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Abstract

High-harmonic spectroscopy has become an important tool to investigate

ultrafast electron dynamics in atoms and molecules. The method relies on

measuring the harmonic spectrum emitted by atoms or molecules interacting

with an intense laser field. In this dissertation, we investigate theoretically the

electronic dynamics probed by high-harmonic spectroscopy. We simulate the

dynamics by numerical solution of the time-dependent Schrödinger equation

and analyze the results with the help of simplified models.

First we investigate the electron dynamics in laser-induced tunneling in

atoms. The ionization time of the electron, i.e. the time when an electron

exits the tunneling barrier, can be determined by two-color high-harmonic

spectroscopy: we apply a weak second-harmonic field, orthogonally polarized

to the fundamental laser field, to manipulate the electron trajectory in two

dimensions, which leads to the generation of orthogonally polarized odd and

even harmonics. The variations of harmonic intensity and amplitude ratio

of neighboring even and odd harmonics as a function of the two-color delay

are used to retrieve both the ionization and return time for each harmonic

order. The analysis is based on two-dimensional electron trajectories evolving

in complex time.

Next we study the correlated electron dynamics in field-induced one-electron

ionization. As an example with two electrons, we consider an H2 molecule with

fixed-stretched internuclear distance, such that the electronic rearrangement

dynamics occurs on the sub-laser-cycle time scale and influences the harmonic

spectrum. We demonstrate that strong-field ionization in combination with

electron correlation can localize bound electron wave packets in molecules,

which results in extrema in the harmonic spectrum. Based on the shape of

the remaining bound electron wave packet, we present a recollision model that

can reproduce the harmonic spectrum well.

Finally, we study the autoionization dynamics of Fano resonances. We

consider the photoelectron spectrum of a one-dimensional helium atom, since

it is the simplest system that exhibits autoionization, due to its metastable

doubly excited electronic states. A single attosecond pulse (as available from

high-harmonic generation) creates an autoionizing wavepacket, and a time-

delayed infrared laser pulse probes the dynamics. We find that the Fano line

profile is strongly modified by the laser field. The oscillation of the quasi-

bound wavepacket leaves a signature on the electron spectrum. Also, the

spectrum exhibits a fringe pattern that can be explained as a consequence of

the autoionizing decay being truncated by the laser field.

Keywords: high-order harmonic generation; Fano resonance; tunnel ionization



Zusammenfassung

Spektroskopie mit hohen Harmonischen hat sich zu einem bedeutsamen
Mittel zur Untersuchung der ultraschnellen Elektrondynamik in Atomen und
Molekülen entwickelt. Die Methode beruht auf der Messung des harmonischen
Spektrums, welches von Atomen oder Molekülen emittiert wird, die mit einem
starken Laserfeld wechselwirken. In dieser Dissertation untersuchen wir durch
theoretische Berechnungen die Dynamik von Elektronen, welche mittels Spek-
troskopie der hohen Harmonischen gemessen werden. Dazu simulieren wir die
Dynamik durch numerische Lösung der zeitabhängigen Schrödingergleichung
und analysieren die Ergebnisse mit Hilfe von vereinfachten Modellen.

Zuerst untersuchen wir die Elektronbewegung bei laserinduziertem Tunneln
in Atomen. Die Ionisationszeit des Elektrons, d.h. die Zeit, bei der das Elek-
tron die Tunnelbarriere verlässt, kann durch eine Zwei-Farben-Spektroskopie
der hohen Harmonischen bestimmt werden: Wir legen zusätzlich die zweite
Harmonische als schwaches Feld an und polarisieren sie senkrecht zur Fun-
damentalen, um die Elektronbahn in zwei Dimensionen zu kontrollieren. Dies
führt zur Erzeugung von zueinander senkrecht polarisierten geraden und unge-
raden Harmonischen. Die Variationen in der Intensität sowie im Verhältnis der
Amplituden von benachbarten geraden und ungeraden Harmonischen als Funk-
tion des Delays zwischen den beiden Farben werden benutzt, um Ionisations-
und Rekombinationszeit für jede Harmonische zu bestimmen. Die Analyse ba-
siert auf zweidimensionalen Elektronenbahnen in komplexer Zeit.

Als nächstes wird die korrelierte Elektrondynamik in feldinduzierter Ein-
Elektron-Ionisation behandelt. Als ein Beispiel mit zwei Elektronen betrachten
wir ein H2-Molekül mit fixiertem, vergrößertem Kernabstand. Seine elektroni-
sche Umordnungsdynamik tritt auf einer Zeitskala unterhalb eines Laserzyklus
auf und beeinflusst das harmonische Spektrum. Wir zeigen, dass Starkfeldioni-
sation in Kombination mit elektronischer Korrelation zu lokalisierten, gebunde-
nen Elektronenwellenpaketen in Molekülen führen kann, was zu Extremwerten
im harmonischen Spektrum führt. Ausgehend von der Form des verbliebenen
gebundenen Elektronenwellenpakets demonstrieren wir ein Rekollisionsmodell,
welches das harmonische Spektrum gut reproduziert.

Zuletzt untersuchen wir die Autoionisationsdynamiken von Fano-Resonan-
zen. Wir betrachten das Photoelektronenspektrum eines eindimensionalen He-
liumatoms, welches mit seinen metastabilen, doppelt angeregten elektronischen
Zuständen das einfachste System mit Autoionisation ist. Ein einzelner Attose-
kundenpuls (wie aus hohen Harmonischen generierbar) erzeugt ein autoionisie-
rendes Wellenpaket, dessen Dynamik mit einem zeitverzögerten infraroten La-
serpuls abgefragt wird. Unsere Rechnungen zeigen, dass das Fano-Linienprofil
stark durch das Laserfeld modifiziert wird. Die Oszillation des quasi-gebunden
Wellenpakets hinterlässt eine Signatur im Elektronspektrum. Zudem weist das
Spektrum ein Interferenzmuster auf, das als eine Konsequenz aus dem Abbruch
des Autoionisationszerfalls durch das Laserfeld erklärt werden kann.

Keywords: hohen Harmonischen generierbar; Fano-Resonanzen; Tunneln
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Chapter 1

Introduction

In this thesis, we investigate the electronic dynamics of atoms and molecules

under the influence of strong laser fields. The invention of the laser in the

1960s has opened the door to new fascinating areas of light-matter interac-

tions. Enormous efforts in laser development have been made in the past sev-

eral decades. Until the end of the 20th century, the Titanium:Sapphire laser

reached sub-10 fs pulses with peak intensities on the order of 1013 ∼1016W/cm2

[1]. This is usually referred to as the strong-field regime. Nowadays ultrahigh

laser pulses with peak intensity higher than 1020W/cm2 are achievable in lab-

oratory. In this case relativistic effects need to be taken into consideration [2].

Here we will restrict our discussion to the nonrelativistic case. In the strong-

field regime, the electric field strength of the laser pulse is comparable with

the Coulomb forces between the nuclei and the bound electrons, leading to

field ionization. Once an electron is removed from an atom or a molecule, it is

pulled far away under the acceleration by the driving laser field. At this stage,

the electron feels mainly the force of the laser field, and it moves approximately

as a free particle in an oscillationg field [3]. It can revisit the parent ion within

one or few cycles after ionization.

In the recollision process, the electron can be scattered elastically or inelas-

tically from the parent ion, or it recombines to the initial state by single-photon

emission. Elastic scattering provides electrons with large amounts of energy

through further acceleration by the field after recollision. An image of the

structure of the parent ion can be imprinted onto the scattered electron mo-

mentum distribution [4–8]. Inelastic scattering leads to further ionization or

excitation of the parent ion, and is the essential mechanism of non-sequential

double ionization of atoms and molecules [9–14]. High-energy photons emitted

through recombination of the returning electrons with the parent ion form a

spectrum consisting of pronounced peaks at integer multiples of the driven

laser frequency. This process is known as high-order harmonic generation

1



2 Introduction

(HHG) [15–17]. It involves the conversion of multiple laser photons into one

high-energy photon, and has become the most convenient method to produce

coherent X-rays and attosecond (1 as = 10 −18s) pulses.

1.1 High-order harmonic generation

High-order harmonic generation was first observed experimentally in Saclay

by Ferray et al [15] and Chicago by McPherson et al [16] in 1987. Surprisingly

the observed harmonic spectrum exhibited a long plateau with constant har-

monic intensities and a rapid decay beyond the cutoff. The existence of the

plateau cannot be explained with lowest-order perturbation theory. An empir-

ical law based on numerical simulation was proposed shortly after by Krause,

Schafer and Kulander [17], according to which the position of the cutoff of the

emitted spectrum is determined by the relation Ω = 3Up + Ip, where Ip is the

ionization potential and the ponderomotive potential Up is the cycle-averaged

kinetic energy of an electron oscillating in the laser field without drift motion.

Later, Corkum [3] explored the physical mechanism underlying the generation

of high-order harmonics, named as the classical three-step model. In the clas-

sical three-step model, the HHG process is described as a sequence of three

separate steps occurring within one optical period. First, an electron tunnels

through the potential barrier formed by the atomic potential and the laser field

with zero initial velocity. Then the electron is accelerated as a free classical

particle in the oscillating field and may be driven back to the parent ion as

the electric field reverses its sign. Finally, the electron recombines to the ini-

tial state with emission of a high-energy photon. In this model, the quantum

processes of ionization and recombination are assumed to be instantaneous

events relying on the quasistatic picture of laser-matter interactions, i.e. the

driving laser pulse varies slowly compared to the motion of bound electrons.

This classical picture of high-harmonic generation succeeds in explaining the

cutoff energy as the maximum kinetic energy of the recolliding electron plus

the binding energy.

Through the acceleration by the laser field with near-infrared (NIR) wave-

length, the kinetic energy Ek of the recolliding electron may reach up to sev-

eral hundreds of eV or more. The corresponding wavelengths of the electron

λe = 2π~/
√
2mEk is in the range of a few Ångströms or even sub-Ångström,

which is comparable to the size of atoms or small molecules. Therefore, the

harmonic spectrum carries information on the atomic structure with Ångström

spatial resolution. As a result of recombination, the kinetic energy of the rec-
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olliding electron and the binding energy are converted to the energy of emit-

ted photons, resulting in the harmonic spectrum covering the spectral range

from extreme ultraviolet (XUV, 10-120 eV) to soft x-ray (120-1200 eV). The

three-step process occurs on a sub-optical cycle timescale: for the commonly

used Ti:Sapphire laser with a wavelength of 800 nm, the optical cycle is about

2.67 fs, while the total duration of the electron excursion is about 1 fs. In the

three-step model, electrons with different kinetic energies recombine at differ-

ent times. This phenomenon is known as the attochirp. It indicates that the

HHG process allows for sub-femtosecond temporally resolved imaging of elec-

tron dynamics in atoms and molecules. As a consequence, the HHG process

serves as a new imaging technique, referred to as high-harmonic spectrosopy

(Section 1.2), combining of sub-Ångström spatial and sub-femtosecond tem-

poral resolution. High-harmonic spectrosopy has become an important tool

to investigate the electronic and geometric structure of atoms or molecules

[18–27] and ultrafast dynamics [28–31].

Since harmonic generation is triggered by a laser pulse, the generated field

inherits coherent properties from the laser pulse. Thus, it provides an effective

way for the generation of coherent XUV or soft x-ray pulses with attosecond

duration, and opens up new avenues for time-domain studies of electron dy-

namics in atoms and molecules on the natural time scale of bound electrons

(Section 1.3).

1.2 High-harmonic spectroscopy

During the 1990s, experiments on the interaction of strong laser fields with

atoms were motivated by the possibility of using HHG as a source of coher-

ent XUV radiation. It was found that the conversion efficiency from atoms is

higher than that from molecules with a similar ionization potential [32, 33].

With the progress of the experimental techniques, molecular alignment became

possible in free space using ultrashort laser pulses, and HHG from molecules

attracted much more attention. The dependence of the HHG signal on molec-

ular alignment with respect to the driving laser polarization was first observed

in adiabatically aligned N2 and CS2 [34]. The generated harmonic intensity

was significantly enhanced by the alignment. The idea of using HHG to inves-

tigate molecular structure was triggered by a series of theoretical simulations

on alignment dependence of HHG signals from the simple two-center molecule

H+
2 [18–20, 35, 36]. These simulations suggested that interference of harmon-

ics emitted from the two centers is imprinted on the harmonic spectra as a
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function of the alignment angle between the moleuclar axis and the driving

laser polarization. Destructive interference leads to structural minima in the

harmonic spectra, from which one can read information about the internuclear

separation.

The existence of the intensity minima in HHG spectra was observed exper-

imentally using aligned CO2 molecules [22, 23]. However, it was found that

the minimum position depends on the laser intensity, which cannot be simply

explained as the destructive quantum interference in the recombination step.

Later experimental and theoretical work suggested that the involvement of

lower-lying molecular orbitals, i.e. multichannel HHG [26, 30], is responsible

for the intensity dependence of the minimum position. This is possible for

molecules, since electronic energy levels in molecules are only a few eV apart.

It is unlike atoms with tens of eV separation. Thus in molecules, ionization

from several close-lying orbitals can result in competing pathways. The au-

thors of [37, 38] claim that macroscopic propagation plays an important role

in the variation of HHG minima, even when harmonics are contributed from

multiple molecular orbitals. Smirnova et al [30] interpreted the intensity de-

pendence as a consequence of multichannel interference and the hole dynamics.

Tunneling from a lower-lying orbital creates the molecular ion in an excited

electronic state and the coherent superposition of electronic states results in

bound electron wave-packet dynamics during the second step of HHG. Simi-

larly, with nitrogen molecules, the initial shape and location of the hole left

by strong-field ionization was imaged [39]. Since HHG with multiple channels

must connect the same initial to the same final state of the molecule, it records

the information about multielectron dynamics and the rearrangement of elec-

trons upon tunneling ionization. Therefore high-harmonic spectroscopy is also

capable of resolving correlated electron dynamics with attosecond temporal

resolution [39–44].

Another interesting application of high-harmonic spectroscopy is the pos-

sibility to spatially image the shape of the orbital from which the electron was

released. For this purpose, the molecule is aligned at different angles to the

direction of the recolliding electron determined by the laser polarization axis.

Molecular orbitals of N2 were reconstructed by means of a tomographic anal-

ysis of the harmonic spectral intensity measured at different molecular align-

ment angles [21]. In that work, both harmonic phase and polarization were

assumed to be known. Tomographic imaging of molecular orbitals using HHG

has met a lot of interest since its first demonstration. The harmonic phase is

an important factor for recovering the molecular orbitals in the tomographic
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reconstruction procedure, and can be measured using the ‘reconstruction of

attosecond beating by interference of two-photon transition’ (RABITT) tech-

nique [24, 45]. With the help of a series of RABITT measurements of the HHG

emission from aligned N2 at different angles between the molecular axis and

the laser polarization direction, it has been suggested that not only the high-

est occupied molecular orbital (HOMO), but also the orbital lying just below

(HOMO-1) can be reconstructed [27, 46]. This tomography approach was fur-

ther extended to resolve the spatial properties of wavefunctions in systems that

are difficult to align. The key point is to manipulate the electron trajectory

in the continnum by adding a second-harmonic field polarized orthogonally to

the fundamental field. As the relative delay between the two fields varies, the

electron can recollide with the parent ion from different directions. Using this

method the angular-dependent information of the p state in neon atoms was

obtained [47].

Recently, high-harmonic spectroscopy has been applied to reveal the exact

exit times of electrons producing high-harmonic radiation [48]. Similar to

previous work [47], once the electron is released from the atom, its motion in

the lateral direction is perturbed by a moderate second harmonic field polarized

perpendicular to the main laser field. In this experiment, the variations of

harmonic intensity and recollision angle as a function of the phase difference

between the two fields are observed. The observables constitute two separate

sources of information, facilitating the reconstruction of both ionization and

return times of the three-step process.

These examples show that high-harmonic spectroscopy has become a pow-

erful tool to image atomic and molecular structures and ultrafast dynamics in

strong field physics.

1.3 Attosecond-domain spectroscopy

In the three-step process, each recollision gives an attosecond burst of ra-

diation, which takes place twice per optical cycle of the laser field, resulting in

an attosecond pulse train (APT) [49]. For the generation of single attosecond

pulses (SAP), the most straightforward approach is to shorten the duration of

the driving laser pulse such that only one recollision process can take place for

the high harmonics of interest. The first SAP was produced using a few-cycle

laser pulse [50], characterized by a broad continnuum spectrum. For such short

laser pulses, the control of the carrier-envelope phase (CEP) is very important,

because the variation of the CEP could change from the generation of a SAP
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to the generation of two attosecond pulses. Moreover, the method is applicable

only for the generation of SAP with photon energies near the cutoff region.

To avoid the difficulty of controlling the CEP stabilized few-cycle laser pulses

and generate attosecond pulses with a wide energy region, the polarization

gating technique was proposed [51, 52], which relies on the fact that the recol-

lision process can only occur for linear or nearly linear laser polarization. The

combination of a left-circularly polarized pulse and a delayed right-circularly

polarized pulse leads to a pulse with linear or nearly linear polarization for

a short time, which can be used to for the generation of SAP in both the

plateau and cut-off region of the harmonic spectrum [53, 54]. It has also been

suggested that adding an orthogonally polarized second-harmonic field to the

polarization gating field can suppress the depletion outside of the polarization

gate so that the SAP can be generated with laser pulses as long as 28 fs [55, 56].

The polarization gating technique puts less requirements on the driving laser

pulse. Up to now, the shortest attosecond pulse of 67 as, covering the energy

range of 55 - 130 eV, has been generated with this method [57].

With the advent of attosecond XUV pulses, it has become possible to carry

out time-resolved measurements of electronic dynamics in atoms and molecules

on the natural time scale of bound electrons. Many current experiments with

attosecond pulses are based on the XUV-pump-NIR-probe technique, where

the XUV-pump pulse is applied to excite or ionize the atoms or molecules, and

the NIR-probe pulse measures the induced variations after a certain delay with

respect to the pump pulse. An important example is the attosecond streak-

ing method [50, 58, 59], which can be used to characterize attosecond pulses.

XUV-pump-XUV-probe experiments have also been reported [60, 61], but they

are still highly challenging because of the low intensities of the available XUV

pulses. The first reported XUV-pump-NIR-probe experiment measured the

duration of an Auger decay in Kr atoms directly in the time domain using

isolated attosecond pulses [62]. By analysing the photoelectron spectrum as

a function of the time delay between the XUV pulse and the NIR pulse, a

lifetime of about 8 fs was observed, in agreement with energy-domain spectra.

The attosecond streaking method can also be used to answear the question of

the precise time of electron release from an atom [63]. In the experiment, a

SAP with central energy at 106 eV was applied to set electron free from the 2s

and 2p orbitals of neon. Streaking by a weak NIR field produced two different

streaking traces in the photoelectron spectra. Their relative phase lag indi-

cated an emission time difference of about 20 as. Similarly, using attosecond

pulse trains, it was found that the 3p photoelectrons from argon are emitted
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about 20 as after the 3s photoelectrons [64].

Over the last few years, the dynamical properties of Fano resonances caused

by autoionization of metastable states have been investigated via the XUV-

pump-NIR-probe method [65–70]. The autoionization process governed by

the electron-electron interaction is characterized by an asymmetric line shape,

which is known as the Fano profile [71]. The time-resolved autoionization

dynamics has been investigated by analysing the laser-modified Fano resonance

profile. At the same time, the transient absorption technique was also extended

to the attosecond domain for the exploration of electronic motion [67, 72–

74]. In the experiment, the spectrum of the attosecond pulses transmitted

through the sample was measured instead of the kinetic energy of the free

electron. With the available experiment techniques, the transient absorption

spectroscopy gives higher spectral resolution compared with the photoelectron

spectrum. The first attosecond transient absorption experiment demonstrated

the real-time observation of wave packet motion in the valence shells of krypton

ions [72]. Time-resolved autoionization dynamics has also been investigated

by analysing the laser-modified photoabsorption [67, 69, 74].

