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1 Abstract 
 
ClC-5 belongs to the ClC membrane protein family. This family is sub-divided in classical 

ion channels, mediating passive ion flux and intracellular transporters, stoichiometrically 

exchanging Cl- for H+. ClC-5 is an endosomally-localized transporter and involved in 

endocytosis. Mutations in the CLCN5 gene cause the renal disorder Dent’s disease. ClC-5 

transport is voltage-dependent and displays strong rectification. Moreover, its voltage-

dependent activation is additionally hallmarked by the presence of pronounced capacitive 

currents that are also characterized as gating currents. ClC proteins have been shown to have 

three anion binding sites in a row: Sint, Scen, Sext. A conserved negatively charged residue at 

the external side, the so called gating glutamate 211, can occupy two of these sites – either 

Scen, Sext or swings out upon protonation. Substrate translocation probably involves 

protonation of the external gating glutamate at Scen, mediated by another conserved glutamate 

residue at the internal side, the so called proton glutamate 268. This entails also a concerted 

movement of Cl- ions in the opposite direction (coupled “transporter mode”). Additionally, 

ClC exchangers can operate in a different transport mode. Large polyatomic anions, like SCN- 

and NO3
- can be transported by ClC-5 at higher magnitudes than Cl-, and only partially be 

coupled to proton antiport (uncoupled “channel mode”).  

One part of the thesis investigates the regulation of transport probability of both 

coupled and uncoupled transport modes by various external anions, by internal protons and 

the properties of the side chain at position 268. This regulation has been only insufficiently 

described previously and seems to be important for a variety of physiological processes, 

including endocytosis, exocytosis, protein trafficking and apoptosis. The experiments showed 

that lower internal pH led to a much stronger current increase upon exchanging extracellular 

Cl- for SCN- than a neutral pH. Using patch-clamp combined with simultaneous fluorometric 

pH measurements, relative uncoupling could be quantified and was shown to be unchanged 

by internal protons. Non-stationary noise analysis reported also unchanged unitary current 

amplitudes, suggesting that apparent substrate affinities are not altered by internal protons. 

Likewise, the voltage-dependence of the depolarization-activated gating process was 

unchanged, studied by measuring nonlinear capacitances, which result from the ClC-5 gating 

machinery. However, the magnitude of the nonlinear capacitances was larger at higher 

internal pH and also when the proton glutamate 268 was substituted by less protonatable 

residues. This indicates that the capacitance results from incomplete transport cycles and 

depends on the availability of internal protons and on the ability of the residue at position 268 
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to accept protons and donate them to the gating glutamate at Scen. As a consequence, high 

capacitances at high internal pH reflect that ClC-5 exhibits low transport probability.  

The structural determinants of voltage-dependent gating were probed by analyzing the 

effects of mutations of lysine 210, next to the gating glutamate. By substituting this residue by 

other residues of different size and charge, cysteine and arginine, large changes of voltage 

dependence were evoked. Site-directed Cd2+ or covalent MTSET modification of the cysteine 

mutant K210C produced further changes of time and voltage dependence of gating. The 

voltage dependence of MTSET modification suggests voltage-dependent changes in the 

accessibility of this residue from the external medium during transport activation. This and 

other results indicate that lysine 210 plays an important role in regulating the transport 

machinery of ClC-5 by taking part in voltage-dependent gating by conformational changes 

and interaction with other more exterior parts of the protein. 
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2 Zusammenfassung 
 
ClC-5 gehört zur Familie der ClC Membranproteine. Diese Familie ist unterteilt in klassische 

Ionenkanäle, die passiven Cl- Fluss vermitteln, und intrazelluläre Transporter, welche Cl- 

stöchiometrisch gegen H+ austauschen. ClC-5 ist ein endosomal lokalisierter Transporter und 

an der Endozytose beteiligt. Mutationen des CLCN5-Gens verursachen die Dent-Krankheit, 

eine Nierenstörung. ClC-5 Transport ist spannungsabhängig und zeigt eine starke 

Gleichrichtung. Zudem ist seine spannungsabhängige Aktivierung zusätzlich durch die 

Anwesenheit ausgeprägter kapazitativer Ströme gekennzeichnet, die auch Gatingströme 

genannt werden. Es wurde gezeigt, dass ClC Proteine drei in einer Reihe angeordnete 

Bindestellen aufweisen: Sint, Scen, Sext. Ein konservierter, negativ geladener Rest an der 

Außenseite, das sogenannte gating-Glutamat 211, kann zwei dieser Stellen besetzen, 

entweder Scen oder Sext oder schwingt nach Protonierung heraus. Die Substrattranslokation 

beinhaltet wahrscheinlich die Protonierung des externen gating-Glutamats an Scen, bewirkt 

durch einen anderen konservieren Glutamatrest an der Innenseite, das sogenannte Protonen-

Glutamat 268. Dies beinhaltet außerdem eine abgestimmte Bewegung von Cl--Ionen in die 

Gegenrichtung (gekoppelter „Transporter-Modus“). Zusätzlich können ClC-Transporter in 

einem anderen Modus arbeiten. Große mehratomige Moleküle wie NO3
- und SCN- können 

von ClC-5 in größerem Maße transportiert werden als Cl-, und nur teilweise an Protonen-

Antiport gekoppelt sein (entkoppelter „Kanal-Modus“). 

Ein Teil dieser Doktorarbeit befasst sich mit der Erforschung der Regulation der 

Transportwahrscheinlichkeit – sowohl in gekoppelten als auch entkoppelten Transportmodi – 

durch unterschiedliche externe Anionen, interne Protonen und die Eigenschaften der 

Seitenkette an Position 268. Diese Regulation wurde bisher nur ungenügend beschrieben und 

scheint für eine Vielzahl physiologischer Prozesse von Bedeutung zu sein, wie etwa 

Endozytose, Exozytose, intrazellulärem Proteintransport und Apoptose. Die Experimente 

haben gezeigt, dass ein niedriger intrazellulärer pH einen viel stärkeren Stromanstieg beim 

Wechsel von extrazellulärem Cl- zu SCN- verursacht als bei neutralem pH. Die Durchführung 

von patch-clamp-Messungen, kombiniert mit gleichzeitigen pH Messungen zur 

Quantifizierung relativer Entkopplung ergab, dass diese relative Entkopplung  durch interne 

Protonen unverändert blieb. Nichtstationäre Rauschanalyse ergab ebenfalls unveränderte 

Einzelkanalamplituden, was auf eine vom internen pH unabhängige apparente 

Substrataffinität hindeutet. Ebenfalls blieb die Spannungsabhängigkeit des durch 

Depolarisation aktivierten Schaltprozesses unverändert. Dies wurde durch die Messung 
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nichtlinearer Kapazitäten gezeigt, welche beim ClC-5 Schaltvorgang entstehen. Jedoch waren 

diese nichtlinearen Kapazitäten größer, sowohl bei höherem internem pH als auch, wenn das 

Protonen-Glutamat durch schlechter protonierbare Reste substituiert wurde. Dies deutet 

darauf hin, dass eine höhere Kapazität aus unvollständigen Transportzyklen resultiert und 

sowohl von der Verfügbarkeit von internen Protonen als auch der Fähigkeit des 

Aminosäurerestes an Position 268, diese aufzunehmen und an das gating-Glutamat an Scent 

weiterzugeben, abhängt. Es folgt daraus, dass hohe Kapazitäten bei hohen internen pH eine 

geringe ClC-5 Transportwahrscheinlichkeit widerspiegeln. 

Die strukturellen Gegebenheiten spannungsgesteuerten Schaltens wurden sondiert 

indem der Aminosäurerest neben dem gating-Glutamat – Lysin 210 – durch Mutation 

verändert wurde. Das Ersetzen dieses Restes durch Reste anderer Größe und Ladung, Arginin 

und Cystein, bewirkte eine starke Verschiebung der Spannungsabhängigkeit. Gerichtete Cd2+ 

und kovalente MTSET-Modifikation der Cysteinmutante deuten auf eine spannungsabhängige 

Veränderung der Zugänglichkeit von außen während der Aktivierung des Transportes hin. 

Dieses und andere Ergebnisse zeigen, dass Lysin 210 eine wichtige Rolle bei der Regulation 

der Transportmaschinerie von ClC-5 spielt, indem es am spannungsabhängigen Schalten 

durch Konformationsänderung und Interaktion mit weiter außen befindlichen Teilen des 

Proteins teilnimmt.  
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3 Introduction 

3.1 Membrane transport 
Ion transport across plasma or intracellular biological membranes requires the presence of 

dedicated membrane proteins, membrane channels and transporters that facilitate the 

movements of charged particles through nonpolar lipid bilayers. For example, the transport of 

Na+ and K+ that underlies action potentials in excitable cells (i.e. neurons and muscle cells) 

relies on channel proteins that mediate the passive flow of these ions along their 

electrochemical gradients. Channel proteins exhibit high specifity for the transported ions and 

a have so called gates controlling the flow of ions [1] (Figure 3.1 A). These gates close and 

open upon specific stimuli. For example, many neuronal and muscular Na+ and K+ channels 

respond to changes in the transmembrane voltage [2]. Other channels are gated mechanically 

[3] or chemically by ligand binding [4]. The energy required for directed ion movements 

through the channel pore is provided by the electrochemical gradient for the corresponding 

ion. 

ATP ADP+Pi

g
ra

d
ie

n
t

g
ra

d
ie

n
t

g
rad
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t

A B

C

ion channel

107-108 ion s-1

ion pump

100-104 ion s-1

secondary active transporter

102-104 ion s-1

 

Figure 3.1: Simplified scheme of membrane transport. A. Membrane embedded ion channel with open gate 
to mediate facilitated diffusion of an ion along its electrochemical gradient. B. Primary active transporters that 
pumps ions against their electrochemical gradients with the required energy provided by ATP. A transporter 
possesses at least two gates that are never open simultaneously. C. Secondary active transporters (here: co-
transporter) that uses the energy stored in the electrochemical gradient of one substrate, to transport another 
substrate against its electrochemical gradient. Some intermediate states and the cyclic behaviour in B and C 
have been omitted (modified from [5]).  
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 For example, the Cl- flux involved in maintaining the skeletal muscle resting potential is of 

such passive nature. Electrochemical gradients, which are necessary for the passive transport 

of ions, first have to be built up on the expense of energy, because here, ions have to move 

against their electrochemical gradient. This is the major difference between channels and 

transporters. Channels directly use the electrochemical gradient of an ion species to transport 

them downhill along this gradient. In contrast, transporters transport them uphill against their 

electrochemical gradients, thereby increasing those gradients further on the expense of 

energy. In this way, they are able to concentrate substrates and build up electrochemical 

gradients by utilizing other sources of energy. Active transporters have at least two gates 

which may never be opened at the same time [6] (Figure 3.1 B), because otherwise it would 

be a channel, unable to move ions against their gradients. Since first, one gate has to close 

before the other one opens, and often larger conformational changes occur, transporters are 

much slower than channels. 

For example, the aforementioned Na+ and K+ gradients are built up by the Na+/K+-

pumps and the energy for this process is provided by ATP hydrolysis. One can distinguish 

between primary (pumps) and secondary active transport (co-transporters or exchangers). The 

first group of proteins utilize energy, e.g. the chemical energy of ATP molecules. The latter 

couples the transport of one type of ions to the electrochemical gradient of one or more 

different substrates (Figure 3.1 C). Glutamate transporters for example (EAATs, excitatory 

amino acid transporters) use the electrochemical gradient of sodium to remove 

neurotransmitter molecules from the synaptic cleft which terminates excitatory signalling and 

prevents neurotoxicity [7]. 

Intracellular organelles also have membrane channels and transporters which are 

involved in maintaining their ionic homeostasis. Calcium channels control the passive release 

of the important second messenger Ca2+ out of the sarcoplasmic reticulum during muscle 

contraction. In the same compartment, the active SERCA pumps (sarcoplasmic/endoplasmic 

reticulum calcium ATPase) transport Ca2+ back into the sarcoplasmic reticulum and restore 

and maintain Ca2+ homeostasis after muscle contraction. Likewise, the acidification of 

endosomes during endocytosis is accomplished by active pumping of H+ into the endosomal 

lumen, performed by the vesicular-type ATPase. 

Cell membranes also contain channels that couple cells with one another – the 

connexins, which are rather unspecific, can be gated electrically or chemically and passively 

conduct even large molecules to maintain exchange of metabolites or provide electrical 

connection between cells [8].  
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3.2 Chloride channel (ClC) isoforms and their tasks 
Chloride channels and transporters are involved in a variety of physiological processes. They 

are present in animals, plants, fungi and prokaryotes [9], [10]. Mammals possess nine ClC 

isoforms: ClC-1 to 7 and ClC-Ka and ClC-Kb. Initially, all ClCs were regarded as ion 

channels. However, this view had to be revised, after Accardi and Miller were able to 

demonstrate a coupled Cl-/H+ antiport for the prokaryotic isoform EcClC of Escherichia coli 

by measurements of reversal potentials of purified protein in an artificial lipid bilayer system 

with solutions of different Cl- content or pH on both sides of the membrane [11]. These 

measurements revealed a 2:1 coupling stoichiometry for Cl- and H+, meaning that transport of 

two chloride ions is coupled to the antiport of one proton. Later on, coupled transport has 

been demonstrated also for several mammalian ClC isoforms, including ClC-4, ClC-5, ClC-6 

and ClC-7 [12]–[15]. 

Thus, the ClC family is divided in two sub-branches – channels, mediating passive Cl- 

flux and secondary active exchangers that use the energy of a H+ gradient to pump Cl- against 

its gradient or vice versa. ClC channels are often localized in the plasma membrane, whereas 

ClC transporters are mainly found in the membranes of endocytotic or lysosomal vesicles and 

intracellular compartments [16]. 

