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Abstract

Keywords: relativistic hydrodynamics, numerical methods, general relativity.

Strong gravity and relativistic plasma flows are among the fundamental in-
gredients powering high-energy astrophysical phenomena such as short and
long gamma ray bursts, core-collapse supernovae and relativistic outflows from
black-hole accreting systems. General-relativistic hydrodynamics is also essen-
tial in modelling the merger of neutron stars binaries and black-hole neutron-
star binaries that are among the best sources for future gravitational-wave
detectors such as LIGO, Virgo or KAGRA.

Over the past decade, the understanding of these phenomena has benefited
significantly from the results obtained through non-linear numerical calcula-
tions. Key factors in this progress have been the switch to more advanced
numerical schemes that are able to properly treat relativistic shock waves, and
the progressive inclusion of more “physics”, such as magnetic fields or real-
istic equations of state. Following this trend, even better numerical tools and
more accurate physical description will be be essential to understand these
phenomena. This thesis aims at contributing to both of these aspects.

It is in this view that I have developed the first (and so far the only) truly
higher-than-second-order fully general-relativistic multi-dimensional hydro-
dynamics code using state-of-the-art high-resolution shock-capturing finite-
difference methods. This code is able to compute gravitational waveforms
from binary neutron star merger with superior accuracy and at a reduced cost
when compared to traditional codes. The code has also been used to study the
statistical properties of relativistic turbulent flows of an ultrarelativistic plasma,
and I was able to uncover similarities and differences with classical turbulence
that could not be observed before with standard codes.

Similarly, I have developed the first general relativistic hydrodynamics code
in spherical symmetry based on discontinuous Galerkin methods. These consti-
tute a new family of methods that have gained a lot of attention recently due to
their superior accuracy and scaling properties. Using a one-dimensional code
I could start evaluating what could be the paradigm for the next-generation
of numerical codes in computational relativistic astrophysics. In particular, I
showed that these methods are able to properly treat relativistic shock waves
and deliver spectral-like accuracy in smooth flow regions.

In addition, I started the development of a new multi-dimensional, multi-
group, multi-angle, velocity dependent, general-relativistic, full-Boltzmann
solver for the solution of the radiative transfer equation. This code is also based
on discontinuous Galerkin schemes and uses the recently proposed filtered-
spherical harmonics method to deal with angular dependence. In the first
stage in this effort, which does not include velocity-dependence and general
relativistic gravity yet, I have improved the original method by making use of
new filters and by demonstrating the great potentialities of this approach.



Zusammenfassung

Schlagworte: relativistische Hydrodynamik, numerische Methoden, Allge-
meine Relativitätstheorie.

Starke Gravitation und relativistische Plasmaströme sind mitverantwortlich für
hoch energetische astrophysikalische Phänomene wie kurze und lange Gam-
mastrahlenblitze (gamma-ray bursts), Kernkollaps-Supernovae und relativis-
tische Plasmaausströme von Akkretionsvorgängen um Schwarze Löcher. Die
allgemein-relativistische Hydrodynamik ist ebenfalls unabdingbar zur Beschrei-
bung der Verschmelzung zweier Neutronensterne oder eines Neutronensterns
mit einem Schwarzen Loch in Doppelsternsystemen. Diese Systeme gehören
zu den vielversprechendsten Signalquellen für zukünftige Gravitationswellen-
detektoren wie LIGO, Virgo oder KAGRA.

In der letzten Dekade wurde das Verständnis dieser Phänomene erheblich
durch Resultate von nicht-linearen numerischen Simulationen vorangetrieben.
Eine Schlüsselrolle nahm hierbei der Übergang zu fortgeschritteneren nu-
merischen Verfahren ein, welche in der Lage sind, relativistische Schockwellen
richtig zu behandeln. Ebenso wichtig war die schrittweise Einbeziehung von
mehr “Physik”, wie zum Beispiel Magnetfelder und realistische Zustandsgle-
ichungen. Gemäß diesem Trend werden noch bessere numerische Verfahren
und eine noch genauere physikalische Beschreibung erforderlich sein, um diese
Phänomene letztlich zu verstehen. Die vorliegende Arbeit setzt sich zum Ziel,
zu beiden genannten Aspekten beizutragen.

Zu diesem Zweck habe ich den ersten (und bislang einzigen) allgemein-
relativistischen, multidimensionalen Hydrodynamik-Code entwickelt, der mod-
ernste high-resolution shock-capturing Finite-Differenzen-Methoden verwen-
det und eine echt höhere Genauigkeit als zweite Ordnung erreicht. Dieser Code
kann Gravitationswellenformen von Doppelneutronensternsystemen (insbeson-
dere bei der Verschmelzung der Sterne) mit höherer Genauigkeit als bisherige
Codes bei gleichzeitig reduziertem Rechenaufwand berechnen. Dieser Code
wurde ebenso verwendet um die statistischen Eigenschaften von relativistisch-
turbulenten Strömungen eines ultra-relativistischen Plasmas zu untersuchen,
und so Gemeinsamkeiten und Unterschiede zur klassischen Turbulenz aufzudecken,
was zuvor mit bisherigen Codes nicht möglich war.

Darüber hinaus habe ich den ersten allgemein-relativistischen Hydrodynamik-
Code in sphärischer Symmetrie entwickelt, der auf diskontinuierlichen Galerkin-
Methoden beruht. Diese bilden eine neue Familie von numerischen Verfahren,
die in letzter Zeit aufgrund ihrer höheren Genauigkeit und besseren Skalierung-
seigenschaften viel Aufmerksamkeit erfahren haben. Durch die Verwendung
eines solchen eindimensionalen Codes konnte ich beginnen herauszufinden,
was das Paradigma für die nächste Generation an numerischen Codes für die
relativistische Astrophysik werden könnte. Speziell habe ich gezeigt, dass diese
Verfahren in der Lage sind, relativistische Schockwellen richtig zu behandeln
und in glatten Strömungsregionen eine Genauigkeit ähnlich der von spektralen
Methoden zu erreichen.

Ferner habe ich mit der Entwicklung eines neuen multidimensionalen,
geschwindigkeits- und winkelabhängigen, allgemein-relativistischen Multi-
Group Boltzmann Solvers zur numerischen Lösung der Strahlungstransport-
gleichung begonnen. Dieser Code basiert ebenfalls auf diskontinuierlichen
Galerkin-Verfahren und verwendet die kürzlich vorgeschlagene filtered-spherical
harmonics Methode, um die Winkelabhängigkeit zu berücksichtigen. Als erstes
Ziel in diesem Bestreben konnte ich durch die Verwendung von neuen Filtern
die bisherigen Methoden in einer noch geschwindigkeitsunabhängigen und
nicht-allgemein-relativistischen Version verbessern und die vielversprechen-
den Möglichkeiten dieser Herangehensweise aufzeigen.
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I am deeply indebted to my advisor Luciano Rezzolla for having guided me
through my PhD studies: the first time we met I told him that I was looking for
new challenges. Indeed he found many for me! He gave me enough freedom
to explore many of the open problems in numerical relativity and, at the same
time, full support every time I needed it.

A sincere gratitude goes also to the people with whom I worked and dis-
cussed most closely in the past few years: Ernazar Abdikamalov, Daniela Alic,
Riccardo Ciolfi, Filippo Galeazzi, Ian Hawke, Wolfgang Kastaun, Gianmario
Manca, Christian Ott, Erik Schnetter, Bernard Schutz, Kentaro Takami, Aaryn
Tonita and Olindo Zanotti.

It is a pleasure to acknowledge Daniel Siegel for helping me with the Ger-
man abstract of this thesis, Francesco Pannarale for providing the Taylor-T4
waveform, Kentaro Takami for providing the perturbative eigenfrequencies of
the TOV model we evolve in Chapter 6 and Cecilia Chirenti and Shin’ichirou
Yoshida for sharing with me their perturbation theory codes.

I would also like thank all the members of the astrophysical relativity group
at AEI for the helpful discussions we had in the past few years and, in a
particular way, Eloisa Bentivegna, Giovanni Corvino, Kyriaki Dionysopoulou,
Abraham Harte, Ian Hinder, Thorsten Kellermann, Jose-Luis Jaramillo, Bruno
Giacomazzo, Philipp Moesta, Bruno Mundim, Constanze Roedig, Christian
Reisswig, Jocelyn Read, Alberto Sesana, Barry Wardell and Burkhard Zink.

It is also a pleasure to thank “my student”, Massimiliano Leoni, for the
many pleasant discussions on numerical methods, hydrodynamics and math
in general.

Finally, last but not least, I would like to thank you, my reader. If you were
reading this page looking for your name and you could not find it, then chances
are high that I really meant to thank you, but I forgot. If not and you just happen
to be reading my thesis for some reason I hope you will not have a too hard
time disentangling my notation. Either way, thank you for your patience.





viii



Contents

Abstract iii

Zusammenfassung iv

Acknowledgements vi

I Background 1

1 Introduction 3

2 General-Relativistic Hydrodynamics 7
2.1 The Cauchy Problem in General Relativity . . . . . . . . . . . . 7

2.1.1 The Einstein Field Equations . . . . . . . . . . . . . . . . 7
2.1.2 From Spacetime to Space and Time . . . . . . . . . . . . . 9
2.1.3 The ADM Formulation . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Strongly Hyperbolic Formulations of the Einstein Equations 16
2.1.5 Gauge conditions . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The Equations of General-Relativistic Hydrodynamics . . . . . . 20
2.2.1 Kinematics of a Relativistic Fluid . . . . . . . . . . . . . . 21
2.2.2 Dynamics of a Relativistic Fluid . . . . . . . . . . . . . . 24
2.2.3 Conservative Formulations . . . . . . . . . . . . . . . . . 25

2.3 The General-Relativistic Boltzmann Equation . . . . . . . . . . . 27
2.3.1 The geometry of the tangent bundle . . . . . . . . . . . . 28
2.3.2 The Liouville Theorem . . . . . . . . . . . . . . . . . . . . 30
2.3.3 The Boltzmann equation . . . . . . . . . . . . . . . . . . . 33
2.3.4 From the Boltzmann Equation to the Euler Equation . . . 34

3 Numerical Approximation of Conservation Laws 37
3.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Consistency, Stability and Convergence . . . . . . . . . . 39
3.1.3 Non-Linear Equations and Non-Linear Stability . . . . . 41

3.2 Finite-Volume Methods . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 The Godunov Method . . . . . . . . . . . . . . . . . . . . 44
3.2.2 TVD Finite-Volume Methods . . . . . . . . . . . . . . . . 48
3.2.3 Higher-Order Finite-Volume Methods . . . . . . . . . . . 49

3.3 Central Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Finite-Difference Methods . . . . . . . . . . . . . . . . . . . . . . 54

ix



x Contents

3.5 Discontinuous Galerkin Methods . . . . . . . . . . . . . . . . . . 57
3.5.1 Runge-Kutta Discontinuous-Galerkin Methods . . . . . . 60

II High-Order Methods for Relativistic Hydrodynamics 65

4 Finite-Differencing Methods: Flat Spacetimes 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 The THCCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Newtonian Hydrodynamics . . . . . . . . . . . . . . . . . 68
4.2.2 Special-relativistic hydrodynamics . . . . . . . . . . . . . 68

4.3 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Newtonian hydrodynamics . . . . . . . . . . . . . . . . . 71
4.3.2 Special-relativistic hydrodynamics . . . . . . . . . . . . . 74

4.4 The relativistic Kelvin-Helmholtz instability in 3D . . . . . . . . 91
4.4.1 The linear evolution of the instability . . . . . . . . . . . 92
4.4.2 The non-linear evolution of the instability . . . . . . . . . 94

4.5 Driven Relativistic Turbulence . . . . . . . . . . . . . . . . . . . . 99
4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.2 Model and method . . . . . . . . . . . . . . . . . . . . . . 99
4.5.3 Basic flow properties . . . . . . . . . . . . . . . . . . . . . 101
4.5.4 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5.5 Intermittency . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Finite-Differencing Methods: General Spacetimes 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 WhiskyTHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . . 110
5.2.2 Atmosphere Treatment . . . . . . . . . . . . . . . . . . . . 111

5.3 Single Neutron Stars . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.1 Linear Oscillations: Cowling Approximation . . . . . . . 116
5.3.2 Linear Oscillations: Full-GR . . . . . . . . . . . . . . . . . 120
5.3.3 Non-linear Oscillations: the Migration Test . . . . . . . . 122
5.3.4 Gravitational Collapse to Black-Hole . . . . . . . . . . . . 125

5.4 Binary Neutron Stars . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.1 Small Separation . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.2 Large Separation . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Discontinuous Galerkin Methods 145
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2 Discontinuous Galerkin methods for general relativistic hydro-

dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.1 Weak formulation of the equations of relativistic hydro-

dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2.2 Spacetime discontinuous Galerkin formulation . . . . . . 149
6.2.3 Discontinuous Galerkin formulation in the 3 + 1 split . . 152
6.2.4 Discontinuous Galerkin formulation in spherical symmetry154

6.3 The EDGES code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



Contents xi

6.3.1 The DG equations in a fully discrete form . . . . . . . . . 156
6.3.2 Coupling with the spacetime . . . . . . . . . . . . . . . . 158
6.3.3 Limiters, spectral viscosity and spectral filtering . . . . . 159
6.3.4 Treatment of low-density regions . . . . . . . . . . . . . . 165

6.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.4.1 Shock tubes . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.4.2 Spherical shock reflection . . . . . . . . . . . . . . . . . . 170
6.4.3 Spherical accretion onto a Schwarzschild black hole . . . 172
6.4.4 Linear oscillations of spherical stars . . . . . . . . . . . . 173
6.4.5 Nonlinear oscillations of spherical stars: the migration test 179
6.4.6 Gravitational collapse of unstable spherical stars . . . . . 183

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

III Relativistic Radiation Transport 187

7 The Filtered Spherical Harmonics Method 189
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.2 The relativistic Boltzmann equation . . . . . . . . . . . . . . . . 192

7.2.1 The distribution function for radiation . . . . . . . . . . . 192
7.3 The Charon Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.3.1 Frequency discretization . . . . . . . . . . . . . . . . . . . 194
7.3.2 Real spherical harmonics . . . . . . . . . . . . . . . . . . 195
7.3.3 Angular discretization . . . . . . . . . . . . . . . . . . . . 197
7.3.4 The multi-group PN scheme . . . . . . . . . . . . . . . . . 197
7.3.5 Spatial discretization . . . . . . . . . . . . . . . . . . . . . 199
7.3.6 Time discretization . . . . . . . . . . . . . . . . . . . . . . 201
7.3.7 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.4.1 1D diffusion of a step function . . . . . . . . . . . . . . . 205
7.4.2 1D diffusion of a sine wave . . . . . . . . . . . . . . . . . 207
7.4.3 The 2D line-source problem . . . . . . . . . . . . . . . . . 208
7.4.4 A lattice problem . . . . . . . . . . . . . . . . . . . . . . . 213
7.4.5 3D Homogeneous sphere . . . . . . . . . . . . . . . . . . 215

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

IV Conclusions 221

8 Conclusions 223

Bibliography 227

Curriculum Vitæ 255

Publications 257



xii Contents



Part I

Background

1





Chapter 1

Introduction

Numerical relativistic hydrodynamics has come a long way since the pioneering
works by [213] and [333] and it is now playing a central role in the modelling
of systems involving strong gravity and/or flows with high Lorentz factors.
Examples of applications are relativistic jets, core-collapse supernovae, the
merger of compact binaries and the study of gamma-ray bursts, see [209] and
[130] for a complete overview.

In all of these areas progress has been continuous over the past few years
to the point that relativistic computational fluid dynamics is starting to pro-
vide a realistic description of many relativistic-astrophysics scenarios, see,
e.g., [274]. Key factors in this progress have been the switch to more ad-
vanced and accurate numerical schemes, and in particular the adoption of
high resolution shock capturing (HRSC) schemes [210, 288, 36, 116, 14, 28] and
the progressive inclusion of more “physics” for a more accurate description
of the different scenarios. Examples of the latter are the inclusion of mag-
netic fields [182, 110, 138, 184, 117, 234, 20, 145], the use of realistic tabulated
equations of state, see, e.g., [292], and the description of radiative processes
[127, 241, 291, 337].

We expect that both improved physical models and better numerical tech-
niques will be key elements in the future generation of codes for relativistic
astrophysics. On the one hand it is necessary to take into account many physi-
cal phenomena that are currently oversimplified and, on the other hand, higher
accuracy is necessary to make quantitative predictions even in the case where
simplified models are used to describe the objects of study. For example, in
the case of inspiralling binary neutron stars, waveforms that are sufficiently
accurate for gravitational-waves templates are just now becoming available
and only in the simple case of polytropic stars [31, 32, 48]. Clearly, even higher
accuracy will be required as more realistic equations of state are considered or
better characterisations of the tidal effects are explored [26, 46].

On the one hand, the development of more accurate numerical tools for
relativistic hydrodynamics is an active and lively field of research. Most of
the effort has been directed towards the development of high-order finite-
volume [318, 120] and finite-difference [339, 111] schemes, but many alternative
approaches have been also proposed, including finite-element methods [206,
220], spectral methods [155], smoothed-particle-hydrodynamics [302, 279] and
discontinuous Galerkin methods [121].
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4 1 Introduction

On the other hand, one of the main missing ingredients in computational
relativistic astrophysics is an accurate treatment of radiation-transport: many
phenomena in the universe involve the transport of radiation and need to be
modeled with radiation-transport techniques that are as accurate as possible
to maximize the match with observations. Examples are nova and supernova
explosions, gamma-ray bursts, star or planet formation, luminous blue variable
outbursts, stellar winds, etc. In these examples, radiation plays a major role in
exchanging energy and/or momentum between different parts of the system. In
most of these cases, the radiation is composed of photons, but the radiation can
also be composed of neutrinos in studies of core-collapse supernova explosion
mechanisms (see, e.g., [49, 175]) or in modeling the torus orbiting the black hole
produced in the merger of neutron stars (see, e.g., [280]).

The aim of this dissertation is to contribute new developments on both of
these fronts: improved numerical methods and a better physical description,
with the inclusion of radiation transport. On the numerical side we present
the first higher-than-second-order multidimensional fully-general relativistic
hydrodynamics code, which we demonstrate in the case of the inspiral and
merger of binary neutron star in quasi-circular orbit. As an example illustrating
the potential of our methods, we present a study of the statistical properties
of relativistic turbulence. We also present the first discontinuous Galerkin
general relativistic hydrodynamics code in 1D/spherical symmetry. On the
physics side we present work done towards the creation of the first, genuinely
multi-dimensional, general-relativistic radiation transport code. In all cases we
report the results from a series of stringent tests to demonstrate the potential of
the approaches we propose.

The rest of this thesis is organized as follows.

• In Chapter 2 we introduce the equations of general relativity and, in partic-
ular, the so-called “3+1” formalism used in numerical relativity to rewrite
the Einstein field equations as a set of hyperbolic evolutions equations
and constraints. Secondly we present the equations of general relativistic
hydrodynamics emphasizing the aspects relevant for our presentation,
such as the so-called “Valencia formulation”. Finally we present a de-
tailed derivation of the Boltzmann equation in general-relativity as this
equation is at the basis of both the kinetic theory of gases and of the
standard treatment of radiation. We will also show how the equations of
relativistic hydrodynamics can be derived from the Boltzmann equation.

• In Chapter 3 we recall some of the theoretical background needed in the
rest of the thesis. In particular we describe the mathematical theory of
conservation laws and of their numerical approximation. We also give
a short review of the most commonly adopted numerical schemes for
conservation laws. Finally we discuss the strengthes and weaknesses of
each scheme for general problems and, in particular, for the case of the
relativistic hydrodynamics equations.

• In Chapter 4 we present THC: a new code for Newtonian and special
relativistic hydrodynamics employing state-of-the-art finite-differencing
high-resolution shock-capturing methods. We present the results ob-
tained in a representative number of test cases both in Newtonian and in
special-relativistic hydrodynamics. As examples of possible applications
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we study the linear and non-linear development of the Kelvin-Helmholtz
instability in 2D and 3D and the statistical properties of driven relativistic
turbulence.

• In Chapter 5 we present the extension of THC to the general relativistic
case: WhiskyTHC. We describe in detail some of the key issues in the
development of high-order general relativistic hydrodynamics code, in
particular for what concerns the treatment of fluid–vacuum interfaces.
We present the results obtained in a series of classical tests involving the
linear and non-linear evolution of isolated, non-rotating stars. Finally we
demonstrate the superior accuracy of our new code in the calculation of
gravitational radiation in the inspiral and merger of binary neutron stars
in quasi-circular orbits.

• In Chapter 6 we present EDGES: a new code for general relativistic hy-
drodynamics in 1D/spherical symmetry using discontinuous Galerkin
methods. First of all we present a detailed derivation of the weak formu-
lation of the equations of relativistic hydrodynamics. Next we discuss our
implementation and present the results obtained in a series of tests in 1D
and in spherical-symmetry, showing the great potential of discontinuous
Galerkin methods.

• In Chapter 7 we present Charon: a new code for multi-dimensional radi-
ation transport based on the filtered spherical-harmonics approach. We
discuss some of the improvements we have made in the original method
and present the results obtained in a series of very stringent tests showing
that filtered spherical-harmonics methods represent a viable strategy for
the modeling of multi-dimensional, general relativistic, radiative transfer.

• Finally Chapter 8 is dedicated to discussion and conclusions.

In the following we denote vectors with ~u and one-forms with α. Tensors
are written with bold characters. Unless otherwise specified, greek indices will
run over 0, 1, 2, 3, the indices i, j, k, l will run over 1, 2, 3 and capitalized latin
indices A,B,C,D will run over 0, 1, 2, 3, 4, 5, 6, 7. Finally we use a system of
units in which M� = c = G = 1, unless explicitly stated.
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Chapter 2

General-Relativistic
Hydrodynamics

In this chapter we sketch a number of important ideas that make up the math-
ematical background of this thesis. We do not attempt to give a comprehensive
survey of the topics we present, but we emphasise the aspects that are relevant
for our discussion.

This chapter is divided in three parts. In Section 2.1 we recall the 3 + 1
formalism used in numerical relativity to recast the Einstein equation in a
set of evolutionary equations and constraints. In Section 2.2 we present the
equations of general relativistic hydrodynamics (GRHD). The emphasis here
is posed on their interpretation as balance law, as this is the point of view
adopted in their numerical approximation. Finally in Section 2.3 we derive
the general relativistic Boltzmann equation and show how the equations of
relativistic hydrodynamics can be derived from the kinetic theory.

2.1 The Cauchy Problem in General Relativity

In this section we recall some basic concepts about the initial-value formulation
of the Einstein equations of general relativity. First of all we start from the basics
of general relativity, in order to introduce our notation. We briefly mention the
derivation of the Einstein field equations and then we show how these can
be split in a set of evolutionary equations and constraints using the Arnowitt,
Deser and Misner, or ADM, formalism. Finally we comment on the stability
of the ADM equations, on the need for strongly-hyperbolic formulations of the
Einstein equations, and on the choice of gauge conditions commonly used to
evolve spacetimes with singularities. Our treatment is sketched on the basis of
the one found in [23, 191, 229, 330, 253, 38], we refer to these sources for a more
extended treatment.

2.1.1 The Einstein Field Equations

In general relativity the spacetime is represented by a Lorentzian manifold,
i.e., a tuple (M, ggg), whereM is a smooth manifold (at least of class C2) and ggg is

7



8 2 General-Relativistic Hydrodynamics

a C2 Lorentzian metric. The geometry of space and time is prescribed by the
Einstein field equations.

Excursus: Lagrangian Field Theory

For technical reasons it is useful to introduce the totally antisymmetric symbol,
ααα, which, in any coordinate patch {xµ}, is set equal to

ααα = dx0
∧ dx1

∧ dx2
∧ dx3, (2.1)

so that the proper volume pseudo-form of the spacetime, which we denote
as εεε or Vol4

x (we use the second notation to avoid confusion when dealing
with multiple volume pseudo-forms), is simply εεε =

√
−gααα, where g is the

determinant of the spacetime metric.
With this notation a Lagrangian field theory on the spacetime (M, ggg) is

described by the action1

S =

∫
M

Λ(qqq,∇qqq)ααα, (2.2)

where qqq are a set of (tensorial) generalized coordinates for the fields described
by the theory, ∇ is the Levi-Civita connection and Λ is a scalar density, i.e.,

Λ(qqq,∇qqq) = L (qqq,∇qqq)
√
−g, (2.3)

for some scalar quantity L (qqq,∇qqq). The field equations for a Lagrangian theory
are obtained by requiring the action S to be stationary with respect to variations
δqqq with compact support:

0 = δS =

∫
M

(
∂Λ
∂qqq
− ∇

∂Λ
∂(∇qqq)

)
· δqqqααα. (2.4)

From the arbitrariness of δqqq one gets the Euler-Lagrange equations

∂Λ
∂qqq
− ∇

∂Λ
∂(∇qqq)

= 0. (2.5)

The Hilbert Action

The Einstein field equations can also be derived within the Lagrangian field-
theory framework. In particular the action describing them can be written
as

S = Sg + Sm, (2.6)

where Sg is the action of the gravitational field, the so-called Hilbert action,
which is, in our system of units,

Sg =
1

16π

∫
M

R
√
−gααα, (2.7)

where R is the Ricci scalar and Sm is the action of all the other “matter” fields,
which we leave unspecified. The Euler-Lagrange equations can be obtained

1Here we are implicitly requiring the derivatives of Λ to be tensor field densities.
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by varying the action with respect to the inverse metric, which we write in
components as gµν.

The variation of the gravitational sector of the action gives (after a lengthy
calculation)

δSg = −
1

16π

∫
M

(
Rµν −

1
2

gµνR
)
δgµν

√
−gααα, (2.8)

where we have introduced the Ricci tensor Rµν. This can be written in more
compact form with the introduction of the Einstein tensor,

Gµν = Rµν −
1
2

gµνR, (2.9)

as

δSg = −
1

16π

∫
M

Gµν δgµν
√
−gααα. (2.10)

We can write the variation of the matter sector as

δSm =
1
2

∫
M

Tµν δgµν
√
−gααα, (2.11)

where we have defined the densitized stress-energy tensor density of the matter,
√
−g Tµν, as the functional derivative of the matter action with respect to the

inverse metric:
√
−g Tµν = 2

δSm

δgµν
. (2.12)

Thanks to the arbitrariness of δgµν we obtain the Einstein equations

GGG = 8πTTT. (2.13)

2.1.2 From Spacetime to Space and Time

The Einstein field equations (2.13) constitute a set of ten non-linear partial
differential equations determining the metric on the whole spacetime or on a
domain Ω ⊂ M, once appropriate boundary conditions are given on ∂Ω. It is
clear, however, that their numerical solution in this form, i.e., as a boundary-
value problem with data on ∂Ω, is feasible only in particular cases, for instance
if the spacetime is assumed to be stationary. More generally one would like to
be able to specify initial data on an appropriated spacelike or null hypersurface,
Σ ⊂ M, and then “evolve it in time” to reconstruct the geometry of the whole
spacetime. It turns out that this is possible for a whole class of spacetimes,
called strongly-hyperbolic, that is spacetimes which admit a foliation of the
formM = Σ×R, where the leaves of the foliation, Σt are Cauchy hypersurfaces,
i.e., spacelike or null hypersurfaces whose past and future domains of influence
cover the whole spacetime.

Spacelike Foliations

Here we consider the case in which the Σt are spacelike. In this case we can
introduce a global, smooth, “time function”, t, such that

Στ = {xα ∈ M : t(xα) = τ}, (2.14)
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Figure 2.1: 3 + 1 decomposition of spacetime into space and time

i.e., the leaves of the foliation are the level-sets of the function t. Let~t be a vector
such that 〈∇t,~t〉 = 1, so that we can interpret it as being the “time-flow vector
field”. In particular the Lie derivative along ~t of any tensor quantity, qqq, gives
the rate of change of this quantity as we go “from one leaf of the foliation to the
next one” and can be interpreted as the “time derivative”.

The vector~t can be uniquely decomposed into a part which is parallel to the
future-oriented unit-normal of Σt, ~n, and a part which lies in the tangent plane
to Σt, ~β, as

~t = α~n + ~β. (2.15)

In the previous equation α is the so-called lapse-function and gives the rate of
change of the proper time measured by an observer, called Eulerian or normal
observer, moving with four-velocity ~n with respect to the “coordinate time” t.
~β is called the shift vector and can be interpreted as being (minus) the coordinate
velocity of the normal observer. The geometrical interpretation of lapse and
shift is shown in Figure 2.1.

The spacetime metric ggg induces a Riemannian metric, which we call the
spatial metric, on Σt given by

γγγ = ggg + n ⊗ n. (2.16)

The associated Levi-Civita connection, D, is simply obtained by projecting the
connection ∇ on the tangent space to Σt. I.e., in component form

DµT β1...βl
α1...αk = γ γ1

α1 . . . γ γk
αk γ β1

δ1 . . . γ βl
δl γ µ

ν
∇νT δ1...δl

γ1...γk . (2.17)

Things are simplified if we work in a coordinate frame adapted to the split,
i.e., {t, xi

}, with ~∂i · ~n = 0. In this coordinate system ∇t is simply dt and ~t = ~∂t.
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The components of the spacetime metric can also be written very easily in
terms of the ones of the spatial metric, the lapse function and the shift vector:
remembering that

gµν = ~∂µ · ~∂ν, (2.18)

we obtain for the spatial components

gik = ~∂i ·
~∂k = γik, (2.19)

while, for the time component we have2

gtt = ~∂t ·
~∂t = ~t ·~t = (α~n + ~β) · (α~n + ~β) = −(α2

− ~β · ~β) (2.20)

and, finally, the mixed components are

gti = ~∂t ·
~∂i = ~t · ~∂i = (α~n + ~β) · ~∂i = βi. (2.21)

In conclusion the line-element can be written as

ds2 = −(α2
− βiβ

i)dt2 + 2βidxidt + γikdxidxk, (2.22)

i.e., in a form which we can interpret as the four-dimensional version of the
Pythagorean theorem.

Exterior Curvature and Constraint Equations

We define the second fundamental form, or extrinsic curvature of Σt

Kµν = −γ µ
α
∇αnν = −

1
2
L~nγµν, (2.23)

which we can interpret as the rate of change of the three-metric as measured
by the Eulerian observer, or as the change of the normal vector ~n under parallel
transport on Σt. We notice that KKK is a purely spatial tensor, that is

Kµνnν = 0. (2.24)

The extrinsic curvature is related to the four-dimensional Ricci tensor by the
Codazzi equations

DβK −DαK β
α = Rγδnδγ β

γ , (2.25)

where K is the trace of KKK.
Similarly the three-dimensional Riemann tensor, (3)Rαβγδ, is related to the

four-dimensional one and to the extrinsic curvature by the Gauss equation

(3)Rαβγδ = γ α
µ γ β

ν γ γ
λ γ σ

δ Rµνλσ − KαγKβδ + KβγK α
δ . (2.26)

If we substitute the Einstein equations into (2.25) we get the so-called mo-
mentum constraint

DβK −DαK β
α = −8πγ β

α nγTαγ =: 8π jβ, (2.27)

2Note that, since ~β is a spatial vector, ~β · ~β = γikβ
iβk.
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where jα is called ADM momentum density.
In the same way we obtain from (2.26) the so-called Hamiltonian constrant

(3)R + K2
− KαβKαβ = 2Gαβnαnβ = 16πnαnβTαβ =: 16πE, (2.28)

where E is called ADM energy density.
Equations (2.27) and (2.28) are called constraint equations because they con-

stitute a set of elliptic equations which have to be satisfied on each leaf of the
foliation. It is possible to show that, if the constraints are satisfied on an initial
slice Σ0, they will be satisfied at any later time, i.e., the Einstein equations pre-
serve the constraints. We further discuss the nature of these constraints in the
context of the ADM formalism.

2.1.3 The ADM Formulation

Now that we have introduced the so-called 3 + 1 formalism for the foliation of
spacetime into spacelike hypersurfaces, we sketch the derivation of the ADM
formulation of general-relativity as a Cauchy problem.

Excursus: Hamiltonian Field Theory

We consider a Lagrangian field theory described by a Lagrangian density Λ
which is a function of the generalized coordinates of the field, qqq and their first
(covariant) derivatives ∇qqq.

First of all it is convenient to decompose ααα as

ααα = dt ∧ (3)ααα, (2.29)

where (3)ααα is the antisymmetric symbol on Σt, i.e., in any coordinate patch {t, xi
}

adapted to the foliation,

(3)ααα = dx1
∧ dx2

∧ dx3. (2.30)

Secondly we define the “time derivative” of qqq as

q̇qq := L~tqqq. (2.31)

The canonical momentum ppp associated with the generalized coordinates of
the system, qqq, is defined as

ppp =
∂Λ
∂q̇qq
. (2.32)

If it is possible to express q̇qq and ∇qqq in terms of qqq and ppp, then we can define the
Hamiltonian density

H(qqq,ppp) = ppp · q̇qq −Λ(qqq,∇qqq) (2.33)

and the quantity

J =

∫ t

0
H(qqq,ppp) dt :=

∫ t

0
dt

∫
Σ

H(qqq,ppp) (3)ααα. (2.34)
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If we vary J with respect to variations δppp and δqqq of compact support we get

δJ =

∫ t

0
δH(qqq,ppp) dt

=

∫ t

0
dt

∫
Σ

(
ppp · δq̇qq + q̇qq · δppp

)
(3)ααα − δS,

(2.35)

from the stationarity of the action, δS = 0, we get, integrating by parts,∫ t

0
δH(qqq,ppp) dt =

∫ t

0

∫
Σ

(
− ṗpp · δqqq + q̇qq · δppp

)
(3)ααα (2.36)

and from the arbitrariness of δppp and δqqq we get the so-called Hamilton equations

q̇qq =
δH
δppp
, ṗpp = −

δH
δqqq
. (2.37)

In conclusion, the Hamiltonian formalism provides a natural framework that
can be used to obtain the field-equations in a form suitable for the solution of
the Cauchy problem: once initial data is given on a Cauchy hypersurface for
qqq and ppp one can evolve them according to (2.37) and obtain their value in the
whole spacetime.

The Hamiltonian Formulation of the Einstein Equations

The initial-value problem for the Einstein field equations can also be obtained
within the Hamiltonian framework, which is sketched here. For a more com-
plete treatment, including the treatment of boundary terms see [253].

We begin by rewriting the scalar curvature, R, as

R = 2(Gµνnµnν − Rµνnµnν). (2.38)

From (2.28) we have

2Gµνnµnν = (3)R + K2
− KµνKµν. (2.39)

We can also rewrite Rµνnµnν as

Rµνnµnν = Rµγνγnµnν

= −nµ(∇µ∇γ − ∇γ∇µ)nγ

= K2
− KµνKµν

− ∇µ(nµ∇νnν) + ∇µ(nν∇νnµ).

(2.40)

The last two terms are total divergences, so they are not important in the case
of variations with compact support, such as the ones we are interested in, thus
we are able to write the Lagrangian density as

Λ =
1

16π
α((3)R + KµνKµν

− K2)
√
γ + Λm, (2.41)

where Λm is the Lagrangian density of the matter and
√
γ =

√
−g
α is the square

root of the determinant of the three-metric.
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In order to compute the canonical momentum ppp we notice that

Kµν = −
1
2
L~nγµν = −

1
2α

(∂tγµν −Dµβν −Dνβµ), (2.42)

so that, if we assume that the matter Lagrangian does not depend explicitly on
γ̇µν, we get

pµν =
∂Λ
∂γ̇µν

=

√
γ

16π
(Kγµν − Kµν). (2.43)

The canonical momenta associated with α and ~β vanish identically due to the
fact that the lapse function and the shift vector are not real dynamical degrees
of freedom of the gravitational field, but are associated with the gauge freedom
in the choice of the foliation ofM.

Finally we can write the Hamiltonian density

H =
γ1/2

16π

{
α
[
−

(3)R + γ−1pµνpµν −
1
2
γ−1p2

]
+ 2βν

[
Dµ(γ−1/2pµν)

]
− 2Dµ(γ−1/2βνpµν)

}
−Λm,

(2.44)

where p is the trace of ppp. The last term in brackets is a boundary term and gives
no contribution in the case of compact support variations. We can also clearly
see that α and βν behave as Lagrange multipliers enforcing two constraints3:

0 = 16πγ−1/2 δH
δα

= −(3)R + γ−1pµνpµν −
1
2
γ−1p2 + 16πTµνnµnν (2.45)

and

0 = 16πγ−1/2 δH
δβµ

= −Dν(γ−1/2pµν) + 8πγ ν
µ nγTνγ, (2.46)

which are easily recognizable as being the constraints (2.27) and (2.28). In the
previous we have also used the fact that

δSm

δβµ
=
δSm

δgµ0
=

1
2
√
−gTµ0 = −

1
2
√
γTµνnν (2.47)

and

δSm

δα
= −2α

δSm

δg00
= −α

√
−g T00 = −α2√γT00 = −

√
γTµνnµnν. (2.48)

Finally, the reader might be puzzled by the presence of the projector γ ν
µ in

(2.46). The reason why this term is necessary is the following. When we write
δH/δβµ = 0, what we really mean is that the action of the Frechét differential of
the functional H, dH, on all compactly-supported variations, δβµ, is zero:

0 = 16πγ−1/2
〈dH, δβµ〉 = δβµ

[
−Dν(γ−1/2pµν) + 8πnγTµγ

]
, (2.49)

3Note that H must be stationary with respect to variations of a quantity whose canonical
momentum vanishes.
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now since δβµ is purely spatial only the spatial part of the term in square bracket
is actually constrained to be zero by the arbitrariness of δβµ. This is expressed
by the presence of the projector operator in (2.46).

As we can see the momentum and Hamiltonian constraints are associated
respectively with the coordinate freedom on Σ and with the choice of the
foliation ofM.

Using the Hamiltonian formalism we find the evolution equations for the
metric:

γ̇µν =
δH
δpµν

= 2γ−1/2α
(
pµν −

1
2
γµνp

)
− 2D(µβν), (2.50)

where we used the notation T(µν) = 1
2 (Tµν + Tνµ) and we have assumed that the

matter Lagrangian do not depend explicitly on pµν.
In the same way we find the evolution equations for the canonical momen-

tum

ṗµν = −
δH
δγµν

= + αγ1/2
(

(3)Rµν −
1
2

(3)Rγµν
)

−
1
2
αγ−1/2γµν

(
pγδpγδ −

1
2

p2
)

+ 2αγ−1/2
(
pµγp γ

ν
−

1
2

ppµν
)

− γ1/2
(
DµDνα − γµνDγDγα

)
− γ1/2Dγ

(
γ−1/2βγpµν

)
+ 2pγ(µDγβ

ν) + 8παγ1/2Sµν,

(2.51)

where Sµν = γ α
µ γ β

ν Tαβ and we have used the fact that

δSm

δγik
=
δSm

δgik
=

1
2
√
−gTik. (2.52)

Equations (2.45), (2.46), (2.50) and (2.51) are the so-called ADM system. We
can also rewrite these equations in terms of the three-metric and the extrinsic
curvature to get

(∂t − L~β)γik = −2αKik; (2.53a)

(∂t − L~β)Kik = −DiDkα + α
(
Rik − 2Ki jK k

j + KKik)

−8πα
(
Sik −

1
2
γik(S − E)

)
; (2.53b)

(3)R + K2
− KikKik = 16πE; (2.53c)

DiK −DkK i
k = 8π ji, (2.53d)

where S = γi jSi j.
These equations, known as the ADM equations, provide the wanted initial-

value problem for the Einstein equations. Initial data can be given on a Cauchy
hypersurface by specifying a spatial metric and its extrinsic curvature, subject
to the constraints equations (2.53c) and (2.53d). Finally the metric on the whole
spacetime can be obtained by evolving the equations (2.53a) and (2.53b).
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2.1.4 Strongly Hyperbolic Formulations of the Einstein Equa-
tions

The ADM system in its original form (2.53) is never used in recent numerical
relativity codes as it turns out to be unstable even for the evolution of perturbed
Minkowsky spacetimes4. The reasons for that are not yet fully understood
[38], but it appears clear that most of the issues are due to the fact that the
ADM system is only weakly hyperbolic and this leads to numerical problems
as the errors tend to couple with zero-velocity modes. This was shown in
Alcubierre et al. [10] where the authors studied the linearized ADM system on
the Minkowsky background. An intuitive picture of why zero-speed modes
can lead to instabilities can be gained by studying the toy model equation

∂tu − λ∂xu = δu, (2.54)

where δu, with 0 < δ � 1, can be thought of as a source of numerical errors.
When λ goes to 0, u grows exponentially, signaling the instability of the system.

The solution to this problem was found by looking at alternative for-
mulations of the initial-value problem for the Einstein equations. Among
the different formulations some of the most successful were the Baumgarte,
Shapiro, Shibata, Nakamura, Oohara and Kojima formulation, BSSNOK (of-
ten also referred to as BSSN or conformal traceless formalism) [233, 294, 37],
the generalized-harmonic formulation [133, 200, 199] and the Z4 formulation
[55, 47, 281, 332, 12]. We do not discuss all these formulations in detail as this
would take us too far from the goals of this thesis. We only point out that each
of these formulations has its strengthes and weaknesses and that the search
for new and improved formulations of the Einstein equations is still a lively
research topic. Here we sketch the BSSNOK and the conformal-covariant vari-
ant of the Z4 formulation (also called CCZ4) as these are relevant for the work
presented here.

The BSSNOK Formulation

The BSSNOK formulation is a modification of the original ADM formulation,
where auxiliary variables are introduced to obtain a strongly-hyperbolic sys-
tem.

First of all the metric is split into a conformal metric

γ̃i j = e−4φγi j (2.55)

and a conformal factor
φ =

1
12

logγ. (2.56)

Then the extrinsic curvature is split into its trace K and a traceless part:

Ãi j = e−4φ
(
Ki j −

1
3
γi jK

)
. (2.57)

Finally one defines
Γi = γ jkΓ jk

i , Γ̃i = γ̃ jkΓ̃i
jk, (2.58)

4An important exception is the case of spherically symmetric spacetimes.
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where Γ jk
i is the Levi-Civita connection associated with γi j.

Alternative formulations exists where slightly different variables are used.
For instance Campanelli et al. [73] proposed to evolve χ = e−4φ instead of φ, to
take advantage of the fact that χ is always non-singular.

The evolutions equations are then obtained after a rather lengthy calculation
starting from the ADM equations and of which we only report the final result:

(∂t − L~β)γ̃i j = −2αÃi j, (2.59a)

(∂t − L~β)φ = −
1
6
αK, (2.59b)

(∂t − L~β)Ãi j = e−4φ
[
−DiD jα + α((3)Ri j − 8πSi j)

]TF

+α(KÃi j − 2ÃilÃ j
l ), (2.59c)

(∂t − L~β)K = −γi jDiD jα + α
[
Ãi jÃi j +

1
3

K2 + 4π(E + S)
]
, (2.59d)

(∂t − L~β)Γ̃
i = −2Ãi j∂ jα −

2
3

Γ̃i∂ jβ
j +

1
3
γ̂li∂ j∂lβ

j + γ̂l j∂l∂ jβ
i (2.59e)

+2α
(
Γ̃ jk

i Ãkj
−

2
3
γ̃i j∂ jK − 8πγ̃i jS j + 6Ãi j∂ jφ

)
; (2.59f)

where ·TF denotes the trace-free part of ·.

The CCZ4 Formulation

The Z4 formulation can be obtained from the covariant Lagrangian

Λ = gµν[Rµν + 2∇µZν]
√
−g + Λm, (2.60)

by means of a Palatini-type variational principle [56]. The variational principle
yields the field equations

Rµν + ∇µZν + ∇νZµ = 8π
(
Tµν −

1
2

Tgµν
)
, (2.61)

as well as a set of constraints fixing the connection

∇ρgµν = 0, (2.62)

and the algebraic constraint
Zµ = 0. (2.63)

If (2.63) is satisfied then (2.61) and (2.62) reduce to the standard Einstein field
equations. Otherwise Zµ gives a measure of the deviation of the solution from
the one of the original Einstein equations. In addition we point out that it
is possible to show that the condition that the first derivatives of Zµ vanish
amounts to imposing the ADM momentum and Hamiltonian constraints [57].

The key idea of the Z4 formalism is to develop a set of evolution equation
starting from the Lagrangian (2.60), without explicitly enforcing (2.63), i.e., treating
Zµ as a new independent variable. The resulting set of equations is then
strongly-hyperbolic, i.e., free from the zero-speed modes of the original ADM
system, and the solution of the Einstein equations is obtained exploiting the fact
that the Z4 evolution system preserves the constraint (2.63), i.e., ∂t(Zµ) = 0. In
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particular, if the initial-data is constraint satisfying, the Z4 evolution recovers
the solution of the Einstein equations, even though Zµ is an evolved variable.
In practice small numerical errors introduce constraint violations during the
evolution, for this reason the Z4 system is usually modified, with the addition of
terms that cancel out in the case in which the constraints are satisfied, to ensure
that eventually constraint violations are propagated away and exponentially
damped [160].

The version of Z4 that we employ was recently introduced by Alic et al. [12]
and is based on a conformal decomposition of the original Z4 system aiming to
incorporate both the advantages of BSSNOK, and in particular the possibility
of treating black-holes using the moving-puncture approach (more on this in
the next session), with the constraint-damping properties of the original Z4
formulation. The CCZ4 system reads

∂tγ̃i j = −2αÃ
TF

i j + 2γ̃k(i∂ j) β
k
−

2
3
γ̃i j∂k β

k + βk∂kγ̃i j , (2.64a)

∂tÃi j = φ2
[
−∇i∇ jα + α

(
(3)Ri j + ∇iZ j + ∇ jZi − 8πSi j

)]TF

+αÃi j (K − 2Θ) − 2αÃilÃl
j + 2Ãk(i∂ j) β

k

−
2
3

Ãi j∂k β
k + βk∂kÃi j , (2.64b)

∂tφ =
1
3
αφK −

1
3
φ∂kβ

k + βk∂kφ , (2.64c)

∂tK = −∇
i
∇iα + α

(
(3)R + 2∇iZi + K2

− 2ΘK
)

+ β j∂ jK −

3ακ1 (1 + κ2) Θ + 4πα (S − 3E) , (2.64d)

∂tΘ =
1
2
α
(
R + 2∇iZi

− Ãi jÃi j +
2
3

K2
− 2ΘK

)
− Zi∂iα +

βk∂kΘ − ακ1 (2 + κ2) Θ − 8παE , (2.64e)

∂tΓ̂
i = 2α

(
Γ̃i

jkÃ jk
− 3Ãi j ∂ jφ

φ
−

2
3
γ̃i j∂ jK

)
+ 2γ̃ki

(
α∂kΘ −Θ∂kα

−
2
3
αKZk

)
− 2Ãi j∂ jα + γ̃kl∂k∂lβ

i +
1
3
γ̃ik∂k∂lβ

l +
2
3

Γ̃i∂kβ
k

−Γ̃k∂kβ
i + 2κ3

(2
3
γ̃i jZ j∂kβ

k
− γ̃ jkZ j∂kβ

i
)

+ βk∂kΓ̂
i

−2ακ1γ̃
i jZ j − 16παγ̃i jS j , (2.64f)

where Θ is the projection of the Z4 four-vector along the normal direction,
Θ := nµZµ = αZ0.

The three-dimensional Ricci tensor (3)Ri j is split into a part containing con-
formal terms R̃φi j and another one containing space derivatives of the conformal
metric R̃i j, defined as

R̃i j = −
1
2
γ̃lm∂l∂mγ̃i j + γ̃k(i∂ j)Γ̃

k + Γ̃kΓ̃(i j)k + γ̃lm
[
2Γ̃k

l(iΓ̃ j)km + Γ̃k
imΓ̃kj l

]
, (2.65a)

R̃φi j =
1
φ2

[
φ

(
∇̃i∇̃ jφ + γ̃i j∇̃

l
∇̃lφ

)
− 2γ̃i j∇̃

lφ∇̃lφ
]
. (2.65b)

The evolution variable Zi of the original Z4 formulation is now included in
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the Γ̂i variable of the CCZ4 formulation

Γ̂i := Γ̃i + 2γ̃i jZ j , (2.66)

where
Γ̃i := γ̃ jkΓ̃i

jk = γ̃i jγ̃kl∂lγ̃ jk . (2.67)

Finally κ1 and κ2 are constants associated with the constraint damping terms
and κ3 is an extra constant used to select among different variants of the for-
mulation.

A technical point to keep in mind is the following. In the BSSNOK formu-
lation the Hamiltonian constraint is used to eliminate the Ricci scalar from the
right-hand-side (RHS) of K. For this reason, in the case in which the constraint
violation is non-zero, the trace of the extrinsic curvature used in the CCZ4 for-
mulation might be different from the one used in BSSNOK and in particular
one has

KBSSNOK = K − 2Θ. (2.68)

2.1.5 Gauge conditions

The ADM equations (as well as the BSSNOK or CCZ4 ones) do not prescribe
the evolution of α and βi so, in order to successfully evolve these systems, it
is necessary to choose a prescription for the lapse and the shift. This is not
surprising as the prescription of the spacetime foliation is clearly a gauge.

The right choice of the prescription for the lapse, the slicing condition, and
for the shift, the spatial gauge condition, is critical for the stable evolution of non-
trivial spacetimes and there is indeed a whole branch of numerical relativity
that is dedicated to the study of suitable gauge conditions. Here we are going
to present only a few concepts needed in our case.

Slicing conditions

The most simple choice is geodesic slicing: α = 1 and βi = 0. But this has obvious
limitations especially in the case of singularities and is never used.

Another classical slicing condition is the maximal slicing condition, K = 0,
that implies:

DiDiα = α
[
Ki jKi j + 4π(e + S)

]
. (2.69)

This slicing condition has the interesting property of being singularity-avoiding,
that is the lapse collapses to zero near singularities so that spacetime singu-
larities are not met by the slicing and thus the numerical grid. For example
maximal slicing in the case of a Schwarzschild black hole has been studied by
Geyer and Herold [142]. They showed in particular that the spacetime slices
converge to the maximal hypersurface r = 3/2M, remaining at finite distance
from the singularity.

The maximal slicing has interesting mathematical characteristics, but in-
volves the solution of elliptic equations at each time step and thus it is too
expensive for practical applications. For this reason Bona and Masso [54] de-
veloped a new class of slicing conditions in the form of hyperbolic equations for
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the lapse, that are able to mimic the behaviour of the maximal slicing condition5:

(∂t − β
i∂i)α = −α2 f (α)K, (2.70)

where f (α) is a positive function. When f = 1, one gets geodesic slicing, while
with f →∞ one formally gets the maximal slicing [38].

A popular choice is f (α) = 2/α, the so-called “1 + log” slicing. The name is
a consequence of the fact that, when βi = 0, (2.70) can be integrated to obtain

α = 1 + logγ. (2.71)

This condition has excellent singularity avoiding properties because f → ∞
near singularities so that it behaves like a maximal slicing condition [38].

Spatial gauge conditions

Gauge conditions for the shift function are also very important, especially in
the case of compact binaries where proper spatial gauge conditions have been
a key component for successful stable simulations.

A classical shift condition is the so called Gamma-driver condition [11]:

∂tβ
i =

3
4
αBi, (2.72)

∂tBi = ∂tΓ̃
i
− ηBi; (2.73)

where η is a dumping coefficient that must be tuned for optimal performance.
This shift condition is the hyperbolic version of an elliptic gauge condition

called “minimal distortion” because it tried to minimize the stretching of the
coordinates, in a fashion similar to the Bona-Masso slicing conditions for the
lapse [38], and it is intended to avoid the development of large shears in the
metric near singularities. The Gamma-driver condition has been successfully
used in the evolution of single moving black holes, but has a zero-speed mode
which, as we have seen, can couple with the numerical errors and destabilize
the system [326].

Van Meter [326] carried out an extensive study of various prescriptions
looking for a gauge condition not having zero or small speed modes. They
proposed a modified Gamma-driver (or moving-puncture) gauge:

(∂t − β
j∂ j)βi =

3
4

Bi, (2.74a)

(∂t − β
j∂ j)Bi = (∂t − β

j∂ j)Γ̃i
− ηBi; (2.74b)

which was successfully used to evolve binary black holes [73].

2.2 The Equations of General-Relativistic Hydrody-
namics

In this section we introduce the equations of general relativistic hydrodynamics.
These are the equations describing the flow of a fluid on a Lorentzian manifold

5Note that this becomes (∂t − βi∂i)α = α2 f (α)(K − 2Θ) in the CCZ4 formulation.
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coupled to the Einstein equations describing how the geometry of the spacetime
changes in response to the changes in the fluid. We start from the kinematics
of a fluid, i.e., from the mathematical tools necessary to describe the state and
the motion of the fluid. Then we present the equations of motion for perfect
fluids, i.e., in the absence of thermal conduction or viscosity. Finally we recall
the so-called “Valencia formulation” of the hydrodynamic equations, which is
the one most commonly employed in numerical relativity. Our presentation
loosely follows the ones by [229, 290, 158, 17, 275] and we refer the reader to
those sources for a more extended treatment.

2.2.1 Kinematics of a Relativistic Fluid

Broadly speaking a fluid in Newtonian physics is something that flows, i.e., a
system whose thermodynamical state is entirely determined as soon as quan-
tities like its mass, momentum and energy densities are known and whose
dynamics is described in terms of the respective flows. In special and gen-
eral relativity quantities such as the mass or the energy density of a fluid at a
particular point are ill-defined, as their value would depend on the observer,
i.e., there is no such a thing as a thermodynamical state of a fluid upon which
all the observers can agree. For this reason, while Newtonian hydrodynamics
describes the evolution of these quantities in terms of their flows, in relativistic
hydrodynamics this is not possible. In special and general relativity the funda-
mental quantities describing a fluid are not scalar or vector fields determining
the state of the fluid, but directly their flow, in space and time. In this sense
flows and flux-conservative formulations of the equations of hydrodynamics
play an even more fundamental role in relativity than in classical physics.

First of all, in classical hydrodynamics the mass density (or simply density)
is described by a scalar quantity, usually denoted by ρ. In the relativistic case
one could be tempted to define, as in the Newtonian case, ρ := mn, where m
is the rest-mass of a single particle6 and n is the number density of particles,
i.e., the number of particles in a volume d3x so that∫

V
ρd3x = m

∫
V

n d3x =: mN (2.75)

would give the total mass of fluid enclosed in a volume V. The problem with
this definition is that d3x is an observer dependent quantity. This means that
two observers in relative motion with respect to each other will not agree on
the measure of n (but will agree on the measure of N). One could bypass the
problem by defining the density as being the one measured in a particular frame,
for instance the one instantaneously comoving (or simply comoving) with the
fluid. While the density in the comoving frame is an interesting quantity, it
is clear that, to obtain a covariant description of the dynamics of the fluid, it
is necessary to use a formulation in terms of invariant quantities, from which
frame-dependent quantities can be constructed once an observer is selected.

A covariant description of the mass density of a fluid can be done once one
realizes that the truly fundamental quantity is not the mass density, but its flow
in spacetime, i.e., a three pseudo-formρρρ, whose value on any three dimensional
submanifold gives the flow of mass transverse to the submanifold. In particular

6For simplicity we assume the fluid to be composed of identical particles.
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if Σ is a spacelike hypersurface with normal ~n, which we take future-oriented,
then the density as measured by an observer with four-velocity ~n is given by∫

Σ

ρρρ. (2.76)

The mass-flow measured by the Eulerian observer across any spacelike surface
Ω ⊂ Σ is given by ∫

Ω

i~n ρρρ, (2.77)

where i~n ρρρ denotes the interior product between the vector ~n and the form ρρρ,
i.e., i~n ρρρ is the two-form ρρρ(~n, ·, ·).

The statement that the number of particles of the fluid is conserved is ex-
pressed by the fact that the exterior differential of ρρρ vanishes

dρρρ = 0, (2.78)

or equivalently by the statement that, for any sufficiently regular, open set
Ω ⊂ M, we have ∫

∂Ω
ρρρ =

∫
Ω

dρρρ = 0, (2.79)

which means that the total number of particles is conserved, since the net flow
across any regular surface enclosing a four-dimensional open set is zero.

On any pseudo-Riemannian manifold, associated with any three form there
exists a vector field, such that the three form can be interpreted as describing
the flux of this field in a sense that we make more precise in a moment. The
vector field associated with the density three-form is usually denoted with ~J
and called the rest-mass density four-vector. It is constructed by requiring that

ρρρ = i~JVol4
x, (2.80)

where Vol4
x is the volume pseudo-form of the spacetime, i.e., in any local coor-

dinate patch we have

Vol4
x =
√
−g dx0

∧ dx1
∧ dx2

∧ dx3, (2.81)

where g is the determinant of the spacetime metric. More precisely ~J is con-
structed from the one-form J = ?ρρρ, where ? is the Hodge dual operator, see

e.g., [132], by raising its indices, i.e., ~J = # J.

