
 

 

 

Novel Photocatalytic Organic Synthesis: 

Cyclization and N-Alkylation of Nitroaromatic Compounds 

 

 

 

 

Von der Naturwissenschaftlichen Fakultät  

der Gottfried Wilhelm Leibniz Universität Hannover  

zur Erlangung des Grades  

 

 

Doktor der Naturwissenschaften  

Dr. rer. nat.  

 

 

 

 

 

genehmigte Dissertation 

 

 

von 

Amer Hakki, Madjistir 

Geboren am 08.01.1978 in Damaskus, Syrien 

 

2013 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Referent: Prof. Dr. rer. nat. Detlef W. Bahnemann 

Koreferent: Prof. Dr. rer. nat. Jürgen Caro 

 

Tag der Promotion: 17. April 2013  



Erklärung zur Dissertation  

 
 

Hierdurch erkläre ich, dass ich meine Dissertation mit dem Titel „Novel Photocatalytic 

Organic Synthesis: Cyclization and N-Alkylation of Nitroaromatic Compounds” 

während meiner Tätigkeit als wissenschaftler Mitarbeiter am Institut für Technische Chemie 

der Gottfried Wilhelm Leibniz Universität Hannover selbständig verfasst und die benutzten 

Hilfsmittel und Quellen sowie gegebenenfalls die zu Hilfeleistungen herangezogenen 

Institutionen vollständig angegeben habe.  

 

Die Dissertation wurde nicht schon als Masterarbeit, Diplomarbeit oder andere Prüfungsarbeit 

verwendet. 

 

 

Hannover, 17. April 2013 

 

Amer Hakki 

  

  

  

  



Acknowledgmenets 

 

I am absolutely indebted to my supervisor Prof. Dr. Detlef Bahnemann. His brilliant 

academic guidance, patience, time, enthusiasm and support are greatly appreciated. 

I would like also to express my deepest gratitude to Dr. Ralf Dillert for his tremendous efforts 

and his great scientific discussion. 

I thank the Deutscher Akademischer Austauschdienst (DAAD), Bonn, Germany, for 

granting me the Ph.D scholarship and the Department of Chemistry, Damascus University, 

Damascus, Syria, for the extension of a scholarship. 

My sincere thanks to Prof. Claus Rüscher and his team at the Institut für Mineralogie, 

Leibniz Universität Hannover for their help in the FTIR and the TGA measurements. 

Dr. Armin Feldhoff, Mr. Frank Steinbach, and Dr. Oliver Merka at the Institut für 

Physikalische Chemie, Leibniz Universität Hannover are also gratefully acknowledged for 

their help in the TEM and XRD measurements. 

Furthermore I thank Mr. Hendrik Fullriede at the Institut für Anorganische Chemie, 

Leibniz Universität Hannover for the NMR measurements. 

I would like to extend my appreciation and thanks to all members of Prof. Bahnemann’s 

group for their assistance in the lab related issues and for the friendly atmosphere of work. 

Many thanks to all my friends especially Mahmoud Jaweesh, Anas Ajaj, and Viola 

Elenius. 

I am deeply grateful to my parents, brothers and sister for their support whenever they are 

needed. 

Finally many thanks to my wife for her understanding, patience and emotional support. 

 

 

 

 

 



Contents i 

Contents 

Contents ...................................................................................................................................... i 

List of Figures ........................................................................................................................... v 

List of Tables .......................................................................................................................... viii 

Abstract .................................................................................................................................... xi 

Kurzzusammenfassung ......................................................................................................... xiii 

1 Introduction ....................................................................................................................... 1 

1.1 Historical and theoretical background .......................................................................... 1 

1.2 Principles of photocatalytic reactions ........................................................................... 6 

1.2.1 Band bending at the semiconductor - electrolyte interface ..................................... 6 

1.2.2 Photoelectrochemical cells ...................................................................................... 8 

1.2.3 Redox reaction on photoexited TiO2 particles ......................................................... 9 

1.2.4 Energetic considerations ........................................................................................ 12 

1.2.5 Solvent considerations ........................................................................................... 15 

1.3 Modification of the surface of TiO2 with precious metals .......................................... 16 

1.4 TiO2-based photocatalytic organic synthesis .............................................................. 18 

1.4.1 Photocatalytic oxidation reactions employed for organic synthesis ...................... 18 

1.4.2 Photocatalytic reduction reactions employed for organic synthesis ...................... 23 

1.4.2.1 Photocatalytic reduction of nitroaromatic compounds ................................... 24 

1.4.2.2 Effect of the modification of TiO2 on the photocatalytic reduction of 

nitroaromatic compounds ............................................................................................. 27 

1.5 Objectives of the study ................................................................................................ 29 

2 Materials and experimental methods ............................................................................ 32 

2.1 Materials ..................................................................................................................... 32 

2.2 Modification of the TiO2 powders .............................................................................. 32 

2.2.1 Modification of TiO2 with arenesulfonic acid functionalized mesoporous SiO2 .. 32 

2.2.2 Modification of TiO2 with Pt nanoparticles .......................................................... 33 

2.2.2.1 Photocatalytic deposition method .................................................................. 33 

2.2.2.2 Mixing of solids method using colloidal Pt suspensions ............................... 33 



Contents ii 

2.2.3 Modification of TiO2 with other precious metal nanoparticles ............................. 34 

2.2.4 Modification of TiO2 with bimetallic Ag-Pt nanoparticles ................................... 34 

2.3 Characterizations of the prepared materials ................................................................ 34 

2.3.1 Transmission electron microscopy ........................................................................ 34 

2.3.2 Specific surface area measurements ...................................................................... 35 

2.3.3 Infrared spectroscopy ............................................................................................ 35 

2.3.4 Diffuse reflectance spectroscopy ........................................................................... 35 

2.3.5 Thermogravimetric measurements ........................................................................ 35 

2.3.6 X-ray diffraction .................................................................................................... 36 

2.3.7 Acidic sites determination ..................................................................................... 36 

2.3.8 Acidic capacity measurements .............................................................................. 36 

2.4 Photocatalytic reaction procedure ............................................................................... 36 

2.5 Dark reaction procedure .............................................................................................. 37 

2.6 Analysis of the reaction mixture ................................................................................. 38 

2.6.1 Gas chromatography-mass spectroscopy measurements ....................................... 38 

2.6.2 Gas chromatography-flame ionization detector measurements ............................. 38 

2.6.3 Gas chromatography- thermal conductivity detector measurments ...................... 39 

2.6.4 Nuclear magnetic resonance spectroscopy ............................................................ 39 

3 Results ............................................................................................................................... 40 

3.1 General reaction sequence for the photocatalyic conversion of nitroaromatic 

compounds (NACs) .............................................................................................................. 40 

3.2 Photocatalytic conversion of the nitroaromatic compounds over bare TiO2 .............. 41 

3.2.1 Effect of TiO2 type on the photocatalytic conversion of the nitroaromatic 

compounds ......................................................................................................................... 43 

3.2.2 Effect of the addition of an acid as a co-catalyst ................................................... 47 

3.2.2.1 Photocatalytic conversion of the nitroaromatic compound in ethanol ........... 47 

3.2.2.2 Photocatalytic conversion of different nitroaromatic compounds and 

different alcohols .......................................................................................................... 48 

3.3 Photocatalytic conversion of the nitroaromatic compounds over modified TiO2 ....... 51 

3.3.1 TiO2 Modified with acid functionalized SiO2 ....................................................... 51 



Contents iii 

3.3.1.1 Characterization of the prepared catalysts...................................................... 52 

3.3.1.2 Photocatalytic activity of the newly prepared photocatalysts for the 

conversion of nitroaromatic compounds ...................................................................... 57 

3.3.2 TiO2 modified with precious metals nanoparticles ................................................ 59 

3.3.2.1 Comparison of different precious metals loaded on the surface of TiO2 ....... 59 

3.3.2.2 Effect of the type of TiO2 supporting the Pt particles .................................... 61 

3.3.2.3 Effect of the loaded amount of Pt ................................................................... 63 

3.3.2.4 Influence of the light intensity........................................................................ 65 

3.3.2.5 N-alkylation reactions of nitroaromatic compounds in different alcohols ..... 66 

3.3.2.6 Modification of the surface of TiO2 with bimetallic platinum-silver 

nanoparticles ................................................................................................................. 68 

4 Discussion ......................................................................................................................... 73 

4.1 Reduction of the nitroaromatic compounds ................................................................ 73 

4.2 Effect of TiO2 type on the photocatalytic conversion of the nitroaromatic 

compounds ............................................................................................................................ 81 

4.3 Effect of the addition of an acid as a co-catalyst ........................................................ 84 

4.4 Immobilization of Brönsted acid and TiO2 into one heterogeneous photocatalyst..... 86 

4.5 Discussion of the reaction mechanism ........................................................................ 88 

4.6 Effect of the deposition of metal nanoparticles on the surface of TiO2 on the 

photocatalytic reaction of the nitroaromatic compounds ...................................................... 91 

4.7 Effect of different parameters on the selectivity of the photocatalytic N-alkylation 

reaction .................................................................................................................................. 94 

4.7.1 Effect of the type of TiO2 ...................................................................................... 94 

4.7.2 Effect of the platinization method ......................................................................... 95 

4.7.3 Effect of the loaded amount of Pt .......................................................................... 95 

4.7.4 Effect of the light intensity .................................................................................... 97 

4.7.5 Effect of the type of the loaded metal .................................................................... 98 

4.8 Effect of the deposition of bimetallic (Pt-Ag) nanoparticles ...................................... 99 

4.9 N-alkylation of various nitroaromatic compounds by different alcohols ................. 101 

5 Summary and conclusions ............................................................................................ 103 

6 References ....................................................................................................................... 106 



Contents iv 

7 Appendix ......................................................................................................................... 121 

7.1 Names, structures, and abbreviations of the studied and the produced compounds . 121 

7.2 List of abbreviations and symbols ............................................................................ 126 

7.3 Publications ............................................................................................................... 128 

7.4 Presentations ............................................................................................................. 129 

7.5 Curriculum vitae ....................................................................................................... 130 

 



List of Figures and Tables v 

List of Figures  

Figure ‎1.1: Schematic representation of different reaction processes activated by light: (a) 

direct photochemical reaction, (b) indirect photochemical reaction via energy transfer 

(photosensitization), (c) indirect photochemical reaction via species transfer (chemical 

reaction) where the sensitizer S is deactivated, and (d) indirect photochemical reaction 

via species transfer (chemical reaction) where the sensitizer S is regenerated 

(photocatalytic reaction). .................................................................................................... 2 

Figure ‎1.2: Schematic diagrams of the energy levels of: (a) intrinsic, (b) n-type, and (c) p-

type semiconductors. The band bending in: (d) n-type semiconductor, and (e) p-type 

semiconductor in equilibrium with an electrolyte in the dark. ........................................... 7 

Figure ‎1.3: Band diagram for a PEC cell based on an n-type semiconducting photoanode 

that is electrically connected to a metal counter electrode; in equilibrium in the dark 

(a) and under illumination (b). Illumination raises the Fermi level and decreases the 

band bending. Near the semiconductor/electrolyte interface, the Fermi level splits into 

quasi-Fermi levels, E
*

F,n and E
*

F,p, for the electrons and holes, respectively[51]. ............. 8 

Figure ‎1.4: Schematic description of the redox reaction photocatalyzed by a 

semiconductor as well as other fates of the photogenerated charge carriers. The circle 

represents a semiconductor particle, wherein A and D are the electron acceptor and 

donor, respectively. .......................................................................................................... 10 

Figure ‎1.5: Schematic description of the antenna effect induced by a network structure of 

semiconductor particles[56]. ............................................................................................ 12 

Figure ‎1.6: Positions of the energy levels at the interface of an n-type semiconductor and a 

redox couple in an electrolyte[51]. ................................................................................... 14 

Figure ‎1.7: Schematic representation of the photocatalytic oxidation of alcohols in the 

absence (current doubling) or the presence of oxygen (radical chain mechanism)[105]. 22 

Figure ‎1.8: Schematic illustration of the reduction of a nitroaromatic compound to an 

aminoaromatic compound. ............................................................................................... 25 

Figure ‎1.9: Schematic illustration of the synthesis of quinolines and N-alkylated 

compounds starting from the photocatalytically formed amioaromatic compounds and 

aldehydes. ......................................................................................................................... 29 

Figure ‎2.1: Schematic view of the employed photocatalytic reaction system. ....................... 37 

Figure ‎3.1: General reaction sequence for the photocatalytic conversion of the 

nitroaromatic compounds. A list of compounds with their names and corresponding 

symbols is provided in the Appendix. (e and h are not used in the symbols because 

they are usually used for the electron and the  hole, respectively, in the discussion). ..... 40 



List of Figures and Tables vi 

Figure  3.2: GC chromatograms obtained at different irradiation times of the reaction 

mixture (reaction conditions: 100 µmol m-nitrotoluene (1a) and 25 mg TiO2 in 10 ml 

EtOH, 60 mW UV(A)/cm
2
, 25 °C, under Ar atmosphere). .............................................. 41 

Figure ‎3.3: Time course of: photocatalytic conversion of (1a) (); photocatalytic formation 

of:  (1c) (), (1f) (), (1j) (); and () summation (reaction conditions: 100 µmol 

(1a) and 25 mg TiO2 in 10 ml EtOH, 60 mW UV(A)/cm
2
, 25 °C, under Ar 

atmosphere). Experimental error of the analysis is calculated to be 0.5%. ...................... 42 

Figure ‎3.4: Time courses of the:( A) consumption of m-nitotoluene (1a), (B) production of 

the aminoaromatic compound (1c), (C) production of the imine (1f), and (D) 

production of the quinoline (1j);   employing: UV100 (), rutile (), P25 (), and 

mesoporous anatase ().(reaction conditions: 100 µmol (1a) and 25 mg TiO2 in 10 

ml EtOH, 60 mW UV(A)/cm
2
, 25 °C, under Ar atmosphere). ......................................... 44 

Figure ‎3.5: Infrared spectra of bare TiO2; (a) UV100, (b) P25, (c) mesoporous anatase, and 

(d) rutile ............................................................................................................................ 46 

Figure ‎3.6: Infrared spectra of TiO2 powders treated with pyridine vapor; (a) UV100, (b) 

P25, (c) mesoporous anatase, and (d) rutile. .................................................................... 46 

Figure  3.7: Yield of the photocatalyticlly produced quinoline (1j) at: different p-TsOH 

concentrations (reaction conditions: 100 µmol (1a), 25 mg TiO2 , and the required 

amounts of p-TsOH in 10 ml EtOH, 60 mW UV(A)/cm
2
, 25 °C, under Ar 

atmosphere). ..................................................................................................................... 47 

Figure ‎3.8: GC-MS chromatograms obtained after 4hours irradiation of the reaction 

mixtures: (A) 1a, (B) 6a, (C) 3a, (D) 2a, and (E) p-NPh. The MS spectra refer to the 

peaks labeled with ().(reaction conditions: 100 µmol of nitroaromatic compound, 25 

mg TiO2 , and (5mol%) p-TsOH in 10 ml EtOH, 20 mW UV(A)/cm
2
, 25 °C, under Ar 

atmosphere) ...................................................................................................................... 49 

Figure ‎3.9:  FT-IR spectra of TiO2 (A), SiO2 (B), and extracted arenesulfonic modified 

SiO2-TiO2 samples with different Ar-SO3H molar ratios: 0 (C), 0.03 (D), 0.06 (E), 0.1 

(F). (I) enlarged region from 1350-1650 cm
-1

, and (II) enlarged region from 990-

1200cm
-1

. .......................................................................................................................... 54 

Figure ‎3.10: TGA and DTA measurements of: (a) the extracted arenesulfonic modified 

SiO2-TiO2 sample T1S1Ar0.1, (b) extracted TiO2 modified with mesoporous silica, and 

(c) TiO2 modified with mesoporous silica calcined at 450 °C for 4h. ............................. 55 

Figure ‎3.11: EDXS elemental map of: (a) silicon, (b) titanium, and (c) sulfur in the 

extracted arenesulfonic modified SiO2-TiO2 (sample T1S1Ar0.1); (d) TEM image of the 

porous SiO2 matrix in the same sample (e) Dark-field TEM micrograph showing the 

nanocrystaline TiO2 deposited on the SiO2 matrix; (f) HRTEM image of the sample 



List of Figures and Tables vii 

showing the anatase polycrystallites on the surface of the sample T1S1Ar0.1. The 

Fourier transformation (FFT)is shown as inset. ............................................................... 56 

Figure ‎3.12: XRD patterns of: (A) pure SiO2, (B) SiO2-TiO2 (sample T1S1), and (C) 

arenesulfonic modified SiO2-TiO2 sample T1S1Ar0.03. ..................................................... 57 

Figure ‎3.13: Time-dependent change in the amounts of substrate and products during the 

photoirradiation of (1a) in EtOH: (1a) (), (1c) (), (1f) (), (1l) (), (1m) (), and 

() summation (reaction conditions: 100 µmol (1a) and 25 mg Pt0.5/TiO2 in 10 ml 

EtOH, 60 mW UV(A)/cm
2
, 25 °C, under Ar atmosphere). .............................................. 60 

Figure ‎3.14: Selectivity of the reaction products obtained upon illumination of the 

ethanolic solutions of m-nitrotoluene (1a) in the presence of Sachtleben Hombikat 

UV100 loaded with different amounts of Pt. ................................................................... 63 

Figure ‎3.15: TEM images of Hombikat UV100 samples containing different amounts of 

Pt: (a) Pt0.3/TiO2 (c) Pt0.5/TiO2, and (d) Pt1.0/TiO2. (b) HRTEM image of Pt0.3/TiO2. ..... 64 

Figure ‎3.16: Time-dependent change in the concentrations of 1a (empty symbols) and 1l 

(filled symbols) in the presence of Pt0.5/ TiO2 UV100 at different light intensities: 60 

mW/cm
2
 (), 30 mW/cm

2
 (), and 15 mW/cm

2
 ().(reaction conditions: 100 µmol 

(1a) and 25 mg Pt0.5/ TiO2 UV100 in 10 ml EtOH, 25 °C, under Ar atmosphere). ......... 65 

Figure ‎3.17: Time-dependent change in the amount of N-ethyl-m-toluidine (1l) during the 

photoirradiation of (1a) in EtOH in the presence of Agn/Ptm/TiO2: bare TiO2 (), 

Pt0.5/TiO2 (), Ag0.1/Pt0.5/TiO2 (), Ag0.3/Pt0.5/TiO2 (), Ag0.5/Pt0.5/TiO2 (), 

Ag1.0/Pt0.5/TiO2 (), (reaction conditions: 100 µmol (1a) and 25 mg Agn/Ptm/TiO2 in 

10 ml EtOH, 60 mW UV(A)/cm
2
, 25 °C, under Ar atmosphere)..................................... 68 

Figure ‎3.18: Time-dependent change in the amount of the N-ethyl-m-toluidine (1l) during 

the photoirradiation of (1a) in EtOH in the presence of Ptm/Agn/TiO2: Ag0.5/TiO2 (), 

Pt0.1/Ag0.5/TiO2 (), Pt0.3/Ag0.5/TiO2 (), Pt0.5/Ag0.5/TiO2 (), (reaction conditions: 

100 µmol (1a) and 25 mg Ptm/Agn/TiO2 in 10 ml EtOH, 60 mW UV(A)/cm
2
, 25 °C, 

under Ar atmosphere). ...................................................................................................... 69 

Figure ‎3.19: Diffuse reflectance spectra of bare TiO2 (Schachtleben Hombikat UV100) 

and of TiO2 (Schachtleben Hombikat UV100) photocatalytically modified with 

bimetallic (Pt-Ag) nanoparticles: (a) Agm(m=0-1.0)/Pt0.5/TiO2 and (b) Ptn(n=0-

0.5)/Ag0.5/TiO2. ................................................................................................................... 71 

Figure ‎3.20:  Dark Field-TEM image of Ag0.5/Pt0.5/TiO2 sample (a) and HRTEM image of 

the same sample (b). ......................................................................................................... 72 

Figure ‎4.1: Suggested overall reaction steps of the photocatalytic conversion of the NACs. 73 

Figure ‎4.2: Schematic representation of the proposed steps for the photocatalytic reduction 

of m-nitrotoluene dissolved in ethanol at an irradiated TiO2 particle, (1) 



List of Figures and Tables viii 

photogeneration of charge carriers, e
-
 and h

+
; (2) trapping of e

-
; (3) first oxidation step 

of EtOH by trapped hole;(4) formation of acetaldehyde through electron injection into 

the conduction band of TiO2 (current-doubling); (5) reduction of m-nitrotoluene to m-

nitrosotoluene by two of the CB electrons; (6) reduction of m-nitrosotoluene to m-

(hydroxyamino)toluene by two of the CB electrons;(7) reduction of m-

(hydroxyamino)toluene to m-toluidine by two of the CB electrons; (8) recombination 

channel. Note: For simplicity, the electrons (trapped and injected) required for total 

reduction of the nitro group to the amino group is presented as 6e
-
 in the CB. ............... 74 

Figure ‎4.3: Proposed reaction mechanism for the Lewis acid-catalyzed formation of the 

imine on the surface of TiO2. ........................................................................................... 80 

Figure ‎4.4: ATR-FTIR spectra of TiO2 layers in contact with pyridine in acetonitrile 

solution (100 mM). Solid lines and dotted lines refer to non irradiated and UV(A) 

irradiated samples, respectively. (a) TiO2 rutile, (b)TiO2 UV100, and (c) TiO2 P25. ..... 84 

Figure ‎4.5: Schematic presentation of the formation of the vinyl ether and its addition to 

the imine to form the quinoline compound. ..................................................................... 85 

Figure ‎4.6: Splitting of alcohol from the ethoxy-1,2,3,4-tetrahydroquinoline molecule to 

form the dihydroquinoline derivative. .............................................................................. 86 

Figure ‎4.7: Pathways of the photocatalytic formation of the quinoline compounds from 

NACs and alcohols. .......................................................................................................... 88 

Figure ‎4.8: Pathway A in Figure ‎4.7. ..................................................................................... 89 

Figure ‎4.9: Pathway B in Figure ‎4.7 ....................................................................................... 90 

Figure ‎4.10: Pathway C in Figure ‎4.7 ..................................................................................... 91 

Figure ‎4.11: Proposed mechanism for the one-pot N-alkylation of m-nitrotoluene 

promoted by TiO2 laoded with metal nano particles catalyst under photoirradiation. ... 102 

Figure ‎5.1: Schematic summarization of the fates of the nitroaromatic compounds in 

alcohols upon illumination in the presence of different bare or modified TiO2 

photocatalysts. ................................................................................................................ 103 

List of Tables 

Table ‎1.1: Examples of commonly used homogeneous photocatalysts[6] ................................ 3 

Table ‎1.2: Approximate band positions of some common semiconductors[60]. .................... 13 

Table ‎1.3: Examples of photocatalytic oxidation reactions ..................................................... 19 

Table ‎1.4: Examples of photocatalytic reduction reactions ..................................................... 24 



List of Figures and Tables ix 

Table ‎1.5: Formal potentials for the couple RNO2/RNO2
- for some nitroaromatic 

compounds[121] ............................................................................................................... 26 

Table ‎3.1: Physical properties of the employed photocatalysts. .............................................. 43 

Table ‎3.2: Photocatalytic conversion of different NACs in different alcohols in the 

presence of TiO2 and p-TsOH as co-catalyst. .................................................................. 50 

Table ‎3.3: Physical and chemical properties of the prepared catalysts. .................................. 52 

Table ‎3.4: Conversion of m-nitrotoluene (1a) and yields of m-toluidine and 2,7-

dimethylquinoline (1j) obtained upon the illumination of EtOH solutions contaning 

m-nitrotoluene and the corresponding catalyst. ............................................................... 58 

Table ‎3.5: Photocatalytic conversion of m-nitrotoluene with EtOH employing different 

metal laoded on TiO2 UV100. .......................................................................................... 61 

Table ‎3.6: Photocatalytic conversion of m-nitrotoluene with EtOH employing different Pt 

loaded TiO2. ...................................................................................................................... 62 

Table ‎3.7: Photocatalytic N-alkylation of nitroaromatic compounds in different alcohols 

empoloying 1%Pt/TiO2. ................................................................................................... 66 

Table ‎3.8: Amount of the photocatalytically generated hydrogen during the phtocatalytic 

reduction of m-nitrotoluene  employing different (Agm-Ptn)/TiO2 photocatalysts. ......... 70 

Table ‎4.1: Photonic efficiencies ξ (%) of the photocatalytic reduction of m-nitrotoluene in 

ethanol over different type of TiO2 powders with their respective BET surface area . ... 78 

Table ‎4.2: Selectivity of the photocatalytic reduction of m-nitrotoluene employing 

different TiO2 photocatalysts under UV(A) irradiation. .................................................. 81 

Table ‎4.3: Photonic efficiencies ξ (%) of the photocatalytic reduction of m-nitrotoluene 

(1a) and the photocatalytic H2 evolution in ethanol over bare TiO2 UV100 or 

Pt0.5/TiO2
 
UV100. ........................................................................................................... 94 

Table ‎4.4: N-alkylation of the m-toluidine (1c) with acetaldehyde in the presence of 

different metal loaded TiO2. ............................................................................................. 99 

 

 



Abstract x 

  



Abstract xi 

Abstract 

The photocatalytic conversion of nitroaromatic compounds in alcohols employing TiO2–

based photocatalysts has been studied. The light-induced conversion of m-nitrotoluene 

dissolved in ethanol under Argon has been chosen as a model reaction. The effect of the type 

of the employed TiO2 (Sachtleben Hombikat UV100 as anatase, Cristal Global R34 as rutile, 

Evonik-Degussa Aeroxide P25 as anatase-rutile mixture, and home-made mesoporous 

anatase) on the reaction products has been investigated. Moreover, TiO2 was modified either 

with acids or with various precious metals in order to investigate the effect of these 

modifications on the reaction sequence and products. 

Acid modified TiO2 was successfully prepared via the co-condensation of 2-(4-

chlorosulfonylphenyl)ethyltrimethoxysilane (CSPTMS) and tetraethyl orthosilicate (TEOS) in 

the presence of commercially available Sachtleben Hombikat UV100 TiO2 particles. The 

resulting bifunctional catalysts were characterized by TEM and BET measurements, and by 

FT-IR, TGA, and acid-base titration method. 