3.2.1 ClC channel isoforms 
The first cloned ClC channel was ClC-0 from the electric organ of the marbled electric ray 

(Torpedo marmorata) [17]. The first mammalian ClC channel could be identified based on its 

high homology to ClC-0. This was ClC-1, which is expressed in skeletal muscle. ClC-1 is 

open already at membrane resting potential, it activates further upon depolarization [18], [19] 

and provides the major contribution to the stabilization of the resting potential of the muscle 

cell [20]. The resting potential of cells is normally mostly maintained by K+, likewise is the 

repolarization after an action potential an efflux of K+. When this occurs in the T-tubuli 

(transverse tubuli, which protrude into the muscle cell) of muscle cells, after repetitive 

excitation, the elevated K+ concentration in the small volume of the T-tubuli would result in 

persisting depolarization of this membrane. A Cl- conductance – most probably mediated by 

ClC-1 – reduces the T-tubular length constant. This way, the after-depolarization cannot 

propagate to the surface membrane electrotonically and cause action potentials without 

stimulation. However controversies concerning the absence or presence of ClC-1 in T-tubuli 

[21]. Nevertheless, hereditary mutations that change the functional properties of ClC-1 cause  

myotonia congenita [22], [23], a disease characterized by prolonged muscle action potential 

generation after initial excitation, resulting in subsequent muscle stiffness [24]. 
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ClC-2 is a broadly expressed channel [25] and has been demonstrated to play a role in 

the pathophysiology of generalized idiopathic epilepsy [26]. It activates slowly upon 

hyperpolarization and its voltage dependence is modulated by internal Cl- concentration and 

external pH [27], [28]. Based on the pathological consequences upon knock-out of Clcn2 in 

mice (the gene encoding for ClC-2 in mice), including testicular and retinal degeneration [29] 

and demyelination of central neurons (leukodystrophy) [30], it has been postulated that ClC-2 

is involved in transepithelial ion transport [29] to maintain ion composition of the 

extracellular space around neurons. Yet, in patients with leukodystrophy no CLCN2 (the gene 

encoding for ClC-2 in humans) mutations were found [28], [31].  

The two closely related channels ClC-Ka and ClC-Kb were identified in humans in 

1994 [32] and in rodents in 1992, where they were dubbed ClC-K1 and -K2 [33]. They are 

expressed in kidney and inner ear and require the accessory β-subunit barttin [34] for proper 

trafficking and function in transfected mammalian cells [35][36]. Both proteins take part in 

trans-epithelial transport. Defects of ClC-Kb are associated with Bartter’s syndrome type III, 

a form of kidney insufficiency characterized by a strong salt loss [37], [38]. Bartter’s 

syndrome type IV is additionally accompanied by congenital deafness, because neither ClC-

Kb nor ClC-Ka are functional due to a mutation of barttin [34], [39]. Initially, the rodent 

variant ClC-K1 was characterized electrophysiologically, exhibiting ionic currents with nearly 

linear appearance in a broad voltage range [33].  After the discovery of barttin, the human 

isoforms ClC-Ka and -Kb could be expressed and characterized in Xenopus laevis oocyte 

membranes. Estévez et al. showed that currents are inhibited by extracellular protons and 

activated by extracellular Ca2+ [34].  
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Figure 3.2. Subcellular localization of ClC transporter isoforms in the endosomal/lysosomal pathway. 
Endosomes are formed by invagination of the cell membrane. During their travel to cell interior they 
progressively acidify due to the action on the V-type ATPase. The increase of positive charge inside the 
endosome inhibits further proton pumping and the ClC transporters are proposed to provide an electrical shunt 
mechanism by stoichiometrically transporting Cl- into the endosomal lumen in exchange for protons (modified 
from: [40]). 
 

3.2.2 ClC transporter isoforms of the endosomes 
The endosomal pathway begins with the off-pinching of a vesicle from the cell membrane and 

is called endocytosis (Figure 3.2). This can be a specific receptor/ligand-dependent process to 

endocytose a specific compound or alternatively a rather unspecific uptake of larger amounts 

of extracellular fluid and all its contents (fluid-phase endocytosis, “pinocytosis”)[41]. In both 

cases, endosomes are acidified by ATP-dependent proton pumps, which is important for the 

dissociation of receptor/ligand complexes or the activation of luminal enzymes. Endosomes 

can be classified by their pH and Cl- content. Although the extracellular fluid is characterized 

by a high Cl--concentration, [Cl-] values in early endosomes are low immediately after their 

formation, probably due to the negative Donnan potential at the inner surface of budding 

endosomes, repelling negatively charged Cl- ions [42]. After formation, early endosomes 

acidify and accumulate Cl-. They wander further into the cell interior and become sorting 

endosomes. Some of them travel back to the cell membrane (recycling endosome) to promote 

for example receptor recycling and another fraction further acidifies, to become late 

endosomes and finally lysosomes, which are characterized by a high Cl- content and a pH less 

than 5.  
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ClC-3 is mainly expressed in brain and kidney, but also in other tissues [43], [44]. It has been 

postulated to play an important role in the acidification of endosomes and is presumed to 

pump Cl- into the endosomal lumen, which would otherwise be too positive for further 

acidification, due to the action of the V-type ATPase [45]. The electrophysiological 

characterization of this endosomally localized protein proved very difficult in the past due to 

the low surface expression, even when heterologously overexpressed. So far, several 

controversial and contradicting reports were published, ascribing volume activated currents in 

one case [46], H+ activated currents [47], [48] or kinase-regulated currents in other cases [46], 

[49]–[51] to the presence of ClC-3. Another role was proposed for ClC-3, requiring it to 

operate in the opposite direction – not a as a shunt for the V-Type ATPase by transporting Cl- 

into the endosome but by pumping protons into a signalling endosome of smooth vascular 

muscle cells. The colocalizing NADPH oxidase would otherwise cause the endosomal lumen 

to be too negative as a consequence of the production of the second messenger H2O2 [52]. 

Until now, no human disease was linked to a defect of ClC-3, although the ClC-3 deficient 

knock-out mouse model displays a degradation of the central nervous system [53], [54].  

ClC-4 was first identified and cloned in 1994 [55], and its physiological role is rather 

obscure, the more so as there is no known disorder associated to a defect in ClC-4. It is 

broadly expressed, but in humans mainly in muscle and brain [55] and in rats in brain, 

intestine and kidney [56], [57]. Although it is an intracellular membrane transporter, 

overexpression in Xenopus laevis oocytes or mammalian cells results in substantial amounts 

of proteins in the plasma membrane, enabling electrophysiological studies. ClC-4 currents are 

strongly outward rectifying [58] and it was shown to be a Cl-/H+ antiporter [12], [13]. When 

external Cl- is substituted by NO3
- or SCN-, currents increase, but proton transport is strongly 

diminished or abolished [59], [60]. The strong rectification impairs precise measurements of 

equilibrium potentials, so an inference on the coupling stoichiometry like Accardi and Miller 

did for the nonrectifying EcClC [11] is hindered. It is presumed that this transporter supports 

acidification of early endosomes and plays a role in endocytosis. In transfected HEK293 

(human embryonic kidney) cells, ClC-4 was shown to partially colocalize with ClC-3 and 

ClC-5 [61]. Endocytosis assays with fibroblasts of ClC-4 knock-out mice reported a decrease 

of receptor-mediated transferrin uptake, a reduced transferrin receptor recycling and impaired 

acidification of early and sorting endosomes [62]. 

ClC-6 is a not well characterized isoform, first cloned in 1995 [63], which localizes to 

late endosomes [64] and is almost only expressed in neurons [64]. It is also a transporter [65] 

and mediates outwardly rectifying current [65]. Knock-out mice develop a mild form of 
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neuronal ceroid lipofuscinosis, a manifestation of lysosomal storage disorder, characterized 

by deposition of degradation products of certain proteins in lysosomes of proximal axons 

[64].  

Graves and colleagues [15] showed that the endosomal ClC-7 [63] is a Cl-/H+ 

antiporter by performing fluorometric measurements on enriched endosomes. Before this, 

ClC-7 was already shown to be a membrane protein of lysosomes, late endosomes and of the 

osteoclast membrane [66], [67]. In this report it is supposed to promote acidification by a V-

type ATPase, which causes bone resorption. CLCN7 mutations are linked to osteopetrosis, a 

disease with impaired balance of bone generation and degradation is disturbed [66]. Being an 

intracellular localized transporter, the electrophysiological approach was difficult until 

recently sufficient plasma membrane insertion could be achieved by mutating an endosomal 

sorting motif [68], permitting measurements in heterologous expression systems [69]. ClC-7 

currents are outwardly rectifying upon depolarization, but activation and deactivation are very 

slow, enabling analysis even in the negative voltage range after the transporter has been 

activated. This makes ClC-7 the only mammalian ClC transporter, at which reversal potential 

measurements [11] could reliably be carried out to assess the stoichiometry of transported 

substrates Cl- and H+, which resulted to be 2:1 [69]. Besides ClC-Ka and -Kb ClC-7 is the 

second member of the ClC family to require a β-subunit, in this case Ostm1, for stability [67] 

and transport activity [69]. 

The question why ClC transporter isoforms shunt the positive charge accumulation in 

the vesicle by Cl-/H+ exchange and not by simple chloride conduction (as a channel would 

provide) has recently been addressed by the group of T. Jentsch group using knock-in mice, 

expressing ClC-5 and ClC-7 proteins, respectively, that only mediate passive nonrectifying 

Cl- flux instead of coupled transport. These mice displayed the same pathological phenotype 

as the corresponding knock-out mice lacking those proteins, but demonstrated normal 

acidification of endosomes and lysosomes [70], [71].  
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3.3 ClC-5 is an endosomal transporter and involved in Dent’s 
disease 

ClC-5 is the best-studied transporter of the ClC family and was cloned in 1995 [72] and 

shown to be mostly expressed in epithelial cells of the kidney. ClC-5 is localized in the 

membrane of early endosomes in cells of the proximal tubule [73]. Mutations in the CLCN5 

gene cause Dent’s disease, which is hallmarked by excessive excretion of small proteins, 

phosphate and calcium into the urine and often by kidney stones [74]. This indicates the 

possible role of ClC-5, which it shares with the other intracellular ClCs – providing and 

electrical shunt for a vesicular ATPase, thereby facilitating the acidification of endosomal 

compartments. In vivo experiments with ClC-5 knock-out mice showed decreased abundance 

of the endocytosis receptor megalin in proximal tubule cells, resulting in both decreased 

receptor mediated and fluid-phase endocytosis and elevated endosomal pH [75]. This was 

also reported in cell-culture experiments, along with elevated endosomal Cl- concentration 

[76]. Piwon et al. hypothesized that the increased phosphate content of the urine results due to 

an increased removal of the phosphate transporter NaPi-2a from the proximal tubule plasma 

membrane, mediated by excessive levels of parathyroid hormone, which is not endocytosed 

sufficiently in ClC-5 deficiency [75]. Abnormal high levels of this hormone are also thought 

to account for increased transcription of the mitochondrial enzyme 1α-25(OH)-VitD3-

hydroxylase [77], which converts its substrate to the active hormone 1,25-(OH)2-VitD3. This 

hormone was demonstrated to be slightly increased in the serum of Dent’s disease patients 

[78] and is presumably responsible for the intestinal resorption of Ca2+, eventually filtered 

into the urine resulting in higher levels. The precursor form of 1,25-(OH)2-VitD3, however, 

has to be apically endocytosed via the megalin-dependent pathway, which is hindered upon 

ClC-5 defects. Thus, in ClC-5 deficient patients the 1α-25(OH)-VitD3-hydrolase is indeed 

upregulated, but the pathway to provide it with substrate is reduced and because of this not all 

patients display hypercalciuria and kidney stones. 

When ClC-5 is overexpressed in Xenopus oocytes and studied electrophysiologically, 

currents closely resemble those of ClC-4 in terms of rectification and anion selectivity [58], 

[72]. Picollo et al. and Scheel et al. also demonstrated in Xenopus laevis oocytes or 

mammalian cells that ClC-5 is a Cl-/H+ antiporter [12], [13] and transport becomes uncoupled 

by external NO3
- or SCN- [59]. For ClC-5, several estimates have been published for the 

stoichiometry [12], [13] and the most recent article reports a 2:1 ratio [79]. 

Additionally ClC-5 was the first ClC for which the gating currents recently were 

reported [80]. Gating currents were predicted by Hodgkin and Huxley [81] and first recorded 

and published by Armstrong and Bezanilla for the sodium channel [82] as intrinsic properties 
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of the gating machinery of some voltage-gated channels or transporters. They were proposed 

to rise as a response to an activating voltage, because charged amino acids of a voltage sensor 

domain move, resembling ion flow. For the sodium channel gating currents were recorded as 

a transient current preceding the actual ionic current. Since gating currents arise from voltage-

dependent processes, they are nonlinear and can be separated from linear capacitances by so 

called leak-subtraction ([83], see Sections 4.3.7.1 and 5.5).   
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3.4 ClC structure and function 
 
Electrophysiological characterizations of ClC-0 by Miller and White [84] implied first 

assumptions on ClC structure: They function as a homodimer, with each monomer forming an 

ion conduction pathway of its own. Every protopore can open and close independently on a 

millisecond time scale (“fast gate”). Additionally both pores can be closed simultaneously by 

a slower gating process (“common gate”). But this behaviour of two strictly separated gating 

processes is not always observed in all ClC isoforms and the molecular mechanism of 

common gating is still unclear. 

 

Figure 3.3 ClC membrane topology of a monomer. In green and blue depicted are the pseudo-symmetrical 
repeats of the helical patterns and in red and purple the two CBS domains, present in all eukaryotic ClCs, but not 
in the prokaryotic EcClC. Arrows indicate regions that contribute to the selectivity filter with conserved 
sequences given in the boxes (from: [85]). 
 