The statement that ρρρ represents the flux of ~J reads∫
Σ

ρρρ = −

∫
Σ

~J · ~n Vol3
x, (2.82)

where ~n is the future-oriented unit-timelike normal to Σ and Vol3
x is the intrinsic

volume form on the submanifold Σ, i.e., Vol3
x = i~nVol4

x.
More generally the flux associated with a flow defined by a vector field, ~X,

across a hypersurface, Σ, transverse to it and with normal ~ν (with appropriate
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sign depending on the signature of the metric and on Σ), is given by7∫
Σ

?X =

∫
Σ

i~XVoln =

∫
Σ

i~X
[
ν ∧ Voln−1

]
=

∫
Σ

~X · ~ν Voln−1. (2.83)

It is easy to see that, since the flux of particles across any future-oriented
spacelike hypersurface must be positive or null, ~J must be a timelike or null
vector. In the former case it can be decomposed in a unique way as

~J =: ρ ~u (2.84)

where ρ is a scalar that we can interpret as being the comoving density, i.e., the
density in the comoving frame, and ~u is a unit-timelike vector that we can
interpret as being the fluid four-velocity.

The statement of mass conservation, as expressed in terms of ~J, becomes, in
any coordinate frame, the well known continuity equation:

0 = ∇µ Jµ =
1
√
−g
∂µ[
√
−gρuµ]. (2.85)

Similarly energy and momentum of a fluid can be defined, using the Cartan
formalism, as a three pseudo-form valued form, i.e., a one-form that, when
acting on the vector ~∂µ returns a three pseudoform representing the flow of the
µ−momentum of the fluid, τττ ⊗ α

τττµ := [τττ ⊗ α](~∂µ). (2.86)

More simply, exploiting the equivalence between three-forms and vectors, we
can describe energy and momentum flows using a mixed tensor TTT such that

T ν
µ = TTT(dxµ, ∂ν) =“Flow of the ν momentum across the

volume element perpendicular to dxµ”.
(2.87)

It is not difficult to show that with this definition of the stress energy tensor
coincides with the definition of stress-energy tensor given by (2.12).

As a consequence of the Bianchi identities the divergence of the stress-energy
tensor of the fluid must vanish if the Einstein equation are satisfied:

0 = ∇µT ν
µ =

1
√
−g
∂µ(
√
−g T ν

µ ) − Γ µν
α T α

µ . (2.88)

Although these equations are often described as a statement of conservation
of the energy and momentum of the fluid, we must remark that (2.88) is not
properly describing the conservation of energy and momentum of the fluid.
Actually these quantities are not, in general, conserved. Conservation of the
ν−momentum would, instead, read

dτττν = 0 (2.89)

and it is easy to show that (2.88) and (2.89) agree, for a fixed ν, only if ~∂ν is a
Killing vector.

7We remember that the volume form of the spacetime can be decomposed as Vol4x = ν ∧ Vol3x.
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2.2.2 Dynamics of a Relativistic Fluid

So far we have been concerned only with the description of the kinematics of
a relativistic fluid. We derived the equations (2.85) and (2.88) describing mass,
energy and momentum “conservation”, but clearly these are not enough to
fully determine the motion of the fluid. This is not surprising since we have not
yet specified any of the physical properties of the fluid that we want to describe.
In particular, in this thesis we are concerned with perfect fluids, i.e., fluids where,
in the comoving frame,

1. there is no heat conduction;

2. there is no viscosity.

The absence of heat conduction means that the medium is in local thermody-
namical equilibrium (LTE). Viscosity is neglected simply because it is expected
to be very small for the systems of interest, even when compared with the
“numerical viscosity”, and because the correct mathematical formulation of
viscous and/or thermally conducting fluids in general-relativity is still the ob-
ject of research, see e.g., [17] and references therein.

The stress-energy tensor of a perfect fluid is easily calculated in the comov-
ing frame with the fluid. To do that we construct an orthonormal tetrad {~u,~ei}

comoving with the fluid, where ~u is the four-velocity of the fluid, as defined in
(2.84) ~u · ~ei = 0 and ~ei · ~ek = δik. We also introduce the dual basis {u, ei

}. At this
point the TTT(u, ~u) component of the stress-energy tensor is the energy-density
in the rest-frame of the fluid, which we denote as e. The mixed components
of the stress energy tensor, TTT(u,~ei), represent the energy flowing transverse to
the four-velocity of the fluid and are zero since we assumed that there is no
heat-conduction. Finally the spatial components of the stress-energy tensor
TTT(ei,~ek) represent the k component of the force exchanged across the surface
element orthogonal to ei. Since we neglect viscosity and since the stress-energy
tensor must be invariant with respect to rotations of the triad {~ei}, we have

TTT(ei,~ek) = p δ k
i , (2.90)

for some scalar p, which we call pressure. Collecting all these considerations
together we get the following form for the stress-energy tensor

TTT = (e + p) ~u ⊗ u + pδδδ. (2.91)

It is customary to define the specific enthalpy of the fluid h = 1 + ε+ p/ρ, where
ε is the specific internal energy, i.e., e = ρ(1 + ε), so that the stress-energy tensor
is written as

TTT = ρ h ~u ⊗ u + pδδδ. (2.92)

The equations (2.85) and (2.88) together with the form of the stress-energy
tensor (2.92) are still not sufficient to determine the motion of the fluid. In order
to do that it is necessary to also prescribe an equation of state for the fluid, i.e., a
relation between pressure, internal energy and density.

Typical equations of state that we use throughout this work are:

1. the ideal-gas, or gamma-law equation of state (EoS)

p = (Γ − 1)ρ ε, (2.93)

where Γ is the polytropic index of the gas;
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2. the polytropic EoS
p = K ρΓ, (2.94)

which is just the ideal-gas EoS restricted to the case of isoentropic flows;

3. the ultrarelativistic EoS
p = (Γ − 1) e, (2.95)

which can be interpreted as the ultra-high temperature limit of the ideal-
gas EoS.

Note that in the case of the polytropic EoS the energy equation becomes redun-
dant, while in the case of the ultrarelativistic EoS it is the continuity equation
which becomes redundant. For these reasons the former EoS is often employed
in situations where the flow is isoentropic to simplify the evolution, while the
former can be used to described a hot, optically thick pair-plasma, since pair-
creation is automatically taken into account. More on the properties of these
EoS can be found, for instance, in [18].

With the addition of an equation of state, equations (2.59), (2.85) and (2.88)
together with the form of the stress-energy tensor (2.92) form a hyperbolic
system of equations that can be evolved, once initial data is prescribed on a
Cauchy surface, to obtain both the geometry of the spacetime and the dynamics
of the matter in it.

2.2.3 Conservative Formulations

The first attempts to solve the equations of general relativistic hydrodynamics
date back to the seminal works by May and White [213] and by Wilson [333].
In these investigations, the approach was to cast the relativistic hydrodynamics
equations as non-linear advection-like equations in a form that resembles the
Newtonian Euler equations. These were then solved using finite-difference (FD)
schemes, stabilized using a combination of upwinding and artificial-viscosity
methods to avoid excessive oscillations at shocks (see [130] for a comprehen-
sive list of references). Although these methods allowed to perform the first
numerical studies in general relativistic hydrodynamics, they also had several
limitations, such as the difficulty of tuning the artificial viscosity to avoid exces-
sive smearing of the shock fronts or, most importantly, the limitation to mildly
relativistic flows, i.e., with Lorentz factor W . 2 [130].

A major leap forward in numerical relativistic hydrodynamics took place
when it was realized that the major problem behind Wilson’s approach was the
use of a formulation which breaks the conservative nature of the equations [210].
This realization lead to the formulation of the equations of relativistic hydro-
dynamics in conservation form, i.e., as a system of equations of the type

∂FFF0(uuu)
∂t

+
∂FFFi(uuu)
∂xi = SSS(uuu), (2.96)

where uuu is a “vector” of primitive quantities, such as the rest-mass density or the
specific internal energy, FFF0 is a “vector” of conserved quantities8 and FFFi and SSS are
their fluxes and sources respectively.

8These are not strictly conserved if SSS is not zero.
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In particular the “Valencia formulation” [36], which is adapted for the use
in conjunction with the 3 + 1 formalism outlined above, was very successfully
used in conjunction with special numerical methods developed in the context
of conservation laws, such as finite-volume (FV) and FD high-resolution shock
capturing (HRSC) methods, which we discuss in more detail in Chapter 3.
These methods were shown to be able to handle ultra-relativistic flows and to
sharply resolve shocks without spurious oscillations or the need for artificial
viscosity. For these reasons they have been the key ingredient in a number
of recent achievements of numerical relativistic hydrodynamics and magne-
tohydrodynamics (MHD; see, e.g., [146, 274] and references therein). Other
conservative formulations of the equations of general relativistic hydrodynam-
ics are available, for instance the one proposed by Papadopoulos and Font
[248], but, here, we restrict ourselves to the Valencia formulation as it is the one
relevant for this thesis.

First of all we decompose the four-velocity ~u in a part which is parallel to ~n
and a part perpendicular to it, i.e., purely spatial

~u = (−~u · ~n)(~n + ~v), (2.97)

where −~u · ~n is obviously the Lorentz factor of the fluid as measured by the
Eulerian observer, which we denote as W, and ~v is the three-velocity of the
fluid as measured by the Eulerian observer,

~v =
~u
W
− ~n, (2.98)

or, in component form

vi =
ui

W
+
βi

α
, vi =

ui

W
. (2.99)

The continuity equation is then easily written in conservative form

0 = ∇µ Jµ =
1
√
−g
∂t[
√
γρW] +

1
√
−g
∂i[
√
γρ(αvi

− βi)] (2.100)

with conserved density D = ρW = −~J · ~n.
The energy and momentum equations can be written in conservation form

noting that [275]
∇µ[T ν

µ pν] = T ν
µ
∇µpν, (2.101)

for any vector field ~p. The Valencia formulation is then obtained by letting ~p
vary among the vectors {~n, ~∂i}. In this way one obtains four conservation laws
with conserved quantities, T ν

0 pν,

Si = αT ν
0 (∂i)ν = −TTT(~n, ~∂i), E = αT ν

0 nν = TTT(~n, ~n), (2.102)

and associated fluxes T ν
i pν and sources T ν

µ
∇µpν.

In addition we introduce the quantity τ = E − D, that is the difference
between the total internal energy density and the rest-mass density, which we
evolve in place of E to avoid large errors in the internal energy density in the
case in which this is small compared to the rest-mass density.
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Collecting everything together we can write the general relativistic hydro-
dynamics equations in the form

1
√
−g

[∂√γFFF0(uuu)
∂t

+
∂
√
−gFFFi(uuu)
∂xi

]
= SSS(uuu), (2.103)

with primitive quantities
uuu = [ρ, vi, ε] (2.104)

and conservative quantities

FFF0(uuu) = [D, S j, τ] = [ρW, ρhW2v j, ρhW2
− p − ρW]. (2.105)

The fluxes are

FFFi(uuu) =

[
D
(
vi
−
βi

α

)
, S j

(
vi
−
βi

α

)
+ pδi

j, τ
(
vi
−
βi

α

)
+ pvi

]
(2.106)

and the sources are

SSS(uuu) =

[
0, Tµν

(∂gν j

∂xµ
− Γδνµgδ j

)
, α

(
Tµ0 ∂ logα

∂xµ
− TµνΓ0

νµ

)]T

. (2.107)

The Valencia formulation casts the equations of general relativistic hydro-
dynamics in a form akin to the one usually employed in the numerical solution
of the equations of gas-dynamics in the Newtonian case. There are, however, at
least two important differences with respect to the classical case that appear at a
first inspection of the equations. The first one is that it is not possible to find an
explicit inverse relation between uuu and qqq. As a consequence the primitive vari-
ables need to be recovered from the conservative ones by means of a numerical
root-finding algorithm (more on this in Chapters 6, 4 and 5). The second one
is that the Lorentz factor couples the equation for the momenta in the differ-
ent directions in a way which has no classical counterpart [257, 272, 273, 15].
For instance the presence of a tangential velocity can change completely the
dynamics of a shock wave. This makes the equations of general relativistic
hydrodynamics even more challenging to solve [224, 339].

2.3 The General-Relativistic Boltzmann Equation

The foundations of the Boltzmann equation in special relativity were laid by
Synge [311], while the extension to general relativity was suggested by Tauber
and Weinberg [315] and Chernikov [84]. The relativistic Boltzmann equation
was first applied to the study of a simple relativistic gas [174], and later to the
study of transient relativistic thermodynamics [173], radiative transfer [201]
[321] in core-collapse supernovae [67], and in many other scenarios (see e.g., [79]
and references therein).

Unfortunately the current literature on the general relativistic Boltzmann
equation is rather sparse and a number of subtly different conventions have
been used in different works, to the point that it is often not simple to com-
pare the different formalisms. For this reason, very recently, Debbasch and van
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Leuuwen [108, 109] tried to put order in the current understanding of the equa-
tion by publishing its detailed derivation. Unfortunately their work is overly
concerned with the algebraic aspects of the derivation, hiding the simple geo-
metrical interpretation proposed by Lindquist [201] or Ehlers [124] and based
on earlier work on the Riemannian structure of tangent bundles by Sasaki [284]
[285]. For this reason we think that it is useful to present a detailed deriva-
tion of the general relativistic Boltzmann equation, using modern differential
geometry notation.

2.3.1 The geometry of the tangent bundle

Let (M, gαβ) be a C2 spacetime, TM be its tangent bundle and π : TM→M be
the projection map.

Extended coordinates on TM

In every coordinate patch U, {xα}, of M, for every point q ∈ U we denote a
vector in TqM as

~p = pα
∂
∂xα

(2.108)

and its dual as
p = pαdxα := gαβpβdxα. (2.109)

We also introduce a coordinate patch TU, {zA
}, A = 0, 1, . . . 7, of TM as:

zα = xα, zα+4 = pα. (2.110)

A coordinate change x̂α = x̂α(x) onM induces an extended coordinate trans-
formation

x̂µ = x̂µ(x), p̂µ =
∂x̂µ

∂xν
pν, (2.111)

this corresponds to the Jacobian matrix:

∂ẑA

∂zB =


∂x̂α

∂xβ
0

∂2x̂α

∂xβ∂xγ
pγ

∂x̂α

∂xβ

 . (2.112)

Vectors on TM

Let b ∈ TU and TbTM be the tangent space to TM at b. Then the push-forward
[132] of π, π∗ acts on the natural basis as:

π∗

[
∂
∂xα

]
=

∂
∂xα

, π∗

[
∂
∂pα

]
= 0, (2.113)

the pull-back acts as
π∗dxα = dxα. (2.114)

Let ~X ∈ TTM be a vector field in some neighbour of the point b. b is
associated with a point q ofM and a vector ~x ∈ TqM. The flow of b generated
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by ~X: b(λ) is also associated with a one parameter family of points ofM, q(λ),
and a one-parameter family of vectors in TM, ~x(λ). We say that ~X is vertical if
the point q(λ) is constant along the flow. Similarly, we say that ~X horizontal if
~x(λ) “constant” along the flow, in the sense that ~x(λ) is just ~x parallel transported
to q(λ).

Obviously there is no unique way of giving a precise definition of “parallel
transport” and this non-uniqueness is solved by choosing a linear connection,
∇, of M. From an abstract point of view, the choice of a linear connection is
equivalent, in each point b, to the choice of two vector spaces Ob and Vb of
horizontal and vertical vectors such that:

TbTM = Ob ⊕Vp. (2.115)

Given a vector ~x ∈ TqM, we can now define its lift as the unique horizontal
vector, ~X ∈ TbTM, whose projection is ~x.

We can define a new vector basis, called the connection basis, adapted to the
split (2.115): {D/∂zA

} := {D/∂xα, ∂/∂pα}, where

D
∂xα

:=
∂
∂xα
− Γ αγ

β pγ
∂

∂pβ
. (2.116)

A similar construction can be carried over for differential forms defined on
the tangent bundle to compute the dual basis {DzA

} := {dxα,Dpα} using the
pull-back π∗ and it is easy to show that

Dpα = dpα + Γ βγ
α pγdxβ. (2.117)

Metric on TM

First of all, we notice that:

∂2x̂µ

∂xν∂xλ
pλ = Γ̂

µ
δλpλ

∂x̂δ

∂xν
. (2.118)

We assume that, for any point, b ∈ TM, there exist an open set, TU 3 b, and
a coordinate system defined over TU such that

GAB = (ηηη ⊗ ηηη)AB, (2.119)

where ηηη = diag(−1, 1, 1, 1). Let x̂A denotes a generic coordinate system in TU,
then the metric in this coordinate system can be written as:

Ĝµν =
∂x̂α

∂xµ
∂x̂β

∂xν
ηαβ +

∂x̂α

∂xµ
Γ̂
γ
αλpλ

∂x̂β

∂xν
Γ̂δβξp

ξηγδ; (2.120)

Ĝµ ν+4 =
∂x̂α

∂xµ
∂x̂γ

∂xν
Γ̂
β
γλpληαβ; (2.121)

Ĝµ+4 ν+4 =
∂x̂α

∂xµ
∂x̂β

∂xν
ηαβ. (2.122)

The line-element is then

dS2 = ĜABdẑAdẑB = ĝµνdx̂µdx̂ν + ĝµν[dpµ + Γ̂
µ
αβp

βdxα][dpν + Γ̂ναβp
βdxα]

= ĝµνdx̂µdx̂ν + ĝµνDx̂µDx̂ν.
(2.123)
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It can be shown that |detGGG| = g2 as the transformation from the natural frame
to the connection frame is unimodular [201]. Thus the volume pseudo-form on
TM is, in the coordinate patch TU,

Vol8 := −g dx0
∧ dx1

∧ . . . ∧ dp3 =: −g d4xd4p,

:= −g dx0
∧ dx2

∧ . . . ∧Dp3 =: −g d4xD4p.
(2.124)

2.3.2 The Liouville Theorem

We define an intrinsic 1-form on TM, λ ∈ T∗TM, as follows. Consider a point
A ∈ TM. A is associated with a point q ∈ M and a 1-form, α ∈ T∗qM. We define
λ in A as the unique 1-form such that λ = π∗α. This is the so-called Poincaré
1-form and, in a local coordinate neighbor, TU, is given by:

λ = pαdxα. (2.125)

The associated vector,

~λ = pα
D
∂xα

= pα
∂
∂xα
− pαΓ αγ

β pγ
∂

∂pβ
, (2.126)

is the so-called geodesic flow field. The name comes from the fact that its flow is
the phase-space flow of a particle moving along geodesics.

Given a point q ∈ U, we define the mass-shell as the set

Sm =
{
pα ∈ TqM : pµpµ + m2 =: f (p) = 0

}
. (2.127)

In the case in which m , 0, the normal to the mass-shell is given by

π :=
1

2m
d f , d f =

∂ f
∂xµ

dxµ +
∂ f
∂pµ

dpµ = 2pµdpµ, (2.128)

while for massless particles the normal is simply defined as π := 1
2 d f . Finally

we introduce the form ν as being the only vertical form whose restriction on
TqM is equal to π. This is given by

ν =
1
m

pα Dpα. (2.129)

in the case where m , 0 and ν = pα Dpα in the massless case.
It easy to see from its definition that ν is irrotational, i.e., dν = 0, since, for

instance, in the m , 0 case (the massless case is analogous), it can be written as

ν =
1

2m
D f
∂pα

Dpα. (2.130)

It can be proven [284] thatλ is incompressible, i.e., 0 = d?λ := ?d?λ. Moreover,
both are harmonic in the sense of Kodaira:

0 = ∆λ := [dd? + d?d]λ, 0 = ∆ν. (2.131)
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In our case we are interested in measuring the density of states, in phase
space, of particles moving along geodesics and with velocities on the mass
shell. Remembering (2.83), we are led to define the six-form

ωωω = ?
(
ν ∧ λ

)
= i~λi~νVol8. (2.132)

This can be written more explicitly, using the definition of Vol8, as

ωωω = i~λ

[
i~ν
(
Vol4

x ∧ Vol4
p

)]
= i~λ

[
Vol4

x ∧ Vol3
p

]
; (2.133)

where we defined, in TU,

Vol4
x :=

√
−g dx0

∧ dx1
∧ dx2

∧ dx3 (2.134)

and

Vol4
p :=

√
−g Dp0

∧Dp1
∧Dp2

∧Dp3, (2.135)

where Vol3
p := i~νVol4

p is the volume form on the mass shell, Sm. In coordinates
adapted to the mass shell, where ν =

p0

m Dp0 in the m , 0 case and ν = p0Dp0 in
the massless case, this reads

Vol3
p =

√
−g
−p0

Dp1
∧Dp2

∧Dp3. (2.136)

Notice that the last expression is valid also in the case m = 0.
In the context of the usual ADM foliation of the spacetime: M = R × Σ in

x0 = const hypersurfaces with normal n = −αdx0, α being the lapse function,
the expression forωωω can be simplified. We can split Vol4

x as

Vol4
x = −n ∧ Vol3

x, (2.137)

where

Vol3
x = i~nVol4

x =
√
γ dx1

∧ dx2
∧ dx3 (2.138)

and γγγ is the three-metric induced on the slices. Thus we obtain, in coordinates
adapted to the spacetime slicing and the mass shell,

ωωω = −(~p · ~n)
1
−p0

√
γ
√
−g dx1

∧ dx2
∧ dx3

∧Dp1
∧Dp2

∧Dp3

=
p0

−p0
|g| dx1

∧ dx2
∧ dx3

∧Dp1
∧Dp2

∧Dp3.

(2.139)

If we consider the action of ωωω on the six-vectors, δ1x, δ2x, δ3x, δ1p, δ2p, δ3p,
chosen so that δix are tangent vectors to Σ and δip are tangent vectors to Sm, we
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have

ωωω(δ1x, . . . , δ3p) =
p0

−p0
|g|

[
dx1
∧ dx2

∧ dx3
]
(δ1x, δ2x, δ3x)×[

Dp1
∧Dp2

∧Dp3
]
(δ1p, δ2p, δ3p)

−
p0

−p0
|g|

[
dx1
∧ dx2

∧ dx3
]
(δ1p, δ2p, δ3p)×[

Dp1
∧Dp2

∧Dp3
]
(δ1x, δ2x, δ3x) =

=
p0

−p0
|g|

[
dx1
∧ dx2

∧ dx3
]
(δ1x, δ2x, δ3x)×[

Dp1
∧Dp2

∧Dp3
]
(δ1p, δ2p, δ3p) =

=
p0

−p0
|g|

[
dx1
∧ dx2

∧ dx3
]
(δ1x, δ2x, δ3x)×[

dp1
∧ dp2

∧ dp3
]
(δ1p, δ2p, δ3p).

(2.140)

This follows from dxi(δ jp) = 0 and the relation

Dpi(δ jp) = dpi(δ jp) − Γ αβ
i pαdxβ(δ jp) = dpi(δ jp). (2.141)

For this reason we have, on the space-like hypersurface Σ and on the mass shell:

ωωω =
p0

−p0
|g| dx1

∧ dx2
∧ dx3

∧ dp1
∧ dp2

∧ dp3 =: ΩΩΩ. (2.142)

We can split ΩΩΩ into two parts by defining the three-forms:

ΛΛΛ = p0 √
−g dx1

∧ dx2
∧ dx3 (2.143)

and
ΠΠΠ =

1
−p0

√
−g dp1

∧ dp2
∧ dp3 (2.144)

as
ΩΩΩ = ΛΛΛ ∧ΠΠΠ. (2.145)

Note that ΛΛΛ and ΠΠΠ are intrinsic forms in TM as they can be written, at any point
q ∈ M, in a coordinate independent way, as9:

ΛΛΛ = ?M λ, ΠΠΠ = ?TqM π; (2.146)

From the previous definitions it is clear that ΛΛΛ and ΠΠΠ are the proper geodesics-
flux volume form on respectively, the spacelike hypersurface, Σ, inM and the
mass shell, Sm, in the tangent space, TqM, at a point, q ∈ U.

Let S be a “phase tube” in the tangent bundle generated by the geodesic
flow, ~λ. Let S1 and S2 be two sections of this tube. It is possible to show that
the flux of points in phase space associated with the geodesic flow satisfies∫

S1

ωωω =

∫
S2

ωωω, (2.147)

9Note that the tangent space, TqM, at a point q, is also a manifold with metric ggg.
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which is the relativistic version of the Liouville’s Theorem. To prove that we
compute the exterior differential ofωωω:

? dω = d?(ν ∧ λ) = d?ν ∧ λ + ν ∧ d?λ, (2.148)

using the fact that dd?ν = 0 we obtain that d?ν is a constant which we call k
and, knowing that d?λ = 0, we get

dω = −k(?λ). (2.149)

Since ?λ is zero along the phase tube, as ?λ[~λ, . . .] = 010, we get∫
S

dωωω = 0. (2.150)

Finally using Stoke’s Theorem and knowing that ωωω vanishes along the part of
the boundary tangent to ~λ, we get (2.147).

2.3.3 The Boltzmann equation

We introduce a new six-form, µµµ, whose value on any section of the phase tube,
S1, is the number of particle phase trajectories crossing it. In the absence of
collisions ∫

S1

µµµ =

∫
S2

µµµ. (2.151)

Also, since the particles move along geodesics, µµµ must be proportional toωωω,

µµµ = Fωωω, (2.152)

where F is the so-called invariant distribution function, i.e., F is the Radon-
Nikodym derivative of µµµ with respect toωωω.

Suppose now that the number of phase trajectories changes due to collisions.
The change in this number is

δN =

∫
S2

µµµ −

∫
S1

µµµ =

∫
S

dµµµ =

∫
S

dF ∧ωωω. (2.153)

We notice that

dF ∧ωωω = dF ∧ ?(ν ∧ λ) = 〈dF, λ〉 ? ν − 〈dF, ν〉 ? λ, (2.154)

where 〈·, ·〉 is a scalar product between forms:

〈ααα,βββ〉Vol8 := ααα ∧ ?βββ. (2.155)

Finally, as ?λ vanishes on Swe get

δN =

∫
S

〈dF, λ〉 ? ν. (2.156)

10Remember that ?λ is the volume form of the hypersurfaces orthogonal to ~λ.
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If we denote with

δN =:
∫
S

C[F] ? ν (2.157)

the effects of the collisions, we get the Boltzmann equation:

〈dF, λ〉 = C[F], (2.158)

or, more explicitly,

pα
∂F
∂xα
− Γ αβ

γ pαpβ
∂F
∂pγ

= C[F]. (2.159)

If we adopt a system of coordinates adapted to it, i.e., p0 = p0(pi), the Boltzmann
equation takes the following form [79]

pα
∂F
∂xα
− Γ αβ

i pαpβ
∂F
∂pi = C[F]. (2.160)

We notice that, thanks to the incompressibility of λ, we have

〈dF, λ〉 = d?[Fλ], (2.161)

so that we can rewrite the Boltzmann equation in a form that makes the con-
servation of the number of particles manifest:

d?[Fλ] = C[F]. (2.162)

This is the so-called conservative formulation of the Boltzmann equation [77].
We can make this construction more algebraic by introducing the Levi Civita

connection, ∇, in phase space. The incompressibility of λ can then be written
in component form as

∇Aλ
A = 0, (2.163)

while the Boltzmann equation reads

λA∂AF = C[F]. (2.164)

Using these two relations one easily obtains the conservative formulation of
the Boltzmann equation in component form as

∇A[FpA] = C[F], (2.165)

or, more explicitly as

1
|g|

∂
∂xµ

[
|g|F pµ

]
+

p0

|g|
∂

∂pk

[
|g|
−p0

Γ αβ
k pαpβ F

]
= C[F], (2.166)

2.3.4 From the Boltzmann Equation to the Euler Equation

Now that we have derived the Boltzmann equation in general-relativity we
are ready to derive the equations of hydrodynamics from the Boltzmann equa-
tion. To do that, first, we need to have a way to extract quantities, such as
the mass-flux or the energy flux, that are of central importance in relativistic
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hydrodynamics, from the kinetic description. The density-flux is easily com-
puted remembering that µµµ is just the phase-space version of the mass-flux. In
particular from its definition it is easy to see the mass flow is simply given by

ρρρ =

∫
Sm

µµµ, (2.167)

while the rest-mass density four-vector is given by

Jµ =

∫
Sm

F pµΠΠΠ, (2.168)

since ∫
Σ

(−Jµnµ)Vol3
x =

∫
Σ×Sm

F p0 ΠΠΠ Vol3
x =

∫
Σ×Sm

FΩΩΩ =

∫
Σ

ρρρ. (2.169)

In a similar way the second moments of the distribution function give rise
to the stress-energy tensor:

Tµν =

∫
Sm

F pµ pνΠΠΠ (2.170)

and, in particular, the components of the stress energy tensor, in the comoving
frame of the fluid, can be interpreted as

Tµν =

(
E ~F
~F PPP

)
, (2.171)

where E is the energy density, ~F is the energy flux and PPP is the stress tensor.
The particular form of the stress-energy tensor depends on the equilibrium dis-
tribution function [79], which in turns depends on the nature of the collisional
operator.

Finally the hydrodynamic equations are a consequence of the Liouville
Theorem. Let ΨΨΨ be a tensorial function of pi. Then, multiplying both sides of
equation (2.165) by ΨΨΨ and integrating with respect to ΠΠΠ we obtain∫

R3
∇A[FλA ΨΨΨ]ΠΠΠ =

∫
R3
C[F]ΨΨΨΠΠΠ, (2.172)

where we have used the fact that λA
∇AΨΨΨ = 0, since ~λ is the geodesic flow.

Finally, if we assume that F decays for large moments, we obtain the transfer
equation [174, 79]:

∇µ

∫
R3

FΨΨΨ pµΠΠΠ =

∫
R3
C[F]ΨΨΨΠΠΠ, (2.173)

In the case of a simple gas it is possible to show that, if ΨΨΨ is one of
{1, p0, p1, p2, p3

}, we have [79] ∫
R3
C[F]ΨΨΨΠΠΠ = 0, (2.174)

these particular choices of ΨΨΨ are called collisional invariants and are associated
with quantities that are conserved by the collisional operator. In particular
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1 is obviously associated with the mass conservation, while pµ yields energy
and momentum conservation. In particular and, as a consequence of equation
(2.173), we find that

∇µ Jµ = 0, ∇νTµν = 0. (2.175)



Chapter 3

Numerical Approximation of
Conservation Laws

In this chapter we present some key aspects concerning the theory of the nu-
merical approximation of conservation laws. Conservation laws are ubiquitous
in physics and, not surprisingly, the literature covering their mathematical and
numerical treatment is extremely large and several monographs are available
on the subject. Here we focus on those aspects that are relevant for our sub-
sequent discussion and the emphasis is put on the presentation of high-order,
state-of-the-art numerical methods for the solution of conservation laws. We
do not provide a complete description of the properties of all these schemes, as
their complete presentation can be easily found elsewhere. Instead, we empha-
sise the key ideas behind their development and discuss their strengths and
weakness in the context of general-relativistic hydrodynamics.

This chapter is divided in four parts. In Section 3.1 we recall some of the most
basic results in the theory of conservation laws and their numerical approxi-
mation, while in Section 3.2 we present Godunov-like finite-volume schemes.
In Section 3.3 we present a description of central methods and, in Section 3.4,
we describe high-resolution shock-capturing (HRSC) finite-difference schemes
and in particular their high-order variants. Finally, in Section 3.5 we present
discontinuous Galerkin methods.

3.1 Theoretical Background

In this section we recall some basic results concerning the mathematical theory
of conservation laws and their numerical approximation. First of all we start
from the definition of weak and entropic solutions of conservation laws and we
state some results concerning existence and uniqueness of entropic solutions
for conservation laws. We introduce then the basic concepts of consistency,
stability and convergence of the numerical approximation to conservation laws
and the Lax-Richtmeyer theorem. Finally we present the extension to the case
of non-linear equations. Our treatment is loosely based on the one found in
[196, 312] and we refer the reader to those references for a more complete
discussion.

37



38 3 Numerical Approximation of Conservation Laws

3.1.1 Conservation Laws

In this section we consider equations in the form

∂tuuu + ∇ · fff (uuu) = 0, (t, x) ∈ R+ ×R
d, (3.1a)

uuu(0, x) = uuu0(x), x ∈ Rd. (3.1b)

where uuu is a vector of m unknowns, fff = ( fff 1, . . . , fff m) is a d−dimensional flux and
uuu0 ∈

[
L∞(Rd)

]m
is the initial data.

It is well known that the solution of (3.1) can develop shocks in finite time,
even if the initial data is analytic. For this reason (3.1) has to be interpreted in
the sense of the distributions. In particular a function uuu ∈

[
L∞(R+ × Rd)

]m
is a

weak solution of (3.1) if, for all test functions v ∈ C1
0(Rd+1) and i = 1, 2, . . . ,m, we

have ∫
∞

0
dt

∫
Rd

[
ui ∂tv + fff i(uuu) · ∇v

]
dx =

∫
Rd

ui
0 v dx. (3.2)

Unfortunately it is easy to show that even simple scalar conservation laws
admit multiple weak solutions. In order to single out the “physically relevant”
solution it is necessary to introduce the concept of entropic solutions. A convex
function, η(uuu), is said to be an entropy function if its Hessian, ∇2

uuuη, symmetrizes
the spatial Jacobian, ∇uuu fff i:

∇
2
uuuη · ∇uuu fff i = [∇uuu fff i]T

· ∇
2
uuuη, i = 1, . . . ,m. (3.3)

In this case, there exists an entropy flux,ψψψ = (ψψψ1, . . . ,ψψψm), which is determined
by the compatibility relations

[∇uuuη]T
· ∇uuu fff i = [∇uuuψψψ

i]T, i = 1, . . . ,m (3.4)

and the tuple (η,ψψψ) is called entropy pair.
We define as an entropic solution a weak solution such that, for any entropy

pair, the following holds

∂tη(uuu) + ∇ ·ψψψ(uuu) ≤ 0, (3.5)

in the sense of the distributions, i.e., for any non-negative test function v ∈
C1

0(R+ ×Rd), we have∫
R+×Rd

[
η(uuu) ∂tv +ψψψ(uuu) · ∇v

]
dt dx ≥ 0. (3.6)

This condition has a simple interpretation in the scalar case, where it is possible
to show that (3.6) is equivalent to the requirement that characteristic lines
should impinge into shock waves [196]. This is basically a statement of the
irreversibility of the processes leading to the formation of a shock wave and
enforces the breaking of the time-symmetry of the problem.

In the case of scalar conservation laws, i.e., m = 1, Kruzkov [188] proved
the existence and uniqueness of the entropic solution under very general con-
ditions. Kruzkov theory has been extended to measure-valued solutions by
DiPerna [114] and to the case of conservation laws on manifolds by Ben-Artzi
and LeFloch [40].
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In the case of systems of conservation laws very little is known concerning
existence, uniqueness and stability of entropic solutions, especially in the multi-
dimensional case. For instance, not even the existence of entropy pairs is
guaranteed for general systems of equations. A promising approach is the
one based on divergence-measure vector fields by Chen et al. [83]. Within this
framework Chen and Frid [82] proved existence, uniqueness and stability of
the entropic solution of the Euler equations for a classical ideal-gas of one-
dimensional Riemann problems, i.e., problems with initial data in the form

uuu0(x) =

uuuL, if x < 0;
uuuR, if x > 0.

(3.7)

On the other hand, for general equation of state, the existence of a weak solution
to the Riemann problem is not even guaranteed [222] (see also [81] for a modern
review concerning the mathematical study of the classical Euler equations).

In the relativistic case, the existence of solutions to the Riemann problem
was shown, in the case of ultrarelativistic equation of state, by Smoller and
Temple [304] using Glimm’s method [147].

For general systems of conservation laws the existence of weak solutions
to the Riemann problem was proven by Lax [192] for initial data with small
enough initial jump, in the case of strictly hyperbolic systems, i.e., when ∇uuu fff has
a complete set of real eigenvalues and eigenvectors.

3.1.2 Consistency, Stability and Convergence

We now turn to the theory related to the numerical approximation of conser-
vation laws. Since the non-linear theory is basically known only in the scalar
case, here we focus only on the case in which m = 1, that is, we consider the
problem

∂tu + ∇ · fff (u) = 0, (t, x) ∈ R+ ×R
d (3.8a)

u(0, x) = u0(x), x ∈ Rd, (3.8b)

where u is now just a scalar function.
For the purpose of our discussion it is useful to introduce the follow-

ing notation. We can view the solution of (3.8) as a sequence of bounded
functions u(t, ·) ∈ L∞(Rd), i.e., as a “curve” in the (infinite dimensional) vec-
tor space L∞(Rd), and consider it only as a function of time, u(t), with val-
ues in L∞(Rd). Since the “curve” is itself bounded in L∞(Rd), we can write
u(t) ∈ L∞[R+; L∞(Rd)]. In particular we can interpret (3.8) as being an (infinite)
system of ordinary differential equations (ODEs), which we write symbolically
as

du(t)
dt

= L[u(t)], u(0) = u0, (3.9)

whereL(·) is an operator associated with−∇· fff (·). We point out that, again, (3.9)
has to be intended in the sense of the distributions since u(t) is not a smooth
function of time. Furthermore we warn the reader that a careful mathematical
treatment would require us to address the rather non-trivial question of what
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we actually mean when we require u(0) = u0, since the restriction of general
functions in L∞[R+; L∞(Rd)] to a set of zero Lebesgue measure is not defined.
We just mention that this question is addressed in [188]. For our purposes we
can assume u(t) to be a smooth function of time, because this is the case which
can actually be treated numerically and ignore these technical aspects.

With this notation a numerical approximation of (3.8) is a finite-dimensional
approximation of (3.9) depending on some discretization parameter ∆, which
we write as

du∆(t)
dt

= L∆[u∆(t)], u∆(0) = P∆[u0], (3.10)

where u∆ and L∆ are approximations of u and L, i.e., u∆
' u, L∆

' L and P∆ is
some (possibly non-linear) projection operator. The error associated with P∆ is
usually negligible with respect to the other errors due to the discretization of
the conservation law and for this reason we neglect it, i.e., we set u∆(0) = u0.

We define the local truncation error of the scheme as the quantity

r∆(t) = L∆[u(t)] − L[u(t)], (3.11)

where u(t) is the exact solution to (3.9) and we say that a scheme is consistent if
the truncation error converges to zero as ∆→ 0 in some (problem- and method-
dependent) norm for all possible initial data u0

1. In particular we say that a
scheme is of order r if

‖r∆(t)‖ = O(∆r). (3.12)

A scheme is said to be stable if the norm of L∆ is limited:

‖|L∆
‖| := sup

v,0

‖L∆(v)‖
‖v‖

≤ C, (3.13)

where C ≥ 0 is a constant independent from v.
Finally we say that a numerical scheme is convergent if

lim
∆→0
‖u∆(t) − u(t)‖ = 0, a.e. t ∈ R+. (3.14)

In the case of linear equations, consistency, stability and convergence are
related by the famous Lax-Richtmeyer equivalence theorem [193] stating that
the numerical approximation of well-posed problems is convergent if and only
if the scheme is stable and consistent. Furthermore if a scheme is of order r then

‖u∆(t) − u(t)‖ = O(∆r). (3.15)

In the non-linear case stability and consistency are not enough to guarantee
convergence and a stronger notion of stability, the so-called non-linear stability,
is required.

1Note that the choice of the norm in which the error is measured could restrict the range of the
allowable initial data.
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3.1.3 Non-Linear Equations and Non-Linear Stability

In order to develop the non-linear theory it is necessary to introduce additional
notation. So far we introduced an operator L representing the spatial part
of the conservation law and its approximation, L∆, representing the spatial-
discretization. In so doing we ignored the fact that the system of ODEs (3.10)
needs to be also solved numerically and this introduces an extra source of
error, i.e., we worked with schemes in their semi-discrete form. This was done
because the truncation error associated with the time-discretization is often
very small with respect to the one associated with L∆ in the case of non-linear
conservation laws and because, when discussing the different approaches to
actually construct L∆, we often refer to the discretization error associated with
this operator. On the other hand, while discussing the non-linear stability and
convergence of numerical schemes in the non-linear case, the properties of the
time-discretization play a very important role. For this reason it is useful to
work with fully discrete schemes.

To this end we introduce a one-parameter family of evolution operators
{Ts}s∈R+

, such that

u(t) = Tt(u0), Ts ◦ Tt = Tt+s, (3.16)

i.e.,Tt(u0) gives the solution to (3.8) with initial data u0 at the time t and {Ts}s∈R+

equipped with the operation of composition forms a semi-group. The existence
of these operators is shown in [188]. We also introduce their discrete version
{T∆

k∆t}k∈N, such that

u∆(k∆t) = T∆
k∆t(u0), T∆

s ◦ T∆
t = T∆

t+s, (3.17)

i.e.,
u∆(t + ∆t) = T∆

∆t[u
∆(t)] (3.18)

represents the numerical scheme in its fully-discrete form.
Notice that we are again assuming that T depends on a single spatial dis-

cretization parameter ∆. This is done because the time-discretization is usually
linked to the spatial one by the Courant–Friedrichs–Lewy (CFL) condition,
which is basically the linear-stability condition for the chosen time-integrator.

The definitions of the previous section are easily translated to the case of
fully-discrete schemes. The truncation error is defined as

r∆(t) = T∆
∆t[u(t)] − u(t + ∆t) = T∆

∆t[u(t)] − T∆t [u(t)], (3.19)

where u(t) is the exact solution to (3.8). A fully-discrete scheme is said to be
consistent if, in some norm ‖ · ‖, ‖r∆(t)‖ → 0 as ∆→ 0. In particular we say that
the scheme is of order r if ‖r∆(t)‖ = O(∆r). Finally a fully-discrete scheme is said
to be linearly stable, or simply stable, if

‖|T∆
∆t‖| ≤ C, (3.20)

for some constant C ≥ 0.
The starting point for the construction of numerical schemes in the non-

linear case is the celebrated Lax-Wendroff theorem [194] stating that if the
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numerical approximation, u∆, to (3.9), obtained with a conservative, i.e., such
that ∫

Rd
T∆

s (v) dx =

∫
Rd

v dx, ∀v ∈ L1(Rd), (3.21)

and consistent scheme convergences strongly, i.e., in L1
−norm, to some function

u, then u is a weak solution of (3.8). The key idea is then to find some sufficient
condition to ensure the convergence of the scheme, because then the Lax-
Wendroff theorem will guarantee that the obtained solution will be a weak
solution of (3.8). Note that the Lax-Wendroff theorem does not guarantee that
the found solution is the entropic one. For that it is necessary to show that the
numerical scheme is also satisfying the entropy inequality.

In order to derive a sufficient convergence condition, we introduce the
concept of total-variation of a function in a domain Ω,

TV(v; Ω) := sup
{∫

Ω

v∇ ·ϕϕϕdx : ϕϕϕ ∈ [C1
0(Ω)]d, ‖ϕϕϕ‖L∞(Ω) ≤ 1

}
. (3.22)

It is possible to show that (e.g., [16]) if TV(v; Ω) < ∞, then2

TV(v; Ω) =

∫
Ω

|Dv|dx, (3.23)

where Du is the gradient of u in the sense of the distributions. The space of all
functions in L1(Ω) with finite total-variation is an (infinite dimensional) vector
space denoted with BV(Ω), which is a Banach space with respect to the norm

‖v‖BV(Ω) =

∫
Ω

(
|v| + |Dv|

)
dx. (3.24)

The reason why BV spaces are interesting for us is that, first of all, Conway and
Smoller [97] proved that, if the initial data u0 ∈ BV(Rd), then u ∈ BV(R+ × Rd)
and, for any t ≥ 0, u(t) ∈ BV(Rd), i.e., BV-spaces have an invariance property3.
Secondly; bounded sets in BV(Ω) are sequentially compact in L1

loc(Ω), e.g., [16],
i.e., any bounded sequence of functions, {vn} ∈ BV(Ω), has a subsequence con-
verging in the L1

−norm to a function in L1
loc(Ω).

The idea is then to build numerical schemes able to mimic the BV-invariance
of exact conservation laws. If these schemes are L1

−stable and consistent, then
the sequence of solutions produced by such a schemes, as we decrease ∆, will
converge in the L1

−norm to a weak solution of (3.8) (thanks to the Lax-Wendroff
Theorem)4. Such schemes are said to be TV-stable. In particular a scheme is

2More precisely TV(v; Ω) = |Dv|(Ω) where | · | denotes the total variation of the vector-valued
measure Dv.

3Note that this is valid only for scalar conservation laws. System of conservation laws are
known to have solutions which are not BV even for BV initial data. An example is given by the
Euler equation in Lagrangian coordinates: the solution can spontaneusly develop vacuum regions
for initial data with sufficiently large total variation. In this case the solution is not BV, but rather
an L1 function or a Radon measure [81].

4More precisely {u∆
}will be an union of subsequences each converging to a (possibly different)

weak solution. Suppose that this is not the case. Then there must exist a sequence {u∆i } and ε > 0
such that, ∆i → 0 when i→∞ and

dist(W,u∆i ) > ε, ∀i, (3.25)
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TV-stable if, for all initial data u0 ∈ L∞(Rd) ∩ BV(Rd), there exist ∆0 > 0 and
C ≥ 0 such that

TV(T∆
s (u0); Rd) ≤ C, ∀∆ < ∆0. (3.27)

The main class of schemes having this property is the one of total-variation
diminishing (TVD) schemes, i.e., schemes such that

TV(T∆
∆t(v); Rd) ≤ TV(v; Rd), ∀v ∈ L∞(Rd) ∩ BV(Rd). (3.28)

The first schemes that were proven to be convergent in the case of non-linear
scalar conservation laws are the so called monotone schemes, i.e., schemes such
that

u ≥ v a.e. =⇒ T∆
s (u) ≥ T∆

s (v) a.e. (3.29)

Crandall and Tartar [101] proved that if T∆
s is conservative and monotone, then

it is an L1
−contraction, i.e., satisfying the strong stability condition

‖T∆
∆t(u) − T∆

∆t(v)‖L1(Rd) ≤ ‖u − v‖L1(Rd), ∀u, v ∈ L1(Rd). (3.30)

In particular this implies that the method is TVD, e.g., [196]. Using this fact
Crandall and Majda [100] proved that the numerical solution obtained with
a conservative, consistent and stable monotone scheme converges to a weak
solution of (3.8). Furthermore they also showed that these schemes satisfy
an entropy inequality and, for this reason, the solution obtained with a con-
servative, consistent and stable monotone scheme converge to the (unique)
entropic solution of the problem (3.8). Unfortunately Harten et al. [161] proved
that monotone schemes are only at most first-order accurate. This means that,
while monotonicity is a condition that ensures the non-linear stability of the
scheme, it is also too strict a requirement if higher order methods are to be
designed.

To achieve higher-order accuracy schemes, high-resolution shock-capturing
(HRSC) schemes have been developed that are TVD, in the one-dimensional
case, but not monotone. These schemes achieve high-order of accuracy and
non-linear stability with the use of a non-linear dissipation mechanism that re-
duces the local convergence order to first order in the vicinity of discontinuities
to avoid the appearance of spurious oscillations. Unfortunately, while in the
one-dimensional case TVD schemes can be designed for any formal order of
accuracy, Goodman and LeVeque [151] proved that, in the multi-dimensional
case, TVD schemes are necessarily at most first-order accurate5. For this reason,
in the quest for higher-order schemes, even weaker non-linear stability condi-
tions have been proposed, even though the convergence of schemes satisfying
these conditions has not yet been proven. One important example is the case

where W is the set of all weak solutions of (3.8). On the other hand since {u∆i } is in a sequentially
compact set, it must contain a convergent subsequence {u∆ik } converging to an element v. Because
of the Lax-Wendroff theorem we necessarily have v ∈W, so that one has

dist(W,u∆ik )→ 0, (3.26)

contradicting (3.25).
5Note, however, that many classical multi-dimensional schemes built in a dimensionally split

fashion from one-dimensional TVD schemes are actually not TVD and for this reason they are not
restricted to first-order accuracy.
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of schemes satisfying a maximum-principle, i.e., such that if m < u0 < M then
u∆(t, ·) ∈ [m,M] [341], such as the second-order central-scheme by Kurganov
and Tadmor [190].

In practice, none of the commonly adopted modern multidimensional HRSC
schemes that we are going to present in this chapter are TVD or have been
proven to be TV-stable, even though the numerical evidence seems to suggest
that these schemes do converge to the entropic solution of conservation laws.
Furthermore, in the case of general systems of non-linear conservation laws, no
scheme has been proven to be stable or convergent6 even in the one-dimensional
case [197], although there is numerical evidence suggesting that these schemes
are convergent.

It is common belief that a proof of convergence for high order schemes in
the scalar case will require the development of a more precise characterization
of piecewise-regular entropic solutions of conservation laws [312]. Similarly, it
is likely that a better understanding of the mathematical properties of systems
of conservation laws is necessary in order to prove the convergence of their
numerical approximation schemes. Meanwhile, the study of HRSC schemes
for systems of conservation laws has mostly been done in a heuristic way,
starting from the theory developed in the one-dimensional scalar case.

3.2 Finite-Volume Methods

Finite-volume (FV) methods are among the most popular methods in computational-
fluid-dynamics in general and in relativistic hydrodynamics in particular. The
first FV scheme, the Godunov scheme [149], was one of the first examples of a
monotonicity-preserving scheme7, i.e., amongst the first schemes able to compute
solutions with shocks without introducing spurious extrema in the solution. It
is also the least-dissipative among the monotone methods. There are many dif-
ferent FV, or Godunov-type, methods for conservation laws currently available,
see e.g., [323] for a complete overview of the subject, but they are all built on top
of the Godunov method. For this reason we here start with an extended treat-
ment of the Godunov method. Next we discuss second-order Godunov-type
schemes which constitute the current standard in relativistic hydrodynamics.
Finally, we treat the extension of FV methods to even higher orders and discuss
the difficulties involved in the process in the case of relativistic hydrodynamics.

3.2.1 The Godunov Method

The development of the theory behind all modern shock-capturing methods
started with a very influential paper by Godunov [149]. First of all, Godunov
studied the properties of numerical schemes in the case of the linear-advection
equation. He proved a theorem stating that all monotonicity-preserving schemes
for the advection equation are at most first-order accurate. In his proof Godunov
tacitly assumed the discretization of the linear advection equation would be
done using a linear scheme – a fact that was overlooked for many years until

6For generic initial data. Convergence has been shown in special cases, e.g., the Riemann
problem for the Euler equations in one dimension.

7Not to be confused with a monotone scheme!
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Figure 3.1: Spacetime representation of the Godunov method. The solution at
the time n + 1 is obtained by integrating in time the fluxes across the interfaces
given by the solution of the local Riemann problems. In particular the spatial
average of the solution in the green (cyan) regions is given by the integrated
fluxes crossing the vertical green (cyan) lines. Note that the scheme works only
under the assumption that the fluxes are not influenced by the results from
nearby Riemann problems, but the Riemann problems themselves are allowed
to interact. For this reason the Godunov scheme works with CFL ≤ 1/a.

Boris [60] and van Leer [325] separately realized that higher-order, monotonicity-
preserving schemes can be constructed, but they necessarily have to be non-
linear, even for linear equations. More on this in the next sections.

In the same publication Godunov pointed out that the first-order upwind
algorithm is in some sense the “best” algorithm for the advection equation: it is
the most accurate (linear!) monotonicity-preserving scheme. He also went on
to explain how the upwind method could be extended to the non-linear case,
giving birth to the Godunov scheme.

In order to keep the notation simple, we consider first the case of a one-
dimensional scalar hyperbolic equation

∂tu + ∂x f (u) = 0. (3.31)

We introduce a uniformly-spaced spatial and temporal grid

xi = i∆1, i ∈ Z, tn = n∆0, n ∈N, (3.32)

we introduce also the so-called control volumes, [xi−1/2, xi+1/2], and we define
the averages of u over the control volumes to be

ūn
i =

1
∆1

∫ xi+1/2

xi−1/2

u(x, tn) dx. (3.33)

If we average (3.31) over one control-volume and one time-step we obtain

ūn+1
i − ūn

i

∆0 =
1

∆1

∫ tn+1

tn

{
f [u(t, xi−1/2)] − f [u(t, xi+1/2)]

}
dt. (3.34)
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It is important to point out that (3.34) is exact. No approximation has been done
yet.

In a FV scheme one constructs a numerical scheme by approximating the
integral formulation of the conservation law (3.34). At each time-step one starts
with the approximate solution {Un

i }i∈Z ≈ {ū
n
i }i∈Z and seeks a way to construct

the solution at the next time-step, {Un+1
i }i∈Z. Godunov’s idea was the following:

if we assume the solution to be piece-wise constant, i.e., if we set

Un(x) =
∑
i∈Z

Un
i χi(x), (3.35)

where χi(x) is the characteristic function of [xi−1/2, xi+1/2], i.e.,

χi(x) =

1, if x ∈ [xi−1/2, xi+1/2],
0, otherwise,

(3.36)

then (3.34) can be solved exactly for small enough time-steps, ∆0. The reason
why this is the case is that, in order to compute the integrals in the r.h.s. of (3.34),
it is only necessary to solve a sequence of Riemann problems centered about
the interfaces between the different control-volumes to obtain u(t, xi−1/2) for all
i and for all t ∈ [tn, tn+1]. As long as the time-step satisfies the CFL condition

CFL :=
∆0

∆1 ≤
1
c
, (3.37)

where c is the maximum propagation speed, the interface value of the solution
of the various Riemann problems are independent from each other and can be
computed exactly for most conservation laws. Finally the time-integration is
trivially done because u(t, xi−1/2) turns out to be constant in time, e.g., [196].

The Godunov scheme can, then, be summarized as follows:

1. given {Un
i }i∈Z one constructs a piece-wise constant function Un(x), such

that Un(x) = Un
i if x ∈ [xi−1/2, xi+1/2];

2. (3.34) is then evolved exactly for one time-step with initial data given by
Un(x) to obtain {Un+1

i }i∈Z.

Note that the only approximation made in the Godunov scheme is the assump-
tion that the solution is piece-wise constant in each control-volume. A graphical
representation of the Godunov scheme is given in Figure 3.1.

Since the solution u(t, xi−1/2) depends only on Un
i−1 and Un

i , i.e., u(t, xi−1/2) =:
u∗(Un

i−1,U
n
i ), we can define the numerical flux F(Un

i−1,U
n
i ) := f [u∗(Un

i−1,U
n
i )] and

write the Godunov scheme in a more explicit way as

Un+1
j −Un

j

∆0 =
1

∆1 [F(Un
i−1,U

n
i ) − F(Un

i ,U
n
i+1)]. (3.38)

This immediately suggests the semi-discrete form of the FV method

dUi

dt
=

1
∆1 [F(Ui−1,Ui) − F(Ui,Ui+1)]. (3.39)
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Obviously if (3.39) is evolved in time with the Euler method this scheme reduces
to (3.38). At the same time, the use of higher-order time-integrators is pointless
since the time-update in the Godunov method is already exact. For these
reasons the reader might wonder why we bothered to introduce the semi-
discrete form of the Godunov scheme. The reason is two-fold. First of all higher-
order FV schemes are easier to construct in the semi-discrete form, especially
in the multi-dimensional case. Secondly, the semi-discrete form is very useful
if one wants to couple the hydrodynamic equations with some other system of
equations, e.g., the spacetime evolution equations, that is not solved using a FV
scheme. For these two reasons we do not discuss methods in their fully-discrete
form and we refer the reader to e.g., [323] for a more complete discussion of
FV methods (see also [139] for a recent review concerning high-order one-step
time discretization methods for FV and discontinuous Galerkin methods).