For the modification of bare TiO2 with noble metals, different precious metals (Pt, Pd, Au, 

and Ag) have been photocatalytically deposited on the surface of TiO2 particles. Moreover, 

the influences of various parameters including the loaded amount of Pt and its particle size, 

the platinization method, and the light intensity on the selectivity of the photocatalytic 

reaction have been studied by employing platinized Sachtleben Hombikat UV100 TiO2 

particles. Furthermore, bimetallic (Ag-Pt) modified Sachtleben Hombikat UV100 TiO2 

photocatalysts have been prepared and tested for the same model reaction. 

Upon irradiation of the ethanolic solution of m-nitrotoluene in the absence of oxygen gas 

and in the presence of the photocatalyst, different products are obtained according to the 

applied photocatalyst. It is found that the surface properties of the photocatalyst play an 

important role in the reaction pathway and thus in the selectivity of the products. In all cases, 
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a simultaneous reduction of the nitroaromatic compound and an oxidation of the alcohol are 

induced by the photogenerated electrons and holes, respectively. An imine is then produced 

upon condensation of the generated aldehyde and aminoaromatic compounds. Rutile is found 

to be more selective towards the primary aminoaromatic compound (m-toluidine) while 

anatase photocatalysts yield a higher amount from the imine (N-ethylidene-3-methylaniline). 

A cyclization reaction of the produced imine to generate methyl quinoline is observed when 

Aeroxide P25 or acid modified Sachtleben Hombikat UV100 is used as the photocatalyst.  

On the other hand, N-alkylation reactions of the nitroaromatic compounds by alcohols take 

place through the combination of the photocatalytic properties of titanium dioxide and the 

catalytic properties of metal nanoparticles supported on its surface. Among the employed 

precious metals, Pt/TiO2(UV100) exhibits a superior selectivity towards the formation of 

mono N-alkylated products. By increasing the loaded amount of Pt the selectivity towards 

mono N-alkylated products increases reaching the highest selectivity when (1wt%)Pt/TiO2 

was employed. Moreover, Pt/TiO2 prepared by the photocatalytic deposition method was 

found to be more active and selective than the one obtained through a mixed solids synthesis 

method. Changing the light intensity does not affect the reaction selectivity but it affects the 

required time to obtain the highest yield of the desired product. The illumination time plays an 

important role in the selectivity of the mono N-alkylation reaction, with prolonged 

illumination time the N-alkylated product completely converts into the N,N-dialkylated one. 

Loading of a small amount of Ag (0.1 wt.%) on the photocatalyst (0.5wt%)Pt/TiO2(UV100) 

enhances the selectivity towards the mono N-alkylated product resulting in similar yields as if 

(1wt%)Pt/TiO2 was employed. However, a further increase in the amount of Ag in these 

bimetallic samples has negative effects on the mono N-alkylated product selectivity. 

Keywords: Photocatalysts, anatase, rutile, photocatalytic reduction, photocatalytic 

oxidation, imine, quinoline, N-alkylation, reaction mechanism. 
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Kurzzusammenfassung 

Die photokatalytische Umsetzung von Nitroaromaten in Alkoholen wurde unter 

Verwendung verschiedener Titandioxid (TiO2) Photokatalysatoren untersucht. Die 

lichtinduzierte Umwandlung von m-Nitrotoluol in Ethanol unter Argon wurde als 

Modellreaktion ausgewählt. Die Auswirkung diverser TiO2-Typen (Sachtleben Hombikat 

UV100 als Anatas, Cristal Global R34 als Rutil, Evonik-Degussa P25 Aeroxide als Anatas-

Rutil-Gemisch und selbstsynthetisiertes mesoporöses Anatas) auf die Bildung der 

Reaktionsprodukte wurde erforscht. Außerdem wurde das TiO2 entweder mit Säure oder mit 

verschiedenen Edelmetallen modifiziert, um die Wirkung dieser Modifizierungen auf den 

Reaktionsverlauf und die Ausbildung der Produkte zu untersuchen. 

Säuremodifiziertes TiO2 wurde durch die Co-Kondensation von 2-(4-Chlorsulfonylphenyl) 

ethyltrimethoxysilan (CSPTMS) und Tetraethylorthosilikat (TEOS) in Gegenwart von 

kommerziellen TiO2-Partikeln erfolgreich hergestellt. Die resultierenden bi-funktionellen 

Katalysatoren wurden durch TEM, BET, FT-IR, TGA, und Säure-Base-Titration 

charakterisiert. 

Verschiedene Edelmetalle (Pt, Pd, Au und Ag) wurden auf der Oberfläche des TiO2 

photokatalytisch abgeschieden. Die Einflüsse der verschiedenen Parameter,  wie die 

Platinmenge, die Teilchengröße der Platincluster, die Platinierungsmethode sowie der 

Einfluss der Lichtintensität auf die Selektivität der photokatalytischen Reaktion wurden 

untersucht. Weiterhin wurden Sachtleben Hombikat UV100 TiO2-Photokatalysatoren mit 

bimetallischen (Ag - Pt) Nanopartikeln modifiziert und für die oben beschriebene Reaktion 

getestet. 

Je nach eingesetztem Photokatalysator wurden verschiedene Produkte bei der Bestrahlung 

der ethanolischen Lösung von m-Nitrotoluol in Abwesenheit von Sauerstoff erhalten. Es 

zeigte sich, dass die Oberflächeneigenschaften des Photokatalysators einen wichtigen Einfluss 

auf den Reaktionsweg und auf die Selektivität der Produkte haben. In allen Fällen wurde 

gleichzeitig die Reduktion der Nitroaromaten und die Oxidation des Alkohols durch die 
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lichterzeugten Elektronen und Löcher induziert. Hierbei wird ein Imin aus der Kondensation 

des photokatalytisch erzeugten Aldehyds mit den Aminoaromaten erhalten. Rutil erwies sich 

als selektiver für die primären Aminoaromaten (m-Toluidin), wohingegen auf Anatas basierte 

Photokatalysatoren eine höhere Menge an Iminen (N-Ethyliden-3-methylanilin) lieferten. Die 

Umsetzung des hergestellten Imins zu Methylchinolin durch eine Zyklisierungsreaktion 

wurde während der Verwendung von Aeroxide P25 oder säuremodifiziertem Sachtleben 

Hombikat UV100 beobachtet. 

Andererseits erfolgten die N-Alkylierungsreaktionen der Nitroaromaten mit dem Alkohol 

durch die Kombination der photokatalytischen Eigenschaften von Titandioxid mit den 

katalytischen Eigenschaften der Metallnanopartikel, welche auf der TiO2 Oberfläche 

gebunden sind. Unter den verwendeten Edelmetallen zeigte Pt auf TiO2 (UV100) die höchste 

Selektivität für die Bildung von N-monoalkylierten Produkten. Die Selektivität der Bildung 

von N-monoalkylierten Produkten nahm durch das Erhöhen der aufgetragenen Pt-Menge zu. 

Das mittels photokatalytischer Abscheidungsverfahren hergestellte Pt/TiO2 ist aktiver und 

selektiver als das durch das gemischte Feststoffsyntheseverfahren hergestellte Pt/TiO2. Die 

Veränderung der Lichtintensität beeinflusst nicht die Selektivität der Reaktion sondern 

lediglich die erforderliche Zeit, um die höchste Ausbeute des gewünschten Produkts zu 

erhalten. Zudem spielt die Bestrahlungszeit eine wichtige Rolle für die Selektivität der N-

Monoalkylierungsreaktion, da das N-alkylierte Produkt bei längerer Bestrahlungszeit 

vollständig in das N,N-dialkylierte Produkt umgewandelt wird. Die Beladung mit einer 

kleinen Ag-Menge (0,1 Gew.%) auf den (0,5 Gew.%) Pt/TiO2 (UV100) Photokatalysator 

verbessert die Selektivität für das N-monoalkylierten Produkt. Eine weitere Erhöhung der Ag-

Menge in diesen Bimetallproben hat allerdings negative Auswirkungen auf die Selektivität 

des N-monoalkylierten Produktes. 

Stichworte: Photokatalysatoren, Anatas, Rutil, photokatalytische Reduktion, 

photokatalytische Oxidation, Imine, Chinolin, N-Alkylierung, Reaktionsmechanismus. 

http://www.dict.cc/deutsch-englisch/andererseits.html
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1 Introduction 

1.1 Historical and theoretical background 

Up to the beginning of the 20
th

 century scientists regarded illumination just as one of 

different ways available to increase the reaction rate such as heating or adding the appropriate 

chemicals. Until 1912 when Giacomo Luigi Ciamician (1857–1922), the founder of 

photochemistry and one of the pioneers of the solar energy usage for chemical synthesis[1-3] 

stated that: “organic chemistry ... needs ... high temperature, inorganic acids and very strong 

bases, halogens, the most electropositive metals, some anhydrous metal chlorides and 

halogenated phosphorous compounds…. plants, on the contrary, by using small traces of 

carbonic acid obtained from the air, small amounts of salts subtracted from the ground, water 

found everywhere, and by exploiting solar light, are able to prepare easily many substances 

that we can badly reproduce”. These words opened the door for scientists to learn from the 

plants how to utilize light to carry out chemical reactions. Subsequently, Ciamician, in 

collaboration with Paul Silber, devoted intensive and patient systematic work to understand 

the chemical effect of light. Their efforts resulted in the discovery of a range of interesting 

photochemical processes caused only by light not by heat[4]. 

In 1914 Bodenstein recognized that photochemical reactions involve electronically exited 

states exhibiting a reactivity different from that of the ground state[5]. These reactions, in 

which the reacting molecule has been previously promoted by absorption of light to an 

electronically exited state, are called photochemical reactions (cf. Figure ‎1.1a). However, 

activation with light does not necessarily imply that the reactant R is directly irradiated. It is 

also possible to promote the reagent R indirectly (photosensitization) by employing a 

sensitizer S that absorbs the light and transfers energy to the reagent R (cf. Figure ‎1.1b). 

Apart from such as energy transfer, the light-absorbing species S may alternatively activate 

the reagent R by a chemical reaction (such as an electron transfer) eventually transforming it 

into the final products, possibly via further intermediates (e.g., Rint., cf. Figure ‎1.1c) while the 
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species S will be converted to the deactivated form Sde. However, if the deactivated species Sde 

can be regenerated by reacting with an intermediate or a substrate present in the reaction 

mixture (cf. Figure ‎1.1d)  it will be appropriate to call such a process a ‘photocatalytic’ 

reaction[6]. Hence, the term ‘photocatalytic’ implies that light and a catalyst, that is activated 

by absorbing this light, are necessary to induce or accelerate a chemical transformation[7, 8]. 

 

 

Figure ‎1.1: Schematic representation of different reaction processes activated by light: (a) 

direct photochemical reaction, (b) indirect photochemical reaction via energy transfer 

(photosensitization), (c) indirect photochemical reaction via species transfer (chemical 

reaction) where the sensitizer S is deactivated, and (d) indirect photochemical reaction via 

species transfer (chemical reaction) where the sensitizer S is regenerated (photocatalytic 

reaction). 

In general, photocatalysts can be divided into two classes: homogeneous and 

heterogeneous photocatalysts. Homogeneous photocatalysts include aromatic compounds, in 

particular, those bearing strongly electron withdrawing substituents, quinons, and electron-

poor heterocycles. Table ‎1.1 shows some of the commonly used homogeneous photocatalysts 

together with their reduction potentials (vs. NHE) in the relevant exited state. 
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Table ‎1.1: Examples of commonly used homogeneous photocatalysts[6]  

Photocatalyst Common name Reduction potential
[a]

 [V] vs. NHE Exited state 

 

Chloranil 3.57 Triplet 

 

Terephthalonitrile 2.91 Singlet 

 

Anthraquinone 2.40 Triplet 

 

Benzophenone 1.79 Triplet 

[a] Values vs. SCE have been converted to the NHE scale by adding + 0.24 Volts[9] 

Semiconducting transition metal oxides or sulfides, such as TiO2, ZnO, ZnS, and CdS, are 

examples for heterogeneous photocatalysts. Upon absorption of light with a suitable energy 

[10-12] these materials simultaneously act as oxidants and reductants. The respective 

photocatalytic reactions will then occur on the surface of these solids which can easily be 

separated from the reaction mixture after the completion of the reaction.  

At the early 1970s, scientists started to focus on possible applications of these 

photocatalysts in response to challenging energy and environmental issues [12-15]. The oil 

crisis gave a strong impulse to the research of alternative energy sources, i.e., exploiting solar 

energy for the generation of suitable fuels, in particular, of molecular hydrogen through water 

splitting [16-18]. On the other side, concern about pollution by chemicals increased and it was 

proposed that photocatalysis might be employed to clean up water and air avoiding the 
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addition of more aggressive oxidants than air [11]. In addition to that, the subsequently 

developed photocatalytic chemical synthesis assumed to be a promising method which 

according to todays nomenclature belongs into the field of green – or sustainable – 

chemistry[5, 19]. 

One of the earliest reports of the photocatalytic effect of titania was published in 1921 by 

Renz [20], who observed that titania turned from white into a dark color upon solar 

illumination in the presence of organic compounds such as glycerol. The photobleaching of 

dyes caused by the effect of semiconductors was reported in 1928 by Keidel and by Wagner 

[21]. A detailed photochemical study of the bleaching of a dye (Chlorazol Sky Blue FF) on 

titanium dioxide in the dry state is described in the work of Goodeve and Kitchener published 

in 1938[22]. This process appeared at first sight to be a true case of photosensitization, 

because the dye was photochemically stable on various transparent substances such as barium 

sulphate, but showed rapid fading on TiO2 and other oxides which were found to absorb ultra-

violet light[22]. Consequently, the definition ‘photocatalyst’ was not used in these reports but 

the term ‘photosensitizer’ was used instead. Carey et al.,[23] were among the first authors 

who used the term photocatalyst in their report in which they employed a semiconductor 

photocatalyst for the destruction of an organic compound in water. Later on, in 1977, Frank 

and Bard first examined the possibility of using TiO2 to decompose cyanide as an example of 

an inorganic pollutant in water[24]. One of the earliest observations concerning the 

photocatalytic oxidation in the gas phase was reported by McLintock and Ritchie in 1965[25]. 

In the middle of 1980s, researchers focused on the application of semiconductors, especially 

TiO2, for the degradation of pollutants in order to purify water as well as air through the 

complete oxidation of all organic or inorganic pollutants. The extensive work in this field 

resulted in thousands of papers and reviews covering different topics such as the type of 

pollutant, the detailed mechanisms of the photocatalytic degradation of different organic 
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compounds, and the modification of the photocatalyst materials as well as the design of the 

photoreactors[11, 13, 14, 26-28]. 

Research in the field of photoelectrochemical and/or photocatalytic water splitting, as an 

important process for solar energy conversion, “exploded” following the demonstration of the 

photoelectrolysis of water employing a TiO2 photoelectrode in the presence of an anodic bias 

under UV(A) illumination by Fujishima and Honda in 1972[29].  Following a rather quiet 

period in the 1990s and the early part of this century, this research area started “blooming” 

again today initiated by the apparent scarcity of fossil fuel.   

   The application of heterogeneous photocatalysis for organic synthesis is also a very 

attractive and significant research topic, which, however, has not been extensively studied. In 

particular, the fact that some reactions can only be initiated in photocatalytic reaction systems 

should be regarded as a significant observation with considerable implications for possible 

applications. Being one of the first reports in this area, Frank and Bard (1977), reported the 

formation of tribromoaniline after the photooxidation of Br
-
 at TiO2 in the presence of 

aniline[30]. In 1979, Reiche and Bard reported the photocatalytic generation of amino acids 

from CH4, N2, and H2O in the presence of platinized TiO2[31, 32]. The TiO2 or CdS induced 

peptide formation from glycine was reported by Onoe et al. in 1985[33]. Fox and co-workers 

have also placed great emphasis on the photocatalytic organic transformation especially on 

the photocatalytically induced oxygenation of various organic compounds[34-36]. One 

example is the oxidation of 1,1-diphenylethylene dissolved in acetonitrile by O2 in the 

presence of TiO2 yielding benzophenone and CO2[34]. These authors have found that the 

products obtained employing TiO2 as the photocatalyst are different from those obtained 

electrochemically on metal electrodes as well as from those generated when a homogeneous 

photocatalyst was used. Another example concerning the unique selectivity of heterogeneous 

photocatalysis is the reduction of halothane (2-bromo-2-chloro-l,l,l-trifluoroethane) to (2-

chloro-1,1-difluoroethene) by the conduction band electrons photogenerated in aqueous 
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colloidal suspensions of platinized titanium dioxide as reported in 1987 by Bahnemann et. 

al.[37]. In the middle of 1980s, Ohtani and co-workers have investigated the formation of 

Schiff’s bases as well as the preparation of symmetrical secondary amines from primary 

amines employing platinized titanium dioxide suspensions in water or in organic solvents[38-

40]. Other examples in the field of photocatalytic organic synthesis have also been reported 

such as the photocatalytic cyclization of α,ω-diamines[40], the synthesis of unsaturated N-

phenyl-α-amino esters[41], the synthesis of unsaturated α-cyano-homoallylamines[42], the 

light induced carbon–carbon bond formation [43], and the diastereoselective radical tandem 

addition-cyclization reactions of aromatic tertiary amines[44]. The photocatalytic organic 

synthesis or the respective organic transformations have been the topic of several reviews as 

well[5, 12, 19, 45]. 

1.2 Principles of photocatalytic reactions 

The heterogeneous photocatalytic conversion of an organic compound belongs to the field 

of those redox reactions initiated by the absorption of a photon in the close vicinity of the 

surface of a solid photocatalyst to which the substrates are adsorbed. The general 

photocatalytic properties of suspensions of semiconducting TiO2 particles are well established 

and have been extensively described in the literature[12, 46, 47]. 

1.2.1 Band bending at the semiconductor - electrolyte interface 

Unlike metals, the electronic structure of semiconductors is characterized by the presence 

of a bandgap (Eg), which is essentially an energy interval with very few electronic states (i.e., 

with a low density of states) between the  filled valence band (VB) and the nearly vacant 

conduction band (CB), each of which having a high density of states[48]. 

The Fermi level, which is defined as the energy level at which the probability of 

occupation by an electron is one half[49], lies in an intrinsic semiconductor at the mid-point 

of the band gap (cf. Figure ‎1.2 a). Whereas, in an n-type (negatively doped) or a p-type 
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(positively doped) semiconductors, the Fermi level lies just below the conduction band edge 

or just above the valence band edge, respectively (see Figure ‎1.2 b and c). 

 

Figure ‎1.2: Schematic diagrams of the energy levels of: (a) intrinsic, (b) n-type, and (c) p-

type semiconductors. The band bending in: (d) n-type semiconductor, and (e) p-type 

semiconductor in equilibrium with an electrolyte in the dark. 

When a semiconductor surface is brought into contact with an electrolyte containing a 

redox couple, the mobile charge carriers will be transfered between the semiconductor and the 

redox system until equilibrium is attained. This will result in the movement of the redox 

potential to that of the bulk Fermi level to the equilibrium potential, thus the bands bend 

either upward (in the case of an n-type semiconductor) or downward (in the case of a p-type 

semiconductor) (cf. Figure ‎1.2 d and e). Such a band bending may also occur if the surface of 

the semiconductor is brought into contact with adsorbed molecules (from the gas phase) or 

with a metal (solid phase)[50]. 



Chapter  1. Introduction  8 

1.2.2 Photoelectrochemical cells 

Figure ‎1.3 shows a simplified energy diagram of a photoelectrochemical (PEC) cell based 

on a single photoanode and a metal counter electrode. The main component of the PEC cell is 

the semiconductor(s) from which the photoanode and /or the photocathode are prepared. 

 

Figure ‎1.3: Band diagram for a PEC cell based on an n-type semiconducting photoanode 

that is electrically connected to a metal counter electrode; in equilibrium in the dark (a) and 

under illumination (b). Illumination raises the Fermi level and decreases the band bending. 

Near the semiconductor/electrolyte interface, the Fermi level splits into quasi-Fermi levels, 

E
*

F,n and E
*

F,p, for the electrons and holes, respectively[51]. 

When a semiconductor surface is exposed to a photon, with energy of (hν) greater or equal 

to its band gap energy (Eg), an electron (e
-
) is promoted from the valence band into the 

conduction band, leaving a hole (hvb
+
) behind (c.f. Figure ‎1.3 b). The photogenerated 

electrons are then swept toward the conducting back contact, and are transported to the metal 

counter-electrode via an external wire. The positive holes are driven to the surface where they 

are scavenged by the reduced form (Red) of the redox relay molecule, oxidizing it to its 

oxidized form (Ox). The oxidized form (Ox) is reduced back to (Red) by the electrons that re-

enter the cell from the external circuit. If water is oxidized to oxygen at the semiconductor 
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photoanode and reduced to hydrogen at the cathode, the overall photoelectrochemical reaction 

will be the cleavage of water[52].  

In PEC, the Fermi levels of the semiconductor and metal, which are electrically connected, 

adjust to a value close to Eox. Upon illumination, electron–hole pairs are created and the Fermi 

level increases with ∆Vphoto (c.f. Figure ‎1.3). Since the system is no longer in equilibrium, 

near the semiconductor/electrolyte interface, the Fermi level splits into quasi-Fermi levels, 

E
*

F,n and E
*
F,p, for electrons and holes, respectively. The quasi-Fermi levels can be given as 

E
*

F,n = ECB – ln (NC/n) ;  n = n0 + ∆n  (Eq. 1.1) 

E
*

F,p = EVB – ln (NV/p) ;  p = p0 + ∆p (Eq. 1.2) 

Here, NC and NV are the density of states around the conduction band edge and the top of 

the valence band, respectively, n and p are the concentrations of electrons and holes at a 

certain point in the semiconductor, n0 and p0 are the equilibrium carrier concentrations in the 

dark, and ∆n and ∆p are the additional carriers created by illumination. For an n-type 

semiconductor, n = n0+∆n ≈ n0 and p = p0+∆p ≈ ∆p so that E
*

F,n remains horizontal whereas 

E
*

F,p departs from the bulk Fermi level in the active region[51]. 

1.2.3 Redox reaction on photoexited TiO2 particles 

The photocatalyst particles can actually be regarded as very small photoelectrochemical 

cells in which the irradiation energy is used as activation energy of the redox reaction of the 

reductant and the oxidant[47]. At the surface of bulk semiconductor electrodes, only one 

species, either the electron or the hole, is available for reactions due to the band bending. 

However, in the photocatalytic applications very small particles (in nanometer scale) are 

usually employed. In this case, both photogenerated species are present on the surface of the 

particles, and thus both oxidative and reductive paths may occur at their surface. Figure ‎1.4 

shows a schematic presentation of the photocatalytic processes. Absorption of a photon with 
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energy of hʋ greater or equal to the bandgap energy Eg leads to the formation of electron-hole 

pair in the semiconductor particles. 

 

Figure ‎1.4: Schematic description of the redox reaction photocatalyzed by a semiconductor 

as well as other fates of the photogenerated charge carriers. The circle represents a 

semiconductor particle, wherein A and D are the electron acceptor and donor, respectively. 

In fact, the light generated electron-hole pair may be involved in different reaction paths as 

illustrated in Figure ‎1.4:  

 They may undergo primary recombination through radiative or non-radiative pathways 

(process 2 in Figure ‎1.4), 

 They may be trapped at different sites on the surface of the semiconductor particle 

(process 3 in Figure ‎1.4). It is widely assumed that the holes are trapped at the TiO2 

surface in adsorbed hydroxyl groups yielding adsorbed hydroxyl radicals (Eq. 1.3)[53]. 

h
+

vb  +  Ti(IV)-O
2-

-Ti(IV)-OH   → Ti(IV)-O
2-

-Ti(IV)~   
+
    (Eq. 1.3) 

However, Grätzel and Howe reported that the hole is trapped at a subsurface oxygen 

anion[54] (Eq.1.4). 

h
+

vb  +  Ti(IV)-O
2-

-Ti(IV)-OH   → Ti(IV)-O--Ti(IV)-OH          (Eq. 1.4) 

On the other hand, Bahnemann et al. [55] have proposed, on the basis of laser flash 

photolysis studies on colloidal aqueous TiO2 suspensions with a mean diameter of 2.4 
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nm, that,  in the absence of any hole scavengers, at least two types of traps have to be 

considered for the photogenerated holes, while the photogenerated electrons are 

trapped instantaneously. They defined these two types of holes as deeply trapped holes, 

h
+

tr, which are rather long-lived, and unreactive and shallowly trapped holes, h
+

tr*, 

which are in a thermally activated equilibrium with free holes and exhibit a very high 

oxidation potential. 

 Recombination may also occur between trapped electrons and trapped holes (process 4 in 

Figure ‎1.4). However, this recombination is rather slow with a lifetime in the range of 

microseconds. 

 Or, in the presence of suitable scavenger(s) adsorbed at the surface of the photocatalyst, 

the photogenerated electrons and/or holes may be trapped thus preventing their 

recombination and subsequent redox reactions will occur. 

Moreover, it is worth noting that to be oxidized or reduced, it is not necessary for the 

charge carrier scavengers to be adsorbed on the same particle that is absorbing the photon. 

Wang et al.[56, 57] proposed that long self-assembled chains of TiO2-particles can act as 

antenna systems transferring the photon energy from the location of light absorption to the 

location of the reaction (cf. Figure ‎1.5). Even if the target molecule is adsorbed on a 

photocatalyst particle at a certain distance from the light-absorbing particle, the latter can 

transfer the exiton energy from particle to particle provided these particles are aggregated and 

exhibit the same crystallographic orientation. Once the exiton has reached the particle with 

the adsorbed target molecule like A or D, the latter will act as an electron or hole trap, 

respectively, thus inducing the separation of the original exciton. 
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Figure ‎1.5: Schematic description of the antenna effect induced by a network structure of 

semiconductor particles[56]. 

1.2.4 Energetic considerations 

The attainable oxidation and reduction half reactions that can be achieved on the surface of 

a given semiconductor photocatalyst are limited by the positions of the band edges of this 

photocatalyst. 

Table ‎1.2 provides a list of the potentials of the band edges for those semiconductors most 

commonly used as photocatalysts (at pH 0 vs. NHE). As long as the oxidation potential of the 

adsorbed donor is lower than the valence band edge, and the reduction potential of the 

adsorbed acceptor is lower than the conduction band edge, electron transfer between the photo 

generated charge carriers and the (adsorbed) species is thermodynamically favorable. It is 

worth mentioning that the absolute position of the bands of metal oxide photocatalysts exhibit 

a nernstian shift with the change of the pH (-0.059 V/pH). 

