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Abstract 

Nowadays, along with the development of high resolution spaceborne stereoscopic sensors, Digital 

Surface Models (DSM) derived from image matching are also being increasingly used particularly for 

mapping in urban areas. This research addresses the automatic updating of building databases using 

high resolution spaceborne stereo images assisted by a potentially outdated GIS database. To update 

building databases, the task is divided into two main parts; (1) 3D building change detection to 

establish an alarm system, and (2) delineation of building outlines in order to update the footprint of 

associated building change, accordingly. First, semi-global matching (SGM) is used to derive DSMs 

and subsequently normalized DSM (nDSM) is generated. 

In this study, two scenarios are tested; image-to-image comparison (DSM vs. DSM) and image-to-map 

comparison (nDSM vs. GIS polygons). In the first scenario, two DSMs are subtracted from each other 

followed by applying a height difference threshold of 2.5 meters. A larger difference of height is 

assumed to represent vertical changes. Additionally before DSM subtraction, a least squares adjustment 

is utilized to eliminate shifting errors stemming from image orientation. To reduce the number of false 

alarms, it is required to remove matching errors, roads, and vegetation by applying associated removal 

filters. A final refinement is based upon shape and size thresholds which are carried out using 

morphological filtering. 

In the second scenario, first building blobs are extracted using a threshold for absolute height of 2.5 

meters in the nDSM. Then, the building polygons in the GIS database are compared against these 

blobs. The building hypothesis is verified if a GIS polygon is covered to at least 75% by building 

blobs. The accepted polygons constitute the outlines for the existing buildings. 

When a signal for building change is confirmed, building outlines are extracted based on two different 

approaches; 3D edge matching and 3D segmentation. For 3D edge matching, first edges in the epipolar 

images are detected individually in each image using the Canny operator. After removing short edges 

and extracting straight lines, we find the best corresponding lines using various geometric and 

proximity constraints. Finally, the topological relationship of 3D edges is employed to reconstruct the 

rectangular shape of the building footprints using a box-fitting approach. For 3D segmentation, we use 

active contours based on the level set method to delineate building rooftops. The initialization is carried 

out using building blobs obtained from the nDSM. The segmentation is performed iteratively until 

there is no considerable improvement in the building outlines. Finally, these segments are regularized 

into rectangular primitives to update building footprints of the new construction. 

The approaches are tested using IKONOS and GeoEye-1 stereo images in the suburb of Riyadh, the 

capital city of Saudi Arabia. Note that the proposed method is only applicable for simple rectangular 

buildings with flat rooftops such as those to be found in our study area. The evaluation of our tests 

against ground truth information has shown that the elimination of shifting errors and the application of 

the removal masks decreases the rate of false alarms considerably. In delineation of building outlines 

using 3D edge matching, our experiments on GeoEye-1 stereo images show promising results only if 

buildings are large enough, have simple shape and show very good contrast compared to the 

background. Otherwise there are a large number of miss-detections. In contrast, 3D segmentation of 

building rooftops delivers results with a better rate of completeness; nevertheless it fails if a building 

has very poor contrast compared to the background. 

Keywords:  building, change detection, stereoscopic, image matching, GIS database, high resolution 





    

 

 

Zusammenfassung 

Aufgrund der Entwicklung von hochauflösenden, satellitengetragenen, stereoskopischen Sensoren 

werden heutzutage auch Digitale Oberflächenmodelle (DOMs), die durch digitale Bildzuordnung 

generiert wurden, immer häufiger verwendet, besonders für das Kartieren von Stadtgebieten. Diese 

Arbeit beschäftigt sich mit der automatischen Aktualisierung von Gebäudedatenbanken mittels 

hochauflösenden, satellitengetragenen Stereobildpaaren unter Einbindung einer möglicherweise 

veralteten GIS Datenbasis. Die Methode des semi-global matching (SGM) wurde verwendet, um Digitale 

Oberflächenmodelle (DOM) und daran anschließend normalisierte Oberflächenmodelle (nDOM) 

abzuleiten. Die Aktualisierung von Gebäudedatenbanken wird hierzu in zwei Hauptteile unterteilt: (1) 

ein System zur Erkennung von 3D Änderungen der Gebäude und (2) ein System zur Erfassung der 

Abgrenzung der neuen Gebäudegrundrisse bzw. deren Aktualisierung. 

Zwei verschiedene Szenarien werden getestet um das Potenzial von hochauflösenden Stereobilddaten für 

die Aktualisierung von Gebäuden zu evaluieren: ein Vergleich zweier Oberflächenmodelle (DOM vs. 

DOM)” und eine Vergleich von Oberflächenmodell zu GIS Daten. 

Im ersten Szenario werden zwei DOMs subtrahiert, anschließend werden Gebiete größer als 2,5 Meter 

betrachtet. Es wird angenommen, dass größere Höhenunterschiede vertikale Änderungen darstellen. Vor 

der DOM Subtraktion wird eine relative Referenzierung durchgeführt, um Fehler der Bildorientierung 

auszugleichen. Zusätzlich ist es notwendig Artefakte aus der Bildzuordnung durch Filtermethoden zu 

entfernen, um die Anzahl der Fehlalarme zu minimieren. Abschließend wird eine morphologische 

Filterung durchgeführt, mit Schwellwerten für Höhe, Form und Größe, um das Ergebnis zu verbessern. 

Das zweite Szenario verwendet alle Pixel oberhalb des Schwellwertes von 2,5 Metern im nDOM für die 

Generierung von Gebäudehypothesen. Darauffolgend werden alle Gebäudepolygone aus der Datenbank 

mit den Hypothesen verglichen. Ein Gebäudepolygon wird dabei verifiziert, wenn es zumindest zu 75 % 

von der zugehörigen Hypothese belegt ist. Die verifizierten Polygone entsprechen dann weiterhin den  

Gebäudegrenzen. 

Im Falle einer Gebäudeveränderung werden die neuen Gebäudegrundrisse auf zwei unterschiedliche 

Methoden extrahiert: 3D-Kantenzuordnung und 3D-Segmentation. Um eine 3D-Kantenzuordnung 

durchzuführen, werden zuerst einzelne Kanten in den Epipolarbildern durch Anwendung des 

Cannyoperators detektiert. Nachdem kurze Kanten entfernt und gerade Linien extrahiert wurden, können 

die am besten korrespondierenden Linien mittels verschiedener Geometrie- und Lageeinschränkungen 

gefunden werden. Schließlich werden Topologiebeziehungen der abgeleiteten 3D-Kanten genutzt, um die 

Gebäudegrundrisse mittels einer Quaderanpassung zu rekonstruieren. In der vorgestellten 3D 

Segmentationsmethode wird der Startbereich durch die Nutzung eines Schwellwertes von 2,5 Metern für 

das nDOM definiert. Die Segmentierung ist ein iterativer Prozess und wird wiederholt, bis keine 

Verbesserung der Gebäudegrenzen mehr erreicht wird. Schlussendlich werden die Segmente in eine 

rechteckige Form gebracht, um die Gebäudegrundrisse mit den Neubauten zu aktualisieren. 

In der Testphase der Methode wurden IKONOS und GeoEye-1 Stereobilder von Riad, der Hauptstadt 

von Saudi-Arabien, verwendet. Die hier verwendete Methode eignet sich für einfache rechteckige 

Gebäude mit flachen Dächern, wie im Testgebiet vorhanden. Eine Evaluierung der Ergebnisse mittels 

Vergleichen zu Referenzdaten hat gute Ergebnisse gezeigt. Die Rauschunterdrückung verringert die 

Anzahl der Fehlalarme um etwa 32 %, die Anzahl der aufgedeckten Änderungen wurde um ca. 15 % 

erhöht. Eine quantitative Evaluierung der Ergebnisse hat gezeigt, dass im ersten und zweiten Szenario die 

geringere GSD der IKONOS Daten einen signifikanten Einfluss auf die Häufigkeit von Fehlalarmen hat. 

Unsere Tests zur 3D Kantenzuordnung liefern nur gute Ergebnisse, wenn die Gebäude groß genug sind, 

eine einfache Form haben und große Kontrastunterschiede gegenüber dem Hintergrund besitzen. Ist dies 

nicht der Fall, sind die Ergebnisse fehlerhaft und unvollständig. Im Vergleich dazu liefert die 3D 

Segmentierung der Gebäudedächer bessere Ergebnisse im Hinblick auf die Vollständigkeit, allerdings 

versagt die Methode wenn ein Gebäude einen sehr geringen Kontrast gegenüber dem Hintergrund 

aufweist. 

Keywords:  Gebäude, Aktualisierung, stereoskopisch, Bildzuordnung, GIS-Datenbank, hochauflösend 





 

 

Table of Contents 

CHAPTER 1 

INTRODUCTION ................................................................................................................................11 

1.1. Motivation ................................................................................................................................. 11 

1.2. Problem description ................................................................................................................... 12 

1.3. The research objectives ............................................................................................................. 13 

1.4. Organization of the thesis .......................................................................................................... 15 

CHAPTER 2 

STATE OF THE ART .........................................................................................................................17 

2.1. Introduction ............................................................................................................................... 17 

2.2. Related work.............................................................................................................................. 17 

2.2.1. Building change detection review ................................................................................... 18 

2.2.2. Building extraction review .............................................................................................. 21 

2.3. Discussion ................................................................................................................................. 25 

CHAPTER 3 

THEORETICAL BACKGROUND ....................................................................................................27 

3.1. Sensor-oriented rational polynomial coefficients (RPCs) ......................................................... 28 

3.2. Epipolar geometry of linear array scanners ............................................................................... 28 

3.3. Challenges for image matching ................................................................................................. 30 

3.4. Depth reconstruction using semi-global matching .................................................................... 31 

3.5. Co-registration of DSMs ........................................................................................................... 33 

3.6. Approaches for building change detection ................................................................................ 34 

3.6.1. Background subtraction approach (pixel-based) ............................................................. 34 

3.6.2. Foreground validation approach (object-based) .............................................................. 36 

CHAPTER 4 

IMPLEMENTATION OF BUILDING UPDATING APPROACHES ...........................................37 

4.1. Introduction ............................................................................................................................... 37 

4.2. Organisation of the framework .................................................................................................. 38 

4.2.1. Analysis of input data ..................................................................................................... 38 

4.2.2. The general procedure for updating building databases .................................................. 41 

4.3. Approaches for building update using stereoscopic images ...................................................... 42 

4.3.1. Pixel-based approach ...................................................................................................... 43 

4.3.2. Line-based approach ....................................................................................................... 43 

4.3.3. Region-based approach ................................................................................................... 44 



4.4. A framework for building change detection ............................................................................. 44 

4.4.1. Blob detection in matching-based DSMs ....................................................................... 44 

4.4.2. Removal masks............................................................................................................... 46 

• Matching errors ....................................................................................................... 46 

• Vegetation mask ..................................................................................................... 47 

• Road mask .............................................................................................................. 48 

4.4.3. Refinement of building blob using prior knowledge ...................................................... 49 

4.5. Rooftop hypothesis verification using GIS polygons ............................................................... 51 

4.6. A framework for delineation of new building footprints .......................................................... 52 

4.6.1. Delineation of building outlines using 3D edge matching ............................................. 52 

• Edge detection and extraction of straight line ........................................................ 53 

• Epipolar constraint .................................................................................................. 56 

• Geometric constraints ............................................................................................. 57 

• Proximity constraint................................................................................................ 57 

• Topological reconstruction of buildings outlines using box-fitting approach ........ 58 

4.6.2. Delineation of building outline using 3D segmentation ................................................. 60 

4.6.3. Regularization of segments into rectangular primitives ................................................. 64 

4.7. Concluding remarks .................................................................................................................. 66 

CHAPTER 5 

EXPERIMENTAL RESULTS AND ANALYSIS............................................................................. 67 

5.1. Datasets and pre-processing ..................................................................................................... 67 

5.1.1. Datasets and ground truth ............................................................................................... 67 

5.1.2. Generation of epipolar images and image matching ...................................................... 70 

5.1.3. DSM generation and pre-processing .............................................................................. 71 

5.1.4. Generation of normalized digital surface model (nDSM) .............................................. 72 

5.2. Building change detection ........................................................................................................ 72 

5.2.1. Vertical change detection ............................................................................................... 72 

5.2.2. Refinement of vertical change using removal masks ..................................................... 74 

5.2.3. Verification of existing buildings on GIS database ........................................................ 78 

5.3. Updating of buildings outlines .................................................................................................. 81 

5.3.1. Delineation of new buildings using edge-based approach ............................................. 81 

5.3.2. Delineation of new buildings using region-based approach ........................................... 84 

5.4. Quantitative evaluation of the results ....................................................................................... 88 

5.5. Summary ................................................................................................................................... 89 

CHAPTER 6 

CONCLUSION AND FUTURE WORKS ......................................................................................... 91 

6.1. Conclusion ................................................................................................................................ 91 

6.2. Future works ............................................................................................................................. 93 

 

Bibliography ...................................................................................................................................... 95 

Appendix ......................................................................................................................................... 101 

Curriculum Vitae (CV) .................................................................................................................... 103



 
  

 

 

List of Figures 

FIGURE 1- SAMPLE OF BUILDING CHANGES IN TWO DIFFERENT EPOCHS (IKONOS WITH GSD 1M 

ACQUIRED IN MAY 2008 AND GEOEYE-1WITH GSD 0.5M ACQUIRED IN SEPT. 2009). AN 

OUTDATED BUILDING GIS DATABASE (YELLOW POLYGONS) IS SUPERIMPOSED TO THE 

GEOEYE-1 IMAGE ..................................................................................................................................... 13 

FIGURE 2- THE GENERAL FRAMEWORK FOR THE UPDATE OF BUILDING DATABASES USING 

STEREO IMAGES AND A GIS DATABASE ............................................................................................ 14 

FIGURE 3- COMPARISON OF DIFFERENT ALGORITHMS FOR THE EXTRACTION OF BUILDING 

FOOTPRINTS (A) ORIGINAL GEOEYE-1 IMAGE, (B) BUILDING EXTRACTION USING 

SEGMENTATION OF BUILDING ROOFTOPS, (C) THE SEGMENTATION OF DSM DERIVED 

FROM IMAGE MATCHING, (D) EXTRACTION OF RECTANGULAR SHAPES USING BOX-

FITTING OVER NDSM, (E) GROUND TRUTH GENERATED MANUALLY ....................................... 21 

FIGURE 4- (A) SAMPLE MATCHING-BASED DSM, (B) CORRESPONDING IMAGE ALONG WITH A 

CROSS SECTION, (C) THE SCHEMATIC CROSS SECTION FROM THE SIDE (RED: DSM, BLACK: 

ORIGINAL OBJECT) .................................................................................................................................. 23 

FIGURE 5- GEOMETRIC RECONSTRUCTION OF EPIPOLAR LINES IN THE PUSHBROOM SENSORS 

(DOWMAN, ET AL., 2012) ......................................................................................................................... 29 

FIGURE 6- LOCATION OF OCCLUDED AREAS IN ONE STEREO PAIR WITH RESPECT TO THE 

IMAGING DIRECTIONS ............................................................................................................................ 30 

FIGURE 7- SCHEMATIC PRESENTATION OF THE GEOREFERENCING ERRORS IN THE 3D 

BUILDING CHANGE DETECTION BASED ON THE HEIGHT SUBTRACTION ................................ 34 

FIGURE 8- BUILDING CHANGE DETECTION BASED ON THE BACKGROUND SUBTRACTION IN 

THE IMAGE AND HEIGHT DOMAINS ................................................................................................... 35 

FIGURE 9- (A) IMAGE-TO-MAP COMPARISON. AN OUTDATED BUILDING GIS WITH POLYGONS 

(YELLOW LINES) OVERLAID ON A RECENT GEOEYE-1 IMAGE (LEFT) AND A DSM DERIVED 

FROM GEOEYE-1 STEREO IMAGES (RIGHT), (B&C) IMAGE-TO-IMAGE COMPARISON, ZOOM 

TO BUILDING CHANGES SHOWN ON IKONOS (B) AND GEOEYE-1(C) IMAGES CAPTURED IN 

2008 AND 2009, RESPECTIVELY ............................................................................................................. 38 

FIGURE 10- SHOWING THE INFLUENCE OF MATCHING ERRORS AND THE ASSOCIATED 

OVERESTIMATION OF BUILDING SIZE IN DSM (BRIGHTNESS IS PROPORTIONAL TO 

ELEVATION), YELLOW HATCHES SHOW TWO SAMPLE OF MIS-DETECTION OF BUILDING 

CHANGES USING IMAGE INFORMATION ........................................................................................... 39 

FIGURE 11- FUNCTIONS OF HEIGHT AND IMAGE INFORMATION FOR UPDATE OF BUILDING 

DATABASES ............................................................................................................................................... 41 

FIGURE 12- GENERAL PROCEDURE TO UPDATE BUILDINGS DATABASES ........................................ 42 

FIGURE 13- GENERAL FRAMEWORK TO UPDATE BUILDING DATABASES BASED ON DIFFERENT 

APPROACHES ............................................................................................................................................ 42 



FIGURE 14- A GENERAL FRAMEWORK FOR BUILDING UPDATE USING STEREO IMAGES AND 

EXISTING GIS DATABASES .................................................................................................................... 45 

FIGURE 15- BUILDING CHANGE DETECTION USING HEIGHT INFORMATION BASED ON THE 

BACKGROUND SUBTRACTION AND FOREGROUND VALIDATION CONCEPTS ......................... 46 

FIGURE 16- OCCLUSION, SHADOW AND TRESS CAUSING MISMATCHED AREAS (A),(B) SHOW 

THE LEFT AND RIGHT EPIPOLAR IMAGES (PAN-SHARPENED),(C) DSM DERIVED BY THE 

LEFT-TO-RIGHT IMAGE MATCHING, (D) DSM DERIVED BY THE RIGHT-TO-LEFT IMAGE 

MATCHING, (E),(F) SCHEMATIC CROSS SECTIONS OF HIGHLIGHTED BUILDINGS (RED: DSM 

AND BLACK: ORIGINAL OBJECT), BLUE AND GREEN BOX REPRESENT SMOOTHING EFFECT 

CAUSED BY SHADOW AND VEGETATION, RESPECTIVELY ........................................................... 47 

FIGURE 17- THE FUNCTIONS OF GIS POLYGONS FOR THE UPDATE OF BUILDING DATABASES .. 51 

FIGURE 18- A WORKFLOW FOR FOOTPRINTS EXTRACTION OF NEW BUILDINGS USING 3D EDGE 

MATCHING ................................................................................................................................................. 53 

FIGURE 19- GEOMETRY OF FLAT AND GABLE ROOFTOP AND THEIR BACK-PROJECTION INTO 

IMAGE SPACE (JAYNES, ET AL., 2003) .................................................................................................. 55 

FIGURE 20- EXTRACTION OF BUILDING FOOTPRINTS USING 3D EDGE MATCHING ........................ 56 

FIGURE 21- BOX-FITTING ALGORITHM BY THE EXPANSION OF THE SEARCH BOX AND THE 

ROTATION OF ORIENTATION ANGLE (BLACK LINES ARE STRAIGHT PARTS OF BUILDING 

OUTLINES AND THE RED BOXES SHOW SEARCH BOXES) ............................................................. 58 

FIGURE 22- SHOWING THE SELECTION OF CORRESPONDING PIXELS WITH RESPECT TO THE 

LINE ORIENTATION IN THE BOX FITTING ALGORITHM ................................................................. 59 

FIGURE 23- EXTRACTION OF BUILDING FOOTPRINTS USING 3D SEGMENTATION OF ROOFTOPS

 ...................................................................................................................................................................... 61 

FIGURE 24- LEVEL SET BASED SEGMENTATION OF BUILDING ROOFTOPS UNDER DIFFERENT 

NUMBER OF ITERATIONS ....................................................................................................................... 62 

FIGURE 25- OVERLAP (%) BETWEEN ROOFTOP SEGMENTS AND GROUND TRUTH UNDER THE 

DIFFERENT NUMBER OF ITERATIONS................................................................................................. 63 

FIGURE 26- MINIMAL BOUNDING BOX AND OBJECT-ORIENTED BOUNDING BOX FITTED INTO A 

SEGMENT.................................................................................................................................................... 64 

FIGURE 27- SCHEMATIC PROCEDURE TO EXTRACT L AND U SHAPES OF BUILDING FOOTPRINTS 

BY REGULARIZATION OF SEGMENTS (ROOFTOPS) INTO RECTANGULAR PRIMITIVES ......... 65 

FIGURE 28- (FIRST ROW): IKONOS IMAGE, 2008 (LEFT), GEOEYE-1 IMAGES, 2009 (RIGHT), 

(SECOND ROW-LEFT): GROUND TRUTH INFORMATION FOR THE FIRST SCENARIO (IKONOS 

VS. GEOEYE-1), (SECOND ROW-RIGHT): GROUND TRUTH INFORMATION FOR THE SECOND 

SCENARIO (GIS POLYGONS VS. GEOEYE-1), (THIRD ROW): BUILDING POLYGONS IN THE 

OUTDATED GIS DATABASE ................................................................................................................... 69 

FIGURE 29- (LEFT): QUASI EPIPOLAR LINES SUPERIMPOSED TO THE GEOEYE-1 STEREO PAIR 

(CORRESPONDING PIXELS HAVE THE SAME Y COORDINATE IN THE IMAGE SPACE) ........... 70 

FIGURE 30- DERIVED DSM USING SGM FROM (A) IKONOS STEREO PAIR, (B) GEOEYE-1 STEREO 

PAIR ............................................................................................................................................................. 71 

FIGURE 31- NDSM OF EPOCH 1(LEFT, RED) AND EPOCH 2 (RIGHT, GREEN) AS BINARY MAPS 

AFTER APPLYING A HEIGHT THRESHOLD OF 2.5M ......................................................................... 72 

FIGURE 32- INITIAL BINARY CHANGE MAPS WITH THE D-DSMS LARGER THAN 2.5M: (A) BEFORE 

(RED), AND (B) AFTER (BLUE) SHIFT ELIMINATION ........................................................................ 73 



 
  

FIGURE 33- TWO SAMPLES OF THE D-DSMS FILTERING BASED ON HEIGHT THRESHOLDING - 

LEFT: IKONOS IMAGE (EPOCH 1), CENTRE: GEOEYE-1 IMAGE (EPOCH 2), RIGHT: D-DSMS. . 73 

FIGURE 34- MATCHING-BASED DSM (LEFT): LEFT-TO-RIGHT MATCHING, (RIGHT): RIGHT-TO-

LEFT MATCHING, (DOWN): SHOWING BUILDINGS SHAPES FOR THREE DIFFERENT 

SAMPLES (SHOWN BY RED, BLUE AND GREEN COLORS) OVERLAID ON STEREO PAIRS OF 

GEOEYE-1 AND THEIR ASSOCIATED DSMS ....................................................................................... 74 

FIGURE 35- MISMATCH MASKS DERIVED FROM THE DIFFERENCE BETWEEN THE LEFT-TO-

RIGHT AND THE RIGHT-TO-LEFT MATCHING (A): FROM IKONOS STEREO PAIR, (B) 

SUPERIMPOSED TO ONE IKONOS IMAGE, (C): FROM GEOEYE-1 STEREO PAIR, (D) 

SUPERIMPOSED TO ONE GEOEYE-1 IMAGE ....................................................................................... 75 

FIGURE 36- STANDARD DEVIATION OF MATCHED POINTS FOR THE GEOEYE-1 STEREO PAIR 

WITHIN A 1×1 METER GRID (LEFT): ON LEFT-TO-RIGHT IMAGE MATCHING, (RIGHT): ON 

RIGHT-TO-LEFT IMAGE MATCHING .................................................................................................... 76 

FIGURE 37- ROAD MASK, SUPERIMPOSED TO ONE GEOEYE-1 IMAGE ................................................ 77 

FIGURE 38- VEGETATION MASK DERIVED FROM MLC CLASSIFICATION USING (LEFT) IKONOS 

IMAGE, (RIGHT) GEOEYE-1 IMAGE ...................................................................................................... 77 

FIGURE 39- FINAL CHANGE MAP AFTER REFINEMENT BY MORPHOLOGIC OPENING (SIZE AND 

SHAPE REFINEMENT) .............................................................................................................................. 78 

FIGURE 40- GIS POLYGONS (YELLOW), VERIFIED BUILDINGS (GREEN), BLOBS REPRESENTING 

NEW BUILDING (RED), SUPERIMPOSED TO ONE GEOEYE-1 IMAGE ............................................ 79 

FIGURE 41- BUILDINGS 3D VISUALIZATION BASED ON THE DSM DERIVED FROM SGM ............... 79 

FIGURE 42- (LEFT): DIFFERENCE OF BUILDING HEIGHT BETWEEN GIS DATABASE AND DSM 

EXTRACTED FROM SGM, (RIGHT): ENHANCEMENT OF DSM DERIVED FROM SGM USING 

BUILDINGS POLYGONS OF GIS DATABASE ....................................................................................... 80 

FIGURE 43- FINAL CHANGE MAP (COMPARISON OF GIS POLYGONS AGAINST GEOEYE-1 NDSM); 

AREAS OF CHANGE POTENTIALLY CONTAINING NEW BUILDINGS (RED), SUPERIMPOSED 

TO ONE GEOEYE-1 IMAGE ..................................................................................................................... 80 

FIGURE 44- BUILDING 3D VISUALIZATION BASED ON THE DSM ENHANCED WITH GIS 

POLYGONS ................................................................................................................................................. 81 

FIGURE 45- STRAIGHT LINE DETECTION: (LEFT) EDGE DETECTION USING THE CANNY 

ALGORITHM AND THEN FINDING STRAIGHT EDGES BY A PCA-BASED METHOD; (RIGHT) 

FITTING A STRAIGHT LINES ON EDGES BASED ON THE DOUGLAS-PEUCKER LINE 

SIMPLIFICATION ...................................................................................................................................... 82 

FIGURE 46- MATCHING OF STRAIGHT LINES IN EPIPOLAR IMAGES; THE YELLOW 

PARALLELOGRAMS SHOW HOW THE EPIPOLAR CONSTRAIN REDUCES SEARCH SPACE; 

THE BLACK CIRCLES SHOW AMBIGUOUS CASES AND HOW PROXIMITY CONSTRAINT 

DETECTS THE CORRESPONDING EDGES (FOR FURTHER EXPLANATION SEE TEXT) ............. 82 

FIGURE 47- SAMPLES FROM MATCHED (GREEN) AND UN-MATCHED (RED) STRAIGHT LINES. 

