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Abstract

Direct detection of gravitational-wave emission is expected not only to further increase
our confidence in the validity of Einstein’s General Relativity theory, but generally enrich
our understanding of the universe. The subject of this thesis is the improvement of the
data analysis techniques in the search for previously-unknown objects, such as rapidly
spinning neutron stars, which are possible emitters of continuous gravitational waves.

Coherent wide parameter-space searches for continuous gravitational waves are typi-
cally limited in sensitivity by their prohibitive computing cost. Therefore semicoherent
methods, such as StackSlide can often achieve a better sensitivity. An analytical method
for finding optimal StackSlide parameters at fixed computing cost is presented. This
method assumes ideal conditions of gap-less data with Gaussian stationary noise. The
obtained solution suggests either the usage of all of the available data, or a finite opti-
mal observation time. Various practical examples for the application of this optimization
framework are given, illustrating the potential gains in sensitivity compared to previous
searches.

The analytical framework to find optimal semicoherent search parameters is then ex-
tended to a numerical optimization method, in order to take into account the possible
gaps in real detector data and noise level changes. This results in the practical implemen-
tation of a data selection procedure. For comparison with previously obtained results
the numerical optimization method is first applied to ideal data, and then the ideal
conditions are gradually relaxed. Finally, the performance of this method is illustrated
on real detector data.

The interesting parameter-space regions selected in a wide parameter-space semico-
herent search need fully coherent follow-up investigation in order to confirm a possible
gravitational wave emitter. Two different methods to compute the minimal required
integration time of a fully coherent follow-up search are derived and compared.

A general framework for the transition from a semicoherent to a fully coherent search
using all the data in two stages is developed. The practical implementation of this
two-stage follow-up scheme is suitable for systematic follow-up of candidates at feasible
computational cost.

The two-stage follow-up procedure is used to investigate candidates from the Ein-
stein@Home all-sky search for periodic gravitational waves in LIGO S5 data. All hard-
ware injections identified by the Einstein@Home search are recovered and another nine
outliers of unknown origin are followed-up. No significant gravitational wave events are
found.

Keywords: continuous gravitational wave detection, follow-up searches, data analysis.
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Kurzfassung

Die direkte Beobachtung von Gravitationswellen wird nicht nur die Zuversicht in der
Allgemeine Relativitätstheorie steigern, sondern auch im allgemein das Wissen über das
Universum weiter bereichern. Das Thema der vorliegenden Dissertation ist die Weiteren-
twicklung der Methoden für die Suche nach unbekannten Objekten, zum Beispiel schnell-
rotierende Neutronensterne, die kontinuierliche Gravitationswellen abstrahlen können.

Die Sensitivität der kohärente Suche nach kontinuierlichen Gravitationswellen ist
beschränkt durch die hohe erforderliche Rechenleistung. Entsprechend erreichen
inkohärente Methoden, z.B. StackSlide, oft bessere Sensitivität. Zuerst wird eine ana-
lytische Methode präsentiert, um die optimalen Parameter der StackSlide-Suche bei kon-
stanter Rechenleistung zu ermitteln. Dabei werden ideale Bedingungen angenommen,
nämlich kontinuierliche Daten und stationäres gaußsches Rauschen. Es wird gezeigt, dass
entweder alle Daten benutzt werden sollen, oder es gibt eine optimale Beobachtungszeit.
Verschiedene Beispiele von praktischer Bedeutung und die mögliche Verbesserung der
Sensitivität werden diskutiert.

Die analytische Methode wird dann mit einer numerischen Optimierung erweitert um
den diskreten Charakter der reellen Daten, wie auch die Fluktuation des Rauschens, im
Betracht zu ziehen. Die praktische Umsetzung der Methode führt zu einem Verfahren
zur optimalen Datenauswahl. Die numerische Optimierung wird zunächst unter idealen
Bedingungen eingesetzt und mit der analytischen Methode verglichen. Danach werden
die Anforderungen an der Daten gelockert und zum Schluss werden reelle Detektordaten
benutzt.

Die Kandidaten einer inkohärenten Suche benötigen eine kohärente Nachuntersuchung.
Zwei verschiedene Methoden für die Berechnung der minimalen erforderlichen Beobach-
tungszeit werden präsentiert.

Es wird ein allgemeines Verfahren zum Übergang von inkohärenten zu kohärenten
Suchen entwickelt. Durch die praktische Implementierung einer zwei-stufigen Version
des Verfahrens wird gezeigt, dass eine systematische Nachuntersuchung von inkohärenten
Kandidaten mit kohärenten Methoden mit realistischen Rechenleistungen realisierbar ist.

Die zwei-stufige Nachuntersuchungsmethode wird an Kandidaten aus der
Einstein@Home Suche in LIGO S5 Daten angewandt. Die hardwaresimulierten Signale,
die durch die inkohärente Suche identifiziert wurden, werden vollständig bestätigt. Neun
weitere Kandidaten werden mit dieser Methode untersucht, keiner davon wird als eine
reelle Gravitationswelle nachgewiesen.

Schlagwörter: kontinuierliche Gravitationswellen, Nachuntersuchungsmethoden,
Daten Auswertung.
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Synopsis

The thesis is divided into three parts:

• Part I - Introduction. In Chap. 1 we discuss the generation of gravitational waves
(GW) in linearized gravity, GW detectors and GW sources. Chap. 2 is dedicated
to the searches for continuous gravitational waves, in particular the signal model
and detection statistics with emphasis on F -statistic based searches. This part is
closed with a short Chap. 3, describing the Mesh Adaptive Direct Search class of
algorithms for constraint optimization, which will be applied in later chapters.

• Part II - Semicoherent Search Optimization. This part is focused on studying the
optimal semicoherent search parameters required to maximize the sensitivity of a
search at fixed computing cost. Chap. 4 provides analytical treatment of the prob-
lem using the StackSlide semicoherent search under ideal conditions. Semicoherent
search optimization using real data is considered in Chap. 5.

• Part III - Fully-coherent Follow-up Studies. The final part considers the treat-
ment of outliers of semicoherent searches. In Chap. 6, we derive two different
methods to compute the minimal required observation time in order to distin-
guish gravitational-wave candidates from Gaussian noise at a given false-alarm
and false-dismissal probability. Chap. 7 introduces a follow-up strategy suitable
for systematic follow-up of candidates using all of the available data. An applica-
tion of this method is presented in Chap. 8, where we first recover the hardware
injections identified in a recent Einstein@Home search for continuous gravitational
waves, and then discard other loud outliers as consistent with Gaussian noise.

The introductory part of this work is based on references [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13] and references therein, although additional publications are referenced where
appropriate. Part II and III are based on my published papers, e.g., Chaps. 4, 6 and 7,
and publications in preparation, e.g., Chaps. 5 and 8. This work has been done under
the supervision and in collaboration with Dr. Reinhard Prix.
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Part I.

Introduction

1





1. Gravitational waves

Around 1936 Einstein arrived at a a remarkable conclusion about the existence of
gravitational-wave radiation, a consequence of his own theory of General Relativity
(GR), namely [14]:

“Together with a young collaborator1, I arrived at the interesting result
that gravitational waves do not exist, though they had been assumed a cer-
tainty to the first approximation.”

However, Einstein accepted later that this conclusion had been erroneous, as pointed out
by Robertson and Infeld. Some 40 years later, in 1975, the discovery of the first binary
pulsar (PSR1913+16) by Hulse and Taylor [15] provided the first indirect evidence for
the existence of gravitational waves.

This chapter is organized as follows. In Sec. 1.1 we discuss linearized gravity and wave
generation, and in Sec. 1.2 we discuss gravitational-wave detectors. Possible sources, in
particular of continuous gravitational waves, are discussed in Sec. 1.3.

1.1. Linearized gravity and wave generation

Following Schutz [1], gravity and its action on matter in GR is described based on
the idea of a curved manifold with a metric tensor g. The law how the source of the
gravitational field, namely the stress-energy tensor T , determines the metric is given by
Einstein’s equation, which in component notation and geometrized units (c = 1, G = 1)
are

Gµν = 8πT µν , (1.1)

where Gµν is the Einstein tensor

Gµν ≡ Rµν − 1

2
gµνR , (1.2)

with Rµν the symmetric Ricci tensor and R = gµνRµν the Ricci scalar 2. The Ricci
tensor is obtained by contraction of the Riemann curvature tensor

Rµ
ναβ = ∂αΓµνβ − ∂βΓµνα + ΓµσαΓσνβ − ΓµσβΓσνα , (1.3)

1Nathan Rosen
2We use the Einstein summation convention summing over repeated indices. We raise and lower indices

using the metric.

3



1. Gravitational waves

on the first and third indices, i.e., Rµν = Rα
µαν , and

Γγνα =
1

2
gγµ(∂αgµν + ∂νgµα − ∂µgνα) (1.4)

are the Christoffel symbols.
In the limit of a weak gravitational field the metric tensor gµν can be expressed as a

small perturbation |hµν | � 1 of the Minkowski metric ηµν , i.e.,

gµν = ηµν + hµν . (1.5)

Keeping terms linear in hµν , with its trace reverse

h̄µν ≡ hµν − 1

2
ηµνhαα , (1.6)

and using the Lorentz gauge
∂ν h̄

µν = 0 , (1.7)

the Einstein tensor can be written in the form

Gµν = −1

2
�h̄µν , (1.8)

where � ≡ ηµν∂µ∂ν is the wave operator. Thus the linearized formulation of (1.1) is

�h̄µν = −16πT µν , (1.9)

Far outside the source of the field with T µν = 0 we therefore obtain the wave equation

�h̄µν = 0 , (1.10)

with solutions of the form
h̄µν = Hµνei(ωt−

~k~x) , (1.11)

where ~k is the wave vector, ω is the angular frequency of the wave and H is a tensor.
The solution (1.11) is a plane wave. In the transverse-traceless (TT) gauge we have

h̄TTµν = hTTµν . (1.12)

In a frame where the wave is traveling in the z-direction, HTT
µν takes the form

HTT
µν =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 , (1.13)

where h+ and h× are the polarization amplitudes. Consider two particles at rest, one

4



1. Gravitational waves

h+ 6= 0
h× = 0

h+ = 0
h× 6= 0

Phase: 0
π
2 π 3π

2 2π

x

y

Figure 1.1.: The effect of a gravitational wave passing in z-direction through a circle of
free particles.

at the origin and another one at x = l, y = z = 0. Computation of the proper distance
yields [10]

∆l =

∫ l

0

dx
√
gxx

=

∫ l

0

dx
√

1 + hTTxx

≈
∫ l

0

dx (1 +
1

2
hTTxx )

≈ (1 +
1

2
hTTxx )l . (1.14)

This means that the larger the separation between the test particles, the larger the
effect of a passing gravitational wave. Furthermore, the effect is proportional to the
perturbation, hTTxx , and thus, small. The effect of a gravitational wave passing in z-
direction through a circle of free particles is schematically depicted in Fig. 1.1.

In the limit where the gravitational-wave length is much smaller compared to the
distance to the source, but much larger than its size, the perturbation h can be computed
using the “quadrupole formula” [5]

hTTij (t) ' 2G

c4r
ÏTTij (t− r/c) , (1.15)

where

I ij(t) =

∫
d3x xixjρ(t, x)(t− r/c, x) (1.16)
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1. Gravitational waves

is the quadrupole tensor with mass density ρ(t, x) and

ITTij = PikI
klPlj −

1

2
PijPklI

kl (1.17)

is its projection using the transverse projection operator

Pij = δij − n̂in̂j , (1.18)

with n̂i = xi/r the unit vector in the propagation direction. Using the quadrupole
tensor, the gravitational-wave luminosity is expressed as [5]

L =
1

5

G

c5

〈...
I ij

...
I
ij
〉
, (1.19)

where 〈.〉 denotes the time average over several periods.

1.2. Gravitational-wave detectors

The pioneering work of Joseph Weber in the 1960s at Argonne National Laboratory
and at the University of Maryland [16] is considered as the beginning of experimental
gravitational-wave physics, further driven by Ronald Drever and Rainer Weiss in the
1990s.

There are mainly two conceptually different types of devices designed for the detec-
tion of gravitational radiation. The earlier technology of Resonant-mass detectors, also
known as bar detectors, rely on the excitement of acoustic modes of oscillation of the
bar due to a passing gravitational wave. The second type, interferometric detectors,
use laser interferometry to measure the change of the optical path length produced by
gravitational radiation [5].

1.2.1. Resonant-mass detectors

The past, present, and future of this type of detector is comprehensively reviewed by
Aguiar [17]. The bar detectors were most successful in the 90’s with their third gener-
ation, where the bar network of 5 detectors, namely Allegro (Baton Rouge, Louisiana,
USA), Auriga (Padova, Italy) Fig. 1.2(a), Explorer (CERN, Geneva, Switzerland), Nau-
tilius (Roma, Italy) and Niobe (Perth, Australia), has been in continuous operation
mode. With advancements of interferometric detectors, bar detectors have been outper-
formed in terms of sensitivity and frequency range. There is still some effort to overcome
these problems by using spherical (MiniGRAIL Fig. 1.2(b), Mario Schenberg) instead of
cylindrical detectors and so-called “dual bar” detectors [18][19][20].
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1. Gravitational waves

(a) (b)

Figure 1.2.: (a) A resonant bar (Auriga). (b)A spherical detector (MiniGRAIL).

1.2.2. Interferometric detectors

A simple interferometric gravitational-wave detector can be realized with a Michelson
interferometer. In such a device, a beam of laser light is sent through a beam splitter
in two directions, the arms of the interferometer. At the end of the arms, the light is
reflected back by the mirrors. The suspended mirrors represent freely-falling test masses
in the plane of the interferometer. If the arm lengths are equal, up to an integer number
of the wavelength, then the light travels back to the laser. Otherwise a fraction of it
can be detected at the output port. Thus, if the device is set up, such that light is not
transmitted in the absence of gravitational radiation, a passing gravitational wave could
be detected, by observing the light at the output port when one of the arms is squeezed,
while the other is stretched by the passing gravitational wave. The strain, h(t), caused
by the wave is proportional to the ratio of the change in the distance in the arm length
∆l to the arm length l [5]

h(t) ≈ ∆l

l
. (1.20)

In an interferometric GW detector the strain sensitivity is constrained by the following
noise sources (though this is a non-exhaustive list of noise sources):

• Shot Noise - the measurement of the output power consist effectively in counting
of the number of photons at the output photodetector and improves with higher
laser power.

• Radiation Pressure Noise - is introduced by the fluctuating number of photons
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1. Gravitational waves

Figure 1.3.: Schematic layout of an interferometric gravitational-wave detector [21], dis-
playing power-recycling and Fabry-Perot cavities.

reflecting off the mirrors, thus acting with a stochastic force, which shakes the test
masses.

• Seismic Noise - the Earth’s ground is not static but in continuous vibration due
to earthquakes, human activities and local phenomena like winds and a micro-
seismic background. For ground-based detectors, attenuation filters, e.g., masses
and springs, and / or a set of pendulums, can reduce this type of noise to levels
interesting for gravitational-wave detection for frequencies above 10 Hz [3].

• Thermal Noise - appears in the suspensions and the test masses and depends on
the temperature, e.g., the Brownian motion of the coatings of the mirrors.

• Gravity Gradient Noise - seismic surface waves yield fluctuation of the Earth’s
density, which gravitationally couples with the mirrors. This effect can be actively
attenuated or as alternative the detector can be placed underground [22][23].

Some examples of upgrades to simple Michelson interferometers to improve the sensi-
tivity are[22]:

• Fabry-Perot cavity - adding a partially transmissive mirror along an optical axis
tuned such that light power builds-up inside the cavity effectively increases the
arm length; see Fig. 1.3.
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• Power Recycling - light that travels back to the laser and would normally be
lost can be re-injected to increase the amount of laser power circulating in the
interferometer; see Fig. 1.3.

• Signal Recycling - sidebands created on the light due to a gravitational-wave signal
will appear at the output port and can be reflected back into the detector for further
amplification.

• Squeezed Light - injection of squeezed states of light in the output of the interfer-
ometer can improve shot noise limited sensitivity [24].

The initial large-scale detectors

The initial large-scale interferometric detectors include the Laser Interferometric Gravitational-
wave Observatory (LIGO) in Hanford and Livingston (USA), the VIRGO detector in
Pisa (Italy), the GEO600 detector near Hannover (Germany) and the TAMA300 detec-
tor in Tokyo (Japan). Aerial photographs of the first four detectors, which make up the
detector network of the LSC-Virgo (LVC) collaboration, are shown in Fig. 1.4.

The TAMA300 power-recycled Michelson interferometer was the first large-scale de-
tector in operation with 300 m long arms.

LIGO Hanford (LHO) operated two power-recycled Michelson interferometers with
Fabry-Perot 4 km (H1) and 2 km (H2) long arm cavities. Similarly, LIGO Livingston
(LLO) operated one power-recycled Michelson interferometer with 4 km arm cavities.
The Virgo detector is also a power-recycled Michelson interferometer with 3 km long
arm cavities. After the fifth Science Run (S5) of the LIGO detectors and the first Virgo
Scientific Run (VSR1) of the Virgo detector, the instruments were upgraded for the S6
and VSR2/3 joint run. Presently, the initial detectors have been decommissioned in
order to install the next generation of interferometric detectors: Advanced LIGO and
Virgo

The GEO600 detector is a dual-recycled Michelson interferometer with 600 m long
arms. While less sensitive compared to the other three detectors of the LVC, it has been
used to develop technologies for the advanced detectors. Further, this is the only large
scale detector remaining in operation until the advanced detectors come online.

Future gravitational-wave detectors

The second generation of ground based detectors is currently being installed. Using
higher laser power, more massive mirrors, and better seismic noise attenuation, these
advanced detectors are expected to have an improved strain sensitivity by approximately
an order of magnitude [25]. In addition, the world-wide network of detectors will likely
be extended with one of the Hanford LIGO detectors being installed in India and another
large-scale interferometer, Kagra, in Japan [26] whose novel features include cryogeni-
cally cooled mirrors installed underground.
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(a) (b)

(c) (d)

Figure 1.4.: Aerial view of the first generation of large-scale gravitational-wave detectors:
(a) LIGO Hanford, (b) LIGO Livingston, (c) Virgo, and (d) GEO600.

The design study of a third generation detector, the Einstein Telescope (ET), has been
finished, proposing a large gravitational-wave observatory underground [27]. The detec-
tor consist of 3 interferometers with 10-km-long arms nested in a triangle shape. The
expected sensitivity of ET is an order of magnitude better than the expected sensitivity
of the second generation of detectors.

Finally, the space-born observatory, LISA, still periodically redesigned due to mostly
non-scientific constraints, is expected to bring valuable knowledge about sources emitting
in the low-frequency range [10−4 Hz− 10−1 Hz] of the gravitational-wave spectrum.
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1.2.3. The detector response to a gravitational wave and the noise
output

Denoting the two arm lengths of an interferometric detector with l1, resp. l2, the mea-
sured strain of the detector is defined as:

h(t) ≡ ∆l1
l1
− ∆l2

l2
. (1.21)

Assuming that the arm lengths of the detector are much shorter than the gravitational
wavelength, the measured strain from the above equation can be written in terms of the
gravitational-wave polarizations as [28]:

h(t) = F+(t)h+(t) + F×(t)h×(t) , (1.22)

where the functions F+(t) and F×(t) are the so called antenna-patterns. These functions
depend on the source position and polarization, as well as on the orientation of the
detector. More details will be given in Chap. 2. For now it is sufficient to assume, that
the measurable strain is a small quantity, i.e., the signal is buried deep in the noise of
the detector.

Independent of the type of the detector, the collected data is a time series x(t). We
assume that the data is noise dominated x(t) ≈ n(t) and represented by a stationary
random process, i.e., we have a constant zero mean

〈n〉 = lim
T→∞

1

T

∫ T/2

−T/2
dt n(t) = 0 , (1.23)

and the covariance

C(n(t1), n(t2)) ≡ E[(n(t1)− E[n(t1)])(n(t2)− E[n(t2)])] , (1.24)

depends only on the time difference t1 − t2, where E[x] ≡
∫

dx x p(x) is the expectation
value. It is also useful to define the Fourier transform of a time series x(t), which yields
the frequency series x̃(f), i.e., [5]

x̃(f) =

∫ ∞

−∞
dt x(t)e−2πift , (1.25)

and the inverse Fourier transform

x(t) =

∫ ∞

−∞
df x̃(f)e2πift (1.26)

Using Parseval’s theorem,

∫ ∞

−∞
dt |x(t)|2 =

∫ ∞

−∞
df |x̃(f)|2 , (1.27)
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the power of the noise is [5]

〈
n2
〉

= lim
T→∞

1

T

∫ ∞

−∞
dt n2

T (t)

= lim
T→∞

1

T

∫ ∞

−∞
df |ñT (f)|2

= lim
T→∞

2

T

∫ ∞

0

df |ñT (f)|2

=

∫ ∞

0

df Sn(f) , (1.28)

where nT (t) is the windowed data

nT (t) = n(t) , (1.29)

if t ∈ (−T/2, T/2) and otherwise 0. The quantity Sn(f) is the (single-sided) power
spectral density [5]

Sn(f) ≡ lim
T→∞

2

T

∣∣∣∣∣

∫ T/2

−T/2
dt n(t)e−2πift

∣∣∣∣∣

2

. (1.30)

With this, we characterize a detector using the strain spectral sensitivity, or spectral
amplitude,

√
Sn(f), which has dimension 1/

√
Hz. For example, the sensitivity curves

of the LIGO, VIRGO and GEO600 detectors during the S5 and VSR1 Science Runs are
plotted in Fig. 1.5.

1.3. Sources of gravitational waves

Depending on the time evolution of the gravitational waveform, we distinguish three
major classes of astrophysical gravitational wave sources: bursts, stochastic and periodic.

1.3.1. Stochastic Gravitational-Wave Background and
Gravitational-Wave Bursts

The stochastic gravitational-wave background is a signal originating from the contribu-
tion of a large number of individual sources that cannot be distinguished from each other.
This is commonly referred to as source confusion. These signals could be of cosmological
or astrophysical origin. Although detection of cosmological sources with foreseeable tech-
nologies is unlikely, observation of the astrophysical stochastic background is expected
to happen with a space-born gravitational-wave observatory, e.g., LISA [5].

Gravitational-wave bursts are short-lived signals (compared to the observation time)
produced in some catastrophic astrophysical event, e.g., gravitational collapse, pulsar
glitches, or another highly energetic event. These signals are either unmodeled or mod-
eled. Unmodeled signals have to be searched without any other external information
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Figure 1.5.: LIGO, VIRGO and GEO600 strain sensitivity during the S5 / VSR1 Science
Runs. Note that the LIGO detectors reached their design sensitivity.

[29], or by using external triggers, e.g., gamma-rays [30] or neutrino emission [31] to
constrain the parameter space. The prototypical example for modeled burst sources
are compact binary coalescences. The coalescence of compact binary stars, e.g., white
dwarfs, neutron stars or black holes, is expected to be the most promising source for
detection with future detectors [5]. The expected signal is sinusoidal with increasing
frequency and amplitude, a chirp.

1.3.2. Continuous Gravitational Waves

A continuous gravitational-wave signal is a long-lived signal, emitted, for example, by
rapidly spinning neutron stars. The emission of GWs from such objects is primarily
driven by non-axisymmetric distortion, non-axisymmetric instability or free precession
[32].

Non-axisymmetric distortion

A non-axisymmetric spinning neutron star at distance d emits gravitational waves at a
frequency f , that equals twice the rotational frequency ν, i.e., f = 2ν, with a character-
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istic amplitude

h0 =
16π2GI3ν

2

c4d
ε , (1.31)

where G is the gravitational constant, I3 is the moment of inertia about the rotational
axis, and

ε =
|I1 − I2|

I3

(1.32)

is the ellipticity. I1 and I2 are the other moments of inertia about principle axis. The
possible values of the ellipticity are highly uncertain. An estimate of the maximal
ellipticity is given by [32]

ε = 5× 10−7
( σ

10−2

)
, (1.33)

where σ is the breaking strain of the solid crust. For an ellipticity ε ∼ 10−6 [33], using
Eq. (1.31) we obtain

h0 ≈ 1× 10−26
( ε

10−6

)( I

I38

)(
1 kpc

d

)(
f

100 Hz

)2

, (1.34)

where I38 = 1038 kg m2 is the typical moment of inertia for a neutron star [34].

Non-axisymmetric instabilities

Rapidly rotating neutron stars can undergo various non-axisymmetric instabilities at
birth or during accretion. Hydrodynamics and gravity could drive dynamical instability,
if the the star is very rapidly rotating, i.e., if the ratio of the kinetic energy T to
the gravitational binding energy W exceeds a critical ratio T/W > 0.27 [35]. This
instability will deform the star into a bar shape, which will emit gravitational waves in
the kHz frequency band. The instability of a star with lower rate of rotation is driven
by gravitation when the surface waves are counter-rotating in the rotating frame of the
object but co-rotating with the star in the frame of a distant observer. In this case,
positive angular momentum is removed from the star and the momentum of the mode
becomes increasingly negative. This is known as the Chandrasekhar-Friedman-Schutz
(CFS) instability. For f - and p- modes this instability is relevant at high frequencies
close to the breakup-limit of the star, and, thus only partially interesting as a source of
gravitational waves [11]. The r-modes, however, satisfy the CFS instability at arbitrary
frequencies. The expected emission frequency for GWs from r-modes is f ≈ 4

3
ν [36].

While it is expected that the amplitude of the waves is weaker than the amplitude of
burst events, the time scale of emission is uncertain, ranging from few months after the
birth of the neutron star to several thousands of years [36].

Free precession

A spinning neutron star in free precession, which is the rotation of the angular velocity
vector around the axis of the angular momentum, is expected to produce gravitational
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waves of amplitude [32]

h0 ∼ 10−27

(
θw

0.1 rad

)(
1 kpc

d

)( ν

500 Hz

)2

, (1.35)

where θw is the “wobble” angle. The maximal wobble angle supported by the crust is
expressed as [37]

θmax
w ' 1.8× 10−2

(
500 Hz

ν

)2 ( σ

10−3

)
, (1.36)

where σ is the breaking strain of the crust. In [37], it has been shown that the gravi-
tational wave frequency is expected at ν + νprec, 2ν and 2(ν + νprec), where νprec is the
precession frequency.
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2. Searches for continuous
gravitational waves

The main focus of the present work is the improvement of the searches for continu-
ous gravitational waves from unknown sources performed in a distributed computing
environment, e.g., Einstein@Home. Typical candidates for such unknown objects are
neutron stars.

The theoretical prediction of neutron stars has been made by Baade and Zwicky in
1934 [38], while the discovery of the first radio pulsar (PSR B1919+21) by Jocelyn Bell
Burnell had to wait until 1967 [39]. Neutron stars have mean density, which is two to
three times the normal nuclear density 2.8 × 1014 g cm−3 in a radius R ∼ 10 km with
masses in the range one to two Solar masses, M� = 1.989×1033 g, spinning with periods
down to P ∼ 1.4 ms, and with large magnetic fields up to B . 1015 G[40].

In this chapter in Sec. 2.1 we discuss the signal model for a continuous wave emitter
and in Sec. 2.2 a detection statistic, called F -statistic. In Sec. 2.3 we summarize some
of the basic aspects of the F -statistic based searches.

2.1. Signal model

Consider the Earth, the Sun and a gravitational-wave source, as schematically presented
in Fig. 2.1. The phase φ(t) of the expected signal from an isolated neutron star can be
written as [41]:

φ(t) = φ0 + 2π
s∑

k=0

f (k)(τref)

(k + 1)!
[τ(t)]k+1 , (2.1)

where φ0 is the initial phase, f (k) is the k-th spindown, i.e., the k-th time derivative
of the frequency at some fixed reference time τref in the solar-system barycenter (SSB),
and τ(t) is the arrival time of the wavefront in the SSB. Expressed as a function of the
time t measured at the detector site, τ(t) yields 1:

τ(t) = t+
~r(t) · ~n
c
− τref , (2.2)

1In numerical computations, the right-hand-side of Eq. (2.15) is completed by the addition of the solar
system Einstein delay term and subtraction of the Shapiro delay. The Einstein delay accounts for
the effect of the gravitational redshift and time dilation due to the motions of the Earth and other
bodies, while the Shapiro delay is due to the propagation of the wave in the curved space-time in
the solar system [42].
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ι

~ξ

~η

ψ ~u

~v

SSB

~n

−~n

~r

~rorb
~rspin

Sun

Earth

Detector

Source

Figure 2.1.: The Sun, the Earth, a Detector, and a gravitational-wave Source: ~r points
from the solar-system barycenter (SSB) to the detector, ~rorb is the orbital
vector pointing from the SSB to the center of the Earth, ~rspin points from
the Earth’s center to the detector, ~n points to the source, ι is the inclination
angle, and ψ is the polarization angle, i.e., the counter-clockwise measured
rotation of the ~u− ~v plane around −~n with respect to the ~ξ − ~η plane.
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with the vector from the SSB to detector

~r(t) = ~rorb(t) + ~rspin(t) , (2.3)

where the vector
~n = (cos δ cosα, cos δ sinα, sin δ) (2.4)

expressed in equatorial coordinates, right ascension α and declination δ, points to the
source. The orbital vector ~rorb(t) points from the SSB to the center of the Earth, and ~rspin

points from Earth’s center to the gravitational-wave detector. The relative motion of the
detector causes frequency modulation of the received signal, which is well approximated
by the Doppler relation [43]

f̊(t) ≈ f(τ)

(
1 +

~v · ~n
c

)
, (2.5)

where f̊(t) is the instantaneous frequency at the detector, f(τ) is the SSB frequency of
the wave, and ~v is the detector velocity. In addition, the signal undergoes amplitude
modulation, caused by the antenna-patterns.

By convention a SSB fixed reference frame is constructed {~ξ, ~η,−~n} with ~ξ ≡ ~n×~z/|~n×
~z| and ~η ≡ ~ξ×~n [44]; see Fig. 2.1. Denoting with {~u,~v,−~n} the orthonormal basis of the
wave plane, the polarization angle ψ describes the counter-clockwise measured rotation
of the ~u− ~v plane around −~n with respect to the ~ξ − ~η plane, i.e.,

(
~u
~v

)
=

(
cosψ sinψ
− sinψ cosψ

)(
~ξ
~η

)
. (2.6)

With ~z = (0, 0, 1), ~ξ and ~η are explicitly given by

~ξ = (sinα,− cosα, 0) and ~η = (− cosα sin δ,− sinα sin δ, cos δ) . (2.7)

We define the polarization-independent basis tensors in the wave-frame [45]:

ε+ ij ≡ ξiξj − ηiηj and ε× ij ≡ ξiηj + ηiξj , (2.8)

which are explicitly written as

~ε+ =




sin2 α− cos2 α sin2 δ −1
2

sin 2α(1 + sin2 δ) 1
2

cosα sin 2δ
−1

2
sin 2α(1 + sin2 δ) cos2 α− sin2 α sin2 δ 1

2
sinα sin 2δ

1
2

cosα sin 2δ 1
2

sinα sin 2δ − cos2 δ


 , (2.9)

and

~ε× =




− sin 2α sin δ (cos2 α− sin2 α) sin δ sinα cos δ
(cos2 α sin2 α) sin δ sin 2α sin δ − cosα cos δ

sinα cos δ − cosα cos δ 0


 , (2.10)
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The detector tensor for an interferometer with arms along ~l1 and ~l2 is defined as [44]

dij =
1

2
(l1 il1 j − l2 il2 j) . (2.11)

With Eqs. (2.9), (2.10) and (2.11) we define the amplitude modulation functions aX(t)
and bX(t) at detector X:

aX(t, ~n) ≡ dX(t)ijε
ij
+ and bX(t, ~n) ≡ dX(t)ijε

ij
× , (2.12)

which are related to the antenna pattern functions F+ and F× [Eq. (1.21)] through

F+(t) = aX(t) cos 2ψ + bX(t) sin 2ψ , (2.13)

F×(t) = −aX(t) sin 2ψ + bX(t) cos 2ψ . (2.14)

For example, for the particular orientation of the detector arms ~l1 = (1, 0, 0) and ~l2 =
(0, 1, 0), Eq. (2.11) yields

d =




1
2

0 0
0 −1

2
0

0 0 0


 ; (2.15)

thus the Eqs. in (2.12) take the form

a =
1

2
(sin2 α− cos2 α)(1 + sin2 δ) and b = − sin 2α sin δ . (2.16)

As shown in [28, 46] we can express the dimensionless strain signal hX(t) of a con-
tinuous gravitational wave at detector X as a sum of four detector independent signal-
amplitudes Aµ and four detector dependent basis waveforms hXµ (t):

hX(t) =
4∑

µ=1

AµhXµ (t) , (2.17)

where
A1 = A+ cosφ0 cos 2ψ − A× sinφ0 sin 2ψ , (2.18)

A2 = A+ cosφ0 sin 2ψ + A× sinφ0 cos 2ψ , (2.19)

A3 = −A+ sinφ0 cos 2ψ − A× cosφ0 sin 2ψ , (2.20)

A4 = −A+ sinφ0 sin 2ψ + A× cosφ0 cos 2ψ , (2.21)

and
hX1 (t) = aX(t) cosφX(t) , (2.22)

hX2 (t) = bX(t) cosφX(t) , (2.23)

hX3 (t) = aX(t) sinφX(t) , (2.24)
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hX4 (t) = bX(t) sinφX(t) . (2.25)

For a triaxial neutron star, the two polarization amplitudes A+ and A× written in terms
of the overall amplitude h0 and inclination angle ι are:

A+ =
1

2
h0(1 + cos2 ι) , (2.26)

A× = h0 cos ι . (2.27)

We refer to the set of signal parameters λs ≡ {α, δ, f (k)} as phase-evolution parame-
ters, while the set {h0, ι, ψ, φ0} is known as amplitude parameters. Depending on what
fraction of the signal parameters λs are known, we distinguish three types of searches,
namely: targeted, when λs is known; directed, when only the sky position is known; and
wide parameter-space searches, when λs is completely unknown. Targeted searches are
typically performed with the heterodyne method [47], where Bayesian analysis is used
to infer the unknown amplitude parameters. For directed and wide parameter-space
searches a maximum-likelihood detection statistic, F -statistic [28, 46] is usually applied.
These are the type of searches that we mainly consider in this work.

