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Abstract

In this thesis we study the recurrence and localization properties of discrete-time quan-
tum walks. Quantum walks describe the discrete-time dynamics of a single particle on
a lattice under the assumption of a finite propagation speed. Hence, the particle can
only move a finite number of lattice site per time step. In order to characterize the
propagation behaviour of such evolutions, we analyze the transition probabilities be-
tween different states of the system. Depending on whether we consider transitions
back to the initial state or transitions between distant lattice sites, we obtain the fol-
lowing results on the recurrence and localization behaviour of discrete-time quantum
walks.
Recurrence properties: We analyze the probability that a particle evolving according
to a discrete-time unitary dynamics eventually returns to its initial state. In order to de-
tect such a recurrence event, we perform after each unitary time step a von Neumann
measurement that projects onto the initial state. In case of a positive measurement
outcome, the evolution is stopped, otherwise, we continue with the next time step. We
define an initial state to be recurrent with respect to the time evolution if the probabil-
ity that the system is eventually detected in the initial state is equal to one. Using the
theory of probability measures on the unit circle, we show that a state is recurrent if
and only if its spectral measure with respect to the evolution operator does not contain
an absolutely continuous component. We also find that the expectation value of the
recurrence time is either infinite or an integer. A topological explanation of this quan-
tization effect is provided by identifying the expected recurrence time with a winding
number.
Localization properties: When analyzing the properties of quantum walks a common
simplification is to assume translation invariance with respect to the underlying lattice.
However, random fluctuations due to unavoidable experimental imperfections often
violate this assumption in an actual implementation. Therefore, we go beyond this
translation-invariant regime and study the effect of randomly chosen position depen-
dent coin operations on the standard one-dimensional single-shift-and-coin quantum
walk. Adapting techniques from the theory of random Schrödinger operators, we prove
that in contrast to the ballistic propagation behaviour observed in the translation-in-
variant case such disordered quantum walks generically exhibit Anderson localization,
that is, a complete breakdown of any transport in the system. In fact, we show for a wide
class of coin distributions the strongest form of such localization behaviour, namely dy-
namical localization, which means that for all times the transition probability between
two arbitrary lattice sites decays exponentially with their distance.

Keywords : quantum walks, dynamical localization, recurrence
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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit dem Wiederkehrverhalten und den
Lokalisierungseigenschaften zeitdiskreter Quantenwalks. Quantenwalks beschreiben
zeit- und ortsdiskrete Dynamiken eines einzelnen Teilchens unter der Annahme einer
endlichen Ausbreitungsgeschwindigkeit. In dieser Arbeit werden die Propagationsei-
genschaften solcher Systeme mithilfe der Übergangswahrscheinlichkeiten zwischen
den Systemzuständen analysiert. Je nachdem, ob man die Rückkehrwahrscheinlich-
keiten zum Anfangszustand oder die Übergangswahrscheinlichkeiten zwischen belie-
bigen Gitterplätzen betrachtet, erhält man die folgenden Resultate über das Propaga-
tionsverhalten zeitdiskreter Quantenwalks:
Wiederkehrverhalten: Es wird die Wahrscheinlichkeit untersucht, mit der ein System
unter einer zeitdiskreten unitären Zeitentwicklung in seinen Anfangszustand zurück-
kehrt. Um dieses Ereignis zu detektieren, wird in jedem Zeitschritt eine projektive Mes-
sung durchgeführt, die testet, ob sich das System wieder im Anfangszustand befindet.
Bei einem positiven Messausgang wird die Dynamik angehalten andernfalls fortge-
setzt. Ein Anfangszustand heißt rekurrent bezüglich der Zeitentwicklung falls die Wahr-
scheinlichkeit, dass dieser Messprozess das Teilchen irgendwann detektieren wird, eins
ist. Es stellt sich heraus, dass das Rekurrenzverhalten eines Zustandes allein durch sein
Spektralmaß charakterisiert ist. Es wird gezeigt, dass ein Zustand genau dann rekur-
rent ist, falls sein Spektralmaß keinen absolutstetigen Anteil enthält. Weiterhin wird
bewiesen, dass die mittlere Rückkehrzeit rekurrenter Systeme entweder eine natürli-
che Zahl oder unendlich ist. Die topologische Erklärung dieses Quantisierungseffekts
erfolgt über die Identifikation der mittleren Rückkehrzeit mit einer Windungszahl.
Lokalisierung: Eine häufige Annahme zur einfacheren theoretischen Behandlung von
Quantenwalks ist Translationsinvarianz bezüglich des zugrunde liegenden Gitters. Al-
lerdings können schon geringe experimentelle Ungenauigkeiten diese Annahme ver-
letzen. Daher wird in dieser Arbeit diese Einschränkung fallen gelassen und der Ein-
fluss zufällig gewählter Münzoperationen auf das dynamische Verhalten des eindimen-
sionalen Standardquantenwalks untersucht. Unter der Verwendung von Techniken aus
der Theorie zufälliger Schrödingeroperatoren wird bewiesen, dass im Gegensatz zu
dem in translationsinvarianten Systemen beobachteten ballistischen Ausbreitungsver-
halten solche ungeordneten Quantenwalks typischerweise Andersonlokalisierung, das
heißt vollständige Abwesenheit jeglichen Transports, zeigen. Tatsächlich wird für eine
große Klasse von Münzverteilungen sogar dynamische Lokalisierung gezeigt. Dies be-
deutet, dass die Übergangswahrscheinlichkeiten zwischen beliebigen Gitterplätzen für
alle Zeiten exponentiell mit ihrem Abstand abfallen.

Schlagwörter: Quantenwalks, dynamische Lokalisierung, Rekurrenz
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1. Introduction

Motivation

The field of Quantum information theory encompasses areas from quantum physics,
computer science, information theory and mathematics. The two major themes in this
area of research are, on one hand, the application of information theoretic concepts
to the foundations of quantum theory and, on the other, the idea of harnessing the
properties of quantum mechanical systems in order to perform communication and
computational tasks. Already in 1982, Richard Feynman noted that due to an expo-
nential scaling of the number of system parameters with the particle number, classical
computers are not capable of efficiently simulating large many-body states [Fey82]. To
avoid this dilemma, Feynman proposed to use another quantum system for the simu-
lation rather than a classical computer. More precisely, he suggested to realize a quan-
tum system with very precise experimental control, a quantum simulator, such that the
quantum state of interest, or even its dynamics, can be simulated by changing these
system parameters in a controlled way.

This simulation idea motivates the study of discrete-time unitary evolutions, where
the complex evolution induced by a possibly time dependent Hamiltonian is decom-
posed into simpler building blocks. One particular class of such systems are quan-
tum cellular automata, which are defined as quantum lattice systems undergoing a
discrete-time evolution that satisfies an additional locality constraint [WS04, Vog09].
More precisely, the propagation speed of information within the system has to be fi-
nite, e.g. a localized excitation at one lattice site can after one time step only influence
a finite number of neighbouring cells. In a bottom-up approach one can also con-
sider the corresponding single-particle dynamics. This means that a single particle
with some internal degree of freedom moves on a lattice, such that the distance trav-
eled per time step is finite. Such discrete-time single-particle systems are called quan-
tum walks, since originally they arose in an attempt to develop a quantum mechanical
analogue of classical random walks both in discrete [ADZ93] as well as in continuous
time [FG98]. The prototypical example of such a quantum walk dynamics is given by a
coined quantum walk that describes a spin-1/2 particle on the line with an evolution
that consists of the alternation of two processes [ABNW01]: The first one is a shift oper-
ation that moves the particle one lattice site to the left or to the right, depending on its
internal state; the second one, a so-called coin operation, consists of a unitary operator
acting exclusively on the internal spin state.

This intuitive description of a quantum walk already suggests some relation to clas-
sical random walks, where the particle’s next position is determined by a coin toss.
Since classical random walks have found applications in such diverse areas as biology
[BdLVC05, KS83], genetics [vdEST92, LS91], neuroscience [GM64, TYZ+09], the devel-
opment of stock market prices [Man91], epidemic spread [DG11] and the analysis of
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1. Introduction

social networks [SM11], one might hope that quantum walks also have some compu-
tational application. As it turns out, quantum walks are interesting both as a model
of single particle dynamics as well as as a generalization of classical random walks.
Treated as a computational tool, they outperform classical random walks [CFG02] in
the context of search algorithms [SKW03, AKR05, MNRS11] as well as graph traver-
sals [CCD+03] and have even been shown to allow for universal quantum computation
[Chi09, LCE+10].

Most of these results rely on an enhanced spreading behaviour of quantum walks as
compared to their classical counter parts [Kem05, MNRS09]. More precisely, if the evo-
lution is translation-invariant and coherent, meaning that the evolution operator does
not change in time, quantum walks are known to behave ballistically, that is, the parti-
cle spreading behaviour is linear in time. This is in contrast to the diffusive spreading
observed in a classical random walk [MNRS09, ABNW01]. This behaviour can be un-
derstood by regarding a quantum walk as the translation-invariant discrete-time dy-
namics of a single particle. In particular, it is possible to derive a group velocity oper-
ator that governs the asymptotic ballistic transport of the particle in this translation-
invariant scenario [ABNW01, AVWW11]. In addition, random fluctuations that respect
the translation invariance of the evolution tend to destroy the coherence of the problem
and asymptotically result in diffusive, that is, classical behaviour [AVWW11, Joy11a].
Aside from some specific examples [SK10, LS09] and perturbations on a finite num-
ber of lattice sites [Kon10], current literature focusses mostly on translation-invariant
quantum walks [GJS04, AVWW11].

Quantum walks exhibit a rich variety of quantum effects such as Landau-Zener tun-
neling [RBH+11], the Klein-paradox [Kur08], topological phases [KRBD10, Kit12], Bloch
oscillations [RBH+11] and the effects of electric fields [CRW+13] as well as the formation
of molecules for two interacting particles each performing a quantum walk [AAM+12].
They therefore hold a great promise as a simulation tool. Another important advan-
tage from the perspective of an actual quantum simulation is that quantum walks can
be realized with current technology. In recent years, quantum walks have been imple-
mented in such diverse physical systems as neutral atoms in optical lattices [KFC+09,
GAS+13], trapped ions [ZKG+10, SMS+09], wave guide lattices [PLM+10, SSV+12] and
light pulses in optical fibres [SCP+10, SGR+12] as well as single photons in free space
[BFL+10].

This thesis studies two aspects of the dynamical properties of quantum walks, one
inspired from their connection to classical random walks and one stemming from the
goal to simulate single-particle quantum dynamics. In both cases, the central quanti-
ties of interest are the transition probabilities between different states the system in-
duced by the quantum walk dynamics.

The first part of this thesis concentrates on transitions back into the initial state, that
is, the probability to find the system again in the state it was prepared in at the begin-
ning. In the theory of classical random walks and Markov chains an initial state is called
recurrent if the probability of eventually returning to the initial state is equal to one.
Otherwise, the state is called transient. If the Markov chain is irreducible, all states are
either recurrent or transient and in addition there is a renewal equation connecting the
first return probability to the probability to return in exactly n steps [KT75]. Moreover,
it was shown by Pólya that for classical random walks with nearest neighbour hopping,

16



there is a critical lattice dimension (d = 3), such that all states are recurrent for strictly
smaller lattice dimensions and transient otherwise. This motivates the investigation of
the recurrence behaviour of general discrete-time quantum evolutions.

In the second part of this thesis transition probabilities between arbitrary lattice sites
are considered. As described above, most results known about quantum walks rely on
the translation invariance of the system. However, inevitable imperfections in an ac-
tual experimental realization often violates this assumption. Therefore, one motiva-
tion in this thesis is to analyze a regime where translation invariance is broken. More
precisely,the influence of random position dependent static fluctuations on the propa-
gation properties of the system are studied. To this end, the previously described stan-
dard model of a one-dimensional coined quantum walk of a spin-1/2 particle is con-
sidered, where the coin operation at each lattice is chosen randomly according to some
common probability measure on the unitary 2×2 matrices. This manifestly breaks the
translation invariance.

Outline of the thesis

In chapter 2 we introduce the basic mathematical and physical concepts. The covered
topics include the spectral theory of unitary operators, the characterization of proba-
bility measures on the unit circle by analytic functions on the unit disc and the theory
of quantum walks as well as an introduction to the theory of random ergodic operators
and their localization properties.

In preparation of the proof of dynamical localization, we review in chapter 3 results
on products of random matrices. In comparison to the approach commonly found in
the literature [BL85, CL90], we develop the theory for matrices with complex entries.

In chapter 4 we investigate the recurrence behaviour of discrete-time unitary evolu-
tions and characterize the probability that such systems return to their initial state.

The last two chapters deal with localization properties of disordered quantum walks.
In chapter 5 we define disordered quantum walks as random position dependent per-
turbations of the standard one-dimensional coined quantum walk of a spin- 1

2 particle
and derive their basic properties. Building on these results, we analyze in chapter 6
under which assumptions transitions between different lattice sites are exponentially
suppressed in their distance, which implies dynamical localization. We also provide
explicit examples where these assumptions are met, including the certification of dy-
namical localization observed in an actual experiment by Schreiber et al. that was per-
formed with photons in an optical fibre [SCP+11], thereby showing the practical appli-
cability of the result.

We note that since chapter chapter 4 can be read independently from the chapters
5 and 6 all three chapters contain a section with conclusions and further research di-
rections.
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2. Basic concepts

This chapter contains a short introduction into the mathematical and physical back-
ground of quantum mechanics, spectral theory, quantum walks and random opera-
tors. In section 2.1 we make some introductory remarks on quantum mechanics and
concepts in quantum information theory. In the context of this thesis, we are mostly
dealing with unitary operators and therefore, some results on their spectral theory are
provided in section 2.2. This naturally leads us to the study of probability measures
on the unit circle which we discuss in section 2.3. Finally in sections 2.4 and 2.5 we
introduce the theory of quantum walks and random ergodic operators.

2.1. Quantum information

The main purpose of this section is to introduce notation and since the results pre-
sented here are well known, we omit their proofs. Specific references will be pointed
out at the level of the discussed results, however, for a general overview on mathemati-
cal methods in quantum mechanics and quantum information theory we mention the
following references [RS80, Tes09, KBDW83, NC10].

The basic goal of a theory in physics is to model a physical system on such a level
of complexity that once certain parameters, which identify the state of the system, are
given, we can predict its behaviour, with respect to a defined set of questions we want
to ask about the system. In order to achieve this we first have to fix the set of all allowed
states of the system. In quantum mechanics this state space is given by a Hilbert space
H, the normalized elementsψ of which describe different possible pure states that can
be realized. Asking questions to the system is formalized by the concept of measure-
ments or observables, which are modeled by hermitian operators on the Hilbert space
H. We adopt the common notation of B(H) for all bounded operators on H with respect
to the usual operator norm. The dynamics of an isolated quantum system that does not
interact with any environment is given by some unitary operator U on H.

ρ T∗ {Mx }

preparation transformation measurement

t r (Mxρ)
ρ T (ρ)

Figure 2.1.: Prepare and measure scheme

In quantum information it is common to describe quantum mechanical setups in the
so-called operational approach, which is also appropriate for the discrete-time systems
we are going to study. Figure 2.1 depicts the basic setup, where the system undergos
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2. Basic concepts

some transformation between the preparation procedure that fixes an initial state, and
a final measurement.

If we want to allow for some uncertainty during the preparation or transformation in
the sense that we have some probability distribution according to which either initial
state or transformation is chosen, it is appropriate to describe the system within the
framework of density operators. That is, the state of a system is described by a posi-
tive operator ρ on H with unit trace. Consider as an example the situation, where our
preparation produces one of k possible states φl ∈H with probability pl each. In this
case, the corresponding density matrix ρ is given by

ρ =
k∑

l=1

pi |φl 〉〈φl | with
∑

l

pl = 1

where |φ〉〈φ| is the usual bra-ket-notation for the projector onto the subspace of H
spanned by the vectorφ ∈H.

The next question we have to answer is which subset of possible transformations on
the system should be allowed. It turns out that under the physically reasonable as-
sumption that density operators are mapped to density operators, all allowed transfor-
mations take the form of completely positive trace preserving maps from B(H) to B(K)
for some target Hilbert space K. We often call a completely positive trace preserving
map a quantum channel. In order to study the action of a transformation there are two
equivalent points of view the so-called Schrödinger picture, where the quantum chan-
nel T∗ acts on the stateρ of the system and the Heisenberg picture, where the quantum
channel T acts on the observables of the system. Both pictures are connected via the
relation

tr(T∗(ρ)A) = tr(ρT (A)) ,

where ρ is a density matrix and A ∈ B(K) is an observable.
Instead of a this axiomatic characterization, we can take the opposite approach and

define a set of basic operations that should definitely be allowed. Three such basic
operations are certainly unitary transformations and the addition and removal of aux-
iliary subsystems to and from the system. Stinespring’s dilation theorem basically tells
us that these three operations are enough to implement an arbitrary completely posi-
tive and trace preserving map [KBDW83, Pau02, Sti55].

Theorem 2.1.1 (Stinespring). Let T be a quantum channel with input Hilbert space H1
and output Hilbert space H2. Then, there are a Hilbert space K called a dilation space for
T and an isometry V : H1→H2⊗K such that for all A ∈ B(H1) and all density operators
ρ on H1

T (A) =V ∗(A⊗1)V and T∗(ρ) = trK(V ρV ∗) .

In particular, this result implies that in order to study the possible dynamics on a
fixed quantum system H, we can restrict our attention to unitary operators if we in-
clude the environment into our description. The idea of such quantum channels and
motivates the following definition.
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2.2. Spectral theory of unitary operators

Definition 2.1.2 (discrete unitary evolution). Let H be a separable Hilbert space. We say
that a quantum system described by H undergoes a discrete unitary time evolution if the
dynamics is given by the subsequent application of a unitary operator U acting on H.
That is, given an initial stateφ0 ∈H, the state of the system after t ∈N time steps is given
byψt =U tφ0.

Let us briefly compare this setting to the usual evolution in continuous time. In
this case, the dynamics is given by the operator semigroup e it H generated by the self-
adjoined Hamiltonian H . If H is time independent or periodic, with periodicity T we
can turn this situation into a discrete-time one, by integrating e it H over one period
[0, T ]. In addition, this fixes the time scale of a single time step.

With this definition we have outlined the class of systems we are going to investigate.
In particular, quantum walks are defined as a class of unitary discrete time evolutions
on a lattice at least until we take into account (experimental) imperfections (see sec-
tion 2.4). For this reason, the next section deals with some aspects of the spectral theory
of unitary operators. We are in particular interested in the propagation properties of
such discrete-time unitary systems. That is, the Hilbert space carries a notion of posi-
tion and we want to make statements about the spreading behaviour of localized initial
states.

2.2. Spectral theory of unitary operators

In this section we provide some basic results on the spectral theory of unitary operators.
Again we omit the proofs in favour of a compact presentation and refer the reader to
the references [Lax02, RS80, DS58, Tes09].

Although many of the results carry over to unbounded operators, we restrict our at-
tention to bounded operators A on a separable Hilbert space H and we even assume
that T is normal so it commutes with its adjoint. As usual we define the resolvent set
ρ(A) of an operator A as

ρ(A) := {z ∈C; Gz (A) := (A− z1)−1 ∈ B(H)} ,

where Gz (A) is called the resolvent (operator) of A. As a mapping from C to B(H) the
function Gz (A) is analytic on the setρ(A). The spectrum of A, denoted byσ(A), is given
via the expression σ(A) = C \ρ(A), which is compact for A ∈ B(H). The operator A is
called self-adjoint if σ(A) ⊂R and A is called unitary if σ(A) ⊂ T, where T denotes the
unit circle. Decompositions of the spectrum into various subsets are discussed at the
end of this section.

Next we formulate the spectral theorem for bounded and in particular unitary oper-
ators. Since we are going to use the connection to complex Borel measures, we chose
an approach via projection valued measures.

Definition 2.2.1 (projection valued measure). Let H be a Hilbert space and (Ω,B) be a
measurable space with Borelσ-algebraB. A mapping E : B 7→ B(H) is called a projection
valued measure or resolution of the identity, if it satisfies the relations

(i) E (Ω) = 1 and E (;) = 0
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(ii) For all S ⊂B : E (S ) ∈ B(H) is an orthogonal projection

(iii) For all S1,S2 ∈B : E (S1)E (S2) = E (S2)E (S1) = E (S2 ∩S2)

(iv) If (Sn )n ⊂B, such that for m 6= n Sn ∩Sm = ;,
then E (

⋃
n Sn )φ =

∑
n E (Sn )φ for allφ ∈H, i.e. E is stronglyσ-additive.

If E only satisfies E (Ω) < 1, we call it a subresolution of the identity. For φ ∈ H is
the expression 〈φ , E (S )φ 〉 a linear functional on B. From properties (i ) to (i v ) we see
that 〈φ , E (S )φ 〉 constitutes a complex valued measure for S ∈ B [Con90]. Invoking
the Riesz-Markov representation theorem then tells us that 〈φ , E (S )φ 〉 gives rise to a
unique Borel measure onC, which we denote byµφ . The spectral theorem exactly tells
us, that every bounded operator can be uniquely represented by a spectral measure.
In particular, we can choose Ω equal toR for self-adjoint and equal to the unit circle T
for unitary operators [RS80, Tes09, Lax02]. A proof of the spectral theorem for normal
bounded operators can be found in [Rud06].

Theorem 2.2.2 (spectral theorem). Let T be a bounded, normal or self-adjoint or uni-
tary operator on a separable Hilbert space H. There exists a unique projection valued
measure E :Σ⊂B 7→ B(H)with Σ being a compact subset ofC, in the bounded,R in the
self-adjoint and T in the unitary case, such that for allφ ∈H

〈φ , Tφ 〉=
∫

Σ

λ 〈φ , E (dλ)φ 〉=:

∫

Σ

λ µφ(dλ) . (2.1)

Conversely, for every projection valued measure E there exists a unique bounded, normal
or self-adjoint or unitary operator T ∈ B(H) satisfying (2.1), depending on whether Σ is
a compact subset ofC,R or T.

In order to translate results known for ergodic self-adjoined operators to unitary op-
erators in section 2.5 we remark that for a unitary operator U there always exists a pro-
jection valued measure on the Borel sets ofR instead of T [Wei80].

Lemma 2.2.3. For every unitary operator U on a separable Hilbert space H there exists
a resolution of the identity EU on the Borelσ-algebra ofR such that for allφ,ψ ∈H

〈φ ,Uψ 〉=
∫

R

e it 〈φ , EU (dt )ψ 〉 .

In addition, EU satisfies EU (t ) = 0 for t < 0 and EU (t ) = 1 for t ≥ 2π.

Note that it suffices to define the spectral measures µφ , with respect to diagonal
scalar products 〈φ , ·φ 〉, because we can always compute expressions of the form µφψ
via the polarization identity

µψφ := 〈ψ , Tφ 〉= 1

4

�
µφ+ψ−µψ−φ + i (µφ+ψ−µφ−ψ)

�
. (2.2)

Given any spectral measure µφ , we can integrate any bounded Borel function f with
respect to it. Since the measure µφ corresponds uniquely to an operator T we might
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2.2. Spectral theory of unitary operators

hope that this procedure allows us to define the operator f (T ) . That this a well defined
definition is content of the functional calculus, which establishes a one to one corre-
spondence between bounded operators on H and the integration of bounded Borel
functions with respect to spectral measures [RS80, Tes09, Lax02, Rud06].

Theorem 2.2.4 (functional calculus). Let T be a bounded normal operator on a sepa-
rable Hilbert space H and denote by ET its corresponding spectral measure. For every
bounded Borel function f there is a unique operator, which we denote by f (T ), that sat-
isfies

〈φ , f (T )φ 〉=
∫

C

f (λ) 〈φ , ET (dλ)φ 〉 :=

∫

C

f (λ) µφ(dλ) .

We remark that a functional calculus can also be developed for unbounded self-
adjoint operators. In this case the support of its spectral measure is still a closed but
no longer compact subset of the real line.

The spectral theorem tells us that in order to analyze the properties of an operator T
we can also study the properties of its corresponding spectral measure. This raises the
question, how measure theory helps our understanding of a quantum system. First we
state a structural result about the decomposition of the Hilbert space of the system. In
the next section we study the relevance of this decomposition for dynamical questions.

Remember, that by the Lebesgue decomposition theorem we can divide any regular
Borel measure on R into three mutually singular components [Rud87, Tes09, RS80].
More precisely we find

µ=µp p +µa c +µs c .

Here, the pure point part µp p consists of a sum of Dirac measures,the absolutely con-
tinuous part µa c has a density with respect to the Lebesgue measure and the singular
continuous part is supported on a null set with respect to the Lebesgue measure, but
assigns zero weight to single points. Note that because of lemma 2.2.3 these consider-
ations also apply to unitary operators.

Since all three measures in the Lebesgue decomposition are mutually singular, they
are supported on disjoined sets Ωp p ,Ωs c ,Ωa c which we can choose in such a way that
Ωs c has Lebesgue measure zero. Property (i i i ) of definition 2.2.1 implies that integrat-
ing a projection valued measure E over each of the sets Ωx x , the three resulting pro-
jections E (Ωx x ) will be mutually orthogonal and each provides a subresolution of the
identity. Therefore, this measure theoretic decomposition of the spectrum induces a
decomposition of the Hilbert space H into three orthogonal components

H=Hp p ⊕Hs c ⊕Ha c ,

where the different summands are defined as

Hp p := {φ ∈H : µφ is pure point }
Hs c := {φ ∈H : µφ is absolutely continuous w.r.t. the Lebesgue measure }
Ha c := {φ ∈H : µφ is singular continuous w.r.t. the Lebesgue measure} .
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In turn, this result implies a corresponding decomposition of the operator T

T = (T Pp p )⊕ (T Ps c )⊕ (T Pa c ) ,

where Px x denotes the projection onto the corresponding subspace Hx x [Tes09]. We
call the three spectra corresponding to the three different components of T the pure
pointσp p (T ), the singular continuousσs c (T ) and the absolutely continuous spectrum

σa c (T ) of T . In generalσp p (T ) = {λ : λ is eigenvalue of T }, so it also contains the limit
points of the set of eigenvalues. With these definitions we obtain the decomposition

σ(T ) =σp p (T )∪σs c (T )∪σa c (T ) =σp p (T )∪σc (T ) =σs (T )∪σa c (T ) ,

where the singular spectrumσs (T ) and the continuous spectrumσc (T ) are defined in
the obvious way. As a remark we note that there is an additional useful decomposition
of the spectrum of an operator T , namely into the discrete spectrumσd i s c (T ) and the
essential spectrumσe s s (T ). In this case,σd i s c (T ) contains all isolated eigenvalues of
T of finite multiplicity andσe s s (T ) contains the continuous part of spectrum together
with all limit points of the set of eigenvalues of T and all eigenvalues of infinite multi-
plicity. This decomposition of the spectrum can also be characterized in terms of the
dimensionality of the projection valued measure ET of the normal operator T ∈ B(H)
[RS80].

Theorem 2.2.5. Let T be a unitary or bounded self-adjoined operator on a separable
Hilbert space H. A point λ ∈C lies in the essential spectrum of T if and only if the pro-
jector ET (λ−ε,λ+ε) is infinite dimensional for all ε > 0 and λ is an element ofσd i s c (T )
if and only if ET (λ− ε,λ+ ε) is finite dimensional for some ε > 0.

In the next section we discuss, whether the different spectral components have an
observable effect on the dynamics of a quantum system.

2.2.1. Dynamical significance of spectral components

In the last section we have described the spectral theorem for bounded self-adjoined
and unitary operators. As we have seen, it is possible to decompose an operator with
respect to the different measure theoretic components of its spectral measure. To begin
with, this is just a mathematical result that does not reveal any information about the
physics of the system under consideration. However, in this section we show that this
decomposition is connected to its dynamical properties.

The main result of this section is the so-called RAGE theorem named after Ruelle,
Amrein, Georgescu and Enss [Gol85, Rue69, AG73, Ens78]. It has been developed for
the continuous time case, where the dynamics is generated by a Hamiltonian. A very
good overview, also on additional results concerning upper and lower bounds on the
minimal spreading speed, can be found in the excellent paper by Last [Las95].

However, in the following we consider again systems evolving in discrete time steps.
Therefore, let us fix a separable Hilbert space H and some unitary operator U imple-
menting a single time step. One dynamical question we could investigate for such sys-
tems is the time dependence of the transition amplitudes between two statesφ,ψ ∈H

〈ψ ,U n φ 〉=
∫
Θn µφψ(dΘ) =

∫ π

−π
e ip tµφψ(dp ) .
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2.2. Spectral theory of unitary operators

The second formulation of this integral shows that we consider the Fourier transform
of the measureµφψ. Therefore, we know from the Riemann-Lebesgue theorem that the
expression tends to zero for n to infinity, ifµφ is absolutely continuous. This implies in
particular that if K is a compact operator,φ ∈H and Pa c the projection onto Ha c , then
the time evolution satisfies [Tes09]

lim
n→∞‖K U n Pa c φ‖ = 0 . (2.3)

We can also consider the Cesaro mean of the transition probability, that is

lim
n→∞

1

n +1

n∑
l=0

| 〈ψ ,U l φ 〉|2 .

A unitary version of Wiener’s theorem tells us that this expression tends to zero if the
measureµφψ has no pure point part (see theorem A.0.1). The dynamical interpretation
of these abstract results is that if the spectral measure µφψ is continuous the overlap
between the two fixed states will go to zero in the mean. The RAGE theorem strengthens
these results in the following way .

Theorem 2.2.6 (RAGE). Let U be a unitary operator on a separable Hilbert space H and
let (Gn )n be a sequence of compact operators converging strongly to the identity. The
subspaces Hc =Ha c ⊕Hs c and Hp p admit the following characterization in terms of the
dynamical behaviour of vectorsφ ∈H

Hc = {φ ∈H ; lim
n→∞ lim

T→∞
1

T +1

T∑
t=0

‖GnU tψ‖2 = 0}

Hp p = {φ ∈H ; lim
n→∞sup

t≥0
‖(1−Gn )U

tψ‖2 = 0} . (2.4)

If we choose as a sequence (Gn )projections onto increasing subspaces ofH the RAGE
theorem tells us that vectors corresponding to pure point spectral measures can be
found up to small corrections inside some finite dimensional subspace. Vectors cor-
responding to the continuous part of the spectral measure on the other hand, tend to
leave every finite subspace, at least in the Cesaro mean.

We can also turn this argument around and say that the RAGE theorem gives us a dy-
namical way to probe the nature of the spectral measure of an initial state. More pre-
cisely, this test distinguishes between the continuous and the pure point part of the
spectrum. In chapter 4 we develop, in the context of recurrence properties of discrete-
time systems, a criterion that provides the other distinction, that is between the singu-
lar and the absolutely continuous part of the spectrum.

As a final remark in this section let us note that the RAGE theorem gives a first hint
on how to characterize localization properties of an operator. According to (2.4) is a
state, that is initially only supported on a finite dimensional subspace basically con-
tained in a possible larger finite dimensional subspace for all times if the vector lies in
Hp p . If we could therefore show that an operator only possesses point spectrum one
could assume that any transport in the system should be suppressed. For obvious rea-
sons this weak form of localization is called spectral localization and we will discuss its
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properties in section 2.5. There we will also see that the mere existence of pure point
spectrum is too weak to guarantee the absence of transport in a physical or operational
sense.

2.3. Measures on the unit circle

We have seen in the last section that the spectral measure of an operator contains infor-
mation about the dynamical properties of the time evolution it induces. Since we want
to study unitary and discrete-time evolutions induced by some unitary operator U on a
Hilbert space H, the spectral measure we are going to encounter will be supported on
the unit circle. Measures on the unit circle however are a well-studied mathematical
topic in their own right.

Instead of giving a complete overview, we rather concentrate on the important re-
sults. The main idea we are going to exploit is that one can set up a one to one cor-
respondence between probability measures on the unit circle and different classes of
analytic functions on the open unit disc. The boundary behaviour of these functions
then indicates, where the absolutely and the singular part of the measure are sup-
ported. As references for this section we recommend the books and papers by Simon
[Sim05b, Sim05c, Sim05a, Sim10].

In the mathematical context the study of measures on the unit circle arises from
the study of orthogonal polynomials on the unit circle. Let us denote by L2(T,µ) the
space of square integrable functions onTwith respect to a probability measureµ. One
key question in this context is the following one: Given a probability measure µ on T,
perform a Gram-Schmidt-orthogonalization of the monomials {Θn}n∈N. The resulting
polynomials Φn then satisfy the relation

〈Φm ,Φn 〉=
∫
Φm (Θ)Φn (Θ) µ(dΘ) =δm ,n .

Let us denote withφn the polynomial resulting from normalizing Φn with respect to µ
in the L1 sense. Is it possible to infer directly from the measure µ, whether the set {φn}
is an orthonormal basis of L2(T,µ) ?

This question can be positively answered, but before formulating the precise result,
we have to introduce a bit of additional notation. In what follows let µ always be a
probability measure onT. We call a probability measureµ trivial, if it is only supported
on finitely many points or in other words µ is given by a finite convex combination of
point or Dirac measures. If the support is infinite we call µ non-trivial.

Definition 2.3.1. Let D= {z ∈C; : |z |< 1} be the open unit disc. An analytic function F
on D is a Carathéodory function if and only if; F (0) = 1 andℜF (z )> 0. A function f on
D is a Schur function, if and only if supz∈D | f (z )| ≤ 1. A Schur function f is called trivial
if there exists {zl ∈D} such that f can be decomposed into a finite Blaschke product

f (z ) = e iθ
m∏

l=1

z − zl

1− zl z
. (2.5)
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In addition to these definitions we need the notion of an inner function on the unit
disc, which is a bounded analytic function g on D such that |g (z )| = 1 for a.e. z ∈ T.
Rational inner functions are especially easy to represent [RR94].

Lemma 2.3.2. A bounded analytic function f onD is inner and rational if and only if it
can be decomposed into a finite Blaschke product.

In general, a Schur function can always be decomposed into a product of two inner
and a non-inner function as described in the following lemma, a proof of which can be
found in [Sim05b].

Lemma 2.3.3. Any inner Schur function f admits a decomposition into a possibly infi-
nite Blaschke product B and a singular inner function fS I , without zeroes on D

f (z ) = B (z ) fS I (z ) = e iθ
m∏

l=1

z − zl

1− zl z
fS I (z ) ,

with
∑∞

j=1(1− |z j |)<∞ and 1≤m ≤∞. If f (z ) is a Schur, but not an inner function, an
inner part fI can be separated and the remaining outer part fO has an integral represen-
tation with respect to g ∈L1

f (z ) = fI (z ) fO (z ) = fI (z )e
i

2π

∫
T g (u ) u+z

u−z du

This result implies that it is not sufficient to restrict to infinite Blaschke products in
order to exhaust the class of inner and particular of inner Schur functions. The next
lemma due to Frostman however shows how to transform any inner function into a
Blaschke product [Gar81].

Lemma 2.3.4. If f is a non-constant inner function on D, then, for almost all ξ ∈D the
function fξ defined as

fξ(z ) :=
ξ− f (z )

1−ξ f (z )
(2.6)

admits a representation as a Blaschke product.

Next we note that Carathéodory and Schur functions can actually be used inter-
changeably and identified with each other by a simple transformation. This change
of representation will be very useful in our analysis of the recurrence properties of
discrete-time unitary evolutions in chapter 4.

Lemma 2.3.5. There is a one-to-one correspondence between Schur and Carathéodory
functions. For every Carathéodory function F there exists a corresponding Schur func-
tion f and vice versa via the transformations

F (z ) =
1+ z f (z )
1− z f (z )

and f (z ) =
1

z

1− F (z )
1+ F (z )

.

If f is trivial, the corresponding F is a rational function with all its poles lying on T.
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We are now going to connect these functions to probability measures on the unit cir-
cle. The result presented here can be considered as a special formulation of Heroglotz’
representation theorem for Carathéodory functions [Sim05a, Sim05b]. Together with
the preceding lemma this result also implies a connection between Schur functions
and measures on the unit circle.

Lemma 2.3.6. For all Carathéodory functions F , there exists a unique probability mea-
sure µF on D such that F agrees with the Cauchy-Hilbert transform of µF

F (z ) =

∫
Θ+ z

Θ− z
µF (dΘ) . (2.7)

Conversely, there is a unique Carathéodory function Fµ for every probability measure µ
on T, such that (2.7) is satisfied.

Before we turn to the results characterizing the measure µ in terms of its Schur and
Carathéodory function we include a short remark on the connection of the former one
to the Fourier coefficients of the measureµ. Starting from (2.7) and using the definition
of the geometric series we find for z ∈D

F (z ) =

∫
2Θ

Θ− z
µ(dΘ)−1= 1+2

∞∑
n=1

�∫
Θn µ(dΘ)

�
z n . (2.8)

Let us denote byµn the moments of a probability measureµ and introduce its moment
generating function, which is also called the Stieltjes transform of the measure

bµ(z ) =
∫

1

1−Θz
µ(dΘ) =

∞∑
n=0

∫
(Θz )n µ(dΘ) =

∞∑
n=0

µn z n . (2.9)

In addition, we define for an analytic function f the function f (z ), which we construct
from f by conjugating its Taylor coefficients

f (z ) := f (z ) =
∞∑

n=0

a n z n if f (z ) =
∞∑

n=0

an z n .

This enables us to write the identity in (2.8) and the connection between the Schur
function of a measure and its Stieltjes transform in the following compact form.

F (z ) = 2bµ(z )−1 and f (z ) =
1

z

bµ(z )−1

bµ(z )
. (2.10)

We now turn to the connection between the boundary behaviour of these functions
and properties of the corresponding probability measure µ. We collect the results we
need for the characterization of the recurrence behaviour of discrete-time evolutions
in the following lemma [Sim05b].
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Lemma 2.3.7. Letµ be a probability measure on the unit circle and writeµ=µa c +µs =
ω(θ )dθ2π +µs for its decomposition into its absolutely continuous and singular part. Let
us denote by F , f and bµ(z ) its corresponding Carathéodory function, its Schur function
and its Stieltjes transform. Then,

(i) ℜF (r e iθ )dΘ2π converges weakly to µ(dθ )

(ii) limr→1− F (r e iθ ) exists for a.e. θ ∈ [0, 2π) andω(θ ) =ℜF (e iΘ)

(iii) µs has a pointmass at θ iff µ({θ }) = limr→1−
1−r

2 F (r e iθ ) 6= 0.

(iv) µa c is essentially supported on the set
�
θ : | f (e iθ )|< 1

	

We remark that if the Schur function f of µ is inner, i.e. | f (e iθ )| = 1 a.e. point (i v )
of lemma 2.3.7 implies that µ has no absolutely continuous part. This concludes our
overview on results of measures on the unit circle connected to the theory of orthogo-
nal polynomials on the unit circle. In the next section we describe one additional way
to characterize measures on the unit circle, the so-called Cauchy transform.

2.3.1. Cauchy transform

In the remainder of this section we introduce one additional theme in the characteriza-
tion program of measures on the unit circle. This so-called Cauchy transform is closely
related to the Stieltjes transform of a measure. The crucial result on the Cauchy trans-
form is theorem 2.3.9, which characterizes the singular part of the measure in terms of
the limiting behaviour of its Cauchy transform. For a reference providing a thorough
introduction as well as a good overview over the existing literature we refer the reader
to [CMR06].

Definition 2.3.8 (Cauchy transform). For a finite complex Borel measure µ on Twe de-
fine for z ∈C its Cauchy transform K µ as

(K µ)(z ) :=

∫
1

1−Θz
µ(dΘ) .

Since we can express K µ in terms of the moments µn of µ via

(K µ)(z ) =
∞∑

n=0

µ−n z n ,

we know that K µ is an analytic function on D. In the case of the Hilbert transform
of a positive Borel measure µ a refined variant of Boole’s theorem allows to certify the
absence of a singular part of the measure, if the distribution function grows too linearly.
For the Cauchy transform, Poltoratski proved that we can even recover the variation of
the singular part of the measure, when we consider the distribution function of K µ
[Pol96]. Let us denote by χA the characteristic function of a set A.
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Theorem 2.3.9 (Poltoratski). Letµbe a finite complex Borel measure onT,µs its singular
part, I⊂Tan open set and denote by |µ| the total variation ofµ. Then, all Borel functions
f satisfy

∫

I

f (Θ) |µs |(dΘ) = lim
κ→∞πκ

∫

I

f (Θ)χ{eΘ∈T : |(K µ)(eΘ)|>κ}(Θ) dΘ .

In addition, the Cauchy transform projects a function onto their positive Fourier se-
ries. To see this, consider f ∈ L2(T, m ), where m is the Lebesgue measure on T. The
product f m is then also a measure on the unit circle and we can define the Cauchy
transform of the function f as

(K f )(z ) := (K f m )(Θ) =

∫
m (dΘ)

f (Θ)

1−Θz
.

Expressing f in terms of its Fourier transform, we find that the Cauchy transform in-
deed projects a function to its positive Fourier coefficients [CMR06]

(K f )(z ) =
∞∑

n=−∞

∫
m (dΘ)

fn Θ
n

1−Θz
=

∞∑
n=−∞

∞∑
l=0

fn z l

�∫
m (dΘ)Θn−l

�

=
∞∑

n=0

fn z n =: f+(z ) .

This concludes our short overview on polynomials and measures on the unit circle
and the Cauchy transform. As a last remark note that since we are integrating over the
unit circle, we can rewrite the integrand of the Cauchy transform as Θ (Θ− z )−1. If the
measureµ corresponds to the spectral measure 〈φ , E (·)ψ 〉of some unitary operator U ,
then computing the Cauchy transform gives us exactly the matrix elements 〈U ∗φ , (U −
z )−1ψ 〉 of the resolvent of U . This relation is used in chapter 5 to relate the transition
probabilities of a disordered quantum walk to the distribution function of the Cauchy
transform of its spectral measure.

2.4. Quantum walks

In this section we review the basic theory of quantum walks. We begin with some gen-
eral remarks on the development and general framework, before we give more de-
tailed results in the translation-invariant as well as in the non-translation-invariant
case. Although we cite many of the results mentioned, we refer the reader to the follow-
ing general review papers both of which contain a more complete literature overview
[Kem03, VA12].

In essence, an ideal quantum walk describes a strictly local unitary discrete time evo-
lution of a single particle with some internal degree of freedom on a lattice. In this
context strict locality refers to the requirement that an initially localized particle stays
confined to a finite region after a single time step. We reserve the term quantum walk to
describe discrete dynamics. If we address quantum processes with a continuous time
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evolution with tunneling probabilities to different lattice sites we use the term contin-
uous time quantum walk.

The most prominent property of an ideal and translation-invariant quantum walk
dynamics, in particular in comparison with its classical counterpart, a random walk,
is certainly its ballistic spreading behaviour. Here ballistic spreading refers to the fact
that the width of the position distribution of the particle increases linearly in time (∼ t ),
whereas in the classical setting a diffusive spreading (∼pt ) is observed.

Originally, the concept of quantum walk like dynamics arose from the effort to quan-
tize classical random walks. A first operational proposal to realize such a quantum
random walk was given in 1993 by Aharonov, Davidovich and Zagury [ADZ93]. Their
scheme requires indeed a particle with internal degree of freedom, but instead of a co-
herent evolution they propose to measure and reprepare the particle in every time step.
However, already in this proposal a spreading behaviour deviating from the classical
one was observed.

Classical random walks have found countless applications in such diverse areas as
biology [BdLVC05, KS83], genetics [vdEST92, LS91] , neuroscience [GM64, TYZ+09], and
the analysis of social networks [SM11]. Therefore, the observed speedup sparked an
interest in the analyses of quantum walks. On the one hand, so-called coined quan-
tum walks on one-dimensional lattices were analyzed, where the dynamics is com-
posed of a transport step and a unitary transformation of the internal degree of freedom
[ABNW01]. On the other hand, also the problem of a concise definition of quantum
walks including the dynamics on more general graph structures has been investigated
[AAKV01, CHKS09, CKS10, AD10].

One key motivation was to compare the performance of classical and quantum walks
on such graphs. This led to the reformulation of performance measures known for
classical random walks like hitting times [KT03a, KB06, CG11, MNRS09, AR05], mixing
times [AAKV01, KT03a, MPAD08, MPA10] and standard deviation [MBSS02, LKBK10]
within the quantum mechanical context. In addition, the behaviour of quantum walks
in terms of absorbing lattice sites [ABNW01, BCG+04] and the dependence on the initial
state [TFMK03, dVRR10, YKI03] have been studied. Generically, a quadratic speed up
with respect to classical random walks on the same graph structure was observed.

In addition to the performance measures inspired by the connection with classical
random walks, the transport properties of quantum walks where also analyzed from a
more quantum mechanically viewpoint by considering the time evolved position oper-
ator [ABNW01, GJS04]. It was shown that in the translation-invariant case the random
variable Qn corresponding to a position measurement after n time steps converges
weakly in ballistic rather then diffusive scaling to some distribution, that is, Qn/n in-
stead of Qn/

p
n has a meaningful limit for large n [WKKK08, Kon05]. These results

where then refined to include higher moments [Kon02] and finally the full generat-
ing function of Qn [AVWW11]. The relevant mathematical techniques to show these
results include Fourier methods [ABNW01, GJS04, AVWW11], path counting combina-
torics [Kon05, Kon02, KNSS03], the theory of Jacobi polynomials [CIR03, CRT05] and
differential geometrically considerations [BGPP09, BBBP11]. From the physical point
of view it is interesting that in the translation-invariant case it is possible to define a
group velocity operator, which on the one hand contains the full information about the
asymptotic spreading behaviour of the walk and on the other hand can be computed
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from the dispersion relation, which is given by the momentum dependent eigenvalues
of the Fourier transformed walk operator, by derivation with respect to momentum
[AVWW11, Ahl13].

A second line of research evolved around algorithmic applications. It was noted early
on that there are instances of quantum walks where the spreading is faster then that of
a classical random walk on the same lattice structure [Kem05]. This fact led to the de-
velopment of search algorithms, which make use of quantum walks and which were
shown to provide a speed up compared to the most efficient known classical search
algorithms in one [SKW03, Amb07] and higher-dimensional arrays [Tul08, AKR05]. In
the context of search algorithms also the quantization of general Markov chains was
addressed [San08, MNRS11]. An overview about possible applications including ele-
ment distinctness, matrix product verification and group commutativity can be found
in [San08], see also [BŠ06, Amb07, MN07].

Parallel to the development of quantum algorithms for quantum walks, experimen-
tal proposals for actual implementations were put forward based on ions in ion-traps,
neutral atoms in optical traps and NMR systems, as well as photons passing through
several beam splitters [DRKB02, RLBL05]. In the meantime, quantum walks have been
realized experimentally in a variety of physical systems, e.g. neutral atoms in optical lat-
tices [KFC+09, GAS+13], trapped ions [ZKG+10, SMS+09], light pulses in optical fibres
[SCP+10, SGR+12] as well as wave guide arrays [PLM+10].

These experimental realizations together with the question how the aforementioned
search algorithms might perform under realistic conditions in turn raised the ques-
tion how experimental imperfections might influence the system [KT03a, AR05, AAA10,
CB13, EPS06, HS08]. In particular in the one-dimensional lattice case and for coined
quantum walks several different error models, like broken links and decoherence of
the internal state, have been investigated [KT02, LP11, RSA+05]. In conclusion, the
generic effect of noise that preserves translation invariance but fluctuates in time is
decoherence that causes a transition from a ballistic to a diffusive spreading behaviour
[MK10, KT03b, BCA03b]. This means that the position distribution of the decoherent
quantum walk agrees for small time scales with the ideal dynamics, but that the spread-
ing behaviour of the particle for larger timescales is proportional to

p
t . These results

have been extended to higher-dimensional quantum walks and correlated noise, where
the time evolution is driven by some additional classical Markov process [AVWW11,
BCA03a, Joy11a]. In the case of non-translation-invariant noise mostly the effect of
single defects on some specific lattice site and its impact on the spectrum of the walk
have been studied by the use of CMV-matrices [CGMV10, CGMV12, KS10] and Fourier
methods [AAM+12].

In the course of this more physical approach to quantum walks as a discrete unitary
time evolutions the above mentioned axiomatic definition as a space and discrete-time
local evolution of a single particle with an internal degree of freedom was put forward
[AVWW11, GNVW12]. Starting from such an axiomatic approach it would be interesting
to find simple building blocks that allow for the construction of quantum walks and
that exhaust this definition similar to the Stinespring dilation in the case of completely
positive maps. One possible candidate of such a set of operations are concatenations
of finite step size shift operations and local unitaries, however, as of today this result
has only been proven in the one-dimensional case [Vog09].
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A question related to this constructive approach is the following one. Assume we
relax our conditions and no longer require translation invariance. Can we learn some-
thing about the general structure of a discrete-time unitary operation if we determine
its local action? An affirmative answer was given in [GNVW12], where such a locally
computable invariant called the index of a quantum walk is defined. More precisely
only quantum walks of the same index, which in the coined quantum walk scenario in
one dimension means that they basically share the same shift operation, can be com-
bined into one quantum walk if one insists on unitarity and locality [Vog09, GNVW12].
In the translation-invariant case it is also possible to define an index in higher dimen-
sions that is vector valued and measures the shift imbalance with respect to the corre-
sponding lattice dimension [Vog09].

As mentioned in the beginning a quantum walk describes the dynamics of a sin-
gle particle. From an experimental point of view it is therefore very suggestive to see
what physical effects can be observed in the system. It turns out that they include such
diverse effects as Landau-Zener tunneling [RBH+11], the Klein-paradox [Kur08], topo-
logical phases [KRBD10, Kit12], Bloch oscillations [RBH+11] and the effects of electric
fields [CRW+13]. Also the correlation and entanglement properties of quantum walks
have been studied extensively [RFR12, ADF07, ASRD06, AGG12]. In addition, it was in-
vestigated how the addition of more particles changes the system. This has been done
in the two and few particle regime for non-interacting as well as interacting systems. In
the non-interacting case mostly the dependency on the symmetry and entanglement
of the initial state has been studied [EB05, VAB09]. In the interacting case, it has been
shown that the formation of bound states can be observed and that these molecules
themselves evolve according to an effective quantum walk [AAM+12]. There is one
other way to connect quantum walks to many particle systems related to reversible
quantum cellular automata [WS04]. Those are quantum systems with infinitely many
particles that evolve according to a discrete time evolution that is reversible and lo-
cal. The notion of locality is similar to the quantum walk case. Namely we demand
that local observables of the system are mapped into local observables on a larger re-
gion, which is called the neighbourhood of the automaton. It can be shown that for
any translation-invariant quantum walk there exists a reversible quantum cellular au-
tomaton such that the walk dynamics corresponds to its single particle sector [Vog09].
Note however, that this identification is not unique and one can find quantum cellular
automata either minimizing the local cell dimension or the size of the neighbourhood.

This finishes our overview over the literature and results on quantum walks. In the
next two subsection we give precise formulation of the results we build on later in this
thesis. The first section deals with the theory of translation-invariant walks and con-
tains a quick introduction to the Fourier method and the results on the asymptotic
position distribution. The second part gives some definition in the non-translation-
invariant case with a special emphases on the one-dimensional case which is the bases
for the definition of disordered quantum walks in chapter 5.

2.4.1. Translation invariant quantum walks

We already characterized quantum walks as the strictly local and discrete-time dynam-
ics of a single particle with an internal degree of freedom on a lattice. The Hilbert space
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of the system is therefore given by the tensor product of the Hilbert space `2(Zs ) of
square-summable sequences on Zs and some k dimensional Hilbert space K repre-
senting the internal state space. Sometimes it is also useful to identify `2(s )⊗K with
the Hilbert space `2(Zs ,K), the Hilbert space of K-valued functionsψ on Zs such that∑

x∈Zs ‖ψ(x )‖2
K ≤∞.

Under the additional assumption of translation invariance, a formal definition of a
general translation-invariant quantum walk on Zs of a particle with a k dimensional
internal degree of freedom in terms of quantum channels (see section 2.1) was given in
[AVWW11]. On `2(Zs ) we introduce the basis {δx ; x ∈ Zs } of sequences that are equal
to one at position x ∈ Zs and zero everywhere else. Let us define for any operator
A ∈ B(`2(Zs )⊗K) and any x , y ∈Zs the transition operators

Ax y := tr`2(Zs )
��|δx 〉〈δy | ⊗1

�
A
�
= 〈δy |A δx 〉 . (2.11)

Note that Ax y is an operator on K for all x , y ∈ Zs and any operator A ∈ B(`2(Zs )⊗K)
admits a decomposition in terms of |δx 〉〈δy |⊗Ax y . In order to define what we mean by
translation invariance let us introduce the lattice translation operationτx onB(`2(Zs )⊗
K) by its action on operators of the form |δx 〉〈δy | ⊗A with A ∈ B(K)

τz

�|δx 〉〈δy | ⊗A
�
= Γz

�|δx 〉〈δy | ⊗A
�
Γ ∗z = |δx+z 〉〈δy+z | ⊗A .

Here Γz denotes the unitary operator that implements the shift operation on `2(Zs ,Cd ),
e.g. (Γzφ)(x ) =φ(x − z ). This allows us to characterize translation invariance of an op-
erator by commutativity with arbitrary lattice translations. Note that we do not require
unitarity at this point, hence this definition also covers decoherent quantum walks.

Definition 2.4.1. A quantum channel W is called a translation-invariant quantum
walk if W commutes with τz for all z ∈ Zs and admits a finite neighbourhood scheme,
i.e. there exists a finite subset N ⊂Zs such that for all internal statesφ,ψ ∈K and a basis
{αi } of K

〈δq ⊗φ|W(|δx 〉〈δy | ⊗ |αi 〉〈α j |)δr ⊗ψ〉= 0 whenever q − x /∈N or y − r /∈N .

This definition can naturally be extended to more general graph structures. Note
that with this definition the concatenation of two quantum walks W1 and W2 is again
a quantum walk, because its neighbourhood scheme is contained in the set theoretic
sum of the two single neighbourhood schemes. We have discussed in section 2.1 that
every quantum channel admits a representation in terms of an isometry into some
higher-dimensional Hilbert space. An equivalent representation of a channel can be
given in terms of Kraus operators satisfying [KBDW83]

W(X ) =
∑

l

Kl X K ∗l with
∑

l

Kl K ∗l = 1 .

However, translation invariance of the quantum channel W itself does not imply that
all the Kraus operators Kl have to commute with translations. If this is not the case
the quantum walk is said to transfer momentum and examples of such walks can be
found in [AVWW11, Ahl13]. In the following we want to exclude this possibility and only
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study quantum walks where the Kraus operators themselves can be chosen translation-
invariant. Except for a short paragraph on the effect of decoherence, we even restrict
our attention to unitary quantum walks. In this case, there is only a single unitary and
translation-invariant Kraus operator W , which means that the action of W is given by

W(X ) =W ∗AW for all A ∈ B(`2(Z
s )⊗K) . (2.12)

For further results on the structure of general translation-invariant quantum walks and
their explicit Kraus decomposition we refer to [AVWW11, Ahl13].

Let us now turn to the discussion of unitary translation-invariant quantum walks.
Since we are dealing with a translation-invariant system it seems very suggestive to
consider the Fourier transform of the implementing unitary operator W from (2.12).
The dual group to Zs is isomorphic to the s dimensional torus Ts . Hence, the Fourier
transform F is a map from `2(Zs ,K) to the Hilbert space L2([0, 2π)s ,K) of square inte-
grable functions on the interval [0, 2π)2 with values in K [Dei05]. Explicitly, we define
the Fourier transform and its inverse of vectorsψ ∈ `2(Zs ,K) andφ ∈L2([0, 2φ)s ,K)

ψ(p )≡ (Fψ)(p ) :=
∑

x∈Zs

e ix ·pψ(x ) (2.13)

(F∗φ)(x ) :=
1

(2π)s

∫ 2π

0

e −ix ·pφ(p ) dp .

The action of an operator A ∈ B(L2([0, 2π)s ,K)) on a vectorψ is then given by

(Aψ)(p ) =

∫ 2π

0

A(p , p ′)ψ(p ′) dp ,

and we can think of A(p , p ′) as an integral kernel representing the operator A. If a
translation-invariant quantum walk W is assumed to be unitary and possesses no mo-
mentum transfer, also the implementing unitary operator W commute with transla-
tions. This implies that the transition operators Wx ,y from (2.11) satisfy for all x , y ∈Zs

,φ,ψ ∈K
〈ψ , Wx y φ 〉= 〈δy ⊗ψ , W Γx δ0⊗φ 〉= 〈δx−y ⊗ψ , W δ0⊗φ 〉= 〈ψ , Wx−y 0φ 〉 .

Therefore, the transition operators Wx y depend only on x − y and moreover, due to
the locality condition, Wx y vanishes whenever x − y /∈ N . Expanding W with respect
to the local transition operators from (2.11) we obtain for its Fourier transform

(FW F∗)(p , p ′) =
∑

x ,y ∈Z
e ip ·x e −ip

′y Wx−y 0 =
∑

x ,z∈Z
e i(p−p ′)·x e ip

′·z Wz 0

=δ(p −p ′)
∑
z∈N

e ip ·z Wz 0 ,

where we used in the last step that the transition operators Wz 0 vanish if z is not an el-
ement of the neighbourhood N . In other words, the Fourier transform of a translation-
invariant walk operator W takes the form of a p dependent unitary matrix W (p ) ∈ B(K)
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Table 2.1.: Building blocks of coined quantum walks. The set {αi } denotes a basis of
Ck , el the l th unit direction in Zs and V ∈ SU (k ) a k ×k unitary matrix with
determinant 1

Coin operator U U = 1⊗V =
⊕

x∈Zs V

Shift operator Sl Sl , j |x ,αi 〉=
¨
|x ,αi 〉 i 6= j

|x + el ,α j 〉 i = j

the entries of which are Fourier polynomials in the variable e ip of finite degree, i.e.

W (p ) := (FW F∗)(p ) =
∑
z∈N

e ip ·z Wz 0 and (Wψ)(p ) =W (p )ψ(p ) ∀ψ ∈L2([0, 2π)s ,K) .

(2.14)

The vectors z ∈ N correspond exactly to the allowed transitions in the position space
representation of the quantum walk.

As already mentioned in the introduction there is a simple construction scheme to
generate unitary quantum walks by concatenating a finite number of local unitary op-
erations acting exclusively on the internal degree of freedom and shift operations that
translate the particle depending on its initial state. To be more precise, set K=Ck and
let SU (k ) be the group of k × k dimensional unitary matrices with determinant one,
then a translation-invariant local unitary operation U is defined by

U := 1Zs ⊗V

for V ∈ SU (k ). To define the state dependent shift operations we introduce the one
step shift operators Sl , j , which move the particle to next lattice site in the l th lattice
direction, if its internal state is equal to some basis stateα j of an orthonormal basis {αi }
ofCk and acts as the identity otherwise. The action of the two operators is summarized
in table 2.1. Note that with this definition Sl , j as well as U are unitary operators on
`2(Zs )⊗Ck . Often, the local unitary operator is called coin operator in analogy to the
coin toss of a classical random walk that determines the change of the walker’s position.

The general idea is depicted in figure 2.2 in the one-dimensional situation. As noted
above in the one-dimensional case every unitary translation-invariant quantum walk
according to definition 2.4.1 can be constructed in such a way [Vog09]. With the nota-
tion from table 2.1 we can write down our definition of a coined quantum walk.

Definition 2.4.2 (coined quantum walks). A coined quantum walk W on `2(Zs )⊗Ck is
a unitary quantum walk according to definition 2.4.1 that admits a decomposition into
a finite product of shift and coin operations

W = Sln , jn
Un · · ·Sl1, j1

U1 .
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V

S

−2 −1 x = 0 1 2

Figure 2.2.: Schematics of a quantum walk on the line with shift and coin evolution.
Initially the particle is localized at the origin and the local coin operation
V is applied generating a superposition of the internal degrees of freedom
depending on which the shift S translates it.

Let us quickly compute the Fourier transform of a coined quantum walk. To this end
we analyze how each of the two building blocks transforms separately. Let us begin
with the action of the coin operation on an arbitraryφ ∈H
(FUφ)(p ) = (F ((1⊗V ))φ)(p ) =

∑
x∈Zs

e ip ·x ((1⊗V )φ)(x ) =
∑

x s∈Z
e ip ·x V φ(x ) =V φ(p ) .

Therefore, the Fourier representation of 1⊗V is given by the p independent operator
V ∈ SU (k ). In the same manner we compute the Fourier representation of the shift
operation Sl , j . Choosing againφ ∈H arbitrary, we obtain

(FSl , jφ)(p ) =
∑

x∈Zs

e ip ·x (Sl , jφ)(x )

=
∑

x∈Zs

e ip ·x
� 〈α j ,φ(x − el ) 〉|α j 〉+φ(x )− 〈α j ,φ(x ) 〉|α j 〉

�

=
∑

x∈Zs

e ip ·x e i·p ·el 〈α j ,φ(x ) 〉 |α j 〉+
∑

x∈Zs

e ip ·xφ(x )− 〈α j ,φ(x ) 〉|α j 〉

= e ip ·el |α j 〉〈α j |+ (1− |α j 〉〈α j |)ψ(p )
=
�
1+

�
e ip ·el −1

� |α j 〉〈α j |
�
ψ(p ) .

If we choose for {α j } the standard basis inCk , the shift operator Sl , j assumes the more
transparent form of a diagonal matrix with all entries except for the j th one are equal
to one

Sl , j =




1
... 0

e ip ·el

0
...

1




.

We summarize the preceding discussion in the following lemma.
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Lemma 2.4.3. Let W be a coined quantum walk given by a set of n shift operators Sli , ji

and coin operators Ui = 1⊗Vi . Its Fourier transform is given by a p dependent multipli-
cation operator of the form

W (p ) = Sln , jn
(p ) ·Vn . . .Sl1, j1

·V1 with Slr , jr
(p ) = 1+

�
e ip ·elr −1

� |α jr
〉〈α jr

| .

Naturally, a single coin operator as well as all shift operators Sl , j are quantum walks
themselves, but they comprise the rather boring examples of a particle that rests or
moves with a constant speed, respectively. The canonical example of a quantum walk
on a one-dimensional lattice, which has been investigated intensively [Kon02, GJS04,
NV00] draws on the connection to classical random walks.

