
A Generic Interior-Point Framework for Nonsmooth and
Complementarity Constrained Nonlinear Optimization

Von der Fakultät für Mathematik und Physik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

von

Dipl.-Math. Martin Schmidt

geboren am 11.03.1983 in Gifhorn

2013

Referent: Prof. Dr. Marc Steinbach, Gottfried Wilhelm Leibniz Universität Hannover

Korreferent: Prof. Dr. Alexander Martin, Friedrich-Alexander-Universität Erlangen-Nürnberg

Korreferent: Prof. Dr. Andreas Wächter, Northwestern University

Tag der Promotion: 23. Januar 2013

For Christina

Abstract

Interior-point methods are one of the most powerful algorithmic concepts in optimization. In this

thesis a generic interior-point framework is developed that allows the user to easily modify and

extend a basic algorithm which combines techniques of state-of-the-art solvers for nonlinear and

nonconvex optimization. After presenting these standard techniques, a special subclass of non-

smooth constrained problems is defined. It is shown that this subclass is practically relevant and

a modified and extended interior-point method is developed that is able to solve this class of non-

smooth problems. Furthermore, algorithmic extensions and modifications of the basic method are

presented that enable the algorithm to solve nonlinear mathematical programs with complemen-

tarity constraints.

As an application of the developed interior-point framework, the problem of validation of nom-

inations in gas transport networks is considered. Highly nonlinear and nonconvex models of gas

dynamics as well as modeling of controllable network devices lead to a mixed-integer, nonsmooth,

nonconvex and nonlinear feasibility problem. This problem is extremely challenging and real-world

instances cannot be solved by general-purpose solvers. It is shown that the problem belongs to a

certain subclass of mixed-integer nonlinear problems for which a general reformulation technique is

developed. This reformulation results in a nonsmooth and complementarity constrained nonlinear

feasibility problem.

The presented computational experiments show that the reformulation technique combined with

the extended and modified interior-point framework can be used to solve real-world instances of

the problem of validation of nominations. The strength and generality of the developed framework

is finally demonstrated by additional numerical results for problems from the fields of stochastic

programming and nonlinear optimization with ordinary differential equations.

Keywords: interior-point methods, (mixed-integer) nonlinear optimization, nonsmooth opti-

mization, complementarity constraints, gas transport networks

v

Zusammenfassung

Innere-Punkte Methoden bilden eines der stärksten algorithmischen Konzepte der Optimierung.

In dieser Arbeit wird eine generische Programmbibliothek für Innere-Punkte Methoden entwi-

ckelt, die auf Standardtechniken der nichtlinearen und nichtkonvexen Optimierung basiert und die

einfach durch den Nutzer modifiziert und erweitert werden kann. Nach der Beschreibung dieser

Standardtechniken wird eine Klasse von speziellen nichtglatten Optimierungsproblemen definiert.

Es wird gezeigt, dass diese Klasse von praktischer Bedeutung ist und es wird eine modifizierte

und erweiterte Innere-Punkte Methode zur Lösung dieser nichtglatten Probleme auf der Basis der

beschriebenen Standardtechniken entwickelt. Zusätzlich werden Erweiterungen beschrieben, die es

dem Algorithmus ermöglichen, nichtlineare Optimierungsprobleme mit Komplementaritätsbedin-

gungen zu lösen.

Als Anwendungsproblem wird das Problem der Nominierungsvalidierung in Gastransportnetzwer-

ken betrachtet. Hochgradig nichtlineare und nichtkonvexe Modelle der Gasdynamik und die Model-

lierung steuerbarer Netzwerkelemente führen dabei zu einem gemischt-ganzzahligen, nichtglatten,

nichtkonvexen und nichtlinearen Zulässigkeitsproblem. Diese Klasse von Problemen ist extrem

schwer lösbar und kann daher nicht mit allgemeinen Standardlösern behandelt werden. Zur Lö-

sung dieser Probleme wird daher gezeigt, dass das Problem der Nominierungsvalidierung einer

speziellen Menge von nichtlinearen gemischt-ganzzahligen Optimierungsproblemen angehört, für

die eine allgemeine Reformulierungstechnik entwickelt wird. Diese Reformulierung führt schließlich

auf nichtglatte und nichtlineare Zulässigkeitsprobleme mit Komplementaritätsbedingungen.

Die vorgestellten numerischen Ergebnisse zeigen, dass die Reformulierungstechniken in Kombinati-

on mit der erweiterten und modifizierten Innere-Punkte Methode genutzt werden können, um reale

Instanzen des Problems der Nominierungsvalidierung zu lösen. Die Stärke und Allgemeinheit der

entwickelten Programmbibliothek wird zusätzlich durch Ergebnisse für Probleme aus dem Bereich

der stochastischen Optimierung und der nichtlinearen Optimierung mit Differentialgleichungen

belegt.

Schlagworte: Innere-Punkte Methoden, (gemischt-ganzzahlige) nichtlineare Optimierung, nicht-

glatte Optimierung, Komplementaritätsbeschränkungen, Gastransportnetzwerke

vii

Acknowledgements

I wish to thank my supervisor Marc Steinbach for giving me the chance to work in such an

interesting field of applied mathematics and for a lot of discussions that guided me during my

work for this thesis.

I want to thank Alexander Martin and his working group, especially Björn Geißler and Antonio

Morsi, for the nice and friendly collaboration within the ForNe project. Further I wish to thank

Andreas Wächter for his valuable comments on an earlier version of the interior-point method for

nonsmooth constrained problems.

Additionally, I want to thank some of my colleagues. The discussions and the joint work on

some parts of Clean::IPM with Jens Hübner greatly improved the design of the implementation. I

would also thank Marcus O’Connor for his help in preparing the plots of the performance profiles

and for his help in developing the XML parsers of iGNO. In addition, I thank Jan Thiedau for the

cooperation concerning the development of iGNO and for his valuable comments on some aspects

of the nonsmooth interior-point method. A special thank is dedicated to my colleague and friend

Bernhard Willert for his patient help at almost every day in the last four years.

Finally, I want to thank my wife Christina. Without her encouragement, support and belief in

me, this thesis would not have been possible.

Ein allerletzter Dank gebührt meinen Eltern und meiner Schwester für ihre rückhaltlose Unter-

stützung in allen Lebensbereichen.

ix

Contents

Abstract v

Zusammenfassung vi

Acknowledgements viii

List of Figures xiii

List of Tables xvi

List of Algorithms xvii

1 Introduction 1

1.1 Computational Mathematics and Applied Mathematical Optimization 1

1.2 Interior-Point Methods . 2

1.3 Contributions and Organization . 3

2 Basic Concepts 5

2.1 Nonlinear Optimization . 5

2.2 Mathematical Programs with Complementarity Constraints 8

2.3 Nonsmooth Analysis . 12

3 Optimization in Gas Network Planning 17

3.1 Literature Survey . 18

3.2 A Nonsmooth MINLP Model of the Problem of Validation of Nominations 20

3.2.1 Basic Physical Quantities . 20

3.2.2 The Network Topology . 21

3.2.3 Nodes . 22

3.2.4 Arcs . 23

3.2.5 Model Summary . 34

xi

Contents xii

3.3 An MPCC Approach for MINLPs in Gas Network Planning 36

3.3.1 A Reformulation Technique for 2-State-MINLPs 37

3.3.2 The Problem of Validation of Nominations Revisited 39

4 Interior-Point Methods 43

4.1 Interior-Point Methods for Nonlinear Optimization 44

4.1.1 Computation of the Search Direction . 49

4.1.2 Globalization with a Filter Line-Search Algorithm 56

4.1.3 Feasibility Restoration Phase . 62

4.1.4 Updating the Barrier Parameter . 62

4.1.5 Starting Point Strategies . 66

4.1.6 Problem Scaling . 67

4.1.7 Heuristics and Algorithmic Details . 68

4.1.8 The Complete Interior-Point Algorithm . 70

4.1.9 Convergence Analysis . 72

4.2 An Interior-Point Method for Nonsmooth Nonlinear Problems 75

4.2.1 Definition of the Problem Class . 75

4.2.2 Basic Algorithmic Strategy . 79

4.2.3 Modified Building Blocks . 80

4.2.4 An Extended Interior-Point Method for Nonsmooth Nonlinear Optimization 90

4.3 An Interior-Point Method for MPCCs . 92

4.3.1 MPCC Regularization by Relaxation . 92

4.3.2 MPCC Regularization by Penalization . 93

4.3.3 Updating the Regularization Parameter . 94

4.4 An Interior-Point Method for Nonsmooth and Complementarity Constrained Non-

linear Optimization . 97

5 Software Design 99

5.1 General Concepts of Software Design . 99

5.2 The Software Architecture of Clean::IPM . 103

5.3 Used External Libraries and Code Quality . 105

6 Numerical Results 109

6.1 Computation of Recombination Probabilities . 109

6.2 Large-Scale Stochastic Programming . 111

6.3 The Hock–Schittkowski Test Set . 112

6.4 Gas Network Planning . 115

xiii Contents

7 Conclusions and Outlook 125

Bibliography 127

List of Figures

1.1 Working cycle of applied mathematical optimization. 2

2.1 Feasible set of φi (x)ψi (x) ≤ ξ with ξ = 1. 11

2.2 Three subgradients of a univariate function f : R→ R. 15

3.1 Compressibility factor computed by the AGA formula. 25

3.2 Profiles of gas pressure along three horizontal pipes (L = 25 km,D ∈ {0.9, 1.0, 1.1} m,

k = 0.06 mm; q = 500 kg s−1). 25

3.3 HPPC friction term and smooth approximation vs. mass flow (kg s−1): transition

from laminar to turbulent flow (upper figure) and highly turbulent flow (lower figure). 28

3.4 Smoothing of sign(x) with different values of τ (blue and loosely dashed for τ = 0.1,

red and dashed for τ = 0.01, green and densely dashed for τ = 0.001). 30

4.1 A filter with five entries. 57

4.2 A generalized gradient for the absolute value function. 87

5.1 Orthogonal vectors v1 and v2 and software modules M1 and M2. 101

5.2 Orthogonal algorithmic building blocks; barrier parameter update rules and KKT

system solution algorithms. 101

5.3 A schematic overview of the software architecture of Clean::IPM. 106

5.4 The current set of update rules for the barrier parameter implemented in Clean::IPM.107

6.1 Clean::IPM with mixed µ-strategies on the Hock–Schittkowski test set. 114

6.2 Clean::IPM with monotone µ-strategies on the Hock–Schittkowski test set. 115

6.3 Schematic plot of the northern high-calorific gas transport network of Open Grid

Europe GmbH. 116

6.4 Performance profiles for Clean::IPM applied to the nMPCC-s model. 119

6.5 Performance profiles for Clean::IPM applied to the nMPCC-a model. 121

6.6 Primal and dual infeasibility during the solution of an exemplary nMPCC-s instance. 122

xv

List of Figures xvi

6.7 Primal and dual infeasibility during the solution of an exemplary nMPCC-a instance. 123

6.8 Primal and dual step lengths during the solution of an exemplary nMPCC-s instance.123

6.9 Primal and dual step lengths during the solution of an exemplary nMPCC-a instance.124

List of Tables

3.1 Basic physical quantities. 21

3.2 Technical pipe parameters and physical quantities appearing in the pipe model. . . 24

3.3 Node types and network elements. 34

4.1 Vector management for IPM reduction, reduced KKT system solution and IPM

expansion. 71

4.2 Vector management for IPM reduction, reduced KKT system solution and IPM

expansion in the bound-feasible case. 71

5.1 Code statistics for Clean::IPM. 105

6.1 Model statistics and solution times of huge-scale tree-sparse convex programs. . . . 112

6.2 Network elements in the northern high-calorific gas transport network of Open Grid

Europe GmbH. 117

6.3 Size of the reformulated MPCC model (for the northern high-calorific gas network). 117

6.4 Statistics of the iteration numbers (k) for Clean::IPM applied to the nMPCC-s model. 120

6.5 Statistics of the solution times (t, in s) for Clean::IPM applied to the nMPCC-s model.120

6.6 Statistics of the iteration numbers (k) for Clean::IPM applied to the nMPCC-a model.121

6.7 Statistics of the solution times (t, in s) for Clean::IPM applied to the nMPCC-a model.121

xvii

List of Algorithms

1 Basic Interior-Point Framework . 48

2 Solution Algorithm for the Reduced KKT System with Dense Matrix Blocks 55

3 Filter Line-Search Algorithm . 61

4 Globalization Filter Line-Search Method for Mixed Barrier Parameter Updates . . . 64

5 Default Interior-Point Method Initialization Scheme 67

6 Filter Line-Search Interior-Point Algorithm with Mixed Barrier Parameter Updates 72

7 Modified Filter Line-Search for Nonsmooth Problems 81

8 Step Length Truncation Rule for Nonsmooth Problems 83

9 Extended Interior-Point Method for Nonsmooth Problems 91

10 Extended Interior-Point Method for MPCCs . 96

xix

Chapter 1

Introduction

1.1 Computational Mathematics and Applied Mathematical

Optimization

Computational mathematics and especially the subfield of applied mathematical optimization con-

nects a lot of different fields of mathematics and computer science.

In the beginning, there is a problem in a real-world application, e.g. from industry or finance.

This problem has to be translated into a mathematical model. If the application leads to a

mathematical optimization model, there are a lot of possible classes the model may belong to.

Prominent examples are linear and nonlinear as well as mixed-integer (non-)linear problems. When

a first model is set up, it has to be investigated theoretically and, if possible, solved. The theoretical

investigation includes replying to questions concerning the qualitative analysis of the model and

the existence and uniqueness of solutions. Based on these theoretical analyses one has to choose

or implement algorithms to solve the problem numerically. In order to do this, one makes use of

several techniques from software engineering, from the design of mathematical algorithms and from

numerics. Hopefully, the developed software is then able to produce solutions of the model of the

real-world application. These solutions are then discussed with the client. Figure 1.1 illustrates the

described working cycle of applied mathematical optimization. Unfortunately, it is unlikely that

the customer will be satisfied with the first version of the solutions.1 In addition, it often turns

out that it is not possible to solve the first version of the mathematical model of the real-world

application. Several reasons might be supposable: The model at hand might be too large in order

to be solvable by standard approaches or the mathematical model may simply be wrong in some

of its aspects. At that time, the cycle is complete. The model has to be slightly reformulated

1The author apologizes that he cannot avoid to make the, at least partly, ironic remark that he thanks his

industrial partners for teaching him this painful lecture and thus, preparing him for real life.

1

Chapter 1. Introduction 2

or it has to be restated substantially in order to obtain a different problem class. For instance,

it might be necessary to get rid of nonlinear aspects of a mixed-integer nonlinear model, because

the mixed-integer nonlinear problem turned out to be too hard to be solved. In other situations

it might not be possible to achieve a different class of models. Then it is required to improve the

complete lower block of Figure 1.1 in order to be able to produce solutions of practical relevance.

Later it is discussed which aspects of the working cycle are addressed in this thesis.

Real-world

application

Mathematical

model

Algorithmic design, numerics

Theory

Software engineering

Solution

Figure 1.1: Working cycle of applied mathematical optimization.

1.2 Interior-Point Methods

Interior-point methods are the algorithmic workhorse of the solution strategies discussed in this

thesis. They arose from the search for algorithms with better complexity characteristics than the

simplex method in the 1980s and are one of today’s most important classes of algorithms in mathe-

matical optimization. In linear programming, interior-point methods compete with simplex meth-

ods. They are advantageous for very large-scale applications but are in a disadvantage compared

to simplex type methods when applied to a series of similar problems. The latter is of particular

interest in the field of mixed-integer (non-)linear optimization where a lot of problems have to be

solved that only differ in a few details. In quadratic and nonlinear programming, interior-point

methods compete with active-set and sequential quadratic programming (SQP) methods. The pros

and cons are the same as for linear programming.

3 1.3. Contributions and Organization

Like the last paragraph shows, interior-point methods possess the valuable property that they

can be applied to a lot of problem classes. In addition, their general algorithmic framework stays

predominantly the same when applied to different classes of optimization problems like linear,

quadratic or (nonconvex) nonlinear problems.

This characteristic forms the basis of the algorithms developed for this thesis. Based on different

existing implementations of interior-point methods a carefully designed framework is developed

that enables its user to easily modify and exchange certain parts, called building blocks, of the

interior-point algorithm. This allows the user to extend the method for solving more challenging

problem classes or to easily instantiate different variants of the algorithm.

1.3 Contributions and Organization

Since the 1960s, the field of gas transport is a rich source for challenging mathematical optimization

problems. Prominent examples are cost minimization or topology planning problems. In this thesis

the problem of validation of nominations in gas transport networks is considered. This real-world

problem leads to a practically intractable mixed-integer, nonsmooth, nonconvex and nonlinear

feasibility problem for which a model reformulation technique as well as solution techniques are

developed in this thesis.

After introducing the required basic concepts of mathematical optimization in Chapter 2, a

problem description and a simplified version of the model of the problem of validation of nomi-

nations are given in Chapter 3. By simply combining the class of this problem with the size of

the models of real-world problems it is evident that this mathematical model is not solvable by

standard approaches. As a remedy, a reformulation technique for a certain subclass of mixed-

integer nonlinear problems is developed and applied to the model at the end of Chapter 3. This

reformulation leads to nonlinear and nonsmooth complementarity constrained problems. However,

these problems are also not practically treatable for standard approaches. For this reason, an

interior-point framework is developed that is then extended and modified in order to be able to

solve this problem class. The basic interior-point algorithm and the extensions and modifications

are topic of Chapter 4. The focus in this thesis, and especially in Chapter 4, is on algorithmic

design and the techniques of software engineering that are used to implement the interior-point

framework (Chapter 5). Chapter 6 presents solutions of the reformulated model of the problem of

validation of nominations. Additionally, some numerical results from other applications of the de-

veloped interior-point framework are discussed to demonstrate its strength and generality. Finally,

Chapter 7 concludes the thesis and gives some directions for future work.

Chapter 2

Basic Concepts

In this chapter the terminology and basic concepts of the fields of optimization are introduced that

are topic of this thesis. The chapter is organized as follows. In Section 2.1 fundamental definitions

are presented and first-order necessary conditions for nonlinear optimization problems (NLP) are

stated. Section 2.2 deals with mathematical programs with complementarity constraints (MPCC).

Finally, Section 2.3 briefly introduces some important definitions and theorems of nonsmooth

analysis.

2.1 Nonlinear Optimization

This section reviews the basic concepts of nonlinear optimization. The presentation is based on

[91].

Consider the constrained optimization problem

min
x∈Rn

f(x) (2.1a)

s.t. cE(x) = 0, (2.1b)

cI(x) ≥ 0. (2.1c)

Throughout this thesis, the following notation is used. f : Rn → R is called the objective function.

E and I are finite index sets for equality and inequality constraints with E ∩ I = ∅. According to

this,

cE : Rn → Rm and cI : Rn → Rk (2.2)

denote the vectors of equality and inequality constraints, respectively. If not stated otherwise,

|E| = m and |I| = k holds. The real-valued functions ci : Rn → R, i ∈ E , are the single equality

and ci : Rn → R, i ∈ I, are the single inequality constraints. The relations = and ≥ in (2.1) are

defined component-wise.

5

Chapter 2. Basic Concepts 6

Definition 1 (Feasible Set). The set

F = {x ∈ Rn : cE(x) = 0 and cI(x) ≥ 0} (2.3)

is the feasible set of (2.1). A point x ∈ Rn is called feasible, if x ∈ F .

Next, the definition of a local solution of (2.1) is given.

Definition 2 (Local Solution). A point x∗ ∈ Rn is a local solution of problem (2.1) if x∗ ∈ F

and there exists a neighborhood N of x∗ such that f(x∗) ≤ f(x) for all x ∈ F ∩N .

The goal of the rest of this section is to state first-order optimality conditions for the constrained

optimization problem (2.1). For this, the definitions of the active set and the linear independence

constraint qualification are needed.

Definition 3 (Active Set). Let x ∈ Rn be a feasible point of (2.1). Then the index set

A (x) = E ∪ {i ∈ I : ci (x) = 0} (2.4)

is called the active set of (2.1) at x.

Definition 4 (Linear Independence Constraint Qualification (LICQ)). Let x ∈ Rn be a feasible

point of (2.1) and let A(x) be the active set at x. One says that the linear independence constraint

qualification (LICQ) holds at x if the set

{∇ci (x) : i ∈ A (x)} (2.5)

is linearly independent.

Finally, the Lagrangian function of (2.1) is defined as follows.

Definition 5 (Lagrangian Function). The function

L (x, λE , λI) = f (x)−
∑
i∈E

λici (x)−
∑
i∈I

λici (x) (2.6)

is called the Lagrangian function of (2.1). The vectors λE := (λi)i∈E ∈ R|E| and λI := (λi)i∈I ∈

R|I| are the so-called Lagrange multipliers (also known as dual variables or dual multipliers)

corresponding to equality and inequality constraints, respectively.

The following theorem about first-order necessary conditions forms the basis of the algorithms

that are discussed in this thesis.

Theorem 1 (First-Order Necessary Conditions). Let x∗ ∈ Rn be a local solution of (2.1) and let

f, cE and cI be continuously differentiable. Furthermore, assume that the LICQ condition holds at

7 2.1. Nonlinear Optimization

x∗. Then there exist vectors of Lagrange multipliers λ∗E ∈ Rm and λ∗I ∈ Rk such that the following

conditions are satisfied:

∇xL (x∗, λ∗E , λ
∗
I) = 0, (2.7a)

cE (x∗) = 0, (2.7b)

cI (x∗) ≥ 0, (2.7c)

λ∗I ≥ 0, (2.7d)

λ∗i ci (x∗) = 0 ∀i ∈ E ∪ I. (2.7e)

x∗ is then called a KKT point or stationary point of (2.1).

Condition (2.7a) is called dual feasibility, conditions (2.7b) and (2.7c) are called primal feasi-

bility. (2.7d) is referred to as positivity of the Lagrange multipliers corresponding to inequality

constraints. (2.7e) is the so-called complementarity condition. Conditions (2.7) are known as the

Karush-Kuhn-Tucker conditions (or KKT conditions for short). A proof of Theorem 1 can be

found in [91, Chap. 12].

Standard solution techniques for NLP problems include interior-point methods, penalty meth-

ods and sequential quadratic programming (SQP) methods. For penalty and SQP methods see

the book of Nocedal and Wright [91] and the references therein. Since interior-point methods are

one of the central topics of this thesis, a more detailed overview of the existing methods is given.

One can distinguish mainly between line-search and trust-region interior-point methods. The most

prominent line-search implementations are LOQO [128], KNITRO/DIRECT [135], Ipopt [134] and

MOSEK (only for convex problems, [4]). KNITRO/CG [19] implements a trust-region interior-point

approach. Moreover, the complete KNITRO package combines both interior-point and active-set

strategies [20]. The only non-commercial and open source code of the above mentioned is Ipopt.

A main characteristic of (2.1) is that all decision variables x are continuous, i.e. x ∈ Rn.

Nevertheless, in practice one often requires discrete variables to model real-world problems. This

leads to the generalization of (2.1) that is called a mixed-integer nonlinear optimization problem

(MINLP):

min
x,z

f(x, z) (2.8a)

s.t. cE(x, z) = 0, (2.8b)

cI(x, z) ≥ 0, (2.8c)

x ∈ Rnx , z ∈ Znz . (2.8d)

In (2.8) the constraints and the objective function may depend on additional discrete decision

variables z ∈ Znz , i.e.

f : Rnx × Znz → R, cE : Rnx × Znz → Rm, cI : Rnx × Znz → Rk. (2.9)

Chapter 2. Basic Concepts 8

An important special case of (2.8) are mixed-integer nonlinear programs in which all discrete

variables are restricted to the binaries. This means that the integrality condition in (2.8d) is

tightened to z ∈ {0, 1}nz .

The theory as well as the algorithmic techniques for solving MINLPs are beyond the scope of

this thesis. It is referred to the book of Floudas [43] for both the fundamentals and applications

of MINLP. In the context of this thesis, MINLPs are used to model the problem of validation of

nominations in Chapter 3.

2.2 Mathematical Programs with Complementarity Con-

straints

Mathematical problems with complementarity constraints (or MPCC for short) form a practi-

cally and theoretically important generalization of standard nonlinear programs (see [77] for an

overview).

A standard form of MPCC problems is

min
x∈Rn

f (x) (2.10a)

s.t. cE (x) = 0, (2.10b)

cI (x) ≥ 0, (2.10c)

0 ≤ φ(x) ⊥ ψ (x) ≥ 0, (2.10d)

where f, cE , cI , φ and ψ are sufficiently smooth, i.e. C2 if not stated otherwise. The functions

φ, ψ : Rn → Rp (2.11)

form the so-called complementarity condition (2.10d) that is defined by

φi (x) , ψi (x) ≥ 0 and φi (x) = 0 or ψi (x) = 0 ∀i = 1, . . . , p. (2.12)

φi (x) and ψi (x) are the components of the vector-valued functions φ, ψ. The pairs φi, ψi are

also called complementarity pairings. In practice, φi(x) and ψi(x) are often chosen to be simple

variables, i.e. φi(x) = xi1 and ψi(x) = xi2 with variable indices i1, i2 ∈ {1, . . . , n}. Obviously,

(2.10d) is a logical condition and models a disjunction. In order to solve problems of the form

(2.10), the complementarity condition has to be reformulated in an analytic form. The following

9 2.2. Mathematical Programs with Complementarity Constraints

reformulation is straightforward:

min
x∈Rn

f (x) (2.13a)

s.t. cE (x) = 0, (2.13b)

cI (x) ≥ 0, (2.13c)

φ (x) ≥ 0, ψ (x) ≥ 0, (2.13d)

φi (x)ψi (x) = 0 ∀i = 1, . . . , p. (2.13e)

The main problem when solving (2.13) is the failure of the LICQ condition.

Theorem 2. Let x∗ ∈ Rn be a feasible point of (2.13). Then the LICQ condition does not hold

at x∗.

A proof can be found in [143]. The last theorem results in a collapse of NLP optimality theory

and algorithmic concepts for (2.13). This is the reason why several MPCC-tailored regularity and

stationarity concepts are developed in the last decades.

In the rest of this section the main definitions of these concepts are presented and reformulation

techniques are discussed that lead to regular (in the sense of constraint qualifications) versions of

(2.13). First, one needs an MPCC-tailored version of the definition of the LICQ condition.

Definition 6 (MPCC-LICQ). Let x∗ ∈ Rn be a feasible point of (2.13). One says that the

MPCC linear independence constraint qualification (MPCC-LICQ) holds at x∗ if the standard

LICQ condition holds for the set of constraints of (2.13) missing the complementarity conditions

(2.13e).

For the following, the definition of the index sets

Aφ (x) := {i ∈ {1, . . . , p} : φi (x) = 0} , (2.14a)

Aψ (x) := {i ∈ {1, . . . , p} : ψi (x) = 0} , (2.14b)

is required. The next theorem is the analogous result to the standard first-order KKT theorem for

NLP (cf. Theorem 1). See [106] for a proof.

Theorem 3 (MPCC First-Order Necessary Conditions). Let f, cE , cI , φ and ψ be continuously

differentiable, let x∗ ∈ Rn be a local solution of (2.13) and assume that the MPCC-LICQ condition

holds at x∗. Then there exist vectors of Lagrange multipliers λ∗E ∈ R|E|, λ∗I ∈ R|I| and λ∗φ, λ∗ψ ∈ Rp

Chapter 2. Basic Concepts 10

such that

∇f (x∗)−∇cE (x∗)
T
λ∗E −∇cI (x∗)

T
λ∗I −∇φ (x∗)

T
λ∗φ −∇ψ (x∗)

T
λ∗ψ = 0, (2.15a)

cE (x∗) = 0, cI (x∗) ≥ 0, φi (x∗) ≥ 0, ψi (x∗) ≥ 0, (2.15b)

φi (x∗) = 0 or ψi (x∗) = 0, i = 1, . . . , p, (2.15c)

ci (x∗)λ∗i = 0, i ∈ I, φi (x∗)λ∗φi = 0 and ψi (x∗)λ∗ψi = 0, i = 1, . . . , p, (2.15d)

λ∗i ≥ 0, i ∈ I, (2.15e)

λ∗φi ≥ 0, λ∗ψi ≥ 0, i ∈ Aφ (x∗) ∩ Aψ (x∗) , (2.15f)

holds.

(2.15a) corresponds to standard dual feasibility, (2.15b) and (2.15c) cover primal feasibility

and (2.15d) is the standard KKT complementarity condition of inequality constraints and their

Lagrange multipliers. At last, (2.15e) and (2.15f) correspond to positivity of Lagrange multipliers

of inequality constraints. For the latter, the first-order MPCC conditions only require positivity

of Lagrange multipliers of complementarity pairings for so-called corner pairings (cf. [74]), i.e. a

complementarity pairing for which φi(x∗) = ψi(x
∗) = 0 holds.

Theorem 3 allows to introduce MPCC-tailored stationarity concepts:

Definition 7 (MPCC Stationarity). Let x∗ ∈ Rn be an MPCC-feasible point, i.e. (2.15b)

and (2.15c) hold. Furthermore, assume that there exist Lagrange multipliers λ∗E ∈ R|E|, λ∗I ∈

R|I|, λ∗φ, λ∗ψ ∈ Rp that satisfy (2.15a), (2.15d) and (2.15e). x∗ is called

1. Clarke-stationary (or C-stationary for short), if in addition λ∗φiλ
∗
ψi
≥ 0 holds for all i ∈

Aφ (x∗) ∩ Aψ (x∗) and

2. strongly stationary, if in addition to 1. (2.15f) holds.

The reader interested in additional MPCC-tailored constraint qualifications and stationarity

concepts is referred to [106].

Beside the theoretical development concerning MPCC-tailored constraint qualifications and

stationarity concepts, a lot of research deals with reformulation techniques for (2.13). These tech-

niques have in common that they replace the original MPCC (2.13) by a parameterized sequence of

regularized NLPs that fulfill standard constraint qualifications for NLPs like the LICQ condition.

The first regularization technique for MPCCs is proposed in [110]. The regularization is done by

a relaxation of the complementarity constraints, leading to the parameterized nonlinear program

11 2.2. Mathematical Programs with Complementarity Constraints

NLP(ξ) with relaxation parameter ξ ≥ 0:

min
x∈Rn

f (x) (2.16a)

s.t. cE (x) = 0, (2.16b)

cI (x) ≥ 0, (2.16c)

φ (x) ≥ 0, ψ (x) ≥ 0, (2.16d)

φi (x)ψi (x) ≤ ξ, i = 1, . . . , p. (2.16e)

Obviously, the feasible set F(ξ) of NLP(ξ) with ξ = 0 is the feasible set of problem (2.13). In

addition, F(ξ0) ⊂ F(ξ) holds for all ξ > ξ0 ≥ 0. Figure 2.1 illustrates the relaxation of the

feasible region of (2.16e). For the relaxation scheme (2.16) it is shown in [110] that the sequence

of stationary points of the relaxed MPCCs converges to a C-stationary point if the MPCC-LICQ

condition holds in the limit. If NLP(ξ) is solved by an interior-point method, (2.16) has the

φi

ψi

2 4 6 8 10

2

4

6

8

10

Figure 2.1: Feasible set of φi (x)ψi (x) ≤ ξ with ξ = 1.

drawback that it lacks strict interior points in the limit, i.e. for ξ → 0. [31] addresses this

drawback by additionally relaxing the bounds in (2.16d). The resulting relaxation then reads

min
x∈Rn

f (x) (2.17a)

s.t. cE (x) = 0, (2.17b)

cI (x) ≥ 0, (2.17c)

φ (x) ≥ −θ, ψ (x) ≥ −θ, (2.17d)

φi (x)ψi (x) ≤ ξ, i = 1, . . . , p, (2.17e)

with θ ≥ 0. The method proposed in [31] is designed in a way that it drives only θ or ξ to zero in

the limit but not both. Thereby, it ensures the existence of a strict interior of the problem.

Chapter 2. Basic Concepts 12

A different family of regularization techniques is based on penalization. Here, the complemen-

tarity constraints (2.13e) are removed from the set of constraints and their violation is penalized

in the objective function. A general formulation reads

min
x∈Rn

f (x) +
1

ξ
Π (φ (x) , ψ (x)) (2.18a)

s.t. cE (x) = 0, (2.18b)

cI (x) ≥ 0, (2.18c)

φ (x) ≥ 0, ψ (x) ≥ 0. (2.18d)

Penalization techniques for MPCC regularization are first proposed in [59]. Under certain assump-

tions on the penalty function Π : R2p → R in (2.18a) it is shown in [59] that the sequence of

stationary points of (2.18) converges to a C-stationary point if the MPCC-LICQ condition holds

in the limit. Later, the concrete choice

Π (φ (x) , ψ (x)) =

p∑
i=1

φi (x)ψi (x) , (2.19)

is used for which the above stated convergence result holds.

Stronger convergence results for both relaxation and penalization schemes can be shown un-

der stronger assumptions like the weak second-order necessary condition and upper strict level

complementarity (cf. [59, 110]).

Another kind of regularization technique is based on nonsmooth reformulations of the comple-

mentarity constraints φi(x)ψi(x) = 0, such as

min (φi (x) , ψi (x)) = 0. (2.20)

Then nonsmooth optimization techniques are applied to the restated nonsmooth problem. Other

approaches use smoothing techniques that exploit modified NCP-functions like the perturbed

Fischer–Burmeister function (see [39])

ζ (φ, ψ; ξ) = φ+ ψ −
√
φ2 + ψ2 + ξ = 0. (2.21)

See [123] for an overview of different NCP-functions.

2.3 Nonsmooth Analysis

For generalizing an interior-point method for smooth problems to a certain class of nonsmooth

constrained problems, some basic definitions and results from nonsmooth analysis are required.

The presentation is based on the books [24, 25].

An important definition is that of a locally Lipschitz-continuous function.

13 2.3. Nonsmooth Analysis

Definition 8 (Lipschitz-Continuous Function). Let X be a real Banach space. A function f : U ⊂

X → R is called locally Lipschitz-continuous (or Lipschitz-continuous for short) near x ∈ U , if

there exists a neighborhood N of x and a constant L = L(x) with

|f (y)− f (z)| ≤ L‖y − z‖ ∀y, z ∈ N . (2.22)

The function f is called locally Lipschitz-continuous on U ⊂ X if f is locally Lipschitz-continuous

near every point x ∈ U .

Definition 9 (Clarke’s Generalized Gradient). Let X be a real Banach space and f : X → R

locally Lipschitz-continuous in a neighborhood N of x ∈ X. Furthermore, let d ∈ X. Clarke’s

generalized directional derivative of f at x in the direction d is defined as

f◦ (x; d) = lim sup
y→x
t↓0

f (y + td)− f (y)

t
. (2.23)

Clarke’s generalized gradient of f at x is given by

∂f (x) := {y ∈ X∗ : f◦ (x; d) ≥ 〈y, d〉 for all d ∈ X} , (2.24)

where X∗ denotes the dual space of X and 〈a, b〉, a ∈ X∗, b ∈ X, is the associated dual pairing.

Definition 9 is valid for finite as well as infinite dimensional Banach spaces. The aim of the

following is to state a more practicable characterization of ∂f(x) in finite dimensions. This is done

by the following theorem (see [25] for a proof).

Theorem 4. Let f : Rn → R be locally Lipschitz-continuous in a neighborhood of x ∈ Rn and

suppose S to be any set of Lebesgue measure 0 in Rn. Then

∂f (x) = conv
{

lim
i→∞

∇f (xi) : xi → x, xi /∈ S, xi /∈ K
}

(2.25)

holds, where K is the set of points at which f fails to be differentiable. As usual, convM denotes

the convex hull of the set M .

To avoid the impractical condition “xi /∈ S” Rademacher’s theorem is useful:

Theorem 5 (Rademacher, [24]). Let f : U ⊂ Rn → R be locally Lipschitz-continuous on an open

set U . Then f is differentiable almost everywhere on U (w.r.t. the Lebesgue measure).

By applying Rademacher’s theorem to Theorem 4 one obtains the following result.

Lemma 1. For an open subset U ⊂ Rn let f : U → R be locally Lipschitz-continuous and x ∈ U .

Let K be the set of points at which f fails to be differentiable. Moreover, let (xi) ⊂ Rn \ K be

a sequence of points converging to x. Furthermore, assume that limi→∞∇f(xi) exists. Then

limi→∞∇f(xi) ∈ ∂f(x).

Chapter 2. Basic Concepts 14

Proof. Using Rademacher’s theorem it follows that Rn \ K is not a subset of Lebesgue measure 0.

Thus, the lemma follows directly from Theorem 4.

Finally, first-order necessary conditions are stated for (2.1) with possibly nonsmooth but locally

Lipschitz-continuous objective function f and constraints cE and cI (cf. [25]).

