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A B S T R A C T

System theory deals with constructing models of systems to establish a relation

between the inputs and the outputs of a system. System identification, as a sub area

of system theory, makes this construction of the model possible by the observation

of inputs and outputs. Such a construction is beneficial if a derivation of the model

by first order principles, as e.g., physical laws, is difficult due to a complex or an

unknown system structure.

From the perception of system theory, computer networks are systems in which

the data arrivals represent the inputs and the data departures the outputs of

a network path. In this thesis, we establish an analytical system identification

methodology for computer networks with random service by the measurement

of data arrivals and data departures. To apply the developed methodology to

computer networks, we implement it into practical procedures.

We establish our system identification methodology in the framework of the

stochastic network calculus, a system theory for computer networks. Thereby, the

identification applies to linear systems that feature properties, which are characteris-

tic for computer networks, such as multi-hop paths, various scheduling disciplines,

and random service due to cross traffic, channel characteristics, or protocol be-

havior. This universality for linear systems is achieved by the use of a black-box

model, where the system model is determined by measurements and no specific

assumptions have to be made beforehand on the internal system structure. In the

framework of the network calculus, the so-called service curve, which gives a com-

plete description of a linear system, represents the system model. It specifies the

coherence between time and data, thereby it provides a description of the system

on arbitrary time scales.

We illustrate that the area of available bandwidth estimation also belongs to

system identification. On the contrary to our system identification methodology,

available bandwidth estimation typically uses a gray-box model of the system,

i.e., a concrete system model is assumed in advance that is parameterized by
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measurements. Available bandwidth estimation often disregards the variability of

the service by the assumption of a deterministic system. Effects that occur due to the

discrepancy of this assumption and the characteristics of networks are attenuated by

post processing of the measured data e.g., by averaging of multiple measurements.

These simplifications also lead to descriptions that usually account for only one

time scale. Furthermore, such tools often make assumptions that apply only to

networks with specific properties e.g., first-in first-out (FIFO) packet scheduling,

single-hop topologies, or constant rate channels, by the use of a gray-box model.

Our description of the systems in the network calculus also provides explanations

for a number of fallacies observed by the application of available bandwidth

estimation tools. Such explanations are possible due to our description of networks

by linear time-variant systems. The description accounts for randomness, which is

often disregarded.

We transfer the analytical system identification methodology into practical prob-

ing procedures. We design therefore one procedure for networks, in which proper-

ties can be assumed to be stationary for short time periods, as paths in production

networks, and a second procedure for networks, in which properties are stable for

infinite scales, such as dedicated testbeds.

By applying these procedures to networks with the earlier mentioned properties

(multi-hop paths, various scheduling disciplines, and random service due to cross

traffic, channel characteristics, or protocol behavior), we validate the methodology

by comparison to results from well-known available bandwidth estimation tools

and to analytical results. In doing so, we also provide system models for computer

networks and protocols deployed therein for which only asymptotic results were

known before.

Keywords: system identification, performance evaluation, network calculus, TCP,
WLAN, random systems, available bandwidth estimation, computer networks,
effective service curve
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Z U S A M M E N FA S S U N G

Die Systemtheorie beschäftigt sich mit der Erstellung von Modellen zur Beschrei-

bung der Beziehung zwischen Eingangs- und Ausgangssignalen von Systemen.

Die Systemidentifikation, als Teilgebiet der Systemtheorie, ermöglicht diese Erstel-

lung anhand von Beobachtungen der Eingangs- und Ausgangssignale. Dies ist von

Vorteil, wenn eine Herleitung des Modells auf Grundlagen, wie z.B. physikalischen

Gesetzen, aufgrund von einer komplexen oder unbekannten Struktur des Systems

schwierig ist. Auch Rechnernetze sind im Rahmen der Systemtheorie Systeme, in

denen die Eingangssignale Datenankünfte und die Ausgangssignale Datenabgänge

sind. In dieser Arbeit wird eine analytische Methodik zur Systemidentifikation

für Rechnernetze mit zufälligem Dienstangebot hergeleitet, wobei das System-

modell durch Messung der Datenankünfte und -abgänge eines Netzwerkpfades

erstellt wird. Zur Anwendung in Rechnernetzen wird diese Methodik in praktische

Verfahren umgesetzt.

Die analytische Methodik zur Systemidentifikation wird im Rahmenwerk des

stochastischen Netzwerkkalküls etabliert, welches eine Systemtheorie für Rech-

nernetze ist. Dies ermöglicht die Anwendung auf lineare Systeme, welche für

Rechnernetze charakteristische Eigenschaften besitzen, wie Pfade mit mehreren

Knoten, verschiedene Abarbeitungsverfahren von Warteschlangen und zufälligem

Dienstangebot durch existierenden Datenverkehr, Kanaleigenschaften oder Proto-

kollverhalten. Diese Allgemeingültigkeit für lineare Systeme wird durch Verwen-

dung eines Black-Box-Modells erreicht, wobei das gesamte Systemmodell durch

Messungen bestimmt wird und keine spezifischen Annahmen im Voraus über die

interne Struktur des Systems getroffen werden. Die sogenannte Dienstkurve, welche

eine vollständige Spezifikation eines linearen Systems darstellt, repräsentiert das

Systemmodell. Sie gibt den Zusammenhang zwischen Zeit und Datenmenge an,

wodurch sie Systeme auf beliebigen Zeitskalen beschreibt.

Wie in dieser Arbeit gezeigt wird, ist die Schätzung der verfügbaren Bandbreite

ebenfalls im Bereich der Systemidentifikation anzuordnen. Im Gegensatz zu der

in dieser Arbeit entwickelten Methodik, verwenden Programme zur Schätzung
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der verfügbaren Bandbreite üblicherweise ein Gray-Box-Modell, d.h. es wird bere-

its ein konkretes Systemmodell angenommen, welches noch durch Messungen

parametrisiert wird.

Die bisherigen Programme vernachlässigen allerdings meist die Variabilität des

Dienstangebots, dadurch dass ein deterministisches System angenommen wird.

Auftretende Effekte, die durch die Diskrepanz zwischen diesen Annahmen und

Eigenschaften von Netzwerken entstehen, werden durch Nachbearbeitung der

gemessen Daten abgeschwächt, z.B. durch Mittelung über mehrere Messungen.

Durch diese Vereinfachungen sind oft nur Beschreibungen mit Betrachtungen einer

Zeitskala möglich. Zudem gelten Programme, die Gray-Box-Modelle verwenden,

nur für Netzwerke mit den jeweils angenommen Eigenschaften, wie z.B. das FIFO

Abarbeitungsverfahren von Warteschlangen, Rechnernetze, die nur aus einem

Knoten bestehen, oder Übertragungskanäle mit konstanter Rate.

Zur Anwendung der in dieser Arbeit erstellten Methodik wird diese in praktische

Verfahren umgesetzt. Hierbei wird ein Verfahren für Netzwerke entwickelt, in denen

die Eigenschaften für kurze Zeiträume als stationär angenommen werden können,

wie z.B. Netzwerkpfade in produktiven Netzen. Des Weiteren wird ein zweites

Verfahren für Netze entwickelt, in denen Eigenschaften für eine unbegrenzte Zeit

stabil sind, was z.B. in dedizierten Testumgebungen der Fall ist.

Die Beschreibung der Systeme im Netzwerkkalkül erklärt einige bekannte Irr-

tümer, die bei der Anwendung von Programmen zur Messung der verfügbaren

Bandbreite entstehen. Dies wird dadurch ermöglicht, dass in der erstellten Methodik

die bisher oft vernachlässigte Variabilität durch die Beschreibung von Netzwerken

als lineare zeit-variante Systeme berücksichtigt wird.

Zur Validierung werden die praktischen Verfahren in Netzwerken mit den be-

reits genannten Eigenschaften (Pfade mit mehreren Knoten, verschiedenen Abar-

beitungsverfahren von Warteschlangen und zufälligem Dienstangebot durch exis-

tierenden Datenquerverkehr, Kanaleigenschaften oder Protokollverhalten) einge-

setzt und die Ergebnisse mit denen von bekannten Programmen zur Messung der

verfügbaren Bandbreite sowie mit analytischen Ergebnissen verglichen. Dabei wer-

den zusätzlich Systemmodelle für Netzwerke und für darin verwendete Protokolle

erstellt für die bisher nur asymptotische Ergebnisse bekannt waren.
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Part I

D I S S E RTAT I O N



1
I N T R O D U C T I O N

System identification deals with building models of systems by observing signals

at the ingress and the egress of the systems. In system theory, a system is defined

as [69]:

“... an object in which different variables interact at all kinds of time

and space scales and that produces observable signals“.

This definition applies for many subject areas as biology, chemistry, economics,

engineering, or physics just to name a few [127]. Constructing models of systems

from the knowledge of system internals or from measurements supports the com-

prehension and analysis of these systems. For example, in engineering sciences the

stability of systems, which prevails if a system reacts on bounded inputs only with

bounded outputs, is often analyzed. We denote the system theory from engineering,

such as electrical engineering or mechanical engineering, as the classical system

theory in the following.

According to [85], the term system identification was established in [134] in 1956

and deals with the identification of dynamic system in the area of control theory. In

the subsequent years, system identification attracted great attention for automatic

control [12]. The conjunction of automatic control and system identification led to

adaptive control, whereat the controller is adjusted to the system by identification

of it. This enables the adjustment of the controller for unknown systems or the

parametrization of an assumed system model, e.g., if the system behavior changes

slowly over time [13].

Although the term system identification was phrased in the area of control theory,

the idea of determining system models from observations exists in many other

areas as statistics, time series analysis, machine learning, neural networks, etc., as

elaborated in [85]. For further details on system identification in the classical system

2
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system
input output

 disturbance

(a) general system

cross traffic

arrivals departures

(b) computer network as a system

Figure 1.1: Interpretation of a computer network as a system. In computer networks the
inputs become the arrivals and the outputs the departures.

theory and on the classical system theory itself, we refer to [84]. In this thesis, we

extend system identification to computer networks.

Fig. 1.1a presents a general system with inputs, outputs, and disturbances. In a

mathematical notion, the system is an operator that maps inputs to outputs [74].

This mapping is specified by a mathematical operation and a system model. We

also refer to it as the system description in a non-mathematical notion. For example

in the classical system theory, the mathematical operation is the convolution and the

impulse response is the system model. The disturbances further affect the system

and prevent an exact relation between the inputs and the outputs.

Fig. 1.1b shows a computer network with data arrivals and departures. The data

traverse a network path from the ingress to the egress of that path; we refer to

this data flow as the through flow. This through flow interacts with existing traffic

on its path, the so-called cross traffic. If the computer network is interpreted as a

system, the inputs to the system are the arrivals of the through flow and the outputs

are the departures of the flow. The system behavior is defined e.g., by the cross

traffic, the employed protocols and scheduling disciplines in the network, and the

characteristics of the transport medium as wired or wireless links. For example, in
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real networks the cross traffic is usually random. Depending on the model class

of a system the randomness of the cross traffic can be viewed as disturbances

or as a characteristic inherent in the system. Assuming a deterministic system,

the randomness of cross traffic disturbs the exact relation between the inputs and

outputs, but assuming a system with random service, the randomness codetermines

the model. In computer networks, the analysis is often with respect to quality of

service (QoS) parameters as e.g., throughput, which is represented as the available

bandwidth in this work, and delay. Such parameters are of interest for real-time

applications that have specific requirements on these parameters.

A system theory for computer networks is the network calculus [15, 29, 61, 74],

which provides a framework for deterministic systems as well as systems that

feature randomness. It makes use of the min-plus algebra or the max-plus algebra.

Compared to the classical algebra, the plus operator is replaced by the minimum

operator or by the maximum operator with respect to the algebra, and the multipli-

cation operator becomes the plus operator. Although the classical system theory

and the network calculus deviate in the algebra, many analogies exist, e.g., the

convolution operations exists in the min-plus as well as the max-plus algebra and

fundamental classes to categorize systems in the classical system theory can also be

applied to computer networks e.g., linearity versus non-linearity and time-variance

versus time-invariance1.

The system model in the network calculus is expressed by a service curve. Phrased

simply, a service curve in the min-plus algebra specifies the amount of data that a

system is able to forward between two instances of time. In the max-plus algebra, a

service curve states the time required to forward a specific amount of data.

The foundation of the network calculus was laid in 1991 in [31, 32], in which

traffic is described by constraints on its burstiness. This description allows the

derivation of performance bounds such as delay and backlog bounds for systems.

More precisely, the work is the foundation of the deterministic network calculus

since worst-case bounds are used for the description of the data traffic, the systems,

and the performance bounds. To this day, descriptions for systems as constant rate

links, various scheduling disciplines, delay elements, traffic shapers, and window

1 For details on theses model classes, see Chap. 2 and Appendix A.1
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flow control protocols exist just to name a few. Even more, the network calculus

offers the analysis of combinations of systems as connections in parallel or series.

Comprehensive summaries exist in [29, 43, 74].

For the description of networks with random service, the network calculus

provides two different approaches. On the one hand, an approach for linear and

non-linear time-varying systems is established in [29, 68, 74], where the system

model is represented by a random process. On the other hand, there is the stochastic

extension, namely the stochastic network calculus, that accounts for randomness

by using probabilistic bounds on the system model. The basis of the stochastic

network calculus was laid by the extension of the seminal work [31, 32] in [25, 27, 71].

Comprehensive summaries are given in the monographs [29, 61] and the survey [43].

To this day, stochastic network calculus has allowed the analysis of state of the art

Internet traffic models e.g, in [81, 96, 113].

While network calculus is a system theory for computer networks, it also finds

its way to other fields such as real time systems [123], information theory [86, 87],

sensor networks [118], smart grids [128], and battery lifetime [75, 131].

In the framework of the network calculus, many works engage in finding the

system model with the full knowledge of the internals of the systems. Such models

are known in the notion of system identification as white-box models [69]. However,

with incomplete knowledge or when complexity prevents a direct derivation of a

white-box model, system identification leads to models built by measurements. In

the classical system theory, many works exist in the field of system identification,

see e.g., [69, 84]. Contrary, in the framework of the network calculus only few works

are available for system identification.

1.1 system identification of computer networks

In system identification, system models are built from measurements of the inputs

and the outputs of systems, in which the internal system structure is only partially

available or completely unknown. If the internal structure is partially known and

only the parameters of an assumed model are determined by measurements, these
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models are called gray-box models. Whereas, if no internals are known for a system,

we refer to black-box models, at which the system model is completely determined

by measurements [69].

To this day, there are only few approaches for system identification in the frame-

work of the network calculus. Gray-box models are used for building deterministic

system models of routers in [22, 125] based on measurements. In [80], it is shown

that system identification on the basis of black-box models is also feasible in the

framework of the deterministic network calculus. This establishes system identifica-

tion in the network calculus that applies to a broad range of min-plus linear systems

since the identification procedure does not rely on any specific system structure.

The latter work has its origin in the framework of the network calculus, but it is also

related to available bandwidth estimation since the probing approaches originate

from the available bandwidth estimation tools presented in [58, 111].

Besides the approaches named above, which are developed in the framework

of the network calculus, available bandwidth estimation also belongs to system

identification. The available bandwidth specifies the unused capacity of a network

path, which is of interest e.g., for applications to test whether required sending

rates are achievable or to adapt to the available bandwidth, for congestion control

not to overload a path, or for testing the quality of service (QoS) of a path. Many

tools developed for available bandwidth estimation assume a deterministic single-

hop network with fluid traffic and a first-in first-out (FIFO) scheduling discipline

e.g., [54, 58, 59, 94, 111, 122]. The resulting system model, the tools rely on, is a

gray-box model. It leads to the description of the available bandwidth by usually a

single value and assumes it to be constant over time, notwithstanding in practical

networks it varies over time. The available bandwidth is derived from information

that is imprinted on packets when they traverse the network path. This information

is extracted e.g., by measurements of the end-to-end delay from timestamped probe

packets or by an evaluation of the dispersion of packets. Available bandwidth

estimation tools that rely on delay measurements are presented in [58, 59], and

tools that measure the packet dispersion are described in [54, 94, 122].

Obviously, many assumptions made for the construction of the system model,

which is used by these tools, are not met in practical computer networks. The



1.1 system identification of computer networks 7

available bandwidth is not deterministic since traffic in the network is random and

typically a network path consists of multiple hops. The assumptions of constant

rate links and FIFO scheduling are appropriate for wired networks but must

be adapted to wireless networks. For example, the medium access procedure

in wireless networks that are based on the IEEE 802.11 standard results in a

non-FIFO scheduling behavior, see [21, 108]. Additionally, the medium access

procedure in these networks leads to non-work-conserving systems since before

data is transmitted via the channel, a random latency occurs even if the channel is

idle [67].

Existing available bandwidth estimation tools produce acceptable results if the

assumptions are mildly violated, e.g., if the assumption of determinism holds for

time scales observed by a bandwidth estimation tool. In [20, 60], the impact of

the simplified model used by many bandwidth estimation tools is reported. The

applicability of the available bandwidth estimation tools [54, 58, 59, 78, 94, 111, 122]

to IEEE 802.11 networks is limited. The tools show partially a strong deviation

from the expected available bandwidth as demonstrated by measurements [20].

In addition, underestimation of the available bandwidth due to randomness of

the cross traffic and multi-hop networks is reported in [60]. On the one hand,

this led to available bandwidth estimation tools adapted to IEEE 802.11 networks

e.g., [62, 64, 78], on the other hand, the impact of the assumption of a deterministic

system with fixed-capacity links and FIFO scheduling is analyzed and relaxed with

respect to randomness in [35, 52, 82, 83, 104, 105].

To summarize, few system identification methodologies exist in the network

calculus. These methodologies show the applicability of gray-box and black-box

models but neglect the randomness of systems. Also, available bandwidth estima-

tion belongs to system identification, in which the system is often described by a

single value. The usual system model utilized for available bandwidth estimation

ignores the randomness inherent in real computer networks and thereby neglects

that the available bandwidth varies on different time scales. Few approaches in-

clude randomness in their system description, but these are typically customized to

networks for which specific assumptions apply.
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1.2 contribution

We contribute an analytical methodology in the framework of the stochastic network

calculus to the system identification of computer networks that belong to the class

of linear systems. Thereby, we enable the determination of system models for net-

works with random service without the knowledge of the internal system structure

by relying on a black-box model. The implementation of this methodology into

practical procedures allows us to validate the procedure and also to determine the

system model of various networks by measurements. Utilizing the network calculus

for the modeling of systems, brings also new insights into available bandwidth

estimation. Below, we state the contributions in detail.

The first main contribution is the derivation of the system identification method-

ology in the min-plus and the max-plus algebra. For this derivation, we prove

the relation between two descriptions for networks with random service in the

framework of the network calculus: a description by random processes, which

characterizes the randomness by a linear time-variant system operator, and a proba-

bilistic description, which uses a probabilistic bound to account for the randomness.

Using the relation between these two descriptions, we solve the inversion problem

that is the derivation of the system model from delay or backlog measurements.

This leads to our system identification methodology that characterizes the system

model by a service curve. We give evidence that probing the network path with con-

stant rate packet trains, which consist of multiple successive equally spaced packets,

and that extracting quantiles from the delay distributions or backlog distributions

for various probing rates, leads to service curves that conform to the well-known

definition of the ε-effective service curve, which is introduced in [25]. Furthermore,

we prove conditions when steady state delay and backlog distributions exist, which

are required for our system identification methodology. We derive our methodology

in the two algebras that are used in the network calculus. The max-plus algebra

is advantageous in practical applications for the derivation of the service curve

from measurements. The min-plus algebra is widely used in the network calculus,

because it simplifies the calculation for multiplexing of traffic, and it provides
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a more intuitive description. We prove the relation between our methodologies

in both algebras by the definition of a pseudo-inverse, which only results in a

difference of at most one packet. Using this framework of the network calculus,

the system identification methodology holds for a broad range of systems, ranging

from simple constant rate links up to complex systems of multi-hop networks with

random cross traffic and non-work-conserving systems as IEEE 802.11 networks

and also complex protocols.

Second, we contribute new insights to available bandwidth estimation. Since

our system description belongs to the class of time-varying systems and it thereby

applies for networks with random service, it explains effects where available band-

width estimation deviates from real-world results. These effects are ascribed to the

choice of the system model often used for available bandwidth estimation, which

neglects properties inherent in real computer networks. First, we prove that the

leftover service curve [29, 42] resembles the definition of the available bandwidth for

single-hop networks. Furthermore, we show that the expected value of the available

bandwidth leads to an overestimation of the departures. For multi-hop networks,

we prove that the definition of the available bandwidth [82, 83] is recovered by a

service curve description only in the limit. Additionally, our methodology accounts

for the service availability on arbitrary scales and not only in the limit, which

explains the underestimation reported for available bandwidth estimation tools in

multi-hop networks [60].

The specification of the probing procedures is the third main contribution. The

system identification methodology leaves space for the parameter selection for

the probing procedure, which is based on constant rate packet trains. The set of

probing rates, the number of iterations, and the train length have to be specified

for a practical system identification procedure. In theory, the number of iterations

and the train length should be infinite. However, in practice we show that these

parameters can be reduced to finite values by means of statistical methods, including

the specification of the reliability by confidence intervals. For the identification, we

require that the probing rates lead to steady state delay or backlog distributions.

We follow two different design goals for the probing procedure. The first procedure

targets on systems, where stationary path characteristics can only be assumed in



1.2 contribution 10

the short-term, e.g., as it applies to Internet paths for several hours [135]. For such

systems, providing fast results is preferred. Therefore, we introduce a heuristic to

decrease the measurement duration by reducing the required train length for the

system identification. Furthermore, the rate selection achieves a fast convergence to

the maximum rate that observes steady state backlog or delay distributions. This

procedure can also be pruned to the task of estimating the available bandwidth as

a single value. The second procedure targets on systems, where the assumption

of stationarity applies also in the long-term and long measurement durations are

acceptable as e.g., in dedicated testbeds arranged for testing network topologies and

protocols. Moreover, a fine granular rate selection is used to extract more details

from the system.

The fourth main contribution is the experimental validation and evaluation of

our system identification procedures in controlled testbed environments [1, 130]

and by simulation. We compare our system identification procedures to well-known

available bandwidth estimation tools and system identification methodologies from

the deterministic network calculus. We show results for various kinds of networks

and protocols as single- and multi-hop networks with random traffic, wireless

networks with non-work-conserving behavior and protocols such as window flow

control, congestion control, and the transmission control protocol (TCP), which

is the prevalent transport protocol in the Internet. We validate our estimated

system models by comparing it to known analytical results for various networks.

The experiments also confirm the findings for multi-hop networks, where service

availability only recovers the available bandwidth in the limit. Beyond that, we

deliver service curves for networks, where no analytical results exist so far or only

fragmentary findings are available e.g., as asymptotic results. These results include

service curves for wireless IEEE 802.11 networks and also for the TCP protocol.

The service curve estimates include results on the short-term and the long-term

behavior and thereby generate a comprehensive analysis of the systems compared

to existing asymptotic results.

Especially, the application to TCP and wireless networks shows that our system

identification methodology has a broad range of application, which goes beyond

the field of available bandwidth estimation approaches. Furthermore, TCP is a
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challenging protocol since analytical results only exist for simplifying assump-

tions [24, 93, 100], although it is the standard transport protocol in the Internet [92].

Recently, the delay introduced by TCP is brought into focus in [24, 37, 48] since it

is utilized by real-time applications [92] and large delays have a negative impact

on the quality of user experience [37]. Many modifications of TCP are justified

by simulations and experiments. Examples are active queue management (AQM)

approaches as random early detection (RED) [46] and implementations in the TCP

stack as e.g., various congestion control protocols as TCP Cubic [51]. Our system

identification methodology offers a systematic evaluation of these features and

estimates the service of the entire end-to-end path from sender to receiver and not

only parts of it. Moreover, the estimates comprise the behavior of the protocol for

arbitrary input rates. Thereby, the estimates provide models that are applicable

to application traffic, which goes beyond simple bulk transfer. Such models are

required for today’s application as depicted in [115].

To sum up, our system identification procedure is applicable to linear systems

with random service, which is inherent in many computer networks. By choosing

an appropriate model class for computer networks, we can overcome weaknesses

of deterministic models used for available bandwidth estimation or system identi-

fication, so far. The service curve as a system model gives a coherent description

of delay and rate. Also, by using the framework of the network calculus, we bring

new insights into the field of available bandwidth estimation by explaining effects

identified before as fallacies in this area.

1.3 thesis structure

The rest of the thesis is structured as follows. In Chap. 2, we introduce the basics of

system models known in the network calculus. We include system models for the

classes of deterministic systems and systems with random service in the min-plus

as well as in the max-plus algebra and show how performance bounds such as

delay and backlog are computed in the network calculus.
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We discuss the state of the art of system identification approaches in Chap. 3.

This includes system identification approaches derived in the framework of the

network calculus and also approaches from available bandwidth estimation, which

we present from a system theoretic perspective.

In Chap. 4, we summarize the aspects of the problem, which are dealt with in

this thesis.

In the subsequent Chap. 5, we derive our system identification methodology. We

interrelate network calculus approaches for systems with random service introduced

in Chap. 2 and present our system identification methodology in the max-plus and

the min-plus algebra. This chapter also includes a first intuitive example for system

identification of an On-Off server.

In Chap. 6, we establish the connection from the network calculus to common

definitions of the available bandwidth. We also present analytical results for ef-

fects that arise if the definition, which is commonly used in available bandwidth

estimation, is applied to random networks.

Chap. 7 provides practical guidelines on the selection of the probing parameters

as the probing rates, the train lengths, and the number of iterations. We therefore

derive probing procedures for two different design goals. On the one hand, for

a fast estimation procedure, preferable in productive networks, and on the other

hand, an estimation procedure that gives more detailed estimates by using more

probing rates and longer packet trains. This procedure is usually acceptable in

dedicated networks for identification purposes.

Chap. 8 presents service curve estimates for various protocols and networks

obtained from simulations and experiments. These estimates are used for validation

where analytical results exist; if no results are available so far, these estimates

contribute to new system models.

At last, Chap. 9 concludes the thesis and gives a perspective of the future work.



2
S Y S T E M M O D E L S F O R C O M P U T E R N E T W O R K S

This chapter introduces system models that exist in the framework of the network

calculus for the description of deterministic networks and networks with random

service. A system2 is described in the network calculus by the convolution operation

and a service curve. This description specifies the mapping from inputs to outputs

with the service curve as the system model. It can be defined either in the min-

plus or in the max-plus algebra. In the classical system theory, the description

is analog to the convolution and the impulse response of a linear time-invariant

system. For linear systems, the service curve and the impulse response are complete

descriptions of the respective systems.

In the classical system theory, four fundamental classes arise from combinations

of properties a system has as linearity versus non-linearity and time-invariance

versus time-variance. If a system is time-invariant, the response to an input signal

does not depend on the instant of time when the signal is applied to the ingress

of the system. In the classical system theory, linearity implies that the output in

response to a signal consisting of an addition of two single inputs is equal to the

addition of the outputs of the individual signals and that a scaling of the input

signal leads to the same scaling of the output signal. In the network calculus, these

properties transfer according to the respective algebra as described below for the

min-plus and the max-plus algebra3. Time-(in)variance applies to the min-plus

algebra. Using the max-plus algebra, a system is (in)variant with respect to the

amount of data to which is referred as shift-(in)variance.

Besides this classification, systems in the network calculus are often classified

as deterministic systems or systems with random service, which follows from the

differentiation of the deterministic network calculus and the stochastic network

2 The terms computer network and system are used interchangeably in the following, at which the
system is the abstraction of the network.

3 For the definition of the properties, we refer to Appendix A.1

13
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calculus as e.g., in [30]. We follow this classification in this chapter and present

service curves for deterministic systems that are time- or shift-invariant and service

curves for networks with random service that are time- or shift-variant or that use

probabilistic invariant bounds on the service curve.

Many other similarities exist between the network calculus and the classical

system theory [74], e.g., transforms exist that have similar features as the Laplace

transform and the Fourier transform used in the classical system theory [44].

Properties of these transforms are advantageous for system identification, which

we elaborate in Chap. 3 and Chap. 5.

The network calculus makes use of the min-plus algebra and the max-plus

algebra. In the min-plus algebra, the plus is replaced by the minimum operation

and the multiplication by the plus operation. Accordingly in the max-plus algebra,

the plus is exchanged by the maximum operation and the multiplication by the plus

operation. Instead of the minimum and the maximum often the infimum and the

supremum are used, respectively, as a generalization. This generalization includes

the application to sets or functions, for which a minimum or a maximum may not

exists. For details on these algebras see [15, 29, 74].