In this class of examples one considers a single particle on the line with a two dimen-
sional internal state space, so its Hilbert space is given by `2(Z)⊗C2. The time evolution
alternates between the application of one fixed translation-invariant coin operation in-
duced by V ∈ SU (2) and two shift operations that shift one internal state to the left and
the other one to the right. Therefore the walk operator is given by

W = S−1,0 ·S1,1 · (1⊗V ) = S · (1⊗V ) with S |x ,±〉= |x ±1,±〉 , (2.15)

where |±〉 labels the two basis vectors of some chosen basis of C2. Employing the
Fourier description of the shift and coin parts as discussed in lemma 2.4.3 the p -de-
pendent multiplication operator W (p ) representing the quantum walk in momentum
space takes the form

W (p ) =

�
e −ip 0

0 e ip

�
·V ,

if we identify |+〉with

�
0
1

�
and |−〉with

�
1
0

�
. The scheme of unitary rotation of the inter-

nal space and then a shift operation depending on that internal state looks similar to a
classical random walk, where in every time step a coin toss decides whether the parti-
cle moves to the left or to the right. However, as already pointed out in the introduction
to this section the dynamical behaviour of this systems is remarkably different. A point
which we will analyze now.

Asymptotic position distribution for unitary quantum walks

In this section we exclusively consider unitary translation-invariant quantum walks
without momentum transfer. Therefore, the Fourier representation of the walk opera-
tor is given by a p dependent unitary matrix the entries of which are Fourier polyno-
mials (see (2.14)).

As described before the spreading behaviour of these walks is remarkable different
from the case of a classical random walk. In this regard the connection to random walks
is even misleading and one should as we emphasised in our definition of a quantum
walk, better think about the system as the discrete-time evolution of a single particle.

In order to analyze the dynamical properties of the system we have to specify the
questions we want to ask to the system. One interesting question is to study the or-
bits {W nφ0} for some given initial state under the time evolution as given by the walk
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Figure 2.3.: Position distribution after 200 time steps of Hadamard and classical ran-
dom walk of a particle starting at the origin and with internal state φ =
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operator W up to some finite time N . In the translation-invariant case we can answer
this question rather easily in the Fourier representation: We can diagonalize the matrix
W (p ) for every p , expand the initial state φ0 in the p -dependent eigenstates of W (p )
and take the eigenvalues e iωl (p ) to the right power.

Figure 2.3 shows the position distribution of an initial state φ0 localized at the ori-
gin after 200 time steps for the so-called Hadamard walk. This constitutes a coined
quantum walk according to (2.15) where the coin operator is chosen to be

V =
1p
2

�
1 1
−1 1

�
. (2.16)

To compare the results with the classical case figure 2.3 also contains the position dis-
tribution of a random walk, where a fair coin toss decides whether the particle is shifted
to the left or to the right. In the following we want to find a good figure of merit that
enables us to distinguish between these two kinds of dynamical behaviour.

As it turns out a good concept is given by the asymptotic position distribution of the
dynamics, which we briefly describe. For a more thorough introduction see [AVWW11,
Ahl13, ACM+12]. The position observableQ of a particle moving on a s dimensional lat-
tice constitutes a random variable with values in Zs . In order to define the asymptotic
position distribution of a particle we want to find the minimal exponent α ∈ R such
that the distribution of the scaled and time evolved random variable Q (t )

t α converges to
a limiting distribution on the interval [−1, 1].

There are several equivalent ways to uniquely characterize the distribution of a ran-
dom variable and the convergence of different distributions to each other. We could
for example look at the probability measure or the cumulative distribution function.
Another formulation which turns out to be the convenient choice in the case at hand is
to use the characteristic function C (λ), which is defined as an integral with respect to
the cumulative distribution function F of a random variable Q in the Riemann-Stieltjes
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sense [Chu01]

CQ (λ) :=E
�
e iλQ

�
=

∫
e iλQ dFQ (q ) .

Whenever the random variable Q has a probability density function fQ then the char-
acteristic function CQ (λ) is simply its Fourier transform. We note that a sequence of
random variables Qt converges weakly to a random variable Q if and only if the corre-
sponding sequence of characteristic functions converges pointwise.

Given the characteristic function of a random variable Q we can obtain the distribu-
tion of Q by an inverse Fourier transform. However, this is only strictly true if CQ (λ) is
an L1 function [Don69]. Otherwise, the inverse Fourier transform could be unbounded
and we could evaluate it only with respect to suitable test functions. Indeed as we
will see in a moment, this is what generically happens for unitary translation-invariant
quantum walks. However, there is a way to circumvent this problem, because CQ (λ)
itself is given as a Fourier transform [AVWW11, Ahl13].

Although we defined the asymptotic position distribution limt
Q (t )

t α for an arbitrary
α ∈R it turns out that the interesting distinction is between two cases. One is the case
α= 1

2 , which corresponds to a diffusive spreading of the particle’s position distribution,
which is the generic case for classical random walks. The other case, α = 1, is called
ballistic spreading, because the distribution scales linearly with time, which, as we will
see, is the generic behaviour of unitary translation-invariant quantum walks.

As described before, our goal is to determine the minimal exponent α such that the
characteristic function of the position measurement converges pointwise in λ

CQ ,α(λ) := lim
t→∞CQ (t )t −α (λ) = lim

t→∞ tr
�
ρ0e iλ

Q (t )
tα

�
(2.17)

= lim
t→∞ tr

�
ρ0W ∗t e iλ

Q
tα W t

�
= lim

t→∞ tr
�
ρ0W t

�
e iλ

Q
tα

��
.

This pointwise convergence then in turn implies weak convergence of the probability
measures corresponding to position measurements after a fixed number of time steps.

First note that in the last expression the operator e iλ
Q
tα converges to the identity so

the two unitary matrices would cancel. At the same time we conjugate this operator
close to the identity with a high power of the unitary matrix W . To analyse this limit
we consider a slightly different quantum channel

Wα(X ) :=W ∗X e −iλ
Q
tα W e iλ

Q
tα . (2.18)

Since two exponential factors cancel if we apply Wα repeatedly to an observable X we
get the following relation between W and Wα

W t
�

e iλ
Q
tα

�
=W t

α (1)e
iλ Q

tα

and we can drop the exponential factor on the right-hand side for localized initial states
ρ0 in the limit of large t if we insert this relation into (2.17). The important thing to no-
tice is that Wα still commutes with lattice translations, because the two phase factors
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contributed by the two exponential factors in (2.18) cancel each other. Therefore, Wα

just like W maps translation-invariant, that is p -dependent k ×k matrices in momen-
tum representation, to translation-invariant operators. Using the fact that conjugation
by the operator e iλQ implements a shift in the momentum variable we find according
to (2.18)

(Wα (A))(p ) =W ∗(p )A(p )
�

e −iλ
Q
tα W e iλ

Q
tα

�
(p ) =W ∗(p )A(p )W (p + λ

t α ) .

From the relation between W and Wα we know that we are interested in the image of
the identity operator. Note that in the limit, 1 is an eigenvector of the operator Wα

with corresponding eigenvalue 1. However, it is not the only eigenvector to this eigen-
value, because every operator that commutes with W (p ) also has this property. Since
this certainly holds for the eigenprojections, the eigenspace of the eigenvalue 1 is at
least k -dimensional. Note that the degeneracy might be even higher if W (p ) itself is
degenerate for some p . As a unitary operator onCk , the matrix W (p ) admits a spectral
decomposition

W (p ) =
∑

l

e iωl (p )Pl (p ) (2.19)

with the dispersion relations or quasi-energies ωl (p ) and the eigenprojections Pl (p ).
This decomposition is not unique if there are degeneracies. However, perturbation
theory assures that in some neighbourhood around ε = 0 the eigenprojections Pl (p )
can be chosen such that the functions Pl (p+ελ) as well asωl (p+ελ) are simultaneously
analytic with respect to ε. From now on we fix such a choice for (2.19).

The analyticity of W (p + ελ) carries over to Wα in the following way. First we de-
compose Wα with respect to an operator basis of B(Ck ) and the Hilbert-Schmidt scalar
product 〈X , Y 〉 = tr X ∗Y . Note that for any two families {P i

l }kl=1 of k orthogonal pro-
jections on Ck the operators Rk l (X ) := P 1

k X P 2
l on B(Ck ) are hermitian with respect to

the Hilbert-Schmidt scalar product and themselves a family of orthogonal projections.
Now choosing P 1

k = Pr (p ) and P 2
l = Pl (p ′)we can decompose Wα as

Wα =
∑
k ,l

e i(ωl (p+λt −α)−ωl (p ))Rk l ,

which comprises a spectral decomposition in terms of eigenvalues and eigenvectors,
which all depend analytically on t −α. Applying this operator t times to the identity we
find

W t
α (1) =

∑
k ,l

e it (ωl (p+λt −α)−ωl (p ))Pk (p )Pl (p + t −αλ) ,

which is correct up to all orders. For large times analyticity implies that Pl (p + t −αλ)→
Pl (p ) and since the Pl (p ) are orthogonal projections only the diagonal terms k = l re-
main. Furthermore, considering the limit in ballistic scaling, i.e. setting α = 1, we see
that the exponent in the prefactor converges to a derivative. So in total we find

lim
t→∞W t

1 (1) =
∑

l

exp

�
dωl (p + ελ)

dε

�����
ε=0

Pl (p ) ,
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Figure 2.4.: Left panel: dispersion relation and group velocity of the Hadamard walk.
Right panel: asymptotic position distribution of the Hadamard walk with
initial state (1,i)/

p
2

where we substituted ε for t −1 in the last expression. At momenta p , where the disper-
sion relation of W (p ) is degenerate there might be no analytic choice of the projections
Pl and eigenvaluesωl [AVWW11]. However, one can show that the set of these points
has Lebesgue measure zero [Ahl13]. We call points p regular if there exists an analytic
choice of projections and dispersion relations around p , which in particular include
the momenta where W (p ) is non-degenerate [AVWW11]. For the regular momenta we
can define the group velocity operator V as a vector operator with the components

Vk :=
∑

l

dωl (p )
dpk

Pl (p ) (2.20)

With this definition we can formulate the main technical result on unitary quantum
walks.

Theorem 2.4.4. Let W be a unitary translation-invariant quantum walk and assume
that W (p ) is regular for almost all p ∈ [0, 2π). The time evolved position operator Q (t ) =
W ∗t QW t satisfies for all bounded continuous function f :Rs →C

lim
t→∞ tr

�
ρ f (Q (t )t )

�
= tr

�
ρ f (V )

�
,

where V is the group velocity operator according to (2.20). Therefore, for any initial state
ρ with finite support, the distribution of Q (t )

t converges weakly to the distribution of V
with respect to ρ.

This result further strengthens our interpretation of a quantum walk as the discrete-
time evolution of a single particle. As in the time continuous case of a particle in a
periodic, that is translation-invariant, potential, the dispersion relation dictates the
asymptotic velocity of the particle.

As an example we present the dispersion relation and momentum dependent group
velocities of a one-dimensional coined quantum walk in figure 2.4. As one can see the
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asymptotic position distribution agrees with the allowed group velocities. The extremal
points of the group velocity with respect to p are responsible for the divergences in the
asymptotic position distribution. Such caustic effects also occur in higher-dimensional
quantum walks, see [AVWW11, Ahl13] for additional examples.

Of course, the results presented here rely heavily on the coherence of the whole pro-
cess. The question arises, how we can deal with experimental imperfections. In the
next section we give an overview on how to classify different regimes of noise and what
is known about their influence on the dynamics.

Decoherent quantum walks

In an actual experiment one has to deal with unavoidable imperfections of the setup.
In the case of quantum walks, fluctuations of the parameters of the system could for
example affect the assumptions of translation invariance and unitarity. In the following
we want to classify the fluctuations in the system with regard to two characteristics:
On what time scale do the fluctuations occur and do the fluctuations break translation
invariance?

Restricting our attention to these two possibilities leaves us with four different cases
of temporal and spatial fluctuations. One of them, where neither temporal nor spa-
tial fluctuations are present, corresponds to the ideal case. There could also be slow
fluctuations that leave the walk operator unchanged during a single experimental run,
but break translation invariance. This case will be analysed in chapters 5 and 6 of this
thesis.

Within this subsection we focus our attention mainly on the other extreme, where
translation invariance is preserved but the fluctuations change rapidly, such that the
walk operator varies from time step to time step. For this kind of fluctuations that re-
spects translation invariance usually the term decoherent or random time-dependent
quantum walk is used [AVWW11, Ahl13, Joy11a]

One specific model of this kind of decoherence is the following one. In each time step
one of a collection of L possible walk operators {Wl } could be chosen independently
with probabilities pl . This scenario corresponds to a quantum channel where the dif-
ferent Kraus operators are given by these walk operators weighted with the square root
of their occurrence probability. Hence, we obtain the following representation in the
Heisenberg picture according to (2.12)

W(X ) =
∑

l

pl W ∗
l X Wl .

More generally, instead of independent fluctuations we could have an additional classi-
cal Markov process choosing the walk operator applied in the next time step [AVWW11,
Ahl13, HJ12].

Since this change of parameters in time destroys the coherence of the evolution,
physical intuition lets us suspect that the quantum features should vanish over time. It
turns out that this intuition can be made precise using similar Fourier techniques as in
the unitary case. The idea is again to consider the perturbed operation Wα from (2.18).

After subtracting a possible deterministic drift with velocity v0 from the position dis-
tribution generically the right scaling is given by α = 1

2 . Then, the random variable
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Table 2.2.: Asymptotic behaviour of quantum walks under the influence of different
noise models. The purely position dependent case is treated in chapters 5
and 6.

position dependent fluctuations
No Yes

temporal fluctuations
No ∼ t ∼ 1
Yes ∼pt ∼pt

Q (t )/
p

t converges to a meaningful limit, which exactly agrees with the scaling of the
position distribution of a classical random walk. In this sense we can observe a quan-
tum to classical transition of the dynamics in the limit of large times. The transition
can for example be observed in the variance of the position distribution that changes
from a linear to a square root behaviour. For a precise statement of this result as well as
the proofs and additional examples we refer again to [AVWW11, Ahl13, HJ12, Joy11a].

Diffusive behaviour can also be observed in the case of fast fluctuations that change
the parameters locally and independently. More precisely, consider a situation, where
in every time step at every lattice side the local coin operation is chosen according
to some common probability distribution. Also in this case Fourier techniques can
be applied to show the suppression of any ballistic evolution and to compute the dif-
fusion constant. Again the basic technique involves an analysis of the perturbation
of the eigenvalue 1 of the corresponding operator Wα. For more details we refer to
[ACM+12, Ahl13]. Table 2.4.1 summarizes the spreading behaviour within the four dif-
ferent regimes of fluctuations. As one can see decoherence in the sense of temporal
fluctuations makes translation-invariant quantum walks slower and disordered quan-
tum walks, as defined in chapter 5, faster, but in both cases the spreading behaviour
of a classical random walk is obtained. In the next section we provide a condensed
overview over non-translation-invariant results.

2.4.2. Non translation invariant quantum walks

Beyond the translation-invariant regime there are only few results on the general prop-
agation behaviour of quantum walks apart from some numerical experiments [RSA+05,
WŁK+04]. The main problem that arises here, is the lack of Fourier techniques that as
discussed in the previous sections provide a powerful tool in the translation-invariant
case. The existing results however deal almost exclusively with the one-dimensional
case, which we briefly summarize here. In almost all cases the one-dimensional situ-
ation with the standard shift operation on a two level system from (2.15) is considered
and only the local coin operations are changed. Nevertheless, there is no technical dif-
ficulty in extending this definition to higher dimensions. However, we will restrict our
discussion here to non translation-invariant coined quantum walks. To this end we
just generalize our coin definition by allowing the local unitary operator to vary from
lattice site to lattice site.

44



2.4. Quantum walks

Definition 2.4.5 (non-translation-invariant coined quantum walk). A non-translation-
invariant coined quantum walk W on `2(Zs )⊗Ck is a unitary operator that admits a
decomposition into a finite product of the form

W = Sln , jn
Un · · ·Sl1, j1

U1 with Ui =
⊕
x∈Zs

Vi ,x

where the Sli , ji
are shift operations according to table 2.1 and Vi ,x ∈ U (Ck ) for all i and

all x ∈Zs .

As already mentioned, similar to the translation-invariant case mostly the restricted
class of the product of a single coin and a single shift operators is studied, i.e. the walk
operator W is given by

W = S ·
⊕
x∈Z

Vx with Vx ∈ SU (2) , (2.21)

where S is the standard state dependent shift from (2.15) and often a specific depen-
dence of Vx on x is assumed [LS09, SK10].

In contrast to such case studies, the theory of CMV matrices provides a general tool to
analyze quantum walks of the form (2.21) [CGMV10, CGMV12]. The framework of CMV
matrices developed by Cantero et al. introduces a normal form of unitary operators
acting on Hilbert spaces [CMV03]. By the spectral theorem every unitary operator can
be decomposed into a direct sum of multiplication operators Uµ each acting on L2(µ)
for some probability measure µ on T, i.e. the action of Uµ on f ∈ L2(µ) can we written
as f (z ) 7→ z f (z ).

In order to construct the CMV matrix representation of the multiplication operator
Uµ, we apply the Gram-Schmidt procedure to the Laurent polynomials {1, z , z−1, z 2, . . .}
with respect to the standard scalar product in L2(µ), which induces an orthonormal
basis {χk } with respect to µ. Setting ρk =

p
1− |αk |2, the matrix representation of Uµ

with respect to the basis {χk } is given by [CMV03]



α0 α1ρ0 ρ0ρ1 0 0 0 0 · · ·
ρ0 −α0α1 −α0ρ1 0 0 0 0
0 −ρ1α2 −α1α2 −α3ρ2 ρ2ρ3 0 0
0 −ρ1ρ2 −α1ρ2 −α2α3 −α2ρ3 0 0
0 0 0 α4ρ3 −α3α4 ρ4α5 ρ4ρ5
0 0 0 ρ3ρ4 −α3ρ4 −α4α5 −α4ρ5
...

...




,

where the sequence (αk ) satisfies |αk | < 1 and corresponds to the Verblunsky coeffi-
cients of the measure µ. Although developed for the half infinite case, this framework
has been adapted to the doubly infinite context of quantum walks and to accommo-
date the internal degree of freedom of the particle. This is basically done by choosing
a suitable order of the basis states {δx ⊗ eα; x ∈ Z, α ∈ {0, 1}} for the Gram-Schmidt
algorithm, namely {δ0 ⊗ e0, δ−1 ⊗ e1, δ−1 ⊗ e0, δ0 ⊗ e1,δ1 ⊗ e0, δ−2 ⊗ e1,δ1 ⊗ e1, . . .}. In
the corresponding basis the coined quantum walk U = S ·⊗x∈ZVx can be decomposed
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into a product ΛLΛ, where Λ is a diagonal matrix consisting basically of the phase fac-
tors of the diagonal coin entries and L is the following matrix valued CMV or CGMV
matrix [CGMV10]




α0 0 ρL
0

ρR
0 0 −α0 0

0 α∗2 0 0 ρL
2

ρR
2 0 0 −α2 0

0 α∗4 0 0 ρL
4

ρR
4 0 0 −α4 0

... ...




,

where the αk are given by 2×2 matrices, the entries of which are constructed from the
coin operations Uk , ρL

k = (12 − α∗kαk )1/2 and ρR
k = (12 − αkα

∗
k )

1/2. For additional de-
tails we refer to [CGMV10] and [CGMV12]. Since this approach allows to relate the evo-
lution of an initial state to its spectral measure, also non-translation-invariant cases
can be treated. For example, the asymptotic return probability for a localized initial
state is characterized in terms of the spectral decomposition of the spectral measure
[CGMV12]. In particular, it is shown that an absolutely continuous spectral measure
corresponds to a vanishing asymptotic return probability, whereas a mass or Dirac
point contained in the spectral measure implies a strictly positive asymptotic return
probability.

The CGMV method also allows to study quantum walks on the half line, whereas
higher-dimensional analogues are complicated due to the lack of a corresponding the-
ory of orthogonal polynomials on higher-dimensional tori. For a walk on the half line
these techniques were also used by Konno and Segawa to study the influence of differ-
ent boundary conditions [KS10].

Before finishing our discussion on position dependent quantum walks we shortly
mention one family of position dependent quantum walks studied by Shikano and Kat-
sura [SK10, SK11]. There the local coin operation Vx (α) is given by a real rotation matrix

Vx (α) =

�
cos(2παx ) −sin(2παx )
sin(2παx ) cos(2παx )

�
,

where α ∈ R parameterizes the family of walk operators Wα. Rationality of α ensures
that the coin operations Vx (α) are periodic with respect to the denominator ofα, which
in turn implies absolutely continuous spectrum and ballistic transport except for the
case of total reflecting coins, where Vx (α) becomes purely off-diagonal (see [LS09] and
section 5.3). In the irrational case Shikano and Katsura study the α-dependence of
σ(Wα)numerically [SK10, SK11]and find a behaviour similar to the Hofstadter butterfly,
which indicates self similarity [Hof76].

This concludes our overview over results in the non-translation-invariant case and
we continue with a short introduction into the theory of random operators and their
localization properties.

46



2.5. Random operators and localization

2.5. Random operators and localization

In this section we give an overview of localization results in disordered lattice systems in
the continuous time case and discuss its appropriate translations to the discrete uni-
tary case. Most of the results are borrowed from the excellent review articles [Kir08,
MS87] and the textbooks [CL90, PF92, CFS87] on the subject of random Schrödinger
operators.

One of the main questions in condensed matter physics, aside from the crystal struc-
ture of solids, is to explain the conductivity of different materials. If we neglect the
movement of the nuclei in the solid and make a one-particle approximation, which
means that we forget about any electron-electron interaction, the Hamiltonian of an
electron moving under the influence of the background potential generated by the
atoms is given by

H =H0+V =−ħh
2

2
∆+V .

Here∆ is the usual Laplace operator on L2(Rs ) and V is the potential generated by the
atoms forming the solid. If all atoms are identical and placed at the sites y of a perfect
regular lattice, for example Zs , the potential V takes the form

V (x ) =
∑

y ∈Zs

q f (x − y ) ,

where q is some coupling constant and the function f describes the single site or single
atom potential in the solid. It is easy to see that V (x ) is a periodic function with respect
to any y ∈ Zs and from the general theory of electrons in periodic lattices it is clear
that the operator H has only absolutely continuous spectrum, which according to the
RAGE theorem from section 2.2.1 indicates transport in the system.

However, in a real solid we will never find such a perfect crystal. In contrast, every
sample contains random impurities and displaced atoms. Such deviations alter the
potential that is experienced by the electrons. A random displacement can for example
be modeled by a sequence of random vectors d y (ω) that describe for every lattice site
y how the atom deviates from the ideal position

Vω(x ) =
∑

y ∈Zs

q f (x − y +d y (ω)) .

By increasing the magnitude of the d y (ω) we can go from a regime of small disorder
corresponding to a crystalline structure all the way to amorphic and glass-like mate-
rials, where the underlying lattice no longer dominates the distribution of the atoms.
The case of a random impurity on the other hand, where on atom is substituted by
the atom of another element, can be described by a random variation of the coupling
constants qy (ω) such that the random potential takes the form

Vω(x ) =
∑

y ∈Zs

ql (ω) f (x − i ) .
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How does this kind of disorder influence the conductivity of the resulting material?
Considering the classical Drude-theory that explains conductivity in terms of free path
length of the electrons, one would expect that the conductivity decreases because more
collisions take place. However, although such an increased number of collisions slows
down the particle this model would not completely prevent diffusive transport.

In 1958 however, Anderson introduced a simple model of such random impurities,
where a quantum mechanical treatment predicted a complete breakdown of the trans-
port in a certain energy region [And58]. This effect which is now called Anderson local-
ization has been extensively studied within the last five decades. Aside from numerical
studies of the time evolution also for interacting particles [SK79, SBZ91] a large com-
munity within mathematical physics formalized those ideas and proved the absence
of transport in various regimes [AM93, GK01, FFES85, FS83].

The most prominent example studied in this area is the so-called Anderson tight
binding model. In this scenario the electrons only move on a s -dimensional lattice and
it is assumed that the potential generated by a single atom affects the electron only at
the corresponding lattice side. In this case, the Hilbert space of the system is given by
the square summable sequences `2(Zd ) and H0 is the usual lattice Laplacian. The ac-
tion of the Hamiltonian Hω of the Anderson tight-binding model on some φ ∈ `2(Zs )
can then be written as

(Hωφ)(x ) = (H0φ)(x ) + (Vωφ)(x ) =−
∑

〈x ,y 〉
(φ(y )−φ(x )) +qx (ω)φ(x ) , (2.22)

where the sum is taken over the nearest neighbours y of x and the set {qx } is a col-
lection of independent and identically distributed random variables, each modelling
the random potential seen by the electron at lattice site x . Before we look at known re-
sults about the Anderson model we define a bit more formally what a general random
operator should be.

2.5.1. Random operators

Let us introduce the problem a bit more formally and since we are mainly concerned
with the connection to quantum walks, we restrict our attention to the lattice case.
However, before we can define random operators, first we have to recap some results
from probability and ergodic theory. We assume that the reader is familiar with basic
measure theory and refer to common textbooks in this area [Gra09, Kal10, Rud87]. Re-
member that a probability space X is a triple (Ω,A,µ). Its constituents are given by a
sample space Ω, which we assume to be a separable metric space, a σ-algebra A on Ω
and a probability measureµ onA. In turn, a random variable F , which we often denote
by Fω, is defined as a measurable function from a probability spaceX into a measurable
space (Y,B). As usual, a function F is measurable if its preimage satisfy F −1(A) ∈A for
all A ∈ B.

To turn a separable Hilbert space H into a measurable space we choose the Borel
σ-algebra BH generated by its norm topology. However, since we assume H to be sep-
arable, the identicalσ-algebra is generated by the weak topology as well as the weak-∗
topology [CL90]. In turn we can define the measurability of a random variable taking
values in the space of bounded linear operators of a Hilbert space H with respect to
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either of these generating sets. Note however that in the general case there is a differ-
ence between norm-measurable, weak-measurable and weak-∗-measurable operators
[AB07].

Definition 2.5.1. Let (Ω,A) be a measurable space and H be a separable Hilbert space.
A function T : Ω 7→ B(H) is measurable and denoted by Tω iff one of the following three
equivalent conditions is satisfied

(i) For allφ,ψ ∈H the mapping Ω ∋ω 7→ 〈ψ , Tωφ 〉 ∈C is measurable.

(ii) For allφ ∈H the mapping Ω ∋ω 7→ Tωφ ∈H is measurable.

(iii) Ω ∋ω 7→ Tω ∈ B(H) is measurable with respect to the Borel σ-algebra on B(H) gen-
erated by the operator norm.

A proof of these equivalences can be found in [CL90]. In the case of Schrödinger op-
erators it is of course not enough to consider bounded operators. The following result,
also borrowed from [CL90], provides a criterion to extend measurability to unbounded
self-adjoint operators. We omit the proof in favor of a compact presentation.

Proposition 2.5.2. Let (Ω,A) be a measurable space and H be a separable Hilbert space
such that for all ω ∈ Ω, the function Tω is a self-adjoint or a unitary operator on H.
Denote by Eω the projection valued measure corresponding to Tω. The function Tω is
measurable iff one of the following two equivalent conditions is satisfied

(i) Ω ∋ω 7→ Eω(A) ∈ B(H) is measurable for all

¨
A ∈ BR if Tω self-adjoined

A ∈ BT if Tω unitary
.

(ii) Ω ∋ω 7→ e it Tω ∈ B(H) is measurable for all t ∈R (for Tω self-adjoint)

We could define a random operator simply by requiring measurability according to
definition 2.5.1, however since we will exclusively deal with ergodic operators we in-
clude that requirement in our definition. Therefore we have to introduce one addi-
tional concept before we can define random operators. To make our life easier we re-
strict our attention from now on to the Hilbert spaces `2(Zd )⊗Ck , which we already
introduced in section 2.4.1 in the context of translation-invariant quantum walks.

Recall that a function τ mapping a probability space (Ω,A,µ) into itself is called a
measure preserving transformation iff µ(τ−1A) = µ(A) for all A ∈A. Note that we have
defined this notion on the preimage, because in general τ(A) /∈A. A set A ∈A is invari-
ant with respect to a family of measure preserving transformations (τα)α∈J ifτ−1

α (A) = A
for all α ∈ J , some index set. A family of measure preserving transformations (τα)α∈J is
called ergodic iff τ−1

α (A) = A implies µ(A) = 1 or µ(A) = 0. If furthermore (τα)α∈J forms a
semigroup, then the four tuple (Ω,B,µ, (τα)α∈J ) is called an ergodic random dynamical
system.The following result is the basis for the proof of the deterministic nature of the
spectrum of an ergodic operator [CFS87].

Theorem 2.5.3. Let (Ω,B,µ) be a probability space and (τα)α∈J an ergodic family of mea-
sure preserving transformations. A real random variable f :Ω 7→R that is invariant with
respect to this family, i.e. it satisfies f (ταω) = f (ω) for all α ∈ I , is constant µ almost ev-
erywhere.
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A family of random variables or stochastic process (Xα(ω))α∈J on an ergodic random
dynamical system, is called ergodic iff Xα(τβω) = Xα−β (ω) for all β ∈ J . This motivates
the following definition of a random (ergodic) operator [Kle08].

Definition 2.5.4 (random operator). Let (Ω,B,µ) be a probability space, (τα)α∈J a family
of ergodic measure preserving transformations and H a separable Hilbert space. A map-
ping Tω :Ω 7→ B(H) is called a random (ergodic) operator, iff Tω is measurable and there
exists a family of unitary operators (Vα)α∈J on H such that Tω satisfies for all α ∈ J the
covariance condition

Tταω =VαTωV ∗α . (2.23)

The important property of random ergodic operators is that their spectrum is deter-
ministic. In the following we sketch a proof of this result, before we provide an example.
We begin with a result on random projections [CFS87].

Lemma 2.5.5. Let Pω be a random projection valued operator on a separable Hilbert
space H, then the random variable dω = dim PωH is constant almost surely.

Proof. Since dω = tr Pω =
∑

l 〈el , Pω el 〉, the measurability of dω follows from the mea-
surability of Pω. Using ergodicity of Pω we find for all α ∈ J

dταω = tr Pταω = tr VαPωV ?
α = tr Pω = dω .

So dω is invariant with respect to the family of ergodic transformations and therefore
constant almost surely due to theorem 2.5.3.

This result suffices in order to show that the spectrum and even the spectral compo-
nents of a random operator are deterministic [MK82, CL90, PF92].

Theorem 2.5.6. Let Tω be a random unitary or random self-adjoined operator on a sep-
arable Hilbert space H. There exists a setΩ0 of full measure and a subsetΣ of the interval
[0, 2π) in the unitary, respectively of R in the self adjoined case such that σ(Tω) = Σ for
all ω ∈ Ω0. In addition, the same result holds separately for each spectral component:
Σx x =σx x (Tω) for x x ∈ {p p , s c , a c }.
Proof. Denote by Eω the projection valued measure corresponding to Tω. We know
that λ ∈σ(Tω) iff

gω(p , q ) := dim((Eω(q )−Eω(p ))H)> 0 for all p , q ∈Q with p <λ< q

Since Eω is measurable by assumption, all functions gω(p , q ) are measurable. From the
relation

f (U TωU ∗) =U f (Tω)U
∗

for any bounded Borel function f and unitary operator U it follows by setting f equal
to the characteristic functionχA that the projection valued measure Eω(A) also satisfies
Eτxω =VαEωV ∗α .
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This implies that for every pair (p , q ) of rational numbers Eω([p , q ]) is a random pro-
jection, so by lemma 2.5.5 there exists a set of full measure Ωp ,q such that fω(p , q ) is
equal to a constant fp ,q almost surely. Since the rational numbers are countable, the
intersection of all Ωp ,q with p < q still has full measure. So we can set

Σ= {λ ; fp ,q > 0 ,∀p , q ∈Q with p <λ< q } .

The non-randomness of the single spectral components can be shown in a similar way.
Note for example thatλ ∈σc (Tω)orλ ∈σa c (Tω) if the range of the projections EωP x x

ω is
nonzero, where P x x denotes the projection onto Hc , respectively Ha c . The only thing
that has to be checked beforehand is that EωP x x

ω or more precisely P x x
ω is measurable.

However, this follows directly from the measurability of the spectral measures µφ,ω =
〈φ , Eωφ 〉 and its Lebesgue decomposition [MK82, PF92].

Under the additional assumption that the orbits (Vαφ)α∈J of the family (Vα)α that
implements the ergodicity condition in a certain sense span the full Hilbert space, we
can also show the absence of discrete spectrum. To this end, we call a family of unitary
operators {Uα}α∈J total [MK82] if the set

A J = {φ ∈H ; 〈U ∗
αφ ,U ∗

βφ 〉= 0 for all α 6=β} (2.24)

is dense in H. If H is separable and A J is total then J has to be countable. Totality of
the unitary operators corresponding to an ergodic family of measure preserving trans-
formations implies the absence of discrete spectra [MK82, CFS87].

Lemma 2.5.7. Let H be a separable Hilbert space and Tω a unitary or self-adjoined ran-
dom operator with respect to an ergodic random dynamical system (Ω,B,µ, (τl )l ). If the
family of unitary operators Vl corresponding to τl is total, then σd i s c (Tω) = ; almost
surely.

Proof. Because the spectral projections satisfy the covariance condition (2.23) we know
from the proof of theorem 2.5.6 and by lemma 2.5.5 that for all q < p ∈Q the functions

gω(p , q ) = dim(Eω(q )−Eω(q ))H= tr Eω([p , q ])

are equal to a constant gp ,q on a set of full measure. By totality the sequences {Ulφ}
are orthogonal for everyφ ∈ A J . If we choose some normalizedφ ∈ A J as well as n ∈N
and use that gp ,q is constant almost surely, we find

tr Eω([p , q ]) =E
�
tr Eω([p , q ])

�≥
n∑

l=1

E
� 〈U ∗

l φ , Eω([p , q ])U ∗
l φ 〉

�

=
n∑

l=1

E
� 〈φ , Eτlω([p , q ])φ 〉�= n E

� 〈φ , Eωφ 〉
�

,

where we used that τl is measure preserving in the last step. Since we have chosen n
arbitrary tr Eω([p , q ]) is either zero or infinite for all p < q ∈Q depending on whether
E
� 〈φ , Eωφ 〉

�
is strictly positive. Therefore, with probability one there is no λ ∈ R re-

spectively λ ∈ [0, 2π) such that 0< dim Eω([p , q ])<∞ for all p <λ< q ∈Q, which rules
out discrete spectrum.
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In the remainder of this subsection we show that the Anderson Hamiltonian as in-
troduced in (2.22) is indeed a random operator. The system Hilbert space is given by
`2(Zd ) and the only random part of the Anderson Hamiltonian Hω is of course the po-
tential Vω. We assumed that Vω acts as a pointwise multiplication operator by a real
random variable (Vωφ)(x ) = Vω(x )φ(x ) and that the random variables Vω(x ) at each
lattice side x ∈Zd are drawn i.i.d according to some common probability measure µ0.
The probability space is then just given by the infinite product spaceΩ=RZ

d
equipped

with the generic infinite product measure that we denote byµ∞ andω ∈Ωhas the form
of a vector in Zd . It is easy to see that the shift operation (τxω)y =ωy−x is a measure
preserving transformation if one considers cylinder sets, which will be done in section
3.1 more explicitly. Ergodicity follows from the fact that the τx are even mixing, that is

lim
‖x‖→∞

µ(A ∩τ−x (B )) =µ(A)µ(B ) for all A, B ∈A .

Mixing implies ergodicity, because if we consider an invariant set A ∈A we find

µ(A) =µ(A ∩A) =µ(A ∩τ−x (A))→µ(A)2 ,

which exactly means that µ(A) has to be equal to zero or one [Kre85] (see also section
3.1). Now it is easy to see that the unitary operator Γx that implements lattice transla-
tion in the sense that (Γxφ)(y ) =φ(y − x ) satisfies the relation

Vτxω = Γx VωΓx ,

because by construction Vτxω(y ) =Vω(y − x ). Therefore Vω is indeed a random opera-
tor once measurability is verified, which under some regularity conditions of the single
site probability measure µ is for example done in [MK82, CFS87]. This in turn implies
that the Anderson Hamiltonian

Hω =H0+Vω (2.25)

is indeed an (ergodic) random operator. Therefore, by theorem 2.5.6 the spectrum
of Hω is deterministic and since the unitary operators Γx are obviously total Hω also
posses only essential spectrum.

Let us for the moment treat the random potential Vω as a perturbation of the lattice
Laplacian H0. How does the spectrum of H0 change due to this random potential? To
answer this question let us first determine the spectrum of H0.

To this end, we define the Fourier transform on this lattice system in the same man-
ner as for the quantum walk on Zd (see (2.13)). Since the lattice Laplacian H0 is a
translation-invariant operator we can use the Fourier transform to determine its spec-

52



2.5. Random operators and localization

trum. Computing F∗H0F and denoting by el the standard basis vectors ofRs we find

(FH0φ)(p ) =
∑

x∈Zs

e ip ·x (H0φ)(x ) =−
∑

x∈Zs

e ip ·x
∑

〈x ,y 〉
φ(y )−φ(x ) .

= 2s
∑

x∈Zs

e ip ·xφ(x )−
∑

x∈Zs

e ip ·x
s∑

l=1

φ(x + el ) +φ(x − el )

=
s∑

l=1

∑
x∈Zs

e ip ·x
�
(1− e ip ·el ) + (1− e −ip ·el )

�
φ(x )

= 2

 
s∑

l=1

(1− cos(pl ))

! ∑
x∈Zs

e ip ·xφ(x ) .

So we have shown that the lattice Laplacian H0 acts as a multiplication operator by
the function

∑
l (1− cos pl ) in the momentum representation. Therefore, its spectrum

σ(H0) is absolutely continuous and identical to [0, 4d ], the range of this function. The
continuous time version of the RAGE theorem (see 2.2.6) tells us that this implies trans-
port of the electron. We claimed at the beginning of this section that the Anderson
model exhibits localization effects due to the random impurities in the system. So at
the very least the absolutely continuous spectrum of H0 has to be suppressed by the
random potential Vω, but is this enough to exclude any transport in the system? This
leads us to the question, what the precise mathematical definition of Anderson local-
ization should be and which we discuss in the next subsection.

2.5.2. Anderson and dynamical localization

In the introduction to this section we claimed that transport breaks down if we consider
a disordered system. What should be the mathematical formalization of this concept?
There are at least two possible approaches to this problem, leading to two different def-
initions of localization. The first approach starts from the mathematical point of view,
or more precisely, from the RAGE theorem and defines an unitary or self-adjoined op-
erator to exhibit localization if its spectrum solely consists of point spectrum. In the
second approach a physical or dynamical point of view is taken and a system is consid-
ered to be localized if the time dependent transition probabilities between two lattice
sites are exponentially suppressed in their distance with time independent constants.
We continue our discussion with the first approach.

In section 2.2.1 we have seen that as long as there is some continuous part in the
spectrum unavoidably some transport of the particle takes place. This motivates the
following definition [Kle08].

Definition 2.5.8 (spectral localization). A random self-adjoined or unitary operator Tω
is said to exhibit spectral localization in I⊂R respectively I⊂T iff (σ(Tω)∩ I )⊂σp p (T)
almost surely. If furthermore, the eigenfunctions φω of Tω corresponding to the spectral
interval I decay exponentially µ almost surely, that is ‖χxφ‖ decays exponentially with
x , then Tω is said to exhibits exponential or strong spectral localization with respect to
I.
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To begin with this is just a mathematical definition for a notion of localization al-
though it is motivated by the RAGE theorem. In addition, Simon [Sim90] showed that
for a large class of random Schrödinger operators the absence of continuous spectrum
implies at least for compactly supported initial statesφ0

lim
t→∞

〈Q 2(t )〉
t 2 = lim

t→∞
‖Q e iH tφ0‖2

t 2 = 0 .

We recognize this expression from our discussion of the spreading behaviour of quan-
tum walks in section 2.4. It readily implies the absence of ballistic transport in the sys-
tem, since otherwise the expectation value of the position operator Q should grow lin-
early. On the other hand, we have seen that the absence of ballistic transport does not
exclude diffusive spreading behaviour of the particle. In the case of Schrödinger op-
erators the absence of continuous spectrum turns out to be even more inconclusive.
Indeed, in [dRJLS95] del Rio et al. constructed a deterministic and exponentially local-
ized Schrödinger operator, which nevertheless satisfies

lim
t→∞

〈Q 2(t )〉
t 2−δ =∞

for any δ > 0. Obviously this violates Anderson’s idea of localization as the absence of
transport. Therefore, a strengthened definition of localization has been introduced. In
order to avoid cumbersome case distinctions we define

T t :=

¨
T t if T is unitary

e iT if T is self-adjoined
.

Definition 2.5.9 (dynamical localization (weak form)). Let Tω be a random unitary or
self-adjoined operator on `2(Zd )⊗Ck and I an open subset of T, respectivelyR. We say
that Tω exhibits dynamical localization with respect to I if the time evolution generated
by Tω satisfies

E

�
sup

t
‖|Q |p T t

ωχ(I)φ0‖2

�
<∞

for all p > 0 and all compactly supportedφ0 ∈ `2(Zd )⊗Ck .

As announced in the introduction to this section, we know discuss a more opera-
tional definition of localization. In this regard localization should imply a decoupling of
the dynamics of far apart regions of the system similar to a zero velocity Lieb-Robinson
bound [LR72]. We demand that if we prepare a wave packet localized around some lat-
tice site x then a detector that we place at some distant lattice site y should never detect
the particle. This basic idea corresponds to the following formal definition.

Definition 2.5.10 (dynamical localization (strong form)). Let Tω be a random unitary
or self-adjoined operator on `2(Zd )⊗Ck and let I be an open subset of T or R. We say
that Tω exhibits dynamical localization (of the strong form) with respect to I if there are
positive constants C1 and C2 such that for all x , y ∈Zs ,φ,ψ ∈Ck and all 0<ζ< 1

E

�
sup

t
| 〈δy ⊗ψ ,χ(I)T t

ω δx ⊗φ 〉|
�
≤C1e −C2‖x−y ‖ζ (2.26)
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We remark that some authors refer to definition 2.5.9 as dynamical localization and
to definition 2.5.10 as strong dynamical localization. In the context of random unitary
models however it is common to use the term dynamical localizations for systems sat-
isfying definition 2.5.10. We will adopt this convention and say that systems, which
only satisfy definition 2.5.9 exhibit dynamical localization of the weak form.

Let us briefly show that dynamical localization implies dynamical localization of the
weak form. To this end, fix some p > 0 and some compactly supportedφ0 ∈ `2(Zs )⊗Ck

withφ(x ) = 0 for ‖x‖ >D . We obtain for the p th moment of the position operator

‖|Q |p T t
ωχ(I)φ0‖2 =

∑

x∈Zd

1≤i≤k

‖x‖2p
�� 〈δx ⊗ ei , T t

ωχ(I)φ0 〉
��2

=
∑

x

‖x‖2p

��������

∑

‖y ‖<D
1≤i , j≤k

〈δx ⊗ ei , T t
ωχ(I)δy ⊗ e j 〉 〈δy ⊗ e j ,φ0 〉

��������

2

≤
∑

x

‖x‖2p
∑

‖y ‖<D
1≤i , j≤k

�� 〈δx ⊗ ei , T t
ωχ(I)δy ⊗ e j 〉

��2 ‖φ0‖2 .

Taking the supremum with respect to t on both sides and then the expectation value
we find for a strongly dynamical localized system

E

�
sup

t
‖|Q |p T t

ωχ(I)φ0‖2

�
≤
∑

x

‖x‖2p
∑

‖y ‖<D
1≤i , j≤k

E

�
sup

t
| 〈δx ⊗ ei | , T t

ωχ(I)δy ⊗ e j 〉|2
�

≤
∑

x

‖x‖2p
∑

‖y ‖<D

C1k 2e −C2‖x−y ‖ζ ,

which is indeed finite for all 0<ζ< 1.

Lemma 2.5.11. Dynamical localization with respect to I ⊂ T implies spectral localiza-
tion with respect to the same interval I for a random unitary operator Wω.

Proof. We borrow an argument from [HJS09] for the unitary Anderson model. The idea
is to show that with probability one the projection onto the random subspace Hc cor-
responding to the continuous part of the spectrum, only contains the null vector. For
the definition of Hc we refer to section 2.2. Let us denote with Pc the projector onto Hc
and define the projectors Gn onto balls of radius n around the origin via

Gn =
∑

‖x‖<n

|δx 〉〈δx | ⊗1 .

Since the Wω is unitary it leaves the norm invariant and we obtain for all T , n ∈N and
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allψ ∈H

‖Pcψ‖2 =
1

1+T

T∑
t=0

�‖(1−Gn )W
t
ωPcψ‖2+ ‖Gn W t

ωPcψ‖2
�

=
1

1+T

T∑
t=0

�‖(1−Gn )W
t
ωψ‖2−‖(1−Gn )W

t
ωPp pψ‖2+ ‖Gn W t

ωPcψ‖2
�

,

where we used the decomposition H = Hc ⊕Hp p from section 2.2 in the second step.
By the RAGE theorem (2.2.6) the second and the third term in this expression tend to
zero if we take the limit first with respect to T and then with respect to n , because the
Gn constitute a sequence of operators with finite range that converges strongly to the
identity.

To deal with the remaining sum we now consider more specifically the subspace
χ(I)H, where χ(I) denotes the spectral projection onto the subspace corresponding to
the interval I. Let us pick the projection of some arbitrary basis state δx ⊗ ei onto this
subspace. Taking the expectation value and inserting the definition of Gn we obtain by
Fatou’s lemma and Fubini’s theorem

E
�‖Pcχ(I) (δx ⊗ ei )‖2

�≤ lim inf
n→∞ E

 
lim

T→∞
1

1+T

T∑
t=0

‖(1−Gn )W
t
ωχ(I) (δx ⊗ ei )‖2

!

≤ lim inf
n→∞

∑

j ,‖y ‖>n

E

�
sup
t≥0
| 〈δy ⊗ e j , W t

ωχ(I) (δx ⊗ ei ) 〉|2
�

≤ lim inf
n→∞

∑

j ,‖y ‖>n

C1e −C2‖x−y ‖ξ ,

where we used in the second to last step the dynamical localization of Wω with respect
to the interval I. Employing the inverse triangle inequality and making n larger than
‖x‖ such that we can forget about the absolute value in the difference of ‖x‖ and ‖y ‖
we find

E
�‖Pcχ(I)δx ⊗ ei ‖2

�≤ lim inf
n→∞

∑

j ,‖y ‖>n

C1e −C2|‖x‖−‖y ‖|ξ

≤C1e C2‖x‖ξ lim inf
n→∞

∑

j ,‖y ‖>n

e −C2‖y ‖ξ .

The last term converges exponentially fast to zero, so the projection onto Hc does in
the mean only contain the null vector. Positivity of the norm implies that this is true
on a x dependent set Ωx of measure one and since the basis {δx ⊗ ei } is countable the
intersection of all Ωx still has full measure, which completes this part of the argument.

2.5.3. Results on localization

We conclude this section with a short overview over the literature and the basic tech-
niques used to prove spectral and dynamical localization. We do not claim to exhaust

56



2.5. Random operators and localization

all relevant publications, but refer the reader again to one of the following review arti-
cles [Kir08, Kle08, Sto11] or textbooks [CL90, PF92, Sto01].

We already mentioned the seminal paper of Anderson in 1958 [And58], where he ar-
gued for the absence of transport in the presence of static disorder. From a physical
point of view, supplemented by physical arguments, the intuitive picture raises the fol-
lowing expected localization behaviour of disordered systems [Kir08, Sto11].

First of all, the localization properties depend crucially on the dimensionality of the
problem. In one-dimension it is expected that every disordered system exhibits at least
exponential spectral localization that is dense pure point spectrum and a complete set
of exponentially decaying eigenfunctions [Kir08]. So in the one-dimensional case any
kind of disorder should cause reduced transport or even localization of the particles.
The same behaviour is assumed to be true in two dimensions, however perturbations
such as external magnetic fields could break the localization [Kir08].

The behaviour in three and higher dimensions is expected to be more complicated.
The basic intuition is that the band structure corresponding to absolutely continuous
spectrum that is present in the translation-invariant case is more stable, because, in
a figure of speech, the particle has more space to manoeuver around the impurities.
If disorder is added to the system an effect called band edge localization is expected
to occur [Kir08]. This just means that point spectrum appears at the band edges of
the dispersion relation of the unperturbed system. If the strength of the disorder is
increased the localization regions should increase until at some point there is no abso-
lutely continuous spectrum left. This amounts to a predicted phase transition from an
conduction phase to an insulator phase, when the level of disorder is increased.

A first rigourous result on exclusive pure point spectrum of a continuous Schrödinger
operator was given in 1977 by Gol’dshtein, Molchanov and Pastur [GMP77]. A proof for
the original Anderson model was then obtained by Kunz and Souillard in 1980 [KS80].
Both papers treated exclusively the one-dimensional case.

In order to cope with higher-dimensional situations as well as to show dynamical
localization essentially two different proof techniques have been developed, one called
the multiscale analysis [FS83], the other one the fractional moment method [AM93].
The first of the afore mentioned techniques can also deal with singular distributions,
whereas the later, if applicable, provides stronger bounds.

The basic building block in the fractional moment method is to show that the expec-
tation value of fractional powers of the matrix elements of the resolvent decay expo-
nentially in the distance between different lattice sites x , y ∈ Zd . More precisely, one
has to find an 0< s < 1 such

E
�| 〈y , (Tω− z )−1 x 〉|s �≤C1e −C2‖x−y ‖

for some positive and finite constants Ci , which have to be uniform with respect to z
and x , y ∈Zs . Such bounds imply localization due to the following theorem, which we
state for the self-adjoined case [Gra94, Sto11].

Theorem 2.5.12. Let I⊂R be open and bounded and let Hω be the Anderson Hamilto-
nian from (2.25). If there exist constants 0 < s < 1 and 0 < C1, C2 <∞ such that for all
x , y ∈Zs

E
�| 〈y , (Hω−E + iε)−1 x 〉|s �≤C1e −C2‖x−y ‖
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uniformly with respect to E ∈ I and ε > 0, then Hω exhibits dynamical localization with
respect to the interval I.

To prove this theorem, the bound on the fractional moments is first translated into a
bound on the second moments of the Green’s function [Gra94], which in turn implies an
exponential bound on the total variation of the spectral measureµx ,y for any two lattice
sites x , y ∈ Zd . Since the total variation upper bounds the transition probabilities in
(2.26), dynamical localization follows [Gra94].

The second proof strategy called multiscale analysis can be considered as a proba-
bilistic generalization of the well known mathematical induction. One abstract formu-
lation of the concept is given in section 6.4 and its application to the proof of localiza-
tion for disordered quantum walks can be found in section 6.5.

The basic idea of the method is to perform a probabilistic iteration procedure, which
relies on two assumptions. One is an initial scale estimate that assures that at some
fixed length scale n0 the transition probability within an energy interval I is smaller
than one, so the particle is not transported with certainty. The second assumption is
a so-called Wegner estimate that provides an upper bound on the probability that two
independent disordered regions are conductive for the same energy. In the iteration
step the distance between two lattice sites x and y is now divided into regions of size
n0. For each individual patch the probability to be transported is less than one, so intu-
itively one could expect exponential decay to traverse all of these patches. At the same
time the probability of resonant transport for one fixed energy through several of these
patches is controlled by the afore mentioned Wegner estimate. Iterating this proce-
dure to larger and larger length scales then yields the desired exponential decay of the
transition probabilities.

One advantage of the multiscale analysis is that it provides the means to deal with
singular measures, which is not possible with fractional moments estimates. It was de-
veloped by Fröhlich and Spencer and coworkers to prove spectral localization for ran-
dom Schrödinger operators [FS83, FFES85]. Damanik and coworkers showed that in
this setting the applicability of the multiscale analysis is sufficient to obtain dynamical
localization [DS01]. The method was subsequently generalized in terms of assump-
tions and applicable models [vDK89, GK01, DSS02].
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In this chapter we provide some results on the asymptotic properties of products of
random matrices. Although there exist good reviews on this topic [BL85, CL90, GR86,
Gui08] their presentation is mostly centered around the case of matrices in GL(R, d ).
However, in chapter 5 we need to consider complex transfer matrices in order to prove
dynamical localization for disordered quantum walks.

The most influential papers in this area are the results by Fürstenberg, Fürstenberg
and Kesten on the existence and positivity of the Lyapunov exponent, e.g.the asymp-
totic growth rate, of products of random matrices [Für63, FK60]. These results have
been successively refined, which led to limit theorems and large deviation estimates
for the Lyapunov exponent [GR86, Rue79, LP82].

However, since we have to deal with matrices in GL(C, d ) we include the results for
reference, while some of the more lengthy arguments will be shifted to the appendix.
The results on measure, probability and ergodic theory used can be found in one of the
excellent textbooks [Gra09, Kal10, Kre85].

3.1. The upper Lyapunov exponent

The basic situation we are interested in is the following one. Assume we draw a se-
quence of independent and identically distributed (i.i.d) random matrices (gωi

)i∈N,
gωi
∈ GL(C, d ) according to some common probability measure µ on GL(C, d ). We

are interested in products

Sn (ω)= gωn
· gωn−1

· · ·gω1
(3.1)

and want study their asymptotic properties as n tends to infinity. In particular, we are
interested in the asymptotic behaviour of the norm of such products of random matri-
ces.

Let us now model this situation a bit more formally and in order to keep this chapter
as self-contained as possible, we repeat some results on random dynamical systems
that were also introduced in section 2.5. Consider a separable probability space X =
(X ,A,µ) consisting of a sample space X that is a separable metric space, a σ-algebra
A and a probability measure µ. We can construct the product measure space given by
the cartesian product Ω=×i∈NX〉, the productσ-algebra

⊗
i∈NA〉, which is generated

by the cylinder sets, and the corresponding unique infinite product measure which
we denote by µ∞ [Kal10]. An element ω ∈ Ω can then be regarded as a sequence of
elements of X , e.g.ω = (ωi )i∈N, ωi ∈ Xi . On Ω we define the shift τ in the natural way
by its action on someω ∈Ω

τ(ω1,ω2,ω3, . . . ) = (ω2,ω3, . . . ) .
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The preimage of an arbitrary cylinder set

A = {ω ∈Ω : ωi ∈ Ai , Ai ∈ Bi , i ∈ L ⊂N, |L |<∞}
under the shift τ is given by

τ−1A = {ω ∈Ω : ωi+1 ∈ Ai , Ai ∈ Bi , i ∈ L ⊂N, |L |<∞} .

Hence, µ∞(A) = µ∞(τ−1A) holds, so τ leaves µ∞ invariant. In general we call a map
τ from Ω to itself a µ preserving transformation if it satisfies µ∞(A) = µ∞(τ−1A) for all
A ∈ σ [Arn10]. We recover the situation of a sequence of i.i.d random matrices if we
pick a measurable map f : X →GL(C, d ) and define

gωn
:= f ((τnω)1) .

These considerations imply that sequences of i.i.d random matrices are an instance
of the more general concept of a random dynamical systems [Arn10]. Abstractly, a
random dynamical system is a four tuple (Ω,A,τn ,µ) consisting of a probability space
(Ω,A,µ) and a semigroup {τn ; n ∈N} of µ preserving transformations.

Definition 3.1.1 (ergodic random dynamical system). A random variable f defined on a
random dynamical system (Ω,A,τn ,µ) is called invariant iff f (ω) = f (τnω) for all n ∈N
andω ∈Ω. If in addition, the only random variables that are invariant with respect to a
random dynamical system are constantµ-a.e. we say that the random dynamical system
is ergodic.

Ergodicity is a very strong property since it allows in a sense to compute expectation
values with respect to the semigroup τn by looking at long sample sequences. The
example of the product measure spaceΩ of i.i.d sequences with the right shift is indeed
ergodic. This follows from the fact that the corresponding random dynamical system
is strong mixing, i.e.

lim
n→∞µ∞(B ∩τ

−n A) =µ∞(B )µ∞(A)

holds for all measurable sets A, B , which implies ergodicity [Kre85]. Let us for any real
valued function f define

f +(a ) := sup( f (a ), 0)

We summarize this discussion in the following definition.

Definition 3.1.2 ((regular) multiplicative process). Let (Ω,A,τn ,µ) be an ergodic ran-
dom dynamical system and f a random variable that maps Ω into GL(C, d ). The ran-
dom process {Sn , n ∈N} defined via

(i) S0(ω)= 1

(ii) Sn (ω)= f (τnω) · f (τn−1ω) · · · f (ω)
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3.1. The upper Lyapunov exponent

is called a multiplicative process. the process is regular if
∫
(log+(‖S1(ω)‖) + log+(‖S−1

1 (ω)‖)µ(dω)<∞ . (3.2)

In particular, the sequence of products of i.i.d random matrices of length n from (3.1)
is a regular multiplicative process if we set gωn

:= (τnω), which implies

Sn (ω)= gωn
· · ·gω1

.

It is a regular multiplicative process if the logarithm of the matrix norm is integrable
with respect to the probability measure µ. Before we continue, let us shortly comment
on the different notions of convergence that exist for random variables [Kal10].

Definition 3.1.3 (convergence of random variables). For a probability space (Ω,A,µ}
let ( fn )n be a sequence of random variables. Taking expectations and probability with
respect to µ, we say that the sequence converges to a random variable f

(i) µ almost surely iff P
�{ω ∈Ω ; limn→∞ fn (ω) = f (ω)}�= 1.

(ii) in probability iff for all ε > 0, limn→∞P
�| fn − f |> ε�= 0.

(iii) weakly iff for all continuous bounded functions X : E
�
X ( fn )

�→E �X ( f )�.
(iv) in the Lp (µ)-sense for p > 0 iff limn→∞E

�| fn − f |�= 0.

We are interested in the asymptotic growth behaviour of such regular multiplicative
processes. One way to study this behaviour is to consider exponential growth rates, i.e.
the random sequences 1

n log‖Sn (ω)‖. From sub-multiplicativity of the operator norm it
follows that

log‖Sn+m (ω)‖ ≤ log‖Sn (τmω)‖+ log‖Sm (ω)‖ (3.3)

and together with the regularity condition (3.2) this implies that log‖Sn (ω)‖ is inte-
grable. In addition we see from (3.3) that

E
�
log‖Sn (ω)‖

�
=

∫
log‖Sn (ω)‖µ(dω)

is a subadditive sequence and it follows from Fekete’s lemma that the limit

γ= lim
n→∞

1

n
E
�
log‖Sn (ω)‖

�
= inf

n

1

n
E
�
log‖Sn (ω)‖

�
(3.4)

exists inR∪{−∞}. We collect this in the following definition.

Definition 3.1.4 (upper Lyapunov exponent). Let {Sn , n ∈N} be a regular multiplica-
tive process, then it’s upper Lyapunov exponent γ defined via

γ := lim
n→∞

1

n
E
�
log‖Sn (ω)‖

�
= inf

n∈N
1

n
E
�
log‖Sn (ω)‖

�
(3.5)

exists and γ ∈R∪{−∞}.
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3. Products of random matrices

It is clear that the limit on the right-hand side of (3.5) is hard to calculate explicitly.
However, in many applications it is already enough to conclude positivity, which im-
plies exponential growth of the operator norm of the matrix product. Fürstenberg’s
theorem gives sufficient conditions for the positivity of γ in the i.i.d case. A first step
in this direction is the following theorem by Fürstenberg and Kesten that shows that
almost all realizations of a product of random matrices realize the upper Lyapunov ex-
ponent [FK60].

Theorem 3.1.5 (Fürstenberg & Kesten). Let {Sn , n ∈N} be a regular multiplicative pro-
cess on an ergodic random dynamical system (Ω,A,τn ,µ), then µ-a.e. every product of
matrices converges to the upper Lyapunov exponent, i.e.

γ= lim
n→∞

1

n
log‖Sn (ω)‖ , (3.6)

with probability one. If in addition γ is lower bounded the convergence in (3.6) holds in
the L1(µ) sense.

Proof. From equation (3.3) it follows that the sequence (log‖Sn (ω)‖)n forms a subad-
ditive stochastic process and together with the regularity condition (3.2) and the fact
that τn preserves µ this implies that log‖Sn (ω)‖ is an L1(µ) function. Thus are all re-
quirements of Kingman’s subadditive ergodic theorem met, from which together with
the ergodicity of the process all statements follow directly. For a variety of statements
and proofs of the subadditive ergodic theorem see [Arn10, Kre85, Ste89].

As a side remark we note that the original proof by Fürstenberg and Kesten was given
before Kingman’s results and demanded considerable more effort to allow for the ap-
plication of Birkhoff’s theorem, see for example [FK60, Kin68, BL85].

Via the exterior algebra of Cd it is possible to define a full spectrum of Lyapunov
exponents for a product of random matrices in GL(C, d ). This allows for a description
of the different possible growth rates of ‖Sn (ω)v ‖ for different v ∈Cd . First we built up
some notation for the exterior algebra of a vector space but we refer to the literature for
more extensive reviews [Bha97, SR13].

To reduce notation set V :=Cd . For two vectors x , y ∈ V we introduce their wedge
product x ∧y which is multilinear and antisymmetric, e.g. x ∧y =−y ∧x , and therefore
x∧x = 0. We denote by∧p V the vector space generated by the decomposable p -vectors
that is vectors of the form x1∧ · · ·∧ xp . If {ei } is a orthonormal basis ofCd then the set

{ei1
∧ · · · ∧ eip

; 1≤ i1 < i2 · · ·< ip ≤ d }
is an orthonormal bases of ∧p V with respect to the scalar product

〈x1 ∧ · · · ∧ xp , y1 ∧ · · · ∧ yp 〉 := det( 〈xi , yj 〉) ,

where ( 〈xi , yj 〉)denotes the matrix of all possible scalar products between the p -tuples
(x1, . . . , xp ) and (y1, . . . , yp ). In addition we define for M ∈ GL(C, d ) the action of ∧p M
on ∧p V via

∧p M x1 ∧ · · · ∧ xp =M x1 ∧ · · · ∧M xp .
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3.2. Positivity of the upper Lyapunov exponent

Note, that this definition is compatible with matrix products, e.g. ∧p AB = (∧p A)(∧p B ).
As a consequence if {mi } denotes the set of singular values of M ∈GL(C, d ) in decreas-
ing order, the operator norm of∧p M is given by the product of the first p singular values
[Bha97]

‖∧p M ‖ := sup
‖x‖=1

‖∧p M x‖ =m1 · · ·mp , (3.7)

which implies ‖∧p A‖ ≤ ‖A‖p and as one might expect of the operator norm it satisfies
‖∧p AB‖ ≤ ‖∧p A‖‖∧p B‖. These prerequisites allow for the definition of the Lyapunov
spectrum of a product of random matrices.

