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Dipl.-Ök. Corinna Evers geb. Luedtke

geboren am 11. Juli 1981 in Langenhagen

2014



Referent: Prof. Dr. Philipp Sibbertsen

Koreferent: Prof. Dr. Daniel Rösch
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Zusammenfassung

Diese Arbeit liefert eine genaue Definition des Begriffes Modellrisiko. Ein falsches Modell kann

zu erheblicher Über- oder Unterschätzung des Risikos einer Finanzinstitution führen. Weil

der zugrundeliegende datengenerierende Prozess in der Praxis unbekannt ist, ist die Bewer-

tung des Modellrisikos eine große Herausforderung. Bislang zu findende Definitionen von Mod-

ellrisiko waren entweder anwendungsorientiert und beinhalteten das Risiko, welches vielmehr

durch den Statistiker denn durch das statistische Modell selbst induziert wird oder zu wis-

senschaftlich und entsprechend zu abstrakt um in der Praxis umgesetzt zu werden. Wir führen

einen datengetriebenen Modellrisikobegriff ein, der Merkmale des wissenschaftlichen Ansatzes

um einen statistischen Modellierungsprozess erweitert. Ferner schlagen wir die Anwendung

robuster Schätzer zur Reduzierung des Modellrisikos vor und empfehlen die Anwendung von

Stresstests zur Portfoliobewertung.

Weiterhin untersuchen wir inwieweit die Fehlspezifikation eines zugrundeliegenden GARCH-

und Copula-GARCH-Modells zu Modellrisiko bei der Untersuchung des Value at Risk führen

kann. Es wird gezeigt, dass es wichtig ist, Phänomene wie Asymmetrie und langes Gedächtnis

in den Daten korrekt zu modellieren wohingegen die Wahl einer falschen Randverteilung von

geringerer Bedeutung ist. Diese Arbeit versucht die folgende Hypothese zu validieren: das

Fehlspezifikationsrisiko hat eine geringere Wirkung als das Schätzrisiko auf Prognosefehler mit

entsprechendem Einfluss auf die Value at Risk Prognose. Komplexere Modelle führen zu einem

höheren Schätzrisiko und beinhalten für längere Prognosehorizonte ein höheres Modellrisiko. Es

wird gezeigt, dass selbst Backtests darin scheitern, die Genauigkeit von Risikomaßen einzuschätzen,

selbst in dem Fall in dem die asymptotische Varianz des Tests um das Fehlspezifikations- und

Schätzrisiko korrigiert wird. Es werden multivariate Backtests zur Lösung dieses Problems

vorgeschlagen.

Modellunsicherheiten entstehen bei der Anwendung von Modellen und der Modellanwender

sich sollte daher Unsicherheiten und Nachteile der verwendeten Modelle im Klaren sein. Ein

komplexes Modell ist nicht notwendigerweise eine einfacheren Modell überlegen, wenn es um die

Prognose von Risikomaßen geht. Während man argumentieren kann, dass im Rahmen der Fi-

nanzmarktregulierung das Modellrisiko durch einen Multiplikationsfaktor ausreichend Rechnung

getragen wird, haben Finanzinstitutionen selbst wie auch Interessengruppen wie Investoren und

Ratingagenturen ein Interesse das Risiko durch die Modellanwendung zu bestimmen um ein re-

alistisches Bild der Finanzstabilität der Institution zu erlangen.

Schlüsselwörter: Modellrisiko, Schätzrisiko, Fehlspezifikationsrisiko



Abstract

This thesis provides a concise definition of model risk. A wrong model can lead to serious over-

or underestimation of a financial institution’s risk. Because the underlying data generating

process is unknown in practice evaluating model risk is a challenge. So far, definitions of model

risk are either application-oriented including risk induced by the statistician rather than by the

statistical model or research-oriented and too abstract to be used in practice. We introduce a

data-driven notion of model risk which includes the features of the research-oriented approach by

extending it by a statistical model building procedure. We furthermore suggest the application

of robust estimates to reduce model risk and advocate the application of stress tests with respect

portfolio evaluation.

It is further investigated in as how far the misspecification of an underlying GARCH-type and

Copula-GARCH-type model might introduce model risk when evaluating the Value at Risk. We

find that it is important to correctly specify phenomena such as asymmetry and long memory

in the data whereas choosing the correct marginal distribution is of minor importance. This

paper attempts to validate the following hypothesis: misspecification risk has a less serious

impact than estimation risk on forecast errors with a corresponding impact on VaR forecasts.

More complex models lead to a higher estimation risk and thus entail higher model risk for

longer forecast horizons. Even when accounting for model risk by incorporating estimation and

misspecification risk by adjusting the asymptotic variance of the test statistic, backtests fail to

assess the accuracy of computed risk measures. We suggest to use multivariate backtests for

getting more viable backtests.

Model uncertainties arise by the application of models and the user of models should be

aware of the uncertainties and flaws of the models used. Not the most complex models are

necessarily the best models in the context of forecasting risk measures. While in the context of

regulation one can argue that the measurement of model risk is sufficiently made allowance for

by the multiplication factor, financial institutions themselves as well as their stakeholders such

as investors and rating agencies have an interest in determining the risk stemming from model

application in order to get a realistic picture of the financial stability of the institution.

Keywords: model risk, estimation risk, misspecification risk
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1 Introduction

The omnipresent term of globalisation is perceived in the first place as being the gradual integration of

economies and financial markets. As economies and financial markets become integrated to a higher

degree, spill-over effects of adverse developments to other countries have a more detrimental effect on

previously more loosely linked economies. One of the by-products of globalisation therefore is a higher

vulnerability of the financial system as a whole.

Guaranteeing a sound and stable financial system in the lightof asymmetric incentives of governments

and financial institutions has therefore been the task of regulatory bodies. However, regulatory compe-

tition between countries make financial institutions shifttheir activities to countries with lower capital

requirements. In the 1990s, more efforts for the harmonisation of regulatory requirements have been

taken and implemented by the associated countries. More refined methods for measuring the risk taken

by financial institutions have been developed at that time aswell. Capital requirements as a buffer against

problems arising from changes in stock prices, interest rates, commodity prices or foreign exchange rates

(market risk) and the risk that a counterparty cannot fulfil its financial obligations and defaults on its debts

(credit risk) were the categories were the main attention ofrisk management efforts were turned upon.

During the last century other risk categories have been taken into account within the Basel II frameworks

due to several striking events. One of these is operational risk, that is the ”risk of loss resulting from

inadequate or failed internal processes, people and systems or from external events”. Liquidity risk is

another risk category were more emphasis has been put upon after the credit crunch in the aftermath of

the US subprime crisis. A new research issue concerns the development of risk aggregation methods

which account for the possible correlation between different risk categories. Although the measurement

of credit risk is still a challenging objective, one should assume that the vulnerability of the financial

system should have decreased to some extent due to the actiontaken by the responsible institutions.

However, the example of uncertainties in the measurement ofcredit risk already suggests that there are

other sources of risk that can lead to a biased risk measures.Traditionally, these errors have been taken

into account by the introduction of a multiplication factorapplied to the risk measure depending on the

accuracy of the model used for risk quantification.

Although the term of model uncertainty and the problems of estimation errors are a very common phe-

nomenon in the context of risk management problems arising from the application of models as such

have been more or less neglected until recently. Models are an approximation of the complex reality and

thus more or less simplify the real pattern of the underlyingdata generating process. Thus, using models

to explain and predict developments in social sciences havethe flaw of the models being only partly cor-

rect. During the last three centuries the risk management environment has become model-prone and the
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quantification of risk factors is regarded as essential in supervision efforts. However, the mere applica-

tion of models itself introduces model risk through estimation and misspecification risk. The following

papers are dedicated to this more recently introduced risk category.

The first paper provides a concise definition of model risk andsummarises methods for its quantification.

Model risk as part of the operational risk is a serious problem for financial institutions. As the pricing of

derivatives as well as the computation of the market or credit risk of an institution depends on statistical

models the application of a wrong model can lead to a serious over- or underestimation of the institution’s

risk. Because the underlying data generating process is unknown in practice evaluating model risk is a

challenge. So far, definitions of model risk are either application-oriented including risk induced by the

statistician rather than by the statistical model or research-oriented and too abstract to be used in practice.

Especially, they are not data-driven. We introduce a data-driven notion of model risk which includes the

features of the research-oriented approach by extending itby a statistical model building procedure and

therefore compromises between the two definitions at hand. We furthermore suggest the application of

robust estimates to reduce model risk and advocate the application of stress tests with respect to the

valuation of the portfolio.

Evaluating market risk by means of the Value at Risk means to evaluate the forecast distribution of a

suitable model for the return distribution of the underlying financial asset. The most popular models for

this purpose are GARCH-type models for the returns of financial assets. Model specification mainly aims

at obtaining a good in-sample fit to the data. In terms of measuring the model risk involved within a model

the forecast distribution and thus the out-of-sample fit is the most important criteria. We investigate

in how far the misspecification of an underlying GARCH-type model might introduce a model risk

when evaluating the Value at Risk. In the second paper, we findthat it is important to correctly specify

phenomena such as asymmetry and long memory in the data whereas choosing the correct marginal

distribution is of minor importance. Neglecting asymmetryand long memory in the data can lead to a

serious forecasting error and therefore to serious model risk.