In 2002, before the exchanger function was known, EcClC was the first ClC, for which the 

structure could be obtained crystallographically by Dutzler et al. [86]. The dimeric ClC 

structure proposed by Miller and White structure was verified and can be regarded as 

representative for other ClCs, although this prokaryotic isoform is lacking two cytoplasmic 

CBS (cystathione β-synthase) domains, present in all eukaryotic ClCs [87], [88]. Instead of 10 
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or 12 trans-membrane segments, as predicted from biochemical experiments [89], a ClC 

monomer consists of 18 α-helices, with only some of which spanning the entire cell 

membrane (Figure 3.3). Monomers display anti-parallel symmetry, formed by helices B to I 

being inversely repeated by helices J to Q. Nearly all of the helices are heavily tilted with 

respect to the membrane, visible in the crystal structure (Figure 3.4)[90]. In the wildtype 

crystal (Figure 3.4 and Figure 3.5, left) Cl- ions could be detected in two positions. 

out

in

3
5
Å

A
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Figure 3.4.  Crystal structure of EcClC of Escherichia coli (PDB ID 1OTS). A. Side view of the “double-
barreled” dimer, with each monomer shown in purple or red, respectively. Two bound Cl- ions per monomer are 
shown in green. Orientation and thickness of the membrane are indicated. B. View from above. 
 

 As a selectivity filter, a row of three binding sites was proposed. Binding to those sites is 

stabilized by interaction of the anion with the protein backbone and certain side chains of 

amino acids. Three binding sites can result from those interactions: an external (Sext), a central 

(Scen) and an internal (Sint) binding site [90]. The external binding site in wildtype ClCs 

(Figure 3.5, left) is occupied by a negatively charged glutamate side chain E148, which 

represents the closed conformation of the transporter. In this case, no third anion is visible. 

The external binding site is only accessible to an anion, if the glutamate side chain is 

protonated and swings out, which can be mimicked artificially by mutating the glutamate to 

the uncharged residues alanine or glutamine (E148Q; Figure 3.5, right). Here, the external 

binding site is free to interact with an anion, which becomes visible in the structure [90], and 

this conformation represents the open state. This glutamate residue is the so-called gating 

glutamate because by blocking the access for external Cl- to the pore, it acts like a gate. It is 

present in all ClC isoforms, except ClC-Ka and Kb, which have a valine at the corresponding 

position (Figure 3.6) and are constantly in a conducting state [36]. The neutralizing mutation 
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to glutamine in other ClCs also keeps them constantly open [91] and, additionally, in the 

transporter isoforms no proton translocation takes place [11], [13] and rectification is 

switched to a rather ohmic behaviour [51], [58], [65], [69]. Conversely, an introduction of a 

glutamate in place of the valine in the ClC-K isoforms is able to produce gated, rectifying 

behaviour [92].  

 

Figure 3.5: The selectivity filter of EcClC. Sections from X-ray crystallographic structures of EcClC, 
showing external, central and internal anion binding sites Sext, Scen, Sint with bound anions shown as red 
spheres. Left structure represents the wildtype protein, right structure is the gating glutamate mutant 
E148Q, featuring a third anion bound to the external binding site (taken from:[85])  

It was proposed that the central binding site is a water-free environment and that both the 

positively charged N-termini of helices N and F and a conserved tyrosine at position 445 (in 

EcClC) have a stabilizing effect on an anion bound there [90]. A conserved serine 107 is 

supposed to isolate the Cl- ion against the intracellular solution [93] (Figure 3.5, left). The 

internal anion binding site is thought to be created by interactions of the anion with an amide 

group of the protein backbone [90]. Of all three binding sites, a recent calorimetric study 

estimates smallest binding forces to Cl- at this position [94]. 

  EcClC  146 GREGPTVQIG GNIGRMVLDI FRLKG..... .......DEA RHTLLATGAA AGLAAAFNAP LAGILFIIEE MRP  206 
  CmClC  208 GWEGPNVHIA CIIAHQFYRL GVFKELC... .....TDRAL RLQTLAAACA VGLASSFGAP LGGVLYSIET IAS  272 
 AtClCa  201 GKEGPLVHIG SCIASLLGQG GPDNHRIKWR WLRYFNNDRD RRDLITCGSA SGVCAAFRSP VGGVLFALEE VAT  273 
  ClC-0  164 GKEGPFVHIA SICATLLNQL LCFISGRRE. .....EPYYL RADILTVGCA LGISCCFGTP LAGVLFSIEV TCS  230 
  ClC-1  230 GKEGPFVHIA SICAAVLSKF MSVFCGVY.. .....EQPYY YSDILTVGCA VGVGCCFGTP LGGVLFSIEV TST  295 
  ClC-2  203 GKEGPFVHIA SMCAALLSKF LSLFGGIY.. .....ENESR NTEMLAAACA VGVGCCFAAP IGGVLFSIEV TST  268 
 ClC-Ka  164 GKVGPFVHLS VMIAAYLGRV RTTTIGEP.. .....ENKSK QNEMLVAAAA VGVATVFAAP FSGVLFSIEV MSS  229 
 ClC-Kb  164 GKVGPFVHLS VMMAAYLGRV RTTTIGEP.. .....ENKSK QNEMLVAAAA VGVATVFAAP FSGVLFSIEV MSS  229 
  ClC-3  222 GKEGPLVHVA CCCGNIFSYL FPKYS..... .....TNEAK KREVLSAASA AGVSVAFGAP IGGVLFSLEE VSY  284 
  ClC-4  222 GKEGPLVHVA CCCGNFFSSL FSKYS..... .....KNEGK RREVLSAAAA AGVSVAFGAP IGGVLFSLEE VSY  284 
  ClC-5  209 GKEGPLVHVA CCCGNILCHC FNKYR..... .....KNEAK RREVLSAAAA AGVSVAFGAP IGGVLFSLEE VSY  271 
  ClC-6  198 GKEGPMIHSG SVVGAGLPQF QSISLRKIQF NFPYFRSDRD KRDFVSAGAA AGVAAAFGAP IGGTLFSLEE GSS  270 
  ClC-7  245 GKEGPMIHSG SVIAAGISQG RSTSLKRDFK IFEYFRRDTE KRDFVSAGAA AGVSAAFGAP VGGVLFSLEE GAS  317 
 
helices                  F                                                                                    G                                  H  
 

Figure 3.6: Sequence alignment of several members of the ClC family. Conserved gating and proton 
glutamates are marked. The sequences come from Escherichia coli (EcClC), Cyanidioschyzon merolae 
(CmClC), Arabidopsis thaliana (AtClCa), Torpedo marmorata (ClC-0) or humans. And were aligned using the 
AlignX module of VectorNTI. Lowest row designates position on helices as seen in the EcClC crystal [86]. 
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Another critical glutamate residue only occurs in transporter isoforms of ClC (Figure 3.6) and 

mutations of this glutamate 203 in EcClC to other amino acids determined this residue to be 

crucial for proton transport [93]. An exchange for glutamine at this position mediated Cl- flux 

without coupled proton transport. This so called proton glutamate is located at the 

intracellular interface, but is not in close vicinity to the Cl- binding pathway and Accardi and 

colleagues have suggested therefore separate conduction routes for Cl- and H+ that converge 

near the gating glutamate. In contrast to the prokaryotic EcClC, a neutralizing mutation of this 

proton glutamate halts not only the proton transport, but also the Cl- transport in eukaryotic 

isoforms ClC-4 to ClC-7. [59], [65], [69] 

How protons travel from the internal proton acceptor through the protein to reach the 

rather distant gating glutamate in the ClC transporter forms still remains obscure. Miller and 

Nguitragool  suggested that the proton is shuttled from the proton glutamate to the central 

binding site, where it forms a transient HCl molecule before it protonates the external 

glutamate and they also proposed a simple model to explain the occurrence of the 2:1 Cl-/H+ 

stoichiometry [95]. Recent crystallographic work by Feng et al. [96] presents a structure of a 

eukaryotic ClC from the unicellular red algae Cyanidioschyzon merolae, which may serve as 

a complementation of the EcClC crystal: In CmClC, an anion was visible at the external 

binding site and the gating glutamate was bound to the central binding site. This conformation 

could possibly also occur in EcClC. This way, the gating glutamate would already be at the 

central binding site without the necessity of a hypothetical and quite unstable formation of 

HCl to bridge the distance between proton and gating glutamate. Based on the three possible 

conformations of the gating glutamate, they developed a kinetic model which also might 

explain the 2:1 coupling.  

ClC transporters isoforms can conduct several types of anions better than Cl-, namely 

large polyatomic anions like NO3
- or SCN- [58], [59], [97]–[99], but those substrates fail in 

maintaining the 2:1 transport stoichiometry and partly or fully uncouple anionic current from 

proton transport [59], [60], [97]. The mechanism of uncoupling is still not well understood. 

EcClC crystals grown in presence of SeCN-, an anion similar to SCN- show the anion only 

bound at the internal binding site [97] while electrophysiological and calorimetric results 

imply a reduced binding affinity of NO3
- or SCN- [60], [94], [97], [99]. In EcClC Accardi et 

al. [100] mutated the tyrosine 445 stabilizing the Br-
 ion (a crystallization equivalent to Cl-) in 

the central binding site to other amino acids and determined ion occupancy at this site in the 

crystal as well as Cl-/H+ transport coupling of those mutants. They report that the degree of 
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coupling is diminished when shorter amino acids take the place of the tyrosine. With reduced 

coupling, reduced anion occupancy at the central binding site goes along. 

The prementioned CBS domains are present in all eukaryotic ClC isoforms and much 

conserved among them [101]. In ClC-0 of Torpedo marmorata the CBS domains influence 

common gating [102]. In ClC-1 they were shown to mediate ATP induced inhibition [103], 

[104] and crystallized CBS domains from ClC-5 in presence of ATP, ADP or AMP show 

those nucleotides bound at the interface between the two CBS subdomains [105]. Contrary to 

the inhibiting effect of ATP in ClC-1, intracellular ATP is needed to prevent a dramatic 

rundown of ClC-4 currents in heterologously expressing mammalian cells [98] and acts as an 

activator of ClC-5 [106]. Also in ClC-2 the CBS domains are able to bind ATP [107], but the 

effects are unclear [108]. 
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3.5 Voltage dependence of ClC gating 
The voltage dependence of gating is present in most ClC isoforms. ClCs are lacking a 

dedicated domain in which positively charged amino acids of a helix fulfill the task of voltage 

sensing and mediate structural changes [86], [109], as for example the S4 domain in cation 

selective channels [2], [110]. Moreover, the voltage dependence is also influenced by the 

concentration and transmembrane gradient of the transported ion itself [111]. For the fast 

gating process in ClC-0 it was proposed that the external Cl- ion itself opens the channel by 

voltage-dependent binding to a site located in the pore [112]. Shortly after that, Chen and 

Miller [113] presented a minimal model, which argues against this idea, based on their kinetic 

data and the fact that at different external Cl- concentrations the minimal open probability 

approached the same value, which was never zero (Scheme 1). 

 

C O

C:Cl O:Cl

α1

β1

α2

β2

KC KO

 

Scheme 1

 
In this scheme, the channel opening rate α depends on both Cl- concentration and voltage and 

is composed of α1 and α2 according to the probabilities of the occupation and non-occupation 

of the binding site. In the closed conformation, only internal Cl- can bind with an apparent 

dissociation constant KC, whereas in the open conformation, the binding site is accessible 

from both sides, resulting in KO. 
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3.6 Aim of this thesis 
ClC-5 is an endosomal Cl-/H+ exchanger and defects are associated with Dent’s disease. One 

object of this thesis was to study the impacts of ClC-5 mutations on the acidification of 

endosomes. To this end, fluorescence microscopic analysis of endosomally-localized pH 

sensors should be performed. The pH sensors were either genetically encoded (synapto-

pHluorin) or inserted into the endosomal pathway by receptor-mediated endocytosis (FITC-

transferrin). As a prerequisite for the validity of the analysis, a quantitative assessment of 

sufficient colocalization of the pH-sensitive dyes to ClC-5, based on 3D confocal datasets was 

sought. 

ClC-5 transport activity is regulated by voltage and by the transported substrates Cl- 

and H+. Furthermore, large polyatomic anions are transported with less coupling to proton 

transport. By measuring total anion transport and proton transport simultaneously using the 

patch-clamp fluorometry technique, it was pursued to gain insights into the determinants of 

uncoupling. Additionally, those results, combined with non-stationary noise measurements, 

measurements of nonlinear capacitance and conventional patch clamp should contribute to the 

evaluation of the role of internal protons on the transport probability of ClC-5.  

Voltage-dependent gating of ClC-5 crucially depends on the external gating glutamate 

211, but is also modulated by other parameters. By characterizing the voltage-dependence of 

activation of different mutants of lysine 210, the contribution of this residue to the gating of 

ClC-5 was a subject of research in conjunction with the role of internal and external Cl-. 

Furthermore, to investigate how structural determinants in the region near the gating 

glutamate modify gating, the voltage-dependent accessibility of K210C for cysteine-reactive 

compounds was sought to be investigated.  
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4 Material and methods 

4.1 Molecular biology 

4.1.1 Generation of expression constructs 
The plasmid pTLN hClC-5 was a gift from Dr. Thomas J. Jentsch. Due to the fact that this is a 

vector designed for expression in Xenopus laevis oocytes, a new construct suitable for 

expression in mammalian cells was created using several constructs available. Strategies were 

done with the bioinformatics computer program Vector NTI Advance 10 (Invitrogen): 

 
source construct fragment techniques used 
pRcCMV hClC-4 vector restriction with XbaI & 

HindIII 

pTLN hClC-5 215 bp fragment of ClC-
5 and part of vector 

restriction with HindIII & 
DraIII 

pTLN hClC-5 2.2 kbp ClC-5 fragment 
with linker 

standard PCR (polymerase 
chain reaction), restriction 
with DraIII & BamHI 

pCINeo SOD1 WT link mCherry mCherry restriction with BamHI & 
XbaI 

Table 1: Summarized strategy for the generation of a plasmid for heterologous expression of 
fluorescently labelled ClC-5 in mammalian cells. 
 