Lemma 3.1.6 (Lyapunov spectrum). Let {Sn , n ∈N} be a regular multiplicative process
on the ergodic random dynamical system (Ω,A,τn ,µ) and define the sequence of Lya-
punov exponents γl for l ∈ {1, . . . , p} recursively via

γl (ω) = lim
n→∞

1

n
log‖∧l Sn (ω)‖ −

l−1∑
k=1

γk (ω) . (3.8)

Then, for µ-a.e. sequence of random products Sn (ω) the Lyapunov spectrum {γl } is con-
stant. If in additionγl is lower bounded, the convergence in (3.8) holds in theL1(µ) sense.

Proof. We note that for l = 1 the result is just given by the Fürstenberg and Kesten
Lemma. Submultiplicativity of the operator norm together with the upper bound ‖∧i

M ‖ ≤ ‖M ‖i for M ∈ GL(C, d ) and the regularity condition on multiplicative processes
((3.2)) results in subadditivity as well as integrability of the sequence (log‖ ∧i Sn (ω)‖)n
and this in turn implies as in the case of the upper Lyapunov exponent that

E
�
log‖∧p Sn (ω)‖

�
=

∫
log‖∧p Sn (ω)‖ µdω .

Therefore the limit of 1
n log‖ ∧i Sn (ω)‖ exists again by Fekete’s lemma. Now the result

follows as in the case of Fürstenberg and Kesten directly from Kingman’s subadditive
ergodic theorem.

3.2. Positivity of the upper Lyapunov exponent

From now on we turn to the i.i.d case, that is we fix a probability measureµ on GL(C, d )
and consider the infinite product measure space. As discussed in the previous section
this corresponds to an ergodic random dynamical system for which the upper Lya-
punov γ exponent is well defined and constant almost surely with respect to the in-
finite product measure µ∞. The arguments used in this section follow along the lines
of [Gui06, CL90, BL85, GR86]. The necessary conditions on the probability measure
µ under which we prove positivity of γ are given in terms of the smallest group that
contains the support of µ.
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3. Products of random matrices

Definition 3.2.1. Letµ be a probability measure on GL(C, d ). We denote by (µ) the semi-
group and by 〈µ〉 the group generated by supp(µ) ⊂GL(C, d ). In addition, we denote by
S LT(d ) the subgroup of matrices in GL(C, d )with determinant of modulus one

S LT(d ) := {M ∈GL(C, d ) ; |det(M )|= 1}
GL(C, d ) acts naturally on Cd via matrix multiplication. The key assumption that

guarantees a positive Lyapunov exponent is a strengthened version of irreducibility.

Definition 3.2.2 (strong irreducibility). A subset Γ ⊂ GL(C, d ) is strongly irreducible iff
there is no nontrivial union of proper subspaces Ci ( Cd of Cd that is Γ invariant, i.e.
satisfies

g · (∪i Ci ) =∪i Ci ∀g ∈ Γ .

A measureµ is called strongly irreducible if its generated subgroup 〈µ〉 or equivalently its
generated semigroup (µ) are strongly irreducible.

We have now all definitions at hand to state Fürstenberg’s theorem on the positivity
of γ.

Theorem 3.2.3 (Fürstenberg). Letµ be a probability measure on S LT(d ) such that 〈µ〉 is
strongly irreducible and non-compact and log‖gω‖ isµ-integrable. Then the upper Lya-
punov exponent γ of the corresponding i.i.d product of random matrices Sn (ω) is strictly
positive, constant with probability one and given by

γ= lim
n→∞

1

n
log‖Sn (ω)‖ = lim

n→∞
1

n
log‖

n∏
l=1

gωl
‖ ,

almost surely, where the convergence is in the L1 sense.

Note that g ∈ S LT(d )d satisfies ‖g ‖ ≥ 1, which via the Fürstenberg and Kesten theo-
rem directly implies γ≥ 0 and convergence in the L1-sense. The proof we are going to
present here relies on the following proposition, which is proven in the appendix B.

Proposition 3.2.4. Let µ be a probability measure on S LT(d ) such that 〈µ〉 is strongly
irreducible and non-compact. Define the convolution operator Tµ on L2(Cd ) as

(Tµ f )(x ) :=

∫

S LT(d )
f (g −1x )µ(d g ).

Then rµ the spectral radius of Tµ satisfies rµ < 1.

Proof of Fürstenberg’s theorem. As discussed in section 3.1, the scenario of a product
of i.i.d random matrices is an instance of an ergodic multiplicative system for which
theorem 3.1.5 provides all claims except positivity of γ if we can show the regularity
conditions (3.2). This follows from the condition |det M | = 1 for M ∈ S LT(d ), because
it gives an upper bound on the norm of the inverse via the largest singular value of M .
More precisely we have

‖g −1‖ ≤ ‖g ‖d−1 , (3.9)
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3.2. Positivity of the upper Lyapunov exponent

so as claimed, the integrability of log+ ‖gω‖ and log+ ‖g −1
ω ‖ follows from the integrabil-

ity of log‖gω‖. In addition, ‖M ‖ ≥ 1 for ‖det M ‖ = 1 implies that the Lyapunov expo-
nent is bounded from below by 0. Hence, the convergence holds in the L1(µ) sense.

For positivity of γ the proof follows the strategy used in [GR86] for the real case. We
define the function

q (x ) :=min(1,‖x‖δ)

withδ > d /2 chosen such that g (x ) ∈L2(Cd ,µ). In addition, we define the set M = {x ∈
Cd ; 1≤ ‖x‖ ≤ 2}. To find a lower bound for γ denote by χA the characteristic function
of a set A and consider

〈χM , T n
µ q 〉 ≥ vol(M )

∫
‖g −1x‖−δµ(dg )≥ 2−δ

∫
‖g ‖−δ(d−1)µ(dg ) ,

where the volume of M is computed with respect to the d dimensional Lebesgue mea-
sure and we used (3.9) to bound the norm of the inverse of g . Using Jensen’s inequality
we find for any n

1

n

∫
log‖g x‖µ(dg )≥ c o n s t

n
+

1

δ(d −1)
log( 〈χM , T n

µ q 〉−1/n ) .

Taking the limes inferior on the left and limes superior on the right-hand side implies

γ≥ lim inf
n→∞

1

n

∫
log‖g x‖µ(dg )≥ 1

δ(d −1)
lim sup

n→∞
log( 〈χM , T n

µ q 〉−1/n ) .

From the definition of the spectral radius and proposition 3.2.4, we obtain

lim sup
n→∞

〈χM , T n
µ q 〉1/n ≤ lim sup

n→∞
‖T n
µ ‖1/n‖q‖1/n‖χM ‖1/n ≤ rµ < 1 .

Hence, γ is indeed strictly larger than zero.

We are now going to extend these results from the norm of the products or random
matrices to the norm of vectors the product is applied to. For this purpose, we intro-
duce the complex projective space PCd , which is the set of all one-dimensional com-
plex subspaces of Cd . Elements of GL(C, d ) act naturally on x ∈ PCd and we write
M x := M x to reduce notation. We choose a metric on PCd via the second exterior
power ofCd

δ(x , y ) :=
‖x ∧ y ‖
‖x‖‖y ‖ =

�
1−

� | 〈x , y 〉|
‖x‖‖y ‖

�2�1/2

. (3.10)

This identity can be easily checked from the definition of ‖x ∧ y ‖. Furthermore, the
right-hand expression is nothing but the Hilbert Schmidt distance for pure quantum
states. Hence, it is clear that this expression defines a metric on the projective Hilbert
space PCdCd [BŻ06].
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3. Products of random matrices

Given two vectors x , y ∈PCd we can always find two representatives x , y ∈Cd such
thatℜ〈x , y 〉= | 〈x , y 〉|, whereℜx denotes the real part of x . Therefore, we obtain the
relation

δ(x , y )2

‖x − y ‖2 =
1

2

1− |〈x , y 〉|2
1−ℜ〈x , y 〉 =

1

2
(1+ | 〈x , y 〉|) ,

which together with 0≤ |〈x , y 〉| ≤ 1 implies the inequality

1p
2
‖x − y ‖ ≤δ(x , y )≤ ‖x − y ‖ . (3.11)

For later use we also note the following lemma.

Lemma 3.2.5. For M ∈ GL(C, d ), denote by m1 and m2 its two largest singular values,
then

δ(M x , M y )
δ(x , y )

≤m1m2
‖x‖‖y ‖

‖M x‖‖M y ‖
This is an immediate consequence from the definition of the metric δ in (3.10) and

the fact that the operator norm of∧2M is exactly given by the product of the two largest
singular values (see (3.7)). Given two probability measures µ and ν on GL(C, d ) and
PCd respectively, we define their pseudo convolution as the measure µ ∗ ν on PCd

satisfying
∫

f (x )µ ∗ν(dx ) :=

∫
f (M x )µ(dM )ν(dx ) ,

for all bounded Borel functions f on PCd . A measure ν on PCd is called µ-invariant if
ν satisfies

∫
f (x ) ν(dx ) =

∫
f (M x )µ(dM )ν(dx ) ,

e.g. if µ ∗ ν = µ. Given a probability measure µ on GL(C, d ), a µ-invariant measure ν
allows for the construction of a dynamical system on (GL(C, d )N ×PCd ,µ∞ ×ν), if we
define the shift operation τ̃ via

τ̃((gωn
)n , x )→ ((gτωn

)n , gω1
x ) = ((gωn+1

)n , gω1
x ) (3.12)

for all sequences (gωn
)n ∈GL(C, d )N and vectors x ∈PCd with τ as before. This defini-

tion ensures that {τ̃n} is a semigroup and theµ-invariance of ν implies that τ̃ is indeed
a µ∞×ν invariant transformation. So the tuple

(GL(C, d )N×PCd ,B, τ̃n ,µ∞×ν) (3.13)

forms a random dynamical system. We call a function σ : GL(C, d ) × PCd → R an
additive cocycle if it satisfies the relation

σ(g2g1, x ) =σ(g2, g1x ) +σ(g1, x ) .
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3.2. Positivity of the upper Lyapunov exponent

Since the natural action of GL(C, d ) onPCd is up to a phase factor given by M ·x = M x
‖M x‖

for x ∈ PCd the function σ(g , x ) := log g x is an additive cocycle on GL(C, d )× PCd ,
indeed

log g2g1x = log

�
g2g1x

‖g2g1x‖
‖g1x‖
‖g1x‖

�
= log g2g1x + log g1x . (3.14)

Note that this construction is by no means limited to the projective space PCd . In ex-
actly the same manner we can choose any other compact separable space B on which
GL(C, d ) acts and define a pseudo convolution and invariant measures. Using (3.12)
analogously to introduce a shift operation on the measure space GL(C, d )×B also gives
a random dynamical system and the idea of an additive cocycle makes sense as well.
We need this generalization in order to prove the simplicity of the upper Lyapunov ex-
ponent. The compact separable spaces that we will consider there are in particular the
normalized endomorphism on Cd and ∧2Cd . Bearing this in mind, we state some of
the following results for general compact GL(C, d ) spaces.

Next we show that Birkhoff’s pointwise ergodic theorem applies to additive cocycles.

Lemma 3.2.6. Let µ be probability measure on GL(C, d ), ν a µ-invariant measure on a
GL(C, d )-space B . If σ is an additive cocycle with either σ+ or σ− in L1(µ×ν) then for
µ∞×ν almost all ((gωn

)n , b ) exists the limit

Òσ((gωn
)n , b ) = lim

n→∞
1

n
σ(Sn (ω), b ) . (3.15)

In addition, the function Òσ is equal a.e. to the conditional expectation ofσ with respect
to the invariant sigma field, which in particular implies

∫
Òσ((gωn

)n , b )µ∞(dω)ν(db ) =

∫
σ(gω1

, b )µ(dgω1
)ν(db ) .

With the stronger assumptionσ ∈L1(µ×ν) also |Òσ| is integrable and the convergence in
(3.15) is in the L1 sense.

Proof. We have seen that the tuple (GL(C, d )N×B ,B, τ̃n ,µ∞×ν) constitutes a random
dynamical system. Now setting Θ((gωn

)n , b ) =σ(gω1
, b )we find

1

n
σ((Sn (ω))n , b ) =

1

n

n∑
l=1

Θ(τ̃l ((gωn
)n , b )) .

The function Θ thus satisfies all assumptions of Birkhoff’s pointwise ergodic theorem
and all claims follow [Pet90, Thm 2.3 & Rm 2.4]. In particular we obtain 3.2.6 from
∫
Òσ((gωn

)n , b )µ∞(dω)ν(db ) =

∫
Θ((gωn

)n , b )µ∞(dω)ν(db ) =

∫
σ(gω1

, b )µ(dgω1
)ν(db )
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3. Products of random matrices

We also note the following corollary to the pointwise ergodic theorem showing that
the limit in (3.15) is strictly larger then zero in most cases.

Corollary 3.2.7. Let µ be a probability measure on GL(C, d ), ν an µ-invariant measure
on a compact separable GL(C, d )-space B andσ a additive cocycle on GL(C, d )×B with
eitherσ+ orσ− in L1(µ×ν). If µ∞×ν-a.s.

lim
n→∞σ(Sn (ω), b ) =∞ ,

then the limit from (3.15) is strictly larger than zero µ∞×ν-a.e..

A proof can be found in [BL85, lem 2.3] or [CL90, thm IV.1.4]. Since GL(C, d ) also acts
on itself, it is natural to define the convolution µ∗ν of two probability measures µ and
ν on GL(C, d ) via

∫
f (g )µ ∗ν(dg ) =

∫
f (g h )µ(dg )ν(dh ) (3.16)

for all bounded Borel functions on GL(C, d ). Note that µ∗ν is again a probability mea-
sure on GL(C, d ) and not on the product space. In particular, we denote by µn the n
fold convolution of µ with itself. Next we show that for any probability measure µ on
GL(C, d ) there exists an invariant measure on a compact separable GL(C, d )-space B .

Lemma 3.2.8. Let µ be a probability measure on GL(C, d ) and η be a probability mea-
sure on a compact GL(C, d ) space B . Any limit point of the sequence (νn )n with

νn =
1

n

n∑
i=1

µi ∗η

is invariant with respect to µ.

Proof. The space of probability measures of a compact metric space is compact and se-
quentially compact due to the Banach-Alaoglu and Prokhorov’s theorem [Rud06, thm
3.17]. Since B is compact and separable by assumption, this implies that the sequence
(νn )n has a limit point and for every limit point νwe can find a weakly converging sub-
sequence of (νn )n . Passing to such a subsequence and denoting it again by (νn ) we
find

µ ∗νn =
1

n

∑
i=1

µi ∗η+ 1

n
(µn+1 ∗η−µ ∗η) = νn +

1

n
(µn+1 ∗η−µ ∗η) ,

which implies ν=µ ∗ν in the limit n→∞.

In the special case B = PCd and for a strongly irreducible probability measure µ on
GL(C, d )we can show that an invariant measure can contain no Dirac points.

Lemma 3.2.9. Let µ be a strongly irreducible probability measure on GL(C, d ). Then,
any invariant measureµ on PCd is proper, meaning that if V is a proper subspace ofCd

then ν(V ) = 0, where V = {x ∈PCd ; x ∈V \ {0}}.

68



3.2. Positivity of the upper Lyapunov exponent

The proof of this statement is given in the appendix for lemma B.2.3. In order to
study the convergence in direction of the products Sn (ω) · x as well as their growth rate,
we need a concept that quantifies the asymptotic rank of the product Sn (ω).

Definition 3.2.10. A subset M ⊂ GL(C, d ) is said to have index p if p is the smallest
integer for which M contains a sequence (Mn ) such that Mn

‖Mn‖ converges to a matrix with
rank p . M is called contractive if p = 1.

The following technical proposition concerns the limit behaviour of products of ran-
dom matrices applied to a sequence of vectors. The proof is given in appendix B.

Proposition 3.2.11. Letµbe a strongly irreducible probability measure on GL(C, d ) such
that (µ) has index p . Then, for any sequence (xn )n ⊂ Cd that converges to a nonzero
vector we have almost surely

sup
n≥1

‖Sn (ω)‖
‖Sn (ω)xn‖ ≤∞ .

If in addition, mi (n ) denotes the i th largest singular value of the random product Sn (ω),
then with probability one

lim
n→∞

mp+1(n )

‖Sn (ω)‖ = 0

Strong irreducibility also ensures the almost sure convergence of log‖Sn (ω)x‖ to the
upper Lyapunov exponent for all x ∈Cd in the following sense:

Lemma 3.2.12. Letµbe a strongly irreducible probability measure on GL(C, d ) such that
log+ ‖gω1

‖ is integrable. If (xn )n ⊂Cd is a convergent sequence with a limit different from
the zero vector then µ-almost surely

lim
n→∞

1

n
log‖Sn (ω)xn‖ = γ (3.17)

and if ν is a µ-invariant measure on PCd the Lyapunov exponent admits the represen-
tation

γ=

∫
log
‖g x‖
‖x‖ µ(dg )ν(dx ) .

If in addition, log+ ‖g −1
ω1
‖ is also integrable, the sequence (E

�
1
n log‖Sn (ω)x‖

�
)n converges

uniformly to γ on S d = {x ∈Cd ; ‖x‖ = 1}.
Proof. From proposition 3.2.11 we immediately get for any sequence (xn ) that does not
converge to the zero vector, the following n independent relation between operator
and vector norm

1

n
log‖Sn (ω)xn‖ ≤

1

n
log‖Sn (ω)‖ ≤

1

n

�
log Cω+ log‖Sn (ω)xn‖

�
(3.18)

69



3. Products of random matrices

with some positive constant Cω. The limit of the expression in the middle tends to
the upper Lyapunov exponent γ by theorem 3.1.5 and since the additive term on the
right-hand side becomes negligible in the limit this proofs (3.17).

From (3.14) it is clear that log‖g x‖ is an additive cocycle and by lemma 3.2.6 we have

lim
n→∞

1

n

∫
log‖Sn (ω)x‖µn (dSn (ω))ν(x ) =

∫
log‖gω1

x‖µ(dgω1
)ν(x ) .

From (3.18) we know that in the limit the x dependent integrant can be replaced by the
operator norm of the product and this is equal to the upper Lyapunov exponent γ.

Since the unit sphere inCd is compact we only have to show that for any converging
sequence (xn ) in the unit sphere we have

lim
n→∞

1

n
E
�
log‖Sn (ω)x‖

�
= γ .

We know from (3.17) that this is true without the expectation value. The additional
regularity condition on log‖S−1

1 (ω)‖ establishes uniform integrability of the sequence
( 1

n log‖Sn (ω)x‖)n from which the result follows.

Lemma 3.2.12 provides a first analogue to the law of large numbers for the compu-
tation of the upper Lyapunov exponent. However, in contrast to the commuting case
it is not enough to average the function log‖g ‖ with respect to the common probabil-
ity measure µ. Instead we need an invariant measure on the projective space, which
is in general is hard to compute. Equipped with these preliminaries we can show the
simplicity of the upper Lyapunov exponent in the Lyapunov spectrum.

Lemma 3.2.13. Letµbe a strongly irreducible probability measure on GL(C, d ) such that
(µ) is contractive and log+ ‖gω1

‖ ∈L1(µ), then the upper two Lyapunov exponents satisfy
γ1 >γ2.

Proof. Let us denote by K1 and K2 the spaces of endomorphism on Cd or ∧2Cd with
operator norm one, respectively. As described above, there is a natural way in which
GL(C, d ) acts onPCd . In a similar way we can define an action of GL(C, d )on the spaces
K1 and K2 if we define the operation · via

g ·A :=
g A

‖g A‖ and (∧2g ) ·B :=
(∧2g ) B
‖(∧2g ) B‖

for all g ∈ GL(C, d ), A ∈ K1 and K ∈ K2. It is shown in the appendix, lemma B.3.1 that,
as in the case of the projective space, there exist µ-invariant measures νi on Ki such
that we rediscover the Fürstenberg and Kesten result in the sense that µ∞×νi a.e.

lim
n→∞

1

n
log‖Sn (ω)A‖ = γ1 and lim

n→∞
1

n
log‖∧2 Sn (ω)A‖ = γ1+γ2 . (3.19)

Now consider the space K1 × K2. We can turn this space into a GL(C, d ) space, if we
define the action componentwise via

g · (A, B ) := (g ·A, (∧2g ) ·B ) .
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3.2. Positivity of the upper Lyapunov exponent

By lemma 3.2.8 we also know that any limit point of the sequence ( 1
n

∑n
i=1µ

i ∗(ν1×ν2))n
is a µ-invariant measure on the product space. Let us pick one and denote it by ν. In
addition let us define the function

σ(g , (A, B )) := log
‖g A‖2

‖(∧2g )B‖ .

By virtually the same arguments as in (3.14) it can be shown thatσ constitutes an addi-
tive cocycle on GL(C, d )× (K1×K2). The restriction of the invariant measure ν to either
K1 or K2 is equal to ν1 or ν2, respectively. Using (3.19) this implies that the limit ofσ is
µ∞×ν-a.e. equal to

lim
n→∞

1

n
σ(Sn (ω), (A, B )) = lim

n→∞
2

n
log‖g A‖ − lim

n→∞
1

n
log‖(∧2g )A‖ = γ1−γ2 . (3.20)

Bounding the term ‖(∧2g )B‖ in the denominator ofσ by its operator norm we find the
lower bound

σ(Sn (ω), (A, B ))≥ log
‖Sn (ω)A‖
‖(∧2Sn (ω))‖ . (3.21)

In addition lemma 3.2.11 implies that due to the contractivity of (µ)

inf
n

‖Sn (ω)x‖
‖Sn (ω)‖ 6= 0 and lim

n→∞
m2(n )

‖Sn (ω)‖ = lim
n→∞

‖∧2 Sn (ω)‖
‖Sn (ω)‖2 = 0 ,

where m2(n ) is the second largest singular value of Sn (ω). Therefore for any non-zero
matrix A the limit on the lower bound in (3.21) is infinite. This in turn implies by lemma
3.2.7 that a.s.

lim
n→∞

1

n
σ(Sn (ω), (A, B ))> 0

Using (3.20) we see that indeed γ1 >γ2 as claimed.

We remark that it is possible to generalize lemma 3.2.13 if (µ) has index p . Then the
upper Lyapunov exponent is exactly p -fold degenerate and γp >γp+1 [GR85].

For the remainder of this chapter we often need additional regularity conditions on
the common probability measure of the random matrices. To shorten the statement of
this conditions, we define for any g ∈GL(C, d ) the function F (g ) as

F (g ) := sup(log+ ‖g ‖, log+ ‖g −1‖) (3.22)

As an immediate consequence we find for the operator norm of a matrix.

Lemma 3.2.14. Let F be defined as in (3.22) then we have for 1≤ p ≤ d , all g ∈GL(C, d )
and x ∈∧p C d normalized

| log‖∧p g ‖| ≤ pF (g ) and | log‖∧p g x‖| ≤ pF (g )

The lemma follows from a straight forward calculation and our comments about the
connection between singular values and operator norm after (3.7).

71



3. Products of random matrices

3.3. Large deviation estimates

The goal of this section is to derive a large deviation principle for the growth rate of a
product of random matrices applied to a normalized vector. After this result is estab-
lished, we will see that it can be extended to the single matrix elements of the random
products. We already know from (3.14) that the norm of a product of random matrices
applied to a unit vector constitutes an additive cocycle on GL(C, d )×PCd if we take the
norm

σ(Sn (ω), x ) = log‖Sn (ω)x‖ =
n∑

l=1

log

gωl

Sl−1(ω)x

‖Sl−1(ω)x‖
 .

If we define the random variables Fω(l ) = Sl (ω)x , we can consider σ as a Markov pro-
cess on PCd with the transition or Markov operator Rµ acting on the space of bounded
measurable functions on PCd via

(Rµ f )(x ) :=

∫
f (g x )µ(dg ) . (3.23)

The crucial step in proving the large deviation bounds is to define an analytic fam-
ily of operators that contain the Markov operator Rµ and identify this family with the
Fourier-Laplace transform on a suitable Banach space. It turns out that if we consider
the space of Hölder-continuous functions, the Fourier-Laplace transform around zero
gives rise to such a family of analytic operators to which perturbation theory can be
applied. Under the assumption of contractivity and strong irreducibility on the mea-
sure µ, the spectrum of Rµ contains a simple eigenvalue of maximal modulus, which
dominates the asymptotic concatenation of Rµ with itself. To this end, note that we
can express the n th application of Rµ to a function f via the n th convolution of the
probability measure µwith itself

(R n
µ f )(x ) =

∫
f (g x )µn (dg ) . (3.24)

This is obvious for the case n = 1 and if we assume it is true for n we find for n +1

(Rµ(R
n
µ f ))(x ) =

∫
f (g1g2x )µ(dg1)µ

n (dg2) =

∫
f (g x )µn+1(dg ) ,

where we used the definition of µn+1 in the last step (see (3.16)).

3.3.1. Space of Hölder continuous functions

After this preliminaries we proceed by defining the space of Hölder continuous func-
tion which turns out to be the suitable function space to make the Fourier Laplace
transform of Rµ an analytic family of operators.

Definition 3.3.1. Let C (PCd ) be the space of continuous functions on PCd and define
for all f ∈C (PCd ) and α> 0 and the metric δ on PCd as defined on (3.10).

72



3.3. Large deviation estimates

• the uniform norm ‖ f ‖∞ = supx∈PCd | f (x )|
• the map mα( f ) = supx 6=y ∈PCd

| f (x )− f (y )|
δ(x ,y )α

Then we define Lα as the subset of functions of C (PCd ) for which

‖ f ‖α = ‖ f ‖∞+mα( f )

is finite.

Lemma 3.3.2. Lα with the norm ‖ f ‖α is a Banach space.

Proof. That ‖ f ‖α satisfies all properties of a norm is easily verified. Now assume we are
given a Cauchy sequence ( fn )n ∈ Lα. The space uniformly bounded functions L∞ on
PCd is a Banach space with respect to the uniform norm, so the limit of ( fn )n exists in
L∞. Since ( fn )n is Cauchy, we also know that for every ε > 0 as well as every n , m large
enough and x 6= y ∈PCd

| fn (x )− fn (y ) + fm (y )− fm (x )|
δ(x , y )

< ε .

Taking the limit with respect to either n or m shows that the sequence ( fn )n converges
also in ‖ ‖α to f . So we are left to prove that the limit f is in Lα. Since we already know
that fn converges to f uniformly this amounts to the question whether mα( f ) is finite.
Choosing n large enough we find for all ε > 0 and x , y ∈PCd

| f (x )− f (y )| ≤ | f (x )− fn (x )|+ | fn (x )− fn (y )|+ | fn (y )− f (y )| ≤ ‖ fn‖α+2ε .

We know that ( fn )n is Cauchy and therefore bounded, so taking ε small enough finishes
the proof.

For convenience we restate the definition of the function F that describes the regu-
larity conditions we require for the probability measures µ, we consider.

F (g ) := sup(log+ ‖g ‖, log+ ‖g −1‖)
Under an integrability condition on F , we are now able to show the uniqueness of the
invariant measure and the exponential convergence of the convolutions µn to it.

Lemma 3.3.3. Let µ be a strongly irreducible probability measure on GL(C, d ) such that
(µ) is contracting and let ν be a µ-invariant probability measure on PCd . Suppose that
µ has an exponential moment, that is there exists τ> 0 such that

E
�
e τF

�
=

∫
e τF (g )µ(dg )<∞ .

Then, there exists α0 > 0 such that for all 0 < α ≤ α0 the Markov operator Rµ and the
operator Nν defined as

(Nν f )(x ) :=

∫
f (y )ν(dy ) (3.25)
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3. Products of random matrices

are bounded operators on Lα and in addition satisfy the relation

lim
n→∞‖Rµ−Nν‖

1
n
B(Lα)

< 1 ,

where ‖ · ‖B(Lα) denotes the operator norm induced by ‖ · ‖α. This implies in particular
that the invariant measure ν is unique.

For the proof we will need the following technical proposition the proof of which is
given in the appendix.

Proposition 3.3.4. Let µ be a strongly irreducible and contracting probability measure
on GL(C, d ), such that for some τ> 0 the function exp(τF (g )) is µ-integrable, then there
is α0 > 0 such that for all 0<α≤α0

lim
n→∞

 
sup

x 6=y ∈PCd

∫
δ(Sn (ω)x ,Sn (ω)y )α

δ(x , y )α
µn (dg )

! 1
n

< 1 .

This implies in particular that there exit constants 0<ρ < 1 and C > 0 such that

sup
x 6=y ∈PCd

∫
δ(Sn (ω)x ,Sn (ω)y )α

δ(x , y )α
µn (dg )≤Cρn

proof of lemma 3.3.3. We first note the following estimate that we use several times in
the argument. Given a function f ∈Lα we have for all x , y ∈PCd

| f (x )− f (y )|= | f (x )− f (y )|
δ(x , y )α

δ(x , y )α ≤ ‖ f ‖α δ(x , y )α . (3.26)

We start with the boundedness of Rµ. By definition we have f (x )≤ ‖ f ‖∞ and therefore
‖Rµ f ‖∞ ≤ ‖ f ‖∞, so Rµ is a contraction of Lα. For the second summand in the α-norm
we find

mα(Rµ f ) = sup
x 6=y ∈PCd

|(Rµ f )(x )− (Rµ f )(y )|
δ(x , y )α

≤
∫ | f (g x )− f (g y )|

δ(g x , g y )α
δ(g x , g y )α

δ(x , y )α
µ(dg ) .

As we have seen in (3.26), the first factor under the integral on the right-hand side is for
all g upper bounded by ‖ f ‖α, which is finite by assumption. For the second factor we
have by the definition of the metric δ and lemma 3.2.14 for all x , y ∈PCd

δ(g x , g y )α

δ(x , y )α
≤ ‖∧2 g ‖α ‖x‖

α‖y ‖α
‖g x‖α‖g y ‖α ≤ e 4αF (g )

and so by assumption the right-hand side is µ integrable for 4α≤ τ. Since Nν projects
every function to a constant, its boundedness in the α norm is trivial. So we can turn
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3.3. Large deviation estimates

to the convergence of R n
µ to Nν. Again we first consider the first term in the α norm.

For all x ∈PCd we find by (3.24) and the invariance of µ

|((R n
µ −Nν) f )(x )|=

����
∫

f (g x )µn (dg )−
∫

f (y ) ν(dy )

����

≤
∫
| f (g x )− f (g y )|µn (dg )µ(dy ) .

We can use (3.26) for the integrand on the right-hand side, which leaves us with an
integral over the δ distance between two vectors in the projective space to which the
same product of n random matrices is applied. Since δ(x , y ) ≤ 1 this can be upper
bounded via

∫
δ(g x , g y )αµn (dg )ν(dv )≤ sup

x 6=y

∫
δ(g x , g y )α

δ(x , y )α
µn (dg ) +ν({x })δ(g x , g x )α .

Since ν is µ-invariant and µ is a strongly irreducible probability measure, ν it is proper
according to lemma 3.2.9. Therefore, the weight of x is zero, as is the distance of a
vector to itself, which implies that the second term on the right-hand side vanishes.
Therefore, by proposition 3.3.4, we have for all 0<α≤α0

‖(R n
µ −Nν) f ‖∞ ≤mα( f )Cαρ

n
α ,

with Cα > 0 and 0<ρα < 1. Since Nν projects a function to a constant value, the second
term in the α norm gives

mα((R
n
µ −Nν) f ) = sup

x 6=y ∈PCd

∫ | f (g x )− f (g y )|
δ(x , y )α

≤ ‖ f ‖α sup
x 6=y ∈PCd

∫
δ(g x , g y )α

δ(x , y )α

and we arrive at exactly the same situation as for the uniform norm and can apply
proposition 3.3.4. Since we have found a bound in terms of theαnorm for all functions
f ∈Lα, this implies the following bound on the induced operator norm for 0<α≤α0

‖(R n
µ −Nν)‖B(Lα) ≤ 2Cαρ

n
α . (3.27)

Due to the µ-invariance of ν it is easy to verify the identities NνRµ = RµNν = Nν and
N n
ν =Nν, which imply by induction R n

µ −Nν = (Rµ−Nν)n . So the sequence ‖(Rµ−Nν)n‖
is submultiplicative and by Fekete’s lemma ‖(Rµ −Nν)n‖

1
n converges to its infimum,

which (3.27) is strictly smaller than one.

In order to prove Hölder-continuity of a family of invariant measure µz in chapter 5
we require the following result on properties of Rµ and Nν.

Lemma 3.3.5. Let µ be a strongly irreducible and contracting probability measure on
GL(C, d ), such that for some τ > 0 the function exp(τF (g )) is µ-integrable. Setting Q :=
Rµ−Nν we have
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3. Products of random matrices

(i) The set {a ∈C ; |a | >max(1, lim supn∈N ‖Q n‖α} is contained in the resolvent set of
Rµ and its resolvent satisfies

Ga :=
�
Rµ−a1

�−1
=

Nν
1−a

−
∞∑

n=0

Q n

a n+1

(ii) There are positive constants Cα and ρα < 1 such that for a ∈Cwith |a |> 1

‖Ga ‖α ≤
1

|1−a | +
Cα

1−ρα
(iii) Denoting byTε the circle of radius 1+ε around the origin inC for ε > 0 we find the

Cauchy identity

Nν+1=
1

2πi

∫

Tε

Ga da

Proof. Note again, that due to the µ-invariance of ν we obtain the relations NνRµ =
RµNν =Nν and N n

ν =Nν, which imply by induction R n
µ −Nν = (Rµ−Nν)n =Q n . Inserting

this into the geometric series representation for the resolvent we find

Ga =−a
∞∑

n=0

�
a−1Rµ

�n
=−a−1 Nν

1−a−1 −
∞∑

n=0

a−(n+1)Q n . (3.28)

Since Nν andQ are bounded operators completeness ofB(Lα) together with the triangle
inequality for the operator norm implies that this expression converges to a bounded
operator if |a |>max(1, lim supn∈N ‖Q n‖α), which proves (i ). In order to prove (i i ), note
that all assumptions of lemma 3.3.3 are satisfied, therefore we can find positive con-
stants Cα andρα < 1 such that |Q n |<Cαρ

n
α . Inserting this into 3.28, taking the α-norm

and using the triangle inequality we obtain

‖Ga ‖α ≤
1

|1−a | +
∞∑

n=0

‖Q n‖α =
1

|1−a | +Cα

∞∑
n=0

ρn
α

and evaluating the geometric series finishes the proof. Returning to (3.28) and evaluat-
ing the integral along an ε-circle around the origin leaves by the residual theorem only
the first term and the 0th summand in the sum, which already gives (i i i ).

3.3.2. Fourier Laplace transform

In addition to the Markov operator Rµ we define now formally for a given probability
measure µ on GL(C, d ) the Fourier-Laplace transform Rµ(z ) of a function f ∈Lα

(Rµ(z ) f )(x ) :=

∫
e z log‖g x‖ f (g x )µ(dg ) ,
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3.3. Large deviation estimates

where z ∈C and x ∈ PCd . It is clear that Rµ(0) = Rµ. First we have to establish under
which assumptions this definition gives rise to an analytic family of bounded operators
on the Banach space Lα. Since the proof is rather lengthy and not very instructive, we
hide it in the appendix and just state the result.

Lemma 3.3.6. Let µ be a probability measure on GL(C, d ) such that for some τ > 0 the
function expτF (g ) is integrable. Then for any 0 < α < τ

2 there is a η > 0 such that
{Rµ(z ), |z |<η}, constitutes an analytic family of bounded operators on Lα.

With this result we are ready to derive a representation of Rµ(z ) in terms of its largest
eigenvalue. To this end we make use of the following result in perturbation theory. The
proof follows more or less directly from general results on perturbation theory, which
can be found e.g. in [DS58, VII.3]. It relies on the fact that by Cauchy’s integral theo-
rem the contour integral of the resolvent G of an operator A around an isolated part of
the spectrum O ⊂ σ(A) projects onto the eigenspace corresponding to O . Under the
assumption that for an analytic family R (z ) of operators the spectrum of R (0) contains
an isolated eigenvalue of maximal modulus, it is shown that this is also true for the op-
erators T (z )with |z | small enough. The complete proof can be found in [BL85, Kel06].

Theorem 3.3.7. Let U ⊂C be a neighbourhood of 0 and {R (z ), z ∈U } an analytic family
of bounded operators on a Banach space B such that for some rank one projector N

ρ = lim
n→∞‖R (0)

n −N ‖ 1
n < 1 ,

then there is η> 0 such that for ζ ∈Cwith |ζ|<η
R (ζ) =λ(ζ)N (ζ) +Q (ζ) , (3.29)

where

(i) λ(ζ) is the unique eigenvalue of maximal modulus of R (ζ) and λ(0) = 1.

(ii) N (ζ) is a rank one projection with N (ζ)Q (ζ) =Q (ζ)N (ζ) = 0 and N (0) =N .

(iii) All three functions λ, N and Q are analytic in ζ.

(iv) |λ(ζ)| ≥ 2+ρ
3 .

(v) For each p ∈N there is a c > 0 such that for all n ∈N : ‖ dp

dζp Q n (ζ)‖ ≤ c (
1+2ρ

3
)n .

Theorem 3.3.7 together with lemma 3.3.3 and lemma 3.3.6 implies for the Fouler-
Laplace transform Rµ(z ).

Lemma 3.3.8. Let µ be a strongly irreducible probability measure on GL(C, d ) such that
(µ) is contracting and exp(τF (g )) is integrable for some τ> 0, then

(Rµ(z )
n f )(x ) =

∫
e z log‖g x‖ f (g x )µn (dg ) . (3.30)

In addition, there exists α0 > 0 such that for 0<α<α0 and η> 0 the family of operators
{Rµ(z ) ; |z | ≤η} satisfy the assumptions of theorem 3.3.7.

If λ(z ) denotes the eigenvalue of maximal modulus from (3.29), then λ′(0) is equal to
the upper Lyapunov exponent γ.
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3. Products of random matrices

Proof. From lemma 3.3.3 and lemma 3.3.6 we know that the family {Rµ(z )} satisfies
the assumptions of theorem 3.3.7. Since (3.30) is by definition satisfied for n = 1 we
continue by induction. For the induction step from n to n +1 we obtain

(Rµ(Rµ(z )
n f ))(x ) =

∫
exp(z

log‖g1x‖
‖x‖ )(Rµ(z )

n f )(g1x )µ(dg1)

=

∫
exp(z

log‖g1x‖
‖x‖ + z

log‖g2g1x‖
‖g1x‖ f (g2g1x ))µ(dg1)µ

n (dg2)

=

∫
exp(z

‖g x‖
‖x‖ f (g x )µn+1(dg ) = (R n+1

µ f )(x ) .

Here we used the cocycle property of log‖g x‖ from (3.14) and the definition of the
convolution measure µn from (3.16).

Let 1Lα ∈Lα be the function that is identical to one, i.e. 1Lα x = 1 for all x ∈PCd . Now
consider the Fourier-Laplace transformation of this function, which gives

(Rµ(z )
n 1Lα )(x ) =

∫
exp(z log‖g x‖)µn (dg ) . (3.31)

Next we choose z = t ∈R and compute the derivatives of both sides of the last equation
with respect to t at t = 0. For the right-hand side this implies by dominated conver-
gence

d

dt

�∫
exp(t log‖g x‖)µn (dg )

�����
t=0

=

∫
log‖g x‖ µn (dg ) =E

�
log(Sn (ω)x )

�
,

which converges by lemma 3.2.12 for n to infinity uniformly toγ if we divide by n . Using
the decomposition of Rµ(z ) provided by theorem 3.3.7, the left-hand of (3.31) evaluates
for t small enough to

d

dt

�
Rµ(t )

n 1Lα

�
(x )

����
t=0

=
d

dt

�
λ(t )n N (t )1Lα (x ) +Q n (t )1Lα (x )

� ����
t=0

=
�
nλ(t )n−1λ′(t )N (t )1Lα (x ) +λ

n (t )N ′(t )1Lα (x ) + (Q
n )′(t )1Lα (x )

� ����
t=0

= nλ′(0) +N ′(0)1Lα (x ) + (Q
n )′(0)1Lα (x ) ,

where we used the properties of N , Q and 1Lα from theorem 3.3.7. If we divide the
equation by n and take the limit, the second term in the last line vanishes since N is an-
alytic and hence its first derivative is bounded. The norm of the third term is bounded
by point (v ) of theorem 3.3.7 and can therefore also be neglected. Therefore the only
term surviving in this scaling is λ′(0), which must then indeed be equal to γ.

In order to shorten the notation, we define for any probability measure µ and any
measurable set A and function f

P (A) :=

∫
χA(g )µ(dg ) and E

�
f
�

:=

∫
f (g )µ(dg ) .
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Now we gathered all the information to prove the desired large deviation result on the
growth rate of the random products ‖Sn (ω)x‖. The proof follows the general arguments
for large deviation bounds [BL85, Kel06]. Note that we only proof a lower bound on the
rate function or equivalently an upper bound on the decay of the probability. These
results can be strengthened to a complete large deviation principle with an upper and
lower bound on the rate function [BL85].

Theorem 3.3.9. Let µ be a strongly irreducible and contracting probability measure on
GL(C, d ) such that exp(τF (g )) is integrable for some τ> 0. Then for every ε > 0 there are
Cε > 0 and n0 ∈N such that for all n ≤ n0 and x ∈C d with ‖x‖ = 1 we have

P
�| log‖Sn (ω)x‖ −nγ| ≥ nε

�≤ e −cεn . (3.32)

Proof. Starting from the left-hand side of (3.32) we make a distinction of cases for the
absolute value inside the probability. Following the usual procedure for large deviation
estimates we can exponentiate both sides of the inequalities and find for positive t the
two upper bounds

P
�
log‖Sn (ω)x‖ ≥ n (γ+ ε)

�≤ e −t n (γ+ε)E
�
e t log‖Sn (ω)x‖

�

P
�− log‖Sn (ω)x‖ ≥−n (γ− ε)�≤ e t n (γ−ε)E

�
e −t log‖Sn (ω)x‖

�
.

(3.33)

In either case we can express the expectation value on the right-hand in terms of the
nth power of Rµ(t ) applied to 1Lα . Using (3.29) this implies that for t small enough we
find

E
�
e ±t log‖Sn (ω)x‖

�
=λn (±t ) (N (±t )1Lα )(x ) + (Q

n (±)1Lα )(x ) (3.34)

=λn (±t )

�
(N (±t )1Lα )(x ) +

(Q n (±t )1Lα )(x )
λ(±t )n

�
.

Since the operator norm of Q n decays faster than |λ|n and the expectation value on
the left-hand side is positive, this is also true for λ(±t ) and in particular λ(±t ) ∈ R.
From theorem 3.3.7 we even know that for some c > 0, ‖Q (p m t )‖α

|λ(±)| ≤ c In addition,
N (±t )1Lα )(x ) is bounded for |t | < η, with η some positive constant. Therefore, after
setting C = sup|t |≤η ‖(N (±t )1Lα )(x )‖α + c , taking the logarithm in (3.34) and dividing
both sides by n we obtain

1

n
logE

�
e ±t log‖Sn (ω)x‖

�
≤ logλ(±t ) +

1

n
log(C ) .

The second summand on the right-hand side is bounded and goes to zero in the limit.
Combining both expressions from (3.33) and inserting these estimates gives

lim
n→∞

1

n
logP

�± log‖Sn (ω)x‖ ≥±n (γ± ε)�=−(t (ε±γ)− logλ(±t )) =:−c±(t ) . (3.35)

From lemma 3.3.8 we know that λ(0) = 1 and λ′(0) = γ, so computing the value of c (t )
and its first derivative at t = 0 gives c±(0) = 0 and c ′±(0) = ε > 0. Together with the
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3. Products of random matrices

analyticity ofλ(t ) this implies the existence of an interval (0, t0)on which c±(t ) is strictly
positive. Taking the supremum of c±(t )with respect to this interval provides a positive
decay rate ec (ε) for every ε > 0 in the limit of large n in (3.35).

The claimed bound follows now by the following standard argument. Fixing ε > 0
and δ > 0 we can find an n0 such that

e −n (ec (ε)+δ) ≤P �| log‖Sn (ω)x‖ −nγ| ≥ nε
�≤ e −n (ec (ε)−δ)

for all n ≥ n0, which finishes the proof.

As a last step before concluding this chapter we need to extend this large deviation
result to the matrix elements of the random product Sn (ω). However, in order to keep
the chapter in reasonable limits, most of the argument is shifted to the appendix. The
proof is similar to the arguments in [DSS02] for the two dimensional real case.

Lemma 3.3.10. Let µ be a strongly irreducible and contracting probability measure on
GL(C, d )with an exponential momentτ. Then there is an ε0 such that for every ε0 > ε > 0
there exitsσ> 0 and n0 ∈N such that for all n ≥ n0 and normalized x , y ∈Cd

P
�
| 〈y ,Sn (ω)x 〉| ≤ e (γ−ε)n

�
≤ e −σn .

We will obtain this bound as a consequence of the following lemma.

Lemma 3.3.11. Let µ be a strongly irreducible and contracting probability measure on
GL(C, d )with an exponential moment τ. Then there is an ε0 > 0 such that for all 0< ε <
ε0 there is a δ > 0 and n0 ∈N such that for all n ≥ n0 and x ∈PCd

sup
x∈PCd

P

� | 〈y ,Sn (ω)x 〉|
‖Sn (ω)x‖ < e −εn

�
< e −δn

proof of lemma 3.3.10. The probability of the event we are interested in can be upper
bounded in the following way

P
�
| 〈y ,Sn (ω)x 〉| ≤ e (γ−ε)n

�
=P

��
| 〈y ,Sn (ω)x 〉| ≤ e

−εn
2 ‖Sn (ω)x‖

�
∩
�
‖Sn (ω)x‖ ≤ e (γ−

ε
2 )n
��

≤P
�
| 〈y ,Sn (ω)x 〉| ≤ e

−εn
2 ‖Sn (ω)x‖

�
+P

�
‖Sn (ω)x‖ ≤ e (γ−

ε
2 )n
�

.

According to theorem 3.3.9 and lemma 3.3.11 both summands on the right-hand side
can be upper bounded by an exponentially decreasing function for n large enough,
which concludes the argument.

We now proceed with the proof of the lemma, which, as already mentioned uses ideas
from the proof of [BL85, Prop. VI.2.2] and from a similar argument in [DSS02] for the
two dimensional real case.

proof of lemma 3.3.11. Our argument uses a bound similar to the Chebyshev’s inequal-
ity. A standard way to derive such relations is to identify the probability of an event E
with the integral over the respective characteristic function χE (x ) and then to choose
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another function Γ , the integral of which can be controlled and which dominatesχE (x ).
In the case at hand the event of interest for fixed y , x ∈PCd is

E := {g ∈GL(C, d ) ;
| 〈y , g x 〉|
‖g x‖ < e −εn} .

A possible choice for a function, that simply interpolates the jump from one to zero of
the characteristic function is given by

Γn (x ) := hn (| 〈y ,
x

‖x‖ 〉|) with hn (t ) :=





1 0≤ t ≤ e −εn

2− t e −εn e −εn ≤ t ≤ 2e −εn

0 2e −εn ≤ t

. (3.36)

This leads to the following upper bound for the probability of the scalar product

P

� | 〈y ,Sn (ω)x 〉|
‖Sn (ω)x‖ < e −εn

�
=

∫
χE (g x )µn (dg )≤

∫
Γn (g x )µn (dg ) (3.37)

≤
����
∫
Γn (g x )µn (dg )−

∫
Γn (y )ν(dy )

����+
����
∫
Γn (y )ν(dy )

����
= |(R n

µ Γn )(x )− (NνΓn )(x )|+ |(NνΓn )(x )| ,

where we used the definitions of Rµ and Nν in the last step (see (3.24) and (3.25)). From
(3.27) in the proof of lemma 3.3.3 we know that the first term in the last expression
satisfies for α in some interval (0,α0)

|(R n
µ Γn )(x )− (NνΓn )(x )| ≤ ‖(R n

µ −Nν)Γn )‖α ≤Cαρ
n
α‖Γn‖α , (3.38)

with 0<ρα < 1 and Cα > 0. So in order to obtain an exponential bound, we only have to
show that Γn ∈Lα forα small enough. Since it is clear from the definition that ‖Γn‖∞ ≤ 1,
we only have to worry about the term mα(Γn ). Using the mean value theorem for hn (t )
and choosing suitable representatives xi ∈Cd for x i ∈PCd with ‖xi ‖ = 1 we get

|Γn (x 1)− Γn (x 2)| ≤
��| 〈y , x1 〉|− | 〈y , x2 〉|

��e εn ≤ ‖x1− x2‖e εn ≤p2δ(x , y )e εn ,

where we used the identity (3.11) in the last step. Therefore for 0<α< 1 the α-norm of
Γn can be upper bounded by

‖Γn‖α = ‖Γn‖∞+mα(Γn )≤ 1+
p

2e εn . (3.39)

To bound the second summand in (3.37) we can use the regularity of the invariant mea-
sure ν. For fixed y ∈ PCd let us define the set B := {x ∈ PCd ; | 〈x , y 〉| ≤ 2e −εn}. The
projection (NνΓn )(x ) of Γn onto the constant functions then satisfies

∫
Γn (y ) ν(dy )≤ ν(B) =

∫

B

| 〈x , y 〉|β
| 〈x , y 〉|β ν(dx )≤ 2β e −εnβ

∫
1

| 〈x , y 〉|β ν(dx ) . (3.40)

The integral in the last expression can be shown to be finite for all y ∈PCd if β is small
enough, which is done in lemma B.5.1 in the appendix. Inserting (3.39), (3.38) and
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3. Products of random matrices

(3.40) into (3.37), we find that for some 0<α<α0 and n large enough there are Cα, Kβ >
0 and 0<ρα < 1 such that

P

� | 〈y ,Sn (ω)x 〉|
‖Sn (ω)x‖ < e −εn

�
≤Cα(1+

p
2e εn )ρn

α +2βKβ e −εnβ . (3.41)

For 0 < ε < | logρα| = ε0 we can therefore find a positive δ ≤min(| logρα + ε|,εβ ) and
a n0 ∈N, such that the right-hand side of (3.41) is upper bounded by e −δn for all n ≥
n0.

In a similar manner, we can show the almost sure convergence of the matrix elements
of a product of transfer matrices to the Lyapunov exponent.

Lemma 3.3.12. Let µ be a strongly irreducible and contracting probability measure on
GL(C, d )with exponential moment τ then almost surely for all nonzero x , y ∈Cd

lim
n→∞

1

n
log | 〈y ,Sn (ω)x 〉|= γ .

Proof. We show that for all t > 0 almost surely

lim
n→∞

1

n t log
| 〈y ,Sx (ω) , | 〉
‖Sx (ω)‖ = 0 . (3.42)

The result can then be obtain from lemma 3.2.12, which ensures the almost sure con-
vergence of 1

n ‖Sn (ω)x‖ to the Lyapunov exponent. More precisely, we prove that almost
surely for r > 0 large enough

lim
n→∞

1

n r

‖Sx (ω)‖
| 〈y ,Sx (ω) , | 〉 = 0 ,

which implies (3.42). We use the Borel-Cantelli-lemma in order to show that the com-
plementary event has zero probability. Hence, we have to prove that the expression

∞∑
i=1

P

����� 〈y ,
Sx (ω)

‖Sx (ω)‖ 〉
����< εn−r

�

is finite. As in the proof of lemma 3.3.11, we want to derive a Chebyshev like bound
for these probabilities. To this end note that we can consider this probabilities as a
expectation value of the characteristic functions χE with respect to the event

E :=

�
g ∈GL(C, d ) ;

���� 〈y ,
Sx (ω)

‖Sx (ω)‖ 〉
����< εn−r

�
.

In the same manner as in (3.36) we can define the function Γn (s ), with e −εn substituted
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by εn−r . Following all the steps after (3.36), we find according to (3.37) the upper bound

∞∑
i=1

P

����� 〈y ,
Sx (ω)

‖Sx (ω)‖ 〉
����< εn−r

�
(3.43)

≤
∞∑

n=1

���(R n
µ Γn )(x )− (NνΓn )(x )

���+
∞∑

n=1

|(NνΓn )(x )|

≤
∞∑

n=1

‖R n
µ −Nν‖B(Lα)‖Γn‖α+

∞∑
n=1

|(NνΓn )(x )| .

By an argument similar to the one leading to (3.39) and due to (3.27) we can bound
every summand in the first series by

‖R n
µ −Nν‖B(Lα)‖Γn‖α ≤ (1+2n r ε−1)Cρn

α ,

with C finite and 0 < ρα < 1 showing that the sequence can be upper bounded by a
finite constant. Repeating the argument leading to the bound in (3.40) we obtain for
the summands of the second series

|(NνΓn )(x )| ≤ (2ε)βn−rβ

∫
1

| 〈x , y 〉| ν(dx ) .

The integral is finite for β small enough by lemma B.5.1 from the appendix. Therefore,
the bound in (3.43) is finite if we choose r large enough, such that

∑∞
n=1 n−rβ is finite,

which finishes the proof.
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4. Recurrence properties of discrete
unitary evolutions

There are several ways to analyze the dynamical properties of a discrete unitary evolu-
tion. In section 2.4 we considered the asymptotic position distribution in order to show
the ballistic spreading behaviour of translation-invariant quantum walks. In this chap-
ter we study the transition probabilities between different states of the system. Again,
our goal is to derive asymptotic statements, that is, we want to determine whether a
certain state is attained by the system eventually, in the limit of large times. In partic-
ular, we study transitions back into the initial state, i.e., the recurrence properties of a
system.

The results presented in this chapter have been obtained together with Alberto Grün-
baum, Luis Velázquez and Reinhard F. Werner and have been published in [GVWW13].

Since quantum mechanics fundamentally prevents us from knowing the particle’s
exact position without an actual measurement, we have to find notions of transition
and recurrence that take into account the inevitable disturbance due to a measure-
ment process. For the recurrence scenario there are at least two possible ways to de-
fine time dependent return probabilities. As it turns out however, one is conceptually
and operationally more convenient than the other, even though it comes at the cost of
a perturbation of the free evolution.

This chapter is organized as follows. First, we introduce a notion of transition am-
plitudes between an initial and a collection of target states that explicitly takes into
account a measurement of the time evolved state in every time step. Subsequently, we
give a brief account on related work on transition problems and recurrence properties.
In section 4.2 we return to our definition of a transition amplitudes, but restrict to the
case to self-transitions, i.e. the recurrence properties of an initial state. We derive a
complete characterization of the recurrence properties in terms of the spectral mea-
sure of the initial state with respect to the unitary operator that implements the time
evolution. Equipped with this characterization, we compare this notion of recurrence
with other definitions that were put forward in the context of quantum walks.

We begin by specifying the scenario we are going to investigate in the remainder of
this chapter. We consider a quantum system described by a separable Hilbert space
H with a discrete unitary evolution according to definition 2.1.2. Therefore, there is a
unitary operator U acting on H that implements the dynamics.

Starting with some pure initial state φ we can study the orbit of time evolved states
{U nφ , n ∈N}. We assume that in addition to the initial state φ, we are given a target
state ψ and we wish to determine whether the system realizes this state eventually.
Although we are mostly concerned with a single target state, we define the problem
more general and allow for a finite set of k mutually orthonormal target states {ψl }.
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4. Recurrence properties of discrete unitary evolutions

Denote by Pt g the projector onto the target subspace

Pt g :=
k∑

l=1

|ψl 〉〈ψl | . (4.1)

A basic fact of quantum theory is that in order to decide the question, whether one of
the target states has been realized by the system, we have to perform a measurement.
Therefore, we consider a modified dynamics such that the evolution from time step n
to time step n +1 consists of three parts:

1. The application of U to the current state of the systemφn .

2. A projective measurement consisting of the orthogonal projectors {Pt g ,1−Pt g }
that checks, whether the system happens to be in one of the target states.

3. If we observe one of the target states, the evolution is stopped, because the tran-
sition to one of the target states already occurred. Otherwise, the next time step
is executed.

These operations give rise to a modified evolution operator Ũ , defined by

Ũ := (1−Pt g )U . (4.2)

According to this definition, φn is equal to the renormalized state of the system con-
ditioned on the event that we did not observe a transition to one of the target states
in the first n time steps. The probability to find the particle in the n + 1 step in the
target subspace is given by the probabilities to observe one of the target states, i.e.∑

l | 〈ψl ,Uφn 〉|2. Otherwise, the system will be, up to normalization, in the state (1−
Pt g )Uφn . We can expressφn in terms of the modified evolution operator Ũ and obtain

φn =
Ũ nφ

‖Ũ nφ‖ .

The square of the renormalization factor of this expression corresponds to the proba-
bility not to find the system in one of the target statesψl within the first n steps. Hence,
it can be interpreted as the survival probability sn of the initial stateφ up to step n

sn := ‖Ũ nφ‖2 .

We can now compute the loss of normalization per time step and identify this quantity
as the n th step transition probability qn from the initial state to the target subspace.
Evaluating the difference between sn and sn+1 we obtain

qn+1 = sn − sn+1 = ‖Ũ nφ‖2−‖Ũ n+1φ‖2 (4.3)

= tr
�
Ũ n |φ〉〈φ|Ũ ∗n (1−Ũ ∗Ũ )

�

= tr
�
Ũ n |φ〉〈φ|Ũ ∗n (1−U ∗(1−Pt g )U )

�

= 〈φ ,Ũ ∗nU ∗Pt g U Ũ n φ 〉 .
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Using (4.1) and the mutual orthonormality of the target states we obtain the relation

qn+1 =
k∑

l=1

| 〈ψl ,U Ũ n φ 〉|2 =:
k∑

l=1

|an (l )|2 (4.4)

where we defined an (l ) as the n th step transition amplitude to the stateψl . These tran-
sition amplitudes will be the key quantities in our theory. Starting from the identity
s1+q1 = 1 and repeatedly using (4.3) we obtain the relation

n∑
m=1

k∑
l=1

|am (l )|2+ ‖Ũ nφ‖2 = 1 ,

which just reflects the fact that due to the absence of other loss processes the parti-
cle either survives or is detected in one of the target states. We can therefore express
the asymptotic or total transition or arrival probability T of the system in terms of the
survival as well as in terms of the transition probabilities

T =
∞∑

n=1

k∑
l=1

|an (k )|2 = 1− lim
n→∞‖Ũ

nφ‖2 = 1− s∞ , (4.5)

where s∞ denotes the asymptotic survival probability. If s∞ converges to zero, we know
that a transition to one of the target states will occur eventually. The structure of this
equation suggests to study the generating functions of the sequences (an (l ))n of the
transition amplitudes

bal (z ) :=
∞∑

n=1

an (l )z
n =

∞∑
n=1

〈ψl ,U Ũ n−1φ 〉z n = z 〈ψl ,U
∞∑

n=1

z nŨ n−1φ 〉 , (4.6)

where we used (4.4) in the second step. Before we further evaluate this equation via a
Krein’s formula approach that is especially successful in the context of a single target
state, we give an overview over related results on modified time evolutions and recur-
rence properties.

4.1. Related work

Concepts like first arrival probabilities, escape probabilities and return probabilities
are well established and very successful in the context of classical random walks and
helped to analyze their dynamical properties. Due to the connection between quan-
tum and random walks it is natural to define quantum analogues of these quantities.
In the following we present some relevant approaches. First we review some results on
quantum walks with absorbing boundary conditions, which represent a special case of
the scheme of alternating unitary evolution and measurement presented above. Next
we consider the recurrence properties of classical Markov chains in more detail before
we discuss an alternative notion of recurrence for quantum walks in the last subsec-
tion.
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4.1.1. Quantum walks with absorbing boundary conditions

The concept of an intermediate measurement in addition to a unitary time evolution is
already present in the first definition of a quantum random walk in [AAKV01]. In addi-
tion, schemes alternating between a unitary time step and a projective measurement
have been studied early on to introduce absorbing boundary conditions [ABNW01,
BCG+04].

Aside from numerical studies of the influence of absorbing lattice sites in one and
two dimensions [GAM09, GASM11], there are also analytic results. Ambainis et al. as
well as Bach et al. both used such measurements as a means to introduce absorbing
boundary conditions in a one-dimensional coined quantum walk according to defini-
tion 2.4.2 [ABNW01, BCG+04]. In this case, the Hilbert space is `2(Z)⊗C2 and in the
language of the previous section the target statesψl always live on a single lattice site
x , i.e. is of the form ψl = δx ⊗ ξ for some ξ ∈ C2. In addition, the target states ψl
always come in pairs such that both internal states are tested for, which implies that
the projector onto the target subspace Pt g can be decomposed in terms of lattice site
projections

Pt g =
∑

xl

|δxl
〉〈δxl

| ⊗1 .

Due to this choice of measurement, the walking particle cannot bypass the lattice
site x without being detected and is therefore absorbed with certainty if it enters the
lattice site x . This is different from our approach in the last section, where we allow the
target state to be supported on several lattice sites or only on a subspace of the internal
space. We also do not restrict our definition to quantum walks.

Both [ABNW01] as well as [BCG+04] consider one and two absorbing boundaries and
compute the escape probabilities, that is, the arrival probabilities at the left or the right
boundary if the particle starts in between. In both cases results are obtained by path
counting combinatorics in combination with a generating function approach on the
level of the transition amplitudes similar to (4.6). Since the measurement effectively
changed the geometry of the quantum walk to a one sided infinite or finite lattice re-
spectively, Bach et al. could show that it suffices to consider the generating functions
for the absorbing boundary at lattice site 1 if the particle starts at the origin [BCG+04].

ba1(z ) :=
∞∑

n=1

〈δ1⊗ |0〉 ,
�
U Ũ n−1

�
δ0⊗ |0〉 〉z n

ba2(z ) :=
∞∑

n=1

〈δ1⊗ |0〉 ,
�
U Ũ n−1

�
δ0⊗ |1〉 〉z n ,

where Ũ = (1− |δ1〉〈δ1| ⊗ 1)U and U denotes the unitary operator implementing the
considered coined walk (see (2.15)). The generating functions corresponding to an ab-
sorbing boundary at positions different from 1 can be decomposed into a product of
simpler generating functions. If, for example, the absorbing lattice site is located at po-
sition x and we are interested in the behaviour of the initial state φ = δ0⊗ |0〉 we have
to consider the generating function ba1(z ) (ba2(z ))

x−1 [BCG+04].
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In [ABNW01]and [BCG+04] results are obtained for an absorbing lattice site right next
to the initial state and in the limiting case for an infinitely distant absorbing boundary.
For the Hadamard walk for example, the absorbtion probability in the first case is 2

π
and in the second case it is given by

1

2
|α|2+ 4−π

2π
|β |2−2

π−2

2π
ℜαβ

for the initial state φ = δ0 ⊗
�
α|0〉+β |1〉� and there is also an explicit formula in the

general case [BCG+04]. In addition, Bach et al. obtain some results on quantum walks
on the d -dimensional lattice if the absorbing boundary is d −1 dimensional [BCG+04].