ONLY BUILDING FOOTPRINTS IN THE FIRST AND SECOND COLUMNS COULD BE 

RECONSTRUCTED SUCCESSFULLY ..................................................................................................... 83 

FIGURE 48- OUTLINE DELINEATION FOR NEW BUILDINGS BASED ON 3D EDGE MATCHING ....... 84 

FIGURE 49- DELINEATION OF BUILDING FOOTPRINTS USING 3D SEGMENTATION (LEFT): 

SEGMENTATION OF BUILDING ROOFTOPS, (CENTRE): BUILDING OUTLINES SUPERIMPOSED 

TO ORIGINAL IMAGE, (RIGHT): BUILDING OUTLINES SUPERIMPOSED TO DSM DERIVED 

FROM SGM ................................................................................................................................................. 85 



FIGURE 50- 3D SEGMENTATION OF BUILDING ROOFTOPS AND REGULARIZATION INTO 

RECTANGULAR SHAPES SUPERIMPOSED TO ONE OF EPIPOLAR IMAGES AND ASSOCIATED 

DSM, RESPECTIVELY ............................................................................................................................... 85 

FIGURE 51- OUTLINE DELINEATION FOR NEW BUILDINGS USING 3D SEGMENTATION ................ 86 

FIGURE 52- (LEFT): FINAL BUILDING FOOTPRINTS (RIGHT): FINAL DSM WHICH IS ENHANCED 

USING BUILDING POLYGONS IN THE GIS AND 3D SEGMENTATION OF BUILDING ROOFTOPS

 ...................................................................................................................................................................... 87 

FIGURE 53- BUILDINGS 3D VISUALIZATION USING FINAL ENHANCED DSM .................................... 87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
  

 

 

List of Tables 

TABLE 1- PRESENTING THE ADVANTAGES AND DISADVANTAGES OF IMAGE/HEIGHT 

INFORMATION AND GIS DATABASE FOR THE UPDATE OF BUILDING DATABASES .............. 40 

TABLE 2- CLASSIFICATION OF BUILDING CHANGES WITH RESPECT TO CHANGES IN THE D-

DSMS AND NDSM ..................................................................................................................................... 50 

TABLE 3- TECHNICAL ACQUISITION SUMMARY OF STEREO PAIRS FOR THE FIRST AND SECOND 

EPOCH, (L) AND (R) REFER TO LEFT AND RIGHT IMAGES, RESPECTIVELY .............................. 68 

TABLE 4- QUANTITATIVE EVALUATION OF BUILDING CHANGE DETECTION (IKONOS VS. 

GEOEYE-1).................................................................................................................................................. 88 

TABLE 5- QUANTITATIVE EVALUATION OF BUILDING CHANGE DETECTION (GIS POLYGONS VS. 

GEOEYE-1).................................................................................................................................................. 89 

TABLE 6- A SYNOPSIS COMPARISON OF PROPOSED APPROACHES TO UPDATE BUILDING 

DATABASES USING HIGH RESOLUTION STEREO IMAGES ............................................................ 90 
 





 
  

List of Abbreviations 

CoG Centre of Gravity 

D-DSMs Difference of Digital Surface Models 

DP Dynamic Programming 

DSM Digital Surface Model 

DEM Digital Elevation Model 

FN False Negative 

FOV Field of View 

FP False Positive 

GCP Ground Control Point 

GSD Ground Sampling Distance 

GT Ground Truth 

HRSI High Resolution Satellite Imagery 

HT Hough Transform 

IFOV Instantaneous Field of View 

LRC Left-to-Right Consistency 

LiDAR Light Detection and Ranging 

LoD Level of Detail 

MI Mutual Information 

MLC Maximum Likelihood Classification 

MAD Multivariate Alteration Detection 

NDVI Normalized Difference Vegetation Index 

nDSM Normalized Digital Surface Model 

PCA Principal Component Analysis 

RANSAC RANdom SAmple Consensus 

ROI Region of Interest 

RPCs Rational Polynomial Coefficients 

SGM Semi-global Matching  

TN True Negative 

TP True Positive 





 

  Chapter 1                                                                                                                                                                                  11 

CHAPTER 1 

INTRODUCTION 

1.1. Motivation 

Along with the development of Earth observation, the image-based updating of geospatial databases is 

being developed. With respect to man-made objects in urban areas, building detection, extraction and 

reconstruction are still challenging issues in the field of photogrammetric computer vision. A large 

number of algorithms have been developed to extract building footprints in dense urban areas at 

different level of detail (LoD). In most studies, the final goal is to establish an automatic procedure for 

updating of geospatial databases as well as 3D city modelling.  

Meanwhile, the development of very high resolution spaceborne sensors using the capability of stereo 

imaging provides an improved opportunity for Digital Surface Model (DSM) reconstruction based on 

image matching. Such a development in sensor technology and algorithms provides a good 

opportunity to update GIS databases in developing countries where other alternative technologies such 

as airborne laser scanning are not a viable solution mainly due to economic reasons. For automatic 3D 

object extraction, several algorithms have been developed, both semi and fully automatic methods. 

The quality of the obtained results quantified by statistical indices (i.e. completeness, correctness, 

geometric Root Mean Square Error (RMSE) etc.) has been the focus of research for many years. 

Prior to dealing with the problem, it is required to define some terms; building change detection, 

building extraction and building update. In building change detection, the dataset (vector or raster) in 

two different epochs are compared against each other in order to detect new construction, demolition 

or partial change of built-up areas (also called building monitoring). In this phase, a test is carried out 

whether there has been any change in the built-up areas. Building extraction is the next phase which in 

this thesis mainly refers to the extracting of building footprints. The building update indicates a 

processing chain that includes both of the previous phases consecutively; first detects the changes 

between an old database and a new image/DSM dataset and secondly adapts these changes, 

demolition, new construction or change of an existing building (e.g. vertical development). This step is 

known as data capture. Finally the adapted objects should be validated if the new state has a logical 

consistency (Heipke, et al., 2008). 
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The updating of building databases through remotely sensing imagery is not only a key point for urban 

planning, sustainable development and 3D city modelling but can also play an important role in many 

other applications such as post disaster damage assessments and the estimation of affected population. 

For example, after a disaster such as an earthquake or tsunami, the government agencies usually need 

an estimation of building damages to provide related relief and rescue to the affected people as well as 

planning for reconstruction. 

Additionally, in developing countries, such a need has significantly gained importance particularly, in 

the very densely populated areas in the suburbs of metropolises where, there might be a large number 

of illegal constructions. It is very important for municipal service offices as well as the infrastructure 

departments to monitor the rapid changes and control the urban sprawl, particularly illegal 

construction, consequently the population growth in the suburbs of metropolises to plan for the 

associated amenities around these developing areas. 

1.2.  Problem description 

As mentioned, the automatic image-based updating of spatial databases is a cost-effective method for 

different urban objects such as buildings, roads, etc. However, building update is a challenging task in 

dense urban areas. The automatic updating of buildings in 3D space is the main objective of this study 

which is carried out by means of satellite stereo imagery. Compared to single images, stereoscopic 

vision provides a significant advantage to estimate the object height, an appropriate possibility to 

monitor building changes and is a tool for updating of the building layer within a geospatial databases. 

A large number of automatic methods have been developed to extract 2D man-made objects in the 

urban areas (e.g. roads, roundabouts, fields, etc.) using very high resolution space or aerial images. 

However, with respect to 3D nature of buildings, it brings with it more challenges compared to the 

extraction of 2D objects. The generation of height information using HRSI is a cost-effective method 

for topographic mapping in the urban areas however; it faces with many problems such as limited 

resolution, shadow, occlusion, etc. The questions arising are: 1) whether spaceborne stereo images 

deliver satisfying results for building detection, extraction and updating. 2) If so which additional 

information can be integrated with the stereo images to overcome the associated challenges? 

All issues discussed above cause that the development of automatic algorithms for buildings extraction 

using high resolution satellite images (HRSI) remain as a challenging research topic. While much 

research has been carried out in the field of building change detection using DSM stemming from laser 

scanning point cloud, there are only few research works for updating building geospatial databases 

using space images (Matikainen, et al., 2010), (Chaabouni-Chouayakh, et al., 2010), (Rutzinger, et al., 

2010), (Rottensteiner, 2007). It is probably because of the coarse Ground Sampling Distance (GSD) of 

satellite imageries for building extraction compared to that for very high resolution airborne images. In 

addition, DSMs derived from image matching are comparatively noisier than those derived from ALS 

data with the same sampling distance (Gehrke, et al., 2010). Thus, the shape of building footprints in 

the derived DSM from image matching is not distinct and requires further refinement using additional 

information. The next problematic point for image matching is areas with low radiometric reflection 
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(e.g. asphalt roads) and homogeneous texture such as bright or dark rooftops. In these areas, it is 

difficult to find the corresponding match points. This problem is sometimes called mismatched areas. 

Consequently, the height of such areas can potentially cause a number of false alarms in the change 

detection phase. 

The task is further complicated if trees are adjacent to buildings where building cues in the DSM are 

mixed with trees, leading to an inaccurate extraction of building footprints. The prevalent solution for 

this problem could be the separation of vegetation areas using spectral reflection by means of a 

relevant index (e.g. Normalized Difference Vegetation Index - NDVI). However, if the imagery has no 

infrared channel, this solution is not possible (Rottensteiner, 2007). 

The last challenging point is the level of detail in the verification and updating of building databases, 

especially when spaceborne image information is used to update the building polygons of a GIS. Due 

to differences in data source, definition of built-up area, etc., the building outlines in vector and raster 

dataset may not match to the required accuracy. 

Figure 1 shows two samples of building changes in two different epochs (IKONOS 2008 and GeoEye-

1 2009) along with an outdated building polygon from the GIS database. First, the difference becomes 

visually clear when the resolution of two images is compared. Second, it shows how trees adjacent to 

building may trouble building footprint extraction and the subsequent updating procedure. Third point 

is the difference of buildings outlines between the original GeoEye-1 image and superimposed GIS 

polygons. In some cases, the courtyard is categorized as building areas although they are 2D objects 

(i.e. the difference between building and built-up areas). 

 

Figure 1- Sample of building changes in two different epochs (IKONOS with GSD 1m acquired in 

May 2008 and GeoEye-1with GSD 0.5m acquired in Sept. 2009). An outdated building GIS database 

(yellow polygons) is superimposed to the GeoEye-1 image 

1.3. The research objectives 

Figure 2 shows the general framework of research to update building databases using satellite stereo 

images and an outdated GIS database. In fact, buildings and trees are particular structures in urban 

areas with the specific property of height. Therefore, the height is a unique characteristic to distinguish 
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these objects from other urban structures. Besides, a visual inspection between the first and second 

epoch reveals that although change in intensity occurs in many places, it may not be a building or a 3D 

change. Thus, to establish an alarm system for building changes, the height information is 

comparatively a more reliable factor than image intensity. However, the smoothing effect in the DSM 

derived from image matching is a decisive side-effect which should be taken into account for the 

development of a sound framework to detect building change. To tackle mentioned problems 

appropriately, it is required to apply a well-developed approach which incorporates height, image and 

auxiliary information (GIS).  

In order to handle the complex issue of building update and obtain reliable signals for building change 

as well as obtaining the accurate shapes of buildings, a new algorithm is proposed based on height 

information from image matching and radiometric image information. Image information is used for 

building change detection and image information is used for the delineation of building outlines and 

updates the associated building footprints in the GIS. Moreover, to eliminate the side-effects of 

vegetation and mismatched areas (surface discontinuities e.g. building outlines, asphalt, and tree tops 

etc.) several noise removal masks are introduced. It is our hypothesis that by applying these masks 

along with prior knowledge of building properties, the derived DSM from spaceborne stereo matching 

can be considered a reliable source to detect building changes. Although, removing the entire shadow 

and occlusion effects in the DSM is not the main objective of this study. 

        

Figure 2- The general framework for the update of building databases using stereo images 

and a GIS database 

After obtaining a change alarm, the next step is to extract the footprint for new buildings. For this task, 

two different approaches are introduced, namely line-based and region-based. In both approaches, 

image information is used to delineate building outlines. In the first approach, a 3D edge matching 

technique is used while for the second approach, we delineate building rooftops using segmentation 

method based on level set. The derived building outlines are then used to reconstruct building 
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footprints. The associated height from the nDSM also updates GIS databases. Note that the proposed 

method is only applicable for simple rectangular buildings with a flat rooftop, like those which can be 

found in our study area, the suburb of Riyadh the capital city of Saudi Arabia. The main contribution 

of this research is to develop a building update model by incorporating 2.5D height information (from 

DSM) with original image information (from stereo images) assisted by auxiliary information.  

1.4. Organization of the thesis 

This thesis is organized in five chapters. In the second chapter, a short review of literature is reported 

followed by a discussion and conclusion concerning the pros and cons of the previously developed 

algorithms. In chapter 3, the theoretical fundaments for image orientation, the geometry of pushbroom 

space image, image matching, and different approaches for building change detection are discussed. 

Chapter 4 illustrates the main contribution of this research by proposing a new framework for updating 

building databases based on the integration of height and image information.  

Chapter 5 contains the experimental results of proposed methodology tested on IKONOS and GeoEye-

1 stereo pairs. The accuracy assessment is conducted by comparison of the obtained results against 

reference data which are digitized manually. The quality of the obtained results is evaluated 

quantitatively using a statistical approach. Final conclusion and recommendations for future research 

are presented in the chapter 6. 
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CHAPTER 2 

STATE OF THE ART 

2.1. Introduction 

Nowadays rapid changes are taking place in residential areas, and in particular within developing 

urban areas, thus updating geospatial databases is an important target for many government agencies 

in order to develop an automatic solution for this aim. Such an automatic procedure is quite useful 

when monitoring and updating building changes in a given period of time. The detection of changes 

using remotely sensed data can act as an alarm system to determine whether or not the updating of 

geospatial databases is required, in which case the precise outlines of added/removed objects should 

be delineated. 

In this chapter, the task of building update is divided into independent phases; detecting building 

changes and delineating change outlines in order to update them on GIS databases. There have been a 

wide range of algorithms to extract and update building databases over the last 40 years. In this 

chapter, however, a short review of literature is reported with a discussion at the end to justify the 

main strengths and weaknesses of each method. 

2.2. Related work 

This section is divided into two subsections; the first part provides an overview on different 

approaches in 3D building change detection. The second part focuses on studies concerning the 

delineation of building footprints using stereoscopic images. For updating building databases using 

space-born stereo images, in general, the original radiometric image and the associated DSM derived 

from the image matching are the main input data sources. In this study, these data sources are referred 

to “original image” and “matching-based DSM”, respectively. 

First, previous literature on building change detection and building footprint extraction using 

spaceborne stereo imageries are introduced. However, in some cases, previous studies using laser 

scanning points cloud or aerial images are also considered in order to evaluate whether it is possible to 

extend these algorithms into images with lower resolution (e.g. spaceborne stereo images) by 

proposing a generalized data model. 
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In the final discussion, existing methods of building change detection as well as building footprints 

delineation are discussed along with an assessment of previous studies. Summarising the potential 

advantages and disadvantages of each method provides a short analytic justification of the literature in 

addition to demonstrating possible solutions to overcome the challenging points either for change 

detection phase or for building footprints extraction. 

2.2.1. Building change detection review 

Monitoring urban sprawl gained importance in urban and regional planning. Remote sensing data, and 

particularly high resolution images with such characteristics as broad cover in addition to fast and 

relatively cheap data  acquisition, provides a suitable option for tracking changes in urban areas. The 

captured images using remotely sensed sensors are an appropriate tool to detect changes over dense 

residential areas (Zhang, et al., 2006). Importantly, regarding the potential of stereo images to possibly 

generate DSM, the subtraction of these height models from each other within a given period of time 

can result in building change detection. 

A wide range of image processing and computer vision techniques, including spectral indices (e.g. 

NDVI), geometric (e.g., shape and size) and height information (e.g. DSM, differential DSMs) have 

been developed for change detection based on remotely sensed images in general (Im, et al., 2005), 

(Chaabouni-Chouayakh, et al., 2011), (Bouziani, et al., 2010), (Champion, 2007). There are two main 

strategies which are considered in change detection algorithms using remote sensing data: change 

enhancement, whereby the emphasis is on the image difference without any information addressing 

the type of change (i.e., changed and un-changed pixels). The second approach is known as ‘‘from–

to’’ strategy that monitors the land use changes during a period of time by determining the change 

from land use A to land use B (Im, et al., 2005).  

In change detection using remote sensing data and a GIS database, a change map can be computed 

based on three different types of comparison; (i) map-to-map comparison, which updates an old GIS 

polygon using an updated one, (ii) image-to-image comparison at two different epochs and finally (iii) 

image-to-map comparison that investigates the updating of an outdated vector database (i.e. GIS) 

using an updated image information (raster). For the last case (image-to-map), which is also the most 

common updating procedure, image segmentation/classification is the most prevalent method. Using 

segmentation/classification, pixels within a digital image are grouped into separate segments/classes 

based on their reflections presenting a unique object. Then these segments can be compared against a 

vector dataset (image-to-map). Malpica, et al., (2010) developed an approach for urban change 

detection by integrating multi-spectral satellite imagery, LiDAR point clouds and a GIS database. A 

SVM (support vector machine) was used to classify the image, resulting in a probability layer for 

buildings. By intersecting the classification result with the GIS building layer, the authors found an 

increase in the built up area of a few percent. 

Durieux, et al. (2008) proposed an object-based method for the monitoring of urban sprawl using a 

region-based segmentation applied to Spot 5 supermode images with 2.5 m GSD. An object-based 

image analysis (OBIA) approach is employed to extract building footprints and detect building 

http://en.wikipedia.org/wiki/Digital_image
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changes. A hierarchical approach is utilized to classify objects using multi-resolution segmentation by 

means of physical properties, semantic relationships and neighbourhood relationships of the network’s 

objects. Image objects are then segmented into two classes using multi-resolution segmentation, i.e. 

from coarse to finer levels. Similar objects are then combined by means of fuzzy-logic operators such 

as and/or. Tests on Spot-5 images have shown that image resolution impeded accurate detection of 

building rooftops. Thus, contextual and scale as additional information are employed to support 

object-based segmentation. Consequently, with Spot-5 images, this building extraction methodology 

has shown severe limitations at regional scales to be used as a reference for mapping and updating 

purposes in urban areas. In particular, it exhibits more difficulties representing building shapes. 

Vegetation and mainly trees are the main challenges for building change detection as well as footprint 

extraction. This problem can be more complex if the data acquisition time at two epochs includes a 

large difference in canopy cover. Rutzinger et al. (2010) have introduced an object-based workflow 

for 3D building change detection in a short time interval. The changes are classified as new 

construction, demolition and un-changed buildings. They have introduced a few thresholds to measure 

how unchanged objects can be defined and which level of height difference can indicate real building 

changes. However, most false alarms are mainly due to different data acquisition times causing 

different canopy covers between the first epoch (summer) and the second epoch (autumn). In summer, 

the canopy cover of trees is almost maximal, but, at the second epoch in autumn, it is rather sparse. 

Consequently, subtraction of DSMs from each other indicates few virtual demolitions which are false 

alarms because of vegetation. Awrangjeb et al. (2012) proposed an effective method for the separation 

of buildings from trees by employing height, shape, size, color and texture information. They 

introduced a rule-based approach based on the main orientation of building boundaries in order to 

recognize building blobs from trees even in some seasons in which leaves’ colors are changed or 

entirely lost. 

Zhu et al. (2008) also presented a new object-based approach detecting building changes in a suburb 

of Beijing. This method works based on polygon automatic validation over IKONOS and Quickbird 

images. The urban objects are generalized using morphological filtering. Then, radiometric 

information along with texture and neighbourhood analysis is used to propose a new polygon 

automatic validation method. The variance and average gradient indices demonstrate the difference 

between texture and neighbourhood information, respectively. Finally, to detect changes between 

images at two different dates, correlation coefficients of gray value, variance, and average gradient 

indices have been used. Based on the thresholds defined using training areas, the polygon of each 

object is validated if its indices exceed the given value. Otherwise, the associated polygon will be 

automatically eliminated and is referred to as a demolished object. 

Knudsen, et al. (2003) and Olsen (2004) presented a framework to validate map databases with an 

emphasis on the building layer using an efficient automatic approach for change detection. They 

applied classification on aerial high resolution images which was refined by a height filtering in order 

to validate building polygons over the Danish national map database (TOP10DK). The building layer 

in the TOP10DK databases is employed as training signatures for the classification to characterize the 
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different classes and then build up an object model for buildings detection. As the used image had very 

high spatial resolution, it could demonstrate the complex structures of buildings very well. The height 

information (LiDAR nDSM) along with the size and shape information supported the extraction of 

buildings polygons precisely. The classification results were also compared with the existing map to 

generate the change map using height and size information. Furthermore, noise and misclassification 

areas are removed from the final change map. The results obviously demonstrated that classification 

based on spectral signatures alone is not able to extract the complex structure of buildings. This is 

even more problematic, if the spectral reflections of new buildings are different from the existing 

buildings in the map database. Therefore, the proposed method is not able to detect building changes if 

new building shows spectral reflections which are not similar to that of the training sites. 

