conclusion, evaluating the genotypes in field trials is necessary but pre-selection can be done in growth chamber assays.

Stability parameters, as used in chapter 2 as well as physiologically meaningful parameters like base temperature and regression slopes describing temperature effects on a trait (chapter 3 and 4) characterize GEI effects. In combination with mean genotype performance stability parameters can successfully distinguish between QTL for the trait itself and for GEI effects (Kraakman et al. 2004; Lacaze et al. 2009). The cited authors concluded that co-locations of constitutive QTL and stability QTL mean that the regulation of the underlying genes depend on the environment. Whereas, if the constitutive QTL and stability QTL are located far from each other this may indicate that regulatory genes are affected by the environment and cause the occurrence/absence of constitutive genes (Via et al. 1995). Correspondingly, Sadok et al. (2007) stated that response parameter QTL might have another genetic network than QTL found in stress environments if no co-localization of these QTL is found. In the present study, for all traits related to emergence (except final emergence percentage) stability and mean genotype performance QTL were co-located at least once. These co-localizations suggest that

there are genotypic differences in the allelic sensitivity (chapter 2). Likewise, markers associated with mean genotype performance for growth and photosynthesis related traits did coincide with temperature response QTL for these traits. QTL identified in low temperature environments were often located in the same regions of QTL for base temperature. While QTL detected in single environments and QTL for temperature effects (sl) were rarely colocated (chapter 3). This suggests that abiotic stress responses are regulated by many genes, which are interacting differently in varying temperature environments. These findings are in line with the result of Fracheboud et al. (2004) who concluded that the genetic control for photosynthesis of maize differs depending on the temperature regime. For marker assisted selection, stable QTL across environments are needed (Burow et al. 2011). However, most marker-trait associations were environment specific, despite of treatments with small temperature differences between test environments e.g. only one maker on chromosomes SBI-07 was associated with DMGR across seven temperature regimes (chapter 3). In conclusion, environment specific and temperature response QTL have to be interpreted differently. Co-localizations between QTL for traits detected under low temperature conditions and QTL for base temperatures prove the reliability of temperature response parameters.

The main disadvantage of temperature response parameters is that intercept and slope of the regression are interacting and both parameters have to be taken into account for the selection of superior genotypes. Stability parameter and mean genotype performance as well as base temperature and temperature effect (*sl*) of traits have to be considered together. A parallel shift of base temperatures without affecting negatively the development under warmer temperatures regimes indicates superiority of a genotype in all environments. Very interesting regions for marker-assisted selection are those, where base temperature QTL co-segregate with temperature sum QTL (chapter 2) e.g. marker alleles, which are linked to a lower base

temperature and also linked to a lower temperature sum required for emergence. However, developing selection indices might be an alternative step to integrate several parameters into breeding programs.

The combination of association mapping and conventional QTL-analysis aids in narrow down major QTL regions (Breseghello and Sorrells 2006) because large confidence intervals detected from linkage mapping based QTL analyses hamper the identification of candidate genes. The results presented in chapter 4 show that the number of shared QTL loci between an association panel and bi-parental populations is smaller if the bi-parental crosses are genetically only loosely related to the association panel. Optimal is an association panel covering the whole genetic variation and the number of genotypes belonging to the subgroups should be nearly equal to be able to detect association with rare alleles (Vinod et al. 2011). Besides of the familial relatedness, the number of shared polymorphic markers is essential for the validation of marker-trait associations. Nevertheless, interesting genome regions with known candidate genes involved in cold response were identified (chapter 4).

Analyzing plant growth and photosynthesis related traits like chlorophyll content and fluorescence revealed that chlorophyll content is significantly correlated with growth rates and several marker-trait associations for both traits were co-localized (chapter 3). Coincided positive marker alleles of both traits indicate that photosynthesis and growth might be positively affected by higher chlorophyll contents. However, positive correlations between base temperatures of chlorophyll contents and growth rates are contrary to these findings. Likewise, Fracheboud et al. (2004) found no co-localizations of QTL for SPAD and shoot dry-matter in maize. Base temperature of chlorophyll contents and fluorescence were significantly correlated suggesting an improvement of the efficiency of PSII due to high chlorophyll contents under low temperatures. Due to the contrary effects of marker-trait associations there are no strong indications that growth under low temperature conditions is

to a large extent influenced by chlorophyll contents or fluorescence. However, more research is needed to understand the underlying physiological mechanism for growth under low temperature regimes.

QTL for emergence found in earlier studies (Knoll et al. 2008; Burow et al. 2011) could be verified and underlined the most important genome regions are located on chromosome SBI-01 (chapter 2). Recently, physical positions of several DArT- markers are available (Bouchet et al. 2012). On chromosome SBI-01, sPb-2583 is associated with FEP_{normal}, T_b, and E_{TS} (chapter 2) as well as $LAR(T_b)$, SPAD(m) and SPAD(sl) (chapter 3). In the same region a loci annotated as "Sb01g007395, similar to putative uncharacterized protein" belonging to cytochrome P450 enzymes is located (Table 5.1). Likewise on chromosome SBI-01, markertrait associations for DMGR(m) and DMGR(a) were located next to a loci annotated as "similar to Lipase, similar to OSIGBa0111L12.4" also belonging to cytochrome P450 enzymes (chapter 4) which are involved in the biosynthesis of plant hormones, lipids and secondary metabolites as well as in plant defense against chemicals e.g. herbicides (Werck-Reichert et al. 2000). Next to this locus on chromosome SBI-01, Bekele et al. (2013) found a QTL hotspot containing 206 genes involved in abiotic stress stimuli. Additionally, on chromosome SBI-01 sPb-3311 associated with E_{TS} and DMGR(m), LGR_0 and SPAD(m) was mapped in a region where Sb01g033060 annotated as "similar to Sucrose synthase 2" is located. In this sorghum genome region a QTL for sucrose content was found by Ritter et al. (2008). Further marker- trait associations for juvenile development on chromosome SBI-03 coincided with QTL for glucose content (Shiringani et al. 2010) (chapter 3) indicating the importance of sugars in the role of cold acclimation of plants (Stitt and Hurry 2002).

		Gene			Marker-Trait A	ssociation for	
Chr.	Locus name	Description	Position [bp]	Emergence	Juvenile development	Locus	Position [bp]
SBI-01	Sb01g007395	similar to putative uncharacterized protein, Cytochrome P450	6,333,799- 6,334,231	$\begin{array}{c} \text{FEP}_{\text{normal}} \\ \text{T}_{\text{b}} \\ \text{E}_{\text{TS}} \end{array}$	LAR(T _b) SPAD(m) SPAD(sl)	sPb-2583	6,333,392- 6,333,828
SBI-01	Sb01g033060	similar to Sucrose synthase 2	56,177,529- 56,184,240	E _{TS}	DMGR(<i>m</i>) LGR ₀ SPAD(<i>m</i>)	sPb-3311	56,163,666- 56,163,982

 Table 5.1: Summary of the most promising DArT-marker associations, and candidate genes for emergence and juvenile development.

Additionally, marker-trait association for emergence and QTL for maturity (Srinivas et al. 2009) were co-located on chromosome SBI-03, but physical position of this DaRT markers were not available. Further promising genome regions associated with traits describing the juvenile development were identified on chromosome SBI-03 which encode cold acclimation proteins and on chromosome SBI-06 annotated as "similar to putative cold shock proteins" (chapter 4). First promising candidate genes for temperature response of emergence and juvenile development in sorghum are identified, however high-resolution SNP maps allowing regional association studies are needed to identify more candidate genes within important QTL regions to close the gaps in some genome regions.

Future research needs

Breeding for cold tolerance, a trait with quite complex genetic pathways, is challenging due to the involvement of many candidate genes. The development of high density genetic maps to identify stable marker and candidate genes will be no more a limiting factor due to lower costs per marker and rapidly growing techniques for marker development. Statistical methods like association mapping are routinely integrated in the breeding process to identify candidate genes. For the development of new breeding material, bi-parental crosses carrying positive alleles for emergence and growth rates can be developed for marker assisted pyramiding of alleles (Collard and Mackill 2008). The QTL and candidate genes for cold tolerance identified in the present study can be a first steps towards marker-assisted selection but these QTL have to be verified in field experiments.

The prediction of the progenies phenotype performance in different environments is an important issue to fasten the breeding process. Beside of genomic selection (Jannink et al. 2010) crop models might help in the prediction of phenotype performance. QTL information can be used in crop models to improve genotype specific model parameters (Tardieu and Tuberosa 2010) and to predict ideotypes having the best allele combination using parental parameters (Chenu et al. 2009), but these ideotypes have to be verified in field experiments.

However, the development of more precise high throughput phenotyping methods for breeding programs will be the challenge for the future (Xu and Crouch 2008). An alternative for scoring and dry weight measurements which are too laborious and time consuming is demanded. New, fast and automated phenotyping methods like field laser scanner or simple RGB pictures taken from a tractor or unmanned aerial vehicles might be new options.

Concluding remarks

Using response curve parameters for association mapping and QTL analysis enables the identification and validation of genome regions responsible for the temperature dependant emergence and growth during juvenile development. The results presented in this thesis highlighted the possibility to implement genotype x environment interaction by using stability analysis and growth function parameters. Piecewise linear regressions in combination with stability analysis were able to precisely describe the emergence process across different temperature regimes. Temperature response parameters for juvenile growth e. g. T_b for growth related traits were proven to be reliable due to a high correlation with these traits measured in single low temperature environments. A shift in T_b without negatively affecting development processes is the most promising way to adapt crops to new cultivation areas with lower temperatures. Temperature response parameters were suitable for the verification of QTL across environments and genetic backgrounds. Promising candidate genes for emergence and juvenile development were identified on chromosomes SBI-01, SBI-02, SBI-03 and SBI-06 which are known to be involved in cold response of plants. The development of high density SNP marker is needed to close the gaps in some genome regions and to identify more candidate genes. Nevertheless, the identified genome regions might be an aid for the development of stable markers which can be used in marker-assisted selection for cold tolerance in sorghum.

Supplementary Material

	i		FEP		E	R	<u> </u>			T	50		T	100	T ₁₀	0-T1
		FW	cold	normal	MW	FW	MW	FW	MW	FW	T _b	E _{TS}	MW	FW	MW	FW
	MW	-0.12	0.96 ***	0.83 ***	0.58 ***	0.13 n s	-0.005	-0.08	-0.13	-0.09	-0.08	-0.05	-0.19 **	-0.09	-0.26 ***	-0.02
	FW	11.5.	-0.26 ***	0.20 **	0.06	0.19 **	0.13	0.22	0.14	0.29 ***	0.40 ***	-0.26 ***	0.14 n s	0.29 ***	0.07	0.11 n s
FEP	cold			0.68 ***	0.50	0.04	-0.02	-0.11	-0.13	-0.15	-0.18 *	0.06	-0.18 **	-0.14 *	-0.25	-0.04
	normal				0.57 ***	0.26 ***	0.07 n.s.	0.05 n.s.	-0.04 n.s.	0.05 n.s.	0.15 *	-0.22 **	-0.11 n.s.	0.03 n.s.	-0.24 **	-0.008 n.s.
	MW					0.77 ***	-0.18 *	-0.18 *	-0.44 ***	-0.18 *	0.25 ***	-0.57 ***	-0.56 ***	-0.14	-0.60 ***	0.01
ER	FW						-0.14 n.s.	-0.09 n.s.	-0.27 ***	-0.03 n.s.	0.55 ***	0.73 ***	-0.34 ***	0.03 n.s.	-0.31 ***	0.09 n.s.
T ₁	MW							0.87 ***	0.88 ***	0.76 ***	0.32 ***	0.20 **	0.67 ***	0.49 ***	0.05 n.s.	-0.27 ***
T_1	FW								0.75 ***	0.85 ***	0.39 ***	0.03 n.s.	0.59 ***	0.53 ***	0.02 n.s.	-0.36 ***
	MW									0.82 ***	0.33 ***	0.29 ***	0.95 ***	0.68 ***	0.51 ***	0.03 n.s.
т	FW										0.54 ***	-0.06 n.s.	0.76 ***	0.89 ***	0.35 ***	0.17 *
1 ₅₀	T_b											-0.78 ***	0.29 ***	0.52 ***	0.11 n.s.	0.19 **
	E _{TS}												0.30 ***	-0.12 n.s.	0.24 ***	-0.14 *
T	MW													0.72 ***	0.75 ***	0.23 **
T_{100}	FW														0.56 ***	0.59 ***
T ₁₀₀ -T ₁	MW															0.58 ***

Table S 2.1 : Pearson's correlation coefficients among mean across environments (MW) and Finlay-Wilkinson slopes (FW) for the parameters final emergence percentage (FEP), emergence rate (ER), onset (T_1), end (T_{100}) of emergence, median time of emergence (T_{50}) and uniformity (T_{100} - T_1) as well as for base temperature (T_b) and thermal time (E_{TS}) and final emergence percentage under cold (FEP_{cold}) and normal (FEP_{normal}) conditions.

***, **, * significant at the 0.001, 0.01 and 0.05 probability level, n.s. not significant

r	Trait	Locus	Chr.	Position	MLM	GLM		Rare allel			Common alle	1	t-test	QTL effect of rare allel
				[cM]	р	р	Mean	SD	n	Mean	SD	n	р	[%]
		sPb-8773	1	11	0.0078	0.00900	46.2	13.1	13	52.27	9.79	181	0.1265	-13.1
		sPb-2704	1	35	0.0147	0.00400	44.0	8.4	10	52.46	9.85	175	0.0117	-19.2
	Cold	sPb-6689	2	22	0.0171	0.00700	56.0	9.7	64	50.01	9.85	118	0.0001	10.7
		sPb-7795	3	4	0.0122	0.00100	58.4	9.7	33	50.61	9.69	160	0.0001	13.3
		sPb-9999	10	56	0.0200	0.03300	54.3	8.7	85	50.00	10.90	105	0.0034	8.0
		sPb-2583	1	15	0.0003	0.00100	72.2	8.6	25	77.74	7.92	164	0.0050	-7.70
		sPb-3525	1	57	0.0118	0.01100	82.8	8.2	16	76.57	7.91	176	0.0096	7.50
		sPb-6600	1	85	0.0069	0.00300	81.5	7.7	24	76.25	8.12	159	0.0039	6.49
	Normal	sPb-5905	1	112	0.0099	0.00500	81.5	7.2	23	76.34	8.11	171	0.0037	6.29
	Normai	sPb-1925	2	146	0.0426	0.04000	79.9	7.5	31	76.23	8.21	159	0.0176	4.63
		sPb-0319	3	30	0.0099	0.00700	81.7	7.1	22	76.41	8.08	171	0.0032	6.47
		sPb-4041	5	6	0.0031	0.03100	79.9	6.5	46	75.98	8.43	137	0.0015	4.92
		sPb-1997	9	1	0.0166	0.01300	74.6	8.3	38	77.65	8.12	150	0.0497	-4.06
ΈP		sPb-3891	1	25	0.0220	0.0030	69	14	14	77	11	180	0.01	-10
		sPb-2704	1	35	0.0012	0.0010	66	11	10	78	11	175	0.003	-15
		sPb-8947	1	64	0.0197	0.0050	68	11	7	77	12	186	0.048	-12
	Mean	sPb-0090	1	66	0.0394	0.0250	72	12	33	78	12	157	0.02	-8
		sPb-7795	3	4	0.0346	0.0110	82	12	33	76	11	160	0.001	8
		sPb-0005	9	80	0.0043	0.0040	70	16	15	77	11	178	0.04	-9
		sPb-6424	2	145	0.0010	0.0345	1.01	0.31	33	1.01	0.34	160	0.9	0
		sPb-5454	3	5	0.0010	0.0132	0.73	0.34	23	1.05	0.31	166	< 0.0001	30
		sPb-4851	4	71	0.0010	0.0094	0.61	0.33	17	1.06	0.31	170	< 0.0001	-42
	EW	sPb-4806	5	64	0.0110	0.0278	1.11	0.30	87	0.94	0.35	106	0.004	18
	ΓW	sPb-9242	8	66	0.0010	0.0094	1.20	0.22	12	0.99	0.34	177	0.039	21
		sPb-1323	8	132	0.0010	0.0244	1.06	0.29	53	0.99	0.35	140	0.17	7
		sPb-7460	9	147	0.0010	0.0069	1.15	0.33	22	0.99	0.34	170	0.039	16
		sPb-5281	10	24	0.0010	0.0394	0.65	0.34	19	1.05	0.31	174	< 0.0001	-38

Table S 2.2: Marker-trait associations for final emergence percentage und cold (FEP_{cold}) and under normal (FEP_{normal}) conditions, mean and Finlay-Wilkinson slope (FW) of the traits final emergence rate (FEP), emergence rate (ER), onset (T₁) and end (T₁₀₀) of emergence, the median of emergence time (T₅₀) and uniformity (T₁₀₀-T₁) and marker- trait associations for base temperature (T_b) and thermal time (E_{TS}). Means and standard deviations (SD) comparing two allelic groups for each significant locus. The common allele is defined as the most often occurring allele.

Tra	Trait	Locus	Chr.	Position	MLM	GLM		Rare allel			Common alle	el	t-test	QTL effect of rare allel
-				[cM]	р	р	Mean	SD	n	Mean	SD	n	р	[%]
		sPb-7422	1	133	0.0191	0.0090	13.2	2.8	23	15.6	4.0	170	0.005	-15
		sPb-4081	2	65	0.0026	0.0020	16.4	4.2	82	14.6	3.6	97	0.001	12
	Maaa	sPb-1925	2	146	0.0253	0.0360	16.6	3.5	31	15.0	4.0	159	0.04	11
	Mean	sPb-9146	6	60	0.0239	0.0130	13.2	3.0	22	15.7	4.0	166	0.007	-16
		sPb-6518	7	28	0.0338	0.0160	13.5	3.5	32	15.7	4.0	162	0.004	-14
~		sPb-1881	8	88	0.0136	0.0021	14.2	3.9	69	16.1	4.0	118	0.002	-12
Ē		_c Pb 1025	2	146	0.0420	0.0060	1 1	0.4	31	1.0	0.5	150	0.240	10
		$_{\rm a}$ Db 2828	4	140	0.0420	0.0000	1.1	0.4	72	1.0	0.5	139	0.249	10
	FW	aDh 6518	4	20	0.0313	0.0040	0.82	0.45	22	1.10	0.47	162	0.001	-23
		sPb 0258	8	20 73	0.0214	0.0010	0.09	0.31	32	1.05	0.48	102	0.0001	-54
		$_{\circ}$ Db 1661	0	73	0.0249	0.0070	1.14	0.42	20	0.94	0.47	170	0.01	21
		sPb 1881	0	/4 88	0.0015	0.0010	1.23	0.43	22 60	0.90	0.47	118	0.009	20 26
		sPb 6640	3	151	0.0048	0.0010	11.8	1.5	10	1.11	1.0	184	<0.0001	-20
		sr0-0049	3	76	0.0419	0.0010	11.0	1.5	10	10.1	1.0	104	<0.0001	17
		sPb 0146	4	70 60	0.0404	0.0030	10.0	1.4	22.0	10.1	1.0	162	0.003	9
		$_{\circ}$ Ph 7200	6	00	0.0237	0.0010	0.8	1.0	54.0	10.1	0.9	140	0.002	5
	Moon	$_{\rm s}$ Db 7428	6	158	0.0381	0.0000	10.4	1.0	30.0	10.5	0.0	140	0.02	-5
	Wiedii	sPb_8673	7	75	0.0280	0.0020	10.4	1.0	27.0	10.1	1.0	156	0.002	5
		sPb-5055	o o	108	0.0024	0.0040	11.2	1.5	9.0	10.1	1.0	185	0.007	11
		31 0-5055 3Db 6748	0	115	0.0308	0.0010	10.3	1.7	52.0	10.1	1.0	136	0.15	2
Ŀ		sPb-3298	9	115	0.0212	0.0020	10.3	1.5	56.0	10.1	0.9	136	0.13	$\frac{2}{2}$
ι.		510 5270	-	110	0102.12	0.0020	1010	110	2010	1011	0.5	100	0.12	-
		sPb-6649	3	151	< 0.0001	0.0010	1.23	0.25	10	0.99	0.19	184	0.0001	24
		sPb-5030	6	74	0.0278	0.0070	0.86	0.23	20	1.02	0.19	174	0.0008	-16
		sPb-7290	6	99	0.0209	0.0030	0.92	0.18	54	1.03	0.20	140	0.0003	-11
	FW	sPb-3715	8	89	0.0381	0.0030	1.14	0.27	10	0.99	0.19	182	0.02	15
		sPb-5055	9	108	0.0101	0.0020	1.16	0.27	9	0.99	0.19	185	0.01	17
		sPb-6748	9	115	0.0403	0.0120	0.99	0.24	52	1.00	0.18	136	0.9	-1
		sPb-3298	9	116	0.0434	0.0040	1.0	0.2	56	1.0	0.2	136	0.9375	0

MLM mixed linear model, GLM general linear model

Trait	Locus	Chr	Position	MLM	GLM		Rare allel			Common alle	el	t-test	QTL effect of rare allel
	2000	ciiii	[cM]	р	р	Mean	SD	n	Mean	SD	n	р	[%]
	sPb-6649	3	151	0.0001	0.0010	19.9	1.9	10	18.2	1.6	184	0.001	9
	sPb-7534	4	76	0.0191	0.0010	19.6	1.7	12	18.2	1.6	182	0.003	8
Moon	sPb-9146	6	60	0.0173	0.0010	19.3	2.1	22	18.1	1.5	166	0.001	7
Mean	sPb-8673	7	75	0.0004	0.0010	19.1	1.8	27	18.2	1.5	156	0.003	5
	sPb-5055	9	108	0.0043	0.0010	20.1	1.7	9	18.2	1.6	185	0.0004	10
	sPb-6748	9	115	0.0223	0.0150	18.3	2.3	52	18.2	1.3	136	0.56	1
	sPb-3298	9	116	0.0205	0.0110	18.4	2.2	56	18.2	1.3	136	0.42	1
	sPb-2583	1	15	0.0003	0.0350	0.91	0.20	25	1.02	0.12	164	0.0002	-11
	sPb-6649	3	151	0.0001	0.0010	1.13	0.15	10	1.01	0.14	184	0.002	12
	sPb-7534	4	76	0.0132	0.0010	1.08	0.17	12	1.00	0.14	182	0.04	8
EW	sPb-3715	8	89	0.0025	0.0010	1.12	0.16	10	1.00	0.14	182	0.008	12
FW	sPb-7220	8	111	0.0231	0.0010	0.91	0.19	30	1.02	0.12	147	< 0.0001	-11
	sPb-5055	9	108	0.0003	0.0010	1.14	0.15	9	0.99	0.14	185	0.0017	15
T_{50}	sPb-2583	1	15	0.00021	0.00100	7.05	0.89	25	7.84	0.34	164	<.0001	-11.2
, Т	sPb-4851	4	71	0.01840	0.00100	6.78	0.93	17	7.83	0.34	170	<.0001	-15.6
1 _b	sPb-8673	7	75	0.00700	0.00100	7.83	0.37	27	7.76	0.46	156	0.382	0.9
	sPb-7220	8	111	0.00420	0.00100	7.19	0.88	30	7.84	0.34	147	<.0001	-9.0
	sPb-2583	1	15	0.035	0.0010	63.19	10.94	25	53.06	5.89	164	<.0001	16.0
	sPb-3311	1	98	0.0335	0.0010	66.79	10.48	18	53.20	5.86	173	<.0001	20.3
	sPb-1925	2	146	0.0247	0.0010	52.41	5.90	31	54.90	7.80	159	0.05	-4.8
	sPb-9146	6	60	0.0241	0.0010	62.09	11.03	22	53.28	6.28	166	<.0001	14.2
	sPb-2566	7	54	0.0462	0.0010	52.36	5.48	21	54.71	7.66	170	0.0869	-4.5
E _{TS}	sPb-0258	8	73	0.04	0.0010	51.38	5.79	38	55.14	7.80	151	0.006	-7.3
	sPb-1661	8	74	0.0318	0.0010	51.55	5.65	22	54.82	7.71	170	0.0206	-6.3
	sPb-1881	8	88	0.0372	0.0010	57.56	9.45	69	52.29	5.28	118	<.0001	9.2
	sPb-4787	9	53	0.0055	0.0010	51.16	4.71	28	54.78	7.80	154	0.0183	-7.1
	sPb-7460	9	147	0.0297	0.0010	51.70	5.93	22	54.73	7.68	171	0.0375	-5.9
	sPb-9555	10	64	0.0268	0.0010	51.13	4.67	14	54.66	7.67	180	0.091	-6.9

,	Trait	Locus	Chr.	Position	MLM	GLM		Rare allele		(Common allel	e	t-test	QTL effect of rare allele
				(cM)	р	р	Mean	SD	n	Mean	SD	n	р	[%]
		sPb-6649	3	151	0.0013	0.0010	19.9	1.9	10	18.2	1.6	184	0.001	9
		sPb-7534	4	76	0.0097	0.0010	19.6	1.7	12	18.2	1.6	182	0.003	8
	Maan	sPb-9146	6	60	0.0118	0.0010	19.3	2.1	22.0	18.1	1.5	166	0.001	7
	Mean	sPb-8673	7	75	0.0006	0.0070	19.1	1.8	27	18.2	1.5	161	0.003	5
		sPb-3715	8	89	0.0292	0.0010	19.6	2.1	10.0	18.2	1.6	182	0.004	8
00		sPb-5055	9	108	0.0026	0.0010	20.1	1.7	9.0	18.2	1.6	185	0.0004	10
Ţ														
		sPb-6649	3	151	0.0029	0.0220	1.08	0.12	10	1.00	0.14	184	0.07	8
		sPb-7534	4	76	0.0023	0.0010	1.08	0.17	12	1.00	0.14	182	0.03	8
	FW	sPb-3715	8	89	0.0010	0.0010	1.10	0.13	10	1.00	0.14	182	0.01	10
		sPb-7220	8	111	0.0013	0.0010	0.91	0.18	30	1.02	0.12	147	< 0.0001	-11
		sPb-5055	9	108	0.0001	0.0010	1.14	0.15	9	0.99	0.14	185	0.002	15
	Mean	sPb-3801	1	111	0.0031	0.0050	7.7	1.2	38	8.2	1.1	153	0.009	-6
		sPb-4081	2	65	0.0029	0.0020	7.8	1.2	82	8.4	1.1	97	0.0007	-7
		sPb-9894	3	153	0.0178	0.0160	7.8	1.2	74	8.3	1.2	119	0.0035	-6
Ē														
-1 g	FW	sPb-3801	1	111	0.0026	0.0050	0.88	0.31	38	1.04	0.29	153	0.002	-15
T_{10}		sPb-2080	2	152	0.0083	0.0050	0.88	0.31	49	1.04	0.30	122	0.002	-15
		sPb-5805	5	37	0.0352	0.0430	1.15	0.31	21	0.98	0.30	168	0.01	17
		sPb-7290	6	99	0.0044	0.0070	1.09	0.29	54	0.96	0.29	140	0.008	14
		sPb-6918	8	109	0.0072	0.0050	0.92	0.31	82	1.05	0.29	105	0.005	-12

	A	ir temperatu	re	Duration of temperature
Environment	mean	night	day	treatment
		[°C]		[d]
1	9.4	8.7	10.1	23
2	10.5	10.4	10.7	26
3	13.5	13.0	14.1	22
4	14.7	14.0	15.6	25
5	16.8	16.1	17.6	11
6	17.6	17.1	17.8	13
7	18.6	18.2	19.2	13
8	20.8	20.0	21.8	13

Table S 3.1: Average daily mean, night and day air temperatures in eight temperature treatments and the duration of temperature treatment.