For the Hadamard walk with two absorbing boundary conditions, which effectively
means that we are dealing with a quantum walk on the finite line with N lattice sites,
Bach and Borisov derived an explicit formula for the absorbtion probability at the ori-
gin [BB09]. More precisely, the probability that the walking particle is absorbed at x = 0
if it started at lattice site 0< x <N is given by

p
2
�
(2+
p

2)N−x − (2−p2)N−x
� �
(2+
p

2)x−1+ (2−p2)x−1
�

4(2+
p

2)N−1+ (2−p2)N−1
.

In the same explicit measurement setting, absorption probabilities of quantum walks
on the finite and infinite one-dimensional lattice were investigated by Konno and co-
workers by path counting methods [KNSS03]. In this paper explicit expressions for the
absorption probability at zero are obtained if the particle starts at lattice site x = 1 in an
arbitrary internal state. After this short overview on results of quantum walks with ab-
sorbing boundary conditions, we continue with some remarks on the recurrence prop-
erties of classical random walks.

4.1.2. Recurrence in classical random walks

We do not attempt to give a full account on the theory of classical Markov chains, but
rather compose a brief introduction into their recurrence properties mostly to compare
them to the quantum case. For a thorough introduction and a good review of the theory
of classical Markov chains, we refer to the textbooks [Kel79, KT75]. Moreover, since we
are interested in a comparison with discrete quantum evolutions, we limit our discus-
sion to time homogeneous or stationary Markov chains. These are processes, where
the transition probabilities do not change with time. In the remainder of this section
we therefore synonymously use the terms Markov chain and stationary Markov chain.

Markov processes describe systems with short lived temporal correlations. In fact,
the memory is reset in every time step. This implies that the new state of the system
depends exclusively on the current state and the transition rule is given by a fixed prob-
ability distribution due to our assumption of stationarity.

We define a classical Markov chain {X (n )} operating in discrete time steps n ∈N on
a countable state space X as a stochastic process, which is completely characterized by
its transition matrix (Px y ) describing the transition probabilities from all states x to all
states y [KT75]. Its matrix elements Px y satisfy the conditions Px y ≥ 0 and

∑
y Px y = 1

for all x ∈ X . The Markov property ensures that the probability of a transition from
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x to y along the exact sequence (x1, x2, . . . , xn−1) is determined by the product of the
corresponding matrix elements of (Px y )

Px ,x1
Px1,x2

· · ·Pxn−1,y .

If we are only interested in the overall probability to change from state x to state y in
exactly n steps, we have to sum over all possible paths of length n , which gives

∑
x1,...,xn−1

Px ,x1
Px1,x2

· · ·Pxn−1,y . (4.7)

This expression is equal to the x y matrix element of the n th power of the transition
matrix (Px y ). In order to address questions about recurrence in this classical process
we fix some specific state 0 ∈ X and consider only transitions from 0 to 0, that is, the
00 matrix element of the matrix (P n

x y ). This matrix element corresponds exactly to the

probability to return in the n th time step pn , which can be expressed by (4.7) as

pn := (Px y )
n
00 =

∑
x1,...,xn−1

P0,x1
Px1,x2

· · ·Pxn−1,0 . (4.8)

This quantity does not take into account whether or not the system already returned to
the state 0 in an earlier time step. On the other hand it is quite easy to write down the
definition of the first return probabilities qn by restricting the sequences (x1, . . . , xn−1)
that are summed over in (4.7)

qn :=
∑

x1,...,xn−1∀l : xl 6=0

P0,x1
Px1,x2

· · ·Pxn−1,0 .

Returning to our expression for pn , we can decompose the sum in (4.7) with respect
to the largest index k < n for which xk is equal to zero. This means that up to the
index k we do not care whether the system returned to the state 0, so this part of the
product P0,x1

Px1,x2
· · ·Pxn−1,0 is described by pk . In between xk = 0 and xn = 0 however,

the definition of k forces the system to stay away from the state 0, i.e. xi 6= 0 for all
k < i < n . Therefore this part of the product is equal to qn−k . In total, this amounts for
n ≥ 1 to the identity

pn =
n∑

k=0

pk qn−k , (4.9)

if we choose p0 = 1 and q0 = 0 as initial values of the two sequences [KT75]. After defin-
ing the corresponding generating functions of the two sequences

bp (z ) :=
∑

pn z n and bq (z ) :=
∑

qn z n , (4.10)

we can insert the identity (4.9) into bp (z ) for n > 0, which together with p0 = 1 implies
the relation

bp (z ) = 1+
∞∑

n=1

 
n∑

k=0

pk qn−k

!
z n = 1+ bp (z )bq (z ) . (4.11)
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Hence, we have found the well renewal equation that combines the first return proba-
bilities with the probabilities to return in exactly n steps.

The natural definition of a recurrent Markov chain is to demand that the system re-
turns with certainty to the initial state, i.e. that the asymptotic or total return probability
R C

R C :=
∞∑

n=1

qn

of the classical process is equal to one. The quantity R C is also known as the Pólya
number of the random walk [Pól21]. With the preceding identity from (4.11) we can
formulate the following characterization of recurrent Markov chains [KT75].

Lemma 4.1.1. A Markov chain is recurrent if and only if the series of its return probabil-
ities pn diverges.

Proof. The total return probability R C of a classical random walk can be computed as
the sum of the first return probabilities. Therefore, using (4.11) we obtain

R C =
∞∑

n=0

qn = bq (1) = 1− 1

bp (1) = 1− 1∑
n pn

.

So indeed R C = 1 if and only if the series
∑

n pn diverges.

Before we turn to recurrence results in the context of quantum walks, we discuss how
the spectral measure of the transition matrix (Px y ) with respect to the initial state 0 is
connected to the recurrence behaviour.

In order to establish a connection with the quantum case we represent Markov pro-
cesses as self-adjoined or symmetric operators on Hilbert spaces. It turns out that this
is possible for the class of so-called reversible Markov chains [Kel79]. This class con-
tains all Markov processes, which are invariant with respect to time reversion. That is,
they produce the same statistics if the process is run backwards. The formal definition
of a reversible Markov chain can be given in terms of the random variables X (n ) com-
posing the Markov chain. We demand that for any collection of times n1, . . . , nk and all
l ∈N the random variables (X (n1), . . . X (nk )) and (X (l −n1), . . . , X (l −nk )) have the same
distribution. Note that this definition readily implies stationarity for the Markov chain
{X (n )} [Kel79].

For our purpose the important consequence of reversibility of a Markov process is
the detailed balance equation [Kel79]

Theorem 4.1.2 (detailed balance equation). Let {X (n )} be a stationary Markov chain
in discrete time on a separable space X and (Px y ) its transition matrix. Then, {X (n )}
is reversible if and only if there exists a normalized vector π with positive components
satisfying the detailed balance condition

πx Px y = Py xπy ∀x , y ∈ X .

If π exists it is an invariant state of the Markov chain, so π= (Px y ) ·π.
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4. Recurrence properties of discrete unitary evolutions

Proof. We begin the proof by considering a reversible chain. Firstly, stationarity im-
plies that P (X (n ) = x ), the probability of the process being in state x at time n , is in-
dependent of n . Set πx = P (X (n ) = x ). Due to reversibility the two distributions of
the random variables (X (n ), X (n + 1)) and (X (n + 1), X (n )) are identical, which indeed
implies

P
�
X (n ) = x and X (n ) = y

�
=P

�
X (n ) = y and X (n ) = x

�

⇐⇒ P (X (n ) = x ) Px y = Py x P
�
X (n ) = y

�

⇐⇒ πx Px y = Py x πy .

Summing the last expression with respect to y we also see that π is an invariant state.
If we now assume thatπ satisfies the detailed balance equation we can infer from the

previous discussion that π is an eigenvector of (Px y ) with corresponding eigenvalue
1. Therefore, for any collection of states x1, . . . , xl ∈ X and any n , m ∈ N we find by
successively applying the detailed balance condition

P (X (n ) = x1 and . . . and X (n + l ) = xl ) =
πx1

Px1 x2
· · ·Pxl−1 xl

= Px2 x1
πx2
· · ·Pxl−1 xl

= · · ·= Px2 x1
· · ·Pxl xl−1

πxl

=P (X (m ) = xl and . . . and X (m + l ) = x1) .

Due to this relation, we can infer that the random variables (X (n ), . . . , X (n + l )) and
(X (k −n ), . . . , X (k −n− l )) have the same distribution by choosing m = k −n− l for any
l ∈N, which in turn implies reversibility.

Given a reversible Markov process on some separable state space X with invariant
state π, we can introduce an inner product between functions on X by

( f , g )π =
∑
x∈X

fxπx g x .

The transition matrix (Px y ) acts on a function f via matrix multiplication. In fact, the
operator (Px y ) is self-adjoined on this function space, which results from

(P f , g )π =
∑
x∈X

(P f )xπx g x

∑
x ,y ∈X

fy Px yπx g x =
∑
y ∈X

fyπy (P g )y = ( f , P g )π .

So we can use the theory of self-adjoined operators in order to analyze the spectral
properties of the transition matrix. In particular, for any probability vector ψ ∈ X we
can consider the spectral measures µψ(dλ) =

∑
x ,y ∈X ψxψy Ex y (dλ) induced by the

projector valued measure E corresponding to (Px y ). Note that because the transition
matrix is self-adjoined but can have negative eigenvalues those spectral measures are
supported on the interval [−1, 1].

We can now express the overall probability pn to return to an initial distribution φ
after n time steps in terms of the moments of the spectral measure

〈φ , (Px y )
nφ 〉=

∫ 1

−1

λn µφ(dλ) .
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By choosing φ equal to the vector δx ,0 that gives weight one to the initial state 0 ∈ X
we get the overall return probability in the n th step pn from (4.8). Therefore, the cor-
responding generating function is given by an expression similar to the Stieltjes trans-
form of a probability measure on the unit circle (see (2.9))

bp (z ) =
∑

n

pn z n =

∫ 1

−1

λn z n µ0(dλ) =

∫ 1

−1

µ0(dλ)
1−λz

.

Our recurrence criterium from lemma 4.1.1 therefore implies that the state 0 is recur-
rent if and only if

lim
z→1−

∫ 1

−1

µ0(dλ)
1−λz

=∞ .

Provided that the state 0 is recurrent, we might also investigate the expected first return
time τC :=

∑
n nqn . Expressing τC in terms of the generating function bq (z ) from (4.10)

we obtain

τC =
∑

n

nqn =
dbq (z )

dz

����
z=1

= lim
z→1−

bq (1)− bq (z )
1− z

= lim
z→1−

�
(1− z )bp (z )�−1

. (4.12)

The limit in the last expression can be evaluated by dominated convergence and since
the function 1−z

1−λz converges to zero for z → 1− for all λ 6= 1 it follows that

τC = lim
z→1−

∫ 1

−1

1− z

1−λz
µ0(dλ) =µ0({1}) .

In other words, the expected return time of a reversible Markov process is given by the
weight that is assigned by the spectral measure µ0 to the eigenvalue 1.

4.1.3. Recurrence without disturbance

An approach to a definition of recurrence properties that avoids any disturbance of
the system was introduced in [ŠJK08]. It translates the concept of recurrence in the
context of classical Markov chains to the scenario of quantum walks. As explained in
the previous subsection, a classical Markov chain is recurrent if and only if the first
return probabilities sum up to one. By lemma 4.1.1 this is equivalent to the divergence
of the sum of the probabilities pn to return in exactly n steps to the initial state. In
close analogy to this classical case it was suggested in [ŠJK08] to consider the series pn
of probabilities to return in the n th step

pn = | 〈φ ,U nφ 〉|2 (4.13)

and to consider a pair (U ,φ) consisting of a unitary operator U and an initial state φ
recurrent if and only if the series

∑
n pn diverges. We call this property SJK-recurrence.

It is clear that by the very nature of quantum theory the connection to the first return
probabilities will be lost, since we simply cannot condition on specific properties of a
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path without a measurement, which would disturb the system. As a way out it is noted
in [ŠKJ08] that the divergence of

∑
n pn is equivalent to the condition

R S J K = 1−
∏

n

(1−pn ) = 1 .

There is also an operational meaning of this quantity [ŠKJ08]: “Take a system and mea-
sure the position of the walker after one time step at the origin, then discard the system.
Take a second, identically prepared system and let it evolve for two time steps, measure
at the origin, then discard the system. Continue similarly for arbitrarily long evolution
time. The probability that the walker is found at the origin in a single series of such
measurement records is the Pólya number [i.e., R S J K ].”

This definition of R S J K ensures that in analogy to the classical case the sum of the pn
determines whether a process is recurrent. On the other hand the simple operational
meaning in terms of paths is lost. Instead to evaluate this criterion we have to prepare
and measure a large ensemble of systems and in particular do not check whether the
particle already returned to the initial state some time prior to the measurement.

In order to establish comparability between this and our notions of recurrence, we
finish this section with a characterization of SJK-transience and recurrence in terms of
the spectral measure of the initial stateφ and the unitary operator U .

Lemma 4.1.3. A pair (U ,φ) is SJK-transient if and only if the spectral measureµ is abso-
lutely continuous with a square integrable density. Otherwise the pair is SJK-recurrent.

Proof. Unitarity of U implies that its spectrum is a subset of T and therefore we can
express the Fourier coefficients of its spectral measure µn for n ≥ 0 as

µn =

∫
µ(d u )u n = 〈φ ,U nφ 〉 .

Using the identity µ−n = µn we see that the pair (U ,φ) is not SJK-recurrent and there-
fore SJK-transient if and only if the Fourier coefficients of µ are square summable

∑
n

pn =
1

2
(1+

∞∑
n=−∞

|µn |2) .

This summability conditions implies via the Riesz-Fischer and the Plancherel theorem
that µ is absolutely continuous with respect to the Lebesgue measure m with a square
summable density, which finishes the proof.

In a similar spirit the asymptotic return probability

Pasy := lim sup
n

| 〈φ ,U n φ 〉|2

of one-dimensional quantum walks has been studied by several authors [KS10, KŁS13].
In this context the rather unfortunate term localization has been used for a quantum
walk with non vanishing asymptotic return probability. Note however that this kind
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of localization is not related to the notions of Anderson or dynamical localization as
discussed in section 2.5.2.

With the CGMV approach discussed in section 2.4.2 Cantero et al. were able to at-
tribute a non vanishing Pasy to the existence of a point mass in the spectral measure
of the initial state and the case Pasy = 0 to an absolutely continuous spectral measure,
provided that the existence of a singular continuous part can be excluded ([CGMV10,
CGMV12], see also section 5.2).

This concludes our overview on related results on the recurrence properties of quan-
tum walks.

4.2. Recurrence by absorption

In this section we continue our study of transition amplitudes and probabilities in the
context of self-transitions. This means that we limit our analysis to a single target state,
which furthermore is identical to the initial stateφ.

It turns out that this restricted case has enough structure to obtain a complete char-
acterization of recurrent and transient initial states of a unitary operator in terms of
their spectral measure. In fact, we obtain a dynamical distinction between the abso-
lutely continuous and the singular part of the spectral measure, which supplements the
distinction obtained by the RAGE theorem 2.2.6, which distinguishes the continuous
and the point spectrum.

Given an initial state φ ∈H and the unitary operator U the modified time evolution
operator eU defined in (4.2) takes now the simple form

eU = (1− |φ〉〈φ|)U .

In addition, we obtain for the first return probabilities, which correspond to the first
transition probabilities from (4.3),

qn = sn − sn+1 = ‖Ũ nφ‖2−‖Ũ n+1φ‖2 = | 〈φ ,U Ũ nφ 〉|2 =: |an |2 . (4.14)

Hence, in contrast to (4.4) we only have to deal with a single sequence of first return
amplitudes an . The total return probability R can be defined analogously to the total
transition probability T in (4.5) as

R :=
∞∑

n=1

qn =
∞∑

n=1

|an |2 . (4.15)

This discussion motivates the following definition of recurrent and transient behaviour
of an initial stateφ with respect to a unitary operator U .

Definition 4.2.1 (recurrence). Let H be a separable Hilbert space. A pair (U ,φ), with
φ ∈ H and U a unitary operator acting on H, is called recurrent if and only if the total
return probability R is equal to one. Otherwise it is called transient, which by (4.15)
implies that the asymptotic survival probability s∞ is strictly positive.
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In order to decide the recurrence behavior of a pair (U ,φ)we have to study the total
return probability R of the system. Similar to (4.6) we construct the generating function
corresponding to the first return probabilities an

ba (z ) =
∞∑

n=1

an z n = z 〈φ ,

�
U

∞∑
n=0

z nŨ n

�
φ 〉 . (4.16)

This leads us to the study of the generating function of the operator-sequence (Ũ n )n or
equivalently to the study of the Neumann series of the operator zŨ :

G̃ (z ) =
∞∑

n=0

Ũ n z n = (1− zŨ )−1 , for |z |<1. (4.17)

The operator G̃ (z ) is, up to a multiplication by (−z−1), equal to the resolvent of Ũ , so
it comes at no surprise that we can derive a Krein’s formula expressing the Neumann
series of zŨ as a function of the Neumann series of the operator zU . The second re-
solvent formula therefore implies the relation [RS80]

G (z )− G̃ (z ) = z G̃ (z )(U −Ũ )G (z ) .

The difference operator Ũ −U in (4.17) is equal to the rank one operator |φ〉〈φ|U and
therefore we obtain

G (z )φ = G̃ (z )
�
1+ z |φ〉〈φ|U G (z )

�
φ = G̃ (z )φ

�
1+ z 〈φ|U G (z )|φ〉� . (4.18)

The scalar product containing the unperturbed operator G (z ) on the right-hand side of
this equation has a simple expression in terms of the Stieltjes transform bµ(z ) (see (2.9))

z 〈φ|U G (z )|φ〉=−1+

∫
µ(d u )

�
1− z u

1− z u
+

z u

1− z u

�
= bµ(z )−1 .

Solving (4.18) for G̃ (z )φ and taking the scalar product with U ∗φ implies the relation

z 〈φ ,U G̃ (z )φ 〉= bµ(z )−1

bµ(z ) .

Returning to (4.16) and using the connection between Stieltjes transform and Schur
function (see relation (2.10)) we find

ba (z ) = z 〈φ ,U G̃ (z )φ 〉= bµ(z )−1

bµ(z ) = 1− bµ(z )−1 = z f (z ) . (4.19)

Hence, the generating function of the first return amplitudes is basically the Schur
function of the spectral measure µ. This means in particular that we obtain a dynam-
ical interpretation of the Taylor coefficients of f as the first return amplitudes an . In
addition, (4.19) reminds us of the renewal equation for classical Markov chains. In or-
der to compare classical and quantum scenario, table 4.1 lists the key quantities and
their relations in both cases. It is interesting to note that the structure of the equations
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Table 4.1.: Comparison between classical and quantum recurrence

classical quantum

return in n steps probability amplitude
pn µn

generating function bp , see (4.10) bµ(z ), see (2.9)

first return in the n th step probability amplitude
qn an

generating function bq , see (4.10) ba = z f , see (4.16)

renewal equation bq = 1− 1
bp ba = 1− 1

bµ(z )

and the dependencies between the quantities from the classical situation are repro-
duced in the quantum case, but rather on the level of the amplitudes than on the level
of the probabilities. In both cases the renewal equation between first return and overall
return in the n th step takes the same form. Compare this with Feynman’s famous ex-
planation of quantum mechanical principles: "In quantum theory add amplitudes and
square at the end to get probabilities" [Fey66]. This is indeed what happens here, the
renewal equation is valid for the amplitudes rather than the probabilities in the quan-
tum case. However, this metaphor breaks down, when we consider Feynman’s defini-
tion of a monitored process in the context of the double slit experiment, where one first
squares the amplitudes and then adds them up. From this perspective our approach
would be the un monitored one, which does not at all comply with our discussion in
section 4.1.3.

4.2.1. Spectral characterization of recurrence

Given a pair (U ,φ)of unitary operator and initial state we would like to decide, whether
the system is recurrent or transient. In this subsection we formulate a straightforward
spectral criterion deciding this question, which can also be expressed in terms of the
Schur function of the spectral measure.

Theorem 4.2.2. Let H be a separable Hilbert space. Given a unitary operator U on H
and an initial state φ ∈H, let µ be the spectral measure of φ with respect to U then the
following are equivalent

1. The pair (U ,φ) is recurrent.

2. The Schur function f of µ is inner.

3. µ has no absolutely continuous part.

Before we prove the theorem let us compare its content with respect to other results
about the dynamical implications of the spectral measure of a state φ as discussed in
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section 2.2.1. We have shown that an initial state can only be recurrent if its spectral
measure contains no absolutely continuous part. In this respect, we have found a con-
verse to (2.3) stating that the absolutely continuous part of an initial state eventually
leaves any finite subspace.

The RAGE theorem (see theorem 2.2.6) provides in comparison a distinction between
the continuous and pure point part of the spectrum. Note that if we combine the RAGE
theorem and theorem 4.2.2 we are able to differentiate between all three spectral com-
ponents in terms of their implied recurrence and localization properties.

In summary, theorem 4.2.2 complements the classical results on the dynamical sig-
nificance of the spectral measure in the sense that it gives a dynamical characteriza-
tion of states with purely singular and purely absolutely continuous spectral measure
in terms of their recurrence behaviour.

Let us also remark that in the classical case the concept of recurrence is especially
useful, because if the considered Markov chain is irreducible, either all or none of the
states is recurrent. In this context, irreducibility means that independently of the start-
ing point, all other states of the system are accessible for the evolution [KT75]. The
quantum analogue of the set of all accessible points is the subspace spanned by the or-
bit {U nφ} of an initial state under the time evolution. Due to the spectral theorem it is
clear that a general unitary operator U cannot be irreducible in the classical sense, be-
cause the spectral decomposition of U already gives orthogonal subspaces that cannot
be reached from each other. However, since we know from section 2.2 that the different
spectral components of U correspond to orthogonal subspacesHx x ofH and which are
U invariant, we obtain the following corollary of theorem 4.2.2.

Corollary 4.2.3. If (U ,φ) is recurrent then (U ,ψ) is recurrent for allψ ∈ span
�

U nφ
	

.

Note that the inverse for transient states is only true if the spectral measure µ was
purely absolutely continuous.

Proof of theorem 4.2.2. The equivalence of the last two points follows from the theory
of Schur functions of measures on the unit circle (see lemma 2.3.7 and subsequent re-
mark) and are only included to have two different criteria that can be checked for a
given system. We will now show the equivalence between 1 and 2.

According to our definition of recurrence in 4.2.1 we have to study the total return
probability R =

∑
n |an |2. From (4.19) we know that ba (z ) is closely related to the Schur

function f (z ) of the spectral measure µ. Hence, we can convert the requirement R = 1
for recurrence into a condition on the Schur function: Fix r < 1, then we can consider
the series

ba (r e iθ ) =
∞∑

n=1

an r n e iθn = r e iθ f (r e iθ ) (4.20)

as a Fourier series of f (r ·). By the Plancherel theorem it is clear that the norms of the
respective functions have to coincide which amounts to the relation

∞∑
n=1

r 2n |an |2 = ‖ f ‖2 =
r 2

2π

∫ π

−π
dθ | f (r e iθ )|2 . (4.21)
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To determine R we have to study the limit of this expression for r → 1−. Since f is a
Schur function, we know that | f (x )| is bounded from above by one for all x in the unit
disc. Therefore, if (4.21) is equal to the maximum 1 in the limit r → 1− we must have
| f (r e iθ )| → 1 for almost all θ , but by definition 2.3.1 this exactly means that f has to be
an inner function.

In comparison with our characterization of SJK-recurrence (see 4.1.3) theorem 4.2.2
also shows that there is a difference between these two notions of recurrence. For ex-
ample in the SJK case any point mass contained in the spectral measure suffices to
make the system recurrent whereas in our definition the absence of absolutely contin-
uous spectrum is required which also fits very well with the result from the Riemann-
Lebesgue-lemma. We illustrate this difference in the following explicit example.

4.2.2. A simple example

The example we study in this section appears slightly artificial, but certainly clarifies
the distinction between our definition of recurrence in terms of an active measurement
step and the SJK-definition from section 4.1.3. As our toy model we consider the Hilbert
space H of the doubly infinite chain `2(Z) with one additional dynamically decoupled
lattice site, which we call ?. Therefore, H is given by the direct sumC⊕ `2(Z).

The time evolution U we want to study acts trivially on the first summand of this
direct sum and is given by the right shift on the second factor, which is unitary on the
square summable sequences. In the standard basis {δ?} ∪ {δx ; x ∈Z} the action of U
is given by

Uδ? =δ? and Uδx =δx+1 for x ∈Z.

Fixing the initial stateφ =αδ?+βδ0, with |α|2+ |β |2 = 1, we find for the n th step return
probabilities pn from (4.13)

pn = | 〈φ ,U nφ 〉|2 = ��δ0,n + |α|2(1−δ0,n )
��2 . (4.22)

Next we show by induction that for this example Ũ nφ can be expressed in terms of α
and β as

Ũ nφ =βδn +α|β |2nδ?− |α|2β
n−1∑
k=0

|β |2(n−1−k )δk . (4.23)

To this end, we first note that the projection of the additional lattice site |?〉 onto the
initial stateφ turns out to be

|φ〉〈φ|δ? =
�
|α|2|δ?〉〈δ?|+αβ |δ0〉〈δ?|+αβ |δ?〉〈δ0|

�
|?〉= |α|2δ?+αβδ0 .

Therefore, Ũφ is given by

Ũφ = (1− |φ〉〈φ|)Uφ =βδ1+α|β |2δ?− |α|2βδ0 ,
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which establishes the base case. Now the induction step from n to n +1 can be carried
out by applying Ũ to Ũ nφ, using (4.23) and shifting indices. Using the normalization
condition |[|α]2+ |[|β ]2 = 1, we can evaluate the expression for the survival probability
sn and its limit s∞ to be equal to

s∞ = lim
n→∞ sn = lim

n→∞‖Ũ
nφ‖2 = lim

n→∞
2|β |2+ |α||β |4n

1+ |β |2 =
2|β |2

1+ |β |2 .

As one might have expected, the asymptotic survival probability is nonzero whenever
the initial state φ has some overlap β with the state δ0, which is orthogonal to the in-
variant state δ?. This component of φ is then shifted to infinity by U . Therefore, all
states with β 6= 0 are transient and only the initial stateφ =δ? is recurrent according to
definition 4.2.1.

In contrast we find from (4.22) that for n > 0 the return probabilities pn are all equal
to |α|4. Therefore,

∑
n pn diverges, whenever α is nonzero, and by section 4.1.3 this

implies that all pairs (U ,φ) are SJK-recurrent, with the only exception of the initial state
φ =δ0.

After we have established the difference between our recurrence definition and the
SJK notion from [ŠJK08]we turn our attention to expected return times in the next sec-
tion.

4.3. Expected recurrence time

Let us assume that the pair (U ,φ) is recurrent, so the total return probability R is equal
to one. This in turn implies that the first return probabilities |an |2 according to (4.14)
constitute a probability distribution on the integers. What are the properties of this
probability distribution? A very natural quantity to analyze is the expected return time
of the initial stateφ given by

τ=
∞∑

n=1

|an |2n . (4.24)

It turns out that τ is either an integer or infinite. This is rather surprising given the fact
that the single first return amplitudes an depend continuously on the spectral measure
µ, so one could suspect that a small change inµmight also imply only a small change in
τ. This intuition fails because the expected return timeτ is computed as an asymptotic
expression and small alterations in the an nevertheless add up eventually. As it turns
out, we can give a topological explanation of this quantization effect by identifyingτ−1
with the winding number of the phase of the Schur function of the probability measure
around the unit circle.

As an example, we consider the probability measure µ2(x ) = 1/2(δix +δ1x ) consist-
ing of two equally weighted point masses at 1 and i. The left panel of figure 4.1 shows
that the corresponding Schur function has a single zero inside the unit circle and the
winding number of the phase of the Schur function around the unit circle is equal to
1, which implies τ = 2. The right panel of figure 4.1 depicts the effect of a small addi-
tional point mass. The perturbed measure is of the formµε(x ) = (1−ε)µ2(x )+εδ−1x and
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there appears an additional zero in the Schur function near the support of this addi-
tional point mass. In addition, the winding number of the phase of the Schur function
increases to 2, which means that the expected return time τ is equal to 3.

The precise relation between the number of point masses in the probability measure
and the expected return time τ is contained in the following theorem.

Theorem 4.3.1. Let the pair (U ,φ) be recurrent with spectral measureµ, Schur function
f and expected return time τ ∈R∪∞. Then the following is equivalent

(1) τ<∞.

(2) f is a rational function.

(3) µ is equal to the sum of n <∞ distinct point measures with non-zero weights.

Moreover, τ= n, and the polynomial degree of numerator and denominator of the Schur
function is n −1.

Proof of theorem 4.3.1. We will take the route 3⇒ 2⇒ 1⇒ 3 in order to establish the
result.
(3⇒ 2) Since the probability measureµ consists of a finite number of point measures at
ui with weights wi its Stieltjes function takes the form of a sum of n simple summands,
which can be expressed as a rational function in the following way

bµ(z ) =
n∑
k

wk

1−uk z
=

∑n
k wk

∏n
l=1,l 6=k (1−ul z )∏n

k=1(1−uk z )
=

P (z )
Q (z )

,

where the two polynomials P (z ) and Q (z ) are of degree n−1 and n , respectively. Using
the relation between Stieltjes-transform and Schur function (see (2.10)) this implies

f (z ) =
z−1(P (z )−Q (z ))

P (z )
. (4.25)

The numerator of this expression is also a polynomial of degree n−1, since P (0)/Q (0) =∑
k wk = 1 and therefore the difference of P (z ) and Q (z )has no constant term. This im-

plies that f is indeed a rational function. Note that if numerator and denominator had
a common root, so would P (z ) and Q (z ). But this would be a contradiction to bµ(z ) hav-
ing n distinct poles on the unit circle, because µ consists of exactly n point measures.
So the degree of both numerator and denominator in (4.25) is n − 1 as claimed in the
theorem.
(2⇒ 1) Since in addition to (2) we assume the pair (U ,φ) to be recurrent, we know by
theorem 4.2.2 that the Schur function f will be rational and inner. According to lemma
2.3.3 we can therefore decompose f as a finite Blaschke product of the form

f (z ) =β
n−1∏
k=1

Bk (z ) =β
n−1∏
k=1

αk − z

1−αk z
, (4.26)

with |αk | < 1 and |β | = 1. Note that we have chosen the upper limit of the product to
be consistent with the degree of P (z ) and Q (z ) in the previous part of the proof. This

101



4. Recurrence properties of discrete unitary evolutions

F
igu

re
4.1.:In

fl
u

en
ce

o
fan

ad
d

itio
n

alp
o

in
tm

ass
w

ith
sm

allw
eigh

to
n

th
e

w
in

d
in

g
n

u
m

b
er

o
fth

e
p

h
ase

o
fth

e
Sch

u
r

fu
n

ctio
n

.
T

h
e

red
sp

h
eres

atth
e

b
o

tto
m

o
fb

o
th

im
ages

in
d

icate
th

e
p

o
sitio

n
s

o
fth

e
p

o
in

tm
asses

an
d

th
e

rad
iio

fth
e

sp
h

eres
sign

ify
th

eir
w

eigh
ts.T

h
e

su
rface

in
sid

e
th

e
fram

ed
b

ox
sh

ow
s

th
e

ab
so

lu
te

valu
e

o
fth

e
Sch

u
r

fu
n

ctio
n

an
d

th
e

circle
ato

p
th

e
b

ox
rep

resen
ts

th
e

valu
e

o
f

p
h

ase
o

f
th

e
Sch

u
r

fu
n

ctio
n

o
n

th
e

u
n

it
circle.

Left
p

an
el:

T
h

e
co

rresp
o

n
d

in
g

p
ro

b
ab

ility
m

easu
re
µ

co
n

sists
o

f
tw

o
p

o
in

t
m

asses
o

f
eq

u
alw

eigh
t

1/2
at

th
e

p
o

sitio
n

s
1

an
d
i

o
n

th
e

u
n

it
circle.

T
h

e
u

n
iq

u
e

zero
o

f
th

e
Sch

u
r

fu
n

ctio
n

lies
o

n
th

e
lin

e
co

n
n

ectin
g

b
o

th
p

o
in

ts.
R

igh
t

p
an

el:
A

sm
allp

o
in

t
m

ass
o

f
w

eigh
t

.02
is

ad
d

ed
to
µ

at
th

e
p

o
in

t(−
1)o

n
th

e
u

n
it

circle.
T

h
e

ad
d

itio
n

alzero
in

th
e

Sch
u

r
fu

n
ctio

n
ap

p
ears

n
ear

th
is

ad
d

itio
n

alp
o

in
t

m
ass

an
d

th
erefo

re
clo

se
to

th
e

u
n

it
circle,as

d
o

es
th

e
ad

d
itio

n
alw

in
d

in
g

in
th

e
p

h
ase

o
f

th
e

Sch
u

r
fu

n
ctio

n
,w

h
ich

in
creases

th
e

exp
ected

retu
rn

tim
e
τ

fro
m

1
to

2.

102



4.3. Expected recurrence time

in turn implies by (4.20) that |ba (e iθ )|= 1 for all θ ∈T holds for the generating function
of the first arrival amplitudes. So by defining the periodic function g as

g (θ ) := ba (e iθ ) =
∞∑

n=1

an e iθn (4.27)

we know that g winds around the origin an integer numberω(g ) of times as θ is varied
from 0 to 2π. As a function with its range within the unit circle we can express g (θ ) lo-
cally as e iη(θ ) for some functionη. Thus, in order to computeω(g )we have to integrate
the angular velocity

∂ η(θ )
∂ θ

=−ig (φ)−1 ∂ g (φ)
∂ θ

= g (θ )

�
−i∂ g (θ )

∂ θ

�

and divide by 2π:

ω(g ) =
1

2π

∫ 2π

0

dθ g (θ )

�
−i∂ g (θ )

∂ θ

�
= 〈g ,−i∂ g

∂ θ
〉 . (4.28)

Using the Plancherel identity 〈û , v̂ 〉 = 〈u , v 〉 and noting that the Fourier coefficients
of ∂ g
∂ θ

can be determined from (4.27) to be ian n we find

ω(g ) =
∞∑

n=1

|an |2n =τ ,

so indeed τ is an integer.
To compute the exact value ofτwe make use of the Blaschke product representation

of g (θ ) = z f (z ) (see (4.26)). Since B k (z ) = Bk (z )−1 for |z | = 1 we can use the argu-
ment principle in (4.28) to compute τ. By definition |αk | < 1 in every Blaschke factor,
which implies that the function g (z ) has no poles inside the unit circle, but exactly n
zeroes, one from each of the factors in the Blaschke product and one additional zero
contributed by the multiplication by z . Hence, in total we proved τ= n .
(1 ⇒ 3) Actually we show the contrapositive, i.e. ¬3 ⇒ ¬1 or, more precisely, that if
µ is not composed of a finite number of point masses then the expected return time
τ is infinite. Note that if the measure µ is not given as a sum of point measures its
corresponding Schur function f does not admit a decomposition as a finite Blaschke
product.

Since we require the pair (U ,φ) to be recurrent, f is inner and therefore admits ac-
cording to lemma 2.3.3 a decomposition into a possible infinite Blaschke product and
a singular inner function fS I . Assume for the moment that fS I = 1, which implies

f (z ) = e iθ
∞∏

l=1

z −al

1−al z
.

Of course, we can pull out k −1 factors in this product in order to decompose f = f1 f2
into a finite Blaschke product f1 and an infinite product f2. From our discussion in the
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4. Recurrence properties of discrete unitary evolutions

previous paragraph it is clear that τ f1
= k . Assume for the moment that the expected

return time satisfies τ f1 f2
≥τ fi

for any pair of inner Schur functions f1 and f2. Then our
preceding discussion implies that τ f = τ f1 f2

≥ τ f1
= k for any k ∈N. Therefore τ f has

to be infinite.
In order to show the inequality we make use of the identity

lim
r→1−

1− r 2n

1− r 2 = n

and the connection between the total return probability R and the L2-norm of the
Schur function from (4.21). Inserting these two relations into the definition of τ f we
find

τ f =
∞∑

n=0

n |an |2 = lim
r→1−

∞∑
n=0

1− r 2n

1− r 2 |an |2 (4.29)

= lim
r→1−

∫ π

−π

1− r 2| f (r e it )|
1− r 2

dt

2π
= 1+ lim

r→1−
r 2

2π(1− r 2)

∫ π

−π
1− | f (r e it )|2 dt

where we used in the second step that recurrence implies
∑

n |an | = 1. Since an inner
function f by definition satisfies | f (z )| ≤ 1 we obtain the bound | f1(z ) f2(z )| ≤ | fi (z )| for
any pair of inner functions f1 and f2. Inserting this bound into (4.29) implies τ f1 f2

≥τ f1

as claimed.
In the case fS I 6= 1 we can employ lemma 2.3.4 to transform f into a Blaschke product

fξ for someξ ∈D. Using (2.6) we can express f in terms of fξ and obtain for the absolute
value of f the relation

1− | f (z )|2 = 1− |ξ− fξ(z )|2
|1−ξ fξ(z )|2

=
1− |ξ|2

|1−ξ fξ(z )|2
(1− | fξ(z )|2)

≥ 1− |ξ|2
(1+ |ξ fξ|)2

(1− | fξ(z )|2)≥
1− |ξ|
1+ |ξ| (1− | fξ(z )|

2) .

Inserting this bound into the expression of the expected return time τ f from (4.29) we
find

τ f ≥ 1+
1− |ξ|
1+ |ξ| lim

r→1−
r 2

2π(1− r 2)

∫ π

−π
1− | fξ(r e it )|2 dt ≥ 1− |ξ|

1+ |ξ| τ fξ .

If fξ is an infinite Blaschke product our previous argument ensures τ fξ =∞, which by
the last inequality then also holds for τ f . However, if fξ would be a finite Blaschke
product, then by the relation between f and fξ the function f would be rational and
therefore also a finite Blaschke product, which we excluded by assumption. So indeed
τ f =∞, which finishes the proof.

In the remainder of this section we define an expected return time for the SJK-case
and compare it to lemma 4.3.1.
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4.3. Expected recurrence time

4.3.1. Expected return time in the SJK-case

As discussed in section 4.1.3 the definition of SJK-recurrence via the quantum mechan-
ical probabilities

pn = | 〈φ ,U n φ 〉|2 (4.30)

to return exactly in the n th time step explicitly avoids the notion of first return proba-
bilities. Therefore, the canonical definition of an expected return time via (4.24) is not
available in this case. We investigate two other seemingly natural definitions of an ex-
pected return time in this section and show that one of them would lead to negative
first return probabilities.

The approach for the SJK-criterion has been to take the quantum mechanical prob-
abilities pn and to apply to them the classical Pólya criterion of the diverging series∑

n pn . Therefore, it seems to be natural to draw again on the classical relations, namely
the renewal equation from (4.11), in order to define an expected return time. Moreover,
in our excursion to the theory of the recurrence properties of classical Markov chains in
section 4.1.2 we derived an expression for the expected return time that only depended
on the n th-step return probabilities pn (see (4.12)). Therefore, one possible candidate
for τPolya is

τPolya :=
∑

n

nqn = lim
z→1−

�
(1− z )bp (z )�−1

. (4.31)

Let us restrict our attention to the case where the spectral measure of φ with respect
to U is given by a finite sum of point measure with respective masses mk . In that case,
the scalar products 〈φ ,U nφ 〉 take the simple form of a linear combination of phase
factors

∑
k mk exp(iθk ) and we can further evaluate (4.31)

τPolya = lim
z→1−

 ∞∑
n=0

∑
k ,l

(1− z )rk rl e in (θk−θl )z n

!−1

(4.32)

= lim
z→1−

 ∑
k ,l

rk rl
1− z

1− e i(θk−θl )z

!−1

=
1∑

k m 2
k

.

Let us stress that in contrast to the Markov case the quantity τPolya has no operational
interpretation in the quantum case. Due to the renewal equation (4.11) it is also pos-
sible to define corresponding first return probabilities qn via the relation bq (z ) = 1 −
(bp (z ))−1. However, as we will see in the example below, these first return probabilities
qn need not to be positive numbers.

In our second approach to define an expected return time in the SJK-case we con-
sider a Markov process on the integers such that the state n evolves into state 0 with
probability pn and into the state n + 1 with probability n − 1. Starting from the state 1
we obtain the following expression for the probabilities qn of the events, first return to
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Figure 4.2.: The three sets of first return probabilities |an |2 (red), q SJK
n (blue) and qn

(green) for the pair (Uπ/4, (1, 0)). Left panel: First return probabilities for
the first 20 time steps. The sequence of the qn (green curve) can drop be-
low zero. Right panel: Accumulated first return probabilities. There is no
inequality between the three quantities valid for all time steps.

0 in step n , of this Markov process

q SJK
0 = 0 (4.33)

q SJK
1 = p1

q SJK
n = pn

n−1∏
l=1

(1−pl ) n > 1

with the corresponding expected return timeτSJK =
∑

n nq SJK. This leaves us with three
different definitions of first return probabilities and their corresponding expected re-
turn times for any pair (U ,φ): the modulus square of the first return amplitudes |an |2
according to 4.3 and the two quantities q SJK

n and qn derived from the sequence (pn )n .
Next we analyse the behaviour of those quantities in a specific example.

A simple example

In order to illustrate the difference between the three sets of first return probabilities
we derived in this section, we study a simple toy model in C2. To this end, we choose
the unitary operator U equal to the real rotation matrix

Uθ :=

�
cosθ −sinθ
sinθ cosθ

�

and some initial vectorφ = (a , b ) ∈C2. By explicitly inverting the 2×2 matrix (1− zUθ )
we can compute the Stieltjes transform bµ that is given by

bµ= 〈φ , (1− zUθ )
−1 φ 〉= 1− z (cosθ +2iℑ(a b )sinθ )

1+ z 2−2z cosφ
.
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Figure 4.3.: Expected return times τ = τPolya (red) and τSJK (blue, first 400 summands)
depending on the rotation angle θ .

According to the identity (2.10) we can in turn obtain from this expression the Schur
function f corresponding to this dynamics, which evaluates to

f (z ) =
1

z

bµ(z )−1

bµ(z )
=

z − cosθ −2iℑ(a b )sinθ

z (cosθ −2iℑ(a b )sinθ )−1
.

From Schur function and Stieltjes transform we can now compute the three sets of first
return probabilities |an |2, q SJK

n and qn . Figure 4.2 depicts all three quantities for the
particular case of θ = π/4 and for the initial state φ = (1, 0). We see immediately that
the derived first return probabilities qn can drop below zero, which makes the corre-
sponding expected return time a questionable definition.

Furthermore, for this specific example we find U 2φ = (0, 1), µ2 = 〈φ ,U 2φ 〉 = 0. In
addition, the sequence of return probabilities pn is given by (1, 1/2, 0, 1/2, . . . ). However,
this sequence cannot represent the return probabilities of a classical Markov process,
because if there is some nonzero probability for the system to remain in the initial state,
this has to be true in any time step, meaning that p2 = 0 is impossible. In quantum
information theory Uπ/4 is called a square root of the NOT-gate [Bra94], because twice
applied to a computational basis state it flips its logical value, an operation impossible
to implement with two identical classical processes.

In addition, we can infer from figure 4.2 that there is no general inequality between
the three different first return probabilities. Indeed, which of the three definitions as-
signs a higher probability to the event arrival before some time t does depend on the
considered time t .

To finish our analysis of this example we also compute the three expected return
times τ, τPolya and τSJK. Note that the eigenvectors of U are independent of the rota-
tion angle θ and therefore their overlap with the initial state φ = (1, 0) is also fixed and
nonzero in both cases. By theorem 4.3.1 this implies that the expected recurrence time
τ is equal to the number of distinct eigenvalues of U , which is 2 for all θ except for the
extreme cases θ ∈ {0,±π}. In these two remaining instances U has a single degenerate
eigenvalue, which gives τ= 1.
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4. Recurrence properties of discrete unitary evolutions

In order to determine τPolya, we note that both eigenvectors of U have overlap 1/2
with the vector φ. This overlap also equals the weight of the two point masses in the
spectral measure ofφ with respect to U . Therefore, by (4.32) we obtain for all τPolya = 1
for θ ∈ {0,±π} and τPolya = (1/4+ 1/4)−1 = 2 for all other θ . Hence, τPolya = τ in this
example.

Before computing τSJK we have to determine the first return probabilities q SJK
n via

(4.33). Using the relation pn = cos2(nθ )we find

τSJK = 1+
∑
n≥1

n∏
k=1

sin2(kθ ).

The dependence of the rotation angle on the three expected return times τ, τPolya

and τSJK is depicted in figure 4.3. We note that there is again no general inequality
between the three quantities. Instead, by choosing different rotation angles, we can
achieve τ < τSJK as well as τSJK < τ. Varying the initial state φ in such a way that it has
no longer an equal overlap with both eigenvectors, we can also realize τPolya <τSJK.

It follows from lemma 4.1.3 that any point mass in the spectral measure makes a pair
(U ,φ) SJK-recurrent. In the remainder of this section we strengthen this result and
show that the existence of a point mass already implies a finite expected return time
τSJK.

Lemma 4.3.2. Let µ be the spectral measure corresponding to a pair (U ,φ) of unitary
operator U and initial stateφ. If µ contains a point mass then τSJK is finite.

Proof. Given the sequence of arrival probabilities pn = | 〈φ ,U n φ 〉|2 we can equiva-
lently consider the corresponding survival probabilities sn =

∏n
n=1(1− pk ). Together

with the first return probabilities the survival probabilities satisfy the relation qn + sn =
sn−1, which by summation implies

m∑
n=1

nqn =
m−1∑
n=0

(n +1)sn −
m∑

n=1

n sn =
m−1∑
n=0

sn −m sm ≤
m−1∑
n=0

sn .

Employing this inequality together with the relation e α ≥ 1+α valid for all α ∈R and
the definition of the sequence pn according to (4.30) we find for the expected return
time τSJK

τSJK =
∞∑

n=1

nqn ≤ 1+
∞∑

n=1

sn = 1+
∞∑

n=1

n∏
l=1

(1−pn )≤ 1+
∞∑

n=1

e −
∑n

l=1 pn . (4.34)

Since the pn are given by |µn |2, i.e. the moments of the spectral measure µ, the unitary
version of Wieners theorem (A.0.1) tells us that

lim
n→∞

1

n

n∑
l=1

pl = lim
n→∞

1

n

n∑
l=1

|µn |2 =µp p (T) .

By assumption µ does contain at least one point mass with weight m1 > 0. Hence, we
can find some n0 ∈N such that for all n ≥ n0 the finite sums are strictly bounded away
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4.4. Variance of finite expected recurrence times

from zero, i.e.
∑n

l=1 pl ≥M > 0. Inserting this into (4.34) we obtain the bound

τSJK ≤ 1+Cn0
+
∞∑

n=n0

e −M n ,

with some constant Cn0
depending on our choice of M . Summability of exp(−M n ) for

M > 0 finishes the proof.

4.4. Variance of finite expected recurrence times

In this section we continue our study of the expected return time τ of a discrete time
unitary evolution and analyze its variance. We restrict our attention to recurrent sys-
tems with a finite expected return time. According to theorem 4.3.1 this means that
the spectral measure µ of φ consists of n ∈ N mass points at positions ui ∈ T with
corresponding weights mi . In this case the Schur function can be expressed as a finite
Blaschke product of n −1 factors (see (2.5)) and the Stieltjes transform is given by

bµ(z ) =
n∑

k=1

mk

1−uk z
.

We have seen in section 4.3 that the expected return time jumps if we add or subtract
a mass point from the measureµ independently of its corresponding weight. As we will
show in this section this is accompanied by a divergent variance. Our arguments will
be based on the following lemma that expresses the variance ofτ in terms of the zeroes
αk of the Schur function.

Lemma 4.4.1. Let f (z ) =
∑

k a k z k−1 be a rational Schur function and α1, . . . ,αn−1 ∈ D
its zeroes. The variance of the expected return time satisfies

Vτ =
∑

k

k 2|ak |2−
 ∑

k

k |ak |2
!2

= 2
∑
l ,k

αlαk

1−αlαk
. (4.35)

Before providing the proof of this lemma we discuss how it allows us to understand
the behaviour of Vτ. In a first step we want to know, when the variance becomes mini-
mal. To this end we rewrite (4.35) using the geometric series to obtain

Vτ =
∑
l ,k

∞∑
n=0

αn+1
l αn+1

k =
∞∑

l=1

�����
n−1∑
k=1

αl
k

�����

2

. (4.36)

To minimize this expression we have to guarantee that the power sums pl =
∑

k α
l
k are

identically zero for all l . The elementary symmetric polynomials el (α1, . . . ,αn−1) satisfy
for l ≥ 1 the relation

el =
1

l

l∑
k=1

(−1)k−1el−k pk ,
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4. Recurrence properties of discrete unitary evolutions

which implies that el has to vanish, too (see [Mac95]). If we now consider the decom-
position

n−1∏
k=1

(z −αk ) = z n−1− e1z n−2 . . . (−1)n−1en−1 = z n−1 ,

we find that the Schur function f (z ) has to be of the form β z n−1 with |β | = 1, which
represents a spectral measure with n equal point masses at the n th root of β . Such a
measure corresponds to a clock unitary, which cyclically maps the basis states of one
specific basis into each other. If we start in one of those basis states, it takes exactly
n applications of the operator to return to the initial state, which clearly has zero vari-
ance. In addition, for a fixed number of mass points, a small variance also implies small
αk .

In the other extreme, we can obtain a divergent variance if one of the zeroesαl of the
Schur function approaches the unit circle. In that case the modulus of the correspond-
ing αl ′ tends to one, which implies that the term l = k = l ′ in (4.35) diverges. Since the
other terms stay finite this implies a diverging variance Vτ.

One way for this to happen is that the number of point masses n in the measure and
equivalently the number n − 1 of zeroes in the Schur function changes. There are two
limiting processes to realize such a behaviour. We can either merge two different point
masses to one, which corresponds to a limit uk1

→ uk2
, or we can decrease the weight

of one point mass, which corresponds to a limit mk → 0. Both scenarios generate a
sequence of probability measures each with n mass points that weakly converge to a
limit measure µ with only n − 1 mass points. For the corresponding Schur function
this weak convergence implies uniform convergence on every disc around the origin
of radius (1− ε).

However, uniform convergence also implies that the number of zeroes of the func-
tion converges inside every such disc, therefore, the zero has to approach the unit circle
and the variance diverges. If in addition, the sequence of measures only changes inside
a specific region, as it is the case for the above described merging and weight-decrease
processes, we can repeat the uniform convergence argument for other parts of the unit
circle. This in turn implies that the convergence of this zero to the unit circle has to
happen in the vicinity of the two merging mass points or the mass point with decreas-
ing weight, respectively. This behaviour can also be observed in figure 4.1, where the
additional zero of the Schur function indeed appears close to the added point mass.

Note however that the connection between the concentration of zeroes of the Schur
function around the origin and low variance of the expected return time only holds
for a fixed number of point masses, because any estimate will explicitly depend on
the number of zeroes. An extreme case is given by the following example, where the
variance is minimal although all zeroes of the Schur function move towards the unit
circle. Consider the Schur function with zeroes αk = λe 2πk/(n−1) with k = 1, 2 . . . , n − 1.
Inserting this into (4.36) we see that the sum over the phase factors e 2πk/(n−1) to the
power l inside the absolute value vanishes if l is not a multiple of (n −1), in which case∑

r e 2πr = (n −1). Therefore, we obtain for the variance Vτ by adding and subtracting a
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Fi
gu

re
4.

4.
:B

eh
av

io
u

r
o

f
th

e
Sc

h
u

r
fu

n
ct

io
n

an
d

it
s

p
h

as
e

o
n

th
e

u
n

it
ci

rc
le

d
ep

en
d

in
g

o
n

th
e

re
la

ti
ve

p
o

si
ti

o
n

o
f

fo
u

r
eq

u
al

ly
w

ei
gh

te
d

p
o

in
tm

as
se

s.
T

h
e

u
p

p
er

ci
rc

le
sh

ow
s

th
e

w
in

d
in

g
o

ft
h

e
p

h
as

e
o

ft
h

e
Sc

h
u

rf
u

n
ct

io
n

ar
o

u
n

d
th

e
u

n
it

ci
rc

le
.

In
th

e
m

id
d

le
,t

h
e

ab
so

lu
te

va
lu

e
o

f
th

e
Sc

h
u

r
fu

n
ct

io
n

is
d

ep
ic

te
d

an
d

th
e

co
lo

u
re

d
sp

h
er

es
in

d
ic

at
e

th
e

p
o

si
ti

o
n

o
f

th
e

p
o

in
t

m
as

se
s

o
n

th
e

u
n

it
ci

rc
le

.
In

th
e

ri
gh

t
an

d
th

e
le

ft
p

an
el

,t
h

e
p

ro
xi

m
it

y
o

f
tw

o
re

sp
ec

ti
ve

ly
th

re
e

p
o

in
t

m
as

se
s

im
p

lie
s

th
at

o
n

e
re

sp
ec

ti
ve

ly
tw

o
ze

ro
es

o
ft

h
e

Sc
h

u
r

fu
n

ct
io

n
lie

n
ea

r
th

e
u

n
it

ci
rc

le
,w

h
ic

h
co

rr
es

p
o

n
d

s
to

a
h

ig
h

va
ri

an
ce

in
th

e
ex

p
ec

te
d

re
tu

rn
ti

m
e.

In
th

e
m

id
d

le
,w

h
er

e
th

e
m

as
s

p
o

in
ts

ar
e

m
o

re
ev

en
ly

d
is

tr
ib

u
te

d
,a

ls
o

al
lt

h
e

ze
ro

es
o

ft
h

e
Sc

h
u

r
fu

n
ct

io
n

ar
e

n
ea

re
r

to
th

e
o

ri
gi

n
.

111



4. Recurrence properties of discrete unitary evolutions

one in order to complete the geometric series in the second step

Vτ =
∞∑

l=1

�����
n−1∑
k=1

λe 2πk l /(n−1)

�����

2

= (n −1)2
∞∑

r=1

|λ|2r (n−1) =
(n −1)2|λ|2(n−1)

1− |λ|2(n−1) .

Choosing log |λ|2 =−3(n−1)−1 log(n−1)we see that the modulus of λ converges to one
for n→∞ and Vτ ∼ (n −1)−1→ 0.

Proof of lemma 4.4.1. We start with the connection between the Schur function and
the first return amplitudes, but to simplify notation we redefine the sequence ak in
such a way that we can ignore the complex conjugation and start counting from 0, such
that ak now represents the k th Taylor coefficient of f . In addition, we note that τ =∑

k k |ak |2 = n −1, which agrees with the number of zeroes of f . Employing once more
use of the Plancharel identity we find for the expectation value of k 2

∑
k

|k ak |2 =
∫

dθ

2π

����
d f (e iθ )

dθ

����
2

=

∫
dθ

2π

����
f ′(e iθ )
f (e iθ )

����
2

, (4.37)

where we used that f is an inner function and therefore | f |= 1 holds on the unit circle.
Starting from the decomposition of f into a finite Blaschke product we find for the
quotient of f ′ and f

f ′(z )
f (z )

=
∑

l

�
z −αl

1−αl z

�′�
z −αl

1−αl z

�−1

=
∑

l

� −1

αl − z
+

αl

1−αl z

�
.

Inserting this expression into (4.37) and changing from an integration with respect to
the phase to an integration around the unit circle we obtain

∑
k

k 2|αk |2 =
∑
k ,l

∮
dz

2π

�
1

z −αl
+

αl

1−αl z

��
1

1−αk z
+

αk

z −αk

�
.

The value of this integral can be determined by residual calculus. The denominators
of the form 1− αk z have no roots inside the unit disc, because |αk | < 1. Hence, the
product of two such denominators does not contribute to the integral. In addition, the
product of the first summand in the first and the second summand in the second factor
does also vanish, because for k = l the pole (z −αl )2 is of second order and for k 6= l
the contributions for the two poles at αl and αk cancel each other. This leaves us with
two terms in the integral, which then evaluates to

∑
k

k 2|αk |2 =
∑
l ,k

�
1

1−αlαk
+

αlαk

1−αkαl

�
=
∑
l ,k

1+αlαk

1−αlαk
. (4.38)

To obtain the variance Vτ we have to subtract the squared expected return time, which
according to theorem 4.3.1 is equal to (n −1)2. The sum in (4.38) also runs over (n −1)2

terms and therefore we subtract 1 from each summand which gives

1+αlαk

1−αlαk
−1=

2αlαk

1−αlαk

as claimed.
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4.5. Recurrence properties of quantum walks

4.5. Recurrence properties of quantum walks

As an example of a discrete-time unitary evolution with an absolutely continuous spec-
tral measure, we analyse the return probability of one-dimensional translation-inva-
riant quantum walks as introduced in section 2.4.

Fixing some lattice dimension s and some internal state space K of the particle with
dimK = k , the system Hilbert space is given by `2(Zs )⊗Ck . Since we are dealing with
a translation-invariant system we can equivalently represent the walk operator W in
moment space, where it acts as a p -dependent multiplication operator W (p ) (see sec-
tion 2.4.1). Keeping in mind that the spectrum of W typically consists of absolutely
continuous spectrum we know that the expected return time for any initial state will
be infinite. Hence, we have to compute the series of first return amplitudes an or at
least the total return probability

R =
∑

n

|an |2 =
∫ π

−π

dθ

2π
| f (e iθ )|2 = ‖ f ‖2 .

In order to determine the Schur function f for a given initial stateφwe can in a first step
compute the Stieltjes transform of the corresponding spectral measure. In momentum
representation the Stieltjes transform is given by

bµ(z ) = 〈φ , (1− z W )−1 φ 〉=
∫

dp 〈φ(p ) , �1− z W (p )
�−1
φ(p ) 〉 . (4.39)

If we limit our attention to an initial state localized at some lattice site x0, its Fourier
transform has the simple form φ(p ) = e ix0pψ, with ψ ∈ Cd . Since the p -dependent
phases cancel in (4.39) we can evaluate bµ(z ) = 〈ψ , M (z )ψ 〉 by computing the Stieltjes
operator

M (z ) :=

∫
dp

�
1− z W (p )

�−1
. (4.40)

In the case of a one-dimensional coined quantum walk with a SU (2) coin operation the
walk operator takes the form (see section 2.4.1)

W (p ) =

�
e ip 0

0 e −ip

�
·
�

a b
−b a

�
.

Via a change of variables to u = e ip , the integral in (4.40) can be evaluated by the
Residue theorem. Aside from zero there are two other possibilities for poles in the ex-
pression at u1,2 = (z 2+1±p(z 2+1)2−4z 2|a |2)/2a z . However, since u1u2 ∈T, at most
one of them lies inside the unit circle. Evaluating the integral we therefore obtain for
the Stieltjes-operator

M (z ) =
1

2g (z )

�
1− z 2+ g (z ) b

a (1+ z 2− g (z ))
−b
a (1+ z 2− g (z )) 1− z 2+ g (z )

�
with g (z ) :=

Æ
(1+ z 2)2−4|a |2 z 2 .
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Figure 4.5.: Left panel: Return probability Rl of a one-dimensional quantum walk with
initial state | ↑〉or | ↓〉 at the origin and its dependence on the coin parameter
|a |. For a coin matrix with real entries Rl is identical to the return proba-
bility Rα of the internal state (cos(α), sin(α)). Right panel: Influence of the
relative phase θ between the two internal states on the return probability
for the Hadamard walk (a = b = 1/

p
2).

Since the diagonal elements of M (z ) are identical, we find that for any localized initial
state at some lattice site x , the internal states | ↑〉= (1, 0) and | ↓〉= (0, 1) show the same
recurrence behaviour. In both cases we can derive the corresponding Schur function
from (2.10), which leads to

fl =
(1− z 2− g (z ))2

4|a |2z 3 ,

where we have to pick the branch in the square root converging to 1 for z going to zero,
so the real part should in particular be positive. This implies that in order to compute
the total return probability R we have to evaluate the expression

Rl = ‖ fl‖2 =

∫ π

−π
dp
|h (p )2|2
|a |4 ,

where the function h is given by

h (p ) = isin p −
¨

sign(cos p )
Æ

cos2 p − |a |2 |cos p | ≥ |a |
−isign(sin p )

Æ
|a |2− cos2 p |a |> |cos p | .

Evaluating the integral we find for the total return probability the expression

Rl =
2

π|b |4
�
(1+2|a |2)|a ||b |+ (1−4|a |2)arcsin |b |� ,

where due to unitarity of the coin operation |b |2 = 1− |a |2. The behavior of Rl with re-
spect to |a | is depicted in figure 4.5. As one can see a change in |a | interpolates between
none and full revival, where the extreme points correspond to the coin operation being
the identity or a perfect reflection operation, respectively.
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4.6. Conclusion and outlook

In general, the return probability does depend on the choice of the initial state. This
is shown for the Hadamard walk in figure 4.5, where the recurrence behaviour for initial
states of the form (1, e iθ )/

p
2 is depicted as a function of the relative phase θ . Note that

without a relative phase between the two internal states there would be no observable
difference in the return probabilities for the Hadamard walk. In fact, this is true for any
coin matrix with only real valued entries. In that case, we can forget about the complex
conjugation in M21 of the Stieltjes-operator M (Z ) and compute the Schur function,
which turns out to be independent of the relative weight of the two internal levels, that
is, fα is independent of α for any vector of the form (cosα, sinα)

fα =
1− z 2− g (z )

z (1− z 2+ g (z ))
=
(1− z 2− g (z ))2

4a 2z 3 = fl .

Hence, the overall return probability is in this case again identical to Rl.
This concludes our investigation of the return probability of one-dimensional trans-

lation-invariant quantum walks. As we have seen, we can achieve any return probabil-
ity by choosing the right coin operation if we start with the particle at the origin with its
initial state either up or down. Restricting to coins with real entries, we can also allow
for superpositions of the internal state as long as we do not introduce a relative phase
between the two levels.