 

The desired construct pRcCMV ClC-5 link mCherry (Figure 4.1) possesses a CMV 

(Cytomegalovirus) promoter for expression in mammalian cells [114], an SV40 (Simian Virus 

40) promoter for enhanced replication and expression in mammalian cells expressing the large 

T antigen, an ampicillin resistance as a selectable marker for transformed E.coli cells and a 

neomycin resistance as a selectable marker for transfected HEK293 cells [115]. Furthermore, 

the C-terminal tag with the red fluorescence protein mCherry [116] makes it possible to 

identify transfected cells, study the localization under a fluorescence microscope or identify 

bands in a fluorescent protein gel. 
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Neomycin
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SV40 promoter

mCherry

XbaIBamHI

linker

HindIII

ClC-5

DraIII

HindIII

CMV Promoter

BamHI

DraIII

BamHI

pRcCMV ClC-5 link mCherry

8501 bp

 
Figure 4.1: Plasmid pRcCMV ClC-5 link mCherry or mutated forms of it were used for most 
experiments throughout this work. Depicted are the CMV (Cytomegalovirus) promoter for expression in 
mammalian cells, the coding sequence for ClC-5, a linker and the red fluorescent protein mCherry. The SV40 
(Simian virus 40) promoter enhances the replication and expression in HEK293T cells and the neomycin 
resistance (NeomycinR) confers G418 antibiotic resistance to HEK293 cells and allows selection and generation 
of stable cell line. Ampicillin resistance (AmpR) allows selection of successfully transformed E.coli clones for 
applications in molecular biology. 
 

4.1.2 Standard polymerase chain reaction 
Standard polymerase chain reaction (PCR) was carried out in a thermocycler (MJ Research). 

The reaction mixture contained: 

 
template DNA 100 ng 
10 x PCR buffer (Roche) 5 µl 
10 mM dNTP mixture (QIAGEN) 1 µl 
Pfu/HiFi polymerase (Roche) 0.5 µl 
HPLC water (Fluka) 40.5 µl 
sense and antisense primers (25 ng/µl) 1 µl each 

 
Primers used to amplify the 2.2 kbp fragment of ClC-5 in pTLN hClC-5, had the sequences: 

 
sense 5’-AATTGATTGGGTGAGAGAGA-3’ 
antisense 5’-TAAATACCGGTGGATCCGTGTTGAAGAGAATGGAATCAG-3’ 
 
The antisense primer was designed to remove the stop codon after ClC-5, introduce restriction 

sites for BamHI and AgeI and code for a linker with the amino acid sequence TDPPVAT. 
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The PCR program contained a first denaturation step at 94°C for 10 min, before conducting 

35 cycles: 

 
94°C 1 min 
54°C 1 min 
72°C 2.5 min 

 
A final synthesis step at 72°C was carried out for 10 min and the resulting DNA fragment was 

purified via agarose gel electrophoresis and subsequent gel extraction. 

 

 

4.1.3 Restriction digest 
The following preparation applies to a standard single or double digest: 

 
Plasmid DNA 1-2 µg 
10 x Fast Digest Buffer (Fermentas) 2 µl 
Enzyme (Fermentas Fast Digest Enzymes) 1 µl/enzyme 
HPLC water (Fluka) ad 20 µl 

 
Incubation took place at 37°C for 1 h. Preparative digests with up to 5 µg DNA were 

performed with an up-scaled preparation at 50 µl final volume. 

 
 

4.1.4 Agarose gel electrophoresis 
Gels consisted of 1% (w/v) agarose (Invitrogen), dissolved in TAE running buffer (50x 

contains 2 M Tris, 5.96 % (v/v) acetic acid, 10 % (v/v) 0.5 M EDTA pH 8.0), supplemented 

with 0.005% (v/v) ethidium bromide (Fluka). Samples were mixed with 6x loading buffer 

(0.25 % (w/v) bromphenol blue, 0.25 % (w/v) xylene cyanol, 30-40 % (v/v) glycerol) and 

electrophoresis was carried out at 110 V (EC 105 power supply, E-C Apparatus Corporation) 

in gel chambers (Kodak BioMax MP1015) filled with TAE buffer. UV-induced ethidium 

bromide fluorescence of DNA bands was analyzed with a Gel-Doc 2000 (Bio-RAD) and, if 

necessary, quantified with the computer program Quantify One (Bio-RAD).  

4.1.5 Gel extraction 
DNA bands of the correct length were excised with a scalpel and transferred to 1.5 ml 

reaction tubes (G. Kisker). Extraction was done with the QIAquick Gel Extraction Kit 

(QIAGEN) according to the manufacturer’s manual. 
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4.1.6 Ligation 
Prior to ligation, a concentration gel with 4 µl of gel extracted DNA was run to determine the 

concentration of the samples. The amount of insert fragments used for ligation was 3 times 

the amount of vector fragments and 20 units T4-DNA ligase (New England Biolabs) and 2 µl 

ligase buffer (50 mM Tris-HCl pH 7.5; 10 mM MgCl2; 1 mM ATP; 10 mM DTT, New 

England Biolabs) were used in a reaction, filled up to 20 µl with HPLC water (Fluka) in a 1.5 

ml reaction tube. As a control, ligation was also carried out with the vector fragment alone 

and the incubation took place overnight at 18°C. 

 

4.1.7 Transformation 
For transformation, the competent E.coli strain DH5α was used. In a chilled 1.5 ml reaction 

tube, 5 µl of a ligation mix was incubated on ice with 40 µl of bacteria suspension (freshly 

thawed) for 20 min. As a positive control, 50 ng of the plasmid pcDNA 3.1 (+) and as a 

negative control 1 µl water were used. After a heat shock at 42°C for 2 min in a Dry Block 

Heating Thermostat (G. Kisker), samples were put back on ice and after 2 min 300 µl SOC-

medium without antibiotics (100 ml contain 2 g Bacto-tryptone (BD Biosciences), 0.5 g 

Bacto-yeast extract (BD Biosciences), 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

MgSO4, 20 mM glucose, pH 7, last three compounds were sterile filtered and added after 

autoclaving of the medium) was added and carefully mixed. After a shaking incubation at 150 

rpm and 37°C for 45 min (Multicon eco, Infors AG), bacteria were centrifuged at 6000 rpm in 

a microcentrifuge (Centrifuge 5415D; rotor F45-24-11, Eppendorf) and 280 µl of supernatant 

were discarded. The bacteria pellet was resuspended in the remaining supernatant and plated 

on LB-agar plates (25 g DB Difco LB-Boullion, Miller (Luria-Bertani) and 20 g BD Bacto 

Agar per liter, autoclaved) with a selection antibiotic (100 µg/ml), which were incubated 

overnight at 37°C. To produce pre-cultures, colonies were picked and transferred into 5 ml 

LB-medium (25 g BD Difco LB-Boullion, Miller (Luria-Bertani) per liter, autoclaved)  with 

antibiotics (100 µg/ml) in 14 ml round-bottom tubes (BD Biosciences) and incubated shaking 

at 150 rpm and 37°C for 14 hours. 

 

4.1.8 DNA preparation 
The QIAprep 8 Miniprep Kit (QIAGEN) was used to recover the plasmid from E.coli pre-

cultures using the vacuum method (KNF Laboport) following the manufacturer’s instructions. 

Larger amounts of DNA were obtained using the Plasmid Maxi Kit (QIAGEN) according to 

the manufacturer’s manual. 
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4.1.9 Determination of DNA concentration 
DNA concentrations were measured in an Ultrospec 2100 pro (Amersham Biosciences) 

spectrophotometer at a 1:100 water dilution in a quartz cuvette. The extinction was measured 

at a wavelength of 260 nm and the concentration was calculated automatically. 

4.1.10 Sequencing 
Sequencing was done by the company GATC, Konstanz. The obtained sequences were 

checked for correctness using Vector NTI Advance 10 (Invitrogen). 

4.1.11 Site-directed Mutagenesis 
Mutagenesis was done using the QuikChange Site-Directed Mutagenesis Kit (Agilent 

Technologies) a PCR-based technique, where a whole plasmid is replicated using 

complementary primers, differing from the template in several base pairs. As only the 

template plasmid – and not the newly synthesized mutated plasmid – contains methylated 

DNA, in a subsequent DpnI digestion, the non-mutated template DNA is destroyed and only 

mutated plasmids are present. Primers were designed with a combination of VectorNTI 

together with one of the two www-based programs PrimerX [117] or Agilent’s own 

QuikChange Primer Design program. Primers were ordered from Sigma-Aldrich. Sequences 

for primers are given in Table 2. QuikChange was performed following the manufacturer’s 

instructions. To reduce the probability of random mutations additional to the desired one, the 

DNA section containing the mutation was subcloned back into the original plasmid, using 

appropriate enzymes (see 4.1.3) and the entire subcloned insert was verified by sequencing 

(see 4.1.10). 
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Mutant Sequence 5’-3’ 

D76C sense TTTATCAGGTTCGTTAGCTGGTTTGATATGCATCTCTGCTCATTGG 

           antisense CCAATGAGCAGAGATGCATATCAAACCAGCTAACGAACCTGATAAA 
 

H80C sense CGTTAGCTGGTTTGATAGACATCTCTGCATGCTGGATGACAGACTTAAAAGAAGG

TATAT 

          antisense ATATACCTTCTTTTAAGTCTGTCATCCAGCATGCAGAGATGTCTATCAAACCAGC
TAACG 
 

H80D sense GCTGGTTTGATAGACATCTCTGCAGACTGGATGACAGACTTAAAAGAAGG 

           antisense CCTTCTTTTAAGTCTGTCATCCAGTCTGCAGAGATGTCTATCAAACCAGC 
 

S168P sense CTTATGCCTGTGGCCCTGGAATCCCTGAG 

           antisense CTCAGGGATTCCAGGGCCACAGGCATAAG 
 

K210C sense GCTTGAGCCTGGGCTGCGAGGGCCCTCTAGTG 

             antisense CACTAGAGGGCCCTCGCAGCCCAGGCTCAAGC 
 

K210R sense GTCGTCTGGCTTGAGCCTCGGGAGAGAGGGCCCT 

             antisense AGGGCCCTCTCTCCCGAGGCTCAAGCCAGACGAC 
 

E211C sense CTTGAGCCTGGGCAAATGCGGCCCTCTAGTGCAC 

            antisense GTGCACTAGAGGGCCGCATTTGCCCAGGCTCAAG 
 

E268C sense GGAGTATTATTCAGCCTTGAATGCGTCAGCTACTATTTTCCCCTC 

            antisense GAGGGGAAAATAGTAGCTGACGCATTCAAGGCTGAATAATACTCC 
 

E268H sense GGAGTATTATTCAGCCTTGAACACGTCAGCTACTATTTTCCCCTC 

             antisense GAGGGGAAAATAGTAGCTGACGTGTTCAAGGCTGAATAATACTCC 

 

E268Q sense GAGTATTATTCAGCCTTGAACAGGTCAGCTACTATTTTCC 

             antisense GGAAAATAGTAGCTGACCTGTTCAAGGCTGAATAATACTC 

 

PCR pHluorin sense TAAGGATCCACCGGTATGAGTAAAGGAGAAGAACTTTTCACTG 

                 antisense ACCGTCATCACCGAAACGCG 
 

Table 2: Sequences of primers used for QuikChange site-directed mutagenesis of ClC-5 and PCR of 
ratiometric pHluorin (see 4.2.3.1). 
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4.2 Cell culture 

4.2.1 Transfection and splitting of HEK293T cells 
HEK293T cells, which are human embryonic kidney cells (HEK293), stably transfected with 

the SV40 large T antigen [118] were grown in 10 cm dishes (Sarstedt) in 15 ml DMEM 

(Dulbecco's Modified Eagle Medium; Gibco), supplemented with 10% FBS (fetal bovine 

serum, Biochrom AG), 2 mM L-glutamine and 50 units/ml penicillin/streptomycin 

(Invitrogen) in a cell incubator (Sanyo MCO-18AIC(UV)) in humid atmosphere at 37°C and 

5% CO2. At a confluence of approximately 50%, cells were transfected using the calcium 

phosphate precipitation method [119]. To this end, 10 µg of plasmid DNA was mixed in a 

sterile 1.5 ml reaction tube with 10 µl Salmon Sperm DNA (Invitrogen), diluted 1:10 in TE-

buffer (QIAGEN) and 500 µl of 250 mM CaCl2. This mixture was added dropwise into a 

second tube with 500 µl of 2 x HEBS solution (in mM: 274 NaCl, 40 HEPES, 12 D-glucose, 

10 KCl, 1.4 Na2HPO4, pH 7.05) and mixed thoroughly. After 20-30 min of incubation this 

mixture was added to the dish containing the cells in fresh medium and gently swayed. 

Splitting was done 24 hours later by removing the medium and washing the cells with PBS 

(phosphate buffered saline; Lonza) and applying 3 mL of trypsin-EDTA (Gibco). After 

incubation of 1 min at 37°C cells were manually individualized by rigorous pipetting with a 

transfer pipette (Sarstedt 86.1175.001). Several drops of this trypsin/cell mixture were 

transferred into a new dish with fresh medium to achieve the desired density. 

Electrophysiological measurements were carried out 12-24 hours after splitting. 

4.2.2 Generation of stable HEK293 cells 
HEK293 cells were used to generate stable cell lines. They were grown in 10 cm dishes in 

MEM medium (Minimum Essential Medium, Gibco) supplemented wit 10% FBS. 

Transfection was carried out as in 4.2.1, but cell density was chosen much lower. As the 

pRcCMV vector contains the gene for neomycin resistance [115], successfully transfected 

mammalian cells not only express the desired protein, but can be selected using antibiotics. 24 

hours after transfection, the medium was exchanged and the new medium was supplemented 

with 900 µg/ml of the selection antibiotic G418 (Geneticin, Invitrogen). In order to remove 

dead cells and renew the antibiotic, every three days the cells were endowed new medium. 