Table S 3.2: Pearson's correlation coefficients between mean across environments (m), exponent (a) and initial growth rate (DMGR ₀ and LGR ₀) for dry
matter growth rate (DMGR), leaf area growth rate (LGR) and mean across environments, regression slope (sl) and base temperatures (T _b) for leaf appearance
rate (LAR), chlorophyll content (SPAD) and chlorophyll fluorescence (F_v '/ F_m ' and Φ_{PSII})

		DI	MGR		LGR			LAR			SPAD]	Fv'/Fm'			Φ_{PSII}	
		а	DMGR ₀	т	а	LGR_0	т	sl	T _b	т	sl	T _b	т	sl	T _b	т	sl	T _b
	т	0.33** *	0.35 ***	0.94 ***	0.03 n.s.	0.54 ***	-0.04 n.s.	0.19 **	0.36 ***	0.34 ***	0.58 ***	0.46 ***	-0.14 n.s.	0.10 n.s.	0.13 n.s.	-0.06 n.s.	0.04 n.s.	0.07 n.s.
DMGR	а		-0.70 ***	0.33 ***	0.22 **	0.02 n.s.	-0.02 n.s.	0.09 n.s.	0.19 **	0.07 n.s.	0.20 **	0.19 **	-0.13 n.s.	0.20 **	0.20 **	-0.05 n.s.	0.05 n.s.	0.08 n.s.
	DMGR ₀			0.34 ***	-0.33 ***	0.50 ***	0.05 n.s.	0.04 n.s.	- 0.03 n.s.	0.19 **	0.17 *	0.08 n.s.	0.11 n.s.	- 0.19 **	- 0.19 **	0.12 n.s.	- 0.02 n.s.	- 0.09 n.s.
	т				0.02 n.s.	0.60 ***	0.02 n.s.	0.21 **	0.30 ***	0.20 **	0.46 ***	0.41 ***	-0.13 n.s.	0.14 n.s.	0.16 *	-0.03 n.s.	0.04 n.s.	0.04 n.s.
LGR	а					-0.73 ***	-0.18 *	0.03 n.s.	0.33 ***	-0.21 **	0.11 n.s.	0.26 ***	-0.18 *	0.37 ***	0.35 ***	-0.25 ***	0.05 n.s.	0.20 **
	LGR_0						0.17 *	0.12 n.s.	- 0.08 n.s.	0.30 ***	0.19 **	0.04 n.s.	0.12 n.s.	- 0.19 **	- 0.19 *	0.22 **	0.05 n.s.	- 0.09 n.s.
LAR	т							0.80 ***	- 0.27 ***	0.11 n.s.	0.05 n.s.	- 0.06 n.s.	0.04 n.s.	- 0.03 n.s.	- 0.02 n.s.	0.24 ***	0.05 n.s.	- 0.1n .s.
	sl								0.36 ***	0.15 *	0.30 ***	0.20 **	-0.17 *	0.17 *	0.20 **	0.09 n.s.	0.15 *	0.05 n.s.
	T _b									0.06 n.s.	0.39 ***	0.42 ***	-0.32 ***	0.29 ***	0.34 ***	-0.23 **	0.15 *	0.26 ***

		E	OMGR		LGR			LAR			SPAD)		F _v '/F _m '			Φ_{PSII}	
		а	DMGR ₀	т	a l	LGR_0	т	sl	T _b	т	sl	T _b	т	sl	T _b	т	sl	T _b
	т										0.52 ***	-0.06 n.s.	0.22 **	- 0.25 ***	-0.28 ***	0.24 ***	-0.08 n.s.	- 0.20 **
SPAD	sl											0.80 ***	-0.12 n.s.	0.13 n.s.	0.15*	-0.05 n.s.	0.05 n.s.	0.07 n.s.
	T _b												-0.31 ***	0.33 ***	0.37 ***	-0.23 **	0.14*	0.25 ***
	т													- 0.53 ***	-0.78 ***	0.63 ***	-0.21 **	- 0.53 ***
F_v'/F_m'	sl														0.93 ***	-0.35 ***	0.38 ***	0.52 ***
	T _b															-0.52 ***	0.34 ***	0.58 ***
$\Phi_{\rm PSII}$	т																0.16*	- 0.41 ***
	sl																	0.81 ***

Table S 3.3: Marker-trait associations for dry matter growth rate (DMGR), leaf area growth rate (LGR), leaf appearance rate (LAR), chlorophyll content (SPAD), and fluorescence $(F_v'/F_m' \text{ and } \Phi_{PSII})$ in eight different temperature regimes and for means across environments (*m*), exponents (*a*) or regression slopes (*sl*) and initial growth rates (DMGR₀ and LGR₀) or base temperatures (T_b). Mean, standard deviation (SD) comparing two allelic groups for each significant locus. The common allele is defined as the most often occurring allele.

						ra	re allel		con	nmon allel	e
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-1631	2	12	0.011400	0.0015	0.00044	0.00018	26	0.00029	0.00015	166
	sPb-7647	2	192	0.043200	0.0017	0.00048	0.00020	11	0.00029	0.00015	181
	sPb-0319	3	30	0.010300	0.002	0.00048	0.00018	22	0.00029	0.00015	171
	sPb-3343	4	43	0.029800	0.0018	0.00025	0.00015	28	0.00032	0.00016	163
	sPb-2138	4	64	0.019200	0.0019	0.00026	0.00017	31	0.00032	0.00016	160
	sPb-5805	5	37	0.036300	0.0013	0.00047	0.00025	21	0.00029	0.00014	168
	sPb-5086	6	148	0.036800	0.0016	0.00027	0.00013	32	0.00032	0.00017	156
DMGR 94	sPb-0477	6	164	0.044200	0.00087	0.00035	0.00017	58	0.00029	0.00016	133
DMOR_).+	sPb-8608	7	133	0.041500	0.0014	0.00028	0.00016	29	0.00032	0.00016	161
	sPb-2474	8	62	0.035300	0.002	0.00018	0.00017	7	0.00031	0.00016	187
	sPb-0005	9	80	0.044800	0.0015	0.00041	0.00021	15	0.00030	0.00015	178
	sPb-8542	9	119	0.018000	0.0016	0.00026	0.00014	35	0.00032	0.00016	157
	sPb-0562	10	43	0.007600	0.0013	0.00024	0.00012	75	0.00036	0.00017	113
	sPb-3549	10	46	0.040600	0.001	0.00025	0.00013	70	0.00035	0.00017	121
	sPb-9555	10	64	0.028100	0.0017	0.00046	0.00020	14	0.00030	0.00015	180
	sPb-8232	10	68	0.040500	0.0014	0.00023	0.00012	23	0.00032	0.00017	164
	sPb-3891	1	25	0.031800	0.0015	0.00047	0.00014	14	0.00060	0.00019	180
	sPb-6917	1	30	0.033700	0.0017	0.00045	0.00017	9	0.00060	0.00019	182
	sPb-2704	1	35	0.030300	0.0017	0.00048	0.00020	10	0.00060	0.00019	175
	sPb-2683	1	107	0.032000	0.0013	0.00075	0.00024	19	0.00057	0.00018	171
	sPb-4444	2	144	0.002900	0.0015	0.00051	0.00020	25	0.00061	0.00018	158
	sPb-0319	3	30	0.011900	0.0016	0.00075	0.00022	22	0.00057	0.00018	171
	sPb-2521	4	8	0.005700	0.0013	0.00048	0.00014	37	0.00062	0.00020	152
	sPb-3343	4	43	0.035800	0.0014	0.00050	0.00019	28	0.00060	0.00018	163
DMGR 10.5	sPb-7893	5	66	0.016000	0.0014	0.00055	0.00022	47	0.00061	0.00018	145
	sPb-6855	5	71	0.041600	0.0013	0.00070	0.00024	14	0.00059	0.00018	173
	sPb-1454	5	75	0.012200	0.0014	0.00073	0.00022	25	0.00057	0.00018	166
	sPb-2457	6	58	0.005500	0.002	0.00084	0.00013	9	0.00058	0.00019	182
	sPb-4874	7	73	0.010300	0.0021	0.00046	0.00016	20	0.00061	0.00019	172
	sPb-0325	8	71	0.000099	0.0023	0.00047	0.00014	27	0.00062	0.00019	157
	sPb-9999	10	56	0.027400	0.00080	0.00054	0.00017	85	0.00064	0.00020	105
	sPb-9555	10	64	0.002800	0.002	0.00081	0.00026	14	0.00058	0.00018	180
	sPb-8232	10	68	0.016200	0.0014	0.00046	0.00015	23	0.00061	0.00019	164
	sPb-0859	10	88	0.023800	0.0014	0.00055	0.00023	44	0.00061	0.00018	145

						ra	re allel		con	nmon allel	e
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-0274	1	74	0.010900	0.0034	0.0012	0.0005	24	0.0017	0.0006	169
	sPb-3311	1	98	0.008700	0.004	0.0010	0.0003	18	0.0017	0.0006	173
	sPb-1940	2	59	0.010300	0.0035	0.0010	0.0004	17	0.0017	0.0006	175
	sPb-6424	2	145	0.015700	0.0026	0.0018	0.0006	34	0.0016	0.0006	160
	sPb-1925	2	146	0.017700	0.0026	0.0018	0.0007	31	0.0016	0.0006	159
	sPb-0319	3	30	0.022400	0.0027	0.0019	0.0006	22	0.0016	0.0006	171
	sPb-9076	3	51	0.025400	0.0033	0.0013	0.0005	9	0.0016	0.0006	180
	sPb-4851	4	71	0.007400	0.0043	0.0010	0.0003	17	0.0017	0.0006	170
	sPb-1104	5	68	0.025800	0.0016	0.0014	0.0006	52	0.0017	0.0006	128
	sPb-1454	5	75	0.011100	0.0025	0.0019	0.0006	25	0.0016	0.0006	166
DMCD 12.5	sPb-6518	7	28	0.012700	0.0021	0.0012	0.0005	32	0.0017	0.0006	162
DMOK_15.5	sPb-0571	7	72	0.036400	0.003	0.0011	0.0003	11	0.0017	0.0006	177
	sPb-4874	7	73	0.001500	0.0044	0.0011	0.0003	20	0.0017	0.0006	172
	sPb-0325	8	71	0.000053	0.0045	0.0011	0.0004	27	0.0017	0.0006	157
	sPb-4787	9	53	0.027400	0.0022	0.0019	0.0007	28	0.0016	0.0006	154
	sPb-0326	9	100	0.042200	0.0016	0.0014	0.0006	51	0.0017	0.0006	141
	sPb-9158	9	104	0.027600	0.0017	0.0014	0.0006	52	0.0017	0.0006	142
	sPb-8542	9	119	0.005500	0.0028	0.0012	0.0004	35	0.0017	0.0006	157
	sPb-7460	9	147	0.040600	0.0023	0.0019	0.0007	22	0.0016	0.0006	171
	sPb-5281	10	24	0.000394	0.0048	0.0010	0.0003	20	0.0017	0.0006	174
	sPb-4944	10	59	0.004500	0.0034	0.0011	0.0005	21	0.0017	0.0006	168
	sPb-0859	10	88	0.038000	0.0024	0.0014	0.0006	44	0.0017	0.0006	145
	sPb-8947	1	64	0.032100	0.0042	0.0018	0.0006	7	0.0029	0.0010	186
	sPb-0274	1	74	0.000191	0.006	0.0018	0.0008	24	0.0031	0.0009	169
	sPb-3311	1	98	0.010000	0.0051	0.0018	0.0008	18	0.0030	0.0009	173
	sPb-1940	2	59	0.000096	0.0061	0.0016	0.0007	17	0.0030	0.0009	175
	sPb-1925	2	146	0.043900	0.0027	0.0032	0.0008	31	0.0029	0.0010	159
	sPb-7795	3	4	0.023500	0.0025	0.0022	0.0009	33	0.0031	0.0009	160
	sPb-4851	4	71	0.001400	0.0068	0.0017	0.0006	17	0.0030	0.0009	170
DMGR_14.7	sPb-5805	5	37	0.009400	0.0031	0.0033	0.0008	21	0.0029	0.0010	168
	sPb-1454	5	75	0.018400	0.0028	0.0034	0.0008	25	0.0028	0.0010	166
	sPb-6518	7	28	0.003400	0.0029	0.0021	0.0008	32	0.0031	0.0009	162
	sPb-4874	7	73	0.014300	0.0046	0.0018	0.0008	20	0.0030	0.0009	172
	sPb-0325	8	71	0.000869	0.0046	0.0020	0.0008	27	0.0031	0.0009	157
	sPb-4787	9	53	0.003400	0.0034	0.0033	0.0007	28	0.0029	0.0010	154
	sPb-5281	10	24	0.000003	0.008	0.0016	0.0006	20	0.0031	0.0009	174
	sPb-4944	10	59	0.002400	0.0042	0.0019	0.0008	21	0.0031	0.0009	168

						ra	re allel		con	nmon allel	e
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-6600	1	85	0.007300	0.0051	0.0086	0.0023	24	0.0066	0.0021	159
	sPb-2683	1	107	0.004300	0.006	0.0092	0.0024	19	0.0066	0.0021	171
	sPb-1020	1	168	0.007800	0.0056	0.0071	0.0031	29	0.0069	0.0021	164
	sPb-0319	3	30	0.007000	0.0061	0.0089	0.0021	22	0.0066	0.0022	171
	sPb-9076	3	51	0.042500	0.0054	0.0059	0.0023	9	0.0070	0.0023	180
DMGR_16.8	sPb-4874	7	73	0.000173	0.0112	0.0045	0.0016	20	0.0072	0.0022	172
	sPb-0325	8	71	0.040800	0.005	0.0053	0.0022	27	0.0072	0.0022	157
	sPb-7312	8	82	0.031300	0.004	0.0054	0.0023	17	0.0070	0.0022	177
	sPb-0562	10	43	0.009900	0.0036	0.0059	0.0020	75	0.0077	0.0021	113
	sPb-3549	10	46	0.022500	0.0033	0.0058	0.0020	70	0.0075	0.0022	121
	sPb-6331	10	53	0.020300	0.007	0.0089	0.0023	11	0.0069	0.0022	171
	sPb-3525	1	57	0.032500	0.0042	0.0089	0.0030	16	0.0076	0.0020	176
	sPb-6600	1	85	0.023300	0.0039	0.0089	0.0023	24	0.0075	0.0021	159
	sPb-3311	1	98	0.040000	0.0068	0.0050	0.0014	18	0.0080	0.0020	173
	sPb-9076	3	51	0.005800	0.0063	0.0061	0.0020	9	0.0078	0.0021	180
DMGR_17.6	sPb-1454	5	75	0.021900	0.0039	0.0091	0.0018	25	0.0075	0.0021	166
	sPb-4874	7	73	0.007800	0.0079	0.0050	0.0013	20	0.0081	0.0020	172
	sPb-0435	8	67	0.044300	0.0039	0.0065	0.0024	40	0.0080	0.0020	152
	sPb-6748	9	115	0.018900	0.0044	0.0066	0.0021	52	0.0081	0.0019	136
	sPb-3549	10	46	0.026500	0.0033	0.0067	0.0020	70	0.0083	0.0021	121
	sPb-8947	1	64	0.035100	0.0078	0.009	0.001	7	0.014	0.004	186
	sPb-2457	6	58	0.037500	0.0059	0.013	0.003	9	0.014	0.004	182
	sPb-4874	7	73	0.014600	0.0102	0.009	0.002	20	0.015	0.004	172
	sPb-1881	8	88	0.034600	0.0034	0.012	0.003	69	0.015	0.004	118
DMCP 18.6	sPb-1323	8	132	0.042700	0.0044	0.014	0.004	53	0.014	0.004	141
DWICK_10.0	sPb-1997	9	1	0.004200	0.0084	0.011	0.004	38	0.015	0.004	150
	sPb-6748	9	115	0.014800	0.0061	0.011	0.004	52	0.015	0.004	136
	sPb-3298	9	116	0.021900	0.0057	0.012	0.004	56	0.015	0.004	136
	sPb-0562	10	43	0.012300	0.0046	0.012	0.003	75	0.016	0.004	113
	sPb-3549	10	46	0.014400	0.0047	0.012	0.003	70	0.016	0.004	121
	sPb-7428	6	158	0.041600	0.0095	0.029	0.011	39	0.039	0.010	149
	sPb-6518	7	28	0.010600	0.0088	0.026	0.008	32	0.039	0.010	162
DMGR_20.8	sPb-4874	7	73	0.044700	0.0148	0.023	0.007	20	0.039	0.010	172
	sPb-0562	10	43	0.003400	0.0098	0.032	0.011	75	0.040	0.010	113
	sPb-3549	10	46	0.031100	0.0076	0.032	0.011	70	0.040	0.010	121

						ra	are allel		con	nmon allel	e
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-3311	1	98	0.030700	0.0069	0.0056	0.0013	18	0.0092	0.0021	173
	sPb-0233	1	147	0.037800	0.004	0.0084	0.0026	15	0.0089	0.0022	178
	sPb-9076	3	51	0.024200	0.0049	0.0073	0.0017	9	0.0090	0.0023	180
	sPb-1137	3	56	0.032300	0.0034	0.0096	0.0023	31	0.0088	0.0023	155
	sPb-6518	7	28	0.043300	0.0028	0.0065	0.0017	32	0.0094	0.0021	162
DMGR_mean	sPb-4874	7	73	0.007800	0.0078	0.0056	0.0012	20	0.0093	0.0020	172
	sPb-8608	7	133	0.040900	0.0038	0.0071	0.0028	29	0.0092	0.0020	161
	sPb-1997	9	1	0.022200	0.0048	0.0071	0.0024	38	0.0094	0.0020	150
	sPb-6748	9	115	0.035500	0.0039	0.0075	0.0023	52	0.0094	0.0020	136
	sPb-0562	10	43	0.003400	0.0039	0.0077	0.0021	75	0.0097	0.0020	113
	sPb-3549	10	46	0.016700	0.0034	0.0077	0.0022	70	0.0096	0.0020	121
	sPb-1631	2	12	0.005300	0.0159	0.38	0.03	26	0.42	0.04	166
	sPb-6689	2	22	0.041500	0.0094	0.40	0.04	64	0.42	0.04	118
	sPb-4444	2	144	0.002200	0.0176	0.42	0.06	25	0.41	0.04	158
	sPb-9146	6	60	0.004200	0.0169	0.38	0.05	22	0.42	0.04	166
	sPb-5030	6	74	0.043700	0.0158	0.39	0.04	20	0.42	0.04	174
DMGR_a	sPb-8081	8	58	0.032700	0.0149	0.42	0.06	14	0.41	0.04	177
	sPb-2474	8	62	0.003700	0.026	0.44	0.09	7	0.41	0.04	187
	sPb-7220	8	111	0.020800	0.013	0.42	0.05	30	0.41	0.04	147
	sPb-0005	9	80	0.019300	0.016	0.38	0.06	15	0.42	0.04	178
	sPb-5055	9	108	0.024500	0.0188	0.37	0.05	9	0.42	0.04	185
	sPb-9999	10	56	0.013900	0.0079	0.42	0.04	85	0.41	0.04	105
	sPb-8773	1	11	0.500400	0.00036	0.00038	0.00020	13	0.00031	0.00011	181
	sPb-2683	1	107	0.025800	0.00110	0.00044	0.00014	19	0.00030	0.00010	171
	sPb-1631	2	12	0.009400	0.00110	0.00040	0.00012	26	0.00030	0.00011	166
	sPb-4444	2	144	0.029900	0.00091	0.00029	0.00013	25	0.00032	0.00011	158
	sPb-7647	2	192	0.035300	0.00120	0.00042	0.00013	11	0.00031	0.00011	181
	sPb-7795	3	4	0.042800	0.00083	0.00025	0.00010	33	0.00033	0.00011	160
	sPb-0319	3	30	0.001200	0.00160	0.00044	0.00011	22	0.00030	0.00010	171
	sPb-3343	4	43	0.043400	0.00110	0.00026	0.00012	28	0.00032	0.00011	163
	sPb-4851	4	71	0.036700	0.00170	0.00023	0.00008	17	0.00033	0.00011	170
DMGR ₀	sPb-5805	5	37	0.005700	0.00120	0.00043	0.00016	21	0.00030	0.00010	168
	sPb-1454	5	75	0.025900	0.00097	0.00041	0.00012	25	0.00030	0.00011	166
	sPb-5086	6	148	0.019000	0.00120	0.00027	0.00011	32	0.00032	0.00011	156
	sPb-4874	7	73	0.003400	0.00200	0.00023	0.00008	20	0.00033	0.00011	172
	sPb-0325	8	71	0.000555	0.00170	0.00025	0.00009	27	0.00032	0.00011	157
	sPb-8542	9	119	0.016500	0.00110	0.00027	0.00011	35	0.00033	0.00011	157
	sPb-5281	10	24	0.000621	0.00230	0.00022	0.00008	20	0.00033	0.00011	174
	sPb-0562	10	43	0.028100	0.00074	0.00027	0.00010	75	0.00035	0.00012	113
	sPb-6331	10	53	0.025800	0.00140	0.00046	0.00017	11	0.00031	0.00010	171
	sPb-9555	10	64	0.009400	0.00140	0.00044	0.00013	14	0.00031	0.00011	180

						ra	re allel		com	mon allel	le
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-0274	1	74	0.004500	0.01	0.407	0.207	24	0.610	0.267	169
	sPb-3311	1	98	0.044500	0.0085	0.378	0.161	18	0.601	0.270	173
	sPb-0319	3	30	0.002900	0.0088	0.824	0.284	22	0.551	0.251	171
	sPb-9076	3	51	0.044600	0.0069	0.473	0.255	9	0.593	0.266	180
	sPb-4851	4	71	0.030200	0.0101	0.366	0.157	17	0.603	0.264	170
	sPb-1104	5	68	0.037400	0.0036	0.493	0.288	52	0.609	0.258	128
	sPb-6518	7	28	0.028400	0.0046	0.431	0.218	32	0.613	0.268	162
LGR_13.5	sPb-4874	7	73	0.002500	0.0115	0.373	0.148	20	0.611	0.268	172
	sPb-0325	8	71	0.001400	0.0094	0.405	0.207	27	0.607	0.267	157
	sPb-4787	9	53	0.036200	0.0053	0.746	0.281	28	0.563	0.260	154
	sPb-0005	9	80	0.003000	0.0085	0.398	0.314	15	0.599	0.260	178
	sPb-8542	9	119	0.024300	0.0056	0.454	0.230	35	0.605	0.261	157
	sPb-5281	10	24	0.007800	0.0105	0.370	0.146	20	0.608	0.268	174
	sPb-4944	10	59	0.005700	0.008	0.382	0.207	21	0.614	0.265	168
	sPb-0859	10	88	0.000699	0.0092	0.485	0.259	44	0.616	0.265	145
	sPb-8947	1	64	0.027600	0.0087	0.651	0.184	7	1.082	0.354	186
	sPb-0274	1	74	0.000790	0.012	0.706	0.370	24	1.121	0.327	169
	sPb-3311	1	98	0.008900	0.0111	0.671	0.337	18	1.104	0.334	173
	sPb-0909	2	13	0.016100	0.0048	0.888	0.343	44	1.124	0.348	139
	sPb-1940	2	59	0.000412	0.0114	0.622	0.344	17	1.110	0.331	175
	sPb-4851	4	71	0.001200	0.0154	0.633	0.305	17	1.110	0.333	170
LGR 14.7	sPb-5805	5	37	0.021800	0.0055	1.278	0.349	21	1.042	0.350	168
	sPb-1454	5	75	0.022800	0.0055	1.336	0.329	25	1.025	0.344	166
	sPb-6518	7	28	0.003100	0.006	0.766	0.343	32	1.128	0.332	162
	sPb-4874	7	73	0.004200	0.0116	0.682	0.325	20	1.116	0.335	172
	sPb-0325	8	71	0.012000	0.0075	0.763	0.384	27	1.119	0.328	157
	sPb-4787	9	53	0.000957	0.0078	1.331	0.262	28	1.032	0.351	154
	sPb-5281	10	24	0.000004	0.0172	0.621	0.286	20	1.119	0.329	174
	sPb-4944	10	59	0.004200	0.0081	0.713	0.339	21	1.121	0.331	168
	DI < <00		0.5	0.004500	0.0001	2 20 4	0.040	24	0.450	0.505	1.50
	sPb-6600	1	85	0.024500	0.0081	3.286	0.849	24	2.460	0.735	159
	sPb-5905	1	112	0.039100	0.0081	3.242	0.795	23	2.472	0.748	171
	sPb-6434	2	75	0.044100	0.008	2.277	0.889	13	2.594	0.795	173
	sPb-4226	3	39	0.022800	0.0059	2.238	0.723	54	2.703	0.790	135
LCD 16.9	sPb-9076	3	51	0.008200	0.013	2.257	0.919	9	2.592	0.777	180
LUK_10.8	sPb-1137	3	56	0.014100	0.0083	3.109	0.767	31	2.476	0.747	155
	sPb-4629	3	145	0.037900	0.0052	2.653	0.674	95	2.438	0.891	89
	sPb-4086	5	70	0.040200	0.0073	2.471	1.032	29	2.539	0.719	150
	sPb-6518	7	28	0.032300	0.0064	2.044	0.690	32	2.668	0.762	162
	sPb-4874	7	73	0.000130	0.0191	1.922	0.538	20	2.655	0.767	172
	sPb-6331	10	53	0.020000	0.013	3.360	0.929	11	2.537	0.743	171

