
i

Fakultät für Elektrotechnik und Informatik

User Accessibility of Web Data

Der Fakultät für Elektrotechnik und Informatik der Gottfried Wilhelm

Leibniz Universität Hannover zur Erlangung des akademischen

Grades Doktor-Ingenieur (abgekürzt: Dr.-Ing.) genehmigte

Dissertation

von M.Sc. Gideon Zenz,

geboren am 03.05.1979 in Neunkirchen/Saar

2013

ii

Erstprüfer: Prof. Dr. Wolfgang Nejdl

Zweitprüfer: Prof. Dr.-Ing. Bernardo Wagner

Vorsitzender: Prof. Dr.-Ing. Christian Müller-Schloer

Betreuer: Dr. Wolf Siberski

Tag der Promotion: 04.11.2013

i

Kurzfassung
Im Zeitalter des Web 2.0 werden immer mehr Daten produziert, gemanagt,

sowie öffentlich zugänglich gemacht. Die größte Menge dieser Daten befindet

sich im so genannten „hidden web“, d.h. es ist in strukturierten Datensenken

gespeichert und hauptsächlich über Web-Formulare oder ähnliche

Möglichkeiten zugänglich. Das herausragende Problem für Endbenutzer bei

solch riesigen Datenmengen ist das Auffinden relevanter Informationen, die

sein Informationsbedürfnis befriedigen. Derzeit übliche Stichwortsuchverfahren

arbeiten auf Dokumenten sehr effektiv, weniger jedoch auf strukturierten Daten.

Unserer Erfahrung nach wird insgesamt weiterhin häufig die Wichtigkeit der

Nutzerinteraktion unterschätzt, sowie der Komplexität und dem Umfang der

zugrundeliegenden Daten nicht ausreichend Rechnung getragen. Diese Arbeit

stellt, unter besonderer Beachtung der Benutzeranforderungen an den

gesamten Suchprozess, einige Ansätze für den einfachen Zugriff auf

strukturierte Web-Daten vor, die u.a. auch der Notwendigkeit, den Benutzer mit

notwendigen Domänenwissen über die zugrundeliegenden Daten versorgen,

Rechnung tragen.

Stichworte
H.2.4.h [Database Management] Query processing

H.3.3.e [Information Storage and Retrieval] Query formulation

H.5.2 [Information Interfaces and Presentation]: User Interfaces

ii

Abstract
In the age of Web 2.0, ever more data is produced, managed, and made

publicly accessible. Most of this data is in the so-called hidden web, which

essentially implies it is stored in structured data stores and accessible mostly

through forms or other means. While already the sheer amount of information

seems to necessitate new innovations, and feeds the hope for an age of

information and knowledge, finding relevant information satisfying the

information need becomes increasingly difficult. While current approaches solve

standard keyword search on documents quite effectively, they lack on

structured data. Furthermore, we believe that the importance of user interaction

is often either neglect, or the complexity and scale of the underlying data. With

a strong focus on users’ requirements of the whole search process, we present

approaches for easy access to structured web data, as well as providing the

user with domain knowledge needed to successfully understand the underlying

data.

Keywords
H.2.4.h [Database Management] Query processing

H.3.3.e [Information Storage and Retrieval] Query formulation

H.5.2 [Information Interfaces and Presentation]: User Interfaces

iii

Mistral-Wind, du Wolken-Jäger,
Trübsal-Mörder, Himmels-Feger,
Brausender, wie lieb ich dich!
Sind wir zwei nicht Eines Schoßes
Erstlingsgabe, Eines Loses
Vorbestimmte ewiglich?

Hier auf glatten Felsenwegen
Lauf ich tanzend dir entgegen,
Tanzend, wie du pfeifst und singst:
Der du ohne Schiff und Ruder
Als der Freiheit freister Bruder
Über wilde Meere springst.

Kaum erwacht, hört ich dein Rufen,
Stürmte zu den Felsenstufen,
Hin zur gelben Wand am Meer.
Heil! da kamst du schon gleich hellen
Diamantnen Stromesschnellen
Sieghaft von den Bergen her.

Auf den ebnen Himmels-Tennen
Sah ich deine Rosse rennen,
Sah den Wagen, der dich trägt,
Sah die Hand dir selber zücken,
Wenn sie auf der Rosse Rücken
Blitzesgleich die Geißel schlägt, -

Sah dich aus dem Wagen springen,
Schneller dich hinabzuschwingen,
Sah dich wie zum Pfeil verkürzt
Senkrecht in die Tiefe stoßen, -
Wie ein Goldstrahl durch die Rosen
Erster Morgenröten stürzt.

Tanze nun auf tausend Rücken,
Wellen-Rücken, Wellen-Tücken -
Heil, wer neue Tänze schafft!
Tanzen wir in tausend Weisen.
Frei - sei unsre Kunst geheißen,
Fröhlich - unsre Wissenschaft!

Raffen wir von jeder Blume
Eine Blüte uns zum Ruhme
Und zwei Blätter noch zum Kranz!
Tanzen wir gleich Troubadouren
Zwischen Heiligen und Huren,
Zwischen Gott und Welt den Tanz!

Wer nicht tanzen kann mit Winden,
Wer sich wickeln muß mit Binden,
Angebunden, Krüppel-Greis,
Wer da gleicht den Heuchel-Hänsen,
Ehren-Tölpeln, Tugend-Gänsen,
Fort aus unsrem Paradeis!

Wirbeln wir den Staub der Straßen
Allen Kranken in die Nasen,
Scheuchen wir die Kranken-Brut!
Lösen wir die ganze Küste
Von dem Odem dürrer Brüste,
Von den Augen ohne Mut!

Jagen wir die Himmels-Trüber,
Welten-Schwärzer, Wolken-Schieber,
Hellen wir das Himmelreich!
Brausen wir ... o aller freien
Geister Geist, mit dir zu zweien
Braust mein Glück dem Sturme gleich. -

- Und daß ewig das Gedächtnis
Solchen Glücks, nimm sein Vermächtnis,
Nimm den Kranz hier mit hinauf!
Wirf ihn höher, ferner, weiter,
Stürm empor die Himmelsleiter,
Häng ihn - an den Sternen auf!

(Friedrich Nietzsche, An den Mistral, Ein
Tanzlied. Aus: Die fröhliche
Wissenschaft. („la gaya scienza“)
Anhang: Lieder des Prinzen Vogelfrei, S.
348-350, Leipzig, 1887)

An den Mistral

iv

Danksagungen

Wolfgang Nejdl

Für die Möglichkeit, an diesem herausragenden Institut arbeiten zu können

Wolf Siberski

Für die hervorragende Betreuung und viele geistreiche Stunden

Thomas Risse

Für die stimulierende Zusammenarbeit an nicht immer einfachen Projekten

Allen, mit denen ich gearbeitet, geforscht, gelitten habe

Xuan Zhou, Daniel Wichert, Enrico Minack, Nina Tahmasebi, Kaweh Djafari

Naini, Sergiu Chelaru, Ismail Sengor Altingövde, Berkant Barla Cambazoglu,

Ingmar Weber, Przemyslaw Grabowicz, Luca Maria Aiello, Tu Ngoc Nguyen,

Uwe Thaden

Unseren unersetzlichen Technikern und Sekretärinnen

Dimitar Mitev, Marco Schneider, Olaf Jansen-Olliges, Jan-Hendrik Zab,

Sebastian Gerecke, Susanne Elsner, Michaela Kleiner, Iris Zieseniß

Meinen ewigen Mitstreitern

Fabian Cholewa und Sebastian Schildt

Nicht zuletzt meinen Eltern, für ihre immerwährende Unterstützung, sowie

meinem Bruder Ivo und seiner Frau Julia.

Und zum Schluß: Ihnen, dem unverhofften Leser!

v

Contents

1.	 User Intent on Retrieving Data ... 1	

1.1	 Keyword Search in Databases .. 4	

1.2	 Form Based Keyword Search ... 5	

1.3	 Graphical Query Specification ... 6	

1.4	 Faceted Search ... 7	

1.5	 Visualising Result Sets .. 8	

1.6	 Open Issues .. 8	

1.7	 Outline ... 9	

2.	 Publications .. 10	

3.	 SUITS: Constructing Structured Queries from Keywords 11	

3.1	 Introducing SUITS ... 12	

3.2	 Architectural Overview .. 15	

3.3	 Query Generation and Ranking .. 17	

3.3.1	 Query Template Generation ... 17	

3.3.2	 Query Generation ... 19	

3.3.3	 Ranking Queries ... 20	

3.4	 Query Construction Options .. 23	

3.4.1	 Constructing a Query using the Partial Query Hierarchy 23	

3.4.2	 Ranking Partial Queries ... 25	

3.5	 Query Processing .. 26	

vi

3.5.1	 Top-k Queries ... 26	

3.5.2	 Optimization Using the Query Hierarchy .. 27	

3.6	 Evaluation ... 30	

3.6.1	 Experiment Setup ... 30	

3.6.2	 Query Ranking Effectiveness ... 32	

3.6.3	 Option Ranking Effectiveness .. 34	

3.6.4	 Performance Study ... 35	

3.7	 Related Work .. 38	

3.8	 Discussion ... 40	

4.	 QUICK: QUery Intent Constructor for Keywords .. 42	

4.1	 QUICK Overview ... 44	

4.2	 Query Construction Framework .. 45	

4.2.1	 Preliminaries ... 45	

4.2.2	 From Keywords to Semantic Queries ... 46	

4.2.3	 Construction Guides for Semantic Queries 49	

4.3	 Query Guide Generation ... 52	

4.3.1	 Straightforward Guide Generation .. 53	

4.3.2	 Incremental Greedy Query Guide Generation 55	

4.4	 Query Evaluation ... 57	

4.5	 Experimental Evaluation ... 58	

4.5.1	 Experiment Setup ... 58	

4.5.2	 Effectiveness of Query Construction .. 59	

vii

4.5.3	 Quality of the Greedy Approach ... 61	

4.6	 Discussion ... 63	

5.	 A Facetted Query Interface for Customer Service 66	

5.1	 Devising an Interface for Business Use .. 67	

5.2	 Making Data Semantic .. 69	

5.3	 Evaluation ... 71	

5.4	 Discussion ... 73	

6.	 Querying with Generated Domain Knowledge ... 74	

6.1	 Introduction ... 75	

6.2	 Related Work .. 76	

6.3	 From Text to Ambient Perception ... 77	

6.3.1	 The Processing Pipeline for Word Sense Discrimination 77	

6.4	 User-Interface and implementation ... 78	

6.4.1	 Professional User-Interface .. 79	

6.4.2	 Ambient User-Interface .. 81	

6.5	 Evaluation ... 81	

6.5.1	 Corpus .. 81	

6.5.2	 Cluster Quality .. 82	

6.6	 User-Study .. 83	

6.6.1	 Participants ... 83	

6.6.2	 Procedure ... 84	

6.6.3	 Results ... 84	

viii

6.7	 Discussion ... 85	

7.	 Conclusion .. 87	

8.	 References ... 90	

9.	 Wissenschaftlicher Lebenslauf ... 100	

List of Figures

Fig. 1: Process model of information searching activities [4] 3	

Fig. 2: Architecture of Discover [11] .. 4	

Fig. 3: SUITS support of the query process .. 11	

Fig. 4: Interface of SUITS .. 14	

Fig. 5: Architecture of SUITS .. 16	

Fig. 6: The Schema Graph of a Movie Database .. 17	

Fig. 7: A Query Template (non-free nodes bold) ... 18	

Fig. 8: Query Searching for a Movie acted by Al Pacino and De Niro 19	

Fig. 9: Hierarchy of Partial Queries ... 24	

Fig. 10: Mean Reciprocal Rank, IMDB .. 31	

Fig. 11: Mean Reciprocal Rank, Lyrics ... 31	

Fig. 12: Term-Attribute Ranking Parameters .. 35	

Fig. 13: Performance Measurement .. 37	

Fig. 14: QUICK support of the query process ... 42	

Fig. 15: QUICK User Interface .. 44	

ix

Fig. 16: Sample query templates for the IMDB schema; the terms in gray

represent instantiations of these templates to semantic queries for ‘wright

london’ ... 47	

Fig. 17: Part of a query guide for ‘wright london’ ... 50	

Fig. 18: Query construction cost histograms for IMDB (left) and Lyrics (right) for

three different query space sizes .. 59	

Fig. 19: Histograms of the number of interactions and average click position .. 61	

Fig. 20: Varying number of partial queries .. 62	

Fig. 21: Varying number of semantic queries .. 62	

Fig. 22: Varying coverage of partial queries .. 63	

Fig. 23: Facetted Interface support of the query process 66	

Fig. 24: Facetted Semantic Interface for Retrieving Customer Service

Documents .. 69	

Fig. 25: Schema of the FIZ Thesaurus .. 69	

Fig. 26: Facet generating algorithm .. 70	

Fig. 27: Graph generated for the term Titan .. 71	

Fig. 28: Mobile Interface support of the query process 74	

Fig. 29: Overview oft he word sense discrimination processing pipeline 77	

Fig. 30: Curvature values visualized by nodes showing name:curvature value 78	

Fig. 31: Tablet Interface for Analysing Term Clusters 79	

Fig. 32: Ambient user-interface showing example phrases for term Anthrax 80	

Fig. 33: Number of articles and average length of articles in The Times Archive

from 1785 to 1985 ... 82	

x

Fig. 34: Evaluation results of Queries in Table 4 rating 1-5 from very good to

bad on how clear the meaning of a term became, information quantity, and

ambient usability ... 85	

List of Tables

Table 1: Query Hierarchy Influence on the IMDB Database 38	

Table 2: Query Hierarchy Influence on the Lyrics Database 38	

Table 3: Effectiveness of QUICK for IMDB and Lyrics 60	

Table 4: Query terms used in user-study .. 84	

List of Definitions

Definition 1: Schema Graph .. 17	

Definition 2: Structured Query ... 19	

Definition 3: Query Result ... 20	

Definition 4: Sub-query Relationship ... 23	

Definition 5: Knowledge Base ... 46	

Definition 6: Schema Graph .. 46	

Definition 7: Query Template .. 47	

Definition 8: Semantic Query .. 48	

Definition 9: Sub-query, Partial query ... 49	

Definition 10: Query Construction Graph .. 51	

Definition 11: Query Guide .. 51	

Definition 12: Interaction Cost of a Query Construction Graph 52	

Definition 13: Minimum Query Construction Graph ... 52	

xi

Definition 14: minSetCover ... 55	

Definition 15: Total estimated cost .. 57	

List of Algorithms

Algorithm 1: Algorithm for Top-k Queries .. 29	

Algorithm 2: Straightforward Query Guide Generation 54	

Algorithm 3: Incremental Greedy Query Guide Generation 56	

Algorithm 4: The Castanet Algorithm as of [66] .. 68	

Other Lists

Lemma 1: Query Construction Graph properties .. 53	

Theorem 1: Connectivity of a schema graph .. 19	

Theorem 2: Empty Result Set Transitivity ... 27	

Theorem 3: The minConstructionGraph problem is NP hard 55	

1. User Intent on Retrieving Data

 1

1. User Intent on Retrieving Data
Finding relevant information is much more than just devising a keyword query

and evaluating the retrieved information. This chapter introduces the cognitive

process of information retrieval as a circular task, starting from the problem

identification, via the articulation phase to the actual query formation and

reformulation, followed by result evaluation, which can lead again to

reformulating the problem, depending on the results. We discuss how this

process can best be modelled to help a user in finding relevant information.

In the age of Web 2.0, ever more data is produced, managed, and made

publicly accessible. Most of this data is in the so-called hidden web, which

essentially implies it is stored in structured data stores and accessible mostly

through forms or other means. This hidden part of the web is estimated to be

400 – 550 times larger than the plainly visible web [1], [2]. While already the

sheer amount of information seems to necessitate new innovations, and feeds

the hope for an age of information and knowledge, finding relevant information

satisfying the information need becomes increasingly difficult. For the typical

user, it often feels like having to find the proverbial needle in a haystack.

Keyword search is currently the state-of-the-art solution for easy information

access, as keyword based search engines like Google impressively display.

These technologies are prefect for document-based retrieval, which covers a

huge part of the available information. While classical IR technologies work very

well for text collections or web pages, they are not easily applicable to

structured data. This is an important issue for accessing the web, as mentioned

about 80% of the web are dynamically generated – and thus typically stored in a

structured way in a RDBMS or Knowledge Base. Having a way to access these

data in an as easy fashion as by keyword search is important, as only by this

accessing this data will be feasible by the common end user, as “Thirty years of

research on query languages can be summarized by […] end users will not

learn SQL;” [3].

To make IR technologies applicable to structured data, the current state-of-the-

art way is to interpret tuples as partial documents. A full document is formed by

a series of joining tuples, which connect all query terms in a compact manner.

1. User Intent on Retrieving Data

 2

The challenge now is identifying the right series of tuples, as the space of

possible combination of the tuples grows exponentially [4].

The usual approaches try to rank this result space, but don’t allow the user to

control the actual search process. This is even more important with searches on

structured data compared with search on documents, as structured data allows

for many different semantic interpretations of a query; e.g. when searching in a

movie database, the user typically knows which keyword is an actor name, and

which should be contained in the movie’s title. If this semantic information is not

controllable by the user, a search process can easily become frustrating, as

there is no direct way in removing results that obviously don’t match the

intended semantic meaning of the user’s keyword query.

To achieve an understanding of the needs of end users, this chapter will first

introduce results from cognitive psychology [5], [6] about the search process in

general, and then discuss how existing work supports users in this process.

We follow the model as presented in [5], which details four phases of the search

process, as Fig. 1 shows.

The problem identification phase serves the identification of the information

need. In this phase, the actual goal of the search is specified. Now, in the need

articulation phase, the identified need is formulated on a conceptual level, and

then (para-)phrased in a step-by-step manner. The concepts needed for this

step can either originate from the user’s long-term memory, or from external

sources. During the query formulation phase, these phrases, which still are in

natural language, are now cast into formal queries as understood by the IR

system. This implies e.g. choosing suitable query terms, and system specific

search operators for controlling the retrieval process, depending on the IR

system.

1. User Intent on Retrieving Data

 3

The result evaluation phase now follows after executing the search. Here, the

user decides whether the results are satisfactory, or if the search needs to be

continued. For evaluation, several approaches are feasible; foremost, scanning

the results allows to quickly discriminating possibly interesting results from

obviously negligible ones. Then, prospectus results are analysed more deeply

by sampling. Finally, the most promising results can be inspected thoroughly.

If the results contain the needed information, the search process is successfully

terminated. If not, the user needs to go back to the need articulation phase, or

even to earlier phases, to concretize the search intent in a machine

understandable way.

The underlying complexity of the whole query process makes it necessary for a

good IR system to not only focus only on the technical execution of queries, but

also on supporting the other phases of the process. To achieve this, methods

Identify
problem

Articulate
needs

Query
formulation /
reformulation

Evaluate
results

Unsatisfactory
results

User goalsFailed search

Concepts

Domain
Knowledge

Search
Technology
Knowledge

IR System

Results

Create & execute
query

External task
information problem

OK search

Fig. 1: Process model of information searching activities [5]

1. User Intent on Retrieving Data

 4

specifically assisting query refinement and reformulation have shown to be

helpful [7–9].

As data in structured form does at most only partially consist of text in natural

language, it requires the user to bring forth a significantly higher cognitive effort

for this than in classical text search. Specifically for a classical RDBMS, not only

knowledge of the underlying query language, but also of the underlying schema

of the data source is required. For the less experienced users, already this is an

insurmountable obstacle. As specifically this group of users is currently growing

[10–12], easy-to-use systems are increasingly indispensable in most contexts.

