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Abstract 

Knowing the loads that occur at wind turbines during operation allows for the verification 
of the assumptions made in the design process or for making lifetime predictions. Both of 
these goals require realistic load values. Such load values can be determined by applying an 
inverse load calculation procedure that uses measured structural responses. In the case of 
offshore wind turbines, the inverse load calculation is a complex dynamical problem in 
which coupled aerodynamics, elasticity, hydrodynamics, and the wind turbine control have 
to be considered. Although the inverse load calculation at wind turbines is a research field 
of increasing interest, a comprehensive overview of this method’s potential and its resulting 
accuracy is still missing. 

This work presents an investigation of the inverse load calculation at wind turbines. Single 
steps of increasing complexity are chosen in order to discuss the influence of the ill-
conditioning on the inverse calculation procedure, the dynamic coupling effects, effects due 
to the wind turbine control, and the occurrence of combined wind and wave loads. A fre-
quency-domain based inverse calculation procedure is used – the Deconvolution in the 
Frequency Domain. The comprehensive simulation code FAST is used for verification pur-
poses. Conclusions are derived from simulations with 5 MW wind turbine models, in which 
the inversely calculated loads are compared to the applied loads. The ensuing verifications 
show that the inverse load calculation procedure produces promising results. 

In addition, the application of the inverse load calculation procedure to a real-world 5 MW 
onshore wind turbine is presented. Special focus lies on determining a realistic system de-
scription of the structure. With the Frequency Domain Decomposition, a frequency-domain 
based output-only system identification method is used. Eigenfrequencies, mode shapes, 
and damping ratios – including aerodynamic effects – are determined for standstill and sev-
eral operation states. Using the inversely calculated load, structural strains are calculated 
that are compared to measured strains. This verification shows the capability of the inverse 
load calculation for producing very good results when applied to a real-world structure. 

 

Keywords: Inverse load calculation, load measurement, Deconvolution in the Frequency 
Domain, FAST, system identification, Frequency Domain Decomposition, aerodynamic 
damping, lifetime prediction 

 



Kurzfassung 

Die Kenntnis der im Betrieb von Windenergieanlagen auftretenden Belastungen ermöglicht 
die Überprüfung der Annahmen aus dem Entwurfsprozess oder die Erstellung einer Lebens-
dauerprognose. Die auftretenden Belastungen können mittels einer inversen Lastermittlung 
auf der Basis gemessener Strukturantworten berechnet werden. Die inverse Lastermittlung 
bei Offshore-Windenergieanlagen ist ein komplexes dynamisches Problem, in dem aerody-
namische, strukturelastische und hydrodynamische Kopplungseffekte sowie die Steuerung 
der Windenergieanlage berücksichtigt werden müssen. Obwohl die inverse Lastermittlung 
für Windenergieanlagen ein Forschungsfeld von steigendem Interesse ist, existieren bisher 
wenig Aussagen über das Potential und die Genauigkeit dieser Methode. 

Die vorliegende Arbeit befasst sich mit der inversen Lastermittlung für Windenergieanla-
gen. Die Lastermittlung wird an Modellen durchgeführt, deren Komplexität sukzessive ge-
steigert wird. Anhand dieses Vorgehens werden die Einflüsse aus der schlechte Kondition 
des inversen Problems, den dynamischen Kopplungseffekten, der Anlagensteuerung der 
Windenergieanlage sowie das Auftreten kombinierter Wind- und Wellenlasten diskutiert. 
Eine Frequenzraummethode – Deconvolution in the Frequency Domain – wird bei der in-
verse Berechnung verwendet. Mittels der Software FAST, die eine ganzheitliche Berech-
nung von Windenergieanlagen erlaubt, wird die Verifikation der inversen Berechnung vor-
genommen. Anhand der Simulationen von 5 MW Windenergieanlagen werden invers be-
rechnete Belastungen ermittelt, die mit den in der Simulation definierten Lasten verglichen 
werden. Die durchgeführten Verifikationen zeigen, dass die inverse Lastermittlung in der 
Lage ist, sehr gute Ergebnisse zu erzielen. 

Zudem wird die Anwendung der inversen Lastermittlung auf eine reale 5 MW Onshore-
Windenergieanlage vorgestellt. Der Schwerpunkt liegt auf der Erstellung einer wirklich-
keitsnahen Systembeschreibung. Verwendet wird dazu eine frequenzraumbasierte output-
only Methode zur Systemidentifikation – die Frequency Domain Decomposition. Die Eigen-
frequenzen, Eigenvektoren und die Dämpfungswerte – inklusive aerodynamischer Effekte – 
werden im Stillstand und für verschiedene Betriebsbedingungen der Anlage ermittelt. Unter 
Verwendung der inversen Belastungen werden Strukturdehnungen berechnet und mit 
Dehnungsmessungen verglichen. Die guten Ergebnisse dieses Vergleichs zeigen das Poten-
tial der inversen Lastermittlung, realistische Strukturdehnungen zu berechnen. 

 

Schlagwörter: Inverse Lastermittlung, Deconvolution in the Frequency Domain, FAST, Sys-
temidentifikation, Frequency Domain Decomposition, Aerodynamische Dämpfung, Restle-
bensdaueranalyse 
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1 Introduction 

 1

1 Introduction 
 

1.1 Motivation 

Renewable energies are becoming increasingly important to ensure a steady supply of en-
ergy. The Renewable Energy Directive, adopted by the European Parliament in 2009, sets 
binding targets. By 2020, 20 % of the overall energy mix in the EU is intended to be pro-
duced from renewable energy. For example, Germany, being part of the EU, decided to 
phase out nuclear power completely by the end of 2022, at the latest. The occurring gap in 
the power supply shall be covered by renewable energies. In 2011 Germany already 
reached the target to produce 20 % of its electrical power supply by renewable energies. 
And further growth is expected. As stated in the German government’s energy concept in 
20101, Germany seeks to increase the contribution of renewable energies to 60 % by 2050. 
Aside from the European countries, other important industrial nations also mark ambitious 
goals. The US aims to get 80 % of America’s electricity from clean energy sources. China 
plans to change its coal-dependent energy concept and seeks to generate at least 15 % of 
its energy capacity from wind, solar and other renewable energy sources by 2015. 

One form of renewable energy is wind energy. Wind energy plays an essential role for 
achieving the goals defined by several governments. The EWEA gives a closer look into the 
development of wind energy in the EU2 in its 2007 report. In the last 20 years, wind energy 
has shown a dramatic growth, with an annual averaged increase of 25 %. About 30 % of all 
new power capacity between 2000 and 2007 came from wind energy. Thus, in 2007 wind 
energy reached a 7 % share of the total energy capacity in the EU. 

The growth in wind energy continues. Costs, efficiency in power production and reliability 
of wind turbines still need to be enhanced. Key questions3 to be solved or developed are: 

• The development of appropriate materials 
• Enhanced understanding of aerodynamics and wind physics 
• Grid integration 
• Production, logistics and maintenance, especially for offshore wind turbines 
• Innovative concepts for nacelles, optimization of drive trains 
• Improvement of rotor blades according to aerodynamics, acoustics and struc-

tural weight 
• New support structure and foundation concepts both for onshore and off-

shore wind turbines 

                                               

1 Source: Federal Ministry for the Environment, Nature Conservation and Nuclear Safety [20]. 
2 Source: European Wind Energy Association [17]. 
3 See report of Deutsches Bundesministerium für Wirtschaft und Technologie [12], section 4.1.  
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Today, research must generate a quantifiable outcome.4 To compete with conventional 
energy sources, wind energy concepts need to stay innovative and to become even more 
cost efficient. Usually, wind turbines are gathered in wind parks consisting of up to hun-
dreds of turbines. Similar support structures are manufactured in series. Support structures 
form a significant proportion of the development costs for wind parks, which is true both 
for onshore and offshore wind turbines. Consequently, the optimization of support struc-
tures may enormously enhance economic efficiency. 

Wind turbine support structures have to withstand high dynamic forces. Excitations come 
from wind forces, gravity and inertia forces, and hydrodynamic forces. In addition, coupling 
effects between wind inflow, aerodynamics, hydrodynamics, elasticity and turbine control 
need to be taken into account. Comprehensive simulation software is successfully used for 
the design of support structures. Nevertheless, the force-to-structure interaction with its 
coupling effects is complex. For this reason, the testing and the monitoring of support 
structures is necessary. This imperative is underlined by the IEC Standard 61400-13 [109], 
which describes the measurement of mechanical loads at wind turbine generator systems. 
The standard states: “In the design stage loads can be predicted with aeroelastic models and 
codes. However, such models have their shortcomings and uncertainties, and they need to be 
validated by measurement.” The Germanischer Lloyd – one of the most important certifying 
institutions for wind turbines in Germany – also points out a demand for on-site checking 
of design assumptions:5 It is a matter of fact that real occurring loads can differ drastically 
from those simulated, depending on the specific site of the wind turbine. This fact is valid 
both in the design stage and in remaining lifetime predictions.6 Furthermore, one of the 
leading German research institutes in wind energy – the Fraunhofer IWES – also emphasizes 
that the knowledge of realistic wind and wave loads is essential for the further develop-
ment of wind turbines.7 

For the purpose of detecting realistic load values of structures or systems that are dynami-
cally loaded, a so-called inverse load calculation can be used. This inverse process uses 
measured dynamical responses of the structure, e.g. accelerations, to calculate the acting 
loads. A mechanical description of the structure is needed. On the basis of measured dy-
namical system properties such as eigenfrequencies, eigenvectors, and damping ratios, the 
frequency response function (FRF) matrix can be generated. The FRF matrix fully describes 
the realistic dynamic behavior of the structure. Consequently, the measured responses 
combined with the realistic description of the structure lead to realistic load values that can 
serve for a verification of the assumptions from the design process and can be used for re-
maining lifetime predictions. 

 

                                               

4 See Reuter (2013) [87]. 
5 See Faber (2008) [19]. 
6 Translated from German. 
7 See Reuter and Busmann (2010) [86]. 
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1.2 Load Measurement on Wind Turbines – State of the Technology 

1.2.1 Survey through existing Design Codes, Standards and Guidelines 

There exist a couple of design codes, standards, and guidelines for onshore and offshore 
wind turbines. They primarily focus on standardizing the appropriate requirements needed 
for the design of wind turbines. But most of them also give recommendations for meas-
urements. This fact underlines the importance of measurements. The proposed measure-
ments serve for different purposes. A review shall give an overview about the proposed 
practice for load measurements at wind turbine support structures. To clarify the denomi-
nation of the several structural sections of wind turbines, Figure 1.1 shows the definition 
from the GL guideline (2004) [106] that serve as the basis for all denominations in this 
work. 

 

Figure 1.1: Definition of offshore wind turbine sections (from GL guideline (2004) [106]) 

 

The German standard VDI 3834 (2009) [110] aims to evaluate mechanical vibrations at 
onshore wind turbines and their components. The components taken into account are the 
nacelle-tower system, the rotor bearing with the roller bearings, the gearbox, and the gen-
erator. Neither applied loads nor structural loads are measured. The VDI 3834 concludes 
that the vibration level highly influences the stresses of all components and thus the opera-
tional reliability and the service live. For this reason, evaluation criteria are given on the 
basis of vibration velocities and vibration accelerations. 

The German BSH standard (2007) [103], published by the Federal Maritime and Hydro-
graphic Agency, states that offshore wind turbines have to be equipped with monitoring 
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systems. Looking at the support structures in particular, monitoring systems on at least 
1/10 of the wind turbines are required. Appropriate equipment or procedures are not de-
fined. Thus, the BSH standard does not focus on load measurement in particular. But the 
demand for measurements and monitoring is clearly pointed out. 

The Norwegian design code DNV-OS-J101 (2004) [105] is valid for onshore wind turbines. 
The design code describes wind turbine loads during power production and states that se-
lected transient events should be verified by load measurements. These measurements are 
recommended in the intended operational range of the wind turbine, i.e. wind speeds be-
tween cut-in and cut-out. Detailed instructions for these verification measurements are 
missing. However, the DNV standard recommends that measurements shall be carried out 
by accredited testing laboratories. 

The IEC 61400-1 (2005) [107] sets design requirements for onshore wind turbines. Load 
measurements are required for the ultimate strength analysis. The use of the partial safety 
factors for loads for normal and abnormal design situations requires that the load calcula-
tion model is validated by load measurements. These measurements shall be made on a 
wind turbine that is similar to the wind turbine design under consideration of aerodynam-
ics, control, and the dynamic response. In addition, measurements may be used for a de-
termination of lower partial safety factors for loads. In that case, the magnitudes of loads 
have to be established by measurements or by analysis confirmed by measurements to a 
higher than normal degree of confidence.  

The IEC 61400-3 (2009) [108] is the design code for offshore wind turbines in the IEC se-
ries. Special recommendations to load measurements are absent. But oftentimes references 
to the onshore design code IEC 61400-1 are given. The requirements on load measure-
ments in part 1 are similar to part 3, except the demand for using a validated load calcula-
tion model. 

The DIBt Richtlinie (2004) [104] addresses onshore wind turbines with tubular towers and 
their foundations. The guideline mentions the option to control the assumptions for the 
fatigue analysis with the use of measurements. If the fatigue analysis is based on stress col-
lectives, the stress collectives have to be simulated at the crucial cross-sections. These 
simulations can be verified by measurements. The measurements shall be carried out in 
accordance with the IEC 61400-13 (2001) [109]. 

The GL guideline (2004) [106] is published by the Germanischer Lloyd and contains design 
requirements for the certification of offshore wind turbines. An entire chapter is dedicated 
to the testing of offshore wind turbines. Amongst others, load measurements are recom-
mended. The load measurements shall be carried out in accordance with the IEC 61400-13. 

 

1.2.2 Load Measurement according to IEC 61400-13 

The survey of various design codes, standards, and guidelines clarifies the demand for load 
measurements at wind turbines and at wind turbine support structures in particular. The 
information gained via measurements is principally used to verify the assumptions made in 
the design calculations. Such verification is needed in a broad range of operational condi-
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tions, summarized in specific load cases. In addition, it is used for monitoring purposes. In 
general, the design codes, standards, and guidelines do not explain in detail the process of 
load measurement. But most of them refer to the IEC 61400-13, so that a closer look at its 
specifications seems adequate. 

The IEC 61400-13 (2001) [109] gives detailed description for the measurement of me-
chanical loads on wind turbines. This is motivated by the fact that load measurements can 
serve as a basis for the design and the certification or for the verification of simulation 
codes. For these purposes, measurements of different steady-state operations (e.g. power 
production, power production with occurrence of fault, parked/idling) and different tran-
sient effects (e.g. start-up, normal shutdown, emergency shutdown) are required. Recom-
mendations with respect to the measurement techniques are also given. For large wind 
turbines, it will rarely be possible to place a load cell in a main load path. But, loads can be 
measured indirectly. The recommended types of sensors are: 

• Strain gauge bridges 
• Load cells / torque tubes (including piezoelectric cells) 
• Accelerometers, velocity, rotation and displacement transducers 

Recent research e.g. Verbruggen (2009) [100] or OGOWin (2011) [74] show fiber optical 
sensors as an adequate alternative to strain gauges. 

 

The IEC 61400-13 (2001) proposes two alternatives for the measurement of mechanical 
loads. The IEC Standard does not deal with specific denotations. In order to distinguish 
between both alternatives, it will subsequently be referred to as “Direct determination of 
structural loading” and “Inverse calculation of applied loading”. 

The direct determination of structural loading is the method that is recommended by the 
IEC. The main advantage of this method is its easy application. Furthermore, the method 
allows an easy-to-handle, straight-forward determination of the loads. Strain gauge bridges 
are used as sensors and are applied to crucial structural components / cross-sections. At 
minimum, the measurement of at least one blade-root load (flapwise and edgewise), rotor 
loads (tilt and yaw moment, torque), and tower loads (bottom bending in two directions) 
shall be carried out. 

Based on the mechanical principles of the linear statics of shells, the measured strains are 
used to calculate structural loadings (also referred to as internal loadings) at the particular 
cross-sections. Due to the characteristics of strain gauges, temperature effects and cross-
sensitivity8 have to be taken into account. The use of full strain gauge bridges offers good 
scope for reducing both effects. In addition, further drawbacks have to be taken into con-
sideration.  

                                               

8 Cross-sensitivity is the undesirable characteristic of a measurement system of being sensitive to 
different load sources, making it difficult or impossible for the system to differentiate between 
them. 



1 Introduction 

6 

• The load measurement is limited to the cross-sections equipped with sensors. No 
information at intermediate cross-sections is available. 

• The strain gauge output is related to an applied load level. This relationship is 
achieved by a static calibration of the sensors. The dynamic behavior of the struc-
ture causes an amplification of measured strains so that the strain gauge can indi-
cate gross internal loads rather then externally applied loads. Thus, information 
about externally applied loads cannot be gained. 

• The sensor positions have to be chosen so that sufficient strains per unit load levels 
exist.  

• Sensor positions have to be selected that provide linear stress-to-load relationships, 
for which reason load introduction paths should be avoided. Load introduction 
paths may occur at tower flanges as demonstrated in Seidel (2001) [93].  

• Sensors need to be placed in regions of uniform stresses, i.e. regions not subjected 
to high stress or strain gradients. Places with localized stress raisers or concentra-
tions should be avoided.  

 

The second method mentioned by the IEC 61400-13 is the inverse calculation of applied 
loading. This method is more complex than the direct determination of structural loading. 
Accelerometers and displacement transducers can be used to measure applied load indi-
rectly, relying on the knowledge of inertia or stiffness of the structure. This method is diffi-
cult. It requires very accurate descriptions of the structural mass and stiffness. Otherwise it 
is prone to significant errors. 

If the mentioned drawbacks can be satisfactorily solved, this method offers the following 
advantages. 

• The method gives applied loads rather than internal forces which results in an eas-
ier verification of simulation codes, because applied loads can be compared di-
rectly. The knowledge of applied loads allows the calculation of internal loadings at 
arbitrary cross-sections. An appropriate model of the structure is needed. 

• The inverse calculation offers the possibility of measuring complex configurations of 
applied loads, e.g. from combined wind and wave loads. 

• A different set of sensor types and sensor locations is used that promises to be 
more robust and reliable under rough offshore conditions. Due to the fact that 
mostly accelerometers are used and strain measurement is only necessary at one 
cross-section, an application in regions of load introduction paths or regions of 
non-uniform stresses can easily be avoided. 

A comparison of both methods shows the direct determination of structural loading to be a 
user-friendly approach that is convenient in its practical application and its corresponding 
calculation procedures. But this leads to some limitation, e.g. the limitation to few cross-
sections. On the other hand, the inverse calculation is a much more complex approach that 
requires accurate calculation inputs, such as the structural inertia and mass distribution. 
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This comparatively greater effort allows a more complex appraisal of the load situation. As 
will be pointed out in the following section 1.2.3, there is a demand for more detailed re-
search to assure that the inverse load calculation is capable to gain reliable and accurate 
results. In particular, this fact counts for the dynamic interaction between loads and struc-
tures of wind turbines as well as for complex load situations due to combined wind and 
wave loads. 

 

1.2.3 Load Measurement at Wind Turbine Support Structures 

Both methods, the direct determination of structural loadings and the inverse calculation, 
are used in practice. Camp et al. (2002) [13] gives an illustrating example of the application 
of the direct determination method using strain gauges. Load measurements at a 2 MW 
offshore wind turbine with tubular steel tower and monopile foundation are described. The 
wind turbine is located in the wind park Blyth in the North Sea, in north-eastern England, 
with a mean water depth of approximately 9 m. The measurements are carried out in the 
project OWTS project (Offshore Wind Turbines at Exposed Sites). A large array of strain 
gauges is applied to every major structural element in order to detect structural loadings. 
The sensors are used to measure structural loads at the tower pile and the foundation. 
Strains at eight levels over the tower height are recorded to calculate bending moments in 
two directions and torsional moments. Cross-sections of interest are tower top, tower base, 
under sea level, and under mudline. In addition, blade root bending moments as well as 
torque and bending moment at the low-speed shaft are determined. Although it is not 
mentioned explicitly, the measurements are in accordance with the specifications for the 
direct determination of structural loadings, given in the IEC 61400-13. Hence, applied 
loadings are not determined. The measured structural loadings are used to get information 
about wind and wave loading.  

Engineers try to reduce instrumentation effort without losing information. Thus, alternative 
methods, other than the direct determination of structural loadings are investigated. Lange 
(2010) [60] proposes a condition monitoring system with two objectives. A structural con-
dition monitoring system is developed to detect damages at the support structure that may 
occur during operation. The monitoring system is based on strain and acceleration meas-
urements. The second objective is the development of a lifetime condition monitoring sys-
tem that monitors the fatigue condition during operation to predict the remaining lifetime 
of the structure. An approach that uses measured pitch angles, rotor speed, and generated 
power is described. Based on theses operational parameters, a rotor thrust force is calcu-
lated using the equation of motion. The λ-cs-matrix is required for this calculation. Internal 
forces are determined using an aeroelastic simulation with the rotor thrust as externally 
applied load. The resulting time series are used for fatigue analysis. However, the λ-cs-
matrix is the relationship between the tip-speed ratio and the thrust coefficient of the rotor 
blades. This relationship is hardly known for a specific wind turbine. As an alternative, rec-
ommendations taken from literature sources might be used that neither assure a realistic 
representation of the aerodynamic conditions. 
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Cosack (2010) [15] introduces an approach for fatigue load estimation. The measured in-
puts for this approach are standard wind turbine signals, such as generator rotational 
speed, generator rotational acceleration, electrical power output, and pitch angles. A neu-
ral network is used to estimate loads. The neural network represents the transfer function 
between the measured inputs and the estimated loads. Because the neural network does 
not contain physical information about the structure, this approach is a so-called black-
box-model. Consequently, the neural-network-approach is an alternative to the inverse 
load calculation, where structural information is used to set up the model (white-box-
model). The neural-network-approach does not give applied loads, but directely estimates 
equivalent loads and load magnitudes. 

Rebelo et al. (2008) [84] describes the concept for the long-term monitoring of an eighty-
meter high onshore wind turbine steel tower. Strain gauges and accelerometers are applied 
at four cross-sections over the height of the structure. The concept aims to identify modal 
parameters. Using this information, applied loads from wind shall be calculated by solving 
the inverse problem. The current state of the work does not comprise any specific results 
regarding the load calculation. Thus, it still is part of ongoing research. 

The final report of the IMO-Wind project (2010)9 [41] outlines a further application that 
requires knowledge about the loading at wind turbine support structures. An automatic, 
real-time monitoring system for wind turbines is set up. This system aims at design verifica-
tion and monitoring of the wind turbine support structure during operation. Results are 
demonstrated for a 5 MW wind turbine with an offshore tripod support structure, which is 
erected onshore as a prototype. The structural reliability and robustness is assessed using 
probabilistic approaches. This analysis is based on a dynamic simulation of the support 
structure in combination with a stochastic finite-element-analysis. This promising approach 
relies on the knowledge of realistic load values. Here, the use of internal forces at the tower 
top and external applied loads from the wind distribution over the tower height is shown. 
The tower-top forces are derived from strain gauge measurements – a cross-section that is 
prone to be influenced by load introduction paths. The calculation is based on the princi-
ples of linear shell statics. A procedure to determine loads under combined wind and wave 
excitation is absent. 

Obviously, there is an interest and a demand for research that determines applied loads for 
wind turbines from measurements. For this purpose, the inverse load calculation represents 
an adequate approach. An investigation of inverse load calculations already has been done 
in the 1980’s. Stevens (1987) [96] summarizes applications of a frequency-based method in 
various fields, such as the automotive industry, in aeronautics, or at dynamically operating 
machineries. Applications to wind energy just can be found in recent years. 

Swartz et al. (2010) [97] reports an automated wind load characterization of wind turbine 
structures. The study’s focus lies on the use of wireless sensors (accelerometers) to measure 
the structural dynamics. The vibration signals are post-processed automatically in order to 
identify the dynamical behavior of the support structure (eigenfrequencies, eigenvectors, 

                                               

9 See section 6 of the final report of the IMO-Wind project (2010) [41]. 



1 Introduction 

 9

damping ratios). The wind loads are calculated inversely with these dynamic characteristics. 
In particular, a rotor thrust force and a lateral force from the gyroscopic effects that result 
from the rotor rotation is determined. A time-domain approach is chosen for the inverse 
calculation. At the current stage of the research, tests at a laboratory structure – a pile with 
head mass that represents an onshore wind turbine – are conducted. A stochastic load is 
applied to the head mass. In order to verify this approach, a comparison between the ap-
plied load at the head mass and the inversely calculated load is given. The accuracy of the 
calculation depends on the number of measured system properties, like e.g. eigenfrequen-
cies. This research shows promising results. But the step to a real wind turbine structure or 
a consideration of combined wind and wave loads has not been yet investigated. 

Thus far, the most advanced research regarding the inverse load calculation at offshore 
wind turbine support structures was done by Klinkov and Fritzen. The main goal of the 
work is a real-time load calculation by use of a robust observer, as described in Klinkov 
and Fritzen (2007) [55]. The observer is a time-domain based set of matrices found with 
the help of the linear matrix inequality technique. The dynamic properties of the structure 
are described in a state-space-system. The dimension of the system relies on the number of 
measured system properties, such as eigenfrequencies. The objective of the inverse calcula-
tion is the determination of a rotor thrust force. Accelerometers and strain gauges are used 
as sensors. A series of laboratory tests is used to verify the inverse calculation procedure. 
The test arrangement is increased stepwise from simple to more complex structures and 
loadings. In Klinkov and Fritzen (2006) [54], a test at a simply supported Euler-Bernoulli 
beam under a non-periodic single force at the middle of the beam is described. A test at a 
two-storey test rig with a stochastic wind load is shown in Fritzen and Klinkov (2006) 
[23]. A scaled tripod structure, representing an offshore wind turbine support structure, is 
investigated in Fritzen and Klinkov (2007) [24]. The structure is loaded with a stochastic 
single force at the tower top. On the basis of this investigation the inverse load calculation 
using a robust observer is applied to a wind turbine with a tripod offshore support structure 
that is erected as an onshore prototype (final report IMO-Wind project10 (2010) [41]). A 
brief summary is presented in Klinkov and Fritzen (2010) [56]. The different studies show 
very good results. 

However, there are still open questions. A satisfactory appraisal of the inversely calculated 
load at the real wind turbine is not given. So far, the inversely calculated load is compared 
to an estimate gained from the relationship given by the Betz theory. This comparison only 
allows a rough estimate regarding the approximate magnitude of the calculated force. 
Moreover, the investigated laboratory structures neither account for aerodynamic coupling 
effects between the loading and the structure nor do they give information about the influ-
ence of different operational states of the wind turbine. Finally, an approach to handle 
combined wind and wave loads is not given. 

 

                                               

10 See section 5 of the final report of the IMO-Wind project (2010) [41]. 
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1.3 Objective and Outline 

The main objective of this work is the calculation of loads using measurements at wind tur-
bine support structures during operation and the verification of the results of the inverse 
load calculation. 

A general analysis problem can be described by the response, the system, and the input; 
see e.g. Sharpe (2008)11 [94]. The load calculation is done by solving an inverse problem. In 
the context of this work, an inverse problem is one where the response and the system are 
known and needed in order to affect a solution for the unknown input. A scheme of the 
inverse problem is depicted in Figure 1.2. 

 

 

Figure 1.2: Scheme of the inverse problem 

 

Applying this scheme to the inverse load calculation at wind turbine support structures 
leads to a description of response, system, and input, as given subsequently.  

The responses are measured structural vibrations, recorded as accelerations or displace-
ments. Accelerations and displacements can be measured directly with appropriate sensors. 
Alternatively, strain gauges can be used to derive displacements. In this case, the stiffness 
of the structure is required. In addition, measured accelerations can be integrated twice to 
calculate displacements – and vice versa. 

Wind turbines are dynamically loaded structures. Thus, a mechanical system describing the 
structural properties needs to take mass, damping, and inertia effects into account. A full 
description of the structural dynamics gives a FRF matrix. A FRF matrix can be composed of 
modal information. The modal information can be gained from measurements performing 
system identification. 

The unknown input is represented by the externally acting loads, such as wind loads under 
onshore conditions or wind and wave loads under offshore conditions. 

In this work, the inverse load calculation at wind turbine support structures is performed 
using the following approach: Structural responses are measured as accelerations over the 
height of the support structure. The accelerations serve to determine modal information of 
the wind turbine structure, such as eigenfrequencies, eigenvectors, and damping ratios. A 
system identification technique is used. A finite-element model of the structure is updated 
so that the updated model represents the realistic dynamical behavior of the wind turbine 
support structure. In contrast to the previous researches mentioned in section 1.2.3, the 
model updating approach allows to gain additional modal information than achieved only 

                                               

11 See section 10 in Sharpe (2008) [94]. 

{response} [system]-1 {input} x = 
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by structural measurement. Finite-element models are not limited to a certain number of 
modal parameters. If the finite-element model is adjusted to all measured modal parame-
ters, it is assumed that the further modal parameters also represent a more realistic dy-
namical behavior of the structure than a model that is not updated. With the updated 
model, an under-determined problem is prevented. This approach even allows setting up 
over-determined systems of equations that enables eliminating random errors using regres-
sion analysis. 

The FRF matrix that describes the mechanical system of the structure is composed of the 
information of the updated model. Measured accelerations are transformed to displace-
ments, so that the response is known. Both system and response are used to solve the in-
verse problem and to calculate the dynamic part of the unknown loads. In addition, strain 
gauges at one cross-section of the structure are used to add the static part of the loads. 

 

In order to achieve reliable results and to verify the accuracy of the inverse calculation, this 
work investigates the following steps. 

Section 2 summarizes the loadings that wind turbines need to withstand. The intended 
inverse load calculation is set in relation to the typical loadings. The types of loads that can 
be calculated inversely are discussed. 

In section 3, the state of the art of inverse load calculation methods is given. An appropri-
ate method is chosen and its theoretical basics are presented in detail. The method is ap-
plied to a simple 2-DOF system. A stochastic load is applied in order to calculate re-
sponses. This procedure corresponds to the solution of the forward problem and leads to 
the knowledge of loads, the system, and responses. Knowing the solution of the forward 
problem enables the verification of the inverse procedure. The system and the responses 
are used to calculate the applied load inversely. The inversely calculated load is compared 
to the applied load from the forward problem. Inverse calculations are notoriously ill-
conditioned. An approach for dealing with this effect is discussed. 

As pointed out previously about the inverse load calculation, the influence of the aerody-
namic coupling effects between the loading and the structure has not yet been investi-
gated. For this reason, in section 4 numerical simulations at a 5 MW onshore wind turbine 
model with a tubular steel tower are run. The comprehensive simulation code FAST is used. 
FAST accounts for coupled dynamics of wind inflow, aerodynamics, elasticity, and turbine 
controls. The FAST simulations represent the solution of the forward problem. Thus, a nu-
merical verification of the inverse calculation in consideration of these special wind turbine 
effects is done. Simulations are run in operational conditions between cut-in wind speed 
and rated wind speed, around rated wind speed, and between rated wind speed and cut-
out wind speed. These operational conditions are assumed as representative for power pro-
duction and as fatigue driving load cases. 

Section 5 deals with requirements that occur when transferring the inverse load calculation 
to a real wind turbine. A 5 MW wind turbine with a lattice offshore support structure is 
investigated. The wind turbine is erected as an onshore prototype. Consequently, the ex-
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ternally applied loads are limited to wind loads. The measurement concept is specified. The 
conducted measurement campaigns are described. Theoretical basics of system identifica-
tion techniques are discussed. An appropriate technique is described in detail and applied 
to the measurement data. The modal parameters (eigenfrequencies, eigenvectors, and 
damping ratios) of the support structure are identified in standstill and in operation. Thus, 
an entire description of the dynamical behavior of the support structure is given. Special 
emphasis lies on the determination of damping ratios for the first fore-aft mode of the tur-
bine in operation. This mode is influenced by aerodynamic effects. Corresponding literature 
only contains rough information. Additionally, the model updating process of the finite-
element model is shown. The results of the system identification are used. The integration 
of the measured acceleration signals is discussed. Finally, results of the inverse load calcula-
tion for the 5 MW wind turbine are presented. 

Section 6 focuses on the inverse load calculation under offshore conditions. A numerical 
study using the simulation code FAST is used. Again, the forward problem is solved in order 
to verify the inverse calculation. This time, the 5 MW wind turbine model with a tubular 
steel tower is loaded with combined wind and wave loads. This presents a more complex 
inverse problem that needs to be solved. The related results are shown. 

In section 7, a conclusion of the presented work and an outlook on continuing research is 
given. 
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2 Scope of the Inverse Load Calculation 
 

Wind turbines must be able to withstand complex load situations. In order to clarify the 
scope and the capability of the inverse load calculation, a brief summary of loadings is 
given. Section 2.1.1 describes the sources of loads, both for onshore and offshore wind 
turbines. The summary is limited to the facts needed to discuss the load components that 
can be determined by the inverse load calculation. These load components are pointed out 
in section 2.2. More detailed information about the loading of onshore and offshore wind 
turbines is given in the corresponding technical literature. For instance, Hau (2000) [34] 
and Gasch and Twele (2005) [27] give a broad overview about nearly all aspects related to 
wind turbines, with an emphasis on onshore wind turbines. Also, Ungrad (2004) [99] and 
Böker (2009) [6] describe the loadings of offshore wind turbines in detail. In addition, the 
related design codes, standards, and guidelines contain technical specifications. Regarding 
onshore wind turbines, the DIBt Richtlinie (2004) [104] and IEC 61400-1 (2005) [107] can 
be mentioned. For offshore conditions the GL guideline (2004) [106] and the IEC 61400-3 
(2009) [108] present relevant literature. 

This work focuses on horizontal axis three-bladed wind turbines with upwind rotor direc-
tion and active control. This configuration is the most common type used for modern wind 
turbines. 

 

2.1 Sources of Loads 

2.1.1 Loads on Onshore Wind Turbines 

The loads on onshore wind turbines are caused by two main sources: 

• Inertial and gravity loads due to the weight of the structural components of 
the wind turbine and the rotation of the rotor blades. 

• Aerodynamic loads from wind. 

 

Gravitational loads 

The weight of the structural components leads to time-independent loadings. During op-
eration of the wind turbine, additional loads occur due to the spinning rotor. 

The rotation of the rotor blades at a uniform, stationary wind speed generates time-
independent, stationary centrifugal forces that move in the radial direction. The centrifugal 
forces at wind turbines are small due to the low rotational speed. However, these forces 
are important for determining the natural frequencies of the rotor blades. 
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Furthermore, the rotation of the rotor induces time-dependent cyclic loads. Hence, the 
excitation frequency depends on the rotational speed of the rotor. The frequency that cor-
responds to the full rotation of one blade is the fundamental oscillation – the so-called 1P-
frequency. Due to the characteristics of cyclic excitation, the higher multiples of the 1P-
frequency have to be taken into account. For three-bladed wind turbines in particular, the 
higher harmonics 3P, 6P, 9P etc. are important to the support structure due to the cumula-
tive effect of all blades. However, in the rotating frame of a blade, the 1P, 2P, 3P, 4P etc. 
are important. 

The weight of the rotor blades causes gravity forces at each blade. Due to the rotation, the 
position of these gravity forces changes depending on the rotor speed. Cyclic loads in the 
rotor plane are induced. The effects of these loads are insignificant in terms of the global 
structure. 

A change of the nacelle position leads to gyroscopic forces. These cyclic gyroscopic forces 
can be assumed as secondary for the support structure. 

Mass imbalances of the rotor blades act like rotating eccentric masses. If one of the rotor 
blades shows a different mass distribution, a harmonic side-side force to the global struc-
ture with a 1P-excitation is the result.  

 

Aerodynamic loads 

Wind turbines are exposed to wind loads. Due to the physics of wind, the corresponding 
loads fluctuate. Thus, the structural components of a wind turbine have to be designed to 
withstand loads from extreme events and varying loads during operation. The varying char-
acter of the loads leads to fatigue of the structure. The wind forms a wind profile with an 
increasing wind speed over the height above ground. The support structure and the rotor in 
standstill are exposed to the loads caused by this wind profile. In case a certain wind speed 
at hub height – the cut-in wind speed – is reached, the rotor begins to rotate and the wind 
turbine will start power production. During power production the aerodynamic loads on 
the rotor substantially exceed the wind loads on the support structure.12 Thus, the follow-
ing discussion is limited to the load effects at the rotor. 

The loads during power production are caused by the effects of wind, mass, and elastic 
forces acting on the rotor. Splitting the loads from wind into several components enables 
the description of the entire, complex load situation. Figure 2.1 shows the inflow from a 
wind field and illustrates the relation between the time-dependent effects and the compo-
nents of the wind field. A discussion of the load components that result from the character-
istics of a wind field is given subsequently. 

                                               

12 See Kühn (2001) [58], p. 97 [58]. 
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Figure 2.1: Inflow from a wind field 

 

■ Steady aerodynamic loads 

A stationary, uniform wind inflow of course does not exist in reality. But, as an idealization, 
the assumption of a stationary mean wind speed allows the determination of stationary 
aerodynamic forces along the rotor blades. The wind inflow generates axial forces and tan-
gential forces at the rotor blades. The distribution of both aerodynamic forces depends on 

• the effective wind speed increasing from blade root to the tip of the blades 
(see Figure 2.2a), 

• the geometry of the blades, and 

• the angle of attack, influenced by the pitch control of the blades. 

 

The sum of the integrated axial forces results in the rotor thrust force. The integration of 
the tangential forces gives the driving torque (Figure 2.2). There are non-linear effects that 
have to be taken into account. 

• The non-linear dependency of the axial force along the rotor blade on the 
wind speed. Figure 2.2a exemplarily shows the distribution of an axial force 
along the rotor blade below rated wind speed, at rated wind speed, and 
above rated wind speed. 

• The rotor thrust force and the driving torque show a non-linear dependency 
on the wind speed, as depicted in Figure 2.2b. The non-linearity becomes 
even more crucial in case of active turbine control, such as pitch control of 
the rotor blades. 

 

• Steady aerodynamic loads 
due to the mean wind speed. 

• Periodic aerodynamic loads 
because of the steady in-
creasing wind profile over 
the height. 

• Stochastic and transient 
aerodynamic loads, e.g. in-
duced by wind turbulences 
or gusts. 

mean wind speed turbulence 

steady wind profile 
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Figure 2.2: Rotor blade loads (from Hau (2000) [34]) 

 

■ Periodic aerodynamic loads 

A stationary, spatially uneven inflow, i.e. a non-symmetric inflow, causes non-stationary, 
harmonic loads. Non-symmetric inflow occurs due to two phenomena: 1) the increasing 
wind speed over the height, and 2) cross winds flowing misaligned to the nacelle position. 
The loads on a rotor blade change with their position during rotation. Consequently, the 
rotational speed of the rotor is the excitation frequency, the 1P-frequency. Due to the har-
monic characteristics, higher harmonics occur. Cyclic effects from the 1P, 2P, 3P, 4P etc. 
excitation occur in the rotating frame of the rotor blades. In the case of three-bladed ro-
tors, the 3P excitation and its multiples 6P, 9P etc. are present in the frequency spectra of 
the support structure. The effects due to the non-symmetric inflow mainly lead to addi-
tional roll and yaw moments. 

The wind speed decreases in front of the tower of the wind turbine. A rotor blade, passing 
this region of attenuated wind speed, is loaded by lower forces. Thus, a harmonic excita-
tion (1P and its multiples) in fore-aft direction is generated. 
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■ Stochastic and transient aerodynamic loads 

The natural fluctuation of the wind speed generates a stochastic inflow, which is also re-
ferred to as wind turbulence. Wind turbulences show a broad range of frequencies. Hence, 
the excitation of the structure highly depends on the relation of the exciting frequencies to 
the eigenfrequencies. 

Wind turbines can be affected by turbines located upwind. Wake effects might cause a 
higher turbulence level than an undisturbed wind flow generates. 

Wind speed fluctuations with low frequencies are so-called gusts. Gusts are characterized 
by considerable deviations of the wind speed from the mean wind speed. Gusts show tran-
sient load characteristics. Further transient loads occur in wind turbine maneuvers, such as 
start, stop, and emergency breakdown of the turbine. 

 

2.1.2 Loads of Offshore Wind Turbines 

Offshore wind turbines are affected by the aerodynamic and the gravitational loads shown 
for onshore wind turbines. Additionally, hydrodynamic loads have to be considered for off-
shore wind turbines. Their main sources are wave loads and loads from sea currents.13 The 
total hydrodynamic load results from a superposition of both sources. 

 

Wave loads 

■ Regular wave 

The most important hydrodynamic loads are waves generated by wind. The most funda-
mental description is a single, regular wave. A regular wave is a periodic oscillation of the 
water surface (Figure 2.3). If the propagation direction is assumed to be constant, a wave 
can be characterized by: 1) wave height, 2) wave length / wave period, and 3) water depth. 

 

Figure 2.3: Propagation of a single, regular wave 

 

                                               

13 Icing and sea ice is not taken into consideration since it is not scope of this dissertation. 
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■ Irregular sea state 

A series of long-crested regular waves create a regular sea state. In reality, waves are irregu-
lar in shape. Their height, length, and speed of propagation vary, which can be described as 
a long-crested, irregular sea state. Due to environmental conditions, waves propagate in 
different directions simultaneously, which leads to a short-crested, irregular sea state 
(Figure 2.4). 

 

Figure 2.4: Sea states (from Böker (2009) [6]) 

 

A design sea state can be described by a stochastic wave model that is assumed stationary 
over a certain time period. Such a long-crested, irregular sea state is formed by the super-
position of many regular waves, each with its own frequency, amplitude, and phase angle. 
The mathematical description of the sea state is done by means of the spectral density of 
the surface elevation. The most common types are the Pierson-Moskowitz (PM) spectrum 

and the JONSWAP spectrum.14 The JONSWAP spectrum ( )JSS f  is defined by the significant 

wave height SH , the peak spectral period PT , and the peak-shape parameter γ  (Figure 2.5). 

The significant wave height is defined as the mean wave height of the highest third of the 
waves observed. 

 

Figure 2.5: JONSWAP spectrum and PM spectrum 

                                               

14 The JONSWAP spectrum equals the PM spectrum in case of γ = 1. 
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Further mathematical descriptions of the wave spectra are given for instance in the IEC 
61400-3 (2009), Annex B [108]. The long-crested, irregular sea state that is described by a 
wave spectrum can be developed to a short-crested, irregular sea state by means of a 
spreading function, which accounts for the different wave propagation directions. 

 

■ Wave theories 

The water particles below the oscillating surface of a two-dimensional regular wave show 
specific velocities and accelerations. To predict the kinematics, several wave theories exist. 
All wave theories follow a periodic approach, so that the symmetric surface shape and the 
kinematics repeat at each time period. All theories are based on the same differential equa-
tion with the appropriate boundary conditions. They differ in their functional formulation 
and in the degree to which they satisfy the non-linear kinematic and dynamic boundary 
conditions at the wave surface. Common wave theories are the linear Airy theory, the 
Stokes theory, and the Stream Function theory.15 The wave kinematics depend on the rela-
tion of the wave height H to the water depth d. Next to 3rd order Stokes theory, the linear 
Airy theory is the most important wave theory to approximate irregular sea states. The or-
bital velocities and accelerations in both horizontal and vertical direction are calculated. 

The complex topic of wave theories and the calculation of wave kinematics is explained 
more detailed for instance in IEC 61400-3 (2009) [108], GL guideline (2004) [106], DNV-
OS-J101 (2004) [105], Kühn (2001) [58], and Ungrad (2004) [99]. 

 

■ Calculation of hydrodynamic loads 

Knowing the water particle kinematics and the shape of the wave surface enables the cal-
culation of hydrodynamic loads. For slender, cylindrical structures, as is often the case for 
offshore wind turbine support structures, the Morison equation is a widely used approach. 
The equation is applicable if the diameter d of the structure does not exceed one fifth of 
the wave length L, which then is called hydrodynamic transparency. If the hydrodynamic 
transparency is not fulfilled, effects like diffraction have to be taken into account. 

Assuming a slender, bottom-mounted structure, the Morison equation calculates a wave 
load that is the sum of a drag force and an inertia force. Drag force and inertia force are 
phase-shifted, so that the wave load has to be calculated under consideration of the phase 
angle. The qualitative distribution of the wave load over the height of a structure is shown 
in Figure 2.6. The case of a wave with small amplitude and a slender structure is depicted, 
so that the requirement for hydrodynamic transparency is fulfilled. The Morison equation 
calculates hydrodynamic forces up to the elevation of the still water level. To extend the 
hydrodynamic force to the current wave surface, stretching needs to be applied. The most 
common approach is the Wheeler stretching. 