The FV method is easily extended to the multi-dimensional case and to
general unstructured grids. Given a control volume Ωα, the semi-discrete
scheme reads

dUα

dt
=

1
|Ωα|

∫
∂Ω

fff · νννdΣ, (3.40)

where ννν is the inwards pointing normal to Ω. In the case of three-dimensional
Cartesian grids,

xxxi, j,k = (i∆1, j∆2, k∆3), i, j, k ∈ Z, (3.41)

this simplifies to

dUi, j,k

dt
=

1
∆1 [F1(Ui−1, j,k,Ui, j,k) − F1(Ui, j,k,Ui+1, j,k)]

+
1

∆2 [F2(Ui, j−1,k,Ui, j,k) − F2(Ui, j,k,Ui, j+1,k)]

+
1

∆3 [F3(Ui, j,k−1,Ui, j,k) − F3(Ui, j,k,Ui, j,k+1)],

(3.42)

where F1,F2 and F3 are the numerical fluxes associated with f 1, f 2 and f 3

respectively.
Finally, we point out that the extension to systems of equations is straight-

forward as long as the solution of the Riemann problem can be constructed.
One important remark about FV schemes is that, while the full solution of

the Riemann problem is computed at each interface, only a very small part of
the information contained in this solution is retained, while the rest is destroyed
in the averaging step, i.e., when we set Un(x) =

∑
i Un

i χi(x). For this reason it
should not be surprising that it is possible to construct monotone FV schemes
even with the use of simplified or approximate Riemann solvers, at the price
of increasing the diffusivity of the method [162]. This is particularly useful
for systems, such as the relativistic Euler equations, where the solution of
the Riemann problem is very complicated and requires an expensive iterative
procedure [208, 257, 144]. Examples are the Roe Riemann solver [277], the
so-called Marquina flux-formula [115] and the HLLE solver [125]. A point to
note here is that, although these flux-formulas are often called “approximate
Riemann solvers”, not all of them are directly constructed as

F(UL,UR) = f (u∗(UL,UR)), (3.43)
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i.e., not all of them are really constructed starting from an approximate solution
of the original Riemann problem. Instead, some of them approximate the flux-
function directly. Harten et al. [162] showed that, as long as the flux formula
satisfies

F(u,u) = f (u), ∀u ∈ R, (3.44)

the scheme obtained by using the approximate numerical flux instead of the
Godunov one is consistent and conservative. In particular the Lax-Wendroff
theorem holds. As a consequence, if the resulting scheme is non-linearly sta-
ble8 and if the flux-formula is compatible with the entropy inequality9, then the
resulting scheme will converge to the correct entropic solution of the conserva-
tion law. Finally, we point out that in the case of high order FV schemes, the
benefits of using the Godunov flux instead of an approximate flux are reduced
as higher-order schemes naturally have lower numerical dissipation.

3.2.2 TVD Finite-Volume Methods

The key behind the development of modern FV schemes is the observation
that higher-order information on the solution can be reconstructed from the cell
averages {Un

i }i∈Z without introducing spurious oscillations using a non-linear
reconstruction procedure. Instead of setting U(x) = Ui if x ∈ [xi−1/2, xi+1/2], one
constructs a second-order approximation of u in any control volume as

Ui(x) = Ui + σi(x − xi), x ∈ [xi−1/2, xi+1/2], (3.45)

where σi is the reconstructed slope in the control volume [xi−1/2, xi+1/2], which
we specify later. We notice that the reconstructed profiles of U in the different
control volumes might not agree at the interface, hence the introduction of the
index in Ui(x). If we denote as U±i−1/2 the two values Ui−1(xi−1/2) and Ui(xi−1/2),
then a second order scheme can be obtained by setting

dUi

dt
=

1
∆1

[
F(U−i−1/2,U

+
i−1/2) − F(U−i+1/2,U

+
i+1/2)

]
. (3.46)

The reason why this works is that, at time t+
n , the solution at the interface

between two cells depends only on the jump between the two states, i.e., the
instantaneous flux is given by F(UL,UR), where UL and UR are the left and
right states across the interface. Notice that in a fully-discrete scheme it would
no longer be true that the state u(t, xi−1/2) is time-independent and it would
be necessary to either solve a generalized Riemann problem i.e., with initial
data having piecewise linear profile, or use a predictor-corrector approach to
compute the fluxes with second-order accuracy in time. In the case of semi-
discrete schemes it is sufficient to use a second order time-integrator to evolve
(3.46) to obtain a scheme which is second order in time and space.

We now turn to the choice of σi. It can be proven that, if

TV

∑
i

Ui(x)χi; R

 ≤ TV

∑
i

Uiχi(x); R

 , (3.47)

8This typically requires the approximate flux-formula to correctly upwind the solution.
9In the case of Riemann solver constructed from approximate solutions it is enough to choose

an entropic solution.
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then the scheme (3.46) is TVD [196]. This condition is satisfied with the use of
special non-linear limiters, called slope-limiters. An example of the slope-limited
method is given by the minmod limiter

σi =
1

∆1 minmod(Ui+1 −Ui, Ui −Ui−1), (3.48)

where

minmod(z1, . . . , zn) =


mini zi, if zi > 0 ∀i,
maxi zi, if zi < 0 ∀i,
0, otherwise.

(3.49)

Another popular example is given by the minmod2 reconstruction

σi =
1

∆1 minmod
[
2(Ui+1 −Ui),

Ui+1 −Ui−1

2
, 2(Ui −Ui−1)

]
, (3.50)

The idea behind all of these slope limiters is to reduce the scheme to first-order
near shocks in order to avoid oscillations. We also point out that most of the
slope-limiting techniques are only first-order accurate at extrema.

TVD FV schemes can be extended to the multi-dimensional case in a direction-
by-direction fashion, for Cartesian grids, or by performing the reconstruction
in barycentric coordinates in the unstructured case. The extension to systems
of equations is also simple: the reconstruction can be performed component-
by-component. Another popular choice, especially in the case of the relativistic
Euler equation, is to perform a reconstruction of the primitive variables exploit-
ing the fact that ūi = u(xi) to second-order accuracy. Reconstructing in primitive
variables reduces the possibility that the reconstructed values at the interface
are non-physical and it is also computationally less expensive since the relation
between primitive and conservative quantity does not need to be inverted.

3.2.3 Higher-Order Finite-Volume Methods

The procedure used to extend the Godunov scheme to second order suggest a
strategy that can be applied to create even higher-order schemes. Instead of
reconstructing only a second-order approximation of u as a piecewise linear
function one could attempt to reconstruct it to higher order as a piecewise
polynomial.

Reconstruction Operators

To explain the basic idea we start again from the one-dimensional case. We
consider a generic function v(x) and analyze the problem of reconstructing it at
high order starting from the volume averages

ṽi :=
1

∆1

∫ xi+1/2

xi−1/2

v(x) dx. (3.51)

A reconstruction operator, R, is a non-linear operator yielding a high-order
approximation of v at a given point x using its volume averages, ṽi. Since v(x)
can be discontinuous, we distinguish two different reconstruction operators,
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R
− and R+, called the left-biased and right-biased reconstruction operators,

such that [
R
− ({ṽi})

]
(x) = lim

y→x−
v(y) + O(∆r) , (3.52)[

R
+ ({ṽi})

]
(x) = lim

y→x+
v(y) + O(∆r) , (3.53)

where we have indicated withR+ ({ṽi}) the notion thatR is an operator that acts
on a set of averages ṽi, and where r is the order of the reconstruction operator
R. Hereafter we use the notation v−i+1/2 and v+

i+1/2 to denote the reconstructed
values at xi+1/2 using R− and R+ respectively. Examples of such operators are
the reconstruction operators given by the piecewise parabolic method (PPM)
[96, 94], the piecewise hyperbolic method (PHM) [207], the essentially non-
oscillatory (ENO) [163, 299, 298], weighted essentially non-oscillatory (WENO)
[202, 176] and monotonicity-preserving (MP5) [310] algorithms.

The PPM reconstruction extended the slope-limiter approach to the case
of a piecewise parabolic interpolation. It uses a series of limiters, that have
been thoroughly studied numerically, to avoid the introduction of spurious
oscillations. The PPM algorithm has not been proved to be TVD, but it has
become the standard method of choice in many modern FV schemes and in
numerical relativistic hydrodynamics [224, 33].

The ENO scheme is based on a standard Lagrange interpolation and uses
a recursive procedure, which in principle can be extended to any order of
accuracy, to determine the stencil on which the solution is smoothest in order
to avoid Gibbs oscillations due to interpolation across discontinuities. The ENO
interpolation is not TVD, but [163] showed that

TV[R({v̄i}); R] ≤ TV[{v̄i}; R] + O
(
(∆1)r

)
, (3.54)

where r is the order of the reconstruction. The second order ENO reconstruction
is equivalent to the minmod approach [196].

The WENO scheme is a modified version of the original ENO approach.
Instead of selecting only the stencil on which the solution is smoothest, the
WENO reconstruction takes a weighted average of the reconstructed polyno-
mial on each stencil. The weights are chosen so that they are very small for
non-smooth stencils, while, at the same time, the order of accuracy is maxi-
mized in smooth regions. WENO schemes are faster than ENO schemes using
the same stencil because the WENO algorithm is free from conditional state-
ments and, at the same time, it achieves a formal order of accuracy of 2r − 1,
where r is the order of the ENO algorithm, by combining the results of multiple
reconstructions. WENO schemes are theoretically available for any order, but
schemes of order higher than 7 (r > 4) are empirically found to require the use
of additional limiters [35] or order-reducing technique [317, 141] to be stable.

Many different versions of the WENO algorithm are available that differ
in the way in which the weights are constructed. Examples are the mapped-
WENO schemes of [166], that use a mapping procedure to decrease the amount
of dissipation of the scheme, or the WENOZ scheme by [59] that employs
improved non-linear weights to obtain results comparable with the fifth order
mapped-WENO schemes at a lower computational cost. Gerolymos et al.
[141] presented a comparative study of different WENO schemes and provide
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tabulated coefficients and implementation details for methods of order up to
17.

Another interesting type of WENO scheme is given by the bandwidth-
optimized schemes. In classical WENO schemes, the reconstruction is obtained
from a weighted average of a set of lower-order reconstructions of the ṽi’s on
a number of overlapping stencils. The weights are computed using some non-
linear smoothness indicators designed in such a way that the maximum possible
order of accuracy is obtained in the case of smooth solutions. On the other hand,
when discontinuities are detected, the order is automatically reduced to avoid
spurious oscillations. The bandwidth-optimized WENO schemes differ from
the classical ones because they use a more symmetric stencil and because their
weights are not designed to yield the maximum possible formal order of accu-
racy for smooth solutions, but are instead tuned to minimise the attenuation
of high-frequency modes. In other words, while in the classical WENO case
the weights for a smooth function are chosen to match as many terms as possi-
ble in the Taylor expansion of the target function, in the bandwidth-optimized
case the coefficients are chosen to yield the best possible approximation of the
Fourier coefficients of the function to be reconstructed. The non-linear smooth-
ness indicators are also modified to avoid “over-adaptation” of the scheme and
minimise the amount of numerical dissipation, see [211, 316] for details.

Finally the MP5 scheme is basically a fifth-order extension of the PPM
scheme. It uses fifth order reconstruction combined with a flattening proce-
dure designed to avoid the creation of artificial extrema in the function to be
reconstructed. The monotonicity-preserving reconstruction has the nice prop-
erty that no spurious oscillations can be produced by the reconstruction, which
is not guaranteed for the WENO schemes. On the other hand the limiting pro-
cedure employed by MP5 requires the use of a series of conditional statements
in the code, that are not present in the WENO case.

Very-High-Order Finite-Volume Schemes

Once high-order, non-oscillatory reconstruction operators are available one can
obtain a high-order version of the FV method in 1D by simply repeating the
construction we have followed in deriving second-order schemes. In particular
we can set

dUi

dt
=

1
∆1

[
F(U−i−1/2,U

+
i−1/2) − F(U−i+1/2,U

+
i+1/2)

]
, (3.55)

where U− and U+ are computed using the R+ and R− operators. The scheme
obtained in this way has formally the same order of accuracy as the reconstruc-
tion algorithm. The actual order of accuracy depends on the solution, since
all stable reconstruction operators reduce to first order near discontinuities (or
under-resolved, but smooth features of the solution).

The main problem with high-order FV methods is that they are much more
complex to extend to the multidimensional case. The scheme can not be written
in the form (3.42) as the fluxes have to be computed using suitable quadrature
formulas, otherwise the accuracy is limited to second order independently on
the order of the reconstruction.

In the case of systems of equations, experience seems to suggest that re-
construction should not be performed component-by-component, but on local
characteristic variables, to avoid spurious oscillations in the numerical solution,
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especially for schemes with order higher than two. More on this in Section 3.4.
We also point out that the reconstruction can not be performed on primitive
variables as in general it is not possible to convert the volume-averaged con-
served variables to volume-averaged primitive variables with accuracy higher
than second order.

Finally, in the general-relativistic case, high-order FV methods are particu-
larly expensive because, on the one hand, they require the use of very high-order
schemes to interpolate the metric at the quadrature points for the calculation
of the fluxes and, on the other hand, they require high-order quadrature of the
metric source terms.

Despites these difficulties, due to their superior accuracy with respect to
second-order schemes, high-order FV schemes are available in Newtonian and
relativistic hydrodynamics, e.g., [317], and have been also extended to unstruc-
tured grids, using a generalized WENO algorithm e.g., [122].

3.3 Central Methods

The first monotone scheme for conservation laws was introduced by Lax and
Friedrichs (LxF) [195, 134]. This scheme has a significantly larger numeri-
cal diffusion with respect to the Godunov scheme, but has the advantage of
not requiring any Riemann solver and it is for this reason called a central
scheme, as opposed to upwind Godunov-like schemes, thus being much more
simple to implement and computationally less expensive. Unfortunately the
Lax-Friedrichs scheme is very inaccurate due to its high dissipation and for
this reason is seldom employed. The interest in central schemes increased
when Nessyahu and Tadmor (NT) [235] showed the first extension of the
Lax-Friedrichs scheme to second order. This scheme was later improved by
Kurganov and Tadmor (KT) [190] in an influential paper that set the basis for a
whole new family of schemes: high-order central schemes.

The Lax-Friedrichs scheme is in some sense the dual of the Godunov scheme.
Given the local averages of the numerical solution at time tn, {Un

i }i∈Z, one
constructs a solution at time tn+1 by considering the local averages on the dual
grid, {xi+1/2}i∈Z, hence the name central schemes for the family of schemes based
on the Lax-Friedrichs approach, i.e., one obtains {Un+1

i+1/2}i∈Z. The scheme then
proceeds by evolving the solution by alternating between the primal and the
dual grid.

In order to see how this works, suppose we have the solution at time tn,
{Un

i }i∈Z on the primal grid. In order to find {Un+1
i+1/2}i∈Z, one proceeds as in the

Godunov scheme and integrates (3.31) over the dual grid to obtain

Un+1
i+1/2 −Un

i+1/2

∆0 =
1

∆1

∫ tn+1

tn

{
f [u(t, xi)] − f [u(t, xi+1)]

}
dt. (3.56)

The main difference with respect to the Godunov scheme is that, as long as
CFL ≤ 1/2a, a being the maximum local-characteristic speed, the term in the
r.h.s. of (3.56) can be computed without any need for a Riemann solver using
a simple quadrature in time, because the solution at cell centers remains free
of discontinuities for the duration of the whole time-step. In particular if we
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Figure 3.2: Spacetime representation of a central scheme. The solution at the
time n + 1 is obtained on the staggered grid by integrating the fluxes at the
cell-centers. In particular the spatial average of the solution in the green region
is given by the integrated fluxes crossing the green vertical lines. Note that the
fluxes can be computed with high accuracy as long as CFL ≤ 1/2a, because the
solution in the vertical green bands remains smooth over this time scale.

assume the solution at time tn to be piecewise constant as in the Godunov
scheme,

Un(x) =
∑

i

Un
i χi(x), (3.57)

then we have u(t, xi) = Un
i for t ∈ [tn, tn+1] and

Un
i+1/2 =

Un
i + Un

i+1

2
(3.58)

so that (3.56) becomes

Un+1
i+1/2 =

Un
i + Un

i+1

2
+

∆0

∆1 [ f (Un
i ) − f (Un

i+1)]. (3.59)

A graphical representation of the Lax-Friedrichs scheme is given in Figure 3.2.
The central scheme was extended to second order by Nessyahu and Tadmor

[235] who used minmod to reconstruct a piecewise linear approximation of
un, instead of the piecewise constant reconstruction, and a predictor-corrector
approach to obtain second order in time flux quadratures.

One of the things to point out is that neither the LxF nor the NT scheme admit
a semi-discrete form. Actually their dissipation is CFL-dependent, making
these schemes extremely dissipative if a small time-step is used. To overcome
this issue Kurganov and Tadmor [190] modified the NT scheme in such a way
so as to limit the averaging on the dual grid to the region actually spanned by
the “Riemann fan”10. In other words, in the KT scheme Un+1

i+1/2 is only supported

10The Riemann fan is the region of the spacetime spanned by the largest characteristics of the
Riemann problem.
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on the region influenced by the results of the local Riemann problem and not
on the whole dual mesh. In this way they managed to reduce the dissipation
of the scheme and obtained a method admitting the semi-discrete form

dUi

dt
=

1
∆1

[
F(U−i−1/2,U

+
i−1/2) − F(U−i+1/2,U

+
i+1/2)

]
, (3.60)

with numerical flux

F(UL,UR) =
f (UL) + f (UR)

2
−

a
2

[UR −UL]. (3.61)

The KT scheme is substantially equivalent to a Godunov method in which the
fluxes are computed with the flux-formula (3.61), commonly called the local-
Lax-Friedrichs or Rusanov flux [190]. For this reason the scheme is stable even
with 1/2 < a ·CFL ≤ 1, even though the underlying interpretation of the scheme
is lost in this case.

Finally a comment on the distinction between Godunov-type and central
scheme: as the reader might have guessed this is a bit arbitrary if modern
central schemes are considered, because they all can be interpreted as being FV
schemes with the Rusanov “Riemann solver”. Nevertheless the construction
and analysis of upwind and central schemes is significantly different. This is
important when studying the properties of the schemes. For instance, the KT
scheme is the only scheme for which a maximum principle has been proven in
the multi-dimensional case even without the use of special maximum-principle-
enforcing limiters.

3.4 Finite-Difference Methods

High-order upwind finite-difference (FD) schemes work by directly approxi-
mating the point-wise value of the solution, as opposed to its volume-averages.
They were mainly introduced as a more efficient alternative to very high-order
ENO and WENO schemes [299, 298, 176]. High-order FD schemes are equiva-
lent to high-order FV methods in one spatial dimension, but can be several times
more efficient in the multidimensional case [296, 300]. We can only provide here
a minimal description of FD-HRSC methods and we refer the interested reader
to [296] for a more detailed description of FD ENO/WENO HRSC schemes, and
to [226] for a detailed description of the FD MP5 scheme.

In order to illustrate the differences between FV and FD schemes we consider
directly the case of a system of hyperbolic balance-laws in the form

∂tF
0(u) + ∂iF

i(u) = S(u). (3.62)

Similarly to the case of FV methods we introduce a uniform Cartesian grid

xi, j,k = (i∆1, j∆2, k∆3), i, j, k ∈ Z . (3.63)

Also, since we do not have to distinguish between the exact solution, its vol-
ume averages, their approximation and the reconstructed solution, we use a
simplified notation in which ui, j,k denotes the numerical approximation of the
quantity u at the point xi, j,k.



3.4. Finite-Difference Methods 55

The FD scheme for (3.62) is written in a form which is formally identical to
(3.42):

dF 0
i, j,k

dt
= Si, j,k +

F 1
i−1/2, j,k − F 1

i+1/2, j,k

∆1

+
F 2

i, j−1/2,k − F 2
i, j+1/2,k

∆2 +
F 3

i, j,k−1/2 − F 3
i, j,k+1/2

∆3 .

(3.64)

The important point is that here the terms like (F 1
i−1/2, j,k − F 1

i+1/2, j,k)/∆1 are not
defined as integrals along the boundary of the control-volume, but represent
directly an high-order, non-oscillatory, approximation of the point-wise value
of −∂1F

1 at xi, j,k, which we explain in a moment.
It is already clear that, in the low-order case, FV and FD schemes are com-

pletely equivalent, as point-wise values and averages are identical at second
order. In the high-order case and especially in multiple spatial dimensions,
however, FD schemes are significantly less expensive than FV schemes. First
of all they do not require any quadrature, Riemann solver or extra primitive
recovery calls at region boundaries. Secondly the treatment of source terms,
which is important in the general relativistic case also in terms of computational
costs, is significantly less expensive as only the point-wise values are needed.
This makes FD schemes very attractive in the quest for more accurate general
relativistic hydrodynamics calculations.

To illustrate how to compute the discrete derivatives in the right-hand-side
of (3.64) it is useful to take a step back and consider first a simpler scalar
hyperbolic equation in one dimension (3.31). The reconstruction operators
are the core ingredients of both FV and FD schemes. As we have seen, in a FV
scheme they are used to compute the left and right state to be used in the (usually
approximate) Riemann solver to compute the fluxes. In a FD scheme, instead,
they are used to compute the above-mentioned non-oscillatory approximation
of ∂x f . Following [299] we introduce a function h(x) such that

f
[
u(xi)

]
=

1
∆

∫ xi+1/2

xi−1/2

h(ξ) dξ , (3.65)

that is, the average of h(x) between xi−1/2 and xi+1/2 corresponds to the value of
f at xi. Next, we note that

∂ f
∂x

∣∣∣∣∣
xi

=
h(xi+1/2) − h(xi−1/2)

∆
, (3.66)

where both (3.65) and (3.66) are exact expressions. Hence, by using the usual
reconstruction operators R of order r to reconstruct hi+1/2, one obtains a cor-
respondingly accurate approximation of order r of the derivative ∂ f/∂x at xi.
Note that h is never actually computed at any time during the calculation as we
only need the values of f at the gridpoints, i.e., f

[
u(xi)

]
.

In order to ensure the stability of the resulting scheme, one has to take care
to upwind the reconstruction appropriately. Let us first consider the case in
which f ′(u) > 0. If we set

ṽi = f
[
u(xi)

]
=

1
∆

∫ xi+1/2

xi−1/2

h(ξ) dξ (3.67)
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and

fi+1/2 := v−i+1/2 , fi−1/2 := v−i−1/2 , (3.68)

then
∂ f (u)
∂x

=
fi+1/2 − fi−1/2

∆
+ O(∆r) , (3.69)

gives the wanted high-order approximation of ∂x f at xi.
In the more general case, where the sign of f ′(u) is undetermined, in order

to compute fi+1/2, we have to split f in a right-going, f +, and a left-going,
f−, flux, f = f + + f−, and use the appropriate upwind-biased reconstruction
operators separately on both parts, in order to guarantee the stability of the
method. We point out that the use of the flux-splitting procedure to make the
scheme upwind is akin to the use of Riemann solvers in FV schemes. Indeed
some of the flux-splitting algorithms can be associated to particular Riemann
solvers in the FV case.

There are several different ways to perform such a split. The ones relevant
for this thesis are two: the Roe flux-split, i.e.,

f = f±, if [ f ′(ū)]xi+1/2 ≷ 0 , (3.70)

where ūi+1/2 := 1
2 (ui + ui+1), and the Lax-Friedrichs or Rusanov flux-split [295],

i.e.,
f± = f (u) ± αu, α = max[ f ′(u)] , (3.71)

where the maximum is taken over the stencil of the reconstruction operator.
The Roe flux-split is less dissipative and yields a computationally less-expensive
scheme, since only one reconstruction is required instead of two, but its use can
result in the creation of entropy-violating shocks in the presence of transonic
rarefaction waves, see, e.g., [196], and it is also susceptible to the carbuncle (or
odd-even decoupling) phenomenon [262]. To avoid these drawbacks, in [264]
we proposed to switch from the Roe to the Lax-Friedrichs flux split when u or
f are not monotonic within the reconstruction stencil11.

We note that the condition that we use to switch from the Roe to the Lax-
Friedrichs flux split is weaker than the commonly employed condition on the
sign of f ′(u), see e.g., [196], in the sense that it results in a more frequent use of
the Lax-Friedrichs split with respect to the usual one. Our experience shows
that this prescription works very well: it is computationally less expensive to
compute with respect to the standard one, since u and f are already evaluated on
the grid, while f ′(u) is not, and it seems to be sufficient to avoid the carbuncle
phenomenon in all the tests that we performed. All the results that we are
going to present in this thesis have been obtained using this Roe-split with this
“entropy fix”.

We now go back to the more general system of equations (3.62). The deriva-
tives ∂aF

a
i, j,k can be computed following the procedure outlined above on a

component-by-component basis. This approach is commonly adopted in the
case of low-order schemes, but it often results in spurious numerical oscilla-
tions in the high-order (usually higher than second) case. To avoid this issue,

11Notice that we are tacitly assuming f to be a convex function. This assumption is satisfied
in the case of the equations of relativistic-hydrodynamics, but not, for instance, in the case of
relativistic-magneto-hydrodynamics.
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the reconstruction should be performed on the local characteristic variables of
the systems. To avoid an excessively complex notation, let us concentrate on
the fluxes in the x-direction; in this case, to reconstruct F 1

i+1/2, j,k we introduce
the Jacobian matrices

Aα =
∂F α

∂u

∣∣∣∣∣
ū

, α = 0, 1, (3.72)

where
ū :=

1
2

(ui, j,k + ui+1, j,k) , (3.73)

is the average state at the point where the reconstruction is to be performed.
We point out that the average (3.73), and appearing in (3.70) and (3.72), is much
simpler than the average of ui, j,k and ui+1, j,k suggested by [277]. In [339] it
was checked that the use of (3.73) in place of the average suggested by [277]
does not influence significantly the quality of the solution in the case of finite-
differencing schemes, even in the relativistic case.

Strong hyperbolicity of (3.62) implies that A0 is invertible and the gener-
alised eigenvalue problem

[A1
− λ(I)A

0]r(I) = 0 , (3.74)

has only real eigenvalues, λ(I), and N independent, real right-eigenvectors, r(I)
[see, e.g., [18]]. We denote with R the matrix of right eigenvectors, i.e.,

RI
J = rI

(J) , (3.75)

and with L its inverse. We define the local characteristic variables

w = Lu , Q = LF 1 , (3.76)

and compute Qi+1/2, j,k doing a component-wise reconstruction, where w is used
in place of u and Q in place of f in the (3.71). Finally we set

F 1
i+1/2, j,k = RQi+1/2, j,k . (3.77)

This procedure is repeated in the other directions and yields the wanted approx-
imations of the ∂aF

a terms in xi, j,k. The results that we present in this thesis
have been obtained performing the reconstruction of the local characteristic
variables.

The main limitation of finite-differencing schemes is that they are particu-
larly suited for Cartesian grids, either uniformly spaced or with Berger-Oliger-
style AMR [45]. Finite-difference schemes also reduce to second-order at the
boundary of refinement levels if cell-centered AMR with refluxing [44] is used.
Both of these limitations are, on the other hand, of secondary importance for
the kind of applications that we present in this thesis.

3.5 Discontinuous Galerkin Methods

Discontinuous Galerkin (DG) methods for hyperbolic equations were first in-
troduced by Reed and Hill [267] for a problem of neutron-transport and then
further developed by Cockburn and Shu in a series of papers [92, 88, 89, 90, 86].
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Figure 3.3: L2
−norm of the error measured in the numerical solution of the linear

advection equation ∂tu + ∂xu = 0 with sinusoidal initial data, u0 = sin(2πx) at
time t = 10 and for different numerical schemes. On the x-axis N is the number
of DG-elements/FD-points. We point out that, although the schemes have
comparable computational costs, the DG methods uses five times more degrees
of freedom at a fixed N than the other two schemes.

At the same time DG methods were also developed for elliptic and parabolic
problems, see [22] and references therein. Since then, these methods have
become increasingly popular and have been applied to a number of classical
hyperbolic, parabolic and elliptic problems [91, 75, 168]. They have been also
successfully applied to the solution of the Einstein equation in vacuum by
Zumbush [347] and Field et al. [128]. Finally, the first DG general-relativistic
hydrodynamics code was proposed by us in [263].

The reason for the popularity of DG methods and for the growing interest
in this family of schemes lies in their numerical properties.

First of all, even though they became mainstream much later than FV or FD
methods, they have the largest number of proven mathematical properties. For
instance, they can be proven to be intrinsically non-linearly stable, at all orders
of accuracy, even though limiters and/or filtering is necessary to treat under-
resolved features in the solution, such as shock-waves, to avoid the aliasing
instability12. DG methods also satisfy a cell-entropy inequality, meaning that
the solution obtained with DG methods is always entropic, see e.g., [87]. In
addition we mention that Zhang and Shu [341] were recently able to construct
maximum-principle-satisfying DG schemes with the use of a special limiting
technique.

12The aliasing instability occurs when the solution is not well represented by the truncated
expansion used in the scheme. In particular the unrepresented modes of the solution tend to
be “aliased” into the evolved ones, meaning that their content is improperly transfered by the
numerical scheme to lower-order modes, leading to a non-linearly unstable behaviour (see e.g., [62]).
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Secondly, they can deliver very high, spectral, accuracy in regions where
the solution is smooth. Furthermore the numerical dissipation of DG methods
can be proven to depend only on the truncation error [87], implying that the
dissipation is automatically deactivated where the solution is smooth and suf-
ficiently resolved. For instance, this is of key importance in transport problems
where the numerical diffusivity of other schemes can easily become orders of
magnitude larger than the physical diffusivity, thus yielding completely wrong
solutions. More on this in Chapter 7.

DG schemes can also naturally accommodate general unstructured meshes
and, thanks to their very compact stencil, they have nearly-optimal scalability,
which makes them very promising for massively-parallel computing [50].

Finally DG methods, as well as finite-element methods (FEM) from which
they derive, have the very interesting property of being covariant, because they
do not require any a priory choice of a coordinate system, but can be expressed
in terms of push-forwards and pull-backs from some reference element [220].
This obviously makes them very interesting for general relativistic calculations.

An illustration of the superior accuracy of DG methods is shown in Figure
3.3, where we compare the numerical errors in the solution of the advection
equation obtained with the fifth order DG scheme with the ones obtained using
the fifth order and a seventh order WENO FD schemes. As we can see, the
DG methods out-performs both the WENO5 and the WENO7 schemes, even
though the latter has an higher formal order of accuracy. We point out that
the comparison is made by using the same number of DG-elements/FD-points,
because the computational costs of the two schemes are similar in this case.
On the other hand, the DG method uses five times more degrees-of-freedom
(d.o.f.) than the FD method. A comparison in which the two schemes are
used employing the same number of d.o.f. yields a similar result, with the DG
method being slightly better than WENO7, but it is, in our opinion, misleading
since the FD method is significantly more expensive than the DG one under
these conditions. Since the computational cost of DG scales with the number
of elements in a similar way as the cost of FV/FD methods scales with the
number of cells/points, we always present comparisons between DG and FD/FV
methods by fixing the number of elements in the DG scheme to be equal to the
number of points in the FD/FV scheme. Clearly our choice is motivated by
the fact that we want to compare the methods in a situation in which the total
computational times are similar. On the other hand, in situations where the
memory requirements are the bottleneck of the simulation, a comparison based
on the degrees of freedom is more adequate.

DG methods also have their limitations. First of all they have larger memory
requirements with respect to other schemes. Secondly they are still somewhat
less robust than FV schemes as all the standard flattening techniques are either
not sufficiently reliable in the removal of oscillations near shock-waves or tend
to degrade the accuracy of the scheme also in regions where limiting would
not be necessary. Finally and most importantly DG schemes require a more
strict CFL condition, with resepct to FD/FV methods, to be linearly stable: if the
time-discretization is done with the use of strongly-stability preserving (SSP)
Runge-Kutta (RK) schemes [154] of the same order as the spatial discretization,
the stability condition is

CFL ≤
1
c

1
2k + 1

, (3.78)
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Figure 3.4: Mapping between the reference element and an element in the
physical space in a DG method.

where k + 1 is the order of accuracy of the scheme [93]. These limitations are
being addressed in the current research on DG methods with the development
of hybrid DG-FV schemes such as the DG-WENO [260, 259] and PNPM [123, 121]
schemes, and with the advance in the development of local-spacetime schemes
[139] (see also [168] for alternative approaches).

3.5.1 Runge-Kutta Discontinuous-Galerkin Methods

Next we present the basic ideas behind the construction of the so-called spec-
tral discontinuous Galerkin method with numerical integration (SDGM-NI) or
nodal-DG scheme, which is the most commonly adopted variant of the DG
method. We refer the reader to [168] for a more complete treatment.

In order to explain the key ideas behind the DG method and to keep our
notation simple, we consider the scalar problem

∂tu + ∇ · fff (u) = 0, (t, x) ∈ R+ ×Ω, (3.79)

where Ω ⊂ Rd is a sufficiently regular, bounded, domain.
First of all we create a triangulation, TN, of Ω, N being the number of

elements of the triangulation. This is represented by the union of the images of
a reference element T, usually a triangle (or a square) in 2D and a tetrahedron
(or a cube) in 3D, through a family of diffeomorphisms, ϕ j : T→ Ω, Ω j = ϕ(T),
such that

N⋃
j=1

Ω j = Ω, Ωi ∩Ω j = ∅, if i , k. (3.80)

An example of such a triangulation is shown in Figure 3.4. A key point here
is that these mappings are not merely a tool used to do “book-keeping” of
the grid, but are actually an active part of the scheme: with the use of these
mappings one can “pull-back” the equations to the reference element, where
all the discrete differential operators have been pre-computed. In the classical
case, this means that derivatives, interpolation and integration operators can
be easily implemented once and for all in a simple geometry, while the shape of
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the elements in the physical space can be arbitrarily complex. For instance one
can easily construct elements whose boundaries are smooth curves adapting to
the boundary of the physical domain. In addition, in the relativistic case, one
could exploit the covariance of the equations to formulate them directly in the
coordinate system generated by the diffeomorphisms (by pushing forward the
ones in which the reference element is defined) effectively making the scheme
completely coordinate free (because no coordinate system would need to be
defined on the physical space).

The second step is to derive a condition similar to the weak formulation of
(3.79). In particular, in order to construct a semi-discrete scheme, the classical
approach is to derive a form of the weak formulation in which u is assumed to
be a smooth function of time and of bounded-variation in space13. In Chapter
6 we follow a slightly different approach when working with the equations of
general relativistic hydrodynamics, because we also discuss the possibility of
solving general relativistic problems using a spacetime approach which more
naturally suits the nature of relativistic equations. We also relax the hypothesis
that the solution is BV, which might be too restrictive for systems of equations.
Here, instead, we focus on the classical approach and concentrate on the case
of scalar equations. Let v ∈ C1

0(Ω), multiply (3.79) by v and integrate over Ω,
we then find

N∑
j=1

∫
Ω j

∂tu v dx −
∫

Ω j

fff (u) · ∇v dx

 = −

N∑
j=1

〈FFF · ννν, v〉∂Ω j (3.81)

where FFF · ννν is the normal trace of fff (u) on the boundary, i.e., it is a distribution
whose value on any test function, v, is given by

〈FFF · ννν, v〉∂Ω j := 〈div fff , v〉Ω j +

∫
Ω j

fff (u) · ∇v dx, (3.82)

where div fff is the distributional divergence of fff . In the case in which fff is
smooth,

〈FFF · ννν, v〉∂ΩJ =

∫
∂Ω j

fff · ννν v dx, (3.83)

where ννν is the out-going unit-normal to Ω j. The weak formulation of (3.79)
then consists of finding

u ∈ BV(Ω), s.t., (3.81) holds ∀v ∈ C1
0(Ω). (3.84)

The DG method works by projecting (3.84) on a finite-dimensional subspace
of BV(Ω). In particular we consider piecewise polynomial functions on TN:

VN =
{
v ∈ BV(Ω) : v ◦ ϕ j ∈ PD(T), j = 1, . . . ,N

}
, (3.85)

wherePD is the space of polynomials of degree D. Notice that we do not require
the continuity of functions in VN between different elements, hence the reason
why these schemes are called discontinuous Galerkin. The DG formulation then
consists of finding

u(t) ∈ C1(R+; VN), s.t., (3.81) holds ∀v ∈ VN. (3.86)

13This ensures the existence of the normal trace of fff (see below equation 3.82).
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Notice that so far we restricted the test function to be in VN, i.e., the test function
is in the same functional space as the numerical solution u. The family of
schemes where the test function is in the same space as the solution are called
Galerkin methods. Secondly, since both u and v now live in a finite-dimensional
space, a finite number of conditions of the form (3.81) is sufficient to determine
all the degrees of freedom of u, i.e., by writing down the condition (3.81) for a
sufficiently large number of linearly-independent test functions v, one obtains
a set of ODEs for the d.o.f. of u.

Before going into details of how to explicitly construct the scheme, we need
to address two important points concerning the weak formulation (3.86).

The first one is that (3.81) is not really well defined if the test function is not
smooth. This means that one has to be careful in the interpretation of the DG
formulation: for the boundary terms of (3.81) to be well defined one should
think of the v appearing in the boundary term as a smooth, C1

0(Ω), extension of
a function in VN, done in such a way as to match the one-sided limit of v at ∂Ω j
from the interior of Ω j, i.e., we need to set

〈FFF · ννν, v〉∂Ω j := 〈FFF · ννν, v j〉∂Ω j , (3.87)

where v j ∈ C1
0(Ω) and v j|Ω j = v.

The second point is that the normal trace actually has a very simple inter-
pretation. To see that, let us consider the case in which v = χi, so that (3.81)
simplifies to

∂t

∫
Ωi

u dx = −〈FFF · ννν, v〉∂Ωi , (3.88)

which is easily recognizable as being the FV method. In other words we can
take the normal trace to be simply the flux as computed using an approximated
Riemann solver.

Finally we turn to the detailed construction of the DG scheme. In order to
simplify the notation we work in the one-dimensional case, so that (3.81) reads

N∑
j=1

[ ∫ x j+1/2

x j−1/2

∂tu v dx −
∫ x j+1/2

x j−1/2

f (u) ∂xv dx
]

=

N∑
j=1

[
F j−1/2v(x j−1/2) − F j+1/2v(x j+1/2)

]
,

(3.89)

where F is now the numerical flux. We can expand both u(t, ·) and f [u(t, ·)] on
a polynomial basis as

u(t, x) =

D∑
i=0

u j
i (t) l j

i (x), f (t, x) =

D∑
i=0

f j
i (t) l j

i (x), x ∈ [x j−1/2, x j+1/2], (3.90)

where l j
i (x) is some polynomial basis over [x j−1/2, x j+1/2], typically, but not neces-

sarily, chosen to be composed of orthonormal polynomials. If we now choose
v(x) = l j

k(x)χ j(x), k = 0, . . . ,D, we obtain a set of evolution equations for the
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expansion coefficients u j
i (x):

D∑
i=0

[ ∫ x j+1/2

x j−1/2

l j
i (x) l j

k(x) dx
]

du j
i (t)

dt

−

D∑
i=0

[ ∫ x j+1/2

x j−1/2

l j
i (x) ∂xl j

k(x) dx
]

f j
i =

F j−1/2l j
k(x j−1/2) − F j+1/2l j

k(x j−1/2),

(3.91)

which we can write in more compact form as

MMM j duuu j

dt
−DDD j fff j = FFF j−1/2

− FFF j+1/2, ∀ j = 1, . . . ,N, (3.92)

where we have collected all the expansion coefficients of u in the vectors uuu j and
introduced the mass-matrix(

MMM j
)

ki
:=

∫ x j+1/2

x j−1/2

l j
i (x) l j

k(x) dx, (3.93)

the discrete co-differential matrix(
DDD j

)
ki

:=
∫ x j+1/2

x j−1/2

l j
i (x) ∂xl j

k(x) dx (3.94)

and the flux vectors (
FFF j−1/2

)
i

:=
∑

k

δik F j−1/2 l j
k(x j−1/2). (3.95)

Before concluding it is useful to make some remarks.
First of all, if an orthonormal basis is chosen and the integrals are computed

with enough accuracy, then the mass-matrix is diagonal. Otherwise the mass
matrix has to be inverted in order to evolve u in time. In any case it is important
to notice that the mass matrix is local, i.e., defined only on the single element. For
this reason its inverse is relatively inexpensive and can also be pre-stored. As
an alternative the mass-matrix can be “diagonalized” using the mass-lumping
technique, e.g., [75].

Secondly, f (u) is in general a non-linear function. This means that, while
expanding the flux on a polynomial basis, we might introduce an aliasing error
in the scheme, unless sufficiently many coefficients are used in the expansion
and an appropriate quadrature formula is used to compute DDD j. This aliasing
error is often unavoidable in practical applications and can spoil the non-linear
stability of the scheme, but it is easily suppressed with the use of weak filtering
as long as the solution is smooth [168]. Obviously, even in the linear case, if u
has a jump discontinuity (i.e., a shock), then the aliasing error is unavoidable
and in order to achieve the stability of the scheme some more effort might be
required. In this case the classical approach is to use the minmod limiter as a
non-linear filter to detect discontinuities and flatten the profile of the solution
within the troubled elements [93]. More on this in Chapter 6.
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Chapter 4

Finite-Differencing Methods:
Flat Spacetimes

4.1 Introduction

The use of flux-conservative finite-difference HRSC schemes is probably the
easiest way of increasing the (formal) order of accuracy of the current generation
of numerical codes: finite-difference schemes are much cheaper then high-order
finite-volume codes since they do not require the solution of multiple Riemann
problems at the interface between different regions [296, 297] and they are free
from the complicated averaging and de-averaging procedures of high-order
finite-volume codes, see, e.g., [318].

Here we present a new code, the Templated-Hydrodynamics Code (THC),
developed using the Cactus framework [150], that follows this approach. THC
employs a state-of-the-art flux-vector splitting scheme: it uses up to seventh-
order reconstruction in characteristic fields and the Roe flux split with a novel
entropy-fix prescription. The “templated” aspect reflects the fact that the code
design is based on a modern C++ paradigm called template metaprogram-
ming, in which part of the code is generated at compile time. Using this
particular programming technique it is possible to construct object-oriented,
highly modular, codes without the extra computational costs associated with
classical polymorphism, because, in the templated case, polymorphism is re-
solved at compile time allowing the compiler to inline all the relevant function
calls, see e.g., Yang [335]. Among the different reconstruction schemes that
we implemented are the classical monotonicity-preserving (MP) MP5 scheme
[310, 226], the weighted essentially non oscillatory (WENO) schemes WENO5
and WENO7 [202, 176, 295] and two bandwidth-optimized WENO schemes:
WENO3B and WENO4B [211, 316], designed for direct simulations of compress-
ible turbulence (we recall that the number associated to the different methods
indicates the putative order of accuracy).

In this chapter we give the details of the algorithms used in THC, presenting a
systematic comparison between the results obtained using the above mentioned
reconstruction schemes, with emphasis on the application of these schemes to
direct simulations of relativistic turbulence. To our knowledge this is the first
time that such a comparison has been done in the relativistic case.

67
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The rest of this chapter is organised as follows. In Section 4.2 we present
the THC code in more detail: we discuss the numerical algorithms it uses and
recall the equations of Newtonian and special-relativistic hydrodynamics. The
results obtained with our code in a representative number of test cases for the
Newtonian and special relativistic hydrodynamics are presented in Section 4.3.
In Section 4.4 we present the application of our code to the study of the linear and
non-linear development of the relativistic Kelvin-Helmholtz instability (KHI)
in three dimensions as a nontrivial application of our code and a stringent test
of its accuracy. In Section 4.5 we present the application of our code to the study
of the statistical properties of driven relativistic turbulence in a hot, optically
thick, pair-plasma, as another example of the potential of our code. Finally
Section 4.6 is dedicated to the summary and the conclusions.

4.2 The THCCode

We here briefly outline the numerical infrastructure adopted by our templated-
hydrodynamics code and report the formulations of the equations of Newtonian
and special-relativistic hydrodynamics we actually solve.

4.2.1 Newtonian Hydrodynamics

The equations of classical (i.e., Newtonian) hydrodynamics describe the conser-
vation of mass, momentum and energy for a perfect fluid. They can be written
in the form (3.62) with primitive variables,

u = [ρ, ~v, ε] , (4.1)

where ρ is the density, vi the velocity and ε the specific internal energy. The
conserved variables are

F 0(u) =
[
ρ, ρ~v, E

]
=

[
ρ, ρ~v, ρ

(
1
2 v2 + ε

)]
, (4.2)

the sources are zero and the fluxes are

F i(u) =
[
ρvi, ρvi~v + pδδδi, vi(E + p)

]
, (4.3)

where p is the pressure and [δδδi] j = δi j is the Kronecker symbol. The system of
equations is then closed by an equation of state p = p(ρ, ε) and we adopt that of
an ideal fluid (or Gamma law)

p = (Γ − 1)ρε, (4.4)

where Γ is the adiabatic index of the fluid.
The Jacobians and their spectral decomposition for the equations of New-

tonian hydrodynamics and for a generic equation of state, can be found, for
example, in [189].

4.2.2 Special-relativistic hydrodynamics

In the case of the relativistic-hydrodynamic equations it is convenient to work
using a system of units in which c = 1 and we adopt the standard convention
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for the summation over repeated indices. We consider a perfect fluid having
4-velocity ~u = (W, W~v), with W := (1 − vivi)−1/2 being the Lorentz factor. Then
the rest-mass current 4-vector is given by

~J = ρ~u, (4.5)

where ρ is here the rest-mass density. The stress-energy tensor is given by

T = ρh~u ⊗ u + pggg , (4.6)

where h = 1+ε+p/ρ is the specific enthalpy and g is the spacetime metric, which
we take to be that of flat spacetime, i.e., where the only nonzero components are
the diagonal ones and given by gµν = (−1, 1, 1, 1). Because our main interest with
THC is in determining the statistical properties of special-relativistic turbulence
and of unveiling novel and non-classical features we will consider the fluid not
to affect the spacetime geometry, which we will consider to be that of a flat
spacetime at all times.

Conservation of rest-mass, momentum and energy are expressed by the
vanishing of the 4-divergence of ~J and T

∇ · ~J = 0 , ∇ · T = 0 , (4.7)

where ∇ is the covariant derivative associated with g. Also in this case, the
relativistic-hydrodynamic equations (4.7) can be cast in the form (3.62) with
primitive variables

u = [ρ, ~v, ε] . (4.8)

The conservative variables are

F 0(u) = [D, s, τ] , (4.9)

where
D := ρW , ~s := ρhW2~v , τ := ρhW2

− p − ρW , (4.10)

and the fluxes are given by

F i(u) = [Dvi, ~svi + pδδδi, si
−Dvi] . (4.11)

Finally, because we are working in special relativity, sources in the sys-
tem (4.7) are zero and the equations are closed by an equation of state, which
we take again to be the ideal-fluid equation of state (4.4).

An important difference between the Newtonian and the (special-)relativistic
hydrodynamic equations is that in the latter case there is no simple analytic
expression for the inverse transformation F 0

→ u, leading to the primitive
variables from the conserved ones. For this reason, we use a numerical root-
finding procedure to recover the primitive variables from the conservatives. In
particular we follow the strategy of [179, 180]. The primitive variables can be
easily written as a function of the conservative variables once a value for the
enthalpy, h̃, is assumed. At the same time the enthalpy can be expressed as a
function of the rest-mass density and of the internal energy using the equation
of state. Thus we can construct the function

g(h̃) = hEOS

(
ρ(h̃), ε(h̃)

)
− h̃ , (4.12)
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Figure 4.1: Density (left panels), velocity (middle panels) and pressure (right
panels) for the Newtonian strong shock test. We show both the analytic solu-
tion (solid line) and the numerical solutions obtained with different numerical
schemes (dots). The resolution is ∆1 = 1/100 and the timestep is ∆0 = 0.002
for all the runs. Note that the numerical solution is not down-sampled and
corresponds to a rather coarse resolution.
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and use a one-dimensional root-finding procedure to find a self-consistent
value of the enthalpy, since g(h̃) = 0 if and only if h̃ is the physical enthalpy1.
In particular, the root-finding algorithm uses a combination of the Newton-
Raphson method with the regula-falsi and the bisection schemes: we check the
Newton-Raphson method for convergence and, in case of failure, we switch
to the regula-falsi. The bisection scheme is used as a “fail-safe” root-finder in
situations where the regula-falsi is converging too slowly: this is necessary only
when the values of the conservative variables are close to an unphysical region.
In the large majority of cases, the Newton-Raphson method usually converges
to the required level of accuracy with only three iterations on average.

The Jacobians and their spectral decomposition for the equations of special-
relativistic hydrodynamics and for a generic equation of state, can be found
in [116].

4.3 Numerical tests

This Section is dedicated to the presentation of some of the results obtained with
THC in a series of tests in Newtonian and special-relativistic hydrodynamics.

4.3.1 Newtonian hydrodynamics

We begin with a series of tests in classical hydrodynamics, before switching to
the special-relativistic case.

Strong shock

The first test is a classical one-dimensional shock tube: the initial data describes
two regions filled with a Γ = 5/3 ideal-fluid in equilibrium separated by a
membrane. At t = 0 the membrane is removed and the two regions start to
interact. The initial left and right states are

(ρL, vL, pL) = (10, 0, 10) , (ρR, vR, pR) = (1, 0, 10−5) , (4.13)

for t > 0 the analytic solution consists in a right-going shock wave, followed by
a right-going contact discontinuity and a transonic left-going rarefaction wave.

In Figure 4.1 we show with a solid line the analytic solution, while filled
circles are used to represent the solution obtained at time t = 0.2 with the
different numerical schemes. The grid resolution is ∆1 = 1/100 and the timestep
∆0 = 0.002 for all the runs. Note that the numerical solution is not down-
sampled and hence it corresponds to a genuinely coarse resolution. We do not
show the results obtained with the bandwidth-optimised schemes since they
are basically indistinguishable from the ones obtained using their traditional
counterpart, i.e., the solution obtained with WENO3B is basically on top of
the one obtained with WENO5 and the solution obtained with WENO4B is
identical, at the plot scale, with the one obtained with WENO7. Since the results
obtained with the bandwidth-optimized schemes are found to be very close to

1We are tacitly assuming the enthalpy to be a convex function of ρ and ε. This is satisfied
by the EOSs that we consider here, but does not hold for general EOSs. For this reason in the
general-relativistic extension of THC, presented in Chapter 5, we make use of a different procedure
which has been kindly provided us by Wolfgang Kastaun and Filippo Galeazzi [136].
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Figure 4.2: The same as in Figure 4.1, but for the Newtonian blast-wave test.
The resolution is ∆1 = 1/100 and the timestep is ∆0 = 0.0001 for all the runs.

the ones obtained with the standard WENO schemes in all the shock-tube tests
that we performed, we will show only the numerical solutions obtained with
WENO5, WENO7 and MP5 in all the cases.

Even at this fairly low resolution, all the schemes are able to capture well
both the shock wave and the rarefaction wave, showing the good behaviour of
our entropy fix. The shock wave is captured within three gridpoints. There are
no appreciable post-shock oscillations in the solution obtained with the MP5
reconstruction, while small oscillations are present in the velocity field with
WENO5 and, in particular, with WENO7.

We note that the contact discontinuity is resolved, but not without oscilla-
tions. However, we should bear in mind that, although the density contrast is
small across the contact discontinuity, this test is a severe one due to the high
Mach number of the shock wave, i.e.,Ms ≈ 360.

Blast wave

The second test is similar to the first one, but results in a much larger density
contrast at the contact discontinuity. The initial data is given by

(ρL, vL, pL) = (10−3, 0, 1) , (ρR, vR, pR) = (10−3, 0, 10−5) , (4.14)

and the adiabatic index is still Γ = 5/3. Also in this case, the analytic solution
consists of a right-going shock wave, followed by a contact discontinuity and
a left-going rarefaction wave.

In Figure 4.2 we show the exact solution at time t = 0.015 (solid line), as well
as the numerical solution (filled circles) obtained using different numerical
schemes. The grid resolution is ∆1 = 0.01 (N = 100) and the timestep is
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Figure 4.3: The same as in Figure 4.1, but for the Newtonian rotated Sod test.
The resolution is ∆i = 1/200 and the timestep is ∆0 = 0.000625 for all the runs.

∆0 = 0.0001 for all the runs. The Mach number of the shock wave isMs ≈ 190
and in this case all our schemes are free from major oscillations. The shock wave
is resolved within two grid points, while the contact discontinuity is smeared
over 5-6 grid points.

The MP5 scheme is able to properly capture the constant state between the
shock wave and the contact discontinuity, while the WENO schemes result in
more “rounded” solutions. In particular both WENO5 and WENO7 overesti-
mated the density contrast.

Rotated Sod test

A genuinely three-dimensional shock-tube test in Newtonian hydrodynamics
is offered by the classical rotated Sod test [305]. In this case, the adiabatic index
is Γ = 1.4 and the right and left states are

(ρL, vL, pL) = (1, 0, 1) , (ρR, vR, pR) = (0.125, 0, 0.1) , (4.15)

the initial, 1D data, is rotated by 45◦ about the z and y axes to yield a shock wave
that is diagonal to the principal axes of the grid. The analytic solution consists
of a left-going rarefaction wave and a right-going shock wave separated by a
right-going contact discontinuity.

In Figure 4.3 we show the analytic solution in the diagonal direction (solid
line), as well as the numerical solutions (filled circles), at time t = 0.2. The
spatial resolution is ∆i = 1/200 for i = 1, 2, 3 and the timestep is ∆0 = 0.000625
for all the runs. All the schemes are able to properly capture the main features
of the solution: the discontinuities are captured within 1 or 2 gridpoints and
both WENO5 and MP5 are able to capture the plateau in the velocity. The
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solution obtained with the WENO7 scheme presents oscillations in the velocity
after the shock wave and in the density and pressure fields downstream of the
contact discontinuity. Similar oscillations are also observed with WENO5 and
MP5 when the resolution is halved.

Overall, these tests demonstrate the accuracy of the dimensionally unsplit
approach that we use to treat the multi-dimensional case.

Double Mach reflection test

A final test in Newtonian hydrodynamics is the double-Mach reflection test
proposed by [334]. The initial data describes a right-going Mach 10 shock wave
making a 60◦ angle with the computational grid and intersecting the x−axis at
x = 1/6. A perfectly reflecting wall is placed along the x−axis in the x > 1/6
region, while the values along the other regions of the boundary are set to the
pre and post-shocked values on the left/right side of the shock wave [see [334]
for details on the boundary conditions and the initial data].

We considered the numerical solutions obtained with WENO5, WENO7,
MP5, WENO3B and WENO4B in the computational domain 0 ≤ x ≤ 4, 0 ≤ y ≤
1. For each of these schemes we performed five runs with resolutions 120× 30,
240× 60, 480× 120, 960× 240 and 1920× 480. In Figure 4.4 we show isocontours
(with an equal spacing of 0.15 between 0 and 3) of the rest-mass density obtained
at the highest resolution at time t = 0.2 by the different numerical schemes. In
order to ease the comparison with the results reported in [334], we show only
the region x < 3.

Our code performs well in this test across all the reconstruction schemes
that we tried. All the discontinuities, including the contact discontinuity ahead
of the jet region, are well resolved within a few grid regions, even at the lowest
resolution. As we increase the number of gridpoints we do not observe any
sign of the carbuncle phenomenon and this seems to be an indication that
our algorithm is able to introduce enough numerical dissipation to avoid the
odd-even decoupling.

At high enough resolution it is possible to observe the development of
instabilities upstream from the reflected shock wave, generating small scale
structures along the contact discontinuity. The ability of the different codes
to resolve these structures can be used as an indication of their numerical
viscosity. In particular we can see how the bandwidth-optimized schemes
gain with respect to their “standard” counterparts. For instance, WENO3B,
which uses the same stencil as WENO5, yields a solution which is in qualitative
agreement with the one obtained using WENO5 at twice the spatial resolution.
The same is also true if we compare WENO4B and WENO7.

All things considered, we find that the best performance is given by the
MP5 scheme. This algorithm has a computational cost which is comparable
with the one of WENO5, as it uses the same stencil. Nevertheless the solu-
tion obtained with MP5 is very close to the one obtained with the optimized
WENO4B scheme, which, in 3D, is almost twice as expensive as WENO5.

4.3.2 Special-relativistic hydrodynamics

In this Section we will present the results obtained in a series of tests in special-
relativistic hydrodynamics.
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Figure 4.4: Isocontours of the rest-mass density at time t = 0.2 for the Newtonian
double Mach reflection test, obtained with different schemes. We show 20
contours levels equally spaced between 0 and 3. The resolution is ∆i = 1/480
and the timestep is ∆0 = 1/40000 for all the runs.
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Figure 4.5: Analytic solution and numerical solution computed with WENO3B
with 50 gridpoints for the case of an smooth wave in an adiabatic relativistic
fluid. The figure shows both the initial data (top panel) and the solution at time
t = 0.8 (bottom panel). The solid line represent the analytic solution, while the
filled circles represent the numerical one.

Adiabatic smooth flow

The first test we present is designed to show the accuracy of the code in the case
of smooth solutions and hence to measure rigorously the convergence order of
THC for the different schemes implemented. This test is very similar to the one
discussed by [339].