Theorem 6. Let x∗ ∈ Rn be a local solution of (2.1) with locally Lipschitz-continuous functions

f, cE and cI . Then there exist Lagrange multipliers λ∗f ∈ R, λ∗E ∈ R|E|, λ∗I ∈ R|I|, not all zero, such

that

0 ∈ ∂x∗L
(
x∗, λ∗f , λ

∗
E , λ
∗
I
)
, (2.26a)

0 = cE (x∗) , (2.26b)

0 ≤ cI (x∗) , (2.26c)

0 ≤ λ∗i , ∀i ∈ I, (2.26d)

0 = λ∗i ci (x∗) , ∀i ∈ E ∪ I. (2.26e)

Here, ∂x∗L denotes Clarke’s generalized gradient of the Lagrangian function with an additional

multiplier for the objective function, i.e.

∂x∗L
(
x∗, λ∗f , λ

∗
E , λ
∗
I
)

= λ∗f∂f (x∗)−
∑
i∈E

λ∗i ∂ci (x∗)−
∑
i∈I

λ∗i ∂ci (x∗) . (2.27)

The only differences between the KKT conditions (2.7) for smooth constrained problems and

the KKT conditions (2.26) for nonsmooth constrained problems are

• the generalization from = to ∈ in the dual feasibility condition (2.26a),

• the generalization from standard gradients ∇ci to Clarke’s generalized gradients ∂ci and

• the additional Lagrange multiplier λf of the objective function.

Finally, the definition of a subgradient is given, which is a generalization of the gradient for

convex functions in the nonsmooth case.

Definition 10 (Subgradient, Subdifferential). Let f : Rn → R be a convex function. A vector

g ∈ Rn is called a subgradient of f at x ∈ Rn if

f (y) ≥ f (x) + 〈g, y − x〉 (2.28)

holds for all y ∈ Rn. The set of all subgradients of f at x is called the subdifferential of f at x

and is denoted by ∂f (x).

It can be shown that Clarke’s generalized gradient coincides with the subdifferential in the

convex case (cf. [25]). Thus, Definition 10 does not lead to a conflict in the notation. The concept

of a subgradient has a useful geometric interpretation: The defining inequality (2.28) states that

the epigraph of f is located on or above the graph of the linear function f(x) + 〈g, x− y〉.

15 2.3. Nonsmooth Analysis

Example 1. Consider the nonsmooth but convex function

f (x) :=

f1 (x) := − 1
2x+ 4, x ≤ x̄,

f2 (x) := (x− 2)
2

+ 1, x > x̄

(2.29)

with x ∈ I := [1, 4]. x̄ is the intersection point of f1 and f2 in I. Obviously, f is not differentiable

at x̄. Figure 2.2 illustrates three examples of subgradients of f at x̄. In the figure it can also be

seen that the graphs of the functions f(x̄)+〈g, x̄−y〉 are below or on the epigraph of f (filled area).

x

f (x)

1 2 3 4

1

2

3

4

Figure 2.2: Three subgradients of a univariate function f : R→ R.

The following lemma about subdifferentials of univariate functions is needed later in Section 4.2.

Lemma 2. Let f : R→ R be a convex function. Then ∂f(x) is a nonempty interval.

Proof. The Lemma follows directly from the fact that a subdifferential is a nonempty, convex, closed

and bounded set (see [104, Theorem 2.74]). As a subset of R, ∂f(x) is a nonempty interval.

Chapter 3

Optimization in Gas Network

Planning

Gas networks are used to transport natural gas over long distances. As an important source of

primary energy, it is used e.g. for heating and in industrial processes. The tasks of network

operators can be distinguished into long, mid and short term planning. The focus of this chapter is

on mid term planning in transport networks. The latter are characterized by an operation on high

pressure levels and very large pipeline systems. In the following, different models are developed

for the problem of validation of nominations:

Given a transport network and a set of contracts with supplying and discharging cus-

tomers, determine whether there is a technically and physically feasible operation of

the network that satisfies all contracts.

Since the problem of validation of nominations is a mid term planning task, it is reasonable to only

consider the stationary case. That is, all aspects with respect to varying time are neglected in the

following.

The problem of validation of nominations is only one of a lot of tasks of network planners. This

research on gas network planning in general, and in particular on validation of nominations, is part

of the industrial research project ForNe in cooperation with Open Grid Europe GmbH1 and other

scientific working groups.2

1See http://www.open-grid-europe.com.
2The scientific partners are Friedrich-Alexander Universität Erlangen-Nürnberg, Konrad Zuse Zentrum für In-

formationstechnik Berlin (ZIB), Universität Duisburg-Essen, Weierstraß Institut für Angewandte Analysis und

Stochastik (WIAS), Humboldt Universität zu Berlin, Technische Universität Darmstadt and Leibniz Universität

Hannover.

17

http://www.open-grid-europe.com

Chapter 3. Optimization in Gas Network Planning 18

This chapter is organized as follows. First, Section 3.1 reviews the literature on mathematical

optimization for gas transport networks. In Section 3.2 a problem description is given and a mixed-

integer, nonsmooth and nonlinear model is stated for the problem of validation of nominations.

Finally, an MPCC-based reformulation technique for a certain class of mixed-integer nonlinear

optimization problems is presented in Section 3.3. This technique is then applied to the model

that is developed in Section 3.2.

3.1 Literature Survey

Gas network optimization, especially fuel gas minimization, and simulation are very active fields

of research in applied mathematics. Early approaches consider simple networks like gun barrel or

tree-structured topologies and apply dynamic programming on coarse models of steady-state gas

dynamics in pipes and compressor stations [138, 139]. The considered models only include the

classical Weymouth approximation for pressure loss in pipes [65, 137] and compressor stations are

simply modeled by maximum compression ratios. The objective function is an idealized model of

compressor power using the adiabatic head of the machines. The adiabatic head is simplified by

considering formulas that only depend on the compression ratio and on machine specific, prescribed

constants. A review of these dynamic programming approaches can be found in [22], where other

heuristics for solving the fuel gas minimization problem are also discussed. Other early research

concentrates on transient simulation models [69, 70, 71, 136, 145] that are subsequently extended

for steady-state [61] and transient optimization of gas networks [62, 131]. As it is typical for

simulation, in [61] and [131] a continuous model with prescribed discrete decisions for the active

network elements is solved. Moreover, the network sizes tackled by these approaches are only up to

a dozen of nodes. Since compressor stations are the most important elements to overcome energy

loss due to friction and heat exchange, a lot of research deals with modeling and optimization of

single compressor stations with a fixed boundary situation, i.e. in- and outgoing pressure as well

as flow through the station [21, 93, 140]. Beside heuristic approaches there are first mixed-integer

nonlinear (MINLP) formulations. Most of the considered models incorporate parallel arrangements

of compressor units. The type or performance characteristics of single machines are neglected in

order to be able to handle the additional complexity introduced by integer variables determining

the usage of single units in the parallel arrangement. The most detailed models consider compressor

power based on simplified formulas of the adiabatic head, whereas other consider power functions

only depending on the flow through the machine. First studies concentrating on combinatorial

aspects of these models are presented in [23].

The performance of early computer hardware and software leads to very simplified models of

gas dynamics and, in particular, compressor stations. Thus, up to this time no realistic operating

19 3.1. Literature Survey

ranges of single compressor units or drives are considered and only coarse physical and technical

approximations are included in the models. Early attempts at modeling realistic operating ranges

of compressor machines of centrifugal type can be found in [16, 142]. For the first time in an

optimization context, the interdependence of flow rate, compression ratio as well as of technical

effects like fuel gas consumption, compressor speed and efficiency is discussed (see [92] for a recent

survey on modeling of compressor machines). These papers also consider relaxation schemes for

the detailed compressor unit model. On the one hand, these relaxations yield lower bounds on fuel

gas consumption that are used to measure the quality of other optimization approaches to fuel gas

minimization. On the other hand, the developed linear outer approximations of operating ranges

and convex underestimators of cost functions allow the authors to solve the relaxed models.

More recent research tries to handle nonlinear aspects of gas dynamics and engineering together

with combinatorial aspects of active elements like opening or closing of valves and activating or

deactivating of pressure regulators and compressor stations. Since the solution of full MINLP

models for real-world network sizes is beyond the scope of today’s algorithms and software (cf. [26]),

two main lines of research have been followed. The first one linearizes the nonlinearities (mostly by

piecewise linear approximations) yielding mixed-integer linear (MILP) models [30, 54, 82, 83, 88,

97, 111, 112]. The techniques are applied to networks with up to 60 nodes. A very recent result also

shows the applicability of these approaches to real-world network sizes [47]. Based on these results,

transient gas network optimization is addressed heuristically in [81, 89]. The other approach is to

assume prescribed discrete decisions and to concentrate on the remaining continuous and nonlinear

model. Stationary nonlinear models are discussed in [14, 15, 101, 102, 130, 141], whereas transient

models are within the scope of [34, 35, 121]. A comparison of two concrete instantiations of the

MILP and the NLP approach can be found in [33]. The research cited in this paragraph additionally

considers further network elements than pipes and compressor stations, namely control valves and

valves. These new elements introduce additional combinatorial complexity because the algorithms

have to choose between different discrete states of the elements. However, the behavior of fixed

states is linear and easy to handle. Most of the discussed approaches still model pressure loss

effects with (linearized versions of) Weymouth’s approximation. In contrast to that, models based

on prescribed discrete decisions like the ones in [34, 35, 121] consider discretization schemes of the

underlying differential equations of gas dynamics.

More theoretical work considers controllability and stabilization of the governing PDE systems

of gas transport networks, namely the Euler equations [7, 8, 17, 51, 52, 53, 72]. However, these

detailed models of gas dynamics are only applied to very small and simple structured networks

without active elements like compressor stations or valves.

Beside the effects of pressure loss in pipes and compression processes in compressor machines,

two other physical effects are only handled step-motherly: the gas temperature and the compo-

Chapter 3. Optimization in Gas Network Planning 20

sition of gas. To the best of the author’s knowledge, there is no optimization approach to gas

networks that incorporates a reasonable, i.e. non-isothermal, model of gas temperature. Since

gas temperature is coupled with gas pressure, the nonlinearity of almost every physical equation

is increased in non-isothermal models. In addition to that, new network elements like gas coolers

and preheaters come into play that may be neglected in isothermal models. The effects of gas

composition is (again, to the best of the author’s knowledge) only mentioned in [125], where all

effects are simplified by linearization.

In the already mentioned ForNe project, a first attempt for stationary network optimization is

made that handles full nonlinear gas dynamics and engineering issues coupled with discontinuous

mixed-integer aspects as well as with stochastic influences on demand profiles of customers [80].

Papers in preparation include [45, 67, 95]. Finally, it is explicitly mentioned that parts of this

chapter are about to be published in [107, 108, 109].

3.2 A Nonsmooth MINLP Model of the Problem of Valida-

tion of Nominations

This section deals with the description of the problem of validation of nominations and states a

concrete model of the problem. It turns out that the model contains mixed-integer, nonsmooth

as well as nonlinear aspects, yielding a mixed-integer, nonsmooth and nonlinear optimization (or

feasibility) problem.

A more detailed description of those technical details that are required to state a model of the

problem of validation of nominations can be found in [107]. As it is characteristic for problems

from the field of engineering, there exist a lot of different models for the same technical or physical

aspect. These models mainly differ in their physical and technical accuracy. In the following, only

the model is presented that is used in the implementation. For other possible model formulations

see [107].

3.2.1 Basic Physical Quantities

Gas flow in transport networks is mainly described by the state variables pressure p, temperature

T and density ρ as well as the gas mass flow q. Here, only the isothermal case is considered. That

is, the gas temperature T is approximated by a globally constant value, e.g. 283.15 K. In what

follows, all quantities indexed with 0, e.g. p0, T0, ρ0, denote the corresponding quantity under

normal conditions. These are defined by the normal temperature T0 = 273.15 K and the normal

pressure p0 = 1.01325 bar.

An overview of the basic physical quantities and their units is given in Table 3.1. All additionally

21 3.2. A Nonsmooth MINLP Model of the Problem of Validation of Nominations

Symbol Explanation Unit

p Gas pressure Pa

T Gas temperature K

ρ Gas density kg m−3

v Gas velocity m s−1

q Gas mass flow kg s−1

Table 3.1: Basic physical quantities.

required physical and technical quantities are introduced where they are used for the first time.

3.2.2 The Network Topology

The gas transport network is modeled as a directed graph G = (V,A). The set of nodes V is made

up of different types of nodes. It is distinguished between entry nodes V+ at which gas is supplied

to the network, exit nodes V− at which gas is discharged and junctions V0 that simply connect

the network elements;

V = V+ ∪ V− ∪ V0. (3.1)

The network elements are divided into active and passive network elements, Aactive and Apassive,

respectively. Active network elements are components that can be controlled by the network oper-

ator. In this subset of arcs, compressor stations Acs, control valves Acv and valves Avl are consid-

ered. Passive network elements cannot be controlled by the network operator. The corresponding

components are pipes Api, resistors Are and short cuts Asc. In summary,

A = Aactive ∪ Apassive (3.2)

with

Aactive = Acs ∪ Acv ∪ Avl and Apassive = Api ∪ Are ∪ Asc. (3.3)

To give a complete description of the model containing all considered network elements, some basic

notation from graph and network theory is introduced. Individual arcs are denoted by a ∈ A or

by ij ∈ A with tail i and head j. The sets δ−i and δ+
i are the sets of ingoing and outgoing arcs of

node i, i.e.

δ−i = {a ∈ A : a = ji} and δ+
i = {a ∈ A : a = ij} . (3.4)

Model Notation For the presentation of the model the following notation is fixed. Constraints

are denoted by c and can be additionally indexed with a constraint index, a network element or

sets thereof. For instance, ca is the vector of constraints of the component model of arc a ∈ A.

In addition, super-indices are used to indicate the semantics of constraints. As a special suffix in

Chapter 3. Optimization in Gas Network Planning 22

super-indices, s denotes a smoothed version of a constraint. Continuous variables are referred to

as x and discrete ones as z. Additional sub-indices refer to network elements or sets thereof. For

instance, xa denotes the continuous variables of the component model of arc a.

3.2.3 Nodes

Nodes i ∈ V are used to connect network elements and to supply and discharge gas at entry and

exit nodes. Because nodes do not have a capacity, they are modeled by the mass conservation

constraint

0 = cflowi (x) = qi +
∑
a∈δ−i

qa −
∑
a∈δ+i

qa. (3.5)

Here, qi is the amount of flow that is supplied or discharged at node i, i.e.

qi ≥ 0, i ∈ V+, (3.6a)

qi ≤ 0, i ∈ V−, (3.6b)

qi = 0, i ∈ V0. (3.6c)

Moreover, every node i ∈ V has a given constant geodesic height hi and a gas pressure variable pi

that is bounded due to technical or contractual restrictions;

pi ∈
[
p−i , p

+
i

]
. (3.7)

Summarizing, the basic node model consists of the continuous variable

xi = pi (3.8)

and the equality constraint

0 = cflowi (x) . (3.9)

Since there are no other effects to be modeled for junctions, (3.8) and (3.9) represent the model

for junctions i ∈ V0.

Entries and Exits

For modeling entries and exits the basic node model is slightly extended. There has to be an

additional specification of the flow demands, i.e. a bounded mass flow variable qi is required for

the supplied or discharged mass flow;

qi ∈
[
q−i , q

+
i

]
. (3.10)

To make (3.5) a valid mass balance equation it is assumed that q−i ≥ 0 holds for entries i ∈ V+

and q+
i ≤ 0 for exits i ∈ V− (cf. (3.6)). Concluding, for entry and exit nodes only the variable

vector has to be extended to

xi =

pi
qi

 . (3.11)

23 3.2. A Nonsmooth MINLP Model of the Problem of Validation of Nominations

3.2.4 Arcs

The variable vector of every arc a = ij ∈ A includes a mass flow variable qa that is bounded for

every arc in dependence on its technical data;

qa ∈
[
q−a , q

+
a

]
. (3.12)

In the following, the network elements are discussed one after another and the corresponding

element models are stated.

Pipes

Pipes are used to transport gas through a network and outnumber all other elements in real-world

gas transport networks. The gas flow in pipes is governed by the Euler equations for compressible

fluids in cylindrical pipes. This system of partial differential equations consists of the continuity

equation (3.13a), the momentum equation (3.13b) and the energy equation (3.13c) (see [36, 78]):

∂ρ

∂t
+
∂(ρv)

∂x
= 0, (3.13a)

∂(ρv)

∂t
+
∂p

∂x
+
∂(ρv2)

∂x
+ gρ

∂h

∂x
+ λ(q)

v|v|
2D

ρ = 0, (3.13b)

Aρcp

(
∂T

∂t
+ v

∂T

∂x

)
−A

(
1 +

T

z

∂z

∂T

)
∂p

∂t
−

Av
T

z

∂z

∂T

∂p

∂x
+Aρvg

∂h

∂x
+ πDcHT (T − Tsoil) = 0. (3.13c)

Here, the state variables are averaged over the cross-sectional area A of the pipe and only depend

on the position x ∈ [0, L], where L denotes the length of the pipe. The quantities appearing in

the Euler equations are the gas velocity v, the gravitational acceleration g, the height h(x) of the

pipe and its diameter D. The slope of the pipe is assumed to be constant, i.e. h(x) is linear.

cp denotes the specific isobaric (i.e. for constant pressure) heat capacity of real gas. Here, cp is

approximated by a constant value. A more detailed model can be found in [107]. cHT is the heat

transfer coefficient determined by the material of the pipe wall and Tsoil is the temperature of the

surrounding soil. Table 3.2 gives an overview of the considered quantities and their units.

In addition to the Euler equations, the gas state variables pressure, temperature and density

are coupled by an equation of state. Here, the thermodynamical standard equation

ρ =
p

RszT
(3.14)

is used, where Rs = R/m is the specific gas constant that is defined by the universal gas constant

R and the molar mass m of the gas.

Furthermore, the deviation between ideal and real gas is given by the compressibility factor

z. There is no physically exact formula for z but a lot of empirically motivated ones (e.g. AGA3

3American Gas Association

Chapter 3. Optimization in Gas Network Planning 24

Symbol Explanation Unit

D Diameter m

A Cross-sectional area m2

k Roughness of inner wall m

h(x) Geodesic height m

cHT Heat transfer coefficient J m−2 K−1 s−1

Tsoil Soil temperature K

cp Specific heat capacity of real gas J m−1 s−1

pc Pseudocritical pressure Pa

Tc Pseudocritical temperature K

η Dynamic viscosity kg m−1 s−1

z Compressibility factor 1

λ Friction factor 1

g Gravitational acceleration m s−2

Rs Specific gas constant J kg−1 K−1

Table 3.2: Technical pipe parameters and physical quantities appearing in the pipe model.

[76, 112], Papay [94, 105], AGA DC 92 [115]). Here, the AGA formula

z = z(p, T) = 1 + 0.257pr − 0.533
pr
Tr

(3.15)

is used, where pr and Tr are the relative pressure and the relative temperature defined by

pr =
p

pc
, Tr =

T

Tc
. (3.16)

pc is the pseudocritical pressure and Tc is the pseudocritical temperature. Figure 3.1 shows plots

of the compressibility factor z in dependence of the gas pressure p for different constant values

of T . By neglecting all partial derivatives with respect to time one obtains the stationary Euler

equations

∂(ρv)

∂x
= 0, (3.17a)

∂p

∂x
+
∂(ρv2)

∂x
+ gρ

∂h

∂x
+ λ(q)

|v|v
2D

ρ = 0, (3.17b)

Aρcpv
∂T

∂x
−AvT

z

∂z

∂T

∂p

∂x
+Aρvg

∂h

∂x
+ πDcHT (T − Tsoil) = 0. (3.17c)

Since the mass flow is the basic variable on all arcs in the network, system (3.17) can finally be

rewritten by using the mass flow q instead of the gas velocity v. Using the relationship q = Aρv

25 3.2. A Nonsmooth MINLP Model of the Problem of Validation of Nominations

p

z (p, T)

T = 270.0 K

T = 295.0 K

T = 320.0 K

50 100 150
0.4

0.6

0.8

1.0

Figure 3.1: Compressibility factor computed by the AGA formula.

gives

1

A

∂q

∂x
= 0, (3.18a)

∂p

∂x
+
q2

A2

∂

∂x

1

ρ
+ gρs+ λ(q)

|q|q
2A2Dρ

= 0, (3.18b)

qcp
∂T

∂x
− qT

ρz

∂z

∂T

∂p

∂x
+ qgs+ πDcHT(T − Tsoil) = 0. (3.18c)

s := (h(L)− h(0))/L is the slope of the pipe. The latter system of ordinary differential equations

is the basis of the following stationary model of gas flow in pipes. Figure 3.2 shows some typical

pressure profiles, i.e. solutions of (3.18) along a pipe. There are different possibilities how to

0 5 10 15 20 25

10

20

30

40

50

Pipe position x (km)

P
re
ss
ur
e
p
(b

ar
)

D = 0.9 m
D = 1.0 m
D = 1.1 m

Figure 3.2: Profiles of gas pressure along three horizontal pipes (L = 25 km, D ∈ {0.9, 1.0, 1.1} m,

k = 0.06 mm; q = 500 kg s−1).

incorporate the given system of ODEs into an optimization model. From (3.18a) it follows that

the mass flow is constant in a pipe. This is already addressed by the introduction of a single mass

flow variable qa for every arc. Thus, one is left with the momentum and the energy equation. The

Chapter 3. Optimization in Gas Network Planning 26

energy equation can be neglected since only the isothermal case is considered. For the momentum

equation there exist a lot of well-known approximations. In the presented model, the quadratic

approximation

0 = cplossa (x) = p2
j −

(
p2
i − Λaqa|qa|

eSa − 1

Sa

)
e−Sa = 0 (3.19)

is used with

Λa =
LazmTmRsλa

A2
aDa

, Sa =
2Lagsa
RszmTm

. (3.20)

A derivation can be found in [78] or [6]. zm = z(pm, Tm) is the mean compressibility factor that

can be computed using a mean pressure pm and a mean temperature Tm = T . Different equations

for the mean pressure exist (cf. [107]). Here, the a-priori evaluable formula

pm =
1

2

(
max

(
p−i , p

−
j

)
+ min

(
p+
i , p

+
j

))
(3.21)

is used. Finally, a definition of the friction factor λa (cf. (3.20)) has to be given. Since the friction

at rough inner pipe walls is one of the most important effects concerning the pressure drop in

pipes, a highly accurate formulation should be integrated. First, the distinction between laminar

and turbulent flows is introduced. With the Reynolds number

Re (qa) =
Da

Aaη
|qa| (3.22)

one defines these states as follows:

q is laminar, if Re (q) ≤ Recrit, (3.23a)

q is turbulent, if Re (q) > Recrit, (3.23b)

with Recrit ≈ 2320. In (3.22) η denotes the dynamic viscosity of the gas that is approximated by

a suitable constant in this thesis. For laminar flow the exact friction model

λHP(qa) =
64

Re(qa)
(3.24)

of Hagen–Poiseuille [38] is used, whereas for turbulent flow the implicit equation

1√
λPC(qa)

= −2 log10

(
2.51

Re(qa)
√
λPC(qa)

+
ka

3.71Da

)
(3.25)

of Prandtl–Colebrook (cf. [27, 105]) is used. Finally, the constraint

0 = cHPPCa (x) = λa −

λ
HP (qa) , qa ≤ Recrit,

λPC (qa) , qa > Recrit

(3.26)

is added to the model.

Summarizing, the pipe model reads

0 = ca (x) =

 cplossa (x)

cHPPCa (x)

 , xa =

qa
λa

 . (3.27)

27 3.2. A Nonsmooth MINLP Model of the Problem of Validation of Nominations

Reformulation of the Pipe Model The pipe model (3.27) has some undesirable properties.

First, cHPPCa (cf. (3.26)) is discontinuous at the transition between laminar and turbulent flow. See

Figure 3.3 for a plot of the corresponding functions. Secondly, cplossa (cf. (3.19)) contains a second-

order discontinuity due to the term |qa|qa. In the MINLP model, a global smooth approximation

is used that addresses both problems. More precisely, the term λaqa|qa| is approximated by

φ(qa) = ra

(√
q2
a + e2

a + ba +
ca√
q2
a + d2

a

)
qa, (3.28)

where

ra = (2 log10 βa)
−2
, ba = 2δa, ca = (lnβa + 1) δ2

a −
e2
a

2
(3.29)

and

αa =
2.51Aaη

Da
, βa =

ka
3.71Da

, δa =
2αa

βa ln 10
. (3.30)

The parameters ea and da can be chosen arbitrarily to determine the slope of φ(qa) at qa = 0.

This approximation is originally developed by Burgschweiger, Gnädig and Steinbach in [18] for

water network optimization models and is afterwards adapted for gas transport models in [107].

In [18] it is also shown that φ provides an asymptotically correct second-order approximation of

the combined Hagen–Poiseuille/Prandtl–Colebrook (HPPC) friction model.

Summarizing, (3.27) is replaced by the smoothed pipe model

0 = csmooth
a (x) =

 cploss-sa (x)

cHPPC-sa (x)

 , xsmooth
a =

qa
φa

 (3.31)

with

0 = cploss-sa (x) = p2
j −

(
p2
i − Λ̃aφa

eSa − 1

Sa

)
e−Sa = 0, (3.32)

0 = cHPPC-sa (x) = φa − ra

(√
q2
a + e2

a + ba +
ca√
q2
a + d2

a

)
qa (3.33)

and constants

Λ̃a =
LazmTmRs
A2
aDa

, Sa =
2Lagsa
RszmTm

. (3.34)

Resistors

Friction caused by rough inner walls of pipes is not the only reason for pressure loss in gas transport

networks. Additional pressure loss can be caused by measurement devices, partly closed valves,

filter systems, etc. For all of these effects neither an appropriate model nor appropriate data are

available. For this reason, two simple pressure loss models are considered. The respective choice

of the model depends on the data of the concrete gas transport network.

The first model (for resistors a ∈ Apwc
re) is characterized by a piecewise constant pressure loss

0 = cploss-pwca (x) = pi − pj − saξa = 0, (3.35)

Chapter 3. Optimization in Gas Network Planning 28

0 2.5 · 10−2 5 · 10−2 7.5 · 10−2 0.1

0

0.5

1

1.5

2

2.5

· 10−4

Mass flow q (kg s−1)

Fr
ic
ti
on

te
rm

HPPC friction model
approximation

0 200 400 600 800 1 000 1 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

· 104

Mass flow q (kg s−1)

Fr
ic
ti
on

te
rm

HPPC friction model
approximation

Figure 3.3: HPPC friction term and smooth approximation vs. mass flow (kg s−1): transition

from laminar to turbulent flow (upper figure) and highly turbulent flow (lower figure).

29 3.2. A Nonsmooth MINLP Model of the Problem of Validation of Nominations

where the variable sa is subject to the constraint

0 = cflow-signa (x) = sa − sign(qa). (3.36)

ξa is the constant and prescribed pressure loss at the resistor. Summarizing, the piecewise constant

pressure loss model reads

0 = ca (x) =

cploss-pwca (x)

cflow-signa (x)

 , xa =

qa
sa

 . (3.37)

The second model is slightly more complicated and states a pressure loss with respect to a

nonlinear Darcy–Weisbach type model (see [38, 78]) for all resistors a ∈ Apwq
re :

0 = cploss-pwqa (x) = pi − pj −
8ζa
π2D4

a

|qa|qa
ρa,k

. (3.38)

Here, ζa is a dimensionless resistance coefficient that determines the flow-dependent quadratic

pressure loss at the resistor. Da is a fictitious diameter. ρa,k is the inflow gas density according to

the equation of state (3.14);

0 = cdens-ina (x) = ρa,k −
pk

Rsza,kT
with k :=

i, qa ≥ 0,

j, qa < 0.

(3.39)

Due to (3.39), the compressibility factor has to be evaluated at node k as well;

0 = cz-ina (x) = za,k − z (pk, T) . (3.40)

In summary, the piecewise quadratic resistor model reads

0 = ca (x) =


cploss-pwqa (x)

cdens-ina (x)

cz-ina (x)

 , xa =


qa

ρa,k

za,k

 . (3.41)

Reformulation of the Resistor Models The stated resistor models are problematic due to

the following reasons:

1. The discontinuous sign function in cflow-signa (x) (cf. (3.36)),

2. the second-order discontinuity in cploss-pwqa (x) (cf. (3.38)) and

3. the discontinuity due to the unknown inflow node k (cf. (3.39)).

First, the piecewise constant pressure loss model for resistors a ∈ Apwc
re is discussed. The sign

function is smoothed using the identity

sign (x) =
x

|x|
(3.42)

Chapter 3. Optimization in Gas Network Planning 30

and the absolute value function smoothing

|x| ≈
√
x2 + τ (3.43)

yielding

0 = cploss-pwc-sa (x) = pi − pj −
qa√
q2
a + τ

ξa = 0. (3.44)

Figure 3.4 shows some sign function smoothings for different parameters τ . Thus, the smoothed

-2 -1 1 2

1

-1

Figure 3.4: Smoothing of sign(x) with different values of τ (blue and loosely dashed for τ = 0.1,

red and dashed for τ = 0.01, green and densely dashed for τ = 0.001).

piecewise constant pressure loss model simplifies to

0 = csmooth
a (x) = cploss-pwc-sa (x) , xsmooth

a = qa. (3.45)

The piecewise quadratic resistor model is reformulated in a different way. The second-order

discontinuity remains in the model since in Chapter 4 an interior-point method is developed that

is able to solve problems containing continuous and nonsmooth but piecewise smooth constraints.

Nevertheless, the discontinuity coming from the unknown inflow node k has to be removed. Here,

the inflow gas density ρa,k is approximated by a mean gas density ρa,m given by

0 = cdens-mean
a (x) = ρa,m −

1

2
(ρa,in + ρa,out) . (3.46)

For this, it is necessary to compute the gas densities at node i and j as well as the corresponding

compressibility factors;

0 = cdens-ina (x) = ρa,in −
pi

Rsza,inT
, (3.47a)

0 = cdens-outa (x) = ρa,out −
pj

Rsza,outT
, (3.47b)

0 = cz-ina (x) = za,in − z (pi, T) , (3.47c)

0 = cz-outa (x) = za,out − z (pj , T) . (3.47d)

31 3.2. A Nonsmooth MINLP Model of the Problem of Validation of Nominations

At last, cploss-pwqa (x) is replaced by

0 = cploss-pwq-sa (x) = pi − pj −
8ζa
π2D4

a

|qa|qa
ρa,m

, (3.48)

yielding the reformulated model

0 = csmooth
a (x) =



cploss-pwq-sa (x)

cdens-mean
a (x)

cdens-ina (x)

cdens-outa (x)

cz-ina (x)

cz-outa (x)


, xsmooth

a =



qa

ρa,in

ρa,out

ρa,m

za,in

za,out


. (3.49)

Short Cuts

Short cuts a = ij ∈ Asc are fictitious network elements that are mainly used to model complex

supply or discharge situations at a single boundary node, where more than one customer supplies

or discharges gas. They are modeled by the simple pressure propagation constraint

0 = cpress-sca (x) = pi − pj , (3.50)

leading to the model

0 = ca (x) = cpress-sca (x) , xa = qa. (3.51)

Valves

Valves a = ij ∈ Avl are active network elements that can be controlled by the network operator.

From a stationary point of view, they can be in the states open or closed. With these states, network

operators use valves to block gas flowing to certain regions of the network in order to control the

overall flow situation in the network or, e.g. for maintenance work. Valves are of negligible length

so that the assumption is made that the pressure loss at an open valve is negligible, too. Hence,

open valves lead to identical pressures and a flow that is arbitrary within its technical bounds;

pj = pi, qa ∈
[
q−a , q

+
a

]
. (3.52)

Closed valves block the gas flow, leading to decoupled pressures;

qa = 0, pi ∈
[
p−i , p

+
i

]
, pj ∈

[
p−j , p

+
j

]
. (3.53)

Chapter 3. Optimization in Gas Network Planning 32

Both states can be modeled with one binary variable za ∈ {0, 1} and big-M constraints:

0 ≤ cflow-lba (x, z) = qa − zaq−a , (3.54a)

0 ≤ cflow-uba (x, z) = −qa + zaq
+
a , (3.54b)

0 ≤ cp-coupl-1a (x, z) = Ma,1 (1− za)− (pj − pi) , (3.54c)

0 ≤ cp-coupl-2a (x, z) = Ma,2 (1− za) + (pj − pi) . (3.54d)

It is easy to see that za = 0 corresponds to the state closed and that za = 1 corresponds to the

state open. In summary, the MINLP model for valves reads

0 ≤ ca (x, z) =


cflow-lba (x, z)

cflow-uba (x, z)

cp-coupl-1a (x, z)

cp-coupl-2a (x, z)

 , xa = qa. (3.55)

Control Valves

Like valves, control valves a = ij ∈ Acv are active elements. They can be in one of the states

closed, bypass or active. In the closed state, control valves block the gas flow, leading to the same

state model as for closed valves (cf. (3.53)). If a control valve is open, it can either be active or

in bypass mode. The latter is modeled by the same state model as the open state of valves, cf.

(3.52). If active, control valves can decrease the ingoing gas pressure by a certain amount ∆pa

that is bounded due to technical limitations. In addition, a control valve can only regulate the

pressure in a prescribed and fixed direction that is assumed to be the graph direction i→ j of the

arc modeling the control valve. Summarizing, the active state model reads

pj = pi −∆pa, ∆pa ∈
[
∆p−a ,∆p

+
a

]
, qa ∈

[
q−a , q

+
a

]
∩ R+. (3.56)

In order to state an MINLP model of control valves, the binary variables za,1 and za,2 are

introduced. za,1 determines whether the control valve is open (za,1 = 1) or closed (za,1 = 0). za,2

determines if the control valve is active (za,2 = 1) or inactive, i.e. in bypass mode (za,2 = 0). With

the constraints

0 ≤ cflow-lb-opena (x, z) = qa − za,1q−a , (3.57a)

0 ≤ cflow-ub-opena (x, z) = −qa + za,1q
+
a , (3.57b)

0 ≤ cflow-lb-activea (x, z) = qa − (1− za,2) q−a , (3.57c)

0 ≤ cp-coupl-1a (x, z) = Ma,1 (1− za,1) + ∆p+
a za,2 − (pi − pj) , (3.57d)

0 ≤ cp-coupl-2a (x, z) = Ma,2 (1− za,1)−∆p−a za,2 − (pj − pi) , (3.57e)

0 ≤ cconsistent-statesa (x, z) = za,1 − za,2, (3.57f)

33 3.2. A Nonsmooth MINLP Model of the Problem of Validation of Nominations

the resulting mixed-integer model reads

0 ≤ ca(x, z) =



cflow-lb-opena (x, z)

cflow-ub-opena (x, z)

cflow-lb-activea (x, z)

cp-coupl-1a (x, z)

cp-coupl-2a (x, z)

cconsistent-statesa (x, z)


, xa =

 qa

∆pa

 , za =

za,1
za,2

 . (3.58)

Compressor Stations

From a technical point of view, compressor stations a = ij ∈ Acs are the most complicated elements

in gas transport networks. They are used to increase the ingoing gas pressure in order to overcome

the pressure loss in pipes and resistors and thus to transport the gas over large distances.

Real-world stations consist of a finite set of compressor machines and drives. The compressor

machines increase the gas pressure and the drives deliver the compressors with the power required

for the compression process. Depending on the type of the compressor machines and drives, the

operating ranges of the units are different. The complete description of all types that are relevant

in practice is out of the scope of this thesis. For the moment, it is only remarked that a realistic

description of a compressor station leads to a highly nonlinear and nonconvex mixed-integer model.

It is referred to the upcoming publications [45, 67, 95, 107] for more detailed descriptions and

concrete model formulations. A primal heuristic for solving the underlying MINLP of compressor

stations with MPCC and NLP techniques is about to be published in [108].

For the purposes of this thesis, only a simplified model of compressor stations is considered.