This led in the recent years increasingly to research proposing methods

allowing to intuitively formulating queries.

1.1 Keyword Search in Databases

The request for easy

accessibility of databases is

nearly as old as relational

databases themselves. An

early attempt to alleviating this

issue is Universal Relation

[13]. The relational model

improved on previous

technology as it removed the

need to know physical paths,

i.e. the file system structure.

However, the relational model

still needs logical navigation,

as access paths and relations

have to be exactly specified.

Universal Relation allows a

user to specify query without

having to specify the concrete access path, while the system tries to figure out

the intended path itself. Still, the user has to know the attribute names, and the

schema restricts joins.

Fig. 2: Architecture of Discover [11]

1. User Intent on Retrieving Data

 5

Later, several approaches to keyword search in databases emerged [11], [12],

which do not necessitate the user to know the schema. All were driven by the

idea to bring the easiness of keyword search from the web to databases. The

idea is that a user only has to specify keywords, while the system tries to guess

the intended join path (in this context called tuple tree) and the intended

attribute for each keyword. This approach is more complex than Universal

Relation, as here the schema may be walked through several times and the

system has to also guess the intended attributes. As there are usually several

tuple trees matching the query terms, these systems usually employ ranking to

deal with this ambiguity. These algorithms have been continuously developed in

the last years [9], [14–16].

An inherently different approach is proposed by [17], which first transforms the

data into a graph, and by this reduces the problem of keyword search to finding

the Minimum Steiner Tree. Continuations of this idea are [17–19], who develop

a coherent framework for keyword search in structured data. Further

approaches are introduced in [8], [20], [21].

By this approaches, the need articulation phase is made considerably easier,

and allows an intuitive access. Unfortunately, the complete query process as

discussed above is only partly supported. E.g., the user cannot specify the

interpretation of the given query terms, which would help ranking tremendously.

A reformulation of the query intention is not supported, if the algorithm in use

does not recognize the intention of the query, as only the terms of a query can

be changed.

Therefore, the user has to rely on the ranking heuristics identifying the preferred

intention in order to find the needed information fast. As we observed, this is

often not the case.

1.2 Form Based Keyword Search

The most common method for accessing structured data is by employing forms.

Here, the system architect specifies the query intentions during the system’s

design phase, and accordingly designs query forms. Commonly, these forms

are static and usually only allow to switch to an advanced version if a more

1. User Intent on Retrieving Data

 6

refined query specification is needed. Forms therefore are a very easy and

intuitive methodology for accessing structured data, but for the price of a very

narrowly specified expressivity. A system designed in such a way prevents the

ordinary user from issuing queries of an intent not previously foreseen.

A noteworthy exception is [22], which allows the user during the query

formulation phase to dynamically extend and modify the query, in order to

match it more closely the information need. A continuation of this approach

defines in [23] a ranking on automatically generated forms, based on the data’s

schema. This allows for choosing the most useful search attributes from a given

data source. The limitation here is that only queries referring to one table are

supported, joins can therefore not be expressed.

Other, similar systems allow for a more dynamic form composition [24–26], but

struggle to hide the inherent complexity in an intuitive user interface. The

expressed target audiences for these tools are developers, for who constructing

queries in comparison to using formal query languages is made comparably

easier.

1.3 Graphical Query Specification

Visual query tools are another possibility to formulate complex queries, as

discussed by [27]. Usually, a graphical notation of the chosen query language is

defined, and a user interface is proposed, which guides in constructing a

syntactical correct query [28–30]. Such tools are also commercially available,

but the requirements for using these are steep. For satisfactory results, the user

needs to have a general understanding of the underlying query language, and

the query formulation process still requires a high degree of abstraction from the

semantic view on the information need, which is the starting point for a normal

search process. These techniques therefore require less knowledge of the

employed search technology in the query formulation phase. Still,

understanding the data sources’ schema remains the more difficult part of this

phase [30].

1. User Intent on Retrieving Data

 7

1.4 Faceted Search

Faceted search is an approach that supports the complete query process [31],

[32]. The main idea is to create facets out of the available document properties

by defining a set of orthogonal categories. By selecting values or ranges of

values, the search space is gradually limited. Additionally, query terms can be

entered to refine the search. An evolved representative of this approach is

mSpace [33], which represents facets by ordered columns, allowing for

incremental refinement of each column.

Although this concept is confusing at first, it reveals its power after a modest

settling period. A long term study by [34] revealed, that users in the beginning

prefer the keyword search capabilities of the system, but quickly adopt to the

faceted system, and start to preferably use it.

Means to dynamically extract facets is proposed by [35], which effectively

supports search in big collections of pictures. An algorithm for automated

extraction and evaluation of facets from structured data is introduced by [36].

Facetedpedia [37] automatically extracts facets from Wikipedia, in order to

support search and exploration in such text corpora. Further developments are

described by [38], [39].

In general, the main advantage of faceted search is supporting the complete

search process. The result set is already previewed during the need articulation

phase, and conditions can be dynamically added to and removed from facets. A

drawback shared with form-based systems is the limitation to flat data, i.e. joins

are not supported.

A specifically interesting approach here is Feldspar [40], which allows for a so-

called associative search. The data is represented as a graph, and the user

interface allows to specifying associative connections, e.g. “where's the

webpage related to Email related to Person related to Event related to Date xy”.

Such paths can be arbitrarily long, and go far beyond the expressivity allowed

by classical faceted search, as they allow specifying unambiguous queries by

this approach.

1. User Intent on Retrieving Data

 8

The limitation here is that only paths, not graphs can be specified. Therefore,

only a small part of the query space can be reached.

1.5 Visualising Result Sets

Queries on structured data often return a result set so big that returning the

complete set to the user is not feasible. In order to allow users to get an

overview of the result, methods like clustering or hierarchisation are of help.

These aggregate sets sharing similar attributes and visualise them by only one

attribute. The success of these methods depends strongly on the choice of this

aggregated attribute, as a user has to recognize it as being relevant for the

query [41] issued. Here, multimedia previews are employed when the user

hovers the mouse above a facet. A user study showed this to significantly help

users in their search.

Another opportunity to help the interactivity of a user interface is employing

animations [34], [42]. A further effective means are soft transitions, e.g. by using

zooming. An interesting approach is presented by WaveLens [43], which allows

to zoom into particular results. By doing so, the preview originally shown is

extended. An in-depth overview of this field is e.g. given in [44].

1.6 Open Issues

The discussed groups of approaches exhibit several different advantages and

disadvantages; tools for graphically specifying classical database queries allow

for the full expressivity, but still require expert knowledge with regard to the

formal query language and schema of the data source employed. As of this, the

usability for typical users is limited.

Faceted search does offer sufficient support of the query process, but at the

expense of expressivity of the queries. Relations and joins are either not

supported, or in a very restricted way. Understandably, work here focuses first

and foremost on the user-interface, and leave aspects like scalability to other

lines of research.

Ranking based approaches on the other hand support complex schemas

without requiring expert knowledge by the user. The drawback here is that the

1. User Intent on Retrieving Data

 9

query process as a whole is not considered; if the intended information is not

among the highest-ranking results, the user is left with no options of effectively

refining the query, i.e. the semantic of queries is systematically ignored.

1.7 Outline

In the following chapters we will discuss several approaches, which aim to

tackle the issue of supporting the user during the search process1, as outlined

in Fig. 1. In Chapter 2, we present an approach for keyword search based

ranking in relational database systems and RDF stores, called SUITS. This

approach supports mainly the need articulation phase, but also partially the

query formulation phase. In Chapter 4, we discuss QUICK, which aims to fully

support all possibly user intents with a keyword query on RDF stores.

Accordingly, it fully supports the need articulation phase, as well as the query

formulation phase, and finally also the result evaluation phase. Although this

approach offers the best support for the query process, it does not offer ranking

support, which would make frequent queries considerably easier to construct,

and also makes no use of domain knowledge. Chapter 5 we present a ranking

based approach for facetted search on relational database systems, which

makes use of external domain knowledge. This system supports the result

evaluation phase, as well as the query formulation phase, but offers only partial

support for the need articulation phase. In Chapter 6, we introduce a system

aimed for mobile use, that automatically generates the needed domain

knowledge, and fully supports the need articulation phase and the query

formulation phase. Finally, in Chapter 7, we conclude this thesis.

1 No technical system can (currently) directly support the problem identification

phase, because current systems need the user to articulate (i.e. cast in words)

the problem and enter (i.e. using a keyboard) these words in order to help

finding information.

2. Publications

 10

2. Publications
1. Enrico Minack, Wolf Siberski, Gideon Zenz, Xuan Zhou, SUITS4RDF:

Incremental Query Construction for the Semantic Web, International

Semantic Web Conference (Posters & Demos) 2008

2. Xuan Zhou, Gideon Zenz, Elena Demidova, Wolfgang Nejdl, SUITS:

Constructing Structured Queries from Keywords, Technical Report, 2008

3. Elena Demidova, Xuan Zhou, Gideon Zenz, Wolfgang Nejdl, SUITS:

Faceted User Interface for Constructing Structured Queries from

Keywords, The 14th International Conference on Database Systems for

Advanced Applications (Best Demo Award), 21-23 April 2009, Brisbane,

Australia

4. Gideon Zenz, Xuan Zhou, Enrico Minack, Wolf Siberski, Wolfgang Nejdl,

From keywords to semantic queries - Incremental query construction on

the semantic web, J. Web Sem. 7, 3 (2009), 166-176 (Most Cited Article

Award 2006-2010)

5. Kerstin Denecke, Gideon Zenz, Wladimir Krasnov, Semantic Web

Technologies to Improve Customer Service, International Semantic Web

Conference 2009, October 2009, Washington, USA

6. Nina Tahmasebi, Gideon Zenz, Tereza Iofciu, Thomas Risse, Terminology

Evolution Module for Web Archives in the LiWA Context, In Proc. of 10th

International Web Archiving Workshop in conjunction with iPRES in

Vienna, Austria, 2010

7. Gideon Zenz, Nina Tahmasebi, Thomas Risse, Language Evolution On

The Go, SAME 2010 - 3rd International Workshop on Semantic Ambient

Media Experience (NAMU Series) November, 10th-12th November 2010

in conjunction with AmI-10 in Malaga, Spain

8. Gideon Zenz, Xuan Zhou, Enrico Minack, Wolf Siberski, Wolfgang Nejdl,

Interactive Query Construction for Keyword Search on the Semantic Web,

chapter in book “Semantic Search over the Web”, Data-Centric Systems

and Applications, Springer 2012, pp 109-130

9. Gideon Zenz, Nina Tahmasebi, Thomas Risse, Towards mobile language

evolution exploitation, J Multimed Tools Appl., Springer, 2012

3. SUITS: Constructing Structured Queries from Keywords

 11

3. SUITS: Constructing Structured Queries from
Keywords

Keyword queries are meanwhile the most common and effective way to

accessing unstructured web data, but it fails to be effective to accessing

structured web data. We devised SUITS, an interactive mechanism to construct

the intended query for structured data using a ranking based approach, and

amends this by offering query construction options for guiding the ranking

algorithm. As can be seen in Fig. 3, SUITS offers direct support for the need

articulation phase, as well as the query formulation phase. The query

construction options, which allow specifying the schema of query terms, i.e.

‘hanks’ as actor name, it also allows limited support for the query reformulation

and result evaluation phase.

Identify
problem

Articulate
needs

Query
formulation /
reformulation

Evaluate
results

Unsatisfactory
results

User goalsFailed search

Concepts

Domain
Knowledge

Search
Technology
Knowledge

IR System

Results

Create & execute
query

External task
information problem

OK search

Fig. 3: SUITS support of the query process

3. SUITS: Constructing Structured Queries from Keywords

 12

Relevant publications for this chapter:

• Enrico Minack, Wolf Siberski, Gideon Zenz, Xuan Zhou, SUITS4RDF:

Incremental Query Construction for the Semantic Web, International

Semantic Web Conference (Posters & Demos) 2008

• Elena Demidova, Xuan Zhou, Gideon Zenz, Wolfgang Nejdl, SUITS:

Faceted User Interface for Constructing Structured Queries from

Keywords, The 14th International Conference on Database Systems for

Advanced Applications (Best Demo Award), 21-23 April 2009, Brisbane,

Australia

3.1 Introducing SUITS

Today’s heterogeneous data management environments demand search

interfaces that are not only sufficiently expressive to exploit structured queries,

but also as intuitive and easy to use as keyword search. Furthermore, the

system should not force users to study and memorize schemas in advance. We

demonstrate this requirement within the following scenario:

Alice is searching for the movie “Hot Fuzz”2 in a video database. Unfortunately,

she forgot the movie title and only remembers one word “Fuzz”. In addition, she

knows that the director’s surname is “Wright” and that the story takes place in

London. Therefore, Alice issues a keyword query “Fuzz Wright London” to the

database. However, there are too many occurrences of these keywords in the

database, as these words are often used in movie titles, story descriptions,

person names, reviews and other attributes. Alice can thus obtain many results

but almost none of them are related to the movie “Hot Fuzz”. To better express

her intent, she starts to form the following structured query:

SELECT * FROM movie

WHERE movie.title CONTAIN “Fuzz”

AND movie.director.name CONTAIN “Wright”

AND movie.contents CONTAIN “London”

2 http://www.imdb.com/title/tt0425112/

3. SUITS: Constructing Structured Queries from Keywords

 13

However, it is very unlikely that the query is regarded as valid by the database,

as both table and attribute names do not match. To successfully issue this

query, Alice must first examine the database schema in order to specify the

correct tables and attributes, and then structure her query carefully. This

information finding process is troublesome and time consuming, especially if

Alice is used to Google-like interfaces to find appropriate information.

In this chapter, we present SUITS3, a novel search interface, which provides a

layer of abstraction on top of relational databases to smoothly integrate the

flexibility of keyword search and the precision of database queries. As shown in

Fig. 4, the SUITS interface consists of four parts: a search field for the user to

input keyword queries, a result window to present search results (at the

bottom), a query window to present structured queries (on the left) and a

faceted query construction panel providing query construction options (on the

right). To perform search, Alice first issues a keyword query, for instance “Fuzz

Wright London”. Besides returning a ranked list of results like standard keyword

search, the system will suggest to Alice a list of structured queries in the query

window to clarify her intent. The suggested queries assign different semantics

to the keywords. For example, some queries may search for movies with the

actor “Wright”, while others search for actors who incorporate a character

named “London”. If Alice identifies the query that represents her intent, she can

click on it so that the result window will zoom into the results of that particular

query. If she cannot identify the intended query and neither is satisfied with the

displayed results, she can go to the faceted construction panel to select some

query construction options suggested by the system and construct the intended

query incrementally. For example, she can specify that “Fuzz” must appear in

the movie title and “Wright” must be a director’s name. The query window will

change accordingly, to show only the queries satisfying the options she has

chosen. Interaction between Alice and the system continues iteratively until she

obtains the right query and/or satisfactory results.

3 SUITS: Structuring User’s Intent Towards Search

3. SUITS: Constructing Structured Queries from Keywords

 14

With the SUITS interface, users can issue database queries in an ad-hoc way

without any prior knowledge of database schemas. They start with some

keywords, which they believe to be sufficiently descriptive and then structure

their query progressively by following the system’s suggestions. Using the

interface, they can either: create a completely structured query by selecting one

from the query window (top left) or a partially structured query (top right) by

specifying appropriate query construction options. The type of interaction

depends on the degree to which users want or are able to clarify their intent.

Recently, a number of approaches [9], [11], [12], [14], [17], [45], [46] have been

proposed to realize keyword search over databases. Most of them adopt IR

style mechanisms, and return a long list of virtual documents as results (usually

graphs that connect the query terms). In contrast, SUITS attempts to help user

construct more expressive structured queries. For instance, a user may search

for all movies having Tom Hanks as an actor in 2001. Using traditional

keywords search, he has to go through the entire list of results to find the

answers. Using SUITS he gets the answers by simply choosing the relevant

structured query. In the areas of IR and the semantic web, there are some

emerging techniques [15], [16], [47] for interpreting users’ keyword queries into

Fig. 4: Interface of SUITS

3. SUITS: Constructing Structured Queries from Keywords

 15

structured queries. SUITS goes beyond these approaches by allowing users to

construct more general database queries in a progressive way, and by

optimizing query processing.

We present a detailed realization of the SUITS interface and the underlying

algorithms. Specifically, we realize the following contributions: (1) we propose

an architecture for the SUITS system; (2) we define a framework for

incrementally constructing relational database queries from keywords; (3) we

devise statistical methods for predicting user intended structured queries, which

exhibits better accuracy than previous work [9], [45] in ranking query result; (4)

we propose a method that exploits the relationship between queries to optimize

the performance of SUITS; (5) we conduct extensive experiments to evaluate

the effectiveness of SUITS and its various components.

The current SUITS system is designed for databases that contain mainly text,

as such databases are very common in many enterprise information systems

and web-based applications. Therefore, SUITS uses only limited types of

predicates in its structured queries; more complex structured queries will be

investigated in future work. When designing SUITS, we assume that the end

users are able to correctly understand structured queries presented by the

system, although they are unable to form valid structured queries without

investigating the database schema in detail. In practice, the assumption relies

on a well-defined database schema that is easily understandable as well as an

intuitive way for presenting structured queries (e.g. in figures or in natural

language). However, as it is not the goal of this work to design a presentation

layer for relational databases, we assume that these facilities are available.

3.2 Architectural Overview

The architecture of SUITS is shown in Fig. 5. Processing steps can be split into

two phases: an offline pre-computing phase and an online query phase. In the

pre-computing phase, SUITS creates inverted indices for all text columns in the

database, which will be used in both query generation and query execution. It

also generates query templates that are potentially employed by users when

forming structured queries. For example, users sometimes search for movies

with a certain character, and sometimes for actors who played in a certain

3. SUITS: Constructing Structured Queries from Keywords

 16

movie. These are all meaningful query templates to be generated in the pre-

computing phase.

The online query phase consists of three steps. In step 1, the system receives

the user’s keyword query and passes it to the full-text indices to check for

occurrences of the query terms in all tables and attributes. In step 2, it combines

these term occurrences with the pre-computed query templates to generate

meaningful structured queries. In step 3, the system ranks the structured

queries according to their likelihood of matching the user’s intent and returns

the top-k queries with non-empty result-sets. When generating structured

queries in step 2, the system also generates query construction options that the

users can use later in incrementally refining their keyword queries. These

options are ranked in step 3 and returned to the user. If the user selects some

of these options, the selected options are passed together with the keywords to

the query generation step (step 2) to filter out queries that do not satisfy the

selected options.

The success of the SUITS system relies on a number of steps: proper

generation of query templates, structured queries and query construction

Results:
·∙ Top-k Querys with
 Non-empty Results
·∙ Suggested Query
 Construction Options

Step 3Step 2Step 1

Generate Query
Templates

Generate DB
Queries & Query

Construction
Options

Keyword Query /
Specify Query

Construction Options

Rank DB
Queries & Query

Construction
Options

Check Term
Occurence

Terms /
Statistics

Database
Fulltext
Index

DatabaseDatabase
Schema

Fig. 5: Architecture of SUITS

3. SUITS: Constructing Structured Queries from Keywords

 17

options, effective ranking of queries and construction options, and efficient

query processing. We describe the detailed implementation of these steps in

the next three sections.

3.3 Query Generation and Ranking

Let us first describe the generation of structured queries using a set of

keywords and the assessment of their likelihood for matching user’s real intent.

Similar to previous approaches [11], [12], [14], we treat a result of keyword

search on relational databases as a joining network of tuples (also known as

tuple tree). In addition, we introduce definitions for schema graph, query

template and structured query. The examples given in this section are based on

a database of movies, which contains information about movies, actors,

directors and etc.

