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Kurzzusammenfassung

Schlagworte: Modulräume, Hyperkählermannigfaltigkeiten, Vektorbündel

In dieser Arbeit wird die Theorie der Modulräume von Garben benutzt um in zwei
unterschiedlichen Situationen irreduzible symplektische Mannigfaltigkeiten zu studieren.
Diese holomorph symplektischen Mannigfaltigkeiten spielen eine wichtige Rolle in der
Zerlegung von kompakten komplexen Ricci-flachen Kählermannigfaltigkeiten. Durch die
grundlegende Arbeit von Mukai wurde gezeigt, dass der glatte Teil von Modulräumen
von Garben auf symplektischen Flächen ebenfalls symplektisch ist. Da die Liste von
Beispielen für irreduzible symplektische Mannigfaltigkeiten recht kurz ist, stellt Mukais
Resultat eine wichtige Quelle zur Konstruktion und Analyse dieser Mannigfaltigkeiten
dar. In dem wir versuchen Mukais Konzept zu verallgemeinern, suchen wir stabile Gar-
ben auf höherdimensionalen irreduziblen symplektischen Mannigfaltigkeiten. Allerd-
ings gibt es in der Literatur so gut wie keine Beispiele. Eines der prominentesten
Beispiele für irreduzible symplektische Mannigfaltigkeiten sind Hilbertschemata von
Punkten auf K3 Flächen. Eine große Klasse von expliziten Beispielen von Garben
auf Hilbertschemata besteht aus der Klasse der tautologischen Garben. Diese werden
mit Hilfe einer Fourier−Mukai Transformation aus Garben auf der zugrundeliegen-
den Fläche konstruiert. In dieser Arbeit zeigen wir die Stabilität von tautologischen
Garben kleinen Ranges auf Hilbertschemata von zwei bzw. drei Punkten bezüglich
geeignet gewählter Polarisierungen. Diese Resultate werden auch auf den Fall von
Hilbertschemata von Punkten auf Abelschen Flächen übertragen. Diese Hilbertschemata
spielen eine wichtige Rolle, da sie als abgeschlossene Unterschemata die verallgemein-
erten Kummer Varietäten enthalten. Diese wiederum stellen eine weitere wichtige Klasse
von Beispielen für irreduzible symplektische Mannigfaltigkeiten dar. Wir zeigen die
Stabilität der Einschränkungen von tautologischen Garben kleinen Ranges auf die ve-
rallgemeinerten Kummer Varietäten der Dimensionen zwei (die Kummer Fläche) und
vier.

Ein mächtiges Werkzeug für die Analyse von irreduziblen symplektischen Mannig-
faltigkeiten ist die Betrachtung von Automorphismen endlicher Ordnung. In einer
kürzlich enstandenen Zusammenarbeit mit H. Ohashi haben wir ein neues Beispiel einer
19-dimensionalen Familie von nicht-symplektischen Involutionen auf Mannigfaltigkeiten
konstruiert, die deformationsäquivalent zu Hilbertschemata von zwei Punkten auf K3
Flächen sind: Betrachten wir eine K3 Fläche mit Involution und einen Modulraum von
Garben auf dieser Fläche. Unter bestimmten technischen Voraussetzungen ist dieser
deformationsäquivalent zum Hilbertschema von zwei Punkten und wir erhalten eine
induzierte Involution auf diesem Modulraum. Dieser allgemeinen Idee folgend kon-
struieren wir das neue Beispiel und analysieren den Fixpunktort der Involution. Wir
zeigen, dass sich dessen Topologie von der bereits bekannten natürlichen Involution auf
Hilbertschemata von zwei Punkten unterscheidet.
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Abstract

Keywords: moduli spaces, hyperkähler manifolds, vector bundles

In this thesis the theory of moduli spaces of sheaves is used in two different situations
to analyse irreducible symplectic manifolds. These are holomorphic symplectic manifolds
which play a central role in the decomposition of compact complex Ricci-flat Kähler
manifolds. By the seminal work of Mukai the smooth part of moduli spaces of sheaves
on symplectic surfaces is again a symplectic manifold. Since not many examples of
irreducible symplectic manifolds are known, this result constitutes a fruitful source to
construct and analyse these kinds of manifolds. Trying to generalise Mukai’s concept, we
look for stable sheaves on higher dimensional irreducible symplectic manifolds. Almost
no results have been known in this direction. One of the most important examples
of irreducible symplectic manifolds are Hilbert schemes of points on K3 surfaces. A
big class of explicit examples of sheaves on Hilbert schemes is the class of tautological
sheaves. These are constructed from sheaves on the underlying K3 surfaces by means of a
Fourier−Mukai transform. In this thesis we prove the stability of low rank tautological
sheaves with respect to well chosen polarisations on the Hilbert schemes of two and
three points. We transfer the results to the case of Hilbert schemes of points on abelian
surfaces. These Hilbert schemes also play a prominent role since they contain as closed
subschemes the generalised Kummer varieties associated with the underlying abelian
surface. These varieties constitute another important class of examples of irreducible
symplectic manifolds. We prove stability of the restrictions of low rank tautological
sheaves to the generalised Kummer varieties of dimension two (the Kummer surface)
and four.

A powerful method to analyse irreducible symplectic manifolds is the study of finite
order automorphisms. In a recent joint work with H. Ohashi we constructed a new exam-
ple of a 19-dimensional family of non-symplectic involutions on manifolds deformation
equivalent to Hilbert schemes of two points on K3 surfaces: We start with a K3 surface
carrying an involution and consider a moduli space of sheaves on this surface. Under
certain technical assumptions the moduli space is deformation equivalent to a Hilbert
scheme of points and we obtain an induced involution on this moduli space. Following
this general idea, we construct the new example and then analyse the fixed locus of
the involution. We prove that its topology is different from the case of the well-known
natural involution on Hilbert schemes of two points.
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0 Introduction

During the last thirty years special manifolds named irreducible holomorphic symplectic
manifolds gained a lot of attention by complex geometers. The importance of these
manifolds is due to the fact that they occur as natural building blocks in the decom-
position of all compact Ricci-flat Kähler manifolds: The decomposition theorem called
Beauville−Bogomolov decomposition states that every compact complex Ricci-flat Kähler
manifold is — up to a finite étale covering — isomorphic to a product of manifolds where
each factor belongs to one of the following three classes: The most classical examples
of Ricci-flat manifolds are complex tori. In every complex dimension there exists ex-
actly one deformation type. Secondly we have strict Calabi−Yau manifolds which are
characterised by being simply connected and do not admit any holomorphic form but
in top degree. Starting from dimension three there have been constructed examples of
different deformation types in great numbers, e.g. as complete intersections in projective
spaces. And finally, there are irreducible holomorphic symplectic manifolds, sometimes
called irreducible symplectic manifolds. They are simply connected and admit a unique
nowhere degenerate holomorphic symplectic two-form.

Examples of irreducible symplectic manifolds have been studied long time before
the accurate definition above was available, namely K3 surfaces. In the classification of
complex surfaces they are distinguished by being the only minimal, regular (i.e. H1(O) =
0) surfaces with trivial canonical bundle. They are exactly the two dimensional examples
of irreducible symplectic manifolds. By now the theory of K3 surfaces is very well
developed. There is a well studied theory of moduli spaces of K3 surfaces and the
powerful instrument of the global Torelli theorem ([PS71]).

Further examples were given in the seminal work of Beauville ([Beau83]): He de-
scribed two infinite families of higher dimensional irreducible symplectic manifolds: the
Hilbert schemes of points on K3 surfaces and the generalised Kummer varieties of an
abelian surface. In [Muk84] Mukai showed that (the smooth locus of) moduli spaces of
sheaves on K3 and abelian surfaces carry a natural symplectic structure and it has been
shown (cf. [HL97, Sect. 6.2] in the K3 and [Yosh01] in the abelian surface case) that
they are irreducible symplectic manifolds which are deformation equivalent to Hilbert
schemes or generalised Kummer varieties (in the case the moduli spaces are smooth).
For a long time these were the only known examples until the surprising discoveries
of O’Grady: He considered two families of moduli spaces of sheaves (one on K3 sur-
faces and one on abelian surfaces) which are not smooth and constructed a symplectic
desingularisation. Due to the joint effort of several authors (cf. [KLS06], [Zow11]) we
know now that the two cases discovered by O’Grady are the only cases which admit a
symplectic resolution. Since then no new deformation types of irreducible symplectic
manifolds have been discovered: all other approaches yielded only manifolds which are
deformation equivalent to one of the known examples. Thus the search for new examples
is still one of the big goals in the theory.

Meanwhile much progress has been made in the general theory of irreducible sym-
plectic manifolds. An overview can be found in [Huy99], where the author summarised
fundamental results on irreducible symplectic manifolds and formulated important ques-
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tions for further research. The biggest success of recent years certainly constitutes the
proof of an analogue of the global Torelli theorem by Verbitsky (cf. [Mar09] and [Huy10]).

One of the main intentions of this thesis is to propose a new approach for the search
for new examples as follows. The result of Mukai (as stated above) shows that when we
start with a symplectic surface and consider a moduli space of sheaves on it, we again
obtain a symplectic variety. Now applying this principle to higher dimensions, we may
formulate the following maxim:

Let X be a higher dimensional irreducible symplectic manifold. What can be
said about stable sheaves on X and their moduli?

To date almost no results in this direction are known. In [Schl10] the stability of
a small class of certain rank two bundles so-called tautological bundles associated with
line bundles on the Hilbert scheme of two points on a surface has been proven. More
generally tautological sheaves are sheaves on Hilbert schemes of points on surfaces which
are obtained via a Fourier−Mukai transform from sheaves on the surface. As the kernel
for the transform one uses the structure sheaf of the universal subscheme of the Hilbert
scheme. These objects have been intensively studied by different authors:

Tikhomirov derived formulas for the top Segre class of tautological sheaves associated
with line bundles in [Tik92]. In [Leh99] Lehn studied the action of the algebra spanned by
Chern classes of tautological sheaves on the bigraded Hopf algebra H :=

⊕
n H∗(X [n],Q)

and Ellingsrud, Göttsche and Lehn computed the Euler characteristics of tautological
sheaves in [EGL01]. Motivated by the study of the so-called strange duality Danila
([Dan01]) and Scala ([Scal09a] and [Scal09b]) — both students of Le Potier — computed
the spaces of global sections of these objects. In his thesis Krug (cf. [Kru11]) recently
gave a complete computation of extension groups of tautological sheaves.

We are able to generalise Schlickewei’s result drastically. We analyse the stability of
rank two and four tautological sheaves on the Hilbert scheme of two points on a regular
or abelian surface. Furthermore, we prove the stability of rank three tautological sheaves
on the Hilbert scheme of three points again on regular and abelian surfaces. Finally,
we study the restriction of tautological sheaves on Hilbert schemes of abelian surfaces
to the associated generalised Kummer varieties of dimension two and four and prove
stability in the rank two (rank three resp.) case. Since the two dimensional Kummer
variety is nothing but the Kummer surface of the underlying abelian surface, this yields
a construction of stable sheaves on Kummer surfaces, a topic of independent interest. A
very subtle part in all these constructions is the choice of a suitable polarisation on the
manifold one is considering. The results concerning the stability of tautological sheaves
on the Hilbert scheme of two points on a regular surface together with the necessary
geometric considerations are contained in the preprint [W12].

The deformations of a tautological sheaf can be divided into two classes. The first
class consists of deformations which are induced by deformations of the original sheaf
on the surface and one can reduce their study to the deformation theory of sheaves on
surfaces. This leads to an embedding of the moduli space of sheaves on the surface into
the moduli space of tautological sheaves. In many cases tautological sheaves have more
deformations. This second class will be called the additional deformations and they may
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lead to singularities of the moduli space of tautological sheaves.

A very fruitful method to study irreducible symplectic manifolds is the theory of finite
order automorphisms of these manifolds. In the case of K3 surfaces Nikulin ([Nik80a],
[Nik80b]) developed the fundamental theory. He used the global Torelli theorem in order
to apply his lattice-theoretic results. Since then much progress has been made in the
theory of automorphisms of K3 surfaces (cf. [Muk88], [Kon98], [GS07], [AST11]). In the
higher dimensional case — apart from sporadic examples — automorphisms have been
studied systematically in [Beau83b], [BNS11], [OS11], [BNS12], [Cam12] and [Mon12].
An important class of autmorphisms on manifolds of K3[n]-type are obtained as follows:
Consider an automorphism of finite order on a K3 surface. This induces an automor-
phism on the Hilbert scheme of n points for all n. Boisière called automorphisms on the
Hilbert scheme of this kind natural (cf. [Boi12]). In [BS12] a characterisation of natural
automorphisms was given. More generally, Mongardi called an automorphism on a man-
ifold of K3[n]-type standard if the pair consisting of the manifold and the automorphism
can be deformed to a Hilbert scheme with a natural automorhpism. Beauville gave a
rough classification of non-symplectic involutions of manifolds deformation equivalent
to the Hilbert scheme of two points on a K3 surface in [Beau11]. In a recent prepint
([OW13]) H. Ohashi and myself study the case of 19-dimensional families of such involu-
tions in more detail, give a lattice-theoretic classification and construct a new example.

The construction of this new example follows the following more general concept
which should be regarded as the second important maxim of this thesis: Consider a
surface together with an automorphism. If the induced action on the cohomology fixes
a polarisation and a Mukai vector v, then we end up with an induced automorphism on
the moduli space of stable sheaves of Mukai vector v. If the surface is symplectic and
the moduli space is smooth, then — under certain technical assumptions — we obtain
in this way examples of automorphisms on irreducible symplectic manifolds. A class
of symplectic surfaces which have an interesting group of automorphisms consists of
Kummer surfaces whence the aforementioned interest in constructions of stable sheaves
on Kummer surfaces.

The lattice-theoretic classification of 19-dimensional families of non-symplectic invo-
lutions as stated in Theorem 7.3 is due to H. Ohashi. Thus the proof of this statement is
omitted in this thesis. The interested reader is referred to [OW13]. All proofs enclosed
in Chapter 7 are due to myself.

0.1 Summary of the results

Let (X,H) be a polarised smooth projective surface over the complex numbers. Assume
that X is either regular (h1(X,OX) = 0) or abelian with Picard rank one (in which case
H will be chosen to be a principal polarisation).

Let X [n] be the Hilbert scheme of n points on X. In the product X × X [n] we
have the universal subscheme Ξn := {(x, ξ) | x ∈ ξ} and there are the projections
q : X × X [n] → X and p : X × X [n] → X [n]. Let F be a sheaf on X. We define the
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tautological sheaf associated with F as

F [n] := p?(q
?F ⊗OΞn).

Theorem (Theorems 4.6, 4.8, 4.13, 5.16, 5.17, 5.18 and Proposition 4.12). Let F be a
µH-stable sheaf on X such that detF 6' OX . There is a polarisation on X [2] such that
if F is of rank one (rank two), then F [2] is a rank two (rank four, respectively) µ-stable
sheaf on X [2]. Similarly there is a polarisation on X [3] such that if F is of rank one, then
F [3] is µ-stable of rank three. For arbitrary n there is a polarisation on X [n] such that
F [n] does not contain any destabilising subsheaves of rank one.

If X is abelian, then inside the Hilbert scheme X [n] there is the generalised Kummer
variety Kn(X). Let us denote the embedding by j. On X we have the natural involution
ι from the group structure. A sheaf H is called symmetric if ι?H ' H. We have the
following results:

Theorem (Theorems 5.27, 5.29 and 5.32). Let F be a µH-stable sheaf on X such that
detF 6' OX . There is a polarisation on K3(X) such that if F is of rank one, j?F [3]

is µ-stable of rank three. Furthermore, there is a polarisation on K2(X) (the Kummer
surface associated with X) such that if detF is not symmetric and F is of rank one
(rank two), the restriction j?F [2] is µ-stable of rank two (rank four).

Furthermore, we have the following relation between moduli spaces of sheaves on K3
surfaces and moduli spaces of tautological sheaves:

Proposition (Proposition 6.4). Let F be a stable sheaf on a K3 surface X of Mukai
vector v such that F [2] is stable (of Mukai vector v[2]). We have an embedding of moduli
spaces Ms(v) ↪→Ms(v[2]).

A key result to construct automorphisms on moduli spaces of sheaves is the following:

Proposition (Proposition 2.35). Let (X,H) be a polarised smooth projective variety and
ϕ an automorphism of X preserving H. Consider a Mukai vector v ∈ H∗(X,Z) which is
invariant under the induced action of ϕ. Then ϕ induces a biregular automorphism ι on
Ms(v).

Using this proposition, in a recent joint work with H. Ohashi we proved the following
result which is also enclosed in this thesis:

Theorem (Theorems 7.9 and 7.16). There is a 19-dimensional family of manifolds of
K3[2]-type admitting a non-symplectic involution with invariant lattice isomorphic to U.
Every member of this family is isomorphic to a moduli space of sheaves M(2, H, 0) on
a degree two polarised K3 surface (X,H) admitting a double cover to P2. This family
is different from the 19-dimensional family of natural non-symplectic involutions on the
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Hilbert schemes of two points. The fixed locus of this involution consists of two smooth
connected surfaces which are both branched covers of P2 of degree six and ten, respectively.

0.2 Structure of the thesis

This thesis starts with three introductory chapters which recall the most important
definitions and facts necessary for the sequel and fix notations. In Chapter 1 we recall
the basic facts on irreducible symplectic manifolds, give a list of examples and collect
some more detailed geometric aspects of the Hilbert scheme of points on a surface.

The main technical tools we use in this thesis are stable sheaves and their moduli.
Thus we summarise the basics on stability of sheaves and their moduli in Chapter 2. We
give a more detailed account on sheaves on K3 surfaces and add some considerations on
induced automorphisms on moduli spaces of sheaves.

The notion of tautological sheaves — though they are very natural objects to study
— might not be known to all complex geometers working with irreducible symplectic
manifolds. Therefore we give their definition and collect the known facts about their
cohomology and extension groups in Chapter 3. We also enclose several considerations
on polarisations on Hilbert schemes.

In Chapter 4 we start studying the stability of tautological sheaves in the case of
regular surfaces. The focus here lies, of course, on K3 surfaces. We give a quite detailed
proof of the stability results which will provide a model for the proofs in the case of
abelian surfaces and Kummer varieties in Chapter 5 where the geometries involved are
more difficult to handle.

Deformations and moduli spaces of tautological sheaves are discussed in Chapter 6.
Finally, we discuss several aspects of non-symplectic involutions on manifolds of

K3[2]-type in Chapter 7. We state a lattice-theoretic classification of 19-dimensional
families of these involutions, construct a new example of a non-natural involution and
study its fixed locus.

0.3 Notations and conventions

• The base field of all varieties and schemes in this thesis is the field of complex
numbers.

• A lattice (L, ( , )) is a free abelian group L together with a non-degenerate sym-
metric form ( , ) : L× L→ Z.

• We denote by U the lattice with intersection matrix
(

0 1
1 0

)
and by E8 the unique

positive-definite, even, unimodular lattice of rank eight.

• For any lattice (L, ( , )) we write L(a), a ∈ Z to denote the lattice with intersection
product multiplied by a.

• For the intersection product inside the Chow or cohomology ring of a smooth vari-
ety we write either l.m or l ·m, for classes l and m, or we will just use juxtaposition
lm.
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• A polarisation on a variety X is the choice of a class H inside the ample cone
Amp(X).

• A sheaf on a variety X is a coherent OX-module.

• We write ∼= to indicate an isomorphism of abelian groups, vector spaces and vari-
eties. We use ' for isomorphisms of sheaves.

• All functors such as pushforward, pullback, local and global homoorphisms and
tensor product are not derived unless mentioned otherwise.

• Let F be a locally free sheaf. A locally free subsheaf L is called a subbundle of F .
(In literature this is sometimes only used for locally free subsheaves L such that
the quotient F/L is locally free, too.)

• Let σ : Y → Z be a morphism of smooth projective varieties. For all sheaves H on
Y and G on Z there is an adjunction isomorphism of C-vector spaces

HomY (σ?G,H) ∼= HomZ(G, σ?H)

which will be denoted by σ? a σ? (σ? is left adjoint to σ?).

• Let Y ×Z be the product of two varieties Y and Z. Denote the projections to the
corresponding factors by π1 and π2. For sheaves H on Y and G on Z we define

H� G := π?1H⊗ π?2G and

H� G := π?1H⊕ π?2G.

They are called exterior tensor product and exterior sum of the sheaves H and
G. In the case Y = Z and H = G we also write H�2 and H�2. This, of course,
generalises to products of more than two varieties.