2.2. Detection statistic

In the previous section we introduced the signal model. In the following, we discuss how
to detect a signal h(t;A, λs), if it is present in the data collected from a gravitational-
wave detector. The classical detection problem involves the computation of a likelihood
ratio [4], and its comparison to a threshold in order to confirm or discard a hypothesis.

2.2.1. Hypothesis testing

Let the detector data be x(t) and a signal h(t;A, λs) be described by Eq. (2.17). We
aim to test the two hypothesis; the data is noise:

Hn : x(t) = n(t) , (2.28)

or there is a signal in the data

Hs : x(t) = n(t) + h(t;A, λs) . (2.29)

According to the Neyman-Pearson lemma, the optimal test is given by the likelihood
ratio

Λ(h) ≡ pdf(x|A, λs)
pdf(x|0)

, (2.30)

where pdf(x|A, λs) is the probability density function to observe the data when the signal
is present and pdf(x|0) is the probability density function when the signal is absent. To
decide about the signal hypothesis Hs, we compare the value of the likelihood ratio Λ
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to a threshold Λth. We decide to accept Hs, if the threshold is crossed, i.e., Λ(h) > Λth.
Setting the threshold Λth and making a decision is subject to two possible errors; namely,
false-alarm and false-dismissal.

The false-alarm probability, denoted with pfA, is the probability to falsely decide that
hypothesis Hs is true, while the true hypothesis is instead Hn, i.e.,

pfA(Λth) ≡ P (Λ(h) > Λth|Hn) =

∫ ∞

Λth

dΛ pdf(Λ|Hn) . (2.31)

Therefore if we fix the false-alarm probability to a certain value, p∗fA, and we know the
probability density function of the noise hypothesis pdf(Λ(h)|Hn), we can integrate the
right-hand-side of Eq. (2.31) and obtain a threshold Λth(p∗fA).

The false-dismissal probability, denoted pfD, is the probability to decide that hypoth-
esis Hn is true, while the true hypothesis is Hs, i.e.,

pfD(Λth, h) ≡ P (Λ(h) < Λth|Hs) =

∫ Λth

−∞
dΛ pdf(Λ|Hs) . (2.32)

Using the false-dismissal probability we can easily compute the detection probability,
i.e.,

pdet(Λth, h) ≡ P (Λ(h) > Λth|Hs) =

∫ ∞

Λth

pdf(Λ|Hs) , (2.33)

therefore
pdet(Λth, h) = 1− pfD(Λth, h) . (2.34)

2.2.2. The F-statistic

The F -statistic, first derived in [28] and extended to a multi-detector statistic in [46], is
the log-likelihood ratio ln Λ(x,A, λs) maximized over the amplitude parameters A, and
therefore only a function of the phase-evolution parameters λs, namely

F(x, λs) ≡ max
A

(ln Λ(x,A, λs)) (2.35)

To discuss some important aspects of the F -statistic based searches in the next section,
it will be useful to evaluate the right-hand-side of Eq. (2.35).

Following [48], we begin the evaluation by noticing, that the conditional probability
to observe the data given that the signal is present equals the probability to observe the
data without the signal, given that the signal is not present, i.e.,

pdf(x|A, λs) = pdf(x− h|0) . (2.36)

With the above equation, the likelihood ratio yields

Λ(h) ≡ pdf(x− h|0)

pdf(x|0)
. (2.37)
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Next recall that n(t) denotes a stationary random process with zero mean; see Eqs.
(1.23) and (1.24). Assuming that each data sample xi follows the distribution of n(t),
i.e., Gaussian,

pdf(xi|0) ∝ exp
(
− 1

2
C−1x2

i

)
, (2.38)

thus the joint probability is a product of Gaussians, which leads to a sum in the expo-
nential function, namely

pdf(x|0) ∝ exp
(
−1

2

S∑

j,k=1

C−1
jk xjxk

)
, (2.39)

where C−1
jk is the inverse of the correlation function [49]

C(τ) = 〈x(t)x(t+ τ)〉

= lim
T→∞

1

T

∫ T

0

dt x(t)x(t+ τ) (2.40)

defined such that

δjk ≡
S∑

l=1

C
(
(j − l)∆t

)
C−1

(
(l − k)∆t

)
, (2.41)

and S is the number of samples. For convenience we map the discretely taken data to
the continuum through

xi = x(ti) , ti − tj = (i− j)∆t , and ∆t =
T

S − 1
. (2.42)

Using

δ(tj − tk) = lim
∆t→0
T→∞

1

∆t
δjk (2.43)

it is useful to show the following relation [48]:

e2πiftk =
∑

j

e2πiftjδij

= lim
∆t→0
T→∞

1

∆t2

∑

j

∆t e2πiftj
∑

l

∆t C(tj − tl)C−1(tl − tk)

= lim
∆t→0

1

∆t2

∫ ∞

−∞
dtj e

2πiftj

∫ ∞

−∞
dtl C(tj − tl)C−1(tl − tk)

| with τ = tj − tl
= lim

∆t→0

1

∆t2

∫ ∞

−∞
dtl e

2πiftlC−1(tl − tk)
∫ ∞

−∞
dτ e2πifτC(τ)

= lim
∆t→0

1

∆t2
1

2
Sn(f)

∫ ∞

−∞
dtl e

2πiftlC−1(tl − tk) , (2.44)
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where we applied the Wiener-Khintchine relation [3]

1

2
Sn(f) ≡

∫ ∞

−∞
dτ e2πifτC(τ) (2.45)

to express the correlation function through the PSD Sn(f). Defining

C̃−1(f, tk) ≡
∫ ∞

−∞
dtl C

−1(tl − tk)e2πiftl (2.46)

from Eq. (2.44) we finally obtain

C̃−1(f, tk) = lim
∆t→0

∆t2
2e2πiftk

Sn(f)
. (2.47)

With the above equation and using Parseval’s theorem [Eq.(1.24)] we can evaluate the
continuum limit of the sum in Eq. (2.39)[48]:

lim
∆t→0
T→∞

S∑

j,k=1

C−1
jk xjxk = lim

∆t→0
T→∞

1

∆t2

S∑

j,k=1

∆t2C−1(tj − tk)x(tj)x(tk)

= lim
∆t→0

1

∆t2

∫ ∞

−∞

∫ ∞

−∞
dtj dtk C

−1(tj − tk)x(tj)x(tk)

= lim
∆t→0

1

∆t2

∫ ∞

−∞

∫ ∞

−∞
df dtk C̃−1(f, tk)x̃

∗(f)x(tk)

= 2

∫ ∞

−∞
df

x̃∗(f)

Sn(|f |)

∫ ∞

−∞
dtk e

2πiftkx(tk)

= 2

∫ ∞

−∞
df

x̃(f)x̃∗(f)

Sn(|f |) . (2.48)

With the right-hand-side of Eq. (2.48) we define the scalar product for two real functions
x and y, namely

〈x|y〉 ≡ 4

∫ ∞

0

df
x̃(f)ỹ∗(f)

Sn(f)
. (2.49)

The scalar product from the above equation is the matched filter of the two functions x
and y. Using the matched filter, Eq. (2.39) yields

pdf(x|0) ∝ exp

(
−1

2
〈x|x〉

)
, (2.50)

and we obtain the likelihood ratio from Eq. (2.30)

Λ(h) =
P (x− h|0)

P (x|0)

= exp

(
〈x|h〉 − 1

2
〈h|h〉

)
. (2.51)
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Taking the logarithm of the above equation and using Eq. (2.17), where we omit the
sum and use the summation convention, we obtain

ln Λ = 〈x|h〉 − 1

2
〈h|h〉

= 〈x|Aµhµ〉 −
1

2
〈Aµhµ|Aνhν〉

= Aµ 〈x|hµ〉 −
1

2
AµAν 〈hµ|hν〉

= Aµxµ −
1

2
AµAνMµν , (2.52)

with
xµ ≡ 〈x|hµ〉 and Mµν ≡ 〈hµ|hν〉 . (2.53)

Maximization of Eq. (2.52) with respect to the unknown amplitudes yields the four
maximum-likelihood amplitudes

AµML =Mµνxν . (2.54)

By substitution of the maximum-likelihood amplitudes in Eq. (2.48) we can write the
F -statistic in the form

2F(x, λs) = xµMµνxν . (2.55)

For a network of detectors, assuming that the noise of the individual detectors is
independent from each other, the multidetector scalar product is the sum over detectors
X of Eq. (2.49), i.e., the sum over the single detector scalar product, namely

〈x|y〉 =
∑

X

〈
xX |yX

〉
. (2.56)

2.3. F-statistic based searches

The F -statistic, 2F , follows a non-central χ2 distribution with four degrees of freedom
and a non-centrality parameter that equals the squared signal-to-noise (SNR) ratio

ρ2 ≡ 〈h|h〉 . (2.57)

The expectation value of the F -statistic is therefore

E[2F ] = 4 + ρ2 , (2.58)

with variance
σ2[2F ] = 2(4 + 2ρ2) . (2.59)

24



2. Searches for continuous gravitational waves

Dividing the observed data in N number of segments with duration ∆T , we can compute
a new statistic Σ, referred to as semicoherent F -statistic (StackSlide). Denoting the
index over segments k = 1 . . . N , the StackSlide statistic Σ is defined as

Σ ≡
N∑

k=1

2Fk , (2.60)

i.e., a simple sum of F -statistic values 2Fk computed across all N segments. In the
presence of signal, the expected value is

E[Σ] = 4N + ρ2
Σ (2.61)

with variance
σ2[Σ] = 2(4N + 2ρ2

Σ) , (2.62)

where ρ2
Σ is

ρ2
Σ ≡

N∑

k=1

ρ2
k . (2.63)

To illustrate Eqs. (2.31) and (2.32) in Fig. 2.2 we plot the central χ2 distribution with
four degrees of freedom and the non-central χ2 distribution with four degrees of freedom
and non-centrality parameter ρ2 = 16.

2.3.1. Signal-to-noise ratio

In this subsection we evaluate Eq. (2.57) to obtain a useful formula relating the SNR2 to
the intrinsic gravitational-wave amplitude h0, and to the amount, and the noise level of
the data. Before proceeding, we notice the following useful facts. First, assuming a quasi
monochromatic signal (in the SSB), the main contribution to the scalar product, Eq.
(2.49), comes from a narrow band around the signal frequency, thus Sn is approximately
constant. This allows us to replace the integration over frequency in Eq. (2.49)with a
time integral, namely [11]:

〈x|y〉 ≈ 2

Sn(f0)

∫ T

0

dt x(t)y(t) . (2.64)

Second, the phase functions sinφ(t) and cosφ(t) in Eqs. (2.22) to (2.25) are periodic on
a time scale very short compared to the observation time, and averaging over one period
yields

1

2π

∫ 2π

0

dφ sin2(φ) =
1

2
,

1

2π

∫ 2π

0

dφ cos2(φ) =
1

2
, (2.65)

1

2π

∫ 2π

0

dφ sin(φ) cos(φ) = 0 .
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2. Searches for continuous gravitational waves

Figure 2.2.: Probability density for a χ2 distribution with four degrees of freedom and
different non-centrality parameters. The red curve (χ2

4(ρ2 = 0)) is the pdf
of the noise hypothesis Hn, and the green curve (χ2

4(ρ2 = 16)) is the pdf of
the signal hypothesis Hs. In this example the intersection of the two pdfs is
taken to be the threshold 2Fth. The integral of the red shaded area is the
false-alarm probability, Eq. (2.31), and the integral of the gray shaded area
is the false-dismissal probability, Eq. (2.32).
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We continue now with the computation of the SNR2, which can be written as

ρ2 = AµMµνAν , (2.66)

with

Mµν =
∑

X

〈
hXµ (t)|hXν (t)

〉
≈ 1

2




Ma Mc 0 0
Mc Mb 0 0
0 0 Ma Mc

0 0 Mc Mb


 , (2.67)

where the approximation is due to the usage of Eqs. 2.65. With this, the squared signal
to noise ratio becomes

ρ2 =
1

2

(
(A2

1 +A2
3)Ma + (A2

2 +A2
4)Mb + 2(A1A2 +A3A4)Mc

)
. (2.68)

Further calculation yields

A2
1 +A2

3 =
h2

0

4

(
(1 + cos2 ι)2 cos2 2ψ + 4 cos2 ι sin2 2ψ

)
= h2

0α1 , (2.69)

A2
2 +A2

4 =
h2

0

4

(
(1 + cos2 ι)2 sin2 2ψ + 4 cos2 ι cos2 2ψ

)
= h2

0α2 , (2.70)

A1A2 +A3A4 =
h2

0

4
(1− cos2 ι)2 sin 2ψ cos 2ψ = h2

0α3 , (2.71)

and thus

ρ2 =
h2

0

2
(α1Ma + α2Mb + 2α3Mc) . (2.72)

At this point we take into account, that the data is not continuous but discretized in
time intervals ∆t. Further, the data is usually preprocessed and available in the form
of Short-baseline Fourier Transforms (SFTs). The baseline of the SFTs is chosen, such
that a putative signal will appear monochromatic during the SFT duration [50]. The
length of the SFTs used in this work is TSFT = 1800 s. Using the SFT duration and time
discretization ∆t we can express a point in time as

tn,m = (n− 1)TSFT +m∆t, (2.73)

where n ∈ [0, NSFT] is an index pointing the number of the SFT, NSFT is the total
number of SFTs, and m ∈ [0,M ] is the number of steps in a SFT, thus TSFT = M∆t.
We denote the number of SFTs per detector with NX

SFT.

27



2. Searches for continuous gravitational waves

We first compute

Ma = 2
∑

X

〈
hX1 (t)|hX1 (t)

〉

= 4
∑

X

∫ t1

t0

hX1 (t)hX1 (t)

SX

= 4
∑

X

MNX
SFT∑

l=1

hX1lh
X
1l

SXl
∆t

= 4
∑

X

NX
SFT∑

n=1

aXn a
X
n

SXn

M∑

m=1

cos2 φXnj∆t

≈ 2
∑

X

NX
SFT∑

n=1

aXn a
X
n

SXn
M∆t

= 2TSFT

∑

X

NX
SFT∑

n=1

(aXn )2

SXn
(2.74)

In a similar way we obtain

Mb = 2TSFT

∑

X

NX
SFT∑

n=1

(bXn )2

SXn
(2.75)

and

Mc = 2TSFT

∑

X

NX
SFT∑

n=1

aXn b
X
n

SXn
. (2.76)

Averaging over cos ι and ψ yields:

〈α1〉cos ι,ψ =
1

2

∫ 1

−1

d cos ι
1

2π

∫ π/4

−π/4
α1 =

2

5
, (2.77)

〈α2〉cos ι,ψ =
1

2

∫ 1

−1

d cos ι
1

2π

∫ π/4

−π/4
α2 =

2

5
, (2.78)

〈α3〉cos ι,ψ =
1

2

∫ 1

−1

d cos ι
1

2π

∫ π/4

−π/4
α3 = 0 . (2.79)

Putting everything together the SNR2 averaged over polarization and inclination angle
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becomes

〈
ρ2
〉

cos ι,ψ
=

2h2
0

5


TSFT

∑

X

NX
SFT∑

n=1

(aXn )2

SXn
+ TSFT

∑

X

NX
SFT∑

n=1

(bXn )2

SXn




=
2h2

0TSFT

5

∑

X

NX
SFT∑

n=1

(aXn )2 + (bXn )2

SXn

=
2h2

0

5

∑

X

NX
SFT∑

n=1

(aXn )2 + (bXn )2

SXn

TXdata

NX
SFT

(2.80)

where we define the amount of data per detector X to be

TXdata = NX
SFTTSFT . (2.81)

For a directed search, further evaluation of Eq. (2.80) should be done numerically.
However it is useful to have a more general form, independent of the sky position of the
source. Thus assuming the particular form of the antenna-pattern functions given in
Eq. (2.16) and averaging isotropically over the sky, yields

〈
a2
〉
~n

=
7

30
, and

〈
b2
〉
~n

=
1

6
. (2.82)

So we finally obtain the SNR2 averaged over sky position, cos ι and ψ, namely [44]

〈
ρ2
〉
~n,cos ι,ψ

=
4

25
h2

0TdataS−1(f0) , (2.83)

where Tdata is all of the data, i.e., Tdata ≡ NSFTTSFT and

S−1(f0) ≡ N−1
SFT

NSFT∑

n=1

S−1
n (f0) . (2.84)

is the harmonic mean of PSDs over all SFTs.

2.3.2. Wide parameter-space searches

Up to now we implicitly assumed that the phase-evolution parameters of the continuous
gravitational-wave signal are known. However searching for emission from previously
unknown objects implies that at least a part of the phase-evolution parameters are
unknown. This introduces a layer of complexity with a very large impact on the com-
puting cost and sensitivity of the search. Without knowledge of the signal parameters,
the search consists in the computation of the detection statistic, the matched filter, in
“every” point of the parameter space. The question is therefore, how can we cover the
parameter space efficiently, or in other words, what does “every” means?
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To give a quantitative answer to the question stated above, we use the concept of
mismatch, which was introduced in [51, 52]. By definition, the mismatch between an
arbitrary template λ and the true signal location λs is the fractional loss of SNR2, namely

µ ≡ ρ2(λs)− ρ2(λ)

ρ2(λs)
. (2.85)

The mismatch can be expanded for a small offset ∆λ = λ − λs between the arbitrary
parameter space point and the signal 2 [53]

µ(∆λ) = µ(0) + ∂iµ(∆λ)∆λi

+
1

2
∂i∂jµ(∆λ)∆λi∆λj +O(∆λ3) , (2.86)

where ∂i ≡ ∂
∂λi

. Noticing that the first two terms of the expansion vanish as µ is
minimized at ∆λ = 0, for small offsets we can write

µ = gij(λs)∆λ
i∆λj +O(∆λ3) . (2.87)

where gij denotes the parameter-space metric. The metric gij is the quadratic description
of the parameter-space in the vicinity of the signal, and can be used to measure distance,
i.e.

µ∗(∆λ) = gij(λs)∆λ
i∆λj . (2.88)

With this, “every” means that the search points of the parameter space, the templates,
are placed densely enough, so that the mismatch of a putative signal to the closest
template is m at worst. The construction of an optimal template bank, which contain
the smallest possible number of templates, has been studied in detail in [54]. It has
been shown, that the A∗n lattice-covering is the best for n ≤ 5 and close to the best
for dimensions n ≤ 16, while the hyper-cubic lattice covering is still acceptable at lower
dimensions n ≤ 4.

The required number of templates N to cover the parameter space P is given by the
general expression [54, 55]

N = θnm
−n/2 Vn , with Vn ≡

∫

Tn
dnλ

√
det g , (2.89)

where θn is the normalized thickness, m is the maximal-mismatch parameter, det g is
the determinant of the corresponding parameter-space metric gij, and Vn denotes the
metric volume of the n-dimensional space Tn ⊆ P spanned by the template-bank. The
normalized thickness corrsponds to the number of templates per unit volume [54]. To
give a rough estimate of the number of templates and therefore of the computing cost
scalings of a F -statistic search, we will use Eq. (2.89), in particular

√
det g, therefore

we need to compute the metric g.

2We use summation convention with respect to repeated indices.
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The metric of the multidetector F -statistic has been studied in [41] in great detail, and
a simplified metric, called “phase metric” was introduced in [53]. Analytic expressions for
a semicoherent metric can be found in [56]. Given a phase model, the metric components
can be obtained as [53]

gij(λ) ≡ 〈∂iφ∂jφ〉 − 〈∂iφ〉 〈∂jφ〉 , (2.90)

where 〈.〉 denotes time averaging over the observation time. Using the phase model
Eq. (2.1) and including up to first-order spindown (4D parameter space) the dominant
scalings with the observation time are [11]

gθθ ∝ f 2T 2(v/c)2, gff ∝ T 2, gḟ ḟ ∝ T 4 , (2.91)

where θ is the angular separation on the sky and v/c ∼ 10−4 is the maximal Doppler shift
due to the orbital velocity v. With the above diagonal elements of g, neglecting possible
off-diagonal elements, we obtain

√
det g ∝ T 5f 2. With this and using Eq. (2.89), the

number of templates scales as
N ∼ T 5f 2 . (2.92)

The computing cost per template is proportional to the observation time, and assuming
data without gaps, we obtain the scaling of the computing cost, namely

C ∼ T 6f 2 . (2.93)

This order of magnitude computing cost estimate shows that a year long fully coherent
search over a wide parameter space, e.g., an all-sky survey in a kHz frequency range is
computationally impossible [53].

The high computational requirement of the wide parameter-space searches requires the
usage of distributed computing environments like Einstein@Home [57], where volunteers
donate computing power by performing a search over a small region of the total param-
eter space. Searches done in the past include the Einstein@Home search for periodic
gravitational waves in LIGO S4 [58] and LIGO S5 [59] data.

2.3.3. The choice of spin-down search band

As discussed in Chap. 4 the dimensionality of a wide parameter-space search, in partic-
ular the highest spin-down order that needs to be included in the search in order not
to miss a signal, depends, i.a., on the size of the parameter-space in the given direction.
We refer to this size as the search band. In this subsection, we discuss a possible way
for an educated guess about the size of first- and higher-order spin-down search band
based on the minimal age of the targeted sources and the braking indices.

The loss of rotational frequency of a pulsar can be written as a general power law [60]

Ω̇ = −K(n1)Ωn1 , (2.94)
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whereK(n1) is a constant, and n1 denotes the braking index. The braking index takes the
value n1 = 3 for purely dioplar magnetic-field emission, and n1 = 5 for pure gravitational-
wave emission [60]. Integration of Eq. (2.94) yields the age of the star

τ =
Ω1−n1 − Ω1−n1

0

(n1 − 1)K(n1)
, (2.95)

where Ω0 is the initial angular velocity. Substituting the constant K(n1) from Eq. (2.94)
into Eq. (2.95), allows us to express the age as:

τ = − 1

n1 − 1

Ω

Ω̇

[
1−

(
Ω

Ω0

)n1−1
]
. (2.96)

Assuming that the object is in a state, where Ω� Ω0, and using the gravitational-wave
frequency, Eq. (2.96) yields

τ = − 1

n1 − 1

f

ḟ
. (2.97)

The braking index n1 can be measured if the second-order spin-down of the object is
known, as differentiation of Eq. (2.94) gives the relation

n1 =
ff̈

ḟ 2
. (2.98)

Further differentiation of Eq. (2.94) yields the second braking index n2, also known as
jerk parameter [61]. Written in terms of frequency and frequency derivatives, n2 is

n2 =
f 2

...
f

ḟ 3
. (2.99)

Using Eqs. (2.97) and (2.98) we can restrict the first- and second-order spin-down bands
in the range

− f

〈nmin
1 − 1〉 τ ≤ ḟ ≤ − f

〈nmax
1 − 1〉 τ (2.100)

and
nmin

1 ḟ 2

f
≤ f̈ ≤ nmax

1 ḟ 2

f
, (2.101)

as it has been done in a recent directed search for gravitational waves from the Cassiopeia-
A (CasA) supernovae remnant [62, 63] 3. Similarly to Eq. (2.101), using Eq. (2.99), we
can define the search band for the third spindown, namely

nmin
2 ḟ 3

f 2
≤

...
f ≤ nmax

2 ḟ 3

f 2
. (2.102)

3The angled brackets in Eq. (2.100) mean the averaged braking index over the lifetime of the object.
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According to [61], the jerk parameter n2 can be expressed in terms of the braking index
n1 as:

n2 = 2n2
1 − n1 + (n1 − 3)(1− n1) . (2.103)

Note that the predicted second braking index values for the Crab pulsar, n2 = 10.9,
and PSR B1509-58, n2 = 13.6, do not agree with the measured n2 = 10.23± 0.03 resp.
m = 18.3 ± 2.9 [61]. However, lacking other comparisons Eq. (2.103) might be an
acceptable guess.

The spin-down space defined by Eqs. (2.97), (2.98) and (2.99) is model dependent
through the braking indices n1 and n2. These indices might be uncertain, and the
shape of the parameter-space might be complicated. Therefore, it is useful to have an
alternative definition for the spin-down search bands.

Following [64], the spindown in dimension k should be bounded by

|f (k)| ≤ k!
f

τ k
. (2.104)

This however means that the spin-down band is frequency dependent, which may not be
desirable. Therefore if we fix the spin-down range constant by fixing a minimal detectable
spindown age τ0 at some frequency f0, the detectable spindown age at frequency f yields

τ(f) = τ0f/f0 . (2.105)

To visualize the difference in shape between a parameter-space defined by using brak-
ing indices and by Eq. (2.104) we take as an example the parameters used to define the
search space for CasA, namely τ = 300 y, nmin

1 = 2, nmax
1 = 7 and f ∈ [100, 300] Hz[63].

Using Eq. (2.103) we obtain minimal nmin
2 = 7 and maximal jerk parameter nmax

2 = 67.
In Fig. 2.3(a) we plot f̈ as a function of f and ḟ , and in Fig. 2.3(b) we plot

...
f as a

function of f and ḟ .
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2. Searches for continuous gravitational waves

(a)

(b)

Figure 2.3.: Spindown space defined by n1 ∈ [2, 7] and n2 ∈ [7, 67] (solid blue), compared
to a simple shaped orthogonal search space (red dashed). The used spin-
down age is τ = 300 y. (a) f̈ as function of f and ḟ . (b)

...
f as function of

f and ḟ
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3. Optimization by Direct Search

3.1. Stochastic optimization

While analytic treatment and solution of problems in science leads to more insight in
general, there are plenty of situations, where some kind of numerical optimization is un-
avoidable, e.g., when an analytic solution cannot be given, or the problem is untractable
due to the size of the parameter space and the computational expense of a single func-
tion evaluation, which prohibits the use of a brute force numerical method. A large
number of algorithms and strategies has been developed to attack such problems, e.g.,
Metropolis-Hastings [65], Gibbs Sampling [66], Nelder-Mead [67], Simulated Annealing
[68], Nested Sampling [69], Evolutionary algorithms, MCMC, to name a few.

A major subclass of optimization algorithms are the Direct Search methods known
as techniques which do not explicitly use derivatives [13]. According to [13], these tech-
niques were introduced in the 1950s and abandoned in the early 1970s by the mathemat-
ical optimization community, mostly because they were heuristically developed, lacked
proofs of convergence, and sometimes converged slowly. However these techniques re-
mained popular, e.g., the Nelder-Mead simplex algorithm.

The numerical optimization required in Chaps. 5, 7 and 8 uses a modern incarnation
of a Direct Search, namely the Mesh Adaptive Direct Search. Based on the original
publications [70],[71] and [72] in the next two sections we give a short overview of the
method.

3.2. Mesh Adaptive Direct Search

The Mesh Adaptive Direct Search (MADS) class of algorithms for constrained optimiza-
tion is a two step - search and poll - iterative process, in which the objective is to find
the minimum

min
x∈Ω

f(x) , (3.1)

of a function f , where f : Ω ⊂ Rn → R ∪∞ is evaluated on a set of “feasible” points
Ω, while derivatives are not required. Both f and Ω can be given by a “black box”, and
the search is driven only by function evaluations. At iteration k the goal is to generate
a trial point in Ω such that the value of the function at this point is smaller than f(xk),
where xk is the current best feasible solution.
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3. Optimization by Direct Search

3.2.1. The search step

The points in the search step may be chosen anywhere on the mesh [70],

Mk =
{
x+ ∆m

k Dz : x ∈ Vk, z ∈ N2n
}
⊂ Rn , (3.2)

where Vk ⊂ Rn is the set of all evaluated points (the cache), ∆m
k is the mesh size

parameter at iteration k, D ≡ [In − In], where In is the n-dimensional identity matrix
and z is an integer vector. For a fixed parameter ub > 1, called the mesh update
basis, and two given integers, namely a mesh refining exponent w− ≤ −1 and a mesh
coarsening exponent w+ ≥ 0, the mesh size parameter is coarsened:

∆m
k+1 = uw

+

b ∆m
k (3.3)

if an improved mesh point is found, or refined otherwise:

∆m
k+1 = uw

−

b ∆m
k . (3.4)

The search step is optional, but may improve the overall performance of the algorithm.
Therefore, different methods for selection of points on the mesh Mk have been suggested,
e.g., [72] considers the usage of quadratic models.

A quadratic model mf is a representation of a function f [72]:

mf ≡ αTφ(x) (3.5)

defined by q+1 parameters α ∈ Rq+1, where φ(x) is the basis of the space of polynomials
of degree up to second order in Rn with q = (n+ 1)(n+ 2)/2− 1 elements, namely

φ(x) =
(
φ0(x), φ1(x), ..., φq(x)

)T

=

(
1, x1, x2, ..., xn,

x2
1

2
,
x2

2

2
, ...,

x2
n

2
, x1x2, x1x3, xn−1xn

)T
. (3.6)

To obtain α we solve the system

M(φ, Y )α = f(Y ) , (3.7)

where f(Y ) = (y0, y1, ..., yp)
T

and

M(φ, Y ) =




φ0(y0) φ1(y0) · · · φq(y
0)

φ0(y1) φ1(y1) · · · φq(y
1)

...
...

...
...

φ0(yp) φ1(yp) · · · φq(y
p)


 ∈ Rp+1,q+1 .

If the system (3.7) is under determined or over determined, i.e., p 6= q, some interpolation
method can be applied; see [72] for details.
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To illustrate the construction of a quadratic model, consider the two-dimensional
Rosenbrock function:

f(x1, x2) = (1− x1)2 + 100(x2 − x2
1)2 , (3.8)

with minimum fmin(1, 1) = 0. For n = 2 the set of basis functions is

φ(x) =

(
1, x1, x2,

x2
1

2
,
x2

2

2
, x1x2

)T
. (3.9)

Therefore the quadratic model, Eq. (3.5), is given by

mf = α1 + α2x1 + α3x2 + α4
x2

1

2
+ α5

x2
2

2
+ α6x1x2 . (3.10)

For simplicity we assume that the system, Eq. (3.7), is determined, i.e., we have an
interpolation set Y containing six points, 1 e.g.,

Y =
(
(0.82, 0.86), (0.77, 0.75), (0.78, 0.85), (0.78, 0.87), (0.76, 0.91), (1.05, 1.11)

)T
,

(3.11)
for which substitution into Eq. (3.8) yields

f(Y ) =
(
3.56, 2.22, 5.54, 6.20, 10.40, 0.01

)T
. (3.12)

With Eqs. (3.9),(3.11) and (3.12) the solution of Eq. (3.7) for the six coefficients α
yields

α =
(
39.26,−178.43, 107.55, 447.27, 197.30,−291.02

)T
. (3.13)

The two-dimensional Rosenbrock function, Eq. (3.8), and the quadratic model, Eq.
(3.10), for the particular realization given through Eq. (3.13) are plotted in Fig. 3.1.
The minimum of the quadratic model is found to be mmin

f (1.1, 1.08) = −0.93.
At MADS iteration k an interpolation set Y is selected from the cache, such that all

points are inside the ball B(xk, ρ∆p
k), where ρ is the interpolation radius and ∆p

k the
poll size parameter, which satisfies ∆m

k ≤ ∆p
k. The selected interpolation set is scaled,

and a model is constructed. This model is optimized inside the ball B(0, 1); the scaling
algorithm is given in [72]. The optimal point is then rescaled back and the closest mesh
point is selected. At this point the success of the search step is examined by function
evaluation. If the search step is successful, the poll step is optional. The poll size
parameter ∆p

k is used to bound the poll trial points to the current incumbent solution.
The exact relation between the mesh and poll size parameters will be given in the next
subsection, as it depends on the method used to generate trial points in the poll step.

3.2.2. The poll step

The points generated in the poll step must be chosen such that they form a dense set in
the unit sphere after an infinite number of iterations. This is crucial for the convergence
analysis and advantage of MADS over other Direct Search methods, e.g., the Generalized
Pattern Search; for details see [70].

1All numerical values in this example are given with precision to second significant figure.
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(a) (b)

Figure 3.1.: The two-dimensional Rosenbrock function, (a), and a quadratic model of
it (b). The black lines are drawn at the (x1, x2) pair which minimizes the
function, resp. the quadratic model.

The set of poll trial points around the incumbent solution [70]

Pk = {xk + ∆m
k d : d ∈ Dk} ⊂Mk (3.14)

is called a frame, and is called a minimal frame if the poll step fails to generate an
improved solution. The optimization stops when a maximal number of iterations is
exceeded or a new minimal frame cannot be found. There are two proposed methods to
generate Dk, namely a stochastic and a deterministic.

The stochastic method introduced in [70], called LtMads, involves the generation of a
random integer nonsingular matrix Bk, which is completed either by −Bk, or a vector
b(lk), to form a minimal positive basisDk = [Bk b(lk)] or a maximal basisDk = [Bk −Bk].
The integer lk is related to the mesh size 2

The construction of Bk is done as follows. First, the vector b(lk) is constructed such,
that one random element î is either −2lk or 2lk and the other elements are integers
between −2lk + 1 and 2lk − 1. For example, with n = 4 , l0 = 0, one possible realization
of b0 is b0 = (0,−1, 0, 0)T . Second, a (n − 1) × (n − 1) lower triangular matrix L is
generated, where each diagonal element is ±2lk and the other components are randomly
chosen in {−2lk + 1, ..., 2lk − 1}; let

L =




-1 0 0
0 1 0
0 0 1


 .