A completely different approach yielding access to the attosecond domain

is the attosecond angular streaking [75]. This technique provides attosecond

temporal resolution without attosecond pulses. In particular, it gave exper-

imental insight into the tunnel ionization process. Angular streaking uses

elliptically polarized laser pulses both to ionize the atom and to rotate the

emission direction of electron and ion. Therefore the technique is suitable

for the investigation of laser-induced tunneling, an entirely different ionization

mechanism compared to the one-photon photoionization mentioned above. It

was demonstrated that the instant of ionization is thus mapped to the peak

of the final ion angular distribution. A small upper limit of 12 as between

the maximum of the electric field and the maximum of electron emission was

found, thus supporting the concept of instantaneous tunneling [76].

1.4 Outline of this thesis

In the next chapter, we give a review of the fundamental theory of strong-

field physics. The main theoretical methods used in the modeling of high-order

harmonic generation are the time-dependent Schrödinger equation and the

strong-field approximation. In addition, we introduce the numerical methods

used in this thesis.

In Chapter 3, inspired by the measurement of the exact exit times of elec-
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trons producing high-harmonic radiation [48], we address this problem using

the numerical solution of the time-dependent Schrödinger equation (TDSE).

We obtain the times of ionization and return of the laser-driven electron in

high-order harmonic generation and investigate the effect of tunneling on the

lateral dynamics of the electron in the two-color field. Furthermore, we retrieve

the tunneling time characterizing the under-barrier electron motion. Part of

the work in Chapter 3 has been discussed in [77]

In Chapter 4, we study the two-channel HHG from H2 molecules at stretched

internuclear distance. We show the possibility to manipulate the location of

the bound electron wave packets created by strong-field ionization. We develop

a recollision model to extract the initial shape of the remaining bound electron

wave packet from high-harmonic spectrum. Part of the work in Chapter 4 has

been published in [44]

Chapter 5 presents our work on probing Fano resonances with the XUV-

pump-NIR-probe technique. Autoionizing states in the one-dimensional he-

lium atom are investigated by numerical solution of the TDSE. We show that

the Fano line profile is strongly modified by the presence of the laser field. We

observe a clear fringe pattern in the photoelectron spectrum and explain it as

the truncation of the autoionizing decay by the laser field. Part of the work in

Chapter 5 has been published in [70].
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Strong Field Physics

Tremendous progress in pulsed laser source technology has taken place since

the first demonstration of laser radiation [78–80]. Pulses with a duration of

only a few femtoseconds and intensities comparable to the atomic potential are

now available for a broad range of wavelengths (800 nm to 2000 nm). Strong

field effects, e.g. tunnel ionization, high-order harmonic generation, and non-

sequential double ionization, become observable [1]. This developments pose

new challenges not only in theoretical understanding but also in numerical

methods for treating atomic processes in ultra-short, intense laser field.

In this chapter, we describe in detail the widely used semi-classical the-

ory in strong field physics, where the atomic or molecular system is treated

quantum mechanically while the laser field is treated classically [81]. This

is a good approximation in the strong-field regime, since the laser intensity

is high enough that the average photon number is very large and the elec-

tromagenetic field can be described classically. Moderately strong fields (I .

1017W/cm2 ) do not reach the relativistic regime so that the Schödinger equa-

tion is applicable. We start by reviewing basic classical electrodynamics which

eventually explains the interaction of the electric field of the laser pulse with

the atoms within the electric dipole approximation by neglecting the magnetic

field and the spatial dependence of the laser electric field. Next we present

the time-dependent Schödinger equation describing an atom or a molecule in

an electromagnetic field in the forms of the velocity gauge and length gauge.

Then we discuss the mechanism of high-harmonic generation. The process will

be treated using both the classical three-step model [3] and the quantum-orbit

model [82]. Finally, we discuss the numerical methods applied in this thesis.

2.1 Description of the electromagnetic field

The classical description of the field is based on Maxwell’s equations. These

equations relate the electric and magnetic field vectors E and B, together with

9
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the electric displacement D and magnetic field strength H. If there are no free

charges and no free currents, the equations have the form [83]

∇×H =
∂D

∂t
, (2.1)

∇× E = −∂B
∂t
, (2.2)

∇ ·B = 0, (2.3)

∇ ·D = 0, (2.4)

with the constitutive relations B = µ0(H + M) and D = ε0E + P. Here

ε0 and µ0 are the free space permittivity and permeability, respectively, and

µ0ε0 = c−2 where c is the speed of light in vacuum. P is the polarization field

and M is the magnetization field which are defined in terms of microscopic

bound charges and bound current respectively.

The electric field E(r, t) and magnetic field B(r, t) can be generated from

the scalar potential φ and the vector potential A as

E(r, t) = −∂A(r, t)

∂t
−∇φ(r, t), (2.5)

B(r, t) = ∇×A(r, t). (2.6)

With the substitutions A → A +∇χ, φ → φ − ∂χ/∂t, where χ is any scalar

field, the electric field E(r, t) and magnetic field B(r, t) are unchanged. There-

fore a further condition on the vector potential A(r, t) is required to restrict

the form of the potentials. The frequently used condition in non-relativistic

physics is

∇ ·A(r, t) = 0, (2.7)

known as the Coulomb gauge, which implies, in quantum mechanics, that

the momentum operator and the vector potential commute, [p,A(r, t)] = 0,

although r is taken to be position operator. In empty space, the solution of

Maxwell’s equations for a radiation field can always be expressed in terms of

potentials such that ∇ ·A(r, t) = 0 and φ = 0. The vector potential satisfies

the wave equation

∇2A(r, t) =
1

c2
∂2A(r, t)

∂t2
. (2.8)

A monochromatic plane wave solution of Eq. (2.8) with linear polarization

reads

A(r, t) = A0 cos(k · r− ωt+ δω), (2.9)
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where A0 describes both the amplitude and the polarization of the laser field,

k is the propagation vector and δω is a real phase. The angular frequency

is ω = c|k|. The amplitude A0 is related to the electric field amplitude by

E0 = ωA0 and the relation to the intensity is I = 1
2
ε0cω

2A2
0. The solution

satisfies Eq. (2.7) if k ·A0 = 0, i.e. the direction of the vector potential A is

perpendicular to the propagation direction, i.e. A is a transverse field. The

transverse electromagnetic field has an electric field, a magnetic field perpen-

dicular to it, and a propagation direction perpendicular to both of these fields.

The electric and magnetic fields associated with the vector potential A(r, t)

are

E(r, t) = −ωA0 sin(k · r− ωt+ δω), (2.10)

B(r, t) = −k×A0 sin(k · r− ωt+ δω). (2.11)

From the above formula one finds that |E|/|B| = ω/k = c. For the laser

intensities used in this work (smaller than 1017W/cm2), the electron drift

due to the magnetic field in the laser propagation direction is very small and

can be neglected. The wavelength for femtosecond laser pulses available in

laboratories today is in the visible or infrared regime, which is much larger than

the typical size of atoms or small molecules, i.e. the field does not change over

the spatial extent of the atoms or molecules. For instance, the laser wavelength

of 800 nm is a thousand times larger than the typical atomic scale. As a

consequence, one can neglect the spatial dependence of the vector potential,

A(r, t) ≈ A(t). This is the electric dipole approximation, which holds as long

as k · r ≪ 1 (with the atom/molecule placed at the origin of the coordinate

system). This condition holds even for the case of the extreme ultraviolet range

(λ ≈ 100 - 10 nm). The electric dipole approximation is used throughout the

thesis.

A short laser pulse with a finite duration can be expressed as the superpo-

sition of plane waves with different frequencies. The electric field of a linearly

polarized laser pulse is normally written as

E(t) = E0f(t) cos(ωt+ ϕ), (2.12)

where f(t) is the envelope and ϕ is the carrier-envelope phase, i.e. the phase

difference between the carrier wave and the envelope function. There are sev-

eral widely used envelope forms, e.g. sin2, trapezoidal and Gaussian envelopes.

In experiment, temporal profiles are often assumed to be Gaussian, while sin2

and trapezoidal profiles are more convenient in numerical simulations. It is
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important to assure that the electric field of Eq. (2.12) satisfies the relation

∫ ∞

−∞
E(t)dt = 0. (2.13)

A physical pulse has to obey this relation; otherwise it would contain a zero-

frequency component, which is not possible for a propagating pulse.

2.2 Time-dependent Schrödinger equation

We restrict our discussion to the nonrelativistic regime, such that the time-

dependent Schrödinger equation is applicable to describe the interaction be-

tween atoms or molecules and the strong laser field. Relativistic effects have to

be taken into account for laser intensities higher than 1017W/cm2 (at 800 nm

wavelength), while the laser intensities used in the thesis are lower than that.

We begin the discussion of the theory with the single-active-electron ap-

proximation (SAE), in which only one of the electrons in the highest occupied

orbital that ionizes is considered to be ‘active’, while the remaining electrons

are frozen in the initial configuration. The SAE approximation has been suc-

cessfully employed for many aspects of strong laser-matter interaction. How-

ever, recent experiments show clear evidence of multi-electron effects both in

harmonic generation [84–86] and nonsequential double ionization [87–89].

The SAE Hamiltionian describing an atomic or a molecular electron ex-

posed to a laser beam reads [90] (atomic units 1 are used unless stated other-

wise)

H(t) =
(p + A(r, t))2

2
+ V (r) (2.14)

where p = −i∇ is the momentum operator, r is the position of the electron

and V (r) is the binding potential between the electron and the remaining

particles of the atom or molecule. The corresponding TDSE is given by

i
∂

∂t
Ψ(r, t) =

[

p2

2
+ p ·A(r, t) +

A2(r, t)

2
+ V (r)

]

Ψ(r, t). (2.15)

The term p ·A(r, t) describes the interaction between the active electron and

the laser field. This form is called velocity gauge since the laser-matter in-

1Atomic units are widely used in atomic physics, in which the fundamental physical
constants are set to unity as ~ = me = e = 4πε0 = 1. It results in the fine-structure constant

α = e
2

4πε0~c
≈ 1

137 , and the corresponding unit of length: a0 = 4πε0~
2

mee
= 5.29× 10−11

m =

0.53 Å, time: τ0 = (4πε0)
2
~
3

mee
4 = 24.2 as, energy: E = mee

4

(4πε0)2~2 = 27.21 eV, electric field:

E0 = e

4πǫ0a2

0

= 5.14× 1011 V/m and laser intensity: I = 1
2ǫ0cE

2
0 = 3.51× 1016W/cm2.
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teraction arises from the momentum. In the spirit of the electric dipole ap-

proximation, the spatial dependence of the vector potential is neglected, and

the term p ·A(t) is a function of time. The term 1
2
A2(t) can be removed by

introducing a phase factor

Ψ(r, t) = exp

[

−i
∫ t A2(t′)

2
dt′
]

ΨV (r, t), (2.16)

which yields the velocity-gauge TDSE in the form

i
∂

∂t
ΨV (r, t) =

[

p2

2
+ p ·A(t) + V (r)

]

ΨV (r, t). (2.17)

It is well known that quantum mechanics is invariant with respect to uni-

tary transformations. Through a unitary transformation related to a gauge

transformation of A(t),

ΨL(r, t) = exp (iA(t) · r)Ψ(r, t), (2.18)

one obtains the TDSE in the length gauge,

i
∂

∂t
ΨL(r, t) =

[

p2

2
+ r · E(t) + V (r)

]

ΨL(r, t). (2.19)

Eq. (2.17) and (2.19) are the commonly used equations for the numerical treat-

ment of laser-matter interactions. In the velocity gauge, the light-matter inter-

action operator is p ·A(t); in the length gauge, it is the operator r ·E(t). The
two gauges are completely equivalent (as long as the TDSE is solved exactly)

and the use of a specific gauge is merely a matter of convenience. The TDSE

in the length gauge is conceptually simpler to understand, since it provides a

physical interpretation of laser-induced ionization in terms of tunneling, which

is specific to the length gauge. The oscillating field creates a barrier in the

total potential r · E(t) + V (r), such that the electron gets the opportunity to

tunnel. In fact, physics should not depend on what gauge is used, and all the

observables must be the same in both gauges if the solutions of the TDSE are

obtained exactly. Here it is important to note that although the momentum

operator in both equations is the same, namely p = −i∇, it has different

physical meanings. In the velocity gauge, it is the canonical momentum of the

electron, whereas it is the kinetic momentum of the electron (i.e. proportional

to the physical velocity) in the length gauge.
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Figure 2.1: Potential for a helium atom in the length gauge with static elec-
tric field E0=0 (solid line), E0=0.107 a.u. (dashed line) and E0=0.239 a.u.
(dash-dotted line). The horizontial dotted line marks the ground-state elec-
tron energy of -0.903 a.u. The green shaded distribution schematically depicts
the electron distribution after tunneling.

2.3 High-order harmonic generation

2.3.1 Tunnel ionization

When an atom or a molecule is subjected to a strong static electric field,

the binding potential is distorted so much that a barrier is formed as depicted

in Fig. 2.1 for different strengths E= -E0 of the field. (The sign of the field

is chosen such that the force on the electron points to the right.) Without

the electric field, the electron is localized between the potential walls. As the

strength of the field increases, the electron may tunnel through the potential

barrier formed by the superposition of the external electric field and the atomic

binding potential. When the electric field is further increased, the top of the

potential barrier falls below the binding energy, and the electron can escape by

classical motion over the barrier. This is known as over-the-barrier ionization

(OTBI).

Tunnel ionization depends exponentially on the electric field strength. From
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analytical modeling, the tunnel ionization rate Γ is [91]

Γ=Γ0 exp

[

−2(2Ip)
3/2

3E0

]

, (2.20)

where Γ0 depends on the spatial structure of the bound state. The electron

is supposed to be released at the exit x0. The width of the potential bar-

rier is given by x0 = Ip/E0 if a triangular barrier is assumed. When the

electron moves under the barrier, one gets an imaginary velocity κ(x) =

i
√

2[V (x)− xE0 + Ip]. It implies that tunneling occurs in imaginary time,

that is, the time that the electron spends to pass through the barrier is purely

imaginary. The Keldysh tunneling time is defined as the absolute value of this

time [92, 93]

τT =

∣

∣

∣

∣

∫ x0

0

1

κ(x)
dx

∣

∣

∣

∣

=

∫ x0

0

1
√

2[V (x)− xE0 + Ip]
dx

=

√

2Ip

E0
. (2.21)

In the last step, a triangular barrier has been assumed, i.e. V (x) = 0. The

Keldysh tunneling time is typically a few hundred attoseconds and is almost

equal to the imaginary part of the complex ionization time obtained in the

quantum-orbit model [94].

Although the tunnel ionization rate is derived under the assumption of

a static field, it is also valid for slowly oscillating electric fields, in which

an electron has enough time to pass through the potential barrier while the

electric field does not change too much. To be quantitative we can use the

Keldysh parameter [92], defined as the product of the laser frequency ω and

the tunneling time τT,

γ = ωτT = ω

√

2Ip

E0
=

√

Ip
2Up

, (2.22)

with the pondermotive energy Up = E2
0/4ω

2.

If γ ≪ 1, the tunneling time is small compared with the period of the

oscillating electric field. Thus the field can be considered as almost static

during tunneling. Replacing the modulus of the static electric field E0 by

modulus of the instantaneous electric field |E(t)| leads to the instantenous
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ionization rates Γ(t) for the slowly oscillating field. This means that tunneling

is the dominant ionization mechanism when lasers with high intensities and

long wavelengths are applied. For an infrared laser pulse with a wavelength

of 800 nm and intensity of 4×1014W/cm2, the Keldysh parameter is γ = 0.53

for the helium atom. Because of the exponential law Eq. (2.20), the tunnel

ionization rate shows a strong maximum at times when the electric field reaches

its maximum. γ ≫ 1 corresponds to pulses with weak intensities or high

frequencies. In this case, the quasi-static approximation breaks down and the

electrons do not have enough time to follow the fast changes in the potential.

They feel a time-averaged effect of the laser field rather than a quasi-static

barrier. This ionization mechanism is termed multiphoton ionization.

2.3.2 Three-step model

High-order harmonic generation is a nonlinear process, in which a large

number of laser photons are converted into a single photon of high energy. The

mechanisum for high-order harmonic generation is successfully explained by

the classical three-step model proposed by Corkum [3], as depicted in Fig. 2.2.

First, an electron from an atom or a molecule, exposed to a strong laser field,

tunnels into the continuum through the potential barrier. Then the electron is

accelerated as a free particle in the oscillating field and may be driven back to

the parent ion as the electric field changes directions. Finally, the electron can

recombine to the initial state by emitting an XUV photon. The photon energy

equals the kinetic energy of the returning electron acquired in the continuum

plus the binding energy of the electron in the ground state. According to

Eq. (2.20), the tunnel ionization rate depends exponentially on the strength of

the electric field, indicating that tunneling mainly occurs around the maxima

of the oscillating electric field, i.e. tunneling is confined to a short time interval

around the field peaks. Once the electron is released, its motion is dominated

by the oscillating laser field. Due to the large classical action of the electron

in the continuum, the electron motion is described classically in the three-step

model. Even without the quantum-mechanical processes of tunnel ionization

and recombination modelling, the classical dynamics explains the observed

cutoff in the harmonic spectrum.

In the following, the classical motion of the free electron is described in

detail. We assume that a monochromatic field linearly polarized along the

x-axis with electric field E(t) = E0 cos(ωt) is used, so that the electron is

accelerated along a straight line. Suppose an electron is born at time ti with

a initial velocity of zero at x = 0. Its subsequent motion is determined by
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tunnel ionization free acceleration recombination

Figure 2.2: Illustration of the three-step model for high harmonic generation.
First the laser electric field releases the electron from the atomic attractive
potential via tunnel ionization. Then the electric field drives the electron back
to the ion. Finally, the electron recombines with the ion by emission of a
high-energy photon.

Newton’s equation

ẍ(t) = −E(t). (2.23)

The solution to Eq. (2.23) with the initial condition stated above yields the

instantaneous electron displacement

x(t)=α [ω(t− ti) sin(ωti) + cos(ωt)−cos(ωti)] , (2.24)

where α = E0/ω
2 is the classical oscillation amplitude. The value of α is on the

order of nanometres (≈ 33 a.u. at laser intensity 4×1014W/cm2 of 800 nm),

much larger than the atomic radius. It demonstrates the validity of treating

the electron as a freely moving particle in the laser field. The instantaneous

electron velocity is

v(t)=−
∫ t

ti

E(t′′)dt′′=
E0

ω
[sin(ωti)−sin(ωt)] . (2.25)

It consists of a drift velocity vD = E0

ω
sin(ωti) determined by the phase ωti

of the oscillating field at which the electron is released, and an oscillating

term with amplitude E0/ω. For sufficiently long laser pulses, the velocity

of the detected photoelectron equals the drift velocity if there is no addi-

tional interaction with the parent ion. From this, one obtains the maxi-

mum velocity vmax = E0/ω, and the corresponding maximum kinetic energy

v2max/2 = E2
0/(2ω

2). From Eq. (2.25), the instantaneous kinetic energy of the
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Figure 2.3: Graphical solution of the return time tr for given start time ti
with the electric field E(t) = E0 cos(ωt). The solid thick curves represents
the electric field. Dashed curves represent the classical electron trajectories
corresponding to different release times. Solid thin curves are the tangent
lines of the function E(t) at different birth times ti. The intersection points
are the corresponding return times tr.

electron is

Ek(t)=2Up
[

sin2(ωt)− 2 sin(ωt) sin(ωti) + sin2(ωti)
]

. (2.26)

The electron returns to the parent ion at time tr when x(tr) = 0, i.e.

ω(tr − ti) sin(ωti) = cos(ωti)−cos(ωtr). (2.27)

Solutions of Eq. (2.27) will give all the electron trajectories characterized by

pairs (ti, tr) of birth times ti and recollision times tr. Eq. (2.27) can be solved

graphically as illustrated in Fig. 2.3, where the return time tr is determined

as the intersection point between the function of the electric field E(t) and its

tangent line at the ionization time ti.