• Let G be a finite group acting on a smooth projective variety X. Let f : X → X/G
be the quotient. If L is a G-equivariant line bundle on X, the pushforward f?L
inherits the G-linearisation. Since G acts trivially on X/G, we can define LG to be
the sheaf of G-invariant sections of f?L, which is a line bundle on X/G. Conversely,
the pullback gives a homomorphisms f ? : Pic(X/G) → PicG(X) to the group of
G-linearised line bundles on X. This map is injective and its image coincides with
line bundles L such that for every x ∈ X the stabiliser group Gx acts trivially on
the fibre Lx (cf. [KKV89]). Finally, by taking first Chern classes, for every class l
in NSX we can define a class lG ∈ NS(X/G).

• Let Y be a smooth projective variety Y and E a vector bundle. There is an
extension

At(E) ∈ Ext1(E , E ⊗ ΩY )

called the Atiyah class of E . It was introduced by Atiyah in [Ati57] as an obstruction
class for the existence of connections on principal bundles. This class satisfies the
following properties:
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– Denote by tr : Ext1(E , E ⊗ΩY )→ H1(Y,ΩY ) the natural trace map. We have

tr At(E) = c1(E).

– For any morphism f : Z → Y there is an induced map f̃ : Ext1(E , E ⊗ΩY )→
Ext1(f ?E , f ?E ⊗ ΩZ). The Atiyah class satisfies

f̃(At(E)) = At(f ?E).

– If E ′ is another vector bundle on Y, we have

At(E ⊗ E ′) = At(E)⊗ id + id⊗ At(E ′).

More generally, the Atiyah class can be defined for any object in the derived
category by using locally free resolutions. For a discussion of some of the properties
of the Atiyah class in a more modern language and in the realm of algebraic
geometry the interested reader is referred to [HL97, Sect. 10.1].
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• Furthermore, we use the following notation:

TX − tangent sheaf of a variety X

Ωk
X − sheaf of k-th order differentials

ωX − canonical line bundle

ωf − relative canonical sheaf of a morphism f

tdX − Todd class of a variety X

tdf − Todd class of the relative tangent bundle of a morphism f

bi − i-th Betti number

ci − i-th Chern class

H∗ − cohomology ring of a variety

or collection of all cohomology groups of a sheaf

A∗ − Chow ring

χ − holomorphic Euler characteristic

e − topological Euler characteristic

NSX − Néron−Severi group of a variety X

PicX − Picard group of X

Num(X) − PicX/ ∼, where ∼ is numerical equivalence

Amp(X)Q − rational ample cone

v⊥ − orthogonal complement inside a lattice

(−)Sn − invariant part with respect to the Sn-action

SnX − n-th symmetric product of the variety X

SnV − n-th symmetric product of the vector space V

V ∨ − dual of the vector space V

F∨ − dual of the sheaf F (defined as Hom(F ,O))

hi(F) − dimC Hi(F)
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1 Irreducible Symplectic Manifolds

In this chapter we collect the most important definitions and results about irreducible
holomorphic symplectic manifolds. More detailed presentations can be found in [Beau83]
and [Huy99].

1.1 Definition and the Beauville−Bogomolov Decomposition

Definition 1.1. Let X be a compact complex Kähler manifold. We call X an irreducible
holomorphic symplectic manifold if

• X is simply connected and

• H0(X,Ω2
X) ∼= Cω,

where ω is a nowhere degenerate holomorphic two-form.

Corollary 1.2. If X is an irreducible holomorphic symplectic manifold of dimension n,
we have

• 2|n,

• ωX ' OX ,

• TX ' ΩX ,

• hl(X,OX) = h0(X,Ωl
X) = 0 for l odd and

• H0(X,Ω2k
X ) ∼= Cωk for k = 0, . . . , n

2
.

Remark 1.3. A compact complex Kähler manifold is irreducible symplectic if and only
if it admits a Riemannian metric with holonomy group equal to the symplectic group
Sp(k), where 4k is the real dimension. Such a manifold is also referred to as hyperkähler
manifold. A comparison of the two notions can be found in [Beau83].

The importance of irreducible symplectic manifolds is due to the fact that they appear
as basic building blocks in the classification of compact complex Ricci flat manifolds.
We refer to [Beau83] for a systematic review of results of de Rham, Berger, Bogomolov
and Yau which ultimately yield the following theorem.

Theorem 1.4 (Beauville−Bogomolov decomposition). Let X be a compact complex
Ricci-flat Kähler manifold. There exists a finite étale covering X̃ → X such that

X̃ ∼= T × ΠiVi × ΠjXj,

where T is a complex torus, the Vi are strict Calabi−Yau manifolds and the Xj are
irreducible symplectic.

16



A strict Calabi−Yau manifold V is a simply connected compact complex Kähler
manifold satisfying h0(V,Ωl

V ) = 0 for all 0 < l < dimV .

An important invariant of any irreducible symplectic manifold is the following:

Theorem 1.5 (Fujiki−Beauville−Bogomolov form). For every irreducible symplectic
manifold X there exists a canonically defined non-degenerate pairing ( , )X on H2(X,Z)
called Beauville−Bogomolov or sometimes Fujiki−Beauville−Bogomolov pairing.

Remark 1.6. The only two dimensional examples of irreducible symplectic manifolds
are K3 surfaces. Being complex surfaces, they carry a natural intersection pairing on the
second cohomology by Poincaré duality. A fundamental fact about the Beauville−Bogomolov
pairing is that it coincides with the intersection pairing in the case of K3 surfaces.

Remark 1.7. As in the case of K3 surfaces there is a well developed theory of moduli
spaces for irreducible symplectic manifolds with or withouth marking, there is a period
domain and map. In this thesis all this technical machinery is not needed. We refer to
[GHS12] for a detailed account and further references.

1.2 Examples

Example 1.8 (K3 surfaces). The most basic and also oldest examples of irreducible
symplectic manifolds are K3 surfaces. They are exactly the two dimensional irreducible
symplectic manifolds. In the classification of complex surfaces they are distinguished by
the properties ωX ' OX and b1 = 0.

There exist many constructions of K3 surfaces. The easiest examples of K3 surfaces
are complete intersections in projective space. For example, every smooth quartic in P3

and the intersection of a quadric and a cubic in P4 yield K3 surfaces. Another famous
example is the double sextic. Let C ⊂ P2 be a sextic curve. Consider the double cover
π : X̃ → P2 branched along C. For a smooth sextic C this yields a smooth surface
X̃ which turns out to be K3. If C has simple singularities, we consider its minimal
resolution X → X̃ and obtain a K3. This yields a 19-dimensional (27 parameters of a
sextic in P2, 8 dimensions of PGL(2)) family of projective K3 surfaces.

For every K3 surface there is an isomorphism of lattices

H2(X,Z) ∼= U3 ⊕ E8(−1)2.

Thus the second Betti number is 22 and we have a 20-dimensional moduli space of K3
surfaces.

Example 1.9 (Hilbert schemes of points on a K3 surface). Let n ≥ 2 be an integer
and X a K3 surface. Consider its n-fold symmetric product SnX = Xn/Sn. It is of
dimension 2n and singular along the locus consisting of non-reduced subschemes ξ ⊂ X,
the locus commonly known as the big diagonal. A resolution of singularities is given
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by the Hilbert scheme of n points on X denoted Hilbn(X) or X [n]. The resolution
ρn : X [n] → SnX is called Hilbert−Chow morphism which is a blowup in codimension
two. Certainly the Hilbert scheme deforms with the K3 surface but a general deforma-
tion of a Hilbert scheme is not the Hilbert scheme of a K3. In general we call a manifold
which is deformation equivalent to a Hilbert scheme of n points on a K3 a manifold of
K3[n]-type. We have b2 = 23 and

H2(X [n],Z) ∼= H2(X,Z)⊕ 〈−2(n− 1)〉 ∼= U3 ⊕ E8(−1)2 ⊕ 〈−2(n− 1)〉,

where a generator of the last summand corresponds to half the class of the exceptional
divisor of ρn. The moduli space of manifolds of K3[n]-type is 21-dimensional.

Example 1.10 (Kummer surfaces). Let us introduce the famous Kummer construction
of K3 surfaces which also admits a higher dimensional analogue as will be discussed in
the next example. Let A be an abelian surface. The natural involution on A given by
the inverse ι : a 7→ −a has 16 fixed points (which are exactly the 16 two-torsion points).
Thus if we blow up the 16 A1-singularities in A/ι, we obtain a smooth surface which can
easily be shown to be K3. It is the so-called Kummer surface KmA associated with A.

An alternative construction of KmA goes as follows: Let b : Ã→ A denote the simul-
taneous blowup of all fixed points of the involution ι on A and denote by E1, . . . , E16 the
exceptional divisors. On Ã we still have an involution which fixes the El pointwise. We
consider the quotient τ : Ã → KmA which is a degree two covering onto the associated
Kummer surface. By [BHPV04, VIII Prop. 5.1] we have a monomorphism

α = τ!b
? : H2(A,Z)→ H2(KmA,Z)

satisfying
α(x)α(y) = 2xy for all x, y ∈ H2(A,Z).

We have an inclusion of finite index

α(NSA)⊕
16⊕
l=1

ZNl ⊂ NS(KmA),

where Nl = τ(El). It is well known that E2
l = −1 and N2

l = −2. Furthermore, the class∑
lNl is 2-divisible and we have τ ?(1

2

∑
lNl) =

∑
lEl and τ ?Nl = 2El.

Finally, we have

NS Ã ∼= b? NSA⊕
16⊕
l=1

ZEl and Pic0 Ã ∼= b? Pic0A. (1)

Example 1.11 (Generalised Kummer varieties). Transfering the upper construction of
Hilbert schemes to the case of abelian surfaces also yields Ricci flat manifolds. But they
are not simply connected and contain additional factors in the Beauville−Bogomolov
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decomposition. To get rid of these factors we consider (for an abelian surface A) the
following composition

mn : A[n] ρn−→ SnA
s̃n−→ A,

where s̃n is the summation map. All fibres of mn are isomorphic and we define

Kn(A) := m−1
n (0)

and call it generalised Kummer variety. It is a (2n−2)-dimensional irreducible symplectic
manifold (cf. [Beau83]). In the case n = 2 this just gives back the Kummer surface KmA.
For all n > 2 we have b2 = 7 and

H2(Kn(A),Z) ∼= H2(A,Z)⊕ 〈−2n〉 ∼= U3 ⊕ 〈−2n〉

and in this case a generator of the last summand is half the class of the restriction of
the exceptional divisor of the Hilbert−Chow morphism to the Kummer variety.

Note that some authors (e.g. [Beau83]) use the notation Kn for the generalised Kum-
mer variety of dimension 2n. We will use the notation introduced above which is also
used in [Huy99].

Example 1.12 (Moduli spaces of sheaves). A subscheme ξ ⊂ X of a K3 surface is
uniquely determined by its ideal sheaf Iξ. Thus the Hilbert scheme X [n] can also be
seen as a moduli space of ideal sheaves. More generally, Mukai ([Muk84]) has proven
that on (the smooth locus of) moduli spaces of sheaves on K3 and abelian surfaces there
is a symplectic structure. This construction leads to irreducible symplectic manifolds
deformation equivalent to Hilbert schemes and generalised Kummer varieties described
above. More details can be found in Section 2.3.

Example 1.13 (O’Grady’s examples). For a long time the above mentioned examples
were the only known examples. In [O’G99] and [O’G03] O’Grady considered singular
moduli spaces of sheaves on K3 and abelian surfaces and constructed symplectic desin-
gularisations which led to two new deformation types of irreducible symplectic manifolds.
Finally, Kaledin−Lehn−Sorger ([KLS06]) and Zowislok ([Zow11]) proved that O’Grady’s
examples are the only cases where a singular moduli space of sheaves on a K3 or abelian
surface admits a symplectic desingularisation.

1.3 On the Geometry of Hilb2

In this section we want to collect all important geometric properties of the Hilbert scheme
of two points on a smooth projective surface X.
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Consider the following basic blowup and projections diagram:

D
i //

σD

��

X̃ ×X
ψ

((

σ

��
r1

		

r2

��

X ×X [2]

p
zz

q
##

X ∆ // X ×X

π1
{{

π2
## ))

X [2]

ρ
��

X

X X S2X .

Here ∆ is the diagonal embedding, σ is the blowup morphism (we are blowing up the
diagonal), D ' P(NX|X×X) ' P(TX) denotes the exceptional divisor together with the
projection σD and the inclusion i. We denote the dual of the tautological line bundle
of D by OD(1). It is well known that N

D|X̃×X
∼= OD(−1) (see, for example, Theo-

rem II 8.24 in [Har77]). Furthermore, π1, π2, p and q denote the natural projections
onto the particular factors and r1 and r2 are the compositions of π1 and π2 with σ. Last
but not least we have the flat degree two covering ψ and the Hilbert−Chow morphism ρ.

Remark 1.14. Note that for n = 2 the universal subscheme Ξ2 := {(x, ξ) | x ∈ ξ} ⊂
X×X [2] is isomorphic to X̃ ×X and the restriction of the two projections p and q above
correspond to ψ and r1.

Next, let us summarise the most important facts about the Chow rings of the varieties
involved in the upper diagram. We will follow very closely [Ful84], Sections 6.7 and
15.4, especially Lemma 15.4. On D = P(TX) we have the short exact sequence: 0 →
OD(−1) → σ?DNX|X×X → Q → 0, where Q is the universal quotient line bundle.
We have NX|X×X ' TX and — by comparing Chern classes — can therefore see that
Q ' OD(1)⊗ σ?Dω∨X :

0→ OD(−1)→ σ?DTX → OD(1)⊗ σ?Dω∨X → 0.

Let ξ denote the first Chern class of OD(1). By Remark 3.2.4 and Theorem 3.3 in
[Ful84] we have

A∗(D) ∼= A∗(X)[ξ]/(ξ2 + c1(TX)ξ + c2(TX)).

Proposition 6.7e) in [Ful84] describes the structure of A∗(X̃ ×X). We gather the
most important identities in this ring in the following lemma. Note that since σ is not
flat we use the refined Gysin map σ? as defined in [Ful84, Sect. 6].

Lemma 1.15. Let α, β, γ ∈ A∗(X), and λ ∈ A∗(D). We have the following identities in
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A∗(X̃ ×X) (or A∗(D) for b)):

a) i?(ξ · σ?D(α)) = σ?∆?(α) + i?σ
?
D(α · ωX),

b) i?i?λ = −ξ · λ,

c) i?σ
?
Dα · σ?(β ⊗ γ) = i?σ

?
D(α · β · γ),

d) i?σ
?
D(α) · i?σ?D(β) = −σ?∆?(α · β)− i?σ?D(α · β · ωX),

where we write β ⊗ γ for π?1β · π?2γ.

Proof. a) This follows from the so-called key formula in Prop. 6.7.a) in [Ful84]. Note
that in our situation the excess normal bundle is just the universal quotient bundle
denoted by Q above. We have c1(Q) = c1(OD(1)⊗ σ?Dω∨X) = ξ − σ?DωX .
b) This is the self-intersection formula Cor 6.3 in [Ful84]:

i?i?λ = c1(N
D|X̃×X) · λ = c1(OD(−1)) · λ = −ξ · λ.

c) We have α · β · γ = α ·∆?(β ⊗ γ). Applying σ?D, we get

σ?D(α · β · γ) = σ?D(α ·∆?(β ⊗ γ)) = σ?Dα · σ?D∆?(β ⊗ γ)

= σ?Dα · i?σ?(β ⊗ γ).

Now we apply i? and use the projection formula.
d) We use the projection formula and then b) to find

i?σ
?
D(α) · i?σ?D(β) = i?(i

?i?σ
?
D(α) · σ?D(β)) = −i?(ξ · σ?D(α) · σ?D(β)) = −i?(ξ · σ?D(α · β)).

Now we apply a) and we are done.

Corollary 1.16. We write D for the class i?[D] ∈ A3(X̃ ×X) and denote with ∆ the
cohomology class of the diagonal in X ×X. We have

a) i?D = −ξ,

b) D2 = −i?ξ

= −σ?∆− i?σ?D(ωX) and

c) (σ?∆)2 = σ?∆?(c2(TX)).

Proof. a) Apply b) of Lemma 1.15 to λ = [D].
b) We use a) and for the second equality we apply a) of the Lemma to α = [X] to get

D2 = i?i
?D = i?(−ξ) = −σ?∆− i?σ?D(ωX).
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c) Very similarly to the proof of b) in the lemma we use the self-intersection formula:

(σ?∆)2 = σ?(∆2) = σ?∆?∆
?∆ = σ?∆?∆

?∆?[X] = σ?∆?(c2(NX|X×X)) = σ?∆?(c2(TX)).

We will continue by determining the canonical line bundles of D and X̃ ×X. On

X̃ ×X we have a short exact sequence:

0→ T
X̃×X → σ?TX×X → i?(OD(1)⊗ σ?Dω∨X)→ 0.

We immediately derive ω
X̃×X ' σ?(ω�2

X )⊗O(D).
Next, on D we have the exact sequence:

0→ TD → i?T
X̃×X → OD(−1)→ 0.

Again, we deduce ωD ' (σ?Dω
∨
X)⊗2 ⊗OD(−2).

Let us finish this section with some considerations concerning the Picard and
Néron−Severi groups of the varieties we are looking at. We have

Pic0(X̃ ×X) ∼= σ? Pic0(X ×X) ∼= σ?(Pic0X)�2

and
Pic0X [2] ∼= Pic0X.

Furthermore, we have primitive embeddings

(NSX)�2 ↪→ NS(X ×X) and (NSX)�2 ⊕ ZD ↪→ NS(X̃ ×X). (2)

For a class l ∈ NSX we set

lX[2] := (σ?l�2)S2 = ρ?((l�2)S2) ∈ NSX [2].

This gives a primitive embedding

NSX ⊕ Zδ ↪→ NSX [2] (3)

where δ is a class such that 2δ is the class of the exceptional divisor of the blowup
morphism ρ : X [2] → S2X. Note that with this notation we have

ψ?(lX[2] + aδ) = r?1l + r?2l + aD on X̃ ×X.

Similarly we have a primitive embedding

(−)X[2] : PicX ↪→ PicX [2], L 7→ LX[2] ,

where LX[2] is defined in exactly the same way as lX[2] above.
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The line bundle corresponding to the covering ψ : X̃ ×X → X [2] is denoted by O(δ)
since its first Chern class is δ even though it is not effective.

Now assume that X is regular, i.e. h1(X,OX) = 0. In this case the embeddings (2)
and (3) are isomorphisms. Here we apply Exercise III 12.6b) in [Har77]. Thus we can

write every element of NS(X̃ ×X) as l1 ⊗ 1 + 1 ⊗ l2 + aD for some l1, l2 ∈ NSX and
a ∈ Z and every element of NSX [2] as lX[2] + aδ for some l ∈ NSX and a ∈ Z.

Finally, let us also consider the case that our surface is an abelian surface A. As
before we have (NSA)�2 ⊂ NS(A × A) but in this case there are additional classes. In
general it is very difficult to compute NS(A× A) explicitly (cf. Chapter 5). Here let us
note only the following: We have the group law s : A × A → A which factors through
s̃ : S2A→ A and we denote the composition s̃ ◦ ρ by m:

A[2]

m
""

ρ // S2A

s̃

��

A× Aoo

s
zz

A .

(4)

Thus we obtain a natural map s? : NSA → NS(A × A). For any class l ∈ NSA we
define

lM := s?l − l�2.

Lemma 1.17. The class lM is linearly independent of the summand (NSA)�2.

Proof. Certainly lM is S2-invariant. Assume we can write

s?l − l�2 = lM = f�2

with f ∈ NSA. We fix a point x ∈ A and a curve C on A. We intersect the above
equation with the curve Cx := {x} × C. We have s?l · Cx = l.C = (1 ⊗ l) · Cx and
(l ⊗ 1) · Cx = 0. Thus the left hand side vanishes and on the right hand side we are left
with f.C. Since C was arbitrary, we must have f = 0.

The index M stands for Mumford class. Therefore, we have an embedding

(−)m : NSA ↪→ NSA[2], l 7→ lm := m?l − lA[2] . (5)

In Section 5.1 we will consider the case that A is a principally polarised abelian surfaces in
more detail. Under some technical assumptions we will show that, in fact, the embedding
(5) is primitive and no other additional classes may occur.
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1.4 On the Geometry of Hilbn

If n > 2, the geometry of the Hilbert scheme of n points on a smooth projective sur-
face X is much more delicate. An important fact is that the Hilbert−Chow morphism
ρn : X [n] → SnX is no longer a global blowup morphism. But following [Beau83], we see
that outside codimension two subschemes ρn is the blowup of the big diagonal. This is
important especially if we want to determine the Picard group of the Hilbert scheme.
Nevertheless, the geometry of Hilbert schemes has been intensively studied. We will
summarise the important results in this section and — as far as possible — try to imi-
tate the notation of the preceding section.