After several weeks, the surviving cells were splitted with low density into several new dishes 

to achieve single cells, which can form monoclonal round colonies. Those with mCherry 

fluorescence were selectively detached from the dish bottom and transferred into a new 6 cm 

dish per colony. After a growing period clones were subsequently checked for expression 

levels by patch clamping them. 
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4.2.3 Labelling of ClC-5 endosomes with pH-sensitive dyes 

4.2.3.1 Synapto-pHluorin 
Synapto-pHluorin [120] is a GFP (green fluorescent protein) variant, whose pH dependence is 

increased by several mutations. Originally, two variants were created; superecliptic pHluorin 

and ratiometric pHluorin, the latter of which used here. It differs from WT by the mutations 

E132D, S147E, N149L, N164I, K166Q, I167V, R168H, S202H and L220F. The ratiometric 

and the superecliptic constructs were a gift from Dr. Gero Miesenböck (University of 

Oxford), but the ratiometric form was only given in a prokaryotic expression vector pGEX-

2T, whereas only the superecliptic variant was in the desired vector pCIneo VAMPII. By 

standard PCR (for primers see Table 2) with overhangs and restriction by AgeI, the coding 

sequence was inserted into pCIneo VAMPII after the coding sequence for VAMPII (vesicle 

associated membrane protein II), which is a part of the vesicular fusion machinery [121], 

[122] and targets and anchors the pHluorin protein to the inner face of the vesicular 

membrane. 

For labelling endosomes and comparing the localizations of synapto-pHluorin with 

ClC-5, HEK293 cells, stably expressing WT ClC-5 linked to mCherry and grown in 6-well 

plates (Sarstedt) were cotransfected with 0.75 µg pCIneo synapto-pHluorin ratiometric. As a 

positive control for the assessment of colocalization native HEK293 cells were cotransfected 

with 1 µg pRcCMV YFP ClC-Kb  and 2 µg pcDNA3.1 G47R barttin CFP (cyan fluorescent 

protein), which have been published to colocalize and to show a similar intracellular staining 

pattern like ClC-5 mCherry transfected cells [35]. To verify that there was no cross-talk of 

dyes into the acquisition channel of the other dye during fluorescence microscopy, single 

transfections were carried out and recorded under the same conditions. 24 hours after 

transfection, cells were splitted on coated glass coverslips (see Section 4.2.4) at the desired 

density.  

4.2.3.2 FITC-transferrin 
Transferrin is a glycoprotein that binds Fe3+ and is endocytosed via receptor-mediated uptake 

and thereby carries iron into the cell [123]. By using similar approaches as Mohammad-Panah 

et al.[57], it is possible to use the ratiometric pH-sensitive dye FITC (fluorescein 

isothiocyanate) conjugated to transferrin to stain endocytotic vesicles and measure the 

intravesicular pH. 

FITC-transferrin (Sigma-Aldrich) was dissolved to a 5 mg/ml (w/v) stock solution in H2O, 

containing 2 mM N3Na. For labelling, HEK293T cells, grown on coated glass coverslips (see 

Section 4.2.4), were washed with PBS, pH 5 to deplete transferrin receptors from ligands and 
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incubated light protected for 30 min in DMEM containing 300 µg/ml FITC-transferrin. 

Before fixation, an additional washing step with PBS, pH 5 to remove surface bound FITC-

transferrin was performed.  

 

4.2.4 Coating of glass coverslips 
In cases of cell fixation (see Section 4.2.5) or patch clamp fluorometry (see Section 4.3.7.4) 

glass coverslips (Assistent 24x24 mm, Karl Hecht AG) were coated with poly-L-lysine 

(Sigma Aldrich, 0.01% w/v) for 20 minutes at a 1:20 to 1:30 dilution in autoclaved water. 

After that, coverslips were rinsed three times with autoclaved water. 

4.2.5 Cell fixation 
Cells were grown on coated glass coverslips, and washed twice for 3 min with PBS before 

fixation with 4% (w/v) PFA (paraformaldehyde; Merck) in PBS, pH 7.4 for 20 min. After two 

washing steps for 3 min with PBS cells were mounted with the ProLong Antifade Kit 

(Invitrogen) according to the manufacturer’s instructions. FITC-transferrin labelled cells were 

fixed with minimal exposure to light.  

4.2.6 Image Acquisition 
Confocal image stacks were acquired in the Confocal Laser Microscopy facility of the MHH 

at an Olympus FW1000 equipped with a UPLSAPO 60X O NA:1.35 60x oil immersion 

objective. Pinhole diameter was 105 µm and stacks with sizes of (0.2 - 0.44 µm) µm were 

acquired. Both FITC and pHluorin were excited at 488 nm and emission was detected after 

bandpass filtering at 498-538 nm and 500-545 nm, respectively. CFP, YFP and mCherry were 

excited at 440, 488 and 559 nm, respectively and emission was detected after bandpass 

filtering at 475-515, 530-630 and 570-670 nm, respectively. In cases of double staining, each 

line was scanned sequentially for 2-3 times at each wavelength and averaged (Kalman 

filtering). 

4.2.7 Image Analysis 
Quantification of colocalization was done using the JACoP plugin (Just Another 

Colocalization Plugin, [124]) in ImageJ. Prior to analysis, images were prepared as follows. 

To reduce noise, images were smoothed, which means, that every pixel was replaced by a 

pixel with the average intensity of its 3x3 neighbouring pixels. To compensate differences in 

illumination, emission or detection in two channel images, a linear histogram stretching was 

applied, which interpolates the histogram to span the whole intensity range, without distorting 

the intensity distribution. This was done based on the histogram of the whole stack.  
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In frequent cases, images not only contained cells that were double stained, for 

example because not all HEK293T cells in a cluster were transfected with ClC-5 mCherry, 

but all of them endocytosed FITC-transferrin. Since this would interfere with the analysis of 

colocalization and JACoP does not allow defining of ROIs (regions of interest) all the area 

not containing double stained cells was assigned zero intensity.  

In JACoP, threshold values for both channels were set to the same value and a scatter 

plot of the gray intensities of every pixel in both channels was created (cytofluorogram). The 

plugin fitted a straight line to the data and the slope reports on the correlation of the 

fluorescence in both channels with a slope of 1 being the best correlation. The calculated 

Pearson’s coefficient (PC) evaluates the spread of the data respective to the line and thereby 

the quality of the fit. For example, a broad distribution around a line with the slope of 1 gives 

a low or even negative PC and renders the statement of perfect colocalization invalid. 
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4.3 Electrophysiology 

4.3.1 Theory of the voltage clamp 
The voltage clamp technique was developed in the 1940s and 50s, initially to study electrical 

processes at the squid giant-axon [125], [126]. With this method, it was possible to impose a 

certain voltage across a cell membrane, set by the experimentator. To this end, one electrode 

impaling the cell measures the intracellular voltage (E’, Figure 4.2) and feeds this signal into 

a feedback amplifier (FBA). A second electrode injects an ionic current I’ to charge the 

membrane to the specified value. This current corresponds to the reciprocal current I (e.g. 

currents through ion channels). One or more bath electrodes define the extracellular medium 

as the zero-potential and serve as a reference for the voltage measurement. By convention, 

positive voltages mean a positively charged cell interior. A positive current means influx of 

anions into or an efflux of cations out of the cell. 

While early setups for giant axons consisted of wire electrodes, the use of 

microelectrodes was established to measure smaller cells, like Xenopus laevis oocytes [127]. 

Here, the electrode is a chlorided silver/silver chloride wire, which is inserted into a sharp 

glass pipette, filled with 3 M KCl. This microelectrode is then used to impale a cell. 

 

 

Figure 4.2: Schematic representation of the voltage clamp 

circuit. From: [1] 

4.3.2 Conventional patch clamp 
Patch clamping was developed in 1976 by Erwin Neher and Bert Sakmann [128]. In principle, 

patch clamp is a variant of voltage clamp with the major difference, that voltage measurement 

and injection of current are fulfilled by a single electrode and that the initial application of this 

technique was to measure currents in the pA range in a small membrane portion (“patch”), 

often mediated by a single ion channel protein. To this end, the glass microelectrode is not 

impaling the cell, but the tip is touching the membrane. Membrane and rim of the 

microelectrode can form a very tight connection, resulting in a very high resistance between 
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pipette interior and bath, the so-called “gigaseal” [129], [130]. This “cell-attached” 

configuration allows to measure currents of one or more ion channels which are contained in 

the patch while preserving the intracellular environment. From this configuration, several 

other configurations can be achieved: 

“Whole-cell” configuration: Suction or a strong electrical impulse is imposed to disrupt the 

membrane area within the rim of the pipette to form a connection between the pipette and the 

intracellular space. Here, a very strong advantage comes into action: the control of the 

intracellular environment by choosing the desired pipette solution.  

“Inside-out” configuration: Instead of disrupting the membrane patch to create the inside-out 

configuration, the pipette is lifted up rapidly, so the membrane patch is pulled out of the cell 

membrane while still forming the gigaseal with the pipette. Thus, the extracellular membrane 

area is inside the pipette and the inner pacing part of the membrane is exposed to the bath 

solution, which can be exchanged several times to study effects of several “intracellular” 

conditions. 

“Outside-out” configuration: After establishing whole-cell configuration, the pipette is lifted 

up and remaining parts of the membrane outside the pipette rim can reform a closed 

compartment, similar to a very small cell with less ion channels than in whole-cell 

configuration. 

 

4.3.3 Description of the setup 
The patch clamp setup consisted of an inverted Olympus IX71 microscope, mounted on an air 

shock dampened table (TMC) surrounded by a Faraday cage to shield against external electric 

fields. A headstage acted as a preamplifier and as a mounting for the pipette holder. In order 

to move the pipette in all three directions, the headstage was mounted on a LM-1 

micromanipulator (Luigs & Neumann). The amplifier was an EPC-10 (HEKA) which was 

connected via an integrated LIH 8+8 AD/DA interface to a Windows computer. The data 

acquisition program, which also controlled the amplifier parameters, was HEKA PatchMaster. 

To identify transfected cells by fluorescence or conduct fluorescence measurements, a 

Polychrome V monochromator (Till Photonics) was connected to the rear port of the 

microscope via a light conductor. For fluorescence measurements the side port of the 

microscope additionally contained a PMT-equipped ViewFinder III (Till Photonics), 

connected to a video monitor and a breakout box for communication with the computer. 
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4.3.4 Pulling of microelectrodes 
Microelectrodes were pulled from borosilicate capillaries (Harvard Apparatus GC120TF-10) 

with a Sutter P-97 horizontal puller and fire polished with a Narishige MF-830 microforge to 

achieve resistances of 1-2 MΩ. For measurements of non-stationary noise or capacitances, 

prior to polishing, pipette tips were coated in a hot wax bath (Thomas Oertel Dental x-hard) to 

reduce background noise and pipette capacitance. 

4.3.5 Cell perfusion 
Perfusion of cells was done in two different ways: In cases of anion selectivity and 

uncoupling experiments, the whole bath solution was exchanged by a combination of gravity 

driven solution flow from reservoirs of different solutions and simultaneous extraction by 

suction via a membrane pump connected to a waste bottle. To keep the exchange time and 

volume small, cells were grown on round coverslips and put into a small measuring vessel 

consisting of Teflon rings of 18mm inner diameter, glued with Sylgard (Dow Corning) on 

square coverslips (Assistent 24x24 mm, Karl Hecht AG) and fixed in a custom sample holder. 

In cases where a perishable reagent (like MTS reagents) was used and therefore a reservoir 

could not be utilized, a small volume of the solution was filled into a glass capillary which 

was previously pulled and broken to a narrow tip of 80 µm diameters. The walls of the 

capillary were made hydrophobic by silanization with Sigmacote (Sigma-Aldrich), so that 

gravitiy causes the fluid to run out as soon as the pipette tip is inserted into the bath solution. 

For perfusion, the cell was manipulated into the stream of solution. 

In both cases, the progress of perfusion was monitored by regularly applying a voltage 

pulse and perfusion was considered finished when the current response reached a steady 

value. 
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4.3.6 Solutions and reagents  
All reagents used were at least purity p.a. and purchased from Fluka, Sigma-Aldrich, Roth, 
Serva and Merck. 
 
internal composition (mM) 
1 105 NaCl,  20 HEPES, 2 MgCl2, 5 EGTA, pH 7.4 
2 105 NaCl,  20 MES, 2 MgCl2, 5 EGTA, pH 6.0 
3 105 NaCl,  20 AMPSO, 2 MgCl2, 5 EGTA, pH 8.8 
4 120 NaCl, 0.25 HEPES, 2 MgCl2, 5 EGTA, 33µM BCECF, 100 nM BafA1, pH 7.4 
5 120 NaCl, 0.25 MES, 2 MgCl2, 5 EGTA, 33µM BCECF, 100 nM BafA1, pH 6.4 
6 120 NaI, 20 HEPES, 2 MgGluconate,1 NaCl, 5 EGTA pH 7.4 
7 120 NaI, 20 MES, 2 MgGluconate,1 NaCl, 5 EGTA pH 6.0 
8 320 NaCl, 20 HEPES 2 MgCl2, 5 EGTA, pH 7.4 
9 320 NaCl, 20 MES 2 MgCl2, 5 EGTA, pH 6.0 
10 30 NaCl, 135 TrisSO4, 20 HEPES, 2 MgSO4, 5 EGTA, pH 7.4 
11 1 NaCl, 160 TrisSO4, 20 HEPES, 2 MgSO4, 5 EGTA, pH 7.4 
12 105 NaCl, 15 HEPES, 5 EGTA, 5 MgCl2, pH 7.4 
  
external  
I 145 NaCl, 15 HEPES, 4 KCl, 2 CaCl2, 1 MgCl2, pH 7.4 
II 145 NaNO3, 15 HEPES, 4 KGluconate, 2 CaGluconate2, 1 MgGluconate, pH 7.4 
III 145 NaSCN, 15 HEPES, 4 KGluconate, 2 CaGluconate2, 1 MgGluconate, pH 7.4 
IV 145 NaGluconate, 15 HEPES, 4 KGluconate, 2 CaGluconate2, 1 MgGluconate, 0.1 