Here, compressor stations can also be in one of the states closed, bypass and active. The closed

state and the bypass mode are modeled exactly as in the case of control valves. The active state

is analogous to the corresponding active state of control valves (cf. (3.56)) but with the difference

that the compressor machine increases the gas pressure;

pj = pi + ∆pa, ∆pa ∈
[
∆p−a ,∆p

+
a

]
, qa ∈

[
q−a , q

+
a

]
∩ R+. (3.59)

In analogy to the MINLP model of control valves one obtains the mixed-integer compressor station

model

0 ≤ ca(x, z) =



cflow-lb-opena (x, z)

cflow-ub-opena (x, z)

cflow-lb-activea (x, z)

cp-coupl-1a (x, z)

cp-coupl-2a (x, z)

cconsistent-statesa (x, z)


, xa =

 qa

∆pa

 , za =

za,1
za,2

 , (3.60)

Chapter 3. Optimization in Gas Network Planning 34

with constraints

0 ≤ cflow-lb-opena (x, z) = qa − za,1q−a , (3.61a)

0 ≤ cflow-ub-opena (x, z) = −qa + za,1q
+
a , (3.61b)

0 ≤ cflow-lb-activea (x, z) = qa − (1− za,2) q−a , (3.61c)

0 ≤ cp-coupl-1a (x, z) = Ma,1 (1− za,1) + ∆p+
a za,2 + (pi − pj) , (3.61d)

0 ≤ cp-coupl-2a (x, z) = Ma,2 (1− za,1)−∆p−a za,2 + (pj − pi) , (3.61e)

0 ≤ cconsistent-statesa (x, z) = za,1 − za,2. (3.61f)

3.2.5 Model Summary

In the last sections a mixed-integer nonlinear model of the elements of gas transport networks is

developed. Table 3.3 gives an overview of all network elements.

Network element Symbol

Entries V+

Exits V−
Junctions V0

Pipes Api

Short cuts Asc

Resistors Are = Apwc
re ∪ Apwq

re

Valves Avl

Control valves Acv

Compressor stations Acs

Table 3.3: Node types and network elements.

In the following, the component models are collected obtaining a complete MINLP model for

gas transport networks that can be used as a model for the problem of validation of nominations.

Since this problem is a feasibility problem, there is no objective function. The problem reads

∃? (x, z) ∈ Rnx × {0, 1}nz : cE (x) = 0, cI (x, z) ≥ 0, (3.62)

35 3.2. A Nonsmooth MINLP Model of the Problem of Validation of Nominations

where the sets of constraints are given by

cE (x) =



cV+ (x)

cV− (x)

cV0
(x)

csmooth
Api

(x)

csmooth
Apwc

re
(x)

csmooth
Apwq

re
(x)

cAsc (x)


and cI (x, z) =


cAvl (x, z)

cAcv (x, z)

cAcs (x, z)

 . (3.63)

The variable vectors are given by

x =



xsmooth
Api

xsmooth
Apwc

pi

xsmooth
Apwq

pi

xAsc

xAvl

xAcv

xAcs


and z =


zAvl

zAcv

zAcs

 . (3.64)

It should be remarked that this model is generic in the way that it can also be used for other

problems in gas transport networks. For instance, by incorporating a reasonable objective function,

the problem of cost optimization can be solved with almost the same set of constraints.

The model (3.62) of the problem of validation of nominations is a mixed-integer, nonsmooth,

nonconvex and nonlinear feasibility problem. Nonlinear and nonconvex aspects mostly appear in

constraints modeling the pressure loss in pipes and resistors. The compressor station model is

drastically simplified. A complete model of the technical and physical behavior of these entities

would lead to additional nonlinear and nonconvex constraints (see [107]). The problem description

on which (3.62) is based on also contains a lot of nonsmooth aspects, e.g. the HPPC friction model

or the model of resistors with piecewise constant pressure loss. Most of them are smoothed in

(3.62). One remaining nonsmoothness is the second-order discontinuity of the piecewise quadratic

pressure loss equation of resistors. In [107] it is also discussed that a non-isothermal model would

require additional nonsmooth constraints. Furthermore, the reformulation technique described in

the next section may introduce additional nonsmooth aspects when applied to (3.62). Finally, it

is mentioned that all discrete aspects of the model appear in the active elements.

(3.62) is a significantly simplified model of the problem of validation of nominations. Neverthe-

less, it is a very hard mixed-integer, nonsmooth, nonconvex and nonlinear optimization problem

and the practical experience shows that it is not solvable with state-of-the-art solvers for mixed-

integer nonlinear programming. Numerical experiments will be published in [95].

Chapter 3. Optimization in Gas Network Planning 36

3.3 An MPCC Approach for MINLPs in Gas Network Plan-

ning

Mixed-integer nonlinear optimization is a comfortable tool to model real-world problems from

industry, finance, etc. However, state-of-the-art software packages for this class of optimization

problems are often far away from solving problems in the size in which they appear in practice. In

addition, even for small- or medium-scaled problems, nowadays software packages are also not able

to compete with solver packages for mixed-integer linear problems (MIP) or nonlinear optimization

problems (NLP) in terms of performance and robustness. Hence, a lot of real-world optimization

projects develop problem-specific solution strategies that follow one of the two approaches: the

MIP-driven approach or the NLP-driven approach. Unfortunately, both approaches often follow

the law of the hammer (see [84]):

“If all you have is a hammer, everything looks like a nail.”

Experts in the MIP world often try to get rid of the nonlinearities in the MINLP under consid-

eration. This approach leads to large-scale mixed-integer linear models. The number of discrete

variables is often drastically increased due to the techniques required for linearizing the nonlinear

constraints and the objective function (see [29, 79, 87, 129] and the references therein). In contrast

to that, experts in the NLP world try to get rid of the discrete aspects of the problem so that they

end up with a continuous model without discrete variables.

Obviously, both approaches have their specific advantages and drawbacks. The MIP approach

benefits if the underlying MINLP is dominated by discrete variables and has only a few nonlinear

aspects. In this case, the linearization techniques increase the number of discrete variables only

slightly, yielding an MIP reformulation with admissible size. Furthermore, the MIP approach has

the important advantage that it delivers global optimal solutions (of the linearized problem). The

NLP approach only delivers local optimal solutions of the reformulated problem without discrete

variables. It is in advantage if the underlying MINLP incorporates only a few discrete variables and

contains a lot of nonlinear aspects. An additional pro for the NLP approach is that the reformulated

NLPs can mostly be solved faster than the corresponding reformulated MIPs. However, this is often

affected drastically by the choice of starting points and by the scaling of the problems. This is not

the case (at least not to the same degree) for state-of-the-art MIP software. Finally, one of the

main advantages of the MIP approach, namely its property of delivering global optimal solutions,

is not as heavily weighted for feasibility problems (like the problem of validation of nominations)

as for optimization problems.

In this section an alternative approach is presented that is referred to as the MPCC-based

approach. For this, a definition of a certain subclass of MINLPs is given and it is shown how this

37 3.3. An MPCC Approach for MINLPs in Gas Network Planning

subclass can be tackled with MPCC-based modeling techniques in Section 3.3.1. Subsequently, it is

shown in Section 3.3.2 that the problem of validation of nominations is contained in the considered

subclass of MINLPs. Finally, the reformulation technique is applied to the model that is developed

in the last section.

The techniques presented in this section are about to be published in [108]. In addition, [108]

contains a heuristic solution approach for a nonsmooth MPCC model that incorporates a more

detailed model of compressor stations.

3.3.1 A Reformulation Technique for 2-State-MINLPs

This section considers MINLPs of the form (2.8). In what follows, a subclass of these problems is

defined and it is shown how problems of this subclass can be restated without requiring discrete

variables. Without loss of generality, the MINLPs are given in binary form, i.e. all discrete variables

are restricted to {0, 1}.

Recent approaches from the field of continuous reformulation of discrete-continuous problems

can be found in [68, 116]. Therein, the authors make use of NCP-functions, in particular of the

Fischer–Burmeister function (2.21). The Fischer–Burmeister function can be used to shrink the

feasible set of a continuous variable x to B := {0, 1} or B̃ := {0, y : y ≥ 1}. A different approach

aims to model the feasible sets B or B̃ with complementarity constraints: A binary variable z can

be restated by introducing an auxiliary continuous variable x subject to the constraints

x (1− x) = 0, x ∈ [0, 1] . (3.65)

(3.65) is a poor formulation for two reasons. First of all, it is nonconvex. Secondly, its feasible set

only consists of two disjoint points. Especially the latter makes it very hard for standard solvers

to solve problems incorporating formulations like (3.65). With an additional continuous variable

y that is subject to the constraint x+ y = 1 one obtains

xy = 0, x, y ≥ 0, (3.66)

and sees that (3.65) is equivalent to the MPCC standard formulation (cf. (2.13)). Here, the cases

x = 0, y > 0 and x > 0, y = 0 correspond to x = 0 and x = 1, respectively. Unfortunately, the

better numerical properties of (3.66) come at the price of an undecided third state, i.e. x = y = 0.

A lot of real-world applications share a feature that can be exploited in a way that is more

useful in practice: The alternatives of the discrete aspects can be represented as subsets of a space

of continuous variables. Formally, let A be a certain aspect of a model that consists of a set of

states A1, . . . , Aa. Moreover, assume that there are finite sets of variables and constraints

xA ∈ RnA , cE,Ai (xA) = 0, cI,Ai (xA) ≥ 0, i = 1, . . . , a, (3.67)

Chapter 3. Optimization in Gas Network Planning 38

that are used to model the states. Going further, let

zA = (zAi)
a
i=1 ∈ {0, 1}

a (3.68)

be a vector of binary variables that are used to switch between the different states of the model

aspect A. Finally, assume that the model is stated such that

model aspect A is in state Ai ⇐⇒ zAi = 1, zAj = 0 ∀j 6= i. (3.69)

A mixed-integer nonlinear formulation for the described situation using big-M constraints and a

SOS-1 constraint reads

ME,Ai (1− zAi)− cE,Ai (xA) ≥ 0, i = 1, . . . , a, (3.70a)

ME,Ai (1− zAi) + cE,Ai (xA) ≥ 0, i = 1, . . . , a, (3.70b)

MI,Ai (1− zAi) + cI,Ai (xA) ≥ 0, i = 1, . . . , a, (3.70c)
a∑
i=1

zAi = 1, zAi ∈ {0, 1} , i = 1, . . . , a. (3.70d)

If desired, (3.70) can also be stated as an equivalent general disjunctive program (GDP) [50, 100];

a∨
i=1


zAi = 1

cE,Ai (xA) = 0

cI,Ai (xA) ≥ 0

 . (3.71)

The following introduces the concept of non-disjunctive states, i.e. states for which the feasible

sets are not disjoint. The formal definition requires the definition of characteristic functions.

Definition 11 (Characteristic Function). Let A be a model aspect with states Ai, i = 1, . . . , a,

represented by variables and constraints as in (3.67) and (3.68). A function χAi : RnA → R is

called a characteristic function of state Ai if

χAi (x) = 0, if cE,Ai (x) = 0 and cI,Ai (x) ≥ 0, (3.72a)

χAi (x) 6= 0, else. (3.72b)

Definition 12 (Non-Disjunctive States). Two states Ai and Aj are called non-disjunctive if there

exists x ∈ RnA such that

χAi (x) = χAj (x) = 0. (3.73)

With the last definitions, one can define the subclass of MINLPs that is considered in the

following.

Definition 13 (2-State-MINLP). MINLPs in which all discrete aspects have two non-disjunctive

states are called 2-state-MINLPs.

39 3.3. An MPCC Approach for MINLPs in Gas Network Planning

As a direct consequence of Definition 12 one gets the following lemma:

Lemma 3. Let A1, A2 be non-disjunctive states of a model aspect A that is modeled with variables

(xA, zA) and sets of constraints cE,Ai , cI,Ai , i = 1, 2. Let χAi denote corresponding characteristic

functions. Then the MINLP model (3.70) of A can be equivalently replaced by the MPCC model

χA1 (x)χA2 (x) = 0. (3.74)

Proof. Let x∗A be a solution of the reformulated MPCC model and let χA1
(x∗A) = 0. Then, using

(3.72) it follows that cE,A1
(x∗A) = 0 and cI,A1

(x∗A) ≥ 0. Setting zA1
= 1 and zA2

= 0 one gets

a feasible solution of (3.70). The case χA2
(x∗A) = 0 and the reverse direction can be proven

analogously.

In the case of 2-state MINLPs, the undecided state of (3.66) does not lead to a problem since

the main property of non-disjunctive states is that their continuous variables can be identical.

Since the problem of validation of nominations is a feasibility problem, one is mainly interested

in the relationship between the feasible points of the 2-state-MINLP and the feasible points of the

reformulated MPCC model. The last lemma directly implies the following corollary.

Corollary 1. Let P be a 2-state-MINLP and let Q be an MPCC reformulation as described above.

Then for every Q-feasible point x∗Q there exists a P -feasible point (x∗P , z
∗
P). Conversely, if there

is no Q-feasible point, P is also infeasible. Thus, there is a one-to-one correspondence of feasible

points between 2-state-MINLP problems and their MPCC reformulations.

3.3.2 The Problem of Validation of Nominations Revisited

With the reformulation technique presented in the last section, it is now possible to restate the

MINLP formulation (3.62) of the model of the problem of validation of nominations. It turns

out that (3.62) is a 2-state-MINLP according to Definition 13. As discussed in Section 3.2.5, all

discrete aspects of the problem appear in the component models of active network elements. Thus,

the only component models that have to be reformulated are the ones of valves, control valves and

compressor stations.

Reformulation of the Valve Model

One can easily see that the valve model (3.55) fits into the concept of non-disjunctive model

aspects. The model aspect A (= valve) has the two states A1 = open and A2 = closed. They are

non-disjunctive if

0 ∈
[
q−a , q

+
a

]
and

[
p−i , p

+
i

]
∩
[
p−j , p

+
j

]
6= ∅. (3.75)

Chapter 3. Optimization in Gas Network Planning 40

Notice that the state of the valve can be decided a-priori if (3.75) does not hold. Thus, the

assumption (3.75) is without loss of generality. The characteristic functions are

χopena (x) = pj − pi, χcloseda (x) = qa. (3.76)

According to the last section the 2-state-MINLP (3.55) can be equivalently reformulated using the

complementarity constrained model

0 = cmpcc
a (x) = cvl-statea (x) = χopena (x)χcloseda (x) , xmpcc

a = qa. (3.77)

The latter formulation offers two advantages: No binary variables are required and the number of

constraints reduces from four to one.

Reformulation of the Control Valve Model

The control valve model (3.58) is a 2-state-MINLP only if ∆p−a = 0 holds. However, this appears

to be a moderate restriction in practice: All control valves of the real-world gas transport network

that is considered in Chapter 6 satisfy ∆p−a = 0. With this, control valves can be modeled as

a model aspect with two non-disjunctive states A1 = open and A2 = closed. The characteristic

functions are

χopena (x) = pj − pi + ∆pa, χcloseda (x) = qa. (3.78)

Hence, the state open can be further distinguished into the cases active or bypass depending on

the value of the pressure decrease variable ∆pa. In summary, the MPCC formulation reads

0 = cmpcc
E,a (x) = ccv-statea (x) = χopena (x)χcloseda (x) , (3.79a)

0 ≤ cmpcc
I,a (x) = ccv-active-statea (x) = ∆paqa. (3.79b)

(3.79b) models that the control valve can only decrease the pressure for positive flow. The variable

vector reduces to the continuous variable vector of the MINLP model of control valves;

xa =

 qa

∆pa

 . (3.80)

Reformulation of the Compressor Station Model

The MINLP model (3.60) of compressor stations is the same as for control valves except for the sign

of the variable ∆pa. Hence, the reformulation is the same except for this sign, too. In summary,

one has

0 = cmpcc
E,a (x) = ccs-statea (x) = χopena (x)χcloseda (x) , (3.81a)

0 ≤ cmpcc
I,a (x) = ccs-active-statea (x) = ∆paqa, (3.81b)

xa =

 qa

∆pa

 , (3.81c)

41 3.3. An MPCC Approach for MINLPs in Gas Network Planning

with the modified characteristic function

χopena (x) = pj − pi −∆pa (3.82)

for the state open.

Summary of the Reformulated MPCC Model

Collecting all reformulated component models of the problem of validation of nominations leads

to the MPCC model

∃?x ∈ Rnx : cmpcc
E (x) = 0, cmpcc

I (x) ≥ 0, (3.83)

with the sets of constraints

cmpcc
E (x) =



cV+
(x)

cV− (x)

cV0 (x)

csmooth
Api

(x)

csmooth
Apwc

re
(x)

csmooth
Apwq

re
(x)

cAsc (x)

cmpcc
Avl

(x)

cmpcc
E,Acv

(x)

cmpcc
E,Acs

(x)



and cmpcc
I (x) =

cmpcc
I,Acv

(x)

cmpcc
I,Acs

(x)

 . (3.84)

By taking a closer look to the MPCC model (3.83) one sees that it is not in the MPCC standard

form (2.13) since the non-negativity constraints (2.13d) are not contained in (3.83). The reason for

this is that the characteristic functions that are used to build up the complementarity constraints

do not have to be non-negative. For instance, the characteristic functions

χopena (x) = pj − pi and χcloseda (x) = qa (3.85)

for valves a ∈ Avl can take negative values for negative mass flow qa or decoupled pressures

satisfying pi > pj .

Unfortunately, the standard regularization techniques (cf. Section 2.2) are not valid in this

situation. To overcome this drawback, two different strategies may be employed:

1. Squaring all characteristic functions χ that are part of cmpcc
E (x). One can easily see that

this leads to non-negative complementarity pairings and does not harm property (3.72) in

Definition 11.

2. Replacing all characteristic functions χ by their absolute values |χ|. Again, the non-negativity

constraints of the MPCC standard form are obviously satisfied and (3.72) in Definition 11 is

still valid.

Chapter 3. Optimization in Gas Network Planning 42

The first approach leads to ill-conditioned KKT systems, especially when a penalization scheme

is used to regularize the MPCC. The second approach leads to better conditioned systems but

incorporates much more nonsmooth aspects. Both approaches and their properties are discussed

in detail in Chapter 6.

Chapter 4

Interior-Point Methods

Interior-point (or barrier) methods emerged in the 1980s. They came up due to the search for

algorithms solving linear programs (LP) with a better theoretical complexity than the simplex

method. It is well-known that the complexity of the simplex method can be exponential in the

size of the problem (cf. [91]). The earliest proposed algorithm for solving LPs with a polynomial

worst-case complexity was the ellipsoid method by Khachiyan [66]. However, this method turned

out to be impractical and was not competitive with the simplex method. In 1984, Karmarkar [63]

proposed a new method that shares the complexity property of Khachiyan’s algorithm but also has

a good practical performance. Since then a lot of research activity came up leading to a wide range

of theoretical results and implementations. One decade after Karmarkar’s publication a subclass

of interior-point methods arose that are known as primal-dual methods. This subclass turned out

to be the most efficient instantiation of interior-point methods and is the topic of this chapter.

A useful property of interior-point methods is that their basic algorithmic framework is almost

the same for most of the standard classes of optimization problems. This motivates the main idea

of this thesis – namely to develop a generic and highly flexible interior-point framework that can

be used to solve different classes of optimization problems like LP, quadratic programming (QP),

(nonconvex) NLP as well as MPCC and nonsmooth nonlinear problems.

The outline of this chapter is as follows. Section 4.1 describes a standard interior-point method

for nonlinear programming including standard techniques like globalization strategies, reduction

techniques for KKT systems, etc. This method is strongly oriented towards the interior-point

code Ipopt of Andreas Wächter [132, 134]. Since it turned out in the past that Ipopt is a very

efficient and reliable interior-point method its main algorithmic principles are chosen to be the

backbone of the method developed for this thesis. Additionally, useful aspects of other interior-

point methods like LOQO [127] are integrated into the framework. In Section 4.2 the subclass of

problems with locatable and separable nonsmoothness is defined and techniques for solving this

43

Chapter 4. Interior-Point Methods 44

practically important subclass are developed. To the best of the author’s knowledge, the problem

classification as well as the developed solution strategies are not considered in the literature before.

In Section 4.3 it is stated how the generic interior-point framework can be extended to solve

complementarity constrained problems. The presented method strongly relies on the paper [74] by

Leyffer et al. Here, the focus is on a careful algorithmic design that allows to combine both the

extensions for nonsmooth problems and the extensions for MPCCs. This combination is finally

presented in Section 4.4.

Notation Throughout this chapter the following notation is used. A vector v ∈ Rn is denoted

by a small letter and vector components are denoted by sub-indices, e.g. vi is the i-th component

of the vector v. A diagonal matrix build from a vector is denoted by the corresponding capital

letter, i.e. V = diag (v1, . . . , vn) ∈ Rn×n. Vectors made up of sub-vectors are written as ordered

lists of sub-vectors, e.g. v = (x, y) stands for v = (xT , yT)T . e is the vector of ones in appropriate

dimension, i.e. e = (1, . . . , 1)
T . f denotes the objective function or portions of it. As already

introduced in Chapter 2, constraint vectors c are indexed by index sets E and I for equality and

inequality constraints, respectively. Iteration numbers are denoted by braced super-indices. For

example, y(k) stands for the vector y in iteration k. Finally, if g(x) : Rn → Rk is an arbitrary

function and v = (x, y) ∈ Rn+m is a vector containing the sub-vectors x ∈ Rn and y ∈ Rm, the

expression g(v) is interpreted as g(x) if the original argument x of g is clear from the context.

4.1 Interior-Point Methods for Nonlinear Optimization

This section describes an interior-point method for solving nonlinear and nonconvex constrained

optimization problems of the form

min
x∈Rn

f (x) (4.1a)

s.t. cE (x) = 0, (4.1b)

cI (x) ∈ [rl, ru] , (4.1c)

x ∈ [bl, bu] , (4.1d)

where inequality constraints are split into the lower and upper range constraints (4.1c) and the

lower and upper variable bounds (4.1d). The problem data consists of the objective function

f : Rn → R, m equality constraints

cE = (c1(x), . . . , cm(x))
T

: Rn → Rm, (4.2)

k inequality constraints

cI = (cm+1(x), . . . , cm+k(x))
T

: Rn → Rk, (4.3)

45 4.1. Interior-Point Methods for Nonlinear Optimization

inequality ranges r = (rl, ru) ∈ R2k and variable bounds b = (bl, bu) ∈ R2n. If it is not explicitly

stated otherwise, f, cE , cI are assumed to be twice continuously differentiable in this section.

The main idea of interior-point methods is to reformulate (4.1) by using slack variables to

translate inequality into equality constraints. With slack variables s = (sl, su) ∈ R2n for the

variable bounds and t = (tl, tu) ∈ R2k for the range constraints one obtains

min
(x,s,t)∈Rnp

f(x) (4.4a)

s.t. α := cE(x) = 0, (4.4b)

ρl := cI(x)− tl − rl = 0, (4.4c)

ρu := −cI(x)− tu + ru = 0, (4.4d)

βl := x− sl − bl = 0, (4.4e)

βu := −x− su + bu = 0, (4.4f)

sl, su, tl, tu ≥ 0, (4.4g)

with np = 3n+ 2k. The remaining inequality constraints are the simple variable bounds (4.4g) for

the slack variables s, t. The Lagrangian of (4.4) reads

L(y, λ, ξ) = f(x)

− zT cE(x)

− vTl (cI(x)− tl − rl)− vTu (−cI(x)− tu + ru)

− uTl (x− sl − bl)− uTu (−x− su + bu)

− λTl sl − λTu su − ξTl tl − ξTu tu.

(4.5)

z ∈ Rm is the vector of dual multipliers of the equality constraints, v = (vl, vu) ∈ R2k is the vector

of dual multipliers of the lower and upper range constraints and u = (ul, uu) ∈ R2n is the vector of

dual multipliers of the lower and upper variable bounds. λ = (λl, λu) ∈ R2n and ξ = (ξl, ξu) ∈ R2k

are the vectors of dual multipliers of the positivity constraints (4.4g). For better reading, ypri :=

(x, s, t) ∈ Rnp denotes the vector of primal variables, ydual := (z, u, v) ∈ Rnd , nd = m + 2n + 2k,

denotes the vector of dual variables and y := (ypri, ydual) ∈ RN , N = np + nd = 5n+m+ 4k.

As usual for barrier methods (cf. [91]), (4.4) is finally translated into the µ-parameterized

log-barrier problem

min
ypri∈Rnp

ϕµ := f(x)− µ

[
n∑
i=1

(ln sli + ln sui) +

k∑
i=1

(ln tli + ln tui)

]
(4.6a)

s.t. α(x) = ρl(x, tl) = ρu(x, tu) = βl(x, sl) = βu(x, su) = 0, (4.6b)

that is solved for a sequence of barrier parameters µ > 0 converging to zero. It is well-known that

this barrier approach can also be interpreted equivalently as applying a homotopy method to the

Chapter 4. Interior-Point Methods 46

µ-perturbed KKT conditions of the reformulated problem (4.4) (while maintaining strict positivity

of the slack variables s, t). These conditions include primal feasibility (4.4b)–(4.4g), dual feasibility

∇xL = g −∇cE(x)T z −∇cI(x)T (vl − vu)− (ul − uu) = 0, (4.7a)

∇slL = ul − λl = 0, (4.7b)

∇suL = uu − λu = 0, (4.7c)

∇tlL = vl − ξl = 0, (4.7d)

∇tuL = vu − ξu = 0, (4.7e)

µ-perturbed complementarity

SlΛle = SuΛue = TlΞle = TuΞue = µe (4.8)

and non-negativity of dual multipliers corresponding to the inequality constraints, i.e.

λl, λu, ξl, ξu ≥ 0. (4.9)

In (4.7a), g := ∇f(x) ∈ Rn denotes the gradient of the objective function;

g(x) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)T
, (4.10)

and ∇cE(x) ∈ Rm×n and ∇cI(x) ∈ Rk×n are the Jacobians of the constraints;

∇cE(x) =


∂c1
∂x1

. . . ∂c1
∂xn

...
. . .

...
∂cm
∂x1

. . . ∂cm
∂xn

 , ∇cI(x) =


∂cm+1

∂x1
. . . ∂cm+1

∂xn
...

. . .
...

∂cm+k

∂x1
. . . ∂cm+k

∂xn

 . (4.11)

Using dual feasibility (4.7b)–(4.7e), the dual variables λ, ξ corresponding to the non-negativity

constraints (4.4g) can be eliminated. This leads to the restated versions of (4.8) and (4.9);

SlUle = SuUue = TlVle = TuVue = µe (4.12)

and

ul, uu, vl, vu ≥ 0, (4.13)

respectively. Finally, the µ-perturbed KKT conditions are

(4.7a), (4.4b)− (4.4g), (4.12), (4.13). (4.14)

With these preliminaries, one can describe an interior-point method as follows. Given an

iterate y ∈ RN and a barrier parameter µ, a search direction ∆y ∈ RN is computed with one step

of Newton’s method applied to the nonlinear system of equations (4.7a), (4.4b)–(4.4f), (4.12). With

this search direction at hand, maximum primal and dual step lengths ᾱpri, ᾱdual are determined

47 4.1. Interior-Point Methods for Nonlinear Optimization

that maintain strict positivity of the primal and dual slacks s, t and u, v, respectively. This is done

by the so-called fraction-to-the-boundary rule:

ᾱpri := min(αs, αt), (4.15a)

αs := max(α ∈ (0, 1] : s+ α∆s ≥ (1− τ) s), (4.15b)

αt := max(α ∈ (0, 1] : t+ α∆t ≥ (1− τ) t), (4.15c)

ᾱdual := min(αu, αv), (4.15d)

αu := max(α ∈ (0, 1] : u+ α∆u ≥ (1− τ)u), (4.15e)

αv := max(α ∈ (0, 1] : v + α∆v ≥ (1− τ) v). (4.15f)

Here, τ ∈ (0, 1) is the so-called fraction-to-the-boundary parameter that is computed as in the Ipopt

code [134]:1

τ := max {τmin, 1− κτµ} , κτ > 0. (4.16)

τmin ∈ (0, 1) is a lower bound of τ . In the following, all parameters denoted by κ are constants

that can be chosen by the user. To ensure global convergence, the primal step length is possibly

shortened again. This is done by a filter or merit function based backtracking line-search method

leading to an actual primal step length αpri. The latter is then used to compute the next iterate

y+ = (y+
pri, y

+
dual) via

y+
pri = ypri + αpri∆ypri, (4.17a)

y+
dual = ydual + ᾱdual∆ydual. (4.17b)

Finally, it has to be determined when and how to update the barrier parameter µ. One mainly

distinguishes between monotone or adaptive methods (see Section 4.1.4 for the details). The

standard monotone Fiacco-McCormick approach [37] holds the barrier parameter fixed as long as

an approximative solution of the current barrier problem is reached. More formally, the (perturbed)

KKT error is defined as

e(µ) := max(θpri (ypri) , θdual (y) , θcompl (y;µ)). (4.18)

Here,

θpri (ypri) := max(‖α‖, ‖ρl‖, ‖ρu‖, ‖βl‖, ‖βu‖) (4.19)

measures primal infeasibility,

θdual (y) := ‖∇xL‖ (4.20)

measures dual infeasibility and

θcompl (y;µ) := max(‖SUe− µe‖, ‖TV e− µe‖) (4.21)
1To be exact, the constant κτ is always chosen to be 1 in the Ipopt code.

Chapter 4. Interior-Point Methods 48

measures the (µ-perturbed) complementarity. If not otherwise stated, the infinity norm ‖ · ‖∞ is

used. With this notation, the current barrier problem is approximately solved if

e(µ) < κµµ (4.22)

holds with a constant κµ > 0. Note that e(0) measures the KKT error of the original NLP. Thus,

an iterate with e(0) = 0 and s, t, u, v ≥ 0 is a KKT point if a certain constraint qualification

(like the LICQ condition) holds. This motivates the overall termination criterion of the algorithm:

Given a user-specified tolerance εtol > 0, the algorithm terminates when

e(0) < εtol (4.23)

is satisfied. (4.22) and (4.23) represent only one possibility of a termination criterion for the barrier

problems and the NLP. In practice, especially for badly scaled problems, it is often reasonable to

replace the KKT error e by a scaled variant:

es(µ) := max

(
θpri (ypri)

sp
,
θdual (y)

sd
,
θcompl (y;µ)

sc

)
. (4.24)

Here, sp, sd and sc are positive scaling parameters.

Algorithm 1: Basic Interior-Point Framework
Input : Starting point y(0), initial barrier parameter µ(0) > 0 and a user-specified vector of

algorithmic constants κ.
1 Set k = 1.
2 while NLP termination criterion (4.23) is not satisfied do
3 Compute the search direction ∆y(k) by applying one step of Newton’s method to the

system (4.7a), (4.4b)–(4.4f), (4.12).
4 Compute maximum step lengths ᾱ(k)

pri , ᾱ
(k)
dual using (4.15).

5 Apply a globalization strategy to obtain an actual primal step length α(k)
pri .

6 Compute the new iterate y(k+1) using (4.17).
7 Compute a new barrier parameter µ(k+1) or set µ(k+1) = µ(k).
8 Set k ← k + 1.

Algorithm 1 states an interior-point framework that forms the basis of all concretizations that

are presented in the following. It has a lot of degrees of freedom for algorithmic choices:

1. The choice of the initial point y(0).

2. The concrete formulation of the Newton system in line 3.

3. The globalization strategy delivering the actual primal step length in line 5.

4. The barrier parameter update method in line 7.

These algorithmic choices are the topic of the next sections.

49 4.1. Interior-Point Methods for Nonlinear Optimization

4.1.1 Computation of the Search Direction

The barrier problem (4.6) with fixed µ is solved by applying Newton’s method to the system of

primal-dual equations (4.7a),(4.4b)–(4.4f), (4.12). Using the notation

Φl := S−1
l Ul, φl := ul − µS−1

l e, (4.25a)

Φu := S−1
u Uu, φu := uu − µS−1

u e, (4.25b)

Ψl := T−1
l Vl, ψl := vl − µT−1

l e, (4.25c)

Ψu := T−1
u Vu, ψu := vu − µT−1

u e, (4.25d)

and applying Newton’s method one gets the large but highly structured symmetric KKT system

Ω∆y = −ω with

Ω =



H ∇cTE I −I ∇cTI −∇cTI
Φl −I

Φu −I

Ψl −I

Ψu −I

∇cE
I −I

−I −I

∇cI −I

−∇cI −I



∈ RN×N , (4.26a)

∆y = (∆x,∆sl,∆su,∆tl,∆tu,−∆z,−∆ul,−∆uu,−∆vl,−∆vu)
T
, (4.26b)

ω = (∇xL, φl, φu, ψl, ψu, α, βl, βu, ρl, ρu)
T
. (4.26c)

The left upper block H in Ω stands for the Hessian of the Lagrangian function, i.e.

H = ∇2
xxL(x, z, vl, vu) = ∇2

xxf(x)−
∑
i∈E

zi∇2
xxci(x)−

∑
i∈I

(vli − vui)∇2
xxci(x), (4.27)

where ∇2
xxϕ denotes the Hessian of a function ϕ : Rn → R, i.e.

∇2
xxϕ(x) =


∂2ϕ

∂x1∂x1
. . . ∂2ϕ

∂x1∂xn
...

. . .
...

∂2ϕ
∂xn∂x1

. . . ∂2ϕ
∂xn∂xn

Rn×n. (4.28)

Since L is twice continuously differentiable, its Hessian H is symmetric (Schwarz’s theorem).

The matrix Ω in (4.26a) is called the primal-dual matrix, whereas one gets the so-called primal

matrix with Φl,Φu,Ψl,Ψu replaced by

Φl = µS−2
l , Φu = µS−2

u , Ψl = µT−2
l , Ψu = µT−2

u . (4.29)

Chapter 4. Interior-Point Methods 50

One obtains the primal system by writing down the KKT conditions of the barrier reformulation

(4.6), which contain the equations

−µS−1
l e+ ul = 0, −µS−1

u e+ uu = 0, (4.30a)

−µT−1
l e+ vl = 0, −µT−1

u e+ vu = 0, (4.30b)

and directly applying Newton’s method. In contrast to that, the primal-dual system is obtained by

multiplying (4.30) with Sl, Su, Tl, Tu and afterwards applying Newton’s method. In what follows,

only the primal-dual system is considered.

From here on, the arguments of the problem data cE and cI and the Lagrangian L are omitted.

Instead of solving the KKT system Ω∆y = −ω, first the size of the system is reduced to the original

problem size, i.e. to a linear system in Rn+m+k. For this, only simple operations with diagonal

matrices are used (cf. [117]).

Elimination of bound slacks

First, the slack variables s = (sl, su) of the variable bounds are eliminated. Rows 7 and 8 of (4.26)

yield

∆x−∆sl = −βl, ∆sl =∆x+ βl, (4.31)

−∆x−∆su = −βu, ∆su =−∆x+ βu. (4.32)

Substitution of ∆sl and ∆su into rows 2 and 3 gives

Φl∆sl + ∆ul = −φl, ∆ul = −Φl∆x− φ̄l, φ̄l := Φlβl + φl, (4.33)

Φu∆su + ∆uu = −φu, ∆uu = Φu∆x− φ̄u, φ̄u := Φuβu + φu. (4.34)

Finally, by substituting ∆ul and ∆uu into the first row of (4.26) one obtains

(H + Φ) ∆x−∇cTE∆z −∇cTI∆vl +∇cTI∆vu = −γ (4.35)

with

Φ := Φl + Φu, γ := ∇xL+ φ̄l − φ̄u. (4.36)

Thus, one obtains the partially reduced KKT system

H + Φ ∇cTE ∇cTI −∇cTI
Ψl −I

Ψu −I

∇cE
∇cI −I

−∇cI −I





∆x

∆tl

∆tu

−∆z

−∆vl

−∆vu


= −



γ

ψl

ψu

α

ρl

ρu


. (4.37)

51 4.1. Interior-Point Methods for Nonlinear Optimization

Elimination of range slacks

Next, the slack variables t = (tl, tu) of the range constraints are eliminated. Rows 5 and 6 of (4.37)

yield

∇cI∆x−∆tl = −ρl, ∆tl = ∇cI∆x+ ρl, ∇cI∆x = ∆tl − ρl, (4.38)

−∇cI∆x−∆tu = −ρu, ∆tu = −∆tl + ρ, ρ := ρl + ρu. (4.39)

By substituting ∆tu into row 3 of (4.37) one gets

∆vu = Ψu∆tl − ψ̂u, ψ̂u := Ψuρ+ ψu (4.40)

and substituting ∆tu into the difference of row 2 and 3 yields

Ψ∆tl + ∆v̂ = −ψ̂, Ψ := Ψl + Ψu, ψ̂ = ψl − ψ̂u, ∆v̂ := ∆vl −∆vu. (4.41)

Solving the latter for ∆tl gives

∆tl = Ψ−1
(
−∆v̂ − ψ̂

)
, (4.42)

which leads to

∇cI∆x+ Ψ−1∆v̂ = −ρ̂, ρ̂ := ρl + Ψ−1ψ̂ (4.43)

by substituting ∆tl into row 5 of (4.37). Finally, using ∆v̂ in the first row leads to the reduced

KKT system Ωr∆yr = −ωr:
H + Φ ∇cTE ∇cTI
∇cE
∇cI −Ψ−1




∆x

−∆z

−∆v̂

 = −


γ

α

ρ̂

 . (4.44)

In summary, the system Ω∆y = −ω is first reduced to the system Ωr∆yr = −ωr with Ωr ∈

RNr×Nr and Nr = n+m+ k. The smaller system is solved and its solution ∆yr is then expanded

to a solution ∆y of the full KKT system. When solving the reduced system one encounters two

main difficulties in solving general nonconvex nonlinear optimization problems. Since the overall

interior-point method is globalized by a filter line-search algorithm (cf. Section 4.1.2), one has to

ensure that the search direction ∆y is a descent direction with respect to the globalization strategy.