Champion, et al. (2010) matched high resolution aerial images to generate a DSM and then updated 

the building layer of a 2D cadastral database using the derived height information. They subdivided 

the detection of changes into two main steps, namely the automatic verification of the database and the 

detection of new buildings. In the first step, all buildings in the database are investigated to check 

whether they match with extracted objects from images. To quantify the comparison, a similarity 

measurement is defined using robust geometric criteria. In the second step, a digital elevation model 

(DEM) is automatically generated from the DSM. The difference of DSM and DEM demonstrated an 

above-ground mask. From this mask, building blobs are generated and compared with the existing 

database in order to detect newly constructed buildings. According to the authors, the actual 

delineation of building outlines is not very accurate, mainly due to shadows.  

Le Bris et al. (2011) proposed an automatic procedure as an alarm system for 2D change detection. It 

is used to update building polygons in the GIS topographic database using GeoEye-1 stereo images. 

The authors used two different approaches, a supervised classification and the subtraction of inter-date 

DSMs. In the first approach, additional information such as GIS database and DSM-DEM correlation 

are used to increase the accuracy of classification. It is concluded that for building change detection, 

this additional information is required particularly, for the detection of complex structure buildings. It 

is rather difficult to distinguish the urban objects only using radiometric image information. In the 

second approach, the subtraction of two DSM derived from stereo matching – called differential DSMs 

– referred to the vertical changes. In order to remove false alarms, a vegetation mask is used to 

eliminate non-buildings areas from the obtained change map. This removal mask significantly 

increases the correctness of the proposed alarm system. Finally, the small elements in the change map 

(e.g. sliver polygons) are eliminated and the final alarms are extracted by the incorporation of the 

results from both approaches.  

Doxani, et al., (2010) proposed an object-based classification for the automatic monitoring of 

buildings changes using multi-temporal images. The Multivariate Alternation Detection (MAD) 

algorithm and morphological scale space filtering are applied on multi-temporal datasets to overcome 

the problems observed in the traditional change detection models (e.g. image algebra, image 

transformation techniques and post-classification analysis). The proposed algorithm was tested on two 

pan-sharpened Quickbird orthophotos with the ground resolution of 0.6m in two different epochs; 
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2003 and 2007, respectively. Using MAD components, all pixels are classified into two classes; 

changed and un-changed pixels however, without addressing the change types. In the next stage, 

Expectation-Maximization (EM) algorithm is implemented to determine the trend of MAD component 

between two epochs whether the gray value represents an ascending trend (MAD+) or a descending 

one (MAD-) and then changed pixels are classified into tiled, bright and dark roofs. In order to 

simplify the classification procedure in complex urban areas, the scale space filtering was utilized on 

original multi-temporal images in order to segment urban objects in different resolutions. 

Tian et al. (2010) used stereoscopic satellite images in order to detect height changes by the 

computing the difference between DSMs generated in the different epochs. A rectangle was fitted to 

each extracted blob assumed to be a building footprint. However, most blobs are highly curved, so that 

the direction of the rectangle edges cannot be computed reliably. Although the proposed method 

covers the lack of height information in 3D buildings change detection, there is still no solution for the 

smoothing effects for the above-ground objects (e.g. buildings). The smoothing effects is stemmed 

from various grounds that cause mismatch (e.g. shadow, occlusion, illumination, etc.). Consequently it 

causes that the building blobs in the DSM are enlarged (Tian J. , et al., 2010). 

2.2.2. Building extraction review 

Recently, there has been a significant advancement in new generation high resolution commercial 

imaging sensors (e.g. IKONOS, GeoEye-1, Quickbird, and Worldview) that are able to provide high 

quality stereoscopic images. These sensors are well adapted to deal with the 3D imaging in the dense 

built-up residential areas. Nevertheless, spaceborne images have a relatively low ground sampling 

distance as well as a small number of overlapping images compared to aerial images. 

Building extraction using spaceborne stereo images is usually not studied beyond LoD-1 because 

detail of buildings cannot be extracted from satellite images. Furthermore, most of proposed 

algorithms deliver promising results providing that additional rule-based filtering are applied (Lafarge, 

et al., 2008), (Le Bris, et al., 2011), (Doxani, et al., 2010), (Chaabouni-Chouayakh, et al., 2010), 

(Champion, et al., 2010), (Matikainen, et al., 2010). A large number of automatic image analysis 

methods have been developed to extract building footprints from very high resolution stereo images. 

Most of developed methods utilize the geometric, radiometric, topologic and topographic attributes in 

the different levels for building change detection as well as building footprints extraction.  

 

Figure 3- Comparison of different algorithms for the extraction of building footprints (a) original 

GeoEye-1 image, (b) building extraction using segmentation of building rooftops, (c) the segmentation 

of DSM derived from image matching, (d) extraction of rectangular shapes using box-fitting over 

nDSM, (e) ground truth generated manually 
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Figure 3 shows several prevalent methods for building extraction using image and height information. 

For building extraction, three different types of algorithms are developed according to the spatial 

information used. Building extraction may be carried out using height information (e.g. DSM) [e.g. 

(Lafarge, et al., 2008) & (Tian, et al., 2011)], image radiometric information [e.g. (Jin, et al., 2005) & 

(Sirmacek, et al., 2010)] or by the integration of height and image information (hybrid approach) [e.g. 

(Vallet, et al., 2011)].  

As shown by Figure 3, building blobs in the DSM have blurred outlines. This is mainly due to well-

known matching problems because of occluded areas and different shadows stemming from the 

differences in viewing and illumination directions as well as vegetation effects that are accumulated in 

building blobs. It can be also due to the smoothing effect caused by the interpolation of unmatched 

pixels. Thus the buildings size in the DSM is enlarged (Alobeid, et al., 2010), (Le Bris, et al., 2011), 

see also Figure 4. Moreover, the artefacts stemming from image matching cause a number of voids in 

DSM. As a consequence, it makes several virtual holes inside of building footprints wrongly (see 

Figure 3c). Hence, these regions should also be filled before fitting a rectangle over building 

footprints. 

The height information delivers promising signal to locate building footprints however, only as a blob. 

That means in most cases, buildings are substantially recognizable in the DSM but as blurred building 

blobs. Comparing Figure 3(c) and Figure 3(e) demonstrate the well-known smoothing effects in the 

DSM derived from image matching (called matching-based DSM) which join individual building 

blobs by filling out the open space between these buildings resulting larger blobs.  

In the following, a brief review of building extraction using spaceborne sensors is reported. In some 

cases, the algorithms that have been developed for aerial images or for LiDAR points cloud are also 

explained in order to investigate whether it is possible to generalize these algorithms for spaceborne 

images. For both types of dataset (image and height) as well as the different methodologies, the pros 

and cons are discussed. 

To extract building footprints precisely two approaches are considered in this study. (i) Approaches 

that are based on the extraction of building outlines (edge-based approaches). For instance, the 

extraction of building outlines using 3D edge matching and then building reconstruction according to 

the polyhedral model of building rooftops. Baillard, et al., (1999) employed a wide range of geometric 

(epipolar, line orientation, etc.) photometric and topological constraints to find the corresponding lines 

on very high resolution aerial images. Then planar patches are generated by the grouping coplanar 3D 

lines. (ii) Approaches that extract building footprints based on the segmentation/classification of 

building rooftops (region-based approaches). The segmentation can be carried out on the image 

information or associated DSM to detect individual building footprints. Figure 3(b) and 4(c) show two 

examples from the segmentation of planar rooftops. Chehata, et al., (2005) utilized a graph cut 

approach to extract 3D primitives of the roofs on spaceborne images with a submetric resolution (45-

70cm). The obtained 3D segments provide a hybrid approach to generate a digital elevation model 

with a higher level of detail particularly, with a better demonstration of building outlines in the DSM. 
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Figure 4- (a) Sample matching-based DSM, (b) corresponding image along with a cross section, (c) 

the schematic cross section from the side (red: DSM, black: original object) 

Different approaches are tested to decrease the smoothing effects as shown by Figure 4. A solution for 

this problem is the extraction of individual building footprints based upon segmentation or delineating 

building footprints using building outlines. The segmentation can be carried out using the original 

points cloud or the radiometric image information. This approach extracts building parts with a higher 

level of detail (LoD). However, if the building extraction is carried out using segmentation of points 

cloud or DSM, a good sampling distance is also required. 

Vosselman (1999) tackled the building reconstruction based on the clustering of laser scanning points 

cloud. Building boundaries are extracted based on the Delaunay triangulation using original points 

cloud and then a threshold is set to detect the connected components based upon planar size. The 

proposed method can preserve the building shapes very well because there is no smoothing effect due 

to interpolation. However, like other data-driven approach; it fails to reconstruct the small annexes of 

building rooftops such as dormers and chimneys. In addition, it delivers promising results on very high 

resolution airborne data however, utilising the same methodology over spaceborne matching-based 

DSM with a lower GSD may not be expected. 

Poli et al. (2012) proposed a hybrid method in order to enhance the DSM derived from stereo 

Cartosat-1 images. A hierarchical segmentation on WorldView-1 image is employed to enhance the 

object outlines in the DSM. Results are evaluated against a DSM extracted from ALS points cloud as 

reference data. Using hierarchical segmentation, the adjacent pixels are partitioned based on the 

connectivity constrains. If the dissimilarity of a pixel with respect to the surrounding pixels exceeds a 

given threshold, it belongs to a new segment. The dissimilarity is defined based on the pixel intensity. 

By increasing the threshold value, the hierarchical connected components are arranged from a course 

to fine level. After segmentation of WorldView image, all segments are intersected with the DSM and 

then the mean height value for each segment is assigned to associated pixels in the DSM. In fact, by 

this approach, the DSM is segmented using radiometric image information while the height value is 

obtained from original DSM. Although the proposed algorithm enhanced the object outlines in the 

DSM, it fails to detect an object if there is a good contrast between the target object and the 

background. 

To extract rectangular buildings footprints from DSM, Lafarge, et al. (2008) investigated a marked 

point process to obtain the general shapes of building footprints in the DSM derived from PLEIADES 

sub-metric satellite images. This object-based method fits a rectangle on buildings in order to simplify 
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complex buildings structures into the primitive components. To do so, by using the global energy 

minimization, the best rectangle is fitted to the building footprints based on the Markov Chain Monte 

Carlo. The basic concept is that there is usually a sharp discontinuity - with a considerable height 

difference - between building outlines and the neighbourhood pixels (known as point of interest). The 

optimization of internal and external energy resulted in fitting the best rectangle over building 

footprints. Finally, the topological relationships between the connected components are utilized to 

generate the final regularized buildings footprints. 

Fraser, et al. (2002) used 1-m IKONOS panchromatic satellite imagery to reconstruct rectangular 

shapes of building footprint in LoD-1. The image matching is performed by using multi-image 

datasets from three different viewing angles (backward, nadir, forward). Image matching carried out 

using least squares adjustment. The results have shown a sub-meter accuracy, the planimetric and 

height accuracy are reported between 0.3-0.6m and 0.5-0.9, respectively. The experimental results 

have shown that, using IKONOS stereo images and under the ideal conditions for radiometric quality, 

image orientation with ground control/checkpoints, coupled with favourable imaging geometry (e.g. 

B/H> 0.8) and also provision of sensor calibration, the proposed method can be used for building 

reconstruction. However, the authors did not discuss the quality of extracted building footprints 

particularly the quality of the building shapes. This is of course an important issue particularly, when 

the DSM is generated based on the least squares matching because it demonstrated a high level of 

objects smoothing in the DSM and subsequently, building shapes are deformed. 

Jin, et al. (2005) also demonstrated a method based on various structural, contextual, and spectral 

information to extract buildings footprints using IKONOS image (1-meter panchromatic and 4-meters 

multispectral). The differential morphological profile (DMP) is used to generate building hypotheses 

assisted by the shape information. Shadows and vegetation are extracted using the DMP and NDVI, 

respectively. Shadow as complementary information indicated the position and the size of 

corresponding buildings. The watershed segmentation is used to extract building cues based on the 

spectral information; those that were not detected using structural and contextual information. Finally, 

structural, contextual, and spectral information are integrated to extract the final building footprints. 

The detection rate and quality percentage are reported 72.7% and 58.8%, respectively. 

Sirmacek, et al. (2010) presented an automatic method to enhance the DSM derived from image 

matching by utilizing a box-fitting approach. The general idea of the proposed method is energy 

minimization in order to find buildings outlines and then to reconstruct rectangular shapes for the 

building footprints. The authors used the Canny operator to extract building edges on the IKONOS 

panchromatic image. The box-fitting begins from the centre of each cue toward building outlines. This 

phase is carried out by testing the all probabilities for the orientation angle as well as the size of 

rectangle, iteratively. The best fit is found with respect to the cost function based on the energy 

minimization. Finally, the boundary of the fitted box is used to enhance the DSM. The main 

shortcoming for the proposed method is that the outcome depends on the Canny operator. Note that 

this method may face with another serious difficulty because in this method, there is no difference 
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between 2D and 3D edges. That means neither a 3D edge matching algorithm nor a DSM reduce the 

search space to find the real building outlines. 

2.3. Discussion 

A literature review for 3D building change detection and extraction of building footprints is reported. 

As stated, the change detection acts like an alarm system. However, it is also an important task to 

refine building outlines and update building footprints of the GIS database. Hence, while the first step 

detects the building changes, the second step functions as a complementary phase to delineate building 

outlines for new constructions. The subtraction of DSMs of different epochs delivers a reliable signal 

for building change detection so that the matching-based height information is utilized to address 

building changes. However, a DSM is not a sufficient source to delineate building outlines precisely 

because in such a DSM building footprints are usually enlarged, and building shapes are deformed in 

the matching-based DSM (Champion, et al., 2010), (Alobeid, et al., 2010), (Doxani, et al., 2010). 

After reviewing the literature for building udpates, the advantages and limitations of each method is 

summarized. In term of building change detection, it can be concluded that due to complex building 

structures in dense urban areas as well as several shortcomings of matching-based DSMs, the hybrid 

approaches are more capable than other methods to detect building change. These approaches usually 

incorporate image and height information as well as auxiliary information such as texture, shape, size, 

and topological information. It is also reported by (Le Bris, et al., 2011), (Doxani, et al., 2010) and 

(Lafarge, et al., 2008) that the image context without additional height information is normally not 

able to detect buildings within a complex scene. Therefore, in this research, we propose a novel 

algorithm for 3D building change detection by incorporating image and height information, assisted by 

additional information (GIS database, building property, etc.) to improve the quality of the change 

detection. 

For the extraction of building footprints, an overview of related works indicated that associated 

approaches are classified into two main groups; (i) reconstruction of polyhedral building model using 

extraction of building outlines (ii) segmentation of building rooftops. If the source of a DSM is from 

ALS points cloud, by the segmentation of DSM or points cloud, individual building footprints can be 

obtained. However, due to the smoothing effect of matching-based DSMs, this strategy does not 

deliver promising results. The first approach based on 3D edge matching could also successfully 

reconstruct bulding footprints using very high resolution aerial images. However, it is required to test 

the efficency of 3D edge matching using stereo space image because the image resolution is coarse 

than the resolution of aerial images. To detect building footprints at LoD-1 using spaceborne images, 

several studies were also carried out based on the fitting a rectangle on building outlines. 
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CHAPTER 3 

THEORETICAL BACKGROUND 

In the past decades, following with the development of remote sensing sensors, there have been 

significant developments in earth observation methods including the monitoring of natural, residential 

and industrial areas. Hence, the change detection based on remotely sensed data is being widespread 

used in order to update geospatial databases. In addition, change detection is also used at numerous 

applications such as video surveillance, traffic management, human tracking, tracking of moving 

objects, assessment of ecological resources, disaster management and particularly damage assessment, 

medical diagnosis and urban objects monitoring (Porter, et al., 2009), (Radke, et al., 2005). 

Monitoring of changes using remote sensing data in general have been studied for few decades 

however, as discussed in the previous chapter, buildings have a specific property, the height which 

assists building change detection. Height reconstruction using stereoscopic imaging provides a reliable 

tool compared to radiometric image information because, change of intensity in the image domain 

cannot necessarily indicate building changes (as shown by Figure 3). However, as discussed the image 

information can act complementary for the height information to extract building footprints.  

On the one hand, height characteristics facilitate change detection for 3D urban object (buildings, 

trees, etc.). That means the height is the main difference between buildings and the other two 

dimensional urban objects. Therefore, new generation spaceborne sensors which provide stereoscopic 

images with a suitable angle of convergence (height-to-base ratio) are useful to update building 

databases. On the other hand, this characteristic of building can act as a limitation for the detection and 

extraction phases. Shadows and occlusions are examples of limitations caused by three dimensional 

nature of buildings. 

In this chapter, the main theoretical concepts of our processing chain including image matching, DSM 

generation and building change detection are explained. It contains the theoretical background of 

related techniques, methodologies, strategies as well as the challenging points to generate a DSM and 

subsequently to detect building changes by the DSMs subtraction. 
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3.1. Sensor-oriented rational polynomial coefficients (RPCs) 

For pushbroom sensors, the image orientation is usually carried out through bias corrected rational 

polynomial coefficient (RPC). The image orientation using RPC is possible with or without ground 

control points (GCP). The geometric relationship between image and ground coordinates can be 

approximated by a 3D interpolation in object space with polynomials based on the sensor geometry 

and direct sensor orientation (Dowman, et al., 2012). RPCs consist of a ratio of two polynomials of 

object space coordinates. As shown by equation 3.1, two separate rational functions are used to 

transfer the position from the object space into the image space.   

     
            

            
                 

             

            
                                             

Where      and      are the normalized image coordinates; X, Y, Z are the normalized ground 

coordinates. Equation (3.2) demonstrates the polynomial function 

                   
     

  

   

  

   

  

   

                                                          

In normal case, the order of the polynomials (n1, n2, n3) should be between 0 and 3. Moreover, the 

RPC equation’s order - the summation (        ) - should be equal or less than 3. Each P(X, Y, 

Z) is a third-order equation expressed by the 20-term polynomial as per below 

                                                                    
       

  

      
                    

         
                                            

                                (3.3) 

Where         denotes the longitude, latitude and the height in ground coordinates, respectively. The 

   are the coefficients    -     which are available in the metadata. The polynomials    ,     and     

have the similar form as    , making a total number of 80 coefficients (Kim, 2000), (Grodecki, et al., 

2001), (Dowman, et al., 2012). The RPCs values are computed based on the direct sensor orientation 

using the sensor position which is captured by a global navigation system (i.e. GPS) and attitude 

information by the star sensors and gyros, together with a calibration system. Similar to other image 

orientation methods, the use of RPCs requires a large number of 3D corresponding points in object 

and image coordinates, being well distributed throughout the scene (Dowman, et al., 2012). 

3.2. Epipolar geometry of linear array scanners 

To perform image matching using global image matching methods (e.g. dynamic programming and 

semi-global matching), it is required to reduce the search space to one dimension. This step is usually 

carried out by the generation of epipolar images. Firstly, it is an essential step for each global image 

matching methods. Secondly, the epipolar images reduce the search space into the x-direction 

speeding up image matching procedure. By generation of epipolar images, the number of incorrect 
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matches is also reduced, considerably. In our scheme, the generation of epipolar images is required for 

the building outlines delineation through 3D matching and 3D segmentation. 

In epipolar images, the corresponding pixels have identical y-coordinates so that the parallax in the x-

coordinates is directly related to the object height, the larger the parallax, the higher the object is. 

Unlike frame cameras with perspective geometry, high resolution spaceborne sensors use mainly 

pushbroom technology supported by the CCD line sensors, scanning the earth line by line. 

The fundamental characteristic of pushbroom sensors is that there are separate projection centres for 

each scan line whereas the frame sensors have only one central perspective for each frames (see Figure 

5). As a consequence, the epipolar lines of these sensors are not straight as in the traditional frame 

cameras, but are in form of a curve (Oh, 2011). However, in space images, these curves can be 

approximated to a straight line due to the smooth satellite trajectory. 

Topographical variation of landscape and image acquisition out of nadir location also cause associated 

geometry distortions. In Geo or Ortho-ready Standard images, it is assumed that using a simple linear 

transformation, the object space can be transformed into the image space providing that the study area 

is flat and the image is acquired almost from nadir. In such a case, the transformation of images into 

the epipolar geometry can be considered as a 2D problem. Therefore, the rotation of images around the 

base direction can reconstruct the epipolar geometry resulting in the quasi-epipolar images (Jacobsen, 

2011). Terrain undulation may cause a shift in the image space compared to the correct X-Y position. 

These displacements depend on the viewing angle as well as the amount of height difference within 

the scene. 

 

Figure 5- Geometric reconstruction of epipolar lines in the pushbroom 

sensors (Dowman, et al., 2012) 
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3.3. Challenges for image matching 

Image matching is a procedure to find the corresponding points within a stereo pair automatically. It is 

a key issue for the topographic mapping using remote sensing data. Disparity map refers to the 

apparent pixel difference or the parallax between corresponding pixels within a stereo pair being in the 

epipolar direction. They encode the relative height of a pixel in relation with the other pixels by 

representing the parallax which is caused by object height so that the larger the parallax, the higher the 

object is. The disparity map can be translated into a DSM using the image orientation parameters. 

There are two main methodologies for image matching; window-based methods which find the 

corresponding pixels between stereo pairs using a template known as local methods. The second 

approach is the pixel-based approach which is also called global methods. The drawback of the first 

group is that, usually they smoothen the sharp edges (i.e. building outlines) in the height model. This 

problem is further intensified in case of the occlusion, shadow and poor textured areas such as asphalt 

roads. In contrast, global methods minimize the energy function to find the best corresponding pixels. 

These methods are much more robust against illumination directions as well as shadow and occlusion. 

There are a number of error sources influencing the results of image matching. Occlusion, shadow, 

trees, homogeneous areas, viewing and illumination directions are the most important factors causing 

matching errors. Figure 6 shows shadow and occluded areas within a stereo pair GeoEye-1. As shown 

the occluded areas depend upon the viewing angle, A and B in Figure 6 show the associated occlusion 

caused by two different viewing angles. The extent of these areas has a reverse relationship with the 

incidence angle. 

 

Figure 6- Location of occluded areas in one stereo pair with respect to the imaging directions 

A number of problems are reported for the DSM generation using image matching techniques. Narrow 

streets between buildings - which are invisible in one of the stereo images - are an example for 

mismatched areas due to occlusion. The accuracy of the derived DSM from image matching depends 

upon two factors; GSD of the sensor and the geometric imaging configuration, dominated by the 

height-to-base ratio (Dowman, et al., 2012), (Alobeid, 2011).  

In automatic image matching, the precision of the height determination is a key issue. Equation (3.4) 

demonstrates the height precession derived from the image matching. 
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Where    is the standard deviation of the object height, H is the height above ground, B indicates the 

image base (distance of projection centres), f is the focal length of camera and     is the standard 

deviation of the x-parallax. As ratio (H/f) is the scale factor, the equation (3.4) can be expressed as per 

below 

   
 

 
                                                                                    

For digital images         can be expressed as a fraction of the GSD, leading to the equation 3.6 

   
 

 
                                                                                 

The factor a depends on various parameters; the land cover of the area (i.e. open area, forest, urban 

etc.), the contrast of the image, the matching method as well as the height-to-based ratio (Dowman, et 

al., 2012).  