We consider a one-dimensional, large-amplitude, smooth, wave propagat-
ing in an isentropic fluid, with polytropic equation of state,

p = KρΓ, (4.16)

where K = 100 and Γ = 5/3. The rest-mass density at t = 0 is given by

ρ0(x) =

1 + exp
[
−1/(1 − x2/L2)

]
, if |x| < L;

1, elsewhere;
(4.17)

where, differently from [339], the initial profile of the rest-mass density is chosen
to be C∞ but is not analytic. We have found this choice important to obtain
the correct convergence order at very high resolutions. Indeed, when adopting
the same profile as in [339], we found that the jump discontinuity in the fifth
derivative of the initial data prevents the WENO7 scheme from achieving a
convergence order larger then five. Besides this small difference, our initial
data is basically identical to the one used by [339]. The initial velocity is set up
assuming that one of the two Riemann invariants [18],

J− =
1
2

ln
(1 + v

1 − v

)
−

1
√

Γ − 1
ln

( √
Γ − 1 + cs
√

Γ − 1 − cs

)
, (4.18)
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where cs is the sound speed, is constant in the whole region and so that v = 0 if
|x| ≥ L. The other Riemann invariant,

J+ =
1
2

ln
(1 + v

1 − v

)
+

1
√

Γ − 1
ln

( √
Γ − 1 + cs
√

Γ − 1 − cs

)
, (4.19)

is not constant, so that the initial data describes a right-going wave.
The analytic solution can be easily found in Lagrangian coordinates, up to

the caustic point, using the method of characteristics [18], while its calculation
in Eulerian coordinates involves the solution of a transcendental equation. For
the purposes of our calculation, a good-enough approximation of the exact
solution was obtained by computing it on a very fine Lagrangian grid (we have
used 100, 000 gridpoints), and interpolated on the Eulerian grid using a cubic
spline interpolation. This solution is then used as the reference solution against
which the numerical solutions obtained with THC have been compared.

In our test we set L = 0.3 and use a computational grid in the region
−0.4 ≤ x ≤ 2, evolving the initial data up to time t = 1.6, which is approximately
the time when a caustic appears and the solution becomes discontinuous. We
performed this test using different schemes and different resolutions and we
measured the L1

−norm of the error against the reference solution. Differently
from all the other tests, instead of the third-order SSP-RK scheme, we adopt here
a fourth-order RK time integrator. The reason for this choice is that, since this
test involves a smooth solution, a SSP time-integrator is not required. Moreover,
as we will show in the following, the use of a more accurate time integrator
enabled us to measure a convergence order of the spatial discretization which is
not spoiled by the order in time, the only exception being the highest resolution
run done with WENO7. The CFL factor is set to be C ≈ 0.2.

The initial rest-mass density profile, as well as the solution at time t = 0.8,
which we take as a reference time for the measure of the error, is shown in Figure
4.5, together with the solution obtained with WENO3B using 50 gridpoints. As
can be seen from the Figure, the solution at the considered time is still smooth
and our scheme is able to properly capture it very well even at this very coarse
resolution.

The outline of the obtained results is shown in Table 4.1. The L1
−norm of the

error, as measured at the reference time, is shown in Figure 4.6. The first thing
one notices is that all our schemes approach the expected convergence order
only asymptotically, at very high resolution. This is more evident by comparing
Figure 4.6 with Figure 4.7 where we show the results obtained by our code in a
similar test, but in the case of the scalar advection equation. The reason for this
behaviour is in the “kinks” ahead and behind the pulse, where the numerical
error is largest. These regions are “misinterpreted” as discontinuities by the
shock-detection part of our schemes, unless they are resolved with enough
gridpoints.

The best performing scheme in this test is the MP5 one: at low resolution it
yields a smaller error then the seventh-order WENO scheme, which, in turn, is
able to attain an higher convergence order only at a resolution which is unfea-
sible in any practical multidimensional application. The bandwidth optimized
schemes present a somewhat errant behaviour in their convergence order, with
WENO4B, not even showing a monotone trend in the L1

−norm of the error as a
function of the number of gridpoints. We do not presently have an explanation
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Table 4.1: Adiabatic smooth flow test. For each numerical scheme we quote the
L1 norm of the error and the relative convergence order as measured against
the analytic solution at time t = 0.8.

Scheme N L1
−Error Convergence

WENO5 50 0.00330632 −

100 0.00123249 1.42
200 0.000294511 2.06
400 4.4764e-05 2.72
800 5.57555e-06 3.01
1600 3.90326e-07 3.84
3200 2.09857e-08 4.21
6400 7.68527e-10 4.77

WENO3B 50 0.00309225 −

100 0.00118655 1.38
200 0.000376258 1.66
400 8.28337e-05 2.18
800 2.86678e-05 1.53
1600 5.53009e-06 2.37
3200 3.15153e-08 7.46
6400 3.5237e-09 3.16

WENO7 50 0.00194469 −

100 0.000751681 1.37
200 0.000123279 2.61
400 9.62907e-06 3.68
800 7.32092e-07 3.62
1600 3.00016e-08 4.61
3200 4.09176e-10 6.19
6400 7.03027e-12 5.86

WENO4B 0 0.00191339 −

100 0.00072531 1.40
200 0.000188846 1.94
400 1.98584e-05 3.25
800 2.27458e-06 3.13
1600 2.33667e-06 -0.04
3200 5.38905e-09 8.76
6400 3.55794e-10 3.92

MP5 50 0.00157656 −

100 0.000554439 1.51
200 9.89946e-05 2.49
400 1.3236e-05 2.90
800 9.15752e-07 3.85
1600 6.27508e-08 3.87
3200 2.74506e-09 4.51
6400 9.15411e-11 4.91
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Figure 4.6: L1
−norm of the error for different resolutions and for different nu-

merical schemes for the case of a smooth simple wave in an adiabatic relativistic
fluid
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Figure 4.8: Order of convergence, as measured using the two highest resolution
runs, as a function of the time to the caustic for different numerical schemes for
the smooth simple wave test.

we find sufficiently convincing for the behaviour shown.
Finally it is interesting to study the convergence order of the different nu-

merical schemes as a function of t − tc, where tc is the time when the caustic is
formed. The convergence order is computed using the error with respect to the
exact solution of the two highest resolution runs and is shown in Figure 4.8. At
these very high resolutions, all the schemes appear to be converging at their
nominal convergence order away from the caustic, apart from WENO7 that
appears to have already reached saturation. Its order of convergence increases
up to almost seven close to the caustic, at time t − tc ≈ −0.4, because there the
error is dominated by the presence of a steeper gradient ahead of the pulse.
Before that, the error from the spatial discretization is probably very close to
the one from the time discretization (we recall that we use a fourth-order RK
integrator), thus degrading the convergence order.

Indeed, as the time of shock formation approaches, the order of the schemes
decreases slowly to the first-order expected in the case of discontinuities. The
bandwidth optimized schemes and, in particular, WENO4B show, again, an
erratic behaviour of their convergence order. The reasons for this behaviour
are most probably the same ones behind the similar behaviour observed while
looking at the error as a function of the number of gridpoints.

Blast wave

When contrasted with its Newtonian counterpart, one of the most striking
features of relativistic hydrodynamics is that relativistic fluids can exhibit much
stronger shock waves. For this reason, it is important to assess the capability
of the code to handle very strong shocks. As a first example we consider a
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Figure 4.9: The same as in Figure 4.1, but for the relativistic blast-wave test.
The resolution is ∆1 = 1/400 and the timestep is ∆0 = 0.0005 for all the runs.

one-dimensional shock-tube where the initial data is given by,

(ρL, vL, pL) = (10−3, 0, 1) , (ρR, vR, pR) = (10−3, 0, 10−5) , (4.20)

and the adiabatic index is still Γ = 5/3. This initial data is formally identical
to the one used in Section 4.3.1 in the Newtonian case. The analytic solution
consists again of a transonic left-going rarefaction wave and a right-going shock
wave separated by a right going contact discontinuity. The shock wave has a
relativistic Mach numberMs ≈ 50 [85, 185].

The results obtained with the different numerical schemes are reported in
Figure 4.9, where we show the analytic solution (solid line) as well as the
numerical ones (filled circles) obtained with WENO5, WENO7 and MP5, at
time t = 0.4. As in the Newtonian case, we do not show the results obtained
with the bandwidth optimized schemes as they are basically identical to the
ones of their traditional variant. The spatial resolution that we use is ∆1 = 1/400
and the CFL factor is C = 1/5 in all cases.

The CFL factor in this test is basically constrained by the MP5 scheme:
while the WENO schemes appear to be robust and stable up to CFL factor of
C ≈ 2/5, the MP5 algorithm produces large oscillations and yields non-physical
values in the conservative variables unless a smaller CFL factor is used. We
point out that for this particular test the necessity of using small timesteps to
avoid the creation of unphysical states has been observed also when using other
numerical schemes. For instance, when using the finite-volume code Whisky
[28, 29], with the HLLE approximate Riemann solver [see, e.g., [323]] and the
PPM reconstruction [96], the maximum allowed CFL factor was also found to
be C ≈ 2/5. It is also known that, for the monotonicity-preserving property
to hold for the MP5 scheme, the timestep must be subject to an additional
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Figure 4.10: The same as in Figure 4.1, but for the relativistic shock-heating test.
The resolution is ∆1 = 1/100 and the timestep is ∆0 = 0.001 for all the runs.

constraint which is distinct from the standard CFL condition [310]. Yet, it is
somewhat surprising to observe that MP5 requires a timestep which is smaller
by a factor of order two with respect to the WENO schemes. Furthermore, this
property does not seem to be a peculiarity of this specific problem, since we
observed a similar behaviour also for the other tests that we performed.

[339] report that the use of MP5 reconstruction results in large numerical
oscillations in their special relativistic code. In our code, we see a similar
behaviour unless we use a timestep which is about half of the one considered
“safe” for the WENO scheme. If the timestep is sufficiently small, on the
other hand, the MP5 algorithm results in very accurate solutions, as in the
Newtonian case. In particular in Figure 4.9 we can see the results obtained
with this particular test. Our code, with MP5, is able to capture the shock
wave within three gridpoints while the contact discontinuity is spread across
six points. WENO7 yields a solution of similar quality, while WENO5 is slightly
more diffusive.

The capability of a numerical code to capture the density contrast for this
particular test is a classical benchmark for relativistic hydrodynamics codes.
Again, using as reference the Whisky code, the use of the HLLE solver with PPM
reconstruction and with artificial compression, leads to a maximum density
which is 71% of the analytic solution. At the same resolution, our THC using a
WENO5, WENO7 and MP5 reconstruction is able to attain a maximum density
which is respectively 78%, 90% and 91% of the analytical value. These results
are in very good agreement with the ones reported by [339], who measured a
relative value of 72% and 79% for their implementation of PPM and WENO5
schemes.
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Shock-heating

An even more striking example of how relativistic effects can enhance the
density contrasts in shock waves is given by the classical shock-heating test. In
this case, the initial data is given by

(ρL, vL, pL) = (10−3, v, 103) , (ρR, vR, pR) = (10−3,−v, 103) , (4.21)

the polytropic index is Γ = 4/3 and

v =

√
1 −

1
W2 ' 0.99999949 , (4.22)

where the Lorentz factor is set to be W = 1000. In this case, the analytic solution
is represented by two shocks whose collision compresses the fluid, converting
its kinetic energy into thermal energy, that is, through “shock heating”.

In Newtonian hydrodynamics the maximum compression ratio can be com-
puted as

σnewt =
Γ + 1
Γ − 1

= 7 , (4.23)

for all values of v, while it is easy to show [209] that in the relativistic case the
compression ratio is

σ =
Γ + 1
Γ − 1

+
Γ

Γ − 1
(W − 1) ' 4003 , (4.24)

thus about three orders of magnitude larger for the same adiabatic index and
growing linearly with the Lorentz factor.

The exact solution at time t = 0.4, as well as the numerical solutions obtained
with our code, are shown in Figure 4.10. As can be seen from the Figure, THC is
able to handle very well this large compression ratio. The WENO5 and WENO7
solutions are affected by some small wall-heating effect [238, 276], resulting in a
slight under-density near x = 0 and some numerical oscillations in the pressure.
The MP5 scheme, on the other hand, yields a solution which is essentially free
from oscillations in the pressure and much less affected by the wall-heating
effect in the density variable, although at the cost of a smaller timestep, as
discussed in the previous Section.

Transverse shock

Another peculiar difficulty of relativistic hydrodynamics and without a New-
tonian counterpart, is that the equations for the momentum in the different
directions are coupled together by the Lorentz factor: even in one-dimensional
problems the application of a transverse velocity can change completely the
solution. This feature was first pointed out by [257] and [272], and then used
by [273] and [15] to discover a new physical effect [see also [224, 339] for a
description of the numerical consequences of this property].

To explore the flow dynamics in this case, we consider the same initial data
as for the blast-wave test [see Section 4.3.2], with the only difference being that
we add a transverse velocity to the initial data, i.e.,

vt
L = 0 , vt

R = 0.99 . (4.25)
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Figure 4.11: The same as in Figure 4.1, but for the relativistic blast-wave test.
The resolution is ∆1 = 1/100 and the timestep is ∆0 = 0.002 for all the runs.

As discussed in [339] this is not a very challenging test, since the velocity is
added only to the cold fluid and it does not interact with the contact discon-
tinuity. Nevertheless it is a good test to evaluate the capability of the code to
handle the presence of a transverse-velocity at a moderate resolution, while
more extreme configurations require a resolution which is unreasonably high
for multi-dimensional applications to obtain decent solutions. A way around
this issue is the use of adaptive-mesh-refinement (AMR) [339], which however
would not be useful for our use of THC to study of relativistic turbulence (it is
in fact debatable whether the use of AMR is advantageous in this case).

In Figure 4.11 we show the analytic and numerical solutions for this problem
at time t = 0.4. The presence of the transverse velocity widens the state between
the shock wave and the contact discontinuity. The density contrast is also
smaller with respect to the case where no tangential velocity is present. THC is
able to capture the solution even at the low resolution, ∆1 = 1/100, shown in
the Figure. The MP5 scheme overestimates slightly the density contrast, but all
of the algorithms are able to capture the correct location of the shock wave.

Spherical explosion

As an example of a test involving non-grid-aligned shocks we consider the
classical test of the spherical explosion in relativistic hydrodynamics. The
initial data in this case is given by

(ρ, v, p) =

(1, 0, 1) , if r < 0.4 ;
(0.125, 0, 0.1) , elsewhere .

(4.26)
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Figure 4.12: Rest-mass density (left panels) velocity (middle panels) and pres-
sure (right panels) for the relativistic spherical explosion test. We show the
results obtained with different schemes (dotted) as well as a reference solution
(solid line) obtained with the 1D spherically symmetric code EDGES, [263], us-
ing 2000 elements of degree 3. The resolution is ∆i = 1/100 and the timestep is
∆0 = 0.00125 for all the runs.
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growth phase of the 2D relativistic Kelvin-Helmholtz instability, for different
numerical schemes. The solid lines represent the results obtained at the highest
resolution, 1024× 2048, while the dashed lines represent the results obtained at
the lowest resolution, 128 × 256. The timestep is chosen so that the CFL factor
is C ≈ 0.25 for all of the runs.

Since no analytic solution is known in this case, we use as reference so-
lution the one computed using the one-dimensional spherically-symmetric
discontinuous-Galerkin code EDGES [263] using 2000 elements of degree 3, solid
lines, and compare it with the numerical solutions obtained in three-dimensions
with THC in the diagonal direction. Both solutions at time t = 0.25 are shown
in Figure 4.12, when using a resolution ∆i = 1/100 and a timestep ∆0 = 0.00125
for all the numerical schemes. As in the one-dimensional case, a small timestep
is necessary in order to avoid numerical oscillations with the MP5 algorithm,
while the other schemes appear to be stable even with a timestep which is twice
as large.

Overall, all the schemes are able to properly capture the reference solution
even at this very low resolution: the contact discontinuity is captured within
two grid points and no oscillations are found in any of the physical quantities.

Kelvin-Helmholtz instability in 2D

The last test that we present is a classical benchmark for multidimensional
hydrodynamics codes: the simulation of the KHI in two-dimensions, x, y. In
order to ease the comparison with the existing literature, the initial conditions
are chosen following [39]. The shear velocity is given by

vx(y) =

Vshear tanh
[
(y − 0.5)/a

]
, if y > 0 ;

Vshear tanh
[
(y + 0.5)/a

]
, if y ≤ 0 ;

(4.27)

where a = 0.01 is the characteristic size of the shear layer and Vshear = 0.5,
corresponding to a relative Lorentz factor, i.e., the Lorentz factor of a part of the
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Figure 4.14: Rest-mass density for the 2D relativistic Kelvin-Helmholtz insta-
bility test at time t = 3 and for different numerical schemes. The resolution is
512×1024 for all the schemes and the CFL factor is C ≈ 0.25. This figure should
be compared with its equivalent Figure 4.15 at a resolution 1024 × 2048.

fluid as seen by an observer comoving with the other one, of W = 2.29. The
instability is seeded by adding a small perturbation in the transverse component
of the velocity,

vy(x, y) =

A0Vshear sin(2πx) exp
[
−

(
y − 0.5

)2 /σ
]
, if y > 0 ;

−A0Vshear sin(2πx) exp
[
−

(
y + 0.5

)2 /σ
]
, if y ≤ 0 ;

(4.28)

where A = 0.1 is the perturbation amplitude and σ = 0.1 its characteristic
lengthscale. The adiabatic constant is Γ = 4/3 and the initial pressure is uniform,
p = 1. The rest-mass density distribution, which is uniform in the x-direction,
is instead given by

ρ(y) =

ρ0 + ρ1 tanh
[
(y − 0.5)/a

]
, if y > 0 ;

ρ0 − ρ1 tanh
[
(y + 0.5)/a

]
, if y ≤ 0 ;

(4.29)

where ρ0 = 0.505 and ρ1 = 0.495, so that ρ = 1 in the regions with vx = 0.5
and ρ = 0.1 in the regions with vx = −0.5. Finally the computational domain
is −0.5 ≤ x ≤ 0.5, −1 ≤ y ≤ 1 and we use periodic boundary conditions in all
the directions. Differently from [39] we do not add a random perturbation to
the initial data and we do not take into account the effects of magnetic fields.
Nevertheless, our results are in good agreement with the ones by [39] in the
linear phase of the instability, since the magnetic field that they use is too weak
to play a dynamical role in this phase.
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We performed a series of simulations using six different numerical schemes:
WENO5, WENO7, MP5, the bandwidth optimized WENO3B, WENO4B and
using the WENO5 scheme, but with the Lax-Friedrichs flux-split, WENO5-LF.
For each of these schemes, we ran with four different resolutions: 128 × 256,
256×512, 512×1024 and 1024×2048. For all the runs, the CFL factor was taken
to be C ≈ 0.25.

The first quantity of interest to check is the growth rate of the transverse
velocity during the linear-growth phase of the KHI, as computed with the
different numerical schemes. This can be done by comparing the evolution of
the root-mean-square (RMS) value of the transverse component of the velocity
and defined as

〈|vy
|
2
〉 :=

1
V

∫
V
|vy
|
2 dV , (4.30)

where V is the volume of the computational domain. This is shown in Figure
4.13, where, for each numerical scheme, we show the results taken at the lowest
resolution (dashed lines) and at the highest one (continuous lines). First, we
notice that with our setup the linear-growth phase of the instability lasts up to
until t ' 3. At that time, in fact, the transverse velocity reaches saturation and
afterwards the fluid starts to become turbulent and the velocity shows large
fluctuations.

[225] showed the importance of including the contact wave in the approx-
imate Riemann solver in the case of a finite-volume code. In particular, they
observed that while the growth rate of vy was already accurate at low reso-
lution when using their HLLD Riemann solver, in the cases where the more
dissipative HLLE Riemann solver was employed the correct growth rate was
recovered only at high resolution [similar results were also reported by [39]].
In analogy with what is observed with finite-volume codes, we also note the
importance of avoiding excessive dissipation in the contact discontinuity by
comparing the results obtained with the Lax-Friedrichs and the Roe flux-split
when using WENO5. The Lax-Friedrichs flux-split underestimates the growth
rate at low resolution and achieves a good accuracy in its measure only at res-
olution 256 × 512 (not shown in the figure). WENO5 and WENO7 with the
Roe flux split already have a growth rate which is consistent with the highest
resolution runs at the lowest resolution of 128 × 256.

The behaviour of the MP5 scheme, as well as that of the bandwidth-
optimized WENO schemes, is more surprising: all of these schemes over-
estimate the growth of the RMS transverse velocity at low resolution. This
problem disappears as we increase the resolution and in the 256 × 512 case
the growth rate is already consistent with the highest-resolution one for all the
numerical schemes.

Some insight about the numerical viscosity can be gained by looking at the
topology of the flow during the linear-growth phase of the KHI. In particular
in Figure 4.14 we show a colour map of the rest-mass density obtained with the
different schemes at time t = 3 using the 512×1024 resolution. [225] noticed that
their solution obtained with the HLLD Riemann solver was showing a different
structure, with the development of secondary small-scale instabilities along the
shear layer, and that were not present when using the more diffusive HLLE
solver. Similar differences were also observed in other works [see, e.g., [8, 308]],
and the presence (or absence) of these secondary instabilities has been often
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used as an indication of the numerical viscosity of the codes. [39] interpret
these differences as an indication that HLLE is converging to a different weak
solution from HLLD. Since both solvers are entropic (i.e., with non-decreasing
entropy), this would imply the non-uniqueness of the entropic solution for the
Euler equations in this case.

In agreement with the conclusions of [39], we also note that these sec-
ondary instabilities, although only numerical artifacts (see below), appear only
in schemes able to properly treat the initial contact discontinuity. As a result,
the rest-mass density in Figure 4.14 obtained with WENO5 and WENO5-LF
match very well the ones they obtained using HLLD and HLLE, respectively.
However, our results do not support their conjecture that different schemes
are converging to different weak solutions of the equations. The reason is that
these secondary instabilities appear not to be genuine features of the solution
and, rather, tend to disappear as the resolution is increased. For instance, the
number of secondary vortices seems to change in a non-predictable fashion
with the different numerical schemes and also with the resolution. This can be
seen in Figure 4.14, which shows the great variability in the solutions obtained
with different schemes. A similar variability is also present in results obtained
at different resolutions with each scheme, WENO5-LF being the only excep-
tion. Finally, we point out that the size of the vortices is also shrinking as the
resolution is increased.

More convincing evidence that these are indeed artifacts is shown in Fig-
ure 4.15, which is the same as Figure 4.14, but at the higher resolution of
1024 × 2048. When comparing the two figures it appears clear that these sec-
ondary instabilities are much smaller. Interestingly, therefore, the more dissi-
pative scheme WENO5 with the Lax-Friedrichs flux-split, WENO5-LF, seems
to converge more rapidly to the correct solution (at least in these initial stages)
than its less diffusive counterparts.

In essence, therefore, all of these considerations lead us to the conclusion
that the secondary instabilities are triggered by the non-linear dissipation mech-
anism of the different schemes, emerge neatly when computed with numerical
schemes that treat properly the initial contact discontinuity, but do not have a
physical meaning.

A similar interpretation is also given by [219], who go one step further
and suggest to add additional viscosity to numerical codes displaying these
secondary instabilities in order to prevent their growth. While the addition of
extra dissipation is going to smooth out small scales numerical perturbations,
we argue that this issue can only be resolved with the inclusion of physical
viscosity. Artificial viscosity would probably compete with the internal, non-
linear, dissipation mechanism of the schemes yielding results that would be
even more difficult to interpret (as the viscous scale will now depend both on
the resolution and on the artificial viscosity strength).

A more quantitative way of estimating the numerical viscosity of the code in
this test has been proposed by [39] and is based on the study of one-dimensional
integrated power-spectra. Given a quantity u(x, y) we define its integrated
power-spectrum

P1
u(k) =

∫ 1

−1
|û(k, y)|2dy , (4.31)
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Figure 4.15: Rest-mass density for the 2D relativistic Kelvin-Helmholtz insta-
bility test at time t = 3 and for different numerical schemes. The resolution
is 1024 × 2048 for all the schemes and the CFL factor is C ≈ 0.25. This figure
should be compared with its equivalent Figure 4.14 at a resolution 512 × 1024.
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2D relativistic Kelvin-Helmholtz instability test at time t = 3 and for different
numerical schemes. The resolution is 1024 × 2048 for all the schemes and the
CFL factor is C ≈ 0.25.
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where k is the wavenumber and

û(k, y) =

∫ 1/2

−1/2
u(x, y)e−2πikxdx , (4.32)

is the one-dimensional Fourier transform of u. To ease the comparison with the
spectra reported by [39], the power spectrum is then normalized so that

N/2∑
k=1

P1
u(k) = 1 , (4.33)

where N is the number of gridpoints. The one-dimensional power spectrum
can be used to quantify the typical scale of structures, such as the secondary
vortices discussed above, stretched in the direction of the bulk shear flow.

In Figure 4.16 we show the spectra of the rest-mass density for the different
schemes at time t = 3 and for the highest resolution. As expected the WENO5-
LF scheme stands out as the scheme having the largest dissipation. More
surprising is the behaviour of the bandwidth optimized schemes: they appear
to be improving over their classical counterparts only at high wavenumbers,
that is, at scales that are dominated by the (non-physical) dissipation of the
scheme. Even more unexpected is the ability of the MP5 scheme to resolve small
scales structures and that, on the basis of the argument about the development
of the secondary instabilities, should be more dissipative than WENO4B, but
which instead appears to yield more small-scale structures in the rest-mass
density.

A similar conclusion can be obtained by studying the spectrum of the kinetic
energy

Ek = ρW(W − 1) , (4.34)

but which we do not report since its behaviour is very similar to the one shown
for the rest-mass density.

4.4 The relativistic Kelvin-Helmholtz instability in
3D

As an example of a non-trivial application of THC and a perfect playground to
evaluate the performances of the different numerical schemes for the simulation
of turbulence, we present here a study of the relativistic turbulence generated
by the KHI in three-dimensions. Our analysis is not meant to be a systematic
assessment of the accuracy of these methods for direct numerical simulations
of compressible relativistic turbulence, as done, for instance by [181], or [177]
in the case of classical turbulence. Rather, our analysis is meant to assess how
the different methods reproduce the same turbulent initial-value problem and
to provide some insight on the spectral properties of the different schemes.

The relativistic KHI [see, e.g., [51]] is of particular interest because of its
relevance for the stability of relativistic jets [see, e.g., [251, 250]], and because
of its potential role in the amplification of magnetic fields in gamma-ray bursts
[see, e.g., [338]], and binary neutron-star mergers [25, 143, 240, 274].

We consider a triply-periodic box, −0.5 ≤ x ≤ 0.5, −1 ≤ y ≤ 1, −0.5 ≤ z ≤ 0.5.
The initial conditions are the same ones employed in Section 4.3.2, and the
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Figure 4.17: RMS value of the y-component of the velocity during the linear-
growth phase of the 3D relativistic Kelvin-Helmholtz instability, for different
numerical schemes. The thick-dashed line represent the results obtained at
the highest resolution, 1024 × 2048, in 2D with WENO5. The resolution is
256 × 512 × 256 for all the schemes.

symmetry in the z-direction is broken with the application of random pertur-
bations, uniformly distributed in the range [0, 0.01], applied to the velocity in
the z-direction vz. We simulated this system up to the time t = 30 on a grid of
256×512×256 cells using the WENO5, WENO7, MP5, WENO3B and WENO4B
reconstructions. In addition, we have also performed one run at the same reso-
lution using the second-order MINMOD reconstruction. Furthermore, because
of the high computational costs involved to check the convergence of the code,
we have managed to run only one model at twice the reference resolution,
i.e., 512 × 1024 × 512, using the WENO5 reconstruction scheme.

As discussed in the previous Section, the MP5 scheme requires a timestep
which is half that of the other schemes. On the other hand, there is no need to
run the WENO schemes with such a small timestep and in any “real” application
we will run the WENO scheme with the maximum possible timestep. For this
reason, and since we are interested in the performance of the different schemes
in their “real-world” configuration, we have not used the same CFL factor for
all of them, with a considerable saving in computational costs. In particular,
for all the runs we have used a CFL factor C ≈ 0.25, with the exception of the
one with the MP5 scheme, where we have used C ≈ 0.125.

4.4.1 The linear evolution of the instability

First of all, we consider the evolution of the instability during its linear-growth
phase. At this stage, the velocity perturbations in the direction perpendicular
to the shearing one are growing exponentially and three-dimensional effects
are still negligible.

The evolution of the RMS value of the y-component of the velocity is re-
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Figure 4.18: Rest-mass density in the z = 0 plane for the 3D relativistic Kelvin-
Helmholtz instability study at time t = 3 and for different numerical schemes.
The resolution is 256 × 512 × 256 for all the schemes.

ported in Figure 4.17, where we show the results obtained with the different
schemes, as well as a reference solution computed in two dimensions (2D) using
WENO5 on 1024 × 2048 grid points. As expected, all the numerical schemes,
with the exception of MINMOD, are in very good agreement with the 2D so-
lution up to the end of the linear-growth phase at time t = 3, when 3D effects
become important and turbulence starts to play an important role in the dy-
namics. It is interesting to note that MINMOD, which is the most dissipative
of the schemes we are using, is actually overestimating the growth of the KHI.
This suggests that some care should be taken when interpreting the results from
under-resolved simulations, since it is not always safe to assume that the high
numerical viscosity of the low-resolution runs tends to suppress the instability,
yielding a lower-bound on its growth.

The rest-mass density at time t = 3 is shown in Figure 4.18, where, in analogy
with the 2D case, we find that the more dissipative schemes (i.e., MINMOD),
do not show any sign of secondary instabilities apart from the seeded ones,
while the least dissipative ones (i.e., WENO3B, WENO4B) show the emergence
of secondary vortices.

At this point in time, the flow is still mostly two-dimensional, but it is
interesting to notice the effects resulting from the small perturbations in the
vertical velocity vz. The perturbations have the same statistical properties
in all the different models, but their effects are appreciably different for the
different schemes, as can be seen from Figure 4.18. Although the perturba-
tion in vz is random and it does not preserve any of the symmetries of the
problem, it is still symmetric, on average, with respect to the y-axis. For this
reason, one does not expect to find a large symmetry violation until the time
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Figure 4.19: Evolution of the concentration of the passive tracer in the z =
0 plane for the 3D Kelvin-Helmholtz instability obtained using WENO5 on
512 × 1024 × 512 gridpoints.

when these perturbations have had enough time to grow and the dynamics
has started to become dominated by three-dimensional effects. Yet, the opti-
mized schemes WENO3B, WENO4B appear to be much more sensitive to the
symmetry breaking than the others. The reason for this is probably that the
bandwidth optimized-algorithms appear to trigger smaller-scale secondary in-
stabilities, which, in turn, are more easily affected by the perturbations in the
vertical velocity, since the perturbation does not average out at small scales.

4.4.2 The non-linear evolution of the instability

The linear-growth phase of the KHI instability ends when the primary vortices
become unstable to secondary instabilities and the flow starts the transition to
turbulence. At this point, three-dimensional effects start to become dominant
and the dynamics is qualitatively different from the one observed in the 2D
case.

In order to better track the evolution of the fluid in this phase, we monitor
the concentration of a passive scalar field, φ, transported with the fluid via the
advection equation

∂φ

∂t
+

3∑
i=1

vi ∂φ

∂xi = 0 . (4.35)

Equation (4.35) is not a conservation law, so that in can not be written directly2

2Equation (4.35) can be written in conservation form at the price of introducing an additional,
conserved variable, φ̃ := ρWφ. In our study this complication is not necessary, as we use the tracer
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in the form (3.62), but it is nevertheless a hyperbolic equation of the Hamilton-
Jacobi type. For this reason, in order to solve numerically (4.35) we use a class
of numerical schemes designed for this family of equations and that can be
built using the non-oscillatory reconstruction of the derivative introduced in
Section 4.2 [see, e.g., [301]]. In particular, the semi-discrete form of equation
(4.35) becomes

dφi, j,k

dt
=vx

i, j,k

φi−1/2, j,k − φi+1/2, j,k

∆1 + vy
i, j,k

φi, j−1/2,k − φi, j+1/2,k

∆2 +

vz
i, j,k

φi, j,k−1/2 − φi, j,k+1/2

∆3 ,

(4.36)

where (φi−1/2, j,k − φi+1/2, j,k)/∆1 is a high-order non-oscillatory approximation of
−∂φ/∂x1 at xi, j,k obtained using an upwind-biased reconstruction, i.e.,

φi−1/2, j,k = φ±i−1/2, j,k, if vx ≶ 0 . (4.37)

The “fluxes” in the other directions are obviously computed in an analogous
way.

The time evolution of the tracer, as computed with WENO5 at the highest-
resolution is shown in Figure 4.19. At the initial time, we set the scalar field
φ to be equal to the rest-mass density, so that the initial configuration consists
in two regions with opposite “colour”, separated by a thin transition layer. At
the end of the linear regime, i.e., at time t ' 3, the tracer profile is distorted
by the presence of the primary vortices as well as of the secondary ones, but
there is only a marginal mixing of the two “phases” of the fluid. Note that,
since we do not include any explicit dissipation term in the advection equation
(4.35), the mixing of the tracer happens only due to numerical dissipation. As
the vortices start to become unstable, the fluid starts to concentrate the scalar
field in thin structures and the two regions of the fluid start to mix around the
shearing region. As the simulation proceeds, the width of the region affected
by the mixing grows, till at time t ' 24, when there are only small patches of the
fluid that still have a uniform tracer (colour). At the final time, t = 30, there are
no regions in the flow that are unaffected by the mixing and the initial structure
is mostly destroyed, even though perfect mixing has not been achieved yet.

We track the evolution of the variance of the scalar field, which we compute
as

Var[φ] := 〈|φ − 〈φ〉|2〉 , (4.38)

and which, for t ≥ 5, we find to be very-well fitted by a simple exponential law
of the type

Var[φ] = Ke−t/τ . (4.39)

The values of the fitting constant for the WENO5 scheme at the highest reso-
lution are K = 0.28 and τ = 14.75. The mixing timescale, τ, exhibits only small
changes between the runs at different resolutions, with the exception of the
results obtained with MP5, where the timescale is τ = 17.5. Hence, the total
time of the simulation, t = 30, is roughly equivalent to two e-folding times for
the mixing of the passive tracer.

only as a diagnostic quantity. On the other hand, in situations where, for instance, the tracers
are used to model the chemical composition of a fluid in a reacting flow, it may be important to
ensure the conservation of the different species and a conservative approach may be preferred [see,
e.g., [252] for an example of this approach].
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Figure 4.20: Compensated power spectrum of the velocity at time t = 30 for the
3D Kelvin-Helmholtz instability test, using WENO5 at two different resolutions,
256 × 512 × 256 and 512 × 1024 × 512.

Fully-Developed turbulence

After the linear-growth phase, the flow quickly becomes turbulent. By the
time we stop the simulation at t = 30, the turbulence is fully developed even
though the flow is still not isotropic, but preserving some memory of the initial
configuration. Because of the large computational costs involved in these tests
(which, we recall, have been performed for six different methods) we have not
carried out the simulations for longer times, assuming that the properties of
the non-perfectly isotropic turbulence at the final time are sufficiently close to
the fully isotropic turbulence. We point out that our simulation time is more
then two times longer than the one reported in [338], where a setup similar to
ours was used, but in the more challenging regime of relativistic MHD.

By far the most interesting quantity to study is the three-dimensional veloc-
ity power spectrum

Pv(k) =
1
2

∫
|k|=k
|v̂(k)|2 dk , (4.40)

where v̂(k) is the three-dimensional Fourier transform of v(x),

v̂(k) =

∫
V

v(x)e−2πik·xdx , (4.41)

and V is the volume of the computational region. The integral in (4.40) is
computed following [126] as

Pv(k) =
1
2

4πk2

Nk

∑
k−1/2<|k|≤k+1/2

|v̂(k)|2 , (4.42)

where Nk is the number of discrete wave-numbers in the shell k − 1/2 ≤ |k| <
k + 1/2. For simplicity, we study the data in the artificially-enlarged cubic



4.4. The relativistic Kelvin-Helmholtz instability in 3D 97

104

105

106

107

k
5
/
3
P
v
(k

)

8

WENO5

7

WENO3B

100 101 102

k

104

105

106

107

k
5
/
3
P
v
(k

)

11

WENO7

100 101 102

k

13

WENO4B

100 101 102

k

13

MP5

MINMOD

Figure 4.21: Compensated power spectrum of the velocity at time t = 30 for the
3D Kelvin-Helmholtz instability test, using different numerical schemes. In all
the cases the resolution is 256 × 512 × 256.

domain [−1, 1]3 and we do that by duplicating the original data in the x and
z-directions, exploiting the symmetry of the problem. This procedure avoids
the complications of a computational domain which does not have the same
extent in all directions and yields an “equivalent resolution” of 5123 and 10243

points for the low and high-resolution runs respectively. Clearly the first few
wave-numbers of the spectrum are influenced by this procedure, but all the
higher wave-numbers are essentially unaffected.

At the final time, the flow is subsonic (Mmax . 1) and relativistically warm
(ε & 1). Under these conditions, studies of Newtonian [258] and relativistic
[338, 172, 346] transonic turbulence suggest that the velocity spectrum should
be consistent with the Kolmogorov phenomenology [183]. In particular, the
power spectrum should scale as

Pv(k) ∼ k−5/3 , (4.43)

in the so called inertial range, that is at those scales where the fluid motion is
sufficiently independent from the large-scale dynamics and from the small-scale
viscosity, so as to exhibit a self-similar universal behaviour.

In Figure 4.20 we show the compensated velocity spectrum, i.e., k5/3Pv(k), at
time t = 30 obtained from the data of the two WENO5 runs. More specifically,
the low-resolution spectrum is shifted to larger wavenumbers by a factor two
and scaled assuming a k−5/3 scaling of the spectrum. The rationale behind this
procedure is that we are interested in the (eventual) self-similar behaviour of
the spectrum and it is therefore useful to consider the low-resolution run as a
realisation of the same flow as the high-resolution one, but in a smaller volume.
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In other words, we interpret the spectrum of the low-resolution run as being
computed from a subsample of the data of the high-resolution one [see, e.g., [52]
for a more detailed discussion of the issue of convergence for direct simulations
of turbulent flows].

The plot demonstrates the statistical convergence of the simulation, with
the exception of the very low-wavenumber part of the spectrum, where the
convergence is probably spoiled by the symmetry. At the same time, the
plot also shows that only the high-resolution run seems to be able to cover
a sufficiently wide part of the inertial range to give a clear indication of the
Kolmogorov −5/3 scaling.

In Figure 4.21 we show the compensated velocity spectra at time t = 30
obtained with the different numerical schemes. For each scheme, we highlight
with a grey shaded area the part of the spectrum that appears to be “compatible”
with the−5/3 scaling inferred from the high-resolution WENO5 run. The width
of this region, expressed in terms of wavenumbers, is also indicated on the
figure. Clearly, this measure has to be taken with a bit of caution, since there
is a certain degree of arbitrariness in the identification of the “inertial range”;
furthermore, the judgment is also made more difficult by the fact that all of the
results are obtained at a resolution which probably is not high enough and that
a convergence study is only available for the WENO5 case. Notwithstanding
these caveats, the difference between the various schemes is already sufficiently
clear to deduce some of their properties despite the limited amount of data that
we were able to generate.

A first conclusion to be drawn is about the importance of the use of high-
order schemes, whch is apparent if we compare the different spectra with the
one obtained with the MINMOD scheme. This second-order algorithm, in fact,
yields a spectrum which is completely dominated by the so-called “bottleneck-
effect” [see, e.g., [65, 287]], i.e., by a region where the power-spectrum shows an
excess due to viscous effects. No clear indication of an inertial range appears
anywhere in the spectrum, with the only “flat” region being the middle of
the bottleneck zone. This could be easily mistaken as the inertial range in the
absence of a proper convergence analysis. For this reason, and as remarked
many times already, care should be taken while interpreting the results obtained
with low-order schemes.

Secondly, we observe that WENO4B has an effective resolution which is
about 50% larger then the one from WENO5 and 20% larger then WENO7.
Given that saving a factor 1.5 in resolution corresponds, in 3D to a decrease of
the computation costs by a factor five3, we conclude that the use of WENO4B
over WENO5 is well justified, since WENO4B is roughly twice as expensive as
WENO5 in 3D. On the other hand, the spectral resolution of WENO4B does not
appear to be better than the one of the MP5 scheme, which has similar compu-
tational costs (due to the stricter CFL limitation), but which is also expected to
have better parallel scaling because of its more compact stencil. Overall, MP5
shows an “inertial-range” as large as WENO4B. We also note that WENO3B
does not seem to yield any improvements over WENO5.

All things considered, the main differences between the bandwidth-optimized
schemes and their traditional counterparts seem to lay in the bottleneck region:

3We note that when increasing the resolution, also the timestep is reduced via the CFL condition.
Hence, the additional cost goes like the fourth power of the ratio in resolutions.
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WENO3B and WENO4B have a much less pronounced bottleneck with respect
to WENO5, WENO7 and MP5. This suggests that these schemes should be
considered especially for under-resolved turbulent flows, where the spectrum
is basically entirely dominated by the dissipation. MP5, on the other hand,
can be particularly useful for those problems where one is interested in well-
resolved quantities, such as in direct numerical simulations of turbulence, since
the scales affected by the numerical dissipation are more easily identified by the
pronounced bottleneck. MP5 should also be the scheme of choice in Newtonian
hydrodynamics, since there its timestep constraint seems to be less severe.

4.5 Driven Relativistic Turbulence

4.5.1 Introduction

Turbulence is a ubiquitous phenomenon in nature as it plays a fundamental role
in shaping the dynamics of systems ranging from the mixture of air and oil in a
car engine, up to the rarefied hot plasma composing the intergalactic medium.
Relativistic hydrodynamics is a fundamental ingredient in the modeling of a
number of systems characterized by high Lorentz-factor flows, strong gravity or
relativistic temperatures. Examples include the early Universe, relativistic jets,
gamma-ray-bursts (GRBs), relativistic heavy-ion collisions and core-collapse
supernovae [130].

Despite the importance of relativistic hydrodynamics and the reasonable
expectation that turbulence is likely to play an important role in many of the
systems mentioned above, extremely little is known about turbulence in a
relativistic regime. For this reason, the study of relativistic turbulence may
be of fundamental importance to develop a quantitative description of many
astrophysical systems. To this aim, we have performed a series of high-order
direct numerical simulations of driven relativistic turbulence of a hot plasma.

4.5.2 Model and method

We consider an idealized model of an ultrarelativistic fluid with four-velocity
uµ = W(1, vi), where W := (1 − vivi)−1/2 is the Lorentz factor and vi is the three-
velocity in units where c = 1. The fluid is modeled as perfect and described by
the stress-energy tensor

Tµν = (e + p)uµuν + p gµν , (4.44)

where e is the (local-rest-frame) energy density, p is the pressure, uµ the four-
velocity, and gµν is the spacetime metric, which we take to be the Minkowski
one. We evolve the equations describing conservation of energy and mo-
mentum in the presence of an externally imposed Minkowskian force Fµ,
i.e., ∇νTµν = Fµ, where the forcing term is written as Fµ = F̃(0, f i). More
specifically, the spatial part of the force, f i, is a zero-average, solenoidal, ran-
dom, vector field with a spectral distribution which has compact support in
the low wavenumber part of the Fourier spectrum. Moreover, f i, is kept fixed
during the evolution and it is the same for all the models, while F̃ is either a
constant or a simple function of time (see below for details).
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Figure 4.22: Average Lorentz factor as a function of time for the different
models considered. Note that a quasi-stationary state is reached before t ∼ 10
for all values of the driving force.

Figure 4.23: Logarithm of the Lorentz factor on the (y, z) plane at the final time
of model D. Note the large spatial variations of the Lorentz factor with front-like
structures. The time-averaged PDFs are shown in the lower left corner for the
different models considered.
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The time component of the forcing term, F0, is set to be zero, so that the
driving force is able to accelerate fluid elements without changing their total
energy (in the Eulerian frame). Note that this is conceptually equivalent to
the addition of a cooling term balancing the effect of the work done on the
system by the driving force. On the other hand, we impose a minimum value
for the energy density in the local-rest-frame, emin. This choice is motivated
essentially by numerical reasons (the very large Lorentz factor produced can
lead to unphysical point-wise values of e) and has the effect of slowly heating
up the fluid. Furthermore, this floor does not affect the momentum of the fluid
and only the temperature is increased. From a physical point of view, our
approach mimics the fact that in the low-density regions, the constituents of
the plasma are easily accelerated to very high Lorentz factors, hence emitting
bremsstrahlung radiation heating up the surrounding regions. The net effect
is that energy is subtracted from the driving force and converted into thermal
energy of the fluid, heating it up. In general emin is chosen to be two orders
of magnitude smaller than the initial energy density, but we have verified that
the results presented here are insensitive to the specific value chosen for emin by
performing simulations where the floor value is changed by up to two orders
of magnitude without significant differences.

The set of relativistic-hydrodynamic equations is closed by the equation
of state (EOS) p = 1

3 e, thus modelling a hot, optically-thick, radiation-pressure
dominated plasma, such as the electron-positron plasma in a GRB fireball or the
matter in the radiation-dominated era of the early Universe. The EOS used can
be thought as the relativistic equivalent of the classical isothermal EOS in that
the sound speed is a constant, i.e., c2

s = 1/3. At the same time, an ultrarelativistic
fluid is fundamentally different from a classical isothermal fluid. For instance,
its “inertia” is entirely determined by the temperature and the notion of rest-
mass density is lost since the latter is minute (or zero for a pure photon gas)
when compared with the internal one. For these reasons, there is no direct
classical counterpart of an ultrarelativistic fluid and a relativistic description is
needed even for small velocities.

To solve the equations of relativistic hydrodynamics in 3D we use the THC
code described in this chapter and published in [264]. In particular, here, we
use the MP5 reconstruction in local characteristic variables [165].

4.5.3 Basic flow properties

Our analysis is based on the study of four different models, which we label as
A, B, C and D, and which differ for the initial amplitude of the driving factor
F̃ = 1, 2, 5 for models A–C, and F̃(t) = 10 + 1

2 t for the extreme model D. Each
model was evolved using three different uniform resolutions of 1283, 2563 and
5123 grid-zones over the same unit lengthscale. As a result, model A is subsonic,
model B is transonic and models C and D are instead supersonic. The spatial
and time-averaged relativistic Mach numbers 〈vW〉/(csWs) are 0.362, 0.543, 1.003
and 1.759 for our models A, B, C and D, while the average Lorentz factors are
1.038, 1.085, 1.278 and 1.732 respectively

The initial conditions are simple: a constant energy density and a zero-
velocity field. The forcing term, which is enabled at time t = 0, quickly acceler-
ates the fluid, which becomes turbulent. By the time when we start to sample
the data, i.e., at t = 10 (light-)crossing times, turbulence is fully developed and
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the flow has reached a stationary state. The evolution is then carried out up
to time t = 40, thus providing data for 15, equally-spaced timeslices over 30
crossing times. As a representative indicator of the dynamics of the system,
we show in Fig. 4.22 the time evolution of the average Lorentz factor for the
different models considered. Note that the Lorentz factor grows very rapidly
during the first few crossing times and then settles to a quasi-stationary evo-
lution. Furthermore, the average grows non-linearly with the increase of the
driving term, going from 〈W〉 ' 1.04 for the subsonic model A, up to 〈W〉 ' 1.73
for the most supersonic model D.

Flow quantities such as the energy density, the Mach number or the Lorentz
factor show large spatial variance, even in our subsonic model. Similar de-
viations from the average mass density have been reported also in classical
turbulent flows of weakly compressible fluids [42], where it was noticed that
compressible effects, leading to the formation of front-like structures in the den-
sity and entropy fields, cannot be neglected even at low Mach numbers. In the
same way, relativistic effects in the kinematics of the fluid, such as those due to
non-linear couplings via the Lorentz factor [272], have to be taken into account
even when the average Lorentz factor is small. The probability distribution
functions (PDFs) of the Lorentz factor are shown in Fig. 4.23 for the different
models. Clearly, as the forcing is increased, the distribution widens, reaching
Lorentz factors as large as W ' 40 (i.e., to speeds v ' 0.9997). Even in the most
“classical” case A, the flow shows patches of fluid moving at ultrarelativistic
speeds. Also shown in Fig. 4.23 is the logarithm of the Lorentz factor on the
(y, z) plane and at t = 40 for model D, highlighting the large spatial variations
of W and the formation of front-like structures.

4.5.4 Universality

As customary in studies of turbulence, we have analyzed the power spectrum
of the velocity field

Ev(k) :=
1
2

∫
|k|=k
|v̂(k)|2 dk , (4.45)

where k is a wavenumber three-vector and

v̂(k) :=
∫

V
v(x)e−2πik·x dx , (4.46)

with V being the three-volume of our computational domain. A number of
recent studies have analyzed the scaling of the velocity power spectrum in the
inertial range, that is, in the range of wavenumbers between the lengthscale of
the problem and the scale at which dissipation dominates. More specifically,
Inoue et al. [172] has reported evidence of a Kolmogorov k−5/3 scaling in freely-
decaying MHD turbulence, but have not provided a systematic convergence
study of the spectrum. Evidence for a k−5/3 scaling was also found by Zhang
et al. [338], in the case of the kinetic-energy spectrum, which coincides with
the velocity power-spectrum in the incompressible case. Finally, Zrake and
MacFadyen [346] have performed a significantly more systematic study for
driven, transonic, MHD turbulence, but obtained only a very small (if any)
coverage of the inertial range.
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Figure 4.24: Power spectra of the velocity field. Different lines refer to the three
resolutions used and to the different values of the driving force. The spectra
are scaled assuming a k−5/3 law.

The time-averaged velocity power spectra computed from our simulations
are shown in Fig. 4.24. Different lines refer to the three different resolutions
used, 1283 (dash-dotted), 2563 (dashed) and 5123 (solid lines), and to the dif-
ferent values of the driving force. To highlight the presence and extension of
the inertial range, the spectra are scaled assuming a k−5/3 law, with curves at
different resolutions shifted of a factor two or four, and nicely overlapping with
the high-resolution one in the dissipation region. Clearly, simulations at higher
resolutions would be needed to have power-spectra which are more accurate
and with larger inertial ranges, but overall, Fig. 4.24 convincingly demonstrates
the good statistical convergence of our code and gives strong support to the
idea that the key prediction of the Kolmogorov model (K41) [183] carries over
to the relativistic case. Indeed, not only does the velocity spectrum for our
subsonic model A shows a region, of about a decade in length, compatible
with a k−5/3 scaling, but this continues to be the case even as we increase the
forcing and enter the regime of relativistic supersonic turbulence with model
D. In this transition, the velocity spectrum in the inertial range, the range of
lengthscales where the flow is scale-invariant, is simply “shifted upwards” in
a self-similar way, with a progressive flattening of the bottleneck region, the
bump in the spectrum due to the non-linear dissipation introduced by our nu-
merical scheme. Steeper or shallower scalings, such as the Burgers one, k−2, or
a k−4/3 one, are also clearly incompatible with our data.

These results have been confirmed in a preliminary study where we pushed
our resolution for model D, the most extreme one, to 10243.

All in all, this is one of our main results: the velocity power spectrum in
the inertial range is universal, that is, insensitive to relativistic effects, at least
in the subsonic and mildly supersonic cases. Note that this does not mean that
relativistic effects are absent or can be neglected when modelling relativistic
turbulent flows.
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Figure 4.25: Compensated, third-order, parallel structure function computed
for the different models as functions of r/∆. Note the very good match with the
classical S‖3 ∼ r behaviour.

4.5.5 Intermittency

Not all of the information about relativistic turbulent flows is contained in the
velocity power spectrum. Particularly important in a relativistic context is the
intermittency of the velocity field, that is, the local appearance of anomalous,
short-lived flow features, which we have studied by looking at the parallel-
structure functions of order p

S‖p(r) :=
〈
|δrv|p

〉
, δrv =

[
v(x + r) − v(x)

]
·
r

r
(4.47)

where r is a vector of length r and the average is over space and time.
Figure 4.25 reports the compensated, third-order, parallel structure function,

S‖3, as functions of r/∆, where ∆ is the grid spacing. Within the inertial range,
classical incompressible turbulence has a precise prediction: the Kolmogorov
4/5-law, for which 〈(δrv)3

〉 = 4
5εr, where ε is the kinetic-energy dissipation rate.

This translates into S‖3 ∼ εr. As shown in the figure, the structure functions are
somewhat noisy at small scales, but are consistent with the classical prediction
over a wide range of lengthscales, with linear fits showing deviations of ∼ 5%,
and an increase of ε with the driving force.

Although even in the classical compressible case, the 4/5-law is not strictly
valid, we can use it to obtain a rough estimate of the turbulent velocity dissi-
pation rate [258]. We find that ε, as measured from S‖3 or directly from 〈(δrv)3

〉,
grows linearly with the Lorentz factor, in contrast with the classical theory,
where it is known to be independent of the Reynolds number. This is consis-
tent with the observations that in a relativistic regime the turbulent velocity
shows an exponential decay in time [345, 172], as opposed to the power-law
decay seen in classical compressible and incompressible turbulence.

The scaling exponents of the parallel structure functions, ζ‖p have been com-
puted up to p = 10 using the extended-self-similarity (ESS) technique [41] and
are summarized in Table 4.2. The errors are estimated by computing the ex-
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Table 4.2: Scaling exponents of the parallel structure functions computed using
the ESS technique and analytical predictions from the KS41, SL and Boldyrev
models.

Order
1
2
3
4
5
6
7
8
9

10

K41
0.33
0.67

1
1.33
1.67

2
2.33
2.67

3
3.33

SL
0.36
0.70

1
1.28
1.54
1.78
2.00
2.21
2.41
2.59

Boldyrev
0.41
0.74

1
1.21
1.39
1.56
1.70
1.84
1.96
2.08

A512

0.37 ± 0.01
0.70 ± 0.02

1 ± 0.02
1.27 ± 0.03
1.51 ± 0.02
1.72 ± 0.03
1.89 ± 0.04
2.04 ± 0.04
2.17 ± 0.03
2.27 ± 0.02

B512

0.36 ± 0.01
0.70 ± 0.03

1 ± 0.04
1.27 ± 0.05
1.50 ± 0.07
1.70 ± 0.08
1.86 ± 0.12
1.99 ± 0.16
2.10 ± 0.21
2.18 ± 0.26

C512

0.37 ± 0.01
0.70 ± 0.02

1 ± 0.03
1.26 ± 0.04
1.48 ± 0.05
1.68 ± 0.07
1.84 ± 0.09
1.98 ± 0.11
2.09 ± 0.13
2.19 ± 0.16

D512

0.38 ± 0.005
0.71 ± 0.01

1 ± 0.03
1.25 ± 0.03
1.46 ± 0.05
1.64 ± 0.07
1.79 ± 0.09
1.92 ± 0.11
2.04 ± 0.14
2.14 ± 0.16

ponents without the ESS or using only the data at the final time. We also
show the values as computed using the classical K41 theory, as well as using
the estimates by She and Leveque (SL) [293] for incompressible turbulence,
i.e., ζ‖p =

p
9 + 2 − 2( 2

3 )p/3, and those by Boldyrev [53] for Kolmogorov-Burgers
supersonic turbulence, i.e., ζ‖p =

p
9 + 1 − ( 1

3 )p/3.
Not surprisingly, as the flow becomes supersonic, the high-order exponents

tend to flatten out and be compatible with the Boldyrev scaling, as the most
singular velocity structures become two-dimensional shock waves. ζ‖2, instead,
is compatible with the She-Leveque model even in the supersonic case. This
is consistent with the observed scaling of the velocity power spectrum, which
presents only small intermittency corrections to the k−5/3 scaling. Previous
classical studies of weakly compressible [42] and supersonic turbulence [258]
found the scaling exponents to be in very good agreement with the ones of the
incompressible case and to be well described by the SL model. This is very
different from what we observe even in our subsonic model A, in which the
exponents are significantly flatter than in the SL model, suggesting a stronger
intermittency correction. This deviation is another important result of our
simulations.

One non-classical source of intermittency is the genuinely relativistic con-
straint that the velocity field cannot be Gaussian as the PDFs must have compact
support in (−1, 1). This is shown by the behaviour of the PDFs of vz and plotted
as solid lines in the shaded area of Fig. 4.26. Clearly, as the Lorentz factor in-
creases, the PDFs become flatter and, as a consequence, the velocity field shows
larger deviations from Gaussianity (dashed lines). Stated differently, relativistic
turbulence is significantly more intermittent than its classical counterpart.

4.6 Conclusions

We have presentedTHC, a new multi-dimensional, finite-difference, high-resolution
shock-capturing code for classical and special-relativistic hydrodynamics. THC
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Figure 4.26: PDFs of the velocity vz for the different models considered (solid
lines). As the forcing is increased, the PDFs flatten, while constrained to be in
(−1, 1) (shaded area). Increasingly large deviations from Gaussianity (dashed
lines) appear in the relativistic regime.

employs up to seventh-order accurate reconstruction of the fluxes in local char-
acteristic variables and the Roe flux-vector-splitting algorithm with a novel
entropy-fix prescription. The multi-dimensional case is treated in a dimen-
sionally unsplit fashion and the time integration is done with a third-order
strongly-stability-preserving Runge-Kutta scheme.