In addition, a solution of (4.44) does not have to exist if the second block row is not regular. To

guarantee that these two assumptions hold in every iteration one can incorporate a convexification

and regularization strategy by modifying system (4.44) to
H + Φ + νcI ∇cTE ∇cTI
∇cE −νrI

∇cI −Ψ−1




∆x

−∆z

−∆v̂

 = −


γ

α

ρ̂

 , (4.45)

Chapter 4. Interior-Point Methods 52

where νc, νr ≥ 0 are the convexification and regularization parameters. If νc is large enough, it

can be shown that the Hessian block H + Φ + νcI projected onto the null-space of the Jacobians

∇c =
[
∇cTE ,∇cTI

]T of the constraints is positive definite. Additionally, a value νr 6= 0 regularizes

the second block row and thus guarantees the existence of a unique search direction. The solution

algorithm for system (4.45) including adaptive choices of νc and νr is presented in the next sections.

Solution of the Reduced KKT System: The Dense Case

The solution of the step equation (4.44) may encounter the two problems of nonconvexity and

singularity. The KKT solution algorithm presented in this section exploits the special optimization

superstructure of the linear system (4.44) and modifies the system matrix in a way such that both

positive definiteness of the projected Hessian and regularity of the Jacobians of the constraints are

addressed by modifying the system matrix Ωr. The techniques presented in this section, namely

the null-space and the Schur complement method, are tailored for dense blocks of the reduced

KKT matrix Ωr.

Both techniques first compute the LQ factorization

∇cE = LQ =
[
L1 0

]Y T
ZT

 = L1Y
T , (4.46)

of the Jacobian of the equality constraints. Here, L ∈ Rm×n, Q ∈ Rn×n, L1 ∈ Rm×m, Y ∈

Rn×m, Z ∈ Rn×(n−m) holds and the zero block in L is of size m × (n − m). With this, one

obtains an orthonormal basis Z of the null-space ker(∇cE) of ∇cE and a matrix Y such that [Y Z]

is an orthonormal basis of Rn.

If L1 has zero columns at its right or, equivalently, if Z has dimension n× d with d > n−m,

there is a rank deficiency in ∇cE . In this case, Ωr can be regularized with a negative multiple

of the identity matrix −νrI, νr > 0, in the (2, 2)-block. This yields the regularized reduced KKT

system matrix

Ω̃ :=


H̄ ∇cTE ∇cTI
∇cE −νrI

∇cI −Ψ−1

 =:

 H̄ ∇cT

∇c −M

 , (4.47a)

M :=

 νrI
Ψ−1

 ∈ R(m+k)×(m+k), H̄ := H + Φ. (4.47b)

If the KKT matrix is regularized as in (4.47), the regularized and reduced KKT system is solved

with the Schur complement method, whereas the original system (4.44) is solved with the null-space

method. Both methods are described in detail in the following.

53 4.1. Interior-Point Methods for Nonlinear Optimization

Null-Space Method By using (4.46) the primal search direction ∆x is decomposed into

∆x = Y∆xY + Z∆xZ , ∆xY ∈ Rm, ∆xZ ∈ Rn−m. (4.48)

Substitution of this decomposition into the second row of (4.44) yields

∇cE∆x = ∇cE (Y∆xY + Z∆xZ) = (∇cEY) ∆xY = −α, (4.49)

with ∇cEY ∈ Rm×m. System (4.49) can be efficiently solved using the already computed LQ

factorization (4.46);

(∇cEY) ∆xY = L1∆xY = −α. (4.50)

Next, −∆v̂ is eliminated by using the third equation of (4.44);

−∆v̂ = Ψ (ρ̂+∇cI∆x)

= Ψ (ρ̂+∇cI (Y∆xY + Z∆xZ))

= ρ̄+ Ψ∇cIZ∆xZ .

(4.51)

Here, ρ̄ := Ψ (ρ̂+∇cIY∆xY). Substitution of −∆v̂ into the first row of (4.44) and multiplication

with ZT yields

Ĥ∆xZ = −γ̄, (4.52)

where

Ĥ := ZT
(
H̄ +∇cTIΨ∇cI

)
Z ∈ R(n−m)×(n−m) (4.53)

is the reduced Hessian and the modified right-hand side is given by

γ̄ := ZT
(
γ + H̄Y∆xY +∇cTI ρ̄

)
. (4.54)

(4.52) is solved by a Cholesky factorization of the reduced Hessian Ĥ. If Ĥ is not positive definite,

H̄ is convexified by successively adding an increasing multiple of the identity νcI, νc > 0, re-

computing

Ĥ = ZT
(
H̄ + νcI +∇cTIΨ∇cI

)
Z (4.55)

and

γ̄ = ZT (γ + [H̄ + νcI]Y∆xY +∇cTI ρ̄), (4.56)

and re-computing the Cholesky factorization until it succeeds. After solving (4.52), ∆x is computed

by using (4.48) and −∆v̂ is computed by (4.51). Finally, the first equation of (4.44) multiplied

with Y T reads

Y T∇cTE (−∆z) = −Y T
(
γ + Ĥ∆x+∇cTI (−∆v̂)

)
. (4.57)

The latter can be solved using the LQ factorization (4.46) again;

LT1 (−∆z) = −γ̂, γ̂ := Y T
(
γ + Ĥ∆x+∇cTI (−∆v̂)

)
. (4.58)

Chapter 4. Interior-Point Methods 54

Schur Complement Method The Schur complement method is used to solve the KKT system

if Ωr has to be regularized due to a rank deficiency in its second block row. This leads to the

regularized matrix as in (4.47). For this case, the right-hand side and the solution vector can be

rewritten as follows:

 ∆x

−∆η

 :=


∆x

−∆z

−∆v̂

 ,

 γ

η

 :=


γ

α

ρ̂

 , ∆η, η ∈ Rm+k. (4.59)

First, −∆η is eliminated using the second row of (4.47);

−∆η = M−1 (η +∇c∆x) . (4.60)

Substitution of −∆η into the first row of (4.47) yields

W∆x = −η̄, (4.61)

with

W := H̄ +∇cTM−1∇c, η̄ := γ +∇cTM−1η. (4.62)

W is the so-called Schur complement matrix. (4.61) is solved by a Cholesky factorization of W . If

W is not positive definite, the same convexification strategy as in the null-space method is applied.

Algorithm 2 combines the presented strategies for solving (4.44) for dense matrix blocks. The

last degree of freedom in Algorithm 2 is the update strategy for the convexification parameter. In

the concrete implementation developed for this thesis, the inertia correction subprocedure proposed

in [134] is used.

Solution of the Reduced KKT System: The Sparse Case

Algorithm 2 is not preferable if one wants to exploit the sparsity that often appears in the problem

data matricesH,∇cE ,∇cI of NLP-type real-world problems. In this case, the implemented method

uses external software packages for the factorization of symmetric indefinite linear systems. Most

of these solvers provide the user with information about rank deficiencies and the inertia (see [91])

of the matrix to factorize. With these information, one can design algorithms for factorizing the

reduced KKT matrix that address the problems of missing positive definiteness of the projected

Hessian as well as rank deficiencies. See [134] for a detailed description of the used inertia correction

subprocedure.

Iterative Refinement

In practice, the reduced KKT matrix Ωr is often ill-conditioned. This may give rise to inaccurate

solutions ∆yr. Since the quality of the search direction is a crucial aspect of interior-point methods,

55 4.1. Interior-Point Methods for Nonlinear Optimization

Algorithm 2: Solution Algorithm for the Reduced KKT System with Dense Matrix Blocks
Input : Reduced KKT matrix Ωr and right-hand side ωr.

1 Compute LQ factorization ∇cE = LQ (see (4.46)).
2 if L1 has no zero columns then
3 Continue with line 6.
4 else
5 Choose regularization parameter νr > 0 and modify the KKT matrix as described in

(4.47). Continue with line 18.
// Null-Space Method

6 Solve L1∆xY = −α to obtain ∆xY (see (4.49) and (4.50)).
7 Compute ∆x̃Y = Y∆xY and ρ̄ = Ψ (ρ̂+∇cI∆x̃Y).
8 Initialize convexification counter kc = 0.
9 repeat /* convexification strategy */

10 Update νc, set H̃ = H̄ + νcI and compute Ĥ = ZT
(
H̃ +∇cTIΨ∇cI

)
Z.

11 Try to compute the Cholesky factorization LĤL
T
Ĥ

= Ĥ and set kc ← kc + 1.
12 until Cholesky factorization was successful

13 Compute γ̄ = ZT
(
γ + Ĥ∆x̃Y +∇cTI ρ̄

)
and solve Ĥ∆xZ = −γ̄.

14 Compute −∆v̂ using ∆x̃Z = Z∆xZ and −∆v̂ = ρ̄+ Ψ∇cI∆x̃Z .
15 Compute ∆x = ∆x̃Y + ∆x̃Z .

16 Compute γ̂ = Y T
(
γ + Ĥ∆x+∇cTI (−∆v̂)

)
and solve LT1 (−∆z) = −γ̂.

17 return search direction ∆yr = (∆x,−∆z,−∆v̂).
// Schur Complement Method

18 Compute system matrix and right-hand side of (4.61) via
C = ∇cTM−1 ∈ Rn×(m+k), η̄ = γ + Cη,W = H̄ + C∇c.

19 Initialize convexification counter kc = 0.
20 repeat /* convexification strategy */
21 Update νc, set Ŵ = W + νcI.
22 Try to compute the Cholesky factorization LŴL

T
Ŵ

= Ŵ and set kc ← kc + 1.
23 until Cholesky factorization was successful
24 Solve Ŵ∆x = −η̄ and compute −∆η = M−1 (η +∇c∆x).
25 return search direction ∆yr = (∆x,−∆η).

the proposed algorithm applies an iterative refinement strategy in order to improve the accuracy

of the solution of the KKT system.

Let k be the iteration counter of the iterative refinement algorithm and let ∆y
(0)
r be the original

solution of the reduced KKT system Ωr∆yr = −ωr. Then the iterative procedure

r(k) = −ωr − Ωr∆y
(k)
r , Ωrc

(k) = r(k), ∆y(k+1)
r = ∆y(k)

r + c(k), k = 0, 1, . . . , (4.63)

is applied until the residual r(k) satisfies the stopping criterion

‖r(k)‖ < εr (4.64)

for a user-specified tolerance εr > 0. For more details about iterative refinement see [48].

Chapter 4. Interior-Point Methods 56

4.1.2 Globalization with a Filter Line-Search Algorithm

After computing the search direction ∆y, primal and dual step lengths αpri, αdual have to be chosen

to determine the next iterate. The dual step length is chosen to be ᾱdual as defined in (4.15). In

contrast to that, it is required that the new primal iterate y(k+1)
pri satisfies additional conditions in

order to ensure global convergence. There are two standard techniques of nonlinear programming

algorithms to force global convergence: merit functions and filters. The first combines the aim of

minimizing the objective function and reaching feasibility in a merit function. A standard merit

function for problem (4.4) is the `1 penalty function

m (ypri) = f (x) + π

(
θpri (x) +

n∑
i=1

(
[sli]

−
+ [sui]

−
)

+
∑
i∈I

(
[tli]
−

+ [tui]
−
))

. (4.65)

Here, for x ∈ R the function [x]
− is defined as

[x]
−

:=

0, x ≥ 0,

−x, x < 0.

(4.66)

π > 0 is the so-called penalty parameter. For interior-point methods, the slack variable terms in

(4.65) always vanish leading to the simplified merit function

m (ypri) = f (x) + πθpri (x) . (4.67)

Filter methods are first proposed by Fletcher and Leyffer in [41]. The idea of filter methods

is to treat the goals of minimizing the objective function and reaching feasibility separately. This

allows filter methods to accept step lengths that make progress only in the objective function or

feasibility instead of requiring progress in a combination of both like in (4.65). As a consequence,

filter methods can often take larger steps and tend to be more robust.

The following paragraphs review the filter line-search method for the interior-point method

proposed by Wächter and Biegler in [134]. The general definitions and concepts can also be found

in the book of Nocedal and Wright [91]. Some other ideas concerning filter methods are given by

Benson et al. in [10].

In this section the filter method is described for the original objective function f and the

measure of primal infeasibility θpri. Later, it is applied to the barrier problems with fixed barrier

parameter µ. This is simply done by replacing all occurrences of f by ϕµ. The filter is then denoted

by Fµ for the sake of clarity.

The following definition is taken from [91].

Definition 14 (Filter). 1. One says that a pair (fi, θpri,i) is dominated by another pair (fj , θpri,j)

if fj ≤ fi and θpri,j ≤ θpri,i holds.

2. A filter F is a list of pairs (fi, θpri,i) in which no pair dominates any other pair.

57 4.1. Interior-Point Methods for Nonlinear Optimization

f

θpri

(f1, θpri,1)

(f2, θpri,2)

(f3, θpri,3)

(f4, θpri,4)

(f5, θpri,5)

Figure 4.1: A filter with five entries.

Figure 4.1 gives a graphical illustration of a filter. The basic idea of a backtracking filter

line-search is to generate a decreasing sequence of primal step lengths

α
(k)
pri,l+1 = κbα

(k)
pri,l, κb ∈ (0, 1), l = 0, 1, . . . , (4.68)

and with this, a sequence of primal trial points

y+
pri = y

(k)
pri + α

(k)
pri,l∆y

(k)
pri , l = 0, 1, . . . , (4.69)

until a trial point is found such that(
f+, θ+

pri

)
:=
(
f(y+

pri), θpri(y
+
pri)
)

(4.70)

is acceptable to the filter. The concept of acceptability is concretized in the following definition.

Definition 15 (Acceptability). A trial point y+ is acceptable to the filter if the corresponding

pair (f+, θ+
pri) is not dominated by any pair in the filter, i.e. if

f+ < fj or θ+
pri < θpri,j (4.71)

holds for all filter entries (fj , θpri,j).

To improve the practical performance of the algorithm, this acceptance criterion is strengthened

to

f+ ≤ fj − κmθpri,j or θ+
pri ≤ (1− κm) θpri,j (4.72)

for a given filter margin κm > 0. The idea of a strengthened filter acceptance criterion is already

mentioned in the original proposal of filter methods [41].

Chapter 4. Interior-Point Methods 58

Sufficient Decrease Conditions

In addition to the filter acceptance criterion a trial point has to satisfy certain sufficient decrease

conditions. According to [134], two cases are distinguished. If the constraint violation is small, i.e.

θpri(y
(k)
pri) =: θ

(k)
pri ≤ θmin

pri , and the so-called f -type switching condition

d(k) < 0 and α
(k)
pri,l

(
−d(k)

)κs1
> κs2

(
θ

(k)
pri

)κs3
(4.73)

holds with d(k) :=
(
g(k)

)T
∆y

(k)
pri and constants κs1 ≥ 1, κs2 > 0, κs3 > 1, a trial point has to fulfill

the Armijo condition:

f+ ≤ f (k) + κaα
(k)
pri,ld

(k), κa ∈ (0, 1/2). (4.74)

Note that the first condition in (4.73) only depends on the current iterate and not on the current

trial point. Hence, this condition has to be evaluated only once in every iteration k of the main

interior-point method. If θ(k)
pri > θmin

pri or (4.73) does not hold, the trial point has to satisfy one of

the following sufficient decrease conditions with respect the current iterate:

f+ ≤ f (k) − κmθ(k)
pri or θ+

pri ≤ (1− κm) θ
(k)
pri . (4.75)

Maximum Constraint Violation

Additionally, one wants to ensure that a trial point with a constraint violation larger than a given

threshold θmax
pri is never accepted by the filter (cf. [41]). This is easily done by initializing the filter

as follows:

F =
{

(−∞, θmax
pri)

}
. (4.76)

Mostly, θmax
pri is computed in dependence of the primal infeasibility at the starting point, e.g.

θmax
pri = κi1 max

(
1, κi2θ

(0)

pri

)
, κi1 , κi2 > 0. (4.77)

Second-Order Correction

Second-order corrections (SOC) are used to avoid the Maratos effect (see [91]) and to improve

the overall robustness of the algorithm. In the method developed for this thesis, an SOC step is

computed if the first trial point is rejected by the filter line-search procedure.

First, a definition of a second-order correction step is given. Afterwards, it is described how

SOC steps can be computed efficiently in an interior-point framework. A more detailed discussion

of second-order correction can be found in the books of Conn et al. [28] or of Nocedal and Wright

[91].

59 4.1. Interior-Point Methods for Nonlinear Optimization

In the following, the set of equality constraints of (4.4) is abbreviated by

c(ypri) :=



α(x)

ρl(x, tl)

ρu(x, tu)

βl(x, sl)

βu(x, su)


=



cE(x)

cI(x)− tl − rl
−cI(x)− tu + ru

x− sl − bl
−x− su + bu


. (4.78)

With Taylor’s approximation one has

c(y+
pri) = c(ypri) +∇c(ypri)∆ypri +O(‖∆ypri‖2) (4.79)

for y+
pri := ypri + ∆ypri. The KKT system (4.26) implies

c(ypri) +∇c(ypri)∆ypri = 0, (4.80)

leading to

c(y+
pri) = O(‖∆ypri‖2). (4.81)

As usual (see [28]), an SOC step ∆ysoc is defined by the conditions

c(y+
pri + ∆ysoc) = o(‖∆ypri‖2) and ∆ysoc = o(‖∆ypri‖). (4.82)

To compute an SOC step one employs Taylor’s formula again;

c(y+
pri + ∆ysoc) = c(y+

pri) +∇c(y+
pri)∆ysoc +O(‖∆ysoc‖2). (4.83)

If the LICQ condition holds, ∇c has full rank at least in a neighborhood of a solution x∗. A

solution ∆ysoc of the linear system

c(y+
pri) +∇c(y+

pri)∆ysoc = 0 (4.84)

is then an SOC step (see [28, pages 643 ff.]). Here, ∇c ∈ Rnd×np with nd < np holds and hence, the

solution of (4.84) is not unique. As a remedy, one often computes the minimum `2 norm solution

of the system. This solution can either be computed by the Moore-Penrose pseudoinverse ∇c+

(see [48] for details) via

∆ysoc = −∇c+c(y+
pri), ∇c+ = ∇cT

(
∇c∇cT

)−1
, (4.85)

or by solving the convex quadratic problem

min
p∈Rnp

1

2
‖p‖22 s.t. c(y+

pri) +∇c(y+
pri)p = 0. (4.86)

The latter is equivalent to the solution of the corresponding KKT system I ∇cT (y+
pri)

∇c(y+
pri) 0

 p

−λsoc

 = −

 0

c(y+
pri)

 (4.87)

Chapter 4. Interior-Point Methods 60

with some Lagrange multipliers λsoc ∈ Rnd . Equations (4.84)–(4.87) have the significant numerical

drawback that the Jacobians of the constraints have to be re-computed at y+
pri. Luckily, it is

possible to prove that a minimum `2 norm solution of

c(y+
pri) +∇c(ypri)∆ysoc = 0 (4.88)

is an SOC step, too. Here, (4.88) reads

∇cE(x)

I −I

−I −I

∇cI(x) −I

−∇cI(x) −I





∆xsoc

∆sl,soc

∆su,soc

∆tl,soc

∆tu,soc


= −



α+

β+
l

β+
u

ρ+
l

ρ+
u


. (4.89)

System (4.89) is underdetermined, too. To avoid additional matrix factorizations, ∆ysoc can be

computed by solving system (4.26) with a different upper right-hand side in which the upper block

is set to zero;

∇xL = φl = φu = ψl = ψu = 0. (4.90)

Applying the same reduction and expansion techniques as described in Section 4.1.1 but without

executing zero-operations coming from the modified right-hand side gives the following simplified

reduction and expansion schemes:

1. Modified reduction steps for solving the SOC KKT system:

γ = Φlβl − Φuβu, ρ̂ = ρl + Ψ−1ψ̂, ψ̂ = −ψ̂u, ψ̂u = Ψuρ, ρ = ρl + ρu. (4.91)

2. Modified expansion steps for solving the SOC KKT system:

∆tl = Ψ−1
(
−∆v̂ − ψ̂

)
, ∆tu = −∆tl + ρ. (4.92)

Algorithm 3 states the complete filter line-search algorithm.

61 4.1. Interior-Point Methods for Nonlinear Optimization

Algorithm 3: Filter Line-Search Algorithm

Input : Primal iterate y(k)
pri , primal search direction ∆y

(k)
pri , maximum primal step length

ᾱ
(k)
pri , filter margin κm > 0, minimum primal step length αmin

pri > 0.
1 Initialize backtracking line-search counter l = 0, set α(k)

pri,l = ᾱ
(k)
pri .

2 if α(k)
pri,l < αmin

pri then
3 Go to the feasibility restoration phase (see Sect. 4.1.3).

4 Compute trial point y+
pri = y

(k)
pri + α

(k)
pri,l∆y

(k)
pri .

5 if y+
pri is acceptable to F (cf. (4.72)) then

6 if θ(k)
pri ≤ θmin

pri and (4.73) holds then
7 if (4.74) holds then
8 Accept y+

pri, return step length α(k)
pri,l and search direction ∆y

(k)
pri .

9 else if l = 0 then
10 Go to SOC step computation (line 22).

11 else
12 if (4.75) holds then
13 Accept y+

pri.
14 if (4.73) or (4.74) does not hold then
15 Add pair (f+, θ+

pri) to F and remove all entries from the filter that are
dominated by (f+, θ+

pri).

16 return step length α(k)
pri,l and search direction ∆y

(k)
pri .

17 else if l = 0 then
18 Go to SOC step computation (line 22).

19 else if l = 0 then
20 Go to SOC step computation (line 22).

21 Set α(k)
pri,l+1 = κbα

(k)
pri,l, l← l + 1 and go to line 2.

// Second-Order Correction
22 Compute SOC step ∆ysoc as described in Section 4.1.2, the corrected search direction

∆y+
cor = α

(k)
pri,l∆y

(k)
pri + ∆ysoc and the new step length α+

soc using (4.15) with ∆y+
cor.

23 Compute new SOC trial point y+
soc = y

(k)
pri + α+

soc∆y
+
cor.

24 if y+
soc is acceptable to F (cf. (4.72)) then

25 if θ(k)
pri ≤ θmin

pri and (4.73) holds for θ+
pri = θpri(y

+
soc) and ∆y

(k)
pri replaced by ∆y+

cor then
26 if (4.74) holds for f+ = f(y+

soc) and ∆y
(k)
pri replaced by ∆y+

cor then
27 Accept y+

soc, return step length α+
soc and corrected search direction ∆y+

cor.
28 else if (4.75) holds for f+ = f(y+

soc) and θ+
pri = θpri(y

+
soc) then

29 Accept y+
soc.

30 if (4.73) or (4.74) (modified as above) does not hold then
31 Add pair (f+, θ+

pri) to F and remove all entries from the filter that are
dominated by (f+, θ+

pri).

32 return step length α+
soc and corrected search direction ∆y+

cor.

33 Discard α+
soc and ∆y+

cor, set α
(k)
pri,l+1 = κbα

(k)
pri,l, l← l + 1 and go to line 2.

Chapter 4. Interior-Point Methods 62

4.1.3 Feasibility Restoration Phase

If the backtracking filter line-search procedure (Algorithm 3) succeeds, it returns a primal step

length and, possibly, a corrected search direction. Both are used to compute the new iterate.

Nevertheless, it is possible that Algorithm 3 does not succeed. In this case, it is not possible to

compute a sufficiently large primal step length α
(k)
pri > αmin

pri that is acceptable and satisfies all

other required conditions. Before terminating the overall interior-point algorithm, it is possible to

revert to a so-called feasibility restoration phase. Here, the goal is to compute a new iterate that

is acceptable to the filter due to a decreased primal infeasibility. To achieve this goal, the same

interior-point algorithm is applied to the feasibility restoration phase problem

min
(x,s+,s−)

πE
∑
i∈E

(
s+
i + s−i

)
+ πI

∑
i∈I

(
s+
i + s−i

)
+ πV

∑
i∈V

(
s+
i + s−i

)
(4.93a)

s.t. cE(x) + s+
E − s

−
E = 0, (4.93b)

cI(x) + s+
I − s

−
I ∈ [rl, ru], (4.93c)

x+ s+
V − s

−
V ∈ [bl, bu], (4.93d)

s+
E , s
−
E , s

+
I , s
−
I , s

+
V , s
−
V ≥ 0. (4.93e)

s+ = (s+
E , s

+
I , s

+
V) and s− = (s−E , s

−
I , s
−
V) are vectors of slack variables (both in Rn+m+k). To avoid

a confusion in the notation, V denotes the set of variables, i.e. x = (xi)i∈V . Obviously, (4.93) is

always feasible and the original NLP (4.1) is feasible if (4.93) has a solution with objective value

0. πE , πI , πV > 0 are weighting factors. It is reasonable to avoid that the solution of the feasibility

restoration problem is too far away from the last iterate x(k) at which the feasibility restoration

phase is invoked. This can be done by incorporating an additional term like

πd

∥∥∥x− x(k)
∥∥∥2

2
, πd > 0, (4.94)

in the objective function (4.93a) and by initializing the algorithm for solving (4.93) with the current

iterate x(k). Problem (4.93) is then solved until an iterate is found that is acceptable to the filter

of the original NLP. More details on feasibility restoration phases within filter line-search methods

can be found in [41, 133, 134].

4.1.4 Updating the Barrier Parameter

The question when and how to update the barrier parameter µ is one of the most crucial algorithmic

options for interior-point methods. One can distinguish between adaptive and monotone strategies.

Adaptive strategies update the barrier parameter in every iteration. In practice, these methods are

often more efficient but lack global convergence properties. Monotone strategies update the barrier

parameter only after approximately solving the current barrier problem (cf. [91]). This approach,

63 4.1. Interior-Point Methods for Nonlinear Optimization

known as the Fiacco-McCormick approach, provides a global convergence theory for decreasing

sequences of barrier parameters µ↘ 0 [37].

In the interior-point method developed for this thesis, a mixed strategy is used that inherits

both the practical performance of adaptive methods as well as the global convergence properties of

the monotone Fiacco-McCormick approach. This is realized by following the ideas of Nocedal et

al. [90]: The algorithm stays in the adaptive mode as long as it makes progress towards a solution

of the NLP. If the algorithm fails to make progress it switches to a monotone mode where it stays

until the algorithm recognizes that it can return to the adaptive mode.

This section first describes the idea of the overall globalization framework for a mixed strategy

of barrier parameter updates and afterwards states some well-known update rules for the barrier

parameter.

A Globalization Framework for Mixed Updates of the Barrier Parameter

The globalization framework for adaptive updates of the barrier parameter involves a second fil-

ter line-search algorithm using another filter FNLP made up of the objective function f and the

constraint violation θpri for the NLP (4.4). The corresponding filter line-search algorithm is less

complicated than the one for the barrier problems described in Section 4.1.2. After computing

the search direction as described in Section 4.1.1, a backtracking line-search is applied until a trial

point is found that is acceptable to the filter FNLP. If no acceptable trial point can be found, the

algorithm resets the barrier parameter µ to

µ(k+1) = κrδ
(k), δ(k) :=

(
s(k)

)T
u(k) +

(
t(k)
)T
v(k)

2n+ 2k
, κr ∈ (0, 1) , (4.95)

and switches to the monotone mode. Now, the barrier parameter is fixed and the barrier problem

is approximately solved using the filter line-search procedure described in Section 4.1.2. If the

barrier problem is approximately solved, the barrier parameter is decreased and the next barrier

problem is solved. During the solution of the barrier problems it is instantly checked if a new

iterate is acceptable to the filter FNLP. If this is the case, the algorithm directly switches back

to the adaptive mode without solving the current barrier problem. δ(k) in (4.95) is called duality

measure in the following. Algorithm 4 formally states the method described above.

The rest of this section describes several methods for updating the barrier parameter.

Mehrotra’s Predictor-Corrector Method

Mehrotra’s predictor-corrector (MPC) algorithm is proposed in [85] for interior-point methods for

linear programming. Here, the idea is directly extended to the nonlinear case (cf. [90, 91]).

The method is embedded in the computation of search directions for the interior-point method.

First, the KKT system (4.26) is solved with µ = 0 yielding the so-called affine scaling direction

Chapter 4. Interior-Point Methods 64

Algorithm 4: Globalization Filter Line-Search Method for Mixed Barrier Parameter Updates

Input : Primal iterate y(k)
pri , primal search direction ∆y

(k)
pri and maximum primal step length

ᾱ
(k)
pri , constants κb ∈ (0, 1), κm1 > 0, κm2 > 0.

1 Set backtracking line-search counter l = 0 and initialize α(k)
pri,l = ᾱ

(k)
pri .

2 Compute filter margin κm = κm1
min(κm2

, (θ
(k)
dual)

2 + (θ
(k)
pri)

2 + (θ
(k)
compl)

2)

3 if α(k)
pri,l < αmin

pri then
4 Stop the algorithm; no acceptable step length can be found.

5 Compute trial point y+
pri = y

(k)
pri + α

(k)
pri,l∆y

(k)
pri .

6 if (f(y+
pri) + κm, θpri(y

+
pri) + κm) is acceptable to FNLP then

7 Update FNLP, return step length α(k)
pri,l.

8 else
9 Set α(k)

pri,l+1 = κbα
(k)
pri,l.

10 Increase backtracking line-search counter l← l + 1 and go to line 3.

∆y
(k)
aff . After temporarily using this direction with a maximum step length α

(k)
aff (determined by

the fraction-to-the-boundary rule (4.15) with τ = 1), i.e.

y
(k)
aff = y(k) + α

(k)
aff ∆y

(k)
aff , (4.96)

the so-called affine duality measure

δ
(k)
aff :=

(
s

(k)
aff

)T
u

(k)
aff +

(
t
(k)
aff

)T
v

(k)
aff

2n+ 2k
(4.97)

can be computed. Together with the current duality measure δ(k) the centering parameter σ(k) is

determined by Mehrotra’s heuristic (cf. [85, 91]);

σ(k) =

(
δ

(k)
aff

δ(k)

)3

. (4.98)

Finally, the update of the barrier parameter is computed by

µ(k+1) = σ(k)µ(k). (4.99)

Next, the corrector step is computed. For this, system (4.26) is solved with µ = µ(k+1) and

additional corrector contributions to the right-hand side quantities φl, φu, ψl, ψu (cf. [91]). Thus,

system (4.26) is solved with the modified right-hand sides

φ
(k)
l,cor = φ

(k)
l +

(
S

(k)
l

)−1

∆S
(k)
l,aff∆U

(k)
l,affe, (4.100a)

φ(k)
u,cor = φ(k)

u +
(
S(k)
u

)−1

∆S
(k)
u,aff∆U

(k)
u,affe, (4.100b)

ψ
(k)
l,cor = ψ

(k)
l +

(
T

(k)
l

)−1

∆T
(k)
l,aff∆V

(k)
l,affe, (4.100c)

ψ(k)
u,cor = ψ(k)

u +
(
T (k)
u

)−1

∆T
(k)
u,aff∆V

(k)
u,affe. (4.100d)

65 4.1. Interior-Point Methods for Nonlinear Optimization

The corrector step is finally used as the search direction for the current iteration and µ(k+1) from

(4.99) is used as the new barrier parameter.

There are no additional matrix factorizations required in the corrector step. Only the barrier

parameter µ changes, influencing only the right-hand side of the KKT system. This is a signi-

ficant advantage of primal-dual methods that solve the KKT system in the form of (4.26). For

primal methods, µ also appears in the KKT matrix (cf. Section 4.1.1) leading to separate matrix

factorizations for the predictor and the corrector step, respectively.

The LOQO Rule

The LOQO rule

µ(k+1) = κL1
min

(
(1− κL2

)
1− ξ
ξ

, 2

)3

δ(k), (4.101)

with

κL1
> 0, κL2

∈ (0, 1) (4.102)

and

ξ =
1

δ(k)
min

(
min

i=1,...,n
s

(k)
i u

(k)
i ,min

i∈I
t
(k)
i v

(k)
i

)
(4.103)

is published by Vanderbei and Shanno in [128] and is implemented in the interior-point code LOQO

[127].

The Ipopt Rule

In Ipopt [134], the barrier parameter is updated using the formula

µ(k+1) = min
(
κI1µ

(k),
(
µ(k)

)κI2)
, (4.104)

with constants κI1 ∈ (0, 1), κI2 ∈ (1, 2).

Decreasing Sequences of Barrier Parameters and a Numerical Safeguard

To apply the barrier method convergence theory of Fiacco and McCormick, one has to ensure

that a sequence of barrier problems with decreasing barrier parameters µ ↘ 0 is solved. The

Ipopt rule generates a decreasing sequence of barrier parameters since from (4.104) directly follows

µ(k+1) < µ(k). This is not the case for the LOQO rule and Mehrotra’s predictor-corrector method.

For these two methods a decrease of µ is guaranteed by additionally setting

µ(k+1) ← min
(
µ(k+1), κdµ

(k)
)
, κd ∈ (0, 1) . (4.105)

Finally, an additional numerical safeguard is incorporated. If µ becomes very small, the barrier

term diagonal matrices Φ and Ψ (cf. (4.36) and (4.41)) often become very small, too, leading

Chapter 4. Interior-Point Methods 66

to ill-conditioned KKT systems. To avoid this situation, it is ensured that µ does not become

unnecessary small by setting

µ(k+1) ← max
(
κnεtol, µ

(k+1)
)
, κn ∈ (0, 1). (4.106)

4.1.5 Starting Point Strategies

The performance of interior-point methods depends largely on the quality of the starting point.

Two different situations can be distinguished depending on whether the user provides an initial

primal estimate (y(0)
pri) or a primal and dual estimate (y

(0)
pri , y

(0)
dual). If the user does not supply any

starting point, y(0)
pri = 0 is set. The main aspects for determining the quality of the starting point

are the following:

Primal Feasibility Obviously, it is helpful to start the algorithm with an almost feasible point,

i.e. with a starting point y(0) with θ(0)
pri not being too large.

Interiority The proposed interior-point method guarantees that the primal and dual slack vari-

ables s, t and u, v stay strictly positive for each iterate (cf. (4.15)). Hence, the starting point

should not be too close to its bounds. Otherwise, the practical experience shows that the

first step lengths are often very short and thus do not make any significant progress towards

a solution.

Centrality The concept of centrality refers to that of a central path (see [91]). An iterate is well

centered if its distance to the central path, i.e. θcompl(y;µ), is not too large. This goal may

conflict with the goal of interiority, especially for small barrier parameters µ.

Dual Feasibility Intuitively, a good starting point should not be too far away from dual feasibil-

ity, i.e. θ(0)
dual should not be too large.

Since θpri only depends on primal variables, no dual quantities have to be given to reach the goal

of small primal infeasibility. All other aspects depend on primal and dual estimates.

Standard initialization schemes try to address at least some of the aspects discussed above.

Algorithm 5 states the default mode of the implementation developed for this thesis. Primal

infeasibility concerning variable bounds and range constraints is addressed in lines 2, 3, 10 and 11.

The perturbations pli and pui are chosen as in the Ipopt code [134]. Centrality and interiority is

tried to achieve in lines 4–7 and 10–13. Finally, dual feasibility is addressed in line 14.

67 4.1. Interior-Point Methods for Nonlinear Optimization

Algorithm 5: Default Interior-Point Method Initialization Scheme
Input : User provided primal starting point x̄, initial barrier parameter µ(0), minimum

distance to the boundary κd > 0, constants κp1 , κp2 > 0.
1 for i = 1, . . . , n do
2 Set x(0)

i = max(x̄i, bli + pli) with pli := min(κp1 max(1, |bli |), κp2 (bui − bli)).
3 Set x(0)

i = min(x̄i, bui − pui) with pui := min(κp1 max(1, |bui |), κp2 (bui − bli)).
4 Set s(0)

li
= max(x

(0)
i − bli , κd).

5 Set s(0)
ui = max(bui − x

(0)
i , κd).

6 Set u(0)
li

= max(µ(0)/s
(0)
li
, κd).

7 Set u(0)
ui = max(µ(0)/s

(0)
ui , κd).

8 Evaluate c(0)
I := cI(x(0)).

9 for all i ∈ I do
10 Set tli = max(c

(0)
i − rli , κd).

11 Set tui = max(rui − c
(0)
i , κd).

12 Set v(0)
li

= max(µ(0)/t
(0)
li
, κd).

13 Set v(0)
ui = max(µ(0)/t

(0)
ui , κd).