Image matching is a process to evaluate the similarity between a stereo pair; hence a small angle of 

convergence causes smaller occlusions and subsequently results in more similarity between stereo 

images. That means with small convergence angle of the space images, the associated x-parallax has a 

smaller standard deviation. However, the base of the stereo pair is also smaller, decreasing the 

accuracy of height estimation (see equation 3.4). Hence, the optimal height to base relation should be 

determined according to the topography variation of the study area (Büyüksalih, et al., 2007).  

The difference in the viewing angle as well as the illumination angle may cause some changes in the 

object reflection resulting in un-matched pixels. As discussed in the section 2.2.1, vegetation and 

particularly trees usually pose problems for image matching and subsequently for the building 

extraction if they are close to the buildings causing enlarged building footprints in the DSM. 

Moreover, interpolation of unmatched areas can result in the similar problem. Note that all above 

mentioned problems might be accumulated together yielding in larger false alarms. 

3.4. Depth reconstruction using semi-global matching 

Alobeid (2011) evaluated three different methods for stereo image matching in densely built-up urban 

areas: least squares matching based on the region growing, dynamic programming (DP) and semi-

global matching (SGM) in order to assess the efficiency of each method for the DSM generation. 

Among all, SGM has shown the best results by the quantitative assessments. Furthermore, a visual 

inspection revealed that SGM represents building shapes in the DSM better than the other methods. 

Therefore, in this study, the image matching is carried out using SGM.   

A short review of semi-global matching is introduced. Hirschmueller (2008) has developed the SGM 

algorithm that uses an approximation of the global model to find corresponding pixels in the stereo 
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pairs. In this method, the final disparity is generated by using a global smoothness constraint with a 

cost function along multiple linear paths. SGM requires epipolar geometry and its processing chain 

consists of four consecutive phases as per below. For more detail see Hirschmueller (2008).  

 Calculating matching costs: the matching cost is computed based on the Mutual Information 

(MI). MI uses the entropy and joint entropy of the images instead of direct intensity value so that it can 

robustly compensate the radiometric differences of input images caused by different reflection or 

illumination (Hirschmueller, 2008). Equation 3.7 - 3.9 demonstrate the calculation of the matching 

cost function. 

                                                                     (3.7) 

Where         is the joint entropy of stereo pairs and    and    denote the entropy of the first and 

second images, respectively. They are defined using probability distributions   of intensities of the 

associated images, which are approximated by the histogram. 

           
       

 

 

    
                                                             

                   
           

 

 

       
               

 

 

                                

 Cost aggregation: minimising the matching cost is used to derive the corresponding matching 

candidates but generally pixel-wise cost calculation contains ambiguity. This is mostly due to noise 

from various sources. Thus, in order to overcome the ambiguity case, additional constraints are 

enforced during the cost aggregation. It supports smoothness by penalizing changes of the 

neighbouring disparities. The pixel-wise cost and the smoothness constraints are expressed by defining 

the energy    that depends on the disparity image D as shown by the equation 3.10 

        

 

       
    

                

    

                                    

Where 

          : the sum of all pixel matching costs for the disparities of D 

P: image coordinate of current pixel 

P1: a value that penalizes disparity changes between a pixel and its neighboring pixels 

P2: a value that penalizes the disparity changes of more than one pixel between neighboring pixels 

The first term in the equation above shows the sum of all matching costs for the disparities of D. The 

second term adds a constant penalty of P1 for the all pixels q in the neighborhood    of p, for which 

the disparity changes slightly (1 pixel). The third term adds a larger constant penalty P2 if there is a 



 

 Chapter 3                                                                                                                                                                                  33                                                                                                                                                               

considerable change in disparity (more than one pixel). The second and third terms are associated with 

the small and large disparity changes, respectively. Consequently, by setting a lower penalty for the 

small changes, this type of dissimilarity is easier accepted for adaptation, however, in case of large 

changes, the third term adds a larger constant penalty (P2). Nevertheless, in case of a sharp disparity 

difference between the neighbouring pixels, it preserves the potential height discontinuity (e.g. sharp 

building outlines). 

 Disparity computation: Generally, SGM works on the basis of dynamic programming but the 

disparity for a given pixel is computed in the various directions (multi-baseline matching). A left-right 

consistency check is carried out to reduce the number of false matches, for instance in occluded areas; 

a disparity value is accepted only if the difference of the values in both cases does not exceed a given 

value. 

 Disparity refinement: few percentages of matched pixels generated from previous stages have 

outliers that should be eliminated. These peaks are mainly due to the differences in illumination or 

viewing angle between stereo pairs, textureless foreground regions (e.g. homogeneous building roofs), 

homogeneous background areas (e.g. asphalt, bare soil), noise etc. To eliminate these peaks, the 

disparity is segmented, and then very small segments are removed by setting a threshold on the 

segments size. The next point in the disparity refinement concerns the recognition of discontinuity 

between the foreground and background areas, particularly when one of them contains outliers 

because of the homogenous texture.  

After generation of the disparity map, it is converted to DSM through georeferencing by rational 

polynomial coefficient (RPC) as described in the section 3.1. Finally, the DSM filtering is carried out 

to generate a Digital Elevation Model (DEM), and subsequently a normalized Digital Surface Model 

(nDSM) is computed, demonstrating the building height. This step is described in the chapter 4. 

3.5. Co-registration of DSMs 

Since the building change map is obtained from the difference of two DSMs, it is required that the 

corresponding objects in both epochs refer to the same coordinates system. This is provided by an 

accurate image orientation utilizing the ground control points (GCP). In case the orientation is carried 

out without GCP, it is required to co-register DSMs against each other. In this study, this step is 

carried out using the least squares adjustment (LSA) in order to eliminate a potential systematic shift 

between two DSMs. Note that only by performing this step, the subsequent background subtraction in 

the height domain demonstrates actual building changes. This section describes the fundamentals of 

DSMs co-registration by utilizing the least squares adjustment. 

In schematic Figure 7, it is assumed that the first epoch is well registered to the ground coordinate but 

the second one has a georeferencing error. Consequently a co-registration is required to adjust the 

coordinates of the corresponding objects against each other before performing the height subtraction 

otherwise it causes object displacement for the new buildings as well as false alarms for the existing 

buildings. 
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Prior to performing the least squares adjustment, it is required to select one of the DSMs - which is 

accurately geo-referenced - as reference DSM and then calculate the shifting of the next DSM with 

respect to the reference DSM. To eliminate the shift within three dimensionality, a least squares 

adjustment is utilized to calculate the residual errors between two DSMs using an iterative approach as 

explained by Heipke, et al.( 2002). 

 

Figure 7- Schematic presentation of the georeferencing errors in the 3D 

building change detection based on the height subtraction 

3.6. Approaches for building change detection 

The approach for solving the complex issue such as 3D building change detection can be categorized 

with respect to a wide range of perspectives. As stated previously, the height is a unique characteristic 

that can separate 3D objects (e.g. buildings, trees, electricity pylons and etc.) from 2D objects in urban 

areas so the height is known as a reliable element for the building change detection. However, a novel 

approach is introduced to overcome the challenging points in the building change detection by the 

incorporation of height and image information. From another point of view, since the change detection 

is constituted by the comparison of similarity and dissimilarity between two datasets, all objects within 

a given scene at two different epochs can be classified into foreground and background pixels (see 

Figure 8). According to this approach, an object during a given period of the time is classified as 

background pixels (if static, showing no change) or foreground pixels (if dynamic, showing a change). 

Consequently, there are two main strategies to find the similarities and dissimilarities (changed and 

un-changed pixels) by comparison of two DSMs in the pixel and object level. 

3.6.1. Background subtraction approach (pixel-based) 

Nowadays background subtraction is often used in change detection (e.g. in the image sequencing, 

monitoring of pedestrian and vehicle traffic and particularly using video surveillance). In fact, change 

detection using multi-temporal datasets is similar to monitoring using video datasets. 
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Figure 8- Building change detection based on the background subtraction in the image 

and height domains 

Change detection using remotely sensed data is a process to detect the dissimilarity between two 

datasets in the specific period of time. Building change detection can be processed in the height 

domain or image domain. Height as specific characteristic of building is used to detect building 

changes more reliable than image information. For example, if there is a change in the intensity due to 

the different illumination conditions, the change detection based on radiometric information may 

cause a number of false alarms because, in this case, the radiometric difference between two epochs 

does not refer to the new construction or demolition (see Figure 8). 

Pixel-wise comparison in the height domain is carried out through DSM subtraction on a per-pixel 

basis. Equations 3.11 and 3.12 demonstrate the general form of the pixel-based approach using 

background subtraction in the height domain. 

                                                                (3.11) 

          

                                          

                                        

                                           

                             (3.12) 

Where,          and          are the height values of the first and second epochs, respectively. In case, 

the vertical change          is greater than a given threshold, it demonstrates a significant height 

change between time          . This indicates the value of height change, quantitatively. The pixels 

are classified as unchanged pixels if they demonstrate a height difference less than minimal building 

height (e.g. 2.5 meters). These types of vertical changes may be caused by cars, trucks, shrubs, etc. 

The changed pixels are also divided into two groups; positive changes that indicate new construction 

and negative changes which show demolished buildings. 
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Building change detection can be obtained using the image radiometric information in two different 

epochs. It is introduced mainly based on the image differencing, classification and the color space 

transformation of multispectral channels. Multivariate alteration detection (MAD), Principal 

Components Analysis (PCA) and morphological scale space filtering are the most prevalent methods 

for change detection using radiometric information (Doxani, et al., 2010). As stated, the main 

drawback of building change detection using image information is that they may not detect the vertical 

change if there is no intensity change and vice versa. The analysis of pixel-based approach 

demonstrates that the most important disadvantages of these methods are the large number of false 

alarms (Niemeyer, et al., 2003), (Tzotsos, et al., 2011). 

3.6.2. Foreground validation approach (object-based) 

As previously stated, background subtraction using height information refers to the particular property 

of building; the height. In urban areas with the different types of objects, the height can simply 

separate 2D and 3D objects (above the ground e.g. buildings, trees and electricity pylons). In such 

areas, buildings are assumed as foreground objects while the other 2D objects constitute the 

background of the scene. Consequently, building change detection can be obtained directly by the 

identification of foreground markers demonstrating buildings or vice versa by the subtraction of 

background pixels representing no vertical change. 

In building change detection based on foreground validation, first the initial building blobs are 

extracted using a threshold in the nDSM. These building candidates are then compared with the 

building polygons in the next epochs namely “verification of the hypotheses” (Vallet, et al., 2011). 

Building polygons can be reconstructed by 3D edge matching, 3D segmentation of building rooftops 

or from an existing building GIS database. Foreground validation is a suitable approach for change 

detection within noisy datasets in order to detect the changes by identifying the strong signals. This 

change alarm is then verified if it is verified by the existing building polygons; otherwise, it is 

classified as new building. It is the main drawback of this approach that it misses the small parts of 

buildings such as lofts.  
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CHAPTER 4 

IMPLEMENTATION OF BUILDING UPDATING APPROACHES  

4.1. Introduction 

The updating of building topographic databases is an important task because it provides a basis for 

many applications, such as urban planning, damage assessment and 3D city modelling. As discussed 

in chapter 2, the updating of geospatial databases may be carried out in three different manners, 

namely map-to-map, image-to-map and image-to-image. The aim of this research is to update the 

spatial databases of an outdated building GIS by using updated satellite stereo images. The updating 

procedure includes the updating of topographic database as well as building polygons on GIS. 

The main goal of this research is to develop a generalized algorithm, allowing the updating of building 

databases under various circumstances (i.e. image-to-map and image-to-image) for updating building 

databases. Figure 9(a) shows an outdated building GIS database overlaid on a recently captured 

GeoEye-1 image. The intersection of DSM derived from a GeoEye-1 stereo pair with old GIS 

polygons exhibits a necessity for image-to-map updating. Figure 9(b) shows an image-to-image 

comparison used to detect 3D building changes. In this study, 3D building change detection is 

acquired through not only comparing two DSMs at different epochs but also by comparing GIS 

polygons against DSM. 

The processing chain starts from the generation of DSM using SGM. The derived DSM is compared 

against an older DSM based on background subtraction or against outdated GIS polygons (foreground 

validation). Several removal masks and shape and size metrics are then introduced to remove false 

alarms. The processes up to this stage result in establishing an alarm system for building change. 3D 

edge matching and 3D segmentation of building rooftops (using active contours based on a level set 

approach) are utilized to fulfil building footprint extraction. Note that our study areas contains only 

buildings with flat rooftops so in this research, our methods developed for building footprint extraction 

(3D edge matching and 3D segmentation) are valid for flat building rooftops only. A final justification 

of method reveals under which circumstances 3D edge matching or 3D segmentation is suitable for 

building footprint extraction. 
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4.2. Organisation of the framework 

4.2.1. Analysis of input data 

In order to propose a general method delivering promising results in various circumstances, a novel 

framework is required with an emphasis on the advantages of height and radiometric image 

information as well as GIS polygons. For optimised utilisation of imagery and height information, the 

advantages and disadvantage of each type of dataset used for updating building databases are first 

discussed. After identification of the limitations of image and height information, we can utilize each 

type of dataset (image or height information) within the proposed algorithm appropriately. 

 (a) 

 

(b) 

(c) 

Figure 9- (a) image-to-map comparison. An outdated building GIS with polygons (yellow lines) 

overlaid on a recent GeoEye-1 image (left) and a DSM derived from GeoEye-1 stereo images 

(right), (b&c) image-to-image comparison, zoom to building changes shown on IKONOS (b) 

and GeoEye-1(c) images captured in 2008 and 2009, respectively 

The inputs of proposed method are at the least a recent stereo pair and an outdated GIS database. Note 

that the images used for building update should be high resolution images usually with a ground 

resolution around 0.5-1m (e.g. IKONOS, GeoEye-1, Quickbird, WorldView, etc.) in order to be able 

to detect building shapes as well as building details within the associated DSM. As described in 

section 2.2 satellite stereo images are used in two forms in this thesis: (i) The original radiometric 

image information, known as “original image”. They are fused images (pan-sharpened RGB images) 
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that are captured from two different imaging angles. (ii) The height information derived from image 

matching, namely “matching-based height information”. Note that the meaning of height information 

in this thesis refers to matching-based height information. 

The height information can assist to detect building change with a higher success rate compared to 

radiometric/intensity information. However, it cannot deliver high quality results for building 

extraction mainly due to several reasons including matching errors, vegetation influence and 

particularly trees adjacent to buildings which cause overestimated building sizes in the DSM whereas 

original image information can be used for more accurate footprints extraction (Dini, et al., 2013). 

 

Figure 10- Showing the influence of matching errors and the associated overestimation of 

building size in DSM (brightness is proportional to elevation), yellow hatches show two 

sample of mis-detection of building changes using image information 

Despite the overestimation of building size on DSM/nDSM, the extracted building footprints from 

nDSM are identified in the form of blobs which do not maintain the original building shape. The level 

of shape deformation depends on image resolution, contrast of building rooftops with surrounding 

objects, building details, shadows, occlusion and the existence of trees adjacent to buildings. Hence, 

extracted building footprints from matching-based DSM are normally not only enlarged, but also the 

building outlines are deformed so that they are not sharp and usually show as jagged lines instead of 

straight outlines (Figure 10). However, these problems are observed less in SGM compared with other 

image matching techniques (e.g. least squares matching) but it is still a drawback for SGM (Alobeid, 

2011). Figure 10 shows that individual buildings (blobs) extracted from SGM do not show similar 

size/shape as actual ones in original images. 

In the building change detection phase, most false alarms after DSMs subtraction suffer from 

matching errors, vegetation influence and the different geometric accuracy of image orientation (Dini, 

et al., 2012). Therefore, before DSMs subtraction, it is required to co-register DSMs against each other 

so that only after the elimination of shifting errors, matching-based height information can detect 

building change in 3D space. In addition, after DSMs subtraction, further auxiliary information is also 
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utilized to refine the initial building change map based on structural properties of building (shape, size, 

etc.) and to improve the quality of the change map. 

Although, image information can delineate building footprints more precisely it cannot robustly detect 

building changes as well as height information. For instance, the intensity of the object might have 

changed significantly between the first and second epochs, but this change does not necessarily 

indicate any building changes in 3D space. Such a problem is marked by yellow color in Figure 10. As 

shown, the radiometric reflection within the yellow rectangle has changed remarkably. However, there 

is no height (building) change between the first and second epochs. Therefore, original image 

information alone shows more limitations than the height information does for the building change 

detection phase. 

Proposing a sound framework for updating building databases with the integration of height/image 

information first requires the identification of the advantages and disadvantages of height, image and 

GIS databases. Table 1 summarizes the pros and cons of each data type for building updating. Height 

information supports the proposed algorithm as an alarm system for building changes (change finder), 

although it is essential to take into account its smoothing effect as well as noise removal masks. 

Besides, image information acts as a complementary for the height information to assist the 

delineation of building footprints more precisely but it also needs the support of height information 

which locates building changes as blobs. 

Data Type Advantage Disadvantage 

Height Information 
reliable to identify 3D changes 

(alarm system) 

unreliable to delineate outline of 

buildings (blobs) 

Image Information 
reliable to delineate objects 

outline 

unreliable in separating between 

2D and 3D changes 

GIS Feature 

reliable to delineate objects 

outline & verify building 

hypothesis over nDSM 

not include new constructed or 

demolished buildings 

Table 1- Presenting the advantages and disadvantages of image/height information and GIS 

database for the update of building databases 

The above-mentioned challenges are the main limitations for height/image information and GIS 

databases to update building databases. In order to decrease the influence of the limitations of 

height/image information within the proposed framework, the first phase (building change detection) 

is based on height information. However, further post-processing is required to eliminate the influence 

of several shortcomings. Image information is also suitable to use for delineating building footprints. 

A visual inspection of Figure 10 revealed that the left yellow rectangle shows changes on the asphalt 

road between the two epochs without any vertical change (height values). The right rectangle shows a 

small tree close to the building which is absent in the second epoch. The red rectangles show why 

height information is suitable for building change detection. Furthermore, it shows the smoothing 
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effect over DSM, causing enlarged building blobs. As previously stated, improving the rate of correct 

alarms for building changes is one point while another point is to improve the quality of building 

shapes in the DSM. 

4.2.2. The general procedure for updating building databases 

As stated in chapter 2, the rationale for the challenging task of building updates is twofold: “building 

change detection” and “delineation of building footprint”. Performing these two phases consecutively 

within a processing chain, results in the updating of building databases. The epipolar geometry is used 

to compute the height at pixel-level based on the associated parallax of a given object using stereo pair 

resulting in DSM.  

As explained in chapter 3, matching-based DSM, as the final product of image matching, has several 

specific characteristics compared with DSM derived from LiDAR points cloud. The main point is the 

overestimation of building size on DSM (building blobs) compared with their actual size. This 

overestimation is due to unmatched pixels which cannot find a corresponding pixel and consequently 

have a disparity value so that their height value is derived from the interpolation of neighbouring 

pixels. This problem is observed mainly around building outlines that cause smoothing effects as 

described in section  2.2.2 (shown by Figure 4). Occlusion, shadows and trees close to buildings are the 

main reason for mismatched pixels, often around building outlines. 

The proposed framework for updating building databases should consider this special characteristic of 

matching-based DSM and image information, allowing that which type of information is suitable for 

change detection and footprint extraction phases, respectively. The outdated building GIS database is 

also used as an input. There are three main functions (see section  4.5) for the existing building 

database (Bouziani, et al., 2010), (Jin, et al., 2005). In this study, the outdated GIS database has two 

main functions, firstly; to validate building blobs hypothesis (over nDSM) and secondly; to delineate 

the building outline by using building polygons of GIS. We will describe these functions in section  4.5 

in order to see how the outdated GIS can be used as an input for updating building databases. 

 

Figure 11- Functions of height and image information for update of building databases 
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Figure 11 shows the proposed processing of image/height information within our framework, showing 

the function of each data type. Further illustration and the linkage between the following processes 

within a processing chain are illustrated in section  4.4. 

The final outcome is to update building spatial databases on GIS at LoD1. It includes updating the 

topographic database as well as building polygons of GIS. When DSMs subtraction with additional 

noise removal masks is used as a “pixel-based” approach to detect building change, the 3D edge 

matching and 3D segmentation are then illustrated to delineate the building outlines as “edge-based” 

and “region-based” approaches, respectively. The prime strategy in this study consists of using height 

information for the building change detection phase and image information for the second phase; the 

precise delineation of building footprints. 

 

Figure 12- General procedure to update buildings databases 

4.3. Approaches for building update using stereoscopic images 

As stated in previous sections, the updating of building databases is divided into two main phases; 

building change detection and the delineation of outlines for new buildings. As shown by Figure 13, 

different approaches are employed for each phase. 

 

Figure 13- General framework to update building databases based on different approaches 
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For change detection, a pixel-based approach using SGM is utilized in order to generate DSMs and 

then detect vertical changes. Building footprints extraction is carried out using line-based and region-

based approaches. However, using satellite stereo images with limited ground resolution, extraction of 

building footprints remains a challenging task. 

4.3.1. Pixel-based approach 

This section gives an overview of the three approaches used in this thesis. As stated in section 3.4 with 

respect to data type, the use of the pixel-based approach for building change detection as well as 

footprint extraction can be carried out using image or height information. In image-based models, 

building detection is usually based on the classification of multispectral bands. However, the 

associated auxiliary information such as shape and/or texture information can be introduced to assist 

the accurate classification of spectral information into target objects. A wide range of building 

extraction methods using classification of gray value (radiometric image information) are proposed by 

(Grigillo, et al., 2012), (Scott Lee, et al., 2003) and (Benarchid, et al., 2013). 

Height-based models typically concern the clustering of pixels based upon their height value, usually 

to ground points and above-ground points. This task is typically carried out by setting a threshold on 

height value. The detection of building change in height domain may be estimated by comparison of 

two height models. In this study, the pixel-based comparison of DSMs is used in order to indicate 

vertical changes (subtracting two DSMs from each other which contain potential building change). To 

distinguish actual building changes from false alarms three removal masks as well as filtering based 

on size and shape are employed. As an alarm system, the final blobs demonstrate building changes as 

well as addressing the change type. 

4.3.2. Line-based approach 

In this thesis, line-based and region-based approaches are used to extract building outlines when the 

pixel-based approach using DSMs subtraction indicates building changes. 3D edge matching 

technique is employed over epipolar images in order to find buildings outlines. It separates 3D edges 

which belong to building outlines from 2D edges that cannot be a part of building footprints (i.e. edges 

representing road boundaries, occlusion and shadow). 

For 3D edge matching, the most significant challenge is the lack of strong constraints. Ideally, for each 

line there should be a unique corresponding line in the next epipolar image (pair-wise matching) but in 

urban areas with complex structures, and particularly in dense built-up areas, enforcing these 

constraints might not eventuate in finding a unique corresponding line. These are known as ambiguity 

cases. The mismatch cases stemming from occlusion or shadow are typical for ambiguous cases. Thus 

usually only with the integration of various geometric (including line orientation, mid-point, epipolar 

and proximity), radiometric and topologic constraints eventuate in a unique match (Baillard, et al., 

1999). Another solution for this problem is increasing the number of stereo images (additional views) 

in order to recognize the best corresponding line (Ok, et al., 2012) however, it is more applicable with 

aerial images. Moreover, additional height information derived from SGM can also support identifying 

the best match. Finally, after pair-wise matching, the rectangular shape of building footprints must be 

reconstructed by fitting a box over the detected building outline. 
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4.3.3. Region-based approach 

In a region-based approach for the segmentation of building rooftops, the homogenous areas on 

original images are segmented to delineate building outlines by grouping those of similar intensity 

value. It follows a bottom-up, region-growing segmentation procedure starting from centre of building 

as region of interest (ROI). The smoothing effect of matching-based DSM – as discussed in chapter 2 

and shown by Figure 4 – motivated the author to perform segmentation over original images because 

in matching-based DSM from dense built-up areas, the gap between individual buildings are filled so 

that the individual building footprints are merged together, presenting a blob. However, note that the 

matching-based height information can efficiently recognize the prime region of interest (ROI) 

locating building footprints as initialization for the segmentation. 