                                               

15 Different orders exist for each Stokes theory and stream function theory. 
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If the wave profile becomes steep-sided, the assumption of linear theories is not suitable 
anymore. A deformation of the wave profile may occur during extreme events or in shallow 
waters where the height of the wave crest above still water level (SWL) becomes greater 
than the depth of the trough below. At a certain point, the horizontal velocity of the water 
particles in the wave crest will exceed the wave velocity and the structure of the wave will 
break. Breaking waves induce transient loads at offshore structures. 

 

Figure 2.6: Surface and particle velocity of a wave with small amplitude and wave load at a slender 
cylindrical pile structure 

 

Loads from sea currents 

For the calculation of loads from sea currents, a horizontally uniform flow field of constant 
velocity and direction is assumed. The velocity of the sea current is varying over the depth. 
The total current velocity is the vector sum of the occurring types of currents. 

Three types of currents are mentioned by the offshore wind turbine design code IEC 
61400-3 (2009) [108]: 

• Sub-surface currents generated by tides, storm surge and atmospheric pressure varia-
tions 

• Wind generated near surface currents 
• Near shore wave induced surf currents running parallel to the cost 

 

The basic generating factors of sea currents are thermal gradients, tides, and wind. Thermal 
gradients result from insolation. Tides are cyclic water flows depending on the gravitational 
forces of the sun and the moon. If wind flows constantly in a uniform direction over the 
water surface, shear forces result in currents. Hence, the generating factors base on con-
stant environmental conditions, at least for a certain time period that can be considered 
low frequent. Thus, the mathematical description of sea currents is formulated time-
independently. 
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2.2 Inversely calculated Load Components 

2.2.1 Classification of Load Types 

The loads on offshore wind turbines are explained in section 2.1.1 and section 2.1.2 ac-
cording to their time-dependency. Different load sources – aerodynamic, inertial, and hy-
drodynamic loads – are described in terms of their classification into steady, periodic, sto-
chastic, and transient components. A summary of the load types is given in Table 2.1. 

 

Table 2.1: Types of loads for wind turbines 

Type of load Aerodynamic loads Inertial loads Hydrodynamic loads 
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c Steady 
loads 

Uniform, stationary 
mean wind speed. 

Centrifugal forces from 
rotor running at a con-
stant speed in rotating 
frame. 

Sea currents. 
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Stationary, but spa-
tially uneven wind 
field over the swept 
rotor area. Caused by 
the increasing wind 
speed over the height 
(vertical shear) or by 
cross wind or rather 
yaw misalignment. 1) 

Effects from the tower 
shadow (downwind 
rotors) or tower dam 
(upwind rotors). 1) 

Gravitational forces 
due to the weight of 
the rotor blades or 
mass imbalances. 1) 

Gyroscopic loads from 
the yaw of the nacelle. 

Wave loads due to 
long-crested regu-
lar sea state. 2) 

Stochas-
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Stochastic loads from 
wind turbulence. 
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1) Depending on rotational speed of the rotor. 
2) Independent from rotational speed of the rotor.  
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Figure 2.7: Qualitative wind energy spectrum (Kühn (2001) [58]16) 

 

 

Figure 2.8: Qualitative energy spectrum of ocean waves (Kühn (2001) [58]17) 

 

                                               

16 Originally taken from Hoven (1957) [37]. 
17 Originally taken from Holthuijzen (1992) [36]. 

Frequency in Hz 

Time period in h 

Sp
ec

tr
al

 d
en

si
ty

 in
 m

²s
 

0.01 0.1 

0.1 1 12 24 120 

pressure systems 

turbulence 

semidiurnal 

micro-meteorological 
range 

macro-meteorological 
range 

spectral 
gap 

Frequency in Hz 

Time period in h 

Sp
ec

tr
al

 d
en

si
ty

 in
 m

²s
 

0.01 0.1 

0.1 1 12 24 672 

1 5 

planetary 
waves 

tides 

seiche 

surges and 
tsunamis 

swell 

wind waves 

capillary 
waves 



2 Scope of the Inverse Load Calculation 

 23

As pointed out, different time-dependent loads act on the wind turbines. The structural 
components of a wind turbine are flexible. Hence, dynamic interaction between the struc-
tural components and the loads occurs. The dynamic interaction leads to amplifications of 
structural vibrations and structural strains, respectively. A closer look at typical frequency 
spectra of the loads on wind turbines allows to estimate the effects of dynamic interaction. 
A typical load spectrum due to wind is given in Figure 2.7 and a qualitative wave load spec-
trum is depicted in Figure 2.8. 

The energy spectrum of wind (Figure 2.7) can be divided into the macro-meteorological 
range and the micro-meteorological range. A spectral gap without energy content opens 
between both ranges. The macro-meteorological range with its very low frequencies is the 
result of long-term wind characteristics. The corresponding loads can be considered quasi-
static load components. Notable dynamic load components are visible in the micro-
meteorological range at frequencies around 0.01 Hz and up to 0.1 Hz. 

A typical wave spectrum (Figure 2.8) is the result of various influences. In accordance with 
the appraisal of the wind spectrum, the wave spectrum can be divided into quasi-static 
components and dynamic components. Whereas notable quasi-static load components are 
the result of surges, tsunamis, and tides, dynamic load components are mainly caused by 
wind waves. A significant frequency range occurs between 0.1 Hz and 3 Hz. 

The lower bound of common eigenfrequencies for fixed-bottom wind turbines is around 
0.1 Hz to 0.3 Hz; see for example Pahn et al. (2010) [77], IMO-Wind (2010) [41], and Re-
belo et al. (2008) [84]. The German DIBt Richtlinie states that the structural vibrations of 
wind turbines above 5 Hz are negligible. The comparison to the energy spectra, given in 
Figure 2.7 and Figure 2.8, clarifies that both typical excitations and structural vibrations 
coincide, which demands the consideration of dynamic interaction. Furthermore, the spec-
tral gaps in the qualitative spectra of the excitations seem to make a division into quasi-
static and dynamic load components reasonable. Consequently, the division into quasi-
static and dynamic load types is also considered in Table 2.1. 

Due to typical rotational speed of three-axis horizontal wind turbines, the 1-P harmonic 
excitation may lay around 0.1 Hz and its most prevalent multiples then range up to around 
3 Hz.18 As a rough estimate, blade eigenfrequencies can be assumed to occur around 0.5 Hz 
and 5 Hz.19 Consequently, the structural dynamic interaction with the P harmonics or the 
blade eigenfrequencies has to be considered as well. Generally, excitations of the rotating 
generator are decoupled from the structural vibrations, because their typical range is much 
higher. In case of a 5 MW wind turbine generator frequencies of approximately 15 Hz may 
occur. 

 

                                               

18 These facts depend on the operational conditions of a wind turbine and the eigenfrequencies of 
the structure. The mentioned frequency ranges are derived from a 5 MW wind turbine. 

19 The blade eigenfrequencies highly depend on a specific blade type. The given value represents 
estimations for blades with a length of 60 m. 
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2.2.2 Scope of the Inverse Load Calculation  

Basing on the load summary in Table 2.1, the ability of the inverse load calculation in terms 
of calculating the several load components shall be discussed. 

Generally, the angle of attack of the loads is assumed to be known. This knowledge can be 
assured by measurements of environmental parameters such as wind and wave directions. 

Because the main field of application of the inverse load calculation is seen for monitoring 
purposes or remaining lifetime predictions, this work focuses on load cases in operation. 
Although the inverse load calculation is applicable to standstill conditions and extreme 
events, both are not taken into account. In this way, transient loads due to shutdown or 
breaking waves are not considered. 

The objective of the inverse load calculation is the determination of applied loads. For this 
reason, aerodynamic and hydrodynamic loads are of interest, whereas gravitational loads 
are neglected. In case of wind loads during operation, the significant forces occur in fore-aft 
direction applied to the spinning rotor blades. Additional hydrodynamic forces may occur 
from arbitrary directions. Due to the low damping of wind turbines, force components in 
side-side direction may induce highly amplified structural vibrations. The inverse load cal-
culation is able to handle loads acting in different directions. However, it is not in the 
scope of this work to identify misaligned load configurations. Thus, this work focuses exclu-
sively on aerodynamic and hydrodynamic loads acting in fore-aft direction simultaneously. 

Consequently, cross wind effects or yaw misalignment are not parts of the calculation. Both 
effects mainly cause blade root moments and torsional bending of the support structure. 
The blade loads are not the scope in this work. Seidel (2001) [93] states that the bending 
moments in wind direction are the decisive internal forces, which is caused by the heights 
of the structures. Further internal forces such as normal forces, shear forces, and torsional 
forces are of minor importance. Hence, focusing on the loads in the fore-aft direction is a 
reasonable approach. 

The influence of sea currents on the hydrodynamic fatigue loading of an offshore wind tur-
bine may be insignificant in cases where the total current velocity is small compared to the 
wave induced water particle velocity in the wave crest.20 For this reason, sea currents are 
neglected in this work. 

Consequently, the result of the inverse load calculation consists of the following load com-
ponents. First, the quasi-static load component due to a stationary mean wind speed is part 
of the result. Additionally, dynamic effects caused by the vertical wind shear and the sto-
chastic loads from the wind turbulences can be calculated inversely. Dynamic effects of the 
tower dam that cause harmonic excitation are considered. In terms of hydrodynamic loads, 
wave loads are accounted for. Both calculations of long-crested regular and irregular sea 
states are feasible. A depiction of the loads that can be calculated inversely is given in 
Figure 2.9. The depiction is done exemplarily at a wind turbine with tubular steel tower, 
but generally the inverse load calculation is not limited to a specific type of structure. 

                                               

20 See IEC 61400-3 (2009) [108], p. 26, section 6.4.2. 
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The scope of the inverse load calculation is the identification of a rotor thrust force and a 
resulting wave load, as depicted in the load model in Figure 2.9. This approach is based on 
the following idea. 

 

Figure 2.9: Load model and structural model for the inverse load calculation 

 

The wind field causes forces distributed along the rotor blades, as described in Figure 2.2c. 
Reducing the axial blade forces to a rotor thrust force enables the wind force in fore-aft 
direction to be calculated by only measuring the structural motions of the tower. As long as 
the applied loads acting at the support structure are the point of interest, this approach 
provides sufficient load information. The influence of the stiffness and mass properties of 
the rotor blades is considered by additional inertia and mass terms at the tower top in the 
structural model (see Figure 2.9). Additionally, this approach matches practical require-
ments of the wind industry. Often, detailed information about the rotor blade properties is 
proprietary and withheld by manufacturing companies. Therefore, a simple modeling of the 
rotor blades is desirable. Consequently, the described approach does not cover the calcula-
tion of the load distribution along the blades. 

The absence of rotor blade eigenfrequencies in the structural model causes an error in the 
inverse load calculation. The calculation procedure interprets the rotor blade eigenfrequen-
cies as excitation frequencies. For this reason, they appear in the inversely calculated load 
spectrum. The effects of this modeling error will be discussed in this work.  
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The sea state generates a non-uniform wave load with time-varying load amplitudes and 
time-varying heights of the load, both depending on the current wave height. A detailed 
calculation of the wave load distribution would require an excessive number of sensors. 
Because the scope of the described approach for the inverse calculation is the use of a pref-
erably simple arrangement of sensors, the wave load is reduced to a resulting wave load 
(see Figure 2.9). 

A basic assumption of the chosen approach is knowledge about the load position of the 
rotor thrust and the resulting wave load. Additionally, the qualitative form of the distrib-
uted wave load is assumed to be known, so that a reconstruction based on the resulting 
wave load is possible, even though this reconstruction is not part of the work presented. 

The measurement concept aims at recording only the vibrations of the support structure. 
Hence, the sensors are concentrated along the support structure (Figure 2.9). Accelerome-
ters are used in order to determine the dynamic component of the loads. The sensor posi-
tions have to be chosen so that the dynamic behavior of the structure – i.e. the eigenfre-
quencies, the mode shapes, and the structural damping – can be recorded entirely. Addi-
tionally, the measurement of strains at one cross-section has to be accomplished to deter-
mine the quasi-static component of the rotor thrust. An appropriate cross-section for the 
strain measurement has to be chosen. The approach allows locating the strain sensor above 
water level. A discussion of the measurement concept in terms of its practical application is 
given in section 5. 

As mentioned previously (see section 2.1.1, Stationary aerodynamic loads), there are non-
linear dependencies between the wind speed and 

(1) the force distribution along the rotor blades (Figure 2.2a) due to the geometric 
shape of the blades, 

(2) the rotor blade forces due to pitching maneuvers, 

(3) the rotor thrust and driving torque respectively, due to the wind turbine control 
(Figure 2.2b).  

To deal with these non-linearities, the use of operating conditions that can be assumed as 
constant is proposed. That means for example, simulated or measured time series with a 
constant mean wind speed are used. In terms of measurement data, a mean wind speed 
with small variation is considered constant as well. In this way, during a single time period, 
the non-linearities do not affect the inversely calculated loads. Obviously, the inversely cal-
culated loads are not proportional to the wind speed. But a correlation is possible while 
knowing the configuration of the wind turbine control.  

The wake effects of adjacently located wind turbines may result a velocity deficit and in 
raised turbulence intensities that affect the stochastic aerodynamic loads. The inverse load 
calculation procedure will not be affected by varying turbulence intensities. However, cal-
culations that focus especially on wake-effect influences are not part of this work.  
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3 Theory of the Inverse Load Calculation 
 

On the basis of the description for the inverse problem in section 1.3 (see Figure 1.2), the 
mathematical solution of the inverse problem will subsequently be discussed. For this rea-
son, section 3.1 gives an overview of inverse load calculation methods in order to highlight 
specific mathematical aspects. This overview also shows different approaches for dealing 
with these aspects. The approaches are reviewed according to the scope of the inverse load 
calculation at wind turbine support structures, as previously defined in section 2.2.2 (Figure 
2.9). This review serves to choose an appropriate method for the inverse load calculation at 
wind turbine support structures. The mechanical fundamentals of the method chosen are 
described in section 3.2.1. Finally, the method is demonstrated by using a simple 2-DOF 
system. 

 

3.1 Inverse Load Calculation Methods – State of the Art 

Generally, an analysis problem is described by three basic components: system, response, 
and input. The forward problem is defined as one in which the system and the input are 
known and the response is unknown (Figure 3.1a). Typically, these kinds of problems occur 
in the design stage of structures. All system describing properties such as the material, the 
geometry, and boundary conditions are known. Additionally, the loads that define the in-
put are known as well. The responses, for instance displacements or stresses, are required. 
The definition of an inverse problem is based on the forward problem. Thus, an inverse 
problem is one in which ether the system21 or the response is unknown. This section fo-
cuses exclusively on inverse problems where the response and the system are known and 
the input is the unknown parameter, as depicted in Figure 3.1b. 

 

Figure 3.1: Scheme of the forward problem and the inverse problem 

 

                                               

21 An example for problems that aim on the determination of system properties is the system identifi-
cation, which is discussed in section 5. 

{response} [system]-1 {input} x = 

{input} [system] {response} x = a) forward problem 

b) inverse problem 
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Solving inverse problems is a field of application in various disciplines. For example, Menke 
(1984) [64] describes the use of the discrete inverse theory in geophysical data analysis, for 
instance to determine ocean circulation, tectonic plate motions, earthquake locations, and 
to create representations of the earth’s gravity and magnetic field. The inverse problem can 
be limited to cases where a discrete dynamic system generates time-dependent responses, 
like accelerations, velocities, displacements, or strains. The unknown inputs are forces or 
loads respectively. Then, the inverse problem is called inverse load calculation. Correspond-
ing literature also uses the terms load identification, indirect force measurement, force identi-
fication, force reconstruction, or force estimation. 

The inverse load calculation in structural dynamics is applied if dynamic loads cannot be 
measured directly or if the direct measurement demands a high level of effort. Successful 
applications to various fields of engineering are reported. For instance, in aviation ([4], 
[101]), automotive industry ([72], [73]), and dynamically operating machines ([75], [90]). 

The literature clearly points out, that inverse problems are closely associated with two 
mathematical aspects: ill-conditioning and ill-posedness. Following the definition in Bader 
and Schenk (2001) [3], a problem is mathematically ill-conditioned if small variances in the 
calculation lead to large errors in the result. This characteristic is attributed to the fact that 
the inversion of an integration process (forward problem) implies a differentiation process 
(inverse problem). The integration in the forward solution has smoothing effects, whereas 
the opposite applies to the inverse solution.22 Using measurement data a priori induces 
variances in the calculation, mainly caused by noise in the recorded response data. The ill-
conditioning is a property of the system and not the data. Errors in the data only manifest 
the ill-conditioning.23 A problem can be considered ill-posed if no unique solution exits. In 
terms of the inverse load calculation, different reasons may cause such an ill-posedness. 
First, the general formulation of the inverse problem is notoriously ill-posed because load 
locations and load magnitudes are unknown. Secondly, there is no unique solution if the 
locations of the loads are known, but there are too few sensors recording the responses, 
which leads to an under-determined system of equations.24 Third, the inversion of the sys-
tem matrix may produce a singular system description of the inverse problem. Especially 
near or at resonances, the response will be dominated by only a few modes. In this case, 
the system matrix contains a few dominant elements and many smaller elements.22 
Fourthly, so-called non-collocated problems cause ill-posedness. Non-collocation is given if 
at least one of the loads does not have instant or distinguishable influence on any of the 
sensors24, e.g. if the load location does not coincide with the measurement location. The 
finite wave propagation implies that the input will have a delayed effect to the response.25 
In particular, real-time methods are affected. Such methods only use information from pre-
vious and current time steps. Thus, the first rows of the system matrix are filled with zeros. 

                                               

22 See Stevens (1987) [96] p. 839. 
23 See Doyle, J. F. in Sharpe (2008) [94], p. 234. 
24 See Nordberg (2004) [72], p. 11. 
25 See Nordström (2005) [73], p. 3. 
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Due to the time delay, the excitation waves need to reach the sensor positions.26 This fact 
is particularly important in the case of transient loads. 

Different numerical methods exist to calculate loads inversely. Generally, they can be di-
vided into time-domain and frequency-domain approaches. The most common methods 
are discussed subsequently.  

 

3.1.1 Time-Domain Methods 

Linear time-invariant systems in structural dynamics can be described by either the first-
order state space system (equation (3.1)) or by the second-order ordinary differential equa-
tion (ODE) (equation (3.2)). Both represent different mathematical descriptions for the 
same problem. The state space approach has a reduced order of the differential equation, 
which causes a doubling of the numbers of equations. The second-order description re-
quires the solution of one ODE, which is doubled in terms of its order. The fundamental 
equations of both mathematical descriptions are given subsequently. 

 

First-order state space system (Natke (1983) [70]) 

 
( ) ( ) ( )
( ) ( ) ( )
t t t

t t t

= +

= +

x Ax Bf

y Cx Df
 (3.1) 

 with  x - state vector (n, 1) C - output matrix (l, n) 
  f - input/force vector (m, 1) D - feedthrough matrix (l, m) 
  y - output/response vector (l, 1) n - number of states 
  A - state matrix (n, n) m - number of forces 
  B - input matrix (n, m) l -number of responses 
 

Second-order ordinary differential equation (Rolfes et al. (2007) [89]) 

 ( ) ( ) ( ) ( )t t t t+ + =My By Ky f  (3.2) 

 with y - displacement vector (n, 1) B - damping matrix (n, n) 
  f - force vector (n, 1) K - stiffness matrix (n, n) 
  M - mass matrix (n, n) n - number of DOF’s 
 

■ Dynamic Programming (DP) 

Dynamic Programming calculates the inverse problem by solving the first-order state space 
system using a least-squares approach, as explained in Nordberg (2004) [72] and Nord-
ström (2005) [73]. DP is a recursive algorithm consisting of a backward and a forward 
sweep. The backward sweep defines the input-output relationship at each time step, 

                                               

26 See Klinkov and Fritzen (2007) [55], p. 463. 
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whereas the forward sweep sets the optimal input and state sequences based on the initial 
conditions and the relationships known from the backward sweep. The primary unknown is 

the incremental change of the force magnitude ∆fk, so that an extended discrete linear 
time-invariant state space system is constituted as given in equation (3.3). 

 k 1 k
k k k

k 1 k k

0
and

0
+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x A B x
y Cx Df

f I f f
 (3.3) 

The state space matrices A, B, C, and D are constant. The vectors xk, yk, and fk define state, 

output, and input at the time step k. The unknown ∆fk can be found by minimizing the 
weighted and regularized squared error function in equation (3.4). 

 ( ) ( ) ( )
N N

T T
k k w k k k r k

k 1 k 1

ˆ ˆE
= +

= − − + ∆ ∆∑ ∑y y W y y f W f  (3.4) 

The vector kŷ  denotes the measured responses. Usually, the identity matrix I is chosen as 

weighting matrix Ww. The regularization matrix Wr can be established using the L-curve 

method27, which gives the diagonal elements ωr in Wr = ωrI. Plotting the first sum in equa-
tion (3.4) versus the second sum in log-log scale produces an L-curve shape. The optimal 
regularization parameter can be chosen from the corner point of the L-curve, which now 
enables the calculation of the unknown force vector f. 

DP facilitates the inverse load calculation for time-invariant and time-variant systems, as 
well as the handling of non-collocated force-to-sensor positions. Nordberg and Nordström 
illustrate a simple numerical example that demonstrates DP’s application. First-order Tik-
honov regularization is applied. The L-curve method is used to find the weighting terms. 
Using perfect data – which means the absence of noise in the data – the DP calculates a 
transient load perfectly. However, adding some noise to the data produces highly dis-
turbed, useless load estimation results that are due to the ill-conditioned system behavior. 
By means of the Tikhonov regularization, the errors are drastically reduced. 

Because of the use of forward and backward sweep, DP does not enable real-time load 
calculation. Klinkov and Fritzen (2007) [55] also state, that the DP is not capable of 
handling non-linear systems. 

 

■ Inverse Structural Filter (ISF) 

This method is introduced by Steltzner and Kammer (1999) [95] for real-time load estima-
tion purposes. The core idea of the ISF is the inversion of input and output of the discrete-
time state space system. The inversion of the state space system requires an over-
determined system with the number of sensors to be greater than the number of forces so 
that the feedthrough matrix D can be inverted. Additionally, D must be full column rank. 
For non-collocated sensor-to-force locations, the inverted state space formulation may lead 

to unstable systems in terms of an inverse plant matrix Â . Even if the system is stable, the 

                                               

27 The used source refers to: Hansen (1992) [32]. 
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calculation of the inverse Markov parameters iĥ  is numerically unstable due to the ill-

conditioning. To overcome the ill-conditioning, the system is stepped forward in time be-
fore the inversion. Thus, the input force at the time k is a function of the response at future 
times k+1 to k+l. The non-causal, general l-lead inverse model in the form of equation (3.5) 
is developed. 

 
k

k i k l i
0

ˆ
+ −= ∑f hy  (3.5) 

Equation (3.5) contains the inverse Markov parameters iĥ , which are calculated according 

to equation (3.6). 

 i 1
0 i

ˆ ˆˆ ˆ ˆ ˆand −= =h D h CA B  (3.6) 

The inverse Markov parameters are derived from the inverted state space matrices as given 
in equation (3.7), where + denotes the Moore-Penrose pseudo-inverse. 
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+ +− −
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A A B CA CA B B CA B

C CA B CA D CA B
 (3.7) 

Equation (3.5) represents the basic equation of the ISF. An approach that limits the length 
of the non-causal filter represents a further development of the ISF in order to deal with 
non-collocated cases that are still difficult to handle with the l-lead approach. 

The inverse Markov parameters can be obtained analytically or from measurements. The 
responses are required in form of accelerations. The time span l needs to be chosen by the 
user. The ISF is prone to noise in the recorded data. For this reason, Steltzner and Kam-
mer (1999) [95] propose calculating the minimum norm of the ISF. Nordberg (2004) [72] 
and Nordtsröm (2005) [73] show how to treat satisfactorily the errors produced by noise 
using Tikhonov regularization. 

 

■ Unknown Input Observer (UIO) 

This time-domain approach was invented for control engineering purposes. Klinkov and 
Fritzen (2007) [55] give a brief summary in order to apply this approach to civil engineer-
ing structures. The basic idea bases on the construction of a general observer for a first-
order, non-linear state space system, as given in equation (3.8). 

 
( ) ( ) ( ) ( )( )
( ) ( ) ( )
t t t , ,

t t t

= + +

= +

x Ax Bf x f y

y Cx Df

f
 (3.8) 

Here, ( )f is a vector function that contains the non-linear terms. The UIO allows simulta-

neous reconstruction of the inputs and states, i.e. velocities and positions. Both linear and 
non-linear systems can be handled. Time-invariance is a mandatory characteristic of the 
system. Therefore, the observer has the following form. 
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( )ˆ tξ  is the estimate of the unknown vector ( )tξ  that contains the states and the inputs 

(forces). An appropriate set of observer matrices N, L, T, and Q is required to calculate the 
estimate of the states and inputs. The set is appropriate if the error between the estimation 

( )ˆ tξ  and the real states and inputs ( )tξ  converges to zero in time. 

Finding the set of observer matrices is the crucial point of the UIO. One option is the use of 
a linear matrix inequality (LMI) technique. The matrices only need to be set up once. The 
feedthrough matrix D must have full column rank, which means that acceleration sensors 
must be used. Additionally, the number of sensors needs to be greater or equal to the 
number of unknown inputs plus the number of non-linear terms. Fulfilling all requirements 
makes the UIO an approach of robust performance even in the presence of noisy data. 

Fritzen and Klinkov ([23], [24], [56]) present a few laboratory tests that give promising 
results of an inverse load calculation at wind turbine support structures. Their research aims 
at a real-time load reconstruction. 

 

■ Partial Modal Matrix (PMM) 

In contrast to the above-mentioned, time-domain approaches the PMM is based on the 
second-order ODE as introduced in equation (3.2). The idea of the PMM is the decoupling 
of the spatial system into a modal one, resulting in equation (3.10). 

 ( ) ( ) ( ) ( ) ( ){ }T
0 g E g 0t t t t

+
= + +f U M q B q M qΛ  (3.10) 

In equation (3.10), ( ) ( ) ( )t , t ,and tq q q are the response vectors that contain the three 

kinetic quantities displacements, velocities, and accelerations – all in generalized (modal) 
coordinates. Hence, the three kinetic quantities need to be known. They can either be ob-
tained by measurement directly or at least one kinetic quantity has to be measured and the 
others are calculated via differentiation or integration, respectively. The transformation 
from the spatial to the modal space is done by means of the modal matrix U0 according to 
the relations in equation (3.11). The superscript + denotes the Moore-Penrose pseudo-
inverse of the matrix. 
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= −

= −

= −

q U y

q U y

q U y

 (3.11) 

The generalized system matrices are the mass matrix Mg describing the inertia forces, the 

damping matrix BE describing the damping forces, and the product of Mg and Λ0 describing 

the elastic forces. Λ0 is the spectral matrix that contains the eigenvalues of the system. The 
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system matrices are transferred back to the spatial space via their multiplication with the 
inverse of the modal matrix, as given in equation (3.10). 

The PMM can be applied to non-collocated systems. Moreover, the PMM is not inherently 
ill-conditioned, which is mainly caused by the comprehensive set of parameters that is as-
sumed to be known and some further requirements. So, the number of sensors needs to be 
greater or equal to the number of modes. At the same time, the number of modes has to 
be greater or equal to the number of unknown forces. The eigenvectors at all sensors need 
to be known. Since the complete measurement data is required for the calculation, the 
PMM cannot be used for real-time load calculation. 

Genaro and Alves Rade (1998) [28] give some further insight into the PMM. They demon-
strate a numerical example using a 3-DOF model, both under harmonic and transient exci-
tation. Fairly accurate results are calculated, even when random errors contaminate the 
data. 

 

3.1.2 Frequency-Domain Methods 

Calculating loads inversely in frequency domain requires a transformation of the time-
domain signals. Usually, a Fast Fourier Transform (FFT) is used. Converting the time-

dependent system responses y(t) leads to the frequency-dependent responses Y(jω). The 

system properties are fully described by the frequency response function (FRF) matrix H(jω). 

To gain the unknown forces F(jω), equation (3.12) is used. This equation represents the 
basic principle of the frequency-domain method for the inverse load calculation. 

 ( ) ( ) ( )j j j+ω = ω ⋅ ωF H Y  (3.12) 

Mathematically, equation (3.12) is a Deconvolution in the Frequency Domain (DFD), which 
accounts for the naming of the method. Solving equation (3.12) requires the inversion of 
the FRF matrix, which is denoted by superscript +. In general, the Moore-Penrose pseudo-

inverse is used. If the force vector is needed in the time domain, F(jω) can be transferred 

back using an inverse Fourier transformation. The response vector Y(jω) in equation (3.12) 
exclusively contains displacements. If displacements are not measured directly but veloci-
ties or accelerations are recorded, the measurement data have to be integrated numerically. 
The DFD allows the calculation of harmonic loads as well as transient loads. In addition, 
the underlying system has to be time-invariant, since the FRF matrix is not time-dependent. 

Since Fourier transformation is an essential part of the calculation, the accuracy of the cal-
culation strongly depends on the discretization of the time signal, i.e. the signal length and 
the sampling frequency. However, complete time signals are needed, which precludes real-
time load calculation. However, approaches for quasi real-time calculation are developed 
that will be discussed later within this section. 

Inoue et al. (2001) [42] give a brief but elaborate discussion of the DFD. In mathematical 
terms, the Deconvolution in Frequency Domain is relatively simple when compared to the 
one in time domain. In case the signal discretization is not appropriate to perform the FFT, 
padding the response data with zeros before the deconvolution effectively reduces the er-
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ror. Applying a least-squares approach to equation (3.12) enables the enhancement of the 
result quality. This requires an over-determined system that is established when more sen-
sors are applied than forces that are intended to be identified. Further regularization meth-
ods like the previously mentioned Tikhonov regularization also can be applied to improve 
the results. 

Contrary to the time-domain approaches, there are not different approaches in the fre-
quency domain. In fact, in the frequency domain, different ideas for solving the inverse 
problem from equation (3.12) exist. These ideas primarily deal with the formation of the 
FRF matrix. Some main ideas are presented subsequently. 

 

■ FRF matrix from modal parameters 

The FRF matrix can be assembled from modal parameters, as described in López Aenlle et 
al. (2005) [62]. The modal parameters are obtained from vibration tests. A system identifi-
cation technique is used to determine the parameters, which are the eigenfrequencies, the 
eigenvectors, and the damping ratios. Using only measurement data gives eigenvectors 
whose scaling factors are unknown. Bjerg Petersen et al. (2007) [5] describe a mass 
change method to solve this problem. Several vibration tests with different additionally 
applied masses are necessary, which probably is not applicable to every kind of structure. 

Having all modal parameters, the FRF matrix can be assembled and inverted. The matrix 
inversion with standard procedures is only possible if the matrix has full rank, e.g. if the 
number of modes equals the number of sensors. In practice, measurement data often 
merely provide a truncated modal space. Then, the FRF becomes singular which impedes 
the inversion. In this case, López Aenlle et al. (2005) [62] propose a singular value decom-
position (SVD).28 For the inversion of the FRF matrix only the singular values that are con-
siderably different from zero are taken into account. 

 

■ FRF matrix from model updating 

Instead of gaining the FRF matrix by modal parameters only from measurements, López 
Aenlle et al. (2007) [63] describe the use of an updated model. The basic idea of this 
method is updating a finite element (FE) model, so that the FE model represents the meas-
ured eigenfrequencies and eigenvectors as accurately as possible. Then, the FRF matrix can 
be assembled by using the mass matrix and the stiffness matrix of the FE model. The damp-
ing matrix can be added e.g. by proportional damping that is based on the measurement 
data and the information known from the mass and stiffness matrix. 

Thus, a matrix with full rank can be created which alleviate the matrix inversion. Addition-
ally, the FE model allows the use of more modal parameters than identified from the meas-
urements. Assuming that the first n modes are represented fairly accurately, the further n+i 

                                               

28 The SVD approach is an alternative to the use of the Moore-Penrose pseudo-inverse that bases on 
the 2-norm (see Moler (2004) [68], chapter 5.6, page 13ff.). 
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modes will most likely represented enhanced in the updated model as well. Evidently, the 
quality of the inverse load calculation strongly depends on the accuracy of the model up-
dating process. 

 

■ Treatment of noise and quasi real-time load calculation 

The ill-conditioning of the inverse problem manifests in the amplification of noise. Assum-

ing the response vector Y(jω) in equation (3.12) is the sum of a noise-free undisturbed sig-

nal YU(jω) and noise term YN (jω), equation (3.13) occurs. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )U Nj j j j j j j+ + +ω = ω ⋅ ω = ω ⋅ ω + ω ⋅ ωF H Y H Y H Y  (3.13) 

If YU(jω) becomes very small at a certain frequency, YN (jω) will dominate the result of the 

inverse load. Additionally, YN (jω) is amplified by the multiplication with the inverse FRF 
matrix. The easiest way to deal with this characteristic is the application of a low-pass filter. 
Inoue et al. (2001) [42] suggest the use of a Wiener-Filter as an alternative. Bjerg Peter-
sen et al. (2007) [5] describe how the SVD can be used to handle noisy data. 

The Fourier transformation is described by an infinite integral. Measurement data have to 
be formed by a finite signal length. This discrepancy causes a discontinuity at the end of the 
frequency-domain data. This error is called leakage. The leakage error can be minimized 
using an exponential window that is applied to the time-domain data.29 López Aenlle et al. 
(2005) [62] propose a procedure to deal with the leakage effect and to enable a quasi real-
time calculation.  

 

3.1.3 Discussion of Inverse Load Calculation Methods 

Time-domain methods and frequency-domain methods show few differences in terms of 
the result quality for the inverse load calculation.30 Hence, the choice of an appropriate 
method does not depend on the calculation domain. The above discussed characteristics 
show all methods to have their limitations and drawbacks. Consequently, a decision for a 
certain method has to be made with regards to the specific application. In this work, the 
inverse load calculation is applied to wind turbines, which requires taking into account the 
following points: 

• Application to a real-world structure: The quality of the results for the inverse calcula-
tion not only depends on the used inverse method, but also on the input parameters 
for the inverse calculation. For this reason, it is important, which parameters are nec-
essary and how accurate they can be determined in case real-world structures are in-
vestigated. 

• Use of measurement data: The use of measurement data always induces uncertainties. 
This means that random errors can occur within the inverse calculation.  

                                               

29 See Inoue et al. (2001) [42]. 
30 Inoue et al. (2001) [42] cites: Hojo et al. (1989) [35]. 
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• Ill-conditioning: Using perfect data, e.g. in numerical examples or nearly in laboratory 
tests, prevents a pollution of the inverse calculation results by effects caused by the 
ill-conditioning. The use of measurement data will cause the ill-conditioning to be 
present. For this reason, a reliable regularization is mandatory. 

• Stochastic load: Wind and waves induce stochastic loads. Hence, an appropriate in-
verse method must be able to deal with stochastic loads. 

• Time-invariant system and non-linearities: Based on the assumptions described in sec-
tion 2.2.2, the application to wind turbines support structures can be described by a 
time-invariant system in which the non-linearities are treated by choosing constant 
operating conditions. 

• Real-time load calculation: From the standpoint of this work, a real-time calculation is 
not seen as a mandatory condition for wind turbine support structures. Those calcula-
tions may serve condition monitoring purposes, which will most likely always allow 
sufficient data processing time before formulating decisions on the basis of the moni-
toring results. 

 

All methods presented cope with linear, time-invariant systems. The DP is prone to errors if 
noise is present due to the ill-conditioning. These errors are reduced with a L-curved 
weighting term that has the disadvantage that it is detected visually. The PMM converts 
the entire problem in a way so that it is no longer ill-conditioned. Thus, the accuracy of the 
calculation strongly depends on the fact that the conditions of the conversion are nearly 
perfectly fulfilled. The literature does not reveal an application of the DP or the PMM nei-
ther under stochastic loads nor to real-world structures. The UIO mainly aims on real-time 
calculation. Hence, this method spends considerable numerical effort on the determination 
of the observer matrices. However, real-time calculation is not the scope of this work. 

The ISF is already applied to real-world structures. In the course of this thesis, the ISF was 
applied to a laboratory structure representing a wind turbine support structure loaded with 
a stochastic force. Descriptions both of the model and the results are summarized in 
Häckell (2010) [112]. Various regularization approaches are studied. The numerical effort 
of the regularization is high in contrast to the improvement of the result quality. Especially 
finding the regularization order is laborious. 

The DFD seems to match best the above-given application-specific requirements. This 
method already was used in various research fields and was also used for stochastic loads. 
For the regularization, the Tikhonov31 regularization, an SVD approach, and the use of win-
dowing and filters are presented in the literature. The problem of ill-posedness will be han-
dled by two assumptions. Firstly, the load location is assumed to be known.32 And second, 
there are considered at least as many sensors as modes and at least as many modes as 
forces. The second assumption also assures a determined or an over-determined system of 

                                               

31 For fundamental description of the approach see Tikhonov and Arsenin (1977) [98]. 
32 See also section 2.2.2 Scope of the Inverse Load Calculation. 
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equations. In case of an over-determined system, a least-squares approach is used to solve 
the system of equations. In this way, random errors can be eliminated. The system matrices 
are determined by means of system identification. An updated FE model is used to guaran-
tee full rank system matrices. This results in scaled eigenvectors. 

For these reasons, the DFD is used for the inverse load calculation in this work. The briefly 
described characteristics of the DFD are explained more detailed subsequently. The theo-
retical fundamentals of the DFD are given in section 3.2. The calculation procedure is dem-
onstrated at a numerical 2-DOF system in section 3.3. 

 

3.2 Fundamentals of the Deconvolution in the Frequency Domain 

The Deconvolution in the Frequency Domain is based on the solution of the forward prob-
lem. The forward problem is defined by the fundamentals of structural dynamics, which are 
already investigated in detail and described extensively. Thus, a discussion of the forward 
problem is not needed. For detailed information about the fundamentals of structural dy-
namics, see e.g. Rolfes et al. (2007) [89], Natke (1989) [71], or Gasch and Knothe (1987) 
[25] and Gasch and Knothe (1989) [26]. 

 

3.2.1 Inverse Load Calculation using the Deconvolution in the Frequency Domain 
(DFD) 

The Deconvolution in the Frequency Domain is based on the equation of motion (EoM) in 
the time domain. The EoM for a multi-degree of freedom (MDOF) system is given by the 
second-order ordinary differential equation for a linear, time-invariant vibrating system in 
equation (3.14). 

 ( ) ( ) ( ) ( )t t t t+ + =My By Ky f  (3.14) 

The equation describes the spatial space. Here, M is the mass matrix, B the damping matrix 
and K the stiffness matrix. The matrices have square dimension (n, n) and are symmetric. 
The vector y(t) contains the responses in form of displacements and the vector f(t) the in-
puts formed by forces. 

The transformation to the frequency domain is done by a Fourier transformation. The re-
sponse and input vectors are as shown in equation (3.15).33 

 
( ) ( ){ }
( ) ( ){ }

j F t

j F t
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ω =

Y y

F f
 (3.15) 

The derivatives of the responses in the frequency domain Y(jω) are based on the assump-
tion that the initial condition are set to zero, so that there are  

                                               

33 Further information to the mathematics of the Fourier transformation is given e.g. in Rolfes et al. 
(2007) [89] p. 36ff., Natke (1983) [70] p. 48ff. 
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( ) ( ){ } ( )
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Rearranging equation (3.16) leads to  

 ( ) ( ) ( ) ( ) ( )2

1 1 1
j j j and j j

j j
ω = ω = − ω ω = ω

ω ω ω
Y Y Y Y Y . (3.17) 

With the derivatives of the responses, expressions for the displacements, the velocities, and 
the accelerations are found. Then, the EoM given in equation (3.14) can be set up in the 
form 

 ( ){ } ( ){ } ( ){ } ( ){ }F t F t F t F t+ + =M y B y K y f . (3.18) 

Further transformations lead to equation (3.19) that represents the EoM in the frequency 
domain. 

 ( ) ( ) ( )2 j j j−ω + ω + ω = ωM B K Y F  (3.19) 

If the system responses are of interest, the EoM in the frequency domain can simply be 
transformed to the expression  

 ( ) ( ) ( )12j j j
−

ω = −ω + ω + ωY M B K F . (3.20) 

Introducing the frequency response function (FRF) matrix H(jω), equation (3.20) can be 
written in a more compact form. 

 ( ) ( ) ( )j j jω = ω ωY H F  (3.21) 

The FRF matrix fully describes the dynamic characteristics of the spatial system. Equation 
(3.21) represents the solution of the forward problem in frequency domain. 

The inverse calculation aims on the determination of unknown inputs. Hence, equation 
(3.21) has to be rearranged so that the basic formulation for the inverse problem in the 
frequency domain is found 

 ( ) ( ) ( )1j j j−ω = ω ωF H Y . (3.22) 

To enable the calculation of equation (3.22) the multi-degree of freedom (MDOF) system 
of dimension n has to be expressed in modal space. For that purpose, a decoupling of the 
spatial system into n linear independent single-degree of freedom (SDOF) systems is neces-
sary. The decoupling can be performed with a modal transformation as given in equation 
(3.23). 

 ( ) ( ) ( )
n

0 i 0i
i 1

j j Q j
=

ω = ω = ω∑Y U Q u  (3.23) 

The modal transformation requires the modal matrix U0 that contains the n orthogonal ei-
genvectors of the undamped system in columns. The modal matrix is known from an eigen-
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value analysis of the undamped MDOF system. The displacements of the modal system are 

now given by the vector Q(jω), which can be expressed by 

 ( ) ( )1
0j j−ω = ωQ U Y . (3.24) 

With the mathematical relationship for the modal transformation, equation (3.19) can be 
rearranged to 

 ( ) ( ) ( )2
0 0 0j j j−ω + ω + ω = ωMU BU KU Q F . (3.25) 

Applying a left multiplication with the transposed modal matrix leads to the equation  

 ( ) ( ) ( )2 T T T T
0 0 0 0 0 0 0j j j−ω + ω + ω = ωU MU U BU U KU Q U F . (3.26) 

The eigenvectors are orthogonal to the mass and the stiffness matrix. This characteristic 
enables the transformation of both matrices to diagonal matrices. 

 
T
0 0 g gi

T
0 0 g gi

diag(m )

diag(k )

= =

= =

U MU M

U KU K
 (3.27) 

The scalar values mgi and kgi are the generalized masses and generalized stiffness, respec-
tively. The scalars are greater or equal to zero. Subscript i indicates the i-th mode of vibra-
tion, which can be interpreted as a SDOF system. Consequently, the relationship for a 
SDOF system can be applied, so that the following equation is obtained. 

 gi2 2
0i 0i

gi

k

m
−λ = ω =  (3.28) 

Thus, the dependencies between the eigenfrequencies ω0i, the eigenvalues of the un-

damped system λ0i = ±jω, and the mass properties and stiffness properties are set. These 

relationships allow the definition of the spectral matrix Λ0. 

 ( ) ( )2 2
0 0i 0idiag diag= −λ = ωΛ  (3.29) 

The spectral matrix is related to the generalized mass matrix and the generalized stiffness 
matrix according to equation (3.30), which is defined by the form of the eigenvalue prob-
lem. 

 g 0 g 0− + =M KΛ  (3.30) 

Eigenvectors can be scaled arbitrarily, which is another important characteristic of the ei-
genvectors, next to their orthogonality. A very common scaling is the conversion of the 
generalized mass matrix to the identity matrix, as given by 

 ( ) T T
gi 0 0diag m = = =U MU M IΦ Φ . (3.31) 

The matrix Φ now represents the modal matrix associated with this specific scaling (mass). 
According to equation (3.30), the generalized stiffness matrix becomes the spectral matrix. 
Hence, equation (3.32) is valid. 
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 g gand= =M KI 0Λ  (3.32) 

In accordance with the generalized description of the mass and stiffness terms, a general-
ized damping matrix can be defined, which is done by 

 T
g 0 0=B U BU . (3.33) 

So far, there is no reason for Bg to be a diagonal matrix, as it is the case for Mg and Kg. Bg 
often is defined as being diagonal. This assumption is derived from practical experiences 
and is used within this work as well. The diagonal generalized damping matrix is denoted 
as BE. 

 ( )g E Eidiag b= =B B  (3.34) 

Additionally, the damping matrix B is assumed to be proportional to the stiffness matrix K. 
This second assumption assures the interpretation of the entries bEi of the generalized 
damping matrix. Now the damping ratios can be related to the modes of vibration and the 
damping ratios are proportional to the undamped eigenfrequencies. The modal damping 
ratios are defined as follows. 