Third, a row of zeros is inserted into L at position ι̂ and b(ll) is appended, than the
columns of L undergo random permutation, resulting in a basis Bk in Rn. A possible

2With lk=0 = 0, if the iteration is successful lk+1 = lk + 1, otherwise lk+1 = lk − 1 [71].

38



3. Optimization by Direct Search

basis obtained from the given L is

B0 =




1 0 0 0
0 0 -1 0
0 0 0 -1
0 1 0 0




which yields

D0 =




1 0 0 0 -1 0 0 0
0 0 -1 0 0 0 1 0
0 0 0 -1 0 0 0 1
0 1 0 0 0 -1 0 0




When the minimal basis is used, ∆p
k = n

√
∆m
k , otherwise ∆p

k =
√

∆m
k . A two-

dimensional example of MADS frames is given in Fig. 3.2.
An improved method for the generation of Dk has been proposed in [71], where pseudo-

random Halton sequences are used to construct an orthogonal integer basis Hk and with
this Dk = [Hk − Hk]. The construction of Hk is done in three steps. First, a pseudo-
random Halton sequence is used to generate a vector in [0, 1]n. The t-th element of a
Halton sequence (Halton directions) is given by [71]

ut = (ut,p1 , ut,p2 , ..., ut,pn)T ∈ [0, 1]n , (3.15)

where pj is the j-th prime number and ut,p is the radical-inverse function in basis p,
namely

ut,p =
∞∑

r=0

at,r,p
p1+r

, (3.16)

with at,r,p ∈ Z+ the unique coefficients of the base p expansion of t (Halton index):

t =
∞∑

r=0

at,r,pp
r . (3.17)

For example, with n = 4, the first four prime numbers are p ≡ {2, 3, 5, 7} and for t = 7

we obtain u7 =
(
7/8, 5/9, 11/25, 1/49

)T
. Second, the Halton directions are adjusted to

directions with norm close to 2|lk|/2, namely [71]

qt(α) = round

(
α

2ut − e
‖2ut − e‖

)
∈ Zn

⋂[
−α− 1

2
, α +

1

2

]n
, (3.18)

where α ∈ maxα∈R+ ‖qt(α)‖ is a scaling factor with ‖qt(α)‖ ≤ 2|lk|/2. For l0 = 0, u7 is
adjusted to q7 = (0, 0, 0, 1)T . Third, to produce n orthogonal and integer vectors, the
symmetric scaled Housholder transformation H is applied to qt, i.e., [71]

H = ‖q‖2(In − 2vvT ) , (3.19)
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where v = q/‖q‖. For example, by plugging q7 into Eq. (3.19) we obtain

H0 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1


 ,

and therefore

D0 =




1 0 0 0 -1 0 0 0
0 1 0 0 0 -1 0 0
0 0 1 0 0 0 -1 0
0 0 0 -1 0 0 0 1


 .

The advantage of OrthoMads over LtMads is not only its deterministic nature, but
also the better covering of the parameter space. For this method of generation of Dk,
the relation between the mesh size ∆m

k and the poll size parameter ∆p
k is given by

∆p
k = 2|lk|∆m

k .
To demonstrate the performance of the LtMads and OrthoMads methods for gen-

eration of poll points, we consider the two-dimensional Rosenbrock function given in
Eq. 3.8. For simplicity and better comparison we omit the search step in this ex-
ample. The result of the optimization is plotted in Fig. 3.3. Using the same initial
starting point (0, 0) and boundaries x1 ∈ [−2, 2] and x2 ∈ [−2, 2] the OrthoMads
method achieves a better solution in terms of absolute value and position, namely
fmin

O (0.92, 0.85) = 0.005, compared to the optimal solution obtained with the LtMads
method, namely fmin

L (0.83, 0.69) = 0.02. For both methods the maximal number of
iterations is limited to 200.

3.2.3. NOMAD

A reference implementation of MADS, called NOMAD, written in the C++ programming
language [73] is provided by the authors of the MADS algorithm under the GNU Lesser
General Public License. The version 3.5.1 of this software is used for the optimization
required in Chaps. 5, 7 and 8 3. The NOMAD library is feature rich, however listing
all control switches and parameters here is out of scope. Thus, if the value of a control
parameter is not explicitly stated where appropriate, the default value as of the given
software version is used.

3The examples in this chapter are generated using my own rudimentary MADS implementation written
in the Python programming language.
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(a) ∆m
k = 1 , ∆p

k = 2 (b) ∆m
k = 1

4 , ∆p
k = 1 (c) ∆m

k = 1
16 , ∆p

k = 1
2

Figure 3.2.: A two-dimensional example, n = 2, of MADS frames Pk = {xk + ∆m
k d : d ∈

Dk} = {p1, p2, p3}, with d1,2 ∈ {−1, 0, 1} for different values of ∆m
k and ∆p

k,
with ∆p

k = n
√

∆m
k . The mesh Mk is the intersection of all lines.[70].
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(a) (b)

(c) (d)

Figure 3.3.: LtMads and OrthoMads optimization of the two-dimensional Rosenbrock
function. (a) Improvement of the objective as a function of iteration k
using LtMads. (b) Improvement of the objective using OrthoMads. (c)
Normalized poll directions using LtMads. (d) Normalized poll directions
using OrthoMads.
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Summary

Coherent wide parameter-space searches for continuous gravitational waves are typi-
cally limited in sensitivity by their prohibitive computing cost. Therefore semicoherent
methods (such as StackSlide) can often achieve a better sensitivity.

In Chap. 4 we develop an analytical method for finding optimal StackSlide parameters
at fixed computing cost under ideal conditions of gapless data with Gaussian stationary
noise. This solution separates two regimes: an unbounded regime, where it is always
optimal to use all the data, and a bounded regime with a finite optimal observation
time. The analysis of the sensitivity scaling reveals that both the fine- and coarse-
grid mismatches contribute equally to the average StackSlide mismatch, an effect that
had been overlooked in previous studies. We discuss various practical examples for the
application of this optimization framework, illustrating the potential gains in sensitivity
compared to previous searches.

In Chap. 5 we extend the analytical framework developed in Chap. 4 to take into
account the possible gaps in the real detector data and the noise level changes. We show,
how the sensitivity optimization can be decoupled from the data selection problem. To
find optimal semicoherent search parameters we therefore apply a numerical optimization
using as example the semicoherent StackSlide search. We also describe a suitable data
selection algorithm. Thus the outcome of the numerical optimization are the optimal
search parameters and the selected data, which is needed to perform the search in
practice. We first test the numerical optimization procedure under ideal conditions and
obtain the results of the analytical method. Then we gradually relax the requirements
on the data to finally use real detector data.
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computing cost

Motivation. The detection of continuous gravitational waves (CWs) from spinning neu-
tron stars (NSs) in our galaxy remains an elusive goal, despite the global network of
detectors LIGO [74], Virgo [75] and GEO 600 [76] having completed their initial and
enhanced science runs (e.g. see [77, 78, 79, 63]). The search for CWs will likely remain
a difficult challenge with uncertain prospects even in the era of Advanced detectors
[80, 81, 82] and third-generation detectors such as ET [83]. Two main reasons for this
are (i) astrophysical priors on CWs and (ii) the large parameter space of signal param-
eters to explore (cf. [11] for a review and further references).

(i) Current astrophysical priors contain large uncertainties on the expected strength
of CW emissions from spinning NSs, with a strong bias towards extremely weak signals,
informed by the population of known pulsars as well as by a statistical analysis of a
putative galactic “gravitar” population [84]. (ii) The required number of templates for
a coherent matched-filter search over a range of unknown signal parameters typically
grows very rapidly with increasing duration of data analyzed. Therefore only a fraction
of the available data can be analyzed coherently (e.g. see [53, 62, 85]).

It was realized early on [64] that in situations where the total computing cost of the
search is constrained, a semicoherent approach could typically achieve better sensitivity
than coherent matched filtering: shorter segments of data are analyzed coherently, then
the statistics from these segments are combined incoherently. One method of incoherent
combination simply consists of summing the statistics from the different segments, which
is typically referred to as the “StackSlide” method in the CW context (also known as the
Radon transform). The template bank used for the semicoherent combination of coherent
statistics is referred to as the fine grid, as it typically requires a higher resolution than
the template banks of the per-segment coherent searches (referred to as coarse grids).
Details of the respective template banks will be discussed in Sec. 4.2.4.

There are a number of different semicoherent methods: for example, recent work [86]
has shown that StackSlide sensitivity can be improved by a sliding coherence-window
approach. A closely related variant to StackSlide is the Hough transform [43], which
counts the number of segments in which the statistic crosses a given threshold, instead
of summing the statistics. This is generally less sensitive, but is designed to be more
robust in the presence of strong non-stationarities. A somewhat different semicoherent
approach are cross-correlation methods, described in more detail in [87].

Related to the semicoherent methods are the so-called hierarchical schemes, which
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consist of following up “promising” candidates from a (coherent or semicoherent) search
by subsequent, more sensitive searches, referred to as “stages”. This procedure is iterated
until the parameter space of surviving candidates is sufficiently narrowed down for a fully
coherent follow-up using all the data. Work on implementing such schemes in practice
is still ongoing. In Chap. 7 we discuss a possible two-stage approach.

Optimization problem. In this chapter we focus on the standard single-stage StackSlide
method, which was also used in previous optimization studies [64, 88], and is relatively
straightforward to describe analytically.

Any search method contains a number of tuneable parameters, such as the template-
bank mismatch, the data selection procedure, and the number and length of segments
to analyze. Hierarchical schemes would further require specification of the number of
stages and the respective distributions of computing costs and candidate thresholds.
The sensitivity of a search generally depends on all these choices, and we therefore need
to study how to maximize sensitivity as a function of these parameters.

This optimization problem has been studied previously by Brady and Creighton [64]
(henceforth ’BC’) and subsequently by Cutler, Gholami and Krishnan [88] (in the follow-
ing ’CGK’). Both studies have focused on the wider problem of optimizing a multi-stage
hierarchical scheme of StackSlide stages, and have directly resorted to fully numerical
exploration of the optimization problem. Here instead we focus on the simpler single-
stage search, which allows us to fully analytically analyze the problem. In the next step
this can be used as a building block to attack the optimization of hierarchical schemes.

Note that for a network of detectors with different noise-floors, the choice of detectors
to use at fixed computing cost is part of the optimization problem, but under the present
assumption of “ideal data” the answer can be obtained independently [89]. More work is
required to develop a practical algorithm to compute the optimal search parameters for
given data from a network of detectors, including gaps, non-stationarities and various
detector artifacts. In the next chapter we discuss a step toward solution of this problem.

Summary of main results. Careful analysis of the sensitivity scaling shows that the
average StackSlide mismatch is given by the sum of the average mismatches from the
coarse- and fine-grid template banks, an effect that had previously been overlooked.
Note that we allow for independent coarse- and fine-grid mismatches, while BC and
CGK forced them to be equal as an ad-hoc constraint.

The analytic optimization is achieved by using local power-law approximations to the
computing-cost and sensitivity functions. The results provide analytic self-consistency
conditions for the optimal solution: if the initial power-law coefficients agree with those
found at the analytic solution, then the solution is self-consistent and (locally) optimal. If
this is not the case, one can iterate over successive solutions or scan a range of StackSlide
parameters, in order to “bootstrap” into a self-consistent optimal solution.

We find that the analytic solution for StackSlide searches separates two different
regimes depending on the power-law coefficients: a bounded regime in which there is
a finite optimal observation time, and an unbounded regime in which the optimal so-
lution always consists of using all of the available data, irrespective of the available
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computing-cost.
This chapter is organized as follows. In Sec. 4.1 we discuss the general CW opti-

mization problem, which includes the single-stage StackSlide search as the lowest-level
building block. In Sec. 4.2 we derive the sensitivity estimate and computing-cost func-
tions for StackSlide searches, and motivate their approximation as local power-laws.
After deriving in Sec. 4.3 the general analytical solution and discussing a few special
cases, we provide examples for the practical application of this framework in Sec. 4.4:
directed searches, all-sky searches, and searches for CWs from NSs in binary systems.
We discuss in Sec. 4.5.

4.1. Maximizing probability of a CW detection

The goal for wide parameter-space CW searches for unknown signals should be to max-
imize the probability of detection, given current astrophysical priors, detector data, and
finite computing resources. Conceptually one can think of this problem as a hierarchy
of two questions:

(i) What parameter-space P ⊆ P(0) to search? More generally: how to distribute the
total available computing power C0 over the space P(0) of possible CW signals,
given astrophysical priors, detector data and an (optimal) search method?

(ii) What is the optimal search method? Namely, which method yields the highest
detection probability pdet on a parameter-space cell ∆P if we spend computing-
cost ∆C on it?

The answer to the first question relies on the second, but we can analyze the lower-level
second question independently of the first. There has been surprisingly little work on
this problem so far. The first question has hardly been addressed at all, except for recent
work by Knispel [90]. The second question has been studied previously by BC [64] and
CGK [88], assuming a specific type of hierarchical scheme, which we refer to as the
classical hierarchical scheme (CHS).

In the CHS one performs a hierarchy of semicoherent searches (called stages), start-
ing with a relatively low-sensitivity search over the whole initial parameter space P(1).
Promising candidates crossing the first-stage threshold are selected and constitute the
search subspace P(2) ⊂ P(1) for the second, higher-sensitivity stage. This is iterated
until eventually after m such stages a fully coherent search over all the data can be per-
formed on the surviving candidates. At this point one has reached the maximal possible
sensitivity for a small portion P(m) ⊂ P(1) of the initial parameter space.

Each stage (i) is characterized by its input parameter-space P(i), a computing-cost

constraint C
(i)
0 and a false-alarm probability p

(i)
fA . Each stage selects a candidate subspace

P(i+1) ⊂ P(i) to follow up in the next stage. An optimal per-stage search would result
in the highest detection probability p

(i)
det for given signal strength hrms and constraints

{p(i)
fA , P(i), C

(i)
0 }. The tuneable CHS parameters are therefore the number m of stages
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and the per-stage constraints {p(i)
fA , C

(i)
0 }. These can be varied in order to maximize the

overall detection probability pdet(hrms) for the given total signal parameter-space P(0),

computing cost C0 =
∑m

i=1C
(i)
0 and false-alarm probability pfA =

∏m
i=1 p

(i)
fA .

This formulation of the CHS suggests that each stage (i) could be considered an inde-

pendent optimization problem for given external constraints {p(i)
fA ,P(i), C

(i)
0 }, if none of

its internal parameters interfere with the overall hierarchical scheme. One might contend
that the parameter-space resolution of the search violates this clean factorization: the
follow-up space P(i+1) from stage (i) depends on its parameter-space resolution, which
might impact the required computing-cost of the next stage. However, it is easy to see
that (to first order) such a coupling is not expected. The number of candidates Ncand

returned from any stage (except for the last one) will be dominated by the numberNfA of
false alarms. ThereforeNcand ≈ NfA ≈ pfAN , whereN is the number of (approximately)
independent templates searched in this stage. This can be estimated as N ≈ VP/v0, in
terms of the (metric) volume VP of the parameter space P, and the volume v0 covered
by one template. Therefore the number Ncand of follow-up candidates from any stage
does indeed depend on its parameter-space resolution, which depends on the internal
stage parameters. However, the computing cost of the next stage depends primarily on
the volume of the follow-up parameter-space, which is VfA ≈ NfA v0 ≈ pfA VP, and is
therefore independent of internal stage parameters. It is interesting to note that each
stage (i) in this scheme achieves a reduction of the input parameter-space volume by

roughly a factor of the false-alarm probability p
(i)
fA , irrespective of the internal details of

that search.
The optimal per-stage search method is essentially unknown, but following BC and

CGK we focus on a known good strategy, namely the StackSlide method. While different
semicoherent methods differ in the details and their exact sensitivity, they share the main
characteristics of coherently searching N shorter segments of length ∆T , and combining
them incoherently in some way. We roughly expect the sensitivity per cost of different
methods to behave qualitatively similarly to the StackSlide method, but more work
would be required to study this in detail.

4.2. Properties of a single-stage StackSlide search

The general StackSlide scheme consists of dividing the data (of total duration T ) into
N segments of duration ∆T = T/N , then performing a coherent matched-filter search
on each segment and combining these statistics incoherently to a new statistic Σ by
summing them across segments. The coherent matched-filter statistic used is the F -
statistic, which was first derived in [91] and extended to multiple detectors in [46]. Using
the same amount of data as a fully coherent search, the resulting semicoherent statistic
is less sensitive, but substantially cheaper to compute over a wide parameter space. At
fixed computing cost a semicoherent search is therefore generally more sensitive than a
fully coherent F -statistic search.

Notation: we distinguish quantities Q that can refer to either the coherent or the in-
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coherent step in the following way: we use a tilde, i.e. Q̃ when referring to the coherent
step, and a hat, i.e. Q̂ when referring to the incoherent step. For the following deriva-
tions we restrict ourselves to a single-detector formalism for simplicity, but we state the
(trivial) generalization to Ndet ≥ 1 detectors of relevant results.

4.2.1. The StackSlide search method

Let k = 1 . . . N be the index over segments, and λ ∈ P a point in the search space P of
signal parameters. The “ideal” StackSlide statistic Σ0(λ) is defined as

Σ0(λ) ≡
N∑

k=1

2Fk(λ) , (4.1)

i.e. a simple sum of F -statistic values {2Fk(λ)}Nk=1 computed at the same template point
λ across all N segments.

This would require computing the F -statistic over the same template bank as Σ0 in
every segment. However, the metric resolution of Σ0 is generally finer than that of the
single-segment F -statistics [56], and therefore this approach would spend unnecessary
computing cost on the coherent F -statistic. In practice F is therefore computed over a
coarse grid of Ñ templates in each segment k, and is interpolated in order to sum F on
the fine grid of N̂ ≥ Ñ templates (e.g. see [92]).

Typically the interpolation consists of picking the closest (in the metric sense) coarse-

grid point λ̃k(λ̂) to the fine-grid point λ̂ from every segment k, i.e. we approximate Eq.
(4.1) by

Σ(λ̂) ≡
N∑

k=1

2Fk
(
λ̃k(λ̂)

)
≈ Σ0(λ̂) , (4.2)

which we refer to as the “interpolating” StackSlide statistic Σ. The following sensi-
tivity optimization focuses exclusively on this interpolating StackSlide method, which
is the most relevant approach for current practical applications. The subtle difference
between interpolating StackSlide Σ and ideal StackSlide Σ0 with respect to its sensitivity
and mismatches has been overlooked in previous studies, and will be important for the
optimization problem.

4.2.2. Mismatch and metric

F-statistic mismatch

In the presence of a signal timeseries s(t, λs) with phase parameters λs, the statistic

2Fk(λ̃) in a point λ̃ follows a non-central χ2-distribution with four degrees of freedom

and non-centrality parameter ρ2
k(λs, λ̃). We denote this probability distribution as

P
(
2Fk|ρ2

k

)
= χ2

4(2Fk; ρ2
k) , (4.3)
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which has the expectation value

E
[
2Fk(λs, λ̃)

]
= 4 + ρ2

k(λs, λ̃) . (4.4)

The quantity ρk is often referred to as the coherent signal-to-noise ratio (SNR). In the

case of a perfectly-matched template λ̃ = λs, the resulting “optimal” SNR [91] in segment
k can be expressed as

ρ2
k(λs, λs) =

2

Sn

∫ tk+∆T

tk

s2(t, λs) dt

≡ 2

Sn

h2
rms,k ∆T , (4.5)

where tk is the start-time of the kth segment, Sn is the (single-sided) noise power spectral
density at the signal frequency fs. In the second equality we defined the rms signal
strength hrms,k [88] in segment k, which is a useful measure of the intrinsic signal strength
in the detectors, independently of the quality and the amount of data used.

The signal strength hrms,k depends on the intrinsic signal amplitude h0, the sky-
position, polarization angles, and detector orientation during segment k. One can show
[91, 44] that averaging h2

rms,k isotropically over sky-positions and polarization angles
yields the relation 〈h2

rms,k〉sky,pol = (2/25)h2
0. Furthermore, for segment lengths of order

∆T & O (1 days), the averaging in Eq. (4.5) results in hrms,k tending towards a constant
over all segments. Therefore it will be convenient to approximate hrms,k ≈ hrms, and so
we can write

ρ2
k(λs, λs) ≈

2

Sn

h2
rms ∆T ≡ ρ2

opt(∆T ) , (4.6)

which defines the average optimal SNR ρopt for given segment length ∆T .
Note that this approximation only applies to the perfectly-matched SNR ρk(λs, λs).

The “mismatched” SNR ρk(λs, λ̃) in an offset template λ̃ = λs + ∆λ is reduced with
respect to the optimal SNR ρopt(∆T ). The corresponding relative loss defines the

(segment-specific) mismatch function µ̃k(λs, λ̃), namely

µ̃k(λs, λ̃) ≡ 1− ρ2
k(λs, λ̃)

ρ2
opt(∆T )

= g̃ij,k(λs) ∆λi ∆λj +O
(
∆λ3

)
, (4.7)

where Taylor-expansion for small offsets ∆λ defines the (coherent) metric tensor g̃ij,k(λ)
for segment k. The concept of the parameter-space metric was first introduced in [52, 51],
and analyzed in the context of a simplified CW statistic [53] and the F -statistic [41].

The per-segment coarse-grid template bank is constructed under the constraint that
no signal point λs ∈ P should exceed a given maximal mismatch m̃ to its closest (i.e.

with the smallest mismatch) coarse-grid template λ̃k(λs), namely

µ̃k

(
λs, λ̃k(λs)

)
≤ m̃ for all λs ∈ P . (4.8)
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Mismatch of “ideal” StackSlide

The “ideal” StackSlide statistic Σ0 defined in Eq. (4.1) is the basis for the definition
of the semicoherent metric [64, 56, 93]). The statistic Σ0 follows a non-central χ2-
distribution with 4N degrees of freedom, denoted as

P
(
Σ0|ρ2

Σ0

)
= χ2

4N(Σ0; ρ2
Σ0

) , (4.9)

with non-centrality parameter

ρ2
Σ0

(λs, λ̂) ≡
N∑

k=1

ρ2
k(λs, λ̂) , (4.10)

where λs are the signal parameters and λ̂ is the location of a fine-grid template. The
corresponding expectation value is

E
[
Σ0(λs, λ̂)

]
= 4N + ρ2

Σ0
. (4.11)

The perfectly-matched non-centrality parameter ρ2
Σ0

(λs, λs) can be expressed as

ρ2
Σ0

(λs, λs) =
N∑

k=1

ρ2
k(λs, λs)

= Nρ2
opt(∆T )

= ρ2
opt(T ) , (4.12)

which is identical to that of a perfectly-matched F -statistic over the same total duration
T , as seen from Eq. (4.6). The reason why the StackSlide statistic Σ0 is less sensitive
than the F -statistic for the same amount of data T stems from the different degrees of
freedom of the respective distributions, namely χ2

4(ρ2) for the F -statistic as opposed to
χ2

4N(ρ2) for StackSlide Σ0.

The mismatch function µ̂0(λs, λ̂) of ideal StackSlide is defined in analogy to Eq. (4.7)
as

µ̂0(λs, λ̂) ≡ 1− ρ2
Σ0

(λs, λ̂)

ρ2
opt(T )

= ĝij(λs) ∆λi ∆λj +O
(
∆λ3

)
, (4.13)

where ∆λ ≡ λ̂−λs is the offset between the fine-grid template λ̂ and the signal location
λs, and Taylor-expansion in small ∆λ defines the (semicoherent) metric tensor ĝij. Using
Eqs. (4.12) and (4.7), we can rearrange the expression for the mismatch as

µ̂0(λs, λ̂) =
1

N

N∑

k=1

µ̃k(λs, λ̂)

≈
(

1

N

N∑

k=1

g̃ij,k(λs)

)
∆λi∆λj , (4.14)
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which shows that the ideal StackSlide mismatch µ̂0 and metric ĝij are segment-averages
of the coherent mismatches and metrics, respectively.

The fine-grid template bank of a StackSlide search is constructed under the constraint
that no signal point λs ∈ P should exceed a given maximal mismatch m̂ to its closest
(i.e. with the smallest mismatch) fine-grid template λ̂(λs), namely

µ̂0

(
λs, λ̂(λs)

)
≤ m̂ for all λs ∈ P . (4.15)

Mismatch of “interpolating” StackSlide

We can now combine the above results to derive the mismatch of the interpolating
StackSlide statistic Σ defined in Eq. (4.2). This statistic follows a non-central χ2

4N

distribution, namely
P
(
Σ|ρ2

Σ

)
= χ2

4N(Σ; ρ2
Σ) , (4.16)

with non-centrality parameter

ρ2
Σ(λs, λ̂) ≡

N∑

k=1

ρ2
k

(
λs, λ̃k(λ̂)

)
, (4.17)

where λs are the signal phase parameters, and λ̃k(λ̂) is the closest coarse-grid template

in segment k to the fine-grid point λ̂.
The mismatch function µ̂(λs, λ̂) of interpolating StackSlide is therefore

µ̂(λs, λ̂) ≡ 1− ρ2
Σ(λs, λ̂)

ρ2
opt(T )

=
1

N

N∑

k=1

µ̃k

(
λs, λ̃k(λ̂)

)
, (4.18)

which allows us to express the mismatched non-centrality parameter as

ρ2
Σ(λs, λ̂) =

(
1− µ̂(λs, λ̂)

)
ρ2

opt(T ) . (4.19)

The extra offset per-segment, δλk ≡ λ̃k(λ̂)− λ̂, incurred due to using the closest coarse-

grid point λ̃k(λ̂) instead of the fine-grid point λ̂ tends to increase the mismatch with
respect to the ideal mismatch function µ̂0 of Eq. (4.14). In order to quantify this effect,

we write the effective per-segment offset from a signal as ∆λ̃k ≡ λ̃k(λ̂) − λs, while the

ideal per-segment offset would be ∆λ̂ ≡ λ̂ − λs. We can write ∆λ̃k = ∆λ̂ + δλk, and
inserting this into the coherent-metric of Eq. (4.7) we obtain (neglecting higher-order
terms O (∆λ3)):

µ̃k

(
λs, λ̃k(λ̂)

)
= g̃ij,k ∆λ̃ik∆λ̃

j
k

= µ̃k(λs, λ̂) + g̃ij,k δλ
i
k δλ

j
k + 2g̃ij,k ∆λ̂i δλjk , (4.20)
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where in the first term we recover the ideal per-segment mismatch function of Eq. (4.14),
the second term represents an extra mismatch due to the offset δλk, while the last
term depends on the opening angle θk of the mismatch triangle (see Fig. 4.1), namely

2|∆λ̂||δλk| cos θk, with mismatch norm defined as |x|2 ≡ g̃ij,k x
ixj.

λs

λ̂
λ̃k(λ̂)

θk

∆λ̃k
∆λ̂

δλk

Figure 4.1.: Mismatch triangle formed by the signal point λs, closest fine-grid template
λ̂, and the coarse-grid template λ̃k(λ̂) closest to λ̂ in segment k.

We assume that the fine-grid point λ̂ falls randomly into the Wigner-Seitz cell of the
closest coarse-grid template λ̃k(λ̂) in segment k. Given that the coarse-grid metric g̃ij,k
generally varies across segments, we further assume that the offset δλk approximates a
uniform random sampling of the coarse-grid Wigner-Seitz cell. Inserting Eq. (4.20) into

(4.18), we see that the average over the angle-term |∆λ̂||δλk| cos θk will tend to zero, as
any sign of cos θk is equally likely, while the average norm |δλk|2 will tend to the average
mismatch 〈µ̃〉 of the coarse-grid template bank, and so we obtain

µ̂(λs, λ̂) ≈ µ̂0(λs, λ̂) + 〈µ̃〉 . (4.21)

When estimating the sensitivity of the interpolating StackSlide statistic, we will further
average this expression over randomly-chosen signal locations λs, and therefore the above
approximate averaging expressions will become exact, and we obtain

〈µ̂〉 = 〈µ̂0〉+ 〈µ̃〉 , (4.22)
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where averaging is performed over the coarse- and fine-grid template banks (i.e. the
respective Wigner-Seitz cells).

The probability distribution of signal mismatches in a given template bank constructed
with a certain maximal mismatch m depends on the structure and dimensionality of the
template bank. The corresponding average mismatch can be expressed as 〈µ〉 = ξ m,
where ξ ∈ (0, 1) is a characteristic geometric factor of the template bank. Such mismatch
distributions were studied quantitatively, for example in [55]. For hyper-cubic lattices,
the geometric relation is well known to be exactly 〈µ〉 = m/3, which was used in previous
optimization studies [64, 88]. For the more efficient A∗n-lattices this geometric factor is
approximately ξ ≈ 0.5 − 0.6 for low dimensions n . 6. Here we allow for general
geometric factors ξ, but for simplicity we assume it to be identical for the fine- and
coarse-grid template banks, and so Eq. (4.22) can be written as

〈µ̂〉 = ξ(m̂+ m̃) , with ξ ∈ (0, 1) , (4.23)

where m̂ and m̃ are the maximal mismatch parameters of fine- and coarse-grid template
banks, respectively.

Averaging the non-centrality parameter ρ2
Σ of Eq. (4.19) over random signal parame-

ters λs at fixed signal strength hrms, we can now obtain the expression

〈
ρ2

Σ

〉
= [1− ξ(m̂+ m̃)]

2Ndet

Sn

h2
rms T , (4.24)

where we (trivially) generalized the result to the case of a network of Ndet detectors.
In this case Sn refers to the harmonic mean over individual-detector PSDs, and hrms

is a noise-weighted average over rms-amplitudes from different detectors (e.g. see [44]).
The fact that both the coarse- and fine-grid mismatches enter this expression has been
overlooked in previous studies [64, 88], where only the fine-grid mismatch m̂ had been
included1.

4.2.3. Sensitivity estimate

The false-alarm and false-dismissal probabilities for a given threshold Σth of the Stack-
Slide statistic Σ of Eq. (4.2) are

pfA(Σth) =

∫ ∞

Σth

χ2
4N(Σ; 0) dΣ , (4.25)

pfD(Σth, ρ
2
Σ) =

∫ Σth

−∞
χ2

4N(Σ; ρ2
Σ) dΣ , (4.26)

where the special case of a coherent F -statistic search corresponds to N = 1.
Sensitivity is often quantified in terms of the weakest (rms-) signal strength hth re-

quired to obtain a given detection probability p∗det = 1 − p∗fD at a given false-alarm

1These studies additionally imposed the ad-hoc constraint of m̃ = m̂ in the computing-cost expressions

55



4. Optimal StackSlide method at fixed computing cost

probability p∗fA. This requires inverting Eq. (4.25) to obtain the critical threshold
Σ∗th = Σth(p∗fA), then substituting this into Eq. (4.26) and inverting to find the critical
non-centrality parameter

ρ∗2Σ = ρ2
Σ(p∗fA, p

∗
fD, N) . (4.27)

The signal location λs is generally unknown, therefore the mismatch µ̂(λs, λ̂) of the

closest template λ̂ and the corresponding mismatched non-centrality parameter ρ2
Σ(λs, λ̂)

of Eq. (4.19) follow a random distribution. In order to estimate the threshold rms signal
strength hth, one would have to compute pfD(p∗fA, hth) by averaging the right-hand side
of Eq. (4.26) over the (known) mismatch distribution of µ̂. Furthermore, for statements
about physical upper limits and sensitivity of a given search pipeline, it is often required
to quantify the sensitivity in terms of the intrinsic GW amplitude h0, instead of the
rms detector strain hrms, which would require further averaging of Eq. (4.26) over
the (potentially) unknown sky-position and polarization parameters. This problem has
recently been studied in detail in [94].

For our present purpose it will be sufficient to obtain the correct scaling of sensitiv-
ity with StackSlide parameters {N, T, m̃, m̂}, while the absolute sensitivity level is less
important. We will therefore employ the usual simplification of this problem, which
consists in averaging ρ2

Σ instead of pfD(ρ2
Σ) over the mismatch distribution of µ̂, so we

approximate

pfD(p∗fA, hth) =
〈
pfD(p∗fA, ρ

2
Σ)
∣∣
hth

〉
λs

≈ pfD

(
p∗fA,

〈
ρ2

Σ

〉
λs

)
. (4.28)

The results of [94] indicate that this indeed approximately preserves the scaling of sen-
sitivity as a function of StackSlide parameters.

We can now use Eq. (4.24) to translate the critical non-centrality parameter ρ∗2Σ of
Eq. (4.27) into a threshold rms signal-strength hth, namely

h−2
th =

2Ndet

ρ∗2Σ

[1− ξ(m̂+ m̃)]
T

Sn

. (4.29)

Following the Neyman-Pearson criterion we want to maximize detection probability
p∗det = 1 − p∗fD at fixed false-alarm probability p∗fA and at fixed signal strength hrms.
Equivalently2 we can fix the false-alarm and false-dismissal probabilities and minimize
the required threshold rms signal strength hth, which is the traditional optimization
approach used in previous studies [64, 88].