In many region-based methods, the segmentation procedure starts from a number of initial pixels and 

then merges the similar pixels around them into larger segments through intensity or pattern similarity. 

The selection of initial ROI is, therefore, a fundamental point for many region-based methods because 

it has a significant influence on the final outcome. In this study, the building blobs on nDSM are 

assumed as the initial ROI. It includes a rough location of building footprints and segmentation and is 

then carried out using region-based active contours based on level set method (Chan, et al., 2001). 

Determining an optimum number of iterations is also a very important point which can balance the 

processing time and the accuracy of segmentation effectively. Similar to the extraction of building 

footprints using edge matching, after the segmentation of building rooftops, a box fitting algorithm is 

required in order to regularize the unshaped segments into rectangular parts.   

4.4. A framework for building change detection 

In order to update building databases, at first it is required to investigate whether there has been any 

building changes. Building changes include demolition, new construction, extension of building height 

(caused by adding new a floor), reduction of building height (caused by demolition of a floor) and 

adding a new part (annex) to an existing building. The comparison can be performed either between an 

old GIS database and an updated stereo imagery or by comparison of an old stereo image vs. an 

updated stereo image. However, if both an old GIS and two stereo pairs are available (as in this study), 

building blobs on nDSM are employed to verify building polygons of GIS. Figure 14 shows the 

general framework for updating building databases. 

4.4.1. Blob detection in matching-based DSMs 

For image-to-image comparison, image matching was carried out using SGM (Hirschmueller, 2008) 

resulting in DSMs for both epochs. The grid spacing should be set to the same GSD if they are 

different in order to equalize the comparing conditions for both epochs. As shown by Figure 14, an 

nDSM is also required. To generate an nDSM, the DEMs were generated for each epoch by filtering 

the DSMs according to (Niemeyer, et al., 2010), and normalised digital surface models (nDSM) were 

subsequently computed as point-by-point differences between DSM and DEM. 

After pre-processing (e.g. DSM co-registering, nDSM generation, etc.), the DSM of the first epoch is 

subtracted from the second one resulting in difference of DSMs (namely D-DSMs) that demonstrates 
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vertical changes containing both building and non-building vertical changes (e.g. tracks, new trees, 

temporary shelters etc.). This stage is based on background subtraction at pixel level representing 

height difference between the first and second epochs. 

As stated, if there is a shifting error between DSMs due to geo-referencing, it should be eliminated 

before performing subtraction. The shift errors mainly stemmed from inaccurate of one of the DSMs 

to the earth coordinate. To eliminate this, a 3D least squares adjustment is applied (as illustrated in 

section 3.5) to co-register DSMs against each other. Most often such a problem occurs if image or 

DSM orientation is carried out without utilizing ground control points (GCP). The shift elimination 

should be performed in all three coordinate components. 

 

Figure 14- A general framework for building update using stereo images and existing GIS databases 

After shift elimination, the difference of height is computed pixel-by-pixel for each position in the 

object space as shown in the equation below. 

                                                                                      

Where        ,          and          represent the height change and the DSM values for position (i, j) 

in the first and the second epoch, respectively. In order to find building change pixels within all 

vertical changes, it is required to introduce a height threshold by keeping only the pixels with absolute 

height values larger than 2.5m; the vertical changes with height values less than this are considered as 

noise which should be discarded from building changes. By applying this height threshold, the D-

DSMs are converted into a binary map demonstrating vertical changes. All pixels with an absolute 

value of 2.5m in D-DSMs are discarded and are known as un-changed pixels. 
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The above processing procedure describes image-to-image comparison based on background 

subtraction. For the image-to-map updating procedure, an nDSM is compared against an outdated GIS 

database based on foreground validation. If the existing buildings in a GIS databases are confirmed by 

nDSM, then the remaining blobs demonstrate the changes (see 4.6). It can be concluded that both 

processing based on background subtraction and foreground validation acts as an alarm system in 

order to find changes (see Figure 15), although it is required to refine the D-DSMs using noise 

removal filtering, at least the peaks are those generated by image matching. It improves the quality of 

change alarms considerably by eliminating false alarms. 

 

Figure 15- Building change detection using height information based on the background 

subtraction and foreground validation concepts 

4.4.2. Removal masks 

After the subtraction of DSMs from each other, despite the fact that there is no vertical change, the 

corresponding pixels of the DSMs may not show a similar height value. It is mainly due to a number 

of drawbacks stemming from matching-based DSM – as explained in section 3.3 – causing false 

alarms for building change as well as for footprint extraction from DSM. In order to reduce the 

number of false alarms and obtain reliable alarms for building changes, it is required to eliminate these 

undesirable alarms from the change map. Three removal masks are intersected with the change map so 

that these non-buildings pixels are removed from actual building changes.  

Problems can stem from image matching errors (because of vegetation, asphalt reflection, shadow and 

occlusion effects). This section introduces a number of noise removal masks to eliminate these areas –

those that do not belong to built-up areas – from real buildings. Note that although these masks are not 

able to remove the systematic influences of matching errors, vegetation and roads from DSM, they can 

impede the accumulation of these errors on our results by decreasing the number of false alarms. In 

addition, after removing the influences of these peaks, further refinement is required to eliminate 

elongated shapes and very small blobs which may not represent a building change.  

 Matching errors 

In dense built-up areas, occlusion, shadows, and un-textured regions are the most well-known reasons 

for outliers in disparity map (Krauß, et al., 2011). SGM is relatively robust for these image matching 
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challenges, although a large difference between intensity of corresponding pixels causes an inevitable 

mismatching in the associated disparity map (Hirschmueller, 2008).  

As shown by Figure 16, the DSM derived from image matching from left-to-right and right-to-left 

consistencies delivers different DSM, particularly in building outlines which are probably caused by 

shadow or occlusion.  

 

Figure 16- Occlusion, shadow and tress causing mismatched areas (A),(B) show the left and right 

epipolar images (pan-sharpened),(C) DSM derived by the left-to-right image matching, (D) DSM 

derived by the right-to-left image matching, (E),(F) schematic cross sections of highlighted buildings 

(red: DSM and black: original object), blue and green box represent smoothing effect caused by 

shadow and vegetation, respectively 

Ideally, a match should deliver a unique disparity for both left-to-right and right-to-left matching, but 

error sources can pose a major obstacle towards the successful generation of disparity maps. A pixel is 

considered as mismatched pixel, if matching from the left to the right images, and subsequently back 

from the right to the left image yields a position difference in the left image exceeding a given 

threshold. The mismatched areas are detected by employing left-to-right consistency (LRC) checks 

(Hannah, 1989). In fact, enforcing a left/right or symmetric consistency between epipolar images 

result in the detection of mismatched areas. 

 Vegetation mask 

This section deals with the elimination of high vegetation (trees) artefacts that cause false alarms for 

building change detection. Trees may also enlarge the size of building footprints on matching-based 

DSM by smoothing building outlines. As previously discussed one main reason for this problem is 

vegetation influence in image matching in general and mismatched stemming from trees in particular. 

Vegetation and, mainly trees usually pose problems when the height values of two DSMs are 

subtracted from each other. This problem might be even more complicated if (i) it is not possible to 
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calculate the normalized difference vegetation index (NDVI) which allows for the separation of 

vegetated from sealed areas or (ii) the resolution of multi-temporal stereo images and subsequently 

derived DSMs are different, therefore the stereo pair that has lower resolution causes extensive 

smoothing effects, thus causing false alarms. Additional challenges due to occlusion of buildings by 

trees have to be dealt with separately. 

These negative influences caused by trees should be removed using related mask after DSMs 

subtraction. As previously stated, the separation of buildings blobs from trees are challenging tasks for 

building updates, however, if the images are captured in winter, the problem is somewhat reduced, at 

least for deciduous vegetation. As the reflection of vegetation is changed during the different seasons 

of a year (phenological changes) vegetation masks based on color information might exhibit a poor 

detection quality. If an infrared channel is available, the NDVI is a more efficient index than masks 

obtained from RGB channels so that it is of course a better vegetation mask. 

If there is no access to an infrared image channel (e.g. this study) then, it is not possible to detect 

vegetation using NDVI. In this case, an alternative is to generate a vegetation mask based on a 

classification assisted by height information. Hence, a maximum likelihood classification (MLC) of 

pan-sharpened RGB image along with height information from an nDSM as an additional channel is 

employed to generate the vegetation mask. 

In fact, height information is used along with spectral information in order to compensate for the lack 

of an infrared channel and to improve the quality of classification, because in classification using pan-

sharpened images, vegetation might be mixed with other classes (generate inter-classes). The reason is 

that in pan-sharpened images vegetation usually represents a low reflectance, similar to dark areas 

such as asphalt roads and areas in shadow (see Figure 16). Furthermore, by computing NDVI, 

vegetation can be detected. However, this is not able to separate the difference between low and high 

vegetation (i.e. grass, shrubs and trees) (Le Bris, et al., 2011). This is why height variation is 

introduced as a new channel within classification because it can simply assist the separation of on-

ground (e.g. grass and shrubs) and above-ground (e.g. trees) vegetation. 

 Road mask 

In addition to the above-mentioned masks that eliminate the influences of peaks stemming from above 

ground objects (e.g. trees, shadows caused by building and occlusion), there are a number of error 

sources from 2D urban objects (e.g. roads) that may complicate building change detection. Roads - 

particularly asphalts - are one of the main error sources that suffer in the matching process because of 

homogenous texture. 

The masking of asphalt roads becomes an important task if the roads are partially covered by shadows 

or higher objects, such as trees, posing mismatched areas. The outcome of image matching in such 

areas results in outliers in the disparity map, as a consequence leading to a false height value in the 

DSM. This problem impedes the accurate extraction of building footprints. Therefore, the subtraction 

of DSMs may show the real building changes. In the same way, the outline of building footprints are 

probably extended over road networks, causing false detections.  
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A large number of methods have been developed in order to extract road networks from spaceborne 

images. However, if there is a vector layer containing road networks (as in our study area); it is 

recommended to use that as a road mask. The assumption here is that building footprints do not 

overlap with road networks. Also, the roads are assumed to be contained in the GIS database with 

correct geometric positions. A buffer of 1 meter around the roads was generated, representing the road 

network mask. These three masks were then intersected with the blob obtained from the previous stage 

(binary image of D-DSMs), therefore mismatched areas, roads and trees are discarded from the 

building changes. 

4.4.3. Refinement of building blob using prior knowledge 

Up to this step, vertical changes are detected between two dates, followed by the use of removal 

masks. It is expected that D-DSMs resulting from previous stages do not contain building changes 

only. As previously discussed, this is mainly due to well-known image matching artefacts stemming 

from different occluded areas, different shadow lengths due to discrepancies in view and illumination 

direction [e.g. (Alobeid, et al., 2010); (Le Bris, et al., 2011)]. Furthermore, the different resolution of 

stereo images (at the first and second epochs) as well as the displacement of object due to 

georeferencing accuracy issues causes such false alarms. Some vertical changes may also be caused by 

dumps, land excavation or land filling and the presence of petrol tanks. Most of these false alarms 

have an elongated shape; however some of them are small blobs like salt-and-pepper noise. These 

artefacts on D-DSMs may not exhibit a building change, therefore they should be removed.  

This section deals with the refinement of D-DSMs using prior knowledge from buildings properties 

and in particular the geometric characteristics of buildings. Height, size and shape information are the 

most important building properties used to separate building changes within D-DSMs. The criteria 

based on building characteristics are introduced to separate building changes from all non-building 

changes (vertical changes that may not indicate building changes). A rule-based approach is applied to 

refine vertical changes and verify building blobs with respect to buildings height, shape and size 

metrics. After this stage, the final change map demonstrates alarms for building changes (Dini, et al., 

2012).  

Thresholds based upon height information are performed on D-DSMs and nDSM of the first and 

second epochs. As described in the section 4.5.1, the first height threshold (A) is 2.5m and is 

performed on D-DSMs. This term demonstrates all vertical changes with an absolute height difference 

greater than 2.5m (representing new construction or demolition), thus obtaining a binary change map.  

                          

 
 
 

 
 

                                                       

                                                                                   

                                         

                              

The second set of conditions (B) is thresholding on nDSM. This is also a threshold of 2.5m used to 

separate building changes from amongst all vertical changes, demonstrating building changes by 

discarding other vertical changes that are caused by trucks, low shrubs, and other vertical changes. 
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These change alarms do not correspond to building changes (e.g. the accumulation of noise in D-

DSMs). The second set of conditions corresponds to the floor height of buildings. These two sets of 

conditions include the main characteristics of candidate pixels for a building change. Such a threshold 

also can be carried out using DSM-DEM correlation that locates the potential building candidates 

(Beumier, et al., 2012), (Le Bris, et al., 2011). With respect to the first and second sets of conditions, 

building changes are classified into the following classes as shown by Table 2. 

Change Type D-DSMs nDSM1 nDSM2 

(1): No Building Change  |D-DSMs| < 2.5m - - 

(2): New Construction D-DSMs ≥ 2.5m nDSM1 < 2.5m nDSM2 > 2.5m 

(3): Height Extension (New Floor) D-DSMs ≥ 2.5m nDSM1 > 2.5m nDSM2 > 2.5m 

(4): Demolition D-DSMs ≤ -2.5m nDSM1 > 2.5m nDSM2 < 2.5m 

(5): Height Reduction (Demolished Floor) D-DSMs ≤ -2.5m nDSM1 > 2.5m nDSM2 > 2.5m 

(6): Noise (False Alarms) |D-DSMs| ≥ 2.5m nDSM1 < 2.5m nDSM2 < 2.5m 

Table 2- Classification of building changes with respect to changes in the D-DSMs and nDSM 

As shown, applying the first condition is an essential criterion which is required for all types of 

building changes. If a pixel does not have the absolute height value of D-DSMs greater than 2.5m, 

then it is not possible to be a building change (1), so other sets of conditions on nDSMs are not tested. 

The second set of conditions (B) indicates that at least in one of the nDSMs, the absolute height value 

should be greater than 2.5m, otherwise the change is not a building change [i.e. (6) in Table 2]; 

probably indicating a vertical change caused by noise accumulation or it is caused by land excavation 

and land filling at the first and second epochs, respectively. In this manner, the accumulation of 

matching errors in the D-DSMs is reduced. Hence, all building changes are classified into four classes: 

(2), (3), (4) and (5). 

The next important thresholding is the masking of D-DSMs using size and shape information. Metrics 

used to characterize the shape and size of building blobs are solidity and elongation. That means that 

size of shape filtering not only removes the elongated structures but also small blobs on D-DSMS 

known as salt-and-pepper noise, although those may not demonstrate a building blob. Theoretically, a 

building blob should have a minimal size (area) and also demonstrate a solid shape (sufficiently a 

massive blob on D-DSMs), otherwise, a detected blob does not represent a building. A morphological 

opening is employed to eliminate such noise from real building changes. 

Let    
  be a morphological opening operator which is reconstructed using a structural element and 

           is the SE with only one element, and the size of λi increases with increasing        , 

where   is the total number of iterations. The opening profile       at the point   of the image   is 

defined as a vector. The morphological opening is constituted of morphological erosion and dilation, 

respectively (Jin, et al., 2005). 
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With respect to building size in urban areas, the filter mask is chosen based on the usual minimal size 

and width of a building. A size of 50m
2
 and 4m is applied as a minimum building area and width, 

respectively (Dini, et al., 2012). 

4.5. Rooftop hypothesis verification using GIS polygons  

The subtraction of two DSMs is sufficient to detect building changes in three dimensions. However, if 

an old GIS database is available, it can be used as auxiliary information in order to verify the changes 

as well as building outlines. Furthermore, if an image-to-map comparison with the aim of map 

updating is desired, the GIS database should be verified against building blobs on nDSM. There are 

three main functions for an old GIS database for updating building polygons using high resolution 

imagery. First, it can be used as training sites, if the detection of building footprints is carried out 

using supervised classification techniques, then building polygons can provide hypotheses for the 

positions and sizes of the building training class (Walter, 1999). In this study, building footprints are 

not extracted by supervised classification, therefore that this function is not used and is shown by the 

dotted line in Figure 17. 

 

Figure 17- The functions of GIS polygons for the update of building databases 

Second, GIS polygons can be used as reference data for the checking of rooftop hypotheses through 

comparing these polygons against building blobs derived from an updated source (e.g. satellite 

imagery or DSM) (Jin, et al., 2005), (Bouziani, et al., 2010). If those building blobs are accepted, they 

confirm the existence of old buildings by an updated image or DSM. Otherwise, they represent an 

alarm for demolition or new construction. 

Finally, if a building GIS polygon is verified by comparing it against building blobs in the nDSM, GIS 

polygons can also be utilized for the refinement of the associated DSM. However, for newly 

constructed buildings, there are no polygons in the outdated GIS database. Thus, two solutions for the 

delineation of these building footprints are proposed in the next sections. As shown by Figure 17, the 

first and last functions of GIS databases deal with the delineation of building footprints, but the second 

one concerns the building change detection phase. 
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For the reasons explained above, candidates for building change from the D-DSMs have to pass two 

more tests as described in the previous section: first, at least in one epoch a blob must be detectable in 

the nDSM, and second, in epoch 1 detected building blobs need confirmation from the GIS building 

layer. Based on experience, a blob must cover at least 75% overlap of the GIS building object, 

otherwise that blob is either salt-and-pepper noise which should be removed or it is a new building.  

Overlapping index (         is an area-based similarity index which is defined by the ratio of 

intersection of two sets to their union 

         
              

           
                                                              

The range of the overlapping index varies between 0 (0% overlap) and 1 (100% overlap). It measures 

the similarity of two overlapped objects with respect to size (area) and centre of gravity (relative 

location) quantitatively. However, this index does not represent the shape similarity as well as the 

level of detail. 

After checking each blob against GIS polygons and removing salt-and-pepper noise, all resulting 

building blobs are classified into existing and new building candidates. Blobs either correspond to 

buildings in the GIS layer in which case the GIS information is confirmed and kept or they do not in 

which case we assume to have found a candidate for a new building, if a number of additional 

constraints are fulfilled. 

For existing buildings, the updating of building databases refers to adding the building height from the 

nDSM to the GIS polygons. To do so, building polygons are intersected with the nDSM, and then the 

mean of height value from the nDSM is assigned to the GIS polygons as an updated height value.  

4.6.  A framework for delineation of new building footprints 

After the detection of building changes using the proposed alarm system, the next stage is building 

boundary delineation for new constructions (detected changes). To delineate the outline of building 

changes, two different approaches (line-based and region-based) are tested to observe the quality of 

each method and then choose a method which shows higher quality: (i) edge-based approach based on 

3D edge matching and (ii) 3D segmentation of building rooftops.   

4.6.1. Delineation of building outlines using 3D edge matching 

This section deals with the delineation of building footprints for newly constructed buildings by using 

3D edge matching. New constructions also include new parts that are added to existing buildings. 

However, these added annexes should first be large enough in order to be detectable in the building 

change detection phase. After checking nDSM blobs against GIS polygons, the remaining blobs are 

considered to be candidates (ROI) for new buildings. 

In order to accurately delineate the building outlines, the image information is employed to detect 

building edges in both epipolar images and then match corresponding lines. Here the rationale is 

twofold: (a) image information can deliver a higher level of detail of buildings than matching-based 

DSM, particularly demonstrating finer building outlines and (b) building outlines are clearly 
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detectable in original images, otherwise edge matching is not able to extract associated footprints. 

Therefore, extracting straight lines in the stereo images is an essential stage which allows the matching 

procedure to find the corresponding 3D edges and subsequently to delineate the footprints.  

 

Figure 18- A workflow for footprints extraction of new buildings using 3D edge matching 

After line matching, the resulting 3D lines are further processed to find the topological relationships 

composing rectangular building footprints (Dini, et al., 2013). Building footprints have either a simple 

rectangular shape which can be reconstructed by a box fitting algorithm, or a complex structure (e.g. L 

or U shape) which can be decomposed into rectangular primitives. Similar to previous sections, the 

height values of newly constructed buildings are updated by nDSM. The general workflow for 

building footprints extraction is shown by Figure 18. 

 Edge detection and extraction of straight line 

In order to match building edges in two epipolar images, first all edges in the stereo pair are detected 

individually using the well-known Canny operator because among the various edge detection 

operators, it exhibited better performance (Shrivakshan, 2012). Then these edges are pre-processed by 

removing short lines (< 3m) because these lines probably do not belong to building outlines due to 

their very short length. Note that if a given line is detected as several individual small parts, it is 

automatically discarded from the further line matching process. Fitting a unique line over such small 
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parts could be an alternative but it causes another problem; individual outlines of row-house building 

blocks may join together, impeding the elimination of the smoothing effect between building blocks 

which is our goal in this section.  

In the next phase, the straight part of an edge should be detected. It is very important because in case 

the corresponding lines are not detected appropriately or even detected at all and there is a deviation 

between the orientation of the fitted straight line and the original edge derived by Canny detector, the 

matching procedure may fail. 

There are different methods to detect straight lines (e.g. Hough transformation, RANSAC, etc.). An 

overall investigation of the various methods revealed that the PCA-based method is more robust than 

other approaches (Lee, et al., 2006), (Ok, et al., 2012), (Werner, et al., 2002). However, this method is 

rather sensitive to the template size, noisy images or very short edges. In contrast, Hough 

transformation (HT) has a high misdetection rate if the scene includes many straight lines near or 

parallel to each other (e.g. dense build up areas). In such areas, it is rather likely that HT assumed all 

parallel lines as a unique line and approximates a line with the best fit across them.  

Furthermore, HT acts as a parametric model to estimate a line across all edge pixels. Hence, the fitted 

straight line may have a slight difference of orientation vs. original lines while the PCA-based method 

keeps the original orientation of line segments, which is important in the 3D line matching phase. The 

main advantages of HT are that it is flexible in the detection of straight lines even with the presence of 

gaps in an edge map. Moreover, it is relatively unaffected by image noise or occlusion, however, as 

HT acts as a mandatory method for grouping collinear lines and joins the outlines of different 

buildings if they are in the same direction (Lee, et al., 2006), such a systematic false alarm may pose a 

problem in the separation of building footprints, especially in dense built up areas which contain a lot 

of systematic man-made structures with repetitive linear patterns. Hence, the PCA-based method is 

used to detect straight segments among extracted edges from the Canny operator. 

Inspired by (Lee, et al., 2006), first for all edge pixels, two eigenvalues are calculated in a given 

neighbourhood by applying principal component analysis (PCA). The eigenvector demonstrates the 

main direction of the distribution of the pixels of a given line and the eigenvalue shows the length of 

this line. Ideally, in a straight line, the second eigenvalue should be zero. In practical terms, it should 

be smaller than a given value. Therefore, pixels with one large and one small eigenvalue are accepted 

as part of a straight line. Equation 4.5 shows the general form of the scatter matrix of edge segments. 

