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Zusammenfassung

Diese Arbeit liefert eine genaue Definition des Begriffes Modellrisiko. Ein falsches Modell kann
zu erheblicher Uber- oder Unterschitzung des Risikos einer Finanzinstitution fithren. Weil
der zugrundeliegende datengenerierende Prozess in der Praxis unbekannt ist, ist die Bewer-
tung des Modellrisikos eine grofie Herausforderung. Bislang zu findende Definitionen von Mod-
ellrisiko waren entweder anwendungsorientiert und beinhalteten das Risiko, welches vielmehr
durch den Statistiker denn durch das statistische Modell selbst induziert wird oder zu wis-
senschaftlich und entsprechend zu abstrakt um in der Praxis umgesetzt zu werden. Wir fiihren
einen datengetriebenen Modellrisikobegriff ein, der Merkmale des wissenschaftlichen Ansatzes
um einen statistischen Modellierungsprozess erweitert. Ferner schlagen wir die Anwendung
robuster Schétzer zur Reduzierung des Modellrisikos vor und empfehlen die Anwendung von
Stresstests zur Portfoliobewertung.

Weiterhin untersuchen wir inwieweit die Fehlspezifikation eines zugrundeliegenden GARCH-
und Copula-GARCH-Modells zu Modellrisiko bei der Untersuchung des Value at Risk fiithren
kann. Es wird gezeigt, dass es wichtig ist, Phdnomene wie Asymmetrie und langes Gedéchtnis
in den Daten korrekt zu modellieren wohingegen die Wahl einer falschen Randverteilung von
geringerer Bedeutung ist. Diese Arbeit versucht die folgende Hypothese zu validieren: das
Fehlspezifikationsrisiko hat eine geringere Wirkung als das Schétzrisiko auf Prognosefehler mit
entsprechendem Einfluss auf die Value at Risk Prognose. Komplexere Modelle fiihren zu einem
hoheren Schitzrisiko und beinhalten fiir langere Prognosehorizonte ein hoheres Modellrisiko. Es
wird gezeigt, dass selbst Backtests darin scheitern, die Genauigkeit von Risikomafien einzuschéatzen,
selbst in dem Fall in dem die asymptotische Varianz des Tests um das Fehlspezifikations- und
Schétzrisiko korrigiert wird. Es werden multivariate Backtests zur Losung dieses Problems
vorgeschlagen.

Modellunsicherheiten entstehen bei der Anwendung von Modellen und der Modellanwender
sich sollte daher Unsicherheiten und Nachteile der verwendeten Modelle im Klaren sein. Ein
komplexes Modell ist nicht notwendigerweise eine einfacheren Modell iiberlegen, wenn es um die
Prognose von Risikomaflen geht. Wahrend man argumentieren kann, dass im Rahmen der Fi-
nanzmarktregulierung das Modellrisiko durch einen Multiplikationsfaktor ausreichend Rechnung
getragen wird, haben Finanzinstitutionen selbst wie auch Interessengruppen wie Investoren und
Ratingagenturen ein Interesse das Risiko durch die Modellanwendung zu bestimmen um ein re-

alistisches Bild der Finanzstabilitat der Institution zu erlangen.

Schliisselworter: Modellrisiko, Schéatzrisiko, Fehlspezifikationsrisiko



Abstract

This thesis provides a concise definition of model risk. A wrong model can lead to serious over-
or underestimation of a financial institution’s risk. Because the underlying data generating
process is unknown in practice evaluating model risk is a challenge. So far, definitions of model
risk are either application-oriented including risk induced by the statistician rather than by the
statistical model or research-oriented and too abstract to be used in practice. We introduce a
data-driven notion of model risk which includes the features of the research-oriented approach by
extending it by a statistical model building procedure. We furthermore suggest the application
of robust estimates to reduce model risk and advocate the application of stress tests with respect
portfolio evaluation.

It is further investigated in as how far the misspecification of an underlying GARCH-type and
Copula-GARCH-type model might introduce model risk when evaluating the Value at Risk. We
find that it is important to correctly specify phenomena such as asymmetry and long memory
in the data whereas choosing the correct marginal distribution is of minor importance. This
paper attempts to validate the following hypothesis: misspecification risk has a less serious
impact than estimation risk on forecast errors with a corresponding impact on VaR forecasts.
More complex models lead to a higher estimation risk and thus entail higher model risk for
longer forecast horizons. Even when accounting for model risk by incorporating estimation and
misspecification risk by adjusting the asymptotic variance of the test statistic, backtests fail to
assess the accuracy of computed risk measures. We suggest to use multivariate backtests for
getting more viable backtests.

Model uncertainties arise by the application of models and the user of models should be
aware of the uncertainties and flaws of the models used. Not the most complex models are
necessarily the best models in the context of forecasting risk measures. While in the context of
regulation one can argue that the measurement of model risk is sufficiently made allowance for
by the multiplication factor, financial institutions themselves as well as their stakeholders such
as investors and rating agencies have an interest in determining the risk stemming from model

application in order to get a realistic picture of the financial stability of the institution.

Keywords: model risk, estimation risk, misspecification risk
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1 Introduction

The omnipresent term of globalisation is perceived in the fiface as being the gradual integration of
economies and financial markets. As economies and finaneiedats become integrated to a higher
degree, spill-over effects of adverse developments tar athientries have a more detrimental effect on
previously more loosely linked economies. One of the bydpobs of globalisation therefore is a higher

vulnerability of the financial system as a whole.

Guaranteeing a sound and stable financial system in thedfgddymmetric incentives of governments

and financial institutions has therefore been the task aflaggry bodies. However, regulatory compe-
tition between countries make financial institutions sthifir activities to countries with lower capital

requirements. In the 1990s, more efforts for the harmaisatf regulatory requirements have been
taken and implemented by the associated countries. Moretefnethods for measuring the risk taken
by financial institutions have been developed at that timeedls Capital requirements as a buffer against
problems arising from changes in stock prices, interessyaommodity prices or foreign exchange rates
(market risk) and the risk that a counterparty cannot fuffifinancial obligations and defaults on its debts

(credit risk) were the categories were the main attentioms&fmanagement efforts were turned upon.

During the last century other risk categories have beemtate account within the Basel Il frameworks
due to several striking events. One of these is operatiaskal that is the "risk of loss resulting from
inadequate or failed internal processes, people and systerfinom external events”. Liquidity risk is
another risk category were more emphasis has been put uggorited credit crunch in the aftermath of
the US subprime crisis. A new research issue concerns thredapement of risk aggregation methods
which account for the possible correlation between differesk categories. Although the measurement
of credit risk is still a challenging objective, one shoukbsame that the vulnerability of the financial
system should have decreased to some extent due to the &atiEm by the responsible institutions.
However, the example of uncertainties in the measuremecregit risk already suggests that there are
other sources of risk that can lead to a biased risk meastraditionally, these errors have been taken
into account by the introduction of a multiplication factguplied to the risk measure depending on the

accuracy of the model used for risk quantification.

Although the term of model uncertainty and the problems tifregion errors are a very common phe-
nomenon in the context of risk management problems arisimy the application of models as such
have been more or less neglected until recently. Modelsreapproximation of the complex reality and
thus more or less simplify the real pattern of the underlydata generating process. Thus, using models
to explain and predict developments in social sciences thevéaw of the models being only partly cor-

rect. During the last three centuries the risk managemeritoement has become model-prone and the
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guantification of risk factors is regarded as essential pestision efforts. However, the mere applica-
tion of models itself introduces model risk through estioratand misspecification risk. The following

papers are dedicated to this more recently introduced atdgory.

The first paper provides a concise definition of model risksurdmarises methods for its quantification.
Model risk as part of the operational risk is a serious prnobler financial institutions. As the pricing of
derivatives as well as the computation of the market or trek of an institution depends on statistical
models the application of a wrong model can lead to a serieeis or underestimation of the institution’s
risk. Because the underlying data generating process isowikin practice evaluating model risk is a
challenge. So far, definitions of model risk are either aggpion-oriented including risk induced by the
statistician rather than by the statistical model or redeariented and too abstract to be used in practice.
Especially, they are not data-driven. We introduce a dateed notion of model risk which includes the
features of the research-oriented approach by extendmgatstatistical model building procedure and
therefore compromises between the two definitions at harelfiWthermore suggest the application of
robust estimates to reduce model risk and advocate thecapph of stress tests with respect to the

valuation of the portfolio.