In the network calculus, the inputs to a system are denoted as the arrivals and

the outputs as the departures. The outputs of a system follow by the convolution,

which is introduced in the next sections, of the arrivals and the service curve of

the system. In the min-plus algebra, functions describe the cumulative amount of

data in the interval (0, t]4 with the convention that A(0)=D(0)=0. We denote the

arrivals in the interval by A(t), the departures by D(t), and the service curve by

S(t). The functions in the max-plus algebra are functions of data instead of time,

i.e., for unit size packets this coincides with the index n ≥ 0 of a packet. The arrivals

are TA(n) and the departures TD(n), which specify the arrival time and departure

time, respectively, of a packet with index n. TS(n) denotes the service curve.

We introduce three different kinds of system models: service curves for deter-

ministic systems, service curves for systems with random service described by

4 From the convention of right-continuous functions the interval (0, t] follows. Right-continuous
functions arise from the application of a packetizer to fluid flows [29, 74], which is used to transform
fluid traffic to packetized traffic throughout this work. Often also left-continuous functions are
assumed, for a discussion see [74, Sec. 2.3.2].
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Figure 2.1: Graphical representations of arrivals with constant rate one. Fig. (a) shows the
arrivals for fluid traffic in the min-plus algebra, Fig. (b) illustrates the packetized
arrivals of Fig. (a), and Fig. (c) presents the related arrivals in the max-plus
algebra.

stochastic processes, and service curves for systems with random service specified

by invariant functions. The invariant functions come along with a violation prob-

ability ε that specifies the probability that these invariant functions are violated.

We therefore have different labels for the different kinds of service curves and in

each case one for the specific algebra. For deterministic systems the service curve is

denoted by S(t) or TS (n), for random systems described by stochastic processes

by S(τ, t) or TS(ν, n), and for random systems specified by probabilistic bounds by

S ε(t) or Tε
S (n).

We assume fluid traffic in the min-plus algebra. To address packetized traffic in

the min-plus algebra, we use the concept of the packetizer, whereas in the max-plus

algebra, we only consider unit size packets to reduce the notational complexity,

which is sufficient throughout this work. With additional effort, it can be extended

to networks with variable packet sizes, see [29, Chap. 6].

As an example for the min-plus and the max-plus algebra, Fig. 2.1 shows constant

rate arrivals for a rate of one. Fig. 2.1a presents the arrivals in the min-plus algebra.

Since we use fluid traffic, it follows that A(t) = t. Fig. 2.1b shows the packetized

arrivals of A(t) = t for a unit packet size that are A(t) = btc following from the

concept of a packetizer as e.g., defined in [74, Sec. 1.7]. Fig. 2.1c displays the arrivals

in the max-plus algebra, where the first packet has the index n = 0.

One benefit of the network calculus is the simple derivation of performance

bounds i.e., backlog and delay bounds, if the service curve and the arrivals are
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known. Both algebras allow the computation of delay and backlog bounds, whereas

the min-plus algebra is beneficial for the computation of the backlog and the

max-plus algebra for the delay, as shown in the subsequent sections.

In the following, we present details on the service curves. We first introduce

conventions for data flows assumed throughout this work in Sec. 2.1. In Sec. 2.2,

we present the description for deterministic systems that build the foundation

for the random systems. For the basics we refer to [29, 74], in [29] a time-discrete

traffic model is used in the min-plus algebra and mostly a fluid one in [74]. For

the discrete traffic model, the infimum operation can be replaced by a minimum

operation [29]. In this work, we use continuously the infimum in the min-plus

algebra, also if we refer to [29]. Sec. 2.3 introduces two concepts for the description

of random systems. First, we describe the approach from [29, Chap. 5] that extends

the univariate functions to bivariate ones, e.g., S(t) becomes S(τ, t), to account for

variability. Second, in Sec. 2.3.2, we present the framework of the stochastic network

calculus, which provides a probabilistic framework for random systems. Here, we

describe primarily the approach from [25], for a broad overview on the stochastic

network calculus we refer to [15, 29, 30, 43, 61].

2.1 conventions for data flows

Before we present the service curves, we introduce some general conventions valid

throughout this work. We assume that data are processed in order and no reordering

occurs in the network. Furthermore, we define sets for univariate and bivariate

functions in the min-plus algebra and the max-plus algebra, which arise from

the variety of model classes. We assume functions are continuous in the min-plus

algebra, we also refer to it as fluid data flows, and discrete in the max-plus algebra

based on a unit packet size. To establish a connection between the min-plus algebra

and the max-plus algebra, we use the concept of a packetizer [29, 74], which results

in right-continuous functions in the min-plus algebra.

For the univariate functions, we define the sets F , G, and G∗. In the min-plus

algebra, F is the set of univariate non-negative continuous or right-continuous
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wide-sense increasing functions, i.e., for any function f ∈ F and ∀0 ≤ τ ≤ t it holds

that f (t) ≥ 0, f (τ) ≤ f (t), f (0) = 0 and f (t), τ, t ∈ R+
0 = [0, ∞).

In the max-plus algebra, the domain of the functions is discrete because of the

assumption of unit size packets. Therefore, we specify the set of univariate non-

negative discrete wide-sense increasing functions G, i.e., for any function g ∈ G and

∀0 ≤ ν ≤ n it holds that g(ν) ≤ g(n), g(n) ∈ R+
0 , and n, ν ∈N0 = {0, 1, 2, . . .}.

We further define the set G∗ ∈ G with the restriction that g(n) ∈ R+ = (0, ∞)5.

For the bivariate functions, we define the sets F and G. In the min-plus alge-

bra, F is the set of bivariate non-negative continuous or right-continuous wide-

sense increasing functions, i.e., for any function f ∈ F and ∀0 ≤ τ ≤ t it

holds that f (τ, t) ≥ 0, f (τ, t) ≤ f (τ − δ, t), f (τ, t) ≤ f (τ, t + δ), 0 < δ, f (t, t) = 0

and f (t), τ, t ∈ R+
0 .

In the max-plus algebra, G is the set of bivariate non-negative discrete wide-sense

increasing functions, i.e., for any function g ∈ G and ∀0 ≤ ν ≤ n it holds that

g(ν, n) ≤ g(ν− 1, n), g(ν, n) ≤ g(ν, n + 1), g(ν, n) ∈ R+
0 , and ν, n ∈N0.

2.2 deterministic invariant systems

In the following, we describe the basic principles for deterministic time-invariant

and shift-invariant systems. In the min-plus algebra, these systems are described by

functions of time t, such that the output y(t) = Π(u(t)) for any input signal u(t) is

equal to the time-shifted output y(t− δ) = Π(u(t− δ)) for any time-shifted input

u(t− δ), where Π is the mapping function from inputs onto outputs and δ ≥ 0 a

time-shift. In the max-plus algebra, the functions become functions of data instead

of time and invariance refers to shift-invariance i.e., invariant in terms of the packet

index. We refer to Appendix A.1 for details on the related system properties.

We present the service curve definitions in the min-plus algebra as well as the

max-plus algebra, present the derivation of the performance bounds backlog and

delay, show the connections between both algebras, and present transformations

5 Note that we define the restriction g(n) ∈ R+ only to comply with the set F for the inversion from
the max-plus algebra to the min-plus algebra defined in Sec. 2.2.3, where f (0) = 0
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in a rate domain, which features useful properties for building service curves and

deriving performance bounds.

2.2.1 System Models in the Min-Plus Algebra

In the min-plus algebra, the arrival function A(t) ∈ F specifies the cumulative

amount of data arriving at the system in the time interval (0, t] and the departure

function D(t) ∈ F is the cumulative amount of data departing from the system in

the time interval (0, t]. A deterministic time-invariant system has the service curve

S(t) ∈ F if

D(t) ≥ inf
τ∈[0,t]

{A(τ) + S(t− τ)} =: A⊗ S(t) (2.1)

holds for all t ≥ 0, where ⊗ is the convolution operator. If the system is linear, an

exact service curve exists and the inequality becomes an equality

D(t) = inf
τ∈[0,t]

{A(τ) + S(t− τ)}. (2.2)

If no service curve can be stated, which holds with equality, the maximal non-trivial

service curve is typically sought in Eq. (2.1). These service curve definitions are

formulated in [7, 28, 34]. The concept of the service curve was previously introduced

in [33, 102, 103, 116].

A basic example of a service curve is a constant rate link with capacity C, which

has the service curve S(t) = Ct. If the link has the delay T , the service curve

becomes S(t) = [C(t− T )]+, where [x]+ := max(0, x).

Analog to the concatenation of systems in the classical system theory, the con-

catenation of single systems results in the network calculus from the convolution of

the individual service curves Sh(t) of the systems in series. The end-to-end service

curve Snet(t) of a network path with hops h = {1, 2, . . . , H} becomes

Snet(t) = S1(t)⊗ S2(t)⊗ · · · SH(t).

For further examples of systems, we refer to [29, 74].
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The use of the service curve of a system enables the derivation of performance

bounds i.e., backlog and delay bounds [29, 74]. The performance bounds in the

min-plus algebra are as follows.

The backlog B(t) in the system at time t ≥ 0 is the difference between the

cumulative arrivals and the cumulative departures

B(t) = A(t)− D(t). (2.3)

If D(t) is substituted by Eq. (2.1) and if A(t) is bounded from above by a function

E(t) ∈ F , so that A(t)− A(τ) ≤ E(t− τ) for all 0 ≤ τ ≤ t holds, E(t) is an

envelope function for A(t), the maximal backlog Bmax is bounded by

Bmax ≤ sup
τ≥0
{E(τ)− S(τ)}, (2.4)

which corresponds to the maximal vertical deviation between E(t) and S(t).

The delay of data arriving at time t is

W(t) = inf{w ≥ 0 : A(t)− D(t + w) ≤ 0}.

With the envelope E(t) the maximal delay bound becomes

Wmax ≤ inf{w ≥ 0 : sup
τ≥0
{E(τ)− S(τ + w)} ≤ 0}, (2.5)

which is the maximal horizontal deviation between E(t) and S(t).

2.2.2 System Models in the Max-Plus Algebra

In the max-plus algebra, the arrivals are given by TA(n) ∈ G∗, which specifies the

arrival times of packets with index n = {0, 1, 2, · · · }. Accordingly, the departure

timestamps are denoted as TD(n) ∈ G∗. The following description holds for unit
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size packets. A deterministic shift-invariant system offers the service defined by the

service curve TS(n) ∈ G if for all n ≥ 0 the inequality

TD(n) ≤ max
ν∈[0,n]

{TA(ν) + TS (n− ν)} =: TA ⊗ TS (n) (2.6)

holds [29]. For a max-plus linear system an exact service curve exists and Eq. (2.6)

becomes an equality:

TD(n) = max
ν∈[0,n]

{TA(ν) + TS (n− ν)}. (2.7)

Since we assume discrete functions in the max-plus algebra as in [29], the convolu-

tion uses the maximum operation. Equivalent definitions exist for fluid traffic in

the max-plus algebra e.g., in [74, Sec. 3.2.], where the maximum is substituted by

the supremum.

The concatenation of H systems follows from the successive application of the

convolution, i.e., TSnet(n) = TS1 ⊗ TS2 ⊗ . . .⊗ TSH (n) as in the min-plus algebra. For

further examples of systems, we refer to [29].

Below, we present the performance bounds for delay and backlog in the max-plus

algebra as given in [29].

The delay of a packet with index n is

W(n) = TD(n)− TA(n).

If TE(n) is an envelope function for TA(n), so that TA(n)− TA(ν) ≥ TE(n− ν) for

all 0 ≤ ν ≤ n holds, the maximal delay bound is

Wmax ≤ max
ν≥0
{TS (ν)− TE(ν)},

which is the maximal vertical deviation between TS (n) and TE(n).

In [40], the backlog in the system for an arriving packet n is given by

B(n) = min{b ≥ 0 : TA(n) ≥ TD(n− b)},
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with envelope TE(n) the maximal backlog becomes

Bmax ≤ min{b ≥ 0 : max
ν≥0
{TS (ν− b)− TE(ν)} ≤ 0},

which is the maximal horizontal deviation between TS (n) and TE(n).

The comparison of the equations for backlog and delay calculation in both

algebras shows that the derivation of the backlog is simpler in the min-plus algebra

and the derivation of the delay is simpler in the max-plus algebra. In both cases it

follows by subtraction.

2.2.3 Connection between the Min-Plus and the Max-Plus Algebra

The min-plus algebra and the max-plus algebra are two different algebras for the

description of systems. In the min-plus algebra the domain of the functions is

time and the codomain is the amount of data, whereas in the max-plus algebra

it is reversed. In this work, we assume fluid traffic in the min-plus algebra and

discrete traffic in the max-plus algebra. To state connections between fluid traffic

and discrete traffic, we apply the concept of the packetizer PL(x) to fluid traffic.

In [29, 74], the packetizer is defined by PL(x) = supi∈N{L(i)1{L(i)≤x}} with the

cumulative arrivals x to the packetizer, the cumulative packet length function L(i),

where i is ith packet, L(0)=0 by definition, and 1{L(i)≤x} is the indicator function,

i.e., it is one if the expression {L(i) ≤ x} is true, else it equals zero.6 The packetizer

simplifies to PL(x) = bxc for unit size packets [29, 74], where bxc means rounding

down. The continuous functions of fluid traffic become right-continuous by the

application of the packetizer.

pseudo-inversion from max-plus to min-plus: To obtain the func-

tions in the min-plus algebra, we utilize the cumulative service requirement defined

6 Note that in Sec. 2.2.2 the index n of the first packet is n = 0 in the max-plus algebra, which translates
into i = n + 1 for the definition of the packetizer.
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in [29, Lem. 6.2.8], which determines the packets arriving (or departing) at (or from)

the system. For unit size packets, the inversion for the arrivals TA(n) ∈ G∗ is

T−1
A (t) = ∑

n≥0
1{TA(n)≤t}. (2.8)

For unit size packets an equal inversion is T−1
A (t) = sup{n ≥ 0 : TA(n) ≤ t}+ 1

since the cumulative length up to and including packet n is n + 1. Note that

for t < TA(0) no packet has arrived and the sum equals zero. Eq. (2.8) yields a

right-continuous function in the min-plus algebra.

For the inversion of a service curve according to Eq. (2.1)

T−1
S (t) = inf{n ≥ 0 : TS (n) ≥ t}

is established in [29, Lem. 6.3.2]. The result is a left-continuous service curve that is

deviant to the assumption of right-continuous functions assumed in this work.

pseudo-inversion from min-plus to max-plus: To obtain functions

in the max-plus algebra from functions in the min-plus algebra, we use the pseudo-

inverse from [74, Sec. 3.1.4]. The inversion holds for the arrivals A(t) as well as the

departures D(t). Here, we only show the inversion for the arrivals.

The arrivals in the max-plus algebra follow from arrivals in the min-plus algebra

by

A−1(n) = inf{t > 0 : A(t) ≥ n + 1}.

Since the cumulative length for packet index n = {0, 1, 2, . . .} is n + 1, the pseudo-

inverse is defined for the time where A(t) ≥ n + 1.

To our knowledge, no inversion of the service curve from the min-plus algebra to

the max-plus algebra is established so far.
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2.2.4 Transformations in the Network Calculus

In the classical system theory, transforms as the Laplace transform and the Fourier

transform exist for linear time-invariant systems, which transform functions from

the time domain into the frequency domain. For example, the Fourier transform

shows the spectral densities in the frequency domain. These transforms are ad-

vantageous to solve the convolution operation because this operation becomes

a multiplication in the frequency domain, which simplifies the computation for

complex systems. The solution in the time domain is obtained by an inverse trans-

formation from the frequency domain.

Corresponding transforms exist in the network calculus; these are the convex

and concave Fenchel conjugates, for the definitions see [114]. The application of

the Fenchel conjugates in the min-plus algebra and the analogy to the Fourier

transform is extensively analyzed in [44]. The application of the Fenchel conjugates

to communication networks is also shown in [6, 53, 101]. The domain of the Fenchel

conjugates is called the rate domain in [43] since it decomposes a curve to its rate

components. Below, we first state the Fenchel conjugates on the basis of service

curves. Second, we list an abstract of properties of the transforms, which are

beneficial for the following chapters, simplify the concatenation of systems, and are

advantageous for the derivation of bounds on the service curve and of performance

bounds.

transform in the min-plus algebra : The transform is the convex Fenchel

conjugate e.g., for the service curve:

FS (r) = sup
t∈R+

0

{rt− S(t)}.

If S(t) is differentiable the transform is called the Legendre transform. In reference

to the network calculus, the variable r is the rate component of the function S(t).
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transform in the max-plus algebra : The transform is the concave Fenchel

conjugate e.g., for the service curve:

FTS
(s) = inf

n∈N0
{sn− TS (n)} .

Strictly speaking, since TS (n) ∈ G, we apply the discrete concave Fenchel conju-

gate [98]. The variable s corresponds to the reciprocal rate 1/r if applied in the

framework of the network calculus.

properties of the transforms : Below, we list an abstract of properties of

the transforms useful in the framework of the network calculus. For a comprehensive

list see [44].

Convolution in the Rate Domain: Analog to the Fourier and the Laplace trans-

form, the Fenchel conjugates simplify the concatenation of systems since the con-

volution becomes an addition in the rate domain for the min-plus algebra as

well as the max-plus algebra, see [44, 53]. For example, in the min-plus algebra

D(t) = A⊗ S(t) becomes FD(r) = FA(r) + FS (r).

Inverse of Fenchel Conjugates: The convex Fenchel conjugate is its own inverse,

for closed convex functions it holds that F{FS (r)} = S(t). For non-convex functions

the conjugate returns the convex closure of S(t), so that F{FS (r)} ≤ S(t). Equiva-

lently, the concave Fenchel conjugate is its own inverse for closed concave functions,

or for non-concave functions it yields the concave closure with F{FTS
(r)} ≥ TS (n).

Performance Bounds from Fenchel Conjugates: If constant rate arrivals are as-

sumed, i.e., A(t) = rt and TA(n) = n+1
r , the maximal backlog results from

the convex Fenchel conjugate of the min-plus service curve Bmax ≤ FS (r) =

supt∈R+
0
{rt− S(t)} and the delay from the concave Fenchel conjugate of the max-

plus service curve Wmax ≤ −minn∈N0

{ n
r − TS (n)

}
= maxn∈N0{TS (n)− n

r }.
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2.3 random systems

The previous section presents system models defined in the deterministic network

calculus by two algebras, which are closely related. These system models build

the basis for this section that presents system models for random system. Even

if following equations are similar, the difference is in the details. For the min-

plus algebra, we omit the computation of the delay, and for the max-plus algebra,

we omit the computation of the backlog. As presented before, in each case the

computation is beneficial in the respective other algebra.

We introduce two concepts for the description of random systems, for which

we follow the classification of [30], where these two concepts treat service curves

as random processes or as non-random functions. In the former case, bivariate

functions capture time- or shift-variant characteristics of the systems, where the

functions are interpreted as random processes. In the latter case, the random systems

are described by invariant functions specifying the variability as a probabilistic

bound.

2.3.1 System Models as Stochastic Processes

In this section, we present the basics for time- and shift-variant systems in the

network calculus, i.e., the assumption of an invariant mapping operator for the

system description does not apply. We follow the perception of [30] and assume the

following functions represent stochastic processes. Originally, this framework was

introduced as a deterministic extension of the network calculus for time-variant

systems in the min-plus algebra in [29, Chap. 5]. To account for time-variance the

univariate functions of the arrivals, the departures, and the service curves from the

deterministic network calculus, which are presented in Sec. 2.2, are extended to

bivariate functions. These functions depend on the time instances (τ, t) instead of

on the length of the time interval (t− τ). The extensions for shift-variant systems in

the max-plus algebra are presented in [68]. The functions become bivariate functions

depending on the packet indexes (ν, n) instead of the amount of data.
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This system description by bivariate functions is less intensively studied than the

description for deterministic systems presented in Sec. 2.2. Analog to the systems

described in Sec. 2.2 performance bounds exist, but in contrast, the connection

between the min-plus and the max-plus algebra, see Sec. 2.2.3, and the transforms,

see Sec. 2.2.4, are not declared so far. The use of bivariate functions and the lack

of corresponding transforms make the declaration hard. For example, for the

deterministic systems described in Sec. 2.2 the property of invariance, which is

missing for the bivariate functions, is utilized in [29, Lem. 6.2.8] to connect the

descriptions in the max-plus and the min-plus algebra.

2.3.1.1 System Models in the Min-Plus Algebra

For the description, we abbreviate the arrivals A(0, t) and departures D(0, t) by A(t)

and D(t). The functions A(τ, t) = A(t)− A(τ) ∈ F and D(τ, t) = D(t)−D(τ) ∈ F

specify the arrivals and departures, respectively, in the time interval (τ, t]. A system

offers the service defined by the service curve S(τ, t) ∈ F if the inequality

D(t) ≥ inf
τ∈[0,t]

{A(τ) + S(τ, t)} =: A⊗ S(t), (2.9)

is satisfied for all t ≥ 0. For linear systems, an exact service curve exists and the

inequality becomes an equality:

D(t) = inf
τ∈[0,t]

{A(τ) + S(τ, t)}. (2.10)

This extension for discrete time systems is introduced in [29, Chap. 5], where the

infimum becomes a minimum.

The service curve of a network path that consists of H hops follows from

Snet(τ, t) = S1 ⊗ · · · ⊗ SH(τ, t). (2.11)

A fundamental difference to the invariant systems is that for the concatenation of

systems the commutative property does not hold, i.e., S1(t)⊗ S2(t) 6= S2(t)⊗ S1(t).
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Analog to the deterministic systems, performance bounds exists. The backlog at

time t ≥ 0 is

B(t) = A(t)− D(t).

from which the backlog bound

B(t) ≤ sup
τ∈[0,t]

{A(τ, t)− S(τ, t)}

follows with Eq. (2.9). For all t the backlog is bound by [29, Thm.5.5.5]:

Bmax ≤ sup
t≥0

{
sup

τ∈[0,t]
{A(τ, t)− S(τ, t)}

}
.

Compared to the backlog bound for deterministic system given in Eq. (2.4), this

bound has to be evaluated for τ and t and does not simplify due to the usage of

bivariate functions.

2.3.1.2 System Models in the Max-Plus Algebra

The max-plus algebra for deterministic shift-invariant systems is also extended

to shift-variant systems in [68]. The functions TA(ν, n) = TA(n)− TA(ν) ∈ G and

TD(ν, n) = TD(n)− TD(ν) ∈ G specify the arrivals and departures in the max-plus

algebra, respectively, according to the packet indexes [ν, n]. The service curve

TS(ν, n) ∈ G for all n ≥ 0 is defined by the inequality:

TD(n) ≤ max
ν∈[0,n]

{TA(ν) + TS(ν, n)} =: TA ⊗ TS(n). (2.12)

For linear systems, the inequality becomes an equality

TD(n) = max
ν∈[0,n]

{TA(ν) + TS(ν, n)} (2.13)

with an exact service curve.

The delay of packet n is

W(n) = TD(n)− TA(n),
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and inserting Eq. (2.12), the delay W(n) is bounded by

W(n) ≤ max
ν∈[0,n]

{TS(ν, n)− TA(ν, n)}.

For all n, the bound becomes

Wmax ≤ max
n≥0
{max

ν∈[0,n]
{TS(ν, n)− TA(ν, n)}}.

2.3.2 System Models as Probabilistic Bounds

The deterministic system theory in Sec. 2.2 derives worst-case performance bounds

and requires the existence of deterministic envelopes for arrival traffic. In random

systems, non-trivial worst-case bounds potentially do not exist. If the sample space

of the applied probabilistic models is infinite, no finite bounds exist for the models

e.g., for the exponential distribution used in the M|M|1 queueing system [70] and

Internet traffic models as [76, 106]. Furthermore, delay sensitive applications allow

small violations of performance bounds, e.g., see [41]. Since the service curve in

Sec. 2.3.1 assumes random processes, the performance bounds hold for realizations

of these processes and are in this sense worst-case performance bounds for the

specific realizations. The stochastic network calculus overcomes the drawbacks of

the deterministic network calculus and meets the requirements of random systems

and applications by describing service and traffic as probabilistic bounds, i.e., the

variability is described by invariant functions in combination with a violation

probability with respect to these functions, see e.g. [15, 29, 61]. Compared to the

approach for random systems described in Sec. 2.3.1, the probabilistic bounds

comprise a complete description of the random system and not only of a specific

realization. This approach allows the derivation of probabilistic bounds on the

arrivals, the service curve, and the departures and with that also on the performance

bounds delay and backlog. Here, we limit the description to the ε-effective service

curve developed in [25] with related performance bounds in the min-plus algebra

and the equivalent description in the max-plus algebra, which is given in [132]. For
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the Fenchel transform, we show its applicability to systems in the min-plus algebra

in [87]. Since the transform is already stated in Sec. 2.2.4, we omit it in this section.

Till this day, the connection between the max-plus and the min-plus algebra has

not been stated for these system descriptions since the probabilistic extension makes

the connection difficult. We prove a connection in Sec. 5.3.3 that is sufficient for the

application of our system identification approach.

2.3.2.1 System Models in the Min-Plus Algebra

With the arrivals A(t) ∈ F and departures D(t) ∈ F a system has an ε-effective

service curve S ε(t) ∈ F if

P

[
D(t) ≥ inf

τ∈[0,t]
{A(τ) + S ε(t− τ)}

]
≥ 1− ε, (2.14)

applies for all t ≥ 0, where ε is the violation probability [25].

The service curve is defined by a probabilistic bound on the departures. The con-

volution A⊗S ε(t) is equal to or smaller than D(t) with a probability of 1− ε at least.

In addition to the definition of the service curve, [25] also contains performance

bounds for the ε-effective service curve.

With deterministic envelope E(t) ∈ F (see Sec. 2.2.1) for the arrivals A(t) the

backlog is bounded for all t ≥ 0 by

P

[
B(t) > sup

τ≥0
{E(τ)− S ε(τ)}

]
≤ ε.

2.3.2.2 System Models in the Max-Plus Algebra

The equivalent approach to the min-plus ε-effective service curve in the max-plus

algebra is introduced in [132]. The definition of the ε-effective service Tε
S (n) ∈ G in

the max-plus algebra follows from the relation

P

[
TD(n) ≤ max

ν∈[0,n]
{TA(ν) + Tε

S (n− ν)}
]
≥ 1− ε, (2.15)

for all n ≥ 0 with the arrivals TA(n) ∈ G∗ and the departures TD(n) ∈ G∗.

The performance bounds are derived as probabilistic bounds on the service as
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well as on the arrivals in [132]. Here, we present performance bounds accord-

ing to [25] for random service but deterministic arrivals that are bounded by

TA(ν, n) ≥ TE(n− ν), ∀0 ≤ ν ≤ n.

With packet delay W(n) = TD(n)− TA(n) and applying Eq. (2.15) for TD(n), the

delay becomes

P

[
W(n) > max

ν∈[0,n]
{Tε
S (n− ν)− TA(n− ν)}

]
≤ ε.

Using the envelope TE(n− ν), the delay is bounded for all n ≥ 0 by

P

[
W(n) > max

ν≥0
{Tε
S (ν)− TE(ν)}

]
≤ ε.

This chapter introduces service curves for deterministic networks and networks

with random service. The next chapter presents related work to system identification,

in which among others the system model of a deterministic system is determined

by system identification. The service curves presented for networks with random

service are used to establish our system identification methodology in Chap. 5.



3
S TAT E O F T H E A RT I N S Y S T E M I D E N T I F I C AT I O N O F

C O M P U T E R N E T W O R K S

Numerous approaches exist for system identification of computer networks. The

approaches differ e.g., in their probing methodology, i.e., which kind of data traffic

is sent to probe the network, the assumed model class, which may include classes for

deterministic and random systems with assumptions on the scheduling disciplines,

or the used framework, as queueing theory or the network calculus. In the following,

we present the state of the art in end-to-end active measurement approaches

for system identification of computer networks. End-to-end active measurement

approaches send actively probing traffic with specific traffic characteristics into the

network and observe the packets at the ingress and the egress of the network path

to identify the system. On the contrary, passive measurement approaches exist,

which rely on capturing production traffic. Here, we focus on active measurement

approaches. These are essential for system identification of computer networks, see

e.g., [16, 91], because passive approaches are only able to see characteristics that

are imprinted in the captured traffic. Active approaches have a greater flexibility

for the identification by using specific probing traffic.

We add available bandwidth estimation approaches to the field of system identi-

fication because they describe the systems usually by a single value. In terms of

the network calculus, the system model of the available bandwidth is given by the

service curve S(t) = αt, where α is the available bandwidth estimate. We make

this intuitive relation between the available bandwidth and the framework of the

network calculus explicit in Chap. 6.