4.6. Conclusion and outlook

In this chapter we have studied the recurrence properties of discrete-time unitary evo-
lutions given by some unitary operator U on a separable Hilbert space. Since quantum
mechanics necessitates us to perform a measurement in order to determine properties
of the system, we introduced an additional monitoring step in the time evolution in
order to check whether the system returned to its initial state. The time evolution is
continued until the measurement process detects the particle in the initial state.

We could identify the loss of normalization in the n th time step with n th-step first
return probability of the process. An initial state φ is called recurrent if is eventually
detected the initial state, otherwise the state is called transient. We have shown that the
recurrence properties of a pair (U ,φ) of initial stateφ and unitary operator U are com-
pletely determined by the spectral measure ofφ with respect to U . More precisely, the
state φ is recurrent with respect to U if and only if its spectral measure does not con-
tain an absolutely continuous component. The key observation in order to obtain this
result has been to realize that the generating function of the first return amplitudes is
basically given by the Schur function f corresponding to the spectral measure. The
condition of certain return was then equivalent to f being an inner function. An in-
teresting point to note is that this relation also gives a dynamical interpretation to the
Taylor coefficients of the Schur function in terms of the return amplitudes.

The characterization of recurrent states in terms of the absence of an absolutely con-
tinuous component in their spectral measure complements known results about the
dynamical significance of the spectral types, in particular the RAGE theorem. Whereas
the latter gives a dynamical distinction between the continuous and the pure point part
of the spectrum of an operator, our recurrence result allows for a dynamical distinction
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4. Recurrence properties of discrete unitary evolutions

between the absolutely continuous and the singular part of the spectrum. Therefore,
combining both results allows us to separate all three spectral components of an opera-
tor by dynamical properties. However, it should be noted that this is not an operational
test that could be decided in an actual experiment. Since we are dealing with asymp-
totic concepts like the probability to return eventually, a single run of the experiment
could require an infinite waiting time. However, from this perspective, it is always im-
possible to distinguish between the different spectral types, because a finite run of a
discrete unitary evolution can always be implemented on a finite dimensional Hilbert
space, which implies pure point spectrum for the unitary matrix representing U .

In addition, we studied the expected return time of an initial state in the recurrent
case. We found that the expected return time is either infinite or an integer. More pre-
cisely, the expected return time is equal to the number of mass points that are con-
tained in the spectral measure. The topological explanation of this quantization effect
is the identification of the expected return time with the winding number of the phase
of the Schur function of this spectral measure around the unit circle.

As an explicit example, we considered the expected return probability of translation-
invariant one-dimensional coined quantum walks. Due to purely the absolutely con-
tinuous nature of their spectrum we could immediately conclude that all initial states
are transient. Therefore, we studied the total return probability of these processes. In
the case of localized initial states with either in spin up or down, we derived a closed
formula for the total return probability in terms of the coin parameters of the walk.

We conclude this chapter with an overview of some open questions for further re-
search.

• Dimensionality: Consider a classical random walk on a d -dimensional lattice.
Pólya proved that all simple random walks, that is, random walks with nearest
neighbour hopping, are recurrent for d = 1 and d = 2 and transient for d > 2
[Pól21]. In contrast, we have seen in section 4.5 that even the one-dimensional
translation-invariant quantum walks are transient. In this sense, the critical di-
mension in the quantum case is d = 1 if we consider the coined quantum walks
with nearest neighbour shifts as the quantum analogue of simple random walks.
However, it still seems plausible that the overall return probability to the initial
state should decrease with the lattice dimension, because intuitively it becomes
easier to avoid a specific lattice site or low dimensional subspace. In the context
of quantum walks there is in addition to the lattice dimension a second param-
eter, namely the dimension of the internal degree of freedom. Although it is not
a priori clear which family of quantum walks with increasing internal dimension
would be a good candidate to consider, the influence on the recurrence behaviour
would be interesting to investigate.

• Site recurrence: In this chapter we exclusively considered the return of the sys-
tem to the exact initial state. In the context of quantum walks another natural
question would be whether the particle returns to the initially occupied lattice
site regardless of its internal state. If we allow for arbitrary return subspaces this
corresponds to the general transition problem with the additional condition that
the initial state is contained in Pt g . However, there might be a way to evaluate the
corresponding higher-dimensional Krein’s formulas for specific examples, or to
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4.6. Conclusion and outlook

formulate sufficient conditions for a state and unitary operator to be either site-
recurrent or site-transient.

• Characterization of transition behaviour: Closely related to the question of hig-
her-dimensional return subspaces is the question of general transition or arrival
amplitudes with respect to arbitrary target subspaces. In order to obtain an ana-
logue to (4.19) we would have to deal with a Krein’s formula for perturbations with
rank larger than one. If we restrict again to the scenario of a single target stateψ
we can use the same arguments that led in the recurrence scenario to (4.19) and
obtain the following expression for the generating function of the transition am-
plitudes from (4.6)

ba1(z ) = 〈ψ ,U eG (z )φ 〉= 〈ψ ,U G (z )φ 〉
1+ z 〈ψ ,U G (z )ψ 〉 .

Hence, the direct connection to a single Schur function is lost, since we have to
evaluate two different matrix elements of the operator U G (z ). Moreover, we have
to consider the spectral measure between the initial and the target state, which
does not need to be a probability measure. Therefore, the theory of probability
measures on the unit circle and in particular their correspondence to Schur func-
tions cannot be used directly. This could be circumvented by the polarization
identity (see (2.2)) at the expense of having to deal with a sum over four different
scalar products. In addition, similar problems arise if we allow for more than one
target state.

• Singular measures: The examples that we considered so far encompass spectral
measures consisting of a finite number of point masses and translation-invariant
quantum walks, which generically only have absolutely continuous spectrum. It
would therefore be interesting to also study examples with a singular continu-
ous spectrum. This includes the quantum walk based on the Riesz measure as
introduced in [GV12], as well as quantum walks with quasi-periodic coin opera-
tors, e.g. electric quantum walks [CRW+13]. Since the latter can possess a purely
singular continuous spectrum they seem of particular interest: on the one hand,
they exhibit a hierarchy of time scales, depending on the continuous fraction ex-
pansion of the electric field, for which almost perfect revivals can be observed;
on the other, we know from lemma 4.3.1 that their expected return time is never-
theless infinite.

• OPUC results: The main observation that allowed us to classify recurrent states
in terms of the spectral measure has been the identification of the generating
function of the first return amplitudes with the Schur function of the spectral
measure. However, we can also turn this relation around and say that we found
a dynamical interpretation of the Taylor coefficients of the Schur function. This
opens up the possibility to rephrase questions from the theory of orthogonal poly-
nomials and probability measures on the unit circle in terms of the dynamical
behaviour of discrete-time unitary quantum systems, which might provide new
insights and proof ideas.
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4. Recurrence properties of discrete unitary evolutions

• Quantization of expectation values: The fact that in the recurrent case the ex-
pected return time is either quantized or infinite has been rather surprising to us
and it was very interesting that τ could be related to the winding number of the
phase of the Schur function around the unit circle. However, a similar effect has
been observed in continuous time quantum walks, where in addition to the uni-
tary time evolution the particle can be kicked out of the lattice at every second
lattice site with some constant rate [RL09]. In this case the expectation value of
the distance that the particle moves in the lattice before this loss process occurs
is quantized and can also be considered as a winding number [RL09]. It would be
very interesting, if there is a common principle or mechanism in the sense that
the expectation values of such monitored observables generically show such a
quantized behaviour, which can be attributed to a winding number.
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In this chapter we introduce a class of one-dimensional quantum walks that strongly
violates translation-invariance. More precisely, we allow the local coin operation at ev-
ery lattice site to be randomly chosen according to some common probability measure
on the unitary 2×2 matrices. This choice of local coins is then kept constant during the
time evolution and we are again interested in the propagation properties of the system.
Our goal in this chapter is to lay the groundwork for the proof of dynamical localization
that is given in chapter 6 for a large class of probability distributions on the unitary 2×2
matrices.

The basic model is defined in section 5.1 and put into the context of the unitary An-
derson model’s and results on quantum walks in section 5.2. After an introductory
example that exhibits dynamical localization is discussed in section 5.3, we return to
the general case in section 5.4. There, we define unitary restrictions of the disordered
quantum walks to finite sublattices and introduce the density of states. In section 5.5
we connect transition probabilities between two lattice sites with the resolvent of the
walk operator, before we develop a general transfer matrix approach to position de-
pendent coined quantum walks in section 5.6. The properties of these transfer matri-
ces and their connection tho the resolvent of the walk operator are analyzed in section
5.7. In particular, we provide an initial scale estimate for the growth rate of products
of transfer matrices and prove the Hölder continuity of the corresponding Lyapunov
exponent with respect to the spectral parameter.

The results presented here have been obtained in collaboration with Andre Ahlbrecht
and Volkher Scholz and have been published in [ASW11].

5.1. Model definition

The model of a one-dimensional coined quantum walk as described in section 2.4 is
of course an idealization. In an actual experimental setup some of the underlying as-
sumptions will not be completely satisfied but only be an approximation to a more
complex situation.

As described in section 2.4 there are different ways in which such imperfections can
affect the system. We identified four extreme cases corresponding to the respective
time scales of the fluctuations and their impact on the translation invariance of the
system. In this chapter we are going to investigate a regime where the translation in-
variance of the model is broken, but the temporal fluctuations of the parameters are
very slow. This corresponds to a regime of frozen or quenched disorder, where the uni-
tary operator implementing the evolution is assumed to be constant during each run
of the experiment, but may vary randomly between different executions.

This is similar to the situation in the Anderson model discussed in section 2.5, where

119



5. Disordered quantum walks

the Hamiltonian is a random (ergodic) operator with respect to the underlying lattice,
but also constant in time. In this case, the perturbation is induced by a position depen-
dent potential and we correspondingly model the disorder for coined quantum walks
by a position dependent random distortion of the coin operations.

Here, we concentrate on the standard one-dimensional coined quantum walk of a
particle with a two-dimensional internal degree of freedom according to (2.15). This
means that we assume that the shift operation is identical to the one in the ideal transla-
tion-invariant coined quantum walk, but that the local coin operationUx at each lattice
site x ∈Z is now given by a random variable, which we denote by Uωx

. Hence, the local
coin operation Uωx

is described by a mapping

Uωx
:Ωx → U (2)

from some measure spaces Ωx to the space of unitary 2× 2 matrices U (2). We call the
probability measure µx corresponding to Uωx

the local coin distribution and require
in addition that the coins are independent and identically distributed with respect to
the lattice sites. Hence, µx = µc holds for all x ∈ Z and some probability measure µc
on U (2).

For any finite number of lattice sites the joint distribution of the local coin operators
Uωx1

,Uωx2
, . . . is then defined by product measure of the single site distribution µc and

since this is true for any finite collection of lattice sites there exists a unique probability
measure µ∞ on the infinite product probability space (see section 3.1 and [Kal10])

Ω=×x∈ZΩx .

From now on expectation values and probabilities will be taken with respect to this
joint probability measureµ∞ or finite restrictions of it, if not explicitly stated otherwise.
The random coin operation Uω as an operator on `2(Z)⊗C2 can now be described as a
random variable on Ω given by the direct sum

Uω =U...,ωx−1,ωx ,ωx+1,... =
⊕
x∈Z

Uωx
with Uωx

=

�
aωx

bωx

cωx
dωx

�
. (5.1)

In the language of section 2.4.2 we can equivalently consider each realization Uω as a
position dependent coin according to definition 2.4.5. Similarly, every realization

Wω :=Uω ·S
of such a disordered quantum walk operator represents a non-translation-invariant
coined quantum walk. For later reference, we summarize the preceding discussion in
the following definition.

Definition 5.1.1 (one-dimensional disordered quantum walk). Let
�
Uωx

�
x∈Z, be a fam-

ily of random variables with values inU (2), distributed according to some common prob-
ability measure µc . Then, a one-dimensional disordered quantum walk with single site
distribution µc is defined as the random operator

Wω =Uω ·S =
⊕
x∈Z

Uωx
·S ,

where S denotes the standard nearest neighbour shift according to (2.15) (see section
2.4.1).
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5.1. Model definition

Let us remark that in the next two chapters we also use the term disordered quantum
walk to denote a single realization Wω of such a one-dimensional disordered quantum
walk if there is no likelihood of confusion. Before we put the results presented here
in a general context with respect to quantum walks and random unitary models, let us
briefly comment on the measurability of the random operators Wω and their ergodicity
by proving the following proposition.

Proposition 5.1.2. A disordered quantum walk Wω is a random (ergodic) operator with
almost sure constant spectral components σx x (Wω), with x x ∈ {a c , s c , p p}. Moreover,
σd i s c =∅with probability one.

Proof. First let us check that W is weakly measurable and therefore, because we are
dealing with a separable Hilbert space, measurable according to definition 2.5.1. Since
the step size per time step is limited to one, due to our choice of the shift operation S ,
we have

〈δy ⊗ψ , Wω δx ⊗φ 〉= 0 for |x − y |> 1 or x = y .

This already implies weak measurability for |x − y | > 1 and x = y , because constant
functions are measurable. Hence, we are left with the cases y = x ±1 which lead to the
expressions

〈δx±1⊗ψ , Wω δx ⊗φ 〉= 〈δx±1⊗ψ ,Uωx±1
e± 〉 〈e± ,φ 〉 .

By assumption, Uωx
is a random variable on U (2) and therefore 〈ψ ,Uωx

φ 〉 has to be
measurable for any φ,ψ ∈ C2. So by linearity 〈α , Wω β 〉 is measurable for any α,β ∈
`2(Z)⊗C2 and so is Wω.

In accordance with section 2.5 the transformations (τyω)(x ) =ω(x−y )with x ∈Zare
an ergodic family of measure preserving transformations due the our i.i.d assumption
for the single coin operations Uωx

. Considering the lattice translations Γy acting as
Γy |δx ⊗ e±〉= |δx+y ⊗ e±〉we find

Γy WωΓ
∗
y =Wτyω . (5.2)

Since the operators Γy are unitary for all y ∈Z, we know that Wω is a random (ergodic)
operator, which by theorem 2.5.6 implies almost sure constancy of the spectral compo-
nentsσx x (Wω). In order to exclude discrete spectrum we use lemma 2.5.7, so we have
to show totality of our representation Γy of the measure preserving transformation τy .
For any vector of the form δx ⊗φ, withφ ∈C2 we have

〈Γ ∗y δx ⊗φ ,Γ ∗zδx ⊗φ 〉= 〈δx−y ⊗φ ,δx−z ⊗φ 〉=δz ,y .

Therefore, every vector of this form is an element of the set AZ (see (2.24)), which makes
this set total. Hence by lemma 2.5.7, the discrete part of the spectrum of Wω is empty
almost surely.

Before we continue our analysis of disordered quantum walks in section 5.3, we in-
troduce and discuss some related models and results.
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5. Disordered quantum walks

5.2. Related work

As illustrated in chapter 2, the question of localization effects in quantum systems dates
back to the late 50s and P.W. Anderson’s paper [And58]. Since we have already given an
overview on the Hamiltonian and time continuous case in section 2.5, we limit our
discussion of related results here to random unitary models and quantum walks.

magnetic flux
∼αt

rotation
angle

electron

acceleration
α

θ

periodic
potential

Vring

Figure 5.1.: Schematics of the physical setting that motivates the unitary Anderson
model, illustration according to [Joy11b]. An electron moves in a periodic
potential generated by a one-dimensional ring that is in addition threaded
by a time dependent magnetic flux ∼αt .

5.2.1. Unitary Anderson model

The term unitary Anderson model encompasses a class of random unitary operators
on `2(N) or `2(Zs ). The one dimensional version is connected to the physical model
of an electron moving on a metallic ring, which is threaded by a time-dependent mag-
netic flux [Joy11b, Joy04, HJS09]. However, it can also be formulated in terms of non
translation-invariant coined quantum walks.

The typical experimental scheme considered in this context, is depicted in figure 5.1.
An electron moves according to a periodic potential Vring, which is induced by a one-
dimensional ring. In addition, the electron feels a magnetic flux inside the ring that is
perpendicular to the ring and which increases linearly in time. One question of interest
in this setting is whether the assumption of random impurities in the metallic ring is
enough to show that the energy of the electron remains finite for all times.

After setting all physical constants like ħh , the radius of the ring, the electron mass
and its charge, etc. to one, the Hamiltonian for the angular variable θ takes the form
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5.2. Related work

[BB88, Joy11b, HJS06]

Hc i r c (t ) =

�
−i ∂
∂θ
−αt

�2

+Vring(θ ) . (5.3)

Analyzing this model in the adiabatic limit, which corresponds to a small α, allows
no transitions between the different instantaneous energy eigenfunctions {el (t )} of
Hc i r c (t ), where t or ratherαt now plays the role of a quasi-momentum for the periodic
Schrödinger operator Hc i r c (t ) [Joy11b]. Since all eigenfunctions el (t ) are periodic with
some period T we see that the eigenfunctions el (0) at time 0 and el (T ) after one time
step of length T can only differ by a phase factor.

Hence, transitions between the different energy bands, which we denote by El (t ),
are only possible if the parameter α is large enough compared to the energy gap in
order to allow for Landau-Zener tunneling between the bands. However, for all El (t )
with l 6= 0 this only happens twice during one period T once with the band El+1(t )
and once with El−1(t ) (see figure. 5.1). The idea of the unitary Anderson model is to
describe the behaviour at those transition points, where the gap becomes small, by a
scattering process between the states El and El+1 which is governed by a scattering
matrix [Joy11b]

Sl = e iθ
�

rl e −iαl itl e iγl

itl e −iγl rl e iαl

�
,

with αl ,γl ,θl ∈ [−π,π) and reflection and transition coefficients rl , tl ∈ [0, 1] satisfying
r 2

l + t 2
l = 1. Taking the period T as one time step, a scattering process from the lower,

even energy levels to the higher odd energy levels, E2l (t ) to E2l+1(t ) is followed by a
possible transition between the lower odd energy bands E2l+1(t ) and the higher even
energy bands E2l (t ), see also figure 5.2. Associating with each standard basis vector of
`2(N) one of the energy levels El (t ), the unitary operator WUA,ω describing this single
time step is given by the product of these two scattering events

WUA,ω :=

�⊕
l∈N

S2l+1

�
·
�

1⊕
�⊕

l∈N
S2l

��
, (5.4)

where the additional summand 1 in the second factor ensures that the scattering ma-
trices Sk couple the right energy levels. Boundedness of the energy of the electron for
all times is in this context equivalent to the question, whether the operator UU A,ω can
transport an initial state φ ∈ `2(N) supported on a subspace corresponding to low en-
ergy bands El (t ) to infinity. This would in particular be the case, if dynamical localiza-
tion of UU A,ω could be shown as an effect of random impurities, because in that case
transitions between different energy levels El (t ) and Ek (t )would be exponentially sup-
pressed in their distance |k − l | for all times.

In principle we could vary all parameters in the scattering matrices Sk randomly, in
order to describe the influence of random impurities within the ring. However, in most
cases, the reflection and transition coefficients rl and tl are chosen translationally-
invariant and fixed and only the phasesαl , γl and θl are drawn i .i .d according to some
probability measures on the interval [−π,π).
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Figure 5.2.: Schematics of the dispersion relation of the Hamiltonian Hc i r c from (5.3),
illustration according to [Joy11b]. Over one period T , Landau-Zener tun-
neling is only possible if the gaps are small. This happens twice per period
for a fixed band El (t ), once with the band El+1 and once with the band El−1.
The transition and reflection amplitudes describing these inter-band tran-
sition processes are collected in the scattering matrices Sl .

In the unitary Anderson model, the system is studied on `2(Z) instead of `2(N) to
avoid boundary terms [Joy11b]. In addition, the phases αl , γl and θl in the scattering
matrices are all set to zero and it is postulated that the randomness only enters via a
diagonal matrix Dω of random i .i .d phase factors [HJS06, Joy11b]. In the case of the
uniform distribution this can be shown to be equivalent to an independent choice of all
parameters αl , γl and θl from the uniform distribution [HJS06]. The unitary operator
WUA,ω on `2(Z) corresponding to the one from (5.4) for the half infinite case then has
the matrix representation [HJS09]

WUA,ω :=Dω ·S0 =Dω ·




... r t −t 2

r 2 −r t
r t r 2 r t −t 2

−t 2 −t r r 2 −r t
r t r 2

−t 2 −t r
...




(5.5)

Using the equivalence between `2(Z) and `2(Z)⊗C2 we can identify WU A also with a
coined quantum walk of the form

WUA,ω =Dω eS ∗Ur,t
eS Ur,t , with Ur,t = 1⊗

�
r −t
t r

�
. (5.6)
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Here eS is the shift operation that only moves the upper internal state to the right, i.e. it
acts on the standard basis as

eS (δx ⊗ e±) =δx+(1±1)/2⊗ e± .

The unitary Anderson model has been extensively studied [Joy04, BHJ03]. It has been
shown that WUA,ω is a random ergodic operator with almost surely constant spectrum
[BHJ03]. Hamza and coworkers were able to prove dynamical localization via a frac-
tional moments analysis (see 2.5.3) for all r, t ∈ (0, 1) if the probability measure of the
random phases in Dω has an absolutely continuous component with respect to the
Lebesgue measure on [−π,π) [HJS06].

The unitary Anderson model on `2(Z) also admits a natural generalization to s -di-
mensional lattices if one takes the s -fold tensor product of the operator S0 from (5.5)
and generalizes the diagonal random phase matrix to a random multiplication oper-
ator such that Dωδx = e φxδx for all x ∈ Zs [Joy05, Joy04]. Dynamical localization has
been proven for all lattice dimensions in the large disorder regime, which corresponds
to a small value of the parameter t , which brings the deterministic operator S0 in (5.5)
close to a diagonal operator [Joy05, HJS09, Joy05]. In addition, dynamical localization
at the band edges of the almost sure spectrum of the unitary operator WUA,ω has been
established [HJS09].

If we change one of the two coin operations in (5.6) to another translationally invari-
ant coin operation it is possible to make a connection between the unitary Anderson
model to a disordered coined quantum walk model, which we discuss in the next sub-
section.

5.2.2. Quantum walks

In this section we discuss some results on random operators related specifically to
models of randomness in quantum walks. Since we are only dealing with discrete-time
quantum walks we do not comment on numerical results that have been obtained in
the time continuous case [KLMW07].

Starting from the unitary Anderson model as given in (5.6) we can obtain a standard
one-dimensional coined quantum walk of the form S ·C by changing the left of the two
operator Ur,t in (5.6) into another coin operation. Indeed if we define the translation-
invariant coin operators

Y =
⊕
x∈Z

�
0 1
−1 0

�
and X =

⊕
x∈Z

�
0 1
1 0

�

and use the relation X 2 = 1we obtain

Dω · eS ∗ ·Y · eS ·X 2 ·Ur,t =Dω ·S ·X ·Ur,t =Dω S
⊕
x∈Z

�
t r
−r t

�
,

where S denotes the standard state dependent shift operation according to (2.15). By
a simple parameter change r 7→ −r , this matches the disordered quantum walk model
that was studied in [JM10]. For fixed parameters r, t ∈ (0, 1) and a diagonal operator Dω
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5. Disordered quantum walks

where all phases are drawn i.i.d with respect to some probability measure absolutely
continuous with respect to the Lebesgue measure on the interval [−π,π) dynamical lo-
calization has been shown by a fractional moments argument [JM10]. In this thesis,
we generalize this result on the one hand by allowing for a random unitary coin in-
stead of random phase factors and on the other hand by allowing singular local coin
distributions µc , which were not covered in [JM10]. In particular, we obtain dynamical
localization for a distribution of only two different local coin matrices (see section 6.6).

For higher lattice dimensions a prove of dynamical localization is known in a per-
turbative regime [Joy12]. Joye showed that starting from a static situation, a disordered
quantum walk on a d -dimensional lattice with random relative phases stays localized
if the perturbed operator is close to the original static walk operator in operator norm.

We continue our overview with a short report on one specific disorder model that
was introduced by Konno et al. and that does not localize for a specific initial state
[Kon10]. The local coin operator is in this case given by

Uω =
⊕
x∈Z

1p
2

�
e iωx 1

1 e −iωx ,

�

where ωx is some random or non-random position dependent parameter. For a par-
ticle localized at the origin with internal state (1,i)/

p
2 ballistic behaviour is shown in

[Kon10]. More specifically, the final spreading behaviour depends in this case exclu-
sively on the parameterω0 and the probability that the particle moves with an asymp-
totic group velocity inside some interval [a , b ] is given by

lim
n→∞P

�
a ≤ Q (t )

t
≤ b

�
=

∫ b

a

1− sinω0

π(1− x 2)
p

1−2x 2
χ[− 1p

2
, 1p

2
](x ) dx ,

where χA denotes the characteristic function of the set A. On way to see this indepen-
dence is verify that the transfer matrices that we define in definition 5.6.1 do in this
model not depend on the random phases. This implies that the Lyapunov exponent
and hence the spectrum of the operator are also non random.

Before we return to our study of general disordered quantum walks, we want to com-
ment on one other notion of localization that has been introduced in the context of
translation-invariant quantum walks [IK05, IKK04, ŠKJ08]. In the view of section 2.4.1,
where ballistic transport was shown for translation-invariant quantum walks, it is not
clear how localization could occur in such systems. However, if we consider the mo-
mentum space representation of a translation-invariant walk operator W it can hap-
pen that one of the quasi-energy bands is independent of momentum, i.e., ωl (p ) is
constant. In this case, theorem 2.4.4 tells us that the asymptotic group velocity of the
corresponding eigenstate is zero. Localization in the context of such quantum walks is
defined as the property that some localized initial stateψ0

lim
n→∞ tr(PΛ W n |ψ0〉〈ψ0|W ∗n ) 6= 0 , (5.7)

where PΛ denotes the projector onto some finite region Λ ⊂ Zs . In other words, with
some finite probability the particle can asymptotically be found inside the region Λ.
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In contrast to the notion of localization introduced by Anderson, which we discussed
in section 2.5, no statement about the overall propagation behaviour of the particle is
made. It could even be the case that the part of the wave function that does not localize
behaves ballistically. This is similar to the different recurrence definitions discussed in
chapter 4, where a single point mass contained in the spectral measure makes a parti-
cle recurrent in the SJK-sense, but only the absence of an absolutely continuous com-
ponent implies recurrence in the monitored scenario. In view of chapter 4, it would be
more appropriate to speak of a non-vanishing survival probability of the particle inside
the region Λ.

A well known example where the simultaneous occurrence non-vanishing survival
probability together with ballistic transport can be observed is given by the Grover walk
in two lattice dimensions. Its walk operator WGrover is given in quasi-momentum rep-
resentation by the quasi-momentum dependent matrix

WGrover(p1, p2) =




e ip1 0 0 0
0 e −ip1 0 0
0 0 e ip2 0
0 0 0 e −ip2


 · 1

2



−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 . (5.8)

The unitary matrix WGrover has two constant eigenvalues 1 and−1 and the correspond-
ing eigenvectors can be shown to be strictly localized around the origin and therefore
also according to the criterion in (5.7). The band structure as well as the separation be-
tween a localized and a spreading part of a localized initial state are depicted in figure
5.3. Moreover, it is possible to construct a coined quantum walk that is restricted to the
non-localized subspace orthogonal to the eigenspaces of the two constant eigenvalues
±1. The corresponding walk operator only acts on a two dimensional internal space
and is given by

Wr e d = Sx ·H ·Sy H ,

where Sx and Sy denote the standard state dependent shifts in x or y direction respec-
tively and H is the usual Hadamard coin from (2.16) [FGMB11, DFMGB11].

In a more general approach, the scenario of an arbitrary single defect or finite num-
ber of defects, i.e. positions where the translation invariance of the coin is broken, has
been studied in the CGMV approach to quantum walks ([CGMV12, CGMV10], see also
section 2.4.2). In particular, localized and transported states are characterized in terms
of their spectral measure and their asymptotic survival probability at the origin is de-
termined (see also section 2.4.2). For a walk on the half line these techniques were used
by Konno and Segawa to study the effect of different boundary conditions, which also
led to a non-zero asymptotic survival probability [KS10]. This concludes our discus-
sion about related results and we continue our analysis of general disordered quantum
walks.

5.3. A simple case

In order to continue our analysis, we consider a specific class of disordered quantum
walks that exhibits dynamical localization. The reason is twofold: firstly, the proof is
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Figure 5.3.: Left panel: Band structure of the Grover walk from (5.8). There are two con-
stant bands, in the dispersion relation atω(px , py ) = 0,π (the band at 2π is
identical to the one at 0 due to periodicity). In addition, the Grover walk
possess two conical singularity. Right panel: Position distribution of the
initial state δ0⊗ (1, 1, 1, 1)/2 after 50 time steps showing the apparent sepa-
ration between the spreading and immobile part. The later is responsible
for the described non-vanishing asymptotic return probability.

shorter and more transparent than the general case presented in the remainder of this
chapter and secondly, it will be convenient to exclude the class of walks discussed here
in order to simplify the argument in the general case.

The specific disorder model we want to study is the occurrence of total reflections.
More precisely, we consider a coin distribution that assigns a non-zero probability to
such total reflections. It was already noted in [LS09] that a local coin of the form

Ur e f =

�
0 e iφ

e iθ 0

�
(5.9)

at position x0 effectively decouples the evolution of the lattice sites left of x0 from the
ones to the right of x0, see also figure 5.4. This is due to the fact that a particle arriving
from the left or the right at lattice site x0 is in a definite internal state, i.e., spin-up or
spin-down. In the next time step Ur e f is applied to the internal state at lattice site x0,
which, up to an unimportant phase factor, results in a flip of the internal state, e.g.
the spin up state is mapped to the spin down state and vice versa. The following shift
operation therefore transports the particle that arrived from x0+1 in the previous step
back to x0 + 1. Hence, the operator Ur e f acts as a total reflection of the incidenting
particles with some additional phase shift.

Intuitively it seems very plausible that if such reflections occur with some finite prob-
ability a particle moving through the lattice will at some point inadvertently encounter
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S

U

S

Uy−2 Uy−1 σx Uy+1

Figure 5.4.: Reflective action of the Pauli matrixσx at lattice site y .

such a barrier. Hence, we would suspect that this model exhibits localization. To make
this idea precise we define the set of unitary 2×2 matrices with non-vanishing diagonal

Und := {U ∈ U (2) |U11 6= 0 and U22 6= 0} .

The complement of Und in U (2) which we denote by U c
nd contains exactly the reflec-

tions Ur e f from (5.9). With these preliminaries we can formulate a localization result
for one-dimensional disordered quantum walks that have a finite probability for such
reflections.

Lemma 5.3.1. Let Wω be a one-dimensional disordered quantum walk such that the
coin distribution µc satisfies µc (Und ) = pnd < 1. Then Wω exhibits dynamical localiza-
tion in the sense of definition 2.5.9 and the transition probabilities between two arbitrary
lattice sites x , y ∈Z satisfy

sup
t ∈N

E
�| 〈δy ⊗ψ , W t

ω δx ⊗φ 〉|
�≤ p

|x−y |−1
nd

Proof. As already discussed in the beginning of this section, the occurrence of a local
coin Ur e f ∈ U c

nd at some point x0 decouples the dynamics of the lattice sites left of x0
from the ones right to it, which implies

| 〈δy ⊗ψ , W t
ω δx ⊗φ 〉|= 0 ∀t ∈N ,

if there is a reflective coin Ur e f in between the lattice sites x and y . For each indi-
vidual lattice site the probability to be transmissive is assumed to be pnd , so that the

probability for no reflection at all in between x and y is p
|x−y |−1
nd . Due to the Cauchy-

Schwarz-inequality and the unitarity of Wω we have the trivial bound

| 〈δy ⊗ψ , W t
ω δx ⊗φ 〉| ≤ 1 .

Hence, we obtain the claimed bound for the expectation value of the transition proba-
bility, because

E
�| 〈δy ⊗ψ , W t

ω δx ⊗φ 〉|
�
= p

|x−y |−1
nd | 〈δy ⊗ψ , W t

ω δx ⊗φ 〉|+0 · (1−p
|x−y |−1
nd ).
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This result tells us that we can focus our attention on the case µc (Und ) = 1 to prove
localization and for later reference we define:

Definition 5.3.2 (regular disordered quantum walk). A disordered quantum walk is
called regular if and only if its local coin distribution satisfies µc (Und ) = 1.

In addition, our discussion shows that a particle starting in between two reflective
coins U1,U2 ∈ U c

nd will be trapped in this region for all times. In the next section we
use this idea to define finite restrictions of the walk operator by introducing reflective
boundary conditions.

5.4. Finite restrictions

In this section we introduce a family of unitary operators on finite dimensional sub-
spaces of `2(Z) ⊗C2 that approximate the disordered quantum walk and define the
density of states. As explained in section 2.4, a defining property of a quantum walk
is strict locality. Note that the local coin operations Uω cause no transport of the parti-
cle at all. In addition, the shift operation S moves the particle exactly one lattice site to
the left or to the right in a single time step, so the maximal propagation speed is one.
This also means that Wω as well as all its powers W t

ω , with t ∈N finite, are band matri-
ces of finite width. Therefore, the evolution of an initially localized wave function up
to some finite time t is completely characterized by a restriction of Wω to some finite
dimensional subspace of `2(Z)⊗C2.

In particular, this implies a time dependent but finite upper bound on the region
where an initially localized particle can be found with non-zero probability after t time
steps. Hence, the transition probability between two lattice sites x and y in t time
steps can be obtained by evaluating the scalar product with a finite restriction of the
walk operator χNt

WωχNt
, where χNt

denotes the projector onto the lattice sites −Nt to
Nt , if we choose Nt large enough

〈δy ⊗ψ , W t
ω δx ⊗φ 〉= 〈δy ⊗ψ ,

�
χNt

WωχNt

�t
δx ⊗φ 〉 .

In order to connect these transition probabilities to the resolvent of Wω it is convenient
to define an explicit sequence of restrictions Wω(N ) of Wω to the lattice sites −N to N
in such a way that each Wω(N ) is a unitary operator onC4(N+1). We do this by introduc-
ing reflective boundary conditions. As discussed in the preceding section this can be
accomplished by changing the local coin operations Ul at the lattice sites −(N +1) and
N +1 from a random unitary coin to a coin with vanishing diagonal, i.e. an element of
the set U c

nd . In particular, we choose multiples of the Pauli matrixσx for the reflections

U−(N+1) = e φL ·
�

0 1
1 0

�
UN+1 = e φR ·

�
0 1
1 0

�

The matrix representation of Wω with U−(N+1) and UN+1 substituted by e φR/Lσx is de-
picted in figure 5.5. From (5.10) it is then evident that we obtain a unitary submatrix if
we include half of the internal state spaces at the lattice sites −(N +1) and N +1, since
all rows are then normalized and mutually orthogonal. This discussion motivates the
following definition.
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0 0 0

0 0 e iηL

0 b−N 0 0 a−N

0 d−N 0 0 c−N

...

bN 0 0 aN

dN 0 0 cN

e iηR 0 0

0 0 0







(5.10)

Figure 5.5.: Matrix representation of a disordered quantum walk. The red line indicates
a possible unitary restriction, with boundary phases e iφL/R . The four-tuple
(ax , bx , cx , dx ) corresponds to the random coin matrix at lattice site x .

Definition 5.4.1 (unitary restrictions). For N ∈N let cWω(N ) be equal to the disordered
walk operator Wω with reflective boundary conditions according to (5.10) at lattice sites
±(N +1). Then we define a unitary finite restriction of Wω to the lattice sites −N to N as
the unitary matrix Wω(N ) :C4(N+1)→C4(N+1) with matrix elements

(Wω(N ))k ,l = (cW )k ,l , −(2N +1)≤ k , l ≤ 2(N +1) ,

With this definition we can express the transition probabilities we have to bound in
order to prove dynamical localization as the limit of these finite restrictions, i.e.

sup
t
| 〈δy ⊗ψ ,χ(I )W t

ω δx ⊗φ 〉|= sup
t

lim
N→∞ | 〈δy ⊗ψ ,χ(I )Wω(N )

t δx ⊗φ 〉| ,(5.11)

whereχ(I ) denotes the spectral projector of Wω onto some closed interval I of the unit
circle T and ψ,φ ∈ C2 are arbitrary internal states of the particle. Next we introduce
the density of states.

5.4.1. Density of states

In condensed matter physics, the density of states measures how many energy eigen-
states are available inside a certain energy region in the system. It turns out that this
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quantity or more precisely the integrated density of states can be connected to the Lya-
punov exponent of the system via a Thouless formula (see section 6.1). This connection
allows us to use regularity properties of the Lyapunov exponent with respect to a quasi-
energy interval I ⊂T to obtain Wegner estimate (see section 6.3). This means that the
probability that two independent realizations of a disordered quantum walk both have
an eigenvalue inside a small quasi-energy interval is exponentially small.

The definitions and lemmas presented in this section are for the most part a transla-
tion of corresponding results obtained by Joye for the unitary Anderson model [Joy04]
to the context of disordered quantum walks. The first observation is that due to the
i.i.d nature of the coin operator, disordered quantum walks show a self-averaging be-
haviour.

Lemma 5.4.2. For all continuous f :T→Cwe have with probability one

lim
N→∞

1

4(N +1)
tr(χN f (Wω)) =

1

2
E
�
tr
�|δ0〉〈δ0| f (Wω)

��

=
1

2
E
� 〈δ0⊗ e1 , f (Wω)δ0⊗ e1 〉+ 〈δ0⊗ e2 , f (Wω)δ0⊗ e2 〉

�
,

where χN denotes the projector onto the support of the unitary restriction Wω(N ). In
terms of the projectors Pδl⊗eα onto localized states and the boundary projector Pb d , χN
takes the form

χN :=
N∑

l=−N

∑
α

Pδl⊗eα +Pδ−(N+1)⊗e2
+PδN+1⊗e1

=
N∑

l=−N

∑
α

Pδl⊗eα +Pb d .

Note that due to the additional boundary terms Pb d , the operator χN WωχN acts on
exactly the same subspace as the unitary restriction Wω(N ) from definition 5.4.1.

Proof. Let us fix some continuous function f . Evaluating the trace on the left-hand
side with respect to the canonical basis {δi ⊗ e j } of `2(Z)⊗C2 we find

1

4(N +1)
tr(χN f (Wω)) =

1

4(N +1)
(
∑
l , j

〈δl ⊗ e j , f (Wω)δl ⊗ e j 〉+ tr(Pb d f (Wω))) . (5.12)

As a continuous function on a compact interval f is bounded and the boundary pro-
jector Pb d has rank two. This implies that the second term on the right-hand side of
(5.12) vanishes in the limit of large N . We have seen in (5.2) that Wω is a random er-
godic operator with respect to the lattice translation Γx . This implies in particular that
the random variables

X l := X (τl (ω)) =
∑

j

〈δ0⊗ e j , f (Wτl (ω))δ0⊗ e j 〉=
∑

j

〈δ0⊗ e j ,Γ ∗l f (Wω)Γl δ0⊗ e j 〉

=
∑

j

〈δl ⊗ e j , f (Wω)δl ⊗ e j 〉
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constitute an ergodic random process. Since in addition

〈δ0⊗ e j , f (Wτl (ω))δ0⊗ e j 〉 ≤max
Θ∈T | f (Θ)| ,

the expectation value of X l for all l is finite. Therefore, Birkhoff’s theorem applies and

∞∑
l=0

X (τl (ω)) =E

 ∑
j

〈δl ⊗ e j , f (Wω)δl ⊗ e j 〉
!

for each fixed f ∈ C (T) on a set Ω f of full measure. Now taking some dense countable
subset of C0 ⊂C (T), the intersection

⋂
f ∈C0

Ω f as a countable intersection of sets of full
measure still has full measure, which concludes the proof.

Using the Riesz-Markov representation theorem, we now define the density of states
in terms of this expectation value [Rud87]:

Definition 5.4.3 (density of states). The density of states of a disordered quantum walk
Wω is defined as the probability measure ϑ on the unit circleT satisfying for all f ∈C (T)

∫

T
f (θ ) ϑ(dθ ) =

1

2
E
� 〈δ0⊗ e1 , f (Wω)δ0⊗ e1 〉+ 〈δ0⊗ e2 , f (Wω)δ0⊗ e2 〉

�
.

In the same manner we can use the theorem of Riesz and Markov to define probabil-
ity measures ϑN on T for the unitary restrictions Wω(N ) via

∫

T
f (θ ) ϑN (dθ ) =

1

4(N +1)
tr( f (Wω(N ))) . (5.13)

In section 6.1, we connect these probability measures to the Lyapunov exponent of
the transfer matrices in order to obtain the Hölder continuity of the integrated density
of states. To this end, we now establish an asymptotic trace formula between the uni-
tary restrictions Wω(N ) and the non-unitary restrictions χN WωχN of the disordered
walk operator Wω. The specific formulation is given in the following lemma, which is
also inspired by [Joy04].

Lemma 5.4.4. For all continuous f : T → C, the unitary restrictions Wω(N ) and the
non-unitary restrictions χN WωχN of a disordered quantum walk Wω satisfy

lim
N→∞

1

4(N +1)

�
tr( f (Wω(N )))− tr(χN f (Wω)χN

�
= 0 . (5.14)

Proof. By rescaling with the maximum of the function on the unit circle, we can assume
without loss of generality that supΘ∈T | f (Θ)| ≤ 1. As a continuous periodic function we
can approximate f (z ) uniformly on T to an arbitrary precision ε by a trigonometric
polynomial pε(z ) of finite degree κ(ε). Remember that according to definition 5.4.1 the
operator cWω(N ) is equal to the disordered walk operator Wω except at the two lattice
sites±(N +1) and that it satisfies the relation (Wω(N ))n =χN (cWω)nχN for n ∈N. Adding
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5. Disordered quantum walks

and subtracting the operators pε(cWω(N )) and pε(Wω) in (5.14) and using the fact that
pε(z ) approximates f (z ) uniformly on T, we obtain

| tr( f (Wω(N ))−χN f (Wω)χN )|
= | tr(χN (pε(cWω)−pε(Wω)χN ))+ tr(( f −pε)(Wω(N ))−χN ( f −pε)(Wω)χN )|

≤ | tr(χN (pε(cWω)−pε(Wω)χN )|+8(N +1)ε . (5.15)

Therefore, we reduced the problem to the difference of two identical polynomials of
Wω and cWω, which we can evaluate monomial-wise. We use the following expansion
formula for the difference of powers of two operators, which can be proved by induc-
tion

χN (W
k
ω −cW k

ω )χN =
k−1∑
i=0

χN W i
ω(Wω−cWω)cW k−(i+1)

ω χN . (5.16)

Since both Wω and cWω are unitary, the relation is also valid for negative k , because we
can substitute adjoins for inverses. Computing the trace of (5.16), we find for the single
summands on the right-hand side

| tr(W i
ω(Wω−cWω)cW k−(i+1)

ω χN )| ≤ ‖(Wω−cWω)cW k−(i+1)
ω χN ‖1 . (5.17)

Since cWω(N )χN is bounded and the difference of W and cW is of finite rank, because
they only differ in the coin operators at the lattice sites±(N +1), we apply the following
inequality valid for A a trace class and B a bounded operator [Sim05d]

‖AB‖1 ≤ ‖A‖1‖B‖O p

to the right-hand side of (5.17) in order to obtain the bound

| tr(W i
ω(Wω−cWω)cW k−(i+1)

ω χN )| ≤ ‖Wω−cWω‖1

Substituting everything back into (5.15) gives

1

4(N +1)

��tr( f (Wω(N ))−χN f (Wω)χN )
��≤ 2κ(ε)‖(Wω−cWω)‖1

4(N +1)
+2ε ,

where κ(ε) denotes the finite degree of pε(z ). Choosing ε small and using the fact that
the difference of the two operator Wω and cWω is of rank at most four, which implies a
bounded trace norm for their difference independent of N , finishes the proof.

5.5. Dynamical localization and resolvent

In order to prove dynamical localization according to definition 2.5.9, we have to con-
trol the expectation value of transition probabilities between lattice sites x and y uni-
formly with respect to their distance within some spectral interval I ⊂T. Our next goal
is to connect these transition probabilities to matrix elements of the resolvent of the
walk operator.
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Proposition 5.5.1. Let Wω be a disordered walk operator and I ⊂ T an open arc of the
unit circle. Then we have that the transition probability from δx ⊗φ to δy ⊗ψ for x 6= y
satisfies for all t ∈N

sup
t
| 〈δy ⊗ψ ,χ(I )W t

ω δx ⊗φ 〉| ≤
4 max

i , j
lim

N→∞ lim
κ→∞m ({θ ∈ I : | 〈δy ⊗ ei , (Wω(N )−θ )−1 δx ⊗ e j 〉|>κ}) . (5.18)

where m (A) denotes the Lebesgue measure of a set A and e1 and e2 label the elements of
some orthonormal basis ofC2.

Proof. By decomposing the internal statesφ,ψ in some orthonormal basis {e1, e2} and
applying the triangle inequality, it is clear that it suffices to show (5.18) for arbitrary
combinations of basis states ei , e j and then taking the maximum. Suppressing for the
moment the additional dependence on ei and e j in favor of readability, we denote by
ρ

x ,y
ω,N the spectral measure of Wω(N ) associated to the vectors δx ⊗ ei and δy ⊗ e j . We

obtain from (5.11) that

sup
t
| 〈δy ⊗ e j ,χ(I )W t

ω δx ⊗ ei 〉|= sup
t

lim
N→∞ |

∫

T
ρ

x ,y
ω,N (dθ )χ(I )θ

t | , (5.19)

where in a slight abuse of notation the symbol χ(A) also denotes the characteristic
function of a set on the right-hand side. Taking the polar decomposition of the mea-
sureρ

x ,y
ω,N and using |θ |= 1 for θ ∈T, we can upper bound the right-hand side of (5.19)

by the total variation of ρ
x ,y
ω,N

sup
t

lim
N→∞ |

∫

I

ρ
x ,y
ω,N (dθ )θ

t | ≤ lim
N→∞ |ρ

x ,y
ω,N |(I ) . (5.20)

Let us fix for the moment some N ∈N. Since by construction Wω(N ) is a unitary op-
erator acting on a finite dimensional Hilbert space, ρ

x ,y
ω,N is a purely singular measure

on the unit circle, i.e. it is only supported on isolated points. By lemma 2.3.9 from sec-
tion 2.3.1 this implies that we can express the right-hand side of (5.20) as the limiting
Lebesgue measure of a sequence of sets in the following way:

|ρx ,y
ω,N |(I ) = |ρx ,y

ω,N |s (I ) = lim
κ→∞πκ ·m ({θ ∈ I : |K ρx ,y

ω,N |>κ}) , (5.21)

where K ρ denotes the Cauchy transform of a measureρ on the unit circle, see section
2.3.1. We can express the Cauchy transform of the spectral measureρ

x ,y
ω,N of two differ-

ent lattice sites x , y ∈ Z with respect to the unitary restriction Wω(N ) of a disordered
quantum walk Wω in terms of a matrix element of the resolvent via

K ρ
x ,y
ω,N (z ) =

∫

T
ρ

x ,y
ω,N (dθ )

θ

θ − z

= 〈δy ⊗ e j , Wω(N )(Wω(N )− z )−1δx ⊗ ei 〉
= 〈δy ⊗ e j ,1+ z · (Wω(N )− z )−1δx ⊗ ei 〉
= z · 〈δy ⊗ e j , (Wω(N )− z )−1δx ⊗ ei 〉 .
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5. Disordered quantum walks

Inserting this into (5.21) we obtain

|ρx ,y
ω,N |(I ) = lim

κ→∞πκ ·m ({θ ∈ I :
�� 〈δy ⊗ e j , (Wω(N )−θ )−1δx ⊗ ei 〉

��>κ}) ,

which completes the proof.

5.6. Resolvent formula and transfer matrices

Transfer matrix techniques translate the analysis of the spectrum and the eigenvectors
of an operator to the study of products of finite dimensional matrices. This approach
has been used very successfully to analyze spectral properties of operators acting on
one-dimensional lattices in the area of random Schrödinger operators, random unitary
models and transport properties of quasi-crystals, see section 2.5. In fact, one main
obstacle to tackle higher-dimensional problems is exactly the lack of a transfer matrix
approach in dimensions larger than one.

In this section we develop a transfer matrix approach for disordered quantum walks,
in order to express the resolvent of Wω in terms of suitably defined products of 2× 2
matrices. We start with the infinite case on the whole lattice and discuss afterwards
how to deal with finite restrictions and boundary conditions.

We want to study the matrix elements of the resolvent

Gz := (Wω− z )−1 , z /∈σ(Wω) ,

with respect to the standard basis {δx⊗ei }. In order to simplify the discussion, we make
use of the fact that `2(Z)⊗C2 is isomorphic to `2(Z) via the map

δx ⊗ e1→ l2x
δx ⊗ e2→ l2x+1

∀x ∈Z ,

where we now use {li } to denote the standard basis of `2(Z). Since the resolvent is de-
fined as the inverse of the operator (Wω − z ) we know that the r th column g r of Gz
satisfies the relation

(Wω− z )g r = lr . (5.22)

This implies in particular that except for the r th component all entries of the vector
(Wω−z )g r have to vanish. We show how this identity enables us to construct the vector
g r from some local data only, namely the two adjacent components g r

2x−1 and g r
2x . To

this end we say that a lattice site x lies not on the diagonal of the row g r of the resolvent
of Gz if

2x 6= r and 2x +1 6= r .

Let us consider the matrix representation of a disordered walk operator (Wω− z )

136



5.6. Resolvent formula and transfer matrices

...

bx−1 −z 0 ax−1

dx−1 0 −z cx−1

bx −z 0 ax

dx 0 −z cx

bx+1 −z 0 ax+1

dx+1 0 −z cx+1

...







If we choose x not on the diagonal of g r , i.e., such that r 6= 2x or r 6= 2x + 1, respec-
tively, this expression together with (5.22) implies the following relations between the
components of g r

g r
2x−1bx − z g r

2x +ax g r
2x+2 = 0

g r
2x−1dx − z g r

2x+1+ cx g r
2x+2 = 0 .

(5.23)

Using the fact that the 4-tuple (ax , bx , cx , dx ) consists of the components of the unitary
2×2 matrix Ux that constitutes the local coin operation at lattice site x , we can derive
the following relation between the two vectors (g r

2x−1, g r
2x ) and (g r

2x+1, g r
2x+2)�

g r
2x+1

g r
2x+2

�
=

1

ax

�
det(Ux )

z cx

−bx z

��
g r

2x−1

g r
2x

�
, (5.24)

which we take as the definition of our transfer matrices.

Definition 5.6.1 (transfer matrix). Let Wω be a disordered quantum walk. The transfer
matrices Tx (z ) of Wω are defined for all lattice sites x ∈Zwith ax 6= 0 as

Tx (z )=
1

ax

�
det(Ux )

z cx

−bx z

�
, (5.25)

where the quantities ax , bx and cx are given by the components of the local coin oper-
ation Ux at lattice site x . Due to unitarity of Ux the determinant of a transfer matrix is
given by

det Tx (z )=
dx

ax
, (5.26)

which in particular implies that it is independent of z and |det Tx (z )|= 1.
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5. Disordered quantum walks

The determinant of a transfer matrix can be evaluated to

det Tx (z )=
1

a 2
x

(det(Ux ) + bx cx ) .

Now, (5.26) follows if we insert the definition of Ux (see (5.1)). By unitarity of Ux it is
also clear that a−1

x ·dx ∈T. Therefore, the modulus of the determinant is indeed equal
to one.

As we have seen in section 5.5, the restriction to the case ax 6= 0 is a technical one due
to the transfer matrix approach, because coins with vanishing diagonal automatically
lead to dynamical localization (see section 5.3). Therefore, we can assume without loss
of generality that αx 6= 0 holds for all lattice sites x .

For x not on the diagonal of g r , we study the doubly infinite sequence (Φr,x
y )y ∈Z ob-

tained by iteratively applying transfer matrices or their inverses to the components
(g r

2x−1, g r
2x ) of g r

Φr,x
y =

�
φr,x

2y−1

φr,x
2y

�
:=





Ty (z )
−1 . . . Tx−1(z )

−1 · �g r
2x−1
g r

2x

�
, if y < x

�g r
2x−1
g r

2x

�
, if y = x

Ty−1(z ) . . . Tx (z ) ·
�g r

2x−1
g r

2x

�
, if y > x

. (5.27)

Note that in order to simplify notation, we often drop the subscript y ∈ Z when re-
ferring to the doubly infinite sequence (φr,x

y ). From (5.24) it is immediately clear that
by construction the sequences (Φr,x

y ) solve the equation

(Wω− z )Φ= 0 , (5.28)

which implies two things. Fist, the sequence cannot agree everywhere with g r since the
latter has to respect 5.22; second, since z was chosen to lie outside the spectrum of Wω,
it cannot be square summable. These two facts raise two questions: Which elements of
the sequence (φr,x

y ) and g r are equal and what can we say about its growth behaviour?
Let us begin with the first question. From the definition of the sequence (Φr,x

y ) it is
clear that at least the element Φr,x

x in (5.27) is equal to the components (g r
2x−1, g r

2x ) of
g r . Due to (5.24) this relation remains true for the other elements Φr,x

y as long as y lies
not on the diagonal of g r . Therefore, starting from any two components (g r

2x−1, g r
2x ) of

g r , we can construct any other component as long as we remain on the same side of
the diagonal as x . We summarize this reasoning in the following proposition.

Proposition 5.6.2. Let g r be the r th row of the resolvent Gz of a realization of a regular
disordered quantum walk Wω. Then, if x and y are on the same side of the diagonal of
g r , meaning that either 2x −1< r and 2y −1< r or 2x > r +1 and 2y > r +1 holds, the
sequences (Φr,x

y )y ∈Z and g r agree

Φr,x
y =

�
φr,x

2y−1

φr,x
2y

�
=

�
g r

2y−1

g r
2y

�
.
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Since in particular all x on the same side of the diagonal give rise to the same sequence,
we omit its dependence on x and write (Φr,L

y ) and (Φr,R
y ) for all sequences with x < 2r −1

(L ) or x > 2r (R ), respectively.

We have seen in our discussion below (5.28) that the sequences (Φr,L
y ) and (Φr,R

y ) can-
not be square summable, because otherwise z would be a point in the spectrum of Wω.
However, we now also know that the sequences have the same components as the re-
solvent if we stay on the same site of the diagonal of g r . However, by definition Gz is a
bounded operator and this implies that the rows g r must be square summable, because
otherwise the image of the corresponding basis vector lr ∈ `2(Z) should lie outside of
`2(Z). Therefore, both sequences (Φr,L

y ) and (Φr,R
y ) have to be square summable on the

side where they agree with g r . We introduce the terms left and right summability for
this property.

Definition 5.6.3 (left/right summability). A doubly infinite sequence (φy )y ∈Z is called
left square summable if

∑
y<k

|φy |2 <∞ ∀k ∈Z .

The sequence is called right square summable if
∑
y>k

|φy |2 <∞ ∀k ∈Z .

Next we want to discuss the dependence of the sequences (Φr,L
y ) and (Φr,R

y ) on the row
index of the resolvent. To this end, we prove the following proposition.

Proposition 5.6.4. Let Wω be a regular disordered quantum walk, then up to scalar mul-
tiplication, there is a unique right square summable sequence (φ+(n )) and a unique left
square summable sequence (φ−(n )) both solving

(Wω− z )Φ= 0 . (5.29)

Proof. Let us assume that there are two linearly independent left square summable
sequences (φ1(n )) and (φ2(n )) both solving (5.29). Due to (5.24), for all y < x ∈ Z we
find the relation

Tx−1(z ) . . . Ty (z ) ·
�
φ1(2y−1) φ2(2y−1)

φ1(2y ) φ2(2y )

�
=

�
φ1(2x−1) φ2(2x−1)

φ1(2x ) φ2(2x )

�
.

Taking the determinant on both sides of this expression and using the fact |det Tx (z )|= 1
for all x (see (5.26)), we find that the modulus of the determinant of the matrix formed
by the two solutions is constant for all x ∈Z, i.e.,

����det

�
φ1(2x−1) φ2(2x−1)

φ1(2x ) φ2(2x )

�����= const .

Left square summability implies that both solutions have to be null sequences. There-
fore, the determinant has to vanish in the limit of large x , which contradicts the linear
independence of (φ1(n )) and (φ2(n )). The corresponding argument applies to the right
square summable solution.
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Since the sequences (Φr,L
y ) and (Φr,R

y ) are left or right square summable solutions of
(5.29),respectively, we know from proposition 5.6.4 that are up to an r -dependent fac-
tor the only solutions of (5.29).

Let us fix one particular choice of a pair of right and left square summable solutions
(φ+(n )) and (φ−(n )). In the next step, we show how to construct the complete resolvent
from this data. The idea is to choose (φ+(n )) below the diagonal of every g r and (φ−(n ))
above of the diagonal and scale both sequences by an r -dependent factor in such a
way that the overall sequence solves (5.22). In other words, for r = 2x or r = 2x +1, we
express the columns of the resolvent g r as the following linear combination

...

φ−(2x−1)

φ−(2x )

0
0
...







αrg r = + βr

...
0
0

φ+(2x+1)

φ+(2x+2)

...







More formally, this corresponds to the following ansatz for the matrix elements of
the resolvent, where we have to distinguish the cases of odd or even m :

Gz (n ,m )=g m (n )=





αm φ−(n ) if (m even and n ≤m ) or (m odd and n <m )

βm φ+(n ) if (m even and n >m ) or (m odd and n ≥m )
(5.30)

We want to choose the coefficients αm and βm in such a way that our ansatz solves
(5.22). In order to treat the cases m odd and m even simultaneously, we define ym as
the lattice site corresponding to m , e.g. ym satisfies either 2ym = m or 2ym + 1 = m .
Then (5.22) implies that

αm (bym
φ−(2ym−1)− zφ−(2ym )) +βm a ym

φ+(2ym+2)=δm ,2ym

αm d ym
φ−(2ym−1)−βm (zφ−(2ym+1))− cym

φ+(2ym+2)) = 1−δm ,2ym+1

holds for the coefficients αm and βm . Since both sequences (φ±(n )) are solutions of
(5.29), we can simplify in both equations the terms inside the parentheses by making
use of (5.23), which gives

�−a yφ−(2y+2) a yφ+(2y+2)

d yφ−(2y−1) −d yφ+(2y−1)

��
αm
βm

�
=

�
δm ,2ym

1−δm ,2ym

�
.

We can now solve for αm and βm and by using Cramer’s rule, we find

m even m odd

αm =α2ym
=
φ+(2ym−1)

a ym
det A ym

αm =α2ym+1 =
φ+(2ym+2)

a ym
det A ym

βm =β2ym
=
φ−(2ym−1)

a ym
det A ym

βm =β2ym+1 =
φ−(2ym+2)

a ym
det A ym
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where we defined the matrix

A y :=

�
φ−(2y−1) φ+(2y−1)

φ−(2y+2) φ+(2y+2)

�
.

However, this definition does not respect the application of transfer matrices, because
A y+1 6= Ty (z ) ·A y . This is due to the fact that we combined the componentsφ±(2y−1) and
φ±(2y+2). We can compensate for this by eliminating φ±(2y+2) in favour of φ±(2y ). The
upper equation of (5.23) gives the relation

�
φ(2y−1)

φ(2y )

�
=

�
1 0
by

z

a y

z

��
φ(2y−1)

φ(2y+2)

�
.

Therefore, by defining the matrices

By :=

�
φ−(2y−1) φ+(2y−1)

φ−(2y ) φ+(2y )

�
, (5.31)

we find the following relation between the determinants of A y and By

det By =
a y

z
det A y .

In addition, the matrices By satisfy the relation By+1 = Ty (z )By and due to the identity
|det Ty (z )|= 1 for all y ∈Z, we can also infer that

|det By |= |det Bx | ∀x , y ∈Z . (5.32)

We can now express the coefficients αm and βm in terms of Bym
such that

m even m odd

αm =α2ym
=
φ+(2ym−1)

z det Bym

αm =α2ym+1 =
d ym
φ+(2ym+2)

a ym
z det Bym

βm =β2ym
=
φ−(2ym−1)

z det Bym

βm =β2ym+1 =
d ym
φ−(2ym+2)

a ym
z det Bym

By inserting these solutions into our ansatz (5.30), we obtain an expression for the ma-
trix elements of the resolvent. If we are only interested in the absolute value of the
matrix elements, we are free to evaluate the determinant in the denominator at an ar-
bitrary lattice site k ∈Z (see (5.32)). The next lemma summarizes the discussion of this
section and contains the final formula for the matrix elements of the resolvent.

Lemma 5.6.5. Let Wω be a regular disordered quantum walk and (φ+(n )) and (φ−(n )) a
right- or left square summable solution of (5.29), respectively. Then the absolute value
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of the matrix elements of the resolvent Gz (n ,m ) for z ∈C \ {0} are given by the expression

|Gz (n ,m )|= 1

|z det Bk |





|φ+(m−1)φ−(n )| if m even and n ≤m

|φ−(m−1)φ+(n )| if m even and n >m

|φ+(m+1)φ−(n )| if m odd and n <m

|φ−(m+1)φ+(n )| if m odd and n ≥m

,

where k ∈Z is arbitrary, Bk is defined in (5.31) and ym is determined form the equation
2ym =m if m is even and from the equation 2ym +1=m if m is odd.

5.7. Properties of transfer matrices

In this section we investigate the properties of the transfer matrices as introduced in
definition 5.6.1. In particular, this leads to a refined formulation of lemma 5.6.5 for the
finite restriction Wω(N ) of a disordered walk operator Wω encompassing the reflective
boundary conditions (see section 5.5). In addition, we prove some continuity results
for products of transfer matrices with respect to the spectral parameter z .

In section 5.3 we defined the subset Und ⊂ U (2) as the set of all unitary 2×2 matrices
with non-vanishing diagonal. We will now consider the transfer matrices Tx (z ) from
definition 5.6.1 as a family of maps τz indexed by z ∈C \ {0} from Und into GL(C, 2)

τz : Und 7→ GL(C, 2)

�
a b
c d

�
7→ 1

a

�
a d−b c

z c
−b z

�
.

(5.33)

We have to show that the function τz is well defined and in particular that its image
of Und is contained in GL(C, 2). Obviously, we have to demand that a 6= 0, but this is
exactly the definition of the set Und . In addition, we see from (5.33) that for U ∈ Und

det(τz (U )) =
d

a
6= 0 .

Hence, the image of Und under τz is indeed a subset of GL(C, 2). Next we analyze the
operator norm and symmetries of the mapping τz .

