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Abstract 

Vaccine production is one of the most important applications of biotechnology. Virus-

like particles (VLP) serve well the purpose of a safe and effective vaccine. Yet till now 

many aspects of this biological tool have been under discovered. In present work, an 

effort has been made to characterize the structural aspects of genetically modified 

VLPs. As a model system, hepatitis B surface antigen (HBsAg) VLPs have been 

produced in methylotrophic yeast, Pichia pastoris. In the initial part of the work, 

downstream processing has been probed to discover the crucial points in gradual 

development of VLP formation. In later part, the purified VLPs have been subjected to 

chaotropic conditions to observe the type and extent of molecular forces holding these 

tiny particles together.  

Self-assembly, from subunits to a well defined symmetry, is the most prominent 

characteristic of VLPs, however, little is known about when and how they appear in 

the process. It has been observed in previous studies that no VLPs are observed during 

the cultivation in Pichia pastoris cells. In order to pinpoint the most crucial steps for 

VLP assembly, samples were collected during the downstream process. Transmission 

electron microscopy was used to examine samples from multi-step purification and the 

data was analyzed to draw a quantitative relation. During initial steps of the 

purification process, no VLPs were observed despite the presence of enough amount of 

HBsAg protein. Adequate VLP count was observed only after adsorption on the 

hydrophobic resin. Control experiments using non-HBsAg-producing Pichia pastoris 

cells were carried out to observe the background structures and their influence. These 

control experiments, containing VLPs, in presence and absence of suspected agents 

clearly prove that host cell components as well as buffer system are decisive factors in 

the in vitro assembly process of HBsAg. 

The stability tests were performed in the presence of denaturants and changes in VLP 

structure and size were ascertained via fluorescence spectroscopy (intrinsic and 

extrinsic) and dynamic light scattering (DLS). The trend in structural changes as a 

function of molarity of the salts indicates that VLPs undergo denaturation process by 

several intermediates, which may occur as a cascade of reactions involving gradual 

detachment of subunits. 

Key words: Hepatitis B surface antigen, Virus-like particle, Self-assembly, 

Transmission electron microscopy, Steady-state fluorescence spectroscopy, Dynamic 

light scattering    
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Zusammenfassung 

Die Herstellung von Vakzinen ist eine der wichtigsten Anwendungen in der 

Biotechnologie. Virusartige Partikel (VLPs) werden als ungefährliche und effektive 

Impfstoffe eingesetzt. Dennoch sind viele Aspekte dieser  biologischen Werkzeuge bis 

heute immer noch nicht genügend erforscht. In dieser Arbeit werden die strukturellen 

Aspekte von genetisch veränderten VLPs charakterisiert. Als ein Modellsystem diente 

Hepatitis B Oberflächenantigen (HBsAg) Protein, das in der methylotrophen Hefe, 

Pichia pastoris, produziert wurde. Im ersten Teil dieser Arbeit wurde der 

Aufreinigungsprozess untersucht, um die entscheidenden Schritte während der 

allmählichen Entwicklung der VLP Bildung zu erforschen. Im späteren Teil dieser 

Arbeit wurden die aufgereinigten VLPs unter chaotropen Bedingungen untersucht, um 

die Art und das Ausmaß der molekularen Kräfte, die diese Partikel zusammenhalten, 

zu analysieren. 

Selbstassemblierung von Monomeren zu gut definierter Symmetrie ist die bekannteste 

Eigenschaft der VLPs, aber es ist wenig bekannt darüber, wie und wann die VLPs 

während der Aufreinigung gebildet werden. Es wurde in den letzten Studien 

beobachtet, dass keine VLPs in Pichia pastoris Zellen während der Kultivierung 

auftreten. Um den wichtigsten Punkt der Selbstassemblierung der VLPs genau 

bestimmen zu können, wurden Proben während der Aufreinigung entnommen. 

Mithilfe der Transmissionselektronenmikroskopie wurden die Proben der mehrstufigen 

Aufreinigung charakterisiert und die ermittelten Daten zur Quantifizierung der VLP 

Bildung eingesetzt. Während der Anfangsschritte der Aufreinigung wurden keine 

VLPs trotz der Anwesenheit von genügend HBsAg gefunden. Eine ausreichende 

Anzahl an VLPs wurde jedoch nach dem Aufreinigungsschritt mittels hydrophobem 

Harz festgestellt. Es wurden Kontrollversuche mit nicht produzierenden HBsAg Pichia 

pastoris Zellen durchgeführt, um die Strukturen des Hintergrunds und deren Einfluss 

auf die VLP Bildung zu beobachten. Diese Kontrollproben, die VLPs enthalten, zeigen 

in An- und Abwesenheit der vermuteten Wirkstoffe deutlich, dass die 

Wirtszellkomponenten sowie das Puffersystem entscheidende Faktoren für den in vitro 

Selbstassemblierungs-prozess des HBsAgs darstellen. 

Die Stabilitätstests wurden in Anwesenheit von Denaturierungsmitteln durchgeführt 

und die Veränderungen der VLP-struktur und -Größe mithilfe der Fluoreszenz-

spektroskopie (intrinsisch und extrinsisch) und Lichtstreuungsmessungen 
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nachgewiesen. Der Trend der strukturellen Veränderungen als Funktion der Molarität 

der Denaturierungsmittel zeigt, dass VLPs einen Denaturierungsprozess mit vielen 

Zwischenprodukten durchlaufen, der eine Art Kaskadenreaktion mit schrittweiser 

Abtrennung von Monomeren darstellt.  

Stichwörter: Hepatitis B Oberflächenantigen, Virusähnliche Partikel, Selbst-

assemblierung, Transmissionselektronenmikroskopie, Steady-state Fluoreszenz-

spektroskopie, Dynamische Lichtstreuumessung 
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1. Theoretical background 

Hepatitis B is a viral infection that attacks the liver and can cause both acute and 

chronic disease. According to the WHO (World Health Organization), an estimated 

two billion people, about one third of the world’s population, have been infected with 

the hepatitis B virus (HBV), and more than 350 million have chronic (long-term) liver 

infections [1]. HBV belongs to the hepadnaviridae family and has a DNA genome 

(3.2 kb) that is replicated via an RNA intermediate. Depending on the patient’s 

immune response, infection by HBV can be asymptomatic, chronic or acute [2]. In 

acute illness, the infection lasts for 2-3 weeks and patient’s liver needs about 6 months 

to recover completely. In chronic hepatitis B, the infection leads to chronic liver 

inflammation including liver cirrhosis and ultimately hepatocellular carcinoma. 

 

Figure 1.1. Geographic prevalence of chronic infection with hepatitis virus surveyed until 

2006; Courtesy WHO [3]. 
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1.1. Epidemiology of HBV 

The environmental factors such as healthy life style and safe health care system play 

the major role to prevent the spread of disease. The common means of spreading HBV 

are through sexual contact with infected person, percutaneous or mucosal exposure to 

infectious blood and vertical (perinatal) transmission [4]. Despite the fact that there 

exists a vaccine against hepatitis B since 1980s, its incidence has been increasing. Due 

to recommendations by WHO, the prevalence of disease has been decreased in several 

countries e.g., in Korea, where more than 98.9% infants have been vaccinated since 

1990, the prevalence of HBV carriage has declined greatly [5]. Similarly in Europe, 

the reported HBV cases per 100,000 have declined from 6.7 to 1.5 during 1995-2007 

[6]. However weak immunization strategies in other countries and limited domestic 

funding in many more create challenges to achieving regional targets. 

The major endemic regions facing the problem of hepatitis B are China and central and 

southern parts of Africa [7]. The disease is relatively rare in western countries and is 

usually observed in adults. On the other hand, in Asia and Africa, hepatitis B is 

acquired during the childhood, mostly via perinatal transmission [7]. Apart from 

endemic regions, southern parts of east and central Europe, the Middle East, the 

Amazon and the Indian subcontinent show quite high occurrence of hepatitis B. Most 

of the cancer cases, not only in parts of Africa and Asia but also in developed 

countries, are due to primary liver cancer caused by hepatitis B [8, 9]. 

WHO has recommended that each child should get their vaccine dose against hepatitis 

B as soon as possible, preferably within 24 hours after the birth. The first dosage is 

followed by 2 or 3 more doses depending on the pattern adopted for vaccination. Two 

further doses are enough if they are given simultaneously with first and third dose of 

DPT vaccine (diphtheria-pertussis-tetanus vaccine). The younger cohorts should be 

given priority for catch-up vaccination as they face a higher risk of chronic illness. 

Additionally, people who are under medical treatment where they require blood-related 

therapy or other blood exchange activity, face a high risk and therefore should be given 

a booster dose [10]. In more than 90 % of the adult patients, the infection clears 

spontaneously and the immune protection lasts for the life time [11]. 
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1.2. HBV genomic organization 

The hepatitis B virus has a partially double stranded circular DNA of approximately 

3200 base pairs. HBV has four overlapping open reading frames (ORFs) which encode 

seven polypeptides [12]. The seven polypeptides constitute the surface- and coat-

proteins, transcriptional transactivator, polymerase, reverse transcriptase and RNase. 

The envelope protein genes i.e., pre-S1 (large), pre-S2 (middle), and S (small or 

surface) overlap with the polymerase ORF [13]. 

 

Figure 1.2. The physical map of hepatitis B genomic organization [13]. 

The viral polymerase is covalently attached to the 5’ end of the minus strand which is 

the longest and contains an ORF that encodes for viral proteins and the cis-elements 

responsible for regulation of HBV gene expression and replication. A plus strand of 

variable length maintains the circular structure of the cohesive hybridization that 

straddles the 5’ and 3’ ends of the minus strand [14]. 

1.3. Hepatitis B virus morphology 

The hepatitis B virus has an icosahedral shape with an outer coat. Electron microscopy 

shows three morphological forms of HBV in serum. The most abundant form is the 
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spherical one with 22 nm diameter. The second most common is the filamentous or 

tubular form also with 22 nm diameter but in length may reach up to 200 nm. These 

both forms are devoid of DNA. The third and least observed form is the 42 nm 

spherical virus, originally referred to as Dane particle. 

 

Figure 1.3. Illustration of a HBV-particle, also known as the Dane particle. The outer 

surface (coat) of the virus consists of three types of HBV surface antigens. In addition to 

the icosahedral core, made up of core protein (HBc), the virus contains viral DNA and the 

polymerase enzyme inside the inner core. With permission, adapted from © 2002 James 

A. Perkins, Medical and Scientific illustrations. 

Structurally, HBV consists of three major components, surface proteins, core proteins 

and the genetic material (Figure 1.3). The surface coat itself comprises three proteins 

i.e., large protein (L-protein), medium protein (M-protein) and small protein (S-

protein). There have been continuous efforts since decades to develop a recombinant 

vaccine against hepatitis B inspired by different immunogenic domains of the original 

virus, for example, VLP vaccines made up of only core protein. [15]. Out of all three 

components, the most attractive and popular candidate, with respect to efficacy, is the 

surface antigen, known as hepatitis B surface antigen (HBsAg). 

Small surface protein (S)
Core protein (HBc)

Medium surface protein 
(S + PreS2)

Large surface protein
(S + PreS2 + PreS1)

DNA

Polymerase (P)

DNA
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Figure 1.4. A schematic representation of surface proteins of HBV. The S-region is 

common in all of the surface antigens, which comprises 226 amino acids.  

All of the envelope proteins contain the sequence of the small protein i.e. S-region, 

whereas the two other proteins have additional amino acid sequence namely preS1 and 

preS2 (Figure 1.4). All three domains contain regions which are targets for neutralizing 

antibodies. The preS1 region directly binds to the cellular receptor whereas the preS2 

sequence binds to the albumin receptor. The small protein is not directly involved in 

binding to the liver cell membrane, however, antibodies against this protein have a 

good neutralizing effect [16]. 

1.4. Mechanism of virus-mediated immune response  

In general pathogens are averted from entering the human body in the first place via 

innate immunity which comprises of first and (partially) second line of defense. First 

line of defense of the immune system consists of various physical (e.g., skin) and 

chemical barriers (mucous, saliva, vaginal fluid etc) to prevent the virus from entering 

the body. Still if the virus manages to enter inside the human body, it has to deal with 

immune system at further levels [17]. When HBV enters the body via body fluids, it 

passes through blood and here the second line of defense comes in action. This is 

characterized by production of type 1 interferon (IFN)-α/β cytokines and the activation 

of natural killer (NK) cells [18, 19]. If HBV is able to pass through the innate immune 

system, it enters the hepatic cells where it undergoes multiple cycles of replication and 

the shredding occurs into the blood [20].   

Depending on the stage of infection, various markers can be observed in the blood. 

Four major serological markers are i. hepatitis B surface antigen, ii. hepatitis B surface 

antibody (anti-HBs), iii. total hepatitis B core antibody (anti-HBc) and iv. IgM 

antibody to hepatitis B core antigen (IgM anti-HBc). HBsAg is one of the initial 

markers appearing in third week after exposure and persists by the sixth month. From 

HBsAg gene
PreS1            PreS2     S protein

1                    119          174                                 400

LHBs
1                    119          174                                 400

MHBs
119          174                                 400

SHBs
174                                 400
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second month of infection, high levels of IgM anti-HBc are detectable. Anti-HBs is 

observed variably from sixth month, after the disappearance of HBsAg [2]. 

By definition, hepatitis is inflammation of the liver but none of the hepatitis-inducing 

viruses, including HBV, are typically cytopathogenic. The HBV DNA integrates into 

host genome and the cellular damage observed in hepatitis is supposedly a result of 

immune response against infected hepatocytes [20]. 

1.5. HBV replication cycle 

The life cycle of the HBV inside the human body is similar as that of other viral 

cycles. After entering, first the capsid gets attached to the hepatocytic surface via 

specific receptors [21] and double stranded DNA is released inside the hepatocyte [22]. 

Within the host nucleus, this viral DNA is converted into cccDNA (covalently closed 

circular DNA) which replicates to create several transcript copies including pregenome 

RNA [23]. 

 

Figure 1.5. HBV replication cycle: HBV gets attached to a receptor on the surface of the 

cell. The capsid enters the cell, cccDNA replicates inside the host nucleus to produce 

several copies of pregenome RNA which is encapsidated and continues the cycle either in 

the same or in another cell. Adapted from Butel et al. [24]. 
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Uncoating Exit cell
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Pregenome RNA is encapsidated with core protein and single-strand DNA is 

synthesized by viral polymerase within the core. Core particles bud from pre-Golgi 

compartment, acquire surface protein and exit the hepatocyte or enter another cycle of 

intracellular replication [23].  

1.6. Vaccines for hepatitis B 

The vaccines against hepatitis B exist since a while but the death toll caused by it is 

still increasing. Among many other reasons, it is because of absence of a suitable-for-

all vaccine. In general, about 1-10% of healthy adults show non-response to vaccine 

because of one or the other reason. Therefore there is still a dire need of hepatitis B 

vaccine candidates with better immunogenic response and simpler delivery system. 

HBsAg, originally know as Australia antigen, was first discovered by Blumberg et al. 

in 1965 in sera of leukemia patients [25]. Soon it was adapted to be exploited as 

vaccine against hepatitis B. Presently, various types of vaccines against hepatitis B are 

available. 

1.6.1. Plasma-derived vaccines 

The early efforts to propagate HBV in cell cultures were unsuccessful therefore it has 

not been fruitful to develop vaccine based on virus expressed in cell cultures [26, 27]. 

When infected with HBV, cell cultures produce low yield due to poor viral replication 

[28]. Other option was isolation of HBV particles (22 nm) from plasma of 

asymptomatic human carriers. The first generation of hepatitis B vaccine was 

developed from the formalin- or heat-inactivated virions from plasma of carrier 

patients [29].  

The first plasma-derived vaccines were licensed in USA and France in 1981-1982. In 

addition to inadequacy of plasma, there have been many safety issues associated with 

plasma-derived vaccine. The risk of presence of active virus or viral DNA makes them 

unfavorite as a vaccine candidate. Occurrence of some undetected infectious agents in 

vaccine, despite the careful procedure of isolation from human plasma, has been a 

matter of concern [30]. Although plasma-derived vaccines are no longer produced in 

North America or Western Europe, they are still in use in many countries in Asia. 
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1.6.2. DNA vaccines 

The naked DNA can be injected as expression plasmid which is taken up by the cells. 

This results in the expression of respective antigen which triggers the immune 

response [31]. In case of hepatitis B, this approach has been applied so far in mice 

using pDNA encoding HBsAg and has been reported to produce significant humoral 

and cellular response [32].  

In general, in plasma- and DNA-derived vaccines, the results are less promising due to 

their tendency to contamination. Particularly in developing countries, where there is 

always a risk of contamination because of backward health care system, plasma 

derived vaccines are less successful. 

1.6.3. Subunits vaccines 

Subunit vaccines, as the name suggests, are the vaccines based on antigenic domains of 

the viral coat. In case of hepatitis B, polypeptide subunits have been tested in non-

human primates and clinical tests have been carried out [29]. A trial of synthetic 

peptide vaccine comprising 19 amino acid residues from the pre-S2 protein (residues 

14-32 from the N terminus) has been proven successful to produce immunological 

efficacy in chimpanzees [33]. The subunit has been stated to be expressed in E. coli in 

a number of reports [34, 35].  

1.6.4. VLP-based vaccines 

The HBsAg VLP-based vaccine has been one of the most significant success stories in 

biotechnology. The vaccine in common use today was approved in 1986 by US FDA 

and is considered as world's first genetically engineered vaccine [36]. It is also 

considered as the first vaccine against any cancer i.e. hepatocellular carcinoma. This 

vaccine comprises small virus-like particles (VLPs) which resemble the virus actually 

causing the disease with the major difference being that they lake genetic material i.e., 

they are non-infectious.  

During infection, two types of viral particles are frequently produced. The infectious 

types, Dane particles, are about 44 nm in size. During chronic infection, HBsAg is 

expressed also as another non-infectious quasi-spherical from, with 22 nm of size. 

Both particles have octahedral symmetry [37]. 
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1.7. Expression systems used for HBV vaccine production 

The most common antigen used against hepatitis B as vaccine is the surface antigen. 

HBsAg has been successfully synthesized in a number of microbial systems. Like any 

other biopharmaceutical product, each system offers its advantages and disadvantages. 

In case of E. coli, the expression of HBsAg polypeptide was successful but the activity 

could not be verified by radioimmunoassay [38]. The VLP formation ability has been 

very poor either because of lack of glycosylation of HBsAg derivatives [35] or because 

of inefficient transcription [34]; although the HBV genome does not contain ‘introns’ 

which E. coli is believed to be unable of transcribing [39]. 

Subsequently, Saccharomyces cerevisiae was employed as an alternative host system 

for the expression of HBsAg. The first successful commercial vaccine invented against 

hepatitis B virus (HBV) in 1984 was expressed in S. cerevisiae [40-42]. Till now, only 

two FDA approved vaccines, Engerix-B® (GlaxoSmithKline) and Recombivax HB® 

(Merck and Co. Inc.), are produced in S. cerevisiae. 

Apart from S. cerevisiae, HBsAg has been expressed in other fungal systems such as 

Pichia pastoris, Hansenula polymorpha [43] and Aspergillus niger [44]. Commercially 

available H. polymorpha-derived vaccines are Hepavax-Gene (KGCC, Korea) and 

AgB (LPC, Argentina) [45]. In general, A. niger serves many inherent advantages such 

as glycosylation more similar to that of in humans and higher product yield but the 

cultivation process is rather tricky due to the danger of spore dust formation [46]. 

HBV antigens have been reported to be expressed also in viral expression systems. 

Both surface and core antigens were co-expressed in Vaccinia virus which resulted in 

formation of either HBsAg or HBcAg viral particles [47]. Further alternatives include 

adenovirus and baculovirus expression system. 

Other successful expression systems in trial comprise Plant cell cultures [48-50], 

Chinese hamster ovary (CHO) cells [51, 52] and insect cell-based systems [53]. 
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1.8. Pichia pastoris as expression host 

As mentioned earlier, initially there have been efforts to express HBsAg in E. coli but 

there had been problems with the retention of the plasmid. Also, the immunogenic 

response was relatively less effective as compared to that generated by yeast-derived 

HBsAg [38, 54]. The isolation of a yeast specie capable of methanol assimilation as 

sole source of carbon and energy was reported for the first time in 1969 [55].  

Pichia pastoris has been an attractive host system for the heterologous protein 

production due to many evident reasons. It is possible to produce large amount of 

recombinant protein by inserting multiple copies of target genes. P. pastoris has a 

strong, inducible promoter that can be used for protein production [56]. By and large 

the yields are good, final cell density of cultivation is high and post-translational 

modifications are correctly oriented [57-59]. In general, it is practicable to obtain the 

protein in active form in the medium. It is easy to grow to high cell density and being a 

eukaryote, P. pastoris is able to carry out the post-translational modifications. 

Certainly, there are also some bottlenecks for P. pastoris as expression host system, 

especially with higher gene dosage. It is well known that expression can be increased 

significantly by increasing the gene dosage [60, 61] although in case of certain 

proteins, this may cause cellular stress [62]. The burden due to increased gene dosage 

causes protein folding stress which can lead to product accumulation in the ER [63].  

1.9. VLPs as vaccines 

VLPs are the nonreplicating virus capsids made by using recombinant DNA 

technology that mimic the structure of native virions. They are effective inducers of 

neutralizing antibodies as well as T-cell response. VLPs contain typically viral 

structural units, capsid or envelope, with absence of some elements required for 

assembly and viral genome and still capable of triggering immunologic effect. 