The effect of model risk on Value at Risk (VaR) forecasts by using Copula-GARCH models is examined

in the third part of the thesis. Copula-GARCH models allow for the specification of the dependence

structure of return series. This paper attempts to validatethe following hypothesis: misspecification risk

has a less serious impact than estimation risk on forecast errors with a corresponding impact on VaR fore-

casts. We conduct a Monte Carlo study where different Copula-GARCH models with different marginal

distribution assumptions are simulated and used for forecasting the true as well as the other wrong mod-

els. We find that misspecification of the dependence structure as well as of the variance specification has

a negligible effect on forecast accuracy. The effect of the marginal distributional assumptions is found to
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be more pronounced. More complex models lead to a higher estimation risk and thus entail higher model

risk for longer forecast horizons.

Even when accounting for model risk by incorporating estimation and misspecification risk by adjusting

the asymptotic variance of the test statistic by the model risk incurred may fail to produce correct type

I errors when regulatory approaches restrict required backtests for assessing the accuracy of computed

risk measures. Together with my co-author Johannes Rohde I analyse these problems in the fifth chapter

of the thesis. We suggest to use multivariate backtests as being better solutions for getting more viable

backtests.

Thinking about model risk there are several crucial points to bear in mind: model uncertainties arise by

the application of models and the user of models should be aware of the uncertainties and flaws of the

models used. Not the most complex models are necessarily thebest models in the context of forecasting

risk measures. When it comes to determining the accuracy of models by using methods of backtesting

it should be kept in mind that even when accounting for model uncertainties regulatory prescriptions

can restrict the accurate measurement of models. While in the context of regulation one can argue that

the measurement of model risk is sufficiently made allowancefor by the multiplication factor, financial

institutions themselves as well as their stakeholders suchas investors and rating agencies have an interest

in determining the risk stemming from model application in order to get a realistic picture of the financial

stability of the institution.
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2 Measuring Model Risk

Joint with Philipp Sibbertsen and Gerhard Stahl

Published inThe Journal of Risk Model Validation (2008)2, pp. 65–81
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3 Model Risk in GARCH-Type Financial Time Series

Joint with Philipp Sibbertsen

Published inRösch, D. and Scheule, H. (ed.) Model Risk - Identification,Measurement and Management

(2010),pp. 75–89



Contributions to Model Risk 8

4 Model Risk in Copula-GARCH Type Financial Time Series

Joint with Grigoriy Tymchenko

4.1 Introduction

The last decades have seen a steadily growing model universefor the sake of describing the evolution of

stochastic processes. Particularly in the context of financial management, statistical models have been

developed that account for empirically justified facts and characteristics of financial time series. These

include fat tails in return distributions, volatility clusters, asymmetries and long memory in volatility

as well as non-linear dependence structures, see e.g. Cont [2001] and Embrechts et al. [2001] for more

detailed descriptions. Striving for including these factsby defining new models goes along with rising

complexity of models and numerosity of included parameters. For an applier it has thus become an

increasingly difficult task to select and fit models to a giventime series and to use them for the purpose

of forecasting densities as well as determining quantiles of distributions in a risk measurement context.

Therefore, it is questionable whether more intricate models are necessarily superior to simpler ones in

predicting the price or the risk of a financial asset. Concerns are primarily related to the uncertainty of the

additional risk incurred by using more complex models. The development towards a more model-prone

statistical world has thus given rise to a new category of risk called model risk. Sibbertsen et al. [2009]

define model risk as the risk occurring at the central steps ofthe statistical modeling process, namely

model choice, specification of the functional form as well asmodel estimation.

Model risk should not be confounded with conventional risk categories such as credit, market and op-

erational risk as its source is the risk incurred by the modeling of risk measures like Value at Risk

(VaR) as such. Nevertheless, it is regarded as a distinct part of operational risk but can be more clearly

distinguished from these risk categories by defining it as anuncertainty, see Cont [2004]. It has latterly

achieved broader attention in the research community (see Kerkhof et al. [2010] and Escanciano and Olmo

[2010] among others). According to the statistical modeling procedure model risk can be decomposed

into misspecification and estimation risk. Alternative approaches for the quantification of model risk

have already been proposed by Cont [2004] who uses a Bayesianas well as a worst-case approach for

model risk measurement. Kerkhof et al. [2010] define misspecification risk as the difference between

estimated VaR and the upper bound of the confidence region of the VaR estimate.

Due to the recent financial market crisis and a series of prominent bank failures as well as uncertainties

induced by the budget crisis in several countries in the European Union more effective mechanisms of

regulation and for handling model risk in particular have been called for. So far, the Basel II regula-



Contributions to Model Risk 9

tions implicitly deal with model risk by a multiplication factor ranging between three and four times the

amount set aside as a capital buffer for market risk depending on the number of VaR breaches ([BCBS,

1996]). Besides system relevance, model risk is a non-negligible issue for financial institutions as Basel

II allows for the internal calculation of risk capital. However, selecting models that take into account

inherent characteristics of financial time series involvesa trade-off between misspecification and estima-

tion risk. In the process of setting up internal models and determining risk measures financial institutions

have to decide which stylized facts have to be modeled and which the appropriate model is. We will argue

that some of the aforementioned characteristics need not tobe modeled and one can use simpler models

instead due to lower variance of parameter estimates. Estimation risk has a more pronounced impact on

out-of-sample forecasting performance than misspecification risk. Therefore, lower variance of parame-

ter estimates and thus estimation risk is more important in this regard. However, in some circumstances

which will be defined, modeling certain financial time seriescharacteristics cannot be neglected and need

to be taken into account by appropriate model classes. In these cases less parsimonious specifications

including parameters that account for non-negligible facts should be preferred, thus reducing model risk.

The purpose of this paper is to find out which these important characteristics and data situations are.

Important financial market data characteristics can be modeled by the class of copula-GARCH models

which have recently been introduced for the purpose of risk forecasting, see e.g. Lee and Long [2009],

Patton [2006], Fantazzini [2009]. These models combine themerits of the class of GARCH models with

the possibility of modeling non-linear dependence structures between assets by means of copula models.

Within the class of these models several studies consider the effect of underfitted models that beat less

parsimonious models in a forecasting contest. An extensivestudy by Hansen and Lunde [2005] yields

that simple GARCH(1,1) beat other intricate GARCH specifications in the context of VaR forecasting.

Hamerle and Rösch [2005] find that Gaussian copulas do not perform worde than Student-t copulas for

the purpose of credit risk measurement. Our study is closelylinked to the one of Fantazzini [2009] who

investigated the accuracy of copula-GARCH models.

We simulated paths of different copula-GARCH models each including five stylized facts and possible

combinations of them yielding eleven specifications overall. We then forecasted these processes with

the true model as well as with simpler specifications. We find that when forecasting VaR, asymmetry in

volatility is a non-negligible fact no matter whether it is the only fact present in the data or whether it

occurs in combination with any of the other stylized facts. When forecasting volatility, however, there

are only very special combinations of characteristics to befound that are not to be misspecified. For

lower degrees of asymmetry (γ < 0.3) for the Asymmetric Power GARCH the GARCH model which

does not take asymmetry in volatility into account will perform as good. However, neglecting fat tails

or tail dependence and using models that do no take these facts into account will not deteriorate forecast
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performance. Thus, when taking forecast errors as a model risk measure underfitting will not lead to

worse forecasts in many data situations.

In the next section copula-GARCH models are introduced. Thethird section is dedicated to the descrip-

tion and quantification of model risk sources and the bias-variance trade-off in copula-GARCH models.

In section 4 the results of the conducted Monte-Carlo study are illustrated. Section 5 wraps up the

findings.

4.2 Copula-GARCH Models

GARCH models. While conventional time series models assume the variance of stochastic processes to

be constant over time, empirical evidence finds them to be time-varying instead. Models of the GARCH

class are able to implicitly model the conditional varianceand volatility clusters in financial market data.

A vast number of extensions allow for other stylized facts such as long memory to be incorporated, see

Bollerslev [2007] for an exhaustive overview. Time-varying volatility is introduced through multiplica-

tive heteroskedasticity of the innovation term of the stochastic processyt :

εt = σtηt

ηt |Ψt−i
iid∼ (0,1)

whereΨt−i = yt−1,yt−2, ... is a σ -algebra. Whileηt is commonly assumed to be normally distributed,

Bollerslev [1987] suggests that the marginals be t-distributed (ηt ∼ t(ν)) thus taking into account fat-

tailed margins. The conditional varianceσ2
t of the GARCH(p,q) by Bollerslev [1986] model depends

on the lagged returns and variance

σ2
t = ω +

p

∑
i=1

αiε2
t−i +

q

∑
j=1

β jσ2
t− j ,

with parameters restrictedω > 0, αi ≥ 0 ∀i = 1, ..., p and β j ≥ 0 ∀ j = 1, ...,q thus ensuring thatσ2
t

remains positive.

Copula models. During the end of the 1990s, copula models emerged in the fieldof risk management

due to awareness of the fact that common risk models neglected the complexity of the dependence struc-

ture among assets. The attractiveness of copulas is mainly traced back to a theorem formulated by Sklar

[1959] which establishes the decomposition of a joint distribution F(x1, ...,xd) with random variables

x1, ...,xd into its d marginal distributionsFi ∀ i = 1, ...,d and their dependence structure by combining

them via a coupling functionC, called copula,

F(x1, ...,xd) =C(F1(u1), ...,Fd(ud)) =C(u1, ...,ud).
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A d-dimensional copula is a multivariate joint distribution defined on thed-dimensional unit hypercube

[0,1]d such that every marginal distribution is uniform on the interval [0,1]. It is unique if the marginal

distributions are continuous. The copula can thus be seen asthe joint distribution of the inverse transform

of the marginal distributions ofxi , F−1(ui):

C(u1, ...,ud) = F(F−1(u1), ...,F
−1(ud)).