Following [EGL01, Section 1], we consider the following diagram:

X [n−1,n]

σn
��

wn
//

ψn
**

Ξn

pn
��

qn
// X

Ξn−1 ⊂ X ×X [n−1]

pn−1vv
qn−1

''

X [n]

ρn ##

Xn

||
X [n−1] X SnX.

Here we denote by
Ξn := {(x, ξ) | x ∈ ξ} ⊂ X ×X [n]

the universal subscheme and by

X [n−1,n] := {(ξ′, ξ) | ξ′ ⊂ ξ} ⊂ X [n−1] ×X [n]

the so-called nested Hilbert scheme.
We have the flat degree n covering pn : Ξn → X [n] which is, in fact, the restriction of

the second projection X×X [n] → X [n]. Furthermore, X [n−1,n] is ismorphic to the blowup
of X × X [n−1] along the universal subscheme Ξn−1. Denote this blowup morphism by
σn and the projections from X ×X [n−1] to X [n−1] and X by pn−1 and qn−1, respectively.
By [ES98, Prop. 2.1] the second projection ψn : X [n−1,n] → X [n] factors through Ξn and
from [Hai01, Prop. 3.5.3] it follows that wn is an isomorphism outside codimension four
subschemes. Thus the morphism ψn is flat outside codimension four. Finally, we have
qn−1 ◦ σn = qn ◦ wn

In analogy to the n = 2 case we have

Pic0X [n] ∼= Pic0X

and embeddings

(−)X[n] : NSX ↪→ NSX [n], l 7→ lX[n] := ρ?n(l�n)Sn and (−)X[n] : PicX ↪→ PicX [n].

Furthermore, there is a class δn ∈ NSX [n], such that 2δn is the class of the divisor
consisting of all non-reduced subschemes ξ ⊂ X. There is a line bundle O(δn) with first
Chern class δn such that its pullback p?nO(δn) is the relative canonical sheaf of pn.
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Lemma 1.18. Let Dn be the exceptional divisor of σn. We have

ψ?nO(δn) ' O(Dn)⊗ σ?np?n−1O(δn−1).

Proof. This is a consequence of the geometric considerations in Section 2 of [EGL01].
We introduce the following notation: Set

ψX := ψn × idX

φn := pn−1 ◦ σn
φX := φn × idX

j := idX[n−1,n] × (qn−1 ◦ σn)

These maps fit into the following diagram, where π is the first projection:

X [n−1,n] j // X [n−1,n] ×X

ψXww φX ((

π // X [n−1,n]

X [n] ×X X [n−1] ×X

.

Using this notation, we can write sequence (6) from [EGL01] as follows:

0→ j?O(Dn)→ ψ?XOΞn → φ?XOΞn−1 → 0.

To this sequence we want to apply π?. First note that π ◦ j = idX[n−1,n] . Furthermore,
we have a commutative diagram

X [n−1,n] ×X π //

ψX

��

X [n−1,n]

ψn

��
X [n] ×X pn // X [n],

where pn is the first projection as usual. Since the projections are flat we have

π? ◦ ψ?X ' ψ?n ◦ pn?.

Define
O[n]
X := pn?OΞn .

This is a rank n vector bundle on X [n] with determinantO(δn). Thus we find π?ψ
?
XOΞn '

ψ?nO
[n]
X and similarly π?φ

?
XOΞn ' φ?nO

[n−1]
X . Altogether we see that we have an exact

sequence on X [n−1,n] :

0→ O(Dn)→ ψ?nO
[n]
X → φ?nO

[n−1]
X → 0.

Hence taking determinants yields the lemma.
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Corollary 1.19. We have

ψ?nδn = [Dn] + σ?np
?
n−1δn−1.

Next, there is a recursive formula for classes in NSX [n] coming from X:

Lemma 1.20. For every class l ∈ NSX we have

ψ?nlX[n] = σ?n(p?n−1lX[n−1] + q?n−1l).

Proof. Denote the natural degree n covering Sn−1 ×X → SnX by fn. We have

ψ?nlX[n] = ψ?nρ
?
n(l�n)Sn = σ?n(ρn−1 × idX)?f ?n(l�n)Sn

= σ?n(ρn−1 × idX)?((l�n−1)Sn−1 � l) = σ?n(ρ?n−1(l�n−1)Sn−1 � l)

= σ?n(p?n−1lX[n−1] + q?n−1l).

Remark 1.21. We leave it to the reader to formulate and prove the analogous result
to the lemma above for line bundles instead of cohomology classes.

As in the n = 2 case, if X is regular, we have

NSX [n] ∼= NSX ⊕ Zδn

and if X = A is an abelian surface, we have embeddings

(−)Mn : NSA ↪→ NSAn, l 7→ s?nl − l�n and (6)

(−)mn : NSA ↪→ NSA[n], l 7→ m?
nl − lX[n] ,

where we generalise diagram (4) at the end of Section 1.3 as follows:

A[n]

mn
##

ρn // SnA
s̃n

��

Anoo

sn
||

A .
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2 Moduli Spaces of Sheaves

This chapter serves as an introduction to the theory of stable sheaves and their moduli.
The standard reference is [HL97].

2.1 Stable Sheaves

Throughout this section we fix a polarised smooth projective variety (X,H) of dimension
n.

Definition 2.1. A coherent sheaf F of dimension n = dimX is called torsion-free if F
does not contain any subsheaf of smaller dimension.

Definition 2.2. We define the H-slope of a sheaf F on X as

µH(F) :=
c1(F).Hn−1

rkF
∈ Q.

Definition 2.3. A sheaf F on X is called µH-semistable if F is torsion-free and for
every non-trivial subsheaf E ( F we have

µH(E) ≤ µH(F).

Furthermore, F is called µH-stable if for all E the inequality above is strict. Finally, we
call a subsheaf E destabilising if µH(E) ≥ µH(F).

Example 2.4. Every torsion-free rank one sheaf is automatically stable. A sheaf F is
stable if and only if F ⊗L is stable for any line bundle L. A simple method to construct
stable sheaves of higher rank is using extensions. For example, let E and G be torsion-
free rank one sheaves such that µ(G) − µ(E) = 1, then any non-trivial extension (if it
exists)

0→ E → F → G → 0

is a stable rank two sheaf (cf. Lemma 7.6).

Lemma 2.5. For every torsion-free sheaf F there exists a unique maximal µH-semistable
subsheaf E of maximal H-slope, i.e. for all subsheaves G ⊂ F we have µH(G) ≤ µH(E)
and G ⊆ E in case of equality.

Proof. We can literally translate the proof of [HL97, Lem. 1.3.5] to the case of slope
stability.

Definition 2.6. The subsheaf E above is called maximal destabilising subsheaf.

Definition 2.7. A subsheaf E ⊂ F is called saturated if the quotient F/E is torsion-free.
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Definition 2.8. A torsion-free sheaf F is called reflexive if the embedding into its so-
called reflexive hull F∨∨ is an isomorphism.

Remark 2.9. A reflexive sheaf is locally free outside a subscheme of codimension at
least three. Thus on curves and surfaces every reflexive sheaf is automatically a vector
bundle.

Lemma 2.10. The maximal destabilising subsheaf of a reflexive sheaf is reflexive and
saturated.

Proof. Let E ⊂ F be the maximal destabilising subsheaf with F reflexive. The reflex-
ive hull E∨∨ is a subsheaf of F of the same rank as E . Thus we have µH(E∨∨) ≥ µH(E)
which yields E∨∨ ' E . Furthermore, for every subsheaf E there is the notion of the
saturation of E . A similar reasoning as in the case of the reflexive hull also yields the
second statement of the lemma.

There is another notion of stability, usually referred to as Gieseker stability or
Gieseker−Maruyama stability. The definition is similar to the one of µ-stability, only
the slope is replaced by the Hilbert polynomial:

Definition 2.11. We define the reduced Hilbert polynomial of F (with respect to H) as

pH(F)(l) :=
χ(F ⊗O(lH))

rkF
∈ Q.

On the set of rational polynomials we introduce the lexicographic ordering and denote
it simply by ≤.

Definition 2.12. A sheaf F on X is called Gieseker semistable if for non-trivial sub-
sheaves E ( F we have

pH(E) ≤ pH(F).

Furthermore, F is called Gieseker stable if for every E the inequality above is strict.

Remark 2.13. To compute and compare Hilbert polynomials of sheaves can be very
intricate especially if the dimension of the underlying variety gets big. The computation
of slopes is, usually, much simpler. Thus it is much easier to decide if a given sheaf is
slope stable or not than in the case of Gieseker stability.

Example 2.14. If X is a curve, then Gieseker stability and slope stability coincide and
are both independent of the polarisation H. The slope of a sheaf F is then identified
with degF/ rkF .

As a direct consequence of the definitions we have the following relation between
slope stability and Gieseker stability:
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Lemma 2.15. We have the following implications:

F is µ-stable⇒ F is Gieseker stable⇒ F is Gieseker semistable⇒ F is µ-semistable.

Lemma 2.16. Every Gieseker or µ-stable sheaf F is simple, i.e. Hom(F ,F) = C · idF .

Proof. [HL97, Cor. 1.2.8].

Remark 2.17. One can equivalently formulate the notion of stability in terms of desta-
bilising quotients instead of subsheaves. Using this alternative description we easily find
that for every locally free sheaf F we have

F stable ⇔ F∨ stable.

Often this can simplify the proof of stability: Assume we have a rank three vector bundle
F and we have proven that it does not contain destabilising subsheaves of rank one. If we
can proof that the dual F∨ does not contain rank one destabilising subsheaves neither,
we can conclude that F is stable.

2.2 Moduli Spaces of Sheaves

The importance of the notion of Gieseker stability is due to the fact that there is a very
general theory of the existence and compactness of moduli spaces of Gieseker semistable
sheaves. First of all, we have to fix numerical invariants such as the rank and the Chern
classes of the sheaves we want to parametrise. An elegant way to do so is using Mukai
vectors:

Definition 2.18. Let X be a smooth projective varitey and F a sheaf on X. We call

v(F) := ch(F)
√

tdX ∈ H∗(X,Q)

the Mukai vector of F .

Remark 2.19. Note that for any smooth projective variety X and any class
(1, c1, c2, . . . ) ∈ H∗(X,Q) we can formally define its square root (cf. [Cal05, p. 42]).
If X is a K3 surface, we have tdX = (1, 0, 2) and hence

√
tdX = (1, 0, 1).

Now we fix an element v ∈ H∗(X,Q) and define the moduli functor.

Definition 2.20. For every scheme T we set

M(v)(T ) =

{
isomorphism classes of T -flat sheaves F on X × T such

that Ft is Gieseker semistable and v(Ft) = v for all t ∈ T

}
.

This defines a contravariant functor M(v)(−) : (schemes) → (sets), where for every
morphism T → T ′ the map M(v)(T ′)→M(v)(T ) is obtained by pullback.
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Theorem 2.21. There is a projective scheme M(v) universally corepresenting the func-
torM(v)(−). Furthermore, there are open subschemes Mµ(v) ⊆M s(v) ⊆M(v) parametris-
ing only µ-stable and Gieseker stable sheaves, respectively.

Proof. [HL97, Thm. 4.3.4]. To prove that Mµ(v) ⊆M(v) is open we can use a similar
reasoning as in [HL97, Prop. 2.3.1].

The scheme above is called moduli space of semistable sheaves on X with Mukai
vector v etc. The closed points of Mµ(v) and M s(v) are in one-to-one correspondence
with slope or Gieseker stable sheaves on X with Mukai vector v. Note that in general
M(v) is far from being a fine moduli space. In fact, M(v) parametrises so called S-
equivalence classes (cf. [HL97, Sect. 1.5]).

Remark 2.22. Note that there is also a relative notion of the moduli functor and
moduli spaces: In this case we consider a family X → S of projective schemes together
with a line bundle which is ample on every fibre Xs. A Mukai vector is then an element
v ∈ H∗(X ,Z). The pullback vs of v to the fibres is, of course, locally constant. There is
a relative moduli space MS(v) parametrising sheaves on X such that the restriction to
every fibre Xs is a stable sheaf with Mukai vector vs (cf. [HL97, Thm. 4.3.7]).

Definition 2.23. If the moduli space Ms(v) represents the functor Ms(v)(−), we call
it a fine moduli space.

If Ms(v) is fine, then it satisfies the follwing universal property: For every scheme
T we have Ms(v)(T ) = Mor(T,Ms(v)). For a family G ∈ Ms(v)(T ) we denote the
induced morphism (also referred to as the classifying map) by fG.

Definition 2.24. A Ms(v)-flat family on X ×Ms(v) is called universal family if for
every scheme T, every family G ∈ M(v)(T ) and the classifying map fG : T → M(v)
there is a line bundle L on T such that G ⊗ p?TL ' f ?GE , where pT : X × T → T denotes
the projection.

If it exists, a universal family is unique up to twist by a line bundle from M(v). If
F ∈ Ms(v)({pt}) is stable sheaf on X and [F ] ∈ Ms(v) the image of the classifying
map, we have E|X×[F ] ' F . Unfortunately universal families do not exist in general.
There is a weaker notion:

Definition 2.25. A Ms(v)-flat family E on X × Ms(v) is called quasi-universal if
for every scheme T and every family G ∈ Ms(v)(T ) there is a classifying morphism
fG : T →M(v) and a locally free sheaf W on T such that G ⊗ p?TW ' f ?GE .

Proposition 4.6.2 in [HL97] states that there always exists a quasi-universal family.
The rank of the vector bundles W in the above definition is constant. It is called the
multiplicity of the quasi-universal family E and is usually denoted by σ. For a stable
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sheaf F on X we have E|X×[F ] ' F⊕σ.

The notion of stability heavily depends on the chosen polarisation H. Sometimes it
is useful to emphasise this dependence. In this case we write MH(v) instead of M(v).

In general the moduli spaces above may be highly singular. The local structure
of the moduli space is closely related to the deformation properties of the sheaves it
parametrises.

Proposition 2.26. Let F be a Gieseker stable sheaf on X with Mukai vector v. Then
the Zariski tangent space of M(v) at the point F is given by TFM(v) ∼= Ext1(F ,F). If
Ext2(F ,F)0 = 0, then M(v) is smooth at F .

Proof. [HL97, Thm. 4.5.4].

Here we write Ext2(F ,F)0 for the kernel of the natural trace map Ext2(F ,F) →
H2(X,OX).

The deformation theory of strictly semistable sheaves is even more complicated.

2.3 Moduli Spaces of Sheaves on K3 Surfaces

If we restrict ourselves to the case where X is a projective K3 surface, we can continue
the study of moduli spaces of sheaves in much more detail.

First of all, the Mukai vector of a sheaf F can be written as

v(F) = (r, l, s) = ch(F)
√

tdX = (r, c1, c
2
1/2− c2)(1, 0, 1) = (r, c1, c

2
1/2− c2 + r).

This is an element in H∗(X,Z) = H0(X,Z)⊕ H2(X,Z)⊕H4(X,Z). We can endow the
latter with a lattice structure as follows:

(r1, l1, s1)(r2, l2, s2) := l1 · l2 − r1s2 − r2s1.

We denote this lattice by H̃(X,Z) and call it the Mukai lattice of X. The advantage of
this notion is the following: Let F be a Gieseker stable sheaf on X with Mukai vector
v. By Lemma 2.16 and Serre Duality we have dim Hom(F ,F) = dim Ext2(F ,F) = 1.
Using the Hirzebruch−Riemann−Roch theorem, we deduce

dimTFM(v) = dim Ext1(F ,F) = v(F)2 + 2.

Mukai also introduced a weight two Hodge structure on H̃(X,Z):

H̃
1,1

(X) := H0(X)⊕ H1,1(X)⊕ H4(X), H̃
0,2

(X) := H0,2(X), H̃
2,0

(X) := H2,0(X).

Next, we want to study the local structure of moduli spaces of sheaves on K3 sur-
faces. Since every Gieseker stable sheaf is simple, we can apply Serre duality to infer
Ext2(F ,F) ∼= H2(X,OX) ∼= C. Thus by Proposition 2.26 we find that M s(v) is smooth.
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In general the moduli space M(v) has singularities at points corresponding to strictly
semistable sheaves. To avoid this issue there is a quite general concept to exclude the
existence of strictly semistable sheaves at all. The main references are [HL97, Sect.
4.C] and [Yosh01, Sect. 1.4] in the case of torsion sheaves. There is also a well-written
summary in the appendix of [Zow12]. Let us recall the most important aspects:

Definition 2.27. Let F be a sheaf on X of rank r and Chern classes ci, i = 1, 2. We
define the discriminant of F as

∆F := 2rc2 − (r − 1)c2
1.

Certainly ∆F only depends on the Mukai vector v(F). Thus we write ∆v for ∆F .

Definition 2.28. Fix a Mukai vector v ∈ H∗(X,Z). The set of v-walls is defined as{
ξ⊥ ∩ Amp(X)Q | ξ ∈ Num(X) satisfying

r2

4
∆v ≤ ξ2 < 0

}
.

A polarisation H ∈ Amp(X) is called v-general if it is not contained in a v-wall.

By Lemma 4.C.2 in [HL97] the set of v-walls is locally finite.

Lemma 2.29. Let v ∈ H∗(X,Z) be a primitive Mukai vector. If the polarisation H is
v-general, then there exist no strictly µH-semistable sheaves on X with Mukai vector v.

Proof. [HL97, Thm. 4.C.3].

Thus we can deduce:

Proposition 2.30. If v is primitive and the polarisation H is v-general, then the moduli
space MH(v) is a smooth projective manifold.

The following result due to Mukai is fundamental in the theory of moduli spaces of
sheaves on K3s.

Theorem 2.31. There is a non-degenerate symplectic structure on M s(v) which at
a point corresponding to a Gieseker stable sheaf F coincides with the natural Yoneda
pairing:

Ext1(F ,F)× Ext1(F ,F)→ Ext2(F ,F) ∼= C.

Proof. [Muk84, Thm. 0.1].

Corollary 2.32. Let v be a primitive Mukai vector and H be v-general. Then MH(v)
is a smooth symplectic manifold.
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Finally, we have the following famous theorem by O’Grady:

Theorem 2.33. Let l ∈ NSX be a primitive class, v = (r, l, s) a Mukai vector such
that r ≥ 0 and in the case r = 0, the class l is effective. Let H be a v-general polarisa-
tion. Then MH(v) is an irreducible symplectic manifold deformation equivalent to X [n]

with n = v2/2 + 1. Furthermore, there is an isomorphism of lattices and integral hodge
structures

H2(MH(v)) ∼= v⊥ ⊂ H̃(X,Z),

where on the left hand side the lattice structure is given by the Beauville−Bogomolov
pairing.

Proof. [HL97, Thm. 6.2.5], [O’G96].

Remark 2.34. There are some generalisations of this result to the case of non-primitive
classes l ∈ NSX due to Yoshioka. The interested reader is directed to [Yosh99].

2.4 Induced Automorphisms on Moduli Spaces of Sheaves

In this section we discuss some general aspects of automorphisms on moduli spaces of
sheaves on K3 surfaces which are induced by automorphisms of the underlying surface.

The following proposition on induced automorphisms on moduli spaces is the central
result of this section. Though we are only interested in the case of moduli spaces on K3
surfaces we state it in a more general setting:

Proposition 2.35. Let (X,H) be a polarised smooth projective variety and ϕ an auto-
morphism of X preserving H. Consider a Mukai vector v ∈ H∗(X,Z) which is invariant
under the induced action of ϕ. Then ϕ induces a biregular automorphism ι on M(v).

Proof. Pointwise the automorphism ι should map a stable sheaf F to the pullback
ϕ?F . If M(v) = Ms(v) is a fine moduli space, this assignment can be turned into a
global morphism: Let E be a universal family on X ×Ms(v). We consider its pullback
(ϕ×idMs(v))

?E . This is a flat family of stable sheaves parametrised byMs(v) and, by the
universal property of E and Ms(v), we get a classifying morphism ι : Ms(v) →Ms(v)
satisfying (idX × ι)?(ϕ× idMs(v))

?E ' E .
In general a universal family does not exist but we can use the universal property

of the moduli space M(v) to proceed nevertheless: By pullback, the automorphism ϕ
induces an automorphism of the associated moduli functor. Since M(v) corepresents
the moduli functor, we get the induced automorphism ι.

Remark 2.36. The proposition above can certainly be generalised to the relative set-
ting: Let X → S be an S-flat family of smooth projective varieties together with an
automorphism ϕ of X that acts fibrewise. Let L be a polarisation on X such that for
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every s ∈ S the restriction Ls is preserved by the automorphism ϕs on the fibre Xs.
Furthermore let v ∈ H∗(X ,Z) be a Mukai vector, such that for all s ∈ S the pullback vs
to the fibre Xs is ϕs-invariant. (It is enough to check this on one fibre.) Then ϕ induces
a biregular automorphism ι on the relative moduli space Ms

S(v) → S such that the
restriction ιs coincides with the induced automorphism on (Ms

S(v))s from Proposition
2.35 above.