The band levels can also be adjusted by controlling the particle size of the employed 

photocatalyst. When the crystallite dimension of a semiconductor particle falls below a 

critical radius of approximately 10 nm, the charge carriers appear to behave quantum 

mechanically[11]. Thus, the bandgap increases and the band edges ECB and EVB shift 

negatively and positively, respectively, to yield larger redox potentials. For example, 

Kormann et al.[58]. have reported a red-shift in the spectra of TiO2 nanoparticles during its 

growth up to (d < 3 nm). As a result of the shift of the band edges, the use of size quantized 

semiconductor particles may result in increased photoefficiencies for systems in which the 
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rate-limiting step is charge transfer. However, in some cases the photoefficiencies decrease as 

the particle size decreased due to increased surface defects [11, 59].  

Table ‎1.2: Approximate band positions of some common semiconductors[60]. 

Semiconductor EVB (eV vs. NHE) ECB (eV vs. NHE) Eg (eV) 

TiO2(rutile) 3.0 0.0 3.0 

TiO2(anatase) 3.0 -0.2 3.2 

SrTiO3 3.2 -0.0 3.2 

ZnO 3.0 -0.2 3.2 

CdS 2.0 -0.4 2.4 

CdSe 1.6 -0.1 1.7 

GaP 1.2 -1.1 2.3 

In water at pH = 0. Values decrease approximately 0.059 volts per unit increase in pH. Values vs. 

SCE are converted to NHE scale by adding + 0.24 volts[9]. 

The band levels, especially the conduction band edge (Ecb), can also be changed by 

changing the crystallite phase of a given semiconductor. In the case of TiO2, for example, the 

flat band potential of brookite nanorods has been found to be shifted by 140mV more 

cathodically than the flat band potential of the anatase nanoparticles[61] whereas the flat band 

potential of rutile has been reported to be shifted by 200 mV more anodically than that of 

anatase (see Table 1.2). However, the potential of the valence band edges is usually 

calculated by subtraction of the energy gaps of TiO2 (3.2, 3.0, and 3.3 eV, for anatase, rutile 

and brookite, respectively) from the conduction band energy, assuming that the flat band 

potential is equal to the potential of the conduction band edge. Hence, the valence band edge 

in TiO2 has been reported to be almost constant at 3.0 V vs. NHE at pH 0 regardless of the 

crystalline phase, anatase, rutile, or brookite[61]. 
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By carefully selecting the semiconductor, one can thus define the available redox 

potentials and, subsequently, one can choose appropriate molecules that can be oxidized or 

reduced, at the surface of this semiconductor upon illumination. 

Redox species that exchange electrons with a semiconductor can either accept (A + e
–
 → 

A
–
) or donate (D → D

+
 + e

–
) electrons. Upon electron transfer from or to adsorbed species 

their electronic structure changes. Upon the acceptance of electron, a previously unoccupied 

electronic level of the acceptor molecule becomes occupied, whereas upon electron donation 

an electron is removed from an occupied level. For an electron acceptor (A/A
–
), it is the 

energy of the lowest unoccupied level, Eunoc, that is of importance, whereas for an electron 

donor (D/D
+
) the highest occupied energy level, Eoc, is of importance (see Figure ‎1.6). 

The redox potentials of aqueous redox couples (Eredox) can be expressed as: 

EA/A
-
 = E

o
A/A

-
 + RT/nF ln(aA

-
/aA) (Eq. 1.5) 

ED/D
+
 = E

o
 D/D

+
 + RT/nF ln(aD

+
/aD) (Eq. 1.6) 

where E
o
 is the standard redox potential of the aqueous redox couple with respect to the 

Normal Hydrogen Electrode (NHE). 

 

Figure ‎1.6: Positions of the energy levels at the interface of an n-type semiconductor and a 

redox couple in an electrolyte[51]. 

Therefore, the driving force for the electron transfer from or to the adsorbed species will be 

the difference between the energy of the band edges and the redox potential of these species. 

It is noteworthy that in case of a multi-electron transfer the distribution of energy states in a 
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redox couple becomes more complicated because each one-electron transfer step has a 

different population of the energy states.  

Because of the highly positive energy level of the valence band edge in titanium dioxide, 

many oxidative conversions can be carried out in its aerated (or deaerated) suspensions upon 

irradiation. Indeed, the high oxidizing power implied by the valence band level of TiO2 (3.0 V 

vs. NHE) permits the oxidation of virtually a very wide range of organic compound. This 

turns TiO2 into an excellent photocatalyst for the purification of the contaminated water 

enabling the oxidation of almost any organic pollutant. However, TiO2 should be a less 

favorable photocatalyst from the viewpoint of organic synthesis as a result of the poor 

selectivity of these oxidation reactions. On the other hand, the position of the conduction band 

edge of TiO2 provides rather mild reduction conditions thus enabling a targeted reduction of 

specific organic groups. 

1.2.5 Solvent considerations 

From the viewpoint of an eco-friendly production of chemicals, one should pay attention to 

the choice of the solvent employed in the overall process. Water is considered to be one of the 

most environmentally friendly solvents in which photocatalysts such TiO2 can be easily 

suspended. However, because of the high positive potential of the valence-band holes of TiO2, 

the direct oxidation of the adsorbed water molecules may also occur. The formation of 

hydroxyl radicals by the single-electron oxidation of surface-bound water molecules is well 

known and has been detected by different methods including EPR spectroscopy and isotopic 

studies[62-64]. The high reactivity of the thus formed hydroxyl radicals reduces the ability to 

control the reaction selectivity if the desired goal is the organic synthesis. However, the 

drawback of the low selectivity of an organic transformation employing water as solvent can 

be considerably reduced if the desired goal is the reduction of the organic substrate in the 

presence of a sacrificial reagent which scavenges the photogenerated holes.  The 
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photocatalytic reduction of nitrobenzene or m-nitrobenzenesulfonic acid in acidic aqueous 

suspensions of titanium dioxide in the presence of oxalic acid acting as a hole scavenger are 

examples of such applications which, however, are rarely reported[65, 66]. On the other hand, 

many organic compounds are difficult to be dissolved in water because of obvious differences 

in polarity. To overcome these problems inert organic solvents can be used. Acetonitrile is a 

good candidate to be used as a solvent in photocatalytic systems because it can only be 

oxidized outside the potential window of the bandgap of TiO2, hence, the substrate can be 

selectively oxidized. 

As solvents in the photocatalytic organic synthesis processes alcohols are, from an 

environmental point of view, more favorable than acetonitrile. Besides their ability to solve a 

wide range of organic substrates, alcohols will, however, be oxidized during the irradiation 

scavenging the photogenerated holes and generating valuable carbonyl compounds. This will 

result in an enhancement of the electron-hole pair separation, hence increasing the number of 

conduction band electrons available to drive the desired reduction reaction at the surface of 

the photocatalyst. Moreover, the properties of the alcohol may also affect the overall 

photocatalytic reaction. Brezova et al.[67] have reported that the photocatalytic reduction rate 

of nitrophenol is significantly affected by the solvent (alcohol) parameters, such as viscosity, 

polarity, and polarisability all of which affect the ability of the solvent to stabilize the charged 

intermediate species produced upon illumination. 

1.3 Modification of the surface of TiO2 with precious metals 

The selectivity and efficiency of a photocatalytic reaction can be improved by modifying 

the surface of a semiconductor particle such as TiO2 with a suitable noble metal catalyst. 

Different metals such as silver, platinum, palladium, gold, and rhodium have been 

successfully deposited on the surface of TiO2[68].  
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Metals can be loaded on the surface of TiO2 by various ways including stirring suspensions 

of TiO2 and colloidal metal particles together, mixing TiO2 with the metal simply in a mortar, 

or employing the so-called impregnation method. Metallic cations can also be reduced, from a 

thermodynamic viewpoint, by the photogenerated electrons at the surface of TiO2 when their 

reduction potentials are less negative than the semiconductor Fermi level. This photo-loading 

method plays an important role in enhancing the activity of TiO2. Since the first report of the 

photodeposition method by Kraeutler and Bard[69], it became the most frequently employed 

one because it is easy and effective while it suffering, sometimes, from the poor homogeneity 

of the deposited metal islands. 

The metal deposits on the surface of TiO2 may serve different roles: Firstly, they act as 

sinks for the photogenerated electrons thus partially inhibiting the electron-hole 

recombination. This, in many cases, will improve the photocatalytic oxidation efficiency. 

Ismail et al.[70], reported that the rate of the photocatalytic oxidation of methanol to 

formaldehyde was doubled by the modification of TiO2 with only 0.5wt.% of platinum. 

Increasing the loaded amount of the metal may, however, decrease the activity of the 

photocatalysts since the metal islands may also act as electron-hole recombination centres. 

Secondly, in the absence of O2, loading of a small amount of noble metal, e.g., Pt, onto the 

photocatalyst enables the production of H2 upon the reduction of protons in the reaction 

mixture[71]. Moreover, hydrogenation reactions can be also carried out when the noble metal 

is present as a co-catalyst on the surface of the photocatalyst. Finally, the modification of the 

surface of the semiconductor with the metal islands may increase the adsorbed amount of the 

organic substrate thus improving the photocatalytic efficiency. For example, the adsorbed 

amount of nitrobenzene greatly increased with the loading of Ag or Pt nanoparticles on the 

surface of TiO2, whereas the amount adsorbed at bare TiO2 is negligibly small. This selective 
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adsorption of nitrobenzene resulted in a considerable increase in the activity and the 

selectivity of its photocatalytic reduction to aniline[72, 73]. 

1.4 TiO2-based photocatalytic organic synthesis 

In recent years, the use of the photocatalytic method as a promising approach for green 

organic synthesis has attracted an increased interest owing to its unique properties[19, 74, 75]. 

The previously mentioned photoinduced charge separation occurring on the TiO2 surface 

simultaneously creates both, a reduction center and an oxidation center. This unique feature 

allows rather complex organic transformations to be performed in one sequence without the 

necessity of the isolation of the intermediates[42, 43, 76-78]. Furthermore, redox reactions 

initiated by photogenerated electrons and holes do not produce the typical by-products 

encountered when employing conventional reductants or the oxidants. E.g., it is well known 

that redox reactions carred out in the presence of permanganate or lithium aluminum hydride, 

respectively, lead to the formation of manganese ion or aluminum hydroxide upon completion 

of the oxidation or reduction process, respectively. Moreover, photocatalytic organic 

conversions can sometimes exhibit higher selectivity than conventional methods[79]. A 

variety of organic transformations mediated by the UV(A) irradiation of TiO2 have been 

reported including oxidation and/or reduction as well as some coupling reactions[35, 38, 42, 

45]. 

1.4.1 Photocatalytic oxidation reactions employed for organic synthesis 

Recently, much effort has been devoted to the application of TiO2 to the selective 

photocatalytic oxidation of a broad range of organic compounds including hydrocarbons, 

aromatic compounds, and alcohols. Table ‎1.3 summarizes most of these photocatalytic 

oxidation organic syntheses. 
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Table ‎1.3: Examples of photocatalytic oxidation reactions 

Reaction Ref. 

 

[80, 81] 

 

[82] 

 

[83, 84] 

 

[83] 

 

[85] 

 

[86, 87] 

 

[88] 

 

[89, 90] 
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[34] 

 

[36] 

 

[45, 86, 91] 

 

It has previously been mentioned that in photocatalytic reactions the semiconductor 

particle behaves practically as a microelectrode kept always under open circuit potential with 

the anodic and cathodic current being equal in magnitude. Thus two reactions, an oxidation 

and a reduction, must proceed simultaneously on the same particle surface (otherwise the 

particle would be charged, eventually leading to the overall reaction being stopped). 

It is well known that the redox potentials of alcohols[92] are less positive than the valence 

band edge of TiO2, therefore, alcohols, in principle, can be photocatalytically oxidized to the 

corresponding carbonyl compounds[62, 93-97]. However, the “overoxidation” leading to the 

formation of carboxylic acids and CO2 is the main drawback of this reaction. In fact, the 

selectivity of the photocatalytic oxidation of alcohols can be affected by several parameters 

such as the employed solvent (if used), the type of the employed TiO2, the presence of O2, and 

the structure of the alcohol. 

The photocatalytic oxidation of primary, secondary, and tertiary as well as aromatic 

alcohols by TiO2 particles suspended in their aqueous solutions has been studied extensively 

[18, 45, 91, 98]. In these systems, two possible mechanisms have been proposed: (1) the 
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direct oxidation by the photogenerated holes (Eq.1.10), or (2) the indirect oxidation (Eq.1.11) 

via the intermediacy of OH radicals that are produced upon the trapping of valence holes by 

surface –OH groups or adsorbed water molecules (Eqs. 1.8 and 1.9).[99-101]. 

TiO2    
   

TiO2 (h
+
 + e

-
) (Eq. 1.7) 

TiO2 (h
+
) + OHs

-
 → TiO2 + OHs  (Eq. 1.8) 

TiO2 (h
+
) + H2Os → TiO2 + OHs + Haq

+
 (Eq. 1.9) 

TiO2 (h
+
) + RCH2OH → TiO2 + RCHOH + Haq

+
 (Eq. 1.10) 

OHs + RCH2OH → RCHOH + H2O (Eq. 1.11) 

RCHOH + O2 → RCHO + HO2
 (Eq. 1.12) 

Wang et al.[102, 103] have reported that the photocatalytic oxidation pathway of methanol, 

direct or indirect, depends on the molecular species adsorbed at the TiO2 surface. According 

to their measurements, the authors concluded that at a critical molar ratio between water and 

methanol of approx. 300, water is the dominant surface species and the indirect pathway, by 

OH radicals, is preferred. If the water content is lower than this critical ratio, the direct 

oxidation of methanol by the photogenerated holes will be the predominant process at the 

TiO2 surface. 

In the presence of molecular oxygen, the corresponding aldehyde is formed via its reaction 

with the photocatalytically generated C-centered radical (Eq. 1.12). However, in the O2-free 

system, the aldehyde is formed through the electron injection into the conduction band of 

TiO2, a process called “current doubling”. Miyake et al.[104] have reported that alcohols with 

an α-hydrogen react as current doubling reagents, while alcohols without α-hydrogen do not. 

The photocatalytic oxidation of different neat alcohols in the presence as well as in the 

absence of O2 was reported by Yamagata et al.[105]. They observed that the current doubling 

effect disappeared upon the introduction of molecular oxygen into the system suggesting that 
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O2 or an oxygen radical species reacts with the initially photocatalytically generated α-

hydroxyalkyl radicals. However, since the presence of molecular oxygen was found to 

enhance the formation of acetaldehyde the authors concluded that O2 participated in a radical 

chain mechanism during the photocatalytic oxidation of ethanol to acetaldehyde as shown in 

Figure ‎1.7. 

 

 

Figure ‎1.7: Schematic representation of the photocatalytic oxidation of alcohols in the 

absence (current doubling) or the presence of oxygen (radical chain mechanism)[105]. 

 

Therefore, alcohols carrying an α-hydrogen can be used for the in situ preparation of 

carbonyl compounds during a photocatalytic organic synthesis. On the other hand, alcohols 

without α-hydrogen can be used for the generation of radical species which have a relatively 

long life time and might subsequently undergo radical coupling reactions. 

Under deaerated conditions, the photogenerated electrons will be trapped near the surface 

of the TiO2 particles forming trivalent titanium (Ti
III

) since bare TiO2 is not able to catalyze 

the reduction of H
+
 to H2. This phenomenon has been observed by Bahnemann et al.[106] 

during their laser-flash photolysis study of colloidal TiO2. However, if small precious metal 

islands are present on the surface of TiO2, the photogenerated electrons will be trapped at 
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these metal nanoparticles facilitating the separation of the electron-hole pairs and promoting 

the evolution of molecular hydrogen[107].  

If alcoholic suspensions of TiO2 are irradiated in the presence of primary or secondary 

amines or ammonia, the photocatalytically formed aldehydes or ketones will react with the 

amines to give imines, in the case of bare TiO2[108], or N-alkylated amines in the case of 

platinized TiO2[39]. 

1.4.2 Photocatalytic reduction reactions employed for organic synthesis 

Reduction reactions are crucial reactions in organic chemistry that are usually conducted 

employing environmentally problematic species, such as borohydrides, sulfides, or iron salts. 

Photocatalysis seems to be a promising candidate to carry out reactions under 

environmentally more friendly conditions since no harmful residues are formed in the 

process. However, only few photocatalytic organic reductions have been reported until now. 

This might have two reasons: firstly, the early focus on the use of photocatalysts as powerful 

oxidizing agents to degrade organic pollutants; secondly, the only moderately negative 

potential of the conduction band electrons of most conveniently accessible semiconductors. 

However, the later feature ensures that the photocatalytic method will be more selective than 

most conventional reduction methods. Since molecular oxygen is usually found to be a 

relatively good electron acceptor within the reductive half reaction, it must, in most cases, be 

removed if other reagents are to be photocatalytically reduced. 

Some examples for the photocatalytic reduction of organic compounds do exist, such as 

the reduction of viologens[109]; the hydrogenation of olefins[110-112], vinyl ethers[110], or 

α,β-unsaturated enones[110]. Similarly, other multiple bonds can also be reduced, e.g., the 

N=N of diaryl azo compounds[113], the C=N of Schiff bases[114], or carbonyl 

compounds[115-117]. Examples of these reactions are given in Table ‎1.4: 
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Table ‎1.4: Examples of photocatalytic reduction reactions 

Reaction Ref. 

 

[118] 

 

[110] 

 

[110] 

 

[116] 

 

[117] 

 

[114] 

 

[119] 

1.4.2.1 Photocatalytic reduction of nitroaromatic compounds 

Amongst the photocatalytic reduction reactions, the reduction of nitroaromatic compounds 

has been studied most extensively. The photocatalytic reduction of nitrobenzene and its 

derivatives by irradiated TiO2 is particularly attractive since the products are essential 

precursors for a variety of biologically active compounds and important intermediates in the 

synthesis of polymers, pesticides, and dyes. 

Several reports have been published concerning the photocatalytic conversion of 

nitroaromatic compounds. The yield of such a photocatalytic reaction can be considerably 
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enhanced by the presence of a hole scavenger that is needed to suppress the recombination 

between photogenerated electrons (e
-
) and holes (h

+
) within the photocatalyst particle. As 

mentioned previously, primary alcohols (such as methanol or ethanol) can be used as both, 

hole scavengers and solvent for the photocatalytic reduction of organic compounds, 

generating the corresponding aldehydes as oxidation products. The work of Mahdevi et 

al.[120] can be regarded as one of the earliest reports for this application. The authors 

investigated the reduction of a variety of nitroaromatic compounds to the corresponding 

amines and reported very high yields upon the irradiation of suspensions of TiO2 in ethanol. 

During the photocatalytic reduction of p-nitroacetophenone, the corresponding 

hydroxylamine was detected as intermediate. Inspired by this finding the authors proposed a 

reaction mechanism as illustrated in Figure ‎1.8 involving sequential electron transfer, 

protonation, and dehydration. The complete reduction of a nitro compound would require six 

electrons and leave the same numbers of holes behind. If all of these holes are used to oxidize 

the alcohol employed as solvent six protons would be produced. 

N+
O O-

R

N
HO OH

R

N
O

R

N
HO H

R

N
H H

R

2e-/2H+ 2e-/2H+ 2e-/2H+-H2O

 

Figure ‎1.8: Schematic illustration of the reduction of a nitroaromatic compound to an 

aminoaromatic compound. 

As explained above (1.2.2) the driving force for the heterogeneous electron transfer is the 

difference between the energy level of the conduction band of the semiconductor and the 

reduction potential of the acceptor redox couple, i.e., RNO2/RNO2
-: 

∆E = ECB – ERNO2/RNO2
-   (Eq. 1.11) 

The standard potentials of the one-electron reduction of some nitroaromatic compounds are 

given in Table ‎1.5: 



Chapter  1. Introduction  26 

Table ‎1.5: Formal potentials for the couple RNO2/RNO2
-

 for some nitroaromatic 

compounds[121]  

Compound Formal potential (V) vs. NHE Conditions 

m-NH2-Ph-NO2 -0.46 90% water/methanol, 0.02 M NaOH 
+ 0.02 M KCl 

m-CH3-Ph-NO2 -0.46 90% water/methanol, 0.02 M NaOH 
+ 0.02 M KCl 

m-Cl-Ph-NO2 -0.40 90% water/methanol, 0.02 M NaOH 
+ 0.02 M KCl 

p-NH2-Ph-NO2 -0.59 90% water/methanol, 0.02 M NaOH 
+ 0.02 M KCl 

p-CH3-Ph-NO2 -0.49 90% water/methanol, 0.02 M NaOH 
+ 0.02 M KCl 

p-Cl-Ph-NO2 -0.44 90% water/methanol, 0.02 M NaOH 
+ 0.02 M KCl 

 

Ferry and Glaze[122] have studied the mechanism of the photocatalytic reduction of 

nitroaromatic compounds at illuminated TiO2 particles in the presence of alcohols. They 

argued that under the employed experimental conditions (i.e., absence of O2 and excess of 

alcohol) two reducing agents will be present: (1) conduction band electrons (free or trapped as 

Ti(III)) and α-hydroxyalkyl radicals formed as the one-electron oxidation products of the 

donors. In an irradiated TiO2 slurry containing nitro organic compounds, these α-

hydroxyalkyl radicals may react with the photocatalyst surface (current doubling), or they 

may react with the nitro organic compounds directly. Although the α-hydroxyalkyl radicals 

are known to be powerful reducing agents, with their reduction potentials being more negative 

than -1.0 V vs. the NHE[122], the results obtained by Ferry and Glaze indicated that the 

reduced surface sites were in fact the principal species responsible for the observed reduction 

reactions. 

The influence of the solvent properties on the rate of the photocatalytic reduction of 4-

nitrophenol to 4-aminophenol by TiO2 suspended in different alcohols was investigated by 

Brezano et al.[67]. They reported that the photocatalytic reduction rate decreased by 
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increasing the viscosity of the employed alcohol whereas it increased with increasing the 

polarity of the solvent. Consequently, the ability of the solvent to stabilize the produced 

charged intermediate species was found to play an important role in the system. 

The effect of the sacrificial electron donor on the selective reduction of p-

chloronitrobenzene to the corresponding amino compound was reported by Zhang et al.[123]. 

Among the studied electron donors (methanol, ethanol, 2-propanol, and formic acid), the 

highest yield was obtained employing a mixture of 2-propanol and formic acid at a ratio of 9 

to 1.  Recently, the successful chemoselective photocatalytic reduction of various nitro 

compounds carrying also other reducible groups to the corresponding aminobenzenes by TiO2 

suspended in acetonitrile in the presence of oxalic acid as sacrificial reagent was 

reported[124]. The benefit of using oxalic acid is that carbon dioxide is the only product and 

no carbonyl compounds are formed in the reaction mixture. Applying the same holes 

scavenger (i.e., oxalic acid) Imamura et al.[66] were able to achieve an almost quantitative 

conversion of aminonitrobenzenes to diaminobenzenes even in aqueous suspensions of TiO2. 

1.4.2.2 Effect of the modification of TiO2 on the photocatalytic reduction of 

nitroaromatic compounds 

  Tada et al.[125] have recently presented the concept of a “reasonable delivery 

photocatalytic reaction system” (RDPRS), in which the following three conditions must be 

satisfied to ensure highly efficient and selective photocatalytic reactions: (i) separation of the 

oxidation and the reduction sites; (ii) abundant and selective supply of oxidants and 

reductants to the reduction and the oxidation sites, respectively; and (iii) restriction of the 

product readsorption. The modification of the surface of TiO2 with different noble metal 

nanoparticles such as Ag or Pt improves the charge separation efficiency (RDPRS condition 

i). Hence, both the activity and the product selectivity of the TiO2 photocatalyzed reduction of 

nitrobenzene to aniline have been found to increase considerably upon loading a small 

amount of Ag clusters on the surface of TiO2. Moreover, the high activity and selectivity in 
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the Ag/TiO2-photocatalyzed reduction are rationalized not only in terms of the charge 

separation efficiency, but also because of the selective adsorption of the nitroaromatic 

compounds on the modified catalyst surfaces and the restriction of the product (aniline) 

readsorption[72, 73]. However, in the case of Pt modified TiO2 suspended in alcohols, the 

reaction may not stop at the reduction step of the nitroaromatic compound to the 

corresponding aniline but further condensation with the photocatalytically generated carbonyl 

compounds may occur. Shiraishi et al.[126] have reported that loading a small amount of Pt 

(0.3 wt.%) on the surface of particulate TiO2 promotes the formation of imines from alcohols 

and anilines upon irradiation. On the other hand, the presence of Pt islands on the surface of 

TiO2 can also catalyze evolution of hydrogen gas which may result in the hydrogenation, 

under the catalytic property of Pt, of the formed imines thus producing N-alkylated products. 

Ohtani et al.[39, 114] have reported that secondary amines are produced from primary amines 

dissolved in alcohols employing platinized titanium dioxide as the photocatalyst[38-40]. 

However, among the primary amines used in their studies, aniline was N-alkylated most 

slowly reaching an efficiency of only 13.9% even after 20h of irradiation[39]. Ohtani and co-

workers assumed that this lower efficiency of the N-alkylation of aniline can be attributed to 

the fact that N-ethylideneaniline is poorly reduced over Pt in ethanol under H2 atmosphere. 

Shiraishi et al.[127] have also applied platinized titanium dioxide to synthesize 

benzimidazoles from 1,2-diaminobenzene under illumination of the respective alcoholic 

suspensions. 