When analyzing the classical trajectories of the electrons in the external

electric field in Fig. 2.3, one finds that Eq. (2.27) cannot be fulfilled for ev-

ery electron birth time ti. Electrons born between the zero-crossing and the

maximum of the field never return to the parent ion. Those electrons do not
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Figure 2.4: (a) Electric field of a laser pulse with 800 nm wavelength and
intensity 4×1014W/cm2. (b) Electron kinetic energy at the instant of recolli-
sion as a function of ionization time and return time. Dashed lines represent
results for the long trajectory. Solid lines represent the short trajectory.

contribute to HHG. Electrons released between the field maximum and the

zero-crossing return to the parent ion and may recombine. The classical tra-

jectory depends on the release time. The kinetic energy of the electron at the

time of its return is

Ek=8Up

[

cos
ω

2
(tr + ti) sin

ω

2
(tr − ti)

]2

. (2.28)

Fig. 2.4 shows the kinetic energy of the electron at the instant of recollision as

a function of the ionization time ti or alternatively the return time tr. There

exists a cutoff, i.e. a maximum kinetic energy that the electron can possess

when it re-encounters its parent ion. From numerical evaluation of Eq. (2.28),

the maximum kinetic energy is Ek,max=3.17Up [3] at an ionization phase close

to ωti=17o. If we consider electron trajectories returning within one optical

cycle, as shown in Fig. 2.4, for given electron kinetic energy there are two

possible trajectories, and they merge at the cutoff.

As shown in Fig. 2.4(b), the short trajectories have a return energy mono-

tonically increasing with the return time. “Short” refers to the excursion time,

i.e. the time between ionization and recollision. On the other hand, trajecto-

ries corresponding to electrons that are born just after the peak of the laser
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field with recollision after more than 0.65 optical cycles are called the long

trajectories. In this case, the return energy monotonically decreases with the

excursion time.

The photon energy emitted in the third step of the three-step model is

Ω = Ek + Ip. The classical maximum value of the return energy leads to

the maximum photon energy of Ωcutoff = Ip + 3.17Up. This is the commonly

known cut-off law for high-harmonic generation. For multi-cycle laser pulses,

the lower harmonics have several recollisions with the same photon energy.

Due to the quantum-mechanical nature of the electron, the spreading of the

electron wave packet during propagation reduces the overlap with the ground

state of the system. Therefore only the first two encounters of the electron

with the parent ion lead to significant photon emission.

From Fig. 2.4, it is clear that the recollision process is confined to a frac-

tion of the laser period. This temporal confinement results in an attosecond

temporal structure of the emitted pulses. Furthermore, different harmonic

frequencies are emitted at different instants, i.e. the harmonic emission is

chirped. The chirps for the short and long trajectories are of different sign.

It is positive for the short trajectory and negative for the other. In experi-

ments, the predominance of harmonic emission from either the short or long

trajectories depends on phase matching conditions. Under the commonly used

experimental conditions, where the gas jet is placed after the laser focus, the

short trajectory is favored.

For linearly polarized long pulses and atoms or molecules with inversion

symmetry, the three-step process repeats every half-cycle of the driving laser

field with the same intensities but with phase differences of π relative to each

other. The electric field of the harmonic radiation in the time domain reads

EH(t) = −EH(t+
T

2
), (2.29)

with T being the period of the laser field. The emitted spectrum in the fre-

quency domain is given by

EH(Ω) =

∫

EH(t)e
iΩtdt =

∑

n

einΩT (1− eiΩ
T
2 )

∫ T
2

0

EH(t)e
iΩtdt. (2.30)

Constructive interference occurs when

T

2
Ω = (2m+ 1)π, m = 0, 1, . . . , (2.31)
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Figure 2.5: High-harmonic spectrum generated from a 2D model helium atom
using a laser pulse of 800 nm with intensity 4×1014W/cm2.

i.e. when Ω is an odd multiple of the fundamental laser frequency. Fig. 2.5

shows the harmonic spectrum from a 2D model helium atom with a multicycle

laser pulse. Indeed, only odd harmonics are present in the spectrum. Also

it exhibits the characteristic plateau and cutoff. For atoms or molecules that

do not possess inversion symmetry or if the external field breaks the inversion

symmetry, harmonic emission will be periodic not with a period of a half cycle

but a full cycle of the laser field, leading to harmonic peaks separated by the

laser frequency 2π/T . Thus both even and odd harmonics can be generated.

2.3.3 Quantum-orbit model

The classical three-step model is able to explain the cutoff in the harmonic

spectrum, but the initial tunnel ionization and the recombination are quantum-

mechanical processes that require separate treatment. In this section, we intro-

duce the quantum-mechanical description of the three-step process [95], based

on the strong-field approximation (SFA). Resulting from this approach is the

quantum-orbit model, where each harmonic emission frequency is attributed

to a few dominant quantum trajectories evolving in complex time [82].

Consider an atom or a molecule interacting with an external field E(t).
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The TDSE in the length gauge reads

i
∂

∂t
Ψ(t) = [H0 + r · E(t)]Ψ, (2.32)

with H0 being the field-free Hamiltonian. The time evolution operator with

respect to the interaction operator r · E(t) is

U(t, 0) = U0(t, 0) − i

∫ t

0

dt′U(t, t′)r · E(t′)U0(t
′, 0), (2.33)

where U0(t, 0) is the evolution operator associated with H0. To simplify the

integral in Eq. (2.33), the full evolution operator U(t, t′) in the second term is

replaced by the Volkov propagator UV (t, t
′), which describes the evolution of

a free electron in the laser field. This replacement indicates that the influence

of the laser field after ionization at time t′ is fully taken into consideration,

while the effect of the Coulomb potential is neglected. This is the main ap-

proximation of the SFA. It relies on the fact that the electric field strength is

large enough to dominate the Coulomb term beyond the tunneling point x0.

The Volkov propagator in the length gauge acts as

UV (t, t
′)|ψPW (p + A(t′))〉 = exp

(

−i
∫ t

t′
dt′′

(p + A(t′′))2

2

)

|ψPW (p + A(t))〉,
(2.34)

where |ψPW (p + A(t))〉 is a plane-wave state characterized by electron mo-

mentum k = p+A(t). The Volkov propagator UV (t, t
′) acts such that a plane

wave with momentum k′ = p+A(t′) evolves to a plane wave with the momen-

tum k = p + A(t) while acquiring an accumulated phase. At each moment,

the plane waves form a complete basis:

∫

d3p|ψPW (p + A(t))〉〈ψPW (p + A(t))| = 1. (2.35)

Thus, within the SFA, the expression for the time evolution operator Eq. (2.33)

takes the form

USFA(t, 0) = U0(t, 0) − i

∫ t

0

dt′UV (t, t
′)r · E(t′)U0(t

′, 0). (2.36)

Inserting the expression for the Volkov propagator Eq. (2.34) and the iden-

tity operator Eq. (2.35) into Eq. (2.36), we obtain the time-dependent wave
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function

|Ψ(t)〉 = USFA(t, 0)|Ψ0〉

= −i
∫

d3p

∫ t

0

dt′〈ψPW (p + A(t′))|r · E(t′)|U0(t
′, 0)|Ψ0〉

× exp

(

−i
∫ t

t′
dt′′

(p + A(t′′))2

2

)

|ψPW (p + A(t))〉

+ U0(t, 0)|Ψ0〉. (2.37)

Here, we have assumed that the initial state at t=0 is the field-free ground

state |Ψ0〉. The second term in the right-hand side describes the evolution of

the initial state under the field-free Hamiltonian. The first term represents the

electrons in the continuum. An electron stays in the ground state until time t′,

when it is released by the laser field into the continuum with the instantaneous

kinetic momentum p+A(t′). Then the electron is accelerated by the laser field

until the moment t and reaches the kinetic momentum p+A(t).

By neglecting the continuum-continuum transitions, one obtains the time-

dependent dipole moment

D(t) = 〈Ψ(t)| − r|Ψ(t)〉

= −i
∫

d3p

∫ t

0

dt′d∗
r(p + A(t))di(p + A(t′), t′)

× exp(−iS(p, t, t′)) + c.c. (2.38)

where S(p, t, t′) = 1
2

∫ t

t′
dt′′(p+A(t′′))2 + Ip(t− t′) is the semiclassical action.

The ionization and recombination matrix elements between the ground state

and the plane wave are given by

di(p+A(t′), t′) = 〈ψPW (p+A(t′))|r ·E(t′)|Ψ0〉, (2.39)

dr(p+A(t)) = 〈ψPW (p+A(t))| − r|Ψ0〉. (2.40)

It is straightforward to interpret the time-dependent dipole moment (Eq. (2.38))

in the following way:

1. The electron tunnels out from the ground state at time t′, with the

ionization amplitude given by Eq. (2.39).

2. Then the electron moves freely in the laser field from time t′ to t.

3. Finally, the electron recombines to the ground state at time t, described

by the recombination dipole of Eq. (2.40).
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This is the quantum-mechanical description of the three-step model proposed

by Lewenstein [95]. It relies on the following assumptions: (a) The influence

of the Coulomb potential on the electron in the continuum is negligible. This

assumption is correct when the field strength is large enough to dominate the

Coulomb field, which is justified for short-range potentials, e.g., negative ions.

It is problematic in the case of neutral atoms or molecules due to the long range

of the Coulomb potential. (b) Contributions from excited states are neglected,

only the transition between the ground state and the Volkov state is accounted

for within the SFA. This is problematic if intermediate resonances play a role in

high harmonic generation. Despite of the many flaws and problems regarding

the SFA it is often surprisingly successful for producing the basic physical

features. Many strong-field phenomena can be described qualitatively by the

SFA.

In practice, the calculation of the time-dependent dipole moment can be

simplified with the help of the saddle-point approximation [95], since the phase

factor exp(−iS) in the dipole moment osillates rapidly as a function of the

momentum p, while the matrix elements in Eqs. (2.39) and (2.40) vary slowly

with the momentum p. The saddle-point momentum ps makes the phase

stationary, i.e. ∇pS(p, t, t
′)|p=ps

=0, which leads to

ps(t, t
′) = − 1

t− t′

∫ t

t′
A(t′′)dt′′. (2.41)

The matrix elements are evaluated at ps and the action function S(p, t, t′) is

replaced by a second-order Taylor expansion in p at the saddle point ps

S(p, t, t′) = S(ps, t, t
′) +

1

2

∑

j,k

∂pj∂pkS(p, t, t
′)|p=ps

(pj−psj)(pk−psk), (2.42)

with ∂pj∂pkS(p, t, t
′)|p=ps

= Sj,k(t − t′). After analytical integration over p,

the dipole moment reads

D(t) = −i
∫ t

0

dt′
[

2π

ǫ + i(t− t′)

]3/2

× d∗
r(ps(t, t

′) + A(t))di(ps(t, t
′) + A(t′), t′)

× exp(−iS(ps(t, t′), t, t′)) + c.c., (2.43)

where ǫ is a small cutoff parameter. The factor [2π/(ǫ + i(t− t′))]3/2 describes

the spreading of the wave packet during the propagation in the continuum. The

second-order Taylor expansion of the action gives a factor [2π/(ǫ + i(t− t′))]1/2



2.3 High-order harmonic generation 25

for every spatial dimension.

The harmonic spectrum I(Ω) can be obtained from the Fourier transform

of the dipole moment D(t):

I(Ω) ∝ Ω4|D(Ω)|2 (2.44)

with

D(Ω) =

∫

dtD(t)eiΩt. (2.45)

Inserting Eq. (2.43) into Eq. (2.45), we obtain the analytical expression for

D(Ω) with the two-dimensional integral over t and t′

D(Ω) = −i
∫ ∞

−∞
dt

∫ t

0

dt′
[

2π

ǫ + i(t− t′)

]3/2

× d∗
r(ps(t, t

′) +A(t))di(ps(t, t
′) +A(t′), t′)

× exp(−iS(ps(t, t′), t, t′) + iΩt). (2.46)

The matrix elements can be calculated from the bound-state wave function in

momentum space Ψ̃0(k) as

di(ps +A(t′), t′) = iE(t) · ∇kΨ̃0(k)|k=ps+A(t′), (2.47)

dr(ps +A(t)) = −i∇kΨ̃0(k)|k=ps+A(t). (2.48)

The harmonic spectrum from SFA is obtained by numerical integration over

times t and t′ in Eq. (2.46). It can be further simplified using the saddle-point

method for t and t′. The stationary conditions require that the first derivatives

of the exponent S(ps(t, t
′), t, t′) − Ωt in the integrand equal zero, leading to

the following equations

∂S(ps(t, t
′), t, t′)

∂t′

∣

∣

∣

∣

t′=τi,t=τr

= 0 ⇒ [ps(τr, τi) + A(τi)]
2

2
= −Ip, (2.49)

∂S(ps(t, t
′), t, t′)

∂t

∣

∣

∣

∣

t=τr ,t′=τi

= 0 ⇒ [ps(τr, τi) + A(τr)]
2

2
= Ω− Ip. (2.50)

Eq. (2.41) ensures that electron returns at time τr to the same position

at time τi where it was released, since the velocity integral over time from

ionization τi to recombination τr yields electron displacement from τi to τr,

∆x =
∫ τr
τi
(ps +A(t′′))dt′′ = 0. This completes the reduction of the momen-

tum integral to a sum over a few trajectories. Each trajectory has a unique ion-
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Figure 2.6: Contour of the time-integration in the action. Ionization occurs
from complex time τi to real time ti. The electron moves in the continnum
from real time ti to real time tr. Recombination takes place at the complex
time τr.

ization time τi, recombination time τr and photon energy Ω. These trajectories

are known as quantum orbits. For each frequency component of the harmonic

radiation, only a discrete set of quantum orbits contribute. Eqs. (2.49), (2.50)

can be interpreted as energy conservation rules in the process of tunneling and

recombination. In Eq. (2.49) the kinetic energy of the electron at the time

of birth in the continuum is negative, which is classically impossible, but it

can be satisfied formally by a complex-valued ionization time. The solution of

Eqs. (2.49), (2.50) are complex ionization time τi = ti + Imτi and recombina-

tion time τr = tr + Imτr. The quantum orbits are trajectories with complex

saddle-point momenta and complex velocities. They are different from the

classical trajectories of the three-step model. The energy of the emitted pho-

ton, however, is a real quantity, which could be measured in experiment. The

interpretation is that during tunneling, the electron moves in the classical for-

bidden region so that its velocity is imaginary and the time is complex. The

imaginary part of the ionization time τi is associated with the tunnel ionization

process, and is essentially the Keldysh tunneling time. The physical mecha-

nism associated with the complex times is shown in Fig. 2.6. The electron
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Figure 2.7: Emitted photon energy vs real part of ionization and recombina-
tion times for Ip = 24.58 eV (He), using an 800 nm laser field with an intensity
of I=4×1014W/cm2. Full and dashed lines correspond to the short and long
trajectories, respectively. The thin (thick) lines represent the results from the
three-step model (quantum-orbit model).

starts tunneling at time τi. As it moves under the barrier, the imaginary com-

ponent of time decreases. When the imaginary part reaches zero, the electron

exits the barrier. Afterwards the electron moves in the oscillating laser field

from the real time ti to tr. Similarly, the recombination occurs from the real

time tr to the complex time τr. The imaginary part Imτr of the recombination

time is usually very small.

In Fig. 2.7, the emitted photon energies are shown versus the real part

of ionization and recombination times. As in the classical three-step model,

there are at least two solutions for every harmonic frequency, namely, the

short and long trajectories. The trajectories merge near the photon energy

Ω = 1.32Ip + 3.17Up [95], which yields a more precise description of the cutoff

position in the harmonic spectrum, arising from the more rigorous quantum-

mechanical calculation. Pronounced differences between the quantum-orbit

model and the classical model are found especially for the short trajectory.

The quantum-orbit model predicts much earlier ionization times for the short

trajectory except for the region around the cutoff.

In Fig. 2.8, the imaginary parts of ionization and recombination times are
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Figure 2.8: Imaginary part of ionization times (left) and recombination times
(right) as a function of real parts. Solid lines represent the results for short
trajectories and dashed lines for long trajectories. The dot-dashed line shows
the Keldysh tunneling time

√

2Ip/|E(ti)|, see Eq. (2.21). The simulation pa-
rameters are the same as in Fig. 2.7.

shown. Also shown is the Keldysh tunneling time as defined in Eq. (2.21). For

the short trajectory, the Keldysh tunneling time agrees well with the quantum-

orbit model. The discrepancy near the cut-off region is due to the invalidity of

the saddle-point approximation. Here the second-order derivative of the action

with respect to the return time equals zero and the uniform approximation is

required [96, 97]. The imaginary part of the recombination times is very small

compared to that of the ionization times. Note the different scales in the left

and right panels of Fig. 2.8.

To evaluate the integration over t and t′ in Eq. (2.46), the classical action

S(ps, t
′, t) − Ωt is expanded up to second order around the saddle points τr

and τi as

S(ps, t, t
′)− Ωt = S(ps, τr, τi)− Ωτr

+
1

2
S ′′
t,t(ps, t, t

′)
∣

∣t=τr
t′=τi

(t− τr)
2

+ S ′′
t,t′(ps, t, t

′)
∣

∣t=τr
t′=τi

(t− τr)(t
′ − τi)

+
1

2
S ′′
t′,t′(ps, t, t

′)
∣

∣t=τr
t′=τi

(t′ − τi)
2, (2.51)



2.4 Numerical method 29

with

S ′′
t,t(ps, t, t

′)
∣

∣t=τr
t′=τi

= − (ps(τr, τi) + A(τr))

[

ps(τr, τi) + A(τr)

τr − τi
+ E(τr)

]

,

(2.52)

S ′′
t,t′(ps, t, t

′)
∣

∣ t=τr
t′=τi

= (ps(τr, τi) + A(τi))
ps(τr, τi) + A(τr)

τr − τi
, (2.53)

S ′′
t′,t′(ps, t, t

′)
∣

∣t=τr
t′=τi

= − (ps(τr, τi) + A(τi))

[

ps(τr, τi) + A(τi)

τr − τi
−E(τi)

]

.

(2.54)

Note that the ionization matrix element in Eq. (2.47) has a pole at the saddle

point τi for hydrogen-like atoms [98–101]. The integration over t′ can be eval-

uated using a generalized saddle-point formula as in [98] or a Gaussian wave-

function in the definition of the ionization matrix element [95, 100]. Within

the saddle-point approximation, the expression for the harmonic amplitude

yields

a(Ω) = −i
N
∑

j=1

Aj exp(−iS(ps, τr, τi) + iΩτr) (2.55)

with Aj including all the integral coefficients. Since there are several trajecto-

ries for each Ω during each half cycle of the laser field, the sum includes all the

contributing trajectories. Depending on the relative phase between the short

and long trajectories, they can interfere constructively or destructively.

2.4 Numerical method

In this section, we discuss the numerical method used in this work. We

describe the numerical approach to solve the TDSE on a space-time grid and

the calculation of observables.

2.4.1 Split-operator method

The split-operator method was first proposed by Feit and co-workers in

1982 [102]. The evolution of the wave packet from the intial state Ψ(t = 0) to

time t is given by integration of Eq. (2.17) or (2.19)

|Ψ(t)〉 = T exp

[

−i
∫ t

0

dt′H(t′)

]

|Ψ(t = 0)〉, (2.56)

with T being the time-ordering operator. If a very small time step ∆t is taken,

the time-dependent Hamiltonian is considered to be time-independent during
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∆t, then the propagation operator becomes

|Ψ(t+∆t)〉 = e−iH(t)∆t|Ψ(t)〉. (2.57)

The Hamiltonian in both the length and velocity gauge consists of two parts:

the momentum-dependent part and the position-dependent part, which are

diagonal in their respective representations. From a numerical point of view,

it is therefore desirable to split the full time-evolution operator into a product

of momentum-dependent and position-dependent terms. With the help of the

Baker-Campbell-Hausdorff formula [90] for two noncommuting operaters,

eAeB = eA+B+ 1

2
[A,B]+ 1

12
([A,[A,B]]+[B,[A,B]])+highorder commutator, (2.58)

with the commutator [A,B] = AB − BA, the propagation operator in the

length gauge is expressed as

e−iH(t)∆t = e−iV (t)∆t
2 e−i

p
2

2
∆te−iV (t)∆t

2 + O(∆t3), (2.59)

where V (t) is position-dependent and includes the laser-electron interaction.

By neglecting the high-order term O(∆t3), evolution of the wave packet during

each time interval ∆t is accomplished with the following steps:

1. The evolution of the wave packet starts in position space; it is multiplied

with the position-dependent operator e−iV (t)∆t
2 .