   
          
          

                                                                         

If n is the number of pixels in a line and (xi,yi) are the coordinates of the ith pixel of the line 
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The large eigenvalue λ1 and the small eigenvalue λ2 of the scatter matrix are 

    
 

 
                   

        
                                          

    
 

 
                   

        
                                          

Only the proportion of the elements of the eigenvector is known, so the angle of the line (θ) is 

calculated as below 

        
        

   
                            

   
        

                       

The above two equations are identical because det.(  I-S) = 0. In this way, the straightness of a line 

and its angle are obtained (Lee, et al., 2006). Finally, after the detection of straight segments, the 

“Douglas–Peucker algorithm” is applied to simplify these segments into straight lines. 

 

Figure 19- Geometry of flat and gable rooftop and their back-projection into 

image space (Jaynes, et al., 2003) 

For different roof types, the back-projection of object space into image space results in different 2D 

building outlines. A simple comparison is shown by Figure 19. It demonstrates the difference between 
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gable and flat roofs when rooftop edges are back-projected into image space. As shown, the difference 

refers to the fact that a flat roof is one plane, whereas a gable roof is composed of two planes. Hence, a 

flat roof has a simple back-projection into image space (as in our study area). For our case, a 

perspective transformation simply transforms building rooftops into image space (Hartley, et al., 

2004). Note that for oblique views, the back-projection of building outlines into image space results in 

different building footprints. In this study, it is assumed that the epipolar images are vertical or 

somewhat close to the nadir position so the deviation from this case is not important. 

In Figure 20, the flowchart of 3D edge matching, starting from epipolar images and ending at the 

extraction of building footprints is described. In order to find the corresponding edge within epipolar 

images, several constraints are introduced in this study. First, epipolar constraints reduce the search 

space within a parallelogram. The geometric constraints are the next constraints to further reduce 

search space. After enforcing these constraints, if a pair-wise corresponding is found, the matching 

could successfully detect 3D edges otherwise, it is ambiguity case. To solve this challenging task, the 

proximity constraint and height information from DSM are used to find the best matching case. 

 

Figure 20- Extraction of building footprints using 3D edge matching 
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 Epipolar constraint 

To match the corresponding lines of epipolar images, several constraints are employed. Epipolar 

constraint is used to reduce the search space for collecting possible correspondence cases. First, by the 

back-projection of object space into image space, an area around the blob under investigation is 

determined in image space. To do so, image orientation is required. This is approximated by RPCs 

block adjustment determining the relative position of two images with respect to one another. 

The epipolar constraint is often used in line matching (see Ok et al. 2012). It yields an area in which 

the corresponding line should lie (quadrilateral constraint). The extent of this area varies according to 

the maximal allowed parallax. The higher the building results in the larger the parallelogram. Using 

epipolar constraints, for each straight line within image 1, a parallelogram is reconstructed collecting 

possible correspondences (called initial correspondences). Note that additional constraints are required 

in order to reduce the search space for finding the best match for each individual line. The end-points 

of homologous straight lines are usually not identical in both images. This is due to differences in 

illumination and the viewing direction of the stereo pair. In order to compensate the displacement of 

line end-points, a buffer of 2 meters is applied to broaden the search space similar to (Baillard, et al., 

1999). It increases the chance of matching so as not to miss homologous lines due to the displacement 

of end-points. 

 Geometric constraints 

In order to reduce the number of possible matches as well as the dimension of ambiguity, similar to 

(Ok, et al., 2012), further geometric constraints are introduced as below. 

 Orientation angle 

 Line length 

 Line mid point 

The orientation is the most stable property of straight lines. On the other hand, as shown by Figure 19, 

the line orientation in image space depends on the line orientation in object space (e.g. roof shape). In 

our study area, most roofs are horizontal planes. It is assumed that the homologous lines have the same 

orientation in the two epipolar images. Therefore, a perspective transformation can transform object 

space into image space. We use a threshold of 5° for the maximum difference between the orientations 

of homologous straight lines. 

Furthermore, we assume the lengths and the midpoint of the two lines to be similar, again using user-

determined thresholds. If the length or mid-point of corresponding lines has a displacement more than 

4 meters, this pair cannot be corresponding edges.  

 Proximity constraint 

For simple and clear buildings, applying epipolar and geometric constraints may result in a one-to-one 

matching, however, for complex buildings, enforcing the described constraints probably does not 

result in one-to-one corresponding pairs. Additional constraints (e.g. radiometric constraint) based on 

flanking regions around corresponding lines (Ok, et al., 2012) is also not applicable in our case, 

mainly due to shadow, occlusion and, importantly, the similarity of the limited ground resolution of 



  

  Implementation of Building Updating Approaches    58 

the satellite images compared to aerial images. Therefore, further refinement is carried out by a new 

constraint which is named proximity constraint. 

Assuming the roofs do not have any detectable roof structures and therefore show a homogeneous 

texture, we argue that lines depicting the building outlines are those which have the shortest distance 

from the building center - any lines representing shadows or other objects such as roads lie further 

away from that point. Starting from the centre of gravity of the blob under investigation (which we 

take to be the building centre) we thus resolve ambiguities by selecting the lines nearest to the building 

centre as homologous. Note that due to the other geometric constraints, these lines lie on the same side 

of the building centre (left or right in the epipolar image) and have the same orientation. Distances are 

computed as Euclidean distances between the building centre and the mid-point of the line. 

In addition to these constraints, there is a possibility to test the height difference (from nDSM) at two 

sides of a given edge. If an edge belongs to a building outline being a 3D edge, there must be a 

considerable elevation difference at two sides of the building outline; otherwise it is a 2D edge. For a 

given edge, if the difference of height of both sides is greater than 2.5m that edge is assumed to 

outline. However, as the nDSM comes from matching, the smoothing effect does not always allow us 

to use it for separating 2D and 3D edges. Therefore, this constraint may be used as an additional 

constraint for very high resolution DMS (e.g. LiDAR), while in our case, it is not applied.   

 Topological reconstruction of buildings outlines using box-fitting approach 

Up to this stage, the building outlines are extracted using 3D edge matching. They will be used later in 

order to reconstruct building footprints. However, due to different illumination and imaging direction, 

the length of building edges may differ between image 1 and image 2. This problem causes the 

extracted building outlines to be shorter than the real ones. A simple solution can be reached, if only 

buildings with a rectangular footprint are considered. In this case, for each building a box fitting 

algorithm can be utilized e.g. (Sirmacek, et al., 2010). 

 

Figure 21- Box-fitting algorithm by the expansion of the search box and the rotation of orientation 

angle (black lines are straight parts of building outlines and the red boxes show search boxes) 
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This method can reconstruct building footprints if at least three sides of a rectangle are extracted. 

However, in case one of the rectangle sides is extracted partially, as explained above, the fitted box 

will be accordingly smaller than the real footprints. The proposed method fits the best box on 3D 

edges based on an energy minimization approach. Obviously, as this method depends on edge 

detection and fitting straight lines into edges, if an edge is not detected in both epipolar images, it is 

missed in the edge matching stage and consequently the used box fitting is not able to reconstruct the 

associated box. 

Figure 21 demonstrates a schematic mechanism of box fitting. As shown, the search box (red 

rectangle) begins from the centre of each building cue expanding itself outward, iteratively. First, 

using building blobs in nDSM, the centre of gravity is calculated for each individual building blob, 

with each considered as an initial seed point for box-fitting. The search box is expanded in two 

orthogonal directions. The search box is rotated in Cartesian coordinates with a step of π/30 (θ = [0, 

π/30, π/15 … 2π]) iteratively where, θ is the orientation of the search box. In each iteration, the size of 

the search box is increased by one pixel in the X and Y directions until it reaches the building outline. 

The energy E(θ) for each iteration is calculated with respect to the overlap of the search box (red box) 

and the binary straight edge (black lines). The more the overlap between the search box and the edge, 

the less the energy term is (energy minimization). 

                                                                   
               

 

 

   

                                   

Where               represent coordinates for ith pixel on the edges of the virtual box (shown by red 

color),                are the coordinates of jth pixel on the building edge (shown by black color).  

 

Figure 22- Showing the selection of corresponding pixels with respect to the line orientation in 

the box fitting algorithm 

For each pixel in the search box, one pixel in the building edge is chosen to calculate the distance. The 

chosen pixel is the one which has the minimum distance to the pixel of the virtual box, providing that 

it has a similar normal vector. That means the corresponding pixels between the search box and 

building outline are chosen first based upon the line orientation (normal vector), if the normal vector 

of both lines are rather similar then the building edge pixel which has the shortest distance to the 

virtual box pixel is chosen as the corresponding pixel. As shown by Figure 22 (left) for point O of the 
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red box, although the distance to the point B (L2) is smaller than point A (L1), the point A is chosen as 

the corresponding point for the point O because the normal vector v2 is much closer to the normal 

vector V2.  The difference of orientation between possible corresponding lines is shown in the Figure 

22 (right). As the angle α is smaller than β and γ, point A is the corresponding point for point O. The 

energy is computed for all rotation angles and the box with minimal energy is selected as the best 

fitted box. As shown by Figure 21, after the required iteration, the box-fitting algorithm is able to 

reconstruct the best rectangle over building edges if at least three sides of a given building are 

completely detected by 3D edge matching. 

4.6.2. Delineation of building outline using 3D segmentation 

The delineation of building footprints based on 3D edge matching may show some degree of success 

when used to reconstruct rectangular building footprints. However, as stated extracted 3D edges can 

reconstruct building footprints only if the Canny operator is able to detect these edges, otherwise this 

method fails to extract building footprints. 3D edge matching finds building outlines through 

discarding 2D edges and keeping 3D ones but complex building structures as well as the low 

resolution of satellite imagery pose many problems for the proposed approach. More problematically, 

if the buildings have jagged outlines then we are unable to fit a straight line to the edge, and 

subsequently line matching procedure fails to find 3D edges. 

A novel solution to handle the extraction of complex building footprints is proposed based on the 3D 

segmentation of building rooftops. Using this method, not only are buildings with sharp edges as well 

as straightforward ones detected but also buildings with medium contrast and jagged outlines are also 

delineated. The segmentation is carried out by employing a region-based segmentation using active 

contours as proposed by (Chan, et al., 2001). 

In this study, the main reason for the utilization of rooftop segmentation using active contours without 

edges is that, unlike other region-based methods (e.g. region growing), this method not only extracts 

the building rooftop as a blob, but it preserves the object edges very well. That means that 

segmentation using active contours without edges considers the building outlines more than other 

methods so that for most building rooftops it is likely that the curve evolution is terminated in the 

building outlines if they have a poor contrast compared to their backgrounds. This is a very important 

characteristic for preserving the object edges, particularly around the corners and cusps of complex 

buildings. Therefore, it can be used to delineate rooftop outlines, thus propagating smoothing effects 

on DSMs derived from SGM. 

The segmentation is performed on epipolar images. For the initialization, the height information from 

nDSM is used to assist the approximate locating of building rooftops as seed points for segmentation. 

The overall framework of the proposed method is illustrated by Figure 23. To initialize the active 

contour, the building blobs in the nDSM are taken into account as initial ROIs. They contain the pixels 

with height values larger than 2.5m and without an overlap with the removal masks. The initialization 

of segmentation using nDSM delivers a rough approximation of buildings blobs so the segmentation is 

started from a correct point (i.e. the core of building footprints). It is the main aim of initialization 

using height information as it increases the chance of curve evolution within building rooftops only. 
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Figure 23- Extraction of building footprints using 3D segmentation of rooftops 

Similar to other active contour methods, segmentation using a level set function is based on energy 

minimization. It is a numerical technique which detects homogenous parts of a given object by 

tracking the object boundary. In this thesis, we use a variational level set method introduced by (Chan, 

et al., 2001). The curve within a building rooftop is evolved from the initial region of interest to find 

the building outline (known as the zero-level). Similar to parametric active contour models, this 

variational energy function (level set) consists of two terms; internal and external energy terms. The 

internal energy controls the smoothness of the contour. The external energy pushes the zero level 

curves toward the object boundaries - for more details of this approach see (Chan, et al., 2001). 

Note that by minimizing the energy function, the curve is pushed to the point of maxima, acting as an 

edge-detector. However, it preserves the smoothness in the corner of the object boundary (Chan, et al., 

2001). This characteristic of level set functions causes the building rooftops derived from 3D 

segmentation to be in the form of blobs instead of rectangular building footprints. To overcome this 

problem, a box fitting algorithm is employed in order to decompose building footprints into 

rectangular primitives. The regularization of segments into rectangular shapes means that building 

footprints have straight outlines and also, sharp corners and cusps, instead of being round. 

In active contours, initialization plays an important role. This becomes clear when comparing the 

segmentations with different initializations - the initial contours of building outlines - which cause 
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topological changes in building rooftops. Hence, in the 3D segmentation of building rooftops with an 

initialization by height information, as in this study, it is important to generate the initial building ROI 

through careful height thresholding. In this study, a height threshold of 2.5m in the nDSM is selected 

while a slight change of the height threshold may cause topological changes in building footprints and 

result in different segments. For example, as shown by Figure 3(c) applying the threshold of 2.5m 

generates small islands within building footprints while selection of 3m as the height threshold may 

not make such an island for the initialization ROI. Small gaps between buildings or the courtyards of 

buildings surrounded by walls also cause the same problem by causing topological changes. 

The initial buildings ROI from nDSM can locate building blobs, however, in matching-based DSM, 

due to the smoothing effect; several individual buildings are joined together generating a building 

block instead of individual footprints. To decrease this side effect of  segmentation, it is required to 

conduct curve evolution into building rooftops through correct initialization because, if the 

segmentation is started from non-building objects, it may segment other objects (e.g. shadow, trees 

etc.) and wrongly take them into account as part of building footprints. 

To do so, after setting a threshold of 2.5m, the associated ROI is intersected with removal masks that 

take into account building areas without any intersection by trees, roads and shadow, as well as 

occluded areas. Thus these regions are removed from the initialization ROI. As the entire smoothing 

effect on DSM is probably not eliminated by these masks, the morphological erosion is additionally 

applied to shrink the ROI by 1meter further. It increases the chance of curve evolution within building 

rooftops impeding the segmentation of other objects instead of buildings. The filtering size is chosen 

based on the usual minimal size and width of a shadow or occlusion in the study area. This buffer 

removes the influence of shadow from building ROIs that probably have not been already removed 

however, as stated above; these masks only discard false alarms from the initialization. 

 

Figure 24- Level set based segmentation of building rooftops under different number of iterations 
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The next point is the estimation of an optimized number of iterations representing the best balance 

between the accuracy of segmentation and processing time. The number of iterations depends on 

building size as well as the complexity of building structures. As shown by Figure 24, segmentation 

starts from initial ROIs. It is iteratively expanded over homogenous building rooftops. In case the 

curve evolution reaches a building outline with a sufficient sharp edge, the segment is not expanded 

further, terminating the iteration on the building outlines. 

As demonstrated by Figure 24 and also illustrated by the associated graph in Figure 25, from the 1
st
 to 

the 100
th
 iteration, the overlap between the segmentation and ground truth information has sharply 

increased. At the 254
th 

iteration, the overlap rate reaches the optimal value of 91.15% where there is no 

further improvement afterwards. As the ROI for initialization is chosen from building blobs on nDSM, 

as shown even at the first iteration there is an overlap of more than 70% between segmented rooftops 

and ground truth. As previously stated, such an initialization conducts the initialization into target 

objects (building rooftops) decreasing the probability of curve evolution outside of building ROIs. 

The above statistic is driven from the segmentation of rooftops in a small subset with 11 sample 

buildings. These rooftops have different shapes, sizes, and reflections, as well as consisting of 

different types of buildings (with various levels of complexity). The obtained segments are compared 

with manually generated ground truths in order to estimate the iteration number for the segmentation 

of all building rooftops in the study area. 

 

Figure 25- Overlap (%) between rooftop segments and ground truth under 

the different number of iterations 

After the segmentation of rooftops individually in the stereo images, similar to 3D edge matching, the 

epipolar constraint is used to approximate the locations of the corresponding segments (Chehata, et al., 

2002). In epipolar images, the corresponding segments should be usually found in the same 

coordinates (with   maximal parallax). If a given segment is visible in both epipolar images, this 

ensures us that it is a building, not a segment showing shadow or occlusion which is visible only in 
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one image. The final building rooftop is obtained from one of the epipolar image which has the 

smallest incidence angle close to the nadir location. 

The reason to choose the epipolar image with the smallest incidence angle is that as the segmentation 

is not carried out on orthophotos images, the image with the smallest incidence angle has less shape 

deformation compared with the nadir point. The collected segments generate the initial building 

outline. These obtained polygons of building rooftops are then assumed as new ROIs for re-

initialization so the segmentation is performed iteratively until there is no significant improvement in 

the delineated building outlines. Finally, the obtained segments are regularized into rectangular 

primitives, generating the final building footprints (see next section). 

4.6.3. Regularization of segments into rectangular primitives 

As shown by Figure 24, the rooftop segments extracted using 3D segmentation have irregular outlines. 

Therefore, in order to use the segments to update building databases at LoD1, it is required to 

regularize the building footprints in the form of rectangular shapes. Guercke, et al. (2011) applied 

Hough transformation (HT) as a parametric model to decompose a complex building polygon into 

straight primitives. The proposed model is employed to re-sample the jagged building outline. A 

Hough buffer based on the main orientation and distance to the origin is then performed to estimate 

the straight lines of building outlines among all possible lines in Hough space. Finally, a least squares 

adjustment is applied for the generalization of footprints. 

Because of the limited ground resolution of satellite images, Hough transformation is not able to 

regularize segments derived from 3D segmentation. Moreover, it is also the main drawback of Hough 

transformation that it extracts a large number of wrong lines, particularly in very dense built-up areas, 

therefore in this study an enhanced version of a minimal bounding box (called an object-oriented 

bounding box) is used to fit the best box over rooftop segments. In Figure 26, the blue blob is a 

schematic building rooftop which should be regularized into rectangular primitives. 

 

Figure 26- Minimal bounding box and object-oriented bounding box fitted into a segment 
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In the minimal bounding box (shown by black color in Figure 26), the fitted box is aligned with the 

axes of the coordinate system. It is also known as an axis-aligned bounding box which surrounds an 

object by fully enclosing it within the minimal rectangle. Hence, the major axes of the segment are 

parallel with the X and Y axis of Cartesian coordinates, so the actual dimensions of the axis-aligned 

bounding box are based on the maximum and minimum position values of the segment along each of 

the X and Y coordinates. In the object-oriented bounding box, the X and Y axes are rotated based on 

the main orientation of the segment (Theta in Figure 26).  

The image skeleton technique (Matlab, 2011) is utilized in order to detect the main direction of the 

segment. In shape analysis, the image skeleton shows the general shape of an object as a thin version 

of that shape. It demonstrates the geometrical and topological properties of the shape e.g. connectivity, 

topology, length as well as the main direction which is important for us here. The object-oriented 

bounding box is arbitrarily oriented with respect to the coordinate system so the X and Y coordinates 

are rotated to be fitted on the major axes of the segment. The red box in Figure 26 demonstrates an 

object-oriented bounding box for the blue blob. 

In case building rooftops have a simple rectangular shape, the object-oriented bounding box simply 

fits a rectangle representing the building footprint. However, for the extraction of complex building 

shapes (e.g. L shape or U shape buildings), the segment derived from 3D segmentation is subtracted 

from an associated object-oriented bounding box, then a morphological opening is performed. 

 (1) Original rooftop 

segment 

(2) Fit object-oriented 

bounding box 

(3) Subtract original segment 

from object bounding box 

   

(6) Final L shape building 

footprint 

(5) Subtract object-oriented 

bounding box from (4) 

(4) Morphological opening 

on remaining blob 

   

Figure 27- Schematic procedure to extract L and U shapes of building footprints by 

regularization of segments (rooftops) into rectangular primitives 
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The structural element of morphological filtering is empirically found as 1m.  If a building footprint 

has a simple rectangular shape after morphological filtering, the obtained blob (shown by the yellow 

hatched line in Figure 26) should have vanished; otherwise it indicates that the footprint has a complex 

shape so it is required to subtract the yellow box from the object-oriented bounding box representing 

the final shape of the building footprints. Figure 27 demonstrate the extraction of the L shape building 

footprint in six steps. 

4.7. Concluding remarks 

For updating building databases using spaceborne stereo images, the task is divided into two main 

categories; building change detection phase and the extraction of building footprints through precise 

delineation of new constructed buildings. For the first stage, background subtraction (DSMs) along 

with removal masks is employed to detect potential building change areas. The updated building blobs 

derived from nDSM are used to validate building polygons in the GIS database, and then confirmed 

polygons are used as 2D building footprints. 

Although the pixel-based subtraction of two DSMs derived from SGM delivers promising signals for 

the detection of building changes, it is not able to delineate building polygons mainly due to the 

smoothing effect causing an overestimation of building size. This problem becomes complicated for 

buildings with poor radiometric contrast. In such cases, not only the building size is overestimated in 

the DSM but also the building shape may be deformed due to the potential mismatch, particularly on 

building outlines. Therefore the matching-based DSM does not deliver a precise building shape. 

Information fusion (image information with DSM derived from SGM) is the main idea proposed in 

this thesis to detect building changes and then update building polygons through original stereo images 

and associated matching-based DSM. To delineate buildings outlines, two different methods, “edge-

based” and “region-based” approaches, are employed. However, a comprehensive review of previous 

works indicates the success of region-based approaches more than edge-based ones, because building 

footprint extraction based on 3D edge matching usually delivers promising results using very high 

resolution aerial images (Baillard, et al., 1999), (Suveg, et al., 2004) and (Habib, et al., 2010). The 

experimental results in the next chapter will demonstrate the success of each method for the 

delineation of building footprints. 

In our region-based approach, the fusion of height and image information is evaluated using 3D 

segmentation of building rooftops. Nevertheless, this method is referenced more in the literature for 

building footprint extraction using satellite images; the main deficiency of this approach is over and 

under-segmentation that may necessitate an additional step (e.g. split-and-merge method) in order to 

extract building footprints as in reality (Khoshelham, et al., 2005). 

It can be concluded that each method has its own advantages and disadvantages. Furthermore, note 

that ground resolution has a key effect on the quality of results in both phases of building updates, so 

when an approach might be theoretically applicable, the limited ground resolution probably impedes 

the gain in expected experimental results. As a consequence, a unique algorithm is not recommended 

to obtain promising results for different ground resolutions (Lu, et al., 2004). 
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CHAPTER 5 

EXPERIMENTAL RESULTS AND ANALYSIS 

In this chapter, the test results are presented. The results are analysed for further justification and 

conclusion in chapter 6. First, the experimental results are displayed to show the efficiency of the 

proposed approach, and then a quantitative assessment is carried out to evaluate the accuracy and 

quality of each step in relation to the ground truth. Finally, these results are interpreted to figure out 

the main contributions of this thesis. 

5.1. Datasets and pre-processing 

5.1.1. Datasets and ground truth 

The experiments used pan-sharpened RGB stereo images from IKONOS-2 (epoch 1) and GeoEye-

1(epoch 2), acquired on May-24, 2008 and Sept.-15, 2009 with ground sampling distances (GSD) of 

1m and 50cm, respectively (see Figure 28). The study area is a suburb of Riyadh, the capital of Saudi 

Arabia, including individual buildings as well as row-house building blocks. 