However, in order to decide whether the photocatalytic reduction of nitroaromatic 

compounds over TiO2 as a useful synthetic method, a systematic study focusing on the factors 

that affect the selectivity of this reaction is of great importance.  
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1.5 Objectives of the study 

In the literature review presented in the previous section, a general overview of the 

photocatalytic actions of semiconductor photocatalysts, especially TiO2, and their related 

applications in oxidizing and/or reducing a desired organic molecule has been presented and 

described. In summary, titanium dioxide has been reported to be an active photocatalyst under 

UV(A) irradiation, a stable material against chemicals and light, and a nontoxic material with 

low production costs. Therefore, TiO2 is currently considered to be the most promising 

photocatalyst amongst the most extensively studied semiconductors. It has been reported that 

alcohols can be photocatalytically oxidized by the photogenerated holes at the surface of TiO2 

particles to the corresponding carbonyl compounds. The efficiency of these reactions has been 

found to be considerably enhanced in the presence of electron acceptors. On the other hand, in 

the presence of an electron donor, the photogenerated conduction band electrons at irradiated 

TiO2 surfaces can reduce nitroaromatic compounds to the corresponding amioaromatic 

compounds. Thus, the illumination of systems consisting of alcohols, nitroaromatic 

compounds, and TiO2 powders is expected to result in the simultaneous formation of carbonyl 

compounds and amioaromatic compounds, respectively. These photocatalytically produced 

compounds are precursors for the synthesis of valuable products such as quinoline derivatives 

and N-alkylated aromatic compounds as can be seen in Figure ‎1.9 

 

Figure ‎1.9: Schematic illustration of the synthesis of quinolines and N-alkylated compounds 

starting from the photocatalytically formed amioaromatic compounds and aldehydes. 
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Quinolines and N-alkylated aromatic compounds are essential precursors for a variety of 

biologically active compounds and they are important intermediates in the production of 

polymers, pesticides, and dyes. However, the most frequently employed thermal routes to 

prepare these compounds[128-135] often suffer from the requirement of harsh reaction 

conditions (i.e., high temperature and/or pressure), the use of large amounts of hazardous 

acids or bases, and, in particular, expensive metal complexes. Therefore, the development of 

new strategies to obtain these compounds in a fast, clean, and efficient way is of great 

significance and still requires considerable efforts. 

In this thesis, TiO2-based photocatalytic reactions have been chosen as an alternative 

method for the synthesis of aforementioned organic compounds, starting from inexpensive 

nitroaromatic compounds and alcohols. In the suggested system, several transformations 

during the preparation of these complex organic compounds (quinolines and N-alkylated 

aromatic compounds) should be performed in one sequence without the necessity of the 

isolation of the intermediates. 

For this purpose, a systematic study focusing on the factors that affect the selectivity of the 

photocatalytic reactions to obtain the target compounds have been performed. Thus the 

following points have been investigated: 

 Influence of the type of TiO2 and its surface properties to the photocatalytic conversion 

of the nitroaromatic compounds in alcohols. 

 Modification of TiO2 with an acidic co-catalysts and its effect on the yield of the target 

compounds. 

 The effect of depositing tiny islands of different precious metals as a co-catalysts on the 

surface of TiO2 on the photocatalytic reaction pathway. 

 Further investigations the concerning the optimization of the amount of metal loaded on 

the surface of TiO2, the loading method, and the light intensity, respectively.  
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The experimental work and the related discussion presented within this thesis should be 

useful as a tool to develop the understanding of the photocatalytic conversion of the studied 

organic molecules in order to consider the photocatalytic reduction of the nitroaromatic 

compounds over TiO2 as a useful and environmentally benign synthetic method. 
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2 Materials and experimental methods 

2.1 Materials 

Commercial titanium dioxide powders with different structures were obtained from 

different companies as follows: Hombikat UV 100 with anatase structure (Sachtleben, 

Germany), R34 with rutile structure (Cristal Global, KSA), Aeroxide P25 with mixed anatase 

and rutile structure (Evonik-Degussa, Germany). All TiO2 powders were used as received 

from the respective companies. Mesoporous titania was prepared according to a procedure 

given in ref[136] yielding a photocatalyst materials with a hexagonal mesostructure. All 

nitroaromatic compounds were of analytical grade and used as received from Sigma-Aldrich 

except p-nitro phenol which was obtained from Fluka. Acetaldehyde was also from Fluka.  

Ethanol (99.8%) was obtained from Roth whereas all other alcohols were received from 

Sigma-Aldrich. Hexachloroplatinic acid hexadydrate, palladium chloride, tetrachloro auric 

acid and silver nitrate were obtained from Alfa-Aeser, Sigma-Aldrich, Merck, and Sigma-

Aldrich, respectively. All other reagents and standards were used as received from the 

respective supplier. 

2.2 Modification of the TiO2 powders 

2.2.1 Modification of TiO2 with arenesulfonic acid functionalized mesoporous SiO2 

TiO2-arenesulfonic acid functionalized mesoporous silica materials were synthesized as 

follows: 4 g of Pluronic 123 (Aldrich) was dissolved by stirring in 125 g of 1.9 M HCl at 

room temperature until complete dissolution of the surfactant. Then 9.4 ml TEOS 

tetraethylorthosilicat (Aldrich) was added dropwise. After the addition of TEOS was 

completed, the amount of TiO2 (Sachtleben Hombikat UV 100), needed to reach the desired 

TiO2:SiO2 ratios, was added and the resulting suspension was kept at RT for 45 min under 

stirring to ensure pre-hydrolysis. Subsequently, the desired amount of 2-(4-

chlorosulfonylphenyl)ethyltrimethoxysilane (CSPTMS) solution in methylene chloride (50%, 
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Gelest) was added dropwise (to prevent phase separation) into the mixture and stirred at RT 

for 20h, after which the mixture was aged at 100 °C for 24 h under static conditions. The 

template was removed from the as-synthesized material by washing with methanol and 

deionized water followed by refluxing in ethanol for 48 h and finally washing with deionized 

water for three times (to insure that the samples are free of residual HCl used during the 

preparation). The samples were labeled T(n)-S-Ar (x), where n:1:x is the molar ratio of 

TiO2:SiO2:Arenesulfonic acid. 

2.2.2 Modification of TiO2 with Pt nanoparticles 

Two methods were used to prepare Pt/TiO2: The photocatalytic deposition method and the 

mixing of solids method, respectively. 

2.2.2.1 Photocatalytic deposition method 

Pt(x)/TiO2 samples, containing different platinum loadings [x (wt%)=100*m(Pt)/ m(TiO2); 

x=0.3, 0.5, 1.0], were prepared by a photodeposition method[137]: In a typical experiment, 

0.5 g of the TiO2 powder was suspended in 100 ml of deionized water and purged with argon 

for 30 min to remove dissolved O2. The desired ratio of H2PtCl6 was added to the suspension 

and the mixture was irradiated from the top for 1h with UV(A) light by a Philips CLEO lamp 

(3 mW/cm
2
). Then 1 ml of methanol was added to the suspension which was kept under 

illumination over night.  The reaction solution was removed by centrifugation, followed by 

repeated washing of the powder with distilled water, and finally by drying at 80 °C for 24 h 

yielding a gray solid. 

2.2.2.2 Mixing of solids method using colloidal Pt suspensions 

Colloidal Pt was prepared by reduction of H2PtCl6 with sodium citrate[106]. Excess ions in 

the resulting colloidal suspension were removed with an ion exchange resin (Amberlite MBl) 

until a specific conductivity of ca. 3 μS cm
-1

 was reached. Pt-loaded TiO2 (0.5 wt%) was 
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prepared by suspending TiO2 in deionized water followed by the addition of the desired 

amount of the as-prepared colloidal Pt under continuous magnetic stirring over night. After 

evaporation under vacuum at room temperature a grayish powder was obtained. The obtained 

powder was dried at 80 °C overnight. 

2.2.3 Modification of TiO2 with other precious metal nanoparticles 

Other metals (Pd, Au, and Ag) were deposited on the surface of TiO2 using the procedure 

of the photocatalytic deposition method described above (2.2.2.1). PdCl2, HAuCl4, and 

AgNO3 were used as precursors for Pd, Au, and Ag, respectively. 

2.2.4 Modification of TiO2 with bimetallic Ag-Pt nanoparticles 

Two series of catalysts were prepared using the procedure of the photocatalytic deposition 

method (see 2.2.2.1): In the first one, Ag(x) [x= 0.1, 0.3, 0.5, and 1.0 wt. %] were 

photocatalytically deposited on the surface of photocatalytically pre-prepared (0.5 wt.%) 

Pt/TiO2. In the second one, (0.5 wt.%) Ag was first photocatalytically deposited on the 

surface of TiO2 followed by the photodeposition of different amounts of Pt(x) [x= 0.1, 0.3, and 

0.5 wt.%]. 

2.3 Characterizations of the prepared materials 

2.3.1 Transmission electron microscopy 

Transmission electron microscopy (TEM) and the high-resolution transmission electron 

microscopy (HRTEM) measurements were carried out using a Field-Emission Transmission 

Electron Microscope of the type JEM-2100F-UHR (JEOL Ltd., Tokyo, Japan) equipped with 

a Gatan GIF 2001 energy filter and a 1k CCD camera. (HRTEM) was performed at 200 kV 

with an ultrahigh resolution pole piece (CS = 0.5 mm) providing a point-resolution better than 

0.19 nm. Energy dispersive X-ray spectroscopy (EDXS) were also carried out on the same 

device. 



Chapter  2. Materials and experimental methods  35 

2.3.2 Specific surface area measurements 

A Micromeritics AutoMate 23 instrument was used to determine the single-point standard 

BET surface area. A gas mixture of 30% nitrogen and 70% helium was used for the 

adsorption determinations. In order to clean the surface from adsorbed water, all TiO2 

samples were previously heated to 120 °C for approximately 1h. 

2.3.3 Infrared spectroscopy 

FTIR spectra were recorded on a Bruker FRA 106 instrument using KBr pressed powder 

discs. Each sample of TiO2 powders (10 mg) was mixed with (190 mg) of spectroscopically 

pure dry KBr and pressed into disks before its spectrum was recorded. 

In-situ ATR-FTIR spectra of 1 ml of pyridine disolved in acetonitrile (100 mM) were 

recorded with a Bruker IFS 66 instrument equipped with horizontal ATR unit with a ZnSe 

crystal. A TiO2 layer was firstly prepared by placing 400 μL of the suspention of TiO2 in 

acetonitrile (4g L
-1

 TiO2) on the crystal surface followed by evaporation of the solvent at 

room temperature by the mean of a N2 flow. For each measurement 64 scans were recorded. 

2.3.4 Diffuse reflectance spectroscopy 

Diffuse reflectance spectra of TiO2 powders were recorded on a Varian Cray 100 Scan 

UV-Vis spectrophotometer equipped with labsphere diffuse reflectance accessory. KBr was 

used as reflectance standard. Reflectance was converted by the instrument software to F(R) 

values. 

2.3.5 Thermogravimetric measurements 

Thermogravimetric measurements (TGA) were carried out on a Setaram Setsys evolution 

1750 thermoanalyzer up to 900°C applying heating rates of 10 °C/min under oxygen. 
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2.3.6 X-ray diffraction 

The small-angle XRD diffraction patterns were acquired on a Bruker-axs D8 device using 

Cu-Kα radiation. 

2.3.7 Acidic sites determination 

The acidic sites of the surface of TiO2 powders were investigated by FTIR spectroscopy of 

adsorbed pyridine. TiO2 powders were heated to 120 °C for 24h. Afterwards, the samples 

were transferred to a desiccator saturated with pyridine vapor and stored in the dark for 24h at 

room temperature. At the end of the saturation process, the samples were flushed with a N2 

flow for 1h to remove the weakly adsorbed pyridine molecules. 

2.3.8 Acidic capacity measurements 

The ion-exchange capacities of the sulfonic mesoporous materials were determined using 

aqueous solutions of sodium chloride (NaCl, 2M) as exchange agents. In a typical experiment, 

50 mg of the solid was added to 10 ml of aqueous NaCl solution. The resulting suspension 

was allowed to equilibrate for 24h and thereafter titrated potentiometrically by dropwise 

addition of 0.01 M aqueous KOH solution. 

2.4 Photocatalytic reaction procedure 

The photocatalytic reactions were carried out in a double jacket Duran glass reactor with a 

total volume of 40 cm
3
 which was irradiated from the outside using an Osram XBO 1000 W 

Xenon lamp in a Mueller LAX 1000 lamp housing under magnetic stirring at 25 
◦
C (see 

Figure ‎2.1). A 10 cm water bath and a WG 320 nm filter were used to cut off the IR and the 

short wavelengths UV light, respectively. In a typical experimental run the desired amount of 

the photocatalyst (equal to 25 mg of TiO2) was suspended in 10 cm
3
 of an alcoholic solution 

containing 100 µmol of the nitroaromatic compound. Before illumination, the reactor was 
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placed in a sonicator for 3 min and then purged with Ar until no N2 and O2 were detected by 

gas chromatography (Shimadzu 8A, TCD detector) in the headspace above the solution. 

If the products were to be isolated, the double jacket Duran glass reactor was fed with 40 

ml of the reaction mixture and irradiated from the outside by a 500-W mercury medium-

pressure lamp (Heraeus TQ 718 Z4) with an UV(A) light intensity of 20 mW/cm
2
. After the 

complete consumption of the nitroaromatic compound, as detected by the GC, the catalyst 

was removed by filtration followed by evaporation of the solvent by a rotavapor.  The 

products were purified by silica gel column chromatography with n-hexane: ethyl acetate 8:2 

(v/v) as eluent. The structures of the isolated products were confirmed by both GC-MS 

analysis and 
1
H NMR and 

13
C NMR measurements recorded in CDCl3. 

 

 

Figure ‎2.1: Schematic view of the employed photocatalytic reaction system. 

2.5 Dark reaction procedure 

The reaction was performed under continuous stirring in a glass snap-cap bottle (23 mm in 

diameter and 75 mm in length) covered with aluminum foil. The required amount (25 mg) of 

the catalyst (TiO2 or modified TiO2) was suspended in an ethanolic solution (10 cm
3
) 
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containing (100 μmol) of the nitroaromatic compound (or the corresponding aminoaromatic 

compound). The reaction mixtures were purged with Ar (or H2 if needed) for 30 min. For the 

dark N-alkylation reaction tests, the required amounts of the ethanolic solution of 

acetaldehyde (100 mM) were added to the reaction mixture after the purging step. Samples 

were also analyzed by GC-FID after filtration. 

2.6 Analysis of the reaction mixture 

2.6.1 Gas chromatography-mass spectroscopy measurements 

The products were analyzed qualitatively at different illumination times, after removing the 

semiconductor particles through filtration (0.20 µm filter) from the irradiated mixture, by Gas 

chromatography-mass spectroscopy measurements (GC-MS). A Shimadzu gas chromatograph 

and mass spectrometer (Shimadzu GC/MS-QP 5000) equipped with a 30 m Rxi-5ms (d = 0.32 

mm) capillary column was used. Operating temperature programmed: injection temperature 

305 °C, oven temperature 120 °C (hold 2 min), from 120 °C to 280 °C at the rate of 10 

°C/min, 280 °C (hold 15 min) in splitless mode, injection volume (3.0 µl) with helium as a 

carrier gas. 

2.6.2 Gas chromatography-flame ionization detector measurements 

The concentrations of the substrates as well as of the products were determined by gas 

chromatography equipped with a flame ionization detector (GC-FID). A Shimadzu GC 2010 

equipped with a Rtx-5 (d = 0.25 mm) capillary column and an FID detector were used for this 

purpose. Operating temperature programmed: injection temperature 250 °C, oven temperature 

70 °C (hold 2 min), from 70 °C to 280 °C at the rate of 10 °C/min, in splitless mode. Injection 

volume: 2.0 µl with nitrogen as the carrier gas. The concentrations of the substrate as well as 

of the products were determined based on calibration curves prepared with authentic 

standards (m-toluidine; Aldrich 99%, N-ethyl-m-toluidine; Fluka 98%, N,N-diethyl-m-

toluidine; Acros 99%, and 2,7-dimethylquinoline; Aldrich 99%) 
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2.6.3 Gas chromatography- thermal conductivity detector measurments 

The produced H2 gas was analyzed in the headspace above the reaction mixture during the 

illumination using gas chromatography (Shimadzu 8A) equipped with Molecular Sieve 5A 

column, TCD detector , and Ar as carrier gas. Column and detection temperature were 60 
◦
C 

and 150 
◦
C, respectively. 

2.6.4 Nuclear magnetic resonance spectroscopy 

The structures of the isolated products were analyzed using a Bruker DPX 200 MHz NMR 

spectrometer equipped with 5 mm DUL 
13

C-
1
H and BACS sample changer. CCl3D was used 

as solvent. 
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3 Results 

3.1 General reaction sequence for the photocatalyic conversion of nitroaromatic 

compounds (NACs) 

Figure ‎3.1 shows the general reaction sequence of the photocatalytic conversion of 

nitroaromatic compounds in alcohols based upon the reaction products identified by the GC-

MS analyses. The products were found to be strongly affected by the employed photocatalyst 

and the reaction conditions. 

 

Figure ‎3.1: General reaction sequence for the photocatalytic conversion of the 

nitroaromatic compounds. A list of compounds with their names and corresponding symbols 

is provided in the Appendix. (e and h are not used in the symbols because they are usually 

used for the electron and the  hole, respectively, in the discussion). 

The conversion of m-nitrotoluene (1a) dissolved in ethanol was used as a model reaction in 

order to investigate the fate of the nitroaromatic compounds dissolved in non-aqueous media 

upon illumination in the presence of TiO2 or modified TiO2 as the photocatalyst. 
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3.2 Photocatalytic conversion of the nitroaromatic compounds over bare TiO2 

The GC chromatograms obtained at different irradiation (λ> 320 nm) times of m-

nitrotoluene (1a) dissolved in ethanol under Ar atmosphere at 25 °C in the presence of 

Sachtleben Hombikat UV100 as a photocatalyst are shown in Figure ‎3.2. 
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Figure  3.2: GC chromatograms obtained at different irradiation times of the reaction 

mixture (reaction conditions: 100 µmol m-nitrotoluene (1a) and 25 mg TiO2 in 10 ml EtOH, 

60 mW UV(A)/cm
2
, 25 °C, under Ar atmosphere). 

It is clearly seen from these chromatograms (Figure ‎3.2) that the peak attributed to (1a) 

(RT: 8.37 min) completely disappeared after 2h of illumination and new peaks appeared at 

retention times of 6.59, 7.42, and 11.38 min attributed to m-toluidine (1c), N-ethylidene-3-

methylaniline (1f), and 2,7-dimethylquinoline (1j); respectively. A trace of N-ethyl-3-methyl 

aniline (1l) was also detected as a small peak at 8.81 min. The products were identified using 

standards and/or GC-MS by comparing the molecular ion and mass fragmentation pattern 

with those reported in the GC-MS library. 

After stirring the reaction mixtures in the dark for several hours as well as after irradiation 

of the ethanolic solution of the nitroaromatic compound in the absence of TiO2 no conversion 

of the nitroaromatic compound was detected clearly indicating that both, the presence of TiO2 

and UV(A) light are essential for the reaction. 
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Figure ‎3.3 shows the time course of the m-nitrotoluene (1a) conversion and the products 

formation under UV(A) irradiation of a reaction mixture containing TiO2, (1a), and ethanol. 

The time course of the summation of the amounts of nitrotoluene (1a), aminoaromatic 

compound (1c), imine derivative (1f), and quinoline derivative (1j) is also shown in Figure 

‎3.3. A satisfactory material balance (with experimental error of ±0.5%) is apparently kept 

during the reaction so no degradation reaction of the nitroaromatic compound occurs in the 

present system.  

 

Figure ‎3.3: Time course of: photocatalytic conversion of (1a) (); photocatalytic formation 

of:  (1c) (), (1f) (), (1j) (); and () summation (reaction conditions: 100 µmol (1a) and 

25 mg TiO2 in 10 ml EtOH, 60 mW UV(A)/cm
2
, 25 °C, under Ar atmosphere). Experimental 

error of the analysis is calculated to be 0.5%.  

Under the experimental conditions employed here the complete consumption of the 

substrate required 2h of UV(A) irradiation. At this time the colour of the suspension changed 

from white to blue due to the trapping of the photogenerated electrons by Ti(IV) to form 

Ti(III), indicating the complete conversion of the electron acceptor (1a) and the fact that no 

new electron acceptor was introduced into the system. 
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3.2.1 Effect of TiO2 type on the photocatalytic conversion of the nitroaromatic 

compounds 

The effect of the type of TiO2 employed as photocatalyst in the system alcohol -

nitroaromatic compound - TiO2 - light on the reaction products was studied employing several 

kinds of TiO2 including anatase, rutile, anatase-rutile mixture, and mesoporous anatase. Table 

‎3.1 summarizes the physical properties of the employed photocatalysts’ powders. The BET 

surface areas of the TiO2 materials were determined using nitrogen adsorption-desorption.  

The crystallite particle sizes of these photocatalysts were obtained from XRD analysis. 

Table ‎3.1: Physical properties of the employed photocatalysts. 

Entry Photocatalyst 

Phase composition 

Notation 
SBET

[a]
/ 

(m
2
g

-1
) 

Particle 

crystallite 

size /nm Anatase Rutile 

1 Cristal Global (R34) - 100 R 58 34 

2 Sachtleben Hombikat 

(UV100) 

100 - A 265 10 

3 Evonik-Degussa 

Aeroxide  (P25) 

80 20 P25 77 25 

4 Home-made 

mesoporous sample  

100 - MA 174 13 

 [a] SBET surface area 

Figure ‎3.4.(A-D) shows the time courses of the consumed amounts of the nitroaromatic 

compound (1a) and the produced amounts of the reaction products - the aminoaromatic 

compound (1c), the imine (1f), and the quinoline (1j) - respectively, obtained during the 

photoirradiation of the reaction mixtures employing different kinds of TiO2. 
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Figure ‎3.4: Time courses of the:( A) consumption of m-nitotoluene (1a), (B) production of 

the aminoaromatic compound (1c), (C) production of the imine (1f), and (D) production of 

the quinoline (1j);   employing: UV100 (), rutile (), P25 (), and mesoporous anatase 

().(reaction conditions: 100 µmol (1a) and 25 mg TiO2 in 10 ml EtOH, 60 mW UV(A)/cm
2
, 

25 °C, under Ar atmosphere). 

As can be seen from Figure ‎3.4.A, all the employed photocatalysts are efficient to convert 

the nitroaromatic compound (1a) by ca.100% within the first 2h of ilumination. However, the 

data illustrated in Figure ‎3.4(B-D) show that the type of TiO2 strongly affects the distribution 

of the reaction products. 

The highest amount of the aminoaromatic compound (1c) (ca. 80 µmol) was obtained 

employing pure rutile as the photocatalyst (cf. Figure ‎3.4.B) whereas this photocatalyst was 

less efficient than other photocatalysts to produce the imine (1f) or its cyclization product the 

quinoline (1j). On the other hand, pure anatase photocatalysts promote the formation of the 
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imine (1f) (ca. 44 µmol) (cf. Figure ‎3.4.C). TiO2 P25, which is a mixture of anatase (80%) 

and rutile (20%), catalyses the cyclization of the imine (1f) to produce the corresponding 

quinoline (1j) (ca. 31% µmol) (cf. Figure ‎3.4.D) while employing either pure anatase or pure 

rutile was not sufficient to improve the amount of the quinoline (1j) over 10 µmol even after 

6h of irradiation as can be seen from Figure ‎3.4.D. 

The photonic efficiencies ζ (%) of the photocatalytic reduction of the nitroaromatic 

compounds (NACs) were calculated as the ratio of the initial reduction rate of NACs and the 

incident photon flux (Io) according to equations (3.1) and (3.2), where k is the first order rate 

constant obtained from the slope of the curve ln (Co/C) vs. time (s). The incident photon flux 

per volumetric unit has been calculated based upon the UV(A) light meter measurements and 

assuming an average illumination wavelength λ = 350 nm; the irradiated surface area was 

7.85 cm
2
, and the volume of the suspension was 0.01 l. 

      
      

    
    

  (Eq. 3.1) 

   
   

      
 

  (Eq. 3.2) 

with I0, being the photon flux; I, the light intensity; NA, Avogadro's number; h, the Planck 

constant; c, the light velocity; k, the initial rate constant; A, the illuminated area; Co, the initial 

NAC concentration; λ, the illumination wavelength; and V, the reactor volume. The 

calculated ζ (%) were found to be 5.8, 6.8, 7.0 and 4.7 for rutile, UV100, P25, and home-

made anatase, respectively. 

The chemical features of the surface of the employed photocatalyts were investigated by 

FTIR spectroscopy of adsorbed pyridine, being one of the more selective reagents for 

studying the acidic sites of the solid acids[138-141]. The FTIR absorption spectra of the pure 

TiO2 materials, as well as of TiO2 powders treated with pyridine vapor are shown in Figure 

‎3.5 and in Figure ‎3.6, respectively. 
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Figure ‎3.5: Infrared spectra of 

bare TiO2; (a) UV100, (b) P25, (c) 

mesoporous anatase, and (d) rutile 

 

Figure ‎3.6: Infrared spectra of TiO2 

powders treated with pyridine vapor; (a) 

UV100, (b) P25, (c) mesoporous anatase, 

and (d) rutile. 

The wide absorbance peak at 1640 cm
-1

 (Figure ‎3.5 and Figure ‎3.6) is attributed to 

vibrations of the surface-adsorbed H2O and to Ti-OH bonds. As shown in (Figure ‎3.6), 

several significant new peaks at 1445, 1489, 1540, 1607, and 1639 cm
-1

 appeared upon 

adsorption of pyridine on some of the TiO2 samples. These peaks have been assigned to the 

chemisorption of molecular pyridine at different types of surface acidic sites[142]. The peaks 

at 1445 and 1607 cm
-1 

are due to the interaction of pyridine with Lewis acid sites (exposed 

Ti
4+

 cations), while the peaks at 1540 and 1639 cm
-1

 result from the protonation of the 

pyridine molecule by the Brönsted acid sites (surface-bound hydroxyl groups). However, 

under our experimental conditions, the peak at 1639 cm
-1

 overlapped with vibrations of the 

surface adsorbed water while the peak at 1540 cm
-1

 was very broad and weak. The band at 

1489 cm
-1

 reflects pyridine interactions with active centers of both acidic types. For the rutile 
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sample no clear new peaks appeared after its treatment with pyridine vapor confirming the 

poor acidity of this TiO2 type[143]. 

3.2.2 Effect of the addition of an acid as a co-catalyst 

3.2.2.1 Photocatalytic conversion of the nitroaromatic compound in ethanol 

Bearing in mind that the traditional methods to prepare quinolines usually require large 

amounts of acids[144], it is conceived that, in a photocatalytic system, the addition of a small 

amount of an external acid as a co-catalyst to the reaction mixture could be effective to 

increase the yield of the produced quinoline. For this reason, prior to illumination, varying 

amounts (5, 10, 20, or 40 mol%) of p-toluenesulfonic acid (p-TsOH) were added to the m-

nitrotoluene ethanolic solution in the presence of  Hombikat UV100 being the photocatalyst. 