Copula-GARCH models. Copula and GARCH models can be easily combined to form a new model

class, copula-GARCH models. A straightforward way is to transform the marginal distributionsηt of the

residuals into uniformly distributed marginals, so thatηi = xi in the above definition of the copula. Let

the joint distribution ofη1, ...,ηd be

F(η1, ...,ηd;θ ) =C(F1(η1), ...,Fd(ηd),ξ )

whereθ denotes the copula andξ denotes the marginal parameters. Several methods have beensuggested

for the estimation of copula-GARCH models. Although simultaneous estimation methods of marginal

and copula parameters are available due to Sklar’s Theorem estimation is preferred to be conducted in

sequential steps. Among them is the Inference Functions forMargins (IFM) method by Joe [1997] where

the copula as well as marginal parameters are separately estimated by maximum likelihood estimation.

Genest et al. [1995] and Kim et al. [2007] suggest a semi-parametric pseudo maximum likelihood esti-

mation (PML) of the dependence structure. The marginal parametersξ are estimated in the first step.

The copula parameters,θ , are estimated from fitting them to the empirical distributions of the marginals

F̂i :

F(η1, ...,ηd;θ ) =C(F̂1(η1), ..., F̂d(ηd)).

Another additional time-varying feature can be incorporated by letting the dependence parameter of the

copula vary over time, see among others Jondeau and Rockinger [2006].

4.3 Model Risk in Copula-GARCH Models

Model risk is defined as the risk induced by the choice, specification and estimation of a statistical model

for risk forecasting, thus occuring at each step of the statistical modeling cycle, Cuthbertson et al. [1992].

Forecasting risk measures by means of copula-GARCH models includes the selection of an approriate

estimation method for copula parameter estimation. The paper by Fantazzini [2009] suggests that IFM

estimation leads to copula misspecification caused by the misspecification of marginals. This is why
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using the IFM estimation we are not able to disentangle the marginal and dependence misspecifica-

tion effects on VaR. Another motivation for using the PML method is a huge reduction in complexity

compared with simultaneous estimation, see Kim et al. [2007]. The estimated parameter vectorsθ and

ξ separately affect quantile mapping and VaR estimation. Forthis reason we favor a semi-parametric

approach in our study and do not consider model uncertainty in this respect. We rather focus on the

occurrence of model risk in other modeling steps, namely marginal and copula parameter estimation and

their impact on forecasting volatility and risk measures.

Choosing a model that fits a time series adequately so that therisk of misspecifying the true underlying

process is relatively small induces high estimation risk asa higher number of parameters needs to be

determined. This induces low bias and high variance of parameter estimates through overfitting. If more

parsimonious models are chosen at the expense of adequate specification estimation risk should decrease

giving rise to a bias-variace trade-off.

Within a forecasting framework overfitting decreases the in-sample error. For the out-of-sample period

on the other hand high variance of an estimator through overfitting increases the forecast error. Thus,

in a risk management forecasting context one should consequently expect that estimation risk is more

severe than misspecification risk. The bias-variance trade-off suggests that the choice of simpler models

by misspecifying the true model does not decrease the accuracy of risk measures. Our following Monte

Carlo study will investigate whether this statement is universally true and otherwise describe situations

where departures are advisable.

4.4 Simulation Study

4.4.1 Stylized Facts and Specifications

Characteristics which are recognized as important empirical facts are fat-tailed distributions, asymme-

tries in volatility and (lower) tail dependence, see Figure1 for an illustration of these facts. These can

be modeled by models of the copula-GARCH class. Fat tails arecommonly accounted for by student-t

distributed margins in contrast to normally distributed ones. Volatility clusters and fat tails in conditional

variance are accounted for by fitting a GARCH model. The Asymmetric Power ARCH (APARCH) al-

lows for including asymmetric responses in volatility. While the Gaussian copula allows for combining

different marginals, the Student-t copula incorporates tail dependence in addition. Lower tail dependence

meaning that in market downturns correlations tend to rise can be modeled by the Clayton copula.

The Asymmetric Power ARCH model (APARCH) of order (p,q) proposed by Ding et al. [1993] accounts
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for the stylized fact of asymmetric responses of volatilityto shocks,

σ δ
t = ω +

p

∑
i=1

αi [|εt−i |− γiεt−i ]
δ +

q

∑
j=1

β jσ δ
t− j

with ω > 0 andαi as well asβ j being non-negative. The power parameterδ ≥ 0 is a Box-Cox trans-

formation thereby linearizing the non-linear model and−1 < γ < 1 ∀i = 1, ..., p is the parameter that

incorporates the leverage effect so that negative shocks have a higher impact on the conditional vari-

ance than positive ones. Note that when settingδ = 2 this model yields the GJR-GARCH model by

Glosten et al. [1993] and further restrictingγ = 0 results in the above specification of a GARCH(p,q)

process.

Among the most popular copulas in risk management are elliptical copulas such as the Gaussian copula

whereCΦ(u1, ...,ud;ρΦ) = (Φ(u1), ...,Φ(ud)) whereΦ is the cdf of the Gaussian distribution and the

Student-t copulaCtν (u1, ...,ud) = (t(u1), ..., t(ud);ρtν ) with tν being the cdf of the Student-t distribution

andρ is correlation coefficient of the copula. In contrast to the Gaussian copula, the Student-t copula

results in a star-shaped scatterplot for low degrees of freedom ν with its highest density on the main

diagonal and allows for modeling higher dependence in the tails of the multivariate distribution (tail de-

pendence). It tends towards a Gaussian copula for increasing values ofν . While advantageously one can

easily specify different correlation patterns between themargins of elliptical copulas, their main obstacle

is their radial symmetry which does not allow elliptical copulas for modeling asymmetric dependency

structures, i.e. increasing dependencies among assets in periods of market downturns which are broadly

observable among financial market data. The Clayton copula (Clayton [1978]) has been suggested to ac-

count for lower tail dependence in the sense of increasing concordance of random variables in the lower

tails of the distribution. It belongs to the Archimedean copula class which is constructed by means of a

convex copula generatorψ(·),

C(u1, ...,ud) = ψ−1[Σn
i=1ψ(ui)].

For the Clayton copula this generator is defined as

ψ(ui) =
1
κ
(u−κ

i −1)

which by insertion in the Archimedean copula function leadsto the Clayton copula with

CCl(u1, ...,ud,κ) = [
n

∑
i=1

u−κ
i −n−1]−1/κ ,

defined forκ ∈ [−1,0]∪ (0,∞]. A copula has lower tail dependence if the tail index isλ ∈ (0,1] and for

the Clayton copula the tail index
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λ = 2−1/κ

results. The higher the copula parameterκ , the more pronounced is the dependence of the random

variables in the lower tails. Therefore, the Clayton copulaseems to be a promising model as it should

be able to reflect the dependence structure in financial risk measurement much better due to increasing

correlation of risk factors in adverse market situations. The following figures exemplarily show plots of

the dependence structure produced by the respective copulas. Figure 2a) and b) show simulated draws

from the Gaussian and the Student-t copula with same correlation coefficient which result in a different

dependence structures. Figure 2c) displays the Clayton copula forκ = 3 where the asymmetric nature of

this copula type becomes evident.
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Figure 1: Normally distributed marginals, 10,000 random draws from a) Gaussian copula (ρ = 0.5), b)

Student-t copula (ρ = 0.5, ν = 5), c) Clayton copula (κ = 3)

The following study will investigate misspecifications of underlying processes by underfitting and / or

underparametrization of the true model. Our most basic specification is the GARCH model with nor-

mally distributed marginals without tail dependence (Gaussian copula). In a first step we investigate

whether neglecting one characteristic leads to better or equally good forecasts. If this is true for in-

stance if marginals are fat-tailed forecasting with normally distributed marginals will perform not worse

than forecasting with t-distributed ones, forecasting with GARCH should lead to as good or even better

forecasts than forecasts with APARCH although asymmetric volatility is present in the data.

However, even if one of the characteristic can be neglected when it is present in the data conditioned on

the existence of other characteristics that are present it has to be taken into account that there are all kinds

of fact combinations thinkable in which these characteristics cannot be neglected and underfitting will

lead to higher forecast errors. As an example this means thatwhen fat tails and asymmetric volatility
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are present in the data, it is to be determined whether GARCH models with normally distributed residu-

als, APARCH models with normally distributed residuals andGARCH models with student-t distributed

residuals produce lower forecast errors. The most complex spefication when fat tails, asymmetric volatil-

ity and lower tail dependence are present in the data may leadto the situation where none of the facts

can be neglected.

4.4.2 Simulation Design and Forecast Methodology

In a pre-analysis we determine a reasonable choice of the asymmetry parameter of the APARCH model

for simulation. An APARCH(1,1) model withω = 0.01, α = 0.05, β = 0.85, δ = 2 andγ ∈ (0.1,0.2, ...,0.9,1.0)

has been simulated and a GARCH as well as APARCH has been fittedto the simulated series and used

for prediction of volatility and VaR. The following figure displays the forecast error for varying degrees

of the asymmetry parameterγ of the underlying DGP. Forγ → 0 one should expect that the forecast er-

rors resulting from fitting a GARCH model are as high or less than those from fitting an APARCH model

as the asymmetry effect vanishes for smallerγ . For increasingγ one would expect that APARCH fore-

cast errors are gradually becoming less than those resulting from fitting and predicting with the GARCH

model. A Monte Carlo study has been conducted to evaluate thepoint where both models produce fore-

cast of equal quality as far as forecast errors are concerned. Each step is replicated 100 times. The

following figures show the forecast errors resulting from predicting volatility and VaR of the APARCH

series with the true as well as the GARCH model.
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Figure 2: Mean Squared Forecast Error, upper left: return, upper right: volatility, bottom left: VaR95%,

bottom right: VaR 99% , blue: APARCH, grey: GARCH

As expected, the GARCH model performs better for lower degrees of asymmetry and the APARCH

is superior to GARCH for higher asymmetry in volatility. Mean squared forecast errors (MSFEs) are

equal for both models when the degree of asymmetry of the underlying process isγ = 0.4 approximately.