According to a view, the assembly pathway is difficult to establish because the 

polymerization is rapid and it is not always a single high-order reaction [64]. Usually 

VLP derived vaccines consist of one or more antigenic regions of original virus, which 

are allowed to self-assemble. Recombinant hepatitis B surface antigen (HBsAg) 

polypeptides assemble to form VLPs, which mimic the structure and hence 
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immunogenic effect of native virus. One subunit of HBsAg is 25 kDa and consists of 

226 amino acids.  

 

Figure 1.6. A cartoon of HBV (left) in comparison with HBsAg VLP right). Three 

surface antigens are large surface protein (LHBs), middle surface protein (MHBs) and 

small surface protein (SHBs). HBV core is made up of core protein (HBc). In addition to 

that, HBV contains reverse transcriptase (RT), RNA primer (Pri) and protein kinase (PK). 

The small surface antigen gene is expressed heterologously and has the property to self-

assemble into VLPs (right). 

VLP vaccines offer many lucrative advantages over the parallel alternatives. Their 

prime advantage is the absence of genetic material which promises absence of 

mutations and infection. Many deleterious effects of attenuated vaccine can be avoided 

by adapting the VLP approach. In general, the immunogenic stimulus is strong which 

triggers both humoral and cellular responses. Depending on the expression system, the 

production costs can be cut to many folds low as compared to the conventional 

(attenuated and inactivated) vaccines. In case of microbial expression systems, large 

production scale and good yields guarantee the high profitability. 

VLPs formed by the structural elements of viruses have received considerable attention 

over the past two decades and are considered as potential approach for future. Apart 

from hepatitis B, this technology can be proven useful in preparation of vaccines 

against many other viruses such as Dengue virus [65], Human papilloma virus (HPV) 

[66], Norwalk virus [49], Simian-Human Immunodeficiency virus [67] etc. More than 

HBc

RT

RNAse H

Pri
PK

LHBs

MHBs

PreS1

PreS2

Hepatitis B virus (42nm) Hepatitis B VLP (22nm)

Lipids SHBs



 

Theoretical background 

12 

 

30 VLP based vaccine for humans and other animals have been developed till date 

[68]. 

1.10. Immunogenic properties of VLPs 

In general, VLPs are more immunogenic as compared to the corresponding single 

subunits [69]. VLPs have potency to stimulate both cellular and humoral arms of the 

immune system. The repeated and ordered organization of subunits link with the 

specific immunoglobulins (Igs) which makes VLP ideal for triggering B-cell response 

[70]. 

 

Figure 1.7. Supposed mechanism of Immunogenic interaction of a VLP inside the body; 

adapted from Ludwig et al. [71] (reproduced with permission). 

Due to their relatively smaller size, it is easy for dendritic cells to uptake VLPs. The 

mechanism of VLP-mediated immune response involves the uptake of VLPs by 

dendritic cells (DCs) which result in the appearance of signals on the surface of these 

cells (Figure 1.7). These DCs are later transported to the lymphatic nodes to be 

presented to the T-cells [71]. 
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1.11. VLP assembly 

Despite the availability of HBsAg vaccine since 25 years, its structure at molecular 

level and the mechanism of self-assembly of the VLPs is not fully known.  There have 

been some efforts to understand this mechanism in real viruses but in the field of 

VLPs, this area is still under-explored. The mechanism by which HBsAg undergoes 

VLP formation is of special interest as it may open prospects to other VLP based 

vaccines. As far as the mechanism of VLP formation in mammalian cells is concerned, 

it is relatively straightforward. For example in case of human hepatocytes, the particles 

are formed in ER (endoplasmic reticulum). They are retained in the ER lumen for 

some time and later excreted out to the intercellular space [72, 73]. 

In simpler expression systems, the process of secretion of HBsAg VLPs is rather 

tricky. In CHO cells, electron micrographs show the HBsAg accumulation in dilated 

areas of ER. Here the HBsAg resides in form of collection of filamentous structures 

with half time for secretion of about 5 h [74]. No HBsAg particles could be observed 

in the plant cell culture. Their failure to progress further than ER (or the Golgi) has 

been described as a result of presence of the cell wall [48]. In case of yeast, it has 

already been described that the assembly does not take place in vivo during the 

expression, [75] which leads to the conclusion that this process occurs during the 

downstream process.  

Apart from protein physical properties, other decisive factors involved are environment 

components of protein solution. Physiochemical conditions like pH, ionic strength and 

temperature play important role in correct assembly process [76]. Moreover, the 

influence of stoichiometric ratio of structural (subunit) proteins on the concentration of 

assembled particles has been intensively studied [77].  

It was considered in the past that there are no intermediates present in the HBsAg 

assembly process [78] however recently it has been reported that intermediates were 

trapped by phenylpropenamide assembly accelerators [79]. Theoretically, a capsid can 

undergo assembly via exponential folds of intermediates. For hepatitis B capsid, taking 

into account 120 dimers, a least magnitude of the order of 10
26

 is possible, where as for 

in vitro process, this number decreases to 10
14

 [80]. 
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1.12. Physicochemical features of HBsAg 

HBsAg subunits are the building blocks of hepatitis B VLP, with one subunit being 

25 kDa in size. About 100 subunits, along with host cell lipids, assemble together to 

constitute one VLP. To understand the assembly mechanism, one needs to understand 

the structural aspects of single subunit protein. HBsAg is a hydrophobic protein which 

consists of mostly hydrophobic amino acids, as it is obvious from its hydopathy plot 

(Figure 1.8). 

 

Figure 1.8. Kyte and Doolittle plot of the HBsAg amino acid sequence. The X-axis plots 

the 226 amino acids of the protein, whereas the Y-axis plots the respective hydropathy 

scale (http://web.expasy.org/protscale/). 

Chemically, HBsAg VLPs are composed of protein and lipid contents in a ratio of 

60:40 respectively [52, 81]. Unlike typical (membrane) lipoproteins, HBsAg VLPs 

exhibit peculiar spatial arrangement of lipids. Instead of a lipid bilayer arranged around 

the protein layer, HBsAg particles have lipid layer embedded towards the inner region 

constituting hydrophobic core whereas the hydrophilic protein part faces towards the 

outside [82]. The lipids help to maintain the native conformation [83] and hence have 

an important influence on the immunogenic prosperities. This is evident from 

dissimilarity in immunogenic properties of HBsAg particles obtained from different 

sources. It is observed that when the same HBsAg encoded by the same DNA 
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sequence is expressed in different heterologous systems, exhibit different immunologic 

behavior [84].  

In addition to lipids, plasma-derived HBsAg is reported to contain carbohydrate 

moiety. Peterson et al. have been suggested that the amino acid region 122-150 of the 

subunit protein (named as p-25) and its glycosylated form (named as gp-30) in HBsAg 

particle, isolated from the plasma of chronic carrier, exhibits an attachment site for 

carbohydrates [85]. Both proteins, p-25 and gp-30, contain 226 amino acids. 

The antigenicity of HBsAg particles is dependent upon the correct disulfide bonds 

among the amino acids present in region aa101-172, the so-called a-determinant [86]. 

Several immunologic assays exploit this property to detect the presence of antigen in 

the serum [87]. The correct disulfide bonding in HBsAg dimers facilitates the correct 

conformation required for the in vitro VLP formation (Figure 1.9-B). 

The cryomicroscopic studies of truncated form of HBV core protein (aa 1-149) suggest 

hydrophobic domains and disulfide bond between the monomers, as shown in figure 

1.9 [88]. 

 

Figure 1.9. Structure of HBV capsid monomer: (A): The lower region of protein with 

aromatic amino acid residues (highlighted in red) constitutes the hydrophobic core. (B): 

HBsAg dimeric form. The disulfide bond between two monomers (shown in green) arises 

from Cys-61. With permission, reprinted from Wynne et al. [88]. 

CD spectroscopy shows that α-helix is the most abundant secondary structure found in 

HBsAg, constituting about 50% of the total protein structure. Some of these α-helices 

are believed to turn into γ-turns during the aggregation process in the purified protein 

[89]. 

A B
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2. Objectives of the thesis 

Virus-like particles (VLPs) as vaccines have proven to be a promising option against 

several diseases. However despite of being an important mean to prevent millions of 

casualties worldwide, there has been an imperative need to investigate the process of 

self-assembly from protein subunits into the VLPs. In this thesis, HBsAg was taken as 

a model system to study the in vitro assembly process of VLPs. HBsAg VLP-based 

vaccine has been one of the most important success stories in biotechnology [36]. It is 

considered as the first vaccine against a cancer i.e., hepatocellular carcinoma.  

Insight into the assembly process is important because (a) It will facilitate to develop 

new vaccines based on VLP technology, (b) It will be convenient to administer product 

homogeneity and quality, and (c) It will help to produce the VLPs with better 

immunogenicity. Moreover, in vitro investigation provides the possibility to 

manipulate the original process, e.g., disassembly and reassembly, leading to the 

resulting product which is more stable and effective. 

It is known that the VLPs are not present intracellularly during HBsAg production in 

the yeast cells [75]. Therefore it was concluded that the assembly process takes place 

in vitro during the downstream process. Until now, there has not been any report about 

the monitoring of assembly process in HBsAg during downstream processing, which 

brings it to the aims of this thesis. The explicit purpose of this thesis was to answer the 

following questions: 

How to obtain high quality HBsAg VLPs during downstream process? 

How to probe the downstream process to monitor the VLP production? 

How to provide better insight into assembly process using electron microscopic study? 

How stable is the VLP structure and what happens when it is defolded? 

The primary objective of this study is to apprehend the key aspects of in vitro VLP 

assembly. This report mainly focuses on the factors affecting the self-assembly of 

HBsAg VLPs during the downstream process. The suggested factors influencing the 

assembly being stated here are main constituents of the microenvironment such as host 

cell components (HCCs) and the buffer system. Hence the focus is given to examine 
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these factors together and individually with respect to their influence on VLPs. Several 

control experiments have been carried out to investigate the effect of above stated 

factors, together as well as individually. 

The second aim of this work is to better understand the stability and structural aspects 

of VLPs and the changes induced therein by the addition of denaturing agents. The 

purified VLPs have been subjected to defolding process by addition of chaotropic 

salts. These changes have been observed via analytical tools like fluorescence 

spectroscopy and dynamic light scattering technique. Based on these observations, 

mechanism of defolding of the VLPs has been proposed. 
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3. Experimental methods 

In this chapter, procedures of the major experiments performed will be stated. Their 

outcome will be discussed in the coming chapter, section-wise.  

3.1. Strain and vector for HBsAg expression 

The Pichia pastoris host strain used in this study to generate the HBsAg expressing 

transformants has been described previously [90]. Briefly, it is GS115 (HIS4), a 

histidine requiring auxotroph strain. The parent plasmid is pAO815 which contains the 

AOX1 promoter with 8-copy HBsAg expression cassette inserted in it. The HBsAg 

producing strain was initially classified as Mut
S
 phenotype [90] but in a recent study in 

our group, the presence of AOX1 gene has been reported, referring it to as a Mut
+
 

phenotype [91]. It has been proposed earlier that expression of HBsAg makes the 

strain relatively slow as it takes more time to grow biomass and to express the 

recombinant protein, but this slower growth rate is considered to improve the 

percentage of HBsAg polypeptides which are later assembled into VLPs [92]. 

3.2. Preliminary expression of HBsAg in Pichia pastoris  

To test the HBsAg expression, shake flask cultures of P. pastoris harboring HBsAg 

gene as well as P. pastoris GS115 (wild type) were grown and different media were 

used in growth of the cultures before and after induction under different conditions. 

The recipes of these media are given in the Appendix. For preliminary shake flask 

tests, the temperature and agitation were kept constant at 30°C and 250 rpm 

respectively. All the cultivations were done at least in duplicate. Initially, the 

expression of HBsAg was analyzed by SDS-PAGE.  

A- Buffered Media 

Different kinds of buffered media were chosen with minimal and complex 

composition. One of the media used was BMG (Buffered Minimal Glycerol) which is 

composed of 100 mM potassium phosphate, pH 6.0; 1.34% (w/v) yeast nitrogen base 

(YNB); 4 x 10
-5

% (w/v) biotin; 1% (v/v) glycerol. For induction phase of same 
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cultivations, BMM (Buffered Minimal Methanol) was used which has the same 

composition with exception of 0.5% methanol instead of 1% glycerol.  

Another parallel expression was performed using BMGY (Buffered Glycerol-complex 

Medium), which included 1% (w/v) yeast extract and 2% (w/v) peptone in addition to 

100 mM potassium phosphate, pH 6.0, 1.34% (w/v) YNB, 4 x 10
-5

% (w/v) biotin and 

1% (v/v) glycerol. As the biomass reached to the desired OD, the cells were introduced 

with BMMY (Buffered Methanol-complex Medium) which has same composition as 

that of BMGY except having 0.5% (v/v) methanol instead of 1% (v/v) glycerol. 

Media BMG and BMGY were used to raise a biomass followed by media BMGY and 

BMMY induced with regular addition of MeOH i.e., 0.5% volume after every 24 

hours, according to manufacturer’s instructions [Pichia expression Kit, Catalog no. 

K1710-01, Invitrogen USA]. 

B- Defined Media  

Defined medium A (DM A) has composition per liter as follows; 95.2 g (as well as 

60 g, as DM-B) glycerol, 15.7 g (NH4)2SO4, 9.4 g KH2PO4, 1.83 g MgSO4.7H2O, 0.28 

g CaCl2.2H2O, 0.4 mg biotin and 1.14 g yeast trace metal (YTM) solution.  

The YTM solution (1 L) contains 760.6 mg MnSO4.H2O, 484 mg Na2MoO4, 46.3 mg 

H3BO3, 5.032 g ZnSO4.7H2O, 12.0 g FeCl3.6H2O, 207.5 mg KI and 9.2 g H2SO4.  

C- Semi Defined Media 

The semi-defined media used include casein 1% to total volume as the complex 

ingredient. Semi-defined medium (Semi-DM) comprises of (per liter) 60 g Glycerol, 

10 g Casein hydrolysate, 9 g (NH4)2SO4, 4.3 g KH2PO4, 3.2 g MgSO4.7H2O, 0.22 g 

CaCl2.2H2O and 5 mL Pichia trace metal solution (PTM1) solution. 

The recipe of PTM1 is 6.0 g/L CuSO4.5H2O, 0.08 g/L NaI, 3.0 g/L MnSO4.H2O, 

0.2 g/L Na2MoO4.2H2O, 0.02 g/L H3BO3, 0.5 g/L CoCl2 (/CoCl3), 20.0 g/L ZnCl2, 

65.0 g/l FeSO4.7H2O, 5.0 ml H2SO4 and 0.2 g/L biotin [Pichia fermentation process 

guidelines, Invitrogen USA]. 
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All the media were sterilized by autoclaving at 121˚C for 20 min. The fine 

components, for example biotin and YTM solution, were filter sterilized. In all the 

initial shake flask cultivations, 100 µL of glycerol stock solution which contained ≈2.6 

x 10
9 

cell/mL (OD600 = 52) was introduced to 50 mL media. Subsequently, cells were 

grown in shake flasks at one liter scale to monitor the production yield of the strain and 

the medium. 

3.3. High cell density cultivation of P. pastoris GS115 Mut
+
 

As a next step, cultivation was upscaled to bioreactor level. To start the pre-inoculum, 

100 µL of the HBsAg producing P. pastoris glycerol stock was introduced in 100 mL 

of BMGY (buffered media with glycerol) and incubated for 12-16 h until the OD600 

reached 15. 10 mL of this pre-inoculum was introduced in 1 L BMGY to start the 

inoculum, which was incubated until OD600 = 8. After almost 14 h, the inoculum (1 L) 

was added in 9 L simple defined media to start the main culture [93]. 

The cultivation was carried out in a 10 L bioreactor (BiostatC, B.Braun Biotech 

International, Germany) using basal salt medium (for recipe, see Appendix). The 

temperature and pH were kept constant at 30°C and 5.6 respectively. The pH was 

maintained by using 12.5% (v/v) NH4OH. The cells were grown in batch phase on 

glycerol as sole carbon source. A fed-batch production phase was started, 38 h after 

glycerol phase, when a sudden increase of dissolved oxygen (DO) was observed, 

indicating the decrease of respiratory activity and hence total consumption of glycerol 

in the media. During the fed-batch production phase, cells were grown on methanol 

and the feed was added manually to maintain a level of 6 g/L methanol. Trace 

elements were also added in methanol feed [93]. All on-line data was obtained via an 

in-house software, RISP (Real time integrating software platform, Institute of 

Technical Chemistry, Leibniz University Hannover). To avoid the froth formation, 

anti-foam (TEGO® Antifoam KS911, Evonik) was added, when necessary.  

3.3.1. Online and offline measurement 

During the course of cultivation, aeration rate, oxygen transfer and CO2 evolution were 

measured by the off-gas analyzer. The dissolved oxygen (DO) regulation was obtained  
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with a cascade of agitation, air flow and finally enrichment of air with oxygen. The pH 

regulation was performed with 12.5% (v/v) NH4OH and 2 N phosphoric acid addition. 

Samples were collected, at different time points during the cultivation, to check the 

biomass and amount of expression. For optical density measurement, samples were 

collected from the cultures regularly and diluted to suitable extent (between OD600nm  

1-8) with 0.9% (w/v) saline solution. The optical density was measured at 600 nm 

wavelength via spectrophotometer (Uvikon, Kontron Instruments). For each sample 

three readings were observed and the mean was taken. 

3.3.2. Cell harvesting 

In shake flask experiments, induction phase spanned from 120 to 190 h after induction. 

During bioreactor cultivation, cells were harvested 136 hours after induction, at 

OD600 = 320. The culture was connected via tubing to the continuous-flow centrifuge 

unit (Centrifuge Stratus, Continous flow rotars, Heraeus) to obtain the biomass in the 

form of pellet. For about one week, samples were stored at −20°C and for longer terms 

at −80°C.  

3.3.3. Cell lysis 

For different purposes, different lysis techniques were adopted. To observe the product 

formation during the cultivation, glass beads (0.45 mm; Sigma G-8772) were used to 

lyse the cells. For purification at pilot scale, lysis was carried out using Microfluidizer 

(M110L, Microfluidics). Detailed protocols of the lysis are described in the Appendix.  

3.3.4. P. pastoris GS115 control cell culture 

As a control, P. pastoris GS115 cells without plasmid were grown in the defined 

medium in shake flask. The cells were harvested and the lysate was treated for the 

purification process likewise as that of the producing cell culture. The samples were 

collected at various points of this purification-like process to use as a background 

control for transmission electron microscopy analysis. 

3.4. Downstream processing of HBsAg 

After the successful production of HBsAg in P. pastoris under previously optimized 

conditions, the biomass was subjected to downstream processing. In general, the 
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purification protocol from Pointek et al. [94] and Lünsdorf et al. [75] was followed; 

however some modifications were made, where necessary. The Purification was done 

by using different chromatographic techniques. The complete process is summarized in 

the figure 3.1. 

 

 

Figure 3.1. Flow-sheet illustration of HBsAg purification. The three blocks represent 

three stages of purification i.e. preparation, capturing and intermediate purification and 

ultimately, polishing. After salt mediated PEG precipitation, the cell lysate is subjected to 

capturing based on hydrophobic interaction using fumed silica. The Aerosil eluate is 

proceeded with ion exchange chromatography (IEX) to remove further contaminants. The 

semi-purified product is polished via size exclusion chromatography (SEC) and treated 

with KSCN. Final product is filtered and stored at 4°C till further analysis. 

 

Production of HBsAg in Pichia pastoris GS115

Cell lysis by Microfluidizer

PEG precipitation (16-18 h)

Aerosil 380 adsorption, washing and elution

Separation using DEAE sepharose FF (IEX)

Polishing via gel filtration (SEC) 

KSCN treatment followed by dialysis

Concentration and filtration
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3.4.1. Preparation 

The biomass from the cultivation (100 g) was resuspended in the lysis buffer [25 mM 

sodium phosphate buffer, pH 8, 5 mM EDTA] to adjust OD600 ≈ 200. Afterwards, 

Tween 20 was added to adjust a final concentration of 0.6 % (v/v) and the pH was 

readjusted to 8.0. The mixture was passed through Microfluidizer at a pressure of 

12,000 psi and ~4°C, 12-14 times. Complete lysis was confirmed by viewing the cell 

lysate under the microscope. 

Polyethylene glycol 6000 (PEG 6000) was slowly added to the cell lysate to a final 

concentration of 5% (w/v) followed by the addition of 5 M NaCl to obtain a final 

concentration of 500 mM, in about half an hour keeping the mixture at 4°C. The 

mixture was stirred for 2 h and the precipitation was allowed to occur for 12-16 h at 

4°C. This suspension was clarified by centrifuging at 4°C and 4,000 rpm (3,345 × g) 

for 25 min.  

3.4.2. Capturing and intermediate purification  

The PEG supernatant was added to pre-equilibrated slurry of Aerosil 380 (Evonik, 

Hanau, Germany) in the binding buffer [25 mM sodium phosphate buffer, pH 7.2, 

500 mM NaCl]. To pre-equilibrate, the Aerosil was gently mixed in the binding buffer 

[0.13 g Aerosil per 1 g wet biomass] and centrifuged at 4,000 rpm (3,345 × g). The 

supernatant was discarded and the Aerosil pellet was resuspended in the binding buffer 

(e.g. 10 g + 500 mL buffer). The suspension obtained by mixing the PEG supernatant 

and the Aerosil pellet was stirred at 4°C and 300 rpm. After 4 hours, the Aerosil 

suspension was centrifuged at 4°C and 4000 rpm (3,345 × g) for 25 min. The pellet 

was washed twice using the wash buffer [25 mM phosphate buffer, pH 7.2], 

resuspended in the elution buffer [50 mM sodium carbonate-bi-carbonate buffer, pH 

10.8, 1.2 M urea] and incubated for 12 h at 37°C and 120 rpm. Aerosil eluate 

(supernatant fraction) was separated from the pellet after centrifugation for 150 min at 

25°C and 10,000 rpm (8664.5 × g) and clarified by vacuum-filtration (0.2 µm pore 

size). 