Gauss approximation for large N

One approach (used in [43, 88]) to make further analytical progress consists in assum-
ing a large number of segments, i.e. N � 1, and invoke the central limit theorem to

2Due the monotonicity of pfD as a function of hrms.
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approximate χ2
4N by a Gaussian distribution

P
(
Σ|ρ2

Σ

) N�1≈
(
2πσ2

Σ

)−1/2
exp

[
−(Σ− Σ)2

2σ2
Σ

]
, (4.30)

with mean and variance of χ2
4N(ρ2

Σ) given by

Σ = 4N + ρ2
Σ ,

σ2
Σ = 2(4N + 2ρ2

Σ) .
(4.31)

This allows us to analytically integrate Eqs. (4.25), (4.26), which yields

pfA(Σth) =
1

2
erfc

(
Σth − 4N

2
√

4N

)
, (4.32)

pfD(Σth, ρ
2
Σ) =

1

2
erfc

(
ρ2

Σ − (Σth − 4N)

2
√

4N + 2ρ2
Σ

)
, (4.33)

where erfc(x) ≡ 1− erf(x) is the complementary error-function. Substituting Eq. (4.32)
into Eq. (4.33), we obtain

β ≡ ρ2
Σ − 2α

√
4N

2
√

4N + 2 ρ2
Σ

, (4.34)

where we defined

β ≡ erfc−1(2 p∗fD) = −erfc−1(2 p∗det) ,

α ≡ erfc−1(2 p∗fA) .
(4.35)

Solving Eq. (4.34) for the critical non-centrality parameter ρ∗2Σ , we obtain3

ρ∗2Σ (α, β,N) = 2α
√

4N + 4β2 + 2β

√
4N + 4α

√
4N + 4β2 , (4.36)

which we refer to as the “Gauss approximation”. Introducing the average per-segment
SNR ρF as ρ2

F ≡ 〈ρ2
Σ〉/N , one can consider two interesting limits of the false-dismissal

equation (4.34):

(i) strong-signal limit (ρ2
F � 1): the per-segment SNR of the signal is large, and we

obtain
ρ∗Σ ≈

√
8 β , (4.37)

which is somewhat pathological, as β � 1 and therefore the detection probability
is extremely close to pdet = 1. Neither false-alarm threshold nor the number of
segments N matter for detectability4 in this case.

3The second solution has β < 0, corresponding to pfD > 0.5.
4This has been noted previously for radio observations[95]
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(ii) weak-signal limit (ρ2
F � 1): the per-segment SNR of the signal is small, and using

N � 1 we find
ρ∗2Σ ≈ 2

√
4N (α + β) , (4.38)

which we refer to as the “weak-signal Gauss approximation” (WSG), which was
first used in [43] to estimate the sensitivity of the Hough method. This approach
results in the “classic” semicoherent sensitivity scaling as a function of N , namely

h−2
th ,WSG =

Ndet

2Sn

[1− ξ(m̂+ m̃)]

α + β

T√
N
. (4.39)

In practice we find that the WSG approximation is often not well satisfied, and the
deviations of the N -scaling in Eq. (4.38) from the exact form of Eq. (4.27) can lead to
dramatically different optimal solutions. Already the Gauss approximation of Eq. (4.36)
is not well satisfied for small false-alarm probabilities pfA � 1 and segment numbers in
the range N . O (1000), as can be seen in Fig. 4.2. A more reliable approximation
was recently introduced in [94], namely using the Gaussian distribution only for the
false-dismissal equation [(4.26)], while keeping the central χ2-distribution for the false-
alarm equation [(4.25)]. For the present chapter this approach would not be well-suited,
however, as we need the sensitivity equation in the form of a power-law in T and N ,
similarly to Eq. (4.39).

Local power-law approximation for ρ∗Σ

We can incorporate the exact N -scaling of the critical non-centrality parameter ρ∗2Σ of
Eq. (4.27) by locally expressing it as a power-law in the form

ρ∗2Σ (p∗fA, p
∗
fD, N) = r0N

1/(2w) , (4.40)

where w(p∗fA, p
∗
fD, N0) is a parameter quantifying the relative deviation of the exact N -

scaling from the WSG limit of Eq. (4.38), where w = 1. The power-law coefficients can
be computed as

w =

(
2
∂ log ρ∗2Σ

∂ logN

)−1

, r0 = ρ∗2Σ N
−1/(2w)
0 , (4.41)

evaluated at a point {p∗fA, p∗fD, N0}.
The function w(N) is shown in Fig. 4.2, for a reference false-dismissal probability of

p∗fD = 0.1 and different choices of false-alarm probability p∗fA, both for the exact solution
Eq. (4.27) and for the Gauss approximation of Eq. (4.36). We see that the exact
N -scaling w increasingly deviates from the WSG approximation (w = 1) at lower false-
alarm probabilities and at smaller N . The Gauss approximation tends to agree better
with the exact scaling at larger N (as expected), and at higher false-alarm probabilities.
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Figure 4.2.: N -scaling coefficient w defined in Eq. (4.40) as a function of N , for false-
dismissal probability p∗fD = 0.1, and different false-alarm probabilities p∗fA ∈
[10−10, 10−5, 10−2]. Solid lines show the scaling obtained from the exact
solution Eq. (4.27), while dashed lines refer to the Gauss approximation of
Eq. (4.36). The WSG approximation corresponds to w = 1.

Using the power-law approximation of Eq. (4.40), we can now express the threshold
signal strength of Eq. (4.29) as

L0(N, T, m̃, m̂) ≡ r0 Sn

2Ndet

h−2
th

= [1− ξ(m̃+ m̂)] T N−1/(2w) , (4.42)

which defines the objective function L0 that we want to maximize as a function of the
StackSlide parameters.

We see that, without further constraints the optimal solution would simply be m→ 0,
N → 1 and T → Tmax, i.e. a fully coherent search over all the available data Tmax with an
infinitely fine template bank. This would obviously require infinite computing power, and
we therefore need to extend the optimization problem by a computing-cost constraint.
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4.2.4. Template counting

For both the coarse5 and the fine grid, the respective number of templates6 {Ñ , N̂ }
covering the parameter space P is given [54, 55] by the general expression

N = θnm
−n/2 Vn , with Vn ≡

∫

Tn
dnλ

√
det g , (4.43)

where m is the maximal-mismatch parameter, det g is the determinant of the correspond-
ing parameter-space metric gij, and Vn denotes the metric volume of the n-dimensional
space Tn ⊆ P spanned by the template-bank. The normalized thickness θn corrsponding
to the number of templates per unit volume [54], depends on the geometric structure of
the covering, for example θZn = nn/2 2−n for a hyper-cubic lattice Zn.

An important subtlety in Eq. (4.43) is the dimensionality n of the template-bank space
Tn, which can be smaller than the dimensionality of the parameter space P, as previously
discussed in [64, 88]. The template-bank dimensionality n is generally a (piece-wise
constant) function of the StackSlide parameters {N,∆T,m}, which determine the metric
resolution. The extent of P along certain directions can be “thin” compared to the metric
resolution and would require only a single template along this direction, effectively not
contributing to the template-bank dimensionality. For different StackSlide parameters,
however, the resolution might be sufficient to require more than one template along this
direction, adding to the template-bank dimensionality n.

Following [53, 64, 88], the correct dimensionality for given StackSlide parameters can
be determined by the condition that n should maximize the number of templates Nn
computed via Eq. (4.43), i.e.,

Ññ = max
n
Ñn , and N̂n̂ = max

n
N̂n . (4.44)

This can be understood as follows: if N decreases when adding a template-bank dimen-
sion, then the corresponding parameter-space extent is thinner than the metric resolution
and therefore adds “fractional” templates. On the other hand, if N decreases by remov-
ing a dimension, then its extent is thicker than the metric resolution and requires more
than one template to cover it.

An interesting alternative formulation can be obtained by expressing Eq. (4.44) as the
condition Nn/Nn−1 > 1 for including an additional dimension n. For constant metrics
and simple parameter-space shapes, i.e. Vn =

∫
dnλ
√
g =
√
g∆λ1×∆λ2 . . .×∆λn, this

can be shown to be equivalent to

θn
θn−1

∆λn
dλn

> 1 , (4.45)

5We assume a roughly constant number of coarse-grid templates Ñ across all segments.
6The templates in this formulation are not to be confused with the “patches” used in BC [64] and CGK

[88]. A “patch” in the BC/CGK framework corresponds to a line of templates along the frequency
axis.
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where dλn ≡
√
mgnn is the metric template extent along dimension n, in terms of the

diagonal element gnn of the inverse metric gij. This shows that Eq. (4.44) boils down
to (apart from the lattice-thickness ratio) the requirement that the parameter-space
extent ∆λn along a given dimension n must exceed the corresponding metric template
resolution dλn.

The coherent (coarse-grid) metric volume Ṽñ is typically a steep function of the coher-
ence time ∆T , and can often be well approximated (over some range of ∆T ) by a power

law, namely Ṽñ(∆T ) ∝ ∆T q̃. We can therefore write Eq. (4.43) for Ñ in the power-law
form

Ññ(m̃,∆T ) = k̃ m̃−ñ/2 ∆T q̃ , (4.46)

where k̃ = θñṼñ(∆T0) ∆T−q̃0 for some choice of segment length ∆T0.

The semicoherent (fine-grid) metric volume V̂n̂ generally depends on both ∆T and N
and can typically [64, 56, 93] be factored in the form

V̂n̂(N,∆T ) = γn̂(N) Ṽn̂(∆T ) , (4.47)

in terms of the refinement factor γn̂(N) ≥ 1 and the coherent-metric volume Ṽn̂(∆T )
of the fine-grid template space. Typically γ(N) can be well approximated (over some
range of N) by a power law, namely γ(N) ∝ N p̂. We can therefore write Eq. (4.43) for

N̂ in the power-law form

N̂n̂(m̂,∆T,N) = k̂ m̂−n̂/2 ∆T q̂N p̂ , (4.48)

where k̂ = θn̂V̂n̂(∆T0, N0) ∆T−q̂0 N−p̂0 for some choice of parameters {∆T0, N0}.

4.2.5. Computing-cost model

The total computing cost Ctot of the interpolating StackSlide statistic has two main
contributions, namely

Ctot(m̃, m̂,N,∆T ) = C̃ + Ĉ , (4.49)

where C̃(m̃,N,∆T ) is the computing cost of the F -statistic over the coarse grid of Ññ
templates for each of the N segments, and Ĉ(m̂,N,∆T ) is the cost of incoherently

summing these F -values across all segments on a fine grid of N̂n̂ templates. Note that
we neglect all other costs such as data-IO etc, which for any computationally limited
search will typically be much smaller than Ctot.

Computing cost C̃ of the coherent step

The computing cost of the coherent step is

C̃(m̃,N,∆T ) = N Ññ(m̃,∆T )Ndet c̃1(∆T ) , (4.50)
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where c̃1(∆T ) is the F -statistic computing cost of a single template for a single segment
and a single detector. Here we used the fact that to first order [41] the number of

detectors has no effect on the number of templates Ñ .
As discussed previously in [88], there are two fundamentally different implementations

of the F -statistic calculation currently in use: a direct SFT-method [96], and a (generally
far more efficient) FFT-method based on barycentric resampling [91, 97].

(i) The SFT-method consists in interpolating frequency bins of short Fourier trans-
forms (“SFTs”) of length TSFT, using approximations described in [96, 44]. The
resulting per-template cost c̃1(∆T ) is directly proportional to the segment length
∆T :

c̃SFT
1 (∆T ) = c̃SFT

0

∆T

TSFT

, (4.51)

where c̃SFT
0 is an implementation- and hardware-dependent fundamental computing

cost.

(ii) In the FFT-method the cost of searching a frequency band ∆f using an (up-
sampled by u) FFT frequency-resolution of u/∆T is proportional to Nf log 2Nf ,
where Nf = u∆f ∆T is the number of frequency bins. We can therefore express
the per-template F -statistic cost c̃1(∆T ) as

c̃FFT
1 (∆T ) = c̃FFT

0 log(2u∆f∆T ) , (4.52)

where c̃FFT
0 is an implementation- and hardware-dependent fundamental comput-

ing cost.

Using the power-law model of Eq. (4.46) for Ñ , we can write the coherent computing
cost in the form

C̃(m̃,N,∆T ) = κ̃ m̃−ñ/2N η̃ ∆T δ̃ , (4.53)

where
η̃ = 1, δ̃ = q̃ + ∆δ̃ , (4.54)

and where ∆δ̃ is either

∆δ̃ =

{
∆δ̃SFT ≡ 1 ,

∆δ̃FFT ≡ [log(2u∆f∆T0)]−1 ,
(4.55)

depending on whether the F -statistic is computed using the SFT- or FFT-method, re-
spectively. The expression for ∆δ̃FFT can be obtained via Eq. (4.62) and depends (albeit
weakly) on the reference segment length ∆T0. The corresponding proportionality factors
κ̃ are found as

κ̃SFT = θñNdet
c̃SFT

0

TSFT

Ṽñ(∆T0)

∆T q̃0
,

κ̃FFT = θñNdet
c̃FFT

0

∆δ̃FFT

Ṽñ(∆T0)

∆T δ̃0
.

(4.56)
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Computing cost Ĉ of the incoherent step

The computing cost of the StackSlide step is

Ĉ(m̂,N,∆T ) = N N̂n̂(m̂,∆T,N) ĉ0 , (4.57)

where ĉ0 is the implementation- and hardware-dependent fundamental cost of adding
one value of 2Fk for one fine-grid point λ̂ in Eq. (4.2), including the cost of mapping

the fine-grid point to its closest coarse-grid template λ̃k(λ̂) using the coherent metric
of the segment k, namely g̃k. The incoherent step operates on coherent multi-detector
F -statistic values, and therefore does not depend on the number of detectors Ndet.

Using the power-law model of Eq. (4.48) for N̂ , we can write the incoherent computing
cost as

Ĉ(m̂,N,∆T ) = κ̂ m̂−n̂/2N η̂ ∆T δ̂ , (4.58)

where
η̂ = p̂+ 1 , δ̂ = q̂ , (4.59)

and the proportionality factor

κ̂ = θn̂ ĉ0
V̂n̂(N0,∆T0)

N p̂
0 ∆T q̂0

, (4.60)

for given reference values {N0,∆T0}.

General power-law computing-cost model

Combining Eqs. (4.53) and (4.58) we arrive at the following power-law model for the
total computing cost, defined in Eq. (4.49), namely

Ctot = κ̃ m̃−ñ/2N η̃ ∆T δ̃ + κ̂ m̂−n̂/2N η̂ ∆T δ̂ . (4.61)

If a given computing-cost function does not follow this model, we can always produce
a local fit to Eq. (4.61), which should be valid over some range of parameters {∆T,N},
namely

δ ≡ ∂ logC

∂ log ∆T
, η ≡ ∂ logC

∂ logN
, (4.62)

κ ≡ C(m0, N0,∆T0)

m
−n/2
0 Nη

0 ∆T δ0
, (4.63)

for reference values {m0, N0,∆T0}. Note that δ generally depends only on ∆T0, while η
depends only on N0, due to the way these dependencies typically factor (cf. Sec. 4.2.5).
The mismatch dependency ∝ m−n/2 is exact according to Eq. (4.43), but a given
computing-cost function might still deviate from this behaviour (e.g. the BC/CGK

63



4. Optimal StackSlide method at fixed computing cost

computing-cost function discussed in Sec. 4.4.3). In this case one can extend the power-
law fit by extracting the “mismatch-dimension” n via

n ≡ −2
∂ logC

∂ logm
. (4.64)

It will be more convenient in the following to work in terms of {N, T} instead of
{N,∆T}, where T = N ∆T is the total time span of data used. Changing variables, we
obtain the computing-cost model in the form

Ctot = κ̃ m̃−ñ/2N−ε̃ T δ̃ + κ̂ m̂−n̂/2N−ε̂ T δ̂ , (4.65)

where we defined
ε ≡ δ − η , (4.66)

generally satisfying ε > 0 for all realistic cases considered here. Note that m and N are
dimensionless, therefore the respective units of [C/κ] are [T δ].

Symbol Description Relations Refs
N Number of segments Sec. 4.2, Eq. (4.1)

∆T Segment duration Sec. 4.2
T Total observation time T = N ∆T Sec. 4.2

Q̃ a quantity Q referring to the coherent step Sec. 4.2

Q̂ a quantity Q referring to the incoherent step Sec. 4.2
n number of template-bank dimensions Eq. (4.44)
m maximal template-bank mismatch parameter Eqs. (4.8), (4.15)
ξ average mismatch factor ∈ [0, 1] 〈µ〉 = ξ m Eq. (4.23)

w L0 sensitivity scaling with N L0|m,T ∝ N−1/(2w) Eq. (4.40)

$ Lagrange multiplier for computing-cost constraint L = L0 +$(Ctot − C0) Eq. (4.67)
κ computing-cost prefactor Eqs. (4.53),(4.58)
δ computing-cost T - or ∆T - exponent at fixed N C|N ∝ ∆T δ ∝ T δ Eqs. (4.53),(4.58)
η computing-cost N -exponent at fixed ∆T C|∆T ∝ Nη Eqs. (4.53),(4.58)
−ε computing-cost N -exponent at fixed T C|T ∝ N−ε Eq. (4.65)

Table 4.1.: Overview of symbols and notation used in the formulation of the optimization
problem.

4.3. Maximizing sensitivity at fixed computing cost

We want to maximize the objective function L0 ∝ h−2
th defined in Eq. (4.42) under the

constraint of fixed computing cost, Ctot = C0. We therefore need to find the stationary
points of the Lagrange function

L(N, T, m̃, m̂,$) = L0 +$ [C̃ + Ĉ − C0] , (4.67)

where stationarity with respect to the Lagrange multiplier, i.e. ∂$L = 0, returns the
computing-cost constraint C̃ + Ĉ = C0.

Table 4.1 provides a “dictionary” summarizing the notation used here and in the
previous section to formulate the optimization problem.
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4. Optimal StackSlide method at fixed computing cost

Before embarking on the full optimization problem, it is instructive to consider two
special cases, namely (i) a fully coherent search, and (ii) searches where the computing

cost is dominated by one contribution, either coherent C̃ or incoherent Ĉ.

4.3.1. Special case (i): Fully coherent search

The fully coherent search is a special case of Eq. (4.67) with the additional constraint

N = 1, and therefore ∆T = T , m̂ = 0, and Ĉ = 0. This leaves us with the reduced
Lagrangian

L(T, m̃,$) = (1− ξm̃)T +$ [κ̃ m̃−ñ/2 T δ̃ − C0] . (4.68)

Requiring stationarity with respect to {T, m̃,$} results in the optimal StackSlide pa-
rameters

ξ m̃opt =

(
1 +

2δ̃

ñ

)−1

, (4.69)

Topt =

(
C0

κ̃

)1/δ̃

m̃
ñ/(2δ̃)
opt , . (4.70)

Interestingly the optimal mismatch m̃opt is independent of both the computing-cost
constraint C0 and the observation time T . The scaling of the resulting threshold signal
strength hth with computing cost C0 is therefore

h−1
th ∝ C

1/(2δ̃)
0 . (4.71)

In practical applications we often find δ̃ ≈ 3− 7, and so Topt and h−1
th will increase very

slowly with increasing computing cost C0. This indicates that a brute-force approach of
throwing more computing power at a fully coherent search will typically yield meagre
returns in sensitivity.

4.3.2. Special case (ii): Computing cost dominated by one
contribution

If either the coherent C̃ or incoherent Ĉ contribution dominates the total computing
cost [(4.65)], we can write

Ctot ≈ κm−n/2N−ε T δ , (4.72)

where all StackSlide parameters now refer to dominant contribution only.
We assume that the negligible computing-cost contribution implies that we can also

neglect the corresponding mismatch: if the respective step is cheap, one can easily
increase sensitivity by reducing the corresponding mismatch until it is negligible, i.e. we
assume 〈µsc〉 ≈ ξ m. This qualitative argument will be confirmed by the general solution
in the next section. We can therefore write the objective function Eq. (4.42) as

L0(N, T,m) ≈ (1− ξ m)N−1/(2w) T . (4.73)
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Using Eq. (4.72) we can obtain

N(C0,m, T ) = (C0/κ)−1/εm−n/(2ε) T δ/ε , (4.74)

∆T (C0,m, T ) = (C0/κ)1/εmn/(2ε) T−η/ε , (4.75)

which shows that increasing T at fixed C0 results in more and shorter segments, while
increasing C0 at fixed T results in fewer and longer segments (assuming ε > 0). Substi-
tuting this into Eq. (4.73) yields the threshold signal strength

h−2
th ∝ (C0/κ)1/(2wε)

[
(1− ξm)mn/(4wε)

]
T a/(2wε) , (4.76)

where we introduced the parameter

a ≡ 2wε− δ , (4.77)

which will be of critical importance in determining the character of the optimal solution.
The objective function L0 ∝ h−2

th can be easily maximized over mismatch m, resulting
in

ξ m
(0)
opt =

[
1 +

4wε

n

]−1

, (4.78)

which is independent of both C0 and T . This solution differs from Eq. (4.69) of the fully

coherent case, even when the coherent cost dominates (where ε̃ = δ̃ − 1).
We see in Eq. (4.76) that there is no extremum of hth (at least in regions of approxi-

mately constant power-law exponents). Given that w ≥ 1 and generally ε > 0, we can
distinguish two different regimes depending on the sign of critical scaling exponent a
defined in Eq. (4.77):

a > 0: sensitivity improves (i.e. h−1
th increases) with increasing T (at fixed C0). Therefore

sensitivity is only limited by the total amount of data Tmax available.

a < 0: sensitivity improves (i.e. h−1
th decreases) with decreasing T , so one should use less

data (until the assumptions change).

In practice these extreme conclusions will be modified, as the power-law exponents will
vary (slowly) as functions of N and T , and the assumption of a dominating computing-
cost contribution might also no longer be satisfied. The marginal case a = 0 marks a
possible sensitivity maximum, namely if increasing T results in a < 0 and decreasing T
leads to a > 0.

We can obtain a useful qualitative picture of the full optimization problem by consid-
ering the two extreme cases of dominating computing contribution C̃ or Ĉ:

• if C̃ � Ĉ: we always have ã > 0 (for all cases of interest η̃ = 1, δ̃ > 2 and w ≥ 1).
Therefore sensitivity improves with increasing T . As seen in Sec. 4.3.3 this shifts
computing cost to the incoherent contribution. Eventually one either uses all the
data Tmax or the coherent cost no longer dominates.
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• if Ĉ � C̃: the incoherent parameter â can have any sign. If â > 0 one would
increase T until all the data Tmax is used (or we reach â = 0). If â < 0 one would
decrease T until the incoherent cost no longer dominates.

These limiting cases show that the type of optimal solution will be determined solely by
the incoherent critical exponent â = 2wε̂− δ̂, namely

T
(0)
opt =

{
finite if â ≤ 0 ,

∞ otherwise ,
(4.79)

which we refer to as the bounded and the unbounded regime, respectively.

4.3.3. General optimality conditions

We now return to the full optimization problem of Eq. (4.67), namely

L = L0 +$ [C̃ + Ĉ − C0] , (4.80)

where

L0 = [1− ξ(m̃+ m̂)] T N−1/(2w) , (4.81)

C̃ = κ̃ m̃−ñ/2N−ε̃ T δ̃ , (4.82)

Ĉ = κ̂ m̂−n̂/2N−ε̂ T δ̂ . (4.83)

It will be useful introduce the computing-cost ratio

κ ≡ C̃/Ĉ , (4.84)

and express the respective contributions as

C̃ =
C0

1 + κ−1
, Ĉ =

C0

1 + κ
. (4.85)

Using Eqs. (4.82) and (4.83) to solve for T and N , respectively, we obtain

ND =
(C0/κ̂)δ̃

(C0/κ̃)δ̂

[
m̃−ñ/2 (1 + κ−1)

]δ̂

[m̂−n̂/2 (1 + κ)]
δ̃
, (4.86)

TD =
(C0/κ̂)ε̃

(C0/κ̃)ε̂

[
m̃−ñ/2 (1 + κ−1)

]ε̂

[m̂−n̂/2 (1 + κ)]
ε̃
, (4.87)

where D is the determinant of the matrix [δ̃, η̃; δ̂, η̂], which for all cases of practical
interest seems to be positive definite, namely

D ≡ δ̃η̂ − δ̂ η̃ > 0 . (4.88)

The segment length ∆T = T/N can similarly be obtained as

∆TD =
(C0/κ̃)η̂

(C0/κ̂)η̃

[
m̂−n̂/2 (1 + κ)

]η̃

[m̃−ñ/2 (1 + κ−1)]
η̂
. (4.89)
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Stationarity with respect to mismatches {m̃, m̂}
Requiring stationarity with respect to the mismatches, i.e. ∂m̃L = ∂m̂L = 0, yields

$C̃ = −2ξ
m̃opt

ñ
TN−1/(2w) ,

$Ĉ = −2ξ
m̂opt

n̂
TN−1/(2w) ,

(4.90)

which results in the remarkable relation

m̃opt/ñ

m̂opt/n̂
= κ . (4.91)

The ratio of optimal mismatch per dimension is simply given by the computing-cost ratio
κ. This result confirms an assumption made in Sec. 4.3.2 about the optimal solution,
namely that a negligible computing-cost contributions also implies that one can neglect
the corresponding mismatch.

Stationarity with respect to number of segments N

Requiring stationarity with respect to N (treated as continuous), i.e. ∂NL = 0 yields

L0 + 2w$
[
ε̃ C̃ + ε̂ Ĉ

]
= 0 , (4.92)

and substituting Eqs. (4.90) and (4.81), we obtain

m̃opt

m̃
(0)
opt

+
m̂opt

m̂
(0)
opt

= 1 , (4.93)

where we used the asymptotic optimal mismatches m
(0)
opt defined in Eq. (4.78) for the

two limiting cases of dominating coherent or incoherent computing-cost, respectively.
Equation (4.93) can be interpreted as defining a two-dimensional ellipse in

√
m with semi-

major axes
√
m

(0)
opt. Combining this with Eq. (4.91) we obtain the optimal mismatches

ñ

m̃opt

=
ñ

m̃
(0)
opt

+
n̂

m̂
(0)
opt

κ−1 ,

n̂

m̂opt

=
n̂

m̂
(0)
opt

+
ñ

m̃
(0)
opt

κ ,
(4.94)

which reduces to the limiting cases of Eq. (4.78) when either computing cost dominates,
i.e. when κ � 1 or κ � 1. We can express the optimal mismatch prefactor in Eq.
(4.81) as

[1− ξ(m̃+ m̂)]opt =

[
1 +

1

4w

ñκ + n̂

ε̃κ + ε̂

]−1

. (4.95)
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The optimal mismatches Eq. (4.94) only depend on the computing-cost ratio κ.
Substituting into Eq. (4.87) we therefore obtain a relation of the form T0 = T (C0,κopt)
for given observation time T0, which can (numerically) be solved for κopt = κ(C0, T0).
Similarly, one could specify N0 and solve Eq. (4.86) for κopt = κ(C0, N0). In either
case the optimal mismatches are obtained from Eq. (4.94) and the optimal number and
length of segments from Eqs. (4.86) and (4.87), fully closing the optimal solution at
fixed T .

Monotonicity relations with T

It is interesting to consider the behaviour of the optimal “fixed-T” solution of the previ-
ous section as a function of T . We see in Eq. (4.94) that m̃opt is monotonically increasing
with κ, while m̂opt is decreasing, i.e.

∂κm̃opt > 0, and ∂κm̂opt < 0 . (4.96)

We generally assume D ≡ δ̃η̂−δ̂η̃ > 0 and ε > 0 which implies that the right-hand side of
Eq. (4.87) is monotonically decreasing with κ, while the left-hand side is monotonically
increasing with T . Therefore κ must be montonically decreasing with T , i.e.

∂Tκ < 0 . (4.97)

Therefore the optimal solution shifts computing cost from the coherent to the incoherent
step with increasing T , which had already been used in Sec. 4.3.2. Combining this with
Eq. (4.96) we find

∂T m̃opt < 0, and ∂T m̂opt > 0 , (4.98)

and using this with Eqs. (4.86) and (4.89), we can further deduce

∂TNopt > 0 , and ∂T∆T opt < 0 , (4.99)

namely increasing T results in more segments of shorter duration.

Stationarity with respect to observation time T

Requiring stationarity of L with respect to T , i.e. ∂TL = 0, yields the final condition

L0 +$
[
δ̃ C̃ + δ̂ Ĉ

]
= 0 , (4.100)

which combined with Eq. (4.92) results in

ã C̃ + â Ĉ = 0 , (4.101)

where the critical exponents a are defined in Eq. (4.77). We generally expect ã > 0, as
discussed in Sec. 4.3.2, and therefore the stationarity condition can only have a solution
if

â ≡ δ̂ − 2η̂ + 2(w − 1) ε̂ < 0 . (4.102)
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This conclusion is consistent with the analysis of Sec. 4.3.2: â < 0 characterizes a
bounded regime with finite optimal T

(0)
opt, while â > 0 characterizes an unbounded regime

with T
(0)
opt →∞.

If T
(0)
opt exceeds the available data Tmax, then we simply apply the fixed-T solution of

Sec. 4.3.3. Otherwise Eq. (4.101) directly yields

κopt = − â
ã
, (4.103)

closing the optimal solution via Eqs. (4.94), (4.86) and (4.87).

Monotonicity relations with C0

For a bounded optimal solution with T
(0)
opt ≤ Tmax, we see from Eq. (4.103) that

κopt and {m̃opt, m̂opt} are independent of the computing-cost constraint C0. Inserting
Eqs. (4.86),(4.87) into Eq. (4.42), we can therefore read off the scaling

h−1
th ∝ C

(ã−â)/(4wD)
0 , (4.104)

which shows that any “reasonable” search should satisfy

ã > â , (4.105)

in order for sensitivity to improve with increasing C0 (assuming D > 0). Furthermore,
from Eqs. (4.86), (4.87) and (4.42) we obtain the monotonicity relations:

∂C0Nopt ∝ δ̃ − δ̂ ,
∂C0Topt ∝ ε̃− ε̂ ,

∂C0∆T opt ∝ η̂ − η̃ .
(4.106)

We expect η̂ > η̃ = 1, therefore the optimal segment length ∆T opt will generally increase
with C0.

The behaviour of the optimal number of segments is less clear-cut: if δ̃ < δ̂ then Nopt

decreases with C0, which can result in a fully coherent search being optimal, despite
T

(0)
opt < Tmax. A StackSlide search is therefore not guaranteed to be more sensitive than a

fully coherent search at the same computing power, even when computationally limited.
Similarly, Topt can either increase with C0 (if ε̃ > ε̂), or decrease: a more expensive

and more sensitive search can be using less data.

4.4. Examples of practical application

In order to illustrate the practical application of this analytical framework and its po-
tential gains in sensitivity we consider a few different examples of CW searches.
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4.4.1. Directed searches for isolated neutron stars

Directed searches target NSs with known sky-position but unknown frequency and fre-
quency derivatives, i.e. {f, ḟ , f̈ , . . .}. The approximate phase metric of this parameter
space for isolated NSs is known analytically and constant over the parameter space, e.g.
see [Eq. (10) in [62]]. The number of coarse-grid templates scales as

Ñ ∝ ∆T n(n+1)/2 , (4.107)

while the refinement of the semicoherent metric [Eq. (92) in [56]] scales as

γn ∝ Nn(n−1)/2 . (4.108)

The coherent computing-cost exponents Eq. (4.54) are therefore

δ̃ = ñ(ñ+ 1)/2 + ∆δ̃ , η̃ = 1 , (4.109)

where ∆δ̃ depends on the F -statistic implementation as given by Eq. (4.55). The
incoherent computing-cost exponents Eq. (4.59) are

δ̂ = n̂(n̂+ 1)/2 , η̂ = 1 + n̂(n̂− 1)/2 , (4.110)

which results in ε̂ = n̂− 1.
For ñ ≥ 2 the condition ã = δ̃−2 + 2(w−1)ε̃ > 0 holds as expected, while the critical

boundedness parameter of Eq. (4.102) now reads as

â =
n̂

2
(3− n̂)− 2 + 2(w − 1)(n̂− 1) , (4.111)

which for the first few values of n evaluates to

â1 = −1 ,

â2 = −3 + 2w ,

â3 = −6 + 4w ,

â4 = −10 + 6w.

(4.112)

In the WSG limit (i.e. w → 1) this is always â < 0, and therefore the search falls into the
bounded regime. However, in general w > 1 and therefore directed StackSlide searches
can be either bounded or unbounded.

Directed search for Cassiopeia-A

As a concrete example we consider the directed search for the compact object in Cassiopeia-
A (CasA). This search has been performed using LIGO S5 data, and the resulting upper
limits have been published in [63]. For the present example we use the search setup as
originally proposed in [62], namely a fully coherent F -statistic search (using the “SFT”
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4. Optimal StackSlide method at fixed computing cost

method, i.e. ∆δ̃ = 1) using data spanning T = 12 days, with a maximal template-bank
mismatch of m̃ = 0.2. The setup assumed two detectors with identical noise floor Sn

and a 70% duty cycle, which we can formally incorporate as Ndet = 2×0.7 = 1.4 in Eqs.
(4.50) and (4.29). The parameter space spanned a frequency range of f ∈ [100, 300] Hz
and spindown-ranges corresponding to a spindown-age of τ = 300 y, see [62]. The
template-bank dimension for the given StackSlide parameters was determined as ñ = 3,
resulting in a power-law scaling of δ̃ = 7 according to Eq. (4.109).

In order to compare sensitivity estimates of different search setups, we use nominal
(per-template) false-alarm and false-dismissal probabilities of

p∗fA = 10−10, p∗fD = 0.1 . (4.113)

We use a rough estimate of ξ = 0.5 (e.g. see [Fig. 8 in [55]]) for the geometric average-
mismatch factor of the A∗3-lattice that was used in this search. Integrating Eqs. (4.25)
and (4.26), and solving for ρ∗F yields ρ∗F ≈ 8.35. Substituting this into Eq. (4.29) with
m̂ = 0, m̃ = 0.2 yields an estimate for the weakest detectable signal hth of the original
F -statistic search:

hth√
Sn

∣∣∣∣
ref

≈ 5.2× 10−3
√

Hz, (4.114)

Timing a current StackSlide code using the SFT-method, one can extract approximate
timing parameters

c̃SFT
0 = 7× 10−8 s, ĉ0 = 6× 10−9 s , (4.115)

which results in a total computing cost for the original search7 of C0 ≈ 472 days on a
single cluster node. This number is used as the computing-cost constraint C0 for this
example.