System identification in the classical system theory distinguishes between gray-

box and black-box models [84]. For gray-box models, the internal system structure

is known, which allows the creation of an analytical model with free parameters.

The identification process is constrained to the estimation of these free param-

31



3.1 available bandwidth estimation 32

eters. From this characterization it follows that available bandwidth estimation

approaches, which characterize the system by one value, use a gray-box model with

one free parameter. For black-box models no internal structure is predetermined.

The complete system model is identified by measurements. It is thereby not limited

to any specific structure of the system.

In system identification known from the classical system theory, systems are

stimulated by, e.g., the Dirac impulse, step functions, and sine waves to measure the

response of the systems and subsequently deduce the system model from it [84]. In

system identification for computer networks, systems are stimulated by data traffic

with different characteristics. In the following, we present the approaches known

from the literature and summarize their probing procedures.

We start with the description of available bandwidth estimation approaches

in Sec. 3.1. First, we present approaches that assume the network is a determin-

istic system. Second, we describe approaches that consider networks featuring

randomness due to random cross traffic. At last, we show available bandwidth

approaches for wireless networks. In the first two cases, the system models base

on simplifications for wired networks, i.e., if the models account for randomness,

it is because of random cross traffic, and the scheduling is often assumed to be

work-conserving and FIFO. These assumptions do not apply to wireless networks

with non-work-conserving, non-FIFO scheduling, and non deterministic channels.

In Sec. 3.2, we present existing system identification approaches that utilize the

framework of the deterministic network calculus from Chap. 2. Few approaches

exist so far that rely on this system theory for computer networks. We introduce

approaches, which use a gray-box model for the characterization of routers and

black-box models for the identification of end-to-end network paths.

3.1 available bandwidth estimation

The available bandwidth describes the portion of the capacity of a network path

that is unused by existing traffic to which we refer as cross traffic. For a single-hop
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network with one link h in a time interval [t, t + δ], the available bandwidth is

defined in [82] by

αh(t, t + δ) =
1
δ

∫ t+δ

t
Ch(x)(1− uh(x))dx, (3.1)

where Ch(t) is the capacity of the link and uh(t) ∈ {0, 1} is its utilization at time t

by cross traffic with rate 1
δ

∫ t+δ
t Ch(x)uh(x)dx. Further, if the cross traffic has a long-

term rate, which is defined as λh := lim supt→∞
A(t)

t , where A(t) are the cumulative

arrivals up to time t, we refer to α∞
h = lim infδ→∞ αh(t, t + δ) = Ch − λh as the

long-term available bandwidth.

The available bandwidth of a network path that consists of multiple links is de-

fined by the minimum of the available bandwidths of the individual links [59, 60, 83]:

αnet(t, t + δ) = min
h∈H
{αh(t, t + δ)} , (3.2)

where H is the set of links of the path. For the estimation of the available bandwidth

a comprehensive number of approaches exists. These approaches assume different

system models to establish the estimation. Below, we introduce these approaches in

respect to the assumed system model and the consequential restrictions.

3.1.1 Single-hop Network with Fluid Constant Rate Traffic and Constant Capacity

In the following model of a deterministic system, the link capacity C and also the

cross traffic rate λ are assumed to be constant over time and the traffic is assumed to

be fluid. The available bandwidth at a single-hop network with link capacity C that

is utilized by λ follows from αh(t) = C−λ. This fluid constant rate network model is

widely used for available bandwidth estimation approaches [38, 54, 59, 94, 111, 122].

Obviously, this model does not apply for most practical networks due to non

deterministic characteristics of traffic, but most tools are aware of the variability

of the available bandwidth. At the end of this section, we present how the tools

approach the contradiction between the deterministic system assumption and the

variability in practical networks.
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For the estimation of the available bandwidth, tools transmit pairs or trains of

probe packets with defined gaps between the packets via a network path and

measure the gap or the rate of the packets at the egress of the path. The use

of constant rate packet pairs or packet trains and the additional assumption of

FIFO scheduling in a single-hop network leads to the gap response curve and the

rate response curve, respectively. These curves specify the relation between the

dispersion of the packets or the rate at the ingress and the egress of a system.

The relation of the input gap gI and the output gap gO of a packet pair is given

in [54, 82] as:

gO =

gI , gI ≥ s
C−λ

s+gI λ
C , gI <

s
C−λ

, (3.3)

where C is the capacity, λ the cross traffic rate and s the packet size. Accordingly,

the rate response curve with arrival rate rI and departure rate rO of a packet train

is in [82, 95] defined by:

rO =

rI , rI ≤ C− λ

C rI
rI+λ , rI > C− λ

. (3.4)

For both response curves applies that the outputs of the network are equal to the

inputs as long as the arrival rate is less or equal to the available bandwidth. If

the probing rate exceeds the available bandwidth, the departure rate rO equals the

portion of the arrival rate rI as part of the total arrival rates rI + λ. This relation

follows from the assumption of FIFO scheduling.

In [60], available bandwidth approaches are classified by direct probing and

iterative probing. For the direct approach, the link capacity must be known or

estimated separately. With the known capacity and one probing rate above the

available bandwidth the segment for which rI exceeds the available bandwidth

follows from the estimation. The estimate of the available bandwidth results from

the intersection with the known segment for which rI is below the available band-

width. Thus, for the direct probing approaches, a single probing rate is sufficient.

The iterative approach makes use of the two segments of the response curves from

Eq. (3.3) and Eq. (3.4) by iteratively adapting the probing rate. If a transition from
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the first segment of the response curve, where the outputs equal the inputs, to the

second segment is detected, the available bandwidth is exceeded. In this way, the

tools estimate the available bandwidth. The system models presented in Eq. (3.3)

and Eq. (3.4) also imply that the one way delays are constant if the probing rate is

below the available bandwidth and increase if it is above due to queueing in the

network.

Available bandwidth estimation tools that use a direct approach are e.g., IGI [54],

and Spruce [122], and tools that use an iterative approach are, e.g., BART [38],

Pathchirp [111], Pathload [58, 59], PTR [54], and TOPP [94]. The tools usually use

constant rate packet probes. One exception is Pathchirp, which uses packet trains, at

which the gap between successive packets decreases due to a geometric progression.

Tools that use an iterative approach and detect the transition between the segments

of the response curve are also called congestion inducing techniques [111] since the

transition is caused by congestion.

The tools Pathload and Pathchirp do not require FIFO scheduling since they

detect the increase of one way delays by iteratively adapting the probing rate as

elaborated in [20]. Therefore, they do not rely on one of the response curves, the

assumption of work-conserving scheduling is sufficient, i.e., the delays increase

only if the arrival rate exceeds the available bandwidth.

In reality, traffic is random, see e.g., [76], and packetized. These effects disturb

the clear shape of the two segments of the response curves. To overcome these

disturbances, available bandwidth estimation tools use post processing of the

measurement results as e.g., averaging over estimates of several packet pairs or

packet trains sent at the same rate [54, 58, 59, 79, 111, 122], linear regression to

reconstruct the shape of the response curve [94], or a Kalman filter to eliminate

the disturbance created by random traffic [38, 119]. Furthermore, the tool Pathload

returns the available bandwidth as a range to account for the variability of it.

The approaches presented in this section rely on deterministic systems and may

be applicable to networks with low variability. Compared to the system description

from Fig. 1.1, these approaches interpret randomness as disturbance. The negative

impact on the estimate of the mismatch between the assumption of a deterministic
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system and practical networks is e.g., presented in [60]. The next section presents

approaches that consider randomness due to cross traffic.

3.1.2 Networks with Random Traffic and Constant Link Capacity

In Sec. 3.1.1, we discuss a system model that assumes a deterministic system

with constant rate fluid traffic. Available bandwidth estimation tools that are

based on this model mitigate effects of randomness by post processing. Below, we

present approaches that consider the randomness of cross traffic but preserve the

assumptions of constant link capacities and FIFO scheduling.

The impact of random and packetized traffic on the rate response curves is ana-

lyzed with a queueing theoretic framework for single-hop and multi-hop networks,

e.g., in [35, 52, 82, 83, 104]. The gap response curve and the rate response curve

from Eqs. (3.3) and (3.4) are a lower bound and an upper bound, respectively,

for the relation between inputs and outputs in a single-hop network with FIFO

scheduling with random traffic as shown in [82]. The authors of [82] also prove that

the estimate approaches these bounds with increasing length of the packet size or

the packet trains. In [83], the work is extended to multi-hop networks, in which the

authors show that the gap response curve is again a lower bound. This bound can

also be approached by increasing the packet size or the length of packet trains.

In [35, 52, 104], the distribution of the output gap is derived under the assumption

of a known queueing model as M|D|1 in [104], M|G|1 in [52], and a known cross

traffic model in [35]. In [52], the empirical distribution of the output dispersion is

fitted to the analytical model to estimate the available bandwidth.

The estimation of the random cross traffic process from delay measurements

of probe packets is defined as an inversion problem in [91]. It is shown that an

inversion, which retrieves the complete process, for a single-hop network with FIFO

scheduling, cross traffic with stationary independent increments, and a renewal

process as probing process is possible. Besides this scenario, limitations of active

probing are presented and estimators are defined and evaluated, also for conditions

where the before mentioned constraints are not met.
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In [124], an approach for available bandwidth estimation based on the definition

α := max{rI : P[rO > rI − rδ] ≥ γ},

is presented, where α is the available bandwidth, rI is the arrival rate, rO is the

departure rate, rδ defines a tolerance for the difference between the arrival and the

departure rate and γ is a bound on the probability. The parameters rδ and γ are

user defined and are based on application requirements. This approach assumes

also FIFO scheduling, but it also applies to other scheduling disciplines.

The available bandwidth estimation approaches presented in this section account

for random cross traffic in the network. Still, most of them rely on assumptions

as specific queueing models and traffic models. One exception is the approach

presented in [124], which is more general in terms of the assumptions but is specific

in the selection of the free parameters. These are specific for the application and are

not embedded in any framework as queueing theory or the network calculus. Thus,

it prevents the derivation of general results as backlog and delay bounds. The next

section presents available bandwidth estimation approaches for networks to which

usually defined assumptions such as links with fixed capacity and FIFO scheduling

do not apply, namely wireless IEEE 802.11 networks.

3.1.3 Wireless Networks with Random Service and non FIFO Scheduling

A broad range of available bandwidth estimation approaches are developed for

wireless IEEE 802.11 networks since these networks are wide-spread and feature

challenging characteristics as a time-varying channel and an approximately fair and

non-work-conserving scheduling discipline. This stands in contrast to wired net-

works, where usually constant link capacities and work-conserving FIFO scheduling

are assumed7. Wireless networks are systems with random service due to random

cross traffic and due to time-varying link capacities of the wireless medium caused

by interference. Furthermore, IEEE 802.11 networks have a complex medium access

7 For wired networks, we refer to Ethernet based (IEEE 802.3) networks with the prevalent scheduling
discipline FIFO at intermediate hops.
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control (MAC) in comparison to wired networks. The medium access is controlled

by the distributed coordination function (DCF), and an automatic repeat request

(ARQ) protocol is used to retransmit packets that are corrupted during transmission.

The MAC leads to non-work-conserving and approximately fair scheduling [21, 67],

which is a fundamental difference to wired networks where schedulers are typically

work-conserving. The non-work-conserving behavior results from the DCF, where a

station has to wait for a random time before it tries to access the channel, and due

to the ARQ protocol, where the next packet can only be sent if an acknowledgement

is received. Recall that, the response curves defined in Eqs. (3.3) and (3.4) hold for

work-conserving FIFO scheduling. In the following, we present available bandwidth

estimation tools designed for wireless IEEE 802.11 networks.

The available bandwidth estimation tool Wbest [78] considers time-varying link

capacities by measuring the capacity using the median of gaps of a sequence

of back-to-back probe packets. Nevertheless, the median is not concluded from

a system model. On the contrary, the minimum over the gaps is used in wired

networks [55], which follows from the assumption of constant rate links. Wbest

assumes FIFO scheduling for measuring traffic in the downstream from an access

point to a wireless station, thus, it relies on the rate response curve from Eq. (3.4).

Adaptations of the rate response curve, which is given Eq. (3.4), for IEEE 802.11

networks are made in [20, 108]. In [20], the rate response curve is specified under

the assumption of fluid constant rate traffic and fair scheduling. The gap response

curve, see Eq. (3.3), is extended for fluid constant rate traffic and fair scheduling

plus a queue with FIFO scheduling to model competing traffic on the same node

and random access delays in [108].

The tools TOPP [94] and BART [38] are extended for wireless IEEE 802.11 net-

works in [65] and [62], respectively, by taking into account the access delays of

the medium access control under the assumption of FIFO scheduling. In [62], the

Kalman filter is adapted for wireless networks. It is also employed in [21] for a

passive available bandwidth estimation approach for IEEE 802.11 networks utilizing

a generalized processor sharing model.

IEEE 802.11 networks have challenging characteristics in the perspective of avail-

able bandwidth estimation. Tools address them by customizing their estimation
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methodology to these characteristics, e.g., by the adaptation of the post processing

of results or by the adaptation of the response curves. The next section contains

system identification approaches that are aimed at accounting for a broad range

of networks by avoiding customized system models, which only apply to specific

networks. The approaches, presented in the next section, include also the time of

the service availability to the system description. This stands in contrast to available

bandwidth estimation tools, which describe the system usually by a single value

and thereby disregard the time scale.

3.2 system identification in the network calculus

The network calculus is a system theory for computer networks. So far, only few

approaches were developed directly in this framework for system identification.

Next, we outline the existing approaches from [6, 22, 53, 80, 125]. In the network

calculus, the system model of the network path is a service curve as introduced

for systems with various characteristics in Chap. 2. The service curve describes the

mapping from the inputs to the outputs of the system.

A system identification approach for router modeling, which relies on a gray-

box model, is presented in [22, 125]. Service curves known from the deterministic

network calculus (see Sec. 2.2) are assumed as system models, in detail the approach

is based on service curves of the guaranteed rate model and the packet scale

rate guarantee model for which service curves exist in the network calculus. The

estimation approach is presented in [125] and relies on passive measurements.

It is extended in [22] for active measurements. Therein, the approach is used to

analyze the performance of various routers as hardware and software routers and

the impact of virtualization on software routers. The use of service curves for router

modeling extends the standard performance metric, i.e, the packet forwarding rate,

with timing information such as jitter and delay in a coherent representation.

System identification approaches using a black-box model in the framework of

the deterministic network calculus are discussed in [6, 53, 80]. Using such black-box

models, makes the identification of a broad range of networks possible without
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relying on specific models. These approaches include fundamental networks as

single-hop networks, network paths with multiple bottleneck links, and various

scheduling disciplines, in which the system is described by a service curve, see [80].

In [6, 53], system identification approaches are sketched based on the Fenchel

transform. The work in [80] presents an extensive analysis of probing approaches

used for available bandwidth estimation, which are on the one hand passive

measurement approaches, and on the other hand the approaches implemented by

the tools Pathchirp [111] and Pathload [58, 59].

For passive measurements, it is shown in [80] that for non-linear networks it is

only possible to achieve a not useful bound on the service curve.

Active measurement approaches have the freedom to control the arrival traffic

and thereby can avoid regimes where the network shows a non-linear behavior. For

example, such regimes occur in overloaded links with FIFO scheduling.

One active measurement approach for available bandwidth estimation, which

is analyzed in [80] using the framework of the network calculus, is based on the

probing methodology of the tool Pathchirp [111]. The tool probes the network path

by packet trains, in which the gap between packets is decreasing according to a

geometric progression. Using the convex Fenchel transform, see Sec. 2.2.4, of the

probe traffic arrivals FA and the departures FD, the estimate of the service S(t) is

S̃(t) = F(FD − FA).

Another active measurement approach analyzed in [80] is based on the tool

Pathload [58, 59], which employs packet trains with constant rate to probe the

network. The final estimate results from repeated packet trains with several prob-

ing rates. It is shown that a service curve S(t) can be estimated with constant

rate arrivals A(t) = rt from the measurement of the related maximal backlog

Bmax(r) = supτ≥0{rτ − D(τ)} in min-plus linear deterministic systems by

S̃(t) = sup
r≥0
{rt− Bmax(r)} = FBmax(t).
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Note that the estimate is also the Fenchel transform of Bmax(r), thus, also the

properties of the Fenchel transforms apply. By controlling the arrival rate and

observing the departures, it can be avoided that arrival rates that push the network

into a non-linear regime are considered by the estimate. Furthermore, experimental

validation in [80] shows that the measuring approach of the tool Pathload is more

reliable than the approach of Pathchirp.

The presented system identification approaches, which utilize the deterministic

network calculus, demonstrate the applicability of the network calculus to system

identification of computer networks. These approaches can account for service avail-

ability on various time scales by using the service curve for the system description.

Especially, black-box models allow a great freedom since only basic assumptions

are made on the underlying system structure. One major restriction made by these

presented approaches is that the assumed system is deterministic. Before, we in-

troduced approaches from available bandwidth estimation in this chapter. These

approaches include, among others, systems with random service but are often

tailored to specific networks and ignore the time scale of the availability. The next

chapter presents in detail the aim of this work to establish a system identification

approach for networks with random service.
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P R O B L E M S TAT E M E N T

In general, systems map inputs to outputs. In the context of computer networks,

inputs are data arrivals and outputs are data departures. In the network calculus,

which is a system theory for computer networks (see Chap. 2), service curves

describe the system model that specifies the mapping from the inputs to the

outputs.

Much research work has been conducted for systems with known properties of the

arrivals and the service and their interconnection. For example, such properties are

statistical models of network traffic, models of channels, or protocol specifications.

Little is known about system identification of networks with random service, i.e.,

characterizing the system model from measurements of the inputs and outputs.

The inclusion of available bandwidth estimation approaches to system identifica-

tion imports a comprehensive set of approaches to system identification. However,

approaches for deterministic networks are prevalent in the field of available band-

width estimation as presented in Sec. 3.1.1. They attempt to account for randomness

by post-processing. Approaches for networks with random service also exist, which

integrate randomness in their system model. Typically, these are customized to

particular networks. Common assumptions are networks with fixed capacity, ran-

dom cross-traffic, and FIFO scheduling (see Sec. 3.1.2). Another set of assumptions

originates from IEEE 802.11 networks that feature random link capacities as well as

random cross traffic with non-work-conserving scheduling and non-deterministic

channel access (see Sec. 3.1.3). One exception is [124], which presents a definition of

the available bandwidth for networks with random service. Since the definition is

not embedded in any analytical framework, it is tailored to a specific parametriza-

tion, which limits the informative value of estimates relying on this definition.

Furthermore, system identification approaches exist in the network calculus. The

network calculus adds the time of availability of the service to the characterization

42
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of the system by service curves. They allow for the coherent description of time and

rate on arbitrary scales. On the contrary to that, available bandwidth approaches

usually describe the system by only a single value. So far, only a subset of the

framework, namely the network calculus for deterministic networks, is exploited

for system identification as discussed in Sec. 3.2. These approaches show that

fundamental information is contained in packet probes, which is usually not

considered by available bandwidth estimation approaches. However, the network

calculus comprises a broader set of networks than deterministic networks. For this

reason, we address the challenge of:

System Identification of Computer Networks with Random Service.

Solving this challenge establishes an inversion from measurements to service

curves that account for randomness by the system model. Furthermore, since the

service curve is embedded in the framework of the network calculus, this enables the

re-utilization of the results in this well-established framework, e.g., for calculating

performance bounds.

The challenge of this work is to define a methodology for system identification

so that it fulfills requirements from service curve definitions for random systems

established in Chap. 2 and to transfer this methodology to practical probing proce-

dures.

Such system identification procedures can provide solutions where analytical

derivations fail or are hard to derive. For example, modeling service curves for

well-established Internet traffic models in wired networks is challenging [81, 113]

but possible. If such characteristics are unknown, an analytical derivation becomes

impossible. Moreover, available bandwidth estimation often aims at wired networks.

In such networks, the links can be assumed to feature a constant rate. This is caused

by the fact that protocols as Ethernet and the Internet Protocol, which add their

header to the payload of upper layers, hardly impact the variability of the traffic.

Already for wireless networks the medium access control protocol has a strong

impact on the variability. Few available bandwidth approaches are adapted to

wireless networks by relying on properties specific to such networks. Offering a
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universal system identification approach, which is not tailored to specific networks

or protocols, establishes the application to a comprehensive range of networks and

complex protocols without detailed knowledge of the systems being required.

In practical networks, further effects occur due to implementations of protocol

stacks, buffer limitations, coarse grained timing of packet schedulers, segmentation

of packets, etc. These effects are usually not captured by analytical approaches. A

universal system identification approach is able to evaluate systems with unknown

parameters, estimate impacts due to practical networks, and comprise all details of

network paths.

Using the system models from the network calculus can also lead to a better

understanding of bandwidth estimation, which we perceive as a subarea of system

identification. Service curves explain bandwidth estimation from a system theoretic

point of view and interpret known effects, which are not well understood to this

day.

In the next sections, we develop an analytical system identification methodol-

ogy, implement it into practical probing procedures, evaluate and validate it by

extensive experiments, and apply the system identification to various systems to

obtain a system model. Furthermore, we establish the connection between system

identification in the framework of the network calculus to available bandwidth

estimation.
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A S Y S T E M I D E N T I F I C AT I O N M E T H O D O L O G Y F O R

C O M P U T E R N E T W O R K S W I T H R A N D O M S E RV I C E

The formulation of a system identification methodology in the network calculus

for linear systems with random service allows the identification for a broad range

of practical networks by the use of a black-box model. This comprises networks

as single-hop and multi-hop networks with random traffic and also networks that

use complex protocols e.g., as the medium access control protocol in IEEE 802.11

networks or TCP. In the following, we derive such a methodology, which is based

on the service curves introduced in Sec. 2.3.1 and Sec. 2.3.2.

In Sec. 5.1, we connect two concepts from the network calculus to describe random

service, namely the bivariate function TS(ν, n), see Sec. 2.3.1, and the ε-effective

service curve Tε
S (n) from the stochastic network calculus, which is introduced in

Sec. 2.3.2. The bivariate functions describe the service as a random process, whereas

the ε-effective service curves give practical probabilistic bounds on the service.

Since the bivariate function represents a random process, we refer to this type of a

service curve as a service process for a clear differentiation between these system

models. With this connection we state our system identification methodology in

Sec. 5.2 that enables the derivation of ε-effective service curves for networks with

random service from measurements of end-to-end delays by using packet trains.

The methodology of [80] serves as an initial starting point, where an inversion

method from backlog to a service curve is elaborated for deterministic networks.

We formulate the system identification methodology in the max-plus algebra

of the stochastic network calculus. The formulation in this algebra has practical

advantages for probing because the methodology is based on packet delays. It

directly utilizes packet timestamps included in probe packets for the calculation

of the delays and can express lost packets as packets with infinite delay. Still, the

min-plus algebra is often used in the network calculus, which is motivated by

45
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the straightforward computation of multiplexing traffic flows. From this it follows

that having the result of the identification methodology available in the min-plus

algebra is also beneficial due to the existing comprehensive framework. Therefore,

we show that the system identification methodology can also be established in the

min-plus algebra in Sec. 5.3. Moreover, we make use of the min-plus algebra in

Chap. 6 to show the connection between the available bandwidth definition and

the service curves from the network calculus. To combine the advantages of both

algebras, we further formulate a pseudo-inversion from the max-plus algebra to the

min-plus algebra. This inversion combines the advantages existing in both algebras:

the system identification methodology relies on the max-plus algebra, and it makes

the results available in the min-plus algebra.

The work in this chapter is based on joint work with Markus Fidler and Jörg

Liebeherr. It is partially available in [88, 89, 90].

5.1 connection between the service curves for random systems

Sec. 2.3.1 and Sec. 2.3.2 present two different approaches for the description of

random systems. The service process described in Sec. 2.3.1 covers the variability

by a bivariate function TS(ν, n). It is defined by the relation between the arrivals

TA(n) and the departures TD(n) in Eq. (2.13) for linear networks by

TD(n) = max
ν∈[0,n]

{TA(ν) + TS(ν, n)} .

Drawing general conclusions from TS(ν, n) is limited since it represents a specific

sample path of the stochastic process. A more practical approach is the ε-effective

service curve Tε
S (n), see Eq. (2.15). It is a shift-invariant probabilistic sample path

and allows for the computation of the departure time, which is at most violated

by a probability of ε, of a packet with index n. Hence, it describes the service of

the system by an univariate function that holds for any interval of length n ≥ 0

with respect to the violation probability. Furthermore, it makes the derivation of

probabilistic performance bounds possible as, e.g., P[delay > x] ≤ ε. In contrast

to that, TS(ν, n) only allows the derivation of worst-case bounds for a specific
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sample path, which is non-practical for general results. The ε-effective service curve

is defined as a probabilistic bound on the relation between the arrivals and the

departures in Eq. (2.15)

P

[
TD(n) ≤ max

ν∈[0,n]
{TA(ν) + Tε

S (n− ν)}
]
≥ 1− ε.

We relate the service process TS(ν, n) to the ε-effective service curve Tε
S (n) in

Lem. 5.1. This relation is used in Thm. 5.1 to derive our system identification

methodology for networks with service process TS(ν, n) described by Tε
S (n).

Lemma 5.1 ([89]) Given a system with bivariate service process TS(ν, n) as in Eq. (2.13).

Any function Tε
S (n) that satisfies

P
[
TS(ν, n) ≤ Tε

S (n− ν) , ∀ν ≤ n
]
≥ 1− ε (5.1)

for n ≥ 0 is an ε-effective service curve of the system in the sense of Eq. (2.15).

Proof ([89]) Consider a sample path Tω
S (ν, n) of TS(ν, n) and fix n ≥ 0. If it holds

that Tω
S (ν, n) ≤ Tε

S (n− ν) for all ν ∈ [0, n], it follows from the monotonicity of the

max-plus convolution for unit size packets that

TD(n) = TA ⊗ Tω
S (n) ≤ TA ⊗ Tε

S (n).

Since, by assumption, the condition Tω
S (ν, n) ≤ Tε

S (n− ν) holds for all 0 ≤ ν ≤ n at

least with probability 1− ε, the claim follows.

Example: We visualize the service process and the ε-effective service curve using a

basic example of an On-Off server conducted with Matlab for ε = 0.25. In general,

the violation probability is set to smaller values, here it is set to 0.25 for the clearness

of the example. In detail, we consider a discrete system, at which the server forwards

a packet with probability of p = 0.1 in each time slot based on an independent

Bernoulli trial. Fig. 5.1 shows four sample paths, the sample path bound Tε
S (n− ν),

a lower bound, and an upper bound. For this example, the sample path bound is

created empirically by generating one million sample paths and choosing Tε
S (n)
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Figure 5.1: Example sample paths of TS(ν, n) (gray lines), ε-effective service curve Tε
S (n),

point wise and sample path bound for an On-Off server with ε = 0.25. Tε
S (n)

is a sample path bound that is violated by one of four of the sample paths as
defined by ε = 0.25. For almost all n the point wise violation probability is also
ε = 0.25, but it is violated by two different sample paths, which is not sufficient
for Eq. (5.1).

so that at most a fraction of 0.25 sample paths violates the bound. Additionally,

the lower bound is derived from quantiles of the negative binomial distribution,

since the number of time slots to forward one packet is geometrically distributed

and the sum of a geometrically distributed random variable follows a negative

binomial distribution. This lower bound is a point wise bound TSp(n) for which

P
[
TS(ν, n) ≤ TSp(n− ν)] ≥ 1− ε applies with ε = 0.25. The upper bound follows

from the application of the union bound, which can be computed for a limited scale.

If a limited scale of packets is considered, the violation probability is divided by

the size of the scale and the computation of the upper bound follows in a similar

manner as for the lower bound. Here, we set the scale to 101 packets.

The figure points out the meaning of Tε
S (n) that only a fraction of 0.25 of the

sample paths violates this bound, which is one of four in this case. The figure also

highlights the difference to the lower bound. For almost each individual point n

the violation probability is also ε for this point wise bound, but it is violated by

two different sample paths. Such a bound is not sufficient to compute performance

bounds and does not conform to Eq. (5.1). The sample path bound specifies the
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probability that a sample path crosses this bound, which is required to compute

performance bounds.