The filtered eluate was stored at 4°C for 24 h to improve stability of HBsAg, a 

phenomenon often referred to as the aging. Later this eluate was loaded on anionic 

exchange resin, DEAE Sepharose FF, 20 mL, which was prewashed with 1 M NaOH, 
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ddH2O and 25 mM sodium carbonate-bicarbonate buffer, pH 8.0. The self-packed 

column was washed with and the HBsAg was eluted with elution buffer [50 mM Tris-

HCl buffer, pH 8.0, 500 mM NaCl]. The fractions containing HBsAg were pooled and 

concentrated using ultrafiltration concentrator of 10 kDa cut off (Vivaspin membrane 

10,000 MWCO, Sartorius Stedium Biotech GmbH, Germany). The protocol for ion 

exchange chromatography is reported in the Appendix. 

3.4.3. Polishing  

The HBsAg concentrate was loaded on pre-equilibrated gel filtration (GF) column 

[Sephacryl-S300, 26/60, GE healthcare] and eluted with the phosphate buffered saline, 

pH 7.2 [137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.76 mM KH2PO4, pH 7.2] at 

1 mL/min flow rate. The protocol for size exclusion is described in the Appendix. The 

fractions containing HBsAg were pooled and treated with KSCN, to a final molarity of 

1.2 M, for partial defolding. This mixture was incubated at 100 rpm and 37°C for 5 h 

in an orbital shaker. 

The KSCN treated HBsAg was dialyzed against phosphate buffered saline, pH 7.2 

(PBS, pH 7.2) using a membrane of cut-off size of 14 kDa (Cellulose acetate 

membrane, Visking, Carl-Roth, Karlsruhe). The purified VLPs were filter-sterilized 

(0.2 µm pore size) and stored at 4°C. 

3.5. General analytical methods for HBsAg estimation 

In this part of the experimental work, several analytical techniques were used to 

evaluate the purified HBsAg VLPs. Later, different steps during the downstream 

processing were probed to find out the crucial stages for VLP assembly and this was 

performed by electron microscopy. 

3.5.1. SDS-PAGE analysis 

Samples collected during the time points of cultivation were lysed with glass beads 

(0.45 mm; Sigma G-8772) by vortexing 8 times and incubating on ice successively. 

The lysates were boiled with equal volume of the sample buffer [10 mM Tris-HCl, 

pH 6.8, 1 mM EDTA, 2.5% (w/v) SDS, 0.2% Bromophenol blue, 45% (v/v) β-

mercaptoethanol, 5% (v/v) glycerol], vortexed for 1 min and boiled for 10 min at 

95°C. 10 µL of each sample was loaded per well on a 12% SDS-polyacrylamide gel. 



 

Experimental methods 

25 

 

The gel was stained overnight with the colloidal coomassie [95]. Silver staining was 

performed to examine the purity of final product. 

3.5.2. Western blot 

The cell lysate was analyzed via Western blot to verify the presence of HBsAg. The 

sample was electro-transferred from SDS-PAGE to equilibrated PVDF membrane for 

30 minutes. The transfer was verified by the prestained kaleidoscope marker. The 

membrane was fixed in the blocking buffer and incubated with the primary antibody 

for 1 h. A mouse monoclonal anti-HBsAg antibody was used which is linear epitope 

specific. This blot was incubated for 1 h with goat-anti mouse secondary antibody and 

later developed using insoluble TMB substrate (Sigma-Aldrich, Germany). The 

reaction was stopped after visualization of bands by washing the membrane in ddH2O, 

for two to four times. 

3.5.3. ELISA analysis 

The samples taken from different time points during the cultivation and after the 

purification were analyzed for the estimation of soluble HBsAg by ELISA kit 

(Hepanostika micro ELISA, bioMérieux France). Cell pellets of the samples collected 

at time points during the cultivation with OD600 = 100 were lysed using a lysis buffer 

containing Tween 20 (Polysorbate) to a final concentration of 0.6% (v/v). All the 

samples were diluted appropriately with PBS, pH 7.2 and the antibody specific for an 

epitope between the amino acids 175-186 of S protein (present outside the so called a-

determinant region) was used to bind the antigen [96]. According to the manufacturer’s 

instruction, 100 µL of each controls, positive and negative, and samples at appropriate 

dilutions were loaded on the ELISA plate and incubated at 37°C for 1 h. 50 µL of the 

conjugate was added to the above and incubated at 37°C for 1 h. Washed the wells 6 

times with PBS, added 100 µL of substrate (Urea Peroxide + H2O2) and incubated at 

RT for 30 min. An HRP labeled anti-HBs conjugate was used to develop the signal. 

100 µL of 1 M H2SO4 was added as stopper and the plate was scanned at 450 nm. 

3.5.4. Protein concentration estimation 

Total protein contents were estimated by Pierce bicinchoninic acid (BCA) method 

(Pierce BCA protein Assay kit, Thermo Fisher Scientific). For pure HBsAg samples, 

as indicated by the SDS-PAGE, the concentration was estimated by measuring the 
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absorbance at 280 nm by using ε =3.2 M
−1

 cm
−1

 (http://web.expasy.org/protparam/). 

All protein determinations were performed in triplicates. 

3.5.5. RP-HPLC analysis 

The HBsAg in crude cell lysate was quantitatively measured via reverse phase-High 

performance liquid chromatography (RP-HPLC). The lysate was treated with the 

solubilizing buffer, 8% (w/v) SDS, 50% (v/v) β-mercaptoethanol, 1 M DTT [97]. The 

RP-HPLC protocol is given in the Appendix.  

3.6. Electron microscopic analysis 

In order to confirm the presence of VLPs, initially, and later for the characterization, 

electron microscope techniques were used. 

3.6.1. Scanning electron microscopy (SEM) protocol 

Scanning electron microscopy (FEI Quanta 200, EDAX XL 30) was used to obtain 

images of purified HBsAg. Pure HBsAg (0.8 mg/mL) in PBS, pH 7.2, was used to 

prepare the grids. The grid was allowed to dry out overnight at room temperature and 

at next day was observed by SEM.  

3.6.2. Transmission electron microscopy (TEM) protocol 

The samples after downstream processing were analyzed using the energy-filtered 

transmission electron microscope Libra 120 (Zeiss, Oberkochen, Germany). Purified 

HBsAg VLPs were diluted with PBS, pH 7.2 to an appropriate protein concentration 

(0.2 mg/mL), adsorbed for 1 minute to a glow-discharged CFormvar foil and 

negatively stained with 2% (w/v) uranylacetate, pH 4.5. The zero-loss images, under 

the surveyance of realtime FFT (iTEM software, OSIS, Münster, Germany), were 

taken with a 2048 × 2048 CCD camera (Tröndle, Moorenweis, Germany) using a slit-

width of 15 eV and an objective aperture of 60 µm. The samples collected during the 

downstream processing were diluted to a suitable dilution (0.2 – 0.5 mg/mL) and 

images were recorded as described above. 
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Figure 3.2. The scheme for control experiments to monitor the effect of collective 

background on HBsAg VLP assembly. In control-1 (left hand side), P. pastoris GS115 

cells were lysed via Microfluidizer and the lysate was treated for purification process in 

same way as the routine purification procedure. In control-2 (right hand side), the 

P. pastoris GS115 samples collected at each step during control-2 were supplemented 

with HBsAg VLPs and allowed to stand overnight at 4°C. 

For monitoring the background structures and effect of the milieu on VLP 

morphology, five control experiments were carried out. P. pastoris GS115 cells (non-

producing) were grown in defined media and the lysate was treated in the same way as 

the purification process of HBsAg-producing P. pastoris cell lysate. The samples 

collected at each point were named as control-1 (Figure 3.2, left hand side). In a 

parallel control, the purified VLPs were added in samples from P. pastoris GS115 

lysate during control-1 and were incubated at 4°C for 24 h (Figure 3.2, right hand 

side). These samples were taken as control-2 and the TEM images were captured. The 

samples in control-2 experiment were supplemented with purified VLPs according to 

the percent contents of HBsAg in initial four steps of routine downstream process. For 

example in the producing cell lysate, 11 % of the total protein contents is HBsAg, so in 

the corresponding control-1 sample, purified VLPs were added to obtain 11 % HBsAg 

concentration. Finally, all the samples (control-1 and control-2) were diluted to get the 

total protein concentration of 0.2 mg/mL.  

Same procedure was applied to investigate the effect of purification buffers pertaining 

to initial four steps (control-3), with a parallel control in storage buffer, PBS, pH 7.2 

Growth of non- producing P. pastoris GS115

Cell lysis by Microfluidizer

PEG precipitation (16-18 h)

Aerosil 380 adsorption

Aerosil 380 washing and elution
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(control-4). Before acquiring the TEM images, the samples were diluted to appropriate 

concentration (ranging from 0.2 mg/mL to 0.5 mg/mL). 

For the concluding control experiments, the cells were lysed in the routine lysis buffer 

as well as in the absence of all constituents one by one. Lysis buffer contains 25 mM 

PB, pH 8.0; 5 mM EDTA and 0.6% Tween 20. The resulting control lysate samples 

were used in TEM analysis, with a final protein concentration of 0.5 mg/mL. These 

control lysis (CL) samples are denoted as CL-1, CL-2, CL-3 and CL-4, hereafter. The 

outline of control-5 is explained in the figure 3.3. 

 

Figure 3.3. Outline of the control experiment for the effect of Tween 20 and EDTA. Here, 

LB stands for the lysis buffer. The control lysate samples are referred to as CL-1, CL-2, 

CL-3 and CL-4.  

For all the TEM analyses, samples were stored at 4°C, and analyzed not later than one 

week. 

3.6.3. Image processing for TEM 

TEM images were analyzed to measure average VLP size (diameter) and VLP count. 

An in-house software (Graphic analyzer, Patrick Lindner, TCI, Leibniz University of 

Hannover), was used to measure the average diameter and count of purified HBsAg 

VLPs. The detailed protocol is described in the Appendix. For more complicated 

samples, containing host cell components or VLP agglomerates, the VLP count was 

estimated via ImageJ [98]. The detailed protocol can be found in the Appendix. 
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3.7. Fluorescence spectroscopy for stability experiments 

The structural stability of HBsAg VLPs as a function of the concentration of 

denaturing agent was monitored by observing the fluorescence properties, both 

intrinsic as well as extrinsic. 

3.7.1. Intrinsic fluorescence measurements 

The fluorescence emission spectra were obtained employing LS 50B Luminescence 

spectrophotometer with Xenon discharge lamp as light source (PerkinElmer Ltd., 

United Kingdom). The samples were diluted to a concentration of 2 µM HBsAg VLP 

and excited at 280 nm. The resulting intrinsic extrinsic spectra were recorded using 

single scan mode (a cumulative average of 10 measurements) between 300-450 nm. 

The slit width for both excitation and emission measurements was kept at 5 nm. 

Temperature was kept constant at 25°C by using circulating water bath (Frigomix R, 

B. Braun Biotech International, Germany).  

3.7.2. Extrinsic fluorescence measurements 

The extrinsic fluorescence measurements were performed similar to the intrinsic 

fluorescence. The samples were excited at 400 nm and spectra were scanned between 

430-550 nm. The rest of parameters were kept the same. Bis-ANS (4,4′-Dianilino-1,1′-

binaphthyl-5,5′-disulfonic acid, Sigma-Aldrich) was used to bind with hydrophobic 

sites of HBsAg VLPs. Following concentration of HBsAg (with respect to VLP) was 

used for the formation of complex. 

2 µM HBsAg : 20 µM Bis-ANS 

A stock solution of 1 mM bis-ANS in DMSO was prepared and stored in dark at room 

temperature. The final concentration of bis-ANS was determined by measuring the 

extinction coefficient ε360nm=23,000 cm
-1

M
-1

.  

3.7.3. Defolding studies via fluorescence spectroscopy 

Defolding series was performed with three denaturing salts, namely, guanidine 

thiocyanate (GdnSCN), potassium thiocyanate (KSCN) and guanidine hydrochloride 

(GdnHCl). For intrinsic denaturing measurements, stock solution of pure HBsAg VLPs 
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[0.8 mg/mL i.e., 30 µM] was treated with series of chaotropic salts (GdnSCN, KSCN 

and GdnHCl) to obtain a final concentration of 0.2 µM and allowed to stand at 25°C 

for 3 min. The sample were excited at 280 nm and then scanned for the fluorescence. 

For denaturing measurements using extrinsic fluorescence properties, the purified 

HBsAg (2 µM) was mixed with bis-ANS (20 µM) and left for at least 10 min. The 

complex (HBsAg.bis-ANS) was then mixed with chaotropic salts (series of GdnSCN, 

KSCN and GdnHCl), allowed to stand for incubation and scanned after being excited 

at 400 nm. The preliminary experiments showed that the trend in defolding curve 

remains the same after 3 min and 24 h, therefore rest of the measurements were done 

with 3 min incubation time. 

3.7.4. Data analysis 

All the measurements were normalized before being processed for graphical form. For 

normalization, the fluorescence intensity in absence of any chaotropic agent was taken 

as the standard and the rest of readings were taken as a ratio with respect to it. 

In order to characterize the hydrophobic regions, Stern-Volmer equation was used. 

F 0⁄ F=1+KSV [Q] 

Equation 3.1: Stern-Volmer relation 

Here, F0 and F are the fluorescence intensities in the absence and presence of 

quenchers, KSV is the Stern-Volmer quenching constant (M
−1

) and [Q] is the 

concentration of the quencher. 

All the fluorescence data obtained was normalized by taking a ratio between intrinsic 

fluorescence value in the absence (F°) and presence (F) of any chaotropic agent.  

3.8. VLP determination using the Virus counter 

To verify the defolding curves obtained via fluorescence spectroscopy, HBsAg VLPs 

were analyzed using the virus counter, ViroCyt 2100 (InDevR Inc. USA). Virocyt is a 

specialized flow cytometer designed specifically for viruses. It works on the same 

principle as that of flow cytometer and has two photomultiplier tubes (PMT), one for 

the protein signal and the other for the nucleic acid signal. 
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One unique feature of flow cytometry is that it measures fluorescence per cell or 

particle. This contrasts with spectrophotometry in which the percent absorption and 

transmission of specific wavelengths of light is measured for a bulk volume of sample.  

3.8.1. Sample preparation 

For the sample preparation, the dye kit from instrument’s manufacturer was used. The 

composition of most of the components of the kit is confidential. The stock solution of 

HBsAg VLPs consists of 30 µM [0.8 mg/mL] from which a further dilution of 2 µM is 

being prepared. From initial experiment, it was concluded that a dilution of 1:100 was 

optimal for measuring the samples. Since for the normal fluorescence measurements, 

the dilution factor is roughly 15 times, a further dilution of ≈6 times is required to get a 

final dilution of a factor 100.  

The HBsAg VLP stock solution was mixed with the denaturant solution (GdnSCN, 

KSCN) to get a total volume of 60 µL and left for 3 min at 25°C. This mixture was 

further diluted with 240 µL of SDB (sample dilution buffer) to make the total volume 

300 µL and a final concentration of 2 µM HBsAg VLPs. 150 µL of combo dye was 

added in this final mixture [a 2:1 sample to dye ratio]. The samples were incubated at 

ambient temperature for at least 30 min in dark prior to analysis.  

3.8.2. Measurement protocol for Virus counter 

Before staring the measurements, the instrument was validated for cleanliness and 

performance. First the inter sample wash [ISW] was run followed by cleanliness 

verification fluid [CVF]. Then the performance validation standard was run to check 

the performance status. After validation, samples were analyzed using the standard 

settings i.e., flow rate: ~3700-6500 nL/min; Pressure: 15 psi; Threshold for nucleic 

acid: 0.34 - 0.75 [PMT signal (V)] and for protein 0.57 – 1.76 [PMT signal (V)] 

3.9. VLP analysis using dynamic light scattering 

The stability of HBsAg VLPs was studied by monitoring of their size as a function of 

concentration of the chaotropic salts via dynamic light scattering (DLS). The 

instrument used for this purpose was DynaPro Titan with software Dynamics V6 

(Wyatt Technology, Europe). The source of light for illumination is a semiconductor 

laser beam of ~830 nm wavelength. 
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3.9.1. Sample preparation 

The samples were prepared in a similar manner as that for fluorescence studies. The 

VLP stock solution consists of 10 µM HBsAg VLPs. The stock solution was mixed 

with dilution series of chaotropic agents (GdnSCN, KSCN, GdnHCl) to give a final 

concentration of 2 µM HBsAg VLP, allowed to stand for 3 minutes at 25°C and 

analyzed via the DLS instrument.  

3.9.2. Measurement protocol for DLS 

The parameters for the DLS measurements are given in the table 1.  

Variables Specification 

Acquisition time 5 sec 

Acquisition number 30 

Cut offs 5,150 

Laser intensity Adjusted accordingly 

Model: Rayleigh sphere 

Sample (model) Globular protein 

Temperature 25°C 

Table 3.1. The instrument settings applied for DLS measurement of the HBsAg VLPs for 

the purpose of stability studies. 

All the measurements were done in duplicates. During the whole set up, temperature 

was kept constant at 25°C. 
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4. Results and discussion 

Vaccines, whether prophylactic or therapeutic play an important role in preventing 

several diseases and hence to enhance the general quality of the living. VLP vaccines 

being non-infectious and relatively economical are candidate against many illnesses. In 

this thesis, hepatitis B surface antigen (HBsAg) VLPs are used as the model system to 

study the in vitro self-assembly process. The main goal of this study is to elucidate the 

mechanism of VLP assembly and to characterize the structure of assembled particles.  

In previous sections, the theoretical aspects of the project and experimental methods 

were described. In this chapter, the final results of performed experiments will be 

reported. Alongside, these findings will be discussed in details and ultimately 

concluded in the end. For convenience, the work has been divided into three main 

sections, namely,  

- Production and purification of HBsAg 

- TEM analysis during downstream procedure to monitor in vitro assembly process 

- Stability studies of HBsAg via different analytical techniques 

4.1. Production in Pichia pastoris GS115 and downstream 

process of recombinant hepatitis B surface antigen 

virus-like particles 

In the first stage of experimental work, cultivation parameters were optimized to 

generate HBsAg in the methylotrophic yeast, Pichia pastoris. The P. pastoris cells 

were cultivated at different scales to monitor the reproducibility of the system. The 

cells were lysed and the downstream process was carried out to obtain pure HBsAg 

VLPs. 

4.1.1. Shake flask cultivation 

For the preliminary expression tests of HBsAg in P. pastoris, defined, semi-defined 

and complex media were tested at shake flask scale. During all the cultivations, 

temperature and agitation were kept constant at 30°C and 250 rpm respectively. The 
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cells were allowed to grow till OD600 = 2-6 on glycerol as the sole carbon source. The 

cultures were induced with 0.5% methanol when the stationary phase started. Several 

samples were collected during the cultivation at regular intervals (e.g., 0 h, 24 h, 48 h, 

92 h, and 120 h). During the initial shake flask cultivations, no significant increase in 

the product yield was observed after 120 h post-induction period. Therefore the later 

cultures were harvested 120 h after inducing with methanol. 

 

Figure 4.1. Growth curves of the shake flask cultivations for optimization of the HBsAg 

production. All the cultivations were done at least in triplicate at 30°C and 250 rpm. Left 

box represents growth curves in complex buffered media, BMG and BMGY. Middle and 

right box shows growth trend in defined (DM) and semi-defined media (semi-DM), 

respectively. 

A higher growth rate was observed in the semi-defined media as compared to in the 

defined media, despite of less product expression. The basal salt media (defined media 

A) showed medium cell density with a growth rate of 0.08 h
-1 

during the exponential 

phase. In the defined medium, a common problem to cope with was lower pH value. 

This problem was observed in defined as well as in semi-defined media i.e., from pH 

6.0 in the beginning to pH 3-4 towards the end of cultivation. This situation was tried 

to overcome by adding 25% (v/v) NH4OH every 24 h, to readjust the pH 6.0, measured 

by pH strips. On the other hand the complex media, due to presence of a buffer system, 

maintained pH 6.0 till the harvest.  

Surprisingly, the semi-defined media which showed a growth rate of 0.034 h
-1 

during 

the exponential phase demonstrated least amount of HBsAg expression. In context of 

expression level, the buffered-minimal glycerol media (BMG) was observed to be 

most efficient. This may be due to the fact that complex media contain rich nutrient 
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supplements like peptone and yeast extract which ensure a higher expression of the 

product. 

 BMG BMGY DM-A DM-B Semi-DM 

P. Pastoris HBsAg 0.01 0.01 0.01 0.01 0.04 

P. pastoris GS115 0.01 0.01 0.01 0.01 0.03 

Table 4.1. Growth rates of P. pastoris in different media after the onset of methanol 

phase. 

As a comparison, growth rates during the whole methanol phase are being summarized 

in table 4.1.  

 

Figure 4.2. SDS-PAGE analysis of HBsAg expression in 1 L cultivation in BMG. The 

culture was induced with 0.5% MeOH, after every 24 h. Box A and B contain images of 

the two gels developed with colloidal coomassie and silver staining respectively. Arrows 

show the HBsAg monomer band. 

After comparing all the media for expression, basal salt media (defined media A) was 

chosen to continue to produce HBsAg in P. pastoris at bioreactor level. Basal salt 

media was chosen because of its reproducibility and in spite being simple its ability to 

produce HBsAg, under controlled pH. Moreover it contains specific components such 

as, MgSO4.7H2O and Yeast Trace Metal elements (YTM), which are important for 

growth of P. pastoris culture.  