First we consider an optimal coherent search as described in Sec. 4.3.1, namely using
Eq. (4.69) we find

ξ m̃opt ≈ 0.18 =⇒ m̃opt ≈ 0.36 , (4.116)

and using Eq. (4.70) this results in Topt = 13.6 days, which is only about ∼ 13% longer
then the original search proposal of [62]. The total improvement in the minimal signal
strength hth is less than 2% compared to Eq. (4.114), which shows that the original
search proposal was remarkably close to an optimal coherent search.

Next we consider a StackSlide search over the same parameter space using the same
computing cost C0. Assuming the optimal solution will have segment lengths in the
range 1 days . ∆T . 7 days, and a total span of T . 365 days, the parameter-space

dimensions would be ñ = 2, n̂ = 3 (see [62]). This results in power-law exponents δ̃ = 4,

δ̂ = 6 , η̂ = 4, and therefore ε̃ = 3, ε̂ = 2, and ã = 2 + 6(w − 1), â = −2 + 4(w − 1). In
order to simplify the example we use the WSG approximation, i.e. w = 1, which implies

7Using the original timing constant c̃
(0)
SFT = 6×10−7 s of [62], we correctly recover the original estimate

of C̃ ≈ 20× 200 days
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(a) (b)

(c) (d)

Figure 4.3.: Numerical optimal fixed-T solution for a directed CasA search as a function
of T . The dashed vertical line indicates the analytical WSG-optimal solu-
tion of Eq. (4.118), while the dotted vertical line corresponds to the exact
optimal solution. Panel (a) shows the weakest detectable signal strength
compared to the reference value hth,ref of Eq. (4.114), for the exact hth and
for the WSG-approximated hWSG

th (using w = 1). (b) shows the optimal mis-
match parameters m̃opt(T ) and m̂opt(T ), (c) shows the optimal computing-
cost ratio κopt(T ) and (d) the optimal number of segments Nopt(T ) (treated
as continuous).
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that the search would be bounded (â < 0). We can therefore use Eq. (4.103) to obtain
the optimal computing-cost ratio as

κopt = 1 . (4.117)

Note that when w > 1.25 we would have â > 0 and therefore this search would become
unbounded. From Eq. (4.78) we obtain m̃

(0)
opt ≈ 0.29, m̂

(0)
opt ≈ 0.55, and using Eq. (4.94)

we find the respective optimal mismatches as

m̃opt ≈ 0.16 , m̂opt ≈ 0.24 . (4.118)

Using Eq. (4.63) we can extract the computing-cost coefficients κ̃ ≈ 3.14 × 10−17 and
κ̂ ≈ 2.38 × 10−33 (with time measured in seconds), and plugging this into Eqs. (4.86)
and (4.87) we find the optimal StackSlide parameters as 8

Nopt = 61.8 , ∆T opt ≈ 2.3 days ,

Topt ≈ 144.8 days ,
(4.119)

which is self-consistent with the initially-assumed template-bank dimensions, as it falls
into the assumed ranges for ∆T and T .

We can estimate the resulting sensitivity by solving Eqs. (4.25) and (4.26), which
yields ρ∗Σ ≈ 14.7, and substituting into Eq. (4.29) we find a weakest detectable signal
strength hth of

hth√
Sn

∣∣∣∣
opt

≈ 2.8× 10−3
√

Hz , (4.120)

which is an improvement on the optimal coherent sensitivity by a factor close to two.
Fig. 4.3 illustrates the behaviour of the optimal solution as a function of T without

using the WSG approximation. This is obtained by numerically solving Eq. (4.87) for
κopt(T ), which yields mopt(T ) via Eq. (4.94) and Nopt(T ) via Eq. (4.86). We see that
the non-WSG approximated optimal solution results in somewhat different StackSlide
parameters than the WSG solution of Eq. (4.119), but it hardly gains any further
sensitivity.

Increasing the total computing cost C0 would increase the relative advantage of the
StackSlide method compared to a fully coherent search: the coherent search would gain
sensitivity as h−1

th ∝ C
1/14
0 according to Eq. (4.71), while the StackSlide search would

gain sensitivity as h−1
th ∝ C

1/10
0 according to Eq. (4.104) (in the WSG approximation), so

here the StackSlide search is more “efficient” at converting increases of computing-power
into gains of sensitivity.

8In this chapter we use the full refinement factor expression instead of leading order approximation,
therefore the optimal parameters differ from the one found in [98].
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4.4.2. All-sky CW search using Einstein@Home

As an example for a wide parameter space all-sky search with massive computing power,
we consider two recent CW searches performed on the Einstein@Home computing plat-
form [57, 58, 79], namely the StackSlide searches labelled ’S5GC1’ and ’S6Bucket’, which
employed an efficient grid mapping implementation described in [92].

An Einstein@Home search divides the total workload into many small workunits, each
of which covers a small fraction of the parameter space and requires only a couple of
hours to complete on a host machine. These searches consisted of roughly 107 workunits.
The E@H platform delivers a computing power of order 100 Tflop/s, and these searches
ran for about 6 months each, so we can estimate their total respective computing cost is
of order Ctot ∼ 1021 flop (i.e. ∼ 1 Zeta flop). Each E@H workunit is designed to require
about the same computing cost, which allows us to base the present analysis on just a
single workunit.

δ̃ δ̂ η̂ w N ∆T [d] m̃ m̂ C0[h] κ hth√
Sn

[
√

Hz]

S5GC1 8.7 7.7 2.0 1.1 205 1.0 0.50 0.50 0.91 2.545 2.69× 10−3

Tmax = 1 y 10.0 9.0 2.0 1.1 528 0.7 0.14 0.17 0.91 0.869 2.19× 10−3

S6Bucket 4.6 3.6 2.0 1.2 90 2.5 0.50 0.50 2.54 13.914 2.20× 10−3

Tmax = 1 y 3.7 2.7 2.0 1.2 175 2.1 0.58 0.32 2.54 1.815 1.93× 10−3

Table 4.2.: Einstein@Home example setups ’S5GC1’ and ’S6Bucket’, with corresponding
results from an iterative optimization at fixed computing power C0, with
assumed maximal observation time of Tmax = 1 y. The gains in weakest
detectable signal strength hth are ∼ 23% and ∼ 14 %, respectively.

The detector data used in these searches contained non-stationarities and gaps, and
the template banks were constructed in somewhat semi-empirical ways that are hard
to model analytically. In order to simplify this analysis we assume gapless stationary
Gaussian data, and we use the analytic metric expressions from [56] to estimate the
number of templates. This example is therefore “inspired by” recent E@H searches, but
does not represent a detailed description of their computing cost or sensitivity.

The two searches ’S5GC1’ and ’S6Bucket’ covered a fixed spindown-range correspond-
ing to a spindown age of τ = f0/ḟ = 600 y at a reference frequency of f0 = 50 Hz.
Each workunit covers a frequency-band of ∆f = 0.05Hz, the spindown range of ∆ḟ =
2.7× 10−9 Hz/s and a (frequency-dependent) fraction q of the sky. We can incorporate
the sky-fraction q by using template counts qN in the computing-cost expressions, where
N are the all-sky expressions from [56]. For simplicity we fix the parameter-space di-
mension to n = 4, namely {sky, frequency, spindown}, and we use [Eq. (56),(50) in [56]]9

for the number of coarse-grid templates Ñ and the refinement factor γ(N) of [Eq. (77)
in [56]] (assuming gapless data).

For a workunit at 50 Hz, the reference StackSlide parameters are:

9There are missing terms in both [Eqs. (57) and (83) in [56]], but one can use their Eqs. (50) and (84)
instead to compute det g.
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• S5GC1: q = 1/3, N = 205, ∆T = 25 h

• S6Bucket: q = 1/51, N = 90, ∆T = 60 h

For both searches the mismatch distributions of the coarse- and fine-grid template banks
are not well quantified, so we simply assume hyper-cubic template banks (ξ = 1/3) with
m̃ = m̂ = 0.5, i.e. an average total mismatch of 〈µ〉 = 1/3. Plugging these parameters
into the template-counting formulae of [56], together with the timing constants of Eq.
(4.115) from the Cas-A example, we find a reference per-workunit computing cost of
C0 ≈ 0.91 h for S5GC1, and C0 ≈ 2.5 h for S6Bucket10. Table 4.2 shows the estimated
sensitivity for these reference searches assuming the same false-alarm and false-dismissal
probabilities as in the previous section.

We can apply the analytical optimal solution from Sec. 4.3 with the extracted power-
law coefficients at the reference StackSlide parameters found in Table 4.2. This initially
places us into the unbounded regime (i.e. â > 0) for both ’S5GC1’ and ’S6Bucket’. We
therefore expect to improve sensitivity by increasing T until we hit the assumed upper
bound of Tmax = 1 y, so we solve Eq. (4.87) for κopt(Tmax), substitute into Eq. (4.94)
for {m̃opt, m̂opt} and obtain Nopt from Eq. (4.86).

In order to find a self-consistent solution, we need to iterate this procedure: we
extract new power-law coefficients at the new solution, then re-solve until the parameters
converge to better than 1% accuracy. In the case of the ’S5GC1’ search, the converged
solution falls into the unbounded regime. In the case of ’S6Bucket’ the converged solution
falls into the bounded regime, but with T

(0)
opt > Tmax. The optimal observation time is

therefore Topt = 1 y in both cases, and the resulting converged solutions and power-law
coefficients are given in Table 4.2. We see that (under the present idealized conditions)
we could gain ∼ 23% in detectable signal strength hth compared to the ’S5GC1’ setup,
and ∼ 14% compared to the ’S6Bucket’ setup.

4.4.3. All-sky search examples from CGK

The all-sky search examples studied in CGK [88] provide another interesting test case
for our optimization framework. CGK considered a multi-stage optimization, but we
can treat their first-stage result as a single-stage optimization problem at fixed given
computing cost. CGK discussed four different cases, namely a search for either “young”
(Y) neutron stars (τ = f/ḟ = 40 y) or “old” (O) neutron stars (τ = 106 y), using
either a “fresh-data” (f) or “data-recycling” (r) mode (a distinction that is irrelevant for
our present purpose). The optimized CGK StackSlide parameters and computing-cost
constraints are found in [Tables I-VIII in [88]], and are summarized in Table 4.3. For
the sensitivity estimates we use the same false-alarm and false-dismissal probabilities as
in Sec. 4.4.1.

10The actual E@H workunits take about 6 h to complete on a machine with these timings, but these
setups included bigger refinement factors γ due to gaps in the data, and used rather different
template-bank designs.
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Note that we expect our results to improve on the sensitivity of the CGK solution, as
they incorporated an ad-hoc constraint of m = m̃ = m̂, and the total average mismatch
in [Eq.(46) in CGK] incorrectly included only the contribution from one template grid
instead of both, as discussed in Sec. 4.2.2.

The functional form of the template-bank equations (originally from BC [64]) in the
CGK computing-cost model [Eq.(53) in CGK] is not consistent with the generic form
of Eq. (4.43) with respect to the mismatch scaling. We therefore resort to extracting
(potentially fractional) “mismatch dimensions” {ñ, n̂} using Eq. (4.64), in order to fully
reproduce their computing-cost function with the power-law model of Eq. (4.61). The
scaling parameters {δ, η} are extracted via Eq. (4.62) and w from Eq. (4.41). The
resulting values are given in Table 4.3, assuming the FFT/resampling method for the
F -statistic calculations.

ñ n̂ δ̃ δ̂ η̂ w N ∆T [d] m̃ m̂ C0[Zf] κ hth√
Sn

[
√

Hz]

Y/r 3.0 4.0 3.1 6.0 4.2 1.7 10 2.6 0.78 0.78 0.94 0.071 7.31× 10−3

N = NCGK 3.0 4.0 3.1 6.0 4.2 1.7 10 2.1 0.17 0.48 0.94 0.482 6.38× 10−3

Y/f 3.0 4.0 3.1 6.0 4.2 1.7 9 2.7 0.78 0.78 0.82 0.086 7.42× 10−3

N = NCGK 3.0 4.0 3.1 6.0 4.2 1.7 9 2.2 0.18 0.46 0.82 0.526 6.50× 10−3

O/r 2.5 2.5 3.0 10.0 7.4 1.8 8 14.8 0.35 0.35 0.74 0.004 2.61× 10−3

N = NCGK 2.8 2.5 3.0 10.0 7.4 1.8 8 14.6 0.03 0.34 0.74 0.090 2.46× 10−3

O/f 2.5 2.6 3.0 10.0 7.3 1.7 9 11.8 0.21 0.21 0.35 0.009 2.65× 10−3

N = NCGK 2.7 2.5 3.0 10.0 7.3 1.7 9 12.4 0.04 0.33 0.35 0.107 2.56× 10−3

Table 4.3.: CGK example search setups for young (’Y’) and old pulsars (’O’), using either
fresh (’f’) or recycling (’r’) data-modes. The first line of each example gives
the original CGK solution with respective extracted power-law coefficients,
and the second line shows our optimal self-consistent solution with constraint
N = NCGK. The computing cost C0 is measured in Zeta-flop (1Zf = 1021flop).

Using the extracted scaling coefficients to compute the optimal solution from Sec. 4.3
results in a solution that is inconsistent with the initially extracted scaling coefficients.
An iteration over solutions, allowing both N and T to vary, did not converge. We
therefore solve a simpler problem by fixing the number of segments to the original CGK
values, i.e. we constrain the solutions to N = NCGK. We proceed by solving Eq. (4.86)
for κopt(N), closing the solution via Eqs. (4.94) and (4.87). We then extract new power-
law coefficients at this solution and iterate this procedure until convergence to better
than 1 % accuracy is achieved. The resulting fixed-N optimal solutions are given in
Table 4.3. The respective improvements of the weakest detectable signal strength hth

compared to the original CGK solutions are ∼ 15 % in the young (Y) pulsar case, and
∼ 5 % in the old (O) pulsar case.

4.4.4. CWs from binary neutron stars

For CWs from NSs in binary systems with known sky-position (such as Sco-X1 and
other LMXBs), the search parameter space typically consists of the intrinsic signal fre-
quency and orbital parameters of the binary system, i.e. (projected) semi-major axis,
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orbital period P , periapse angle, eccentricity and eccentric anomaly. The corresponding
template-counting formulae were initially studied in [99] for coherent searches. These
have recently been extended to semicoherent searches by Messenger [93], giving explicit
template scalings in two limiting cases, namely (i) short coherent segments compared to
the orbital period, i.e. ∆T � P , and (ii) long coherent segments, i.e. ∆T � P .

(i) Short coherent segments (∆T � P )

One can change parameter-space coordinates and Taylor-expand in small ∆T/P � 1 to
obtain the coherent template scaling [Eq. (24) in [93]]:

Ññ ∝ ∆T ñ(ñ+1)/2 , (4.121)

where ñ is the effective coherent parameter-space dimension using the new coordinates.
The coherent cost power-law coefficients are therefore δ̃ = ñ(ñ+ 1)/2 + ∆δ̃ and η̃ = 1.

The semicoherent template scaling including eccentricity results in a 6-dimensional
semicoherent template bank, i.e. n̂ = 6, and a template scaling [Eq. (28) in [93]] of

N̂ecc ∝ N ∆T 7. In the case of small eccentricity one has n̂ = 4, and the template scaling
given in [Eq. (29) in [93]] is N̂circ ∝ N ∆T 5. In both cases the semicoherent power-law

exponents satisfy δ̂ ≥ 5, and η̂ = 2, resulting in the critical parameter â > 0. This
implies that the boundedness-condition Eq. (4.102) is always violated, i.e. one should
use all the available data.

(ii) Long coherent segments (∆T � P )

In this limit the template scalings in both the coherent and semicoherent step are
[Eqs. (32,33) in [93]]: Ñ ∝ N̂ ∝ ∆T 2, which is unusual as there is no refinement.

Therefore η̃ = η̂ = 1, and δ̃ = 2 + ∆δ̃, while δ̂ = 2, and therefore ε̂ = 1. We see
that always ã > 0 and â = 2(w − 1) > 0, and therefore binary-CW searches in the
long-segment limit also fall into the unbounded regime, i.e. one should use all the data.

4.5. Discussion

In this chapter we have derived an improved estimate of the StackSlide sensitivity scal-
ing, correctly accounting for the mismatches from both coarse- and fine-grid template
banks, which had been overlooked by previous studies. By locally fitting sensitivity
and computing-cost functions to power laws we are able to derive fully analytical self-
consistency relations for the optimal sensitivity at fixed computing cost. This solution
separates two different regimes depending on the critical parameter â of Eq. (4.102): a

bounded regime with a finite optimal T
(0)
opt, and an unbounded regime where T

(0)
opt →∞.

Several practical examples are discussed in order to illustrate the application of this
framework. The corresponding sensitivity gains in terms of the weakest detectable sig-
nal strength hth are found to be ∼ 100% compared to a fully coherent directed search
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for CasA, and about 5% − 20% compared to previous StackSlide searches such as Ein-
stein@Home and the examples given in CGK [88]. We show that CW searches for binary
neutron stars seem to generally fall into the unbounded regime where all the available
data should be used irrespective of available computing power.

This study only considered single-stage StackSlide searches on Gaussian stationary
gapless data from detectors with identical noise-floors. In the next chapter we extend
this analysis to more realistic data conditions.
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The enourmous computational requirement of the wide parameter-space searches for con-
tinuous gravitational waves impose a cautious use of the available computing resources,
i.e., we always aim at maximal sensitivity. In this respect to maximize the sensitivity
of a semicoherent search, for example StackSlide, means that we need to choose the
optimal search parameters, namely number of segments, segment duration and optimal
maximal mismatch on the coarse and fine grid. How to do this at fixed computing cost
and under the ideal conditions of constant noise floor and data without gaps has been
studied in Chap. 4, where we derived analytical expressions to determine the optimal
search paramters. However under real conditions the available data can be fragmented,
e.g., due to down-time of the detectors, as well as the noise floor may be changing. The
fragmentation of the data can significantly affect the computing cost function and thus
the optimal search parameters. On the other hand, the noise fluctuations suggest the use
of a data selection procedure in order to spend the available computing cycles searching
data of higher quality.

In the following we extend Chap. 4 to these more realistic conditions by taking into
account possible gaps in the data and noise level changes. We show, how the real
conditions manifest in the sensitivity function, but nevetheless it is possible to decouple
the related data selection problem from the sensitivity maximization. Therefore we can
apply a numerical optimization to find optimal semicoherent search parameters. We also
describe a suitable data selection algorithm. The outcome of the proposed numerical
optimization are the optimal search parameters and the selected data, thus the search
can be performed in practice. We first test the numerical optimization procedure under
ideal conditions and obtain the results of the analytical method. Then we give examples
of practical application.

This chapter is organized as follows. In Sec. 5.1 we introduce the ingredients of the
search-optimization method, i.e., the threshold signal-to-noise ratio (SNR), the sensitiv-
ity function, and the computing cost function. The numerical optimization of the search
parameters and in particular the data selection method are described in Sec. 5.2. In
Sec. 5.3 we give examples of practical application and discuss in Sec. 5.4.

Notation

We follow the notation of Chap. 4, i.e., we use tilde when referring to fully coherent
quantities, Q̃, and overhat when referring to semicoherent quantities, Q̂.
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5.1. Threshold SNR, sensitivity function and computing
cost

In this section we introduce the main ingredients needed to define the optimization
problem, i.e., to find the number of segments N with segment duration ∆T and coarse
and fine grid mismatch, m̃ resp. m̂, which maximize the sensitivity of the search at fixed
computing cost C0. These ingredients are the threshold SNR required for detection, the
sensitivity function, which we want to maximize and the computing cost function.

5.1.1. Threshold SNR

A claim for detection, when searching for a signal, in particular a weak signal, in the
presence of noise is sensible only in the context of two well defined quantities. The
first one, called false-alarm probability, is the probability to falsely claim a detection
when the signal is not present in the data. The second quantity, called false-dismissal
probability, is the probability to miss the signal even if the signal is indeed present in
the data.

When a signal is present in the data the StackSlide statistic follows a noncentral χ2

distribution with 4N degrees of freedom. Using the notation and definitions of the
previous chapter, we denote this by χ2

4N(Σ, ρ2
Σ), where Σ is the StackSlide statistic, and

ρ2
Σ is the noncentrality parameter, i.e., the sum of the squared signal-to-noise (SNR) ratio

of the individual segments ρ2
Σ ≡

∑N
i=1 ρ

2
i . We can integrate the false-alarm probability

pfA(Σth) =

∫ ∞

Σth

dΣχ2
4N(Σ; 0) , (5.1)

and by inversion for a given false-alarm p∗fA obtain the threshold Σth. For a pre-defined
false-dismissal p∗fD probability

pfD(Σth, ρ
2
Σ) =

∫ Σth

−∞
dΣχ2

4N(Σ; ρ2
Σ) , (5.2)

using Σth we want to obtain the critical non-centrality

ρ∗Σ
2 = ρ2

Σ(p∗fA, p
∗
fD, N) , (5.3)

and thus the threshold SNR ρ∗Σ.
The computation of the critical non-centrality ρ∗2Σ is complicated by the fact that

for wide parameter-space searches the right-hand side of Eq. (5.2) requires averaging
over sky position and polarization parameters of the signal, but still at fixed h0. In
the previous chapter we assumed a signal population of constant SNR. Therefore by
application of the central limit theorem and approximation of the χ2 distribution by a
Gaussian distribution, we analytically integrated and inverted Eq. (5.2) to obtain (5.3).
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For weak signals and large number of segments this resulted in the “weak-signal Gauss
(WSG) approximation”, Eq. (4.38), for the critical non-centrality parameter

ρ∗2Σ (p∗fA, p
∗
fD, N) ≈ 2

√
4N(erfc−1(2p∗fA) + erfc−1(2p∗fD)) . (5.4)

With this we define the per-segment treshold SNR

ρ∗ ≡
√
ρ∗2Σ (p∗fA, p

∗
fD, N)

N
. (5.5)

Recently a new semi-analytical method has been developed to estimate the sensitivity
of a search [100]. The accuracy of this technique is within the calibration error of the
gravitational wave detector with results similar to the sensitivity estimates performed
with Monte-Carlo methods. The assumption of signal distribution of constant SNR has
been relaxed in [100], where a semi-analytical approximation for the computation of an
isotropic threshold SNR has been introduced. We refer to this method as the KWS
approximation.

In the KWS approximation the averaged over segments threshold ρ∗ is obtained re-
cursively. At iteration i the value of ρ∗ is

ρ = F
(
ρ
)
, (5.6)

where

ρi+1 = F

(
ρi + ρi−1

2

)
. (5.7)

For the exact form of F and the details required to implement the method in practice
see [100].

For comparison of the WSG and KWS approximations in Fig. 5.1 we plot the ratio
ρ∗WSG/ρ

∗
KWS at fixed pfA = 1×10−10 and pfD = 0.1. The threshold SNR is underestimated

in the WSG approximation, thus we underestimate the detectable intrinsic amplitude
h0, i.e., we overestimate the sensitivity of the search; see Eq. (5.13). This effect is
stronger for small number of segments, where the WSG approximation breaks. In this
chapter we use the WSG approximation only in one example,where we determine opti-
mal semicoherent search parameters analytically for comparison with the result of the
numerical method proposed in Sec. 5.3.

5.1.2. Sensitivity function

The signal strength hrms in the detector, depends on the intrinsic amplitude h0, the sky-
position of the source, the polarization angles and the detector orientation. Averaging
isotropically over the sky-position and polarization yields

〈
h2

rms

〉
sky,pol

=
2

25
h2

0 . (5.8)
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Figure 5.1.: Ratio of threshold SNR computed with the WSG and KWS approximation
as function of the number of segments N at fixed false-alarm pfA = 1×10−10

and false-dismissal pfD = 0.1 probability. The threshold SNR is underesti-
mated in the WSG approximation, leading to underestimate of the intrinsic
amplitude h0, and therefore overestimate of the sensitivity of the search.
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Under ideal conditions of data without gaps with duration T and constant noise floor
Sn the accumulated SNR2 in a semicoherent search is (see Eq. (4.24)):

ρ2
Σ = [1− ξ(m̃+ m̂)]

2Ndet

Sn
h2

rmsT , (5.9)

where ξ ∈ (0, 1) is the geometrical factor used to estimate the average mismatch of
the template bank, m̃ is the mismatch on the coarse grid, m̂ is the mismatch on the
fine grid and Ndet is the number of detectors. To take into account possible noise floor
fluctuations, with the data in form of NSFT number of Short Fourier Transforms (SFTs)
of duration TSFT, the noise floor can be written as, Eq. (2.81),

S−1(f0) ≡ N−1
SFT

NSFT∑

n=1

S−1
n (f0) , (5.10)

where Sn is the per SFT noise Power Spectral Density (PSD) estimated at frequency f0.
To account for the possible gaps in the data we define the actual amount of available
data

Tdata ≡ NSFTTSFT . (5.11)

Using Eqs. (5.8), (5.10) and (5.11) we can rewrite Eq. (5.9) to obtain the accumulated
SNR2 in a semicoherent search under real conditions, namely

〈
ρ2

Σ

〉
sky,pol

=
4

25
[1− ξ(m̃+ m̂)]h2

0TdataS−1 . (5.12)

To estimate the minimal detectable intrinsic amplitude h0 at fixed false-alarm p∗fA and
false-dismissal p∗fD probability we use the per-segment threshold SNR ρ∗. With 〈ρ2

Σ〉sky,pol ≡
Nρ∗2 substitution in Eq. (5.12) and rearangement yields

h0 =
5

2
[1− ξ(m̃+ m̂)]−1/2ρ∗

√
N

√
1

G , (5.13)

where
G ≡ TdataS−1 (5.14)

is the goodness of the data. Eq. (5.13) is the function that we need to minimize under
the constraint of fixed computing cost C0 in order to maximize the sensitivity of the
search.

5.1.3. Computing cost

The total computing cost Ctot(m̃, m̂,N,∆T,NSFT) of the StackSlide method is composed

by the cost C̃(m̃,∆T,NSFT) to compute the F -statistic [91, 46] on the coarse grid and

the cost Ĉ(m̂,N,∆T ) to sum these F -statistic values across all segments on the fine
grid, thus

Ctot(m̃, m̂,N,∆T,NSFT) = C̃(m̃,∆T,NSFT) + Ĉ(m̂,N,∆T ) . (5.15)
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The computing cost of the coherent step using the SFT method is

C̃(m̃,∆T,NSFT) = Ñ (m̃,∆T )NSFTc̃
SFT
0 , (5.16)

where NSFT is the total number of used SFTs, Ñ (m̃,∆T ) is the number of coarse-
grid templates and c̃SFT0 is an implementation- and hardware-dependent fundamental
computing cost.

The incoherent computing cost is

Ĉ(m̂,N,∆T ) = NN̂ (m̂,∆T,N)ĉ0 , (5.17)

where N̂ (m̂,∆T,N) is the number of fine-grid templates and ĉ0 is the implementation-
and hardware-dependent fundamental cost of adding F -statistic values.

5.1.4. Templates counting

The general expression for the number of templates required to cover some parameter
space P is

N = θnm
−n/2 Vn , with Vn ≡

∫

Tn
dnλ

√
det g , (5.18)

where θn is the normalized thickness of the search grid, m is the maximal-mismatch,
det g is the determinant of the parameter-space metric gij and Vn is the metric volume
of the n-dimensional space of the template bank. For hyper-cubic lattice the normalized

thickness is θZn = nn/2 2−n, while for an A∗ lattice it is θA∗n =
√
n+ 1

{
n(n+2)
12(n+1)

}n/2
[54].

The choice of the dimensionality of the template bank is subject to the maximization of
the number of templates, namely

Ññ = max
n
Ñn , and N̂n̂ = max

n
N̂n . (5.19)

In the previous chapter we used the factorization of the semicoherent metric volume

V̂n̂(N,∆T ) = γn̂(N) Ṽn̂(∆T ) , (5.20)

to derive the general power-law computing-cost model, as in the gap-less data case, the
refinement factor γn̂(N) is only function of the number of segment N . However using
real data introduces an additional dependency on the time span of the search through
the actual position of the segments in time. For details see, e.g., [56]. We aim to model
the real conditions as closely as possible, in the numerical optimization we therefore
directly compute the semicoherent metric

ĝ(tref) =
1

N

N∑

i=1

g̃i(ti,∆T, tref) , (5.21)

where g̃i(ti,∆T, tref) is the coherent metric of segment i at fixed reference time tref .
To compute the coherent metric g̃i(ti,∆T, tref) in this chapter we use the analytical
expressions found in [56].
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5.1.5. The choice of spindown parameter space

The choice of the dimensionality of the template bank through Eqs. (5.19) is possible
only for a simple rectangular geometry of the parameter space.

As discussed in Chap. 2, using the spindown age of a potential source [64]:

τ = f/|ḟ | . (5.22)

the spindown search band in dimension k is

|f (k)| ≤ k!
f

τ k
. (5.23)

This however means that the spindown band is frequency dependent, which may be un-
practical. Therefore if we keep the number of templates in the spindown space constant
by fixing a minimal detectable spindown age τ0 at some frequency f0, the detectable
spindown age at frequency f yields

τ(f) = τ0f/f0 . (5.24)

This would define the simplest possible parameter-space volume for optimization, namely
a “box”.

A more complicated triangular parameter-space shape, has been discussed in [62] and
used in the search for gravitational waves from the supernova remnant Cassiopeia-A [63].
The parameters of a search over such space are difficult to optimize as the spindown order
may vary even in infinitesimally small slices of a frequency band; see Fig. 2.3. In the
following we neglect this fact in order to compare the outcome of the optimization with
previously obtained results.

5.2. Numerical optimization procedure for a
semicoherent StackSlide search with a fixed
frequency band

In this section we consider the practical implementation of a numerical optimization
procedure to find optimal search parameters for a semicoherent StackSlide search.

5.2.1. Definition of the optimization problem

To maximize the sensitivity of the search, i.e., to minimize the measurable intrinsic
amplitude, we need to minimize the function given in Eq. (5.13), namely:

h0(m̃, m̂,N,G) =
5

2
[1− ξ(m̃+ m̂)]−1/2ρ∗

√
N

√
1

G (5.25)
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under the constraints

Ctot ≤ C0 ,

0 < m̃ < 1 ,

0 < m̂ < 1 ,

Ñ ≤ N̂ , (5.26)

where C0 is a given maximal available computing power. Note that in practice the cost
constraint is difficult to be given as an equality. However a reasonable algorithm should
find a solution for which Ctot becomes approximately C0. At first glance the form of Eq.
(5.25) appear to be not well suited for optimization, because one of the parametes of the
semicoherent search, namely the segment duration ∆T , is not explicitly present in the
equation. In fact, there is an implicit dependency on ∆T through Tdata; the quantity
needed to compute the goodness of the data G, which we have to maximize in order
to minimize h0. In other words, we need a data selection procedure. This decoupling
of the data selection allows us in practice to minimize h0(m̃, m̂,N,∆T ), which is a 4D
optimization problem over m̃, m̂, N and ∆T . The dependency of h0 on ∆T through G
will become clearer in the next subsection, where we explain the data selection procedure.

5.2.2. Data selection

Figure 5.2.: Schematic representation of the data selection procedure for requested N =
10 segments with duration ∆T = 3 time units. The middle line of squares
in gray are the available SFTs of unit time, where the number inside the
square denotes the PSD. The white squares without a number are gaps in
the data. The selected segments are the white rectangles, where the number
inside is the number of the segment. Note how segments 8, 9 and 10 overlap
in time with their neighboring segments, however they do not share data.
This is depicted by the black fill of the segments.

For a given amount of data, we need an algorithm to select the best data in order to
maximize the goodness G, i.e., pick as much data Tdata as possible of lowest noise level S
as possible. For a requested pair of number of segments N with duration ∆T and given
set of SFTs with duration TSFT, which are ordered in time by increasing timestamp tj,
the data selection consist in the following steps:

1. For each timestamp tj find all SFTs in the time interval [tj, tj + ∆T − TSFT] and
compute Gj.
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2. Select the segment starting from tj such that Gj is maximal and remove the times-
tamps of the SFTs, which belong to the selected segment 1.

3. Repeat steps 1. and 2. until N segments are selected or there is no more data left.

An example of data selection is schematically presented in Fig. 5.2, where we select
N = 10 segments of duration ∆T = 3 time units out of data set with NSFT = 33
SFTs of unit time distributed in T = 37 time units. Three of the selected segments
overlap in time with their neighbors, however these overlapping segments do not share
data, as the data is used from the neighboring segments selected first. Such partial
segments suggest grid construction based on the actual length of the segment instead of
the maximal length ∆T , which would reduce the coherent part of the total computing
cost in these cases. However this would complicate the combination of the F -statistic
values in the semicoherent step of the StackSlide search, thus the overall effect remains
unclear. Therefore we stick to a constant grid for every segment.

Before proceeding with the examples of practical application in the next section, we
note, that an equivalent data selection procedure has been used to select data for the
recent all-sky Einstein@Home searches for continuous gravitational waves in LIGO S6
data.