2. The wave packet is transformed to momentum space and then multiplied

by the momentum-dependent operator e−i
p
2

2
∆t.

3. The wave packet is transformed back to position space and then multi-

plied again with the last term of the operator e−iV (t)∆t
2 .

In practice, the transformation between position space and momentum space

is performed by the fast Fourier transformation (FFT) routines. The FFTW

package (www.fftw.org) is used to implement the Fourier transforms in one,

two and three dimensional simulations in this work.

For numerical calculations, one should choose the parameters in such a

way that the results do not change substantially when the calculation is made

more accurate. To ensure the convergence of the numerical simulation, several

aspects have to be taken into account:

The grid in position space should be sufficiently large so that a further

increase of the grid size does not change the observable quantities of interest.

Depending on the problem to be investigated, different methods are used in the
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propagation procedure. When the harmonic spectrum is simulated, one can

apply absorbing boundaries to avoid the reflection of the wave packet at the

boundary. A grid larger than the classical quiver amplitude of a free electron in

the laser field is enough, since electrons that undergo direct ionization without

recollision, do not contribute to the harmonic generation. For the calculation

of electron momentum distributions, a much larger grid size is required to cover

all the electrons in the continuum. A more efficient approach was proposed

with the idea of splitting the position space into inner and outer parts [103,

104]. In the inner part, the wave function is propagated exactly by means of

the split-operator method. Electrons in the outer part do not interact with

the core any more. Thus they are considered as free electrons in the laser field.

The wave packet in the outer part needs to be propagated in the momentum

space only. The choice of the grid spacing ∆x=π/pmax is determined by the

maximum momentum pmax that is relevant in the problem.

The evolution of the wave packet starts from the ground state of an atom or

a molecule. The ground state is obtained by using imaginary-time propagation

[105]. Replacing the real time step ∆t by the imaginary time step −i∆τ , the
propagation operator becomes e−H∆τ . We begin with an arbitrary wave packet

|Φ0〉 and propagate in imaginary time. Expanding the initial wave packet in

terms of the eigenstates |ψn〉 of the field-free Hamiltonian H0 with eigenvalues

En, the wave packet at time t is

|Φ(t)〉 =
∑

n

an exp(−iEnt)|ψn〉 (2.60)

with an = 〈ψn |Φ0〉. The wave packet after one imaginary time step becomes

|Φ(τ +∆τ)〉 =
∑

n

ane
−En(τ+∆τ)|ψn〉. (2.61)

The state with the lowest negative energy, i.e. the ground state, becomes expo-

nentially dominant after many imaginary time steps starting from an arbitary

wave packet. The wave packet is renormalized after each propagation step, and

the energy of the wave packet can be calculated either from the expectation

value of the Hamiltonian

E = 〈Φ(τ)|p
2

2
+ V (t) |Φ(τ)〉, (2.62)
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or from the decay of the norm after one step,

E = − 1

2∆τ
ln

(〈Φ(τ +∆τ)|Φ(τ +∆τ)〉
〈Φ(τ)|Φ(τ)〉

)

. (2.63)

When the contributions from other states are negligible, i.e. the energy dif-

ference of two sequential steps is smaller than 10−14 a.u., the wave packet is

considered to be converged to the ground state |Ψ0〉.
According to the quantum mechanical theory, once the time-dependent

wavefuction is known, any observable quantity can be obtained as the expec-

tation value of the operator corresponding to the quantity observed in labora-

tory. In the following, the simulation of the high-order harmonic spectrum is

shown as an example in strong-field physics.

2.4.2 Harmonic spectrum

According to classical electrodynamics, the radiation intensity from an os-

cillating dipole is proportional to the modulus squared of the Fourier transform

of the dipole acceleration, which corresponds in quantum mechanics to the sec-

ond derivative of the expectation value of the electron position,

a(t) = − d2

dt2
〈Ψ(t)|r|Ψ(t)〉. (2.64)

Applying the Ehrenfest theorem, which relates the time derivative of the ex-

pectation value of an operator to the commutator of that operator with the

Hamiltonian of the system, one obtains

d

dt
〈Ψ(t)|r|Ψ(t)〉 = −i〈Ψ(t)|[r, H ]|Ψ(t)〉, (2.65)

d

dt
〈Ψ(t)|p|Ψ(t)〉 = −i〈Ψ(t)|[p, H ]|Ψ(t)〉. (2.66)

with the commutation relations [r, H ] = ip and [p, H ] = −i(dV (r)/dr+E(t))

(in the length gauge) yields

a(t) = − d

dt
〈Ψ(t)|p|Ψ(t)〉 (2.67)

and

a(t) = 〈Ψ(t)|dV (r)
dr

+ E(t)|Ψ(t)〉. (2.68)
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In practice, the dipole acceleration a(t) can be calculated from either the dipole

moment D(t),

a(t) = D̈(t)=− d2

dt2
〈Ψ(t)|r|Ψ(t)〉, (2.69)

dipole velocity (time-derivate of the dipole moment) Ḋ(t),

a(t) = D̈(t)=− d

dt
〈Ψ(t)|p|Ψ(t)〉, (2.70)

or directly as

a(t) = D̈(t)=〈Ψ(t)| d
dr
V (r)+E(t)|Ψ(t)〉. (2.71)

Then the harmonic spectrum can be calculated with the different forms of the

dipole acceleration in Eqs. (2.64), (2.67) and (2.68),

S(Ω) =

∣

∣

∣

∣

∫ ∞

−∞
a(t)eiΩtdt

∣

∣

∣

∣

2

. (2.72)

The corresponding expressions are referred to as “length”, “velocity” or “ac-

celeration” forms of the harmonic spectrum. They are physically equivalent

and give the same result if the wave function is obtained directly by numerical

solution of the TDSE.

In experiment, the measured macroscopic harmonic signal is sensitive to

the phase-matching conditions. The short or long trajectory can be selected

by positioning the laser focus before or after the gas jet [106]. In numerical

simulations, the harmonic signal from different trajectories can be separated by

the Gabor transform of the dipole acceleration moment, instead of the Fourier

transform. With the help of the Gabor transform, we analyze the harmonic

radiation as a function of harmonic order and emission times. The Gabor

time-frequency distribution is defined as

SG(Ω, t) =

∣

∣

∣

∣

∫ ∞

−∞
a(t′) exp

[

−(t′ − t)2

2σ2

]

eiΩt
′

dt′
∣

∣

∣

∣

2

. (2.73)

The parameter σ = 1/(3ω) is chosen to give satisfactory resolutions in both the

temporal and frequency domains [107]. It is possible to extract the emission

times of harmonic radiation from the Gabor distribution. The emission times

for a given harmonic frequency is considered to be at the local maxima of the

Gabor intensity when viewed as a function of time t for fixed frequency Ω.
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2.4.3 Photoelectron spectrum

The photoelectron spectrum can be calculated using the spectral method,

in which the wave packet at the end of the action of the laser field (time t0)

is propagated further in time without external field until a final time tf . The

wave packet after time t0 can be expanded in the eigenstates of the field-free

Hamiltionian as

|Ψ(t)〉 =
∑

n

ane
−iEn(t−t0) |ψn〉, (2.74)

with an = 〈ψn|Ψ(t0)〉. The time-dependent autocorrelation function for wave

packets is calculated as

C(t) = 〈Ψ(t0) |Ψ(t)〉 =
∑

n

|an|2 e−iEn(t−t0). (2.75)

The Fourier transform of the autocorrelation function yields the total energy

spectrum

σ(E) =
1

2π

∫ ∞

−∞
C(t) eiE(t−t0) dt

=
∑

n

|an|2 δ(E − En), (2.76)

with the integral over times from −∞ to ∞. In the simulation, we have the

autocorrelation function for t > t0. It can be extended to times before t0 by

taking the complex conjugate of the autocorrelation function

C(t′) = C∗(t) for t′ < t0 (2.77)

with t0 − t′ = t− t0. Then the energy spectrum of Eq. (2.76) becomes

σ(E) =
1

π
Re lim

tf→∞

∫ tf

t0

C(t) eiE(t−t0) dt (2.78)

In practice, a sufficiently long time interval is required for the simulation to

guarantee sufficient energy resolution. The photoelectron spectrum is the part

of σ(E) corresponding to the continuous part of the eigenenergy spectrum. By

choosing a suitable initial wave packet, the autocorrelation function can also

be used to obtain the discrete bound-state energy levels of the unperturbed

system.



Chapter 3

Ionization and return times in HHG

3.1 Introduction

Recently, the exact exit times of electrons producing high-harmonic radia-

tion have been revealed by high-harmonic spectroscopy [48]. The experiment

has shown that the times at which electrons exit from the atom are well re-

produced by the quantum-orbit model [82] and they are substantially different

from the purely classical trajectory model [3]. A weak second harmonic field

polarized perpendicular to the laser field was applied to manipulate the elec-

tron trajectory in two dimensions. In the experiment, however, there are two

uncertainties. First, applying the quantum-orbit model requires knowledge of

the laser intensity, which is difficult to measure accurately. Second, the abso-

lute value of the phase difference between the two fields (the two-color delay)

was not measured in the experiment. Instead, the absolute scale was deter-

mined by requiring minimal averaged deviation of the retrieved return times

from the quantum-orbit return times. To overcome these limitations, we follow

a theoretical approach based on the numerical solution of the TDSE. There

is no obvious way to extract the ionization times directly from the quantum

mechanical wave function. In this work, we follow precisely the experimental

procedure, but without uncertainty about laser intensity or two-color delay.

We start with the discussion on the mechanism of harmonic generation

from the orthogonally polarized two-color field, i.e. the generation of orthog-

onally polarized odd and even harmonics. We calculate the single-atom har-

monic spectrum from the short trajectory for varying two-color delay using

the Gabor transform. Then we analyze the variations of harmonic intensity

and amplitude ratio of neighboring even and odd harmonics as a function

of the two-color delay. We find that the optimized two-color delays, corre-

sponding to the maxima of the harmonic intensity and the amplitude ratio,

deviate significantly from the predictions of the quantum-orbit model when we

35
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use the real parts of the quantum-orbit times combined with classical mod-

eling of the electron dynamics in the two-color field proposed in [48]. We

introduce an improved quantum mechanical model based on two-dimensional

electron trajectories evolving in complex time. The results agree well with our

TDSE simulations. We carry out both 2D and 3D simulations to show that

the temporal properties of laser-induced tunnel ionization are independent of

the dimensions of the simulation, i.e. independent of the particular choice of

potential. Using the quantum mechanical model, we retrieve the ionization

and return time for each harmonic order. Furthermore, we use this two-color

scheme to retrieve the tunneling time, which we define as the imaginary part

of the complex ionization time in the quantum-orbit model.

3.2 HHG from two-color field

We have discussed harmonic generation from a linearly polarized laser field

in Chapter 2. In this section, we present harmonic radiation from an orthog-

onally polarized two-color field. The fundamental pulse is linearly polarized

along the x-axis, whereas the second harmonic field is polarized along the

y-axis with relative amplitude ε. The electric field E(t) is expressed as

E(t) = E0 [ex cos(ωt) + eyε cos(2ωt + φ)] , (3.1)

where φ is the two-color delay. E0 and ω are the amplitude and frequency of

the main field with wavelength 800 nm.

Since the second harmonic field is weak, tunneling is determined by the

main field. Once the electron is released from the atom by the main field, the

free electron is accelerated by the combined electric field and is then driven

to recollide with the parent ion at an angle α, as in Fig. 3.1. The harmonics

are emitted with their polarization at an angle θ with respect to x-axis. The

lateral electron motion results in the modulation of the harmonic signal as a

function of the two-color delay and the production of even harmonics.

3.2.1 Harmonic spectrum

The classical motion of the electron after tunneling is illustrated for two

subsequent half-cycles by the blue dashed lines in Fig. 3.1. The radiation

process repeats every half-cycle of the main laser field. In the following we will

analyze the x- and y-components of the harmonic radiation with the help of the

classical picture. From one half cycle to the next half cycle of the fundamental

field, the harmonic field along x exhibits a sign change. Thus, upon Fourier
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Figure 3.1: Schematic diagrams of the two trajectories caused by the two-color
field in two subsequent half-cycle of the main field. The main and second-
harmonic fields are polarized along x-axis and y-axis respectively. The dashed
curves represent the electron trajectories in the continuum. The solid arrow
indicates the polarization of the harmonic radiation.

transformation to the frequency domain, the harmonics polarized along x are

at odd multiples of the fundamental frequency (Eq. (2.31)). In contrast, the

harmonic field along y is periodic for every half-cycle

EHy(t) = EHy(t+
T

2
). (3.2)

Upon Fourier transformation to the frequency domain, the harmonics polarized

along y are

EHy(Ω) =
∑

n

einΩ
T
2

∫ T
2

0

EHy(t)e
iΩtdt. (3.3)

Constructive interference occurs when

Ω

2
T = 2mπ, m = 0, 1, . . . , (3.4)

i.e. at even multiples of the fundamental laser frequency. The generation of

even harmonics polarized along the y-axis can also be explained by the fact

that the presence of the orthogonally polarized second-harmonic field breaks

the inversion symmetry.

Then we calculate the harmonic spectrum from a model helium atom.

Within the single-active-electron approximation, the TDSE for the wave func-
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tion Ψ(r, t) in the length gauge reads

i ∂tΨ(r, t) =

[

p2

2
+ V (r) + r · E(t)

]

Ψ(r, t) (3.5)

with the two-dimensional (2D) atomic potential

V (r) = − 1√
r2+ǫ

, (3.6)

or the three-dimensional (3D) atomic potential

V (r) = −1 + e−βr√
r2+α

, (3.7)

where r is the electron coordinate. The soft-core parameters ǫ=0.0678, α=1e-

5 and β=1.38 are chosen to reproduce the ionization potential of real helium

atom (Ip=24.6 eV). Here we use a 10-cycle pulse of 800 nm wavelength such

that the calculated spectrum yields well-separated harmonic peaks, rather than

a continuous spectrum. The electric field envelope is trapezoidal with a two-

cycle turn on and off. The TDSE is solved using the split-operator method

[102] with 2048 time steps per optical cycle, starting from the ground state as

obtained by imaginary-time propagation [105]. We use a grid size of 200×200

a.u. with spacing of ∆x=∆y=0.2 a.u. in the 2D simulation, and a grid size

of 100×100 a.u. with spacing of ∆x=∆y=0.39 a.u. in the 3D simulation.

Absorbing boundaries are used to avoid unphysical reflections of the wave

packet at the borders.

The dipole acceleration a(t) is calculated using Eq. (2.68). The x- and y-

components of the harmonic spectra are obtained separately from the x- and

y-components of the dipole acceleration a(t),

Sx,y(Ω) =

∣

∣

∣

∣

∫

ax,y(t)e
iΩtdt

∣

∣

∣

∣

2

. (3.8)

The total harmonic intensity is evaluated as

S(Ω) = Sx(Ω) + Sy(Ω). (3.9)

The x- and y-components of the harmonic spectra with the two-color delay

φ=0 are shown in Fig. 3.2. Well-defined plateaus and clear cut-offs are found

in both components. The cut-off positions agree well with the cut-off law,

i.e. Ωcutoff = 1.32Ip + 3.2Up, which predicts the maximum harmonic order of
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Figure 3.2: HHG spectra for the 2D model helium atom in the presence of the
orthogonally polarized two-color field. The laser intensity is 4×1014W/cm2

with zero two-color delay. Solid line represents the x-component of the har-
monic field; dashed line represents the y-component of the harmonic field.

69. Odd harmonics are generated along the x-axis as expected, whereas even

harmonics are produced along the y-axis.

For each harmonic frequency, the harmonic signal includes contributions

from more than one trajectory. Interference of multiple trajectories leads to

the modulation of the harmonic signal in the plateau region. Due to the

dispersion of the wavepacket in the continuum, the two shortest trajectories

play a dominant role, i.e. the so-called short and long trajectories. Under

the commonly used experimental conditions, the short trajectory is favored

by phase-matching conditions. In numerical simulations, with the help of the

Gabor transform, one obtains the harmonic radiation as a function of emission

time. Contributions from short and long trajectories correspond to different

emission times, and can therefore be distinguished in the Gabor distribution.
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Figure 3.3: Gabor distributions of the generated harmonics as a function of
harmonic order and emission time. (a) Total harmonic field; (b) x-component
of harmonic field; (c) y-component of harmonic field. Dots represent the ob-
tained emission times of harmonic radiation. The laser intensity is the same
as in Fig. 3.2. Time zero corresponds to the maximum of the electric field.

3.2.2 Time-frequency analysis

Using the Gabor time-frequency analysis, the harmonic intensity as a func-

tion of harmonic frequency Ω and emission time t is obtained separately for

the x- and y-component

IGx,y(Ω, t) =

∣

∣

∣

∣

∫

dt′ax,y(t
′) exp[−(t−t′)2/(2σ2) + iΩ t′]

∣

∣

∣

∣

2

. (3.10)

The total harmonic intensity at time t is IG(Ω, t) = IGx(Ω, t) + IGy(Ω, t).

In the following simulations, we apply a total duration of 3 optical cy-

cles and one-cycle linear ramps for the trapezoidal profile of the electric field.

With this laser pulse, we perform the Gabor time-frequency analysis on trajec-

tories that are born in the first half-cycle of the central part of the trapezoidal

pulse. We analyze the emission of harmonics with energies above the ioniza-

tion threshold. The Gabor distributions of the generated fields are shown in

Fig. 3.3. The short and long trajectories [95] are well separated except in

the cutoff region, where the contributions from the short and long trajectories

are coherently superimposed. The short trajectories correspond to harmonics

emitted at times from 40 a.u. to 75 a.u., with the photon energy monotonically

increasing with the return time. The long trajectories correspond to harmonics
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emitted during a relatively shorter time interval from 75 a.u. to 100 a.u. with

a return energy that decreases with the emission time.

In order to compare directly with the experimental results [48], we will

concentrate on harmonic radiation from the short trajectory. For a given

harmonic frequency, the emission time tr is taken to be at the local maximum

of the Gabor intensity as a function of time. For these emission times tr(Ω), the

harmonic intensities of the x-component and y-component associated with the

short trajectories are obtained from the Gabor transforms of the two dipole-

acceleration components at time tr

IGx(Ω, tr) =

∣

∣

∣

∣

∫

dt′ax(t
′) exp[−(tr−t′)2/(2σ2) + iΩ t′]

∣

∣

∣

∣

2

, (3.11)

and

IGy(Ω, tr) =

∣

∣

∣

∣

∫

dt′ay(t
′) exp[−(tr−t′)2/(2σ2) + iΩ t′]

∣

∣

∣

∣

2

. (3.12)

They correspond to the radiation intensities of odd and even harmonics mea-

sured in the experiment [48]. Near the cutoff, the short and the long trajec-

tories merge together. It is therefore necessary to fit the numerical Gabor

intensity for each harmonic order to a coherent sum of two Gaussians as

Ifit(Ω) =

∣

∣

∣

∣

α1 exp
[

− (t− β1)
2

2σ2
1

]

+ α2e
iθ2 exp

[

− (t− β2)
2

2σ2
2

]

∣

∣

∣

∣

2

. (3.13)

The emission times for short trajectories are taken as the smaller value of the

fitting parameters β1 and β2, with their corresponding harmonic intensities α2
1

and α2
2. The emission times tr(Ω) extracted from the Gabor distribution are

shown in Fig. 3.3(a). To retrieve two quantities, namely ionization time and

return time, from the HHG spectra, we require two observables per harmonic

order. They are the harmonic intensity and the recollision angle, as proposed

in [48].