14 Evaluate c(0)
E := cE(x

(0)), compute

b = g(0) −
(
∇c(0)
I

)T (
v

(0)
l − v

(0)
u

)
−
(
u

(0)
l − u

(0)
u

)
(4.107)

and solve the linear least-squares problem

z(0) := arg min
z

1

2

∥∥∥∥(∇c(0)
E

)T
z − b

∥∥∥∥2

2

(4.108)

to initialize z.

4.1.6 Problem Scaling

The overall interior-point method is significantly affected by the scaling of the problem. However,

it is not clear how to scale a nonlinear problem in a unique way leading to improved efficiency

and robustness. Moreover, problem scaling mainly depends on the concrete model formulation.

Nevertheless, an automatic problem scaling is implemented in a way such that the problem data

f, cE and cI are replaced by

f ← σff, cE ← ΣEcE , cE ← ΣIcI . (4.109)

Here, σf > 0 is a positive real number and ΣE = diag((σi)i∈E) > 0 ∈ Rm×m and ΣI =

diag((σi)i∈I) > 0 ∈ Rk×k are positive definite diagonal matrices. In the concrete implementa-

tion for this thesis, the scaling factors are computed following the ideas of the Ipopt code [134];

Chapter 4. Interior-Point Methods 68

σf = min

(
1,

κg
‖g(x(0))‖∞

)
, (4.110a)

σi = min

(
1,

κg

‖c(0)
i ‖∞

)
, i ∈ E , (4.110b)

σi = min

(
1,

κg

‖c(0)
i ‖∞

)
, i ∈ I. (4.110c)

κg > 0 is a constant such that all components of the scaled gradients are less than or equal to κg

at the starting point.

4.1.7 Heuristics and Algorithmic Details

This section deals with small enhancements of the presented interior-point method. These en-

hancements are designed to improve the method on some difficult instances but do not harm the

performance and robustness of the method on other instances.

Jamming and Shifting of Slack Variables

In some cases the problem appears that some of the primal slack variables are very close to

their bounds and that the corresponding search directions are negative with large absolute values.

This effect is called jamming. To handle it, Benson et al. [9] suggest to shift the bound slack

variables sli , i ∈ Isl ⊂ {1, . . . , n} , and sui , i ∈ Isu ⊂ {1, . . . , n} , as well as the range slack variables

tli , i ∈ Itl ⊂ I, and tui , i ∈ Itu ⊂ I. Here,

Isl :=

{
i ∈ {1, . . . , n} : sli < κs1 and

∆sli
sli

< −κs2
}
, (4.111a)

Isu :=

{
i ∈ {1, . . . , n} : sui < κs1 and

∆sui
sui

< −κs2
}
, (4.111b)

Itl :=

{
i ∈ I : tli < κs1 and

∆tli
tli

< −κs2
}
, (4.111c)

Itu :=

{
i ∈ I : tui < κs1 and

∆tui
tui

< −κs2
}
, (4.111d)

with constants κs1 , κs2 > 0. Typically, κs1 is chosen to be small and κs2 is chosen to be large. The

shifting is then defined by

sli ← sli +
n− |Isl |∑

i∈{1,...,n}\Isl
sli
, sui ← sui +

n− |Isu |∑
i∈{1,...,n}\Isu

sui
, (4.112a)

tli ← tli +
k − |Itl |∑
i∈I\Itl

tli
, tui ← tui +

k − |Itu |∑
i∈I\Itu

tui
. (4.112b)

69 4.1. Interior-Point Methods for Nonlinear Optimization

Resetting of Dual Variables

For some instances diverging dual iterates and search directions can be noticed in practice, whereas

primal search directions are very short and primal feasibility is already reached. This situation can

mostly be observed for

1. badly scaled instances,

2. instances without strict relative interior or

3. instances not satisfying standard constraint qualifications like the LICQ condition.

In some of these cases it might be helpful to reset the dual variables to z = 0 and

uli =

κd, if sli < κe1

min(uli , κd), else
, uui =

κd, if sui < κe1

min(uui , κd), else
, (4.113a)

vli =

κd, if tli < κe1

min(vli , κd), else
, vui =

κd, if tui < κe1

min(vui , κd), else
, (4.113b)

whenever

θpri < κe2 , θdual > κe3 and ‖ydual‖ > κe4 (4.114)

holds. κd is the same parameter as in Algorithm 5 and κe1 , κe2 , κe3 and κe4 can be chosen arbi-

trarily. Typically, κe1 and κe2 are chosen to be small and κe3 and κe4 are chosen to be large.

The Special Case of Bound-Feasible Starting Points

For huge-scale applications (see Section 6.2 for an example) it can be crucial to scale down the

size of the vectors y and ∆y. This can be realized within the so-called bound-feasible case. If the

algorithm starts with a bound-feasible set of primal variables, i.e. x ∈ [bl, bu], the algorithm can

be modified so that the feasibility with respect to the variable bounds is conserved from iteration

to iteration. For this, identifying

sl = x− bl and su = bu − x, (4.115)

yields

βl = 0, ∆sl = ∆x, −∆ul = Φl∆x+ φl, φ̄l = φl, (4.116)

βu = 0, ∆su = −∆x, −∆uu = −Φu∆x+ φu, φ̄u = φu. (4.117)

In this case, sl and su are not required as iteration variables. Thus, sl, su, ∆sl and ∆su do not

have to be stored explicitly. Instead, simple operations using x,∆x, bl and bu are performed as

stated above. With these modifications, the KKT system (4.26) reduces to a system in R3n+m+4k.

Chapter 4. Interior-Point Methods 70

The Special Case of Quadratic and Linear Problems

The presented interior-point method can be applied to linear and (convex) quadratic optimization

problems, too. These problems are given as

min
x∈Rn

1

2
xTHx+ cTx (4.118a)

s.t. Ax− a = 0, (4.118b)

Bx ∈ [rl, ru] , (4.118c)

x ∈ [bl, bu] , (4.118d)

with x, c, bl, bu ∈ Rn, H ∈ Rn×n, A ∈ Rm×n, a ∈ Rm, B ∈ Rk×n and rl, ru ∈ Rk. For linear

problems, H = 0 holds. The KKT system (4.26) as well as the according reduction and expansion

techniques stay the same if one identifies

f(x) =
1

2
xTHx+ cTx, cE(x) = Ax− a, cI(x) = Bx. (4.119a)

∇2
xxL = H, ∇cE = A, ∇cI = B. (4.119b)

In addition, a globalization strategy like a filter line-search is not required for linear and convex

quadratic problems.

IPM Reduction and Expansion

Solving the KKT system (4.26) and storing the iterates as well as the right-hand sides of the

KKT system and the search directions are the most time and memory consuming tasks in interior-

point methods. Thus, it is reasonable to employ efficient solution techniques and vector memory

management. As it is already mentioned, the operations for solving the complete KKT system

(4.26) consist of a reduction, a solution and an expansion step. Table 4.1 gives an overview of the

memory management within a complete iteration of the interior-point method. The number above

the arrows defines the computation order for each step. All operations with the same number can

be done in parallel because they are independent of each other. The notation a → b means that

the memory of vector a is overwritten by b and that the computation of b requires a. Downward

(↘) or upward arrows (↗) stand for a swapping of the corresponding memory blocks.

For the bound-feasible case, the full KKT system shrinks to R3n+m+4k. The vector management

of the reduction, solution and expansion steps changes as it is shown in Table 4.2.

4.1.8 The Complete Interior-Point Algorithm

By now, the complete interior-point method can be stated (see Algorithm 6).

71 4.1. Interior-Point Methods for Nonlinear Optimization

Block size IPM reduction KKT solution IPM expansion

n ∇xL
2−→ γ γ −→ ∆x ∆x −→ ∆x

n φl
1−→ φ̄l φ̄l ↘ βl βl

5−→ ∆sl

n φu
1−→ φ̄u φ̄u ↘ βu βu

5−→ ∆su

k ψl
5−→ ψ̂ ψ̂ −→ ψ̂ ψ̂

1−→ ∆tl

k ψu
4−→ ψ̂u ψ̂u ↘ ρ ρ

2−→ ∆tu

m α −→ α α −→ −∆z −∆z −→ −∆z

n βl −→ βl βl ↗ φ̄l φ̄l
5−→ −∆ul

n βu −→ βu βu ↗ φ̄u φ̄u
5−→ −∆uu

k ρl
6−→ ρ̂ ρ̂ −→ −∆v̂ −∆v̂

4−→ −∆vl

k ρu
3−→ ρ ρ ↗ ψ̂u ψ̂u

3−→ −∆vu

Table 4.1: Vector management for IPM reduction, reduced KKT system solution and IPM expan-

sion.

Block size IPM reduction KKT solution IPM expansion

n ∇xL
1−→ γ γ

1−→ ∆x ∆x −→ ∆x

k ψl
3−→ ψ̂ ψ̂ −→ ψ̂ ψ̂

1−→ ∆tl

k ψu
2−→ ψ̂u ψ̂u

2

↘ ρ ρ
2−→ ∆tu

m α −→ α α
1−→ −∆z −∆z −→ −∆z

n φl −→ φl φl −→ φl φl
1−→ −∆ul

n φu −→ φu φu −→ φ̄u φ̄u
1−→ −∆uu

k ρl
4−→ ρ̂ ρ̂

1−→ −∆v̂ −∆v̂
4−→ −∆vl

k ρu
1−→ ρ ρ

2

↗ ψ̂u ψ̂u
3−→ −∆vu

Table 4.2: Vector management for IPM reduction, reduced KKT system solution and IPM expan-

sion in the bound-feasible case.

Chapter 4. Interior-Point Methods 72

Algorithm 6: Filter Line-Search Interior-Point Algorithm with Mixed Barrier Parameter
Updates
Input : User provided starting point x̄ for the original NLP (4.1), initial barrier parameter

µ(0), vector of algorithmic constants κ.
1 Set iteration counter k = 0, initialize filter FNLP using (4.76) and (4.77), set
µ-mode = adaptive.

2 Call Algorithm 5 with x̄ and µ(0) to obtain the starting point y(0).
3 while NLP termination criterion (4.23) does not hold do
4 Increase iteration counter k ← k + 1.
5 if µ-mode = adaptive then /* adaptive mode */
6 Compute µ(k) by any rule (cf. Section 4.1.4) and update τ using (4.16).
7 Compute search direction ∆y(k) as described in Section 4.1.1.
8 Compute maximum primal and dual step lengths ᾱ(k)

pri , ᾱ
(k)
dual using (4.15).

9 Call Algorithm 4 with primal iterate y(k)
pri , primal search direction ∆y

(k)
pri and

maximum primal step length ᾱ(k)
pri to obtain α(k)

pri .
10 if Algorithm 4 succeeds then /* stay adaptive */
11 Compute new primal and dual iterates y(k+1)

pri , y
(k+1)
dual using (4.17) with primal

step length α(k)
pri and dual step length ᾱ(k)

dual.
12 else /* switch to monotone mode */
13 Set µ-mode ← monotone, reset barrier parameter µ(k+1) using (4.95), update τ

using (4.16), reset barrier problem filter Fµ using (4.76) and (4.77).

14 else /* monotone mode */
15 if barrier problem termination criterion (4.22) holds then
16 Compute µ(k) by any rule (cf. Section 4.1.4) and update τ using (4.16).
17 Reset barrier problem filter Fµ using (4.76) and (4.77).

18 Compute search direction ∆y(k) as described in Section 4.1.1.
19 Compute maximum primal and dual step lengths ᾱ(k)

pri , ᾱ
(k)
dual using (4.15).

20 Call Algorithm 3 with primal iterate y(k)
pri , primal search direction ∆y

(k)
pri and

maximum primal step length ᾱ(k)
pri to obtain α(k)

pri .
21 if Algorithm 3 succeeds then
22 Compute new primal and dual iterates y(k+1)

pri , y
(k+1)
dual using (4.17) with primal

step length α(k)
pri and dual step length ᾱ(k)

dual.
23 if y(k+1)

pri is acceptable to the filter FNLP then
24 Set µ-mode ← adaptive.

25 else
26 Go to feasibility restoration phase.

27 return optimal solution y(k).

4.1.9 Convergence Analysis

The described interior-point method is strongly oriented towards the implementation described in

[134] and the convergence results given in [133] for the interior-point code Ipopt. By this reason,

the proofs of global and local convergence are not given here again but only the main assumptions

and results are stated.

73 4.1. Interior-Point Methods for Nonlinear Optimization

The following assumptions are taken directly from [133] and allow to prove global convergence

results for the barrier problem (4.6) for a fixed barrier parameter µ. By driving µ to zero it is clear

that the algorithm finally reaches an optimal solution of the original NLP (4.1).

Assumption 1. Let y(0) be the starting point and (y
(k)
pri) the sequence of iterates generated by

Algorithm 6 (with κs1 = 1 in (4.73)). Moreover, assume that the feasibility restoration phase

always terminates successfully and that Algorithm 6 does not stop with a KKT point at line 3.

(A1) There exists an open set O ⊂ Rnp with [y
(k)
pri , y

(k)
pri + ᾱ

(k)
pri ∆y

(k)
pri] ⊂ O for all iterations k and

f, cE , cI are differentiable and bounded on O and their derivatives are bounded and Lipschitz-

continuous on O.

(A2) The Hessians H(k) of the Lagrangian of the original NLP (4.1) or, if an approximation is

used, the matrices W (k) approximating this Lagrangian are uniformly bounded.

(A3) The matrices Ω
(k)
H = diag(H(k),Φ

(k)
l ,Φ

(k)
u ,Ψ

(k)
l ,Ψ

(k)
u) with Φ

(k)
l ,Φ

(k)
u ,Ψ

(k)
l ,Ψ

(k)
u defined by

(4.29) are uniformly positive definite on the null-space of the Jacobian of the constraints of

(4.6), i.e. on ker(∇c(k)) with

∇c(k) =



∇c(k)
E

I −I

−I −I

∇c(k)
I −I

−∇c(k)
I −I


. (4.120)

Equivalently, one may assume that there exists a constant C1 > 0 such that

λmin((Z(k))TΩ
(k)
H Z(k)) ≥ C1 (4.121)

holds for all iterations k. Here, Z(k) is a matrix whose columns build an orthonormal basis of

the null-space of ∇c(k) and λmin(M) denotes the smallest eigenvalue of the symmetric matrix

M .

(A4) There exists a constant C2 > 0 such that σmin(∇c(k)) ≥ C2 for all iterations k. Here,

σmin(M) denotes the smallest singular value of the matrix M .

(A5) There exists a constant C3 > 0 such that Algorithm 6 does not enter the feasibility restoration

phase if θ(k)
pri ≤ C3.

(A6) The slack variables s(k) and t(k) are bounded for all iterations k.

(A7) The gradients of the active constraints, i.e. ∇c(y∗) and

ei+n for all i with s∗li = 0, ei+2n for all i with s∗ui = 0, (4.122a)

ei+3n for all i with t∗li = 0, ei+3n+k for all i with t∗ui = 0 (4.122b)

Chapter 4. Interior-Point Methods 74

are linearly independent for all feasible limit points y∗ of (y(k)).

(A8) There exist constants δ1, δ2 > 0 such that whenever the feasibility restoration phase is called

in an iteration k with θ(k)
pri < δ2, it returns a new iterate with s(k+1)

i ≥ s(k)
i and t(k+1)

i ≥ t(k)
i

for all components s(k)
i and t(k)

i with s(k)
i ≤ δ1 and t(k)

i ≤ δ1.

These assumptions are slightly stronger than the ones used by Wächter and Biegler in [133].

More precisely, Wächter and Biegler additionally consider the case in which the feasibility restora-

tion phase may be called after an unsuccessful computation of the search direction.

Note that it is remarked in [133] that the “primal Hessian” in (A3) can also be replaced by

the “primal-dual Hessian” (i.e. by using Φ
(k)
l ,Φ

(k)
u ,Ψ

(k)
l ,Ψ

(k)
u as defined in (4.25)) under additional

assumptions.

In [133], the following global convergence theorems are proved.

Theorem 7 (Feasibility: [133], Theorem 1). Suppose Assumption 1 holds. Then limk→∞ θ
(k)
pri = 0.

Theorem 8 (Optimality: [133], Theorem 2). Suppose Assumption 1 holds and let χ(ypri) be the

first-order criticality measure defined by

χ(ypri) =
∥∥∥− (ZTHZ)−1

ZT
(
g −H

(
(∇cY)

−1
c
))∥∥∥

2
. (4.123)

Here, the columns of Z build an orthonormal basis of the null-space of ∇c and Y is a matrix such

that [Y Z] is an orthonormal basis of Rnp . Then lim infk→∞ χ(k) = 0.

In [133] it is also shown that χ is a first-order criticality measure under Assumption 1. Addi-

tionally, the following theorem holds, guaranteeing that the barrier method is well-defined. This

means that the objective function ϕµ of the barrier problem (4.6) is well-defined.

Theorem 9 (Well-Posedness of Algorithm 6: [133], Theorem 3). Suppose Assumption 1 holds.

Then there exists a constant ε > 0 such that (s(k), t(k)) ≥ εe holds in every iteration k.

Finally, Nocedal et al. proved a global convergence result in [90] for the mixed barrier parameter

update strategy.

Theorem 10. Suppose Assumption 1 holds and that the monotone mode in Algorithm 6 always

terminates successfully. Then the KKT error θ2
dual + θ2

pri + θ2
compl converges to zero.

75 4.2. An Interior-Point Method for Nonsmooth Nonlinear Problems

4.2 An Interior-Point Method for Nonsmooth Nonlinear Prob-

lems

In this section an extended interior-point algorithm for a special subclass of nonsmooth nonlinear

optimization problems is presented.

Most of the existing methods for nonsmooth optimization with convex objective function and

convex constraints are so-called bundle-methods. This type of methods tries to approximate the

nonsmooth functions by a bundle of hyperplanes. See the books of Hiriart-Urruty and Lemaréchal

[55, 56] for the details. A first attempt to use filters to force global convergence for nonsmooth

optimization algorithms is made by Fletcher and Leyffer in [40]. A nice overview of software for

nonsmooth optimization can be found in [64].

The method proposed in the following is based on Algorithm 6. To be more specific, only those

algorithmic building blocks of Algorithm 6 are replaced or modified that are required to handle

nonsmooth constrained problems.

The section is organized as follows. In Section 4.2.1 the problem class is defined that is con-

sidered in the following. The next section describes the main algorithmic strategy. Here, it should

be remarked that some aspects of the presented strategy are influenced by discussions with An-

dreas Wächter. The algorithmic building blocks that are especially designed to handle nonsmooth

constrained problems are discussed in Section 4.2.3. Finally, Section 4.2.4 states the complete

algorithm.

4.2.1 Definition of the Problem Class

The aim of this section is to define a special subclass of nonsmooth constrained optimization

problems. This subclass consists of problems whose constraints c = (cE , cI) are piecewise smooth

(i.e. piecewise C2) and locally Lipschitz-continuous. Furthermore, the constraints have to satisfy

two additional properties. These properties are the separable nonsmoothness property and the

existence of so-called localization functions. Both will be defined and illustrated in the following.

Definition 16 (Separable Nonsmoothness Property). Let ci(x) = 0 be an equality constraint

with piecewise smooth and locally Lipschitz-continuous ci. The constraint ci(x) = 0 satisfies the

separable nonsmoothness property if there exist

1. a single variable xiν , iν ∈ {1, . . . , n}, and a univariate, piecewise smooth and locally Lipschitz-

continuous, convex function θi : R→ R depending on xiν ∈ R (i.e. θi = θi(xiν)),

2. a smooth function c̃i : Rn+1 → R depending on x ∈ Rn and on an additional auxiliary

variable xia ∈ R (i.e., ia /∈ {1, . . . , n}),

Chapter 4. Interior-Point Methods 76

such that ci (x) = 0 can be equivalently restated as

c̃i (x, xia) = 0 with xia subject to xia ± θi (xiν) = 0. (4.124)

c̃i is called a lifting of ci. The analogous definition also applies to inequality constraints.

The motivation of this definition is to formalize the situation in which the nonsmoothness of

a constraint can be shifted into a univariate, piecewise smooth and locally Lipschitz-continuous

function. This makes it possible to construct a modified stationarity test for piecewise smooth and

locally Lipschitz-continuous constrained problems (cf. Theorem 6) that can be implemented in an

efficient way. The following example illustrates the definition.

Example 2. Consider the piecewise smooth and locally Lipschitz-continuous constraint ci(x1, x2) =

0 with

ci (x1, x2) = x2
1 + min(x2, 0)− 42. (4.125)

With

x3 + θi (x2) = 0, θi (x2) := −min(x2, 0), (4.126)

and

c̃i (x1, x2, x3) := x2
1 + x3 − 42, (4.127)

one can see that ci satisfies the separable nonsmoothness property:

c̃i (x1, x2, x3) = x2
1 + x3 − 42 = 0 (4.128a)

⇐⇒ x2
1 + min(x2, 0)− 42 = 0 (4.128b)

⇐⇒ ci (x1, x2) = 0. (4.128c)

In this example iν = 2 and ia = 3 holds.

The next example lists some functions that are often used for modeling of nonsmooth aspects

and that can be used as the function θi in Definition 16.

Example 3. The functions min(x1, 0),max(x1, 0) and the absolute value function |x1| are univari-

ate, piecewise smooth and locally Lipschitz-continuous functions. max(x1, 0) and |x1| are convex.

min(x1, 0) is concave but fits into the situation of Definition 16 due to the arbitrary sign of θi in

(4.124) because −min(x1, 0) is convex.

Definition 16 is not only applicable to constraints in which the nonsmooth part depends on only

one variable. The next example presents reformulations for two multivariate nonsmooth constraints

that often appear in practice.

77 4.2. An Interior-Point Method for Nonsmooth Nonlinear Problems

Example 4. 1. Consider the bivariate absolute value constraint c(x1, x2) = |x1 − x2| = 0. By

introducing an auxiliary variable x3 subject to the constraint

caux (x1, x2, x3) = x1 − x2 − x3 = 0 (4.129)

one can rewrite c(x1, x2) = 0 equivalently by

caux (x1, x2, x3) = x1 − x2 − x3 = 0 and ĉ (x3) = |x3| = 0. (4.130)

ĉ (x3) fits into the framework of Definition 16.

2. Consider the bivariate constraint c(x1, x2) = max(x1, x2) = 0. One can easily see that

c(x1, x2) =
x1 + x2 + |x1 − x2|

2
(4.131)

holds. Using the reformulation of the preceding example one sees that this fits into the frame-

work of Definition 16, too.

In the following, smooth and nonsmooth constraints of a problem are explicitly distinguished.

For this, the set of nonsmooth constraints is denoted by the index set N ⊂ (E ∪ I). The sec-

ond property that the constraints under consideration have to satisfy is that there exist so-called

localization functions for all nonsmooth constraints ci, i ∈ N .

Definition 17 (Localization Functions). Let ci, i ∈ N , be a piecewise smooth and locally Lipschitz-

continuous function. A function `i(x) : Rn → R is called a localization function for ci if and only

if

ci ∈ C2 (S (`i)) , (4.132)

where

S (`i) := {x ∈ Rn : `i(x) 6= 0} (4.133)

denotes the set of points at which `i does not vanish. The set

Kci = {x ∈ Rn : `i (x) = 0} (4.134)

is the set of points at which ci fails to be differentiable. The set

K = {x ∈ Rn : ∃i ∈ N with `i (x) = 0} =
⋃

i∈E∪I
Kci (4.135)

is the set of points at which at least one constraint ci fails to be differentiable.

Note that it is not possible to use the support supp(`i) in (4.132), because supp(`i) is defined

to be the closure of S. The purpose of localization functions is that one can easily check whether

a constraint ci is smooth or not at a given point x ∈ Rn. The next example shows that it is easy

to find localization functions for a lot of nonsmooth functions that appear in practice.

Chapter 4. Interior-Point Methods 78

Example 5. 1. The function `(x1) = x1 is a localization function for the constraints

c1 (x1) = |x1| = 0, c2 (x1) = min(x1, 0) = 0, c3 (x1) = max(x1, 0) = 0. (4.136)

2. The function `(x1, x2) = x1 − x2 is a localization function for the constraints

c4 (x1, x2) = |x1 − x2| = 0, (4.137a)

c5 (x1, x2) = min(x1, x2) = 0, (4.137b)

c6 (x1, x2) = max(x1, x2) = 0. (4.137c)

The rest of this section treats problem (4.1) where f ∈ C2 and the constraints c = (cE , cI)

satisfy the following conditions:

(N1) c is piecewise smooth, i.e. piecewise C2, and locally Lipschitz-continuous.

(N2) All nonsmooth constraints ci, i ∈ N , satisfy the separable nonsmoothness property.

(N3) There exist localization functions for all nonsmooth constraints ci, i ∈ N .

Definition 18. A problem of type (4.1) satisfying (N1)–(N3) is called an optimization problem

with locatable and separable nonsmoothness.

For the description of the interior-point algorithm that solves optimization problems with lo-

catable and separable nonsmoothness it is assumed that the problem is already given in the form of

(4.124). Thus, the problem is already given with auxiliary variables xia and auxiliary constraints

xia ± θi(xiν) = 0 for all nonsmooth constraints ci. In particular, all nonsmooth constraints are

already replaced by their liftings. This leads to the following general problem formulation:

min
(x,xa)

f (x) (4.138a)

s.t. ci (x) = 0 ∀i ∈ E \ N , (4.138b)

ci (x) ∈ [rl, ru] ∀i ∈ I \ N , (4.138c)

c̃i (x, xia) = 0 ∀i ∈ E ∩ N , (4.138d)

c̃i (x, xia) ∈ [rl, ru] ∀i ∈ I ∩ N , (4.138e)

ϑi (xia , xiν) = xia ± θi (xiν) = 0 ∀i ∈ N , (4.138f)

x ∈ [bl, bu] , (4.138g)

x ∈ Rn, xa = (xia)i∈N ∈ R|N |. (4.138h)

In the following, the variable vector is abbreviated by x̂ := (x, xa) ∈ RnN with nN = n + |N |.

If the distinction between x and xa is not required, the variable vector is also abbreviated by x

again. Notice that the assumption of a smooth objective function is without loss of generality:

79 4.2. An Interior-Point Method for Nonsmooth Nonlinear Problems

A nonsmooth objective function f(x) can easily be substituted by an auxiliary variable xf that

is minimized and that is subject to the additional nonsmooth equality constraint cf (x, xf) =

xf − f(x) = 0. Obviously, the introduced constraint cf (x, xf) has to satisfy the conditions (N1)–

(N3).

4.2.2 Basic Algorithmic Strategy

The main idea of the following is to modify the basic interior-point method discussed in Section 4.1

as little as possible and as much as necessary such that it can handle optimization problems

with locatable and separable nonsmoothness. Thus, only those algorithmic building blocks of

Algorithm 6 are replaced that are faced with nonsmooth aspects of the problem.

The main idea of the modification of the method is that the algorithm tries to classify the

region in which an iterate lies. With this classification the algorithm decides if it tries to handle

nonsmooth aspects of the problem explicitly or if it tries to avoid to handle them. Based on this

general strategy, the status of the algorithm is split into three modes:

No convergence If an iterate y(k) has a stationarity measure e(0)(k) (see (4.18)) with

e (0)
(k)

> κmεtol, κm > 1, (4.139)

the algorithm is in the no-convergence mode. In this mode the algorithm tries to avoid points

y with `i(y) = 0 for all nonsmooth constraints ci, i ∈ N . This is realized within modified

backtracking line-search algorithms (see below). The rest of the algorithm stays the same.

Convergence in a smooth region If an iterate y(k) is reached with

εtol < e (0)
(k)

< κmεtol (4.140)

and ∣∣∣`i (y(k)
)∣∣∣ > εN ∀i ∈ N , εN > 0, (4.141)

the algorithm is in the smooth-region-convergence mode. In this case it is assumed that the

current iterate is in a region of local convergence and that there is no point y near y(k) with

`i(y) = 0 for all nonsmooth constraints ci, i ∈ N . In the smooth-region-convergence mode

only the backtracking line-search is modified as it is the case in the no-convergence mode.

Convergence in a nonsmooth region If an iterate y(k) is reached satisfying (4.140) and

∃i ∈ N with
∣∣∣`i (y(k)

)∣∣∣ ≤ εN , (4.142)

the algorithm is in the nonsmooth-region-convergence mode. Here, it is assumed that the

current iterate is in a region of local convergence and that it is likely that the limit point

Chapter 4. Interior-Point Methods 80

to which the algorithm may converge is a point y∗ ∈ K. The algorithmic strategy is then

modified in a way such that the algorithm avoids to cross over points at which some problem

data fails to be differentiable. Thus, if there is a point of non-differentiability y ∈ K in the

search direction ∆y(k), i.e.

∃y ∈ K ∩ R̄
(
y

(k)
pri ,∆y

(k)
pri , ᾱ

(k)
pri

)
, (4.143)

with

R̄
(
y

(k)
pri ,∆y

(k)
pri , ᾱ

(k)
pri

)
:=
{
y

(k)
pri + α∆y

(k)
pri : α ∈

(
0, ᾱ

(k)
pri

]}
, (4.144)

the algorithm “visits” y and checks a modified stationarity criterion for nonsmooth problems.

If the modified stationarity test passes, the algorithm stops and returns y as a local solution

of the nonsmooth problem. Otherwise, the algorithm proceeds with special problem-tailored

generalized gradients for those constraints that fail to be differentiable at the iterate. These

generalized gradients are used in the Jacobians and the Hessian that are part of the KKT

matrix of the next iteration.

4.2.3 Modified Building Blocks

The Modified Line-Search

If the algorithm is in the no-convergence mode or in the smooth-region-convergence mode, the

overall goal is to avoid points at which some constraints are not differentiable. For this, the

backtracking line-search procedures that are invoked in lines 9 and 20 of Algorithm 6 are modified.

The main design of these algorithms stays the same but line 5 of Algorithm 4 and lines 4 and 23

of Algorithm 3 are replaced by the subprocedure given in Algorithm 7.

Remark 1. 1. A “forth-tracking” is allowed in the modified line-search in order to avoid small

step lengths that result from visited points in the line-search procedure at which some con-

straints fail to be differentiable. By this, the algorithm tries to avoid unnecessary small step

lengths. The boolean flag allow-incr states whether a “forth-tracking” is allowed or not.

2. The boolean flag allow-incr in Algorithm 7 is set to false in the beginning of Algorithm 3

and Algorithm 4 and set to true after every backtracking step in the original algorithms (i.e.

in lines 21 and 33 of Algorithm 3 and in line 9 of Algorithm 4).

This yields the following lemma:

Lemma 4. Consider Algorithm 3 and Algorithm 4 with the extension given in Algorithm 7.

(i) The primal step length is never increased two times consecutively.

81 4.2. An Interior-Point Method for Nonsmooth Nonlinear Problems

Algorithm 7: Modified Filter Line-Search for Nonsmooth Problems

Input : Primal iterate y(k)
pri , primal search direction ∆y

(k)
pri , primal step length α(k)

pri,l,
constants κb− = κb (see Algorithm 3 and Algorithm 4) and κb+ > 1 with
κb+κb− < 1, k̄m ∈ N.

1 Initialize trial-found = false and km = 0.
2 while not trial-found do
3 if km > k̄m then
4 Stop the algorithm; no trial point y+ /∈ K could be found.

5 Compute a new trial point y+
pri = y

(k)
pri + α

(k)
pri,l∆y

(k)
pri .

6 if ∃i ∈ N with `i(y+
pri) = 0 then

7 if allow-incr = true then
8 Set α(k)

pri,l ← κb+α
(k)
pri,l.

9 Set allow-incr = false.
10 else
11 Set α(k)

pri,l ← κb−α
(k)
pri,l.

12 Set allow-incr = true.

13 Set km ← km + 1.
14 else
15 Set trial-found = true.

16 return trial point y+
pri and primal step length α(k)

pri,l.

(ii) The step length computed by the modified line-search is not greater than ᾱpri. In other

words, the line-search procedures extended by the subprocedure given in Algorithm 7 are still

backtracking algorithms.

Proof. Both parts of the lemma are proved for the case that the subprocedure given in Algorithm 7

is called from line 4 in Algorithm 3. All other cases can be proved analogously.

(i) The if-part in line 8 of Algorithm 7 can only be reached if km = 0 and l > 1 (i.e. after a

backtracking in the original line-search algorithm) or if km > 0 and the else-block in line 11

of Algorithm 7 is reached in the last sub-iteration km−1. In the former case the allow-incr

flag is set to true after a backtracking step in Algorithm 3 (see lines 21 and 33). For the

latter case, the step length is decreased in the last sub-iteration km − 1. In both cases, the

assertion holds.

(ii) First, let l = 0. Because the allow-incr flag is set to false in the beginning of Algorithm 3

(Remark 1), the first modification of the primal step length can only be a decrease in line 11

of Algorithm 7. The rest follows directly from part (i) and κb+κb− < 1.

Unfortunately, it is not possible to prove that Algorithm 7 terminates after a finite number

of iterations without the safeguard in line 4. There might be pathological examples of piecewise

Chapter 4. Interior-Point Methods 82

smooth constraints c with T ⊂ K, where T is an infinite set of trial points generated by Algorithm 7.

In this case, the algorithm would never stop without the safeguard in line 4. On the one hand, it

is not likely in practice that the algorithm is confronted with such constraints. On the other hand,

it is possible that a primal search direction ∆ypri and a maximum primal step length ᾱpri with

small norm ‖ᾱpri∆ypri‖ lead to a sequence of trial points for which the smoothness test in line 6

always passes numerically. The latter might be the case because the criterion

∃i ∈ N with `i

(
y+

pri

)
= 0 (4.145)

is usually implemented as

∃i ∈ N with
∣∣∣`i (y+

pri

)∣∣∣ < ε` (4.146)

for a given tolerance ε` > 0. In these cases, the safeguard in line 4 gets active and the subprocedure

returns a point at which some constraints fail to be differentiable. If the complete line-search

method finds an acceptable point anyway, the main algorithm proceeds with a problem-tailored

nonsmooth stationarity test (see below).

The Step Length Truncation Rule

If the algorithm is in nonsmooth-region-convergence mode the main algorithmic strategy changes.

Now, the goal is not to avoid to handle the nonsmoothness of the problem but to handle it explicitly.

For this, a test that checks whether there is a nonsmooth point on the set R̄ := R̄(y(k),∆y(k), ᾱ
(k)
pri)

is included. Thus, it is distinguished whether

R̄ ∩ K = ∅ (4.147)

holds or not. If (4.147) holds, then all constraints are smooth on R̄ and the maximum primal

step length ᾱ
(k)
pri can be used as the initial primal step length in the filter line-search procedure.

Otherwise, the step length is truncated again, obtaining α̂(k)
pri < ᾱ

(k)
pri with

R
(
y

(k)
pri ,∆y

(k)
pri , α̂

(k)
pri

)
∩ K = ∅. (4.148)

Here, R is defined by

R
(
y

(k)
pri ,∆y

(k)
pri , α̂

(k)
pri

)
:=
{
y

(k)
pri + α∆y

(k)
pri : α ∈

(
0, α̂

(k)
pri

)}
. (4.149)

Notice that R̄ and R only differ in the property if the interval α belongs to is closed at its right

end or not. In order to determine α̂(k)
pri , consider the one-dimensional optimization problems

min αi (4.150a)

s.t. `i

(
y

(k)
pri + αi∆y

(k)
pri

)
= 0, (4.150b)

αi ∈
[
0, ᾱ

(k)
pri

]
(4.150c)

for all i ∈ N .

83 4.2. An Interior-Point Method for Nonsmooth Nonlinear Problems

Lemma 5. If (4.150) is infeasible, then ci ∈ C2(R̄). If (4.150) is feasible and has the global

solution α̂i, then ci ∈ C2(R̂i) with R̂i := {y(k)
pri + α∆y

(k)
pri : α ∈ (0, α̂i)}.

Proof. (4.150) is infeasible if there is no αi with `i
(
y

(k)
pri + αi∆y

(k)
pri

)
= 0 and αi ∈ [0, ᾱ

(k)
pri]. Thus,

the localization function has no root y ∈ R̄, giving ci ∈ C2(R̄).

If (4.150) is feasible with optimal value α̂i, there is no α̃i ∈ [0, α̂i) with `i
(
y

(k)
pri + α̃i∆y

(k)
pri

)
= 0.

Thus, ci ∈ C2(R̂i).

Algorithm 8: Step Length Truncation Rule for Nonsmooth Problems

Input : Primal iterate y(k)
pri , primal search direction ∆y

(k)
pri and maximum primal step length

ᾱ
(k)
pri .

1 for all i ∈ N do
2 Compute α̂i by solving (4.150) to global optimality.
3 If (4.150) is infeasible, set α̂i = ᾱ

(k)
pri .

4 return α̂
(k)
pri := mini∈N (α̂i).

Algorithm 8 states the complete step length truncation rule. By construction of the algorithm

and Lemma 5, the following assertion holds.