We have carried out a systematic comparison of the results obtained with
our code using five different reconstruction operators: the classical WENO5,
WENO7, MP5, as well as two specialised bandwidth-optimized WENO schemes:
WENO3B and WENO4B. For all schemes, we have checked their ability to
sharply capture grid-aligned, diagonal or spherical shock waves, and have car-
ried out a rigorous assessment of their accuracy in the case of smooth solutions.
Finally, we have contrasted the performance of the different methods in the
resolution of small scale structures in turbulent flows. To the best of our knowl-
edge, this is the first time that such a comparison has been carried over in the
special-relativistic case.

Among the different tests studied, some are highly nontrivial, such those
involving the linear and the non-linear phases of the development of the Kelvin-
Helmholtz instability for a relativistic fluid in two and three dimensions. In
particular, we have shown the importance of using schemes that are able to
properly capture the initial contact discontinuity in order to obtain the correct
growth rate of the RMS transverse velocity in the linear-growth phase of the
instability at low resolution, confirming the findings by [225] and [39].

When studying the Kelvin-Helmholtz instability in two dimensions, we
have investigated the nature of the secondary vortices that appear during the
initial stages of the instability when using some of the numerical schemes
considered. We have then clarified that these vortices are not genuine features
of the solution of the equations, but rather numerical artefacts that converge
away with resolution. When studying the Kelvin-Helmholtz instability in
three dimensions, we have instead investigated the “mixing timescale” of the
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instability and the subsequent turbulent flow, showing that we are able to
obtain a converged measure of the velocity power spectrum, using the WENO5
scheme. Our data offers a clear indication that the Kolmogorov phenomenology
[183] holds also for the turbulence in a subsonic relativistically-warm fluid.
Using the Kolmogorov −5/3 scaling as a reference, we have estimated the
effective inertial range of the different schemes, highlighting the importance of
using high-order schemes to study turbulent flows.

Furthermore, using a series of high-order direct numerical simulations of
driven relativistic turbulence in a hot plasma, we have explored the statistical
properties of relativistic turbulent flows with average Mach numbers ranging
from 0.4 to 1.7 and average Lorentz factors up to 1.7. We have found that rela-
tivistic effects enhance significantly the intermittency of the flow and affect the
high-order statistics of the velocity field. Nevertheless, the low-order statistics
appear to be universal, i.e., independent from the Lorentz factor, and in good
agreement with the classical Kolmogorov theory. In the future we plan to pur-
sue a more systematic investigation of the properties of relativistic turbulent
flows at higher resolution.

Finally, THC represents the first step towards the implementation of new
and high-order methods for the accurate study of general relativistic problems,
such as the inspiral and merger of binary neutron stars [26] and their relation
with gamma-ray bursts [274]. We are in fact convinced that the transition
towards higher-order methods is now a necessary and an inevitable step for a
more realistic description of the complex phenomenology associated with these
relativistic-astrophysics processes.
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Chapter 5

Finite-Differencing Methods:
General Spacetimes

5.1 Introduction

The inspiral and merger of binary neutron stars (BNS) is one of the most promis-
ing sources of gravitational waves (GWs) for next-generation ground-based
laser-interferometers detectors such as LIGO, Virgo or GEO600 [286]. GWs
could be used to infer parameters such as the mass, the spin, the compactness
and the tidal Love number of the neutron stars, providing very valuable in-
formations concerning the EoS of matter at super-nuclear densities. In order
to be able to 1) identify the GWs in the detector noise and, especially, 2) in
order to do parameter estimations, it is however necessary to construct accu-
rate analytical or semi-analytical GW templates. The validation and tuning of
these models, in turn, must be done by matching them with the prediction of
fully non-linear numerical relativity (NR) calculations, which provide the only
means to completely describe the late inspiral of BNS [32, 26, 46, 169].

While very high-quality numerical-relativity waveforms are available for
binary black-hole (BBH) mergers, e.g., [24, 231], however see also [344], BNS
simulations have been plagued by low convergence order and large phase
uncertainties [31, 48]. This lead to the widespread perception, in the numerical
relativity community, that matter simulations are inherently more difficult than
vacuum simulations and that larger errors are to be expected. On the other hand
there is no real reason why this should be the case: significant shocks are not
expected to form during the inspiral in the bulk of the neutron stars and the
spacetime of a BNS system is much more regular and smooth than the one of a
BBH.

The goal of the work presented in this chapter is to show that it is indeed
possible to obtain BNS waveforms of almost comparable quality with the ones
present in the BBH literature by using higher-order numerical schemes with
respect to the traditional 2nd order schemes commonly adopted for matter
simulations in numerical relativity.

In particular, here, we describe our new high order, high-resolution shock-
capturing, finite-differencing code: WhiskyTHC, which constitutes the extension
to general relativity of the THC code. With respect to other high-order relativistic

109



110 5 Finite-Differencing Methods: General Spacetimes

hydrodynamics codes, such as wham [317] and ECHO [111, 71], this is the first
higher than second order code that works in full general relativity, with evolved
spacetime, and in three spatial dimensions.

We demonstrate the capabilities of our new code in a series of tests involving
the evolution of isolated neutron stars. There we show that our code is able to
yield stable and accurate evolutions of stable and unstable stars. We measure
the accuracy of our code for the case of an unstable star collapsing to BH and
we show that we are able to achieve third order convergence.

Finally we applied our new code to the inspiral and merger of binary neutron
stars in quasi-circular orbits. We show, for the first time, higher than second
order convergence for the phase and the amplitude of the gravitational wave of
a binary neutron star merger. As a result, in a comparison with the old Whisky
code, we show that our new code, when running at the same resolution and
with similar computational costs as Whisky, is able to yield a decrease in the
phase error of a factor 50. Furthermore we study the inspiral and merger of
binary neutron stars initially at the “large separation” of 60 km. We consider a
high-compactness model and we find only minor de-phasing, localized in the
last few cycles of the inspiral, between our NR waveforms and the one from the
point-particle post-Newtonian (PN) approximation Taylor-T4 [64] waveform.

The rest of this chapter is organized as follows. In Section 5.2 we give
a quick summary of the numerical methods that we employed as well as a
detailed description of the treatment of the fluid–vacuum interfaces, which
was one of the main challenges in the application of higher-order numerical
schemes to BNS simulations. In Section 5.3 we present the results obtained with
our code in a series of representative tests involving the evolution of isolated
neutron stars, with particular focus on the properties of the different vacuum
treatments that we implemented in our code. In Section 5.4 we present some
preliminary results obtained with our code in the case of BNS. Finally Section
5.5 is dedicated to the discussion of the our results as well as the conclusions.

5.2 WhiskyTHC

In this section we give an overview of WhiskyTHC. First of all we describe
the numerical methods used in WhiskyTHC and secondly we give a detailed
description of our treatment of fluid–vacuum interfaces which is one of the
key problems one has to address in order to attain stable binary evolution,
especially with high-order codes.

5.2.1 Numerical Methods

WhiskyTHC comes from the merger of two codes: Whisky [29] and THC [264],
Chapter 4. It inherited from THC the use of high-order flux-vector splitting
finite-differencing techniques and from Whisky the new module for the recov-
ery of the primitive quantities as well as the new equation of state framework
recently introduced in Galeazzi et al. [136]. This code can make use of tabu-
lated, temperature and composition dependent equation of states, but here we
are concerned only with gamma-law and polytropic evolutions. More specifi-
cally WhiskyTHC solves the equations of general-relativistic hydrodynamics in
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conservation form (2.103) using a finite difference scheme. It employs flux re-
construction in local-characteristic variables using the MP5 scheme, for which it
uses the explicit expression for the eigenvalues and left and right eigenvectors
which can be found in, e.g., [275].

For the spacetime we can either use the standard BSSNOK formulation
(2.59), or the new CCZ4 formulation (2.64) introduced in Chapter 2, which we
numerically evolve using a finite-difference code publicly available through the
Einstein Toolkit [203, 4]. In this code all the derivatives, with the exception
of the terms associated with the advection along the shift vector, for which we
use a stencil upwinded by one grid point, are computed with a centered stencil.
Typically all these terms are computed with a fourth order accurate scheme,
but sixth and 8th order are also available. To ensure the non-linear stability of
the scheme we add a fifth order Kreiss-Oliger style artificial dissipation [186].
More details on the code that we use can be found in [66] where its BSSNOK
variant is described.

Our code can use a rather basic form of mesh refinement through the Carpet
[289] AMR driver of the Cactus computational toolkit [150] on top of which
our code is built. Carpet supports Berger-Oliger-style mesh refinement [45, 44]
with subcycling in time and refluxing, but, at the moment, our code can only use
static grid refinement, with subcycling in time, but with no refluxing. While we
have plans to implement refluxing and test high-order prolongation operators
in order to use dynamical grids, we also note that these features are not of
fundamental importance for the study of gravitational waves from inspiraling
binary neutron stars, which is the main aim of our code.

The coupling between the hydrodynamic and the spacetime solvers is done
using the method of lines (MoL). For the simulations performed in this work we
use either the optimal, strongly-stability preserving (SSP) third order Runge-
Kutta (RK) scheme or the standard fourth order one.

5.2.2 Atmosphere Treatment

The treatment of interfaces between vacuum region and fluid regions is one of
the most challenging problems in Eulerian (relativistic) hydrodynamics codes
(see e.g., [137, 179, 228]). Especially when studying near-equilibrium config-
uration, such as oscillating stars, having large density gradients close to the
surface (as is the case for stiff EoS describing high-density matter) and over
long timescales. The most commonly used approach to treat vacuum regions
is to fill them with a low-density fluid, the “atmosphere”, such that if a fluid
element is evolved to have a rest-mass density below a certain threshold, it is
set to have a floor value and zero coordinate velocity [131, 29]. This approach
works reasonably well for standard 2nd order codes and has been adopted by
the vast majority of the relativistic-hydrodynamics codes, but it is problematic
for higher-order codes [263]. The reason is that small numerical oscillations
can easily result in the creation of vacuum and couple with the prescription
for the floor and violate conservation, artificially creating mass, energy and
momentum. As a result they are subsequently amplified, ultimately destabi-
lizing the evolution. The situation is even more complicated for a code, such
as ours, which relies on characteristic variables as they become degenerate in
the low-density, low-temperature limits.
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We notice that for many applications, such as the inspiral of binary neutron
stars (at least up to contact), or the oscillation of single stars, the treatment
of the stellar surface is one of the main challenges and the only reason why
low-order, but robust shock capturing codes are commonly used. Indeed the
problem of the vacuum treatment is one of the main reasons why higher order
general-relativistic hydrodynamics codes have not been developed before. For
this reason we think that it is instructive to address this problem in detail as we
do in the following.

First of all we point out that the MP5 scheme is remarkably robust even in
conjunction with the most basic atmosphere treatment that we implemented,
i.e., one in which no additional modification is made on the scheme at the in-
terface between vacuum and fluid region, beside the imposition of a minimum
density level (more on this below). In our preliminary tests, other schemes, such
as WENO5, which do not enforce the monotonicity of the reconstruction, could
not yield stable evolutions even for single stars in the Cowling approximation
(i.e., where the spacetime is kept fixed, while the matter is evolved).

Secondly most of the problems with the atmosphere appear in points where
the surface of the star is aligned with the grid, because along these directions
numerical dissipation is minimal. These artifacts, that we discuss in more detail
in the next Section, are easily “fixed” with the use of extra numerical dissipation
close to the surface of the star.

Keeping this in mind, we now give the details of the three different pre-
scriptions that we developed for the treatment of the low-density regions.

Standard Atmosphere Treatment

The first prescription is what we call the “ordinary MP5” approach. It follows
the lines of what is most commonly done to treat vacuum in general-relativistic
hydrodynamics. First of all we choose a minimum rest-mass density ρatmo,
which we take to be, typically, in the range (10−7

− 10−9)ρref, ρref being some
reference density (for instance the initial maximum density). Secondly we
choose a tolerance parameter, ε, typically 10−2, chosen to avoid excessive os-
cillations of the fluid–vacuum interface so that points where the density falls
below (1 + ε)ρatmo, are set to atmosphere. In particular, their density is set to
ρatmo, their velocity to zero and their internal energy is calculated assuming a
polytropic EoS. In addition to this, we enforce a floor for the conserved energy
density τ, τatmo ∼ ρatmoεatmo.

This approach, as we show below, is already perfectly adequate for inspi-
raling binary neutron stars, but might have problems in the case of slowly
moving vacuum-fluid interfaces aligned with the grid, especially in the case of
isentropic evolutions where the surface remains sharper as no spurious heating
can occur.

An Improved Atmosphere Treatment

In order to improve our atmosphere treatment, we introduced an alternative
method in which we increase the level of dissipation of the scheme by switching
to the component-wise Lax-Friedrichs flux split below a certain density. Typical
values for this new threshold are chosen so that the first one or two grid points
in the star’s interior are evolved using the Lax-Friedrichs flux split. The use
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of component-wise reconstruction, as opposed to characteristic-wise, is done
to avoid problems due to the degeneracy of the characteristic variables close
to vacuum and to avoid polluting quantities, such as the momentum, with the
numerical errors present in the internal energy (which is typically large in the
immediate vicinity of the atmosphere). This is what we refer to as “MP5+LF”
approach.

This latter approach is more robust, but can result in the creation of artifacts
in the case in which low-density matter is ejected from the stellar surface. In
this case, the fluid typically presents a rather smooth interface with vacuum, so
that one would expect to be able to treat it with high accuracy. Unfortunately,
as we show in the next section, if the density of the ejecta falls below the Lax-
Friedrich threshold, the use of a component-wise reconstruction yields a rather
oscillatory solution.

Positivity Preserving Limiter

Overall neither of the previous methods is completely satisfactory. For this
reason we propose here a novel approach based on the use of the positivity
preserving limiter recently proposed by [170], which is significantly simpler to
implement with respect to the “classical” positivity-preserving limiters already
proposed in the literature, e.g., [340, 341, 342, 34].

For the sake of completeness, we give here a brief overview of the key ideas
presented in [170] to which we refer to for a more complete presentation. To
keep the notation simple we consider, at first, a scalar conservation law in one
dimension

∂u
∂t

+
∂ f (u)
∂x

= 0 . (5.1)

We notice that any scheme able to guarantee the positivity of u over one first-
order Euler timestep, will automatically guarantee positivity when used with
any SSP time integrator as, in these schemes, the time update is always con-
structed as a convex combination1 of Euler steps. For this reason we consider
a discretization of (5.1) of the form

un+1
i − un

i

∆0 =
fi−1/2 − fi+1/2

∆1 . (5.2)

If we let λ := ∆0/∆1, then the previous can be written as

un+1
i =

1
2

(u+
i + u−i )

=
1
2

[
(un

i + 2λ fi−1/2) + (un
i − 2λ fi+1/2)

]
.

(5.3)

where u+
i = un

i + 2λ fi−1/2 and u−i = un
i − 2λ fi+1/2. Clearly, if u+

i and u−i are
positive, so will be un+1

i . The key observation by [170] is that, if fi+1/2 and fi−1/2

are computed with the first-order Lax-Friedrichs scheme with λ ≤ 1
2a , a being

the largest propagation speed, then u+
i ,u

−

i ≥ mini un
i [340].

1A convex combination of a set of vectors, ~xi, is a combination of the form
∑

i ci~xi, where 0 ≤ ci ≤ 1
and

∑
i ci = 1.
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The idea is to modify (5.2) as

fi+1/2 = θ f HO
i+1/2 + (1 − θ) f LF

i+1/2 , (5.4)

where f HO
i+1/2 is the high-order flux of the original scheme, f LF

i+1/2 is the flux
associated with the first order Lax-Friedrichs scheme and θ ∈ [0, 1] is chosen
to be the maximum value such that both u−i and u+

i+1 are positive. In regions
where the solution is far from vacuum θ = 1 so that the high-order fluxes are
used (and in particular the formal order of accuracy of the scheme remains
unchanged). In regions close to vacuum it is always possible to find some θ ≥ 0
such that positivity is guaranteed, since for θ = 0 the scheme reduces to the
Lax-Friedrichs scheme which is known to be positivity preserving.

The multi-dimensional extension is done in a component-by-component
fashion. For instance in three dimensions (5.3) becomes

un+1
i, j,k =

αx

2

[(
un

i, j,k + 2
λx

αx
fi−1/2, j,k

)
+

(
un

i, j,k − 2
λx

αx
fi+1/2, j,k

)]
+

αy

2

[(
un

i, j,k + 2
λy

αy
fi, j−1/2,k

)
+

(
un

i, j,k − 2
λy

αy
fi, j+1/2,k

)]
+

αz

2

[(
un

i, j,k + 2
λz

αz
fi, j,k−1/2

)
+

(
un

i, j,k − 2
λz

αz
fi, j,k+1/2

)]
,

(5.5)

where the α×’s are positive constants such that αx +αy +αz = 1, typically chosen
to be equal to 1/3 (but see the remarks at the end of the section). The limiter at
each interface is then chosen enforcing positivity of the terms in round brackets.

This approach can then be easily extended to systems of equations [170]. In
particular [170] constructed a limiter able to guarantee positivity of density and
pressure for the classical equations of gasdynamics, also in the case in which
sources are present (but in this case a smaller timestep might be required,
depending on the nature of the source terms).

In the general relativistic case it does not appear to be trivial to enforce the
positivity of the pressure, especially for tabulated EoS, because of the presence
of complex source terms in the energy equations. For this reason, as was the
case for the atmosphere treatment, we need to enforce positivity of the pressure
with the imposition of a floor on τ. On the other hand, the continuity equation

∂tD̂ + ∂ j[D̂w j] = 0 , (5.6)

where D̂ =
√
γρW and w j = αv j

− β j, is formally equivalent to the Newtonian
continuity equation with the identification

D̂←→ ρ, wi
←→ vi , (5.7)

thus one can construct a scheme ensuring the positivity of D̂ by simply adopting
the prescriptions used by [170] to guarantee the positivity of the density for the
Newtonian Euler equations.

Some comments on the positivity preserving limiter. First of all the positivity
preserving limiter is not directly a way to treat vacuum–fluid interfaces in
a physically accurate way, for the simple reason that the fluid model is not
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adequate to represent such transitions. A proper modeling of the stellar surface
can only be done by treating it as a free boundary of the problem determined
by the balance between inertial and gravitational forces on the fluid as done,
for instance, in [179]. For this reason its use does not free us from having a
low density fluid everywhere or from having to manually enforce D̂ > D̂atmo,
because in some situations, for instance at the surface of a star, the high-order
fluxes and the Lax-Friedrichs fluxes can differ by several orders of magnitude,
so that small floating point errors can drift the conserved density, D̂, below the
minimum. This is done by simply resetting D̂ to D̂atmo whether D̂ < D̂atmo,
without changing the other quantities.

What the positivity preserving limiter does, however, is to ensure local con-
servation of the solution up to floating point precision. In particular it prevents
the scheme from extracting/losing mass from/to the atmosphere because of nu-
merical oscillations. In particular it provides a way to setup a floor where
the fluid density can be arbitrarily small and that does not require any hand
tuning. In contrast, the classical atmosphere prescriptions usually work only
in a limited range of ρatmo and ε as these coefficients must be tuned in order to
achieve a balance between the amount of mass extracted from the atmosphere
(which typically increases as ρatmo decreases) and the mass lost into it (which
typically increases as ε increases). The reason is that, even in situations where
we need to reset D̂, we are guaranteed that this correction is of the order of the
floating point precision (with respect to the typical densities we are actually
interested in tracking).

In practice the way in which we use the positivity preserving limiter is
rather simple: we fill the vacuum with a low density floor at the beginning
of a simulations and we let it evolve freely, only relying on the positivity
preserving limiters to ensure its well behaviour. This typically results in the
creation of accretion flows onto our compact objects. However, given the
low density of the floor, which we take to be ∼ 10−16ρref (i.e., below floating
point precision!) in production runs, the effects of this artificial accretion are
completely negligible. Note that, to avoid issues with the decomposition of the
Jacobian in eigenvalues and eigenvectors, we also switch to component-wise
reconstruction below a certain density, typically 10−7ρref, but this, in contrast
to the prescription outlined in the previous section, has little dynamical effect
as flows at those densities are, anyway, completely dominated by numerical
effects. Moreover, as we show in the next section, even if the floor density is
taken to be unnecessarily large, the use of positivity preserving limiters results
in much smaller perturbations with respect to the use of a more traditional
atmosphere treatment.

Finally a comment concerning the timestep limitation. For the scheme to
ensure positivity in the multi-dimensional case, one must ensure aα× ∆0

∆× < 1.
Since a ∼ 1 and α× = 1/D, D being the number of dimensions, this results in
a rather stringent CFL condition. In practice we find our scheme to be robust
even for much larger timesteps, probably because the advection velocity in
the low density regions is typically smaller then the maximum velocity and
the Lax-Friedrichs scheme is actually positivity preserving even with CFL = 1
in 1D (CFL = 1/D in D dimensions) [342] (even though it is not possible to
guarantee that u+

i and u−i in (5.3) are separately positive). In order to run
with larger timestep we simply compute the value of the limiter θ assuming
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α× = 1, as in the one-dimensional case (note this does not mean that we evolve
using (5.5) with the α×’s equal to one), and we set it to zero (i.e., we use Lax-
Friedrichs fluxes) when it is not possible to enforce the positivity of u+

i and
u−i+1. In our numerical experiments we found this procedure to be enough
to prevent negative densities from occurring to a sufficient extent and to be
computationally much less expensive with respect to the approach in which
α× = 1/D.

5.3 Single Neutron Stars

In this section we describe a series of representative tests that we performed
with WhiskyTHC in the case of single, isolated, non-rotating neutron stars
(TOVs). First of all we present the results obtained in the Cowling approx-
imation, i.e., without evolving the spacetime, for perturbed, oscillating stars.
Then we proceed analyzing the results in the case of linear oscillations of sta-
ble stars in full-GR. Finally we show the results obtained for the evolution of
unstable stars: both for the migration and for the collapse to BH cases. The
focus of our discussion is mostly on the effects of the different prescriptions
for the treatment of the atmosphere. We denote the basic treatment (i.e., “ordi-
nary MP5”), the enhanced treatment (i.e., with extra dissipation on the surface)
and the positivity preserving treatments as “MP5”, “MP5+LF” and “MP5+PP”,
respectively.

5.3.1 Linear Oscillations: Cowling Approximation

The first test that we consider is the long-term evolution of a perturbed, isolated,
non-rotating, neutron star in the Cowling approximation. The goal of this test is
to assess the impact on the accuracy of the three different atmosphere treatments
over long timescales. We consider a model described by the polytropic EoS
with K = 100 and Γ = 2. The initial central density is ρc(0) = 1.28 × 10−3 M−2

�
,

yielding a model with an ADM mass of 1.4 M�. The initial velocity is perturbed
with the injection of an exact eigenfunction (in the Cowling approximation).
The maximum amplitude of the perturbation is |vr

| ' 0.024 and the initial
perturbation is ingoing.

We evolve this model for 10 000 M�, i.e., ' 130 dynamical timescales, using
our different prescriptions for the atmosphere. Our fiducial resolution is h =
0.2 M� so that the radius of the star is covered with ' 45 grid points. In order
to make a fair comparison, we use the same atmosphere threshold for all the
methods, ρatmo = 10−10 M−2

�
, and we evolve all the models with the third order

SSP-RK3 with CFL = 0.4. The gravitational source terms are computed using
sixth order finite-differencing. Finally the evolution is computed only in the
octant x, y, z ≥ 0 and we assumed reflection symmetry across the xy, xz and yz
planes.

The evolution of the central density, ρc, is shown in Figure 5.1. In particular,
in order to highlight the secular trend of the data, we show a moving average
of ρc defined as

〈ρc〉(t) :=
1

2T

∫ t+T

t−T
ρc(s) ds, T ≤ t ≤ Tfinal − T, (5.8)
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Figure 5.1: Normalized central density for the perturbed TOV in the Cowling
approximation and for different atmosphere prescriptions.

where T = 5/ fF, fF being the frequency of the F-mode from linear perturba-
tion theory. All the different prescriptions yield very similar evolutions of the
central density which presents a series of slowly damped oscillations. The
pulsation frequency agrees, to within the nominal error of the discrete Fourier
transform, with the one expected from linear perturbation theory in the Cowl-
ing approximation. The power-spectrum also shows small contributions from
higher-order overtones (i.e., more than a factor ten smaller than the F-mode)
as well as an even smaller non-linear component at integer multiples of the
F-mode frequency. In the case of the MP5+LF prescription, we verified that the
non-linear component decreases with decreasing perturbation amplitudes and
that it is not distinguishable from the background for perturbation amplitudes
' 2 × 10−3. The ordinary MP5 prescription also shows a small secular increase
in the central density. Apart from this, all the schemes appear to be able to yield
very clean oscillations.

The difference between the different schemes can be better appreciated by
looking at Figure 5.2 where we show the evolution of the total rest mass,

Mb(t) =

∫
Σt

ρ
√
γd3x , (5.9)

for the different models. Overall the mass conservation is at acceptable levels
for all the methods, but the ordinary MP5 prescription is clearly the one with
the largest error, as it shows larger variations with respect to the other schemes.
This, in turn, is responsible for the secular drift mentioned earlier (an increase
in the total mass leads to an increase in the central density). The Lax-Friedrichs
flux-switch at the surface, instead, results in a steady loss of matter which
is slowly diffused into the atmosphere, while the MP5+PP approach yields a
steady increase in the mass because of the accretion of the low density floor
which is continuously “injected” from the outer boundary (we simply fix the
density in the outer ghost regions to its initial value).

The reason for the bad behaviour of the standard MP5 prescription is, as



118 5 Finite-Differencing Methods: General Spacetimes

0 2000 4000 6000 8000 10000
t [M�]

0.000

0.002

0.004

0.006

0.008

M
b
(t

)/
M

b
(0

)
−

1

MP5
MP5+LF
MP5+PP

Figure 5.2: Normalized total rest mass variations for the perturbed TOV in the
Cowling approximation and for different atmosphere prescriptions.

anticipated in the previous section, the fact that it lacks a sufficient amount of
numerical dissipation in the case of surfaces aligned with the grid and especially
for polytropic evolutions, such as the ones we are showing here. This is clearly
seen in Figure 5.3 where we show a two-dimensional cut of the density, in
log10 scale, at a representative time during the evolution. One can clearly see
the appearance of “jets” of low-density matter (ρ ∼ 10−5 M−2

�
) aligned with

the coordinate directions. These “jets” are launched at seemingly random
times from the surface of the star, when the numerical errors “extract” from the
atmosphere a large enough amount of mass. What happens is that the numerical
oscillations create an imbalance at the surface of the star: the excess density
coming from the atmosphere generates a pressure which is only balanced by
the “potential barrier” at the surface of the star given by the double threshold
on the density floor. As soon as the pressure is large enough, part of the matter
is ejected in one of these streams. Counter-intuitively this process results in
the increase of the total mass of the star because only part of this extra matter
is actually lost from the outer boundary. In contrast, we can see that, with the
addition of extra numerical dissipation at the surface of the star, these artifacts
are completely suppressed, as shown for the MP5+LF case. This happens partly
because dissipation prevents the scheme from extracting too much matter out
of the atmosphere and partly because it diffuses the numerical errors back into
the floor. Finally the positivity-preserving evolution does not show any kind of
numerical ejecta out of the star’s surface because of its conservative nature. On
the other hand it is affected by the accumulation of matter at the fluid-vacuum
interface. As commented before, this accumulation can be greatly reduced by
lowering the floor density and it is also somewhat less severe for the ideal-gas
case, where the floor accretion is regulated by the thermal pressure.

The differences between the various methods are even more evident if we
look at sensitive quantities such as the momentum in the radial direction.
At the initial time it has a profile given by the eigenfunction of the F-mode
in the Cowling approximation. In the linear regime one would expect the
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Figure 5.3: Two dimensional cut of the log10 of the rest-mass density at time
t = 800 M� for the perturbed TOV in the Cowling approximation and for
different atmosphere prescriptions. The insets at the bottom of the plots show
the one dimensional cuts along the x axis.
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Figure 5.4: One dimensional cut along the x axis showing the x component
of the conserved momentum, Sx, at the time t = 4996 M�, for the perturbed
TOV in the Cowling approximation and for different atmosphere prescriptions.
The different symbols show the numerical solution as obtained with our code
and with the different vacuum treatments, while the thick black line shows the
exact eigenfunction from linear perturbation theory.

momentum to simply oscillate with the F-mode frequency. On the other hand,
in a simulation, because of numerical errors, the profile of the eigenfunction is
gradually lost. This is shown in Figure 5.4 where we plot the x component of
the momentum, Sx, along the x axis at a representative time, t = 4996 M�. At
this particular time both the MP5 and the MP5+LF schemes have accumulated
so much error that the profile of the eigenfunction is completely distorted. On
the other hand the evolution using the positivity-preserving limiter still shows
good agreement with the exact solution. Clearly the precision with which we
recover the eigenfunction is resolution dependent and degrades over time also
for the MP5+PP scheme. Nevertheless this figure clearly illustrates 1) how
large the influence of the atmosphere is in this kind of simulation where nearly
equilibrium configurations are evolved for long time, and 2) how small the
perturbation due to the continuous, artificial, accretion is when we use our
positivity preserving prescription, even when the floor density is rather high.

5.3.2 Linear Oscillations: Full-GR

The second test that we present is the evolution of a stable, non-rotating, star in
full-GR. The goal of this test is to check the stability of the three different floor
prescriptions in a fully general-relativistic setting. The model that we consider
here is the same as the one described in Section 5.3.1, with the difference that
we do not apply any perturbation to the initial data and we let it evolve under
the sole effects of the numerical truncation error.

This test is performed using a grid covering 0 ≤ x, y, z ≤ 80 M� and employ-
ing three refinement levels, with the finest one covering the star entirely and
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Figure 5.5: Top panel: evolution of the normalized central density for the os-
cillating TOV in full-GR and for different atmosphere prescriptions. Bottom
panel: power spectral density of the central density, normalized to have maxi-
mum value 1. In the calculation of the PSD we exclude the first 300 M� of the
evolution, to avoid contamination from the initial spike.

having a resolution h = 0.2 M�. The spacetime is evolved using fourth order
finite differencing and the CCZ4 formulation of the Einstein equations. Finally
we assume reflection symmetry across the xy, xz and yz planes. We evolve
the model with different atmosphere prescriptions and time integrators and
we choose, for each of them, the values of ρatmo and ε giving the best results
in order to showcase the capabilities of each method. We note, however, that,
due to the high computational costs, we did not perform an extensive tuning of
these parameters and we cannot exclude that another combination of parame-
ters would give better results. The parameters that we use are summarized in
Table 5.1.

The evolution of the central density for the different methods is shown
in the top panel of Figure 5.5. First of all we notice that the ordinary MP5
prescription shows violent oscillations and a large secular growth. We evolve
this model up to time t ' 1100 M� where it has deviations from the initial

Table 5.1: Numerical parameters used for the oscillating TOV test in full-GR.

Model Time integrator CFL ρatmo [M−2
�

] ε

MP5 RK4 0.2 10−10 1
MP5+LF RK4 0.2 10−10 0.01
MP5+PP RK3 0.2 10−19

−
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density of the order of 1.5 %. We point out that we also tried to evolve it using
the same prescription as the one used for the test in the Cowling approximation,
but, in that case we obtained even larger oscillations and a more pronounced
secular growth leading to an increase of about 4 % in the central density at time
t = 1000 M�.

As with the previous test, the simple addition of extra numerical dissipation
at the star’s surface seems to cure the most severe problems with the MP5
evolution. Indeed the MP5+LF scheme shows much smaller oscillations and
only a weak secular trend (see also Figure 5.1).

The MP5+PP scheme yields very small oscillations and an almost zero trend
in the central density. We point out, however, that in our preliminary tests the
MP5+PP scheme showed a sudden increase in the oscillation amplitude and in
the secular drift after time t & 3000 M�, which were at levels comparable to the
MP5+LF ones. The reason for this behaviour is to be found in the prolongation
operators used in our AMR setup as well as in the lack of refluxing in our code,
which were resulting in spurious violations in the mass conservation at the
mesh-refinement boundaries. In order to avoid this problem we have disabled
the prolongation of the hydrodynamic variables, thus partially “decoupling”
the various refinement levels. In the long term we plan to improve the AMR
capabilities of our code to avoid these pathologies, but we point out that these
are not of primary concern for the main purpose of our code, which is to
compute gravitational waveforms from compact binaries.

The PSD of the central density is shown in the bottom panel of Figure
5.5. There we show the PSD normalized to have maximum amplitude of
1 for the different numerical schemes. The spectra are computed using the
central density from the time t ≥ 300, to remove the dependence from the
relaxation of the initial data. In order to compute the spectra we also de-trend
the data by removing its linear fit. Clearly the ordinary MP5 scheme has a more
noisy spectrum, partly because of the shorter integration time. Apart from
that all the three methods show spectra which are peaked at the frequencies
corresponding to the F-mode and to the first overtone, H1, as computed from
linear perturbation theory.

5.3.3 Non-linear Oscillations: the Migration Test

The third test that we discuss is the study of the large, non-linear, oscillations of a
TOV migrating from the unstable branch of solutions to the stable one. This is a
commonly adopted test for numerical-relativity codes, e.g., [131, 28, 29, 98, 320],
and has been studied in detail by [198, 265]. Here we consider a model initially
described by a polytropic EoS with Γ = 2 and K = 100 and with central density
ρc = 0.007 M−1

�
, yielding an ADM mass of' 1.49 M�. The migration is triggered

with the use of an outgoing velocity perturbation of the form vr = A r, r being
the areal radius, where A is chosen so that the maximum perturbation velocity
is 0.01. The evolution is performed with a gamma-law equation of state to
allow for shock heating. We point out that we do not solve the constraints
equations after the application of the initial perturbation, but we rely on the
constraint damping nature of CCZ4 to bring the evolution back to the constraint
“hypersurface” as done in [178].

The grid setup is identical to the one described in Section 5.3.2, with the only
difference that we enlarge the area covered by the finest grid to ensure that the
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Figure 5.6: Evolution of the central rest-mass density, normalized to its initial
value, for the TOV migration test and for different numerical schemes. The
vertical dashed line marks the point in time shown in Figure 5.7. The horizontal
dotted line marks the value of the central density for the equilibrium model on
the stable branch corresponding to the unstable model evolved in this test and
to which the solution is expected to relax.

star is completely covered by it even when it is fully expanded. Here, again, we
use the same atmosphere prescription for all the schemes withρatmo = 10−12 M−2

�

and we evolve all the models using the SSP RK3 scheme with a CFL of 0.1.
Finally the spacetime is evolved using sixth order finite-differencing and with
the addition of a fifth order Kreiss-Oliger dissipation.

The evolution of the system is summarized by Figure 5.6 where we show
the evolution of the central rest-mass density, normalized to its initial value, for
our three different schemes. As can be seen from the figure, the star undergoes
a sequence of violent expansion, contraction cycles after it has migrated to a
model on the stable branch of equilibria having the same baryonic mass. During
the contraction phase, shocks are formed and part of the shock heated matter
is ejected with large velocities from the central object. All of the methods are
perfectly adequate for this test and only minimal differences appear between
the MP5+LF scheme and the other two in the amplitude of the first peak.

The difference between the various atmosphere prescriptions is better ap-
preciated by looking at Figure 5.7, where we show a two-dimensional cut of
the log10 of the density at the time when the matter ejected at the first bounce
reaches the grid boundaries (this is indicated with a vertical line in Figure 5.6).
As can be seen from the figure, both MP5 and MP5+PP are able to capture the
dynamics of the low-density ejecta without introducing large numerical oscil-
lations or excessive deviations from spherical symmetry. The front of the ejecta
is reasonably well captured even if it has crossed two mesh-refinement bound-
aries, where our code cannot currently ensure mass-conservation and hence the
right propagation speed for shocks. On the other hand, the MP5+LF prescrip-
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Figure 5.7: Two-dimensional cuts of the log10 of the rest-mass density for the
TOV migration test and for different numerical schemes at time t = 268.8 M�.
The insets show the one-dimensional cuts along the x axis.
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Figure 5.8: Top panel: evolution of the normalized central lapse for the TOV
collapse test and for different resolutions. Bottom panel: evolution of the nor-
malized central density for the TOV collapse test and for different resolutions.

tion seems to be completely inadequate to treat the ejecta as it exhibits large
numerical oscillations/fragmentation. The reason is probably due to our choice
of avoiding the reconstruction in characteristic variables at low densities, when
it is well known that component-by-component reconstruction typically results
in oscillatory solutions when used in conjunction with high-order schemes.

5.3.4 Gravitational Collapse to Black-Hole

The final test that we are going to describe involving the evolution of isolated
neutron star is the gravitational collapse of a TOV to a black hole. This is another
commonly adopted benchmark for general-relativistic hydrodynamics codes
and has been studied in great detail in [27, 319]. The model that we consider
here is initially described by a polytropic EoS with Γ = 2 and K = 100 and has
an initial central density of 0.008 M−2

�
, yielding an ADM mass of' 1.43 M�. The

collapse is triggered with the addition of a velocity perturbation with the same
characteristics of the one used in the migration test, but with opposite sign,
i.e., an ingoing perturbation. Finally the model is evolved using an ideal-gas
EoS to allow for thermal effects.

In the case of the collapse the influence of the atmosphere is negligible, so
here we consider only evolutions performed with the MP5+LF prescription. As
in the migration test, our computational domain covers 0 ≤ x, y, z ≤ 80 M� and
we assume reflection symmetry across the xy, xz and yz planes. We employ
three different refinement levels with the finest one covering the star entirely
and we study the convergence of the code as we vary the resolution. In partic-
ular we considered six different resolutions having grid spacing (in the finest
refinement level) of h = 0.2, 0.16, 0.13333, 0.11429, 0.1 respectively. We also per-
form a higher-resolution run, with h = 0.08, which we evolve only up to time
' 45 M� and that we use as a reference solution to measure the self-convergence
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plane on the finest refinement level for the TOV collapse test and for different
resolutions. The errorbars show the excursion between the maximum and
minimum normalized error in the time interval. The solid black line shows the
curve for third order of convergence.

of the code. We adopt sixth order finite-differencing for the spacetime, which
is evolved using the CCZ4 formulation, with fifth order Kreiss-Oliger artifi-
cial dissipation on the metric variables. We use the fourth order Runge-Kutta
scheme as time integrator, so that our scheme is formally fourth order (fifth or-
der in space and fourth in time). Finally, in order to avoid excessive oscillations
in the matter fields inside the forming black hole, we artificially evacuate the
regions where α < 0.1 by adding an artificial damping term in the sources of
the hydrodynamic variables as in [13]. We also switch to the component-wise
reconstruction with Lax-Friedrichs split in regions where α < 0.2.

The evolution of the lapse and the rest-mass density at the center and for
the different resolutions are shown in Figure 5.8. As the star collapses the
central density rapidly increases and the lapse function approaches zero. At
time t ' 40 M� the lapse at the center becomes smaller than 0.1 and the density
starts to be dissipated. Finally, after a small re-bounce, the lapse settles and
the evolution reaches quasi-stationarity. The exact behaviour of the lapse is
determined by the way in which we evacuate the fluid as, in our preliminary
tests, we found that, in simulations without matter damping, the lapse showed
a smaller bounce, at the moment of the collapse, but a more irregular evolution
at intermediate times.

In order to estimate the convergence rate of our code we use the highest
resolution simulation, h = 0.08, as a reference solution and we compute an
estimate of the error of a given physical quantity, φ, at the time tn as

En
h =

1
N

∑
x

|φh(x, tn) − φh=0.08(x, tn)| , (5.10)

where the sum is taken over the common grid points between the resolution
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h and the highest resolution run on the xy plane. En
h is then computed using

14 equally spaced data dumps in the interval [3.2, 44.8] M� (including the first
and the last time). In order to have an absolute measure of the relative errors
between the different resolutions over the whole time-interval, we normalize
the error estimates with respect to the deviations as measured between the
lowest resolution simulation and the reference one, i.e., En

h/E
n
0.2. Finally we take

as relative error the average in time of the normalized error estimates and we
use the maximum and minimum relative errors (between the different times)
as a measure of the uncertainty of this procedure.

The results obtained for the lapse function are shown in Figure 5.9. Also
shown, as a solid black line, is the curve for third order convergence. As can
be seen from our figure our data is consistent with third order convergence for
h & 0.16. As commented before, our code is formally fourth order convergent
in time and fifth order in space, on the other hand, based on our previous
experience with MP5 [264], we argue that the observed third order convergence
is most probably related to the fact that high-order shock-capturing codes are
able to converge at their nominal order only at extremely high resolutions
because their accuracy is typically spoiled by the activation of the flattening
procedure close to under resolved features of the solution [264].

5.4 Binary Neutron Stars

In this section we present the results obtained for the inspiral and merger of
binary neutron stars in quasi circular orbit. We consider two different models:
one having an initial small separation of 45 km, which we discuss in Section
5.4.1, and one having a larger separation of 60 km, which is discussed in Section
5.4.2. We use the first binary, which we can run with relatively small compu-
tational costs, to explore the different atmosphere prescriptions and make a
detailed comparison between the results obtained with our code and the ones
obtained for the original Whisky code. The second binary, instead, is used to
assess the accuracy of our code for the production of long waveforms.

We recall here that the Whisky code is a second-order finite-volume code
with high-order primitive reconstruction and implements several different ap-
proximate Riemann solvers. For the runs presented here we make use of the
PPM reconstruction [95] and of the HLLE Riemann solver [162, 125].

The initial data we consider describes two neutron stars in quasi-circular
orbit. It is computed in the conformally-flat approximation using the Lorene
pseudo-spectral code [157] and has been made publicly available by the Meudon
group [3]. The EoS assumed for the initial data is polytropic with K = 123.56
and Γ = 2, while the evolution is performed using the ideal-gas EoS to allow for
thermal effects in the merger phase. The details of the models we consider are
listed in Table 5.2. Here we point out that these binaries consist of stars with a
rather high baryonic mass, Mb ' 1.9 M�, close to the maximum mass allowed
by the EoS for non-rotating models, Mb,max = 2 M�, and having high compact-
ness,C = M∞/R∞ = 0.18002, M∞ being the gravitational mass of each of the two
stars when at infinite separation and R∞ the corresponding areal radius. We re-
mark that binaries with a similar compactness have been already considered by
Hotokezaka et al. [169] where it was found that high-compactness binaries are
much more challenging to evolve accurately with respect to low-compactness
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ones.

5.4.1 Small Separation

Here we discuss the results obtained from eight different evolutions of the
model A described in Table 5.2. All of these runs are performed on a grid
covering 0 < x, z ≤ 512 M�, −512 M� ≤ y ≤ 512 M�, where we assume reflection
symmetry across the xy plane and π symmetry across the yz plane. The grid
employs several refinement levels, 5 or 6 depending on the run, with the finest
refinement levels covering both stars, i.e., our grid is static and we have no
moving boxes. A summary of the main numerical parameters can be found in
Table 5.3.

Finally we evolve this model using the CCZ4 formulation with damping
constants κ1 = 0.036 and κ2 = 0, with κ3 = 1/2 and with beta-driver η = 0.71.
The spacetime is evolved using fourth order finite-differencing and with fifth
order Kreiss-Oliger artificial dissipation. The evolutions are performed without
resetting the shift to zero at the beginning of the simulation, which is known to
yield a more oscillatory behaviour in the coordinates [25]. There is no particular
reason for this choice: the gauges are only chosen so as to be able to leverage,
in the debugging stage, on the comparison with previously existing Whisky
simulations that were performed, with a different grid setup, by [13].

Since here our focus is mostly on the accuracy of the methods for the purpose
of studying the gravitational radiation from compact binaries, we consider the
accuracy of the code by mainly looking at the ` = 2,m = 2 mode of the Weyl
scalar Ψ4 extracted at the fixed coordinate radius of r = 450 M� (' 130 MADM).
We do not attempt to extrapolate Ψ4 in radius or compute the strain as this
involves other uncertainties [63, 269, 270, 268].

The dynamics of the inspiral and merger of BNS has been described many
times and in great detail in the literature, e.g., [25], for this reason we do not give
a very in-depth discussion of it here. We only mention that the two neutron stars
inspiral for about 2.5 orbits, touch and quickly merge into a single black-hole.
For this particular model no significant disk is left behind. The gravitational-
wave signal consists of about 6 cycles up to merger, followed by the black-hole
ring-down.

The GW signal is shown in Figure 5.10, where we plot the 22 mode of
Ψ4 as extracted at r = 450 M� and as a function of the retarded time t − r∗,
where r∗ = r + 2MADM log(r/(2MADM) − 1). In particular we show the results

Table 5.2: Summary of the considered BNS models. For each model we report
the total baryonic mass, Mb, the ADM mass, MADM, the initial separation, r
and the initial orbital frequency forbit, the gravitational mass of each of the two
stars when at infinite separation, M∞, as well as the compactness, C = M∞/R∞,
where R∞ is the areal radius of the two stars when at infinite separation.

Model Mb [M�] MADM [M�] r [km] forb [Hz] M∞ [M�] C

A 3.8017 3.44537 45 309.702 1.7428 0.18002
B 3.8017 3.45366 60 208.431 1.7428 0.18002
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Table 5.3: Summary of the main numerical parameters used in the numerical
simulations presented here. For each run we give the name of the code used
to perform it, WhiskyTHC or Whisky, the numerical method employed, the time
integrator used for the method of lines, MoL, the CFL, the number of refinement
levels of the grid, Nrefl, and the grid spacing in the finest refinement level, h.

Run Code Method MoL CFL Nrefl h
A.MP5.H1 WhiskyTHC MP5 RK4 0.30 5 0.40000
A.MP5.H2 WhiskyTHC MP5 RK4 0.30 6 0.20000
A.MP5.H4 WhiskyTHC MP5 RK4 0.30 6 0.12800
A.MP5+LF.H2 WhiskyTHC MP5+LF RK4 0.30 6 0.20000
A.MP5+PP.H2 WhiskyTHC MP5+PP RK3 0.15 6 0.20000
A.PPM.H2 Whisky PPM RK4 0.30 6 0.20000
A.PPM.H3 Whisky PPM RK4 0.30 6 0.13333
A.PPM.H5 Whisky PPM RK4 0.30 6 0.10000
B.MP5.H1 WhiskyTHC MP5 RK4 0.30 6 0.25000
B.MP5.H2 WhiskyTHC MP5 RK4 0.30 6 0.20000
B.MP5.H3 WhiskyTHC MP5 RK4 0.30 6 0.14545
B.PPM.H2 Whisky PPM RK4 0.30 6 0.20000

0 500 1000 1500
t− r∗ [M�]

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

r
<

(Ψ
4
) 2

2
[M
−1 �

]

A.MP5.H2

A.MP5+LF.H2

A.MP5+PP.H2

Figure 5.10: Real part of the 22 mode of Ψ4 extracted at r = 450 M� for model
A and for different atmosphere prescriptions using WhiskyTHC.



130 5 Finite-Differencing Methods: General Spacetimes

obtained for runs A.MP5.H2, A.MP5+LF.H2 and A.MP5+PP.H2. As can be seen
from the plot, all our three different atmosphere prescriptions give identical
results during the inspiral and yield very marginal differences in the merger
phase. This provides an important result and suggests that the treatment of
the neutron star surface is not a leading source of error in binary neutron star
simulations, as far as the inspiral GW signal is concerned.

The particular choice of time-integrator, between SSP-RK3 and the standard
RK4, also seems not to be of fundamental importance here, with the error most
likely dominated by the spatial discretization. On the other hand we point
out that the timestep used for A.MP5+PP.H2 is half of the one used in the other
runs in order to use the proper positivity-preserving limiter, thus introducing
a possible systematic difference.

The GW signal for the other runs of model A are shown in Figure 5.11. In
the top panel we show the results obtained with the standard Whisky code and
in the bottom one the ones obtained with WhiskyTHC. The first aspect to notice
when comparing the two panels is that, when using a second order code, the
phase difference between the GWs at different resolutions is significant. We
can observe a difference between the low and the high resolution of about ' 2
radians at t−r∗ = 1350 M�, r being the extraction radius, 450 M�. In contrast the
waveforms obtained with WhiskyTHC show a significantly smaller de-phasing:
the difference between the low and the high resolution is about ' 0.6 radians
at t − r∗ = 1350 M�, which is a factor four smaller than the one shown by
Whisky, even though the WhiskyTHC runs span a wider range of resolutions. The
difference in phase between the high and the medium resolution of WhiskyTHC
at t − r∗ = 1350 M� is as small as ' 0.06 radians.

The second interesting aspect is that, for this particular model and with
Whisky, the merger happens earlier as we increase the resolution. This is the
opposite of what it is observed in other, less compact binaries, e.g., [46], where
tidal effects have been found to be amplified at lower resolution.

We study the convergence of the waveforms by looking at the de-phasing
between different resolutions. For each run we compute the phase, φ, of the 22
mode of Ψ4 from its definition,

(Ψ4)22 = A eiφ, (5.11)

over the time interval t − r∗ ∈ [200, 1400] M�. Notice that we do not align the
waveforms in any way, but we exclude from the calculation the first burst of
gravitational radiation, due to the initial “junk” radiation present in the initial
data. We also exclude the last part of the merger phase (where we expect large
errors due to the presence of shock waves) and ringdown since, here, we are
only concerned with the inspiral.

The results are shown in Figure 5.12 where we plot the convergence for
both Whisky and WhiskyTHC. For Whisky we find a convergence order of ' 1.7,
close to the 1.8 measured by [31], up to time t − r∗ ' 1200 M�, i.e., about at the
contact time t ' 1200 M�. For WhiskyTHC, instead, we find a convergence order
of ' 2.8 up to time t − r∗ ' 1300 M�. We point out that this is the first time that
higher-than-second order of convergence has been shown for binary neutron
star mergers.

As a consequence of having a higher convergence order, WhiskyTHC is also
significantly more accurate. This is shown in Figure 5.13 where we compare the
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Figure 5.11: Real part of the 22 mode of Ψ4 extracted at r = 450 M� for model
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Figure 5.14: One-dimensional cuts along the x axis of rest-mass density
(dashed) and y component of the velocity, vy, (solid) lines for Whisky (blue)
and WhiskyTHC (red) for the model A. The velocity scale is shown on the left,
while the density scale is shown on the right. The data is taken after ' 1 orbit,
at the approximate moment when the center of one of the two stars crosses the
x axis. Notice that we correct for the de-phasing accumulated between Whisky
and WhiskyTHC by taking the data at slightly different times: t = 625.92 M� and
t = 622.08 M� respectively.

estimated phase error between the runs A.MP5.H2, A.PPM.H2 and the Richard-
son extrapolated phase from WhiskyTHC and Whisky respectively. We give a
rough estimate of the uncertainty in this procedure by performing two differ-
ent extrapolations for each code, varying the convergence order by ±0.2 with
respect to the estimated one. The resulting range of phase errors are shown
as shaded regions in the figure. A.PPM.H2 has an uncertainty in phase which
is almost equivalent to one GW cycle, i.e., of the order of ∼ 7 % of the entire
accumulated phase. At the same time, WhiskyTHC has an error which, at the
same resolution and for comparable computational costs, is ∼ 50 times smaller
than Whisky. We also point out that we tried computing the estimated phase
error for WhiskyTHC using Whisky Richardson extrapolated data, constructed
assuming convergence order of 1.7. In this case we found an even smaller
estimated phase error, but with an uncertainty, measured by varying the order
in the extrapolation by ±0.1, of more than 100 %.

We should stress that this error estimate only reflects the numerical trun-
cation error. Other systematic errors and, in particular, finite extraction radius
effects and inaccuracies in the initial data, are also present and might be rele-
vant (especially for WhiskyTHC). On the other hand, here we are interested only
in evaluating the accuracy of the two numerical methods.

A physical intuition of why Whisky has such a low accuracy with respect
to WhiskyTHC can be gained by looking at Figure 5.14. There, we show one-
dimensional cuts of the rest-mass density (solid lines) and of the y component of
the velocity, vy, (dashed lines) for runs A.MP5.H2 and A.PPM.H2 along the x axis.
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The data is taken at the approximate time when the first orbit is completed
and the centers of the two stars are aligned along the axis. Note that, since
this happens at two different times for A.MP5.H2 and A.PPM.H2, the lines in
the figure show data taken at two different (but equivalent) coordinate times.
One should focus on the velocity profile inside the stars, as the velocity in
the low density atmosphere around the star is expected to be dominated by
unphysical numerical effects as neither of the two codes is able to provide
a reasonable description of the stellar surface. The velocity in the interior,
instead, is directly related to the orbital motion of the two stars. As can be
seen from the figure, Whisky is not able to transport the velocity profile of the
star correctly. The reason is that its dissipation is slowly flattening both the
density and momentum profile and, since this flattening proceeds at different
rates for the different fields, it results in a distortion of the profile of the physical
quantities. This distortion, in turn, results in a small but artificial deformation
of the stars and it is likely to be the leading source of error in the phase.

5.4.2 Large Separation

In this section we present the application of our code to the simulation of the
inspiral and merger of binary neutron stars from large separation, i.e., model B
in Table 5.2.

The grid setup that we use here is the same as the one used in the previous
section, with the difference that we extend the finest grid so that it covers both
of the stars during the whole evolution. One important difference is that we
evolve these binaries using the BSSNOK formulation of the Einstein equations,
instead of CCZ4. The choice is motivated by the fact that we want to show
the potential of our code using a setup as similar as possible to the one most
commonly adopted in the literature. Furthermore the beta-driver coefficient, η,
is set to 0.3 and we reset the shift to zero in the initial data as suggested by [25].

An overview of the dynamics can be seen in Figure 5.15 where we show
six representative snapshots of the log10 of the rest-mass density for the run
B.MP5.H2. The inspiral phase lasts for about ' 13 GW cycles, ' 6.5 orbits,
and the two stars arrive at contact around time t ∼ 5000 M� (Mω ' 0.11).
The total gravitational signal up to the merger, defined as the time where the
gravitational waves amplitude has a first maximum, is of 16 cycles. Notice that
contact happens before the bare contact angular frequency [102],

0.15276 = Mωcontact := 2 C3/2, ω := φ̇ , (5.12)

is reached. This is in any case expected because this approximation of the
contact frequency does not take tidal deformations into account. The Mωcontact
angular frequency is reached, in our highest resolution run, B.MP5.H3, at time
t ' 5200 M�. The merged object survives for about∼ 3 GW cycles and it quickly
collapses to a BH. As in the small separation case, no significant accretion disk
is left and most of the matter is quickly accreted into the BH. As can be seen
from the figure, the stars are surrounded by a low density atmosphere which is
the byproduct of the way in which we treat fluid–vacuum interfaces (and that
we discussed in detail in the previous sections), nevertheless the profile of the
two stars appear to be still sharply preserved. This should be contrasted with
Figure 5.16 where we show the evolution obtained with the Whisky code at the
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Figure 5.15: Two-dimensional visualization of the log10 of the rest-mass density
for the run B.MP5.H2.
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Figure 5.16: Two-dimensional visualization of the log10 of the rest-mass density
for the run B.PPM.H2.
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Figure 5.17: Real part of the 22 mode of Ψ4 extracted at radius r = 450 M� for
model B. We show a comparison between the highest resolution run, B.MP5.H3,
and the predictions from post-Newtonian theory.

same resolution. The second order Whisky code yields an evolution where the
two stars are significantly more smeared and their boundaries, which we take
to be the yellow region where ρ ' 10−5 M−1

�
, much less defined. Furthermore

the merger time is significantly (' 20 %) delayed with respect to all of the
WhiskyTHC runs.

The gravitational waveform is shown in Figure 5.17. There we plot the 22
mode of Ψ4 as extracted at radius r = 450 M� for the run B.MP5.H3. As a refer-
ence we also show the analytical predictions from the PN model discussed in
[64] and kindly provided by Francesco Pannarale. We align the two waveforms
by fixing the position of the third maxima in the gravitational waveform, i.e., af-
ter ∼ 1 orbit, when the initial junk radiation has been propagated away and
the two stars have settled to a quasi-circular inspiral. As can be seen from the
figure, the two waveforms show good agreement in the earliest part of the late-
inspiral, which is also magnified in the inset. Afterwards they start de-phasing
as the binaries approach the contact point and the subsequent merger.

Before going into more details concerning the comparison between the nu-
merical results and the analytical ones, we discuss the quality of the numerical
relativity data. The first thing to point out is that the merger time, defined as
the time where the gravitational wave amplitude has a first maximum, is very
close between the different runs. This can be seen from Figure 5.18, where we
plot the amplitude of the 22 mode of Ψ4, as extracted at radius r = 450 M�,
and as a function of the retarded time t− r∗. As we change the resolution, from
low to high, by a factor 1.7, the differences in the merger time are only of the
order of ' 2.5 %. In comparison the results reported by [169] show, for a model
with the same compactness, changes of the order of ' 20 % when changing the
resolution by a factor 1.4, even though their highest resolution is about 35 %
higher than our highest one (this roughly corresponds to a factor 3 increase
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Figure 5.18: Amplitude of the 22 mode of Ψ4 extracted at radius r = 450 M�
for model B and for three different resolutions.

in the computational costs). Having such small differences in the merger time
allows us to perform a much simpler and cleaner analysis with respect to the
one presented in [169]. In particular we do not need to perform any alignment
/ time scaling of the numerical waveforms when measuring their convergence
or performing the Richardson extrapolation.