Evaluating market risk by means of the Value at Risk meanwvatuate the forecast distribution of a
suitable model for the return distribution of the undertyfimancial asset. The most popular models for
this purpose are GARCH-type models for the returns of firdmssets. Model specification mainly aims
at obtaining a good in-sample fit to the data. In terms of nréagthe model risk involved within a model
the forecast distribution and thus the out-of-sample fihis inost important criteria. We investigate
in how far the misspecification of an underlying GARCH-typedal might introduce a model risk
when evaluating the Value at Risk. In the second paper, wethiaiit is important to correctly specify
phenomena such as asymmetry and long memory in the dataagheneosing the correct marginal
distribution is of minor importance. Neglecting asymmednd long memory in the data can lead to a

serious forecasting error and therefore to serious moslel ri

The effect of model risk on Value at Risk (VaR) forecasts bpg€opula-GARCH models is examined
in the third part of the thesis. Copula-GARCH models allow tlte specification of the dependence
structure of return series. This paper attempts to valittegdollowing hypothesis: misspecification risk
has a less serious impact than estimation risk on forecasseavith a corresponding impact on VaR fore-
casts. We conduct a Monte Carlo study where different Ce@HA&CH models with different marginal
distribution assumptions are simulated and used for fatagathe true as well as the other wrong mod-
els. We find that misspecification of the dependence streesiwvell as of the variance specification has

a negligible effect on forecast accuracy. The effect of tlaegimal distributional assumptions is found to
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be more pronounced. More complex models lead to a highenaistin risk and thus entail higher model

risk for longer forecast horizons.

Even when accounting for model risk by incorporating estiomaand misspecification risk by adjusting
the asymptotic variance of the test statistic by the moa#l iricurred may fail to produce correct type

| errors when regulatory approaches restrict required teatk for assessing the accuracy of computed
risk measures. Together with my co-author Johannes Rohuyise these problems in the fifth chapter
of the thesis. We suggest to use multivariate backtestsiag better solutions for getting more viable

backtests.

Thinking about model risk there are several crucial poiotsdar in mind: model uncertainties arise by
the application of models and the user of models should beeavfahe uncertainties and flaws of the
models used. Not the most complex models are necessaribestanodels in the context of forecasting
risk measures. When it comes to determining the accuracyodiia by using methods of backtesting

it should be kept in mind that even when accounting for modelettainties regulatory prescriptions
can restrict the accurate measurement of models. Whilesicahtext of regulation one can argue that
the measurement of model risk is sufficiently made allowdocéy the multiplication factor, financial
institutions themselves as well as their stakeholders asdhvestors and rating agencies have an interest
in determining the risk stemming from model application lider to get a realistic picture of the financial

stability of the institution.
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2 Measuring Model Risk

Joint with Philipp Sibbertsen and Gerhard Stahl
Published inThe Journal of Risk Model Validation (2008) pp. 65-81
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3 Model Risk in GARCH-Type Financial Time Series

Joint with Philipp Sibbertsen

Published inRdsch, D. and Scheule, H. (ed.) Model Risk - Identificatideasurement and Management

(2010),pp. 75-89
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4 Model Risk in Copula-GARCH Type Financial Time Series

Joint with Grigoriy Tymchenko

4.1 Introduction

The last decades have seen a steadily growing model unifieerde sake of describing the evolution of
stochastic processes. Particularly in the context of filmhmeanagement, statistical models have been
developed that account for empirically justified facts ahdracteristics of financial time series. These

include fat tails in return distributions, volatility cltess, asymmetries and long memory in volatility

as well as non-linear dependence structures, see e.gQ. J[and_Embrechts et all._[;$01] for more

detailed descriptions. Striving for including these fdaysdefining new models goes along with rising
complexity of models and numerosity of included parametdfer an applier it has thus become an
increasingly difficult task to select and fit models to a gitieme series and to use them for the purpose
of forecasting densities as well as determining quantifetistributions in a risk measurement context.
Therefore, it is questionable whether more intricate modeé necessarily superior to simpler ones in
predicting the price or the risk of a financial asset. Corgare primarily related to the uncertainty of the

additional risk incurred by using more complex models. Tégetbpment towards a more model-prone

statistical world has thus given rise to a new category &f cedled model risk._Sibbertsen et al. [2009]

define model risk as the risk occurring at the central stepgheftatistical modeling process, namely

model choice, specification of the functional form as weliresdel estimation.

Model risk should not be confounded with conventional riakegories such as credit, market and op-
erational risk as its source is the risk incurred by the miadebf risk measures like Value at Risk

(VaR) as such. Nevertheless, it is regarded as a distintbpaperational risk but can be more clearly

distinguished from these risk categories by defining it asraertainty, see Cont [2004]. It has latterly

achieved broader attention in the research communit .[2010] and Escanciano and GQImo

[2010] among others). According to the statistical modgfimocedure model risk can be decomposed

into misspecification and estimation risk. Alternative ag@zhes for the quantification of model risk

have already been proposed. by Cont [2004] who uses a Bayasiaell as a worst-case approach for

model risk measurement._Kerkhof et al. [2010] define mid§ipaton risk as the difference between

estimated VaR and the upper bound of the confidence regidredfdR estimate.

Due to the recent financial market crisis and a series of prentibank failures as well as uncertainties
induced by the budget crisis in several countries in the pema Union more effective mechanisms of

regulation and for handling model risk in particular havemealled for. So far, the Basel Il regula-
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tions implicitly deal with model risk by a multiplication étor ranging between three and four times the

amount set aside as a capital buffer for market risk depgnatinthe number of VaR breaches ([BCBS,

1996]). Besides system relevance, model risk is a nongibtgiissue for financial institutions as Basel

Il allows for the internal calculation of risk capital. Howe, selecting models that take into account
inherent characteristics of financial time series involé&mde-off between misspecification and estima-
tion risk. In the process of setting up internal models andrdgining risk measures financial institutions
have to decide which stylized facts have to be modeled anchahe appropriate model is. We will argue
that some of the aforementioned characteristics need @ toodeled and one can use simpler models
instead due to lower variance of parameter estimates. Bstimrisk has a more pronounced impact on
out-of-sample forecasting performance than misspediicaisk. Therefore, lower variance of parame-
ter estimates and thus estimation risk is more importartti;iregard. However, in some circumstances
which will be defined, modeling certain financial time sedbharacteristics cannot be neglected and need
to be taken into account by appropriate model classes. Bethases less parsimonious specifications
including parameters that account for non-negligibledatiould be preferred, thus reducing model risk.

The purpose of this paper is to find out which these importhatacteristics and data situations are.

Important financial market data characteristics can be teddey the class of copula-GARCH models

which have recently been introduced for the purpose of s&dasting, see e.g. Lee and Long [2009],

Patton [2006], Fantazzini [2009]. These models combinertasts of the class of GARCH models with

the possibility of modeling non-linear dependence stmastietween assets by means of copula models.

Within the class of these models several studies consid@eeftect of underfitted models that beat less

parsimonious models in a forecasting contest. An exterstiveéy byl Hansen and Lunde [2005] yields

that simple GARCHL, 1) beat other intricate GARCH specifications in the context @R\forecasting.

Hamerle and Rosch [2005] find that Gaussian copulas do mfirpeworde than Studerteopulas for

the purpose of credit risk measurement. Our study is cldségd to the one of Fantazzini [2009] who

investigated the accuracy of copula-GARCH models.

We simulated paths of different copula-GARCH models eachuiting five stylized facts and possible
combinations of them yielding eleven specifications overdle then forecasted these processes with
the true model as well as with simpler specifications. We fivad when forecasting VaR, asymmetry in
volatility is a non-negligible fact no matter whether it ieetonly fact present in the data or whether it
occurs in combination with any of the other stylized factshaf forecasting volatility, however, there
are only very special combinations of characteristics tddomd that are not to be misspecified. For
lower degrees of asymmetry & 0.3) for the Asymmetric Power GARCH the GARCH model which
does not take asymmetry in volatility into account will perh as good. However, neglecting fat tails

or tail dependence and using models that do no take theseifié@taccount will not deteriorate forecast
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performance. Thus, when taking forecast errors as a maglelhmeasure underfitting will not lead to

worse forecasts in many data situations.

In the next section copula-GARCH models are introduced. thind section is dedicated to the descrip-
tion and quantification of model risk sources and the biamwmae trade-off in copula-GARCH models.
In section 4 the results of the conducted Monte-Carlo studyillustrated. Section 5 wraps up the

findings.

4.2 Copula-GARCH Models

GARCH models. While conventional time series models assume the variaihgt®chastic processes to
be constant over time, empirical evidence finds them to be-tiarying instead. Models of the GARCH
class are able to implicitly model the conditional variaaoel volatility clusters in financial market data.

A vast number of extensions allow for other stylized factshsas long memory to be incorporated, see

Bollerslev [2007] for an exhaustive overview. Time-vaxyivolatility is introduced through multiplica-

tive heteroskedasticity of the innovation term of the ststit proces;:

& = Otk

Ne|We—i i (0,1)

whereW; i =V 1,¥t 2,... is ao-algebra. Whilen; is commonly assumed to be normally distributed,

Bollerslev [19817] suggests that the marginals be t-disted (); ~ t(v)) thus taking into account fat-

tailed margins. The conditional variancg of the GARCH, q) by [Bollerslev [1986] model depends

on the lagged returns and variance
2 C 2 o 2
o =W+ Zaiem + > Biot
i= =1

with parameters restrictea > 0, o > 0Vi =1,..,p andf; > 0Vj = 1,...,q thus ensuring that;?

remains positive.