When forecasting VaR the difference between GARCH and APARCH becomes more significant for

higher degrees ofγ in comparison to those for volatility forecasts. We therefore setγ = 0.5 in our Monte

Carlo study when simulating an APARCH model so that the asymmetry in volatility characteristic is

pronounced in a reasonable way.

For our Monte-Carlo study we simulated eleven different bivariate data generating processes (DGP) with

lengtht = 980 where each of the following specifications were combined:

• GARCH(p,q) or APARCH(p,q)

• Standard normally distributed or Student-t distributed marginals;

• Gaussian, Student-t or Clayton copula.

The only specification that was not simulated is the most basic specification from which we cannot depart

to any simpler specification for the purpose of forecasting in our framework. The following table contains

parameter choices for simulation. For the mean equation an AR(1) process was chosen and the order of

the GARCH and APARCH process was set top= 1 andq= 1. As we setδ = 2 for the APARCH model

we do not consider the power property of the APARCH but ratherrefer to the GJR-GARCH model and
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solely focus on the asymmetry of the process volatility.

GARCH(1,1) APARCH(1,1) η

µ 0.15 0.15 -

φ 0.50 0.50 -

ω 0.01 0.01 -

α 0.05 0.05 -

β 0.85 0.85 -

γ 0.00 0.50 -

δ 2.00 2.00 -

µΦ - - 0

σ2
Φ - - 1

ν - - 5

ρΦ/tν - - 0.5

ν - - 5

κ - - 3

Table 1: DGP Specification

The time series were split into an in-sample (t1 = 700) and an out-of-sample (t2 = 280) period and the

ratio of in-sample to out-of-sample horizon isπ = 0.4.

The time series are estimated and forecasted with the true model as well as the other eleven models. The

bivariate time-series models are estimated with Maximum Likelihood with normally andt-distributed

errors. The computed residuals are used for the estimation of the copula parameters by means of a

pseudo-ML approach by converting the empirical distribution of margins into uniformly distributed ones

which includes the computation ofui = F̂i(ηi). From these computedui we estimate the copula parame-

tersρ , ν andκ and the parameters of the marginal distributions,µ , σ2 andν . Only the estimation of the

marginals requires the distributional assumptions. This is why we expected no violations in estimated

copula parameters with respect to the marginal assumptions. Thus, the possible differences in predic-

tions of VaR, return and volatility cannot be any more explained by means of violations of the copula

parameters, caused by the marginal assumptions, see Fantazzini [2009]. However, these assumptions can

be crucial for estimation of the GARCH model. We then computed one-step ahead forecasts of volatility

and VaR at confidence levelsα = (0.95, 0.99) by using a rolling window forecasting scheme of length

700. These steps are replicated 1,000 times.
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4.4.3 Results

Although not necessarily that important for our argumentation we calculated deviances of the parameter

estimates by using wrong models from those that have been used for simulation. Overall, estimation with

misspecified models having less parameters and not taking into account the complexity of the underlying

process results in partly heavily biased parameter estimates.1

Volatility Forecast

Results for volatility out-of-sample mean squared forecast errors are provided in Table 2. If one charac-

teristic feature is included in the data, that is the GARCH-t for fat tails in margins with Gaussian copula

the APARCH-N with Gaussian copula thus (asymmetry in volatility) and theGARCH-N with Student-t

and Clayton copula (with (lower) tail dependence) has been simulated, then forecasting with a model that

neglects this characteristic leads to MSFEs of lower or comparable size. Thus, forecasting with the basic

model when marginals are fat-tailed does not lead to an increase in model risk. The same is true if two

or even three features are included in the DGP. However, in certain combinations it is crucial not to miss

the effect of the occurence of two characteristics at once which lead to a huge increase in MSFEs: when

the DGP is an APARCH model witht-distributed margins and (lower) tail dependence, then forecasting

with a GARCH model with fat-tailed margins no matter whetherthe dependence structure is transformed

with a Gaussian, Student-t or Clayton copula will make the MSFEs rise considerably. Although not in

every case, it seems to be important to pay attention to an asymmetric volatility structure when present

in the data especially when assets have stronger dependencein the (lower) tails.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

GARCH-N (G) 0.1214 0.1214 0.8008 1.0281 1.0228 0.5993 0.5983 0.7306 1.8891 1.8510 2.3128

GARCH-N (T) 0.1213 0.1213 0.8006 1.0304 1.0269 0.5989 0.5983 0.7337 1.8890 1.8499 2.3223

GARCH-N (C) 0.1153 0.1153 0.7547 0.9917 1.0201 0.5627 0.5703 0.7262 1.7791 1.7692 2.2993

GARCH-t (G) 0.1157 0.1157 1.0882 1.3573 1.3685 0.5748 0.5750 0.7019 2.6102 2.5777 3.1805

GARCH-t (T) 0.1156 0.1156 1.0900 1.3680 1.3857 0.5749 0.5753 0.7051 2.6163 2.6112 3.2290

GARCH-t (C) 0.1101 0.1101 1.0323 1.3112 1.3527 0.5407 0.5487 0.6973 2.4771 2.4854 3.1320

APARCH-N (G) 0.1209 0.1209 0.7631 0.9221 0.9676 0.6108 0.6080 0.7454 1.9007 1.8458 2.3076

APARCH-N (T) 0.1209 0.1209 0.7630 0.9223 0.9715 0.61080.6079 0.7484 1.9006 1.8447 2.3171

APARCH-N (C) 0.1149 0.1149 0.7187 0.8870 0.9618 0.5738 0.5799 0.7425 1.7913 1.7655 2.3003

APARCH-t (G) 0.1854 0.1854 1.0822 1.2820 1.3427 0.6113 0.6093 0.7471 2.3636 2.3232 2.8752

APARCH-t (T) 0.1855 0.1855 1.0846 1.2969 1.3599 0.6113 0.6095 0.7504 2.3682 2.3475 2.9126

APARCH-t (C) 0.1756 0.1756 1.0258 1.2388 1.3221 0.5744 0.5813 0.7437 2.2432 2.2393 2.8448

Table 2: MSFE, Volatility Forecast

1More detailed results as well as result tables are availableupon request.
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Forecast Error Accuracy Test

Table XY provides results of Diebold Mariano test for error accuracy of volatility forecasts for non-

nested models andENC-NEWtest by Clark and McCracken [2001] rolling scheme for nestedmodels for

π = 0.4 andk = 1 if only fat tails were neglected,k = 2 if asymmetric volatility was not modelled or

k= 3 if both. Test statistics in bold indicate higher forecast errors:

True model Reduced model ENC-NEW DM

GARCH-T + Clayton GARCH-T + Gaussian 0.6856

GARCH-T + Student-t 0.0000

GARCH-N + Clayton 76.5080

GARCH-N + Gaussian 0.0000

GARCH-N + Student-t 0.0000

APARCH-T + Gaussian APARCH-N + Gaussian 89.7712

GARCH-T + Gaussian 60.3272

GARCH-N + Gaussian 88.6559

APARCH-N+ Student-t APARCH-N + Gaussian 0.2820

GARCH-N + Student-t 8.2977

GARCH-N + Gaussian 8.2033

APARCH-N + Clayton APARCH-N + Gaussian 0.6706

APARCH-N + Student-t 0.3796

GARCH-N + Clayton 3.9323

GARCH-N + Gaussian 0.0000

GARCH-N + Student-t 0.0079

Table 3: Forecast error accuracy tests for selected reducedmodels

The results suggest no significant increase in models risk due to higher forecast errors if (a)symmetric

tail dependence was neglected, but sufficient increase if asymmetric volatility was misspecified. This

effect, however, reinforces if two of the characteristics were not accounted for as this is the fact in case

of APARCH-N + Clayton modelled with APARCH-N Gaussian and GARCH-N Gaussian.

Value at Risk forecast

Results for Value at Risk out-of-sample forecast errors areprovided in Table 4 and 5. If the true model

contains tail dependence (GARCH-N-Student-t copula), lower tail dependence (GARCH-N-Clayton

copula) or fat-tailed margins (GARCH-t-Gaussian copula),forecasting Value at Risk with more par-

simonious models neglecting each one of these facts will lead to lower forecast errors suggesting that

misspecification leads to better forecasts when these characteristics are present in the data. However, if

the feature of asymmetry in volatility (APARCH-N-Gaussiancopula) is characteristic for the data, using

a GARCH process to forecast Value at Risk will lead to an increase of forecast error in comparison to
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forecasting with the true model.

No matter whether the data-generating process has fat tailsand tail dependence (GARCH-t-Student-

t copula), fat tails and asymmetric tail dependence (GARCH-t-Clayton copula), fat tails and asym-

metric volatility (APARCH-t Gaussian copula), asymmetricvolatility and tail dependence (APARCH-

N-Student-t copula) or asymmetric volatility and lower tail dependence (APARCH-N-Clayton copula)

forecasting Value at Risk with GARCH models, when asymmetryin volatility is present, forecast errors

will increase. The only exception is the latter combinationwhere neglecting asymmetry in volatility is

tolerable when forecasting is done with a model that does nottake asymmetry in volatility into account.