3.2.3 Harmonic intensity

We start the analysis with a classical description of the electron lateral

motion in the continuum. Since the second harmonic field is weak, it is con-

sidered as a perturbation compared to the main field, thus it mostly affects

the electron after tunneling. The equation of motion for the laser-driven free
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electron in the y direction is

ÿ(t) = −εE0 cos (2ωt + φ) . (3.14)

Integration of Eq. (3.14) yields the electron’s instantaneous displacement in y

direction

y(t) =
εE0

4ω2
[cosϕ(t) − cosϕi + (ϕ(t)− ϕi) sinϕi] + vy0(t− ti), (3.15)

with ϕi = 2ωti + φ and ϕ(t) = 2ωt + φ, and vy0 is the initial velocity along

the y-axis at the moment of ionization ti. Note that the ionization time ti and

return time tr are determined by the main field. Recombination is possible if

the electron returns at time tr to the position where it was released at time ti,

i.e. y(tr)− y(ti) = 0. The required initial velocity in the y-direction is

vy0(ti, tr, φ) = −εE0

2ω

[

sinϕi +
cosϕr − cosϕi
2ω(tr − ti)

]

, (3.16)

with ϕr = 2ωtr + φ. The corresponding electron velocity at the return time

tr is

vy(tr) = −εE0

2ω

[

sinϕr +
cosϕr − cosϕi
2ω(tr − ti)

]

. (3.17)

For each ionization time ti, the wave packet created by tunnel ionization

as a function of the initial lateral velocity vy0 is approximated as [108, 109]

Ψ(vy0) ∝ P (vy0) exp

(

−
v2y0
2

√

2Ip

|Ex(ti)|

)

, (3.18)

with Ex(ti) being the instantaneous electric field of the main field. The pref-

actor P (vy0) depends sensitively on details of the initial bound state. The

dependence of the tunneling probablity on the initial lateral velocity vy0 leads

to the reduction of the harmonic yields as,

IHG(Ω) ∝ exp

(

−v2y0(ti, tr, φ)
√

2Ip

|Ex(ti)|

)

. (3.19)

For each harmonic order, the harmonic intensity depends on the ionization

time ti, return time tr and the two-color delay φ. Eq (3.19) shows that the

harmonic radiation efficiency is maximized for vanishing vy0 [110, 111]. Based

on Eq. (3.19) together with the classical analysis of the electron dynamics



3.2 HHG from two-color field 43

 0  1  2  3  4
 20

 30

 40

 50

 60

H
ar

m
on

ic
 o

rd
er

(a)

 0  1  2  3  4
 20

 30

 40

 50

 60

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(a) (b)

 0  1  2  3  4
Two-color delay, φ(rad)

 20

 30

 40

 50

 60

H
ar

m
on

ic
 o

rd
er

(a) (b)

(c)

 0  1  2  3  4
Two-color delay, φ(rad)

 20

 30

 40

 50

 60

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(a) (b)

(c) (d)

Figure 3.4: Comparison of the normalized harmonic intensity for two-color
HHG as a function of harmonic order and two-color delay φ. (a) the prediction
of the classical model; (b) the prediction of the quantum-orbit model with real
times; (c) the prediction of the quantum-orbit model with complex times; (d)
results from TDSE simulation. The laser intensity is 4×1014W/cm2 and ε=0.1.
The classical cutoff is at harmonic order 65.

along the y-axis Eq. (3.16), we show the harmonic intensity as a function of

harmonic order and two-color delay φ in Figs. 3.4 (a) and (b), by inserting

the ionization and return times from the classical three-step model and the

quantum-orbit model. Note that the results from the two models are not the

harmonic signals, since Eq. (3.19) only contains the exponential dependence

of the harmonic signal on the initial lateral velocity vy0(ti, tr, φ). For each

harmonic order, the harmonic intensity as a function of the two-color delay

is normalized by the maximum value. The normalized harmonic intensity for

two-color HHG from the TDSE is shown in Fig. 3.4 (d). The results are in

good agreement with the experiment. Moreover, we propose a fully quantum

mechanical model to describe the electron dynamics along the y-axis, with the

idea of using the complex times of the quantum-orbit model in Eq. (3.19). Then
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Figure 3.5: Two-color delays maximizing the harmonic intensity. Thick solid
lines (grey) are the predictions of the quantum-orbit model with complex times
(QO-com). Thin solid lines (black) are the results with real times (QO-real).
Thick dashed lines (grey) are the predictions of the classical three-step model
(CM); Purple circles and blue squares, results from the 3D and 2D TDSE,
respectively. (a) Laser intensity 4×1014W/cm2; (b) 8×1014W/cm2.

the velocity along y becomes complex. We use the real part of the resulting the

complex initial velocity in Eq. (3.19). The results from this model are shown

in Fig. 3.4 (c). Modulations of the harmonic intensities can be seen in Fig. 3.4

as the two-color delay varies. The details of the modulation depend on the

harmonic order. The explanation is that different harmonic orders originate

from electron trajectories with different excursion times. The prediction of the

quantum-orbit model with complex times agrees much better with the TDSE

result, as compared to the real-time models.

We extract for every harmonic frequency the two-color delay φh that max-

imizes the harmonic signal in Fig. 3.4. From Eq. (3.19) we find that this is

fulfilled for vy0(ti, tr, φ) = 0. Eq. (3.16) then yields the optimized two-color

delay φh(Ω)

φh(Ω) = arctan

[

cos 2ωti − cos 2ωtr − 2ω(tr − ti) sin 2ωti
sin 2ωti − sin 2ωtr + 2ω(tr − ti) cos 2ωti

]

. (3.20)

For comparison, we insert the real ionization and return times from the classical

three-step model or the quantum-orbit model into Eq. (3.20) to find φh(Ω).
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Figure 3.6: Electron displacement along the y-axis for harmonic order 40. The
thick solid curve represents the real part of electron displacement from the
quantum-orbit model with complex times; the thin solid curve is the result from
the quantum-orbit model with real times; the thick dashed curve is the result
from the classical three-step model. The laser intensity is 4×1014W/cm2.

With the complex ionization time τi and return time τr, we choose φh(Ω) that

corresponds to purely imaginary initial lateral velocity, i.e. Re(vy0(τi, τr, φh)) =

0, where vy0(τi, τr, φh) is the complex initial velocity obtained from Eq. (3.16)

with complex times. In Fig. 3.5, we show the results for two different laser

intensities, including 3D TDSE results for the lower intensity. The comparison

clearly shows that the results are practically independent of the dimensions of

the simulation. For the lower intensity, neither of the two trajectory models

matches the TDSE results when the real times are used. If we use the complex

times from the quantum-orbit model, however, we find a very good match with

the TDSE. For the higher intensity, the deficiencies of the real-time trajectories

are less pronounced but still visible.

To gain further insight into the differences between the classical and quan-

tum mechanical description of the electron motion in the y direction, we com-

pare the instantaneous electron displacement along y-axis after it is released

by the main field. Fig. 3.6 shows the electron displacements obtained from

Eq. (3.15) with times from different models. The two-color delays φh maximiz-

ing the harmonic intensities are used. For complex times from the quantum-

orbit model, we plot the real part Re(y(t)) of the electron displacement, assum-

ing that the electron start tunneling at zero point with the complex ionization

time, i.e. y(τi) = 0. In the classical description of electron lateral motion, the
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electron starts its motion from the parent ion and returns to it at the recom-

bination time. In contrast, with the complex times from the quantum-orbit

model, the electron is born at some distance from the parent ion. The good

agreement between the TDSE results and the predictions of the quantum-orbit

model with complex times in Fig. 3.6 indicates that tunnel ionization induces

electron displacement in both x and y direction.

3.2.4 Amplitude ratio

The second observable of interest is the amplitude ratio of the y- and x-

component of the generated field as

R(Ω) =
√

IGy(Ω, tr)/IGx(Ω, tr). (3.21)

Here IGx and IGy are the intensities of the x-component and y-component,

obtained from the separate Gabor transforms of the two dipole-acceleration

components according to Eqs. (3.11) and (3.12). The amplitude ratio R

is precisely the quantity measured in the experiment where the square root

of the ratio of neighboring even and odd harmonics was taken. For linearly

polarized harmonics, the polarization angle θ relative to the x axis is given

by tan θ = R. Note that our method works even when the harmonics are not

linearly polarized.

The appearance of even harmonics polarized along the y-axis is induced

by the lateral velocity of the free electron at the moment of return. Within

the SFA, the x- and y-component of the recombination matrix element are

expressed as

dx(p+A(tr)) = −〈ψPW(p+A(tr))|x|Ψ0〉, (3.22)

dy(p+A(tr)) = −〈ψPW(p+A(tr))|y|Ψ0〉. (3.23)

By rotating the original coordinate system (x, y) to a new coordinate systme

(x′, y′), with the x′ axis along the electron recollision angle α. The transform

has the form

x′ = x cosα + y sinα

y′ = x sinα − y cosα. (3.24)

If the bound-state wave function |Ψ0〉 has spherical symmetry, the recom-

biantion matrix element along y′ axis is zero, and the x- and y-component of
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Figure 3.7: Comparison of the y to x amplitude ratio for two-color HHG as a
function of harmonic order and two-color delay φ. (a) The prediction of the
classical model; (b) the prediction of the quantum-orbit model using only the
real parts of the complex times; (c) the prediction of the quantum-orbit model
with complex times; (d) results from the TDSE simulation. The laser intensity
is the same as in Fig. (3.4).

the recombination matrix element becomes

dx(p+A(tr)) = 〈ψPW(p+A(tr))|x′ cosα|Ψ0〉, (3.25)

dy(p+A(tr)) = 〈ψPW(p+A(tr))|x′ sinα|Ψ0〉. (3.26)

The electron recollision angle can be extracted directly from the ratio of the y

and x component of the recombination matrix element

tanα =
dy(p+A(tr))

dx(p+A(tr))
=

vy(tr)

vx(tr)
. (3.27)

Since the harmonic intensity is proportional to the modulus squared of the



48 Ionization and return times in HHG

recombination matrix element, Eq. (3.27) implies that the amplitude ratio R

is fully determined by the return velocity vector, namely R = |vy(tr)/vx(tr)|.
In the case of linear polarization, this would mean that the recollision angle

is identical to the harmonic polarization angle. Using Ω − Ip = v2x(tr)/2 and

Eq. (3.17), we have

R =
εE0/(2ω)
√

2(Ω−Ip)

∣

∣

∣

∣

sinϕr +
cosϕr − cosϕi
2ω(tr − ti)

∣

∣

∣

∣

. (3.28)

The amplitude ratio as a function of harmonic order and two-color delay

is shown in Fig. (3.7). Similar to the harmonic intensity, the amplitude ratio

is modulated as a function of the two-color delay and behaves differently for

each harmonic order. The maximum value of the amplitude ratio decreases

as a function of harmonic frequency, i.e. the signal polarized along the y-axis

becomes smaller for high harmonic orders, which means that the electron re-

turns with a smaller angle α. The prediction of the quantum-orbit model with

complex times agrees well with the TDSE result, compared to the predictions

with real times.

In Fig. 3.8 (a) and (b), we show a comparison for selected harmonic or-

ders. We compare the amplitude ratio R obtained from the TDSE and from

Eq. (3.28) with the complex times from the quantum-orbit model. The good

agreement is in accordance with the previous observation [112] that the recol-

lision angle in elliptically polarized fields is not strongly modified by Coulomb

focusing. Interestingly the signal polarized along the y axis does not become

zero although classically the recollision angle must pass through zero for an

appropriate choice of two-color delay. This indicates that a single recollision

in the two-color field generates elliptically polarized harmonics, i.e. the y- and

x-components of the harmonic field oscillate out of phase. The phase difference

between the y- and x-component versus two-color delay is shown in Fig. 3.8

(c) and (d). In the TDSE simulation, the harmonic phase is obtained from the

complex-valued Gabor transform in Eqs. (3.11) and (3.12), before taking the

modulus square. In the quantum-orbit model, the phase difference is evalu-

ated as arg(vy/vx) with the complex velocities. The phase difference from the

TDSE simulation is in good agreement with the prediction of the quantum-

orbit model with complex times. The complex treatment of the lateral motion

can explain the elliptically polarized harmonic field observed in our TDSE sim-

ulation. It also predicts the possibility to control the polarization properties

of the generated harmonics.

We now analyze the two-color delay φa(Ω) that maximizes the amplitude
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Figure 3.8: (a),(b) Amplitude ratio R as a function of two-color delay; (c),(d)
Phase difference between y- and x-component of the harmonics versus two-
color delay. Left panels: Laser intensity 4×1014 W/cm2; Right panels: 8×1014

W/cm2. N denotes the harmonic order.

ratio for a given harmonic frequency. From Eq. (3.28), we get the expression

for the optimized two-color delay φa(Ω)

φa(Ω) = arctan

∣

∣

∣

∣

sin 2ωti − sin 2ωtr + 2ω(tr − ti) cos 2ωtr
cos 2ωtr − cos 2ωti + 2ω(tr − ti) sin 2ωtr

∣

∣

∣

∣

. (3.29)

By inserting the ionization and return times from the classical three-step model

or the quantum-orbit model into Eq. (3.29), one finds φa(Ω) that maximizes

R. Fig. 3.9 shows the results for two different laser intensities. The best

agreement with the TDSE results is achieved by using the complex times from

the quantum-orbit model. Significant differences between the other two re-

sults with real times and the TDSE results are shown, due to the lack of the

imaginary parts of the electron velocity.
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Figure 3.9: Two-color delays φa(Ω) maximizing the amplitude ratio R. (a)
Laser intensity 4×1014 W/cm2; (b) 8×1014 W/cm2.

3.3 Retrieval of ionization and return time from

two-color HHG

In [48], the electron exit times are measured from the variations of harmonic

intensity and amplitude ratio with two-color delay, based on the classical anal-

ysis of the electronic lateral motion after tunneling. However, we have shown

that the classical analysis of the dynamics along the y axis may not be sufficient

for an accurate retrieval. Both φh(Ω) and φa(Ω) are much better reproduced

by the quantum-orbit model with complex times. A quantum mechanical ver-

sion is necessary to retrieve the ionization and return times, based on electron

trajectories evolving in complex times. In this section, we present both the

classical and quantum mechanical retrieval methods and show the comparison

of the retrieved times.

3.3.1 Classical retrieval

To allow a recollision in the classical picture with two-color delay φh and

to maximize the amplitude ratio, two conditions have to be satisfied:

vy0(ti, tr, φh) = 0,
∂R(ti, tr, φ)

∂φ

∣

∣

∣

∣

φa

= 0. (3.30)
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Inserting Eqs. (3.16) and (3.28) into Eq. (3.30), one obtains

2ω(tr − ti) sin(2ωti + φh) = cos(2ωti + φh) − cos(2ωtr + φh),

2ω(tr − ti) cos(2ωtr + φa) = sin(2ωtr + φa) − sin(2ωti + φa).
(3.31)

Using the extracted two-color delays φh(Ω) and φa(Ω) from TDSE results, we

can find the ionization time ti and return time tr numerically. The correspond-

ing times are labeled as “TDSE-2D-real” in Fig. 3.10.

3.3.2 Quantum mechanical retrieval

The key point of the quantum mechanical retrieval method is to use the

complex times of the quantum-orbit model. The velocity along y is complex

and the two equations determining the two-color delays φh and φa read

Re (vy0(τi, τr, φh)) = 0, ∂R(τi, τr, φ)/∂φ = 0. (3.32)

Here the real times ti and tr in Eqs. (3.16) and (3.28) are replaced by the

complex times τi and τr from the quantum-orbit model.

A problem arises in the retrieval of both complex times τi and τr from

the measured two-color delays φh and φa using Eqs. (3.32): if the times are

complex, there are four unknown variables but only two equations. It is a good

approximation [94] to neglect the imaginary part of τr and to assume that the

imaginary part of τi equals the instantaneous Keldysh tunneling time,

Im τi =
√

2Ip/|Ex(ti)|. (3.33)

The assumptions have been verified in Fig. 2.8. For each harmonic frequency

we use a numerical procedure to find the solution of Eqs. (3.32), i.e. the

ionization and return times.

3.3.3 Retrieved ionization and return times

The retrieved ionization and return times are shown in Fig. 3.10 (a). The

retrieved real parts of the ionization and return times match very well with

the quantum-orbit model. The slight difference in the return times is partially

explained by neglecting the imaginary part of the return time in the retrieval.

The retrieval based on the classical equations (using real times) yields return

times up to more than 50 as too early; the ionization times are too early for the

higher harmonics and too late for the low harmonics. Fig. 3.10 (c),(d) show the

deviations of the retrieved ionization and return times from the quantum-orbit
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Figure 3.10: (Color online) (a) Reconstructed ionization times and return
times. (b) Reconstructed tunneling times. Time zero in (a) is at the maximum
of the electric field. Purple circles (TDSE-3D) and blue squares (TDSE-2D)
represent the times from the complex-time retrieval. Green crosses represent
the times from the classical retrieval with real times (TDSE-2D-real). Thick
grey solid lines show the real parts of the quantum-orbit model times (QO);
thick grey dashed lines are from the classical model (CM). The thin black
dashed line in (b) is the Keldysh time

√

2Ip/|Ex(ti)|. Red triangles in (b) are
the reconstructed tunneling times with the Gabor emission times. Bottom:
ionization times (c) and return times (d) relative to the quantum-orbit model.
Orange triangles and cyan diamonds in (d) are the Gabor emission times (2D
and 3D, respectively). The laser intensity is 4×1014W/cm2.

model. From harmonic order 40 to 55, where a clean retrieval is possible since

the short-trajectory branch is perfectly isolated from other trajectories, we find

remarkably small deviations below 5 as. The error of the classical retrieval of

the return time did not become apparent in the experiment [48] because the

absolute scale of the two-color delay was fixed by requiring agreement with
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the quantum-orbit model. If we applied the same procedure to our TDSE

results, the classically retrieved ionization times would also shift to later times

along with the return times, resulting in a significant improvement for the high

harmonic orders.

In an alternative scheme, we use the same observables to retrieve the real

and imaginary part of the ionization time, by making suitable assumptions

about the return time. We neglect the imaginary part of the return time,

and we take the real part either from the quantum-orbit model or from the

Gabor distribution in the TDSE simulation. Note that this approach is very

suitable for experiment: for example, the return times could be taken from

measurements as in [82]. The retrieved imaginary part is shown in Fig. 3.10(b).

Although the retrieval is very sensitive to small errors in the input parameters,

we find good agreement with the quantum-orbit model and the Keldysh time.

To our knowledge, this is the only reported scheme for determination of the

tunneling time.

3.4 Conclusion

We have obtained the ionization and return times in high-order harmonic

generation from the numerical solution of the TDSE. We use a retrieval based

on complex-time trajectories and we find astonishing agreement with the quan-

tum orbit model. The classical retrieval gives only approximate results as it

ignores the change of the lateral position and velocity during tunneling. We

have also retrieved the tunneling time by making reasonable assumptions for

the return time. This shows the physical relevance of the tunneling time: it

affects the lateral dynamics in the two-color field. Such a position-space effect

is in contrast to the view that the tunneling time determines merely the ion-

ization rate. A signature may also be expected in the vibrational wave packet

in the probing of attosecond dynamics by chirp encoded recollision [113].
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Chapter 4

Positioning of bound electron wave

packets in molecules

4.1 Introduction

High-harmonic spectroscopy provides a unique insight into the initial shape

and location of the hole left by field-induced one-electron ionization [30, 39,

114, 115]. A theoretical study shows that electron-electron correlation effect

plays an important role during tunneling ionization [114]. In this work, we

investigate the correlated electron dynamics in field-induced ionization from

molecules by numerical solution of the TDSE. We take the simplest neutral

molecule, i.e. the H2 molecule as an example. In the case of H2, two ion-

ization channels contribute to HHG: the intermediate H+
2 ion is either in the

ground or first excited state. The internuclear distance is chosen larger than

the equilibrium distance such that the energy gap between the two ionic states

is comparable with the laser frequency, giving access to the rearrangements

occuring in the ion within less than one optical period of the driving laser

pulse. The populations and phases of the two states determine the shape

and location of the total bound wave function. By analyzing the two-electron

wave function for one-electron ionization, we find that strong-field ionization

in combination with electron correlation can prepare localized or delocalized

bound electron wave packets, depending on the laser intensity. From the nu-

merical two-electron wave packet, we calculate the ionization phase, i.e. the

phase difference between the gerade and ungerade states of H+
2 , for different

internuclear distances. We investigate the HHG spectra at various internuclear

distances, showing that ionization to the ionic ground state is not sufficient to

explain HHG at increased distance. Finally, we propose a simple two-channel

recollision model, including both the two-center structural interference and the

two-channel dynamical interference effects. Using the recollision model with

55
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the numerical ionization phase, the extrema in the harmonic spectra are well

reproduced.