						ra	re allel		comi	non allel	le
Troit	Loops	Chr.	Position	p_Marker	Effect	Mean	SD	n	Mean	SD	n
Irait	Db 6600	1	[CN1]	0.022600	0.0082	2 224	1.040	24	2 559	0.711	150
	sPD-0000	1	02	0.022000	0.0082	3.234 1.772	0.500	19	2.556	0.769	172
	sru-3311	1	90 144	0.021400	0.0139	2.911	1.154	10	2.755	0.708	1/5
LGR 17.6	SPD-4444	2	144	0.024500	0.0078	2.811	1.154	25	2.045	0.710	158
LOK_17.0	SPD-9076	3	51	0.011000	0.0121	2.202	1.033	9	2.693	0.776	180
	sPb-48/4	/	/3	0.014900	0.0153	1.801	0.508	20	2.783	0.754	1/2
	sPb-6918	8	109	0.035100	0.0058	2.506	0.847	82	2.799	0.739	105
	sPb-6748	9	115	0.023500	0.0089	2.326	0.806	52	2.784	0.738	136
	sPb-8947	1	64	0.044400	0.0135	2.709	0.575	7	4.246	1.213	186
	sPb-1020	1	168	0.039600	0.0091	3.916	1.759	29	4.249	1.096	164
	sPb-1137	3	56	0.016100	0.0095	4.698	1.571	31	4.125	1.121	155
	sPb-9303	4	85	0.021500	0.0111	3.473	0.706	13	4.217	1.211	178
LGR 186	sPb-2457	6	58	0.044900	0.0105	4.027	1.099	9	4.219	1.230	182
LOK_10.0	sPb-1997	9	1	0.000911	0.0176	3.330	1.249	38	4.396	1.132	150
	sPb-6748	9	115	0.013500	0.0112	3.486	1.136	52	4.455	1.157	136
	sPb-3298	9	116	0.018300	0.0106	3.554	1.161	56	4.455	1.157	136
	sPb-0562	10	43	0.029000	0.0074	3.638	0.982	75	4.557	1.235	113
	sPb-3549	10	46	0.033500	0.0075	3.604	0.980	70	4.534	1.239	121
	sPb-0233	1	147	0.042100	0.0171	12.279	3.748	15	11.313	3.173	178
	sPb-1137	3	56	0.033500	0.0149	12.825	2.626	31	11.118	3.304	155
	sPb-7428	6	158	0.040400	0.0165	10.180	3.415	39	11.654	3.084	149
LGR 20.8	sPb-6518	7	28	0.008400	0.0157	9.070	2.567	32	11.866	3.109	162
—	sPb-2566	7	54	0.025000	0.0164	13.482	3.096	21	11.127	3.070	170
	sPb-8608	7	133	0.019900	0.0186	9.951	3.398	29	11.670	3.069	161
	sPb-8081	8	58	0.039000	0.0167	12.735	3.917	14	11.305	3.143	177
	sPb-0562	10	43	0.012000	0.0147	10.537	3.009	75	12.106	3.214	113
	sPb-0233	1	147	0.032300	0.0086	3.891	1.245	15	3.727	0.915	178
	sPb-1020	1	168	0.043100	0.0075	3.657	1.265	29	3.770	0.872	164
	sPb-1137	3	56	0.015800	0.0081	4.251	0.920	31	3.658	0.928	155
	sPb-4086	5	70	0.021200	0.0077	3.482	1.208	29	3.737	0.859	150
LGR_mean	sPb-6518	7	28	0.024000	0.0065	2.937	0.752	32	3.906	0.884	162
	sPb-4874	7	73	0.011000	0.0153	2.745	0.601	20	3.881	0.886	172
	sPb-8608	, 7	133	0.015200	0.0093	3.230	1.126	29	3.841	0.867	161
	sPb-1997	, 9	1	0.011200	0.0113	3.258	1.097	38	3 870	0.873	150
	sPb-0562	10	43	0.020400	0.0068	3.412	0.856	75	3.998	0.932	113

						ra	re allel		com	non allel	e
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-0274	1	74	0.004400	0.0329	0.466	0.086	24	0.431	0.064	169
	sPb-1020	1	168	0.008400	0.0245	0.456	0.086	29	0.431	0.063	164
	sPb-1940	2	59	0.034100	0.0251	0.470	0.098	17	0.433	0.063	175
	sPb-0319	3	30	0.020700	0.0245	0.396	0.054	22	0.441	0.068	171
	sPb-4851	4	71	0.027500	0.0317	0.468	0.097	17	0.432	0.064	170
	sPb-7794	4	88	0.031500	0.0123	0.451	0.061	75	0.425	0.071	114
	sPb-1104	5	68	0.021000	0.0139	0.460	0.067	52	0.430	0.066	128
IGR a	sPb-6589	8	16	0.011300	0.0254	0.455	0.082	30	0.432	0.064	164
LOK_ <i>u</i>	sPb-1888	8	63	0.043500	0.0236	0.388	0.052	10	0.439	0.068	179
	sPb-0325	8	71	0.036400	0.0225	0.457	0.088	27	0.434	0.064	157
	sPb-4787	9	53	0.029300	0.0203	0.404	0.053	28	0.442	0.070	154
	sPb-0005	9	80	0.009400	0.0271	0.480	0.107	15	0.432	0.062	178
	sPb-6403	9	133	0.042600	0.0193	0.457	0.088	28	0.432	0.063	166
	sPb-5281	10	24	0.005000	0.0369	0.470	0.090	20	0.431	0.064	174
	sPb-4944	10	59	0.000390	0.0349	0.477	0.084	21	0.429	0.064	168
	sPb-0859	10	88	0.009800	0.0253	0.448	0.080	44	0.431	0.063	145
	sPb-0274	1	74	0.000873	0.0309	0.391	0.196	24	0.596	0.201	169
	sPb-3311	1	98	0.018500	0.0264	0.367	0.165	18	0.587	0.204	173
	sPb-1940	2	59	0.009500	0.0223	0.350	0.188	17	0.588	0.200	175
	sPb-0319	3	30	0.004900	0.0213	0.776	0.192	22	0.541	0.199	171
	sPb-4851	4	71	0.005300	0.035	0.348	0.149	17	0.590	0.200	170
	sPb-1454	5	75	0.031700	0.0135	0.741	0.225	25	0.543	0.196	166
	sPb-6518	7	28	0.011100	0.0135	0.416	0.181	32	0.600	0.203	162
LGR_0	sPb-4874	7	73	0.000364	0.0355	0.362	0.143	20	0.596	0.203	172
	sPb-0325	8	71	0.002700	0.023	0.407	0.195	27	0.593	0.201	157
	sPb-8590	9	16	0.041000	0.0097	0.487	0.202	50	0.597	0.203	138
	sPb-4787	9	53	0.004300	0.0181	0.735	0.205	28	0.547	0.199	154
	sPb-0005	9	80	0.012700	0.0182	0.418	0.251	15	0.582	0.203	178
	sPb-5281	10	24	0.000351	0.0364	0.350	0.139	20	0.595	0.203	174
	sPb-4944	10	59	0.001400	0.0236	0.373	0.177	21	0.599	0.201	168
	sPb-0859	10	88	0.022400	0.0167	0.496	0.247	44	0.594	0.194	145

						rare	allel		con	nmon alle	ele
Trait	Locus	Chr.	Position	p_Marker	Effect	Mean	SD	n	Mean	SD	n
ITuit	sPb-3891	1	25	0.0209	0.0311	0.027	0.013	14	0.013	0.014	180
	sPb-7647	2	192	0.0274	0.0294	0.030	0.016	11	0.012	0.013	181
	sPb-2521	4	8	0.0066	0.0252	0.024	0.014	37	0.011	0.013	152
LAR_10.5	sPb-0326	9	100	0.0014	0.0235	0.022	0.013	51	0.010	0.013	141
	sPb-9158	9	104	0.0041	0.0215	0.021	0.013	52	0.011	0.014	142
	sPb-6271	10	58	0.0195	0.0156	0.010	0.013	68	0.016	0.015	122
	BPP 0232	1	70	0.0412	0.0086	0.075	0.018	38	0.083	0.025	155
	sPb 3103	1	114	0.0412	0.0080	0.075	0.010	54	0.085	0.023	140
	sPb_4226	3	30	0.0020	0.0102	0.094	0.020	54	0.070	0.024	140
	sPb_33/3	1	13	0.0102	0.0102	0.080	0.028	28	0.079	0.022	163
	sPb-0906	5	43 7	0.0175	0.0102	0.090	0.021	20 54	0.078	0.024	114
LAR_13.5	sPb-1104	5	68	0.0208	0.0086	0.000	0.022	52	0.084	0.023	128
	sPb-7106	5	72	0.0130	0.0101	0.074	0.023	39	0.083	0.024	150
	sPb-9066	6	89	0.0294	0.0124	0.097	0.021	24	0.079	0.024	169
	sPb-7126	8	29	0.0145	0.014	0.098	0.016	32	0.078	0.024	161
	sPb-9242	8	66	0.0004	0.0228	0.069	0.014	12	0.083	0.024	177
	sPb-0817	10	42	0.0220	0.011	0.075	0.021	26	0.082	0.024	166
	sPb-2704	1	35	0.0023	0.0184	0.085	0.025	10	0.099	0.019	175
	sPb-3525	1	57	0.0195	0.0118	0.105	0.013	16	0.098	0.020	176
	sPb-0274	1	74	0.0006	0.0245	0.099	0.022	24	0.099	0.019	169
LAR 14.7	sPb-1137	3	56	0.0067	0.0113	0.094	0.022	31	0.100	0.019	155
—	sPb-8255	4	156	0.0104	0.011	0.090	0.026	16	0.100	0.018	177
	sPb-8954	6	149	0.0209	0.0114	0.110	0.016	13	0.098	0.020	176
	sPb-2566	7	54	0.0056	0.0116	0.091	0.024	21	0.100	0.019	170
	sPb-5054	8	30	0.0132	0.0107	0.108	0.015	31	0.097	0.020	163
	sPb-8773	1	11	0.0016	0.0162	0.172	0.031	13	0.182	0.030	181
	sPb-5905	1	112	0.0069	0.0131	0.198	0.018	23	0.179	0.030	171
	sPb-9076	3	51	0.0317	0.0128	0.175	0.028	9	0.182	0.030	180
I AD 160	sPb-0932	5	45	0.0283	0.0099	0.169	0.020	14	0.183	0.031	169
LAK_10.8	sPb-3361	7	26	0.0361	0.0089	0.197	0.030	43	0.177	0.028	150
	sPb-2474	8	62	0.0019	0.0202	0.216	0.037	7	0.180	0.029	187
	sPb-6515	9	70	0.0035	0.0145	0.202	0.030	32	0.177	0.028	161
	sPb-9555	10	64	0.0100	0.0133	0.206	0.018	14	0.179	0.030	180

						rare	e allel		con	nmon alle	ele
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-3103	1	114	0.0042	0.0117	0.218	0.025	54	0.198	0.035	140
	sPb-6663	2	155	0.0221	0.0062	0.206	0.039	93	0.200	0.028	94
	sPb-7795	3	4	0.0176	0.0097	0.221	0.031	33	0.200	0.034	160
LAR_17.6	sPb-4226	3	39	0.0003	0.0098	0.209	0.049	54	0.201	0.026	135
	sPb-7312	8	82	0.0014	0.0139	0.184	0.021	17	0.205	0.034	177
	sPb-0600	10	4	0.0024	0.0092	0.195	0.035	81	0.211	0.032	106
	sPb-9999	10	56	0.0002	0.0091	0.213	0.025	85	0.195	0.038	105
	sPb-3103	1	114	0.0008	0.0172	0.275	0.042	54	0.248	0.043	140
	sPb-5267	3	134	0.0409	0.0114	0.274	0.040	23	0.254	0.041	164
	sPb-5890	5	13	0.0388	0.0089	0.253	0.041	66	0.255	0.049	102
	sPb-5119	5	33	0.0432	0.0074	0.246	0.050	91	0.265	0.037	99
LAR 18.6	sPb-3361	7	26	0.0142	0.0135	0.278	0.039	43	0.249	0.044	150
2.1.1.2.1010	sPb-3341	8	0	0.0156	0.0173	0.288	0.058	9	0.253	0.044	179
	sPb-6589	8	16	0.0047	0.0196	0.286	0.038	30	0.250	0.044	164
	sPb-1661	8	74	0.0196	0.0136	0.250	0.048	22	0.256	0.045	170
	sPb-8542	9	119	0.0214	0.0136	0.281	0.036	35	0.250	0.045	157
	sPb-0859	10	88	0.0415	0.013	0.278	0.038	44	0.249	0.045	145
	sPb-2583	1	15	0.0246	0.0128	0.320	0.041	25	0.318	0.049	164
	sPb-3891	1	25	0.0308	0.0144	0.315	0.045	14	0.320	0.048	180
	sPb-9076	3	51	0.0325	0.0149	0.328	0.032	9	0.319	0.049	180
LAR 20.8	sPb-0873	5	104	0.0038	0.0085	0.323	0.059	90	0.316	0.034	96
	sPb-6526	6	144	0.0094	0.0148	0.347	0.038	33	0.313	0.047	157
	sPb-1323	8	132	0.0191	0.0109	0.330	0.043	53	0.316	0.048	141
	sPb-0600	10	4	0.0425	0.0072	0.307	0.052	81	0.330	0.043	106
	sPb-0859	10	88	0.0044	0.016	0.332	0.038	44	0.316	0.050	145
	sPb-3103	1	114	0.0001	0.0083	0.178	0.014	54	0.162	0.012	140
	sPb-4226	3	39	0.0045	0.0047	0.173	0.014	54	0.164	0.014	135
	sPb-7534	4	76	0.0241	0.0065	0.184	0.010	12	0.165	0.014	182
	sPb-7106	5	72	0.0098	0.0046	0.161	0.012	39	0.168	0.014	150
LAR_mean	sPb-0873	5	104	0.0449	0.0033	0.169	0.014	90	0.164	0.014	96
	sPb-3361	7	26	0.0395	0.0049	0.178	0.015	43	0.163	0.012	150
	sPb-1311	7	36	0.0188	0.006	0.172	0.015	57	0.164	0.012	117
	sPb-2474	8	62	0.0170	0.0084	0.189	0.013	7	0.166	0.014	187
	sPb-0600	10	4	0.0193	0.0039	0.160	0.013	81	0.172	0.013	106
	sPb-3891	1	25	0.0209	0.0034	0.030	0.004	14	0.031	0.003	180
	sPb-3103	1	114	0.0041	0.0027	0.032	0.003	54	0.031	0.003	140
	sPb-1631	2	12	0.0287	0.0022	0.031	0.003	26	0.031	0.003	166
LAK_SI	sPb-0873	5	104	0.0042	0.0019	0.032	0.003	90	0.030	0.003	96
	sPb-1323	8	132	0.0424	0.002	0.031	0.004	53	0.031	0.003	141
	sPb-0600	10	4	0.0062	0.002	0.030	0.003	81	0.032	0.003	106

							rar	e allel		con	nmon alle	ele
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect		Mean	SD	n	Mean	SD	n
	sPb-2583	1	15	0.0372	0.0014		9.954	0.348	25	10.213	0.259	164
	sPb-5832	1	167	0.0357	0.0018	1	10.117	0.336	56	10.206	0.257	136
	sPb-7647	2	192	0.0114	0.0021		9.997	0.350	11	10.195	0.272	181
	sPb-2521	4	8	0.0011	0.0018		9.977	0.291	37	10.229	0.263	152
LAR_T_b	sPb-8255	4	156	0.0316	0.0014	1	10.283	0.216	16	10.167	0.289	177
	sPb-9242	8	66	0.0431	0.0017	1	10.269	0.305	12	10.165	0.283	177
	sPb-8764	9	111	0.0300	0.0016	1	10.102	0.309	56	10.236	0.246	131
	sPb-8542	9	119	0.0332	0.0014		9.979	0.296	35	10.225	0.259	157
	sPb-6271	10	58	0.0202	0.001		10.267	0.219	68	10.124	0.307	122

						rare	e allel		comn	10n allel	e
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-3525	1	57	0.02870	0.0187	4.2	2.4	16	5.5	2.4	176
	sPb-2683	1	107	0.02420	0.0181	4.2	2.6	19	5.5	2.4	171
	sPb-0319	3	30	0.04110	0.0171	4.4	2.3	22	5.5	2.4	171
	sPb-6649	3	151	0.00053	0.0337	8.4	2.4	10	5.2	2.3	184
	sPb-7534	4	76	0.00150	0.028	7.8	2.5	12	5.2	2.3	182
	sPb-9303	4	85	0.00730	0.0237	3.7	1.5	13	5.6	2.4	178
SPAD_13.5	sPb-0854	4	97	0.00530	0.0123	5.9	2.6	95	4.9	2.1	98
	sPb-2457	6	58	0.01920	0.0234	3.6	1.8	9	5.5	2.4	182
	sPb-9146	6	60	0.00023	0.0266	7.4	2.6	22	5.2	2.3	166
	sPb-9066	6	89	0.00300	0.0205	6.9	2.5	24	5.2	2.3	169
	sPb-3715	8	89	0.00740	0.0263	7.8	2.7	10	5.3	2.3	182
	sPb-5055	9	108	0.00770	0.028	8.0	3.2	9	5.3	2.3	185
	sPb-3549	10	46	0.03760	0.0107	6.2	2.2	70	5.0	2.4	121
	sPb-2704	1	35	0.01380	0.0165	9.2	1.9	10	7.8	1.9	175
	sPb-4081	2	65	0.01240	0.0083	7.6	1.7	82	8.2	2.2	97
	sPb-7186	3	141	0.00460	0.009	8.5	1.7	68	7.6	2.0	124
	sPb-6649	3	151	0.00750	0.0175	9.5	1.8	10	7.8	1.9	184
	sPb-7534	4	76	0.02680	0.0131	9.1	1.9	12	7.8	1.9	182
SPAD_14.7	sPb-4086	5	70	0.00800	0.0126	7.5	1.9	29	8.0	1.9	150
	sPb-5054	8	30	0.01970	0.0114	8.5	2.0	31	7.8	1.9	163
	sPb-1888	8	63	0.00370	0.0167	9.6	2.6	10	7.8	1.9	179
	sPb-3715	8	89	0.02840	0.0149	9.2	1.6	10	7.8	2.0	182
	sPb-7220	8	111	0.01640	0.012	7.2	1.8	30	8.0	2.0	147
	sPb-8764	9	111	0.01870	0.0135	8.3	2.1	56	7.8	1.9	131

						rar	e allel		comm	on alle	le
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-2583	1	15	0.02620	0.0129	12.8	2.6	25	14.0	2.8	164
	sPb-0090	1	66	0.01830	0.0088	15.0	3.5	33	13.6	2.5	157
	sPb-6600	1	85	0.02340	0.0112	14.5	2.8	24	13.8	2.7	159
	sPb-5905	1	112	0.00280	0.0161	14.5	2.7	23	13.8	2.7	171
	sPb-0233	1	147	0.03380	0.0119	14.5	2.6	15	13.8	2.8	178
	sPb-1020	1	168	0.03370	0.0109	13.8	2.5	29	13.8	2.8	164
	sPb-0909	2	13	0.00770	0.0098	15.1	2.5	44	13.4	2.7	139
	sPb-8349	3	128	0.03370	0.0135	15.0	3.0	11	13.8	2.7	183
SPAD_16.8	sPb-9303	4	85	0.02060	0.0135	14.7	3.1	13	13.8	2.7	178
	sPb-7428	6	158	0.03500	0.0117	13.8	2.7	39	13.9	2.8	149
	sPb-8980	7	15	0.01510	0.0094	12.6	2.4	38	14.2	2.7	155
	sPb-8673	7	75	0.03860	0.0092	14.2	2.1	27	13.8	2.9	156
	sPb-7126	8	29	0.01130	0.0137	13.8	2.6	32	13.9	2.8	161
	sPb-0258	8	73	0.04380	0.0081	13.1	2.0	38	14.1	2.9	151
	sPb-8590	9	16	0.02440	0.0073	14.8	2.3	50	13.4	2.7	138
	sPb-0326	9	100	0.01660	0.0091	13.0	2.3	51	14.2	2.8	141
	sPb-9158	9	104	0.01810	0.0089	13.0	2.2	52	14.2	2.8	142
	sPb-0350	2	89	0.03120	0.0108	12.7	3.0	34	14.1	3.0	159
	sPb-4444	2	144	0.00150	0.0153	12.3	2.9	25	14.2	2.9	158
	sPb-1137	3	56	0.04300	0.0091	14.1	2.2	31	13.8	3.1	155
	sPb-1454	5	75	0.02030	0.0117	14.6	2.6	25	13.7	3.1	166
	sPb-0873	5	104	0.02220	0.0076	14.1	3.4	90	13.4	2.7	96
	sPb-6526	6	144	0.01320	0.0126	12.5	3.4	33	14.1	2.9	157
SPAD_17.6	sPb-5086	6	148	0.01030	0.013	12.3	3.3	32	14.1	2.9	156
	sPb-0325	8	71	0.01840	0.0145	12.3	3.9	27	14.0	2.8	157
	sPb-7312	8	82	0.02190	0.0117	12.6	2.5	17	14.0	3.0	177
	sPb-0326	9	100	0.02310	0.0075	13.1	2.9	51	14.1	3.1	141
	sPb-9158	9	104	0.02210	0.0075	13.1	2.9	52	14.1	3.1	142
	sPb-5055	9	108	0.03080	0.0168	14.8	2.6	9	13.8	3.0	185
	sPb-8232	10	68	0.00280	0.0142	12.0	2.8	23	14.0	3.0	164
	sPb-2583	1	15	0.04420	0.0109	17.7	3.4	25	21.1	3.6	164
	sPb-3311	1	98	0.03570	0.0192	16.7	3.2	18	21.1	3.6	173
	sPb-6066	1	171	0.01250	0.0138	21.4	3.3	31	20.6	3.9	160
	sPb-4444	2	144	0.02230	0.0112	18.6	3.7	25	21.2	3.7	158
	sPb-9135	3	58	0.00650	0.0093	21.5	4.6	77	20.1	3.0	109
	sPb-7186	3	141	0.03350	0.0071	19.5	3.3	68	21.3	3.9	124
SPAD_18.6	sPb-4851	4	71	0.01410	0.0261	16.5	3.2	17	21.1	3.6	170
	sPb-7534	4	76	0.02190	0.0144	20.4	3.1	12	20.7	3.8	182
	sPb-0873	5	104	0.02560	0.0076	21.2	4.5	90	20.1	3.1	96
	sPb-4874	7	73	0.00074	0.0292	16.5	3.1	20	21.2	3.6	172
	sPb-5055	9	108	0.02030	0.0175	20.4	2.5	9	20.7	3.8	185
	sPb-5281	10	24	0.01040	0.0222	16.6	3.0	20	21.2	3.6	174
	sPb-9555	10	64	0.01840	0.0146	22.3	3.0	14	20.6	3.8	180

						rar	e allel		comn	ion alle	le
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-2583	1	15	0.00017	0.0214	27.1	3.5	25	32.5	4.8	164
	sPb-5905	1	112	0.00040	0.0197	34.2	2.9	23	31.5	5.1	171
	sPb-7795	3	4	0.03330	0.0103	28.4	3.9	33	32.5	4.8	160
	sPb-9076	3	51	0.04000	0.0143	30.0	3.0	9	31.9	5.0	180
	sPb-4851	4	71	0.01000	0.0295	25.9	3.4	17	32.4	4.8	170
	sPb-1454	5	75	0.03540	0.0108	33.3	3.3	25	31.6	5.1	166
SDVD 208	sPb-1311	7	36	0.03280	0.0122	30.3	4.5	57	32.4	5.2	117
SFAD_20.6	sPb-4874	7	73	0.00720	0.0236	26.4	3.4	20	32.5	4.7	172
	sPb-3715	8	89	0.00440	0.0203	31.3	3.8	10	31.9	5.0	182
	sPb-0326	9	100	0.02680	0.0094	29.6	3.4	51	32.7	5.1	141
	sPb-9158	9	104	0.01350	0.0105	29.5	3.5	52	32.6	5.1	142
	sPb-0562	10	43	0.03030	0.0089	30.4	3.8	75	32.8	5.5	113
	sPb-9555	10	64	0.04000	0.0128	34.0	4.0	14	31.6	5.0	180
	sPb-8232	10	68	0.00660	0.0149	27.5	4.1	23	32.3	4.9	164
	sPb-2583	1	15	0.00130	0.0106	14.0	1.6	25	16.0	1.4	164
	sPb-3311	1	98	0.04100	0.0106	13.7	2.0	18	16.0	1.3	173
	sPb-5905	1	112	0.00250	0.0099	16.1	1.2	23	15.7	1.6	171
	sPb-4444	2	144	0.00530	0.0075	14.5	1.8	25	16.0	1.4	158
	sPb-6649	3	151	0.00350	0.0116	15.9	1.4	10	15.7	1.6	184
	sPb-4851	4	71	0.01760	0.0153	13.6	2.1	17	15.9	1.4	170
	sPb-7534	4	76	0.00380	0.0102	15.9	1.5	12	15.7	1.6	182
SPAD_mean	sPb-1454	5	75	0.02270	0.0067	16.0	1.6	25	15.7	1.6	166
	sPb-1311	7	36	0.04270	0.0066	14.9	1.8	57	16.1	1.3	117
	sPb-4874	7	73	0.03990	0.0106	13.8	2.1	20	16.0	1.3	172
	sPb-7126	8	29	0.03970	0.0068	15.1	2.1	32	15.9	1.4	161
	sPb-3715	8	89	0.00019	0.015	16.2	1.6	10	15.7	1.6	182
	sPb-5055	9	108	0.00120	0.0138	16.0	1.5	9	15.7	1.6	185
	sPb-8232	10	68	0.00370	0.009	14.0	1.8	23	16.0	1.4	164
	sPb-2583	1	15	0.00870	0.006	2.8	0.5	25	3.6	0.5	164
	sPb-2683	1	107	0.04280	0.0045	3.9	0.5	19	3.5	0.6	171
	sPb-5905	1	112	0.00300	0.0066	3.9	0.5	23	3.5	0.6	171
	sPb-9076	3	51	0.04210	0.0055	3.1	0.5	9	3.6	0.6	180
	sPb-4851	4	71	0.03840	0.0101	2.6	0.3	17	3.6	0.5	170
	sPb-9303	4	85	0.02400	0.0055	3.8	0.8	13	3.5	0.6	178
SPAD_sl	sPb-9146	6	60	0.01840	0.005	2.9	0.6	22	3.6	0.5	166
	sPb-4874	7	73	0.00049	0.0125	2.6	0.3	20	3.7	0.5	172
	sPb-0325	8	71	0.03140	0.0053	2.8	0.5	27	3.7	0.5	157
	sPb-0326	9	100	0.01560	0.0042	3.1	0.6	51	3.7	0.5	141
	sPb-9158	9	104	0.01140	0.0044	3.1	0.6	52	3.7	0.5	142
	sPb-0562	10	43	0.02310	0.0037	3.2	0.5	75	3.8	0.5	113
	sPb-0859	10	88	0.04000	0.0049	3.1	0.7	44	3.7	0.5	145