If the data contains asymmetric volatility, fat tails and (lower) tail dependence choosing simpler speci-

fications for forecasting will not have a deterioriating effect on model risk. The only fact that increases

forecast errors is asymmetry in volatility. Another case is95% VaR, neglecting the tail dependence in

the data by using Gaussian copula to forecast leads to higherforecast errors.

A crucial characteristic that is not to be missed when forecasting Value at Risk is the asymmetry in

volatility. If this feature is present in the data – no matterwhether it occurs in combination with other

more complex specification or alone – using simpler models will lead to higher forecast errors. Neglect-

ing fat-tailedness of the marginal distributions as well astail dependence or even lower tail dependence

will in general induce no problems regarding the reliability of forecasts. Forecast errors might even

decrease due to lower estimation risk. Interpretations do hardly differ between 95% and 99% VaR.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

GARCH-N (G) 0.7274 0.8574 3.3170 3.4345 4.2251 2.6079 2.5808 3.1417 6.7794 6.9241 7.7902

GARCH-N (T) 0.7263 0.8607 3.3149 3.4306 4.2575 2.6062 2.5773 3.1522 6.7750 6.9149 7.8183

GARCH-N (C) 0.7597 0.9108 3.3990 3.5757 4.4795 2.6798 2.6926 3.3280 6.9651 7.2306 8.2898

GARCH-t (G) 0.6984 0.8209 4.1134 4.2713 5.2167 2.4805 2.4520 2.9880 8.4746 8.6472 9.6878

GARCH-t (T) 0.6968 0.8236 4.1062 4.2197 5.2269 2.4786 2.4460 2.9965 8.4553 8.5246 9.6654

GARCH-t (C) 0.7282 0.8706 4.1631 4.3925 5.5222 2.5446 2.5536 3.1613 8.5755 8.8882 10.2522

APARCH-N (G) 0.7272 0.8570 3.1989 3.3127 4.0144 2.5309 2.5027 3.0521 6.4195 6.5498 7.4395

APARCH-N (T) 0.7262 0.8603 3.1970 3.3106 4.0276 2.52942.4991 3.0624 6.4155 6.5407 7.4730

APARCH-N (C) 0.7593 0.9103 3.2790 3.4506 4.2367 2.6003 2.6116 3.2352 6.5960 6.8372 7.9206

APARCH-t (G) 0.9608 0.8656 4.0831 4.1988 5.0071 2.5305 2.4957 3.0303 7.5077 7.6913 8.6576

APARCH-t (T) 0.9583 0.8686 4.0757 4.1446 4.9962 2.5286 2.4898 3.0396 7.4925 7.5908 8.6325

APARCH-t (C) 1.0052 0.9194 4.1294 4.3074 5.2982 2.5971 2.6016 3.2143 7.5990 7.9059 9.1589

Table 4: MSFE, 95% VaR Forecast
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

GARCH-N (G) 1.1964 1.4156 5.6075 5.7709 7.2030 4.3072 4.2668 5.1713 11.4449 11.6516 13.2443

GARCH-N (T) 1.2539 1.4533 5.6368 6.0286 7.4051 4.3357 4.4730 5.2960 11.5203 12.1994 13.5862

GARCH-N (C) 1.3494 1.5386 6.1680 6.4646 7.8003 4.7778 4.8114 5.6127 12.6956 13.1459 14.4414

GARCH-t (G) 1.1544 1.3645 9.1975 9.4914 12.1075 4.1637 4.1185 5.0042 19.2818 19.5902 22.9106

GARCH-t (T) 1.2089 1.4004 9.2381 9.8342 12.3396 4.1909 4.3143 5.1286 19.3872 20.3052 23.4748

GARCH-t (C) 1.3023 1.4839 10.1791 10.7427 13.3126 4.6246 4.6524 5.4426 21.5454 22.3604 25.4730

APARCH-N (G) 1.1959 1.4148 5.3673 5.5232 6.7321 4.1829 4.1417 5.0287 10.8019 11.0036 12.6581

APARCH-N (T) 1.2531 1.4522 5.3972 5.7661 6.8905 4.20864.3398 5.1563 10.8880 11.5188 12.9902

APARCH-N (C) 1.3487 1.5376 5.9158 6.1885 7.2968 4.6404 4.6721 5.4579 12.0150 12.4202 13.8075

APARCH-t (G) 1.6879 1.4555 9.1496 9.3071 11.6037 4.2486 4.1944 5.0785 16.4738 16.8080 19.7634

APARCH-t (T) 1.7682 1.4944 9.1928 9.6322 11.9157 4.2744 4.3933 5.2071 16.5566 17.4408 20.2769

APARCH-t (C) 1.9121 1.5849 10.1385 10.5424 12.8339 4.7201 4.7401 5.5263 18.3921 19.1805 21.9716

Table 5: MSFE, 99% VaR Forecast

Backtests

As the Basel II framework stipulates the application of backtests in the sense of testing whether the

fraction of times 99% VaR exceeds the return in a period of 250days equals the VaR level that exceeds

returns only 1% of the time. The test proposed by Kupiec testswhether the exceedance series uncondi-

tionally keeps the level. A test suggested by Christoffersen demands that also unconditionally the level

holds and takes into account whether models have the abilityto adjust or build up exceedance clusters.

Table XY provides results of number of exceedances within out-of-sample periods, as well as p-values

of both tests for 99% VaR:
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True model Reduced model EXC KT CT

GARCH-T + Clayton GARCH-T + Clayton 2 0.3048 0.0241

GARCH-T + Gaussian 3 0.3312 0.0412

GARCH-T + Student-t 3 0.3286 0.0328

GARCH-N + Clayton 7 0.3105 0.2083

GARCH-N + Gaussian 8 0.2758 0.2545

GARCH-N + Student-t 8 0.2856 0.2483

APARCH-T + Gaussian APARCH-T + Gaussian 2 0.29810.0391

APARCH-N + Gaussian 7 0.2757 0.2228

GARCH-T + Gaussian 2 0.3030 0.0279

GARCH-N + Gaussian 7 0.2568 0.2581

APARCH-N+ Student-t APARCH-N+ Student-t 6 0.2670 0.1944

APARCH-N + Gaussian 7 0.2460 0.2275

GARCH-N + Student-t 7 0.2492 0.2467

GARCH-N + Gaussian 8 0.2310 0.2728

APARCH-N + Clayton APARCH-N + Clayton 6 0.2520 0.2023

APARCH-N + Gaussian 7 0.2146 0.2579

APARCH-N + Student-t 7 0.2254 0.2367

GARCH-N + Clayton 7 0.2285 0.2660

GARCH-N + Gaussian 8 0.1966 0.3170

GARCH-N + Student-t 8 0.2073 0.3029

Table 6: VaR Forecast accuracy: h=1, VaR=99%

Results suggest using more parsimonious models leads to better forecasts performance. Especially con-

cerning the fat tails which can be adequately reflected with normal distribution of residuals of GARCH or

APARCH model. Choosing the Student-t distribution insteadincreases the estimation risk, the predicts

become more conservative. These models are rejected by Christoffersen test, i.e. their ability to build up

exceedance clusters is very poor.

4.5 Conclusion

This paper investigates the trade-off between estimation and misspecification risk in a forecasting frame-

work with attention focused on the forecasting of extreme quantiles of distributions of a portfolio of

bivariate time series. It is argued that by utilizing the bias-variance trade-off through underfitting better

forecasts and less model risk in forecasting through decreasing estimation risk results. On the other hand,

if certain empirical data features that are process-relevant are not being modeled misspecification errors

increase so that higher forecast errors result from estimation with more parsimonious models. This study

looked at the characteristics and combinations of characteristics that need to be modeled when present

in the data.

It is left open for further research whether other facts suchas long memory in volatility or time de-
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pendence of copula parameters which have been found in financial time series need explicitly be taken

into account in a copula-GARCH framework. Luedtke and Sibbertsen [2010] find that long memory in

GARCH alone does play a role. Furthermore, it would be interesting whether the results hold in a mul-

tivariate modeling framework where the time-variation of the covariance and / or correlation between

assets is modeled by respective models such as the Constant or Dynamic Conditional Correlation models

(DCC, CCC).
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5 Model Risk in Backtesting Risk Measures

Joint with Johannes Rohde

5.1 Introduction

Backtesting is a mean to analyse whether a model used for calculating risk measures is accurate. It is at

the core of supervisory activity regarding the resilience of financial institutions in alleviating the impact

of financial crisis as the accuracy of risk measures has implications for the solvency capital that financial

institutions have to calculate.

BCBS [1996] regulations state that the calculation of a financial institutions’ market capital requirement

for preventing losses resulting from adverse market conditions be the maximum of either the 0.01% Value

at Risk (VaR) or the average VaR reported during the previous60 days multiplied by a factor depending

on the sum of VaR violations during the reporting period (traffic-light approach). Thus, the accuracy

of the VaR model is closely linked to the regulatory framework. An accurate VaR model satisfies two

properties as defined by Kupiec [1995] and Christoffersen [1998].

The unconditional coverage property, formally

Pr(I(α) = 1) = α ,

where{It} is the hit sequence indicating if a violation occurred or not, claims that the probability of

violations during the reporting period equals theα level set for VaR calculation. The VaR model is

deemed inaccurate in the sense of failing to be able to account for the incurred risk if the number of

violations exceeds the number of expected losses. The risk model is too conservative when the VaR

model yields less violations than to be expected.