5.2 estimation of ε-effective max-plus service curves

For a linear system with service process TS(ν, n), we prove that an inversion from

delay measurements to an ε-effective service curve exists for constant rate packet

train probes. The delay of a packet n is W(n) = TD(n)− TA(n), with constant rate

packet train probes TA(n) = n+1
r with rate r, we denote the delay as a function

of the packet index and the rate W(r, n) = TD(n)− n+1
r . If W(r, n) has a steady

state distribution for n→ ∞, we denote this distribution as W(r) since it becomes

independent of the packet index. Further, we define the (1−ξ)-quantile of the delay

distribution by:

Wξ(r, n) = inf {x ≥ 0 : P [W(r, n) ≤ x] ≥ 1− ξ} . (5.2)

If a steady state delay distribution for n→ ∞ exists, we denote the quantile of it by

Wξ(r). We prove in Lem. 5.2 when such a steady state delay distribution exists.

For constant rate packet train probes and the definition of quantiles of the delay

distribution, we state the foundation for our estimation methodology in Thm. 5.1.

Theorem 5.1 ([89]) Given a linear system with bivariate service process TS(ν, n) as in

Eq. (2.7). For a finite set R of probing rates r and n ≥ 0

Tε
S (n) = min

r∈R

{n
r
+ Wξ(r)

}
(5.3)

is an ε-effective service curve of the system in the sense of Eq. (2.15) with violation probability

ε = ∑r ξ.

Proof ([89]) From the delay of the packet with index n, W(n) = TD(n)− TA(n),

and Eq. (2.13) it follows that

W(n) = max
ν∈[0,n]

{TA(ν) + TS(ν, n)} − TA(n) = max
ν∈[0,n]

{TS(ν, n)− TA(ν, n)}. (5.4)
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The maximum in Eq. (5.4) implies that W(n) ≥ TS(ν, n)− TA(ν, n) for all ν ∈ [0, n],
permitting us to write

TS(ν, n) ≤ TA(ν, n) + W(n) , ∀ν ≥ 0.

Using constant rate arrivals with rate r, TA(ν, n) = n−ν
r and the delay quantile

Wξ(r, n), we find that

P

[
TS(ν, n) ≤ n− ν

r
+ Wξ(r, n) , ∀ν ≥ 0

]
≥ 1− ξ. (5.5)

If the results are combined for probing rates r ∈ R by using the complement of

Eq. (5.5) and the union bound, it follows that

P

[⋃
r∈R

TS(ν, n) >
n− ν

r
+ Wξ(r, n) , ∀ν ≥ 0

]
≤ ∑

r∈R
ξ.

Since we seek the smallest service curve that complies with Eq. (2.15), we apply the

minimum and use the complement again

P

[
TS(ν, n) ≤ min

r∈R

{n− ν

r
+ Wξ(r, n)

}
, ∀ν ≥ 0

]
≥ 1−∑

r
ξ.

With Lem. 5.1 we obtain that Tε
S (n− ν) defined as

Tε
S (n− ν) = min

r∈R

{n− ν

r
+ Wξ(r, n)

}
(5.6)

for all ν ∈ [0, n] is an ε-effective service curve with violation probability ε = ∑r ξ.

Letting n→ ∞, inserting the steady state delay Wξ(r), and substituting n− ν by n

yields

Tε
S (n) = min

r∈R

{n
r
+ Wξ(r)

}

and completes the proof.
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Thm. 5.1 proves that an ε-effective service curve can be constructed from quantiles

of the delay distributions obtained with constant rate packet train probes at linear

systems.

Next, we show useful properties of Thm. 5.1 by taking advantage of properties of

the Fenchel conjugates, which are introduced in Sec. 2.2.4. Our ε-effective service

curve from Thm. 5.1 owns equivalent features with the transform F(s). We em-

phasize this by substituting r = 1/p, Wξ(r) = −Vξ(s), and P = {1/r1, 1/r2, . . .},

permitting us to rewrite the result of Thm. 5.1 as

Tε
S (n) = min

p∈P
{pn−Vξ(p)},

which is the concave Fenchel conjugate of Vξ(s). Because of the properties of

the Fenchel conjugate, it is known that Tε
S (n) of Eq. (5.3) is a concave function.

Moreover, if Vξ(s) is concave, it holds that

Vξ(s) = min
n≥0
{sn− Tε

S (n)}.

This establishes Wξ(r) as a dual characterization for systems, which is equivalent

to the characterization by Tε
S (n). Using our probing methodology is in accordance

with applying the Fenchel transform twice: F{FTε
S
(r)}. Thus, if the system features a

concave service curve, the Fenchel transform is its own inverse Tε
S (n) = F{FTε

S
(r)}.

If the system has a non-concave service curve, we still obtain an useful bound since

the Fenchel conjugate returns the concave hull, so that Eq. (5.3) conforms to the

definition of the ε-effective service curve from Eq. (2.15).

To obtain an ε-effective service curve Tε
S (n) by using Thm. 5.1, the network path

is probed by constant rate packet trains with a length of N packets that are sent by

rate r. The delay distribution of W(r, n) from which the delay quantile is extracted,

follows empirically from iterating packet trains I times with the same length and

rate. This procedure is repeated for the set of probing rates R. We summarize the

required parameters by the triple 〈R, N, I〉. In theory, the number of probing rates,

the train length, and the number of iterations must tend to infinite to achieve a fine

granular service curve with exact delay quantiles. In practice, these properties have
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to be constrained to finite values. We discuss the selection procedure in detail in

Chap. 7.

Next, we give some general aspects of the parameters. Each probing rate r ∈ R

contributes a linear segment to the service curve with slope 1/r and y-axis intercept

Wξ(r). The minimum of these segments gives the tightest bound in relation to

the probing rates. The proof also shows that a tradeoff exists between the number

of probing rates and the violation probability ε. More probing rates increase the

resolution, but make the violation probability increase because of the union bound.

The related delay quantile Wξ(r) follows from the empirical distribution by the

use of a finite number of iterations and a limited train length, which observes the

steady state distribution. We denote the estimate of the delay quantile by W̃ξ(r)

and refer to the service curve that results from a measurement with finite probing

parameters as the ε-effective service curve estimate

T̃ε
S (n) = min

r∈R

{n
r
+ W̃ξ(r)

}
. (5.7)

Since the ε-effective service curve from Thm. 5.1 is based on the existence of a

steady state delay distribution, we prove in Lem. 5.2 when a steady state delay

distribution exists.

Lemma 5.2 ([89]) Given arrivals TA(n) at a linear system with service process TS(ν, n),

satisfying Eq. (2.13), and assuming joint stationarity8 of TA(ν, n) and TS(ν, n)

1. The delay is stochastically increasing in n.

2. If for all n it holds that

lim inf
m→∞

TA(n−m, n)
m + 1

> lim sup
m→∞

TS(n−m, n)
m + 1

almost surely, the delay converges in distribution to a finite random variable W.

Note that we extend the processes TA(ν, n) and TS(ν, n) from 0 ≤ ν ≤ n < ∞ to

−∞ < ν ≤ n < ∞. The proof closely follows [29, Lem. 9.1.4] as it is a generalization

8 By stationarity we mean that P[TA(ν, n) ≤ x] = P[TA(ν + m, n + m) ≤ x] and by joint stationarity
P[TA(ν, n) ≤ x, TS(ν, n) ≤ y] = P[TA(ν + m, n + m) ≤ x, TS(ν + m, n + m) ≤ y] for all ν ≤ n and all
m. If TA(ν, n) and TS(ν, n) are independent and stationary, also joint stationarity applies.
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for shift-variant service. In [29, Lem. 9.1.4] the min-plus algebra is used for similar

results on the backlog distribution at a constant rate server.

Proof ([89]) From Eq. (5.4) it follows for any x that

P[W(n + 1) ≥ x]

= P

[
max

ν∈[0,n+1]
{TS(ν, n + 1)− TA(ν, n + 1)} ≥ x

]
≥ P

[
max

ν∈[1,n+1]
{TS(ν, n + 1)− TA(ν, n + 1)} ≥ x

]
= P

[
max

ν∈[0,n]
{TS(ν + 1, n + 1)− TA(ν + 1, n + 1)} ≥ x

]
.

From the assumption of joint stationarity, it follows that the joint distribution of

TA(ν + 1, n + 1) and TS(ν + 1, n + 1) is equal in distribution to the joint distribution

of TA(ν, n) and TS(ν, n) for all ν and n. The last line thereby equals P[W(n) ≥ x].

Hence, P[W(n + 1) ≥ x] ≥ P[W(n) ≥ x], which proves that the delay W(n) is

stochastically increasing.

From the second assumption of Lem. 5.2, it follows that for any n there exists a

finite random variable

N = max{m ≥ 0 : TA(n−m, n) ≤ TS(n−m, n)}.

Thus, TS(n−m, n) < TA(n−m, n) holds for all m > N . Moreover, since TS(n−m, n)

increases with m ≥ 0, we have TS(n−m, n) ≤ TS(n−N , n) for all 0 ≤ m ≤ N . Con-

necting the two statements and using that TA(n−m, n) for m ≥ 0 and TS(n−N , n)

are non-negative yields

TS(n−m, n)− TA(n−m, n) ≤ TS(n−N , n)

for all m ≥ 0 and hence

max
m≥0
{TS(n−m, n)− TA(n−m, n)} ≤ TS(n−N , n).
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For packet indices −∞ < n−m ≤ n < ∞ the distribution of the delay

W(n) = max
m≥0
{TS(n−m, n)− TA(n−m, n)}

is bounded by

sup
n
{P[W(n) ≥ x]} ≤ sup

n
{P[TS(n−N , n) ≥ x]}.

Since N is finite and W(n) is stochastically increasing in n, there exists a finite

random variable W such that

lim
n→∞

P[W(n) ≥ x] = sup
n
{P[W(n) ≥ x]} = P[W ≥ x],

which completes the proof of the second statement.

Our ε-effective service curve holds for an unlimited scale of n → ∞ packets if a

steady state delay distribution exists. The previous lemma proves the existence of

the steady state delay distribution as long as the probing rate does not exceed the

long-term rate of the service process lim supn→∞
TS(ν,n)
n−ν+1 .

However, already packet trains that do not observe steady state delays deliver

service curves that apply to a limited scale of their train length. For systems with

stationary service, i.e., P [TS(ν, n) ≤ x] = P [TS(ν + m, n + m) ≤ x] an invariant

delay distribution exists for a train length n:

P [W(r, n) ≤ x]

= P

[
max

ν∈[0,n]

{
TS(ν, n)− n− ν

r

}
≤ x

]
= P

[
max

ν∈[0,n]

{
TS(ν + m, n + m)− n− ν

r

}
≤ x

]
.

(5.8)

From Lem. 5.2 it follows that the delay is stochastically increasing, therefore the

delay quantile of Eq. (5.6) is replaced by Wξ(r, N − 1). The resulting service curve

applies for the scale [0, N − 1]. Such limited scales were introduced in the min-plus

algebra in [25] as time scale bounds.
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Figure 5.2: The ε-effective service curve estimate compared to analytical upper and lower
bounds and the long-term available bandwidth. The ε-effective service curve is
composed of the linear segments (presented as dash-dotted lines). The slope of
each segment follows from the reciprocal probing rate 1/r and the y-axis inter-
cept from the delay quantile W̃ξ(r, n). The estimate is between the upper and
lower bounds and its slope converges in the long-term to the long-term available
bandwidth. In the short-term, the ε-effective service curve captures effects on
short scales which are not contained in the long-term available bandwidth.

Example: We illustrate the system identification methodology given in Thm. 5.1

using the random On-Off server from Sec. 5.1. As given in the example in Sec. 5.1,

the server forwards a packet in a time slot with probability of p = 0.1 and pauses

with a probability of 1− p = 0.9, which implies a non-work-conserving system. To

estimate the ε-effective service curve, we use packet trains of length 101 packets

and set ε = 10−3.

Fig. 5.2 shows the ε-effective service curve estimate for the scale of 21 packets.

The estimate given in Thm. 5.1 is composed of the minimum of the linear segments,

one segment per probing rate. These segments are added to the Fig. 5.2 as dash-

dotted lines to visualize the construction of the service curve. The slope of each

segment is the reciprocal probing rate 1/r and the axis intercept is given by the

estimated delay quantile W̃ξ(r, N − 1). The resolution depends on the number of

probing rates. Increasing the number of probing rates improves the resolution, but

it increases at the same time the violation probability. The computation of the lower

and upper bound is explained in the example of Sec. 5.1. This example shows

the difference between the service curve and the long-term available bandwidth.
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An ε-effective service curve includes information on different scales related to a

violation probability, whereas the long-term available bandwidth is an average

and so ignores the availability of the service on different scales. For example, to

forward one packet with a probability of 1−ε, it is expected to need about 75 time

slots. In the long-term, the rate of the service curve estimate, which is indicated by

the slope of the curve, approaches the long-term rate of 10 time slots per packet.

The analytical upper and lower bounds confirm the estimate since it is in between.

Furthermore, this example demonstrates the applicability to non-work-conserving

systems due to the characteristic of the considered system.

5.3 system identification in the min-plus algebra

The min-plus algebra is prevalent in the framework of the network calculus. This is

predicated by the simple derivation of results for multiplexing traffic since it follows

by addition. Therefore, a representation of the system identification methodology

in the min-plus algebra of the estimate is desirable.

In the following, we first show the derivation of the system identification method-

ology in the min-plus algebra using a fluid traffic model. The derivation resembles

the derivation in the max-plus algebra presented before in Sec. 5.1 and Sec. 5.2, but

estimates are based on backlog measurements instead of delay measurements. Due

to the repetitive structure of the derivation, we omit the repetitive proofs in this

section and present them in the appendix. For the detailed derivations, we refer to

Sec. 5.2. In these sections, we first rely on a fluid traffic model. Later in Sec. 5.3.2,

we prove that the methodology is applicable for networks with packetized traffic,

too.

To combine the advantageous properties of the system identification procedures

in the two algebras, we show a pseudo-inversion from the max-plus to the min-

plus algebra in Sec. 5.3.3. The inversion transforms the ε-effective service curve

Tε
S (n) that is defined in Thm. 5.1 in the max-plus algebra to the corresponding

service curve S ε(t) defined in Thm. 5.2 in the min-plus algebra. To the best of our

knowledge, no inversion for the ε-effective service curves from the max-plus to
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the min-plus algebra exists, for details see Chap. 2. Offering such an inversion for

the service curve combines the practicability of the methodology in the max-plus

algebra and the broader applicability in the min-plus algebra.

5.3.1 Systems with Fluid Traffic

The service curves in the min-plus algebra are based on a fluid traffic model. To

state the identification methodology, we connect the service process S(τ, t) and

the ε-effective service curve S ε(t). From Eq. (2.10) in Sec. 2.3.1.1, the time-varying

service is specified by the bivariate function of the service process S(τ, t). For linear

networks it is defined by

D(t) = inf
τ∈[0,t]

{A(τ) + S(τ, t)} = A⊗ S(t).

Supplementary, the random service is also expressed by an ε-effective service curve,

which specifies the service by an invariant probabilistic bound given in Eq. (2.14) in

Sec. 2.3.2.1. A service curve S ε(t) is an ε-effective service curve if

P

[
D(t) ≥ inf

τ∈[0,t]
{A(τ) + S ε(t− τ)}

]
≥ 1− ε

holds, where ε is the violation probability.

Lem. 5.3 relates the ε-effective service curve to the service process by specifying

the ε-effective service curve S ε(t) as a probabilistic time-invariant bound on the

service process S(τ, t).

Lemma 5.3 ([90]) Given a linear system with service process S(τ, t) as in Eq. (2.10). Any

function S ε(t) that satisfies the sample path bound

P
[
S(τ, t) ≥ S ε(t− τ) , ∀τ ≥ 0

]
≥ 1− ε

for t ≥ 0 is an ε-effective service curve of the system in the sense of Eq. (2.14).

The proof is omitted here and is presented in the Appendix A.2.
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The system identification in the min-plus algebra relies on backlog measurements

obtained with constant rate probe traffic. The backlog, which is measured with

constant rate r and resulting arrivals A(t) = rt at time t, follows from the difference

of the arrivals and the departures B(r, t) = rt− D(t). With random service, B(r, t)

becomes a random variable. The steady state of B(r, t) for t→ ∞, where the backlog

distribution becomes independent of time, is denoted as B(r). For the derivation of

the ε-effective service curve, we require quantiles of the backlog distribution, which

we define by

Bξ(r, t) = inf {x ≥ 0 : P [B(r, t) ≤ x] ≥ 1− ξ} , (5.9)

where we use ξ to denote the violation probability of the quantile. With constant

rate probes and the definition of the quantile, the system identification methodology

is presented in Thm. 5.2 and is proven in the Appendix A.2.

Theorem 5.2 ([90]) Given a linear system with service process S(τ, t) as in Eq. (2.10).

Select a finite set R of rates r ≥ 0. For all t ≥ 0, the function

S ε(t) = max
r∈R
{rt− Bξ(r)}

is an ε-effective service curve of the system in the sense of Eq. (2.14) with violation probability

ε = ∑r∈R ξ.

Thm. 5.2 develops a methodology to obtain an ε-effective service curve from quan-

tiles of the backlog distribution Bξ(r). The quantiles are extracted from empirical

backlog distributions measured with constant rate packet trains. A measurement

setup for an estimate is defined by the triple 〈R, N, I〉, i.e., for a set of rates R, packet

trains with length N, each iterated I times. Each iteration for rate r ∈ R provides a

sample for the empirical backlog distribution. We denote the resulting estimate of

the ε-effective service curve by S̃ ε(t). For detailed properties and practical implica-

tions of Thm. 5.2, we refer to Thm. 5.1 since the properties and implications apply

in a similar way.
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Thm. 5.2 requires steady state backlog distributions. Lem. 5.4 states that these

exist, if the probing rate r is below the long-term rate of the service process defined

as lim inft→∞
S(τ,t)
(t−τ)

.

Lemma 5.4 ([90]) Given arrivals A(τ, t) at a linear system with service process S(τ, t),

satisfying Eq. (2.10), and assuming joint stationarity of A(τ, t) and S(τ, t).

1. The backlog B(t) is stochastically increasing in t.

2. If for all t it holds that

lim sup
δ→∞

A(t− δ, t)
δ

< lim inf
δ→∞

S(t− δ, t)
δ

almost surely, the backlog converges in distribution to a finite random variable B.

Note that we extend the processes A(τ, t) and S(τ, t) from 0 ≤ τ ≤ t < ∞ to

−∞ < τ ≤ t < ∞. The lemma generalizes Lem. 9.1.4 presented in [29] from

a constant rate server to a server with random service. The proof is stated in

Appendix A.2.

Thm. 5.2 relies on fluid traffic, which deviates from the estimation procedure with

packetized traffic stated in the max-plus algebra. In Sec. 5.3.2, we prove that the

estimation methodology also holds for packetized traffic in the min-plus algebra.

5.3.2 Systems with Packetized Traffic

Traffic in computer networks is packetized and not fluid, we show here that Thm. 5.2

also applies to packetized traffic. In Section 5.3.1, we assume fluid traffic for our

system identification methodology to reduce the complexity of the derivation.

Fluid traffic is transformed to packetized traffic by the application of a packetizer,

see Sec. 2.2.3. For unit sized packets, as assumed here, packetized traffic results

from rounding down the continuous functions, e.g., arrivals are packetized if

A(t) = bA(t)c applies.
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Next, we prove that the packetized ε-effective service curve bS ε(t)c is an ε-

effective service curve of a system with packetized arrivals and departures. There-

after, we derive the system identification methodology, given in Thm. 5.2, for

packetized traffic.

Lemma 5.5 Given a system with ε-effective service curve as in Eq. (2.14) and packetized

arrivals A(t) = bA(t)c. It holds that

P
[
bD(t)c ≥ bA(t)c ⊗ bS ε(t)c

]
> 1− ε.

Proof From Eq. (2.14) we obtain that

P
[
D(t) ≥ A⊗ S ε(t)

]
≤ P

[
bD(t)c ≥ bA⊗ S ε(t)c

]
, (5.10)

since, generally, if D(t) ≥ A⊗ S ε(t), it holds that bD(t)c ≥ bA⊗ S ε(t)c. Since the

arrivals are assumed to be packetized, we can substitute A(t) = bA(t)c so that

bA⊗ S εc = bbAc ⊗ S εc = bAc ⊗ bS εc. (5.11)

By inserting Eq. (5.11) into Eq. (5.10), it follows that bS ε(t)c is an ε-effective service

curve for the packetized departures bD(t)c.

With Lem. 5.5 we restate Thm. 5.2 for packetized systems in Thm. 5.3. The proof

is deferred to Appendix A.2 .

Theorem 5.3 Given a packetized linear system with service process S(τ, t) as in Eq. (2.10).

Select a finite set R of probing rates r ≥ 0. For all t ≥ 0, the function

S ε(t) = max
r∈R
{brtc − Bξ(r)}

is an ε-effective service curve of the system in the sense of Eq. (2.14) with violation probability

ε = ∑r∈R ξ.

We illustrate the application of Thm. 5.3 by repeating the example of the On-Off

server from Sec. 5.2.
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Figure 5.3: The ε-effective service curve estimate, derived in the min-plus algebra, compared
to the analytical upper and lower bounds for packetized traffic and the long-term
available bandwidth for fluid traffic. The ε-effective service curve is composed
of linear segments (presented as dash-dotted lines). The slope of each segment
follows from the probing rate r and the y-axis intercept from the negative backlog
quantile −B̃ξ(r, n). The estimate is between the upper and lower bounds and
its slope converges to the long-term available bandwidth. In the short-term,
the ε-effective service curve captures effects on short scales. Obviously, delay
information is contained, indicated by the right-shift of the curve, which is
neglected by the long-term available bandwidth.

Example: We simulate an On-Off server with Matlab, which forwards packets

in each time slot with a probability of p = 0.1. Therefore, the system is a discrete

random non-work-conserving system. The train duration of the packet train probes

is 1000 time slots9 and the violation probability ε = 10−3.

Fig. 5.3 presents the ε-effective service curve S̃ ε(t) together with the linear

segments contributed by each probing rate r ∈ R, indicated by dash-dotted lines.

The linear segments are linear equations with slope r and y-axis intercept −Bξ(r).

Furthermore, the figure shows upper and lower bounds and the long-term available

bandwidth. The upper bound follows from the number of packets forwarded in a

given number of time slots with probability 1− ε at least, which corresponds to a

binomial distribution. The lower bound results also from the binomial distribution

with the application of the union bound with respect to the number of time slots.

The long-term available bandwidth follows directly from the probability p = 0.1,

which results in a rate of 0.1 packets per time slot.

9 This duration transfers to a scale of 100 packets using the mean rate of 0.1, this is about the scale
used in previous example in the max-plus algebra.
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Fig. 5.3 demonstrates the difference between the service curve estimate and the

long-term available bandwidth of α∞ = 0.1 packets per time slot. The long-term

available bandwidth neglects that on short time scales less service is available with

respect to the violation probability ε and so it overestimates the available service.

In contrast, the service curve accounts for initial delays and service availability on

various time scales as reflected by the shift to the right of the origin of the curve

and the increasing slope of the curve. The slope of the service curve converges to

the slope of the long-term available bandwidth in the long-term. In addition, the

upper and lower bounds validate the estimate since it is in between the bounds.

The figure also illustrates the differences and similarities to the example in the

max-plus algebra, if compared to Fig. 5.2. The service curve plots amount of data

(in packets) against time, whereas the representation in the max-plus algebra is

reversed. Furthermore, in the max-plus algebra we plot the packet index instead of

the amount of data. The lower bound and the upper bound from Fig. 5.3 refer to the

upper bound and the lower bound in Fig. 5.2, respectively. By comparison of the

curves in the min-plus and max-plus algebra, the better intuition of the min-plus

algebra is also explainable since a higher value implies a higher throughput. In the

max-plus algebra it is counterintuitive. A lower value indicates a higher throughput

since the time to process data is reduced.

5.3.3 Connection between the System Identification in the Max-plus Algebra and in the

Min-plus Algebra

We use the max-plus algebra to derive our system identification methodology in

Sec. 5.2 and the min-plus algebra in Sec. 5.3.1 and in Sec. 5.3.2. The first approach

in the max-plus algebra is advantageous for practical measurements since it directly

exploits timestamps contained in probe packets for delay calculations, and it can

represent lost packets by an infinite delay. For the second approach in the min-

plus algebra, a comprehensive framework is available to build on. In Sec. 5.3.1,

we deduce the system identification methodology from a fluid traffic model. This

assumption is relaxed in Sec. 5.3.2, where we show that the min-plus approach
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also holds for packetized traffic. Next, we deduce a pseudo-inverse of an ε-effective

service curve in the max-plus algebra to an ε-effective service curve in the min-plus.

In this way, we enable the estimation in the max-plus algebra and continue the

processing in the min-plus algebra.

We define the pseudo-inverse of the ε-effective service curve Tε
S (n) by applying

the pseudo inverse used for the inversion of the arrivals and the departures in

Eq. (2.8)

(Tε
S )
−1(t) = ∑

n≥0
1{Tε

S (n)≤t}. (5.12)

The connection between the system identification in the max-plus algebra to the

min-plus algebra is stated in the following theorem by the use of the pseudo-inverse

given in Eq. (5.12).

Theorem 5.4 ([90]) In a discrete system, given ε-effective service curves S ε(t) from

Thm. 5.3 and Tε
S (n) from Thm. 5.1, and assuming that the system forwards traffic in

order of its arrival, the following holds:

(Tε
S )
−1(t)− 1 ≤ S ε(t) ≤ (Tε

S )
−1(t).

Thm. 5.4 states that the inverse of the service curve obtained by the identification

in the max-plus algebra deviates at most by one packet to the one in the min-

plus algebra. For the proof of the theorem, we first require a relation between the

backlog and the delay, which provides the basis for the estimates from Thm. 5.3

and Thm. 5.1. This relation is stated in the next lemma.

Lemma 5.6 ([90]) Given a system with strictly increasing arrival and departure time-

stamps TA(n) and TD(n), respectively. Assume the system serves arrivals in order. The

backlog observed at the departure time TD(n) of packet n equals

B(TD(n)) = A(TD(n)−W(n), TD(n))

= A(TA(n), TA(n) + W(n)),

where A(τ, t) are the cumulative arrivals in (τ, t] and W(n) is the delay of packet n.
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Proof ([90]) From the definition of backlog we have

B(TD(n)) = A(TD(n))− D(TD(n)).

Since the arrivals are served in order and TA(n) and TD(n) are strictly increasing it

holds that D(TD(n)) = A(TA(n)) and it follows by substitution that

B(TD(n)) = A(TA(n), TD(n)).

Using the definition of the delay W(n) = TD(n)− TA(n) completes the proof.

Note additionally to the conventions from Sec. 2.1, we require that the arrival

function TA(n) and departure function TD(n) are strictly increasing, i.e., only one

packet arrives to or departs from the network at the same time. In [88], we show that

Little’s law can be proven in the framework of the network calculus with Lem. 5.6.

Here, we use the relation between the backlog B(t) at the time of packet departure

t = TD(n) to prove Thm. 5.4.

Proof (of Thm. 5.4 [90]) Consider the argument of the indicator function Tε
S (n) ≤ t

in the definition of the pseudo-inverse from Eq. (5.12). By insertion of Tε
S (n) from

Thm. 5.1, we have minr∈R{n/r + Wξ(r)} ≤ t and it follows that

min
r∈R

{n
r
+ Wξ(r)− t

}
≤ 0

⇔min
r∈R
{n + rWξ(r)− rt} ≤ 0

⇔max
r∈R
{rt− rWξ(r)} ≥ n.

Instantiating Lem. 5.6 with A(t) = brtc yields the backlog B(TD(n)) = brW(r, n)c.

Letting n→ ∞ and taking quantiles, we obtain Bξ(r) = brWξ(r)c = rWξ(r)− ϑ(r),

where ϑ(r) ∈ [0, 1). It follows that the condition Tε
S (n) ≤ t is equivalent to

n ≤ max
r∈R
{rt− Bξ(r)− ϑ(r)}.

With Thm. 5.3 and since n = 0, 1, 2, . . . is an integer, the claim follows.
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Thm. 5.4 allows us to transfer service curves obtained by the system identification

methodology in max-plus algebra to the min-plus algebra. This inversion connects

the advantages of both algebras: the identification in the max-plus algebra operates

directly on timestamps included in probe packets, whereas the min-plus algebra

features a comprehensive framework in the network calculus. The identification

requires the selection of parameters for practical probing procedures, which are

the set of probing rates R, the train length N, and the number of iterations I

per train. Chap. 7 elaborates the transformation from the system identification

methodology to practical probing procedures. In this chapter, we also deduce the

system identification procedures directly in min-plus algebra for a fluid as well as a

packetized system. In the next chapter, we make use of the system model defined

in the min-plus algebra to state connections between the definitions of the available

bandwidth and service curve concepts known in the network calculus.
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C O N N E C T I O N B E T W E E N S Y S T E M M O D E L S I N T H E

N E T W O R K C A L C U L U S A N D T H E AVA I L A B L E B A N D W I D T H

The available bandwidth and the service curves from the network calculus are

both used to characterize the service of a network path available to a flow. We

explicitly state the connection between these approaches and show that the available

bandwidth can be expressed in the network calculus by the leftover service process

introduced for deterministic systems in [29, Sec. 2.3.3] and for time-varying systems

in [42].