 Ei 0i
i

b
D

2
ω

=  (3.35) 

Knowing the basics of the modal transformation enables the simplification of equation 
(3.26) that is an arranged form of the EoM in the frequency domain. Using the equations 
(3.27) and (3.33), assuming a diagonal generalized damping matrix and applying equation 
(3.30) leads to 

 ( ) ( ) ( ) ( )2 T
g E g 0 0 gj j j j−ω + ω + ω = ω = ωM B M Q U F FΛ . (3.36) 

Equation (3.36) represents the description of the generalized system that now is described 
by generalized diagonal matrices. Thus, the force vector can be interpreted as a modal 
force. The relationship between the forces in spatial and modal space is now 

 ( ) ( ) ( )1T
0 gj j

−
ω = ωF U F . (3.37) 

Substituting equation (3.36) into equation (3.37) and considering the modal transformation 
of the responses from equation (3.24) gives 

 ( ) ( ) ( ) ( )1T 2 1
0 g E g 0 0j j j

− −ω = −ω + ω + ωF U M B M U YΛ . (3.38) 

Equation (3.38) is of essential relevance for the inverse load calculation because it describes 

the relationship between the force vector F(jω) and the displacement vector Y(jω) in spatial 
space with the system matrices in modal space. The modal matrix U0 enables the transfor-
mation between both spaces. Because of the linear independence of the eigenvectors, the 
modal matrix U0 is a regular matrix, and consequently it is invertible. In practical applica-
tions, the displacements or their derivatives will be measured in spatial space. The forces 
are needed in spatial space as well. However, the system description usually is gained by 
means of system identification. Thus, modal parameters such as eigenfrequencies, eigen-
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vectors, and damping ratios are known from measurements. Equation (3.38) combines 
these requirements. Furthermore, the inverse problem can be calculated solving n inde-
pendent SDOF systems. 

Additionally, equation (3.38) can be given in the form of a sum. This leads to equation 
(3.39). As it is not of major interest at this point, the detailed derivation of the mathemati-
cal steps from equation (3.38) to (3.39) is given in Appendix A. 

 ( ) ( ) ( ) ( )
n 12 T 1

gi Ei gi 0i 0i 0i
i 1

j m j b m j
− −

=

ω = −ω + ω + ω ω∑F u Y u  (3.39) 

Equation (3.39) clarifies that n modal parameters are needed to assemble the FRF matrix. 
The n corresponding eigenvectors serve to perform the modal transformation. The re-

sponses Y(jω) are transformed from the spatial to the modal space. The transformation is 

reversed with respect to the force vector F(jω). All terms are still formulated in the fre-
quency domain. 

The back transformation to the time domain is obtained applying an inverse Fourier trans-
formation, as is shown in equation (3.40) for the force vector. 

 ( ) ( ){ }1t F j−= ωf F . (3.40)  

 

3.2.2 Assembly of the FRF Matrix and Least-Squares Approach 

The mathematical fundamentals of the inverse load calculation in the frequency domain are 
described in detail in the previous section. Subsequently, the assembly of the FRF matrix is 
discussed. First, determined systems are focused on. These are systems in which the num-
ber of unknown forces equals the number of measured responses. Subsequently, a least-
squares approach is discussed. This approach enables the calculation of over-determined 
systems, i.e. systems with a number of measured responses that is greater than the number 
of the unknown forces. The descriptions are mainly based on the publications of Stevens 
(1987) [96] and Ewins (2000) [18] .  

 

FRF matrix for determined systems (n = m) 

1. Calculation of the receptance matrix Z(jω) in modal space 

( ) ( )1 2
g g E g 0j j j−ω = ω = −ω + ω +Z H M B M Λ  (3.41) 

with  Z - Receptance matrix (n x n), diagonal 
  Hg

-1 - inverse FRF matrix in modal space (n x n), diagonal 
  Mg - generalized mass matrix (n x n), diagonal 
  BE - generalized damping matrix (n x n), diagonal 

  Λ0 - spectral matrix (n x n), diagonal 
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2. Inversion of the receptance matrix 

( ) ( )1
g j j−ω = ωH Z  (3.42) 

All matrices used to assemble the receptance matrix are square. Consequently, the 
receptance matrix also has a square form. A matrix inversion requires a regular ma-
trix of square dimension.34 This condition is fulfilled in case of the receptance matrix 
of determined systems. The inversion of the receptance matrix gives the FRF matrix. 

 

3. Modal transformation of the FRF matrix into spatial space 

( ) ( ) T
0 g 0j jω = ⋅ ω ⋅H U H U  (3.43)   

Coupling is based on the modal transformation as described in equation (3.27), us-

ing the n x n modal matrix U0. The FRF matrix in modal space Hg(jω) is a diagonal 
matrix. The multiplication with the modal matrix and its transpose causes coupling 

of the modes. Hence, the FRF matrix in spatial space H(jω) is a fully populated ma-
trix. (Exception: decoupled eigenvectors, i.e. each eigenvector has one entry un-
equal to zero and all remaining entries equal to zero.) 

As an alternative, the FRF matrix can be obtained in spatial space directly using 

( ) ( ) 12j j
−

ω = −ω + ω +H M B K . (3.44) 

This alternative makes bullets 1 and 2 obsolete. It requires the knowledge of the 
system matrices in spatial space. For example, the mass matrix and stiffness matrix 
can be obtained from a FE model. The damping matrix can be assembled using 
damping ratios gained from system identification. 

 

4. Inversion of the FRF matrix 

The inverse load calculation requires the inversion of the FRF matrix H(jω) to H-1(jω). 

Note: Bullets 1-4 deal with the calculation of Hg
-1, which afterwards is inverted to 

Hg. Then, the modal transformation to H is shown, which again is inverted to H-1. 
This procedure seems very laborious. However, it is important for over-determined 
systems (n > m). This case will be shown subsequently using a least-squares ap-
proach. Then, the FRF matrix H in spatial space is needed. In case only determined 
systems (n = m) are taken into consideration, the FRF matrix can be calculated di-
rectly using 

 ( ) ( ) ( )11 T 1 1 2
0 g 0j j j

−− − −ω = ⋅ ω ⋅ = −ω + ω +H U H U M B K . (3.45) 

 

 

 

                                               

34 Papula (2000) [82], p. 195. 



3 Theory of the Inverse Load Calculation 

 43

5. Inverse calculation of the load for the determined system (n = m) 

( ) ( ) ( )1j j j−ω = ω ⋅ ωF H Y  (3.46) 

 with  F(jω) - load vector in spatial space 

  Y(jω) - vector of responses (displacements) in spatial space 

 

FRF matrix for over-determined systems (n > m) 

If the number of known system responses n is greater than the number of unknown forces 
m, the system is over-determined. In this case, the redundant system responses can be 
used to average the random errors in the responses.35 A least-squares approach is applied 
for this purpose. 

The basic problem of an over-determined system with n > m can be formulated as follows 

 ( ) ( ) ( )nx1 nxm mx1j j jω ≈ ω ⋅ ωY H F . (3.47) 

The application of the least-squares approach leads to the minimizing problem 

 ( ) ( ) ( ) ( )jmin j j jω ω ⋅ ω − ωF H F Y . (3.48) 

The over-determined system from equation (3.47) can be solved by multiplying both sides 
with HT. Then, a square m x m system is obtained, which represents the so-called “normal 
equation” 

 ( ) ( )T Tj j⋅ ⋅ ω = ⋅ ωH H F H Y .36 (3.49) 

If there are independent basis functions, HTH is not singular, which enables the transforma-
tion of equation (3.49) to  

 ( ) ( )1T T
est j j

−
⎡ ⎤ω = ⋅ ω⎣ ⎦F H H H Y  or (3.50) 

 ( ) ( ) ( )est j j j+ω = ω ⋅ ωF H Y , respectively. (3.51) 

Now, Fest(jω) is an estimate of the force vector F (jω). The system is of the dimension as 
shown in equation (3.52). Subscripts m and n respectively denote the number of forces and 
the number of responses. 

 
est

mx1 mxn

nx1

+

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

YF H
 (3.52)  

                                               

35 Stevens (1987) [96]. 
36 For the purpose of clarity, the frequency dependence of the FRF matrix is omitted, although H is 

still a function of (jω). 
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The matrix H+ represents the pseudo-inverse of the matrix H. H+ can be calculated as a 
Moore-Penrose pseudo-inverse, so that 

 
1T T−+ ⎡ ⎤= ⎣ ⎦H H H H . (3.53) 

The pseudo-inverse does not have exactly the same properties as H-1. HT is the hermetic 
transpose of H, which means the transpose of its complex conjugate. Equation (3.54) clari-
fies the matrix dimension of the FRF matrix and its pseudo-inverse in case of an over-
determined system (n > m). 

 

nxm m n

m mxn n

nxm mxn

+

+

⋅ =

= ⋅

↔

H F Y

F H Y

H H

 (3.54) 

 

The FRF matrix H can be assembled in two ways: 

I) Assembly using system matrices (in both modal and spatial space) 

( ) ( ) T
0 g 0j jω = ⋅ ω ⋅H U H U  (3.55) 

· Coupling using the modal transformation as described in equation (3.27) 

· All matrices are of dimension n x n 

· Truncation of the remaining columns in H, so that 

· 
nxn nxm

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= → =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

H H  

 

II) Assembly using a summation of modal parameters  

a) in modal space 

N N
ni mi i nm

g mxn 2 2 2 2
i 1 i 1i Ei i Ei

A
j b j b= =

φ ⋅ φ
= =

λ − ω + ω λ − ω + ω∑ ∑H 37 (3.56) 

n - number of rows in the modal matrix Φ (n x n)38  

m  - number of columns of the transposed modal matrix Φ T 

φ - eigenvector, column of the modal matrix Φ 

i  - vibration mode 

N  - number of modes 

Afterwards, the modal matrix can be transformed into spatial space, see 

equation (3.43). 

                                               

37 Damping proportional to the stiffness is assumed. 
38 The scaled modal matrix Φ is used. The scaling is done with respect to Mg = I, see equation (3.31). 
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1,1

2,1

n,1

...

φ⎡ ⎤
⎢ ⎥φ⎢ ⎥=
⎢ ⎥
⎢ ⎥φ⎢ ⎥⎣ ⎦

Φ   

1,1 2,1 m,1

T

...φ φ φ⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Φ  

 

b) in spatial space  

N N
0,ni 0,mi i nm

mxn 2 2
i 1 i 1i i i i i i

u u A
k m j b k m j b= =

⋅
= =

− ω + ω − ω + ω∑ ∑H 37 (3.57) 

· the subscripts are in accordance with the descriptions in a) 

· the modal matrix U0 is arbitrary scaled  

 

Both I) and II) require knowledge of n vibration modes, which equals the number of con-
sidered responses. 

Applying the least-squares approach to the inversion of the non-square FRF matrix H, the 
inverse H+ appears in the dimension, as given in the equations (3.58) to (3.61).39 

 
1T T

mxn

−+ ⎡ ⎤
⎡ ⎤= = ⎢ ⎥⎣ ⎦

⎣ ⎦
H H H H  (3.58) 

 

nxm

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H            and           T

mxn

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
H  (3.59) 

 T

mxm

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
H H        and           

1T

mxm

− ⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎣ ⎦
H H  (3.60) 

 
1T T

mxn

− ⎡ ⎤
⎡ ⎤ ⋅ = ⎢ ⎥⎣ ⎦

⎣ ⎦
H H H  (3.61) 

 

Since the calculations in this work are done using the software MATLAB40, some important 
remarks about the calculation of the FRF matrix are given in Appendix B. Additional infor-
mation is presented by Moler (2004) [68]. 

                                               

39 Note: Only regular matrices of square dimension can be inverted, see Papula (2000) [82]. Other-
wise, the pseudo-inverse has to be calculated, see Moler (2004) [68]. 

40 MATLAB is used to imply MATLAB® 

i 

i 

n 

m
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3.3 Numerical Example using a 2-DOF System 

3.3.1 Idea and Numerical System 

This section presents a numerical example to demonstrate the theoretical fundamentals 
given above. The calculations aim to implement mathematical algorithms. For this reason, a 
simple 2-DOF system is chosen. The simplicity of the 2-DOF system limits the parameter 
that may influence the inverse calculation. In this way, a verification of the accuracy of the 
inverse calculation can be obtained. A reliable verification of the inverse calculation can be 
obtained if the corresponding forward solution is known.  

In addition, the effects of data polluted with noise are studied. Noisy data are of special 
interest, because measured system responses are always polluted with noise. The noise 
represents a small disturbance in the input data. Due to the ill-conditioning of the inverse 
calculation, effects to the inversely calculated loads are expected. 

 

Figure 3.2: Scheme for the verification of the inverse calculation 

 

The idea of the verification procedure is given in Figure 3.2. The basis for the description of 
real-world phenomena are time-dependent processes. A time-dependent load vector p(t) is 
applied to a linear vibrating system. The corresponding displacement vector y(t) is calcu-
lated. Because a frequency-domain method is used for the inverse calculation, the dis-
placements have to be transferred to the frequency domain, using a FFT. The system de-

scription is known from the solution of the forward problem. Hence, the FRF matrix H(jω) 
can be assembled and inverted, which enables the inverse calculation of the force vector 

F(jω). An inverse Fast Fourier Transform (iFFT) allows the back transformation to the time 
domain. Now, a comparison of the initially applied load p(t) to the inversely calculated load 
f(t) is possible, which gives an estimate about the accuracy of the inverse calculation proce-
dure. The chosen 2-DOF system is shown in Figure 3.3. 

( ) ( )t t→p y ( )jωY

( ) ( ) ( )j j jω ω ωF H Y-1=

( ){ }1(t) F j−= ωf F

Comparison 

Forward 
solution 

Inverse calculation 

FFT 

iFFT 
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Figure 3.3: Numerical 2-DOF system 

 

The system is described by two masses, connected with springs that represent the stiffness 
properties. The parameters mi and ki are chosen reasonably. The damping ratio D1 = 0.25 % 
represents common values in structural dynamics. Because viscous damping is assumed, D2 
can be calculated as defined in equation (3.35). The EoM is based on the force equilibrium 
at each DOF, so that the system matrices can be obtained, as given below. 

The eigenfrequencies and eigenvectors of the undamped system are gained from an eigen-
value analysis. The eigenfrequencies are 

ω01 = 28.53 s-1  → f01 = 4.54 Hz 

ω02 = 60.71 s-1  → f02 = 9.66 Hz 
 

The graph of the applied load vector p(t) is shown in Figure 3.4. A stochastic load is applied 
to the first DOF. The second DOF is unloaded. This load model is chosen to represent the 
load characteristics of an onshore wind turbine in operation. The length of the time series is 
set to tmax = 100 s. The resolution of the time vector is tS = 0.01 s. 

 

Figure 3.4: Stochastic load 
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3.3.2 Forward Solution 

In general, the forward solution can be obtained using either a time-domain method or a 
frequency-domain method. Here, the frequency-domain approach that is given in equation 
(3.62) is used. Since the displacements are needed in the time domain, an iFFT is applied. 

 ( )
Tn

1 0i 0
0i2

i 1 gi Ei 0i gi

t F
m j b m

−

=

⎧ ⎫⎪ ⎪= ⎨ ⎬−ω + ω + ω⎪ ⎪⎩ ⎭
∑ u p

y u  (3.62) 

The calculated system response is depicted in Figure 3.5. The time-dependent displace-
ments y(t) are shown. In addition, the absolute value of the frequency-dependent dis-

placements |Y(jω)| are given in Figure 3.6. The frequency-domain depiction, in particular, 
gives insight into the interaction between the load and the system. The displacements 
show spectral peaks at 29 s-1 and 61 s-1, which obviously are caused by the amplification at 
the resonances to the system eigenfrequencies. The further spectral peaks correspond to 
the energy content of the stochastic load. 

Since the transformation of signals from the time domain to the frequency domain and its 
reverse is essential not only for the forward solution but also for the inverse calculation, 
some important fundamentals are summarized in Appendix B. 

 

Figure 3.5: Displacements of the 2-DOF system in time domain 

 

Figure 3.6: Displacements of the 2-DOF system in frequency domain 
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3.3.3 Inverse Calculation 

The solution of the forward problem gives the displacements under the stochastic load for 
the chosen 2-DOF system. The displacements serve as input for the inverse calculation. In 
addition, the system description is known, so that the inverse calculation can be done ac-
cording to the above-mentioned basic equation (3.51), which here is given again. 

  ( ) ( ) ( )est j j j+ω = ω ⋅ ωF H Y  (3.51) 

Since the system is determined, the FRF matrix H(jω) can be inverted by an ordinary matrix 
inversion. A least-squares approach is not applied. For this reason, the inverse FRF matrix is 
gained by the receptance matrix in modal space, as shown above in equation (3.41), but 
now written in matrix form. 

 ( ) ( )
2

E11 2 01
g 2

E2 02

1 0 b 0 0
j j j

0 1 0 b 0
− ⎡ ⎤ω⎡ ⎤⎡ ⎤

ω = ω = −ω + ω + ⎢ ⎥⎢ ⎥⎢ ⎥ ω⎣ ⎦ ⎣ ⎦ ⎣ ⎦
Z H  (3.63) 

The scaling that sets the mass matrix equal to the identity matrix is applied. This decoupled 
system matrix that now represents two linear independent SDOF systems is depicted in 
Figure 3.7. 

 

Figure 3.7: Inverse FRF matrix of the 2-DOF system – absolute value, real part, and imaginary part 

 

The plot of the inverse FRF matrix in Figure 3.7 gives insight into the system characteristics. 
The real part of the inverse FRF matrix depends on the mass and stiffness properties of the 
system, which is in accordance with equation (3.63). The graph of the real part is a quad-
ratic function. Even though the figure does not show the crossing points at the axis of ordi-
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nates, the real parts are equal to zero at the corresponding eigenfrequencies ω0i. The imagi-
nary part of the inverse FRF matrix is a function only of the damping. The graph shows lin-

ear behavior and equals zero at ω = 0. This characteristic is due to the assumption of vis-
cous damping. The slope of the imaginary part is defined by the viscous damping rates bEi. 
The comparison of the absolute values of the inverse FRF matrix to the graphs of the real 
parts and the imaginary parts clarifies the fact that the system behavior is dominated by the 
mass and stiffness properties, whereas the damping plays a secondary role. Consequently, 
the exact knowledge of the mass and stiffness distribution is more important for the inverse 
calculation than knowledge of the system damping. 

The transformation of the inverse FRF matrix into the spatial space is done using the rela-
tionship known from equation (3.45). 

 ( ) ( ) ( )11 T 1 1
0 g 0j j

−− − −ω = ⋅ ω ⋅H HΦ Φ  (3.64) 

The scaled modal matrix has to be used. The eigenvectors cause the coupling of the entries 

of the diagonal matrix ( )1
g j− ωH  so that the spatial space form ( )1 j− ωH  becomes a fully oc-

cupied matrix. 

The inverse calculation gives the loads as depicted in Figure 3.8 and Figure 3.9. Both fig-
ures show a comparison of the applied load p to the inversely calculated load f, each for 
the first and the second DOF separately. Figure 3.8 depicts the comparison in the time-
domain and Figure 3.9 gives the loads in the frequency domain. 

The second DOF was initially unloaded, which can be seen both in the time-domain and 
the frequency-domain plots. For the inversely calculated load, the time-domain and fre-
quency-domain results show an oscillating graph and spectral peaks, respectively. However, 
the order of magnitude is between 10-9 and 10-12. The inversely calculated load at the sec-
ond DOF equals zero, as expected. 

The first DOF is loaded by the stochastic load. Only one graph seems to be visible in the 
time domain and in the frequency domain. In fact, both the applied load and the inversely 
calculated load match perfectly. The amplitudes clearly exceed the numerical inaccuracies. 

To underline this conclusion, the error in the time domain ε between the applied load vec-
tor p(t) and the inversely calculated load vector f(t) is calculated according to equation 
(3.65). 

 
( ) ( )

( )

n
2

i i
i 1

2

p t f t

n max p t

=

−⎡ ⎤⎣ ⎦
ε =

⋅ ⎡ ⎤⎣ ⎦

∑
 (3.65) 

Here, the error in time is ε = 0.00 %. In case of a determined system with accurately known 
system properties and undisturbed input, the inverse load calculation in the frequency do-
main gives exact results. 
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Figure 3.8: Comparison of the loads of the 2-DOF system in the time domain 

 

 

Figure 3.9: Comparison of the loads of the 2-DOF system in the frequency domain 

 

3.3.4 Inverse Calculation with Noise – Solution of the Ill-Conditioning 

As discussed previously, inverse problems are prone to be ill-conditioned. This means that 
small disturbances in the calculation inputs may cause large errors in the solution. Typically, 
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dealing with measurement data that serve as calculation input for the inverse calculation 
automatically leads to the presence of disturbed data. The disturbance of the data is caused 
by noise that is part of the measured signal and does not belong to the system response. 

In order to study the effects of noisy data to the solution on the inverse problem, the in-
verse calculation at the simple 2-DOF system is expanded. The load and the system remain 
in the same configuration. Again, the forward solution serves as a comparative verification. 
The result in form of the displacement vector y(t) is used as calculation input for the inverse 
calculation. However, in this case, the displacements vector is disturbed by a noise term 
e(t), representing white noise, so that the verification procedure is due to Figure 3.10. 

Figure 3.10: Verification of the inverse calculation with noisy data 

 

For the inverse calculation at the 2-DOF system, a noise ratio of Vr = 3 % is chosen (see 
Appendix B). A comparison of the undisturbed displacement signal y1(t) at the DOF 1 to 
the disturbed displacement signal y1(t) + e(t) is shown in Figure 3.11. Indeed, the error can 
be considered small. 

 

Figure 3.11: Displacement at DOF 1 with and without noise 
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The effects of this small disturbance in the input signal to the inversely calculated load are 
depicted in Figure 3.12 and Figure 3.13, at both DOFs each in time domain and frequency 
domain. 

 

Figure 3.12: Load comparison at the 2-DOF system in the time domain with noise 

 

 

 

Figure 3.13: Load comparison at the 2-DOF system in the frequency domain with noise 
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Figure 3.14: Load comparison at the 2-DOF system in the time domain – low-pass filtered noise 

 

 

 

Figure 3.15: Load comparison at the 2-DOF system in the frequency domain – low-pass filtered noise 
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son becomes obvious by looking at the frequency-domain comparison of both loads in 
Figure 3.13. Up to a certain frequency, both graphs seem to match perfectly. With increas-
ing frequency, the inverse load shows continuously rising spectral amplitudes. The inverse 
system amplifies the high frequency components. This behavior was already indicated by 
the undisturbed case – see section 3.3.3, Figure 3.9. In case of noisy data that represent 
small disturbances in the calculation input, these amplifications affect the solution even 
more strongly. This characteristic shows the ill-conditioning of the inverse problem. 

Apparently, the ill-conditioning behavior affects the high frequency components of the in-
verse solution in particular. For this reason, a low-pass filter at the inversely calculated load 
is suggested to overcome the ill-conditioning. The filter has to be set in such a way that the 
lower frequencies that define the load are not influenced, but only the amplification of the 
high frequencies is eliminated.41 In the presented case, the cut-off frequency for the low-

pass filter is set to ωcut-off = 100 s-1. 

The comparison of the filtered inverse load to the applied load is given in Figure 3.14 and 
Figure 3.15, again at both DOFs in time domain and frequency domain. The cut-off fre-
quency of the low-pass filter is clearly visible in the frequency domain depicted in Figure 
3.15. All frequencies above the cut-off equal zero exactly. The lower part of the frequency 
spectrum remains unfiltered.  

It is impotant, taking into account that the inverse calculation of f(t) is based on noisy dis-
placement data y(t) + e(t), whereas the applied load p(t) is undisturbed (Figure 3.10). For 
this reason, a perfect match between the applied load and the inversely calculated load is 
not expected.  

The DOF 1 shows very good accordance between the applied and the inverse load. The 
accordance can be quantified by the error calculated according to equation (3.65). The er-

ror value is ε = 4.87 %. This value determines the difference between the undisturbed ap-
plied load p1(t) and the inversely calculated load f1(t) that is calculated with an noise ratio 
of Vr = 3 %. For the DOF 2, the inverse calculation determines a load f2(t). A mathematical 
quantification of the result quality is difficult because the applied load p2(t) equals zero. 
The amplitudes of f2(t) are small if compared to the amplitudes of the DOF 1. The maxi-
mum at DOF 2 is around 5 % of the maximum at DOF 1. A mathematical comparison of 
the error percentage and the noise percentage is incorrect, since they do not base on the 
same equation. Nevertheless, the two percentage values are in the same range what allows 
assuming that the inverse calculation procedure interprets the noise as an applied load. 

Finally, the following conclusions can be derived: 1) Adding noise to the displacement data 
clearly points out the ill-conditioning behavior of the inverse problem. The ill-conditioning 
causes an amplification of the high frequencies, which can be treated very well with a low-
pass filter. 2) The added noise is interpreted as an applied load. This behavior is expected 
since the purpose of the inverse calculation is not eliminating errors due to wrong input 
data, but rather calculating reliable results even if the input data are disturbed. 3) The ac-
cordance of the inversely calculated load to the applied load is very good, especially at the 
                                               

41 For a more detailed discussion of filter shall be referred to Appendix E. 
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loaded DOF 1. And 4) The error between the undisturbed applied load p1(t) and the in-
verse load f1(t) that is based on noisy displacement data is very small if visually inspected. 

This means, that the error value of ε = 4.87 % represents a small error. This statement is 
important, because the error value does not allow an absolute estimate of the error. The 

error value only can serve as reference between the error values ε calculated within this 
work. 

 

3.3.5 The Least-Squares Approach 

In order to demonstrate the application of the least-squares approach for the solution of 
the inverse problem, the following calculation is shown. The stochastic load from Figure 3.4 
is applied to the 2-DOF system. The inverse FRF matrix is assembled as was mentioned 
above and the calculated displacements of the forward solution are not disturbed by a 
noise term. The solution is obtained using equation (3.51). The complete displacement 
vector of dimension 2x1 is used. Because the DOF 2 is unloaded, the load vector shall be 
reduced to the loaded DOF 1. The FRF matrix H is truncated, thereby eliminating the sec-
ond column. Since H is no longer regular and in a square form, the Moore-Penrose pseudo-
inverse has to be calculated according to equation (3.58) to obtain the inverse FRF matrix 
H+. Consequently, the problem appears with the following dimension. 

 
( )
( )

1
1,1 1,1 1,2

2

Y j
F H H

Y j
+ + ω⎡ ⎤

⎡ ⎤= ⋅⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ω⎣ ⎦
 (3.66) 

 

The solution of the inverse problem using the least-squares approach is given in Figure 
3.16. The time-domain comparison of the inverse load f(t) to the applied load p(t) is shown 
for both DOFs. As expected, the inversely calculated load at the DOF 2 equals zero, be-
cause it is set to zero under constraint due to the problem definition. For this reason, a de-
piction of the DOF 2 in frequency domain is omitted. The frequency spectrum of the loads 
at the DOF 1 is shown below. The inversely calculated load matches the applied load per-
fectly, both in time domain and frequency domain. This statement is proved by the time-

domain error of ε = 0.00 %. 
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Figure 3.16: Least-squares solution for the inverse problem at the 2-DOF system 

 

3.4 Summary 

Different methods for the solution of inverse problems are discussed. The advantages and 
drawbacks of several methods are set into relation to the requirements of the inverse load 
calculation for wind turbines. The DFD – a frequency-domain based procedure – is chosen. 
The discussion reveals that this method matches the specific requrements best. The theo-
retical fundamentals of the method are presented. 

 

Using a simple numerical 2-DOF example, the system properties are discussed by means of 
the inverse FRF matrix. The implementation of the mathematical procedure for the inverse 
calculation in the frequency domain is shown. 

The ill-conditioning of the inverse problem is illustrated by adding artificial white noise to 
the displacement signals that serve as calculation input for the inverse calculation. The ef-
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fects of the ill-conditioning become obvious by an amplification of the high frequencies in 
the inversely calculated load. It is shown, that the ill-conditioning can be handled very well 
using a low-pass filter.  

Disturbing the input data by adding noise shows the inverse calculation interpreting the 
noise as applied load. If the ratio between the noise and the load is small, the results of the 
inverse calculation are very good. 

An error value is introduced that allows estimating the quality of the inverse calculation if 
compared to a known applied load. This error value allows comparing the calculations 
within this work, but cannot be taken for assessing an absolute error. 

Thus far, all calculations are performed at determined systems. In practice, over-determined 
systems are aspired to, because this approach allows for the elimination of random errors. 
For this reason, the results for a least-squares solution are shown. 
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4 Inverse Load Calculation at a 5 MW Onshore 
Wind Turbine Model 

 

The previous section explained the theoretical foundations of the inverse load calculation in 
the frequency domain. Important characteristics such as the properties of the inverse sys-
tem, the handling of the ill-conditioning in case of disturbed calculation input data, and the 
solution using a least-squares approach were discussed for a simple 2-DOF system. 

However, this simple 2-DOF system is still far away from representing a real wind turbine. 
In order to approach more realistic problems, this section deals with the inverse load calcu-
lation using a model simulated with the comprehensive simulation code FAST.42 FAST can 
perform simulations of both onshore and offshore wind turbines. In onshore simulations, 
FAST accounts for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and 
control of the wind turbine.43 In order to permit fast simulation runs, FAST is limited to the 
essential number of DOFs. Thus, on one hand, FAST is able to model realistic wind turbine 
characteristics with an appropriate quality. On the other hand, the amount of system in-
formation that has to be considered and interpreted within the inverse calculation is lim-
ited. The combination of both features is advantageous for verifying the inverse load calcu-
lation procedure. The model chosen is a 5 MW onshore wind turbine with a tubular steel 
tower.44 This wind turbine size represents the current state of technology. The FAST simula-
tion calculates structural dynamic responses that can be output both as accelerations and as 
displacements. Since measurements usually record acceleration data and the chosen inverse 
calculation procedure demands for displacements, the simulation results are used to show 
the integration process. The accuracy of the integration is assessed. 

Hence, in contrast to the simple 2-DOF system the following additional effects are taken 
into account and studied in this section. 

• Loads from defined wind-inflow conditions 
• Coupled dynamics of the wind inflow, aerodynamics, elasticity, and control 

of the wind turbine 
• Nonlinearities in the system model (particularly in the rotor aero/struc-

ture/control) 
• Integration of acceleration signals to displacements 

The verification procedure of the inverse calculation basically follows the same steps as the 
procedure introduced in section 3.3.1, Figure 3.2. The solution of the forward problem is 

                                               

42 See Jonkman and Buhl (2005) [45]. 
43 See Jonkman et al. (2008) [47]. 
44 See Jonkman et al. (2009) [49]. 
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used as calculation input for the inverse load calculation. The calculation input is either 
given by displacement data y(t) or by acceleration data a(t). The model is defined by the 
system matrices and the applied load serves as a reference for the inversely calculated load, 
which is again illustrated in Figure 4.1. Under onshore conditions, the scope of the inverse 
load calculation is the determination of a rotor thrust force (see section 2.2.2 and Figure 
2.9), which is denoted as f(t) in Figure 4.1. For reasons of comparability, the applied load 
p(t) is not the wind field, but the rotor thrust force of the FAST simulation. The simulated 
rotor thrust force is considered a reasonable approximation of the applied load. The rotor 
thrust output from FAST does not represent the applied aerodynamic thrust, but the force 
transmitted between the rotor and the low-speed shaft. This force includes both the ap-
plied aerodynamic thrust as well as the rotor inertia forces from the turbine vibration. 

 

Figure 4.1: Scheme for the verification of the inverse calculation using FAST 

 

In this chapter, the theoretical basics of the simulation environment are first given in sec-
tion 4.1. Thereafter, the analysis in FAST is described, including the chosen model (section 
4.2). Additionally, the linearization is discussed, which is needed to obtain the system ma-
trices of the wind turbine model. The model description includes a description of the set-
tings chosen for the FAST simulation. Section 4.3 presents the results of the inverse load 
calculation. The inverse load calculation requires the integration and the filtering of signals. 
Appendix E summarizes the methods and assumptions made. 

 

4.1 Theoretical Fundamentals of FAST and AeroDyn 

FAST, which stands for “Fatigue, Aerodynamics, Structures, and Turbulence”, is a compre-
hensive aeroelastic simulator. FAST is developed for computing the extreme and fatigue 
loads of two- and three-bladed horizontal-axis wind turbines (HAWTs). FAST is able to pre-
dict loads for both onshore and offshore wind turbines. This section does not give a com-
plete overview of all the capabilities of FAST. Since this section focuses on the simulation of 
a three-bladed horizontal-axis onshore wind turbine, the given description of the theoreti-
cal foundations is limited to those conditions. The described theory is basically taken from 
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the FAST User’s Guide45, unless further references are cited. Subsequently, the theory for 
the comprehensive simulation code FAST and for the subroutine AeroDyn46 is given. Aero-
Dyn accounts for the calculation of the aerodynamics of a HAWT.47 In this work, the FAST 
version v7.00.01 [116] is used. 

 

4.1.1 FAST 

In general, FAST enables an aero-hydro-servo-elastic simulation for horizontal-axis wind 
turbines. Several turbine configurations can be modeled. They can be categorized as fol-
lows: 

• Number of rotor blades - two-bladed or three-bladed 
• Wind direction  - upwind or downwind 
• Hub configuration  - rigid or teetering 
• Yaw system   - control driven or rotor- and/or tail-furling 
• Site condition  - land-based or sea-based 
• Foundation type  - rigid or flexible 
• Offshore foundation  - monopile or floating 

 

Basically, the system model is a combination of multi-body and modal dynamics formula-
tions. Structural components such as the platform, the nacelle, the generator, the gears, the 
hub, and the tail are modeled as multi-bodies. The blades and the tower are described by a 
modal-dynamics formulation. A three-bladed HAWT is modeled by a total of 24 DOFs. The 
number of DOFs result from 6 DOFs for the translational and rotational motions of the 
foundation relative to the inertial frame, 4 DOFs for the tower motions, 1 DOF for the yaw-
ing motion of the nacelle, 1 DOF for the generator azimuth angle, 1 DOF for the rotational 
flexibility of the drivetrain, 3 DOFs for the 1st flapwise tip motion at each blade, 3 DOFs for 
the 2nd flapwise tip motion at each blade, 3 DOFs for the 1st edgewise tip motion at each 
blade, 1 DOF for rotor-tail and 1 DOF for rotor-furl. Any combination of the DOFs can be 
enabled. 

The structural dynamics model is based on the solution of the kinematics expressions for 
the positions, velocities, and accelerations at all appropriate DOFs. Using Kane’s dynamics 
enables establishing the partial velocity vectors. The combination with the generalized ac-
tive and inertia forces leads to the complete non-linear time-domain equation of motions 
in general form48 

 ( ) ( )d, ,t f , , , ,t+ =M q u q q q u u 0  (4.1) 

                                               

45 See Jonkman and Buhl (2005) [45]. 
46 The version AeroDyn v13.00.00 [115] is used. 
47 For a discussion regarding the calculation of the hydrodynamics in case of an offshore wind tur-

bine shall be referred to section 6.1.1. 
48 See Jonkman (2007) [46]. 
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with the inertia mass matrix M , the non-linear forcing function ( )f , the vector of dis-

placements q , its derivatives in time q  (vector of velocities) and q  (vector of accelera-

tions), the vector of control inputs u , the vector of wind input disturbances du  , and the 

time t . 

In equation (4.1)49, the inertia mass matrix M has dimensions n x n, with n representing the 
number of DOFs. The time-dependent inertia mass matrix depends non-linearly on the dis-
placement vector q at the DOFs and the control inputs u. The vector q  is the second-order 

time derivative of the displacement vector q, presenting the accelerations. The forcing 
function f is time-dependent as well and depends non-linearly on the displacements q at 
the DOFs, their first-order time derivative q  (velocities), and the input vectors for the con-

trols u and the wind disturbances ud. The system of equations can be solved for each time 
step for the accelerations. FAST uses a matrix inversion method based on the Gauss elimi-
nation. To solve the resulting differential equations a fourth-order Adams-Bashforth predic-
tor and Adams-Moulton corrector is applied. Since the method is not self-starting, a fourth-
order Runga-Kutta method is used for the first four steps.50  

To set up the structural dynamics model, the foundation pitch, roll, and yaw rotations em-
ploy small angle approximations with correction of orthogonality. The motions of the 
blades and the tower are limited to moderate deflections. All other DOFs may exhibit large 
displacements without loss of accuracy. 

The blades and tower in FAST are modeled with a nonlinear Bernoulli-Euler beam formula-
tion, but using a linear superposition of shape functions derived from a linear modal analy-
sis. To ensure coordinate system orthogonality, small angle approximations with correction 
are employed, which includes correction for radial shortening. The beam elements are 
straight with linear isotropic material and no mass or elastic offset. The description of the 
tower is initially limited to four different mode shapes, two in fore-aft and two in side-side 
direction. The mode shapes take the form of a sixth-order polynomial, cantilevered at the 
base. This assumption requires zero deflection and slope at the base, whereas the tower 
top deflection is normalized to 1. The blade mode shapes are defined similar to the tower 
mode shapes. The two flapwise modes and the edgewise mode are defined with respect to 
the local structural twist that is three-dimensional since the shape twists with the blade. 
The tip of a twisted blade will deflect in both the in-plane and out-of-plane directions due 
to a pure flapwise deflection – the edgewise mode works similar. The mode shapes are in-
put parameter to FAST. 

The drivetrain is modeled as an equivalent shaft separating the generator from the hub. The 
shaft is represented by a linear torsional spring and a linear torsional damper. The generator 
defines the rotational speed at the generator side of the shaft. Several generator models for 
control purposes are available (see Jonkman and Buhl (2005) [45], p.11). The nacelle yaw 
is modeled using a yaw spring and a yaw damping. Both parameters can be set in a way so 

                                               

49 See Jonkman (2011) [50]. 
50 See Wilson et al. (1999) [102]. 
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that either a perfect hinge with no resistance forces, a free-yaw machine with yaw damp-
ing, or the flexibility and the damping of a yaw-driven turbine whose commanded yaw po-
sition is held constant can be modeled. Additionally, the nacelle yaw motion can be con-
trolled actively during simulation. 

Since rotor-furl, tail-furl, and consequently tail-fin aerodynamics represent unusual turbine 
configurations that are not discussed in this work, these aspects are not described. 

For the foundation, FAST provides the modeling of either an onshore foundation, a fixed-
bottom offshore foundation, or floating offshore configurations. Disabling all three options 
results in a rigid cantilever connection of the tower to the inertia frame (ground). 

During time-marching analysis five basic methods of control are available: pitching the 
blades, controlling the generator torque, applying the high-speed shaft (HSS) brake, de-
ploying the tip brakes, and yawing the nacelle. 

The time-marching simulation allows the computation of special events such as turbine 
startup, normal pitch-to-feather shutdown, one blade feather accidentally, HSS brake shut-
down after loss of grid, HSS brake shutdown with generator brake, normal tip brake shut-
down, tip brake shutdown after loss of grid, accidental deployment of tip brake, idling tur-
bine, parked turbine. 

FAST generates different output files depending on the settings in the input files. For time-
marching analysis various output parameters are defined. The output files contain columns 
of time series of each requested output variable. The output variables can be summarized 
into the following categories51: wind motions, blade tip motions, blade local span motions, 
blade pitch motions, shaft motions, nacelle inertial measurement unit motions, nacelle yaw 
motions, tower-top/yaw-bearing motions, local tower motions, platform motions, blade 
root loads, blade local span loads, hub and rotor loads, shaft strain gage loads, generator 
and HSS loads, tower-top/yaw-bearing loads, tower base loads, local tower loads, platform 
loads. 

Beyond that, FAST provides interfaces to other software packages. Thus, FAST can be used 
as a preprocessor for generating ADAMS52 datasets of wind turbine models. Additionally, a 
FAST to master controller is implemented as a dynamic-link-library (DLL) in the style of 
Garrad Hassan’s Bladed wind turbine software package. And finally, the interface between 
FAST and Simulink53 with MATLAB enables advanced turbine controls in Simulinks conven-
ient block diagram form. The software tool FAST is certified by Germanischer Lloyd Wind 
Energie for “the calculation of onshore wind turbine loads for design and certification”. 

 

                                               

51 All output categories regarding teeter, rotor-tail, and rotor-furl are omitted. For more details see 
Jonkman and Buhl (2005) [45]. 

52 ADAMS is used to imply ADAMS® 
53 Simulink is used to imply Simulink® 
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4.1.2 AeroDyn 

AeroDyn is a set of routines for predicting the aerodynamics of horizontal-axis wind tur-
bines. AeroDyn is proposed for usage in conjunction with an aeroelastic simulation tool. 
Running FAST inherently implies the use of AeroDyn as subroutine to predict the aerody-
namics. 

AeroDyn can calculate wind turbine wake. One of the two models can be used: the blade 
element momentum (BEM) theory and the generalized dynamic wake (GDW) theory. The 
blade element momentum theory is the classical standard. BEM allows various corrections 
such as incorporating the aerodynamic effects of tip losses, hub losses and skewed wakes. 
The generalized dynamic wake theory is a more recent model. All of the effects described 
for the BEM are automatically included in the GDW. Beyond that, the generalized dynamic 
wake theory is useful for modeling non-stationary wake dynamics. Both theories are used 
to calculate the axial induced velocities from the wake in the rotor plane. Additionally, 
AeroDyn has the option of calculating the rotational induced velocities. 

Particularly for yawed wind turbines, a dynamic stall model based on the semi-empirical 
Beddeos-Leishman model is available. The tower shadow and upwind tower-influences are 
calculated as well. These aerodynamic models are based on potential flow around a cylin-
der and an expanding wake. A detailed discussion of the underlying assumptions and equa-
tions is given in Moriarty and Hansen (2005) [69]. 

The communication between FAST and AeroDyn is defined by input and output files. Ae-
roDyn uses the inputs from the main FAST input file. Additionally, a simple text file is 
needed that defines hub-height wind data, including wind shears and gusts. 

Moreover, full-field wind data are required. In this work, TurbSim54 is used whose theoreti-
cal foundations are thoroughly described in Jonkman (2009) [44]. TurbSim is a stochastic, 
full-field, turbulent-wind simulator. TurbSim describes the full-field wind data by two-
dimensional vertical rectangular grids of three-component wind-speed vectors fixed in 
space that march past the turbine at mean wind speed. Taylor’s frozen turbulence hypothe-
sis is used to obtain local wind speeds by interpolating the TurbSim-generated wind fields 
in both time and space. Spectra of velocity components and spatial coherence are defined 
in the frequency domain. An inverse Fourier transformation produces time series. This pro-
cedure demands a stationary process. The simulation of non-stationary components is done 
by superimposing coherent turbulent structures onto the generated time series or by run-
ning separate simulations with different wind inputs. 

 

4.2 Analysis in FAST 

Subsequently, the chosen wind turbine model will be described in detail. FAST has two 
different analysis modes – simulation and linearization. Both are used in this work. The ob-
jectives as well as the input and output parameters are described. 

                                               

54 The version TurbSim v1.50 [117] is used. 
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4.2.1 Description of the 5 MW Wind Turbine Model 

The scope of the study using FAST is to investigate the effects of coupled dynamics of the 
wind inflow, aerodynamics, elasticity, and control of the wind turbine. In order to use a 
wind turbine type that represents the current state of technology, the NREL 5 MW refer-
ence wind turbine model is chosen. The structural properties of this model are described in 
Jonkman et al. (2009) [49]. A brief summary is given in Table 4.1. 