A more quantitative analysis of the accuracy of our code is shown in Figure
5.19. There we show the convergence of our code both in amplitude and in the
phase. For both quantities we find clean convergence, with order 3.2, almost
up to the contact time t ∼ 5000 M�. As in the case of model A and as remarked
before, we stress again that we do not align the waveforms in any way and
that this is the highest convergence order ever shown for binary neutron star
simulations in full general-relativity. The relative de-phasing between the high
and the medium resolution at the contact time is about 0.7 radians. Notice
that the de-phasing is smaller than the one we observed for Whisky, at higher
resolution, and over only the ' 2.5 orbits of the small separation binaries.

Finally in Figure 5.20, we show the comparison between our code and the
predictions from post-Newtonian (PN) calculations, using either the point-
particle Taylor-T4 formula (PP) [283] or with the inclusion of tidal effects up
to the next-leading order (1PN) [329, 247, 212]. In particular we take as refer-
ence the Richardson extrapolated phase evolution, φh=0, computed assuming
convergence order 3.2 and we plot the de-phasing of the different models with
respect to it. The alignment in phase of the PN waveforms is performed by
time shifting the waveforms in such a way so that they match the location of
the third maximum in the real part of the 22 mode of Ψ4 with the one found in
the highest resolution run.

The de-phasing between the highest resolution run and the extrapolated
result is of ' 0.4 radians at NR contact point, t − r∗ = 5000 M� (which is about
13.5 GW cycles), and of ' 1.4 radians over ∼ 15 GW cycles at the bare contact
frequency. As a comparison, we recall that [169] found, for a model with the
same compactness, a de-phasing, between the highest resolution simulation
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Figure 5.19: Accumulated de-phasing and amplitude differences for model
B as evolved with WhiskyTHC. In both plots we show the difference between
low and medium resolution (blue lines), between high and medium resolution
(green lines), as well as the rescaled differences between high and medium
resolution (red lines) computed assuming convergence order of 3.2.
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Figure 5.20: Accumulated de-phasing for model B with respect to the Richard-
son extrapolated numerical-relativity waveform. In particular we show the
de-phasing accumulated by the three runs B.MP5.H1, B.MP5.H2 and B.MP5.H3,
as well as by the waveform predicted by the PN model. The resolution extrap-
olation was performed assuming convergence order of 3.2.

(which is 35 % higher than the one employed by us) and the extrapolated
result, of & 5 radians over 15 GW cycles at the bare contact frequency. Notice,
however, that the resolution extrapolation after the NR contact point has to be
considered with caution since convergence is lost after contact.

The de-phasing between the point-particle PN waveform and the extrapo-
lated one is only of ' 0.6 radians at t− r∗ = 5000 M�. With the inclusion of tidal
effects the de-phasing is reduced to the point that it can no longer be measured
as it is smaller than the uncertainty due to the eccentricity in the initial data
(more on this below). The tidally corrected PN waveform appears to be on top
of the extrapolated numerical data up to NR contact point, t−r∗ = 5000 M�. The
accumulated de-phasing at the bare contact frequency is of only 0.7 radians.
This result clearly rules out, for this model, the presence of any significant tidal
amplifications effects from next-next-leading order terms in the PN expansion.

Clearly, since we are talking about extrapolated results, there is a degree
of uncertainty in the exact de-phasing, which we estimate, following [169], on
the basis extrapolations performed with order varied by ±0.2, to be of ±0.05
radians at t = 5000 M�. Notice, however, that a larger uncertainty applies
to the PN waveforms since the exact de-phasing depends on the alignment
procedure. The reason is that their de-phasing with respect to the WhiskyTHC
waveform oscillates by ±0.2 radians during the initial part of the inspiral as
a consequence of the residual eccentricity in the initial data in the numerical
relativity simulations. Finally we point out that finite-radius extraction effects
could also, in principle, be relevant in the amplitude of the de-phasing with PN.
As discussed before, in order to keep our analysis simple, we do not extrapolate
the waves in radius, but we point out that Baiotti et al. [26] estimated, for a
grid setup similar to ours (but for a lower compactness and smaller total mass
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model) a phase uncertainty of ±0.05 radians, which is negligible with respect
to the uncertainty due to the eccentricity in the initial data.

5.5 Conclusions

In this chapter we presented a new multi-dimensional, general-relativistic,
hydrodynamics code, WhiskyTHC, born from the merger of the Whisky and the
THC codes. This code inherited from Whisky the primitive recovery routine
as well as a new EoS framework with support for composition and energy
dependent realistic equation of state [136] and from THC the use of high-order
flux-vector splitting finite-differencing schemes [264]. This is the first genuinely
higher than second order fully general relativistic code.

Amongst the new techniques introduced with WhiskyTHC is the use of
positivity-preserving limiters [170] as a way to treat low density regions al-
ternative to the traditional “atmosphere” prescriptions. We showed that this
treatment is able to significantly improve the quality of simulations involving
isolated, stable, neutron stars. The introduction of positivity preserving lim-
iters in any hydrodynamics code is rather straightforward and we think that it
should become the method of choice for the evolution of isolated stars.

We demonstrated the accuracy of our code in a series of classical tests
involving the linear and non-linear evolution of isolated stars. In particular
we showed that our code is able to stably evolve isolated stars for a long
time and can attain high order (third) of convergence in the simulation of the
gravitational collapse of non-rotating stars to black hole.

We applied our code to the simulation of the late-inspiral and merger of two
neutron stars in quasi-circular orbits. We used small separation models to test
the dependence of the results on the atmosphere treatment and we showed that
our results are completely independent on it. Furthermore we demonstrated
the high order of convergence and accuracy of our new code with respect to the
old Whisky code. In particular we found higher than second order convergence
in the phase and an overall phase error which is, at the same resolution and
with similar computational costs, estimated to be ' 50 times smaller than the
one estimated for Whisky.

Finally we studied the tidal effects in the late-inspiral and merger of binary
neutron stars from the initial “large separation” of 60 km. We showed that
WhiskyTHC is able to accurately estimate the small tidal effects presents in the
inspiral of highly compact binaries, with C = 0.18, at a much lower resolution
and at a fraction of the cost of the studies published in the literature [169].
In particular we found a convergence order of 3.2 in both the amplitude and
the phase up to the contact point in the numerical simulations, which is the
highest convergence order ever shown for binary neutron star inspiral in full
general relativity. We compared the numerical waveform with the analytic
post-Newtonian predictions and we found remarkable agreement between the
numerical and the analytic predictions, especially when tidal corrections are
included in the analytic model. Our findings show that, for the model we
considered, the tidally corrected Taylor-T4 waveform agrees with the numerical
relativity one up to contact. In particular our results rule out, for this particular
model, any significant amplification of tidal effects by next-next-leading order
terms.
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In the future we plan to exploit the efficiency of the high-order methods in
WhiskyTHC to do a more systematic investigation of tidal effects in binary neu-
tron stars mergers, as well as in black-hole neutron star binaries, using realistic
equation of states and compactness parameters. We also plan to carefully assess
the detectability of such effects by near future gravitational waves detectors.
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Chapter 6

Discontinuous Galerkin
Methods

6.1 Introduction

Even though FV and FD schemes have been particularly successful and are
indeed the standard choice for modern numerical codes in relativistic hydrody-
namics and MHD, they also suffer from some limitations, such as the difficulty
of handling complicated grid structures and boundary conditions, or those as-
sociated with achieving high orders of accuracy. These are mainly due to the
fact that high-order accuracy is generally attained with the use of large recon-
struction stencils and expensive non-linear limiting operators, which quickly
become cumbersome to handle when the grid is not structured and/or quadra-
tures are required in the computation of the fluxes, i.e., for higher than third
order FV schemes. Large reconstruction stencils also come with large ghost
regions when doing parallel calculations, leading to poor scalability results.
Finally these schemes are also often overly dissipative in situations in which
shock waves are not the dominant part of the dynamics and may fail to properly
resolve fine structures of the flow [177]. This has important consequences for
the accuracy of general relativistic hydrodynamics codes [31].

For these reasons, alternative approaches to general relativistic hydrody-
namics such as finite-element methods [220], or spectral methods [155, 159] are
worth consideration. This latter approach is particularly interesting because
spectral methods are able to attain very high accuracy, but it is also limited by
the well known fact that these methods fail spectacularly when the solution
develops large gradients or discontinuities. For this reason, spectral methods
for relativistic hydrodynamics have been limited to the generation of initial
data [58, 19] or to situations in which strong gradients could be treated with
shock-tracking techniques within a multi-domain framework [155].

More recently, however, a novel method was suggested by Dumbser and
Zanotti [121], who presented a hybrid FV/discontinuous Galerkin (DG) ap-
proach for special relativistic resistive magnetohydrodynamics (MHD). In this
approach a local spacetime DG method was used as an implicit predictor step
in the context of a high-order FV scheme, in order to treat the stiff source term
of resistive MHD.

145



146 6 Discontinuous Galerkin Methods

Indeed, Spectral Discontinuous Galerkin Methods (SDGM) and their vari-
ant employing Gaussian numerical integration (SDGM-NI) were developed to
overcome some of the above limitations of FV and spectral or pseudospectral
methods respectively [75]. These methods work essentially by combining the
classical Runge-Kutta discontinuous Galerkin approach by Cockburn [93] with
the spectral element method (SEM) of Patera [249]. For this reason they are also
often referred to as DG-SEM or DG-SEM-NI. These methods are particularly
well suited for the solution of conservation laws and have been successfully ap-
plied to a number of classical hyperbolic, parabolic and elliptic problems (see,
e.g., [91, 75]). Finally they have been also successfully applied to the solution
of the Einstein equation in vacuum by Zumbush [347] and Field et al. [128].

We develop here the necessary formalism for the application of fully explicit
DG methods to relativistic hydrodynamics on curved spacetimes. As an appli-
cation we present a prototype code employing SDGM-NI for general relativistic
hydrodynamics in spherical symmetry. We show that the proposed scheme is
able to properly resolve strong shocks and achieve high-order, spectral accuracy
for smooth solutions. While we will not discuss explicitly the coupling of the
solution of the hydrodynamics equations with that of the Einstein equations, it
is clear that a natural choice would be to use discontinuous Galerkin methods,
such as the ones recently proposed by [347] or [128], or finite-element-methods
such as the ones introduced by [307, 306], also for the metric evolution equa-
tions. This approach would have the advantage, with respect to the solution
proposed with the “Mariage des Maillages” [113, 119], that the fluid and the
spacetime variables would share the same grid and no expensive interpolations
would therefore be needed.

The chapter is organised as follows. In Sect. 6.2 we derive the general
theory for the application of discontinuous Galerkin methods to relativistic
hydrodynamics in curved spacetimes and we specialize it to the spherically-
symmetric case. In Sect. 6.3 we present our prototype numerical code, EDGES
(Extensible Discontinuous GalErkin Spectral library), which was used to test
DG methods for general relativistic hydrodynamics in one-dimension (1D)
and spherical symmetry. The results obtained on a representative number of
test cases are then presented in Sect. 6.4. Finally Sect. 6.5 is dedicated to the
summary and conclusions.

6.2 Discontinuous Galerkin methods for general rel-
ativistic hydrodynamics

Broadly speaking, Galerkin methods are projection methods for the weak for-
mulation of the equations. In the case of the general relativistic hydrodynamics
equations, such a formulation could be obtained in two different ways. The first
one consists in starting from the relativistic hydrodynamics equations written
in a conservative form in a chosen coordinate system, e.g., the Valencia formu-
lation [36], and then integrating them against a test function. The numerical
scheme obtained with the Galerkin projection would then be a direct generaliza-
tion of the standard HRSC schemes used in general relativistic hydrodynamics.
Indeed, when considered at first-order only, DG schemes reduce to FV ones
and it is for this reason that they are often interpreted as an alternative way to
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attain high-order FV methods
While this approach is certainly possible and would seem to be quite natural,

it has the limitation that since we start from the equations in their coordinate
form, we also have to choose a metric with respect to which the volume integrals
are performed. The choice of such a metric is effectively arbitrary, but any
choice different from that of a flat metric corresponds to the absorption of
a multiplicative factor into the definition of the test function and thus it is
equivalent to a modification of the scheme in the higher-than-first-order case.
As a result, the choice of the metric is unimportant only in the FV limit of
Galerkin methods, but it plays a central role in higher-order Galerkin schemes.

A second way to obtain the weak formulation of the equations and the
one actually outlined in this chapter, is to follow an approach which is instead
manifestly covariant and thus does not require any assumed background. After
the formulation is obtained, it can then be decomposed in the standard 3 + 1
split of general relativity. This choice has the advantage of producing the most
natural extension of the commonly used HRSC frameworks to the DG case.
The resulting schemes will be naturally covariant, suited for use with standard
spacelike or null foliations or even independent of any foliation or coordinate
system. The reason why this is possible lies, as pointed out by Meier [220],
in the covariant nature of finite-element methods and, by extension, of DG
methods. In these methods, in fact, the equations are formulated on reference
elements mapped into the physical space via diffeomorphisms, thus removing
any need for a (preferred) coordinate system. The important difference between
our approach and the one by Meier [220] is in the use of non-conforming,
discontinuous, Galerkin methods. This gives us the possibility of reducing
the coupling of the numerical solution across the elements to flux terms, thus
enabling the construction of globally explicit, local schemes, in contrast to the
need for solving implicit, global, non-linear problems.

6.2.1 Weak formulation of the equations of relativistic hydro-
dynamics

Let (M, gαβ) be a strongly hyperbolic, C2, spacetime with metric gαβ and let ∇
be the covariant derivative associated with gαβ. We consider a perfect fluid
described by a rest-mass-density 4-vector Jα and a stress energy tensor Tαβ

defined by
Jα := ρuα , Tαβ := ρhuαuβ + pgαβ , (6.1)

where ρ is the rest-mass density, uα is the fluid 4-velocity, p is the pressure, ε is
the specific internal energy and h := 1 + ε + p/ρ is the specific enthalpy.

If we assume baryon-number conservation and a generic equation of state
(EOS) of the form p = p(ρ, ε), then the equations of motion for the fluid onM
read

∇α Jα = 0 , ∇βTαβ = 0 , p = p(ρ, ε) . (6.2)

In general these equations are to be intended in the sense of distributions, since
we expect the solution to develop singularities in the form of shock waves.

In general we are interested in solving (6.2) on an open, regular1, finite
1See [83] for a detailed discussion of the regularity requirements. Broadly speaking this amounts

to having a domain which has a normal defined everywhere except for at most a discrete set of
points (vertexes); i.e., a cubic box is a regular domain.
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domain Ω ⊂ M, with suitable initial/boundary data. A precise mathemati-
cal formulation of this problem can be done within the context of bounded
divergence-measure vector fields using the theory developed in [82, 83]. In
particular, we will look for solutions in the functional space, V, of all the L∞,
i.e., “bounded”, vector fields over Ω, whose divergence, in the sense of the
distributions, are Radon measures2.

As a first step we introduce a triangulation of N “elements” of Ω, {Ω j}
N
j=1, by

selecting a family of diffeomorphisms ϕ j : K ⊂ R4
→ Ω, Ω j = ϕ j(K) such that

N⋃
j=1

Ω j = Ω , Ω̊i ∩ Ω̊ j = ∅ , ∀ i , j , (6.3)

where K is the, so-called, “reference element”, usually an hypercube or a 4D
simplex and Ω̊ j denotes the interior of Ω j. We also arrange the local coordinate
system, {xµ} j, induced by ϕ j, so that ∂0 is timelike or null.

If we now look for solutions Jα ∈ V, the first of the equations (6.2) is
equivalent, in the sense of distributions, to

N∑
j=1

∫
Ω j

Jα ∇αφεεε −
∫
∂Ω j

φJα εαβγδdxβdxγdxδ
 = 0 , (6.4)

for allφ ∈ C1
0(M)3. Note that in expression (6.4) the symbolεεε refers to the proper

volume form of the spacetime, i.e., in any local chart, {xµ}, εεε =
√
−geee0

∧eee1
∧eee2
∧

eee3 = εαβγδdxαdxβdxγdxδ, and Jα is the internal normal trace of Jα. This object
reduces simply to Jα, when Jα and Ωk are regular, but in the general case the
second integral has to be intended as the action of a measure,Jαεαβγδdxβdxγdxδ,
on φ [83].

In the same way, if we look for solutions Tαβ ∈ V ⊗ V, the second of the
equations (6.2) is equivalent, in the sense of distributions, to

N∑
j=1

∫
Ω j

Tαβ ∇βφα εεε =

N∑
j=1

∫
∂Ω j

φα T
αβ εβγδµdxγdxδdxµ (6.5)

for all the one-forms φα ∈ C1
0

(
M; T∗M

)
, T∗M being the co-tangent bundle ofM.

Again, T αβ is a generalization of Tαβ and the integral has to be interpreted as
the action of T αβεβγδµdxγdxδdxµ on φα in the non-smooth case.

The solution of the relativistic hydrodynamics equations consists then in
finding

Jα ∈ V s.t., (6.4) holds ∀φ ∈ C1
0(M) , (6.6a)

Tαβ ∈ V⊗V s.t., (6.5) holds ∀φα ∈ C1
0

(
M; T∗M

)
, (6.6b)

together with an EOS and proper boundary-initial data, to be specified through
J
α and T αβ on ∂Ω. We remark, again, that (6.6) is perfectly equivalent, in
2For a precise definition see [82]. Broadly speaking this condition means that we restrict

ourselves to cases in which the solution presents at most mild singularities, such as jump-
discontinuities.

3We recall that a function of class Cn
0 (Ω) is a function of class Cn(Ω) and, in addition, with

compact support in Ω.
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the sense of distributions, to (6.2) and that the triangulation {Ω j}
N
j=1 has been

introduced mainly for later convenience.

6.2.2 Spacetime discontinuous Galerkin formulation

As mentioned above, within the Galerkin approach a numerical scheme is
obtained by projecting (6.6) on a finite dimensional subspace V ⊂ V. In general
this space is constructed starting from the space of piecewise polynomials, in
particular we define

X =
{
u ∈ L∞(Ω) : u ◦ ϕ j ∈ PD(K), j = 1, . . . ,N

}
, (6.7)

wherePD(K) is the space of polynomials with at most degree D on K. Notice that
the functions in X are allowed to be discontinuous at the edges of the elements,
hence the name “discontinuous Galerkin” for the resulting numerical scheme.
The space V is taken as the space of all the vector fields “whose components
are elements of X”, more precisely

V =
{
uα ∈ V : [ϕ j]∗uα ∈

[
PD(K)

]4
, j = 1, . . . ,N

}
, (6.8)

where [PD(K)]4 is the space of 4-tuples of polynomials with at most degree D
on K and [ϕ j]∗ is the pull-back associated with ϕ j. The Galerkin method is
then simply the restriction of (6.6) to V so that it consists of finding Jα ∈ V
and Tαβ ∈ V ⊗ V such that (6.4) and (6.5) hold for suitable choices of the test
functions, φ and φα, that we are going to discuss in the following. The resulting
equations can be solved numerically, because a finite number of conditions
suffice to fully determine Jα and Tαβ as long as we have a way to evaluate the
fluxes Jα and T αβ on ∂Ω j.

As discussed above, in the continuous case these fluxes are simply the
restriction of Jα and Tαβ to ∂Ω j. More explicitly if we write symbolically P =
{ρ,u1,u2,u3, ε} for the primitives variables and consider Jα and Tαβ as functions
of P, i.e., Jα = Jα(P) and Tαβ = Tαβ(P), then Jα = Jα

(
P
∗
)

and T αβ = Tαβ
(
P
∗
)
,

P
∗ being the restriction of P on ∂Ω j, as the fluxes can only depend on the

location in the spacetime through P. Stated differently, Jα and T αβ are simply
the Godunov fluxes for the conservation law. In the general case Jα and
T
αβ can be determined with causality considerations on spacelike boundaries4,

or as solutions of generalized Riemann problems5, on timelike and null-like
boundaries, as they are known as soon as P∗ is known on those boundaries.
This is basically analogous to the Newtonian case when using spacetime DG
methods to discretize balance laws. For this reason we refer to [246] for a
more in-depth discussion. We limit ourselves to note that, in the context of a
numerical scheme, the computation of the fluxes can be greatly simplified with
the use of approximate Riemann solvers, such as the HLLE scheme. In that case

4Where the solution has different limits, P1 and P2 from different sides of Γ ⊂ ∂Ω j and Γ is

spacelike, we proceed as in the Godunov method and we set Jα = Jα
[
P
∗(P1,P2)

]
. Causality

requires that P∗ must depend only on the past limit of P at Γ, say P1, this implies P∗ = P1, thus
J
α = [Jα]1. The same argument can be applied to evaluate T αβ.

5Here we are assuming that a solution to the generalized Riemann problem exists under the
conditions stated above. As discussed in Chapter 3 this is still an open problem for the equations
of general-relativistic hydrodynamics.
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J
α and T αβ are approximated directly without the need to explicitly compute

the solution of the Riemann problem, P∗, at the interface.
Once we have a way to compute the fluxes, the fully discrete equations are

readily obtained by testing (6.4) and (6.5) on a set of linearly-independent test
functions, φ and φα. The resulting finite set of equations can be cast in a set
of non-linear equations for the spectral coefficients of the numerical solutions,
when these are expanded over a linear basis of V, or V ⊗ V, for Jα and Tαβ

respectively, and by following a standard finite-element method procedure, see
e.g., [261]. In particular, it is sufficient to consider test functions φ ∈ X and
φα ∈ V, so that the final numerical scheme consists in finding

Jα ∈ V s.t., (6.4) holds ∀φ ∈ X , (6.9a)

Tαβ ∈ V ⊗ V s.t., (6.5) holds ∀φα ∈ V , (6.9b)

where the test functions on ∂Ω j in the boundary integrals appearing in (6.9)
have to be interpreted as being a C1

0 extension toM of the original test function,
created in such a way as to smoothly match the one-sided limit, from the interior
of Ω j, of the original test function.

To explicitly write down the method, in every finite element, Ω j, we select
a set of conserved quantities, C = {J0,T0µ

}
6, for which there exists a one-to-one

relation, involving the EOS, with the set of primitive variables [248], P, so that
we can formally write Ji = Ji(C) and Tiµ = Tiµ(C). We can then obtain a set of
non-linear equations forC ∈ X5 simply expanding the Galerkin conditions (6.4)
and (6.5)

N∑
j=1

[ ∫
Ω j

J0 ∂0φεεε +

∫
Ω j

J j(C) ∂ jφεεε

]
=

N∑
j=1

∫
∂Ω j

J
µ φεµαβγdxαdxβdxγ (6.10)

and, setting φα = φδ
µ
α,

N∑
j=1

[ ∫
Ω j

T0µ ∂0φεεε +

∫
Ω j

Tiµ(C) ∂iφεεε

]
=

N∑
j=1

[ ∫
∂Ω j

T
νµ φεναβγdxαdxβdxγ +

∫
Ω j

Tνλ(C) Γ
µ
λν φεεε

]
,

(6.11)

where Γαβγ are the Christoffel symbols and φ ∈ X.
The key point here is that, as the functions are discontinuous across the

∂Ω j’s, these equations are local equations for the spectral coefficients within
the Ω j’s coupled only through the fluxes. In particular this implies that, if
the computational grid “follows the causal structure of the spacetime”, in the
sense that it can be traversed with a succession of “causal slices” satisfying
some sort of generalized Courant-Friedrichs-Lewy (CFL) condition ensuring
the causal disconnection between the timelike boundaries of the elements, then
the discontinuous Galerkin method becomes globally explicit. Under these
conditions, in fact, the fluxes between the elements of the grid slice depend

6Other choices are possible, for example in the context of a 3 + 1 split we could use the same
conserved quantities as the ones used in the Valencia formulation.
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Figure 6.1: Schematic representation of a causal slice (I,S) containing the el-
ement Ω j. The future and past boundaries ∂±Ω j, as well as the time-like or
null-like boundaries ∂×Ω j of Ω j are indicated with blue and red lines, respec-
tively. Finally, the shaded region represent the causal slice.

only on the data on the previous slice. Once these are computed, we are left
with a set of formally decoupled equations involving the spectral coefficients
of the numerical solution in the different elements.

We now give the precise mathematical definitions of “causal slices” and of
“grid that follows the causal structure of the spacetime”.

For every open set A, we introduce the notation ∂+A, to indicate the future
boundary of A, that is the set of all the points, p ∈ ∂A, such that

J+(p) ∩ A = ∅ , (6.12)

J+(p) being the causal future of p. Analogously we call past boundary of A, ∂−A,
the set of all the points p ∈ ∂A for which there exist an open neighborhood, U,
such that

J+(p) ∩U ⊂ A , (6.13)

where we have indicated with A the closure of A. Finally we will write ∂×A for
∂A \ [∂+A ∪ ∂−A].

For a generic set E, instead, the above definitions are modified by considering
the interior of the set, E̊. In the case of an element of the grid, Ω j, these definitions
are useful to identify the regions of the boundary of Ω j where the characteristics
are always ingoing, ∂−Ω j, always outgoing, ∂+Ω j, or of mixed nature, ∂×Ω j.
These different parts of the causal slice (I,S) containing the element Ω j are
shown in Fig. 6.1.

We also define as a slice of the triangulation, or simply slice, any tuple (I,S)
where I ⊂ {1, 2, . . . ,N} and S =

⋃
j∈I Ω j is connected. We will say that a slice

(I,S) is a causal slice if
∂×S ⊂ ∂Ω . (6.14)

An example of such a slice of the triangulation is given by the shaded region
in Fig. 6.1: a causal slice is basically a slice whose timelike spatial boundaries
∂+ and ∂− are parts of a Cauchy foliation of the spacetime. A causal slice (I,S)
is said to be a minimal causal slice if it also satisfies the CFL-like condition[⋃

j∈I

(
∂×Ω j ∪ ∂

−Ω j

)
\ ∂Ωk

]
∩ J+(Ωk) = ∅, ∀k ∈ I, (6.15)
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that is, if the characteristics originating in each element, Ωk, only intersect the
boundaries of the element itself, ∂Ω, or the future boundaries of the other
elements in the slice.

Finally we say that a triangulation follows the causal structure of the spacetime
if it can be written as union of minimal causal slices. Intuitively a triangulation
that follows the causal structure of the spacetime is one that can be sliced in
minimal causal slices, which are grids associated with a Cauchy foliation of
the spacetime and which satisfy a CFL condition on each hyper-surface of this
foliation.

If the triangulation {Ω j}
N
j=1 follows the causal structure of the spacetime, in

the sense defined above, then we can introduce a family of successive slices
{(Ik,Sk)}Qk=0, parametrized by a discrete time k, such that ∂−Sk+1 ⊂ ∂+Sk∪∂Ω and
Ω =

⋃
k Sk. We can then construct a globally explicit, locally implicit, scheme

by solving (6.9) on the successive slices. The reason is that, for all j ∈ Ik+1, the
fluxes across ∂−Ω j and ∂×Ω j are completely determined by the data on Sk and
the boundary conditions, while the fluxes across ∂+Ω j do not couple Ω j with
other elements within Sk+1.

6.2.3 Discontinuous Galerkin formulation in the 3 + 1 split

Clearly the strategy outlined above could be useful in situations in which
stiff sources are present, such as in the resistive MHD case, where implicit
DG methods have already been shown to be suitable as predictors to treat
stiff sources [121], but in the unmagnetized case an implicit time stepping is
unnecessarily expensive in most situations. The generation of a triangulation
which follows the causal structure of the spacetime could also be highly non-
trivial, especially if the spacetime is evolved dynamically. For these reasons,
instead of directly solving (6.10) and (6.11), one can use them in order to derive
a fully explicit scheme. This can be accomplished by performing a 3 + 1 split
directly at the level of the discrete problem (6.9).

As customary, we foliate the spacetime along t = const. hypersurfaces, Σt,
and consider a vector tα such that tα ∇αt = 1. Using this vector we define the
three-volume form ηαβγ = εδαβγtδ. Also, as usually done in this context, we
can use the integral lines of tα to identify points on Σt with points on Σ := Σ0
and interpret the variation of the fields across the Σt’s as being the result of
dynamics on a three-manifold, Σ. We are then interested in studying (6.2) in
a world-tube S × (0, t), S ⊂ Σ being an open, bounded, regular domain in Σ,
together with proper boundary-initial conditions. Clearly this is a particular
case of the general problem studied above.

In order to apply the discontinuous Galerkin formulation, we consider a
triangulation {S j}

N
j=1 of S, by selecting a family of diffeomorphisms Φ j : T ⊂

R3
→ Σ, S j = Φ j(T) such that

N⋃
j=1

S j = S, S̊i ∩ S̊ j = ∅, ∀ i , j , (6.16)

where T is now a three-dimensional reference element, a cube or a tetrahedron.
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This induces a triangulation of Ω

{Ω j,n}
N,Q
j=1,n=1 =

{
S j ×

(
n∆t, (n + 1)∆t

)}N,Q

j=1,n=1
, (6.17)

that follows the causal structure of the spacetime on the n-th thin-sandwich
Ωn = S × (tn, tn + ∆t), at least for small ∆t.

As we intend to use the method of lines in order to integrate the equations
in time, we can factor out the time dependence from the test functions by
considering the functional space

Y =
{
u ∈ L∞(S) : u ◦Φ j ∈ PD(T), j = 1, . . . ,N

}
, (6.18)

and vector functions “whose components are elements of Y”:

W =
{
uα ∈ V : [Φ j]∗uα ∈

[
PD(T)

]4
, j = 1, . . . ,N

}
. (6.19)

Given a function u ∈ Y, we can consider it as a function, ũ, over S × (0, t) with
the identification ũ(xi, s) := u(xi) so that Y ↪→ Ỹ ⊂ X and, with a slight abuse of
the notation, we can consider Y as being a subspace of X. In a similar way we
can consider W to be a subspace of V. For these reasons we can choose φ ∈ Y
in (6.10) and (6.11). We can thus obtain a fully explicit method by re-projecting
(6.9) onto a new couple of subspaces or, equivalently, by finding

Jα ∈ C1
(
(0, t); W

)
s.t., (6.4) holds ∀φ ∈ Y , (6.20a)

Tαβ ∈ C1
(
(0, t); W⊗W

)
s.t., (6.5) holds ∀φα ∈W. (6.20b)

In the expressions above, and as customary when dealing with evolution prob-
lems, we have used the notation u(·) ∈ Ck

(
(a, b); X

)
, where a, b ∈ R and X is a

Banach space, to indicate that, when u is a regarded as a function only of time,
it describes a regular, Ck, curve in X. In other words, when u(t, xi

1) is interpreted
as a function of time only, it is of class Ck, while when u(t1, xi) is interpreted as a
function of xi only, it is an element of the function space X. Note also that in this
new formulation we do not allow the numerical solution to be discontinuous
in time, so that the time integration can be performed with a standard solver
for ordinary differential equations (ODEs).

We can derive a more explicit form for the (6.20) by projecting (6.10) with
φ ∈ Y, dividing both terms by ∆t and by letting ∆t→ 0, to obtain

N∑
j=1

∂t

∫
S j

J0 φηηη =

N∑
j=1

[ ∫
S j

Ji(C) ∂iφηηη −

∫
∂S j

J
i φηiαβdxαdxβ

]
. (6.21)

Reasoning along the same lines, we can derive an explicit discretization of
the second of the (6.2), starting from the (6.11), to obtain

N∑
j=1

∂t

∫
S j

T0µ φηηη =

N∑
j=1

[ ∫
S j

Tiµ(C) ∂iφηηη−

∫
∂S j

T
iµ φηiαβdxαdxβ −

∫
S j

Tαβ(C) Γ
µ
βα φηηη

]
.

(6.22)
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Finally the 3 + 1 discontinuous Galerkin formulation can be summarized in
finding:

Jα ∈ C1
(
(0, t); W

)
s.t., (6.21) holds ∀φ ∈ Y , (6.23a)

Tαβ ∈ C1
(
(0, t); W⊗W

)
s.t., (6.22) holds ∀φα ∈W. (6.23b)

This scheme can be interpreted as a higher-order generalization of a FV
discretization of the manifestly covariant formulation of relativistic hydrody-
namics proposed by [248]. As a consequence, our scheme inherits properties
such as hyperbolicity and the flexibility to work with spacelike or null-like
foliations directly from [248]. This can be seen considering the case in which
D = 0, that is, when looking for solutions that are constant over each element,
S j. Then a sufficient number of Galerkin conditions can be obtained by simply
choosing φ = χS j for j = 1, 2, . . . ,N, where χE is the indicator function of the
set E, i.e., a function which is equal to one in E and identically zero elsewhere.
With this choice we obtain the set of equations

∂t

∫
S j

J0 ηηη +

∫
∂S j

Ji(C) ηiαβdxαdxβ = 0 , (6.24)

and

∂t

∫
S j

T0µ ηηη +

∫
∂S j

T
iµ ηiαβdxαdxβ = −

∫
S j

Tαβ(C) Γ
µ
βα ηηη , (6.25)

for all j = 1, 2, . . . ,N. These can easily be recognised as being the FV discretiza-
tion of the formulation by [248].

6.2.4 Discontinuous Galerkin formulation in spherical sym-
metry

As a particular case of the formalism outlined above we consider the case
in which the spacetime is spherically symmetric. This case is particularly
interesting because the equations become 1 + 1 dimensional and are therefore
well-suited for rapid prototyping and testing of new methods and techniques7.

In particular we consider a spherically symmetric spacetime in a radial-polar
gauge

ds2 = −α2dt2 + A2dr2 + r2(dθ2 + sin2 θdφ2) , (6.26)

where α and A are functions of t and r only. We next introduce the Bondi mass
function, m, and the metric potential, ν, by

A(t, r) =
(
1 −

2m(t, r)
r

)−1/2

, α(t, r) = eν(t,r) . (6.27)

Following [278], we define the physical velocity, v, by v := Aur/αut, where
W = αut = (1 − v2)−1/2 is the Lorentz factor. Furthermore we introduce the

7Of course in 1+1 dimensions a Lagrangian approach such as the one presented in [271, 232] is by
far superior as it allows for natural spatial adaptivity and conservation properties. However, both
of these advantages disappear in more than one spatial dimension. On the other hand Lagrangian
approaches to multidimensional relativistic hydrodynamics have been recently proposed within the
context of smoothed-particle-hydrodynamics schemes in special [279] and general relativity [302].
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“conserved” quantities

D := αAJt = ρAW , (6.28a)

S := αTtr = ρhW2v , (6.28b)

E := α2Ttt = ρhW2
− p , (6.28c)

τ := E −D . (6.28d)

With these definitions, the Einstein equations reduce to the Hamiltonian
constraint

∂rm = 4πr2E , (6.29)

and the slicing condition ∂tKθθ = Kθθ = 0

∂rν = A2
[m
r2 + 4πr(p + Sv)

]
, (6.30)

where Ki j is the extrinsic curvature.
These equations have to be integrated with the boundary conditions given

by m(0) = 0 and by the requirement that ν matches the Schwarzschild solution
at the outer boundary of the computational domain (see e.g., [237] for a detailed
derivation and discussion of this equation).

The equations for the hydrodynamics are simply (6.21) and (6.22), where
the elements, S j, are taken to be the spherical shells r j < r < r j+1. These can
be written in terms of the conserved quantities (6.28) and specialized for the
metric (6.26) by substituting the explicit expression for the Christoffel symbols
and the determinant of the metric, to obtain

N∑
j=1

∫ r j+1

r j

∂tFFFt(C)φ r2 dr =

N∑
j=1

{∫ r j+1

r j

X FFFr(C) ∂rφ r2dr−

[
r2 XFFF r φ

]r j+1

r j
+

∫ r j+1

r j

sss(C)φ r2 dr
}
,

(6.31)

where we define X := α/A. Here, the fluxes are given by

FFFt = {D, S, τ} , FFFr =
{
Dv, Sv + p, S −Dv

}
, (6.32)

while the source term is

sss =
{
0, (Sv − τ −D)

(
8αAπrp + αA

m
r2

)
+ αAp

m
r2 + 2

αp
Ar
, 0

}
. (6.33)

In the derivation of (6.31) the momentum constraint was used to substitute the
derivatives of the metric in the source term and a factor X was absorbed into
the test function in the derivation of the equation for τ.

A close examination of the (6.31) reveals that, again, this formulation of the
equations can be interpreted as an higher-order generalization of a classical FV
discretization of the equations of relativistic hydrodynamics. In particular it
can be seen that, in the case in whichD ,S and τ are constant over each element,
(6.31) reduces to the FV method discussed in [278].
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6.3 The EDGES code

In order to test discontinuous Galerkin methods for relativistic hydrodynam-
ics and their reduction to spherical symmetry, we have developed a new 1D
code, EDGES. This consists of a general discontinuous Galerkin library which
is then used by a code solving the general relativistic hydrodynamics equa-
tions in spherical symmetry. EDGES makes extensive use of advanced generic
programming techniques such as static polymorphism via recursive templates,
and expression templates see e.g., [335]. The code employs the Blitz++ high-
performance array library [328, 1] and makes use of the UMFPACK multi-frontal
sparse factorization method [104, 105, 106, 107, 103] for linear systems inver-
sion. In what follows we describe in more detail the implementation of the
discontinuous Galerkin approach within EDGES.

6.3.1 The DG equations in a fully discrete form

We consider a spherical shell S = [0,R] in the spacetime (6.26), containing a
fluid described by (6.1) and (6.2). Furthermore we consider a “triangulation”
of S :=

⋃N
j=1 S j where (see Fig. 6.2 for a scheme of the triangulation)

Si ∩ S j = ∅ , ∀ i , j , S j = ϕ j

(
[−1, 1]

)
. (6.34)

The functional space that we consider in EDGES is,

Z =
{
u ∈ L∞(S) : u ◦ ϕ j ∈ PD[−1, 1]

}
, (6.35)

the set of all the functions that are polynomials of degree D over each S j.
If we denote by LD(x) the D-th Legendre polynomial on [−1, 1], a Gaussian

quadrature of order 2D − 1 can be obtained with the formula∫ 1

−1
f (x) dx ≈

D∑
i=0

wi f (xi) , (6.36)

where {xi}
D
i=0 are the zeros of (1 − x2)dLD(x)/dx, wi are a set of weights given by

wi =

∫ 1

−1
li(x) dx , i = 0, 1, . . . ,D (6.37)

and {li(x)}Di=0 are the Lagrange polynomials associated with the nodes {xi}
D
i=0, i.e., a

set of polynomials of degree D such that li(xk) = δik for i, k = 0, 1, . . . ,D. Given
two regular functions f and g in r ∈ (0,R) we now define their continuous scalar
product as

( f , g) :=
∫ R

0
f (r) g(r) r2dr , (6.38)

and use the quadrature formula (6.36) to introduce the discrete scalar product

( f , g)D :=
N∑

j=1

( f , g) j,D , (6.39)
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Figure 6.2: Scheme of the spacetime grid structure in EDGES. The collocation
nodes (filled squares) are generated and stored on the reference element, T, and
then mapped onto the finite element S j with an affine transformation, ϕ j. Note
that each point on the boundary of an element is associated with two distinct
degrees of freedom, thus allowing the functions to have two different one-sided
limits. Because the number of collocation points needed is D + 1, where D is
the order of the polynomial representation, the figure refers to a polynomial of
order three.

where

( f , g) j,D :=
D∑

i=0

wi |ϕ
′

j| f
[
ϕ j(xi)

]
g
[
ϕ j(xi)

]
(6.40)

and |ϕ′j| is the Jacobian of the affine transformation ϕ j : [−1, 1]→ S j.
With these definitions in place we can construct a fully discrete system by

looking for solutions D,S, τ ∈ Z and computing the integrals in (6.31) using
the Gaussian quadrature (6.36) over each element. In particular, using the
notation (6.39), we obtain

(
r2∂tFFFt, φ

)
D

=
(
r2XFFFr, ∂rφ

)
D
−

N∑
j=1

[
r2 XFFF rφ

]r j+1

r j
+

(
r2sss, φ

)
D
, (6.41)

where r j is the left vertex of the j-th element in the discretization of the radial
coordinate in the line element (6.26).

Considering now test functions with support contained within a given ele-
ment, S j, say

φ(r) = li
(
ϕ−1

j (r)
)
χ[r j,r j+1](r) (6.42)

where li
(
ϕ−1

j (r)
)

is the Lagrange polynomial or order i evaluated at the position
x = ϕ−1

j (r) of the reference element which is mapped into r, while χ[r j,r j+1] is
the indicator function and thus equal to one in the interval [r j, r j+1] and zero
elsewhere. Expanding FFFt over the Lagrange basis of S j

[
FFFt
◦ ϕ j

]
(x) =

D∑
k=0

FFFt
jklk(x) , (6.43)
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we obtain a set of coupled ordinary differential equations for the coefficients FFFt
ji

r2
ji∂tFFFt

ji =
(
r2XFFFr, ∂rli

)
j,D
−

1
wi|ϕ′j|

[
r2 XFFF rli

]r j+1

r j
+ r2

jisss ji , (6.44)

where r ji = ϕ j(xi) and we used the fact that (li, lk) j,D = δik. Hereafter we will
consider only affine maps ϕ j, so that the transformation between the reference
element T and the finite element S is given by

ϕ j(x) =
(x + 1

2

)
r j+1 −

(x − 1
2

)
r j , (6.45)

and |ϕ′j| = |r j+1 − r j|/2.
Figure 6.2 offers a schematic representation of the spacetime grid structure in

EDGES. The D + 1 collocation nodes (i.e., the four filled squares for a polynomial
of degree three) are generated and stored on the reference element, T, and then
mapped onto the finite element S j with an affine transformation, ϕ j. Each
point on the boundary of an element is associated with two distinct degrees
of freedom, so that the corresponding values of the functions can be different
there.

This system of equations is coupled with the equations for the evolution
of the metric quantities, described in Sect. 6.3.2, and closed with an EOS. In
particular we use an ideal-fluid (or Γ-law) EOS

p = (Γ − 1)ρ ε . (6.46)

Expression (6.44) is clearly a collocation scheme for D,S and τ on the grid
illustrated in Fig. 6.2, since we can interpret the expansion coefficients as col-
located values, i.e., f ji = f (r ji) for any function f . In our code we evaluate the
fluxes,FFF r, using the relativistic HLLE approximate Riemann solver and evolve
numerically the resulting set of equations using a second-order strongly stabil-
ity preserving (SSP) Runge-Kutta method [154]. We note that, as expected, if
D = 0, then l j = const., the first term on the right-hand side vanishes and we
are left with a standard FV scheme.

A final note concerns the CFL condition needed to ensure the linear stability
of the scheme. The linear stability of Legendre pseudospectral methods for
hyperbolic equations has been studied in [153], where it has been shown that
L2-stability can be obtained if ∆t ∼ D−2. As a result, in our code, we use a
timestep given by

∆t =
CCFL

(D + 1)2 ∆x , (6.47)

where ∆x is the size of the smallest element, the CCFL is a coefficient that
is reminiscent (but distinct from) the traditional “CFL factor” and has to be
determined empirically. This coefficient is usually taken to be CCFL ∼ 0.2 − 0.3,
but our numerical experience (at least in 1D) seems to suggest that this condition
is overly restrictive as stable evolutions can be obtained with CCFL ∼ 1 in most
situations.

6.3.2 Coupling with the spacetime

As discussed in Sect. 6.2.4, in spherical symmetry and with the gauge chosen,
the Einstein equations are simple constraints on each spatial slice and thus
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ODEs of the form
∂ru(t, r) = f (t, r) , (6.48)

which could be easily integrated to very high accuracy. However, instead
of using a standard Runge-Kutta method for their integration, we found that
a more efficient and accurate approach to solve equations (6.29) and (6.30)
consists of using an implicit discontinuous spectral ODE solver which makes
use of the same grid as the hydrodynamical variables. Such an approach has
the advantage of obtaining a numerical solution with a degree of accuracy
which is of the same order or higher with respect to the one attained for the
hydrodynamical variables, without requiring a very small step, as would have
been the case for a Runge-Kutta method.

In order to implement this approach it is necessary to allow the solution
to be discontinuous across the elements, while imposing the continuity using
an interior penalty technique [21, 22]. In particular the discontinuous Galerkin
formulation that we use reads

N∑
j=1

[ ∫ r j+1

r j

∂ruφdr − µ jJuK j φ j

]
=

N∑
j=1

∫ r j+1

r j

f φdr , (6.49)

whereφ j := φ(r+
j ), JuK j := u(t, r−j )−u(t, r+

j ) is the jump term, and µ j ∼ 1/∆r j is the
penalization coefficient. It is straightforward to see that this penalization term,
which we refer to as “upwind penalization” in contrast to the usual symmetric
penalization term

∑N
j=1 µ jJuK jJφK j, has the effect of enforcing u(t, r+

j ) = u(t, r−j )
without affecting the equation for the collocation value in r−j .

As customary in the context of DG-SEM-NI methods, we approximate (6.49)
as

(∂ru, φ)D −

N∑
j=1

µ jJuK j φ j = ( f , φ)D , (6.50)

so that if we arrange the values of u(t, r) and f (t, r) on the collocation points in
two arrays uuu(t) and fff (t), the previous can be written as

AAAuuu(t) = fff (t) , (6.51)

whereAAA is a large-sparse matrix. AsAAA does not depend on t, in EDGES this matrix
is pre-computed, stored and pre-factorized using UMFPACK (see e.g., [282]). At
each step, then, we have simply to compute fff (t) and use the factorized version
of AAA to efficiently compute uuu(t) = AAA−1 fff (t).

6.3.3 Limiters, spectral viscosity and spectral filtering

It is well known that high-order numerical methods suffer from numerical
oscillations in the presence of discontinuities (Gibbs phenomenon). If these
oscillations are not suitably handled, they tend to grow out of control and
destabilize the method. To overcome this difficulty several different “flattening
techniques” have been developed in the context of FD, FV and spectral methods
to artificially lower the order of the methods in the presence of shock waves.
Some examples are artificial viscosity, flux limiting, PPM or ENO/WENO re-
construction. Many of these techniques are implemented in EDGES and can be
activated during the evolution.
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Complications of spherical symmetry

While discontinuous Galerkin methods can in general be used in combination
with the large majority of flattening techniques, this is not the case in spherical
symmetry. The reason for this is that if we consider a function u and interpret
any of the flatting methods above as the application of an operator L to u, it
can be shown that, for the above mentioned flattening techniques,∫

Ω j

u dx =

∫
Ω j

L(u) dx , (6.52)

which is the desired behaviour for a conservative scheme in 1D. However, in the
case of spherical symmetry, the conservation property that we should satisfy
reads ∫

Ω j

u r2 dr =

∫
Ω j

L(u) r2 dr . (6.53)

Unfortunately, the property (6.53) does not hold for almost all of the stabiliza-
tion techniques which will be discussed in Sect. 6.3.3 and which are generally
coordinate dependent (the only exception being given by the spectral viscosity
method which is inherently a differential operator). In the case of FV codes this
is not a problem because the reconstruction is only used in the computation of
the fluxes and the volume averages are evolved using the correct cell volume,
but in a scheme that works with the actual point-wise value of the solution,
this leads to unacceptable variations of the volume integral of u (e.g., of the
total “mass”) in the elements with r � 1 and r � 1, which in turn leads to the
development of large numerical errors and/or instabilities. For this reason it is
necessary to introduce a correction to the flattening procedure in the spherically
symmetric case.

A naive way to obtain the desired result would be to modify the operatorL
as

L̃(u) =
1
r2L(ur2) , (6.54)

so that L̃ now satisfies (6.53). In practice, however, this strategy results, as can
be easily foreseen, in large numerical errors near r = 0 and is this of little use.
For this reason we had to adopt a more radical approach and add a “correction
step” after the application ofL to enforce (6.53). In particular we implemented
three different strategies which we discuss below.

The first one, which we refer to as “dummy” correction, consists of simply
adding to L(u) a function C, constant on every element, such that (6.53) is
satisfied. This is a very simple approach and has the advantage of not increasing
the total variation ofL(u) inside the single elements, as conservation is basically
obtained at the expense of the amplification of the jumps of L(u) across the
elements. In this way the additional total variation generated by the corrective
procedure is concentrated over the grid points which constitute the “finite
volume part” of the method.

The second one, which we refer to as “bubble” correction, consists of adding
toL(u) a function b, which is a bubble function over each element, i.e., a function
which is zero at the edges of the element, such as[

b ◦ ϕ j

]
(x) = K j(1 − x2) , (6.55)
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where the K j’s are chosen in each element so that (6.53) is satisfied. This
approach has the advantage of avoiding the creation of artificial discontinuities
at the boundary of the elements, at the price of a small increase in the total
variation of L(u).

Finally the third one, which we refer to “intrinsic” correction, consists of
modifying the action of L so that Lq = L(Lq) for q ≤ 2. In this way both (6.52)
and (6.53) are satisfied. In practice this is obtained by overwriting the low-order
coefficients of the discrete Legendre transform (DLT) of L(u) with the ones of
u. This method has the advantage of not introducing any unwanted extra
total variation and, for this reason, is the one that has the best mathematical
properties. The only limitation is that it effectively weakens L and could thus
fail to completely removing the Gibbs oscillations.

All these three techniques can be basically used in combination with any of
the stabilization methods which are described in the following Section.

Stabilization techniques

The most commonly used stabilization technique in discontinuous Galerkin
methods is based on slope limiting. These methods were originally developed
for FV schemes [196], but are easily modified to work with discontinuous
Galerkin schemes as done by Cockburn and Shu [93], who introduced the
“ΛΠ1” limiter based on a generalized version of the “minmod limiter”. In
our code we implemented a refined version of this limiter originally proposed
by [50] and subsequently improved and extended by [187]. This essentially
works by recursively limiting the coefficients of the spectral representation of
the solution on the various elements. The main advantage of this technique
is that it does not require tuning and it is usually very reliable, while its main
limitation is that its use often results in excessive flattening of the solution in the
presence of discontinuities. Moreover we found that all these methods perform
rather poorly in conjunction with the correction techniques outlined above and
for this reason we have rarely used them.

Another method implemented in EDGES is the “spectral viscosity” method
first proposed by Maday et al. [205] in the context of Legendre pseudospectral
methods for conservation laws. This method consists of the addition to the
right hand side of (6.44) of a term

− εD (Q ∂xFFFt, ∂xφ)D , (6.56)

where εD is a coefficient depending on the number of grid points and Q is a
viscosity kernel whose action on a scalar function u reads, in every element,

[
Qu

]
(x) =

D∑
k=0

Q̂kûkLk(x) . (6.57)

Here, ûk are the coefficients of the DLT of u and Q̂k are real numbers such that

Q̂k = 0 , for k ≤ mD , (6.58a)

1 −
(mD

k

)4

≤ Q̂k ≤ 1 , for k > mD . (6.58b)
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Note that mD effectively plays the role of the cut-off frequency of the filter.
Meday et al. [205], were able to show that, in the context of scalar conservation
laws in 1D and using only one domain, this method is able to stabilize the
scheme, without spoiling its spectral accuracy if

εD ∼ D−θ , for D� 1 , (6.59)

where θ is just an exponent such that 0 < θ ≤ 1 and

mD ∼ Dq/4 , for 0 < q < θ ≤ 1 . (6.60)

In our code we have set

εD = µ
∆t
N

1
D

(6.61)

and

Q̂k = f , for k ≤ mD , (6.62a)

Q̂k = f + 1 −
(mD

k

)4

, for k > mD , (6.62b)

where µ, f and mD are set by the user (standard reference values are µ = 1, f = 0
and mD = 0, 1).

Besides being particularly dissipative, this method has the important ad-
vantage that it can be adapted to spherical symmetry by modifying (6.56) as

− εD (r2 Q ∂rFFFt, ∂rφ)D . (6.63)

In this way, the condition (6.53) is satisfied without the need for adding cor-
rective terms. In EDGES, the term (6.63) is added using an operator-splitting
technique, so that its use corresponds to the application of a linear filter. This is
discretized with two different techniques: locally on each element, or globally,
using an interior penalty technique. We call the latter approach “interior-
penalty spectral-viscosity” (IPSV) stabilization. While the first approach is
completely local, the second one is able to relax also the jump terms between
the elements. The main drawback of this method, however, is that we have
found that the quality of the results can be quite sensitive to the tuning of µ and
mD, which are necessarily problem dependent.

The third method implemented in EDGES is usually referred to as “spectral
filtering” (see e.g., [76]). The idea behind this technique is to filter the numerical
solution, or its time derivatives, with a low-pass filter in order to remove high-
frequency components and keep the Gibbs oscillations under control. In the
context of Legendre pseudospectral methods, this filtering, which we indicate
with FD, reads [

FDu
]
(x) =

D∑
k=0

σ
( k

D

)
ûk Lk(x) , (6.64)

where ûk are the coefficients of the Legendre expansion of u and σ(η) is a filter
function of order p in the Vandeven’s sense, that is a function σ ∈ Cp

(
R+; [0, 1]

)
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such that

· σ(0) = 1 ; (6.65)

· σ(k)(0) = 0 , for k = 1, 2, . . . , p − 1 ; (6.66)
· σ(η) = 0 , for η ≥ 1 ; (6.67)

· σ(k)(1) = 0 , for k = 1, 2, . . . , p − 1 ; (6.68)

where f (p)(x) denotes the p-th derivative of f in x. These schemes were studied
by Hesthaven and Kirby [167], who showed that if σ(·) is a filter of order p, and
u ∈ Cp(−1, 1), then ∣∣∣u(x) − FDu(x)

∣∣∣ ≤ D1−p
‖u(p)
‖L2(−1,1) , (6.69)

so that, if p ∼ D, the filter does not spoil the spectral accuracy of the method.
The effects of filtering on the stability of the numerical method can be intu-

itively understood from the fact that some filters, in particular the exponential
filter of order p,

σ(η) = exp
[
− µ(D + 1)

∆t
∆x
ηp

]
, (6.70)

can be interpreted as equivalent to the use of numerical diffusion of order p and
strength µ [221]. At present, however, a mathematical understanding of the
impact of filtering on the accuracy and the stability of Legendre pseudospectral
methods is still lacking [167].
EDGES provides a number of different filter functions, but the most used are

the exponential filter (6.70), which is only an approximate filter, but which is
very popular due to its flexibility [76], and the “Erfc-Log filter” proposed by
Boyd [61],

σ(η) =
1
2

erfc
{

2p1/2
(
|η| −

1
2

)√
− log[1 − 4(η − 1/2)2]

4(η − 1/2)2

}
, (6.71)

which is a semi-analytic approximation of the Vandeven’s filter,

σ(η) = 1 −
Γ(2p)
Γ(p)2

∫ η

0

[
t(1 − t)

]p−1
dt , (6.72)

where Γ is the Euler Gamma function. Note that it is customary to use filters
of order p ∼ 2D or larger when expecting regular solutions and 2D + 1 is a
reasonable value for a strong filter such as Erfc-Log.

The main limitation of spectral filtering is that, being a high-order linear
method, it cannot completely remove the Gibbs oscillations. This is a conse-
quence of the well-known Godunov theorem stating that no linear monotonicity-
preserving method exists of second-order or higher (see e.g., [196]). The idea is,
instead, to allow for small oscillations of the numerical solution at the location
of shocks, while preventing them from growing out of control. In our numerical
experience we found that spectral filtering is a robust and viable alternative to
slope limiting in the shock-tube case, where its use often results in a sharper
resolution of the discontinuities, and, at the same time, it is well-behaved in
the spherically symmetric case. Spectral filtering seems also to be much less
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Figure 6.3: Solution for the rest-mass density of a relativistic shock tube with
different stabilization techniques. The solid black line represents the exact,
analytic solution, while the red crosses and the blue squares refer to the use
of the two different DLT filters, i.e., the Erfc-Log and the exponential filter,
respectively. The blue triangles and the violet circles refer instead to the use of
the IPSV filter and of high-order slope limiters, respectively. To avoid excessive
cluttering, only a data point every five is shown. The results were obtained on
a grid of N = 200 elements with a polynomial of degree D = 3.

sensitive than the spectral viscosity methods to the tuning of the parameters
of the filter functions. Finally, we point out that, in contrast to IPSV and slope
limiters, this technique is completely local in the sense that its application in a
given element does not require the knowledge of the solution elsewhere. For
these reasons, most of the results that we will show in the next Sections were
obtained with the use of spectral filtering.