We deduce the connection for single-hop networks as well as for multi-hop

networks. In detail, the relation between the definition of the available bandwidth,

given in Eq. (3.1), and the leftover service process for single-hop networks is derived

in Sec. 6.1. This supports the reflection of the available bandwidth in the network

calculus. For example, we show that using the expected value of the available

bandwidth, as often implemented by available bandwidth estimation tools, leads to

a systematic overestimation of the expected departures.

In Sec. 6.2, we present the relation for multi-hop networks and illustrate that the

definition of the available bandwidth for multi-hop networks, see Eq. (3.2), only

coincides with the service process in the long-term. By using the framework of the

network calculus, we explain effects observed in available bandwidth estimation

for multiple bottleneck links, e.g., as pointed out in [60]. We show that service

curves are able to capture effects present in the short-term behavior of systems with

random service, whereas available bandwidth estimation neglects such effects.

The presented results are based on the joint work with Markus Fidler and Jörg

Liebeherr and are partially available in [90].

66
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6.1 single-hop networks

In this section, we deduce the connection between service curves and the available

bandwidth for single-hop networks. In detail, we establish the relation between the

leftover service process, which is established for time-varying systems in [42], to

Eq. (3.1). The leftover service process specifies the unused capacity of a system by a

service curve. Also the definition of the available bandwidth indicates the fraction

of unused capacity. In Eq. (3.1), the unused capacity completely contributes to the

available bandwidth, which implies a work-conserving system. The relation relies

on multiplexing of cross traffic arrivals Ac(t) and through traffic arrivals At(t).

The cross traffic describes the existing traffic, whereas the available bandwidth

refers to the bandwidth available to the through flow. Since the relation is based on

multiplexing traffic, we assume a linear system with fluid traffic in the min-plus

algebra from Sec. 2.3.1.1, where multiplexing follows by addition. The assumption

of linearity implies that the through flow uses at most the available bandwidth and

does not displace the cross traffic. The corresponding departures of the arrivals are

Dc(t) and Dt(t). The following lemma presents the relation.

Lemma 6.1 ([90]) For a work-conserving linear fluid system with constant rate service

process S(τ, t) = C(t− τ) and time-varying utilization u(t), where u(t) ∈ {0, 1}, it holds

that

α(τ, t) =

∫ t
τ C(1− u(x))dx

t− τ
=

Sl(τ, t)
t− τ

, (6.1)

where α(τ, t) is the available bandwidth, given in Eq. (3.1), and Sl(τ, t) is the leftover

service process, which we define as Sl(τ, t) = S(τ, t)− Dc(τ, t), where Dc(τ, t) are the

departures of the cross-traffic.

Proof ([90]) For τ determining the infimum of Eq. (2.10) (i.e. the beginning of the

last busy period before t) and using the assumption of a work-conserving system,

it holds that D(t) = A(τ) + S(τ, t) and D(τ) = D(t)− S(τ, t). From this it follows
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that A(τ) = D(τ) = Dc(τ) + Dt(τ) = Ac(τ) + At(τ) and Dt(τ) = At(τ). Writing

the departures as D(t) = Dc(t) + Dt(t) yields

Dt(t) = At(τ) + S(τ, t)− Dc(τ, t)︸ ︷︷ ︸
=:Sl(τ,t)

,

whereof the leftover service process Sl(τ, t) follows.

For τ not determining the infimum of Eq. (2.10), there exists one τ ∈ [0, t] at

least for which Dt(t) ≥ At(τ) + Sl(τ, t) holds. Additionally, for all τ ∈ [0, t] by

causality Dt(τ) ≤ At(τ), which yields Dt(t) ≤ At(τ) + Sl(τ, t). Combining the

results, Dt(t) = At ⊗ Sl(τ, t) holds.

Given the service process S(τ, t) = C(t− τ), cross-traffic departures following

from the utilization Dc(τ, t) = C
∫ t

τ u(x)dx in (τ, t], and expressing the service

process as a rate by Sl(τ,t)
t−τ completes the proof with

α(τ, t) =

∫ t
τ C(1− u(x))dx

t− τ
=

S(τ, t)− Dc(τ, t)
t− τ

.

Although we prove the equality between the available bandwidth and the leftover

service in Lem. 6.1, a difference consists in how the result of the available bandwidth

estimate is usually expressed. Often available bandwidth estimation tools express

the estimate by a single value. Using only a single value discards information on

the time scale belonging to the estimate. The assumption of a constant available

bandwidth neglects effects, which occur due to a time-varying available bandwidth

as inherent in real networks. These effects, which we substantiate below, result in

less departures as indicated by the available bandwidth. Using a service process

Sl(τ, t) or an estimate of it, as given by the ε-effective service curve from Thm. 5.3,

includes the timing from (0, t] and recovers the departures by the convolution:

D(t) = A⊗ Sl(t).

The before mentioned behavior is illustrated in Fig. 6.1. From top to bottom,

the figure presents the arrivals At(t) to a system with a time-varying service

Sl(τ, t) resulting in the departures Dt(t) in the interval (0, T]. The figure shows

two examples, in Fig. 6.1a the timing is a fortunate coincidence since all arrivals
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Figure 6.1: Example of the impact of timings between service and arrivals. In Fig. (a)
the timing of the arrivals and the service is beneficial, since all arrivals are
forwarded by the system. On the contrary, in Fig. (b) when data arrives no
service is available in (T/2, T]. Ignoring the timing of arrivals and the service
returns a misleading result, since for both cases the available bandwidth and
the arrivals at time T are equal.

are forwarded by the system. On the contrary, in Fig. 6.1b when data arrive in the

interval (T/2, T] no service is available in this interval. This example shows that

assuming the available bandwidth α to be constant over time is misleading, since

departures depend on the timing of the arrivals and the service during the interval

(0, t].

Next, we analyze an effect that arises from the typical assumption of a system with

fluid flow constant rate traffic as elaborated in Sec. 3.1.1. The system model used in

available bandwidth estimation typically neglects variability of the service [60] and

available bandwidth estimation tools often calculate the mean of repeated estimates

as described in Sec. 3.1.1. Using the relation from Lem. 6.1 between the available

bandwidth and the leftover service process, we are able to explain effects of the

assumed model to available bandwidth estimates, which are conducted in networks

with random service. In the following, we state in Lem. 6.2 that using the expected

value of E[α(τ, t)] leads to a systematic overestimation of the departures.

Lemma 6.2 ([90]) Given Dt(t) = At ⊗ Sl(t). It holds that

E[Dt(t)] ≤ At ⊗ E[Sl ](t).



6.1 single-hop networks 70

Proof ([90]) Taking expectations we have

E[Dt(t)] = E

[
inf

τ∈[0,t]
{At(τ) + Sl(τ, t)}

]
= ∑

Sω
l ∈SΩ

l

pω inf
τ∈[0,t]

{At(τ) + Sω
l (τ, t)},

where SΩ
l is the sample space containing sample paths Sω

l that occur with probability

pω each. For any choice of τ′ ∈ [0, t],

pω inf
τ∈[0,t]

{At(τ) + Sω
l (τ, t)} ≤ pω At(τ

′) + pωSω
l (τ

′, t),

which yields for any τ′ ∈ [0, t] that

E[Dt(t)] ≤ At(τ
′) + ∑

Sω
l ∈SΩ

l

pωSω
l (τ

′, t),

since ∑Sω
l ∈SΩ

l
pω = 1. It follows that

E[Dt(t)] ≤ inf
τ′∈[0,t]

{At(τ
′) + E[Sω

l (τ
′, t)]},

which completes the proof.

The intuition of Lem. 6.2 is that constructing an expected value of the service

curve leads to an overestimation of the departures. This effect is illustrated in

Fig. 6.2. From top to bottom, the figures show the arrivals At(t) to a system with

time-varying service Sl(τ, t) and resulting departures Dt(t). In Fig. 6.2a and Fig. 6.2b

two sample paths are shown, where in the example of Fig. 6.2a the system transmits

all arrivals in the time interval (0, T], whereas in the example of Fig. 6.2b the system

forwards only a portion of the arrivals in the interval (0, T]. Assuming that each

of the service curves occur with a probability of 0.5, the expected value of the

service E[Sl(t)] is illustrated in Fig. 6.2c. Using E[Sl(t)] overestimates the departures

since the concrete timings are lost and E[Dt(t)] ≤ At ⊗ E[Sl(t)], where E[Dt(t)]

follows from Dt1(t) and Dt2(t) in Fig. 6.2a and Fig. 6.2b. This effect is well-known in

queueing theory but is often ignored in the area of available bandwidth estimation

as mentioned in [60]. Ignoring the variability and the time scale of the estimate
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Figure 6.2: Example for Lem. 6.2. Assuming random service with two sample paths, S1
l (τ, t)

and S2
l (τ, t) each with a probability of occurrence of 0.5, shown in figures (a)

and (b). The expected service E[Sl(τ, t)] follows in Fig. (c). Using E[Sl(τ, t)]
overestimates the departures since the departures in Fig. (b) are less than one.
The reason is the timing of the service and the arrivals. The arrivals cannot fully
utilize the service in Fig. (b). These accurate timings are lost if the expected
value of the service is applied.

are identified as pitfalls for available bandwidth estimation in [60]. Our system

identification approach avoids these pitfalls since a service curve expresses service

availability on different time scales and the ε-effective service curve accounts for

variability as an estimate of the service process.

6.2 multi-hop networks

In addition to the available bandwidth definition for single-hop networks, a def-

inition for multi-hop networks exists. In the following, we present the relation

between the service process Snet(τ, t) from Sec. 2.3.1.1 and the available bandwidth

definition for multi-hop networks αnet(τ, t), given in Eq. (3.2).

For time-varying systems h = (1 . . . H) in series, the end-to-end service process

Snet(τ, t) follows from the convolution of the individual service processes Sh(τ, t)

(see Eq. (2.11) and e.g., [29, Chap. 5]). For time-varying systems the convolution

operation is not commutative. Whereas the available bandwidth of a multi-hop

network is defined by the minimum of the available bandwidth of the individ-
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ual links in Eq. (3.2). To relate the individual system models to each other by

Sh(τ, t)/(t− τ) = αh(τ, t), we use Lem. 6.1.

Using a constant rate fluid model, each individual system has an available band-

width equal to a rate rh, consequentially Snet(τ, t)/(t− τ) = αnet(τ, t) = minh{rh}

holds [80]. Generally, the available bandwidth is time-varying and only the relation

Snet(τ, t)/(t− τ) ≤ αnet(τ, t) holds. We illustrate the relation for two systems by

using Lem. 6.1, it follows for the time interval (t, t + δ] that

min
{

S1(t, t + δ)

δ
,

S2(t, t + δ)

δ

}
≥ inf

θ∈[0,δ]

{
S1(t, t + θ)

δ
+

S2(t + θ, t + δ)

δ

}
.

Since the convolution S1 ⊗ S2(t, t + δ) seeks the infimum by passing through the

interval from [t, t+ θ], it is less than min{α1(t, t+ δ), α2(t, t+ δ)}. This result applies

to an arbitrary number of systems due to the definition of the convolution and the

definition of the multi-hop available bandwidth.

We state in Lem. 6.3 and prove subsequently that equality is recovered in the

long-term if each system has a long-term average available bandwidth α∞
h with

α∞
h = lim inf

δ→∞

Sh(t, t + δ)

δ
. (6.2)

Lemma 6.3 ([90]) Given the end-to-end service process Snet(τ, t) as in Eq. (2.11) where

the service processes of the individual work-conserving systems Sh(τ, t) satisfy Eq. (6.2).

For any t it holds that

lim inf
δ→∞

Snet(t, t + δ)

δ
= min

h
{α∞

h }.

Proof ([90]) It is sufficient to show the proof for two systems. Due to the properties

of the convolution, the result applies to an arbitrary number of systems by repeated

application. We rewrite Eq. (2.11) as

Snet(t, t + δ)

δ
= inf

θ∈[t,t+δ]

{
S1(t, θ)

δ
+

S2(θ, t + δ)

δ

}
.
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Figure 6.3: Example for the impact of the timing on the service in multi-hop networks.
The timing in Fig. (a) is beneficial for the arrivals since all arrivals will be
processed in the interval (0, T]. On the contrary, the timing in Fig. (b) prevents
any processing i.e., the departures up to time T are zero.

Now we allow δ → ∞. If α∞
1 > α∞

2 the minimum will be attained for finite θ so

that the first term of the sum goes to zero and the second term to α∞
2 . Otherwise, if

α∞
1 < α∞

2 , the parameter θ will tend to ∞ such that the first term becomes α∞
1 and

the second term goes to zero. This gives us

lim inf
δ→∞

Snet(t, t + δ)

δ
= min{α∞

1 , α∞
2 }.

Finally, if α∞
1 = α∞

2 the result holds trivially.

Fig. 6.3 illustrates the impact of the timing on the service in multi-hop networks.

The timing in Fig. 6.3a is beneficial for the arrivals since all arrivals will be processed

in the interval (0, T]. On the contrary, the timing in Fig. 6.3b prevents any processing,

i.e., the departures up to time T are zero. Since in Fig. 6.3b the sequence of systems

is reversed compared to Fig. 6.3a, this example also shows that the sequence of

systems is not arbitrary. The network calculus from Sec. 2.3.1 accounts for the

sequence of systems in series by the convolution operation, but the sequence

is ignored by the definition of the available bandwidth in Eq. (3.2). The effects
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illustrated in the example are short-term effects occurring in an interval (0, T]. In

the long-term these effects vanish because data that are not processed in (0, t], are

buffered and processed later as long as packets are not dropped. However, this

results in additional delay.

Ignoring the effect of multiple bottleneck links is also identified as one pitfall for

available bandwidth estimation in [60]. Obviously, the definition for the available

bandwidth in multi-hop networks ignores these effects, as shown in Lem 6.3. Service

curves from the network calculus account for these effects. In Chap. 5, system

identification methodologies are introduced that determine such service curves. In

the next chapter, we implement these methodologies into practical procedures.
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P R O B I N G P R O C E D U R E S F O R S Y S T E M I D E N T I F I C AT I O N

We now transform the methodology for the identification of the ε-effective service

curve, outlined in Chap. 5, into practical estimation procedures. To this end, we

implement Thm. 5.1, which specifies the estimate in the max-plus algebra. The

estimate follows from delay quantiles measured by constant rate packet train probes.

Employing the estimate derived in the max-plus algebra, allows the direct utilization

of packet timestamps from probe packets to estimate the delay quantile and permits

the consideration of lost packets by an infinite delay.

The estimation procedure requires the determination of the parameter triple

〈R, N, I〉, where R is the set of probing rates, N the train length, and I the number

of iterations of a train with rate r as discussed in the context of Thm. 5.1. The

theorem combines delay quantiles W̃ξ(r) estimated with probing rates r ∈ R to an

ε-effective service curve. The delay quantile is extracted from the empirical delay

distribution, which is obtained from sending I iterations of a train with rate r and

length N.

In theory, infinitely long packet trains and an infinite number of iterations

are required to estimate the stationary delay quantile. Also, each probing rate

r ∈ R contributes a linear segment to the service curve as depicted in Fig. 5.2.

Consequently, only an infinite number of rates achieves an infinitesimal resolution

of the curve. Apparently, practical probing requires finite parameters. We point

out how to limit these parameters to finite values under two different design goals

using statistical tools, which allow us to quantify the imprecision induced by using

estimates.

First, we explain how to determine the required parameters with the goal of a

fast estimation procedure by a reduction of the probing traffic in Sec. 7.1. This is

typically required in productive networks, where the assumption of stationarity

applies to limited time scales, so-called change-free regions [135]. For example, change-

75
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free regions of Internet path characteristics last for a couple of minutes up to

several hours [135]. Available bandwidth estimation tools typically pursue a prompt

estimation in the range of seconds.

Second, we introduce the parameter selection for the system identification of

networks, where typically the setup is a dedicated experimental network for testing

purposes only. In such networks the amount of traffic and the measurement duration

become less important. Such an estimation procedure allows e.g., the long-term

evaluation of networks and protocols deployed therein, which are challenging to be

analyzed analytically due to their complexity. Stationarity can be enforced in such

networks for an unlimited time.

The work in Sec. 7.1 is based on cooperation with Markus Fidler and Jörg

Liebeherr and partially available in [88, 89, 90]. Sec. 7.2 is joint work with Markus

Fidler.

7.1 procedure for networks with change-free regions

Design goals for available bandwidth estimation tools are promptness, performing

the measurements in change-free regions, and the generation of a small amount

of probing traffic. In this section, we derive the selection of the parameter triple

〈R, N, I〉 for our service curve estimation procedure under consideration of these

goals. The entire procedure is depicted in Fig.7.110 and is described in the following

subsections. At the beginning, we explain the selection of the probing rates using

a combination of a binary increase and binary search algorithm in Sec. 7.1.1. The

transition between the binary increase phase and the binary search phase depends

on the detection of steady state delays for a probing rate. The estimation of steady

state delays is introduced in Sec. 7.1.2 and relies on Lem. 5.2, which gives evidence

under which conditions a steady state delay distribution exists. We give details

on the adaptation of the train length to detect stationarity, present a heuristic to

reduce the required train length to detect stationarity, introduce the determination

of quantiles from delay distributions, and describe the prediction of the quantile for

10 A similar flowchart of our procedure is shown in [120, 121], whereas the authors implement roughly
our methodology derived in the min-plus algebra.
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small values of ξ from a small number of samples. All of the following experiments

were conducted in the Emulab testbed [130] or in a local testbed using the Emulab

software [1]. Both testbeds create isolated and controlled experiments using real

hardware components and software. Fig. 7.2 shows a multi-hop network with

multiple bottleneck links in series offering a capacity of 100 Mbps and 10 ms delay.

The access links of the cross traffic senders, the cross traffic receivers, the probe

traffic sender, and the probe traffic receiver have a capacity of 1 Gbps and 0 ms

delay. In this topology, cross traffic enters the network at one router and departs

from it at the next router in series. Cross traffic and probe traffic are multiplexed

at these bottleneck links. The described network topology is implemented in the

testbeds with different number of bottleneck links.

For the experiments presented in this section, we solely use a single-hop topology,

i.e., the number of bottleneck links from the topology presented in Fig. 7.2 reduces

to one. This topology consists of one probe traffic sender and receiver pair, one cross

traffic sender and receiver pair, and two routers, whereas cross traffic and probe

traffic are only multiplexed at one hop, which is the first router subsequent to the

senders. Topologies with multiple bottleneck links are evaluated in the subsequent

chapter. For the default experimental setup, we use a priority scheduler with priority

for the cross traffic to ensure linearity and large buffer sizes to prevent packet loss

(the buffer size was set of 106 packets on the routers). The default transport protocol

for probe and cross traffic is the user datagram protocol (UDP).

Probe traffic is generated by the tool Rude/Crude [72]. We configure the sender

Rude to transmit constant rate traffic with rate r using equally spaced packets

of size 1500 Byte (IP packet size) with a gap of 1500 Byte
r seconds. Timestamps are

added to the packets by the sender Rude as well as by the receiver Crude and are

stored at the receiver. Delays of packets are calculated from timestamps in Matlab

and processed in Matlab and R [2].

We generate random cross traffic with a long-term rate of 50 Mbps, i.e., the service

process has also a long-term available bandwidth of 50 Mbps as defined in Sec. 3.1.

Cross traffic packets are generated equally spaced in time but with packet sizes

drawn from a truncated Exponential or truncated Pareto distribution with shape

parameter of 1.5. The two distributions stand for different kinds of traffic; the traffic
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Figure 7.1: Flow chart of the probing procedure for networks with change-free regions, for
a detailed description see Sec. 7.1.1 to Sec. 7.1.2.
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Figure 7.2: Multi-hop network with multiple 100 Mbps bottleneck links each with a delay
of 10 ms.

following an Exponential distribution for friendly traffic, i.e., if averaged, it becomes

smooth on short as well as on long time scales, whereas the Pareto traffic represents

unfriendly traffic, which stays bursty, even if averaged on long time scales. For the

generation of cross traffic, we use the tool D-ITG [18]. It truncates the maximum

payload to 64000 Byte to comply with the maximum IP payload size, which leads to

truncated distributions. Further fragmentation occurs due to the maximal transfer

unit of 1500 Byte of Ethernet packets at the IP layer. Additionally, we require that

the probe traffic sender and the receiver are synchronized in time to measure exact

delays, therefore we use the network time protocol (NTP). In real networks, clocks

can be asynchronous. An offset between the sender and the receiver will result

in a shift of the estimated service curve, a shift to the right for a positive offset

between the sender and the receiver, i.e., the local time of the receiver is larger than

on the sender, and a shift to the left for a negative offset between the sender and

the receiver. For details on asynchronous clocks due to a shift, we refer to [80]. For

further effects caused by clocks that can occur in networks see e.g., [112]. In our

testbeds we assume reliable clocks with a precision within one millisecond since

time servers for synchronization are located in the local area network as described

in [97].
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7.1.1 Selection of Probing Rates

The selection of the set of probing rates R in Thm. 5.1 defines on the one hand

the resolution of the service curve Tε
S (n) since each rate r ∈ R contributes a linear

segment, on the other hand each probing rate increases the violation probability

ε = ∑r∈R ξ. To balance the design goals of a high resolution and a small violation

probability, we use a combination of a binary increase and a binary search algorithm,

which is similar to the procedure in [58]. The selection is based on the existence of

a steady state delay distribution for a probing rate. We refer to Sec. 7.1.2 for details

on the detection of it based on I iterations performed for a probing rate r. During

the binary increase phase the current rate rj is doubled as long as steady state

delays are detected for this rate, i.e., the next rate rj+1 becomes rj+1 = 2rj, where

j = {1, 2, 3, . . .} increases by one for each further probing rate. The first time no

steady state is detected for rate rj, a binary search is started in the interval [rj−1, rj],

with the next probing rate rj+1 = rj −
rj−rj−1

2 . Further probing rates follow from

halving the interval length: if a steady state is detected for rj, rj+1 = rj +
rj−rj−1

2 , if

not, rj+1 = rj −
rj−rj−1

2 . The initial rate and the termination condition are defined

by racc, which specifies the desired resolution. The initial rate is r1 = racc and the

algorithm terminates if rj+1 − rj < racc. For the set of all probing rates, we refer to

R′, but only rates for which a steady state delay distribution exists contribute to the

service curve. We collect these rates in the set R.

This algorithm enables a fast estimation and contributes significant rates since

the binary increase ramps up the probing rate fast to find an interval that contains

the long-term available bandwidth. In addition, the binary search presents a fast

search in the interval to detect a rate close to the long-term available bandwidth α∞,

which is in [α∞− racc, α∞). The number of rates in R′ is 2blog2(α
∞/racc)c+ 2, where

blog2(α
∞/racc)c+ 2 rates follow from the binary increase phase and blog2(α

∞/racc)c

rates from the binary search. Without further knowledge on the rates, the binary

search algorithm is optimal with respect to its complexity O (log(n)) [99].

In the experiments in this section, a typical set of probing rates, which fol-

lows from the described algorithm for α∞ = 50 Mbps and racc = 4 Mbps, is
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R′ = {4, 8, 16, 32, 64, 48, 56, 52} Mbps. At last, the rates R = {4, 8, 16, 32, 48} con-

tribute a linear segment to the service curve because only these rates exhibit a

steady state delay distribution, which follows from Lem. 5.2.

7.1.2 Estimation of Delay Quantiles

Steady state delay distributions for the probing rates are required to implement

Thm. 5.1. Estimating steady state delays implies that the delay distribution is

independent of the train length. We prove the existence of such distributions in

Lem. 5.2; on the condition that stationary arrivals are below the long-term available

bandwidth of a network path with stationary service. Typically, the long-term

available bandwidth of a network path is unknown, therefore it is not known

beforehand if a probing rate produces a steady state delay distribution. Here, we

present the detection of the steady state by using a stationarity test in Sec. 7.1.2.1.

Since also the train length N that is required to detect stationary delays is not

known a priori, we show an adaptation procedure in Sec. 7.1.2.2. Furthermore,

the procedure of the train length adaptation offers a heuristic for the detection

of probing rates that contribute a steady state delay distribution. In Sec. 7.1.2.3,

we use this heuristic to reduce the probing traffic for the estimation of the long-

term available bandwidth and of service curves that hold for a limited scale. This

reduction enables a prompt estimation procedure. Finally, we show how to estimate

the delay quantile of the empirical delay distribution obtained by iterating packet

trains I times. Using confidence intervals for quantiles, we are able to quantify

the accuracy of the estimate. Moreover, we present how to predict the tail of the

distribution for small ξ from a small number of samples in Sec. 7.1.2.4.

7.1.2.1 Stationarity Test

To obtain samples of the delay in the steady state, we test the series of delays

measured by a packet train for stationarity. For a packet train of length N, each

packet returns a sample for the delay series W(n), where n ∈ [0, N − 1]. We test

the series W(n) for stationarity with the unit root test from Elliot, Rothenberg, and
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Stock (ERS) [39, 107]. The test uses an auto-regressive moving average model for

the data series with the null hypothesis that the auto-regressive model has a unit

root implying non-stationarity. If the null hypothesis is rejected, we assume the

data series to be stationary. The decision is based on the test statistic; if it is below a

critical value, the null hypothesis is rejected. In detail, we use the P-test with the

critical values from [39] and a level of 0.1 for the experiments outlined in Chap. 7

and Chap. 8.

To ensure independence of the samples and because of the delay distribution

is converging to the steady state for n → ∞, we keep only the last delay sample

W(N − 1) of each train and discard previous samples of that train due to possible

correlations between delay values W(n) of one train.

If stationarity is not detected for a train, we set the delay sample to infinity.

Furthermore, we perform I iterations for each rate, as discussed in Sec. 7.1.2.4. If

the ratio of infinite samples is equal to or greater than ξ the delay quantile Wξ(r)

is infinite, too, and the rate r does not contribute to the service curve due to the

minimum in Thm. 5.1. Setting the delay sample to infinity is therefore conservative.

7.1.2.2 Adaptive Train Length

As Lem. 5.2 indicates, the delay is stochastically increasing with the train length

and converges to the steady state distribution. However, the train length to detect

stationarity is not known a priori, therefore, we use an adaptive procedure to

extend it. Detecting non-stationarity of a delay series can be caused obviously by

non-stationarity but also by observing delays during the transient phase of the

system, which occurs at the beginning of a packet train. In the second case, if the

train length was chosen too short, a longer packet train would detect stationarity.

We differentiate between these cases by evaluating the delay series of I iterations

for rate r using the ERS statistic.

In general, we start with an initial train length N1, and if the ratio of stationary

trains of I iterations is greater than 1− ξ for this train length, we proceed with the

next probing rate. If the ratio is less than 1− ξ, we perform an additional test on

each train that we name trend test. For the trend test the ERS statistic for the delays

of the first half of each train is computed and is compared to the ERS statistic of
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Figure 7.3: Fig. 7.3a shows the train length used to observe steady state delays in a single-
hop network. The bottleneck link has a long-term available bandwidth of
α∞ = 50 Mbps leftover by Exponential or Pareto cross traffic. Fig. 7.3b presents
estimates of the 0.95-delay quantiles with 0.95 confidence intervals taken from
the steady state delay distribution observed with the train length shown in
Fig. 7.3a.

the entire train. This test is passed if the ERS statistic decreases with the entire train

indicating that a longer train could see a stationary delay series.

The adaptation of the train length is based on a majority decision: If the majority

of I iterations passes the trend test, the train length is doubled, i.e., Nj =2Nj, and

the probing is performed anew with the same rate, else the existence of a steady

state delay distribution is rejected and the probing proceeds according to Sec. 7.1.1

with the next probing rate.

For the network setup described at the beginning of Sec. 7.1, we show the train

length used to observe stationarity for a ratio of 1−ξ=0.95 of I=250 iterations per

probing rate in Fig. 7.3a. The train length is adapted according to the procedure

described in this section and the probing rates arise from the algorithm described in

Sec. 7.1.1 with racc =4 Mbps. The minimum train length was set to N1=100 packets.