Lemma 6. Assume that the maximum step length α̂(k)
pri is computed by Algorithm 8 and that all

optimization problems (4.150) are solved to global optimality in line 2 of Algorithm 8. Then all

constraints c are smooth on R̂ := {y(k)
pri + α∆y

(k)
pri : α ∈ (0, α̂

(k)
pri)}.

In the following, an iteration in which the maximum primal step length is shortened by Algo-

rithm 8, i.e. an iteration for which α̂(k)
pri < ᾱ

(k)
pri holds, is called a K-iteration.

Lemma 7. Assume ∆y
(k)
pri,i 6= 0 for all i and ᾱ(k)

pri > 0. Then Algorithm 8 always returns positive

step lengths α̂(k)
pri > 0.

Proof. The following two cases are distinguished:

(i) Consider y(k)
pri ∈ K. Thus, at least one ci is not differentiable at y(k)

pri . Since all ci are

piecewise smooth and ᾱ
(k)
pri ∆y

(k)
pri 6= 0, there exists an ε > 0 such that all ci are smooth on

{y(k)
pri + α∆y

(k)
pri : α ∈ (0, ε)}. Hence, 0 < α̂

(k)
pri .

(ii) Assume y(k)
pri /∈ K. Since all ci are piecewise smooth, there exists an ε > 0 such that all

ci are smooth on the open ε-ball Bε(y
(k)
pri) := {y ∈ Rnp : ‖y − y(k)

pri ‖2 < ε}. Thus, α̂(k)
pri ≥

min(ε, ᾱ
(k)
pri) > 0.

Chapter 4. Interior-Point Methods 84

Some Remarks on Problem (4.150) To ensure that Lemma 6 is valid one has to solve the one-

dimensional optimization problems (4.150) to global optimality. Unfortunately, this is practically

impossible if there are no additional requirements on the functions `i, i ∈ N . For a lot of problems

that are relevant in practice (cf. Example 5), the localization functions are linear. In this case, the

problems (4.150) for i ∈ N can be rewritten as the single linear optimization problem

max α (4.151a)

s.t. si`i

(
y

(k)
pri + α∆y

(k)
pri

)
≥ 0 ∀i ∈ N , (4.151b)

α ∈
[
0, ᾱ

(k)
pri

]
, (4.151c)

with

si := `i

(
y

(k)
pri

)
. (4.152)

Problem (4.151) contains one variable with simple bounds and |N | linear inequality constraints. It

can be solved to global optimality by any LP solver or an LP-tailored version of the interior-point

method described in Section 4.1. In contrast to (4.150), (4.151) has the additional advantage that

it is always feasible. If none of the constraints (4.151b) is active in the solution (except for those

for which si = 0), there is no point of non-differentiability for any ci on the set R(y
(k)
pri ,∆y

(k)
pri , ᾱ

(k)
pri)

and the optimal solution of (4.151) is ᾱ(k)
pri .

Nonsmooth Stationarity Test

Interior-point algorithms try to compute a KKT point of the problem at hand. Hence, the proposed

interior-point algorithm for nonsmooth constrained problems tries to compute a KKT point with

respect to the KKT conditions (2.26) stated in Theorem 6. A termination criterion has to check

whether a KKT point is approximately reached or not. To state such a termination criterion

for piecewise smooth and locally Lipschitz-continuous but not necessarily smooth problems one

especially has to consider the dual feasibility condition (2.26a) for nonsmooth problems.

In the following theorem, ei denotes the i-th unit vector.

Theorem 11. Consider problem (4.138) with locatable and separable nonsmoothness and let y be

a primal-dual iterate. Furthermore, let K(y) ⊂ (E ∪ I) be the set of indices of constraints that fail

to be differentiable at y and

δ = g − (ul − uu)−
∑

i∈E\K(y)

zi∇ci (x)−
∑

i∈I\K(y)

(vli − vui)∇ci (x)

−
∑

i∈E∩K(y)

zieia −
∑

i∈I∩K(y)

(vli − vui) eia .
(4.153)

85 4.2. An Interior-Point Method for Nonsmooth Nonlinear Problems

Define

Ĩi := ziIi, i ∈ E ∩ K (y) , (4.154a)

Ĩi := (vli − vui) Ii, i ∈ I ∩ K (y) , (4.154b)

where the Ii are the subdifferentials at y of the corresponding univariate, piecewise smooth and

locally Lipschitz-continuous functions θi (cf. Definition 16). In (4.154), the multiplication of a

scalar α with an interval I := [I−, I+] is defined as

αI :=

[αI−, αI+] , α ≥ 0,

[αI+, αI−] , α < 0.

(4.155)

Moreover, define

X := {k ∈ {1, . . . , n} : ∃i ∈ K (y) with k = iν} . (4.156)

Finally, set Îj := [Î−j , Î
+
j] for j ∈ X with

Î−j =
∑

i∈K(y):iν=j

Ĩ−i , Î+
j =

∑
i∈K(y):iν=j

Ĩ+
i . (4.157)

Then dual feasibility (2.26a) holds at y if there exist scalars γj ∈ Îj such that

δj ∓ γj = 0 ∀j ∈ X (4.158)

and

δj = 0 ∀j /∈ X . (4.159)

Proof. First, it is known from Lemma 2 that subdifferentials of univariate functions (like θi in

Definition 16) are intervals. Then dual feasibility (2.26a) with λf = 1 is given by

0 ∈ ∂xL (x, z, vl, vu, ul, uu) (4.160)

= ∂f (x)−
∑
i∈E

zi∂ci (x)−
∑
i∈I

(vli − vui) ∂ci (x)− (ul − uu) (4.161)

= ∂f (x)− (ul − uu) (4.162)

−
∑

i∈E∩K(y)

zi∂ci (x)−
∑

i∈E\K(y)

zi∂ci (x)

−
∑

i∈I∩K(y)

(vli − vui) ∂ci (x)−
∑

i∈I\K(y)

(vli − vui) ∂ci (x)

= g − (ul − uu)−
∑

i∈E\K(y)

zi∇ci (x)−
∑

i∈I\K(y)

(vli − vui)∇ci (x) (4.163)

−
∑

i∈E∩K(y)

zi∂ci (x)−
∑

i∈I∩K(y)

(vli − vui) ∂ci (x)

=: δ̃ −
∑

i∈E∩K(y)

zi∂ci (x)−
∑

i∈I∩K(y)

(vli − vui) ∂ci (x) . (4.164)

Chapter 4. Interior-Point Methods 86

In (4.162), the sums are split into sums of constraints that are differentiable at y and sums of

constraints that fail to be differentiable at y. (4.163) follows because the generalized gradient of

a differentiable function is the gradient. Using the fact that all constraints satisfy the separable

nonsmoothness property one can rewrite (4.164) as

δ̃ −
∑

i∈E∩K(y)

zi∂ [xia ± θi (xiν)]−
∑

i∈I∩K(y)

(vli − vui) ∂ [xia ± θi (xiν)] (4.165)

= δ̃ −
∑

i∈E∩K(y)

zieia ∓
∑

i∈E∩K(y)

zi∂θi (xiν) (4.166)

−
∑

i∈I∩K(y)

(vli − vui) eia ∓
∑

i∈I∩K(y)

(vli − vui) ∂θi (xiν)

= δ ∓
∑

i∈E∩K(y)

zi∂θi (xiν)∓
∑

i∈I∩K(y)

(vli − vui) ∂θi (xiν) (4.167)

= δ ∓
∑

i∈E∩K(y)

ziIieiν ∓
∑

i∈I∩K(y)

(vli − vui) Iieiν (4.168)

= δ ∓
∑
i∈K(y)

Ĩieiν (4.169)

= δ ∓
∑
j∈X

Îjej . (4.170)

The theorem follows directly from the last equation.

In general, it is not easy to evaluate the dual feasibility condition (2.26a) in practice. However,

Theorem 11 yields a useful termination criterion for problems with locatable and separable nons-

moothness. The theorem asserts that only subdifferentials, i.e. the intervals Ii, of the nonsmooth

univariate functions θi are demanded of the user. The rest can be computed easily using the

equations stated in the theorem.

Generalized Gradients

If the algorithm is at an iterate y(k) ∈ K and the nonsmooth stationarity test established in the

last section does not pass, the algorithm proceeds. Now, the main problem is that not all gradients

of the problem data exist at y(k). Thus, one cannot build the KKT matrix
H(k) + Φ(k)

(
∇c(k)
E

)T (
∇c(k)
I

)T
∇c(k)
E

∇c(k)
I −

(
Ψ(k)

)−1

 (4.171)

of the next iteration since it would contain gradients that are not defined. To handle this situation

problem-tailored generalized gradients for those constraints that fail to be differentiable at y(k) are

used. The concrete choice of generalized gradients is motivated in the following.

87 4.2. An Interior-Point Method for Nonsmooth Nonlinear Problems

In most of the cases in which no gradient ∇ci(x(k)) exists, the last iteration was a K-iteration

in which the step length was truncated in order to avoid a step over a point at which some

constraints fail to be differentiable. Thus, without the step length truncation rule, the algorithm

would have taken a larger step into the last search direction ∆y(k−1). In the current iteration, the

algorithm “remembers” this fact and uses the first-order and second-order information belonging to

the (smooth) region the last search direction ∆y(k−1) points to. The idea of the problem-tailored

generalized gradients is motivated in the following example and is defined formally afterwards.

Example 6 (The Absolute Value Function). Consider the absolute value function c(y) = |y|.

c is smooth on R \ {0} and locally Lipschitz-continuous. The localization function is `(y) = y.

Moreover, consider an iterate y(k−1) < 0, a search direction ∆y(k−1) > |y(k−1)| and a maximum

primal step length ᾱ(k−1)
pri = 1. In this situation, the primal step length is truncated to α̂(k−1)

pri =

−y(k−1)/∆y(k−1) < 1 by Algorithm 8. Under the assumption that y(k−1) + α̂
(k−1)
pri ∆y(k−1) was

accepted by the globalization strategy, it follows that y(k) = 0 and `(y(k)) = 0. Hence, y(k) ∈ K

so that ∇c(y(k)) does not exist. This situation is interpreted in a way that the algorithm “would

like” to take a longer step in the direction ∆y(k−1), i.e. towards the right half plane R+, which was

prohibited by the step length truncation rule. Thus, the non-existing gradient ∇c(y(k)) is replaced

by the derivative of a smooth continuation of c restricted to the positive half space R+. More

precisely, the (later defined) generalized gradient ∇̃c(0, y(k−1)) = 1 is used. Figure 4.2 illustrates

the situation.

y

c(y)

y(k−1)

∆y(k−1)

y(k)

∇̃c(0,∆y(k−1))

Figure 4.2: A generalized gradient for the absolute value function.

Next, a formal definition for what is described in the last example is given.

Definition 19. Consider a constraint ϑi : RnN → R of the problem (4.138), i.e.

ϑi (x̂) = ϑi (x, xa) = xia ± θi (xiν) . (4.172)

Furthermore, let d̂ ∈ RnN and d̃iν ∈ RnN the vector of zeros except for d̂iν/|d̂iν | at the iν-th com-

ponent. If d̂iν = 0, d̃iν is the vector of zeros. The generalized signed one-sided partial directional

Chapter 4. Interior-Point Methods 88

derivative w.r.t. xiν of ϑi at x̂ in the direction d̂ is defined as

∂̃iνϑi

(
x̂; d̂
)

:= sign
(
d̂iν

)
lim
t↓0

ϑi

(
x̂+ td̃iν

)
− ϑi (x̂)

t
. (4.173)

Here, sign(0) is defined to be 0.

Lemma 8. The generalized signed one-sided partial directional derivative w.r.t. xiν of the con-

straint ϑi of problem (4.138) is well-defined.

Proof. The difference quotient in (4.173) is bounded by the local Lipschitz constant L = L(x̂) and

the existence of the limit follows directly from the piecewise smoothness of ϑi.

Notice that the last definition is similar to the definition of standard one-sided directional

derivatives. Both coincide for the one-dimensional case. Nevertheless, Definition 19 is more general

in the sense that it allows the definition of the generalized signed one-sided directional gradient :

Definition 20. Let ϑi, x̂ and d̂ be as in Definition 19. The generalized signed one-sided directional

gradient of ϑi at x̂ in the direction d̂ is defined as

∇̃ϑi
(
x̂; d̂
)

:=
(
∂̃jϑi

(
x̂; d̂
))nN

j=1
∈ RnN , (4.174)

where ∂̃jϑi(x̂; d̂) := ∂x̂jϑi(x̂), i.e. the standard partial derivative of ϑi, for all j 6= iν and ∂̃iν is the

generalized signed one-sided partial directional derivative w.r.t. xiν .

Example 7 (The Absolute Value Function Revisited). The last two definitions formalize exactly

what is described in Example 6. Consider the constraint

ϑi (x1, x2) = x2 + θi (x1) = x2 + |x1| = 0. (4.175)

Here, ia = 2 and iν = 1. Let x̂ = (0, 0)T and d̂ = (1, d̂2)T for arbitrary d̂2. Thus, d̃iν = (1, 0)T .

Definition 19 implies

∂̃iνϑi

(
x̂; d̂
)

= sign
(
d̂iν

)
lim
t↓0

ϑi

(
x̂+ td̃iν

)
− ϑi (x̂)

t
(4.176a)

= lim
t↓0

θi (t)

t
(4.176b)

= 1. (4.176c)

Analogously, one obtains ∂̃iνϑi
(
x̂; d̂
)

= −1 for d̂ = (−1, d̂2)T . Thus, ∇̃ϑi
(
x̂; d̂
)

= (1, 1)T holds

for d̂ = (1, d̂2)T and ∇̃ϑi
(
x̂; d̂
)

= (−1, 1)T holds for d̂ = (−1, d̂2)T .

The following theorem shows that the generalized signed one-sided directional gradient belongs

to Clarke’s generalized gradient.

89 4.2. An Interior-Point Method for Nonsmooth Nonlinear Problems

Theorem 12. Consider a constraint ϑi : RnN → R of the problem (4.138). Furthermore, let

x̂ ∈ RnN and d̂ ∈ RnN with d̂iν 6= 0. Then

∇̃ϑi
(
x̂; d̂
)
∈ ∂ϑi (x̂) (4.177)

holds.

Proof. Using Lemma 1, it is to show that there exists a sequence (x̂k) with x̂k → x̂, x̂k ∈ RnN \K

and ∇̃ϑi(x̂; d̂) = limx̂k→x̂∇ϑi(x̂k). Furthermore, it is enough to show that the theorem holds

component-wise, i.e. it remains to prove

∂̃jϑi

(
x̂; d̂
)

= lim
x̂k→x̂

∂x̂jϑi (x̂k) . (4.178)

Let x̂k := x̂ + αkd̂ with positive numbers αk → 0. For all variables x̂j with j 6= iν , ∂̃jϑi
(
x̂; d̂
)
is

the standard gradient and thus (4.178) holds because of the piecewise smoothness of ϑi. By this

reason, it is enough to show the convergence for the iν-th component. Starting with the right-hand

side, one has

lim
x̂k→x̂

∂x̂iν ϑi (x̂k) = lim
x̂k→x̂

lim
t→0

ϑi (x̂k + teiν)− ϑi (x̂k)

t
(4.179a)

= lim
x̂k→x̂

sign
(
d̂iν

)
lim
s↓0

ϑi

(
x̂k + sd̃iν

)
− ϑi (x̂k)

s
(4.179b)

= lim
x̂k→x̂

∂̃iνϑi

(
x̂k; d̂

)
(4.179c)

= ∂̃iνϑi

(
x̂; d̂
)
. (4.179d)

The first equality holds due to the definition of the partial derivative that exists for x̂k since

x̂k ∈ RnN \ K for sufficiently small αk. Since ϑi is differentiable at all x̂k one can switch to the

directional derivative in the direction d̃iν in the second equation. A possible alternation in the sign

is addressed by the factor sign(d̂iν) that is independent of the limit. The penultimate equation is

exactly the definition of ∂̃iνϑi(x̂; d̂) and the last equation holds because ϑi is piecewise smooth, i.e.

it is smooth on the interior of the set
{
x̂+ αd̂ : α > 0

}
for sufficiently small ‖αd̂‖.

The assumption “ d̂iν 6= 0” of the last theorem is of special importance in the algorithm. The

algorithm checks, if a starting point given by the user is a point at which some constraints fail

to be differentiable. If there are constraints that are non-differentiable at this point, the starting

point is perturbed such that `i(x(0)) 6= 0 for all i ∈ N . Thereby, it is guaranteed that ∆x
(k−1)
iν

6= 0

holds if an iterate x(k) is reached with `i(x(k)) = 0. Since d̂ is always chosen to be the last search

direction in the algorithm, the assumption is not restricting in practice.

In summary, the proposed method chooses the ordinary gradients if they exist and the gen-

eralized signed one-sided directional gradients at those points where some constraints are not

Chapter 4. Interior-Point Methods 90

differentiable. In analogy, second-order information is constructed by applying the same ideas to

the (generalized) gradients. This leads to a well-defined system matrix (4.171) for the Newton

step.

4.2.4 An Extended Interior-Point Method for Nonsmooth Nonlinear

Optimization

In the last sections the problem class under consideration is introduced and the modified building

blocks of an interior-point algorithm that is able to solve this problem class are described.

Algorithm 9 states the complete method. It is strongly based on Algorithm 6. The extensions

and modifications are emphasized with blue colored sans-serif fonts. For better reading, some

textual descriptions in the algorithm are abbreviated. In these cases, the full text can be found in

Algorithm 6.

91 4.2. An Interior-Point Method for Nonsmooth Nonlinear Problems

Algorithm 9: Extended Interior-Point Method for Nonsmooth Problems
Input : User provided starting point x̄ for the original nonsmooth problem, initial barrier

parameter µ(0), vector of algorithmic constants κ.
1 Set iteration counter k = 0, initialize filter FNLP using (4.76) and (4.77), set µ-mode = adaptive.
2 Set conv-mode = no-convergence.
3 If required, perturb the starting point x̄ such that `i(x̄) 6= 0 holds for all i ∈ N .
4 Call Algorithm 5 with x̄ and µ(0) to obtain initial point y(0).
5 If required, perturb the starting point y(0) such that `i(y(0)) 6= 0 holds for all i ∈ N .
6 while nonsmooth termination criterion does not hold (see Theorem 11) do
7 Set conv-mode according to (4.139)–(4.142).
8 Increase iteration counter k ← k + 1.
9 if µ-mode = adaptive then /* adaptive mode */

10 Compute µ(k) by any rule (cf. Section 4.1.4) and update τ using (4.16).
11 Compute search direction ∆y(k) as described in Section 4.1.1.
12 (Use the generalized one-sided directional gradients with d = ∆y(k−1) to set up the KKT matrix

if y(k) ∈ K.)
13 Compute maximum primal and dual step lengths ᾱ(k)

pri , ᾱ
(k)
dual using (4.15).

14 if conv-mode = nonsmooth-region-convergence then
15 Call Algorithm 8 with y(k)pri ,∆y

(k)
pri and ᾱ(k)

pri to obtain α̂(k)
pri .

16 else
17 Set α̂(k)

pri = ᾱ
(k)
pri .

18 Call Algorithm 4 (modified by Algorithm 7 if conv-mode 6= nonsmooth-region-convergence)
with y(k)pri ,∆y

(k)
pri and maximum primal step length α̂(k)

pri to obtain α(k)
pri .

19 if Algorithm 4 succeeds then /* stay adaptive */
20 Compute new primal and dual iterates y(k+1)

pri , y
(k+1)
dual using (4.17) with primal step

length α(k)
pri and dual step length ᾱ(k)

dual.
21 else /* switch to monotone mode */
22 Set µ-mode ← monotone, reset barrier parameter µ(k+1) using (4.95), update τ using

(4.16), reset barrier problem filter Fµ using (4.76) and (4.77).

23 else /* monotone mode */
24 if nonsmooth barrier problem termination criterion (4.22) holds then
25 Compute µ(k) by any rule (cf. Section 4.1.4) and update τ using (4.16).
26 Reset barrier problem filter Fµ using (4.76) and (4.77)

27 Compute search direction ∆y(k) as described in Section 4.1.1.
28 (Use the generalized one-sided directional gradients with d = ∆y(k−1) to set up the KKT matrix

if y(k) ∈ K.)
29 Compute maximum primal and dual step lengths ᾱ(k)

pri , ᾱ
(k)
dual using (4.15).

30 if conv-mode = nonsmooth-region-convergence then
31 Call Algorithm 8 with y(k)pri ,∆y

(k)
pri and ᾱ(k)

pri to obtain α̂(k)
pri .

32 else
33 Set α̂(k)

pri = ᾱ
(k)
pri .

34 Call Algorithm 3 (modified by Algorithm 7 if conv-mode 6= nonsmooth-region-convergence)
with y(k)pri , ∆y(k) and maximum primal step length α̂(k)

pri to obtain α(k)
pri .

35 if Algorithm 3 succeeds then
36 Compute new primal and dual iterates y(k+1)

pri , y
(k+1)
dual using (4.17) with primal step

length α(k)
pri and dual step length ᾱ(k)

dual.
37 if y(k+1)

pri is acceptable to the filter FNLP then
38 Set µ-mode ← adaptive.

39 else
40 Go to feasibility restoration phase.

41 return optimal solution y(k).

Chapter 4. Interior-Point Methods 92

4.3 An Interior-Point Method for MPCCs

This section describes the extensions of the interior-point method for nonlinear optimization prob-

lems in order to solve MPCC-type problems. The essential idea of these extensions is that the

original MPCC is replaced by a sequence of regularized nonlinear optimization problems. The

proposed method solves a sequence of regularized problems and ensures that the regularization

parameter is driven to zero in the limit. In the following, the focus will be on regularization by

relaxation and penalization. The basic concepts and results of this field are given in Section 2.2.

The following reviews the regularized formulations and discusses when and how to update the

regularization parameter.

First attempts of applying NLP-based techniques to MPCCs are made by Fletcher and Leyffer in

[42], where they use the active-set SQP method FilterSQP to solve the MPCCs. In [42], Fletcher and

Leyffer also compare SQP-type codes with interior-point methods (LOQO and KNITRO) applied to

MPCCs. They come to the result that active-set SQP methods perform better than interior-point

methods. MPCC-tailored interior-point algorithms based on relaxation are published by Liu and

Sun in [75] and by Raghunathan and Biegler in [99]. In [11], Benson et al. use the interior-point

code LOQO to solve MPCCs. In [74], Leyffer et al. develop a penalty interior-point framework for

solving MPCCs and give two concrete algorithmic instantiations of their framework. The following

description is mainly based on the latter paper. In practice, most of the used software that is able to

solve MPCC problems is NLP-based and implements several regularization schemes. For example,

today’s versions of LOQO [11] and KNITRO [20] are able to handle complementarity constrained

problems. Notice that both codes are commercial and not open source. In [99] Raghunathan and

Biegler extend the open source code Ipopt such that it can handle MPCCs. Unfortunately, this

version is not under active development anymore. Fletcher and Leyffer extend their SQP code

FilterSQP in order to solve MPCCs [42]. Again (and to the best of the author’s knowledge), the

extended method filtermpec is not under active development anymore.

4.3.1 MPCC Regularization by Relaxation

As described in Section 2.2, relaxation schemes replace the original MPCC by a sequence of relaxed

problems

min
x∈Rn

f (x) (4.180a)

s.t. cE (x) = 0, (4.180b)

cI (x) ≥ 0, (4.180c)

φ (x) ≥ 0, ψ (x) ≥ 0, (4.180d)

φi (x)ψi (x) ≤ ξ, i = 1, . . . , p. (4.180e)

93 4.3. An Interior-Point Method for MPCCs

Compared to the standard form (4.1) of NLPs, the additional problem data of (4.180) are

1. additional inequality constraints for the non-negativity of the complementarity pairings φi, ψi

and

2. additional inequality constraints φi(x)ψi(x) ≤ ξ for the relaxation of the complementarity

conditions.

As a consequence, the user has to provide function evaluations as well as first- and, possibly,

second-order evaluations for the complementarity pairings φi, ψi. Whether there is a second-order

evaluation required or not depends on the nonlinearity of φ and ψ.

When applying the extended relaxation scheme of DeMiguel et al. (see [31]), the only differ-

ence to (4.180) is the right-hand side of the inequality constraints for the single complementarity

constraints. Now, φ(x) ≥ 0 and ψ(x) ≥ 0 are replaced by φ(x) ≥ −θ and ψ(x) ≥ −θ. This only

affects the KKT data but not the KKT structure.

The developed algorithm solves MPCCs as a regularized sequence of NLPs. For this, it takes

the complete MPCC problem data, constructs the corresponding data for the regularized NLPs

and additionally handles the modification of the regularization parameters ξ and θ.

4.3.2 MPCC Regularization by Penalization

Penalization schemes completely remove the complementarity conditions φi(x)ψi(x) = 0 from

the set of constraints and penalize their violation by an additional penalty term in the objective

function (see Section 2.2):

min
x∈Rn

f (x) +
1

ξ
Π (φ (x) , ψ (x)) (4.181a)

s.t. cE (x) = 0, (4.181b)

cI (x) ≥ 0, (4.181c)

φ (x) ≥ 0, ψ (x) ≥ 0. (4.181d)

As it is the case for relaxation schemes, the additional MPCC problem data are the additional

inequality constraints φ(x) ≥ 0 and ψ(x) ≥ 0. The remaining differences only appear in the

extended objective function

f (x) +
1

ξ
Π (φ (x) , ψ (x)) , (4.182)

leading to the modified gradient

∇f (x) +
1

ξ
∇Π (φ (x) , ψ (x)) (4.183)

and to the modified Hessian

∇2
xxf (x) +

1

ξ
∇2
xxΠ (φ (x) , ψ (x)) (4.184)

Chapter 4. Interior-Point Methods 94

of the objective function. Depending on the nonlinearity of Π, φ and ψ this extension changes the

sparsity structure of the Hessian of the Lagrangian in the upper left block of the KKT matrix.

As for the relaxation scheme, the algorithm requires the complete MPCC data and constructs

the regularized NLPs (4.181). In addition, the modification of ξ is handled. This is the topic of

the next section.

4.3.3 Updating the Regularization Parameter

Beside the structural modifications according to the additional data of the original MPCC, the

question arises when and how to update the regularization parameter ξ.

Interior-point methods compute a KKT point of the given problem by decreasing the primal

and dual infeasibility as well as the values of the KKT complementarity conditions (2.7e). During

the algorithm the latter are relaxed yielding the so-called µ-perturbed complementarity conditions

(4.8). In the developed algorithmic framework, the updates of the regularization parameter ξ are

directly coupled with the updates of the barrier parameter µ. This coupling has to satisfy that ξ

goes to zero if µ does. Whenever the interior-point method tries to decrease the barrier parameter,

it first checks if a certainMPCC-complementarity measure has a lower value than a given tolerance.

The measure depends on the current values of the complementarity pairings φi(x), ψi(x) and the

required tolerance may depend on the current barrier parameter.

There is a wide range of possible MPCC-complementarity measures. The only requirements

that should be satisfied by MPCC-complementarity measures m are that they should be non-

negative and that they tend to zero if the complementarity conditions φi(x)ψi(x) do. In analogy,

the tolerance should tend to zero if the barrier parameter tends to zero.

For instance, Leyffer et al. [74] use the measure

m = max
i=1,...,p

{min(φi (x) , ψi (x))} (4.185)

and the tolerance

εm = µ0.4. (4.186)

Another possible MPCC-complementarity measure is the MPCC penalty objective function term

m =

p∑
i=1

φi (x)ψi (x) . (4.187)

Independent of the chosen regularization scheme, the regularization parameter is updated when-

ever the barrier parameter should be updated and

m < εm (4.188)

95 4.3. An Interior-Point Method for MPCCs

does not hold. In these cases, the barrier parameter stays the same and the regularization parameter

is updated such that ξ(k+1) < ξ(k) holds. A standard update scheme is

ξ(k+1) = κξξ
(k), κξ ∈ (0, 1) . (4.189)

If the barrier parameter should be updated and (4.188) is satisfied, the regularization parameter ξ

stays the same and the barrier parameter is updated.

This leads to an interior-point method for solving MPCCs that is given in Algorithm 10. This

method is strongly oriented towards the method proposed in [74]. However, Algorithm 10 is more

generic since the algorithm is independent of the concrete regularization scheme.

Like the extended method for solving nonsmooth problems (Algorithm 9), Algorithm 10 is

based on Algorithm 6. The modifications and extensions are emphasized with blue sans-serif fonts.

Chapter 4. Interior-Point Methods 96

Algorithm 10: Extended Interior-Point Method for MPCCs
Input : User provided starting point x̄ for the MPCC, initial barrier parameter µ(0), initial

regularization parameter ξ(0), vector of algorithmic constants κ and a tolerance εmtol > 0 for
the MPCC-complementarity measure

1 Set iteration counter k = 0, initialize filter FNLP using (4.76) and (4.77), set µ-mode = adaptive.
2 Call Algorithm 5 with x̄ and µ(0) to obtain initial point y(0).
3 while NLP termination criterion (4.23) does not hold or m > εmtol do
4 Increase iteration counter k ← k + 1.
5 if µ-mode = adaptive then /* adaptive mode */
6 if (4.188) holds then
7 Compute µ(k) by any rule (cf. Section 4.1.4) and update τ using (4.16).
8 Set ξ(k) = ξ(k−1).
9 else /* update regularization parameter */

10 Update the regularization parameter using (4.189) to obtain ξ(k).
11 Re-evaluate the problem data.

12 Compute search direction ∆y(k) as described in Section 4.1.1.
13 Compute maximum primal and dual step lengths ᾱ(k)

pri , ᾱ
(k)
dual using (4.15).

14 Call Algorithm 4 with primal iterate y(k)pri , primal search direction ∆y
(k)
pri and maximum

primal step length ᾱ(k)
pri to obtain α(k)

pri .
15 if Algorithm 4 succeeds then /* stay adaptive */
16 Compute new primal and dual iterates y(k+1)

pri , y
(k+1)
dual using (4.17) with primal step

length α(k)
pri and dual step length ᾱ(k)

dual.
17 else /* switch to monotone mode */
18 Set µ-mode ← monotone, reset barrier parameter µ(k+1) using (4.95), update τ using

(4.16), reset barrier problem filter Fµ using (4.76) and (4.77).

19 else /* monotone mode */
20 if barrier problem termination criterion (4.22) holds then
21 if (4.188) holds then
22 Compute µ(k) by any rule (cf. Section 4.1.4) and update τ (4.16).
23 Set ξ(k) = ξ(k−1).
24 Reset barrier problem filter Fµ using (4.76) and (4.77).
25 else /* update regularization parameter */
26 Update the regularization parameter using (4.189) to obtain ξ(k).
27 Re-evaluate the problem data.

28 Compute search direction ∆y(k) as described in Section 4.1.1.
29 Compute maximum primal and dual step lengths ᾱ(k)

pri , ᾱ
(k)
dual using (4.15).

30 Call Algorithm 3 with primal iterate y(k)pri , primal search direction ∆y
(k)
pri and maximum

primal step length ᾱ(k)
pri to obtain α(k)

pri .
31 if Algorithm 3 succeeds then
32 Compute new primal and dual iterates y(k+1)

pri , y
(k+1)
dual using (4.17) with primal step

length α(k)
pri and dual step length ᾱ(k)

dual.
33 if y(k+1)

pri is acceptable to the filter FNLP then
34 Set µ-mode ← adaptive.

35 else
36 Go to feasibility restoration phase.

37 return optimal solution y(k).

97
4.4. An Interior-Point Method for Nonsmooth and Complementarity Constrained Nonlinear

Optimization

4.4 An Interior-Point Method for Nonsmooth and Comple-

mentarity Constrained Nonlinear Optimization

The two preceding sections deal with extensions and modifications of the basic interior-point

method (Algorithm 6). These extensions and modifications enable the method to handle

1. optimization problems with locatable and separable nonsmoothness (Algorithm 9) and

2. complementarity constrained problems (Algorithm 10).

By taking a closer look to both methods one can see that the corresponding modifications are

carefully designed in an orthogonal way. That means that there are no building blocks of the basic

algorithm that have to be modified in different ways in Algorithm 9 and Algorithm 10.

This fact allows to combine both extensions in order to obtain an algorithm that is able to

handle both nonsmooth and complementarity constrained problems. The modification of the ba-

sic algorithm using both modifications is straightforward so that the resulting algorithm is not

explicitly stated here.

Chapter 5

Software Design

In this chapter some aspects of software design are discussed that strongly guided the implemen-

tation of the interior-point methods described in Chapter 4.

First, a brief overview of some general design concepts is given in Section 5.1. In the subsequent

section the high-level architecture of the implementation of the interior-point methods is discussed.

Finally, Section 5.3 briefly lists the used external libraries and presents techniques for increasing

the software quality of the developed framework.

5.1 General Concepts of Software Design

In Chapter 4 the property of interior-point methods that they allow to solve different kinds of classes

of mathematical optimization problems without significantly changing the algorithmic framework

is pinpointed frequently. Moreover, extended or modified versions of a basic interior-point method

are developed that are able to solve the challenging problem classes of complementarity constrained

and nonsmooth problems.

In computational mathematics, the situation is often as follows. There exist a lot of software

packages for a lot of different classes of optimization problems. Furthermore, these software pack-

ages are quite monolithic. That means, they are especially tailored for the concrete problem class

they are developed for and thus, behave very well in terms of performance and robustness. But

they often reinvent the wheel and implement things that were implemented many times before. The

goal of the software framework that is developed for this thesis is to stop reinventing the wheel.

It provides an almost complete algorithmic skeleton of interior-point methods and an adequate

number of algorithmic building blocks that can be plugged into the skeleton.

Such a framework has two main advantages. First of all, applied computational mathematicians

in optimization are often involved in industrial projects. In a lot of these projects there is a phase

99

Chapter 5. Software Design 100

of proof of concept. In this phase, the mathematicians have to prove that their methodology can

be applied to the industrial problem at hand. To give this proof it is often the case that several

approaches of modeling and solving the problem are tested. The modeling part in this phase

greatly benefits from algebraic modeling languages for mathematical optimization like GAMS [103]

or AMPL [44]. The effort spent for trying different solution strategies greatly depends on the

knowledge of the mathematician about the used solvers. Obviously, this part would benefit from

a generic software framework that can be instantiated in different versions leading to different

algorithms with the same mathematical superstructure.

Secondly, the phase after giving the proof of concept comes into play. One is often confronted

with the situation that it is known which basic algorithm is preferable; e.g. if an SQP method or

an interior-point method should be used. Nevertheless, it is often desirable to modify some (few)

parts of the algorithm in order to increase its robustness or performance.

To make the last point clear, have a look at a prominent example: A lot of optimization problems

have a special KKT structure. If this structure is known it can be exploited in the interior-point

building block that solves the KKT system in every iteration. For instance, this is especially the

case for time-dependent control problems or for problems from stochastic programming. For the

latter, some numerical results of a very problem-specific solution approach for portfolio optimization

are discussed in Chapter 6. The approach exploits the special structure of the problem yielding a

proper parallelization scheme and a highly efficient parallel solution algorithm for the KKT system.

In order to be able to specialize the interior-point method such that it can incorporate highly

problem-specific solution approaches, the software framework has to satisfy some important con-

cepts from the field of software engineering. Here, the most important concepts are the ones of

orthogonality, cohesion and coupling.

Orthogonality Every mathematician knows the concept of orthogonal vectors from geometry:

Two vectors are orthogonal in the Euclidean plane if they meet at right angles. The latter is

formally defined by a zero scalar product of the two vectors. Obviously, both vectors can be changed

independently in length and sign without destroying the property of orthogonality. Translated to

software design, the vectors can be interpreted as modules of the software (cf. Figure 5.1). Thus,

an orthogonal software design satisfies the property that their modules are as independent as

possible. This means, that the functionality or implementation details of a module can change

without harming the functionality of other modules. See [60] for a more detailed description of the

concept of orthogonal software design.

For the development of an interior-point framework orthogonality means that certain algo-

rithmic building blocks can be exchanged or modified in their implementation details without

affecting the implementation and the design of other algorithmic building blocks. In terms of the

101 5.1. General Concepts of Software Design

v1

v2

M1

M2

Figure 5.1: Orthogonal vectors v1 and v2 and software modules M1 and M2.

example given above, an orthogonal software design for interior-point methods allows to replace a

general-purpose KKT system solution algorithm (that might be the default) by a problem-specific

algorithm without affecting the implementation of other algorithmic building blocks (e.g. algo-

rithms implementing the barrier parameter update rules). According to this, the right part of

Figure 5.1 may be concretized like it is shown in Figure 5.2

KKT solver

µ udpate rule

LOQO rule

Ipopt rule

MPC

General-purpose

Problem-specific

Figure 5.2: Orthogonal algorithmic building blocks; barrier parameter update rules and KKT

system solution algorithms.

Cohesion The concept of orthogonality is strongly connected with the concept of cohesion.