Copula models. During the end of the 1990s, copula models emerged in thedfaidk management

due to awareness of the fact that common risk models nedldutecomplexity of the dependence struc-

ture among assets. The attractiveness of copulas is meacyd back to a theorem formulated/by Sklar

[1959] which establishes the decomposition of a joint distion F(x,...,Xq) with random variables

X1,...,Xg iNto its d marginal distributionds Vi = 1,...,d and their dependence structure by combining

them via a coupling functio, called copula,

F(Xq,...,Xd) = C(F1(u1),...,F4(ug)) = C(ug, ..., Uq).
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A d-dimensional copula is a multivariate joint distributioafithed on thed-dimensional unit hypercube
[0,1]9 such that every marginal distribution is uniform on the iwé&[0,1]. It is unique if the marginal
distributions are continuous. The copula can thus be sethe g@int distribution of the inverse transform

of the marginal distributions of, F ~1(u;):

C(ug,...,uq) = F(F X(uy),....,F 1(ug)).

Copula-GARCH models. Copula and GARCH models can be easily combined to form a negdemo
class, copula-GARCH models. A straightforward way is tagfarm the marginal distributiong of the
residuals into uniformly distributed marginals, so that x; in the above definition of the copula. Let

the joint distribution ofy, ..., ng be
F(N1,...,N4;0) = C(F1(N1),-..,Fa(Na). §)

wheref denotes the copula adgddenotes the marginal parameters. Several methods havelnggested
for the estimation of copula-GARCH models. Although siraokous estimation methods of marginal

and copula parameters are available due to Sklar's Theosémation is preferred to be conducted in

sequential steps. Among them is the Inference Functiond#ogins (IFM) method b 2 [1997] where

the copula as well as marginal parameters are separatétyagsti by maximum likelihood estimation.

[1995] and Kim et aJL_[Z( 07] suggest a semirpandc pseudo maximum likelihood esti-

Genest et ¢

mation (PML) of the dependence structure. The marginalrpetersé are estimated in the first step.

The copula parameter8, are estimated from fitting them to the empirical distribo of the marginals

F:
F(n1,....Nd; 0) = C(F1(N1), ..., Fa(Na)).-

Another additional time-varying feature can be incorpedaby letting the dependence parameter of the

copula vary over time, see among others Jondeau and Ro b].

4.3 Model Risk in Copula-GARCH Models

Model risk is defined as the risk induced by the choice, spatifin and estimation of a statistical model

for risk forecasting, thus occuring at each step of thesttasil modeling cycle, Cuthbertson et al. [1992].

Forecasting risk measures by means of copula-GARCH monelisdes the selection of an approriate

estimation method for copula parameter estimation. Thephy Fantazzini [2009] suggests that IFM

estimation leads to copula misspecification caused by tlsspacification of marginals. This is why
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using the IFM estimation we are not able to disentangle thegimal and dependence misspecifica-

tion effects on VaR. Another motivation for using the PML had is a huge reduction in complexity

compared with simultaneous estimation, isee Kim et al. [ROUe estimated parameter vectésand

& separately affect quantile mapping and VaR estimation. tfisrreason we favor a semi-parametric
approach in our study and do not consider model uncertamthis respect. We rather focus on the
occurrence of model risk in other modeling steps, namelgimal and copula parameter estimation and

their impact on forecasting volatility and risk measures.

Choosing a model that fits a time series adequately so thaisthef misspecifying the true underlying
process is relatively small induces high estimation riskadsgher number of parameters needs to be
determined. This induces low bias and high variance of patanestimates through overfitting. If more
parsimonious models are chosen at the expense of adeqeatkcgpion estimation risk should decrease

giving rise to a bias-variace trade-off.

Within a forecasting framework overfitting decreases theample error. For the out-of-sample period
on the other hand high variance of an estimator through dtiegfiincreases the forecast error. Thus,
in a risk management forecasting context one should coes#igiuexpect that estimation risk is more
severe than misspecification risk. The bias-variance todfdguggests that the choice of simpler models
by misspecifying the true model does not decrease the amcofaisk measures. Our following Monte
Carlo study will investigate whether this statement is arsally true and otherwise describe situations

where departures are advisable.

4.4 Simulation Study

4.4.1 Stylized Facts and Specifications

Characteristics which are recognized as important engpifacts are fat-tailed distributions, asymme-
tries in volatility and (lower) tail dependence, see Figlifer an illustration of these facts. These can
be modeled by models of the copula-GARCH class. Fat taile@ammonly accounted for by student-t
distributed margins in contrast to normally distributeé@sn\Volatility clusters and fat tails in conditional
variance are accounted for by fitting a GARCH model. The Aswtnim Power ARCH (APARCH) al-
lows for including asymmetric responses in volatility. l¢hihe Gaussian copula allows for combining
different marginals, the Student-t copula incorporatéslegpendence in addition. Lower tail dependence

meaning that in market downturns correlations tend to @sele modeled by the Clayton copula.

The Asymmetric Power ARCH model (APARCH) of orde; ) proposed by Ding et al. [1993] accounts
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for the stylized fact of asymmetric responses of volatildyshocks,
5 0 5, < 5
o = w+ Ziai[!&—i\ —Yieil®+ Y B
i= =1

with w > 0 anda; as well asBj being non-negative. The power parameler O is a Box-Cox trans-
formation thereby linearizing the non-linear model antl < y < 1Vi = 1,..., p is the parameter that
incorporates the leverage effect so that negative shockes &digher impact on the conditional vari-

ance than positive ones. Note that when setng 2 this model yields the GJIR-GARCH model by

Glosten et al.|[1993] and further restrictiyg= 0 results in the above specification of a GARQH])

process.

Among the most popular copulas in risk management areie#liptopulas such as the Gaussian copula
whereCq (U, ..., Uq; Po) = (P(U1),...,P(Uq)) Whered is the cdf of the Gaussian distribution and the
Studentt copulaC, (ug, ..., Uq) = (t(u1),...,t(uq); pr,) with t, being the cdf of the Studemtdistribution
andp is correlation coefficient of the copula. In contrast to theu§sian copula, the Studentopula
results in a star-shaped scatterplot for low degrees oflfmeev with its highest density on the main
diagonal and allows for modeling higher dependence in titedhthe multivariate distribution (tail de-
pendence). It tends towards a Gaussian copula for incigggalnes ofv. While advantageously one can
easily specify different correlation patterns betweemtlaegins of elliptical copulas, their main obstacle
is their radial symmetry which does not allow elliptical cbgs for modeling asymmetric dependency

structures, i.e. increasing dependencies among assets@alp of market downturns which are broadly

observable among financial market data. The Clayton co 1978]) has been suggested to ac-

count for lower tail dependence in the sense of increasingarolance of random variables in the lower
tails of the distribution. It belongs to the Archimedean wapclass which is constructed by means of a

convex copula generatay(-),
C(Ug, -y Ug) = ¢ HZL (W)
For the Clayton copula this generator is defined as
W) = (4~ -1)

which by insertion in the Archimedean copula function leahe Clayton copula with

n

Cei(ug, ..., ug,K) = [_Zlui"‘ —n—1"Yx,

defined fork € [—1,0] U (0,]. A copula has lower tail dependence if the tail indexX is (0,1] and for

the Clayton copula the tail index
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)\ — 2—1/K

results. The higher the copula parameterthe more pronounced is the dependence of the random
variables in the lower tails. Therefore, the Clayton comdams to be a promising model as it should
be able to reflect the dependence structure in financial resksorement much better due to increasing
correlation of risk factors in adverse market situationise Tollowing figures exemplarily show plots of
the dependence structure produced by the respective sogilgure 2a) and b) show simulated draws
from the Gaussian and the Studémppula with same correlation coefficient which result in ffedént
dependence structures. Figure 2¢) displays the Claytomn@dqr k = 3 where the asymmetric nature of

this copula type becomes evident.

Figure 1: Normally distributed marginals, 10,000 randorawd from a) Gaussian copulp & 0.5), b)
Studentt copula p = 0.5, v = 5), ¢) Clayton copulax = 3)

The following study will investigate misspecifications afderlying processes by underfitting and / or
underparametrization of the true model. Our most basicifgeion is the GARCH model with nor-
mally distributed marginals without tail dependence (G#&urs copula). In a first step we investigate
whether neglecting one characteristic leads to better nalgggood forecasts. If this is true for in-
stance if marginals are fat-tailed forecasting with nofyndistributed marginals will perform not worse
than forecasting with t-distributed ones, forecastinivBtARCH should lead to as good or even better

forecasts than forecasts with APARCH although asymmediatiity is present in the data.

However, even if one of the characteristic can be neglectezhiit is present in the data conditioned on
the existence of other characteristics that are preseasitdibe taken into account that there are all kinds
of fact combinations thinkable in which these charactiesstannot be neglected and underfitting will

lead to higher forecast errors. As an example this meansaan fat tails and asymmetric volatility
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are present in the data, it is to be determined whether GARG#kts with normally distributed residu-
als, APARCH models with normally distributed residuals &ARCH models with student-t distributed
residuals produce lower forecast errors. The most complefication when fat tails, asymmetric volatil-
ity and lower tail dependence are present in the data mayttetite situation where none of the facts

can be neglected.