						rar	e allel		comn	non alle	le
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-2704	1	35	0.00800	0.0056	11.8	1.0	10	12.5	0.7	175
	sPb-6649	3	151	0.00001	0.0085	11.1	1.1	10	12.5	0.6	184
	sPb-9146	6	60	0.00032	0.0055	11.6	1.0	22	12.6	0.6	166
	sPb-8980	7	15	0.00760	0.0032	12.6	0.6	38	12.4	0.7	155
	sPb-4874	7	73	0.01350	0.0068	11.6	0.9	20	12.6	0.6	172
	sPb-6798	7	132	0.03010	0.0037	11.9	1.1	27	12.5	0.6	159
SPAD_1 _b	sPb-8608	7	133	0.02850	0.0037	11.9	1.0	29	12.5	0.6	161
	sPb-5054	8	30	0.04450	0.0031	12.0	1.0	31	12.6	0.6	163
	sPb-1888	8	63	0.01690	0.0041	12.0	1.3	10	12.5	0.7	179
	sPb-5055	9	108	0.00380	0.0062	11.4	1.4	9	12.5	0.6	185
	sPb-0562	10	43	0.00950	0.0031	12.1	0.8	75	12.7	0.6	113
	sPb-3549	10	46	0.02310	0.0029	12.1	0.8	70	12.7	0.6	121

						rare allel			com	mon al	lele
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-1631	2	12	0.0235	0.0205	0.15	0.05	26	0.19	0.07	166
	sPb-2229	2	143	0.0043	0.0207	0.15	0.07	55	0.20	0.06	128
	sPb-9076	3	51	0.0178	0.0318	0.11	0.09	9	0.19	0.07	180
	sPb-0932	5	45	0.0317	0.0208	0.16	0.07	14	0.19	0.07	169
FV/Fm_13.5	sPb-6855	5	71	0.0392	0.024	0.17	0.08	14	0.19	0.07	173
	sPb-5796	7	76	0.0352	0.0113	0.18	0.07	83	0.20	0.07	110
	sPb-1661	8	74	0.0252	0.0207	0.19	0.06	22	0.19	0.07	170
	sPb-7220	8	111	0.0008	0.0301	0.18	0.08	30	0.19	0.07	147
	sPb-3525	1	57	0.0069	0.0354	0.32	0.11	16	0.28	0.10	176
	sPb-6600	1	85	0.0209	0.0259	0.31	0.12	24	0.29	0.10	159
	sPb-2229	2	143	0.0316	0.019	0.26	0.12	55	0.30	0.09	128
	sPb-4444	2	144	0.0259	0.0247	0.24	0.11	25	0.29	0.10	158
	sPb-3838	4	96	0.0404	0.015	0.27	0.11	72	0.30	0.10	114
	sPb-5805	5	37	0.0285	0.0251	0.29	0.14	21	0.29	0.10	168
$E_{\rm W}'/E_{\rm m}' = 1.4.7$	sPb-6855	5	71	0.0099	0.0364	0.30	0.16	14	0.29	0.09	173
FV/FIII_14./	sPb-3644	6	13	0.0217	0.0302	0.28	0.14	34	0.29	0.09	159
	sPb-7428	6	158	0.0418	0.0268	0.24	0.14	39	0.30	0.09	149
	sPb-2566	7	54	0.0100	0.0299	0.26	0.11	21	0.29	0.10	170
	sPb-7126	8	29	0.0176	0.0286	0.27	0.15	32	0.29	0.09	161
	sPb-5054	8	30	0.0314	0.0254	0.27	0.14	31	0.29	0.09	163
	sPb-8764	9	111	0.0093	0.0363	0.28	0.13	56	0.29	0.08	131
	sPb-8542	9	119	0.0449	0.0261	0.26	0.15	35	0.30	0.09	157

						rare allel			con	nmon a	llele
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-8743	1	182	0.0033	0.0259	0.43	0.13	74	0.38	0.12	96
	sPb-7695	2	74	0.0172	0.0325	0.41	0.18	30	0.40	0.12	160
	sPb-8349	3	128	0.0077	0.0458	0.44	0.18	11	0.40	0.13	183
	sPb-0906	5	7	0.0381	0.0245	0.42	0.13	54	0.40	0.12	114
	sPb-3644	6	13	0.0015	0.0503	0.40	0.18	34	0.40	0.12	159
	sPb-0460	7	67	0.0098	0.0472	0.37	0.24	11	0.41	0.12	183
Fv'/Fm'_16.8	sPb-7944	7	74	0.0173	0.0372	0.35	0.14	28	0.41	0.13	162
	sPb-0289	8	112	0.0413	0.0278	0.39	0.20	17	0.40	0.12	177
	sPb-0562	10	43	0.0024	0.0281	0.42	0.16	75	0.39	0.11	113
	sPb-3549	10	46	0.0064	0.0259	0.42	0.15	70	0.39	0.11	121
	sPb-6331	10	53	0.0086	0.0548	0.40	0.20	11	0.40	0.13	171
	sPb-6271	10	58	0.0405	0.0176	0.39	0.11	68	0.41	0.14	122
	sPh_0090	1	66	0.0169	0.0202	0.48	0.11	33	0.49	0.15	157
	sPb-3103	1	114	0.0297	0.0203	0.40	0.11	54	0.49	0.12	140
	sPb-8743	1	182	0.0134	0.0201	0.51	0.10	74	0.47	0.12	96
	sPb-7695	2	74	0.0295	0.0186	0.51	0.14	30	0.47	0.12	160
	sPb-1925	2	146	0.0295	0.0232	0.44	0.15	31	0.50	0.12	159
	sPb-7534	4	76	0.0217	0.0272	0.37	0.15	12	0.50	0.17	182
	sPb-4806	5	64	0.0253	0.0298	0.37	0.14	87	0.50	0.12	102
Fv'/Fm' 17.6	sPb-3418	5	98	0.0121	0.015	0.44	0.22	32	0.50	0.12	157
1,1,1 m_1,10	sPb-2457	6	58	0.0291	0.0306	0.44	0.10	9	0.49	0.12	182
	sPb-5054	8	30	0.0259	0.0278	0.45	0.21	31	0.50	0.12	163
	sPb-7220	8	111	0.0334	0.0231	0.48	0.17	30	0.49	0.12	147
	sPb-6515	9	70	0.0295	0.0213	0.45	0.20	32	0.50	0.12	161
	sPb-4006	9	145	0.0122	0.0204	0.44	0.18	61	0.52	0.11	128
	sPb-0562	10	43	0.0233	0.02	0.50	0.18	75	0.49	0.11	113
	sPb-3549	10	46	0.0021	0.0174	0.50	0.18	70	0.48	0.11	121
	DI 0222	1	1 47	0.0296		0.54	0.00	15	0.64	0.14	170
	sPb-0233	1	147	0.0386	0.0077	0.54	0.28	15	0.64	0.14	178
	sPb-6434	2	/5	0.0444	0.0069	0.61	0.19	13	0.63	0.16	1/3
	sPb-6663	2	155	0.0038	0.0039	0.61	0.18	93	0.64	0.14	94
	sPb-3683	2	177	0.0352	0.0078	0.59	0.23	16	0.63	0.15	178
Fv'/Fm'_18.6	sPb-9076	3	51	0.0013	0.0146	0.50	0.30	9	0.63	0.15	180
	sPb-9146	6	60	0.0372	0.0066	0.48	0.30	22	0.65	0.10	166
	sPb-0571	7	72	0.0246	0.0106	0.59	0.20	11	0.63	0.15	177
	sPb-4874	7	73	0.0042	0.018	0.49	0.29	20	0.64	0.12	172
	sPb-7220	8	111	0.0123	0.0078	0.60	0.20	30	0.63	0.15	147
	sPb-6271	10	58	0.0281	0.0045	0.64	0.12	68	0.62	0.18	122

						rare allel		con	nmon a	llele	
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-8773	1	11	0.0008	0.0163	0.52	0.30	13	0.67	0.15	181
	sPb-2583	1	15	0.0266	0.0113	0.60	0.23	25	0.67	0.15	164
	sPb-6917	1	30	0.0203	0.0141	0.63	0.23	9	0.66	0.16	182
	sPb-8947	1	64	0.0302	0.0142	0.70	0.01	7	0.66	0.17	186
	sPb-0274	1	74	0.0056	0.0192	0.57	0.26	24	0.68	0.13	169
	sPb-5905	1	112	0.0180	0.0104	0.64	0.20	23	0.66	0.16	171
	sPb-1020	1	168	0.0401	0.0084	0.53	0.30	29	0.68	0.11	164
Fv'/Fm'_20.8	sPb-6424	2	145	0.0171	0.0107	0.65	0.17	34	0.66	0.16	160
	sPb-9076	3	51	0.0016	0.0167	0.51	0.32	9	0.67	0.15	180
	sPb-6855	5	71	0.0254	0.0098	0.60	0.25	14	0.68	0.13	173
	sPb-3644	6	13	0.0364	0.0099	0.59	0.25	34	0.68	0.14	159
	sPb-5086	6	148	0.0151	0.0111	0.57	0.28	32	0.68	0.13	156
	sPb-4874	7	73	0.0011	0.0081	0.52	0.31	20	0.68	0.13	172
	sPb-9242	8	66	0.0291	0.0108	0.68	0.01	12	0.66	0.17	177
	sPb-5055	9	108	0.0049	0.0177	0.36	0.37	9	0.68	0.13	185
	sPb-6600	1	85	0.0343	0.0108	0.47	0.03	24	0.47	0.03	159
	sPb-8743	1	182	0.0351	0.0083	0.48	0.03	74	0.46	0.03	96
	sPb-7695	2	74	0.0372	0.0111	0.48	0.03	30	0.47	0.03	160
	sPb-9076	3	51	0.0069	0.0187	0.43	0.06	9	0.47	0.03	180
	sPb-5805	5	37	0.0363	0.0107	0.48	0.02	21	0.47	0.03	168
	sPb-3418	5	98	0.0440	0.0125	0.48	0.03	32	0.47	0.03	157
Fv7Fm [_] mean	sPb-3644	6	13	0.0012	0.0203	0.48	0.03	34	0.47	0.03	159
	sPb-7126	8	29	0.0363	0.0115	0.48	0.03	32	0.47	0.03	161
	sPb-7220	8	111	0.0156	0.0127	0.48	0.03	30	0.47	0.03	147
	sPb-8764	9	111	0.0187	0.0146	0.47	0.04	56	0.47	0.03	131
	sPb-4006	9	145	0.0303	0.0089	0.46	0.04	61	0.48	0.03	128
	sPb-3549	10	46	0.0325	0.0095	0.49	0.02	70	0.46	0.03	121
	sPb-8773	1	11	0.0330	0.0058	0.07	0.01	13	0.07	0.01	181
	sPb-0233	1	147	0.0337	0.0055	0.08	0.01	15	0.07	0.01	178
	sPb-1631	2	12	0.0447	0.004	0.08	0.01	26	0.07	0.01	166
	sPb-2229	2	143	0.0005	0.0056	0.08	0.01	55	0.07	0.01	128
	sPb-1137	3	56	0.0293	0.0042	0.08	0.01	31	0.07	0.01	155
	sPb-3838	4	96	0.0346	0.0029	0.07	0.01	72	0.07	0.01	114
	sPb-4041	5	6	0.0403	0.0029	0.08	0.01	46	0.07	0.01	137
Fv'/Fm'_sl	sPb-0932	5	45	0.0158	0.0056	0.08	0.01	14	0.07	0.01	169
1,,1 <u>m_</u> 5t	sPb-6855	5	71	0.0200	0.006	0.07	0.01	14	0.07	0.01	173
	sPb-3644	6	13	0.0423	0.0051	0.07	0.01	34	0.07	0.01	159
	sPb-2566	7	54	0.0191	0.005	0.08	0.01	21	0.07	0.01	170
	sPb-5796	7	76	0.0337	0.0027	0.07	0.01	83	0.07	0.01	110
	sPb-5054	8	30	0.0267	0.0049	0.07	0.01	31	0.07	0.01	163
	sPb-0258	8	73	0.0321	0.0036	0.07	0.01	38	0.07	0.01	151
	sPb-8764	9	111	0.0412	0.0052	0.07	0.01	56	0.07	0.01	131

						rare allel		l	common allele				
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n		
	sPb-1631	2	12	0.0287	0.005	11.03	0.99	26	10.37	0.97	166		
	sPb-2229	2	143	0.0035	0.0057	10.87	1.00	55	10.34	0.97	128		
	sPb-6855	5	71	0.0093	0.0076	9.95	1.02	14	10.51	1.00	173		
	sPb-3644	6	13	0.0114	0.0074	10.29	1.01	34	10.48	1.00	159		
Eul/Eml T	sPb-2566	7	54	0.0145	0.0059	11.14	1.12	21	10.36	0.96	170		
rv/riii_i _b	sPb-5796	7	76	0.0228	0.0035	10.67	0.93	83	10.31	1.04	110		
	sPb-7126	8	29	0.0340	0.0056	10.30	1.04	32	10.47	0.98	161		
	sPb-7220	8	111	0.0306	0.0053	10.35	1.09	30	10.53	1.01	147		
	sPb-8764	9	111	0.0199	0.0069	10.58	1.14	56	10.45	0.94	131		
	sPb-3549	10	46	0.0424	0.0038	10.19	0.84	70	10.60	1.07	121		

						r	rare allel		com	mon alle	ele
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-3801	1	111	0.030	0.0152	0.107	0.049	38	0.103	0.037	153
	sPb-1631	2	12	0.031	0.016	0.087	0.036	26	0.106	0.039	166
	sPb-3798	2	43	0.020	0.0158	0.091	0.037	54	0.109	0.039	139
	sPb-7795	3	4	0.033	0.0158	0.091	0.031	33	0.106	0.041	160
	sPb-2138	4	64	0.037	0.0192	0.107	0.052	31	0.103	0.036	160
Ф 125	sPb-6855	5	71	0.041	0.0191	0.112	0.046	14	0.103	0.039	173
$\Psi_{\rm PSII}$ _15.5	sPb-0508	7	71	0.043	0.0218	0.078	0.023	11	0.105	0.040	183
	sPb-0571	7	72	0.034	0.0226	0.078	0.023	11	0.106	0.039	177
	sPb-7126	8	29	0.036	0.0181	0.105	0.048	32	0.104	0.037	161
	sPb-7220	8	111	0.001	0.0241	0.117	0.049	30	0.101	0.038	147
	sPb-0817	10	42	0.031	0.015	0.092	0.033	26	0.106	0.040	166
	sPb-3549	10	46	0.037	0.0134	0.110	0.044	70	0.100	0.036	121
	sPb-3525	1	57	0.014	0.0335	0.214	0.072	16	0.184	0.061	176
	sPb-8992	2	73	0.045	0.0237	0.169	0.059	29	0.189	0.062	157
	sPb-2229	2	143	0.043	0.0193	0.176	0.067	55	0.190	0.063	128
	sPb-4444	2	144	0.044	0.0234	0.173	0.075	25	0.188	0.062	158
	sPb-9303	4	85	0.030	0.0297	0.152	0.056	13	0.190	0.063	178
	sPb-3838	4	96	0.041	0.016	0.181	0.070	72	0.193	0.058	114
	sPb-4041	5	6	0.026	0.0191	0.172	0.064	46	0.192	0.061	137
Φ_{PSII} 14.7	sPb-5805	5	37	0.018	0.0291	0.211	0.078	21	0.184	0.061	168
	sPb-6855	5	71	0.001	0.0453	0.239	0.082	14	0.180	0.059	173
	sPb-7106	5	72	0.027	0.0163	0.169	0.060	39	0.193	0.063	150
	sPb-9490	5	89	0.034	0.0184	0.166	0.061	29	0.192	0.063	154
	sPb-6518	7	28	0.007	0.0279	0.170	0.066	32	0.190	0.062	162
	sPb-2566	7	54	0.013	0.0287	0.159	0.065	21	0.191	0.062	170
	sPb-7126	8	29	0.024	0.0287	0.208	0.062	32	0.183	0.062	161
	sPb-8542	9	119	0.033	0.0274	0.207	0.070	35	0.183	0.061	157

						rare allel			com	mon alle	ele
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-0090	1	66	0.035	0.0227	0.239	0.058	33	0.281	0.087	157
	sPb-0274	1	74	0.040	0.0333	0.319	0.064	24	0.266	0.083	169
	sPb-8743	1	182	0.007	0.0222	0.294	0.078	74	0.251	0.082	96
	sPb-7695	2	74	0.005	0.0354	0.319	0.084	30	0.263	0.080	160
	sPb-7534	4	76	0.012	0.0391	0.348	0.074	12	0.268	0.081	182
Φ_{PSII} _16.8	sPb-7312	8	82	0.036	0.0265	0.319	0.061	17	0.269	0.084	177
	sPb-0289	8	112	0.003	0.0389	0.337	0.080	17	0.267	0.081	177
	sPb-0562	10	43	0.026	0.018	0.293	0.073	75	0.259	0.086	113
	sPb-3549	10	46	0.043	0.0168	0.294	0.074	70	0.261	0.085	121
	sPb-6271	10	58	0.011	0.0198	0.249	0.082	68	0.285	0.081	122
	sPb-7948	10	61	0.044	0.0303	0.326	0.101	12	0.268	0.081	175
	sPb-2704	1	35	0.044	0.0388	0.401	0.111	10	0.338	0.086	175
	sPb-1020	1	168	0.013	0.0373	0.371	0.118	29	0.340	0.087	164
	sPb-6434	2	75	0.043	0.0305	0.395	0.117	13	0.339	0.084	173
	sPb-6741	4	40	0.020	0.0402	0.300	0.074	32	0.354	0.093	161
	sPb-3343	4	43	0.036	0.0391	0.299	0.067	28	0.353	0.094	163
	sPb-2009	4	44	0.015	0.041	0.300	0.074	32	0.354	0.093	162
$\Phi_{\rm PSII}$ _17.6	sPb-7534	4	76	0.044	0.0348	0.395	0.126	12	0.341	0.089	182
	sPb-5805	5	37	0.027	0.0316	0.400	0.134	21	0.338	0.084	168
	sPb-9066	6	89	0.016	0.0339	0.388	0.126	24	0.339	0.086	169
	sPb-8954	6	149	0.007	0.0434	0.419	0.142	13	0.340	0.086	176
	sPb-7460	9	147	0.033	0.0329	0.312	0.093	22	0.349	0.092	171
	sPb-6331	10	53	0.007	0.0606	0.429	0.127	11	0.340	0.089	171
	sPb-8947	1	64	0.018	0.0337	0.445	0.090	7	0.508	0.059	186
	sPb-0274	1	74	0.010	0.0366	0.482	0.079	24	0.509	0.058	169
	sPb-3103	1	114	0.034	0.0165	0.517	0.056	54	0.501	0.063	140
	sPb-7657	2	0	0.016	0.0151	0.518	0.052	83	0.494	0.066	101
	sPb-9135	3	58	0.009	0.0141	0.522	0.051	77	0.494	0.064	109
	sPb-9066	6	89	0.012	0.0219	0.532	0.052	24	0.503	0.062	169
$\Phi_{\rm PSII}$ _18.6	sPb-7126	8	29	0.033	0.02	0.523	0.054	32	0.502	0.062	161
	sPb-9242	8	66	0.005	0.0305	0.456	0.099	12	0.509	0.058	177
	sPb-0435	8	67	0.020	0.0222	0.521	0.053	40	0.502	0.063	152
	sPb-7312	8	82	0.034	0.0182	0.469	0.085	17	0.509	0.058	177
	sPb-6748	9	115	0.030	0.0215	0.513	0.061	52	0.503	0.061	136
	sPb-3298	9	116	0.027	0.0217	0.513	0.062	56	0.503	0.061	136
	sPb-0817	10	42	0.008	0.0194	0.472	0.078	26	0.511	0.056	166
	sPb-1020	1	168	0.033	0.0241	0.520	0.070	29	0.485	0.073	164
$\Phi_{PSII}_{20.8}$	sPb-7186	3	141	0.019	0.0157	0.472	0.069	68	0.501	0.073	124
	sPb-6518	7	28	0.006	0.0252	0.457	0.076	32	0.497	0.071	162

						r	are allel		com	mon all	ele
Trait	Locus	Chr.	Position [cM]	p_Marker	Effect	Mean	SD	n	Mean	SD	n
	sPb-2704	1	35	0.044	0.0167	0.345	0.065	10	0.316	0.032	175
	sPb-8992	2	73	0.020	0.0139	0.309	0.040	29	0.320	0.034	157
	sPb-7534	4	76	0.002	0.0213	0.356	0.053	12	0.316	0.033	182
	sPb-5805	5	37	0.003	0.0174	0.343	0.042	21	0.315	0.034	168
	sPb-6855	5	71	0.012	0.016	0.344	0.045	14	0.315	0.033	173
Φ_{PSII}	sPb-9146	6	60	0.030	0.0131	0.341	0.049	22	0.316	0.033	166
_mean	sPb-6518	7	28	0.025	0.0116	0.312	0.032	32	0.320	0.036	162
	sPb-7126	8	29	0.003	0.0188	0.334	0.047	32	0.316	0.032	161
	sPb-5054	8	30	0.013	0.015	0.328	0.038	31	0.316	0.035	163
	sPb-0289	8	112	0.006	0.0166	0.349	0.050	17	0.316	0.033	177
	sPb-6331	10	53	0.020	0.0218	0.351	0.051	11	0.316	0.034	171
	sPb-7948	10	61	0.011	0.0168	0.349	0.045	12	0.316	0.034	175
	sPb-9303	4	85	0.008	0.009	0.066	0.011	13	0.057	0.010	178
Ф -1	sPb-3838	4	96	0.018	0.0048	0.060	0.011	72	0.057	0.009	114
$\Psi_{\rm PSII}$ _Si	sPb-9490	5	89	0.011	0.0056	0.062	0.011	29	0.057	0.009	154
	sPb-2551	6	18	0.027	0.0069	0.064	0.009	23	0.057	0.010	168
	sPb-3798	2	43	0.027	0.0051	11.620	1.311	54	11.251	1.011	139
	sPb-4444	2	144	0.022	0.0059	11.710	1.329	25	11.290	1.069	158
	sPb-3838	4	96	0.012	0.0047	11.500	1.170	72	11.233	1.033	114
	sPb-6855	5	71	0.003	0.0089	10.688	1.276	14	11.439	1.060	173
$\Phi_{PSII} _ T_b$	sPb-9490	5	89	0.026	0.0044	11.821	0.834	29	11.213	1.133	154
	sPb-2551	6	18	0.042	0.0058	11.892	1.031	23	11.273	1.111	168
	sPb-3715	8	89	0.002	0.011	10.228	1.625	10	11.414	1.057	182
	sPb-0817	10	42	0.028	0.0055	11.804	0.981	26	11.272	1.118	166
	sPb-0562	10	43	0.022	0.0047	11.061	1.162	75	11.552	1.033	113

Table S 4.1: Marker-trait associations for mean across environments (*m*), exponents (*a*) and initial growth rate (DMGR₀) for dry matter growth rate (DMGR) and *m*, regression slopes (*sl*), and base temperatures (T_b) for leaf appearance rate (LAR), chlorophyll content (SPAD) and fluorescence $(F_v'/F_m' \text{ and } \Phi_{PSII})$.