NaCl, pH 7.4 
V 145 NaCl, 5 HEPES, 4 KCl, 2 CaCl2, 1 MgCl2, pH 7.4 
VI 145 NaNO3, 15 HEPES, 4 KGluconate, 2 CaGluconate2, 1 MgGluconate, pH 7.4 
VII 145 NaSCN, 5 HEPES, 4 KGluconate, 2 CaGluconate2, 1 MgGluconate, pH 7.4 
VIII 400 NaCl, 15 HEPES, 4 KGluconate, 2 CaGluconate, 1 MgGluconate, pH 7.4 
IX 200 NaCl, 15 HEPES, 4 KGluconate, 2 CaGluconate, 1 MgGluconate, 200 

NaGluconate,  pH 7.4 
X 100 NaCl, 15 HEPES, 4 KGluconate, 2 CaGluconate, 1 MgGluconate, 300 

NaGluconate, pH 7.4 
XI 40 NaCl, 15 HEPES, 4 KGluconate, 2 CaGluconate, 1 MgGluconate, 360 

NaGluconate, pH 7.4 
XII 4 NaCl, 15 HEPES, 4 KGluconate, 2 CaGluconate, 1 MgGluconate, 396 

NaGluconate, pH 7.4 
XIII 400 NaSCN, 15 HEPES, 4 KGluconate, 2 CaGluconate, 1 MgGluconate, pH 7.4 
XIV 200 NaSCN, 15 HEPES, 4 KGluconate, 2 CaGluconate, 1 MgGluconate, 200 

NaGluconate,  pH 7.4 
XV 100 NaSCN, 15 HEPES, 4 KGluconate, 2 CaGluconate, 1 MgGluconate, 300 

NaGluconate, pH 7.4 
XVI 40 NaSCN, 15 HEPES, 4 KGluconate, 2 CaGluconate, 1 MgGluconate, 360 

NaGluconate, pH 7.4 
XVII 4 NaSCN, 15 HEPES, 4 KGluconate, 2 CaGluconate, 1 MgGluconate, 396 

NaGluconate, pH 7.4 
XVIII 160 NaCl, 15 HEPES, 4KGluconate, CaCl2, 1 MgCl2 

Table 3: Composition of internal and external solutions, used for electrophysiological experiments. 
Numbers are given in figure legends throughout this work. 
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4.3.6.1 MTS reagents 
MTS reagents [131], [132] (Figure 4.3) were obtained from Biotium and were used for site-

directed covalent modification of cysteine residues in ClC-5. Stock solutions of MTSES (2-

sulfonatoethyl methanethiosulfonate) and MTSET (2-(trimethylammonium)ethyl 

methanethiosulfonate) were prepared as stock solutions at 1 M and 0.1 M, respectively in H2O 

and stored at -20°C. 
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Figure 4.3: MTS reagents can be used for covalent modification of cysteine residues. A. Reaction scheme 
of oxidation of a protein thiol group to firm s disulfide bond to the functional residue of the MTS reagents. B. 
Structural formulas for MTSES and MTSET (Source: Interchim Uptima (modified)) 
 
 

4.3.7 Acquisition of measurements 

4.3.7.1 Standard measurements 
Cells were seeded 12 hours prior measurements. Cells were bathed in external solution and 

mounted on the microscope and the bath electrode, a silver wire, previously chlorided in 

NaOCl (DanKlorix), was introduced into the extracellular medium. In chloride substitution 

experiments the external electrode was connected to the bath via an agar bridge, made of 

poly-ethylene tubing filled with 3 M KCl in 1% agar. A measuring pipette was backfilled with 

pipette solution and mounted in the pipette holder, which also contained a silver/silver 

chloride wire. A mouthpiece or a syringe is connected to the pipette holder via a tube, making 

it possible to apply pressure or suction to the pipette in order to facilitate the formation of the 

gigaohm seal.  

In “idle mode”, the amplifier sends a repetitive 5-mV, 5-ms square pulse. After 

inserting the tip of the pipette into the bath, and thereby closing the electrical circuit, a current 

response to the voltage of the square pulse, is seen in the oscilloscope window of the 

acquisition program. From this current, the amplifier calculates the resistance of the pipette. 

The voltage offset is adjusted to 0 mV and the cell is touched by the pipette on which a slight 

pressure is applied. When the pressure is released, the cell membrane is slightly sucked into 
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the pipette. When additional suction is applied, the connection between pipette wall and cell 

membrane is enforced, so that the measured resistance between internal electrode and bath 

reference is increased. When the resistance is >20 MΩ, a -80-mV hyperpolarization is 

applied, which facilitates seal formation. Releasing the suction causes in most cases the 

formation of the gigaseal. In most cases the cell is detached from the substrate by carefully 

moving the pipette sideways before lifting it up. 

Next, the pipette capacitance (Cfast) is compensated by an automatic algorithm of the 

amplifier and the cell is opened by applying a suction impulse to the pipette. The cell 

capacitance (Cslow) is compensated and the cell is left for 4-5 min to equilibrate its interior 

with the pipette. The ionic solution, the size of the opening of the pipette and possible 

membrane elements, jamming the pipette contribute to the so-called series resistance Rs which 

is a parameter of the algorithm to compensate Cslow. This series resistance causes a voltage 

drop between the pipette wire and the intracellular space, so that the clamped membrane 

potential is lower than the predetermined voltage. This is called voltage error and can be 

compensated at the amplifier to a certain extent, by applying a calculated voltage, corrected 

for this error. In practice, compensation was applied, so that the remaining voltage error was 

below 5 mV. 

In cases, where nonlinear capacitances were to be analyzed, a -P/n leak subtraction 

[83] was applied. Briefly, to cancel out the linear portions of capacitative peaks, always 

appearing when voltage jumps are applied, preceding voltage pulses of a fraction of the actual 

voltage protocols are applied in the opposite direction, the evoked currents are summarized 

and then added to the current responses to the actual voltage protocol. This should be done at 

voltage ranges, where nonlinear capacitances are not expected and is an implemented function 

of the HEKA electrophysiology setup. 

Strongly different ionic compositions of internal and external solutions can give rise to 

so called junction potentials [133], because ions with different charge and mobility in two 

adjacent volumes can impose an electrochemical gradient. This artificial potential would lead 

to an erroneous offset correction and thereby to wrong clamping voltages. The junction 

potential calculation module of the electrophysiology software Clampex 10.2 (Molecular 

Devices) was used to calculate this artificial offset and correction was done a priori, if 

necessary, before opening the cell. 
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4.3.7.2 Non-stationary noise analysis 
Non-stationary noise analysis can be utilized to calculate single-channel amplitudes and 

absolute open probabilities at a given voltage, when a channel shows time-dependent kinetics 

of activation. Detailed information is given elsewhere [134], therefore only a short summary 

of the method is given here. The noise (i.e. the time-dependent current variance) of a 

membrane is dependent on the time-dependent open probability of the channels embedded in 

the membrane. Theoretically, when all the channels are either closed or all the channels are 

open, the variance is predicted to be zero. At other states, channels change stochastically 

between an open and closed state, thereby increasing the noise. The corresponding plot of 

variance versus current describes a section of an inverted parabola (Equation 1) with the 

initial slope providing the single channel amplitude. The setup and other endogenous 

membrane channels can contribute to the measured noise, so measurements of background 

noise at a voltage which is not sufficient to activate the channel of interest, should be done 

and subtracted to improve the accuracy of the method. 

For whole-cell measurements of non-stationary noise, it is useful to choose ionic 

conditions which give rise to currents with pronounced and slow time dependence of 

activation [60], [99], which is true for I- and SCN- as internal and external anion, respectively. 

Pipette solutions 6 and 7 (see Table 3) and bath solution III were used. For inside-out 

measurements bath and pipette solutions were switched. Internal and external agar bridges, 

made of silicon tubing filled with 1 M KCl in 1% Agar, were used. Noise of at least 180 test 

pulses at +135 mV and background pulses at -40 mV were measured and filtered with 10 kHz 

before digitization at 100 kHz. Data analysis was performed with PulseTools (HEKA), by 

subtracting two subsequent measurements and calculating the variances, which were binned 

and subtracted by the background noise. This background corrected variance was plotted 

against the voltage fitted with Equation 1, which is an inverted parabola with zero variance at 

the maximum and minimum current and maximum variance at half-maximal current (i.e. open 

probability). 

 

N

I
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2
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Here, σ2 represents the variance, i the single channel amplitude, I the macroscopic current and 

N the number of channels. 
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4.3.7.3 Nonlinear capacitances 
Nonlinear capacitances can be measured with the software lock-in extension of the EPC-10 

amplifier. The sine + DC method [135] was used, which utilizes the real and imaginary part of 

a sine wave in combination with the DC admittance (which consists of membrane and series 

conduction). When the whole-cell patch clamp configuration was achieved, a voltage protocol 

was applied, consisting of a pulse with incrementing DC-voltage, superimposed by a sinus 

oscillation with a peak-to-peak amplitude of 10 mV at a frequency of 800 Hz. Currents were 

filtered with two Bessel filters of 10 and 2.873 kHz and digitized at 40 kHz. The capacitance 

plotted versus the value of the DC-voltage was fit with the first derivative of a standard 

Boltzmann function (Equation 2, [136]). 
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Cmax is the capacitance at the voltage of half-maximal activation V0.5, z is the number of 

elementary charges e0 displaced over a fraction δ of the membrane and kB and T are the 

Boltzmann constant and the absolute temperature, respectively. 

4.3.7.4 Fluorescent measurements of intracellular pH 
The pipette medium was supplemented with the fluorescent pH-sensitive dye BCECF (2’,7’-

bis-(2-carboxyethyl)-5-(and-6)-carboxy-fluorescein, Invitrogen) [137]. Because the spectral 

properties of the dye (Figure 4.4 A) allow a ratiometric measurement, this method is largely 

independent of the concentration of the dye and more sensitive than measurements with only 

one fluorescence value.  
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Figure 4.4: BCECF is a ratiometric pH indicator. A. Spectral properties of BCECF (source: Invitrogen), 
depicting the pH-dependent excitation spectra at a detection wavelength of 535 nm. The isosbestic point is the 
excitation wavelength, where the light absorption is pH-independent and is shown as an enlarged inset. B. 
Calibration curve for BCECF, obtained by applying 2-µl drops of solutions similar to solution 2 (Table 2, 
buffers AMPSO, MES and HEPES were used in their appropriate pH ranges) on a coverslip and determining 
the average F490/F443 ratio of 20 measurements. For each data point, 4 drops of solution were measured this way 
and ratios were averaged. Red line represents fit with Equation 4. 
 

Upon sequential excitation with light of 490 and 443 nm the ratio 490/443 of the respective 

emissions at 535 nm reports the pH value. A previous calibration with known pH values was 

conducted by measuring the ratio of BCECF fluorescence in buffers similar to solution 4 

(Figure 4.4 B). A fit with Equation 4 can be done and the parameters for Rmin, Rmax and pK are 

obtained. 
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Equation 5 can be obtained by solving Equation 4 and measured ratios can directly be 

converted into pH values. 

Teflon ring equipped coverslips (see Section 4.3.5) were coated with 1:30 Poly-L-

lysine (see Section 4.2.4) for 20 minutes and cells were seeded out 12 hours prior 

measurements.  
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Figure 4.5: A. Schematic representation (courtesy of A.K. Alekov) of the patch clamp fluorometry setup. 
The cell was filled via the patch pipette with the ratiometric pH-sensitive dye BCECF, which is excited at two 
wavelengths, provided by a monochromator. The emission light at a single wavelength is detected by a 
photomultiplier. B. Representative time course of BCECF washout from the bath and subsequent dialysis of a 
cell with pipette solution containing BCECF after opening. Monitored was the fluorescence at 535 nm upon 
excitation with 490 nm every 5 s.  
 

The UPlanSApo 60X/1.35 oil-immersion objective of the microscope was used and with the 

ViewFinder a single cell was gated for detecting the fluorescence with the PMT. By inserting 

the pipette into the solution, dye is flowing into the bath, elevating the fluorescence 

background. When a gigaseal was established and the cell was slightly lifted up the bath was 

perfused and the fluorescence was monitored each 5 s until background fluorescence reached 

its minimum. After opening, the filling of the cell with the dye was monitored and finished 

after about 5 min (Figure 4.5 B). Proton transport was monitored by applying a voltage pulse 

to the cell (Figure 4.6 A, upper panel), while simultaneously measuring the total current and 

the pH of the cytosol. To follow the time course of the pH change, repetitive excitation of the 

dye at the two wavelengths was carried out (Figure 4.6 A, lower panel) and the fluorescence 

ratios were calculated and later converted into pH values (Figure 4.6 B). After the 

depolarizing pulse, the recovery of internal pH at holding voltage was monitored by applying 

single 443/490 nm excitation pulses every 5 s. 

To assess relative uncoupling (see Sections 5.2, 5.9 and 5.10) respective to external Cl-

, the quotients of total transport current and proton flux in one anion can be divided by the 

respective quotient in external Cl- (Equation 6).  
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This was done cellwise for various voltages and in some designated cases this relative 

uncoupling was calculated using normalized values to +120 mV in external Cl-. 
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Figure 4.6: Execution of a typical measurement of intracellular pH A. Example for a typical protocol for 
measuring proton transport. From a holding potential an activating test pulse for 1 to 3 s is applied to the cell 
(e.g. 0 mV and +120 mV, respectively). During this time, the dye is excited sequentially with two excitation 
wavelengths 443 and 490 nm for 10 ms each, interrupted by intermediate periods at 248 nm for 10 ms, which is 
the resting wavelength, where no light is emitted by the monochromator. B. pH-dependent fluorescence ratios 
were converted into pH values (Equation 5) and time courses of depolarization-induced alkalinisation (red line) 
and subsequent recovery of internal pH at holding potential (circles) are plotted. The recovery can be fitted with 
a single exponential function (blue line) and describes mainly H+ flow from the pipette into the cell, but is much 
slower than the preceding H+ transport of interest.    
 