3.3.1 Query Template Generation

A query template is a structural pattern the user uses to query a database. For

example, users sometimes search for movies with a certain character, and

sometimes search for actors who have played in a certain movie. Both are

commonly used query templates. SUITS creates such query templates using

only the database schema.

Definition 1: Schema Graph

A schema graph is a

directed graph SG. Each

node in SG corresponds to a

table Ri in the database and

vice versa. Each edge in SG

corresponds to a primary-to-

foreign key relationship (Ri,

Rj) in the database and vice

versa. Fig. 6 gives the schema graph of the movie database.

Query Template: a query template is a connected non-cyclic graph QT, such

that each node in QT is a replica of a node in SG and each edge in QT is a

replica of an edge in SG. Each node in QT is labelled as non-free or free,

Director Directs

Movie

Genre

PlotActor Acts

Fig. 6: The Schema Graph of a Movie

Database

3. SUITS: Constructing Structured Queries from Keywords

 18

indicating whether the corresponding node should contain query predicates or

not.

As we consider databases that contain only text, the predicates used in

structured queries are limited to checking occurrence of terms. A predicate has

the form “k∈a”, specifying that each result must contain keyword k in attribute

a.

Fig. 7 shows an example of a

query template, which searches

for movies with two particular

actors. We can see that a query

template consists of tables and

foreign key relationships in the

schema graph, which may be

used repeatedly. Both actor

nodes are labelled to be non-free, indicating that a query created from the

template should specify predicates on both actor nodes.

Let ek be a node in QT and let (ei,ej) be an edge in QT. We use R(ek) to denote

the relational table ek corresponds to, and accordingly use (R(ej),R(ej)) to

denote the primary-to-foreign key relationship (ej,ej) corresponds to.

As described in the previous section, SUITS generates query templates to

cover all possible queries issued by users. Although these templates could be

manually generated by a database administrator, this would be a very time

consuming task especially when the schema graph is big. SUITS automatically

generates templates, following a set of rules, which are able to enforce

usefulness of the templates most of the time. These rules restrict templates by:

• maximum number of nodes

• maximum number of non-free nodes

• all leafs in a template must be non-free nodes

Movie
Actor

Actor

Acts

Acts

Fig. 7: A Query Template (non-free nodes

bold)

3. SUITS: Constructing Structured Queries from Keywords

 19

As we observed in a real-world query log described later in the experimental

section, user queries have limited complexity. A query usually involves only a

limited number of tables and predicates, which can be enforced by the

maximum numbers of nodes and the maximum number of non-free nodes in

the query template. For the movie database in Fig. 6, if we set the maximum

number of nodes to 7 and the maximum number of non-free nodes to 4, we

obtain most of the useful query templates. The third rule has been used in

previous work [9], [12], [14] for determining meaningful tuple trees, and it is

used by SUITS to avoid redundant query templates.

Theorem 1: Connectivity of a schema graph

If the connectivity of a schema graph SG, i.e. the maximum number of foreign

keys per table, is limited, and the maximum number of nodes in a query

template is limited, then the number of possible query templates based on SG is

linear in the number of nodes in SG.

As the connectivity of most real world database schemas is limited, we can

conclude from Theorem 1 that the number of query templates generated by

SUITS is only linear in the size of the input database schema.

3.3.2 Query Generation

As mentioned, given a

keyword query issued by

a user, SUITS first

checks for occurrences

of the keywords in all

tables and attributes to

create all possible

predicates, and then

applies these predicates

to the available query templates to generate all possible queries.

Definition 2: Structured Query

Given a keyword query K={k1,…,kn} and a query template QT, Q is a possible

structured query based on QT, iff: (1) Q is a graph that contains the same set of

nodes and edges as QT; (2) each non-free node in Q contains at least one

Fig. 8: Query Searching for a Movie acted by Al

Pacino and De Niro

3. SUITS: Constructing Structured Queries from Keywords

 20

predicate; (3) for each predicate “ki ∈a” in Q, ki is contained by K and there is at

least one occurrence of “ki ∈a” in the database. Fig. 8 shows an example query,

which is based on the query template in Fig. 6.

Definition 3: Query Result

A query result is a joining network of tuples in the database (also known as

tuple tree). A tuple tree T is a result of a query Q, if there is a bijective map

between the nodes in Q and the tuples in T, i.e. f:Q↔T, which satisfies: (1) for

each node ek in Q, the corresponding tuple f(ek) is contained by table R(ek); (2)

for each edge (ej,ej) in Q, the corresponding pair of tuples (f(ei),f(ej)) is

contained by the natural join R(ei) R(ej); (3) for each non-free node et in Q, the

corresponding tuple f(et) satisfies all the predicates et contains.

In practice, each structured query can be expressed using an SQL query that is

able to retrieve the complete set of results from the database. For a large

database such as IMDB, query terms usually occur in many tables, which may

increase the number of queries exponentially with the number of keywords and

thus can result in poor performance for long keyword queries. We will address

this issue in the query processing section.

3.3.3 Ranking Queries

Using the query generation algorithm of SUITS, a small number of keywords

may result in a large number of structured queries, whereas the user typically

intends only a specific one. Hence, queries generated by SUITS are ranked

based on their likelihood of being intended by the user before being executed in

the database, to improve the performance of query processing as well as the

appropriate presentation of results.

Most of the previous systems [12], [14] treat tuple tree based results as virtual

documents and rank them using IR methods, such as TF×IDF scores. Some

approaches [7], [9], [45] involve additional factors, such as tuple tree size,

distance between keyword occurrences, as well as term frequency

normalization based on attribute lengths. However, as their ranking functions

are designed for actual query results, they cannot be directly applied to

structured queries. Instead, we exploit the fact that the structure of database

3. SUITS: Constructing Structured Queries from Keywords

 21

schemas provides rich information that enables effective ranking of both

structured queries and results.

The SUITS ranking function is composed of three factors. The first factor,

Standardized Expected Results (SER), is a measure of whether a query would

retrieve a reasonable number of results. Typical users in an online session

intend their queries to be sufficiently representative and descriptive, so that they

can retrieve a small number of results. In other words, if a query returns too

many results, it is less probable to be intended by the user. This heuristic is

similar to inverse document frequency (IDF) in IR, which prefers documents

containing query terms of higher selectivity. Let Qr be an estimated number of

results to be returned by the query Q. We use the following function to compute

the SER score of a query Q:

SER(Q) = p1
Qr

2 + p1
2

(1)

SUITS estimates Qr by counting the number of tuples in the first table in Q,

multiplied by the cardinality of every join operation, and multiplied again by the

selectivity of every predicate. p1 is a tuning parameter that can be understood

as the maximum number of results normally intended by the user. While

Formula (1) is decreasing monotonously, its value remains quite large

(0.7<SER<1) as long as Qr<p1. Only when Qr is much larger than p1, the value

drops quickly. This characteristic is important, as users usually only intend the

number of results to be within a reasonable margin, but do not prefer smaller

results in each case. Our experiments show that p1=10 is a reasonable number

for generating good rankings.

The second factor we use is Attribute Completeness (AC), which measures how

completely each attribute in the predicates is covered by query terms. In

contrast to unstructured documents, a structured database is composed of

attributes of rather short length, such as names of persons or titles of movies.

According to our observation of real world query sets, users tend to use short

attributes more frequently and they often specify an attribute as completely as

possible in keyword queries. For example, users type in the full name of an

3. SUITS: Constructing Structured Queries from Keywords

 22

actor or the complete title of a movie. Although they are not able to explicitly

indicate these attributes in their keyword queries, they always have these basic

concepts in mind. We may therefore assume that the more complete an

attribute is covered by query terms, the more likely it is used in the intended

structured query. Let terms(a) be the number of query terms in a attribute a, and

attrlen(a) the average length of the attribute a in the database. Then the AC of a

query Q is calculated as follows:

()
()

Qa

Qa aattrlenp
atermspQAC

∈

∈
⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
+= ∏

1

2

2 1,
)(ln
)(lnmin)(

(2)

The function calculates the geometric mean of term coverage for all attributes in

the predicates of the query Q. We use ln(.) because smaller attributes such as

actor name need to be covered more completely than larger attributes such as

plots. In order to prevent attributes from being overly crowded by query terms,

term coverage of each attribute is limited to 1. p2 is a tuning parameter, which

we found to have good characteristics when set to 0.5.

The last factor we use is Term Completeness (TC), which measures the

percentage of terms in the keyword query included in the structured query. As

all keywords issued by the user should be related to the desired search results,

they should be included into the structured query as completely as possible.

Given a structured query Q and a set of query terms K, TC is defined as:

3

)(),(
P

K
QtermsKQTC ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

(3)

where terms(Q) is the number of keywords used in query Q, and p3 is a tuning

parameter to adjust the importance of this factor. Our experiments showed that

P3 = 8 is sufficient to enforce AND semantics in keyword queries.

The total score of a query is calculated by multiplying the partial scores.

),()()(),(KQTCQACQSERKQScore ⋅⋅= (4)

3. SUITS: Constructing Structured Queries from Keywords

 23

As all scores can be calculated without any access to the actual database, the

formula allows all queries to be ranked prior to their execution on the database.

While the information about schema and data structure as in the SER and AC

measures has never been used by previous approaches to rank results of

keyword search, our experimental evaluation shows that these factors are very

effective in ranking both structured queries and results.

3.4 Query Construction Options

Besides returning a ranked list of structured queries, SUITS suggests

appropriate query construction options to support users in incrementally

creating the intended structured query from their keywords. Choosing a query

construction option is equivalent to specifying a fragment of a structured query.

As illustrated in Fig. 4, SUITS allows users to choose the attribute a keyword

should occur in, which confirms one table and one predicate that should appear

in a query. Therefore, the query construction options returned by SUITS are

partial queries. Partial queries have the same definition as structured queries.

The only distinction is that a partial query is not regarded as a stand-alone

query but a fragment included in a complete query.

Definition 4: Sub-query Relationship

A query Q is a sub-query of another query Q’, i.e. Q ⊂ Q’, iff (1) Q ≠ Q’, (2) the

nodes and edges in Q are a subset of the nodes and edges of Q’, (3) each node

in Q has the same free/non-free label as the corresponding node in Q’, and (4)

the predicates used in each node in Q are also used in the corresponding node

in Q’.

The sub-query relationship is transitive. We say that Q is a direct sub-query of

Q’ if (1) Q ⊂ Q’ and (2) there is no query Q” such that Q ⊂ Q” and Q” ⊂ Q’.

3.4.1 Constructing a Query using the Partial Query Hierarchy

If we connect all possible partial queries using direct sub-query relationships,

we obtain a hierarchy of partial queries. At the bottom of the hierarchy are the

smallest partial queries that do not have sub-queries. These smallest partial

queries are also known as term-attribute combinations, which simply assign a

query term to a certain attribute in a certain table. At the top of the hierarchy we

3. SUITS: Constructing Structured Queries from Keywords

 24

have complete structured queries that can be utilized by the user to retrieve

intended results. SUITS lets users start with term-attribute combinations, and

gradually evolve them into larger partial queries by climbing the query hierarchy,

until they end up with a complete query.

Fig. 9 shows part of a partial query hierarchy for constructing the structured

query to search for the movie “Hot Fuzz”. A user issues a keyword query “Fuzz

London Wright”. For each of the keywords, SUITS provides a list of attributes

for the user to choose. For example, the user can specify whether “Wright”

should appear in the actor name, director name or movie title. After the user

specifies term-attribute combinations the system offers larger partial queries

that contain the selected combinations. For instance, after the user specifies the

director name “Wright” and movie title “Fuzz”, the system can suggest the

partial query that connects these two term-attribute combination using the

directs relation, as shown in the middle left of Fig. 9. Afterwards, the user can

assign “London” to the plot-text, and the system can suggest the partial query at

the top of Fig. 9, which is already a complete structured query.

As the example shows, when suggesting query construction options SUITS

starts from the bottom of the partial query hierarchy, i.e. term-attribute

combinations. A partial query is then suggested when the user has specified:

Fig. 9: Hierarchy of Partial Queries

3. SUITS: Constructing Structured Queries from Keywords

 25

• one of its direct sub-queries

• all the term-attribute combinations it comprises

These conditions attempt to suggest partial queries as small as possible to

ensure that the user can construct a query incrementally. To alleviate the

burden on the user, SUITS ensures that each suggested partial query and all

already selected partial queries could result in complete queries that return non-

empty result-sets.

After the user selects a partial query, the ranked query list presented is

reconsidered to include only the top-k queries comprising all selected partial

queries. With the introduced ranking function, users usually do not need to

completely construct a structured query from scratch. Our experiments showed

that, with smaller schemas, a desired query could be obtained specifying only

one or two term-attribute combinations.

3.4.2 Ranking Partial Queries

Depending on the size of the database schema as well as on the keyword query

given by the user, there could be too many partial queries that can be offered to

the user. Therefore, partial queries need to be ordered based on their likelihood

of being chosen by the user. For ranking partial queries, we use a similar but

slightly different formula from the one for ranking complete queries, as follows:

paps QACQSELQScore)()()(⋅= (5)

SEL(Q) denotes the selectivity of the partial query Q, which measures the

percentage of tuple trees instantiated from Q’s template can be selected by Q.

We use SEL instead of SER in Formula (4), because SER measures the

number of final results desired by users, which does not apply to partial queries.

AC(Q) is the previously introduced attribute completeness of Q. We do not

consider term completeness (TC), as partial queries do not need to contain all

queries terms. ps and pa are tuning parameters to adjust the weight of these

two factors.

3. SUITS: Constructing Structured Queries from Keywords

 26

When applying the ranking function to a term-attribute combination t∈a,

SEL(t∈a) is equivalent to the inverse document frequency of term t in attribute

a. So the formula changes to:

paps atACatIDFatScore)()()(∈⋅∈=∈
(6)

Our experiments show that an instantiation of these parameters as ps=0.5 and

pa=0.1 performs well for term-attribute combinations. Database usage statistics

can be used to further improve the ranking of partial queries. However, in this

work we concentrate on a generic ranking function that works without

knowledge of query statistics.

3.5 Query Processing

As stated earlier, the number of query templates generated by SUITS grows

linearly with the size of the database schema graph; the number of structured

queries for a keyword query can, in the worst case, grow exponentially with the

number of keywords provided by the user. Therefore, with a big database

schema and long keyword queries, SUITS will have to generate many

structured queries that can possibly be desired by the user. It is obviously

infeasible for SUITS to pre-execute all structured queries before presenting

results to the user. SUITS employs a top-k query approach to ease the burden

on the database and exploits the sub-query relationships to further optimize

query processing performance.

3.5.1 Top-k Queries

Instead of evaluating and executing all structured queries at once, SUITS first

executes the k highest ranked queries that return non-empty result-sets and

presents them to the user. Only when the user requests more results or

specifies some query construction options, SUITS proceeds to test additional

structured queries. Compared with usual top-k processing in databases, finding

top-k queries in SUITS is much simpler. As our ranking function does not

require any information about the query results, structured queries can be

ranked completely before accessing the database. Hence SUITS can rank all

queries in memory, and execute one query after another until it obtains k

queries that return non-empty result-sets. This ensues that SUITS achieves

3. SUITS: Constructing Structured Queries from Keywords

 27

better performance than recent approaches [14], [45], which have to retrieve the

results before ranking them correctly.

If a user issues too many keywords, the sorting of the complete set of structured

queries can become expensive4. In these cases the system can adopt

strategies of the Threshold Algorithm [48] or skyline query processing [45] to

avoid calculating the scores of many lowly ranked queries. As our experiments

showed that sorting is not a bottleneck of SUITS’s performance, we do not

discuss this issue further in this paper.

3.5.2 Optimization Using the Query Hierarchy

Even when using top-k queries the system can still be slow. As term

occurrences are usually distributed sparsely in a database, the chance for them

to be connected by tuple trees is small. Therefore, many structured queries

generated by SUITS, especially the highly selective ones, will not obtain results.

We observed that the proportion of structured queries that retrieve non-empty

result-sets decreases exponentially with the number of terms (see Appendix),

forcing the number of queries the system has to execute before it obtains top-k

non-empty queries to grow exponentially with the number of keywords. We

believe this is the potentially most significant performance bottleneck for SUITS.

Fortunately, we can utilize the sub-query relationship between structured

queries to constrain the number of executed queries to non-exponential order,

and thus significantly improve SUITS’s performance for processing long

keyword queries. With the definition of sub-query relationship, we can easily

prove the following theorem:

Theorem 2: Empty Result Set Transitivity

For any two structured queries Q and Q’, such that Q is a sub-query of Q’, if Q

returns an empty result-set then Q’ returns an empty result-set.

Using the sub-query relationship, SUITS can construct a hierarchy of structured

queries as shown in Fig. 9. When processing structured queries, SUITS starts

4 The complexity of sorting top k queries out of a set of n queries is n×log(k).

3. SUITS: Constructing Structured Queries from Keywords

 28

from the bottom of the query hierarchy, so that some structured queries can be

skipped if any of their sub-queries return empty result. The detailed algorithm

for processing top-k queries is given in Algorithm 1. The algorithm sequentially

executes the structured queries in the ranked list, until it finds k queries that

return a non-empty result-set. Whenever SUITS tests a query, it starts to

execute its sub-queries. Only if all the sub-queries return non-empty result-sets,

it executes the current query on the database, otherwise it skips the query.

Although the algorithm sometimes needs to execute additional queries that are

not included in the top-k queries returned to the user, it avoids executing a lot of

complex queries. Our experiments show that we can improve the performance

of SUITS significantly, especially when a user issues a long keyword query

(more than 3 keywords in our experiments).

We prove that, with this algorithm, the number of the structured queries

executed on the database will not grow exponentially with the number of

keywords. Therefore, we analyse why a query hierarchy can optimize the

performance for median and long keyword queries.

For simplicity, we consider only one query template and assume that each node

in the template contains only one attribute. We do not distinguish between free

and non-free nodes, and allow each node to contain zero or multiple predicates.

Suppose there are n nodes in the template. Given a keyword query with k

terms, if each term occurs in every table of the databases, the number of the

possible structured queries generated by SUITS will be n
i

⎛
⎝⎜

⎞
⎠⎟
*ni

i=1

k

∑ , which is

equivalent to

n + 1()k − 1. This explains why the number of queries can grow

exponentially with the number of query terms.

3. SUITS: Constructing Structured Queries from Keywords

 29

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

31)

32)

33)

34)

//Q[..] is a ranked list of structured queries.

//Initially Q[i].if_exe()=false for any i,

//because all queries have not been executed.

begin func top_k_queries(Q[1..n],k)

 nquery ::= 0;

 for i=1 to n

 if Q[i].if_exe()= false, then

 execute(Q[i]);

 end if

 if Q[i].if_empty()= false, then

 output(Q[i]);

 if ++nquery=k then

 return;

 end if

 end if

 end for

end func

begin func execute(q)

 QC[] = q.sub-query(); //all sub-queries of q

 for i=1 to n

 if QC[i].if_exe()= false, then

 execute(QC[i]);

 end if

 if QC[i].if_empty()= true, then

 q.if_empty()::= q.if_exe()::= true;

 return;

 end if

 end for

 DB.execute(q); //execute q on database

 q.if_exe()::= true;

 q.if_empty()::= DB.if_empty();

end func

Algorithm 1: Algorithm for Top-k Queries

3. SUITS: Constructing Structured Queries from Keywords

 30

Suppose there are m tuple trees instantiated from the query template and the

average selectivity of a term in a table is p (p<<1). Then the probability that a

structured query with k predicates will obtain non-empty result-set is

1− 1− pk()m .

This explains why the non-empty queries become more and more rare when the

number of query terms k increases.