Trait	Locus	Chr.	Position [cM]	p_Marker	Allel	Effect	n	Allel	Effect	n
	UGSS_00668	1	17541120	0.0393	G:G	0.0001	141	A:G	0.002	8
	UGSDII_01141	1	63852726	0.0040	C:C	0.0020	159	A:A	0.002	12
	UGSS_01605	2	1689223	0.0364	C:C	-0.0009	59	A:A	0.001	39
	UGSDII_02151	2	7833117	0.0335	C:C	0.0008	139	A:A	-0.001	33
	UGSDII_02161	2	8039258	0.0070	A:A	0.0022	162	C:C	-0.002	20
	UGSDII_03388	2	47350373	0.0298	C:C	0.0031	168	A:G	0	20
	UGSS_02165	2	59908438	0.0150	C:C	0.0006	101	A:A	0.001	60
	UGSDI_06847	2	60113519	0.0438	C:C	0.0005	98	A:A	0.001	69
	UGSDI_07649	2	66009499	0.0197	C:C	-0.0001	170	A:A	0.003	10
	UGSDI_09981	3	5239039	0.0179	G:G	0.0000	149	C:C	-0.002	20
	UGSS_02805	3	5722599	0.0005	C:C	-0.0006	95	G:G	-0.002	78
DMGR mean	UGSDI_11227	3	10689401	0.0392	A:A	0.0009	138	A:C	0	48
DWOR_mean	UGSDI_11593	3	12534912	0.0401	A:A	0.0024	164	A:C	0.002	17
	UGSDII_05282	3	60724435	0.0357	A:A	0.0013	100	C:C	0.001	65
	UGSDI_13720	3	64401625	0.0310	G:G	-0.0012	112	C:C	-0.0002	57
	UGSDI_17961	4	61121730	0.0233	G:G	0.0009	166	C:C	0.003	10
	UGSS_04848	6	50089590	0.0084	G:G	0.0011	162	C:C	-0.002	21
	UGSDII_10437	6	61778333	0.0209	G:G	-0.0019	158	A:G	-0.0001	11
	UGSDII_11636	8	2260138	0.0239	C:C	0.0002	141	G:G	-0.001	31
	UGSDII_14005	8	47609884	0.0274	G:G	-0.0021	135	A:G	-0.001	12
	UGSDI_33330	8	53100069	0.0260	G:G	-0.0025	145	C:C	-0.001	31
	UGSDI_41411	9	55957743	0.0011	G:G	0.0015	103	C:C	-0.00007	62
	UGSDI_51828	10	49460379	0.0335	G:G	0.0001	109	C:C	0.001	67
	UGSDI_52729	10	56100805	0.0272	C:C	0.0017	159	G:G	-0.001	21
	UGSS_01298	1	6688268	0.0088	C:C	-0.1750	27	A:A	-0.165	14
	UGSDI_00546	1	14867608	0.0184	G:G	0.0586	164	A:G	0	24
	UGSS_00705	1	19430430	0.0160	G:G	0.1414	169	A:A	0.114	18
	UGSDII_01103	1	60627976	0.0135	A:A	0.0215	132	A:G	-0.0004	21
	UGSDII_01141	1	63852726	0.0394	C:C	0.0345	159	A:A	0.034	12
	UGST_00150	2	2674509	0.0044	C:C	0.0118	54	A:A	-0.022	48
	UGSDII_04350	3	792285	0.0165	C:C	0.0119	159	A:G	0.049	13
	UGSDI_10780	3	8994716	0.0114	C:C	-0.0640	149	A:A	-0.075	29
	UGSS_02833	3	58838889	0.0199	C:C	0.0166	150	G:G	-0.017	22
	UGSDII_05282	3	60724435	0.0346	A:A	0.0300	100	C:C	0.027	65
DMGR_a	UGSDI_14390	4	1458984	0.0339	G:G	-0.0178	161	C:C	0.028	10
	UGSDII_05877	4	5059995	0.0042	A:A	-0.0657	166	G:G	-0.075	10
	UGST_00314	4	55810400	0.0041	A:A	0.0966	95	G:G	0	7
	UGSDI_20942	5	4011154	0.0068	G:G	0.0244	102	C:C	0.039	67
	UGSDII_07691	5	10363515	0.0178	A:C	-0.0178	85	A:A	0.004	45
	UGSDI_23501	5	19066824	0.0015	A:A	-0.1419	164	C:C	-0.118	20
	UGSDI_26370	6	1295049	0.0223	C:C	-0.0260	155	G:G	-0.058	27
	UGSDII_08774	6	1644212	0.0317	A:G	-0.0416	161	C:C	0	25
	UGSS_04848	6	50089590	0.0193	G:G	-0.0318	162	C:C	-0.088	21
	UGSDI_28157	6	51722531	0.0422	G:G	-0.0180	135	C:C	0.001	40
	UGSS_05184	7	54293787	0.0231	A:A	0.0428	136	G:G	0.023	38
Trait	Locus	Chr.	Position [cM]	p_Marker	Allel	Effect	n	Allel	Effect	n
----------	--------------	------	------------------	----------	-------	---------	-----	-------	----------	-----
	UGSDII_11310	7	55410183	0.0104	C:C	0.0383	167	A:G	-0.038	7
	UGSDII_13488	8	41596866	0.0253	G:G	-0.0260	134	A:G	0.018	21
	UGSDII_14100	8	48649540	0.0072	G:G	0.0874	174	A:A	0.035	12
	UGSS_05725	8	54325450	0.0041	A:A	-0.0976	147	G:G	-0.069	33
	UGSDI_33699	9	3699	0.0248	G:G	-0.0278	87	A:A	-0.034	82
	UGSDI_35770	9	9255371	0.0046	C:C	-0.0333	149	A:G	0	36
	UGSDI_36313	9	13698114	0.0317	C:C	0.0362	166	A:G	0.060	9
DMGR_a	UGSDI_36510	9	14195682	0.0063	G:G	0.0239	165	A:G	0.074	9
	UGSDI_36583	9	14429762	0.0109	C:C	0.0479	169	A:G	0.068	9
	UGSDI_39851	9	48745718	0.0094	G:G	-0.0779	170	C:C	-0.090	15
	UGSS_06272	9	54095775	0.0078	A:G	-0.1461	145	G:G	-0.111	27
	UGSDI_41984	9	58328284	0.0145	C:C	0.1196	105	G:G	0.171	7
	UGSDII_15599	10	4586779	0.0027	C:C	0.0310	154	A:A	-0.002	15
	UGSDI_44580	10	13833465	0.0032	C:C	-0.0015	151	A:A	-0.070	7
	UGSS_00404	10	55123291	0.0255	A:G	0.0470	131	G:G	0.006	43
	UGSDII_00917	1	55283082	0.0315	A:A	-0.0002	141	G:G	-0.00017	26
	UGSDI_02900	1	57831374	0.0087	G:G	-0.0001	134	A:A	-0.00008	35
	UGSDII_03223	2	18252899	0.0368	G:G	-0.0001	172	A:C	0	9
	UGSS_01684	2	18705142	0.0448	A:A	-0.0001	152	A:G	-0.00010	7
	UGSDI_07698	2	66254819	0.0379	A:A	0.0000	79	G:G	0.00006	91
	UGSS_02647	3	2514380	0.0435	C:C	-0.0002	136	G:G	-0.00025	13
	UGSS_02805	3	5722599	0.0242	C:C	-0.0001	95	G:G	-0.00008	78
	UGSDI_11152	3	10414688	0.0034	G:G	0.0000	164	A:G	0.00012	11
	UGSDII_04588	3	10605987	0.0261	A:A	-0.0001	145	C:C	-0.00015	28
	UGSDI_14390	4	1458984	0.0144	G:G	0.0000	161	C:C	-0.00010	10
	UGST_00314	4	55810400	0.0088	A:A	-0.0002	95	G:G	0	7
	UGSDI_20070	4	67130172	0.0318	G:G	-0.0001	156	A:G	-0.00013	20
	UGSDI_25802	5	59296539	0.0437	C:C	0.0000	147	A:G	0.00010	12
	UGSDII_08774	6	1644212	0.0224	A:G	0.0001	161	C:C	0	25
$DMGR_0$	UGST_00515	6	58367647	0.0373	C:C	0.0001	176	A:G	0	10
	UGSDI_29722	6	59527825	0.0366	G:G	0.0000	151	A:C	0.00008	15
	UGSDI_31596	7	54256039	0.0357	C:C	-0.0001	159	A:G	0	22
	UGSS_05337	8	2431200	0.0171	G:G	-0.0001	145	A:G	-0.00014	1
	UGSDI_32247	8	3014692	0.0248	G:G	0.0001	34	C:C	0.00008	132
	UGSS_05405	8	3611531	0.0190	G:G	0.0001	172	A:G	0	10
	UGSS_05462	8	4635734	0.0143	G:G	0.0000	115	A:G	0	73
	UGSDI_33048	8	51493476	0.0213	C:C	-0.0001	144	A:G	-0.00005	12
	UGSS_06434	9	8532527	0.0084	G:G	-0.0001	157	C:C	-0.00006	14
	UGSDI_35770	9	9255371	0.00007	C:C	0.0001	149	A:G	0	36
	UGSDI_36848	9	15163484	0.0381	A:A	0.0000	168	G:G	0.00010	10
	UGSDII_15599	10	4586779	0.0005	C:C	-0.0001	154	A:A	0.00003	15
	UGSDI_44580	10	13833465	0.0154	C:C	0.0000	151	A:A	0.00015	1
	UGSDI_51856	10	49/12399	0.0430	C:C	0.0000	118	A:A	-0.00001	12
	UGSS_00389	10	54612219	0.0379	A:G	-0.0001	141	G:G	0.00002	9
	UGSDII_00629	1	48693864	0.0135	G:G	0.0130	110	A:A	0.007	57
	UGSDII_00714	1	52162190	0.0362	G:G	0.0039	117	A:A	-0.008	44
	UGSDI_02152	1	52429487	0.0035	G:G	-0.0040	131	A:G	0.008	15
	UGSDII_00774	1	53923432	0.0222	G:G	0.0219	155	A:A	0.008	27
LAR_mean	UGSDII_01613	1	72338217	0.0144	G:G	-0.0191	160	A:G	-0.024	7
	UGSDI_11357	3	10939353	0.0122	G:G	-0.0041	45	C:C	-0.009	129
	UGSDI_12279	3	46865461	0.0314	C:C	0.0167	112	G:G	0.016	64
	UGSDI_13662	3	63671432	0.0154	A:A	0.0297	171	A:C	0.028	11
	UGSDII_05677	4	2017303	0.0064	A:A	-0.0201	162	G:G	-0.013	16

Trait	Locus	Chr.	Position [cM]	p_Marker	Allel	Effect	n	Allel	Effect	n
	UGSDII_05835	4	4849962	0.0326	A:G	-0.0204	159	G:G	-0.013	23
	UGSS_03531	4	6170533	0.0422	A:A	-0.0049	94	C:C	0	74
	UGSDI_15208	4	6670841	0.0114	G:G	-0.0135	122	A:A	-0.016	48
	UGSDII_06959	4	52026584	0.0085	A:C	0.0045	46	A:G	-0.006	41
	UGSDI_23501	5	19066824	0.0290	A:A	-0.0233	164	C:C	-0.009	20
	UGSS_04670	6	37986408	0.0296	G:G	0.0020	169	A:C	0.022	7
	UGSS_05093	7	1303996	0.0337	G:G	0.0022	76	A:A	-0.007	25
	UGSDII_10492	7	2513027	0.0070	A:A	0.0078	164	G:G	0.019	17
LAR_mean	UGSDI_31170	7	7143645	0.0201	G:G	0.0148	145	C:C	0.002	31
	UGSDI_33048	8	51493476	0.0334	C:C	0.0063	144	A:G	0.009	12
	UGSDI_33807	9	770096	0.0443	G:G	-0.0036	162	A:A	-0.014	18
	UGSDI_40415	9	52529034	0.0001	G:G	-0.0287	161	A:A	-0.035	19
	UGSDI_41411	9	55957743	0.0045	G:G	-0.0001	103	C:C	-0.009	62
	UGSDI_43410	10	6936670	0.0157	C:C	0.0004	77	G:G	-0.007	70
	UGSDI_51856	10	49712399	0.0056	C:C	0.0068	118	A:A	-0.002	12
	UGSDI_51874	10	49934866	0.0252	G:G	0.0059	112	A:C	-0.002	16
	UGSDII_16082	10	52955823	0.0114	C:C	0.0061	78	G:G	-0.001	88
	UGSS_00873	1	43739095	0.0268	A:A	0.0004	157	A:G	-0.003	8
	UGSDII_00629	1	48693864	0.0210	G:G	0.0022	110	A:A	0.001	57
	UGSDI_02152	1	52429487	0.0100	G:G	-0.0008	131	A:G	0.002	15
	UGSDII_01135	1	62817379	0.0338	C:C	0.0018	35	A:A	-0.00009	135
	UGSDI_03947	1	67072069	0.0401	A:A	0.0009	71	G:G	0.002	94
	UGSDII_01333	1	67686926	0.0182	A:A	-0.0016	105	G:G	-0.002	64
	UGSDII_04250	2	70719219	0.0354	G:G	0.0035	140	A:C	0.001	10
	UGSDI_08931	2	75537855	0.0195	C:C	0.0005	109	A:G	0.003	12
	UGSS_02643	3	2503519	0.0212	G:G	0.0029	127	C:C	0.003	49
	UGSS_02587	3	13465929	0.0435	G:G	-0.0034	173	A:G	0	14
	UGSDI_12279	3	46865461	0.0394	C:C	0.0030	112	G:G	0.004	64
	UGSDII_05677	4	2017303	0.0426	A:A	-0.0021	162	G:G	-0.002	16
	UGSDII_05835	4	4849962	0.0243	A:G	-0.0040	159	G:G	-0.003	23
	UGSDII_07067	4	53501586	0.0032	A:A	0.0008	161	C:C	-0.003	9
LAR_sl	UGSDI_17206	4	58518488	0.0289	A:G	0.0032	151	G:G	0.001	25
	UGSDI_19962	4	66849200	0.0251	A:G	0.0009	145	A:C	0.005	5
	UGSDII_10183	6	54207715	0.0355	C:C	0.0031	151	G:G	0.004	21
	UGSS_05156	7	3752805	0.0423	G:G	-0.0001	27	C:C	0.003	105
	UGSDI_31649	7	56738319	0.0440	G:G	0.0031	51	C:C	0.004	125
	UGSDI_32430	8	5044579	0.0120	C:C	0.0058	158	G:G	0.006	26
	UGSDII_13488	8	41596866	0.0373	G:G	0.0006	134	A:G	-0.002	21
	UGSS_05654	8	53899866	0.0054	C:C	0.0002	146	A:G	-0.004	20
	UGSDI_33699	9	3699	0.0109	G:G	-0.0018	87	A:A	-0.001	82
	UGSDI_40415	9	52529034	0.0088	G:G	-0.0041	161	A:A	-0.004	19
	UGSDI_41411	9	55957743	0.0129	G:G	0.0011	103	C:C	-0.00028	62
	UGSDI_41523	9	56515391	0.0225	C:C	0.0017	161	A:G	0.005	9
	UGSS_06358	9	56812162	0.0375	A:C	-0.0014	61	G:G	0	122
	UGSDI_41631	9	5/002334	0.0142	A:A	0.0007	98	G:G	-0.001	//
	UGSDI_48260	10	34936/99	0.0120	A:C	-0.0038	165	A:G	0	21
	UGSDI_51856	10	49/12399	0.0088	C:C	0.0010	118	A:A	-0.001	12
	UGSS_02587	3	13465929	0.0202	G:G	-0.4153	173	A:G	0	14
	UGSDII_07067	4	53501586	0.0077	A:A	0.2645	161	C:C	-0.291	9
T + D -	UGSDI_17206	4	58518488	0.0046	A:G	0.5932	151	G:G	0.473	25
LAR_T _b	UGSDII_10183	6	54207715	0.0246	C:C	0.3961	151	G:G	0.553	21
	UGSDI_31649	7	56738319	0.0205	G:G	0.4819	51	C:C	0.506	125
	UGSDII_13488	8	41596866	0.0271	G:G	0.2554	134	A:G	-0.164	21
	UGSDI_33699	9	3699	0.0219	G:G	-0.3474	87	A:A	-0.149	82