5.3. Examples of practical application

In this section we apply the numerical optimization procedure to a directed semicoherent
search, first using simulated and then real detector data (the results are sumarized in
Table 5.2). For comparison with the analytical solution found in the “Directed search
for Cassiopeia-A“ example in the previous chapter 4.4.1, we use the same search volume
enclosed in the frequency band f ∈ [100, 300] Hz with spindown ranges correspnding to
a spindown-age τmin = 300 y. The computing cost constraint is C0 ≈ 472 days on a
single computing core, where the fundamental computing constants are

c̃SFT
0 = 7× 10−8 s, ĉ0 = 6× 10−9 s . (5.27)

In the following we fix the false-alarm pfA = 1 × 10−10 and false-dismissal probability
pfD = 0.1. We assume an A∗ search grid, for which ξ ≈ 0.5. We report the minimal
detectable signal strength, from Eq. (5.8)

hth =

√
2

5
h0 . (5.28)

The weakest detectable signal, as estimated in the previous chapter using the constant
SNR approximation with Tdata = 0.7× 2× 12 days, ξ = 0.5 and m̃ = 0.2 is

hth√
S

∣∣∣∣
opt

≈ 5.2× 10−3
√

Hz . (5.29)

1Working with real numbers it is unlikely to find segments with exactly equal goodness, but in such
rare cases we choose the earliest segment in time.
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which in the KWS approximation yields

hKWS
th√
S

∣∣∣∣
opt

≈ 7.67× 10−3
√

Hz . (5.30)

We perform the numerical optimization with the NOMAD [101] implementation of a
Mesh Adaptive Direct Search (MADS) [70, 71, 72] algorithm for constrained derivative-
free optimization. For each of the following examples we run the procedure 50 times
from a common initial starting point:

N0 = 200 , ∆T0 = 1 days

m̃0 = 0.5 , m̂0 = 0.5,

while we use different mesh coarsening and mesh update basis parameters. These are
internal parameters for the MADS algorithm controling the evolution of the mesh if
a better solution than the current one is found. We use these multiple runs of the
optimization effectively to escape local extrema.

5.3.1. Directed search using simulated data

Case A: Gapless data with constant noise floor

We first consider optimization using simulated data from 2 detectors spanning 365 days,
without gaps, and with a constant noise floor

√
Sn = 1 /

√
Hz. Using the analytical

optimization method discussed in the previous chapter and the WSG approximation to
obtain optimal parameters, the weakest detectable signal strength in the KWS approx-
imation equals to

hKWS
th√
S

∣∣∣∣
opt

≈ 3.6× 10−3
√

Hz . (5.31)

The optimal maximal mismatch on the coarse and fine grid is

m̃opt = 0.16 , m̂opt = 0.24 , (5.32)

and the optimal number of segments Nopt, segment duration ∆T opt and total observation
time Topt are

Nopt = 76.5 , ∆T opt ≈ 2.0 days ,

Topt ≈ 155.5 days .
(5.33)

The results of the numerical optimization when using the WSG approximation to find
optimal parameters is plotted on the left side of Fig. 5.3. We find an optimal solution
yielding a detectable signal strength hth in the KWS approximation

hKWS
th√
S

∣∣∣∣
opt

≈ 3.5× 10−3
√

Hz , (5.34)
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with slightly different optimal mismatches

m̃opt ≈ 0.09 , m̂opt ≈ 0.29 , (5.35)

and segment number and duration, of

Nopt = 185.0 , ∆T opt ≈ 1.3 days ,

Topt ≈ 231.3 days ,
(5.36)

compared to the analytical solution.
The outcome of the optimization when using the KWS approximation is plotted on

the right side of Fig. 5.3. The detectable signal strength in this case is

hKWS
th√
S

∣∣∣∣
opt

≈ 3.5× 10−3
√

Hz , (5.37)

with optimal mismatches

m̃opt ≈ 0.10 , m̂opt ≈ 0.29 , (5.38)

and segment number and duration

Nopt = 188 , ∆T opt ≈ 1.3 days ,

Topt ≈ 235 days .
(5.39)

The gain in sensitivity of this toy semicoherent search compared to the original fully
coherent search using the more accurate KWS approximation is ≈ 2.2.

Case B: Data with gaps and constant noise floor

We consider now data with gaps allowing a duty cycle (fraction of actually available data
Tdata in a given time span Tspan, ε ≡ Tdata/Tspan) of 70 % per detector, while the noise
floor is still constant

√
Sn = 1 /

√
Hz. The results of the numerical optimization when

using the KWS approximation to compute the threshold SNR are plotted in Fig. 5.4.
The detectable signal strength in this case is

hKWS
th√
S

∣∣∣∣
opt

≈ 4.4× 10−3
√

Hz , (5.40)

with optimal mismatches

m̃opt ≈ 0.04 , m̂opt ≈ 0.46 , (5.41)

and segment number and duration

Nopt ≈ 364 , ∆T opt ≈ 0.8 days ,

Topt ≈ 364.9 days .
(5.42)
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(a) (b)

(c) (d)

Figure 5.3.: Semicoherent search optimization using the WSG approximation (left) and
KWS approximation (right) for data from 2 detectors, without gaps and of
constant noise floor

√
Sn = 1/

√
Hz. The sensitivity is always given in the

KWS approximation. The cost constraint is C0 = 472.0 days. The best
numerical solution is denoted with × and the optimal analytical solution
with +. The most sensitive WSG optimal solution is: m̃opt ≈ 0.09, m̂opt ≈
0.29, ∆T opt ≈ 1.3 days, Nopt ≈ 185.0, Topt ≈ 231.3 days, ñ = 2, n̂ = 3,
hth/
√
S ≈ 3.5× 10−3

√
Hz . The most sensitive KWS optimal solution

is: m̃opt ≈ 0.10, m̂opt ≈ 0.29, ∆T opt ≈ 1.3 days, Nopt ≈ 188.0, Topt ≈
235.0 days, ñ = 2, n̂ = 3, hth/

√
S ≈ 3.5× 10−3

√
Hz . (a) WSG optimal

total observation time T and number of segments N . (b) KWS optimal total
observation time T and number of segments N . (c) WSG optimal maximal
mismatch on the coarse and fine grid, m̃ resp. m̂. (d) KWS optimal maximal
mismatch on the coarse and fine grid, m̃ resp. m̂.
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(a) (b)

Figure 5.4.: Semicoherent search optimization using the KWS approximation for data
from 2 detectors with duty cycle of 70 % and of constant noise floor

√
Sn =

1/
√

Hz. The cost constraint is C0 = 472.0 days. The best numerical solution
is denoted with ×. The paramter values are: m̃opt ≈ 0.04, m̂opt ≈ 0.46,
∆T opt ≈ 0.8 days, Nopt ≈ 364.2, Topt ≈ 364.9 days, ñ = 2, n̂ = 3, hth/

√
S ≈

4.4× 10−3
√

Hz . (a) KWS optimal total observation time T and number of
segments N . (b) KWS optimal maximal mismatch on the coarse and fine
grid, m̃ resp. m̂.
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Case C: Data with gaps and noise floor fluctuations

In this example we further relax the requirements on the data by allowing noise floor
fluctuations, while keeping the duty cycle of 70 % per detector. For each SFT the
PSD has been drawn from a Gaussian distribution with mean E[

√
Sn] = 1 /

√
Hz and

standard deviation σ[
√
Sn] = 15× 10−2 Hz−1/2. The outcome of the optimization when

using the KWS approximation is plotted on the right side of Fig. 5.4. The detectable
signal strength in this case is

hKWS
th√
S

∣∣∣∣
opt

≈ 4.4× 10−3
√

Hz , (5.43)

with optimal mismatches

m̃opt ≈ 0.05 , m̂opt ≈ 0.48 , (5.44)

and segment number and duration

Nopt ≈ 325 , ∆T opt ≈ 0.9 days ,

Topt ≈ 364.5 days .
(5.45)

(a) (b)

Figure 5.5.: Semicoherent search optimization using the KWS approximation for data
from 2 detectors with duty cycle 70% and noise floor with fluctuations.
The cost constraint is C0 = 472.0 days. The best numerical solution is
denoted with ×, with value: m̃opt ≈ 0.05, m̂opt ≈ 0.48, ∆T opt ≈ 0.9 days,
Nopt ≈ 325.4, Topt ≈ 364.5 days, ñ = 2, n̂ = 3, hth/

√
S ≈ 4.4× 10−3

√
Hz .

(a) KWS optimal total observation time T and number of segments N . (b)
KWS optimal maximal mismatch on the coarse and fine grid, m̃ resp. m̂.
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5.3.2. Directed search using real data

In this subsection we apply the optimization procedure to real data collected by the
Hanford (H1) and Livingston (L1) LIGO detectors during the S5 run. The most sensitive
data is found around 169.875 Hz, thus the optimization will be done at this frequency.
The details about the data are summarized in Table 5.1. It spans 653 days in 17797
SFTs of duration TSFT = 1800 s. With this the average duty cycle is approximately 0.28
in each detector.

run detector f [Hz] first SFT last SFT NSFT Tspan [d]

S5 H1 169.875 818845553 875277921 9331 653
S5 L1 169.875 818845553 875278812 8466 653

Table 5.1.: Detector data used to test the numerical optimization under real conditions.

Case D: Keeping the cost constraint

We first keep the cost constraint equal to the computing cost used in the examples with
simulated data, namely C0 ≈ 472 days. The result of the optimization procedure is
plotted in Fig. 5.6. The minimal measurable strength is

hKWS
th√
S

∣∣∣∣
opt

≈ 5.1× 10−3
√

Hz , (5.46)

with the optimal search parameters

m̃opt ≈ 0.05 , m̂opt ≈ 0.49 , (5.47)

and segment number and duration

Nopt ≈ 105 , ∆T opt ≈ 1.0 days ,

Topt ≈ 498.2 days .
(5.48)

The sensitivity gain compared to the fully-coherent solution is ≈ 1.5.

Case E: Using Einstein@Home

We now consider using the Einstein@Home distributed computing environment to in-
crease the computing cost constraint to C0 = 360×103 days on a single computing core.
Such computing power corresponds to approximately 30 days on 12000 24x7 single core
CPUs. Given that in the WSG approximation the sensitivity scales with the computing
cost like

h−1
th ∝ C

1/10
0 (5.49)
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(a) (b)

Figure 5.6.: Semicoherent search optimization using the KWS approximation with data
from the H1 and L1 LIGO detectors during the S5 run at 169.875 Hz. The
cost constraint is C0 = 472.0 days. The best numerical solution is denoted
with ×. The most sensitive optimal solution in the KWS approximation
is: m̃opt ≈ 0.05, m̂opt ≈ 0.49, ∆T opt ≈ 1.0 days, Nopt ≈ 105.0, Topt ≈
498.2 days, ñ = 2, n̂ = 3, hth/

√
S ≈ 5.1× 10−3

√
Hz . (a) KWS optimal

total observation time T and number of segments N . (b) KWS optimal
maximal mismatch on the coarse and fine grid, m̃ resp. m̂.
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(a) (b)

Figure 5.7.: Semicoherent search optimization using the KWS approximation with data
from the H1 and L1 LIGO detectors during the S5 run at 169.875 Hz. The
cost constraint is C0 = 360 × 103 days. The best numerical solution is
denoted with ×. The most sensitive optimal solution in the KWS approx-
imation is: m̃opt ≈ 0.07, m̂opt ≈ 0.39, ∆T opt ≈ 15.6 days, Nopt ≈ 22.0,
Topt ≈ 494.6 days, ñ = 2, n̂ = 3, hth/

√
S ≈ 2.9× 10−3

√
Hz . (a) KWS

optimal total observation time T and number of segments N . (b) KWS
optimal maximal mismatch on the coarse and fine grid, m̃ resp. m̂ .
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we expect to achieve sensitivity of≈ 1.54×10−3
√

Hz. In fact the most sensitive numerical
solution using the WSG approximation yields hWSG

th ≈ 1.6× 10−3
√

Hz.
The result of the numerical optimization procedure when using the KWS approxima-

tion is plotted in Fig. 5.7. The minimal measurable strength is

hKWS
th√
S

∣∣∣∣
opt

≈ 2.9× 10−3
√

Hz , (5.50)

with the optimal search parameters

m̃opt ≈ 0.07 , m̂opt ≈ 0.39 , (5.51)

and segment number and duration

Nopt ≈ 22 , ∆T opt ≈ 15.6 days ,

Topt ≈ 494.6 days .
(5.52)

The gain in sensitivity compared to the fully coherent solution is ≈ 2.64. Note, that
by the enormous increase of the computing power, we improve the gain in sensitivity
compared to the case of ideal data. In a sense we “fill“ the gaps in the data with
computing cycles.

Case Tspan [days] ε data C [days] m̃opt m̂opt ∆T opt [days] Nopt hKWS
th /

√
S [
√

Hz] gain

A 365 1 const 472 0.10 0.29 1.3 188 3.5× 10−3 2.2
B 365 0.7 const 472 0.04 0.46 0.8 364 4.4× 10−3 1.74
C 365 0.7 var 472 0.04 0.45 0.8 366 4.4× 10−3 1.74
D 653 0.28 S5 472 0.05 0.49 1.0 105 5.1× 10−3 1.5
E 653 0.28 S5 360× 103 0.07 0.39 15.6 22 2.9× 10−3 2.64

Table 5.2.: Summary of the results of the optimization. Tspan is the time spanned by the
data set used to determine the optimal search parameters. The last column
gives the gain in sensitivity compared to the fully coherent solution, Eq.
(5.30).

5.4. Discussion

In this chapter we studied the optimization of semicoherent searches for continuous grav-
itational waves, in particular the StackSlide search, at constrained computing cost under
real conditions, by taking into account possible gaps in the data and noise level changes.
The presented method to obtain optimal search parameters is based on numerical opti-
mization, in this particular case a MADS algorithm. The outcome of the optimization
procedure is the set of the optimal search parameters {m̃ , m̂,N, ∆T} as well as the
selected data and an estimate of the expected sensitivity.

We showed that under ideal conditions, our numerical optimization method recovers
the optimal solution found by using the analytical method discussed in Chap. 4. The
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optimization procedure is immediately applicable to searches over simple (nearly) ”box“
parameter-space shape. While the proposed optimization method can be easily adapted
to other types of searches, by modification of the computing cost function, further work
is required to extend the applicability of the optimization procedure to an arbitrary
parameter-space shape. The proposed optimization method assumed a fixed frequency
band. Further work is required to relax this condition, in order to answer the question,
what is the optimal trade-off between the size of the searched parameter space (width
of the search) and its coverage (depth of the search).
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Part III.

Fully coherent Follow-up Studies
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Summary

In order to confirm or discard a candidates selected in a semicoherent wide parameter-
space search as a real gravitational-wave event, the candidate requires further fully
coherent follow-up investigation.

In Chap. 6 we derive two different methods to compute the minimal required integra-
tion time of a fully coherent follow-up of candidates produced in wide parameter space
semicoherent searches. We numerically compare these methods in terms of integration
duration and computing cost. In a Monte Carlo study we confirm that we can achieve
the required detection probability.

In Chap. 7 we present a general method and implementation of a direct (two-stage)
transition to a fully coherent follow-up of semicoherent candidates using all of the avail-
able data. This method is based on a grid-less Mesh Adaptive Direct Search algorithm
using the F -statistic. We demonstrate the detection power and computing cost of this
follow-up procedure using extensive Monte Carlo simulations on (simulated) semicoher-
ent candidates from a directed as well as from an all-sky search setup.

In Chap. 8 we report on a fully coherent follow-up of some loud candidates from the
Einstein@Home all-sky search for periodic gravitational waves in LIGO fifth Science Run
(S5) data [59] using the follow-up method developed in Chap. 7. We show the efficiency of
the follow-up pipeline using simulated signals added into simulated Gaussian noise data.
We discuss the impact of possible deviation of the second-order spindown from zero on
the zoom stage, given that the zoom stage is restricted only to the first-order spindown,
but the observation time is long, approx. 264 days. We recover three simulated signals
added at the hardware level into the gravitational wave detectors and identified by the
Einstein@Home search. Finally, we follow-up a set of nine loud candidates not associated
with simulated signals. No significant gravitational-wave events have been found.
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Isolated neutron stars as potential sources of continuous gravitational waves are opti-
mally studied with fully coherent matched filtering methods. These methods are not
directly applicable to previously unknown objects due to the large parameter space that
needs to be covered in all-sky wide parameter-space searches and the related enormous
computing cost [53]. Advanced semicoherent techniques, e.g., StackSlide searches on
the distributed computing environment Einstein@Home [102], produce candidates that
require follow-up in greatly reduced parameter space regions. A follow-up scheme con-
sists of two basic stages. In the first refinement stage, we find the maximum-likelihood
estimator and associated optimal search volume V0. In the second zoom stage, we zoom
in on the optimal search volume by semicoherent or fully coherent integration. In this
chapter we focus on a fully coherent zoom for which we derive and discuss two dif-
ferent methods to compute the minimal required coherent integration time in order to
distinguish real signals from noise.

6.1. Properties of F-statistic searches

The F -statistic was first derived in [28] for the single detector case and generalized to
multi-detector searches in [46]. Continuous gravitational-wave signals are monochro-
matic and sinusoidal in the frame of the gravitational-wave source and undergo phase-
and amplitude modulation due to the rotation and orbital motion of the detector. The
F -statistic is analytically amplitude-maximized, thus the parameter space to search
for signals is spanned by the remaining “Doppler parameters” λ, namely sky position
(α - right ascension, δ - declination) and intrinsic frequency and frequency derivatives
(f, ḟ , f̈ ...), further referred to as spindowns. Searching for previously unknown objects
with matched filtering implies computing matched filters for different points in parame-
ter space, also referred to as templates. As realized in [52, 51] in the context of searches
for gravitational waves from inspiraling binaries, a geometrical approach is best suited
for optimal template placement and template counting. This is made possible by the
introduction of a metric tensor gij on the parameter space and mismatch µ

µ = gij∆λ
i∆λj +O(∆λ3) , (6.1)

where the mismatch µ measures the fractional loss of (squared) signal to noise ratio
(SNR) ρ2 due to the usage of a nearby template λc with offset ∆λ = λc − λs from the
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true parameters of a putative signal λs

µ =
ρ2
s − ρ2

c

ρ2
s

, (6.2)

with the squared SNR ρ2
s and ρ2

c obtained at point λs and λc, respectively. Given the
metric, the problem of efficient lattice and alternative random and stochastic template-
bank construction is studied in [54, 55, 103].

6.1.1. Fully coherent search

A fully coherent search is the classical and most sensitive F -statistic-based search in
the case of unlimited available computing power or a sufficiently cheap computing cost
requirement. The squared SNR ρ2 scales linearly with the observation time T , according
to the following formula:

ρ2 = h2
0RNdTS

−1(f) , (6.3)

where h0 is the intrinsic signal amplitude, R represents the geometrical “detector re-
sponse” , S is the one-sided noise spectral density, which is assumed constant in a
narrow frequency band around f , and Nd is the number of detectors [44]. In the pres-
ence of a signal, the F -statistic follows a non-central χ2 distribution with four degrees
of freedom and non-centrality parameter ρ2. Thus the expectation value is

E[2Fs] = 4 + ρ2 , (6.4)

with standard deviation
σ[2Fs] =

√
2(4 + 2ρ2) . (6.5)

6.1.2. Semicoherent search

At fixed and limited computing cost a more sensitive detection statistic can be con-
structed from the incoherent combination of results obtained by coherent integration of
shorter data segments. In particular we consider a Stack-Slide search [64, 88, 98], where
the statistic is the sum of the F -statistic over the segments:

Σ =
N∑

k=1

2Fk(λ). (6.6)

This new statistic Σ follows a non-central χ2 distribution with 4N degrees of freedom,
thus the expectation value is

E[Σ] = 4N + ρ2
Σ , (6.7)

where the non-centrality parameter is the sum of the squared SNRs over different seg-
ments

ρ2
Σ =

N∑

k=1

ρ2
k . (6.8)
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A trivial but useful reformulation of Eq. (6.7) is in terms of average 2F = 1
N

∑
k 2Fk

and ρ2 = 1
N

∑
k ρ

2
k, namely

E[2F ] = 4 + ρ2 . (6.9)

6.1.3. Template counting

The number of templates sufficient to cover the search volume V0 is given by [54]

Nn = θm−n/2Vn , (6.10)

where θ is the normalized thickness characterizing the geometric structure of covering,
m is the maximum allowed mismatch , n the number of dimensions and

Vn =

∫
dnλ

√
det g , (6.11)

is the metric template-bank volume with gij the parameter space metric. This is the
general form of the template counting formula, which is valid for arbitrary lattices and
curved parameter spaces. In practice, using the flat metric approximation, where the
metric coefficients are constant, we can take the determinant out of the integral. More-
over, if the parameter space is a n-dimensional “box”, we can replace the integral over
infinitesimal displacement dλ by a product of n “search bands” ∆λ, namely

Vn =
√

det g
n∏

i=1

∆λi . (6.12)

Follow-up of candidates from semicoherent searches involves a semicoherent metric,
shown in [64, 56] to be the average of the metric computed for every segment. The
semicoherent metric allows us to estimate the search band ∆λi around the follow-up
candidate using the diagonal elements of the inverse Fisher matrix [41, 104], i.e.,

∆λi ≡ κ

√
{Γ−1}ii , (6.13)

with {
Γ−1
}ii

= gii/ρ2 , (6.14)

where κ defines the confidence level and gij is the inverse matrix to gij
1 . In this

chapter we use an analytical semicoherent metric first derived by Pletsch [56]. For
coherent integration time longer than a day, but much shorter than a year, using sky
coordinates proportional to the light travel time from the Earth’s center to the detector
τE ≈ 21× 10−3s, the number of sky templates at fixed frequency f converges to [56]

Nsky =
2π3τ 2

Ef
2

m
. (6.15)

1In this chapter we compute the Fisher matrix using the semicoherent metric rescaled by ρ2 instead
of ρ2

Σ, which can be interpreted as a conservative choice; see Chap. 7.
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The semicoherent parameter space is finer than the coherent one by a refinement factor
γ. Using the notion of refinement per direction γn we can also obtain the search bands
from the extents of the fully coherent metric, namely

∆λi = κ

√
gii

γ2
i ρ

2
. (6.16)

For uniformly distributed segments of data without gaps, based on [56] the refinement
factors can be obtained as

γf = 1 , (6.17)

γḟ =
√

5N2 − 4 , (6.18)

γf̈ =
√

(35N4 − 140N2 + 108)/3 , (6.19)

γ...
f =

√
(105N8 − 1260N6 + 5012N4 − 6160N2 + 2304)/(5N2 − 4) . (6.20)

Finally, for simplicity of the template-bank construction, we use a hyper-cubic lattice
to place templates, though hyper-cubic lattices are in general suboptimal, compared
to better solutions, e.g., A∗n lattice. The normalized thickness for an n-dimensional
hyper-cubic grid is [54]

θn = nn/2 2−n . (6.21)

The proper choice of the number of dimensions that maximizes the number of templates
[53, 64, 88, 98] N is:

N = max
n
Nn . (6.22)

6.1.4. Computing cost

In the follow-up of real candidates, especially weak signal candidates, along with the
constraint of the total amount of available data, the computing cost constraint may
limit significantly the feasibility of the search. Thus the computing-cost requirement
is of particular interest. There are currently two different strategies to implement an
F -statistic search code in LIGO’s reference software suite lalsuite[105], namely the
SFT-method based on short Fourier transforms of the data with duration TSFT [44] and
the FFT-method based on barycentric resampling [97]. Regarding the computational
cost, the FFT method is preferable, as the computational requirement to calculate the
F -statistic, for a single point in the parameter space, scales only with log T , while the
cost of the SFT algorithm scales with T . However, for historical reasons the SFT method
is currently still more often used by LIGO/LSC [106, 79, 63], is well tested and we can
use recent timing information. The computing cost of a SFT-based F -statistic search is

C = N c0NSFT , (6.23)

where NSFT is the number of used SFTs, namely

NSFT = NdT/TSFT (6.24)
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and c0 is the fundamental implementation- and hardware-specific computing constant
per SFT and template.

6.2. Minimal required observation time

The main scope of the present work is to find the minimal required observation time that
guarantees a certain detection probability of a putative signal buried deep in the detector
noise at a certain confidence level by using the fully coherent F -statistic search technique.
We consider two different methods to compute the required integration duration. In
method 1, which is closely related to hypothesis testing, we use the concept of false-
alarm and false-dismissal probability to achieve certain detection probability. This is
the natural way to compute the required integration time. In method 2 we alternatively
use the more intuitive notion of expectation value to find the observation duration that
guarantees the required detection probability.

6.2.1. Method 1

In absence of a signal, the probability density function of the F -statistic reduces to a
central χ2-distribution, and the false-alarm probability is given by

p1
fA =

∫ ∞

2Fth

d(2F)χ2
4(2F ; 0) , (6.25)

where p1
fA denotes single trial false-alarm probability and χ2

4(2F ; 0) is the central χ2-
distribution with 4 degrees of freedom. The integration of χ2

4(2F , 0) = 1
2
Fe−F yields

p1
fA = (1 + Fth)e−Fth . (6.26)

The overall false-alarm probability of crossing the threshold 2Fth in N trials is

pfA = 1− (1− p1
fA)N ≈ p1

fAN , (6.27)

when p1
fAN � 1 [28, 107], thus

p1
fA = pfA/N . (6.28)

We cannot solve Eq. (6.26) analytically, but numerical solution gives a threshold 2Fth

value. This allows us to numerically integrate the false-dismissal probability

pfD(2Fth, ρ
2) =

∫ 2Fth

−∞
(d2F)χ2

4(2F , ρ2) , (6.29)

where pfD(2Fth) = 1− pdet, with the desired detection probability pdet and χ2
4(2F , ρ2) is

the non-central χ2-distribution with 4 degrees of freedom and non-centrality parameter
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ρ2. At fixed p∗fA and p∗fD, using the above equation, we can compute a threshold SNR
ρth(p∗fA, p

∗
fD). The required T is such that the inequality

ρ2
ac(T ) ≥ ρ2

th(p∗fA, p
∗
fD) (6.30)

holds, where ρ2
ac(T ) is the accumulated SNR due to the presence of signal in the analyzed

data. Assuming that the follow-up search will use data of similar constant noise floor,
we can rewrite Eq. (6.3) as

ρ2
ac(T ) = ρ2

c

NdT

N c
d∆T

, (6.31)

where ∆T is the length of one segment in the semicoherent search using data from N c
d

number of detectors. With the average 2F c value of the candidate, we can compute its
SNR ρc from Eq. (6.9), namely

ρ2
c = E[2F c]− 4 . (6.32)

Substitution in the equations above yields the accumulated SNR in presence of signal

ρ2
ac =

(
E[2F c]− 4

) NdT

N c
d∆T

, (6.33)

which gives the required minimal T .

6.2.2. Method 2

Computation of the F -statistic on data with no signal, has a certain expectation value,
therefore we ask what is the expected maximal 2F value E[2FN ] in N trials in Gaussian
noise, where FN ≡ max {F}Ni=1. The probability to get (N − 1) values of 2F less than
2FN follows a binomial distribution, namely

pN (2FN ) =

(N
1

)
χ2

4(2F , 0)(1− α1)N−1 (6.34)

=
1

2
NFN e−FN

(
1− (1 + FN )e−FN

)N−1
. (6.35)

With this we can numerically integrate the expectation value

E[2FN ] =

∫ ∞

0

d(2FN ) 2FN pN (2FN ) , (6.36)

and standard deviation

σN (2FN ) =

(∫ ∞

0

d(2FN ) (2FN − E[2FN ])2 pN (2FN )

)1/2

. (6.37)

To safely distinguish a real signal from pure noise, we can require the following inequality
to hold:

E[2Fs]− hσs(2Fs) > E[2FN ] + hσN (2FN ) , (6.38)
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where the expectation value E[2Fs] of a real signal and its standard deviation σs(2Fs)
are computed using Eqs. (6.4) and (6.5). As all terms in inequality (6.38) are function of
the observation time, this gives an alternative method to compute the minimal required
integration time. Fine-tuning of Eq. (6.38) is possible through the safety parameter
h, which we quantify by using Chebyshev’s inequality. For a random variable X, with
expected value E[X] and standard deviation σ,

P (|X − E[X]| ≥ hσ) ≤ 1/h2 , (6.39)

which means that at least a fraction

p = 1− 1/h2 (6.40)

of the data is within h standard deviations on either side of the mean [108]. Rearranging
the above equation yields

h = 1/
√

1− p . (6.41)

Having two independent random variables, 2Fs and 2FN , we can label the fraction of
data around each mean as ps and pN and introduce the joint probability pJ = pspN . We
see, that the same joint probability can be achieved for different combinations of ps and
pN . However, a natural choice is ps = pN , thus

h = 1/
√

1−√pJ . (6.42)

We give a set of pJ values and related h in Table 6.1.

pJ 0.75 0.90 0.95 0.99
h 2.73 4.41 6.28 14.12

Table 6.1.: Joint probability pJ and corresponding required h standard deviations.

Fixing pJ to some value and with this h in inequality [(6.38)], we can compute the min-
imal required coherent observation time T , such that [(6.38)] holds. For this integration
time, the joint probability pJ becomes the separation probability psep = pJ . This is the
probability, that a candidate due to the presence of a signal is consistent with the signal
hypothesis and a candidate due to the noise is consistent with the noise hypothesis.
Taking into account that ps = 1 − pfD and pN = 1 − pfA, we find the relation of the
separation probability to the detection probability, namely psep = pdet(1 − pfA), or for
negligible false-alarm pdet ≈ psep.

6.3. Method comparison

6.3.1. Numerical predictions

In the following we compare the two methods to find the minimal required integration
time described in the previous section in terms of observation duration and computing
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cost. We consider a StackSlide search with N = 205 segments of duration ∆T = 25
hours, each using data from N c

d = 2 detectors. For a hypothetical candidate with fixed
Doppler parameters α = 1.45 rad, δ = 0 rad f = 185 Hz, ḟ = −1× 10−9 Hz/s, we pick
an average strength in the range 2F c ∈ [5, 13]. Then using Eq. (6.13) with κ = 1 and
the semicoherent metric we compute the search bands associated with such a candidate.
Having that, for mismatch m = 0.01 and a hyper-cubic lattice, we can compute the
number of templates using Eq. (6.10) and the fully coherent metric. Using method 1,
requiring detection probability p∗det = 0.9 at overall false-alarm probability p∗fA = 0.01
using Eq. (6.29) we compute ρ2

th(p∗fA, p
∗
fD) and the minimal required observation time T1,

which substituted in Eq. (6.33) with Nd = N c
d satisfies Eq. (6.30). For method 2 a sepa-

ration probability equal to p∗det yields safety factor h = 4.41, see Table 6.1. We label the
integration time that satisfies Eq. (6.38) as T2 and plot both integration times T1(2F c)
and T2(2F c) in Fig. 6.1 (a) as function of 2F c. With the number of templates for T1 and
T2 we estimate the computing cost C1 and C2 using the fundamental computing cost
constant c0 = 7× 10−8s in Eq. (6.24) and assuming SFTs of duration TSFT = 1800 s in
Eq. (6.25). C1(2F c) and C2(2F c) are plotted in Fig. 6.1 (b). In Fig. 6.1 (c) we plot how
the expectation value from a real signal grows with increasing T compared to loudest
candidate from Gaussian noise. In this plot the candidate strength is fixed to 2F c = 8.5.
We see that method 2 yields much longer observation time, at same candidate strength
compared to method 1. Due to the resulting much larger number of templates, the com-
puting cost, especially for weak candidates, is much higher. The inferiority of method 2
compared to method 1 in terms of required integration duration and computing power
can be explained by the ad hoc construction of method 2 and the use of Chebyshev’s
inequality, which is only a lower bound. In this sense method 2 is a more conservative
approach, though the important information about false-alarm and false-dismissal prob-
ability gets lost in this framework. The computing cost of method 1 looks very promising
even for weak candidates, however we should keep in mind that this is lower limit and
the cost of a search with real data would most likely be much higher. The reason for
this is that gaps in the data are direct penalty for the growth of ρ2

ac, while ρ2
th remains

unaffected. Furthermore, for very weak signals, the required integration duration may
violate the assumption of constant sky resolution, thus we would underestimate the
number of templates, resulting in a higher false-dismissal.

6.3.2. Monte Carlo results

To confirm the numerical predictions of method 1 we perform the following Monte Carlo
studies. We create a set of 205 segments with duration 25 hours of Gaussian noise
and draw a set of pulsar parameters α ∈ (0, 2π), δ ∈ (−π/2, π/2), cos ι ∈ (−1, 1),
ψ ∈ (0, 2π), φ0 ∈ (0, 2π) at fixed frequency of f = 185 Hz and spindown value in the
range ḟ ∈ (−f/τ, 0), where τ = 2220 y is the minimal spindown age of the source [53].
We inject a signal with the above parameters and intrinsic signal amplitude h0 high
enough to produce a candidate with expected average strength E[2F s] ∈ [12, 13]. To
find the actual injected value we first do a targeted StackSlide search at the point of the
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Figure 6.1.: Numerical comparison between method 1 and method 2 (quantities labeled
with 1 and 2, respectively). (a) Required coherent integration time as func-
tion of the strength of the candidate. (b) Computing cost depending on
the strength of the candidate. (c) Expected value of signal, noise and re-
lated h = 4.41 standard deviations for detection probability pdet = 0.9 of a
candidate with 2F c = 8.5.
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injection. With this measured injected 2F s value, using Eq. (6.13) we compute Fisher
extents, from which we draw a random parameter point λc satisfying

Γij∆λ
i∆λj < 1 . (6.43)

The point λc is within the 1-σ Fisher ellipsoid of the true signal location and becomes
the candidate to follow up. Following the scheme for method 1 as described above, we
compute the minimal required coherent observation time targeting detection probability
p∗det = 0.9 and search for the signal. After computation of 2Fs using the data with the
injected signal, we compute 2FN with the same grid and integration duration using the
noise only data. We claim “detection” whenever the loudest measured 2Fs value in the
data with injected signal is higher than the loudest measured 2FN of the noise. The result
of the Monte Carlo simulations is as follows: in 897, out of 1000 trials, the measured
2Fs value in the data containing injected signal exceeds the measured 2FN value of the
noise only data. With this the achieved detection probability pdet = 0.897± 0.023 is in
accordance with the targeted detection probability p∗det.