The NREL 5 MW reference wind turbine model is a conventional three-bladed upwind vari-
able-speed variable pitch-to-feather-controlled turbine. An illustration of the wind turbine 
model is given in Figure 4.2, right. The turbine has a hub height of 90 m and rotor-blade 
lengths of 63 m. A scheme of the variable definition as used in FAST is shown in Figure 4.2, 
left. To focus exclusively on the aeroelastic interaction and turbine control influences, a 
simple structure is desired. For this reason, the tubular tower structure with a rigid founda-
tion is preferred. Any combination of the available DOFs can be enabled. Here, 16 DOFs 
are enabled so that the dynamics of the following components are represented: 

 

 

Figure 4.2: Variable definition in FAST 

 

• 1st and 2nd flapwise 
blade modes 
(3 blades) 

• 1st edgewise blade 
modes (3 blades) 

• Drivetrain rota-
tional flexibility, 
generator, yaw 

• 1st and 2nd tower 
bending modes in 
fore-aft and side-
side direction 

_ 6 DOFs

_ 3 DOFs

_ 3 DOFs

_ 4 DOFs

Figure taken from Jonkman
and Buhl (2005) [45].
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Table 4.1: Summary of the NREL 5 MW reference wind turbine model properties 

Tower properties 

 Material 
Shape 
Discretization 1) 

Height of tower 
Base diameter 
Thickness of base tower section 

Top diameter 
Thickness of top tower section 
Young’s modulus 

Shear modulus 
Effective density of the steel 2) 
Overall integrated mass 

Structural damping ratio 3) 

steel 
tubular 

10 

87.60 
6.00 

0.027 

3.87 
0.019 

2.10 ⋅ 105 

8.08 ⋅ 104 
8,500 

347,460 
1 

 
 
segments 

m 
m 
m 

m 
m 
N/mm² 

N/mm² 
kg/m³ 
kg 

% 

Rotor blade structural properties 

 

Number of blades 
Material 
Discretization 

Rotor radius 
Overall integrated blade mass 
Nominal second mass moment of inertia 4) 

Nominal first mass moment of inertia 4) 
Nominal radial CM location 4) 
Structural damping ratio 5) 

3 
glass fiber 

17 

63 
17,740 

11,776,047 

363,231 
20.047 

0.477465 

 
 
elements 

m 
kg 

kg⋅m² 

kg⋅m 
m 

% 

Hub and nacelle properties  

 

Hub height 

Horizontal upwind location w.r.t. tower center line 
Vertical distance from tower top 
Shaft tilt 

Hub mass 
Hub inertia about the shaft 
Nacelle mass 

Nacelle inertia about yaw axis 

90 

5.00 
2.40 

5 

56,780 
115,926 
240,000 

2,607,890 

m 

m 
m 
° 

kg 

kg⋅m² 

kg 

kg⋅m² 

Drivetrain properties 

 
Rated rotor speed 
Generator inertia about high-speed shaft 

12.1 
534.116 

rpm 

kg⋅m² 
1) The radius and thickness is assumed to be linearly tapered from the tower base to the tower top. 
2) The density of 8,500 kg/m³ is meant to be an increase above steel’s typical value of 7,850 kg/m³ to 

account for paint, bolts, welds, and flanges that are not accounted for in the tower thickness data. 
3) The structural damping ratio is the percentage of critical damping in all tower modes of the isolated 

tower, without the rotor-nacelle assembly mass presented. 
4) With respect to the blade root. 
5) The structural damping ratio is the percentage of critical damping in all modes of the isolated blade. 
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The NREL 5 MW reference wind turbine model is created with a heavy emphasis on the 
public information of the REpower 5M machine. For this reason, this verification study will 
also gain useful predictions for the investigation presented in section 5, since section 5 will 
deal with the inverse load calculation at a wind turbine support structure carrying a RE-
power 5M machine.  

 

4.2.2 Time-Marching Simulation 

Simulation is time-marching of the non-linear equations of motion. During simulation, the 
wind turbine aerodynamics and the structural response to wind-inflow conditions are de-
termined in time. Output data include time series of the aerodynamic loads as well as the 
loads and deflections of the structural members of the wind turbine. 

Using TurbSim [44], stochastic turbulent wind fields are generated as input for the simula-
tions. Three load cases (LC) are defined according to IEC 61400-1 Ed. 3: 2005 [107]. Nor-
mal wind conditions for power production conditions are chosen. Such load conditions are 
dominant contributions to fatigue, which the inverse load calculation aims to predict. 

 

 

Figure 4.3: Qualitative power curve of a wind turbine and chosen load cases (LC) 

 

In order to study the influences of turbine control, load cases with mean wind speeds at 
hub height between cut-in and rated wind speed (middle of region 2), near rated wind 
speed and between rated and cut-out wind speed (middle of region 3) are chosen. The 
qualitative relation between the power curve of a wind turbine and the wind speed is given 
in Figure 4.3. Thus, conditions with little expected control activity (load case 1) and high 
expected control activity (load case 3) are generated. In addition, load case 2 represents 
the transition between controllers where maximum thrust occurs. An overview of the load 
cases is given in Table 4.2. 

Wind speed at 
hub height in m/s 

Power production 

vcut-in = 3 vrated = 11,4 vcut-out = 25 

region 1 region 2 region 3 region 4 

LC 1 LC 2 LC 3 
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Table 4.2: Load cases for the FAST verification study 

Load case Mean wind speed 1) Turbulence type Turbulence characteristic 

1 7 m/s 

2 12 m/s 

3 18 m/s 

NTM 2) B 3) 

1) At hub height, power law exponent 0.20. No horizontal shear about rotor disk is considered. 
2) Normal turbulence model [107]. 
3) Medium turbulence characteristic – 14 % turbulence intensity at 15 m/s [107]. 

 

Table 4.3: Output signals for the FAST verification study  

Turbine signals 

 WindVxi 

HorWndDir 

PtchPMzc1 to ~3 

LSSTipVxa 

YawPzn 

GenTq 

Normal downwind component of the hub-height wind velocity (m/s) 

Horizontal hub height wind direction (deg) 

Blade pitch angle (deg) 

Rotor azimuth angular speed (rpm) 

Nacelle yaw angle (deg) 

Electrical generator torque (kNm) 

Motions of the structure 

 YawBrTDxt 

YawBrTAxp 

TwHtiTDxt 1) 

TwHtiALxt 

PtfmTDxt 

PtfmTAxt 

Tower top fore-aft deflection (m) 

Tower top fore-aft acceleration (m/s2) 

Local tower fore-aft displacements at the i-th tower gage (m) 

Local tower fore-aft accelerations at the i-th tower gage (m/s2) 

horizontal surge displacement (m) 

horizontal surge acceleration (m/s2) 

Force signals 

 LSShftFxa /   
RotThrust 

YawBrFxn 

LSS2) thrust force, constant along shaft and equivalent to rotor thrust 
force (kN) 

Rotating (with nacelle) tower top / yaw bearing shear force (kN) 

1) The output of the local tower displacements is not an available option of the current FAST version 
v7.00.01. For this reason, the FAST source code was adjusted so that the output of the local tower dis-
placements is enabled.  

2) LSS – low-speed shaft. 

 

The simulation settings are run in a way that closely meets the requirements from the de-
sign stage and from practical field test conditions. The simulation time is set to 600 s. Also, 
the time- to frequency-domain transforms are sufficiently accurate for this simulation 
length. The simulation time steps are set to dt = 0.0125 s. Output data are stored every 
0.05 s. 
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Full-span collective blade-pitch control and variable-speed generator-torque control are 
enabled for the turbine control. FAST also provides nacelle yaw control, which is not used 
in this study because the influence of a changing yaw angle is not of high interest in the 
verification of the inverse load calculation. Only an additional coordinate transformation 
would be required. 

The output signals, requested from the FAST analysis, are summarized in Table 4.3. The 
turbine signals are principally chosen for a plausibility check of the FAST analysis and visu-
alization of the turbine control. The motions of the structure and the force signals serve as 
input signals for the inverse load calculation. The input signals also include the rotor thrust 
force computed by FAST, which is used as a comparative signal for the inversely calculated 
load. The signals used for the inverse calculation are bold. 

The results of the simulation are presented in connection with the inverse load calculation, 
which are part of section 4.3. A brief summary of the results is also given in Pahn et al. 
(2012) [80] and in Pahn and Rolfes (2012) [81]. 

 

4.2.3 Linearization 

FAST can extract linearized representations of the complete non-linear aeroelastic wind 
turbine, as described in the FAST user’s guide [45]. This capability is used for developing 
state matrices and is useful for determining the full system modes of an operating station-
ary HAWT through the use of an eigenanalysis. The linearization process consists of two 
steps: computing a periodic steady state operating point condition for the DOFs, and nu-
merically linearizing the FAST model about the operating point to form periodic state ma-
trices. Then, the output state matrices can be azimuth-averaged for non-periodic or time-
invariant controls development. 

To obtain the periodic steady state solution, determining an operating point to linearize the 
model about is the first step in the linearization process. An operating point is a set of val-
ues of the system DOF displacements, DOF velocities, DOF accelerations, control inputs, 
and wind inputs that characterize a stationary condition of the wind turbine. For a wind 
turbine operating in stationary winds, this operating point is periodic. This periodicity is 
driven by aerodynamic loads, which depend on the rotor azimuth position, caused by shaft 
tilt (which leads to gravitational loads), wind shear, yaw error, tower shadow, and further 
gravitational loads if the tower is deflected to the thrust loading considerably. The compu-
tation of the steady state solution is done iteratively. FAST integrates the non-linear equa-
tion of motions in time until the solution converges. Convergence is defined by the 2-norm 
of the differences between conditions at the beginning and the end of each period of rotor 
revolution of the rotor. The 2-norm is computed for the angular displacement vector differ-
ences and the angular velocity vector differences. 

Once a periodic steady state solution is found, the linearization step follows. FAST numeri-
cally linearizes the complete non-linear aeroelastic model about the operating point. The 
linearized representation of the model is periodic, because the operating point is periodic 
with the rotor azimuth position. The output of FAST is given at a number of equally spaced 
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rotor azimuth steps. The resulting matrices can be averaged over the different steps. The 
FAST linearization routine can be used to develop both first-order and second-order lin-
earized representation of the non-linear aeroelastic model. 

A description of the system is needed to calculate loads inversely. For the FAST verification 
study, the linearization is used to obtain the second-order system matrices of the 5 MW 
reference wind turbine model. 

The calculation of an operating point depends on whether the rotor is ‘stationary’ or ‘spin-
ning’. In case of a spinning rotor, FAST allows the differentiation between a ‘constant-
speed turbine’ and a ‘variable-speed turbine’. The determination of the operating point for 
a variable speed turbine can be done by a trim analysis. A trim analysis is the process of 
trimming a control input in order to reach a desired azimuth-averaged rotor speed while 
holding all other inputs constant. Three cases are available that allow trimming the 1) na-
celle yaw control input, 2) electrical generator torque that is recommended for variable 
speed turbines in region 2, and 3) rotor collective blade pitch that is recommended for 
variable-speed turbines in region 3. An illustration of the different options for the calcula-
tion of the operating point is given in Figure 4.4. 

 

 

Figure 4.4: Options to calculate the operating point for the linearization in FAST 

 

4.2.4 System Matrices and Modal Reduction 

The results of the linearization, which are the system matrices, amongst others, are gained 
by a post-processing step that is carried out after the linearization in FAST. With the FAST 
package a MATLAB routine is available that allows the linearization results to be output in 
MATLAB format. 

 

■ Full-system eigenfrequencies 

In case of a stationary rotor, the steady state solution is not periodic because the rotor is 
not spinning. Thus, the turbine is represented in standstill, which could be used as an ap-
proximation for the wind turbine in operation. In order to determine if this approximation 

Periodic steady 
state solution 

Stationary rotor 

Spinning rotor 

Constant speed 

Variable speed 

Trim case 1   - nacelle yaw 

Trim case 21) - generator torque 

Trim case 32) - rotor collective 
blade pitch 1) if operating point is in region 2 

2) if operating point is in region 3 
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is appropriate or if the system matrices need to be calculated under spinning rotor condi-
tions for a variable-speed turbine, a short case study is presented. The three following set-
tings are calculated. 

• Setting i) A stationary rotor. 

• Setting ii) A variable-speed wind turbine with a spinning rotor and a 
constant wind speed in region 2 that implies trim case 2, 
which is regulated by the generator torque. 

• Setting iii) A variable-speed wind turbine with a spinning rotor and a 
constant wind speed in region 3 that implies trim case 3, 
which is regulated by the rotor collective blade pitch. 

 

The chosen linearization paths are marked by the solid lines in Figure 4.4. The setting i) 
requires disabling the generator DOF; the initial conditions of the linearization are set to 
zero. Brief summaries of the setting ii) and iii) are given in Appendix C. 

The case study of the linearization is based on the comparison of the eigenfrequencies. The 
eigenfrequencies of the NREL 5 MW reference wind turbine model are already known from 
its documentation.55 The full-system eigenfrequencies are calculated by FAST and in addi-
tion by ADAMS, whereas FAST was used to build up the model. Comparing the eigenfre-
quencies that result from the three settings to the given eigenfrequencies allows demon-
strating the accuracy of the calculated linearization.  

 

Table 4.4: Full-system eigenfrequencies of the NREL 5 MW reference wind turbine model in Hz 

Reference values Calculated eigenfrequencies 

Mode FAST ADAMS Setting i) Setting ii) Setting iii) 

1st Tower fore-aft 0.3240 0.3195 0.3243 0.3263 0.3297 

1st Tower side-side 0.3120 0.3164 0.3137 0.3208 0.3211 

1st  Drivetrain Torsion 0.6205 0.6094 0.6199 1.6990 1.6354 

1st Blade Assym. Flap. Yaw 0.6664 0.6296 0.6673 0.5645 0.5762 

1st Blade Assym. Flap. Pitch 0.6675 0.6686 0.6756 0.7133 0.7315 

1st Blade Collective Flap. 0.6993 0.7019 0.6988 0.8216 0.8500 

1st Blade Assym. Edge. Pitch 1.0793 1.0740 1.0796 0.9560 0.9163 

1st Blade Assym. Edge. Yaw 1.0898 1.0877 1.0911 1.2261 1.2514 

2nd Blade Assym. Flap. Yaw 1.9337 1.6507 1.9209 1.8408 1.8210 

2nd Blade Assym. Flap. Pitch 1.9223 1.8558 1.9963 2.0357 2.0169 

2nd Blade Collective Flap. 2.0205 1.9601 2.0201 2.1066 2.1470 

2nd Tower fore-aft 2.9003 2.8590 2.9188 2.9204 2.9061 

2nd Tower side-side 2.9361 2.9408 2.9530 2.9538 2.9733 
 

                                               

55 See Jonkman et al. (2009) [49], p. 30. 
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Table 4.4 shows the full-system eigenfrequencies. The columns labeled with FAST and AD-
AMS give the eigenfrequencies published in the documentation55, which serve as reference 
values. The columns superscribed by the three settings contain the calculated eigenfre-
quencies56 gained by the linearizations according to the described input variables. An em-
phasis is laid on the tower bending modes because they are of special interest for the in-
verse load calculation. The calculated eigenfrequencies of the tower bending modes match 
very well, which is true for all three settings. The modes for the drivetrain and the blades of 
setting i) are in particularly good accordance with the reference values. The blade modes of 
the settings ii) and iii) vary slightly in comparison to those given by the reference values. 
The drivetrain natural frequency changes dramatically between setting i) and ii) because the 
generator is locked in the former (giving a fixed-free mode) and free in the later (giving a 
free-free mode). 

In this work, only the tower bending modes of the system are used for the inverse load 
calculation, as pointed out in section 2.2.2. As long as the tower bending modes are 
needed, each of the three presented settings i), ii), and iii) might be used. 

 

■ Reduction of the system 

As a matter of fact, the system matrices, which lead to the eigenfrequencies and the corre-
sponding modes (see Table 4.4), are based on the full system. Since the chosen approach 
for the inverse calculation57 requires the fore-aft modes, the system has to be reduced to 
these modes. 

The system is reduced according to an algorithm that is described, for example, in Gasch 
and Knothe (1989) [26] and is summarized briefly in Appendix D. The reduction is based 
on the linear time-invariant equation of motion with n DOFs, as given previously in equa-
tion (3.14). By the means of a transformation matrix T that is left-multiplied to the system 
matrices of the EoM, the reduced system is created. Three system reduction methods exist 
that differ in the way in which they compose the transformation matrix. A brief discussion 
of these methods is given in Appendix D.   

In this work, the dynamic characteristics of the system are decisive for the system reduc-
tion. Additionally, the chosen approach aims to reduce the system to a small number of 
DOFs. This requirement is particularly important if an updated FE model is used, which 
initially is described by a huge number of DOFs. For these reasons, the so-called modal 
reduction is chosen. 

 

                                               

56 The relation between the eigenfrequencies and the mode shapes is obtained by the use of an EX-
CEL sheet that requires the results of the post-processing MATLAB routine. The EXCEL sheet is 
part of the FAST package. 

57 See section „2.2.2 Scope of the Inverse Load Calculation“, page 24. 
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■ System matrices for the inverse load calculation 

FAST gives the square full-system matrices depending on the settings for the linearization 
(see section 4.2.3). The full-system matrices can be post-processed e.g. with MATLAB. The 
setting i) represents a stationary rotor, which requires disabling the generator and yaw 
DOF. For this reason, the system matrices are 14 x 14 in dimension. Since the rotor is not 
spinning, the rotor azimuth position is not changing and consequently, the system matrices 
are constant as well. The settings ii) and iii) consider a variable-speed turbine with a spin-
ning rotor. A periodic steady state solution is found by trimming in ii) the generator torque 
and in iii) the rotor collective blade pitch. The generator DOF is enabled. Additionally, the 
system matrices are periodic about the rotor azimuth position. For the linearization, the 
system matrices are calculated at 36 rotor azimuth steps. For this reason, the matrices are 
15 x 15 x 36 in dimension. In further calculations, these system matrices are azimuth-
averaged, which leads to matrices of dimension 15 x 15. 

Once the matrices are derived, the modal reduction can be performed. The post-processing 
with MATLAB allows for relating the vibration modes to the entries in the system matrices. 
An eigenvalue analysis gives the modal matrix. Since the system shall be reduced to the 
fore-aft tower bending modes,58 the transformation matrix is composed of the eigenvectors 
of the 1st fore-aft tower bending mode and the 2nd fore-aft tower-bending mode. The trans-
formation matrix is of dimension n x 2, with n = 14, 15. 

 fore aft fore aft
01 02

n,2

− −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T u u  (4.2) 

Reducing the system matrices according to the theory of the modal reduction59 gives the 
reduced mass and stiffness matrix, both of dimension 2 x 2. 

 red T red T= =K T KT M T MT  (4.3) 

The reduced mass and stiffness matrices are diagonal and contain generalized entries due to 
the orthogonality of the eigenvectors. The comparison of the eigenfrequencies of the full 
system to the eigenfrequencies of the reduced system gives information about the quality 
of the system reduction. The comparison is shown in Table 4.5. 

 

Table 4.5: Comparison of the full-system eigenfrequencies to the reduced-system eigenfrequencies  

Setting i) Setting ii) Setting iii) 

Mode full reduced full reduced full reduced 

1st fore-aft tower bending 0.32 Hz 0.32 Hz 0.33 Hz 0.33 Hz 0.33 Hz 0.33 Hz 

2nd fore-aft tower bending 2.92 Hz 2.92 Hz 2.92 Hz 2.94 Hz 2.91 Hz 2.96 Hz 

 

                                               

58 An explanation of the scope of the inverse calculation is given in section 2.2.2. 
59 See Appendix D 
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The comparison in Table 4.5 shows a nearly perfect match between the full-system eigen-
frequencies of the fore-aft tower bending modes and those from the reduced system. Espe-
cially for setting i), the reduced system represents the full-system eigenfrequencies exactly. 
The differences that occur for setting ii) and iii) can be neglected. 

The different settings only show negligible variances regarding their eigenfrequencies if 
they are compared to each other. Hence, the choice of the linearization setting is not a de-
cisive factor. For this reason, the system description derived from the setting i) that repre-
sented the stationary rotor are chosen for the inverse load calculation. Consequently, the 
mass and stiffness matrix are as follows. 

 
6

red 1
6

1.06 10 0
in Nm

0 0.92 10
−⎡ ⎤⋅

= ⎢ ⎥⋅⎣ ⎦
K  (4.4) 

 
5

red
3

2.56 10 0
in kg

0 2.73 10

⎡ ⎤⋅
= ⎢ ⎥⋅⎣ ⎦

M  (4.5) 

Additionally, the FAST post-processing calculates modal damping ratios for each mode of 
vibration. The damping ratios60 vary slightly between the three different settings. For this 
reason, averaged damping ratios D1 and D2 are used. The source of damping is structural 
damping. D1 additionally contains aerodynamic damping. The calculation of the damping 
matrix BE is done according to the descriptions given in section 3.2.1. 

 1 2D 0.04 and D 0.01= =  (4.6) 

 

4.3 Results of the Inverse Load Calculation at a 5 MW Onshore 
Wind Turbine Model 

The inverse load calculation procedure is verified according to the scheme given in Figure 
4.1. For the FAST simulation, the 5 MW reference wind turbine model that was described 
in section 4.2.1 is used. The result of the inverse load calculation is an equivalent rotor 
thrust force. For verification purposes, this force will be compared to the rotor thrust force 
known from the FAST simulation (see Figure 4.5). The FRF matrix is assembled using the 
information of the eigenvalue analysis and the system matrices given in section 4.2.4. 

Additionally, system responses are needed as calculation input. As depicted in Figure 4.5, 
acceleration time series at the tower top (maximum amplitude of 1st tower bending mode) 
and at nearly half of tower height (maximum amplitude of 2nd tower bending mode) are 
chosen. Generally, the acceleration signals are purely dynamic system responses – the sig-
nals oscillating around a mean of zero. The chosen inverse load calculation approach re-
quires displacements that are obtained by double-integrating the accelerations as explained 
in Appendix E. The integration process is not able to generate the integration constants. In 
the strict sense, this means that the inverse load calculation based on the Deconvolution in 

                                               

60 As a percentage of critical damping. 
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the Frequency Domain (see section 3.2) solely calculates a dynamic part of the rotor thrust 
force. Since a complete representation of the rotor thrust is desired, the remaining force 
component is superimposed linearly. This assumption is in accordance with the load char-
acteristics that are discussed in section 2.2.1, Table 2.1. In addition, displacements at the 
tower top in combination with known stiffness properties from the matrix K are used to 
calculate a static/quasi-static component of the force. 

 

Figure 4.5: Assumptions for the verification study using FAST 

 

The force components are depicted in Figure 4.6. To distinguish between the force compo-
nents, a cut-off frequency has to be chosen. This frequency is chosen at a spectral gap of 
the force, so that neither exciting frequencies nor eigenfrequencies are influenced. These 
simulations are run with a cut-off frequency of 0.15 Hz, which is approximately half the 1st 
tower fore-aft eigenfrequency. Accelerations are used for the dynamic force components 
and the static/quasi-static force components are derived from displacements at tower top.61 

Since a single load shall be calculated and at the same time, all available tower modes shall 
be considered, an over-determined system of equations is set up. The system of equations 
is solved using the least-squares approach as described in equations (3.63) and (3.64).62 
Three load cases under normal wind conditions for power production conditions are calcu-
lated. An overview of the load cases is given in Table 4.2. 

                                               

61 The calculation of the static/quasi-static force component using measured strains is decribed in 
section 5. 

62 See also section “3.2.2 Assembly of the FRF Matrix and Least-Squares Approach“. 
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Figure 4.6: Force components 

 

4.3.1 Inverse Load Calculation for LC 1 to LC 3 

■ Load case 1 

Load case 1 (see Table 4.2) represents a mean wind speed at hub height between cut-in 
and rated wind speed. The mean wind speed is 6.94 m/s, which results in a mean rotor 
speed of 8.46 rpm. LC 1 is chosen because little control activity is expected, because the 
variable-speed controller operates in region 2. The nacelle yaw holds a constant position. 
The blade-pitch angle is constant at zero, which means that all three blades do not show 
blade-pitch control activity. The generator-torque is proportional to the square of the rotor 
speed in the active region.63 

Figure 4.7 shows the inversely calculated load. For verification purposes, the rotor thrust 
force that is computed by FAST is also displayed. Figure 4.8 depicts a comparison between 
the quasi-static force components in the time domain and the frequency domain. The static 
component (mean value) and the quasi-static component (below cut-off) of the inversely 
calculated force are derived from the displacement-to-stiffness relation at the tower top. To 
gain better insight into the pure dynamic force component, Figure 4.9 shows a comparison 
of these components in the time domain and the frequency domain. The inverse force 
component is calculated using the equations presented in section 3.2. 

 

Figure 4.7: Rotor thrust and inversely calculated force – LC 1 

                                               

63 A depiction of the control outputs of FAST is given in Appendix F. 
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Figure 4.8: Quasi-static components – LC 1 

 

 

Figure 4.9: Dynamic components – LC 1 
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thrust occurs. The generator torque is no longer proportional to the rotor speed. Again, the 
nacelle position is constant, near zero. Furthermore, blade-pitch control shows activity dur-
ing the simulation. Since collective blade pitch control is enabled, all three blades follow 
exactly the same control algorithm. The blade pitch angle varies between 0° and 10°.64 

Figure 4.10 shows the result of the inverse calculation. As done for LC 1, the inversely cal-
culated load and the rotor thrust are compared. The quasi-static components are depicted 
in Figure 4.11, both in the time domain and the frequency domain. An analog depiction for 
the dynamic components is given in Figure 4.12. 

 

Figure 4.10: Rotor thrust and inversely calculated force – LC 2 

 

 

Figure 4.11: Quasi-static components – LC 2 

                                               

64 A depiction of the control outputs of FAST is given in Appendix F. 
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Figure 4.12: Dynamic components – LC 2 

 

■ Load case 3 

The load case 3 (see Table 4.2) has a mean wind speed of 18.19 m/s, which represents a 
mean wind speed at hub height between rated and cut-out wind speed (middle of re-
gion 3). LC 3 is chosen because high control activity is expected. As for the LCs 1 and 2, the 
yaw position is constant at zero. The collective blade pitch ranges between pitch angles of 
10° to 20°. While the torque controller operates in region 3, relative to region 2, the con-
trol strategy has changed from “optimal power” in region 2 to “constant power” in region 
3.65 The mean rotor speed is 12.10 rpm. 

 

 

Figure 4.13: Rotor thrust and inversely calculated force – LC 3 

 

                                               

65 A depiction of the control outputs of FAST is given in Appendix F. 
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Figure 4.13 shows an illustration of the result of the inverse load calculation for LC 3. The 
inversely calculated load and the rotor thrust of the FAST simulation are depicted. The 
quasi-static components are depicted in Figure 4.14, both in the time domain and the fre-
quency domain. Figure 4.15 shows the time-domain and frequency-domain depiction of 
the dynamic component. 

 

Figure 4.14: Quasi-static components – LC 3 

 

 

Figure 4.15: Dynamic components – LC 3 
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4.3.2 Summary of the Results for LC 1 to LC 3 

In general, the verification study of the three load cases shows that the inverse load calcu-
lation produces reasonable results. A good match can be seen between the rotor thrust of 
the simulation and the inversely calculated load. This statement is true for all three load 
cases, as visualized by Figure 4.7, Figure 4.10, and Figure 4.13. 

A more detailed assessment of the results is done by separating the forces into their static, 
quasi-static, and dynamic components and comparing these components. The separation is 
done according to the scheme given in Figure 4.6. With this, the following conclusions can 
be deduced from the verification study: 

• To get a more detailed picture of the accuracy of the inverse calculation, the mean value 
and the standard deviation of the forces are calculated. They are summarized in Table 
4.6 for all three load cases. The mean value is a measure of the static component of each 
force signal. Comparing the inversely calculated forces with the rotor thrust forces from 
FAST reveals that the pure static components of the forces have a high level of agree-
ment, which is true for all three load cases.  

• The standard deviation (see also Table 4.6) is assumed to be a measure for the time-
dependent part of the force signals. The standard deviations show a good level of agree-
ment for all load cases. The one for the inverse load is slightly higher than the one for 
the rotor thrust.  

• The time-dependent parts of the force signal can be separated into their quasi-static 
components and their dynamic components. A closer look to the quasi-static compo-
nents of the force signals is depicted in Figure 4.8, Figure 4.11, and Figure 4.14. It be-
comes apparent for all three load cases that the quasi-static components are calculated 
inversely with high accuracy. 

• Both the static and the quasi-static components depend on the displacement-to-stiffness 
relation that is derived from the FAST displacement output at the tower-top and the 
corresponding entries in the stiffness matrix K that is known from the linearization. 

 

Table 4.6: Comparison of mean value and standard deviation 

 Rotor thrust Inverse load 

Mean value ∅ 392.38 kN 379.88 kN 
LC 1 

Standard deviation σ 53.78 kN 62.60 kN 

Mean value ∅ 690.40 kN 693.43 kN 
LC 2 

Standard deviation σ 108.75 kN 116.66 kN 

Mean value ∅ 443.96 kN 458.56 kN 
LC 3 

Standard deviation σ 74.34 kN 89.07 kN 

 

• The dynamic components also show similar behavior for all three load cases; see Figure 
4.9, Figure 4.12, and Figure 4.15. The comparison in the frequency domain shows that 
the inverse calculation is able to reproduce the frequencies of the rotor thrust. However, 
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amplified peaks in the spectra occur at ca. 0.6 Hz to 0.7 Hz. For LC 1, a second peak at 
around 0.4 Hz is clearly visible. The corresponding time-domain depictions show in-
versely calculated loads with higher amplitudes than the rotor thrust. 

• The dynamic components contribute most to the observed differences. Since the calcula-
tion of the numerical 2-DOF example showed the underlying equations to produce exact 
results, the mathematics do not seem to be the problem. However, the inverse calcula-
tion is based on an important assumption: the system used for the inverse calculation is 
a reduced system. The reasons for the reduction are described in section 2.2.2. Thus, the 
rotor thrust force is derived from the full-system description, whereas the inverse load is 
calculated with a reduced system. 

• The dynamic force components have peaks at ca. 0.6 Hz to 0.7 Hz (see Table 4.4), which 
correspond to the rotor-blade eigenfrequencies. The reason is the system reduction. Be-
cause the rotor blade eigenfrequencies are not part of the dynamic system description 
used for the inverse calculation, their vibrations are interpreted as external loads. 

• The peak at ca. 0.42 Hz for LC 1 seems to be caused by the 3P-excitation at 8.46 rpm. 
The occurrence in the spectra follows the same mechanism as observed at the 2-DOF 
example with noisy input data in section 3.3.4. The P-excitation is not part of the exter-
nally applied load but is inherent in the response data of the wind turbine.  

• The reduction only affects the inverse calculation of the dynamic components. There-
fore, the system reduction is assumed to be the main reason for the observed differ-
ences. Nevertheless, the results regarding the dynamic components have a good level of 
agreement. The dynamic component is calculated using the equations from the Decon-
volution in the Frequency Domain (see section 3.2). 

 

For each load case, the error between the time signals of the rotor thrust and the inverse 
load is calculated according to equation (3.65). The error values of the full signals, the 
quasi-static components, and the dynamic components are summarized in Table 4.7. The 
error values of the full-load signals range from 11 % to 16 %. These values have to be set 

into relation to the error value of ε = 4.87 % that is calculated in section 3.3.4. This previ-
ous calculation deals with a numerical 2-DOF system. The verification study of the 5 MW 
wind turbine with FAST is a more complex problem, e.g. due to presence of the wind tur-
bine control and the more detailed model formulation. Thus, gaining higher error values for 
the inverse load meets the expectation. The quasi-static components show a very good 
accordance if expected visually. The corresponding error values are in the range of 8 % to 
11 %. The dynamic components show the highest differences between the inverse load and 

the rotor thrust, with ε lying between 20 % and 27 %. The inverse calculation overesti-
mates the force amplitudes, which is true for all three load cases. 

The error values in Table 4.7 seem to imply a tendency to reach smaller error values with 
increasing load case numbers. This suggested tendency occurs not only for the full load 
signals, but also for the quasi-static and the dynamic components. Therefore, the suggested 
tendency cannot be caused by the mean values of the signals, which are equal to the static 
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components. This conclusion is confirmed by the fact that the maximal rotor thrust occurs 
for LC 2, which does not correspond with the suggested tendency. This leads to the conclu-
sion that all three calculated error values lie in a similar range.  

 

Table 4.7: Error values for the time signals of the inverse loads 

Error in time ε LC 1 LC 2 LC 3 

Full load signal 16.08 % 11.34 % 10.81 % 

Quasi-static component 9.90 % 8.13 % 10.81 % 

Dynamic component 27.05 % 20.22 % 19.53 % 

 

The calculated error values are similar, which leads to the next conclusion. The inverse cal-
culation does not depend on the control activities of the wind turbine. The three load cases 
are set up in order to represent different operating conditions with different control activi-
ties. Since the error values do not vary significantly between the three load cases, no ten-
dency is observable. 

The frequency-domain graphs do not show any effects caused by the ill-conditioning. In 
section 3.3.4, the ill-conditioning becomes obvious by the amplification of the high-
frequent content. Here, no significant frequencies occur above 5 Hz. For testing purposes, 
the inverse loads can be low-pass filtered at 5 Hz, which does not change the results for the 
inverse load calculation. This means that the ill-conditioning does not affect the inverse 
solution. This is probably caused by the integration of the used acceleration signals. As 
stated in Appendix E, the integration process shows low-pass characteristics, even better 
than a filter. And a low-pass filter is suggested to eliminate the effects of ill-conditioning – 
see section 3.3.4. 

Additionally, the integration of the acceleration signals might induce errors. The influence 
of the integration process is studied in detail in Appendix G. A comparative study that uses 
tower deflections as input parameters is presented. The study results in exactly the same 
inverse loads, which leads to the conclusion that the integration process does not cause 
errors. Additionally, a method for treating the effects caused by the ill-conditioning is 
shown. The use of filters and windowing leads to adequate results. The guess that the inte-
gration process affects the inverse calculation positively in terms of treating the ill-
conditioning is demonstrated. 

 

4.4 Summary 

The comprehensive simulation code FAST is used for verification studies of the inverse load 
calculation method presented in section 3. The use of FAST allows loads to be applied from 
a defined stochastic wind field and enables the interacting dynamics of the wind inflow, 
aerodynamics, elasticity, and the control of the wind turbine to be considered. The simula-
tions are run for a 5 MW onshore wind turbine. Three load cases are calculated with repre-
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sentative operating conditions. With the system matrices from the FAST model and the 
simulated accelerations along the tower, inverse loads are calculated. The accuracy of the 
inverse load calculation is estimated by comparing the inversely calculated load with the 
rotor thrust from FAST. 

The main conclusion of the verification study is that the inverse load calculation is capable 
of generating good estimates of the applied load. An approach is chosen that calculates a 
static/quasi-static and a dynamic component. The full inverse load is obtained by superim-
posing these components. The static/quasi-static load component is calculated inversely 
with very good accuracy. The dynamic component shows higher differences, which is 
caused by the system reduction. These uncertainties cause an overestimation of the ampli-
tudes, visible both in the depictions of the time domain and the frequency domain.  

Theoretically, the system reduction can be avoided. This would require including the blade 
modes to the system that is used for the inverse calculation. In a first step, the fore-aft 
modes of a fixed rotor system could be added. A further step could consider the fore-aft 
blade modes for a spinning rotor system. An even more enhanced step should taking into 
account the aerodynamic interaction between the blades and the wind loads. In fact, ex-
panding the system to the rotor blade dynamics is a complex problem. The accuracy of the 
single steps needs to be assessed. This problem will not be discussed in detail in this work. 

The inverse calculation does not depend on the wind turbine control, which is studied 
comparing the results of three load cases. 

Additionally, the effects caused by the integration of acceleration signals to displacement 
signals are studied. The study shows that the integration does not imply errors for the in-
verse calculation. The integration even affects the inverse calculation positively in terms of 
the ill-conditioning of the inverse problem, which allows omitting further regularization.  

The inverse load calculation is intended to eventually be used for lifetime predictions using 
measurement data of offshore wind turbines. The fatigue-strength analysis mainly depends 
on the range of stresses. Assuming a linear dependency between the loads and the stresses, 
as is done for steel under normal operational conditions, the quasi-static and the dynamic 
component of the inverse load will be used for the fatigue analysis. The quasi-static com-
ponent shows an excellent agreement and the dynamic component contains amplified am-
plitudes. Consequently, using inversely calculated loads for fatigue analysis is a safe as-
sumption. This conclusion is also valid in the case of non-linear load-to-stress relations, as 
occurs e.g. for reinforced concrete. Then, the mean values of the stresses, which depend on 
the static component that also shows high accuracy, have to be taken into account addi-
tionally. 

The entire section contributes new information to the research field of calculating loads 
inversely at wind turbine support structures. As described in the literature research in sec-
tion 1.2.3 an appraisal of the results qualities is missing, if coupled dynamics of stochastic 
wind inflow, aerodynamics, elasticity of the structure, and the turbine control is considered. 
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5 Inverse Load Calculation at a 5 MW Onshore 
Wind Turbine using Measurement Data  

 

The numerical study, presented in section 4, shows the ability of the inverse load calcula-
tion to deal with aerodynamic coupling effects and with wind turbine control. This numeri-
cal verification was done at an onshore wind turbine model loaded by stochastic wind in-
flow. The system description was known from the used FAST model. The simulated system 
responses were used as input parameters for the inverse calculation. On this basis, the fol-
lowing section will demonstrate the application of the inverse load calculation to a real 
wind turbine structure. The structure investigated is a lattice offshore sub-structure carrying 
a 5 MW wind turbine. The investigations are part of the collaborative research project 
OGOWin, whose complete results are documented in the corresponding final report [74]. 
The structure is erected onshore as a prototype. 

As known from the preliminary thoughts given in section 1.2.2,66 an accurate system de-
scription is decisive for the quality of the inverse load calculation. For the numerical study, 
the linearization in FAST gave the system matrices. Real structures are usually modeled e.g. 
using a FE representation that allows predicting the dynamic structural behavior. However, 
models always contain assumptions and simplifications, which may lead to differences be-
tween the simulated dynamical behavior and the real dynamical behavior. In contrast to 
static calculations, dynamic calculations hardly allow conservative calculations. For this rea-
son, the determination of the real dynamic behavior by means of structural measurements 
is a common approach. Using a system identification technique enables gaining the dy-
namic characteristics of a structure from measurement data. These measured dynamic char-
acteristics can be used to adjust a FE model, so that the model represents best the dynam-
ics of the real structure. This process is called model updating and results in a realistic 
mathematical representation of the structure, which was previously referred to as system 
description. 

First, section 5.1 gives a description of the structure investigated. The corresponding FE 
model and the concept for measuring the structure are presented. Section 5.2 summarizes 
the results of the system identification, including dynamic parameters of important local 
structural components and for the global structure respectively. Finally, section 5.3 de-
scribes the application of the inverse load calculation procedure. 

 

                                               

66 See description of the “inverse calculation of applied loading”. 
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5.1 Investigated Structure 

5.1.1 Description of the Structure 

The structure investigated is an onshore prototype of a support structure for a 5-MW-class 
wind turbine. The prototype, which is shown in Figure 5.1, is erected in Bremerhaven (Ger-
many) and is based on a lattice sub-structure that consists of tubular steel pipes and cast-
steel nodes. The lattice structure is connected to the tubular steel tower via a special transi-
tion piece, made of steel as well. The entire support structure carries a REpower 5M wind 
turbine, which is a 5 MW, three-bladed, horizontal-axis, upwind wind turbine. 

 

Figure 5.1: Offshore support structure with the REpower 5M in Bremerhaven, Germany 67 

 

The support structure is developed for water depths of approximately 30 m. Thus, the hub 
height of the wind turbine is located at 120 m. The rotor-blade lengths are 61.5 m. The 
design of this innovative structure follows the concept: standard components such as equal 

                                               

67 Picture at bottom center is taken by Weserwind GmbH. 

Top left:  REpower 5M with tubular tower 
Bottom left:  lattice sub-structure 
Bottom center:  onshore foundation bodies 
Bottom right:  transition piece 
Top right:  upwards view support structure 
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pipes and connecting nodes of equal size are used to achieve cost-efficient fabrication and 
time-saving assembly. 

The REpower 5M machine incorporates a control system that consists of a variable-speed 
generator-torque controller and an electrical blade-pitch controller. A complete summary 
of all technical data is given in the official brochure of the REpower 5M [85]. 

The foundation of the onshore prototype is a site-specific construction. The layer succes-
sion of the soil consists of three main layers.68 The upper layer with a depth of approxi-
mately 15.50 m contains clay that shows a very low load-bearing capacity. Subsequently, a 
sand layer of circa 6.50 m occurs, followed by a silt layer. Due to the specific soil layer stiff-
ness, the sand layer essentially contributes to the load transfer into the ground in both 
horizontal and vertical direction. For this reason, each of the four legs of the lattice struc-
ture is supported by a cylindrical reinforced concrete structure that each are founded on 14 
reinforced concrete piles with a length of approximately 26 m and an inclination ratio of 
8:1. A scheme of one foundation body and the genuine soil layers is given in Figure 5.2. 

 

 

Figure 5.2: Foundation body and soil layers at the onshore site in Bremerhaven 

 

5.1.2 Finite-Element Model and Modal Analysis 

■ Finite-Element model 

The structure described in section 5.1.1 is modeled using the FE software ANSYS. This 
model is built up for the following reasons: 

                                               

68 See summary of the geological survey [33]. 
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• Determining the effects of different modeling strategies in terms of the dynamic 
behavior of the structure 

• Calculation of the dynamic characteristics by means of a modal analysis 
• Setting up a measurement concept 
• Defining excitation forces for the measurement campaigns 

 

The several structural components can be modeled using different levels of detail, such as 
modeling the tubular tower by beam elements or creating a spatial representation using 
shell elements. Comparing different modeling variants allows finding a model that has a fast 
calculation time with the fewest modeling effort, without losing accuracy with regards to 
the eigenfrequencies of the entire structure. The comparative study of the modeling vari-
ants is described in Pahn and Rolfes (2011) [78]. The final modeling variant is shown in 
Figure 5.3. The modeling of the several structural components is described in Appendix H. 

 

Figure 5.3: FE model – onshore foundation, lattice structure, transition piece, and tubular tower 

 

By means of the FE model, the eigenfrequencies and mode shapes of the structure can be 
calculated by a modal analysis. Knowledge of these dynamic characteristics enables setting 
up a measurement concept, which is described in section 5.1.3 and section 5.2.1. 

Detail: transition piece 

Detail: double-K node 
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■ Modal analysis 

The results of the modal analysis are the mode shapes and the eigenfrequencies of the main 
global modes and of important local modes. 

 

 

Figure 5.4: First and second global bending mode 

 

 

Figure 5.5: Third and fourth global bending mode 

Third global bending mode Fourth global bending mode 

Fore-aft: f = 3.46 Hz 
Side-side: f = 3.52 Hz 

Fore-aft: f = 4.92 Hz 
Side-side: f = 5.06 Hz 

First global bending mode Second global bending mode 

Fore-aft: f = 0.31 Hz 
Side-side: f = 0.31 Hz 

Fore-aft: f = 2.09 Hz 
Side-side: f = 2.20 Hz 
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Figure 5.6: Local mode shape bay 5 – f = 5.14 Hz 

 

 

Figure 5.7: Local mode shape bay 5 – f = 5.38 Hz 

 

 

Figure 5.8: Local mode shape bay 5 – f = 5.47 Hz 
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The modal analysis focuses on those eigenfrequencies that are potentially determinable 
with system identification. This assumption applies for the first four eigenmodes of the 
global structure that are depicted in Figure 5.4 and Figure 5.5. Each global bending mode 
occurs both for the fore-aft and for the side-side direction. Comparing each fore-aft mode 
shape with its corresponding side-side mode shape gives qualitatively similar deflections for 
which reason only one mode shape is depicted per global bending mode. The figures addi-
tionally contain the eigenfrequencies. As visible, the eigenfrequencies of the second, third, 
and fourth mode shape differ between the fore-aft and the side-side direction. The reason 
is the mass and inertia distribution of the rotor-nacelle-assembly (RNA). The rotor blades 
cause different tower-top rotation in fore-aft and side-side direction. The mode shapes of 
the second to fourth modes depend on the tower-top rotation. Whereas the first mode 
shapes are dominated by the tower-top deflection with minor importance of the tower-top 
rotation. Consequently, the first mode shapes are unaffected. Further, it can be seen that 
especially the third but also the second and the fourth mode shapes contain deflections 
from the foundation bodies. This is due to the low stiffness of the upper soil layer. The cho-
sen stiffness value is based on a geological survey. In general, stiffness values from geologi-
cal surveys are prone to uncertainties. Thus, a special part of the measurements aims on 
deriving the soil stiffness that has to be used for an updated model. 

Aside from the global mode shapes, the modal analysis gives local mode shapes that are 
depicted in Figure 5.6, Figure 5.7, and Figure 5.8. These mode shapes are considered local 
mode shapes because the vibrations are almost exclusively dominated by bay 5, whereas 
the remaining structure is nearly unaffected. Bay 5 is the denotation for the lowest cross of 
the lattice structure. The corresponding eigenfrequencies are of interest because excitation 
frequencies from wind and from operation of the wind turbine might be in resonance. For 
this reason, the local frequencies are identified in the measurement concept. As shown, the 
three local modes lie within a small frequency range of only 0.30 Hz, which might cause 
interaction in the form of beat frequencies. The different local mode shapes are character-
ized by in-phase vibrations of opposing crosses (Figure 5.6), by in-phase vibrations of 
neighboring crosses (Figure 5.7), and by in-phase vibrations of all crosses (Figure 5.8). 

The presented eigenfrequencies serve as expectancy values for the system identification. 