UGSDIL_00605 1 48452824 0.0440 A:A -1.4459 15 G:G -0.784 15 UGSSD_03927 1 66764796 0.0038 A:A 0.7814 162 C:C -1.185 15 UGSSD_07462 2 65391757 0.0350 C:C 0.5194 111 A:A 0.929 57 UGSD_07470 2 65391758 0.0298 A:A 0.3349 92 C:C 1.328 19 UGSD_07470 2 6539174 0.0423 A:A 0.8426 158 C:C 1.328 19 UGSD_12540 3 55056783 0.0294 C:C 0.6360 119 A:G 1.13 11 UGSD_12724 4 5504311 0.0252 A:A 0.8426 158 C:C 0 35 3505673 0.022 C:C 0.7331 109 C:C 0 30 105 C:C 0 30 105 112 114 A:A<	Trait	Locus	Chr.	Position [cM]	p_Marker	Allel	Effect	n	Allel	Effect	n
BAD_mem UGSDL_03927 1 66764796 0.0037 G:G 0.3747 1.3 A:A -2.054 12 UGSDL_07462 2 65391657 0.0350 C:C 0.5194 111 A:A 0.2029 57 UGSDL_07462 2 65391578 0.0298 A:A 0.3349 92 C:C 0.864 59 UGSDL_07470 2 65391578 0.0294 C:C 0.3349 92 C:C 0.863 74 UGSD_117254 3 5505783 0.0294 C:C 0.636 113 21 UGSD_14722 4 264061 0.0385 G:G -0.9954 157 C:C 0 36 UGSD_17277 4 59185316 0.0042 A:A 1.359 151 C:C 0.363 22 UGSD_17277 4 59185316 0.0422 A:A 0.3731 109 C:C 0.284 21 UGSDL_29770 6 6174255 0.02		UGSDII_00605	1	48452824	0.0440	A:A	-1.4459	154	G:G	-0.784	15
BAD_mean UGSS_02429 2 8412341 0.0067 GG 0.3747 173 A.A -2.054 15 UGSD_07462 2 65391758 0.0350 C:C 0.5194 111 A.A 0.929 57 UGSD_07467 2 65391758 0.0298 A:A 0.3340 92 C:C 0.8644 59 UGSD_07470 2 65391758 0.0243 A:A 0.8426 1.131 21 UGSD_125241 3 55065783 0.0294 C:C 0.6360 119 A:G 1.131 21 UGSD_12727 4 5640311 0.0305 C:G 0.0364 1.7 A:A 0.522 C:C 0.863 22 UGSD1_17277 4 59185316 0.0422 A:A 0.1392 C:C 0.238 22 UGSD1_17875 5 19799232 0.0388 A:A 0.2871 153 C:C 0.238 22 UGSD1_17857 7 <td< td=""><td></td><td>UGSDI_03927</td><td>1</td><td>66764796</td><td>0.0038</td><td>A:A</td><td>0.7814</td><td>162</td><td>C:C</td><td>-1.185</td><td>15</td></td<>		UGSDI_03927	1	66764796	0.0038	A:A	0.7814	162	C:C	-1.185	15
BAD_mean UGSDL_07462 2 65391758 0.0298 A:A 0.3349 92 C:C 0.864 59 UGSDL_07470 2 65391758 0.0298 A:A 0.3349 92 C:C 0.864 59 UGSD_07470 2 65397174 0.0423 G:G 1.4426 166 A:A 0 16 UGSD_11735 3 13240931 0.0294 C:C 0.3630 173 C:C 0.373 179 C:C 0.373 120 UGSD_14722 4 2640061 0.0385 C:G -0.9954 151 C:C 0 36 UGSD_14727 4 59185316 0.0042 A:A 1.3899 167 C:C 0.333 12 UGSD_17277 4 59185316 0.0042 A:A 0.389 13 100 C:C 0.323 11 UGSD_1.2737 13 160 0 2:333 21 UGSDL_27877 5 5997932		UGSS_02429	2	8412341	0.0067	G:G	0.3747	173	A:A	-2.054	12
UGSDL_07465 2 65391174 0.0447 C:C 0.3349 92 C:C 0.863 74 UGSDL_07400 2 66332541 0.0423 G:G 1.4426 166 A:A 0 16 UGSDL_11735 3 13240931 0.0243 A:A 0.8426 158 C:C 1.331 21 UGSDL_14722 4 2640061 0.0385 G:G -0.9954 157 C:C 0 36 UGSDL_16824 4 7393846 0.0406 A:A 1.1395 151 C:C 0 36 UGSDL_17277 4 5918316 0.0422 A:A 1.3809 167 C:C 2.739 11 UGSDL_07856 5 11295914 0.0340 G:G 0.7331 109 C:C 0.238 2.1 UGSDL_07856 5 11295914 0.0340 G:G 0.7331 109 C:C 0.238 2.1 UGSDL_017856 5 9179230 <td></td> <td>UGSDI_07462</td> <td>2</td> <td>65391657</td> <td>0.0350</td> <td>C:C</td> <td>0.5194</td> <td>111</td> <td>A:A</td> <td>0.929</td> <td>57</td>		UGSDI_07462	2	65391657	0.0350	C:C	0.5194	111	A:A	0.929	57
BAD_meta UGSDL_07470 2 66332941 0.04427 C.C 0.3722 94 A.A 0.863 74 UGSSL_01775 3 15240931 0.0243 A.A 0.8426 158 C.C 1.321 19 UGSDL_12540 3 59616226 0.0029 C.C 0.0241 A.A 0.8226 1.28 12 UGSDL_14722 4 2640061 0.0385 G.G 0.0994 157 C.C 0 36 UGSDL_1777 4 59183516 0.0042 A.A 1.389 167 C.C 0.863 2.21 UGSDL_1785 5 6174255 0.0222 C.C -0.7032 157 C.C 0.863 12 UGSDL_21785 5 6174255 0.0222 C.C -0.7032 157 C.C 0.783 12 UGSDL_21785 5 5979232 0.0308 C.C -0.781 103 C.C 0.784 163 C.C 0.784		UGSDI_07465	2	65391758	0.0298	A:A	0.3349	92	C:C	0.864	59
BAD_and UGSS_02293 2 68320941 0.0423 G.G 1.4426 166 A.A 0 16 UGSD_11735 3 13240931 0.0243 A:A 0.8426 158 C.C 1.3218 19 UGSD_11735 3 59616226 0.0029 C.C -0.2461 170 A:A -3.528 12 UGSD_14722 4 2640061 0.0385 G.G -0.9954 151 C.C 0 36 UGSD_16244 4 55043311 0.0222 A:A -0.0792 52 C.C 0.028 41 UGSD_12785 5 6174255 0.0222 C.C -0.733 109 C.C -0.288 12 UGSD_12785 5 5979232 0.0388 A:A 0.2871 153 C.C 0.028 42 UGSD_23707 6 6020930 0.0302 C.C -0.7421 131 G.G -0.214 23 UGSD_243048 5		UGSDI_07470	2	65397174	0.0447	C:C	0.3722	94	A:A	0.863	74
BAR UGSDL_11735 3 1320031 0.0243 A:A 0.8426 158 CC 1.328 19 UGSSD_12540 3 55016783 0.0294 C:C 0.6360 1170 A:A 1.311 21 UGSSD_14722 4 2640061 0.0385 G:G 0.09954 157 C:C 0 36 UGSD_16824 4 55043516 0.0042 A:A 1.1595 157 C:C 0.836 22 UGSD_17277 4 59185316 0.0042 A:A 1.3809 167 C:C 2.739 11 UGSD_107856 5 11295914 0.0340 G:G 0.731 109 C:C 0.028 47 UGSD_21750 7 37743870 0.0020 C:C -0.741 131 G:G -3.651 12 UGSD_24208 8 5044570 0.0116 G:G -0.8435 161 C:C -2.498 14 UGSD_111303 7 <td></td> <td>UGSS_02293</td> <td>2</td> <td>68325941</td> <td>0.0423</td> <td>G:G</td> <td>1.4426</td> <td>166</td> <td>A:A</td> <td>0</td> <td>16</td>		UGSS_02293	2	68325941	0.0423	G:G	1.4426	166	A:A	0	16
UGSDI_12540 3 55056783 0.0294 C:C 0.6360 119 A:G 1.131 21 UGSD_114722 4 2640061 0.0385 G:G -0.9944 157 C:C 0 30 UGSD_16824 4 55043311 0.0252 A:A -0.0792 52 C:C 0.863 22 UGSDI_17277 4 5918516 0.0042 A:A 1.3809 167 C:C 0.273 11 UGSDI_17775 5 6174255 0.0222 C:C -0.7032 157 G:G -2.383 21 UGSDI_217785 5 59797232 0.0308 A:G 0.271 133 C:C -0.039 141 G:G -0.214 23 UGSDI_30175 7 499539 0.0402 C:C -0.7891 109 G:G -0.214 23 UGSDI_32430 8 5044579 0.0316 G:G -0.2848 14 UGSDI_44361 16 C:C <td< td=""><td></td><td>UGSDI_11735</td><td>3</td><td>13240931</td><td>0.0243</td><td>A:A</td><td>0.8426</td><td>158</td><td>C:C</td><td>1.328</td><td>19</td></td<>		UGSDI_11735	3	13240931	0.0243	A:A	0.8426	158	C:C	1.328	19
UGSS_02851 3 59616226 0.0029 C:C -0.2461 170 A:A -3.528 12 UGSD_14722 4 2640061 0.0385 G:G -0.9954 157 C:C 0 36 UGSD_16824 4 7393846 0.0406 A:A 1.3809 167 C:C 2.739 11 UGSD1_17277 4 59185316 0.0042 A:A 1.3809 167 C:C 2.739 11 UGSD1_17277 5 6174255 0.0022 C:C -0.732 157 G:G -2.383 21 UGSD1_17876 5 11295914 0.0308 C:C 1.0139 141 G:G 0.214 23 UGSD1_25877 7 37743870 0.0020 C:C 1.07891 109 G:G 0 27 UGSD1_32430 8 50756495 0.0316 G:G 0.2861 121 A:A -1.207 46 UGSD1_40153 9 5075649		UGSDI_12540	3	55056783	0.0294	C:C	0.6360	119	A:G	1.131	21
SPAD_mean UGSDI_14722 4 2640061 0.0385 G:G -0.9954 157 C:C 0 30 UGSDI_16224 4 55043311 0.0252 A:A -0.792 52 C:C 0.863 22 UGSDI_17277 4 59185316 0.0042 A:A 1.3809 167 C:C 2.739 11 UGSDI_21785 5 6174255 0.0222 C:C -0.7032 157 C:C 0.028 47 UGSDI_27770 6 60209320 0.0388 A:A 0.2871 153 C:C -0.988 22 UGSD_205159 7 37743870 0.0020 C:C -0.7891 109 G:G -3.651 12 UGSD_30159 7 37743870 0.0027 C:C -0.756 171 A:G 0 15 UGSD_123240 8 5044579 0.0379 C:C -2.4268 158 G:G -1.207 26 UGSD1_40153 <		UGSS_02851	3	59616226	0.0029	C:C	-0.2461	170	A:A	-3.528	12
SPAD_mean UGST_00343 4 7393846 0.0406 A:A 1.1595 151 C:C 0 36 SPAD_mean UGSDI_16824 4 55043311 0.0252 A:A -0.0792 25 C:C 0.863 22 UGSDI_17277 4 5918516 0.0042 A:A 1.3809 167 C:C 2.739 11 UGSDI_21785 5 6174255 0.0222 C:C -0.7032 157 G:G -2.383 21 UGSDI_27876 6 6020320 0.0308 C:C -0.139 141 G:G -0.214 23 UGSDI_30175 7 499539 0.0402 C:C -0.7891 109 G:G 0 27 UGSDI_211303 7 37743870 0.0020 C:C -0.5421 131 G:G -2.498 14 UGSDI_21433 9 50756495 0.0316 G:G 0.498 21 4.55 161 C:C -1.248 <t< td=""><td></td><td>UGSDI_14722</td><td>4</td><td>2640061</td><td>0.0385</td><td>G:G</td><td>-0.9954</td><td>157</td><td>C:C</td><td>0</td><td>30</td></t<>		UGSDI_14722	4	2640061	0.0385	G:G	-0.9954	157	C:C	0	30
UGSD1_16824 4 55043311 0.0252 A:A -0.0792 52 C:C 0.863 22 SPAD_mean UGSD1_17277 4 59185316 0.0042 A:A 1.3809 167 C:C 2.739 11 UGSD1_07856 5 11295914 0.0340 G:G -0.0731 109 C:C 0.028 47 UGSD1_29770 6 60209320 0.0308 C:C 1.0139 141 G:G -0.214 23 UGSD1_30175 7 499539 0.0402 C:C -0.7891 109 G:G 0 27 UGSD5_05159 7 37743870 0.0020 C:C -0.4281 131 G:G -3.651 12 UGSD1_214330 8 5044579 0.0379 C:C -2.4268 183 G:G -1.275 26 UGSD1_240531 9 50756495 0.031 C:G -0.7556 171 A:A 0 9 UGSD1_43070 10		UGST_00343	4	7393846	0.0406	A:A	1.1595	151	C:C	0	36
SPAD_mean UGSDI_17277 4 59185316 0.0042 A:A 1.3809 167 C:C 2.739 11 UGSDI_21785 5 6174255 0.0222 C:C -0.7032 1157 G:G -2.383 21 UGSDI_25887 5 59979232 0.0388 A:A 0.2871 153 C:C -0.0285 422 UGSDI_20770 6 60209320 0.0308 C:C 1.0139 141 G:G -0.214 23 UGSDI_30175 7 499539 0.0402 C:C -0.7891 103 G:G -3.651 12 UGSDI_11303 7 54965057 0.0116 C:G -0.8435 161 C:C -2.498 14 UGSDI_40153 9 50756495 0.0031 G:G 0.2861 121 A:A -1.207 46 UGSDI_40351 10 319826 0.0066 C:C -1.3619 165 A:A 0 9 UGSDI_43701		UGSDI_16824	4	55043311	0.0252	A:A	-0.0792	52	C:C	0.863	22
SPAD_mean UGSDL_21785 5 6174255 0.0222 C:C -0.7032 157 G:G -2.383 21 UGSDL_25887 5 59979232 0.0388 A:A 0.2871 153 C:C -0.028 47 UGSDL_29770 6 6020320 0.0388 A:A 0.2871 153 C:C -0.214 23 UGSDL_30175 7 499539 0.0402 C:C -0.7891 109 G:G 0 27 UGSDL_31730 7 54965057 0.0116 G:G -0.8421 131 G:G -1.217 26 UGSDL_32430 8 5044579 0.0379 C:C -2.4268 158 G:G -1.207 46 UGSDL_40153 9 50756495 0.0031 G:G 0.2861 121 A:A -1.207 46 UGSDL42951 10 319826 0.0046 C:C -1.3619 165 A:A 0 9 0 UGSDL4		UGSDI_17277	4	59185316	0.0042	A:A	1.3809	167	C:C	2.739	11
BYRD_IKAM UGSDII_07856 5 11295914 0.0340 G:G 0.7331 109 C:C 0.028 47 UGSDI_2887 5 59979232 0.0388 A:A 0.2811 153 C:C -0.985 22 UGSDI_29770 6 60209320 0.0308 C:C 1.0139 141 G:G -0.214 23 UGSDI_30175 7 499539 0.0402 C:C -0.5421 131 G:G -3.651 12 UGSD_32430 8 5044579 0.0176 C:C -2.4268 158 G:G -1.275 26 UGSDI_40153 9 50756495 0.0031 G:G 0.2861 121 A:A -1.207 46 UGSDI_43070 10 5424999 0.0040 A:G 0.5504 144 G:G 1.587 28 UGSDI_43701 10 5951119 0.0128 G:G 1.2511 144 A:G 0.329 29 UGSDI_43701	SPAD mean	UGSDI_21785	5	6174255	0.0222	C:C	-0.7032	157	G:G	-2.383	21
UGSDI_25887 5 59979232 0.0388 A:A 0.2871 153 C:C -0.985 22 UGSDI_20175 7 6 60209320 0.0308 C:C 1.0139 141 G:G -0.214 23 UGSS_05159 7 37743870 0.0020 C:C -0.5421 131 G:G -3.651 12 UGSDI_11303 7 54965057 0.0116 G:G -0.8435 161 C:C -2.498 14 UGSDI_32430 8 5044579 0.0379 C:C -2.4268 158 G:G -1.275 26 UGSDI_40153 9 50756495 0.0031 G:G 0.2361 121 A:A -1.207 46 UGSDI_42951 10 4383980 0.0286 C:C -1.3619 165 A:A 0 9 UGSDI_43470 10 5424999 0.0440 A:G 0.5251 70 UGSDI_43410 10 6955431 0.0388	5171D_mean	UGSDII_07856	5	11295914	0.0340	G:G	0.7331	109	C:C	0.028	47
UGSDI_29770 6 60209320 0.0308 C:C 1.0139 141 G:G -0.214 23 UGSDI_30175 7 499539 0.0402 C:C -0.7891 109 G:G 0 27 UGSDI_11303 7 54965057 0.0116 G:G -0.8435 161 C:C -2.4988 14 UGSDI_232430 8 504579 0.0379 C:C -2.4268 158 G:G -1.275 26 UGSDI_40153 9 50756495 0.0031 G:G 0.2861 121 A:A -1.207 46 UGSDI_40153 9 50756495 0.0031 G:G 0.2861 121 A:A -0 9 UGSDI_42051 10 4383980 0.0286 C:C -1.3619 165 A:A 0 9 UGSDI_43070 10 5424999 0.0040 A:G 0.5504 144 G:G 1.587 28 UGSDI_43071 10 6936670 0.0181 C:C 0.8038 77 G:G 0.152 70		UGSDI_25887	5	59979232	0.0388	A:A	0.2871	153	C:C	-0.985	22
UGSDL_30175 7 499539 0.0402 C:C -0.7891 109 G:G 0 27 UGSS_05159 7 37743870 0.0020 C:C -0.5421 131 G:G -3.651 12 UGSDL_11303 7 54965057 0.0116 G:G -0.8435 161 C:C -2.4288 16 C:C -2.4288 16 C:C -2.4288 16 C:C -2.4288 16 C:C -1.275 26 UGSDL_40153 9 50756495 0.0031 G:G 0.2861 121 A:A -1.207 46 UGSDL_42951 10 4383980 0.0286 C:C 1.7394 160 G:G 0.049 21 UGSDL_43070 10 5424999 0.0404 A:G 0.5504 144 G:G 0.527 70 UGSDL_43410 10 6936670 0.0181 C:C 0.8038 77 G:G 0.152 70 UGSDL_02152 1 13892063 0.0341 A:G 0.4279 152 G:G 0.657 <t< td=""><td></td><td>UGSDI_29770</td><td>6</td><td>60209320</td><td>0.0308</td><td>C:C</td><td>1.0139</td><td>141</td><td>G:G</td><td>-0.214</td><td>23</td></t<>		UGSDI_29770	6	60209320	0.0308	C:C	1.0139	141	G:G	-0.214	23
UGSS_05159 7 37743870 0.0020 C:C -0.5421 131 G:G -3.651 12 UGSDII_11303 7 54965057 0.0116 G:G -0.8435 161 C:C -2.498 14 UGSDI_32430 8 5044579 0.0379 C:C -2.4268 158 G:G -1.275 26 UGSDI_40153 9 50756495 0.0031 G:G 0.2861 121 A:A -1.207 46 UGSDI_40251 10 4383980 0.0286 C:C -1.3619 165 A:A 0 9 UGSDI_43070 10 5424999 0.0040 A:G 0.5504 144 G:G 1.587 28 UGSDI_43070 10 5424999 0.0040 A:G 0.5504 144 A:G 0.329 29 UGSDI_43171 10 965431 0.0388 G:G 1.1025 95 C:C -1.204 72 UGSDI_00105 1 18392063 0.0311 A:G 0.4335 157 G:G 0 27		UGSDI_30175	7	499539	0.0402	C:C	-0.7891	109	G:G	0	27
UGSDII_11303 7 54965057 0.0116 G:G -0.8435 161 C:C -2.498 14 UGSDI_32430 8 5044579 0.0379 C:C -2.4268 158 G:G -1.275 26 UGSS_05898 9 11633552 0.0278 C:C -0.7556 171 A:G 0 15 UGSDI_40153 9 50756495 0.0031 G:G 0.2861 121 A:A -1.207 46 UGSDI_42951 10 4383980 0.0286 C:C -1.3619 165 A:A 0 9 UGSDI_43070 10 5424999 0.0040 A:G 0.5504 144 G:G 1.587 28 UGSDI_43410 10 6936670 0.0181 C:C 0.8038 77 G:G 0 27 UGSDI_01005 1 18392063 0.0341 A:G 0.42479 152 G:G -0.657 27 UGSDI_01051 1 19503446 0.0390 A:A -0.2479 152 G:G 0.657 27 </td <td></td> <td>UGSS_05159</td> <td>7</td> <td>37743870</td> <td>0.0020</td> <td>C:C</td> <td>-0.5421</td> <td>131</td> <td>G:G</td> <td>-3.651</td> <td>12</td>		UGSS_05159	7	37743870	0.0020	C:C	-0.5421	131	G:G	-3.651	12
UGSDI_32430 8 5044579 0.0379 C:C -2.4268 158 G:G -1.275 26 UGSS_05898 9 11633552 0.0278 C:C -0.7556 171 A:G 0 15 UGSDI_40153 9 50756495 0.00131 G:G 0.2861 121 A:A -1.207 46 UGSDI_42951 10 3199826 0.0066 C:C -1.3619 165 A:A 0 9 UGSDI_43070 10 5242999 0.0040 A:G 0.5504 144 G:G 1.587 28 UGSDI_15262 10 5931119 0.0128 G:G 1.2511 144 A:G -0.329 29 UGSDI_43410 10 6936670 0.0181 C:C 0.8038 77 G:G 0.152 70 UGSDI_01005 1 18392063 0.0341 A:G 0.4935 157 A:G 0.152 15 UGSDI_02152 1 5242		UGSDII_11303	7	54965057	0.0116	G:G	-0.8435	161	C:C	-2.498	14
UGSS_05898 9 11633552 0.0278 C:C -0.7556 171 A:G 0 15 UGSDL_40153 9 50756495 0.0031 G:G 0.2861 121 A:A -1.207 46 UGSDL_42951 10 4383980 0.0286 C:C -1.3619 165 A:A 0 9 UGSDL_43070 10 5424999 0.0040 A:G 0.5504 144 G:G 1.587 28 UGSDL_43070 10 5424999 0.0040 A:G 0.5504 144 A:G -0.329 29 UGSDL_43410 10 6936670 0.0181 C:C 0.808 77 G:G 0.152 70 UGSDL_01055 1 18392063 0.0341 A:G 0.4935 157 G:G 0 27 UGSDL_01005 1 18392063 0.0314 A:G 0.4935 157 A:A 0.247 72 UGSDL_02152 1 52429487 0.0019 G:G 0.2558 131 A:G 0.125 155		UGSDI_32430	8	5044579	0.0379	C:C	-2.4268	158	G:G	-1.275	26
UGSDI_40153 9 50756495 0.0031 G:G 0.2861 121 A:A -1.207 46 UGSDII_15573 10 3199826 0.0066 C:C 1.7394 160 G:G -0.049 21 UGSDI_42951 10 4383980 0.0286 C:C -1.3619 165 A:A 0 9 UGSDI_43070 10 5424999 0.0040 A:G 0.5504 144 G:G 1.587 28 UGSDI_43070 10 6936670 0.0181 C:C 0.8038 77 G:G 0.0152 70 UGSDI_43971 10 9655431 0.0388 G:G -1.1025 95 C:C -1.204 72 UGSDI_0005 1 18392063 0.0341 A:G 0.4935 157 G:G 0.625 15 UGSDI_00152 1 52429487 0.0190 G:G 0.22479 152 G:G 0.6122 72 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.322 124		UGSS_05898	9	11633552	0.0278	C:C	-0.7556	171	A:G	0	15
UGSDII_15573 10 3199826 0.0066 C:C 1.7394 160 G:G -0.049 21 UGSDI_42951 10 4383980 0.0286 C:C -1.3619 165 A:A 0 9 UGSDI_43070 10 5424999 0.0040 A:G 0.5504 144 G:G 1.587 28 UGSDI_43070 10 6936670 0.0181 C:C 0.8038 77 G:G 0.152 70 UGSDI_43410 10 6936670 0.0181 C:C 0.8038 77 G:G 0.152 70 UGSDI_01005 1 18392063 0.0341 A:G 0.4935 157 G:G 0 27 UGSDI_01005 1 19503946 0.0390 A:A -0.2479 152 G:G -0.657 27 UGSDI_02152 1 52429487 0.0019 G:G 0.8320 155 A:A 0.247 27 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 <td></td> <td>UGSDI_40153</td> <td>9</td> <td>50756495</td> <td>0.0031</td> <td>G:G</td> <td>0.2861</td> <td>121</td> <td>A:A</td> <td>-1.207</td> <td>46</td>		UGSDI_40153	9	50756495	0.0031	G:G	0.2861	121	A:A	-1.207	46
UGSDI_42951 10 4383980 0.0286 C:C -1.3619 165 A:A 0 9 UGSDI_43070 10 5424999 0.0040 A:G 0.5504 144 G:G 1.587 28 UGSDI_15626 10 5931119 0.0128 G:G 1.2511 144 A:G -0.329 29 UGSDI_43410 10 6936670 0.0181 C:C 0.8038 77 G:G 0.152 70 UGSDI_43971 10 9655431 0.0388 G:G -1.1025 95 C:C -1.204 72 UGSDI_00306 1 19503946 0.0390 A:A -0.2479 152 G:G -0.657 27 UGSDI_02152 1 52429487 0.0019 G:G -0.2558 131 A:G 0.125 15 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02758 3 5722599 0.0278 C:C -0.2759 95 G:G -0.430 78		UGSDII_15573	10	3199826	0.0066	C:C	1.7394	160	G:G	-0.049	21
UGSDI_43070 10 5424999 0.0040 A:G 0.5504 144 G:G 1.587 28 UGSDII_15626 10 5931119 0.0128 G:G 1.2511 144 A:G -0.329 29 UGSDI_43410 10 6936670 0.0181 C:C 0.8038 77 G:G 0.152 70 UGSDI_43971 10 9655431 0.0388 G:G -1.1025 95 C:C -1.204 72 UGSDI_01005 1 18392063 0.0341 A:G 0.4935 157 G:G 0 27 UGSDI_01005 1 19503946 0.0390 A:A -0.2479 152 G:G -0.657 27 UGSDI_02152 1 52429487 0.0019 G:G -0.2558 131 A:G 0.125 15 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02771 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24		UGSDI_42951	10	4383980	0.0286	C:C	-1.3619	165	A:A	0	9
UGSDII_15626 10 5931119 0.0128 G:G 1.2511 144 A:G -0.329 29 UGSDI_43410 10 6936670 0.0181 C:C 0.8038 77 G:G 0.152 70 UGSDI_43971 10 9655431 0.0388 G:G -1.1025 95 C:C -1.204 72 UGSDI_01005 1 18392063 0.0341 A:G 0.4935 157 G:G 0 27 UGSDI_01050 1 19503946 0.0390 A:A -0.2479 152 G:G -0.657 27 UGSDI_02152 1 52429487 0.0019 G:G -0.2558 131 A:G 0.125 15 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02771 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSDI_020516 3 <		UGSDI_43070	10	5424999	0.0040	A:G	0.5504	144	G:G	1.587	28
UGSDI_43410 10 6936670 0.0181 C:C 0.8038 77 G:G 0.152 70 UGSDI_43971 10 9655431 0.0388 G:G -1.1025 95 C:C -1.204 72 UGSDI_01005 1 18392063 0.0341 A:G 0.4935 157 G:G 0 27 UGSDI_02152 1 52429487 0.0019 G:G -0.2558 131 A:G 0.125 15 UGSDI_02152 1 52429487 0.0019 G:G 0.2558 131 A:G 0.125 15 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02071 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSDI_02071 2 6897226 0.0102 G:G 0.5076 170 C:C -0.100 11		UGSDII_15626	10	5931119	0.0128	G:G	1.2511	144	A:G	-0.329	29
UGSDI_43971 10 9655431 0.0388 G:G -1.1025 95 C:C -1.204 72 UGSDI_01005 1 18392063 0.0341 A:G 0.4935 157 G:G 0 27 UGSDI_00306 1 19503946 0.0390 A:A -0.2479 152 G:G -0.657 27 UGSDI_02152 1 52429487 0.0019 G:G -0.2558 131 A:G 0.125 15 UGSDI_00774 1 53923432 0.0151 G:G 0.8320 155 A:A 0.2477 27 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02071 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSDI_02071 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSDI_05167 3 57484015 0.0122 G:G 0.5076 170 C:C -0.166 64		UGSDI_43410	10	6936670	0.0181	C:C	0.8038	77	G:G	0.152	70
UGSDI_01005 1 18392063 0.0341 A:G 0.4935 157 G:G 0 27 UGSDII_00306 1 19503946 0.0390 A:A -0.2479 152 G:G -0.657 27 UGSDI_02152 1 52429487 0.0019 G:G -0.2558 131 A:G 0.125 15 UGSDI_00774 1 53923432 0.0151 G:G 0.8320 155 A:A 0.247 27 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02071 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSDI_02071 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSDI_025167 3 572599 0.0278 C:C -0.2759 95 G:G -0.430 78 UGSDI_05216 3 <td< td=""><td></td><td>UGSDI_43971</td><td>10</td><td>9655431</td><td>0.0388</td><td>G:G</td><td>-1.1025</td><td>95</td><td>C:C</td><td>-1.204</td><td>72</td></td<>		UGSDI_43971	10	9655431	0.0388	G:G	-1.1025	95	C:C	-1.204	72
UGSDI_00006 1 19503946 0.0390 A:A -0.2479 152 G:G -0.657 27 UGSDI_02152 1 52429487 0.0019 G:G -0.2558 131 A:G 0.125 15 UGSDI_00774 1 53923432 0.0151 G:G 0.8320 155 A:A 0.2477 27 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02071 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSD_020805 3 5722599 0.0278 C:C -0.2759 95 G:G -0.430 78 UGSDI_05167 3 57484015 0.0122 G:G 0.5076 170 C:C -0.100 11 UGSDI_105216 3 58207290 0.0029 G:G -0.3923 109 C:C -0.166 64 UGSDI_13662 3 63671432 0.0400 A:A 0.9773 171 A:C 0.978 1		UGSDI 01005	1	18392063	0.0341	A·G	0 4935	157	G·G	0	27
UGSDI_02152 1 52429487 0.0019 G:G -0.2558 131 A:G 0.125 15 UGSDI_00774 1 53923432 0.0151 G:G 0.8320 155 A:A 0.2477 27 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02071 2 6897226 0.0100 A:A 0.2216 155 A:A 0.352 124 UGSDI_02071 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSDI_05167 3 572599 0.0278 C:C -0.2759 95 G:G -0.430 78 UGSDI_05167 3 57484015 0.0122 G:G 0.5076 170 C:C -0.100 11 UGSD_105216 3 58207290 0.0029 G:G -0.3923 109 C:C -0.166 64 UGSD_13662 3 63671432 0.0400 A:A 0.9773 171 A:C 0.978 11 <td></td> <td>UGSDIL 00306</td> <td>1</td> <td>19503946</td> <td>0.0390</td> <td>A·A</td> <td>-0 2479</td> <td>152</td> <td>G·G</td> <td>-0.657</td> <td>27</td>		UGSDIL 00306	1	19503946	0.0390	A·A	-0 2479	152	G·G	-0.657	27
UGSDI_00774 1 53923432 0.0151 G:G 0.8320 155 A:A 0.247 27 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02071 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSS_02805 3 5722599 0.0278 C:C -0.2759 95 G:G -0.430 78 UGSDI_05167 3 57484015 0.0122 G:G 0.5076 170 C:C -0.100 11 UGSDI_05216 3 58207290 0.0029 G:G -0.3923 109 C:C -0.166 64 UGSDI_13662 3 63671432 0.0400 A:A 0.9773 171 A:C 0.978 11 UGSS_03587 4 7362300 0.0037 G:G -0.5679 147 A:G -1.055 31 SPAD_sl UGSDI_20942 5 4011154 0.0044 G:G -0.1413 102 C:C 0.166		UGSDI 02152	1	52429487	0.0019	G·G	-0.2558	131	A.C	0.027	15
UGSDII_02758 1 56816253 0.0151 6.6326 165 1.11 61217 27 UGSDI_02758 1 56816253 0.0155 C:C 0.1426 41 A:A 0.352 124 UGSDI_02071 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSS_02805 3 5722599 0.0278 C:C -0.2759 95 G:G -0.430 78 UGSDII_05167 3 57484015 0.0122 G:G 0.5076 170 C:C -0.100 11 UGSDI_05216 3 58207290 0.0029 G:G -0.3923 109 C:C -0.166 64 UGSDI_13662 3 63671432 0.0400 A:A 0.9773 171 A:C 0.978 11 UGSS_03587 4 7362300 0.0037 G:G -0.5679 147 A:G -1.055 31 SPAD_sl UGSDI_20942 5 4011154 0.0044 G:G -0.1413 102 C:C 0.166		UGSDI_02132	1	53923432	0.00151	G.G	0.2330	155	A·A	0.125	27
UGSDII_02071 2 6897226 0.0100 A:A 0.2216 154 G:G -0.631 24 UGSS_02805 3 5722599 0.0278 C:C -0.2759 95 G:G -0.430 78 UGSDII_05167 3 57484015 0.0122 G:G 0.5076 170 C:C -0.100 11 UGSDII_05216 3 58207290 0.0029 G:G -0.3923 109 C:C -0.166 64 UGSDI_13662 3 63671432 0.0400 A:A 0.9773 171 A:C 0.978 11 UGSS_03587 4 7362300 0.0037 G:G -0.5679 147 A:G -1.055 31 SPAD_sl UGSDI_18656 4 62505274 0.0134 G:G -0.3893 83 A:G -0.219 80 UGSS_04552 5 9137603 0.0168 A:A 1.3245 147 A:C 0.940 14 UGSS_04552 5 9137603 0.0168 A:A 1.3245 147 A:C 0.940		UGSDI 02758	1	56816253	0.0151	0.0 C·C	0.0320	41	Δ·Δ	0.352	124
UGSS_02805 3 5722599 0.0278 C:C -0.2759 95 G:G -0.430 78 UGSDII_05167 3 57484015 0.0122 G:G 0.5076 170 C:C -0.100 11 UGSDII_05216 3 58207290 0.0029 G:G -0.3923 109 C:C -0.166 64 UGSDI_13662 3 63671432 0.0400 A:A 0.9773 171 A:C 0.978 11 UGSS_03587 4 7362300 0.0037 G:G -0.5679 147 A:G -1.055 31 SPAD_sl UGSDI_20942 5 4011154 0.0044 G:G -0.1413 102 C:C 0.166 67 UGSS_04552 5 9137603 0.0168 A:A 1.3245 147 A:C 0.940 14 UGST_0480 5 9295511 0.0396 C:C -0.2902 83 G:G -0.237 75 UGSDI_22377 5 10113990 0.0305 C:C -0.3070 118 G:G -0.081		UGSDII 02071	2	6897226	0.0100	A·A	0.2216	154	G·G	-0.631	24
UGSD_02000 5 57422533 0.00210 0.0123 0.01133 9.0 0.0103 100 100 110 UGSDII_05167 3 57484015 0.0122 G:G 0.5076 170 C:C -0.100 11 UGSDII_05216 3 58207290 0.0029 G:G -0.3923 109 C:C -0.166 64 UGSDI_13662 3 63671432 0.0400 A:A 0.9773 171 A:C 0.978 11 UGSS_03587 4 7362300 0.0037 G:G -0.5679 147 A:G -1.055 31 SPAD_sl UGSDI_18656 4 62505274 0.0134 G:G -0.1413 102 C:C 0.166 67 UGSS_04552 5 9137603 0.0168 A:A 1.3245 147 A:C 0.940 14 UGSD_0480 5 9295511 0.0396 C:C -0.2902 83 G:G -0.237 75 UGSDI_22377 5 10113990 0.0305 C:C -0.3070 118 <t< td=""><td></td><td>UGSS 02805</td><td>3</td><td>5722599</td><td>0.0278</td><td>C·C</td><td>-0 2759</td><td>95</td><td>G·G</td><td>-0.430</td><td>78</td></t<>		UGSS 02805	3	5722599	0.0278	C·C	-0 2759	95	G·G	-0.430	78
UGSDII_05216 3 58207290 0.0029 G:G -0.3923 109 C:C -0.166 64 UGSDI_13662 3 63671432 0.0400 A:A 0.9773 171 A:C 0.978 11 UGSS_03587 4 7362300 0.0037 G:G -0.5679 147 A:G -1.055 31 SPAD_sl UGSDI_18656 4 62505274 0.0134 G:G -0.3893 83 A:G -0.219 80 UGSSI_20942 5 4011154 0.0044 G:G -0.1413 102 C:C 0.166 67 UGSS_04552 5 9137603 0.0168 A:A 1.3245 147 A:C 0.940 14 UGSDI_209480 5 9295511 0.0396 C:C -0.2902 83 G:G -0.237 75 UGSDI_22377 5 10113990 0.0305 C:C -0.3070 118 G:G -0.081 52		UGSDIL 05167	3	57484015	0.0122	G:G	0.5076	170	C·C	-0.100	11
UGSDI_1206 3 63671432 0.0400 A:A 0.9773 171 A:C 0.978 11 UGSS_03587 4 7362300 0.0037 G:G -0.5679 147 A:G -1.055 31 SPAD_sl UGSDI_18656 4 62505274 0.0134 G:G -0.3893 83 A:G -0.219 80 UGSDI_20942 5 4011154 0.00444 G:G -0.1413 102 C:C 0.166 67 UGSS_04552 5 9137603 0.0168 A:A 1.3245 147 A:C 0.940 14 UGST_00480 5 9295511 0.0396 C:C -0.2902 83 G:G -0.237 75 UGSDI_22377 5 10113990 0.0305 C:C -0.3070 118 G:G -0.081 52		UGSDII_05216	3	58207290	0.0029	G:G	-0 3923	109	C·C	-0.166	64
SPAD_sl UGSS_03587 4 7362300 0.0037 G:G -0.5679 147 A:G -1.055 31 UGSS_03587 4 7362300 0.0037 G:G -0.5679 147 A:G -1.055 31 UGSDI_sl UGSDI_18656 4 62505274 0.0134 G:G -0.3893 83 A:G -0.219 80 UGSDI_20942 5 4011154 0.0044 G:G -0.1413 102 C:C 0.166 67 UGSS_04552 5 9137603 0.0168 A:A 1.3245 147 A:C 0.940 14 UGST_00480 5 9295511 0.0396 C:C -0.2902 83 G:G -0.237 75 UGSDI_22377 5 10113990 0.0305 C:C -0.3070 118 G:G -0.081 52		UGSDI 13662	3	63671432	0.0029	Δ.Δ	0.9773	171	∆.C	0.100	11
SPAD_sl UGSDI_18656 4 62505274 0.0134 G:G -0.3893 83 A:G -0.219 80 UGSDI_20942 5 4011154 0.0044 G:G -0.1413 102 C:C 0.166 67 UGSS_04552 5 9137603 0.0168 A:A 1.3245 147 A:C 0.940 14 UGST_00480 5 9295511 0.0396 C:C -0.2902 83 G:G -0.237 75 UGSDI_22377 5 10113990 0.0305 C:C -0.3070 118 G:G -0.081 52		UGSS 03587	4	7362300	0.0400	G·G	-0 5679	147	A.G	-1.055	31
UGSDI_20942 5 4011154 0.0044 G:G -0.1413 102 C:C 0.166 67 UGSS_04552 5 9137603 0.0168 A:A 1.3245 147 A:C 0.940 14 UGST_00480 5 9295511 0.0396 C:C -0.2902 83 G:G -0.237 75 UGSDI_22377 5 10113990 0.0305 C:C -0.3070 118 G:G -0.081 52	SPAD sl	UGSDI 18656	4	62505274	0.0134	G:G	-0 3893	83	A.G	-0.219	80
UGSS_04522 5 9137603 0.0168 A:A 1.3245 147 A:C 0.940 14 UGST_00480 5 9295511 0.0396 C:C -0.2902 83 G:G -0.237 75 UGSDL_22377 5 10113990 0.0305 C:C -0.3070 118 G:G -0.081 52	51112_0	UGSDI_10050	5	4011154	0.0134	0.0 G·G	-0.3073	102	C·C	0.166	67
UGST_00480 5 9295511 0.0396 C:C -0.2902 83 G:G -0.237 75 UGSDI_22377 5 10113990 0.0305 C:C -0.3070 118 G:G -0.081 52		UGSS 04552	5	9137603	0.0044	Δ·Δ	1 3245	147	A.C	0.100	14
UGSDI_22377 5 10113990 0.0305 C:C -0.3070 118 G:G -0.081 52		UGST_00480	5	9295511	0.0396	C·C	-0 2902	83	G·G	-0.237	75
00001_22577 5 10115770 0.0505 C.C -0.5070 110 0.0 -0.001 52		UGSDI 22377	5	10113990	0.0305	C·C	-0.2902	118	G.G	-0.081	52
UGSDI 22523 5 10612724 0.0184 G·G -0.1946 118 A·G 0 66		UGSDI_22577	5	10612724	0.0303	G:G	-0.3070	118	∆.G	-0.001	52 66
UGSDI_22525 5 10012724 0.0164 0.0 -0.1740 116 A.O 0 00 UGSDI_27515 6 47001367 0.0156 C:G 0.5335 144 C:C 0.676 35		UGSDI_22525	5	10012724	0.0156	0.0 G·G	-0.1740	1//	A.U	-0.676	35
$UGSS_04848 = 6 = 50089590 = 0.0352 = 6.6 = 0.0348 = 162 = 0.070 = 53$		UGSS 04848	6	50089590	0.0150	0.0 G·G	0.0348	167	C·C	-0.070	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		UGSDI 2062/	6	58810203	0.0332	0.0 C·C	0.3550	111	G.C	0.447	21 6/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		UGSDI_29034	6	58960/203	0.0235	C.C G·G	0.3550	152	Δ·Δ	_0.778	26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		UGSDI_29042	7	210/261	0.0207	Δ·Δ	-0 1/08	154	G.G	0.220	20 27
UGSDII 11117 7 51671137 0.0322 A:A -0.9916 159 G:G -1.070 24		UGSDI 11117	, 7	51671137	0.0322	A:A	-0.9916	159	G:G	-1.070	24