Remark 2.37. In the case that X is a K3 surface and if Ms(v) is compact and
fine, any universal family E is simple: Let p : X × M(v) → Ms(v) be the second
projection. Since every stable sheaf is simple, the sheaf p?Hom(E , E) is a line bun-
dle. It contains the structure sheaf which corresponds to scalar multiplications. A
splitting of this inclusion is given by the trace map. Hence p?Hom(E , E) ' O and
Hom(E , E) ∼= H0(X ×Ms(v),Hom(E , E)) ∼= H0(Ms(v), p?Hom(E , E)) ∼= C.

Furthermore, if ϕ is an involution, E admits a linearisation with respect to the
involution (ϕ × ι): By the above considerations the sheaf E is (ϕ × ι)-invariant. Thus
we have an isomorphism f : (ϕ × ι)?E → E . Since E is simple, the square f 2 : E =
((ϕ × ι)?)2E → E is given by a scalar λ ∈ C∗. Now we define fλ := 1√

λ
f, for some root√

λ. We have f 2
λ = idE . For a more general treatment we refer to Lemma 1 in [Plo07]

and the remark thereafter.

Lemma 2.38. O’Grady’s isomorphism H2(M(v),Z) ∼= v⊥ of Theorem 2.33 is equivari-
ant with respect to ϕ and ι. Thus we can compute the invariant lattice as

H2(M(v),Z)ι ∼= (v⊥)ϕ.

Proof. This is an easy consequence of the construction of the above isomorphism:
Denote by n the dimension ofM(v). Let E be a quasi-universal sheaf on X×M(v) with
multiplicity σ and denote by q : X×M(v)→ X and p : X×M(v)→M(v) the natural
projections. O’Grady defines a map

H∗(X,Z) → H2(M(v),Z)

α 7→ 1

σ
p?
[
q?α · ch(E) · q?

√
tdX

]
3
, α ∈ H∗(X,Z).

Here the [−]3 indicates the projection onto H6(X ×M(v),Z). Restricting this to v⊥

yields the desired homomorphism which is independent of the choice of E . But by
definition E is (ϕ× ι)-invariant. Thus ch(E) is invariant, too. Hence the lemma.

The above observations lead to a quite general concept to construct and study au-
tomorphisms on moduli spaces of sheaves. This is applied in a very special situation in
Section 7.2. Note that the method could be used in many other situations; for example,
also for moduli spaces of sheaves on abelian surfaces.
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3 Tautological Sheaves

One of the main results of this thesis concerns the stability of so-called tautological
sheaves. In this chapter we collect the most important results concerning these sheaves.

3.1 Definition and Basic Results

Let X be a smooth projective surface and F a sheaf on X. Recall that there is the
universal subscheme Ξn ⊂ X×X [n] and we have the two projections pn : X×X [n] → X [n]

and qn : X ×X [n] → X.

Definition 3.1. The tautological sheaf associated with F is defined as

F [n] := pn?(q
?
nF ⊗OΞn).

Remark 3.2. Very important for the study of tautological sheaves is the following
observation: The universal subscheme Ξn and the nested Hilbert scheme X [n−1,n] are
isomorphic outside codimension four subschemes (cf. Section 1.4). Let U denote the
open subset where they are actually isomorphic. The restrictions of q?nF and σ?nq

?
n−1F

to U are naturally isomorphic. Thus the restriction of F [n] to the image pn(U) in X [n] is

isomorphic to F̃ [n] := ψn?σ
?
nq

?
n−1F (restricted to ψn(U) = pn(U)). Hence we can use F̃ [n]

instead of F [n] as long as we want to study properties that are not sensible with respect

to modifications in codimension four. In the case n = 2 we, in fact, have F̃ [2] ' F [2].

The restriction of pn to Ξn is a flat covering of degree n. Hence the following lemma:

Lemma 3.3. If F is locally free (torsion-free, resp.), so is F [n]. If F has rank r, then
F [n] has rank nr.

Proof. [Scal09b, Rem. 2.5 and Lem. 2.23].

Lemma 3.4. Let F be a locally free sheaf on X. Then

(F [n])∨ ' (F∨)[n] ⊗O(δn).

Proof. Recall that p?nO(δn) is the relative canonical sheaf of the degree n covering pn.
Using Grothendieck−Verdier duality, we have

(F [n])∨ = HomO
X[n]

(pn?q
?
nF ,OX[n]) ' pn?HomOΞn

(q?nF , p?nO(δn))

' pn?(q
?
nF∨ ⊗ p?nO(δn)) ' (F∨)[n] ⊗O(δn).

Lemma 3.5. We have the following formula for the first Chern class of F [n]:

c1(F [n]) = c1(F)X[n] − rk(F)δn.
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Proof. The map pn : Ξn → X [n] is a flat covering of degree n with branch divi-
sor δn. Thus the class of the relative canonical bundle of pn is p?nδn. Hence the
Grothendieck−Riemann−Roch theorem reads

ch(F [n]) = ch(pn?q
?
nF) = pn?(q

?
n ch(F) · tdpn)

= pn?((rk(F), q?nc1(F), . . . )(1,−1
2
p?nδn, . . . ))

= pn?(rk(F), q?nc1(F)− 1
2

rk(F)p?nδn, . . . )

= (n rk(F), pn?q
?
nc1(F)− rk(F)δn, . . . ).

Note that — as in the n = 2 case — we have pn?p
?
nδn = 2δn because along the divisor

2δn two sheets of the degree n covering come together.
Certainly the first Chern class is independent of modifications in codimenion four, i.e.

pn?q
?
nc1(F) = ψn?σ

?
nq

?
n−1c1(F). Denote by fn : Sn−1X×X → SnX the degree n covering

and by pr2 : Sn−1X × X → X the second projection. We have ψn?σ
?
nq

?
n−1c1(F) =

ρ?nfn?pr?2c1(F) = c1(F)X[n] .

3.2 Cohomology and Extension Groups

In this section we want to summarise the results of Scala and Krug about global sections
and extensions of tautological sheaves. These formulas turn out to be a powerful tool
to analyse stability and deformations of these sheaves. The work of Scala and Krug
intensively uses the language of derived categories. Since in this thesis we are only inter-
ested in results concerning honest sheaves, we will concentrate on this case. Therefore
we will not introduce the notion of derived categories but assume that the reader either
is familiar with the basic concept of this field or is willing to skip the few results of this
section where derived categories are mentioned. Throughout this section we consider a
smooth quasi-projective surface X.

Let us start by recalling the fundamental result due to Bridgeland−King−Reid and
Haiman concerning the derived category of coherent sheaves on the Hilbert scheme of
points on a surface.

Theorem 3.6. Let X be a smooth quasi-projective surface. We have an equivalence of
categories

Φ: Db(X [n])→ Db
Sn

(Xn)

called Bridgeland−King−Reid−Haiman or BKRH correspondence, where on the right
hand side we consider the Sn-equivariant bounded derived category on Xn.

The proof of Theorem 3.6 is a combination of [BKR01] and [Hai01]. For a more
detailed account see Section 1.5 in [Scal09a].

Scala computed the image Φ(F [n]) of tautological sheaves under the BKRH corre-
spondence. The exact statement of Scala’s result contains a lot of combinatorial notation.
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Let us only state the result for n = 2. We will also completely omit the linearisation
of Φ(F [n]) which of course is very important for the detailed computations of Scala and
Krug. For n = 2 the equivalence Φ is nothing but Rσ? ◦ ψ? in the notation of Section
1.3 (note that ψ is flat and need not be derived). Thus the description of Φ(F [2]) is an
easy geometric consideration which already appeared in [Dan01]:

Proposition 3.7. We have exact sequences

0→ ψ?F [2] → σ?F�2 → i?σ
?
DF → 0 on X̃ ×X and

0→ Φ(F [2])→ F�2 → ∆?F → 0 on X ×X.

From the description of Φ(F [n]) Scala deduced the following formula for the coho-
mology of tautological sheaves:

Theorem 3.8. For every sheaf F and every line bundle L on X we have

H∗(X [n],F [n] ⊗ LX[n]) ∼= H∗(X,F ⊗ L)⊗ Sn−1 H∗(X,L).

Proof. [Scal09b, Cor. 4.5], [Kru11, Thm. 6.17].

We continue by stating Krug’s formula for the extension groups of tautological
sheaves:

Theorem 3.9. Let F and E be sheaves and L and M be line bundles on X. We have

Ext∗X[n](E [n] ⊗ LX[n] ,F [n] ⊗MX[n]) ∼=
Ext∗X(E ⊗ L,F ⊗M)⊗ Sn−1 Ext∗X(L,M)⊕

Ext∗X(E ⊗ L,M)⊗ Ext∗X(L,F ⊗M)⊗
Sn−2 Ext∗X(L,M).

(7)

Proof. [Kru11, Thm. 6.17].

Krug also gave a description how to compute Yoneda products on these extension
groups (cf. [Kru11, Sect. 7]). The general formulas are extremely long. We will give a
more detailed account on them as needed.

Let us finish this section by deriving a special case of formula (7).

Corollary 3.10. Let X be a K3 surface and let F be a sheaf on X satisfying h2(F) = 0.
Then we have

HomX[n](F [2],F [2]) ∼= HomX(F ,F),

Ext1
X[n](F [2],F [2]) ∼= Ext1

X(F ,F)
⊕

H0(X,F)⊗ H1(X,F)∨. (8)
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Remark 3.11. From these equations we can deduce that tautological sheaves F [2] as-
sociated with stable sheaves F 6' OX are always simple: By Serre Duality a stable sheaf
F 6' OX on a K3 surface satisfies either h2(F) = 0 or h0(F) = 0 and by twisting with
a suitable line bundle we may assume that h2(F) = 0. This is a first indication that
tautological sheaves might be stable.

3.3 Polarisations and slopes

In this section we shall talk about polarisations on the Hilbert scheme of points on a
surface. In general the ample cone of these varieties is not completely known. Never-
theless, if we fix a polarisation H on our surface X, we will define polarisations HN on
X [n], depending on H and an integer N . Furthermore, we shall derive and discuss the
slopes of tautological sheaves with respect to these polarisations. This will be important
when we want to study the stability of these sheaves in Chapters 4 and 5.

Fix a smooth projective surface X and an ample class H ∈ NSX. For any integer
N we consider the class

HN := NHX[n] − δn ∈ NSX [n].

Lemma 3.12. For all sufficiently large N, the class HN is ample.

Proof. For n = 2 the Hilbert−Chow morphism ρ is a blow up. The class HX[2] is the
pullback of an ample class on S2X and −δ is ample on the fibres of ρ. For n > 2 we
proceed by induction. By Corollary 1.19 and Lemma 1.20 we have

ψ?nHN = σ?n(p?n−1(NHX[n−1] − δn−1) +Nq?n−1H)− [Dn].

By induction NHX[n−1] − δn−1 is ample on X [n−1]. Hence for sufficiently large N , ψ?nHN

is ample. By [Laz04, Cor. 1.2.24] HN is ample, too.

In order to compute slopes of tautological sheaves, we need to compute intersection
numbers. We have the following general result:

Lemma 3.13. Let l be a class in NSX. We have

lX[n] .H2n−1
X[n] =

n

2n−1
(l.H)(H2)n−1 and (9)

δn.H
2n−1
X[n] = 0, (10)

where on the right hand side of (9) we consider the intersection in NSX.

Proof. Both lX[n] and HX[n] are pullbacks from SnX along the Hilbert−Chow mor-
phism. We pull back along the n!-fold covering Xn → SnX and obtain the classes l�n

and H�n, respectively. We have

lX[n] .H2n−1
X[n] =

1

n!
(l�n)(H�n)2n−1 =

1

n!

(
n

1, 2, . . . , 2

)
n(l.H)(H2)n−1 =

n

2n−1
(l.H)(H2)n−1.
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In order to prove (10), it is certainly enough to show that

(ψ?nδn).(ψ?nH
2n−1
X[n] ) = 0. (11)

We will use an induction argument. For n = 2, equation (11) reads

D.σ?(H�2)3 = 0.

This is true by Lemma 1.15c). Now for the induction step we use Lemmata 1.18 and
1.20:

(ψ?nδn).(ψ?nH
2n−1
X[n] )

= σ?n
(
(p?n−1HX[n−1] + q?n−1H)2n−1p?n−1δn−1

)
+ σ?n(p?n−1HX[n−1] + q?n−1H)2n−1[Dn]︸ ︷︷ ︸

||

=
(

2n−1
2

)
p?n−1(δn−1.H

2n−3)q?n−1H
2 + ( as above ).

Now by induction the first term vanishes. And for the second term we can apply exactly
the same reasoning as in Lemma 1.15c).

Corollary 3.14. Let L be a line bundle on X with first Chern class l and F a sheaf of
rank r and first Chern class f. We have the following expansions for the slopes of F [n]

and L with respect to HN :

µHN
(LX[n]) = N2n−1 n

2n−1
(l.H)(H2)n−1 +O(N2n−2) and

µHN
(F [n]) = N2n−1 n

2n−1

1

nr
(f.H)(H2)n−1 +O(N2n−2).

If X = A is an abelian surface, there is another candidate for a polarisation. Recall
that we have a summation morphism mn : A[n] → A and at least one additional summand
in NSA[n] containing (NSA)Mn . As will be explained in Lemma 5.7, classes in (NSA)Mn

have degree zero with repect to the polarisation HN , which turns out to be inconvenient
for the proof of stability of tautological sheaves. To circumvent this issue we will consider
the following polarisation:

Lemma 3.15. For all N � 0 the class

Hm
N := NHX[n] − δn +Nm?

nH

is ample.

Proof. By [Laz04, Exa. 1.4.4] the pullback m?
nH is nef. Hence we can apply [Laz04,

Cor. 1.4.10] to conclude that Hm
N is ample.
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4 Stability of Tautological Sheaves:

Regular Surfaces

In this chapter we prove the stability of rank two and rank four tautological sheaves on
the Hilbert scheme of two points and of rank three tautological sheaves on the Hilbert
scheme of three points on a regular surface. Thus fix a smooth projective surface X
satisfying h1(X,OX) = 0 together with an ample class H ∈ NSX. We will use the
terms ’stability’, ’stable’, ’semistable’ etc. to denote µ-stability, µ-stable and so on.

4.1 Destabilising Line Subbundles

In this section we will show that for N � 0 there exist no HN -destabilising line sub-
bundles L ⊆ F [2] in the case F 6' OX . So assume that L was such a destabilising line
subbundle. Hence there is a non-trivial homomorphism in Hom(L,F [2]). Now we have
F [2] ' ψ?r

?
1F . Using adjunction, we get

Hom(L,F [2]) ∼= Hom(L, ψ?r?1F) ∼= Hom(ψ?L, r?1F).

We can write ψ?L ' r?1L1 ⊗ r?2L2 ⊗O(aD) for some line bundles L1 and L2 on X with
Chern classes l1 and l2, respectively. The line bundle ψ?L is S2-invariant since it comes
from X [2]. Thus, in fact, we can assume that L1 ' L2 but for later use we will proceed
in this generality. We have the following result:

Lemma 4.1. Let G and H be locally free sheaves on X ×X and a ∈ Z. We have

Hom
X̃×X(σ?G ⊗O(aD), σ?H) ⊆ Hom

X̃×X(σ?G, σ?H)( ∼= HomX×X(G,H)
)
.

Proof. Consider the ideal sheaf sequence of the exceptional divisor D:

0→ O(−D)→ O
X̃×X → OD → 0.

Tensoring this sequence with O(aD), we have

0→ O((a− 1)D)→ O(aD)→ OD(−a)→ 0. (12)

We apply σ?. For a = 0 we have σ?OX̃×X ' OX×X and for a < 0 sequence (12) gives an

inclusion σ?O(aD) ⊆ OX×X . For a > 0 we observe that the restriction of OD(−a) to a
fibre is isomorphic to OP1(−a) which does not have global sections. Thus again by (12)
σ?O((a− 1)D) ' σ?O(aD). Altogether we see that σ?O(aD) is contained in OX×X for
all a ∈ Z. We use adjunction σ? a σ?to proceed:

Hom(σ?G ⊗ O(aD), σ?H) ∼= Hom(σ?G, σ?H⊗O(−aD))

∼= Hom(G,H⊗ σ?O(−aD)) ⊆ Hom(G,H).

Note that since σ?OX̃×X ' OX×X , the projection formula yields σ? ◦ σ? ' id.
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Lemma 4.2. For every locally free sheaf F and line bundles L1 and L2 on X we have

Hom
X̃×X(r?1L1 ⊗ r?2L2 ⊗O(aD), r?1F) ⊆ HomX(L1,F)⊗ H0(X,L∨2 ).

Proof. Again we use adjunction, the Lemma above and the Künneth formula:

Hom
X̃×X(r?1L1 ⊗ r?2L2 ⊗O(aD), r?1F) ⊆ Hom

X̃×X(r?1L1 ⊗ r?2L2, r
?
1F)

∼= HomX×X(π?1L1 ⊗ π?2L2, π
?
1F) ∼= HomX(L1,F)⊗ H0(X,L∨2 ).

Corollary 4.3. Let F be a µH-stable vector bundle on X of rank r and first Chern class
c1(F) = f. Then r?1F contains no line subbundles r?1L1 ⊗ r?2L2 ⊗O(aD) satisfying:

H.(l1 + l2) ≥ H.f

r
,

except the case r = 1, L2 ' OX and L1 ' F .

Proof. Let r?1L1⊗ r?2L2⊗O(aD) be a line subbundle of r?1F satisfying the hypothesis
of the corollary. We will show that HomX(L1,F) ⊗ H0(X,L∨2 ) = 0 which yields a
contradiction to Lemma 4.2 above.

If H.l2 > 0, we have 0 = H0(X,L∨2 ) and we are done. If H.l2 ≤ 0, we see

H.l1 ≥ H.(l1 + l2) ≥ H.f

r
. (13)

Hence if L1 6' F , by the stability of F we have HomX(L1,F) = 0.
If L1 ' F , we must have r = 1 and equalities everywhere in equation (13), thus

H.l2 = 0. But then again H0(X,L∨2 ) = 0 for all L2 but the trivial line bundle.

Since we are considering regular surfaces, all line bundles on X̃ ×X are of the form
r?1L1 ⊗ r?2L2 ⊗O(aD) as in Corrolary 4.3 above (cf. Section 1.3).

Theorem 4.4. Let F be a µH-stable vector bundle on X of rank r and first Chern class
c1(F) = f, Assume F 6' OX , Then for sufficiently large N, the tautological vector bundle
F [2] on X [2] does not contain any µHN

-destabilising line subbundles.

Proof. Let LX[2] ⊗ O(aδ) ⊆ F [2], (L ∈ PicX) be a destabilising line subbundle. As
explained at the beginning of this section, this line bundle yields a homomorphism
Hom

X̃×X(L�2 ⊗ O(aD), r?1F). Let l := c1(L). By Corollary 3.14 for all N � 0 the
destabilising condition implies

H.l ≥ H.f

2r
.

This is clearly a contradiction to Corollary 4.3.
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4.2 The Cases r = 1 and r = 2

From Theorem 4.4 we deduce:

Corollary 4.5. Let F be a line bundle on X not isomorphic to OX . Then for N suffi-
ciently large, F [2] is a µHN

-stable rank two vector bundle on X [2].

Proof. Since F [2] has rank two, we only have to consider torsion-free destabilising
subsheaves of rank one. If E is such a subsheaf, we can embed it into its reflexive hull
E∨∨. This is a reflexive rank one sheaf, i.e. a line bundle. Since F [2] is locally free, it
is also reflexive. Thus E∨∨ is a subbundle of F [2]. The first Chern classes of E∨∨ and E
coincide, therefore E∨∨ is destabilising. This gives a contradiction to Theorem 4.4.

We can generalise this result to arbitrary torsion-free rank one sheaves on X with
nonvanishing first Chern class:

Theorem 4.6. Let F be a rank one torsion-free sheaf on X satisfying detF 6' OX .
Then for N sufficiently large, F [2] is a µHN

-stable rank two torsion-free sheaf on X [2].

Proof. Every torsion-free rank one sheaf F on a smooth surface can be written as
F ' L⊗IZ for some line bundle L and an ideal sheaf IZ of a zero dimensional subscheme
Z ⊂ X. We thus have an injection F ⊆ L and, of course, c1(F) = c1(L).

Now, since (−)[2] is an exact functor (cf. [Scal09b, Lem. 2.23]), we have F [2] ⊆ L[2].
And since L[2] is torsion-free, so is F [2]. Furthermore, c1(F [2]) = c1(L[2]) because the

cokernel of the inclusion F [2] ↪→ L[2] is O[2]
Z which is supported in codimension two.