4.4.2 Simulation Design and Forecast Methodology

In a pre-analysis we determine a reasonable choice of tierasyry parameter of the APARCH model
for simulation. An APARCH(11) model withow =0.01, a =0.05, 3 =0.85, d =2 andy < (0.1,0.2,...,0.9,1.0)
has been simulated and a GARCH as well as APARCH has beentéttbd simulated series and used
for prediction of volatility and VaR. The following figure sfilays the forecast error for varying degrees
of the asymmetry parametgrof the underlying DGP. Foy — 0 one should expect that the forecast er-
rors resulting from fitting a GARCH model are as high or lessitthose from fitting an APARCH model
as the asymmetry effect vanishes for smajleFor increasing/ one would expect that APARCH fore-
cast errors are gradually becoming less than those regfiiim fitting and predicting with the GARCH
model. A Monte Carlo study has been conducted to evaluatedime where both models produce fore-
cast of equal quality as far as forecast errors are concerBagh step is replicated 100 times. The
following figures show the forecast errors resulting froradicting volatility and VaR of the APARCH

series with the true as well as the GARCH model.
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1 1 1 1
0.38 0.40 0.42 0.44
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Figure 2: Mean Squared Forecast Error, upper left: retyspeuright: volatility, bottom left: VaR95%,
bottom right: VaR 99% , blue: APARCH, grey: GARCH

As expected, the GARCH model performs better for lower degref asymmetry and the APARCH
is superior to GARCH for higher asymmetry in volatility. Meaquared forecast errors (MSFES) are
equal for both models when the degree of asymmetry of therlymulg process iy = 0.4 approximately.
When forecasting VaR the difference between GARCH and APAR@comes more significant for
higher degrees gf in comparison to those for volatility forecasts. We therefeety = 0.5 in our Monte
Carlo study when simulating an APARCH model so that the asgtmyin volatility characteristic is

pronounced in a reasonable way.

For our Monte-Carlo study we simulated eleven differenabiate data generating processes (DGP) with

lengtht = 980 where each of the following specifications were comhined
e GARCH(p,q) or APARCH(p,q)

e Standard normally distributed or Studerdistributed marginals;

e Gaussian, Studemter Clayton copula.

The only specification that was not simulated is the mostiscification from which we cannot depart
to any simpler specification for the purpose of forecastinguir framework. The following table contains
parameter choices for simulation. For the mean equationR{i)¥process was chosen and the order of
the GARCH and APARCH process was septe- 1 andg = 1. As we se® = 2 for the APARCH model
we do not consider the power property of the APARCH but ratbsr to the GJR-GARCH model and
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solely focus on the asymmetry of the process volatility.

GARCH(1,1) APARCH(1,1) 1

u 0.15 0.15 -
[0) 0.50 0.50 -
W 0.01 0.01 -
a 0.05 0.05 -
B 0.85 0.85 -
y 0.00 0.50 -
o 2.00 2.00 -
Ho - - 0
(o3 - -1
Y - - 5
Po 1, - - 05
Y - - 5
K - - 3

Table 1: DGP Specification

The time series were split into an in-sampig=£ 700) and an out-of-samplé, (= 280) period and the

ratio of in-sample to out-of-sample horizonrs= 0.4.

The time series are estimated and forecasted with the trdelms well as the other eleven models. The

bivariate time-series models are estimated with Maximukelifiood with normally and-distributed

errors. The computed residuals are used for the estimafidheocopula parameters by means of a

pseudo-ML approach by converting the empirical distrilmutdf margins into uniformly distributed ones

which includes the computation af = If.(ni). From these computad we estimate the copula parame-

tersp, v andk and the parameters of the marginal distributiqnsg? andv. Only the estimation of the

marginals requires the distributional assumptions. Thishy we expected no violations in estimated

copula parameters with respect to the marginal assumptidhgs, the possible differences in predic-

tions of VaR, return and volatility cannot be any more e

parameters, caused by the marginal assumption

ai by means of violations of the copula

., see fin

1d2@_0§)]. However, these assumptions can

be crucial for estimation of the GARCH model. We then com@utre-step ahead forecasts of volatility

and VaR at confidence levets= (0.95, 0.99) by using a rolling window forecasting scheme of length

700. These steps are replicated 1,000 times.
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4.4.3 Results

Although not necessarily that important for our argumeaietve calculated deviances of the parameter
estimates by using wrong models from those that have beerfaissimulation. Overall, estimation with
misspecified models having less parameters and not taking@count the complexity of the underlying

process results in partly heavily biased parameter estsnat

Volatility Forecast

Results for volatility out-of-sample mean squared foreears are provided in Table 2. If one charac-
teristic feature is included in the data, that is the GARCHF fat tails in margins with Gaussian copula
the APARCHN with Gaussian copula thus (asymmetry in volatility) and @®RCH-N with Studentt
and Clayton copula (with (lower) tail dependence) has barualated, then forecasting with a model that
neglects this characteristic leads to MSFEs of lower or aaige size. Thus, forecasting with the basic
model when marginals are fat-tailed does not lead to anaseré model risk. The same is true if two
or even three features are included in the DGP. However,rtainecombinations it is crucial not to miss
the effect of the occurence of two characteristics at ondetwlead to a huge increase in MSFEs: when
the DGP is an APARCH model withdistributed margins and (lower) tail dependence, theaedasting
with a GARCH model with fat-tailed margins no matter whetther dependence structure is transformed
with a Gaussian, Studehter Clayton copula will make the MSFEs rise considerably.héiltgh not in
every case, it seems to be important to pay attention to anragyric volatility structure when present

in the data especially when assets have stronger depenitethes(lower) tails.

® (2) ® (4 (5) (6) @ (8 9 (109) (11

GARCH-N (G) 0.1214 0.1214 0.8008 1.0281 1.0228 0.5993 ®598 0.7306 1.8891 1.8510 2.3128
GARCH-N (T) 0.1213 0.1213 0.8006 1.0304 1.0269 0.5989 0.5983 0.7337 1.8890 492.8 2.3223
GARCH-N (C) 0.1153 0.1153 0.7547 0.9917 1.0201 0.5627 0.5703 0.7262 1.7791 1.7692 992.2
GARCH-t (G) 0.1157 0.1157 1.0882 1.3573 1.3685 0.5748 0.5750 0.7019 2.6102 2.5777 3.1805
GARCH-t (T) 0.1156 0.1156 1.0900 1.3680 1.3857 0.5749 0.5753 0.7051 2.6163 2.6112 3.2290
GARCH-t (C) 0.1101 0.1101 1.0323 1.3112 1.3527 0.5407 0.5487 0.6973 24771 2.4854 3.1320
APARCH-N (G) 0.1209 0.1209 0.7631 0.9221 0.9676 0.6108 0.6080 0.7454 1.9007 1.8458 2.3076
APARCH-N (T) 0.1209 0.1209 0.7630 0.9223 0.9715 0.61080.6079 0.7484 1.9006 1.8447 23171
APARCH-N (C) 0.1149 0.1149 0.7187 0.8870 0.9618 0.5738 gm57 0.7425 1.7913 1.7655 2.3003
APARCH-t (G) 0.1854 0.1854 1.0822 1.2820 1.3427 0.6113 9860 0.7471  2.3636 2.3232 2.8752
APARCH-t (T) 0.1855 0.1855 1.0846 1.2969 1.3599 0.6113 9660 0.7504 2.3682 23475 2.9126
APARCH-t (C) 0.1756 0.1756 1.0258 1.2388 1.3221 0.5744 1858 0.7437 2.2432 2.2393 28448
Table 2: MSFE, Volatility Forecast

IMore detailed results as well as result tables are availaibe request.
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Forecast Error Accuracy Test

Table XY provides results of Diebold Mariano test for erracaracy of volatility forecasts for non-

nested models arENC-NEWtest by Clark and McCracken [2001] rolling scheme for nestedlels for

m= 0.4 andk = 1 if only fat tails were neglectek = 2 if asymmetric volatility was not modelled or

k = 3 if both. Test statistics in bold indicate higher forecasbies:

True model Reduced model ENC-NEW DM
GARCH-T + Clayton GARCH-T + Gaussian 0.6856
GARCH-T + Student-t 0.0000
GARCH-N + Clayton 76.5080
GARCH-N + Gaussian 0.0000
GARCH-N + Student-t 0.0000
APARCH-T + Gaussian ~ APARCH-N + Gaussian ~ 89.7712
GARCH-T + Gaussian 60.3272
GARCH-N + Gaussian 88.6559
APARCH-N+ Student-t ~ APARCH-N + Gaussian 0.2820
GARCH-N + Student-t 8.2977
GARCH-N + Gaussian 8.2033
APARCH-N + Clayton APARCH-N + Gaussian 0.6706
APARCH-N + Student-t 0.3796
GARCH-N + Clayton 3.9323
GARCH-N + Gaussian 0.0000
GARCH-N + Student-t 0.0079

Table 3: Forecast error accuracy tests for selected reduoeels

The results suggest no significant increase in models risktaltnigher forecast errors if (a)symmetric
tail dependence was neglected, but sufficient increaseyifiaetric volatility was misspecified. This
effect, however, reinforces if two of the characteristiosrevnot accounted for as this is the fact in case

of APARCH-N + Clayton modelled with APARCH-N Gaussian and B®@H-N Gaussian.