The figure illustrates that the required train length increases significantly when the

probing rate approaches to the long-term available bandwidth of 50 Mbps.

The adaptation of the train length is based on the trend test, which we evaluate

below. Again, we use the network setup introduced at the beginning of Sec. 7.1.

The long-term available bandwidth of the network path is 50 Mbps. Therefore, we

expect that the relative frequency for passing the trend test for a probing rate below

50 Mbps is greater than 0.5 since the rate is below the long-term available bandwidth,
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Figure 7.4: Relative frequency of 1000 packet trains that pass the trend test for probing rates
close to the long-term available bandwidth of α∞ =50 Mbps and train lengths
N={50, 100, 200, 400, 800}. In all cases, except one, the classification is correct
because below 50 Mbps more than the majority of the trains pass the test and
above 50 Mbps less than the majority of the trains pass the test. Only for the
Exponential traffic, a rate of r=48 Mbps, and N=50 the classification is barely
below the majority. However, the classification is challenging in cases close to
the long-term available bandwidth using very short packet trains.

and less than 0.5 for a probing rate above 50 Mbps. The relative frequency of trend

tests passed for 1000 iterations is shown in Fig. 7.4 for probing rates in the interval

from 40 to 60 Mbps with a step size of 4 Mbps and five train lengths in the interval

from 50 to 800 packets. The results show that for a train length of 100 packets and

more the relative frequency of the trend tests passed or failed, classifies correctly

the existence of a steady state. For a length of 50 packets the test only wrongly

rejects the steady state for the Exponential distribution with a probing rate of

48 Mbps; however, the majority is missed slightly. The correct decision is more

evident for probing rates distant from 50 Mbps and also more evident for the

friendly Exponential traffic. As described above, to improve the robustness the

heuristic is based on a majority decision of I iterations for probing rate r. For each

iteration the trend test is applied to the packet train, and the majority of the trend

test passed or failed is evaluated to decide if the steady state is reached or not. The

probability that more than the majority of the trains pass the trend test is shown for

a train length of N=200 in Fig. 7.5. We assume that each packet train represents

a Bernoulli trial, therefore, the probability for the majority decision in Fig. 7.5

follows from the binomial distribution. The results are shown for a small number of

iterations I={11, 21, 31, 41, 51} to demonstrate the robustness for a small amount
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Figure 7.5: Evaluation of the robustness of the majority decision on the trend test for
I={11, 21, 31, 41, 51} iterations. The correct classification significantly increases
with the number of iterations; already for a small number of iterations a correct
classification is feasible. The figure shows results based Fig. 7.4 for a train length
of N=200.

of probing traffic. We choose odd numbers to ensure that a majority exists. Already

for a few iterations of eleven the classification makes a correct decision for rates

close to 50 Mbps, for a probing rate of 48 Mbps the decision is correct in about 60

percent of the cases and for a rate of 52 Mbps for about 70 percent of the cases

(much better for Exponential traffic).

This section shows the need for long trains to estimate the steady state delay

distribution. In the next section, we present that the design goal of a prompt

probing procedure using a small amount of probing traffic is achievable by using

the majority decision presented in this section as a heuristic.

7.1.2.3 Estimates from Short Packet Train Probes

Fig. 7.3a displays the need for long packet trains to observe the steady state delay

distribution. However, the trend test gives a robust indication whether a steady state

delay distribution exists or not using much shorter packet trains. We make use of

this indication to establish a prompt procedure for the estimation of, first, the long-

term available bandwidth and, second, service curves that apply to a limited scale

as depicted in Eq. (5.8). Short packet trains are implemented by limiting the train

length to a maximum Nmax. The decision whether a steady state delay distribution

exists or not is based on the trend test if the maximal train length is utilized and
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stationarity is not detected. In detail, if the train length has reached its maximum.

If the trend test is passed for the majority of I iterations, we assume that for the

rate r a steady state delay distribution exists. If the test is passed for less than the

majority, we assume that no steady state exists. This heuristic shortens the required

train length to detect rates for which steady state delays exists, but obviously, the

extracted delay samples do not reflect the steady state delay distribution.

available bandwidth estimation : For the available bandwidth, we seek

for the highest rate that observes steady state delays. Using the heuristic described

before, we estimate solely whether a steady state delay distribution exists or not. As

Fig. 7.4 and Fig. 7.5 show the trend test already offers robust estimates with short

packet trains and a small number of iterations. The long-term available bandwidth

of 50 Mbps in the experiment is closely tracked. The estimate is 48 Mbps, which is

the next probing rate below 50 Mbps assuming the rate adaptation from Sec. 7.1.1

with racc = 4 Mbps.

service curve estimation with limited scale : If we consider also the

delay samples, while allowing only a maximum train length Nmax, the procedure

also returns delay estimates. However, these estimates are not from the steady state

distribution. These delay estimates provide a service curve that applies to a limited

scale of Nmax packets as specified in Eq. (5.8). In [25], such scales are introduced as

time scale bounds in the min-plus algebra. Such bounds are useful if bounds on the

maximal backlog, the maximal delay, or busy periods are known [25].

Evidently, probing traffic cannot be reduced as for the case of the long-term

available bandwidth estimation since the extraction of delay quantiles requires a

reasonable number of iterations. However, the robustness of the majority decision of

the trend test makes a strong reduction of the probing traffic possible with respect

to the train length.

7.1.2.4 Estimation of the Delay Distribution

To obtain an estimate of the delay quantile W̃ξ(r, n) for rate r, which is required in

Thm. 5.1, the empirical delay distribution is estimated by samples from I packet



7.1 procedure for networks with change-free regions 87

trains. The delay of the last packet of each train is used to compute the distribution.

Other samples are discarded to avoid correlations between them. Furthermore,

we assume independent samples of the delay distribution by using packet trains

starting at random times, see [16] for a discussion. Finally, the quantile follows from

Eq. (5.2).

Using a finite number of samples leads to an unavoidable inaccuracy of the delay

distribution, which vanishes with an increasing number of samples. This resulting

inaccuracy can be quantified by using confidence intervals for quantiles, which

follow from the binomial distribution [73]. This allows to state the expected range

of the confidence interval for a given number of samples or to adapt the number of

samples until a given accuracy is achieved. Throughout all the experiments in this

work, we use a fixed number of iterations.

In Fig. 7.3b, we present delay quantiles for 1 − ξ = 0.95 of the steady state

delay distribution and the related 0.95 confidence intervals resulting from I=250

iterations. The figure shows that the confidence intervals increase as the probing

rate converges to 50 Mbps. This effect is stronger for the more bursty Pareto traffic.

Throughout the entire thesis, we extract the delay quantiles directly from the

empirical distribution by using Eq. (5.2). Nevertheless, we state below a possibility

to reduce the number of iterations. This could be employed if a small ξ is requested,

else it would involve a large number of samples. The reduction can be achieved

by the prediction of the tail of the delay distribution. For the prediction, we use

the peaks over threshold (POT) method from the extreme value theory, see e.g.,

[17]. Based on a number of independent and identically distributed samples, the

parameters of a generalized Pareto distribution are estimated to predict the delay

quantile W̃ξ(r). The accuracy of the prediction is also indicated by confidence

intervals. To apply the POT method the distribution must be in the domain of

attraction of an extreme value distribution, see [17] for details. We verify the

assumption by using the tests from [36, 77].

We apply the method to the delay distribution of the delay quantiles shown in

Fig. 7.3b measured by 250 iterations. We predict the tail to extract delay quantiles

for small values of ξ and compare them to a delay distribution measured from 2000

iterations. Fig. 7.6 presents the results for the probing rate of 48 Mbps with confi-
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Figure 7.6: Comparison of estimates of the quantiles Wξ(r) obtained from 2000 samples
using Eq. (5.2) and the estimate received by the POT method using 250 samples
for r = 48 Mbps. The POT method shows a good fit.

dence intervals for the delay quantiles derived by the POT method (the threshold

parameter was set to 0.9). For the Exponential distributed traffic, both curves show

a very good fit; for the more bursty Pareto distributed traffic the curve estimated by

the POT method lies in the majority of the cases in the confidence interval of the

curve measured by 2000 iterations.

7.2 procedure for networks with stationary service

The scope for this procedure is the evaluation of network topologies and protocols

in dedicated networks, i.e., controlled environments for the systems under test.

In such environments the measurement time and the amount of probing traffic

are less important than in the environments assumed in Sec. 7.1. Such testbeds

facilitate also a stationary environment on the long run. This allows the analysis

of effects, which affect the behavior on long time scales. We turn our attention to

gathering a more detailed view of the system behavior. In the following, we discuss

the procedure to define the probing parameter triple 〈R, N, I〉 with reference to

the previous presented procedure from Sec. 7.1. We modify the selection of the

probing rates and further obtain I independent delay samples of one train instead of
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multiple independent trains. This procedure is implemented in a separate software

using C++ and the interface to the software R. Fig. 7.7 presents the flow chart of

the procedure.

7.2.1 Selection of Probing Rates

To obtain a more detailed view of the system behavior, we use a linear increase of

the probing rate. The probing starts with a rate r1 = racc. The next rate follows by

a linear increase rj+1 = rj + racc. The probing stops for the first rate for which no

steady state delays are detected.

Compared to the binary increase/binary search algorithm from Sec. 7.1.1, the

network is usually probed by a larger number of rates. The binary increase algorithm

described in Sec. 7.1.1 raises the probing rates fast, thus it may occur that probing

rates that contribute meaningful parts to the service curve estimate are missed. For

the long-term available bandwidth of α∞ the set of probing rates contains
⌊

α∞

racc

⌋
+ 1

different rates, e.g., choosing the same example from Sec. 7.1.1 with α∞ = 50 Mbps

and racc = 4 Mbps results in thirteen probing rates compared to eight for the binary

increase/binary search algorithm.

7.2.2 Estimation of Delay Quantiles

For the estimation of the steady state distribution, we rely again on the stationarity

test described in Sec. 7.1.2.1. The difference is that we estimate the delay distribution

from one long train taking samples randomly.

The initial train length N1 is composed of an offset No f f and a second part with

mean length NS
1 resulting in a length of N1 = No f f + NS

1 . We use an offset, where

no sampling is performed, to avoid sampling during transient phases. Subsequently,

I samples are collected randomly. The distance between samples follows a geo-

metric distribution with a mean of NS
1 /I. Random sampling is used to avoid the

observation of possible periodicities inherent in the system [16]. After gathering I

samples, three tests are performed on the data series, the stationarity test described
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Figure 7.7: Flow chart of the probing procedure for networks with stationary service, for a
detailed description see Sec. 7.2.1 and Sec. 7.2.2.
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in Sec. 7.1.2.1, the trend test from Sec. 7.1.2.2, and the runs test [49] for testing the

independence of the samples. Passing the stationarity and the runs test means that

the samples are independent and identically distributed. The procedure continues

with the next probing rate if both tests are passed. The train length is increased,

first, if no stationarity is detected for the current rate but the trend test is passed, or

second, if stationarity is detected but the runs test is not passed. Passing the trend

test suggests that a longer train could see stationarity, and not passing the runs

test indicates that samples are not independent. Using longer trains may lead to

stationarity and independent samples. The probing is stopped if neither the trend

test nor the stationarity test are passed.

The increase of the train length is performed without the interruption of the

current measurement. This approach reduces the execution time in comparison

to the procedure described in Sec.7.1, at which trains have to be repeated if the

train length is adapted. During the statistical tests the probing is continued for

the current rate. If stationarity or finally no stationarity is detected, the probing is

stopped, otherwise the probing proceeds, until the next tests are performed after

additional I samples are collected, thus the mean length of the extended train

length becomes No f f + (e + 1)NS
j with the eth extension. Since we keep the mean

sampling interval NS
j /I, we have (e + 1)I samples after the eth extension. To reduce

the number of samples to I and simultaneously increase the sampling interval to

(e + 1)NS
j /I, we only pass each (e + 1)th sample to the tests. If the stationarity

test and the runs test are passed, I independent samples from the steady state

delay distribution of rate r are returned. The estimate of the delay quantile W̃ξ(r, n)

results from these samples for rate r and the probing is continued following the

procedure in Sec. 7.2.1 with sample interval NS
j+1=(e + 1)NS

j /I.

The probing procedure described in Sec. 7.1.2.2 requires multiple trains to increase

the robustness of the detection of a steady state distribution by using a majority

decision based on the outcome of the trend test. In Sec. 7.1.2.3, this robustness

is achieved since the majority decision is assumed to be sufficient to observe the

steady state distribution, and it allows the reduction of the train length. Here, one

train per probing rate is used, which impairs the robustness of the majority decision

on the trend tests. This is sufficient for this procedure because the decision whether
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Figure 7.8: Comparison of delay quantiles obtained by iterative sampling described in
Sec. 7.1.2.4 and continuous sampling. For all probing rates both procedures
show similar results since all confidence intervals overlap.

a steady state distribution exists or not relies solely on the stationarity test and the

trend test is just used for the adaptation of the train length. However, this prevents

the estimation of service curves for limited scales, but it allows for the continuous

extraction of delay samples of one train.

We evaluate the continuous sampling procedure by repeating the experiment

from Sec. 7.1.2.2 and estimate the delay quantiles for the rates R={4, 8, 6, 32, 48}

with the parameters ξ = 0.05, NS
1 = 100, and No f f = 106. The estimated delay

quantiles and related confidence intervals are presented in Fig. 7.8. For the proce-

dure described in Sec. 7.1.2.2, the results are taken from Fig. 7.3b. The overlapping

confidence intervals indicate approximately equivalent estimates for the iterative

and continuous approach for all probing rates and for the Exponential as well as

the Pareto cross traffic. The results indicate that both procedures are practical for

the determination of the quantiles.

In the next chapter, we apply the presented probing procedures to various

networks with random service by simulation and experiment. For the comparison

to available bandwidth estimation tools and for the estimation for service curves

with a limited scale, we apply the procedure from Sec. 7.1. For networks that feature

correlations on long time scales, we employ the procedure from Sec. 7.2.
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A P P L I C AT I O N O F S Y S T E M I D E N T I F I C AT I O N

Using the probing procedures from Chap. 7, we apply our system identification ap-

proach to various networks and protocols by simulations and experiments. Thereby,

we provide a validation of the estimation procedures. We conduct the validation by

comparing the estimated long-term available bandwidth to the long-term available

bandwidth that is known from the experimental setup or that is analytically de-

duced. Moreover, we validate the procedure by comparing estimates to analytical

service curves, where they are known.

In Sec. 8.1 and Sec. 8.2, we start with comparative evaluations to known system

identification procedures. First, we compare our procedure to well-known available

bandwidth estimation tools, which are system identification procedures that usually

describe the system by a single value. The similarities between the available band-

width and the service curves from the network calculus are shown in Chap. 6. The

service curve estimate consists of multiple rate segments, whereby the segment with

the highest rate is an estimate of the long-term available bandwidth. Moreover, our

estimation procedure provides the identification of the system by a service curve.

Service curve estimates include information on the time scales of the availability of

the service of the system, which varies in networks with random service. We utilize

this additional information in the subsequent sections. Second, we compare our

procedure to another service curve estimation procedure from [80] that is based on

a deterministic system model. This evaluation highlights the impact of the assumed

system class for identification i.e., systems with deterministic or random service.

After the comparative evaluation, the service of networks with different sources

of randomness is evaluated, including networks where the randomness originates

from random cross traffic, time-varying channels11, and protocols. In Sec. 8.3,

we initiate the evaluation by service curve estimation of wired networks, where

11 Recently, our procedure was applied in [120] to estimate the service of a Rayleigh fading channel.
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typically a constant capacity of the link can be assumed. The evaluation includes

results for different kinds of random cross traffic, scheduling disciplines with

unlimited and limited queues, single-hop as well as multi-hop networks. Estimates

are obtained by probe packet trains with non-restricted and restricted length. We

show the representation for the service curve as available bandwidth, thereby we

also validate the estimate by comparison to an analytical reference.

Next, Sec. 8.4 presents estimates for an IEEE 802.11a wireless network. In such

networks, the channel can no longer be assumed to be deterministic as in wired

networks due to interference and collisions. Collisions occur because the channel

is shared between stations in the network. An additional source of randomness is

the MAC protocol. Using this protocol, stations have to wait a random time before

they access the channel. Thereby, the MAC protocol achieves a fair channel usage

between wireless stations in the long-term [21].

Window flow control with static and adaptive windows is evaluated in Sec. 8.5.

Therein, we show the applicability of our service curve estimation procedure to

such protocols by simulation.

Finally in Sec. 8.6, we evaluate TCP, which is the prevalent transport protocol in

the Internet [92], by service curve estimation. TCP implements a congestion control

algorithm that adapts the transmission rate to the utilization of the network, e.g.,

on basis of packet loss, which occurs randomly in the network.

TCP and the MAC protocol in IEEE 802.11a wireless networks are non-determinis-

tic and non-work-conserving, i.e., even if the link or channel is idle, the protocols

may hold packets before transmission. This is a fundamental difference to previous

experiments conducted in wired networks, where only multiplexing random cross-

traffic causes randomness, and where the schedulers are work-conserving. Almost

all available bandwidth estimation tools assume work-conserving scheduling. Few

exceptions are tools designed for Wifi networks, see Sec. 3.1. By these experiments,

we demonstrate that our system identification procedure can deal with work-

conserving as well as non-work-conserving behavior.

The evaluations for the MAC protocol and TCP show that our system identifi-

cation procedure enables the determination of system models where modeling is
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Figure 8.1: Representation of service curves in the max-plus algebra, in the min-plus algebra,
and as available bandwidth.

typically challenging due to complex protocol characteristics and channel condi-

tions.

All evaluations, except the simulations in Sec. 8.5, are conducted by the use of

real hardware equipment. If not stated otherwise, we use the Emulab testbed [130]

or our local testbed using the Emulab software [1] for the experiments.

We use three types of representations for the service curves: The max-plus repre-

sentation Tε
S (n), which directly follows from Thm. 5.1. It plots the service curve by

time against data. The min-plus representation S ε(t) is presented by using the lower

bound from Thm. 5.4, which leads to a small imprecision of at most one packet.

It displays data against time, which is usually more intuitive since a higher value

also indicates a greater service. Furthermore, we define the ε-effective available

bandwidth as αε(t) = S ε(t)/t. This representation as a rate function yields a prob-

abilistic lower bound on the service process P
[

S(τ,t)
(t−τ)

≥ αε(t− τ), ∀τ ≥ 0
]
≥ 1− ε,

i.e., the probability that an average rate equal to or greater than αε(t) is achievable

for the duration of t− τ is equal to or greater than (1− ε).

Fig. 8.1 demonstrates the representations for a devised service curve consisting of

two segments with the rates 100 pps and 200 pps and the delay quantiles 10 ms and

25 ms, respectively. Note that in Fig. 8.1a the label of the x-axis is the packet index

n ≥ 0, where n = 0 specifies already the first packet, whereas in Fig. 8.1b the data

(in number of packets) are presented on the y-axis. For example, in Fig. 8.1a the first

packet with n= 0 exhibits a delay of 10 ms. In Fig. 8.1b the first packet (data= 1)

experiences a delay of 20 ms due to the imprecision of one packet introduced by

the inversion of the service curve from the max-plus to the min-plus algebra. In this

example, the inversion has an obvious impact on the curve. As transmission rates
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increase, the impact vanishes due to much shorter packet transmission times. The

representation αε(t) is illustrated in Fig. 8.1c, which intuitively shows the impact

on the rate. Although the service curves bend to the long-term available bandwidth

at about 40 ms, the impact on the ε-effective available bandwidth continues for a

much longer period. In this example, the available bandwidth still differs from the

long-term available bandwidth after 300 ms. The rippled shape of the curve follows

from the limited resolution of the service curve estimate. This resolution results

from the finite number of probing rates, of which each contributes a linear segment

to the curve.

The work in Sec. 8.1, Sec. 8.2, Sec. 8.3.1 and Sec. 8.4 is based on a cooperation

with Markus Fidler and Jörg Liebeherr and partially available in [88, 89, 90]. The

other sections in this chapter are joint work with Markus Fidler.

8.1 comparison to available bandwidth estimation

For the comparison of our procedure from Sec. 7.1 to well known available band-

width estimation tools, we customize the system description to a single value, the

available bandwidth. Sec. 7.1.2.3 depicts in detail how our procedure can be used to

estimate the available bandwidth. In summary, the estimate is given by the greatest

probing rate for which a steady state delay distribution is assumed. We present

results for single-hop as well as multi-hop network paths and also recover the

analytical findings from Sec. 6.

We reuse the network topology illustrated in Fig. 7.2 and the cross-traffic charac-

teristics specified in Sec. 7.1. Summarized shortly, the random cross traffic emits

packets at constant rate with packet sizes following a truncated Exponential or

truncated Pareto distribution. Each cross-traffic flow shares exactly one link only

with the probe traffic. The bottleneck capacity is 100 Mbps that is utilized by cross

traffic with a mean rate of 50 Mbps, whereof a long-term available bandwidth of

α∞ = 50 Mbps follows. To be consistent with existing experimental evaluations of

available bandwidth estimation tools, FIFO scheduling12 is used.

12 Here, we anticipate results from Sec. 8.3.2, where effects of various scheduling disciplines are analyzed.
In short, FIFO scheduling is non-linear for short time periods. In Sec. 8.3.2, we show the applicability
of the system identification procedure to networks with FIFO scheduling.
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Figure 8.2: Available bandwidth estimates from various tools. Each box shows the median,
0.25 and 0.75 percentiles, and 0.05 and 0.95 percentiles from 100 trials. Our
procedure SCest provides estimates that correspond well to the long-term
available bandwidth of 50 Mbps for Exponential as well as Pareto cross traffic.
It also performs comparable to the established available bandwidth estimation
tools Pathload and TOPP.

8.1.1 Single-hop Network

We evaluate our system identification procedure by comparing it to well-known

available bandwidth estimation tools as Pathload, IGI/PTR, Spruce, and TOPP

(implemented as dietTOPP [63]) in the following. All available bandwidth estimation

tools return the estimate as a single value, except the tool Pathload. It expresses the

available bandwidth as a range to account for variability of the available bandwidth.

We set the buffer size at the bottleneck link to 200 packets, which causes moderate

packet loss in this scenario. Since our probing procedure is similar to the one of

Pathload, we choose a similar configuration with racc = 1 Mbps, a train length of

N1=Nmax =100 packets and I=11 iterations. Deviantly, Pathload uses 12 iterations;

we choose here an odd number to achieve a clear majority decision as described

in Sec. 7.1.2.3. For all other tools, we use their default parameters. We repeat the

measurement for each tool 100 times.

Fig. 8.2 presents the results as box-plots, each box shows the median, the 0.25

and 0.75 percentiles, and the 0.05 and 0.95 percentiles for 100 repetitions of each

tool. For Pathload the upper bound and lower bound of the range are labeled as

PL lb and PL ub, respectively. We denote our service curve estimation tool as SCest.

As reference, the long-term available bandwidth is added as a horizontal line.
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The performance of our procedure is comparable to Pathload and TOPP, which

track the available bandwidth well. In case of the bursty Pareto cross traffic, our

procedure performs better than all tools except TOPP, which provides comparable

results. The amount of probing traffic is comparable to the available bandwidth es-

timation tool Pathload, which uses packet trains of length 100 and 12 iterations [59].

In addition to the representation of the estimate as one value, our system identifica-

tion procedure returns a system model, namely a service curve, that considers the

available bandwidth on arbitrary scales.

8.1.2 Multi-hop Network

In this section, we present available bandwidth estimation results for a network

path with multiple bottleneck links. In such networks a significant underestimation

of the long-term available bandwidth is reported e.g., in [60]. We explain this un-

derestimation analytically in Sec. 6.2, in which we prove that the service process of

such systems given by Eq. (2.11) is less than or equal to the available bandwidth

defined in Eq. (3.2). Equality only holds in the long-term as the measurement dura-

tion approaches infinity. By varying the train length, we examine these analytical

findings in this section by comparing estimation results of our probing procedure

from Sec. 7.1 and the tool Pathload, which is often consulted as a benchmark.

We set up a network topology according to Fig. 7.2 with one, three, and five

bottleneck links. We use large buffers of 106 packets to avoid additional effects

due to packet loss since we are only interested in the observation of effects of the

multiple bottleneck links. We restrict the cross traffic to Exponential cross traffic

and use the tool Pathload to confirm the findings described in Sec. 6.2.

We estimate the available bandwidth for train lengths ranging from 100 packets

to 1600 packets. For the tool Pathload, we report the upper bound and lower

bound, and for the estimate from our tool SCest, we show the long-term available

bandwidth for racc = 1 Mbps. We slightly modify Pathload to support a configurable

train length, by default Pathload sends only packet trains of 100 packets. We perform
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Table 8.1: Available bandwidth estimates for a multi-hop topology with multiple bottleneck
links.

available bandwidth estimate [Mbps]
train SCest Pathload

length lower bound upper bound
[packets] bottleneck links bottleneck links bottleneck links

1 3 5 1 3 5 1 3 5

100 48 43 41 50 43 38 58 53 44

200 48 45 44 51 45 41 54 52 45

400 48 47 46 51 47 43 53 51 45

800 48 47 47 51 49 45 52 51 46

1600 48 48 48 51 49 46 51 51 47

100 runs for each train length and compute the median of the results, which are

presented in Tab. 8.1.

The results show that for a single bottleneck link both approaches track the

long-term available bandwidth well by using short and long trains. However,

increasing the number of bottlenecks and using short trains, leads to a systematic

underestimation of the long-term available bandwidth as expected. The long-term

available bandwidth is recovered if the train length is increased, as also predicted

in Lem. 6.3. This is confirmed by our procedure as well as Pathload and shows the

need for a train length adaptation as we propose in Sec. 7.1.2.2 and Sec. 7.2.2 to

observe the long-term available bandwidth.

For the previous comparative evaluations, we estimate the long-term available

bandwidth. However, our system identification is able to estimate the service on

arbitrary scales, which we demonstrate in the following sections.

8.2 comparison of service curve estimation procedures

Another system identification approach developed in the network calculus is given

in [80]. It shares many similarities with our approach since it also relies on a black-

box model and uses a similar probing procedure for the identification of the system.

The difference is the assumed system class in [80]. It assumes a deterministic time-
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invariant linear system, whereas we rely on a time-variant system that accounts for

randomness. We provide a demonstration of the impact of the assumed system by

the comparison of these two approaches.

For the comparison, we conduct an experiment with a single-hop topology

with FIFO scheduling and large buffers (of 106 packets) according to Fig. 7.2. The

approach in [80] is based on constant rate packet train probes with fixed train

length and with increasing probing rates for the single trains. For each probing

rate multiple iterations are performed. Each iteration yields one service curve,

the average of these curves gives the final estimate. We set the fixed train length

to 800 packets (similar to [80]), for each rate we perform 200 iterations, and the

increment of sequent rates is set to 8 Mbps. Using the probing procedure from

Sec. 7.1, these parameters yield a maximum train length of Nmax =800 packets with

an initial length of N1 = 100 packets, racc =8 Mbps, and I=200 iterations. Further,

we set ξ = 0.05. We perform the comparison in the min-plus algebra as it is used

in [80]. We therefore perform the estimation in the max-plus algebra and transform

it into the min-plus algebra as specified in Sec. 5.3.3.

In detail, we compare the ε-effective service curve estimate to the average deter-

ministic service curve estimate from [80]. Moreover, we show confidence intervals

for both approaches to compare the reliability of the estimates. For the ε-effective

service curve estimate, the confidence intervals follow from the confidence inter-

vals of the quantiles, see Sec. 7.1.2.4. The confidence intervals of the deterministic

approach are computed for the mean values of the individual samples. We use a

confidence level of 0.95.

The results are presented for Exponential cross traffic and Pareto cross traffic

in Fig. 8.3. The ε-effective service curve and the deterministic service curves are

plotted as black lines, the range between the upper and lower confidence intervals

is shown as a filled area, and reference lines with a slope of 50 Mbps are added

as dashed lines. In case of the friendly Exponential cross traffic both approaches

perform similar; the deterministic approach slightly overestimates the service since

the slope increases above 50 Mbps. Furthermore, the confidence intervals show a

reliable estimate. In the case of the bursty Pareto cross traffic our new procedure still

delivers an accurate estimate of the service since it discovers the long-term available



8.3 wired networks with random cross traffic 101

time [ms]

d
a
ta

 [
M

b
it

]

0 50 100 150 200
0

2

4

6

8

10

deterministic

service curve

ε−effective

service cure

(a) Exponential cross traffic

time [ms]

d
a
ta

 [
M

b
it

]

0 50 100 150 200
0

2

4

6

8

10

deterministic

service curve

ε−effective

service curve

(b) Pareto cross traffic

Figure 8.3: Comparison of the ε-effective service curve estimates to deterministic service
curve estimates. For the friendly Exponential traffic both estimates show similar
results, but for the bursty Pareto traffic only the ε-effective service curve estimate
matches the long-term available bandwidth of 50 Mbps (indicated by dashed
lines) well and shows a robust result. The estimates are indicated by black lines
and the shaded areas specify the 0.95 confidence intervals.

bandwidth closely. In addition, the confidence intervals are close to the estimate.