A second claim is the independence of elements of the hit sequence. If the violations occur in a cluster,

the financial institution might not be able to tackle the losses in contrast to a situation where the violations

are spread out evenly over the reporting horizon. An accurate VaR model is therefore characterized by

satisfying the property of unconditional coverage as well as the independence property,

It(α)
iid∼ Ber(α),

ie that the hit sequence is identically and independently distributed with probabilityα . Backtests are

statistical tests designed for determining the accuracy ofVaR models. While several tests have been

proposed for each of the two properties, joint tests determine whether the VaR model is accurate as a
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whole. However, joint tests are not to be gauged as being universally preferable to mono-property tests

as the ability to detect the violation of one of the two properties is decreasing (Campbell [2005]).

A type I error arises when an accurate model with a coverage of99% is erroneously rejected. When the

VaR model is inaccurate with lower coverage, eg 2% type II error is the probability that the inaccurate

model is not rejected. If the power of the backtest is low, then the probability of classifying an inaccurate

model as accurate (not rejecting the null) is comparativelyhigh. Backtests should have high power

and not be over- or undersized. In a Monte Carlo study we analyse the problems of common backtest

procedures. The main result of this paper will be that even when accounting for model risk, regulation

sets restrictions to backtesting.

The paper is organized as follows: the next section describes relevant backtesting categories. It serves

a starting point for further derivations of multivariate backtests which will be suggested as a mean to

overcome problems resulting from supervisory restrictions. In the third chapter we conduct a Monte

Carlo study and analyse the problems that arise when conducting univariate backtests in the course of

regulation aspects.

5.2 Overview of backtests

Backtests can be distinguished into frequency-based as well as size-based tests. While the former tests

examine the sequence obtained from the exceedance of VaR above the realized profit and losses series,

the latter tests are constructed from the size of the exceedance conditioned on the violations. As the

regulatory framework is based upon the violations and not ontheir size, size-based tests are relatively

few in the literature due to regulatory constraints (Lopez [1999]).

The most basic backtests for testing the unconditional coverage property, the time until first failure

(TUFF) test and its generalization, the proportion of failures (POF) test, were suggested by Kupiec

[1995]. As shown in Kupiec [1995] the simplicity of the TUFF test ignores the total number of failures

since the start of the monitoring, the POF test should alwaysbe run to verify potential loss estimates

in place or in addition. In contrast to the TUFF framework, where only the elapsed time until the first

failure is considered, the POF uses the entire information.To this (and all further analyses) consider

a hit sequence{It}n
t=1 of sizen, where∀t : It ∈ {0,1}, n1 denotes the number of hits (ieIt = 1) and

n0 = n−n1 (ie n0 = ♯(It = 0)). The probability of observingn1 hits in a sample of sizen is given by the

the probability function of the binomial distribution,

Pr(♯(It = 1) = n1) =

(

n
n1

)

(1−α)n0 αn1.
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For the null hypothesis of the POF test,H0 : α = Π̂ with Π̂ = n1
n , the associated test is a Likelihood Ratio

(LR) test and its test statistics is given by

K =−2 log
(

L(α)/L(Π̂)
)

whereα denotes the failure probability under the null,L(·) the corresponding Likelihood function and

Π̂ = n1
n .

However, when the sample size is relatively small both testsappear to have poor ability to distinguish

between the underlying failure probability in the null hypothesis and failure probabilities that are slightly

higher (see Kupiec [1995]). Thus, these frameworks might not be adequate for the analysis of the accu-

racy of VaR estimates covering only one trading year. Furthermore, a frequently arising problem is the

non-existence of violations during the reporting period. This issue becomes most important when VaR

models with a small failure probability are evaluated. In these cases the Kupiec tests are not computable.

When testing theiid hypothesis of the hit sequence the autocorrelation of the sequence itself or the

equidistance of the time span between consecutive violations is examined. These tests require the com-

plete specification of the alternative hypotheses in the sense that the way how violation clusters occur has

to be specified exactly. Autocorrelation-based tests can beconstructed by testing on the autocorrelation

structure in the hit sequence itself,{It}, or in the demeaned sequence,{It −α}, that forms a sequence of

martingale difference summands (Berkowitz et al. [2009]).

The test by Christoffersen [1998] was the first test of this kind. The basic idea behind this LR-type test

consists in the following comparison: If there is no dependence between two consecutive observations,

then the probability of monitoring no violation on the day after a violation took place should be equal to

the probability of monitoring no violation when on the day before no violation was observed, too.

As in Kupiec [1995] the LR framework is used and built on Markov chains. The independence of the

observations of the hit sequence is tested under the null against the alternative of a first-order Markov

chain where the stochastic matrix

Π1 =





π00 π01

π10 π11





represents the transition matrix andπi, j = P(It = j|It−1 = i) , i, j ∈ {0,1} the transition probabilities. Let

ni j be the number of observations with valuei and previous valuej. Then the likelihood function for the

hit sequence{It} yields

L(Π1) := L(Π1;{It}) = πn00
00 πn01

01 πn10
10 πn11

11
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This is the likelihood under validness of the alternative model while the likelihood for the null model can

be computed by considering the stochastic matrix

Π2 =





1−π2 π2

1−π2 π2



 .

Employing this model under the null it is easy to see that the independence of the hit sequence is tested

by this means since the rows have all the same entries. Under the null previous observations do not

influence the probability of monitoring a violation or not. Matrix entriesπ2 represent the probability of a

violation and according to this the number of observations are aggregated over indexj as the past value

j has no influence on the present valuei, π2 =
n01+n11

n00+n01+n10+n11
. Thus,

L(Π2) := L(Π2;{It}) = (1−π2)
(n00+n10)πn01+n11

2

is the likelihood function under the null model.

UsingL(Π1) andL(Π2) the LR test statistic for the Christoffersen test of independence is

LR.IND =−2 log

(

L(Π1)

L(Π2)

)

which isχ2 distributed with one degree of freedom. Note that the Christoffersen [1998] test provides no

possibility for testing conditional coverage as LR.IND does not depend on the true coverage probability

α . A joint test for both testing the independence and the conditional coverage property as well is provided

below.

A problem that arises with using this backtest is that the Christoffersen test of independence only ex-

amines for dependence between two consecutive observations. Campbell [2005] notes that it is also

possible that the probability of monitoring a violation today is not influenced by yesterday’s observation

but indeed could be influenced by prior observations.

Next to the test for proving independence of observations ofthe hit sequence Christoffersen [1998]

introduced a test of unconditional coverage, testingE[It ] = α against its alternativeE[It ] 6= α . The joint

test of conditional coverage and independence by Christoffersen [1998] combines those tests to examine

whether both properties of a VaR measure are jointly fulfiled.

The basic idea is as simple as for the independence test: First, if the unconditional coverage property is

fulfiled then n00+n10
n00+n01+n10+n11

= α must hold implying that the proportion of observed violation matches

with the hit probabilityα . Furthermore, as stated previously, the probability of a non-violation following

a previous hit equals the probability of a non-violation following a previous non-violation, i.e. n00
n00+n01

=

n10
n10+n11

, when the independence property is on the hand. Combining this, if the VaR measure fulfils the
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independence property these probabilities should match the total proportion of non-violations, which,

provided the unconditional property is valid, leads to

n00

n00+n10
=

n10

n10+n11
=

n00+n01

n00+n01+n10+n11
= α

that is tested under the null. In terms of the LR framework thelikelihood of the null of the unconditional

coverage test is tested here against the alternative of the independence test, forming a test of conditional

coverage in effect. Thus, the test statistics results in

LR.CC=−2 log

(

L(α)

L(Π1)

)

.

Christoffersen [1998] shows that the limiting distribution of the joint test isχ2(2). However, even if

running a joint test might seem always preferable over running the unconditional coverage test and the

independence test separately, one has to note that joint tests dismiss VaR measures that violate only

one property. As a result the joint test may detect the violation of either unconditional coverage or

independence in less cases than a test that focuses on only one of these properties does. According to

Campbell [2005] the employment of a test that covers only a sole property might be preferable when

prior information over the VaR measure is available.

Escanciano and Olmo [2010] provide a test of unconditional coverage as well as a test of conditional

coverage. Their analysis bases on a Monte Carlo study, wherethe unconditional and the conditional

coverage tests are compared to a corrected version of these tests. These corrected releases account for

the impact of estimation risk arising when forecasts are carried out. All tests are based on the demeaned

hit sequence{It −α}.

The test of unconditional coverage are derived from the validity of E[It ] = α under the null model. Its

test statistics is presented by

SP =
1√
n

P

∑
t+R=1

(It −α)

and is predicated on the unconditional coverage tests by Kupiec [1995] and Christoffersen [1998]. It can

easily be checked that1σ SP is converging against a standard normal distribution, where σ =
√

α (1−α)

is nothing else than the standard deviation of the binomial distribution for It . This holds asSP is the

standardized version of{It} with

1

σ P− 1
2

SP =
1
P ∑P

t+R=1(It −α)

σ P− 1
2

=
1√
Pσ

P

∑
t+R=1

(It −α)−→ N(0;1)

When adjustingσ for estimation risk it can be shown that the term of the estimated standard deviation

gets the form

σcorr =
(

α (1−α)+π ÂV̂ Â′)− 1
2
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when the applied forecast scheme is set fixed and the underlying DGP is a GARCH process of order

(1,1). Note that Escanciano and Olmo [2010] also provide adjusted tests for rolling and recursive forecast

schemes. ForπÂV̂Â′ = 0 the impact of estimation risk is asymptotically irrelevant.

The parameterπ = lim
n→∞

P
R denotes the relation between the lengthP of the out-of-sample series and the

first R observations which are used to estimate the process parameters. It is quiet intuitive that for a

large value ofR in relation toP and thus a relatively long in-sample series the influence of estimation

risk becomes negligibly small. The matrixV is of dimension(3×3) and contains the variances and co-

variances of the data generating process, whileA denotes a (3×1)-vector containing the first derivations

of the DGP wrt the GARCH parameters respectively.Â andV̂ are the consistent estimators ofA andV

respectively. For a detailed derivation ofA andV see Appendix.