By using a query hierarchy, a query is executed only when all its sub-queries

returns non-empty result. It can be proved that the expected total number of

queries to be executed is

1− 1− pi−1()m()i * k
i

⎛

⎝
⎜
⎞

⎠
⎟ * ni

i=1

k

∑ . This value is much smaller

than the number of possible queries, and it does not grow exponentially with k.

This explains why a query hierarchy can improve the performance of query

processing significantly.

3.6 Evaluation

We have implemented the SUITS system and conducted extensive experiments

using real world data and query sets for evaluating its performance. First, we

give an overview of our experiment setup. Next, we evaluate the precision of

SUITS in predicting user intended structured queries, followed by evaluating the

quality of query construction options suggested by SUITS. Finally, we study the

efficiency of SUITS.

3.6.1 Experiment Setup

3.6.1.1 Datasets

In our experiments, we used two popular real-world datasets: a crawl of the

Internet Movie Database (IMDB) and a crawl of a lyrics database from the web.

The IMDB dataset contains 7 tables as shown in Fig. 6, and more than 10

million records. The Lyrics dataset contains 5 tables, such as artists, albums

and songs, and around 400.000 records. The two datasets have different

characteristics. The IMDB database is larger and has a more complex schema,

it therefore allows for more complex structured queries. The keywords used in

different attributes of IMDB are more distinctive, such as movie titles and person

names. In contrast, the Lyrics database is smaller, and the songs and albums

3. SUITS: Constructing Structured Queries from Keywords

 31

contain a lot of common keywords, such “love”, “me”, “you”, which also appear

quite often in user queries. Evaluating our approach over these two different

data sets allows us to obtain a more complete view of SUITS’s usefulness.

3.6.1.2 Query Sets

In order to estimate the performance of SUITS in real-world settings, we used a

real-world query load created from the AOL query log, containing 35 million

queries. We filtered the queries by their visited URLs to obtain 3000 sample

queries for movie web pages and 2000 sample queries for lyrics web pages.

We observed that

most of the queries

in the samples used

rather simple

semantics, i.e. only

containing a movie

title or an actor

name, which cannot

fully reflect the

advantages of a

more complex

approach like

SUITS. We

therefore restricted

our experiments to

queries containing

at least two

attributes, such as

movie-actor and

artist-lyrics, and

finally including 108

queries for IMDB and 81 queries for Lyrics. These queries range from 2-6

keywords, with an average length of 4 terms. For each of the selected queries

we manually assessed its meaning and intended results by searching on the

Web, in order to determine the relevance of search results, and we always stick

Fig. 10: Mean Reciprocal Rank, IMDB

Fig. 11: Mean Reciprocal Rank, Lyrics

3. SUITS: Constructing Structured Queries from Keywords

 32

to the same interpretations during evaluation. As we did not implement schema

term or phrase recognition support, we removed schema terms from the queries

and manually phrased about 30% of the queries. We did not observe a

significant change in effectiveness from phrased queries to non-phrased ones.

3.6.1.3 Experiment Settings

We installed our databases on a dedicated MySQL 5.0.22 dual Xeon server

with 4 GB RAM. We manually increased the join-cache of MySQL server to

allow for longer queries. The SUITS system was implemented using JDK 1.5

and JDBC and installed on a laptop with a 2.0 GHZ C2D and 2 GB RAM. As all

experiments were conducted within our intranet, the performance of SUITS was

mainly limited by disk I/O.

3.6.2 Query Ranking Effectiveness

Our first set of experiments evaluated the precision of SUITS in predicting user

intended structured queries. Given a keyword query, we assess how well

SUITS can rank the corresponding structured query intended by the user. In

order to better assess SUITS’s ranking function for structured queries, we

compared SUITS against two state-of-the-art approaches for keyword search,

Effective5 [9] and SPARK [45]. Both approaches treat tuple trees as search

results of relational databases and order results using IR-style ranking

functions.

In the experiments, we retrieved for each keyword query the top-30 structured

queries returned by SUITS, and executed each structured query to retrieve at

most 10 valid tuple trees as query results from the database (30 is sufficiently

large to include most relevant results). We then ranked the tuple trees (query

results) using the three approaches. As the ranking functions of SPARK and

Effective were intentionally designed for tuple trees, we applied them directly.

The parameters we chose for these two algorithms are the ones suggested by

5 While we implemented all normalizations proposed, we did not implement

phrase or schema-term support.

3. SUITS: Constructing Structured Queries from Keywords

 33

the original papers. As SUITS’s ranking function is designed for structured

queries, it does not consider actual results, and thus uses less information in

ranking. For SUITS, we set the score of each tuple tree to the score of its

corresponding structured query, and ranked the tuple trees using the query

scores. The parameters we used for SUITS are p1=10, p2=0.5 and p3=8.

For measuring the effectiveness of ranking, we employ the reciprocal rank.

Given a query, the reciprocal rank is the inverse of the rank of the first correct

answer in the result list. Mean reciprocal rank is an average reciprocal rank over

a set of queries.

Fig. 10 and Fig. 11 give the mean reciprocal rank for the three approaches on

both datasets. In addition, the figures show the mean reciprocal ranks of SUITS

when not using one of the three factors, i.e. AC, TC and SER, in the ranking

function, to measure the importance of these factors.

We can see from the figures that SUITS and Effective exhibit comparable

effectiveness on IMDB, whereas SPARK performs slightly worse. On the Lyrics

dataset, SUITS outperforms both Effective and SPARK. We observed different

ranking behaviour for the tested approaches. Effective preferred long results,

i.e. those containing many tuples with many query terms. However, we also saw

that if the query terms do not appear in the right places, those results are not

necessarily relevant to the queries. In contrast, SPARK preferred short trees.

Although SPARK’s algorithm includes a factor adapted directly from the IR

literature [45] to enforce term completeness, i.e. all query terms being contained

by a result, it seems that this factor does not work very well for our structured

data, especially for the Lyrics dataset. The SUITS ranking algorithm was able to

rank the best result in a very high position for most cases. As SUITS’s ranking

function works on the query level, without knowing the actual results, it

sometimes may fail to give correct estimations of some factors. For example,

SUITS sometimes scored the AC factor too high, because the actual size of an

attribute in a particular tuple-tree can be much longer than the average size of

the attribute in the database. Even without knowing the actual tuples, though,

SUITS still achieved better effectiveness than the other two approaches. This

3. SUITS: Constructing Structured Queries from Keywords

 34

implies that information about schema and data structure, such as AC and SER,

can be very effective in ranking search results.

Fig. 10 and Fig. 11 also show that the three factors used in SUITS’s ranking

function are all important for effectively predicting structured queries intended

by users. Term completeness (TC) seems to be the most effective, because

most keyword queries issued by users assume AND semantics. Attribute

completeness (AC) seems to be equally important. It works especially well for

the IMDB dataset, because most IMDB queries refer to short attributes that

represent real-world entities, such as movie title and actor names, while many

Lyrics queries search for lyrics content. The number of expected results (SER)

is less important than the other two factors, although it still improved rankings

significantly.

To summarize, the experiments on IMDB and Lyrics showed that SUITS is able

to predict the structure behind a user’s keyword query with good precision.

3.6.3 Option Ranking Effectiveness

With a large database for which many query templates can be generated, it is

more difficult for SUITS to predict the right structured query in one step. In these

cases, the progressive query construction by choosing system suggested partial

queries becomes important to obtain the user intended queries. Our second set

of experiments thus evaluated the effectiveness of ranking query construction

options in SUITS.

As discussed in during introducing the query construction options, when a user

issues a keyword query, SUITS first suggests term-attribute combinations as

query constructions options. When the user specifies more than one term-

attribute combination, SUITS starts to suggest more complex partial queries.

However, as the IMDB and Lyrics datasets use rather small schemas, most of

the time users can already identify the intended structured query after selecting

one or two term-attribute combinations. Therefore, our experiments only

evaluated the ranking of term-attribute combinations. We considered the

rankings for different terms separately. For each term in a keyword query we

recorded the rank of the correct attribute it should appear in and calculated its

3. SUITS: Constructing Structured Queries from Keywords

 35

reciprocal rank. Finally, we computed the mean reciprocal ranks for both Lyrics

and IMDB datasets. As discussed, the ranking functions for term-attribute

combinations include both database specific and query specific factors, i.e.

attribute completeness (AC) and term selectivity (IDF). We evaluated the

importance of these two factors as well.

Fig. 12 presents our experiment results using only AC, only IDF, as well as the

proposed ranking function combining both factors. The results show that both

factors are positively correlated to the ranking of the correct term-attribute

combination. IDF seems to be

the most effective factor,

achieving 66-70% correctness.

In comparison, attribute

completeness had a smaller

impact, achieving 48-58%

correctness. The combination of

both factors using the formula 6

achieved 82-89% correctness,

which is a 16-19% improvement compared to using only IDF. The experiment

shows that our attribute ranking function is able to predict correct term-attribute

combination quite accurately.

3.6.4 Performance Study

Our third set of experiments studied the efficiency of SUITS. We used 2

measures in the evaluation: (1) number of SQL queries that need to be

executed on the database in order to obtain top-k structured queries that have

non-empty result-sets and (2) running time. We conducted experiments on both

IMDB and Lyrics. For each dataset we picked queries from the query log that

contain 2 to 6 terms, and grouped them by the number of terms. Then we

selected 20 queries from each group. In the experiments, we measured the

number of executed SQL queries and time required to obtain top-1, top-5 and

all non-empty queries for each group of keyword queries.

As Fig. 13 (a) and (b) show, SUITS provides very good performance for queries

containing 2 to 5 keywords. For almost all queries with less than 4 keywords,

Fig. 12: Term-Attribute Ranking Parameters

3. SUITS: Constructing Structured Queries from Keywords

 36

SUITS could retrieve the top-5 non-empty queries within 1 second. For most

queries with 4 or 5 keywords, SUITS could retrieve the top-5 non-empty queries

within 10 seconds. Running times were less satisfactory when the number of

keywords increased to more than 5. However, as we observed in our query log,

almost all real-world queries contain less than 6 keywords, which implies that

SUITS is able to handle the majority of queries for large datasets such as IMDB

and Lyrics. We also observe that SUITS displayed better performance on Lyrics

than on IMDB, because Lyrics has a smaller schema that produces less

structured queries to be tested.

In Fig. 13, (c) and (d) show the average number of SQL queries SUITS had to

execute in order to obtain the top-k non-empty structured queries. We can see

that many structured queries generated by SUITS return empty results. For

example, for an IMDB keyword query with 4 terms, SUITS had to try 100

structured queries on average to obtain the first non-empty one. This is the

most expensive overhead in query processing of SUITS, and it is actually a

common challenge for keyword search on relational databases.

We can see from the charts in Fig. 13 that the cost of query processing grows

fast with the number of terms in the keyword query. This increase is slowed

down by using the query hierarchy of SUITS, as shown by our next set of

experiments. The performance displayed in Fig. 13 shows that the growth of

overhead slows down when the number of terms reaches 5.

Our last set of experiments evaluated how the optimization based on the query

hierarchy can improve the performance of SUITS. We took the keyword queries

used in the previous experiment and executed them on two versions of the

SUITS system, where one version used the query hierarchy for optimization and

the other did not. For each run we retrieved top-5 non-empty structured queries.

We recorded the average number of executed SQL queries and the average

query execution time for both versions.

Table 1 and Table 2 compare the performance of the two versions of SUITS

and give the percentage of improvement.

3. SUITS: Constructing Structured Queries from Keywords

 37

We observe that for two keyword queries query hierarchy did not improve

performance and even slightly decreased it. This is because the structured

queries generated using two keywords are much more likely to obtain non-

empty result-sets, and by using the query hierarchy SUITS has to execute some

extra queries at the bottom of the hierarchy. However, when the number of

keywords grows, the improvement caused by utilizing the query hierarchy

increases exponentially. As shown in Table 1, for an IMDB query with 4 terms,

query hierarchy saves around 50% of time in query processing on average.

When the number of terms grows to 6, query hierarchy speeds up the whole

process by a factor of 8. The improvement using the query hierarchy for Lyrics

was smaller, because the Lyrics dataset allows for much less query templates,

(a) Execution Time, IMDB (b) Execution Time, Lyrics

(c) # of Queries, IMDB (d) # of Queries, Lyrics

Fig. 13: Performance Measurement

3. SUITS: Constructing Structured Queries from Keywords

 38

which result in much smaller query hierarchies. However, the trend of

improvement is similar to that of IMDB.

Table 1: Query Hierarchy Influence on the IMDB Database

Nr.

terms

Nr. SQL queries Time (ms.)

w/o H w/s H ratio w/o H w/s H ratio

2 14.5 20.5 0.7 613.7 643.8 0.9

3 85.7 66.9 1.3 1339.5 1279.0 1.0

4 467.3 177.8 2.6 6888.3 3765.6 1.8

5 4590.0 643.0 7.1 67276.0 15519 4.3

6 26908 1670.1 16.1 312028.2 35809 8.7

Table 2: Query Hierarchy Influence on the Lyrics Database

Nr.

terms

Nr. SQL queries Time (ms.)

w/o H w/s H ratio w/o H w/s H ratio

2 16.6 22.6 0.7 194.7 204.6 0.9

3 69.3 61.9 1.1 636.7 624.5 1.0

4 283.2 151.1 1.9 5143.8 4188.8 1.2

5 1237.4 458.3 2.7 24332.0 16813 1.4

6 4621.1 1223.9 3.8 95129.0 50022 1.9

Our experiments showed that SUITS offers good performance for short and

medium keyword queries, and successfully employs query hierarchies to

significantly reduce the overhead of query processing for medium and long

keyword queries.

3.7 Related Work

In recent years, conducting keyword search over relational data and XML

documents has been investigated extensively [7], [9], [11], [12], [14], [17], [45],

[46], [49]. Most of this work focuses on how to improve the efficiency in

processing keyword queries. As information relevant to a user query is

distributed in different tables and attributes in the database, the search engine

has to try many different ways to connect the information in order to obtain the

3. SUITS: Constructing Structured Queries from Keywords

 39

optimal search results, which incurs a large overhead. As shown by our

performance study, SUITS has to cope with the same problem as well. As

SUITS uses a ranking function for structured queries, this eases the burden of

top-k processing. SUITS’ query hierarchy also helps to improve performance

significantly. There is much less work on how to improve search quality in

databases. Most existing approaches treat search results as virtual documents

and ignore the rich semantics existing in their structures. SUITS goes a step

further to allow users to express their intents through structured queries, so that

they can utilize the structured information in the database to improve the

capability and the quality of information seeking. Moreover, SUITS also shows

that the structured information available in the database can enhance ranking

significantly.

Mapping keyword queries to structured queries have recently been investigated

in the areas of IR and the Semantic Web. In [15], the authors proposed to use

structured queries to interpret users’ intents in document retrieval. As its

purpose is not constructing structured queries for databases, the queries are

document centric and less general than SUITS’ queries. In [16], [47], the

authors proposed techniques for transforming keywords to structured semantic

queries. However, the queries considered are quite limited. As they do not filter

out the queries with empty results, users may have to choose from too many

possible queries. Moreover, all these previous approaches do not allow

incremental query constructions as SUITS does, which reduces their usability

when confronted with big data schemas.

Database usability [50] is an issue that has been studied for many years.

Natural Language Query Interfaces [51–53] for databases are intended to allow

users to specify structured queries in human language. Although this provides

certain flexibility for accessing a database, state-of-the-art natural language

interfaces still require users to use terminology compatible with the database

schema and form grammatically well formed sentences. SUITS offers users the

same expressivity for structuring their queries, but much more flexibility,

accepting simple keyword queries and requiring no a-priori schema knowledge.

Query Auto-completion [54], [55] is a technique that helps users form

appropriate structured queries by suggesting possible structures or terms based

3. SUITS: Constructing Structured Queries from Keywords

 40

on the partial query the user has already entered. By using the suggestions,

users can make correct database queries without complete knowledge about

the schema. However, as this technique still requires users to form complete

structured queries in order to access the database, it is less flexible than

SUITS, which allows arbitrary keyword queries and multiple user-system

interactions.

Recent work on XML retrieval [56], [57] and XML approximate queries [58], [59]

aims to provide interfaces that allow users to access XML data with only partial

schema knowledge. The expressivity of those interfaces is, however, bounded

by users’ schema knowledge. SUITS goes beyond this by allowing users to

structure their queries on the fly using schema knowledge suggested a

posteriori by the system.

3.8 Discussion

In this chapter we introduced SUITS, a novel interface allowing flexible access

to text databases with little knowledge about database schema or formal query

languages. SUITS lets users start with arbitrary keyword queries and then

allows them to structure / refine them incrementally, following suggestions given

by the system. In this way, the SUITS approach integrates the flexibility of

keyword search with the expressivity of database queries. We presented the

architecture and interface of the SUITS system, implementation of all its

components, as well as several new and important optimizations. We

conducted extensive experiments using real-world data sets and query loads

which showed performance and practicality of our approach.

From the query process perspective (c.f. Fig. 3, page 11), the ranking-based

SUITS approach nicely supports the need articulation and query formulation

phase. The offered query construction options offer limited query reformulation

support. The main limitation of these options is they only support 1:1 joins

through the RDBMS schema. Trees, or even more complicated structures are

not constructible. Therefore, not the full possible space of queries is reachable,

and not all possible user intended queries can be directly specified. While

ranking helps alleviating this issue for the most commonly intended results,

reaching less common ones becomes increasingly difficult, as it requires

3. SUITS: Constructing Structured Queries from Keywords

 41

increasingly more user interface interactions (e.g. scrolling in the result list) to

reach the intended answers.

4. QUICK: QUery Intent Constructor for Keywords

 42

4. QUICK: QUery Intent Constructor for Keywords
With QUICK6 we introduce a system for structured web data that directly

supports all query phases (c.f. Fig. 14). This is a big improvement from the

previously discussed SUITS system, as QUICK guides the user through an

incremental construction process “quickly” to the desired query.

It is mostly suitable for environments with very diverse and specific query

needs, where the user has basic knowledge of the underlying data’s domain.

Still, specific knowledge of details of the ontology, or proficiency in a query

6 QUery Intent Constructor for Keywords

Identify
problem

Articulate
needs

Query
formulation /
reformulation

Evaluate
results

Unsatisfactory
results

User goalsFailed search

Concepts

Domain
Knowledge

Search
Technology
Knowledge

IR System

Results

Create & execute
query

External task
information problem

OK search

Fig. 14: QUICK support of the query process

4. QUICK: QUery Intent Constructor for Keywords

 43

language are not needed. In that way, QUICK combines the convenience of

keyword search with the expressivity of structured, semantic, queries.

This chapter presents a detailed realization of the QUICK system, including the

following contributions: (1) we defined a framework for incrementally

constructing semantic queries from keywords; (2) we devised algorithms to

generate near-optimal query construction guides, which enable users to quickly

construct semantic queries; (3) to support the QUICK system, we designed a

scheme for optimizing the execution of full-text queries on RDF data; (4) we

conducted experiments to evaluate the effectiveness of QUICK and the

efficiency of the proposed algorithms.

Relevant publications for this chapter:

• Gideon Zenz, Xuan Zhou, Enrico Minack, Wolf Siberski, Wolfgang Nejdl,

From keywords to semantic queries - Incremental query construction on

the semantic web, J. Web Sem. 7, 3 (2009), 166-176 (Most Cited Article

Award 2006-2010)

• Gideon Zenz, Xuan Zhou, Enrico Minack, Wolf Siberski, Wolfgang Nejdl,

Interactive Query Construction for Keyword Search on the Semantic

Web, chapter in book “Semantic Search over the Web”, Data-Centric

Systems and Applications, Springer 2012, pp 109-130

4. QUICK: QUery Intent Constructor for Keywords

 44

4.1 QUICK Overview

As illustrated in Fig. 15, the interface of QUICK consists of three parts, a search

field (on the top), the construction pane showing query construction options (on

the left), and the query pane showing semantic queries on the right). Suppose a

user looks for a movie set in London and directed by Egdar Wright7. The user

starts by entering a keyword query, for instance ‘wright london’. Of course,

these keywords can imply a lot of other semantic queries than the intended one.