Trait	Locus	Chr.	Position [cM]	p_Marker	Allel	Effect	n	Allel	Effect	n
	UGSDII_11324	7	55772900	0.0306	G:G	-0.4591	141	C:C	-0.277	33
	UGSS_05405	8	3611531	0.0243	G:G	0.5125	172	A:G	0	10
	UGSS_05610	8	52661661	0.0063	C:C	-0.7413	159	G:G	-0.696	19
	UGSDI_33699	9	3699	0.0081	G:G	-0.4153	87	A:A	-0.350	82
	UGSS_05885	9	1130820	0.0015	G:G	0.7630	150	A:G	0.446	12
SPAD_sl	UGSDII_14706	9	3201246	0.0328	C:C	0.2070	156	G:G	-0.688	23
	UGSDI_35992	9	9909969	0.0111	C:C	-0.5129	119	G:G	-0.778	39
	UGSDI_36313	9	13698114	0.0170	C:C	0.5876	166	A:G	0.578	9
	UGSDI_36510	9	14195682	0.0185	G:G	0.6105	165	A:G	0.470	9
	UGSDI_36583	9	14429762	0.0350	C:C	0.5405	169	A:G	0.574	9
	UGSDI_41411	9	55957743	0.0363	G:G	0.0678	103	C:C	-0.193	62
	UGSDI_03386	1	61170263	0.0074	A:A	0.3458	147	G:G	-0.160	27
	UGSDI_03647	1	64449310	0.0019	A:A	-0.2290	133	A:G	0.048	13
	UGSDII_01985	2	5704182	0.0356	A:A	-0.2682	160	G:G	-0.110	12
	UGSDII_03388	2	47350373	0.0167	C:C	0.7584	168	A:G	0	20
	UGSDI_07229	2	63000610	0.0314	A:A	-0.1360	117	G:G	-0.272	59
	UGSS_02833	3	58838889	0.0272	C:C	0.3325	150	G:G	0.199	22
	UGSDI_20728	5	2697685	0.0128	C:C	0.5036	147	G:G	0.128	29
	UGSDI_21684	5	5585914	0.0115	A:C	0.8769	96	C:C	0.738	84
	UGSDI_22254	5	9348710	0.0256	C:C	-0.4511	103	G:G	-0.423	68
	UGSDII_08007	5	13749806	0.0100	C:C	0.2304	169	A:C	0.649	7
	UGSDI_23454	5	18307595	0.0420	A:G	-0.0673	115	G:G	-0.779	19
	UGSDI_24739	5	46500037	0.0106	G:G	0.1179	171	C:C	0.316	12
	UGSS_04848	6	50089590	0.0039	G:G	0.0348	162	C:C	-0.716	21
	UGSS_05405	8	3611531	0.0346	G:G	0.5125	172	A:G	0	10
SPAD_T _b	UGSDII_12241	8	9018898	0.0143	A:G	0.3039	154	C:C	0.478	32
	UGSDII_13149	8	35611060	0.0334	A:G	-0.3114	135	C:C	0	48
	UGSDII_13771	8	43751430	0.0279	G:G	0.3394	159	C:C	0.217	23
	UGSS_05729	8	54372482	0.0253	G:G	-0.1251	126	A:A	-0.359	44
	UGSDI_33699	9	3699	0.0305	G:G	-0.4153	87	A:A	-0.350	82
	UGSS_05885	9	1130820	0.0001	G:G	0.7630	150	A:G	0.446	12
	UGSDI_36313	9	13698114	0.0020	C:C	0.5876	166	A:G	0.578	9
	UGSDI_36510	9	14195682	0.0024	G:G	0.6105	165	A:G	0.470	9
	UGSDI_36583	9	14429762	0.0051	C:C	0.5405	169	A:G	0.574	9
	UGSDI_41002	9	54609996	0.0118	G:G	0.2589	169	C:C	-0.052	12
	UGSDI_41631	9	57002334	0.0261	A:A	0.2423	98	G:G	0.008	77
	UGSDI_43070	10	5424999	0.0104	A:G	-0.4636	144	G:G	-0.354	28
	UGSDI_43410	10	6936670	0.0343	C:C	-0.2245	77	G:G	-0.216	70
	UGSS_00174	10	34142244	0.0369	C:C	0.2289	172	A:A	0	14
	UGSDII_16082	10	52955823	0.0250	C:C	-0.3185	78	G:G	-0.237	88
	UGSDI 00990	1	17772279	0.0173	G:G	-0.0083	142	A:A	-0.044	25
	UGSDI 01005	1	18392063	0.0348	A:G	0.0312	155	G:G	0	22
	UGSS 01028	1	52678585	0.0040	A:A	0.0023	139	C:C	0.039	27
	UGSDII 00774	1	53923432	0.0076	G:G	0.0760	152	A:A	0.064	23
	UGSDII_00801	1	54074608	0.0413	A:A	0.0409	152	G:G	0.050	17
	UGSS 01269	1	65048795	0.0412	C·C	-0.0851	150	A·A	-0.088	27
Fv'/Fm' mean	UGSS_02348	2	7464637	0.0391	A·A	-0.0445	43	C·C	-0.001	6
	UGSDI 05872	2	16967911	0.0057	Δ·Δ	-0.0012	148	G:G	0.052	19
	$UGSS_01684$	$\frac{2}{2}$	18705142	0.0001	Δ·Δ	0.0012	145	A.C	-0.052	7
	UGSDII 04210	2	68165681	0.0001	G.G	-0.0383	152	Δ·Δ	-0.002	, 17
	UGSS 02270	2	772720/2	0.0200	Δ·Δ	-0.0363	152	Δ.Λ	-0.008	1/ 21
	UGSS 02698	2 3	497579	0.0322	GG	0.0315	134	C·C	0.042	21
	UGSS_02587	3	13465929	0.0059	G:G	0.0411	167	A:G	0	11

Trait	Locus	Chr.	Position [cM]	p_Marker	Allel	Effect	n	Allel	Effect	n
	UGSDII_05167	3	57484015	0.0015	G:G	0.0065	164	C:C	-0.045	9
	UGSDI_13662	3	63671432	0.0065	A:A	0.0655	164	A:C	0.083	9
	UGSDI_15315	4	7285512	0.0150	A:A	-0.0263	153	C:C	0	20
	UGSDII_06638	4	15198012	0.0297	A:A	0.0180	161	G:G	0.046	10
	UGST_00314	4	55810400	0.0447	A:A	0.0588	94	G:G	0	6
	UGSDI_17206	4	58518488	0.0231	A:G	-0.0249	147	G:G	0.006	23
	UGSDI_17277	4	59185316	0.0129	A:A	0.0437	161	C:C	0.031	8
	UGSDI_20501	5	1190661	0.0392	G:G	0.0170	146	C:C	-0.014	19
	UGSS_03995	5	3372746	0.0026	C:C	-0.0381	136	G:G	0.013	26
	UGSDII_07441	5	7096990	0.0014	G:G	-0.0207	145	C:C	-0.051	12
	UGSS_04552	5	9137603	0.0049	A:A	0.1084	146	A:C	0.104	13
Fv'/Fm'_mean	UGSDI_23923	5	25498005	0.0128	G:G	-0.0509	95	A:G	-0.052	77
	UGSDI_24232	5	41421154	0.0152	C:C	0.0574	162	A:A	0.023	9
	UGSDI_25517	5	56504980	0.0101	C:C	0.0056	154	G:G	-0.039	16
	UGSDI_26370	6	1295049	0.0363	C:C	0.0308	151	G:G	0.00038	22
	UGSDI_27967	6	50580527	0.0169	A:A	-0.0414	140	G:G	-0.006	27
	UGST_00515	6	58367647	0.0155	C:C	0.0439	168	A:G	0	9
	UGSDI_29817	6	60768705	0.0426	G:G	0.0093	168	A:A	0.039	9
	UGSDII_14100	8	48649540	0.0249	G:G	0.0591	168	A:A	0.065	9
	UGSS_05515	8	48798667	0.0133	G:G	0.0311	146	A:C	0	24
	UGSDI_40000	9	49133114	0.0360	C:C	0.0015	147	A:G	0.044	5
	UGSDI 40067	9	49380411	0.0145	G:G	0.0103	161	A:G	-0.036	9
	UGSS_00104	10	17631024	0.0285	C:C	-0.0376	164	G:G	0	13
	UGSDI_01005	1	18392063	0.0426	A:G	-0.0067	155	G:G	0	22
	UGSS_00882	1	45813048	0.0060	G:G	0.0095	146	A:A	0.005	14
	UGSDI_02342	1	54720245	0.0187	A:A	-0.0048	116	A:G	-0.003	16
	UGSDI_02758	1	56816253	0.0022	C:C	-0.0008	39	A:A	0.005	122
	UGSS_02429	2	8412341	0.0432	G:G	0.0160	166	A:A	0.023	11
	UGSDI_05872	2	16967911	0.0207	A:A	-0.0082	148	G:G	-0.016	19
	UGSS_02312	2	69795464	0.0088	A:C	0.0031	55	A:A	0.007	104
	UGSDII_05023	3	55267162	0.0409	C:C	0.0046	74	G:G	0.003	74
	UGSDI_13629	3	63576281	0.0191	C:C	-0.0020	109	A:G	-0.007	17
	UGSDI_13630	3	63599252	0.0244	C:C	-0.0017	102	A:C	-0.009	8
	UGSDI_13662	3	63671432	0.0295	A:A	-0.0091	164	A:C	-0.016	9
	UGSDII_06989	4	53058228	0.0062	A:G	0.0029	33	G:G	0.006	122
	UGSDI_16672	4	54037709	0.0012	A:A	0.0088	75	G:G	0.008	89
	UGSDII_07441	5	7096990	0.0312	G:G	0.0065	145	C:C	0.009	12
Fv'/Fm'_sl	UGSDI_23923	5	25498005	0.0161	G:G	0.0112	95	A:G	0.012	77
	UGSDI 25464	5	56063892	0.0094	C:C	0.0063	99	G:G	0.009	51
	UGSDI 27967	6	50580527	0.0074	A:A	0.0115	140	G:G	0.010	27
	UGSDI 28180	6	51982555	0.0319	A:G	-0.0072	161	C:C	0	14
	UGSDI 29642	6	58960437	0.0299	G:G	0.0118	150	A:A	0.011	21
	UGSDI 30175	7	499539	0.0363	C:C	0.0047	106	G:G	0	24
	UGSDII 11324	7	55772900	0.0309	G:G	-0.0058	133	C:C	-0.008	33
	UGSDII_11795	8	3757426	0.0297	G:G	0.0093	123	C:C	0.006	40
	UGSDII 14270	8	50648581	0.0441	G·G	0.0025	76	C·C	0.005	75
	UGSDI 32962	8	50784624	0.0194	6.6 G	-0.0069	141	A.G	-0.003	5
	UGSDI 34812	9	5493017	0.0197	0.0 C·C	-0.0073	155	A.G	-0.012	11
	UGSDI 35770	9 0	9255271	0.0192	$C \cdot C$	-0.00/5	146	∆.G	0.012	30
	UGSDI 36872	ر ۵	15401737	0.0303	C.C G·G	-0.0045	153	C.C	-0.010	14
	UGSS 06107	2 0	1347170220	0.0207	0.0 G·C	-0.0023	163	Δ.Λ	0.010	14
	UGSDII 14939	9	49639894	0.0200	C:C	-0.0082	165	G:G	-0.001	1

Trait	Locus	Chr.	Position [cM]	p_Marker	Allel	Effect	n	Allel	Effect	n
	UGSDI_01005	1	18392063	0.0331	A:G	-0.9588	155	G:G	0	22
	UGSDI_02342	1	54720245	0.0085	A:A	-0.6848	116	A:G	-0.418	16
	UGSDI_02758	1	56816253	0.0087	C:C	-0.0854	39	A:A	0.621	122
	UGSDII_01103	1	60627976	0.0261	A:A	0.0517	127	A:G	-0.659	19
	UGSDI_05872	2	16967911	0.0185	A:A	-0.5743	148	G:G	-1.882	19
	UGSS_01684	2	18705142	0.0229	A:A	0.3065	145	A:G	1.401	7
	UGSS_02312	2	69795464	0.0045	A:C	0.3765	55	A:A	0.948	104
	UGSS_02587	3	13465929	0.0339	G:G	-0.9690	167	A:G	0	11
	UGSDII_05167	3	57484015	0.0213	G:G	0.3110	164	C:C	1.400	9
	UGSDI_13629	3	63576281	0.0137	C:C	-0.1795	109	A:G	-1.018	17
	UGSDI_13630	3	63599252	0.0287	C:C	-0.1115	102	A:C	-1.126	8
	UGSDI_13662	3	63671432	0.0192	A:A	-1.3454	164	A:C	-2.288	9
Fv'/Fm'_T _b	UGSDII_06989	4	53058228	0.0028	A:G	0.2467	33	G:G	0.795	122
	UGSDI_16672	4	54037709	0.0063	A:A	0.9799	75	G:G	0.952	89
	UGSDII_07441	5	7096990	0.0068	G:G	0.8872	145	C:C	1.449	12
	UGSDI_23923	5	25498005	0.0077	G:G	1.6760	95	A:G	1.781	77
	UGSDI_25464	5	56063892	0.0430	C:C	0.3845	99	G:G	0.796	51
	UGSDI_25517	5	56504980	0.0175	C:C	-0.2189	154	G:G	1.058	16
	UGSDI_27967	6	50580527	0.0072	A:A	1.6049	140	G:G	1.034	27
	UGSDI_29634	6	58810203	0.0442	C:C	-0.0319	108	G:G	0.472	59
	UGSDII_10411	6	61585843	0.0331	G:G	-1.1320	146	A:G	-0.236	8
	UGSDI_30175	7	499539	0.0279	C:C	0.6569	106	G:G	0	24
	UGSDII_11795	8	3757426	0.0339	G:G	1.1937	123	C:C	0.758	40
	UGSDI_32962	8	50784624	0.0148	G:G	-0.9524	141	A:G	-0.591	5
	UGSDI_34812	9	5493017	0.0229	C:C	-0.8161	155	A:G	-1.600	11
	UGSDI_00412	1	12780924	0.0132	A:A	0.0429	153	G:G	0.051	13
	UGSDI_00670	1	15363035	0.0040	G:G	-0.0226	141	A:G	0.006	13
	UGSS_00916	1	46522086	0.0154	A:G	-0.0138	36	G:G	-0.033	67
	UGSS_01028	1	52678585	0.0157	C:C	0.0313	31	A:A	-0.005	138
	UGSDI_02242	1	54468634	0.0093	C:C	-0.0152	92	A:C	0	73
	UGSDI_03630	1	64293897	0.0242	A:A	-0.0272	140	A:G	-0.002	17
	UGSDI_04747	2	2277079	0.0074	C:C	-0.0004	123	A:G	0.037	12
	UGSS_01909	2	3221343	0.0189	C:C	-0.0368	134	A:A	-0.054	38
	UGSDII_03223	2	18252899	0.0132	G:G	0.0358	167	A:C	0	9
	UGSS_01684	2	18705142	0.0133	A:A	0.0097	147	A:G	-0.040	7
	UGSDI_08747	2	73826945	0.0337	C:C	-0.0032	96	A:G	0.020	19
	UGSS_02698	3	497579	0.0274	G:G	0.0391	137	C:C	0.019	38
	UGSDI_10544	3	7736014	0.0235	C:C	-0.0097	163	G:G	0.039	11
Фран. mean	UGSDI_11887	3	16264864	0.0420	G:G	-0.0014	31	C:C	0.025	135
	UGSDII_05216	3	58207290	0.0293	G:G	0.0227	106	C:C	0.010	63
	UGSDI_12802	3	59222133	0.0150	G:G	-0.0316	57	C:C	-0.021	106
	UGSDI_14812	4	3443239	0.0178	A:A	-0.0287	150	G:G	-0.014	18
	UGSDI_21684	5	5585914	0.0416	C:C	-0.1241	81	A:C	-0.125	94
	UGSS_04354	5	5697301	0.0369	C:C	0.0069	70	A:G	0.023	20
	UGSS_04552	5	9137603	0.0420	A:A	0.0899	144	A:C	0.099	13
	UGSDII_07808	5	11048639	0.0310	C:C	-0.0027	87	A:G	0.016	30
	UGSDI_23923	5	25498005	0.0217	G:G	-0.0499	97	A:G	-0.051	79
	UGSDI_25517	5	56504980	0.0167	G:G	-0.0517	17	C:C	-0.028	156
	UGSDI_27222	6	45529043	0.0325	C:C	-0.0273	41	G:G	-0.028	121
	UGSDI_27967	6	50580527	0.0226	G:G	-0.0151	32	A:A	-0.044	139
	UGSDI_29473	6	57559466	0.0440	C:C	-0.0232	25	G:G	-0.053	147
	UGSDI_29634	6	58810203	0.0157	G:G	-0.0246	62	C:C	-0.009	108
	UGSDI_29798	6	60459760	0.0373	C:C	0.0087	70	A:G	0.032	10

Trait	Locus	Chr.	Position [cM]	p_Marker	Allel	Effect	n	Allel	Effect	n
	UGSDII_11202	7	53130716	0.0391	G:G	-0.0388	40	C:C	-0.041	130
	UGSDI_31651	7	56757202	0.0146	G:G	0.0641	79	C:C	0.054	26
	UGSDI_32247	8	3014692	0.0392	C:C	-0.0062	129	A:G	0.018	18
	UGSDII_12241	8	9018898	0.0153	A:G	-0.0690	149	C:C	-0.097	32
	UGSS_05515	8	48798667	0.0060	G:G	0.0338	147	A:C	0	27
	UGSDI_32858	8	49411280	0.0356	G:G	-0.0333	22	C:C	-0.011	150
Φ_{PSII} _mean	UGSDII_14270	8	50648581	0.0439	C:C	-0.0198	76	G:G	-0.021	78
	UGSDI_32962	8	50784624	0.0257	G:G	0.0263	142	A:G	0.009	5
	UGSDI_35992	9	9909969	0.0421	C:C	0.0236	115	G:G	0.037	38
	UGSDI_40000	9	49133114	0.0365	C:C	-0.0103	147	A:G	0.033	6
	UGSDI_40415	9	52529034	0.0237	A:A	-0.0514	18	G:G	-0.054	157
	UGSDII_15599	10	4586779	0.0312	C:C	0.0038	149	A:A	0.030	15
	UGSDI_43971	10	9655431	0.0098	C:C	0.0116	70	A:A	0.033	12
	UGSDI_00990	1	17772279	0.0386	A:A	0.0156	29	G:G	0.011	140
	UGSS_00882	1	45813048	0.0412	G:G	0.0069	145	A:A	-0.00013	18
	UGSDII_01462	1	70099164	0.0400	C:C	0.0045	154	A:A	-0.004	17
	UGSS_02435	2	9526405	0.0306	A:A	0.0058	60	C:C	0.018	6
	UGSDII_04148	2	65113602	0.0137	C:C	-0.0073	21	A:A	-0.015	144
	UGSDI_08696	2	73353359	0.0407	A:A	-0.0098	156	A:G	-0.010	13
	UGST_00227	3	2304449	0.0111	G:G	0.0102	52	C:C	0.005	119
	UGSS_02643	3	2503519	0.0268	C:C	0.0096	48	G:G	0.006	124
	UGSDI_11833	3	16099516	0.0096	A:A	0.0020	163	A:C	-0.010	14
	UGSDII_05167	3	57484015	0.0171	G:G	0.0141	165	C:C	0.009	11
	UGSDI_20169	4	67503756	0.0221	G:G	0.0098	158	C:C	0.009	10
	UGSDII_07441	5	7096990	0.0299	G:G	0.0079	148	C:C	0.011	12
	UGSS_04052	5	49987259	0.0370	C:C	0.0040	30	G:G	0.011	140
	UGSDI_25517	5	56504980	0.0338	G:G	0.0026	17	C:C	-0.007	156
Φ_{PSII}_sl	UGSDII_08774	6	1644212	0.0242	C:C	-0.0090	24	A:G	0	157
	UGSDII_10022	6	45995024	0.0353	C:C	0.0070	153	A:G	0	29
	UGSDI_30352	7	1624829	0.0020	C:C	0.0157	40	G:G	0.013	126
	UGSDI_32052	8	234578	0.0168	A:C	0.0082	16	G:G	0	167
	UGSDII_14222	8	50227065	0.0327	C:C	-0.0085	54	G:G	0.001	120
	UGSS_05729	8	54372482	0.0340	A:A	0.0083	42	G:G	0.010	123
	UGSS_05745	8	54424095	0.0332	A:A	0.0118	127	G:G	0.004	47
	UGSS_05937	9	2429648	0.0312	A:A	0.0154	4	G:G	0	16
	UGSDI_39240	9	46511577	0.0065	A:A	0.0102	167	A:C	0	12
	UGSS_06157	9	51319279	0.0373	G:G	0.0099	28	C:C	0.003	142
	UGSDI_42010	9	58369291	0.0348	A:A	0.0059	116	G:G	0.003	42
	UGSDII_15532	10	2243753	0.0142	C:C	-0.0018	68	A:A	0.006	18
	UGSDI_44580	10	13833465	0.0379	C:C	-0.0051	146	A:A	-0.001	7
	UGSDI_44715	10	14912907	0.0267	C:C	-0.0049	156	A:A	0	22
	UGSDI_46065	10	20416232	0.0184	A:A	0.0048	34	C:C	0	146
	UGSDI_00670	1	15363035	0.0299	G:G	0.2542	141	A:G	-0.706	13
	UGSDI_00990	1	17772279	0.0426	A:A	1.9635	29	G:G	1.386	140
	UGSS_00989	1	52324950	0.0161	A:C	1.7263	112	A:A	1.351	39
	UGSDI_02342	1	54720245	0.0305	A:A	-0.6048	117	A:G	-0.358	16
	UGSDI_02900	1	57831374	0.0328	A:A	0.7961	34	G:G	-0.544	130
$\Phi_{PSII} T_b$	UGSDII_01103	1	60627976	0.0272	A:A	0.3012	128	A:G	-0.420	20
	UGSS_01269	1	65048795	0.0398	C:C	3.3638	151	A:A	3.109	29
	UGSS_01684	2	18705142	0.0103	A:A	-0.5391	147	A:G	1.340	7
	UGSDII_04148	2	65113602	0.0144	C:C	-0.7581	21	A:A	-1.828	144
	UGSDI_08747	2	73826945	0.0333	C:C	0.0707	96	A:G	-0.655	19
	UGST_00227	3	2304449	0.0048	G:G	0.6429	52	C:C	-0.046	119

Trait	Locus	Chr.	Position [cM]	p_Marker	Allel	Effect	n	Allel	Effect	n
	UGSS_02643	3	2503519	0.0160	C:C	0.9832	48	G:G	0.413	124
	UGSDII_05129	3	57060236	0.0359	A:A	-0.1130	122	A:C	-0.772	18
	UGSDI_12802	3	59222133	0.0237	G:G	0.5214	57	C:C	-0.009	106
	UGSDI_13662	3	63671432	0.0436	A:A	-1.6725	166	A:C	-2.440	11
	UGSDI_15088	4	6261583	0.0184	C:C	0.4125	59	A:A	0	120
	UGSDI_20169	4	67503756	0.0028	G:G	1.4002	158	C:C	1.662	10
	UGSDII_07441	5	7096990	0.0039	G:G	0.9787	148	C:C	1.709	12
	UGSDII_07808	5	11048639	0.0007	C:C	0.1594	87	A:G	-0.742	30
	UGSDI_24739	5	46500037	0.0152	C:C	-0.1662	12	G:G	-1.554	166
	UGSDI_25517	5	56504980	0.0006	G:G	1.3337	17	C:C	-0.672	156
	UGSDII_08774	6	1644212	0.0363	C:C	-1.1061	24	A:G	0	157
	UGSDI_26919	6	37887169	0.0177	G:G	0.9017	149	A:G	-0.079	12
	UGSS_04670	6	37986408	0.0350	G:G	1.1589	165	A:C	0.260	7
	UGSDI_29642	6	58960437	0.0402	A:A	1.5096	25	G:G	1.594	148
	UGSDI_30352	7	1624829	0.0016	C:C	1.9090	40	G:G	1.305	126
$\Phi_{PSII} T_b$	UGSDII_11202	7	53130716	0.0225	G:G	1.2238	40	C:C	0.744	130
	UGSDI_32052	8	234578	0.0043	A:C	1.2255	16	G:G	0	167
	UGSDII_11636	8	2260138	0.0417	G:G	0.1836	31	C:C	-0.618	137
	UGSDII_11940	8	5700178	0.0327	A:G	-1.1006	32	C:C	-0.157	128
	UGSDI_33170	8	52033501	0.0390	G:G	1.0432	127	A:A	1.136	42
	UGSS_05729	8	54372482	0.0067	A:A	1.0652	42	G:G	1.402	123
	UGSS_05885	9	1130820	0.0041	A:G	1.7128	12	G:G	1.170	146
	UGSDI_34812	9	5493017	0.0205	C:C	-1.0094	155	A:G	-1.887	14
	UGSDI_35770	9	9255371	0.0170	A:G	0.6316	34	C:C	0	146
	UGSDI_39240	9	46511577	0.0044	A:A	1.2684	167	A:C	0	12
	UGSS_06138	9	51058868	0.0254	A:G	1.1468	37	C:C	0	142
	UGSS_06272	9	54095775	0.0286	G:G	3.6194	26	A:G	2.812	142
	UGSDI_43091	10	5773366	0.0215	G:G	-0.3847	127	A:A	0.646	12
	UGSDI_44580	10	13833465	0.0338	C:C	-0.5757	146	A:A	-0.171	7
	UGSDI_44715	10	14912907	0.0410	C:C	-0.4985	156	A:A	0	22
	UGSDI_46065	10	20416232	0.0176	A:A	0.5260	34	C:C	0	146

Figure S 4.1: Marker-trait associations (A) and QTL for population 1 (B) and population 2 (C) for mean across environments (*m*), exponents (*a*) and initial growth rate (DMGR₀) for dry matter growth rate (DMGR) and *m*, regression slopes (*sl*), and base temperatures (T_b) for leaf appearance rate (LAR), chlorophyll content (SPAD) and fluorescence (F_v '/ F_m ' and Φ_{PSII}). Only markers significantly associated with a trait or present in at least two populations are presented. Bold and italic markers are present in all three populations. Positions of markers of the association panel are given in 2*10⁻⁶ bp. Distances between markers in the cross populations are given in cM. Green markers are associated with a trait and located in a QTL region of population 1 or 2 or both populations.