 

5.1.3 Sensors and Sensor Locations 

The setup of the sensor types and the sensor locations is part of the collaborative research 
project OGOWin. A full description is given in the final report of OGOWin (2011) [74]. The 
system identification aims to determine the dynamic characteristics of the structure, which 
are the eigenfrequencies, the mode shapes, and the damping ratios. For this purpose, ac-
celerometers distributed along the structure’s height are used. The locations of the acceler-
ometers are indicated by green dots in Figure 5.9. As depicted by the top view of the 
tower-top cross-section (top left), the accelerometers are spatially arranged to gain three-
dimensional representations of the vibrations. Strain measurement devices such as strain 
gages and fiber-optic sensors, are used additionally for verification purposes. 
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Figure 5.9: Sensor locations69 

 

5.2 Output-Only System Identification 

5.2.1 Measurement Concept 

The objective of the measurement is to determine the eigenfrequencies and the damping 
ratios of the modes in order to compare with the values calculated by modal analysis (sec-
tion 5.1.2). The identification of modal parameters via measurements essentially depends 
on the excitation of the structure. The sources of excitation can be divided into two main 
categories – ambient excitations and artificial excitations. 

Ambient excitation may be induced by wind, (water, earthquake, acoustic) waves, currents, 
or operation of machines. This type of excitation is present naturally. However, the occur-
rence and the value of the excitation force are not controllable. Furthermore, the excited 
frequency range cannot be influenced. Alternatively, artificial excitations can be used in 
order to produce defined vibration amplitudes of the structure that allows for indentifying 

                                               

69 Drawings are taken from Fraunhofer IWES, Bremerhaven. 
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the modal parameters. The artificial excitation is generated by applying a test function. Test 
functions are advantageous, because 

• the occurrence of the test function is known, 
• the excitation force is defined so that a clear response signal is generated, which 

exceeds the noise in the measurement data, 
• by means of the type of the test function, the excited frequency range can be con-

trolled. 

Theoretical basics of different test functions are presented in Natke (1983) [70]. Felber 
(1993) [21] gives an overview oriented on practical issues. In terms of the investigated 
wind turbine support structure, three types of test functions are chosen for assessment: the 
sine sweep, the impact test, and the pullback test.  

The different test functions are simulated using the FE model. The objective of the simula-
tions is determining the locations and the values of the excitation forces. The simulations 
focus on the eigenfrequencies that result from the modal analysis presented in section 
5.1.2. Detailed results of these simulations are presented in Pahn and Rolfes (2011) [78]. 
On the basis of the simulation results, a measurement concept is set up. Additionally, prac-
tical constraints are considered, such as the technical effort and preventing the structure 
from damage. The final measurement concept is given in Table 5.1. 

 

Table 5.1: Measurement concept 

Global modes 

 Modes First to fourth global bending modes, each in fore-aft and side-side direction 

 Excitation Ambient excitation from wind and operation of the wind turbine 

 Objectives 
Eigenfrequencies, mode shapes, and damping ratios in standstill and various  op-
eration states 

Local modes of the lower crosses of the lattice structure (bay 5) 

 Modes Local modes of the bay 5, depending on the phase relation of adjacent crosses 

 Excitation Artificial excitation using a pullback test, excitation forces 5,000 N and 8,000 N 

 Objectives Eigenfrequencies, mode shapes, and damping ratios 

Local modes of a single foundation body 

 Modes Horizontal deflection and torsional mode of a single foundation body 1) 

 Excitation Artificial excitation using a sweep excitation 2), excitation force max. 1,000 N 

 Objectives Eigenfrequency 

1) Before erecting the structure, no interaction between foundation bodies. 
2) Realized by  a mobile device that is property of the Institute for Structural Analysis of Leibniz Universität 

Hannover  
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The excitation of the global modes is realized using ambient excitation from wind and op-
eration of the wind turbine. Adequate artificial excitations could not be determined. Main 
restrictions are the required forces, the accessibility of the wind turbine (locating the mo-
bile sweep exciter), and the required space in the surrounding area of the wind turbine 
(pullback test). The excitation of the global modes is of stochastic nature. For this reason, a 
series of measurement data should be used in order to gain reliable results. Stochastic data 
have the disadvantage that the force value and the excited frequency content are not pre-
dictable. 

A pullback test is used for the measurement of bay 5. The chosen force values are derived 
from a FE simulation. Thus, free vibrations of the crosses with adequate amplitudes are en-
sured. The tests are conducted at standstill. 

Additionally, one of the four foundation bodies is investigated. The test is done before the 
erection of the wind turbine support structure. A sine sweep is applied using the mobile 
exciter. This procedure allows determining the eigenfrequency of the separate structure. 
Comparing the measurement results to the modal analysis allows for verifying the modeling 
of the soil stiffness. A similar approach is described in Ibsen and Liingaard (2006) [39] at a 
prototype for a wind turbine foundation structure with a bucket foundation.  

The results of the identification of the local components are given in section 5.2.3. The 
global dynamics of the structure are presented in section 5.2.5. 

An important aspect that is decisive for the quality of the identification results is the system 
identification method. The main part of the measurements is based on ambient excitation, 
where the excitation forces are unknown. For this reason, an output-only system identifica-
tion method has to be used. Since output-only methods are capable to deal with artificial 
excitations, an appropriate method is chosen in this work that is applied to all measure-
ments. The chosen method is presented subsequently in section 5.2.2. 

 

5.2.2 Frequency Domain Decomposition 

The publications of Peeters and De Roeck (2001) [83] and of Andersen et al. (1999) [1] 
are helpful in choosing an appropriate system identification method. Both publications dis-
cuss different methods and compare the accuracy of the methods using a FE model of a 
frame structure and bridge test data respectively. All methods give reasonable estimates for 
the eigenfrequencies, the mode shapes, and the damping ratios. Hence, the preferable 
method depends on the specific application. 

A discussion of output-only system identification techniques is given in Appendix I. The 
discussion focuses on those methods that already have been applied to wind turbine struc-
tures under stochastic excitation. Thus, the three methods Autoregressive Model (AR), Sto-
chastic Subspace Identification (SSI) and Frequency Domain Decomposition (FDD) are re-
viewed. 

This research literature reveals a successful application of the Frequency Domain Decompo-
sition to wind turbines in operation. This approach is described to give reliable estimates of 
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the eigenfrequencies, the mode shapes, and the damping ratios. Additionally, the FDD is 
promising in terms of handling large amounts of data that shall handled automatically, as it 
is intended in this work. The FDD is also able to identify closely spaced modes, which occur 
in the modal analysis (see section 5.1.2). For these reasons, the FDD is chosen.  

The theoretical fundamentals of the Frequency Domain Decomposition are explained in 
Brincker et al. (2000) [7] and Brincker et al. (2001) [9] in detail. The essential steps of 
the FDD and important information in terms of its practical application are given subse-
quently. 

Considering an output-only system, the mathematical description between the unknown 

inputs (t)x  and the measured responses (t)y  is set by 

 ( ) ( ) ( ) ( )ω = ω ⋅ ω ⋅ ωT
yy xxj j j jG H G H . (5.1) 

In equation (5.1) ( )ωyy jG  denotes the m x m power spectral density matrix (PSD) of the 

responses, with m being the number of responses. Accordingly, ( )ωxx jG  is the r x r PSD of 

the inputs, where r is the number of inputs. ( )ωjH  represents the frequency response func-

tion matrix (FRF) of the size m x r. Overbar represents complex conjugate and superscript T 
symbolizes the transpose. 

When transforming the FRF by means of partial fraction using pole and residue, one attains 
the following equation. 

 ( )
n

k k

k 1 k k

j
j j=

ω = +
ω − λ ω − λ∑ R R

H  (5.2) 

Here, n is the number of modes, λk  is the pole and kR  is the residue expressed by 

 T
k k k= ⋅R φ γ  (5.3) 

as the product of the mode shape vector kφ  and the modal participation vector kγ . The 

input is assumed to be white noise. Then, ( )ωxx jG  becomes a constant PSD matrix. 

 ( )xx jω =G C  (5.4) 

Substituting equation (5.1) with equations (5.2) and (5.4) leads to a description of the re-
sponse PSD in partial fraction form. After using some mathematical transformation,70 equa-
tion (5.1) can be written in a reduced pole-residue-form  

 ( )
n

k k k k
yy

k 1 k k k k

j
j j j j=

ω = + + +
ω − λ ω − λ − ω − λ − ω − λ∑ A A B B

G . (5.5) 

Now, kA  represents the k-th residue matrix of the output PSD, containing the inputs de-

fined in equation (5.4). For light damping the residue becomes proportional to the mode 

shape vector. The response at a certain frequency ω will be dominated only by a few num-

                                               

70 For more detailed information see Brincker et al. (2000) [8]. 
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ber of modes, usually one or two modes. Denoting this subset of modes by ( )ωSub  with dk 

as a scalar constant, the response PSD matrix results in 

 ( )
( )

T T
k k k k k k

yy
k Sub k k

d d
j

j j∈ ω

ω = +
ω − λ ω − λ∑G

φ φ φ φ
. (5.6) 

Equation (5.6) describes a modal decomposition of the spectral matrix introduced in equa-
tion (5.1). 

Regarding the practical identification process, the estimate of the response PSD ( )ωyy
ˆ jG  

can be assembled by using the recorded sensor data. The response PSD is calculated by 

means of the Fourier transformation of the acceleration response ( )Y jω  multiplied by its 

complex conjugate ( )Y j∗ ω .71 

 ( ) ( ) ( )yy p q
ˆ j Y j Y j∗ω = ω ⋅ ωG  (5.7) 

Applying equation (5.7) gives a square PSD matrix of dimension m x m with p and q as co-

ordinates of the sensor locations, whereas p, q = 1…m and m ∈ N. Because the accelera-
tion responses are discrete data, the PSD estimation exists for discrete known frequencies 

ω = ωi . The decomposition is done by applying a singular value decomposition (SVD) so 

that 

 ( ) H
yy i i i i

ˆ jω = ⋅ ⋅G U S U . (5.8) 

( )ωyy i
ˆ jG  is split into a unitary matrix iU  containing the singular vectors iju  and the diagonal 

matrix iS  filled with the scalar singular values ijs , see equations (5.9) and (5.10). Super-

script H denotes complex conjugate and transpose. 
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S  (5.9) 

 [ ]
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⎢ ⎥= =
⎢ ⎥
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⎣ ⎦

U u u u u  (5.10) 

Generally, the spectrum near a peak is dominated by only one k-th mode, so that equation 

(5.6) reduces to one term. Then, the first singular vector i1u  becomes an estimate of the 

                                               

71 See e.g. Felber (1993) [21], page 26. 
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mode shape φ̂ . The corresponding singular value describes the auto-PSD function of the 

related SDOF system.  

To determine the PSD function of the SDOF system, the peak at ωi in the first singular value 

si1 has to be detected. The corresponding mode shape estimate i1
ˆ = uφ  is compared to the 

singular vectors of the neighboring singular values sj1 (j≠i). As long as the singular vectors – 
representing the mode shape estimates – have a high value of the modal assurance criterion 
(MAC), the corresponding singular value is part of the PSD function of the SDOF system. 

The MAC value Ω quantifies the geometrical similarity of two mode shapes ui1 and uj1.72 

 

2T
i1 j1

T T
i1 j1 j1 i1

⋅
Ω =

⎡ ⎤ ⎡ ⎤⋅ ⋅⎣ ⎦ ⎣ ⎦

u u

u u u u
 (5.11) 

Andersen et al. (2007) [2] recommends a MAC value of Ω ≥ 0.8 to select the piece of the 
PSD function that corresponds to the SDOF system. Once the auto PSD function of the 
SDOF system is determined, all remaining frequency lines of the spectrum are set to zero. 
Applying an inverse Fourier transformation gives the autocorrelation function of the SDOF 
system, which appears as a decaying function in the time domain. According to the proper-
ties of the autocorrelation73, the autocorrelation function does not allow the reconstruction 
of the underlying time-domain signal. However, the autocorrelation function contains the 
same periodicity, which enables the determination of the frequency and an estimation of 
the damping. 

A qualitative example of a decaying time-domain function that depicts the variables neces-
sary to calculate the damping ratio D and the eigenfrequency is shown in Figure 5.10. 

 

Figure 5.10: Decaying time-domain function 

 

                                               

72 Further properties of the MAC value are described in Ewins (2000) [18]. 
73 See e.g. Natke (1983) [70], page 93ff. 
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Counting the maxima enables the calculation of the damping. The damping ratio D can be 

determined both via the logarithmic decrement ϑ and via the decay constant δ. Because 
the decaying function is usually built by more than one time period, a regression analysis 
using a least-squares approach can be used, which allows for eliminating stochastic errors. 
The application of the regression analysis is explained in detail in Appendix J. 

 D
2
ϑ

=
π

 or 
0

D
2 f

δ
=

π
 (5.12) 

The eigenfrequency f0 of the SDOF system results from counting the crossing times of the 

time-domain function. The arithmetic mean value of the frequency 0f  is calculated accord-

ing to 

 
n n n

0 0i
i 1 i 1 i 10i i 1 i

1 1 1 1 1
f f

n n T n t t= = = +

= = =
−∑ ∑ ∑ . (5.13) 

In fact, equation (5.13) gives a damped eigenfrequency that now shall be denoted as fD. 
Since the damping ratio D is known, the undamped eigenfrequency f can be obtained. 

 D

2

f
f

1 D
=

−
 (5.14) 

The influence of the damping on the eigenfrequency is negligible for damping ratios of ap-
proximately D < 5%. For this reason, the assumption of f = fD is applied in this work. 

A further insight into the damping calculation is given in Brincker et al. (2001) [10], dem-
onstrated at measurement data of a bridge. 

In case a series of measurement data are available, an averaged PSD can be calculated that 
eliminates random errors. Figure 5.11 qualitatively shows an averaged singular value de-
composition of a response PSD matrix. 

 

Figure 5.11: Qualitative characteristics of an averaged SVD (taken from Brincker et al. (2001) [9]) 
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In general, one mode is dominating the PSD described in equation (5.6). If two modes are 
present in the PSD at the same frequency, the first singular vector is a good estimate for the 
mode shape of the strongest mode. Typically, the bias at the strong mode shape is very 
small, whereas the bias at the weak mode shape is strong. In case the two modes are or-
thogonal, their two singular vectors are unbiased estimates of the related mode shapes.74 
The FDD is also able to identify closely spaced modes.75 The described characteristics are 
depicted in Figure 5.11. 

In Andersen et al. (2007) [2], further practical hints such as indicators that help to distin-
guish between physical modes, harmonics and noise are given. The FDD is valid for lightly 
damped structures. However, even if higher damping ratios occur – as it is expected for 
operating wind turbines due to aerodynamic damping effects – results are supposed to be 
still a good estimate. 

 

5.2.3 Local Measurements 

Measurements have been carried out at two local structural components, which are a single 
foundation body and the lower crosses of the lattice structure (see Figure 5.1). The reasons 
for these measurements are pointed out in section 5.1.2. The results of the measurements 
are published in Pahn and Rolfes (2011) [79]. The objectives of the measurements, the 
measurement setups, and the results are given in Appendix L. The conclusions that are de-
rived from the measurements are briefly summarized subsequently. 

 

■ Measurement of a single foundation body 

The first bending mode of the structure is measured in a frequency range of 4.0 Hz to 
4.5 Hz. This measured eigenfrequency is higher than the eigenfrequency from the modal 
analysis (circa 3.5 Hz). The modal analysis is based on the soil stiffness values given in the 
geological survey [33]. The soil stiffness of the upper layer is suggested to ES = 2.5 MN/m² 
(see Figure 5.2). 

The comparison of the modeled eigenfrequency to the measured eigenfrequency reveals 
that the spring stiffness in the FE model that represent the stiffness of the upper soil layer 
should be increased in contrast to the soil stiffness of the upper layer proposed by the geo-
logical survey. The model updating process will account for this result. 

 

■ Lower crosses of the lattice structure 

The eigenfrequencies, the mode shapes, and the damping ratios for the lower crosses of the 
lattice structure are determined by an artificial excitation. Three closely spaced eigenfre-
quencies are detected, as it is predicted by the modal analysis. Using the phase-angle rela-

                                               

74 See Brincker et al. (2001) [9]. 
75 See Brincker et al. (2001) [10]. 
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tionships between the two sensors, an unequivocal correlation of the frequencies to the 
mode shapes is possible. Comparing the mode shapes gained by the modal analysis (see 
Figure 5.6 to Figure 5.8) to the identified mode shapes (Table 5.2) shows that there is a 
mode shape shift between the simulation and the measurement. Both in the simulation and 
the measurement the mode shape with the smallest frequency is described by an in-phase 
vibration of opposing crosses. However, the second and third mode shape are shifted. The 
main reason is seen in the modeling of the connecting-node stiffness, which contains sim-
plifications in the FE model.76 This conclusion will be taken into consideration in the model 
updating process.  

 

Table 5.2: Summary of the identified modes of bay 5 

No. Eigenfrequency Damping ratio Mode shape 

1 5.09 Hz 0.37 % Opposing crosses in phase 

2 5.26 Hz 0.38 % All crosses in phase 

3 5.33 Hz 0.22 % Neighboring crosses in phase 

 

5.2.4 Expectations for the Global System Identification 

Before handling measurement data, it is always useful to have expectation values in terms 
of the results that shall be derived from the measured signals. In section 5.1.2, predictions 
are already made about the eigenfrequencies and the mode shapes by means of the modal 
analysis. However, the modal analysis cannot answer two further important questions. How 
many frequencies are usually detectable in measurement data obtained at running wind 
turbines? And, which damping ratios can be identified, especially if aerodynamic damping 
effects are taken into account? To answer these two questions a survey through the corre-
sponding literature is given subsequently. 

 

■ Expectation for the number of eigenfrequencies 

Schaumann and Seidel (2000) [92] present measurement results gained at several onshore 
wind turbines with a tubular steel tower. The turbines have rated power of 500 kW to 
1 MW. The first and the second fore-aft tower bending modes are derived from the free 
vibrations of the turbines after shutdown. 

Ibsen and Liingaard (2005) [38] conduct tests at a 3 MW onshore wind turbine with a 
tubular steel tower and a bucket foundation. The first and the second fore-aft tower modes 
are presented for standstill conditions. In operation, the first fore-aft tower mode as well as 
the 1P and 3P excitations are detected. 

                                               

76 See the descriptions in section 5.1.2. 
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Rebelo et al. (2008) [84] describe measurements at an onshore wind turbine with an 
eighty-meter tubular steel tower. The first and second tower modes, each in fore-aft and 
side-side direction, are determined for the operating wind turbine. 

A recent publication of Kraemer (2011) [57] investigates an onshore wind turbine of the 
5 MW class carried by a tripod structure. This work presents a detailed system identifica-
tion. For the operating turbine, the first and second tower modes in fore-aft and side-side 
direction are determined. Additionally, the third tower mode in side-side direction could 
be identified. The system identification is completed by blade modes in flap- and edgewise 
direction. 

The short survey clarifies that the first and second mode of a wind turbine seems to be de-
tectable for sure, which is true both for the fore-aft and the side-side direction, as well as in 
standstill and in operation of the turbine. With enhanced effort, further tower modes may 
be detected, which most likely depends on the dynamics of the structure. Additionally, 
blade modes can be added. 

 

■ Predictions of the damping ratios 

The sources of damping that have to be taken into account for offshore wind turbines are 
summarized by Kühn (2001) [58] in descending order by its importance as follows: 

• Aerodynamic damping 
• Structural damping 
• Soil damping 
• Hydrodynamic damping 

Aerodynamic damping is caused by an interaction of the combined system of the rotor and 
the support structure with the aerodynamic wind forces acting on the blades. Aerodynamic 
effects are always present during the operation of the wind turbine. The first fore-aft mode 
of the operating wind turbine is primarily affected. Structural damping depends on the ma-
terial of the structure and friction between the connecting parts. Thus, this source is always 
present. Soil damping describes the energy dissipation into the soil. Generally, this source 
of damping is always present at the points where the structure is connected to the ground. 
But, the effect of the soil damping to the structure highly depends on the type of the foun-
dation and the respective mode shape. Since the measurement and the estimation of soil 
damping is very difficult and most of the mode shapes taken into account are not affected 
by soil damping, this damping source is not considered separately. Soil damping is assumed 
to be a part of the structural damping. Hydrodynamic damping is a result of moving struc-
tural parts surrounded by water. Here, an onshore wind turbine is investigated, for which 
reason hydrodynamic effects do not occur. Consequently, the main sources of damping that 
are expected for the investigated structure are structural damping in standstill conditions 
and a combination of structural damping and aerodynamic damping in operation, whereas 
the aerodynamic damping is supposed to mainly affect the first fore-aft mode. 

Predictions of the structural damping with an emphasis on steel lattice structures can be 
derived from the literature. Table 5.3 gives a summary that contains damping values from 
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selected wind turbine related standards and technical publications. The damping ratios are 
a combination of structural damping and soil damping. The damping ratio represents the 
modal damping of the first fore-aft bending mode and is the percentage of critical damp-
ing. The overall range of the summarized damping ratios is 0.2 % to 1.0 %. The upper limit 
mainly relies on the recommendations given by the standards. On the bases of experiences 
gained from measurements of civil engineering structures, structural damping ratios near 
the lower limit are expected for the investigated structure. 

 

Table 5.3: Summary of estimations for structural damping ratios 

Reference Material Structure Damping ratio1) 

DIBt Richtlinie (2004) [104] Steel Tubular tower 0.24 % 2) 

DNV-OS-J101 (2004) [105] Steel Lattice structure 1.00 % 

GL guideline (2004) [106] Steel Any 1.00 % 

Kühn (2001) [58] Steel Lattice structure 0.2 % - 1.0 % 

Schaumann and Seidel (2000) [92] Steel Tubular tower 0.2 % - 0.5 % 3) 

Overall range 0.2 % - 1.0 % 
1) Modal damping as percentage of critical damping, valid for the first fore-aft bending mode. 
2) Originally given as logarithmic decrement. 
3) Derived by measurements. 

 

As stated by Kühn (2001) [58], the aerodynamic damping absolutely dominates all further 
damping sources during operation. The aerodynamic damping is caused by the spinning 
rotor that is pushed into the direction of the wind. This motion is the reason for a decreas-

ing angle of attack α at the rotor blades. The angle α is defined as the angle between the 
vector of the wind force and the vector of the reacting forces in the rotor plane. The de-
crease occurs because the apparent out-of-plane velocity vector is reduced by the tower-
top velocity. The smaller angle of attack leads to a reduction of the aerodynamic drag and 
lift forces and consequently, to a reduction of the thrust force. In the same way, a move-

ment of the tower top against the wind direction results in an increase of α and thus an 
increase of the thrust force. In both cases, the motion in and against the wind direction, 
the rotor thrust force is oriented opposite to the motion. This effect is called aerodynamic 
damping. For higher angles of attack, the aerodynamic damping is lower. 

Lange (2002) [59] presents a numerical estimation of the aerodynamic damping derived 
from the aeroelastic simulation of a 750 kW onshore wind turbine with a tubular steel 
tower. Eight simulations are run, each with a mean wind speed equally spaced between the 
cut-in and the cut-out wind speed of the turbine. The derived modal damping ratios are a 
combination of structural and aerodynamic damping, whereas the structural damping is a 
constant value of D = 0.7 %. The damping values are gained for the first fore-aft mode of 
the wind turbine. The simulation results are depicted in Figure 5.12 (blue graph). 
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Figure 5.12: Estimation of combined aerodynamic and structural damping 

 

Lange (2002) [59] points out that the aerodynamic damping increases up to the rated wind 
speed of 13 m/s. Above rated wind speed, the pitch-angle control is active so that the ef-
fects of the aerodynamic damping decrease. Additionally, recommendations from selected 
wind turbine standards as well as results from measurements are added to Figure 5.12. 
Again, the damping ratios consider structural and aerodynamic damping for the first fore-
aft mode. None of the cited references present wind-speed dependent results, for what 
reason the given values are depicted as constant functions in Figure 5.12. The given values 
in the two standards, GL guideline (2004) [106] and DIBt Richtlinie (2004) [104], can be 
seen as rough approximation in case no other information is available. Rebelo et al. (2008) 
[84] neither describe the wind turbine type nor present the operating conditions of the 
wind turbine during the tests. Their study mainly aims to identify the eigenfrequencies and 
therefore does not treat the damping ratios in depth. Kraemer (2011) [57] mainly uses the 
damping ratios to distinguish between the first fore-aft and side-side mode. For this reason, 
no detailed discussion of the wind speed dependency is given. 

The data in Figure 5.12 give a good idea about the wind-speed dependent development of 
the aerodynamic damping. All presented damping ratios can be considered as useful expec-
tation, even though the several values show broad variations. According to Lange (2002) 
[59], this uncertainty is expected for the identification of aerodynamic damping. Kraemer 
(2011) [57] investigates a 5 MW onshore wind turbine, which most likely matches best the 
structure investigated in this study. 

In order to get an estimate of the investigated REpower 5M wind turbine, an analytical 
approach for estimating the aerodynamic damping is used, that is presented in Kühn 
(2001) [58].77 This approach is based on stationary rotor aerodynamics. It is valid for wind 
turbines operating with a high tip-speed ratio and near rated wind speed. Applying this 
approach to the data of the REpower 5M at rated wind speed gives the aerodynamic 

                                               

77 See page 105. 
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damping78 Daero calculated in equation (5.15). Daero is a purely aerodynamic damping so that 
the structural damping has to be added. The parameters used are described in Appendix M. 

 aeroD 1.59 %=  (5.15) 

The result in equation (5.15) is based on a constant slope of the lift coefficient, since the 
pitch-angle control is assumed to be inactive. The slope of the lift coefficient affects the 
damping ratio considerably. For this reason, a mean value of the slope is taken. Addition-
ally, a lower and upper limit of the aerodynamic damping can be estimated by varying the 
slope of the lift coefficient, as done in equation (5.16). This estimation lies in the range 
gained from the literature study that is illustrated in Figure 5.12. 

 aeroD̂ 0.98...2.24 %= . (5.16) 

Generally, there are only few results published that refer to measurements of the aerody-
namic damping. For this reason, Schaumann and Seidel (2000) [92] mention the demand 
for further investigations, especially at large wind turbines that are turbines in the upper 
megawatt class. In the following section 5.2.5, a detailed study of the damping ratios for a 
5 MW wind turbine in standstill and in operation is given, next to the determination of the 
structural eigenfrequencies. 

 

5.2.5 Global Eigenfrequencies and Damping Ratios 

■ Measurement data 

Measurement data of the structure were collected in the time period between June 2009 
and March 2010. Recording the data during several months ensures the occurrence of dif-
ferent load conditions and operating states, each in a sufficient number of time series. The 
recorded sensor signals are split into 10-min time series with a sampling rate of 50 Hz. For 
the identification, the accelerometers, located along the height of the structure are used 
(Figure 5.9). Next to the structural responses, wind turbine signals such as  

• wind speed (in m/s) 
• pitch angle (in °) 
• generator speed (in rpm) 
• power production (in kW) 
• nacelle yaw position (in °) 
• rotor speed (in rpm) 

are available. In order to select the data that are used for the system identification a statis-

tical analysis is done. For each wind turbine signal the mean values ∅ and the maximal 

variation ∆ (difference of the maximum and the minimum within one 10-min time series) 
are calculated. 

                                               

78 Aerodynamic damping is given as a percentage of critical damping. 
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A preparation of the measurement data is necessary before determining the modal parame-
ters of the global structure. This preparation includes transforming all sensors in a consis-
tent coordinate system. The single steps of this preparation are presented in Appendix K. 

 

■ Identification of global eigenfrequencies 

The data selected for the identification of the global eigenfrequencies and mode shapes are 
listed in Appendix N. The separation of the data follows the principle to create comparable 
operation states. Two main categories are differentiated: standstill and power production. 

All data sets are selected so that certain signals are constant in order to gain consistent and 
comparable results. Thus, only time series with a fixed nacelle position during the 10-min 
record are chosen. As a result, a constant coordinate system during the complete series is 
obtained. Additionally, the correlation between the sensor orientation and the fore-aft and 
side-side orientation of the structure, which is defined by the nacelle yaw position, is as-
sured. 

Standstill conditions are detected by a rotor speed of nearly 0 rpm. The blade-pitch angles 
equal 90°, which represents rotor blades twisted out of the wind. Only data with a consid-
erable wind speed are used, so that a sufficient excitation of the structure can be expected. 
In terms of the standstill data, the wind direction does not necessarily coincide with the 
fore-aft and side-side orientation of the wind turbine. 

Power production conditions are separated in operation states, with rotor speeds from 
7 rpm to 12 rpm, with an increment of one. This range represents rotor speeds from cut-in 
wind speed to rated wind speed. The range is chosen in order to determine a possible ro-
tor-speed dependency of the eigenfrequencies and to study the effects of the harmonic P-
excitations due to rotor-blade passing. Each operation state allows a range of rotor speeds. 
To minimize a spread in the harmonic excitation due to blade passing, data sets with a 
small rotor speed variation are chosen. Constant blade-pitch angles are assured by selecting 
those data with a mean blade-pitch angle of circa 0° and a pitch angle variance that is 
nearly zero. The pitch angle of 0° represents rotor blades fully twisted into the wind. 

Limiting the data both in standstill and power production to constant pitch angles allows 
omitting a spread of rotor blade eigenfrequencies. The number of data sets that are gained 
by the described selection is given in Appendix N for each operation state. In total, a num-
ber of 307 10-min time series are considered. Each data set contains all acceleration signals 
that are recorded along the height of the structure. 

According to the FDD, the power spectral density matrix is calculated and contains the ac-
celerations of each data set. Applying the SVD reveals the singular vectors ui1 and the sin-
gular values si1. The use of several data sets allows averaging the singular values. Calculating 
the average is done for each operation state. By means of the average, random errors in the 
data can be smoothed. In total, seven averaged singular value functions are calculated so 
that each corresponds to one of the defined operation states. The singular value functions 
need to be interpreted in order to identify the eigenfrequencies. This interpretation is done 
using the eigenvectors that are gained from the modal analysis. The simulated eigenvectors 
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are compared to the first singular vector. The singular vectors of each operation state are 
averaged over the used data sets, as is done for the singular values. If a high accordance is 
detected, an eigenfrequency is identified in the singular value function. The geometrical 
accordance is assessed by the MAC value. 

Using the MAC values reveals interpreted singular value functions. Subsequently, the singu-
lar value function in standstill (0 rpm, Figure 5.13) and for the operation states of 7 rpm, 
10 rpm, and 12 rpm (Figure 5.14 to Figure 5.16) are depicted. The depictions of the re-
maining operation states are given in Appendix N. Next to the eigenfrequencies, the har-
monic P-excitations and the local eigenfrequencies of bay 5 (see section 5.2.3) are marked. 

The depictions of the averaged singular values clearly show the first and second modes. The 
MAC values are always high, in the range of 0.8 to 1.0. That means an unequivocal identifi-
cation of these modes is possible. The third modes are less clear in the spectrum. The iden-
tification is only possible by means of the MAC comparison. The MAC values are smaller 
and occur in the range of 0.6 to 0.8. The third modes were predicted differently by the FE 
simulation, mainly due to the imprecise assumptions about the stiffness of the upper soil 
layer. After correcting this soil stiffness according to the local measurement (section 5.2.3), 
better predictions simplify the identification. Because the identification of the third modes 
shows uncertainties, the identification of further global modes is omitted. Most of the fur-
ther peaks that occur in the presented singular values are related to rotor blade modes or 
to vibrations of single structural components. The identification of further single compo-
nents is not of interest in this work. 

Additionally, the influence of the P-excitation is clearly visible. The operation states in 
power production (Figure 5.14 to Figure 5.16 and Appendix O) always show the 1P and 
the 3P-excitation and how they march through the spectrum. In Figure 5.14 the first mode 
and the 3P-excitation at 7 rpm are closely spaced so that even the amplitude of the 3P-
excitation dominates. The same characteristic is visible in Figure 5.16 which reflects a rotor 
speed of 12 rpm, but there for the interaction of the second side-side mode with the 12P-
excitation. This fact points out that even high multiples of 1P may influence the response in 
case it resonates with an eigenfrequency. 
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Figure 5.13: Averaged singular value – 0 rpm 

 

 

 

Figure 5.14: Averaged singular value – 7 rpm 
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Figure 5.15: Averaged singular value – 10 rpm 

 

 

 

Figure 5.16: Averaged singular value – 12 rpm 
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A brief summary of the identified frequencies is possible by means of the Campbell diagram 
that depicts the frequencies with respect to the rotor speed (Figure 5.17). The eigenfre-
quencies are identified with an accuracy of two positions after the decimal point, which is 
considered sufficient. The variations of the frequencies in the first and second modes are 

±0.1 Hz. The third fore-aft modes have variations of ±0.2 Hz and the side-side modes of 

±0.9 Hz. Especially the third side-side mode shows uncertainties, which are most likely 
caused by a poor excitation of this mode. The predominant small variations indicate that 
there is no rotor-speed dependency. Therefore, the frequencies are averaged over the op-
eration states. Consequently, the frequencies appear as a constant function in the Campbell 
diagram. The crossing points of the P-excitations with the eigenfrequencies mark points of 
possible resonance. 

 

Figure 5.17: Campbell diagram with system identification results 

 

■ Identification of damping ratios 

Estimating damping ratios is the next step after identifying the eigenfrequencies. Subse-
quently, modal damping ratios as percentage of critical damping are calculated. An empha-
sis is laid on the first fore-aft mode of the structure with respect to different operation 
states, because this mode is affected by aerodynamic damping that shall be determined. As 
done for the identification of the eigenfrequencies, the available measurement data are 
divided into different operation states. The damping ratios are also estimated both for 
standstill and power production. For the operation states in power production, two further 
states are added that are located above rated wind speed, as depicted in Figure 5.18. These 
states serve to determine the wind-speed dependency of the aerodynamic damping that is 
discussed in Figure 5.12. The available measurement data does not contain sufficient data 
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sets above wind speeds at hub height of 19 m/s, which thus represents the upper limit for 
the definition of operation states. 

 

Figure 5.18: Operation states for damping estimation 

 

The summary of the data selection is given in Appendix N. Again, the data are selected so 
that each operation state contains several data sets that produce comparable results. All 
chosen data have a fixed nacelle position during the recorded 10-min time series, which 
ensures a constant coordinate system and a defined correlation between the sensor orien-
tations and the fore-aft and side-side orientation of the structure. A total number of 229 
10-min time series are considered. 

The standstill conditions are detected by a rotor speed nearly 0 rpm and blade-pitch angles 
of 90°, which represents rotor blades twisted out of the wind. In terms of the standstill 
data, the wind direction does not necessarily coincide with the fore-aft and side-side orien-
tation of the wind turbine. Aerodynamic effects are not expected in standstill conditions. 

The power production conditions are defined by the wind speeds at hub height. In order to 
keep the relation to the operation-states definition for the frequency identification, the 
rotor speeds are given next to the wind speeds in Figure 5.18. The operation states be-
tween cut-in and rated wind speed are defined by a limitation of rotor-speed ranges in 
combination with small variances of the rotor speeds. Additionally, the blade-pitch angles 
are restricted to a constant value of 0°, which means that the blades are twisted into the 
wind. Only small variations of the blade-pitch angles are allowed. The operation states be-
tween rated and cut-out wind speeds are defined by limited wind speed ranges, whereas 
the rotor speeds are constant at 12 rpm.  

Each data set is analyzed separately using the algorithm of the FDD as described in section 
5.2.2. To determine the damping ratio of a certain eigenfrequency, the corresponding 

SDOF system has to be detected. A MAC value of Ω ≥ 0.9 is used to find the frequency 
lines of the auto-PSD function. If all further lines are set to zero, the PSD of the autocorre-
lation can be transformed into the time domain, applying an iFFT. This decaying time-
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domain signal enables the estimation of the damping ratio, which is here calculated using 

two methods. Both the decay constant δ and the logarithmic decrement J is determined 

by a least-squares approach that is applied to the maxima of the time-domain function.79 
An example of a detected autocorrelation function that represents the first fore-aft mode is 
depicted in Figure 5.19. 

 

Figure 5.19: Detected autocorrelation function in the frequency- and the time domain 

 

The data sets in standstill conditions (see Appendix N) are used to determine the structural 
damping without aerodynamic effects. The results are summarized in Table 5.4. The given 
damping ratios are based on stochastic wind excitations at rotor speeds of nearly 0 rpm and 
blade-pitch angles of 90°. 

 

Table 5.4: Damping ratios in standstill 

Mode shape Fore-Aft Side-Side 
 Frequency  D 1) Frequency D 1) 

1st global bending 2) 0.31 Hz 0.3 % 0.31 Hz 0.3 % 

2nd global bending 2.23 Hz 0.5 % 2.34 Hz 0.4 % 

1) Damping ratio D as percentage of critical damping. 
2) See Appendix O. 

                                               

79 See Appendix J. 
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Figure 5.20 presents damping ratios for the wind turbine in power production. Both the 

logarithmic decrement ϑ and the decay constant δ are calculated. Thus, two damping ratios 
are available for each data set. Appendix O contains the distributions of the estimated 
damping ratios for each operation state.80 A comprehensive summary of these results re-
veals the depiction in Figure 5.20. The red curve represents the mean values of the damp-
ing ratios and show how they develop over the operation states, mainly caused by aerody-
namic effects. The operation states are those that were presented in Figure 5.18. As 
pointed out in section 5.2.4, damping estimation always underlies uncertainties in the 
identification process. For this reason, the standard deviations (yellow area) that corre-
spond to the mean values are given additionally, which clarifies the range in which the 
damping ratios vary. 

 

Figure 5.20: Estimated damping ratios over wind speeds at hub height 

.. .. 

■ Conclusion 

The identification of global eigenfrequencies reveals values for the 1st, the 2nd, and the 3rd 
global bending modes, each in fore-aft and in side-side directions. These results are sum-
marized in Figure 5.17. Further global modes, such as the 4th bending mode, could not be 
identified with reliable accuracy due to the poor excitation of these modes. Hence, not all 
eigenfrequencies that were predicted in the modal analysis are derived from the measure-
ment data. However, the expectation in terms of the number of detectable eigenfrequen-
cies – see the literature research given in section 5.2.4 – is slightly exceeded with the three 
global bending modes. The gained eigenfrequencies serve as reference values for the modal 
updating process. Additionally, the P-excitations with its higher harmonics appear in the 
spectra. The resonance with the eigenfrequencies is clearly visible. 

Structural damping ratios are estimated for the 1st and the 2nd global bending modes, each 
in fore-aft and side-side directions. The damping ratio of the first fore-aft mode (Table 5.4) 

                                               

80 As average of the mean values of δ and ϑ, calculated for each operation state. 
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results in a value of 0.3 %. The comparison to the literature (Table 5.3) shows the identified 
damping ratios to be at the lower edge of the expected range. Thus, the investigated sup-
port structure with its main parts, the lattice tower and the tubular tower, is a lightly 
damped steel structure. 

Effects of the aerodynamic damping are studied looking at different power production con-
ditions. The development of the damping ratios of the first global fore-aft mode with re-
spect to different wind speeds is shown in Figure 5.20. As expected (see Figure 5.12), the 
damping ratios increase up to rated wind speed at 13 m/s. Above rated wind speed, the 
damping ratios decrease. This effect is caused by the aerodynamic forces acting at the rotor 
blades due to the moving tower top. The mean of the damping ratios at rated wind speed 
is 0.6 %. Single data set even produce damping ratios that exceed 1 %. Consequently, the 
identified damping ratios are smaller than the prediction derived from equation (5.16).81 
The identified operation-state dependent damping ratios from Figure 5.20 can be com-
pared to the damping ratios given in the literature (Figure 5.12). This comparison shows 
the identified damping ratios lying at the lower edge of the expected damping-ratio range. 

As a general conclusion, it can be stated that the identification of the eigenfrequencies and 
mode shapes give reasonable results. The damping estimation contains uncertainties, which 
is indicated by higher standard deviations of the damping ratio results. The statement is 
true both for the identification of the global structure and the local structural components. 
The presence of uncertainties is in accordance with the statements derived by Andersen et 
al. (1999) [1] and Peeters and De Roeck (2001) [83]. 

Further information that describes the above-given system identification results in detail is 
presented in Pahn and Rolfes (2011) [79]. Additional related publications are Pahn et al. 
(2010) [77] and Raaba (2010) [113]. 

 

5.3 Inverse Load Calculation using Measurement Data 

5.3.1 Model Updating 

The objective of the model updating is to adjust the FE model (see section 5.1.2) so that its 
undamped eigenfrequencies match the measured eigenfrequencies (see sections 5.2.3 and 
5.2.5) best. Thus, a realistic dynamical model of the structure is gained. As a matter of fact, 
model updating is a research field of its own. Even though the model updating is important 
for the inverse load calculation, a detailed theoretical discussion is not given in this work. 
For further information, it shall be referred to the excellent publications of Ewins (2000) 
[18] and Friswell and Mottershead (1995) [22]. 

Choosing appropriate parameters is essential for the accuracy of the model updating. This 
means that the model updating parameters need to fulfill two conditions: 1) they should be 
based on physically meaningful uncertainties such as modeling simplifications and 2) they 
should be sensitive to the eigenfrequencies. With respect to these conditions, the model 
                                               

81 Equation (5.16) calculates a purely aerodynamic damping. Structural damping has to be added. 
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updating parameters depicted in Figure 5.21 are chosen. This choice is based on sensitivity 
analysis for the structural components of the tower and the lattice structure that are pre-
sented in Pahn and Rolfes (2011) [79]. A sensitivity analysis of the soil parameters is given 
in Appendix P. Appendix P also contains a discussion that outlines how the chosen parame-
ters fulfill the two above-mentioned conditions. 

The masses of the structural components lattice structure, foundations, transition piece, 
tower, and rotor-nacelle assembly (RNA) are determined using the engineering drawings 
and, when possible, completed by weighing results (e.g. nodes, transition piece). The 
masses are compared to the FE modeling. All structural components show deviations of less 
than 3 %, which guarantees the accuracy of the masses in the updated FE model. 

 

Figure 5.21: Parameters chosen for the model updating process 

 

The FE model in Figure 5.21 shows an enhanced modeling of the RNA, with the rotor 
blades represented by flapwise and edgewise stiffness and mass elements distributed along 
the rotor-blade length. Since accurate structural data are not available, these data are esti-
mated.82 The need to enhance the model is caused by the interaction of the RNA with 
higher bending modes, which, in this particular case, are the third global bending modes. 

                                               

82 The structural properties are similar to the NREL 5 MW Baseline. See Jonkman et al. (2009) [49]. 
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The so-far used simplified RNA (see section 5.1.2) does not allow a satisfactory model up-
dating of the offshore support structure. Due to the complexity of the structure, a stepwise 
model updating process turns out to be advantageous, in which initially the first and sec-
ond global bending modes are adjusted. Before continuing the model updating, the new FE 
model is assessed using a modal analysis. This procedure concentrates on a limited number 
of model updating parameters. In case the number of parameters that need to be updated 
in one step increases, an automated model-updating tool can be used such as introduced in 
Haake (2010) [31]. 

The results of the model updating are summarized in Table 5.5. The eigenfrequencies of the 
updated FE model are shown in combination with the differences to the frequencies gained 
by the measurements. As visible, the first and second global bending modes have a very 
high accuracy. The maximal error is 0.03 Hz, which is in the range of measurement uncer-
tainties. The differences that occur for the third global bending modes and the local modes 
of bay 5 are higher. The reason is that they interact with the RNA, whose modeling is based 
on estimated structural data that induce uncertainties. Nevertheless, the differences are 
between 2 % and 6 %, which is still satisfactorily. 

 

Table 5.5: Eigenfrequencies of the updated FE model 

Mode shape Frequency Difference to the measured frequency 

1st global bending fore-aft 0.31 Hz 0.00 Hz 0.0 % 
1st global bending side-side 0.31 Hz 0.00 Hz 0.0 % 

2nd global bending fore-aft 2.26 Hz 0.03 Hz 1.3 % 
2nd global bending side-side 2.37 Hz 0.03 Hz 1.3 % 

3rd global bending fore-aft 4.42 Hz 0.28 Hz 6.0 % 
3rd global bending side-side 4.69 Hz 0.11 Hz 2.3 % 

Bay 5 – mode 1 4.91 Hz 0.18 Hz 3.5 % 
Bay 5 – mode 2      see Table 5.2 5.36 Hz 0.10 Hz 1.9 % 
Bay 5 – mode 3 5.47 Hz 0.14 Hz 2.6 % 

 

5.3.2 Results of the Inverse Load Calculation 

The inverse load calculation follows the steps described in the previous sections. The objec-
tive of the calculation is to determine the rotor thrust force acting at hub height, as de-
picted in Figure 5.22. The inverse load results from superimposing the static/quasi-static 
component and the dynamic component (Figure 4.6). The dynamic component is derived 
from applying the Deconvolution in the Frequency Domain using the least-squares ap-
proach (section 3.2).  