The slant angle is 11° toward West for both images and the height-to-base ratio is in the same range 

with 1:1.75 for IKONOS and 1:1.51 for GeoEye-1stereo pair. This ratio has an important role in image 

matching. With respect to the angle of convergence, view angle, shadow length as well as image 

quality, our dataset is geometrically suitable for DSM generation and building detection. Table 3 

shows details of the acquisition parameters of the dataset. Further general technical characteristics of 

IKONOS-2 and GeoEye-1are illustrated in the appendix 1. 

In addition, we have at our disposal a somewhat outdated building and road GIS database including 

buildings polygons as well as their attributes. These GIS polygons are generated based on aerial 

images captured in 2007 with a scale around 1:1000. The map projection is UTM (Zone N-38). The 

building database does not contain all the buildings which can be seen on IKONOS or GeoEye-1but 

building blobs in the nDSM (building hypothesis) are used to verify the GIS polygons. The GIS road 

layer is employed to generate the road mask. Reference data for the building change detection as well 

as for boundary delineation were generated manually by comparing and digitizing the buildings visible 

at both epochs. 
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                               Stereo Pair 

Parameter 
IKONOS-2 (first epoch) GeoEye-1 1 (second epoch) 

Acquisition Date/Time 
(1): 2008-05-24 07:46 GMT 

(2): 2008-05-24 07:46 GMT 

(1): 2009-09-15 07:42 GMT 

(2): 2009-09-15 07:43 GMT 

Processing Level Standard Geometrically Corrected Standard Geometrically Corrected 

Interpolation Method Cubic Convolution Cubic Convolution 

Map Projection - Datum UTM – Zone N-38 (WGS84) UTM – Zone N-38 (WGS84) 

Spectral Channel - GSD Data fusion (Pan-RGB) – 1 meter Data fusion (Pan-RGB) – 0.5 meter 

Radiometric Resolution 8 bits per pixel 8 bits per pixel 

Scan Direction Reverse Reverse 

Nominal Collection Azimuth (L): 217.66°      (R): 319.08° (L): 348.77°      (R): 236.44° 

Nominal Collection Elevation       (L): 64.32°       (R): 76.10°        (L): 63.40°        (R): 73.65° 

Sun Angle Azimuth (L): 100.85°      (R): 100.62° (L): 140.63°      (R): 141.06° 

Sun Angle Elevation       (L): 74.72°       (R): 74.53°       (L): 62.98°        (R): 63.12° 

Reference Height 742.85 meters 742.78 meters 

Table 3- Technical acquisition summary of stereo pairs for the first and second epoch, (L) and (R) 

refer to left and right images, respectively 

An investigation reveals that GeoEye-1stereo pair has a good image quality while IKONOS images 

show a lower quality due to a lower ground sampling. This low resolution might be accumulated with 

smoothing effects in the DSM. Consequently, it probably causes a problem for building change 

detection based on background subtraction, resulting in false alarms. Furthermore, as the ground 

sampling of GeoEye-1 and IKONOS images is not equal, to generate a comparable condition for 

height subtraction, we have re-sampled the GeoEye-1 DSM into 1 meter as IKONOS DSM. 

  



 

  Chapter 5                                                                                                                                                                                  69 

  

 

Figure 28- (first row): IKONOS image, 2008 (left), GeoEye-1 images, 2009 (right), (second 

row-left): Ground truth information for the first scenario (IKONOS vs. GeoEye-1), (second 

row-right): Ground truth information for the second scenario (GIS polygons vs. GeoEye-1), 

(third row): building polygons in the outdated GIS database 

A visual survey reveals that the prevalent building’s type in the study area is mainly small separate 

buildings or row-house building blocks that are very close together. The images are cloud-free and as 

shown in table 3, there is a 16 month delay between the acquisition of the first and second epochs. In 

such a rapidly developing urban area, this time interval is enough for a number of building changes to 

occur, including new construction, demolition etc. Note that the vertical development of existing 

buildings is only detectable for the first scenario as the buildings do not have a reliable height attribute 

in the GIS. The ground truth information is generated manually for both scenarios (IKONOS vs. 

GeoEye-1 and GIS polygons vs. GeoEye-1). Moreover, a visual inspection of IKONOS and GeoEye-1 

demonstrates a very slight change in tree canopy cover, although our study area is an arid urban area 

with little vegetation cover. Some trees have been cut entirely and some slight change is because of the 

difference in image acquisition time; spring for IKONOS and the end of summer for GeoEye-1. 
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5.1.2. Generation of epipolar images and image matching 

As previously stated, for a pixel-based matching approach (e.g. semi-global matching and dynamic 

programming), it is required to generate epipolar images, though not necessarily to generate rectified 

images. The corresponding pixels in stereo pairs are recognized using SGM and results in a disparity 

map. Hence before image matching, a transformation of the images into epipolar geometry is required. 

As discussed in section 3.2, in pushbroom sensors, the epipolar lines are curves (hyperbolas) which are 

relatively difficult to model. However, the solution is to approximate an epipolar curve to a line 

through linearization of the equation. In our case, images are projected into a plane in object space so 

it is sufficient to rotate the images around the viewing direction resulting in the x-axes of both image 

coordinate systems being parallel to the base, followed by a shift of 2.5 pixels in the y-direction. By 

rotating stereo pairs around the base direction, quasi-epipolar images have been generated (see Figure 

29). Note that this method delivers satisfying results if the scene is not located in an extreme 

mountainous area (same as our study area). 

 

Figure 29- (left): Quasi epipolar lines superimposed to the GeoEye-1 stereo pair (corresponding pixels 

have the same y coordinate in the image space) 
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5.1.3. DSM generation and pre-processing   

For the subsequent DSM generation, semi-global matching (SGM) as per (Hirschmueller, 2008) has 

been used resulting in the disparity maps for both epochs being transformed into DSM. To compute 

the optimal disparity, user-defined parameters are chosen empirically. To find corresponding pixels, 

the searching is carried out in the maximum of accumulated directions (  =16 paths). The penalty for 

changes in disparity (one pixel and more than one pixel) is set to 6 and 12, respectively. 

This section deals with the transformation of the obtained disparity map into the associated DSM at 

each epoch individually (registration of the disparity map into the object coordinates). Image 

orientation was provided by means of Rational Polynomial Coefficients (RPC). Figure 30(a,b) 

demonstrates the obtained DSMs from IKONOS and GeoEye-1 stereo pairs. 

A visual inspection noticeably shows the influence of GSD on the quality of DSM because, as shown 

in table 3, all the image acquisition parameters in general and the b/h ratio (the angle of convergence) 

in particular are relatively similar for IKONOS and GeoEye-1 stereo pairs except for the ground 

resolution. As illustrated, in the GeoEye-1 DSM, the building shapes in general and building outlines 

in particular contain more detail than in IKONOS DSM. It will create more problems for the detection 

of small annexes which are added to existing buildings. Moreover, in our study most buildings have 

lofts. It is an upper story or attic over the buildings, directly under the roof. Alternatively, it can be 

used as a second story area for storage or a large adaptable open space, often converted for residential 

use. With respect to the small size of such building annexes and also their low height, they cannot be 

detected as their height is less than the proposed threshold so they are probably missed within the 

noise of DSM. 

 

Figure 30- Derived DSM using SGM from (a) IKONOS stereo pair, (b) GeoEye-1 stereo pair 

Since the orientation is carried out without any ground control points (GCP), it is required to eliminate 

shift errors in the DSMs before performing the background subtraction. To do so, we thus applied a 

shift in all three coordinates (x, y, z) to the second DSM with respect to the first. It is computed 
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automatically using three parameters based on the 3D least squares adjustment (LSA) model as per 

(Heipke et al., 2002). The shifting is amounted to 7.2 m in x, 1.7 m in y and 1.3 m in z directions. 

5.1.4. Generation of normalized digital surface model (nDSM) 

In both cases, either for existing buildings or for new constructed buildings, a normalized digital 

surface model (nDSM) is required. It is generated through DSM filtering in order to compute a DEM 

first, and then followed by a pixel-based subtraction of DEM from DSM that results in an nDSM.  

DEM is generated based on a local roughness index, and then each pixel is classified as a "rough" or 

"smooth" object. Subsequently, a region growing approach is carried out for the grouping of DSM 

pixels to on-terrain (flat) and off-terrain (above-ground) segments.  

Finally, the morphological opening is applied to keep the main structural elements and eliminate very 

small objects showing salt-and-pepper noise (Niemeyer, et al., 2010). We employ a binary mask to 

keep only those pixels on the nDSM which have absolute height values larger than 2.5m. Such regions 

of interest (ROIs) contain potential building blobs at the first and second epochs. 

 

Figure 31- nDSM of epoch 1(left, red) and epoch 2 (right, green) as binary maps after applying a 

height threshold of 2.5m 

5.2. Building change detection  

5.2.1. Vertical change detection 

This section describes the detection of building changes by comparing the DSMs of the two different 

epochs. After applying 3D least squares adjustment some vertical changes - those that stemmed from 

shifting due to false coordinates- are eliminated, however, it is required to refine these vertical changes 

to obtain the building changes. 

As described in chapter 4, the initial D-DSMs are computed by the direct subtraction of DSMs. A 

threshold of 2.5m for the absolute difference was then used for each pixel individually, which as 

expected significantly reduced the amount of potential false changes. This binary thresholding 

http://click.thesaurus.com/click/nn1ov4?clksite=thes&clkquery=EFF756F283AA8528DE969E21C5A2CB81&clkpage=the&clkimpr=URupZ41GBVkdc8CR&clkld=0&clkorgn=0&clken=1clk&clkord=0&clkblk=d&clktemp=mid&clkmod=1clk&clkitem=eventually&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Feventually


 

  Chapter 5                                                                                                                                                                                  73 

discards all non-building changes over the vertical change map. The resulting binary D-DSMs are 

depicted by Figure 32(b). A first visual inspection reveals that while most building changes are 

contained in the D-DSMs, there are also a number of false alarms. Some refer to potential building 

activity and represent excavations; others refer to matching errors, probably due to poor contrast. 

 

Figure 32- Initial binary change maps with the D-DSMs larger than 2.5m: (a) before (red), and 

(b) after (blue) shift elimination 

An example of these errors within D-DSMs is shown by Figure 33. The green boxes superimposed on 

the GeoEye-1 images show correct building changes, but the red boxes are false alarms: the upper one 

is due to a group of parked trucks as well as poor texture over an asphalt road and the lower one 

belongs to a dump caused by a building under construction. As described in chapter 4, to eliminate 

such vertical changes from the real building changes another threshold of 2.5m is applied to nDSMs 

that could successfully separate building changes within all vertical changes. 

 

Figure 33- Two samples of the D-DSMs filtering based on height thresholding - 

left: IKONOS image (epoch 1), centre: GeoEye-1 image (epoch 2), right: D-DSMs. 
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Up to now, an initial building change map is derived but as previous work has shown (Dini, et al., 

2012) there are still a considerable number of false positives which indicate building changes 

incorrectly. To eliminate these false alarms, three removal masks and morphological filtering (based 

upon size and shape) are applied as described in chapter 4. 

5.2.2. Refinement of vertical change using removal masks 

To refine the initial change map and eliminate false alarms, three removal masks are introduced, 

followed by a morphological opening in order to detect building change alarms. Figure 34 

demonstrates two DSMs from left-to-right and right-to-left matching using GeoEye-1 stereo pairs. 

 

Figure 34- Matching-based DSM (left): left-to-right matching, (right): right-to-left matching, (down): 

showing buildings shapes for three different samples (shown by red, blue and green colors) overlaid 

on stereo pairs of GeoEye-1 and their associated DSMs 

Matching errors are detected based on the subtraction of two DSMs from left-to-right and right-to-left 

matching (see Figure 34). A visual inspection reveals that large buildings and also buildings with good 

contrast show the same footprints in both DSMs, while small buildings or those that have very poor 

contrast demonstrate a slight change in the disparity and subsequently in the associated DSM. This 

becomes clear when sample 2 of Figure 34 is compared against sample 1 or 3. Sample 1 of Figure 34 

also demonstrates the influence of trees that enlarge building sizes over the associated DSM. 
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Figure 35- Mismatch masks derived from the difference between the left-to-right and the right-to-left 

matching (A): from IKONOS stereo pair, (B) superimposed to one IKONOS image, (C): from 

GeoEye-1 stereo pair, (D) superimposed to one GeoEye-1 image 

Figure 35 shows the mismatch masks (difference of left-to-right and right-to-left) for GeoEye-1 and 

IKONOS. Only those pixels with an absolute value greater than 1.5 meters are assumed as 

mismatched pixels. Those pixels with a minus value are shown by blue and those with a plus value by 

the red color. As expected, analysis of the mismatch masks of IKONOS and GeoEye-1 reveals that the 

major matching errors are located on asphalt roads (particularly in the IKONOS mask) while trees and 

occluded areas around building outlines also cause problems. Hence, by discarding errors stemming 

from asphalt roads (road mask) and vegetation, the mismatch masks for IKONOS and GeoEye-1 are 

almost the same, containing only elongated errors around buildings caused by occlusion. It is probably 

because of the similar image acquisition conditions for both IKONOS and GeoEye-1.  

Figure 36 compares the amount of mismatched pixels for both the left-to-right and right-to-left 

matching of GeoEye-1 stereo pairs. The mismatched pixels are classified into three classes according 

to the standard deviation of each pixel within a 1×1 meter grid. In order to subtract the left-to-right 
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DSM against the right-to-left one, all matched pixels (with the ground sampling of 0.5 meters) are 

intersected with an empty 1×1 meter grid. Therefore, each cell contains approximately four pixels. The 

standard deviation of these pixels within each cell demonstrates the consistency of matched pixels 

within a cell for left-to-right and right-to-left matching. As shown, the amount of mismatched pixels in 

the DSM derived from the right-to-left matching is considerably more than the left-to-right one. It 

indicates that for the generation of D-DSMs, the DSM from left-to-right matching delivers a better 

result. It shows that matching is not a symmetric process when searching for conjugate pairs, as only 

the visible pixels in one image are matched. If the role of left and right images is reversed, new 

conjugate pairs are found (Fusiello, et al., 1997). 

 

Figure 36- Standard deviation of matched points for the GeoEye-1 stereo pair within a 1×1 meter grid 

(left): on left-to-right image matching, (right): on right-to-left image matching 

Figure 36 reveals two points (i) the number of mismatched points with left-to-right consistency is 

considerably less than the right-to-left ones. That means it is better to use left-to-right image matching 

to generate DSM and subsequently D-DSMs (ii) the mismatched areas are usually around building 

outlines, however additional mismatches because of asphalt reflection and vegetation have to be dealt 

with. Mismatched areas are mainly caused by occlusion (often along buildings outlines) and 

homogenous areas. To eliminate matching errors from D-DSMs, un-matched areas are intersected with 

D-DSMs and then overlapped areas are removed from the potential building changes. 

In addition to the matching errors stemming from occlusion, un-textured regions (e.g. asphalt roads, 

bright roofs, etc.) also cause some problems. As stated in chapter 4, a buffer of 1 meter around road 

polygons in GIS results in a road mask which should be removed from D-DSMs. The road mask 

superimposed on one of the GeoEye-1 images is shown by Figure 37. 
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Figure 37- Road mask, superimposed to one GeoEye-1 image 

The third mask is a vegetation mask which is generated by supervised maximum likelihood 

classification (MLC) using pan-sharpened image and the nDSM as an additional channel. Two classes, 

namely vegetation and non-vegetation, are defined via carefully selected training sites (see Figure 38). 

After applying these three removal masks to the D-DSMs, the remaining blobs still contain salt-and-

pepper noises. In fact, there are a number of very small changes that cannot be considered candidates 

for building changes because of their shape (elongated) or size (small blob) which cause false alarms. 

 

Figure 38- Vegetation mask derived from MLC classification using (left) IKONOS image, (right) 

GeoEye-1 image 

These errors are the main drawbacks of background subtraction. Therefore, fundamentally a further 

refinement is required in order to eliminate these false alarms from new constructed buildings. These 
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blunders (small and elongated shape blobs on D-DSMs) are removed using a morphological opening 

filter as described in chapter 4.  

However, morphological filtering deforms the buildings shape somewhat with respect to the filter size 

but it also effectively eliminates some salt-and-pepper noise caused by limited ground sampling (at the 

first epoch) as well as the influence of moving objects (e.g. cars and trucks). In our dataset, the filter 

size is set to 4m. This value was determined empirically. Figure 39 shows the final building changes 

as red blobs. 

 

Figure 39- Final change map after refinement by morphologic opening (size and shape refinement) 

We have only two misdetections and one missed building out of 12 building changes. Note that box 

fitting or any other means used to consider the fact that buildings are usually rectangular have not yet 

been applied. This alarm system is used to detect building change in the region of interest, then in the 

next sections 3D line matching and 3D segmentation are employed to delineate building outlines. 

5.2.3. Verification of existing buildings on GIS database 

As shown in the previous section, image-to-image comparison (IKONOS DSM vs. GeoEye-1 DSM) 

followed by removal masks demonstrated building changes, however, two false alarms and one 

misdetection were also observed. In addition to image-to-image comparison as explained in the 

previous section, this section describes the experimental results of the verification of GIS polygons 

using building blobs in the GeoEye-1 nDSM. 

To perform image-to-map comparison, first the existing GIS polygons are compared against the 

GeoEye-1 nDSM. If a polygon is verified, the verified building polygons show the outlines for the 

associated building blobs in the nDSM. For image-to-map comparison, at first pixels with an absolute 

height greater than 2.5m on the GeoEye-1 nDSM generate the initial building blobs and then removal 

masks are applied to eliminate false alarms. After applying the three removal masks to the blobs, the 
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remaining blobs are refined using morphological filtering then they are compared against the GIS 

building polygons. Polygons which are covered at least 75% by of one or more blobs are considered as 

verified polygons and so are classified as existing buildings. The remaining blobs represent candidates 

for new buildings. In Figure 40, the yellow polygons represent building outlines of the GIS database, 

the superimposed green areas show accepted buildings and blobs shown by the red color are classified 

as new buildings.  

 

Figure 40- GIS polygons (yellow), verified buildings (green), blobs representing new building (red), 

superimposed to one GeoEye-1 image 

After the identification of existing buildings, GIS polygons are assumed as the footprints for the 

existing buildings. Thus the verified polygons on GIS are used to be replaced instead of the 2D 

outlines of building blobs in the nDSM because as shown by Figure 41, in the matching-based DSM 

the buildings shape are deformed. 

 

Figure 41- Buildings 3D visualization based on the DSM derived from SGM 
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Figure 42- (left): Difference of building height between GIS database and DSM extracted from SGM, 

(right): enhancement of DSM derived from SGM using buildings polygons of GIS database 

In addition to the building footprints, the height value of the GeoEye-1 nDSM is compared against 

associated attributes of the GIS database. Unfortunately, the height value for a number of buildings in 

the GIS database is null and while the other buildings show the height value as somewhat similar to 

the GeoEye-1 nDSM. Hence, the derived height value from SGM is more updated than the GIS 

database. For the updating of height attributes in the GIS polygons, the mean of height value from 

nDSM is assigned into the GIS polygons as the updated building height (see Figure 42, left). However, 

this approach smoothens the height value for different parts of rooftops (e.g. small lofts) representing 

flat rooftops. 

  

Figure 43- Final change map (comparison of GIS polygons against GeoEye-1 nDSM); areas of 

change potentially containing new buildings (red), superimposed to one GeoEye-1 image 
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Figure 43 demonstrates the final building changes that are obtained by comparison of the GeoEye-1 

nDSM against GIS polygons. The yellow polygons are fitted as bounding boxes over building 

changes, being ROIs for building outline delineation. As shown here there is no false alarm. Similar to 

the IKONOS-GeoEye-1 comparison, there is only one false negative case which is a very small annex 

added to an existing building. 

 

Figure 44- Building 3D visualization based on the DSM enhanced with GIS polygons 

Figure 44 visualizes the study area using enhanced DSM three dimensionally (with buildings outlines 

from the GIS and height value from the nDSM). It obviously shows (also by Figure 43) that the 

enhanced building footprints have obtained very sharp outlines compared to the original DSM derived 

from SGM. Note that the new constructed buildings are not applied. 

5.3. Updating of buildings outlines 

Up to this stage, the region of building changes has been detected, as shown in Figure 43, and existing 

buildings are also updated (both 2D building footprints and height value). In order to delineate the 

outlines of new constructed buildings a buffer with a size of 0.5 meters is performed on the region of 

change. This buffer ensures that the boundary of new constructed building is within the given 

bounding box (see Figure 43). Sections 5.3.1 and 5.3.2 show several experimental results of 3D edge 

matching and 3D segmentation, respectively. 

5.3.1. Delineation of new buildings using edge-based approach 

In order to find corresponding matches within a pair-wise 3D line matching approach using various 

constraints, it is required to extract straight lines in both the epipolar images. First, using Canny 

operator, all the edges are detected on each epipolar image individually (Figure 45 left) then the edges 

with very small lengths are eliminated (less than 3 meters). Using a PCA-based method the straight 

parts of the remaining edges are extracted. Finally, as described in section 4, by applying the Douglas-

Peucker algorithm, a straight line is fitted to the associated edges (Figure 45 right).  
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Figure 45- Straight line detection: (left) edge detection using the Canny algorithm and then finding 

straight edges by a PCA-based method; (right) fitting a straight lines on edges based on the Douglas-

Peucker line simplification 

After the detection of straight lines in the epipolar images, the first epipolar constraint is applied in 

order to collect the initial correspondence. This constraint is used to reduce the search space with 

respect to the epipolar geometry and the associated height of a building causing a parallax. The yellow 

box in Figure 46 shows how the epipolar constraint constructs a parallelogram to reduce the search 

space. As shown, the straight line in the left image is simply deleted from the further matching 

process, because there is no corresponding line in the right image within the associated parallelogram. 

 

Figure 46- Matching of straight lines in epipolar images; the yellow parallelograms show how the 

epipolar constrain reduces search space; the black circles show ambiguous cases and how proximity 

constraint detects the corresponding edges (for further explanation see text) 

The orientation angle, line length and line mid-point are used to detect the best corresponding match 

resulting in initial corresponding matches (between the epipolar images). After applying epipolar and 

geometric constraints, if the matching could successfully establish a one-to-one relationship between 
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corresponding cases, the matching is finished for aforesaid corresponding cases therefore a further 

matching process is not required for these lines, otherwise there are ambiguity cases which require 

further constraints. 

To solve the ambiguity cases, the proximity constraint is applied to find the best corresponding case 

for a given ambiguous case. Figure 46 shows an ambiguous case. It clearly shows the mechanism of 

proximity constraint and how it finds real building outlines among numerous candidates (ambiguity 

cases) by choosing an edge with the shortest Euclidian distance to the centre of building. As shown, 

again most false matches are caused by occlusion or shadow.  

Figure 47 shows the final results of 3D edge matching. The green lines successfully found a proper 

match; whereas lines which could not be matched are shown by the red color. As shown, only building 

footprints in the first and second columns of Figure 47 are successfully extracted and the others are 

missed, because at least three sides of the building outlines are not found (a condition required for 

footprint extraction using 3D edge matching). The last row demonstrates the superimposement of 

matched and unmatched edges over the nDSM. It clearly shows that, due to the smoothing effect of 

matching-based DSM, the height information cannot provide further useful information as an 

additional constraint. 