4.2 Strong-field ionization from H2 molecule

The field-free Hamiltonian of H2 molecule in the center-of-mass frame can

be written as

H =
P2

R

2Mµ
+
∑

i=1,2

P2
ri

2
+ V (R, r1, r2), (4.1)

where Mµ is the reduced mass of the nuclei. R denotes the internuclear coor-

dinate and r1, r2 are the position vectors of the electrons with respect to the

center of mass. The Coulomb interactions between all pairs of particles are

V (R, r1, r2) = −
∑

i=1,2

1
√

(ri +
R
2
)2

−
∑

i=1,2

1
√

(ri − R
2
)2

+
1

√

(r1 − r2)2
+

1

R
. (4.2)

Due to the high ratio between nuclear and electronic masses, the electron

moves much faster than the nucleus that we can consider the nucleus to be

static with respect to electron motion.

4.2.1 One-dimensional model

In this work, we consider a one-dimensional (1D) model H2 molecule with

fixed nuclei. Although the 1D model lacks the information about angular

dependencies, it is possible to qualitatively reproduce important features of the

real molecule, such as the electron-electron correlation effect. The electronic

time-independent Schrödinger equation for the 1D model H2 molecule reads

[

−∂1
2

− ∂2
2

+ V (x1, x2)

]

Ψ(x1, x2) = EΨ(x1, x2) (4.3)

with the soft-core potential

V (x1, x2) = −
∑

i=1,2

1
√

(xi +
R
2
)2 + σ2

−
∑

i=1,2

1
√

(xi − R
2
)2 + σ2

+
1

√

(x1 − x2)2 + σ2
, (4.4)
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Figure 4.1: (Color online) Electron distribution in the electronic ground state
of the 1D hydrogen molecule with fixed internuclear distance (a) R = 1.4 a.u.
and (b) R = 6 a.u. x1 and x2 are the coordinates of the two electrons.

where x1, x2 andR are the two electron coordinates and nuclear separation. We

use the soft-core parameter σ2 = 1 to eliminate the singularity at x1,2 = ±R/2
and x1 = x2 in the numerical simulation. The soft-core potential is physically

resonable because of the fact that in real H2 molecule, the two electrons have

enough space available to bypass each other and the nucleus.

The Hamiltonian is symmetric under exchange of the spatial coordinates

of the two electrons. This property allows for wavefunctions that are either

symmetric or antisymmetric with respect to exchange. In this work, we restrict

our discussion to the singlet state, i.e. the two electrons have opposite spins,

and the wave function is invariant under exchange of the coordinates of the

two electrons.

4.2.2 Ionization-induced bound wave packet

First, we investigate the two-electron distribution in the electronic ground

state for different nuclear separations. The two-electron singlet ground state

can be found through imaginary-time evolution starting from a space-symmetric

initial wave function using the field-free Hamiltionian. The results are shown

in Fig. 4.1. It can be seen that for H2 molecule with small nuclear separation

(R = 1.4 a.u.), two electrons are both localized around the center. In contrast,

for the stretched internuclear separation (R = 6 a.u.), the two electrons are

located on opposite sides of the molecule, which yields two isolated neutral

hydrogen atoms in the ground state in the separated-atom limit.
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Figure 4.2: (Color online) Two-electron density at the peak of a half-cycle
pulse for R = 1.4 a.u. (a), (b) and R = 6 a.u. (c), (d). Arrows represent the
directions of the outgoing electron. (a) (c) Laser intensity 2×1014 W/cm2. (b)
(d) Laser intensity 4×1014 W/cm2.

Next, we investigate the strong-field ionization process through TDSE sim-

ulation. The TDSE for the two-electron wave function Ψ(x1, x2, t) describing

1D H2 in a laser field E(t) reads

i ∂tΨ(x1, x2, t) =

[

−∂
2
1

2
− ∂22

2
+ V (x1, x2) + (x1+x2)E(t)

]

Ψ(x1, x2, t). (4.5)

We use a half-cycle pulse with 1200 nm wavelength. The time evolution starts

from the singlet ground state. The split-operator method [102] is applied to

solve the TDSE with 2048 time steps per optical cycle, yielding the time-

dependent two-electron wave function Ψ(x1, x2, t). The two-electron densities

|Ψ(x1, x2, t)|2 at the peak of the half-cycle pulse (with positive electric field)

are shown in Fig. 4.2 for R=1.4 a.u. and R=6 a.u. using two different laser

intensities. In both cases, the major part of the density resides in a ground-

state-like wave packet as in Fig. 4.1. Additionally, there is density escaping

towards negative values of x1 or x2, representing single ionization. The behav-
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ior of the remaining electron depends on the internuclear distance R. With

small R=1.4 a.u., the outgoing electron coordinate is negative and the remain-

ing bound electron is localized around zero, resembling the ionic ground state

in Fig. 4.3(a). For large R=6 a.u. with lower laser intensity, we see that both

electron coordinates are negative in the ionizing part, i.e. ionization localizes

the remaining bound electron at the site that is on the same side as the outgo-

ing electron. The remaining electron resembles a coherent superposition state

of the ionic states. This is consistent with the mechanism of enhanced ioniza-

tion via the ion-pair state [116–118]. The relevance of the ion-pair state in the

H2 dynamics with moving nuclei has also been demonstrated previously [119].

For the higher intensity, the coordinate of the bound electron can be positive

or negative, indicating delocalization of the remaining electron. In short, for

the H2 molecule at small internuclear distance, laser-induced ionization leaves

the ion in the ground state, whereas with stretched internuclear distance, the

ionization-induced bound electron wave packet is left in a coherent superpo-

sition of ionic states with the relative phase depending on the laser intensity.

The phase between different ionic states is termed as the ionization phase.

φg: gerade state R=1.4 a.u.(a) R=6 a.u.(b) φg

 φu: ungerade state(c) (d)  φu

Figure 4.3: Eigen states for H+
2 molecule with fixed nuclear separation R =

1.4 a.u. (left) and R = 6 a.u. (right). The top panels represent the wave
function of the ground state; the bottom panels show the wave function of
the first excited electronic state. The points represent the position of the two
protons.
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4.2.3 Ionization phase

In order to obtain a more quantitative description of the ionization-induced

bound electron wave packet for stretched internuclear distance, we calculate

the wave function of the bound electron at the ionization time ti. First, the

bound wave packet ϕ(x1, k, t) at time t, one optical cycle after the half-cycle

pulse, for outgoing electron momentum k is obtained as the overlap between

the two-electron wave function and the outgoing electron approximated as a

plane wave, i.e.,

ϕ(x1, k, t) =

∫

e−ikx2 w(x2)Ψ(x1, x2, t) dx2. (4.6)

We use a window function

w(x) =
1

1 + e5(x+10)
+

1

1 + e5(−x+10)
(4.7)

to eliminate the inner part of the wave function, where the ground state is

located. We relate the momentum of the outgoing electron to the ionization

time ti by the classical expression k = −
∫ t

ti
E(t′)dt′. The bound wave packet

is propagated backwards in time using the one-electron TDSE with the same

half-cycle pulse as in the two-electron TDSE, yielding the initial bound wave

packet χ(x1, ti) at the ionization time ti. Because the tunnel ionization rate

is exponentially sensitive to the ionization energy, we only consider the two

most important channels, namely the H+
2 ion in the gerade ground state ϕg

or ungerade first excited state ϕu (Fig. 4.3). For every ionization time, we

calculate the populations |Cg,u|2 of the two states and their relative phase φ =

arg(Cu/Cg) from the complex amplitudes Cg,u = 〈ϕg,u|χ(ti)〉. Our convention

for the ionization phase φ is that φ = 0 refers to the bound electron located

opposite to the outgoing electron, as in Fig. 4.4 (b). This is in accordance

with the definition in the work by Smirnova and coworkers [30, 39], where the

ionization phase refers to the phase difference of the ionizing wings of different

Dyson orbitals.

The two states are found to be almost equally populated for the internuclear

distances R = 5.2 a.u. and R = 6 a.u. The existence of a bound superposition

state requires non-orthogonality of the continuum wave functions in the two

ionization channels [40]. In our case, we use the same momentum k for both

channels in Eq. (4.6), so the numerically obtained equal occupation of the ger-

ade and ungerade bound states proves the existence of a bound superposition

state. Fig. 4.5 shows that the ionization phase depends on the laser intensity,
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Figure 4.4: Schematic representation of ionization-induced bound electron
wave packets. (a) the bound electron is on the same side with the outgoing
electron, corresponding to the ionization phase φ = π; (b) the bound electron is
on the opposite side from the outgoing electron, corresponding to the ionization
phase φ = 0;

especially when the internuclear distance is large. This indicates that the lo-

cation of the ionization-induced hole depends on the laser intensity as well.

The ionization phase depends weakly on the ionization time. For the lower

intensity 2×1014 W/cm2, the phase stays close to π, i.e. the bound electron

starts on the same side as the outgoing electron (Fig. 4.4(a)). For the higher

intensity 4×1014 W/cm2 and R = 6 a.u., the phase is near 3π/2. Phases far

from 0 and π imply a delocalized wave packet in the process of moving from

one nucleus to the other. Varying the laser intensity allows us to vary the

phase, therefore opening a possibility for controlling the electron localization.

As shown in Ref. ([39]), the ionization phase is encoded in the HHG spectrum.

In the next section, we will show how the wave-packet creation is revealed by

the emission spectrum in high-order harmonic generation, which is sensitive to

the ionization and recombination phase difference between different ionization

channels.

4.3 HHG from H2 molecule

As has been investigated in [18, 19], the harmonic spectrum from H2

molecules exhibits a clear minimum due to destructive two-center interference,

known as the structural interference. It depends only on the geometry of the

bound state. We have shown in the above section that for H2 molecule with

stretched internuclear separation, laser-induced ionization leaves the bound
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Figure 4.5: (Color online) Relative phase between the ungerade and gerade
states versus ionization time. Solid lines: intensity 2×1014 W/cm2. Dashed
lines: intensity 4×1014 W/cm2. Left panel: R = 5.2 a.u. Right panel: R =
6 a.u.

electron in a superposition of the ionic ground state and first excited state,

which could affect the harmonic spectrum by the interference between contri-

butions from these two channels as in [30].

4.3.1 Two-center interference in HHG

First, we take the H+
2 molecule as an example to introduce the structural in-

terference in HHG. The harmonic spectrum from H+
2 is minimized at some crit-

ical angle between the molecular axis and the polarization of the laser pulses,

because of the destructive interference when the electron recombines with the

two-center ion. Using the linear combination of atomic orbitals (LCAO) and

the plane wave approximation, the recombination dipole velocity is described

as

vd(k) = i

∫

d3r eik·r∇ϕg(r)

= 2i cos

(

k ·R
2

)
∫

d3r eik·r∇ϕat(r), (4.8)

where ϕg(r) =
1√
1+ s

[

ϕat(r+
R
2
) + ϕat(r− R

2
)
]

, where ϕat is the ground state

of hydrogen atom and s is the overlap integral between two atomic orbitals.

Simple formulae can be derived to predict the two-center interference in HHG.

Destructive interference for H+
2 occurs when

k ·R = (2m+ 1)π, m = 0, 1, . . . (4.9)
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Constructive interference occurs when

k ·R = 2mπ, m = 0, 1, . . . (4.10)

Within the plane wave approximation, the influence of the Coulomb binding

potential on the returning electron is neglected. It has been shown that with

the energy relation Ek = Ω, this simple model gives good predictions for low

order harmonics, while the energy relation Ek = Ω− Ip works much better for

high order harmonics [100].

Next, we use a more precise approach to predict the structural interference

effect in HHG. We consider a laser-field-free setup, in which harmonics are

generated by collision of a Gaussian electron wave packet that is initially pre-

pared heading towards the molecular ion in the ground state. The continuous

emission spectrum from the collision shows the effect of molecular structure

on HHG in the absence of multichannel effects or distortions due to the laser

field. We use the wave-packet collision instead of a heuristic formula [19] in

order to include Coulomb effects exactly in the determination of the struc-

tural effects. The initial state for this calculation is a superposition of the

two-electron ground state Ψ0(x1, x2) and a symmetrized product of the ionic

ground state ϕg(x) with a Gaussian wave packet ψG(x),

Ψ(x1, x2) = αΨ0(x1, x2) + β S[ϕg(x1)ψG(x2)], (4.11)

where S is the symmetrization operator for the two coordinates x1, x2. Here

we have used that the system is in a singlet state with two opposite electron

spins. The Gaussian wave packet

ψG(x) = exp(−(x− x0)
2/(2σ2)+ikx) (4.12)

is initially centered at x0 = 80 a.u. with σ = 0.3 a.u., moving with a central

momentum k = −1.3 a.u. toward the molecular ion. We set α/β = 103 to

mimic an HHG process in a weakly ionized system.

In the simulation of the laser-induced harmonic spectrum, we use trape-

zoidally shaped 1200 nm laser pulses with a total duration of 4 optical cycles

and linear ramps of one optical cycle. The HHG spectrum for a two-electron

molecule is obtained as the Fourier transform of the time-dependent dipole

acceleration in the length gauge

S(Ω) ∼
∣

∣

∣

∣

∫

〈Ψ(t)|(∂1 + ∂2)V + 2E(t)|Ψ(t)〉eiΩtdt
∣

∣

∣

∣

2

. (4.13)
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Figure 4.6: (Color online) HHG spectra for 1D H2 at various internuclear
distances. The laser intensity is 3×1014 W/cm2 in (a),(b) and 4×1014 W/cm2

in (c),(d). Dashed lines: spectra emitted by collision of a Gaussian wave packet
with the molecular ion.

The HHG spectra at various internuclear distances are shown in Fig. 4.6

in comparison with the smooth HHG spectra from the wave-packet collision.

At small internuclear distances (R = 1.4 a.u. and R = 2 a.u.), we find that

the minimum in the collision spectrum occurs at the same frequency as in

laser-induced HHG. This shows that the suppression of the harmonic intensity

is a purely structural effect. Indeed it originates from destructive two-center

interference [18, 19, 36]. As the internuclear distance is increased, the energy

gap ∆E between the ionic ground state and first excited state is reduced

(R = 5.2 a.u., ∆E = 0.0566 a.u.; R = 6 a.u., ∆E = 0.0302 a.u.). Ionization

to the excited ionic state may start to play a role. As can be seen from

Figures 4.6(c) and (d), the minima in the collision spectra appear at frequencies

different from the laser-induced spectra. This demonstrates that ionization to

the ionic ground state is not sufficient to explain HHG at increased distance.

4.3.2 Two-channel HHG

Two channels, i.e. the ionic ground state and first excited state, must be

taken into account to understand the HHG spectra. We introduce a recol-

lision model for describing the extrema in the HHG spectrum. The essen-

tial ingredients of the model are the ionization phase, the bound-electron
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motion, and the recombination phase. We assume that at times t close to

recollision, the system is in a superposition of the two-electron ground state

Ψ0(x1, x2, t) = Ψ0(x1, x2)e
−iE0t and a symmetrized product of a bound ionic

wave packet ψ+ with a continuum wave packet ψc(x, t),

Ψ(x1, x2, t) = αΨ0(x1, x2, t) + βS[ψ+(x1, t)ψc(x2, t)]. (4.14)

If the two ionic states are equally populated and if there is no laser-induced

excitation between ionization and recombination, the ionic wave packet is

ψ+(x, t) =
1√
2

(

ϕg(x) + ϕu(x)e
−iωτ+iφ) e−iEgτ (4.15)

where Eg is the H
+
2 ground-state energy and ω = ∆E is the energy gap between

the ground and first excited state. However, in the presence of the laser field,

we deduce from our calculations that the wave packets oscillate approximately

with the laser frequency and therefore we set ω equal to the laser frequency.

The travel time τ = t−ti determines the dynamical phase ωτ accumulated

after ionization. The molecular ground state at large internuclear separation

is well approximated by the Heitler-London-type function

Ψ0(x1, x2) =
1√
2
(ϕg(x1)ϕg(x2)− ϕu(x1)ϕu(x2)) . (4.16)

The Dyson orbitals, defined as the overlaps between the neutral ground state

and the ionic states, corresponding to the ionic states ϕg and ϕu are then

Dg =
√
2〈ϕg|Ψ0〉 = ϕg and Du =

√
2〈ϕu|Ψ0〉 = −ϕu. The emission spectrum

S(Ω) is proportional to the modulus squared of the Fourier transform of the

dipole-velocity expectation value [120]

vd(t) = i〈Ψ(t)|∂1 + ∂2|Ψ(t)〉. (4.17)

We set the continuum wave packet to a plane wave ψc(x, t) = eikx−iEkt with

momentum k. Using the following equations

〈ϕg | ∂x |ϕg 〉 = 0

〈ϕg |ϕu 〉 = 0 (4.18)
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and linear combinations of atomic orbitals for the states ϕg and ϕu yields

〈ψc(t) | ∂x |ϕg 〉 = 2 cos

(

kR

2

)

vat

〈ψc(t) | ∂x |ϕu 〉 = −2i sin

(

kR

2

)

vat, (4.19)

where vat = i〈ψc(t) | ∂x |ϕat 〉 is the recombination dipole velocity for the

ground state of hydrogen atom. Keeping only continuum-bound transitions,

and neglecting exchange contributions [121, 122] leads (within a temporal

saddle-point approximation) to the expression of the dipole velocity

vd(t) = i〈ψc |∂x |ϕg 〉 − i〈ψc |∂x |ϕu 〉eiωτ−iφ

= i

(

2 cos
kR

2
+ 2i sin

kR

2
eiωτ−iφ

)

vat. (4.20)

Then one obtains the final results

S(Ω) ∼ |vd|2 ∼ 1− sin(|k|R) sin(ωτ − φ), (4.21)

which includes both the structural and dynamical interference effects. In this

model, we have assumed that the excited-state channel has the same trajecto-

ries as the ground state (neglecting the difference in ionization energy) and we

have used that the recombination matrix elements for the gerade and ungerade

states differ by a phase of π/2, see Eq. (4.19). The harmonic photon energy Ω

is the sum of the kinetic recollision energy and the ionization potential Ip, i.e.

Ω = Ek + Ip. The mapping between the photon energy Ω and the travel time

τ can be obtained either from the classical three-step model or the quantum-

orbit model. In the three-step model, the travel time τ is related to the kinetic

energy Ek for the short trjectory as [123]

ωτ = 0.786[f(Ek/Up)]
1.207 + 3.304[f(Ek/Up)]

0.492 (4.22)

with f(x) = arccos(1 − x/1.5866)/π. In the quantum-orbit model, the travel

time τ is mapped to the photon energy Ω using Eq. (2.49) and (2.50). In the

end, we can evaluate the interference pattern predicted by Eq. (4.21) using the

numerically obtained ionization phase φ from Fig. 4.5.
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Figure 4.7: (Color online) Time-frequency analysis and HHG spectra of H2

for the laser intensity 2 × 1014W/cm2. Also shown are the emission spectra
obtained using the recollision model, Eq. (4.21). Thick red solid lines represent
the results with Eq. (4.22) and the ionization phase from Fig. 4.5; thick green
dashed lines represent the results using times from the quantum-orbit model
and the ionization phase from Fig. 4.5; thick blue dotted lines represent the
results with Eq. (4.22) and φ = π; thick magenta dot-dashed lines represent
the results with Eq. (4.22) and φ = 0. Left panel: R = 5.2 a.u. Right panel:
R = 6 a.u.