The resulting test statistics

S̃P =
1√

nσcorr

n

∑
t=1

(It −α)

is N(0;1) distributed forn→ ∞.

The leadoff duration-based backtesting approach was proposed by Christoffersen and Pelletier [2004]

with the motivation to overcome the pitfall of small power ofbacktests existing by then in small sam-

ple sizes and to uncover not only first order Markov dependencies such as the independence test by

Christoffersen [1998]. This approach is justified by the authors by no-hit periods which are either rela-

tively short by reason of high market volatility or relatively long when the market is calmed down. For

this, we definedi = ti − ti−1, i = 1, . . . , I as the duration between the hit numberi −1 andi occurring at

datesti−1 andti (t ∈ {1, . . . ,n}), respectively.

To construct the test that emanates from the independence ofthe durations and thus, from a correct

specified VaR model, a memoryless probability distributionis needed to model the durations. The only

continuous distribution that accounts for a constant failure probabilityα is the exponential distribution

with the density

f Exp(d) = α exp(−α d).

Note that the corresponding hazard function for the exponential distribution isλ Exp(d) =α which can be

interpreted than the probability that a violation occurs atdated past the last hit after having already waited

for d−1 days is constantlyα and independent fromd, ie memoryless. Thus, the null of independence is

that the durationsdi come from an exponential distribution with likelihood function

lnL(α) = nln(α)−α d̄.
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For the alternative model a duration distribution with a non-constant hazard rate is required. The simplest

case should be the Weibull distribution with density

fW(d) = αbbdb−1 exp(−(α d)b)

whereb ∈ R>0 is a shape parameter. Note that the exponential distribution is nested by the Weibull

distribution forb= 1. The hazard rate can easily be obtained by

λW(d) = αbbdb−1.

For b < 1 the Weibull hazard rate is decreasing. Transferred to the financial market a decreasingλW

indicates that the market tends to more extreme durations, i.e. periods of relatively short or relatively

long duration. The log-Likelihood function under the alternative is then given by

lnL(α ;k) = lnλ + lnk+(k−1)∑
i

lndi −λ ∑
i

dk
i .

Thereby, the pair of hypotheses can be reformulated in termsof the shape parameterb by H0 : b = 1

versusH1 : b 6= 1.

The null of independence can be tested by a Likelihood ratio test by evaluation of

LRDur =−2
lnL(α)

lnL(α ;b)

which follows aχ2 distribution with two degrees of freedom.

To conduct the test it is necessary to transform the hit sequence{It} into a duration sequence{di}I
i=1.

While doing the transformation it has to be kept into accountthat the first and last duration is possibly

censored, ie the duration of the first no-hit period is longerthand1 as there is no data available before.

Of course, the only exception consists in the case that the first observation is already a hit. Likewise the

last duration could be longer thandI when the last observation of{It} is not a hit.

In the above spanned framework it is possible to model dependencies of higher order than the Markov

test. However, this test contains no information about the exact order of dependence, but could only be

captured by the EACD framework by Engle and Russell [1998].

Another test of independence that does not exploit the hit sequence directly, but the properties of the du-

rations between consecutive hits was recently proposed by Candelon et al. [2011]. The major motivation

behind the construction of this test is to overcome the drawback of low power in realistic sample sizes

when conducting backtests.

The idea behind this test is as follows: To each distributionbelonging to the Pearson family an orthonor-

mal polynomial can be associated. Orthonormal polynomialsbuild a sequence of polynomials at which
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each two polynomials are pairwise orthonormal under theL2-inner product. Considering the duration

sequence{di} as being discrete, the orthonormal polynomial associated with the geometric distribution

can be employed.

Define the number of employed polynomialsh, the orthonormal polynomial associated to the memoryless

geometric distribution follows the recursion

Mh = M j+1(d;α) =
(1−β )(2 j +1)+β ( j −d+1)

( j +1)
√

(1−β )
M j(d;α)− j

j +1
M j−1(d;β )

for any j ∈ N0, ∀d ∈ N0, d := di ∀i ∈ {1, . . . , I} and initial valuesM−1(d;α) = 0, M0(d;β ) = 1. Using

the method of moments to estimate the parameters of this polynomial regression efficient and consistent

estimates can be obtained. Thus, under the null of conditional coverage the moment condition

H0 : E[M j(d;α)] = 0

is tested. Thus, under the null model the duration sequence follows a geometric distribution with hit prob-

ability α , meaning that there is no correlation between two consecutive hits as the geometric distribution

provides the only memoryless discrete probability distribution.

In contrast to the duration-based test by Christoffersen and Pelletier [2004], this framework allows to

test separately for unconditional coverage and the independence hypothesis. The reasoning is straight-

forward: As the expectation of a geometric distributed random variable with parameterα is equal to1
α ,

it is easily shown that this is equivalent to the condition for the orthonormal polynomial of orderh= 1

that is tested underH0 of unconditional coverage:

E[M1(d;α)] = E

[

1−αd√
1−α

]

= E

[

1−α 1
α√

1−α

]

= 0

The usage of orthonormal polynomials enables to run the testwithin the GMM framework with known

asymptotic covariance matrices. The test statistics employing the polynomial orderh is

CG
CC(h) =

(

1√
n

n

∑
i=1

M j(di ;α)

)′(
1√
n

n

∑
i=1

M j(di ;α)

)

following a χ2 limiting distribution withh degrees of freedom andj = 1, . . . ,h. Note that for the special

case of unconditional coverage andh= 1 the test statistics becomes

CG
CC(1) =CG

UC =

(

1√
n

n

∑
i=1

M1(di ;α)

)2

.
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When presuming that{dt} is continuous the tests are run with the same conditions adjusted for the

exponential distribution and its corresponding orthonormal polynomials following the recursion

Lh = L j+1(d;α) =
1

n+1
[(2n+1−αd)L j(d;α)−nLn−1(d;α)]

with initial valuesL−1 = 1 andL1 = 1−αd and L being polynomials of the Laguerre family. The

test statistics for the continuous case and the orthonormalpolynomials associated with the exponential

distribution is then

CExp
CC (h) =

(

1√
n

n

∑
i=1

L j(di ;α)

)′(
1√
n

n

∑
i=1

L j(di ;α)

)

again following aχ2(h) distribution under the null.

5.3 Simulation Study

The following simulation studies aim at detecting the problems arising from conducting backtests with

univariate time series. For this purpose we simulated GARCH(1,1) processes

Yt = σtεt

σ2
t = θ0+θ1Y

2
t−1+θ2σ2

t−1.

with parameter vectorθ ′ = (θ0,θ1,θ2) = (0.1,0.1,0.85) and different lengths of in-sampleRand out-of-

sample horizonP. The in-sample period withR= (250;500;750;1,000;1,500) is used for the estimation

of the respective parameters and the out-of-sample periodP= (250;500;750;1,000;1,500) is used for

the evaluation of the backtest. The VaR for the respective series with confidence level ofα = 0.01 is

calculated in the next step. Following this, the hit sequence {It} is computed. For testing the accuracy

of the VaR computation the test statistics of the aforementioned backtests are calculated. The procedure

is replicated 5,000 times. Table 18 shows the results of the Monte Carlo study. For each combination

of in-sample and out-of-sample length, the respective empirical size is calculated from the computed

test statistics and the nominal coverage is chosen as amounting to α = 0.05. The first three columns

summarise the results for the Kupiec test and the tests suggested by Christoffersen (independence and

conditional coverage test), while the remaining columns show size results for duration-based backtests

for which the sequence{dt} of the time span between the respective hits of sequence{It} has been taken

into account. While tests (4) to (6) are based on the null of a geometric distribution withh= 1,3,5, tests

(7) to (9) report the results for the tests where the distribution under the null is supposed to be continuous

with the same number of orthogonal polynomials as under the discrete assumption.
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P (1) (2) (3) (4) (5) (6) (7) (8) (9)