Hence the stability of F [2] follows immediately from Corollary 4.5.

Next, we want to consider the case r = rkF = 2. We have seen before that F [2]

cannot contain destabilising line subbundles. In this section we will prove that in most
cases, in fact, F [2] does not contain any destabilising subsheaves. We start with a
technical lemma that we will need in the proof.

Lemma 4.7. Let V be a smooth projective variety and let i : Y ↪→ V be a smooth divisor.
For a rank r sheaf E on Y we have

c1(i?E) = rY.

Proof. This follows easily from the Grothendieck−Riemann−Roch theorem:

ch(i?E) = i?(ch(E) tdi) = i?((r + . . . )(1 + . . . )) = i?(r + . . . ) = rY + . . . .

Here tdi denotes the Todd class of the relative tangent bundle of the embedding i.

Theorem 4.8. Let F be a rank two µH-stable sheaf on X with c1(F) = f. Assume
detF 6' OX . Then for N sufficiently large, F [2] is a µHN

-stable rank four sheaf on X [2].
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Proof. First assume that F is reflexive, i.e. locally free. Let E be a destabilising
subsheaf of F [2]. Write its first Chern class as eX[2] + aδ, e ∈ NSX, a ∈ Z. We may
assume that E is semistable. Similarly to the proof of Corollary 4.5 we can reduce to the
case that E is reflexive and by Lemma 2.10 it is saturated. By Theorem 4.4, E cannot
have rank one. So let us first consider the case rk E = 3 and let us have a look at the
corresponding short exact sequence on X [2]:

0→ E → F [2] → Q→ 0,

where Q is the corresponding destabilising quotient of rank one. Using Lemma 3.4, we
see that the dual of this sequence looks as follows:

0→ Q∨ → (F∨)[2] ⊗O(δ)→ E∨ → Ext1O
X[2]

(Q,OX[2])→ 0.

Note that Ext1O
X[2]

(F [2],OX[2]) vanishes because F [2] is locally free. Since E is saturated,

Q is torsion-free and hence the support of Ext1O
X[2]

(Q,OX[2]) has codimension at least

two, thus vanishing first Chern class. We may assume that Q∨ is reflexive, i.e. locally
free (it is of rank one). (If necessary, we replace Q∨ by its reflexive hull which still gives
a subsheaf of (F∨)[2] ⊗ O(δ) with the same first Chern class.) We have an inclusion
Q∨ ⊗O(−δ) ↪→ (F∨)[2] and we compute its first Chern class as

c1(Q∨ ⊗O(−δ)) = −(c1(F [2])− c1(E))− δ = −(fX[2] − eX[2] − aδ)− δ

= eX[2] − fX[2] + (a− 1)δ.

Now, by Corollary 3.14, the destabilising condition on E reads:

µHN
(E) =

H.e

3
N3H2 +O(N2) ≥ H.f

4
N3H2 +O(N2) = µHN

(F [2]).

Thus H.2(e − f) ≥ −H.f
2

and by Corollary 4.3 the line bundle Q∨ ⊗ O(−δ) does not
admit a homomorphism to (F∨)[2]. A contradiction. Note that the above considerations
are a special instance of the more general fact that a sheaf is stable if and only if its
dual is stable.

Finally, assume that the maximal destabilising subsheaf of F [2] is a rank two sheaf
E . By using adjunction ψ? a ψ?, we get a homomorphism β : ψ?E → r?1F . Now we will
distinguish three cases:

a) rk ker β = 0.
Thus ker β is a torsion subsheaf of E , so it is trivial since E is torsion-free. Hence β is an

isomorphism outside an effective divisor j : Y ↪→ X̃ ×X. Thus coker β can be written
as j?K for some sheaf K on Y . Let Y =

⋃
i Yi be the decomposition into irreducible

components, then by Lemma 4.7 we can write its first Chern class as c1(coker β) =∑
i(Yi · rkKi), where Ki is the restriction of K to Yi. On the other hand we can compute

the first Chern class of coker β directly:

c1(coker β) = c1(r?1F)− c1(E) = f ⊗ 1− e⊗ 1− 1⊗ e− aD.
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Now Y is effective. Thus if rkKi 6= 0 for some i, the class (f − e)⊗ 1− 1⊗ e− aD must
contain an effective divisor. Since D is the exceptional divisor of the blowup σ, this class
is effective if and only if either a < 0 and f = e = 0 (which we excluded) or a ≤ 0 and
(f − e) ⊗ 1 − 1 ⊗ e is effective and nonzero. Evaluating against the polarisation ψ?HN

implies 2H.e < H.f . Together with the destabilising condition on E — which implies
2H.e ≥ H.f — we get a contradiction. If rkKi = 0 ∀i, i.e. c1(coker β) = 0, we must
have f = 0 which we excluded.

b) rk ker β = 2.
This says that β has to vanish on an open subset which contradicts the fact that E
injects into F [2].

c) rk ker β = 1.
Now im β is a rank one quotient sheaf of ψ?E and we write its first Chern class c1(im β) =
l1 ⊗ 1 + 1⊗ l2 + bD. The semistability of E yields

H.e ≤ H.(l1 + l2).

At the same time im β is a rank one subsheaf of r?1F . Denote by im β∨∨ its reflexive
hull. This is a reflexive rank one sheaf, thus a line bundle. And it has the same first
Chern class as im β. The destabilising condition on E implies

2H.e ≥ H.f.

Putting things together, we find a line subbundle in r?1F satisfying

2H.(l1 + l2) ≥ H.f.

This is a contradiction to Corollary 4.3.
Finally, if F is not locally free, we can embed it into its (locally free) reflexive hull

F∨∨ and proceed exactly as in the proof of Theorem 4.6.

4.3 Higher n

In this section we try to generalise the results on destabilising line subbundles in Section
4.1 to higher n. From this generalisation we will be able to prove the stability of rank
three tautological sheaves on X [3].

Let F be a torsion-free µH-stable sheaf on X. Denote its rank by r and its first
Chern class by f . We want to show that the associated tautological sheaf F [n] on X [n]

has no destabilising subsheaves of rank one. We will first assume that F is reflexive, i.e.
locally free. Thus we may assume that a destabilising rank one subsheaf of F [n] is also
reflexive, that is, a line bundle.

Proposition 4.9. For sufficiently large N, there are no µHN
-destabilising line subbundles

in F [n] of the form LX[n] , (L ∈ PicX), except the case r = 1 and L ' F ' OX .
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Proof. Denote the first Chern class of L by l. Using Scala’s calculations of cohomology
groups of tautological sheaves with twists as stated in Theorem 3.8 we can immediately
deduce the following formula for homomorphisms from line bundles of the form LX[n] to
tautological sheaves F [n]:

HomX[n](LX[n] ,F [n]) ∼= HomX(L,F)⊗ HomX(L,OX).

Let us first assume r > 1. Since F is µH-stable, we have necessary conditions for the
existence of a line subbundle of F [n]:

l.H <
f.H

r
and l.H ≤ 0. (14)

The first inequality is due to the stability of F and the second comes from the fact that
if a line bundle has a section, its first Chern class has non-negative intersection with any
ample class H. If LX[n] ⊂ F [n] is destabilising, by Corollary 3.14 we must have

l.H ≥ f.H

nr
.

But this is certainly a contradiction to (14).
If r = 1, we can proceed as above but additionally have to consider the special case

L ' F , i.e. l.H = f.H. The destabilising condition together with l.H ≤ 0 immediately
yields l.H = 0. But now HomX(L,OX) can only be nontrivial if L ' OX .

As a direct generalisation of Lemma 4.1 we have:

Lemma 4.10. For all locally free sheaves G and H on X × X [n−1] and all a ∈ Z we
have:

HomX[n−1,n](σ?nG ⊗ O(aDn), σ?nH) ⊆ HomX×X[n−1](G,H)

Now we consider arbitrary line subbundles LX[n] ⊗ O(aδn), L ∈ PicX, a ∈ Z, and
show that we can reduce to the case of Proposition 4.9:

Lemma 4.11. Let LX[n] ⊗ O(aδn) be a line bundle on X [n], Then for any locally free
sheaf F on X we have

HomX[n](LX[n] ⊗O(aδn),F [n]) ⊆ HomX[n](LX[n] ,F [n]).

Proof. We use Remark 3.2, adjunction, the recursive formulas in Corollary 1.19 and
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Lemma 1.20, Remark 1.21, Lemma 4.10 above and, finally, the Künneth formula:

HomX[n](LX[n] ⊗O(aδn),F [n])

∼= HomX[n](LX[n] ⊗O(aδn), ψn?σ
?
nq

?
n−1F)

∼= HomX[n−1,n](ψ?n(LX[n] ⊗O(aδn)), σ?nq
?
n−1F)

∼= HomX[n−1,n]

(
σ?n
(
p?n−1(LX[n−1] ⊗O(aδn−1))⊗ q?n−1L

)
⊗O(aDn), σ?nq

?
n−1F

)
⊆ HomX×X[n−1](p?n−1(LX[n−1] ⊗O(aδn−1))⊗ q?n−1L, q?n−1F)

∼= HomX(L,F)⊗ HomX[n−1](LX[n−1] ⊗O(aδn−1),OX[n−1]).

Now we can use induction to conclude. The initial step for n = 2 is settled by Lemma
4.1.

We are ready to prove the first main result of this section.

Proposition 4.12. Let F be a torsion-free µH-stable sheaf on X. Assume that its re-
flexive hull F∨∨ 6' OX . Then F [n] does not contain µHN

-destabilising subsheaves of rank
one for all N � 0.

Proof. If F is locally free, we can simply apply Proposition 4.9 and Lemma 4.11 above.
If F is not locally free, we proceed as usual in order to reduce to the locally free case:

Let E := F∨∨ be the reflexive hull of F . It has the same rank and first Chern class
and is a locally free µH-stable sheaf. Thus we get an injection of F [n] into the locally
free tautological sheaf E [n] which again has the same rank and first Chern class. Now
we can apply the lemmata above. Note that every destabilising subsheaf of F [n] also
destabilises E [n].

Since the tautological sheaf on X [3] associated with a rank one sheaf has rank three,
the above proposition is enough to show that these sheaves are stable (except O[3]

X , of
course).

Theorem 4.13. Let F be a torsion-free rank one sheaf on X satisfying detF 6' OX .
Then for all sufficiently large N the associated rank three sheaf F [3] on X [3] is µHN

-stable.

Proof. As usual we can reduce to the case that F is locally free. We have seen that
F [3] cannot contain destabilising subsheaves of rank one. But any destabilising subsheaf
of rank two yields a rank one destabilising subsheaf of the dual sheaf. Using Lemma 3.4
we are done.

4.4 The Case of the Trivial Line Bundle

In the preceding sections we explicitly excluded the case where F is isomorphic to the
trivial line bundle. The proof of Corollary 4.3 fails and, in fact, we have the following
result:
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Proposition 4.14. The rank n tautological vector bundle O[n]
X associated with the trivial

line bundle OX is not µHN
-stable for sufficiently large N.

Proof. By [Scal09b, Cor. 4.5] we have H0(O[n]
X ) ∼= C. Thus the structure sheaf OX[n]

is a line subbundle of O[n]
X . We compare the slopes in order to show that OX[n] is

destabilising. Since c1(OX[n]) = 0, we surely have

µHN
(OX[n]) = 0.

And by 3.5 we have c1(O[n]
X ) = −δn. But 2δn is effective and for N sufficiently large HN

is ample. Hence
0 > −δnH2n−1

N = n · µHN
(O[n]

X ).

47



5 Stability of Tautological Sheaves:

Abelian Surfaces

In this chapter we try to transfer the results of Chapter 4 to the case of abelian surfaces
A. In this case the structure of NS(An) is much more complicated. We prove certain
stability results in the cases n = 2 and n = 1. Of high interest is the restriction of
tautological sheaves to the associated generealised Kummer varieties for which we also
prove stability in some cases.

5.1 Geometric considerations: n = 2

As explained already at the end of Section 1.3, for abelian surfaces A the Néron−Severi
group NS(A×A) is not isomorphic to (NSA)�2. Thus we cannot simply apply the results
of the preceding chapter to this case. In order to prove the stability of tautological
sheaves nevertheless, we will restrict to the case of principally polarised abelian surfaces
(p.p.a.s.) (A,H) of Picard rank one. We begin with a technical lemma:

Lemma 5.1. Let A and A′ be complex tori. Then we have an isomorphism of abelian
groups

NS(A× A′) ∼= NS(A)⊕ Hom(A′, Â)⊕ NS(A′),

where Â denotes the dual torus.

Proof. The proof of this lemma was pointed out to me by H. Ohashi. The Künneth
formula yields a decomposition of NS(A × A′) into direct summands, two of which are
naturally isomorphic to NS(A) and NS(A′), respectively. The remaining summand can
be written as(

(H1,0(A)⊗ H0,1(A′))⊕ (H0,1(A)⊗ H1,0(A′))
)
∩
(

H1(A,Z)⊗ H1(A′,Z)
)
. (15)

We can interpret H1,0(A) ⊗ H0,1(A′) as Hom(H0,1(Â),H0,1(A′)) and so we see that (15)
is just the set of morphisms of integral Hodge structures

H1(Â,Z)→ H1(A′,Z).

Denote by s : A × A → A the group law. An important role will play the class
HM := s?H − H�2, which is called the Mumford class associated with H. By Lemma
1.17 it is linearly independent from the summand (NSA)�2 inside NS(A × A). We will
restrict to a certain (large) set of p.p.a.s.:

A is a p.p.a.s. such that

 NSA ∼= ZH
and

NS(A× A) ∼= NSA�2 ⊕ ZHM .

 (?)
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Lemma 5.2. The class of abelian surfaces satisfying condition (?) is the complement
of a countable union of analytic subsets in the moduli space A2 of principally polarised
abelian surfaces.

Proof. It is well known that the set of abelian surfaces of Picard rank one is very
general in A2 (cf. [BL92, Exerc. 1a), p. 244]). So we can assume NSA ∼= ZH, where H
is a principal polarisation. For the second assertion note that we always have NSA�2 ⊂
NS(A × A) and there is at least one additional summand containing the class HM . In
order to show that for a very general abelian surface no more summands show up, we use
Theorem 9.1 in [BL92] (or Theorem 4.7.1 in [Ara]) — both stating that a very general
A satisfies Hom(A,A) ∼= Z — and Lemma 5.1 above. Finally, let us show that the class
HM is primitive. By Lemma 5.1 it is certainly enough to prove that HM corresponds to
the identity in Hom(A,A). To the class H we can associate the homomorphism

ϕH : A→ Â, x 7→ t?xO(H)⊗O(−H),

which is an isomorphism since H is a principal polarisation and it yields an identification
Hom(A,A) ∼= Hom(A, Â). Furthermore, on A× Â we have the Poincaré line bundle P .
Altogether we can describe the inclusion Hom(A,A) ↪→ NS(A× A) as follows:

Hom(A,A) → Hom(A, Â) → NS(A× A)

f 7→ ϕH ◦ f,
ϕ 7→ c1((idA × ϕ)?P).

Finally, equation (9.8) in [Huy06, Chapt. 9] says that

(idA × ϕH)?P ' s?O(H)⊗O(−H)�2.

Remark 5.3. By the considerations on Page 198 in [Huy06] we see that the first Chern
class of (idA × ϕH)?P is contained in the Künneth summand H1(A,Z)�2. Thus the
identity

s?H = H�2 +HM

is exactly the Künneth decomposition.
If H is not a principal polarisation, the homomorphism ϕH is no longer an isomor-

phism. Thus it is not clear if the class HM is primitive.

Corollary 5.4. If A satisfies (?), we have

NSA[2] ∼= ZHA[2] ⊕ ZHm ⊕ Zδ.

Proof. This follows easily from the assumption (?) and the fact that Ã× A ψ−→ A[2] is
the S2-quotient.

We continue by deriving intersection numbers and slopes for the case n = 2.
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Lemma 5.5. We have the following identities in H8(A× A,Z) ∼= Z:

s?H2 · (H ⊗H) = 4, (16)

s?H2 · (1⊗H2) = s?H2 · (H2 ⊗ 1) = 4 and

s?H · (H ⊗H2) = s?H · (H2 ⊗H) = 4.

Proof. The first equality is true for all p.p.a.s. A if and only if it is true for one. Thus
we may choose A to be the product of two elliptic curves E and E ′ and we represent H
by E × {0} + {0} × E ′. We shall prove the lemma by replacing this representation of
the class H by appropiate translates such that the intersection (16) becomes transversal
and then calculate the set-theoretic intersection. Thus let x1, x2 and y1, y2 be points on
E and E ′, respectively. For all but a finite number of choices of these four points, the
following intersection in A× A = (E × E ′)× (E × E ′) is transversal:

s−1(H + (x1, y1)) ∩ s−1(H + (x2, y2)) ∩ π−1
1 H ∩ π−1

2 H

=
{

(0, y2, x1, 0), (0, y1, x2, 0), (x1, 0, 0, y2), (x2, 0, 0, y1)
}
.

The other equalities can be proven in the same way.

Corollary 5.6. We have

HM(H2 ⊗H) = HM(H ⊗H2) = 0 and (17)

(HM)2 ·H ⊗H = −4.

Proof. The first equality follows directly from the lemma above. Furthermore, we
have

(HM)2 = s?H2 − 2s?H ·H�2 +H2 ⊗ 1 + 1⊗H2 + 2H ⊗H.
Intersecting with H ⊗H yields

(HM)2 ·H ⊗H = 4− 2 · 2 · 4 + 0 + 0 + 2 · 4 = −4.

In the case of regular surfaces we used the polarisation HN := NHX[2] − δ. The
following lemma indicates that this polarisation is not the ideal choice in the abelian
surface case. Note that in analogy to the definition of the Mumford class we defined

Hm := m?H −HA[2] .

Lemma 5.7. We have the following expansion:

Hm ·H3
N = 0 +O(N2).

Proof. We pullback along the double cover ψ : X̃ ×X → X [2]. Note that ψ?HX[2] =
σ?H�2 and ψ?Hm = σ?HM . We have

Hm ·H3
N = 1

2
σ?HM · (σ?HN)3 = 1

2
σ?(HM · (H�2)3) +O(N2)

= 1
2
HM(3H2 ⊗H + 3H ⊗H2) +O(N2).
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Now we use (17) in Corollary 5.6 and we are done.

Thus the leading term in the expansion of the slope of a line bundle with first Chern
class Hm is zero.

In Lemma 3.15 we defined the polarisation Hm
N := NHX[2]−δ+Nm?H. With respect

to this polarisation the slope of line bundles with first Chern class m?H does not vanish:

Lemma 5.8. We have the following expansions:

(Hm
N )3HA[2] = 72N3 +O(N2),

(Hm
N )3Hm = −36N3 +O(N2) and

(Hm
N )3m?H = 36N3 +O(N2).

Proof. First observe that by definition

(Hm
N )3m?H = (Hm

N )3HA[2] + (Hm
N )3Hm.

Therefore, we will only prove the first two equalities. Note that we have H3 ⊗ 1 =
1⊗H3 = 0 = s?H3. We write down the expansion of ψ?(Hm

N )3:

ψ?(Hm
N )3 = N3ψ?(HX[2] +m?H)3 +O(N2)

= N3σ?
(
3(H2 ⊗H +H ⊗H2) + 3s?H(H2 ⊗ 1 + 2H ⊗H + 1⊗H2)

+3s?H2(H ⊗ 1 + 1⊗H)
)

+ O(N2). (18)

Using Lemma 5.5, we have

ψ?((Hm
N )3HA[2]) = ψ?(Hm

N )3σ?H�2

= N3
(
6H2 ⊗H2 + 18s?H(H2 ⊗H) + 6s?H2(H2 ⊗ 1)

+ 6s?H2(H ⊗H)
)

+O(N2)

= N3(6 · 4 + 18 · 4 + 6 · 4 + 6 · 4) +O(N2)

= 144N3 +O(N2).

For the second equality we use Corollary 5.6: We do not have to consider the term
3(H2 ⊗H +H ⊗H2) in the expansion (18). Thus we have

ψ?((Hm
N )3Hm) = ψ?(Hm

N )3σ?(s?H −H�2)

= N3
(
3s?H2(H2 ⊗ 1 + 2H ⊗H + 1⊗H2)− 18s?H(H ⊗H2)− 6s?H2(H ⊗H)

− 6s?H2(H2 ⊗ 1)
)

+O(N2)

= N3(3 · (4 + 2 · 4 + 4)− 18 · 4− 6 · 4− 6 · 4 +O(N2)

= − 72N3 +O(N2).
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5.2 Geometric considerations: n = 3

Now we turn to the case n = 3 which is not essentially different from the case n = 2
but the calculations are somewhat more difficult. We still assume that (A,H) is an
abelian surface satisfying (?). We denote the projections A3 → A by πi, i = 1, 2, 3 and
the projections A3 → A2 by pjk, 1 ≤ j < k ≤ 3. If A satisfies (?), a similar analysis as
in Lemma 5.1 yields

NSA3 ∼=
3⊕
i=1

Zπ?iH ⊕
⊕

1≤j<k≤3

Zp?jkH (19)

Note that no more complicated effects occur since the Néron−Severi group is a subgroup
of the second (!) cohomology. An important class in NSA3 is HM . We need the following
lemma to write this class according to decomposition (19).