References

- Afzal I, Basra SMA, Shahid M, Farooq M, Salem M (2008) Priming enhances germination of spring maize (*Zea mays* L.) under cool conditions. Seed Science and Technology 36: 497-503
- Anda A and Pinter L (1994) Sorghum germination and development as influenced by soiltemperature and water-content. Agronomy Journal 86: 621-624
- Bekele WA, Fiedler K, Shiringani A, Schnaubelt D, Windpassinger S, Uptmoor R, Friedt W, Snowdon RJ (2013) Unravelling the genetic complexity of sorghum seedling development under low temperature conditions. Plant Cell & Environment DOI: 10.1111/pce.12189
- Bouchet S, Pot D, Deu M, Rami JF, Billot C, Perrier X, Rivallan R, Gardes L, Xia L, Wenzl P, Killian A, Glaszmann JC (2012) Genetic Structure, Linkage Disequilibrium and Signature of Selection in Sorghum: Lessons from Physically Anchored DArT Markers. PLoS ONE 7(3): e33470. doi:10.1371/journal.pone.0033470
- Bhosale SU, Stich B, Rattunde HFW, Weltzien E, Haussmann BIG, Hash CT, Melchinger AE, Parzies HK (2011) Population structure in sorghum accessions from west africa differing in race and maturity class. Genetica 139: 453-463
- Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 2633-2635
- Branson TF, Guss PL, Ortman EE (1969) Toxicity of sorghum roots to larvae of the western corn rootworm. Journal of Economic Entomology 62: 1375-1378
- Brar GS and Stewart BA (1994) Germination under controlled temperature and field emergence of 13 sorghum cultivars. Crop Science 34: 1336-1340
- Breseghello F and Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (*Triticum aestivum* L.) Cultivars. Genetics 172: 1165-1177
- Breton G, Danyluk J, Charron JBF, Sarhan F (2003) Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and arabidopsis. Plant Physiology 132: 64-74
- Brown RF and Mayer DG (1988a) Representing cumulative germination. 1. A critical analysis of single-value germination indexes. Annals of Botany 61: 117-125

- Brown RF and Mayer DG (1988b) Representing cumulative germination. 2. The use of the Weibull Function and other empirically derived curves. Annals of Botany 61: 127-138
- Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine (*Pinus taeda* L.). III. QTL verification and candidate gene mapping. Genetics 164: 1537-1546
- Burow G, Burke J, Xin ZG, Franks C (2011) Genetic dissection of early-season cold tolerance in sorghum (*Sorghum bicolor* (L.) Moench). Molecular Breeding 28: 391-402
- Casa AM, Pressoir G, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Science 48: 30-40
- Chenu K, Chapman S, Tardieu F, McLean G, Welcker C, Hammer G (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: A "gene-to-phenotype" modeling approach. Genetics 138: 1507-1523
- Churchill GA and Doerge RW (1994) Empirical treshold values for quantitative trait mapping. Genetics 138: 963-971
- Cisse ND and Ejeta G (2003) Genetic variation and relationships among seedling vigor traits in sorghum. Crop Science 43: 824-828
- Collard BCY and Mackill DJ (2008) Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 363: 557-572
- Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: Where do we stand? Plant Physiology 147: 469-486
- Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177: 1889-1913
- Dumur D, Pilbeam CJ, Craigon J (1990) Use of the Weibull Function to calculate cardinal temperatures in faba bean. Journal of Experimental Botany 41: 1423-1430
- El-Lithy ME, Clerkx EJM, Ruys GJ, Koornneef M, Vreugdenhil D (2004) Quantitative trait locus analysis of growth-related traits in a new arabidopsis recombinant. Plant Physiology 135: 444-458

- El Soda M, Nadakuduti SS, Pillen K, Uptmoor R (2010) Stability parameter and genotype mean estimates for drought stress effects on root and shoot growth of wild barley preintrogression lines. Molecular Breeding 26: 583-593
- Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology 14: 2611-2620
- Farre I and Faci JM (2006) Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agricultural Water Management 83: 135-143
- Fiedler K, Bekele W, Friedt W, Snowdon R, Stützel H, Zacharias A, Uptmoor R (2012) Genetic dissection of the temperature dependent emergence processes in sorghum using a cumulative emergence model and stability parameters. Theoretical and Applied Genetics 125: 1647-1661
- Finlay KW and Wilkinson GN (1963) Analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research 14: 742-754
- Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annual Review of Plant Biology 54: 357-374
- FNR(2012) http://www.fnr.de/fileadmin/fnr/images/daten-und-fakten/2013/abb_108_2013_ 300dpi_meta.zip, access 09/30/2013
- Foyer CH, Vanacker H, Gomez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: Review.
 Plant Physiology and Biochemistry 40: 659-668
- Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (*Zea mays* L.). Journal of Experimental Botany 50: 1533-1540
- Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of coldtolerance of photosynthesis in maize. Plant Molecular Biology 56: 241-253
- Franks CD, Burow GB, Burke JJ (2006) A comparison of US and chinese sorghum germplasm for early season cold tolerance. Crop Science 46: 1371-1376
- Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6: e22629 doi:10.1371/journal.pone.0022629
- Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence.Biochimica et Biophysica Acta 990: 87-92

- Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2011) Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research 40: D1178-D1186
- Hamblin MT, Mitchell SE, White GM, Gallego W, Kukatla R, Wing RA, Paterson AH,Kresovich S (2004) Comparative population genetics of the panicoid grasses:Sequence polymorphism, linkage disequilibrium and selection in a diverse sample of*Sorghum bicolor*. Genetics 167: 471-483
- Haussmann BH, Mahalakshmi VM, Reddy BR, Seetharama NS, Hash CH, Geiger HG (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theoretical and Applied Genetics 106: 133-142
- Hill J, Becker HC, Tigerstedt PMA (1998) Quantitative and ecological aspects of plant breeding. Chapman & Hall, London
- Hsu FH, Nelson CJ, Chow WS (1984) A mathematical model to utilize the logistic function in germination and seedling growth. Journal of Experimental Botany 35: 1629-1640
- Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theoretical and Applied Genetics 109: 618-629
- Hund A, Fracheboud Y, Soldati A, Stamp P (2008) Cold tolerance of maize seedlings as determined by root morphology and photosynthetic traits. European Journal of Agronomy 28: 178-185
- Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: From theory to practice. Briefings in Functional Genomics 9: 166-177
- Ji SL, Jiang L, Wang YH, Zhang WW, Liu X, Liu SJ, Chen LM, Zhai HQ, Wan JM (2009) Quantitative trait loci mapping and stability for low temperature germination ability of rice. Plant Breeding 128: 387-392
- Jones PG and Inouye M (1994) The cold-shock response a hot topic. Molecular Microbiology 11: 811-818
- Jurczyk B, Rapacz M, Budzisz K, Barcik W, Sasal M (2012) The effects of cold, light and time of day during low-temperature shift on the expression of CBF6, FpCor14b and LOS2 in *Festuca pratensis*. Plant Science 183: 143-148
- Kanemasu ET, Bark DL, Chinchoy E (1975) Effect of soil temperature on sorghum emergence. Plant and Soil 43: 411-417

- Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (*Sorghum bicolor* L. Moench). Theoretical and Applied Genetics 103: 266-276
- Kempenaar C and Schnieders BJ (1995) A method to obtain fast and uniform emergence of weeds for field experiments. Weed Research 35: 385-390
- Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of *Sorghum bicolor*. Genetics 169: 1169-1173
- Knoll J, Gunaratna N, Ejeta G (2008a) QTL analysis of early-season cold tolerance in sorghum. Theoretical and Applied Genetics 116: 577-587
- Knoll J and Ejeta G (2008b) Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theoretical and Applied Genetics 116: 541-553
- Kocova M, Hola D, Wilhelmova N, Rothova O (2009) The influence of low-temperature on the photochemical activity of chloroplasts and activity of antioxidant enzymes in maize leaves. Biologia Plantarum 53: 475-483
- Kotowski F (1926) Temperature relations to germination of vegetable seed. Proceedings of the American Society of Horticultural Science 23: 176-184
- Kraakman ATW, Niks RE, Van den Berg P, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168: 435-446
- Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiologia Plantarum 74: 566-574
- Kumar SR, Hammer GL, Broad I, Harland P, McLean G (2009) Modelling environmental effects on phenology and canopy development of diverse sorghum genotypes. Field Crops Research 111: 157-165
- Lacaze X, Hayes PM, Korol A (2009) Genetics of phenotypic plasticity: QTL analysis in barley, *Hordeum vulgare*. Heredity 102: 163-173
- Lafarge T, de Raissac M, Tardieu F (1998) Elongation rate of sorghum leaves has a common response to meristem temperature in diverse african and european environmental conditions. Field Crops Research 58: 69-79
- Li M, Sun PL, Zhou HJ, Chen S, Yu SB (2011) Identification of quantitative trait loci associated with germination using chromosome segment substitution lines of rice (*Oryza sativa* L.). Theoretical and Applied Genetics 123: 411-420

- Limami AM, Rouillon C, Glevarec G, Gallais A, Hirel B (2002) Genetic and physiological analysis of germination efficiency in maize in relation to nitrogen metabolism reveals the importance of cytosolic glutamine synthetase. Plant Physiology 130: 1860-1870
- Liu JB, Fu ZY, Xie HL, Hu YM, Liu ZH, Duan LJ, Xu SZ, Tang JH (2011) Identification of QTLs for maize seed vigor at three stages of seed maturity using a RIL population. Euphytica 178: 127-135
- Ma CX, Casella G, Wu R (2002) Functional mapping of quantitative trait loci underlying the character process: A theoretical framework. Genetics 161: 1751-1762
- Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, del Moral LG, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R (2011)Association mapping in durum wheat grown across a broad range of water regimes.Journal of Experimental Botany 62: 409-438
- Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008)
 DArT markers: Diversity analyses and mapping in *Sorghum bicolor*. BMC Genomics 9: 26 doi:10.1186/1471-2164-9-26
- Mace ES and Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theoretical and Applied Genetics 123: 169-191
- MacKenzie K and Hackett C (2012) Association mapping in a simulated barley population. Euphytica 183: 337-347
- Malosetti M, Visser RGF, Celis-Gamboa C, van Eeuwijk FA (2006) QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato. Theoretical and Applied Genetics 113: 288-300
- Nakaminami K, Karlson DT, Imai R (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proceedings of the National Academy of Sciences 103: 10122-10127
- Neumann K, Kobiljski B, Denčić S, Varshney R, Börner A (2010) Genome-wide association mapping: A case study in bread wheat. Molecular Breeding 27: 37-58
- Oquist G and Huner NP (2003) Photosynthesis of overwintering evergreen plants. Annula Review Plant Biology 54: 329-355
- Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: The role of actin cytoskeleton and membrane fluidity. Plant Journal 23: 785-794

- Padilla JM and Otegui ME (2005) Co-ordination between leaf initiation and leaf appearance in field-grown maize (*Zea mays*): Genotypic differences in response of rates to temperature. Annals of Botany 96: 997-1007
- Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945-959
- Pswarayi A, van Eeuwijk FA, Ceccarelli S, Grando S, Comadran J, Russell JR, Pecchioni N, Tondelli A, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Thomas WTB, Romagosa I (2008) Changes in allele frequencies in landraces, old and modern barley cultivars of marker loci close to QTL for grain yield under high and low input conditions. Euphytica 163: 435-447
- R Development Core Team (2008) R: A language and environment for statistical computing.R Foundation for Statistical Computing Vienna, Austria. ISBN 3-900051-07-0
- Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (*Sorghum bicolor* L. Moench). Theoretical and Applied Genetics 97: 605-616
- Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiology 131: 664-675
- Reyna N and Sneller CH (2001) Evaluation of marker-assisted introgression of yield QTL alleles into adapted soybean. Crop Science 41: 1317-1321
- Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany 51: 447-458
- Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008)
 Identification of QTL for sugar-related traits in a sweet x grain sorghum (*Sorghum bicolor* L. Moench) recombinant inbred population. Molecular Breeding 22: 367-384
- Ryzhova NN, Filiushin MA, Artem'eva AM, Berdnikova MV, Taranov VV, Babakov AV, Kochieva EZ (2013) Identification and nucleotide polymorphisms in *Brassica rapa* genes coding cold-shock domain proteins. Molecular Biology 47: 97-104
- Sadok W, Naudin P, Boussuge B, Muller B, Welcker C, Tardieu F (2007) Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell and Environment 30: 135-146

- Sasaki K, Kim MH, Imai R (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation. New Phytologist 198: 95-102
- Savitch LV, Ivanov AG, Gudynaite-Savitch L, Huner NPA, Simmonds J (2011) Cold stress effects on PSI photochemistry in *Zea mays*: Differential increase of FQR-dependent cyclic electron flow and functional implications. Plant and Cell Physiology 52: 1042-1054
- Schimpf DJ, Flint SD, Palmblad IG (1977) Representation of germination curves with logistic Function. Annals of Botany 41: 1357-1360
- Shehzad T, Iwata H, Okuno K (2009) Genome-wide association mapping of quantitative traits in sorghum (Sorghum bicolor L. Moench) by using multiple models. Breeding Science 59: 217-227
- Shepard HL,Naylor REL, Stuchbury T (1996) The influence of seed maturity at harvest and drying method on the embryo, alpha-amylase activity and seed vigour in sorghum (Sorghum bicolor L. Moench). Seed Science and Technology 24: 245-259
- Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of *Sorghum bicolor* L. Moench. Theoretical and Applied Genetics 121: 323-336
- Snapp S, Price R, Morton M (2008) Seed priming of winter annual cover crops improves germination and emergence. Agronomy Journal 100: 1506-1510
- Soldati A, Stehli A, Stamp P (1999) Temperature adaptation of tropical highland maize (*Zea mays* L.) during early growth and in controlled conditions. European Journal of Agronomy 10: 111-117
- Sorkheh K, Malysheva-Otto LV, Wirthensohn MG, Tarkesh-Esfahani S, Martinez-Gomez P (2008) Linkage disequilibrium, genetic association mapping and gene localization in crop plants. Genetics and Molecular Biology 31: 805-814
- Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theoretical and Applied Genetics 118: 1439-1454
- Steponkus PL (1984) Role of the plasma-membrane in freezing-injury and cold-acclimation. Annual Review of Plant Physiology and Plant Molecular Biology 35: 543-584
- Stich B, Mohring J, Piepho HP, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genetics 178: 1745-1754

- Stitt M and Hurry V (2002) A plant for all seasons: Alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Current Opinion in Plant Biology 5: 199-206
- Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum *(Sorghum bicolor L. Moench)*: Consistency across genetic backgrounds and environments. Theoretical and Applied Genetics 101: 733-741
- Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theoretical and Applied Genetics 100: 1225-1232
- Tardieu F and Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Current Opinion in Plant Biology 13: 206-212
- Thomas H and Howarth CJ (2000) Five ways to stay green. Journal of Experimental Botany 51: 329-337
- Thornley JHM and Johnson IR (1990) Plant and crop modeling: A mathematical approach to plant and crop physiology. Oxford Science Publications.
- Timson J (1965) New method of recording germination data. Nature 207: 216-217
- Tiryaki I and Andrews DJ (2001) Germination and seedling cold tolerance in sorghum: II. Parental lines and hybrids. Agronomy Journal 93: 1391-1397
- Tiryaki I and Buyukcingil Y (2009) Seed priming combined with plant hormones: Influence on germination and seedling emergence of sorghum at low temperature. Seed Science and Technology 37: 303-315
- Trachsel S, Messmer R, Stamp P, Ruta N, Hund A (2010) QTLs for early vigor of tropical maize. Molecular Breeding 25: 91-103
- Trudgill DL, Squire GR, Thompson K (2000) A thermal time basis for comparing the germination requirements of some british herbaceous plants. New Phytologist 145: 107-114
- Uptmoor R, Osei-Kwarteng M, Gürtler S, Stützel H (2009) Modelling the effects of drought stress on leaf development in a *Brassica oleracea* doubled haploid population using two-phase linear functions. Journal of the American Society for Horticultural Science 134: 543-552
- Utz H and Melchinger AE (2006) PLABQTL, A computer program to map QTL. Institut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetik, Universität Hohenheim, Stuttgart, Germany

- van Eeuwijk FA, Bink M, Chenu K, Chapman SC (2010) Detection and use of QTL for complex traits in multiple environments. Current Opinion in Plant Biology 13: 193-205
- van Ooijen J (2006) JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V. Wageningen, Netherlands
- Vanhala TK and Stam P (2006) Quantitative trait loci for seed dormancy in wild barley (*Hordeum spontaneum* c. Koch). Genetic Resources and Crop Evolution 53: 1013-1019
- Ventelon M, Deu M, Garsmeur O, Doligez A, Ghesquiere A, Lorieux M, Rami JF, Glaszmann JC, Grivet L (2001) A direct comparison between the genetic maps of sorghum and rice. Theoretical and Applied Genetics 102: 379-386
- Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH (1995) Adaptive phenotypic plasticity: Consensus and controversy. Trends in Ecology & Evolution 10: 212-217
- Vieth E (1989) Fitting piecewise linear-regression functions to biological responses. Journal of Applied Physiology 67: 390-396
- Vinod KK (2011) Association mapping of crop plants. in preceding: "Impact of genomics in crop improvement: Perceived and achieved" Combatore, India
- Wade LJ, Hammer GL, Davey MA (1993) Response of germination to temperature amongst diverse sorghum hybrids. Field Crop Research 31: 295-308
- Weibull W (1951) A statistical distribution function of wide applicability. Jornal of Applied Mechanics 18: 293-297
- Werck-Reichert D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends in Plant Science 5: 116-123
- Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132: 1119-1130
- Xu Y and Crouch JH (2008) Marker-assisted selection in plant breeding: From publications to practice. Crop Science 48: 391-407
- Yin XY, Struik PC, van Eeuwijk FA, Stam P, Tang JJ (2005) QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. Journal of Experimental Botany 56: 967-976
- Yu JM and Tuinstra MR (2001) Genetic analysis of seedling growth under cold temperature stress in grain sorghum. Crop Science 41: 1438-1443

- Yu J, Tuinstra MR, Claassen MM, Gordon WB, Witt MD (2004) Analysis of cold tolerance in sorghum under controlled environment conditions. Field Crops Research 85: 21-30
- Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38: 203-208
- Zhang ZH, Su L, Li W, Chen W, Zhu YG (2005) A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice (*Oryza sativa* L.). Plant Sci 168: 527-534
- Zhang ZW, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu JM, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nature Genetics 42: 355-360
- Zhou MQ, Shen C, Wu LH, Tang KX, Lin J (2011) CBF-dependent signaling pathway: A key responder to low temperature stress in plants. Critical Reviews in Biotechnology 31: 186-192
- Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. The Plant Genome 1: 5-20

Danksagung

An dieser Stelle möchte ich mich herzlich bedanken bei:

Herrn Prof. Ralf Uptmoor für die Überlassung des interessanten Themas und die Betreuung der Arbeit mit vielen konstruktiven und lehrreichen Diskussionen, die mein wissenschaftliches Denken geprägt haben.

Herrn Prof. Hartmut Stützel für die Übernahme des Korreferates.

Herrn Prof. Thomas Debener für die Übernahme des Prüfungsvorsitzes.

Frau Katharina Meyer für das außerordentliche Engagement bei der Durchführung der Versuche, aber vor allen Dingen für ihre liebenswerte Art, so dass die Zusammenarbeit sehr viel Freude bereitet hat.

Herrn Benjamin Vahrmeyer, für den besten Büromitbewohner, den man sich wünschen kann.

Herrn Norbert Hacke für die Unterstützung der Versuche in Ruthe und den unermüdlichen Ideenreichtum die Landmaschinen umzubauen und anzupassen.

Frau Ilona Napp für die gute Laune und die wertvollen Tipps.

Frau Heike Bank für die immer hilfsbereite und freundliche Art und super Organisation.

Herrn Christoph Knake für die technische Unterstützung und die Süßigkeiten Schublade.

Frau Susann Gründig, meine alte und neue Kollegin, für den unermüdlichen Einsatz bei der Datenaufnahme während meiner Versuche.

Allen weiteren Mitarbeitern am Institut, die mich beim Gelingen dieser Arbeit unterstützt haben.

Meinen neuen Kollegen für das Verständnis und die Unterstützung, die Arbeit fertigstellen zu können.

Dirk für die Unterstützung, insbesondere während der schwierigen Zeit.

Meinen Eltern, die immer an mich geglaubt haben und mich in jeder Situation unterstützt haben.

Curriculum Vitae

Name	Karin Elisabeth Fiedler							
Geburtsdatum	19.04.1982							
Geburtsort	Hannover							
Staatsangehörigkeit	Deutsch							
Berufserfahrung								
Seit Okt. 2012	KWS Saat Ag							
	Wissenschaftliche Mitarbeiterin in der Zuckerrübenzüchtung							
März 2008-Aug. 2012	Leibniz Universität Hannover							
C	Institut für Gartenbauliche Produktionssysteme,							
	FG Systemmodellierung Gemüsebau							
	Wissenschaftliche Mitarbeiterin							
	Promotionsthema: Marker-trait associations for early season							
	cold tolerance in sorghum							
	Projektbeginn: April 2009							
Okt. 2008 - Apr. 2009	Bildungswerk der Niedersächsischen Wirtschaft							
-	gemeinnützige GmbH, Großburgwedel							
	Dozentin							
	Ausbildungsbegleitender Unterricht für Gärtner							
Feb. 2009 - Sep. 2009	Gartenbauzentrale eG, Papenburg							
1	Literaturstudie & Versuchsdurchführung: Bildung und							
	Vorkommen von Biphenyl in Petersilie							
Mai 2007 - Aug. 2007	Institute for International Applied System Analysis							
C	(IIASA), Laxenburg							
	Literaturstudie:							
	Crop ecological requirements for carrots							

Ausbildung

Okt. 2005 - März 2008	Leibniz Universität Hannover
	M. Sc. Gartenbauwissenschaften
	Nitrogen efficiency of Brussels sprouts in organic farming
Okt. 2002 - Sep. 2005	Leibniz Universität Hannover
	B. Sc. Gartenbauwissenschaften Möglichkeiten und Grenzen bei der Bekämpfung pilzlicher Pathogene im ökologischen Landbau unter besonderer Berücksichtigung von <i>Phytophthora infestans</i> und <i>Venturia</i> <i>inaequalis</i>
Okt. 2001 - Sep. 2002	Leibniz Universität Hannover
	Lehramt an Gymnasien: Biologie und Chemie
Juni 2001	Gymnasium Burgdorf Abitur

Veröffentlichungen

Bekele, W., Fiedler, K., Shiringani, A., Schnaubelt, D., Windpassinger, S., Uptmoor, R., Friedt, W., Snowdon, RJ. (2013): Unravelling the genetic complexity of sorghum seedling development under low temperature conditions, Plant Cell & Environment DOI: 10.1111/pce.12189.

Fiedler, K., Bekele, W., Friedt, W., Snowdon, R., Stützel, H., Zacharias, A., Uptmoor,
R. (2012): Genetic dissection of the temperature dependent emergence processes in sorghum using a cumulative emergence model and stability parameters, Theoretical Applied Genetics 125, 1647-1661.

Fiedler, K. & Stützel, H. (2012): Nitrogen efficiency of Brussels sprouts under different organic N fertilization rates, Scientia Horticulturae 134, 7-12.

Selbstständigkeitserklärung

gemäß § 6 Abs. 1 PromO für die Promotion zum Dr. rer. hort.

Ich erkläre, dass ich meine Dissertation mit dem Titel: "Marker-trait associations for early season cold tolerance in sorghum" entsprechend der Vorgaben des § 6 Abs.1 S. 2 lit. d PromO verfasst habe.

Im Einzelnen erkläre ich:

1.die Regeln der geltenden Promotionsordnung zu kennen und eingehalten zu haben und mit einer Prüfung nach den Bestimmungen der Promotionsordnung einverstanden zu sein,

2. die Dissertation selbst verfasst zu haben (Selbstständigkeitserklärung), keine Textabschnitte von Dritten oder eigener Prüfungsarbeiten ohne Kennzeichnung übernommen und alle benutzten Hilfsmittel und Quellen in der Arbeit angegeben zu haben,

3. Dritten weder unmittelbar noch mittelbar geldwerte Leistungen für Vermittlungstätigkeiten oder für die inhaltliche Ausarbeitung der Dissertation erbracht zu haben (d.h. die wissenschaftliche Arbeit ist weder in Teilen noch in Gänze von Dritten gegen Entgelt oder sonstige Gegenleistung erworben oder vermittelt worden),

4. die Dissertation noch nicht als Prüfungsarbeit für eine andere Prüfung eingereicht zu haben,

5. ferner, die gleiche oder eine in wesentlichen Teilen ähnliche Arbeit nicht bei einer anderen Fakultät oder bei einer anderen Hochschule als Dissertation eingereicht zu haben, keine andere Abhandlung als Dissertation anderswo eingereicht zu haben.

6. damit einverstanden zu sein, dass die Dissertation einer Überprüfung der Einhaltung allgemein geltender wissenschaftlicher Standards unterzogen wird, insbesondere auch unter Verwendung elektronischer Datenverarbeitungsprogramme.