According to [144], cohesion is the “degree to which the elements of a module belong together”.

Obviously, it is desirable to implement software modules with high cohesion. The advantages of

software modules with high cohesion are easy to see. The readability of the code as well as its

maintainability increases with the cohesion of its modules. As a consequence, a highly cohesive

interior-point framework simplifies the task of exchanging several algorithmic building blocks of

the method. For instance, a new user does not have to know anything about the KKT solution

algorithm if he only wants to implement a new update rule for the barrier parameter.

Chapter 5. Software Design 102

Coupling The last important concept that should be mentioned here is the one of coupling.

Coupling describes the degree to which a software module depends on any other module (see

[144]). To achieve the goal of orthogonal code, one has to realize software modules that are as

loosely coupled as possible. Obviously, loosely coupled modules often correlate with high cohesive

modules and are a precondition for orthogonal software.

C++ Generic Programming Techniques

The implementation of the interior-point method is done in C++. C++ (especially in its current

version C++11) offers a wide range of techniques that allow to implement an efficient and generic

interior-point framework satisfying the general concepts of software design discussed above.

The interior-point framework implemented for this thesis will be referred to as Clean::IPM in the

following. It is part of the software framework Clean, which is an acronym for A C++ Library of

Efficient Algorithms in Numerics. Clean is a generic library that is developed in the working group

Algorithmic Optimization of Marc Steinbach at the Leibniz Universität Hannover. It is intended

to become public domain when it is considered to be sufficiently mature. The application of most

of the discussed software concepts in the context of numerics goes back to Marc Steinbach and

Clean.

To realize the concepts of software design discussed above in Clean::IPM, techniques of generic

programming with C++ templates are extensively used to implement specializations of the design

patterns of policy-based class design and traits. Policies and policy-based class design are introduced

by Alexandrescu in [3]. Already one of the first sentences in his book makes clear, what policy-based

class design is about:

“In brief, policy-based class design fosters assembling a class with complex behavior out

of many little classes (called policies), each of which takes care of only one behavioral

or structural aspect.”

This quotation directly suggests that policy-based class design may be a good candidate for realizing

orthogonal, highly cohesive and loosely coupled code. The paradigm of policy-based class design

can be interpreted as compile-time variant of the strategy pattern (see [46]). The main idea is

to design classes that take several template parameters as input. These template parameters are

instantiated in dependence on types given by the user. The latter types are the policies that specify

a well-defined “behavioral or structural aspect” of the class.

The last point that should be mentioned concerning policies addresses the combinatorial ex-

plosion of design choices. By taking a closer look at Figure 5.2 one sees that a so-called do-it-all

interface (see [3]) has to implement 6 = 2 · 3 variants of the interior-point method by combining

only two instantiations of KKT system solution algorithms and three rules for the barrier parame-

103 5.2. The Software Architecture of Clean::IPM

ter updates. In policy-based class design, one follows Alexandrescu’s phrase “Never use brute force

in fighting an exponential”. Using policy classes, the number of aspects in this example is two and

one has to implement only 2 + 3 = 5 single aspects. Of course, five is not that much less than six,

but it is obvious that the policy approach yields a linear increase with respect to the number of

aspects or modules in contrast to an exponential increase for the do-it-all interface.

The second C++ generic programming technique that is frequently used in Clean::IPM are

traits. Traits are one of the key features of the C++ standard template library [122]. They allow to

make compile-time decisions depending only on types (e.g. policy classes) instead of making a run-

time decision depending on values (see [2]). For instance, traits are used in order to automatically

choose (at compile-time) between implementation details that depend on some user-given choices,

e.g. on the class of the optimization problem.

A more detailed description of policies and traits is out of the scope of this thesis. It is referred

to the references within the last paragraphs or the Boost pages on generic programming [13] and

the references therein. The latter also introduces some other techniques like tag dispatching or

adaptors that are used in the implementation of Clean::IPM, too.

5.2 The Software Architecture of Clean::IPM

This section describes the high-level software architecture of Clean::IPM. The main components

can be distinguished into the following groups:

Main Algorithm The main interior-point algorithm encapsulates the algorithmic logic that is

stated in the basic framework (see Algorithm 1).

Sub-Algorithms The sub-algorithms encapsulate all free choices that are left in Algorithm 1.

Thus, for every task in interior-point methods (like updating the barrier parameter, solving

the KKT system, etc.) there has to be a sub-algorithm that is responsible for this task.

As usual, there are a lot of different possibilities how a certain task can be done (see e.g.

the various rules for updating the barrier parameter in Section 4.1.4). Here, the user has

the free choice. Either he uses an existing sub-algorithm or he implements a new one. If a

new sub-algorithm is implemented, the only requirement that the new implementation has to

satisfy is the fixed interface between the main algorithm, the sub-algorithm and their server.

Servers Servers are used to collect all relevant data structures and to delegate the operations

on these data structures that are required by the main algorithm as well as by the sub-

algorithms. The server used by the main algorithm and the sub-algorithms has to be the

same because all algorithms have to operate on the same data, e.g. on the vector of iterates

or on the vector of search directions.

Chapter 5. Software Design 104

Since the algorithms for solving complementarity constrained (Algorithm 10) and nonsmooth

constrained (Algorithm 9) problems not only exchange certain algorithmic building blocks

but also add some new ones, there are different servers for different problem classes. The

specialized servers are generated by inheritance of the main server that is constructed for

standard nonlinear problems.

Data Structures The main data structures of interior-point methods are on the one hand the

vectors for the iterates y, for the right-hand sides ω of the KKT system and for the search

directions ∆y. On the other hand there are the problem matrices ∇cE ,∇cI and H as well

as the barrier term diagonal matrices Φ and Ψ. Like it is the case for sub-algorithms, the

user can employ existing data structures or may implement new ones. Again, the only

precondition for new implementations is the satisfaction of the fixed interfaces.

At this point, an aspect of strong but desired coupling has to be mentioned. The data

structures of the problem matrices are not determined by the problem itself but by the sub-

algorithm that solves the KKT system. Since this sub-algorithm is one of the most important

ingredients of interior-point methods, this component has to determine the data structures

on which it operates. As a consequence, the user who implements the problem has to work

with these data structures. A special but frequently appearing case is the one in which the

person implementing the problem is the person designing and implementing the KKT system

solution algorithm. For instance, the example from stochastic programming mentioned in

Section 5.1 fits into this situation.

Problem Adaptors Another component of the Clean::IPM software architecture are so-called

problem adaptors. These adaptors mainly follow the adaptor pattern (see [13] or [46]) and

wrap a user-given implementation of a problem in order to replace it, e.g. by a scaled or

regularized version. For instance, when solving MPCC problems the user itself only has to

implement the original MPCC formulation and to choose a certain regularization strategy.

The corresponding adaptor then wraps the MPCC formulation such that the main algorithm

only sees a regularized (NLP-type) version of the MPCC.

Figure 5.3 illustrates the above described components and their relationships. Loose coupling

is represented by that most of the nodes of the components in Figure 5.3 are not connected.

The special aspects that introduce stronger coupling to the design are represented by the black

connections. Orthogonality of the software design is also represented by component nodes that

are not directly connected. For instance, implementing a different line-search sub-algorithm for

the barrier problems does not affect and is not affected by the chosen data structures for the

barrier matrices or the scaling of the problem. There are no concrete possibilities of instantiations

given in Figure 5.3. All leaves of the graph represent algorithmic (sub-)tasks for which a concrete

105 5.3. Used External Libraries and Code Quality

instantiation still has to be chosen. For instance, the leaf “µ-Update Rule” denotes that there has

to be a choice for the barrier parameter updates. The set of concrete choices depends on what

is implemented in the framework and what is extended by the user. See Figure 5.4 for a set of

concrete instantiations of the update rule for barrier parameter.

5.3 Used External Libraries and Code Quality

The implemented method uses some external software libraries for sparse and dense linear algebra.

For dense matrix-matrix, matrix-vector and all vector-vector operations, the default implementa-

tions of the vector data structures of Clean::IPM use LAPACK routines [5]. All operations with

sparse matrices are self-implemented or use routines from the HSL Mathematical Software Library

[58]. In addition, some libraries from Boost (see [124]) are used. The code documentation is done

using Doxygen [126].

To achieve a high quality code some standard techniques are used. In addition to a high rate of

documentation (see Table 5.1) the technique of programming by contract is applied (cf. [86]). By

this, almost every method is encapsulated by so-called pre- and postconditions that try to check

the correctness of the method.

Finally, the code is tested in nightly regression tests by a self-implemented regression test library

consisting of (currently) 95 regression tests.

It seems to be an axiom of scientific software development that a library is never complete –

and it seems to be true for Clean::IPM, too. Thus, lines of code or other quality measures like

documentation-code-lines ratios are in the flow. However, Table 5.1 states the current numbers for

(total) lines of code and comments.

Total lines of code 37 735

Lines of documentation & comments 12 894

Lines of programming by contract 815

Table 5.1: Code statistics for Clean::IPM.

Chapter 5. Software Design 106

IPM Main

Algorithm
Servers

Main

Server

MPCC

Server

Nonsmooth

Server

Data

Structures

Vectors Barrier

Matrices

Problem

Matrices

Sub-

Algorithms
KKT

System

Solution

µ-Update

Rule

Line-search

for the

Barrier

Problems

Starting

Point

Strategy

Maximum

Step

Length

Compu-

tation

Line-search

for Glob-

alization

of Mixed

µ-Update

Strategy

Problem

Adaptors

Scaling

MPCC

Regular-

ization

Figure 5.3: A schematic overview of the software architecture of Clean::IPM.

107 5.3. Used External Libraries and Code Quality

µ-Update

Rule

LOQO

rule

Ipopt

rule

MPC

method

Figure 5.4: The current set of update rules for the barrier parameter implemented in Clean::IPM.

Chapter 6

Numerical Results

The main goal of this chapter is to document the generality of the Clean::IPM framework. First,

in Section 6.1 and Section 6.2 two use cases of Clean::IPM are presented that include applications

in stochastic programming and mathematical biology. Both are part of a diploma thesis or a

Phd project. To solve these problems, some non-standard techniques are required and it is shown

that the Clean::IPM framework can be used to develop these techniques and to integrate them in

Clean::IPM. Section 6.3 presents some preliminary results on a large NLP test set, namely the Hock–

Schittkowski test set. By this, the robustness of the basic interior-point algorithm of Clean::IPM is

documented. Finally, Section 6.4 discusses numerical results concerning the problem of validation

of nominations in gas transport networks (see Chapter 3) and shows that Clean::IPM can be used

in real-world projects.

All numerical results presented in this chapter are produced with an instantiation of Clean::IPM

without a feasibility restoration phase. An orthogonal design of the feasibility restoration phase

within the interior-point framework is not easy to determine if nonsmooth and MPCC-type prob-

lems should be solved, too. Thus, the work on this part of the implementation is not yet finished.

However, the integration of a feasibility restoration phase increases the robustness of the algorithm

and will be realized in the future.

6.1 Computation of Recombination Probabilities

In his diploma thesis [98] Probst uses Clean::IPM in the field of mathematical biology. He computes

estimations of recombination probabilities based on monitoring of a population. In contrast to the

standard methods in this field, e.g. stochastic simulation using Monte-Carlo techniques, he uses a

Markov process model to achieve an initial value problem for the dynamics of the joint distributions

of the population. For a given time interval [0, T] and fixed initial and boundary values, this leads

109

Chapter 6. Numerical Results 110

to the constrained nonlinear least-squares problem

min
x∈Rn

1

2

∥∥∥D (x, T)− D̂
∥∥∥2

2
(6.1a)

s.t.
dD (x, t)

d t
= D (x, t)GT + λN (Θ (x)− I)D (x, t) , D (x, 0) given, (6.1b)

n∑
i=1

xi = 1, (6.1c)

x ∈ [0, 1]
n
. (6.1d)

The used model is highly complicated. Here, only a brief description is given. The components

of the vector x ∈ Rn are the recombination probabilities. D̂ is the given distribution data and D

denotes the vector of partial distributions which jointly characterize allelic states at a number of

loci at the same or at different chromosomes. The matrix multiplication with GT models the impact

of mutation on the distributions. This mutation is modeled by a Markov semi-group operator. λ is

the parameter of the exponential distribution that models the waiting (lifetime) period and Θ(x)

denotes the transition matrix of the Markov semi-group operator of the evolutionary process at

the moment of recombination. Finally, N is half of the size of the considered population. See [98]

for the details.

It turns out that (6.1) is ill-conditioned and thus, the initial value problem (6.1b) has to be

solved with high accuracy in every iteration. Unfortunately, the solution of the initial value problem

is the most expensive computation in solving (6.1). As a remedy, Probst uses the generic Clean::IPM

framework to develop an adaptive accuracy control for the solution of the initial value problems.

This adaptive control depends on the progress made by the interior-point algorithm with respect

to the objective function (6.1a). By this, Probst shows that it is possible to control the accuracy

of the evaluation of the problem data depending on quantities of the algorithm. This can also be

crucial for a lot of other applications, especially those incorporating differential equations.

In his computational experiments, Probst uses the KKT system solution algorithm for dense

matrix blocks (Algorithm 2) and compares different update rules for the barrier parameter. The

LOQO rule (see Section 4.1.4) turns out to be the most robust. Finally, he compares this concrete

instantiation of the Clean::IPM framework with an extended Levenberg–Marquardt method. Using

adaptive accuracy control, both methods are able to solve the problems in the magnitude of minutes

on a desktop computer with 2.6 GHz and 12 GB RAM.

111 6.2. Large-Scale Stochastic Programming

6.2 Large-Scale Stochastic Programming

In his PhD project, Hübner1 develops a highly problem-specific parallel solution algorithm for KKT

systems arising in interior-point methods for multistage stochastic programming. By additionally

developing problem-specific parallel vector data structures, he is able to solve huge-scale instances

of a certain class of multistage stochastic programs with Clean::IPM.

The background of the application is to manage a portfolio with n assets optimally over a given

time horizon [0, T]. The objective is to minimize the risk with respect to a fixed outcome. The

concrete modeling of future and uncertainty consists of a discrete time horizon [0, 1, . . . , T] and a

discrete event space depending on the number of assets. Both together lead to a so-called event

tree, i.e. a tree with depth T and branching n+1 for every inner node in the tree. For more details

on the topic of portfolio optimization see [119].

Steinbach [118, 120] considers these multistage stochastic convex quadratic programs as control

problems over a tree. Following his ideas, let V be the set of nodes of the tree and let L be the set

of leaves, i.e. the set of scenarios. For a node j ∈ V , π(j) denotes its predecessor. With the state

variables xj ∈ Rn+1 modeling the value of the assets and the control variables uj ∈ R2n modeling

the buys and sells, one obtains a so-called tree-sparse program with incoming control (see [120] for

the details);

min
(x,u)

∑
j∈L

1

2
xTj Hjxj (6.2a)

s.t. xj −Gjxπ(j) − Ejuj − hj = 0 ∀j ∈ V, (6.2b)

uj ∈
[
u−j , u

+
j

]
∀j ∈ V, (6.2c)

xj ∈
[
x−j , x

+
j

]
∀j ∈ V, (6.2d)∑

j∈V
(Djuj + Fjxj) + eV = 0. (6.2e)

(6.2b) models the dynamics of the program, (6.2e) is incorporated to fix the outcome. (6.2c) and

(6.2d) are simple control and state variable bounds, respectively. Finally, notice that the objective

function is only defined on the leaves of the tree.

A further investigation of (6.2) shows that the Hessian and the Jacobian of the constraints pos-

sess a highly structured sparsity pattern that is determined by the tree of the multistage stochastic

program. Hübner exploits this structure in order to develop a parallel solution algorithm for the

KKT system. He uses Clean::IPM as the main solution algorithm for the QP and modifies all

vector data structures such that every matrix-vector, vector-vector and scalar-vector operation of

the interior-point algorithm is parallelized in a problem-specific way. In addition, the algorithmic

1Dipl.-Math. Jens Hübner, huebner@ifam.uni-hannover.de, Institute of Applied Mathematics, Leibniz Univer-

sität Hannover

huebner@ifam.uni-hannover.de

Chapter 6. Numerical Results 112

building block for solving the KKT system is replaced by a highly problem-specific parallel solution

algorithm. This results in a completely parallelized interior-point method for distributed memory

systems.

The according numerical results are highly encouraging. Table 6.1 shows the model statistics

of the largest problems Hübner is able to solve using Clean::IPM. The nonzero elements are the

nonzero elements of the KKT matrix. The problem size of the largest instance of (6.2) is up to

almost 11 billion variables and 4 billion equality constraints. The computations are done on the

“tane” cluster of the RRZN2. This cluster consists of 96 compute nodes with 12 processors per

node. Every processor is an Intel Xeon X5670 with 2.93 GHz and every node has 48 GB RAM.

n |E| Nonzero entries Processors Required memory Wallclock time

(in mill.) (in mill.) (in mill.) (in GB) (in s)

110 39 332 12 34 44

311 111 833 36 103 88

421 153 997 60 134 31

1 210 435 3 050 120 413 49

1 872 648 7 454 180 837 51

3 111 1 111 8 333 420 1 104 36

10 896 3 922 27 458 1 080 3 760 48

Table 6.1: Model statistics and solution times of huge-scale tree-sparse convex programs.

This application shows two important advantages of the Clean::IPM framework. First, Hübner

gives a proof of concept that the generic concept of Clean::IPM can be exploited to achieve a highly

problem-specific instantiation of the interior-point framework. With this, it is possible to solve

extremely large instances very efficiently. Secondly, solving problems of the sizes given in Table 6.1

also confirms the robustness and quality of the implementation.

6.3 The Hock–Schittkowski Test Set

The Hock–Schittkowski test set [57] is a traditional test set containing low-dimensional nonlinear

optimization problems. Many of them are nonconvex and possess different local minima.

The Clean::IPM framework is tested on the Hock–Schittkowski test set as a part of the CUTEr

test set [49]. It contains 126 problems. 9 problems are excluded from the test set due to CUTEr-

specific compilation problems. The remaining 117 problems are solved by 6 different instantiations

of the Clean::IPM interior-point framework. These instantiations differ

2Regionales Rechenzentrum Niedersachsen, Hannover, http://www.rrzn.uni-hannover.de

http://www.rrzn.uni-hannover.de

113 6.3. The Hock–Schittkowski Test Set

1. in the algorithmic aspect, if a monotone or mixed strategy for the barrier parameter updates

is used and

2. in the concrete update rule for the barrier parameter (LOQO rule, Ipopt rule or Mehrotra’s

predictor-corrector method).

The stopping criterion presented in Section 4.1 is slightly modified such that (4.23) is replaced by

θpri < εθpri , θdual < εθdual , θcompl < εθcompl
, (6.3)

with constants

εθpri
:= 10−4, εθdual := 1, εθcompl

:= 10−4. (6.4)

In addition, the scaled optimality measure (cf. (4.24)) as used in Ipopt [134] has to satisfy the

tolerance 10−6. The maximum number of iterations is set to 105.

The numerical results in the rest of this chapter are presented using performance profiles in the

form proposed by Dolan and Moré in [32]: For a set of problems P and a set of solvers (or solver

options) S, the performance measure

tp,s := iterations required to solve problem p ∈ P by solver s ∈ S (6.5)

is used. Here, P is the subset of the Hock–Schittkowski test set with |P| = 117 and S is the set of

different instantiations of the Clean::IPM framework with |S| = 6. The performance ratio is defined

by

rp,s :=
tp,s

min{tp,s : s ∈ S}
. (6.6)

Then

ρs(τ) :=
1

|P|
|{p ∈ P : rp,s ≤ τ}| (6.7)

is the fraction of problems that are solved by solver s within a factor τ ≥ 1 of the performance

of the best solver for problem p. The performance profile ρs(τ) : R → [0, 1] is non-decreasing

and piecewise constant (cf. [32]). Its basic interpretation is as follows: The value of ρs(1) is the

probability that solver s is the best of all tested solvers (with respect to the performance measure

tp,s). Moreover, set rM ≥ rp,s for all p and all s and rp,s = rM if and only if solver s does not solve

problem p. Thus, rp,s ∈ [1, rM] and

ρ∗s := lim
τ↗rM

ρs (τ) (6.8)

can be interpreted as the probability that solver s solves a problem. In other words, ρs(1) is a

measure of efficiency whereas ρ∗s is a measure of robustness.

Figure 6.1 shows the performance profiles for Clean::IPM with a mixed strategy for the barrier

parameter updates on the Hock–Schittkowski test set using a log2-scale, i.e.

ρs(τ) =
1

|P|
|{p ∈ P : log2 (rp,s) ≤ τ}| (6.9)

Chapter 6. Numerical Results 114

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

%
of

pr
ob

le
m
s

Ipopt
MPC
LOQO

Figure 6.1: Clean::IPM with mixed µ-strategies on the Hock–Schittkowski test set.

is plotted instead of (6.7). The best mixed instantiation of the Clean::IPM framework for this

test set is the one using Mehrotra’s predictor-corrector method (denoted by MPC in the figures).

It outperforms both the Ipopt and the LOQO update rule in terms of efficiency and robustness.

Using the Ipopt rule leads to a more efficient algorithm than using the LOQO rule. All three

instantiations are comparable in terms of robustness. Figure 6.2 shows the performance profiles

for instantiations of Clean::IPM with a monotone update strategy for the barrier parameter. These

monotone versions of the algorithm are as robust as the mixed versions. Here, using the LOQO

rule or Mehrotra’s predictor-corrector algorithm is more efficient than using the Ipopt rule.

If one considers both the solutions of the monotone and the mixed instantiations, it turns out

that 7 problems remain unsolved. These problems are HS15, HS27, HS62, HS84, HS87, HS99 and

HS102. By tuning the parameters of the algorithm or modifying the starting point, it is possible to

achieve optimal solutions for HS15 (using the reduced vector management described in Section 4.1.7

with the LOQO rule and the modified starting point 0 ∈ Rn), HS27 (using the modified starting

point 0 ∈ Rn) and HS102 (using the monotone version and the initial barrier parameter 104). This

corresponds to a success rate of 96.6 %. The remaining 4 problems HS62, HS84, HS87 and HS99

are all solved to primal feasibility without satisfying the dual feasibility tolerance.

115 6.4. Gas Network Planning

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

%
of

pr
ob

le
m
s

Ipopt
MPC
LOQO

Figure 6.2: Clean::IPM with monotone µ-strategies on the Hock–Schittkowski test set.

6.4 Gas Network Planning

In Chapter 3, a nonsmooth, nonconvex and nonlinear MPCC model of the problem of validation

of nominations is developed. Here, numerical results for an implementation of this model are

presented.

The data used in this section is real-world data from the industry partner Open Grid Europe

GmbH (OGE) within the ForNe project. The considered network is the northern high-calorific

gas transport network of OGE. Figure 6.3 shows a schematic plot of the network.3 The colored

edges correspond to active elements or resistors (compressor stations are red, control valves are

blue, valves are green and resistors are cyan). This network ranges from the North Sea in the

north to the Ruhr area in the south and from the Netherlands in the west to Saxony-Anhalt in

the east. It consists of more than 1200 km of pipelines and several compressor stations, control

valves and valves. A statistic about the network can be found in Table 6.2. Although the northern

high-calorific gas transport network is the smallest transport network of OGE, it is a large-scale

instance with respect to the considered problem class. To the best of the author’s knowledge, no

other work beside the ForNe project exists that solves mixed-integer, nonconvex and nonlinear

problems on networks of this size. As a part of the project ForNe, tools have been developed

to automatically generate nominations. These nominations are based on historical data and the

3The plot is generated with LaMaTTO++, a framework for modeling and solving mixed-integer nonlinear pro-

gramming problems on networks. It was originally developed by the working group of Alexander Martin, Friedrich-

Alexander Universität Erlangen-Nürnberg, and is now used and extended in the research project ForNe.

Chapter 6. Numerical Results 116

Figure 6.3: Schematic plot of the northern high-calorific gas transport network of Open Grid

Europe GmbH.

current contract situation of OGE. The details will be published in the upcoming book [67].

To be able to solve the problem of validation of nominations an additional interface for (nonlin-

ear) optimization models on networks is developed for this thesis. In the following, this interface

is referred to as iGNO4. It is implemented in C++ and uses the Boost graph library BGL [113] as

a basis for all network-specific components of the interface. In addition, iGNO provides parsers

for handling the network and the nomination data. This data is given in XML and all parsers

are based on the C++-based XML parser Xerces [1]. It should be mentioned that the developed

interface is not restricted to gas networks and thus, can also be used for other optimization appli-

4iGNO is an acronym for Interface for Gas Network Optimization.

117 6.4. Gas Network Planning

Network elements Count

Pipes 452

Short cuts 99

Resistors (Apwc
re) 1

Resistors (Apwq
re) 8

Valves 35

Control valves 23

Compressor stations 6

Sources 31

Sinks 129

Junctions 432

Table 6.2: Network elements in the northern high-calorific gas transport network of Open Grid

Europe GmbH.

cations on networks like drinking water or sewer network optimization. During the development

of iGNO, techniques for increasing the software quality are applied as it is described for Clean::IPM

in Section 5.3.

The numerical results presented in the following are based on the reformulated nonsmooth and

complementarity constrained model discussed in Section 3.3. The size of the reformulated model

is stated in Table 6.3. As it is already mentioned in Section 3.3 the used reformulation technique

Variables 1 963

Equality constraints 1 872

Inequality constraints 7

Complementarity constraints 64

Table 6.3: Size of the reformulated MPCC model (for the northern high-calorific gas network).

does not lead to an MPCC model in standard form. The reason for this is that the characteristic

functions of the non-disjunctive states of active network elements do not have to be non-negative.

For being able to apply standard regularization techniques like penalization or relaxation, the

characteristic functions can be squared or they can be replaced by their absolute values. The model

sizes given in Table 6.3 are the ones for the model without applying additional modifications of the

characteristic functions. Both squaring the characteristic functions and using their absolute values

lead to nχ additional equality constraints and nχ additional auxiliary variables. Here, nχ is equal

to the number of characteristic functions in the model that are used to set up the complementarity

Chapter 6. Numerical Results 118

constraints. For the northern high-calorific gas network, nχ is given by

nχ = 2 (|Avl|+ |Acv|+ |Acs|) = 128. (6.10)

If the characteristic functions are squared, the additional equality constraints read

(χsa)
2 − sχsa = 0, (6.11)

where χsa is the characteristic function of state s and arc a ∈ A. sχsa ≥ 0 is a new auxiliary variable

that is used in the complementarity constraints instead of χsa. In analogy, if the absolute values of

the characteristic functions are used, the additional equality constraints read

|χsa| − sχsa = 0. (6.12)

Obviously, this formulation increases the nonsmoothness of the problem and it is easy to see that

every MPCC-feasible point is a point at which at least the auxiliary constraints (6.12) fail to be

differentiable. This property increases the hardness of the problem significantly. Nevertheless,

it might be useful to try to solve the formulation using (6.12) instead of the one using (6.11).

This aspect is discussed in more detail at the end of this chapter. In the following, the nonsmooth

MPCC model using (6.11) is referred to as nMPCC-s and the model using (6.12) is called nMPCC-a.

In what follows, results for a set of 1000 randomly chosen nominations are presented. These

nominations are generated within the ForNe project. All computations are done with an Intel

Core i7 CPU 920 with 2.67 GHz and 12 GB RAM. The operating system is openSUSE 12.1. All

executables are generated without any code optimization with the GCC compiler version 4.7.1.

The accomplished computational experiments show that the penalization scheme for regu-

larizing the complementarity constraints leads to better numerical results than the relaxation

scheme. Thus, the following presentation concentrates on the penalization method. As the MPCC-

complementarity measure, (4.185) is used together with the adaptive tolerance defined in (4.186).

The update parameter κξ in (4.189) is set to κξ := 0.1. The initial value of the penalization pa-

rameter ξ is 104. Moreover, the computational experiments show that it increases the robustness

of the method if a lower bound on the penalization parameter is incorporated. This lower bound

is set to 10−8.

Figure 6.4 shows the performance profile for different instantiations of Clean::IPM applied to

the nMPCC-s model. The results are generated with a monotone strategy for the updates of the

barrier parameter and the Ipopt rule, the LOQO rule and Mehrotra’s predictor-corrector method.

In addition, two different initial values for the barrier parameter are tested (µ(0) = 10−1 and

µ(0) = 102). It can be seen that all described instantiations lead to a comparable performance but

the larger initial value for the barrier parameter leads to slightly more robust algorithms. Since

the update of the regularization parameter is directly coupled with the barrier parameter (cf.

119 6.4. Gas Network Planning

(4.188)), a larger initial value µ(0) may lead to earlier updates of the barrier parameter and thus,

to earlier updates of the penalization parameter. These larger penalization parameters accentuate

the complementarity constraints in the earlier barrier problems. This might be the reason for the

increased robustness.

In addition to the performance profiles of the 6 instantiations of Clean::IPM, Figure 6.4 also

shows the best-of profile, i.e. the performance profile that is achieved if one takes the best of all 6

solver instantiations for a given nomination. Obviously, this line is constant for all τ and its value

(≈ 90 % in Figure 6.4) is the percentage of instances that is solved by at least one of the algorithmic

instantiations. By this, it can be seen that the solution process for these instances significantly

depends on the chosen algorithmic options. This is a well-known fact for nonlinear optimization in

general and seems to be particularly true for the considered class of nonsmooth MPCCs. Since the

problem of validation of nominations is a feasibility problem, a strong suggestion based on these

results is to test a few algorithmic options in order to achieve a feasibility certificate.

Table 6.4 shows a statistic of the minimum, maximum and average iteration numbers of all

successfully finished runs. The analogous information about the solution times can be found in

Table 6.5. It should be remarked, that approximately 2/3 of the solution time is used for the

evaluation of the problem data.

0 1 2 3 4 5
0

20

40

60

80

100

%
of

pr
ob

le
m
s

Ipopt, µ(0) = 10−1

Ipopt, µ(0) = 102

MPC, µ(0) = 10−1

MPC, µ(0) = 102

LOQO, µ(0) = 10−1

LOQO, µ(0) = 102

best-of

Figure 6.4: Performance profiles for Clean::IPM applied to the nMPCC-s model.

As it is already mentioned above, the nMPCC-amodel is much harder to solve than the nMPCC-s

model. The nMPCC-s model only contains the nonsmooth constraints of the component model of

resistors a ∈ Apwq
re with a piecewise quadratic pressure loss (cf. Section 3.2.4). In its original

Chapter 6. Numerical Results 120

Solver option min. k max. k avg. k

Ipopt rule, µ(0) = 10−1 41 1 866 112

Ipopt rule, µ(0) = 102 40 2 807 213

MPC rule, µ(0) = 10−1 47 703 95

MPC rule, µ(0) = 102 43 2 086 168

LOQO rule, µ(0) = 10−1 47 1 479 95

LOQO rule, µ(0) = 102 45 5 241 167

Table 6.4: Statistics of the iteration numbers (k) for Clean::IPM applied to the nMPCC-s model.

Solver option min. t max. t avg. t

Ipopt rule, µ(0) = 10−1 6 442 17

Ipopt rule, µ(0) = 102 6 425 31

MPC rule, µ(0) = 10−1 7 130 15

MPC rule, µ(0) = 102 7 325 27

LOQO rule, µ(0) = 10−1 5 217 14

LOQO rule, µ(0) = 102 6 300 25

Table 6.5: Statistics of the solution times (t, in s) for Clean::IPM applied to the nMPCC-s model.

version, the component model of resistors only contains a second-order discontinuity due to the

term |q|q in (3.48). Notice that this constraint can also be re-written in a completely smooth way.

This can be done by a variable splitting for the mass flow variable qa, i.e.

qa = q+
a − q−a , q+

a , q
−
a ≥ 0, q+

a q
−
a = 0. (6.13)

This reformulation only shifts the difficulty of the problem of nonsmoothness to another place be-

cause it introduces additional complementarity constraints. Moreover, the presented computational

results show that this kind of nonsmooth constraints does not disturb the algorithm significantly.

However, the reformulation that is required such that the model fits the standard form (4.138) of

an optimization problem with locatable and separable nonsmoothness leads to a first-order dis-

continuity. Moreover, it is not necessarily the case that a feasible point has to be directly at this

first-order discontinuity. In contrast to that, all MPCC-feasible points of the nMPCC-a model are

points of first-order discontinuities.

The increasing difficulty can be seen in the corresponding performance profiles in Figure 6.5.

The best-of profile states that only slightly more than 20 % of the nominations are solved by any

of the tested algorithmic instantiations. Furthermore, it can be seen that smaller initial values of

the barrier parameter lead to more robust algorithms in this case. Only a few instances can be

121 6.4. Gas Network Planning

solved with the larger initial barrier parameter.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60

%
of

pr
ob

le
m
s

Ipopt, µ(0) = 10−1

Ipopt, µ(0) = 102

MPC, µ(0) = 10−1

MPC, µ(0) = 102

LOQO, µ(0) = 10−1

LOQO, µ(0) = 102

best-of

Figure 6.5: Performance profiles for Clean::IPM applied to the nMPCC-a model.

Solver option min. k max. k avg. k

Ipopt rule, µ(0) = 10−1 153 852 358

MPC rule, µ(0) = 10−1 165 2 450 348

LOQO rule, µ(0) = 10−1 162 2 450 344

Table 6.6: Statistics of the iteration numbers (k) for Clean::IPM applied to the nMPCC-a model.

Solver option min. t max. t avg. t

Ipopt rule, µ(0) = 10−1 24 147 57

MPC rule, µ(0) = 10−1 25 427 56

LOQO rule, µ(0) = 10−1 26 429 56

Table 6.7: Statistics of the solution times (t, in s) for Clean::IPM applied to the nMPCC-a model.

In the following, solution processes of Clean::IPM for an exemplary nMPCC-a instance and an

exemplary nMPCC-s instance are analyzed. Comparing the statistics of the iteration number of the

nMPCC-s model (Table 6.4) and the nMPCC-a model (Table 6.6) it is obvious that the model with

the larger amount of nonsmooth aspects tends to require more iterations. Since the solution time

is almost proportional to the number of iterations, this can also be seen in Table 6.5 and Table 6.7.

Chapter 6. Numerical Results 122

Figure 6.6 and Figure 6.7 show the progress in primal and dual infeasibility for an exemplary

nMPCC-s and an exemplary nMPCC-a instance. One can see that the progress in primal feasibility

is comparable except for the number of iterations that are required to achieve this progress. This

is additionally illustrated in Figure 6.8 and Figure 6.9. There are much more primal step lengths

in [0.1, 1] for the nMPCC-s instance than for the nMPCC-a instance, where most of the primal step

lengths are less than 0.1. The reason for this is that both the step length truncation rule as well as

the modified filter line-search procedures (cf. Section 4.2.3 for both) lead to shorter step lengths.

Since the primal search directions are in the same order of magnitude for both instances, this leads

to shorter steps and slow convergence for the nMPCC-a instances. In most of the cases for which

Clean::IPM fails to solve the nMPCC-a model, the combination of the step length truncation rule

and the subsequent line-search leads to very short primal step lengths that are finally rejected by

the line-search.

Nevertheless, it is possible to solve about 20 % of the nMPCC-a instances for the real-world

and large-scale instances on the northern high-calorific gas transport network of OGE. Moreover,

it turns out that some of the instances that cannot be solved for the nMPCC-s model can be solved

for the nMPCC-a model. Combining both the results for the nMPCC-s model and the nMPCC-a

model, approximately 93 % of the randomly chosen nominations are decided to be feasible. Thus,

the Clean::IPM framework can be successfully used to solve the challenging problem of validation

of nominations for real-world instances.

0 10 20 30 40 50 60 70 80

10−6

10−4

10−2

100

102

104

106

108

Iteration

αpri
αdual

Figure 6.6: Primal and dual infeasibility during the solution of an exemplary nMPCC-s instance.

123 6.4. Gas Network Planning

0 50 100 150 200 250 300 350 400 450

10−4

10−2

100

102

104

106

108

Iteration

θpri

θdual

Figure 6.7: Primal and dual infeasibility during the solution of an exemplary nMPCC-a instance.

0 10 20 30 40 50 60 70 80

10−4

10−3

10−2

10−1

100

Iteration

αpri
αdual

Figure 6.8: Primal and dual step lengths during the solution of an exemplary nMPCC-s instance.

Chapter 6. Numerical Results 124

0 50 100 150 200 250 300 350 400 450

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration

αpri
αdual

Figure 6.9: Primal and dual step lengths during the solution of an exemplary nMPCC-a instance.