Before doing that, however, and to illustrate the difference between the
various stabilization techniques, we show in Fig. 6.3 a comparison of the re-
sults obtained using different filters, while keeping all the other discretization
parameters fixed. In particular, we show the results obtained in the case of
a relativistic shock tube in flat spacetime. The details of the physical setup
will be given in Sect. 6.4.1, here instead we focus on the effects of the different
stabilization techniques. As anticipated we find that slope-limiting, even in
their high-order variant, results in a much larger smearing of the shock front
than all the other methods. The 9th order Erfc-Log filter yields a much sharper
resolution of the shock and a stable evolution, even though, as discussed before,
filtering does not have such a strong mathematical basis, while slope-limiting
is known to yield a total-variation diminishing in mean (TVDM) scheme [93].
The best overall results are the ones obtained with the second-order exponential
filter, for which we used a small strength factor, µ = 1, and the IPSV technique
with µ = 1 and Q̂k = 1. We remark that the results obtained with these last two
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methods are very similar since, as discussed before, the action of an exponential
filter is roughly equivalent to that of a spectral viscosity. The results in Fig. 6.3
obtained on a grid of N = 200 elements with a polynomial of degree D = 3.

6.3.4 Treatment of low-density regions

The treatment of interfaces between vacuum regions and fluid regions is one of
the most challenging problems in Eulerian (relativistic) hydrodynamics codes
(see e.g., [137, 179, 228]). The most commonly used approach to treat vacuum
regions is to fill them with a low-density fluid, such that if a fluid element
is evolved to have a rest-mass density below a certain threshold, it is set to
have a floor value and zero coordinate velocity [131, 29]. This approach works
reasonably well and has been adopted by the vast majority of the relativistic-
hydrodynamics codes. Nevertheless, the introduction of this “atmosphere”
creates several numerical difficulties. First of all, this approach is gauge depen-
dent and, for example, a star can accrete or lose mass from/to the atmosphere
due to oscillations in the coordinate variables. Secondly, this approach often
results in the introduction of errors at the surface of the star, which, on the
one hand, usually have little influence on the overall dynamics because of the
small momenta involved, but which, on the other hand are relatively large if
compared with the magnitude of the involved quantities at the surface. Finally,
and most importantly, it is possible that the algorithm governing the evolution
of the floor can couple with the Gibbs oscillations, leading quickly to their
amplification and destabilizing the scheme (After-all, the introduction of an
atmosphere treatment is de-facto equivalent to the use of a boundary condition
and this can very well lead to an unstable algorithm). For this reason this pro-
cedure could not be used in a straightforward way in our code, but required
particular care.

Other solutions, such as the use of the equations in Lagrangian form,
e.g., [135], the use of moving grids techniques e.g., [155], or the use of suitable
limiters at the surface [137], do not suffer from these issues, but are restricted
to the spherically symmetric case. As our code is meant to be a prototype code
to study the viability of DG methods for relativistic hydrodynamics, the use of
these techniques would have defeated our purpose.

As a result, several different approaches were implemented and tested in
EDGES to overcome the difficulties with the atmosphere discussed above. The
main idea behind all these approaches was to use stronger stabilization tech-
niques at the interfaces between fluid and vacuum regions. Unfortunately all
these techniques performed quite poorly because they resulted in an unaccept-
able lowering of the resolution at the surface and thus in large numerical errors.
Moreover, in the spherically symmetric case, the situation is greatly worsened
by the fact that these errors tend to build up coherently while traveling towards
the center. For example, in the case of a neutron star, they tend to be amplified
by a factor R/r ∼ 103, R ∼ 10 being the radius of the star and r ∼ 0.01 being the
location of the closest grid point to the center.

Within EDGES a solution to this problem was eventually found with the use
of a method that is, at the same time, oscillation-free and capable of obtaining
high-enough resolution at the surface. In particular, we derived a “sub-element
method” approach that we later discovered to be very similar to the spectral
volumes (SV) method already suggested by Wang [331]. In this method, we
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Figure 6.4: Division of an element into control volumes for the spectral-volume
method applied at the fluid-vacuum interface. The values of the solution u on
the collocation points (filled squares) are interpreted as volume-averaged values
of the solution in appropriate control volumes (hollow diamonds denote the
boundaries). These values are then used to generate a reconstructed solution
Ru using an adapted slope-limiter method.

first flag those elements in which the rest mass density falls below a certain
threshold. Secondly we interpret the value of the solution on the collocation
points of those elements as being the volume-averaged value of the solution
on appropriated control volumes. Finally these values are evolved as in a FV
scheme: a linear reconstruction with slope limiting is used to compute the value
of the primitive variables at the interface of the control volumes and the HLLE
approximate Riemann solver is used to compute the fluxes.

The structure of the grid used for this spectral volume method is shown in
Fig. 6.4. The control volumes are simply obtained by considering the points of
the dual mesh as the cell interfaces, while their volume has to be corrected to
take into account the weights of the Gaussian quadrature associated with the
primal grid. The linear reconstruction can be performed only for the interior
control volumes, while for the control volumes at the boundary of each element
we already have the value of the solution at one side of the control volume,
thus we are forced to reconstruct the solution there as a constant. In our tests
we found that the “superbee” [130] limiter is the one which guarantees the best
results among the ones that we tested. For this reason, all the results shown in
the following make use of this limiter.

The important advantage of this approach, with respect to a more traditional
approach in which the troublesome elements are split into equal-size cells and
a classical FV method is used, see e.g., [324], is that no interpolation is required
in the switching from/to the discontinuous Galerkin method. The coupling
between the two methods is also very natural and is done through the Riemann
solvers between the elements. Again no special treatment is required to handle
different type of elements: the DG ones and the SV ones. The main limitation of
this approach is that, as we do not increase the number of degrees of freedom
in the flagged elements, it has the effect of reducing the accuracy to second
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Figure 6.5: First shock-tube test. Shown with solid lines are the exact solution
for the rest-mass density (black line), the velocity (blue line), and the specific
internal energy (red line). The corresponding numerical solution is represented
by the black crosses, the blue triangles, and the red squares, respectively. To
avoid excessive cluttering we show only one point every 15 of the numerical
solution. The results were obtained on a grid of N = 500 elements with a
polynomial of degree D = 3.
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order where it is used. As will be shown in Sect. 6.4.4, this seems not to be
limiting the accuracy of our code, probably because the use of the SV method is
confined to small regions containing low-density fluid. In the case of a neutron
star, for example, the use of the SV method is typically limited to one element
containing the surface of the star.

As a final remark we note that, as we are working with a nonuniform
grid, the slope limiting method in its standard form, also used by us, is not
guaranteed to be TVD and/or second order [43]. Again this seems not to be a
problem in practice.

6.4 Numerical tests

In what follows we present the results obtained from some of the tests per-
formed with EDGES. These tests have been chosen because they highlight the
capabilities of our code in idealized settings, such as in the simulation of shock
tubes and shock waves, and in more “astrophysically motivated” settings, such
as in the simulation of the dynamics of spherical stars and of the gravitational
collapse to black hole. In all cases considered, the evolution has been made em-
ploying an ideal-fluid EOS to take account of non-isentropic transformations,
such as shock-heating effects.

6.4.1 Shock tubes

The first tests performed are shock-tube tests and, more specifically, we first
present the results obtained in the case of two standard benchmarks for relativistic-
hydrodynamics codes described in [209]. These are referred to as “blast-wave”
problems 1 and 2 in [209], and are essentially one-dimensional flat-space Rie-
mann problems.

The first problem describes the propagation of a relativistic blast wave
through a low-density medium. The solution obtained with EDGES, as well as
the analytic solution, are shown in Fig. 6.5, where the solution is computed
using polynomials of degree three (i.e., D = 3) and 500 elements (i.e., N = 500).
The stabilization is obtained with the use of an Erfc-Log filter of 9th order, which
has been applied directly to the conserved variables in the regions where they
fail to be monotone at every timestep. As it can be seen from the figure, the
stabilization is strong enough to eliminate any oscillations, thus reducing the
order of the method to the expected first-order near the discontinuity, yet with
a very small smearing of the shock.

The second shock-tube problem is similar to the first one, but is much more
extreme. This benchmark is considered to be a challenging test also for modern
HRSC codes [209]. The main difficulty is to handle the very high compression
ratios, typical of relativistic hydrodynamics, produced in this case. In Fig. 6.6
we show a comparison of the results obtained with our code when using the
exponential filter (6.70) at second-order (i.e., p = 2) with µ = 1.0, which is
employed in the same way as the Erfc-Log filter in the previous test with
the ones obtained with the high-order THC code introduced in Chapters 4 and
5 using the MP5 reconstruction scheme in local characteristic variables. The
comparison is made when using the same number, 1000, of cells (for THC) and of
elements (for EDGES); for both codes, in fact, we expect a convergence order (on
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Figure 6.6: Rest-mass density profile for the second shock-tube test. Shown
with different lines are the exact solution (solid black), the solution obtained
with the THC code [111] (dotted blue). Both codes use 1000 cells/elements and
algorithms at fifth order; EDGES also uses a exponential filter with µ = 1, p = 2.

Figure 6.7: The same as in Fig. 6.6, but with a magnification of the shock and a
comparison of the results at different orders D of the polynomial representation
of the solution. Note that the accuracy with which the shock location is found
increases with D.
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smooth solutions) of the type ∆x−p, with ∆x being the width of each cell/element
and p being the order of the scheme. Note, however, that, while in THC high
order is obtained with the use of data across multiple cells, in EDGES this is
attained with the use of a polynomial representation of the solution in each
element. Thus the EDGES code actually uses around six times more grid points
than the THC code. Nevertheless, we argue that this is the correct comparison
because, as mentioned before, the convergence properties of the two codes once
the reconstruction procedure and the order of the polynomial representation
is fixed, scale with the width of the cells/elements. This kind of comparison,
where results obtained with discontinuous Galerkin and finite volume methods
are obtained using the same number of elements/cells, but different number of
degrees of freedom has already been discussed in the literature, see e.g., [343].

As can be seen from Fig. 6.6 the quality of the solution obtained by the two
codes is comparable over most of the domain, even tough the solution obtained
by the EDGES code shows signs of Gibbs oscillations ahead of the shock, while
the THC yields a more sharp and non-oscillatory solution profile. Overall, the
exponential filter can prevent the oscillations from growing and yields the best
results when compared to the other flattening techniques discussed above.
A more quantitative estimate of the quality of the numerical solution can be
obtained by looking at the ratio σ/σexact, between the observed compression
ratio and the analytic one [209]. We obtain a value of 0.96 with EDGES. At
lower resolution, i.e., using only 400 elements, we obtain, for EDGES, a value
of 0.60 which is close to the ones reported for PPM at the same resolution:
i.e., σ/σexact ' 0.54 − 0.69 [209]. We conclude therefore that in the case of
discontinuous solutions, DG methods behave similarly to FV methods with the
same number of elements/regions.

Finally Fig. 6.7 shows a magnification of the blast wave and in particular it
shows a comparison between the exact solution, the solution obtained with THC
and the solutions obtained with EDGESusing different polynomial orders. As we
increase the order of the polynomials used in the representation of the solution
in EDGES we get a slow improvement in the shock location in the numerical
solution, even though the maximum of the density seems to be better captured
for D = 5 (for which we tuned the filter strength). Overall, however, the quality
of the solution that we obtain depends only marginally on D. On the one hand,
this is expected since the code should converge only to first order in ∆x in the
presence of shock waves independently from D. On the other hand, this is
an important confirmation of the robustness of filtering as it shows that the
filtering strength does not need to depend on D.

6.4.2 Spherical shock reflection

Another classical benchmark for relativistic-hydrodynamics codes is the spher-
ical shock-reflection test. This is the relativistic version of the classical Noh
test and its setup is described in detail in [209]. The initial data consists of a
cold fluid converging at the center of the domain. As the fluid flows towards
the center, a hot dense shell of matter is formed and a shock wave is prop-
agated outwards. In this situation it is possible to generate arbitrarily high
compression ratios by increasing the Lorentz factor of the ingoing flow. This
is a peculiarity of relativistic hydrodynamics and, again, the key point of the
test is to assess the capability of the numerical methods to handle such strong
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Figure 6.8: The same as Fig. 6.5, but for the spherical shock-reflection test with
a Lorentz factor of W = 1000. To avoid excessive cluttering in the main frame
of the picture we plot only a point every five of the numerical solution, while
the inset shows the solution on all the collocation points.

density contrasts.

This problem is also interesting to assess the quality of the correction pro-
cedure for the filtering in spherical symmetry. In particular, the quality of
the results depends on the used correction procedure: they are of comparable
quality when using the “dummy” and the “bubble correction” procedures (the
former being slightly better), while the “intrinsic” correction yields a filtering
which is too weak to guarantee stability. This is not a surprise since with the
intrinsic procedure we are not able to filter the coefficients of order less than two
in the Legendre expansion, so that we cannot reduce the order of the method
below second even with a strong targeted filter.

In Fig. 6.8 we present the results obtained for a flow with W = 1 000 solved
using polynomials of degree three, on 200 elements and with an Erfc-Log filter
with p = 4 and a dummy correction. As shown in the figure, the filtering
procedure is able to suppress any spurious oscillation and the shock front is
captured within two elements, i.e., eight collocation points. The average relative
error on the compression level is of 1.4 %, comparable with the 2.2 % reported
by Romero et al. [278] using FV with a minmod reconstruction on a grid with
the same number of cells. Furthermore, as in Romero et al. [278], the error
in ε and ρ increases in the inner part of the solution. This is due to the well
known wall-heating effect and is due to the small but nonzero dissipative and
dispersive features of the numerical methods (see [238, 276] for an extended
discussion of this effect).
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Figure 6.9: L2-error in the spherical accretion test as a function of the number of
elements N. Crosses and squares refer to the errors on C1 and C2, respectively,
while the black, blue and red colors denote refer to the simulations using third,
fourth, and fifth-order polynomials. Finally the dashed lines show the slopes
associated with third, fourth, and fifth-order convergence.

6.4.3 Spherical accretion onto a Schwarzschild black hole

Having verified the capability of our code to handle shock waves, we next
present some results concerning its accuracy in the case of regular solutions.
In particular, we consider the case of spherical accretion onto a Schwarzschild
black hole in the Cowling approximation (i.e., with a fixed spacetime). An
analytic solution exists in the case of stationary flows and was first presented
by Michel [223] and later used as a numerical test for other numerical codes,
for example by [278]. This solution can be described in term of two constants:

C1 :=
√
−g Jr , (6.73)

and
C2 :=

√
−g Tr

t . (6.74)

In our simulation we consider a spherical shell with extent 3−N/40 ≤ r ≤ 20
in the spacetime metric of a Schwarzschild black hole of unit mass, while the
initial conditions for the hydrodynamical variables describe a low-density fluid
at rest with respect to an observer at infinity. At t = 0 we start injecting higher-
density fluid from the outer boundary and after a short transient the solution
reaches stationarity, allowing us to measure C1 and C2 and to compare them
with the analytic values fixed by the outer boundary condition.

In Fig. 6.9 we show the L2-norm of the error for C1 and C2 as a function of the
number of elements N, and for different orders D of the polynomials used for
the representation of the numerical solution over the single elements. The stabi-
lization was obtained using an exponential DLT filter of order 2D and strength
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Figure 6.10: The same as in Fig. 6.9, but when the error is shown as a function of
the polynomial degree when the number of elements N is kept fixed (black for
N = 20 and red for N = 30). Note that an exponential convergence is measured.

µ = 1.0, corrected using the “dummy” strategy. Clearly, the errors computed
from C1 and from C2 are basically identical. More importantly the convergence
order is the one that one would expect from the theory: third, fourth, and
fifth-order using third, fourth, and fifth-order polynomials, respectively.

A complementary measure of the convergence properties of the code is
shown in Fig. 6.10, where we report the L2-norm of the error obtained after
keeping fixed the number of elements, N = 20, 30, but changing the order of the
polynomials used for the representation of the solution. As expected, SDGM
schemes behave in this case as multi-domain spectral methods [75], with the
error decreasing exponentially with the polynomial degree. This is indeed what
we observe in Fig. 6.10, where the errors decrease exponentially by almost three
orders of magnitude for both C1 and C2, and at both resolutions. No sign of
saturation appears in the error and we find it remarkable that the same method
that was able to capture so sharply the discontinuous solutions in the previous
tests, is also able to attain exponential convergence in smooth flows.

6.4.4 Linear oscillations of spherical stars

The results presented so far refer to situations that are somehow idealized and
are meant mainly as a way to highlight the code’s properties with respect to
shock capturing, filtering correction and accuracy on smooth solutions. We next
present the results obtained in tests describing systems of more direct physical
interest. Furthermore, in contrast to the previous tests, the matter will not be
considered as a test-fluid and the spacetime will be properly evolved.

A first interesting test is the study of linear oscillations of spherical stars.
The initial data considered describes the equilibrium configuration of a self-
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Figure 6.11: Evolution of the central rest-mass density normalized to its initial
value for a stable TOV and evolved with a polynomial of degree five. Different
lines refer to different resolutions: solid black, dashed blue and dotted red for
N = 75 , 100 and 125, respectively. Shown in the insets are the evolution at the
initial time (i.e., t . 2 ms) and when the error at the surface is released triggering
new small-scale oscillations (i.e., t ∼ 45 ms).

gravitating fluid sphere, described by a polytropic equation of state, p = KρΓ,
and is obtained by integrating the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions, as described by [322], and interpolating the result on the computational
grid used by EDGES. The system is then evolved under the sole effects of numeri-
cal perturbations, mainly due to the interpolation errors in the generation of the
initial data and to the interaction between the star and the atmosphere. Note
that in order to avoid the presence of collocation points at r = 0, we stagger our
numerical grid so that the r = 0 point falls at the centre of the first element and
we use only polynomials of odd degree.

More specifically, we have considered a TOV constructed with a polytropic
EOS having K = 100 and Γ = 2 and whose initial central density is ρc =
1.28 × 10−3. This could be taken to represent a stable, nonrotating, neutron star
with gravitational mass M = 1.4 M� and areal radius R = 9.6 M� ' 14.2 km.
The degree of the polynomial basis is five and an Erfc-Log filter of order eleven
is used to ensure a stable evolution. This filter is corrected with the “intrinsic”
procedure outlined in Sect. 6.3.3 and is applied to the right-hand-side of the
time stepping scheme. This results in a very weak stabilization algorithm
whose main effect is to diffuse back into the atmosphere the numerical errors
that would otherwise accumulate at the surface of the star and destabilize high-
resolution runs. The latter, in fact, have very low intrinsic viscosity and run
for many more timesteps on timescales of 100 ms or longer (we recall that the
dynamical timescale for this star is of the order of 0.7 ms).

In Fig. 6.11 we show the evolution of the central density for three of these
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Figure 6.12: Power spectral density computed from the first 5000 M� of the
evolution of the central rest-mass density shown in Fig. 6.11. Different line types
and colors refer to the different resolutions used (see legend). Shown as vertical
dotted lines are the eigenfrequencies computed from linear perturbation theory.

runs using different resolutions. They span a time frame of 20 000 M� ∼ 100 ms,
with the grid extending over the range 0 ≤ r ≤ 15 and being composed of
N = 50, 75, 100, 125 and 150 elements.

The dynamics is similar among the three runs, with the central density first
exhibiting a “burst” with a variation of the order of 0.12 %, which is due to
the fact that the star is “cut” by our interpolation algorithm of the initial data
there where the density falls below the atmosphere threshold. This phase is
magnified by the inset in the top of the figure. In a second stage the “burst”
is quickly damped and the star starts to vibrate radially with its characteristic
eigenfrequencies and eigenmodes under the effect of numerical perturbations,
mainly at the surface of the star. In a third phase these oscillations are damped
by the numerical viscosity, which depends on the resolution, and by the crude
treatment used to represent the surface of the star. High-frequency modes are
damped quickly while low-frequency modes have longer damping times. As a
result, towards the end of the simulation we are left only with slowly-damped
sinusoidal oscillations associated with the F-mode. This is particularly evident
in the N = 75 run, which has the largest numerical viscosity.

The evolution is stable for all the resolutions that we have considered, but a
careful examination of the behaviour of the central density reveals the existence
of a fourth stage of the dynamics in some of the runs with lower resolution.
More specifically, it is possible to note that during the third phase of the dy-
namics numerical errors accumulate at the surface of the star, producing small
variations in the density profile near the atmosphere. When these variations are
large enough so that they cannot be controlled by the employed flattening meth-
ods, they are “released” and new energy is pumped into the high-frequency
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Figure 6.13: Absolute relative difference between the estimated eigenfrequen-
cies and the ones computed from linear perturbation theory, shown for different
modes and as a function of the resolution. The lower-order modes are not con-
sidered because their error is smaller than the nominal one of the power spectral
density and we report only the values for which a reliable measure of the error
was possible. Finally, indicated as black dashed lines are the slopes associated
with fifth and sixth-order convergence.

modes, starting a new phase in the dynamics. This happens at around 45 ms for
the N = 75 run in Fig. 6.11, when a small high frequency component modulated
by the F-mode suddenly appears, as shown by the inset at the bottom of the
figure. The same happens around 80 ms for the N = 100 run, while this phe-
nomenon is not observed within the simulation time for higher resolution runs.
Although the onset of this “energy release” at the surface can be delayed with
the use of stronger filtering, it occurs only on a secular timescale and it does not
affect the stability of the star. As a result, the central density keeps oscillating
with a very small amplitude, of the order of 10−3 %, even if, as discussed in
Sect. 6.3.3, perturbations at the surface tend to be greatly amplified when they
reach the center as an artifact of the spherical symmetry. For this reason we
believe that the energy release does not impact the quality of our simulations.

A traditional measure of the accuracy of general relativistic hydrodynamics
codes is the comparison of the power spectrum of the oscillations of TOVs
against the values provided by linear perturbation theory. In Fig. 6.12 we
make this comparison by showing the power spectrum of the first 5 000 M�
of the evolution of the central density for different resolutions. The vertical
dotted lines represent the eigenfrequencies computed from perturbation theory,
which were kindly provided us by Kentaro Takami and computed using the
method described in [336]. We note that, even at the lowest resolution, EDGES
shows a perfect agreement between the observed proper frequencies and the
perturbative ones for the F-mode and the first four overtones, H1,H2,H3 and
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H4. Furthermore, as the resolution increases we are able to match more and
more modes to the point that, with the N = 150 run, we match the first ten modes
to a very good precision. We also note that the N = 150 run gives evidence
of some non-linear features in the spectrum, which shows considerable power
also in its high-frequency part.

A more quantitative measure of the convergence of the power spectrum is
shown in Fig. 6.13, where we report as a function of the resolution the relative
difference between the measured frequencies for the overtones H6,H7,H8 and
H9, and the ones computed from perturbation theory. More specifically, the
numerical frequencies were computed from the data during the first 5 000 M�
by using the procedure proposed in [9]. Namely, we computed the discrete
Fourier transform (DFT) of the data with an Hanning window and used a three
point interpolation of the power spectrum to correct for the incoherency error
and determine the correct eigenfrequencies (this procedure is conceptually
equivalent to a Lorentzian fit of the peaks of the DFT). Note that the lower-
order modes are not shown because their precision is such that the error on
those frequencies is well below the nominal uncertainty of the DFT and is
basically dominated by the error on our measure. (The values of the error is
not shown for those resolutions/frequencies that could not be determined in
a reliable way: namely, the H8 and H9 modes for the N = 75 run.). Overall,
we find that the measured convergence rate depends somehow on the specific
mode, but it is compatible with a fifth-order convergence rate (cf. the fifth and
sixth-order convergence rates which are shown as dashed lines). As we will
comment later on, this results indicates that our largest source of error on the
frequencies is not dominated by the low-order FV approach used at the surface
of the star. Rather, the behaviour in Fig. 6.13 shows that in the case of global
quantities such as the oscillation frequencies of a TOV, the treatment of the
surface is not the most critical element of the “error budget” in EDGES8.

As a concluding consideration we note that in a recent work Cerdá-Durán [80]
has proposed to measure the numerical bulk viscosity of general relativistic hy-
drodynamical codes by looking at the damping time of the F-mode in the case
of oscillating TOVs. In particular, the rate of change with resolution of the
damping time (and which clearly increases with resolution) can be used as a
measure of the convergence rate of the code. To explore this interesting sugges-
tion we have computed the damping time by analysing more systematically the
evolution of the central density. More specifically, using a sampling frequency
of ≈ 1 M�, we have built a discrete signal which was then divided into chunks
of 512 points with an overlap of 128 points. A DFT of each chunk was then com-
puted using an Hanning window and the power of the signal at the frequency
associated with each mode was computed with a linear interpolation of the
absolute value of the DFT. In this way we obtained an estimate of the energy in
the mode for each time window. Finally we performed a least square fit of an
exponential function to determine the damping time. (We have estimated the
accuracy of this procedure to be better then 10%, on the basis of tests performed
with signals of known spectral properties.)

In Fig. 6.14 we show the results of this measure when made on different
modes. The data for the N = 50 , 75 and N = 100 runs have been obtained

8Note that the rapid decrease of the error in the estimate of H6 and H7 at high resolution is
most probably due to the non-linear effects mentioned above which concentrate power in these
higher-order modes, making them sharper and better resolved.
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Figure 6.14: Estimated damping rates for various eigenmodes as a function
of the resolution as computed by EDGES in 1D and by Whisky in 3D. Black
triangles, blue squares and red circles refer respectively to the F ,H1 and H2
modes, while filled/hollow points distinguish the estimates with EDGES from
those with Whisky. Finally the dashed lines show the estimated convergence
order.

by windowing the evolution in the interval 0 ≤ t ≤ 5 000 to avoid spurious
values due to the fourth phase of the dynamics described above, while for
the N = 125 , 150 runs it was necessary to use the full data in the interval
0 ≤ t ≤ 20 000 ≈ 100 ms to obtain a reliable estimate of the damping time for
the F-mode. As a comparison, we also report the results obtained in 3D using
the Whisky code [29, 145, 254, 289], when computed using a similar procedure.
The simulations with Whisky were done using a PPM reconstruction and the
HLLE Riemann solver for the hydrodynamics and using a fourth-order FD
scheme for the evolution of the spacetime on a uniform grid also covering
0 ≤ r ≤ 159.

We find that the convergence order of the damping time of the F-mode with
Whisky is one, in agreement with the results reported by [80] for the COCONUT
code [112, 113]. In [80] it was argued that the reason why the order reduces to
first is that the damping is active mainly at the surface of the star, where the
numerical methods are only first order. The results found with EDGES show
however a different behaviour, with the order of the damping being 3, 2.5 and 2
for the F, H1 and H2 modes, respectively. Because the treatment of the surface
in EDGES can be seen as a variant of the FV method used by both Whisky and
COCONUT and is therefore only first-order accurate, our results suggest that the
coefficient of the first-order (and surface-induced) error is much smaller than the
coefficient of the error coming from the high-order filtering procedure, which

9Note that, since Whisky and EDGES use different gauges, the two resolutions are only roughly
equivalent.
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Figure 6.15: Evolution of the normalized central rest-mass density of an
unstable TOV migrating towards the stable branch for a resolution of N = 150.
The black solid line refers to a run employing an IPSV stabilization, while the
red dashed line refers to a run employing a DLT filter; the blue horizontal line
denotes the central rest-mass density of the stable model associated with the
initial configuration. The inset shows a magnification of the dynamics around
1 ms, at the first peak in the central density.

then becomes the dominant source of damping. This is in agreement with
the high convergence order found in the measurement of the eigenfrequencies
(cf. Fig. 6.13).

As a side comment we want to point out that we are able to attain higher-
than-second order convergence in our results, because the time-step that we use
is small enough so that the errors in the spatial discretization are dominating
over the errors due to the time evolution, which is only second order.

6.4.5 Nonlinear oscillations of spherical stars: the migration
test

As a direct extension of the analysis carried in the previous Section on linear
oscillations, we next study large non-linear oscillations which are produced as
an equilibrium star model on the unstable branch of equilibria models migrates
to the stable branch. This process has been used as a numerical test in 3D codes
(see, e.g., [131, 28, 29, 98]), has been analyzed extensively in the past [156, 239,
237] and has gained special interest recently when it was shown that it exhibits
a critical behaviour [198, 265].

Here, in particular, we have considered a TOV constructed with a polytropic
EOS having K = 100 and Γ = 2, central density ρc = 7.0 × 10−3, gravitational
mass M = 1.49 M� and areal radius R = 6 M� ' 8.8 km. The evolution, on the
other hand, was made with an ideal-fluid EOS to properly take into account
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Figure 6.16: Comparison in the evolution of the normalized central rest-mass
density of the migrating star between a simulation in 1D with EDGES (dot-
dashed red line), and a simulation in 3D with Whisky (solid black line). Also
in this case, the blue dashed line denotes the central rest-mass density of the
stable model associated with the initial configuration and the inset shows a
magnification of the second peak (see main text for details).

shock-heating effects. The numerical grid covers the region 0 ≤ r ≤ 30 and the
simulations reported used a polynomial representation of the solution of degree
five. Two different stabilization techniques were used. A first one employed an
exponential filter of order six with µ = 40, applied to the DLTs of the conserved
variables and corrected with the “intrinsic” procedure. A second one used
instead an IPSV stabilization with Q̂k = 1 − δk0 and strength µ = 1.

To trigger the migration on the stable branch, the star is perturbed with an
outgoing velocity perturbation of the form

v(x) =
A
2
|x3
− 3x| , x =

r
R
, (6.75)

where A = 0.01. Under the effect of this perturbation the star exhibits a violent
expansion and migrates towards a new stable equilibrium configuration with
a series of large-amplitude oscillations. During these violent oscillations the
exterior layers of the star tend to infall with higher velocity then the interior
layers and this leads to the formation of shock waves that heat the neutron star
matter and result in the ejection of a small portion of the material of the star.

In Fig. 6.15 we show the evolution of the central density, normalized to its
initial value, for two runs employing 150 elements and different stabilization
techniques. Because this test does not have an analytic counterpart, we have
compared it to the corresponding evolution performed with the Whisky code in
a 3D simulation having N = 100 grid cells in each direction, PPM reconstruction
and the HLLE Riemann solver.
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Figure 6.17: Comparison of different stabilization techniques in the migration
test. Shown in the two panels is the evolution of the central rest-mass density
around the first peak. The left panel refers to a DLT filter on grids of N = 100
and N = 200 elements (blue solid and dashed red lines), while the right panel
refers the IPSV stabilization technique with N = 100 and N = 200 elements (blue
solid and cyan long-dashed lines). Note that the DLT-stabilized run reaches
convergence with a smaller number of elements.
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The comparison is offered in Fig. 6.16 and shows an extremely good agree-
ment. We note that because the two codes have intrinsically different initial
truncation errors, the expansion phase in Whisky is slightly delayed with re-
spect to the dynamics produced by EDGES, and we account for this difference
by shifting the data obtained by Whisky in order to obtain an approximate
alignment at the first minimum of the density. Notwithstanding the very good
agreement, the main difference between the two solutions is the presence of
high-frequency oscillations in the central density computed by EDGES, and in
particular for the DLT runs and near the maximum value of the density. These
“spikes” can be tracked down to the propagation of shock waves which are
formed in the outer layers of the star during the collapse phase. They have
initially a small compression factor, but they also tend to sum up coherently
as they travel towards the center, thanks to the assumption of spherical sym-
metry, so that they result in strong variation of the density near the center of
the star. This phenomenon has also been observed in other works in spher-
ical symmetry, employing standard finite-volume schemes, see e.g., [98], but
is not usually observed in 2D or 3D simulations and, indeed, it is not present
in the results obtained with Whisky. In particular Whisky employs Cartesian
coordinates, which inevitably introduce preferred directions in the grid, thus
suppressing the constructive interference and focusing of the spherical waves
produced at the surface. Another reason why these spikes are not observed in
multi-dimensional solutions could be related to the larger numerical viscosity
due to the necessity of using a much coarser resolution than in the 1D case.
This is confirmed by the fact that the use of the IPSV stabilization techniques,
which allows us to introduce a much larger numerical dissipation, is able to
greatly suppress this phenomenon.

A more detailed comparison between the results obtained with the two
stabilization techniques is shown in Fig. 6.17, where we offer a comparison
between the evolution of the central density around the first bounce obtained
with the two approaches and with different resolutions. Note that the DLT runs
show signs of spikes in the density for all the resolutions (left panel), while the
IPSV runs are much smoother (right panel). On the other hand, the results
obtained with the DLT filters are already in the convergent regime and in fact
the results obtained with N = 100 elements are very similar to those obtained
by doubling the resolution. This is not the case for the solutions obtained with
the IPSV filter, that seem to be only slowly approaching the DLT ones (cf. note
in the right panel that the IPSV solutions approaches the DLT one as N goes
from 100 to 200). The evidence that the simulations with the DLT filtering are
already in the convergent regime and yet show spikes in the evolution can be
interpreted, therefore, as a confirmation that the latter are mostly an artifact of
the symmetry, which leads to a focusing of the waves travelling towards the
center. This does not completely rule out the numerical origin of these spikes,
but it suggests that they are originated from either numerical or unresolved,
physical, perturbations at the location of the shock which are then amplified as
they travel towards the center by the symmetry conditions.

Fortunately, because these perturbations actually carry only a very small
energy and are amplified by the symmetry, the evolution of the spacetime
variables is totally unaffected. This is shown in Fig. 6.18, where we report the
evolution of a representative metric quantity, namely, the lapse function at the
center. As can be seen from the figure, the lapse function shows no spikes or
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Figure 6.18: Evolution of the lapse function at the center of an unstable
TOV migrating towards the stable branch for two different runs using different
stabilization techniques (black solid line for the IPSV stabilization, and red
dashed line for the DLT filter) and N = 150. The inset shows a magnification of
the dynamics around the first peak at 1 ms and highlights that the solution is
always smooth.

spurious oscillations and appears to be smooth with both the DLT and the IPSV
filters, the main difference being the value of the minimum attained during the
first bounce with the former stabilization technique.

6.4.6 Gravitational collapse of unstable spherical stars

As a final test we consider another classical testbed in general relativistic hy-
drodynamics: namely, the gravitational collapse to black hole of an unstable
TOV star. The problem of the gravitational collapse to a black hole has been
already studied in great detail in a number of different conditions involv-
ing 1D, 2D and 3D simulations, as well as different physical conditions (see,
e.g., [156, 278, 239, 237, 29, 118, 27, 30, 236, 99, 241, 319]), and has become a stan-
dard test of general relativistic codes. For this reason, we will not discuss the
details of the dynamics of the collapse and concentrate instead on the quality
of the results obtained with EDGES.

For the tests considered here we have evolved an unstable TOV built with a
polytropic EOS with K = 100 and Γ = 2, having central density ρc = 4.5 × 10−3,
gravitational mass M = 1.6 M� and areal radius R = 6.9 M� ' 10.2 km. In
contrast to the migration test, the collapse is triggered by introducing an ingoing
velocity perturbation of the type (6.75) with A = −0.01. The evolution of
this system is studied on a grid covering 0 ≤ r ≤ 15, staggered about the
origin, using polynomials of degree five and employing an exponential filter of
order six, with intrinsic correction and strength µ = 40, applied directly on the
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Figure 6.19: Evolution of the lapse function at the center of an unstable TOV
collapsing to a black-hole for different resolutions on. The solid black line, the
dotted blue line and the dashed red line are associated with runs employing a
grid of 50, 75 and 100 elements, respectively. The inset shows a magnification of
the dynamics around 0.6 ms, highlighting some post-collapse dynamics in the
lapse for the low-resolution run, which is however absent at higher resolutions.

conserved variables at every time step.

During the evolution and as expected, the central density of the star shows
an exponential increase, which halts when the lapse function collapses to zero,
signalling the formation of the black hole and “freezing” the evolution in the
inner regions of the star. The maximum value attained by the central density
does not have any physical meaning, partly because it depends entirely on the
gauge conditions and partly because the gauge used will prevent its growth
past a certain value. For this reason it is more interesting to look at the evolution
of the lapse function at the center of the star, and which we show in Fig. 6.19.
Note that for all the considered resolutions, the lapse function quickly collapses
to zero and shows no appreciable subsequent evolution, with the exception of
the lowest resolution case, for which a small growth appears again around
0.6 ms. This sudden evolution is the result of errors coming from the surface
of the frozen star, where the spatial slice is stretched due to the fact that we
fixed our shift gauge condition to zero and, thus, the metric functions present
large spatial gradients. These errors, which cannot be compensated by simply
increasing the resolution and are a shortcoming of the gauge used, propagate
towards the inner regions of the frozen star and can induce a growth of the
lapse, restarting the dynamics. This is clearly a resolution-dependent effect
which disappears quickly by increasing the resolution (see inset in Fig. 6.19).
Apart from this late-time, and low-resolution dynamics, the three curves are
on top of each other, signaling a convergent regime, with a rate we measure
to be slightly above fourth order before the collapse of the lapse. Afterwards
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the convergence order starts to slowly decay, due to the fact that, as the lapse
collapses to zero, the equations are only weakly hyperbolic. At the end of the
simulation the convergence order reaches a value which is & 1.5.

In summary, the solution of the gravitational collapse to a black hole with
EDGEShas been straightforward and indeed a test which is much less demanding
that the migration one, at least in terms of the hydrodynamical variables. The
only difficulty encountered is a well known one and has to do with the fact
that with such a gauge the collapse of the lapse is not compensated by any
change in the shift vector, which is identically zero. As a result, as the black
hole is produced it quickly produces a stretching of the coordinates at the
location immediately outside the “frozen star”. This, in turn, results in the
development of strong gradients in the numerical solution which cannot be
resolved indefinitely without suitable adaptivity.

6.5 Conclusions

Numerical relativistic hydrodynamics and MHD have seen a tremendous growth
in the number and the quality of its results after the introduction of mod-
ern high-resolution shock capturing schemes [130]. These schemes have been
proven to be of central importance in the modelling of complex systems involv-
ing strong gravity and/or high Lorentz factor. Yet, they suffer from important
limitations that ultimately impact the accuracy of the obtained results [31]. For
this reason the search for better numerical schemes is still on-going (and will
always be).

Discontinuous Galerkin schemes were developed to overcome the previ-
ously mentioned limitations of finite-volume and finite-difference schemes,
while maintaining important properties of these schemes, such as conservation
and shock capturing, that made them so successful in a number of applica-
tions [93]. For this reason they are a natural candidate as an alternative to more
traditional methods also in relativistic hydrodynamics.

In this chapter we have developed the necessary mathematical framework
needed for the application of discontinuous Galerkin schemes to relativistic
hydrodynamics in curved spacetimes. In particular, we have presented both
a manifestly covariant weak formulation of relativistic hydrodynamics and a
more traditional one obtained within a 3 + 1 split. We have then specialized
the latter formulation to the spherically symmetric case and implemented it in
a new one-dimensional relativistic hydrodynamical code, EDGES, which uses a
high-order spectral discontinuous Galerkin method.

The code was tested in a number of situations, including shock waves,
spherical accretion, linear and non-linear oscillations of relativistic spherical
stars and the gravitational collapse of unstable stars to black holes. Our re-
sults show that discontinuous Galerkin methods are able to sharply resolve
shock waves and, at the same time, attain very high, spectral, accuracy in the
case of smooth solutions. For this reason they constitute an excellent alter-
native to classical finite-volume and finite-difference schemes for relativistic
hydrodynamics, especially in those situations in which shock waves as well as
small-scale features of the flows have to be resolved. In light of the promising
prospects shown with these tests and of their affinity with a pseudospectral
solution of the Einstein equations, we anticipate that discontinuous Galerkin
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methods could represent a new paradigm for the accurate modelling of, e.g., os-
cillating neutron stars or the merger of binary neutron stars or mixed binaries
in computational relativistic astrophysics.

As a final remark we note that the success of these methods in multi-
dimensional implementations will ultimately depend on the development of
techniques such as local timestepping, hp-adaptivity and load balancing [75],
which are needed to take full advantage of the flexibility of these schemes [297].
This will represent the focus of our future work.
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Relativistic Radiation
Transport
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Chapter 7

The Filtered Spherical
Harmonics Method

7.1 Introduction

One of the main difficulties in solving the radiation-transport equation arises
from the multidimensionality of the problem. Radiation is described not only
by the position of the radiation carriers, but also by their direction of propa-
gation and energy (or, equivalently, by their momentum), making the problem
(6 + 1)-dimensional in the most general case (3 dimensions for the spatial co-
ordinates, 2 for the angular direction, 1 for the energy, and 1 for the time).
Another source of complication stems from the fact that many problems consist
of regions of strongly-varying optical depth. For example, many astrophysical
systems contain a central source of radiation, where the optical depth is high,
surrounded by more transparent outer regions. Due to high opacity near the
center, radiation migrates out of that region mostly via diffusion, while in the
outer parts, it streams to infinity more freely without much interaction with
matter. Correspondingly, in the limit of infinite optical depth, the transport
equation acquires a parabolic character, while it maintains a hyperbolic one
in all other regimes (see, e.g., [227]). Radiation-transport approaches must
therefore handle accurately not only these two distinct regimes, but also the
transition between the two, which is generally the most difficult to treat. These
features make the solution of the transport equation both complex and compu-
tationally expensive.

There are two commonly used ways of simplifying the solution of the trans-
port equation. One approach consists of reducing the number of degrees of
freedom by assuming spherical or axial symmetry. While this is a good simpli-
fication for some problems, there are many other situations in which the sys-
tem does not posses any spatial symmetries and hence the transport equations
need to be solved in three spatial dimensions. Another way of simplifying
the problem is via approximating the form of the transport equation (this is
equivalent to reducing dimensionality in the momentum space). One of the
simplest examples is the diffusion approximation, where one approximates the
transport equation with the diffusion equation (e.g., [255]). This makes the
equation far simpler and computationally less expensive to solve (e.g., [227]).

189
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However, there is a price to pay for this: Although the diffusion approxi-
mation is accurate at high optical depth, it leads to incorrect results in low
optical depth, i.e., “transparent”, regions. This can be improved by using flux
limiters (e.g., [78]), but the diffusion approximation still cannot correctly cap-
ture the anisotropy of radiation commonly encountered in those regions (see,
e.g., [245]). Moreover, the treatment of semi-transparent regimes is somewhat
artificial because the radiation fluxes in those regions are usually calculated via
interpolation between the two fluxes calculated assuming free-streaming and
diffusive transport. There are several more accurate ways of approximating the
transport (e.g., two-moment schemes with analytic closures, etc.; e.g., [68]), but
the solution of the full (6+1)-dimensional transport equation is often not only
desirable, but actually necessary for accurate modeling.

One of the most commonly used methods for solving the transport equation
in the multidimensional (both in space and momentum) case is the discrete-
ordinate (SN) method, which solves the transport equation along several di-
rections in each spatial zone [78, 245, 309, 148]. Unfortunately, this method
has several drawbacks. Most importantly, it suffers from “ray effects” in mul-
tidimensional calculations [230]. Due to the discrete nature of the angular
representation, in fact, radiation cannot reach regions between these discrete
directions, leading to large spatial oscillations in the transport variables. In
addition, time-implicit SN methods require very complex solutions and paral-
lelization procedures [7].

Monte-Carlo methods (e.g., [129, 140, 5]) are often regarded as the most ac-
curate method for radiation transport, but they are also not without drawbacks:
Monte-Carlo solutions exhibit statistical noise due to the finite sampling of the
phase space. Since this noise decreases only as N−1/2, where N is the number
of Monte Carlo particles, it can take many particles to produce a sufficiently
smooth solution, making large simulations computationally very expensive.

Another approach to radiation transport is the spherical harmonics, or PN,
method. This method is based on an expansion of the radiation intensity
(or distribution function) in angles using spherical harmonic basis functions.
This results in a hyperbolic system of partial differential equations for the
expansion coefficients, which represent angular moments in this basis. The
spherical harmonics method has several interesting characteristics. Due to
hyperbolicity, the PN equations approximate radiation as a series of waves with
velocity bounded by the speed of light [218]. This restriction is consistent
with the transport equation, in contrast to diffusion methods where radiation
propagates at infinite velocity. Moreover, the spherical harmonics expansion
exhibits formal spectral convergence to the true solution. Such an expansion
also preserves the rotational invariance of the solution, unlike SN methods,
where the absence of such invariance leads to the ray effects mentioned above.1

Another advantage of the PN method is that it generally uses less memory to
model a given angular distribution at a given accuracy compared to, e.g., the SN
method. A PN truncation is roughly equivalent to a SN+1 solution, but, while the
former has (N + 1)2 degrees of freedom, the latter has 2(N + 1)2, thus it requires
roughly twice as much memory. Given that memory requirements represent

1Here, rotational invariance means that the operators of angular discretization and of rotation in
space are commutative. In other words, the result of any rotation and then of a spherical harmonics
angular discretization is the same as that of an angular discretization and then of a rotation [62]. In
the SN method, this is true only for those rotations which map the angular grid onto itself.
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one of the main difficulties in 3D radiation-transport calculations, a factor two
in memory saving represents a significant advantage.

However, spherical harmonics methods also have some negative aspects.
Most importantly, in transparent regions, the solution to the PN hyperbolic
system exhibits non-physical oscillations. These oscillations are related to the
so-called Gibbs phenomenon that occurs when non-smooth functions are ap-
proximated with smooth basis functions [62]. The worst consequence of such
oscillations is that they can cause the radiation intensity to become negative,
which may lead to negative matter temperatures when the radiation transport
is coupled to the matter energy equation [218, 242]. There have been several
attempts to address this problem [244, 242, 69, 215, 243, 164]. One of the most ef-
ficient, robust, and accurate approaches is the one by McClarren & Hauck [215],
in which filters are proposed to remove oscillations of the radiation intensity.
By filtering out the oscillations, McClarren & Hauck [215] were able to avoid
negative solutions while maintaining high angular accuracy. Their filtering
approach also has the advantage of being easily extendable to high-order PN
expansions, producing formal convergence to the transport solution and pre-
serving the equilibrium diffusion limit.

Although the results of [215] strongly suggest the idea of applying a filter
to spherical harmonics expansions is an efficient, robust, and accurate way
of doing PN radiation transport, there remain several open questions. For
example, [215] considered only one type of filter, the so-called spherical-spline
expansion [62]. There are other types of filters that have some interesting
theoretical and numerical properties [62], which might be a more optimal choice
for application to PN transport. Moreover, McClarren & Hauck [215] presented
results only for the 2D case, leaving open the question of how well their filtering
approach performs in 3D. Also, this filtering scheme, as realized by [215], and
as we will discuss in detail later in this chapter, does not have a clear continuum
limit as the spatial resolution and/or timestep approaches zero, which implies
that the solution cannot be studied for spatial convergence.

In this chapter, we reconsider the PN scheme and extend the work by McClar-
ren & Hauck [215] in a number of ways. Firstly, we reformulate the filtering
procedure in such a way that it acquires a clear continuum limit. Secondly,
we investigate a wider range of filter types and strength parameters. Finally,
we perform calculations both in 2D and 3D. For this we have developed the
new radiation transport code Charon, whose ultimate goal is that of perform-
ing 3D, general relativistic multi-energy, multi-angle and velocity-dependent
radiation-transport calculations. In this chapter, we present the first step to-
wards this goal.
Charon uses the semi-implicit scheme of McClarren et al. [217] for time

integration. In this scheme, the streaming parts are treated explicitly with a
second-order Runge-Kutta method, while the matter-coupling terms are treated
implicitly because of the stiffness introduced by the coupling. Also, the implicit
system of [217] is local to each spatial element, and for linearized matter-
coupling terms this implicit integration scheme becomes trivial [217].

Although the timestep in the semi-implicit approach is limited by the
Courant-Friedrichs-Lewy (CFL) condition based on the speed of light, this
is not a serious drawback for the kind of applications that we have in mind. In
radiation-hydrodynamics simulations, the timestep size would still be limited
by the dependence of the matter properties (e.g., opacities and emissivities) on
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the matter temperature (and electron fraction, if we are dealing with neutri-
nos with conserved lepton number). Moreover, the semi-implicit approach is
relatively easy to parallelize (e.g., via domain decomposition) and has lower
communication requirements compared to fully implicit schemes. This should
translate to significant advantages in massively-parallel large-scale radiation-
hydrodynamics simulations. Moreover, in many relativistic systems, the sound
speed of the fluid is comparable to the speed of light, and thus the radiation
and hydrodynamics timescales are comparable, reducing the extra cost in an
explicit treatment of the radiation streaming. The spatial discretization in
Charon is based on the asymptotic-preserving linear discontinuous Galerkin
(DG) scheme [204, 217].

The chapter is organized as follows. In Section 7.2, we introduce the concept
of the radiation distribution function and the relativistic Boltzmann equation.
In Section 7.3, we describe the numerical schemes used in our code for fre-
quency (Section 7.3.1), angular (Section 7.3.3), spatial (Section 7.3.5), and time
discretization (Section 7.3.6). In Section 7.4, we present numerical tests of these
schemes. Finally, we summarize our results and provide our conclusions in
Section 7.5.

7.2 The relativistic Boltzmann equation

In this section we introduce the Boltzmann equation for radiation transport in
special-relativity. This is a particular case of the general-relativistic transport
equation discussed in Chapter 2, however, here, we are going to give an inde-
pendent treatment, using a notation which is more common in the radiation
transport literature.

7.2.1 The distribution function for radiation

Radiation is usually described in terms of the specific radiation intensity, I,
defined such that

dE = I cosθdA dνdΩ dt , (7.1)

represents the energy of radiation in frequency range dν centered around ν,
traveling in direction Ω confined to a solid angle element dΩ, which crosses,
within time interval dt, an area dA oriented such that θ is the angle between the
normal to the surface dA and direction Ω (e.g., [255]). In the case of neutrino
transport and/or in the relativistic case, it is more convenient to work directly
with the distribution function, F, which gives the density of radiation carriers
at a given point in phase space. The reason for this is that (1) the distribution
function is a Lorentz-invariant quantity [227], and (2), as we discuss in more
detail later, the distribution function allows us to compute the number density
and the energy density of the radiation in a more natural way.

In order to introduce the distribution function, we first discuss the notion
of single-particle phase space in special relativity. In this picture, the particles
are described in terms of their positions in spacetime, xµ, and their momentum
four-vector, pµ, as measured in a fiducial inertial frame. Using the normalization
condition for timelike vectors, the four-momentum has only three independent
components, which can be expressed in terms of three spatial components, pi,



7.2. The relativistic Boltzmann equation 193

or in terms of radiation frequency, ν, and two angles (θ, φ) that describe the
propagation direction:2

pµ =
hν
c

(1, cosφ sinθ, sinφ sinθ, cosθ) . (7.2)

Since we wish to define the distribution function in terms of pi, or, equivalently,
in terms of ν, φ and θ, we need to construct a Lorentz-invariant volume ele-
ment, dΠ, over the manifold of the allowed momentum four-vectors. This is
accomplished with the choice [79]

dΠ =
dp1dp2dp3

−p0
=

h2ν

c2 dνdΩ . (7.3)

The distribution function is then defined in such a way that the quantity

dN = F pµtµ d3x dΠ =
h3ν2

c2 F d3x dνdΩ , (7.4)

is the total number density of radiation carriers in a spatial volume element d3x
and phase-space volume element dΠ with trajectories traversing a t = const
hypersurface with normal ~t = ∂t. Here, tµ is the µ covariant component of the
vector ~t = ∂t.3

Since d3x = dA cosθdt and the energy per particle is given by hν, we have
dE = hνdN. Using this and comparing equation (7.1) with (7.4), we obtain:

I =
h4ν3

c2 F . (7.5)

Note that since dN is a scalar, F is also a scalar quantity.4

The relativistic Boltzmann equation

The special-relativistic Boltzmann equation can be written as [227]

pµ
∂F
∂xµ

= C[F] , (7.6)

where C is the collisional term describing the interaction of radiation with
matter, while the left-hand-side of the equation describes the propagation of
radiation. In order to compute C, we express it in terms of the absorption,

2Assuming the radiation carriers to be massless, their energy and frequency are simply related
as ε = hν.

3Note that d3x is not a Lorentz-invariant quantity, while pµtµd3x is one.
4Note that this relation slightly differs from the one frequently encountered in the neutrino-

transport literature (e.g., [72]):

I =
ε3

h3c2 gF =
ν3

c2 gF ,

where g is the statistical weight of the particles (g = 1 for massless neutrinos, g = 2 for photons) and
ε is the particle energy. This is due to three reasons: First, our specific intensity given by Eq. (7.1)
is defined in terms of energy per frequency interval, in contrast to energy per energy interval, as
used in the neutrino-transport literature. Moreover, our distribution function already contains the
factor g, as can be seen from its relation to the total number density of radiation carriers given by
Eq. (7.4). Finally we use the Lorentz-invariant volume element given by Eq. (7.3) instead of d3p.
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emission and scattering coefficients. To do that, we start by considering the
evolution equation for the intensity of radiation [255],

1
c
∂I
∂t

+ ni ∂I
∂xi = η − κI +

κs

4π

∫
ν
ν′

K(ν′, ~n ′ → ν,~n) I(ν′, ~n ′) dΩ′ dν′ , (7.7)

where η represents the radiative emissivity of the matter, κ is the total extinction
coefficient and combines the absorption and scattering coefficients5 κa and κs,
i.e., κ = κa + κs, and K is the scattering kernel, expressing the probability
of scattering from a given angle and frequency over to another angle and
frequency [255].

Using equations (7.2), (7.5), and (7.7), it is easy to obtain an equation for F
in terms of the above extinction coefficients:

pµ
∂F
∂xµ

=
c2

h3

η

ν2 − hνκF +
hνκs

4π

∫ (
ν′

ν

)2

K(~p ′ → ~p) F(~p′) h dν′ dΩ′ . (7.8)

Notice that, since F is a scalar, so is C[F], thus we find the classical result that
η/ν2, and νκ are invariant quantities [227].

Our scheme is in principle able to handle any type of scattering kernel,
but for simplicity, here we will only consider the case of elastic scattering,
e.g., scattering in which the radiation energy does not change. In this case, the
scattering kernel can be expressed as [72],

K(ν′, ~n ′ → ν,~n) = [1 + σa ~n · ~n ′] δ(ν − ν′) , (7.9)

where the scattering anisotropy is modeled using only one coefficient σa.

7.3 The Charon Code

In general, the distribution function, F, is a function of 7 variables: the time and
spatial coordinates, xµ, the frequency ν and the angles of propagation ϕ and
θ. These variables are usually defined either in the Eulerian (inertial) frame or
in the comoving frame (i.e., a set of frames, each of which has a velocity that
instantaneously equals that of the matter element, e.g., [227, 171]). In the case
of static matter, which is the one considered in this chapter, these two frames
are identical. In the scheme implemented by the Charon code, the distribution
function is expanded in the spatial coordinates using the linear DG basis and in
the angular variables using spherical harmonics. The frequency is treated using
the multi-group approach. This yields a large system of ordinary differential
equations that is then evolved in time using a semi-implicit time integrator.
The details of the discretization are discussed in this Section.

7.3.1 Frequency discretization

We consider the case in which the distribution function has compact support
in a frequency space given by the interval [0, νmax]. Although this is not strictly
valid in the general case, radiation usually has negligible contribution above

5Hereafter, the absorption or scattering extinction coefficients are defined as absorption or
scattering opacitites or inverse mean-free paths.
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some cut-off frequency. Therefore, in many practical applications, one can
choose νmax to be sufficiently large so that there is little radiation beyond this
frequency. For simplicity of illustration, we introduce a uniform grid in this
frequency space as νn = n ∆ν, n = 0, 1, . . . ,Nν + 1, where ∆ν = νmax/(Nν + 1)
(an extension to a non-equidistant grid is conceptually trivial). The associated
intervals [νn, νn+1] are commonly called frequency or energy groups. Using
these groups, we can construct an orthonormal basis {χn}

Nν

n=0 as

χn(ν) =

1/
√

Vn, if ν ∈ [νn, νn+1] ,
0, otherwise ,

, Vn =

∫ νn+1

νn

h3ν2 dν =
h3

3
(ν3

n+1 − ν
3
n) .

(7.10)

We then expand a function f ∈ L1(0, νmax) on this basis as (for clarity we report
the summation symbols in the expressions below)

fNν (ν) =

Nν∑
n=0

f nχn(ν) , f n =
1
√

Vn

∫ νn+1

νn

f (ν) h3 ν2 dν . (7.11)

The truncated expansion, fNν , is then a first-order accurate (in L1
−norm) ap-

proximation of f . We point out that, thanks to our choice of basis (7.10), the
final expansion of the distribution function will involve integrals performed
with respect to the volume element in (7.3). This allows us to ensure exact
conservation of the number of radiation particles in the numerical treatment of
the transport equation. Also, this choice of the basis can be easily generalized
to the case of curved spacetimes (which will be the subject of our future work),
where ensuring conservation of radiation particles is particularly involved [77].