Value at Risk forecast

Results for Value at Risk out-of-sample forecast errorspaogided in Table 4 and 5. If the true model
contains tail dependence (GARCH-N-Student-t copula),elotail dependence (GARCH-N-Clayton
copula) or fat-tailed margins (GARCH-t-Gaussian copufajecasting Value at Risk with more par-
simonious models neglecting each one of these facts will tedower forecast errors suggesting that
misspecification leads to better forecasts when these aisasdics are present in the data. However, if
the feature of asymmetry in volatility (APARCH-N-Gaussi@pula) is characteristic for the data, using

a GARCH process to forecast Value at Risk will lead to an iaseeof forecast error in comparison to
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forecasting with the true model.

No matter whether the data-generating process has fataddail dependence (GARCH-t-Student-
t copula), fat tails and asymmetric tail dependence (GAR&Hayton copula), fat tails and asym-
metric volatility (APARCH-t Gaussian copula), asymmetviatility and tail dependence (APARCH-
N-Student-t copula) or asymmetric volatility and lowell @épendence (APARCH-N-Clayton copula)
forecasting Value at Risk with GARCH models, when asymmigtiyolatility is present, forecast errors
will increase. The only exception is the latter combinatigmere neglecting asymmetry in volatility is

tolerable when forecasting is done with a model that doesaketasymmetry in volatility into account.

If the data contains asymmetric volatility, fat tails anowier) tail dependence choosing simpler speci-
fications for forecasting will not have a deterioriatingeeff on model risk. The only fact that increases
forecast errors is asymmetry in volatility. Another cas8%86 VaR, neglecting the tail dependence in

the data by using Gaussian copula to forecast leads to higiesrast errors.

A crucial characteristic that is not to be missed when fastog Value at Risk is the asymmetry in
volatility. If this feature is present in the data — no matidrether it occurs in combination with other
more complex specification or alone — using simpler modeldewd to higher forecast errors. Neglect-
ing fat-tailedness of the marginal distributions as wellaalsdependence or even lower tail dependence
will in general induce no problems regarding the reliapilif forecasts. Forecast errors might even

decrease due to lower estimation risk. Interpretationsaddh differ between 95% and 99% VaR.

® @) ® 4 5 (6 @ ®) 9 (109) 1y

GARCH-N (G) 0.7274 0.8574 3.3170 3.4345 4.2251 2.6079 8580 3.1417 6.7794 6.9241 7.7902
GARCH-N (T) 0.7263 0.8607 3.3149 3.4306 4.2575 2.6062 25773 3.1522 6.7750 1489 7.8183

GARCH-N (C) 0.7597  0.9108 3.3990 3.5757 4.4795 2.6798 2.6926 3.3280 6.9651 7.2306 898.2
GARCH-t (G) 0.6984 0.8209 4.1134 4.2713 5.2167 2.4805 2.4520 2.9880 8.4746 8.6472 9.6878
GARCH-t (T) 0.6968 0.8236 4.1062 4.2197 5.2269 2.4786 2.4460 2.9965 8.4553 8.5246 9.6654
GARCH-t (C) 0.7282 0.8706 4.1631 4.3925 5.5222 2.5446 2.5536 3.1613 8.5755 8.8882 10.2522

APARCH-N (G) 0.7272 0.8570 3.1989 3.3127 4.0144 2.5309 2.5027 3.0521 6.4195 6.5498 7.4395
APARCH-N (T) 0.7262 0.8603 3.1970 3.3106 4.0276 2.52942.4991 3.0624 6.4155 6.5407 7.4730
APARCH-N (C) 0.7593 0.9103 3.2790 3.4506 4.2367 2.6003 1661 3.2352 6.5960 6.8372 7.9206
APARCH-t (G) 0.9608 0.8656 4.0831 4.1988 5.0071 25305 5749 3.0303 7.5077 7.6913 8.6576
APARCH-t (T) 0.9583 0.8686 4.0757 4.1446 4.9962 25286  2B48 3.0396 7.4925 7.5908 8.6325
APARCH-t (C) 1.0052 0.9194 4.1294 4.3074 5.2982 25971 1660 3.2143 7.5990 7.9059  9.1589

Table 4: MSFE, 95% VaR Forecast
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@ @ ® 4 ©®) ®) @ ®) © 19 1y
GARCH-N(G) 11964 14156 56075 57709  7.2030  4.3072 426651713  11.4449  11.6516  13.2443
GARCH-N(T) 12539 14533 56368  6.0286  7.4051  4.3357 4.4730 52960  11.5203 .1992 135862
GARCH-N (C) 13494 15386 61680  6.4646  7.8003 47778 48114 56127  12.6956  13.14594.4414

GARCH-t (G) 1.1544 1.3645 91975 9.4914 12.1075 4.1637 4.1185 5.0042 19.2818 19.5902 22.910
GARCH-t (T) 1.2089 1.4004 9.2381 9.8342 12.3396 4.1909 4.3143 5.1286 19.3872 20.3052 23.4748
GARCH-t (C) 1.3023 1.4839 10.1791 10.7427 13.3126 4.6246 4.6524 5.4426 21.5454 22.3604 25.4730

APARCH-N (G) 1.1959 1.4148 5.3673 5.5232 6.7321 4.1829 4.1417 5.0287 10.8019 11.0036 12.6581
APARCH-N (T) 1.2531 1.4522 5.3972 5.7661 6.8905 4.20864.3398 5.1563 10.8880 11.5188 12.9902
APARCH-N (C) 1.3487 1.5376 5.9158 6.1885 7.2968 4.6404 2167 5.4579 12.0150 12.4202 13.8075
APARCH-t (G) 1.6879 1.4555 9.1496 9.3071 11.6037 4.2486 9441 5.0785 164738 16.8080 19.7634
APARCH-t (T) 1.7682 1.4944 9.1928 9.6322 11.9157 4.2744 93B3 5.2071 16.5566 17.4408 20.2769
APARCH-t (C) 19121 1.5849 10.1385 10.5424 12.8339 4.7201 .740L 5.5263 18.3921 19.1805 21.9716

Table 5: MSFE, 99% VaR Forecast

Backtests

As the Basel Il framework stipulates the application of liasts in the sense of testing whether the
fraction of times 99% VaR exceeds the return in a period of @bk equals the VaR level that exceeds
returns only 1% of the time. The test proposed by Kupiec tebtsther the exceedance series uncondi-
tionally keeps the level. A test suggested by Christoffeidemands that also unconditionally the level
holds and takes into account whether models have the ataliygljust or build up exceedance clusters.
Table XY provides results of number of exceedances withirobisample periods, as well as p-values

of both tests for 99% VaR:
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True model Reduced model EXC KT CT
GARCH-T + Clayton GARCH-T + Clayton 2 0.3048 0.0241
GARCH-T + Gaussian 3 0.3312 0.0412
GARCH-T + Student-t 3 0.3286 0.0328
GARCH-N + Clayton 7 0.3105 0.2083
GARCH-N + Gaussian 8 0.2758 0.2545
GARCH-N + Student-t 8 0.2856 0.2483
APARCH-T + Gaussian ~ APARCH-T + Gaussian 2 0.29810.0391
APARCH-N + Gaussian 7 0.2757 0.2228
GARCH-T + Gaussian 2 0.3030 0.0279
GARCH-N + Gaussian 7 0.2568 0.2581
APARCH-N+ Student-t ~ APARCH-N+ Student-t 6 0.2670 0.1944
APARCH-N + Gaussian 7 0.2460 0.2275
GARCH-N + Student-t 7 0.2492 0.2467
GARCH-N + Gaussian 8 0.2310 0.2728
APARCH-N + Clayton APARCH-N + Clayton 6 0.2520 0.2023
APARCH-N + Gaussian 7 0.2146 0.2579
APARCH-N + Student-t 7 0.2254 0.2367
GARCH-N + Clayton 7 0.2285 0.2660
GARCH-N + Gaussian 8 0.1966 0.3170
GARCH-N + Student-t 8 0.2073 0.3029

Table 6: VaR Forecast accuracy: h=1, VaR=99%

Results suggest using more parsimonious models leadster lmecasts performance. Especially con-
cerning the fat tails which can be adequately reflected watinal distribution of residuals of GARCH or
APARCH model. Choosing the Student-t distribution instesuleases the estimation risk, the predicts
become more conservative. These models are rejected bst@faisen test, i.e. their ability to build up

exceedance clusters is very poor.

4.5 Conclusion

This paper investigates the trade-off between estimatiomaisspecification risk in a forecasting frame-
work with attention focused on the forecasting of extremarnjles of distributions of a portfolio of
bivariate time series. It is argued that by utilizing thesbi@ariance trade-off through underfitting better
forecasts and less model risk in forecasting through detrg@&stimation risk results. On the other hand,
if certain empirical data features that are process-rateaee not being modeled misspecification errors
increase so that higher forecast errors result from estmatith more parsimonious models. This study
looked at the characteristics and combinations of chaiatits that need to be modeled when present

in the data.