Chapter 7

Conclusions and Outlook

In this thesis the generic interior-point framework Clean::IPM for nonlinear optimization is pre-

sented. As the main application, the problem of validation of nominations in gas transport net-

works is considered. This problem leads to a mixed-integer, nonsmooth, nonconvex and nonlinear

feasibility problem that is intractable for state-of-the-art optimization solvers. Thus, a reformu-

lation technique for a certain class of mixed-integer nonlinear problems is developed and applied

to the considered problem. The result is a nonsmooth MPCC model. It is then described how

the generic Clean::IPM framework can be extended in order to solve a certain class of nonsmooth

problems as well as complementarity constrained problems. By reasons of the carefully chosen

algorithmic design it is possible to combine both extensions leading to a solution approach for the

reformulated nonsmooth MPCC model of the problem of validation of nominations.

The presented computational results first discuss some use cases of the Clean::IPM framework

in the fields of mathematical biology and stochastic programming. The variety of these use cases

documents the generality of the framework and gives a proof of concept for the design goals of

Clean::IPM. In addition, preliminary results for Clean::IPM are presented on the Hock–Schittkowski

test set in order to illustrate the robustness and performance of the basic interior-point method.

Finally, numerical results for Clean::IPM applied to the problem of validation of nominations

in gas transport networks are given. It is shown that the extended interior-point method can be

used to solve the nonsmooth and complementarity constrained model of the problem of valida-

tion of nominations. Nevertheless, a number of improvements are possible. As the computational

experiments for strongly nonsmooth constrained problems show, there is room for improvement

in the implementation of the extensions of Clean::IPM that handle the nonsmooth aspects of the

problems. It can be seen that problems occur if many constraints fail to be differentiable in the

limit of the iterates. It is thinkable that more carefully chosen parameters and tolerances of the

algorithm can improve its robustness significantly. Apart from that, completely different strategies

125

Chapter 7. Conclusions and Outlook 126

for handling these situations are imaginable. One promising approach that will be investigated in

the future is the detection of constraints that fail to be differentiable in the limit, fixation of the

corresponding variables and projection of the problem. Beside these algorithmic developments a

more realistic model, in particular of compressor stations, of the problem of validation of nomina-

tions should be implemented. This leads to larger models but the problem class stays the same.

Thus, it is likely that even these more realistic models can be solved by the Clean::IPM framework.

In addition, the theoretical properties of the interior-point algorithm for nonsmooth problems

should be extended. Previous achievements are given in this thesis but the questions concerning

convergence properties are still open.

Finally, the basic interior-point method is going to be tested on larger test sets (like CUTEr)

and the extensions for solving MPCC problems should be tested on general test sets (e.g. the

MacMPEC collection [73]). After realizing these tests, it is the aim of the author to make the

Clean::IPM framework available as open source. The author thinks that this can be beneficial for

the mathematical optimization community since the generality of the framework can be exploited

in order to develop and test new algorithmic ideas in the field of interior-point methods and their

applications.

Bibliography

[1] Xerces-C++ XML Parser. http://xerces.apache.org/xerces-c/.

[2] Andrei Alexandrescu. Traits: The else-if-then of types. C++ Report, April 2000.

[3] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns

Applied. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[4] E. D. Andersen and K. D. Andersen. The MOSEK interior point optimizer for linear program-

ming: an implementation of the homogeneous algorithm, pages 197–232. Kluwer Academic

Publishers, 1999.

[5] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.

SIAM, Philadelphia, PA, 1992. http://www.netlib.org/lapack.

[6] Pia Bales. Hierarchische Modellierung der Eulerschen Flussgleichungen in der Gasdynamik.

Master’s thesis, Technische Universität Darmstadt, 2005.

[7] Mapundi K. Banda and Michael Herty. Multiscale modeling for gas flow in pipe networks.

Mathematical Methods in the Applied Sciences, 31:915–936, August 2008.

[8] Mapundi K. Banda, Michael Herty, and Axel Klar. Gas flow in pipeline networks. Networks

and Heterogeneous Media, 1(1):41–56, March 2006.

[9] Hande Y. Benson, David F. Shanno, and Robert J. Vanderbei. Interior-point methods for

nonconvex nonlinear programming: Jamming and comparative numerical testing. Technical

Report ORFE-00-02, Princeton University, 2000.

[10] Hande Y. Benson, David F. Shanno, and Robert J. Vanderbei. Interior-point methods for

nonconvex nonlinear programming: Filter methods and merit functions. Technical report,

Princeton University, 2001. Revised Version, September 2001.

127

http://xerces.apache.org/xerces-c/
http://www.netlib.org/lapack

Bibliography 128

[11] Hande Y. Benson, David F. Shanno, and Robert J. Vanderbei. Interior-point methods for

nonconvex nonlinear programming: Complementarity constraints. Technical Report ORFE

02-02, Princeton University, 2002.

[12] Hans Georg Bock, Ekaterina Kostina, Hoang Xuan Phu, and Rolf Rannacher, editors. Mod-

eling, Simulation and Optimization of Complex Processes. Springer, Berlin, 2005.

[13] Boost. Generic Programming Techniques. http://www.boost.org/community/generic_

programming.html.

[14] Conrado Borraz-Sánchez and Roger Z. Ríos-Mercado. A procedure for finding initial feasible

solutions on cyclic natural gas networks. In Proceedings of the 2004 NSF Design, Service

and Manufacturing Grantees and Research Conference, Dallas, USA, January 2004.

[15] Conrado Borraz-Sánchez and Roger Z. Ríos-Mercado. A Hybrid Meta-Heuristic Approach

for Natural Gas Pipeline Network Optimization. In María Blesa, Christian Blum, Andrea

Roli, and Michael Sampels, editors, Hybrid Metaheuristics, volume 3636 of Lecture Notes in

Computer Science, pages 54–65. Springer, 2005.

[16] E. Andrew Boyd, L. Ridgway Scott, and Suming Wu. Evaluating the quality of pipeline op-

timization algorithms. In PSIG 29th Annual Meeting, Tucson, Arizona. Pipeline Simulation

Interest Group, 1997. Paper 9709.

[17] Jens Brouwer, Ingenuin Gasser, and Michael Herty. Gas pipeline models revisited: Model

hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul.,

9(2):601–623, 2011.

[18] Jens Burgschweiger, Bernd Gnädig, and Marc C. Steinbach. Optimization models for oper-

ative planning in drinking water networks. Optim. Eng., 2008. Online First.

[19] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An interior point algorithm for large-

scale nonlinear programming. SIAM J. Optim., 9(4):877–900, 2000.

[20] Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz. KNITRO: An integrated package for

nonlinear optimization. In Large Scale Nonlinear Optimization, 35–59, 2006, pages 35–59.

Springer Verlag, 2006.

[21] Richard G. Carter. Compressor station optimization: Computational accuracy and speed.

In 28th Annual Meeting. Pipeline Simulation Interest Group, 1996. Paper 9605.

[22] Richard G. Carter. Pipeline optimization: Dynamic Programming after 30 years. In PSIG

[96]. Paper 9803.

http://www.boost.org/community/generic_programming.html
http://www.boost.org/community/generic_programming.html

129 Bibliography

[23] Richard G. Carter, Don W. Schroeder, and Tim D. Harbick. Some Causes and Effects of

Discontinuities in Modeling and Optimizing Gas Transmission Networks. Technical report,

Stoner Associates, Carlisle, PA, USA, April 1994.

[24] Francis H. Clarke, Yuri S. Ledyaev, Ronald J. Stern, and Peter R. Wolenski. Nonsmooth

Analysis and Control Theory, volume 178 of Graduate Texts in Mathematics. Springer, 1998.

[25] Frank H. Clarke. Optimization and Nonsmooth Analysis. Society for Industrial and Applied

Mathematics, 1990.

[26] Diana Cobos-Zaleta and Roger Z. Ríos-Mercado. A MINLP model for a problem of mini-

mizing fuel consumption on natural gas pipeline networks. In Proc. XI Latin-Ibero-American

Conference on Operations Research, pages 1–9, 2002. Paper A48-01.

[27] Cyril Frank Colebrook. Turbulent flow in pipes with particular reference to the transition

region between smooth and rough pipe laws. Journal of the Institution of Civil Engineers,

11:133–156, February 1939.

[28] Andrew R. Conn, Nicholas I. M. Gould, and Philippe Toint. Trust-Region Methods. MPS-

SIAM series on optimization. SIAM, 2000.

[29] George B. Dantzig. On the significance of solving linear programming problems with some

integer variables. Econometrica, 28(1):pp. 30–44, 1960.

[30] Daniel de Wolf and Yves Smeers. The gas transmission problem solved by an extension of

the simplex algorithm. Management Sci., 46(11):1454–1465, 2000.

[31] Angel-Victor DeMiguel, Michael P. Friedlander, Francisco J. Nogales, and Stefan Scholtes. A

two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM

J. Optim., 16(1):587–609, 2005.

[32] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with perfor-

mance profiles. Math. Program., 91:201–213, 2002.

[33] Pia Domschke, Björn Geißler, Oliver Kolb, Jens Lang, Alexander Martin, and Antonio Morsi.

Combination of nonlinear and linear optimization of transient gas networks. INFORMS

Journal of Computing, 23(4):605–617, 2011.

[34] Klaus Ehrhardt and Marc C. Steinbach. KKT systems in operative planning for gas distri-

bution networks. Proc. Appl. Math. Mech., 4(1):606–607, 2004.

[35] Klaus Ehrhardt and Marc C. Steinbach. Nonlinear optimization in gas networks. In Bock

et al. [12], pages 139–148.

Bibliography 130

[36] Miloslav Feistauer. Mathematical Methods in Fluid Dynamics, volume 67 of Pitman Mono-

graphs and Surveys in Pure and Applied Mathematics Series. Longman Scientific & Technical,

Harlow, 1993.

[37] Anthony V. Fiacco and Garth P. McCormick. Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques. Wiley, New York, 1968. Reprinted by SIAM Publications,

1990.

[38] E. John Finnemore and Joseph E. Franzini. Fluid Mechanics with Engineering Applications.

McGraw-Hill, 10th edition, 2002.

[39] A. Fischer. A special Newton-type optimization method. Optimization, 24(3-4):269–284,

1992.

[40] Roger Fletcher and Sven Leyffer. A bundle filter method for nonsmooth nonlinear optimiza-

tion. Numerical Analysis Report NA/195, University of Dundee, December 1999.

[41] Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty function. Math.

Program., 91:239–269, 2000.

[42] Roger Fletcher and Sven Leyffer. Solving mathematical programs with complementary con-

straints as nonlinear programs. Optim. Methods Software, 19(1):15–40, 2004.

[43] Christodoulos A. Floudas. Nonlinear and Mixed Integer Optimization: Fundamentals and

Applications, volume 37 of Nonconvex Optimization and Its Applications. Oxford University

Press, New York, 1995.

[44] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling Language for

Mathematical Programming. Duxbury Press/Brooks/Cole Publishing Company, 2nd edition,

2002.

[45] Armin Fügenschuh, Björn Geißler, Ralf Gollmer, Christine Hayn, René Henrion, Benjamin

Hiller, Jesco Humpola, Thorsten Koch, Thomas Lehmann, Alexander Martin, Radoslava

Mirkov, Antonio Morsi, Werner Römisch, Jessica Rövekamp, Lars Schewe, Martin Schmidt,

Robert Schwarz, Rüdiger Schultz, Jonas Schweiger, Claudia Stangl, Marc C. Steinbach, and

Bernhard M. Willert. Mathematical optimization for challenging network planning problems

in unbundled liberalized gas markets. In preparation.

[46] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1995.

131 Bibliography

[47] Björn Geißler. Towards Globally Optimal Solutions for MINLPs by Discretization Techniques

with Applications in Gas Network Optimization. Ph. D. dissertation, University of Erlangen-

Nuremberg, Germany, 2011.

[48] Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, MD, USA, 2nd edition, 1989.

[49] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. CUTEr and SifDec: A

constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw.,

29(4):373–394, December 2003.

[50] Ignacio E. Grossmann. Review of nonlinear mixed-integer and disjunctive programming

techniques. Optim. Eng., 3(3):227–252, 2002. Special issue on mixed-integer programming

and its applications to engineering.

[51] Martin Gugat. Boundary controllability between sub- and supercritical flow. SIAM J. Control

Optim., 42:1056–1070, 2003.

[52] Martin Gugat and Günter Leugering. Global boundary controllability of the de St. Venant

equations between steady states. Annales de l’Institut Henri Poincare (C) Non Linear Anal-

ysis, 20(1):1 – 11, 2003.

[53] Martin Gugat, Günter Leugering, Klaus Schittkowski, and E. J. P. Georg Schmidt. Modelling,

stabilization, and control of flow in networks of open channels. In Martin Grötschel, Sven O.

Krumke, and Jörg Rambau, editors, Online Optimization of Large Scale Systems, pages

251–270. Springer, Berlin, 2001.

[54] Peter Hackländer. Integrierte Betriebsplanung von Gasversorgungssystemen. Ph. D. disser-

tation, Universität Wuppertal, 2002.

[55] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization Al-

gorithms I: Fundamentals, volume 305 of Grundlehren der mathematischen Wissenschaften.

Springer, 1993.

[56] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization

Algorithms II: Advanced Theory and Bundle Methods, volume 306 of Grundlehren der math-

ematischen Wissenschaften. Springer, 1993.

[57] Willi Hock and Klaus Schittkowski. Test Examples for Nonlinear Programming Codes, vol-

ume 187 of Springer Lecture Notes in Economics and Mathematical Systems. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 1981.

Bibliography 132

[58] The HSL Mathematical Software Library. HSL MA27 Package Specification, March 2003.

[59] X. M. Hu and Daniel Ralph. Convergence of a penalty method for mathematical programming

with complementarity constraints. J. Optim. Theory Appl., 123:365–390, 2004.

[60] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman to Master.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[61] Tomáš Jeníček. Steady-state optimization of gas transport. In SIMONE [114], pages 26–38.

[62] Tomáš Jeníček, Jaroslav Králik, J. Štěrba, Zdenĕk Vostrý, and Jĭri Záworka. Study to

analyze the possibilities and features of an optimization system (optimum control system)

to support the dispatching activities of Ruhrgas. Vertrauliche Dokumentation, LIWACOM

Informationstechnik GmbH Essen, 1993.

[63] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. Combina-

torica, 4(4):373–395, 1984.

[64] Napsu Karmitsa. NonSmooth Optimization (NSO) Software. http://napsu.karmitsa.fi/

nsosoftware/.

[65] Donald La Verne Katz. Handbook of natural gas engineering. McGraw-Hill series in chemical

engineering. McGraw-Hill, 1959.

[66] Leonid Genrikhovich Khachiyan. A polynomial algorithm in linear programming. Soviet

Mathematics Doklady, 20:191–194, 1979.

[67] Thorsten Koch, Dagmar Bargmann, Mirko Ebbers, Armin Fügenschuh, Björn Geißler, Nina

Geißler, Ralf Gollmer, Uwe Gotzes, Christine Hayn, Holger Heitsch, René Henrion, Benjamin

Hiller, Jesco Humpola, Imke Joormann, Veronika Kühl, Thomas Lehmann, Hernan Leövey,

Alexander Martin, Radoslava Mirkov, Andris Möller, Antonio Morsi, Djamal Oucherif, An-

tje Pelzer, Marc E. Pfetsch, Lars Schewe, Werner Römisch, Jessica Rövekamp, Martin

Schmidt, Rüdiger Schultz, Robert Schwarz, Jonas Schweiger, Klaus Spreckelsen, Claudia

Stangl, Marc C. Steinbach, Ansgar Steinkamp, Isabel Wegner-Specht, Bernhard M. Willert,

and Stefan Vigerske. From simulation to optimization: Evaluating gas network capacities.

In preparation.

[68] Korbinian Kraemer and Wolfgang Marquardt. Continuous reformulation of MINLP prob-

lems. In Moritz Diehl, Francois Glineur, Elias Jarlebring, and Wim Michiels, editors, Recent

Advances in Optimization and its Applications in Engineering, pages 83–92. Springer Berlin

Heidelberg, 2010.

http://napsu.karmitsa.fi/nsosoftware/
http://napsu.karmitsa.fi/nsosoftware/

133 Bibliography

[69] Jaroslav Králik. Compressor stations in SIMONE. In SIMONE [114], pages 93–117.

[70] Jaroslav Králik, Petr Stiegler, Zdeněk Vostrý, and Jiří Závorka. A universal dynamic sim-

ulation model of gas pipeline networks. IEEE Trans. Syst., Man, Cybern., 14(4):597–606,

1984.

[71] Jaroslav Králik, Petr Stiegler, Zdenĕk Vostrý, and Jĭri Záworka. Modeling the dynamics of

flow in gas pipelines. IEEE Trans. Syst., Man, Cybern., SMC-14(4):586–596, 1984.

[72] Günter Leugering and E. J. P. Georg Schmidt. On the modelling and stabilization of flows

in networks of open canals. SIAM J. Control Optim., 41(1):164–180, 2002.

[73] Sven Leyffer. MacMPEC: AMPL collection of MPECs. www.mcs.anl.gov/~leyffer/

MacMPEC/.

[74] Sven Leyffer, Gabriel López-Calva, and Jorge Nocedal. Interior methods for mathematical

programs with complementarity constraints. SIAM J. Optim., 17:52–77, 2004.

[75] Xinwei Liu and Jie Sun. A robust primal-dual interior-point algorithm for nonlinear pro-

grams. SIAM J. Optim., 14(4):1163–1186, 2004.

[76] LIWACOM Informations GmbH and SIMONE Research Group s.r.o. Gleichungen und Me-

thoden, 2004. Benutzerhandbuch.

[77] Zhi-Quan Luo, Jong-Shi Pang, and Daniel Ralph. Mathematical programs with equilibrium

constraints. Cambridge University Press, 1996.

[78] Mikhail V. Lurie. Modeling of Oil Product and Gas Pipeline Transportation. Wiley-VCH,

2008.

[79] Harry M. Markowitz and Alan S. Manne. On the solution of discrete programming problems.

Econometrica, 25(1):pp. 84–110, 1957.

[80] Alexander Martin, Björn Geißler, Claudia Hayn, Benjamin Hiller, Jesco Humpola, Thorsten

Koch, Thomas Lehmann, Antonio Morsi, Marc Pfetsch, Lars Schewe, Martin Schmidt, Rüdi-

ger Schultz, Robert Schwarz, Jonas Schweiger, Marc C. Steinbach, and Bernhard M. Willert.

Optimierung Technischer Kapazitäten in Gasnetzen. In Optimierung in der Energiewirt-

schaft, volume 2157 of VDI-Berichte, pages 105–114, 2011.

[81] Alexander Martin, Debora Mahlke, and Susanne Moritz. A simulated annealing algorithm

for transient optimization in gas networks. Math. Methods Oper. Res., 66(1):99–115, 2007.

[82] Alexander Martin and Markus Möller. Cutting planes for the optimization of gas networks.

In Bock et al. [12], pages 307–329.

www.mcs.anl.gov/~leyffer/MacMPEC/
www.mcs.anl.gov/~leyffer/MacMPEC/

Bibliography 134

[83] Alexander Martin, Markus Möller, and Susanne Moritz. Mixed integer models for the sta-

tionary case of gas network optimization. Math. Program., 105(2-3, Ser. B):563–582, 2006.

[84] Abraham H. Maslow. The psychology of science; a reconnaissance. Harper & Row New York,

1st edition, 1966.

[85] Sanjay Mehrotra. On the implementation of a primal-dual interior point method. SIAM J.

Optim., 2(4):575–601, 1992.

[86] Bertrand Meyer. Applying "Design by Contract". Computer, 25(10):40–51, October 1992.

[87] R. R. Meyer. Mixed integer minimization models for piecewise-linear functions of a single

variable. Discrete Mathematics, 16(2):163 – 171, 1976.

[88] Markus Möller. Mixed Integer Models for the Optimisation of Gas Networks in the Stationary

Case. Ph. D. dissertation, Technische Universität Darmstadt, 2004.

[89] Susanne Moritz. A Mixed Integer Approach for the Transient Case of Gas Network Opti-

mization. Ph. D. dissertation, Technische Universität Darmstadt, 2007.

[90] Jorge Nocedal, Andreas Wächter, and Richard A. Waltz. Adaptive barrier update strategies

for nonlinear interior methods. SIAM J. Optim., 19(4):1674–1693, 2009.

[91] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, Berlin, 2nd edition,

2006.

[92] Fred M. Odom and Gordon L. Muster. Tutorial on modeling of gas turbine driven centrifugal

compressors. Technical Report 09A4, Pipeline Simulation Interest Group, 2009.

[93] A. Osiadacz. Nonlinear programming applied to the optimum control of a gas compressor

station. Int. J. Numer. Methods Eng., 15(9):1287–1301, 1980.

[94] I. Papay. OGIL Musz. Tud. Kozl., 1968.

[95] Marc E. Pfetsch, Armin Fügenschuh, Björn Geißler, Nina Geißler, Ralf Gollmer, Benjamin

Hiller, Jesco Humpola, Thorsten Koch, Thomas Lehmann, Alexander Martin, Antonio Morsi,

Jessica Rövekamp, Lars Schewe, Martin Schmidt, Rüdiger Schultz, Robert Schwarz, Jonas

Schweiger, Claudia Stangl, Marc C. Steinbach, Stefan Vigerske, and Bernhard M. Willert.

Validation of nominations in gas network optimization: Models, methods, and solutions.

Submitted.

[96] Pipeline Simulation Interest Group. PSIG 30th Annual Meeting, Denver, Colorado, 1998.

135 Bibliography

[97] K. F. Pratt and J. G. Wilson. Optimization of the operation of gas transmission systems.

Transactions of the Institute of Measurement and Control, 6(5):261–269, 1984.

[98] Sebastian Probst. Numerische Berechnung genetischer Rekombinationswahrscheinlichkeiten.

Master’s thesis, Leibniz Universität Hannover, 2012.

[99] Arvind U. Raghunathan and Lorenz T. Biegler. An interior point method for mathematical

programs with complementarity constraints (MPCCs). SIAM J. Optim., 15:720–750, March

2005.

[100] R. Raman and Ignacio E. Grossmann. Modeling and computational techniques for logic

based integer programming. Comput. Chem. Eng., 18(7):563–578, 1994.

[101] Roger Z. Ríos-Mercado, Seongbae Kim, and Andrew E. Boyd. Efficient operation of natural

gas transmission systems: A network-based heuristic for cyclic structures. Computers &

Operations Research, 33(8):2323–2351, 2006.

[102] Roger Z. Ríos-Mercado, Suming Wu, L. Ridgway Scott, and Andrew E. Boyd. A reduction

technique for natural gas transmission network optimization problems. Ann. Oper. Res.,

117:217–234, 2002.

[103] Richard E. Rosenthal. GAMS - A User’s Guide. GAMS Development Corporation, 2008.

[104] Andrzej Ruszczyński. Nonlinear Optimization. Princeton University Press, 2006.

[105] Jamal Saleh, editor. Fluid Flow Handbook. McGraw-Hill Handbooks. McGraw-Hill, 2002.

[106] Holger Scheel and Stefan Scholtes. Mathematical programs with complementarity con-

straints: Stationarity, optimality and sensitivity. Math. Oper. Res., 25:1–22, 2000.

[107] Martin Schmidt, Marc C. Steinbach, and Bernhard M. Willert. High detail stationary opti-

mization models for gas networks — Part 1: Model components. IfAM Preprint 94, Inst. of

Applied Mathematics, Leibniz Universität Hannover, 2012. Submitted.

[108] Martin Schmidt, Marc C. Steinbach, and Bernhard M. Willert. A primal heuristic for nons-

mooth mixed integer nonlinear optimization. IfAM Preprint 95, Inst. of Applied Mathema-

tics, Leibniz Universität Hannover, 2012. Submitted.

[109] Martin Schmidt, Marc C. Steinbach, and Bernhard M. Willert. High detail stationary opti-

mization models for gas networks — Part 2: Validation and results. In preparation, 2013.

[110] Stefan Scholtes. Convergence properties of a regularization scheme for mathematical pro-

grams with complementarity constraints. SIAM J. Optim., 11(4):918–936, 2001.

Bibliography 136

[111] Erwin Sekirnjak. Mixed integer optimization for gas transmission and distribution systems.

Presentation manuscript, INFORMS-Meeting, Seattle, October 1998.

[112] Erwin Sekirnjak. Transiente Technische Optimierung (TTO-Prototyp). Vertrauliche Doku-

mentation, PSI AG, Berlin, 1999.

[113] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User

Guide and Reference Manual. C++ In-Depth Series. Addison-Wesley, 2001.

[114] Proceedings of 2nd International Workshop SIMONE on Innovative Approaches to Modeling

and Optimal Control of Large Scale Pipeline Networks, Prague, 1993.

[115] K. E. Starling and J. L. Savidge. Compressibility factors of natural gas and other related

hydrocarbon gases. Transmission Measurement Committee report. American Gas Association,

New York, 1992.

[116] Oliver Stein, Jan Oldenburg, and Wolfgang Marquardt. Continuous reformulations of

discrete-continuous optimization problems. Comput. Chem. Eng., 28(10):1951–1966, 2004.

[117] Marc C. Steinbach. Fast Recursive SQP Methods for Large-Scale Optimal Control Problems.

Ph. D. dissertation, Universität Heidelberg, 1995.

[118] Marc C. Steinbach. Hierarchical sparsity in multistage convex stochastic programs. In

Stanislav P. Uryasev and Panos M. Pardalos, editors, Stochastic Optimization: Algorithms

and Applications, pages 385–410, Dordrecht, The Netherlands, 2001. Kluwer Academic Pub-

lishers.

[119] Marc C. Steinbach. Markowitz revisited: Mean-variance models in financial portfolio analysis.

SIAM Rev., 43(1):31–85, 2001.

[120] Marc C. Steinbach. Tree-sparse convex programs. Math. Methods Oper. Res., 56(3):347–376,

2002.

[121] Marc C. Steinbach. On PDE solution in transient optimization of gas networks. J. Comput.

Appl. Math., 203(2):345–361, 2007.

[122] Alexander Stepanov and Meng Lee. The standard template library. Technical report,

WG21/N0482, ISO Programming Language C++ Project, 1994.

[123] Defeng Sun and Liqun Qi. On NCP-functions. Comput. Optim. Appl., 13(1-3):201–220, 1999.

Computational Optimization - a Tribute to Olvi Mangasarian, Part II.

[124] Boost C++ Libraries. http://www.boost.org/, 1998-2013.

http://www.boost.org/

137 Bibliography

[125] Tom van der Hoeven. Math in Gas and the art of linearization. PhD thesis, Rijksuniversiteit

Groningen, 2004.

[126] Dimitri van Heesch. Doxygen. http://www.stack.nl/~dimitri/doxygen/, 1997-2013.

[127] Robert J. Vanderbei. LOQO User’s Manual – Version 4.05. Princeton University, School of

Engineering and Applied Science, Department of Operations Research and Financial Engi-

neering, Princeton, New Jersey, September 2006.

[128] Robert J. Vanderbei and David F. Shanno. An interior-point algorithm for nonconvex non-

linear programming. Comput. Optim. Appl., 13:231–252, 1997.

[129] Juan Pablo Vielma and George L. Nemhauser. Modeling disjunctive constraints with a loga-

rithmic number of binary variables and constraints. In Andrea Lodi, Alessandro Panconesi,

and Giovanni Rinaldi, editors, Integer Programming and Combinatorial Optimization, vol-

ume 5035 of Lecture Notes in Computer Science, pages 199–213. Springer Berlin Heidelberg,

2008.

[130] Y. Villalobos-Morales, D. Cobos-Zaleta, H. J. Flores-Villarreal, Conrado Borraz-Sánchez,

and Roger Z. Ríos-Mercado. On NLP and MINLP Formulations and Preprocessing for Fuel

Cost Minimization of Natural Gas Transmission Networks. In Proceedings of the 2003 NSF

Design, Service and Manufacturing Grantees and Research Conference, Birmingham, USA,

January 2003.

[131] Zdeněk Vostrý. Transient optimization of gas transport and distribution. In SIMONE [114],

pages 53–62.

[132] Andreas Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Optimization with

Applications in Process Engineering. PhD thesis, Carnegie Mellon University, 2002.

[133] Andreas Wächter and Lorenz T. Biegler. Line search filter methods for nonlinear program-

ming: Motivation and global convergence. SIAM J. on Optimization, 16(1):1–31, May 2005.

[134] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming. Math. Program., 106(1):25–57,

2006.

[135] Richard A. Waltz, José Luis Morales, Jorge Nocedal, and Dominique Orban. An interior

algorithm for nonlinear optimization that combines line search and trust region steps. Math.

Program., 107(3):391–408, July 2006.

http://www.stack.nl/~dimitri/doxygen/

Bibliography 138

[136] Andreas Weimann. Modellierung und Simulation der Dynamik von Gasnetzen im Hinblick

auf Gasnetzführung und Gasnetzüberwachung. Ph. D. dissertation, Technische Universität

München, 1978.

[137] T. R. Weymouth. Problems in Natural Gas Engineering. Transactions of the American

Society of Mechanical Engineers, 34:185–231, 1912.

[138] Peter J. Wong and Robert E. Larson. Optimization of natural-gas pipeline systems via

dynamic programming. IEEE Trans. Automat. Contr., 13:475–481, October 1968.

[139] Peter J. Wong and Robert E. Larson. Optimization of tree-structured natural-gas transmis-

sion networks. J. Math. Anal. Appl., 24:613–626, 1968.

[140] Shaun Wright, Mahesh Somani, and Chris Ditzel. Compressor station optimization. In PSIG

[96]. Paper 9805.

[141] Suming Wu. Steady-State Simulation and Fuel Cost Minimization of Gas Pipeline Networks.

ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)-University of Houston.

[142] Suming Wu, Roger Z. Ríos-Mercado, Andrew E. Boyd, and L. Ridgway Scott. Model relax-

ations for the fuel cost minimization of steady-state gas pipeline networks. Technical Report

TR-99-01, University of Chicago, January 1999.

[143] J. J. Ye and D. L. Zhu. Optimality conditions for bilevel programming problems. Optimiza-

tion, 33:9–27, 1995.

[144] Edward Yourdon and Larry L. Constantine. Structured Design: Fundamentals of a Discipline

of Computer Program and Systems Design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

1st edition, 1979.

[145] Jiři Záworka. Project SIMONE—Achievements and running development. In SIMONE [114],

pages 1–24.

Lebenslauf – Dipl.-Math. Martin Schmidt

Angaben zur Person

Geburtsdatum: 11.03.1983

Geburtsort: Gifhorn, Deutschland

Adresse: Große Barlinge 41, 30171 Hannover

E-Mail: mschmidt@ifam.uni-hannover.de

Bildungsweg

1989–1993 Grundschule Groß Schwülper

1993–1995 Orientierungsstufe Groß Schwülper

1995–2002 Lessinggymnasium Braunschweig-Wenden

6/2002 Abitur am Lessinggymnasium Braunschweig-Wenden

10/2003–10/2008 Studium des Diplom-Studiengangs Mathematik mit der Studienrichtung Infor-

matik und Anwendungsfach Biologie, Schwerpunkt Mikrobiologie, an der Leib-

niz Universität Hannover

04/2007 Studienarbeit: Approximation der medialen Achse polygonal berandeter Gebiete

in der euklidischen Ebene an der Fakultät für Elektrotechnik und Informatik,

Institut für Mensch-Maschine-Kommunikation, Fachgebiet Graphische Daten-

verarbeitung, Prof. Dr. Wolter

10/2008 Diplomarbeit: Über Aspekte des Designs symmetrischer Verschlüsselungsver-

fahren mit einer Anwendung auf ein neues Kryptosystem an der Fakultät für

Mathematik und Physik, Institut für Algebra, Zahlentheorie und Diskrete Ma-

thematik, Prof. Dr. Elsner

10/2008 Diplom im o. g. Studiengang

seit 4/2009 Promotionsstudent an der Leibniz Universität Hannover

Beruflicher Werdegang

8/2002–5/2003 Zivildienst im Krankenhaus Marienstift Braunschweig

4/2005–9/2005 Wissenschaftliche Hilfskraft bei Prof. Dr. Bessenrodt am Institut für Mathema-

tik, Lehrgebiet Algebra und Zahlentheorie an der Universität Hannover

10/2007–12/2008 Wissenschaftliche Hilfskraft bei Prof. Dr. Elsner an der Fachhochschule für die

Wirtschaft (FHDW) Hannover

11/2008–5/2010 Wissenschaftlicher Mitarbeiter am Konrad-Zuse-Zentrum für Informationstech-

nik Berlin, Abteilung Optimierung (Prof. Dr. Dr. h.c. mult. Grötschel)

01/2009–5/2010 Gastwissenschaftler am Institut für Angewandte Mathematik, AG Algorithmi-

sche Optimierung (Prof. Dr. Steinbach), der Leibniz Universität Hannover

seit 6/2010 Wissenschaftlicher Mitarbeiter am Institut für Angewandte Mathematik, AG

Algorithmische Optimierung (Prof. Dr. Steinbach), der Leibniz Universität Han-

nover

Publikationen

1. A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization. Mit M. C. Stein-

bach und B. M. Willert. Technical Report, IfAM Preprint 95, Inst. of Applied Mathematics,

Leibniz Universität Hannover, 2012.

2. Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions.

Mit M. E. Pfetsch, A. Fügenschuh, B. Geißler, N. Geißler, R. Gollmer, B. Hiller, J. Humpola,

T. Koch, T. Lehmann, A. Martin, A. Morsi, J. Rövekamp, L. Schewe, R. Schultz, R. Schwarz,

J. Schweiger, C. Stangl, M. C. Steinbach, S. Vigerske und B. M. Willert. ZIB Report 12-41,

2012.

3. High detail stationary optimization models for gas networks — Part 1: Model components.

Mit M. C. Steinbach und B. M. Willert. Technical Report IfAM Preprint 94, Inst. of Applied

Mathematics, Leibniz Universität Hannover, 2012.

4. Optimierung Technischer Kapazitäten in Gasnetzen. Mit A. Martin, B. Geißler, C. Hayn,

B. Hiller, J. Humpola, T. Koch, T. Lehmann, A. Morsi, M. Pfetsch, L. Schewe, R. Schultz,

R. Schwarz, J. Schweiger, M. C. Steinbach und B. M. Willert, . In: Optimierung in der

Energiewirtschaft, VDI-Berichte 2157, 2011

5. Using the Inhomogeneous Simultaneous Approximation Problem for Cryptographic Design.

Mit F. Armknecht and C. Elsner. In: A. Nitaj, D. Pointcheval (Eds.), Progress in Cryptology -

AFRICACRYPT 2011, 4th International Conference on Cryptology in Africa, Dakar, Senegal,

July 5-7, 2011. Proceedings. Lecture Notes in Computer Science Vol. 6737, Springer, 2011

6. KronCrypt - A New Symmetric Cryptosystem Based on Kronecker’s Approximation Theorem.

Mit C. Elsner. Cryptology ePrint Archive (http://eprint.iacr.org), Report 2009/416. 2009

7. Über Aspekte des Designs symmetrischer Verschlüsselungsverfahren mit einer Anwendung auf

ein neues Kryptosystem. Forschungsberichte der FHDW Hannover (ISSN 1863-7043), Bericht

Nr.: 02008/02, Dezember 2008

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Computational Mathematics and Applied Mathematical Optimization
	Interior-Point Methods
	Contributions and Organization

	Basic Concepts
	Nonlinear Optimization
	Mathematical Programs with Complementarity Constraints
	Nonsmooth Analysis

	Optimization in Gas Network Planning
	Literature Survey
	A Nonsmooth MINLP Model of the Problem of Validation of Nominations
	Basic Physical Quantities
	The Network Topology
	Nodes
	Arcs
	Model Summary

	An MPCC Approach for MINLPs in Gas Network Planning
	A Reformulation Technique for 2-State-MINLPs
	The Problem of Validation of Nominations Revisited

	Interior-Point Methods
	Interior-Point Methods for Nonlinear Optimization
	Computation of the Search Direction
	Globalization with a Filter Line-Search Algorithm
	Feasibility Restoration Phase
	Updating the Barrier Parameter
	Starting Point Strategies
	Problem Scaling
	Heuristics and Algorithmic Details
	The Complete Interior-Point Algorithm
	Convergence Analysis

	An Interior-Point Method for Nonsmooth Nonlinear Problems
	Definition of the Problem Class
	Basic Algorithmic Strategy
	Modified Building Blocks
	An Extended Interior-Point Method for Nonsmooth Nonlinear Optimization

	An Interior-Point Method for MPCCs
	MPCC Regularization by Relaxation
	MPCC Regularization by Penalization
	Updating the Regularization Parameter

	An Interior-Point Method for Nonsmooth and Complementarity Constrained Nonlinear Optimization

	Software Design
	General Concepts of Software Design
	The Software Architecture of Clean::IPM
	Used External Libraries and Code Quality

	Numerical Results
	Computation of Recombination Probabilities
	Large-Scale Stochastic Programming
	The Hock–Schittkowski Test Set
	Gas Network Planning

	Conclusions and Outlook
	Bibliography