R=250 250 0.0930 0.0322 0.0808 0.0486 0.0512 0.0334 0.0138 0.0134 0.0118

500 0.2240 0.0428 0.1208 0.1758 0.1020 0.0730 0.0344 0.03900.0366

750 0.2262 0.0578 0.1832 0.1840 0.1696 0.1392 0.0718 0.07460.0660

1,000 0.2786 0.0684 0.2286 0.2396 0.2016 0.1660 0.0962 0.0952 0.0816

1,500 0.3452 0.0756 0.3148 0.3454 0.2828 0.2426 0.1472 0.1458 0.1224

R=500 250 0.0664 0.0328 0.0622 0.0350 0.0388 0.0246 0.0066 0.0080 0.0072

500 0.1682 0.0412 0.0802 0.1250 0.0682 0.0468 0.0224 0.02700.0250

750 0.1612 0.0640 0.1300 0.1198 0.1128 0.0936 0.0470 0.05740.0524

1,000 0.2138 0.0652 0.1712 0.1746 0.1454 0.1192 0.0666 0.0698 0.0600

1,500 0.2472 0.0694 0.2296 0.2478 0.1834 0.1500 0.0872 0.0854 0.0744

R=750 250 0.0628 0.0368 0.0582 0.0314 0.0348 0.0236 0.0056 0.0064 0.0074

500 0.1576 0.0414 0.0680 0.1102 0.0610 0.0456 0.0168 0.02340.0252

750 0.1460 0.0605 0.1216 0.1065 0.0998 0.0849 0.0399 0.05140.0448

1,000 0.1973 0.0621 0.1502 0.1581 0.1247 0.1000 0.0523 0.0589 0.0507

1,500 0.2058 0.0748 0.2104 0.2064 0.1550 0.1260 0.0652 0.0764 0.0628

R=1,000 250 0.2058 0.0748 0.2104 0.2064 0.1550 0.1260 0.0652 0.0764 0.0628

500 0.1430 0.0424 0.0634 0.1036 0.0556 0.0412 0.0166 0.02220.0230

750 0.1300 0.0556 0.1076 0.0956 0.0918 0.0734 0.0378 0.04660.0394

1,000 0.1678 0.0690 0.1440 0.1366 0.1096 0.0968 0.0568 0.0574 0.0508

1,500 0.1877 0.0757 0.1941 0.1877 0.1522 0.1208 0.0673 0.0743 0.0625

R=1,500 250 0.1678 0.0690 0.1440 0.1366 0.1096 0.0968 0.0568 0.0574 0.0508

500 0.1404 0.0378 0.0624 0.1000 0.0534 0.0384 0.0160 0.02240.0236

750 0.1206 0.0620 0.1058 0.0890 0.0844 0.0674 0.0316 0.04020.0358

1,000 0.1486 0.0604 0.1188 0.1152 0.0952 0.0822 0.0444 0.0494 0.0434

1,500 0.1652 0.0752 0.1856 0.1656 0.1318 0.1062 0.0622 0.0678 0.0558

Table 7: Results - Size,α = 0.01

The first observation to be made is that the majority of the backtests are oversized and hence reject the

null too often. Thus, even if the null is true the backtests classify the VaR to be inaccurate. However,

some of the duration-based backtests tend to be undersized especially ifPandRare both small. Secondly,

the smaller the ratioπ = P/R of out-of-sample length to in-sample length, the lower is the distortion,

that is the difference between the empirical and nominal size. For example, forR= 250 the Kupiec test

is distorted by 29.52% for P = 1,500 and the lower the in-sample period the smaller is the distortion.

When the out-of-sample length is reduced toP = 250 the size is distorted by 4.3%. This is due to the

reason that the smaller the amount of data available for estimation of parameters in comparison toP the

higher is the estimation risk involved which leads to less accurate projections of VaR. Duration-based

backtests tend to have lower size distortions in general.
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Acknowledging model risk, Escanciano and Olmo [2010] provided tests corrected for estimation risk.

When correcting the variance of the backtest by Kupiec and taking into account the demeaned hit se-

quence{It} the test should not be rejected as often as is the case with theuncorrected test. Therefore, it

should be expected that the size distortions decrease by applying the estimation risk corrected backtest

by Escanciano and Olmo [2010]. We again conducted a Monte Carlo experiment as outlined above with

500 replications andR,P= (250;500;750;1,000) and computedSP andS̃P. Size results are reported in

Table 19.

R = 250 R = 500

P 250 500 750 1,000 250 500 750 1,000

SP 0.138 0.182 0.250 0.268 0.108 0.154 0.228 0.194

S̃P 0.088 0.096 0.082 0.118 0.074 0.078 0.092 0.074

R = 750 R = 1,000

P 250 500 750 1,000 250 500 750 1,000

SP 0.128 0.142 0.228 0.184 0.100 0.090 0.180 0.156

S̃P 0.090 0.098 0.084 0.064 0.084 0.062 0.078 0.084

Table 8: Results

For each combination ofR andP the effect of the variance correction results in a much lowerempirical

coverage for̃SP and for lowπ empirical and nominal coverage do hardly deviate from each other.

In Figure 10, the density of the true asymptotic distribution of SP and S̃P, ie the normal distribution,

as well as the kernel density estimation of the test statistic SP as well asS̃P of the corrected test for

R= 250 andP= 500 andα = 0.05 are plotted. Whereas the density ofSP deviates considerably from

its asymptotic distribution, the kernel density of the corrected backtest comes much closer to it.
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Figure 3: Density of normal distribution (µ = 0, σ = 1) (black), Kernel density estimate ofSP (blue),

Kernel density estimate of̃SP (gray) forR= 250,P= 500 andα = 0.05

However, for the Basel II relevant period length ofR= 250 and the VaR level ofα = 0.01 size distortions

remain at a considerable level of about 3%. The problem therefore remains that the test rejects too often.

Looking at the size distortions of the tests proposed by Escanciano and Olmo [2010] we can see that

even when accounting for estimation risk the problem prevails. In their follow-up paper for including

misspecification risk in their backtest, Escanciano and Olmo [2011] acknowledge that their modified test

still suffers from problems of high size distortions also incase of very small in-sample lengths. To put it

in a nutshell, all classes of univariate backtests proposed(although duration-based backtests to a lesser

extent) have problems when it comes to short in-sample horizons.

Although the corrected backtests result in a reduction of the size distortion, the tests tend to reject too

often. Even though the correction for estimation risk has been conducted the problem especially prevails

in the Basel II scenario forR= 250 and VaR confidence level ofα = 0.01. In this set-up duration-

based backtests with orthonormal approximation of the distribution under the null seem to be the most

promising alternative.
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5.4 Conclusion

In our paper we analysed the problems of backtests that have been suggested so far. Backtests based

on hit and duration sequences in an univariate framework show heavy size distortions. A solution for

this is to account for model risk and correct the asymptotic variance of the backtest and thereby reduce

the distortion. The problems of univariate backtesting resulting in considerable size distortions for the

relevant Basel II set-up however cannot be alleviated by modifying backtests in a way that account

for estimation risk or misspecification risk. When financialinstitutions conduct backtesting, they face

restrictions from the regulation side where the in-sample length is set toR= 250. A reduction of the

out-of-sample length does not suffice to reduce the empirical size. Using inaccurate backtests has severe

implications and higher risk-based capital results as the factor for its calculation of directly linked to the

number of hits.

A solution suggested by Danciulescu [2010] as well as Berkowitz et al. [2009] is to conduct multivariate

backtesting as a mean to overcome these problems. They arguethat the sample size is thereby increased

and information is more efficiently used for this purpose. Inour Monte Carlo study backtests based on

orthonormal polynomials performed best. Extending these backtest in a multivariate surrounding would

therefore be an alternative to the common approaches. Backtesting with multivariate orthonormal poly-

nomials includes the assumption that under the null the duration sequences follow a respective discrete or

continuous multivariate distribution and that this distribution is approximated by Laguerre polynomials

in the continuous case. The idea of multivariate backtesting with Laguerre polynomials is a topic to be

pursued in further research.
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5.5 Appendix

Quasi-Maximum-Likelihood estimation of GARCH(1,1)

As in Francq and Zakoı̈an [2004] and Escanciano and Olmo [2007].

Model is a pure GARCH(1,1)Yt = µ +σtεt with σ2
t = θ0 + θ1Y2

t−1 + θ2σ2
t−1 with µ = 0, innovation

εt =Yt/σt
iid∼ t(ν) and parameter vectorθ = (θ0,θ1,θ2).

Asymptotic normality of QMLE:

√
T(θ̂ −θ)′ d−→ N(0,V)

V = J−1IJ−1

Conditional Gaussian quasi-log-likelihood:

L = ∑ 1
√

2πσ2
t

exp

(

−Y2
t −µ
2σ2

t

)

l̃t =−1
2

log(2π)− 1
2

log(σ2
t )−

1
2

Y2
t

σ2
t
=−1

2

{

log(2π)+ log(σ2
t )+

Y2
t

σ2
t

}

Score:

∂ l̃t
∂θ

=−1
2

{

∂ (log(σ2
t ))

∂θ
+

∂ (Y2
t

σ2
t
)

∂θ

}

=−1
2

{

1

σ2
t

∂σ2
t

∂θ
− Y2

t

σ4
t

∂σ2
t

∂θ

}

=−1
2

{

1− Y2
t

σ2
t

}{

1

σ2
t

∂σ2
t

∂θ

}

=−1
2
{1− ε2

t }
{

1

σ2
t

∂σ2
t

∂θ

}

Hessian:

∂ 2l̃t
∂θ∂θ ′ =−1

2

{

−Y2
t

∂σ−2
t

∂θ
1

σ2
t

∂σ2
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t
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t

∂θ
+

1
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t

∂ 2σ2
t
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)}
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2

{
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t
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t
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(
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t
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Expected value of Hessian,J:

J = E

[

−1
2

{

(1− ε2
t )

(

1

σ2
t

∂ 2σ2
t

∂θ∂θ ′

)

+(2ε2
t −1)

1

σ4
t

∂σ2
t

∂θ
∂σ2

t
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}]

=
1
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E

[

1
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Expected value of squared score,I :

I = E
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1

σ4
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∂σ2
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]

=
1
2
(E(ε4
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Hence, asymptotic covariance matrix of QMLE,V:

V = J−11
2
(E(ε4

t )−1)JJ−1 = J−11
2
(E(ε4

t )−1)

=
1
2
(E(ε4

t )−1)2
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= (E(ε4
t )−1)E

[

1

σ4
t

∂σ2
t

∂θ
∂σ2

t

∂θ ′

]−1

Consistent estimate ofV:

V̂ = (κ −1)

[

P−1
n

∑
t=R+1

1

σ4
t

∂σ2
t

∂θ
∂σ2

t
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where

∂σ2
t

∂θ
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t
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






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















with ψ ≡ (1−θ2)
−1 and whereκ is the unstandardized kurtosis.

Consistent estimate ofA:

Â= f (F−1
ε )F−1

ε
1
P ∑(

1
σt

∂σt

∂θ
= f (F−1

ε )F−1
ε

1
P ∑
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



1
2σ2

t (1−θ
1

σ2
t
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j=1θ j−1y2

t− j

1
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




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