The deterministic approach underestimates the service significantly with confidence

intervals that indicate an unreliable estimate. For the approach from [80], these

results are expected since it was designed for deterministic networks. The results

show exemplary for networks with small variability that deterministic approaches

can still be applied with reasonable accuracy. However, in networks where the

assumption of small variability does not apply, deterministic approaches obviously

fail. Moreover, deterministic approaches do not contain any information on the

probability of the service. On the contrary, the ε-effective service curve inherits

additionally a violation probability that accounts for it.

Next to this comparative evaluations, we present ε-effective service curves and the

representation as ε-effective available bandwidth of various networks with random

service obtained by system identification.

8.3 wired networks with random cross traffic

In the following, we present service curve estimates for wired networks using

the network topology presented in Fig. 7.2. If not stated otherwise, a single-hop

topology employing priority scheduling with priority for the cross-traffic at the
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bottleneck link is used. We present estimates for limited and unlimited scales using

the procedure described in Sec. 7.1, where also the estimation of limited scales is

illustrated. For the limited scale, the train length N is set to a maximal value Nmax.

We further present effects of various scheduling disciplines and packet loss due to

small buffers at the bottleneck link. Thereby, we also demonstrate the difference

between a service curve estimate and the available bandwidth. Moreover, we present

estimates for networks with multiple bottleneck links and analyze the intrusiveness

of our procedure.

We use random cross traffic following a truncated Exponential distribution or a

truncated Pareto distribution as specified in Sec. 7.1 with a mean rate of 50 Mbps,

resulting in a long-term available bandwidth of α∞ = 50 Mbps. As in Sec. 8.1.2, for

multi-hop networks, we only consider the Exponentially distributed cross traffic.

The configured probing parameters are racc = 4 Mbps, I = 250, N1 = 100 packets,

and ξ = 0.05 for the experiments in this section. The results are presented by a

service curve in the min-plus algebra due to the more intuitive representation.

Therefore, we use the lower bound from the inversion defined in Thm. 5.4.

8.3.1 Unlimited and Limited Scales

In Sec. 8.1, we show that an estimation of the long-term available bandwidth is

feasible with a small amount of probing traffic using a heuristic based on our

trend test and a majority decision, which is explained in Sec. 7.1.2.3. Applying

the heuristic allows a robust estimation without estimating the steady state delay

distribution. As described in the context of Thm. 5.1 and derived in Eq. (5.8), the use

of the delay estimates measured during the transient state, allows the construction

of a service curve for a limited scale. Such a service curve estimate T̃ε
S (n) is obtained

by using a maximum train length Nmax that does not observe the steady state delay

distribution. The estimate holds then for the limited interval [0, Nmax − 1]. Using

an interval of interest by choosing N adequate, we obtain a service curve for that

interval. Such intervals were introduced in the min-plus algebra as time scale bound

in [25].
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Figure 8.4: Comparison of service curve estimates for unlimited and limited scales. All
estimates converge to the long-term available bandwidth indicated by dashed
lines. For Exponential traffic the estimates can hardly be distinguished, but for
the Pareto traffic estimates obtained from longer trains result in less service due
to the capability to observe larger delays.

Fig. 8.4 presents service curve estimates for limited scales with maximum train

lengths in the interval Nmax = [800, 12800] and service curve estimates with train

lengths that are increased until stationary delays are observed. Dashed reference

lines are added to the figure indicating the analytical long-term available bandwidth

of 50 Mbps by their slope.

The results show that all service curve estimates closely recover the long-term

available bandwidth of 50 Mbps. The service curves differ when the segments

bend and converge to their maximum rate. Evidently, if longer packet trains are

used, service curve estimates bend further from the origin, and due to their longer

duration they are able to observe larger delays. For the friendly Exponential traffic,

the effect is marginal as Fig. 8.4a indicates, and all estimates are close to the estimate

using delay quantiles from the steady state delay distribution. For the more bursty

traffic, the service curve estimates with restricted train lengths still show a deviation

for large packet trains of 12800 packets.

In general, long packet trains may be required to estimate service curves from

the steady state. For this reason, a train length adaptation is needed to increase

the train length to observe it. If the scale of interest is known in terms of packets

or as a time scale bound, the maximum train length can be reduced notably. For

example, using a train length of 12800 packets already covers a time scale of 3.2

seconds at the maximal probing rate of 48 Mbps. Such a time scale already exceeds
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the range of interest for many real time applications since delay requirements are

often stricter.

8.3.2 Scheduling, Limited Buffers and Multiple Bottleneck Links

In real networks various scheduling disciples are deployed, schedulers use buffers

with limited size, and network paths typically consists of multiple schedulers in

series. Multiple bottlenecks may occur at these schedulers since the path is shared

with random cross traffic. We relax some of the assumptions made in the previous

sections and present results for the scenarios listed before. We also illustrate the

representation of the service curve as an available bandwidth.

scheduling and limited buffers We evaluate the service for various

scheduling disciplines and small buffer sizes that cause minor packet loss. The

scheduling discipline decides about system properties as linearity, which is de-

scribed in Chap. 2. The assumption of a max-plus linear system made in Thm. 5.1

is not always met. For example, the commonly used FIFO scheduler becomes non-

linear if the total incoming traffic rate exceeds the maximal capacity of the scheduler.

If not overloaded, the scheduler acts as a linear system [80]. The rate selection of

our procedure ensures that on average the incoming traffic to the system, which

consists of probe traffic and cross traffic, does not saturate the system. However,

short-term violations of the linearity assumption occur since the traffic is packetized

and the cross traffic is also bursty.

In the preceding experiments and simulations, packet loss is avoided by using

sufficiently large buffers. However, the usage of the max-plus algebra enables the

consideration of loss. We model packet loss as an infinite delay, i.e., we set the delay

of packet n to TD(n) = ∞ if it is lost. Hence, if the ratio of delay samples (i.e. the

last packet of a train) that indicates loss, is equal to or greater than ξ, the probing

rate r yields a delay quantile of W̃ξ(r) = ∞. Hence, the probing rate r does not

contribute to the service curve estimate due to the minimum in Eq. (5.3).
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Figure 8.5: Comparison of service curve estimates for the scheduling disciplines: priority,
fair and FIFO with large and small buffers. All estimates converge to the long-
term available bandwidth of 50 Mbps. Fair scheduling provides the best service
since up to the long-term available bandwidth the service is instantaneously
available. Priority scheduling gives the worst service since cross-traffic is sched-
uled first. The service of FIFO scheduling is in between because probe and cross
traffic is scheduled in order of the arrivals, it further improves for small buffers
since large bursts are pruned.

The network setup is as depicted in Fig. 7.2 with one bottleneck link, whereby we

estimate the service for various scheduling disciplines and buffer sizes. We set the

maximum train length to Nmax =800. Fig. 8.5 comprises results for these systems

with FIFO scheduling and large buffers of 106 packets as well as small buffers with

200 packets. The experimental results also compare these service curve estimates to

estimates of systems with fair scheduling or priority scheduling with priority for

the cross traffic; both scheduling disciplines are max-plus linear. All service curve

estimates indicate a delay of about 10 ms that conforms with the propagation delay

in the network topology, see Fig. 7.2. We recover as long-term available bandwidth

48 Mbps, i.e., also under packet loss the long-term available bandwidth is accurately

detected. In this experiment, the packet loss is below 1% for all probing rates in the

setup with small buffers.

Different scheduling disciplines result in different shapes of the curves. Fair

scheduling guarantees the fair proportion for the probe traffic and the cross traffic

regardless of the kind of cross traffic. After the propagation delay of about 10 ms a

straight line with a slope reciprocal to the maximal probing rate follows. For the

other scheduling disciplines, segments with lower probing rates contribute to the

service curve estimate. The service curve estimate of the priority scheduler con-
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verges to the long-term available bandwidth last. The curve of the FIFO scheduler

is between the curves of the fair scheduler and the priority scheduler. The service

for FIFO scheduling is greater as for priority scheduling since FIFO scheduling

forwards traffic in the order of arrivals, whereas for the priority scheduler the

priority is given to the cross traffic.

Moreover, the impact of the different types of cross traffic is clearly visible for

priority scheduling and FIFO scheduling. For these disciplines, the service curve

converges later to the long-term available bandwidth for the more bursty Pareto

traffic since large bursts induce additional delay at the queues of the schedulers. The

fair scheduler guarantees a fair share, thereby, the burstiness of the cross traffic does

not impact the service of the through flow. For the Exponential traffic, a difference

between small and large buffers is hardly visible, on the contrary for the Pareto

traffic, the service is greater for FIFO scheduling with small buffers. This is due to

the burstiness of the Pareto traffic at which large burst are cut off by the limited

buffer size resulting in more leftover service.

representation of the service curve as available bandwidth As

we noted, the available bandwidth expressed by a single value or a range conceals

information about the time scale on which the bandwidth is available, and whether

the time scale is sufficient to observe the long-term available bandwidth. A service

curve includes information on the available bandwidth as well as on the time scale

of its availability. Next, we highlight this by expressing the ε-effective service curve

estimate S̃ ε(t) as an estimate of the ε-effective available bandwidth α̃ε(t) = S̃ ε(t)/t.

In Fig. 8.6, we show the estimation result for Exponential cross traffic and compare it

to an estimate obtained by the tool Pathload. In the previous comparison presented

in Sec. 8.1, we did not consider the information on the scale of availability of the

service since we constrained the estimation to the long-term available bandwidth.

As depicted in Sec. 7.1.2.3, for the estimation of service curves and the available

bandwidth estimation the probing traffic cannot be reduced in the same extent as

for available bandwidth estimation. In particular, the number of iterations has to be

sufficient large to compute delay quantiles.
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Figure 8.6: Representation of the ε-effective service curve as ε-effective available bandwidth
αε(t) and comparison to estimates obtained with the tool Pathload. Also an
analytical reference is added for this experiment that is matched well by our
estimate.

We use the same network topology as before with FIFO scheduling and set the

probing parameters Nmax =800 packets and I = 250 iterations.

Furthermore, we also present a validation of our system identification procedure

by comparing the estimate to an analytical reference for the Exponential cross traffic.

The analytical ε-effective service curve follows from a leftover service curve [25] by

using a sample path bound for the cross traffic. This sample path bound on the

cross-traffic follows from the Erlang distribution and the application of the union

bound. The Erlang distribution arises from the sum of exponentially distributed

random variables and yields a point-wise bound. At last, the sample path bound is

obtained by using the union bound. Fig. 8.6 shows the results: The lower bound

of the tool Pathload tracks the long-term available bandwidth well, but it does

not include information about the time scale of service availability. The estimated

ε-effective service curve includes this information and shows that on time scales up

to 300 ms the available bandwidth αε(t) is significantly smaller. The comparison to

the analytical reference shows that the estimate matches the analytical reference

well.
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Figure 8.7: Service curve estimates for network topologies for one to five bottleneck links.
Close to the abscissa the propagation delay is recovered. Increasing the number
of bottleneck links induces further queueing delay indicated by the estimates,
which converge later to the long-term rate.

multi-hop network In the experiments before, we consider a single bot-

tleneck. In multi-hop networks with random service, the bottleneck can alternate

between the links, i.e., the link that limits the service may vary, and also multiple

bottlenecks may occur simultaneously on a network path.

We present the service curve estimate for one, three, and five bottleneck links with

large buffers of 106 packets featuring identical characteristics in Fig. 8.7. We set the

maximum train length to Nmax =1600; Tab. 8.1 presents that this limit is sufficient

to track the long-term available bandwidth closely. Each service curve indicates the

propagation delay of the network path, which is 10 ms for one bottleneck link, 30 ms

for three bottleneck links, and 50 ms for five bottleneck links. The propagation delay

is visible at the first increase of the service curves close to the abscissa. The first

increase of all service curve estimates show that on short time scales the service is

less than the long-term available bandwidth of 50 Mbps. This is indicated by the

slope of the service curves, that is less than the slope of the dashed reference lines,

which have a slope corresponding to a rate of 50 Mbps.

In the long-term, all estimates converge to the long-term rate. Note that, the hori-

zontal distances between the estimates increase, which indicate that the queueing

delay increases with multiple bottleneck links.
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Figure 8.8: Service curve estimates for TCP and UDP cross traffic. Since all estimates recover
the long-term available bandwidth and converge to a rate of about 50 Mbps,
our procedure is non-intrusive. Otherwise, the probing would displace the TCP
cross traffic resulting in rates above 50 Mbps.

8.3.3 Evaluation of the Intrusiveness

To evaluate the intrusiveness of our probing procedure, we replace the non-elastic

UDP cross traffic used in all experiments before by elastic TCP traffic in this

experiment. Since TCP integrates a congestion control algorithm, the constant rate

UDP probe traffic could displace the TCP cross traffic if the probing procedure

was intrusive. We use the congestion control algorithm TCP Cubic [51], which is

the default algorithm in Linux today. We generate 1, 10, and 100 TCP cross traffic

flows, which transmit in total an average rate of 50 Mbps. The network topology

and the cross traffic distributions are the same as before with the difference that the

cross traffic is transmitted by TCP. The scheduling is FIFO with large buffers (of 106

packets) and the maximum train length is Nmax =800 packets.

Fig. 8.8 presents the service curve estimates. All service curves recover the

long-term available bandwidth of 50 Mbps closely, which shows that our probing

procedure is non-intrusive because it does not displace the elastic TCP cross traffic

and does not return an estimate above 50 Mbps. Furthermore, the experiment shows

the impact of the transport protocol TCP. For the Exponential traffic a difference

is hardly visible, but for the bursty Pareto traffic the service is lowered by the

use of TCP and reduces further with the number of flows. Since numerical delay

values can hardly be read from Fig. 8.8, we further show the estimates of the delay
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Table 8.2: Long-term available bandwidth estimates and delay quantile estimates for elastic
cross traffic.

cross Exponential Pareto
traffic available bandwidth latency available bandwidth latency
flows [Mbps] [ms] [Mbps] [ms]

1 UDP 48 16 48 19

1 TCP 48 15 48 22

10 TCP 48 16 48 23

100 TCP 48 16 48 24

quantiles for a probing rate of 48 Mbps in Tab. 8.2. We restrict the presentation in

the table to that rate since it exhibits the strongest effect on the delay quantile. The

delay increases from 19 ms for 1 UDP flow to 24 ms for 100 TCP flows. The figure

and the table show that TCP intensifies the effect of the greater delay quantile for

bursty traffic because the delay quantiles further increase with the number of TCP

flows.

8.4 ieee 802.11a wifi networks

In wired networks, the source of randomness of the service is usually the multiplex-

ing of random traffic. Wireless networks exhibit additional sources of randomness.

IEEE 802.11a Wifi networks have a complex MAC protocol, whereby the assumption

of a work-conserving link with constant capacity does not hold. These networks

use carrier sense multiple access and collision avoidance (CSMA/CA) for medium

access. In the context of IEEE 802.11a networks CSMA/CA is implemented by

the DCF. Expressed in simplified terms, before a station accesses the medium, it

senses the medium and only proceeds if the channel is free. If it is free, it waits

a random time and then sends the packet. An acknowledgement packet confirms

the successful transmission. If the acknowledgement is not received, the range

of the random waiting time is increased and the packet is retransmitted using

the same procedure. This channel access procedure achieves fairness between the

stations in the long-term [21]. For further details on the protocol specification,
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Figure 8.9: IEEE 802.11a network topology with one probe traffic sender and up to three
cross traffic senders that share a wireless network, which is connected via a
100 Mbps wired link to a receiver.

see [5]. Due to this channel access procedure, the service that a station receives

is random (because of random waiting times and failed transmissions) and non-

work-conserving scheduling (because of waiting times even if the channel is idle).

Further randomness occurs from the variability of the wireless channel caused by

interference and fading. We minimize this source of randomness in this experiment

by using a channel, at which no other IEEE 802.11 network is operating. We use a

free channel since we are interested in the influence of the DCF on the service on

short as well as on long time scales.

Fig. 8.9 shows the experimental setup arranged in a local testbed. The wireless

network is shared by one probe traffic sender and up to three cross traffic senders.

All flows are transmitted via an access point to a receiver. The connection between

the access point and the receiver has a rate of 100 Mbps. To estimate the impact of

the DCF on the service, we use constant rate cross traffic, which avoids additional

randomness. If a packet size of 1500 Byte is used, the maximal throughput of a

IEEE 802.11a network is about 30 Mbps, see e.g., [20, 66]. We therefore generate

cross traffic with an aggregate throughput of 25 Mbps. This rate is equally divided

between the cross traffic senders, which ensures that each station uses its fair share.

Since the DCF achieves fairness in the long-term [21], we compare the results to a

wired experimental setup, in which the access point is replaced by a router. Thereby,

a fair scheduling discipline is deployed and the wireless channels are exchanged
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Figure 8.10: Available bandwidth αε(t) for an IEEE 802.11a wireless network compared to
the available bandwidth of a wired network with fair scheduling for up to three
cross traffic senders. The wireless network shows a much slower convergence
and also the long-term rate stays below the one of the wired network. The
smaller service in the wireless network results from the random channel access,
possible interference on the channel, and retransmissions induced by the MAC
protocol.

by wired links. In the wired network, it can be assumed that the channel access

is deterministic and that no packet collisions occur on the link. This allows us to

compare the service curve estimates of a work-conserving fair scheduler to the

estimates of the non-work-conserving long-term fair channel access in IEEE 802.11a

networks. The probing procedure described in Sec. 7.1 is used with a maximal train

length of Nmax = 800 packets, I = 250 iterations, ξ = 0.05, and racc = 1 Mbps. As

an intuitive form of presentation, we show the estimates as a ε-effective available

bandwidth α̃ε(t) = S̃ ε(t)/t in Fig. 8.10. The solid lines show the estimates of the

wireless network and the dash-dotted lines the estimates of the wired network.

For the wired experimental setup with a fair scheduling discipline, all curves

converge fast to their theoretical rate, which is 30 Mbps without cross traffic,

15 Mbps for one cross traffic flow, and 7.5 Mbps for three cross traffic flows. The

rates follow from the fair share between the total number of stations. All estimates

converge to their expected rate that is in the range of the analytical rate minus the

accuracy defined by racc.

In comparison to the standard fair scheduling discipline, the ε-effective available

bandwidth of the IEEE 802.11a network converges slower to its long-term rate.
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This results from the additional variability introduced by random waiting times at

the medium access, collisions, interference, and retransmissions of packets. This

also lowers the long-term available bandwidth if compared to the wired network

topology.

8.5 window flow control protocols

In this section, we evaluate the probing procedure from Sec. 7.2 by two simulations

of flow control protocols. First, we show the applicability to a window flow control

protocol for which analytical results exist in the network calculus. Second, we

present results for a congestion control protocol. For the following simulations,

the discrete event simulator OMNeT++ [4] is used. To estimate the service curve

the probing procedure from Sec. 7.2 is simplified by using fixed train lengths.

We present the estimates in the max-plus algebra since analytical results are also

available in this algebra for the first simulation. This avoids the application of the

inversion to the min-plus algebra, which would yield an imprecision of one packet.

8.5.1 Window Flow Control with Fixed Window Size

Window flow control regulates the transmission rate based on packets in transit

on a network path. The flow from the sender to the receiver is controlled by a

window flow control element, where the window size w determines the maximum

number of packets in transit on this path. The element acts as follow: if less than

w packets are in transit, new packets may enter the network; else new packets are

buffered at the flow control element and enter the network when packets depart

from the network. The departure of a packet from the network is signaled by an

acknowledgement packet sent from the receiver to the flow control element. In this

simulation, the network consists of a sender and a receiver connected by a link

with unlimited capacity. The packets as well as the acknowledgements experience

the same delay d. No packet loss and no further delays occur due to processing or
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Figure 8.11: System model for window flow control with delay d on the forward and reverse
path and a window size of w.

transmission. This example shows a deterministic behavior because of the constant

window size and constant network path properties.

Fig. 8.11 illustrates the system model for which analytical results exist e.g.,

in [8, 29]. To compare our estimates to the analytical results, we use the service

curves from [29, Lem. 6.3.5] and [29, Sec. 6.3.4], which are given in the max-plus

algebra. Therein, the service curve of the delay element Od is defined by Od(n) = d,

i.e., each packet experiences a delay of d. The service curve of the window element

δw(n) is given by:

δw(n) =

−∞ n < w

0 n ≥ w
.

From this definition, it follows that a packet is instantaneously forwarded without

any delay if n ≥ w, else it experiences a delay of −∞. The service curve of the

network is

TS(n) = max{Od(n); Od ⊗Od ⊗Od ⊗ δw(n); O5d ⊗ δ2w(n) . . .}

= (Od ⊗Od ⊗ δw)
∗ ⊗Od(n)

, (8.1)

The structure of the maximum of the right term in the first line of Eq. (8.1) is given

by the feedback loop shown in Fig. 8.11: for the first w packets, TS(n) = d due to the

delay of the forward path, any further terms are masked by −∞ since n < w; for

w ≤ n < 2w, TS(n) = 3d due to the repetitive structure of the loop; TS(n) increases

further in n to (2bn/wc+ 1)d. This repetitive structure is also expressed by the

super-additive closure (.)∗ in the second line of Eq. (8.1), for details see [29]. The

service curve becomes a staircase function, which is shown in Fig. 8.12.

We configure the parameters w=100 packets and d=50 ms that yield a long-term

available bandwidth of α∞ = w
RTT =1000 pps, where RTT=2d is the round trip time.
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Figure 8.12: Analytical service curve, estimated service curve constructed of linear segments,
and long-term available bandwidth (avbw) for window flow control. The
estimated service curve T̃ε

S (n) gives an upper bound to the analytical one
TS (n). The estimated service curve recovers the long-term available bandwidth,
but it also accounts for delays. The dash-dotted lines show the single service
curve elements that see a stationary delay. Due to this deterministic example,
only the segment with the highest rate of 1000 pps contributes to the final
estimate.

If packets can enter the network instantaneously, they and the acknowledgements

only experience the constant delay d.

For the estimation, we use a linear rate selection with racc =100 pps and collect 250

delay samples of a sufficiently long train with a mean gap of N I
S/I = 1000 packets

and no offset No f f = 0. For all probing rates less than or equal to the long-

term available bandwidth, packets experience a delay of 50 ms, greater rates see

an increasing delay. The constant delay for rates below the long-term available

bandwidth follows from the deterministic behavior in this scenario, which results

in a deterministic service curve (i.e. ε = 0). A similar estimation approach for

deterministic networks is given in [80]. We include this example to demonstrate that

our estimation procedure is applicable to protocols such as window flow control.

Fig. 8.12 shows the analytical service curve (by a green line) from Eq. (8.1) and

the estimated service curve (by a red line). The result confirms that the estimate

is an upper bound on the service. Since the service curve is constructed of linear

segments, which are indicated by the dashed-dotted lines, the estimate cannot track

the steps of the analytical curve. The delay up to a probing rate of α∞ is in this
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deterministic example 50 ms (therefore it is also stationary), the estimate follows

from the linear segment with a y-axis intercept of 50 ms and a slope of 1/1000.

This example illustrates the difference between a service curve and the long-term

available bandwidth indicated as a dashed line. Although both curves have the

same slope, the service curve contains delay information.

8.5.2 Congestion Control with Congestion Notification

The size of the window of the flow control protocol presented in the former section

can be made variable, e.g., to implement a rate control that adapts dynamically to

congestion experienced on a network path. Such an adaptive behavior results in a

time-varying rate of the sender.

In the following, we evaluate the service by simulation of a congestion control

protocol that reacts on congestion notifications indicated by marked acknowledge-

ments. As in the simulation before, the outgoing traffic of the sender is regulated

by a window, but now the window size is adapted by congestion notifications. We

refer to this window as the congestion window. The sender halves the window

on receiving a congestion notification. If the acknowledgement is not marked, it

increases the window by one each RTT. The basic principle of this scenario resem-

bles to TCP Reno congestion avoidance without packet loss, which is achievable by

using explicit congestion notification (ECN) [46, 110] for marking. The long-term

available bandwidth of such a network is given by the Mathis equation [93], which

we use to validate our estimate. The Mathis equation is

α∞ =
MSS
RTT

K
√

p
, (8.2)

where MSS is the maximum segment size, RTT the round trip time, p the packet

loss probability, and K a constant, which depends on the kind of acknowledgements

and the kind of congestion notification. By the use of acknowledgements for every

packet and random notification, where packets are marked according to a Bernoulli

distribution with probability p, the constant is K = 1.31, see [93].
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Figure 8.13: Service curve estimate for congestion control for a loss rate of p = 10−3. Fig. (a)
shows the construction of the service curve estimate by the single segments
(dash-dotted lines) in the time scale of 1 s. The last rate that contributes to the
estimate is 2700 pps, which is clearly below the long-term rate. On a large time
scale the estimate converges to the long-term rate of 4100 pps, which is in the
expected range of [α∞ − racc, α∞) given by Eq. (8.2).

For the experimental setup, we choose following parameters: the network path

has an unlimited capacity, a delay of 5 ms, and a marking probability of p=10−3

following a Bernoulli distribution. The long-term rate for this setup is 4143 pps,

which follows from Eq. (8.2). We collect 15000 delay samples of sufficiently long

trains with No f f = 106 packets and a mean distance between samples of NS
1 /I = 106

for probing rates from 2000 pps to 4200 pps with a linear increase of racc = 100 pps.

For rates up to 4100 pps, stationary and independent samples are detected as

expected due to the long-term rate of 4143 pps.

Fig. 8.13 presents the short-term and the long-term evolution of the service curve

estimate with ξ = 10−3. The curve converges in the long-term, which is here about

250 s, to the rate of 4100 pps, but in the short-term of about 1 s, the service is

significantly lower. This first observation already shows the impact of congestion

control on the service. Expected rates, e.g., as predicted by the Mathis equation,

are achieved only in the long-term, which is in this example about 250 s. Real-time

applications, which rely on such protocols, and which have delay requirements,

must account for these effects.

In this simulation, assumptions apply that are made in [93]. However, in real

networks effects occur that disturb these ideal conditions, e.g., packet loss features

correlations or implementations impact the expected protocol behavior. In the
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following section, we present experimental results obtained in real networks that

deploy the transport protocol TCP, whereof this last simulation is a simplification.

8.6 transmission control protocol

TCP is the prevalent transport protocol in the Internet as identified in [92]. It was

presented in 1974 in [26] and standardized in 1980 in [109]. To this day, it is an

active area of research since it is continuously adapted to current networks e.g.,

to networks with high bandwidth delay products (BDP), which is the product of

the round trip time (RTT) and the bandwidth. One fundamental extension was a

congestion control algorithm [56], which became a major area of research and led to

various algorithms, e.g., [9, 51]. Moreover, analytical models exist to determine the

performance of TCP; famous models for the long-term throughput are presented

in [93, 100]. However, the short-term behavior of TCP is also of interest since real-

time applications use TCP for data transport. Well-known examples are Skype for

audio and video telephony and the Adobe Flash platform for audio and video

streaming, see e.g., [24, 92]. In [24], the short-term behavior is analyzed by modeling

the delay of TCP connections. The results already show that the end-to-end delay

using TCP can comprise several seconds. However, analytical models of TCP offer

only a limited view on its behavior since the models typically use an idealized

protocol behavior due to manifold extensions and implementations of TCP. These

details are difficult to integrate in the analytical models. Our system identification

procedure enables the estimation of the service that TCP provides. It is able to

display the short-term as well as the long-term behavior of TCP and includes details

specific to extensions and implementations. The applicability of our procedure is

supported by [14], where it is shown that TCP is max-plus linear. We estimate the

service at the application layer. This comprises the characteristics of TCP as well

as of the network path and their interaction. In terms of operating systems, our

estimation result is the end-to-end service available to an application between the

sending socket and the receiving socket.
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Figure 8.14: Dumbbell network topology with one probe traffic sender and nine cross traffic
flows. The bottleneck is at router 1, where the link capacity is 100 Mbps with a
mean delay of 10 ms between router 1 and router 2.