For example, one possible query is about an actor called London Wright.

7 Throughout this chapter, we use the IMDB movie data set as an example to

illustrate our approach.

Fig. 15: QUICK User Interface

4. QUICK: QUery Intent Constructor for Keywords

 45

Another one could search for a character Wright, who was performed by an

actor London. QUICK computes all possible semantic queries and presents

selected ones in the query pane. More importantly, it also generates a set of

query construction options and presents them in the construction pane. If the

intended query is not yet offered, the user can incrementally construct this

query by selecting an option in the construction pane. Whenever the user

makes a selection, the query pane changes accordingly, zooming into the

subset of semantic queries that conform to the chosen options. At the same

time, a new set of construction options is generated and presented in the

construction pane.

We call this series of construction options query guide, because it offers the

user a path to the intended query. In the screenshot, the user has already

selected that ‘london’ should occur in the movie plot, and is now presented

alternate construction options for ‘wright’. When the user selects the desired

query, QUICK executes it and shows the results.

The generated construction options ensure that the space of semantic

interpretations is reduced rapidly with each selection. For instance, by

specifying that ‘london’ refers to a movie and not a person, more than half of all

possible semantic queries are eliminated. After a few choices, the query space

comprises only a few queries, from which the user can select the intended one

easily.

4.2 Query Construction Framework

In this section, we introduce the query construction framework of QUICK. We

describe our model for transforming keyword queries to semantic queries using

an incremental refinement process.

4.2.1 Preliminaries

QUICK works on any RDF knowledge base with an associated schema in

RDFS; this schema is the basis for generating semantic queries. We model

schema information as a schema graph, where each node represents either a

concept or a free literal, and each edge represents a property by which two

4. QUICK: QUery Intent Constructor for Keywords

 46

concepts are related. To keep Definition 5 simple, we assume explicit rdf:type

declarations of all concepts.

Definition 5: Knowledge Base

Let L be the set of literals, U the set of URIs. A knowledge base is a set of

triplesG ⊂ (U ×U × (U∪ L)) . We use R = {r ∈U | ∃(s p o)∈G : (r = s ∨ r = o)} to

represent the set of resources, P = {p | ∃s,o : (s p o)∈G} to represent the set of

properties, and C = {c | ∃s : (s rdf : type c)∈G} to represent the set of concepts.

Definition 6: Schema Graph

The schema graph of a knowledge base G is represented by

SG = C, EC, EL() , where C denotes a set of concepts, EC denotes the

possible relationships between concepts, and EL denotes possible relationships

between concepts and literals. Namely, EC = {(c1,c2, p) | ∃r1,r2 ∈R, p∈P :
(r1, p,r2)∈G ∧ (r1 rdf:type c1)∈G ∧ (r2 rdf:type c2)∈G} , and EL = {(c1, p) |
∃r1 ∈R, p∈P,l ∈L : (r1, p,l)∈G ∧ (r1 rdf:type c1)∈G}

The schema graph serves as the basis for computing query templates, which

allow us to construct the space of semantic query interpretations, as discussed

in the following.

4.2.2 From Keywords to Semantic Queries

When a Keyword Query kq = {t1,,tn} is issued to a knowledge base, it can be

interpreted in different ways. Each interpretation corresponds to a semantic

query. For the query construction process, QUICK needs to generate the

complete semantic query space, i.e., the set of all possible semantic queries for

the given set of keywords.

The query generation process consists of two steps. First, possible query

patterns for a given schema graph are identified, not taking into account actual

keywords. We call these patterns query templates. Templates corresponding to

our example queries are:

‘retrieve movies directed by a director’ or ‘retrieve actors who have played a

character’.

4. QUICK: QUery Intent Constructor for Keywords

 47

Formally, a query template is defined as composition of schema elements. To

allow multiple occurrences of concepts or properties, they are mapped to

unique names. On query execution, they are mapped back to the corresponding

source concept/property names of the schema graph.

Definition 7: Query Template

Given a schema graph SG = (CSG ,ECSG ,ELSG) , T = (CT ,ECT ,ELT) is a query

template of SG, iff (1) there is a function τ :CT →CSG mapping the concepts in

CT to the source concepts inCSG , such that

(c1,c2, p)∈ECT ⇒ (τ (c1),τ (c2), p)∈ECSG and (c1,L, p)∈ELT ⇒ (τ (c1),L, p)∈ELSG ;

(2) the graph defined by T is connected and acyclic. We call a concept that is

connected to exactly one other concept in T leaf concept.

Fig. 16 shows three query templates with sample variable bindings. QUICK

automatically derives all possible templates offline from the schema graph (up

to a configurable maximum size), according to Definition 7. This is done by

enumerating all templates having only one edge, and then recursively extending

the produced ones by an additional edge, until the maximum template size is

reached.

Currently, we limit the expressivity of templates to acyclic conjunctions of triple

patterns. Further operators (e.g., disjunction) could be added, however at the

expense of an increased query space size.

DirectorMovie

directedBy

name

wright

Actor

name

wright

Movie

actsIn actedBy

title

london

title

london

Movie

title

wright

Movie
Character

title

london

Fig. 16: Sample query templates for the IMDB schema; the terms in gray

represent instantiations of these templates to semantic queries for ‘wright london’

4. QUICK: QUery Intent Constructor for Keywords

 48

In the second step, semantic queries are generated by binding keywords to

query templates. A keyword can be bound to a literal if an instance of the

underlying knowledge base supports it. Alternatively, it can be bound to a

concept or property, if the keyword is a synonym (or homonym) of the concept

or property name. A full-text index on the knowledge base is used to efficiently

identify such bindings.

Fig. 16 shows some semantic queries for the keyword set ‘wright london’, which

bind the keywords to the literals of three different query templates. The left one

searches for a movie with ‘wright’ and ‘london’ in its title. The middle one

searches for a movie with ‘london’ in its title directed by a director ‘wright’. The

right one searches for an actor ‘wright’ playing a character in a movie with

‘london’ in its title. Furthermore, keywords can also be matched to properties

and classes, such as ‘name’ or ‘Movie’.

Definition 8: Semantic Query

Given a keyword query kq, a semantic query is a triple sq = (kq,T ,θ) , where

T = (CT ,ECT ,ELT) is a query template, and θ is a function which maps kq to the

literals, concepts and properties in T. sq = (kq,T ,θ) is a valid semantic query, iff

for any leaf concept ci ∈CT , there exists a keyword ki ∈kq that is mapped by θ

to ci itself, or a property or a literal connected to ci .

The Semantic Query Space} for a given query kq and schema graph SG is the

set of all queries SQ = {sq | ∃θ ,T : (kq,T ,θ) is a query template} .

In our model, each term is bound separately to a node of a template. Phrases

can be expressed by binding all corresponding terms to the same property, c.f.

the left-hand example in Fig. 16. Additionally, linguistic phrase detection could

be performed as a separate analysis step; in this case, a phrase consisting of

several keywords would be treated as one term when guiding the user through

the construction process.

The QUICK user interface prototype shows the queries as graphs as well as in

textual form. The query text is created by converting graph edges to phrases.

For each edge connecting a concept with a bound property, we create the

4. QUICK: QUery Intent Constructor for Keywords

 49

phrase “<concept> with <keyword> in <property>'', using the respective

concept and property labels. If an edge connects two concepts, the relation is

translated to the phrase “this <concept1> <property> this <concept2>''.

For the second query in Fig. 16, the following text is be generated:

“Movie with ‘london’ in title and Director with ‘wright’ in name such that Movie

directed by this Director”.

As shown in the evaluation, a semantic query corresponds to a combination of

SPARQL triple pattern expressions, which can be directly executed on an RDF

store.

4.2.3 Construction Guides for Semantic Queries

QUICK presents the user with query construction options in each step. By

selecting an option, the user restricts the query space accordingly.

These options are similar to semantic queries, except they don't bind all query

terms. Therefore, the construction process can be seen as the step-wise

process of selecting partial queries that subsume the intended semantic query.

To describe precisely how a query guide is built, we introduce the notions of

partial query and of sub-query relationship. Our notion of query subsumption

relies on the RDF Schema definition of concept and property subsumption. Note

that our algorithms are not dependent on a specific definition of query

subsumption, it would work equally well with more complex approaches, e.g.,

concept subsumption in OWL.

Definition 9: Sub-query, Partial query

sa = (qa ,Ta ,θa) is a subquery of sb = (qb ,Tb ,θb) , or sa subsumes sb, iff:

(1) qa ⊂ qb

(2) there exists a sub-graph isomorphism φ between Ta and Tb , so that each

concept a1 ∈Ta subsumes φ(a1) and each property p∈Ta subsumes φ(p)

(3) for any k1 ∈qa ,φ(θa (k1)) = θb (k1)

4. QUICK: QUery Intent Constructor for Keywords

 50

A partial query is a sub-query of a semantic query.

For example, in Fig. 17, the partial queries pq1 , pq2 and pq3 are sub-queries of

sq1 , sq2 and sq3 respectively.

The construction options of QUICK are modelled as a Query Construction

Graph (QCG), as illustrated in Fig. 17. While the example shown is a tree, in

general the QCG can be any directed acyclic graph with exactly one root node.

Given a set of semantic queries SQ, a QCG of SQ satisfies:

(1) the root of QCG represents the complete set of queries in SQ;

(2) each leaf node represents a single semantic query in SQ;

(3) each non-leaf node represents the union of the semantic queries of its

children;

pq1

...

...

Actor

name

wright

name

wright

Movie
Character

name

london

Movie

title

london

Actor

name

london

Actor

name

wright

Movie

actsIn actedBy

title

london

Movie
Character

DirectorMovie

directedBy

name

wright

title

london

Movie

title

wright

pq3
Director

pq2

sq1 sq2 sq3

Movie

title

wright

title

london

Fig. 17: Part of a query guide for ‘wright london’

4. QUICK: QUery Intent Constructor for Keywords

 51

(4) each edge represents a partial query;

(5) the partial query on an incoming edge of a node subsumes all the semantic

queries represented by that node.

Which leads us to:

Definition 10: Query Construction Graph

Given a set of semantic query SQ and its partial queries PQ, a Query

Construction Graph is a graphQCG = (V ,E) , where V ⊂ SQ* ,

E ⊂ {(v1,v2, p) | v1,v2 ∈V , v2 ⊂ v1 , p∈PQ, p subsumes v2} and

∀v∈V ,| v |>1:v = vi | ∃p : (v,vi , p)∈E{ }

If SQ is the complete query space of a keyword query, a QCG of SQ is a Query

Guide of the keyword query.

Definition 11: Query Guide

A query guide for a keyword query is a query construction graph whose root

represents the complete semantic query space of that keyword query.

With a query guide, query construction can be conducted. The construction

process starts at the root of the guide, and incrementally refines the user's

intent by traversing a path of the graph until a semantic query on a leaf is

reached. In each step, the user is presented the partial queries on the outgoing

edges of the current node. By selecting a partial query, the user traverses to the

respective node of the next level. In the example of Fig. 17, after having chosen

that ‘wright’ is part of the actor's name and ‘london’ part of the movie's title,

QUICK can already infer the intended query. The properties of the query

construction graph guarantee that a user can construct every semantic query in

the query space.

Every query guide comprises the whole query space, i.e., covers all query

intentions. However, these guides vary widely in features such as branching

factor and depth. A naïvely generated guide will either force the user to evaluate

a huge list of partial query suggestions at each step (width), or to take many

steps (depth) until the query intention is reached. E.g. for only 64 semantic

4. QUICK: QUery Intent Constructor for Keywords

 52

queries, a naïve algorithm produces a guide which requires the user to evaluate

up to 100 selection options to arrive at the desired intention, while an optimal

guide only requires 17. Therefore, we aim at a query guide with minimal

interaction cost.

We define the interaction cost as the number of partial queries the user has to

view and evaluate to finally obtain the desired semantic query. As QUICK does

not know the intention when generating the guide, the worst case is assumed:

the interaction cost is the cost of the path through the guide incurring most

evaluations of partial queries. This leads to the following cost function definition:

Definition 12: Interaction Cost of a Query Construction Graph

Let cp = (′V , ′E) be a path of a query construction graphQCG = (V ,E) , i.e.,

′V = {v1,...,vn}⊂V and ′E = {(v1,v2, p1),(v2,v3, p2),...,(vn−1,vn , pn−1)}⊂ E . Then:

cost(cp) = p : (v,v1, p)∈E{ }
v∈ ′V
∑ , and cost(QCG) = max(cost(cp) :cp) .

Definition 13: Minimum Query Construction Graph

Given a set of semantic queries SQ, a query construction graph QCG is a

minimum query construction graph of SQ, iff there does not exist another query

construction graph QCG' of SQ such that cost(QCG) > cost(QC ′G) .

A query guide who satisfies Definition 13 leads the user to the intended query

with minimal interactions. In the following section, we show how to compute

such guides efficiently.

4.3 Query Guide Generation

For a given keyword query, multiple possible query guides exist. While every

guide allows the user to obtain the wanted semantic query, they differ

significantly in effectiveness as pointed out in the previous. It is thus essential to

find a guide that imposes as little effort on the user as possible, i.e., a minimum

query guide.

Query construction graphs have several helpful properties for constructing

query guides:

4. QUICK: QUery Intent Constructor for Keywords

 53

Lemma 1: Query Construction Graph properties

(i) Given a node in a query construction graph, the complete sub-graph with

this node as root is also a query construction graph.

(ii) Suppose QCG is a query construction graph, and A is the set of children

of its root. The cost of QCG is the sum of the number of nodes in A and

the maximum cost of the sub-graphs with root in A, i.e.

Cost(T) =| A | +MAX(Cost(a) :a∈A) .

(iii) Suppose QCG is a minimum query construction graph and A is the set of

children of its root. If g is the most expensive sub-graph with root in A,

then g is also a minimum query construction graph.

4.3.1 Straightforward Guide Generation

Lemma 1 can be exploited to construct a query construction guide recursively.

Based on Property (ii), to minimize the cost of a query construction graph, we

need to minimize the sum of (1) the number of children of the root, i.e., | A | and

(2) the cost of the most expensive sub-graph having one of these children as

root, i.e.,MAX(Cost(a) :a∈A) . Therefore, to find a minimum construction graph,

we can first compute all its possible minimum sub-graphs. Using these sub-

graphs, we find a subset A with the minimum | A | +MAX(Cost(a) :a∈A) . The

method is outlined in Algorithm 2.

4. QUICK: QUery Intent Constructor for Keywords

 54

According to Lemma 1, this algorithm always finds a minimum query guide.

However, it relies on the solution of the SetCover problem, which is NP-

complete [60]. Although there are polynomial approximation algorithms for

minSetCover with logarithmic approximation ratio, our straightforward algorithm

still incurs prohibitive costs. Using a greedy minSetCover, the complexity is still

O(P !⋅ P 2 ⋅ S) . In fact, we can prove that the problem of finding a minimum

query guide is NP hard.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

Simple_QGuide()

Input: partial queries P, semantic queries S

Output: query guide G

if |S|=1 then

 return S;

end

for each p∈P do

 p.sg := Simple_QGuide(P − {p},S∩ p.SQ);

 // p.SQ denotes the semantic queries subsumed by p

end

G.cost := ∞;

for each p∈P do

 Q(p) := {(′p ∈P) : ′p .sg.cost ≤ p.sg.cost} ;

 min_ set := minSetCover(S − p.SQ,Q(p));

 if G.cost >|min_ set | $+ $p.sg.cost +1then

 G := min_ set∪{p};

 G.cost :=|min_ set | + p.sg.cost ;

 end

end

return G

Algorithm 2: Straightforward Query Guide Generation

4. QUICK: QUery Intent Constructor for Keywords

 55

Definition 14: minSetCover

Given a universe U and a family S of subsets of U, find the smallest subfamily

C ⊂ S of sets whose union is U.

Theorem 3: The minConstructionGraph problem is NP hard

PROOF. We reduce minSetCover to minConstructionGraph:

MS :U ↔US is a bipartite mapping between U and a set of semantic queriesUS .

MP :S↔ SP is a bipartite mapping between S and a set of partial queries SP ,

such that each partial query p∈SP subsumes the semantic

queriesMS (MP
−1(p)) . Create another set of semantic queries AS and a set of

partial queries AP . Let | AS |= 2× |MS | . Let AP contain two partial queries, each

covering half of AS . Therefore, the cost of the minimum query construction

graph of AS is |MS | +1, which is larger than any query construction graph of

MS . Based on Lemma 1, if we solve minConstructionGraph(US ∪ AS ,UP ∪ AP) , we

solve minSetCover U, S() .

4.3.2 Incremental Greedy Query Guide Generation

As shown, the straightforward algorithm is too expensive. In this section, we

propose a greedy algorithm, which computes the query construction graph in a

top-down incremental fashion.

Algorithm 3 starts from the root node and estimates the optimal set of partial

queries that cover all semantic queries. These form the second level of the

query construction graph. In the same fashion, it recurses through the

descendants of the root to expand the graph. Thereby, we can avoid

constructing the complete query construction graph; as the user refines the

query step-by-step, it is sufficient to compute only the partial queries of the node

the user has just reached.

4. QUICK: QUery Intent Constructor for Keywords

 56

The algorithm selects partial queries one by one. Then, it enumerates all

remaining partial queries and chooses the one incurring minimal total estimated

cost. It stops when all semantic queries are covered. The complexity of the

algorithm is O(| P | ⋅ | S |) .

The formula for the total estimated cost of a query construction graph is given in

Definition 15.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

Input: partial queries P, semantic queries S

Output: query guide G

if |S|=1 then

 return S ;

end

G := ∅

While |S| ≠ 0 do

 select p∈P with min. TotalEstCost(S,G∪{p})

 if no such p exists then

 break ;

 end

 G := G∪{p} ;

 S := S − p.SQ ;

 // p.SQ denotes the semantic queries subsumed by p

end

if | S |≠ 0 then

 G := G∪ S ;
end

return G

Algorithm 3: Incremental Greedy Query Guide Generation

4. QUICK: QUery Intent Constructor for Keywords

 57

Definition 15: Total estimated cost

Let S be the semantic queries to cover, SP the set of already selected partial

queries, and p the partial query to evaluate, the estimated cost of the cheapest

query construction graph is:

TotalEstCost(S,SP) =| S | | SP |

| S∩ S P |
+max(minGraphCost(| p |) : p∈SP) , where

minGraphCost(n) =
n = 1:
n = 2 :
n > 2 :

0
2

e ⋅ ln(n)

⎧

⎨
⎪

⎩
⎪

Here, minGraphCost(| p |) estimates the minimum cost of the query construction

graph of p. Suppose f is the average fan-out for n queries, then the cost is

approximately f ⋅ log f (n) , which is minimal for f = e . The first addend of

TotalEstCost estimates the expected number of partial queries that will be used

to cover all semantic queries. This assumes the average number of semantic

queries covered by each partial query does not to vary.

As discussed above, the algorithm runs in polynomial time with respect to the

number of partial and semantic queries. Although the greedy algorithm can still

be costly when keyword queries are very long, our experimental results show

that it performs very well if the number of keywords is within realistic limits

4.4 Query Evaluation

When the user finally selects a query that reflects the actual intention, it will be

converted to a SPARQL query and evaluated against an RDFstore to retrieve

the results. The conversion process is straightforward: For each concept node

in the query or edge between nodes, a triple pattern expression of SPARQL is

generated. In the first case, it specifies the node type, in the second case it

specifies the relation between the nodes. Finally, for each search term, a filter

expression is added.