4.1.2. Bioreactor cultivation 

The cells were grown in batch phase using glycerol as the carbon source till OD600 = 

200. The production phase was started when a sudden increase in dissolved oxygen 

was observed due to the fact that the cells consumed all the glycerol present in media. 

At this point, methanol was added to the cultivation as the carbon source. The 
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methanol concentration required per day for the HBsAg-producing P. pastoris 

cultivation was calculated according to the previous cultivations [93] and YTM 

containing methanol feed was added manually at each 8 h interval to maintain a level 

of 6 g/L. The biomass was measured by observing OD600 every 2-3 hours before and 

every 8 h after induction.  

 

Figure 4.3. P. pastoris cultivation before and after induction (separated by the red dotted 

line) in a 10 L bioreactor. Cascade agitation and continuous air flow (green line) was used 

to keep the dissolved oxygen level constant. Here methanol was added manually at every 

8 h to keep the level at 6 g/L.  

The cells were harvested 136 h after induction at OD600 ≈ 330. The cells were spun 

down, washed with the phosphate buffer, pH 7.2 and resuspended in the lysis buffer 

(for recipes, refer to the Appendix). The growth rate (μ) during growth on glycerol and 

on tmethanol was recorded as 0.134 h
−1

 and 0.006 h
−1

, respectively. 

 

Figure 4.4. SDS-PAGE of the samples collected during the bioreactor cultivation time 

points. Gel A consists of the soluble fractions whereas gel B of the whole cell lysates. 

Lane 1 corresponds to the sample taken before induction. Starting from lane 2 to 14, each 
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sample was collected with 8 h difference. The dotted box indicates monomer band of 

HBsAg. 

The high cell density cultivation of P. pastoris was evaluated by examining the 

samples collected at various time points for the HBsAg expression. The SDS-PAGE of 

cell lysates shows a significantly high expression of HBsAg, present in form of 

monomer of 25 kDa and dimer of 48 kDa size (figure 4.4). 

4.1.2.1. RP-HPLC  

The cell lysate from producing and non-producing cultivations was treated with the 

solubilizing buffer before analyzing via reverse phase-high performance liquid 

chromatography (RP-HPLC) to investigate the presence of HBsAg.  

 

Figure 4.5. Reverse-phase HPLC analysis of HBsAg in the cell lysate, treated with the 

solubilizing buffer. The pink line represents cell lysate from the non-producing P. pastoris 

GS115 cultivation. The green line represents the HBsAg producing P. pastoris GS115 

cultivation. 

The RP-HPLC results represent total (soluble and insoluble) HBsAg, as the sample 

was solubilized under denaturing conditions. To analyze the soluble fraction, Western 

blot and ELISA test were performed.  

4.1.2.2. Western blot 

The Western blot under reducing conditions was performed to confirm the expression 

of HBsAg the in P. pastoris cultivation. A mouse monoclonal anti-HBsAg antibody 

against HBsAg was used to reveal the respective band. This monoclonal antibody is 

linear epitope specific for HBsAg (a kind gift from Navin Khanna, ICGEB India). 
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Figure 4.6. The Western blot analysis of P. pastoris total cell lysate: Well A consists of 

the whole cell lysate of non-producing P. pastoris GS115 whereas the well B shows lysate 

from HBsAg producing culture. 

The Western blot analysis, of HBsAg-producing P. pastoris cell lysate (with non-

producing P. pastoris cell lysate as a negative control), confirms the presence of 

HBsAg. The band for subunit dimer indicates the presence of disulfide bonds which 

are prerequisite for the VLP assembly. 

4.1.2.3. ELISA analysis 

The antigenicity of HBsAg was tested by ELISA. The soluble HBsAg in cell lysate 

(biomass = 100 OD600) was analyzed by ELISA kit. All the samples were diluted by 

factor of 1000-2000 with PBS, pH 7.2. 

 

Figure 4.7. ELISA test of HBsAg in cell lysates. Soluble HBsAg contents from samples 

collected at cultivation time points after the induction phase are shown (OD600nm=100). In 

the inset, HBsAg standard curve to quantify the soluble protein contents is shown.  
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According to ELISA result, the presence of HBsAg is observed from 8 hours after the 

induction phase of cultivation. The amount of HBsAg per 100 OD of cell pellet does 

not increase extensively (Figure 4.7), although, an effective increase in protein 

concentration is observed due to increase in total biomass (Figure 4.3). 

4.1.3. Downstream processing of HBsAg 

Downstream processing is arguably the most important part of a production method. 

Each step leads to higher purity of the desired product but at the same time a loss in the 

yield. A compromise ought to be made between the required purity and the obtained 

yield. In general, the downstream process for all the yeast derived HBsAg consists of 

similar procedure. The cells, after the lysis, are processed with multiple 

chromatographic steps and finally polished to proceed for the morphological analysis. 

4.1.3.1. PEG precipitation 

The cells after cultivation were spun down, washed with the phosphate buffer, pH 7.2 

and 100 g biomass was resuspended in lysis buffer (for recipe, refer to the Appendix). 

The lysis was performed via Microfluidizer, using 12,000 psi pressure and 12-14 

cycles. The crude whole cell lysate was subjected to PEG precipitation in the presence 

of high salt concentration. All the hydrophilic proteins were precipitated (a 

phenomenon known as salting out) as a result of PEG addition. Unlike typical PEG 

precipitation, here the supernatant contains the product of interest. The presence of at 

least 500 mM NaCl has been suggested as vital for the efficiency of sedimentation. 

About 5% (w/v) or more PEG helps also to get rid of DNA by co-precipitating it [99]. 

The mechanism of PEG precipitation is not fully understood. It has been proposed that 

the process of precipitation occurs as a result of displacement of precipitant from the 

solution and consequently salting out [100].  

4.1.3.2. Adsorption on Aerosil 380 

After PEG precipitation, the resulting supernatant was adsorbed on the fumed silica, 

Aerosil 380. The principle involved in the purification based on hydrophobic 

interaction forces is that hydrophobic part of a protein binds to the hydrophobic 

stationary phase. In this work, Aerosil 380 has been used as the capturing material onto 

which the proteins adsorb according to their hydrophobicity. The non-adsorbed 

contents, called as Aerosil flow through, were discarded. Further contaminants were 
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removed with washing steps and the proteins were desorbed from Aerosil in the urea 

containing elution buffer. The Aerosil eluate was filtered (0.2 µm pore size) to make 

sure the complete removal of silica particles. The eluate was stored at 4°C for 24 h for 

aging purpose which renders stability to HBsAg and was later loaded on DEAE resin.  

4.1.3.3. Ion exchange chromatography 

150 ml of the Aerosil eluate (0.88 mg/mL), after aging, was proceeded for the anionic 

exchange chromatography. Here a self-packed column of FF Sepharose resin (≈20 mL 

CV) was used for the chromatography. This step removed essentially the host system 

contaminants and the remaining silica particles, if any. For pooling, only those 

fractions were selected which contained bands corresponding to the HBsAg mono- and 

dimer. The protocol for size exclusion chromatography of HBsAg is described in the 

Appendix. 

 

Figure 4.8. Ion exchange chromatography profile of Aerosil eluate using DEAE 

Sepharose FF ion exchange beads (A). SDS-PAGE of fractions corresponding to the peak 

is shown in the panel B. Here “load” correspond to the sample loaded on the IEX resin.  

At the end of ion exchange chromatography, relatively concentrated protein sample is 

obtained because of binding on the anionic exchange resin and efficiently narrow 

elution with 500 mM NaCl. However pooling of all the fractions, belonging to the 

HBsAg peak, gives a low concentration of final sample (Figure 4.10, lane 8).  

4.1.3.4. Size exclusion chromatography 

Since size exclusion chromatography has a dilution effect on the protein fractions, the 

pooled sample from IEX was concentration using ultrafiltration concentrator column 

(Vivaspin membrane 10,000 MWCO). 15 mL of this concentrated pooled fraction 
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(4.26 mg/mL) obtained after anion exchange chromatography was loaded on the gel 

filtration (GF) column to separate well-defined VLPs from the aggregates. Phosphate 

buffered saline (PBS), pH 7.2 was used as the mobile phase. It is known that, due to 

their large size, the HBsAg VLPs appear within 20% of void volume whereas the 

aggregates, along with other host cell proteins, show up later as a second peak or as a 

tailing (Figure 4.9), depending essentially on the separation efficiency of stationary 

phase. The protocol for size exclusion chromatography is given in the Appendix. 

 

Figure 4.9. The purification step of HBsAg via size exclusion chromatography. (A) The 

peak appearing in 20 % void volume correlates to the HBsAg VLPs. The tailing of the 

peak belongs to non-VLP form and .P. pastoris proteins. Lower panel (B) shows SDS-

PAGE of corresponding fractions stained with the colloidal coomassie. 

The GF fractions including mono- and dimer bands were pooled to process further. 

The pooled fractions were concentrated using the ultrafiltration concentrator column 

(Vivaspin membrane 10,000 MWCO, Sartorius Stedium Biotech GmbH, Germany). 

After the gel filtration step, a significantly pure protein is obtained (Figure 4.10). 

4.1.3.5. KSCN treatment 

The fractions corresponding to the HBsAg VLPs were collected and the pool was 

treated with KSCN to a final molarity of 1.2 M. Treatment of the purified protein with 
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KSCN is reported to improve the tertiary structure by increasing the disulfide bonding 

[101]. Zhao et al. has reported that an increase in the antigenicity of HBsAg VLPs, 

after the KSCN treatment, has been observed due to increased cross-linking, which is a 

result of the rearrangement in the mis-matched disulfide bonds [86]. 

To remove the KSCN and other salts, the purified HBsAg was dialyzed against PBS, 

pH 7.2 at least thrice with ≥900 times volume of the purified sample to be dialyzed. 

Finally the purified product was collected and further analyzed. 

The presence of HBsAg was verified by the ELISA and purity by 12 % SDS-PAGE 

under the denaturing conditions (Figure 4.10-B). Two bands corresponding to the 

mono- and dimer were observed around 25 and 50 kDa respectively. Even the presence 

of SDS and β-Merceptoethanol was not able to break all the disulfide bonds, 

explaining the presence of a dimer band around 50 kDa in SDS-PAGE analyses 

(Figure 4.10).  

 

Figure 4.10. SDS-PAGE of the samples collected during the entire downstream 

procedure. 1: Whole cell lysate; 2: Soluble fraction of cell lysate; 3: PEG supernatant; 4: 

Aerosil flow through (unbound fraction); 5: Aerosil wash 1; 6: Aerosil wash 2; 7: Aerosil 

eluate; 8: DEAE load; 9: DEAE pool (collective fractions of HBsAg containing peak); 10: 

GF load; 11: GF pool (of HBsAg containing fractions); 12: purified HBsAg after KSCN 

treatment. Lane 13 shows the purified product 5X concentrated, showing bands for mono- 

and dimeric form. Note that the first sample was diluted 3X and next three 2X with the 

sample buffer. The gel was stained overnight with the colloidal coomassie dye. 

The purity of product can be observed in the SDS-PAGE where 5 times concentrated 

sample was loaded (Figure 4.10, lane 13).  
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4.1.4. Protein concentration 

The extent of HBsAg purity increases considerably after each step of the downstream 

process. The step by step proportion between the contaminants and the product was 

calculated via densitometry. These figures are shown in the percentage (Figure 4.11, 

panel A). 

Protein estimation during the downstream process depicts in average 30% loss of the 

product during the initial steps i.e. PEG precipitation and treatment with Aerosil 

(Figure 4.8). Overall, 1-2 percent of the total HBsAg could be recovered by the end of 

the purification process (Figure 4.11, panel B). 

 

Figure 4.11: Summary of the downstream process in terms of protein contents and 

HBsAg purity. In upper panel (A), the graph corresponds to the percentage ratio between 

product and contaminants contents. The black bars represent host cell proteins (HCPs) and 

the grey bars stand for the total HBsAg. The last bars show the purity of final product. In 

lower panel (B), the percent yield of HBsAg after the major purification steps is shown. 

Notice the major loss during PEG precipitation and Aerosil adsorption. 
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The concentrations of purified HBsAg via BCA assay and ELISA are 0.25 mg/mL and 

0.28 mg/mL respectively. The final yield of HBsAg per preparative process is 12.5 mg 

(per 100 g biomass as the starting material). 

4.1.5. Electron microscopy of HBsAg 

The purified product was analyzed via scanning as well as transmission electron 

microscopy. No VLPs could be visualized via scanning electron microscopy (data not 

shown). This could be due to the fact that during the drying process before mounting, 

the VLPs may lose their structure. The results from TEM measurement were more 

promising as they not only showed the presence of VLP but also paved a way for 

further analysis. The results from TEM studies of HBsAg VLPs are discussed 

comprehensively in the coming section of this chapter. 

4.1.6. Conclusion 

In this section, the production and purification of HBsAg was described. It was 

observed by the SDS-PAGE analysis that the expression increases many fold while 

upscaling from shake flask to the bioreactor scale. HBsAg was produced in P. pastoris 

in a 10 L bioreactor using the defined medium. In purification process, most of the 

host cell components were removed during Aerosil adsoption step and anion exchange 

chromatography. The final yield of pure HBsAg is 12.5 mg/100 g WCW.  

The data from densitometry suggests that out of the total expressed proteins, 11 

percent is HBsAg. From this HBsAg, the major part is lost during PEG precipitation 

and Aerosil adsorption. The greatest loss is observed during the Aerosil treatment 

where more than 60% product is lost.  

The purified product was examined via SDS-PAGE, Western blot and ultimately 

TEM. SDS-PAGE shows the presence of HBsAg but not necessarily the VLPs. 

Western blot confirms the correct conformation of HBsAg but still does not prove the 

presence of VLP. The routine analytical techniques have a limitation to distinguish 

between single subunit and a VLP, therefore the most reliable method to verify the 

presence of VLPs is visualization by TEM. SEM could not examine the VLPS due to 

the nature of sample immobilization protocol.  

.
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4.2. Insight into the in vitro assembly process during 

downstream processing via TEM using HBsAg      

virus-like particles as a model case 

In the field of virology, electron microscopy (EM) has been the most prominent and 

pivotal technique. Developed in 1931, it gained popularity quickly pertaining to its 

applicability and versatility. Formerly, it was not possible to view the viruses with 

conventional microscopes. Transmission electron microscope (TEM) was the initial 

type of electron microscopy where the electron beam is transmitted through the thin 

preparation of sample. On the other hand, in scanning electron microscopy (SEM), the 

secondary electrons are used to generate the image. These are actually the emitted 

electrons after the striking of electron beam on the surface of object. 

With the magnification as high as 40,000 times, TEM provides the opportunity to 

actually visualize the viruses as well as proteins of the size up to 1 nm. There is no 

requirement of specialized or individualized staining techniques for each specimen. 

Usually the sample immobilized on the grid can be kept for years and is good to 

analyze even later. Apart from the diagnostics, TEM is also useful in the viral 

replication and assembly studies. In recent decades, EM has proved to be the key tool 

in the ultra-structural study of VLPs.  

4.2.1. TEM analysis of purified product 

In previous part, the cultivation of HBsAg producing P. pastoris GS115 cells and the 

downstream processing of biomass to obtain the purified product was described. The 

efficiency of purification was evaluated by analyzing the electron micrographs for the 

presence of VLPs. In general, the final purified product was observed to have no 

structures other than VLPs (Figure 4.12). 
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Figure 4.12. TEM image of the pure HBsAg VLPs after the downstream process. The 

VLPs were stored in PBS, pH 7.2 and later negatively stained with the 2% (w/v) uranyl 

acetate, pH 4.5. 

HBsAg VLPs of an average size (diameter) of 22 nm were observed in the purified 

sample (Figure 4.12). In this part of the work, numerous samples were collected during 

the crucial steps of purification procedure and their TEM images were captured for the 

VLP size and count estimation. 

4.2.2. Probing through downstream process via TEM  

As reported by Lünsdorf et al, VLPs are not present during the production stage inside 

the P. pastoris cells [75]. In this part, several steps throughout the purification 

procedure were probed for the VLP presence. Samples were collected at each step and 

analyzed via TEM. The stepwise layout of the purification protocol and corresponding 

TEM images are shown in the figure 4.13. As observed in the images, the steps in red 

Single VLPs 
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box do not show VLPs, except the last step i.e. Aerosil elution. The steps encircled in 

green box do show VLP occurrence, with the quality being improved progressively. 

 

Figure 4.13. A flow-sheet illustration of the HBsAg purification. The steps encircled in 

the red exhibit no or very few VLPs while the ones in the green do. A: Crude cell lysate; 

B: PEG supernatant; C: PEG supernatant adsorbed on Aerosil; D: Aerosil eluate; E: 

DEAE load; F: GF load; G: GF pool before KSCN treatment; H: HBsAg VLPs after 

KSCN treatment. Scale bar = 100 nm 

As described previously, there are no or negligible VLPs observed in the initial steps 

of purification (Figure 4.13, A-C). They appear for the first time in reasonable amount 

after the Aerosil elution step. Although the VLP count increases drastically after ion 

exchange chromatography, few contaminants are still observable until the size 

exclusion step.  

It was observed that in the middle steps (during Aerosil elution and IEX 

chromatography), though present in significant number, the VLPs tended to stick 

together in the form of clumps rather than single independent particle which portrays 

the hydrophobicity of immature VLPs. Moreover the VLPs posses better structure 
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definition towards the end of purification, especially after the KSCN treatment 

(Figure 4.13, E-H). 

4.2.2.1. VLP size 

The size of VLPs during different steps of the downstream processing was investigated 

via Graphic analyzer. The average diameter (hydrodynamic) observed for the HBsAg 

VLPs was 22 nm ±2. The small deviation might be due to the fact that depending on 

the solvent, the hydrodynamic radius can differ from radius of gyration [84]. 

The size of VLPs remains more or less the same irrespective of their count during 

different steps. However, it is observed that the VLPs improve their uniformity in the 

size and geometry during the course of purification. In general, the VLPs observed in 

the initial stages, are less consistent in octahedral geometry. On the contrary, the VLPs 

obtained after the polishing step are more precise in their construction and their 

structure compactness, developed due to increased disulfide bonding, can be noticed in 

the TEM images. 

4.2.2.2. VLP morphology 

The shape and appearance of VLPs distinctly becomes improved and homogenous 

during the course of purification as the inter-subunit interactions are increased due to 

higher HBsAg purity and removal of detergent and denaturing components. The trend 

from clumping together to the single well-defined VLPs can be observed in the TEM 

images (Figure 4.13). The control experiment (Control 2 and 3) showed that even the 

good quality VLPs (from optimized purification protocol) tend to lose their structure 

when put under relevant milieu i.e. consisting of the HCCs and certain constituents in 

the buffer system such as Tween 20, EDTA and urea.  

In coming lines, the effect of various milieu factors on the morphology as well as 

count of the VLPs will be discussed comprehensively. For monitoring these factors, 

control experiments were performed, whose details can be found in chapter 3, section 

TEM protocol. For convenience these control experiments are stated here shortly. As 

standard, the samples from routine downstream process were examined via TEM. For 

background structures, GS115 cell lysate was treated with same protocol as that of 

routine HBsAg purification and the samples from this process were introduced with 



 

Electron microscopic analysis 

49 

 

purified HBsAg VLPs. These experiments were denoted as control-1 and control-2, 

respectively. The experiments pertaining to incubation of purified VLPs in purification 

buffer (for initial four purification steps) and storage buffer (PBS, pH 7.2) were named 

as control-3 and control-4, respectively. Lysis tests in various combinations of the lysis 

buffer components were called control-5. 

4.2.3. Control experiments for TEM background 

Several peculiar membranous structures were observed in the samples taken during the 

initial steps of downstream processing. Mostly, these structures have a cup-shaped 

appearance with a double membrane (Figure 4.14). To investigate whether these 

structures are arriving from HBsAg or not, positive and negative control experiments 

were performed. In control-1 experiment, non-producing P. pastoris GS115 cells were 

lysed and handled according to the routine purification protocol of HBsAg.  

 

Figure 4.14. Electron micrographs of samples corresponding to background control. A-D: 

Cup-shaped membranous structures found in P. pastoris lysate during routine purification 

of expression culture; A: micrograph of HBsAg producing P. pastoris lysate; B: PEG 

supernatant; C: PEG supernatant bound on Aerosil; D: Aerosil eluate;  

1-A – 1-D: Micrographs of corresponding samples from control-1 i.e. P. pastoris GS115 

cell lysate treated with the same procedure as that of routine protocol. Scale bar = 100 nm. 

The cup-shaped structures were observed also in the control samples irrespective of the 

presence or absence of HBsAg (Figure 4.14 1-A to 1-D). The TEM images of both of 

these controls are shown in figure 4.14. As these spherical structures exist also in non-

producing P. pastoris cell lysate, it was concluded that they do not arrive from HBsAg. 

It may be concluded that these structures are outcome of cellular membranes of host 

1-A

A DCB

1-B 1-C 1-D
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cell system; however, further investigation is required for the confirmation. The similar 

circular structures in P. pastoris lysate have been observed in previous studies as well 

[102].  

4.2.4. Effect of host cell components on VLPs 

In order to demonstrate the effects of host cell components (HCCs) present as 

contaminants in the lysate, control-2 was performed. In control-2, the P. pastoris 

GS115 lysate samples collected during the control-1 were supplemented with purified 

HBsAg VLPs and incubated for 24 h at 4°C. The study showed that the structure and 

compactness of intact VLPs is disturbed when they are added to corresponding 

samples from mock purification of P. pastoris GS115 lysate (control-1). Figure 4.15 

shows the comparison of samples collected during control-1 and their corresponding 

samples from control-2. 