7.3.2 Real spherical harmonics

This section is dedicated to the derivation of the real spherical harmonics,
whose implementation in Charon has been particularly advantageous. We start
by recalling that the spherical harmonics, Ym

` are the eigenfunctions of the
Laplace-Beltrami operator, 4, on the unit 2-sphere:

4Ym
` = −`(1 + `)Ym

` .

Spherical harmonics are usually written, in complex form, as

Ym
` (ϕ, θ) = eimϕPm

` (cosθ) ,

where −` ≤ m ≤ `, Pm
` are the associated Legendre functions, see e.g., [62],

Pm
` (x) = (1 − x2)m/2Cm+1/2

`−m (x), m ≥ 0 ,

and Cαn are the Gegenbauer polynomials of index α and degree n. We, also, use
the standard convention that

P−m
` (x) = (−1)m (` −m)!

(` + m)!
Pm
` (x) . (7.12)
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The associated Legendre functions of index m ≥ 0 are orthogonal in [−1, 1] with
unit weight [6], ∫ 1

−1
Pm
` (x) Pm

`′ (x) dx =
2(` + m)!

(2` + 1)(` −m)!
δ``′ ,

while the associated Legendre functions of degree ` and index m,m′ ≥ 0 are
orthogonal in [−1, 1] with weight (1 − x2)−1 [6],∫ 1

−1
Pm
` (x) Pm′

` (x)
dx

1 − x2 =
(` + m)!

m(` −m)!
δmm′ .

The spherical harmonics with index m,m′ ≥ 0 are then orthogonal with unit
weight on the sphere:∫
S1

Ym
` (ϕ, θ) Ym′

`′ (ϕ, θ) dΩ =

∫ 2π

0
ei(m−m′)ϕdϕ

∫ π

0
Pm
` (cosθ) Pm′

`′ (cosθ) sinθdθ

(7.13)

=

∫ 2π

0
ei(m−m′)ϕdϕ

∫ 1

−1
Pm
` (x) Pm′

`′ (x) dx = (7.14)

= 2π
2(` + m)!

(2` + 1)(` −m)!
δmm′ δ``′ . (7.15)

We can then redefine the spherical harmonics as

Ym
` (ϕ, θ) =

√
(2` + 1)

4π
(` −m)!
(` + m)!

eimϕ Pm
` (cosθ) = Nm

` eimϕ Pm
` (cosθ) .

It is easy to see, that for all m,m′, thanks to the normalization and the convention
(7.12), we have ∫

S1

Ym
` (ϕ, θ) Ym′

`′ (ϕ, θ) dΩ = δmm′δ``′ .

We can construct a real basis from the spherical harmonics by defining

Y`m =


1
√

2
(Ym

` + (−1)mY−m
` ), if m > 0 ,

Y0
` , if m = 0 ,
1

i
√

2
(Y−m

` − (−1)mYm
` ) if m < 0 .

Using again the fact that, N−|m|` P−|m|` = (−1)|m|N|m|` P|m|` , we obtain

Y`m(ϕ, θ) =
√

2 Nm
` cos(mϕ) Pm

` (cosθ), m > 0 ,

Y`m(ϕ, θ) =
√

2 N|m|` sin(|m|ϕ) P|m|` (cosθ), m < 0,

which is the wanted expression for the real spherical harmonics.
We can construct a Gaussian quadrature associated with the spherical har-

monic basis as a direct product of a uniform quadrature in the ϕ direction:

w =
π

Mϕ + 1/2
, ϕm =

π
Mϕ + 1

m, −Mϕ ≤ m ≤Mϕ .
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which is accurate to order 4Mϕ + 2 [62] and a Gauss-Legendre grid in the θ
direction [74]:

µ = cosθ, w` =
2

(1 − µ2
`)
[
P′Mθ+1(µ`)

]2 , µ` =
{
Z[PMθ+1(µ)]

}
`
, 0 ≤ ` ≤Mθ ,

where PM is the Legendre polynomial of degree M, i.e., PM = P0
M and Z[p]

denotes the set of the roots of p. This quadrature formula is then accurate up
to order 2Mθ + 1. This means that if we want to obtain an exact representation
of the scalar product of spherical harmonics up to order Nθ we have to choose
Mθ = Nθ.

7.3.3 Angular discretization

As orthonormal basis on the unit 2-sphere, S1, we consider the real spherical
harmonics, Y`m (see 7.3.2), whose orthonormality conditions are∫

S1

Y`m(ϕ, θ) Y`′m′ (ϕ, θ) dΩ = δmm′δ``′ .

As a result, any function f ∈ L2(S1) can be expanded in spherical harmonics as

fN(ϕ, θ) =

N∑
`=0

∑̀
m=−`

f `m Y`m(ϕ, θ) , f `m =

∫
S1

f (ϕ, θ) Y`m(ϕ, θ) dΩ , (7.16)

where we have used the notation Y`m to denote the complex conjugate of Y`m
(which is equal to Y`m since we are working with real spherical harmonics).
If f is a smooth function, fN will converge to f with spectral accuracy in the
L2
−norm [62].

7.3.4 The multi-group PN scheme

We consider the following ansatz for the expansion of the distribution function:

F(xα, ν, ϕ, θ) =

Nν∑
n=0

N∑
`=0

∑̀
m=−`

Fn`m(xα)χn(ν) Y`m(ϕ, θ) , (7.17)

where

Fn`m(xα) =

∫
∞

0
h3ν2 dν

∫
S1

dΩ F(xα, ν, ϕ, θ) Y`m(ϕ, θ)χn(ν) .

To simplify the notation, we introduce the multi-index A = {n, `,m}, and the
basis functions,

ΨA(ν, ϕ, θ) := χn(ν) Y`m(ϕ, θ) ,

so that Eq. (7.17) becomes

F(xα, ε, ϕ, θ) =
∑

A

FA(xα)ΨA(ε, ϕ, θ) = FAΨA . (7.18)
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Note that the space spanned by our basis {ΨA} is a vector space. We adopt
the usual convention of denoting vector components with an upper index
and co-vector components with a lower index. Linear operators acting on
vectors and co-vectors will have upper and lower indices associated with their
decomposition on an appropriate tensor product combination of the canonical
basis {ΨA} and its dual {ΨA

}, defined by the requirement that
∫

ΨAΨBp0dΠ =

δ B
A . Note that, thanks to the orthornormality of real spherical harmonics

ΨA = ΨA.
Inserting Eq. (7.18) into Eq. (7.6), we obtain:

p0 ∂FB

∂t
ΨB + pk ∂FB

∂xk
ΨB = C[F] . (7.19)

Multiplying Eq. (7.19) by ΨA and integrating with respect to dΠ, we then obtain

∂FA

∂t
+P B

kA ∂FB

∂xk
= SA[F] , (7.20)

where we have again used Eq. (7.2) and exploited the orthonormality of the
basis. We have also defined

P B
kA :=

∫
pk ΨA ΨB dΠ , (7.21)

and

SA[F] :=
∫
C[F] ΨA dΠ . (7.22)

The coefficients (7.21) can be computed exactly using a quadrature formula of
high-enough order (see 7.3.2). Since they are independent of position and time,
they can be pre-computed and stored for later usage.

The spectral decomposition of P B
kA , which determines the behavior of

Eq. (7.20), is well known, see e.g., [70]. In particular, it has been shown that the
eigenvalues are strictly bounded by the speed of light c. While this implies that
there is no superluminal propagation of radiation, it leads to slower-than-light
motion of radiation waves for finite N (the radiation velocity converges to the
correct value with increasing N) [69]. This is particularly evident in low-order
PN free-streaming solutions. For instance, the maximum propagation speed for
P1 is c/

√
3. Filtering can also affect the propagation velocity of radiation [215].

In the multidimensional case, P B
kA has also zero-speed modes that have to be

treated carefully in Godunov-based schemes to avoid numerical instabilities
[70].

In the general case, the source term (7.22) has to be computed at run-time,
but for the particular case of a source term in the form (7.9), and assuming that
the opacity coefficients are constant in each of the energy groups (as commonly
done in multi-group schemes [255]), the source terms can be pre-computed up
to constant factors. Under these assumptions, the source term becomes

SA[F] = eA
− κnFA

− κs,n[⊥A
B −σa,n∆ B

A ]FB = eA + S B
A FB , (7.23)

where6

eA :=
∫ [ c2η

h4ν3

]
ΨA(ν, ϕ, θ) h3ν2 dνdΩ , (7.24)

6Notice that the term in square brackets in (7.24) is the number of emitted particles.
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Figure 7.1: The grid structure for the spatial linear discontinuous Galerkin
discretization. The white squares represent the cell centers, while the black dots
show the cell interfaces. The dotted lines show the values of the Lagrangian
basis li−1/2, li+3/2. Finally the + and− show the interfaces where the inter-element
fluxes, F ±, see (7.28), are computed.

⊥
A

B is the projector perpendicular to Y00,

⊥
A

B:= δ B
A
− δ n00

A δ B
n00 ,

and ∆ B
A is the anisotropy matrix:

∆ B
A :=

1
4π

∫
h3ν2 dνdΩ ΨA(ν, ϕ, θ)

∫
ΨB(ν, ϕ′, θ′)~n ′ · ~n dΩ′ ,

which can also be pre-computed. Note that we have denoted the opacity
coefficients in the energy group [νn, νn+1] with the subscript n.

7.3.5 Spatial discretization

We discretize the system of Eqs. (7.20) in space using the asymptotic-preserving
(AP) linear DG scheme, see e.g., [204, 217]. The scheme we present here is
restricted to the case of orthogonal grids, but we point out that discontinuous
Galerkin methods can be (and have been) extended to general, unstructured
grids [93]. We recall that a scheme is AP if it reproduces a discretization of the
diffusion limit of the continuum transport equation in the limit of small mean-
free-path. This is an important property since it guarantees that the diffusion
of radiation has a correct rate even if the mean-free-path is small compared
to the spatial grid size. If a scheme is not asymptotically preserving, then the
diffusion rate becomes unphysical when the mean-free-path is unresolved.

For simplicity of notation, we consider a simplified 1D version of Eq. (7.20):

∂FA

∂t
+P B

1A ∂FB

∂x
= 0 ,
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where the multidimensional case will be discussed at the end of this Section.
Furthermore, we employ a uniform numerical grid xi = iδx, while extension
to a non-uniform grid is conceptually trivial. We then choose the points of
the grid that are used to construct elements of width ∆x = 2δx, as shown in
Fig. 7.1. This rather uncommon grid structure has been adopted to ease the
integration of Charon with existing general relativistic hydrodynamic codes
that use traditional finite-volume schemes.

In the classical linear DG scheme, the degrees of freedom are usually iden-
tified with the one-sided limits of the solution at the points xi−1/2 and xi+3/2
from the interior of the element, while in our case we evolve the cell-centered
values at xi and xi+1. The semi-discrete equations for the evolution of these cell-
centered values can be easily obtained, since any function u in the finite-element
space can be written as

u(x) = ui−1/2li−1/2(x) + ui+3/2li+3/2(x) ,

where

li−1/2(x) = 1 −
x − xi−1/2

xi+3/2 − xi−1/2
, li+3/2(x) =

x − xi−1/2

xi+3/2 − xi−1/2
, (7.25)

so that

ui−1/2 =
3
2

ui −
1
2

ui+1 , ui+3/2 = −
1
2

ui +
3
2

ui+1 , (7.26)

and

ui =
3
4

ui−1/2 +
1
4

ui+3/2 , ui+1 =
1
4

ui−1/2 +
3
4

ui+3/2 . (7.27)

The resulting numerical scheme is

∆x
dF i

A

dt
= F i

A ,

where the flux terms in the element [xi−1/2, xi+3/2] are given by

F i
A :=

3
2
F
−
− F −

1
2
F

+ , F i+1
A :=

1
2
F
− + F −

3
2
F

+ . (7.28)

Here,

F :=
1
2

[(
P B

1A
)

i
F i

B +
(
P B

1A
)

i+1
F i+1

B
]
,

is the average flux, while

F
− :=

1
2

[
P B

1A
(
F L

B + F R
B

)
− R C

1A max(v, |Λ D
1C
|)L B

1D
(
F R

B
− F L

B
)]
,

is the flux computed from the exact solution of the Riemann problem at xi−1/2
with the left “L” and right “R” states F L

A and F R
A . The term F + is the flux

across xi+3/2 and is calculated analogously toF −. In the previous equations, we
have decomposed P B

1A as

P B
1A = R C

1A Λ D
1C
L B

1D ,



7.3. The Charon Code 201

where R C
1A are the matrices of the right eigenvectors, while Λ D

1C and L B
1D are

the eigenvalues and the left eigenvectors of P B
1A , respectively. We have also

introduced v > 0 which is taken to be the first positive abscissa of the adopted
Legendre quadrature and it is used to introduce extra numerical dissipation on
the zero speed modes similarly to what is done in [70]. Notice again that the
spectral decomposition of P B

1A , discussed in the previous Section, can also be
pre-computed at the beginning of the calculations.

Having described the numerical scheme for the 1D problem, we can con-
struct the multidimensional numerical scheme for Eq. (7.20) by repeating the
same construction in every direction:

dF i, j,k
A

dt
= eA + S B

A FB +
1

∆x
F i, j,k

A +
1

∆y
G i, j,k

A +
1

∆z
H i, j,k

A , (7.29)

where the fluxes in the y and z direction, G andH, are computed analogously
to the ones in the x direction.

To avoid creation of false extrema in the numerical solution we use the slope
limiting technique [93]. Among the different limiters that we have implemented
are (1) the so-called “step limiter”, which simply reduces the scheme to a first
order discontinuous Galerkin scheme, (2) the “minmod” and (3) the asymptotic-
preserving “minmod2” limiters [216]. The reason for using these particular
limiters is that they have been well tested in the context of the transport equation
(e.g., [216]). Furthermore, the minmod2 limiter has been studied in detail in the
context of linear DG methods, where it has been shown that it does not affect
smooth solutions away from local extrema [92], thus yielding a scheme with a
very small dissipation.

7.3.6 Time discretization

For the time integration, we use the predictor-corrector method proposed by
McClarren et al. [217]. In this approach, the streaming terms that model the
transport of radiation are treated explicitly, while the source terms responsible
for interaction with matter are treated implicitly. The use of this particular time
integrator is motivated by the fact that this yields a relatively inexpensive, stable
and asymptotic-preserving scheme. As discussed in Section 7.1, the fact that the
streaming terms are treated explicitly makes this scheme particularly easy to
parallelize, while the associated CFL constraint is not particularly demanding
for applications involving fluid moving at relativistic velocities and general
relativistic gravity.

In order to simplify the notation, we rewrite Eq. (7.29) as

dFA

dt
= eA + S B

A FB +AA[F] , (7.30)

where AA[F] is a shorthand for the treatment of the spatial flux terms. For
the time integration of Eq. (7.30), we use the following two-step semi-implicit
asymptotic-preserving scheme. Given the solution F k

A at time k∆t, we first
perform a predictor step

F k+1/2
A

− F k
A

∆t/2
= AA[Fk] + e k

A + S B
A F k+1/2

B ,
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to obtain the solution at time (k + 1/2)∆t and then a corrector step:

F k+1
A
− F k

A

∆t
= AA[Fk+1/2] + e k+1/2

A + S B
A F k+1

B ,

to obtain the solution at time (k + 1)∆t. At both stages, the absorption, emission
and scattering terms are treated implicitly, while the streaming terms are treated
explicitly. The explicit part of this scheme is second-order accurate in time,
while its implicit part is first-order accurate [217].

7.3.7 Filtering

Filtering is a common procedure to reduce the effects of the Gibbs phenomenon
in spectral methods for numerical solution of partial differential equations
[76, 263]. Filtered spherical harmonics expansions have been successfully used
in, e.g., meteorology (see e.g., [62] and references therein) and the effects of
filtering on the truncation error of a spectral expansion are now reasonably
well understood [327]. However, the use of filters to mitigate (and, in most
situations, remove) the occurrence of negative solutions in PN schemes has
only been proposed recently by McClarren and Hauck [215].

In their work, the authors propose to filter the spherical harmonic expansion
of the solution after each timestep using a spherical-spline filter. Applying this
suggestion to the spherical harmonic expansion of F we obtain (for clarity we
report here the summation symbols)

[
F (F)

]
(ϕ, θ) =

N∑
`=0

∑̀
m=−`

[
1

1 + α`2(1 + `2)

]
F`mY`m(ϕ, θ) , (7.31)

where

α :=
c∆t
∆x

1
N2

1
(σtL + N)2 , (7.32)

and L is a characteristic length scale used to make α dimensionless, while σt is
chosen to be of the same order of magnitude as κ.

The filtered spherical harmonics, FPN, scheme has several interesting prop-
erties. Filtering has been found to be very effective and robust in removing
numerical oscillations in PN solutions, while preserving the rotational invari-
ance of the scheme. Furthermore, for this particular choice of α, filtering turns
off automatically in the limit N → ∞, thus it does not spoil the convergence of
the spherical harmonics expansion.

However, one important drawback, also remarked by McClarren and Hauck [216],
is that the filtered PN scheme does not have a clear continuum limit as ∆x,∆t→
0. This is unfortunate because it implies that the filtered PN scheme, FPN, cannot
be interpreted as a system of partial differential equations. This in turn means
that the quality of the FPN solution will depend on the spatial grid resolution
in a way that is hard to predict. The ultimate and most important implication
is that an FPN solution cannot be studied for spatial convergence.

To solve this problem, we propose a modification/generalization of the FPN
scheme as follows. We introduce a strength parameter, s ≥ 0, to be specified
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later, and construct the filtered expansion as

[
F (F)

]
(ϕ, θ) =

N∑
`=0

∑̀
m=−`

[
σ
( `
N + 1

)]s

F`mY`m(ϕ, θ) , (7.33)

where σ(η) is a filter function of order p, that is, a function σ ∈ Cp
(
R+; [0, 1]

)
such

that7

σ(0) = 1 , σ(k)(0) = 0 , for k = 1, 2, . . . p − 1 . (7.34)

Notice that, since the filter strength depends only on `, this does not destruct the
rotational invariance of the scheme.8 Furthermore, as the order of the spherical
harmonics, N, increases, the effect of filtering automatically decreases, so that
the convergence of the scheme for N → ∞ is retained. More specifically, for
a filter of order p, we expect a convergence order of ∼ p − 1, as suggested by
Vandeven’s theorem for Fourier expansion [327], see also [167].

In our analysis we have considered two second-order and two fourth-order
filters. The first one is the classical second-order Lanczos filter9:

σLanczos(η) =
sin η
η

, (7.35)

while the second and third choices are given by the ErfcLog filter [61],

σErfcLog(η) =
1
2

Erfc
{

2p1/2
(
|η| −

1
2

)√
− log[1 − 4(η − 1/2)2]

4(η − 1/2)2

}
, (7.36)

of order p = 2, 4. Finally, the fourth filter is the fourth-order spherical-spline
filter

σSSpline(η) =
1

1 + η4 . (7.37)

We point out that, with our definition, the spherical-spline filter (7.37) is very
similar to the one used in [215], but is not exactly equivalent. The reason for
using a slightly different filter form is that the filter of [215] is not compatible
with the form of Eq. (7.33) as it cannot be written in terms of a function σ(·) of
`/(N + 1).

In addition, we have considered only even-order filters since the truncation
error associated with these filters can be interpreted as a numerical viscosity of
order higher than two [221], while for odd-order filters the leading truncation
error is of the dispersion type [221]. Moreover, we also do not consider filters
of orders higher than 4. This is because, as we will see later, the fourth-order

7 Here we ignore the technical requirement for Vandeven’s theorem that σ(k)(1) = 0 for k =
0, 1, 2, . . . p − 1, which is not satisfied by our filters (nor by the one proposed by [215]). This is a
condition that does not influence the formal accuracy of the filtered expansion with respect to the
unfiltered truncated expansion, but it is mainly needed to prove the convergence of the filtered
expansion in the case in which the unfiltered expansion is not converging point-wise (for instance
due to the presence of discontinuities) [152, 314].

8This is a consequence of the classical addition theorem for spherical harmonics (e.g., [61]).
9Note that the Lanczos filter is usually defined as σ(η) = sinπη/πη to have a first-order zero at

η = 1, as discussed in footnote 7. Our modified Lanczos filter yields a more uniform damping of
high-order modes and works very well in our experiments.
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filters are already too weak to completely remove oscillations, suggesting that
even higher order will be even less efficient.

In our scheme, we filter the solution after each sub-step of the time integrator.
This yields the following scheme

F ∗
A
− F k

A

∆t/2
= AA[Fk] + e k

A + S B
A F k+1/2

B , (7.38)

F k+1/2
A = F B

A F ∗
B , (7.39)

F ∗∗
A
− F k

A

∆t
= AA[Fk+1/2] + e k+1/2

A + S B
A F k+1

B , (7.40)

F k+1
A = F B

A F ∗∗
B , (7.41)

where F B
A is a diagonal matrix representing the filtering operation.

We should remark that both our scheme and the one by [215], cannot be
interpreted as a continuum problem, in the sense that the equations (7.38)−(7.41)
do not, in general, represent a discretization of any system of partial differential
equations. The main reason is that F B

A is not idempotent, i.e., F C
A F B

C , δ B
A ,

so that the filtering operations in Eqs. (7.39) and (7.41) do not have a well-
defined behavior in the limit ∆t→ 0. In the case in which F B

A is idempotent,
the scheme has indeed a continuum limit, but it can be easily demonstrated
that the FPN method is just the PM method for some M ≤ N.10

This problem can be solved by making the strength parameter s (and F B
A

with it) depend on the timestep. In order to see that, we consider the behavior
of our scheme for a given mode u = F`m with ` , 0. Let q = σ

(
`/(N + 1)

)
, where

σ is a filter function. Then the effect of filtering on u in each of the two filtering
steps in, e.g., Eq. (7.41) is simply:

uk+1 = qsu∗∗ .

This can be rewritten as
uk+1 − u∗∗

∆t/2
=

1
∆t/2

[qs
− 1]u∗∗ .

If we let s = β∆t, then, in the limit of ∆t→ 0, we obtain

du
dt

= β log q u . (7.42)

In other words, we can interpret filtering as a first-order, operator split, dis-
cretization of the system of equations

∂FA

∂t
+P B

kA ∂FB

∂xk
= eA + S B

A FB + βL B
A FB , (7.43)

where L B
A is a diagonal matrix with coefficients log σ

(
`/(N + 1)

)
. This is the de-

sired continuum limit. The physical interpretation is that filtering is equivalent
to a forward-peaked scattering operator (notice that σ(0) = 1). Finally, we note
that we can estimate the filter effective opacity by looking at the dissipation
rate for the highest-order multipole of the expansion as

σeff = −β log σ
(
N/(N + 1)

)
.

10The reason is that the only idempotent filter is the cut-off filter, that is, the filter that simply sets
to zero all the modes with ` > M for some M, while leaving unaffected all the modes with ` ≤M.



7.4. Tests 205

7.4 Tests

In this Section, we present some tests of the numerical schemes described above
as implemented in our Charon code. Charon uses 3D Cartesian coordinates
in space and is currently parallelized employing hybrid OpenMP/MPI paral-
lelization using the domain decomposition method. It uses the open-source
Cactus Computational Toolkit [150, 2], which provides MPI parallelization,
input/output, and restart capabilities.

7.4.1 1D diffusion of a step function

In this first test, we primarily focus on verifying the ability of our scheme to
handle diffusion of radiation when the opacity is high and the mean-free-path
is small compared to the grid spacing. In this limit, the continuous hyperbolic
transport equation displays parabolic character to leading order [216]. Despite
this, there is no guarantee that a numerical scheme for solving the hyperbolic
system will be AP, that is, will reproduce a valid discretization of the asymptotic
limit of the continuous equations (cf. the discussion in Section 7.3.5).

Consider therefore the following initial conditions for the radiation en-
ergy density E :=

∫
I dΩ dν, in a non-moving infinite medium with a constant

(isotropic and elastic) scattering opacity:

E(z, t = 0) = H(z + 1/2)H(1/2 − z) , (7.44)

where H(·) is the Heaviside step function. If the scattering opacity is high, the
solution of the transport equation is well approximated by the solution of the
diffusion equation. The corresponding diffusion equation has the following
analytic solution to problem (7.44)

E(z, t) =
1
2

[
Erf

(
z + 1/2

2
√

t/τ

)
− Erf

(
z − 1/2

2
√

t/τ

)]
, (7.45)

where Erf(·) is the error function and τ := 3κs/c is the diffusion timescale, where
κs is the total scattering opacity, which we set to κs = 105 [e.g., 216].

We employ five different schemes for this test: the step scheme (i.e., a
DG scheme with step-limiter, or, equivalently a first-order FV scheme), two
linear DG methods employing minmod and minmod2 limiters and two finite-
volume (FV) methods also employing minmod and minmod2 limiters. In
our implementation, the finite-volume scheme is obtained from the linear DG
scheme by simply replacing the linear DG slope with the one obtained from the
reconstruction procedure.

In all of our runs, we use the P1 scheme because in 1D there are no neg-
ative solutions and thus filtering is not necessary, and because the radiation
is nearly isotropic in such a diffusive regime so that the P1 scheme should be
sufficiently accurate. We perform calculations using three different resolutions
∆z = 0.16, 0.08 and ∆z = 0.04, with the grid ranging from −2 to 2, and impos-
ing periodic boundary conditions at the outer boundaries. We choose the CFL
factor to be 0.25 and we recall that the maximum CFL factor that guarantees
the L2-stability of our scheme is 1/3 in 1D [93]. In all of our tests, the CFL
factor is mainly chosen for convenience in order to have a sufficient number of
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Figure 7.2: Radiation energy density as a function of the z coordinate at time
100/c for the 1D diffusion of the step function (7.44). The thick black line rep-
resents the analytical solution of the corresponding diffusion equation, the line
with red circles corresponds to the linear DG with minmod2 limiter solution, the
line with orange squares represents the solution from the finite-volume scheme
with minmod2 reconstruction, while the lines with blue diamonds and with
green triangles show the results obtained with linear DG with minmod and
step limiters, respectively. The symbols also mark the values of the numerical
solution at each grid point (i.e., we show two points for each element).

timesteps within a given time interval. Moreover, in many radiation-transport
calculations, in the absence of hydrodynamical equations, the truncation error
due to the time discretization is expected to be small compared to other sources
of error (e.g., the angular and spatial discretization).

Figure 7.2 shows the radiation energy density as a function of z coordinate
for the run with ∆z = 0.04 at time 100/c. The thick black line corresponds to
the analytic solution, while the other lines show numerical results obtained
with the above schemes. The line with red circles corresponds to the linear DG
with minmod2 limiter solution. The line with orange squares represents the
solution from the finite-volume scheme with minmod2 reconstruction. Finally,
the lines with blue diamonds and green triangles show the results obtained
with linear DG with minmod and step limiters, respectively. Note that the
different symbols also mark the value of the numerical solution at each grid
point (i.e., we show two points for each element).

The linear DG method with minmod2 agrees well with the analytical result.
This is expected since this scheme has the correct asymptotic limit [216]. In
contrast, all other schemes overestimate the diffusion rate. In particular, the
step scheme produces the worst results. It reaches stationarity already at time
t/τ ∼ 10−4, which is much smaller than the diffusion timescale for this problem.
The linear DG and finite-volume schemes with minmod yield identical results
and for this reason we show only the results from the linear DG scheme. Both
are only marginally better than the step algorithm. These results are in overall
agreement with the ones reported by [216] for a very similar test.

The FV scheme with the minmod2 reconstruction produces results that
are relatively accurate compared to the linear DG and finite-volume schemes
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Figure 7.3: L∞−norm of the deviation of the numerical result from the asymp-
totic solution as a function of numerical resolution for the diffusion problem
of a sine function. The lines with red circles and blue squares correspond
to the linear DG schemes with minmod2 and minmod limiters, respectively,
while the line with orange diamonds represents the FV scheme with minmod2
reconstruction. Finally, the line with green triangles corresponds to the step
scheme.

with the minmod limiter, even though the observed diffusion timescale (at the
current resolution) is still orders of magnitude larger than the physical one.
Finally, we point out that the results obtained from the other lower-resolution
runs (not shown here) are in overall agreement with the ones presented here.

7.4.2 1D diffusion of a sine wave

Next, we explore convergence of the numerical solution to the asymptotic one.
To this scope we consider the 1D diffusion of a sine wave and thus adopt as
initial conditions the energy density given by

E(z, t = 0) = 3
√

4π
[
sin

(
πz
3

)
+ 1

]
, (7.46)

which has the following analytic solution in the diffusion limit

E(z, t) = 3
√

4π
[
1 + exp

(
−
π2

9
t
τ

)
sin

(πz
3

)]
. (7.47)

For this test, our computational domain ranges from −3 to 3 and we use eight
different resolutions ranging from ∆z = 0.3 to ∆z = 0.009375. The CFL factor is
chosen to be 0.3.

Figure 7.3 shows the L∞−norm of the deviation of the numerical result
from the asymptotic solution as a function of numerical resolution at time
t = 1000/c. As expected, the linear DG scheme with minmod2 (line with red
circles) exhibits approximately second-order convergence for the entire range
of resolutions shown in the plot, while the linear DG with minmod (line with
blue squares) starts converging only when ∆z ∼ 10−1, afterwards it converges
with order ' 1.28. The step scheme (line with green triangles) does not show
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any sign of convergence11. These results are again consistent with what was
observed in [216]. Finally, the finite-volume with minmod2 reconstruction
(line with orange diamonds) exhibits second-order convergence even though
this scheme is not asymptotic preserving.

7.4.3 The 2D line-source problem

As a first multidimensional problem used to benchmark different implementa-
tions of the filtered spherical harmonics discretization schemes we consider the
so-called “line-source” problem, where we have initial conditions given by12

I(x, y, z,Ω, t = 0) =
E0

4π
δ(x)δ(y) , (7.48)

which represents an isotropic pulse of radiation with a total energy E0 con-
centrated along the z-axis in vacuum [68]. This radiation field propagates in
vacuum as it evolves in time according to the following analytical solution

E(x, y, t) =
E0

2π
H(ct − r)

ct
√

c2t2 − r2
, (7.49)

where r :=
√

x2 + y2 is the distance from the z-axis and H(·) is the unit step
function and δ(·) is the Dirac delta function. According to this solution, the
radiation field consists of a front that forms a cylindrical shell that travels
outwards at the speed of light, while in the interior, the radiation energy density
smoothly decreases along the radial direction.

We point out that, while this test is actually one-dimensional in cylindrical
coordinates, it becomes particularly challenging for radiation-transport codes,
except for Monte-Carlo codes, when solved on a two-dimensional Cartesian
grid (as we do). In these coordinates, the radiation beam, which originates
from a single spatial grid zone, has a very forward-peaked distribution in angle.
This is a huge challenge for both spatial and angular discretization schemes.
Moreover, such a configuration favors negative solutions in the PN scheme.
Indeed, the analytical PN solution to this problem was shown to have regions
with negative values of the energy [68, 218, 215], while the P1 solution even
exhibits a negative singularity [214]. For all the results presented here, we use
a grid with resolution ∆x = ∆y = 0.02 and a CFL factor of 0.0625. Furthermore,
we choose E0 =

√
4π.

Figure 7.4 displays the colormap of the radiation energy density in the x− y
plane at t = 1/c. The upper left panel shows the analytic solution, while the
upper right panel shows the pure P7 solution (note the considerable difference
in scale). As expected, the P7 solution exhibits unphysical oscillations in the
radial direction that are absent in the analytical solution to the full transport
problem (7.49). The lower left panel of Fig. 7.4 shows instead the FP7 solution

11Notice that for the step scheme is expected to reach the convergence regime only when the
numerical diffusion becomes smaller than the physical one. This means that the step scheme can be
expected to be accurate only when the mean-free-path of radiation is resolved, i.e., at a resolution
which is unfeasible in many practical applications. For instance, for the problem we considered
here, we expect the step scheme to reach the convergence regime for ∆z ∼ 10−6.

12The initial conditions are 3D but we exploit the cylindrical symmetry to solve the problem on
the (x, y) plane only.
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(a) Analytic solution
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(c) FP7 with spherical-spline filter
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(d) FP7 with Lanczos filter

Figure 7.4: Colormaps of the radiation energy density on the x − y plane at
t = 1/c for the line problem with different methods. The upper left panel shows
the analytic solution, while the upper right panel shows the pure P7 solution
(note the considerable difference in scale). The lower left panel shows the FP7
solution with spherical-spline filter with effective opacity σeff = 20, while the
lower right panel shows the FP7 solution with the Lancsoz filter with the same
effective opacity.
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Figure 7.5: The radiation energy density as a function of the x coordinate at
t = 1/c for the line problem test. The thick black line corresponds to the analytic
solution, while the rest of the lines represent the results from P7 calculations
without filter (blue line), with fourth-order ErfcLog filter (green line), with the
second-order ErfcLog filter (red line), with the Lanczos filter (cyan line), and
with the fourth-order spherical-spline filter (magenta line).

with spherical-spline filter with effective opacity σeff = 20 (the dependence of
the solution on the order N and on the value of the filter strength σeff will be
discusses below). In this case, the radial oscillations are significantly reduced
compared to the unfiltered P7 solution, similar to what was found in [215].
Finally, the lower right panel shows the FP7 solution with the Lancsoz filter with
the same effective opacity. In this case, the amount of oscillations is even smaller
and we get a result that is closer to the analytical one. The reason seems to be
that the Lanczos filter, being a second-order filter, is more effective in reducing
the appearance of oscillations. The solution obtained with the spherical-spline
filter is still characterized by the presence of a ring structure that resembles the
more oscillatory (unfiltered) PN solution. This structure does not disappear
even for values of the filter strength as high as σeff = 104, suggesting that this
is a result of a shortcoming of this particular filter. We point out that we have
repeated these runs with the second-order (fourth-order) ErfcLog filter and we
obtain a result similar to the one with the second-order Lanczos (fourth-order
ErfcLog) filter, suggesting that the order of the filter plays the most important
role, at least for this test.

A more quantitative measure of this test is shown in Fig. 7.5, where we plot
a 1D cut of the radiation energy density as a function of the x-coordinate at
t = 1/c. The thick black line again corresponds to the analytic solution, while
the rest of the lines represent the results from P7 calculations without filter
(blue line), with the fourth-order ErfcLog filter (green line), with the second-
order ErfcLog filter (red line), with the Lanczos filter (cyan line), and with the
spherical-spline filter (violet line). All of these runs with filters are performed
using a filter strength of σeff = 20. We can easily notice again the presence of
large oscillations in the unfiltered P7 solution (which are larger than the scale
of the plot). The fourth-order spherical-spline and ErfcLog filters are able to
suppress most of the oscillations and remove the negative values. Nevertheless,
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Figure 7.6: Radiation energy density as a function of the x coordinate at t = 1/c
obtained from the FP7 solution with the second-order Lanczos filter of varying
strength σeff . The thick black line corresponds to the analytic solution, while
the rest of the lines represent the numerical solutions corresponding to different
σeff .

both solutions are still affected by the oscillations (although to a much smaller
extent compared to the P7 solution). The second-order Lanczos and ErfcLog
filters, on the other hand, are able to remove most of the oscillations and give
the best numerical solutions, overall.

Figure 7.6, which reports the radiation energy density as a function of the
x coordinate at t = 1/c, highlights how the quality of the solution varies with
the (Lanczos) filter effective opacity. The black line again corresponds to the
analytic solution, while the rest of the lines represent the FP7 solution with the
Lanczos filter of varying strength σeff . In the case of weak filters (e.g., σeff = 1
or σeff = 5), there are significant oscillations, whose amplitude is significantly
reduced as we increase the filter strength. For example, for σeff = 20, there
are tiny oscillations, while for σeff = 50 there are no noticeable oscillations.
However, the quality of the solution with σeff = 50 is actually worse than the
one with σeff = 20 (e.g., the radiation wavefront lags significantly behind the
real solution) as a result of the large smearing of the radiation beam produced
by the excessive filtering (this is even more evident for σeff = 100 or σeff =
1000). Therefore, the filter strength needs to be chosen large enough to damp
oscillations and small enough to avoid excessive smearing of the solution. We
have repeated these runs with the second-order ErfcLog filter and we again get
similar results.

Figure 7.6 should be contrasted with Fig. 7.7, where we show a study of the
effect of different filter opacities for the same problem, but using the spherical-
spline filter. The first thing to notice is that the spherical-spline filter is never
able to completely remove the “ring” structure in the solution, even when the
filter strength is so strong that the result resembles the solution of the diffusion
equation for this problem. Secondly, the dependence of the filter behavior on
the filter strength does not seem to be easily predictable: at first, as we increase
filter strength, negative solutions disappear (for σeff . 100), then they reappear
for higher values of σeff around 1000. We have repeated these runs with the
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Figure 7.7: Same as in Figure 7.6 but for the FP7 solution with the fourth-order
spherical-spline filter of varying strength σeff .

fourth-order ErfcLog filter and we obtained similar results.
Finally, Fig. 7.8 shows the FPN solutions for N = 3, 5, 7, 9 and 11 with the

Lanczos filter with σeff = 20, and can be used to study the convergence of the
FPN approximation to the analytic solution. In this plot, we can distinguish
three different types of errors: (1) An error in the position of the radiation
front, which is particularly evident for small N, is mainly related to the fact
that the propagation speed of radiation is smaller than c for low N; (2) An
error in the profile of the radiation energy density behind the front, which is
again particularly pronounced for small N, and is due to the fact that high
angular resolution is needed to properly describe the very forward-peaked an-
gular distribution of radiation; (3) A relatively large spreading of the radiation
beam in space compared to the x−1/2, x = ct − r, singularity in the analytical
solution (7.49). This is an artifact of the spatial discretization and mainly stems
from the fact that the radiation beam originates from one spatial element and
results in the presence of a “precursor” in the radiation front for high-order FPN
(e.g., FP11) solutions, where the spatial discretization scheme propagates the
radiation front superluminally, despite the fact that the characteristic speeds of
the FPN system are always smaller than c. Superluminal propagation of sharp
features in numerical solutions of hyperbolic PDEs is a well known artifact of
the spatial and temporal discretization of the equations. An in-depth explana-
tion of this phenomenon for the case of the Maxwell equations can be found in
[313]. As we can see in the figure, the FPN solution nevertheless approaches the
analytical one as we increase the order N and, in particular, the errors associ-
ated with the angular discretization decrease to the point that the FP11 solution
yields only a small improvement with respect to the FP9 one. In particular,
a large contribution to the error in the FP11 solution comes from the presence
of the superluminal precursor discussed above. Since this precursor can only
be attributed to the spatial discretization error, we can conclude that, at this
particular resolution and order, the spatial discretization error is already com-
parable with the angular discretization ones. We have repeated these runs with
the second-order ErfcLog filter and at half of the resolution and we again get
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Figure 7.8: Radiation energy density as a function of the x coordinate at t = 1/c
obtained from the FPN solution with the second-order Lanczos filter with σeff =
20 for different values of order N. The thick black line represents that analytical
solution, while the rest of the lines represent numerical solutions for different
N. Clearly, the FPN solution approaches the analytical one as we increase the
order N.

similar results. These results show that our filtering strategy is able to recover
the convergence of the PN scheme for this particular case, and that the second-
order filters, unlike the fourth-order ones, do not require a delicate fine-tuning
of the effective scattering opacity. In particular, σeff can be chosen on the basis
of the physics and geometry of the problem, in a way that is independent of
the order of the employed PN scheme.

Overall, the results of this test confirm that the filtering approach is effective
and robust in suppressing unphysical oscillations in the PN solution, even with
moderately low-order N. Moreover, we find that the second-order Lancsoz and
ErfcLog filters produce significantly better numerical results compared to the
fourth-order spherical-spline and ErfcLog filters.

7.4.4 A lattice problem

Next, we consider another 2D problem consisting of a chessboard of highly
scattering and highly absorbing square regions located around a central emit-
ting square region. Although this geometry is not expected to be present in the
astrophysical scenarios we are most interested in, it nevertheless represents a
very demanding test of the capabilities of the different numerical schemes in
complicated geometries.

In our calculation we use a setup illustrated in the upper left panel of
Fig. 7.9, which consists of a central emitting square (shown in white) and 11
absorbing squares (shown in black) with a constant absorption opacity κa = 10
surrounding the central emitting square. The space between the squares (shown
in gray) and the central emitting region has a small uniform scattering opacity of
κs = 1. Each square has a linear size of 1. The size of the computational domain
is 7 along both axes. We choose a spatial resolution of ∆x = ∆z = 0.035 and the
CFL factor was set to ≈ 0.14, with outgoing boundary conditions imposed at
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Figure 7.9: Upper-left panel: illustration of the setup of the 2D lattice problem.
The rest of the panels: colormap of the log10 of the radiation energy density
at time t = 3.2/c as obtained with the P7 scheme (upper-right panel) and FPN
schemes with the Lanczos filter with opacity 5 for different order N (middle
and bottom panels). The time t = 3.2/c corresponds to the moment when the
radiation front first reaches the outer boundary of the computational domain.
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the outer boundary.
The remaining panels in Fig. 7.9 show the log10 of the radiation energy

density produced by different schemes at a time t = 3.2/c, which roughly
corresponds to the moment when the radiation reaches the outer boundary
of the computational domain. The upper right panel corresponds to the P7
solution. Not surprisingly, this solution has regions of negative energy density
(shown in white), although the negative values reach at most a relatively small
magnitude of ∼ 10−5. All other solutions are computed with the Lanczos
filter with effective opacity σeff = 5. We find that σeff & 5 is necessary to
avoid the appearance of negative solutions. The middle-left panel represents
the FP1 solution, which does not have negative regions, but where the radiation
wavefront has reached only half of the computational domain. This is again due
to the fact that the N = 1 wave travels at a slower velocity of ' c/

√
3 [244] (see

the discussion in Section 7.3.3). The middle-right panel shows the FP3 solution,
which also does not have regions with negative energy density and where the
front has travelled enough to cover ∼ 95% of the computational domain, as
a result of larger propagation speeds with higher N (of course, the velocity is
always bounded by the speed of light). The FP5 solution shown in the lower-left
panel is very similar to the FP3 case, with the only noticeable difference being
the slightly faster propagation velocity in the FP5 case. Finally, the lower-right
panel shows the FP7 solution, which looks almost indistinguishable from the
FP5 one.

We complete the analysis of this test by showing in Fig. 7.10 equivalent
snapshots of the energy density at a later time of t = 16/c, when the radiation
field has reached a stationary state. In these conditions, the PN solution is not
expected to have any negative values [68]. This is indeed confirmed by the
upper left panel of Fig. 7.10, which shows the P7 solution without negative
regions. The remaining panels in Fig. 7.10 report the FP1, FP3, and FP7 solutions,
respectively. Note that the FP3, and FP7 solutions are very similar to the P7
one, underlining that the filter we use does not compromise the accuracy of the
solution. However, the FP1 solution appears to be significantly different from
the FP3 and FP7 solutions, implying that N = 1 is not a sufficiently accurate
approximation for this problem.

7.4.5 3D Homogeneous sphere

Finally, we consider the 3D homogeneous sphere problem, which is frequently
employed to test radiation transport codes [303, 256, 266, 5]. This problem
consists of a static homogeneous and isothermal sphere of radius R that radiates
in vacuum. Inside the sphere, the radiation interacts with the background
matter only via isotropic absorption and thermal emission. Despite the rather
simple setup, the sharp discontinuity at the surface of the sphere is a model
for astrophysical phenomena with rapidly varying opacity. This represent a
major challenge for finite-difference methods (although, it is less challenging
for Monte Carlo methods; see, e.g., [5]).

We assume that the sphere of radius R has a constant absorption opacity κa
and emissivity B in the interior, while in the ambient vacuum at r > R, we have
κa = B = 0. For this problem, the transport equation can be solved analytically
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Figure 7.10: Colormaps of the log10 of the radiation energy density at time
t = 16/c obtained with the P7 scheme (upper-left panel) and FP1 (lower-left
panel), FP7 (upper-right panel), and FP3 (lower-right panel) schemes with the
Lanczos filter with opacity 5. The time t = 16/c corresponds to the time by
which the radiation field reaches the stationary state. Since the PN scheme
is less likely to exhibit negative solutions in the stationary state, we do not
observe such solutions in our numerical result (upper-left panel), similarly to
the filtered PN solutions.
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Figure 7.11: Radiation energy density as a function of the radial coordinate for
the homogeneous sphere problem. The thick black line shows the analytical
solution, while the rest of the lines show the FPN solution with the Lanczos filter
with σeff = 1 but with different values of order N. Clearly, the numerical result
approaches the analytical solution as we increase N.

and has solution [303]

I(r, µ) =
B
κa

∣∣∣∣∣
r=0

[
1 − exp

(
−κas(r, µ)

)]
, (7.50)

where r :=
√

x2 + y2 + z2, µ := cosθ and

s(r, µ) =



rµ + Rg(r, µ) if r < R, −1 ≤ µ ≤ 1 ,

2Rg(r, µ) if r ≥ R,
√

1 − (R/r)2
≤ µ ≤ 1 ,

0 otherwise,

(7.51)

and

g(r, µ) =

√
1 −

( r
R

)2
(1 − µ2) . (7.52)

Note that this solution depends only on three parameters: κa, R, and B, where
the latter acts as a scale factor for the solution.

We perform simulations in full 3D with Cartesian coordinates and use the
following computational setup. We set R = 1 and cover the interior of the
sphere with 40 elements in diameter along each coordinate direction, with the
outer boundary being located at 5 R. The absorption opacity is chosen to be
κa = 10 and the CFL factor is set to be ∼ 0.12.

It is useful to remark that, although the matter distribution is spherically
symmetric, this is a genuinely 3D test due to the Cartesian geometry of our
spatial grid. Indeed, it leads to the propagation of radiation from one spatial
zone to another not only in the radial direction, but also in the angular direc-
tions, and the degree of sphericity of the numerical solution can be taken as a
measure of the accuracy.
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−norm of the deviation of the FPN solution from the analytic

result as a function of the order N for the homogeneous sphere problem. The
black dots show the error as computed in a sphere of radius R = 4.5, while the
black line shows the fitted convergence rate.
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Figure 7.13: Radiation energy density as a function of the r coordinate for
the homogeneous sphere problem. The thick black line shows the analytical
solution, the blue line corresponds to the unfiltered P7 solution, while the rest of
the lines represent the FP7 solutions obtained with different filters and different
values of σeff .
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Figure 7.11 shows the radiation energy density along the diagonal direction
for the analytical solution and the FPN solutions of different orders ranging from
1 to 11. The results are shown for the time when the radiation field has reached
a stationary state.13 These runs are performed with the Lanczos filter of σeff = 1.
Interestingly, all of the FPN solutions produce the correct result in the interior
of the sphere. This is not surprising since the radiation inside the sphere is
nearly isotropic and the low-order FPN solutions are already accurate enough.
Outside the sphere, radiation streams freely outwards with a highly forward-
peaked distribution in angle, which is a challenge for low-order FPN schemes.
Indeed, the FP1 result deviates significantly from the analytical solution in that
region. However, the solution clearly becomes more accurate everywhere in
the computational domain as we increase the order of the scheme. Figure 7.12
shows the L1

−norm of the deviation of the FPN solution from the analytic result
in a sphere of radius R = 4.5.14 As we can see from the plot, the FPN scheme
starts to converge already for N ≈ 3, an order with only 42 = 16 angular degrees
of freedom. The convergence order is ' 1.16, which is consistent with what
expected from the theory of spectral filtering.

Figure 7.13 shows the radiation energy density along the diagonal direction
for the analytical solution and different numerical solutions at the stationary
state. These are the unfiltered P7 solution, the three FP7 solutions computed
using respectively the second-order Lanczos, the fourth-order spherical-spline
and ErfcLog filters withσeff = 1. Also shown are the two FP7 solutions computed
using the Lanczos filter with σeff = 0.1 and σeff = 10. Although the P7 solution
does not exhibit any negative solutions, it shows large oscillations in the free
streaming region. The FP7 solution with the Lanczos filter with σeff = 0.1
also yields a somewhat oscillatory solution, suggesting that the filter effective
opacity is too low for this problem. As σeff is increased, the spurious oscillations
disappear and all the filters that we have tried yield solutions of very similar
quality for σeff = 1. Finally, the FP7 solution with the Lanczos filter with σeff = 10
is similar in quality to the FP3 solution with the same filter but with σeff = 1. This
is due to the excessive damping of the high-order multipoles of the solution by
the filtering procedure.

Finally, Fig. 7.14 shows the colormaps of the log10 of the radiation energy
density from the FP1 (left panel) and FP11 (right panel) solutions with the Lanczos
filter with σeff = 1 at t = 3.75/c, which corresponds to the time when the
radiation front almost reaches the outer boundary. Clearly, and as observed also
in the previous tests, the FP1 radiation front lags significantly behind the FP11
one because of its slower propagation speed (cf. the discussion in Section 7.3.7).
Moreover, we can also see that both solutions maintain a high level of spherical
symmetry despite the Cartesian geometry of the spatial grid. We obtain similar
results in tests where the sphere was covered by 20, 10 and 5 elements.

13Note that stationarity is reached at different times depending on the different schemes used.
For this reason and given the high computational costs, we did not evolve all the models up to the
same time. Instead we report the solution as obtained as soon as stationarity is reached. In all cases
the computations are performed up to at least t = 20/c.

14We compute the error inside R = 4.5 instead of R = 5 in order to exclude effects due to boundary
conditions. We also normalize the L1

−norm by dividing it by 4
3πR3.
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Figure 7.14: Colormaps of the radiation energy density at time t = 3.75/c
obtained with the FP1 and FP7 schemes using the Lanczos filter with opacity
σeff = 1. The time t = 3.75/c corresponds to the moment when the radiation
front almost reaches the outer boundary of the computational domain.

7.5 Conclusions

We have presented an extension of the filtered spherical harmonics method by
McClarren and Hauck [215], the FPN scheme, to three dimensions. We have de-
veloped the new 3D/multigroup radiation transport code Charon, built within
the Cactus Computational Toolkit [150, 2]. Charon uses an asymptotic-
preserving linear discontinuous Galerkin discretization scheme in space [216]
and a semi-implicit time integration scheme [217] (cf. Section 7.3).

Our filtering scheme differs from the one presented by [215] in one important
aspect: we reformulate the filtering procedure so that it acquires a well-defined
continuum limit. In particular, we have shown that in the limit where the spatial
and time steps are reduced to zero, our filtering scheme can be interpreted as the
addition of a forward-peaked artificial scattering term to the PN equations. The
filtering procedure is also constructed in such a way as to retain the convergence
of the FPN solution to the solution of the transport equation as N→∞.

We have tested our scheme against a few challenging benchmark problems
for radiation transport using four different filtering kernels: the fourth order
spherical-spline filter, which is similar in spirit to the filter used by [215], the
fourth-order and second-order ErfcLog filters [61], and the classical second-
order Lanczos filter [61]. Our findings indicate that the FPN scheme behaves
well also in the three-dimensional case. In addition, we have shown that the
second-order filters are more robust and accurate and require somewhat less
tuning of the filter strength when compared to the fourth-order spherical-spline
and the ErfcLog filters. Since the order of a filter is one of its most important
properties, this result is likely to apply also to several other second- and fourth-
order filters.

In future work, we plan to extend our numerical algorithms to include
velocity dependence, the coupling to hydrodynamics, and, eventually, general
relativity.
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Chapter 8

Conclusions

General-relativistic hydrodynamics and radiation-hydrodynamics are indis-
pensable tools in the modeling of many high-energy astrophysical phenomena
and sources of gravitational waves, such as binary neutron star mergers, ac-
tive galactic nuclei or core-collapse supernovae, involving general-relativistic
gravity and/or high-Lorentz factor flows. Given the highly non-linear nature
of the equations involved, their analytic treatment is available only in special
cases, or if certain simplifying assumptions are made, while a numerical treat-
ment is needed to solve them in general. For this reason, while analytic and
semi-analytical models have greatly advanced the comprehension of phenom-
ena such as gamma-ray bursts or core-collapse supernovae, it is clear that the
actual mechanism originating them can only be demonstrated by means of fully
non-linear simulations.

Two key issues need to be addressed, however, in order for this goal to be
achieved. First of all, numerical relativistic hydrodynamics needs to transition
from the current state where it can provide qualitative or semi-quantitative
results to a state where fully-quantitative results can be achieved reliably. Sec-
ondly, it is necessary to improve the quality of the models in use in current
codes: for instance with the inclusion of realistic, nuclear theory based, equa-
tion of state and neutrino physics. The goal of this thesis is to contribute on
both of these aspects.

Concerning the issue of the numerical accuracy of numerical relativity
codes, we argue that switching away from the commonly adopted second-order
schemes towards more advanced methods is necessary to make quantitative
predictions, at least in scenarios such as the inspiral and merger of two neutron
stars in quasi-circular orbits or turbulence, where it is necessary to accurately
transport features of the solution over long distances/time, without having
them overwhelmed by the numerical dissipation of the scheme. For this reason
a large part of my thesis work has been devoted to the development of higher
order numerical schemes.

The most direct and efficient way to extend the current generation of
numerical-relativity codes is by adopting higher-order, high-resolution shock-
capturing, finite-differencing schemes. For this reason we started developing
a modular infrastructure for the solution of balance laws in multiple spatial
dimensions inside the Cactus computational toolkit. The first code built with
this infrastructure is the Templated Hydrodynamics Code, THC. This code solves
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the equations of classical and special-relativistic hydrodynamics using higher-
order methods. The high accuracy of this code has been demonstrated in a series
of stringent tests involving the propagation of shock waves, as well as a study
of the linear and non-linear development of the relativistic Kelvin-Helmholtz
instability in two and three spatial dimensions. As a first application of THC
we studied the statistical properties of turbulence in an ultra-relativistic gas
and, thanks to the superior accuracy of the code, we were able to show, for
the first time, similarities and differences between turbulence in Newtonian
physics and turbulence in relativity.

The general-relativistic extension of THC, WhiskyTHC, also part of this the-
sis work, is the first genuinely higher than second order general-relativistic
hydrodynamics code. We benchmarked this code using a series of classical
tests involving the evolution of stable and unstable isolated neutron stars. We
showed that WhiskyTHC can produce high order of convergence even in highly
dynamical situations, such as the gravitational collapse of a non-rotating neu-
tron star to black-hole. WhiskyTHC is also the first code able to obtain high order
(& third) in the phase of the gravitational wave generated in a binary neutron
star merger. As a first application of WhiskyTHC we showed a comparison be-
tween the numerical-relativity waveform computed for the merger of binary
neutron stars in quasi-circular orbit and the prediction of the post-Newtonian
theory. In particular, we find that, in the case of binaries with high compactness
stars, tidal contributions lead only to a modest de-phasing with respect to the
point-particle post-Newtonian prediction. This de-phasing can be further re-
duced to the point of being below the systematic uncertainties of our evolution
with the inclusion of tidal contributions up to the next-leading order terms.

In the quest for even more accurate numerical schemes we also studied
the application of discontinuous Galerkin methods to general-relativistic hy-
drodynamics. Discontinuous Galerkin methods offer spectral-like accuracy for
smooth flows and nearly-optimal scalability in parallel applications, due to
their very compact stencils. For these reasons they are a natural candidate
for the next generation of numerical relativity codes. In order to assess their
viability we developed the first one-dimensional general-relativistic hydrody-
namics code based on these methods. We showed that, indeed, they offer
superior performance with respect to other methods, even though some as-
pects, in particular the implementation of robust flattening procedures and of
local adaptivity, need to be addressed before their potential can be fully tapped
for numerical relativity.

In addition we also worked on the inclusion of neutrino radiation transport
in general-relativistic hydrodynamics codes. In particular we started the de-
velopment of a new code, Charon, based on filtered spherical-harmonics and
discontinuous Galerkin methods for radiation transport. Charon is a multi-
angle, multi-energy, full-Boltzmann solver. As such, it is not based on any
approximate model for the radiation transport, e.g., the flux-limited diffusion
or the Eddington approximations, but its solution can be made arbitrarily ac-
curate by increasing the order of the spherical harmonics expansion used in the
code. The work on Charon resulted in the development of a new, improved,
version of the spherical harmonics scheme, which employs more general filters
and has more clear convergence properties with respect to the original method.
The Charon code has been benchmarked in a number of tests and it is, to the
best of my knowledge, the only non Monte Carlo code for which convergence



225

to the analytic transport solution has been shown for some non-trivial problems
of astrophysical interest, such as the homogeneous sphere test. In the future we
plan to extend Charon to include velocity dependence and general-relativistic
corrections so that it can be finally coupled with WhiskyTHC in order to construct
a highly-accurate general-relativistic radiation-hydrodynamics code.

As a final remark we would like to point out that the work presented in
this thesis constitutes the foundation of a new generation of accurate codes for
computational relativistic astrophysics. These codes can be and will be applied
to the simulation of compact binary mergers, to study core-collapse supernovae
and to further explore the properties of turbulence in relativity.
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