The first step is deriving the system matrices from the updated FE model. ANSYS provides 
the possibility to read out the stiffness and the mass matrices. Both matrices are given in 
Harwell-Boeing format and come together with a so-called mapping file that assigns the 
node numbers to the degrees of freedom. The complex FE description of the structure con-
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tains a huge number of DOFs. For this reason, the system matrices need to be reduced to 
those modes that are decisive for the inverse calculation. As a reduction method, the modal 
reduction that is introduced in equation (4.3) is used. First of all, the decisive modes are 
the global fore-aft modes of the structure because the unknown force is acting in the fore-
aft direction. In terms of the mode number, there is no exact conclusion so far. The verifica-
tion study in section 4 did not allow for varying the number of DOFs, since by default, 
FAST has a maximum of two tower-bending modes. For the real-world wind turbine inves-
tigated in this section, a “true” rotor thrust force that could be used as a reference is not 
known. Hence, assessing the dependency of the used mode number to the accuracy of the 
inverse load calculation is impossible. In order to stay close to the verification study in sec-
tion 4 and with respect to the system identification results from section 5.2.5, the first and 
the second global bending modes of the updated FE model are chosen.  

 

Figure 5.22: Sensor positions for the inverse load calculation 

 

Figure 5.22 depicts the sensors needed for the inverse calculation. The static/quasi-static 
component is gained from strain sensors (fiber optic) at the tower bottom. The signals are 
low-pass filtered83 at the chosen cut-off frequency of 0.15 Hz. The static/quasi-static load 
component is calculated using a strain-force relationship that is derived from the updated 

                                               

83 See Appendix E. 
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FE model. The calculation of the dynamic component is based on acceleration signals that 
are double integrated to displacements. The integration can be done both in the time do-
main and in the frequency domain. Based on the discussion in Appendix E, the frequency-
domain based Omega Arithmetic is used in this work.  

The inverse calculation is done for the wind turbine in operation. The calculation accounts 
for the damping ratios given in Table 5.4. Additionally, the aerodynamic damping pre-
sented in Figure 5.20 is taken into consideration. The identification of the damping ratios 
shows uncertainties. A variation of the damping ratios within the identified range does not 
affect the inverse calculation result considerably. For this reason, the mean values of the 
damping ratios are used. The result of the inverse load calculation is depicted in Figure 
5.23. 

 

Figure 5.23: Inversely calculated load 

 

As previously mentioned, an exact verification of the inverse load is not possible, due to a 
lacking reference or a “true” rotor thrust force. Nevertheless, a rough appraisal of the re-
sulting quality reveals the comparison of the inversely calculated load with a simple rotor 
thrust force estimation that is given by the GL guideline (2004) [106].84 The product of the 
swept rotor area A and the pressure pN gives an approximation of the rotor thrust force FxN. 
The pressure pN in equation (5.17) depends on the wind speed v. The estimation is based 
on the Betz law and is described by the quantity equation 
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84 See chapter 4, Appendix B, part C. 
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Figure 5.24 depicts the comparison of the inversely calculated load Finv to the estimation 
FxN. The comparison shows obvious differences between both graphs, which meets the ex-
pectation. The estimate directly depends on the wind speed containing short-period wind-
speed changes with high amplitudes. In addition, the estimate does not account for the 
structural dynamics of the wind turbine and its support structure. Consequently, the inter-
action between the structural dynamics and the load is not considered. Above all, the esti-
mate does not cover the wind turbine control. All these aspects explain the differences in 
Figure 5.24. But nevertheless, Figure 5.24 gives important information. The comparison 
shows that the inversely calculated load lies within a reasonable range, which at least al-
lows excluding gross calculation errors. 

 

Figure 5.24: Comparison of the inverse load to estimated rotor thrust 

 

Figure 5.25 gives a further verification of the inverse load calculation. The Figure compares 
the measured strains to strains gained from the FE simulation, each at the tower bottom of 
the structure and the updated FE model, respectively. The simulated strains result from a 
time-marching dynamic analysis of the FE model, with the above-calculated inverse load 
Finv as the applied load. Finv is derived from the same measurement data as the measured 
strains are taken from. The comparison in Figure 5.25 shows a good accordance between 
the measured and the simulated strains. The simulation is able to reproduce the vibrations 
of the structure, which is especially visible for the high-frequent content of the strain sig-
nals. A static offset between the simulation results and the measurement data occurs. 
However, this offset is part of the measured fiber-optic signals, because of the difficulty in 
calibrating sensors for the strain measurement.85 

                                               

85 A discussion of this problem with focus on the investigated structure is given in the final report of 
the OGOWin research project [74]. 
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An estimate for the accuracy is gained by calculating the error between  the simulated and 
the measuremd strain data in Figure 5.25. Therefore, equation (3.65) is applied to the up-
wind strain data, which are modified by substracting their mean values. The result is 

ε = 29 %. 

 

Figure 5.25: Strain at tower bottom 

 

As a final conclusion, the calculated inverse load, in combination with the updated FE 
model, is able to generate realistic strain values at certain cross-sections. Even though the 
shown verification only considers a single cross-section, the results are promising in terms 
of using the inverse load for the calculation of stresses at arbitrary cross-sections, which 
could be used for fatigue-strength analysis and lifetime predictions. 

 

5.4 Summary 

This section describes the inverse load calculation for a 5 MW wind turbine with an off-
shore support structure that is erected onshore as a prototype. The previous section 4 dealt 
with a virtual wind turbine, generated and calculated with FAST. In contrast, this section 
investigates a real-world wind turbine. Thus, this section focuses on aspects that addition-
ally have to be solved, while representing the real-world structure as a numerical model. In 
particular, the identification of structural dynamic parameters and the model updating are 
discussed. 

A high effort is made to the system identification. With the Frequency Domain Decomposi-
tion, an adequate method for determining eigenfrequencies and damping ratios from 
measurement data is described. Measurements are analyzed for local structural components 
and for the dynamics of the entire structure. Standstill and various operation states are in-
vestigated, with a special focus on the wind-speed dependency of the eigenfrequencies and 
the damping ratios. For the eigenfrequencies no rotor-speed dependency is observed, 
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whereas the influence of aerodynamic effects is clearly shown within the identified damp-
ing ratios. The influences of high multiples of the P-excitation that resonate with eigenfre-
quencies are also shown. 

Additionally, this section shows how the structural description and the results of the system 
identification are used to create a mathematical model of the structure. This process is 
called model updating. The model updating is done with very high accuracy. Thus, a FE 
model is created that represents the measured eigenfrequencies, which is an important 
precondition for the inverse load calculation. In the model updating process, it turned out 
that the RNA modeling simplification needs to be enhanced. Distributed mass and stiffness 
representation of the rotor blades are necessary in order to cover the interactions that oc-
cur between the rotor blades and global bending modes or local modes respectively.  

The result for the inverse load calculation is shown, which is the rotor thrust force caused 
by a load case representing the operating wind turbine. Detailed descriptions are omitted 
because of proprietary information. A verification study shows the plausibility and the accu-
racy of the inversely calculated load. The accuracy is determined by comparing measured 
strains to simulated strains that are derived from the updated FE model, with the inverse 
load as applied load. 

In conclusion, the outcomes of this section are 1) the methodical approach for the inverse 
load calculation at a wind turbine using measurement data, 2) a contribution to the system 
identification of wind turbines under operation, especially in terms of aerodynamic damp-
ing, and 3) a selective assessment of the quality of the inverse load calculation results. 
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6 Inverse Load Calculation at a 5 MW Offshore 
Wind Turbine Model 

 

The previous sections discussed the inverse load calculation of aerodynamic loads in steps. 
These were chosen in order of increasing complexity. Based on studying basic characteris-
tics of the inverse load calculation (section 3), specific characteristics of wind turbines – 
such as coupled dynamics and the control of the wind turbine – were additionally taken 
into account. These specific characteristics are investigated in section 4 using the simulation 
code FAST. In section 5, the requirements are discussed that occur while applying the de-
veloped calculation procedure to a real-world wind turbine with measured data. The so-far 
developed procedure with the according results and conclusions are now used in order to 
apply the inverse load calculation to offshore conditions.  

In order to investigate the ability of the inverse load calculation to cope with combined 
wind and wave loads, the simulation code FAST is used. FAST accounts for the coupled 
dynamics of the wind inflow, aerodynamics, elasticity, and control of the wind turbine. Ad-
ditionally, FAST considers incident waves, sea currents, hydrodynamics, and foundation 
dynamics of the support structure.86 A 5 MW wind turbine model with a monopile founda-
tion is used. Hence, the description of the structure is known. FAST simulates the corre-
sponding system response due to defined loads. Using the simulated system response and 
the known system descriptions allows calculating the applied wind and wave loads in-
versely. The inversely calculated wind load is based on the previously discussed procedures, 
results, and conclusions. This section investigates the capability of calculating the wave load 
additionally. Comparing the inversely calculated loads to the loads defined for the simula-
tion serves as a verification study in order to assess the accuracy of the inverse load calcula-
tion procedure. 

For this verification study, section 6.1 first gives an overview of the calculation of hydrody-
namic loads with FAST and discusses the approach for the inverse load calculation with 
respect to the simulation. Section 6.2 describes the chosen wind turbine model and sum-
marizes the simulation steps, including the necessary post-processing. The results of the 
inverse load calculation and the verification of the result accuracy is presented in sec-
tion 6.3. 

 

                                               

86 See Jonkman et al. (2008) [47]. 
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6.1 Hydrodynamic Loads in FAST with HydroDyn 

6.1.1 Theoretical Basics of FAST with HydroDyn 

FAST calculates hydrodynamic loads using the built-in routine HydroDyn.87 At the moment, 
a user’s guide for HydroDyn is not available. The theoretical basics of HydroDyn are docu-
mented in Jonkman (2007) [46] and in Jonkman (2009) [48]. HydroDyn is able to handle 
two different support-structure types: monopiles and floating platforms. The entire sec-
tion 6 is limited to a monopile structure, thus, the theoretical basics of HydroDyn given 
below are summarized for the monopile-related modeling and calculation of waves, cur-
rents, and hydrodynamic loads. Floating-platform specific theory, such as the calculation of 
mooring system reactions, is omitted. 

The modeling of monopile structures is defined by the tower parameters of the FAST input 
file. The foundation modeling of the monopile is possible through user-defined routines,88 
with options for apparent fixity, coupled springs, and distributed springs (Figure 6.3, right). 
The springs can be defined either linearly or non-linearly, whereas the non-linearity can be 
taken from p-y-curves. Simple models are typically suitable for a full-system analysis.89 

The theoretical fundamentals and some basic assumptions about FAST are already de-
scribed in section 4.1. For monopiles, the wave kinematics (linear or non-linear) are solved 
in the absence of the structure and hydrodynamic loads are applied using Morrisons’ equa-
tion, which includes non-linear viscous-drag terms. The wave kinematics are calculated 
with the Airy wave theory, which enables the modeling of the most waves in deep water 
and small-amplitude waves in shallow water. Stochastic waves are described by the Pier-
son-Moskowitz spectrum90, the JONSWAP spectrum90, or a user-defined spectrum. Three 
stretching methods are available: vertical, extrapolation, and Wheeler. Arbitrary wave di-
rections are possible, but without spreading. Optionally, non-linear waves are available that 
have to be read in from externally generated wave data. Steady sea currents are calculated 
as IEC-style sub-surface currents, near-surface currents, and depth-dependent currents. 
Additionally, user-defined currents can be considered. 

The hydrodynamic loads are calculated using the relative form of the Morison equation. 
The linearization of the hydrodynamic problem usually does not account for non-linear sec-
ond- or higher-order hydrodynamic effects. But, the linearized hydrodynamic problem that 
is solved in HydroDyn includes the non-linear viscous-drag term from the Morison equa-

tion. The total hydrodynamic loads at the monopile structure Hydro
ikF  are calculated at each 

structural node along the tower as  

 Hydro prtHyd
ik ik ijk jkF F A q= − ⋅  (6.1) 

                                               

87 HydroDyn is part of FAST version v7.00.01a-bjj and newer. 
88 Currently, built-in foundation models are not available. 
89 See Jonkman (2011) [51]. 
90 See Figure 2.5, page 18. 
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with the node number k, the force component i and the acceleration component j. The 
subscripts i and j range from 1 to 6, representing the displacement and rotational DOFs of 

the tower nodes. The accelerations in the spatial coordinate system are represented by q . 

The term prtHyd
ikF  represents the portion of the hydrodynamic force that does not depend on 

accelerations,91 including inertia and viscous drag loads. The product of the hydrodynamic 

added-mass matrix ijkA  with the accelerations gives the hydrodynamic impulsive-added-

mass. Composing equation (6.1) in form of a difference92 avoids an implicit EoM, with a 
forcing function93 that depends on the accelerations.  

 

6.1.2 Source-Code Modification in FAST 

The approach for the inverse load calculation for combined wind and wave loads is theo-
retically discussed in section 2.2.2. In order to use FAST for the verification study, the hy-
drodynamic forces that are applied to the FAST model have to be known. But, the hydro-
dynamic forces are not output parameters by default. For this reason, the source code of 
FAST is modified. This modification and some further preliminary thoughts about the in-
verse calculation are given subsequently. 

By default, FAST accounts for two tower bending modes in the fore-aft direction. Hence, 
for the time being, using FAST allows for the inverse calculation of two loads. These two 
loads are the aerodynamic wind load – simplified to the rotor thrust – and the hydrody-
namic wave load94 – simplified to the resulting wave load – as depicted in Figure 6.1 (left). 
The inverse calculation of the wind load follows the procedure described in the previous 
sections. The use of a small number of DOFs is a reasonable approach. This statement is 
e.g. confirmed by Jensen et al. (2007) [43]. They use an ARMA approach in order to gain 
load information for a pile with a top mass put into a basin and loaded with stochastic 
waves. One DOF is used in order to gain good results. Nevertheless, further research 
should investigate the effects of using a higher number of DOF. 

In terms of the hydrodynamics, FAST calculates loads for the fixed-bottom monopile struc-
ture from mudline to the current wave surface. The hydrodynamic loads are described by 
equation (6.1). The inverse load calculation needs the hydrodynamic loads as output pa-
rameters because they are needed as a reference value that can be compared to the in-
versely calculated wave load. In order to make the hydrodynamic loads from FAST avail-
able, the FAST output routine is rewritten as described in Appendix Q.  

                                               

91 This portion of the hydrodynamic force can depend on displacements and velocities. 
92 In case of floating platforms, equation (6.1) contains an additional forcing term that describes the 

mooring lines. 
93 See equation (4.1). 
94 See section 2.2.2, which discusses the neglect of the sea currents contribution to the hydrody-

namic loading in terms of the inverse load calculation. 
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Figure 6.1: Structural nodes with hydrodynamic loading 

 

According Airy wave theory, the wave load is non-linearly distributed along the tower’s 
height. In order to capture the gradient of the wave load, a sufficient number of nodes has 
to be defined below the wave surface, which is assured by choosing a sufficient number of 
tower nodes. But only a limited number of nodes are loaded with hydrodynamic forces. The 
rewritten FAST output only considers the loaded nodes. 

The total number of tower nodes TwrNodes is defined in the FAST input file. The coordi-
nates of the elements hk and the element length dz depend on the height of the structure 
TwrFlexL, which is the sum of the distance from mudline to SWL and the distance from 

SWL to tower top (Figure 6.1). The indexed variable k ∈ N ranges from 1 to 
(TwrNodes + 1). The nodes are located in the center of the elements. 

 ( )k

TwrFlexL
h k 1

TwrNodes
⎛ ⎞= − ⋅ ⎜ ⎟
⎝ ⎠

 (6.2) 

 TwrFlexL
dz

TwrNodes
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (6.3) 

The number of nodes that are loaded with hydrodynamic forces is denoted with the vari-
able WaveNodes. An approximation of WaveNodes gives equation (6.4), which calculates 
the nodes up to the elevation of the SWL plus three times HS. 

load model structural model 

rotor thrust 

resulting 
wave load 

wind load 

wave load 

SWL 

TwrFlexL 

TwrNodes 

1 
j 

WaveNodes 

dz 
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( )S

TwrFlexL
SWL 3 H 0.5

TwrNodesWaveNodes
TwrFlexL
TwrNodes

⎛ ⎞+ ⋅ + ⋅ ⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (6.4) 

The rewritten FAST output contains the matrix of the hydrodynamic forces FHydro in the 
fore-aft direction for the nodes for the node numbers 1 (mudline) to WaveNodes, for each 
time step t. Within a post-processing step the resulting wave load FR and its points of ap-
plication hR can be calculated using equations (6.5) and (6.6).  

 
n

R Hydro
k

k 1

F F dz
=

= ⋅∑  (6.5) 

 
( )

n
Hydro

k k
R k 1

R

h F dz
h

F
=

⋅ ⋅
=

∑
 (6.6) 

FR and hR have to be calculated for each time step t. The utilized variables and indices are 
explained in Figure 6.2. 

 

Figure 6.2: Calculation of the resulting wave load 

 

6.2 Analysis in FAST 

In what follows, the defined wind turbine model that is used for the analysis is described. 
Additionally, the settings for the linearization and for the time-marching simulation are 
summarized. 

 

hR 

hk 

FR 
Fk

Hydro 

dz 

FR  – resulting wave load (1) 

Fk
Hydro – hydrodynamic force at node k (1) 

hR  – point of application of FR (1) 

hk  – point of application of Fk
Hydro (1) 

dz  – element length 

k  – node number (1) 

n  – maximal number of nodes (1) 

 
(1) at every time step 
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6.2.1 Description of the 5 MW Offshore Wind Turbine Model 

The previously described NREL 5 MW reference wind turbine is used.95 Now, the proper-
ties in Table 4.1 describe the structure from still water level (SWL) upwards. Thus, the 
three-bladed upwind variable-speed variable pitch-to-feather controlled turbine has a hub 
height of 90 m above SWL. The rotor blade lengths are 63 m. A total number of 16 DOFs 
are enabled. The number of DOFs result from the 1st and 2nd flapwise blade modes (3 
blades – 6 DOFs), the 1st edgewise blade modes (3 DOFs), the drivetrain rotational flexibil-
ity, generator, and yaw (3 DOFs), and the 1st and 2nd tower bending modes in fore-aft and 
in side-side direction (4 DOFs). The wind turbine is carried by a tubular steel tower. Below 
SWL, the tower is supported by a fixed-bottom (apparent fixity) monopile substructure. The 
water depth is set to 20 m, which equals the height of the substructure. Thus, the height of 
the entire structure from mudline to hub height is 110 m. The diameter of the steel mono-
pile is 6 m. Figure 6.3 depicts the model. The number of tower nodes is chosen to 175.96 
Thus, the element length between the tower nodes is dz = 0.63 m, which gives a number 
of 31 nodes under SLW. This number is sufficient in order to represent the non-linear dis-
tribution of the hydrodynamic load. All offshore-related hydrodynamic inputs are defined in 
the platform input file that has to be read into the FAST input file. 

 

Figure 6.3: Offshore monopile model and simplified monopile foundation models 

                                               

95 See Jonkman et al. (2009) [49] and section 4.2.1. 
96 FAST allows an arbitrary number of tower nodes. In case the number of tower nodes exceeds 99, 

the ADAMS preprocessor mode has to be set to ADAMSPrep = 1 in the FAST input file. 

Figures are taken from Jonkman 
(2011) [51]. 

apparent fixity coupled springs distributed springs 
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In fact, the model described above is an extended offshore version of the 5 MW onshore 
wind turbine model that was used in section 4. This close structural affinity directly allows 
applying the conclusions from the onshore simulations. Consequently, the offshore simula-
tions – both the linearization and the time-marching simulation – follow the already de-
scribed algorithms from section 4.2.2 and 4.2.3. The new offshore-related simulation set-
tings are discussed subsequently. 

 

6.2.2 Linearization and System Matrices 

The objective of the linearization is the determination of the full-system eigenfrequencies 
of the FAST model used. The way in which FAST linearizes the complete non-linear aeroe-
lastic model is described in detail in section 4.2.3. The same simulation setup (see Figure 
4.4 – stationary rotor)97 is used in order to calculate the periodic steady state solution. 

FAST cannot linearize a model with incident wave kinematics. For this reason, the 110 m 
tower structure with the spinning blades is only loaded with aerodynamic loads. The lin-
earization results in the full-system matrices that generate the full-system eigenfrequencies 
presented in Table 6.1. 

 

Table 6.1: Full-system eigenfrequencies for the Offshore Wind Turbine Model 

No. Frequency DOF 

1 0.28 Hz 1st Tower side-side bending 

2 0.29 Hz 1st Tower fore-aft bending 

3 0.56 Hz 1st Blade flapwise bending 

4 0.74 Hz 1st Blade flapwise bending 

5 0.89 Hz 1st Blade edgewise bending 

6 0.91 Hz 1st Blade flapwise bending 

7 1.29 Hz 1st Blade edgewise bending 

8 1.67 Hz 1st Blade edgewise bending 

9 1.79 Hz 2nd Blade flapwise bending 

10 2.05 Hz 2nd Blade flapwise bending 

11 2.17 Hz 2nd Blade flapwise bending 

12 2.38 Hz 2nd Tower side-side bending 

13 2.39 Hz 2nd Tower fore-aft bending 

14 3.90 Hz Drivetrain rotational flexibility 
 

Based on the full-system matrices and the eigenfrequency information, the reduced system 
matrices needed for the inverse calculation are generated. The reduction of the system ma-
trices follows the procedure described in section 4.2.4. With the transformation matrix 

                                               

97 See also the descriptions in section 4.2.4. 
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composed of the tower fore-aft modes, the modal reduction gives the following reduced 
stiffness and mass matrices. 

 
6

red 1
6

1.3384 10 0
in Nm

0 2.1868 10
−⎡ ⎤⋅

= ⎢ ⎥⋅⎣ ⎦
K  (6.7) 

 

 
5

red
3

4.2695 10 0
in kg

0 9.8095 10

⎡ ⎤⋅
= ⎢ ⎥⋅⎣ ⎦

M  (6.8) 

Applying an eigenvalue analysis to the reduced system matrices allows calculating the ei-
genfrequencies of the reduced system. Table 6.2 summarizes these eigenfrequencies. The 
comparison to the full-system eigenfrequencies shows the accuracy of the reduced system 
in terms of representing the fore-aft tower bending modes. Additionally, Table 6.2 contains 
the damping ratios that are used for the inverse calculation. Again, the damping ratio of the 
first mode is the sum of structural and aerodynamic damping, whereas the damping ratio of 
the second mode represents structural damping. 

 

Table 6.2: Reduced-system eigenfrequencies for the Offshore Wind Turbine Model 

Mode Frequency Damping ratio 1) 

1st fore-aft tower bending 0.28 Hz 0.07 

2nd fore-aft tower bending 2.38 Hz 0.04 

1) As percentage of critical damping. 

 

6.2.3 Time-Marching Simulation 

Simulation is time-marching of the non-linear equations of motion. During simulation, the 
aerodynamics, the hydrodynamics, and the structural response of the wind turbine to these 
conditions are determined in time. Output data includes time series of the aerodynamic 
loads as well as the loads and deflections of the structural members of the wind turbine. 
Additionally, the hydrodynamic loads are part of the output data, as described in section 
6.1.2. 

In order to perform the time-marching simulation, loads that take into account combined 
wind and wave loads have to be defined. Wind loads are usually described by the mean 
wind speed at hub height vHub.98 Wave loads result from incident waves that form a sea 
state. The sea state is usually defined by a wave spectrum.99 For the mathematical descrip-
tion of the typical wave spectra, the significant wave height HS and the peak spectral period 
TP are needed. The mean wind speed and the significant wave height are strictly corre-

                                               

98 See section 2.1.1 and section 4.2.2. 
99 See section 2.1.2. 
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lated,100 which has to be considered in the load case definition. Grünberg and Göhlmann 
(2011) [29]101 present several JONSWAP spectra with their corresponding wind speeds. 

With TurbSim [44], stochastic turbulent wind fields are generated that are the aerodynamic 
input for the simulations. For the offshore verification study here presented, the load case 3 
from section 4.2.2 is used. This load case is in the middle of region 3, with a mean wind 
speed of 18 m/s, which is between rated wind speed and cut-out wind speed (Figure 4.3). 
The ability of the inverse load calculation to handle different turbine control configurations 
is already discussed in section 4.3.2. Considering one of the previously defined LCs has the 
advantage that there is already an expectation in terms of the aerodynamic inverse load 
and its accuracy. 

This section mainly focuses on studying the ability and the accuracy of the inverse load 
calculation with respect to the hydrodynamic loads. A stochastic sea state that is described 
by the JONSWAP spectrum is chosen. The JONSWAP spectrum is based on extensive 
measurements at the German North Sea cost. In order to fulfill the correlation with the 
chosen wind speed, a significant wave height of HS = 5 m and a peak spectral period TP = 

12.4 s is used. Further parameters needed are the peak shape parameter γ and the scaling 

factor σ. Both parameters are derived from the pair of values HS/TP, as recommended by the 
design standard IEC 61400-3 (2009) [108].102 Wheeler stretching is applied. Consequently, 
a load case as summarized in Table 6.3 is defined. 

 

Table 6.3: Load case for the FAST offshore verification study 

Wind 

 Mean wind speed 1) vHub = 18 m/s 

 Turbulence mode 2) NTM 

 Turbulence characteristic 2) B 

Wave 

 Significant wave height HS = 5 m 

 Peak spectral period TP = 12.4 s 

 Wave model 3) JONSWAP (irregular) 

 Stretching Wheeler 
1) At hub height, mean vertical shear about rotor disk is 0.03 m/s. Horizontal shear is not considered. 
2) IEC 61400-1 (2005) [107]. 
3) Peak shape parameter γ and scaling factor σ calculated according to IEC 61400-3 (2009) [108]. 

 

In general, combined wind and wave loads are simulated for 1 hour, which is a compromise 
between 10 min wind simulations and 3 hours wave simulations. The simulation of waves 

                                               

100 See Grünberg (2011) [30], page 53. 
101 See Grünberg and Göhlmann (2011) [29], page 51. 
102 See also Jonkman (2007) [46], page 23. 
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requires a larger time window in order to cover a sufficient number of significant incidents, 
since wave data contain more low-frequent content than wind data.103 For that reason, a 
simulation time of 3,600 s is used. The FAST simulation time steps are dt = 0.0125 s. In 
order to limit the amount of data, a decimation factor of 4 is applied to the output data, so 
that a time increment of 0.05 s and a Nyquist frequency of 10 Hz are produced. Both val-
ues guarantee sufficient accuracy for the frequency-domain transformations. 

Full-span collective blade-pitch control and variable-speed generator-torque control are 
enabled for the turbine control, whereas the yaw control mode is disabled. 

 

Table 6.4: Output signals for the FAST offshore verification study  

Turbine signals 

 WindVxi 

HorWndDir 

PtchPMzc1 to ~3 

LSSTipVxa 

YawPzn 

HSShftV 

GenTq 

Normal downwind component of the hub-height wind velocity (m/s) 

Horizontal hub height wind direction (deg) 

Blade pitch angle (deg) 

Rotor azimuth angular speed (rpm) 

Nacelle yaw angle (deg) 

Angular speed of the HSS and generator (rpm) 

Electrical generator torque (kNm) 

Motions of the structure 

 YawBrTDxt 

YawBrTAxp 

TwHtiTDxt 1) 

TwHtiALxt 

Tower top fore-aft deflection (m) 

Tower top fore-aft acceleration (m/s2) 

Local tower fore-aft displacements at the i-th tower gage (m) 

Local tower fore-aft accelerations at the i-th tower gage (m/s2) 

Force signals 

 LSShftFxa /   
RotThrust 

YawBrFxn 

TwHtiFLyt 

FTHydro 3) 

LSS2) thrust force, constant along shaft and equivalent to rotor thrust 
force (kN) 

Rotating (with nacelle) tower top / yaw bearing shear force (kN) 

Local tower fore-aft shear force at the i-th tower gage (kN) 

Hydrodynamic force from Morison equation (kN) 

1) The output of the local tower displacements is not an available option of the current FAST version 
v7.00.01. For this reason, the FAST source code was adjusted so that the output of the local tower dis-
placements is enabled.  

2) LSS – low-speed shaft. 
3) Gained from the source code modification described in section 6.1.2. 

 

The requested output signals are summarized in Table 6.4. The turbine signals serve as 
plausibility checks of the FAST analysis and visualization of the turbine control. The motions 
of the structure and the force signals are used as input signals for the inverse load calcula-
                                               

103 See Figure 2.7 and Figure 2.8. 
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tion. The input signals also include the rotor thrust force computed by FAST, which is re-
quired as a comparative signal for the inversely calculated aerodynamic load. The applied 
hydrodynamic load that is part of the rewritten FAST output is used as comparative signal 
for the inversely calculated hydrodynamic load. The signals used for the inverse calculation 
are bold. 

In case the substructure is very stiff with respect to the tower, the aerodynamic and the 
hydrodynamic loads will be uncorrelated. This would be true, for example, for the lattice 
structure described in section 5 and the here investigated monopile substructure. The re-
sults of the simulation and of the inverse load calculation are presented in section 6.3.  

 

6.3 Results of the Inverse Load Calculation at a 5 MW Offshore 
Wind Turbine Model 

The verification of the inverse load calculation follows the scheme depicted in Figure 4.1. 
The inversely calculated aerodynamic and hydrodynamic load will be compared to the FAST 
rotor thrust and to the resulting hydrodynamic force from FAST, respectively (Figure 6.4). 
The FRF matrix is assembled using the information from the eigenvalue analysis and the 
system matrices given in section 6.2.2. 

 

Figure 6.4: Assumptions for the offshore verification study using FAST 
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Additionally, system responses are needed as calculation input. As depicted in Figure 6.4, 
acceleration time series at the tower top (maximal amplitude of 1st tower bending mode) 
and at the point where the resulting wave load is located are chosen. Because the location 
of the resulting wave load does not necessarily coincide with the maximal amplitude of 2nd 
tower-bending mode, the second row of the reduced modal matrix has to be scaled. The 
tower-bending mode shapes are known from the linearization described in section 6.2.2. A 
depiction of the calculated mode shapes is given in Figure 6.5. The scaling factor results 
from the ratio of the maximal amplitude to the amplitude at the sensor location, denoted 

as Rh . 

 

Figure 6.5: Tower bending modes shapes 

 

The inversely calculated wind load results from superimposing the static/quasi-static and 
the dynamic component, seperated by a cut-off frequency of 0.07 Hz. The static/quasi-
static component is derived from displacement signals at tower top (Figure 6.4). The calcu-
lation of the dynamic component is based on the Deconvolution in the Frequency Do-
main.104 The corresponding procedure is described in detail in section 4.3. The hydrody-
namic load is assumed to be purely dynamic. Thus, the inverse hydrodynamic load is calcu-
lated using the Deconvolution in the Frequency Domain.104 The underlying system of equa-
tions is now a determined system. Two tower bending modes are used in order to calculate 
two unknown forces.105 The results for the inverse load calculation with combined aerody-
namic and hydrodynamic loads are subsequently shown. 

 

                                               

104 See section 3.2. 
105 See also section “3.2.2 Assembly of the FRF Matrix and Least-Squares Approach“. 
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6.3.1 Calculation of the Resulting Wave Load 

The sensor location at the level of the resulting wave load is not known prior to the simula-
tion. For this reason, a simulation run has to be performed in order to make the applied 
hydrodynamic force FTHydro available. Figure 6.6 shows a time range of 100 s of the FAST 
output variable FTHydro. Applying equations (6.5) and (6.6) gives the time-dependent re-

sulting wave load ( )RF t  and its points of application ( )Rh t . The sensor location Rh  is found 

by averaging the points of application over the entire simulation time. 

 

Figure 6.6: Hydrodynamic load derived from the FAST offshore simulation 

 

6.3.2 Load Case – Stochastic Wind and Irregular Waves 

Once the sensor location Rh  is known, the simulation for the load case described in Table 
6.3 can be performed. The description of the reduced system (section 6.2.2) completes the 
input parameters for the inverse calculation. 

The simulated mean wind speed at hub height is 17.99 m/s. Hence, the load case repre-
sents the middle of region 3, between rated and cut-out wind speed. In this region, high 
control activity is observed. The yaw position is constant at zero. However, the collective 
blade pitch ranges between pitch angles of 0° to 20°. While the torque controller operates 
in region 3, the control strategy aims on generating “constant power”. The mean rotor 
speed is 12.10 rpm. Figure 6.7 gives an overview about the wind turbine control. 
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Figure 6.7: Wind turbine control 

 

Figure 6.8 shows the inversely calculated aerodynamic load, both in the time and in the 
frequency domain. For verification purposes, the rotor thrust force that is computed by 
FAST is also displayed. The differences to the results in section 4, Figure 4.13 are the ex-
tended simulation time, the tower height that exceeds the SWL down to mudline and the 
simultaneously occurring hydrodynamic load. 

 

Figure 6.8: Rotor thrust and inverse aerodynamic load 
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Figure 6.9 shows the inversely calculated hydrodynamic load, also in the time and in the 
frequency domain. Now, the verification is done by comparing the inversely calculated load 
to the resulting wave load that is based on the hydrodynamic forces calculated by FAST. 
The resulting wave load results from applying equation (6.5). 

 

Figure 6.9: Resulting wave load and hydrodynamic inverse load 

 

6.3.3 Discussion of the Results 

A visual inspection of the results in Figure 6.8 and Figure 6.9 leads to the first conclusion 
that the inverse load calculation procedure produces reasonable results. This statement is 
true both for the inversely calculated aerodynamic and hydrodynamic loads when com-
pared to the FAST reference loads. 

Table 6.5 presents the error values of the inversely calculated loads, each derived from 

equation (3.65). The error value of the aerodynamic load εAero = 7.4 % is smaller than the 
error values that were calculated for the inverse loads in section 4.3.2 that are based on 
pure aerodynamic loadings. In contrast to the former calculation, the verification study here 
presented is based on a larger simulation time, a modified structural description, and addi-
tional hydrodynamic loads. The variation of these conditions does not downgrade the accu-
racy of the inversely calculated aerodynamic load. This second conclusion is a sign of the 
reliability of the inverse load calculation procedure in terms of aerodynamic loads. 

Figure 6.9 shows the inversely calculated hydrodynamic load compared to the resulting 
wave load that is based on the rewritten FAST output. The wave load in FAST is generated 
using a JONSWAP spectrum with a peak spectral period of TP = 12.4 s. As a consequence, a 
peak occurs at 0.08 Hz in the resulting wave load (blue signal in Figure 6.9). Additionally, 
the spectrum of the resulting wave load contains energy in a narrow frequency band that 
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ranges from ca. 0.06 Hz to 0.25 Hz. This frequency band shows a steep slope left to the 
maximum and a flat slop right to the maximum, which also fulfills the expectations on the 
JONSWAP spectrum.106 The inversely calculated hydrodynamic load (green signal in Figure 
6.9) reproduces these described characteristics. The same narrow frequency band is visible, 
with a maximum at approximately the spectral peak and the characteristic slops left and 
right to the maximum, which constitutes the third conclusion. 

 

Table 6.5: Error values from the offshore verification study 

Error in time ε Aerodynamic load Hydrodynamic load 1) 

Full load signal 7.4 % 26.8 % 

Quasi-static component 6.3 % --- 

Dynamic component 11.5 % 26.8 % 
1) In terms of the hydrodynamic load the dynamic component equals the full load signal because the hy-

drodynamic load does not contain static and quasi-static components. 

 

The error value of the hydrodynamic load is εHydro = 26.8 % (Table 6.5). Again, it should be 
mentioned that the chosen error estimation is not intended to give absolute quantifications 
of the accuracy of the inverse calculation results, but it is rather used to compare results 
within this work. The inversely calculated hydrodynamic load is a purely dynamic load, de-
rived from the relations of the Deconvolution in the Frequency Domain. As pointed out in 
section 4.3.2, the dynamic load components show higher uncertainties than the 
static/quasi-static components and consequently the full load signals. The main reason is 
seen in the system reduction from the full system to the tower bending modes, which is 
also part of the inversely calculated hydrodynamic load. This means that the acceleration 
signals that serve as input for the inverse calculation are based on a full-system calculation. 
Whereas the inverse load is calculated using the reduced system. This fact causes the un-
certainties in the results. The reason for the system reduction is discussed in section 2.2.2. 

The comparison between the dynamic force components obtained by the offshore load 
case (Table 6.5) shows the aerodynamic load to be more accurate than the hydrodynamic 
load. This leads to the fourth conclusion: The aerodynamic load can be calculated inversely 
with a higher accuracy than the hydrodynamic load.  

The fifth conclusion is derived by having a look at previous inverse calculation results. The 
error value of the hydrodynamic load lies on the upper edge of the accuracy range if com-
pared to the error values of the dynamic load components for the wind loads in section 
4.3.2 and the strain comparison in section 5.3.2. All conclusions need to be verified by fur-
ther calculations. 

There are further influences that contribute to the differences between the inversely calcu-
lated hydrodynamic load and the resulting wave load (Figure 6.9). First of all, the lineariza-
tion that gives the system matrices is calculated without hydrodynamic loads. As described 
                                               

106 See for example Figure 2.5, page 18. 
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in section 6.2.2, FAST cannot consider incident wave kinematics within the linearization. A 

second simplification concerns the sensor location Rh  of the lower accelerometer to be a 
constant value. In fact, it is an average of the time-dependently varying points of applica-

tion ( )Rh t  of the resulting wave load. This assumption is made because the accelerometer 

has a fixed location during the entire simulation time. In addition, the inversely calculated 
hydrodynamic load is high pass filtered at the cut-off frequency of 0.07 Hz, which is caused 
by the double-integration of the acceleration signals to velocity signals.107 Applying this 
filter does not violate the inverse calculation, because it is located at the upper edge of the 
expected frequency band that results from the applied JONSWAP spectrum. In addition, 
the inversely calculated load is treated with a high pass filter that cuts off the frequencies 
above the energy-containing frequency band. In this way, high frequent content that may 
result from rotor blades (that are not covered in the reduced system) is suppressed. 

As is true for the already discussed inverse calculations in sections 3 to 5, the quality of the 
mode shapes is important for the accuracy of the results. 

 

6.4 Summary 

This section aims at investigating the inverse load calculation that considers combined wind 
and wave loads. The investigation is based on the previous gained results (section 3 to 5). 
The comprehensive simulation code FAST is used for a verification study of the inverse load 
calculation. FAST allows loads to be applied from a defined stochastic wind field and en-
ables the interacting dynamics of the wind inflow, aerodynamics, elasticity, and the control 
of the wind turbine to be considered. Additionally, FAST considers incident waves, sea cur-
rents, hydrodynamics, and foundation dynamics of the support structure. A three-bladed 
5 MW offshore wind turbine model is used. The structure of the model consists of a tubular 
steel tower with a monopile foundation. A still water level of 20 m is chosen. One repre-
sentative load case is defined. With the system matrices from the FAST model and the 
simulated accelerations along the tower, inverse loads are calculated. An approach is intro-
duced in which the wind load is reduced to the rotor thrust and the wave load is repre-
sented by a resulting wave load (see also section 2.2.2). The accuracy of the inverse load 
calculation is estimated by comparing the inversely calculated loads with the applied loads 
from FAST. 

Summarizing the main conclusions of the presented verification study leads to the following 
statements: The inverse load calculation is capable of generating good estimates of the ap-
plied wind and wave loads. The accuracy of the inversely calculated wind load is not dis-
turbed by the additionally occurring wave load. The inversely calculated hydrodynamic load 
reproduces the same frequency-domain characteristics as there are for the applied hydro-
dynamic load. The aerodynamic load can be calculated inversely with a higher accuracy 
than the hydrodynamic load. The error value of the hydrodynamic load lies on the upper 
edge of the accuracy range if compared to all previously gained error values. 
                                               

107 See Appendix E „Integration in the Frequency Domain“. 
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The conclusions are derived from only one representative load case. Thus, their general 
validity has to be confirmed by further verifications. A wind turbine model is used for the 
presented verification. In case, a real-world offshore wind turbine is used, the additional 
necessary steps are presented in section 5. In general, they are also valid in case of an ap-
plication to a real-world offshore wind turbine. However, further questions have to be an-
swered. For example, how the sensor location of the lower accelerometer can be estimated 
or how the resulting wave load can be used for continuing investigations, such as the calcu-
lation of strains – as presented in section 5.3.2 – that may allow lifetime predictions. 

The calculations presented are maybe the first application of an inverse load calculation 
procedure to a wind turbine model under combined wind and wave loads and with the 
consideration of the dynamic coupling effects. An application to a real-world offshore wind 
turbine is also not observed in the analyzed literature in section 1.2.3. 
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7 Conclusions and Outlook 
 

7.1 Conclusions 

This work presents the inverse load calculation at offshore wind turbines. The literature 
review of related research publications shows a lack of information, especially when inves-
tigating the effects of wind turbine specific characteristics to the results of the inverse cal-
culation. Consequently, the ill-conditioning of the inverse calculation procedure, dynamic 
coupling effects, wind turbine control, the occurrence of combined wind and wave loads, 
and the application of the inverse load calculation procedure to a real-world wind turbine, 
are studied. There are no publications that describe the application of the inverse load cal-
culation for combined wind and wave loads. In addition, a verification of the result accu-
racy is poorly discussed so far. This work is intended to fill this gap. In fact, the value of this 
work is 

• suggesting an approach to the inverse load calculation procedure that is appropriate 
for wind turbines and that is based on known mathematical relations, 

• giving verifications of the results for the inverse load calculation at onshore and off-
shore wind turbines that consider wind turbine specific characteristics, and 

• applying the inverse load calculation to a real-world structure, including a verifica-
tion of the gained results. 

 

Approach to the inverse load calculation 

The suggested procedure for the inverse load calculation is the following: First, dynamic 
system responses and a system description are needed. The responses are measured accel-
eration signals. The system description results from the FRF matrix that contains the modal 
information of the fore-aft modes of the structure. The inverse problem is solved using the 
Deconvolution in the Frequency Domain and results in the externally acting aerodynamic 
and hydrodynamic loads. The aerodynamic loads of interest are caused by a stochastic wind 
field. These loads are represented by the rotor thrust. The unknown hydrodynamic loads 
result from incident waves and are represented by the resulting wave load.  

The mathematics of the Deconvolution in the Frequency Domain are illustrated using a 
simple numerical example. The procedure for assembling the FRF matrix is shown. In addi-
tion, a least-squares approach is introduced that allows the consideration of a larger num-
ber of system responses than the number of unknown forces. This approach allows for the 
elimination of random errors that are inherent parts of measurement data. Finally, the nu-
merical example is used to outline the effects of the ill-conditioning of the inverse problem 
to the calculation results. Digital filters are used to cope with the ill-conditioning. 
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Verification of the results for the inverse load calculation 

The comprehensive simulation code FAST is used for verification studies of the inverse load 
calculation method. FAST allows loads to be applied from a defined stochastic wind field 
and enables a consideration of the interacting dynamics of the wind inflow, aerodynamics, 
elasticity, and the control of the wind turbine. Additionally, FAST considers incident waves, 
hydrodynamics, and foundation dynamics of the support structure. Thus, using FAST allows 
the study of the effects of all of these wind turbine specific characteristics. 

The simulation is verified by comparing the inversely calculated loads to the loads applied 
to the FAST model. The inverse calculation is based on the simulated dynamic responses of 
the structure and the system description of the model that is also an output of the FAST 
simulation. Representative load cases are investigated at a 5 MW wind turbine model with 
a tubular steel tower, both at onshore and offshore conditions. 

The Deconvolution in the Frequency Domain is used for the inverse calculation. The calcu-
lation is based on acceleration signals and gives dynamic force components. Aerodynamic 
loads have considerable static/quasi-static components. These components are calculated 
from tower deflections. The full inverse load is obtained by superimposing the components. 

The main conclusion of the verification study is that the inverse load calculation is capable 
of generating reasonable estimates of the applied load. A good result quality is obtained for 
aerodynamic and combined aerodynamic/hydrodynamic loads.  

The inverse calculation does not depend on the wind turbine control. 

The verification of the aerodynamic loads shows that the static/quasi static load compo-
nents are calculated inversely with high accuracy. The dynamic components show uncer-
tainties. The simplification of the RNA and the system reduction to the fore-aft modes is 
seen as the main reason for the observed differences. The uncertainties cause an overesti-
mation of the load amplitudes. 

The verification of the combined aerodynamic and hydrodynamic loads shows that the in-
verse load calculation is capable of generating good estimates of the applied wind and 
wave loads. The calculation of the inversely calculated wind load is not disturbed by an 
additional wave load. The inverse calculation reproduces the frequency-domain characteris-
tics of the applied hydrodynamic load. The aerodynamic load can be calculated inversely 
with a higher accuracy than the hydrodynamic load.  