 

Figure 4.15. TEM micrographs of the samples collected from control-1 and control-2. In 

control-1 purification (above), non-producing cells were lysed and processed for 

purification. In control-2 (below), the samples were supplemented with purified HBsAg 

VLPs and incubated for 24 h at 4°C. A: P. pastoris GS115 lysate; B: PEG supernatant; C: 

PEG supernatant bound on Aerosil; D: Aerosil eluate. TEM analysis was done to observe 

the changes in structure. Scale bar = 100 nm.  

There are two possibilities which explain this trend. Firstly, it can be due to the strong 

buffer system e.g., presence of detergents, high salt concentration and/or denaturants 

like urea. Second hypothesis involves the effect of protein-protein interaction. Many 

host cell components (HCCs) which are present as contaminants, at least in initial four 

steps, may result in an unfeasible atmosphere for building VLPs even though HBsAg 

1-B1-A 1-C 1-D

2-B2-A 2-D2-C
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is present in amounts ranging from 1 mg/mL (crude cell lysate) to 0.5 mg/mL (Aerosil 

eluate). This may also be attributed to the negative effect of certain P. pastoris 

homologous proteins. However further experiments are required to investigate this 

effect in detail. 

The condition of VLP is greatly dependent on the milieu they are in at any particular 

moment. The system at initial stages is composed of buffers with high salt 

concentration and detergents in addition to HCPs which act as contaminant and 

constitute a large part of total protein contents. It might be assumed that all these 

factors result in an unfavorable environment for VLP assemble to occur. Due to this 

same reason, the intact VLPs are also distorted when put in this milieu for 24 h 

(Figure 4.15). 

4.2.5. Effect of solvent system on VLPs 

To probe further the influence of native proteins and buffer system, next experiments 

were performed to study the effect caused by the buffer system in isolation from that of 

HCPs. To pin down the decisive factor, VLPs were introduced into the buffer system 

of the initial four steps (control-3). To have a comparison, the same amount of protein 

was added to PBS, pH 7.2 and incubated (control-4). The VLP count is observed to be 

higher in PBS than in its parallel purification buffer system (Figure 4.16). The buffer 

composition of each sample is given in table 4.2. 

Sample Purification step Buffer composition pH 

3-A lysis 25 mM PB, 8.0, 5 mM EDTA, 
0.6% Tween 20 

8.0 

3-B PEG precipitation  lysis buffer, 500 mM NaCl, 
5% PEG 6000 

8.0 

3-C Aerosil binding 25 mM PB, 500 mM NaCl 7.2 

3-D Aerosil elution 50 mM CBB, 1.2 M Urea 10.8 

Table 4.2. The buffer composition of samples from control-3 experiment. In this control, 

the buffer systems from routine purification process were introduced by the purified 

HBsAg VLPs. The VLP containing samples were incubated at 4°C for 24 h and later 

analyzed via TEM. Here the abbreviations used are PB (phosphate buffer), CBB 

(carbonate-bicarbonate buffer). 
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The results in figure 4.16 illustrate that the intact VLPs are disassembled when added 

to the purification buffer corresponding to the initial purification step. The difference 

between VLP count in a certain buffer and its twin sample in PBS is considerably 

vivid (Figure 4.17). Moreover, the remaining VLPs appear to be less compact and 

sticking together (Figure 4.16, 3-A – 3-D). Hence it can be concluded that due to the 

presence of detergent like Tween 20 and denaturant like urea and EDTA, the initial 

downstream steps do not offer a feasible environment for the VLP assembly as HBsAg 

subunits are surrounded by high concentration of denaturing salts. The impeding effect 

of EDTA and glycerol has been observed earlier in the Polyomavirus as well [78]. 

 

Figure 4.16. Effect of the buffer system on HBsAg VLP morphology. 3-A – 3-D are the 

micrographs from control-3 where purified VLPs were added to the purification buffers 

and allowed to stand for 24 h. The images shown here are of HBsAg VLPs in the lysis 

buffer (3-A), PEG precipitation buffer (3-B), Aerosil binding buffer (3-C) and Aerosil 

elution buffer (3-D). Samples 4-A – 4-D represent the corresponding protein contents in 

PBS, pH 7.2. Scale bar = 100 nm. 

In human papillomavirus (HPV) VLPs, the presence of urea is reported to decrease the 

rate of assembly. This can be implied to explain the observation that during Aerosil 

elution, a low VLP count is observed despite the presence of significant concentration 

of HBsAg in lysate, as indicated by the gel densitometry (Figure 4.10). 

There have been reports stating the effects of several environmental factors such as 

pH, Ca
+
 ion and ionic strength on the assembly process of other VLPs [103]. The 

presence of bivalent cation has been claimed to be important in the in vitro assembly 

process. Studies have shown that calcium ion is required for the particle stabilization 
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[76]. Other studies have shown that in the case of HPV, Zn
+2

 influences the assembly 

negatively because of its involvement in aggregation [104].  

The effect of pH on the fact that no VLP assemblage is observable in initial steps 

cannot be ruled out. It has been reported that the pH plays an important part in the in 

vitro formation of VLPs [78, 103]. It is shown that the Norwalk VLPs, for example, 

can withstand appropriately acidic pH but in alkaline condition (pH 8.0), the 

dissociation occurs [105]. However in the present study, the pH appears to be least 

decisive. During the lysis and PEG precipitation, the pH is kept at 8.0 whereas during 

Aerosil binding and washing it remains constant at pH 7.2. HBsAg is afterwards eluted 

from Aerosil using buffer system with pH 10.8 and later stages exhibit pH condition 

similar to initial steps. As HBsAg contents are rather high in initial steps, we should be 

able to see VLPs accordingly. But since it is not the case here, it may lead to the 

conclusion that effects due to detergent and HCCs are more influential than that of pH, 

if at all, in case of HBsAg VLPs. 

The idea of denaturant-based solvent effect is indirectly supported by the in vitro 

assembly processes (of HBsAg as well as other VLP systems) where the subunits are 

produced and purified under the denaturing conditions. As soon as the purified product 

is added into the so called ‘assembly buffer’, the assembly process takes place 

resulting in the formation of VLPs. When the composition of ‘assembly buffer’ is 

closely inspected, it is simply a buffer with a particular ionic strength and suitable pH 

which allows subunits to acquire specific conformation [79, 104, 106]. Due to this 

switch in conformation, the subunits are spatially aligned with respect to each other so 

that they can bind together via their ‘active-sites’ [37]. 

Broadly speaking, the phenomenon of solvent influence on activity and conformation 

of proteins is not new. Since years, biologists have used certain salts and sugars as 

stabilizers to retain the activity of proteins. Concomitantly, the solvent constituents 

have also been manipulated to denature and renature the native protein structures. 

There are several principles involved in the stabilization of structure by solvent 

components. In short, the stabilization process can be considered as a reverse reaction 

of the defolding process, usually characterized by a two-state mechanism. In former 

case, the solvent additive tends to shift the equilibrium towards the native state, thus 

favoring the retention of native conformation and a stabilized system [107]. The effect 
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of solvent system on the VLP structure will be discussed in depth in the forthcoming 

pages. 

4.2.6. VLP count during the downstream process and control 

experiments 

The most obvious characteristic of HBsAg activity is the VLP formation itself. In 

order to scrutinize the influence of various factors quantitatively, the VLP count was 

determined during the routine downstream process as well as the control experiments 

(Figure 4.17). For control experiments, VLP count from control-4 (purified VLPs in 

PBS, pH 7.2) was considered as reference to calculate the percent VLP count. The 

samples in control experiments contain the same amount of HBsAg as in respective 

samples from routine downstream processing. 

It can be observed that VLP appear for the first time during Aerosil elution step. The 

absence of VLPs before this step, despite the presence of high amount of HBsAg in the 

lysate, can be explained on the expense of rigorous buffer systems and HCCs. Further 

quantitative analysis of the HBsAg VLP count during the control experiments provides 

a deeper understanding into the effects of milieu factors, i.e. HCCs and buffer system, 

on the VLP assembly. In this analysis, the VLP count in control-4 i.e., purified VLPs 

in PBS, pH 7.2 is considered as a reference with which the rest of the results are 

compared to. 
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Figure 4.17. Quantitative survey of the VLP formation during routine and control 

experiments. The upper most panel (A) shows % VLP count (w.r.t. total HBsAg contents) 

of the samples during routine HBsAg purification process. The initial four steps were 

further investigated in the control experiments. Control-1 is the purification process of P. 

pastoris GS115 whereas in control-2, VLPs were added in their corresponding samples 

from control-1. Control-3 comprises purified VLPs in the buffer systems pertaining to the 

initial purification steps and control-4 contains VLPs in PBS, pH 7.2 as a reference. 

Middle left panel (B) represents the VLP count of P. pastoris GS115 lysate samples from 

the four control experiments whereas middle right panel (C) is for the second step i.e. 

PEG precipitation. Lower left (D) and right (E) panels show results from the Aerosil 

binding and elution steps, respectively. For each measurement, on average, 4-5 images 

were used and the counting was done via ImageJ. 

The VLP count during the routine downstream processing suggests that VLP appear 

for the first time during the Aerosil elution step. At this step, only 7% of the total 

HBsAg is assembled into the VLPs (Figure 4.17, panel A). The similar trend is 
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observed during ion exchange chromatography. A 15-fold increase in the VLP count is 

observed at GF step i.e., from GF load to GF eluate. At this point, the HBsAg purity 

increases to almost 2-fold due to the removal of HCPs (Figure 4.11, panel A). This 

increase in the VLP count at this step is 13 fold higher than the increase in purity of 

HBsAg.  

The 15-fold increase in the VLP count during GF can be explained on the expense of a 

favorable buffer system (PBS, pH 7.2), apart from the removal of host cell proteins. A 

further theoretical explanation can be presented by the assumption that VLPs are being 

formed on-column. This may be supported by the fact that the VLP assembly is 

promoted by the presence of relatively higher purity of the subunit protein i.e. HBsAg. 

Moreover, the presence of an optimal buffer system helps to expedite the assembly 

process.  

It is observed that the VLP count decreases by 95% during their incubation in the 

samples comprising P. pastoris GS115 cell lysates (Figure 4.17, panel B). During the 

control experiment, investigating the PEG precipitation step, a decrease of about 10% 

was observed in control-2 and -3 samples. However during the later steps, Aerosil 

binding and elution, the loss decreases to 30-80 percent. This trend suggests that 

together the host cell contents and the purification buffer system have influence on the 

in vitro VLP assembly. 

It can also be comprehended that the solvent system (control-3) has a stronger effect 

on the VLP dissociation as compared to the HCCs as the VLP number decreases to 

almost 5 percent after addition of VLPs in purification buffer for the lysis and the PEG 

precipitation. Nonetheless, the impact of HCCs cannot be ruled out altogether because 

the last two samples in control-2, i.e. Aerosil binding and elution, express 30 percent 

decrease in the VLP number whereas the solvent system does not contain very strong 

constituents like Tween 20 or EDTA. This decrease may be well explained by the 

presence of HCPs to a concentration of around 40% of the total protein contents in the 

sample (Figure 4.11). 

4.2.7. Effect of Tween 20 and EDTA on VLPs 

It has been observed from the previous experiments that VLPs do not appear suddenly 

en masse. The formation of VLPs is a gradual procedure which occurs step by step. 
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The first step to observe VLPs in the purification process is after the Aerosil elution. 

Results from the  routine purification during initial two steps i.e. lysis and PEG 

precipitation do not show any particles whereas control experiment-2 and -3 suggest 

that the samples from these steps exhibit a decline in the count of purified VLP when 

added afterwards.  

The above observation could be explained on the account of buffer composition during 

these purification steps which provide a hostile environment for the VLP structure. 

When these buffer systems are carefully scrutinized, there are two possible 

components which may be responsible for the instability of VLPs, namely Tween 20 

and EDTA. Tween 20 is a nonionic polyoxyethylene surfactant used to facilitate the 

lysis and release of the protein from cellular compartments [108]. It has a critical 

micelle concentration (CMC) of 0.0074% (w/v) or 0.06 mM. EDTA, a polyamino 

carboxylic acid, is a chelating agent. It is used in the lysis buffer commonly to serve 

two purposes. Firstly, it chelates Ca
+2

 ions involved in the intercellular and intra-

cellular adhesion (in lipid bilayer) to get a better break down of the cells. Secondly, it 

inhibits the divalent cations which are co-factors of certain enzymes involved in the 

degradation of proteins and DNA.  

In order to verify conclusively the effect of Tween 20 and EDTA, the lysis was 

performed in absence of each constituent one by one. Control lysate-1 (CL-1) contains 

the routine lysis buffer. CL-2 and CL-3 are lysates in the absence of Tween 20 and 

EDTA, separately, whereas the CL-4 lacks both components, together. The typical 

lysate in lysis buffer [25 mM sodium phosphate buffer, pH 8, 5 mM EDTA, 0.6 % 

(v/v) Tween 20] is shown in the figure 4.18.  
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Figure 4.18.  A survey view of the HBsAg producing P. pastoris cell lysate (CL-1) via 

TEM. Here the total protein concentration is 0.5 mg/mL. Scale bar = 1000 nm.  

In general, cell lysates with Tween 20 are more homogenously stained (e.g., 

figure 4.18). TEM survey indicates that in the sample with regular lysis buffer as well 

as without Tween, no intact VLPs are present. However some random VLP 

agglomerates in the form of well-packed clusters can be observed. The size of each 

particle in this cluster corresponds to an HBsAg VLP. Overall a significant amount of 

agglomerated structures are observed in all lysate samples, however their characteristic 

appearance varies.  
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Figure 4.19. An example of VLP agglomerate present in the cell lysate. These VLP 

clusters were seen in the samples without Tween 20 (CL-2). The inset A shows close up 

of this agglomerate. Notice that the size of particle is similar to that of a mature intact 

VLP. In the inset B, an aggregate from P. pastoris GS115 cell lysate is shown (scale 

bar = 50 nm), for comparison purpose. The difference of this aggregate from VLP 

agglomerate can be well observed due to its random morphology. Scale bar (main 

image) = 1000 nm.  

Due to its detergent properties, Tween 20 decreases the surface tension and renders the 

samples homogeneity. Therefore, most of the agglomerated VLP patches are observed 

in the samples lacking Tween 20. These densely-packed proteinaceous structures are 

easily distinguishable because of their thick stain. Due to their spatial geometry they 

soak more stain, because of the capillary effect, and hence appear darker in color. For 

better examination of such structures, the image intensity (and magnification) was 

adjusted appropriately in some cases. 

A

B
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In order to better comprehend the role of Tween 20, it is important to explain its 

mechanism of interaction with the proteins. Usually, the non-ionic surfactants can be 

used to increase the stability of stored proteins. There are many physical factors 

involved in the protein aggregation and a common believe to trigger the aggregation is 

the adsorption of hydrophobic regions of protein on the interfaces e.g. vessel and 

interfacial surfaces. Surfactants like Tween 20 may inhibit the aggregation process by 

binding to the hydrophobic regions, however their capacity is quite limited [109, 110]. 

Tween 20 has also been claimed to influence the release of HBsAg from the cellular 

compartments [111]. In this study, it was observed that Tween 20 disrupts the striated 

HBsAg membranes (Figure 4.23) by decreasing hydrophobic interaction and this may 

possibly help in the release of protein from ER. 

More interesting structures were found in the lysate samples CL-3 and CL-4 (Figure 

4.20, 4.21). In samples lacking EDTA, lamellar structures with definite membrane 

pattern were observed. Due to their thick stain, they are clearly distinguishable from 

rest of the structures. On first sight, they appear as a local aggregate of sample due to 

staining procedure. When observed closely, with adjusted brightness and contrast 

settings, they are found as stacks of membranous layers lying over each other. These 

stacks of lamellar membrane exhibit characteristic thickness as well as interlayer 

distance (Figure 4.20, 4.21). 
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Figure 4.20. A close up of agglomerated protein patches in the lysate sample in absence 

of EDTA. The striated lamellar structure of HBsAg can be seen in close-up insets. In 

close-up B, few random VLPs are present on the edges of the aggregate. Scale bar for 

main image = 1000 nm, for image A and B = 200 nm 

The structures found in the samples without EDTA resemble to those found in the 

endoplasmic reticulum (ER) of HBsAg-producing P. pastoris cells. This observation 

can be attributed to the chelating effect of EDTA. Being a chelating agent, EDTA 

binds with the bivalent ions (e.g. Ca
+2

 and Mg
+2

) which are responsible for the 

membrane stability. It has been reported previously that EDTA helps to release the 

proteins bound to the cellular membranes in yeasts [112]. In Gram-negative bacteria, 

EDTA has been found to enhance the effect of antibiotics by destabilizing the cell 

walls [113]. This is done by chelating the bivalent ions in the outer membrane of 

bacteria, a phenomenon often referred as the permeabilization [114].  

B

A



 

Electron microscopic analysis 

62 

 

In the absence of EDTA, these structures retained their integrity, including the ER 

membrane where HBsAg accumulates. The fact that HBsAg remains localized in the 

ER has been used artfully by Kee et al. as exploitation of cellular compartments for the 

ease in purification process [115]. 

 

Figure 4.21. Striated lamella in lysate sample in the absence of EDTA (CL-3) with 

regular pattern (A). The similar membranous structures have been observed in the ER of 

HBsAg-producing P. pastoris cells (B- adapted from Lünsdorf et al. [75]). 

Scale bar = 100 nm. 

In CL-3 (sample without EDTA), the thickness of a lamellar layers and the distance 

between them was measured via iTEM software. The average thickness of one single 

layer was found to be 6.38 nm (SD = 0.97 nm) whereas the interlayer distance was 

4.2 nm (SD = 0.24 nm). The lamellar structures were sought also in lysate samples 

with regular lysis buffer as well as lysis buffer without Tween 20. The typical striated 

pattern could not be found as such, however on close examination, the agglomerates 

appear to be the distorted form of lamellar structures (Figure 4.22).  
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Figure 4.22. Close up of the agglomerated protein stacks in samples with lysis buffer 

(CL-1). These structures are distinctively different from those found in the absence of 

EDTA as the typical lamellar pattern is missing here. Scale bar for main image = 10 µm; 

for close-ups = 200 nm. 

In samples with EDTA, instead of lamellar membranes, the disrupted agglomerates of 

proteins were found (Figure 4.22). As mentioned earlier, EDTA helps to disrupt the 

cellular membranes by binding to the bivalent cations. In samples lacking EDTA, 

HBsAg remains attached to ER membrane, and as a result lamellar structures are 

observed (CL-3 and CL-4). In samples with EDTA, HBsAg is released from ER 

membrane but, due to the presence of Tween 20 and HCCs in the solution, forms 

disrupted lamellar membranes (Figure 4.22, panel A, B and C). These structures have 

not been observed in the non-producing P. pastoris lysate. 
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Figure 4.23. Single VLPs and VLP agglomerate in the sample CL-4 (cell lysate in 

phosphate buffer, pH 8.0). Scale bar = 200 nm for image A; 100 nm for image B 

In sample without Tween 20 and EDTA, some single VLPs could be observed 

(Figure 4.23 A). The number of single VLPs is not very high as compared to the 

purified sample with same HBsAg contents. Moreover, the compactness of these VLPs 

is not well-defined and they do not seem to contain the typical octahedral geometry. 

This may be explained on the account of deterring effect of some host cell components 

on VLP assembly.  

Sample Solvent Single VLPs 
VLP 
agglomerate 

Striated  
lamella 

distorted 
lamella 

CL-1 Lysis buffer no no no yes 

CL-2 Lysis buffer without Tween 20 no yes no yes 

CL-3 Lysis buffer without EDTA no no yes no 

CL-4 
Lysis buffer without Tween 20 
and EDTA 

Yes* yes yes no 

Table 4.3. Summary of structures observed in the TEM analysis of samples examined for 

the effect of Tween 20 and EDTA (control-5) 

* not seen very often (as compared to sample containing pure VLPs) 

On the basis of above results, it may be inferred that the absence of VLPs in lysate 

during routine downstream processing is due to the influence of Tween 20 and EDTA. 

In the absence of both, HBsAg is present in form of striated lamellas (as present in ER 

of P. pastoris cells [75]) or clusters of closely-packed VLPs. However this cannot be 

A B
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misinterpreted as an evidence for a stable particulate structure as the morphology of 

VLPs in these samples is not so well-defined when compared to the purified product. 

4.2.8. Conclusion 

In this study, the factors affecting the self-assembly of HBsAg VLPs during the 

downstream processing were identified. As standard, samples from the routine 

downstream process were examined via TEM. For background structure, GS115 cell 

lysate was treated in the same way as routine purification method, and the samples 

were collected from this process (control-1). These samples were introduced with 

purified HBsAg VLPs for 24 h at 4°C (control-2). The experiments pertaining to 

incubation of the purified VLPs in purification buffers (Table 4.2) and storage buffer 

(PBS, pH 7.2) were named as control-3 and control-4, respectively. Lysis test in 

various combination of the lysis buffer components were called control-5. 

On the basis of micrographs from routine downstream process, it could be concluded 

that the VLPs start appearing after treatment with Aerosil 380 (fumed Silica), increase 

in number during the ion exchange chromatography and the tendency towards the 

formation of single and well-defined VLPs (from clump formation) enhances 

significantly after size exclusion chromatography where the non-VLP HBsAg (e.g., 

aggregated form) is removed. The partial defolding-refolding with KSCN helps to 

polish the loose ends in VLPs. It has been already established that KSCN treatment 

helps to increase the cross-linking due to disulfide bonds in HBsAg particles [86]. This 

gradual development of VLP quality is also illustrated by the trend from clump 

formation, in the beginning of downstream process, to the individual VLPs at the end. 

In general, the impurities decrease and the VLP count increase concurrently during the 

course of purification.  