4. QUICK: QUery Intent Constructor for Keywords

 58

4.5 Experimental Evaluation

We implemented the QUICK system using Java. The implementation uses

Sesame2 [61] as RDF Store and the inverted index provided by Lucene Sail to

facilitate semantic query generation. We have used this implementation to

conduct a set of experiments to evaluate the effectiveness and efficiency of the

QUICK system and present our results in this section.

4.5.1 Experiment Setup

Our experiments use two real world datasets. The first one is the Internet Movie

Database (IMDB). It contains 5 concepts, 10 properties, more than 10 million

instances and 40 million facts. The second dataset (Lyrics, [9]) contains songs

and artists, consists of 3 concepts, 6 properties, 200 thousand instances and

750 thousand facts. Although the vocabulary of the datasets is rather small,

they still enable us to show the effectiveness of QUICK in constructing domain-

specific semantic queries.

To estimate the performance of QUICK in real-world settings, we used a query

log of the AOL search engine. We pruned the queries by their visited URLs to

obtain 3000 sample keyword queries for IMDB and 3000 sample keyword

queries for Lyrics web pages. Most of these queries are rather simple, i.e., only

referring to a single concept, such as a movie title or an artist's name, and thus

cannot fully reflect the advantages of semantic queries. We therefore manually

went through these queries and selected the ones referring to more than two

concepts. This yielded 100 queries for IMDB and 75 queries for Lyrics,

consisting of 2 to 5 keywords.

We assume that every user has had a clear intent of the keyword query,

implying that each one can be interpreted as a unique semantic query for the

knowledge base. We manually assessed the intent and chose the

corresponding semantic query as its interpretation. It turned out that most

keyword queries had a very clear semantics. These interpretations served as

the ground truth for our evaluation.

The experiments were conducted on a 3.60 GHz Intel Xeon server. Throughout

the evaluation, QUICK used less than 1 GB memory.

4. QUICK: QUery Intent Constructor for Keywords

 59

4.5.2 Effectiveness of Query Construction

Our first set of experiments is intended to assess the effectiveness of QUICK in

constructing semantic queries, that is, how fast a user can turn a keyword query

into the corresponding semantic query. At each round of the experiment, we

issued a keyword query to QUICK and followed its guidance to construct the

corresponding semantic query. We measured the effectiveness using the

following two metrics:

(1) the interaction cost of each query construction process, i.e., the total

number of options a user had evaluated to construct each semantic

query;

(2) the number of selections a user performed to construct each semantic

query, i.e., the number of clicks a user had to make.

The results of the experiments are presented in Table 3 and Fig. 18 and Fig. 19.

Table 3 shows that the size of the semantic query space grows very fast with

the number of terms in a keyword query. Because the datasets are large, a term

usually occurs in more than one place of the schema graph. As the size of the

query space is usually proportional to the occurrences of each term in the

schema graph, it grows exponentially with the number of terms.

Furthermore, even for less than five terms, the size of the query space can be

up to 9,000 for IMDB and up to 12,000 for Lyrics – such a huge query space

makes it difficult for any ranking function to work effectively. For comparison

1 3 5 7 9 11 13 15 17 19 21

0

2

4

6

8

10

Query Space Size

100 1000 10000
Cost

O
c
c
u
rr

e
n
c
e
s

Cost vs. Query Space Sizes Histogram

1 3 5 7 9 11 13 15 17 19 21

0

1

2

3

4

5

6

Query Space Size

100 1000 10000
Cost

O
c
c
u
rr

e
n
c
e
s

Cost vs. Query Space Sizes Histogram

Fig. 18: Query construction cost histograms for IMDB (left) and Lyrics (right)

for three different query space sizes

4. QUICK: QUery Intent Constructor for Keywords

 60

purposes, we applied the SPARK [16] ranking scheme to the semantic queries

generated by QUICK, but experiments showed that SPARK could not handle it

in a satisfactory manner. In most cases, a user needed to go through hundreds

or thousands of queries to obtain the desired one. In contrast, QUICK displays

steady performance when confronted with such big query spaces. As shown in

Table 3, the maximum number of options a user needs to examine until

obtaining the desired semantic query is always low (33 for IMDB resp. 22 for

Lyrics). On average, only 9 resp. 7 options have to be examined by the user.

The cost of the query construction process grows only linearly with the size of

the keyword queries. This verifies our expectation that QUICK helps users in

reducing the query space exponentially, enabling them to quickly construct the

desired query.

No. of

Init time (ms.) Response time

 IMDB Lyrics IMDB Lyrics

2 98 664 2 0.5

3 993 384 19 4

4 16,797 4,313 1,035 107

> 4 31,838 120,780 3,290 7,895

all 3,659 17,277 314 1,099

Table 3: Effectiveness of QUICK for IMDB and Lyrics

Fig. 18 shows the cost distribution of the query construction for different query

space sizes. We can see that for most queries, the user only has to inspect

between 4 and 11 queries. Only in rare cases more than 20 queries had to be

checked. The cost of the query construction process shows a similar trend,

growing only logarithmically with the size of the query space. As shown on the

left-hand side of Fig. 19, in most cases, only 2 to 5 user interactions were

needed. On the right, we show the average position of the selected partial

queries. These were almost always among the first 5 presented options.

4. QUICK: QUery Intent Constructor for Keywords

 61

To summarize, this set of experiments shows that QUICK effectively helps

users to construct semantic queries. In particular, the query construction

process enables users to reduce the semantic query space exponentially. This

indicates the potential of QUICK in handling large-scale knowledge bases.

In implementing QUICK, we focused on efficient algorithms for query guide

generation and query evaluation. We are confident that for the initialization

tasks the performance can be improved significantly, too, e.g., by adapting

techniques from [8] and by introducing special indexes.

4.5.3 Quality of the Greedy Approach

To evaluate the quality of the query guides generated by the greedy algorithm,

we compared it against the straightforward algorithm. As the latter is too

expensive to be applied to a real dataset, we restricted the experiments to

simulation. We generated artificial semantic queries, partial queries and sub-

query relationships. The semantic queries subsumed by each partial query were

randomly picked, while the number of these was fixed. Therefore, three

parameters are tuneable when generating the queries, n_complete – the

number of semantic queries, n_partial – the number of partial queries, and

coverage – the number of semantic queries subsumed by each partial query.

In the first set of experiments, we fixed n_complete to 128 and coverage to 48,

and varied n_partial between 4 and 64. We run both algorithms on the

generated queries, and recorded the cost of the resulting query guides and their

computation time. To achieve consistent results, we repeatedly executed the

simulation and calculated the average.

1 2 3 4 5 6

0%

10%

20%

30%

40%

User Interactions Histogram

IMDB

Lyrics

Number of Interactions

O
c
c
u
rr

e
n
c
e
s

1 2 3 4 5 6

0%

10%

20%

30%

40%

50%

60%

Avg. Click Position Histogram

IMDB

Lyrics

Click position

O
c
c
u
rr

e
n
c
e
s

Fig. 19: Histograms of the number of interactions and average click position

4. QUICK: QUery Intent Constructor for Keywords

 62

As shown in the left-hand side of Fig. 20, the chance to generate cheaper query

guides increases with the number of partial queries. Guides generated by the

greedy algorithm are only slightly worse (by around 10%) than those generated

by the straightforward algorithm, independent of the number of partial queries.

The computation time of the straightforward algorithm increases exponentially

with the number of partial queries, while that of the greedy algorithm remains

almost linear, which is consistent with our complexity analysis.

In the second set of experiments, we varied n_complete between 32 and 256,

fixed n_partial to 32, and set coverage to ¼ of n_complete. The results are

shown in Fig. 21.

As expected, as the number of semantic queries increases exponentially, the

cost of query construction increases only linearly. The guides generated by the

greedy algorithm are still only slightly worse (by around 10%) than those

generated by the straightforward algorithm. This difference does not change

significantly with the number of semantic queries. The performance conforms to

our complexity analysis.

4 8 16 32 64
0

10
20
30
40
50

Quality of Plan
Straight−
forward
Greedy

Number of partial queries

Co
st

4 8 16 32 64 128 256

0,01

0,1

1

10

100
Construction Time

Straight−
forward
Greedy

Number of partial queries

Co
ns

tru
ct

io
n

T
im

e
[s]

Fig. 20: Varying number of partial queries

32 64 128 256
0

10

20

30

40
Quality of Plan

Straight−
forward
Greedy

Number of complete queries

Co
st

32 64 128 256

0,01

0,1

1

10
Construction Time

Straight−
forward
Greedy

Number of complete queries

Co
ns

tru
ct

io
n

T
im

e
[s]

Fig. 21: Varying number of semantic queries

4. QUICK: QUery Intent Constructor for Keywords

 63

In the third set of experiments, we fixed n_complete to 64 and n_partial to 16,

and varied coverage between 8 and 48. Fig. 22 shows that as the coverage

increases, the cost of resulting query guides first decreases and then increases

again. This confirms that partial queries with an intermediate coverage are more

suitable for creating query construction graphs, as they tend to minimize the

fan-out and the cost of the most expensive sub-graph simultaneously. The

difference between the greedy algorithm and the straightforward algorithm

increases with the coverage. This indicates that the greedy algorithm has a non-

constant performance with respect to coverage, which was to be expected, as

result of the logarithmic performance rate of minSetCover and the assumptions

of Definition 15.

Fortunately, in real data, most partial queries have a relatively small coverage

(less than 20%), where this effect is less noticeable, justifying our assumptions.

In summary the experiments showed the greedy algorithm to have the desired

properties. In comparison to the straightforward algorithm, the generated guides

are just slightly more costly for the user, but are generated much faster, thereby

demonstrating the applicability of the QUICK approach.

4.6 Discussion

In this chapter, we introduced QUICK, a system for guiding users in

constructing semantic queries from keywords. QUICK allows users to query

semantic data without any prior knowledge of its ontology. A user starts with an

arbitrary keyword query and incrementally transforms it into the intended

semantic query. In this way, QUICK integrates the ease of use of keyword

search with the expressiveness of semantic queries.

8/64 16/64 24/64 32/64 40/64 48/64
0

10

20

30

40
Quality of Plan

Straight−
forward

Greedy

Coverage

Co
st

32 64 128 256
0

10

20

30

40
Quality of Plan

Straight−
forward
Greedy

Number of complete queries

Co
st

Fig. 22: Varying coverage of partial queries

4. QUICK: QUery Intent Constructor for Keywords

 64

The presented algorithms optimize this process such that the user can construct

the intended query with near-minimal interactions. The greedy version of the

algorithm exhibits polynomial runtime behaviour, ensuring its applicability on

large-scale real-world scenarios. To our knowledge, QUICK is the first approach

that allows users to incrementally express the intent of their keyword query, and

therefore supports the complete query process, as can be seen in Fig. 14, on

page 42. We presented the design of the complete QUICK system and

demonstrated its effectiveness and practicality through an extensive

experimental evaluation.

As shown in our study, QUICK can be further improved and extended in the

following directions:

While QUICK currently works well on focused domain schemas, large

ontologies pose additional challenges with respect to usability as well as

efficiency. To improve usability, making use of concept hierarchies to aggregate

query construction options is desirable. In that way, we keep their number

manageable and prevent the user from being overwhelmed by overly detailed

options. To improve further on efficiency, we are working on an algorithm that

streamlines the generation of the semantic query space.

(i) While the current approach allows reaching all possible intended queries

in the query space, the effort for every such query is the same. While this

is desirable for rarely used or complicated queries, helping users with

often asked queries by introducing a ranking mechanism would help. A

useful combination of the QUICK query construction and the SUITS

ranking approach is therefore desirable.

(ii) A user study to verify the suitability for non-expert users and its

effectiveness on a larger scale would help assessing the benefits of this

system.

4. QUICK: QUery Intent Constructor for Keywords

 65

(iii) The current system still requires domain knowledge in order to make good

use of the system. Therefore, using background knowledge for guiding the

user would be helpful.

5. A Facetted Query Interface for Customer Service

 66

5. A Facetted Query Interface for Customer Service
In this chapter, we present an interface for facetted access to customer service

data, which additionally supports the user by providing domain knowledge. As

already discussed in general Chapter 1, and as detailed in Fig. 23, our facetted

interface supports specifically the query formulation/reformulation phase, as

well as the result evaluation phase. Additionally, we make use of a lexical

knowledge base for providing relevant domain knowledge, which helps the user

by automatically matching semantically similar service documents, even if

different vocabulary is employed, allowing for easy access even for the less

proficient user.

Devising query applications for business use pose specific challenges on the

usability of a query system. The presented system specifically aims for

customer service needs. As business users are usually are focused in their

Identify
problem

Articulate
needs

Query
formulation /
reformulation

Evaluate
results

Unsatisfactory
results

User goalsFailed search

Concepts

Domain
Knowledge

Search
Technology
Knowledge

IR System

Results

Create & execute
query

External task
information problem

OK search

Fig. 23: Facetted Interface support of the query process

5. A Facetted Query Interface for Customer Service

 67

information need, we stressed on the query reformulation part, amending this

refinement facility by providing relevant, and focused, domain knowledge,

through a knowledge base specifically tailored for technical and business

needs.

Relevant publications for this chapter:

• Kerstin Denecke, Gideon Zenz, Wladimir Krasnov, Semantic Web

Technologies to Improve Customer Service, International Semantic Web

Conference 2009, October 2009, Washington, USA

5.1 Devising an Interface for Business Use

It is crucial for service departments to find relevant information that helps to

answer customer requests in time to avoid long process. But, relevant

knowledge is often stored in non-retrievable form, which causes huge difficulties

in knowledge discovery for employees. Further, a long learning period is

needed for new employees to go into the depth with existing (company internal)

knowledge and to learn how to formulate the “right” request for finding relevant

information. Even with existing retrieval systems, formulating the "right" request

that results in an appropriate number of suited results is difficult, as there are

many different ways to describe a problem with natural language. Service

messages are documented in natural language and are therefore stored in

unstandardized, unstructured manner. To allow efficient access and reuse of

this data, we describe an approach to store service messages in a standardized

way and to structure the content of a text collection hierarchically into facets. By

visualizing and navigating this hierarchy, a user is able to specify constraints on

the items selected from the repository. The facets help to discover similar

service messages even if they use different terms to describe similar issues.

Furthermore, the service message database can be browsed in an intuitive

manner. Currently, two methods are quite popular to group search results

appropriately, namely clustering and faceted categorization. The Latent Dirichlet

Allocation (LDA, [62]) algorithm generates a probabilistic model to describe the

5. A Facetted Query Interface for Customer Service

 68

content of texts and clusters them based on this model. Scatter/Gather offers a

navigation system based on document clustering [63]. In faceted classification,

a set of category hierarchies is built, rather than a single large category

hierarchy [64]. These capture the different facets, i.e., dimensions or features,

relevant to a collection. In [65], an unsupervised approach for facet extraction is

presented relying upon WordNet and Wikipedia, to identify useful facet terms.

The approach presented in this paper can mainly be seen as a modification and

extension of the Castanet algorithm presented by Stoica et al. [66]. The

castanet algorithm works on the textual description of items like images or

documents. It then generates automatically hierarchical faceted metadata from

text based on WordNet and WordNet Domains within five major steps, c.f.

Algorithm 4. We modified and adapted the original algorithm to fit the given

scenario.

1. Select target terms from textual descriptions of information items.

2. Build the Core Tree:

a. For each term, if the term is unambiguous (see below), add its

Wordnet synset’s IS-A path to the Core Tree.

b. Increment the counts for each node in the synset’s path with the

number of documents in which the target term appears.

3. Augment the Core Tree with the remaining terms’ paths:

a. For each candidate IS-A path for the ambiguous term, choose the

path for which there is the most document representation in the Core

Tree.

4. Compress the augmented tree.

5. Remove top-level categories, yielding a set of facet hierarchies.

Algorithm 4: The Castanet Algorithm as of [66]

5. A Facetted Query Interface for Customer Service

 69

In particular, this algorithm is customized to the domain of mechanical

engineering by using a domain specific thesaurus. Furthermore, a more

sophisticated text pre-processing comprising stemming of words and resolution

of compound nouns extends it. The Castanet approach only considers nouns to

generate the structure while our extension considers all relevant words. Finally,

the algorithm is applied and tested on a collection of service messages of the

engineering domain.

Anzeige der passenden Dokumente
zum erfassten Servicefall und der
ausgewählten Kategorie.

Anzeige der passenden Dokumente
zum erfassten Servicefall und der
ausgewählten Kategorie.

Auswahl und
Navigation in den
Kategorien

Auswahl und
Navigation in den
Kategorien

Fig. 24: Facetted Semantic Interface for Retrieving Customer Service

Documents

5.2 Making Data Semantic

Similar to the CastaNet Algorithm,

our method requires a lexical

knowledge base. Since our system

targets at processing documents of

the engineering domain, a domain

unspecific lexical resource such as

WordNet or GermaNet is unsuited

since relevant domain-specific terms

are missing. Therefore, we decided to base our algorithm to the FIZ Thesaurus.

ID

Node

Word
Stem

Synonym, Parent, Related

Fig. 25: Schema of the FIZ Thesaurus

5. A Facetted Query Interface for Customer Service

 70

The FIZ thesaurus (Fig. 25) provides 58,300 technical terms in German and

63,500 technical terms in English, which are related through links indicating

synonymy, hierarchy and semantic relation. The thesaurus covers the

vocabulary of different engineering subfields and was originally created to

extend online literature repositories and to improve the document retrieval.

For our algorithms, the thesaurus is stored into RDF, which allows for its

manual extension and its efficient use for creating hierarchies. Each word is

represented by a node with a unique id,

the actual word, and the stemmed

version of the word. Nodes can be

connected as synonyms, parents, or

other semantic relations. A term A is

considered as parent of term B if A is a

generic term to B.

Natural language text, in our case

service messages of the engineering

domain, is mapped to concepts of this

thesaurus. In this way, the service

requests become comparable and

automatically interpretable. Relations

between terms as provided by the

thesaurus are then used to generate

document hierarchies. The hierarchical

for all words

… … … …
… … … . . .
… … … . . . tokenizer stemmer match

thesaurus yes

add DocID
to graph

split or
discard

no

Fig. 27: Facet generating algorithm

Fig. 26: Graph generated for the

term Titan

5. A Facetted Query Interface for Customer Service

 71

facets allow navigation through search results and improved document retrieval.

To represent a document through categories of the underlying thesaurus the

following processing steps are conducted, as can be seen in Fig. 27. First, the

document is pre-processed, i.e. special characters and other punctuation marks

are removed and the words are split into their linguistic segments. This is

necessary to be able to identify compound nouns, which occur very often in

service messages due to the reduced length of these messages and the

compact language. In addition, the words are stemmed using the Stemmer

presented in [67] and looked up in the FIZ thesaurus. The matched words are

assembled in a domain specific document term list, which in turn is extended by

synonyms of the terms that are collected using the synonym relationship

provided by the thesaurus.

Finally, a directed graph is constructed where the terms of the expanded term

list are the leaves, c.f. Fig. 26. Starting from the term, the hyperonomy relations

provided by the thesaurus are iteratively used for constructing a hierarchical

tree. In more detail, for each term (leaf) parent nodes are collected from the

thesaurus and are inserted into the graph. The result is a connected graph that

resembles a hierarchical semantic representation of the document.

Furthermore, all paths are attributed with a count that specifies the usage

frequency of each concept. This frequency information is used to select facets

as categories for the document under consideration. In particular, the most

probable generic concepts are collected for categorizing the document.