Lemma 5.7.1. Let τz : Und 7→ GL(C, 2) be the family of maps according to (5.33). Then
τz is injective on Und for z ∈C \ {0} and the image of Und under τz leaves the plane

P2 = {
�

x1
x2

�
∈C2 : |x1|= |x2|}
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invariant, that is, τz (U )P2 ⊂ P2 for all U ∈ Und . If z ∈T then the operator norm of τz (U )
for U ∈ Und is independent of z and given by

‖τz (U )‖2 =
1+ |U22|
1− |U22| ≥ 1 (5.34)

Proof. We can write down the inverse of τz for an arbitrary matrix in GL(C, 2), which is
given by

τ−1
z :

�
q u
v w

�
→ z

w

�
1 −v
u q w − v u

�
,

provided w 6= 0. Since we assumed that z 6= 0 this is satisfied for all M ∈ τz (Und ) and
because this implies τ−1

z (τz (U )) =U for all U ∈ Und , τz is indeed injective on Und .
To show the invariance of P2, we consider an arbitrary element M ∈ GL(C, 2) that

leaves P2 invariant. Up to an irrelevant overall phase factor, a generic vector k in P2
has the form (1, c ) with c ∈ T. Therefore, in order for M · k to be an element of P2 its
components have to have the same absolute value, which implies

|M11+ c M12|= |M21+ c M22| ∀c ∈T
for the matrix elements of M . A family of solutions for this expression is given by the
three conditions

|M11|= |M22|
|M12|= |M21|

arg(M11) +arg(M22) = arg(M21) +arg(M12) .

Using the definition of τz and unitarity of U ∈ Und it is straightforward to check that
τz (U ) satisfies these relations. Assuming z ∈T, we can compute the singular valuesα±
of τz (U ), which are given by

α± =
1± |U22|
|U11| . (5.35)

The positive sign corresponds to the larger value and therefore to the operator norm of
τz (U ). Noting that unitarity of U implies |U11|2+ |U22|2 = 1 completes the proof.

This invariance result allows for a simplification of lemma 5.6.5 for the finite uni-
tary restrictions Wω(N ). Since we deal in that case with a finite dimensional operator,
summability is satisfied for every solution of

(Wω(N )− z )φ = 0 . (5.36)

Instead, we have to ensure that the boundary conditions at the reflecting sites are satis-
fied (see figure 5.5). Of course, if we were to take solutions of this equation that satisfy
both boundary conditions, z would be an eigenvalue. Therefore, let us consider the
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5. Disordered quantum walks

half infinite operators W ±
ω (N ), which are constructed by introducing a reflective coin

exclusively at lattice site N +1 (+) or −(N +1) (−), respectively. A vectorφ± satisfying

(W ±
ω (N )− z )φ = 0

is then called right- or left-compatible with Wω(N ), respectively. Such vectors also solve
(5.36) except for one of the boundary conditions. These two conditions then replace left
or right summability and we can construct the resolvent of Wω(N ) in the same manner
as in the doubly-infinite case with an ansatz of the form (5.30). This leads again to
lemma 5.6.5 for a pair of left- and right compatible solutions. Due to the invariance of
P2 under the action of the transfer matrices, we can simplify this result in the following
way.

Lemma 5.7.2. Let Wω be a regular disordered quantum walk and denote by GN
z the re-

solvent of its unitary restriction Wω(N ) to the lattice sites −N to N . We have that for
all z ∈ T \σ(Wω(N )), all N ∈ N, all x , y ∈ [−N , N ] ⊂ Z and all i , j ∈ {0, 1}, there exist
normalized vectors Φ+(N ,x ,y ,z ,i , j ),Φ−(N ,x ,y ,z ,i , j ) ∈ P2 such that the absolute values of the
matrix elements GN

z (2x−i ,2y− j ) of GN
z are given by

|GN
z (2x−i ,2y− j )|= 1

2

¨| 〈Φ+ , Ty−1(z ) · · ·Tx (z )Φ− 〉|−1 if x < y

| 〈Φ+ , Tx−1(z ) · · ·Ty (z )Φ− 〉|−1 if x > y
.

The dependence of Φ± on N , x , y and z is non trivial.

Proof. Fix N ∈N and z ∈T\σ(Wω(N )) and letφN
± be right- respectively left compatible

solutions of Wω(N ). From (5.10) we deduce that due to their compatibility with the
reflective boundary conditions the two sequences satisfy

zφN
− (−2N−1)= e iη

L
φN
− (−2N )

zφN
+ (2(N+1))= e iη

R
φN
+ (2N+1) .

(5.37)

Due to z ∈T this implies that

|φN
− (−2N−1)|= |φN

− (−2N )| and |φN
+ (2(N+1))|= |φN

+ (2N+1)| .

Hence, the vectors
�
φN
− (−2N−1)

φN
− (−2N )

�
and

�
φN
+ (2N+1)

φN
+ (2(N+1))

�

are elements of P2. Since we know from (5.27) that we can construct other vectors
from these two initial vectors by the application of transfer matrices, lemma 5.7.1 tells
us that |φN

± (2k−1)|= |φN
± (2k )| holds for any −N ≤ k ≤N +1 and therefore, that any other

vector satisfies
�
φN
± (2k−1)

φN
± (2k )

�
∈ P2 .
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Starting with the case x < y and dropping for the moment the explicit dependence
on N , lemma 5.6.5 gives

|GN
z (2x−i ,2y− j )|=

����
φ+(2k )φ−(2k−1)−φ+(2k−1)φ−(2k )

φ+(2y−1+ j )φ−(2x−i )

����
−1

(5.38)

for all −N < k < N . Choosing k = 2y and expressing the determinant in the denom-
inator as a scalar product of two vectors, we can rewrite the right-hand side of this
equation as

����
�

1

|φ+(2y−1+ j )|
�−φ+(2y−1)

φ+(2y )

�
,

1

|φ−(2x−i )|
�
φ−(2y−1)

φ−(2y )

������ . (5.39)

By our preceding discussion it is clear that both vectors in this scalar product are ele-
ments of P2. Using (5.27), we can express a vector at lattice site y in terms of the vector
at lattice site x ≤ y via a product of transfer matrices

�
φ−(2y−1)

φ−(2y )

�
= Ty−1(z ) · · ·Tx (z )

1

|φ−(2x−i )|
�
φ−(2x−1)

φ−(2x )

�
.

Inserting this into (5.39) and defining

Φ+ =
1p

2|φ+(2y−1+ j )|

�−φ+(2y−1)

φ+(2y )

�
and Φ− =

1p
2|φ−(2x−i )|

�
φ−(2x−1)

φ−(2x )

�

then gives the desired result with normalized vectors Φ± ∈ P2.
In the case x > y lemma 5.6.5 results in an expression for the matrix elements of the

resolvent identical to (5.38) except that the arguments of φ+ and φ− are exchanged in
the denominator. Therefore, we can apply the same argument as before except that we
evaluate the determinant at the lattice site k = x and the result follows by setting

Φ+ =
1p

2|φ+(2x−i )|

�−φ+(2x−1)

φ+(2x )

�
and Φ− =

1p
2|φ−(2y−1+ j )|

�
φ−(2y−1)

φ−(2y )

�
.

Since we need the result in the proof of the Wegner bound in section 6.3, we also note
the following converse to lemma 5.7.2.

Corollary 5.7.3. Given Φ± ∈ P2 normalized and a set {Tx (z )} of L transfer matrices, then
there exists for any z ∈T a unitary finite restriction Wω(L ) of a regular disordered quan-
tum walk Wω to the lattice sites 0 to L +1 such that its resolvent GN

z satisfies

|GN
z (0,L+1)|= 1

2
| 〈Φ+ , TL (z ) · · ·T1(z )Φ− 〉|−1 .

Proof. Fix some z ∈ T. Since the mapping τz from U (2) to the transfer matrices is
invertible (see lemma 5.7.1), we can find a unique sequence of local coin operations
corresponding to {Tx (z )}. We can now take any regular disordered quantum walk Wω,
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5. Disordered quantum walks

whose local coin operations on the lattice sites 1 to L coincide with this sequence and
introduce reflective boundary coins at the lattice sites 0 and L + 1 according to (5.10).
We choose the boundary phases ηL and ηR as

ηL = arg(z ) +arg(Φ−(1))−arg(Φ−(2))
ηR =−(π+arg(z )−arg(Φ+(1)) +arg(Φ+(2))) ,

which ensures that Φ− satisfies the left and −σxΦ+ satisfies the right boundary equa-
tion, i.e., (5.37). Therefore, the application of the transfer matrices {Tx (z )} or their in-
verses to Φ− or −σxΦ+ generates a sequence that is left or right compatible with the
finite unitary restriction of the walk operator Wω to the lattice sites 1 to L . Now starting
from these sequences and Wω, we can use lemma 5.7.2 and find that the vectors Φ±
correspond exactly to the two vectors in P2 given in this lemma.

Next we establish a decomposition relation for the matrix elements of a product of
transfer matrices that allows us to subdivide such a matrix element into a product of
matrix elements of shorter products of transfer matrices.

Lemma 5.7.4. Let Φ± ∈ P2 be normalized and {Tx (z )} be a set of L transfer matrices, then
there exists for any z ∈T and any 1≤ l ≤ L a normalized vector eΨ ∈ P2 such that

| 〈Φ+ , TL (z ) · · ·T1(z )Φ− 〉|= | 〈Φ+ , TL (z ) · · ·Tl (z )Ψ 〉|| 〈Ψ , Tl+1(z ) · · ·T1(z )Φ− 〉| . (5.40)

Proof. The plane P2 is invariant under the action of the transfer matrices. Hence, the
normalized vector eΨ defined as

Ψ :=
Tl+1(z ) · · ·T1(z )Φ−
‖Tl+1(z ) · · ·T1(z )Φ−‖

lies in P2 and we obtain for the left-hand side of (5.40) the relation

| 〈Φ+ , TL (z ) · · ·T1(z )Φ− 〉|= | 〈Φ+ , TL (z ) · · ·Tl (z )Ψ 〉| ‖Tl+1(z ) · · ·T1(z )Φ−‖ .

This finishes the proof, because any vector Ψ ∈C2 satisfies the relation

‖Ψ‖ = 〈Ψ ,Ψ 〉
‖Ψ‖ = 〈

Ψ

‖Ψ‖ ,Ψ 〉 .

5.7.1. Continuity properties of products of transfer matrices

In this section we connect our results on transfer matrices with the general theory of
products of random matrices as developed in chapter 3. In particular, we rephrase the
various regularity and integrability conditions for the case of matrices with determi-
nant of modulus one. First, we define the main regularity condition we are going to
use.
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5.7. Properties of transfer matrices

Definition 5.7.5. A probability measure µ on GL(C, d ) is ζ-integrable for ζ> 0 if
∫
‖g ‖ζ µ(dg ) <∞ .

This kind of regularity is convenient to assume for the local coin distributions due to
the following proposition.

Proposition 5.7.6. Let µ be a ζ-integrable probability measure on S LT(2). We have that
log‖g ‖ as well as log‖g −1‖ are integrable with respect to µ and ζ is an exponential mo-
ment for µ.

Proof. Since g ∈ S LT(2) implies |det g |= 1 the two singular values of g are reciprocal to
one another and we only have to consider the case ‖g ‖. In addition the determinant
condition tells us that ‖g ‖ ≥ 1 and therefore log‖g ‖ ≤ ‖g ‖, which proofs integrability
as well as the fact that ζ is an exponential moment for µ.

From the proof of lemma 5.7.1 we know that the singular values of a transfer matrix
are upper bounded by 2

|U11| . This implies the following proposition.

Proposition 5.7.7. Let µ be a probability measure on U (2), with µ(Und ) = 1 and denote
by U11 the upper left matrix element of U ∈ U (2). The measure on the transfer matri-
ces induced by τ is ζ-integrable, if 1

U11
is ζ-integrable with respect to µ. This means in

particular that ζ-integrability of µ can be verified independently of the parameter z .

These two propositions allow us directly to rephrase the main result from chapter 3
for the case of matrices in S LT(2). Recall that a set M ⊂ GL(2,C) is contractive if and
only if we can find a sequence (Mn )⊂M such that ‖Mn‖−1 Mn converges to a rank one
matrix. Since for M ∈ S LT(2) the singular values are reciprocal to each other, this is
equivalent to the sequence (‖Mn‖)n being unbounded. Using the fact that a compact
semigroup is a group [HR94]we see that non-compactness implies contractiveness for
S LT(2) matrices [CL90]. Hence, denoting by P (A) the probability of the event A with
respect to µ∞, we can reformulate lemma 3.3.10 for S LT(2)matrices.

Lemma 5.7.8. Let µ be a strongly-irreducible, non-compact and ζ-integrable probabil-
ity measure on S LT(2) and let Sn (ω) be a product of i.i.d random matrices drawn accord-
ing to µ. There exist γ,ε0 > 0 such that for every ε0 > ε > 0 there exits σ > 0 and n0 ∈N
such that for all n ≥ n0 and normalized x , y ∈C2

P
�
| 〈y ,Sn (ω)x 〉| ≤ e (γ−ε)n

�
≤ e −σn .

If the transfer matrices of a regular disordered quantum walk satisfy this assump-
tions, this lemma provides us with the desired almost sure exponential decay of the
matrix elements of the resolvent. However, the result or more precisely the resulting
constants γ andσ depend on the point z on the unit circle we consider.

To overcome this limitation we conclude this section with some continuity results for
products of random matrices if the parameter z is varied on the unit circle. Although
these results depend explicitly on the length of the product, they allow for the formu-
lation of an initial scale estimate needed in the proof of dynamical localization that is
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5. Disordered quantum walks

carried out in the next chapter. We begin with a continuity result under one additional
assumption. Since the only parameter that enters in all of the arguments is the length
of the product rather than the exact lattice sites between which it is evaluated, we set
x = 1 and y −2= n for the remainder of this section.

Proposition 5.7.9. Let n ∈N, Θ,Θ′ ∈ T and assume that all preimages Ui ∈ U (2) of the
transfer matrices Ti satisfy |(Ui )11| > κ > 0. Then there exists Cn > 0 such that for all
normalized v ∈C2 we have

P
� ��‖Tn (Θ) · . . . ·T1(Θ)v ‖ −‖Tn (Θ

′) · . . . ·T1(Θ
′)v ‖��>η �≤ 1

η
Cn |Θ−Θ′| , (5.41)

where the probability is taken with respect to the product measure µn .

Proof. Applying Markov’s inequality and the reverse triangle inequality to the left-hand
side of (5.41) and using the definition of the operator norm implies that we have to show

E (‖Tn (Θ) · . . . ·T1(Θ)−Tn (Θ
′) · . . . ·T1(Θ

′)‖)≤Cn |Θ−Θ′| . (5.42)

The difference between two products of k operators can be written as

Ak · · ·A1−Bk · · ·B1 = (Ak −Bk )Bk−1 · · ·B1+Ak (Ak−1 · · ·A1−Bk−1 · · ·B1) .

Applying this decomposition iteratively to the two products of transfer matrices results
in the following telescope sum like scheme

Tn (Θ) · . . . ·T1(Θ)−Tn (Θ
′) · . . . ·T1(Θ

′)=(Tn (Θ)−Tn (Θ
′))Tn−1(Θ

′) · . . . ·T1(Θ
′)

+Tn (Θ)(Tn−1(Θ)−Tn−1(Θ
′))Tn−1(Θ

′) · . . . ·T1(Θ
′)

+ · · ·
+Tn (Θ) · . . . ·T2(Θ)(T1(Θ)−T1(Θ

′)) .

Inserting this expression into (5.42), using that the operator norm is sub-multiplicative
and the fact that the quantities ‖Ti (z )‖ are i.i.d random variables we obtain the upper
bound

E (‖Tn (Θ) · . . . ·T1(Θ)−Tn (Θ
′) · . . . ·T1(Θ

′)‖)≤ nE (‖T1(Θ)‖)n−1E (‖T1(Θ)−T1(Θ
′)‖)

We know from lemma 5.7.1 that for all θ ∈T the singular values of the transfer matrices
are less or equal than 2|U11|−1. Therefore, using our assumptions, the first expectation
value on the right-hand side can be upper bounded by (2κ)−n+1. The difference in the
last factor takes the simple form of a diagonal matrix

T1(Θ)−T1(Θ
′)=

1

U11

�
det(U )(Θ−1−Θ′−1) 0

0 Θ−Θ′
�

(5.43)

of which the singular values can be computed to be both equal to |U11|−1|Θ−Θ′|. There-

fore, using again our assumption on U11, the lemma follows if we set Cn =
2n−1n
κn .

In addition to the preceding norm estimate, we need the following corollary that
translates the bound to the single matrix elements of a product of transfer matrices.
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Corollary 5.7.10. Let n ∈ N, Θ,Θ′ ∈ T and assume that all preimages Ui ∈ U (2) of the
transfer matrices Ti satisfy |(Ui )11| > κ > 0. Then there exists Cn > 0 such that for all
normalized v1, v2 ∈C2 we have

P
� ��| 〈v2 , Tn (Θ) · . . . ·T1(Θ)v1 〉|− | 〈v2 , Tn (Θ

′) · . . . ·T1(Θ
′)v1 〉|

��>η �≤ 1

η
Cn |Θ−Θ′| , (5.44)

where the probability is taken with respect to the product measure µn .

Proof. Applying again Markov’s inequality and the reverse triangle inequality we see
that the left-hand side of (5.44) is upper bounded by

1

η
E (| 〈v2 , Tn (Θ) · . . . ·T1(Θ)−Tn (Θ

′) · . . . ·T1(Θ
′)v1 〉|) .

Using the Cauchy-Schwarz inequality on the scalar product and normalization of v2
we arrive again at (5.42) and the whole argument presented in the proof of lemma 5.7.9
carries over with the same bound Cn as before.

We can now state an initial scale estimate for the growth rate of the transfer matrices
in an interval around a given point Θ on the unit circle T.

Lemma 5.7.11 (initial scale estimate). Let n ∈N,µ be a probability measure on Und and
assume that for Θ0 ∈T the image measure of µ on τΘ0

(Und ) is strongly irreducible, non-
compact and ζ-integrable. Then there are γ0,σ0 > 0 and n0 ≥ n such that for some open
arc I (Θ0,δ) around Θ0 of arc length 2δ we have for all normalized vectors v1, v2 ∈C2

P
�∃Θ ∈ I (Θ0,δ) ; | 〈v2 , Tn0

(Θ) · . . . ·T1(Θ)v1 〉| ≤ e γ0n0
�≤ e −σ0n0 .

In particular, the constants γ0 andσ0 are independent of the vectors v1 and v2.

Proof. Starting with an arbitrary Θ ∈T and m ∈N, we define the events

E1 := {��| 〈v2 , Tm (Θ) · . . . ·T1(Θ)v1 〉|− | 〈v2 , Tm (Θ0) · . . . ·T1(Θ0)v1 〉|
��<η}

E2 := {| 〈v2 , Tm (Θ0) · . . . ·T1(Θ0)v1 〉| ≥ e (γ−ε)m} .

Denoting by ûE the complementary event of an event E , we can lower bound the prob-
ability that the matrix element of a product of n transfer matrices is large by

P
�
| 〈v2 , Tm (Θ) · . . . ·T1(Θ)v1 〉|> e (γ−ε)m −η

�
≥P (E1 ∩E2)≥ 1−P �ûE1

�−P �ûE2

�

≥ 1−P �|| 〈v2 , Tm (Θ) · . . . ·T1(Θ)v1 〉|− | 〈v2 , Tm (Θ0) · . . . ·T1(Θ0)v1 〉|| ≤η
�

−P
�
| 〈v2 , Tn0

(Θ0) · . . . ·T1(Θ0)v1 〉| ≤ e (γ−ε)m
�

. (5.45)

We now fix ε and γ according to lemma 5.7.8 such that in addition γ− 2ε > 0 holds.
The second probability in the last line of this expression can then be controlled by an
exponential rate σε if we make m larger than some Nε. If n >Nε set n0 = n otherwise
we choose n0 =Nε. Since µ(Und ) = 1 we can find for any ξ> 0 a κ> 0 such that

P (∃l ∈ {1, . . . , n0} : |U11|<κ)≤ ξ .

149



5. Disordered quantum walks

Thus, all assumptions of corollary 5.7.10 are met and we can apply it to the second term
in (5.45). Inserting both bounds into the inequality we obtain

P
�
| 〈v2 , Tn0

(Θ) · . . . ·T1(Θ)v1 〉|> e (γ−ε)n0 −η
�
≥ 1− e −σεn0 − Cn0

η
|Θ−Θ0| −ξ .

Note that Cn0
does depend on the value of ξ. To prove the desired bound we first set

γ0 = γ− 2ε, which is positive by construction, and choose η < e (γ−ε)n0 (1− e −εn0 ). Next
we pick constants ξ and σ0 that ensure e −σ0n0 > e −σεn0 +ξ. This fixes the value of the
constant Cn0

which enables us to choose an allowed length δ by making |Θ−Θ0| small
enough.

To conclude this section we note one uniform regularity property of the expectation
value of a product of transfer matrices with respect to normalized vectors in C2. This
result is needed for the Wegner estimate we derive in section 6.3. It is an adaption
of a similar result in [CKM87a]. The proof uses a standard chaining argument and is
included in appendix C.1 for completeness.

Proposition 5.7.12. Let µ be probability measure on Und and assume that for all Θ ∈
I ⊂ T the image measure of µ on τΘ(Und ) is strongly irreducible, non-compact and ζ-
integrable. Then there are positive constants α and δ and n0 ∈N such that for all n ≥ n0
and all Θ ∈ I

sup
‖φ‖=1

E
�
‖Tn (Θ) · . . . ·T1(Θ)φ‖δ

�
≤ e −αn .

5.7.2. Hölder continuity of the Lyapunov exponent

With the initial scale estimate from the last section we have shown regularity on the
unit circle for the norm growth for finite products of transfer matrices. The goal in this
section is to establish regularity conditions for the Lyapunov exponent γ. To be more
precise, since the transfer matrices T(Θ) depend on the spectral parameter Θ, so does
in general the Lyapunov exponent γ(Θ). The goal of this section is to show that with
respect to Θ, the Lyapunov exponent is Hölder continuous.

Our standing assumption is again the ζ-integrability of the measures µΘ according
to definition 5.7.5 for all Θ. Since the norm of the transfer matrices T(Θ) allows for an
Θ independent bound, as discussed in proposition 5.7.7, we can check this condition
independently of Θ. In addition, we can transfer the Θ dependence of the image mea-
sure µΘ on GL(C, 2) to an integration over the transfer matrices, thereby integrating
over U (2). Therefore, we assume that there exists a Θ-independent measure µ and a
function τΘ such that for all µΘ we have

∫
f (g )µΘ(dg ) =

∫
f (τΘ(U ))µ(dU ) =:E

�
f (gΘ)

�
. (5.46)

In addition, the exact form of the transfer matrices does not enter our argument. In-
stead, we only need the following properties.
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Proposition 5.7.13. Let µ be a ζ-integrable probability measure on Und . The transfer
matrices Tl (Θ) satisfy for all Θ,Θ′ ∈T , l ∈Z and some C > 0 the relation

E
�
log‖Tl (Θ)T

−1
l (Θ′)‖�≤C |Θ−Θ′| ζ2 . (5.47)

Denoting by [x , y ] for x , y ∈C2 the matrix with columns x and y , we have for allΘ,Θ′ ∈
T, l ∈Z and x ∈PC2 the relation

|det [Tl (Θ)x , Tl (Θ
′)x ] | ≤ ‖Tl (Θ)‖2|Θ−Θ′| . (5.48)

Proof. To show the first relation, note that any pair of matrices A, B satisfies ‖AB−1‖ ≤
‖(A−B )‖‖B−1‖+1. Inserting this into (5.47) we find

E
�
log‖Tl (Θ)T

−1
l (Θ′)‖�≤ 2

ζ
E

�
log((‖Tl (Θ)−T −1

l (Θ′)‖‖T −1
l (Θ′)‖+1)

ζ
2 )
�

.

From (5.43) we know that the difference of two transfer matrices depending on differ-
ent spectral parameters Θ and Θ′ is given by a simple diagonal matrix. Furthermore,
employing (5.34) implies that the operator norm of this difference is upper bounded
by ‖Tl (Θ)‖|Θ − Θ′| for any Θ ∈ T. Inserting this into (5.47) and using the inequalities
log (1+ x )≤ x as well as (1+ x )s ≤ 1+ x s for positive x and 0< s < 1 we find

E
�
log‖Tl (Θ)T

−1
l (Θ′)‖�≤ 2

ζ
E

�
‖Tl (Θ

′)‖ ζ2 ‖T −1
l (Θ′)‖ ζ2

�
|Θ−Θ′| ζ2 .

The fact that the determinant of a transfer matrix has modulus one implies for the op-
erator norm of a transfer matrix and its inverse the relation ‖Tl (Θ)‖ = ‖T −1

Θ (z )‖ and there-
fore the prefactor in the last expression is finite byζ-integrability ofµΘ. In order to show
the second part, we use the relation |det[x , y ]|= |det[Ax , Ay ]| for A ∈ S LT(2). Choosing
T −1

l (Θ′) and x = (1, exp(iφ)), we obtain by explicitly evaluating the determinant in the
second step

|det[Tl (Θ
′)x , Tl (Θ)x ]|= |det[x , T −1

l (Θ′)Tl (Θ)x ]|= 2
1+ |U22|
|U11|2 |Θ−Θ′| .

The bound now follows from (5.34).

Since we do not need the exact form of the transfer matrices we return to the notation
of chapter 3 and again denote by gω a single and by Sn (ω) the product of n random
matrices. First we translate some continuity results that are valid in the Hamiltonian
case to our setting of complex transfer matrices [BL85, CL90].

Proposition 5.7.14. Let µΘ,Θ ∈T, be a family of strongly irreducible, non-compact and
ζ-integrable probability measures on GL(C, 2), which satisfy (5.47) and let us define the
functions ΦΘ(x ) for x ∈PC2 as

ΦΘ(x ) :=

∫
log
‖g x‖
‖x‖ µΘ(dg ) .

If we denote by γ(Θ) Lyapunov exponent and byνΘ the unique invariant measure onPC2

corresponding to µΘ then we have:
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5. Disordered quantum walks

(i) The function ΦΘ(x ) is continuous on PC2×T and Hölder continuous with order α
on T for all 0<α≤ ζ2 .

(ii) γ(Θ) = νΘ(ΦΘ) =

∫
ΦΘ(x )νΘ(dx ) .

(iii) γ(Θ) is continuous with respect to Θ and the convergence

γ(Θ) = lim
n→∞

1

n
E
�
log‖Sn (ω,Θ)x‖�

is uniform in Θ and x .

Proof. Part (i i ) follows directly from the definition of ΦΘ and lemma 3.2.12, which also
provides the uniform convergence of the Lyapunov exponent in (i i i ) with respect to
x . Since log‖g x‖ ≤ log‖g ‖, the continuity of ΦΘ(x ) for fixedΘ follows from dominated
convergence and the integrability of log‖gω,Θ‖. To complete the proof of (i ) note that
with C independent of x we have

|ΦΘ(x )−ΦΘ′ (x )| ≤E
 

log
‖gω,Θx‖
‖g −1
ω,Θ′x‖

!
≤E

�
log‖gω,Θg −1

ω,Θ′‖
�
≤C |Θ−Θ′| ζ2 ,

where we used (5.47) in the last step.
Uniqueness of the invariant measureµΘ for everyΘ, which holds according to lemma

3.3.3, already implies that µΘ has to be weakly continuous in Θ. Now assume that the
sequence (Θn ) converges toΘ. The representation of the Lyapunov exponent according
to (i i ) together with the fact that ΦΘ is Lipschitz implies

lim
n→∞γ(Θn ) = lim

n→∞νΘn
(ΦΘn

) = lim
n→∞νΘn

(ΦΘ) +νΘn
(ΦΘn

−ΦΘ) = νΘ(ΦΘ) = γ(Θ) .

Hence, γ(Θ) is indeed continuous with respect to Θ ∈ T. Let us now define the proba-
bility measures νn ,Θ,x =

1
n

∑n
k=0µ

k
Θ ∗δx . For two sequences (Θn )n ⊂T and (x n )n ⊂ PC2

converging toΘ ∈T or x ∈PC2 respectively, the sequence (νn ,Θn ,x n
)n converges weakly

to the unique invariant measure νΘ, because any limit point of (νn ,Θn ,x n
)n is νΘ invari-

ant according to lemma 3.2.8. Integrating the function ΦΘ with respect to these mea-
sures, we obtain

νn ,Θ,x (ΦΘ) =
1

n

n−1∑
k=0

∫
ΦΘ(y ) (µ

n ∗δx )(dy ) =
1

n

∫ n−1∑
k=0

log
‖g1 g2x‖
‖g2x‖ µΘ(dg1)µ

k
Θ(dg2)

=
1

n

∫
log
‖g x‖
‖x‖ µ

n
Θ(dg ) =

1

n
E
�
log‖Sn (ω,Θ)x‖�=: hn (Θ, x ) .

The functions hn are continuous on the space PC2×T by a similar argument as for ΦΘ.
Now, since PC2×T is a compact space it suffices to show convergence of hn (Θn , x n ) to
the Lyapunov exponent γ(Θ) in order to prove uniform convergence. We find

lim
n→∞hn (Θn , x n ) = lim

n→∞νn ,Θn ,x n
(ΦΘn

)

= lim
n→∞νn ,Θn ,x n

(ΦΘ) +νn ,Θn ,x n
(ΦΘn

−ΦΘ)
= νΘ(ΦΘ) = γ(Θ) ,
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5.7. Properties of transfer matrices

which finishes the proof.

We now use proposition 5.7.14 together with some general results on products of ran-
dom matrices from chapter 3 in order to show the Hölder continuity of the Lyapunov
exponent γ(Θ)with respect to Θ ∈T.

Lemma 5.7.15. Let µΘ, Θ ∈ I ⊂ T, be a family of strongly irreducible, non-compact
and ζ-integrable probability measures on GL(C, 2), which all satisfy the assumptions
of proposition 5.7.13 and (5.46), then the Lyapunov exponent γ(Θ) is Hölder continuous
for all 0<α< ζ

8 , that is there exists a strictly positive constant Cα which satisfies

|γ(Θ)−γ(Θ′)| ≤Cα|Θ−Θ′|α .

Proof. The proof relies on the following decomposition of the Lyapunov exponent

γ(Θ)−γ(Θ′) = (νΘ −νΘ′ )(ΦΘ′ ) +νΘ(ΦΘ −ΦΘ′ ) . (5.49)

The second term is Hölder continuous for 0 < α ≤ ζ
2 due to proposition 5.7.14 and so

we only have to check the Hölder continuity of the first summand. In section 3.3.1 we
introduced the space of Hölder-continuous functions Lα and from proposition 5.7.14
we know that ΦΘ ∈ Lα for 0 < α < ζ/2. Therefore, we can identify νΘ with the operator
NνΘ according to (3.25) that projects f ∈Lα to a constant functions via

NνΘ ( f ) = νΘ( f ) =

∫
f (y ) νΘ(dy ) .

By lemma 3.3.5 we can express NνΘ as a Cauchy integral over the resolvent Ga ,Θ of the
Markov operator RµΘ (see (3.23)). Using the second resolvent identity we obtain for
arbitrary f ∈Lα

|NνΘ ( f )−NνΘ′ ( f )| ≤ ‖NνΘ ( f )−NνΘ′ ( f )‖α ≤
1

2πi

∫

Tε

‖Ga ,Θ (RΘ′ −RΘ)Ga ,Θ′ ( f )‖α da .(5.50)

Since part (i i ) of lemma 3.3.5 provides a bound on supΘ∈I ‖Ga ,Θ ‖α we are done if we
can show Hölder-continuity of the expression

‖(RΘ′ −RΘ)( f )‖α = ‖(RΘ′ −RΘ)( f )‖∞+mα((RΘ′ −RΘ)( f )) , (5.51)

which we do for both terms separately. Starting with the uniform norm and using the
definition of mα( f ), we find for f ∈Lα

‖(RΘ′ −RΘ)( f )‖∞ ≤ sup
x∈PC2

E

�
| f (gΘ′x )− f (gΘx )| |δ(g

′
Θx , gΘx )|α

|δ(g ′Θx , gΘx )|α
�

≤mα( f ) sup
x∈PC2

E
�|δ(g ′Θx , gΘx )|α� .

Using the identity δ(x , y ) = |det[x , y ]|‖x‖−1‖y ‖−1 for x , y ∈ PC2, the bound ‖g x‖ ≥
‖g ‖−1 for g ∈ S LT(2), and (5.48) this already implies

‖(RΘ′ −RΘ)( f )‖∞ ≤mα( f )E
�‖gΘ‖3α‖gΘ′‖α

� |Θ−Θ′|α .
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5. Disordered quantum walks

Due to ζ-integrability the expectation value is finite if we chooseα<ζ/4, which means
that we can find a finite constant Aα such that ‖(RΘ′ −RΘ)( f )‖∞ ≤ Aα|Θ−Θ′|α. With the
same arguments we also can bound the expression

|(RΘ f )(x )− (RΘ f )(y )| ≤mα( f )E
�|δ(gΘx , gΘ y )|α�≤mα( f )E

�‖gΘ‖2α
�
δ(x , y )α .

The prefactor is smaller than some finite constant Bα due to ζ-integrability of µΘ if we
choose α < ζ/2. Therefore, let us now pick β < ζ/4 and consider the second term in
(5.51). Given the definition of mβ ( f ) in (3.3.1) and these two bounds we consider for
x , y ∈PC2 the expression

|(RΘ′ −RΘ)( f )(x )− (RΘ′ −RΘ)( f )(y )| ≤mβ ( f )Cβ min
�
|Θ−Θ′|β ,δ(x , y )β

�
,

where we set Cβ =min(Bβ , Aβ ). Now for β/2 we obtain

m β
2
(RΘ′ −RΘ)( f ) = sup

x 6=y

|(RΘ′ −RΘ)( f )(x )− (RΘ′ −RΘ)( f )(y )|
δ(x , y )

β
2

≤ 2mβ ( f )Cβ sup
x 6=y

min
�
|Θ−Θ′|β δ(x , y )

−β
2 ,δ(x , y )

β
2

�
.

Realizing that all positive numbers r, t satisfy the relation min( r
2

t , t ) < r , this formula
implies the desired bound for all α<ζ/8

mα((RΘ′ −RΘ)( f ))≤ 2C2α2m2α f |Θ−Θ′|α .

Since we know from proposition 5.7.14 that ΦΘ ∈Lα for α< ζ
2 , we can insert this bound

into (5.50), which via (5.49) then implies the Hölder-continuity for the Lyapunov expo-
nent γ(Θ).

5.8. Conclusion

In this chapter we have introduced a class of non-translation-invariant quantum walks
where the local coin operations are given by random unitary matrices drawn accord-
ing to some common probability measure µ on U (2). Such disordered quantum walks
model a situation where the timescales on which fluctuations occur are long in com-
parison to a single run of an experiment. As such, disordered quantum walks can be
related to other unitary models with random perturbations, e.g. the unitary Anderson
model.

We showed that the system exhibits dynamical localization, i.e. has exponential de-
caying transition probabilities between distant lattice sites, if the coin distribution as-
signs a finite probability to coins implementing total internal reflections. Using such
reflecting coins as boundary conditions we defined finite unitary restrictions of the
infinite evolution operator. The finite propagation speed in the model allowed us to
substitute the full evolution operator by a finite restriction in the computation of the
transition probabilities between two lattice sites up to some finite time.
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5.8. Conclusion

Next, we developed a transfer matrix approach for general one-dimensional quan-
tum walks consisting of the standard shift and some position dependent unitary coin
operation. Via the Cauchy transform of the spectral measure this allowed us to express
the matrix elements of the resolvent of such a walk operator in terms of its transfer
matrices.

Using the theory of products of random matrices developed in chapter 3, we have
studied the properties of these transfer matrices. The two main results we established
are the initial scale estimate in lemma 5.7.11 and the Hölder continuity of the Lyapunov
exponent in lemma 5.7.15.

The first of these results provided us with a minimal length scale on which with high
probability the absolute value of the matrix elements of the resolvent decay exponen-
tially inside an interval of quasi-energies. This length scale constitutes the starting hy-
pothesis of the multiscale analysis conducted in the next chapter to prove dynamical
localization. The Hölder continuity of the Lyapunov exponent on the other hand is re-
quired to establish Hölder continuity of the integrated density of states. This regularity
condition enabled us to show that with high probability the eigenvalues of an disor-
dered walk operator do not cluster and that it is very unlikely that two independent
realizations of a disordered quantum walk have a common eigenvalue. Such estimates
are called Wegner bounds and they are the second prerequisite for the application of
the multiscale analysis. In order to allow for a clearer presentation of open questions
and further research directions, we postpone this discussion to the end of chapter 6.
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6. Proof of dynamical localization

In this chapter we continue our analysis of disordered quantum walks. Our main goal
is to prove dynamical localization for a wide class of local coin distributions. However,
before we can finish this task in section 6.5, we have to lay some groundwork in the first
four sections. The final result about the exponential decay of the transition probability
between distant lattice sites relies on a so called multiscale analysis that iteratively es-
tablishes the decay on increasing length scales once we can guarantee some decay for
a fixed distance.

The abstract form of this iteration procedure is proven in section 6.4, but in order
to apply it to the setting of disordered quantum walks, we have to certify two assump-
tions. The first one, the initial scale estimate that provides some starting distance for
which the transition probabilities decay with some positive probability, has already
been shown in lemma 5.7.11 in the last chapter. The second ingredient, called a Weg-
ner or decoupling estimate, bounds the probability that two independent restrictions
of the quantum walk operator to different regions of the lattice share a common eigen-
value.

The preparatory work for the proof of the Wegner bound in section 6.3 is done in
the first two sections of this chapter. It relies on the Hölder continuity of the integrated
density of states, which we prove in section 6.2. For this purpose, we use the connection
between the Lyapunov exponent and the density of states, via the Thouless formula
that is provided in section 6.1.

After the proof of the main result in section 6.5, we consider some explicit examples
that satisfy the assumptions of the technical main theorem 6.5.1. In particular, we show
that any coin distribution with an absolutely continuous component with respect to
the Haar measure exhibits dynamical localization.

6.1. Thouless formula

Our goal in this section is to express the Lyapunov exponent γ(z ) of a disordered walk
operator Wω in terms of the density of states ϑ as defined in section 5.4.1. This relation,
called a Thouless formula after [Tho72], is central to our proof of the Hölder continu-
ity of the integrated density of states in section 6.2. The precise connection between
Lyapunov exponent and density of states is formulated in the following lemma.

Lemma 6.1.1 (Thouless formula). Let Wω be the realization of a regular disordered
quantum walk and ϑ its density of states. Then with probability one the Lyapunov ex-
ponent corresponding to the product of its transfer matrices Tl (z ) satisfies

γ(z ) = 2

∫
ϑ(dλ) log |z − e iλ|+E �log |a |�− log |z |
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6. Proof of dynamical localization

For the proof of this lemma we need the following proposition about the eigenvalues
of the finite unitary restrictions Wω(N ) of a disordered walk operator Wω.

Proposition 6.1.2. Let Wω be a realization of a regular disordered quantum walk and
Wω(N ) its unitary finite restriction to the sites −N to N according to definition 5.4.1.
Then z is an eigenvalue of Wω(N ) if and only if it is a root of the polynomial

p (z ) = z 2N+1 〈φ⊥R , T−N (z ) · · ·TN (z )φL 〉 ,

whereφ⊥R = (−1, z e iηR )/
p

2 andφL = (1, z e −iηL )/
p

2 and ηR and ηL are the right respec-
tively left boundary phases of the finite restriction Wω(N ).

Proof. It is clear that z ∈ T is an eigenvalue of the finite matrix Wω(N ) if and only if z
satisfies the eigenvalue equation (Wω(N )−z )φ = 0 for some vectorφ. As in the infinite
case this implies the relation

�
φ(2l+1)

φ(2l+2)

�
= Tl (z )

�
φ(2l−1)

φ(2l )

�
(6.1)

between the vector components of φ, where Tl (z ) is a transfer matrix according to
(5.25). In addition, it follows from definition 5.4.1 that at the left and right boundary of
Wω(N ), the vectorφ has to respect the boundary conditions

zφ(−(2N+1))= e iηLφ(−2N ) and zφ(2N+1)= e iηRφ(2N ) .

Therefore, the two most right respectively left components of φ have to be equal to a
multiple of the vectorφL = (1, z e iηL )/

p
2 on the left and to the vectorφR = (1, z e iηR )/

p
2

on the right boundary. By (6.1) we can expressφR as the product of the transfer matri-
ces T−N (z ) · · ·TN (z ) applied to φL and by noting that the vector φ⊥R is orthogonal to φR
we arrive at the desired relation

〈φ⊥R , T−N (z ) · · ·TN (z )φL 〉= 〈φ⊥R ,φR 〉= 0

To see that p (z ) is a polynomial consider the definition of the transfer matrices Tl (z )

Tl (z ) =
1

al

�
detUl

z cl

−bl z

�
.

The matrices Tl depend only on the powers of z and z−1 and this is of course also true
for their product. The highest power of z−1 of such a product is accumulated in the
first diagonal element of the product and since every transfer matrix contributes ex-
actly one factor, the highest power of z−1 is equal to 2N + 1. Hence, multiplying the
scalar product by z 2N+1 makes it indeed a polynomial with respect to the variable z .
To determine the order of p (z ) note that the second diagonal element of the product
of transfer matrices acquires the highest power of z namely one per factor Tl (z ). Note
that there is an additional contribution of two by the two vectorsφL andφR. If we take
also into account the z 2N+1 prefactor, we see that the order of p (z ) is 4(N + 1), which
finishes the only if part.
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6.1. Thouless formula

Proof of Thouless formula. Since p (z ) is a polynomial of order 4(N + 1) that vanishes
exactly on the 4(N +1) eigenvalues of the finite restriction Wω(N ), it is proportional to
the characteristic polynomial of Wω(N ). More precisely, we will show the identity

p (z ) = e −i(ηR+ηL )
N∏

k=−N

a−1
k

4(N+1)∏
l=1

(z − e θl ) , (6.2)

where {θl } denote the eigenvalues of Wω(N ). From the definition of the Tl (z ) we see
that the z 4(N+1) contribution to p (z ) comes from the second diagonal element of the
transfer matrix product. Every factor Tl contributes only a prefactor a−1

l and the vectors
φL andφR account for the additional phase factor e −i(ηR+ηL ), which proves the relation
in (6.2).

Using the definition of p (z ) together with (6.2), taking the logarithm of the absolute
value on both sides and dividing by 4(N +1) gives for |z | 6= 1 the relation

2N +1

4(N +1)
ln |z |+ ln | 〈φ⊥R , T−N (z ) · · ·T−N (z )φL 〉|

4(N +1)
(6.3)

=
1

4(N +1)
+

N∑
k=−N

ln |ak |
4(N +1)

+
4(N+1)∑

l=1

ln |z − e θl |
4(N +1)

.

Let us now analyze the behaviour of the different terms in the limit N →∞. The first
terms of both sides are easy and tend to 1

2 ln |z | respectively 0. Since all the requirements
of lemma 3.3.12 are met, the second term on the left-hand side will converge to the
Lyapunov exponent 1

2γ(z ) with probability one. Since the disordered walk is regular,
we know from our discussion in section 5.7 that the transfer matrices Tl (z ) are non
singular and 0 < |a | < 1 so by the law of large numbers the second term on the right-
hand side will converge to the expectation value 1

2E (ln a ) in the limit.
This leaves us with the last term on the right-hand side of (6.3). Using functional

calculus and the definition of the density of states (see (5.13)) we can express this term
by the following integral

4(N+1)∑
l=1

ln |z − e θl |
4(N +1)

=
1

4(N +1)
tr ln |z −Wω(N )|=

∫
ϑN (dλ) ln |z − e iλ| .

This expression converges to an integral over the density of states θ of the unrestricted
disordered quantum walk Wω for N →∞. Inserting everything into 6.3, we obtain the
Thouless formula for all complex z with |z | 6= 1

γ(z ) = 2

∫
ϑ(dλ) log |z − e iλ|+E �log |a |�− log |z | . (6.4)

We can extend the equality to z ∈ T by adapting an argument due to Craig and Simon
from the Hamiltonian case [CS83]. Recall that a subharmonic function is a function
from C into R that is upper semicontinuous and submean. The later property mean-
ing that the value at any point z ∈C is upper bounded by the average of the function
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taken with respect to any circle around z [Gar81]. In our context we need that two sub-
harmonic functions that agree except for a set of Lebesgue measure zero, must be equal
everywhere onC [CL90]. Therefore, the proof is finished, if we can show that both sites
of (6.4) constitute subharmonic functions.

For the Lyapunov exponent this follows because a product of n transfer matrices
Tn (z ) · . . . ·T1(z ) is a holomorphic function of z and therefore

γn (z ) =
1

n
E
�
log‖Tn (z ) · . . . ·T1(z )‖

�

is subharmonic (see (3.4) and [CS83]). In turn γ(z ) as the pointwise limit of a sequence
of locally lower bounded functions is also a subharmonic function[CL90].

In general, log | f (z )| is subharmonic for any analytic function f [Gar81], so we only
have to discuss the integral part on the right-hand side of (6.4). Since log |z − e iλ| is
subharmonic for every λ, Fubini’s theorem implies

∫ π

−π
dη

∫
ν(dλ) log |z + r e iη− e iλ| ≥

∫
ν(dλ) log |z − e iλ|=: g (z )

therefore g (z ) is submean and it is also easy to see that g (z ) is lower semicontinuous
[CS83], which finishes the proof.

In the next section we use the Thouless formula in order to show the Hölder conti-
nuity of the integrated density of states.

6.2. Integrated density of states

The Thouless formula connects the Lyapunov exponent of the transfer matrices to the
density of states ϑ of the disordered quantum walk Wω. This connection allows us to
transfer the Hölder continuity of the Lyapunov exponent to the integrated density of
states, which we define for Θ ∈T as

N (Θ) :=
∫ arg(Θ)

0

ν(dλ) .

We show the following proposition.

Proposition 6.2.1. Let Wω be a regular disordered quantum walk such that for some
interval I ⊂ T the image measure of its local coin distribution µ on τΘ(Und ) is strongly
irreducible, non-compact and ζ-integrable for all Θ ∈ I. Then, the integrated density of
states N (z ) is Hölder continuous on I, i.e. there exists a finite constant C together with
some α> 0 such that

|N (Θ)−N (Θ′)| ≤C |Θ−Θ′|α ∀Θ,Θ′ ∈ I .

Proof. First, we show that the integrated density of states is continuous following an
argument by Craig and Simon for log-Hölder continuity [CS83, GT94]. Let us choose
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Θ1,Θ2 ∈Twith |Θ2−Θ1|< 4/5 and assume without loss of generality that argΘ1 < argΘ2.
From the Thouless formula (lemma 6.1.1), we obtain

0≤ γ(Θ1) =
1

2
E
�
log |a |�+

∫
ϑ(dλ) log |Θ1− e iλ|

=
1

2
E
�
log |a |�+

∫ Θ2

Θ1

ϑ(dλ) log |Θ1− e iλ|+
∫

|Θ1−expiλ|<1
λ<argΘ1∪λ>argΘ2

ϑ(dλ) log |Θ1− e iλ|

+

∫ Θ2

Θ1

ϑ(dλ) log |Θ1− e iλ|+
∫

1≤|Θ1−expiλ|

ϑ(dλ) log |Θ1− e iλ| .

We see that the second integral in the last expression is negative and therefore, we find
the relation

0≤− log |Θ1−Θ2| (N (Θ2)−N (Θ1))

≤ 1

2
E
�
log |a |�+

∫

1≤|Θ1−expiλ|

ϑ(dλ) log |Θ1− e iλ| ≤ 1

2
E
�
log |a |�+ log 2 ,

which implies continuity and even log-Hölder continuity for the integrated density of
states. We now strengthen this regularity property to Hölder continuity on I. To this
end, let us define for a ∈T andφ ∈ [0,π] the truncated density of states

ÒNa ,φ(z ) :=N (z )χ{b∈C; arg(b a )<φ}(z )

and study its Cauchy transform for z ∈ D with |arg(z · a )| ≤ φ/2, for which N (z ) =
ÒNa ,φ(z ) holds. We have just shown that the density of states is continuous for z inside
the unit disc and therefore we can integrate by parts in order to obtain

(K ÒNa ,φ)(z ) =

∫

T
m (dΘ)

ÒNa ,φ(Θ)

1−Θ z
(6.5)

=N (a e iφ)
log(1−a e iφ)

2πi
−N (a e −iφ)

log(1−a e −iφ)
2πi

+

∫

T
ϑ(dΘ) log(1−Θz )−

∫

|argΘa |>φ
ϑ(dΘ) log(1−Θz ) .

For the complex logarithm in this expression log(r e iφ) = log r + iθ , we choose θ ∈
[−π,π) if arg a ≤φ and θ ∈ [0, 2φ) if arg a >φ. As a continuous and bounded function
on T we know by Carlson’s theorem that the Fourier series of N converges pointwise
almost everywhere onT to N (z ). The Cauchy transform truncates the negative powers
of a Fourier series (see 2.3.1). Since N is a real function, its Fourier coefficients satisfy
fn = f−n and we obtain the relation N (z ) = (K N )(z ) + (K N )(z ).

Hence, we can establish Hölder continuity of the integrated density of states in (6.5)
if the real part of every summand is Hölder continuous for |z | going to one. This is
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6. Proof of dynamical localization

certainly true for the first two and the last term, so we only have to consider the third
term in (6.5). Rewriting the expression in terms of its real and imaginary part we obtain

∫

T
ϑ(dΘ) log(1−Θz ) =

∫

T
ϑ(dΘ) log |1−Θz |+ i

∫

T
ϑ(dΘ) arg(1−Θz )− iλ0 ,

where λ0 is a real constant depending on the branch of the logarithm we take. Hence,
the real part consists only of the first integral, which can be related via the Thouless
formula (6.1.1) to the Lyapunov exponent γ(z ). Since γ(z ) is Hölder continuous on I by
lemma 5.7.15 this implies Hölder continuity for the integrated density of states N .

Before we turn to the proof of the Wegner bound in the next section we derive an im-
mediate consequence of the Hölder continuity of the density of states. Roughly speak-
ing this property implies that the probability to find an eigenvalue corresponding to
a localized eigenfunction within a small arc of the unit circle is generically small and
therefore the eigenvalues cannot cluster arbitrarily close together. More precisely we
show the following lemma the proof of which is an adaption from the self-adjoint case
as considered in [CKM87a, DSS02].

Lemma 6.2.2. Let Wω be a regular disordered quantum walk such that for some interval
I⊂T the image measure of its local coin distributionµ onτΘ(Und ) is strongly irreducible,
non-compact and ζ-integrable for all Θ ∈ I. Then, there are positive constants η and C
such that for all θ0 ∈ I and all 0< ε < 1 we have

P
�
∃θ ∈ I (θ0,ε) and ∃φ ∈C4(N+1) with ‖φ‖ = 1 such that

(Wω(N )−θ )φ = 0 and |φ(−2N −1)|2+ |φ(2N +2)|2 ≤ ε2
�≤ 4(N +2)C εη ,

where Wω(N ) denotes again the unitary restriction of Wω to the 2N +3 lattice sites cen-
tered around the origin.

Proof. Let us denote by AN (0) the event,

AN (0) := {∃θ ∈ I (θ0,ε) andφ ∈C4(N+1) with ‖φ‖ = 1 such that

(Wω(N )−θ )φ = 0 and |φ(−2N −1)|2+ |φ(2N +2)|2 ≤ ε2} ,

where we indicate by 0 that we consider the restriction Wω(N ) of Wω around the origin
and hide its implicit dependence on θ0 and ε. We want to bound the probability of
the event AN (0). Instead of the event AN (0) we might also consider the event AN (k )
where we consider the restriction of Wω around another lattice site k . If we choose the
sequence 2k (N +2)with k ∈Z the unitary restrictions Wω(2k (N +2), N ) do not overlap.
Since the local coin distributions µ are independent and identically distributed so are
the events AN (2k (N + 2)) and we might consider them as independent realizations of
the same random variable. Hence, we can express the probability of the event AN (0) as
the limit of the relative frequencies of the these events

P (AN (0)) = lim
L→∞

1

2L +1
|{k ∈ {−L , . . . , L} : AN (2k (N +1)) occurs}| , (6.6)
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6.3. Wegner bound

where |M | counts the number of elements in the set M .
By a unitary variation of the Kato-Temple inequality from the self-adjoint case [ST85],

which we prove appendix C.2, the number of occurrences of the event AN is a lower
bound for the number of eigenvalues of the unitary restriction Wω(0, 2L (N +2)+N +1)
of the walk operator. Now, fix some L ∈N, let {kl } ⊂ {−L , . . . , L} be the set of k for which
the event AN (k ) occurs and denote by θkl

and Φkl
the corresponding eigenvalues and

eigenvectors of W (kl (2N +2), N ).
By setting their vector components equal to zero outside their domain of definition

we can extend the vectors Φkl
toC4(N+2)(2L+1). Due to the disjointness of their support

and the nearest neighbour shift structure of the walk operator Wω we have the relation

〈Φkl
,Φkt
〉= 〈Φkl

, Wω(0, 2L (N +2) +N +1)Φkt
〉= 0 ∀l 6= t .

In addition we obtain from the norm estimates in the definition of the events AN (k )
and the structure of the Wω the bound

‖(Wω(0, 2L (N +2) +N +1)−θkl
)Φkl
‖ ≤ 2ε .

Therefore, all requirements of corollary C.2.2 are met, so we know that the number of
eigenvalues of the matrix Wω(0, 2L (N +2) +N +1) is lower bounded by the number of
occurrences of the event AN . Expressing the number of eigenvalues within an interval
by the integrated density of states we conclude from (6.6)

P (AN (0))

≤ 4(N +2) lim
L→∞

|{θ ∈ I (θ0, 4ε) : θ eigenvalue of W (0, 2L (N +2) +N +1)}|
4(N +2)(2L +1)

= 4(N +2)|N (θ0+4ε)−N (θ0−4ε)|
= 4(N +2)K 8βεβ ,

where we used the Hölder continuity of N (z ) on I (see lemma 6.2.1) in the last step.
Setting C equal to K 8ρ and η=β finishes the proof.

6.3. Wegner bound

One of the prerequisites to conduct a multiscale analysis is an estimate about the clus-
tering of eigenvalues of different realizations of the considered random operators. Such
estimates go under the name Wegner bounds going back to a paper by Franz Wegner
[Weg81]. In the case of disordered quantum walks we can closely follow the strategies
used in the self-adjoint case (see for example [DSS02, CKM87a] which carry over with
only slight adjustments.

We begin with an estimate on the probability that the matrix elements of the transfer
matrices of a disordered quantum walk decay exponentially.

Proposition 6.3.1 (Wegner estimate). Let Wω be a regular disordered quantum walk
such that for some interval I ⊂ T the image measure of its local coin distribution µ on
τΘ(Und ) is strongly irreducible, non-compact and ζ-integrable for all Θ ∈ I. Then for all
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6. Proof of dynamical localization

0 < β < 1 and for all σ > 0 there exists N0(β ,σ) ∈ N and α(β ,σ) > 0 such that for all
N ≥N0, θ0 ∈ I and normalized vectors ΦL,R ∈ P2

P
�
∃θ ∈ I (θ0, e −σ(2N+1)β ) : | 〈ΦR , T−N (θ ) · . . . ·TN (θ )ΦL 〉|< e −σ(2N+1)β

�
≤ e −αN β

.

Proof. Let us fix some ε > 0 and consider the case that the event

E0 := {∃θ ∈ I (θ0,ε) : | 〈ΦR , T−N (θ ) · . . . ·TN (θ )ΦL 〉|<ε}

occurs. According to corollary 5.7.3, we can identify the sequence of transfer matrices
(Ti (θ ))Ni=−N together with the vectors ΦL and ΦR as the matrix element of the resolvent
GN

z of the unitary restriction fWω(N )of some disordered quantum walk fWω. In addition,
we know that for any normal operator the inverse operator norm of the resolvent upper
bounds the proximity to the spectrum [Wei80]

‖(A− z )−1‖−1 ≥ d (z ,σ(A)) = inf
λ∈σ(A)

|λ− z | .

Therefore, the relation between the resolvent of a finite restriction and the product of
transfer matrices implies ‖(fWω(N )−θ )−1‖−1 ≤ ε for some θ ∈ I (θ0,ε). Hence, there has

to be an eigenvalue eθ of fWω(N ) with eθ ∈ I (θ0, 2ε). Let φ̃ be its corresponding normal-
ized eigenvector.

We would like to apply lemma 6.2.2 so we have to ensure that | eφ(−2N−1)| and | eφ(2N+2)|
are both smaller than ε. This can be achieved in the following way. Note that due to
our choice of boundary conditions for Wω(N ) the vectors

ΦL
eθ :=

� eφ(−2N−1)

eφ(−2N )

�
and ΦR

eθ :=

� eφ(2N+1)

eφ(2N+2)

�

both lie in the plane P2. Let us denote by bΦL,R
eθ normalized vectors in P2 proportional to

ΦL,R
eθ . Because eφ as an eigenvector solves the eigenvalue equation

(fWω(N )− eΘ) eφ = 0 ,

we can express its components in terms of the transfer matrices in two equivalent ways
either starting from the left or the right boundary via

� eφ(2l−1)

eφ(2l )

�
=

1

Cnorm
Tl (eΘ) · . . . ·T−N (eΘ) bΦL

eθ =
1

Cnorm
T −1

l (eΘ) · . . . ·T −1
N (eΘ) bΦR

eθ .

The normalization constant Cnorm in turn admits the two representations

C 2
norm =

N∑
i=−N

‖Ti (eΘ) · . . . ·T−N (eΘ) bΦL
eθ ‖2 =

N∑
i=−N

‖T −1
i (eΘ) · . . . ·T −1

−N (
eΘ) bΦR

eθ ‖2
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6.3. Wegner bound

and therefore each summand on the middle- and right-hand side is a lower bound for
Cnorm. Bringing everything together we find the following upper bounds on the most
left- respectively right vector components of the normalized eigenvector eφ

| eφ(2N−1)|= 1p
2


� eφ(−2N−1)

eφ(−2N )

� ≤
‖bΦL

eθ ‖
Cnorm

≤ 1p
2
‖Ti (eΘ) · . . . ·T−N (eΘ) bΦL

eθ ‖−1

| eφ(2N+2)|= 1p
2


� eφ(2N+1)

eφ(2N+2)

� ≤
‖bΦL

eθ ‖
Cnorm

≤ 1p
2
‖T −1

i (eΘ) · . . . ·T −1
N (eΘ) bΦR

eθ ‖−1 ,

which are valid for all −N ≤ i ≤N . So in order to show an upper bound on the vector
components it suffices to show a lower bound on the respective norms on the right-
hand sides of the equations.

Let us now fix two positive constants τ and β and define the integer nN = bτN β c+1.
The preceding discussion motivates the definition of the following two events

E0 := {∃θ ∈ I (θ0,ε) : | 〈ΦR , T−N (θ ) · . . . ·TN (θ )ΦL 〉|<ε}
Ak ,N (θ ) := {‖T−N+nN

(θ ) · . . . ·T−N (θ )Φ
L
eθ ‖ > e k N β }

Bk ,N (θ ) := {‖T −1
N−nN

(θ ) · . . . ·T −1
N (θ )ΦR

eθ ‖ > e k N β } .

For two arbitrary events E1 and E2 one can easily verify the inequality

P (E1) =P (E1 ∩E2) +P
�
E1 ∩E c

2

�≤P (E1 ∩E2) +P
�
E c

2

�
. (6.7)

For the sake of clarity let us also introduce the quantities κ = τα
4δ and ε = e −σ(2N+1)β ,

where α and δ are positive constants to be chosen later. Using (6.7) we can upper
bound the probability of the lemma by a sum of five terms that we will control indi-
vidually

P (∃θ ∈ I (θ0,ε) : | 〈ΦR , T−N (θ ) · . . . ·TN (θ )ΦL 〉|<ε)

≤P
 

E0 ∩
⋂

θ∈I (θ0,3ε)

�
Aκ,N (θ )∩Bκ,N (θ )

�
!

(I )

+P

 
E0 ∩A2κ,N (θ0)∩B2κ,N (θ0)∩

⋃
θ∈I (θ0,3ε)

(Aκ,N (θ ))
c

!
(I I )

+P

 
E0 ∩A2κ,N (θ0)∩B2κ,N (θ0)∩

⋃
θ∈I (θ0,3ε)

(Bκ,N (θ ))
c

!
(I I I )

+P
�
E0 ∩ (A2κ,N (θ0))

c
�
+P

�
E0 ∩ (B2κ,N (θ0))

c
�

(I V )& (V ) .

We discussed the term (I ) already in great detail and analyzed the occurrence of an
eigenvalue in the interval I (θ0, 3ε). As we have seen, the expression can be directly
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6. Proof of dynamical localization

upper bounded by employing lemma 6.2.2. Therefore, we find for (I ) the upper bound

(I )≤P
�
∃Θ ∈ I (θ0, 3ε) andφ ∈C4(N+1), ‖φ‖ = 1, such that (6.8)

(Wω(N )−Θ)φ = 0 and |φ(1)|2+ |4(N +1)|2 < e κN β
�

≤ 4(N +2)C (max(3ε, e −κN β
))ρ .

Let us continue with the terms (I V ) and (V ). Since in both cases we have to deal with
a product of nN transfer matrices applied to a vectorΦ the same arguments will be valid
for both cases and we only consider (I V ) for the moment. To get rid of the event E0 in
the probability, we take the supremum of the probability with respect to all possible
vectors Φ instead of just considering ΦL

eθ :

P
�
E0 ∩‖T−N+nN

(θ ) · . . . ·T−N (θ )Φ
L
eθ ‖ > e κN β

�
≤ sup
‖Φ‖=1

P
�
‖T−N+nN

(θ ) · . . . ·T−N (θ )Φ‖ > e κN β
�

.

Raising the terms inside the probabilities on both sides of the inequality to the nega-
tive power of δ, applying Markov’s inequality and inserting the definition of κ, we find

(I V )≤ sup
‖φ‖=1

P
�
‖T−N+nN

(θ ) · . . . ·T−N (θ )Φ‖−δ ≥ e −
τα
2 N β

�

≤ sup
‖φ‖=1

E
�
‖T−N+nN

(θ ) · . . . ·T−N (θ )Φ‖−δ
�

e
τα
2 N β

.