Lemma 5.9. We have

s?3H = −
3∑
i=1

π?iH +
∑

1≤j<k≤3

p?jks
?H.

Proof. Certainly s?3H is S3-invariant. Hence we can write

s?3H = a
3∑
i=1

π?iH + b
∑

1≤j<k≤3

p?jks
?H, a, b ∈ Z.

We will intersect with different curve classes to determine a and b. Fix points x0 and y0

in A and intersect with the class l1 := {x0} × {y0} ×H. We have s?3H · l1 = π?3H · l1 =
p?13s

?H · l1 = p?23s
?H · l1 = H2 and all other intersections vanish. This yields 1 = a+ 2b.

Next, we intersect with the class l2 := {x0} × ∆?H. We have π?2H · l2 = π?2H · l2 =
p?12s

?H · l2 = p?13s
?H · l2 = H2 but s?3H · l2 consists of triples (x, y, z) such that x = x0,

y = z ∈ H and x0 + 2z ∈ H. For a general x0 this gives H2 multiplied by the number of
two-torsion points, which is 16. Furthermore, we get the same number for p?23m

?H ·l2 and
the remaining term vanishes. Altogether we get the following system of linear equations:

1 = a+ 2b

16 = 2a+ 18b,

which implies a = −1, b = 1.

Corollary 5.10. We have

HM3 =
∑

1≤j<k≤3

p?jkHM .

Proof. We just plug in the definition of HM from (6) at the end of Section 1.4. We
see that s?3 =

∑3
i=1 π

?
iH +

∑
1≤j<k≤3 p

?
jkHM .
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From (19) and Corollary 5.10 we deduce

NSA[3] ∼= ZHA[3] ⊕ ZHm3 ⊕ Zδ3.

Recall that we defined our polarisation Hm
N as follows:

Hm
N := N(HA[3] +m?

3H)− δ3.

In order to calculate slopes of sheaves on A[3], we need to have an expansion of certain
intersection products in terms of N .

Lemma 5.11. We have:

(Hm
N )5 ·HA[3] = 3 · (Hm

N )5 ·m?
3H +O(N4). (20)

Proof. We have

(Hm
N )5 = N5

(
H5
A[3] + 5H4

A[3]m
?
3H + 10H3

A[3](m
?
3H)2

)
+O(N4)

and we therefore need to compute all terms of the form H i
A[3](m

?
3H)j with i + j = 6,

j ≤ 2. (Note that (m?
3H)j vanishes for j > 2.) All the divisors involved are actually

pullbacks along the Hilbert−Chow morphism ρ and we can therefore compute them on
S3A or, even more easily, their pullbacks on A3. Since we are not interested in the exact
value but only want to compare both sides of (20), we do not care about scaling factors
like the factor 6 when we pull back to A3. To make computations easier we define the
class

Hs := m?
3H +HA[3] .

The images of the classesHA[3] andHs onA3 areH�3 by Lemma 1.20 and
∑

1≤j<k≤3 p
?
jks

?H
by Lemma 5.9, respectively. For degree reasons many terms vanish. We use the fact
that

s?H = H�2 +HM

is the decomposition into Künneth factors (cf. Remark 5.3). We use Lemma 5.5 to
compute the remaining terms:

H6
A[3] =

(
6

2, 2, 2

)
· π?1H2 · π?2H2 · π?3H2 = 90(H2)3,

H5
A[3]Hs = 3 · 2 ·

(
5

2, 2, 1

)
· (p?12s

?H · π?1H · π?2H2 · π?3H2)

= 3 · 2 · 30(H2)3 = 180(H2)3,
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H4
A[3]H

2
s = 3 · (H�3)4 · p?12s

?H2 + 6 · (H�3)4 · p?12s
?H · p?23s

?H

= 3 ·
(

2 ·
(

4

2, 0, 2

)
· π?1H2 · π?3H2 +

(
4

1, 1, 2

)
· π?1H · π?2H · π?3H2

)
· p?12s

?H2

+ 6 ·
(

2 ·
(

4

1, 1, 2

)
· π?1H · π?2H · π?3H2 +

(
4

1, 2, 1

)
· π?1H · π?2H2 · π?3H

+

(
4

2, 0, 2

)
· π?1H2 · π?3H2

)
· p?12s

?H · p?23s
?H

= 3 ·
(
2 · 6 · (H2)3 + 12 · (H2)3

)
+ 6 ·

(
2 · 12 · (H2)3 + 12 · (H2)3 + 6 · (H2)3

)
= 324(H2)3.

Now we resubstitute m?
3H = Hs −HA[3] . We have

H5
A[3]m

?
3H = (180− 90)(H2)3 = 90(H2)3

H4
A[3](m

?
3H)2 = (324− 2 · 180 + 90)(H2)3 = 54(H2)3.

Altogether we have

(Hm
N )5 ·HA[3] = N5

(
90 + 5 · 90 + 10 · 54

)
· (H2)3 +O(N4) = 1080 · (H2)3 +O(N4)

and

(Hm
N )5 ·m?

3H = N5
(
90 + 5 · 54

)
· (H2)3 +O(N4) = 360 · (H2)3 +O(N4).

Remark 5.12. The exact values in equation (20) in Lemma 5.11 are, of course, of no
interest. Much more important is the fact that the degree of H and 3m?

3H with respect
to Hm

N is the same.

5.3 The Case n = 2

Now we will apply the computations of Section 5.1 and obtain similar stability results as
in the case of regular surfaces in Section 4.2. We proceed similarly and will first exclude
destabilising line subbundles. Note that for a p.p.a.s. satisfying (?) we can write every

line bundle L on Ã× A as

L ' r?1M1 ⊗ r?2M2 ⊗ σ?O(bs?H)⊗O(cD)

with Mi ∈ PicA and b, c ∈ Z.

Proposition 5.13. Let A be a p.p.a.s. satisfying (?) and let F be a µH-stable vector
bundle on A of rank r and first Chern class c1(F) = fH, f ∈ Z. Then r?1F does not
contain any line bundle L ' r?1M1 ⊗ r?2M2 ⊗ σ?O(bs?H)⊗O(cD) with c1(Mi) = aiH,
ai, b, c ∈ Z satisfying the tautological destabilising condition

a1 + a2 + b ≥ f

r
,
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but in the case F 'M1,M2 ' OA, b = c = 0.

Remark 5.14. Note that the tautological destabilising condition does not contain c at
all. This is in perfect analogy to Corollary 4.3.

Proof. We consider a line bundle L ' r?1M1 ⊗ r?2M2 ⊗ σ?O(bs?H) ⊗ O(cD) with
c1(Mi) = aiH and ai, b, c ∈ Z. Note that since σ?O(bs?H) comes from A × A, we can
assume — analogously to Lemma 4.1 — that c = 0. Thus it is enough to show that

HomA×A(π?1M1 ⊗ π?2M2 ⊗ s?O(bH), π?1F) (21)

vanishes. To prove this we use adjunction (π?1 a π1?, π
?
2 a π2? and s? a s?) to get the

following three different representations of this vector space:

(21) ∼= HomA

(
M1,F ⊗ π1?(π

?
2M∨

2 ⊗ s?O(−bH))
)

(22)

∼= HomA

(
M2, π2?(π

?
1(F ⊗M∨

1 )⊗ s?O(−bH))
)

∼= HomA

(
O(bH), s?(π

?
1(F ⊗M∨

1 )⊗ π?2M∨
2 )
)
. (23)

According to these three representations we shall consider three cases.
a) a2 + b ≥ 0: The restriction of π?2M∨

2 ⊗ s?O(−bH) to a fibre π−1
1 (x) is isomorphic

toM∨
2 ⊗ t?xO(−bH), where tx : A→ A is the translation by x. This is a line bundle with

first Chern class −(a2 + b)H on A. Thus if a2 + b > 0, the space of global sections on
the fibres is trivial and so is (22). If a2 + b = 0 and b 6= 0, then H0(M∨

2 ⊗ t?xO(−bH))
is zero outside a finite number of x ∈ A. (Note that since H is an ample class, we have
#{x ∈ A | t?xO(−bH) 'M∨

2 } <∞.) Hence π1?(π
?
2M∨

2 ⊗ s?O(−bH)) would have finite
support but since it is torsion-free, it vanishes. The remaining case is a2 = b = 0. Now
H0(M∨

2 ⊗ t?xO(−bH)) = H0(M∨
2 ) vanishes but in the case M2 ' OA. Furthermore,

(22) equals Hom(M1,F). The destabilising condition yields a1 ≥ f
r

which implies
Hom(M1,F) = 0 but in the case F 'M1.

b) a2 < 0: Similar to above we consider the restriction of π?1(F ⊗M∨
1 )⊗ s?O(−bH)

to a fibre π−1
2 (x). Taking global sections, this yields

H0(F ⊗M∨
1 ⊗ t?xO(−bH)) ∼= Hom(M1 ⊗ t?xO(bH),F),

which, by the stability of F , has to vanish since the destabilising condition implies
a1 + b > f

r
.

c) b < 0: Analogously to b) we now use (23). This time the destabilising condition
yields a1 + a2 >

f
r
.

From Lemma 5.8 and Proposition 5.13 above we can deduce:

Corollary 5.15. Assume F 6' OA. Then for N � 0 there are no µHm
N

-destabilising line

subbundles in F [2].
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Proof. Let L′ be a destabilising line subbundle of F [2]. We write its pullback L := ψ?L′
as L = σ?(M�2⊗O(bs?H))⊗O(cD) with c1(M) = aH, a ∈ Z. As usual, by adjunction
we get a homomorphism L → r?1F . By Lemma 5.8 the destabilising condition on L
yields

2a+ b ≥ f

r
,

which implies that L satisfies the tautological destabilising condition from Proposition
5.13.

As in Section 4.2 this result on destabilising line subbundles suffices to prove the
stability of rank two locally free tautological sheaves. We use the same argument as in
the proofs of Theorem 4.6 and Proposition 4.12 to generalise to the torsion-free case.

Theorem 5.16. Let F be a rank one torsion-free sheaf on A satisfying detF 6' OA.
Then the rank two tautological sheaf F [2] is µHm

N
-stable for sufficiently large N.

Next, we prove the analogue of Theorem 4.8. Since the proof is almost the same, we
only touch upon the crucial parts.

Theorem 5.17. Let F be a rank two µH-stable sheaf on A and assume detF 6' OA.
Then for N sufficiently large F [2] is a µHm

N
-stable rank four sheaf on A[2].

Proof. As above we may assume that F is locally free. We write c1(F) = fH, f ∈ Z.
Let E be the maximal destabilising sheaf of F [2]. Write c1(E) = eHA[2] + gm?H + aδ,
e, g, a ∈ Z. We only consider the case that E is of rank two. We use the same notation
as in the proof of Theorem 4.8:

If rk ker β = 0, we must have that

r?1 detF ⊗ ψ? det E∨

has a section. From this we deduce that either a < 0 and detF ' OA (which we
excluded) or a ≤ 0 and the class

(f − e)H ⊗ 1− 1⊗ e− gσ?s?H

on Ã× A is effective and nonzero. This time the evaluation against the polarisation
ψ?Hm

N gives a contradiction to the destabilising condition on E .
If rk ker β = 1, we write c1(im β) = l1H⊗1+1⊗ l2 +hσ?s?H+bD with l1, l2, h, b ∈ Z.

The semistability of E yields

2e+ g ≤ 2(l1 + l2 + h)

and the destabilising condition on E implies

2e+ g ≥ f.
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Thus we found a line bundle in r?1F with

2(l1 + l2 + h) ≥ f

contradicting Proposition 5.13.

5.4 The Case n = 3

In this section we prove the following result:

Theorem 5.18. Let A be a p.p.a.s. satisfying (?) and let F be a rank one torsion-free
sheaf on A satisfying detF 6' OA. Then for all N sufficiently large F [3] is µHm

N
-stable.

We denote the projection A3 → A to the i-th factor by πi and — in analogy to the
case n = 2 — we begin by analysing line subbundles of the sheaf π?1F on A3.

Proposition 5.19. Let F be a µH-stable vector bundle on A of rank r and first Chern
class fH, f ∈ Z. Then π?1F does not contain any line subbundles of the form

L =M�3 ⊗ s?3O(bH),

M∈ PicA, c1(M) = aH, a, b ∈ Z, satisfying the tautological destabilising condition

3a+ b ≥ f

r
,

but in the case a = b = 0,M' F ' OA.

Proof. Again, we distinguish three cases:
a) 2a+ b ≥ 0: We push forward along π1:

Hom(L, π?1F) ∼= H0(π?1F ⊗ L∨)
∼= H0(F ⊗M∨ ⊗ π1?(π

?
2M∨ ⊗ π?3M∨ ⊗ s?3O(−bH)︸ ︷︷ ︸

=:G

)). (24)

Restricting G to a fibre π−1
1 (x), x ∈ A yields (we identify π−1

1 (x) = {x} × A2, keep
the notation for the projections πi, i = 2, 3 but denote with s the multiplication of the
second two factors):

π?2M∨ ⊗ π?3M∨ ⊗ s?t?xO(−bH).

The class of this line bundle on A2 has degree −(2a+ b) with respect to the polarisation
H�2 + s?H (cf. Lemma 5.8). Thus we get a contradiction but in the case a = b = 0 and
M ' OA. In this case we have (24) ∼= Hom(OA,F), which vanishes by the stability of
F but in the case F ' OA.
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b) a < 0: we push forward along π2:

Hom(L, π?1F) ∼= H0(π?1F ⊗ L∨)
∼= H0(M∨ ⊗ π2?(π

?
1(F ⊗M∨)⊗ π?3M∨ ⊗ s?O(−bH)︸ ︷︷ ︸

=:H

)).

Again, we restrict H to a fibre π−1
2 (x), x ∈ A and then take global sections:

H0(H|π−1
2 (x))

∼= H0(π?1(F ⊗M∨)⊗ π?3M∨ ⊗ s?t?xO(−bH))

∼= Hom(π?1M⊗ π?3M⊗ s?t?xO(bH)︸ ︷︷ ︸
=:L′

, π?1F).

But this leads to a contradiction to Proposition 5.13: The first Chern class of L′ is
aH�2 + bs?H and by assumption we have

f

r
≤ 3a+ b < 2a+ b.

c) b < 0: We push forward along s3:

Hom(L, π?1F) ∼= H0(π?1F ⊗ L∨)
∼= H0(O(−bH)⊗ s3?(π

?
1(F ⊗M∨)⊗ π?2M∨ ⊗ π?3M∨︸ ︷︷ ︸

=:E

)).

The fibre of s3 over a point x ∈ A can be identified with A2 as follows:

A2 → s−1
3 (x), (y, z) 7→ (y, z, x− (y + z)).

Under this identification π1 and π2 remain the same and π3 is replaced by tx ◦ ι◦s, where
ι : A→ A is the inverse. Thus we see that the restriction of E to s−1

3 (x) is isomorphic to

π?1F ⊗ π?1M∨ ⊗ π?2M∨ ⊗ s?ι?t?xM∨︸ ︷︷ ︸
=:L′′

.

Now, exactly as in b) above we get a contradiction to Proposition 5.13: The first Chern
class of L′′ is a(H� + s?H) and by assumption we have

f

r
≤ 3a+ b < 3a.

Proof of Theorem 5.18. First of all we can reduce to the case that F is a line bundle
in the same way as in the proof of Theorem 4.6. Next, let L ⊂ F [3] be a destabilising
line subbundle. As usual we see that this yields a nontrivial element in

Hom(L,F [3]) ∼= Hom(L, ψ3?σ
?
3q
?F) ∼= Hom(ψ?3L, σ?3q?F).

By the same reasoning as in Section 4.3 we may assume that L 'MA[3]⊗m?
3O(bH)),

c1(M) = aH, a, b ∈ Z (we do not have any term of the form O(cδ3)). Thus ψ?3L descends
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to a line bundle L′ on A× A[2]. Furthermore, the pullback (idA × ψ)?L′ on A× Ã× A
descends to a line bundle L′′ on A3. Thus we have

Hom(ψ?3L, σ?3q?F) = Hom(L′, q?F)

⊆ Hom((idA × ψ)?L′, (idA × σ)?π?1F)

= Hom(L′′, π?1F).

Looking more closely we see that L′′ ' M�3 ⊗ s?3O(bH). Altogether we end up with a
homomorphism on A3:

M�3 ⊗ s?3O(bH)→ π?1F .
Now by Lemma 5.11 the destabilising condition on L reads

3a+ b ≥ f,

which exactly corresponds to the tautological destabilising condition of Proposition 5.19.

5.5 Restriction to the Associated Kummer Surface

In Section 5.3 we proved the stability of tautological sheaves on the Hilbert scheme of
two points on an abelian surface A. This Hilbert scheme contains the Kummer surface
KmA associated with A. Recall that KmA is a K3 surface. In this section we shall prove
the stability of the restriction of certain tautological sheaves to the Kummer surface.

Let (A,H) be a polarised abelian surface. In this section we do not restrict to
principal polarisations. Also the Picard rank of A may be arbitrary. Recall the notation
from Section 1.2: Denote by b : Ã→ A the simultaneous blowup of all two-torsion points
and by El, l = 1, . . . , 16 the exceptional divisors. Furthermore, we have the quotient
τ : Ã → KmA and we set Nl = τ(El). We want to compare the situation with the
blowup diagram of Section 1.3 and consider this diagram:

A �
� u // A× A

s

""
Ã

b

OO

� � j̃ //

τ

��

Ã× A

σ

OO

//

ψ

��

A

KmA �
� j // A[2]

ρ

==

,

where we define u(x) := (x,−x) and j̃ as the pullback of u and σ. With this convention
we have π1 ◦ u = idA. Finally, note that since ψ is flat, we have j? ◦ ψ? ' τ? ◦ j̃?.

Recall that we have a monomorphism α = τ! ◦ b? : NS(A)→ NS(KmA). Hence fixing
a polarisation H ∈ NSA, we can define a class

HKm
N := Nα(H)− 1

2

∑
l

Nl
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on KmA, which is ample for sufficiently large N. Recall that on A[2] we defined two
different polarisations HN := NHA[2] − δ and Hm

N := N(HA[2] +m?H)− δ.

Lemma 5.20. We have

HKm
N = j?HN = j?Hm

N .

Proof. It is clear that j?m?H = 0 since KmA is a fibre of m. Also observe that the
class of the intersection of the exceptional divisor of the Hilbert−Chow morphism ρ with
KmA is exactly

∑
lNl.

Definition 5.21. Let F be a sheaf on A. We set

FKm := τ?b
?F .

Lemma 5.22. The sheaf FKm is the restriction of the tautological sheaf F [2]:

j?F [2] ' FKm.

Proof. We have

j?F [2] = j?ψ?σ
?π?1F ' τ?j̃

?σ?π?1F ' τ?b
?u?π?1F ' τ?b

?F = FKm.

Now we want to prove the stability of FKm in the case that F is of rank one or two.
The method is completely analogous to the one used in the preceding sections. Thus we
will leave a few details to the reader. As in the previous cases we begin with the analysis
of line subbundles in the pullback b?F :

Proposition 5.23. Let F be a µH-stable sheaf on A of rank r and first Chern class
f ∈ NSA. Then b?F does not contain any line bundle L′ = b?G ⊗ O(

∑
l alEl) with

G ∈ Pic(A), c1(G) = g′ satisfying

H.g′ ≥ 1

r
H.f

but in the case r = 1, G ' F .

Proof. As usual we may assume that F is locally free. We want to show that

HomÃ(b?G ⊗O(
∑
l

alEl), b
?F)

vanishes. Using adjunction (b? a b?) and a similar induction argument as in the proof
of Lemma 4.1, we see that it is enough to prove that

HomA(G,F) = 0.

This easily follows from the stability of F if F 6' G.
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Next, we will show that Proposition 5.23 implies that there are no destabilising line
subbundles in FKm. We only need to calculate slopes.

Lemma 5.24. Let F be a sheaf on A of rank r and first Chern class f. We have

c1(τ?b
?F) = α(f)− r

2

∑
l

Nl.