It is left open for further research whether other facts sasHong memory in volatility or time de-
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pendence of copula parameters which have been found in fahdince series need explicitly be taken

into account in a copula-GARCH framewo i 2010] find that long memory in
GARCH alone does play a role. Furthermore, it would be istiamg whether the results hold in a mul-
tivariate modeling framework where the time-variation lo¢ tcovariance and / or correlation between
assets is modeled by respective models such as the Consiyrtamic Conditional Correlation models

(DCC, CCC).
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5 Model Risk in Backtesting Risk Measures

Joint with Johannes Rohde

5.1 Introduction

Backtesting is a mean to analyse whether a model used farlatihg risk measures is accurate. Itis at
the core of supervisory activity regarding the resilientér@ancial institutions in alleviating the impact
of financial crisis as the accuracy of risk measures has dains for the solvency capital that financial

institutions have to calculate.

BCBS [1996] regulations state that the calculation of a fomrinstitutions’ market capital requirement

for preventing losses resulting from adverse market canditbe the maximum of either the 0.01% Value
at Risk (VaR) or the average VaR reported during the previ@udays multiplied by a factor depending
on the sum of VaR violations during the reporting periodfficdight approach). Thus, the accuracy

of the VaR model is closely linked to the regulatory framewoAn accurate VaR model satisfies two

S

properties as defined by Kupiec [1995] and Christoffe

=

The unconditional coverage property, formally

where{l;} is the hit sequence indicating if a violation occurred or, rbims that the probability of
violations during the reporting period equals thhdevel set for VaR calculation. The VaR model is
deemed inaccurate in the sense of failing to be able to atdouthe incurred risk if the number of
violations exceeds the number of expected losses. The riglelns too conservative when the VaR

model yields less violations than to be expected.

A second claim is the independence of elements of the hitesexgu If the violations occur in a cluster,
the financial institution might not be able to tackle the é&ssim contrast to a situation where the violations
are spread out evenly over the reporting horizon. An acewaR model is therefore characterized by

satisfying the property of unconditional coverage as wethee independence property,

I(a) ™ Ber(a),
ie that the hit sequence is identically and independentriduited with probabilitya. Backtests are
statistical tests designed for determining the accuracya®® models. While several tests have been

proposed for each of the two properties, joint tests detegmihether the VaR model is accurate as a
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whole. However, joint tests are not to be gauged as beingetsally preferable to mono-property tests

as the ability to detect the violation of one of the two prdigsris decreasing (Campbell [2005]).

A type | error arises when an accurate model with a covera@9uf is erroneously rejected. When the
VaR model is inaccurate with lower coverage, eg 2% type breig the probability that the inaccurate
model is not rejected. If the power of the backtest is lowntties probability of classifying an inaccurate
model as accurate (not rejecting the null) is comparativegh. Backtests should have high power
and not be over- or undersized. In a Monte Carlo study we aadlye problems of common backtest
procedures. The main result of this paper will be that eveanndiccounting for model risk, regulation

sets restrictions to backtesting.

The paper is organized as follows: the next section descrigdlevant backtesting categories. It serves
a starting point for further derivations of multivariateckgests which will be suggested as a mean to
overcome problems resulting from supervisory restrigioin the third chapter we conduct a Monte
Carlo study and analyse the problems that arise when cdnduanivariate backtests in the course of

regulation aspects.

5.2 Overview of backtests

Backtests can be distinguished into frequency-based dsaw/slze-based tests. While the former tests
examine the sequence obtained from the exceedance of Vale Himrealized profit and losses series,
the latter tests are constructed from the size of the exoeedeonditioned on the violations. As the

regulatory framework is based upon the violations and natheir size, size-based tests are relatively

few in the literature due to regulatory constraints (L ).

The most basic backtests for testing the unconditional remee property, the time until first failure

TUFF) test and its generalization, the proportion of faahki (POF) test, were suggested & K;]piec

[1995]. As shown in Kupied [1995] the simplicity of the TUFREst ignores the total number of failures

since the start of the monitoring, the POF test should alvimeysun to verify potential loss estimates
in place or in addition. In contrast to the TUFF framework,endonly the elapsed time until the first
failure is considered, the POF uses the entire informatibmthis (and all further analyses) consider
a hit sequencgl¢}{! ; of sizen, wherevt : Iy € {0,1}, n; denotes the number of hits (le= 1) and
no = n—ny (ie ng = t(ly = 0)). The probability of observing, hits in a sample of size is given by the

the probability function of the binomial distribution,
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For the null hypothesis of the POF teldty : a = 1 with [1 = ™, the associated test is a Likelihood Ratio

(LR) test and its test statistics is given by
K =—2log(L(a)/L())

wherea denotes the failure probability under the nil(;) the corresponding Likelihood function and

A~

f=",

n

However, when the sample size is relatively small both teptsear to have poor ability to distinguish

between the underlying failure probability in the null hfpesis and failure probabilities that are slightly

higher (see Kupiec [1995]). Thus, these frameworks mighbeaadequate for the analysis of the accu-
racy of VaR estimates covering only one trading year. Fumioee, a frequently arising problem is the
non-existence of violations during the reporting periodhisTissue becomes most important when VaR

models with a small failure probability are evaluated. les cases the Kupiec tests are not computable.

When testing theid hypothesis of the hit sequence the autocorrelation of thheesee itself or the

equidistance of the time span between consecutive vioki®examined. These tests require the com-
plete specification of the alternative hypotheses in theestimat the way how violation clusters occur has
to be specified exactly. Autocorrelation-based tests cazohstructed by testing on the autocorrelation

structure in the hit sequence its€]f; }, or in the demeaned sequen¢k,— a }, that forms a sequence of

martingale difference summands (Berkowitz etlal. [2009]).

D

The test by Christoffers

1 [1998] was the first test of thislkiThe basic idea behind this LR-type test
consists in the following comparison: If there is no depemdebetween two consecutive observations,
then the probability of monitoring no violation on the dayeafa violation took place should be equal to

the probability of monitoring no violation when on the dayidre no violation was observed, too.

As inKupiec [1995] the LR framework is used and built on Marldhains. The independence of the

observations of the hit sequence is tested under the nuhstghe alternative of a first-order Markov

chain where the stochastic matrix

= Tho Thi

Tho Thi

represents the transition matrix argf = P(l; = j|li_1 =1),i, ] € {0,1} the transition probabilities. Let
ni; be the number of observations with vaiuend previous valug. Then the likelihood function for the

hit sequenc€l; } yields

L(M1) i= LM {l}) = Tp0’ To1 Thg 1!
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This is the likelihood under validness of the alternativedelavhile the likelihood for the null model can

be computed by considering the stochastic matrix

1-m ™
My, =
1-m 1™

Employing this model under the null it is easy to see that tldependence of the hit sequence is tested
by this means since the rows have all the same entries. Uhdenull previous observations do not
influence the probability of monitoring a violation or not.alfix entriesre represent the probability of a
violation and according to this the number of observatioesaggregated over indgxas the past value

j has no influence on the present vaium = % Thus,

L(Mp) :=L(MNy{l})=(1— 7-[2)(”00-‘1-”10) ngoﬁnn
is the likelihood function under the null model.

UsingL(M1) andL(My) the LR test statistic for the Christoffersen test of indefece is

LRIND = —2 |og<::$1§>
2

which is x? distributed with one degree of freedom. Note that_the_Qh[ﬁxts_eL [1998] test provides no
possibility for testing conditional coverage as LR.IND do®t depend on the true coverage probability
a. Ajoint test for both testing the independence and the ¢mmdil coverage property as well is provided

below.

A problem that arises with using this backtest is that theistdffersen test of independence only ex-

amines for dependence between two consecutive obsersatiGampbell|[2005] notes that it is also

possible that the probability of monitoring a violation &yds not influenced by yesterday’s observation

but indeed could be influenced by prior observations.

Next to the test for proving independence of observationghefhit sequence _Christoffersen [1998]

introduced a test of unconditional coverage, teskiig] = a against its alternativ&|l;] # a. The joint

test of conditional coverage and independence by Chrésg#h[[1998] combines those tests to examine

whether both properties of a VaR measure are jointly fulfiled

The basic idea is as simple as for the independence test; iFthe unconditional coverage property is

. n +n _ - . - . .
fulfiled thenm = o must hold implying that the proportion of observed violatimatches

with the hit probabilitya. Furthermore, as stated previously, the probability of @wviolation following

a previous hit equals the probability of a non-violatioridaling a previous non-violation, i. Og‘ﬁm =

nlg‘fnn, when the independence property is on the hand. Combiniagitithe VaR measure fulfils the
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independence property these probabilities should mathatal proportion of non-violations, which,
provided the unconditional property is valid, leads to

Mo = Mo Noo + No1 o
Noo+N1o  Nio+N11  Noo+ No1+ Nio+ N11

that is tested under the null. In terms of the LR frameworKittedihood of the null of the unconditional
coverage test is tested here against the alternative ofidlepéndence test, forming a test of conditional

coverage in effect. Thus, the test statistics results in

LRCC=—2log ( LL((I'Tl)) ) .