5.3 Evaluation

The introduced method is evaluated on service messages of the mechanical

engineering domain. The collection consists of 4,884 documents written in

German. In average, each message comprises 20-30 words and is a short

statement, where a hotline employee summarizes the error description or

request of a customer. From this collection, 200 service messages are

randomly selected. Four persons were involved in the evaluation. For each test

document, the evaluating person was confronted with the system generated

5. A Facetted Query Interface for Customer Service

 72

hierarchical graph and had to select the best-suited categories describing the

document from this graph.

The categories chosen by the algorithm remained hidden to the evaluators. In

particular, the evaluation examines whether the system assigns the test

documents to the same categories as the evaluators.

The system achieved a precision of 0.93 and a recall of 0.86. Furthermore, the

time to categorize manually was measured. The evaluators needed in average

2.5 minutes to select relevant categories, obviously due to the complexity of the

domain and the shortness of the service message. Compared to this, the

proposed method takes only 0.5 seconds for classifying a service message.

The hierarchical graphs for the complete data set were generated in 130

seconds on a 1.6 GHz Pentium Processor with 2 GB RAM. Since the presented

system performs very well in terms of accuracy and time, we can conclude, that

this method can help to reduce the time for categorization significantly.

Errors occur when abbreviations were used in a text or terms could not be

found in the lexical database. A manual or semi-automatically extension of the

lexical resource with relevant abbreviations could help to improve the system's

accuracy. The system also fails when confronted with terms with writing errors.

Technologies for error correction or soundex- or metaphone technologies could

help to deal with this problem.

In contrast to existing algorithms that allow for the generation of hierarchical

facets for general texts [66], we showed how domain-specific knowledge could

be exploited efficiently to create a faceted representation of technical texts. Our

representation contains only technical terms, which is crucial for document

retrieval purposes. Through the pre-processing of the natural language text

messages by means of stemming and analysis of compound nouns, the system

is able to identify morphological variants and to identify terms even if they are

hidden within compound nouns. We tested the algorithm on German texts only

since similar texts in English were unavailable in this project. Since the FIZ

thesaurus already contains terms in English, the system can be also applied to

this language. An adaption of the linguistic pre-processing is required.

5. A Facetted Query Interface for Customer Service

 73

5.4 Discussion

In this chapter, an approach to generate hierarchical facets to highly specialized

texts of the engineering domain was introduced. We showed that domain-

specific knowledge could be successfully used to generate such facet

representation. By exchanging the domain knowledge, the approach can be

transferred to other domains.

In contrast to the previous approaches, although giving users further support by

providing domain knowledge through the lexical knowledge base, this system

does not support structured data. Furthermore, the knowledge base has to be

pre-produced and suitable for the document collection. This poses serious

challenges on prospectus users, as generating such a knowledge base is time

consuming and error prone. In the next chapter, we will discuss methods for

automatically generating such domain knowledge needed to easily navigate

document collections using polysemous vocabulary.

6. Querying with Generated Domain Knowledge

 74

6. Querying with Generated Domain Knowledge
In this chapter, we focus on realizing a query system that automatically

generates relevant domain knowledge for given data, in order to help users with

relevant hints, and aid the understanding of the underlying corpus. As can be

seen in Fig. 28, the application fully supports the need articulation and query

formulation phase. Although it currently offers no direct support for

reformulations or structured data, in contrast to the method discussed in the

previous chapter, it automatically generates the needed background domain

knowledge to provide the user easily with a deeper understanding of the

underlying data.

Furthermore, we want to provide an application that satisfies the ever-growing

demand for immersive, just-in-time information needs on web data. Mobile and

Identify
problem

Articulate
needs

Query
formulation /
reformulation

Evaluate
results

Unsatisfactory
results

User goalsFailed search

Concepts

Domain
Knowledge

Search
Technology
Knowledge

IR System

Results

Create & execute
query

External task
information problem

OK search

Fig. 28: Mobile Interface support of the query process

6. Querying with Generated Domain Knowledge

 75

smart devices provide for excellent facilities for giving for such activities. Given

the limited interaction possibilities and screen sizes, as well as being mobile

usually implies an urgent information need, efficient and effective means to

query are important. The usefulness and quality of this application is evaluated

with a user study.

Relevant publications for this chapter:

• Nina Tahmasebi, Gideon Zenz, Tereza Iofciu, Thomas Risse,

Terminology Evolution Module for Web Archives in the LiWA Context, In

Proc. of 10th International Web Archiving Workshop in conjunction with

iPRES in Vienna, Austria, 2010

• Gideon Zenz, Nina Tahmasebi, Thomas Risse, Language Evolution On

The Go, SAME 2010 - 3rd International Workshop on Semantic Ambient

Media Experience (NAMU Series) November, 10th-12th November 2010

in conjunction with AmI-10 in Malaga, Spain

• Gideon Zenz, Nina Tahmasebi, Thomas Risse, Towards mobile

language evolution exploitation, J Multimed Tools Appl., Springer, 2012

6.1 Introduction

The usage and meaning of terminology is changing throughout time. Depending

on the point in time considered, different connotations will be relevant, which is

also important to consider when searching for information. As example,

consider the term anthrax, which can be a rather famous band, or, as mostly

only experts used to know, a disease. This unexpectedly changed in 2001,

when letters containing anthrax were mailed in the U.S. All of the sudden, the

disease relation of the term became well known to the general public; we

present a terminology evolution application, which aims to detect such

connections, and educates the user how and when meanings have shifted.

In order to automatically detect different word senses or meanings given a

collection of terms, we employ word sense discrimination as pre-processing

6. Querying with Generated Domain Knowledge

 76

step. Word sense discrimination allows dividing term collections into consistent

groups of terms.

In order to allow users to use this knowledge in an ambient and intuitive way at

the very point in time it is needed, we devised two mobile user interfaces. One

is more aimed for professional users, and allows permeating the knowledge

space in depth, but also requires more sophisticated knowledge of languages

and web applications. The second user interface is more concise and aimed

towards fast, every-day usage.

The following paragraphs will give an overview on the state of the art, followed

by a description of our methods to derive the perception of a term in a given

corpus. Thereafter, the two user-interfaces are discussed and evaluated by a

user study. Finally, we conclude this chapter and discuss future work.

6.2 Related Work

Detecting word senses inherent in a text corpus is the aim of word sense

discrimination. Several methods based on co-occurrence analysis and

clustering have been studied in [68–71]. Seminal in our context is the work of

Schütze [71], who discusses this idea in the context of group discrimination. A

word space is constructed by mapping ambiguous words from a training set,

using cosine similarity as metric. Using context vectors constructed from terms

occurring in context, this set is clustered into a set of coherent clusters. The

representation of a sense is the centroid of a cluster.

An alternative approach was introduced by Lin [72], who employs a word

similarity measure to automatically create a thesaurus. The disadvantage of this

approach is the use of hard clustering, which lacks the flexibility needed to

cover ambiguity and polysemy of terms. A further clustering algorithm is

proposed by Pantel [73], named Clustering By Committee. It consistently

outperforms previous algorithms like Buckshot, K-means, and Average Link in

both recall and precision. A further contribution is a method for automatically

evaluating the output using WordNet, which has seen broad usage [74], [75].

6. Querying with Generated Domain Knowledge

 77

6.3 From Text to Ambient Perception

In order to arrive at a user understandable representation of word senses, we

employ a processing pipeline. It consists of three major steps, natural language

processing for extracting relevant terms, co-occurrence graph creation, and

graph clustering.

As discussed, soft clustering is the more appropriate methodology to deal with

the ambiguous and polysemous nature of words. Furthermore, due to the size

of our text corpus, we also need an un-supervised approach to clustering. Here,

curvature clustering [76] is the current state-of-art.

6.3.1 The Processing Pipeline for Word Sense Discrimination

For achieving discriminated word senses, we employ the processing pipeline

proposed in [77], c.f. Fig. 29. This pipeline employs text cleaning, natural

language processing, creation of the co-occurrence graph and clustering.

The first step in the pipeline is Text Pre-Processing. The dataset used in our

experiments is an archive of The Times8. The first step extracts the text content

from the XML data provided.

8 We would like to thank Times Newspapers Limited for providing the archive

of The Times for our research.

Processing Pipeline
Co-Occurrence
Graph Creation

Natural
Language
Processing

Text Cleaning

Graph
Clustering

Fig. 29: Overview oft he word sense discrimination processing pipeline

6. Querying with Generated Domain Knowledge

 78

Natural Language Processing is the second step. Here, nouns and noun

phrases are extracted. A linguistic processor employing part-of-speech tagging

is used to identify nouns; additionally, terms are lemmatized if possible. A

dictionary is created by these lemmata. The result is feed to a second linguistic

processor for extracting noun phrases. These noun phrases, and additionally

the remaining non-lemmatized nouns are subsequently added to the dictionary.

Now, the Co-occurrence graph is created. Using the dictionary created in the

previous step, all documents are visited again to extract dictionary terms

connected by an ‘and’, an ‘or’, or a comma. As example, in the sequence …

cars like BMW, Audi and Fiat … the terms BMW, Audi and Fiat are therefore

seen as co-occurring. After extraction, only co-occurrences above a given

frequency will be retained in order to reduce noise.

Following the graph construction, the graph is clustered using the

aforementioned curvature clustering. This algorithm calculates the clustering

coefficient using Strogatz’s method [78], which counts the number of triangles

each node is involved in. This number is normalized by the maximum number of

possible triangles, which is consequently named curvature value. Fig. 30 gives

an illustration of the aforementioned example with the respective curvature

values.

6.4 User-Interface and implementation

In order to make the results of the language evolution process end-user

accessible, we devised two mobile applications. Both applications allow the

user to explore the evolution of a term, however one is mainly intended for

vw : 1

fiat : 1

bmw : 1/3audi : 2/3 porsche : 0

Fig. 30: Curvature values visualized by nodes showing name:curvature value

6. Querying with Generated Domain Knowledge

 79

tablets while the other is intended for smart-phones or small tablets. Both

applications were developed for an always-on scenario where a server stores

the background knowledge and transfers upon request the needed information

to the application in a compressed format.

6.4.1 Professional User-Interface

The first interface that we devised is aimed at the professional user. For a given

query term, it visualizes all word sense clusters found for the term over the

entire collection. The clusters are shown on a timeline and allow the user to

scroll back and forward in time to search for word senses. For each cluster, a

cluster representative is shown on the timeline. These are chosen from the

terms in the cluster that have the highest curvature value. In Fig. 31, we see

cluster representatives like petersburg and ekaterinoslaff. Choosing to click on

one of the cluster representatives will show the full cluster with all its member

terms and their connections like the graph shown in Fig. 30. This representation

enables a deeper understanding of the cluster terms and their relations.

Fig. 31: Tablet Interface for Analysing Term Clusters

6. Querying with Generated Domain Knowledge

 80

This professional user-interface will display, in addition to the cluster

information, the normalized term frequency for the query term. This information

can be very helpful for gaining a quick overview of the evolution of a term. As

example, we chose the term Petersburg in Fig. 30. This Russian city has had

many different names over the years with Petersburg being the predominant

name over time. However, in 1914 – 1991, the city was named Petrograd as

well as Leningrad. If we look at the normalized frequency distribution for

Petersburg, we find that the frequency drops radically from 1914 to 1915. This

already is a good indication that there has been some change in the meaning of

Petersburg. If we wish to further investigate what happens with the term, we can

choose to take a more in-depth look into the clusters to see if there is some

indication of what happened.

We envision the use of this interface in places like museums or libraries where

a deeper understanding of terms is needed and the user permits more time for

the search and understanding of evolution.

Fig. 32: Ambient user-interface showing example phrases for term Anthrax

6. Querying with Generated Domain Knowledge

 81

6.4.2 Ambient User-Interface

The second interface is aimed at the casual user. While the aim of the previous

interface was to provide as much detail as possible to the user, for this interface

we envision users with less time and experience. Instead of giving in-depth

analysis of the evolution of a term, this interface shows text examples for the

most relevant clusters. This enables the user to understand the term evolution

from the context of the original documents. As we can see from Fig. 32, the

query term(s) are highlighted and shown in the context of one or more

sentences from the original text in the archive. These sentences aid in

understanding the context of the term as well as help the user decide which

documents to take a closer look at.

In order to achieve this, for each query term, we retrieve corresponding clusters

from the entire time period of the archive. Using these terms from the clusters,

we search through a full text index to retrieve all relevant text excerpts. The

cluster terms as well as the query terms are highlighted and the resulting

documents are displayed in the order of their relevance.

We envision the use of this interface in a more leisure or ad-hoc manner. Here

little time will be spend by the user and thus a deeper understanding of

evolution is not needed. More importance is given to the ease-of-use and the

speedy recognition of the meaning of a term.

6.5 Evaluation

In this section we will discuss the corpora used for our experiments, as well as a

user-study to show the effectiveness of the devised ambient user-interface.

6.5.1 Corpus

To have sufficiently large background knowledge, we applied our methodology

to a large dataset, the The Times Archive, London, as a sample of real world

modern English. The corpus contains newspaper articles spanning from the

year 1785 to 1985. The digitization process was started in the year 2001 when

the collection was digitized from microfilm and OCR technology was applied to

process the images. The resulting 201 years of data consist of 4,363 articles in

the smallest dataset and 91,583 in the largest. The number of space separated

6. Querying with Generated Domain Knowledge

 82

tokens range from 4 million tokens in 1785 to 68 million tokens in 1928. In total

we found 7.1 billion tokens that translate into an average number of 35 million

tokens per year. In Fig. 33 we give an overview of these numbers on a year-by-

year basis.

6.5.2 Cluster Quality

To evaluate the quality of the clusters we measure the correspondence

between clusters and word senses and rely upon WordNet [79] as a reference

for word senses. We follow the method by Pantel [73] and compare the top k

members of a cluster to a sense S in WordNet. If the similarity is above

between S and the cluster is above a given threshold, then we say that the

cluster corresponds to a word sense. The quality of clusters is then given as the

amount of clusters that correspond to word senses.

Applying our method to The Times Archive results in between 221–106,000

unique co-occurrences between nouns and noun phrases. Each co-occurrence

corresponds to one edge in the graph as gives us a measure of the size of the

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980
0

500

1000

1500

2000

2500

Av
er

ag
e

ar
tic

le
 le

ng
th

 in
 n

o
of

 te
rm

s

Year

Statistics over Times Articles

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980
0

2

4

6

8

10
x 104

Ar
tic

le
 c

ou
nt

Average article length
Article count

Fig. 33: Number of articles and average length of articles in The Times Archive

from 1785 to 1985

6. Querying with Generated Domain Knowledge

 83

graph. Each graph is clustered and the resulting clusters are evaluated. On

average 69% of all clusters contain more than two WordNet terms and can thus

be evaluated. On average 85%±2% of our clusters correspond to word senses.

The remaining clusters are a mix between wrongly devised clusters as well as

clusters containing terms that are not found in WordNet. The first category of

clusters contain terms that make no sense when gathered together, while the

second category of clusters can contain proper nouns like people names or

locations and are therefore not recognized by WordNet as a word sense.

With an average of 85% correspondence to word senses, we found that the

cluster quality was sufficiently high to continue using the clusters as a basis for

our user-interface evaluations. A further evaluation of the cluster quality is

indirectly done once we evaluation the efficiency of our user-interfaces.

6.6 User-Study

In order to assess the quality and applicability of our ambient user-interface, we

devised an initial user-study with 5 participants. The participants were all

experts in computer science and between 20 and 30 years old.

6.6.1 Participants

We first analysed their general behaviour in information retrieving tasks. Most of

our participants were not keen on spending large amounts of time for an

information search task. Instead, they very much plan a strategy for searching

in advance. On the presentation layer, they strongly prefer good accessibility of

documents as much as attractive presentation. In general, well-known, reliable

sources of information are preferred. Therefore, The Times Archive provided an

interesting and trustworthy corpus for our candidates, which was found to be

important in search usability studies by Ingwersen [80]. Serving snippets from a

newspaper corpus, as our application does, may lead to showing contradicting

or incomplete information. We therefore assessed whether this might have a

negative impact on the information retrieval task, but our participants generally

declined this. Our participants prefer to solve retrieval tasks themselves instead

of asking for professional help, and generally prefer the Internet as first source.

6. Querying with Generated Domain Knowledge

 84

Even though Google and Wikipedia were significantly the preferred way of

assessing information, traditional printed media was still well respected and in

some cases also preferred. This was for reasons like better readability of

printed-paper, and especially because traditional printed resources are more

believed to be a serious and reliable source of information. On the contrary,

electronic resources are believed to be faster to retrieve and more up-to-date.

6.6.2 Procedure

The participants were not paid for conducting the survey. We tested all

participants in a lab setting, using Android smart phones as ambient devices.

Data was recorded using paper surveys before and after each task. The

participants were first briefly introduced to their task and the ambient scenario.

We refrained from an in-depth description of the procedure in order not to

influence the participants. Throughout the study, subjective ratings were

reported on a 5-point Likert-scale, with 1 meaning always/strongly agree/very

good, and 5 meaning the opposite.

The first part of the survey contained general questions as discussed in the

previous paragraph. Thereafter, participants were given 5 minutes time per

query of Table 4. For each query, we asked the participants to rate how well

they were able to assess the meaning of the query with the presented

information, how suitable the amount of presented information was, and how

usable this would be in an ambient situation.

We concluded each session with three general questions on the usability of the

tool.

6.6.3 Results

Evaluating comprehensive tasks like this is

difficult, as there are no correct answers and

the goal is not necessarily to minimize time

used. We assessed the helpfulness and the

ease of use of our application, as can be

seen in Fig. 34. For each query, we asked the

participants to rate the answers given

Term

1. car

3. flight

5. aeroplane

7. Zermatt

9. Jet

11. train

2. zephyr

4. yeoman

6. camera

8. iran

10. anthrax

12. mussolini

Table 4: Query terms used in

user-study

6. Querying with Generated Domain Knowledge

 85

regarding (1) how well the answers made the meaning of the query

understandable (2) how sufficient the amount of the presented information was

and (3) how well the result fits in an ambient scenario.

Although we only had a limited number of participants, leading to a high

standard deviation around 1, our application showed generally good-to-average

results. The spikes we see for queries like Query 2 are usually because the

used The Times Corpus has OCR issues especially with older text, leading

sometimes to non-understandable sentences.

As the general questions yielded, the information need satisfaction was rated

good (2.8±1.3). The application seemed to be helpful for the information

retrieval task (2.6±0.54) and comparably easy to use (2.4±1.67).

6.7 Discussion

In this chapter, we presented a solution for providing language evolution “on the

go”. As a basis we used The Times Archive, a large real-world corpus, allowing

us to identify significant evolutions in language. We devised two applications

tailored for mobile devices, one for professional, one for contemporary users,

1"

2"

3"

4"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

Ra
#
ng
&

&

Query&

Query&Evalua#on&Results&

Meaning"

Informa7on"

Ambient"

Fig. 34: Evaluation results of Queries in Table 4 rating 1-5 from very good to

bad on how clear the meaning of a term became, information quantity, and

ambient usability

6. Querying with Generated Domain Knowledge

 86

which allow for easy access to the corpus. We conducted an initial user-study

on the contemporary, ambient user-interface, which establishes the good

behaviour and usability of our interface.

We conclude that word sense discrimination is a helpful device for automatically

generating domain knowledge for an information retrieval system, and carefully

designed user interfaces are of great help for helping users satisfying their

information need. In the future, it would be helpful to extend such approaches to

structured data, and devise a system that allows combining the power of

generated domain knowledge with the flexibility of query construction on

structured data, as has been studied in the previous chapters.