 

4.3.8 Data analysis 
Confocal data were analyzed with ImageJ (National Institutes of Health) and the plugin 

JaCoP [124]. Data analysis of electrophysiological data was performed with a combination of 

FitMaster (Heka), OriginPro (Originlab Corporation) and Excel (Microsoft). Three 

dimensional structures and structural alignments were created with Chimera (UCSF) by using 

PBD structures available. All error bars in graphs denote S.E.M. 
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5 Results 

5.1 ClC-5 endosomes are not labelled by synapto-pHluorin or 
FITC-transferrin 

ClC-5 mCherry FITC-transferrin merge cytofluorogram 
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Figure 5.1: Assessment of colocalization of ClC-5 with pH-sensitive dyes. Representative confocal images of 
HEK293T cells, transiently transfected with ClC-5 mCherry and labelled with FITC-transferrin (upper row), 
HEK293 cells, stably transfected with ClC-5 mCherry and transiently transfected with ratiometric synapto-
pHluorin (middle row) and HEK293T cells, transiently transfected with ClC-Kb YFP and Barttin G47R CFP 
(lower row). In merged images colocalization is shown in yellow. Right column shows a representative analysis 
of the respective image stacks, analyzed with JACoP, resulting in a cytofluorogram, where each pixel is plotted 
according to its fluorescence in both channels with a fitted straight line in red. 
 
In order to estimate the effects of various modifications of ClC transport on endosomal 

physiology in this work, a quantitative measuring methodology to estimate intravesicular pH 

was sought. 

In previous works which studied the effect of ClC-4 and ClC-5 on endocytosis and the 

pH of endosomes, synapto-pHluorin [138], [139] or FITC-conjugated transferrin [57], [76] 
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were used. In those publications, colocalization was either not tested directly or only assessed 

qualitatively. Synapto-pHluorin has first been used to visualize the exocytotic event of the 

fusion of synaptic vesicles to the membrane of a neuron [120]. Endosomes can also be 

labelled from the extracellular side by receptor mediated endocytosis of transferrin [57]. 

Following this approach in this work, fluorescently labelled ClC-5 was expressed in 

HEK293T cells. Its colocalization with the aforementioned markers was investigated using 

confocal microscopy. Subsequently, a quantitative approach, analysing three-dimensional 

datasets of confocal imaging with the ImageJ plugin JACoP [124] was used to evaluate the 

degree of colocalization of ClC-5 with selectively targeted pH-sensitive dyes. In order to test 

the validity of the analysis, two other proteins were also tested: The renal chloride channel 

ClC-Kb and its accessory subunit barttin, which is amongst other things necessary for 

membrane targeting of this channel [36]. Cotransfection of ClC-Kb and the G47R mutant of 

barttin results in mistrafficking and endosomal-like staining and a colocalization was 

qualitatively shown previously [35]. Upper row in Figure 5.1 shows representative images of 

cells, transfected with ClC-5 mCherry and labelled with FITC-transferrin. ClC-5 mCherry 

staining showed a spotty pattern in accordance with its endosomal localization [73], but also 

membrane staining was seen. FITC-transferrin displayed a similar pattern, only with less 

membrane staining. Surprisingly however, no colocalization was observed in the merged 

images. This was also reflected in the quantitative analysis of the corresponding 3D data 

depicted in the right column with a wide point spread around the fitted line, resulting in a 

Pearson’s coefficient of 0.518, which also reports on absent colocalization. Co-expressing 

ClC-5 mCherry together with synapto-pHluorin (Figure 5.1, middle row) resulted in a similar 

fluorescence distribution and the calculated colocalization was similarly low as reflected in 

the calculated Pearson’s coefficient of 0.598. As previously shown in a qualitative approach 

[35] and as seen in the extensive yellow overlap in the merged picture, there was a large 

degree of colocalization between ClC-Kb YFP and barttin G47R CFP (Figure 5.1, lower row) 

with a slightly denser cellular distribution resulting in a value of 0.92 for the Pearson’s 

coefficient. Statistical values of several of those experiments are displayed in Figure 5.2. 
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Figure 5.2: Statistical evaluations on colocalization of ClC-5 with synapto-pHluorin or FITC-transferrin. 
A Mean values for Pearson’s coefficients (PC) of three double stainings, as indicated, calculated with JACoP 
from experiments as in Figure 5.1. with  statistical values given in B. Significant differences were tested using a 
two-sample t-test Stars (***, p < 0.001; **, p < 0.01). 
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5.2 Effects of neutral and acidic internal pH on coupled ClC-5 
transport 
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Figure 5.3: Cl- currents mediated by ClC-5 are very outward rectifying with a large transient current at 
the end of the pulse. A. Voltage protocol and corresponding representative whole-cell current response of a 
HEK293T cell, expressing ClC-5, measured in standard Cl- solutions (1 and I, see Table 3). For clarity, some 
intermediate traces were omitted. B. Current-voltage relationship of steady-state currents for the measurement 
depicted in A.  
 
 

Figure 5.3 A shows a representative recording of ClC-5 mediated Cl- current upon voltage 

pulses from -115 to +165 mV from a 0-mV holding potential. The measured currents were 

strongly rectifying with virtually no transport observed in the negative range, whereas pulses 

more positive than +75 mV resulted in pronounced outward currents, which were absent in 

nontransfected HEK293 cells (Figure 5.4 B). Following the initial instantaneous rise and the 

transient capacitative peaks, further time-dependent activation is observed. Pulses back to the 

holding potential resulted in the appearance of large capacitative peaks that do not depend 

linearly on the voltage.  
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Figure 5.4. Measurements of nontransfected HEK293 cells show no Cl- and very low endogenous SCN- 
conductance. A. Internal pH conditions and voltage protocol used for permeability assays. B and 
C. Representative measurements of a nontransfected HEK293 cell, externally sequentially perfused with Cl- and 
SCN- solutions at pH 7.4 (solutions 2, I and III, see Table 3). D. Mean current-voltage relationships of steady-
state currents, measured from six cells. (Modified from Grieschat and Alekov, 2012) 
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Figure 5.5 A and B show measurements of the same HEK293T cell, expressing ClC-5 and 

being sequentially perfused either with external Cl- or SCN- containing solution. As 

previously shown for ClC-5 expressed in Xenopus laevis oocytes [59], external SCN- evoked 

much larger outward currents (Figure 5.5 C). The relative current increase was voltage-

dependent and in the range of ~7-13 times (Figure 5.5 G, black columns). When the same 

experiment was performed at internal pH 6.0 this increase of current was dramatically 

enhanced in a voltage-dependent manner, reaching factors of ~26 to 51 (Figure 5.5 D-G). In 

those experiments, cells with fairly low expression had to be selected, because otherwise ClC-

5 currents in external SCN- would have become too large to be voltage-clamped reliably. 
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Figure 5.5: Current increase in external SCN- is dependent on internal pH. A. Voltage protocol (upper 
panel) and representative whole-cell measurement of a cell expressing ClC-5 at neutral internal pH. 
B. Recording of the same cell, bathed in SCN- (solutions 1, I and III, see Table 3). D and E. Representative 
recording of a cell externally perfused with Cl- and SCN--based solutions, respectively (solutions 2, I and III). C 
and F. Current-voltage relationships of experiments shown in A, B, D and E, depicting steady-state currents, 
normalized to the currents in Cl- at +135 mV at internal pH 7.4 (C) and pH 6.0 (F), respectively. G. Ratios of 
current increase upon SCN- application at different voltages for internal pHs 6.0 and 7.4. Significant differences 
are indicated by stars (***, p < 0.001; **, p < 0.01, two-sample t-test, n = 10 for pH 7.4, n = 8 for pH 6.0). 
(Modified from Grieschat and Alekov, 2012) 
 
ClC-5 is a Cl-/H+ antiporter [12], [13] with two Cl- ions transported in exchange to one proton 

[79], although different estimates have been published [12], [13]. In previous studies on ClC-

5 or the closely related isoform ClC-4, large polyatomic anions such as NO3
- or SCN- were 

shown to convert a certain percentage of ClC transporters in the membrane into “channel 

mode” [59], [60] which manifested in an increase of anionic current and a decrease of proton 

movement. Using same approach that Alekov and Fahlke have applied for ClC-4 previously 

[60], ClC-5 anion/proton antiporter action was investigated here. The ratiometric pH-sensitive 

fluorescein dye BCECF [137] was used in the pipette solution to report on time-dependent pH 
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changes. Figure 5.6 A shows a representative measurement of the internal pH at different 

voltages with Cl- as the external anion.  
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Figure 5.6: External Cl- and SCN- are able to induce voltage-dependent proton transport. A. 
Representative measurements of the time-course of ClC-5 mediated internal alkalinisation during voltage jumps 
to different potentials. B and C. Representative proton transport at +120 mV at symmetric pH 7.4 (B) or pH 6.3 
(C), measured in external Cl- and SCN- (solutions 4 or 5 and V and VII). Lines indicate linear fits to the data. 
(Modified from Grieschat and Alekov, 2012) 
 
 

During pulses with voltages higher than +80 mV, a profound alkalinisation of the cytosol was 

observed, reflecting H+ transport. A linear regression line was fitted to the data and the slope 

was used as a quantitative measure proportional to the proton flux. This process showed the 

same rectification at negative and activation at positive voltages as the ionic transport 

measured electrophysiologically (Figure 5.7 A and Figure 5.3 A). Exchanging external Cl- for 

SCN- did not have a significant effect on the proton transport (Figure 5.6 B and Figure 5.7 A) 

but the strong increase of anionic current can be regarded as transport uncoupling. Therefore, 

when dividing the current amplitudes and proton fluxes in external SCN- by the values in 

external Cl- of the same cell (see Equation 6 in Section 4.3.7.4), a relative uncoupling in 

external SCN- could be calculated (Figure 5.7 C). This resulted in values ranging from ~12 to 

17. Surprisingly, when the same experiment was conducted at acidic internal and external pH 

(Figure 5.6 C and Figure 5.7 B) the proton transport in external SCN- significantly exceeded 

the proton transport in external Cl-. Measurements of internal pH at acidic values were 

generally noisier and the detected pH changes were smaller (Figure 5.6 C) because the 

BCECF fluorescence is lower at low pH, resulting in worse signal-to-noise ratios. In addition, 

the detection sensitivity of the dye is reduced at lower pHs (Figure 4.4 B). And most 

importantly here again, cells with fairly low ClC-5 expression had to be chosen to achieve 

SCN- currents that were not too large. The calculation for relative uncoupling in external 

SCN- revealed a very similar degree of uncoupling compared to measurements in neutral pH 

(Figure 5.7 D). Thus, the much stronger current increase in external SCN- is not the 

consequence of a stronger uncoupling. Here, measurements of proton flux also in the acidic 

pH range were carried out at symmetrical pH to circumvent methodological problems, 
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whereas current increase experiments (see Figure 5.5) were always done with external pH 7.4. 

However, this had no qualitative impact on the results, because current increase in SCN- at 

symmetrical pH 6.3 (Figure 5.8) was very similar to measurements at internal pH 6 and 

external pH 7.4. 
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Figure 5.7: Internal protons do not further uncouple proton transport from SCN- transport. A and B. 
Rates of internal pH change in external Cl- and SCN- at symmetrical pH 7.4 (A) or pH 6.3 (B), normalized to 
the respective values in Cl- at +120 mV. Rates were obtained from the slopes of linear fits like shown in Figure 
5.6. C and D. Relative uncoupling mediated by external SCN- at different voltages, calculated by the ratio of 
normalized current to normalized proton flux. Normalization was performed to the values in Cl- at +120 mV. 
Stars indicate significant differences according to paired t-tests (***, p < 0.001; **, p < 0.01; *, p < 0.05). n.d., 
not determined. (n = 6-17 for pH 7.4 and n = 4-5 for pH 6.3). (Modified from Grieschat and Alekov, 2012) 
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Figure 5.8: Relative current increase by external SCN- at symmetrical pH 6.3. Mean current-voltage 
relationships of ClC-5 steady-currents in external Cl- and SCN-, normalized to the currents at +120 mV in Cl-. 
(Modified from Grieschat and Alekov, 2012) 
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5.3 Non-stationary noise at neutral and acidic internal pH 
Non-stationary noise measurements are well established for estimating unitary conductances 

in ion channels. It was shown previously for ClC-4 and ClC-5 that also those transporters are 

valid targets for noise analysis: Zdebik and colleagues [59] proposed the transport activity of 

ClC-5 to occur in bursts that resemble a channel in the open conformation. Furthermore they 

showed that the Fourier transformed noise (“power spectrum”) follows the 1/f2 behaviour of 

Lorentzian noise, which is commonly attributed to channels. Alekov and Fahlke [60] 

proposed for ClC-4, that by SCN- application a large percentage of transporters switch into 

“channel mode” and thereby permit noise analysis.  

To examine the role of internal protons on the strong current increase in external SCN-

, the unitary current amplitude at acidic and neutral pHs was assessed. Using internal I- [60], 

[99] slowed down the kinetics of activation to increase the resolution of the method. Figure 

5.9 A and B shows representative measurements of two cells at pHs 6.0 and 7.4. Upon voltage 

pulses to +135 mV, nearly no instantaneous current was seen and the portion of time-

dependent current increase was very pronounced. The variance was similarly time-dependent 

and increased as more ClC proteins were activated over the time range of the voltage pulse. 