6.4. Discussion

We derived two different methods to compute the minimal required coherent integration
time in a fully coherent F -statistic search in the zoom stage of follow-up of candidates
from a semicoherent StackSlide search. By numerical comparison we showed that method
1 is superior to method 2 in terms of required integration duration and computing cost.
We confirmed in a Monte Carlo study that the predicted coherent integration time is
sufficient to achieve the desired detection probability. The results of this chapter have
been derived for Gaussian data without gaps and two detectors of equal noise floor.
Further extension of this work would require the usage of data selection procedure,
however this complication can be worked around, e.g., by using all the data, as proposed
in the next chapter.
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7. Fully coherent follow-up of
continuous gravitational-wave
candidates

Continuous gravitational waves (CWs) are expected to be emitted from rapidly spin-
ning nonaxisymmetric compact objects, e.g., neutron stars. The computational cost
of a coherent matched-filtering detection statistic, such as the F -statistic [28], is small
provided the parameters of the source (i.e., sky position α, δ, frequency f , frequency
derivatives ḟ , . . . ) are known. However, wide parameter-space searches for unknown
sources quickly become computationally prohibitive, due to the large number of points
in parameter space (templates) that need to be searched [53].

In order to first reduce the parameter space to smaller, more promising regions, semi-
coherent search techniques have been developed [64, 88, 43, 92] and are currently being
used [109, 59], for example in the Einstein@Home distributed computing environment
[102]. In a semicoherent search, the total amount of data T is divided into N shorter
segments of duration ∆T . The coherent statistics from the individual segments are
combined to a new semicoherent statistic. At a fixed computing cost these semicoherent
methods are (typically) more sensitive than fully coherent searches [98].

Structuring a wide parameter-space search into hierarchical stages, which increasingly
concentrate computational power onto the more promising regions of parameter space,
was first described in [53] and elaborated further in [64], where a two-stage semicoherent
hierarchical search was considered. An extended hierarchical scheme with an arbitrary
number of semicoherent stages and a final fully coherent stage was studied numerically in
[88], which concluded that three semicoherent stages will typically be a good choice. In
[110] and [111] the use of an optimization procedure has been considered in the process
of estimation of the source parameters, once a candidate is considered as a detection.
In both cases, however, no practical method or implementation was provided for the
systematic coherent follow-up of semicoherent candidates.

The aim of the present chapter is to introduce such a coherent follow-up search strat-
egy and implementation. This is achieved by exploring the parameter space around a
semicoherent candidate using a Mesh Adaptive Direct Search (MADS) algorithm. Using
this method, we find that a fully coherent follow-up (using all of the available data) of
initial semicoherent candidates is computationally feasible.

This chapter is organized as follows: in Sec. 7.1 we describe the relevant basic concepts
in CW searches, in Sec. 7.2 we propose a search strategy for the systematic follow-up of
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CW candidates, in Sec. 7.3 we present a Monte-Carlo study and in Sec. 7.4 we discuss
the results.

Notation

We distinguish a quantity Q when referring to a fully coherent stage using a tilde, Q̃ and
when referring to a semicoherent stage using an overhat, Q̂. Averaging over segments is
denoted by an overbar, Q.

7.1. Continuous Gravitational Waves

Continuous gravitational-wave signals are quasi-monochromatic and sinusoidal in the
source frame and undergo phase and amplitude modulation due to the diurnal and
orbital motion of the detectors. The phase evolution of the signal at a detector can be
approximated as [28]

φ(t) ≈ φ0 + 2π
s∑

k=0

f (k)(t0)(t− t0)k+1

(k + 1)!
(7.1)

+ 2π
~r(t)

c
~n

s∑

k=0

f (k)(t0)(t− t0)k

k!
,

where φ0 is the initial phase, f (k) ≡ dkf
dtk

are the derivatives of the signal frequency f at
the solar system barycenter (SSB) at reference time t0, c is the speed of light, ~r(t) is the
vector pointing from the SSB to the detector and ~n is the unit vector pointing from the
SSB to the gravitational-wave source.

7.1.1. Detection statistic

Following [28, 46], the gravitational-wave response of a detector can be expressed as a
sum over four (detector-independent) amplitude parameters multiplying four (detector-
dependent) basis waveforms. The amplitude parameters can be analytically maximized
over, and the resulting detection statistic, known as the F -statistic, is therefore a func-
tion only of the template “phase parameters” λ ≡ {α, δ, f, ḟ , ...}, where α (right ascen-
sion) and δ (declination) denote the sky position of the source.

In the presence of a signal the fully coherent detection statistic 2F follows a non-
central χ2 distribution with 4 degrees of freedom and a non-centrality parameter given
by the squared signal-to-noise ratio (SNR), ρ2. The expectation value is therefore

E[2F ] = 4 + ρ2 , (7.2)

with variance
σ2[2F ] = 2(4 + 2ρ2) . (7.3)
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On the other hand, in the semicoherent approach, we divide the available data into N
segments of duration ∆T and combine the individual coherent statistics of the segments
to compute a semicoherent statistic, namely

2F(λ) =
1

N

N∑

k=1

2Fk(λ) , (7.4)

where 2Fk is the coherent F -statistic in segment k. The quantity N 2F follows a non-
central χ2 distribution with 4N degrees of freedom, thus the expectation value of 2F
is

E[2F ] = 4 + ρ2 , (7.5)

with variance

σ2[2F ] =
2

N
(4 + 2ρ2) , (7.6)

where ρ2 is the average SNR2 over all segments, i.e.,

ρ2 =
1

N

N∑

k=1

ρ2
k , (7.7)

and ρ2
k denotes the SNR2 in segment k.

7.1.2. Mismatch and Fisher matrix

A search for sources with unknown signal parameters implies a loss of detection power
compared to the perfectly matched case. To quantify this we use the notion of mismatch
µ, as first introduced in [51, 52]. This is defined as the fractional loss of expected SNR2 at
some parameter space point λ compared to the expectation ρ2(λs) at the signal location
λs, namely

µ ≡ ρ2(λs)− ρ2(λ)

ρ2(λs)
, (7.8)

such that µ ∈ [0, 1]. Taylor expansion in small offsets ∆λ = λ − λs around the signal
location yields

µ ≡ gij(λs) ∆λi∆λj +O(∆λ3) , (7.9)

where implicit summation over repeated parameter-space indices i, j applies, and the
symmetric positive-definite matrix gij is commonly referred to as the parameter-space
metric.

Neglecting higher-order terms, one often uses the “metric mismatch approximation”,
namely

µ∗ ≡ gij(λs) ∆λi∆λj , (7.10)

as a distance measure, with a range µ∗ ∈ [0,∞). This metric mismatch µ∗ plays an
important role in grid-based searches, where one typically constructs template banks
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in such a way that the mismatch of any putative signal and the “closest” template is
bounded by a maximal mismatch m, i.e.,

µ∗ ≤ m , (7.11)

everywhere in the template bank.
In the presence of noise, µ as defined in Eq. (7.8) is not directly accessible, and we

therefore introduce a related quantity, namely the fractional loss of measured SNR2,
namely

µ̌ ≡ 2F(λs)− 2F(λ)

2F(λs)− 4
. (7.12)

Note that µ̌ ≤ 1, but contrary to Eq. (7.8) it can also be (slightly) negative, as we can
have 2F(λs) < 2F(λ) due to noise.

For semicoherent searches, the metric is found [64] as the average of the fully coherent
metrics over all the segments, namely

ĝij(λ) =
1

N

N∑

k=1

gij,k(λ) , (7.13)

where g̃ij,k is the coherent metric, Eq. ((7.9)), in segment k.
A standard tool for parameter estimation is provided by the Fisher information matrix,

which characterizes the statistical uncertainty of the maximum likelihood estimators
(MLE) λiMLE for the signal parameters λis. This can be formulated [104, 41, 7] as the well-
known Cramer-Ráo lower bound on the variance of an unbiased MLE (i.e. E[λiMLE] = λis),
namely

σ2[λiMLE] ≥
{

Γ−1
}ii

, (7.14)

where the matrix {Γ−1}ij denotes the inverse of the Fisher matrix Γij, which is closely
related (e.g., [41]) to the metric gij, namely

Γij = ρ2 gij . (7.15)

A semicoherent search over N segments can be considered as N different measurements;
thus the semicoherent Fisher matrix yields [?]

Γ̂ =
N∑

k=1

Γij,k . (7.16)

Assuming constant SNR2 for the different segments we can rewrite (7.16) in terms of
the semicoherent metric, Eq. (7.13), namely

Γ̂ = N ρ2 ĝij (7.17)

and thus {
Γ̂−1
}ij

=
ĝij

Nρ2
, (7.18)

where ĝij is the inverse matrix of ĝij.
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7.1.3. Computing cost

The computing cost C of a fully coherent (or an ideal semicoherent [98]) search is
primarily due to the computation of the F -statistic over all the templates. For a search
over N templates using N segments of data from Ndet detectors [98], the computing cost
C is

C = NNNdet c1 , (7.19)

where c1 is the implementation-dependent computing cost for a single template, segment
and detector. A method of F -statistic computation based on short Fourier transforms
(SFTs) [96] of length TSFT is currently widely used in CW searches and will be considered
in this chapter. The cost per template in this case is proportional to the segment
duration, namely

cSFT
1 = cSFT

0

∆T

TSFT

, (7.20)

where cSFT
0 is implementation- and hardware-dependent fundamental computing cost

per SFT. Using the total number of SFTs

NSFT = NNdet
∆T

TSFT

, (7.21)

we can write the total computing cost, Eq. (7.19), of the SFT-method as

C = NNSFT cSFT
0 . (7.22)

In grid-based searches, the number of templates required to cover the search parameter
space P is given by the general expression [54, 55]

N ≡ θnm
−n/2

∫

P
dnλ

√
det g , (7.23)

where θ is the normalized lattice thickness, n is the number of search dimensions, m is
the maximal template-bank mismatch, Eq. (7.11), and det g is the determinant of the
parameter-space metric, Eq. (7.9). The normalized thickness is a constant depending on
the grid structure, e.g. for a hypercubic lattice θZn = nn/22−n. The metric gij depends
strongly on the duration ∆T and the number of segments N , in such a way that longer
observation times typically require a (vastly) increased number of templates [53].

7.2. Coherent follow-up of semicoherent candidates

7.2.1. Basic two-stage search strategy

Here we introduce a simple two-stage strategy for following-up candidates from semico-
herent searches. In the first stage, called refinement, we employ a finer search using the
semicoherent statistic 2F to improve the initial maximum-likelihood estimator. In the
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semicoherent isomismatch ellipse grid point

semicoherent Fisher ellipse

?
λs ≈ λ̃MLE

λc

+

λ̂MLE

ḟ

f

Figure 7.1.: Two-dimensional search grid in {f, ḟ} space. The black dots are the search
templates, placed such that the loss of SNR on any putative signal λs will
be bounded by a maximal mismatch m, which defines the semicoherent
isomismatch ellipses. The semicoherent Fisher ellipse centered on the MLE
λ̂MLE is used to constrain the zoom parameter space. The aim of the zoom
stage is to find λ̃MLE. Note that from Eqs. (7.17),(7.24) and (7.25) we
see that the size of the metric ellipses and the Fisher ellipse is equal for
m = n2

B/Nρ
2.

second stage, called zoom, we apply the fully coherent statistic 2̃F using all the data
T , in order to test whether the candidate is inconsistent with Gaussian noise and if it
further agrees with the signal model.

The motivation for this two-stage approach can be seen from an example 2D search
grid shown in Fig. 7.1. The search templates are generally placed such that a putative
signal λs will be recovered with a loss of SNR bounded by a maximal mismatch m, as
given in Eq. (7.11), namely

gij∆λ
i∆λj ≤ m , (7.24)

where equality defines an (n-dimensional) isomismatch ellipse. The initial semicoherent

search will yield “candidates” λ̂c for which the statistic 2F exceeds a certain threshold
and is higher than neighboring templates.

The initial refinement stage of our follow-up strategy therefore consists in finding
the (nearby) parameter-space point λ̂MLE of the actual (local) maximum in the statistic
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2F(λ̂) (which is a smooth function of λ̂), referred to as the maximum-likelihood estimator
(MLE). This can be achieved simply by a denser placement of templates using the
original statistic, i.e. by keeping the search setup unchanged in terms of the number and
length of segments.

In the zoom stage, we fully coherently search the Fisher ellipse centered on the semi-
coherent MLE λ̂MLE. This defines the parameter-space region that should contain the
signal location λs with confidence corresponding to nB standard deviations, i.e.,

Γ̂ij δλ
i δλj ≤ n2

B , (7.25)

where δλi = λ̂iMLE−λis. Note that the Fisher ellipse actually describes the fluctuations of

the maximum likelihood estimator λ̂MLE for a given signal location. However, provided
the likelihood-manifold is not strongly curved, this also describes our uncertainty of
the signal location for given MLE λ̂MLE, as indicated in Fig. 7.2. The zoom stage will
yield the fully coherent maximum-likelihood estimator λ̃MLE, which represents our best
estimate for the signal parameters λs. Thus, the two-stage search strategy corresponds
to the transition

λ̂c
refinement

λ̂MLE λ̃MLE ≈ λs
zoom

In the following we use a subscript R to denote quantities in the refinement stage and a
subscript Z for quantities in the zoom stage.

The search volume for the refinement stage depends on the template bank construction
of the original semicoherent search. Ideally one iso-mismatch ellipse corresponding to
the original template-bank construction (see Fig. 7.1) should be sufficient. In practice,
however, it might often be neccessary to use several grid spacings in each direction, if
the template bank was not originally constructed in a strictly metric way or the metric
approximation is not valid. In this case the exact number of grid spacings will have to
be empirically determined in a Monte Carlo study.

Bounding box and volume of n-dimensional ellipses

In the following discussion, it will be useful to express the bounding box and volume of
an n-dimensional ellipse, namely for the isomismatch ellipse of Eq. (7.24) and the Fisher
ellipse of Eq. (7.25). The general form of the n-dimensional ellipse equation is

Gij dλ
i dλj = R2 , (7.26)

where Gij is a positive-definite symmetric matrix. The extents ∆λi of a bounding box
along coordinate axes λi (as indicated in Fig. 7.2) can be obtained from the diagonal
elements of the inverse matrix, {G−1}ij, namely

∆λi = 2R
√
{G−1}ii . (7.27)
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semicoherent Fisher ellipse

?

λs ≈ λ̃MLE

+

λ̂MLE

ḟ

f ∆ḟZ

∆fZ

zoom search box

Figure 7.2.: Two-dimensional example: Fisher ellipse, Eq. (7.25), defining the zoom

search space, centered on the semicoherent MLE λ̂MLE. The extents
{∆f,∆ḟ} of the bounding box are given by Eq. (7.27).

119



7. Fully coherent follow-up of continuous gravitational-wave candidates

The ellipse coordinate volume is expressible via the matrix determinant, detG, namely

V =
Rn

√
detG

Vn , (7.28)

where Vn = πn/2

Γ(1+n/2)
is the volume of unit n-ball.

7.2.2. Classification of zoom outcomes

Assuming a real CW signal, we can estimate the range of expected values of the fully
coherent zoom F -statistic in λ̃s. From Eq. (7.5) we can obtain a (rough) estimate of the
average SNR2 from the measured average SNR2 of the semicoherent maximum likelihood
estimator, namely

ρ2
MLE ≈ 2FMLE − 4 . (7.29)

The SNR2 of the fully coherent search is linear in the number of segments N , i.e.,

ρ̃2 = Nρ2
MLE . (7.30)

Substitution of the above expression into Eq. (7.2) yields the expectation for the fully

coherent matched filter in λ̃MLE, namely

2̃Fo ≡ E[2̃F ] ≈ 4 +N ρ2
MLE . (7.31)

Further substitution of Eq. (7.30) into Eq. (7.3) yields the corresponding variance as

σ2
o ≡ σ2[2̃F ] ≈ 2(4 + 2N ρ2

MLE) . (7.32)

These quantities are useful for defining what we mean by confirming a CW signal.
Note that the uncertainty in the original SNR-estimation in Eq. (7.29) results in a

distribution around the final estimate of Eq. (7.31) that is wider than estimated by
Eq. (7.32). This effect can be computed analytically and empirically, and is found to
amount to about a factor of 2.

Depending on the maximal 2̃F value found in the final zoom stage, we can distinguish
three possible outcomes:

• Consistency with Gaussian noise (G). - The fully coherent 2̃F value does not
exceed a threshold

2̃F < Gth , (7.33)

where Gth is chosen to correspond to some (small) false-alarm probability pfA in
Gaussian noise.

For example, a threshold Gth = 60 corresponds to a very small false-alarm proba-
bility of order 10−12 in a single template, as given by Eq. (7.43).
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• Non-Gaussian origin (¬G). - The candidate is loud enough to be inconsistent with
Gaussian noise at the false-alarm probability pfA, i.e.

2̃F ≥ Gth . (7.34)

• Signal recovery (S). - A subclass of ¬G; the final zoomed candidate 2̃F exceeds
the Gaussian noise threshold Gth and falls into the predicted signal interval given
by Eqs. (7.31) and (7.32) (at some confidence level). We can write this as

2̃F (S)

th < 2̃F < 2̃F (S)

max (7.35)

where 2̃F (S)

th ≡ max{Gth, 2̃Fo − nu σo}, and 2̃F (S)

max ≡ 2̃Fo + nu σo, where nu de-
termines the desired confidence level. Here we consider nu = 6, which corresponds
roughly to a confidence of ∼ 99.6%.

Note that there can be cases where a zoomed candidate ends up in ¬G but does not

make it into the signal recovery (S) band, e.g. typically Gth < 2̃F < 2̃F (S)

th . There can be
different reasons for this, e.g. the search algorithm converged to a secondary maximum
in the refinement or zoom stage, the signal model deviates from reality and requires
modification, or the “signal” found is of nonastrophysical origin (e.g., a detector-noise
artifact). Generally further investigation will be required for all candidates falling into
the non-Gaussian category (¬G).

7.2.3. Grid-based computing cost of the zoom stage

We do not consider a grid-based follow-up method in this chapter, but it is instructive
to estimate the corresponding computing cost for later comparison. To estimate the
number of templates required for the fully coherent search, we can use Eq. (7.28) to
compute the volume of the follow-up Fisher ellipse, Eq. (7.25), and divide it by the
volume covered by one coherent template, Eq. (7.24). Namely, the Fisher ellipse volume
is given by

V̂ =
nnB(

N ρ2
)n/2√

det ĝ
Vn , (7.36)

while the coherent template volume at mismatch m is

Ṽ =
mn/2

√
det g̃

Vn . (7.37)

Therefore, we can estimate the number of templates as

N ≈ V̂

Ṽ
=

nnB(
N ρ2

)n/2
mn/2

√
det g̃√
det ĝ

. (7.38)
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Consider a follow-up of a candidate from a directed n = 2 search in {f, ḟ} (e.g. see
Fig. 7.1). Assuming a semicoherent search using N = 200 segments of ∆T = 1 days
duration without gaps, and a fully coherent observation time of T = 200 days. Using
the expressions found in [56], the determinants of the two-dimensional coherent and the
semicoherent metrics are found as

√
det g̃ = π2T 3 1

540
, (7.39)

√
det ĝ = π2∆T 3 γ(N)

540
, (7.40)

where γ ≈
√

5N is the spindown refinement factor. Putting everything together in Eq.
(7.38), we obtain

N ≈ n2
BN√

5 ρ2m
, (7.41)

where we used N = T/∆T . For a signal with ρ2 = 1, nB = 24 1 and m = 0.1 the number
of templates is therefore N ≈ 5.1 × 105. Thus, using Eq. (7.22) for two detectors and
the SFT method with TSFT = 1800 s, the zoom computing cost is C ≈ 11 min per
candidate, where we used the fundamental computing cost cSFT

0 = 7× 10−8 s[98].
In the more general case where the sky position of the source is also unknown, the

number of sky points typically scales at least quadratically with the observation time
[112, 56] (for coherent integration longer than few days), thus generally resulting in
completely prohibitive computational requirements for grid-based follow-up searches. In
particular, extending the directed search example from the previous paragraph to an
all-sky follow-up would require Nsky ≈ 1.3×106 sky points2, or a total of N ≈ 6.8×1011

templates.
For comparison, using the gridless search algorithm discussed in the next sections, it

is possible to coherently follow up 2D directed candidates in less than 2 minutes (see
Fig. 7.4(d)), and all-sky candidates in about 1 hour per candidate (see Fig. 7.5(d)).

7.2.4. Mesh Adaptive Direct Search (MADS)

A significant difference between the hierarchical search strategies discussed in [53, 64, 88]
and in this approach is the method of template bank construction at the different stages.
Namely, we consider a grid-less method for exploring the parameter space.

The MADS class of algorithms for derivative-free optimization has been first intro-
duced in [70] and further developed in [71, 72] among others. In this subsection we only
introduce some of the control parameters of the algorithm required in the construction

1This large nB value is found to contain the signal location in more than 98 % of the cases even for
weak signals, where the Fisher-matrix may be a poor predictor; see [104].

2The number of sky templates has been estimated by numerical computation of the sky part of the
metrics ĝ and g̃ using FstatMetric v2 from LALSUITE [105], see also [41].
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of MADS-based F -statistic searches; for an in-depth treatment and proofs we refer the
reader to the cited publications.

MADS consist of the iteration of two steps, called search and poll, in which trial points
are constructed and evaluated in order to find an extremum. In the search step, any
strategy can be applied to construct trial points. We use quadratic models (quadratic
form) to approximate the objective function from a sample of objective values [72]. If the
local exploration in the search step fails to generate a new solution, a set of poll points
is generated using a stochastic or deterministic method. Stochastic means that the poll
points are generated randomly [70], where as deterministic refers to the usage of pseudo
random Halton sequences [71]. However, both methods generate points in directions,
which form a dense set in the unit sphere after an infinite number of iterations. For a
given starting point λc with parameter-space boundaries ∆λB, initial step sizes dλ and
a method for generation of poll points, the discretization of the parameter space ∆m

k at
iteration k is governed by a fixed rational number ub > 1 and the coarsening w+ ≥ 0
and refining w− ≤ −1 exponents. If the current iteration generates a better solution,
the discretization in the next iteration is coarser, namely ∆m

k+1 = uw
+

b ∆m
k , otherwise

∆m
k+1 = uw

−

b ∆m
k [70]. The algorithm stops if an improved solution cannot be found or

the total number of evaluated parameter space points p reaches some given maximum
pmax.

7.2.5. MADS-based follow-up algorithm

From the point of view of the MADS algorithm, the function to optimize is a blackbox
requiring some input to produce a single output value. The blackbox in our case is either
the computation of the semicoherent F -statistic 2F of Eq. (7.4) in the refinement, or

the fully coherent F -statistic 2̃F in the zoom stage. In order to minimize the possibility
of convergence to secondary maxima, we run multiple instances of the MADS search in
each stage, varying the mesh-coarsening exponent w+. The minimal w+

min and maximal
w+

max coarsening exponents determine the number of MADS steps in each pass, namely
nsteps = w+

max − w+
min + 1. Thus, we consider our search algorithm to be composed of

several instances of MADS; see Fig. 7.3. The inputs of the search algorithm are the
candidate λc to follow-up, the search boundaries ∆λR/Z around the candidate, and a
set of MADS input parameters, namely

{
dλ, ub, w

+
min, w

+
max, w

−}. In the zoom stage, the
search boundaries (∆λZ) are estimated from the bounding box of the Fisher ellipse, using
Eq. (7.27). For the refinement stage, the search boundaries (∆λR) generally have to be
determined depending on the templatebank setup of the original semicoherent search.
Note, however, that the bounding boxes ∆λ only serve as a necessary input parameter to
the NOMAD search algorithm, while the effective MADS search region can be further
reduced by rejecting points that do not satisfy a given constraint. For example, the
effective search region in the zoom stage always consists of the Fisher ellipse, Eq. (7.25).

The initial step sizes dλi are also empirically determined, typically as some fraction
of the search boundary ∆λiR/Z .

123



7. Fully coherent follow-up of continuous gravitational-wave candidates

Input

λ0, ∆λB, dλ, ub,
w+

min, w+
max, ∆w+, w−

1st pass - deterministic

nsteps searches with
starting point λ0

2nd pass - stochastic

nsteps searches with
starting point λ0

3th pass - deterministic

nsteps searches with starting
point the loudest point
of the 1st and 2nd pass

4th pass - stochastic

nsteps searches with a
random starting point

from the vicinity of
the loudest point of
the 1st and 2nd pass

Output

the loudest of all
searched points

Figure 7.3.: MADS-based search algorithm with four passes, where λ0 = λc in the re-
finement stage and λ0 = λ̂MLE in the zoom stage.
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We propose a four pass algorithm with an equal (for simplicity) number of steps nsteps

in each pass; however, with different starting point and method of trial-point generation:

• 1st pass. - Starting point λc, deterministic point generation,

• 2nd pass. - Starting point λc, stochastic point generation,

• 3rd pass. - Starting point loudest template from the first two passes, deterministic
point generation,

• 4th pass. - Starting point from the vicinity of the loudest point from the first two
passes, stochastic point generation.

In the zoom stage, we terminate the search as soon as the loudest point of the current it-
eration satisfies the signal-confirmation condition (S) of Eq. (7.35). In lower-dimensional
cases, such as the directed search considered later, a single pass is therefore often found
to be sufficient. For later usage, we introduce the total number of MADS iterations nI
as the sum of the number of steps in each pass.

7.2.6. MADS follow-up computing cost

Contrary to grid-based searches, the computing cost of the MADS based algorithm is
nondeterministic, due to the a priori unknown number of explored parameter-space
points. To estimate the maximal computing cost of the refinement or the zoom stage
using Eq. (7.19), we need the maximal number of possibly evaluated templates

Nmax =

nI∑

i=0

pimax , (7.42)

where pimax is the user-specified maximum of the number of computed templates at
MADS iteration i. This maximal number is typically chosen to be large to avoid too-
early interruption of the MADS instance, e.g., when further improvement of the current
solution is possible while the extremum is not yet found. However, if the extremum is
found, a MADS iteration starting from this point terminates rapidly.

Note that the fundamental computing cost cSFT
0 in stochastic searches over the sky

is typically larger than in a grid-based search, where a lot of templates with different
spindown components can be computed at fixed sky position. This results in a larger
value of about cSFT

0 ≈ 3× 10−7 s instead of the number quoted in Sec. 7.2.3.

7.2.7. False-alarm and detection probability

After the final fully coherent zoom stage we are left with a candidate falling into one
of the three categories discussed earlier: namely, the candidate is consistent with the
signal model (S), with Gaussian noise (G), or is of non-Gaussian origin but inconsistent
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with the signal model. An additional valuable piece of information is the false-alarm
probability associated with the candidate. This is the probability of exceeding a thresh-
old 2F value in the absence of a signal, where the relevant distribution is the central
χ2 distribution with four degrees of freedom, denoted as χ2

4(2F). The single-template
false-alarm probability is

p1
fA =

∫ ∞

2Fth

d(2F)χ2
4(2F) (7.43)

= (1 + Fth)e−Fth ,

and for N independent templates, this results in

pfA = 1−
(
1− p1

fA

)N
, (7.44)

where for Np1
fA � 1, Taylor expansion yields pfA ≈ Np1

fA. For example, a threshold
of Gth = 70 for a search with N = 1 × 105 templates corresponds to a false-alarm
probability of pfA . 2 × 10−9, where the upper bound corresponds to N completely
independent templates.

The overall detection probability of the follow-up method depends on the signal SNR.
Higher SNR in the refinement stage yields better localization of the signal - i.e., a
smaller Fisher ellipse - and thus also a higher probability of signal recovery, Eq. (7.35).
In addition, the MADS-algorithm parameters also affect the detection efficiency, e.g.
an increased number of MADS iterations increases the detection probability, especially
for signals with lower SNR. Because of this, the detection probability will have to be
estimated empirically in a Monte Carlo study (see Figs. 7.4(c) and 7.5(c)).

7.3. Monte Carlo studies

To demonstrate the capability of the systematic follow-up procedure proposed in Sec. 7.2,
we perform two different types of Monte Carlo (MC) studies.

In the first case, we simulate a so-called directed search for a fixed sky position, where
we follow up candidates in a two-dimensional spindown space, i.e. {f, ḟ}. In the second
case, we simulate an all-sky search over the four-dimensional parameter space {α, δ, f, ḟ}.

All MADS searches are implemented using the MADS reference library NOMAD [101],
and the LAL library from the LALSUITE [105] is used for the F -statistic computation
[44]. The Gaussian data and signal injections are produced using the LALAPPS pro-
grams from LALSUITE. In particular, with lalapps Makefakedata v4, we create data
sets of total duration T = 200 days, with N = 200 segments of duration ∆T = 1 days,
using SFTs of length TSFT = 1800 s, for the two LIGO detectors H1 and L1. The noise
level per detector is generated as Gaussian white noise with a power-spectral density S
of
√
S = 2× 10−23 Hz−1/2.

Independently of the type of search, the initial candidates to follow-up are prepared as
follows. Rather than performing a semicoherent grid-based search using the Hough [43]
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or GCT method [92], we generate candidates by drawing a random point in the vicinity
of the injection and consider it a candidate if the semicoherent metric mismatch µ∗ is
within the range

µ∗ ∈ [0, 1] ; (7.45)

see Figs. 7.4(a) and 7.5(a). This procedure for candidate preparation allows us to sep-
arate the study of the follow-up algorithm from the problem of how to setup a semico-
herent search, which is a difficult question on its own.

Note that even if the original grid-based semicoherent search does not produce candi-
dates that conform with Eq. (7.45), we can always increase the density of the grid until
Eq. (7.45) applies. This would amount to a (cheap) pre-processing stage inserted before
the present follow-up procedure .

7.3.1. Follow-up of candidates from a directed search

For the directed type of searches, we fix the sky position to the coordinates of the
Galactic Center. This choice is arbitrary and we could use any other point without
qualitatively changing the results. We create 5000 data sets. Note that each data set
has different Gaussian noise realization in which a CW signal from an isolated source is
injected. In the process of injection, the original noise data set is also used to examine
the behavior of the follow-up method in the absence of a signal.

The pulsar injection parameters λs are drawn uniformly in the range f ∈ (50, 51) Hz,
cos ι ∈ (−1, 1), ψ ∈ (−π/4, π/4), and φ0 ∈ (0, 2π), where ι is the inclination angle of the
source with respect to the line-of-sight, ψ is the polarization, and φ0 the initial phase of
the signal [44]. The signal amplitude h0 is chosen such that the expected average SNR2

of Eq. (7.7) for a perfect match is distributed uniformly in the range ρ2
s ∈ (0, 2). The

spindown ḟ is chosen uniformly in the range ḟ ∈ (−fmin

τmin
, fmin

τmin
) with a minimal spindown

age τmin = 300 y at fmin = 50 Hz. The MADS algorithm parameters used in the MC
, which have been found empirically to achieve good results are summarized in Table
8.1. For this type of follow-up, we find that the first pass of the search algorithm in

stage w− w+
min w+

max ub pmax

R -1 1 1 2 20000
Z -1 1 50 1.1 20000

Table 7.1.: Algorithm parameters for follow-up of candidates from directed searches.

the refinement stage and only two repetitions of the second pass in the zoom stage are
sufficient. We restrict the size of the search box for the refinement stage ∆λR by taking
one frequency and two first spindown metric extents. In the zoom stage we constrain
the parameter space to a Fisher ellipse Eq. (7.25) with nB = 24.

We first apply the follow-up chain to the pure Gaussian noise data without injected
signals. The corresponding 2̃FZ distribution of the resulting fully coherent zoom stage

is plotted in Fig. 7.4(b). The maximal value found is 2̃FmaxZ = 51.61. We therefore use
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(a) (b)

(c) (d)

Figure 7.4.: Monte Carlo study of 2-stage follow-up of candidates from a directed {f, ḟ}
semicoherent search pointed toward the Galactic Center with N = 200 seg-
ments of duration ∆T = 1 days. (a) SNR loss of the initial candidates µ̌

versus semicoherent metric mismatch µ∗ to the closest template. (b) 2̃FZ
distribution after the fully coherent 2-D {f, ḟ} zoom stage of 5000 directed
searches in pure Gaussian noise without injected signal. The maximal 2F -

value found is 2̃FmaxZ = 51.61. The mean value 〈2̃FZ〉 = 29.00 is plotted
with a dotted line. (c) Percentage of the 5000 injected signals classified as
recovered (− S) and of non-Gaussian origin (× ¬G) as function of the non-
centrality parameter ρ2

s, Eq. (7.7). The error bars are computed by using
a Jackknife [113] estimator. (d) Upper plot : computing cost of the semico-
herent refinement stage. Middle plot : computing cost of the fully coherent
zoom stage. Lower plot : total computing cost.
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a threshold for the classification of non-Gaussian candidates (¬G) of Gth = 60, which is
safely above this level.

We next apply the follow-up chain to the Gaussian noise data with injected signal.
In Fig. 7.4(c) we plot the percentage of injected signals that are classified as recovered

signals (S) and non-Gaussian origin (¬G) as a function of the injected signal strength
ρ2
s. From this plot, we can read out the detection probability - namely, we reach 90%

of signal recovery for candidates with ρ2
s ≈ 0.7.