The yields of the quinoline (1j) obtained after 2h photoirradiation are illustrated in Figure 

 3.7. 

Figure  3.7: Yield of the photocatalyticlly produced quinoline (1j) at: different p-TsOH 

concentrations (reaction conditions: 100 µmol (1a), 25 mg TiO2 , and the required amounts 

of p-TsOH in 10 ml EtOH, 60 mW UV(A)/cm
2
, 25 °C, under Ar atmosphere). 
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It can be seen from Figure  3.7 that the yield of the quinoline (1j) increased significantly, 

i.e., from 4%  upto 47%, upon the addition of only a small amount of p-TsOH (5mol%). 

However, increasing the added amount of p-TsOH does not help to increase the yield of the 

produced quinoline any further but rather decreases it a little. 

3.2.2.2 Photocatalytic conversion of different nitroaromatic compounds and different 

alcohols 

The combination of the solid photocatalyst (TiO2) and the acidic co-catalyst (p-

toluenesulfonic acid) can also be successfully applied for the light-induced conversion of 

other derivatives of nitrobenzene (p-nitrotoluene (2a), o-nitrotoluene (3a), 3-vinyl-1-

nitrobenzene (5a), 3,5-dimethyl-1-nitrobenzene (6a), 2,4- dimethyl-1-nitrobenzene (7a), and 

p-nitrophenol (p-NPh)) in O2-free ethanolic suspensions yielding substituted quinolines and 

tetrahydro-quinolines. 

The GC-MS analysis of the respective irradiated mixtures, containing (5mol%) p-TsOH, 

are shown in Figure ‎3.8. These analyses show the formation of substituted quinolines as the 

main products when (1a), (6a), or p-NPh were employed as substrates, while ethoxy-

tetrahydro-quinolines are the main products when (2a) or (3a) were used. However, by 

increasing the amount of the co-catalyst (p-TsOH) to 40mol%, quinoline and 

tetrahydroquinoline derivatives were obtained as main products in all cases. Using toluene as 

internal standard in the GC-MS analysis the concentrations of the produced cyclic compounds 

were determined. Thus, the yields of the products were calculated on the basis of the 

consumption of the corresponding nitroaromatic compounds. The respective results are 

summerised in Table ‎3.2. 
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Figure ‎3.8: GC-MS chromatograms obtained after 4hours irradiation of the reaction 

mixtures: (A) 1a, (B) 6a, (C) 3a, (D) 2a, and (E) p-NPh. The MS spectra refer to the peaks 

labeled with ().(reaction conditions: 100 µmol of nitroaromatic compound, 25 mg TiO2 , 

and (5mol%) p-TsOH in 10 ml EtOH, 20 mW UV(A)/cm
2
, 25 °C, under Ar atmosphere) 
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Table ‎3.2: Photocatalytic conversion of different NACs in different alcohols in the presence 

of TiO2 and p-TsOH as co-catalyst.  

Entry
[a]

 Substrate Alcohol Products (Yields [%])
[b]

 

1 

 

 

  

(45) 

 

(55) 

2 

 

 

  

(50) 

 

(49) 

3 

 

 

 

(46) 

 

(21) 

 

(16) 

4 

 

 

  

(59) 

 

(41) 

5 

 

 

(35) 
(6) 

(14) 

6 

 

 

 

(8) 

 

(55) 

 

(34) 

7 

 

 

 
 

(51) 

 

(46) 

8 

 

 

 

(64) 
(33) 
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Table ‎3.2(continued): Photocatalytic conversion of different NACs in different alcohols in the 

presence of TiO2 and p-TsOH as co-catalyst 

9 

 

 

 

(68) (19) 

 

[a] Reaction conditions: 200 µmol of the nitroaromatic compound, 50 mg TiO2, and 40mol% 

of p-TsOH in 20 ml EtOH, 20 mW UV(A)/cm
2 
for 4 hours, 25 °C, under Ar atmosphere. 

[b] GC yield using toluene as internal standard. 

3.3 Photocatalytic conversion of the nitroaromatic compounds over modified 

TiO2 

3.3.1 TiO2 Modified with acid functionalized SiO2 

The previous results (c.f. 3.2.2) showed that substituted quinolines can be successfully 

prepared by the combination of a solid photocatalyst (TiO2) and an acidic co-catalyst (p-

toluenesulfonic acid). However, the subsequent isolation of the homogeneously distributed 

co-catalyst is still a problematic reaction step. In order to overcome this problem, TiO2 and 

the acid were embedded on one heterogeneous bifunctional catalyst.  For this purpose, hybrid 

organic–inorganic materials in which the organic acid is stabilized into the pores of 

mesoporous silica-titania composites were prepared. Acid modified mesoporous SiO2 

decorated with TiO2 was prepared via the co-condensation of 2-(4-

chlorosulfonylphenyl)ethyltrimethoxysilane (CSPTMS) and tetraethyl orthosilicate (TEOS) in 

the presence of commercially available Hombikat UV100 TiO2 particles. The resulting 

bifunctional catalysts were tested for the one-pot photocatalytic conversion of nitroaromatic 

compounds into quinolines in O2-free alcoholic solutions. 

SiO2 has been chosen for several aspects: Firstly, for its ability to connect easily and 

strongly to TiO2, thus, stable TiO2-SiO2 composites can be obtained[145-147]. Secondly, the 

preparation of well-ordered mesoporous silica structures with uniform pore sizes is well 

known and such materials can be easily synthesized[148]. Finally, the possibility to 
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functionalize the mesoporous silica with organic acid groups to produce promising solid acid 

catalysts will avoid the use of traditional homogeneous acid catalytic systems and hence their 

serious drawbacks such as hazards in handling, corrosiveness, toxic wastes and difficulties in 

their separation[149]. Such a solid acid catalyst has been successfully tested for a large 

number of thermal acid-catalysed reactions such as esterification[150-152], alkylation[153], 

condensation[154-156] and different rearrangement processes[153, 157]. On the other hand, 

any additional problems induced by the difficulty to fabricate a TiO2 photocatalyst with 

sufficient activity (i.e., comparable to that of commercially available TiO2) was omitted per se 

by employing the commercially available TiO2 powder Sachtleben Hombikat UV100 which 

already exhibits a sufficient photocatalytic performance for the reduction of the nitroaromatic 

compounds as was shown in the previous sections. 

3.3.1.1 Characterization of the prepared catalysts 

TiO2-SiO2-ArSO3H samples containing different TiO2 and –ArSO3H loadings were 

prepared using a conventional preparation method[148]. The physical and chemical properties 

of the obtained catalysts are summerized in Table ‎3.3. 

Table ‎3.3: Physical and chemical properties of the prepared catalysts. 

Sample 
Molar composition 

SBET/m
2
 g

-1
 

Acid capacity 

(mmol/g) 

Theoretical Ar-SO3H 

content (mmol/g) TiO2 SiO2 Ar-SO3H 

TiO2 1 0 0 265 0.02 0 

SiO2 0 1 0 757 0.02 0 

T0.1S1 0.1 1 0 608 nd. 0 

T0.5S1 0.5 1 0 480 nd. 0 

T1S1 1 1 0 581 0.03 0 

T5S1 5 1 0 263 nd. 0 

T10S1 10 1 0 179 nd. 0 

T1S1Ar0.03 1 1 0.03 424 0.20 0.20 

T1S1Ar0.06 1 1 0.06 345 0.32 0.39 

T1S1Ar0.1 1 1 0.10 323 0.50 0.60 

nd.:  Not detected 
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The transformation of the chlorosulfonyl moieties into sulfonic groups mediated by acid-

catalysed hydrolysis during the preparation of the mixed catalyst powders was confirmed by 

measuring the acid capacity of the sulfonic-modified materials. The acid capacity was 

measured by means of acid–base potentiometric titration using Na
+
 as an ion-exchange agent. 

The respective results are also shown in Table ‎3.3. The close agreement between the ion-

exchange capacities measured using sodium as exchange ion with the calculated SO3H 

content based upon the employed concentration of CSPTMS can be taken as clear evidence 

that most of the arenesulfonic groups are effectively incorporated in the silica network and are 

accessible and useful for the catalytic reaction processes. Moreover, the decrease of the BET 

surface area by increasing the loaded amount of the organic acid (cf. Table ‎3.3) clearly 

indicates that the acid is located on the pore wall of the mesoporous support. 

Figure ‎3.9 shows the FT-IR spectra of the bare oxides and of the arenesulfonic modified 

SiO2-TiO2 samples with different Ar-SO3H molar ratios. For all the samples which contain 

SiO2, the typical Si-O-Si stretching and bending vibrations bands of the condensed silica 

network are present around 1210, 1080, and 794 cm
-1

 while the peak at 956 cm
-1

 corresponds 

to the Si-OH group[158]. The peak at 1630 cm
-1

 is due to adsorbed H2O[158]. From the 

enlarged parts of the FT-IR spectra of the bare SiO2-TiO2 and of the arenesulfonic modified 

SiO2-TiO2 samples with different Ar-SO3H molar ratios (cf. I and II in Figure ‎3.9) it can be 

clearly seen that new bands at 1010 cm
-1

, 1122 cm
-1

, 1409 cm
-1

, and 1498 cm
-1

 appear only in 

the samples which were synthesized in the presence of CSPTMS. The intensity of these bands 

increases as the CSPTMS /(CSPTMS + TEOS) molar ratio in the initial mixture is increased. 

The two peaks at 1409 and 1498 cm
-1

 are assigned to CC stretching vibrations in the aromatic 

ring of the embedded organic acid whereas a weak vibration appears as a shoulder at 1600 

cm
-1  

corresponding also to the aromatic ring [159]. On the other hand, the two peaks at 1010 

and 1122 cm
-1

 are close to those of the C-H aromatic in-plan bending vibrations[159]. 

However, Pejov et al. [160] have reported that the bands, which are usually assigned to the C-
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H aromatic in-plane bending vibrations, may also be attributed to the antisymmetric SO3 

stretching modes and to the symmetric SO3 stretching mode, respectively. 

 

Figure ‎3.9:  FT-IR spectra of TiO2 (A), SiO2 (B), and extracted arenesulfonic modified SiO2-

TiO2 samples with different Ar-SO3H molar ratios: 0 (C), 0.03 (D), 0.06 (E), 0.1 (F). (I) 

enlarged region from 1350-1650 cm
-1

, and (II) enlarged region from 990-1200cm
-1

. 

TGA measurements (Figure ‎3.10) also confirm the presence of the arenesulfonic acid 

group on the inner mesopore surfaces of the functionalized silica. A continuous mass loss 

with various rates is observed which can be better interpreted in combination with the DTA 

results. Three well resolved regions of mass loss can be distinguished: i) below 200 °C, ii) 

between 200 °C and 380 °C, and iii) above 380 °C. The first peak for each sample is 

associated with the desorption of physisorbed water or ethanol[151, 161, 162]. A peak around 
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280 °C is observed in both extracted samples (a,b) but not in the sample which was calcined 

at 450 °C for 4h (c).  Consequently, this peak can be attributed to the presence of residual 

surfactant. The decomposition of the organic acid groups was observed as two peaks in the 

region above 380 °C, hence, the thermal decomposition of ethylphenylsulfonic acid groups 

occurs in two steps starting at 418 °C and being completed at 580 °C. 
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Figure ‎3.10: TGA and DTA measurements of: (a) the extracted arenesulfonic modified SiO2-

TiO2 sample T1S1Ar0.1, (b) extracted TiO2 modified with mesoporous silica, and (c) TiO2 

modified with mesoporous silica calcined at 450 °C for 4h. 

EDXS imaging was used to determine the localization of each component of the prepared 

composite material. As can be seen from Figure ‎3.11 (a, b) the particles consist of a network 

of SiO2 whereas the TiO2 was located as islands of agglomerates on the surface of the SiO2 

particle. Furthermore, EDXS imaging (Figure ‎3.11 c) shows a statistical distribution of the 

sulfur over the whole particle evincing that the organic acid is not localized just on one side of 

the material but is distributed over the entire SiO2 matrix. The transmission electron 

microscopy (TEM) images (Figure ‎3.11 d, e, and f) provide clear evidence of a well ordered 
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hexagonal structure of the porous SiO2 network which is decorated with agglomerates of 

small (5nm) TiO2 nanoparticles (as is evidenced by the interlattice diffraction fringes clearly 

observed in the HRTEM images in Figure ‎3.11 f). 

 

Figure ‎3.11: EDXS elemental map of: (a) silicon, (b) titanium, and (c) sulfur in the 

extracted arenesulfonic modified SiO2-TiO2 (sample T1S1Ar0.1); (d) TEM image of the porous 

SiO2 matrix in the same sample (e) Dark-field TEM micrograph showing the nanocrystaline 

TiO2 deposited on the SiO2 matrix; (f) HRTEM image of the sample showing the anatase 

polycrystallites on the surface of the sample T1S1Ar0.1. The Fourier transformation (FFT)is 

shown as inset. 

In order to confirm the highly ordered hexagonal structure of the prepared materials, small-

angle XRD analyses were carried out (Figure ‎3.12). As can be seen in Figure ‎3.12 both bare 

SiO2 and T1S1 samples exhibit four well resolved peaks that are indexable as (100), (110), 

(200) and (210) reflections associated with the p6mm hexagonal symmetry. The intensities of 

the XRD peaks of the arensulfonic modified sample were too low to be recognized. Such a 

feature which has also been reported by other research groups[157, 163] can be explained by 

the presence of arensulfonic groups inside the channels of the mesoporous SiO2 structure 
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resulting in a substantial loss in scattering contrast between the channel and the wall and, 

therefore, in a poor XRD pattern. 

Figure ‎3.12: XRD patterns of: (A) pure SiO2, (B) SiO2-TiO2 (sample T1S1), and (C) 

arenesulfonic modified SiO2-TiO2 sample T1S1Ar0.03. 

3.3.1.2 Photocatalytic activity of the newly prepared photocatalysts for the conversion 

of nitroaromatic compounds 

The conversion of m-nitrotoluene (1a) dissolved in ethanol was investigated as a model 

reaction to identify the potential of the prepared TiO2-SiO2-ArSO3H catalysts. Irradiation (λ> 

320 nm) of the reaction mixture under Ar at 25 °C in the presence of the acid modified 

mesoporous TiO2-SiO2 particles resulted in the formation of 2,7-dimethylquinoline (1j). 

Table ‎3.4 presents the results of the quinoline (1j) synthesis upon irradiation of the 

nitroaromatic compound (1a) in EtOH with the different catalysts. 

  

1 2 3 4 5

(C)

(B)

In
te

n
s

it
y

 /
 a

.u
.

2degree

(A)



Chapter  3. Results  58 

Table ‎3.4: Conversion of m-nitrotoluene (1a) and yields of m-toluidine and 2,7-

dimethylquinoline (1j) obtained upon the illumination of EtOH solutions contaning m-

nitrotoluene and the corresponding catalyst. 

 

Entry
[a]

 Catalyst
[b]

 Conversion [%] 
Yield [%] 

1c 1j 

1 Bare TiO2 100 52 6 

2 T1S1 98 58 18 

3 T0.5S1 92 38 11 

4 T5S1 83 41 12 

5 T1S1Ar0.03 98 3 53 

6 T1S1Ar0.03(r2) 99 2 54 

7 T1S1Ar0.03(r3) 99 3 53 

8 T1S1Ar0.06 98 8 51 

9 T1S1Ar0.1 98 7 45 

[a] Reaction conditions: catalyst (equal to 25 mg TiO2), (1a) (100 µmol), EtOH (10 mL), 20 mW UV(A)/cm
2
 for 

4h, 25 °C, under Ar atmosphere., [b] for notation see Table ‎3.3. 

In all cases the catalysts achieve almost total conversion of the starting nitroaromatic 

compound within 4 hours of UV(A) irradiation. However, as have been previously observed 

(c.f. 3.2), bare TiO2 (Sachtleben Hombikat UV100) exhibits considerably lower activity for 

the subsequent cyclization reaction yielding the quinoline (1j) (cf. entry 1 in Table ‎3.4). 

Modifying the titania with bare SiO2 was also not really sufficient to promote the yield of (1j) 

(cf. entries 2-4 in Table ‎3.4). Higher yields of (1j) were obtained, however, employing 

arenesulfonic acid modified SiO2-TiO2 as catalysts (cf. entries 5-9 in Table ‎3.4).  
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3.3.2 TiO2 modified with precious metals nanoparticles 

3.3.2.1 Comparison of different precious metals loaded on the surface of TiO2 

The surface of the TiO2 powder Sachtleben Hombikat UV100 was modified with different 

precious metals (Pt, Pd, Au, and Ag). For this purpose, the photocatalytic deposition method 

of the metals from the aqueous solutions of the corresponding salts in the presence of 

methanol as sacrificial reagent was used.  A comparative study of the obtained catalysts for 

the photocatalytic conversion of the nitroaromatic compounds in alcohols has been performed 

using again the photocatalytic conversion of m-nitrotoluene (1a) in ethanol as the model 

reaction. 

Irradiation (λ> 320 nm) of Pt0.5/ TiO2 particles suspended in an ethanolic solution of m-

nitrotoluene (1a) under Ar atmosphere at 25 
◦
C led to the N-alkylation and the N,N-

dialkylation of the nitroaromatic compound as indicated by the GC/MS chromatograms 

recorded at different times of the photocatalytic reaction (cf. Figure ‎3.1). Figure ‎3.13 shows 

the time course of the (1a) consumption and of the products formation under UV irradiation 

of a reaction mixture containing Pt0.5/ TiO2. Two hours photoirradiation were sufficient to 

achieve the complete consumption of (1a). About 70% yield of the mono N-alkylated product, 

N-ethyl-m-toluidine (1l), was achieved when Pt0.5/ TiO2 was used as the photocatalyst, while 

only traces of (1l) were detected in the case of bare TiO2 (cf. Figure  3.2). On the other hand, 

prolonged illumination converts the initially produced (1l) gradually into N,N-diethyl-m-

toluidine (1m) in the presence of Pt on the surface of TiO2. 
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Figure ‎3.13: Time-dependent change in the amounts of substrate and products during the 

photoirradiation of (1a) in EtOH: (1a) (), (1c) (), (1f) (), (1l) (), (1m) (), and () 

summation (reaction conditions: 100 µmol (1a) and 25 mg Pt0.5/TiO2 in 10 ml EtOH, 60 mW 

UV(A)/cm
2
, 25 °C, under Ar atmosphere). 

Table ‎3.5 presents the selectivity of the reaction products after 2 and 6 h of illumination of 

an ethanolic solution of (1a) in the presence of TiO2 modified with different precious metals. 

A complete conversion of the substrate (1a) was achieved in all cases. However, the type of 

the deposited metal plays an important role for the selectivity of the products especially for 

the mono N-alkylated compound (1l). The highest selectivity (69%) of (1l) was obtained after 

2h of irradiation employing Pt0.5/TiO2 as the photocatalyst. 
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Table ‎3.5: Photocatalytic conversion of m-nitrotoluene with EtOH employing different metal 

laoded on TiO2 UV100. 

Entry
[a]

 Photocatalyst t [h] 
Conv.

[b]
 

[%] 

Selectivity [%]
[c]

 

1c 1f 1j 1l 1m 

1 TiO2 UV100 2 > 99 49 44 4 2 <1 

2 6  47 34 6 <1 <1 

3 Pt0.5/TiO2 UV100 2 > 99 4 14 1 69 5 

4 6  <1 2 <1 26 59 

5 Pd0.5/TiO2 UV100 2 > 99 <1 0 9 43 25 

6 6  <1 0 8 6 58 

7 Ag0.5/TiO2 UV100 2 > 99 31 23 3 21 <1 

8 6  29 15 3 28 <1 

9 Au0.5/TiO2 UV100 2 > 99 <1 0 10 54 2 

10 6  <1 0 9 45 18 

[a] Reaction conditions: catalyst (25 mg), m-nitrotoluene (1a) (100 µmol), EtOH (10 mL), I>320 nm, 25 °C, under Ar 

atmosphere. 

[b] Conversions were determined by GC on the basis of (1a) consumption. 

[c] Determined by GC. 

As Pt/TiO2 has shown the highest selectivity towards the mono-N-alkylated product, 

further investigations concerning the mechanism of the enhancement of the reaction yield and 

of the selectivity by optimizing the type of TiO2 that supports Pt particles, the Pt/TiO2 

preparation method, the amount of platinum loaded on the TiO2 surface, and the light 

intensity, respectively, have been carried out. 

3.3.2.2 Effect of the type of TiO2 supporting the Pt particles 

The selectivity of the products obtained after the photocatalytic conversion of (1a) using 

different types of TiO2 modified with Pt is shown in Table ‎3.6. The results obtained using 

Pt0.5/ TiO2 UV100 prepared by the solids mixture method are also included in Table ‎3.6: 
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Table ‎3.6: Photocatalytic conversion of m-nitrotoluene with EtOH employing different Pt 

loaded TiO2. 

Entry
[a]

 Photocatalyst t [h] 
Conv.

[c]
 

[%] 

Selectivity [%]
[d]

 

1c 1f 1j 1l 1m 

1 Pt0.5/TiO2 UV100  2 100 4 4 1 69 5 

2 6 100 <1 1 <1 26 59 

3 Pt0.5/ TiO2 rutile 2 100 13 8 7 50 7 

4 6 100 3 1 4 36 43 

5 Pt0.5/TiO2 P25 2 100 10 1 2 68 4 

6 6 100 0 0 <1 43 57 

7 Pt0.5/TiO2 meso. 2 100 22 14 5 41 3 

8 6 100 3 2 1 53 36 

9 mix Pt0.5/ TiO2 UV100  2 100 68 0 7 9 <1 

10 6 100 48 0 12 22 <1 

11
[b]

 Pt0.5/ TiO2 UV100 

 

2 100 21 14 6 26 2 

12 6 100 7 3 3 51 28 

[a] Reaction conditions: catalyst (25 mg), m-nitrotoluene (1a) (100 µmol), EtOH (10 mL), I>320 nm, 25 °C, under Ar 

atmosphere. 

[b] Ar was purged during the irradiation. 

[c] Conversions were determined by GC on the basis of (1a) consumption. 

[d] Determined by GC. 

As can be seen from Table ‎3.6 a complete conversion of (1a) was achieved in all cases. 

However, the type of TiO2 plays an important role for the selectivity of the products 

especially for the mono N-alkylated one (1l). Both Pt0.5/TiO2 UV100 and Pt0.5/TiO2 P25 

exhibit a higher selectivity towards (1l) after 2h of illumination (cf. entries 1and 5 in Table 

‎3.6) than all other employed photocatalysts. The selectivity of the reaction was also affected 
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by the preparation method of the catalyst. As can be seen from the data presented in Table ‎3.6 

(entries 9 and 10), colloidal Pt loaded onto Hombikat UV-100 by physical mixing is not as 

selective towards the N-alkylation reaction as that prepared by the photodeposition method. 

Although a complete conversion of (1a) occurred within 120 min in both cases, less than 10% 

selectivity for (1l) was obtained employing the catalysts prepared by the mixed solid method. 

Obviously, the type of interaction between Pt and TiO2 also plays an important role for the 

activity of the catalyst towards the mono N-alkylation reaction. 

3.3.2.3 Effect of the loaded amount of Pt 

The data obtained after UV(A) illumination of an ethanolic solution of (1a) in the presence 

of Sachtleben Hombikat UV100 loaded with 0.3, 0.5, and 1.0 wt% Pt, respectively, are 

illustrated in Figure ‎3.14. It is obvious from this bar graph that the amount of platinum plays 

an important role for the selectivity of the products especially for the mono N-alkylated 

compound. 

Figure ‎3.14: Selectivity of the reaction products obtained upon illumination of the ethanolic 

solutions of m-nitrotoluene (1a) in the presence of Sachtleben Hombikat UV100 loaded with 

different amounts of Pt.  
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The selectivity toward the formation of (1l) after 2 hours of illumination increases from 

50% to 80% when the Pt loading increases from 0.3% to 1.0%. The Pt sites significantly 

influence the condensation reaction of the aminoaromatic compound (1c) with the 

photocatalytically generated acetaldehyde as is reflected in the decrease of the selectivity for 

the formation of the aminoaromatic compound (1c) by increasing the loaded amount of Pt. 

In order to investigate the influence of the particle size of the platinum particles loaded on 

the surface of TiO2 on the selectivity of the catalysts towards the mono N-alkylation reaction 

transmission electron microscopy (TEM) images of the TiO2 powders loaded with different 

amounts of Pt were recorded. Dark-field TEM images of Pt0.5/TiO2 UV100 (Figure ‎3.15) 

clearly show that the Pt nanoparticles are well dispersed exhibiting particle diameters between 

3 and 10nm. However, no clear change in the particle size can be observed upon changing the 

loaded amount of platinum. This is consistent with a previous report by Ohtani and co-

workers who demonstrated that increasing the loaded amount of Pt on the surface of TiO2 

only results in an increase of the number of the Pt islands but not in their size[119]. 

 

Figure ‎3.15: TEM images of Hombikat UV100 samples containing different amounts of Pt: 

(a) Pt0.3/TiO2 (c) Pt0.5/TiO2, and (d) Pt1.0/TiO2. (b) HRTEM image of Pt0.3/TiO2. 

5nm 
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3.3.2.4 Influence of the light intensity 

Figure ‎3.16 demonstrates the changes in the concentrations of the substrate (1a)  and the 

product (1l) as a function of the employed light intensity. 

Figure ‎3.16: Time-dependent change in the concentrations of 1a (empty symbols) and 1l 

(filled symbols) in the presence of Pt0.5/ TiO2 UV100 at different light intensities: 60 mW/cm
2
 

(), 30 mW/cm
2
 (), and 15 mW/cm

2
 ().(reaction conditions: 100 µmol (1a) and 25 mg 

Pt0.5/ TiO2 UV100 in 10 ml EtOH, 25 °C, under Ar atmosphere). 