If we now chooseαandδ according to proposition 5.7.12 we can bound the expectation
value by e −αnN which amounts to the following bound on (I V ) and (V )

(I V ) + (V )≤ 2e −
α
2 N β

. (6.9)

for N large enough. This leaves us to deal with the terms (I I ) and (I I I ). We first turn to
(I I ). In the case that the event in (I I ) occurs, there is a Θ ∈ I (θ0, 3ε) such that the event
(Ak ,N (Θ))C together with the event A2k ,N (Θ0) occurs. This directly implies the following
lower bound on the difference of the products of transfer matrices applied to the initial
vector ΦL

eθ

|‖T−N+nN
(Θ0) · . . . ·T−N (Θ0)Φ

L
eθ ‖ −‖T−N+nN

(Θ) · . . . ·T−N (Θ)Φ
L
eθ ‖| (6.10)

≥ e 2κN β − e κN β ≥ 1

2
e 2κN β

,

where in the second step N , depending on β and κ has to be large enough. As before
we remove the dependence on the event E0 and the vector ΦL

eθ by taking the supremum

of the probability with respect to Φ ∈C2. We remark, that this relation remains true, if
we raise both sides to the power of some 0 < η < 1. To continue, we note that for any
twoΘ,Θ′ ∈T the difference of the respective transfer matrices takes the simple form of
a diagonal matrix

Tx (Θ)−Tx (Θ
′)=

1

ax

�
det(Ux )(Θ−Θ′) 0

0 Θ−Θ′
�

. (6.11)
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6.3. Wegner bound

Since both singular values of this diagonal matrix are equal |ax |−1|Θ0−Θ|, its operator
norm is also given by this value. As we have seen, the probability of the event corre-
sponding to (6.10) being true, upper bounds (I I ) and applying Markov’s inequality as
well as the inverse triangle inequality, we find for all 0<η≤ 1

(I I )≤ 2ηe −2ηκN β
sup
‖φ‖=1

E
�‖(T−N+nN

(Θ0) · . . . ·T−N (Θ0)−T−N+nN
(Θ) · . . . ·T−N (Θ))Φ‖η

�
.

To control the expectation value on the right-hand side, we can proceed as in the proof
of proposition 5.7.9 by decomposing the difference of the two operator products itera-
tively. Using the inequality (|a |+|b |)η ≤ |a |η+|b |η and the independence of the transfer
matrices, this results in the following upper bound on (I I )

(I I )≤ 2ηe −2ηκN β
E

 
nN+1∑
k=1

‖T−N+nN
(Θ0) · . . . ·T−N+nN−k+1(Θ0)‖η·

‖T−N+nN−k (Θ0)−T−N+nN−k (Θ)‖η · ‖T−N+k−1(Θ0) · . . . ·T−N (Θ0)‖η
�

≤ 2ηe −2ηκN β
(nN +1)max

�
E
�‖T1(Θ0)‖η

�nN+1
, E

�‖T1(Θ)‖η
�nN+1�

(3ε)η .

In the second step (6.11) was used, together with the fact that E
�|ax |−η

� ≤ E �‖T(Θ)‖η�
(see (5.35)). By assumption the single site distribution µ is ζ-integrable for some ζ >
0. Therefore, we can choose η > 0 such that E

�‖T(Θ)‖η� is finite. Let us denote that
constant by Cη. Inserting the definition of all abbreviations we find the upper bound

(I I )≤ 6η(τN β +1)C bτN β c+1
η e −ση(2N+1)β e −2 ητα4δ N β

.

The corresponding argument holds for the term (I I I ) and we see that by choosingτ> 0
small we can find α2 > 0 such that starting from some N0 we have for all N ≥N0

(I I ) + (I I I )≤ 2e α2N β
. (6.12)

The result now follows by combining the upper bounds in (6.8), (6.9) and (6.12).

The formulation of the Wegner bound we are actually going to use as a building block
in the multiscale analysis is the uniform version given in the following lemma. The in-
tuitive idea is to bound the probability that two independent realizations of a disor-
dered quantum walk share a common eigenvalue. More precisely, instead of the prob-
ability to find an eigenvalue within a small interval of the unit circle, the probability to
find two close eigenvalues for two independent realizations of a disordered quantum
walk is controlled.

Corollary 6.3.2 (uniform Wegner estimate). Let µ be a probability measure on the set
Und such that for some interval I ⊂ T the image measure of µ on τΘ(Und ) is strongly
irreducible, non-compact and ζ-integrable for allΘ ∈ I. If (Tl (z ))Nl=−N and ( eTl (z ))Nl=−N are
two sequences of transfer matrices, drawn independently and ΦL/R,eΦL/R ∈ P2 then for all
0<β < 1 andσ> 0 there exist α> 0 and N0 ∈N such that for all N ≥N0

P
�
∃Θ ∈ I : | 〈ΦR , TN (Θ) · . . . ·T−N (Θ)Φ

L 〉|< e −σ(2N+1)β and

| 〈eΦR , eTN (Θ) · . . . · eT−N (Θ)eΦL 〉|< e −σ(2N+1)β
�
≤ e −α(2N+1)β . (6.13)
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6. Proof of dynamical localization

Proof. The proof consists of a straight forward application of the union bound. We
know by corollary 5.7.3 that both scalar products in (6.13) can be identified with the
matrix element of the resolvent of some unitary restrictions Wω(N ) and fWω(N ). From
our argument to bound the probability of the term (I ) in the proof of the Wegner bound
we know that if the event

| 〈ΦR , TN (z ) · . . . ·T−N (z )Φ
L 〉|< e −σ(2N+1)β

occurs for some Θ0 ∈ I, an eigenvalue of Wω(N ) has to lie the interval I (θ0, e −σ(2N+1)β ).
As a finite dimensional matrix acting on C4(N+1), Wω(N ) can have at most 4(N + 1)
eigenvalues. Since by assumption the two sequences of transfer matrices and there-
fore Wω(N ) and fWω(N ) are independent we can apply the union bound and findΘ0 ∈ I
for N large enough and suitable α′ > 0

(6.13)≤ 4(N +1)P
�
∃Θ ∈ I (θ0, e −σ(2N+1)β ) : | 〈eΦR , eTN (Θ) · . . . · eT−N (Θ)eΦL 〉|< e −σ(2N+1)β

�

≤ 4(N +1)e −αN β

≤ e −α
′(2N+1)β ,

where we used the Wegner estimate (prop 6.3.1) in the second step to determineα.

6.4. Multiscale analysis

The original proof technique of a multiscale analysis was developed by Fröhlich and
Spencer in the context of Anderson localization in Hamiltonian systems [FS83], which
has been substantially refined and simplified [GK01, DS01, KSS98, CKM87b]. For the
general idea of how a multiscale analysis can be employed to show dynamical localiza-
tion in the Hamiltonian case we refer to section 2.5.3.

In the abstract formulation presented in this chapter, the method can be regarded as
a probabilistic generalization of the well known mathematical induction to products
of random variables. In an inductive proof one starts with the base case for some fixed
value n0 of a parameter n and then shows that if the claim is true for n it also holds for
n + 1. In a multiscale analysis the initial scale estimate for some n0 corresponding to
the base case is true only with some probability. The multiscale induction step then es-
tablishes the claim for all n k

0 with high probability provided an additional assumption
about the occurrence of exceptional bad instances.

The presented lemma is an adaption of techniques used in [GK01, Kle08] to the set-
ting of disordered quantum walks. It is tailored to the initial scale estimate and Wegner-
bound we could obtain in that scenario. As in [GK01] we allow the number of bad in-
stances to scale with length scale instead of being fixed in advance. In addition, we
require the length scales to grow in exact multiples of the former length scale. The ab-
stract formulation in terms of products of random variables should make the result also
applicable in other circumstances. The lemma presented here constitutes the main
technical ingredient for the proof of dynamical localization given in section 6.5.
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Lemma 6.4.1 (MSA Induction step). Let {Xθ }θ∈T be a family of positive, real valued
random variables that satisfies

A1 initial scale estimate: For all n ∈ N there exists n0 ≥ n and positive constants
γ0(n0),σ(n0) and a subset I (n0)⊂T such that

P
�

for all θ ∈ I (n0) : Xθ (ω)> e γ0n0
�
> 1− e −σn0 .

A2 decoupling estimate: Define X m
θ (ω) to be the m- fold product of i.i.d realizations

of the random variable Xθ :

X m
θ (ω) :=

m∏
i=1

Xθ (ωi ) .

Then there exists 0< c < 1 such that for all 0<δ< 1 and m > n0 the estimate

P
�
∃ θ ∈ I (n0) : X m

θ (ω)< e −c γ0mδ
and X m

θ (ω̃)< e −c γ0mδ
�
< 3me −σmδ

(6.14)

holds for two i.i.d products X m
θ (ω) and X m

θ (ω̃).

Then, for all 0 < ξ < 1 there exist 1 < α < ξ−1 and n0 ∈N such that for all length scales
nk =maxL∈2nk−1N

(L ≤ nαk−1), k ∈N, pairs of independent products of length nk
2 satisfy

P

�
∃ θ ∈ I (n0) : X

nk
2
θ (ω)< e γk

nk
2 and X

nk
2
θ (ω̃)< e γk

nk
2

�
≤ e −σ

� nk
2

�ξ
(6.15)

for some decreasing sequence (γk )with γ0 ≥ γk ≥ c γ0.
In addition, there exists for all 1 < α < 2 and 0 < ξ < α−1 a n0 ∈ N such that for all

length scales nk , k ∈N (6.15) holds.

Proof. The proof is carried out via an induction. Assuming (6.15) for some initial k ∈N,
we use assumption A2 to establish that it also holds for k +1, with an adjusted growth
rate γk+1, which can nevertheless be lower bounded by c γ0. This requires however
that, depending on the choice of α and ξ, the initial scale n0 has to be large enough.
The result then follows by applying the first induction step to a suitable initial scale n0,
which can be constructed using assumption A1.

It is convenient to divide the proof of the lemma into a deterministic and a proba-
bilistic part. In the deterministic part the new growth rate γk+1 is determined condi-

tioned on two hypotheses about the value of factors Xθ in the product X nk /2
θ . In the

probabilistic part we bound the probability that these hypotheses are violated or more
precisely we bound the probability that the new growth rate is smaller then our esti-
mate γk+1.

Deterministic part

First we deal with the deterministic part and assume that (6.15) holds for some nk ∈N.
Now consider for 1<α the new length scale nk+1 ∈ 2nkN given by

nk+1 = max
L∈2nkN

(L ≤ nαk ) =: 2Rk+1nk , (6.16)
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6. Proof of dynamical localization

where Rk+1 ∈ N is defined by the left-hand side and we demand nα0 > 4n0. Note that
this choice also implies the following chain of inequalities for nk+1

nα
k+1

0 ≥ nαk ≥ nk+1 ≥ nαk −2nk ≥ nαk (1−2n−(α−1)
0 ) . (6.17)

To ensure positivity of this lower bound, we have to require that n0 > 2
1
α−1 . We can

express the product X
nk+1

2
θ of length nk+1

2 via a product of products X
nk
2
θ of length nk

2 in
the following way

X
nk+1

2
θ (ω) =

nk+1
2∏

i=1

Xθ (ωi ) =
2Rk+1∏

i=1

X
nk

2
θ (ωi ) . (6.18)

Let us denote for any real number x by bx c the largest natural number that is smaller
than x . For the remainder of the deterministic estimate we work under the following
two hypotheses, the failure of which will be covered in the probabilistic part.

H1 Only 2b�nk
2

�β
+ 1c − 1 of the 2Rk+1 factors in the product of the X

nk
2
θ (ω) grow with

a rate smaller than γk , where α > 1+β and n0 has to be large enough such that

2Rk+1 > 2b�nk
2

�β
+1c−1, which we will check in the probabilistic part of the proof.

H2 None of the 2b�nk
2

�β
+ 1

2 c−1 bad instances from hypotheses H1 possesses a growth

rate smaller than e −c γ0(
nk
2 )
δ

, for some 0<δ< 1 to be specified later.

Note, that this choice of parameters ensures 2b�nk
2

�β
+1c−1≤ 2

�nk
2

�β
+1≤ 3

�nk
2

�β
. Next

we compute a lower bound γk+1 on the actual growth-rate of the product X
nk+1

2
θ . Taking

the logarithm on both sides in (6.18) we find

ln(X
nk+1

2
θ (ω)) =

2Rk+1∑
i=1

ln(X
nk
2
θ (ωi )) (6.19)

≥
�

2Rk+1−3
�

nk

2

�β� nkγk

2
−3c γ02−δnδk

�
nk

2

�β
,

where we used the hypotheses H1 and H2 in the second step to obtain the inequality.
In order to lower bound the new growth rate we define γk+1 by the right-hand side of
(6.19) divided by nk+1

2 . This leads to the recursion relation

γk+1 = (2Rk+1−2−β3n
β
k )

γk

2Rk+1
− 2−δ−β3c γ0

Rk+1
n
β
k nδ−1

k (6.20)

≥ (1−2−β3
n
β
k

Rk+1
)γk −

2−δ3c γ0

Rk+1
n
β
k

≥ γk − (1+2−δ−β3c )γ0
n
β
k

Rk+1
,
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6.4. Multiscale analysis

becauseδ < 1 andγk ≤ γ0. To complete the deterministic part of the multiscale analysis
we have to show that the new grow rate γk+1 is indeed lower bounded by c γ0 and upper
bounded by γ0. The upper bound follows easily from the last equation considering

γk −γk+1 =
n
β
k

Rk+1
(γk +2−δ−β3c γ0nδ−1

k )> 0 .

Therefore, the γk constitute a decreasing sequence. To verify the lower bound we have
to ensure

γ0−γk+1 ≤ (1− c )γ0 .

For the proof of this lower bound we need to employ an inductive argument that takes
into account all length scales down to n0. From (6.20) we find by an telescope sum
expansion

γ0−γk+1 =
k∑

l=0

(γl −γl+1)≤ (1+2−δ−β3c )γ0

k∑
l=0

n
β
k

Rk+1
. (6.21)

In order to proceed we need a lower bound on Rk+1. Considering the definition of Rk+1
from (6.16) and the lower bound in (6.17) we obtain

Rk+1 ≥ (1−2n−(α−1)
0 )

nα−1
k

2
≥ (1−2n−(α−1)

0 )
n (α−1)αk

0

2

k∏
r=1

�
1−2n−(α−1)

k−r

�(α−1)αr−1

.

Since nk > n0 and α > 1 we can lower bound each factor in the product by the term
(1− 2n−(α−1)

0 ). To evaluate this product of equal factors we just sum up the exponents
which constitute a finite geometric series. In total this amounts to the lower bound

Rk+1 ≥ (1−2n−(α−1)
0 )

n (α−1)αk

0

2

�
1−2n−(α−1)

0

�αk

.

Inserting this bound into (6.21) and using 0<β < 1 as well as 0<δ< 1 we obtain

γ0−γk ≤
(1+3c )γ0

2(1−2n−(α−1)
0 )

k∑
l=0

�
n
α−1−β
0 (1−2n−(α−1)

0 )
�−αl

. (6.22)

Remember that we have to show γk+1 ≥ c γ0, which is true provided the right-hand side
of (6.22) is upper bounded by (1− c )γ0. Hence, in total we have to guarantee

(1−2n−(α−1)
0 )−1

k∑
l=0

�
n
α−1−β
0 (1−2n−(α−1)

0 )
�−αl

≤ 2(1− c )
(1+3c )

. (6.23)

Next we show that the sum on the left-hand side is finite if we choose n0 large enough.
First note that we can make the term inside the square brackets strictly larger than one,
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6. Proof of dynamical localization

provided that we choose n0 > exp( 2
α−1−β ). Doing this and using αk ≥ k (α− 1) + 1 the

finite sum is dominated by a convergent geometric series times a prefactor

k∑
l=0

�
n
α−1−β
0 (1−2n−(α−1)

0 )
�−αl

≤ n
−(α−1−β )
0 (1−2n−(α−1)

0 )−1
∞∑

l=0

�
n
α−1−β
0 (1−2n−(α−1)

0 )
�−l (α−1)

. (6.24)

Evaluating the series and inserting the result into (6.23) implies the following condition
on the initial length scale n0

1+3c

2(1− c )
≤
�
1−2n−(α−1)

0

�2
�

1−
�
n
α−1−β
0 (1−2n−(α−1)

0 )
�−(α−1)

�
n
α−1−β
0 .

Sinceα> 1+β by assumption, the first two factors on the left-hand side tend to one and
the third factor grows for large n0. Therefore, by making n0 large enough we can always

satisfy this condition. Employing the already known lower bound n0 > exp
�

2
α−1−β

�
that

we need in order to ensure the convergence of the geometric series in (6.24), we find
the more explicit condition

n0 >

�
2(1−2)
1+3c

�
C −C α

��− 1
α−1−β

with C := 1−2e −
2(α−1)
α−1−β .

This completes the deterministic estimate since the new growth rate γk+1 now indeed
satisfies the bound γ0 ≥ γk+1 ≥ c γ0.

Probabilistic part

For the probabilistic estimate, we return to (6.15) and note, that we have to bound the
probability that either one of the hypotheses H1 or H2 is violated for two independent

products X
nk+1

2
θ (ω) and X

nk+1
2

θ (ω̃). Denoting by ûHi
�
X

nk+1
2

θ (ω)
�

the event that hypotheses

Hi fails for the product X
nk+1

2
θ (ω)we obtain the estimate

P

�
∃θ ∈ I (n0) : Either H1 or H2 is violated for both X

nk+1
1

θ (ω) and X
nk+1

2
θ (ω̃)

�

= 2P
�
∃ θ ∈ I (n0) : ûH1

�
X

nk+1
2

θ (ω)
�

and ûH2
�
X

nk+1
2

θ (ω̃)
��

+ P
�
∃ θ ∈ I (n0) : ûH1

�
X

nk+1
2

θ (ω)
�

and ûH1
�
X

nk+1
2

θ (ω̃)
��

+ P
�
∃ θ ∈ I (n0) : ûH2

�
X

nk+1
2

θ (ω)
�

and ûH2
�
X

nk+1
2

θ (ω̃)
��

≤ 3P
�
∃ θ ∈ I (n0) : ûH1

�
X

nk+1
2

θ (ω)
��

+ P
�
∃ θ ∈ I (n0) : ûH2

�
X

nk+1
2

θ (ω)
�

and ûH2
�
X

nk+1
2

θ (ω̃)
��

.
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6.4. Multiscale analysis

Let us begin with the term in the last line of this expression. If hypothesis H2 fails for a

product X
nk+1

2
θ (ω) at least one of the 2b�nk

2

�
+1c−1 instances has to grow at a rate smaller

then −c γ0(
nk
2 )
δ. The probability that this happens for two independent products of

length nk
2 however, is governed by the decoupling assumption A2 that gives us via (6.14)

the following estimate

P

�
∃ θ ∈ I (n0) : ûH2

�
X

nk+1
2

θ (ω)
�

and ûH2
�
X

nk+1
2

θ (ω̃)
��
≤ 3

nk

2
e −σ

� nk
2

�δ
. (6.25)

Now we deal with the first term in the probabilistic estimate. If H1 is violated then at

least 2b�nk
2

�β
+ 1c factors of the product X

nk+1
2 (θ ,ω) grow with a rate smaller than γk .

Equivalently, we can say that at least b�nk
2

�β
+ 1c pairs of independent products grow

with a rate smaller than γk . Hence, by invoking the induction hypotheses from (6.15)
we find

3P
�
∃ θ ∈ I (n0) : ûH1

h
X

nk+1
2 (θ ,ω)

i�
(6.26)

≤ 3P
�
∃ θ ∈ I (n0) : X

nk
2 (θ ,ω)< e γk

nk
2 and X

nk
2 < e γk

nk
2 (θ ,ω̃)

�b� nk
2

�β
+1c ≤ 3 e −σ

� nk
2

�ξ+β
,

since bx + 1c ≥ x for all positive x ∈R. Combining the estimates (6.25) and (6.26) and
using the fact that nk+1 < nαk yields for large enough n0

P

�
∃θ ∈ I (n0) : Hypotheses H1 or H2 violated for X

nk+1
2 (θ ,ω) and X

nk+1
2 (θ ,ω̃)

�

≤ 3 e −σ
� nk

2

�ξ+β
+ 3

nk

2
e −σ

� nk
2

�δ
≤ e −σ

� nk+1
2

�ξ

provided that we can choose ξ+β >α ·ξ and 1>δ >α ·ξ. Given 0<ξ< 1 and we can
always find η satisfying 0 < η2 < ξ < η < 1. Setting α = η

ξ
, first note, that αξ < 1 so we

can find αξ < δ < 1 for the worst case estimate in H2. With this choice it also follows
that 0<ξ(η−ξ)<η−ξ, which amounts to η−ξ< η

ξ
−1. Pick η−ξ<β < η

ξ
−1. The first

inequality impliesα< 1+βξ−1 and the second oneβ+1<α as claimed. The only thing
we have to check whether β satisfies the assumptions of hypothesis H1. This means
that we have to guarantee that

2Rk+1 ≥ 2
�

nk

2

�2

+1 .

Multiplying both sides by nk and using the last inequality in (6.17) this is equivalent to
the condition

2Rk+1nk = nk+1 ≥ nαk −2nk >
2

2β
n

1+β
k +nk .

Hence, we have to guarantee the relation

n
β+1
k

�
n
α−β−1
k − 2

2β
−3n

−β
k

�
≥ n

β+1
k

�
n
α−β−1
k − 5

2β

�
> 0 ,
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6. Proof of dynamical localization

but since α> 1+β we can always achieve this by making n0 large enough.
Conversely, if we fix 1 < α < 2, we see that the induction step can be carried out if

ξ < β < α− 1 and ξ < α−1, because then ξ+β > 2ξ > αξ. So if we pick ξ < α− 1 and
ξ<α−1, we can find 0<β ,δ < 1 accordingly, which finishes the proof.

6.5. Final assembly

Finally we have developed all necessary tools to prove our main result on dynamical
localization of one-dimensional disordered quantum walks. The basic argument is to
facilitate the initial scale estimate from chapter 5 and the Wegner estimate from section
6.3 as the prerequisites of a multiscale analysis that ensures the almost sure decay of
the resolvent of the disordered quantum walk operator. Together with the connection
between the transition probabilities and the resolvent given by the Cauchy transform
this is sufficient to guarantee dynamical localization.

Theorem 6.5.1. Let Wω be a regular disordered quantum walk, such that for some I ⊂
T the image measure of its coin distribution µ on τΘ(Und ) is strongly-irreducible, non-
compact and ζ-integrable for all Θ ∈ I. Then, for all 0< ξ< 1 there exist C1, C2 > 0 such
that for all x , y ∈Z andφ,ψ ∈C2

E

�
sup

t
| 〈δy ⊗ψ ,χ(I)W t

ω δx ⊗φ 〉|
�
≤C1e −C2‖x−y ‖ξ . (6.27)

Proof. We show that if the assumptions of the lemma are satisfied for some fixedΘ0 ∈ I,
there is some open arc Iδ around Θ0 on which the claim holds. The result for the full
interval I then follows by compactness of T.

By proposition 5.5.1 the expectation value on the left-hand side of (6.27) can be upper
bounded by the total variation of the spectral measure, which in turn is upper bounded
by the Lebesgue measure of a limiting set of matrix elements of the resolvent of Wω in
the following way

E

�
sup

t
| 〈δy ⊗ψ,χ(I)W t

ω δx ⊗φ , | 〉
�
≤E

�
lim

N→∞ |ρ
x ,y
ω,N |(I )

�

≤ 4 max
i , j

E

�
lim

N→∞ lim
κ→∞m ({θ ∈ I : |GΘ (2x−i ,2y− j )|>κ})

�
. (6.28)

Here GΘ denotes again the resolvent of Wω and we remark that by dominated conver-
gence we can pull the limit over N out of the expectation value. From lemma 5.7.2
we know that any question we ask about the absolute value of a matrix element of the
resolvent can be phrased in terms of a product of transfer matrices.

Before we proceed let us fix ξ2 < ηξ and define α = η
ξ

. In addition, we denote by
n0 ∈N an initial length scale the size of which will be determined later and define the
length scales nk recursively via

nk+1 = max
K ∈2nkN

K =: 2Rk+1nk . (6.29)
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Denote by k0 the natural number such that nk0
− 2 ≤ |x − y | ≤ nk0+1. Without loss of

generality assume that x > y . Then we know from lemma 5.7.2 that there existsΦ± ∈ P2
such that

|GΘ (2x−i ,2y− j )|= 1

2
| 〈Φ+ , Tx−1(Θ0) · . . . ·Ty (Θ0)Φ− 〉|−1 .

Since x−y is assumed to be larger than nk0
, we can according to lemma 5.7.4 divide this

product of transfer matrices into two products, one of length
nk0

2 , the other of length

|x−y |− nk0
2 either starting from the x or y , if we choose appropriate normalized vectors

eΨ±, bΨ± ∈ P2

| 〈Φ+ , Ty (Θ0) · . . . ·Tx (Θ0)Φ− 〉| (6.30)

= | 〈Φ+ , Ty (Θ0) · . . . ·T
x+

nk0
2 +1

(Θ0)eΨ− 〉|| 〈eΨ+ , T
x− nk0

2

(Θ0) · . . . ·Tx (Θ0)Φ− 〉|
= | 〈Φ+ , Ty (Θ0) · . . . ·T

y− nk0
2

(Θ0)bΨ− 〉|| 〈bΨ+ , T
y− nk0

2 +1
(Θ0) · . . . ·Tx (Θ0)Φ− 〉| .

Note, that due to the lower bound on the distance between x and y , the product of
transfer matrices of length

nk0
2 starting at x will be independent from the product of

transfer matrices of length
nk0

2 starting from y . Our definition of the length scales nk

from (6.29) also allows us to decompose a product of transfer matrices of length nk
2

into 2Rk products of length nk−1
2 . Suppressing for the moment the dependency of the

transfer matrices on Θ0, this means that

| 〈Φ+ , Tnk
2
· . . . ·T1Φ− 〉|=

 
2Rk∏
l=1

| 〈Ψl ,+ , Tnk−1
2
· . . . ·T1Ψl+1,− 〉|

!
(6.31)

for some collection of vectors Ψl ,± ∈ P2, with Ψ1,+ = Φ+ and ΨRk ,− = Φ−. Our goal is
to make the multiscale analysis from lemma 6.4.1 applicable to the two independent
products in (6.30). Therefore, we have to verify the two prerequisites A1 and A2. Due to
our choice of assumptions the initial scale estimate in lemma 5.7.11 as well as the uni-
form Wegner estimate from corollary 6.3.2 are valid if the products of transfer matrices
is long enough.

We now have to find a consistent set of parameters, where both results can be used.
Remember that we already fixedηwith 0<ξ2 <η<ξ< 1 andα= η

ξ
, which also implies

α < η−1. To satisfy the initial scale estimate A1 we now fix some n ∈N and use lemma
5.7.11 to obtain nI S , γI S ,σI S and δI S such that

P
�∃Θ ∈ I (Θ0,δI S ) ; | 〈Φ1 , TnI S

(Θ) · . . . ·T1(Θ)Φ2 〉| ≤ e γI S nI S
�≤ e −σI S nI S ,

for all normalized Φi ∈ P2. With this choice assumption A1 of lemma 6.4.1 is indeed
satisfied.

Next we pick 0< c < 1,αη<δ < 1, and feed the parametersη, c , I (Θ0,δI S ),σI S andδ
into the uniform Wegner estimate, which outputsσW and nW such that for all n > nW
and Φi ∈ P2

P
�
∃I (Θ0,δI S ) : | 〈Φ1 , Tn (Θ) · . . . ·T1(Θ)Φ2 〉|< e −γI S c nδ and

| 〈Φ3 , Tn (Θ) · . . . ·T1(Θ)Φ4 〉|< e −γI S c nδ
�
≤ e −σW nδ .
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6. Proof of dynamical localization

If nW ≤ nI S we can set our initial scale estimate n0 equal to nI S and are done, because
now we can perform a multiscale analysis on the length scales nk as defined in (6.29)
by decomposing the product of length nk+1

2 into 2Rk+1 products of length nk
2 according

to (6.31).
If on the other hand nW > nI S , we reiterate the whole procedure by feeding nW into

the initial scale estimate. Let us furthermore define the event EΘ,δ,n as

EΘ,δ,n = {∃I (Θ,δ) : | 〈eΦ+ , T
x− nk0

2

(Θ0) · . . . ·Tx (Θ0)Φ− 〉|< e γ
nk
2

and | 〈Φ+ , Ty (Θ0) · . . . ·T
y− nk0

2

(Θ0)bΦ− 〉|< e γ
nk
2 }

Setting σ =min(σW ,σI S ) and γ = c γI S and inserting all constants into the multiscale
analysis implies that for all x , y ∈N with nk ≤ |x − y | − 2 ≤ nk+1 the transfer matrices
satisfy

P

�
EΘ0,δI S ,

nk
2

�
≤ e −σ

� nk
2

�η
< e −

σ

2αξ
nξk+1 (6.32)

where we used αξ = η and nαk > nk+1. Returning to (6.28) we can split the computa-
tion of the expectation value with respect to the event EΘ0,δI S ,

nk
2

. If EΘ0,δI S ,
nk
2

does not

occur than at least one of the transfer matrix products of length nk
2 in (6.30) grows expo-

nentially with a rate of at least γk . Without loss of generality, assume that the product
starting from x is growing. In this case, we find after redefining κ in the third step

|ρx ,y
ω,N |(I (Θ0,δI S )) = lim

κ→∞πκm ({θ ∈ I (Θ0,δI S ) :

| 〈Φ+ , Ty (Θ0) · . . . ·T
x+

nk0
2 +1

(Θ0)eΦ− 〉|| 〈eΦ+ , T
x− nk0

2

(Θ0) · . . . ·Tx (Θ0)Φ− 〉|<
1

2κ
})

≤ lim
κ→∞πκm ({θ ∈ I (Θ0,δI S ) : e γk

nk
2 | 〈eΦ+ , T

x− nk0
2

(Θ0) · . . . ·Tx (Θ0)Φ− 〉|< 1

2κ
})

= e −γk
nk
2 lim
κ→∞πκm ({θ ∈ I (Θ0,δI S ) : | 〈eΦ+ , T

x− nk0
2

(Θ0) · . . . ·Tx (Θ0)Φ− 〉|<
1

2κ
}) .

By corollary 5.7.3 we can interpret the remaining transfer matrix product in the last
equation again as the matrix element of a resolvent of a disordered quantum walk.
Therefore, the limit measure corresponds again to the variation of a spectral measure
between two lattice sites ex , ey ∈ Z of distance |x − y | − 1 − nk

2 . Since such a spectral
measure is upper bounded by one and γk > c γ0 we obtain by the same arguments as
in (6.32)

|ρx ,y
ω,N |(I (Θ0,δI S ))≤ e −γ0c

nk
2 |ρ ex ,ey

ω,N |(I (Θ0,δI S ))≤ e −γ0c
nk
2 ≤ e −γ0c

n
η
k
2 ≤ e −γ0c

n
ξ
k+1
2 .(6.33)

As already indicated we now combine the two estimates (6.32) and (6.33) in our esti-
mate of the desired expectation value by splitting the computation of this expectation
value with respect to the event EΘ0,δI S ,

nk
2

. This amounts to the following bound for all
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x , y ∈Zwith nk ≤ |x − y | −2≤ nk+1

E
�
|ρx ,y
ω,N |(I (Θ0,δI S ))

�
=

∫

E
Θ0,δI S ,

nk
2

|ρx ,y
ω,N |(I (Θ0,δI S ))P(dω) +

∫

ûE
Θ0,δI S ,

nk
2

|ρx ,y
ω,N |(I (Θ0,δI S ))P(dω)

≤ e −
γ0c

2 nξk+1 + e −
σ

2αξ
nξk+1 ≤ e −

γ0c
2 (|x−y |−2)ξ + e −

σ

2αξ
(|x−y |−2)ξ

≤ e
2ξγ0c

2 e −
γ0c

2 |x−y |ξ + e
2σ

2αξ e −
σ

2αξ
|x−y |ξ ≤C1e −C2|x−y |ξ ,

with C1 = e
2ξγ0c

2 +e
2σ

2αξ and C2 =min( σ
2αξ

, γ0c
2 ). In order to extend the result also to lattice

sites with a distance smaller than n0, we might have to increase C1 to obtain the trivial
bound of 1 for the transition probability in those cases, namely we have to ensure that
1≤C1 exp(−C2nξ0 ), which finishes the proof.

This concludes the proof of our main theorem, which establishes dynamical localiza-
tion for large classes of disordered quantum walks. Note that we even proved a slightly
stronger result than dynamical localization. Since we found an upper bound on the
total variation of the spectral measure corresponding to two different lattice sites x
and y we do not only control the powers of the disordered walk operator, but also the
modulus of the matrix elements

| 〈δy ⊗ψ ,χ(I) f
�
W t
ω

�
δx ⊗φ 〉|

for any continuous function f on the unit circle with ‖ f ‖∞ ≤ 1.
Theorem 6.5.1 also provides us with a direct criterion that allows us to check for a

given distribution on U (2), whether it exhibits dynamical localization. We only have
to consider the subgroup generated by the corresponding transfer matrices within the
group S LT(2). As a remark let us mention that lemma 2.5.11 together with our main
theorem implies also spectral localization for those disordered quantum walks.

Corollary 6.5.2. Let Wω be a regular disordered quantum walk, such that for some I ⊂
T the image measure of its coin distribution µ on τΘ(Und ) is strongly-irreducible, non-
compact and ζ-integrable for all Θ ∈ I.

Proof. The exclusively pure point nature of the spectrum follows from the dynamical
localization of Wω due to theorem 6.5.1 together with lemma 2.5.11.

Although, theorem 6.5.1 provides a technical criterion in terms of the transfer ma-
trices generated by the local coin distribution, it does not directly provide examples of
local coin distributions satisfying these assumptions. To this end, we discuss a collec-
tion of different examples in the next section.

6.6. Examples of disordered quantum walks

Even though the technical result form theorem 6.5.1 allows us in principle to check
whether a certain local coin distribution exhibits dynamical localization, we still have
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6. Proof of dynamical localization

to show that the criterion it can be evaluated for a given distribution and even more im-
portantly that there are interesting distributions that satisfy these assumptions. There-
fore, we study in this section a collection of explicit disorder models which correspond
to a specific choice of local coin distributions and analyze whether they satisfy the re-
quirements of theorem 6.5.1. Aside from measures absolutely continuous with respect
to the Haar measure, we also give an example of a discrete measure exhibiting dynam-
ical localization.

In order to apply theorem 6.5.1 we have to verify properties of the group 〈µ〉 and
the subgroup (µ) generated by corresponding transfer matrices. Remember that we
denote by 〈µz 〉 the group and by (µz ) the semi-group generated by the transfer matrices
contained in the support of µz on S LT(2).

We first discuss two preparatory results concerning the parametrization of the im-
age of Und under the transfer matrix mapping τz defined in (5.33) and the strong irre-
ducibility of GL(2,C)matrices.

Proposition 6.6.1. The mapping τz : U (2) 7→ S LT(2) is injective on Und for all z ∈C\{0}
and the image τz (Und ) is given by the set
¨

T (r,α,β ,η) :=

�p
1+ r 2e iα|z |−1 r e iβ

r e iη
p

1+ r 2e i(β+η−α)|z |

�
; r ∈R+, α,β ,η ∈ [−π,π)

«

Proof. Injectivity has been already shown in lemma 5.7.1. Writing down the image of a
general unitary matrix U ∈ U (2)we obtain

τz

��
a b

−b e iφ a e iφ

��
=

1

a

�
e iφ −b e iφ

−b z

�
,

with |a |2 + |b |2 = 1 and |a | 6= 0. Setting r = |a ||b | we get r ≥ 0 and |a |2 = (1+ r 2)−1. The
phases α, β and η now depend on the phases of a and b as well as ofφ and can there-
fore each assume any value in [−π,π).

The following characterization for strong irreducibility is proven in [BL85] for the real
case. Here we consider the case of S LT(2)matrices.

Proposition 6.6.2. Let µ be a measure on S LT(2) such that its generated subgroup 〈µ〉 is
non-compact. Then µ is strongly irreducible if for any x ∈ PC2 the set {M x ; M ∈ 〈µ〉}
contains more than two elements.

Proof. Since the only proper subspaces ofC2 are one-dimensional, it suffices to show
that the existence of k vectors x i ∈ PC2 such that M

⋃
l xl ⊂

⋃
l xl , implies k ≤ 2. The

matrices M ∈ 〈µ〉 permute the set {x 1, . . . x k } according to some permutation πM and
the map M 7→πM constitutes a group homomorphism. The Kernel K of this homomor-
phism, that is, the elements M ∈ 〈µ〉 such that M x i = x i for all i is a normal subgroup
of 〈µ〉 and we can construct the quotient group 〈µ〉 \K , which is isomorphic to a sub-
group of the permutation group Sk and hence finite. By the group action of S LT(2) on
PC2 the action of the matrices M ∈ K on the corresponding vectors xi ∈C2 is given by
M xi =λi xi with λi ∈C. Under the assumption k > 3 we can find for any three distinct
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6.6. Examples of disordered quantum walks

vectors x 1, x 2, x 3, nonzero complex coefficients α,β such that x3 =αx1+β x2 with x1,
x2 linearly independent. Acting with an element M ∈ K on both sides we obtain

M x3 =λ3x3 =αλ3x1+βλ3x2 =αλ1x1+βλ2x2 =M (αx1+αx2) .

Therefore, λ1 = λ2 = λ3 and M ∈ K has to be a multiple of the identity. Furthermore,
since we know that |det M |= 1, we have M = e iθ1, with θ ∈R. But then K and 〈µ〉 \K
would both be compact, which contradicts the non-compactness of 〈µ〉. Therefore, k
has to be smaller than three.

Measures with a density

The first class of examples we want to consider consists of local coin distributions with
an absolutely continuous component. Since it suffices to verify non-compactness and
strong irreducibility on a subgroup generated by the transfer matrices this also implies
that all coin distributions with an absolutely continuous part exhibit dynamical local-
ization. We begin with the following corollary to theorem 6.5.1.

Corollary 6.6.3. Let µ be a ζ-integrable probability measure on U (2) with µ(Und ) = 1.
If the support of µ has a non-empty interior in the standard topology of U (2) then the
corresponding disordered quantum walk exhibits dynamical localization for all z ∈T.

Proof. Givenζ-integrability we have to check non-compactness and strong irreducibil-
ity of the subgroup generated by the support of µ in order to satisfy the assumptions
of theorem 6.5.1. We begin with the non-compactness. Since we assumed supp(µ) to
have a non-empty interior we can find an open set O ⊂ supp(µ) and because τz as well
as its inverse are continuous τz (O ) is open for all z ∈ C \ {0}. Therefore, we can find
r 6= t such that T (r,α,β ,η) and T (t ,α,β ,η) are both in τz (O ) for some α,β ,η ∈ [−π,π)
according to proposition 6.6.1. We are interested in the group generated by the support
µz of the image measure of µ on the transfer matrices. Therefore, we can invert one of
the matrices and study the expression

T (r,α,β ,η) ·T (r ′,α,β ,η)−1 =

�
A e α−β ) B

|z |
e −(α−β )B |z | A

�
,

with

A =
Æ
(1+ r 2)(1+ t 2)− r t and B = r

p
1+ t 2− t

p
1+ r 2 .

This matrix has two eigenvalues equal to λ± = A±B . Due to the fact that |det T |= 1 for
any transfer matrix, the product λ+λ− has also modulus one. If they do not lie both on
the unit circle, one of them has modulus strictly larger than 1, in which case we would
have found an unbounded sequence in the group generated by suppµz , which implies
non-compactness. So we have to exclude the case |λ+| = |λ−| = 1. Since A is strictly
positive, we find depending on whether B is positive and A ≥ |B | or vice versa

||λ+| − |λ−||= | ± (A+B )± (A−B )|= 2 min(A, |B |) .

From A > 0 and the fact that B = 0 implies r = t we indeed find |λ+| 6= |λ−|.

179



6. Proof of dynamical localization

Next we show strong irreducibility. Consider again the open set τz (O ) ⊂ S LT(2). If
we choose M ∈ τz (O ), the set τz (O ) ·M −1 is an open neighbourhood of the identity
matrix. Therefore, we can find ε > 0 such that

{1+δU ; 0≤δ < ε,U ∈ U (2)} ⊂τz (O ) ·M −1 .

This implies in particular, that for every normalized v ∈ C2 the ε-Ball Bε(v ) around v
is contained in the set τz (O ) ·M −1 · v , which therefore has a non-empty interior. This
means that none of the sets τz (O ) ·M −1 · v can be contained within a finite union of
subspaces of C2, because those do have empty interior. This already rules out the ex-
istence of an invariant union of subspaces and therefore the group generated by the
support of µ is strongly irreducible.

As a first explicit example with open interior we study a local coin distributionµ that
has an absolutely continuous part with respect to the Haar measure. In that case it is
clear that the local coin distribution has an open interior, so corollary 6.6.3 applies and
we only have to check integrability. Returning to proposition 5.7.7 we see that we only
have to guarantee ζ-integrability of |U11|−1 for Uω ∈ supp(µ). Decomposing µ into its
singular and absolutely continuous components µa c and µs we obtain

E
�
|U11|−ζ

�
=Eµs

�
|U11|−ζ

�
+Eµa c

�
|U11|−ζ

�
.

Since we are integrating a positive function, the expectation value with respect to the
absolutely continuous part can be controlled by the expectation value with respect to
the full Haar measure. Hence, denoting by EµH

the expectation value with respect to
the Haar measure on U (2), we obtain [SHH12]

Eµa c

�
|U11|−ζ

�
≤EµH

�
|U11|−ζ

�
=

∫ π

0

1

|sinθ |ζ dθ .

This expression is finite for all 0 ≤ ζ < 1. If in addition, the measure µs consists of
finitely many point masses lying in Und also the second expectation value is finite for
any positive and finite ζ.

The dynamics of an initially localized particle with internal stateφ = 1p
2
(1,−1) start-

ing at the origin is depicted in figure 6.1. The exponential decay of the transition prob-
abilities is clearly visible. In addition, we can also see a very fast saturation in the vari-
ance of the process to a constant value.

As a second example we consider the following situation. Assume that in an exper-
imental setup the experimentalists try to implement one specific target coin Ct a r g e t
but at each lattice site due to random noise effects they only manage to realize a coin
close to it in the following sense. The target coin is multiplied with a unitary operator
close to the identity of the form

Uωx
=Ct a r g e t · e ivωx ·σ (6.34)

where σ is the vector of Pauli matrices and vω ∈ R3 a random vector of norm less or
equal to ε.
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6.6. Examples of disordered quantum walks

Hm ε = 1 ε = 0.5
ε = 0.1 ε = 0.01 ε = 0.01(l o ng )

Figure 6.1.: Simulation of a disordered quantum walk with different local coin opera-
tions: Depicted are the full Haar measure on U (2) and the example from
(6.34) for different values of ε. The initial state is equal to δ0 ⊗ 1p

2
(1,−1).

Upper left panel: Position distribution of the particle after 1.5 · 104 time
steps averaged over 500 samples. The localization length decreases with
the increase of the disorder parameter. Lower left panel: Comparison of
the position distribution in the case φ = 0.01 after 1.5 · 104 time steps (500
samples) and after 1.5 · 105 time steps (10 samples). A small component
of the initial state still shows ballistical spreading behaviour. Upper right
panel: The variance of the time evolved states state is depicted. Except for
ε = 0.01 all variances seem to saturate rather quickly. Lower right panel:
For ε = 0.01 even 1.5 · 105 time steps are not sufficient for the variance to
saturate completely.

By choosing vω uniformly from the Bε(0) ⊂R3 we obtain a local coin distribution µ
with nonempty interior. In figure 6.1 the mean position distribution and the time de-
pendence of mean variance with respect to 500 realization is depicted for the initial
state φ = 1/

p
2(1,−1) after 1.5 · 104 time steps for different values of ε. The target coin

Ctarget is chosen as the Hadamard coin according to (2.16). From the position distri-
bution as well as from the variance it is clear that the spreading behaviour is neither
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6. Proof of dynamical localization

ballistic nor diffusive. However, we also infer that the localization length depends on
the strength of the disorder. For large values of ε the decay is completely exponential.
For the small value ε = 0 we find that even after 1.5 ·105 there remains some small bal-
listic tail that is not yet localized.

An experimental example

In this section we analyse an experimental implementation of a disordered quantum
walk in an optical fibre performed by Schreiber et al. and show that dynamical localiza-
tion can indeed be certified via theorem 6.5.1 [SCP+11]. The basic experimental idea is
to use the horizontal and vertical polarization of a photon in an optical fibre network
as the internal state of freedom and to encode the position information into the arrival
times of the photons. A coin operation then corresponds to rotation of the polarization
of the photon and the shift operation is implemented by sending the photon through
a delay line depending on its polarization [SCP+11].

The most important property of this setup in our context is the possibility to change
the coin operation from time-bin to time-bin which exactly implements a position de-
pendent coin operation. Overall it is possible to implement the following family of walk
operators [SCP+11]

We x p = S ·
�⊕

x∈Z

�
e iφωx 0

0 e iηωx

��
·
�
1Z⊗

�
cos 2θ sin 2θ
sin 2θ −cos 2θ

��
, (6.35)

where S denotes the standard one-dimensional shift operator according to (2.15). Note
that the rotation angle given by θ is the same for all x ∈ Z but that the phases φωx

and ηωx
may vary from lattice site to lattice site implementing a static disorder pat-

tern. In [SCP+11] these phases are drawn uniformly from some interval I ⊂ [−π,π)
and θ is set to π

8 . We will now show that the support of the corresponding probability

-2 Π -Π Π 2 Π
DΦ

1

3

5

 Σ+¤

Figure 6.2.: Modulus of the eigenvalueσ+.

measure on the transfer matrices satisfies the assumptions of theorem 6.5.1. For the
non-compactness we compute for two arbitrary phasesφ1,φ2 ∈ I the product

Mφ1,φ2 :=τz (U (φ1,φ2)) ·
�
τz (U (φ2,φ1))

�−1

=

�
e i(∆φ)(2− e i∆φ)

p
2z−1e iφ1 (1− e −i∆φ)p

2z e −iφ1 (1− e −i∆φ) −1+2e −i∆φ

�
,
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6.6. Examples of disordered quantum walks

where∆φ =φ1−φ2. The eigenvaluesσ± of this matrix depend exclusively on
∆φ and can be computed to be

σ± =
1

2
e −2i∆φ

�
−1+4e i∆φ − e 2i∆φ ±p2(1− e i∆φ)

q
e i∆φ(cos∆φ−3)

�
.

According to figure 6.2 theσ+ solution is always larger than 1 ifφ1 andφ2 are different
and therefore the generated group is non-compact. For the proof of the strong irre-
ducibility we provide the following result.

Proposition 6.6.4. Let M ∈GL(C, 2) such that v ∈C2 is not an eigenvector of M . Then,
either the vectors v, M · v and M 2 · v are mutually linearly independent or M 2 = α1 for
some α ∈C.

Proof. By assumption v and M · v are linearly independent and if we would find λ ∈C
such that M 2 · v = λM · v then v would be an eigenvector for M . Therefore we only
have to check whether M 2 · v and v are linearly independent. Assuming the contrary
we could find λ ∈C such that M 2 · v = λv . Multiplying both sides with M we see that
both v and M · v are eigenvectors of M 2 for the eigenvalue λ. Since v and M · v are
linearly independent by assumption, this already implies that M 2 =λ1.

In order to show strong irreducibility for our experimental example via proposition
6.6.2 we have to guarantee that 〈µ〉·v as a subset ofPC2 contains three distinct elements
for every v , which is equivalent to the condition that 〈µ〉 · v contains three pairwise
linearly independent vectors for any normalized v ∈ C2. By explicitly computing the
square of Mφ1,φ2

we can directly infer that this matrix does not square to a multiple of
the identity unless∆φ = 0. Therefore, the vectors {v, Mφ1,φ2

·v, M 2
φ1,φ2

·v } are mutually
linearly independent as required as long as v is not an eigenvector of Mφ1,φ2

.

The corresponding argument goes through for the matrix Nφ1,φ2
:=
�
τz (U (φ1,φ2))

�−1·
τz (U (φ2,φ1)), so the only cases that are left are the ones, where Mφ1,φ2

and Nφ1,φ2
share

an eigenvector. This condition can be solved with respect to the spectral parameter z ,
which results in eight points on the unit circle, where strong irreducibility could be
violated. Abbreviating∆φ =φ1−φ2 those points are given by

z 2 = e 2i(φ1+φ2) and z 2 =
1

4
e iφ2

�
(1− e i∆φ)2± i

Æ
2(3− cos∆φ) (1+ e i∆φ)e i

∆φ
2

�
.

Since those points depend continuously on our choice of φ1 and φ2, we can just pick
a third phase φ3 in order to guarantee strong irreducibility for these cases. Then the
whole argument can be repeated for the matrices Mφ1,φ3

and Mφ2,φ3
which in turn es-

tablishes dynamical localization also for these remaining points z .
Hence, drawing the phases uniformly from an interval I ⊂ [−π,π) is certainly suf-

ficient to show dynamical localization for the whole unit circle. Moreover, we have
seen that even a finite number of different phases suffices to guarantee this effect for
all quasi-energies, regardless of the actual local coin distributionµ. However, the exact
form ofµ determines the Lyapunov exponent γ and therefore the actual decay rate that
governs the dynamical localization.
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η= 1 η= 0.5 η= 0.1 η= 0.01 η= 0.01(l o ng )

Figure 6.3.: Simulation of the experimental disorder model according to (6.35) with
θ = π

8 and for different intervals η · [−π,π]. The initial state is equal to

δ0 ⊗ 1p
2
(1,−1). Upper left panel: Position distribution of the particle after

1.5 · 104 time steps averaged over 500 samples. The localization length de-
creases with the increase of the disorder parameter. Lower left panel: Com-
parison of the position distribution in the case φ = 0.01 after 1.5 · 104 time
steps (500 samples) and after 1.5 ·105 time steps (10 samples). Even though
the transport seems to be ballistic in the beginning, we see that eventu-
ally the disorder in the system suppresses further spreading of the parti-
cle. Upper right panel: Variance of the position distribution for the first
1.5 ·104 time steps (500 samples). Higher disorder implies faster saturation
and lower variance. Lower right panel: Variance of the position distribution
for the parameter φ = 0.01 for the first 1.5 · 105 time steps. In comparison
with the upper right panel saturation of the variance takes place eventually.

Figure 6.3 again depicts a simulated time evolution of the initial state 1p
2
(1,−1) and

θ = π8 for differently sized intervals I ⊂ [−π,π) centered around 0. Although localization
can be observed for all parameter regimes within the first 1.5 · 105 time steps, we can
see that the actual localization length depends on the level of disorder. A larger interval
from which the random phases are chosen from implies a shorter localization length,
see figure 6.3.
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6.6. Examples of disordered quantum walks

Discrete measures

As a final example, we show that dynamical localization at least for almost all energies
can be found disordered quantum walk even if we alternate only between two different
coin operations. This discreetness and the consideration of a local coin distribution on
general unitary 2×2 matrices also brings us beyond the scenario considered in [JM10].
The model we want to consider here is that the local coins are chosen either to be the
Hadamard coin or some other, but fixed M ∈ U (2), so the coin distribution µ is only
supported on the set

H :=

�
1p
2

�
1 1
1 −1

�
, M :=

�
a b
−b a

��
with |a |2+ |b |2 = 1 ; |b |> 0 and|ℑ(b )|> |a | .

Since according to theorem 6.5.1 we only have to check properties of group 〈µ〉 that is
generated by transfer matrices of H and M , the actual weight p ∈ (0, 1) and (1−p )we as-
sign to these matrices are irrelevant, although they determine the Lyapunov exponent.
The transfer matrices of H and M are given by

τz (H ) =

�−p2z−1 1
−1

p
2z

�
and τz (M ) =

1

a

�
z−1 −b
−b z

�
.

Similar to the preceding example for random phases we consider the group element

M :=τz (H ) · (τz (M ))
−1 =

1

a

� −p2+ b (1−p2b )z−1

(−1+
p

2b )z
p

2− b

�
. (6.36)

In order to show non-compactness we again compute the modulus of the eigenvalues
λ± of this matrix and obtain the z independent expression

|λ±|=

���iℑ(b )±
p|a |2− |ℑ(b )|2

���
|a | .

Therefore, under the assumption |ℑ(b )| > |a | we have indeed one eigenvalue strictly
larger than one, which already implies non-compactness of 〈µ〉. Next we consider the
question of strong irreducibility. We want to use proposition 6.6.2 again. Hence, we
have to check, whether 〈µz 〉v contains three mutually linearly independent vectors for
all z ∈T. Squaring the matrix M from (6.36), we find the following conditions to obtain
a diagonal matrix

2i(−1+
p

2b )zℑ(b ) = 0 and 2i(−1+
p

2b )zℑ(b ) = 0 ,

which cannot be met, since we assumed ℑ(b ) 6= 0. This implies by proposition 6.6.4
that the vectors v, M · v and M 2 · v are mutually linearly independent and therefore
the condition for strong irreducibility is met for v ∈C2 that are not eigenvectors of M .
Similar to the example in the previous section, we can repeat the whole argument for
the element N := (τz (H ))

−1 ·τz (H ), thereby showing strong irreducibility for all z ∈ T
for which N and M do not share an eigenvector. This can only happen for those z , for
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p = 0.5 p = 0.1 p = 0.01 p = 0.01(l o ng )
k = π

2
k =π k = kk r i t

Figure 6.4.: Simulation of a local coin distribution supported on two matrices. At every
lattice site the probability for the Hadamard coin is p and (1− p ) for the

unitary matrix with coin parameters a = 1
3 and b = i2

p
2

3 . The initial state

is equal to δ0 ⊗ 1p
2
(1,−1). Upper left panel: Position distribution after 1.5 ·

104 time steps averaged over 500 trails. The exponential decay as well as
the dependence of the localization length on the Bernoulli parameter p is
clearly visible. Lower left panel: Comparison of the position distribution
in the case p = 0.01 after 1.5 · 104 time steps (500 samples) and after 1.5 ·
105 time steps (10 samples). The localization length seems to be constant.
Upper right panel: Gaussian initial states peaked around different pseudo-
momenta k after 1.5 · 105 (100 samples). The critical value of the pseudo-
momentum corresponding to a solution of (6.37) is kcrit = (π−arctan(24

7 ))/2.
There is no observable difference between the different k values. Lower
right panel: Time dependence of the variance of the position distribution.
The width of the final distribution increases with the imbalance between
the two possible coins. In the case p = 0.01 it also takes longer until the
variance is saturated. The uppermost line corresponds to all three Gaussian
wave packages depicted in the upper right panel.
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which one of the following four conditions corresponding to the possible choices of
signs, is satisfied

z 2 =

p
2 b +1p
2 b −1

ℜ(b )−p2± ip|ℑ(b )|2− |a |2
ℜ(b ) +p2± ip|ℑ(b )|2− |a |2 . (6.37)

Note that due to the assumption |ℑ(b )|> |a |> 0, b cannot be a real number and there-
fore

p
2b ± 1 6= 0 hold. So by this argument there are eight points Θk ∈ T, where the

strong irreducibility might not holds. Since the intuition from the RAGE theorem is
that only continuous measures corresponds to transport in the system, one might be
tempted to conclude that this finite number of exceptional energies is not enough to
cause a break down of dynamical localization. However, as mentioned in section 2.5
point spectrum alone is not strong enough to imply dynamical localization. Therefore
it is possible that the localization length, corresponding to the Lyapunov exponent of
the system diverges as we approach one of those exceptional points. Such a behaviour
was for example numerically investigated by Obuse and Kawakami for a disordered
quantum walk with an additional reflecting boundary imposed at the origin [OK11].

Of course, we could extend the support of the local coin distribution by a finite num-
ber of additional coins to exclude this situation, assigning a very small probability to
their occurrence and obtain dynamical localization for the whole unit circle. How-
ever, it would be quite interesting to observe such a mobility edge in the system, since
the basic intuition about one-dimensional systems in the Hamiltonian case is that any
amount of disorder should result in localization for all energies [Kir08].

We chose the parameters of the second coin M such that a ∈ R and b ∈ C \R,

with a = 1
3 and b = i2

p
2

3 . Then one of the critical points on the unit circle is given

by Θc r i t =±ie −iarctan( 24
7 )/2. In the left panel of figure 6.4 we again see that for a generic

localized initial state dynamical localization can be observed. In addition, we study
the dynamics of a gaussian wave packet peaked around Θcrit. If the localization length
would diverge at these points, one would expect that some broadening of the localiza-
tion area should be observable for such a wave packet. However, taking 100 samples of
such a walk with a highly peaked wave package around Θcrit as an initial state does not
indicate any different behaviour as can be observed for the localized state at the origin.

Nonzero index walk

In our last example we go beyond the applicability of the disordered quantum walk
model discussed so far and study numerically a quantum walk with nonzero index (see
section 2.4). We keep the random coin operation, but the shift operation now shifts one
of the internal states two instead of one lattice site

Wω =

�⊕
x∈Z

Uωx

�
·Salt , with Salt|x ,±〉=

¨
|x +2,+〉 for +
|x −1,−〉 for − . (6.38)

The results of a numerical simulation of the position distribution and the variance are
shown in figure 6.5. The altered shift operation Salt is combined with the random coin
distributions of all four examples we considered so far in this section. In each case the
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Haar measure φ = 1 p = 0.5 ε = 1

Figure 6.5.: Position distribution and variance of the disordered quantum walk with
non-zero index according to (6.38). The local coin distributions agree with
the examples studied in the zero index case: The full Haar measure on U (2),
the random rotation by a unitary matrix close to the identity (see (6.34)), the
experimental example with random phases (see (6.35)) and the discrete ex-
ample with two different matrices (see 6.36). The initial state is equal to
δ0 ⊗ 1p

2
(1,−1). Left panel: Mean position distribution of the four different

coin distributions over 200 samples for 1.5 ·104 time steps. A drift of all par-
ticles to the right can be observed. Right panel: Time dependence of the
variance for the different models.

parameter is chosen such that strongest localization behaviour could be observed in
the zero index case.

In comparison with the numerical results for the other examples figure 6.5 seems
to indicate that localization can no longer be observed in this system. The variance
of the process is still increasing and there seems to be at least a drift term that moves
the particle constantly to the right in all four cases. This concludes our overview over
explicit examples of disordered quantum walks exhibiting dynamical localization.

6.7. Conclusion and outlook

In this chapter we have completed the proof of dynamical localization of disordered
quantum walks for a wide class of local coin distributions. Our main theorem extends
previous results by Joye and Merkli, who established dynamical localization for dis-
ordered quantum walks with a translation-invariant coin multiplied with random po-
sition dependent phases [JM10]. In comparison with the fractional moment method
employed by Joye and Merkli, our approach via a multiscale analyses also allowed us
to apply our result to singular coin distributions.

The main ingredients of the proof are the Thouless formula and the multiscale anal-
ysis lemma. The Thouless formula enabled us to transfer the Hölder continuity of the
Lyapunov exponent to the integrated density of states, which in turn allowed us to es-
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tablish a uniform Wegner bound for the system. The uniform Wegner estimate allowed
us to control the occurrence of resonant energies that are at the same time eigenvalues
of different realizations of a finite restriction of a disordered quantum walk.

The multiscale analysis lemma, as a generalized probabilistic version of the induc-
tion principle, gave us the means to iteratively show exponential decay on larger scales
once the decay was established at one specific scale. To this end the new length scale
was split into boxes of the size of the previous length scale and their respective decay
properties were used to show decay at the level of the new length scale.

For the purpose of proving dynamical localization we began with the initial scale
estimate from chapter 5. The multiscale principle then allowed us to iterate this bound
over increasing length scales, which provided an exponential decay of matrix elements
of the resolvent of the disordered walk operator. In this context, the uniform Wegner
bound enabled us to exclude resonant energies, that is energies at which the matrix
elements do not decay exponentially over many length scales. All those building blocks
were then combined in theorem 6.5.1 to establish dynamical localization for disordered
quantum walks.

In the final part of this chapter, we constructed explicit examples, where the assump-
tions of theorem 6.5.1 have been met. In particular this included, measures on the
group of unitary 2×2 matrices with an absolutely continuous component with respect
to the Haar measure and an example where the measure is only supported on a discrete
number of different coin operations. In addition, the situation studied in an actual ex-
perimental realization performed by Schreiber et al. in the context of optical fibres
[SCP+11] has been analyzed and we have been able to certify dynamical localization
within their experimental setup.

The generic occurrence of dynamical localization has a positive and negative aspect
with respect to the usefulness of quantum walks in quantum computation. In the con-
text of single-particle simulations it seems promising that, as in the continuous-time
case, any amount of disorder leads to dynamical localization. Hence, quantum walks
reproduce this behaviour faithfully. However, all algorithms that use quantum walks
as a building block achieve their speed-up due to the faster spreading behaviour of the
quantum walk as compared to classical random walks. From this perspective, localiza-
tion certainly is an undesired effect that should be avoided.

We conclude this chapter with some remarks on possible further research directions
and open questions.

• Random shift operation: Instead of a random coin operation, one could also
think of noise models that affect the shift operation of the quantum walk. For
example instead of a perfect shift operation there could be a random position
dependent reflection probability px such that shift operator Sω acts as

Sωδx ⊗+=ppωx
δx+1⊗+−

Æ
1−pωx

δx ⊗−
Sωδx ⊗−=ppωx−1

δx−1⊗−+
Æ

1−pωx−1
δx ⊗+ .

With this definition it is easy to check that Sω is a unitary operator, so Wω = Sω ·
(1⊗U ) defines another kind of disordered quantum walk. One can now follow
the steps of chapter 5 and in a similar manner define transfer matrices, which are
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given by [Cho12]

Tx (z ) :=
1p
2

�
z−1 z−1+

p
2(1−pω,x

z−1−p2(1−pω,x ) z−1(1−2z 2)

�
.

Note that as in the case of coin disorder, the single transfer matrix only depends
on the random parameter on one single lattice site. Assuming that the reflection
probabilities pωx

are independent and identically distributed, the full theory of
products of random matrices, as discussed in chapter 3, is applicable. However,
a simple identity between products of transfer matrices and matrix elements of
the resolvent, as in corollary 5.7.3 is not so easy to obtain. In particular, it is no
longer true that set P2 is left invariant. In this respect it would be interesting to
generalize the results of this thesis to prove dynamical localization for these ran-
dom reflections and to also look at the case of combined shift and coin disorder.