Christoffersen|[1998] shows that the limiting distributiof the joint test isy?(2). However, even if

running a joint test might seem always preferable over motine unconditional coverage test and the
independence test separately, one has to note that jotetdisniss VaR measures that violate only
one property. As a result the joint test may detect the vamabf either unconditional coverage or

independence in less cases than a test that focuses on @nbf timese properties does. According to

Campbell [2005] the employment of a test that covers onlyla pmperty might be preferable when

prior information over the VaR measure is available.

Escanciano and Olmao [2010] provide a test of unconditiom&etage as well as a test of conditional

coverage. Their analysis bases on a Monte Carlo study, wheranconditional and the conditional
coverage tests are compared to a corrected version of thetse These corrected releases account for
the impact of estimation risk arising when forecasts ardadout. All tests are based on the demeaned

hit sequencgl; — a}.

The test of unconditional coverage are derived from theditgliof E[l;] = o under the null model. Its

test statistics is presented by

1 P
S=—F (lt—a)
Vi
and is predicated on the unconditional coverage tests byek(ib995] and Christoffersen [1998]. It can

easily be checked th%{Sp is converging against a standard normal distribution, elber \/a (1—a)
is nothing else than the standard deviation of the binonigtidution forI;. This holds asss is the

standardized version df; } with

1 SD:%Z&R:l('t—a): 12
oP 3 oP2 \/|30t4;:1

When adjustingo for estimation risk it can be shown that the term of the edtithadtandard deviation

(k—a) — N(0;1)

gets the form

_1
2

Ocorr = (a1 (1—a) + AV A)
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when the applied forecast scheme is set fixed and the unagyGP is a GARCH process of order

(1,1). Note that Escanciano and Olmo [2010] also providesidd tests for rolling and recursive forecast

schemes. FomAVA = 0 the impact of estimation risk is asymptotically irreletzan

The parametert = AL”LF% denotes the relation between the lenBtbf the out-of-sample series and the
first R observations which are used to estimate the process pananét is quiet intuitive that for a
large value ofR in relation toP and thus a relatively long in-sample series the influencestifnation
risk becomes negligibly small. The mathkis of dimension(3 x 3) and contains the variances and co-
variances of the data generating process, Whilienotes a (X 1)-vector containing the first derivations
of the DGP wrt the GARCH parameters respectivélyandV are the consistent estimatorsAwandV

respectively. For a detailed derivationdfindV see Appendix.

The resulting test statistics

1 n
VN Ocorr t;(lt —a)

& —

is N(0; 1) distributed fom — co.

The leadoff duration-based backtesting approach was peapby. Christoffersen and Pelletier [2004]

with the motivation to overcome the pitfall of small powerlEHcktests existing by then in small sam-

ple sizes and to uncover not only first order Markov depenidsnsuch as the independence test by

Christoffersein|[1998]. This approach is justified by thehaus by no-hit periods which are either rela-
tively short by reason of high market volatility or relatiydong when the market is calmed down. For
this, we defined; =t —tj_1,i = 1,...,1 as the duration between the hit numberl andi occurring at

datest;_; andt; (t € {1,...,n}), respectively.

To construct the test that emanates from the independentiee afurations and thus, from a correct
specified VaR model, a memoryless probability distribuioneeded to model the durations. The only
continuous distribution that accounts for a constant failprobabilitya is the exponential distribution

with the density
fEXP(d) = a exp(—a d).

Note that the corresponding hazard function for the expiialedistribution isA BXP(d) = a which can be
interpreted than the probability that a violation occurdated past the last hit after having already waited
for d — 1 days is constantlg and independent from, ie memoryless. Thus, the null of independence is

that the durations; come from an exponential distribution with likelihood fuion

InL(a) =nin(a) — ad.
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For the alternative model a duration distribution with afomstant hazard rate is required. The simplest

case should be the Weibull distribution with density
fV(d) = aPbd®t exp(—(a d)P)

whereb € R.q is a shape parameter. Note that the exponential distribusicnested by the Weibull

distribution forb = 1. The hazard rate can easily be obtained by
AW(d) = a®bd® 2.

For b < 1 the Weibull hazard rate is decreasing. Transferred to tramdial market a decreasirig’
indicates that the market tends to more extreme duratioms pieriods of relatively short or relatively

long duration. The log-Likelihood function under the attative is then given by
InL(a;k) =InA +Ink+(k—=1)§ Indi —A S dk.
212

Thereby, the pair of hypotheses can be reformulated in teftise shape parametérby Hp: b=1
versusH; : b# 1.

The null of independence can be tested by a Likelihood rasbliy evaluation of

B InL(a)

which follows ay? distribution with two degrees of freedom.

To conduct the test it is necessary to transform the hit sexpig; } into a duration sequenc; }l_;.

While doing the transformation it has to be kept into accdbat the first and last duration is possibly
censored, ie the duration of the first no-hit period is lonthand; as there is no data available before.
Of course, the only exception consists in the case that thteofiservation is already a hit. Likewise the

last duration could be longer thahwhen the last observation ¢f; } is not a hit.

In the above spanned framework it is possible to model depenes of higher order than the Markov

test. However, this test contains no information about tteeeorder of dependence, but could only be

captured by the EACD framework by Engle and Russell [1998].

Another test of independence that does not exploit the bilesece directly, but the properties of the du-

rations between consecutive hits was recently propos al. [2011]. The major motivation

behind the construction of this test is to overcome the demkiof low power in realistic sample sizes

when conducting backtests.

The idea behind this test is as follows: To each distributielonging to the Pearson family an orthonor-

mal polynomial can be associated. Orthonormal polynonfiaikl a sequence of polynomials at which
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each two polynomials are pairwise orthonormal underlthénner product. Considering the duration
sequenced; } as being discrete, the orthonormal polynomial associaiddtive geometric distribution

can be employed.

Define the number of employed polynomialghe orthonormal polynomial associated to the memoryless

geometric distribution follows the recursion

Mh = Mj.a(d;a) = (l—B)((jziJ;)l) j(Llﬁ_(jB;djL Y Mj(d;a) — j%_Mj—l(d;B)

for any j € Ng, Vd € No, d :=d Vi € {1,...,1} and initial valuesM_;(d;a) = 0, Mg(d; 8) = 1. Using

the method of moments to estimate the parameters of thisipiial regression efficient and consistent

estimates can be obtained. Thus, under the null of conditicoverage the moment condition
Ho : E[Mj(d;a)] =0

is tested. Thus, under the null model the duration sequetiogvt a geometric distribution with hit prob-
ability a, meaning that there is no correlation between two consechiis as the geometric distribution

provides the only memoryless discrete probability distitmn.

In contrast to the duration-based test/by ChristoffersehRailletier [2004], this framework allows to

test separately for unconditional coverage and the indim@e hypothesis. The reasoning is straight-
forward: As the expectation of a geometric distributed mnd/ariable with parametar is equal to%,
it is easily shown that this is equivalent to the conditiontfee orthonormal polynomial of ordér= 1

that is tested undétly of unconditional coverage:

EMi(d;a)] =E | ———

The usage of orthonormal polynomials enables to run theatigisin the GMM framework with known

asymptotic covariance matrices. The test statistics eyimqgidhe polynomial ordeh is

Ceu(h) = (%iw(di:a)) (%i_iw(di:a))

following a x? limiting distribution withh degrees of freedom arjo= 1,...,h. Note that for the special

case of unconditional coverage ame- 1 the test statistics becomes

S

2
C8-(1) — CSo = (i M1<di;a>) |

=]
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When presuming thafd; } is continuous the tests are run with the same conditionsstajufor the

exponential distribution and its corresponding orthoralrpolynomials following the recursion
1
Lh=Lj11(d;a) = i1 [(2n+1—ad)Lj(d;a) —nLy_1(d; a)]

with initial valuesL_; =1 andL; = 1— ad andL being polynomials of the Laguerre family. The
test statistics for the continuous case and the orthongpwighomials associated with the exponential

distribution is then

CEXP(h) = (%iL;(di:a)) (%iu(dum)

again following ax?(h) distribution under the null.