The integration of acceleration signals to displacement signals does not cause errors to the 
inverse calculation. The integration even affects the inverse calculation positively in terms 
of the ill-conditioning of the inverse problem. 

 

Application to a real-world wind turbine 

If the inverse load calculation is applied to a real-world wind turbine, additional aspects 
have to be considered. For this reason, a 5 MW wind turbine with an offshore support 
structure is investigated. The structure is erected as an onshore prototype. Now, the system 
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responses are measured signals and a realistic system description has to be derived from 
the real-world structure. 

The chosen approach for deriving the realistic system description is using an output-only 
system identification method. The system identification gives the modal information of the 
structure. A finite-element model of the structure is updated so that this model represents 
the identified modal information. Now, the realistic system description is gained from the 
updated finite-element model. 

A large effort is allocated to the system identification procedure. The Frequency Domain 
Decomposition is chosen. The system identification determines the eigenfrequencies, mode 
shapes, and the damping ratios from measurement data. In order to get a comprehensive 
and accurate system description, measurements are analyzed for local structural compo-
nents and for the dynamics of the entire structure. Standstill and various operation states 
are investigated, with a special focus on the wind-speed dependency of the eigenfrequen-
cies and the damping ratios. For the eigenfrequencies no wind-speed dependency is ob-
served, whereas the influence of aerodynamic effects is clearly shown within the identified 
damping ratios. The influences of high multiples of the P-excitation resonate with eigenfre-
quencies are also shown. The determination of eigenfrequencies and mode shapes from 
measurement data show a very high accuracy, whereas the damping ratios are identified 
with acceptable uncertainties. 

A finite-element model is adjusted to measured modal information, which is called model 
updating. The model updating is done with very high accuracy. Thus, a realistic system de-
scription is generated, which is an important precondition for the inverse load calculation. 
The representation of eigenfrequencies and mode shapes is of particular importance for the 
inverse load calculation. The damping ratios are of minor importance. During the model 
updating process, it turned out that distributed mass and stiffness representation of the 
rotor blades are necessary in order to cover the interactions that occur between the rotor 
blades and global bending modes or local modes, respectively.  

The result for the inverse load calculation is the rotor thrust force due to a load case repre-
senting the wind turbine in operation. The verification is done by comparing measured 
strains to simulated strains that are derived from the updated FE model with the inverse 
load as applied load. This verification shows a high level of agreement between the strain 
signals. 

The inverse load calculation presented is an alternative to the direct determination of struc-
tural loads. The direct determination uses strain gauges applied to a limited number of cru-
cial cross-sections. This method is easy in its application and therefore, the method is well 
suited for the monitoring of specific structural components. But there are also a few draw-
backs. The loads exclusively depend on the measurement data at one certain cross-section. 
If this cross-section does not have a linear stress-to-load relationship, e.g. near the flanges 
of tubular steel towers, incorrect results are gained. If there is dynamic interaction between 
the loads and the structure, as it is for wind turbines, the strain gauges give internal struc-
tural loads. These structural loads cannot be related to externally applied loads due to the 
dynamic amplification of system responses.  
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The inverse load calculation requires much more mathematical effort. This effort includes 
setting up the system matrices, which requires system identification of real-world wind tur-
bines. Additionally, the inverse calculation procedure itself is laborious and strongly de-
pends on the quality of the input data. However, this work shows the inverse load calcula-
tion to be able to reproduce realistic estimates of applied loads. It is also shown that the 
applied loads can be used for simulations that result in a good estimate of realistic strains. 
With the knowledge of applied loads, strains can be determined at arbitrary cross-sections. 
For this reason, a promising field of application of the inverse load calculation is seen in the 
calculation of lifetime predictions, where information about the entire structure is needed. 

 

7.2 Outlook 

The main field of application of the inverse load calculation is for monitoring purposes or 
remaining lifetime predictions. 

 

Onshore wind turbines – aerodynamic loads 

In this work, the inverse load calculation procedure and its good results when aerodynamic 
loads are calculated are discussed in detail. The resulting accuracy is promising. This work 
shows how the inverse load can be used to simulate strains that have a good level of 
agreement with measured strains.  

Further investigations are necessary in order to assure that the accuracy of the compared 
strain signals can be reproduced at arbitrary cross-sections and for different operation 
states of wind turbines with arbitrary support structures. The simulated strains can be used 
for lifetime predictions.  

An absolute quantification of the result quality could be made by a comparison of fatigue 
calculations that base on strains from inversely calculated loads to strains measured with 
strain gauges. 

 

Offshore wind turbines – aerodynamic and hydrodynamic loads 

Essentially, all conclusions derived for onshore wind turbines are also crucial for offshore 
wind turbines. The presented investigation of combined wind and wave loads is only based 
on one representative load case. Hence, there is a demand for further verification studies. 

The investigation of combined wind and wave loads is done using a model simulated with 
FAST. Consequently, the application of the described procedures to a real-world offshore 
wind turbine is not yet discussed. Although many of the aspects described for the applica-
tion under onshore conditions can be used, the application to offshore conditions will pro-
duce further questions. Some of these questions are subsequently summarized. 

• How does one find the sensor position which equals the location of the resulting 
wave load? Several sensors (e.g. 3) can be located at the height of the structure, 
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where the resulting wave load is expected to occur. A hypothesis might be derived 
from simulations. 

• Is it necessary to increase the number of vibration modes when assembling the sys-
tem description? Does this influence the accuracy of the inverse calculation? 

• How does one cope with wind and wave loads coming from different directions? 
The system description used for the inverse calculation needs to be extended to the 
side-side modes. The assumption that the sum of the fore-aft and the side-side load 
vectors gives the inverse load has to be verified. 

• For what purpose can the resulting wave load be used? In the first instance, the re-
sulting wave load can be applied as a single load to the structure in order to calcu-
late structural strains. An enhanced approach may expand the resulting wave load 
to their non-linear distribution along the structure. This expansion might be based 
on the mathematical description of the wave kinematics and may require further 
sensors along the height of the structure.  

• How can the inverse load calculation for combined wind and wave loads be realized 
if there are other types of offshore support structures?  

 

All of these questions should lead to the final goal, which is to use the inverse load calcula-
tion for lifetime predictions at real-world offshore wind turbines. 
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Appendix A – Inverse Load in Sum Form 

Mathematical derivation of the frequency-domain expression for the inverse load cal-
culation from matrix form into sum form 

 

The frequency-domain expression for the inverse load calculation in matrix form is given by 
the equation 

 ( ) ( ) ( ) ( )1T 2 1
0 g E g 0 0j j j

− −ω = −ω + ω + ωF U M B M U YΛ . 

The matrix form can also be expressed in the form of a sum. For the mathematical deriva-
tion of the problem, a simplification of the variable denotation is done first, which results in  

 T
(m,1) (m,n) (n,n) (n,m) (m,1)= ⋅ ⋅ ⋅F V H V Y  

The terms that indicate the frequency dependency (jω) are omitted. The matrix V repre-

sents the inverse modal matrix 1
0
−U . The force vector F and the vector of displacements Y 

are given in spatial space. The FRF matrix H represents a modal space description. Addi-
tionally, subscripts n and m indicate the dimensions of the vectors and matrices, with n as 
the number of columns and m as the number of rows. The matrix form can be converted to 
an index form. Now, j is the index for the rows and k the index for the columns, resulting in 

 ( ) ( ) ( ) ( )T

(m,1) j,k k,k j,k j,1(n,n)(m,n) (n,m) (m,1)
v h v y= ⋅ ⋅ ⋅F  

 ( ) ( ) ( ) ( )k,j k,k j,k j,1(n,n)(n,m) (n,m) (m,1)
v h v y= ⋅ ⋅ ⋅  

 
m n

k,p p,p j,q q,1
p 1 q 1

v h v y
= =

= ⋅ ⋅ ⋅∑ ∑ . 

The two sums can be written more compactly as the matrices ( )k,p (n,n)
a  and ( )j,1 (m,1)

b . The 

product of both matrices can be expressed in the form of a sum, which leads to 

 ( ) ( )k,p j,1(n,n) (m,1)
a b= ⋅  

 
n

k,i i,1
i 1

a b
=

= ⋅∑ . 

The back transformation to the initial term gives the following equation. 
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n n

k,i i,i i,q q,1
i 1 q 1

v h v y
= =

⎛ ⎞
= ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
∑ ∑  

Now, the vector vi is the i-th column of the inverse modal matrix that has k entries per row. 
In addition, the vector vi describes the i-th row, now with k entries per column.  

 ( )
n

i
i i,i

i 1

h
=

= ⋅ ⋅ ⋅∑ v v y  

With the relationship ( )Ti
i =v v  a new form can be written as 

 ( )
n

T
i i i

i 1=

= ⋅ ⋅ ⋅∑ v H v y . 

Finally, the back substitution of the variable gives the frequency-domain expression for the 
inverse load calculation in sum form. 

 ( ) ( ) ( ) ( )
n 12 T 1

gi Ei gi 0i 0i 0i
i 1

j m j b m u j u
− −

=

ω = −ω + ω + ω ω∑F Y  
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Appendix B – Inversion in MATLAB, Signal Trans-
formation, and Calculation of Noise 

Remarks about the calculation of the FRF matrix in MATLAB 

1. When compared to a solution using the Gaussian elimination, solving a system of 

equations by means of an inverse matrix means more computational effort and 

less accuracy in the solution. 

In addition, the normal equation is worse conditioned than the original over-

determined system. The condition number even is squared. 

( ) ( )2Tκ = κH H H  

Numerical computation is of finite precision. For this reason, the normal equation 

can become singular. In this case, an inverse (HTH)-1 does not exist, although the 

columns of H are independent. 

2. MATLAB is able to perform the calculation of the normal equation using the back-

slash operator. The backslash operator solves square, non-singular systems, but it 

also computes the least-squares solution of rectangular, over-determined systems. 

The solution bases on a QR factorization. 

( ) ( ) ( )j j jω = ω ωF H \ Y  

3. Pseudo-inverse (Moore-Penrose) 

The pseudo-inverse is used if the matrix H is not of square dimension. 

4. Rank deficiency 

If the matrix H is rank deficient or if there are more columns than rows, the least-
squares solution with the backslash operator is no longer unique. 

The pseudo-inverse has to be computed via the minimum norm solution, which 
gives a unique solution. The corresponding MATLAB command is pinv(). 

5. MATLAB is also capable of computing non-linear least-squares problems. 

 

Transformation from time domain to frequency domain and vice versa 

The following mathematical relationships transform a signal from the time domain to the 
frequency domain and vice versa. The length of the time signal tmax is computed from the 
multiplication of the resolution in time tS and the number of samples in the signal N. 

 max St t N= ⋅  
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Usually, the time signal is given. Consequently, tmax, tS, and N are known. The reciprocal of 
the resolution in time tS is the so-called sampling frequency fSample. According to the time-
domain description, the length of the signal in the frequency domain fmax is gained from the 
multiplication of the resolution in the frequency domain fS and the number of samples N. 

 max S Samplef f N f= ⋅ =  

The resolution in the frequency domain depends on the length of the time signal. In fact, 
the resolution is equal to the reciprocal of tmax. The reverse transformation follows the same 
algorithm. 

 S S
max max

1 1
f and t

t f
= =  

This means that a large signal length leads to the required, fine resolution. For this reason, 
frequency-domain approaches are not optimal for real-time calculations. The corresponding 
time scale and frequency scale are computed as follows. 

 S max S S max St 0 : t : t t and f 0 : f : f f= − = −  

Furthermore, the maximal frequency of a signal is limited by the Nyquist frequency. The 
Nyquist frequency is based on the Nyquist-Shannon sampling theorem and ensures an ac-
curate reconstruction of an arbitrary signal. 

 Nyquist Sample

1
f f

2
= ⋅  

In practice, the sampling frequency has to be chosen to allow for a sufficient range of fre-
quencies to be covered. 

Finally, the FFT of a discrete time signal leads to a frequency-domain signal that is its com-
plex conjugate. Due to the sampling of discrete data points, the so-called Alias effect oc-
curs (Haake (2010) [31], p. 30-31). This effect causes a duplication of the frequency spec-
trum, mirrored at the Nyquist frequency. Because of the mirroring, the peaks in the fre-
quency spectrum only show the half amplitude. To countervail the Alias effect, the follow-
ing procedure is chosen. After applying the FFT, the frequencies above the Nyquist fre-
quency are eliminated using a low-pass filter. The amplitudes of the remaining frequencies 
(frequencies below the Nyquist frequency) are doubled. Now the transformation to the 
frequency domain is equal to the time-domain description of the signal. This truncated fre-
quency spectrum is used for the inverse calculation. For the back transformation, first the 
frequency spectrum has to be mirrored at the Nyquist frequency. However, the part above 
the Nyquist frequency needs to be equal to the complex conjugate of the frequencies be-
low fNyquist. After reducing the amplitudes by half and applying an iFFT, a time signal is ob-
tained that exclusively contains real values. 
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Calculation of the noise ratio Vr 

The noise is added to the displacement vector in form of white noise. A signal-to-noise 
ratio (SNR) is used to determine the magnitude of the noise. The SNR defines the relation-
ship of the effective values of the displacement vector y(t) and the noise term e(t). The ef-
fective value of a signal x(t) is calculated by  

 

( )2
eff

T

1
x x t dt

T
= ∫ . 

The SNR is calculated according to the formula 
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 with S,effx  - effective value of the signal 

  N,effx  - effective value of the noise 

The percentage ratio of both effective values is of interest. This ratio can be described by 
the noise ratio Vr. 
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Appendix C – Linearization in FAST 

Trim case setting for the linearization in FAST 

Setting ii) representing a linearization for trim case 2 

FAST primary input file (*.fst) 

 AnalMode 
YCMode 
PCMode 
VSContrl 
BlPitchi 
FlapDOF1 
FlapDOF1 
EdgeDOF 
DrTrDOF 
GenDOF 
YawDOF 
TwFADOF1 
TwFADOF2 
TwSSDOF1 
TwSSDOF2 
CompAero 
CompNoise 
RotSpeed 

2 
0 
0 
0 
0 
True 
True 
True 
True 
True 
False 
True 
True 
True 
True 
True 
False 
8 

Analysis Mode: creates a periodic linearized model 
Yaw control disabled 1) 
Pitch control disabled 1) 
Variable-speed control disabled 
Initial blade pitch of blade i (deg) 
First flapwise blade mode enabled 
Second flapwise blade mode enabled 
First edgewise blade mode enabled 
Drivetrain rotational-flexibility DOF enabled 
Generator DOF enabled 
Yaw DOF disabled 
First fore-aft tower bending-mode DOF enabled 
Second fore-aft tower bending-mode DOF enabled 
First side-side tower bending-mode DOF enabled 
Second side-side tower bending-mode DOF enabled 
Compute aerodynamic forces enabled 
Compute aerodynamic noise disabled 
Initial rotor speed (rpm) 

AeroDyn input file (*.ipt) 

 StallMod 
InfModel 
WindFile 

STEADY 
EQUIL 

Dynamic stall mode set to steady 
Inflow model set to equilibrium 
File containing a constant wind speed of 7 m/s 

Linearization control file 

 CalcStdy 
TrimCase 
DispTol 
 
VelTol 
 
NAzimStep 
 
MdlOrder 

True 
2 
0.0001 
 
0.0010 
 
36 
 
2 

Calculate periodic steady state condition 2) 
Trim case: electric generator torque 
Convergence tolerance for the 2-norm of displacements in the 
steady state calculation (rad) 
Convergence tolerance for the 2-norm of velocities in the steady 
state calculation (rad/s) 
Number of equally-spaced azimuth steps in the periodic lin-
earized model 
Order of output linearized model 3) 

1) Mandatory settings required by FAST in order to run the linearization. 
2) Set CalcStdy to False would start a linearization about the initial condition. 
3) The second order model gives amongst others the mass, damping and stiffness matrices M, C, and K, re-

spectively. Setting MdlOrder = 1 gives the first order state space matrices A, B, C, and D. 
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Setting iii) representing a linearization for trim case 3 

FAST primary input file (*.fst) 

 AnalMode 
YCMode 
PCMode 
VSContrl 
BlPitchi 
FlapDOF1 
FlapDOF1 
EdgeDOF 
DrTrDOF 
GenDOF 
YawDOF 
TwFADOF1 
TwFADOF2 
TwSSDOF1 
TwSSDOF2 
CompAero 
CompNoise 
RotSpeed 
VS_RtTq 

2 
0 
0 
1 
0 
True 
True 
True 
True 
True 
False 
True 
True 
True 
True 
True 
False 
10 2) 
25,000 3) 

Analysis Mode: creates a periodic linearized model 
Yaw control disabled 1) 
Pitch control disabled 1) 
Variable-speed control enabled 
Initial blade pitch of blade i (deg) 
First flapwise blade mode enabled 
Second flapwise blade mode enabled 
First edgewise blade mode enabled 
Drivetrain rotational-flexibility DOF enabled 
Generator DOF enabled 
Yaw DOF disabled 
First fore-aft tower bending-mode DOF enabled 
Second fore-aft tower bending-mode DOF enabled 
First side-side tower bending-mode DOF enabled 
Second side-side tower bending-mode DOF enabled 
Compute aerodynamic forces enabled 
Compute aerodynamic noise disabled 
Initial rotor speed (rpm) 
Rated generator torque/constant generator torque in region 
3 for simple variable-speed generator control (HSS side) 
(Nm) 4) 

AeroDyn input file (*.ipt) 

 StallMod 
InfModel 
WindFile 

STEADY 
EQUIL 
 

Dynamic stall mode set to steady 
Inflow model set to equilibrium 
File containing a constant wind speed of  20 m/s 5) 

Linearization control file 

 CalcStdy 
TrimCase 
DispTol 
 
VelTol 
 
NAzimStep 
 
MdlOrder 

True 
3 
0.0001 
 
0.0010 
 
36 
 
2 

Calculate periodic steady state condition 6) 
Trim case: find rotor collective blade pitch 
Convergence tolerance for the 2-norm of displacements in the 
steady state calculation (rad) 
Convergence tolerance for the 2-norm of velocities in the 
steady state calculation (rad/s) 
Number of equally-spaced azimuth steps in the periodic lin-
earized model 
Order of output linearized model 7) 

1) Mandatory settings required by FAST in order to run the linearization. 
2) Estimate for middle of region 3. 
3) Estimate for middle of region 3. See Baseline Documentation [49], p. 20 Figure 7-2. 
4) In addition, Vs_RtGnSp, VS_Rgn2K, and VS_SlPc are set to very small non-zero values. 
5) Estimate for middle of region 3. 
6) Set CalcStdy to False would start a linearization about the initial condition. 
7) The second order model gives amongst others the mass, damping and stiffness matrices M, C, and K, re-

spectively. Setting MdlOrder = 1 gives the first order state space matrices A, B, C, and D.  

 

The trim case decisive parameters are marked bold. 
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Appendix D – Modal Reduction of System Matrices 

Discussion of system reduction methods 

The reduction is based on the linear time-invariant equation of motion with n DOFs, as 
given previously in equation (3.14). 

 

n,n n n,n n n,n n n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M y B y K y f  

A transformation matrix T has to be found that reduces the n DOFs in the vector of the 
displacements y to a less number of DOFs denoted by r so that the vector v is obtained. 

 
r

n n,r

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

y  

The transformation is assumed to be time-independent. Then the following relationships 
are valid. 

 = = =y Tv y Tv y Tv  

Combining the two above-given equations and applying a left-multiplication with the 
transposed transformation matrix TT leads to the reduced equation of motion 

 ( ) ( ) ( ) ( )T T T Tt t t t+ + =T MTv T BTv T KTv T f  

, which can be also written in the form  

 ( ) ( ) ( ) ( )red red red redt t t t+ + =M v B v K v f . 

The reduced EoM now has r DOFs, with r < n. 

 red red red red

r,r r r,r r r,r r r

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M v B v K v f  

 

In case the initial system matrices are symmetric, the reduced-system matrices will remain 
symmetric as well. The reduced system can then be treated similar to the descriptions of 
section 3.2.1. 

 

T v 
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The crucial aim of the system reduction is to find an appropriate transformation matrix T. 
An appropriate transformation matrix is found if the system can be reduced to the smaller 
amount r of DOFs without loosing the exact representation of the r remaining DOFs. This 
means that the reduction of the system does not change the eigenfrequencies and mode 
shapes, but that the reduction only cuts unnecessary DOFs. 

In general, there are three kinds of system reduction methods that differ in the way in 
which they find the transformation matrix. 

• Static reduction 
• Modal reduction 
• Combined static and modal reduction 

For the static reduction – also-called Guyan reduction – the EoM has to be rearranged. The 
system needs to be divided into main DOFs and auxiliary DOFs. The number of main DOFs 
r defines the dimension of the reduced system. The rearranged EoM gives a static relation-
ship for the stiffness of the main DOFs and the auxiliary DOFs. This relationship is used to 
create the transformation matrix. The reduction using the static approach is an approxima-
tion of the solution of the full system.  

The modal reduction starts with an eigenvalue analysis of the full system using the un-
damped EoM. Eigenfrequencies and eigenvectors are obtained, as results. The modal matrix 
contains the eigenvectors column-wise. The transformation matrix is now gained by a trun-
cation of the modal matrix. The truncated matrix consists of the eigenvectors whose corre-
sponding eigenfrequencies will be part of the reduced system. 

The quality of the resulting static reduction depends on the appropriate choice of the main 
DOFs. The system reduction cannot be done to an arbitrary small number of DOFs. How-
ever, the static reduction keeps those physical DOFs of the full system that are defined as 
main DOFs. The modal reduction involves much less mathematically effort in comparison to 
the static reduction. The system dynamics in from of the eigenfrequencies are kept exactly. 
Additionally, the modal reduction is useful if the full system shall be reduced to only a 
small number of DOFs. 

The combined static and modal reduction combines the advantages of both methods. The 
physical meaning of some main DOFs are kept while the system can be reduced to a small 
number of DOFs. This characteristic is particularly important if parameter studies are in-
tended. With a good choice of the main DOFs, parameter changes can be considered with-
out a recalculation of the complete reduction. Parameter changes might occur due to rota-
tion-speed-dependent stiffness or damping. The steps of the combined reduction are as 
follows: 1) Defining main DOFs and auxiliary DOFs and rearrangement of the EoM, 2) Cre-
ating a manipulated system by setting the main DOFs to zero, 3) Calculating the eigenvalue 
analysis of the manipulated system that gives the eigenfrequencies and eigenvectors, 4) 
Composing the modal part of the transformation matrix from the modal matrix, 5) Com-
pleting the transformation matrix by adding the static relationship of the stiffness of the 
main DOFs and the auxiliary DOFs, 6) Reducting the system using the transformation ma-
trix. 
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Appendix E – Integration of Signals 

Preliminary Thoughts 

The inverse load calculation using measurement data usually requires an integration of nu-
merical signals. In general, accelerations are recorded in order to measure the dynamic re-
sponse of a structure. The structural acceleration is sampled at discrete time steps, which 
causes a numerical signal. 

The chosen inverse load calculation method is based on the frequency-domain formulation 
of the second-order ordinary differential equation for a linear, time-invariant vibrating sys-
tem. For this reason, the inverse load calculation demands displacement signals as input 
data. To approximate reality, the verification with the FAST simulation uses structural ac-
celerations as input data. Consequently, the accelerations need to be integrated twice to 
obtain displacement data. 

The integration of numerical signals can be done both in the time domain and in the fre-
quency domain. In order to decide on one option, the characteristics of both approaches 
are subsequently described briefly. 

 

■ Integration in the time domain 

The standard method for the integration of a recorded time history signal is calculating the 
area under the curve of the approximate trace. An approximate solution can be found by 
using numerical integration techniques such as rectangular or trapezoidal integration. A 
further technique is the finite differences integration that can be calculated as a central, 
backward, or forward difference. The finite differences integration also allows for a better 
approximation of the trace considering a higher order shape function. 

Lincoln (2007) [61] presents a study that shows an important effect connected with the 
numerical integration. The study deals with the calculation of velocities or displacements 
from acceleration time histories. In particular, the effects of small frequency contents in the 
acceleration signals are discussed. A characteristic of an integrated signal is that its ampli-
tudes are inversely proportional to the frequency. Although the integration is done numeri-
cally correct, this effect often leads to misleading results. An example is given in the Figure 
below. Part a) of the figure shows a measured acceleration signal recorded at a wind tur-
bine support structure. The signal has zero mean and a low frequency content between 
0 Hz and 5 Hz with spectral peaks around 2 Hz. The sampling frequency is 50 Hz. In b), the 
corresponding velocity signal is shown, which is obtained by numerical integration in the 
time domain. The oscillating behavior of the signal seems to have disappeared. That is be-
cause the very low frequencies with its very large time periods dominate the velocity signal. 
To solve this problem, a high-pass filter can be applied to the signal, as done in part c) with 
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fcut = 0.15 Hz. Thus, the velocity signal looks more reasonable. Then, the frequencies below 
the chosen cut-off frequency of the filter are not existent anymore, which equals a loss of 
information. 

 

Effects of low frequencies on the integration of time history signals – time domain 

 

Mercer (2001) [65] gives a further insight into the characteristics of the numerical integra-
tion in the time domain. Studying the frequency response function of the integration proc-
ess allows an estimation of the accuracy. The study concludes that the low frequency range 
of the integrated signal is disturbed by a gain, whereas the high frequency range (near the 
Nyquist frequency) has attenuation. Only the frequency range between  

 0.02*fsample < f < 0.1*fsample 

with fsample as the sampling frequency are represented accurately. Hence, integrating a signal 
and then differentiating it does not give the original signal, which is not a welcome result. 
An approach that promises better results is the integration in the frequency domain. 

 

■ Integration in the frequency domain 

Integration in the frequency domain is obtained by dividing the FFT of the signal by jω. This 
procedure is referred to as Omega Arithmetic (Mercer (2001) [65]). Applying the Omega 
Arithmetic to a Fourier transformed signal and converting the integrated signal back to the 
time domain using an iFFT gives a correct result. To do so, the signal has to have a mean of 

zero. The division by ω = 2πf causes an angular phase shift of π/2 or 90°, respectively. 

Therefore, the integration of a cosine gives a sine. Due to the division by ω, a mathematical 

a) acceleration signal 

b) velocity signal  
obtained by numerical integra-
tion of the acceleration signal 

c) velocity signal 
obtained by numerical integration of 
the acceleration signal 
5th order Butterworth filter applied 

a(
t)
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/s
² 

Time in min 

v(
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singularity occurs around ω = 0. These frequencies need to be eliminated. The elimination 
of the low frequencies can be done by a high-pass filter. The affected frequency range oc-
curs at 

 0.001*fsample < f. 

 

Both the time-domain and the frequency-domain approach have a limitation regarding the 
frequency range that can be represented accurately by the integration process. However, 
the frequency range that gives correct values is much bigger if the Omega Arithmetic is 
used. 

Another characteristic that both approaches have in common is the need for filters. 
Whereas the time-domain approach uses filters to treat misleading results, the frequency-
domain approach eliminates effects of a singularity. For the example in above-mentioned 
example, a 5th order Butterworth filter is used. Since filters are necessary to gain good inte-
gration results, the following section discusses different types of filter and estimates their 
effects on the signals. 

The frequency limits depend on the sampling frequency. Beyond the given limits, the inte-
grated signal does not contain usable frequencies. If an integration at very low frequencies 
is necessary, e.g. if eigenfrequencies are below the limit, Data Decimation (Mercer (2001) 
[66]) is recommended. 

The reviewed literature clearly points out that the time-domain integration is not reversible 
without loss of information, which is not desirable. In contrast, the reversion of the fre-
quency-domain integration gives correct results. In this case, the complete signal needs to 
be known. 

A further characteristic of the integration process is stated by Karrenberg (2010) [53]. The 
integration process has a low-pass characteristic, which means that high frequencies are 
suppressed. Thus, the integration eliminates noise in the signal – even better than a filter. 
This characteristic is of interest for the inverse load calculation, which is an ill-conditioned 
problem. Initial errors caused by noise might disturb the results, which is probably dimin-
ished using integrated signals. 

Based on the given review of time-domain and frequency-domain integration, the Omega 
Arithmetic is chosen in this work. The mathematical calculations and an example of the 
Omega Arithmetic are given afterwards the discussion of the signal filtering. 

 

Filtering of Signals 

Filters divide signals into a filter passband and a filter attenuation band. The filter attenua-
tion band is the range of frequencies that is supposed to be suppressed by the filter. Con-
sequently, the filter passband is the frequency content that shall remain in the signal. Usu-
ally, both are divided by a blurred region called the transition band. Filters can be classified 
into the basic categories low-pass, high-pass, band-pass, and band-stop filter. The low-pass 
filter suppresses the frequencies above a defined cut-off frequency and the high-pass filter 
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below the cut-off frequency. A band-pass filter remains a central part of the frequency 
range and cuts below and above the defined cut-off frequencies. The band-stop filter is the 
reverse of a band-pass filter. In general, filters are designed by means of three basic linear 
processes: phase lag, addition, and multiplication of a signal with a constant value – all in 
the time domain. 

Karrenberg (2010) [53]108 summarizes the most common filter types that are the Bessel 
filter, the Chebyshev filter, and the Butterworth filter. The several filter types differ in their 
slope of the gain in the frequency response that either defines a narrow or a wide transition 
band. Further, they show different phase delay. Depending on the filter, the phase delay 
can range from absolutely flat to irregular. Finally, the gain ripple in the pass band and the 
attenuation band is a distinctive feature. Generally, none of the filter types combines all 
positive characteristics. Hence, an appropriate filter has to be found for the specific prob-
lem. 

The mentioned filters are analog filters. A much better performance is gained using digital 
filters. A simple approach for a digital filter that is defined in the frequency domain is de-
scribed for a low-pass filter in the table below. 

 

Description of the frequency-domain low-pass filter 

1. The time signal is transformed into the frequency domain applying a FFT. 

2. A cut-off frequency has to be chosen, so that pass band and attenuation band 
is defined. 

3. The amplitudes and phase angles of all frequencies in the attenuation band – 
above the cut-off frequency – have to be set to zero. 

4. Back transformation of the signal into the time domain using an iFFT.109 

 

High-pass, band-pass, or stop-pass filters work in a similar way. Thus, a nearly ideal filter is 
realized. In contrast to the above-mentioned analog filters, this frequency-domain digital 
filter shows a much better performance. However, there is one drawback. The digital filter 
is not able to perform real-time calculation, as whereas analog filters can. Since the Fourier 
transformation is calculated, time-limited signals with a sufficient signal length are needed. 
Because this work does not focus on real-time calculation, the digital frequency-domain 
filter is used for signal filtering purposes. Additionally, most of the signals are needed in the 
frequency domain. 

 

                                               

108 For more detailed information and illustration of the filter designs, see Karrenberg (2010) [53] 
chapter 7, page 213ff. 

109 In case the back transformation is done without special software that computes the FFT, the fil-
tered frequency-domain signal has to be completed with its complex conjugate part before apply-
ing the iFFT. 
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Integration in the Frequency Domain 

The integration in the frequency domain is done using the Omega Arithmetic, the calcula-
tions of which are explained in Mercer (2006) [67]. 

For a given acceleration signal ( )x t , the Omega Arithmetic integrates the velocity signal 

( )x t  as well as the displacement signal ( )x t . Since the Omega Arithmetic is a frequency-

domain approach, the acceleration signal needs to be transformed into the frequency do-

main, which gives the Fourier transformation of the acceleration ( )X jω . Applying the FFT 

does not add or eliminate any signal information. The FFT is reversible. To denote these 
facts, the relationship between the time domain and the frequency domain is often written 
as 

 ( ) ( )x t X j⇔ ω . 

The inverse transformation from frequency to time is defined by: 

 Acceleration ( ) ( ) j t1
x t X j e d

2

∞
ω

−∞

= ω ⋅ ω
π ∫  

 Velocity ( ) ( ) j t1
x t X j e d

2

∞
ω

−∞

= ω ⋅ ω
π ∫  

 Displacement ( ) ( ) j t1
x t X j e d

2

∞
ω

−∞

= ω ⋅ ω
π ∫  

The acceleration is defined as the rate of change of the velocity. 

 ( ) ( )d
x t x t

dt
=  

Then, inserting the equation of the velocity into the above-given equation reveals 

 

( ) ( )

( )

( )

j t

j t

j t

d 1
x t X j e d
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1 d
X j e d

2 dt

j
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∞
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−∞

∞
ω

−∞

∞
ω
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⎡ ⎤
= ω ⋅ ω⎢ ⎥π⎣ ⎦
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ω
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∫

∫

∫

 

Comparing this expression for the acceleration with the Fourier transformation of the accel-
eration immediately makes clear that 

 ( ) ( )X j j X jω = ω ⋅ ω  

and consequently 

 ( ) ( )1
X j X j

j
ω = ω

ω
. 
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The relationship between accelerations and velocities is transferable to the relationship 
between velocities and displacements. The following equation which defines the Omega 
Arithmetic occurs. 

 ( ) ( ) ( )2

1 1
X j X j X j

j
ω = ω = − ω

ω ω
 

This means that if one of the three signals ( )X jω , ( )X jω , or ( )X jω  is known, the remain-

ing signals can be calculated by multiplying or dividing by jω, respectively. 

 

Applying the equation of the Omega Arithmetic leads to infinite amplitudes in the fre-

quency spectrum at ω = 0, which is caused by the division by ω. This singularity influences 
the neighboring frequency range. For this reason, the very low part of the frequency range 
cannot be used, because it produces distortion in the time signal that results from the 
back-transformed (iFFT) integrated signal. The singularity is of pure mathematical nature 
and has no physical meaning. To solve this problem, a high-pass filter is applied to the in-
tegrated frequency-domain signal. Then the frequencies in the attenuation band of the fil-
ter are cut off completely. For a one-time integration, e.g. from accelerations to velocities, 
the cut-off region is up to the 1,000th part of the sampling frequency. In case a double-
integration from accelerations to displacements is calculated the cut-off range increases. 

This increase is caused by the division by -ω². The cut-off range depends on the sampling 
frequency. For practical applications, one important condition has to be assured – the ei-
genfrequencies have to be located in the passband of the filter. If this condition is not ful-
filled, the cut-off range might be reduced by applying Data Decimation, as introduced by 
Mercer (2001) [66]. 

The figure “Integration using Omega Arithmetic” gives an example of the double-
integration using the Omega Arithmetic. Part a) of the figure shows an acceleration signal 
that is computed by FAST.110 The signal is computed for the above-mentioned 5 MW refer-
ence wind turbine under rated wind speed. The signal is recorded at tower top. Part b) de-
picts the corresponding frequency-domain signal. The Omega Arithmetic is applied so that 
the frequency-domain displacement signal occurs, as shown in part c). Comparing both 

frequency-domain signals shows that the division by -ω² emphasizes the low frequencies. 
The displacement signal is high-pass filtered at a cut-off frequency of 0.15 Hz to eliminate 
the mathematical singularity. Computing the iFFT gives the time-domain signal of the dis-
placement, which is depicted in part d). 

                                               

110 It should be noted that FAST outputs the absolute acceleration, but that the acceleration is out-
put in a body-fixed coordinate system that deflects with the wind turbine. Thus, the integration 
of this acceleration to get velocity or displacement leads to an error, unless the orientation of the 
body is taken into account. The presented results show small tower deflections so that the error 
is small. 
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In order to guess the accuracy of the integration process, the time-domain signal of the 

displacement from part d) is compared to a displacement output of FAST, which is re-

corded at the same tower location. The comparison is illustrated in the figure “Comparison 

of displacement to twice-integrated accelerations”. Both the time domain and the fre-

quency domain are given. The signals nearly match perfectly. The Omega Arithmetic pro-

duces accurate results. 

 
Comparison of displacement to double-integrated acceleration 

 

For comparability, the displacement output of FAST (figure above) is also high-pass filtered 

at 0.15 Hz. Applying the filter is necessary because the FAST displacement output does not 

have a mean of zero, which equals the static displacement component. Since the integra-

tion process is not capable of generating the integration constant, the integration only ac-

counts for purely dynamic signal components oscillating around a mean of zero. Addition-

ally, the low-frequency content is cut off. This part of the frequency range can be consid-

ered the quasi-static part of the signal. In case the static and the quasi-static parts of the 

integrated signal are needed, they have to be added using additional information, such as 

that obtained from strain measurements. 

 

In sum, the results of the Omega Arithmetic have very good qualitaties. In contrast to time-

domain integration methods, displacements can be obtained via a double-integration, but 

only doing one calculation step. The calculation speed is high, especially in comparison to 

higher order time-domain integration methods. The effort concerning the application of the 
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required high-pass filter is low. The integrated signal is calculated in the frequency domain, 

which is an advantage for this work. The back transformation to the time domain using an 

iFFT does not induce errors. 
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Appendix F – Control Outputs of FAST 
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Controls – LC 3 
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Appendix G – Inverse Load Calculation using Dis-
placement Signals 

In order to study the influence of the integration of the acceleration signals, additional 
simulations are presented. Thus far, acceleration signals of the FAST output are used, as 
depicted in Figure 4.5. The acceleration signals at tower top and at half tower height are 
doubly integrated to displacements, which then served as input parameters for the inverse 
calculation. The integration process itself is discussed in detail in Appendix E. 

Now, tower deflections at tower top and at half tower height are used directly. In this way, 
the integration process is omitted. Actually, the currently public available version of FAST 
does not allow outputting the tower deflections over the tower height. These simulations 
are run in collaboration with the NREL111 that developed the FAST software. The NREL pro-
vided a version that is capable of outputing the tower deflections over the tower height. 

The simulations are based on the following assumptions. Again, the NREL 5 MW onshore 
wind turbine model is used (see section 4.2.1). The FRF matrix that describes the system is 
gained by a linearization (see section 4.2.4). The inverse load is assembled by their different 
load components. Figure 4.6 depicts the corresponding scheme. The three load cases pre-
sented in Table 4.2 are calculated. The over-determined approach for the inverse calcula-
tion is used according to equations (3.63) and (3.64). To make sure that the tower deflec-
tion signals match to the previously used acceleration signals, both types of signals are 
compared to each other. To do so, the acceleration signals are integrated twice. The com-
parison of the displacement gained by double-integration of the acceleration to the tower 
deflection at tower top is shown in Appendix E. 

The following figure depicts the result of the inverse calculation on the basis of tower de-
flections. The simulation of load case 2 is shown. The figure contains the dynamic compo-
nent of the force that is calculated inversely using the Deconvolution in the Frequency 
Domain. Again, the inversely calculated load is intended to represent the aerodynamic ro-
tor thrust. The inverse load is depicted in the time domain and the frequency domain. Both 
depictions show highly distorted graphs. The time-domain depiction seems to be a straight 
line that is limited by two sharp peaks at the beginning and at the end. These two sharp 
peaks exceed the rest of the signal by three decimal orders of magnitude. For this reason, 
the oscillating graph in between appears as a straight line. The frequency-domain depiction 
is characterized by an amplification of the high frequency content, which was already ob-
servable for the numerical 2-DOF example under noise (section 3.3.4). The distortions are 

                                               

111 National Renewable Energy Laboratory, Golden, USA 
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caused by the ill-conditioning of the inverse problem, as previously observed at the nu-
merical 2-DOF example. 

 

Inverse load on the basis of tower deflections 

 

Of course, this result is not satisfying at all. As learned from the preliminary thoughts in 
section 3.1.2, the ill-conditioning can be treated while applying regularization. Amongst 
others, the application of filters and windowing are mentioned as appropriate instruments. 
Windowing describes a time-domain process that is similar to the filtering of signals, which 
is done in the frequency domain. A discrete time-domain signal of finite length is multi-
plied with a window function. Usually, a window function causes a fading in of the signal at 
the beginning and a fading out at the end. The fading occurs in a defined interval and 
weighs the signal from 0 to 1. In between, the signal remains undisturbed. Several window 
functions exist that differ in complexity. More detailed information in terms of windowing 
is given for example in Kammeyer (2006) [52]. Here, a Hann window is applied to the time-
domain signal of the inversely calculated load, which results in the upper graph in the fig-
ure below. Each the first 50 and last 50 data points of the time signal with a data length of 
48,001 are weighed. Additionally, a low-pass filter is applied to the frequency-domain rep-
resentation of the signal, which is shown in the lower graph. The cut-off frequency is set to 
4 Hz. The figure still contains the results of load case 2 and depicts the dynamic compo-
nent. 
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Regularization of the inversely calculated load 

 

Using the described regularization and adding the static/quasi-static components lead to 
the inverse load as depicted in below. The result of the inverse load calculation is com-
pared to the rotor thrust that is output by FAST in order to estimate the accuracy of the 
inverse calculation. 

 

Rotor thrust and inversely calculated force after regularization 

 

The comparison between the inverse load and the reference rotor thrust for load case 2 
(figure above) has a very high agreement. To gain an idea about the calculation accuracy in 
relation to the results using the acceleration signals, the following table is set up. The table 
summarizes mean values and standard deviations of the reference rotor thrust, the inverse 
load basing on accelerations, and the inverse load basing on tower deflections – each for 
the full loads containing all components. All three load cases are calculated. As mentioned 
beforehand, the mean value serves as an estimate for the static component and the stan-
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dard deviations as an estimate for the dynamic characteristic. The point of interest is the 
comparison of the values of the inverse loads. Both the mean values and the standard de-
viations match nearly perfectly. That means that the inverse calculation using the accelera-
tions and the inverse calculation using the tower deflections produce exactly the same re-
sults. 

 

Comparison of mean value and standard deviation 

Rotor thrust Inverse load 
 

 Accelerations Deflections 

Mean value ∅ 392.38 kN 379.88 kN 380.04 kN 
LC 1 

Standard deviation σ 53.78 kN 62.60 kN 62.59 kN 

Mean value ∅ 690.40 kN 693.43 kN 693.48 kN 
LC 2 

Standard deviation σ 108.75 kN 116.66 kN 116.65 kN 

Mean value ∅ 443.96 kN 458.56 kN 458.57 kN 
LC 3 

Standard deviation σ 74.34 kN 89.07 kN 88.98 kN 

 

This conclusion is underlined by the comparison of the errors in time between the rotor 
thrust and both the inverse load based on acceleration signals and the inverse load based 
on tower deflections (table below). The error values are calculated for the full loads con-
taining all load components and are given for the three load cases. It can be seen that, 
there are no differences between the error values. 

 

Comparison of the errors in time 

 LC 1 LC 2 LC 3 

Acceleration signals 16.08 % 11.34 % 10.81 % 

Displacement signals 16.27 % 11.58 % 10.88 % 

 

This section determines whether the integration process implies any errors to the inverse 
calculation or not. As revealed by the results of shown in the two tables above, the conclu-
sion arises that the integration process does not. The comparative study that uses tower 
deflections as input parameters results in exactly the same inverse loads. 

Additionally, the guess that the integration process affects the inverse calculation positively 
in terms of treating the ill-conditioning is demonstrated. 

And thirdly, a method for treating the effects caused by the ill-conditioning is shown. The 
use of filters and windowing leads to adequate results. 
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Appendix H – Description of the Finite Element 
Model 

The modeling of the structural components of the 5 MW wind turbine with an offshore 
support structure is done subsequently. Pictures of the structure and the FE model are 
given in Figure 5.1 and Figure 5.3. 

 
■ Soil 

The soil is modeled using linear-elastic spring-damper elements representing the bedding 
characteristics. The spring-damper elements are applied at each node along the pile heights 
in two orthogonal horizontal directions. The stiffness properties correspond to the stiffness 
moduli of the genuine soil layer. The calculation of the spring constants with respect to the 
soil layer stiffness is explained in Rolfes et al. (2006) [88] (page 53). The soil damping is 
set to zero in order to calculate undamped eigenfrequencies. Because of the length of the 
piles, skin friction and tip pressure are omitted. The vertical support is realized by vertically 
rigid-based piles activating their axial rigidity. 

 

■ Foundation 

The massive cylindrical reinforced concrete foundations are modeled by shell elements lo-
cated at the vertical center of the foundation bodies. The material properties are set infi-
nitely rigid, assuming no bending in the massive bodies. The site-mixed concrete driven 
piles are modeled with beam elements representing the true mass and stiffness properties. 
The offset between the foundation bodies and the lattice structure is modeled by rigid links 
transmitting the forces and the displacements. An alternative model variant of the founda-
tion bodies using rigid beam elements can be used either. This conclusion results from the 
above-mentioned comparative study.  