7. Conclusion

 87

7. Conclusion
In this thesis we aimed to improve on current methods for automated

information retrieval, with a user-centric view in mind. We first introduced in

Chapter 1 a general psychological model to understand the needs and

requirements of users trying to satisfy their information needs. Then, in Chapter

2, we presented an approach for keyword search based ranking in relational

database systems and RDF stores, called SUITS. This approach allows for

easy access to commonly searched topics, and using construction options

allows guiding the ranking algorithm to the semantically intended direction. In

Chapter 4, we discussed QUICK, which fully supports all possibly user intents

with a keyword query on RDF stores. As the underlying SetCover problem is

NP-complete, we devised an incremental greedy algorithm with polynomial run

time. As both of these approaches still require substantial domain knowledge,

we devised in Chapter 5 a ranking based approach for facetted search on

relational database systems, which makes use of external domain knowledge

by a modified Castanet approach. While this is already greatly helpful to users,

the need for pre-defined knowledge bases specifically covering the domain of

the underlying data is restrictive. Therefore, we discuss in Chapter 6 a system

that automatically generates the needed domain knowledge using word sense

discrimination.

With the ever-growing amount of information, accessing this information in a

fast and practical way is important, and we believe it to become even more

prevalent in the time to come. We believe that current approaches often either

tend neglect the importance of user interaction, or do not focus enough on the

complexity and scale of the underlying data. With a strong focus on users’

requirements of the whole search process, we presented several approaches to

tackle these issues. We contributed several algorithms and new approaches

addressing specifically the complexity of the structured data often employed in

the hidden web. As every complex technical system requires a deep

understanding of the access mechanisms as well as the underlying data, we

additionally dived into the need of domain knowledge for the ordinary user. We

showed the use of pre defined domain knowledge, as well as of generated

domain knowledge in an extensive user study.

7. Conclusion

 88

As always, these contributions can only be singular steps in fulfilling the need of

users. The approach for query construction allows reaching all possible queries,

but for this it needs to compute the full search space. This space grows

exponentially with the size of the schema, which makes it infeasible to use on

larger schemas. To solve this issue, researching progressive, approximate, and

heuristic algorithms would be a fruitful endeavour, in order to still support the full

search space, but reduce computational requirements. It also seems feasible to

interpret the search process as cooperative game, in which the search system

tries to predict next moves of the user. This allows applying game tree search

algorithms like alpha-beta search. Furthermore, the discussed user interfaces

are still rather restrictive; with QUICK, a user cannot control directly the

direction within the search space the query construction takes. The facetted

interface allows for more flexibility, but also this becomes more and more

complex if the underlying schema grows. Employing aggregation and

hierarchical structuring will help to make the amount of options manageable.

This could be done by using concept hierarchies and exploiting attribute

affiliations, which allows to group semantically similar entities. As result, the

search space complexity would be reduced, and the schema would be easier to

understand.

The presented interfaces also do not directly allow representing the join paths

through the schema. With more complex queries, it therefore becomes difficult

to understand the structure of the data. Here, using associative search

approaches as presented by Feldspar [40] will be helpful. Currently, these

approaches only allow visualizing linear join paths; this concept needs to be

extended to support non-cyclic graphs. To support this, a measure for the

cognitive effort needed to understand such graphs and respectively applied

aggregation mechanisms would help in ensuring not to overstrain the user.

Integrating such approaches with automatically generated domain knowledge

will allow applying keyword search also to huge and complex web data sources,

where manually generated domain knowledge would not be feasible. Also with

this, aggregation and hierarchical structuring will allow to make deeply complex

and big web data sources understandable, and queryable in an easy manner.

Lastly, presenting example results for the currently constructed query is known

7. Conclusion

 89

to be of great help for users. Here, existing result sampling technologies could

be applied for the case of structured web data, and be displayed during the

whole query process.

8. References

 90

8. References

[1] M. Bergman, “The deep web: Surfacing hidden value,” Bright Planet.

2001.

[2] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” 27th

International Conference on Very Large Data Bases, 2001.

[3] S. Abiteboul, R. Agrawal, P. Bernstein, M. Carey, S. Ceri, B. Croft, D.

DeWitt, M. Franklin, H. G. Molina, D. Gawlick, J. Gray, L. Haas, A.

Halevy, J. Hellerstein, Y. Ioannidis, M. Kersten, M. Pazzani, M. Lesk, D.

Maier, J. Naughton, H. Schek, T. Sellis, A. Silberschatz, M. Stonebraker,

R. Snodgrass, J. Ullman, G. Weikum, J. Widom, and S. Zdonik, “The

Lowell Database Research Self-Assessment,” Communications of the

ACM, vol. 48, no. 5, pp. 111–118, 2005.

[4] G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl, “From keywords

to semantic queries—Incremental query construction on the semantic

web,” Web Semantics: Science, Services and Agents on the World Wide

Web, vol. 7, no. 3, pp. 166–176, Sep. 2009.

[5] A. Sutcliffe and M. Ennis, “Towards a cognitive theory of information

retrieval,” Interacting with Computers, 1998.

[6] B. Shneiderman, D. Byrd, and W. B. Croft, “Sorting Out Searching A

User-Interface Framework for Text Searches,” Communications of the

ACM, vol. 41, no. 4, pp. 95–98, 1998.

[7] H. He, H. Wang, J. Yang, and P. S. Yu, “BLINKS: ranked keyword

searches on graphs,” Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, pp. 305–316, 2007.

[8] G. Li, B. Ooi, J. Feng, J. Wang, and L. Zhou, “EASE: an effective 3-in-1

keyword search method for unstructured, semi-structured and structured

8. References

 91

data,” Proceedings of the 2008 ACM SIGMOD international conference

on Management of data, 2008.

[9] F. Liu, C. Yu, W. Meng, and A. Chowdhury, “Effective keyword search in

relational databases,” Proceedings of the 2006 ACM SIGMOD

international conference on Management of data - SIGMOD ’06, p. 563,

2006.

[10] S. Chaudhuri, R. Ramakrishnan, and G. Weikum, “Integrating DB and IR

Technologies  : What is the Sound of One Hand Clapping  ?,” in Second

Biennial Conference on Innovative Data Systems Research CIDR, 2005.

[11] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: a system for keyword-

based search over relational databases,” Proceedings 18th International

Conference on Data Engineering, pp. 5–16, 2002.

[12] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword search in

relational databases,” Proceedings of the 28th VLDB Conference, 2002.

[13] D. Maier, J. D. Ullman, and M. Y. Vardi, “On the foundations of the

universal relation model,” ACM Transactions on Database Systems, vol.

9, no. 2, pp. 283–308, May 1984.

[14] V. Hristidis, “Efficient IR-style keyword search over relational databases,”

Proceedings of the 29th VLDB Conference, 2003.

[15] E. Kandogan, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H.

Zhu, “Avatar semantic search: a database approach to information

retrieval,” Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, pp. 790–792, 2006.

[16] Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu, “SPARK  : Adapting

Keyword Query to Semantic,” 6th International Semantic Web

Conference, pp. 694–707, 2007.

8. References

 92

[17] B. Aditya, G. Bhalotia, S. Chakrabati, A. Hulgeri, C. Nakhe, Parag, and S.

Sudarshan, “Banks: Browsing and keyword searching in relational

databases,” Proceedings of the 28th VLDB Conference, 2002.

[18] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding Top-k

Min-Cost Connected Trees in Databases,” 23rd International Conference

on Data Engineering, pp. 836–845, 2007.

[19] B. Kimelfeld and Y. Sagiv, “Efficient engines for keyword proximity

search,” Eighth International Workshop on theWeb and Databases

(WebDB 2005), 2005.

[20] X. Dong and A. Halevy, “Indexing dataspaces,” Proceedings of the 2007

ACM SIGMOD international conference on Management of data -

SIGMOD ’07, p. 43, 2007.

[21] L. Zhang, Q. Liu, J. Zhang, H. Wang, Y. Pan, and Y. Yu, “Semplore  : An

IR Approach to Scalable Hybrid,” 6th International Semantic Web

Conference, no. 1, pp. 652–665, 2007.

[22] M. Jayapandian and H. V. Jagadish, “Expressive query specification

through form customization,” Proceedings of the 11th international

conference on Extending database technology Advances in database

technology - EDBT ’08, p. 416, 2008.

[23] M. Jayapandian and H. V. Jagadish, “Automated creation of a forms-

based database query interface,” Proceedings of the VLDB Endowment,

pp. 695–709, 2008.

[24] S. Cohen, Y. Kanza, Y. Kogan, W. Nutt, Y. Sagiv, and A. Serebrenik,

“EquiX—A Search and Query Language for XML,” Journal of the

American Society for Information Science and Technology, 2002.

[25] M. Petropoulos, Y. Papakonstantinou, and V. Vassalos, “Graphical query

interfaces for semistructured data: the QURSED system,” ACM

8. References

 93

Transactions on Internet Technology, vol. 5, no. 2, pp. 390–438, May

2005.

[26] R. Abraham, “FoXQ - XQuery by forms,” IEEE Symposium on Human

Centric Computing Languages and Environments, pp. 289–290, 2003.

[27] T. Catarci and M. Costabile, “Visual query systems for databases: A

survey,” Journal of Visual Languages & Computing, 1997.

[28] E. Augurusa and D. Braga, “Design and implementation of a graphical

interface to XQuery,” Proceedings of the 2003 ACM symposium on

Applied computing, pp. 1–5, 2003.

[29] D. Braga, A. Campi, and S. Ceri, “XQBE (XQuery By Example): A visual

interface to the standard XML query language,” ACM Transactions on

Database Systems, vol. 30, no. 2, pp. 398–443, 2005.

[30] A. Russell, P. Smart, D. Braines, and N. R. Shadbolt, “NITELIGHT: A

Graphical Tool for Semantic Query Construction,” Semantic Web User

Interaction Workshop (SWUI 2008), pp. 1–10, 2008.

[31] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst, “Faceted metadata for

image search and browsing,” Proceedings of the conference on Human

factors in computing systems - CHI ’03, p. 401, 2003.

[32] M. c. Schraefel, “Building Knowledge: What’s Beyond Keyword Search?,”

IEEE Computer, 2009.

[33] M. Wilson, A. Russell, and D. Smith, “mSpace: improving information

access to multimedia domains with multimodal exploratory search,”

Communications of the ACM, vol. 49, no. 4, pp. 47–49, 2006.

[34] M. Wilson and M. c. Schraefel, “A longitudinal study of exploratory and

keyword search,” Proceedings of the 8th ACM/IEEE-CS joint conference

on Digital libraries, pp. 52–55, 2008.

8. References

 94

[35] R. van Zwol and B. Sigurbjornsson, “Faceted exploration of image search

results,” Proceedings of the 19th international conference on World wide

web - WWW ’10, p. 961, 2010.

[36] S. Basu Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania, “Minimum-

effort driven dynamic faceted search in structured databases,” Proceeding

of the 17th ACM conference on Information and knowledge mining -

CIKM ’08, p. 13, 2008.

[37] C. Li, N. Yan, S. Roy, L. Lisham, and G. Das, “Facetedpedia: dynamic

generation of query-dependent faceted interfaces for wikipedia,” in

Proceedings of the 19th international conference on World wide web,

2010, pp. 651–660.

[38] V. Sinha and D. R. Karger, “Magnet: Supporting navigation in

semistructured data environments,” Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, 2005.

[39] M. Hildebrand, “/facet: A browser for heterogeneous semantic web

repositories,” 5th International Semantic Web Conference, pp. 272–285,

2006.

[40] D. Chau, B. Myers, and A. Faulring, “What to do when search fails: finding

information by association,” Proceedings of the twenty-sixth annual

SIGCHI conference on Human factors in computing systems, 2008.

[41] M. Schraefel, M. Wilson, and M. Karam, “Preview Cues: Enhancing

Access to Multimedia Content,” School of Electronics and Computer

Science, University of Southampton, 2004.

[42] G. Robertson, K. Cameron, M. Czerwinski, and D. Robbins, “Polyarchy

visualization: visualizing multiple intersecting hierarchies,” Proceedings of

the SIGCHI conference on Human factors in computing systems, 2002.

8. References

 95

[43] T. Paek, S. Dumais, and R. Logan, “WaveLens: a new view onto Internet

search results,” Proceedings of the SIGCHI conference on Human factors

in computing systems, 2004.

[44] W. Kules, M. Wilson, and B. Shneiderman, “From keyword search to

exploration: How result visualization aids discovery on the web,”

Technical Report, 2008.

[45] Y. Wang, L. Xuemin, L. Wei, and X. Zhou, “SPARK: Top-k Keyword

Query in Relational Databases,” in Proceedings of the 2007 ACM

SIGMOD international conference on Management of data, 2007.

[46] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano, “Efficient Keyword

Search Across Heterogeneous Relational Databases,” in 23rd

International Conference on Data Engineering, 2007.

[47] T. Tran, P. Cimiano, S. Rudolph, and R. Studer, “Ontology-based

interpretation of keywords for semantic search,” Proceedings of the 6th

international The semantic web and 2nd Asian conference on Asian

semantic web conference, 2007.

[48] R. Fagin, “Combining Fuzzy Information from Multiple Systems,” Journal

of Computer and System Sciences, vol. 58, no. 1, pp. 83–99, Feb. 1999.

[49] J. Widom, “Indexing Relational Database Content Offline for Efficient

Keyword-Based Search,” 9th International Database Engineering and

Application Symposium, pp. 297–306, 2005.

[50] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi,

and C. Yu, “Making database systems usable,” Proceedings of the 2007

ACM SIGMOD international conference on Management of data -

SIGMOD ’07, p. 13, 2007.

[51] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, “Natural language

interfaces to databases – an introduction,” Natural Language Engineering,

vol. 1, no. 01, Sep. 1995.

8. References

 96

[52] Y. Li, H. Yang, and H. Jagadish, “Constructing a Generic Natural

Language Interface for an XML Database,” in Advances in Database

Technology-EDBT, 2006, pp. 737–754.

[53] M. Al-Muhammed and D. Embley, “Ontology-based constraint recognition

for free-form service requests,” in IEEE 23th International Conference on

Data Engineering, 2007, pp. 366–375.

[54] H. Bast, A. Chitea, F. Suchanek, and I. Weber, “ESTER: efficient search

on text, entities, and relations,” Proceedings of the 30th annual

international ACM SIGIR conference on Research and development in

information retrieval, pp. 671–678, 2007.

[55] A. Nandi and H. V. Jagadish, “Assisted querying using instant-response

interfaces,” in Proceedings of the 2007 ACM SIGMOD international

conference on Management of data - SIGMOD ’07, 2007, p. 1156.

[56] D. Carmel, Y. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer,

“Searching XML documents via XML fragments,” in Proceedings of the

26th annual international ACM SIGIR conference on Research and

development in information retrieval, 2003, p. 151.

[57] N. Fuhr, M. Lalmas, and A. Trotman, “Comparative Evaluation of XML

Information Retrieval Systems,” in 5th International Workshop of the

Initiative for the Evaluation of XML Retrieval, 2006.

[58] S. Amer-Yahia, L. Lakshmanan, and S. Pandit, “FleXPath: flexible

structure and full-text querying for XML,” in Proceedings of the 2004 ACM

SIGMOD international conference on Management of data - SIGMOD

’04, 2004, vol. 1.

[59] Y. Li, C. Yu, and H. Jagadish, “Schema-free xquery,” Proceedings of the

Thirtieth international conference on Very large data bases, pp. 72–83,

2004.

8. References

 97

[60] R. Karp, “Reducibility among combinatorial problems,” 50 Years of Integer

Programming 1958-2008, 2010.

[61] J. Broekstra, “Sesame: A generic architecture for storing and querying rdf

and rdf schema,” International Semantic Web Conference, pp. 1–16,

2002.

[62] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” The

Journal of Machine Learning, pp. 993–1022, 2003.

[63] D. Cutting, D. Karger, J. O. Pedersen, and J. W. Tukey, “Scatter/gather: A

cluster-based approach to browsing large document collections,”

Proceedings of the 15th annual international ACM SIGIR conference on

Research and development in information retrieval, 1992.

[64] M. a. Hearst, “Clustering versus faceted categories for information

exploration,” Communications of the ACM, vol. 49, no. 4, p. 59, Apr. 2006.

[65] W. Dakka and P. G. Ipeirotis, “Automatic extraction of useful facet

hierarchies from text databases,” IEEE 24th International Conference on

Data Engineering, pp. 466–475, 2008.

[66] E. Stoica, M. A. Hearst, and M. Richardson, “Automating Creation of

Hierarchical Faceted Metadata Structures,” Proceedings of NAACL HLT,

pp. 244–251, 2007.

[67] J. Caumanns, “A Fast and Simple Stemming Algorithm for German

Words,” Technical Report, 1998.

[68] D. Davidov and A. Rappoport, “Efficient unsupervised discovery of word

categories using symmetric patterns and high frequency words,”

Proceedings of the 21st International Conference on Computational

Linguistics and the 44th annual meeting of the Association for

Computational Linguistics, 2006.

8. References

 98

[69] T. Pedersen and R. Bruce, “Distinguishing Word Senses in Untagged

Text,” Proceedings of the Second Conference on Empirical Methods in

Natural Language Processing, 1997.

[70] T. V. D. Cruys, “Using three way data for word sense discrimination,”

Proceedings of the 22nd International Conference on Computational

Linguistics (Coling 2008), no. August, pp. 929–936, 2008.

[71] H. Schütze, “Automatic word sense discrimination,” Computational

linguistics, 1998.

[72] D. Lin, “Automatic retrieval and clustering of similar words,” COLING ’98

Proceedings of the 17th international conference on Computational

linguistics, 1998.

[73] P. Pantel and D. Lin, “Discovering word senses from text,” Proceedings of

the eighth ACM SIGKDD international conference, vol. 41, 2002.

[74] B. Dorow, “A graph model for words and their meanings,” 2007.

[75] O. Ferret, “Discovering word senses from a network of lexical

cooccurrences,” COLING ’04 Proceedings of the 20th international

conference on Computational Linguistics, 2004.

[76] B. Dorow, D. Widdows, K. Ling, J.-P. Eckmann, D. Sergi, and E. Moses,

“Using curvature and markov clustering in graphs for lexical acquisition

and word sense discrimination,” Arxiv, 2004.

[77] N. Tahmasebi, K. Niklas, T. Theuerkauf, and T. Risse, “Using word sense

discrimination on historic document collections,” Proceedings of the 10th

annual joint conference on Digital libraries - JCDL ’10, p. 89, 2010.

[78] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’

networks.,” Nature, vol. 393, no. 6684, pp. 440–2, Jun. 1998.

[79] G. a. Miller, “WordNet: a lexical database for English,” Communications of

the ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995.

8. References

 99

[80] P. Borlund and P. Ingwersen, “The development of a method for the

evaluation of interactive information retrieval systems,” Journal of

documentation, vol. 53, no. 3, pp. 225 – 250, 1997.

9. Wissenschaftlicher Lebenslauf

 100

9. Wissenschaftlicher Lebenslauf
Name Gideon Zenz

Geboren am 03.05.1979

Geboren in Neunkirchen / Saar

Schulabschluß

8/1989 – 6/1998 Allgemeine Hochschulreife
 Kardinal-Frings Gymnasium, Bonn/Beuel

Studium

9/2002 – 9/2006 Ingenieur Informatik (FH)

Thema der Diplomarbeit:

Integration IT - Embedded Systems: Wissensbasierte

Kommunikation in verteilten Systemen mit der Web

Ontology Language (OWL)

Universität Lüneburg

10/2006 – 9/2008 Informatik

 Thema der Masterarbeit:

Precomputing Indexes for Efficient Keyword Search

in Databases
Leibniz Universität Hannover

Promotion

1/2008 – 06/2013 Wissenschaftlicher Mitarbeiter und Doktorand

Forschungszentrum L3S

 Leibniz Universität Hannover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