It can be seen from Figure ‎3.16 that the photocatalytic conversion of m-nitrotoluene (1a), 

using Pt0.5/TiO2UV100, is still highly selective towards the formation of the mono N-

alkylated amine even when lower light intensities are used. It is obvious from the data shown 

in Figure ‎3.16 that decreasing the light intensity leads to a reduced reduction rate of the nitro 

compound. However, the maximum yield of the mono N-alkylated product (1l) is not 

significantly affected by the employed light intensity. On the other hand, at lower light 

intensities the further conversion of (1l) to (1m) is also slowed down as can be seen from the 

slope of the amount of (1l) = f (t) after reaching its maximum (Figure ‎3.16). Hence, it seems 

to be possible to control the conversion towards the mono N-alkylated product by suppressing 

its further N-alkylation by employing “milder” reaction conditions, i.e., by working at lower 

illumination intensities. 

0 60 120 180 240 300 360

0

20

40

60

80

100
A

m
o

u
n

t 
/ 


m
o

l

Time / min



Chapter  3. Results  66 

3.3.2.5 N-alkylation reactions of nitroaromatic compounds in different alcohols 

In order to evaluate the general applicability of this newly developed photocatalytic N-

alkylation method, various types of nitroaromatic compounds as well as different alcohols 

have been studied. The respective results are summarized in Table ‎3.7:  

Table ‎3.7: Photocatalytic N-alkylation of different nitroaromatic compounds in different 

alcohols empoloying 1%Pt/TiO2UV100.
 

Entry
[a]

 
Nitroaromatic 

compound 
Alcohol Product 

t 

(min)
[b]

 

Yield [%]
[c]

 

GC is  

1 

 

 

 

150 90 85 

2  
 

 

180 100 91 

3  

 

 

240 83 80 

4  

 

 

360 91 
[e] 

5
[d]

  

 

 

480 94 92 

6  

 

 

180 99 
[e]

 

7 

 

 

 

150 93 84 
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8 

 

 

 

120 90 75 

9 

 

 

 

120 83 80 

10 

 

 

 

300 72 53 

11 

 

 

 

150 79 54 

[a] Reaction conditions: 0.4 mmol nitroaromatic compound, 40 ml alcohol, 0.1 g 1%Pt/TiO2, 25 °C, under Ar. [b] llumination 

time needed to achieve 100 % conversion of the nitroaromatic compound. [c] Yields are based on 100% nitroaromatic 

compound consumption. [d] 4 mmol of benzyl alcohol was dissolved in 40 ml MeCN.  [e] Not isolated. 

As can be seen from Table ‎3.7, the photocatalytic N-alkylation has been successfully 

achieved in most cases with a moderate to very good yield. However, the time required to 

achieve the complete conversion of m-nitrotoluene (1a) increases by increasing the length of 

the aliphatic chain of the alcohol. 

It is interesting to note that only trace amounts of the mono N-alkylated products are 

produced when branched or aromatic alcohols are used, whereas the main products in these 

cases are the imines in the case of 3-methyl-butanol or benzyl alcohol or even the anilines in 

case of iso-propanol (entries 4-6 in Table ‎3.7). Obviously, the structure of the employed 

alcohol plays an importent role in the photocatalytic N-alkylation reaction. On the other hand, 

it can be seen from Table ‎3.7 that the position as well as the number of the methyl group in 

the nitroaromatic compound does not affect the reaction sequence and, in all cases, the mono 

N-alkylated products are obtained in very good yields (entries 7-10 in Table ‎3.7). 

Interestingly, N-ethyl-m-ethyl-benzene is obtained when m-nitrostyrene is used as the 

substrate (entry 10), thus, Pt/TiO2UV100 is also able to photocatalytically hydrogenate the 

C=C double bond. The GC-MS analyses of the reaction mixture at different reaction times 

indicate that a competitive photocatalytic reduction between the nitro group and the styrene 

C=C double bond takes place. 
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3.3.2.6 Modification of the surface of TiO2 with bimetallic platinum-silver 

nanoparticles 

In order to enhance the selectivity of the photocatalytic conversion reaction of the 

nitroaromatic compounds towards mono N-alkylated products, bimetallic (Pt-Ag) deposits on 

TiO2 (Sachtleben Hombikat UV100) were prepared and tested. Silver was chosen due to its 

relatively low price, thus, it should be particularly suitable for industrial applications. For this 

purpose, two series of catalysts were prepared: In the first one, various amounts of Ag (0.1, 

0.3, 0.5 and 1.0 wt.%) were photocatalytically deposited on pre-prepared (0.5 wt.%)Pt/TiO2. 

In the second one, (0.5 wt.%) Ag was first deposited photocatalytically on the surface of TiO2 

followed by the photodeposition of different amounts of Pt (0.1, 0.3, and 0.5 wt.%). The 

activities of the obtained photocatalysts were tested using the same model reaction, i.e., the 

photocatalytic conversion of (1a) in O2-free ethanolic solutions. 

Figure ‎3.17: Time-dependent change in the amount of N-ethyl-m-toluidine (1l) during the 

photoirradiation of (1a) in EtOH in the presence of Agn/Ptm/TiO2: bare TiO2 (), Pt0.5/TiO2 

(), Ag0.1/Pt0.5/TiO2 (), Ag0.3/Pt0.5/TiO2 (), Ag0.5/Pt0.5/TiO2 (), Ag1.0/Pt0.5/TiO2 (), 

(reaction conditions: 100 µmol (1a) and 25 mg Agn/Ptm/TiO2 in 10 ml EtOH, 60 mW 

UV(A)/cm
2
, 25 °C, under Ar atmosphere). 
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Figure ‎3.18: Time-dependent change in the amount of the N-ethyl-m-toluidine (1l) during 

the photoirradiation of (1a) in EtOH in the presence of Ptm/Agn/TiO2: Ag0.5/TiO2 (), 

Pt0.1/Ag0.5/TiO2 (), Pt0.3/Ag0.5/TiO2 (), Pt0.5/Ag0.5/TiO2 (), (reaction conditions: 100 µmol 

(1a) and 25 mg Ptm/Agn/TiO2 in 10 ml EtOH, 60 mW UV(A)/cm
2
, 25 °C, under Ar 

atmosphere). 

The produced amounts of the mono N-alkylated product (1l) in the (Pt-Ag)/TiO2 

photocatalyzed system upon different illumination times are shown in Figure ‎3.17 and 

Figure ‎3.18. Whatever the employed catalyst was, 100% conversion of the nitroaromatic 

compound (1a) in the (Pt-Ag)/TiO2 photocatalyzed reaction was achieved after 2h of 

illumination. However, the selectivity for the formation of the mono N-alkylated product 

differs considerably upon variation of the ratio of the metals as can be seen from Figure ‎3.17 

and Figure ‎3.18. Loading of (0.1 wt.%) Ag over (0.5 wt.%) Pt/TiO2 increases the selectivity 

of (1l) from 66% to 76% after 3h photoirradiation (cf. Figure ‎3.17), while the selectivity of 

(1l) decreases by increasing the loaded amount of Ag above (0.1 wt.%). Moreover, only 37% 

yield of N,N-diethyl-m-toluidine was produced after 6h of illumination of the reaction mixture 

in the presence of Ag0.1/Pt0.5/TiO2 while 59% yield of the same product was recorded 

employing Pt0.5/TiO2 as the photocatalyst instead. 

On the other hand, the data illustrated in Figure ‎3.18 show that modification of Ag0.5/TiO2 

with increasing amounts of Pt increases the selectivity towards the mono N-alkylated product. 
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However, Pt0.5/Ag0.5/TiO2 was not as selective for this reaction as bare Pt0.5/TiO2, hence, the 

pre-existence of Ag particles apparently suppresses the activity of Pt towards the N-alkylation 

reaction of the photocatalytically produced m-toluidine (1c) into N-ethyl-m-toluidine (1l). 

Interestingly, both Pt0.5/Ag0.5/TiO2 and Ag0.5/Pt0.5/TiO2 show the same behavior in this 

system. 

To understand these differences in the selectivity of the employed (Pt-Ag)/TiO2 

photocatalysts, the photocatalytically produced H2 in the system during the illumination time 

was measured and the recorded amounts are presented in Table ‎3.8. 

Table ‎3.8: Amount of the photocatalytically generated hydrogen during the phtocatalytic 

reduction of m-nitrotoluene employing different (Agm-Ptn)/TiO2 photocatalysts.  

Entry
[a]

  Photocatalyst 
H2 / µmol 

2h 6h 

1 Pt0.5/TiO2 393 739 

2 Ag0.1/Pt0.5/TiO2 218 553 

3 Ag0.3/Pt0.5/TiO2 190 460 

4 Ag0.5/Pt0.5/TiO2 80 291 

5 Ag1/Pt0.5/TiO2 52 287 

6 Ag0.5/TiO2   25 115 

7 Pt0.5/Ag0.5/TiO2 95 324 

[a] Reaction conditions: catalyst (25 mg), m-nitrotoluene (1a) (100 µmol), EtOH (10 mL), I>320 nm, 25 °C, under Ar 

atmosphere. 

As expected, the amount of the photocatalytically generated H2 increases with increasing 

illumination time in all cases. However, bare Pt0.5/TiO2 produces the highest amount of H2. 

Modification of this photocatalyst with an increased loading of Ag results in a reduced 

photocatalytic H2 formation efficiency (entries 1-5 in Table ‎3.8). On the other hand, 

Ag0.5/TiO2 exhibits the lowest activity for the photocatalytic production of H2 (entry 6 in 

Table ‎3.8). Moreover, Pt0.5/Ag0.5/TiO2 exhibits less activity for the formation of H2 than 
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Pt0.5/TiO2, hence, the pre-modification of TiO2 with Ag particles apparently decreases the 

efficiency of Pt for the photocatalytic formation of H2 (entries 1 and 7 in Table ‎3.8). 

The optical absorption spectra of Agm/Ptn/TiO2 were recorded in order to investigate the 

electronic properties of these photocatalysts. The obtained spectra are shown in Figure ‎3.19. 

300 350 400 450 500 550 600

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ag
1.0

/Pt
0.5

/TiO
2

Ag
0.5

/Pt
0.5

/TiO
2

Ag
0.3

/Pt
0.5

/TiO
2

(a)

F
(R

)

Wavelength / nm

Ag
0.1

/Pt
0.5

/TiO
2

Pt
0.5

/TiO
2

TiO
2

300 350 400 450 500 550 600

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pt
0.5

/Ag
0.5

/TiO
2

Pt
0.3

/Ag
0.5

/TiO
2

Pt
0.1

/Ag
0.5

/TiO
2

F
(R

)

Wavelength (nm)

(b)

Ag
0.5

/TiO
2

 

Figure ‎3.19: Diffuse reflectance spectra of bare TiO2 (Schachtleben Hombikat UV100) and 

of TiO2 (Schachtleben Hombikat UV100) photocatalytically modified with bimetallic (Pt-Ag) 

nanoparticles: (a) Agm(m=0-1.0)/Pt0.5/TiO2 and (b) Ptn(n=0-0.5)/Ag0.5/TiO2. 

Although the surface plasmon absorption of Pt nanoparticles is known to have a peak at 

215 nm, which is covered by the strong optical absorption of TiO2 in this region, the materials 

exhibit increasing absorption in the wavelengths range between 400-600 nm by increasing the 

loaded Pt amount. However, no significant change in the absorption is observed upon loading 

of Ag on bare or Pt modified TiO2 although Ag should exhibit a surface plasmon absorption 

in the wavelength range between 420-500 nm. This can most likely be explained by the small 

level of Ag loading. Dark-field TEM images of Ag0.5/Pt0.5/TiO2 (Figure ‎3.20) clearly show 

that the metal nanoparticles are well dispersed exhibiting particle diameters between 5 and 10 

nm. However, because of the similarity between the metal particle size and the crystallite size 

of TiO2 it was not possible to obtain energy–dispersive X-ray (EDX) data for a single metal 

nanoparticle in order to confirm its bimetallic structure.  
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Figure ‎3.20:  Dark Field-TEM image of Ag0.5/Pt0.5/TiO2 sample (a) and HRTEM image of 

the same sample (b). 

  



Chapter  4. Discussion  73 

4 Discussion 

4.1 Reduction of the nitroaromatic compounds 

The chromatograms presented in Figure  3.2 show that the UV(A) irradiation (λ> 320 nm) 

of TiO2 particles suspended in an ethanolic solution of m-nitrotoluene (1a) under Ar 

atmosphere at 25°C, leads to complete conversion of the nitroaromatic compound to the 

following reaction products: m-toluidine (1c), N-ethylidene-3-methylaniline (1f), and 2,7-

dimethylquinoline (1j) in addition to a trace of N-ethyl-3-methylaniline (1l). The time course 

of the summation of the amounts of the substrate and the products, Figure ‎3.3, indicates that a 

material balance is almost kept during the reaction and no significant degradation reaction of 

the nitroaromatic compound or hydrogenation of the aromatic ring seems to occur in the 

present system. It is suggested that the reaction occurs in the following sequence: i) reduction 

of the nitroaromatic compound and simultaneous oxidation of the alcohol; ii) imine 

formation; and, iii) imine cyclization and/or hydrogenation as illustrated in Figure ‎4.1. 

 

Figure ‎4.1: Suggested overall reaction steps of the photocatalytic conversion of the NACs. 

 

In the following discussion, each step of the reaction will be discussed in detail. The 

influence of different parameters on these steps will also be discussed and clarified. 
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Step 1 (reduction of the NACs and oxidation of the alcohol, i.e., the photocatalytic 

reactions) 

Under the employed reaction conditions, NACs are reduced to the corresponding 

amioaromatic compounds via the reactions that are illustrated in Figure ‎4.2. Upon irradiation 

of TiO2 with a photon of equal or higher energy than its band gap, an electron (e
-
)/ hole (h

+
) 

pair is generated. The formed electrons and holes can either migrate to the TiO2 surface on 

which they will react with the adsorbed reactants, i.e., the nitroaromatic compound and the 

alcohol, respectively, or they can undergo an undesired recombination reaction.  

 

 

Figure ‎4.2: Schematic representation of the proposed steps for the photocatalytic reduction 

of m-nitrotoluene dissolved in ethanol at an irradiated TiO2 particle, (1) photogeneration of 

charge carriers, e
-
 and h

+
; (2) trapping of e

-
; (3) first oxidation step of EtOH by trapped 

hole;(4) formation of acetaldehyde through electron injection into the conduction band of 

TiO2 (current-doubling); (5) reduction of m-nitrotoluene to m-nitrosotoluene by two of the 

CB electrons; (6) reduction of m-nitrosotoluene to m-(hydroxyamino)toluene by two of the 

CB electrons;(7) reduction of m-(hydroxyamino)toluene to m-toluidine by two of the CB 

electrons; (8) recombination channel. Note: For simplicity, the electrons (trapped and 

injected) required for total reduction of the nitro group to the amino group is presented as 

6e
-
 in the CB. 
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According to the literature[65, 120, 122], the aforementioned process consists of a series of 

two-electron additions, proceeding through nitroso and hydroxylamino intermediates (c.f. 

processes 5-7 in Figure ‎4.5). For example, Mahdavi and co-workers have detected 

hydroxylamine formation during the photocatalytic reduction of p-nitroacetophenone in neat 

2-propanolic suspensions of TiO2 (using HPLC techniques)[120]. On the other hand, an 

accumulation of the nitroso compound is rarely found in practice, and special techniques are 

necessary to obtain direct evidence for its formation[164]. However, the nitroso- and the 

hydroxylamine intermediates were not detected by our analytical techniques (GCs) with the 

employed experimental conditions. 

The total reduction of one nitro group in the nitroaromatic compound to one amino group 

requires six electrons as well as the same number of protons. These electrons and protons are 

supplied by the simultaneous oxidation of the alcohol, i.e., the solvent, which is induced by 

the photogenerated valence band holes of the TiO2. Prolonged illumination time, beyond that, 

which is necessary for the complete consumption of the nitroaromatic compound, results in 

colour change of the TiO2 suspension from white to blue. This phenomenon is due to the 

trapping of the photogenerated electrons near the surface by Ti(IV) forming tri-valent 

titanium Ti(III)[106], indicating that no other electron acceptor which could trap these 

photogenerated electrons is present in the reaction mixture. The formation of the tri-valent 

titanium Ti(III), which occurs only upon the total reduction of the nitroaromatic compound, 

confirms the hypothesis that the conduction band electrons are directly involved in the 

reduction of NACs. 

However, under the employed reaction conditions the photogenerated conduction band 

electrons are not the only reducing agents present in the reaction media. In an irradiated 

deaerated TiO2 slurry containing an alcohol and a nitroaromatic compound, α-hydroxyalkyl 

radicals are produced (cf. Eq. 4.2). These radicals are formed by hydrogen abstraction from 

the α-carbon atom of the alcohol as expressed in equation eq. 4.2. These radicals are known to 
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be powerful reducing agents with reduction potentials lower than −1.25 V vs. the NHE [165]. 

Thus, in the absence of O2 and the presence of the nitroaromatic compound, CH3
CHOH may 

undergo one of the following reactions: (i) It may inject an electron into the conduction band 

of TiO2 forming acetaldehyde and proton (see Eq. 4.3). This process is referred to as “current-

doubling” in photoelectrochemistry and has been observed in many related systems including 

the photoanodic oxidation of alcohols on TiO2 [105], (ii) it may be reoxidized by the trapped 

photogenerated holes forming, again, acetaldehyde and a proton (see Eq. 4.4), or (iii) they 

may directly react with the nitro group to form acetaldehyde, a proton, and a nitroaromatic 

radical anion [166] (see Eq. 4.8); the latter may trap an electron from the conduction band 

forming the corresponding nitroso compound (see Eq. 4.9).  However, Ferry and Glaze[122] 

assumed that the conduction band electrons are the principal species driving the 

photocatalytic reduction of nitroaromatic compounds to aminoaromatic compounds. They 

have shown that the reduction rates of the nitroaromatic compounds in illuminated TiO2 

slurries containing MeOH or i-PrOH are almost unchanged while these reduction rates 

measured using pulse radiolysis techniques employing isopropoxyl radicals were more than 

16 times higher than that obtained for methoxyl radicals in absence of TiO2. Nevertheless, the 

possibility remains that the reduction process involves a combination of agents, i.e., the 

photocatalyst surface and reducing radicals derived from the primary or secondary alcohols as 

electron donors. It is worth mentioning that the irradiation of m-aminotoluene, instead of m-

nitrotoluene, dissolved in ethanol in the presence of TiO2 (Schactleben Hombikat UV100) for 

2 hours does not result in any significant change in its amount, and no acetaldehyde was 

detected. This indicates that the oxidation of ethanol to acetaldehyde is stopped after the 

complete reduction of the nitroaromatic compound. 

Regardless of which reduction pathway is more likely, the reduction of one molecule of 

nitroaromatic compound to the corresponding aminoaromatic compound is accompanied with 

the simultaneous formation of three acetaldehyde molecules that are produced by the 
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oxidation of three alcohol molecules by the photogenerated holes. However, the number of 

required photons is different according to the reduction pathway. 

If the nitroaromatic compound is reduced only by the photogenereted conduction band 

electrons (no current doubling and no direct reduction with the α-hydroxyalkyl radicals, see 

Eqs. 4.5-4.7), six photons are required to photogenerate these six electrons (see Eqs. 4.10 and 

4.11). On the other hand, only three photons are required in case of the contribution of the α-

hydroxyalkyl radicals via either direct reduction of the nitroaromatic compound or injection 

of the electron in the conduction band of TiO2 (current doubling) (see Eqs. 4.12 and 4.13; in 

Eq. 4.13, (3e
-
) refers to the electrons coming from CH3

●
CHOH either via direct reaction with 

the nitroaromatic compound or via injection of its electron into the conduction band, i.e., the 

current doubling). 

The individual photocatalytic reaction steps as well as the overall photocatalytic reactions 

are summarized in the following equations: 

TiO2    
   

TiO2 (h
+
 + e

-
) (Eq. 4.1) 

3TiO2 (h
+
) + 3CH3CH2OH → 3TiO2 + 3CH3

●
CHOH + 3H

+
 (Eq. 4.2) 

3TiO2 + 3CH3
●
CHOH → 3TiO2 (e

-
) + 3CH3CHO + 3H

+ 

(current doubling) 

(Eq. 4.3) 

3TiO2(h
+
) + 3CH3

●
CHOH → 3TiO2  + 3CH3CHO + 3H

+ 

(no current doubling) 

(Eq. 4.4) 

Ar-NO2 + 2TiO2(e
-
) + 2H

+
 → Ar-NO + H2O (Eq. 4.5) 

Ar-NO + 2TiO2(e
-
) + 2H

+
 → Ar-NHOH (Eq. 4.6) 

Ar-NHOH + 2TiO2(e
-
) + 2H

+
 → Ar-NH2 + H2O (Eq. 4.7) 

Ar-NO2 + CH3
●
CHOH → Ar-NO2

- + CH3CHO + H
+
 (Eq. 4.8) 

Ar-NO2
- + TiO2(e

-
) + 2H

+
 → Ar-NO + H2O (Eq. 4.9) 



Chapter  4. Discussion  78 

6TiO2 (h
+
) + 3CH3CH2OH → 6TiO2 + 3CH3CHO + 6H

+
 (Eq. 4.10) 

Ar-NO2 + 6TiO2(e
-
) + 6H

+
 → Ar-NH2 + 2H2O + 6TiO2 (Eq. 4.11) 

3TiO2 (h
+
) + 3CH3CH2OH → 3TiO2 + 3CH3CHO + 6H

+
 (Eq. 4.12) 

Ar-NO2 + 3TiO2(e
-
) + 3e

-
 + 6H

+
 → Ar-NH2 + 2H2O + 3TiO2 (Eq. 4.13) 

According to the concluded overall photocatalytic reactions, the molar ratio between the 

photocatalytically generated acetaldehyde and the photocatalytically reduced nitroaromatic 

compound would be expected to be 3. However, no acetaldehyde has been detected after the 

total consumption of the nitroaomatic compound, i.e., 2 hours of irradiation. In further 

reactions, the photocatalytically generated acetaldehyde may be consumed, partially or totally, 

so that any remaining acetaldehyde is present, in quantities less than the detection limit of the 

analytical method (GC) employed in this work. The fate of the photocatalytically produced 

acetaldehyde and aminoaromatic compound is discussed in steps 2 and 3. 

The photonic efficiencies of the photocatalytic reduction of m-nitrotoluene (1a) in the 

presence of ethanol employing different types of TiO2 (anatase, rutile, and anatas-rutile 

mixture) photocatalysts have been calculated and summarized in Table ‎4.1. 

Table ‎4.1: Photonic efficiencies ξ (%) of the photocatalytic reduction of m-nitrotoluene in 

ethanol over different type of TiO2 powders with their respective BET surface area . 

Entry
[a]

 Photocatalyst
[b]

 SBET/ (m
2
g

-1
) ξ‎/‎% 

1 rutile (R) 58 5.8 

2 anatase (A) 265 6.8 

3 antase-rutile (P25) 77 7.0 

4 anatase (MA) 174 4.7 

[a] Reaction conditions: photocatalyst (25 mg), (1a) (100 µmol), EtOH (10 mL), I>320 nm, 2h, 25 °C, under Ar atmosphere. 

[b] For notation see Table 3.1. 
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From the photonic efficiency values of the photocatalytic reduction of (1a) which are 

summarized in Table ‎4.1, it can be seen that both TiO2 UV100 and TiO2 P25 exhibit the 

highest photocatalytic activities. The photocatalytic activity of rutile is less than that of 

UV100 or TiO2 P25 but it is still higher than that of anatase (MA). Although rutile has been 

typically considered less active than anatase or anatase-rutile mixtures for the photocatalytic 

degradation of organic molecules, several reports have shown a good activity of this TiO2 

phase for the oxidation of alcohols to the corresponding carbonyl compounds[45, 98, 167]. 

The photocatalytic activities of TiO2 UV100 and TiO2 P25 photocatalysts are almost 

similar even though the BET surface area of TiO2 UV100 is ca. 3.5 times higher than that of 

TiO2 P25. In contrast, anatase (MA) shows the lowest photocatalytic activity although it has a 

relatively high BET surface area. Thus, the differences in the photocatalytic activity of the 

different types of TiO2 for the reduction of the nitroaromatic compounds cannot be explained 

by the differences in the BET surface area of these photocatalysts. On the other hand, it has 

been reported that the potential of the conduction band edge of TiO2, dependent on the 

crystalline forms, is positioned at -0.16 and 0.04 V vs. NHE at pH=0 for anatase and rutile, 

respectively[168]. Thus the difference in ECB of 0.2 V between these two phases might 

account for the higher photocatalytic activity of the anatase containing photocatalysts, i.e. 

TiO2 UV100 and TiO2 P25, than that of rutile. In the latter case, the driving force for the 

nitroaromatic compound reduction will be smaller than in the former. The relatively low 

photocatalytic activity of anatase (MA) may also be attributed to the low crystallinity of this 

material which is calcined at only 450 °C for 4h. The dependence of the photocatalytic 

activity for the photocatalytic oxidation of alcohols on the crystallinity of the photocatalyst 

has been reported [136].     

Step 2 (the condensation reaction) 

As can be seen from Figures 3.1 and 3.2, imines are also produced under the reaction 

conditions employed here. The reaction of aldehydes (or ketones) with amines is perhaps the 
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most common method for the preparation of imines as was first discovered by Schiff[169]. 

This reaction is generally carried out by refluxing the carbonyl compound and amine in the 

presence of Lewis acid as the catalyst[170]. The success of this transformation under the 

reaction conditions employed here may be attributed to the action of Lewis acid sites present 

on the surface of the employed TiO2. The presence of these Lewis acid sites on the surface of 

TiO2 (Schactleben Hombikat UV100, Evonik P25, and mesoporous anatase powdes) is 

confirmed by the FTIR investigations of the adsorption of pyridine on the surface of these 

TiO2 powders, being one of the most selective reagents for studying the acidic sites of the 

solid acids[138-141] (see Figure ‎3.5 and Figure ‎3.6). The appearance of new peaks at 1445, 

1489, and 1639 cm
-1

 upon the adsorption of pyridine at the surface of these TiO2 powders is 

due to the interaction between pyridine molecules and Lewis acid sites, i.e., the electrophilic 

Ti5c cations, present at the surface of anatase containing TiO2 powders.   

The coordination of the Ti5c cation, i.e., the Lewis acid site, with the O-atom of the 

carbonyl group (see Figure ‎4.3) will activate the carbonyl group for the attack by the 

photocatalytically generated amioaromatic compound. 

 

Figure ‎4.3: Proposed reaction mechanism for the Lewis acid-catalyzed formation of the 

imine on the surface of TiO2. 