Proof. We have c1(ωÃ) =
∑

lEl. Thus the Grothendieck−Riemann−Roch theorem
reads

ch(τ?b
?F) = τ?(ch(b?F) tdτ ) = τ?((r, b

?f, . . . )(1,−1
2

∑
lEl, . . . ))

= τ?(r, b
?f − r

2

∑
lEl, . . . ).

Let L be a line bundle on KmA. By equation (1) in Section 1.2 there is a line bundle
G on A and integers al such that

τ ?L ' b?G ⊗ O(
∑
l

alEl).

Set g := c1(G). Note that since L comes from KmA, the line bundle G has to be
symmetric, i.e. ι?G ' G.

Corollary 5.25. Let L be a line bundle on KmA as above. We have

µHKm
N

(FKm) =
1

r
NH.f − 4 and

µHKm
N

(L) = NH.g +
1

2

∑
l

al.

Proof. We pullback all classes to Ã: Note that τ ?(1
2

∑
lNl) =

∑
lEl and τ ?α(f) =

2b?f for all f ∈ NSA. Thus we have α(f).α(H) = 2f.H as stated in Example 1.10.

Furthermore, we have
(∑

lEl
)2

= 16 · (−1) = −16 and
(∑

lEl
)(∑

l alEl
)

= −
∑

l al.
Finally, we have to divide everything by two because we pulled back along a degree two
covering.

Corollary 5.26. Let F be a non-symmetric (i.e. ι?F 6' F) µH-stable sheaf on A. Then
FKm does not contain µHKm

N
-destabilising line subbundles for all N � 0.

Proof. Let L be a destabilising line subbundle of FKm. Again, we can write τ ?L '
b?G ⊗ O(

∑
l alEl) for a symmetric line bundle G ∈ PicA. The destabilising condition

yields

H.g ≥ 1

r
H.f.
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As usal we use adjunction τ ? a τ? to obtain a homomorphism τ ?L → b?F . This gives
a contradiction to Proposition 5.23 but in the case r = 1, G ' F . But this cannot be
since F was chosen not to be symmetric.

We immediately deduce:

Theorem 5.27. Let F be a non-symmetric rank one torsion-free sheaf on A. Then for
all N sufficiently large, FKm = τ?b

?F is a rank two µHKm
N

-stable sheaf.

Example 5.28. We apply the theorem to the case c1(F) = 0. Denote by Â the dual
abelian variety and by Â[2] its two-torsion points. The assignment Pic0A 3 F 7→ FKm

gives a map
Â \ Â[2]→M,

where M :=MHKm
N

(v) is the moduli space of HKm
N -stable sheaves with

v = (2,−1

2

∑
l

Nl,−2).

Note that v2 = 0 and the first Chern class −1
2

∑
lNl is primitive. Hence M is smooth

of dimension two. Since FKm ' (ι?F)[Km], this map is two-to-one. Furthermore, let
us consider the case that F is symmetric, i.e. F ∈ Â[2]. We concentrate on the case
F = OA. We have extensions

0→ O(−1

2

∑
l

Nl)→ E → O → 0.

The sheaf OKm
X is isomorphic to the trivial extension O(−1

2

∑
lNl) ⊕ O (cf. [BHPV04,

Lem. 17.2]), which is not stable. On the other hand every nontrivial extension is µH-
stable, which can be proven as in Lemma 7.6. The vector space of extensions E is
two-dimensional and thus we have a P1 ⊂ M parametrising the E . Altogether we see
that M is isomorphic to the Kummer surface KmÂ of the dual abelian surface Â.

If F has nontrivial first Chern class f ∈ NSA, we may choose a symmetric line
bundle L satisfying c1(L) = −f . Then F ⊗ L is in Pic0(A) and

(F ⊗ L)[Km] ' FKm ⊗O(α(−f)).

Thus the moduli space containing FKm is isomorphic to KmÂ, too.
But by [GH98, Thm. 1.5] the Kummer surfaces KmA andM∼= KmÂ are isomorphic.

We finish the section by proving the analogue of Theorem 4.8.

Theorem 5.29. Let F be a µH-stable rank two sheaf on A such that detF is not
symmetric. Then FKm is a µHN

-stable rank four sheaf on KmA.
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Proof. We exactly imitate the proof of Theorem 4.8. Assume that F is locally free
and let f := c1(F). Let E be a reflexive semistable rank two subsheaf of FKm and write
c1(E) = α(e) +

∑
l alNl. The destabilising condition thus implies

2H.e ≥ H.f.

We have a homomorphism β : τ ?E → b?F . Again, the only difficult case is when ker β =
0: If the first Chern class of the Q := coker β is trivial, we see that the homological
dimension of Q is 2. Since b?F is locally free, this would contradict the fact that τ ?E is
reflexive. Thus Q = 0 and β has to be an isomorphism. But since τ ?E is symmetric and
F is not, we are done.

If there is an effective divisor with first Chern class c1(Q), the line bundle

b? detF ⊗ τ ? det E∨(−
∑
l

alNl)

must have a section. Hence either al < 0 ∀l and detF ' OA (which we excluded) or
al ≤ 0 ∀l and

H.f > 2H.e

which contradicts the stability condition.

5.6 Restriction to K3(A)

Let (A,H) be a p.p.a.s. satisfying (?) and let A[3] be the Hilbert scheme of three points on
A. In this section we prove some results concerning the stability of the restriction of tau-
tological sheaves to the four dimensional generalised Kummer variety j : K3(A) ↪→ A[3].

We have an isomorphism

NS(A[3]) ∼= ZHA[3] ⊕ Zm?
3H ⊕ Zδ3.

Restricting to K3(A), we obtain

NS(K3(A) ∼= Zj?HA[3] ⊕ Zδ3.

Note that again j?m?
3H = 0. Considering the polarisations HN = NHA[3] − δ3 and

Hm
N = N(HA[3] +m?

3H)− δ3 on A[3], we define a polarisation

HK
N := j?HN = j?Hm

N = Nj?HA[3] − j?δ3.

Lemma 5.30. We have

(HK
N )3 · j?δ3 = 0 +O(N4).

Proof. By definition of HK
N we have (HK

N )3 · j?δ3 = j?((HN)3δ3). Now the lemma
follows from equation (10) in Lemma 3.13.
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Proposition 5.31. Let F be a µH-stable sheaf on A of rank r and first Chern class
fH. If F∨∨ 6' OA, then for N sufficiently large FK3 := j?F [3] does not contain any
µHK

N
-destabilising subsheaves of rank one.

Proof. We may assume that F is locally free. Since all line bundles on K3(A) come
from A[3], we may assume that a destabilising line bundle is of the form j?M′ with
M′ ∈ Pic(A[3]). Furthermore, since j?µ?3H = 0, we may assume that we have no
contribution of this summand in M′ and by a similar reasoning as in Lemma 4.1 we
can reduce to the case where we have no contribution of the δ3-summand neither. Thus
there is, in fact, a line bundle M on A such that M′ ' MA[3] . Let l ∈ Z be such that
lH = c1(M).

We consider the following two diagrams:

A[2,3] σ3 //

ψ3

��

A× A[2]

��

A× Ã× Aψoo

σ

��

(K̃3(A), j̃)

ψ′3

��

σ′3 // (B, k)

��

(B̃, k̃)

σ′

��

ψ′oo

A[3] ρ3 //

m3

$$

S3A

s̃3

��

A3oo

s3
xx

(K3(A), j) //

&&

s̃−1
3 (0)

��

(s−1
3 (0), g)oo

xx
A {0} .

The right diagram is a subdiagram of the left one. Where needed the symbols for the
inclusion morphisms are added. For example, (B, k) denotes B := {(x, ξ) | x+m(ξ) = 0}
together with the inclusion k : B ↪→ A × A[2] and K̃3(A) is the strict transform of B
along σ3. In the left diagram we used the abreviations ψ and σ to denote idA × ψ and
idA × σ, respectively.

Note that ψ3 is flat outside codimension four and thus its restriction ψ′3, too, because

K̃3(A) is the preimage of K3(A) under ψ3. Thus for all sheaves G on K3(A) and H on
A[2,3] we have an isomorphism

Hom(G, j?ψ3?H) ∼= Hom(G, ψ′3?j̃?H).

Furthermore, we have

ψ′?3 j
? ' j̃?ψ?3, j̃?σ?3 ' σ′?3 k

?, ψ′?k? ' k̃?ψ? and k̃?σ? ' σ′?g?.

Finally, we have

ψ?3MA[3] ' σ?3(M�MA[2]) and

ψ?(M�MA[2]) ' σ?M�3.
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We denote the projections A3 → A by πi. We have

Hom(j?M, j?F [3]) ∼= Hom(j?M, j?ψ3?σ
?
3π

?
1F)

∼= Hom(j?M, ψ′3?j̃
?σ?3π

?
1F) ∼= Hom(ψ′?3 j

?M, j̃?σ?3π
?
1F)

∼= Hom(j̃?ψ?3M, j̃?σ?3π
?
1F) ∼= Hom(j̃?σ?3(M�MA[2]), j̃?σ?3π

?
1F)

∼= Hom(σ′?3 k
?(M�MA[2]), σ′?3 k

?π?1F) ∼= Hom(k?(M�MA[3]), k?π?1F)

⊆ Hom(ψ′?k?(M�MA[3]), ψ′?k?π?1F) ∼= Hom(k̃?ψ?(M�MA[3]), k̃?ψ?π?1F)

∼= Hom(k̃?σ?M�3, k̃?σ?π?1F) ∼= Hom(σ′?g?M�3, σ′?g?π?1F)

∼= Hom(g?M�3, g?π?1F) ∼= H0(g?(M∨�3 ⊗ π?1F)).

In order to proceed, we choose an isomorphism s−1
3 (0) ∼= A2 by sending (x, y, z) to (x, z)

and denote the projections A2 → A by π̂i. In this picture we have the identifications:
π1 ◦g = π̂1, π2 ◦g =̂ ι◦s and π3 ◦g =̂ π̂2. (Recall that s : A2 → A denotes the summation
map.) Thus pushing forward along p1 (p2 in the second line), we have

H0(g?(M∨�3 ⊗ π?1F)) ∼= H0(F ⊗M∨ ⊗ π̂1?(π̂
?
2M∨ ⊗ s?ι?M∨)) (25)

∼= H0(M∨ ⊗ π̂2?(π̂
?
1(F ⊗M∨)⊗ s?ι?M∨)). (26)

By Lemma 5.30 the destabilising condition of j?M in j?F [3] implies

l ≥ f

3r
.

If l ≥ 0, we see that the right hand side of (25) vanishes but in the caseM' OA ' F .
If l < 0, the destabilising condition implies

2l >
f

r
.

In this case the right hand side of (26) has to vanish by Proposition 5.13.

As usual, from Proposition 5.31 we can deduce the stability of rank three restricted
tautological sheaves associated with rank one sheaves:

Theorem 5.32. Let F be a torsion-free rank one sheaf on A. Assume detF 6' OA.
Then for all sufficiently large N the sheaf j?F [3] is µKN -stable.
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6 Deformations and Moduli Spaces of Tautological

Sheaves

In the preceding two chapters we have proven many results concerning the stability of
tautological sheaves on Hilbert schemes of surfaces. A crucial assumption was always
that the sheaf F on the surface was stable (which is automatically satisfied for every
torsion-free rank one sheaf). In this chapter we want to study deformations of tauto-
logical sheaves and the relation between the moduli spaces of F and F [n]. We will only
consider the case when X is a (projective) K3 surface and mainly focus on the case
n = 2.

The choice of polarisations was crucial for the proof of stability in Chapters 4 and 5.
In order to minimise the complexity of the notation in this chapter, we will refrain from
mentioning the polarisations throughout.

6.1 Deformations of Tautological Sheaves

In this section we will make the following general assumption:(
X is a K3 surface and F a stable sheaf on X with Mukai vector v such that

for every sheaf G ∈ Ms(v) the associated tautological sheaf G [n] is also stable.

)

Note that in the cases where the stability of tautological sheaves has been explicitly
proven the tautological sheaf associated with a sheaf F is stable if and only if it is true
for every other G in the same moduli space. (We are only considering sheaves on K3
surfaces.)

Denote by v[n] ∈ H∗(X [n],Q) the Mukai vector of F [n]. The assignment

F 7→ F [n]

yields a morphism
[−][n] : Ms(v)→Ms(v[n]).

We shall mainly discuss the case n = 2. Let us prove the following lemma which shows
that [−][2] is injective on closed points.

Lemma 6.1. For every sheaf F on X we have

F ' Tor1
OX×X

(O∆, σ?ψ
?F [2]).

Thus we can reconstruct the original sheaf F from the tautological sheaf F [2].

Proof. Recall that we have an exact sequence on X ×X (cf. Propostion 3.7):

0→ σ?ψ
?F [2] → F�2 → ∆?F → 0. (27)
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We tensor this sequence with the structure sheaf of the diagonal ∆ ⊂ X ×X. Of course
we have

π?1F|∆ ' ∆?π?1F ' F
and the higher Tors ToriOX×X

(O∆, π
?
1F) vanish. Therefore we have an isomorphism

Tor1
OX×X

(O∆, σ?ψ
?F [2]) ' Tor2

OX×X
(O∆,∆?F).

By Proposition 11.8 in [Huy06] we find

ToriOX×X
(O∆,∆?F) =

{
F i = 0, 2 and

F ⊗ ΩX i = 1.

Remark 6.2. If we tensor (27) with O∆ as above, the first terms of the resulting long
exact Tor-sequence yield a short exact sequence

0→ F ⊗ ΩX → σ?ψ
?F [2]|∆ → F → 0.

It is not clear if this exact sequence is split or if it is equivalent to the natural extension
corresponding to the Atiyah class of F .

Let us consider a stable sheaf F on a K3 surface X. The stability implies that either
h0(X,F) or h2(X,F) = h0(X,F∨) vanishes. Let us assume the former is the case. (The
case h2(X,F) = 0 can be treated in exactly the same way.) Corollary 3.10 shows that
we have a natural monomorphism

[−][2] : Ext1(F ,F) ↪→ Ext1(F [2],F [2]),

which maps an infinitesimal deformation of F to its induced deformation of F [2].

Definition 6.3. We call an infinitesimal deformation of F [2], the class of which lies
in the image of [−][2] above, a surface deformation. Deformations lying in the other
summand of equation (8) in Corollary 3.10 are referred to as additional deformations.

We conclude:

Proposition 6.4. We have an embedding of moduli spaces

Ms(v) ↪→Ms(v[2]).

The additional deformations are isomorphic to H0(X,F)⊗ H1(X,F)∨.

Corollary 6.5. Let F be such that h1(X,F) = 0. Then we have a local isomorphism of
the corresponding moduli spaces.

Corollary 6.6. Let F be such that Ms(v) is compact and h1(X,G) = 0 for all G ∈
Ms(v). Then we have an isomorphism ofMs(v) with a connected component ofMs(v[2]).
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6.2 The Additional Deformations and Singular Moduli Spaces

In the last section we have seen that the surface deformations of tautological sheaves are
unobstructed. This is not true for all deformations. Indeed, in this section we will give
an explicit construction of an example of a sheaf F on an elliptically fibred K3 surface
such that F [2] is stable and the corresponding point in the moduli space is singular.

To prove this statement let us recall the most basic properties of the Kuranishi map:
The general idea of the deformation theory of a stable sheaf F is that infinitesimal
deformations are parametrised by Ext1(F ,F) and the obstructions lie in Ext2(F ,F).
This is formalised by the so-called Kuranishi map. More precisely it can be shown that
there is a map κ : Ext1(F ,F)→ Ext2(F ,F) such that the completion of the local ring
of the point of the moduli space corresponding to F is isomorphic to the local ring of
κ−1(0) in 0. In general there is no direct geometric description of the Kuranishi map but
it is known that the constant and linear terms of the power series expansion of κ vanish
and that its quadratic part is given by κ2 : Ext1(F ,F)→ Ext2(F ,F), e 7→ 1

2
(e ◦ e).

For a K3 surface this quadratic term always vanishes since it is exactly the Serre
duality pairing which is known to be alternating. But if we consider a tautological sheaf
F [2] the quadratic part of the Kuranishi map may be non-trivial. This would correspond
to the existence of a quadratic part in the equation of the tangent cone of the point
in the moduli space corresponding to F [2]. Consequently, the tangent cone would be
strictly smaller than the tangent space and we would end up with a singularity.

Example 6.7. Let X be an elliptically fibred K3 surface with fibre class E and section
C. Consider the line bundle G := O(kF ), k ≥ 2. We have h0(G) = k + 1 and h1(G) =
k − 1. Certainly G is stable and the moduli space is a reduced point. The rank two
tautological sheaf G [2] is also stable and the tangent space of its moduli space at the
point corresponding to G [2] is isomorphic to H0(X,G)⊗H1(X,G)∨, which has dimension
k2 − 1. The quadratic term of the Kuranishi map vanishes identically but it is not clear
if we can deform G [2] along any of these infinitesimal directions.

Example 6.8. We continue with the same elliptic K3 as above. From [DM89] we learn
that the linear system of the line bundle L with first Chern class C + kE has C as a
base component for k ≥ 2. We have h0(G) = k + 1 and h1(G) = 0. Now let p be a point
on the curve C and denote by Ip the corresponding ideal sheaf. We set F := L ⊗ Ip.
Certainly F is a torsion-free rank one sheaf with nonvanishing first Chern class. Hence
F [2] is stable by Theorem 4.6.

Theorem 6.9. The point in the moduli space corresponding to F [2] is singular.

By the above considerations we have to prove the following lemma:

Lemma 6.10. For the example F [2] = (L ⊗ Ip)[2] the quadratic part of the Kuranishi
map does not vanish.
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Proof. We have to analyse the Yoneda square

Ext1(F [2],F [2]) → Ext2(F [2],F [2]).

x 7→ x ◦ x

Therefore let us use Krug’s formula (8) in Corollary 3.10 to write down the extension
groups explicitly. Note that h2(F) = 0.

Ext1(F [2],F [2]) ∼= Ext1(F ,F)
⊕

H1(F)∨ ⊗ H0(F),

Ext2(F [2],F [2]) ∼= Ext2(F ,F)
⊕

H0(F)∨ ⊗ H0(F)
⊕

H1(F)∨ ⊗ H1(F).

According to this decomposition we can decompose the Yoneda square as well following
the detailed formulas in [Kru11, Sect. 7]:

Ext1(F ,F)
⊕

H1(F)∨ ⊗ H0(F) →
e + a⊗ b 7→

Ext2(F ,F)
⊕

H0(F)∨ ⊗ H0(F)
⊕

H1(F)∨ ⊗ H1(F).

e ◦ e︸︷︷︸
=0

+ (a ◦ e)⊗ b + a⊗ (e ◦ b)

Hence we need to show that the map

Ext1(F ,F)× H0(F)→ H1(F)

is not the zero map. The geometric interpretation of this map is the following: Let
e ∈ Ext1(F ,F) be an infinitesimal deformation of F and ϕ ∈ H0(F) be a global section.
Then ϕ ◦ e is zero if and only if we can deform the section ϕ along e.

It is time to return to the geometry of our example. Since p is on the base curve C,
we have H0(F) ∼= H0(L). The deformations of F are those of Ip, which correspond to
deforming the point p in X. Now if we deform p into a direction normal to C, the space
of global sections will shrink since the point will fail to be a base point of L and thus
we can find a section ϕ ∈ H0(F) that does not deform with e.

The Zariski tangent space is (k + 3)-dimensional and we can explicitly derive the
quadratic equation of the tangent cone. It is equivalent to the intersection of a plane
(corresponding to the surface deformations) and a hyperplane (the additional deforma-
tions and the curve C) in a line (the curve C).

6.3 Deformations of the manifold X [n]

A question which has not been touched so far, is the following: The manifold X [n] has
an unobstructed deformation theory. Does the tautological sheaf F [n] deform with X [n]?

The technique to answer this question is presented in [HT10]. We can summarise as
follows:
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Theorem 6.11 (Huybrechts−Thomas). Let Y be a projective manifold and E a sheaf on
Y. Let κ ∈ H1(Y, TY ) ∼= Ext1(ΩY ,OY ) be the Kodaira−Spencer class of an infinitesimal
deformation of Y and denote by At(E) ∈ Ext1(E , E ⊗ ΩY ) the Atiyah class of E . The
sheaf E can be deformed along κ if and only if

0 = ob(κ, E) := (κ⊗ idE) ◦ At(E) ∈ Ext2(E , E).

For every sheaf E on Y there are natural trace maps

tr : Ext1(E , E ⊗ ΩY ) → H1(Y,ΩY ) and

tr : Ext2(E , E) → H2(Y,OY ),

which — up to a sign — commute with the Yoneda product. Furthermore, it is well
known that

tr(At(E)) = c1(E) and

tr(ob(κ, E)) = ob(κ, det E)

Applying this theorem to our situation, we get the following picture: The tangent
space of the Kuranishi space at the point corresponding to X [n] is isomorphic to

H1(X [n], TX[n]) ∼= H1(X [n],ΩX[n]) ∼= H1(X,ΩX)⊕ Cδn.