It was observed during control-2 experiment that VLPs lost their define structure as 

well as integrity when added to initial steps of downstream process. Hence it was 

deduced from the control purification experiments that the environmental factors play 

very crucial role in the VLP assembly as well as morphology. Two central factors were 

deduced to be HCCs and solvent system. 

The later control experiments in presence of P. pastoris proteins and purification 

buffer systems (control-2 and -3) indicated that the morphology of VLPs is disturbed 
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and their number decreases, irrespective of presence or absence of HCP. Hence, it was 

concluded that components from host cell may not be as crucial as the buffer system. 

However, quantitatively, this effect is still influenced by the HCCs. 

During the downstream processing, the morphology of VLPs improves gradually as 

well as the VLP count. It has been noted that the tendency of VLPs to stick together 

decreases over the whole process and later stages exhibit more stable and compact 

particles with more uniformity in shape and size. 

The absence of VLPs in initial steps of purification is conceived to be partially due to 

the presence of Tween 20 and EDTA, in addition to the HCCs. In order to examine the 

effect of buffer system, the control experiment containing the constituents of lysis 

buffer in different combination was performed. The control lysis in the presence and 

absence of Tween 20 and EDTA, individually and together, gave a very useful insight 

into the VLP assembly during downstream processing. In samples with Tween 20 and 

EDTA (CL-1), no intact VLPs could be observed. The Patches of protein with distinct 

lamellar membranes are observed in the absence of EDTA where the membranes from 

yeast cells are not disrupted and HBsAg, due to its hydrophobic nature, remains 

associated with the remnant membrane of ER. In the presence of EDTA i.e. in CL-1 

and CL-2 the distorted structures are observed, which are possibly the HBsAg lamella, 

disfigured by Tween 20 and HCCs. The clusters of agglomerated VLPs are observed in 

CL-2 and CL-4 i.e., only in the absence of Tween 20 as due of the detergent effect of 

Tween, these structures may get dissolved in the lysate solution  

In the light of the above stated results, it can be stated that during assembly process, 

HCCs as well as denaturant-containing buffer play pivotal roles. The gradual removal 

of adverse buffer system and HCCs results in the occurrence of self-assembled HBsAg 

VLPs. 

According to the present study, the decisive factor in the in vitro assembly of HBsAg 

VLP during the downstream process is chiefly the presence of components like 

Tween 20, EDTA and urea in the buffer system whereas the HCCs also seem to play a 

deterring role in this respect. 
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4.3. Monitoring of conformational changes in HBsAg VLPs 

in the presence of chaotropic agents via steady-state 

fluorescence spectroscopy 

In previous section, the probing of downstream process of HBsAg via TEM was 

discussed. The assembly of HBsAg VLPs during the purification process was 

examined comprehensively and the factors involved in it were studied. Here, it is a 

matter of special interest to analyze the stability of VLPs via defolding studies. The 

defolding series serve double purpose; first, as the name suggests, they give an idea 

about the stability of VLP. Secondly, they help to better understand the assembly 

process, as the defolding is a reverse process of self-assembly. Therefore, in this part 

of work, purified HBsAg VLPs were put under the denaturing conditions and the 

changes occurring as a result of this were observed via fluorescence spectroscopy. 

Later the fluorescence spectroscopic observations were verified by other parallel 

techniques such as by virus counter which works on principle of flow cytometry and 

by dynamic light scattering measurements.  

Fluorescence spectroscopy is one of the most accurate and handy optical techniques to 

investigate the structure of proteins. In the last two decades, a large number of 

applications involving fluorescence, steady-state as well as time-resolved, have 

emerged in discipline of biochemistry and biophysics. Being non-destructive it has an 

advantage over many other analytical techniques which render the sample unfit for 

further use.  

The intrinsic fluorescence properties of a protein arise from the aromatic residues, 

tryptophan, tyrosine and phenylalanine [116]. This is mainly because of the indole 

ring, specifically determined by the electrical potential difference across the long axis 

of the indole ring [117]. On the other hand, extrinsic properties are rendered by the 

fluorescent probes. Most of the probes bind covalently to different amino acids in a 

protein, e.g. via the ɛ-amino group of lysine, the α-amino group of the N-terminus, or 

the thiol group of cystein. Some fluorescent dyes attach noncovalently to the protein 

degradation products, e.g. via hydrophobic or electrostatic interactions [118]. In this 

study, both extrinsic and intrinsic fluorescent measurements were carried out to 

observe the effect of chaotropic reagents.  
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4.3.1. Fluorescence spectroscopic studies of HBsAg VLPs 

In general, fluorescence properties of proteins can be used to observe the product 

formation online as well as offline. Moreover, fluorescence spectroscopy makes it 

possible to have a close look into the protein structure at molecular level because 

fluorescence properties are influenced by the local electrostatic environment. In this 

study, conformational changes of the HBsAg, after treating with chaotropic salts, were 

observed via steady state fluorescence spectroscopy.  

4.3.1.1. HBsAg intrinsic fluorescence measurements 

As mentioned previously, one HBsAg subunit comprises 226 amino acids. The 

fluorescence excitation spectrum shows maxima at 320 nm, which indicates that most 

of the intrinsic fluorescence is by virtue of its tryptophan residues while a small part 

comes from the tyrosine residues. This is in compliance with the previous reports [83, 

119]. 

Amino acid  Number of residues 

Tryptophan 13 

Tyrosine 6 

Phenylalanine 16 

Table 4.4. Important amino acid residues in one subunit of HBsAg w.r.t. intrinsic 

fluorescence properties 

4.3.1.2. Extrinsic fluorescence measurements  

Fluorescent dyes are excellent tools for monitoring the change in microenvironment of 

proteins in solution. In general, the phenomenon of protein fluorescence on account of 

an extrinsic dye may occur via either of two main mechanisms. The first mechanism 

involves a shift of charge, as a result of excitation, in dye molecule and consequently 

in the solvent around it. This creates fluorescence on account of more suitable 

conformation of the molecule. The second mechanism involves exchange of electron/s 

leading to the intramolecular charge transfer (ICT) [120]. 

There are many probes available for the characterization of lipoproteins, most famous 

of them being ANS (8-anilino-1-naphthalenesulfonic acid) and bis-ANS (4,4′-

Dianilino-1,1′-binaphthyl-5,5′-disulfonic acid). Bis-ANS is sensitive to change in the 
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environment with respect to polarity and viscosity hence giving idea about 

hydrophobicity of the protein. The binding equilibrium between protein and bis-ANS 

gives valuable information about the protein structure [118].  

In present work, bis-ANS was used to monitor the structural changes in HBsAg 

induced by denaturants. The structural formula of bis-ANS is given in figure 4.24.  

 

Figure 4.24. Structural formula of Bis-ANS, the fluorescent dye used for binding with the 

hydrophobic domains 

Ostensibly bis-ANS binds with the protein on account of hydrophobic as well as ionic 

interactions. The major binding force between the protein and bis-ANS is reported to 

be hydrophobic interactions. However, the electrostatic interaction between anionic 

sulfonate groups from the dye and cationic amino acids also help to make the protein-

dye complex [121]. Its monomeric form, ANS, is used to quantify the surface 

hydrophobicity of proteins [122]. 

The parameters for fluorescence measurements of HBsAg are summarized in table 4.5. 

  Wavelength (nm) 

Intrinsic fluorescence 
excitation 280 

emission 300-450 

Extrinsic fluorescence 
excitation 400 

emission 430-550 

Table 4.5. Summary of fluorescence parameters used for the stability studies of HBsAg 

VLPs. 
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4.3.2. Denaturation studies of HBsAg 

In the field of biochemistry, unfolding studies in presence of denaturants has provided 

useful insight into protein conformation. The transition from native to unfolded state 

and reverse can occur via two-state kinetic or folding intermediates [123-125]. Either 

way, the equilibrium between folded and non-folded protein alters in the presence of 

denaturant. The ease (or difficulty) with which a protein undergoes these transitions is 

used to interpret its structural stability [126]. In general, both increase and decrease in 

fluorescence intensities can occur during the denaturation experiments. 

In this experiment, the changes in fluorescence prosperities of HBsAg VLPs were 

studied by performing the denaturing experiments with different chaotropic agents. 

Chaotrope is a reagent which disrupts the structure of a macromolecule [127] and 

hence increases the entropy. Chaotropic reagents have the ability to interfere with 

hydrogen bonding and van der Waals forces in a substance. Denaturing (chaotropic) 

reagents induce quenching effect which can be used to measure the accessibility of 

fluorophores and hence indirectly the conformational changes in proteins. Such studies 

in VLP technology help to explain structural aspects as well as, indirectly, mechanism 

involved in cell entry and viral replication [128]. 

The chaotropes opted for this study are, GdnSCN, KSCN and GdnHCl. GdnSCN is a 

commonly used denaturant with, both anion and cation, as strong chaotropes. 

Similarly, GdnHCl is widely used to follow the unfolding curve of proteins [129]. It is 

known that unfolding induced by GdnHCl and urea mostly leads to randomly coiled 

conformation [130]. The main reason for using KSCN is that it is used in partial 

defolding step during downstream process of HBsAg. The purpose of using multiple 

denaturants is to understand the structure of VLPs from multiple prospects. 

In this study, some preliminary tests were performed to see the scope of change in the 

fluorescence profile, intrinsic as well as extrinsic, under native and denatured 

conditions. The initial results indicate an obvious difference between fluorescence 

maxima of native protein in form of VLPs and the denatured one (Figure 4.25).  
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Figure 4.25. The emission spectra of HBsAg VLPs in native and denatured form (after 

treating with 6 M GdnSCN). Black and grey spectra correspond to intrinsic fluorescent 

properties of native and denatured forms of HBsAg VLPs. The extrinsic fluorescence 

profile is shown in dark and light green colored spectra for native and denatured VLPs 

respectively. The signals near the base belong to buffer in absence (blue) and presence 

(pink) of fluorescent dye.  

This preliminary data indicates that intensity maximum exhibits a small red shift from 

about 340 nm to 350 nm. This shift in the emission maximum is because of change in 

vicinity of tryptophan residues. In later studies it was observed that throughout a 

transition curve, under the influence of all chaotropic salts used, the maxima showed a 

linear increase, from 340 nm to 350 nm i.e. a shift of 10 nm.  

 

Figure 4.26. The Red shift in fluorescence maxima in the presence of chaotropic agent. In 

this case, 2 µM HBsAg was treated with GdnSCN (0 – 6 M) and the trend in fluorescence 

maxima was observed.  

The initial experiments showed that the effect of denaturant salts on the defolding 

curve was almost the same when the VLPs were incubated for 3 min or 24 h at 25°C 
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(Figure 4.27). The incubation after 48 h resulted in a linear trend showing no change in 

the fluorescence intensity between samples with and without GdnSCN. This may be 

because of loss of the VLP structure due to incubation at 25°C. 

 

Figure 4.27. The trend in defolding curve of HBsAg VLP in the presence of GdnSCN. 

The sample containing 2 µM HBsAg VLP were incubated with GdnSCN (0 – 6 M) at 

25°C. The incubation time is 3 min (panel A), 24 h (panel B) and 48 h (panel C). 

The transition curves under the effect of denaturants are represented in the figure 4.28. 

As it can be seen, the intrinsic fluorescence profile does not contain any drastic change 

in the transition curve. On the contrary, a meager and steep curve is observed in 

presence of GdnSCN and KSCN. GdnHCl does not show any significant change in 

intrinsic fluorescence intensity which appear to be due to inaccessibility of non-

covalent interactions and/or disulfide bonds of VLP. It is known that solubilizing 

ability of GdnHCl is more leaned towards nonpolar groups, which are buried in the 

inner core of VLPs [130, 131].  

The general modest profile of intrinsic fluorescence properties of HBsAg VLPs can be 

arguably supported by “molten globules” as folding intermediates. The partially folded 

conformation of protein, so called molten globule, is formed under mild denaturing 

conditions and is different from native protein by the fact that it does not contain the 

tertiary structure as do the native proteins [132, 133]. However these molten globular 

proteins are markedly stable under a wide range of environmental conditions such as 

acidic change, presence of denaturant etc [134]. Based on this fact, it may be deduced 

that VLPs, during initial stage of transition curve, acquire molten globular 

conformation which explains the observation that VLPs do not show a significant 

change in their intrinsic fluorescence properties. However, when bound to fluorescent 

dye, the change in micro environment becomes rather obvious.  
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As discussed earlier, no significant change was observed in the intrinsic fluorescence 

of HBsAg particles during chaotropic transition curves. However the extrinsic 

fluorescence data, in presence of bis-ANS, shows interesting results. Bis-ANS is an 

example of solvent relaxing probes used to characterize the micro viscosities and 

polarities of protein solutions. Interestingly, it is reported to hinder the viral assembly 

when bound to the dimer. The speculated reason for it is that bis-ANS binds to dimer 

interface which is a very suitable location for a molecular wedge [135].  

 

Figure 4.28. Denaturing curves of the HBsAg VLPs during treatment with chaotropic 

agents. The panels A, B and C on left hand side represent the intrinsic fluorescence curves 

in presence of GdnSCN, KSCN and GdnHCl respectively. Similarly panels D, E and F on 

the right hand side show changes in the extrinsic fluorescence after treating with same 

chaotropic agents. Bis-ANS (4,4′-Dianilino-1,1′-binaphthyl-5,5′-disulfonic acid), a dye 

which is sensitive to change in environment with respect to polarity and viscosity was 

used as the fluorescence probe. 
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No typical two-state unfolding kinetics could be observed, irrespective of sort of 

chaotrope used. A two-state kinetic is representative of unfolding of globular proteins, 

with which VLPs are frequently compared to. However this comparison is irrational 

due to the reason that VLP is an entity comprising of several subunits, unlike a 

globular protein. The inter-molecular interaction is, therefore, of prime importance in 

this structure. 

During the extrinsic studies, transition trend with both GdnSCN and GdnHCl showed a 

peculiar curve, although with peak position at different concentration of the chaotrope 

salt. In transition curve, the initial thrust in extrinsic fluorescence is attributed to the 

formation of a molten globule-resembling partially folded form, which possesses a 

quasi-native structure (Figure 4.29). Due to loose structure, the molten-globular 

structure has increased solvent-exposed hydrophobic surface area as compared to the 

native state. This is why even the buried hydrophobic cavities become exposed to the 

solvent and a substantial increase in intensity is observed. On further increase of 

denaturant concentration, the secondary and tertiary structure is disturbed which leads 

to the loss of hydrophobic cavities and consequently a decrease in the fluorescence 

intensity (Figure 4.28).  

 

Figure 4.29. Supposed mechanism of the defolding process monitored via fluorescence 

measurements in the presence of bis-ANS. An initial increase in the (extrinsic) 

fluorescence intensity is due to access of more hydrophobic regions to the fluorescence 

dye, which suggests the presence of a quasi-molten globular structure in the defolding 

curve. 

The fluorescence data shows that GdnSCN exposed the hydrophobic cavities around 

0.5 M salt concentration. This has been suggested in a previous study by Zhao et al. as 

well [119]. In the presence of GdnHCl, this point is shifted to around 1.2 M. The 

specificity of GdnHCl for polar groups is higher than that for non-polar groups which 

Intact VLP Quasi molten globular structure Complete dissociation 

+++ denaturant+ denaturant

Bis-ANS molecules
A B C
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explains that GdnHCl is weaker chaotrope as compared to GdnSCN. A similar trend 

has been observed in the unfolding studies of papain in presence of GdnHCl [136]. 

The denaturation with KSCN did not show similar curve which can be explained by 

the fact that KSCN is a chaotropic reagent which also acts as destaining agent [137]. 

Apparently it dissociates the protein-dye complex which produces the fluorescent 

signal. Therefore the extrinsic fluorescence measurements are not as evident as in 

presence of other chaotropic agents. 

4.3.3. Stern-Volmer relation 

Stern-volmer equation is a very useful relation to analyze the condition of residues of a 

protein in a certain milieu [138]. 

F° / F = 1 + KSV [Q] 

Above equation was used to measure the stern-volmer plot of VLPs in presence of 

GdnSCN, KSCN and GdnHCl (Figure 4.30).  

 

Figure 4.30. Stern-Volmer plot of HBsAg VLPs under the quenching effect of GdnSCN 

(A), KSCN (B) and GdnHCl (C). 

The stern-Volmer plots reveal an exponential curve under the denaturing effect of 

KSCN, which suggests that the fluorescence is dominated by a single amino acid 

residue. The GdnSCN and GdnHCl plots show a linear trend which indicates that the 

residues display different degree of exposure to the denaturant and thus are not equally 

accessible. This behavior is because of the fact that tryptophan residues, which 

constitute the major source of fluorescence, are present in different environmental 

arrangement [139]. Keeping in view the VLP structure, it is implied that the HBsAg 

VLPs comprise of hydrophilic and hydrophobic regions in distinctive conformation. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

F
0

/F  

 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A B

 

 

Denaturant [M]

C



 

Fluorescence spectroscopic studies 

76 

 

The model of a lipoprotein with hydrophobic inner core surrounded by a compact lipid 

monolayer has been already suggested in Hansenula polymorpha-derived HBsAg [82]. 

4.3.4. HBsAg VP count determination using Virus counter 

The results from denaturation studies were further ascertained by the measurements via 

Virus counter (ViroCyt 2100, InDevR Inc. USA). In this case, due to their more 

obvious transition in intrinsic fluorescence curve, GdnSCN and KSCN were selected 

to verify the results obtained from fluorescence measurements (Figure 4.28). Here the 

virus particle count (VP count) is estimated by the combined data of protein and 

nucleic acid signals. An example of PMT signal for a VLP sample is shown in 

figure 4.31. 

 

Figure 4.31. A Raw data screenshot of the VP count of purified HBsAg particles. The 

peak area is close up of only a part of one single measurement. Notice that the protein and 

nucleic acid signals appear simultaneously. 

The results from GdnSCN defolding, represented in the figure 4.32, correlate to the 

fluorescence profile of HBsAg in presence of series of GdnSCN. Since it was observed 

that the obvious changes occurred at a concentration of 0-3 M, the measurements via 

ViroCyt were performed in presence of chaotrope within this range of GdnSCN 

molarity. The tendency of total VP count implies that increasing molarity of GdnSCN 

leads to gradual decline of intact particles. The initial increase of protein contents may 

be attributed to the exposure of residues in milder unfolding conditions which leads to 

a succeeding decrease due to the stronger denaturation effect. 
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Figure 4.32. HBsAg VP count during the GdnSCN treatment. The upper box corresponds 

to total VP number ascertained via virus counter by combining the protein and nucleic 

acid quantitative results. The middle and lower box represents these results individually. 

The samples with KSCN denaturation could not be measured due to its destaining 

effect. Thiocyanate ions in KSCN have dissociative property and therefore may have 

disturbed the protein-dye complex [137]. This results in the breaking of bonds between 

hydrophobic amino acid residues and dye molecule which ultimately results in no 

fluorescence signal, as fluorescence dye alone exhibits no fluorescence.  

The instrument, by default, measures not only the collective VP count but also the 

protein- and nucleic acid contents individually. In case of HBsAg VLPs, the 

occurrence of nucleic acid signal is unexpected. Since the signal appears concurrently 
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with protein signal, it was considered that it does not belong to free nucleic acid 

present in the sample as contaminant. One plausible explanation which can be inferred 

in this case is that the dye (provided in kit from instrument’s manufacturer) binds 

nonspecifically with the lipid contents of VLP and hence generates a synchronized 

signal. Second speculation is that this signal is observed due to the host cell genetic 

material trapped inside the HBsAg VLPs during the process of downstream. The 

encapsulation of host cell contents during self-assembly is a common problem 

encountered during VLP downstream processing [140, 141]. Since the contents of so-

called Combo dye are confidential, it could not be ascertained that what the origin of 

nucleic acid PMT signal is. 

4.3.5. Dynamic light scattering measurements 

Light scattering provides information about the molecular mass and size of a protein in 

solution. It can nicely distinguish between the native and non-native biomolecules. In 

order to monitor the size of VLPs as a function of chaotropic molarity, experiments 

were carried out via dynamic light scattering (DLS) technique. Since the purpose was 

to confirm the trend observed in intrinsic fluorescence results, the conditions for the 

sample preparation were kept similar as those for the fluorescence studies. 

4.3.5.1. Preliminary DLS studies 

To begin with, HBsAg was treated with 6M of all three chaotropic salts and compared 

with native VLP scattering results. The initial results with DLS showed a similar trend 

in transition curve as that observed via intrinsic fluorescence. The gradual decrease in 

structural integrity and lack of a typical two-state mechanism are unanimously visible 

by both techniques. The VLP size by DLS measurement i.e. 12 nm (data not shown) 

was observed to be not in agreement with the TEM data. It was assumed that the 

discrepancy in size occurs because of a population in the solution other than VLP.  

4.3.5.2. Discrepancy in VLP size via DLS 

Since the production of VLP is a biosynthetic process, the presence of small molecular 

weight (SMW) species and aggregates cannot be rule out altogether. In principle, VLP 

self-assembly and aggregation exist simultaneously and in competition with each other 

[77]. Moreover storage of even a pure product in sterile conditions can still lead to the 

aggregation. Originally, it was not clear that whether this difference of size is because 
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of SMW species, mono-, di-, tri-, oligomer etc, or it is caused by the aggregates. In 

order to figure out these reasons, the sample was analyzed via electron microscopy. 

The TEM images showed the presence of a miner amount of aggregates, in addition to 

the VLPs still being the dominant population (data not shown).  