4.4 Results and discussion

In addition to the HHG spectra, we calculate the time-frequency distribu-

tion using the Gabor transform. The results are shown in Figs. 4.7 and 4.8

for two different laser intensities. Figs. 4.7(a),(b) show clear minima in the

short trajectory at intermediate harmonic orders, namely at about harmonic

69 in Fig. 4.7(a) and harmonic 57 in Fig. 4.7(b). In the HHG spectra, these

minima are visible, but less pronounced due to the summation over short and

long trajectories. Using the recollision model with the ionization phase from

Fig. 4.5, these minima are well reproduced. At the same orders, there is no

interference minimum in the long trajectory, showing clearly the sensitivity to
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Figure 4.8: Same as 4.7 but for the intensity 4× 1014W/cm2.

the electron travel time, which is expected in multichannel interference. The

model does not reproduce well the minimum at the lower harmonic order 40

in Fig. 4.7(c). This may be due to a low-energy failure of the model, which

is based on plane waves and Coulomb-free trajectories. In general, however,

the model reproduces the features of the numerical calculations well. This is

seen also for the higher laser intensity in Fig. 4.8. The structures in the short

trajectory in the range −4 fs<t<−2 fs in Figs. 4.8(a),(b) are consistent with

the model. The signal at earlier times comes from the rising edge of the laser

pulse and should not be compared to the model. For R = 6 a.u., the model

now uses a phase significantly above π, see Fig. 4.5(b). Choosing the phase

constant and equal to zero or π does not satisfactorily reproduce the numeri-

cal result. This is apparent by inspection of the minimum at harmonic order

125 in Fig. 4.8(d). Only the correct choice of phase in the interference model

reproduces the minima. The HHG spectrum thus provides the information on

the electron localization. This method of observing the electron dynamics can

be adapted to more complex systems once the electronic states and transition

matrix elements are known.
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4.5 Conclusion

In summary, we have provided numerical evidence for bound wave-packet

creation by strong-field ionization of two-electron molecules. The location of

the initial wave packet can be controlled by varying the laser intensity. A

simple recollision model has been applied to predict how the positions of inter-

ference minima in the HHG spectrum depend on the wave packet localization.

The model shows good agreement with the numerical TDSE results provided

that the correct ionization phase, i.e. the correct initial wave-packet location,

is used. Our finding demonstrates the power of high-harmonic spectroscopy for

molecular imaging on the subfemtosecond and Ångström scale. It may provide

a new possibility for experimental investigation of ionization mechanisms such

as the ion-pair-type enhanced ionization of H2.
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Chapter 5

Probing Fano resonances with

ultrashort pulses

5.1 Introduction

Recently, the dynamical properties of Fano resonances caused by autoion-

ization of metastable states have been investigated [66, 124–126]. Doubly

excited states lying above the one-electron ionization threshold are prime ex-

amples of autoionizing states. The doubly excited states can be viewed as

discrete states embedded in the continuum. They decay into a free electron

and an ion in the ground state, with the kinetic energy of the free electron de-

termined by conservation of energy. This type of decay is a prototype process

governed by the electron-electron interaction. One-photon absorption from

the ground state into the energy range around a doubly excited state leads

to ionization along two possible paths: either direct ionization into the back-

ground continuum or indirect ionization via the autoionizing resonance. The

interference of the two paths gives rise to an asymmetric absorption line, which

is known as the Fano profile [71], as illustrated in Fig. 5.1. The Fano profile is

found both in photoelectron spectra and in photoabsorption spectra. In this

work, we focus on the photoelectron spectra.

We begin with a detailed introduction to the Fano resonance theory, fol-

lowing exactly the treatment of [71, 125, 127]. We obtain the asymmetric Fano

line profile in the energy domain and the decay amplitude of the Fano reso-

nance in the time domain. We calculate the photoelectron spectrum for the

1D helium model atom by numerical solution of the TDSE. We investigate the

situation that a quasibound wave packet is formed by irradiation with a spec-

trally broad XUV pulse that covers several autoionizing states. We calculate

the photoelectron spectrum as a function of the time delay between the XUV

pulse and the laser pulse. Our results explain well the recent experiments on

71
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time-resolved autoionization dynamics. For the presentation of the results,

energies and times are given in units of eV and fs in this chapter.

5.2 Review of the Fano resonance theory

5.2.1 Fano line profile in energy domain

First, we give a brief introduction to the Fano resonance theory [71]. We

start with a doubly excited state of helium atom. The zero-order unperturbed

Hamiltonian H0 of helium, neglecting the electron-electron interaction, is

H0 = −
∑

i=1,2

(

1

2
∇2

ri
+

2

ri

)

, (5.1)

being the sum of two hydrogenic Hamiltonians. Consider a doubly excited

state with energy Eψ, which lies within the continuous range of values of E.

Within the zero-order approximation, the doubly excited state |φEφ
〉 and the

continuum state |ψE〉 are given by H0|φEφ
〉 = Eφ|φEφ

〉 and H0|ψE〉 = E|ψE〉.
The first step of Fano’s treatment is to find the eigenstate |ΨE〉 of the total

Hamiltonian H = H0 + Vee, with the electron-electron interaction

Vee =
1

r12
. (5.2)

The eigenstate |ΨE〉 of the total Hamiltonian H can be expanded using the

doubly excited state |φEφ
〉 and the continuum states |ψE〉 as bases

|ΨE〉 = a|φEφ
〉 +

∫

dE ′bE′ |ψE′〉. (5.3)

The couplings between these orthogonal states by the total Hamiltonian are

given by

〈φEφ
|H | φEφ

〉 = Eφ

〈ψE′ |H |ψE〉 = E ′δ(E − E ′)

〈ψE |H | φEφ
〉 = 〈ψE | Vee | φEφ

〉 = VE, (5.4)

where VE is the configuration interaction that couples the discrete doubly ex-

cited state and the nearby continuum states. Inserting Eq. (5.3) into the eigen-

value equation H|ΨE〉 = E|ΨE〉, and using the coupling relations Eq. (5.4),
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we find the coefficients a and bE′ satisfying the equations

aE = aEφ +

∫

dE ′ bE′V ∗
E′, (5.5)

bE′E = aVE′ + bE′E ′. (5.6)

Following the treatment of [71], the solution of Eqs. (5.5), (5.6) are assumed

to take the form

bE′ =

[

1

E − E ′ +
E −Eφ − F (E)

|VE|2
δ(E − E ′)

]

VE′a, (5.7)

instead of bE′ =
VE′a

E−E′
to avoid the singularity at E = E ′, with

F (E) = P
∫

dE ′ |VE′|2
E − E ′ , (5.8)

and P indicates the principle part of the integral. The value of F (E) represents

a shift of the resonance energy with respect to Eφ due to the configuration

interaction VE .

If the continuum states |ψE′〉 are represented by a wavefunction with asymp-

totic behavior

|ψE′〉 ∝ sin [k(E ′)r + δ] , (5.9)

their superposition, i.e. the second term in Eq. (5.3), with the coefficient b′E
in Eq. (5.7) has the simple form

∫

dE ′bE′ |ψE′〉 ∝ sin [k(E)r + δ + ∆] , (5.10)

with the phase shift caused by the configuration interaction VE

∆ = − arctan

[

π|VE|2
E −Eφ − F (E)

]

. (5.11)

From Eqs. (5.7) and (5.11), one can obtain the coefficients a and bE′

a =
sin∆

πVE
, (5.12)

bE′ =
VE′

E − E ′a − δ(E −E ′) cos∆. (5.13)

Inserting the coefficients in Eqs. (5.12) and (5.13) into the eigenstate |ΨE〉
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Eq. (5.3), we obtain

|ΨE〉 = a|φEφ
〉 + a

∫

dE ′ VE′

E − E ′ |ψE′〉 − |ψE〉 cos∆

= a|Φ〉 − |ψE〉 cos∆

=
1

πVE
|Φ〉 sin∆ − |ψE〉 cos∆, (5.14)

where

|Φ〉 = |φEφ
〉 + P

∫

dE ′ VE′

E − E ′ |ψE′〉 (5.15)

is the modified doubly excited state.

The transition probability from an initial state |Ψi〉 to the eigenstate |ΨE〉
is the modulus squared of the transition matrix element

〈ΨE|T |Ψi〉 =
1

πV ∗
E

〈Φ|T |Ψi〉 sin∆ − 〈ψE |T |Ψi〉 cos∆, (5.16)

which consists of two separate parts: one is the transition matrix element from

the initial state |Ψi〉 to the modified doubly excited state |Φ〉 and the other

is the transition to the continuum state |ψE〉. These two matrix elements

interfere with opposite phase on the two sides of the resonance. The Fano

parameter q is then defined as

q =
〈Φ|T |Ψi〉

πV ∗
E〈ψE |T |Ψi〉

, (5.17)

which measures the relative strength of the ionization via the doubly excited

state compared to direct ionization into the background continuum. A dimen-

sionless reduced energy

ε =
E − Eφ − F (E)

Γ/2
= − cot∆ (5.18)

is introduced to measure the energy relative to the resonance position Er =

Eφ + F (E) in units of Γ/2, where

Γ = 2π|VE|2. (5.19)

represents the spectral width of the resonance. Then the transition probability

is given in the form of

|〈ΨE | T |Ψi〉|2 = |〈ψE | T |Ψi〉|2
(q + ε)2

1 + ε2
. (5.20)
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Figure 5.1: The Fano profile for various values of the asymmetry parameter
q, with Γ = 0.5 a.u. and Er =1a.u.

The ratio of the transition probability |〈ΨE | T |Ψi〉|2 to |〈ψE | T |Ψi〉|2 is de-

scribed as the Fano profile:

PF(E) =
(q + ε)2

1 + ε2
. (5.21)

It has an asymmetric line profile with respect to the resonance energy Er. The

Fano parameter q determines the asymmetry of the Fano profile: for nonzero

finite q, the line profile is asymmetric; for |q| → ∞, i.e. the interference

between discrete and continuum states is neglected, a Lorentzian profile is

obtained. The shape of the Fano profile is illustrated in Fig. 5.1 for different

values of the parameters.

In the above discussion we chose the stationary wave condition in Eq. (5.9).

When incoming wave boundary condition, i.e.,

|ψ−
E′〉 ∝ exp [−i(k(E ′)r + δ)] (5.22)

is used in the formulation of the eigenstates in Eq. (5.3), namely,

|Ψ−
E〉 ∝ exp[−i(k(E)r + δ +∆)], (5.23)

and using Eqs. (5.16) and (5.17), the scattering amplitude from an initial state

|Ψi〉 to the scattering state |Ψ−
E〉 has the form

〈Ψ−
E|T |Ψi〉 = (q sin∆− cos∆)ei∆〈ψ−

E |T |Ψi〉
= −〈ψ−

E |T |Ψi〉
q + ε

i+ ε
, (5.24)
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with ∆ being the eigen-phase shift [127]. The q-dependent factor fF(E) =
q+ε
1−iε

presents the amplitude of the Fano profile in the energy domain and can be

decomposed into [128]

fF(E) =
q − i

1− iε
+ i ≡ (q − i)

Γ

2
fL(E) + i, (5.25)

where fL(E) is the amplitude of the Lorentz profile in the energy domain

fL(E) =
1

Γ/2 − i(E −Er)
. (5.26)

The Fano profile Eq. (5.21) is the modulus squared of the q-dependent factor.

5.2.2 Fano resonance in time domain

In a time-domain picture, the resonance can be considered as a continnous

electron emitting process. First we consider a Lorentz resonance. In the time

domain, the decay amplitude from a Lorentz resonance is described as

fL(t) = exp(−iErt−
Γ

2
t). (5.27)

The energy spectrum is given by the Fourier transform of the exponential decay

amplitude from time 0 to infinite

FL(E) =

∣

∣

∣

∣

∫ ∞

0

dtfL(t)e
iEt

∣

∣

∣

∣

2

=
1

(Γ/2)2 + (E −Er)2
. (5.28)

The energy spectrum is symmetric with respect to the resonance energy Er,

corresponding to the case of q → ∞ in Eq. (5.21). If the decay process is

truncated at time td, for example by sudden ionization of the atom due to

the presence of the laser field, the exponential decaying amplitude is Fourier

transformed to the energy domain using as an upper limit not infinite time

but a finite time td, yielding the truncated energy spectrum of the Lorentz

resonance

FL(E, td) =

∣

∣

∣

∣

∫ td

0

dt fL(t) e
iEt

∣

∣

∣

∣

2

= FL(E)
[

1 + e−Γtd − 2e−
Γ

2
td cos [(E − Er)td]

]

, (5.29)
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characterized by the oscillating term in Eq. (5.29) depending on the truncated

time td. Similar to the Lorentz resonance, upon transforming the amplitude

of the Fano profile (Eq. (5.25)) to the time domain yields the decay amplitude

of a Fano resonance [125]

fF(t) =
Γ

2
(q − i)e−iErt−Γt/2 + iδ(t− 0). (5.30)

The first term describes the decay from the discrete state and the second

term describes direct photoionization into the continuum state. The energy

spectrum of a Fano resonance truncated at time td is given as

PF(E, td) =

∣

∣

∣

∣

∫ td

0

dt fF(t)e
iEt

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1

iε− 1

{

exp
[

i((E − Er)td + η)− Γ

2
td)
]

− (q + ε)

}
∣

∣

∣

∣

2

= PF(E)

[

1 +
1

(q + ε)2
e−Γtd − 2

q + ε
e−

Γ

2
td cos[(E − Er)td + η]

]

(5.31)

with η = − arctan(1/q).

5.3 Autoionization dynamics

5.3.1 One-dimensional model

Since the helium atom is the simplest system that exhibits autoionization,

the autoionization dynamics from its doubly excited states has been studied

exclusively via the XUV-pump-NIR-probe scheme [65, 66, 68, 69, 129]. It

has been shown that laser-induced ionization and laser-induced coupling be-

tween the doubly excited states 2s2p and 2p2 of helium play a crucial role

in the autoionization process, leading to modification of the Fano resonance

profile. While the previous theoretical studies of time-resolved autoionization

are based on the strong-field approximation or on few-level models, in this

paper we approach the problem by numerical solution of the TDSE for a 1D

helium model atom. The 1D atom exhibits a series of autoionizing states em-

bedded in the single-ionization continuum [130]. The advantage of the 1D

model is that the TDSE can be solved practically exactly with full account of

the electron-electron interaction and without making assumptions about the

dominant physical mechanisms.

The two-electron TDSE for the 1D helium atom in the presence of an
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external field Eext(t) reads

i ∂tΨ(x1, x2, t) =

[

−∂
2
1

2
− ∂22

2
+ V0(x1, x2) + (x1+x2)Eext(t)

]

Ψ(x1, x2, t)

(5.32)

with

V0(x1, x2) = − 2
√

x21 + 0.5
− 2
√

x22 + 0.5
+

1
√

(x1 − x2)2 + 0.339
. (5.33)

The soft-core parameters are chosen to reproduce the ground-state energies

of 3D helium and the He+ ion [131]. The wave function Ψ(x1, x2, t) is rep-

resented on a numerical grid with a spatial step size of 0.5 a.u. Due to the

discreteness of our grid, the calculated energy values of the autoionizing states

may differ slightly by a few tenths of an eV from the exact values. This has

negligible effect on the presented results. The external field is a superposi-

tion of an XUV pulse EX(t) and a NIR laser pulse EL(t) linearly polarized in

the same direction. We choose the frequencies ωX = 1.84 a.u. = 50.0 eV and

ωL = 0.038 a.u. = 1.03 eV unless specified differently. The two pulses have the

forms

EX(t) = E0X exp

(

−(2 ln 2)
t2

τ 2X

)

cos(ωXt) (5.34)

and

EL(t) = E0L cos
2

(

π(t− td)

2.75τL

)

cos
(

ωL(t− td) + φ
)

, |t− td| < 1.375τL. (5.35)

Here E0X and E0L are the electric-field amplitudes; τX and τL are the pulse

durations defined as the full width at half maximum (FWHM) of the intensity

envelope; φ is the carrier envelope phase of the laser pulse and td is the time

delay between the centres of the laser pulse and the XUV pulse. The sign of

the delay is chosen such that for positive delays, the XUV pulse acts before

the laser pulse.

First, we calculate the energy levels of the unperturbed 1D helium model

using the autocorrelation function method (section 2.4.3). Propagating from

an arbitrary initial state yields the energies of the eigenstates contained in the

initial state. Singlet states can be obtained from an initial state with space-

symmetry, which remains unchanged upon exchanging the coordinates of the

two electrons, i.e. Ψ(x1, x2) = Ψ(x2, x1). Triplet states satisfy Ψ(x1, x2) =

−Ψ(x2, x1). Since the Hamiltonian is invariant under the parity operation

(x1→−x1, x2→−x2), the nondegenerate eigenfunctions must satisfy the condi-
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tion Ψ(x1, x2) = ±Ψ(−x1,−x2), namely they have well-defined parity. In this

work, we focus on the singlet states of helium atom. To distinguish the parity

of the states, we choose two different initial states. One is a Gaussian wave

packet

ΨG(x1, x2) = exp
[

−(x1 + 4)2/10− (x2 + 2)2/10
]

, (5.36)

and the other is an even-parity wave packet

Ψs(x1, x2) = sin(x1) sin(x2) exp
(

−x21/10− x22/10
)

, (5.37)

comprising only eigenfunctions satisfying Ψ(x1, x2) = Ψ(−x1,−x2). Moreover,

we can get the triplet eigenstates of the 1D helium using the initial wave packet

ΨT (x1, x2) =
1√
2
[ΨG(x1, x2) − ΨG(x2, x1)] . (5.38)

The corresponding results are shown in Fig. 5.2. Here we set the energy scale

such that the ground-state energy equals 0. According to the parity property

of the eigenstates, some relevant levels are labeled in Fig. 5.2. The notation

|n1, n2〉 indicates that, in the limit of noninteracting electrons, one of the elec-

trons is in the state |n1〉 of He+ and the other is in the state |n2〉. Here, n=1

refers to the ground state, n=2 to the first excited state and so on.

For the simulation describing the interaction with the field, the TDSE is

solved by means of the split-operator technique [102] with 64 time steps per

XUV cycle. The time evolution starts from the singlet ground state, which

is obtained by imaginary-time propagation. Therefore the system is in a sin-

glet state at all times, i.e. the wave function Ψ(x1, x2, t) must be symmet-

ric with respect to exchange of the electron position coordinates x1 and x2.

Absorbing boundaries are employed but the grid is chosen large enough (at

least 2000 a.u. in each coordinate) to ensure that electrons will not reach the

boundaries before the end of the pulses. We isolate the non-ground-state part

Ψ̄(x1, x2, t0) of the wave function at time t0 after the pulses by projecting out

the ground state. To obtain the photoelectron spectrum, the wave function

is then propagated further in time without external field until a final time tf .

From the time-dependent wave function, we obtain the photoelectron spec-

trum via the autocorrelation function as in section 2.4.3. We use a long time

interval tf − t0 = 3420 a.u. for all calculations to guarantee sufficient energy

resolution. Since autoionization of doubly excited states leaves the ion in the

ground state, the kinetic energy Ef of the outgoing electron is determined by

energy conservation, E = Ef +E+
g , with E

+
g being the ground-state energy of
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Figure 5.2: Energy levels of the 1D helium model atom. The solid curve
predicts energy levels of singlet states with both odd- and even-parity; the
dot-dashed curve predicts the energy levels of singlet states with even-parity;
the dashed curve predicts energy levels of triplet states with both odd- and
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the singly-charged ion.

5.3.2 Wave-packet dynamics after XUV excitation

It is instructive to first present the relevant energy level diagram of the

1D helium atom and the photoelectron spectrum after an attosecond XUV

excitation. The state |2, 3〉 at E = 50.69 eV is the lowest doubly excited

state reachable by one-photon absorption from the ground state. The even-

parity state |2, 4〉 is 0.75 eV above the state |2, 3〉 and the state |2, 5〉 is at

E = 52.41 eV. The energy spectrum after irradiation with an attosecond

XUV pulse with FWHM τX = 171 attoseconds is shown in the right part of

Fig. 5.3(a). The broad spectral distribution reflects the bandwidth of the XUV

pump pulse. Due to the selection rules for electric dipole transitions, only the

odd-parity states are populated by the attosecond XUV pulse. Therefore the

doubly excited states |2, 3〉 and |2, 5〉 can be reached with one XUV photon,

but not the states |2, 2〉 and |2, 4〉. Note that the simultaneous XUV-induced

population of different autoionizing states has been addressed only rarely in the

literature [60, 125, 132]. The electron energy spectrum near a doubly excited
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Figure 5.3: (a) Energy level diagram of the |2, n〉 autoionizing states in the 1D
helium model and the energy spectrum after action of a short XUV pulse. (b)
Wave packets generated by excitation with long XUV pulses resonant with the
states |2, 3〉 and |2, 5〉, respectively.

state is given by the Beutler-Fano function Eq. (5.21). The XUV-induced

spectrum in Fig. 5.3(a) beautifully exhibits the typical asymmetric absorption

lines. The largest weights are found for the states |2, 3〉 and |2, 5〉. By fitting

the spectrum to Beutler-Fano functions, the parameters of the resonance state

|2, 3〉 are Er = 50.69 eV, Γ = 0.086 eV and q = −1.21; the parameters for the

state |2, 5〉 are Er = 52.41 eV, Γ = 0.054 eV and q = −1.17. In comparison,

the numbers for the well known 2s2p resonance in the real helium atom are

Er = 60.15 eV, Γ = 0.037 eV and q = −2.75 [133].