Table 8.3: One way delays of network paths.

probe cross cross cross
delay [ms] traffic traffic traffic traffic

receiver receiver 1 receiver 2 receiver 3

probe traffic sender 10 - - -

cross traffic sender 1 - 12 11 9

cross traffic sender 2 - 11 8 10

cross traffic sender 3 - 9 8 12

In the following, we present estimates of the ε-effective available bandwidth for

essential configuration parameters such as the queue size at the intermediate routers,

the congestion control algorithm at the end hosts, and the queueing discipline at the

intermediate routers. We chose the representation as ε-effective available bandwidth

since the comparison of the estimates is more illustrative by a rate function.

For the experiments, we use the topology shown in Fig. 8.14, which is adapted

from [10]. The probe traffic and the cross traffic flows use TCP as transport protocol.

Cross traffic is sent by three senders and received by three receivers using the

software Iperf [3], which is a greedy application, i.e., it utilizes completely the

service the TCP connection provides. The cross traffic senders establish nine flows

from which each individual sender transmits one flow to each cross traffic receiver.
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The propagation delays of the flows are uniformly distributed in the interval from

eight to twelve milliseconds, see Tab. 8.3, to avoid synchronization between the

flows. The mean delay is ten milliseconds. TCP aims at fairness among flows, which

results in an expected long-term available bandwidth of 9 Mbps13.

The probing procedure described in Sec. 7.2 is used since the steady state behavior

is only observed for long time periods as already discovered by simulation of

congestion control in Sec. 8.5.2. The probing parameters used throughout this

section are No f f = 106 packets, NS
1 /I = 2000 packets, I = 750 iterations, ξ = 0.05,

and racc = 1 Mbps. The IP packet size is 1500 bytes, whereof 20 bytes and 32 bytes

are the header sizes of IP and TCP (including TCP timestamps in the option

field), respectively. We use blocking TCP sockets, i.e., if the TCP socket is full, the

application blocks at the socket until free buffer space is available. This avoids any

packet loss at the TCP socket. Socket buffer sizes at the sender and receiver are

chosen large enough, so that transmission rates of the TCP socket are only limited

by the congestion control algorithm.

8.6.1 Queue Size

The queue size at the router in front of the bottleneck link impacts the performance

of TCP significantly. For example, TCP Reno at the sender reduces its transmission

rate after experiencing packet loss. Thereby, the transmission rate may be reduced

below the link capacity. Meanwhile, the queue in front of the bottleneck link has to

hold enough data to utilize the link to achieve a full utilization. The queue must

therefore be able to store sufficient data. If only one flow utilizes the link, this queue

size should be set to the BDP, see [11, 126]. For many flows, smaller queue sizes are

sufficient for an almost full saturation of the link [11].

We estimate the service of a TCP flow for the topology depicted in Fig. 8.14. We

employ the congestion control protocol TCP Reno for all flows since analytical

results exist for the dimensioning of queues for TCP Reno as mentioned before. We

13 We display here the rate of the application layer; by subtracting packet headers a rate of 94 Mbps is
achievable on a 100 Mbps Ethernet link, whereof the fair share of ten flows is 9.4 Mbps and using
racc =1 Mbps gives an expected estimate of 9 Mbps for the long-term rate.
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Figure 8.15: The figure shows the end-to-end delays for probing rates from 1 to 9 Mbps for
the TCP through flow as 0.95 quantiles. The delay quantile increase significantly
with the probing rate and the queue size.

estimate the service for a queue size equal to the BDP (167 packets), half of the BDP

(83 packets), and one and a half of the BDP (251 packets).

The estimated delay quantiles for the construction of the service curves are

presented in Fig. 8.15. It demonstrates that the delay increases with the queue size.

An increase is expected since larger queues store more packets, which have to be

processed. However, the magnitude of the increase is substantial. Only for small

probing rates the delay quantile is close to the propagation delay of 10 ms plus

the maximal queueing delay, e.g., it is 20 ms if the size is equal to the BDP. For

higher rates the delay quantiles increase significantly. From this it follows that the

queue size impacts the behavior of TCP by inducing further delays. To examine this

effect, Fig. 8.16a and Fig. 8.16b show exemplary delay series of subsequent packets

for a rate of of 1 Mbps and 9 Mbps for a queue size of 167 packets. Timestamps

are captured at different measuring points to analyze where the delays originate

from. The measuring points at the sender are: the scheduled transmission time at

the application, the time at which the packet is delivered to the TCP socket 14, and

the time at which the packet is passed to the network interface card (NIC). At the

receiver the points are the time when the packet is transmitted from the NIC to

14 To measure delays from the generation of a packet until it is transfered to the socket, we use (deviant
to the other experiments in this section) non-blocking sockets and repeat the transfer until a packet is
successfully transfered. This time interval equals the time the socket would block otherwise.
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Figure 8.16: The figures show the delay series for different sections for an end-to-end path.
These sections are from the application to the socket at the sender (green area),
from the socket to the NIC at the sender (blue area), from the NIC at the sender
to the NIC at the receiver (yellow area), and from the NIC to the application
(red area) at the receiver for a TCP flow with an application rate of 1 Mbps
and 9 Mbps. For the low rate, delays are prevalent due to propagation and
queueing at the router and reordering at the receiver; whereas for the high rate
delays primarily arise from buffering and blocking at the socket of the sender.
The cumulative value of the delays presents the end-to-end delay.

the TCP socket and the time at which the packet is received by the application.

These five measuring points result in four delay values for each packet, which

are presented as stack lines. Fig. 8.16a demonstrates that the delay for a low

application rate arises from propagation and queueing in the network and buffering

at the receiver, which is caused by head of line blocking if data are lost and are

retransmitted to guarantee in-order delivery of data. On the contrary, Fig. 8.16b

illustrates that for a probing rate, which is close to the long-term rate, high delay

values arise due to buffering in the socket at the sender and due to waiting times

at the application if the socket buffer is full. The network delay and the delay

at the receiver are negligible in this case. This figure also shows that the delay

values last for long periods. The accumulation of delays at the senders results from

variations of the transmission rate of the TCP socket and the transmission rate

of the application; if the application rate is higher than the transmission rate of

the socket, delays accumulate due to buffering and blocking of the sockets. For

example, the congestion window and thereby the transmission rate of the sender is

adapted according to the experienced packet loss, which again is influenced by the

queue size. Small buffers reduce the delay but may prevent the full utilization of the
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Figure 8.17: The figures show the available bandwidth αε(t) of TCP for different queue
sizes. The estimates show the strong impact of the queue size and the beneficial
characteristics of using a queue size equal to the BDP.

link. In this experiment, if the queue size is half of the BDP, the long-term rate of

9 Mbps is still achievable. This is indicated by the highest probing rate for which a

steady state delay quantile exists. Delay series just give an extraction of the behavior

of TCP, we present the complete behavior in Fig. 8.17 by the presentation of the

service as ε-effective available bandwidth αε(t). We show the short-term and the

long-term behavior in two separate figures since it extends to various magnitudes.

Fig. 8.17b demonstrates the time scale at which the available bandwidth converges

to the long-term rate; for the greatest queue size the rate converges at about 200 s.

We show the short-term behavior in Fig. 8.17a for a time scale of 2.5 s. For example,

this could be a time scale of interest due to buffering constrains or burst period

lengths. The figure shows that for the queue size of one and a half of the BDP, the

ε-effective available bandwidth αε(t) is about half of the long-term rate. For smaller

queue sizes the ratio improves, but it is still significantly lower than the long-term

rate. Practical relevance is that queues can be set to smaller sizes than the BDP

even for a small number of flows. The maximal long-term rate can still be utilized.

For a large number of flows, a nearly full link utilization may also be achieved

with much smaller queues, which are significantly smaller than the BDP as shown

in [11]. Using large buffers not only increases the delay due to greater processing

times in the queues but also increases the delay induced by TCP itself substantially.
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8.6.2 Congestion Control Algorithm

Many congestion control algorithms were developed in the past. TCP Reno15 was the

prevalent algorithm for many years, but it is replaced by TCP Compound (default

in the Windows operating system) and TCP Cubic (default in the Linux operating

system). Further TCP variants exist, e.g., TCP Vegas [19] and TCP FAST [129], just to

name a few. Here, we compare the service of TCP Reno and TCP Cubic by estimation

of the ε-effective available bandwidth αε(t). TCP Cubic and its predecessor TCP BIC

are identified as the prevalent congestion control protocols on web servers in [133].

The most significant difference of TCP Reno and TCP Cubic is the adaptation of the

congestion window. The size of the window regulates the amount of data that can

be sent in one RTT by the sender, which leads to a time-varying transmission rate.

Modifications to this adaptation behavior influence thereby the temporal behavior of

the rate. TCP Reno and TCP Cubic differ in the way of the adaptation of the window

during congestion avoidance: TCP Reno uses a linear increase, whereas TCP Cubic

adapts the congestion window according to a cubical function. Furthermore, both

protocols reduce the congestion window if packet loss is observed, but TCP Cubic

reduces it by a smaller amount than TCP Reno. TCP Cubic is designed for networks

with a high BDP to adapt its transmission rate fast to the high bandwidth of the

link. For the topology in Fig. 8.14, the expected mean rate of one flow is about

10 Mbps and the RTT is 20 ms resulting in a BDP for this flow of 2 · 105 bit; in [57]

such a network is already classified as a network with a long delay path.

We estimate the service for the congestion control protocols TCP Reno and TCP

Cubic and illustrate the results as available bandwidth αε(t) in Fig. 8.18. The queue

size at the routers equals the BDP of the link, which is 167 packets. The results show

for the given scenario that the congestion control algorithm TCP Cubic slightly

outperforms TCP Reno on short time-scales. Nevertheless, in the long-term both

congestion control protocols are able to achieve the expected rate of 9 Mbps. Our

system identification procedure gives a complete picture on all time scales of the

two TCP congestion control algorithms.

15 We employ the implementations available in the operating system Linux with kernel 3.5. We do
therefore not differentiate between TCP Reno and TCP NewReno since also the TCP versions we use
deviate from the specifications.
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Figure 8.18: The figures illustrate the ε-effective available bandwidth αε(t) of TCP for the
congestion control protocols Reno and Cubic. The estimates in Fig. (b) show
that both protocols achieve the expected rate of 9 Mbps in the long-term, but
on short time-scales the performance of TCP Cubic is slightly better as Fig. (a)
indicates.

8.6.3 Active Queue Management

A further approach to improve the performance of TCP is active queue management

(AQM). Routers often use a FIFO drop tail queue, i.e., packets are processed in the

order of arrival and if the buffer of the queue is full, arriving packets are dropped,

which leads to correlated losses. AQM avoids this by signaling the congestion state

of a queue to the sender before a queue overflows and so avoids bursty packet

loss. Congestion signaling is performed by dropping single packets or marking

by using ECN. One well-known implementation is RED [46] and its successor

adaptive RED [47], which improves the sensitivity of RED with respect to the

parameter settings. RED drops or marks packets randomly before the queue is filled

completely. The probability that a packet is dropped or marked increases with the

filling level of the queue after a minimal queue size is exceeded.

Here, we compare estimates for a FIFO drop tail queue, a queue using adaptive

RED, the implementation in Linux since kernel 3.3., with and without ECN. Again,

we use TCP Reno since RED was originally designed for it. For the FIFO drop

tail queue, we set the queue size to the BDP (167 packets). We configure RED

accordingly to the guidelines from [45], except the minimal threshold, which is set

to 20 packets to achieve the long-term rate of 9 Mbps using RED without ECN.
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Figure 8.19: The figure compares the ε-effective available bandwidth estimates αε(t) for
drop tail queueing to queues using adaptive RED. The estimates show that
AQM can increase in particular the short-term behavior of TCP.

Using the recommended value of 5 packets, RED with and without ECN does

achieve a long-term rate of 8 Mbps.

The results for the scenario, which is illustrated in Fig. 8.14, are presented as

ε-effective available bandwidth in Fig. 8.19. All AQM implementations improve the

short-term performance of TCP. Also in the long-term the performance improves as

presented in Fig. 8.19b, except for adaptive RED with ECN. It achieves a long-term

rate of 8 Mbps instead of 9 Mbps, which is achieved otherwise.

However, adaptive RED with ECN shows a better performance as FIFO drop

tail queueing on short time-scale as presented in Fig. 8.19a. The best performance

shows adaptive RED without ECN, the available bandwidth converges significantly

faster to the long-term rate of 9 Mbps.

Since RED drops packets randomly, it reduces correlations between losses com-

pared to the experiments using drop tail queueing. This allows the assumption

that the correlation of losses or congestion signals has a fundamental impact on

the performance of TCP since it changes the temporal behavior of the adaptation

of the transmission rate. The smaller long-term rate achieved by the use of ECN

may result from the faster notification of congestion signals. Reductions of the

window occur immediately if a marked packet arrives at the sender instead of the

identification by three duplicated acknowledgements or by a timeout. A further

reason may be the implementation of the TCP state machine in the TCP stack in

Linux. It handles such events as ECN by a different state than congestion identified
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by packet loss, see e.g. [117]. These conclusions are drawn from the knowledge

of the protocols and scheduling disciplines and have to be investigated further by

experiments that go beyond system identification. We started an analysis of the au-

tocorrelation of the congestion window for the experimental setups in this Sec. 8.6,

which is presented in the Appendix A.3. This analysis confirms our assumption

that reducing correlations can positively impact the end-to-end delay.



9
C O N C L U S I O N A N D F U T U R E W O R K

In this thesis, we derived a system identification methodology in the framework of

the stochastic network calculus for networks with random service and implemented

it in practical probing procedures. The system model is represented by an ε-effective

service curve that is identified by measurements. The identification methodology

shows that with the usage of constant rate packet trains an inversion from delay or

backlog measurements obtained in networks with stationary service to a service

curve is feasible. Our system identification methodology applies to the class of linear

time-variant systems. Thereby, it comprises networks in which service estimation is

challenging due to e.g., variability of cross traffic, multiple bottleneck links, complex

protocols, and non-work-conserving characteristics.

Furthermore, we showed the connection between service curves, which are

established in the network calculus, and the definition of the available bandwidth

for single-hop and multi-hop networks. This connection demonstrates the common

ground of service curves and the available bandwidth but also the advantages of

using a service curve for the representation of systems. We proved the equality of

the left-over service curve, a concept from the network calculus, and the definition of

the available bandwidth for single-hop networks. This connection between available

bandwidth estimation and the network calculus enables us to analytically explain

practical effects observed in available bandwidth estimation. When averaging is

used to account for randomness inherent in networks, as many available bandwidth

tools do, it leads to a systematic overestimation of the departures. For multi-hop

networks, we showed that the service available is generally less than the definition

of the available bandwidth for multi-hop systems predicts.

The methodology leaves open its practical implementation and in theory requires

infinitely long packet trains, probing rates, and iterations of packet trains. By means

of statistical tools, we implement practical probing procedures by limiting the

128
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probing parameters to finite values, which also allows the specification of the

precision of the estimates by confidence intervals. We developed two practical

probing procedures, one for the prompt estimation of service curves in networks

in which assumptions of steady characteristics hold for short time scales. This

objective is similar to the one of available bandwidth estimation. The second

probing procedure aims at networks for testing purposes, in which stationarity

can be assumed in the long-term. We support the development of the probing

procedures by experiments to verify their functionality.

For the evaluation and validation of the system identification procedures, we

compared our estimates to another service curve estimation approach, various avail-

able bandwidth estimation tools, and analytical references. The results show a good

accuracy and the advantages of using a system identification procedure developed

in the stochastic network calculus. These advantages include the representation

of the service over arbitrary time scales by an ε-effective service curve and the

derivation of probabilistic performance bounds for e.g., backlog and delay.

We applied the system identification to networks where modeling is challenging

due to random cross traffic, various scheduling disciplines, non-work-conserving

behavior, complex protocol characteristics, and time-varying channel conditions

as existing in wireless channels. In detail, we estimated ε-effective service curves

for wired networks with random cross-traffic and several scheduling disciplines,

wireless IEEE 802.11 networks, and wired networks using the transport protocol TCP,

which is the prevalent transport protocol in the Internet. Using the procedure, we

could identify the service for such networks, where before only asymptotic results

existed. Especially for TCP, we demonstrate the service of different congestion

control protocols, buffer size configurations, and queueing disciplines by estimation.

In the area of available bandwidth estimation, two general probing procedures

exist. Procedures that are congestion inducing, as our procedure, and procedures

relying on single packet pairs or small trains consisting of few packets. We showed

in this work that by using a congestion inducing procedure the inversion problem

from measurements to a service curve is feasible. Packet trains carry information

about the path they traverse, the train length reflects the scale for which this

information is valid, or for sufficiently long trains the information applies to an
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unlimited scale. The developed inversion methodology relies on a black-box model

since no specific assumptions are made on the internal system structure. It is left

open, which information packet pairs or short packet trains contain about a network

path. The challenge is to show if a system identification procedure that describes

the path for larger scales as the packet pairs or trains last, can be established. Packet

pairs or short trains last for a much shorter duration as the trains employed in this

thesis. Thereby, they probably contain less information about the path, which may

prevent inversion methodologies that use a black-box model, and the methodologies

require additional assumptions to develop inversion methods using a gray-box

model. Such a procedure is left for future work since it would deviate significantly

from the methodology derived in this work.

So far, the system identification approach was applied to a subset of interesting

networks, at which the estimation and modeling of the system is challenging. The

approach allows the application to networks for which no system models exist so

far. Already, for TCP the estimates show interesting effects on short time scales,

which are worth further examination, and which can lead to a better understanding

of the protocol behavior, the improvement of protocols, and the development of

new protocols.



Part II

A P P E N D I X



A
A U X I L I A RY M AT E R I A L A N D P R O O F S

a.1 system properties in the min-plus and max-plus algebra

In the classical system theory, systems are often categorized by the properties

linearity and time-invariance. A dynamical system is linear if it fulfills the properties

additivity f (x + y) = f (x) + f (y) and homogeneity of degree one a f (x) = f (ax).

It is time-invariant if a time-shift of the input signal x(t − δ) that produces the

output y(t− δ) = Π(x(t− δ)) is equal to the signal y(t) = Π(x(t)) for all δ ≥ 0,

where Π is the system operator and δ is a time-shift. In the following, we specify

this properties in the min-plus and the max-plus algebra.

a.1.1 Min-plus Algebra

In the min-plus algebra, the plus is replaced by the infimum and the multiplication

is replaced by the plus. The properties additivity, homogeneity, and time-invariance

are listed below.

additivity: inf(D1(t), D2(t)) = Π(inf(A1(t), A2(t)))

homogeneity of degree 1: D(t) + a = Π(A(t) + a)

time-invariance: A time-shift δ of the input A(t) that produces the out-

put D(t) = Π(A(t)), results in the same but time-shifted, output D(δ, t + δ) =

Π(A(δ, t + δ)), ∀δ ≥ 0.

132
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a.1.2 Max-plus Algebra

In the max-plus algebra, the plus is replaced by the maximum and the product

is replaced by the plus. The properties additivity, homogeneity, and invariance

become:

additivity: max(TD1(n), TD2(n)) = Π(max(TA1(n), TA2(n)))

homogeneity of degree 1: TD(n) + a = Π(TA(n) + a)

invariance : A shift m of the input TA(n) that produces the output TD(n) =

Π(TA(n)), results in the same, but shifted, output TD(m, n + m) = Π(TA(m, m + n)),

∀m ≥ 0.

a.2 proofs

Proof (of Lem. 5.3) Consider a sample path Sω(τ, t) of S(τ, t) and fix t ≥ 0. If

Sω(τ, t) ≥ S ε(t − τ) for all τ ∈ [0, t], it follows from the monotonicity of the

min-plus convolution that

D(t) = A⊗ Sω(t) ≥ A⊗ S ε(t).

Since, by assumption, the condition Sω(τ, t) ≥ S ε(t− τ) holds for all τ ∈ [0, t] with

probability 1− ε at least, which completes the proof.

Proof (of Thm. 5.2, [90]) From B(t) = A(t)− D(t) and Eq. (2.10) it follows that

B(t) = sup
τ∈[0,t]

{A(τ, t)− S(τ, t)}. (A.1)
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The supremum in Eq. (A.1) implies that B(t) ≥ A(τ, t)− S(τ, t) for all τ ∈ [0, t],

permitting us to write

S(τ, t) ≥ A(τ, t)− B(t) , ∀τ ∈ [0, t].

Inserting A(τ, t) = r(t− τ) and using the backlog quantile yields

P
[
S(τ, t) ≥ r(t− τ)− Bξ(r, t) , ∀τ

]
≥ 1− ξ.

Using the complement and applying the union bound for a set of rates R it follows

that

P

[⋃
r∈R

S(τ, t) < r(t− τ)− Bξ(r, t) , ∀τ

]
≤ ∑

r∈R
ξ.

Taking again the complement, it holds for the maximum over the individual rates

that

P

[
S(τ, t) ≥ max

r∈R
{r(t− τ)− Bξ(r, t)} , ∀τ

]
≥ 1− ∑

r∈R
ξ.

With Lem. 5.3 we obtain that S ε(t− τ) defined as

S ε(t− τ) = max
r∈R
{r(t− τ)− Bξ(r, t)}

for all τ ∈ [0, t] is an ε-effective service curve with violation probability ε = ∑r∈R ξ.

Letting t→ ∞ and inserting the steady state backlog quantile Bξ(r) completes the

proof.

Proof (of Lem. 5.4, [90]) From Eq. (A.1) it follows for any x and δ > 0 that

P[B(t + δ) ≥ x]

= P

[
sup

τ∈[0,t+δ]

{A(τ, t + δ)− S(τ, t + δ)} ≥ x

]

≥ P

[
sup

τ∈[0,t]
{A(τ + δ, t + δ)− S(τ + δ, t + δ)} ≥ x

]
.
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From the assumption of joint stationarity A(τ + δ, t + δ) and S(τ + δ, t + δ) are

equal in distribution to A(τ, t) and S(τ, t), respectively, for all τ ≤ t, and δ > 0.

The last line equals P[B(t) ≥ x] so that we get P[B(t + δ) ≥ x] ≥ P[B(t) ≥ x], thus,

proving the first claim.

For the second claim, if the given inequality holds, then there exists a finite

random variable

T = sup{δ ≥ 0 : A(t− δ, t) ≥ S(t− δ, t)},

for any t. Consequently, A(t− δ, t) < S(t− δ, t) holds for all δ > T with proba-

bility one. Moreover, since A(t− δ, t) is non-decreasing in δ ≥ 0, it follows that

A(t− δ, t) < S(t− T − ϑ, t) for all 0 ≤ δ ≤ T and any ϑ > 0. Combining the two

statements and using that S(t− δ, t) for δ ≥ 0 and S(t− T− ϑ, t) are non-negative,

yields

A(t− δ, t)− S(t− δ, t) ≤ S(t− T − ϑ, t)

for all δ ≥ 0. Hence,

sup
δ≥0
{A(t− δ, t)− S(t− δ, t)} ≤ S(t− T − ϑ, t).

With supδ≥0{A(t− δ, t)− S(t− δ, t)} = B(t) from Eq. (A.1) it follows for any x that

sup
t
{P[B(t) ≥ x]} ≤ sup

t
{P[S(t− T − ϑ, t) ≥ x]}.

Since T is finite and B(t) is stochastically increasing there exists a finite random

variable B such that

lim
t→∞

P[B(t) ≥ x] = sup
t
{P[B(t) ≥ x]} = P[B ≥ x],

which completes the proof of the second claim.
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Proof (of Thm. 5.3) From B(t) = bA(t)c − bD(t)c, Eq. (5.11), and Eq. (2.10) it

follows that

B(t) = sup
τ∈[0,t]

{bA(t)c − bA(τ)c − bS(τ, t)c}. (A.2)

The supremum in Eq. (A.2) implies that B(t) ≥ bA(t)c − bA(τ)c − bS(τ, t)c for all

τ ∈ [0, t], permitting us to write

bS(τ, t)c ≥ bA(t)c − bA(τ)c − B(t) , ∀τ ∈ [0, t].

With packet rate r, inserting A(t) = brtc and using the backlog quantile yields

P
[
bS(τ, t)c ≥ brtc − brτc − Bξ(r, t) , ∀τ

]
> 1− ξ.

Since it holds that brtc − brτc = bbrtc − brτcc = brt− brτcc ≥ brt− rτc, we get

P
[
bS(τ, t)c ≥ br(t− τ)c − Bξ(r, t) , ∀τ

]
≥ 1− ξ.

By application of the union bound it follows that

P

[
bS(τ, t)c ≥ max

r∈R
{br(t− τ)c − Bξ(r, t)} , ∀τ

]
≥ 1−∑

r
ξ.

With Lem. 5.3 we obtain that S ε(t− τ) defined as

S ε(t− τ) = max
r∈R
{br(t− τ)c − Bξ(r, t)}

for all τ ∈ [0, t] is an ε-effective service curve with violation probability ε = ∑r ξ for

packetized arrivals. Finally, letting t → ∞ and inserting the steady state backlog

Bξ(r) gives

S ε(t) = max
r∈R
{brtc − Bξ(r)},
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which completes the proof. Note that for the backlog it holds that bBξ(r, t)c =

Bξ(r, t) and hence bS ε(t)c = S ε(t) as well as

S ε(t) = bmax
r∈R
{rt− Bξ(r)}c.

a.3 correlation of the tcp congestion window

In Sec. 8.6.3, we presume that the performance variations observed for TCP in

the experiments presented in Sec. 8.6 arise from correlations in the adaptation

of the congestion window (CWND). Here, we elaborate on this argument by the

evaluation of the autocorrelation of the CWND. The experiments show that most

TCP variants achieve the expect mean rate of 9 Mbps but deviate significantly in

the short-term behavior. If an application rate is below the long-term rate a TCP

connection provides, the CWND must at least support this application rate on

average, which follows from the self-clocking behavior described in [56]. Hence, we

compare in particular the empirical autocorrelation function of the CWND process

C(t) for the experiments from Sec. 8.6. The autocorrelation function Cτ at lag τ is

defined as [50]:

Cτ =
E[(C(t)− µC)(C(t + τ)− µC)]

σ2
C

, (A.3)

where µC is the mean value of C(t) and σ2
C its variance. This enables a comparison of

different experimental setups since it is adjusted by the mean, which in turn reflects

roughly the average rate. A direct comparison of the CWND is impractical since

its mean and its absolute values vary due to the configurations, congestion control

protocols, or the AQM strategy. If adjusted by the mean and normalized as in

Eq. (A.3), the values become comparable. A positive correlation that is sustained for

longer time periods implies that the transmission rate varies slowly. For example, if

the CWND falls below the mean, a strong positive correlation for long time-periods

implies that the window stays below the mean for long-time periods, vice versa,
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Figure A.1: Auto correlation of the CWND. For large queue sizes the autocorrelation spans
across large periods. Small queue sizes and the AQM strategy RED reduce the
correlation significantly. Comparing the autocorrelation to the delay quantiles
in Tab. A.1 indicates that autocorrelation of the CWND for long periods induce
high delays.

Table A.1: 95% delay quantile in milliseconds for a probing rate of 5 Mbps

RED Reno/83 RED/ECN Reno/167 Cubic Reno/251

56 69 105 144 147 325

if the CWND is above the mean, it remains above it for long periods. During the

time in which the CWND is below its mean value, data from the application are

buffered at the socket, and in periods above the mean the buffer is drained. We

sample the CWND at the sender each 10 ms, which is about twice per RTT, during

the transmission of 1 · 106 packets sent at an application rate of 5 Mbps. This rate

represents a moderate utilization with end-to-end delays whereof a fraction of

the delays is due to buffering in the network stack since the delays are above the

maximal queueing delay in the network.

For each experimental setup from that section, we repeat the sampling 20 times

to calculate confidence intervals. Fig. A.1 presents the autocorrelation and the

confidence intervals. Comparing the development of the autocorrelations of the

CWND and the delay quantiles shown in Tab. A.1, it is noticeable that for the
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experiments with a larger correlation the delay quantile is greater, too. Using larger

queue sizes, such a behavior is obvious since the time periods between packet drops

increase due to larger queues. Moreover, the results also show that the use of the

congestion control algorithm Cubic, which changes the adaptation of the CWND,

increases the correlation. The correlation is greater than for TCP Reno for a small

number of lags but decays faster for larger lags. The autocorrelation decreases fast

for RED (with and without ECN). Since RED drops or marks packets randomly, it

reduces the correlation of the CWND.

These findings imply that for the configuration of TCP, the design of protocols,

or queueing strategies for TCP a major characteristic is the temporal correlation

behavior besides the long-term rate. In particular, these results show that reducing

the correlation of the CWND has a positive impact on the end-to-end delays.
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