5.3 Simulation Study

The following simulation studies aim at detecting the peohd arising from conducting backtests with

univariate time series. For this purpose we simulated GARCH processes

Yi = Gi&
0f = 6o+ 61Y2 1 + 6,07 ;.

with parameter vecta®’ = (8y, 61, 6,) = (0.1,0.1,0.85) and different lengths of in-sampRand out-of-
sample horizoP. The in-sample period witR= (250;500; 750; 1000; 1,500 is used for the estimation
of the respective parameters and the out-of-sample p&ried250;500;750; 1000; 1 500) is used for
the evaluation of the backtest. The VaR for the respectiviesevith confidence level off = 0.01 is
calculated in the next step. Following this, the hit seqeefic} is computed. For testing the accuracy
of the VaR computation the test statistics of the aforenoeeti backtests are calculated. The procedure
is replicated 5,000 times. Table 18 shows the results of tbat¥Carlo study. For each combination
of in-sample and out-of-sample length, the respective goapisize is calculated from the computed
test statistics and the nominal coverage is chosen as amg@uota = 0.05. The first three columns
summarise the results for the Kupiec test and the tests steghby Christoffersen (independence and
conditional coverage test), while the remaining columrsashkize results for duration-based backtests
for which the sequencfd: } of the time span between the respective hits of sequéipgdas been taken
into account. While tests (4) to (6) are based on the null ad@etric distribution withh = 1, 3,5, tests

(7) to (9) report the results for the tests where the distidouunder the null is supposed to be continuous

with the same number of orthogonal polynomials as under ig@eate assumption.
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P ) @) ®3) (4) () (6) (7) 8) (9)
R=250 250 0.0930 0.0322 0.0808 0.0486 0.0512 0.0334 0.0138134 0.0118
500 0.2240 0.0428 0.1208 0.1758 0.1020 0.0730 0.0344 0.0320366
750 0.2262 0.0578 0.1832 0.1840 0.1696 0.1392 0.0718 0.076660
1,000 0.2786 0.0684 0.2286 0.2396 0.2016 0.1660 0.0962 58.09.0816
1,500 0.3452 0.0756 0.3148 0.3454 0.2828 0.2426 0.1472 58.140.1224
R=500 250 0.0664 0.0328 0.0622 0.0350 0.0388 0.0246 0.0066080 0.0072
500 0.1682 0.0412 0.0802 0.1250 0.0682 0.0468 0.0224 0.0270250
750 0.1612 0.0640 0.1300 0.1198 0.1128 0.0936 0.0470 0.0578524
1,000 0.2138 0.0652 0.1712 0.1746 0.1454 0.1192 0.0666 98.060.0600
1,500 0.2472 0.0694 0.2296 0.2478 0.1834 0.1500 0.0872 54.080.0744
R=750 250 0.0628 0.0368 0.0582 0.0314 0.0348 0.0236 0.0056064 0.0074
500 0.1576 0.0414 0.0680 0.1102 0.0610 0.0456 0.0168 0.0238252
750 0.1460 0.0605 0.1216 0.1065 0.0998 0.0849 0.0399 0.051.46448
1,000 0.1973 0.0621 0.1502 0.1581 0.1247 0.1000 0.0523 89.050.0507
1,500 0.2058 0.0748 0.2104 0.2064 0.1550 0.1260 0.0652 64.070.0628
R=1,000 250 0.2058 0.0748 0.2104 0.2064 0.1550 0.1260 D.063.0764 0.0628
500 0.1430 0.0424 0.0634 0.1036 0.0556 0.0412 0.0166 0.022P230
750 0.1300 0.0556 0.1076 0.0956 0.0918 0.0734 0.0378 0.0486394
1,000 0.1678 0.0690 0.1440 0.1366 0.1096 0.0968 0.0568 74.0%0.0508
1,500 0.1877 0.0757 0.1941 0.1877 0.1522 0.1208 0.0673 48.070.0625
R=1,500 250 0.1678 0.0690 0.1440 0.1366 0.1096 0.0968 8.058.0574 0.0508
500 0.1404 0.0378 0.0624 0.1000 0.0534 0.0384 0.0160 0.02286236
750 0.1206 0.0620 0.1058 0.0890 0.0844 0.0674 0.0316 0.04DP358
1,000 0.1486 0.0604 0.1188 0.1152 0.0952 0.0822 0.0444 94.040.0434
1,500 0.1652 0.0752 0.1856 0.1656 0.1318 0.1062 0.0622 78.060.0558

Table 7; Results - Sizey = 0.01

The first observation to be made is that the majority of theékiemts are oversized and hence reject the
null too often. Thus, even if the null is true the backtestssify the VaR to be inaccurate. However,
some of the duration-based backtests tend to be undersipedially ifP andR are both small. Secondly,
the smaller the ratiar = P/R of out-of-sample length to in-sample length, the lower is dhistortion,
that is the difference between the empirical and nominal. $tor example, foR = 250 the Kupiec test

is distorted by 2%2% for P = 1,500 and the lower the in-sample period the smaller is theish.
When the out-of-sample length is reducedPte- 250 the size is distorted by.3P6. This is due to the
reason that the smaller the amount of data available fanetitin of parameters in comparisonRdahe
higher is the estimation risk involved which leads to lessuaate projections of VaR. Duration-based

backtests tend to have lower size distortions in general.
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A

Acknowledging model risk, Escanciano and Olmo [2010] pdledi tests corrected for estimation risk.

When correcting the variance of the backtest by Kupiec akithdainto account the demeaned hit se-
quence{l;} the test should not be rejected as often as is the case witintteerected test. Therefore, it

should be expected that the size distortions decrease lyiragpphe estimation risk corrected backtest

by|Escanciano and Olmp [2010]. We again conducted a Montie €aperiment as outlined above with

500 replications an&, P = (250;500; 750; 1000) and computed andSs. Size results are reported in
Table 19.

R =250 R =500
P 250 500 750 1,000 250 500 750 1,000
S 0138 0182 0250 0268 0.108 0.154 0.228 0.194
& 0088 0096 0082 0118 0074 0078 0.092 0.074
R =750 R = 1,000
P 250 500 750 1,000 250 500 750 1,000
S 0128 0142 0228 0184 0100 0.090 0.180 0.156
& 0090 0098 0084 0064 0084 0062 0.078 0.084

Table 8: Results

For each combination d® andP the effect of the variance correction results in a much losvepirical

coverage foS and for lowrr empirical and nominal coverage do hardly deviate from edicbro

In Figure 10, the density of the true asymptotic distribatinf S» and S, ie the normal distribution,
as well as the kernel density estimation of the test statitias well asS of the corrected test for
R = 250 andP = 500 anda = 0.05 are plotted. Whereas the densitySsfdeviates considerably from

its asymptotic distribution, the kernel density of the eoted backtest comes much closer to it.
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Figure 3: Density of normal distributionu(= 0, o0 = 1) (black), Kernel density estimate & (blue),
Kernel density estimate & (gray) forR = 250,P = 500 anda = 0.05

However, for the Basel Il relevant period lengthRef 250 and the VaR level af = 0.01 size distortions
remain at a considerable level of about 3%. The problem filereemains that the test rejects too often.

Looking at the size distortions of the tests proposed by ftsaao and Olmol [2010] we can see that

even when accounting for estimation risk the problem ptgvadn their follow-up paper for including

misspecification risk in their backtest, Escanciano and 11] acknowledge that their modified test

still suffers from problems of high size distortions alsaase of very small in-sample lengths. To put it
in a nutshell, all classes of univariate backtests prop¢akidough duration-based backtests to a lesser

extent) have problems when it comes to short in-sample tsiz

Although the corrected backtests result in a reduction efsike distortion, the tests tend to reject too
often. Even though the correction for estimation risk haanbeonducted the problem especially prevails
in the Basel Il scenario foR = 250 and VaR confidence level of = 0.01. In this set-up duration-

based backtests with orthonormal approximation of theildigion under the null seem to be the most

promising alternative.
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5.4 Conclusion

In our paper we analysed the problems of backtests that resme $uggested so far. Backtests based
on hit and duration sequences in an univariate frameworl dreavy size distortions. A solution for
this is to account for model risk and correct the asymptaitance of the backtest and thereby reduce
the distortion. The problems of univariate backtestingiltesy in considerable size distortions for the
relevant Basel Il set-up however cannot be alleviated byifyiod backtests in a way that account
for estimation risk or misspecification risk. When finandiatitutions conduct backtesting, they face
restrictions from the regulation side where the in-samefegth is set tdR = 250. A reduction of the
out-of-sample length does not suffice to reduce the empsiza. Using inaccurate backtests has severe
implications and higher risk-based capital results asab®f for its calculation of directly linked to the

number of hits.

A solution suggested hy Danciulescu [2010] as WelJ_a.s_B_eiImm_a_d. 2009] is to conduct multivariate

backtesting as a mean to overcome these problems. Theytaagube sample size is thereby increased
and information is more efficiently used for this purposeolm Monte Carlo study backtests based on
orthonormal polynomials performed best. Extending thesskiest in a multivariate surrounding would
therefore be an alternative to the common approaches. &siid with multivariate orthonormal poly-
nomials includes the assumption that under the null thetidiraequences follow a respective discrete or
continuous multivariate distribution and that this distition is approximated by Laguerre polynomials
in the continuous case. The idea of multivariate backtgstiith Laguerre polynomials is a topic to be

pursued in further research.
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5.5 Appendix

Quasi-Maximum-Likelihood estimation of GARCH(1,1)

As in|Francg and Zakoian [2004] and Escanciano and CImao/R00

Model is a pure GARCH(L1,1Y; = p + Gi& with 2 = 6 + 61Y2 | + 6,02 ; with = 0, innovation
& =Y /0t id t(v) and parameter vect® = (6, 61, 6,).

Asymptotic normality of QMLE:
VT(8-6) - N(O,V)

V=J13"1

Conditional Gaussian quasi-log-likelihood:
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Expected value of Hessiad,
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Expected value of squared score,
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Hence, asymptotic covariance matrix of QMLE,
V=3 (e - 190 =0 (B - 1)
1, 190200211t L 4 1 do2 o] "

Consistent estimate &f:
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with ¢ = (1— 62)~1 and wherex is the unstandardized kurtosis.

Consistent estimate &
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