• General one-dimensional QW: In the previous paragraph as well as in the case
of the disordered quantum walks studied in this thesis, we dealt with a specific
model of disorder, but also with the specific model of a standard shift and coin
quantum walk. It would be interesting to see what can be said about localiza-
tion on the level of general one-dimensional quantum walks, that is for random
unitary band matrices with strictly finite width. In the light of the last example
in section 6.6 it would also be interesting to make the connection to the index of
a quantum walk and whether a nonzero index generically prevents localization.
An additional question that arises for quantum walks is how the dimensionality of
the internal state space influences the localization behaviour. As seen in chapter
3 the theory of products of random matrices also works for higher-dimensional
transfer matrices. However, at the moment the connection between transfer ma-
trices and the resolvent relies on the specific form and the two-dimensionality of
the problem.

• Quasi-periodic QWs: The transfer matrix approach developed in chapter 5 is not
restricted to a randomly chosen coin operation. In particular, one could study the
propagation behaviour if the local coin operations are chosen according to some
quasi periodic process. A model of particular interest in this context is the choice
Ux := e i2πθ x U , with some fixed U ∈ SU (2) and θ ∈R.

This position dependent phase factor implements the action of an electric field θ
on the particle, see [CRW+13, GAS+13]. If the field θ is given by a rational number,
the system is again periodic and asymptotically the particle will move ballistically.
However, if the field θ is irrational, the underlying dynamical system becomes
ergodic again, which hints at a positive Lyapunov exponent for the product of
transfer matrices. The positivity in turn excludes an absolutely continuous com-
ponent in the spectrum.

In addition, one should investigate, under which conditions on the field it is pos-
sible to also exclude singular continuous spectrum. From a comparison with the
Hamiltonian case [BG00] it seems promising to impose a diophantine condition
on the field θ . Hence, there should be irrational values of the electric field such
that the system exhibits spectral and possibly even dynamical localization.
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6.7. Conclusion and outlook

• Higher lattice dimensions: Localization of quantum walks in higher lattice di-
mensions has up to now only been investigated perturbatively [Joy12]. In this
case, one starts from a static situation and then shows that localization survives
if one considers a small enough perturbation of the operator. However, those re-
sults do not cover all interesting cases. For example, they are not applicable to
two dimensional quantum walks of the form Uω1

·Sy ·Uω2
·Sx , where shifts in the

x and y direction are alternated with two random coin operations.

The obvious problems one faces in higher dimensions is that the main tool em-
ployed in the proof of dynamical localization, namely the transfer matrices, is no
longer available. A way out would be to directly prove a uniform Wegner bound
and an initial scale estimate on the level of the resolvent, using similar techniques
as in the Hamiltonian case, e.g. the geometric resolvent inequality. In this regard
it seems more difficult to show the initial scale estimate, which in our case was
based solely on the properties of transfer matrices. In addition, since the number
of time steps that can be simulated decreases in higher-dimensional models, the
numerical results as of today are rather inconclusive, neither showing complete
localization nor ballistic behaviour of the particle.

The main question in higher dimensions is whether one can engineer a situation
where the spectrum contains a pure point part as well as an absolutely continu-
ous component. The occurrence of these mobility edges is also still an open prob-
lem in the Hamiltonian case. The numerical inconclusiveness mentioned above
could be a hint of such a behaviour since a localized initial state is essentially sup-
ported on all energies, but it could also mean that the number of simulated time
steps should be increased.

• More particles QWs: Another further research direction is to study the localiza-
tion properties within a few- or even many-body scenario. As long as we con-
sider a non-interacting situation, results directly carry over from the one particle
case. It is already known that in the two particle case with on-site interactions the
formation of dynamically stable molecules is possible and that these molecules
admit again an effective description as a quantum walk [AAM+12].

It would be interesting to see if this binding phenomenon can also occur in disor-
dered systems and whether the resulting compounds are still dynamically stable.
In addition, it is not at all clear if dynamical localization survives in such an inter-
acting system or whether the particles can overcome the localization in a bound
state.

In the next step one could also allow for an infinite number of particles, which
would bring the system to the regime of quantum cellular automata. Note that for
such infinite systems only the observables contained in the quasi-local algebra
are well defined. Therefore, the concept of dynamical localization would have to
be reformulated in terms of local observables. This approach might also allow
the study of the dynamics of collective excitations as they arise, for example in
fractional quantum Hall systems [Lau83].
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A. A unitary version of the RAGE theorem

In this chapter we provide a proof of the unitary and discrete-time version of the RAGE
theorem [Gol85] described in section 2.2.1. The whole section has been taken from the
appendix of the paper [ASW11] of the author of this thesis.

The proof strategy follows along the lines of a proof for the Hamiltonian case, where
the time evolution is induced by a self-adjoint operator [Tes09, Kir08]. The proof is
almost identical to the one which appeared in [Ens83] which was also reproduced in
[HJS09]. We nevertheless included it for completeness.

The goal of this section is therefore to connect the spectral properties of a unitary
operator W on a separable Hilbert space H with the dynamical behavior of vectors of
this Hilbert space under the time evolution induced by W . In order to do so, we are
interested in the properties of the spectral measure ρ̂x ,y (t ) of the time evolution of
induced by W

ρ̂x ,y (t ) := 〈δy ⊗φ , W tδx ⊗ψ 〉=
∫

T
θ tρx ,y (dθ ) .

We begin by proving the following version of Wiener’s theorem:

Theorem A.0.1. Let µ be a complex Borel measure on the unit circle T and define

µ̂(t ) =

∫

T
θ tµ(dθ )

then the time average of µ̂(t ) has the limit

lim
T→∞

1

T +1

T∑
t=0

|µ̂(t )|2 =
∑
λ∈T
|µ({λ})|2 .

Proof. Starting from the definition of µ̂(t ), using linearity of the integral and the that
θ ∈Twe get

lim
T→∞

1

T +1

T∑
t=0

|µ̂(t )|2 =

= lim
T→∞

∫ π

−π

∫ π

−π

 
1

T +1

T∑
t=0

e i(x−y )t

!
µ(d (e x ))µ?(d (e y )) .

Since the geometric series within the parenthesis is bounded by T and converges point-
wise to the indicator functionχ{0}(x ), we can interchange the limit with the integration
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by dominated convergence and arrive at

∫ π

−π

∫ π

−π
χ{0}(x − y )µ(d (e x ))µ?(d (e y )) =

=

∫ π

−π
µ({y })µ?(d y ) =

∑

x∈[−π,π)

|µ({e x })|2 .

For a given unitary W we can decompose the Hilbert space into three orthogonal
subspacesHa c , Hs c andHp p each containing the vectorsφ for which the spectral mea-
sure ρφ is absolutely continuous, singular continuous or pure point, respectively and
these subspaces are left invariant by W . In addition define Hc =Ha c ⊕Hs c . A connec-
tion between this decomposition and the time evolution of the quantum walk is given
by the following theorem:

Theorem A.0.2. Let W be a unitary operator and G a compact operator then forψc ∈Hc

lim
T→∞

1

T +1

T∑
t=0

‖G W tψc ‖2 = 0

holds.

Proof. Choose a vector ψc ∈ Hc . Since W leaves Hc invariant we can infer from the
relation 〈φ , Wψ 〉= 〈PHc

φ , Wψ 〉 that if ρψ is continuous so is ρφ,ψ. For the compact
operator G there is a sequence of finite rank operators Gn =

∑n
k=0αk 〈φk , . 〉η converg-

ing to it. By the triangle inequality we only have to check the single rank one summands
so we end up with

lim
T→∞

1

T +1

T∑
t=0

| 〈φ , W tψc 〉|2 = lim
T→∞

1

T +1

T∑
t=0

|ρ̂φ,ψ(t )|2 = 0 ,

which follows from Wiener’s theorem.

Equipped with this result, we can prove the discrete time version of the RAGE theo-
rem:

Theorem A.0.3 (RAGE). Let W be a unitary operator and Gn a sequence of compact op-
erators converging strongly to the identity. Then we have for Hc and Hp p

Hc = {ψ ∈H ; lim
n→∞ lim

T→∞
1

T +1

T∑
t=0

‖Gn W tψ‖2 = 0}

Hp p = {ψ ∈H ; lim
n→∞sup

t≥0
‖(1−Gn )W

tψ‖2 = 0} .
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Proof. We start with the continuous case, which by theorem A.0.2 holds for everyψ ∈
Hx . Decomposing now an arbitraryφ ∈H intoψc ∈Hc andψp ∈Hp p we can infer that
we have to find a lower bound on

lim
n→∞ lim

T→∞

T∑
t=0

‖Gn W tΨp‖2+ ‖Gn W tΨc ‖2−2| 〈Gn W tΨp ,Gn W tΨc 〉| .

Since the norm of the Gn is uniformly bounded, because they converge to the identity
strongly, and by theorem A.0.2 the last two summands tend to zero. So we have to show
that ‖Gn W tψp‖ is bounded away from zero for n large enough. Instead we prove that

lim
n→∞sup

t≥0
‖(1−Gn )W

tψp‖ = 0 .

Being an element of Hp p ψp can be decomposed into eigenvectors ψk of the unitary
operator W . Inserting this decomposition forψp we can upper bound the norm by

lim
n→∞sup

t≥0

N∑
k=1

|αk e −iλk |‖(1−Gn )ψk‖+ ‖1−Gn‖
∞∑

k=N+1

|αk e −iλk |‖ψk‖ .

The first sum goes to zero by strong convergence of the Gn and the second goes to
zero if we make N large enough and using the fact that a strong convergent sequence
of operators is bounded. At the same time this proves the second claim of the RAGE
theorem forψ ∈Hp p .

If we now again decompose an arbitrary vector ψ ∈ H in its components in Hc and
Hp p as in the first case we are left to prove that supt≥0 ‖(1−Gn )W tψc ‖ stays strictly
larger than zero for all n . Assuming the contrary we find

‖W tψc ‖ ≤ lim
T→∞

1

T +1

T∑
t=0

‖(1−Gn )W
tψc ‖+ ‖Gn W tψc ‖

≤ sup
t
‖(1−Gn )W

tψc ‖ n→∞−−−→ 0 ,

by strong convergence of the {Gn}. This contradiction then concludes the proof of the
RAGE theorem.
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B. Supplement to the theory of products of
random matrices

In this appendix we provide some of the proofs omitted in chapter 3. The order follows
their occurrence in the main text.

B.1. Positivity of the Lyapunov exponent

We begin with the proof of proposition 3.2.4 for which we need the following result
on invariant measures on the projective spaces. The real case can be found in [Gui08,
Gui06]

Lemma B.1.1. Let G be a non-compact and strongly irreducible subgroup of S LT(d ),
then there is no G -invariant probability measure on PCd .

Proof. Assume that the probability measure ν on PCd is G invariant and let us choose
an unbounded sequence (gn )n ⊂ G . Setting un := gn

‖gn‖ , we find that det(un ) =
1

‖gn‖d

converges to zero. In addition, the sequence (un )n is bounded so we can pass to a con-
verging subsequence with a limit u , such that ‖u‖ = 1 and det(u ) = 0.

Denoting by X ⊂ PCd the projective subspace corresponding to the kernel of u and
by Y one corresponding to the image of u , we can decompose the measure ν into to
measuresν1,ν2 supported on X andPCd \X such thatν= ν1+ν2. Due to G -invariance
of ν, this implies the relation

ν= lim
n→∞gn ·ν= lim

n→∞ gn ·ν1+ gn ·ν2 = lim
n→∞ gn ·ν1+u ·ν2 ,

where the symbol · signifies that we consider the action of G on PCd . Note that PCd

is compact, hence we can again pass to a subsequence such that gn ·ν1 converges to
a measure ν1,l i m supported on the subspace X l i m := limn→∞ gn · X . This implies that
the measure ν is supported on the union of X l i m and Y . Let Γ be the set of subsets of
PCd , consisting of finite unions of projective subspaces, on which ν is supported. This
set contains a least element L =

⋂
M∈Γ M and by construction ν(L ) = 1. Since g ·ν = ν

by assumption, we also have g · L = L , which contradicts strong irreducibility.

We now turn to proposition 3.2.4.

Proposition B.1.2. Letµ be a probability measure on S LT(d ) such that 〈µ〉 is strongly ir-
reducible and non-compact. Denote by Tg for g ∈ S LT(d ) the operator (Tg f )(x ) = f (g −1)
and define the convolution operator Tµ on L2(Cd )

(Tµ f )(x ) :=E
�
(Tg f )(x )

�
=

∫

S LT(d )
f (g −1x )µ(dg ) ,
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then ρµ, the spectral radius of Tµ satisfies ρµ < 1.

Proof. Assume that ρµ = 1 and let z ∈T be an element ofσ(Tµ). Then either z is an el-
ement of the point spectrum of T µ and we can find a sequence ( fn )⊂L2 of normalized
functions fn such that

‖(Tµ fn )− z fN ‖ → 0 (B.1)

or the image of the operator Tµ− z1 is not dense in L2. However, the latter just means
z lies in point spectrum of the adjoined operator T ∗µ [RS80], which corresponds to a

convolution operator Tµ∗ for the measure µ∗(dg ) := µ(dg −1). Since µ and µ∗ generate
the same groups,µ is strongly irreducible and non-compact if and only ifµ∗. Hence, we
can without loss of generality assume that (B.1) holds for some normalized sequence
( fn )n . By the inverse triangle inequality we obtain

lim
n→∞‖(Tµ| fn |)− | fn |‖ ≤ lim

n→∞‖(Tµ fn )− fn‖ = 0 and lim
n→∞‖Tµ| fn |‖ = 1 ,

which in turn implies

lim
n→∞ 〈| fn | , (Tµ| fn |) 〉= lim

n→∞

∫
〈| fn | , (Tg | fn |) 〉µ(dg ) = 1 .

Since 〈| fn | , (Tg | f |) 〉 ≤ 1 there exists a set Ω0 ⊂ supp(µ) of full measure and a subse-
quence ( fn ′ )n of ( fn )n such that for all g ∈ Ω0 the expression 〈| fn ′ | , (Tg | fn ′ |) 〉 converges
to 1. Hölder’s inequality gives

‖Tg | fn |2− | fn |2‖1 ≤ 2‖Tg | fn | − | fn |‖ ,

so the two functions on the left-hand side also converge in 1-norm for all g ∈Ω0. If we
consider the probability measure | fn |2ν on Cd and its projection on PCd we see that
the expression g · | fn |2ν−| fn |2ν converges to zero for all g ∈Ω0 in variation norm. Since
PCd is compact we can find a measure η such that a subsequence of | fn |2ν converges
weakly to it. But this means that g ·η=η for g ∈Ω0 and because µ(Ω0) = 1, ηwould be
an µ invariant measure on PCd , which is impossible due to lemma B.1.1.

B.2. Contraction properties

In this chapter we show the technical propositions needed for the proof of proposition
3.2.11. The main ingredient is the lemma B.2.1 on additive cocycles, a prove of which
we can be found in [BL85, lemma II.2.1]. Since the lemma holds for right products of
elements of a semigroup we introduce the following notation for this section. If {gn , n ≥
1} is a sequence of matrices, we define their left product Sn and their right product Mn
as

Sn := gn · gn−1 · · ·g1 and Mn := g1 · g2 · · ·gn .
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Lemma B.2.1. Let G be a topological semigroup acting on a second countable locally
compact space B . Consider a sequence {Xn , n ≥ 1} of independent random elements of
G with common distributionµdefined on (Ω,A,P). Ifν is anµ-invariant distribution on
B then for almost allω there exists a probability measureνω on B such that the sequence

{X1(ω)X1(ω) . . . Xn (ω)gν , n ≥ 1}

converges weakly toνω as n→∞ for almost all g ∈G with respect toλ=
∑∞

n=0 2−(n+1)νn .
Moreover for each bounden Borel function f on B

∫
f (x ) ν(dx ) =E

�∫
f (x ) νω(dx )

�
.

The following proposition shows that we can trade left products of matrices for right
products, if we allow for a complex conjugation. More precisely, we show that strong
irreducibility and the index are conserved if we consider the measure µ∗ generated by
µ via conjugate transposition.

Proposition B.2.2. Let µ be a probability measure on GL(C, d ) such that (µ) has in-
dex p and is strongly irreducible. Denote by µ∗ the measure induced by µ via µ∗(A) =
µ({M ∗ ; M ∈ A}) for all A ⊂ GL(C, d ). The semigroup (µ∗) generated by the measure µ∗
has the same index and is also strongly irreducible.

Proof. It is clear that (µ∗) = {M ∗ ; M ∈ (µ)} and since the rank of a matrix is invariant
under the conjugate transpose both semigroups have the same index. Now assume
that (µ∗) is not strongly irreducible. Hence, there exists a set of subspaces Vi ⊂ Cd ,
whose union is (µ∗) invariant. Since g ∈ GL(C, d ) has full rank, dim Vi = dim Vj and
therefore its action on the set {Vi } is a permutation of subspaces of equal dimension.
So the invariance property holds for every dimension separately and we can choose to
study only the subsets Vi with maximal dimension. For every g we have g Vi = Vj (g ,i ),
which implies g ∗V ⊥j (i ,g ) = V ⊥i , so g ∗ permutes the orthogonal complements of Vi . But
this exactly means that the union of the orthogonal complements of the single Vi is
invariant under the action of all g ∗.

In particular, strong irreducibility implies that the invariant measure is regular on
the projective space in the following way.

Lemma B.2.3. Let µ be a strongly irreducible probability measure on GL(C, d ) then any
invariant measureµ onPCd is proper, meaning that if V is a proper subspace ofCd then
ν(V ) = 0, where V = {x ∈PCd ; x ∈V \ {0}}.
Proof. The proof follows along the lines of [BL85] for the real case. Assumeν is invariant
with respect toµ, and let l0 be the minimal dimension such that there exists a subspace
V ⊂Cd with ν(V )> 0. Set

r = sup{ν(V ) ; V ⊂Cd subspaces with dim V = l0}> 0
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B. Supplement to the theory of products of random matrices

and define B as the set of all subspaces of PCd with weight r . Then B is nonempty and
any two elements V1, V2 ∈ B are either identical or ν(V1∪V2) = 0, because dim(V1∪V2)<
l0 in that case. Therefore the measure of the union of distinct elements of B is

ν(V 1 ∪ · · · ∪V n ) = r n

so B has to be finite. By definition we have for any V ∈ B

r = ν(V ) =

∫
χV (M x ) ν(dx )µ(dM ) =

∫
ν({M −1V })µ(dM ) .

On the other hand ν(M −1V )≤ r by the definition of r so for µ almost all M ∈G Ld we
find µ(M −1V ) = r . Let Γ be the union over all V ∈ B then g Γ ⊂ Γ for all g suppµ. But
this would also imply (µ)Γ ⊂ Γ and if l0 < d then Γ is a union of proper subspaces which
contradicts strong irreducibility.

Next we turn to the proof of proposition 3.2.11. We obtain it as a corollary to the
following theorem that shows that asymptotically the rank of a right product of random
matrices agrees with its index (see thm I I I .3.1 of [BL85] for the real case).

Theorem B.2.4. Let µ be a strongly irreducible probability measure on GL(C, d ) with
index p . For almost all ω there exists a p dimensional subspace V (ω) ⊂ Cd such that
any limit point of M (ω) := { Mn (ω)

‖Mn (ω)‖ ; n ≥ 1} is a rank p matrix with range V (ω) and for

any non-zero x ∈Cd

P
�
x lies in the orthogonal complement of V (ω)

�
= 0 .

If furthermore µ is contracting, there exists a unique µ-invariant probability measure ν
on PCd and Mn (ω)ν converges weakly to a point measure δZ (ω), and Z (ω) is distributed
according to the invariant measure ν.

Proof. By lemma B.2.1 we can find for an µ-invariant distribution ν on PCd and for al-
most allω a probability measureνω such that the sequence Mn (ω)gν converges weakly
to νω for almost all g ∈ GL(C, d ) with respect to the measure λ :=

∑∞
n=0 2−(n+1)µn . We

will now show that the subspace

V (ω) := span({x ∈Cd ; x ∈ supp(νω)})
is p dimensional and equal to the range of each limit point of Mω.

If A(ω) is a limit point of M (ω) with A(ω)x 6= 0 we can find a subsequence Mn (ω)x
that converges to A(ω)x on PCd . The matrix A(ω) is not the zero matrix and therefore
its kernel is a proper subspace of PCd . Hence, as a subspace of PCd the kernel of A(ω)
has zero weight with respect to the measureν due to lemma 3.2.9, becauseµ is strongly
irreducible and ν as a µ-invariant measure therefore proper. In addition, for λ-almost
all g we have A(ω)gν = limn→∞Mn (ω)gν = νω. Since the set of matrices g , for which
this is convergence holds, is certainly closed and because the support ofλ contains the
semigroup (µ), the convergence holds for all g ∈ (µ).
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Now take any sequence (gn )n ⊂ (µ) such that gn

‖gn‖ converges to a rank p matrix h ∈ (µ).
Note that there exists at least one such sequence because we assumed thatµ and there-
fore also (µ)have index p . Since (µ) is a semigroup g gn ∈ (µ), which implies A(ω)g gnν=
νω.

Next we show that there is a g ∈ (µ) such A(ω)g gnν converges weakly to A(ω)g hν,
which just means that the set of vectors x for which A(ω)g h x = 0 has zero weight with
respect to ν. Since ν is proper, the contrary would imply that

K := {g Im(h ) ; g ∈ (µ)} ⊂Kern(A(ω)) .

However, since A(ω) is of rank at least p , K is a proper subspace, which would then be
also invariant with respect to g ∈ (µ); this contradicts strong irreducibility. Therefore
we can find g ∈ (µ) such that A(ω)g hν= νω, which means that dim V (ω)≤ p , because
V (ω) ⊂ Im(A(ω)g h ). Since A(ω) has at least rank p and A(ω)ν = νω, we even have
dim V (ω) = p and V (ω) = range(A(ω))

Denote for x ∈ Cd by H (x ) ⊂ PCd the projective image of the orthogonal comple-
ment of x . Since νω also satisfies ν=

∫
νωµ(dω) by lemma B.2.1, we obtain

P
�
x lies in the orthogonal complement of V (ω)

�
=P

�
suppνω ⊂H (x )

�

=P (νω(H (x )) = 1) = ν(H (x )) ,

which is zero, because ν is proper. If (µ) is contracting, p = 1 and therefore V (ω) is
one-dimensional and therefore corresponds to a single point Z (ω) ∈ PCd , which is in
addition distributed according to ν.

Proposition B.2.5. Let µ be a strongly irreducible probability measure on GL(C, d ) such
that (µ) has index p . Then, for any sequence (xn )n ⊂ Cd that converges to a nonzero
vector we have almost surely for the left products of random matrices Sn (ω)

sup
n≥1

‖Sn (ω)‖
‖Sn (ω)xn‖ ≤∞ .

If in addition, mi (n ) denotes the i th largest singular value of the random product Sn (ω),
then almost surely

lim
n→∞

mp+1(n )

‖Sn (ω)‖ = 0

Proof. Let us start with the second part. By complex conjugation we can turn the left
product Sn (ω) into a right product S ∗n (ω) to which by proposition B.2.2 then theorem
B.2.1 applies. Therefore, we know almost surely the range of each limit point M (ω) of

{ S ∗n (ω)
‖S ∗n (ω)‖ ; n ∈N} is given by a p dimensional subspace V (ω). Since ‖Sn (ω)‖ is given by the

largest singular value m1(n ), the polar decomposition of an element of this set can be
written as

S ∗n (ω)
‖S ∗n (ω)‖

= Kn




1 0 . . .

0 m2(n )
m1(n )

...

0 0 m3(n )
m1(n )

...

0 0 0
...




Un .
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Since with probability one any limit point Mn (ω) is a p dimensional matrix, exactly
p singular values of Mn (ω) are non-zero, which is then also true for the left products
Sn (ω). In order to show the first part of the proposition we use the polar decomposition
of Kn ·An ·Un of Sn (ω) and obtain

‖Sn (ω)xn‖2

‖Sn (ω)‖2 =
‖AnUn xn‖2

‖An‖2 =
d∑

i=1

mi (n )

m1(n )
| 〈xn ,U ∗

n ei 〉|2 ≥
p∑

i=1

mi (n )

m1(n )
| 〈xn ,U ∗

n ei 〉|2 .

Denoting by x the non-zero limit of (xn )n and writing XV (ω) for the orthogonal projec-
tion of x onto V (ω)we obtain

lim inf
n→∞

‖Sn (ω)xn‖2

‖Sn (ω)‖2 ≥
�

inf
n
(
mp (n )

m1(n )

�
‖XV (ω)‖ .

The first factor on the right-hand side is nonzero, because Sn (ω) is at least a rank p ma-
trix and the second factor vanishes if x is orthogonal to V (ω), but by theorem B.2.4 this
happens with probability 0.

B.3. Theorem of Fürstenberg and Kesten for normalized
endomorphisms

In this section we prove an addition to the Fürstenberg and Kesten theorem. To this
end, we define K1 and K2 as the spaces of endomorphism onCd or∧2Cd with operator
norm one. As described in section 3.1 there is a natural way in which GL(C, d ) acts on
PCd . In a similar way we can make K1 and K2 into a GL(C, d ) space, if we define the
operation · in each case

g ·A :=
g A

‖g A‖ respectively (∧2g ) ·B :=
(∧2g ) B
‖(∧2g ) B‖

for all g ∈GL(C, d ), A ∈ K1 and K ∈ K2.

Lemma B.3.1. Let µ be a probability measure on GL(C, d )with log+ ‖gω1
‖ ∈ L1(µ) then

there exist µ-invariant measures ν1 and ν2 on K1 and K2 such that µ×νi -almost surely
for A ∈ K1 and B ∈ K2

lim
n→∞

1

n
log‖Sn (ω) ·A‖ = γ1 and lim

n→∞
1

n
log‖(∧2Sn (ω))B‖ = γ1+γ2 .

Proof. We treat both cases in parallel as much as this is possible, which means in par-
ticular that if we write σi (g , A) we take A ∈ Ki . First, fix k ∈ N then we can find for
any integer n two integers q and 0 ≤ s < k such that n =mq + s and we decompose a
product of random matrices as

1

n
log‖∧i Sn (ω)‖ ≤

1

n

n∑
l=q m

log‖∧i gωl
‖+ 1

n

p−1∑
l=0

log‖∧i (gω(l+1)m
· · ·gωl m+1

)‖ .

202



B.3. Theorem of Fürstenberg and Kesten for normalized endomorphisms

From the law of large numbers, we directly find the two relations

lim sup
n→∞

1

n
log‖∧i Sn (ω)‖ ≤

1

m
E
�
log‖∧i Sm (ω)‖

�
(B.2)

lim sup
n→∞

1

n
log‖∧i Sn (ω)‖ ≤ lim

m→∞
1

m
E
�
log‖∧i Sm (ω)‖

�
= γ1+δi ,2γ2 .

Given two invariant measuresνi , we can define a random dynamical system according
to (3.13), with the µ×ν invariant shift transformation eτ defined by

τ̃((gωn
)n , A)→ ((gτωn

)n , gω1
A) = ((gωn+1

)n , gω1
A) .

With these definitions we find that the functionsσ1 andσ2 given by

σ1(g , A) := log‖g A‖ and σ2(g , B ) := log‖(∧2g )B‖
become additive cocycles. Due to the relations σ+i (g , A) ≤ log+ ‖g ‖i , and the assump-
tion E

�
log+ ‖g ‖� <∞, we know that both cocycles are µ-integrable. Hence, the inte-

gral
∫
σ+i (g , A)µ(dg ) results in a bounded continuous function on Ki . In addition, both

σi (g , A) satisfy the assumptions of lemma 3.2.6. Therefore, we know that the sequences
1
nσi (Sn (ω), A) convergesµ×ν almost surely, to aL1(µ×ν) random variableÒσi ((gωn

)n , A).
From lemma 3.2.8 we know that any limit point of the sequence νn =

1
n

∑n
k=1µ

n ∗δId,
where δId is the point measure at the identity map in Ki , is invariant with respect to µ.
We choose one such limit point ν and obtain

∫
σi (g , A)µ(dg )νn (dA) =

1

n

∞∑
n=1

∫
σi (g , A)µ(dg )(µ ∗δId)(dA)

=
1

n

n∑
i=1

E
�
σi (gωn+1

,Sn (ω) · Id)
�

=
1

n
E (σi (Sn (ω), Id))

=
1

n
E
�
log‖∧i Sn (ω)‖

�
.

Hence, according to lemma 3.1.6, we find that for any convergent subsequence of νnl

lim
l→∞

∫
σi (g , A)µ(g )νnl

(dA) = lim
l→∞

1

n
E
�
log‖∧i Sn+1(ω)‖

�
= γ1+δi 2γ2 .

By Fatou’s lemma, we also have

lim sup
l→∞

∫
σi (g , A)µ(g )νnl

(dA)≤
∫
σi (g , A)µ(g )ν(dA) ,

which with lemma 3.2.6 implies for the expectation value of the limiting random vari-
able Òσi ((gωn

)n , A)

E
�Òσi ((gωn

)n , A)
�
=

∫
σi (g , A)µ(g )ν(dA)≥ γ1+δi 2γ2 .
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In addition, we have due to (B.2) that almost everywhere

Òσi ((gωn
)n , A)≤ lim inf

n→
1

n
log‖∧i Sn (ω)‖ ≤ γ1+δi ,2γ2 .

Thus we found that on the one hand, the expectation value of Òσi ((gωn
)n , A) is larger or

equal than γ1 +δi ,2γ2, but on the other Òσi ((gωn
)n , A) is almost surely smaller or equal

to it. Hence, Òσi ((gωn
)n , A) has to be µ∞×ν almost everywhere equal to γ1+δi ,2γ2.

B.4. The space of Hölder continuous functions

In this section we prove some of the more technical results about the Banach space of
Hölder continuous functions. We require the following general result on semigroups
and cocycles, which is proven in [BL85, lemma V.2.3].

Lemma B.4.1. Let T be a topological semigroup acting on a set B andσ be an additive
cocycle on T ×B and let µ be a probability measure on T such that

(i) for r (g ) = supx∈B |σ(g , x )| there exists τ> 0 such thatE
�
e τr (g )

�
<∞

(ii) for some positive integer p , supx∈B

∫
σ(g , x )µn (dg )<∞.

Then, there exists α> 0 such that

lim
n→∞

1

n
log

�
sup
x∈B

∫
e ασ(g ,x ) µn (dg )

�
< 1 .

The large deviation estimates, we are going to prove in the next section, rely on the
following result by Le Page [LP82].

Proposition B.4.2. Let µ be a strongly irreducible probability measure on GL(C, d ) such
that (µ) is contractive and F ∈L1(µ) then

(i) For any x , y ∈PCd a.s.

lim
n→∞

1

n
log
δ(Sn (ω)x ,Sn (ω)y )

δ(x , y )
< 0

(ii) If we take the expectation value with respect to µn

lim sup
n→∞

sup
x ,y

1

n
E

�
log
δ(Sn (ω)x ,Sn (ω)y )

δ(x , y )

�
< 0

Proof. By the definition of the metric δ in (3.10) we have

δ(Sn (ω)x ,Sn (ω)y )
δ(x , y )

≤ ‖Sn (ω)x ∧Sn (ω)y ‖ ‖x‖‖y ‖
‖x ∧ y ‖ ‖Sn (ω)x‖ ‖Sn (ω)y ‖ ≤ ‖∧

2 Sn‖
‖x‖‖y ‖

‖Sn (ω)x‖‖Sn (ω)y ‖ .
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Lemma 3.1.6 about the Lyapunov spectrum tells us that the almost surely the limit of
1
n log‖∧2 Sn (ω)‖ is the sum of the upper two Lyapunov exponents γ1 and γ2. In addition

the almost sure limit of the sequence 1
n log‖Sn (ω)x‖ is γ1 by (3.17). This amounts to

lim
n→∞

1

n

δ(Sn (ω)x ,Sn (ω)y )
δ(x , y )

≤ γ1+γ2−2γ1 = γ2−γ1 ,

which is strictly negative by lemma 3.2.13. Using the same upper bound for the metric
δ as before we find in the second case

lim sup
n→∞

sup
x ,y

1

n
E

�
δ(Sn (ω)x ,Sn (ω)y )

δ(x , y )

�

≤ lim
n→∞

1

n
E
�
log‖∧2 Sn‖

�−2 lim
n→∞sup

x
E

�
1

n
log
‖Sn (ω)x‖
‖x‖

�
.

The first term converges again to the sum of the first two Lyapunov exponents. Due to
the integrability condition lemma 3.2.12 implies that the expectation value in the sec-
ond term converges uniformly to twice the upper Lyapunov exponent, which finishes
the proof if we use lemma 3.2.13 again.

Proposition B.4.3. Let µ be a strongly irreducible and contracting probability measure
on GL(C, d ), such that for some τ> 0 the function exp(τF (g )) is µ-integrable, then there
is α0 > 0 such that for all 0<α≤α0

lim
n→∞

 
sup

x 6=y ∈PCd

∫
δ(Sn (ω)x ,Sn (ω)y )α

δ(x , y )α
µn (dg )

! 1
n

< 1 . (B.3)

This implies in particular that there exit constants 0<ρ < 1 and C > 0 such that

sup
x 6=y ∈PCd

∫
δ(Sn (ω)x ,Sn (ω)y )α

δ(x , y )α
µn (dg )≤Cρn

Proof. Looking at the content of lemma B.4.1, we see that we are finished once we can
identify a cocycle that satisfies the assumptions of the lemma. We can make the set
B = {(x , y ) ; x , yPCd x 6= PCd y } into a GL(C, d ) space by defining its action on B via
M (x , y ) := (M x , M y ). With this definition becomes the mappingσ given by

σ(M , (x , y )) := log
δ(M x , M y )
δ(x , y )

a cocycle on GL(C, d )×B . Inserting the definition of the metric δ from (3.10) and with
the use of lemma 3.2.14 we find

sup
x 6=y
σ(M , (x , y )) = sup

x 6=y
log

�‖M x ∧M y ‖
‖x ∧ y ‖

‖M x‖‖M y ‖
‖x‖‖y ‖

�
≤ 4F (M ) .
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Since we assumed that µ has an exponential moment τ, this implies assumption (i ) of
lemma B.4.1. To obtain assumption (i i ) we note that due to part (i i ) of lemma B.4.2
there exists an n > 0 such that

sup
x 6=y

∫
σ(g , (x , y ))µn (dg ) = sup

x 6=y
E

�
log

�
δ(Sn (ω)x ,Sn (ω)y )

δ(x , y )

��
< 0 .

Thus, all assumptions of lemma B.4.1 are met, which implies (B.3). This means, that we

have a sequence (an )n such that (a
1
n

n )n converges to some limit smallerα than 1 picking

ε such that α+ ε < 1 we can find n0 such that for all n ≥ n0 the relation a
1
n

n < α+ ε < 1
holds, which proves the second part of the proposition.

Lemma B.4.4. Let µ be a probability measure on GL(C, d ) such that for some τ > 0
the function expτF (g ) is integrable. Then for any 0 < α < τ

2 there is a η > 0 such that
{Rµ(z ), |z |<η}, constitutes an analytic family of bounded operators on Lα.

In the proof of the lemma we rely on the following two estimates:

Lemma B.4.5. Let z ∈C and 0 < α ≤ 1, then there exist finite constants C1, C2 > 0 such
that for all M ∈GL(C, d )

(i) sup
x ,y

|e z log‖M x‖ − e z log‖M y ‖ |
δ(x , y )α

≤C1e ((1+α)|ℜz |+2α)F (M )

(ii) sup
x ,y

| log‖M x‖ − log‖M y ‖|
δ(x , y )α

≤C2F (M )e 2αF (M ) ,

Proof. We begin with point (i ). Assuming without loss of generality ‖M x‖ ≤ ‖M y ‖ and
using the mean value theorem for the function x z we find

|e z log‖M x‖ − e z log‖M y ‖ | ≤ |z |
�

sup
‖M x‖≤c≤‖M y ‖

cℜz−1

�
|‖M x‖ −‖M y ‖| .

Depending on whether the real part ℜz is positive or negative, the supremum over c
is upper bounded by ‖M x‖−1‖M y ‖ℜz or ‖M x‖ℜz−1, which, using the relation |M x | ≥
‖M −1‖ for ‖x‖ = 1 vectors, is in either case upper bounded by e (1+|ℜz |)F (M ). Bringing
everything together, we find

|e z log‖M x‖ − e z log‖M y ‖ |
δ(x , y )

≤
�
|z |sup

x ,y

‖x − y ‖
δ(x , y )

�
e (2+|ℜz |)F ≤ 2

p
2|z |e (2+|ℜz |)F =: A ,

where we used the relation ‖x − y ‖ ≤p2δ(x , y ) from (3.11) in the last step. In addition,
we have the trivial bound

|e z log‖M x‖ − e z log‖M y ‖ | ≤ 2 sup
‖x‖=1

|e z log‖M x‖ |=: B .
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Therefore, for Aδ(x , y )≤ 1, we obtain

|e z log‖M x‖ − e z log‖M y ‖ | ≤ Aδ(x , y )≤ Aαδ(x , y )α .

For the case Aδ(x , y )≥ 1 we find

|e z log‖M x‖ − e z log‖M y ‖ | ≤ B ≤ B Aαδ(x , y )α ,

which in total gives the bound of the theorem. The second bound is proven analogously
after noting that by using the mean value theorem again

| log‖M x‖ − log‖M y ‖| ≤
�

sup
‖M x‖≤c≤‖M y ‖

c −1

�
‖M ‖‖x − y ‖ ≤ e 2F (M )‖x − y ‖

for ‖M x‖ ≤ ‖M y ‖ and x normalized.

Proof of lemma 3.3.6. We first show that Rµ(z ) for |z | small enough is a bounded oper-
ator Lα. First note that for f ∈Lα and x normalized, we find

|(Rµ(z ) f )(x )|= |
∫

e z log‖g x‖ f (g x )µ(dg )| ≤ ‖ f ‖∞
∫

e |ℜz |F (g ) µ(dg )

The integral can be bounded by some constant A1 as long as τ > |ℜz |. For the second
term of ‖ · ‖α we find with the help of lemma B.4.5 the upper bound

|(Rµ(z ) f )(x )− (Rµ(z ) f )(y )|
δ(x , y )α

≤
∫ ���e z log‖g x‖

��� | f (g x )− f (g y )|
δ(x , y )α

µ(dg ) (B.4)

+

∫ �� f (g y )
�� |e z log‖g x‖ − e z log‖g y ‖ |

δ(x , y )α
µ(dg )

≤mα( f )E
�
e |ℜz |F (g )�+C1‖ f ‖∞E

�
e ((1+α)|ℜz |+2α)F (g )

�

≤ A2(mα( f ) + ‖ f ‖∞) ,

as long as (1+α)|ℜz |+ 2α ≤ τ, which implies that for |ℜz | ≤ τ−2α
1+α the operator Rµ(z )

is indeed bounded. To prove analyticity we have to show that the operator Rµ can be
represented as a power series of bounded operators. To this end we define

(Rµ,n (z ) f )(x ) :=

∫
logn ‖g x‖ f (g x )µ(dg ) .

By a telescope sum construction, we can use part (i i ) of lemma B.4.5 in order to obtain
the bound

| logn ‖g x‖ − logn ‖g y ‖|
δ(x , y )α

≤ | log‖g x‖ − log‖g y ‖|
δ(x , y )α

n−1∑
l=0

| log‖g x‖|l | log‖g y ‖|n−1−l

≤C2(F (g ))n+1e 2αF (g ) .
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This allows us to bound mα(()Rµ,n (z ) f ) in a similar way as in (B.4)

|(Rµ,n (z ) f )(x )− (Rµ,n (z ) f )(y )|
δ(x , y )α

≤
∫ ��logn ‖g x‖�� | f (g x )− f (g y )|

δ(x , y )α
µ(dg )

+

∫ �� f (g y )
�� | logn ‖g x‖ − logn ‖g y ‖|

δ(x , y )α
µ(dg )

≤mα( f )

∫ ��logn ‖g x‖�� µ(dg ) + ‖ f ‖∞C2E
�
(F (g ))n+1e 2αF (g )

�
.

In addition, we have for the uniform norm

‖Rµ,n (z ) f ‖∞ ≤ ‖ f ‖∞ sup
x

∫
| logn ‖g x‖|µ(dg )≤ ‖ f ‖∞

∫
(F (g ))nµ(dg ) .

Bringing everything together, we find that the operator norm of Rµ,n (z ) is bounded by

‖Rµ,n (z )‖B(Lα) ≤ nC2E
�
(F (g ))n+1e 2αF (g )

�
+2E

�
(F (g ))n

�
,

which implies the following bound on the corresponding power series of Rµ(z )

‖Rµ(z )‖B(Lα) ≤
∑

n

|z |n
n !
‖Rµ,n (z )‖B(Lα) ≤C2E

�
|z |F (g )e (2α+|z |)F (g )

�
+2E

�
e |z |F (g )

�
,

which is finite for |z |+2α≤τ. Therefore {Rµ(z ) ; |z |<ζ} is a family of analytic operators
on Lα for α< τ

2 and ζ<τ−2α.

B.5. Regularity properties of the invariant measure

In this section we derive the following regularity property of the invariant measure
that is used in the proof of lemma 3.3.11. We first state the proposition, but we need
some additional results on the asymptotic behaviour of the Iwasawa-decomposition of
a product of random matrices in order to prove it.

Proposition B.5.1. Let µ be a strongly irreducible and contracting probability measure
on GL(C, d ) with an exponential moment τ > 0 and denote by ν its unique invariant
measure. Then there exists α> 0 such that

sup
‖y ‖=1

∫ ‖x‖α
| 〈x , y 〉|α ν(dx )<∞ .

First, we introduce the Iwasawa-decomposition of a matrix.

Lemma B.5.2 (Iwasawa-decomposition). Let M ∈ GL(C, d ) then there exists a unique
pair of a unitary matrix U (M ) and a lower triangular matrix s (M )with positive diago-
nal, such that

M = s (M ) ·U (M ) .
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The form of the decomposition as well as its uniqueness can be obtained by a Gram-
Schmidt iteration on the vectors M ∗e1, . . . , M ∗en [AM07].

Lemma B.5.3. Letµ be a non-compact and strongly-irreducible probability distribution
on GL(C, d ) and denote by Mn (ω)= s (Mn (ω))U (Mn (ω)) the Iwasawa-decomposition of the
right product Mn (ω), then almost surely

lim
n→∞

s (Mn (ω))e1

〈s (M)(ω)ne1 , e1 〉 =
Z

〈Z , e1 〉 ,

where Z ∈ Cd is chosen arbitrarily from the subspace λZ , λ ∈ C and Z ∈ PCd is dis-
tributed according to the invariant measure ν on PCd .

Proof. Since s (Mn (ω)) is a lower triangular matrix, we obtain the relation s ∗(Mn (ω))e1 =
〈s (Mn (ω))e1 , e1 〉e1, which in turn implies | 〈s (Mn (ω))e1 , e1 〉|= ‖s ∗(Mn (ω))e1‖ = ‖M ∗

n (ω)e1‖
and

Mn (ω)M
∗
n (ω)e1

‖M ∗
n (ω)e1‖2 =

s (Mn (ω))e1

〈s (Mn (ω))e1 , e1 〉 .

Let us consider the singular value decomposition Mn (ω)= K (n )A(n )V (n )with K , V uni-
tary and A being a diagonal matrix composed of the singular values mi (n ) in decreasing
order. Since theµ is contracting proposition 3.2.11 and theorem B.2.4 imply that almost
surely lim m−1

1 (n )ml (n ) = 0 for all l ≥ 2 and that U ∗(n )e 1 converges almost surely to a
vector Z ∈PCd . From the singular value decomposition we also obtain for an arbitrary
x ∈Cd arbitrary 〈Mn (ω)M

∗
n (ω)1 , x 〉= lim m1(n )

2 〈K (n )e1 , e1 〉 〈e1 , Kn y 〉+o (m−1
1 (n )ml (n )),

which already implies

lim
n→∞

〈s (Mn (ω))e1 , x 〉
〈s (Mn (ω))e1 , e1 〉 = lim

n→∞
〈K ∗(n )e1 , x 〉
〈K ∗(n )e1 , e1 〉 =

〈Z , y 〉
〈z , e1 〉 .

Proof of proposition B.5.1. We first set y = e1 in equation B.5.1. Since the vector Z in
lemma B.5.3 is distributed according to the invariant measure, we find

∫ ‖Z ‖α
| 〈Z , e1 〉|α ν(dZ ) = lim

n→∞E
� ‖s (Mn (ω))e1‖α
| 〈s (Mn (ω))e1 , e1 〉|α

�
. (B.5)

Therefore, we have to show that the expectation value on the right-hand side is finite.
To simplify the argument let us introduce the following abbreviations

Γ (M ) :=
s (M )

〈s (M )e1 , e1 〉 and η(M ) := Γ (M )e1− e1 . (B.6)

So, we are interested in the quantity ‖Γ (Mn (ω))e1‖. Let us consider the Iwasawa decom-
position of a product AB of two matrices A and B . Depending, whether we decompose
the whole product at once or first the matrix A and then the rest, we find

AB = s (A)s (U (A)B )U (U (A)B ) = s (AB )U (AB ) .
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Uniqueness of the decomposition implies the relation s (AB ) = s (A)s (U (A)B ) and since
s (m ) is triangular, we even find 〈S (AB )e1 , e1 〉= 〈S (A)e1 , e1 〉 〈s (U (A)B )e1 , e1 〉. Inserting
this into the definition of η(M ) from (B.6) we find

η(AB ) =η(A) + Γ (M )η(U (A)B ) .

Iterating this equation for a right product Mn (ω) of matrices, we obtain

‖Γ (Mn (ω))e1‖ = ‖e1+η(Mn (ω))‖ ≤ ‖Γ (gω1
)e1‖+

∞∑
k=1

‖Γ (Mk (ω))η(U (Mk (ω))gωk+1
)‖ .

By construction, η(M ) is orthogonal to e1 and therefore we can upper bound the sum-
mands in this equation by the following two relations using the function F defined in
(3.22)

‖η(M )‖ ≤ e 2F (M ) and sup
y⊥e1

�‖s (M )y ‖
‖y ‖

�
≤ ‖Λ

2M ∗‖
‖M ∗e1‖ .

Inserting those bounds, using the Hölder-inequality and the i .i .d assumption for the
random matrices Sk (ω), we obtain in (B.5) the upper bound

∫ ‖Z ‖α
| 〈Z , e1 〉|α ν(dZ )≤

∞∑
k=0

�
E

�‖Λ2M ∗
k (ω)‖2α

‖M ∗
k (ω)e1‖4α

�
E
�
e 4αF (gωk

)
�� 1

2

(B.7)

=E
�
e 4αF (gω1 )

� 1
2
∞∑

k=0

E

�‖Λ2M ∗
k (ω)‖2α

‖M ∗
k (ω)e1‖4α

� 1
2

.

The first expectation value on the right-hand side is finite for 4α < τ, because we as-
sumed that ν has an exponential moment. In order to bound the series, we want to
employ lemma B.4.1 in order to show that each summand satisfies an upper bound of
the form Cβn with C positive and 0<ρ < 1 in which case the corresponding geometric
series is finite. To this end consider the following cocycle on GL(C, d )× �PCd ×PΛ2Cd

�

σ(M , (x , y )) :=
‖Λ2M y ‖‖x‖2

‖y ‖‖M x‖2 ,

where M GL(C, d ), xCd and y ∈Λ2Cd . Using lemma 3.2.14, we obtain

sup
x ,y
|σ(M , (x , y ))| ≤ sup

x ,y
| log
‖M x‖
‖x‖ |+ | log

‖Λ2M y ‖
‖y ‖ | ≤ 3F (M ) .

Therefore, e
τ
3 supx ,y |σ(M ,(x ,y ))|. is integrable, because µ possess an exponential moment

τ. In addition, we find for a right product Mn (ω) the relation

sup
x ,y

E
�
σ(M ∗

n (ω), (x , y ))
�≤E �log‖Λ2M ∗

n (ω)‖
�−2 infE

�
log
‖M ∗

n (ω)x‖
‖x‖

�
.
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B.5. Regularity properties of the invariant measure

According to lemma 3.2.12 the last term becomes close to nγ1 and the first term con-
verges to n (γ1 + γ2) since γ1 > γ2 by lemma 3.2.13, we can find n large enough, such
that the expression becomes negative. Thus are all assumptions of lemma B.4.1 met,
which implies that we can indeed find forα> 0 small enough some C > 0 and 0<ρ < 1
such that

E

�‖Λ2M ∗
k (ω)‖2α

‖M ∗
k (ω)e1‖4α

�
≤Cρk .

After evaluating the corresponding geometric series in (B.7) we therefore obtain the
finite upper bound

∫ ‖Z ‖α
| 〈Z , e1 〉|α ν(dZ )≤ C

1
2

1−ρ 1
2

E
�
e 4αF (gω1 )

� 1
2 .

To extend this result from e1 to general vectors normalized vectors y , we choose some
unitary matrix K such that K e1 = y . The transformation gωk

7→ K ∗gωk
K on the level of

the random matrices, induces a transformation Mk (ω) 7→ K ∗Mk (ω)K on the level of the
products and Z has to be replaced by K ∗Z . All the bounds are still valid in this situation
and we obtain

∫ ‖Z ‖α
| 〈Z , k 〉|α ν(dZ ) =

∫ ‖K ∗Z ‖α
| 〈K ∗Z , e1 〉|α ν(dZ )≤ C

1
2

1−ρ 1
2

E
�
e 4αF (K ∗gω1 K )

� 1
2 .

This finishes the proof, because F is unchanged under unitary conjugations of its ar-
gument.
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C. Supplement to the Wegner estimate

In this appendix we provide proofs on two general results needed in the proof of the
Wegner estimate in section 6.3.

C.1. Proof of proposition 5.7.12

From the first order Taylor expansion of exp(x ) and the mean value form of the remain-
der one can derive the inequality

exp(x )≤ 1+ x + x 2 exp(| log x |) ,

which implies for x = log(a−δ)

a−δ ≤ 1−δ log x +δ2| log x |2e δ| log x | .

In the following we are going to use a slightly strengthened version of this inequality,
which is given by

a−δ ≤ 1−δ log x +δ2| log(x 2)|e δ| log x | . (C.1)

Note that neither of the right-hand sides can be bounded by the other one. The second
version can be obtained via a case distinction. One case is given when the right-hand
side of the last equation is lower bounded by the right-hand side of the first inequality.
In the remaining case one can lower bound the right-hand side by the expression−δ+
e δ| log x |, which can be shown to satisfy the relation.

Let us now fix some normalized φ ∈ C2 and Θ ∈ I . Inserting the logarithm of the
argument of the expectation value of interest into (C.1) we find

‖Tn (Θ) · . . . ·T1(Θ)φ‖δ ≤ 1−δ log‖Tn (Θ) · . . . ·T1(Θ)φ‖
+2δ2| log‖Tn (Θ) · . . . ·T1(Θ)φ‖|e δ| log‖Tn (Θ)·...·T1(Θ)φ‖| . (C.2)

Since the norm of transfer matrices is lower bounded by one and equal to the norm of
its inverse, the norm of their product satisfies

| log‖Tn (Θ) · . . . ·T1(Θ)φ‖| ≤
n∑

i=1

log‖Ti (Θ)‖ .

Inserting this into (C.2), taking the expectation value and once using Hölder’s inequal-
ity as well as the independence of different transfer matrices yields

E
�
‖Tn (Θ) · . . . ·T1(Θ)φ‖δ

�
≤ 1−δE �log‖Tn (Θ) · . . . ·T1(Θ)φ‖

�

+2δ2nE
�
(log‖T1(Θ)‖)2

�1/2
E
�‖T1(Θ)‖2

�n/2
.
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C. Supplement to the Wegner estimate

The integrability condition on µ ensures that the expectation values in the third sum-
mand are finite if we choose 2δ≤ ζ.

By proposition 5.7.14 we know that the Lyapunov exponent γ(Θ) is continuous with
respect to Θ and that the sequence n−1E

�
log‖Tn (Θ) · . . . ·T1(Θ)φ‖

�
converges to the γ(Θ)

uniformly in the arguments φ and γ. Set γ = infΘ∈I γ(Θ). Then we can find n0 ∈N and
δ > 0 such that

E
�
‖Tn (Θ) · . . . ·T1(Θ)φ‖δ

�
≤ 1−δn (

1

2
γ−δC1C n

2 )≤ 1− ε

for some ε > 0, where the constants C1 and C2 are given by the supremum over the in-
terval I . This gives us the starting point for the chaining argument. We can decompose
a given n ∈N as n = k n0 + r with 0 ≤ n0 − 1. Using the inequality ‖AB‖−1 ≤ ‖A−1‖ we
get

E
�
‖Tn (Θ) · . . . ·T1(Θ)φ‖δ

�
≤E

�
‖T1(Θ)‖δ

�n0 ·

E

�
‖Tn (Θ) · . . . ·Tn0+1(Θ)

Tn0
(Θ) · . . . ·T1(Θ)φ

‖Tn0
(Θ) · . . . ·T1(Θ)φ‖−δ

‖‖Tn0
(Θ) · . . . ·T1(Θ)φ‖−δ

�

≤ eC (1− ε) sup
‖φ‖=1

E
�‖Tn (Θ) · . . . ·Tn0+1(Θ)φ‖

�
,

where the constant eC is given by the supremum of the expectation value of ‖T1(Θ)‖ζ/2
over allΘ ∈ I to the power of n0. Iterating this decomposition gives the desired estimate

E
�
‖Tn (Θ) · . . . ·T1(Θ)φ‖δ

�
≤C (1− ε)n ≤ e −αn ,

for some α> 0 and n larger then some nmi n .

C.2. A variant of Temple’s inequality

This version of temple’s inequality is used in the proof of lemma 6.2.2 in section 6.2. The
self-adjoint case appeared in [ST85], but we include the short proof for completeness.

Lemma C.2.1. Let U by a unitary matrix, {Φl } a set of k orthonormal vectors and θ0 ∈T
such that

1. ‖(U −θ0)φl ‖ ≤ ε
2. 〈φl ,Uφl ′ ,= 〉0, ∀l 6= l ′

Then U has at least k eigenvalues within the interval I (θ0,ε).

Proof. Define V = span(Φl ). Then using 1. and 2. we have for everyψ ∈V

‖(U −θ0)ψ‖2 =
∑

l

‖(U −θ0)Φl ‖2| 〈Φl ,ψ 〉|2 ≤ ε2‖ψ‖ .

Now assumingU has only k−1 eigenvalues within the interval I (θ0,ε)we could findψ ∈
V which is orthogonal to the combined eigenspace of the interval I (θ0,ε). Therefore
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C.2. A variant of Temple’s inequality

we can decompose ψ into a sum of eigenvectors bΦl with corresponding eigenvalues
outside I (θ0,ε), which yields the desired contradiction

‖(U −Θ0)ψ‖2 =
∑

l

‖(U −θ0)bΦl ‖2| 〈bΦl ,ψ 〉|2 > ε2‖ψ‖ .

Corollary C.2.2. Let U by a unitary matrix, {Φl } a set of k orthonormal vectors and
θl ∈ I (θ0,ε) for some θ0 ∈T such that

1. ‖(U −θl )φl ‖ ≤ ε
2. 〈φl ,Uφl ′ ,= 〉0, ∀l 6= l ′

Then U has at least k eigenvalues within the interval I (θ0, 2ε).

Proof. Because ‖(U −Θ0)φl ‖ ≤ ‖(U −Θl )φl ‖+‖(Θl −Θ0)φl ‖ ≤ 2ε holds, all assumptions
of lemma C.2.1 are fulfilled with 2ε.
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[Kur08] P. Kurzyński. Relativistic effects in quantum walks: Klein’s paradox and
Zitterbewegung. Phys Lett A, 372(40):6125–6129, 2008.

[Las95] Y. Last. Quantum dynamics and decompositions of singular continuous
spectra. J. Funct. Anal, 142(2):406–445, 1995.

[Lau83] R. B. Laughlin. Anomalous quantum hall effect: An incompressible quan-
tum fluid with fractionally charged excitations. Phys. Rev. Lett., 50:1395–
1398, 1983.

[Lax02] P. Lax. Functional analysis. Pure and applied mathematics. Wiley, New
York, 2002.

[LCE+10] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon. Universal
quantum computation using the discrete-time quantum walk. Phys Rev
A, 81(4):042330, 2010.

[LKBK10] G. Leung, P. Knott, J. Bailey, and V. Kendon. Coined quantum walks on
percolation graphs. New J Phys, 12(12):123018, 2010.

[LP82] E. Le Page. Theoremes limites pour les produits de matrices aleatoires. In
H. Heyer, editor, Probability Measures on Groups, volume 928 of Lecture
Notes in Mathematics, pages 258–303. Springer, Berlin Heidelberg, 1982.

[LP11] C. Liu and N. Petulante. Asymptotic evolution of quantum walks on the
n-cycle subject to decoherence on both the coin and position degrees of
freedom. Phys Rev A, 84(1):012317, 2011.

[LR72] E. Lieb and D. Robinson. The finite group velocity of quantum spin sys-
tems. Comm. Math. Phys., 28:251–257, 1972.

[LS91] K. Lange and E. Sobel. A random walk method for computing genetic loca-
tion scores. American journal of human genetics, 49(6):1320–1334, 1991.

230



Bibliography

[LS09] N. Linden and J. Sharam. Inhomogeneous quantum walks. Phys. Rev. A,
80(5):052327, 2009.

[Mac95] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Uni-
versity Press, Oxford, 1995.

[Man91] R. N. Mantegna. Lévy walks and enhanced diffusion in milan stock ex-
change. Physica A: Statistical Mechanics and its Applications, 179(2):232 –
242, 1991.

[MBSS02] T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders. Quantum
walks in higher dimensions. J Phys A, 35(12):2745, 2002.

[MK82] F. Martinelli and W. Kirsch. On the ergodic properties of the spectrum of
general random operators. Journal für die reine und angewandte Mathe-
matik, 1982(334):141–156, 1982.

[MK10] T. Machida and N. Konno. Limit theorem for a time-dependent coined
quantum walk on the line. In F. Peper, H. Umeo, N. Matsui, and T. Isokawa,
editors, Natural Computing, volume 2 of Proceedings in Information and
Communications Technology, pages 226–235. Springer Japan, 2010.

[MN07] F. Magniez and A. Nayak. Quantum complexity of testing group commu-
tativity. Algorithmica, 48(3):221–232, 2007.

[MNRS09] F. Magniez, A. Nayak, P. Richter, and M. Santha. On the hitting times of
quantum versus random walks. In Proc. SODA ’09, pages 1–17, Philadel-
phia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

[MNRS11] F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk.
Siam J Comput, 40(1):142–164, 2011.

[MPA10] F. Marquezino, R. Portugal, and G. Abal. Mixing times in quantum walks
on two-dimensional grids. Phys Rev A, 82(4):042341, 2010.

[MPAD08] F. Marquezino, R. Portugal, G. Abal, and R. Donangelo. Mixing times in
quantum walks on the hypercube. Phys Rev A, 77(4):042312, 2008.

[MS87] F. Martinelli and E. Scoppola. Introduction to the mathematical theory
of anderson localization. La Rivista Del Nuovo Cimento Series 3, 10:1–90,
1987.

[NC10] M. Nielsen and I. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge, 2010.

[NV00] A. Nayak and A. Vishwanath. Quantum walk on the line. 2000,
arXiv:quant-ph/0010117.

[OK11] H. Obuse and N. Kawakami. Topological phases and delocalization of
quantum walks in random environments. Phys. Rev. B, 84:195139, 2011.

231



Bibliography

[Pau02] V. Paulsen. Completely Bounded Maps and Operator Algebras. Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 2002.

[Pet90] K. E. Petersen. Ergodic Theory. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, Cambridge, 1990.

[PF92] L. Pastur and A. Figotin. Spectra of Random and Almost-Periodic Opera-
tors. Grundlehren der Mathematischen Wissenschaften Series. Springer,
Berlin, 1992.

[PLM+10] A. Peruzzo, M. Lobino, J. C. Matthews, N. Matsuda, A. Politi, K. Poulios,
X. Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg,
M. G. Thompson, and J. L. OBrien. Quantum walks of correlated photons.
Science, 329(5998):1500–1503, 2010.

[Pól21] G. Pólya. Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend
die Irrfahrt im Straßennetz. Math. Ann., 84(1-2):149–160, 1921.

[Pol96] A. G. Poltoratski. On the distributions of boundary values of Cauchy inte-
grals. Proc. Amer. Math. Soc., 124(8):2455, 1996.

[RBH+11] A. Regensburger, C. Bersch, B. Hinrichs, G. Onishchukov, A. Schreibera,
C. Silberhorn, and U. Peschel. Zitterbewegung, bloch oscillations and
landau-zener tunneling in a quantum walk. 2011, arXiv:1104.0105.

[RFR12] P. P. Rohde, A. Fedrizzi, and T. C. Ralph. Entanglement dynamics and
quasi-periodicity in discrete quantum walks. J Mod Optic, 59(8):710–720,
2012.

[RL09] M. S. Rudner and L. S. Levitov. Topological transition in a non-hermitian
quantum walk. Phys. Rev. Lett., 102:065703, 2009.

[RLBL05] C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme. Experimen-
tal implementation of a discrete-time quantum random walk on an nmr
quantum-information processor. Phys. Rev. A, 72:062317, 2005.

[RR94] M. Rosenblum and J. Rovnyak. Topics in Hardy classes and univalent func-
tions. BirkhÃ¤user, Basel, 1994.

[RS80] M. Reed and B. Simon. Methods of Modern Mathematical Physics I: Func-
tional Analysis. Acad. Press, New York, 1980.

[RSA+05] A. Romanelli, R. Siri, G. Abal, A. Auyuanet, and R. Donangelo. Decoher-
ence in the quantum walk on the line. Physica A, 347:137–152, 2005.

[Rud87] W. Rudin. Real and complex analysis. Mathematics series. McGraw-Hill,
New York, 1987.

[Rud06] W. Rudin. Functional Analysis. International series in pure and applied
physics. McGraw-Hill, New York, 2006.

232



Bibliography

[Rue69] D. Ruelle. A remark on bounded states in potential scattering theory.
Nuovo Cimento, 61A:655–662, 1969.

[Rue79] D. Ruelle. Analyticity properties of the characteristic exponents of random
matrix products. Advances Math., 32:68–80, 1979.

[San08] M. Santha. Quantum walk based search algorithms. In Proc. TAMC’08,
pages 31–46, Berlin, 2008. Springer.

[SBZ91] R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi. Localization in interact-
ing, disordered, bose systems. Phys. Rev. Lett., 66:3144–3147, 1991.

[SCP+10] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Ander-
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