Chapter  4. Discussion  81 

Step 3 (the cyclization reaction) 

Besides the formation of the amioaromatic compound and its imine, a small amount of the 

cyclization product (1j) is also produced upon illumination of the reaction mixture as can be 

seen from Figure  3.2.  The formation of the cyclization product may involve the condensation 

of the enamine of the produced imine with the imine itself (cf. Figure ‎4.9), according to the 

interpretation reported by Forrest et al.[171] concerning the mechanism of the Doebner-Miller 

reaction. The mechanism of this cyclization reaction and the effect of different reaction 

conditions on it will be discussed in more detail in the following sections. 

4.2 Effect of TiO2 type on the photocatalytic conversion of the nitroaromatic 

compounds 

The results illustrated in Figure ‎3.4 show that almost complete conversion of the substrate 

(1a) was achieved after 2h of illumination employing any of the studied TiO2 types (anatase, 

rutile, anatase-rutile mixture, and mesoporous anatase). However, the distribution of the 

reaction products differs depending on the employed TiO2 type. Table ‎4.2 summarizes the 

selectivity for the formation of the products obtained after 2 hours of UV(A) irradiation of m-

nitrotoluene (1a) dissolved in ethanol in the presence of different types of TiO2. 

Table ‎4.2: Selectivity of the photocatalytic conversion of m-nitrotoluene employing different 

TiO2 photocatalysts under UV(A) irradiation. 

Entry
[a]

 Photocatalyst
[b]

 
SBET/ 

(m
2
g

-1
) 

Selectivity / [%]
[c]

 

1c 1f 1j 

1 R 58 72 2 7 

2 A 265 49 44 4 

3 P25 77 21 13 31 

4 MA 174 32 44 3 

5 A+R nc. 48 47 5 

 

[a] Reaction conditions: photocatalyst (25 mg), (1a) (100 µmol), EtOH (10 mL), I>320 nm, 2h, 25 °C, under Ar atmosphere. 

[b] For notation see Table 3.1. 

[c] Determined by GC according to calibration curves using corresponding authentic compounds. 

nc.: Not calculated. 
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In the case of pure rutile the main product is the corresponding aminoaromatic compound 

(1c) with a selectivity of 72% (cf. entry 1 in Table ‎4.2). On the other hand, pure anatase 

promotes the condensation of the aminoaromatic compound (1c) with the photocatalytically 

generated acetaldehyde to produce the imine (1f) with a selectivity of (44%) (cf. entries 2 and 

4 in Table ‎4.2). TiO2 P25 which is a mixture of anatase (80%) and rutile (20%), exhibits a 

moderate selectivity (31%) for the formation of the quinoline (1j) (cf. entry 3 in Table ‎4.2). 

Physical mixing of anatase (A) and rutile (R) in the same ratio of that of P25 (cf. entry 5 in 

Table ‎4.2) showed a similar distribution of that of pure anatase indicating that the effect of 

P25 is not due to a simple rutile-anatase mixture property. 

In an attempt to understand these differences between the employed TiO2 photocatalysts 

the BET surface areas of the different TiO2 samples were measured and are also included in 

Table ‎4.2. It can be seen from the data summarized in Table ‎4.2 that the highest selectivity 

for the formation of the imine (1f) is obtained employing anatase (UV100 and MA) powders 

which exhibit BET surface area higher than that of rutile or P25 powders, while the latter 

powders show poor selectivity for the formation of this imine.    

Another factor which may play a role for the selectivity of a photocatalytic reaction is the 

acidic properties of the applied photocatalysts. As discussed above, the FTIR investigations of 

the adsorption of pyridine on the surface of the studied TiO2 powders can be used to evaluate 

the nature of the acidic sites at the surfaces of the employed photocatalysts. No clear new 

peaks appeared when the rutile sample was treated with pyridine vapor. However, new peaks 

appeared at 1445 and 1607 cm
-1

 in case of the anatase containing samples (A, P25, and MA) 

indicating that pyridine is adsorbed at the TiO2  surface most likely by the interaction between 

its nitrogen lone-pair and the TiO2 Lewis acid sites. Thus, negligible amounts of Lewis acid 

sites present on the surface of the rutile photocatalyst employed here whereas anatase 

containing samples do exhibit these acidic sites. As mentioned previously, Lewis acid sites 

(Ti5c) are suggested to be the catalyst of the condensation reaction between the 
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photocatalytically produced aldehydes and amines to produce the corresponding imines. The 

poorness of rutile sample with Lewis acid sites might thus explain the high selectivity of this 

photocatalyst towards the formation of aminoaromatic compound (1c) in comparison with 

other employed photocatalysts. On the other hand, the presence of the Lewis acid sites in the 

anatase samples could explain the increase in the amount of the imine produced upon using 

these photocatalysts. When employing P25 as the photocatalyst, higher amount of the 

quinoline (1j) was produced than with UV100 or rutile. This is perhaps due to the presence of 

two kinds of acid sites at the surface of this photocatalyst, i.e. Lewis acid and Brönsted acid 

sites. It has been reported that P25 has both Lewis and Brönsted acid sites on its surface[142]. 

It is well known that Brönsted acids can catalyze the cyclization reaction of imine into the 

corresponding quinoline[78, 172]. 

However, when P25 has been tested as a thermal catalyst (i.e. in the dark) for the reaction 

of m-aminotoluene with acetaldehyde at room temperature, only 4% yield from 2,7-

dimethylquinoline has been obtained. Thus, the activity of this photocatalyst for the formation 

of the quinoline compound is enhanced by irradiation. This may be due to the increase in the 

amount of Brönsted acid sites at the surface of this photocatalyst upon irradiation.  

The acidic properties of TiO2 P25, TiO2 UV100, and TiO2 rutile, before and after UV(A) 

irradiation, were also verified by monitoring the pyridine adsorption by ATR-FTIR (Figure 

‎4.4). Again the adsorption bands at 1445, 1489, and 1604 cm
-1

, which correspond to pyridine 

interaction with Lewis acid sites, are more intensive in anatase containing TiO2 samples that 

in the rutile sample. On the other hand, the weak peak at 1640 cm
-1

, which confirms the 

interaction between the pyridine molecule and the Brönsted acid sites, becomes more intense 

after the UV(A) irradiation of P25. 
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Figure ‎4.4: ATR-FTIR spectra of TiO2 layers in contact with pyridine in acetonitrile solution 

(100 mM). Solid lines and dotted lines refer to non irradiated and UV(A) irradiated samples, 

respectively. (a) TiO2 rutile, (b)TiO2 UV100, and (c) TiO2 P25.  

4.3 Effect of the addition of an acid as a co-catalyst 

The importance of the Brönsted acid sites for the cyclization reactions is supported by the 

direct addition of a Brönsted acid into the reaction dispersions containing Sachtleben 

Hombikat UV100 as the photocatalyst. It can be seen from Figure  3.7 that the yield of the 

produced quinoline (1j) is significantly increased from ca. 6% up to ca. 47% when only a 

small amount of p-toluenesulfonic acid (p-TsOH) (5mol%) is added. By increasing the 

amount of p-TsOH a small drop in the yield is apparent. 

The presence of a Brönsted acid in the reaction mixture will catalyze the reaction of the 

photocatalytically produced aldehyde with its alcohol to produce the corresponding acetal.  It 

is well known that acetals are formed by treating aldehydes with alcohols in the presence of 

Brönsted acid catalyst. If the original aldehyde has an α-hydrogen, as in the case of 

acetaldehyde, a vinyl ether can be produced (see Figure ‎4.5). As reported by Povarov[173], 

this vinyl ether suffers a condensation reaction with Schiff bases to produce 
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tetrahydroquinoline and quinoline derivatives. Cyclization of the imine with the enol ether 

will lead to the formation of 4-ethoxy-2,7-dimethyl-1,2,3,4-tetrahydroquinoline which can be 

converted to 2,7-dimethyl-1,2-dihydroquinoline upon splitting of an alcohol molecule (see 

Figure ‎4.5). Oxidation of this dihydroquinoline will, consequently, lead to the formation of 

2,7-dimethyl-quinoline[174].  

 

Figure ‎4.5: Schematic presentation of the formation of the vinyl ether and its addition to the 

imine to form the quinoline compound. 

As can be seen from Figure ‎3.8, the ability of splitting of the alcohol from the thus formed 

ethoxy-1,2,3,4-tetrahydroquinoline strongly depends on the position as well as on the type of 

the substituent on the aromatic ring in the starting nitroaromatic compound. In the case of m-

nitrotoluene or p-nitrophenol the corresponding ethoxy-1,2,3,4-tetrahydroquinoline will be 

less stable, therefore, the main product in both cases is the corresponding quinoline. In the 

case of o- or p-nitro toluene, the main products are the corresponding ethoxy-1,2,3,4-

tetrahydroquinolines. These differences can be explained by the difference in the basicity of 

the amioaromatic compounds (pKa= 5.08 and 4.71 for p-and m-toluidine, repectively). The 

inductive effect of the methyl group in case of the o- and the p-substituent would turn the 

corresponding ethoxy-1,2,3,4-tetrahydroquinoline into stronger bases thus decreasing the rate 

of the alcohol splitting due to an increased ability of the nitrogen atom to be protonated. This 

behavior is in good agreement with a mechanism involving resonance stabilization of the 

intermediate carbonium ion by the lone electron pair of the heterocyclic nitrogen (Figure ‎4.6) 
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Figure ‎4.6: Splitting of alcohol from the ethoxy-1,2,3,4-tetrahydroquinoline molecule to 

form the dihydroquinoline derivative. 

However, as can be seen from the results presented in Table ‎3.2, increasing the amount of 

p-TsOH up to 40 mol% results in the conversion of the ethoxy-1,2,3,4-tetrahydroquinolines to 

the corresponding quinolines and tetrahydroquinolines in almost all cases. 

4.4 Immobilization of Brönsted acid and TiO2 into one heterogeneous 

photocatalyst 

To overcome the separation problem of the added acid at the end of the reaction, hybrid 

organic–inorganic materials in which the organic acid is fixed into the pores of mesoporous 

silica-titania composites have been prepared. The newly synthesized catalysts were 

characterized by SEM, BET, FT-IR, TGA, and acid-base titration measurements. 

As explained in the results section (3.3.1.1) acid modified mesoporous SiO2 decorated with 

TiO2 (T-S-ArSO3H) was successfully prepared. The amount of the fixed organic acid can be 

controlled and it is accessible and located inside the SiO2 pores. 

As shown in Table ‎3.4 the newly prepared photocatalysts have been successfully applied 

to catalyze the photocatalytic synthesis of quinolines starting from the NACs. The yields of 

the quinoline obtained employing Sachtleben Hombikat UV100 modified with different 

amounts of bare SiO2 were slightly increased from 6% in the case of pure TiO2 to 18% in the 

case of T1S1 (cf. entries 2-4 in Table ‎3.4). However, the yield of the target product (1j) was 

successfully increased up to 53% when small amounts of the arenesulfonic acid were 

imbedded inside the pores of T1S1 (cf. entries 5-9 in Table ‎3.4). In particular, T1S1Ar0.03 

exhibits the highest yield (53%) while increasing the organic acid amount does not result in 
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an increased yield (see Table ‎3.4, entries 5,8, and 9), although more accessible acid centers 

are formed by increasing the amount of Ar-SO3H during the preparation as confirmed from 

the ion-exchange capacity and the BET measurements, respectively (see Table ‎3.3). The same 

behavior was noticed previously when the organic acid (p-TsOH) was added as homogeneous 

co-catalyst to the bare TiO2 (cf. Figure  3.7). Moreover, the prepared heterogeneous catalysts 

demonstrate an excellent stability and reusability even after three catalytic runs (see Table 

‎3.4, entries 5-7). 

New strong Brönsted acid centers different from the weak Lewis-acid centers are 

apparently created by the modification of the silica-titania composite with arenesulfonic acid. 

The formation of these Brönsted acid centers on the silica has also been confirmed by Melero 

et al.,[157]. As described previously the presence of the Brönsted acid is essential to catalyze 

the cyclization reaction of the in situ produced imine. 

To clarify the role of the light in the formation of the quinoline from the nitroaromatic 

compound and alcohol, the direct conversion of the aminoaromatic compound (1c) and 

acetaldehyde at RT over T1S1Ar0.03 has been investigated. For this study the concentration of 

acetaldehyde was chosen to be 6 times higher than that of the aminoaromatic compound (1c) 

assuming, in the photocatalytic reaction, six electrons and six protons are required to 

complete the reduction of one nitro group to one amino group, thus, three molecules of 

alcohol will be oxidized to the equal number of acetaldehyde molecules. After 4h of stirring 

the reaction mixture in the dark (51% yield) of the quinoline (1j) was obtained. This result 

confirms that the photocatalytic reaction steps are only the initial reduction of the nitrotoluene 

and the oxidation of the alcohol while the cylization reactions are catalyzed by the supported 

organic acid even in the dark.  
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4.5 Discussion of the reaction mechanism 

Careful analyses for the reaction mixture at different reaction times have been performed 

in order to understand the reaction mechanism. The GC-MS analysis of the reaction mixtures, 

using m-nitrotoluene as substrate, indicates the formation of several products and 

intermediates including m-toluidine (1c), N-ethylidene-3-methylaniline (1f), 4-ethoxy-2,7-

dimethyl-1,2,3,4-tetrahydroquinoline (1g), 2,7-dimethyl-1,2-dihydroquinoline (1i), 2,7-

dimethyl-1,2,3,4-tetrahydroquinoline (1k), and 2,7-dimethyl-quinoline(1j). 

The first steps in the reaction, which are necessary for all following reaction steps, are the 

photocatalytic reduction of the nitro group of the nitroaromatic compound and the 

photocatalytic oxidation of the alcohol (these steps have been previously discussed in detail). 

The further conversion of the photocatalytically produced species to the corresponding 

cyclization products as schematically presented in Figure ‎4.7 has many possible pathways 

which will be discussed in detail below. 

 

Figure ‎4.7: Pathways of the photocatalytic formation of the quinoline compounds from 

NACs and alcohols. 
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Pathway A (c.f. Figure ‎4.8): The acid-catalyzed Michael addition of the aminoaromatic 

compound to the self aldol condensation product of the acetaldehyde might occur, followed 

by ring closure with dehydration to form dihydroquinoline, which would be finally 

dehydrogenated to afford the quinoline products. Such a mechanism has been suggested by 

He et al.[175] for the thermal synthesis of quinolines from NACs and alcohols over titania-

supported iridium nanoclusters. The aldol condensation of acetaldehyde to form 

crotonaldehyde over TiO2 has been reported [176-178]. However, the intermediate 4-

hydroxy-1,2,3,4-tetrahydroquinolines were not detected in our case. In addition, Schiff bases, 

which are not involved in this mechanism, are always produced as intermediates under the 

employed reaction conditions thus reducing the likelihood of this mechanism. 

 

Figure ‎4.8: Pathway A in Figure ‎4.7. 

Pathways B (see Figure ‎4.9) and C (see Figure ‎4.10) suggest the formation of the Schiff 

base upon the condensation of the photocatalytically generated amioaromatic compounds and 

aldehydes. A competition between the Döbner-Miller and the Povarov reaction mechanisms 

may occur[133]. The reactions of imines with the corresponding tautomeric enamines are 

traditionally considered as one stage of the Döbner-Miller quinoline synthesis [171, 179]. 

Concerning this mechanism 4-arylamino-1,2,3,4-tetrahydroqunolines must be an intermediate 

stable enough to be isolated[180]. However, we were not able to detect such compounds, 
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therefore, the Povarov reaction mechanism (pathway C) appears to be preferred under our 

reaction conditions.  

 

Figure ‎4.9: Pathway B in Figure ‎4.7 

Povarov and Grigos[173] showed that the condensation of ethyl-vinyl-ether with Schiff 

bases in benzene in the presence of catalytic amounts of boron trifluoride etherate produces 

substituted 4-ethoxy-1,2,3,4-tetrahydro-quinolines in moderate yields (up to 60%). Upon 

treatment of the reaction mixture with p-toluenesulfonic acid or suitable oxidants 

[atmospheric oxygen or KMnO4], these compounds eliminate ethanol yielding the 

corresponding quinolines. Recently, it is reported that the mechanism of the Povarov reaction 

is stepwise and can be regarded as a sequential Mannich process, arising from the 

nucleophilic attack of the ethyl-vinyl-ether upon the acid activated imine to furnish a cationic 

intermediate, which subsequently undergoes an intramolecular electrophilic aromatic 

substitution to yield the ethoxy-1,2,3,4-tetrahydroquinoline. Under the employed 

photocatalytic reaction conditions both the Brönsted acid and oxidizing environment 

(originating from the holes generated in the photocatalytic process) are available which are 

needed to convert the 4-ethoxy-1,2,3,4-tetrahydro-quinoline to the corresponding 

dihydroquinolines upon the loss of an alcohol molecule (see Figure ‎4.5). The disproportion of 
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this dihydroquinoline will, consequently, lead to the formation of the quinoline (1j) and the 

tetrahydroquinoline (1k). 

Therefore, based upon the intermediates which have been detected here by the GC-MS 

analysis the Povarov reaction mechanism appears to be the most acceptable mechanism to 

explain the overall photocatalytic reaction system studied in this work. 

 

Figure ‎4.10: Pathway C in Figure ‎4.7 

 

4.6 Effect of the deposition of metal nanoparticles on the surface of TiO2 on the 

photocatalytic reaction of the nitroaromatic compounds 

It can be clearly seen from Figure ‎3.13 that the presence of the co-catalyst, i.e., Pt, directs 

the photocatalytic reaction towards N-alkylation and N,N-dialkylation of the nitroaromatic 

compound. Bearing in mind the reaction sequence illustrated in Figure ‎4.1, it can be 

concluded that steps 1 and 2 in Figure ‎4.1 have not changed by the presence or absence of Pt 

while step 3 has changed to the hydrogenation of the in situ produced imine. 

However, in case of the presence of Pt nanoparticles on the surface of TiO2, the reducing 

agents present in the photocatalytic system may be different from that present employing bare 
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TiO2. Besides the photocatalytic reaction steps described in Eqs. 4.1-4.9, new reaction steps 

will take place when empoying Pt/TiO2 as the photocatalyst as summarized in Eqs. 4.14-4.26: 

TiO2 
   
   TiO2 (h

+
 + e

-
) (Eq. 4.1) 

TiO2 (h
+
) + CH3CH2OH → TiO2 + CH3

●
CHOH + H

+
 (Eq. 4.2) 

Pt  + CH3
●
CHOH → Pt(e

-
) + CH3CHO + H

+ 
(Eq. 4.14) 

Pt + TiO2(e
-
)  → Pt(e

-
) + TiO2 (Eq. 4.15) 

Ar-NO2 + 2Pt(e
-
) + 2H

+
 → Ar-NO + H2O (Eq. 4.16) 

Ar-NO + 2Pt(e
-
) + 2H

+
 → Ar-NHOH (Eq. 4.17) 

Ar-NHOH + 2Pt(e
-
) + 2H

+
 → Ar-NH2 + H2O (Eq. 4.18) 

Pt(e
-
) + H

+
 → H

ads.,pt (Eq. 4.19) 

Ar-NO2 + 2H

ads.,pt → Ar-NO + H2O (Eq. 4.20) 

Ar-NO + 2H

ads.,pt → Ar-NHOH (Eq. 4.21) 

Ar-NHOH + 2H

ads.,pt → Ar-NH2 + H2O (Eq. 4.22) 

H

ads.,pt + H


ads.,pt → H2 (Eq. 4.23) 

Ar-NH2 + CH3CHO → Ar-N=CHCH3 + H2O (Eq. 4.24) 

Ar-N=CHCH3 + 2H

ads.,pt → Ar-NHCH2CH3 (Eq. 4.25) 

Ar-N=CHCH3 + H2 + Pt → Ar-NHCH2CH3 (Eq. 4.26) 

The photogenerated electrons will be trapped at the Pt nanoparticles presented at the 

surface of TiO2 (Eq. 4.15). These trapped electrons may either reduce the nitroaromatic 

compound via a sequence of electron transfer, protonation and dehydration (Eqs. 4.16-4.18) 

or reduce the protons, generated from the oxidation of ethanol by the photogenerated holes, 

forming adsorbed H radicals. The latter may also reduce the nitroaromatic compound to the 

aminoaromatic compound otherwise they will combine producing molecular hydrogen 
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(Eqs.4.20-4.23). However, the present study does not enable any differentiation between these 

pathways. When the photonic efficiency of the photocatalytic reduction of the nitroaromatic 

compound (1a) employing Pt0.5/TiO2(UV100) compared with that obtained employing bare 

TiO2(UV100), a decrease in the photonic efficiency is observed (see Table ‎4.3). It is usually 

known that the modification of the TiO2 surface with Pt will enhance the photocatalytic 

activity due to the trapping of the photogenerated e
-
 by Pt nanoparticles enhancing the e

-
/h

+
 

charge separation[96]. This will result in higher yields of the oxidation of the alcohol and thus 

also of the simultaneous reduction of the electron acceptor. However, under the employed 

reaction conditions, this decrease of the photonic efficiency of the reduction of m-nitrotoluene 

can be explained by the competition between the m-nitrotoluene and the protons (H
+
), which 

are produced by the photocatalytic oxidation of the alcohol, for the electrons trapped by the Pt 

nanoparticles. Upon illumination of an ethanolic solution of m-aminotoluene in the presence 

of Pt0.5/TiO2 UV100 about 700 µmol H2 is produced within 120 min of illumination, while 

only 400 µmol H2 is produced using m-nitrotoluene as the substrate during the same time of 

irradiation. Hence, an excess of about 300 µmol H2 is observed starting from the 

aminotoluene as the substrate instead of the m-nitrotoluene. This is exactly the amount of H2 

required to reduce the initially present amount (100 µmol) of the nitroaromatic compound to 

the aminoaromatic compound. 

In a reference experiment, m-nitrotoluene was totally reduced to the m-aminotoluene when 

H2 was purged in a reaction mixture containing Pt0.5/TiO2 UV100 in the dark. No reduction of 

m-nitrotoluene was observed under the same conditions in the dark in the presence of bare 

TiO2. Thus, in the presence of Pt as a co-catalyst, the produced H2 may act as the reducing 

agent of the nitro group instead of the direct reduction by the valence band electrons as in case 

of bare TiO2. On the other hand, it is worth mentioning that no reduction of m-nitrotoluene 

occurs in the reaction mixture containing Pt0.5/TiO2 UV100 in the dark under Ar thus 
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confirming that this catalyst is not able to catalyze the dark hydrogen transfer reaction from 

the alcohol to the nitroaromatic compound. 

 Table ‎4.3: Photonic efficiencies ξ (%) of the photocatalytic reduction of m-nitrotoluene (1a) 

and the photocatalytic H2 evolution in ethanol over bare TiO2 UV100 or Pt0.5/TiO2
 
UV100. 

Entry
[a]

 Photocatalyst
[b]

 
ξ‎/‎% 

reduction of m-nitrotoluene H2 

1 Bare TiO2 UV100 6.8 0 

2 Pt0.5/TiO2 UV100 5.1 1.45 

[a] Reaction conditions: photocatalyst (25 mg), (1a) (100 µmol), EtOH (10 mL), I>320 nm, 2h, 25 °C, under Ar atmosphere. 

 

Condensation reaction between the photocatalytically generated acetaldehyde and 

aminoaromatic compound will produce the imine which will be further hydrogenated to the 

corresponding N-alkylated compound by the hydrogen atoms adsorbed on Pt islands (see Eqs. 

4.24-4.26).  

4.7 Effect of different parameters on the selectivity of the photocatalytic N-

alkylation reaction 

4.7.1 Effect of the type of TiO2 

As can be seen from Table ‎3.6, the type of TiO2 plays an important role on the selectivity 

for the formation of the mono N-alkylated product (1l) upon the photocatalytic conversion of 

the nitroaromatic compound (1a). The best selectivity towards the formation of (1l) (c.f. 

Table ‎3.6 entries 1,3,5, and 7) obtained when Pt0.5/TiO2 UV100 or Pt0.5/TiO2 P25 were 

employed. As previously discussed, the yield of the imine (1f) is higher employing anatase as 

the photocatalyst. This is explained by the activated condensation of the photocatalytically 

produced acetaldehyde and the aminoaromatic compound on the Lewis acid sites presented at 

the surface of anatase TiO2. The mono N-alkylated product (1l) is formed upon the 

hydrogenation of the produced imine, thus, increasing the amount of the imine will increase 
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the yield of (1l). In the case of Pt0.5/TiO2 P25, the presence of the co-catalyst, i.e. Pt 

nanoparticles, changes the reaction pathway from the cyclization of the imine (1f) to its 

hydrogenation to form N-alkylated product (1l) instead of the quinoline (1j). Consequently, 

the imine (1f) is hydrogenated before it undergoes the cyclization reaction. 

4.7.2 Effect of the platinization method 

The selectivity of the products obtained when Pt0.5/TiO2 UV100 prepared by solids mixing 

method was used as a catalyst is also shown in Table ‎3.6 (entries 9 and 10). The preparation 

method of the catalyst also influences the selectivity of the reaction, i. e., colloidal Pt loaded 

onto Hombikat UV100 is not as selective as the same catalyst prepared by the 

photodeposition method. Although a complete conversion of the nitroaromatic compound 

(1a) occurs within 120 min employing the former photocatalyst, less than 10% selectivity for 

the formation of the N-alkylated product (1l) is obtained. Obviously, the type of interaction 

between Pt and TiO2 has an important role in the activity of Pt as a hydrogenation catalyst. 

One explanation may be that the bare surface of the photodeposited platinum is larger than 

that of the Pt0.5/TiO2 obtained by the mixing solids method. In Pt0.5/TiO2 prepared by mixing 

of colloidal Pt with TiO2, the Pt particles should rather be surrounded by TiO2 particles 

resulting in reducing the available surface of Pt particles. It should be noted that, Wang et 

al.[96] have also reported that Pt/TiO2 photocatalyst prepared by colloidal mixing method is 

poorer electrocatalyst for H2 evolution, upon the photocatalytic oxidation of methanol in 

water under deaerated conditions, than the photocatalytically prepared one. This is in 

agreement with the results of the photocatalytic N-alkylation reactions obtained here. 