4.3.5.3. Effect of SMW species 

As TEM has arguably a size limitation of ~2 nm (depending on the staining 

procedure), it was not possible to verify the presence of monomer which has a 

theoretical size of 2.4 nm. The sample was filtered via spin column of cut-off size 300 

kDa to remove the SMW species present, if any. The DLS measurements were 

repeated using the same protocol. Since no change in the trend and VLP size was 

observed (Figure 4.33), the presence of (substantial amount of) of SMW species was 

ruled out. As a cross-check, the filtrate from the spin column was analyzed via DLS as 

well as SDS-PAGE. No significant amount of HBsAg or any other protein was 

observed in this fraction. The collective results of former experiment are shown in the 

figure 4.33. 

 

Figure 4.33. Histograms of the DLS measurements of native HBsAg VLPs (A) as well as 

in the presence of GdnSCN (B), KSCN (B) and GdnHCl (D). Note that in presence of 

denaturant, the size (diameter) has been shifted towards the left hand side of histogram. 

The results are presented in terms of scattering caused by the percentage mass.  
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It can be observed from the graph that the diameter of the VLPs is still smaller than the 

observed (as well as reported) diameter via EM techniques. Whereas, in case of 

HBsAg VLPs, it has been seen that diameter observed via DLS is bigger than that via 

TEM. The reason for this is probable dehydration of sample while the sample 

preparation [142].  

4.3.5.4. Effect of aggregates 

It has been proposed that the yeast-derived HBsAg in crude extract is highly prone to 

aggregation [143]. This is particularly because of the synthesis method of VLPs. The 

steps which involve concentration or removal of salts are usually performed via ultra 

filtration. Due to the protein-protein and protein-surface interactions during these 

steps, HBsAg tends to form aggregates. These aggregates still may retain the 

antigenicity; however during the aging the activity reduces to about 20 % [89, 102].  

During DLS analysis of the sample devoid of SMW, the VLP size still does not 

coincide with the EM (as well as reported) data. DLS data indicates the presence of 

high molecular weight (HMW) specie (size ranging from 200 nm to 250 nm). The 

occurrence of this HMW specie is rather rare as compared to VLPs i.e. 1:20,000-

30,000. The discrepancy in VLP size due to aggregation has been reported earlier by 

Kee et al. [108] 

It is known that the presence of large aggregates causes strong scattering which 

presumably surpass the scattering caused by 22 nm particles. In DLS, the signal 

intensity is dominated by the size which may be the reason that the large size aggregate 

over-scatter the signal of smaller particles. This may mislead to the representation of 

size distribution, especially in case of a sample consisting of multiple populations. The 

variance in the HBsAg VLP size observed by DLS has been reported earlier by Kee et 

al. [108].  

4.3.5.5. Optimized DLS measurement 

DLS is a very convenient and useful technique but it provides more reliable and 

accurate results for samples consisting of a narrow size-distribution. Considering the 

previous observations, the purified product was filtered via a viva spin column of cut 

off 300 kDa to remove SMW species. Subsequently, this protein solution was filtered 
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via a membrane of cut-off 0.2 µm to remove large size aggregates. DLS measurements 

were carried out according to the previously described protocol. The graph in 

figure 4.34 represents the observations found in optimized DLS evaluation. The 

fluorescence results from denaturation series are represented in figure 4.28.  

 

Figure 4.34. The effect of chaotropic salt on the VLP size (diameter) monitored via DLS. 

Three chaotropes were used for this study i.e., guanidine thiocyanate (panel A), potassium 

thiocyanate (panel B) and guanidine hydrochloride (panel C). The trend in each case is 

shown by a curve fitting. 
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In case of all three denaturants, a gradual decrease in the VLP size was observed. It 

can be seen that the curve here coincides with trend observed in the intrinsic 

fluorescence profile of HBsAg VLPs. Also here, no two-state mechanism could be 

observed. A hypothetical mechanism of defolding process, based on the denaturation 

curves, is presented in the figure 4.35. 

 

Figure 4.35. A pictorial explanation of the defolding process of VLPs in increasing 

concentration of denaturant. As a result of the defolding effect, the VLPs assume molten 

globular structure. As the concentration of denaturant increases, the subunits start to 

dismantle gradually, ultimately leading to denatured HBsAg subunits. 

The general mechanism seems to be the gradual disruption of VLP structure, plausibly 

with several intermediates. Based on the intrinsic fluorescence data and above DLS 

measurements, it is suggested that under denaturing conditions, VLPs lose their 

structure slowly yet steadily. This may happen as a gradual detachment of subunits 

which results in complete disassembly of VLP and ultimately ends up in the presence 

of only randomly coiled structures. 

4.3.6. Conclusion 

Several spectral approaches were applied to monitor the structure of HBsAg VLPs. 

Initial fluorescence measurements suggest the dominance of tryptophan emission with 

less contributing signal from tyrosine residues. Time-resolved fluorescence 

spectroscopy measurements were used to calculate the Stern-Volmer relation. The 

Stern-Volmer plot connotes that most of fluorescing residues are present in 

A- Intact VLP B- Quasi molten globular structure C- Dismantlement

+ denaturant

++ denaturant
+++ denaturant

+ denaturant
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heterogeneous environment which is supported by the VLPs lipoprotein model in 

which phospholipids constitute a hydrophobic core and HBsAg subunit proteins are 

immersed in it.  

The structural stability of VLPs was studied by adding a gradually increasing series of 

chaotrope. In this study three different chaotrope salts were used, namely GdnSCN, 

KSCN and GdnHCl. The changes in conformation and structure were observed via 

steady-state fluorescence microscopy. It was observed that the intrinsic fluorescence 

decrease gradually during the course of denaturing series with GdnSCN and KSCN. 

However, there was no evident change observed while treating with GdnHCl. Intrinsic 

properties did not show any considerable change during the treatment with GdnHCl. 

However, KSCN and GdnSCN transition curve showed a meager yet steady decrease 

in the fluorescence intensity.  

In case of HBsAg VLPs, while treating with chaotropic reagents, no typical two-state 

unfolding curves were observed. A gradual decrease in intrinsic profile of fluorescence 

intensity suggests that the unfolding of HBsAg VLPs takes place via folding 

intermediate. On the basis of initial increase and further decrease in extrinsic 

fluorescence properties, it is suggested that a molten globular structure exists as 

folding intermediate. 

The changes in VLP size during the denaturation curve were ascertained via DLS 

measurements as well. The data indicates a gradual decrease in the diameter, unlike a 

two-state mechanism as observed in most globular proteins. In this respect, DLS 

results verify the trend noticed in the intrinsic fluorescence properties of VLPs. It can 

be concluded that due to their distinctive structure, VLPs undergo denaturation process 

by several intermediates, which occur as a cascade of reactions involving gradual 

detachment of subunits. This is suggested on the basis of gradual decrease of VLP size 

as observed by the intrinsic fluorescence and the DLS measurements. 

. 
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5. Summary and perspectives 

Worldwide millions of people die and many more suffer from side effects of one or 

other disease. There is an old but still equally valid saying, “prevention is better than 

cure”. Vaccines play a major role in prevention of many illnesses every year. The 

concept of vaccination buds from 18
th

 century by Edward Jenner whereafter it 

extended vastly. In traditional medication against a viral disease, mostly attenuated or 

inactivated vaccines have been used in the previous decade. In the last two to three 

decades, VLP vaccines have been in focus due to their better efficacy and safety 

aspects. VLP technology makes use of a particle which mimics the actual virus 

structurally, but lacks chiefly the genetic material. Therefore, VLP vaccines are much 

safer as well as equally effective. However, the self-assembly of VLPs has been a 

poorly discovered area. 

It has been known that in bacterial and yeast-based systems, the VLPs do not occur 

inside the cell, which leads to the proposition that they may be formed during the 

purification process. In the work presented in this thesis, an effort has been made to 

figure out the stage(s) where VLP are formed during the downstream processing. Later 

the factors affecting the self-assembly have been scrutinized and structure-based 

stability studies have been scrutinized. Here HBsAg VLPs have been used as a model 

system. 

The successful production and purification of HBsAg VLPs has been reported in this 

thesis. HBsAg was produced in P. pastoris GS115 cells with 8-copy cassette in a 10-L 

bioreactor using basal defined media. The cells were grown in batch mode with 

glycerol as sole carbon source. After the complete consumption of glycerol, methanol 

feed was started in fed-batch mode. The cultivation was harvested 136 h after 

induction at OD600=330. During the cultivation, HBsAg production was confirmed by 

the Western blot and ELISA. 

Multi-step downstream processing was applied to obtain the purified HBsAg. Cells 

were lysed using high-pressure homogenizer to release the intracellular contents. The 

lysate was subjected to PEG precipitation and the supernatant was proceeded with 
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adsorption on fumed silica (Aerosil® 380). The Aerosil eluate (supernatant) was 

bound on anionic exchange resin and the fractions containing HBsAg were pooled. 

The pooled HBsAg fraction was further purified by using size exclusion 

chromatography, to obtain only VLPs and remove non-VLP HBsAg. The main peak in 

20% void volume indicates that large part consists of VLPs with a tailing consisting of 

non-VLP HBsAg as well as remaining HCPs. The fractions pertaining to VLPs were 

pooled and treated with KSCN to a final molarity of 1.2 M. The VLPs were dialyzed 

against PBS, pH 7.2 to remove the KSCN. The final product was examined via TEM 

to confirm the assembly of VLPs.  

It is observed that a large amount of HBsAg is lost during the initial steps of 

purification, particularly, during PEG precipitation and adsorption and elution from the 

Aerosil. Further optimization is required to decrease the loss during these stages. It is 

recommended that PEG precipitation should be further optimized using various NaCl 

and PEG concentration to reduce the product loss. It might be interesting to try 

different sizes of PEG to get better recovery. Moreover different media for 

hydrophobic interactions should be tried out in order to achieve a higher yield of 

HBsAg. 

Since the downstream process ensures formation of VLPs reproducibly, further step 

was to probe thoroughly the purification protocol. Samples were collected during 

purification procedure and analyzed via TEM. The TEM analysis showed that VLPs 

appear for the first time after the Aerosil elution (treatment based on hydrophobic 

interaction forces) and the morphology and the number improves drastically after the 

size exclusion chromatography where the non-VLP HBsAg is removed. A 12-fold 

increase in VLP count is observed from ion exchange chromatography to the gel 

filtration. The gradual development of VLP quality is also illustrated from the trend of 

clump formation to the individual VLPs at the end of downstream process. In general, 

the impurities decrease and the VLP count increase concurrently during the course of 

purification. 

In order to pin point the crucial factors, several control experiments were performed in 

the presence and absence of purification buffers and HCCs. On the basis of 

quantitative examination of VLP morphology and count during these control 

experiments, it was concluded that although HBsAg in present in the lysate, the 
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rigorous buffer system and HCPs impede the self-assembly process. Moreover, the 

VLPs are dissociated more drastically in sample containing lysis buffer and crude 

lysate. 

The lysis buffer contains two peculiar constituents i.e. Tween 20 and EDTA. The TEM 

control experiments with different combination of these both constituents show that 

Tween 20 and EDTA disturb the HBsAg arrangement existing in host cell ER. In 

absence of Tween 20 (CL-2), the clusters of agglomerated VLPs are frequently 

observed in the cell lysate. Moreover, some random distorted lamella are also seen 

which, due to their partially stacked structure, appear to be remnants of HBsAg 

lamella. It may be concluded that Tween 20, due to its detergent effect, helps to 

dissolve the agglomerates and therefore in its absence, these lamellar structures are 

present in the lysate. 

It has been reported in the literature that HBsAg is present in form of striated lamellas 

intracellularly [75]. The TEM data indicates that in absence of EDTA, the typical 

HBsAg lamellas exist frequently in the lysate. EDTA, being a chelating agent, binds to 

the divalent cations stabilizing the ER membrane and helps in the release of HBsAg. 

However in the absence of EDTA, these lamellar structures retain their arrangement. 

The striated lamellar structures are not found in samples CL-1 and CL-2, i.e. in 

presence of EDTA. It may lead to the conclusion that Tween 20 as well as HCCs 

disrupt the lamellar arrangement.  

Tween 20 or EDTA alone are not the decisive factors and hinder the assembly 

simultaneously. Additionally, the HCCs also execute negative effect on VLP 

assembly. However, further studies would be required to ascertain the specific effect of 

P. pastoris HCCs. It might be of interest to analyze the HBsAg VLPs in presence of 

certain groups of P. pastoris homologous proteins and enzymes to further ascertain the 

HCC effect. Moreover the production of HBsAg in other expression system and its 

comparison with HBsAg-producing P. pastoris lysate can provide advance insight.  

The structural aspect of VLPs and their stability was monitored via defolding curves 

using GdnSCN, KSCN and GdnHCl. The changes were monitored via steady-state 

fluorescence spectroscopy. The intrinsic properties indicated that VLPs lack a two-

state mechanism in defolding process. It was concluded that a quasi-molten-globule 
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structure exists as intermediate in VLP transition curve. The extrinsic fluorescence 

profile in presence of hydrophobic dye shows an initial increase and then decrease of 

intensity. This trend corresponds to first exposure of hydrophobic cavities to the dye 

and subsequent disruption thereof, as a function of chaotrope concentration. This 

transition trend was verified also via DLS measurements.  

The DLS data affirms the absence of two-state kinetics which is quite plausible, 

keeping in view the intrinsic fluorescence data besides the characteristic structure of a 

VLP. It may be concluded that VLPs dissociate gradually in increasing molarity of 

denaturant till the whole structure is distorted. The size of HBsAg VLP via DLS shows 

as discrepancy of 8-10 nm. It has been proposed that presence of aggregated form 

leads to stronger scattering as compared to that caused by VLP which leads to an 

imprecise particle size. It is strongly recommended that further studies using 

multiangle light scattering (MALS) with field flow-filed fractionation (AF4) should be 

carried out. This system works on a similar principle as that of SEC except that the 

separation of different sized species is more accurate. The individual specie fractions 

should be monitored for defolding studies to obtain more authentic curve, devoid of 

any aggregate conflict.  
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7. Appendix 

Abbreviation  Augmentation 

A. niger   Aspegillus niger 

BCA    Bicinchoninic acid 

Bis-ANS 4,4'-Dianilino-1,1'-Binaphthyl-5,5'-Disulfonic Acid, 

dipotassium Salt 

BMG    Buffered minimum glycerol 

BMGY   Buffered glycerol-complex medium 

BMM    Buffered minimal methanol 

BMMY   Buffered methanol-complex medium 

cccDNA   covalently-closed circular DNA 

CHO cells   Chinese hamster ovary cells 

DCs    Dendritic cells 

DEAE    Diethylethanolamine 

DLS    Dynamic light scattering 

DM    Defined media 

DO    Dissolved oxygen 

E. coli    Escherichia coli 

EDTA    Ethylenediaminetetraacetic acid 

ELISA    Enzyme-linked immunosorbent assay 

ER    Endoplasmic reticulum 

FPLC    Fast protein liquid chromatography 

GdnHCl   Guanidine hydrochloride 

GdnSCN   Guanidine thiocynate 

GF    Gel filtration 

HBcAg   Hepatitis B core antigen 

HBsAg   Hepatitis B surface antigen 

HBV    Hepatitis B virus 

HCC    Host cell component 

HCP    Host cell protein 

HI    Hydrophobic interactions 
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HIS
4
    Histidine (requiring auxotroph) 

HMW    High molecular weight 

IEX    Ion exchange chromatography 

IgM    Immunoglobulin M 

KDa    Kilo dalton 

KSCN    Potassium thiocynate 

LHBs    Large Hepatitis B protein 

MeOH    Methanol 

MHBs    Middle Hepatitis B protein 

Mut
+
    Methanol utilization plus (phenotype) 

Mut
S
    Methanol utilization slow (phenotype) 

MWCO   Molecular weight cut off 

OD    Optical density 

P. pastoris   Pichia pastoris 

PB    Phosphate buffer 

PBS    Phosphate buffered saline 

PEG    Polyethylene glycol 

RP-HPLC   Reverse phase-high performance liquid chromatography 

rpm    Revolutions per minute 

RT    Room temperature 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis 

SEC    Size exclusion chromatography 

SEM    Scanning electron microscopy 

Semi-DM   Semi defined medium 

SMW    Small molecular weight 

TEM    Transmission electron microscopy 

VLP    virus-like particle 

VP    Viral particle 

WHO    World health organization 

YNB    Yeast nitrogen base 

YTM    Yeast trace metal elements 
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Chemicals    Manufacturer 

All common lab reagents used were purchased Sigma-Aldrich unless stated otherwise. 

Here only some specific reagents are mentioned.  

Histidine    Sigma-Aldrich Chemie GmbH, Germany 

TEGO® Antifoam KS911  Evonik Industries AG, Germany 

Tween 20 (for synthesis)  Merck Schuchardt OHD, Germany 

EDTA (disodium salt)   Sigma-Aldrich Chemie GmbH, Germany 

Bis-ANS    Sigma-Aldrich Chemie GmbH, Germany 

Guanidine thiocyanate  Sigma-Aldrich Chemie GmbH, Germany 

Guanidine hydrochloride  Sigma-Aldrich Chemie GmbH, Germany 

Potassium thiocyanate   Carl Roth GmbH, Germany 

YNB, without amino acids   BD Difco, MD USA 

and ammonium sulfate 

Reagents    Manufacturer 

PageRuler (unstained) SM0661 Fermentas 

PageRuler (prestained) SM0671 Fermentas 

NovagenYeastBuster
TM

 Protein  Merck KGa, Darmstadt, Germany 

extraction reagent 

Pierce BCA protein Assay kit  Thermo Fisher Scientific 

AP conjugate substrate kit  Bio-rad, München, Germany 

HBsAg ELISA kit   bioMérieux, France 

Antibodies    Manufacturer 

Goat anti-mouse polyclonal   Acris antibodies GmbH, Germany 

FPLC resin    Manufacture 

Aerosil ® 380    Evonik Degussa GmbH, Rheinfelden, Germany 

DEAE Sepharose FF    Amersham Pharmacia Biotech, Sweden 

HiPrep 26/60 Sephacryl S-300  GE healthcare 

High Resolution 

Equipments   Manufacturer 

UV-vis Spectrophotometer   Uvikon, Kontron Instruments 
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(OD600 measurement) 

Autoclave    Systec V-150, Systec GmbH Wettenberg 

Incubator (Shaker) Certomat ® BS-1, B.Braun Biotech International 

Bioreactor    Biostat C, B.Braun Biotech International 

Gas analyzer Modular System, S710, SICK MAIHAK GmbH, 

Reute 

Centrifuge Centrifuge Stratos, Continuous flow rotors, 

Heraeus 

Centrifuge Megafuge, Heraeus Instruments 

Cell lyser Microfluidizer M110L, Microfluidics, Newton, 

MA 

Light microscope   Axiopot, Carl Zeiss AG, Oberkochen 

Gel electrophoresis system  Mini Protean Tetra Cell, Bio-rad, München 

Spectrophotometer    Cary, Multiskan Spectrum, Thermo Labsystems 

(Absorbance measurement) 

HPLC     Merch-Hitachi La Chrome, Darmstadt 

FPLC BioLogic Duo-Flow, Bio-Rad, München 

Luminescence spectrometer   Hitachi 

Luminescence spectrometer   PerkinElmer Ltd., United Kingdom 

Virus counter    ViroCyt 2100, InDevR Inc. USA 

Dynamic light scattering  DynaPro Titan, Wyatt Technology Corporation 

Software    Manufacturer 

RISP software Institute of technical chemistry, University of  

(Bioreactor on-line data collection)  Hannover 

BioLogic DuoFlowV.5 Bio-Rad Laboratories, Inc.   