The computing cost as a function of ρ2
s is plotted in Fig. 7.4(d). We notice that the

cost of the refinement stage is negligible, and in the zoom stage, the averaged computing
time decreases with higher signal strength.

7.3.2. Follow-up of candidates from an all-sky search

The data and signal preparation for the following all-sky Monte Carlo study is the same
as in the directed search case; however, the sky position is drawn isotropically over the
whole sky. We create 7500 data sets with uniformly distributed injected average SNR2 in
the range ρ2

s ∈ (0, 3). The algorithm parameters used in the refinement and zoom stage,
which have been found empirically to yield good performance are given in Table 7.2.
We also find that here the zoom stage benefits from performing all four search passes
shown in Fig. 7.3. The size of the search box for the refinement stage in the spindown
subspace has been defined exactly as in the directed search example. The sky subspace
is constrained by using an m = 1 isomismatch ellipse. As in the previous example, we
use nB = 24 in Eq. (7.25) to determine the size of the Fisher ellipse.

stage w− w+
min w+

max ub p
R -1 1 5 2 20000
Z -1 1 50 1.2 20000

Table 7.2.: Follow-up algorithm parameters for full parameter space searches.

Similarly to the directed follow-up, we first test the pipeline using the Gaussian noise
data without injections. The resulting distribution of final 2̃FZ values is plotted in

Fig. 7.5(b). The maximal value found is 2̃FmaxZ = 58.76, which is higher compared
to the value found in the directed follow-up searches due to the increased number of
evaluated templates. We therefore use a threshold for the classification of non-Gaussian
candidates (¬G) of Gth = 70, which is safely above this level.

Next, we search the data containing the injected signals. In Fig. 7.5(c) we plot the
fraction of signals classified as recovered (S) and the percentage of MC trials found
to be of non-Gaussian origin (¬G) as a function of the injected signal strength ρ2

s.
In order to achieve 90% signal recovery (S), we now need stronger signals, namely
ρ2
s & 1.7. However, for ρ2

s ≈ 1.5, we can already achieve 90% “detection probability” in
the sense of separating candidates from Gaussian noise (¬G). This indicates that the
zoom step sometimes converges on a secondary maximum. Given that any non-Gaussian
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(a) (b)

(c) (d)

Figure 7.5.: Monte Carlo study of 2-stage follow-up of candidates from an all-sky
{α, δ, f, ḟ} semicoherent search with N = 200 segments of duration ∆T =
1days. (a) SNR loss of the initial candidates µ̌ versus semicoherent metric

mismatch µ∗. (b) 2̃FZ distribution after the fully coherent 4-D {α, δ, f, ḟ}
zoom stage of 7500 searches in pure Gaussian noise, without injected sig-

nal. The maximal 2F -value found is 2̃FmaxZ = 58.76. The mean value is

〈2̃FZ〉 = 37.50 indicated with dots. (c) Percentage of the 7500 injected
signals classified as recovered (− S) and of non-Gaussian origin (× ¬G)
as function of the signal strength ρ2

s. The error bars are computed using a
Jackknife [113] estimator. (d) Upper plot : computing cost of the semico-
herent refinement stage. Middle plot : computing cost of the fully coherent
zoom stage. Lower plot : total computing cost.
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(¬G) candidates after zoom will receive further scrutiny, it would be straightforward
to further explore the parameter space around such candidates to localize a potential
primary maximum.

The computing cost as a function of ρ2
s is plotted in Fig. 7.5(d). We notice that the

total computing cost is dominated by the zoom stage and the averaged computing time
is rather independent of the signal strength.

7.4. Discussion

We have studied a two-stage scheme for the fully coherent follow-up of semicoherent
candidates. The first stage, called refinement, aims to find the maximum-likelihood
estimator of the initial semicoherent candidate. This allows us to better constrain the
parameter space for the coherent zoom stage. The two-stage scheme is suitable for
following-up candidates from all-sky or directed semicoherent searches. The proposed
grid-less optimization lowers the computing cost per candidate to acceptable levels. In
Monte Carlo studies we tested the efficiency of the algorithm for directed and all-sky
follow-up searches.

In this chapter we restricted the all-sky follow-up optimization to four dimensions,
namely sky, frequency and first spindown. Further work is required to extend the opti-
mization to higher dimensions. A related attractive direction for further development is
the extension and application of the search algorithm for follow-up of CW candidates in
binary systems, which is a challenging higher-dimensional problem.

We also aim to extend the two-stage scheme presented here by including intermediate
semicoherent zoom stages. This should allow us to further reduce the computing cost
and increase detection efficiency.
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8. Fully coherent follow-up of
candidates from the Einstein@Home
all-sky search for periodic
gravitational waves in LIGO S5 data

As discussed in Chap. 2 the search for unknown sources of continuous gravitational waves
(CWs) is computationally bound due to the enormous parameter space that needs to
be covered [64]. Advanced semicoherent search techniques [88] [92] and a distributed
computing environment such as Einstein@Home [102] are typically used to identify inter-
esting regions of the parameter space, which then require fully coherent follow-up studies
in order to confirm or discard potential gravitational-wave candidates. Although the pa-
rameter space associated with these candidates is greatly reduced, it is still large enough
to lead to a prohibitive computing cost, when data of order of months or years is ana-
lyzed fully coherently with a classical grid-based method. However as we demonstrated
in the previous chapter a follow-up method that combines the F -statistic [28, 46] with a
Mesh Adaptive Direct Search (MADS) [70] based algorithm allows us to fully coherently
examinate long data sets at feasible computational cost.

In this chapter we adapt the two-stage algorithm proposed in Chap. 7 to follow-up
some loud CW candidates identified in the recent Einstein@Home all-sky search for
periodic gravitational waves in LIGO fifth Science Run (S5) data [59]. We first validate
the follow-up pipeline in Monte Carlo studies by injecting and searching for simulated
CW signals added into simulated Gaussian noise data. Then we apply the search method
to 27 loud candidates identified with the Einstein@Home search and associated with 3
simulated signals (hardware injections). We also investigate 9 loud candidates identified
with the Einstein@Home search and for which there is no known instrumental evidence.

This chapter is organized as follows: in Sec. 8.1 we summarize the original Ein-
stein@Home LIGO search in S5 data, and in Sec. 8.2 we summarize the two-stage
follow-up method and introduce the search pipeline. The efficiency of the follow-up
algorithm is tested in Monte Carlo studies presented in Sec. 8.3. In Sec. 8.4 we present
the follow-up results for the 27 candidates representing the 3 hardware injections. In
Sec. 8.5 we show the results of the follow-up for the 9 loud CW outliers. We discuss in
Sec. 8.6.
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Notation

In the following we use the notation of [59] and the previous chapters, i.e., we use tilde

for quantities Q when referring to a fully coherent stage, Q̃, and overhat when referring
to a semicoherent stage, Q̂. A quantity measured after the refinement stage is denoted
with a subscript R, QR, and after the zoom stage with subscript Z, QZ .

8.1. The LIGO S5 all-sky search with Einstein@Home

The Einstein@Home all-sky search for periodic gravitational waves as described in [59]
investigates a frequency range f ∈ [50, 1190] Hz and a spindown range ḟ ∈ [−20, 1.1]×
10−10 Hz s−1. The search uses the semicoherent Hough-transform method [43], where
the entire amount of data is divided into into N shorter segments of duration ∆T . In
a first step a fully coherent F -statistic search is performed on a coarse grid for each of
the segments. Then the Hough-statistic is computed on a finer grid from the F -statistic
values of the individual segments. The Einstein@Home search has been split into 2
parts: the analysis of the first (second) year of S5 , referred to as S5R3 (S5R5). In
this chapter we consider only the S5R5 analysis, which spans data collected between the
GPS times 852443819 s (Wed Jan 10 05:56:45 GMT 2007) and 875278812 s (Mon Oct
01 12:59:58 GMT 2007), or approx. 264 days [59]. The data collected by the Hanford
(H1) and Livingston (L1) LIGO detectors is divided into N = 121 segments of duration
∆T = 25 hours.

The phase evolution of the expected signal at the detector can be written as [28]

φ(t) ≈ φ0 + 2π
s∑

k=0

f (k)(t0)(t− t0)k+1

(k + 1)!
(8.1)

+ 2π
~r(t)

c
~n

s∑

k=0

f (k)(t0)(t− t0)k

k!
,

where α, δ are the standard equatorial coordinates, i.e., right-ascension and declination,

φ0 is the initial phase, f (k) ≡ dkf
dtk

represent the time derivatives of the signal frequency f
at the solar system barycenter (SSB) at reference time t0, c is the speed of light, ~r(t) is
the vector pointing from the SSB to the detector and ~n ≡ (cosα cos δ, sinα cos δ, sin δ) is
the unit vector pointing from the SSB to the gravitational-wave source. The F -statistic
is the standard coherent technique to extract the CW signals from the detector noisy
data. This statistic is the result of a matched filtering, consisting in the correlation of
the data with a template represented by λ ≡ {α, δ, f, ḟ}, where the intrinsic amplitude
h0, the inclination angle with respect to the line of sight ι, and the polarization angle
ψ, as well as the initial phase φ0 have been analytically maximized. In a fully coherent
grid-based F -statistic search the number of templates increases with a high power as
a function of the observation time, therefore such searches are not suitable for wide
parameter-space all-sky surveys. However, the reduction of the coherent baseline in
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a semicoherent search [64, 88] makes these techniques computationally feasible in a
distributed computing environment like Einstein@Home and (usually) more senistive at
fixed computing cost [98].

The templates used to cover the parameter space are placed using the notion of mis-
match [52, 51], which is the fractional loss of expected squared signal-to-noise ratio
(SNR2) ρ2 at a random parameter space point λ compared to the true signal location
λs. In the presence of noise, the mismatch is accessible through the fractional loss of
actually measured SNR2, namely

µ̌ ≡ 2F(λs)− 2F(λ)

2F(λs)− 4
. (8.2)

To quadratic order the mismatch can also be computed using a symmetric positive-
definite matrix gij, referred to as the parameter-space metric, namely

µ∗ ≡ gij(λs)∆λ
i∆λj , (8.3)

where ∆λi = λi − λis and the summation convention over repeated indices apply. We
use Eq. (8.3) as a distance measure.

In the S5R5 analysis, the templates at frequency f are placed on a coarse grid con-
structed using the spacings [59]

dθF =

√
3 c

vdf∆T
, df =

√
12m

π∆T
, dḟ =

√
3.3m

∆T 2
, (8.4)

where m is the maximal mismatch per direction and vd is the Earth’s rotation speed at
the equator. Note that the spindown spacing has been estimated in a Monte Carlo study
and is finer than the expression derived using the metric, namely dḟ =

√
720m/π∆T 2.

As a consequence the fine grid is constructed only with sky refinement and without
spindown refinement. However this is due to some practical limitations of the Ein-
stein@Home environment, e.g., memory footprint, otherwise the spindown spacing would
be refined by a factor N .

The resolution of the fine sky grid at frequency f is given by [59]

dθH =
c df

℘fvy
, (8.5)

where ℘ is the pixel factor and vy is the Earth’s orbital velocity. With ℘ = 0.5, m = 0.3
the sky refinement used in the S5R5 search yields N ref

sky = (dθF/dθH)2 ≈ 8444 [59].
To every parameter space point of the search has been assigned a significance (or

critical ratio) CR [59]:

CR =
nc − n̄c
σ

, (8.6)

where

nc =
N−1∑

i=0

wini (8.7)
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is the Hough number count with wi being the weight for a frequency f and particular sky
position (α, δ), ni = 1 if the F -statistic crosses a threshold value equal to 5.2 otherwise
ni = 0 , n̄c is the expected value of nc and σ the standard deviation. The candidates
are ordered by their significance, however in addition the average per segment 2F value
is computed.

8.2. Follow-up method

8.2.1. The two-stage follow-up

The two-stage follow-up procedure has been introduced in Chap. 7. In the first semico-
herent refinement stage we use the semicoherent F -statistic to improve the maximum-
likelihood estimator (MLE) and in the second fully coherent zoom stage we use the fully
coherent F -statistic to test the consistency of the candidate with Gaussian noise or its
agreement with the signal model. We distinguish three possible outcomes of the zoom
stage:

• Consistency with Gaussian noise (G) - the fully coherent 2̃F value does not exceed
a threshold, i.e.,

2̃F < Gth , (8.8)

where Gth is properly chosen to corresponds to some (small) false-alarm proba-
bility pfA in Gaussian noise. The single trial fale-alarm probability for a given
Gth threshold is p1

fA = (1 + F)e−F ( see, e.g., [114] for details). For example, a
threshold Gth = 90 corresponds to a false-alarm probability of order 10−12 for a
single template. Assuming N independent templates and pfA � 1, the false-alarm
is pfA ≈ Np1

fA.

• Non-Gaussian origin (¬G) - the candidate is loud enough to be inconsistent with
Gaussian noise at the false-alarm probability pfA, i.e.,

2̃F ≥ Gth . (8.9)

• We define signal recovery (S) as a subclass of ¬G, namely a signal is considered

recovered if for the final zoomed candidate the 2̃F -value is exceeding the Gaussian-
noise threshold Gth and and falling into a predicted signal interval

2̃F (S)

th < 2̃F < 2̃F (S)

max (8.10)

where 2̃F (S)

th ≡ max{Gth, 2̃Fo−nu σo}, and 2̃F (S)

max ≡ 2̃Fo+nu σo, with expectation

2̃Fo ≈ 4 +N ρ2
MLE (8.11)

and variance
σ2
o ≈ 2(4 + 2N ρ2

MLE) ; (8.12)
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ρ2
MLE is the average SNR2 of the MLE of the semicoherent search and nu deter-

mines the desired confidence level. For example nu = 6 corresponds roughly to a
confidence of ∼ 99.6%.

In both stages the parameter space is explored on a dynamically created mesh by a
MADS-based algorithm. The input to the algorithm is a starting point λc, a search
bounding box ∆λ around the candidate and a set of MADS parameters, namely
{dλ, ub, w+

min, w
+
max, w

−}, where dλ is the initial step, ub is the mesh update basis, w+
min

and w+
max are the mesh-coarsening exponents and w− denotes the mesh-refining exponent;

for details we refer to Chap. 7.2.1. However, in this chapter we stress an important differ-
ence in the usage of the bounding box ∆λR with respect to the treatment in Chap. 7. In
the previous chapter the serch in the refinement stage is effectively done in a parameter
space defined by the semicoherent metric ellipsoid. Here the bounding box of the refine-
ment stage is fixed to some empirically found size and the optimization is constrained
by the full size of the box. This is required by the setup of the original Hough-transform
search. In fact, a pre-refinement Hough-transform semicoherent refinement stage yields
even better overall performance of the follow-up procedure.

8.2.2. A pre-refinement with the semicoherent Hough-transform
search

Since we aim to explore a very large parameter space at a reasonable computing cost, the
original semicoherent Hough-transform search discussed in [59] makes use of mismatch,
defined by Eq. (8.3), that is large enough, such that µ̌� µ∗. Given that we have only a
handful of candidates to follow-up, and we can therefore afford the computational cost,
it is reasonable to introduce a pre-refinement, e.g., by using the semicoherent Hough-
transform search, in order to improve the candidate for the refinement stage. We refer
to this stage as the semicoherent Hough refinement (HSref). The refinement is achieved
by increasing the original spindown resolution dḟ by the number of the segments used in
the search, i.e., N = 121. In addition, we also double the pixel factor found in Eq. (8.5),
thus increasing the sky grid refinement. The loudest candidate selected from this initial
step provides the starting point for the grid-less optimization with the MADS-based
algorithm.

8.2.3. The number of search dimensions

In this subsection we briefly discuss the number of search dimensions, i.e., the spin-
down order to be included in the follow-up procedure. For a grid based search, the
minimal required spindown order to be included in the search maximizes the number of
templates [64, 88], i.e., the parameter-space extent in a given direction must be thicker
than the metric template extent in that direction as discussed in Chap. 4. On the other
hand, a grid-less search can be considered as a grid-based search with a template bank
constructed by using an unknown, in general non-constant mismatch, for any single
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template. Clearly the maximization of the number of templates criteria cannot be ap-
plied. How to adopt the parameter-space extent criteria in this case and decide, which
spindown-order to use, requires some more thought. However, as a rule of thumb, the
longer the time spanned by the data, the better to include higher-order spindown in the
follow-up. In this chapter we restrict ourselves to the follow-up procedure with searches
including only the first-order spindown. Nevertheless, in Sec. 8.3.2 we perform a Monte
Carlo of a zoom stage searching for signals with non-zero second-order spindown.

8.3. Monte Carlo studies

Figure 8.1.: 2̃FZ distribution after the fully coherent 4-D {α, δ, f, ḟ} zoom stage of 15000
searches in pure Gaussian noise data without injected signals. The maximal

found value is 2̃FmaxZ = 79.39 . The mean value is 〈2̃FZ〉 = 51.53 plotted
with a dotted line. The candidates at roughly 434, 677 and 984 Hz are also
plotted and labeled with 1, 2, 3.

We test the proposed follow-up pipeline in an end-to-end Monte Carlo study using
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(a) (b)

Figure 8.2.: Monte Carlo study of the efficency of the follow-up pipeline with initial
hierarchical search Hough refinement. (a) Percentage of the injected signals
classified as recovered (− S) and with a non-Gaussian origin (× ¬G) as
function of the average 2F value of the candidate after the original semico-
herent Hough-transform search 2F c. (b) Percentage of the injected signals
classified as recovered (− S) and with a non-Gaussian origin (× ¬G) as
function of the average injected 2F value, 2F s. In (a) and (b) the error bars
are computed by using a Jackknife estimator.
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the LALSUITE [105] software package. In particular we use the LALAPPS applications
Makefakedata v4 to generate Gaussian noise and inject CW signal, HierarchicalSearch
for the semicoherent Hough-transform search, FStatSCNomad for the semicoherent F -
statistic optimization with MADS and FStatFCNomad for the fully coherent F -statistic
MADS optimization, where for the MADS algorithm we use the reference implementa-
tion NOMAD [101]. Whenever we need to compute the fully coherent or semicoherent
metric, we use the application FstatMetric v2.

We apply the follow-up chain to 15000 different noise realizations with and without in-
jected signal. The Gaussian noise realizations are generated with the MakeFakedata v4

application using the same timestamps of the SFTs 1 used in the original Einstein@Home
search with level of the noise per detector set to 1.99× 10−23 Hz−1/2. The signal param-
eters are uniformly drawn in the ranges cos ι ∈ [−1, 1], ψ ∈ [−π/4, π/4], φ0 ∈ [0, 2π] and
f ∈ [185, 186] Hz, except the sky position which is drawn isotropically on the sky. The
frequency range has been chosen in the most sensitive region of detectors. The spin-
down value is randomly chosen in the range ḟ ∈ (−f0

τ0
, 0.1f0

τ0
) with minimal spindown

age τ0 = 800 y at f0 = 50 Hz. The signal amplitude is high enough such that the SNR2

in the point of injection is uniformly distributed in the range ρ2 ∈ [0, 6].
We begin the end-to-end validation with a simulation stage of the original S5R5 Ein-

stein@Home search by using the original search setup, i.e., the same frequency and
spindown grid spacings given by Eq. (8.4). The S5R5 search has been partitioned in
independent computing tasks, referred to as workunits (WUs). For a detailed discussion
of the workunit design see Sec. III C in [59]. To save computing power, we do not rerun
an entire WU in this simulation stage, but we center a search grid around a random point
in the vicinity of the injected signal, searching 10 frequency bins in total. The sky-grid
is constructed by extraction of the 16 closest points to the candidate from the original
sky-grid file. However, this reduced parameter-space size is still sufficiently large to be
possible to select candidates due to the noise, if the signal is weak as it might happen
in a real search, and not artificially select a point close to the true signal location.

In the pre-refinement semicoherent Hough search we center the coarse grid from the
simulation around the most significant candidate found so far. However for this pre-
refinement search we refine the spindown spacing of the fine grid by a factor N = 121
and set the pixel factor in Eq. (8.6) equal to 1. In this way we improve the starting
point for the MADS-based refinement.

The semicoherent F -statistic refinement with the MADS-based algorithm uses a fixed
search box around the most significant candidate found in the Hough refinement search.
The parameter space is restricted in a box with size given by

∆α = 0.4 rad , ∆δ = 0.4 rad

∆f = 1× 10−4 Hz , ∆ḟ = 1× 10−9 Hz/s .
(8.13)

1SFT is the acronym used for Short time baseline Fourier Transform of the calibrated detector strain
data. The duration of the SFTs is typically 1800 seconds. SFTs are used as input to many CW
searches such as the semicoherent Hough-transform search, as well as the fully coherent follow-up.
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These values have been found empirically to yield good results. The loudest point
selected from this step is used as a starting point for the fully coherent F -statistic zoom
search.

The zoom search is constrained by the Fisher ellipse as described in the previous
chapter, Eq. (7.25), where we use a confidence corresponding to 24 standard deviations.
This large number is chosen to not falsely miss weak signals, for which the Fisher matrix
may be a poor predictor.

The algorithm parameters for the MADS-based refinement and zoom stage are sum-
marized in Table 8.1. These parameters have been found to yield good results in Monte
Carlo studies.

stage w− w+
min w+

max ub p
R 2 1 20 2 20000
Z 2 1 50 1.2 20000

Table 8.1.: Follow-up algorithm parameters for the refinement and zoom stage.

8.3.1. Efficiency of the follow-up pipline

We first run the end-to-end validation with semicoherent refinement using the Gaussian
noise data without any injected signals. This is required to ensure the applicability of
the threshold Gth = 90 used to consider a candidate as conform with the Gaussian noise
hypothesis. The distribution of the 2̃FZ values is plotted in Fig. 8.1, where we also show
the outcome of the follow-up for 3 loud S5R5 candidates (details are given in Sec. 8.5).

The maximal value found is 2̃Fmax

Z = 79.39, which is well below ¬G = 90.
In Fig. 8.2(a) we plot the percentage of the injected signals classified as recovered and

with a non-Gaussian origin as a function of the average 2F -value of the candidate after
the simulation stage. We are able to separate 90 % of the candidates from Gaussian
noise starting with 2F c ≈ 6.0 and we recover 90 % of the signals for candidates with
2F c ≈ 6.2.

8.3.2. Impact of second-order spindown on the first-order spindown
follow-up

Before proceeding with the follow-up studies using S5R5 candidates and data, we test the
response of the fully coherent stage of the first-order follow-up pipeline when searching
for a signal with non-zero second-order spindown. To do this, we simulate 1000 Gaussian
noise realizations, and for each of them, we draw random signal parameters, as previously
discussed, but with fixed frequency f = 50.25 Hz and first-order spindown value ḟ ≈
−2×10−9. For each trial we vary the second-order spindown value uniformly distributing
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Figure 8.3.: Monte Carlo study of the efficiency of a fully-coherent MADS-based F -
statistic search over 4D space, i.e., {α , δ , f , ḟ}, when a signal with second-
order spindown f̈ ∈ [−2f0/τ

2
0 , 2f0/τ

2
0 ] is present in the data. We plot the

averaged over 1000 trials N 2F s,1, N 2F s,2, 2̃F s,1, 2̃F s,2 and 2̃FZ as function
of the deviation ∆f̈ of the second-order spindown from zero. Note that for
each trial 2F s,1 ≈ 8.0. In 99.9 % of the trials 2̃FZ > Gth.
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it in the range

f̈ ∈
[
−2f0

τ 2
0

,
2f0

τ 2
0

]
, (8.14)

and add the signal to the simulated Gaussian noise data.
Let the signal template be λs,2 ≡ λs = (αs, δs, fs, ḟs, f̈s), with a f̈s value from the

range given in [8.14], and let the truncated signal template be λs,1 = (αs, δs, fs, ḟs, 0).
We denote the 2F statistic computed in the point λs,1, resp. λs,2 with 2Fs,1, resp. 2Fs,2.
With this notation, the signal amplitude has been chosen such that independently of the
deviation ∆f̈ of the second-order spindown from zero, we measure 2F s,1 in the range
2F s,1 ∈ (7.9, 8.1). This particular range for 2F s,1 has been chosen, because it has been
found sufficient to cross the threshold Gth = 90 for 90 % in the trials of the end-to-
end pipeline validation from the previous subsection; see Fig. 8.2(b) where we plot the
percentage of the injected signals, classified as recovered or at least with a non-Gaussian
origin, as function of the averaged injected 2F s. First, we measure F s,2, 2̃F s,1, as well

as 2̃F s,2. Then we perform a zoom stage using the parameters given in Table 8.1, with
starting point λs,1. The results of this Monte Carlo study are plotted in Fig. 8.3. For
convinience, we plot N2F s,1 and N2F s,2 instead of 2F s,1 and 2F s,2. Note that for

|∆f̈ | > 0 the ratio 2F s,2/2F s,1 is much smaller compared to the ratio 2̃F s,2/2̃F s,1. This
is expected due to the short duration of the segments used to compute the semicoherent
statistic, compared to the total observation time used to compute the fully coherent
statistic. However, by applaying the zoom stage, even if we do not include the second-
order spindown in the search, we are able to find a parameter-space point louder than the
threshold Gth in 99.9% of the cases for the given second-order spindown range. While
this is promissing, a more conclusive result requires additional work in order to validate
the full pipeline when searching signals with second-order spindown.

8.4. Recovery of hardware injections

The hardware injections are simulated signals, physically added into the contorl system
of the interferometer to produce a detector response similar to what should be gerenrated
if a gravitational wave were present. The aim of such injections is to test and evaluate
search pipelines and analysis codes. The S5R5 Einstein@Home search [59] identified 3
fake pulsars referred to as Pulsar 2, 3 and 5. In this section we follow-up the candidates
associated with these hardware injections, since all of them produced more than one
significant candidate to follow-up. Instead to further investigate all these candidate
points, we apply a clustering algorithm to reduce their number and thus follow-up the
most interesting ones.

The clustering algorithm is rather simple and described in the following. For each
hardware injection starting with the loudest candidate, we remove all neighboring can-
didates falling in the box defined by the search bands used for the refinement stage as
given in Eq. (8.13). We expect that these candidates would have a similar maximum,
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as they are most likely due to the same signal. We then repeat the procedure with
the remaining candidates until there are no more candidates left sharing a common
semicoherent search box.

There are for instance 88 parameter space points associated with Pulsar 2 injected
at ∼ 575 Hz. After the clustering procedure, the number of candidates to follow-up is
reduced to 16. For Pulsar 3, injected at ∼ 108 Hz, the number of parameter space points
to follow-up shrinks from 80 to 9. Only for Pulsar 5, injected at ∼ 52 Hz, we are not able
to reduce the number of candidates, since there are only 2 candidate points to follow-up,
but they belong to different search boxes.

In Table 8.2 we summarize the follow-up results of the loudest candidates associated
with each pulsar. Note that the hardware injections were only partially active during
the total observation time (for details see Sec. VI of [59]). Thus, in order to consider a
signal recovered we rely on the measured fully coherent 2F -value in the point of injection
2̃F s. Based on this, we see that all three candidates are recovered. Pulsar 3 is the best
recovered hardware injection in terms of parameter estimation with a mismatch after the
final step of µ∗Z = 1.44× 10−3. Pulsar 2 has been recovered fairly well with a mismatch
µ∗Z = 2.41 × 10−3, thought the spindown value is found with opposite sign. Finally,
the mismatch for Pulsar 5 is µ∗Z = 6.72 × 10−3. In Table 8.2 we also give the offset
in frequency ∆fZ and spindown ∆ḟZ of the loudest point compared to the true signal
location and the angular distance

∆γZ = arccos(~nc~ns) . (8.15)

8.5. Follow-up of loud S5R5 Einstein@Home candidates

The post-processing and further investigation of candidates from the S5R5 Einstein@Home
run provides 9 interesting parameter space points for the fully coherent follow-up search
at roughly 80, 96, 144, 434, 677, 932, 984, 1030 and 1141 Hz. We investigate these
loud candidates using the pipeline with a hierarchical search refinement and algorithm
parameters from the Monte Carlo. The results are summarized in Table 8.3. None of the
candidates can be considered as recovered signal in the sense of (8.12). However we can
separate the candidates into 2 groups. First, the candidates at roughly 80, 96, 144, 932,
1030 and 1141 Hz are discarded, since they fail the multi-detector versus single-detector
F -statistic consistency test after the semicoherent MADS-based refinement stage. The
F -statistic consistency test requires, that the combined 2F statistic from Ndet detectors
is higher than any individual one (for details see Sec. IV C in [59]). On the other hand
the candidates at roughly 434, 677, and 984 Hz survive the consistency check. In Fig. 8.1
we plot them on top of the 2̃FZ distribution of Gaussian noise. We see that the final
statistics for these candidates is consistent with the expectation from Gaussian noise.
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Row Pulsar 2 3 5

1 f [Hz] 575.163557631402 108.857159397497 52.8083243593611

2 α [rad] 3.75692884 3.113188712 5.281831296

3 δ [rad] 0.060108958 −0.583578803 −1.463269033

4 ḟ [Hz/s] −1.37× 10−13 −1.46× 10−17 −4.03× 10−18

5 2FHS 27.95 339.41 6.34

6 2FR 100.54 1137.97 12.01

7 2FH1
R 51.17 641.77 8.24

8 2FL1
R 54.54 510.54 8.01

9 µ∗R 4.01× 10−4 5.18× 10−4 4.88× 10−3

10 fZ [Hz] 575.1635576321457 108.8571593975228 52.80832435480315

11 αZ [rad] 3.756928870833068 3.113189005400489 5.281811486307014

12 δZ [rad] 0.06010925352403444 −0.5835788464819518 −1.463265695745091

13 ḟZ [Hz/s] −1.37× 10−13 3.30× 10−16 1.85× 10−15

14 2̃FZ 7399.52 87097.9 678.06

15 2̃FH1

Z 3519.49 47572.90 350.00

16 2̃FL1

Z 3896.15 39557.50 332.64

17 2̃Fs 7377.94 86968.70 677.86

18 µ∗Z 2.41× 10−3 1.44× 10−3 6.72× 10−3

19 ∆fZ [Hz] 7.44× 10−10 2.58× 10−11 −4.55× 10−9

20 ∆ḟZ [Hz/s] −4.33× 10−16 3.44× 10−16 1.85× 10−15

21 ∆γZ [rad] 2.97× 10−7 2.48× 10−7 3.96× 10−6

Table 8.2.: Loudest candidates associated with the hardware injection recovery. Values
obtained using only H1 or L1 detector data are denoted with superscript H1,
resp. L1. In rows 1 to 4 are given the true parameters of the injections. Row
5 is the average 2F value after the semi-coherent Hough-transform search. In
rows 6 to 8 are given the average 2F values after the refinement stage. In row
9 is given the metric mismatch after the refinement. Rows 10 to 13 show the
parameters of the candidate after the zoom stage. The 2F values after the
zoom stage are given in rows 14 to 16. In row 17 is given the fully coherent
2F value of the injection. In row 18 we show the mismatch to the signal
after the zoom stage. In rows 19 to 21 are given the offsets to the signal
after the zoom stage. Due to the signal strength we are able to estimate
the parameters of the signal much better than one would expect from the
intrinsic resolution of the parameter space.

144



8. Fully coherent follow-up of Einstein@Home candidates

f [Hz] 2FR 2FHR 2FLR 2̃FZ 2̃FHZ 2̃FLZ 2̃Fo 2̃F (S)

th status

80 7.44 4.75 8.13 61.95 26.08 37.30 420.88 175.28 fcc
96 9.13 4.47 13.18 76.52 26.50 56.77 625.25 325.68 fcc
144 11.17 4.57 14.02 79.83 26.93 55.11 871.84 517.93 fcc
434 5.54 5.42 4.58 47.75 30.19 22.00 190.17 90.00 cgn
677 6.45 5.40 5.23 54.11 44.51 14.09 300.97 93.48 cgn
932 7.60 8.04 4.25 73.40 66.62 16.94 439.25 188.37 fcc
984 6.50 4.82 5.49 55.81 36.30 20.90 305.94 96.73 cgn
1030 7.44 8.30 4.51 79.31 71.63 15.20 420.39 174.94 fcc
1141 8.46 10.13 4.23 75.33 97.26 12.38 543.71 264.42 fcc

Table 8.3.: Summary of the follow-up results for the nine candidates from the S5R5
search. The last column gives the reason, why the candidate has been dis-
carded, where fcc means “failed detector consistency check”, and cgn means
“consistent with Gaussian noise”. Only three of these candidates pass the
detector consistency check after the refinement stage, however they are con-
sistent with Gaussian noise after the zoom stage.

8.6. Discussion

We extended the two-stage follow-up procedure for the fully coherent follow-up of CW
candidates from semicoherent searches with a pre-refinement semicoherent Hough-transform
search in order to investigate loud candidates from the S5R5 Einstein@Home search for
periodic gravitational waves in the LIGO S5 data. We studied the efficiency of the pro-
posed follow-up pipeline on simulated signals in simulated Gaussian noise data, and we
discussed the impact of a possible deviation of the second-order spindown from zero.
We followed-up 27 candidates associated with 3 hardware injections and successfully
recovered all 3 signals. We followed-up 9 loud candidates of unknown origin. None of
these candidates could be confirmed to follow the signal model. After the refinement
stage 6 of the candidates have been discarded failing the detector consistency check.
The remaining 3 candidates are consistent with Gaussian noise after the fully coherent
zoom stage, thus no significant CW candidate have been found.

This is the first application of the systematic follow-up procedure on real gravitational-
wave detector data. While additional work is required to include higher order spindown
in the final fully coherent stage, we expect that the presented strategy will become one
of the common tools applied in the final stages of wide parameter-space searches for
CWs in the upcoming Advanced detectors era.
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