4.7.3 Effect of the loaded amount of Pt 

The data obtained from UV(A) illumination of an ethanolic solution of the nitroaromatic 

compound (1a) in the presence of Sachtleben Hombikat UV100 loaded with 0.3, 0.5, and 1.0 

wt.% Pt are presented in Figure ‎3.14. These data confirms that the amount of platinum has a 
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major role for the selectivity of the products especially for the mono N-alkylated compound 

(1l). As expected, the higher the Pt loaded amount the higher the selectivity of the 

photocatalytic reaction for the formation of the mono N-alkylated compound (1l). Similar 

effect of the amount of Pt loaded on the surface of TiO2 has also been reported by Ohtani and 

co-workers in their study on the photocatalytic conversion of Lysine to pipecolinic acid[119]. 

This enhancement in the selectivity may be due to the increase of the total surface area of Pt 

on which the generated imine is being hydrogenated to the mono N-alkylated compound. 

Increasing the loaded amount of the Pt will result either in an enlargement of the deposited 

metal islands or in an increase of their number. However, in both cases the total surface area 

of the metal will increase. 

In order to investigate the influence of the loaded amount of platinum on the size of the 

deposited particles, TEM of the TiO2 powders loaded with different Pt amount were 

measured. Dark-field TEM images of Pt/TiO2UV100 powders (Figure ‎3.15) clearly show that 

the Pt nanoparticles are well dispersed exhibiting particles diameters between 3 and 10 nm. 

However, it is difficult to evaluate the Pt particles size precisely and thus to determine the 

change in the Pt particles size upon changing the loaded amounts of platinum. The theoretical 

calculation (assuming that Pt nanoparticles are semi-sphere-like, and considering the mass 

densities of platinum and TiO2 are 21.4 and 3.894 g cm
-3

, respectively) of the change in the 

particle size resulted upon changing the loaded amount of Pt predicts that when the amount of 

Pt is decreased from 1.0% via 0.5% to 0.3%, the particle size should change from 5nm via 

3.9nm to 3.3nm. However, these small changes cannot be clearly recognized from the 

obtained TEM images. 
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Shiraishi et al.[181] suggested that TiO2 with higher Pt loading produce a larger amount of 

protons upon photocatalytic oxidation of benzyl alcohol in the presence of aromatic amines. 

They assumed that these protons are not only reduced at the Pt surface but also react with the 

surface –OH groups at TiO2, producing (Ti–OH2
+
), i.e., Brönsted acid site. Thus, one will 

expect an enhancement in the yield of the quinoline (1j) by increasing the loaded amount of 

Pt due to the effect of Brönsted acid site on the cyclization reaction of (1f) (see 4.3). 

However, that is not the case here; the selectivity towards the quinoline (1j) decreases while 

the selectivity towards the formation of N-alkylated product (1l) enhances by increasing the Pt 

amount. Thus, the imine (1f) is hydrogenated over Pt sites before it undergoes cyclization 

over the formed Brönsted acid sites. It is worth mentioning that purging of Ar during the 

illumination of the reaction mixture (entries 11 and 12 in Table ‎3.6) to remove the librated H2 

during the reaction was not efficient to switch the reaction pathway from hydrogenation to 

cyclization. This indicates that the hydrogenation of the imine (1f) occurs with the 

photocatalyticaly formed H

ads, Pt radicals (see Eq. 4.25) rather than with molecular H2 via 

(Eq. 4.26) thus no higher pressure of H2 gas is needed. 

4.7.4 Effect of the light intensity 

The effect of the light intensity on both the conversion of the nitroaromatic compound and 

the selectivity of the products is illustrated in Figure ‎3.16. It can be seen from this Figure that 

the selectivity of photocatalytic conversion of the nitroaromatic compound (1a) to the N-

alkylated product (1l), using Pt0.5/TiO2 UV100, is not affected by the employed light 

intensities. However, the reduction rate of the nitro compound declines by decreasing the light 

intensity. Consequently, it is just more time needed to get the same maximum yields of the N-

alkylated product (1l) employing lower light intensities.  
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4.7.5 Effect of the type of the loaded metal 

The activities of other metals (Pd, Ag, and Au) loaded on the surface of TiO2 UV100 have 

also been investigated and compared with that of Pt0.5/TiO2UV100. As can be seen from 

Table ‎3.6, the selectivity of the reaction depends strongly on the type of the metal deposited 

on the surface of the photocatalyst. In the case of Pt or Pd loaded nanoparticles, almost the 

entire amount of initially (photocatalytically) formed aminoaromatic compound (1c) is 

converted within the first 2h of the illumination with the yield of N-alkylated products being 

higher than that obtained when employing Au0.5/TiO2UV100 or Ag0.5/TiO2UV100. Moreover, 

a clear superiority of platinum over all other metals for the selectivity towards the formation 

of the mono N-alkylated product (1l) is observed. Increasing the illumination time leads to 

further alkylation of the produced mono N-alkylated compound into the N,N-dialkylated one, 

with, again, Pt0.5/TiO2 UV100 showing the highest selectivity (see Table ‎3.5, entries with 

even numbers). 

These differences in the selectivity of the photocatalytic N-alkylation reaction employing 

TiO2 modified with Pt, Pd, Au, or Ag nanoparticles can be explained by the difference in the 

work function of these metals. The work functions of Pt, Pd, Au, and Ag are reported to be 

5.65, 5.12, 5.10, and 4.26 eV, respectively[182]. The higher the work function the higher the 

amount of the electrons that is trapped by the metal nanoparticles from the conduction band of 

the irradiated TiO2. Consequently,  employing metals with higher work function  will enhance 

the amount of adsorbed H

 radicals formed upon trapping an photogenerated electon by 

proton, that is generated via the photocatalytic oxidation of alcohol (c.f. Eqs. 4.2, 4.14, and 

4.19), which in turn, will enhance the imine hydrogenation see Eq. 4.25. 

To investigate the effect of the illumination on the hydrogenation of C=N double bond, the 

reaction between the aminoaromatic compound (1c) and acetaldehyde (1d) was carried out in 

the dark under H2 atmosphere and in the presence of TiO2(UV100) or M0.5/TiO2(UV100) (M= 

Pt, Pd, Au or Ag).  As can be seen from the data included in Table ‎4.4, only trace of the N-
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alkylated compound (1l) is produced over bare TiO2, while the metal (Pt or Pd) island loaded 

on its surface catalyzes this alkylation reaction even in the dark. However, in the case of (Au 

or Ag) the catalysts show low activity for the N-alkylation reaction of the aminoaromatic 

compound (1c) with acetaldehyde in the dark. The selectivity of the dark reaction towards the 

mono-N-alkylated product (1l) also follows the order: Pt>Pd>Au>Ag which is similar to that 

obtained for the photocatalytic reactions. 

Table ‎4.4: N-alkylation of the m-toluidine (1c) with acetaldehyde in the presence of different 

metal loaded TiO2. 

Entry
[a]

 Catalyst t [h] 
Products / µmol

[b]
 

1l 1m 

1 TiO2(UV100) 2 3 <1 

3 Pt0.5/TiO2(UV100) 2 72 2 

5 Pd0.5/TiO2(UV100) 2 27 42 

7 Ag0.5/TiO2(UV100) 2 3 <1 

9 Au0.5/TiO2(UV100) 2 7 1 

[a] Reaction conditions: catalyst (25 mg),  m-toluidine (1c)  (100 µmol) and acetaldehyde (300 µmol)  in 10 ml EtOH,  under 

H2 atmosphere at RT. 

[b] Determined by GC. 

4.8 Effect of the deposition of bimetallic (Pt-Ag) nanoparticles  

The activity of TiO2 UV100 loaded with bimetalic (Pt-Ag) islands photocatalysts has been 

tested in the photocatalytic production of the mono N-alkylated compound (1l) starting from 

the nitroaromatic compound (1a) and ethanol. The produced amounts of (1l) as a function of 

the illumination time employing Agm/Ptn/TiO2 and Ptn/Agm/TiO2 (where n and m are the 

weight % ratio of Pt and Ag, respectively) are illustrated in Figure ‎3.17 and Figure ‎3.18, 

respectively. As can be seen from Figure ‎3.17 the deposition of small amount (0.1wt.%) of 

silver on the surface of Pt0.5/TiO2 enhance the produced yield of (1l) from 66% to 76% after 

3h of illumination. This enhancement may be interpreted by decreasing the activity of the Pt 
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particles to carry out the further N-alkylation reaction of the produced N-alkylated product 

(1l) into N,N-dialkylated one (1m). However, increasing the loaded amounts of Ag to 

(0.3wt.%) has negatively affected the selectivity towards the formation of (1l). On the other 

hand, it can be noticed that no significant change in the time course of (1l) production takes 

place at Ag loaded amount ≥ 0.3wt.%. This can be explained by assuming that the Ag is 

deposited layer-by-layer on the surface of Pt particles, but not on the bare surface of TiO2, to 

yield a Pt core Ag shell nanoparticles on the surface of TiO2. As reported in the 

literature[183], The deposition of Ag on Pt electrodes or polycrystalline platinum  

demonstrated that the Pt-Ag bond is stronger than Ag-Ag bond. Therefore, two dimensional 

growth of Ag on Pt nanoparticles will be preferred. Such a structure has also been reported by 

Tada et al.[72, 73]. Consequently, at higher Ag loadings, the whole surface of Pt will be 

covered by Ag converting its electronic properties from that of bare Pt to bare Ag. However, 

these catalysts, at higher Ag loadings, are still more active to produce (1l) than the bare 

Ag0.5/TiO2 (cf. Figure ‎3.18) which indicates that the presence of the core of Pt enhances the 

efficiency of the Ag for the hydrogenation of the in situ produced imine (1f). Pt displays a 

higher work function (5.65 eV) than that of Ag (4.26 eV) thus Pt will trap higher number of 

electrons from the conduction band than Ag will do. Thus, the presence of Pt as a core may 

enhance the number of electrons that trapped from the conduction band to Ag. 

On the other hand, the direct interaction between Pt and TiO2 surface seems to be 

important to get the required activity for the conversion of the nitroaromatic compound (1a) 

into the mono N-alkylated product (1l). The produced amount of (1l) after 2h of illumination 

is more than 2 times higher employing Pt0.5/TiO2 instead of Pt0.5/Ag0.5/TiO2 (cf. Figure ‎3.17 

and Figure ‎3.18). Similarly, the librated amount of H2 over the reaction mixture was ca. 4 

times higher employing Pt0.5/TiO2 as the photocatalyst than that obtained employing 

Pt0.5/Ag0.5/TiO2 (c.f. Table ‎3.8). 
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4.9 N-alkylation of various nitroaromatic compounds by different alcohols 

In order to evaluate the general applicability of this photocatalytic N-alkylation method, 

various types of nitroaromatic compounds as well as different alcohols were studied. As can 

be seen from Table ‎3.7, the photocatalytic N-alkylation was successfully achieved in most 

cases with moderate to very good isolated yields. 

However, the time required to achieve a complete conversion of the nitroaromatic 

compound (1a) increases by increasing the length of the aliphatic chain of the alcohol. This is 

due to the difference in the alcohols properties, such as viscosity, polarity, polarisability, and 

reduction potential. The effect of the alcohol parameters on the rate of the nitroaromatic 

compounds redactions has been reported by Breyova et al.[67]. They observed that the 

solvent viscosity significantly affected the rate of 4-nitrophenol photocatalytic reduction 

employing TiO2 and a linear dependence was obtained, whereas, the rate of the photocatalytic 

reduction increases with increasing polarity of the alcohol. 

On the other hand, only trace amounts of the mono N-alkylated products are produced 

when branched or aromatic alcohols are used, while the main products in these cases are the 

imines in the case of 3-methyl-butanol or benzyl alcohol or even the amioaromatic compound 

in the case of iso-propanol (entries 4-6 in Table ‎3.7) meaning that a steric effects also play a 

role on the formation of the N-alkylated products. It can also be observed from Table ‎3.7 that 

the position of the methyl group in the nitroaromatic compound and its number do not affect 

the reaction sequence, thus,  in all cases the mono N-alkylated products were obtained in very 

good yields (entries 1, 7-9 in Table ‎3.7). Interestingly, N-ethyl-m-ethyl-benzene was obtained 

when m-nitrostyrene was used as a substrate (entry 10 in Table ‎3.7). Thus, the 

Pt0.5/TiO2(UV100) is not only able to photocatalytically hydrogenate the C=N double bond 

but also the C=C one.  
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An overview of the suggested reaction mechanism of the photocatalytic conversion of  the 

nitroaromatic compound (1a) employing TiO2 modified with metal nanoparticles is 

summarized in Figure ‎4.11.  

  

Figure ‎4.11: Proposed mechanism for the one-pot N-alkylation of m-nitrotoluene promoted 

by TiO2 laoded with metal nano particles catalyst under photoirradiation. 

Different transformations in this “one pot” system can be achieved by employing both the 

photocatalytic and the catalytic action of TiO2 and metal nanoparticles, respectively: (i) the 

dehydrogenation of alcohol to the corresponding aldehyde consuming the photogenerated 

valence band holes of the illuminated TiO2, (ii) the reduction of the nitro group of the 

nitroaromatic compound to an amino group either by the photogenerated conduction band 

electrons or through electrons initially trapped at the metal deposits on the semiconductor’s 

surface, and (iii) the hydrogenation of the imine, which is produced from the condensation of 

the aldehyde and the aminoaromatic compound, on the surface of metal nanoparticles at the 

TiO2 surface yielding the corresponding N-alkylated product. Prolonged illumination time 

then leads to the conversion of N-alkylated product into N,N-dialkylated one. 
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5 Summary and conclusions 

The photocatalytic conversion of nitroaromatic compounds in alcoholic suspensions of 

TiO2 can be successfully employed to obtain valuable nitrogen-containing organic compounds 

in one-pot reactions. In general, different transformations in these “one pot” systems can be 

achieved by employing both the photocatalytic and the catalytic action of TiO2 or of modified 

TiO2. The oxidation of an alcohol to the corresponding aldehyde consuming the 

photogenerated valence band holes of the illuminated TiO2, the simultaneous reduction of the 

nitro group of the nitroaromatic compound to the amino group either by the photogenerated 

conduction band electrons or through electrons initially trapped at metal deposits on the 

semiconductor’s surface, and the condensation of the aldehyde with the amino compound to 

produce the corresponding imine all occur in one system (or “one-pot”). Afterwards, the 

resulting imine can suffer one of the following fates: it may undergo a cyclization reaction 

when a Brönsted acid is presented in the reaction media, or it may be hydrogenated to the 

corresponding secondary and tertiary amine when TiO2 is modified with metal nanoparticles. 

These possible transformations are summarized in Figure ‎5.1.  

  

Figure ‎5.1: Schematic summarization of the fates of the nitroaromatic compounds in 

alcohols upon illumination in the presence of different bare or modified TiO2 photocatalysts.  
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The distribution of the obtained products is strongly influenced by the type of the 

employed TiO2 (i.e., bare or modified). 

The surface properties of the photocatalyst play an important role for the reaction pathway 

and strongly affect the selectivity of the products. The poor acidity of rutile can explain the 

selectivity of the photocatalytic conversion of m-nitrotoluene towards the corresponding 

aminoaromatic compound (m-toluidine). The catalytic condensation of the photocatalytically 

produced aldehyde and amioaromatic compound occurs on the Lewis acid site on anatase 

TiO2 producing the corresponding imine (N-ethylidene-3-methylaniline). In the case of the 

anatase-rutile mixture TiO2 P25 the imine, which is produced on the Lewis acid sites, can 

suffer a cyclization reaction to yield the corresponding quinoline (2,7-dimethylquinoline) 

which is readily explained by the presence of Brönsted acid sites on TiO2 P25 surface. 

The presence of small amounts (5 mol%) of an acidic co-catalyst, i.e., the free organic acid 

(p-TsOH), enhances the yield of the photocatalytically produced quinoline (2,7-

dimethylquinoline) in the case of Sachtleben Hombikat UV100 from 4% to approx. 48%. 

Increasing the amounts of the added acid does not result in a simultaneous increase in the 

yield of the produced quinoline. However, the ratio of the cyclization products (quinolines, 

tetrahydroquinolines, and ethoxy-tetrahydroquinolines) of the different substituted 

nitrobenzenes depends on the position of the substituent (o-, m-, and p-) or on its type (methyl 

or hydroxyl). 

Moreover, TiO2 (Sachtleben Hombikat UV100) was successfully modified with 

arenesulfonic acid functionalized mesoporous SiO2 to obtain a bifunctional acidic 

photocatalyst. The thus synthesized catalyst can be efficiently employed to convert m-

nitrotoluene into 2,7-dimethylquinoline with 54% yield. 
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The cyclization of the photocatalytically produced imine was found to follow the Povarov 

mechanism in which the imine condenses with the enol ether (formed via the reaction of the 

photocatalytically generated aldehyde with the alcohol through the formation of the acetal) to 

form 4-ethoxy-2,7-dimethyl-1,2,3,4-tetrahydroquinoline which can be converted to 2,7-

dimethyl-1,2-dihydroquinoline upon splitting off an alcohol molecule. Disproportionation or 

oxidation of this dihydroquinoline will, consequently, lead to the formation of 2,7-dimethyl-

quinoline (see Figure ‎4.5). 

The presence of precious metal nanoparticles as co-catalyst on the surface of TiO2 directs 

the photocatalytic reaction towards N-alkylation and N,N-dialkylation. TiO2 photocatalytically 

modified with Pt nanoparticles is found to be more selective for the photocatalytic mono N-

alkylation reaction than TiO2 photocatalytically loaded with Pd, Au, and Ag. Higher Pt 

loading results in a higher selectivity towards the mono N-alkylated product, the respective 

selectivity increased from 50% to 80% when the Pt loading increased from 0.3% to 1.0%. 

Moreover, Pt/TiO2 catalysts prepared by the photodeposition method were found to be more 

active and selective towards the N-alkylation reaction than the one obtained from the mixed 

solids method. Furthermore, the illumination time controls the selectivity of the formation of 

the mono N-alkylated product, i.e., prolonged illumination time leads to the complete 

conversion of the mono N-alkylated product into the N,N-dialkylated one. 

Loading of (0.1 wt.%) Ag over (0.5 wt.%) Pt/TiO2 increased the selectivity of the 

formation of the mono N-alkylated product from 66% to 76%, while this selectivity decreased 

by increasing the loaded amount of Ag beyond 0.1 wt.%. In contrast, the presence of Ag 

nanoparticles covered with a Pt shell on the surface of TiO2 inhibits the activity of the Pt 

nanoparticles for the hydrogenation of the C=N bond in the in situ produced imine.  
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7 Appendix  

7.1 Names, structures, and abbreviations of the studied and the produced 

compounds 

Compound Substituent Name Symbol 

 

X = m-CH3 m-nitrotoluene 1a 

p-CH3 p-nitrotoluene 2a 

o-CH3 o-nitrotoluene 3a 

H nitrobenzene 4a 

m-CH=CH2 3-vinyl-1-nitrobenzene 5a 

 

 

 
3,5-dimethyl-1-

nitrobenzene 
6a 

 

 

 
2,4-dimethyl-1-

nitrobenzene 
7a 

 

X = m-CH3 m-toluidine 1c 

p-CH3 p-toluidine 2c 

o-CH3 o-toluidine 3c 

H aniline 4c 

m-CH=CH2 3-vinylaniline 5c 

 

 

 
3,5-dimethyl-1-

nitrobenzene 
6c 

 

 

 
2,4-dimethyl-1-

nitrobenzene 
7c 

 

X = m-CH3 N-ethylidene-3-

methylaniline 
1f 

p-CH3 N-ethylidene-4-

methylaniline 
2f 

o-CH3 N-ethylidene-2-

methylaniline 
3f 

H N-ethylideneaniline 4f 
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m-CH=CH2 3-vinylaniline 5f 

 

 

 
N-benzylidene-3-

methylaniline 
6f 

     

 

 

 
3,5-dimethyl-1-

nitrobenzene 
7f 

 

 

 
2,4-dimethyl-1-

nitrobenzene 
8f 

 

X = m-CH3 4-ethoxy-2,7-dimethyl-

1,2,3,4-tetrahydroquinoline 
1g 

p-CH3 4-ethoxy-2,6-dimethyl-

1,2,3,4-tetrahydroquinoline 
2g 

o-CH3 4-ethoxy-2,8-dimethyl-

1,2,3,4-tetrahydroquinoline 
3g 

H 4-ethoxy-2-methyl-1,2,3,4-

tetrahydroquinoline 
4g 

m-CH=CH2 
4-ethoxy-2-methyl-7-vinyl-

1,2,3,4-tetrahydroquinoline 
5g 

 

 

 
4-ethoxy-2,5,7-trimethyl-

1,2,3,4-tetrahydroquinoline 
6g 

 

 

 
4-ethoxy-2,6,8-trimethyl-

1,2,3,4-tetrahydroquinoline 
7g 

 

X = m-CH3 2,7-dimethyl-1,2-

dihydroquinoline 
1i 

p-CH3 2,6- dimethyl-1,2-

dihydroquinoline 
2i 

o-CH3 2,8- dimethyl-1,2-

dihydroquinoline 
3i 
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H 2-methyl dimethyl-1,2-

dihydroquinoline 
4i 

m-CH=CH2 2-methyl-7-vinyl-1,2-

dihydroquinoline 
5i 

 

 

 
2,5,7-trimethyl-1,2-

dihydroquinoline 
6i 

 

 

 
2,6,8-trimethyl-1,2-

dihydroquinoline 
7i 

 

X = m-CH3 2,7-dimethylquinoline 1j 

p-CH3 2,6-dimethylquinoline 2j 

o-CH3 2,8-dimethylquinoline 3j 

H 2-methylquinoline 4j 

m-CH=CH2 2-methyl-7-vinylquinoline 5j 

 

 

 2,5,7-trimethylquinoline 6j 

     

 

 

 
2-ethyl-3,5,7-

trimethylquinoline 
7j 

 

 

 
3-ethyl-5,7-dimethyl-2-

propylquinoline 
8j 

     

 

 

 2,6,8-trimethylquinoline 9j 

     

     

 

X = m-CH3 2,7-dimethyl-1,2,3,4-

tetrahydroquinoline 
1k 

p-CH3 2,6-dimethyl-1,2,3,4- 2k 
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tetrahydroquinoline 

o-CH3 2,8-dimethyl-1,2,3,4-

tetrahydroquinoline 
3k 

H 2-methyl-1,2,3,4-

tetrahydroquinoline 
4k 

m-CH=CH2 2-methyl-7-vinyl-1,2,3,4-

tetrahydroquinoline 
5k 

 

 

 
2,5,7-trimethyl-1,2,3,4-

tetrahydroquinoline 
6k 

 

 

 
2-ethyl-3,5,7-trimethyl-

1,2,3,4-tetrahydroquinoline 
7k 

     

 

 

 

3-ethyl-5,7-dimethyl-2-

propyl-1,2,3,4-

tetrahydroquinoline 

8k 

     

 

 

 
2,6,8-trimethyl-1,2,3,4-

tetrahydroquinoline 
9k 

 

X = m-CH3 N-ethyl-m-toluidine 1l 

p-CH3 N-ethyl-p-toluidine 2l 

o-CH3 N-ethyl-o-toluidine 3l 

H N-ethylaniline 4l 

m-CH=CH2 N-ethyl-3-vinylaniline 5l 

m-C2H5 N-ethyl-3-ethylaniline 6l 

 

 

 N-ethyl-3,5-dimethylaniline 7l 

 

 

 N-ethyl-2,4-dimethylaniline 8l 
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X = m-CH3 N,N-diethyl- m-toluidine 1m 

p-CH3 N,N-diethyl- p-toluidine 2m 

o-CH3 N,N-diethyl- o-toluidine 3m 

H N,N-diethyllaniline 4m 

m-CH=CH2 N,N-diethyl-3-vinylaniline 5m 

m-C2H5 N,N-diethyl-3-ethylaniline 6m 

 

 

 
N,N-diethyl-3,5-

dimethylaniline 
7m 

 

 

 
N,N-diethyl-2,4-

dimethylaniline 
8m 

 
R = H ethanol 1b 

CH3 n-propanol 2b 

C2H5 n-butanol 3b 

 

 
 i-propanol 4b 

 

 
 3-methylbutanol 5b 

 

 
 benzylalcohol 6b 

 
R = H acetaldehyde 1d 

CH3 propionaldehyde 2d 

C2H5 butyraldehyde 3d 

 

 
 acetone 4d 

 

 
 3-methylbutanal 5d 

 

 
 benzaldehyde 6d 
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7.2 List of abbreviations and symbols 

A Electron acceptor 

A Anatase 

a.u. Arbitrary unit 

Ar Argon 

BET Brunauer-Emmett-Teller 

con. Concentration 

CB Conduction band 

cf. Latin: confer (English: compare) 

cm Centimeter 

co Initial concentration 

°C Degres Celsius 

d Diameter 

D Electron donor 

DF-TEM Dark-field transmission electron microscopy 

DTA Differential thermal analysis 

E Energy 

ECB Conduction band potential 

Ef Fermi level energy 

Eg Bandgap energy 

Ered Standard redox potential 

EDXS Energy dispersive X-ray spectroscopy 

e Electron 

et al. Latin: et alii (English: and others) 

eV Electron volt 

e.g. Latin: exampli gratia (English: for example) 

FT-IR Infrared spectroscopy 

g Gram 

GC Gas chromatography 

GC-FID Gas chromatography-flame ionization detector 

GC-MS Gas chromatography-mass spectroscopy 

h Hour 

h Planck constant 

h
+
 Valence band hole 

HRTEM 

High resolution transmission electron 

microscopy 

i. e. Latin: id est (English: that is) 

k Rate konstant 

kV Kilovolt 

l Liter 

M Molar (moles per liter) 

mM Millimolar (millimoles per liter) 

mg Milligram 

mol Mole 
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mmol Millimole 

ml Milliliter 

mW Milliwatt 

min Minute 

NAC Nitroaromatic compound 

NHE Normal hydrogen electrode 

nm Nanometer 

NMR Nuclear magnetic resonance 

R Rutile 

T Temperature 

TCD Thermal conductivity detector 

TEM Transmission electron microscopy 

V Volt 

VB Valence band 

UV Ultraviolet light 

UV(A) Near ultraviolet light (315-380 nm) 

UV-Vis Ultraviolet and visible light 

W Watt 

wt% Weight percentage 

XRD X-ray diffraction 

λ Wavelength 

µl microliter 

µmol Micromole 

ʋ Frequency 

ζ Photonic efficiency 
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