To obtain pictures of the doubly excited states, we excite the atom with

longer XUV pulses such that only one of the states is covered by the bandwidth

of the pulse. To select the |2, 3〉 or |2, 5〉 state, the XUV frequency is centred at

50.7 eV or 52.4 eV, respectively. The XUV pulse length (FWHM) is about 6.9

fs. By projecting out the two-electron ground state from the wave function af-

ter XUV irradiation, the two-electron wave packet containing the autoionizing

state can be isolated. The modulus squared of the resulting wave functions

is plotted in Fig. 5.3(b). The nodal structure is consistent with the single-

particle excitations indicated by the quantum numbers. The wave function at

large |x1| or large |x2| shows the transition of the quasi-bound state into an
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outgoing electron with the other electron bound in the nodeless single-electron

ground state.

Returning to the case of attosecond XUV excitation, we show in Fig. 5.4 the

modulus squared of the two-electron wave packet (where the ground state has

been projected out) at different times after the XUV pulse. The XUV param-

eters for these and the following simulations are: pulse length 171 attoseconds,

central photon energy 50 eV and peak intensity 1012W/cm2. At 5.13 fs af-

ter the XUV pulse, the inner-part wave packet resembles to some extent

the autoionizing state |2, 3〉 in Fig. 5.3. However, the coherent superpo-

sition of autoionizing states expresses itself in an oscillation of the quasi-

bound wave packet in time. The period of this oscillation is expected to be

T = 2π/(E|2,5〉−E|2,3〉) = 2.41 fs. The time evolution displayed from Fig. 5.4(a)

to Fig. 5.4(c) clearly confirms the oscillation of the wave packet within the ex-

pected period. At the same time, comparison of Fig. 5.4(a) and 5.4(c) shows

the decrease of the overall population of the doubly excited states due to the

decay.

The right panels of Fig. 5.4 show the wave function in the outer region.

Obviously, the outgoing wave function consists of two parts. One is the broad

continuous wave packet, plotted in red colour, representing direct ionization

to the continuum. It escapes the core region immediately after excitation.

The other part, lagging behind, represents an electron emerging by decay of
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autoionizing states. The coherent superposition of autoionizing states leads to

interference in the outgoing waves. This interference is responsible for the slow

oscillation along the x1 axis. The spatial period of about 140 a.u. matches

the momentum difference between electrons from the states |2, 3〉 and |2, 5〉.
The momenta of electrons from these two states are 1.389 a.u. and 1.434 a.u.

The interference of these outgoing waves with quasi-bound Rydberg states

(which can be thought of as extended momentum-zero states) leads to the fast

oscillation with a spatial period of about 4.5 a.u.

5.3.3 Laser-induced autoionization

In the XUV-pump-NIR-probe method, a single attosecond XUV pulse with

broad bandwidth creates a wave packet consisting of several doubly excited

states. A time-delayed NIR laser pulse probes the autoionization dynam-

ics. In the following, we investigate in detail the probing of the autoioniz-
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ing wave-packet dynamics by a NIR laser pulse. The laser peak intensity in

these simulations is 2×1011W/cm2 except for Fig. 5.5(d) where also the in-

tensities 1×1011W/cm2 and 5×1011 W/cm2 are used as indicated. We inspect

the photoelectron spectrum around the |2, 3〉 absorption line for a variety of

laser parameters. The energy axis in these plots gives the kinetic energy Ef of

the outgoing electron. First, we compare different laser wavelengths for zero

time delay between the XUV and NIR pulses, see Fig. 5.5(a). The frequencies

0.038, 0.040, 0.046 a.u. correspond to the wavelengths 1.20, 1.14, 0.99µm. It

is apparent that the Fano profile at 26.26 eV is strongly modified by the laser

field. Additionally, electrons with energies around 27 eV appear in the pres-

ence of the laser pulse. The position of this peak is found to be independent of

the laser wavelength and it coincides with the |2, 4〉 doubly excited state. The

explanation is that the NIR laser field couples states of opposite parity. In a

quasistatic picture, the instantaneous laser field dresses the states and XUV

absorption to the dressed states need not respect the laser-free selection rules.

When the laser field ends, population remains in the |2, 4〉 state and it decays

by autoionization. This process is found to become less efficient with increas-

ing laser frequency. The line shape is obviously asymmetric. This shows that

the autoionization of the |2, 4〉 state interferes with the direct ionization path.

Similar effects take place for the delay td = 4.5 fs as shown in Fig. 5.5(b). At

this delay, we observe another characteristic feature of the XUV-pump-NIR-

probe scheme, namely the appearance of a sideband: the peaks around 25 eV

in Fig. 5.5(b) are one laser photon below the |2, 3〉 resonance. For td = 0

(Fig. 5.5(a)), the sideband is present as well, but it is less clear. A sideband

could in principle exist also on the high-energy side of the resonance; it seems

to be suppressed by the presence of the state |2, 4〉 in the same energy region.

Sidebands have been seen clearly in the XUV-pump-NIR-probe photoelectron

spectra from helium [66]. Sideband intensities have been exploited to deduce

the Auger lifetime of a Kr inner-shell excitation in [62], since the sideband

can be created only during the lifetime of the populated metastable state. As

discussed in [125], also the lifetime of a Fano resonance can be read from the

decay of the sideband for non-overlapping XUV and laser pulses.

The photoelectron spectra for different laser pulse lengths are shown in

Fig. 5.5(c). With increasing pulse length, there is more time available to

form the sideband. At the same time, the central Fano profile is depleted.

The population of the |2, 4〉 state around 27 eV, however, is hardly increased

by increasing the pulse length above 8.74 fs. This is in accordance with the

physical interpretation that the population transfer to the |2, 4〉 state is mainly
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Figure 5.6: Photoelectron spectra as a function of time delay between the NIR
and XUV pulses. (a),(d) Laser intensity 2×1011W/cm2, CEP φ =0. (b) Laser
intensity 1×1011W/cm2, CEP φ =0. (c) Laser intensity 2×1011W/cm2, CEP
φ = π/2. The laser pulse length is τL =8.74 fs for ωL =0.038 a.u. in (a), (b)
and (c), and is τL =7.91 fs for ωL =0.042 a.u. in (d).

achieved during the XUV pulse. Fig. 5.5(c) shows the modification of the Fano

line shape at 26.26 eV very clearly. We find an inverse Fano line, which has

been discussed before in [68].

At a larger time delay of 16 fs, the XUV and NIR pulses do not overlap

in time any more. At this delay, the autoionizing states have substantially

decayed so that the laser-assisted transfer of electrons to the sideband or to

the |2, 4〉 state is weak. The Fano profile, on the other hand, is strongly

changed as compared to the laser-free profile. The spectrum is dominated by

a side peak at 25.9 eV. Since the position of this peak is insensitive to the

laser intensity (see figure), we do not interpret it in terms of Autler-Townes

splitting [67, 134, 135]. Similar structures have been seen in the calculations

of [68, 69] where they were explained as a superposition of the regular and an

inverse Fano profile. We give a different interpretation later (Fig. 5.8).

The photoelectron spectra as a function of time delay, when the XUV and

NIR overlap, are shown in Fig. 5.6. In the region of large negative delays,
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Figure 5.7: Photoelectron spectra for different laser intensities at a fixed time
delay of 4 fs. The laser pulse length is τL =5.83 fs and the laser frequency is
ωL = 0.038 a.u.

the laser pulse arrives before the XUV pulse and only the tail of the laser

pulse is involved in the dynamics. Therefore, the spectrum is similar to the

XUV-only case. For overlapping XUV and laser pulses, complex behaviour of

the spectrum is found. The efficiency of populating the |2, 4〉 state at 27 eV

oscillates as a function of delay with about half the period of the NIR field.

In this case, the population in |2, 4〉 is large when the XUV pulse arrives at a

time of maximum of the laser field close to the centre of the laser pulse. This

shows that the population is sensitive to the instantaneous electric field. In

the simulation for a CEP of π/2 shown in Fig. 5.6(c), the oscillation in the

|2, 4〉 peak is accordingly phase-shifted with respect to the case of zero CEP in

Fig. 5.6(a). We attribute the deviations from an exact half-cycle modulation

to the rapidly varying envelope of the few-cycle laser pulses. It is interesting to

note that the main Fano profile at the |2, 3〉 state tends to be inverted at times

of maximum population in |2, 4〉. The sideband around 25 eV oscillates as a

function of the time delay as well. Its maxima appear at the same times as the

maxima of the |2, 4〉 state. Simulations with the laser intensity 1×1011 W/cm2

(Fig. 5.6(b)) and the laser frequency ωL =0.042 a.u. (Fig. 5.6(d)) demonstrate

that the oscillation period of the population in the |2, 4〉 state and the sideband

does not depend on the laser intensity and is indeed determined by the laser

frequency.

Next, we investigate the photoelectron spectra versus the laser intensity at a
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fixed time delay of 4 fs, shown in Fig. 5.7. We observe clearly an inversion of the

Fano profile at the |2, 3〉 state at laser intensities larger than 2×1011W/cm2,

which has been observed recently in the experiment [129], where the Fano-line-

shape inversion is present in the state |sp2,n+〉 with n > 4. Since the sign of

asymmetry depends on the relative phase between the background continuum

and the electron from the autoionizing states, the Fano-line-shape inversion

can be explained by the additional dynamical phase of doubly excited states

accumulated under the external laser field. The experiment also reveals clear

Autler-Townes splitting of the 2s2p autoionizing state, as shown in Fig.4 in

[129], while we do not observe it in our simulation. As for the |2, 4〉 state

and the sideband around 25 eV, their populations are almost stable within the

range of 1.5∼ 3.5 ×1011W/cm2.

In the following we discuss the region where the laser pulse arrives after the

XUV pulse without overlap. This is the case for time delays longer than 8 fs in

Fig. 5.8. Apparently, the main Fano line at the |2, 3〉 state is strongly depleted.

We see a characteristic curved fringe pattern on the low-energy side and to a

lesser extent on the high-energy side. Similar patterns have been found already

in the previous theoretical studies in [69], but they have not been explained.

The delay-dependent fringes due to the interference between electrons tunneled

from bound excited states and direct ionization by XUV absorption have also

been observed experimentally in [136]. It is one of these fringes that gives rise

to the side peak at 25.9 eV in Fig. 5.5(d). Its position is independent of the

laser intensity. Our results indicate that the overall pattern is not very sensi-

tive to the laser pulse parameters. Instead, the fringes follow curves where the

product |E−Er|td is constant with Er being one of the resonance energies. For

large delays, these fringes converge to the resonance energy. For example, the

line between 27.5 and 27.8 eV at times td > 16 fs approaches the |2, 5〉 reso-

nance at 28 eV from below. We can understand the appearance of these fringes

as a consequence of a truncated decay of a metastable state, as we discussed

in section 5.2.2. Hence, we expect that the condition for obtaining maximum

or minimum signal follows curves satisfying (E−Er)td + η = nπ with integer

n. This is confirmed by the photoelectron spectra in Fig. 5.8(a) and (b), cor-

responding to the attosecond pulses with pulse duration of τX = 171 as and

τX = 885 as. They exhbit the same fringe pattern. For comparison, we show

the prediction of our truncated autoionization model (Eq. 5.31) for the |2, 3〉
state in Fig. 5.8(c), which agrees well with the photoelectron spectra from the

TDSE simulations. It is natural to assume that the action of the time-delayed

laser pulse can truncate the exponential decay, for example by sudden ioniza-
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Figure 5.8: Photoelectron spectra as a function of time delay between the NIR
and XUV pulses. (a) Short XUV pulse, τX = 171 as. (b) Long XUV pulse,
τX = 855 as. (c) Truncated photoelectron spetrum of a single Fano resonance,
Eq. (5.31). Laser pulse length in (a),(b) is τL = 5.83 fs and laser frequency is
ωL =0.038 a.u.

tion of the atom. We may even speculate that the laser-induced line shifts of

the autoionizing argon states measured in the experiment [67] are not due to

an Autler-Townes-type splitting, but that they obey a fringe pattern law as

described above. When the fringes are superimposed with the regular Fano

profile (due to autoionizing decay after the NIR pulse in case that the doubly

excited state has not been entirely emptied), a hybrid structure is formed as

in Fig. 5.5(d) for the lowest laser intensity. Although our interpretation agrees

with [68] to the extent that the overall spectrum is formed by overlaying the

contributions from before and after the laser pulse, our understanding of the
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pre-laser-pulse contribution is a different one. Another interesting feature in

Fig. 5.8(a) is the modulation of the peak near 26 eV, just below the |2, 3〉 reso-
nance at 26.26 eV. It can be easily verified that the oscillation as a function of

delay has a period of about 2.4 fs, in agreement with the energy gap between

the states |2, 3〉 and |2, 5〉. This type of oscillation for coherent excitation of

two resonances has been already pointed out in [125] and measured experi-

mentally [126]. It corresponds to the quasi-periodic motion apparent in the

coordinate-space plots in Fig. 5.4(a)-(c). The same oscillation period is found

in the population of the |2, 4〉 state at 27 eV in the photoelectron spectrum in

Fig. 5.8(a). Closer inspection of these structures reveals that they exhibit also

a slight modulation to higher and lower energies as the delay is varied. The

period is given by the energy gap between the states |2, 3〉 and |2, 4〉. If we in-
terpret the small energy shifts as the signature of an asymmetric line shape, it

is easily understood that the sign of asymmetry depends on the relative phase

between the background continuum and the electrons from the autoionizing

|2, 4〉 state. This relative phase must include the phase that the electrons have

acquired in the |2, 3〉 state before being transferred by the laser field to the

|2, 4〉 state. Thus, the sign of the Fano profile can simply be controlled by

applying the laser pulse at a certain time delay.

5.4 Conclusion

Autoionization dynamics of 1D helium has been investigated by numeri-

cal solution of the time-dependent two-electron Schrödinger equation. An au-

toionizing wave packet is excited by an attosecond XUV pulse and probed by a

time-delayed NIR laser pulse. Besides confirming previously known effects such

as sideband formation and laser-induced coupling between autoionizing states,

we have gained new insight into the laser-induced line shifts. The truncation

of the autoionizing decay by the NIR field forms a universal fringe pattern in

the photoelectron spectra. The peaks arising from the laser-induced coupling

between states are modulated with time delay. This means that control of

Fano line shapes is possible by suitable timing of an NIR pulse.
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Chapter 6

Summary

With the rapid evolution in attosecond science, investigations on the ultra-

fast electronic dynamics in atoms and small molecules have attracted a lot of

attention. Ongoing efforts have been undertaken to monitor and manipulate

electron dynamics on the attosecond time scale. High-harmonic spectroscopy

is a powerful tool to probe electronic dynamics in atoms and molecules. It

relies on measuring the spectrum of coherent raidation, i.e. the high-harmonic

generation spectrum, emitted by atoms and molecules interacting with an in-

tense laser field. The observation and control of attosecond electronic dynam-

ics can also be performed using the XUV-pump-NIR-probe scheme, with the

XUV pulses available from high-harmonic generation, by analyzing directly

the particles from laser-irradiated systems. The subject of this work is the

theoretical investigation of several types of electronic dynamics in atoms and

molecules. We approach these problems by numerical solution of the time-

dependent Schrödinger equation for model atoms and molecules.

The first part of this work is to investigate the electron dynamics in laser-

induced tunneling in atoms. According to the recollision model of harmonic

generation, the ionization time, i.e. the time when an electron exits the tunnel-

ing barrier, is mapped to the harmonic frequency. In a recent experiment, the

ionization time of the electron was determined using two-color high-harmonic

spectroscopy, where an orthogonally polarized second-harmonic field was ap-

plied to manipulate the electron trajectory in two dimensions. The ionization

and return times in high-order harmonic generation are retrieved by measuring

the intensity for both even and odd harmonics as a function of the two-color

delay, with a classical description of lateral electron motion. The retrieved

times agree well with the quantum-orbit model, while quite different from the

classical three-step model. In this work, following exactly the experimental

procedure, we calculate the harmonic spectrum from numerical solution of

both 2D and 3D TDSE. We find that the optimized two-color delays that

91



92 Summary

maximize the harmonic intensity and the amplitude ratio of even and odd har-

monics deviate significantly from the results of the quantum-orbit model when

the lateral electron motion is treated classicaly. We introduce an improved

quantum mechanical retrieval method based on electron trajectories evolving

in complex time. The model shows excellent agreement with our TDSE sim-

ulations. Complex treatment of the lateral motion has not been considered

before. It has two substantial effects: it indicates that tunnel ionization in-

duces electron displacement in the lateral direction, and also it explains the

elliptically polarized bursts found in our TDSE results. Furthermore, we use

this two-color scheme to retrieve the tunneling time, i.e. the imaginary part

of the complex ionization time.

The second part of this work is motivated by a series of investigations on

multichannel molecular high-order harmonic generation. These studies show

that high-harmonic spectroscopy provides a unique insight into the initial

shape and location of the hole left by field-induced one-electron ionization.

It has been shown that the electron correlation effect plays an important role

during tunneling ionization. In this work, we focus on the investigation of the

correlated electron dynamics in field-induced ionization of the two-electron H2

molecule at stretched internuclear separation. The energy gap between the

ground and first excited states of the ion is comparable with the laser fre-

quency, such that the ultrafast dynamics of the molecular ion takes place on

a timescale comparable to the laser cycle and influences the harmonic spec-

trum. By analyzing the wavepacket motion after one-electron ionization, we

find that strong-field ionization in combination with electron correlation can

localize bound electron wave packets in molecules. The ionization phase dif-

ference between the gerade and ungerade channels depends on the internuclear

distance and the laser intensity. With the parameters in our simulation, the

ionization phase varies from π and 1.5π, implying that the bound wave packet

is initially either on the same side as the outgoing electron or delocalized. We

present a simple two-channel recollision model, including both the structural

and dynamical interference effects. The model reproduces well the positions

of the extrema in the harmonic spectra. We demonstrate that the location

of the hole left by tunnel ionization can be manipulated by varying the laser

intensity.

In the last part, we study the autoionization dynamics of Fano resonances.

The natural approach to this task is to populate the metastable states with

excitation by attosecond pulses, which are formed by high-order harmonic

generation in laser-irradiated systems. We apply time-delayed near-infrared
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laser pulses to probe the autoionization dynamics. Previous theoretical studies

of time-resolved autoionization are based on the strong-field approximation or

on few-level models. In this work, we consider the photoelectron spectrum

of a 1D helium atom obtained by exact numerical solution of the TDSE. We

find that the Fano line profile is strongly modified by the presence of the laser

field. Laser-induced coupling between different doubly excited states populates

autoionizing states that cannot be reached by absorbing a single XUV photon

from the ground state. The resulting additional peaks in the photoelectron

spectrum are modulated as a function of time delay. We observe clearly a fringe

pattern in the photoelectron spectrum, which is understood as a consequence

of the autoionizing decay being truncated by the laser field. The side peak of

the Fano resonance observed in experiments is one of the these fringes.

The physcis of laser-matter interaction is very rich and complex. Visualiz-

ing and controlling bound electron dynamics in strong laser fields is one of the

most active areas in strong field physics. So far the experimental and theoret-

ical investigations are focused on simple atoms and molecules. Future work in

this field will extend the scope of these methods to more complex systems.
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ski, R. Täıeb, J. Caillat, A. Maquet, et al., Nat. Phys. 4, 545 (2008).

[25] J. Zhao and Z. Zhao, Phys. Rev. A 78, 053414 (2008).

[26] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Gühr, Science 322, 1232
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[106] A. Zäır, M. Holler, A. Guandalini, F. Schapper, J. Biegert, L. Gallmann, U. Keller,
A. S. Wyatt, A. Monmayrant, I. A. Walmsley, et al., Phys. Rev. Lett. 100, 143902
(2008).
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