Our results indicate that if buildings have more complex structures or there is not a good contrast 

between building rooftops and their backgrounds, no homologous lines can be found. However, for 

most buildings with simple structures and a good contrast, 3D edge matching is able to delineate 

building outlines. Additional checking of matched lines against DSM also confirmed this point (see 

Figure 47). Furthermore, the experimental results have demonstrated that in very complex building 

structures, only the proximity constraint is able to suppress the ambiguity cases effectively, as the 

other constraints (including height) are not effective here. 
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Figure 47- Samples from matched (green) and un-matched (red) straight lines. Only building 

footprints in the first and second columns could be reconstructed successfully 
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The 3D edge matching was successfully able to reconstruct building shapes using very high resolution 

aerial images (Baillard, et al., 1999). However, using our dataset it gained little success. This is 

probably due to the low ground sampling of our dataset which is comparatively less than that of very 

high resolution airborne imagery. Figure 47 shows the building outlines that are detected using 3D 

edge matching (red lines). If at least three sides of a rectangular building footprint are detected 

completely, the box fitting algorithm can simply reconstruct the associated rectangle. 

 

Figure 48- Outline delineation for new buildings based on 3D edge matching 

Among all new constructions, only four building footprints could be reconstructed based on 3D edge 

matching and the rest were missed. Also, one of them is also reconstructed using three sides, one of 

which is too short; therefore the final box is smaller than the real size of the building footprint. 

5.3.2. Delineation of new buildings using region-based approach 

This section demonstrates some experimental results of the 3D segmentation of building rooftops. As 

previously explained the height information is employed in order to locate building areas and to 

delimit segmentation into these ROIs (initialization). This strategy locates building areas so 

segmentation delivers a near to real building outline even after ten iterations (approximately over 70% 

overlap between evolving segments and the ground truth information – see Figure 25). It supports the 

segmentation procedure by conducting the segmentation into built-up areas and impedes the 

segmentation of non-building objects by taking into account building footprints.  

This innovative solution adopts the region-based segmentation for building footprint extraction 

according to (Chan, et al., 2001); hence we perform the initialization using height information 

(nDSM) so the segmentation is conducted into building footprints only. 
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Figure 49- Delineation of building footprints using 3D segmentation (left): segmentation of building 

rooftops, (centre): building outlines superimposed to original image, (right): building outlines 

superimposed to DSM derived from SGM 

The segmentation is carried out over epipolar images and if a given rooftop segment is observed 

within both epipolar images, it confirms the building footprint. However, if the final segment is chosen 

from the image with the smaller incidence angle (close to the nadir view - in our dataset it is the right 

image) then the derived building rooftops are regularized into rectangular building footprints. Figure 

49 shows rooftop segmentation over the GeoEye-1 image followed by the regularization of footprints 

into rectangular shapes.  
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Figure 50- 3D segmentation of building rooftops and regularization into rectangular shapes 

superimposed to one of epipolar images and associated DSM, respectively 

One of the main challenges for the delineation of building outlines using segmentation is the 

determination of a unique iteration number for the segmentation of all rooftops within a scene. With 

respect to the different structures of building rooftops as well as the level of building complexity, it is 
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relatively difficult to determine a unique iteration number (Khoshelham, et al., 2005). Overestimation 

and underestimation of iteration numbers cause over-segmentation and under-segmentation, 

respectively. Besides, as the main goal is to develop an automatic solution, determining the iteration 

number for each single building rooftop is not a suitable solution. Hence, as stated in chapter 4, the 

iteration number is computed for 11 sample rooftops with different shapes, sizes, and radiometric 

reflections as well as for different types of building. As estimated (also shown by Figure 25), the 254
th
 

iteration provides the best overlapping between rooftops segments and manually delineated building 

footprints. Figure 50 also demonstrates the efficiency of the chosen value.  

In the 3D segmentation of rooftops, the image information is used (instead of height information) to 

delineate building outlines. Thus, the delineation is not dealt with the smoothing effect as matching-

based DSM. It becomes clear when Figure 49 (middle) is compared with Figure 49 (right). As 

demonstrated, the enlargement of building footprints on the DSM is due to trees that are close to 

buildings (green arrows), and mismatched areas stemming from occlusion (yellow arrow) and shadow 

(black arrow). Figure 49 shows these influences superimposed on to the original image and the 

associated DSM, respectively. 

Figure 50 shows several samples of building footprint extraction based on 3D segmentation over the 

same area as the 3D edge matching shown by Figure 47. The 3D segmentation successfully delineated 

the building outlines for all samples except the last column of Figure 50 while the 3D edge matching 

failed to find corresponding edges and consequently could not deliver a promising result for the third, 

fourth and fifth columns of Figure 47. Nevertheless, similar to edge matching, the 3D segmentation 

also has not successfully delineated building outlines for the last column because it shows a very poor 

contrast against the background. The last row also demonstrates the building footprints superimposed 

on to the associated DSM. As shown, because of smoothing effects, the height constraints are not also 

able to suppress an unsuccessful result (as in the last column) to fit an appropriate rectangle. 

 

Figure 51- Outline delineation for new buildings using 3D segmentation 
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The next point is that 3D edge matching usually fits a smaller rectangle than the real size of a building, 

if one side of the building footprint is detected partially (shorter than its real size), but with the 3D 

segmentation of rooftops an extracted building footprint is somewhat bigger than the real size of a 

building, because if in case a building does not have a sharp contrast compared to its background (i.e. 

the building rooftop is not satisfyingly homogenous, e.g. the last sample in Figure 50), segmentation 

might continue into the background area. However, the building size cannot be bigger than the nDSM 

blobs derived from SGM as the segmentation is already restricted within change alarms (see Figure 

43& Figure 51). 

  

Figure 52- (left): Final building footprints (right): Final DSM which is enhanced using building 

polygons in the GIS and 3D segmentation of building rooftops 

Figure 52 shows the final up-dated building footprints and the associated DSM which is refined by 

GIS polygons and the 3D segementation of building rooftops over GeoEye-1 images. The 3D 

visualization of building footprints shown by Figure 53 also demonstrates that, compared to Figure 41, 

the building shapes are considerably regularized showing  clear building outlines. 

 

Figure 53- Buildings 3D visualization using final enhanced DSM 
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Furthermore, the mean the of height value from the nDSM is assigned to each polygon (either GIS 

polygons or new building footprints derived from 3D segmentation). Hence, not only building outlines 

in 2D space but also the height value of buildings are clear for each building footprint, representing a 

promising result for building updates in LoD 1. 

5.4. Quantitative evaluation of the results 

In order to evaluate the efficiency of our proposed approach independently at each stage, we captured 

the vegetation masks as well building changes for two scenarios (IKONOS vs. GeoEye-1 and GIS 

polygons vs. GeoEye-1) manually. The following parameters are used to compute quantitative 

evaluations of building change detection for two different scenarios (IKONOS vs. GeoEye-1 and GIS 

polygons vs. GeoEye-1). 

True Positive (TP): Both obtained and ground truth data demonstrate a building change. 

True Negative (TN): Both obtained and ground truth data demonstrate a non-building change. 

 False Positive (FP): Only the obtained method demonstrates a building change. 

False Negative (FN): Only ground truth data demonstrates a building change. 

IKONOS vs. GeoEye-1: In order to evaluate the role of removal masks for building change detection, 

these indices are calculated for two scenarios (i) without applying removal masks and (ii) with 

applying removal masks. Table 4 demonstrates the quantitative evaluation for the building change 

detection phase. As shown by applying these removal masks, the number of false alarms is decreased 

significantly. 

Parameter TP FP FN Sum 

Building Change Detection 

without Removal Masks 
11 5 1 17 

Building Change Detection 

with Removal Masks 
11 2 1 14 

Table 4- Quantitative evaluation of building change detection (IKONOS vs. GeoEye-1)  

The ground truth contains 12 newly constructed buildings but without any demolition. As 

demonstrated, we could automatically detect 11 out of the 12 new constructions. Note that there is 

only one FN (missed change) in our results which is a small annex added to an existing building. 

Because of its very small size, this annex is absorbed into the background pixels. Importantly, 

applying removal masks could successfully decrease the number of false detections (FP). Therefore, 

comparison of (i) and (ii) confirms that applying these masks increases the efficiency of the proposed 

approach for it to be a promising alarm system for building changes. 

GeoEye-1 vs. GIS Polygons: In the second scenario building blobs derived from the GeoEye-1 nDSM 

are refined using removal masks and subsequently morphological filtering. The obtained blobs are 

then compared against building polygons in the GIS database. A TP was declared if 75% of the area of 
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the new building was covered by pixels indicating change. The small annex which is added to an 

existing building is here missed (FN) but the most important point is that there is no false detection 

(FP) as observed in the first scenario while there are no false alarms for the second scenario. 

Parameter TP TN FP FN Sum 

GeoEye-1 DSM vs. Building 

Polygons in GIS 
14 56 0 1 71 

Table 5- Quantitative evaluation of building change detection (GIS Polygons vs. GeoEye-1) 

14 building changes are detected correctly (TP). 56 building polygons in the GIS database are verified 

using the GeoEye-1 DSM (i.e. they did not change and are called “True Negative” according to the 

introduced terminology). As shown by Table 5, there is no false change detection. This was the main 

difference between the first and second scenarios. 

In terms of the evaluation of 3D line matching and 3D segmentation, as shown in previous stages, 3D 

segmentation can successfully deliver promising results for 13 out of 17 building footprints except for 

4 buildings which have very poor contrast. Because of the very poor contrast, segmentation is not 

terminated at the rooftop outlines, hence the building footprints are enlarged for these buildings (as 

well as SGM), while 3D edge matching was only able to delineate buildings outlines for 4 buildings. 

This is mainly because of the limited ground resolution which is not sufficient to detect building edges 

therefore building edges are not detected in both epipolar images, whereas 3D segmentation does not 

have such a dependency. 

5.5. Summary 

The results of 3D building change detection (as an alarm system) as well as for building footprint 

extraction for new buildings are presented. As the study area is a suburb of a developing city, there 

were no demolition cases and all the building changes indicate new constructions. The experimental 

results demonstrated that the subtraction of matching-based DSMs acts fruitfully as a reliable alarm 

system to detect building changes providing that the removal masks eliminate the associated matching 

errors.  

For the delineation of building footprints using space-born stereo images, 3D edge matching has been 

shown to have a fundamental difficulty with the extraction of building outlines. It is mainly due to the 

very limited ground resolution of satellite images which is not sufficient for building extraction. 

However, in a previous study (Baillard, et al., 1999), 3D edge matching successfully reconstructed 

building footprints using very high resolution aerial images (e.g. using polyhedral models). As shown 

in our tests, compared to the 3D edge matching, the 3D segmentation delivers comparatively a good 

result for building footprints extraction. 

Furthermore, as our results have shown that robust geometric criteria such as elevation have priority to 

the radiometric information in the detection phase, because change detection based on image 

information is considerably dependent upon illumination conditions (Champion, 2007). On the other 

hand, for building footprints extraction image information is relatively more useful than matching-
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based DSM. Table 6 compares the pros and cons of each approach for building change detection as 

well as for building footprints extraction using high resolution spaceborne images. 

Subject Pixel-Based Edge-Based Region-Based 

Methodology 

DSM generation using 

SGM 

DSMs subtraction refined 

with noise removal filters 

Thresholding on nDSM  

3D edge matching of 

epipolar images to extract  

building outlines 

Box fitting 

Locating buildings ROIs from 

nDSM 

 

 Roof segmentation to 

delineate building outlines  

 

Regularization of obtained 

segments into rectangular 

shapes 

Advantage 

Reliable method compared 

with building detection 

using image information 

 

Useful as an alarm system 

for building changes 

Building outlines are clear 

 

Delineate building outlines 

precisely 

Building outlines are clear 

 

Delineate building outlines 

precisely 

 

Its efficiency is independent 

from buildings size and shape 

Disadvantage 

Needs a fine GSD 

 

Building outlines are 

jagged 

 

Building footprints are 

enlarged  

 

Needs removal masks to 

deliver promising results 

Needs a fine GSD 

 

Miss small buildings those 

have poor radiometric 

contrast compared to 

surrounding objects 

(background) 

 

Inapplicable for complex 

structures with few straight 

outlines  

Inapplicable for buildings 

those have poor radiometric 

contrast compared to 

background 

 

In fitting box over 

segmentation, the main 

direction of building may 

deviate slightly 

Table 6- A synopsis comparison of proposed approaches to update building databases using 

high resolution stereo images
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CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

6.1. Conclusion 

In this thesis, we have described approaches for the automatic updating of building databases from 

stereo high resolution satellite images. The updating of building databases is divided into two main 

stages; building change detection and delineation of building outlines. Our experimental results have 

shown that the proposed method can be used as an alarm system for updating building geospatial 

databases. Comparison of GIS building polygons against building blobs derived from nDSM can 

efficiently establish a system to verify building changes. Meanwhile, 3D line matching and 3D 

segmentation are investigated to delineate the outlines of new constructed buildings in order to 

fulfil the second stage of updating procedure. 

For the first stage, our approach is based upon background subtraction and foreground validation in 

order to detect building changes; however, we have also utilized a priori information derived from an 

existing building topographic database as well as building size, height, and shape information to refine 

building changes by discarding false alarms. As experimental results have shown, while direct 

background subtraction in height domain delivers a large number of false alarms, the removal masks 

could effectively eliminate most of these blunders and improve the quality of building change 

detection considerably. The previous work (Dini, et al., 2012) with the same study area has shown five 

false alarms. However, after applying removal filters, the number of false detections is reduced to two 

cases only. Auxiliary information (e.g. GIS polygons) is utilized to refine building footprints in the 

DSM. In addition, if absolute orientation is not carried out using ground control points (GCPs), it is 

recommended to co-register DSMs against each other before background subtraction in height 

domain, otherwise the number of false alarms is increased considerably. 

The results have demonstrated that the height information detects building changes with a better 

correctness where the radiometric image information is suitable to delineate building outlines. This 

was the main reason that in the proposed flowchart, the height information is used for change 

detection phase and image-based approach is applied for building footprints extraction. It is shown 

that although the matching-based DSMs contain more noise when compared with the DSM derived 

from laser scanning DSM, although by employing removal masks, it is capable of establishing a 
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promising alarm system locating building changes. That means image radiometric information along 

with the height information derived from image matching provides an updating system for building 

databases. Nevertheless each source alone -image or height information- has some difficulties to 

provide a high quality result. 

On the one hand, in a noise-affected DSM derived from image matching, there is a considerable 

amount of height fluctuation even at flat surfaces or textureless areas such as asphalt roads (see Figure 

41). Due to these artefacts stemming from image matching, the matching-based DSMs are not ideal 

for automatic extraction of building models if the level of detail is beyond LoD1 (Macay Moreira, et 

al., 2013) as the building outlines within such DSMs are usually curved instead of straight outlines. 

On the other hand, using radiometric image information, it is possible to detect building footprints in 

complex urban areas as far as image information is not influenced by smoothing effects such as DSM. 

In contrast, it is not an easy task to locate building rooftops using image information alone because 

buildings have a wide range of reflectance so it is rather difficult to separate building class from non-

building objects using image information only. 

The assessment of our experiments shows a significant influence of trees in the building change 

detection. The same problem is also reported by (Rutzinger, et al., 2010) when most misclassifications 

are observed around buildings that are adjacent to the vegetation. Parked cars or trucks pose fewer 

problems as they are relatively small and are not as high as trees. Moreover, if trucks are not close to 

the buildings, in the DSM, they are usually not mixed with building footprints. 

Two scenarios (IKONOS DSM vs. GeoEye-1 DSM and GIS polygons vs. GeoEye-1 DSM) are tested 

to investigate the influence of image ground resolution in the building change detection. The results 

show that even using removal filtering there are still two false alarms for the first scenario while the 

second scenario demonstrated no false alarms. 

The misdetection and false alarms in the tests are mainly buildings with very poor radiometric or 

contextual information as well as small buildings or building annexes. The matching-based DSM 

alone is not capable of delineating building outlines, particularly in the half-occluded areas around 

building outlines. In addition to the quantitative assessment, a visual inspection of building changes 

reveals that a wide range of noise removal filters are applied to refine the result of background 

subtraction but building outlines are not still robust to the occlusion. It is mainly because of several 

reasons: high level of noise within matching-based DSM, low radiometric image quality (pan-

sharpened image) as well as low spatial resolution, particularly IKONOS images with 1 meter ground 

resolutions as reported by (Rottensteiner, 2008) and (Champion, et al., 2010). 

In image matching, the object boundaries and particularly building outlines are deformed (especially 

in IKONOS DSM). This problem is accumulated by background subtraction causing more 

deformation in the building shapes. This effect appears frequently in the building outlines and reduces 

the correct detection of building change. Consequently, the overall shape of buildings is further 

deformed in direct subtraction of DSMs (see Figure 32). It indicates that it is necessary to delineate the 

building outlines using approaches that are based on image information because they are not 

influenced by smoothing effects of matching-based DSM. It can be concluded that in building change 
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detection, the height information provides more stable signals if there has been a vertical change in the 

built-up areas, while the radiometric image information and GIS polygons provide more accurate 

information in relation with building outlines. 

For the second stage, 3D edge matching and 3D segmentation of building rooftops are employed in 

order to delineate outlines for building changes. For delineation of building outlines using 3D edge 

matching, the hypotheses are generated using several epipolar, geometric and topologic criteria. Using 

3D edge matching, our experiments deliver promising results if buildings are large enough, have a 

simple rectangular shape, and a good radiometric contrast compared to surrounding objects. On the 

other hand, for complex buildings, our approach has more problems, particularly when building 

outlines cannot be clearly detected in both epipolar images.  

Compared to investigations using very high resolution aerial images (Baillard, et al., 1999), satellite 

images have more problems with extracting building outlines based on 3D edge matching. For 

instance, the main problem in 3D edge matching using GeoEye-1 stereo images is missing a large 

number of edges due to the low ground sampling, low image quality as well as the misdetection of 

some building edges because of different view direction or illumination. Therefore if a given edge is 

not detected in one of the epipolar images (or even if it is detected partially), it is impossible to find a 

corresponding line in the next image (refer to the ambiguity case). Such a problem arises in very dense 

built-up areas where buildings are very small with respect to the ground resolution or have very poor 

contrast compared to the background. As stated, different viewing or illumination angles probably 

cause the same problem. 

Most of these problems are not highlighted in the 3D segmentation of building rooftops because 

delineation of small buildings is independent from fitting a straight line. This means in 3D edge 

matching many building outlines are partially or completely missed but in 3D segmentation of 

building rooftops, building footprints are detected nevertheless if it contains straight or a jagged 

outlines. Our tests also show that for the detection of complex structured building footprints using 3D 

edge matching, a better ground resolution is required while 3D segmentation is a relatively more 

flexible approach which is applicable to a wide range of high resolution sensors. 

In can be concluded that while in our previous investigation (Dini, et al., 2012) the subtraction of two 

DSMs derived from SGM can be used as an alarm system for building change detection, it is not an 

efficient tool for the delineation of building outlines. In contrast, line matching and particularly 3D 

segmentation can delineate building outlines provided that they have a good radiometric contrast with 

an acceptable size and shape. In this case 3D segmentation delivers better results with a higher rate of 

detection. On the contrary, 3D edge matching using high resolution satellite images is not an effective 

solution if buildings have poor contrast or complex structures containing curved outlines. 

6.2. Future works 

According to the obtained results which were summarized in the previous section, the following 

directions are proposed as a development of this research in future. Although a more refined building 

extraction approach will improve the results to some degree, as a first priority a finer ground sampling 
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distance than 0.5m is required so as to obtain better results. Hence, the first point is to test the 

proposed algorithm over finer datasets (such as images with higher ground resolution and quality). 

Such a test checks the influence of image resolution in the quality of acquired results (either for 

building change detection or building footprints extraction) particularly using 3D line matching which 

has shown poor results using GeoEye-1 stereo pair. 

Furthermore, with such a dataset we would be able to handle complex building footprints and changes 

of building parts (e. g. new annexes of an existing building). In addition to the spatial (ground 

resolution) and radiometric (image quality), a better spectral resolution is required to provide a 

possibility for the generation of vegetation mask using infrared channels. As mentioned before, our 

dataset does not only contain the infrared channel but it is also a false color composite of pan-

sharpening so it does not represent the true reflectance of objects as an RGB channel. This may cause 

a problem for classification in order to distinguish between vegetation and other objects like shadow 

or asphalt. Therefore, it is also required to increase the accuracy of vegetation mask by using an 

infrared channel. 

Another direction for future work is the application of a sophisticated classification method (e.g. 

conditional random field) to generate vegetation mask. It probably detects vegetation mask better as it 

works based on a stochastic framework which places emphasis on the texture and spatial context. 

Hence, such a classification method can detect vegetation particularly; where trees partially cover 

building rooftops and also it considers the neighbouring information in the classification process.  

The next point is the improvement of the accuracy of image orientation. Accurate georeferencing of 

DSMs at different epochs using ground control points (biased corrected RPC) is another issue while a 

more detailed comparison of extracted blobs and the building ground plan is another separate topic of 

investigation. It is also recommended to test the efficiency of proposed algorithms using tri-

stereoscopic satellite data such as Pleiades images providing observations at three viewing angles 

(backward, nadir, forward). Of course, a DSM generated from tri-stereoscopic images can partially 

compensate the occlusion effects and delivers a DSM with finer level of detail (building blobs), 

providing that it has the same ground sampling as GeoEye-1 or a better one. 

Furthermore, we also consider the possibility of optimising the segmentation procedure by adding 

further terms, mainly by introducing more shape information into the existing method. This could 

improve the quality of 3D segmentation of building rooftops, in particular those with poor contrast. 

Moreover, detection of pairs of parallel lines in 3D line matching probably supports the extraction of 

rectangular building footprints. 
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Appendix A: Technical Characteristics of IKONOS-2 and GeoEye-1-1 

                                      

    

Performance Parameter IKONOS-2 GeoEye-1–1 

Orbital Information 

Altitude 681 km 681 km 

Inclination 98.1° / sun sync 98.1° / sun sync 

Orbit Duration 98 minutes 98 minutes 

Equatorial Crossing Time 10:30 am 10:30 am 

Revisit at best NIIRS 3 days 3 days 

Off Nadir (Terrestrial) Imaging 60 degrees 60 degrees 

Image Quality 

Spatial Resolution 
Pan = 0.82 m @ nadir 

MSI = 3.2 m @ nadir 

Pan = 0.41 m @ nadir 

MSI = 1.65 m @ nadir 

Imaging Bands 1 Pan / 4 MSI 1 Pan / 4 MSI 

Spectral Range 

Pan = 526–929 nm 

MSI 1 (B) = 445–516nm 

MSI 2 (G) = 506–595 nm 

MSI 3 (R) = 632–698 nm 

MSI 4 (NIR) = 757–853 nm 

Pan = 450–800 nm 

MSI 1 (B) = 450–510 nm 

MSI 2 (G) = 510–580 nm 

MSI 3 (R) = 655–690 nm 

MSI 4 (NIR) = 780–920 nm 

Bits/Pixel 11-bits/pixel 11-bits/pixel 

Minimum Image Size 121 sq.km 231 sq.km 

Time Delay Integration 32 stages (selectable) 64 stages (selectable) 

Best GSD @ nadir 0.82 meters 0.41 meters 

NIIRS 4.5 5.5 

Collection Capacity 

Daily Pan Area 300,000 sq.km 700,000 sq.km 

Daily MSI Area 300,000 sq.km 350,000 sq.km 

Swath Width @ nadir 11.3 km 15.2 km 

On-Board HSSU Capacity (store & 

dump) 
80-gigabits 1-terabit 

Geolocation 

Mono: CE90 w/out external GCPs <15 meters <5 meters 

Stereo: CE90 / LE90 w/out external 

GCPs 
10 meters / 10 meters 4 meters / 6 meters 

Duration 

Design Life 5 years 7 years 

Expected In-service Life 10 years 10 years 

 
    reference: http://www.GeoEye-1.com 

http://www.geoeye.com/
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