(FPLC)    

OriginPro 8    OriginLab Corporation, MA    

ImageJ U.S. National Institutes of Health, Bethseda, MD 

(TEM Image processing)      

Graphic Analyzer  Institute of Technical Chemistry, University of  

(TEM Image processing) Hannover   

CRISP ver. 2.1   Calidris, Sollentuna, Sweden 

(TEM Image processing) 
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FL WinLab Software   PerkinElmer Ltd., United Kingdom 

 (Fluorescence analysis)    

Dynamics Version 6.10  Wyatt Technology Corporation 

(DLS measurements) 

Nucleotide and amino acid sequence of the PCR amplified HBsAg 

gene 

 

GAATTCAAGCTTGGATAAAAGA ATG GAG AAC ATC ACA TCA GGA TTC CTA GGA CCC CTG 51 

        Met Glu Asn Ile Thr Ser Gly Phe Leu Gly Pro Leu 12 

 

CTC GTG TTA CAG GCG GGG TTT TTC TTG TTG ACA AGA ATC CTC ACA ATA 99 

Leu Val Leu Gln Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile 28 

 

CCG CAG AGT CTA GAC TCG TGG TGG GCT TCT CTC AAT TTT CTA GGG GGA 147 

Pro Gln Ser Leu Asp Ser Trp Trp Ala Ser Leu Asn Phe Leu Gly Gly 44 

 

TCA CCC GTG TGT CTT GGC CAA AAT TCG CAG TCC CCA ACC TCC AAT CAC 195 

Ser Pro Val Cys Leu Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His 60 

 

TCA CCA ACC TCC TGT CCT CCA ATT TGT CCT GGT TAT CGC TGG ATG TGT 243 

Ser Pro Thr Ser Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys 76 

 

CTG CGG CGT TTT ATC ATA TTC CTC TTC ATC CTG CTG CTA TGC CTC ATC 291 

Leu Arg Arg Phe Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile 92 

 

TTC TTA TTG GTT CTT CTG GAT TAT CAA GGT ATG TTG CCC GTT TGT TCT 339 

Phe Leu Leu Val Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Ser 108 

 

CTA ATT CCA GGA TCA ACA ACA ACC AGT ACG GGA CCA TGC AAA ACC TGC 387 

Leu Ile Pro Gly Ser Thr Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys 124 

 

ACG ACT CCT GCT CAA GGC AAC TCT ATG TTT CCC TCA TGT TGC TGT ACA 435 

Thr Thr Pro Ala Gln Gly Asn Ser Met Phe Pro Ser Cys Cys Cys Thr 140 

 

AAA CCT ACG GAT GGA AAT TGC ACC TGT ATT CCC ATC CCA TCG TCC TGG 483 

Lys Pro Thr Asp Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp 156 

 

GCT TTC GCA AAA TAC CTA TGG GAG TGG GCC TCA GTC CGT TTC TCT TGG 531 

Ala Phe Ala Lys Tyr Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp 172 

 

CTC AGT TTA CTA GTG CCA TTT GTT CAG TGG TTC GTA GGG CTT TCC CCC 579 

Leu Ser Leu Leu Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro 188 

 

ACT GTT TGG CTT TCA GCT ATA TGG ATG ATG TGG TAT TGG GGG CCA AGT 627 

Thr Val Trp Leu Ser Ala Ile Trp Met Met Trp Tyr Trp Gly Pro Ser 204 

 

CTG TAC AGC ATC GTG AGT CCC TTT ATA CCG CTG TTA CCA ATT TTC TTT 675 

Leu Tyr Ser Ile Val Ser Pro Phe Ile Pro Leu Leu Pro Ile Phe Phe 220 

 

TGT CTC TGG GTA TAC ATT TAA TAGG TCGACAAGCTTGAATTC   724 

Cys Leu Trp Val Tyr Ile      226 

 

 

The HBsAg gene was PCR amplified from hepatitis B virus DNA (subtype adw) using 

primers containing Eco RI site to facilitate subsequent cloning of the gene into Pichia 

expression vectors. The start (in blue) and stop (in red) codons are italicized. The 

corresponding HBsAg amino acid sequence is shown in italic. 
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Media 

Table 7.1. Recipe of media for shake flask cultivation 

 
 

Buffered 
minimal 
glycerol 
(BMG) 

Buffered 
minimal 
methanol 
(BMM) 

Buffered 
glycerol-
complex 
medium 
(BMGY) 

Buffered 
methanol-
complex 
medium 
(BMMY) 

Defined 
medium A 
(DM A) 
 

Defined 
medium B 
(DM B) 
 

Semi-
defined 
medium A 
(SM A) 

Semi-
defined 
medium B 
(SM B) 

Glycerol (g/l) 10  10  95.2 60 60 60 

*Methanol 
(% volume per 
litre) 

 0.5  0.5 0.5 0.5 0.5 0.5 

Potassium 
phosphate 
(g/L) 

13.6 13.6 13.6 13.6 9.4 9.4 4.3 4.3 

YNB  
(% w/v) 

1.34 1.34 1.34 1.34     

Biotin  
(mg/L) 

0.4 0.4 0.4 0.4 0.4  0.4  0.4   

Yeast extract 
(g/L) 

  10 10     

Peptone 
(g/L) 

  20 20     

**Histidine 
(g/L) 

0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

Casein 
hydrolysate (g/l) 

      10 10 

(NH4)2SO4 

(g/L) 
    15.7 15.7 15.7 9 

KH2PO4 

(g/L) 
    9.4 9.4 9.4 4.3 
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o-Phospho- 
ric acid(85%) 
(mL/L) 

for pH 
adjustment 

for pH 
adjustment 

for pH 
adjustment 

for pH 
adjustment 

for pH 
adjustment 

for pH 
adjustment 

for pH 
adjustment 

for pH 
adjustment 

KOH 
(g/L) 

    
for pH 
adjustment 

for pH 
adjustment 

for pH 
adjustment 

for pH 
adjustment 

MgSO4.7H2O 
(g/L) 

    1.83 1.83 4.6 3.2 

CaCl2.2H2O 
(g/L) 

    0.28 0.28 0.28 0.22 

CaSO4.2H2O 
(g/L) 

        

YTM soln 
(g/L) 

    1.14 1.14 4.56  

PTM 1 
(mL/L) 

       5 

 

* MeOH was used in after-induction phase. 

** Histidine was added for the growth of his4 strains only. 

 

Recipe of Media for bioreactor cultivation 

 

Component Amount in 1L Amount in 9L Make the vol. up to Sterilization 

Glycerin [99.5%] 105.71 g 951.39 g n.a. Autoclave 

KH2PO4 10.28 g 92.52 g 771.30 g w/ H2O 

(≈750 mL H2O) 

Autoclave 

(NH4)2SO4 17.14 g 154.26 g 771.30 g w/ H2O 

(≈750 mL H2O) 

Autoclave 

MgSO4.7H2O 1.83 g 16.47 g  (≈150 mL H2O) Autoclave 



 

Appendix 

105 

 

CaCl2. 2H2O 0.309 g 2.78 g 771.30 g w/ H2O 

(≈750 mL H2O) 

Autoclave 

Biotin 0.45 mg 4.1 mg 20.55 g w/ H2O Filter sterilize 

Anti-foam  100 g  Autoclave 

NH3-H2O  512.30 g n.a.  

MeOH   n.a. Filter sterilize 

YTM   n.a. Filter sterilize 

 

Yeast trace metal solution (YTM) 

 

Component For 1000 g For 100 g 

KI 207.50 mg 20.75 mg 

MnSO4.H2O 760.59 mg 76.059 mg 

Na2MoO4 483.9 mg 48.39 mg 

H3BO3 46.37 mg 4.637 mg 

ZnSO4.7H2O 5031.95 mg 503.195 mg 

FeCl3.6H2O 12.03 mg 1.203 mg 

H2SO4 [98 %] 9.20 mg 0.920 mg 

 

Weigh and make up the volume accordingly with ddH2O. 
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Buffers 

Buffers for HBsAg downstream process 

Step Buffer  pH 

lysis 25 mM PB, 8.0 + 5 mM EDTA  
+ 0.6% Tween 20 

8.0 

PEGylation / PEG precipitation 
(O/N) 

lysis buffer + 500 mM NaCl  
+ 5% PEG 6000 

8.0 

Aerosil binding 25 mM PB + 500 mM NaCl 7.2 

Aerosil washing 25 mM PB   7.2 

Aerosil elution 50 mM CBB + 1.2 M Urea 10.8 

Aging 50 mM CBB   10.8 

IEX binding 50 mM CBB   8.0 

IEX washing 50 mM Tris-HCl 8.0 

IEX elution Tris-HCl + 500 mM NaCl 8.0 

Concentration via vivaspin 
column 

50 mM Tris-HCl  
+ 500 mM NaCl 

8.0 

SEC  PBS, 7.2 7.2 

KSCN PBS, 7.2 + 1.2 M KSCN 7.2 

Dialysis PBS, 7.2 7.2 

PB: (Sodium) phosphate buffer 

CCB: Sodium carbonate-bicarbonate buffer 

PBS: Phosphate buffered saline 

Phosphate buffered saline, pH 7.2  

Compoundt Concentration [M] Concentration [g/L] 1X Concentration [g/L]10X 

NaCl 137  8.00 80.0 

KCl 2.7 0.20 2.0 

Na2HPO4 10.0 1.44 14.4 

KH2PO4 1.76 0.24 2.4 

pH 7.2 7.2 7.2 

Dissolve all the salts in ddH2O and mix together. Adjust the pH with conc.HCL or 

NaOH, if required. 
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Glycerol stock Glycerol stock was used as pre Pre-culture for shake flask and 

bioreactor cultivations of HBsAg producing and non-producing 

clones. In order to prepare glycerol stock, pick an isolated single 

colony of HBsAg producing Pichia pastoris GS115 cells and 

grow in YPD till OD600=12-14. Resuspend in YPD containing 

15% glycerol to obtain a final OD600=50-52 (≈2.6 10
9
 

cells/mL). Aliquot and shock freeze in liquid N2. Store at −80°C. 

Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

OD600nm  Throughout the cultivations (in shake flasks as well as 

Measurement  bioreactor), cell optical density (OD) was measured via 

spectrophotometer. At different stages during cultivation, time 

point samples were collected and OD was measured at 600nm. 

The instrument was calibrated for zero-adjustment with 0.9% 

(w/v) saline solution before all the measurements. Wherever 

necessary, dilutions were made with calibration solution. The 

dilutions were made, in a proportion of 1:5, 1:10, 1:20, 1:50 etc, 

in order to obtain the observed absorbance value in a range of 

0.1 – 0.8. 

Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

Cell lysis 

Cell Lysis using  Wash cell pellet with 25 mM PB, pH 8.0 and resuspend in  

glass beads  lysis buffer. Add glass beads [0.45 mm; Sigma G-8772] of 

roughly equal weight to cell pellet. Vortex for 40 sec at 

maximum speed and keep at ice for next 40 sec. Repeat the 

cycle of vortexing and chilling 8-10 times. Centrifuge for 

10 min at 13,000 rpm (17,000 × g). Collect the supernatant and 

store at −20°C. (−80°C for longer term) 

Cell lysis via  Resuspend the cell pellet in lysis buffer and pass through the  

Microfluidizer Microfluidizer. During this process, the cells are pushed through 

the interaction chamber at high pressure, and passed through a 

cooling coil. Tighten the screws on the pressure compartment of 

machine. Fill the tray with ice-water slush for cooling. Turn on 
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the air supply, open valve to create pressure (5-8 bar). Add 100 

mL water; slowly turn on the red handle counter clock wise. Let 

it run for some passages to get isopropanol out. Repeat the water 

wash. Wash once with 20 mL lysis buffer. Pass cells at 12,000 

psi (38 psi at inlet) through Microfluidizer for 12-14 times. 

Confirm the complete lysis by viewing the sample under 

microscope. 

After lysis, wash out with buffer until it runs clear. Wash with 

100 mL 1 M NaOH and then with 500 mL water. Wash and fill 

with 70 % isopropanol for storage. 

Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

SDS-PAGE recipe 

Following solutions are required for casting the gel, 

i. Acrylamid-bisacrylamid mixture, 37.5:1 

ii. 1.5 M Tris (pH 8.8) 

iii. 1.5 M Tris (pH 6.8) 

iv. 1% SDS solution  

v. Temed (N,N,N',N'Tetramethylethylenediamine) 

vi. 25 % APS (ammonium persulphate) 

For 2 gels, 

Sr. nr. 
Separating gel 

(6 %) 
Volume 

Collecting gel 

(12 %) 
Volume 

1 Acryl-Bisacryl  

mixture 

3.0 mL Acryl-Bisacryl  

mixture 

0.75 mL 

2 Tris (pH 8.8) 2.5 mL Tris (pH 6.8) 1.25 mL 

3 SDS (1%) 1.0 mL SDS (1%) 0.52 mL 

4 dd H2O 1.76 mL dd H2O 2.46 mL 

5 Temed 20 µL Temed 10 µL 

6 APS 20 µL APS 10 µL 
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SDS sample buffer 20 mM Tris-HCl 

   2 mM EDTA 

   5 % SDS (w/v) 

   0.02 % Bromophenol blue 

Modified Laemmli 50 % SDS sample buffer 

Sample buffer  45 % β-ME 

   5 % Glycerol 

Mix equal volume of Laemmli buffer and sample, boil at 95°C for 10 min and spin for 

1min to get all the contents down. 

Running buffer 25 mM Tris-Base 

 192 mM Glycin 

 0.1 % SDS (w/v) 

 pH 8.3  

Load the gel and run at 60 V for 15 min and at 120 V for 60 min (or until the end).  

Afterwards, stain the gel with colloidal coomassie or silver staining. 

____________________________________________________________________ 

Colloidal coomassie staining 

Reagents  a- For fixing solution 

       EtOH, 50%; O-H3PO4, 20% and ddH2O 30% 

b- For staining solution 

ddH2O, 270 mL; 85% O-H3PO4, 35.3 mL; (NH4)2SO4, 30g; 

Coomassie G-250, 0.36g; MeOH, 60 mL. 

Take 30 mL of ddH2O in a flask and add 30 mL H3PO4. Also 

add (NH4)2SO4 and Coomassie G-250. Shake and add the 

remaining 240 mL ddH2O. Lastly add MeOH slowly and 

dissolve using magnetic stirrer. 

Fixing After finishing the electrophoresis, rinse the gel briefly with 

ddH2O. To fix the gel, rinse it in the fixing solution for 2 times, 

20 min each.  

Staining Put the gel along with staining solution on the shaker and stain 

overnight. 

Destaining Rinse the gel with ddH2O until the background is clear and 

bands are visible. 
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Storage This coomassie staining solution is reusable for nearly 6 months. 

Keep in amber bottle at 4°C. 

Silver staining 

Reagents  Fixing solution: 5 parts ddH2O, 5 parts EtOH and 1 part AcOH 

   (eg., 400 mL H2O + 400 mL EtOH + 80 mL AcOH) 

Farmer reducer: 0.1 g Potassium hexacyanoferrate (II) and 0.1g 

Sodium thiosulphate in 100 mL ddH2O 

0.1% AgNO3 solution: 1 small pinch in 100 mL ddH2O 

2.5 % Na2CO3 solution: 50 g Na2CO3 (dehydrated) in 1000 mL 

ddH2O 

Formaldehyde: 300-500 µL  per 100 mL Na2CO3 

Fixing and reduction Incubate the gel for 20 min in destaining/fixing solution. Wash 

quickly twice with ddH2O. Incubate in Farmer reducer solution 

for 2.5 min. Wash with ddH2O for 5 min. (wash till the yellow 

color is gone and the gel is again transparent) 

Staining Incubate in AgNO3 solution for 30 min. Wash for 30 sec with 

ddH2O twice. Wash swiftly with Na2CO3 solution. Add 400 µl 

formaldehyde in 100 mL Na2CO3 solution and incubate the gel 

in this solution until the bands are nicely visible. Stop the band 

development by adding the gel in 5% AcOH solution for 

10 min. Keep the gel in ddH2O. 

Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

Western Blot 

Reagents Transfer Buffer: 25 mM Tris, 192 mM Glycin, 10% Ethanol, pH 

8.3 

1. TBS: 25 mM Tris, 150 mM NaCl, pH 7.5 

2. TBS-T: 25 mM Tris, 150 mM NaCl, 0.5% Tween 20, pH 7.5 

3. BSA-TBS (Blocking buffer): 25 mM Tris, 150 mM NaCl, 

0.5% Tween 20, 2% BSA, pH 7.5 

4. AP-Buffer: 100 mM Tris-HCl, 100 mM NaCl, 5 mM 

MgCl2.7H2O, pH 9.5 

5.  1° Ab Solution 

6. TMB substrate 
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SDS-PAGE Run an SDS-PAGE using previously described conditions and at 

end, wash the gel with ddH2O. 

Preparation of  Cut the PVDF membrane of apt size and soak in MeOH/EtOH 

membrane for a minute or two and then immerse in ddH2O. Equilibrate the 

fibre pad, blotting paper, membrane and gel in transfer buffer 

for 15 min. Make the setup in the sequence such that it follows 

to make a sandwich as  fibre pad – blotting paper – gel – 

PVDF membrane – filter paper – fibre pad. Make sure to 

evacuate all trapped air bubbles underneath the gel with a roller. 

Place the sandwich fittingly onto cassette and close the clamp. 

Insert the cassette into blotter tank with red side facing red 

electrode.  

Fill up the blotter tank with transfer buffer till level n also put a 

magnetic stirrer and ice block. Put this tank in a tub filled with 

ice and onto a magnetic plate.  

Electro-transfer Put on lid, plug in the cables and start electro-blotting at a 

constant voltage for 30 min. At the end of the run, rinse the 

membrane with ddH2O for 5 min. Cross-check the gel for proper 

electrophoretic transfer (electroelution). 

Immunodetection Wash the membrane in ddH2O for 5 min.  Wash the membrane 

in BSA-TBS (blocking buffer) for 1 h. Incubate the membrane 

with 1° Ab solution for 1 h. Incubate the membrane with BSA-

TBS (3 X 5 min). Incubate the membrane with 2° Ab for 1hr. 

Wash 3 times with TBST (3 X 5min). Wash 2 times with TBS 

(2 X 1 min). Develop the signal by introducing membrane to the 

substrate solution. Stop the developing by adding ddH2O.  

Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

Protein estimation 

BCA Protein Assay 

For protein estimation via BCA assay, BSA is used as a standard protein. The 

concentration of stock solution is 2 mg/mL. Prepare a series of standard from stock 

solution; 2000, 1500, 1000, 750, 500, 250, 125, 75, 25 and 0 µg/mL. 
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Working Reagent  [WR]: Reagent A  +  Reagent B [50:1] 

                                                        3 mL  +  60 µL 

Sample + WR   [1:8 ratio]: 25 µL  +  200 µL  

(Microplate Procedure) 

Mix well and incubate for 30 min at 37°C. Read the plate at 562 nm. 

 

Absorption method Measure absorbance of the protein solution at 280 nm. Calculate 

the concentration by using the formula, 

Concentration = Absorbance at 280 nm / absorbance  

   coefficient*cell path length  

In all assays, the samples were diluted to appropriate concentrations to get results in 

the middle of assay range. 

Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 

HPLC protocol 

Column:   Supercosil LC-18 5 cm x 4.6 mm, 5 µm 

Detection:   UV 280 nm 

Solvent system:  A: 0.15% TFA in ddH2O; 

B: 2-propanol:ACN in 80:20 ratio 

Flow rate:  1 mL/min 

Time (min) A (%) B (%) C (%) 

0 55.0 45.0 0 

4 55.0 45.0 0 

10 5.0 95.0 0 

13 5.0 95.0 0 

14 55.0 45.0 0 

18 55.0 45.0 0 

 

TFA: Trifluoroacetic acid (Sigma-Aldrich Chemie GmbH, Germany 

ACN: Acetonitrile (Sigma-Aldrich Chemie GmbH, Germany) 
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FPLC protocol for Ion exchange chromatography* 

 Volume Description Parameters 

1 0.00 Collection Fractions within 2 time window(s) ending at 400.00 mL 

2 0.00 Lamp (UV Detector) Turn ON 

3 0.00 Zero Baseline  UV Detector 

4 0.00 Isocratic Flow A: A-Buffer 1 100% Volume: 100.00 mL 

B: Buffer B 0% Flow: 1.00 mL/min 

5 100.00 Isocratic Flow A: A-Buffer 2 100% Volume: 200.00 mL 

B: Buffer B 0% Flow: 1.00 mL/min 

6 300.00 Isocratic Flow A: A-Buffer 3 100% Volume: 100.00 mL 

B: Buffer B 0% Flow: 0.50 mL/min 

7 400.00 Lamp (UV Detector) Turn OFF 

 400.00 End of Protocol  

* The FPLC system (connected with column) was calibrated with first buffer system 

with at least 2 column volume (CV) before starting the run. All the buffers were 

filtered and degassed before use. 

 

 

Buffer 1: 50 mM Na-Carb-bicarb buffer   

Buffer 2: 50 mM Tris-HCl 

Buffer 3: Tris-HCl + 500 mM NaCl 
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FPLC protocol for size exclusion chromatography* 

 Volume Description Parameters 

1 0.00 Collection Fractions of size 5.0 mL within 1 time window(s) ending at 

450.00 mL 

2 0.00 Lamp (UV Detector) Turn ON 

3 0.00 Zero Baseline  UV Detector 

4 0.00 Isocratic Flow A: A-Buffer 1 100% Volume: 50.00 mL 

B: Buffer B 0% Flow: 1.00 mL/min 

5 50.00 Isocratic Flow A: A-Buffer 2 100% Volume: 10.00 mL 

B: Buffer B 0% Flow: 1.00 mL/min 

6 60.00 Isocratic Flow A: A-Buffer 1 100% Volume: 360.00 mL 

B: Buffer B 0% Flow: 0.50 mL/min 

7 420.00 Lamp (UV Detector) Turn OFF 

 420.00 End of Protocol  

* The FPLC system (connected with column) was calibrated with first buffer system 

with at least 2 column volume (CV) before starting the run. All the buffers were 

filtered and degassed before use. 

 

 

Buffer 1: Ion exchange eluate 

Buffer 2: PBS, pH 7.2 
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Estimation of protein contents using ImageJ 

For SDS-PAGE densitometry 

1- Open ImageJ; drag and drop the image of gel. 

2-  Analyze  Gels  Select first lane [strg+1]. For next lane,  use [strg+2] n keep 

selecting until last desired lane. 

3- Once finished with selection,  Plot lane [strg+3]. 

4- Plot of image will pop up. Select the base line manually by drawing a horizontal 

line using ‘straight line’ selection tool. Draw vertical lines to define the peak/s. 

5- Before separating the peaks vertically, calculate the peak area by clicking inside 

using wand tool.  

6- Save the results separately for each lane; Results  File  Save as.  

7- Alternatively, label the peaks Analyze  Gels  label peaks. It gives peak area in 

percentage. 

For VLP count 

1- Open ImageJ; drag and drop the TEM image. 

2- Calibrate the pixels in terms of size by using the scale bar in the image (Analyze  

set scale). 

3- Select the circle option in the shape tool. 

4- Select all the VLPs as ROI (Analyze  tool  ROI manager). 

5- Measure the selected data and export as CSV format. 
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Step by step method of using Graphic Analyzer 

1- Open the image in Graphic Analyzer (A). 

2- Adjust Median Functions  Grey filters  Median[7-9] (B) 

3- Adjust threshold from grey filters [≈80-160] (C). 

4- Functions  Morphology  eliminate by size [≈600-3500] (D). 

5- Functions  Morphology  eliminate by compactness [1-2] (E) 

6- Get 8-connected objects (F) and save as CSV data. 

7- Get average of the diameter and convert into nm.  

E.g. if the scale bar ranges from 1582 to 2037 pixels, the difference 455 pixel equals 

200 nm, and 1 pixel is roughly equal to 0.44 nm. 
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