We write a class in H1(X [n],ΩX[n]) as (κ, a) with κ ∈ H1(X,ΩX) the class of an
infinitesimal deformation of the surface X and a ∈ C. Unfortunately there is no de-
composition of the Atiyah class At(F [n]) at hand. But we can at least study its trace
tr(At(F [n])) = c1(F [n]) = c1(F)X[n] − rδn, where we set r := rkF . We have:

tr(ob((κ, a),F [n])) = ob(κ, detF)− raδ2
n ∈ H2(X [n],OX[n]).

But we have ob(κ, detF) = κ · c1(F) and δ2
n = 2(1 − n), where we consider the

Beauville−Bogomolov pairing. Thus we see:

• If F deforms along κ, then surely the tautological sheaf F [n] deforms along (κ, 0).

• If the determinant line bundle detF does not deform along κ, then F [n] does not
deform along (κ, 0).

• If κ · c1(F) 6= 2(1− n)ra, the tautological sheaf F [n] does not deform along (κ, a).

Thus there is an interesting hyperplane inside the space of infinitesimal deformations
of X [n] consisting of all pairs (κ, a) such that κ · c1(F) = 2(1 − n)ra: It is an open
question if the tautological sheaf deforms along these directions.
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7 Non-symplectic Involutions on Manifolds of K3[2]-

type

In this Chapter we study non-symplectic involutions on manifolds which are deformation
equivalent to the Hilbert scheme of two points on a K3 surface. In Section 7.1 we
recall Beauville’s classification of 19-dimensional families of non-symplectic involutions
on manifolds of K3[2]-type and give a refinement of this classifcation by means of lattice
theory. The new non-natural example will be constructed in Section 7.2 and we analyse
its fixed locus in Section 7.3.

7.1 19-dimensional families of non-symplectic involutions

In [Beau11] Beauville gave a rough classification of non-symplectic involutions on man-
ifolds of K3[2]-type and proved that the fixed locus F = ∪Fi is the union of smooth
Lagrangian surfaces.

Theorem 7.1 (Beauville). Let Y be of K3[2]-type, ι a non-symplectic involution on Y
and F the fixed locus. Let t be the trace of ι∗ acting on H1,1(Y ).

1. We have
∑

iK
2
Fi

= t2 − 1,
∑

i χ(OFi
) = 1

8
(t2 + 7) and

∑
i e(Fi) = 1

2
(t2 + 23).

2. The local deformation space of (Y, ι) is smooth of dimension 1
2
(21− t).

3. The integer t takes any odd value between −19 and 21.

Proof. [Beau11, Thm. 2].

The maximal dimension of a family of non-symplectic involutions is thus 20. In fact,
the double covers of EPW-sextics by O’Grady [O’G06] constitute a locally complete
family of manifolds of K3[2]-type together with involutions (given by the covering trans-
formations).

In the 19-dimensional case the invariants of F are∑
i

K2
Fi

= 288,
∑
i

χ(OFi
) = 37 and

∑
i

e(Fi) = 156.

An example is discussed in [Beau11]: Let X → P2 be a double cover branched along
a smooth curve C ⊂ P2 of degree six and genus ten. Let ϕ be the covering involution
acting on X. It is well known that ϕ is non-symplectic and it induces a non-symplectic
involution ι = ϕ[2] on Y = X [2]. There is a 19-dimensional family of these double sextics
X → P2 and thus we obtain a 19-dimensional family of pairs (X [2], ϕ[2]). The involution
ϕ[2] is called natural following [Boi12]. Note that the fixed locus of ϕ[2] is the union of
the symmetric square C [2] and the quotient P2 = X/ϕ.

In the recent preprint [OW13] we give a finer classification of 19-dimensional families
of non-symplectic involutions on manifolds of K3[2]-type using lattice theory. Let Y be
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a manifold of K3[2]-type and ι a non-symplectic involution such that the trace t is equal
to −17. The invariant lattice

H2(Y,Z)ι

has rank two and is hyperbolic. We need one definition to be able to state the precise
result of the classification.

Definition 7.2. For a non-degenerate lattice (L, ( , )) and l ∈ L, we define divL(l) ∈ Z≥0

to be the positive number(!) generating the ideal

(divL(l))Z = (l, L) = {(l, l′) ∈ Z | l′ ∈ L}

and call it the divisor of l in L.

Recall that the second cohomology of Y is isomorphic to

Λ := U3 ⊕ E8(−1)2 ⊕ 〈−2〉.

Theorem 7.3. Let ι be an involution acting on Y such that the fixed sublattice Λι is
hyperbolic of rank two. Such ι are divided into four conjugacy classes in O(Λ). They
are distinguished by the properties of Λι as follows.

No. isom. class of Λι property

1 U

2 U(2)

3 〈2〉 ⊕ 〈−2〉 divΛ(g) = 2

4 〈2〉 ⊕ 〈−2〉 divΛ(g) = 1

In No. 3 and 4, g denotes the generator of 〈−2〉 (which is unique up to a sign).
Furthermore, in the cases 1, 2, and 4 there is exactly one 19-dimensional family of

biregular involutions of the given types.

Remark 7.4. The proof of Theorem 7.3 is due to H. Ohashi and can be found in
[OW13].

The natural involution ϕ[2] acting on the Hilbert scheme of two points has the lattice
structure corresponding to No. 3. This will be shown in the next section together with
the construction of a new example realising No. 1. At this point we do not know how
to realise the remaining two types geometrically.

7.2 Construction of a New Non-natural Involution

In this section we construct a 19-dimensional family of moduli spaces of sheaves on K3
surfaces using the methods of Section 2.4 and prove that it is a new example by means
of the lattice theory developed in the preceding section.
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Let π : X → P2 be a double cover branched along a smooth sextic curve C. This
construction yields a 19 dimensional family of K3 surfaces X with involution ϕ given by
exchanging the covering sheets. Assume that Pic(X) ∼= ZH, where H is the pullback of
OP2(1) (thus H2 = 2). The pullback of a general line l ⊂ P2 is a smooth genus two curve
in the linear system |O(H)| ∼= |OP2(1)|, the dual projective plane. Furthermore, from
Pic(X) ∼= ZH it follows that we only have three kinds of degenerations: If l is tangent
(bitangent) to C, the pullback is an elliptic (rational) curve with one (two) ordinary
double point(s) and if l is tangent to C in an inflection point, the pullback is an elliptic
curve with an ordinary triple point. The sextic C cannot have triple tangents since the
pullback of such a line would split into two smooth rational curves inX which span a rank
two lattice inside PicX. Note that, in particular, all curves in the linear system |O(H)|
are reduced and irreducible. The locus of X having Picard rank one is the complement of
a countable union of closed subvarieties inside the moduli space of polarised K3 surfaces.
And finally, it is well known that the involution ϕ is non-symplectic. (If ϕ preserved the
symplectic form, the quotient would have to be symplectic as well.)

The involution ϕ induces the natural involution ϕ[2] on the corresponding Hilbert
scheme of two points X [2]. We can regard X [2] as the moduli space of ideal sheaves of
two points on X. Recall that for any sheaf F of rank r and Chern classes c1 and c2 we
define its Mukai vector by

v(F) := ch(F)
√

tdX = (r, c1, c
2
1/2− c2 + r).

This vector is an element of the Mukai lattice which as an abelian group is isomorphic
to

H0(X,Z)⊕ H2(X,Z)⊕ H4(X,Z).

The Mukai vector of the ideal sheaf of two points can be computed as (1, 0,−1). By
Lemma 2.38 we see that the invariant lattice H2(X [2],Z)ι is spanned by (0, H, 0) and
(1, 0, 1). Thus it is isomorphic to 〈2〉 ⊕ 〈−2〉. The second summand corresponds to the
exceptional divisor in X [2].

Now we come to the construction of the new example. Consider a length three
subscheme Z ⊂ X with ideal sheaf IZ .

Lemma 7.5. We have

h1(IZ(H)) =

{
1 if Z lies on a curve DZ ∈ |O(H)|,
0 otherwise.

Proof. We have a short exact sequence

0→ IZ(H)→ OX(H)→ OZ → 0.

The corresponding long exact sequence of cohomology starts with

0→ H0(IZ(H))→ H0(OX(H))→ H0(OZ)→ H1(IZ(H))→ 0.
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Both terms in the middle are three dimensional and the map is just the evaluation map
of the sections in the points of Z. Thus h1(IZ(H)) ≥ 1 if and only if h0(IZ(H)) 6= 0,
which exactly means that Z is contained in a curve D ∈ |O(H)|. But Z cannot lie
on two different curves D 6= D′ since H2 = 2 < length(Z) and D and D′ cannot have
common components because both are reduced and irreducible.

Let us assume from now on that Z is contained in a curve DZ ∈ |O(H)|. We therefore
have a section s ∈ H0(IZ(H)) and by the lemma a unique nontrivial extension

0→ OX
α−→ F → IZ(H)→ 0. (28)

Lemma 7.6. Every such non-trivial extension F is stable.

Proof. This follows from a more general argument which can be found in [Yosh97, Lem.
2.1]. For the convenience of the reader we shall repeat it in this special case. We only have
to check rank one subsheaves. These are all of the form L = OX(aH)⊗IZ′ with a ∈ Z and
Z ′ ⊂ X a finite length subscheme. The slope of F is 1, the slope of L is 2a. Thus if L is
destabilising, we must have a ≥ 1. If the induced map L → IZ is non-zero, we must have
a = 1. Thus L = IZ′(H). The resulting map Ext1(IZ(H),OX) → Ext1(IZ′(H),OX)
maps the class of (28) to zero. But the kernel is Ext1(IZ(H)/IZ′(H),OX) = 0. This is
a contradiction to the fact that our extension was chosen to be non-trivial. Thus we get
a map L → OX , but since a ≥ 1, this has to be zero, too.

Proposition 7.7. Denote the Mukai vector of F by v0. The moduli space M(v0) is an
irrducible symplectic manifold with an induced regular involution ι.

Proof. Recall that the Picard rank of X is one. Thus the ample cone of X consists
of one ray and there are no walls. (This follows since there are no elements in PicX of
negative square (cf. Definition 2.28)). ThusM(v0) is an irreducible symplectic manifold.
By Proposition 2.35 we have an induced regular involution.

Remark 7.8. Note that in this special case we can deduce the regularity of the involution
ι (as proven in Proposition 2.35) directly: The invariant lattice ofM(v0) coincides with
the Picard group and thus any ample class is mapped to itself. Hence the birational
involution ι is regular (cf. [Fuj81, Cor. 3.3]).

Theorem 7.9. There is a 19-dimensional family of manifolds of K3[2]-type admitting a
non-symplectic involution with invariant lattice isomorphic to U. Every member of this
family is isomorphic to a moduli space of sheaves M(2, H, 0) on a polarised K3 surface
(X,H) admitting a double cover to P2. This family is different from the 19-dimensional
family of natural non-symplectic involutions on the Hilbert schemes of two points.

Proof. Let K1 denote the moduli space of polarised K3 surfaces of degree two. (Every
such K3 surface is obtained as a smooth double sextic π : X → P2 and the polarisation

74



H is given by the pullback π?OP2(1).) Note that K1 is an irreducible quasi-projective
variety. Over K1 there does not exist a universal family. Following [Sze99, Lem. 2.7],
there exists a finite cover K′ → K1 with K′ smooth together with a complete family
ψ : X → K′ of degree two K3 surfaces. The family X comes together with a polarisation
L such that for all t ∈ K′ the restriction Lt is just given by H, the pullback of a line.
As explained in [HL97, Section 6.2], we can construct a relative moduli space of sheaves
ρ : M → K′ on the fibres of ψ such that for every point t ∈ K′ the fibre Mt := ρ−1(t)
is isomorphic to the moduli space M(2, c1(Lt), 0) of sheaves on the surface Xt. If t
corresponds to a surface of Picard rank one, we have seen that the moduli space is
smooth. Moreover, the set of points t, where ρ is smooth, is open. Thus we find a
Zariski dense open subset of K◦ ⊆ K′ such that the restricted family M◦ constitues a
19-dimensional family of irreducible symplectic manifolds.

The family X certainly carries a non-symplectic involution, which preserves the po-
larisation L. By Proposition 2.35 and Remark 2.36 we see that we have a biregular
induced involution on the relative moduli space M◦ → K◦ acting fibrewise. If t ∈ K′
is a point corresponding to a surface Xt of Picard rank one, then the involution on
Mt is exactly the involution ι discussed above. From Lemma 2.38 we immediately de-
duce that ι is non-symplectic. The Mukai vector of a sheaf F in an extension (28) is
v0 = v(F) = (2, H, 0), so indeed its length is 2 and the invariant lattice is generated by
(1, 0, 0) and (0, H, 1). Thus it is isomorphic to U .

Remark 7.10. The construction (28) of F is a so-called Serre-construction, a cor-
respondence between codimension two subschemes and rank two vector bundles as a
generalisation to the correspondence between divisors and line bundles. The degener-
acy locus of global sections of F define codimension two subschemes of X, the defining
section α in (28) corresponds to the subscheme Z itself.

Remark 7.11. Note that the general involutions in the families No. 2 and 3 of Theo-
rem 7.3 cannot be realised as moduli spaces of sheaves whose involutions are naturally
induced from an involution of the surface (cf. [OW13]).

7.3 The Fixed Locus

We continue with a few sheaf-theoretic considerations in order to understand the fixed
locus F of the involution ι on the moduli space M(v0).

Lemma 7.12. We have h0(F) = 2.

Proof. This follows easily from (28) since H0(IZ(H)) = Cs.

Lemma 7.13. Two length three subschemes Z,Z ′ ∈ B define isomorphic sheaves F if
and only if DZ = DZ′ and ODZ

(−Z) ' ODZ′
(−Z ′).
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Proof. The ”if” direction is trivial. Conversely, let s and s′ be the sections of OX(H)

vanishing on Z and Z ′, respectively. They yield injections OX
s−→ IZ and OX

s′−→ I ′Z .
Furthermore, for Z and Z ′ we have unique extensions of the form (28) (p.74) and by
assumption the two sheaves obtained are isomorphic. Altogether we have a commutative
diagram

0

��

0

��
OX

α′

��

OX
s
��

0 // OX α // F //

��

IZ(H) //

��

0

0 // OX s′ // IZ′(H) //

��

Q //

��

0

0 0 ,

where the quotient Q is ODZ
(H|DZ

− Z) ' ODZ′
(H|DZ′

− Z ′).

Let D ∈ |O(H)| be a smooth curve and Z ⊂ D a length three subscheme. We
consider the degree three line bundle OD(Z). Using Grothendieck−Riemann−Roch we
can easily compute its Mukai vector:

v′ := v(OD(Z)) = (0, H, 2).

Lemma 7.14. We have M(v0) ∼=M(v′).

Proof. Note that by the same argument as in the proof of Proposition 7.7 the moduli
spaceM(v′) is an irreducible symplectic fourfold. We can make the isomorphism explicit
(this was pointed out by M. Lehn): For a sheaf F ∈ M(v0) we consider the following
short exact sequence:

0→ OX ⊗ H0(X,F)
ev−→ F → Q→ 0.

By Lemma 7.12 the quotient Q is a torsion sheaf supported on a curve D ∈ |O(H)|,
which coincides with Q ' OD(H|D − Z) from the proof of Lemma 7.13 above for some
choice of a length three subscheme Z ⊂ D defined by a section of F . Dualising Q and
then tensoring with OD(H|D) gives the corresponding point in M(v′). By Lemma 7.13
this is an isomorphism.

Remark 7.15. The moduli space M(v′) can be regarded as a relative compatified
Jacobian: Denote by U → |O(H)| the universal family of curves in |O(H)| (cf. [HL97,
Sect. 3.1]). Inside X [3] we have the relative Hilbert scheme U [3] → |O(H)| of subschemes
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Z ∈ X [3] lying on a curve DZ ∈ |O(H)|. There is a relative compactified Abel map

f : U [3] →M(v′)

over |O(H)| with generic fibre a projective line, which — at least over points correspond-
ing to smooth curves — is given by the assignment

U [3] 3 Z 7→ ODZ
(Z).

If D is a smooth curve, the fibre over D of the map

g : M(v′)→ |(O(H)|, OD(Z) 7→ D

is precisely the Jacobian J 3D of degree three line bundles on D.
By Lemma 7.12 each sheaf F defines a one dimensional family of length three sub-

schemes in X, which exactly corresponds to the fibre of f over F , where we regard F as
a point in M(v′) via the isomorphism M(v0) ∼=M(v′) of Lemma 7.14.

Certainly U [3] is invariant under the induced involution ϕ[3] on X [3] and f is equivari-
ant with respect to ϕ[3] and the action ι onM(v0) ∼=M(v′). Hence g : M(v′)→ |O(H)|
is a ι-invariant Lagrangian fibration.

Theorem 7.16. The fixed locus of (M(v0), ι) consists of two smooth connected surfaces
F1 and F2 which are both branched coverings of P2 of degree six and ten, respectively.

Proof. We use the isomorphismM(v0) ∼=M(v′) of Lemma 7.14. By Remark 7.15 we
see that we have a ι-invariant fibration g : M(v0) → |O(H)|, where the action on the
base is, of course, trivial. Therefore ϕ acts on every fibre. A general point D ∈ |O(H)|
corresponds to a smooth genus two curve which is a double cover of a line ramified at
six points p1, . . . , p6 which are exactly the points in D∩C. Also they are the fixed points
of the hyperelliptic involution ιD on D. The fibre g−1(D) can be identified with the
Jacobian J 3D and the involution on J 3D is given by pulling back divisors along ιD.
There are exactly 16 fixed points in J 3D which are all of the form pi + pj + pk for some
i, j, k. We divide the set of fixed points into two sets. The first consists of the six classes
of divisors of the form 3pi for some i. The second set consists of classes of divisors of the
form pi + pj + pk for i, j, k distinct. Now let C? ⊂ |O(H)| denote the locus of tangent
lines to C, i.e. the dual curve. As the curve D moves in the open set |O(H)| \ C? the
fixed points deform with it in the obvious way. In this way we obtain two surfaces F̃1

and F̃2 which are unramified coverings of |O(H)| \ C? of degree six and ten.
What is left to do, is to show that the closures F1 and F2 of F̃1 and F̃2, respectively, do

not intersect and are both connected. (Here I want to thank Manfred Lehn for pointing
out an error in an earlier version of this theorem and for indicating the beautiful proof of
the revised statement.) For the first assertion we define a function on the set of degree
three line bundles L on curves D ∈ |O(H)|\C? as follows: For any such curve D and any
line bundle L on D we consider the space of global sections H0(D,L). The hyperelliptic
involution ιD acts by pullback on this vector space. We set r(L) := dim H0(D,L)ιD .
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For a line bundle L1 corresponding to a divisor 3pi we have r(L1) = 2: Every divisor in
the linear system |L1| is of the form pi + p + ιD(p) for some p ∈ D. This gives a two-
dimensional space of sections which are all ιD-invariant. On the other hand, for a line
bundle L2 associated with a divisor pi+pj+pk with i, j, k distinct, the only fixed divisors
in this linear system are pi + pj + pk and pl + pm + pn with {i, j, k, l,m, n} = {1, . . . , 6}.
Thus r(L2) = 1. This analysis shows that the function r takes different values on open
parts of the surfaces F1 and F2. Since the fixed locus is smooth, the two surfaces cannot
intersect.

In order to show that F1 and F2 are connected, it is certainly enough to show that
we can deform a divisor of the form p1 + pj + pk on a smooth genus two curve D into
the divisor p2 + pj + pk. We consider the situation that D specialises to a nodal elliptic
curve, where the points p1 and p2 come together. (This is the double cover picture of
a general line in P2 specialising to a tangent.) Denote the node by q. The limits of the
divisors p1 and p2 in the compactified Jacobian are both given by the divisor q.

Remark 7.17. In order to proof that the surfaces F1 and F2 do not intersect one can
also proceed as follows: We want to show that we cannot deform a divisor of the form
2p1 to the divisor p1 + p2. Again, we can look at the limits of these divisors in the
compactified Jacobian of the singular curve, where p1 and p2 come together to form a
node q. The support of both limits consists of the node q, but the scheme structure is
different. The limit of the divisor p1 + p2 is a length two subscheme supported at q
consisting of the point q together with a horizontal tangent vector. (Here we think of all
curves being branched over a horizontal P1.) On the other hand, the divisor 2p1 is a fibre
of the two-to-one map to P1. Thus the limit point has to be a fibre, too. Indeed, the
limit is a length two subscheme consisting of the node q together with a vertical vector.
This length two subscheme collapses when mapped to P1.
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