 

■ Sub-structure 

The sub-structure is a lattice structure that consists of steel pipes connected by cast-steel 
nodes. Beam elements are used that represent the true mass and stiffness properties. Spe-
cial focus lies on the connecting nodes. The used beam elements represent the center lines 
of the pipes. Thus, an offset occurs for the nodes, where the vertical pipe has to be con-
nected to the pipes that define the crosses of the structure. This offsets are modeled with 
extra beam elements, which represent the flexibility of the nodes (see Figure 5.3, Detail: 
double-K node). The flexibility value is gained by detailed FE simulations (see chapter 2.5 
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of the final report OGOWin (2011) [74]). Additional point masses are used to model the 
correct node masses. 

 

■ Transition piece 

The transition piece is modeled by shell elements. The lower and upper edge is stiffened 
additionally as it is in the design of the transition piece. Modeling the circular cross-section 
with a finite number of shell elements leads to small errors in the representation of the 
mass (see Figure 5.3, Detail: transition piece). This error is compensated by factorizing the 
density of the material. This assumption also covers additional masses of built-in compo-
nents. A simplification of the transition piece using an alternative beam element construc-
tion is not recommended. The above-mentioned comparative study showed that beam 
elements are not able to represent the spatial geometry of the transition piece in terms of 
calculating the eigenfrequencies of the entire structure. 

 
■ Tower 

The tubular tower is approximated by beam elements. The beam elements represent the 
properties of the cylindrical cross-sections of the tower. Built-in components, platforms, 
and flanges are taken into account by additional masses distributed over the tower’s height. 

 
■ Rotor-nacelle-system 

Basically, the rotor-nacelle-system is reduced to a single mass with inertias. This assump-
tion is appropriate since the effects of the spinning rotor are neglected for the calculation 
of the dynamic behavior of the support structure. This modeling strategy is also used by 
Ibsen and Liingaard (2006) [39] and Schaumann and Seidel (2000) [92] in order to simu-
late the dynamics of wind turbine support structures. This approach ignores coupling be-
tween the vibrations of the blades and the support structure. These couplings can have 
impact on the eigenfrequencies of the support structure for all but not the first bending 
mode. 
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Appendix I – Discussion of Output-Only System 
Identification Methods 

The discussion of output-only system identification techniques focuses on those methods 
that already have been applied to wind turbine structures under stochastic excitation. So, 
the three methods Autoregressive Model (AR), Stochastic Subspace Identification (SSI) and 
Frequency Domain Decomposition (FDD) are reviewed. 

 

■ Autoregressive Model (AR) 

Kraemer (2011) [57] uses the AR approach in order to determine modal parameters of an 
onshore prototype structure for a 5 MW offshore wind turbine, aiming on detecting struc-
tural damages. Haake (2010) [31] applies the AR approach to a 5 MW offshore wind tur-
bine that is located in the first German offshore wind park ‘Alpha Ventus’, with the objec-
tive of updating a corresponding structural model of a wind turbine. Both authors use sto-
chastic excitation from wind, operation, and waves respectively. 

Both references give a detailed description of the underlying theoretical basics, which are 
briefly summarized here. The AR approach is a time-domain based system identification 
method, formulated in the state space. The measured time series of a structural response 
can be described by a summation of its N predecessor values multiplied with a coefficient 
matrix of the order p, which is called the AR model. The difference to the initial system 
response is described by a zero-mean model error. The coefficient matrices are obtained by 
minimizing the model error using a least-squares approach, so that all coefficients stay con-
stant over the time series. Using the coefficients of the AR model, eigenvalues, mode 
shapes, and damping ratios can be calculated. 

The eigenfrequencies can be calculated analytically, which is an advantage, especially if 
automated system identification is intended. A linear vibrating structure with pl modes is 
represented by a p-th order AR model, which adds spurious modes to the physical modes. 
In order to differentiate between physical and spurious mode, the calculation of stability 
diagrams is necessary. In comparison to common system identification methods, the AR 
approach also can be applied to data of short length such as generated by gusts. This use of 
only few data points produces reliable results in terms of eigenfrequencies and mode 
shapes, but the accuracy regarding damping ratios may decrease (see Haake (2010) [31]). 

 

■ Stochastic Subspace Identification (SSI) 

Rosenow and Andersen (2010) [91] demonstrate the system identification of the main 
frame of a 2.5 MW onshore wind turbine nacelle using the SSI. Tests are performed in 
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standstill conditions. The study focuses on the dynamic interaction with the tower and the 
turbine blades. 

The fundamentals of the SSI are firstly described in Overschee and De Moor (1996) [76] 
and are summarized briefly in Brincker and Andersen (2006) [11]. The SSI is also a time-
domain approach. The SSI addresses the stochastic realization problem, i.e. the problem of 
identifying a stochastic state-space model from output-only data. Firstly, the state space 
matrices are identified from the measurements using numerical techniques such as QR fac-
torization or singular value decomposition (SVD). The QR factorization results in a signifi-
cant data reduction, whereas the SVD eliminates noise that is assumed to be part of higher 
singular values. Once the state space is set up, a mathematical description of the structure 
is found. Applying an eigenvalue decomposition to the discrete state matrix gives the ei-
genvalues, which enables extracting the eigenfrequencies and the damping ratios.  

In fact, no literature can be found that presents the application of the SSI to a running wind 
turbine. Hence, no experiences how the SSI deals with wind turbine specific characteristics 
are published. Chauhan et al. (2009) [14] merely demonstrate the application of the SSI to 
a wind turbine model, simulated using HAWC2. The wind turbine is in standstill and eigen-
frequencies, mode shapes, and damping ratios are obtained. The study presents promising 
results. However, the step to a real wind turbine in operation is not done yet. 

 

■ Frequency Domain Decomposition (FDD) 

In Ibsen and Liingaard (2005) [38] and Ibsen and Liingaard (2006) [39] the system iden-
tification of an offshore wind turbine with a bucket foundation is presented. The FDD is 
used to determine the eigenfrequencies in standstill and operation for the first and second 
fore-aft mode of the turbine. Additionally, the harmonic 1P and 3P excitation are detected. 
Rebelo et al. (2008) [84] also use the FDD at a running wind turbine. For an onshore wind 
turbine, the first and second mode – each in fore-aft and side-side direction – are deter-
mined. 

In contrast to the AR models and the SSI, the FDD is a frequency-domain approach. The 
FDD is explained briefly in Ibsen and Liingaard (2006) [40]. This approach estimates the 
modes from the power spectral density (PSD) matrix that is computed using the recorded 
response signals. The PSD matrix is split into their singular values and singular vectors by 
applying a singular value decomposition (SVD). The singular vectors are an estimate of the 
mode shapes. Using the singular vectors, a piece of the singular value function can be de-
termined that represents a free vibrating SDOF system, which corresponds to a certain ei-
genmode. The obtained SDOF system allows the calculation of the eigenfrequencies and 
the damping ratios. 

The FDD is described to be simple in terms of its application. The method is robust in find-
ing the modal parameters, even if noise is present in the signals or two modes appear 
closely spaced. Andersen et al. (2007) [2] describes how the FDD has to be implemented 
in order to perform an automated identification.  
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Appendix J – Decay Constant and Logarithmic Dec-
rement 

Calculation of the damping ratio D via the decay constant δ and the logarithmic dec-
rement ϑ using a regression analysis on the basis of a least-squares approach 

 

As stated e.g. in Natke (1983) [70] or Gasch and Knothe (1987) [25], the damped vibra-
tion is described by 

 ( ) { } ( ){ }j tt j t
0 0x t Re x e e Re x e −δ+ ω−δ ω= ⋅ ⋅ = ⋅  

with ω as the angular frequency and δ as the decay constant. The term  

 ( ) t
M 0y x t x e−δ= = ⋅  

describes the decay of a vibration and consequently, the damping of the corresponding 
system, as depicted below. 

 

 

The enveloping function y can be obtained using the maxima in x(t). Exactly two maxima 

are required to determine the two unknown variables that are the decay constant δ and the 
value x0. Additionally, x(t) contains all information to calculate the logarithmic decrement 

ϑ. By means of two neighboring maximal amplitudes un and un+1, ϑ can be calculated. 

t 

x(t) 

x0 xM(t) 

un 

tn 

u0 



Appendix J 

 183

 n

n 1

u
ln

u +

ϑ =  

Often, the logarithmic decrement is averaged over a number of periods n. Then, the first 
maximum u0 and the maximum at the n-th period un are usually used. 

 0

n

1 u
ln

n u
ϑ = ⋅  

The calculation of both D and ϑ depends on only two maxima, although usually more 
maxima occur. To enhance the accuracy of the damping calculation, more maxima or all 
maxima can be taken into account. Doing so creates an over-determined system of equa-
tions, which can be solved using the normal equation that is based on a least-squares ap-
proach, see e.g. Bader and Schenk (2001) [3]. 

 ( ) 2

2
f x = ⋅ −A x b  

The normal equation is restricted to linear problems, which is not the case in terms of the 
decay constant. For this reason, the problem regarding the decay constant has to be first 
linearized, which follows the equations 

 t

0

y
e

x
−δ=   

0

y
ln t

x
⎛ ⎞

= −δ⎜ ⎟
⎝ ⎠

 

  ( ) ( )0ln y ln x t− = −δ  

 ( ) ( )0ln y ln x t= − δ . 

In this way, x0 und δ have a linear dependency. Inserting the substitutions 

 

( )
( )

i i

1 0

2

b ln y

x ln x

x

=

=

= −δ

 

in the normal equation enables the calculation of the minimizing problem. The correspond-
ing system of equations has the following form. 

 ⋅ =A x b  

 [ ] [ ]1
i i

2

x
1 t b

x
⎡ ⎤

⋅ =⎢ ⎥
⎣ ⎦

 

Solving the normal equation is done with 

 T T⋅ =A A x A b , 

so that the vector x is obtained by 

 ( ) 1T T−
= ⋅x A A A b . 

The back substitution gives the unknown variables. 
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x e

x
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With the eigenfrequency ω0 = 2πf0, the damping ratio D can be calculated according to 

 
0 0

2
D

f
δ δ ⋅ π

= =
ω

. 

 

In terms of calculating the logarithmic decrement ϑ, the initial equation  

 0

n

1 u
ln

n u
ϑ = ⋅  

needs to be transformed to 

 ( ) ( )n 0ln u ln u n= − ϑ . 

Now the relationships 

 

( )
( )

i n

1 0

2

i

b ln u

x ln u

x

t n

=

=

= −ϑ
=

 

can be derived, which enables the use of the normal equation described above. The loga-

rithmic decrement ϑ is calculated directly. The damping ratio D is obtained by 

 D
2
ϑ

=
π

. 

 

Both approaches are based on the assumption of light damping. 
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Appendix K – Preparation of the Measurement Data 

Before using the measurement data, all sensors have to be transformed into one consistent 
coordinate system. A depiction of the sensors can be found in Figure 5.9. The reasons for 
the coordinate system transformation are the following. 

• The sensors have different orientations depending on the structural part where 
they are applied. That means e.g. the sensors at the tower are oriented differently 
to those applied at the lattice structure. 

• The sensors are located in a fixed coordinate system that does not necessarily co-
incide with the nacelle position. But, as learned from the modal analysis (see sec-
tion 5.1.2) the modal parameters depend on the nacelle position, since they are 
different in fore-aft and side-side direction respectively. 

 

To gain consistency, firstly all sensors are transformed into a fixed coordinate system that is 
defined for the lattice structure. The north orientation of the lattice structure is known. 
Thus, the relation to the nacelle position is obtained, since the nacelle position is measured 
to its north orientation as well. In this way, the sensors can be oriented according to the 
rotating coordinate system of the nacelle, which allows distinguishing between their fore-
aft and their side-side components. Fore-aft represents the system response along the rotor 
axis, positively defined in the direction of the wind, and side-side is orthogonal to the rotor 
axis assuming a right-handed coordinate system (figure below). Applying the described 
transformation enables detecting the system responses in fore-aft and side-side direction 
separately, which is necessary because they depend on the mass and stiffness distribution 
of the rotor-nacelle-system. 

 

 

Definition of the nacelle coordinate system 

xN 
yN 

zN 

xN – horizontal in direction of rotor axis (fore-aft) 
yN – horizontal to x in lateral direction (side-side) 
zN – vertically upward 
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The steps of the coordinate transformation are: 

1) Rotating the sensor orientation of each sensor position level into the fixed coordinate 
system of the lattice structure 

The fixed coordinate system of the lattice structure is depicted below, inserted in a top 
view of the support structure. The abbreviations L1 to L4 denote the legs of the lattice 
structure. Additionally, the circular cross-section of the tower is depicted. As an example, 
the accelerometers at the tower-top level (B 1.1 and B 1.2) are shown, each with its posi-
tive sensor orientation. The lift (Fahrstuhl – equals the lift inside the tower) allows an un-
equivocally correlation between the coordinate system orientation and the north direction. 

 

 

Fixed coordinate system of the lattice structure 

 

The sensor orientations of each sensor position level (compare to Figure 5.9) are summa-

rized in the table below. The orientation angles are denoted by δ, which represents the 

rotation angle with respect to the coordinate system of the lattice structure. The angle δ 
rotates positively counter-clockwise. 

 

Sensor orientations 

Fore-aft Side-side δ Height Location 

BS 1.2 BS 1.1 45° 116.220 m Tower top 

BS 2.1 BS 2.2 -135° 93.859 m Two-third of tower height 

BS 4.1 BS 4.2 -135° 74.280 m One-third of tower height 

BS 5.2 BS 5.1 45° 57.830 m Tower base 

BS 13.1 BS 13.2 0° 27.400 m Half height of lattice structure 

BS 16.2 BS 16.1 -180° 27.400 m Half height of lattice structure 

BS 20.1 BS 20.2 0° 0.736 m Lattice structure base 

BS 21.1 BS 21.2 -180° 0.736 m Lattice structure base 

 

L1 to L4  – legs of the lattice structure 
S1 to S4 – sides of the lattice structure 
B1.1/B1.2  – accelerometers at the tower-top level 

(Drawings are taken from Fraunhofer
IWES, Bremerhaven)
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2) Rotation of the nacelle 

The yaw angle β represents the position of the nacelle with respect to north. A yaw angle 

of β = 0° results from a wind turbine heading north, i.e. the xN-direction of the nacelle co-
ordinate system introduced in the figure “Definition of the nacelle coordinate system” is 
positively oriented in southern direction. The yaw angle is a measurement signal that is 
recorded continuously. The rotation of the nacelle position is positively defined clockwise. 
The definition of the nacelle orientation in comparison to the fixed coordinate system of 
the lattice structure is depicted susequently. 

 

 

Definition of the nacelle orientation 

 

3) Relating the lattice structure coordinate system to the north direction 

The orientation of the lattice structure with respect to the north direction is defined by the 
angle ' 33,845γ = ° , as shown in the following figure. In order to rotate the coordinate sys-

tem of the lattice structure so that the nacelle position of β = 0° is reached, an angle of 

56,155γ = − ° has to be applied. The angle γ rotates positively counter-clockwise. 

 

 

Orientation of the lattice structure with respect to north 

 

y 

x 

N

β = 0° 
Nacelle heading north 

 
β positive clockwise 

N

L1 to L4  – legs of the lattice structure 
S1 to S4 – sides of the lattice structure 
 
Fahrstuhl – the lift of the lattice structure  
 

(Drawings are taken from Fraunhofer
IWES, Bremerhaven)
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4) Coordinate transformation 

Considering the transformation steps 1) to 3) results in the transformation rule 

 

 N,fore aft fore aft

N,side side side side

x cos sin BS
y sin cos BS

− −

− −

α α⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− α α⎣ ⎦ ⎣ ⎦⎣ ⎦

 

with 

N,fore aftx −  - acceleration in fore-aft direction transformed into the rotating coor-

dinate system of the nacelle, 

N,side sidey −  - acceleration in side-side direction transformed into the rotating coor-

dinate system of the nacelle, 

fore aftBS −  - accelerometer with fixed initial orientation, according to the table 

above, and 

side sideBS −  - accelerometer with fixed initial orientation, according to the table 

above. 

 

The transformation rule is calculated at each sensor position level. The transformation angle 

α is defined positively counter-clockwise and is a sum of the above-mentioned transforma-
tion angles, with respect to the positive defined rotation of each angle. 

 

 α = −β + γ + δ  

 

5) Verification of the coordinate transformation 

A verification of the coordinate transformation is presented in Häckell (2009) [111], which 
is a student mid-study thesis that was supervised within this work. A depictive example of 
the transformation is given below, where the initial and the transformed acceleration sig-
nals at tower top and tower base are shown. 
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Initial and transformed acceleration signals at tower top and tower base 

 

The acceleration sensors in its initial orientation are depicted at tower top (top left) and at 
tower base (top right) in the figure above. The initial accelerations are plotted as orbit plots 
giving the relation between the two accelerometers at each level. In comparison, the trans-
formed signals are depicted for the same tower locations, each below its corresponding 
initial signal. Now, the orbit plots depict the fore-aft orientation to the side-side orienta-
tion. As visible, the transformed signals show a clear fore-aft orientation both for the tower 
top (bottom left) and for the tower base (bottom right). This characteristic is expected, be-
cause the used data are from operating conditions of the wind turbine. The mean wind 
speed of approximately 8 m/s causes higher acceleration amplitudes in fore-aft direction 
than there are in side-side direction. 

As a further example, the two following figures depict measurement data in standstill. In 
each figure the absolute values of the accelerations are shown, converted into the fre-
quency domain using a FFT. The spectra are given for different sensor location levels over 
the height of the structure. The upper figure contains the transformed accelerations in fore-
aft direction and lower figure the corresponding transformed accelerations in side-side di-
rection. A range from 0 Hz to 3 Hz is shown, because this range contains the first and the 
second global bending modes. 
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FFT of accelerometers along the height of the structure – fore-aft 

 

 

FFT of accelerometers along the height of the structure – side-side 

Max. amplitude at 
tower base at circa 
2.4 Hz 

Max. amplitude at tower top 
at circa 0.3 Hz 

Frequency in Hz 

Level 1 
Tower top 

Level 2 
Two-third of tower 

Level 4 
One-third of tower 

Level 5 
Tower base 

Level 16 
Half of lattice 
structure 

Side-side accelera-
tions over the height 
of the structure 

Level 1 
Tower top 

Level 2 
Two-third of tower 

Level 4 
One-third of tower 

Level 5 
Tower base 

Level 16 
Half of lattice 
structure 

Max. amplitude at tower top 
at circa 0.3 Hz 

Max. amplitude at 
tower base at circa 
2.2 Hz 

Fore-aft accelera-
tions over the height 
of the structure 

Frequency in Hz 



Appendix K 

 191

This random inside into the measurement data, given by the frequency-domain depictions 
in the above-shown figures, allows deriving first conclusions. Clearly visible peaks occur at 
around 0.3 Hz, both in fore-aft and side-side direction. Their amplitudes are maximal at the 
tower top, which obviously indicates the first global bending modes.   

Another two peaks are between 2.0 Hz and 3.0 Hz. They have their maxima at the tower 
base, whereas the corresponding amplitudes at the tower top are small. Most likely, these 
peaks are the second global bending modes of the structure. This interpretation is under-
lined by the fact that there is a difference in the frequencies for the fore-aft and the side-
side direction. The peaks in the fore-aft directions (upper figure) are at circa 2.2 Hz and the 
peaks in the side-side direction (lower figure) at about 2.4 Hz. This characteristic confirms 
the prediction from the modal analysis presented in section 5.1.2. In addition, this separa-
tion indicates the successful coordinate transformation. 
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Appendix L – Results of the Local Measurements 

Subsequently, measurements that have been carried out at local structural components of 
the 5 MW wind turbine, described in section 5, are explained. The measurements of a sin-
gle foundation body and the measurements of the lower crosses of the lattice sub-structure 
are described.  

 

Measurements of a Single Foundation Body 

■ Objective of the measurements 

Objective of the measurement of a single foundation body is the determination of the ei-
genfrequency of the first bending mode, defined by the horizontal movement of the con-
crete body (see figure below). The tests are conducted before the erection of the lattice 
structure. This study allows obtaining the dynamic characteristics of one separated founda-
tion. Thus, conclusions can be derived concerning the modeling of the stiffness of the up-
per soil layer that dominates the dynamics of the foundation and the dynamics of certain 
global bending modes of the structure (see sections 5.1.1 and 5.1.2.). 

 

 

Eigenmode and simulated frequency response of a single foundation body 
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■ Measurement setup 

The excitation of the foundation is realized using the mobile exciter depicted below. The 
foundation is excited by a sweep function. The excitation is done eccentrically in horizontal 
direction so that the first bending mode and the first torsional mode can be excited. The 
horizontal velocity responses are recorded at the center of the structure and at four sides, 
located by a 90° shift to each other. The measurement setup is shown in the figures below. 

 

Mobile exciter and application to the structure 

 

 

Measurement setup for the single foundation body and geophone 
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The measurement program considers different scenarios. Firstly, the response due to ambi-
ent excitation is recorded, which enables the estimation of the ambient influences to the 
artificially generated excitation. Then, different configurations of the mobile exciter are 
used in order to pass the frequency range between 1.0 Hz and 14 Hz. This range contains 
the eigenmodes predicted by the modal analysis. The maximal excitation force is 1,000 N, 
which is the upper limit of the measurement device. 

 

■ Results 

The spectral density of one test due to the sweep excitation is depicted in the following 
figure. Spectral peaks occur at circa 1.8 Hz, at 4.0 Hz - 4.5 Hz, and around 12.0 Hz - 
13.0 Hz. 

 

Spectral density at the foundation due to sweep excitation 

 

In theory, a time signal caused by a sweep excitation shows an amplification of the system 
response at the time when the resonance frequency is passed. The recorded time signal 
that corresponds to the spectral density (figure above) is shown in the figure below (blue 
signal). The expected amplitude amplification is poorly developed. A slight increase can be 
seen in the time range between 0 s to 100 s, whereas a decrease is visible up to the end of 
the signal at 190 s. Obviously, the sweep excitation force is not able to produce a system 
response that clearly exceeds the response due to the ambient influences. To support this 
conclusion and in order to correlate the frequencies either to ambient or to artificial excita-
tions, a band-pass filter is applied to the time signal. The filtered signals for two different 
band-pass filters are depicted (green signals). Part a) of the figure shows that the frequen-
cies around 1.8 Hz relate to a nearly constant system response, most probably caused by a 
stochastic excitation from ambient sources. A band-pass filter that remains the time signal 
containing the frequencies between 4.0 Hz and 4.5 Hz is depicted in part b). The supposed 
amplification characteristic for a sweep excitation is visible in a time range of 80 s to 140 s. 
This amplification is most probably caused by resonance between the sweep excitation and 
the eigenfrequency of the first bending mode. This conclusion is supported by the occur-
rence of frequencies in the range of 12.0 Hz to 13.0 Hz, where the corresponding torsional 
eigenmode was predicted. 
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Filtered velocity signal – blue = original, green = filtered  

 

■ Conclusions 

Exciting the foundation body of approximately 500 tons with the mobile exciter reaches 
the limit of applicability. The system response due to the sweep sine of maximal 1,000 N 
does not produce a clearly amplified system response in contrast to the ambient excita-
tions. 

Applying a band-pass filter to the recorded response signal allows correlating the measured 
frequencies to the artificial excitation. 

The first bending mode of the structure is measured in a frequency range of 4.0 Hz to 
4.5 Hz. The interpretation of this result is supported by the occurrence of frequencies at 
12.0 Hz to 13.0 Hz. The distance of the frequencies between the bending mode and the 
torsional eigenmode equals the prediction from the FE-simulations. 

The measured eigenfrequency (4.0 Hz to 4.5 Hz) is higher than the eigenfrequency from the 
modal analysis (circa 3.5 Hz). The modal analysis bases on the soil stiffness values given in 
the geological survey [33]. The soil stiffness of the upper layer is suggested to 
ES = 2.5 MN/m² (see Figure 5.2). 

The comparison of the modeled eigenfrequency to the measured eigenfrequencies reveals 
that the spring stiffness in the FE model that represent the stiffness of the upper soil layer 
should be increased in contrast to the soil stiffness of the upper layer proposed by the geo-
logical survey.  
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Measurements of the Lower Crosses of the Lattice Structure 

■ Objective of the measurements 

While exciting one cross of bay 5 of the lattice structure (figure below) by applying a pull-
back test, a free vibration is induced to all the four crosses of the Bay 5. The corresponding 
system response contains the eigenfrequencies of this structural part. The test is conducted 
during standstill to avoid influences from the operation of the wind turbine. The measure-
ment aims on identifying the different closely located eigenfrequencies (see Figure 5.6 to 
Figure 5.8). The mode shapes are used to distinguish between the several modes. Addi-
tionally, the damping ratios are determined. 

 

 

Measurement setup at bay 5 

 

■ Measurement setup 

In order to record the system responses, two accelerometers are available that are placed in 
the center of the excited cross (B18) and in the center of one adjacent cross (B17), as de-
picted in the figure above (right). 

The excitation forces used to realize the statical deflection of the cross structure is designed 
by FE-simulations, which are presented in Pahn and Rolfes (2011) [79]. Tear-bolts made 
of gray cast iron (type GG 10) are used (figure below). Gray cast iron is a brittle material 
that cracks abruptly. The breaking force is defined by a relieved cross-section of the tear-
bolt. For redundancy, tear-bolts with breaking forces of F = 5,000 N and F = 8,000 N are 
used. A series of six tests is conducted for each tear-bolt type. The tear-bolts are fastened 
to a steel cable via special connecting pieces. On one side, this cable is attached to one 
cross of the lattice structure. On the other side the cable is pulled by a truck-mounted 
crane. 

Right: Sensor location

Left: Structure with crane 
and tear-bolt system (cable 
highlighted) 
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Tear-bolt system with steel cable 

 

Assuming the FE-prediction of the local eigenmodes of bay 5 to be correct, the two 
accelerometers allow identifying the three closely spaced modes assessing their phase 
relationships. As known from the modal analysis (section 5.1.2), the different mode shapes 
of bay 5 are characterized by in-phase vibrations of opposing crosses (Figure 5.6), by in-
phase vibrations of neighboring crosses (Figure 5.7), and by in-phase vibrations of all 
crosses (Figure 5.8). The three mode shapes are drawn qualitatively (columns) in the 
following figure. During the measurements accelerations are recorded at two adjacent 
crosses. Thus, two mode shape orientations (rows) are possible with respect to the sensor 
locations. Consequently, the phase relationships between the two accelerometers either 
show always an out-of-phase vibration, always an in-phase vibration, or alternating phase 
relationships for a series of tests. 

 

 

Possible sensor location w.r.t. the phase relationship of bay 5 mode shapes 
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■ Results 

The time series of two acceleration responses recorded at the excited cross due to an exci-
tation force of F = 5,000 N (left) and F = 8,000 N (right) are depicted below. The artificial 
excitation exceeds the ambient influences by far and the induced free vibration is clearly 
visible for both cases. 

 

 

Acceleration signal due to pullback test 

 

A further characteristic that can be derived from the measurement data is the occurrence of 
beat vibrations, which indicates the presence of closely spaced frequencies. This character-
istic was predicted by the FE-simulations. The following figure shows a comparison of a 
simulated frequency response to a measured one, due to an excitation force of F = 5,000 N. 
Additionally, the frequency plots are completed by a qualitative graph of the corresponding 
acceleration signal in the time domain (each in the upper left part). As can be seen, the 
beat vibrations in the time-domain plots differ. The amplitude decay of the simulation sig-
nal is much smaller than the decay in the measurement signal. The reason is the negligence 
of damping in the simulation.112 

Comparing the frequency spectra shows a good accordance between the simulated and the 
measured system response. Amplitude peaks occur between 5.1 Hz and 5.4 Hz in both 
spectra. Each spectrum is dominated by two peaks, whereas the higher frequency repre-
sents the maximal peak. The peaks show broad bases, what either is caused by the pres-
ence of further frequencies or by high damping. But, for the investigated structural part 
only light damping is expected. Comparing the frequencies of the maximal peak indicates a 
frequency shift of circa 0.2 Hz between the simulation and the measurement. But, this con-
clusion is only true if both maximal peaks are related to the same eigenmode. 
                                               

112 Structural damping is not considered, although method-dependent numerical damping is present. 
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Frequency spectra of the simulation and a measured signal 

 

In order to distinguish between the different frequencies that are present in the response 
signals, a stepwise identification is done. Firstly, the eigenfrequency, the phase relationship, 
and the damping are determined in a part of the signal where the free vibration is domi-
nated by only one frequency (figure below, red). With this knowledge, the identification of 
the complete signal is accomplished (blue). 

 

 

Separation of free vibrations from beat vibrations 

 

The acceleration signals of the sensors B17 and B18 are analyzed. The results of the 12 tests 
are averaged. The identification reveals three eigenfrequencies that can be determined with 
a high accuracy, indicated by a small standard deviation between the different results. Ad-
ditionally, the phase relationships between the two sensors (B17 and B18) are derived, 
which allows the correlation of the frequencies to the mode shapes. The identification is 
completed by the damping ratios. The damping ratios are given as percentage of critical 
damping. The results are summarized in the following table. 

 

Frequency in Hz Frequency in Hz 

Simulation Measurement

1 0 3 2 5 4 7 6 9 8 10 1 0 3 2 5 4 7 6 9 8 10 

5.47 Hz 
0.40 m/s² 

5.27 Hz 
0.49 m/s² 

Free vibration Free vibration and beats 

Time in s 

A
cc

el
er

at
io

n 
in

 m
/s

² 



Appendix L 

 200

Summary of the identified modes of bay 5 

No. Eigenfrequency Measured phase Damping ratio Mode shape 

1 5.09 Hz out of phase 0.37 % Opposing crosses in phase 

2 5.26 Hz in phase 0.38 % All crosses in phase 

3 5.33 Hz alternating 0.22 % Neighboring crosses in phase 

 

■ Conclusions 

The eigenfrequencies, the mode shapes, and the damping ratios for the lower crosses of the 
lattice structure are determined due to an artificial excitation. Three closely spaced eigen-
frequencies are detected, as it is predicted by the modal analysis. Using the phase-angle 
relationships between the two sensors, an unequivocal correlation of the frequencies to the 
mode shapes is possible. Comparing the mode shapes gained by the modal analysis (see 
Figure 5.6 to Figure 5.8) to the identified mode shapes (table above) shows that there is a 
mode shape shift between the simulation and the measurement. Both in the simulation and 
the measurement the mode shape with the smallest frequency is described by an in-phase 
vibration of opposing crosses. But, the second and third mode shape is shifted. The main 
reason is seen in the modeling of the connecting-node stiffness, which contains simplifica-
tions in the FE model (see section 5.1.2).  

As a general conclusion it can be stated that the identification of the eigenfrequencies and 
mode shapes can be done with a high accuracy. The damping estimation contains higher 
uncertainties, which is indicated by a higher standard deviation of the damping ratio re-
sults. This conclusion is in accordance with the statements derived by Andersen et al. 
(1999) [1] and Peeters and De Roeck (2001) [83]. 
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Appendix M – Estimation of the Aerodynamic Damp-
ing for the REpower 5M 

Estimation of the aerodynamic damping  

The following equation is presented in Kühn (2001) [58], page 105. This equation is valid 
for wind turbines with high tip speed ratios, especially near the rated wind speed. 

 

 ( )
root

R
b L

aero r
0 0 R

N dc
D | c r r dr

8 f m d
⋅ ρ ⋅ Ω

= ⋅ ⋅ ⋅
⋅ π ⋅ ⋅ α∫  

 Nb = 3 - number of rotor blades 

 ρ = 1.29 kg/m³ - air density 

 Ω = 0.20 rad/s - rotation speed at rated wind speed 
 f0 = 0.31 Hz - eigenfrequency of the first fore-aft mode (result of the 
      modal analysis in section 5.1.2) 
 m0 = 528,919 kg - modal mass of the first fore-aft mode (result of the 
      modal analysis in section 5.1.2) 
 RRoot = 3 m - radius to the blade root (see reference [85]) 
 R = 63 m - rotor blade radius (see reference [85]) 

 dcL/dα|r = 5.1-5.8 - lift coefficient w.r.t. the angle of attack α (reference 
     [27], page 188) 
 c(r)  - function of the blade-chord length 
 r   - variable along the rotor radius. 

 

Gasch and Twele (2005) [27] (page 194) present an estimation for the blade-chord length 
that bases on the Betz Theory. The blade-chord length c(r) is calculated as follows. 

 

 ( )
2b A
A

1 8 1
c r 2 R

rN 9 c
R

= ⋅ π ⋅ ⋅ ⋅ ⋅
⋅ ⎛ ⎞λ ⋅ ⎜ ⎟

⎝ ⎠

 

 R  = 63 m - length of the rotor blade 
 Nb  = 3 - number of rotor blades 
 cA  = 0.8 - lift coefficient, cA ≈ 0.6-1.2 (assumed to be constant) 

 λA  = 6 - tip speed ratio for the design 
 r  - variable along the rotor blade length 
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The result for the estimation of the blade-chord length is depicted in the figure below. 
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Appendix N – Data Selection for the Eigenfrequency 
and Damping Identification 

Data selection for the eigenfrequency and mode shape identification 

Operation state Data restriction Number of data sets 

Standstill   

0 rpm 

∆ Nacelle yaw < 0.05° or > 356° 
∅ Wind speed > 3 m/s 
∅ Rotor speed < 0.5 rpm 
∅ Pitch angle < 90° 
∆ Pitch angle < 2.2° 

19 

Power production   

7 rpm 

∆ Nacelle yaw < 0.05° 
∅ Rotor speed 7.0-7.5 rpm 
∆ Rotor speed < 1 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 0.02° 

94 

8 rpm 

∆ Nacelle yaw < 0.07° 
∅ Rotor speed 7.5-8.5 rpm 
∆ Rotor speed < 2.3 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 0.02° 

26 

9 rpm 

∆ Nacelle yaw < 0.03° 
∅ Rotor speed 8.5-9.5 rpm 
∆ Rotor speed < 3 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 0.02° 

35 

10 rpm 

∆ Nacelle yaw < 0.04° 
∅ Rotor speed 9.5-10.5 rpm 
∆ Rotor speed < 3 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 0.02° 

30 

11 rpm 

∆ Nacelle yaw < 0.07° 
∅ Rotor speed 10.5-11.5 rpm 
∆ Rotor speed < 3.1 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 0.5° 

84 

12 rpm 

∆ Nacelle yaw < 0.08° 
∅ Rotor speed 11.5-12.1 rpm 
∆ Rotor speed < 1.4 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 3° 

19 
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Data selection for the damping estimation 

Operation state Data restriction Number of data sets 

Standstill   

0 m/s 

0 rpm 

∆ Nacelle yaw < 5° 
∅ Rotor speed < 0.02 rpm 
∅ Pitch angle < 89° 
∆ Pitch angle < 3° 

42 

Power production –  between cut-in and rated wind speed 

3.5 m/s 
7 rpm 

∆ Nacelle yaw < 1° 
∅ Rotor speed 7.0-7.1 rpm 
∆ Rotor speed < 0.1 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 0.03° 

52 

5.4 m/s 
8 rpm 

∆ Nacelle yaw < 1° 
∅ Rotor speed 7.75-8.25 rpm 
∆ Rotor speed < 0.5 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 0.05° 

12 

7.3 m/s 
9 rpm 

∆ Nacelle yaw < 1° 
∅ Rotor speed 8.75-9.25 rpm 
∆ Rotor speed < 0.5 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 0.02° 

19 

9.2 m/s 
10 rpm 

∆ Nacelle yaw < 1° 
∅ Rotor speed 9.75-10.25 rpm 
∆ Rotor speed < 0.7 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 0.05° 

12 

11.1 m/s 
11 rpm 

∆ Nacelle yaw < 3° 
∅ Rotor speed 10.90-11.10 rpm 
∆ Rotor speed < 0.2 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 0.5° 

12 

13.0 m/s 

12 rpm 

∆ Nacelle yaw < 0.05° 
∅ Rotor speed 11.80-12.00 rpm 
∆ Rotor speed < 0.4 rpm 
∅ Pitch angle < 1° 
∆ Pitch angle < 4° 

10 

Power production – between rated and cut-out wind speed 

16.0 m/s 
12 rpm 

∆ Nacelle yaw < 0.05° 
∅ Rotor speed > 12.0 rpm 
∅ Wind speed 15.5-16.5 m/s 

61 

19.0 m/s 
12 rpm 

∆ Nacelle yaw < 0.05° 
∅ Rotor speed > 12.0 rpm 
∅ Wind speed 18.5-19.5 m/s 

6 
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Appendix O – Averaged Singular Values and Damp-
ing Estimation 

Identification of the global eigenfrequencies using averaged singular value functions in 
standstill and operation 

 

 

 

 

Averaged singular value – 0 rpm 
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Averaged singular value – 7 rpm 

 

 

 

Averaged singular value – 8 rpm 
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Averaged singular value – 9 rpm 

 

 

 

Averaged singular value – 10 rpm 
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Averaged singular value – 11 rpm 

 

 

 

Averaged singular value – 12 rpm 
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Damping Estimation 

 

 

Distribution of estimated damping ratios – 0 rpm at 0 m/s 

 

 

 

Distribution of estimated damping ratios – 7 rpm at 3.5 m/s 

 

 

 

Distribution of estimated damping ratios – 8 rpm at 5.4 m/s 

 

Number of data sets

D
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• D(δ):   mean = (0.39  ± 0.09)% 
× D(J): mean = (0.41  ± 0.09 )% 

Number of data sets

D
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• D(δ):   mean = (0.31  ± 0.13)% 
× D(J): mean = (0.33  ± 0.14 )% 

Number of data sets

D
 in

 %
 

• D(δ):   mean = (0.27  ± 0.14)% 
× D(J): mean = (0.27  ± 0.14 )% 
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Distribution of estimated damping ratios – 9 rpm at 7.3 m/s 

 

 

 

Distribution of estimated damping ratios – 10 rpm at 9.2 m/s 

 

 

 

Distribution of estimated damping ratios – 11 rpm at 11.1 m/s 
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• D(δ):   mean = (0.50  ± 0.09)% 
× D(J): mean = (0.52  ± 0.17 )% 
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• D(δ):   mean = (0.44  ± 0.08)% 
× D(J): mean = (0.46  ± 0.15 )% 

Number of data sets
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 %
 

• D(δ):   mean = (0.45  ± 0.15)% 
× D(J): mean = (0.48  ± 0.20 )% 
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Distribution of estimated damping ratios – 12 rpm at 13.0 m/s 

 

 

 

Distribution of estimated damping ratios – 12 rpm at 16.0 m/s 

 

 

 

Distribution of estimated damping ratios – 12 rpm at 19.0 m/s 

 

Number of data sets

D
 in

 %
 

• D(δ):   mean = (0.31  ± 0.20)% 
× D(J): mean = (0.27  ± 0.22 )% 

Number of data sets

D
 in

 %
 

• D(δ):   mean = (0.42  ± 0.25)% 
× D(J): mean = (0.38  ± 0.25 )% 

Number of data sets

D
 in

 %
 

• D(δ):   mean = (0.51  ± 0.20)% 
× D(J): mean = (0.63  ± 0.35 )% 
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Appendix P – Model Updating Parameters 

Sensitivity analysis of the soil parameters 

The effects of changing the stiffness of the upper soil layer in the FE model are studied (see 
also Figure 5.2). To do so, the stiffness of the upper soil layer is changed stepwise. The ini-
tial stiffness is based on the recommendations given in the geological survey [33]. The re-
sulting eigenfrequencies for the global bending modes are calculated and depicted in the 
three diagrams below. 

 

Sensitivity analysis of the stiffness modeling of the upper soil layer 

 

The first and second global bending modes remain unaffected, as clarified by the horizontal 
graphs. Only the third global bending modes depend on the modeling of the stiffness of 
the upper soil layer. The eigenfrequencies also increase with increasing stiffness, especially 
in the range of 2.5 N/m² to ca. 20 N/m². Above 20 N/m², the eigenfrequencies consolidate 
to constant values, regardless the increase of the stiffness. Hence, the model updating of 
the stiffness modeling of the upper soil layer is reasonable only for the third global bending 
modes, within a range up to maximal 25 N/m². The stiffness modeling of the upper soil 
layer underlies high physical uncertainties, which is the reason for choosing this parameter 
for the model updating. 
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Discussion of the model updating parameters 

The basic assumption for the model updating process is choosing parameters that are obvi-
ously connected with modeling uncertainties. Furthermore, the parameters are varied in a 
range that is physically meaningful. Both conditions are discussed subsequently for the cho-
sen model updating parameters that are presented in Figure 5.21. 

Bending stiffness of the rotor blades: The higher global bending modes as well as the local 
modes of bay 5 show a high sensitivity in terms of the rotor-blade bending stiffness. Precise 
structural information of the rotor blades is not available, in order to respect proprietary 
information. Hence, the modeling of the rotor-nacelle assembly (RNA) is based on reason-
able estimations. Consequently, the modeling of the RNA includes uncertainties. For this 
reason, the variation of the stiffness values is partly allowed up to 50 %. 

Mass of the transition piece: The transition piece has a significant influence to the second 
global bending mode, because it is located at the maximal deflection of the corresponding 
mode shape. Generally, mass is considered a parameter that can be determined with high 
accuracy. But, looking at the figure below shows that modeling the circular cross-section by 
a finite number of shell elements leads to a loss of information. The stiffness remains unaf-
fected, but uncertainties occur in terms of the mass. For this reason, the model updating is 
achieved by increasing the density of the shell elements. The maximal increase is limited to 
10 %, so that the resulting mass of the transition piece lies in the range of the real mass 
value including the built-in components. 

 

 

Simplification in the modeling of the transition piece and the double-K node 

 

Mass of the transition piece 

Stiffness of the center-line offset of the double-K node 

Center-line 
offset 

Pictures are taken by
Weserwind GmbH.
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Stiffness of the center-line offset of the double-K node: The three-dimensional geometry of 
the double-K node (see figure above) is simplified to a beam construction in the FE model. 
This simplification requires inserting a beam element representing the center-line offset. 
The beam element is defined by bending stiffness and axial rigidity, which is adopted from 
the cross-section of the node legs. As expected, this assumption does not reflect the reality, 
which allows using the offset stiffness to be used as model updating parameter. In order to 
estimate the range of the stiffness variation, the results of numerical analysis and full-scale 
experiments are used, which are published in the final report of the research project 
OGOWin (2011) [74]. There is no particular limit for the variation of the center-line offset, 
since this parameter does not represent a physical structural component.  

Horizontal stiffness of the upper soil layer: The three soil layers have different load-bearing 
capacities, with the upper layer showing a significantly lower stiffness. As pointed out in 
the sensitivity analysis of the soil parameters (see beginning of Appendix P), the model up-
dating of the soil layers can be reduced to the variation of the horizontal stiffness of the 
upper soil layer. This parameter mainly affects the third global bending modes. The mod-
eled soil-layer stiffness is based on soil properties gained from static in-situ tests, which are 
usually prone to uncertainties. In comparison to the proposed stiffness parameter from the 
geological survey the model updating increases the stiffness value, which is in accordance 
with the dynamic measurements presented in Appendix L. 

Additional masses for the platforms, flanges, and built-in components: These additional 
masses are adjusted in a single-digit percent range. 
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Appendix Q – FAST with HydroDyn 

Changes in FAST source code of version “FAST_v70002b-bjj_AD130000a-bjj_DLL.exe”  

 

Objective:  Output the hydrodynamic loadings at tower nodes in fore-aft direction (surge) 

Remarks: The tower node distribution is considered uniform throughout the flexible 
tower length. If the number of tower nodes is extended over 99, FAST2ADAMS 
have to be disabled. In this version, the output of the hydrodynamic loadings is 
set as a constraint. 

 

Modifications in the “FAST_IO.f90” file 
Subroutine “WrOutHdr” (generates the header for the primary FAST output file) 

• Read in “Module Tower” (to obtain the values of the variables TwrNodes and 
TwrFlexL) 

• Read in “Module EnvCond” (to obtain the values of the variables WtrDpth and 
WaveHS) 

• Set Integer WaveNodes = 0 
• Calculate WaveNodes (for calculation see “Remark: Number of tower nodes with 

hydrodynamic loading”) 
• Output the number of all tower nodes 
• Output the number of the tower nodes with hydrodynamic loading (for checking 

purposes – calculation of the number of tower nodes with hydrodynamic loading 
see below “Remark: Number of tower nodes with hydrodynamic loading”) 

• Add sensor name und unit (two loops over the number of tower nodes – for Tab-
Delim and no TabDelim) 

 

Subroutine “WrOutput” 

• Read in “Module Tower” (to obtain the values of the variables TwrNodes and 
TwrFlexL) 

• Read in “Module EnvCond” (to obtain the values of the variables WtrDpth and 
WaveHS) 

• Set Integer WaveNodes = 0 
• Calculate WaveNodes (for calculation see “Remark: Number of tower nodes with 

hydrodynamic loading”) 
• Adjust the output format for the new number of outputs 
• Extend the write command to the load values of FtHydro 
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