Plots of binned variances versus the currents (Figure 5.9 C and D) appear linear which, 

according to the theory of noise analysis represents the initial segment of a parabolic function 

(Equation 1). The short portion of the parabola which was covered by the data suggests that 

ClC-5 has a very low absolute open probability at this voltage. The initial slope of the 

parabola reports on the single-channel amplitude and several experiments for pHs 6.0 and 7.4 

at +135mV revealed average values of 94.1 ± 6.3 fA and 122.8 ± 15.1 fA, respectively, which 

were not significantly different. 
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Figure 5.9: ClC-5 unitary amplitude is not significantly modified by internal pH. A and B. Ionic conditions 
for whole-cell noise measurements (solutions 6, 7 and III, see Table 3), voltage protocol and representative 
recordings for mean current and variance of cells, expressing WT ClC-5, measured at internal pH 6.0 (A) or pH 
7.4 (B), respectively. C and D. Binned variances plotted against mean current of the cells depicted in A and B 
with lines obtained from parabolic fits (Equation 1). E. Mean unitary current amplitudes from whole-cell noise 
measurements at pH 6.0 (n = 4) and 7.4 (n = 3). The difference was tested with a two sample t-test. (Modified 
from Grieschat and Alekov, 2012) 
 

 

To test the validity of the method and to exclude possible filtering artifacts associated with the 

whole-cell configuration, also inside-out measurements were performed. Figure 5.10 shows a 

representative measurement which reports approximately the same single-channel amplitude 

as elucidated by whole-cell measurements. 
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Figure 5.10: Non-stationary noise measurement in inside-out configuration. A. Ionic conditions, voltage 
protocol, mean current and variance of an inside-out noise measurement of a cell expressing WT ClC-5. B. 
Variance, plotted against the current of the cell depicted in A. The line displays a parabolic fit to Equation 2 and 
the slope reports a unitary current amplitude of 134 fA. Statistical data of three cells provide a unitary current 
amplitude of 120 ± 7 fA. (Modified from Grieschat and Alekov, 2012) 
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5.4 Concentration dependence of ClC-5 currents 
 
The strong current increase upon SCN- perfusion at acidic internal pH values could be due to 

altered affinities to the transported anions at the different pHs. External Cl- and SCN-, 

respectively, were substituted by equimolar concentration of sodium gluconate to cover a 

concentration span of 4 to 400 mM. To compensate for the osmolarity and to prevent an 

excessive electrochemical gradient at high external anion concentrations, internal Cl- was 

elevated to 320 mM. Voltage ramp protocols (Figure 5.11 A, upper panel) were used to 

determine whole-cell current amplitudes at constant perfusion with solutions of respective 

anion concentrations (Figure 5.11 A, upper panel and B). 
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Figure 5.11: Internal pH does not alter apparent Kd values for external Cl- or SCN- in ClC-5. A. Voltage 
ramp protocol for measuring the concentration dependence of currents on external anion concentration and 
representative whole-cell measurement of a ClC-5 expressing cell, externally perfused with solutions of 
different Cl- content and internal Cl--based solution at pH 6.0 (solutions 9 and VIII – XII, see Table 3). 
B. Representative recording of a cell, externally perfused with different SCN- concentrations and internal Cl- at 
pH 6 (solutions 9 and XIII – XVII). C and D. Concentration curves from experiments as in A and B for external 
Cl- (C) and SCN- (D) at internal pHs 6.0 or 7.4, respectively. Currents were measured at +120 mV of the ramp 
and normalized to the current at 400 mM external anion concentration. Lines in C represent fits to the Hill 
equation (Equation 7) with one assumed binding site (Hill coefficient = 1). Kd values for Cl- are 65 ± 15 mM 
and 65 ± 9 mM for pHs 6 and 7.4, respectively and not significantly different (two-sample t-test, p = 0.99, 
n = 4-5). Lines in D are linear regression lines. (Modified from Grieschat and Alekov, 2012) 
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 When solution exchange was completed, indicated by steady current levels, currents at +120 

mV were analyzed and plotted against the external anion concentration. The concentration 

dependence could be fitted with the Hill equation (Hill coefficient = 1), 
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d

, Equation 7 
 

 

where Imax and Kd designate the saturating current and the apparent dissociation constant, 

respectively. 

Fits to data from individual cells in external Cl- reveal an apparent Kd of 65 mM at 

both internal pHs, which is similar to values published by another group [140]. As previously 

published for other ClC transporter isoforms [60], [97] saturating concentration dependence 

for external SCN- could not be observed and only for visualization linear regression lines 

were fitted to the data. The slopes of those linear fits show only slight differences at both pHs. 

Therefore, acidic internal pH does not change the apparent affinities for external anions.  
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5.5 Voltage dependence of ClC-5 gating 
 
Most ClC proteins show voltage-dependent activation, which means that at different voltages, 

different numbers of channels can be opened. Therefore, the probability to find a channel in 

the open conformation changes in a voltage-dependent fashion. This was shown for a number 

of ClC isoforms, preferably by so-called tail-current analysis: Preconditioning pulses of 

different voltages are applied to open a certain percentage of channels to reach a steady-state 

current. A subsequent test pulse of a constant voltage reveals the relative open probability, if 

the current magnitudes at the time of the test pulse are plotted versus the value of the pre-

pulses. If the data are fit with a Boltzmann function (Equation 8), which reports on the 

behaviour of charged particles in an electric field, the inflection point reports on the voltage of 

half maximal activation. 
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Figure 5.12: ClC-5 displays pronounced nonlinear capacitances. A-C. Representative -P/n leak subtracted 
whole-cell recordings of WT ClC-5 (A) and mutants E268H (B) and E268Q (C) upon voltage jumps from -115 
to +165 mV in Cl- solutions at symmetrical pH 7.4 (solutions 1 and I). The capacitative currents are displayed 
as enlarged insets. D-F. Charge-voltage curves for the cells depicted in A-C. For values positive to 0 mV the 
area between off-gating curve and baseline was integrated and plotted against the voltage. Solid lines represent 
fits with the Boltzmann function (Equation 8). (Modified from Grieschat and Alekov, 2012) 
 
In case of ClC-5 this procedure is not feasible for several reasons: First of all, the tail-current 

analysis requires sufficient current levels, which is not always the case with some mutants. A 

second reason is the occurrence of large gating currents (Figure 5.12 A-C) which manifest as 

large transient peaks that superimpose the area of interest at the connection between prepulse 
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and test pulse and make a determination of relative open probabilities very difficult at most 

conditions.  

However, those gating currents can be used to characterize the voltage dependence of the 

underlying process. They can be separated from linear capacitances by leak subtraction ([83], 

see Section 4.3.7.1) and the voltage dependence of either the magnitudes of the peaks or the 

area under the traces can also be described by a Boltzmann function [141].  
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In this case, Q(V) is the integral of the off-gating at the respective voltage, Qmax is the 

maximum charge movement, V0.5 the voltage of half-maximal activation and k is the slope 

factor, describing how many elementary charges are displaced during activation through a 

certain fraction of the membrane and is composed of R, T, F and z which represent the 

universal gas constant, the absolute temperature and the Faraday constant and the valence, 

respectively. 

The depolarization-activated process that is the origin for the gating currents might be 

modified by internal protons, and the ClC transporter isoforms possess an internal protonation 

site: the proton glutamate, which is crucial for coupled transport because here the protons are 

inserted into the transport cycle [93]. Zdebik et al. proposed this insertion to be a voltage-

dependent process [59]. Figure 5.12 A-C shows representative leak subtracted whole-cell 

current traces in Cl- of cells expressing WT ClC-5 and two proton glutamate mutants. In 

E268H ClC-5 the glutamate is substituted by the also protonatable histidine. However, it has a 

less acidic pKa, and whereas the glutamate side-chain is negative and becomes neutral upon 

protonation, the side-chain of histidine is neutral and gains a positive charge, if protonated. 

The second mutation tested is E268Q with a nonprotonatable glutamine in place of glutamate, 

which was published to render ClC-5 nonconducting [59]. The wildtype protein (Figure 5.12 

A) mediated large anionic outward currents followed by gating currents when the voltage is 

set back to holding potential. This is the so-called off-gating, first published by Smith et al. 

for ClC-5 [80]. The on-gating upon jumping to positive voltages was often superimposed by 

ionic current and therefore not visible in wildtype. The mutant E268H ClC-5 (Figure 5.12 B) 
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also displayed substantial ionic currents, but the proportion of gating current to ionic current 

was well shifted towards gating currents. An on-gating current was clearly visible upon 

depolarizing voltage steps. When the proton glutamate was substituted by the nonprotonatable 

glutamine (Figure 5.12 C), nearly no ionic currents, but pronounced gating currents can be 

seen under those conditions. When the off-gating currents are integrated and plotted against 

the voltage (Figure 5.12 D-F), the curves can be fit with the Boltzmann function (Equation 8) 

and statements on the voltage dependence of depolarization activated gating can be made. For 

the representative cell expressing wildtype ClC-5 in Figure 5.12 A the voltage of half-

maximal activation is ~130 mV, which is comparable to measurements of Smith et al., 

performed with solutions of similar internal and external Cl- content, respectively [80]. 
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5.6 Voltage-dependent capacitances in ClC-5 
Another way to determine the voltage dependence of ClC-5 gating is the measurement of the 

voltage-dependent cell capacitance, possible with the lock-in extension of the EPC-10 

amplifier (see Section 4.3.7.3). Figure 5.13 A shows the ionic conditions and the sinusoidal 

voltage protocol. As an attempt to minimize possible contamination of the capacitance 

measurements by ionic currents external Cl- was replaced by the impermeant gluconate ion. 
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Figure 5.13: Whole-cell capacitance of ClC-5 expressing cells change in a voltage-dependent manner. A. 
Ionic conditions (solutions 1, 2 and IV, see Table 3) and voltage protocol, used for measuring voltage-
dependent capacitance. A sinus stimulus with a peak-to-peak amplitude of 10 mV oscillates at 800 Hz around 
various test voltages in the positive and negative range. B-D. Nonlinear capacitances of WT ClC-5 (B) and 
proton glutamate mutants E268H ClC-5 (C) and E268Q ClC-5 (D) at pHs 6.3 and 7.4. Changes of capacitance 
were normalized to the maximum change of capacitance. Lines describe fits to the first derivative to a standard 
Boltzmann function (Equation 2) and parameters are given in Table 4. (Modified from Grieschat and Alekov, 
2012) 
 
Figure 5.13 B-D shows bell-shaped capacitance changes of WT ClC-5 and the 

aforementioned proton glutamate mutants at acidic and neutral internal pHs. The changes of 

capacitance are displayed normalized to the maximum change of capacitance and resemble 

the voltage-dependent capacitance changes of the outer hair-cell motor protein prestin [136]. 

Depending on the expression, those voltage-dependent changes of capacitance in ClC-5 could 

add up to 100 percent of capacitance. When the first derivative of a standard Boltzmann 

function (Equation 2) was fitted to the data, the maximum of the curve reports the voltage for 

half-maximum activation (V0.5). The slope z of the curve gives the apparent number of moved 

elementary charges e0 over a fraction of the membrane δ. Parameters for V0.5 and z are given 

in Table 4. The values for V0.5 are in the range of 163 to 182 mV and the pH dependence is 

not very pronounced. Differences between the two pHs are largest for wildtype and smallest 

for E268Q, but the values for acidic internal pH are always more positive than those for 

neutral internal pH in wildtype and mutants. Therefore, a shift of the voltage dependence is 

not very likely to be responsible for the stronger current increase in external SCN-. 
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Furthermore, the merely small shift in voltage dependence upon changing the charge at 

position 268 argues against this residue to be a part of the voltage sensor responsible for the 

depolarization-induced activation. 

   
pH 6.3 

 
pH 7.4 

 
significance p 

V0.5 (mV) 177.8 ± 3.0 163.7 ± 2.4 < 0.005 

z -0.76 ± 0.02 -0.87 ± 0.01  WT 

n 12 7  

V0.5 (mV) 181.5 ± 2.7 176.2 ± 2.1 0.172 

ST 0.376 < 0.005  

z -0.83 ± 0.03 -0.87 ±0.02  
E268H 

n 3 6  

V0.5 (mV) 176.2 ± 2.1 173.5 ± 1.9 0.395 

ST 0.669 0.011  

z -0.87 ± 0.03 -0.94 ± 0.04  
E268Q 

n 6 4  

Table 4: Values for voltages of maximum change of capacitance (V0.5) and slope z, obtained from fits to 
Equation 2 of n individual cells from Figure 5.13 B-D. Significances p between the two pHs and 
significances ST between WT and mutants for V0.5 were calculated with a two-sample t-test. 

 

It is very likely that the appearance of gating currents and nonlinear capacitances have their 

origin in the same molecular process, associated with activation at positive potentials, because 

the integration of the capacitance curve reasonably superimposes with the Boltzmann curve of 

the off-gating of the same cell (Figure 5.14). 
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Figure 5.14: Measurements of nonlinear capacitances or gating currents reflect the same voltage-
dependent process. A. Measurement of nonlinear capacitances of the cell depicted in Figure 5.12 C. Red line 
displays fit with the first derivative of a Boltzmann function (Equation 2) B. The charge-voltage relationship 
(Qoff) for the same cell (Figure 5.12 F) was normalized to the off-gating charge at +165 mV. The capacitance 
curve from (A) of the same cell was integrated between 0 and +165 mV, normalized and superimposed to the 
data of the gating current measurement. Lines represent fits to the Boltzmann equation (Equation 8).  
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5.7 Regulation of the transport probability of ClC-5 
Figure 5.12 shows how mutation of the proton glutamate at the internal side of the protein 

affected the ratio of gating current to ionic current. To further elucidate the role of the proton 

glutamate in the regulation of the ratio of gating current to ionic current of ClC-5, internal 

site-directed modification with a cysteine reactive compound was carried out. Figure 5.15 A 

shows the voltage protocol and the ionic conditions. Via the patch pipette the negatively 

charged MTSES (2-sulfonatoethyl methanethiosulfonate) (see Section 4.3.6.1) was used to 

covalently modify an engineered cysteine replacing glutamate 268. Although cysteine is a 

protonatable amino acid, the currents which are mediated by E268C ClC-5 resemble the 

nonconducting mutant E268Q ClC-5, presumably because the relatively high pKa of 8.0 may 

predict a high percentage of this residue to be in the neutral protonated form. Directly after 

opening of the cell, the depicted voltage protocol was applied repeatedly to monitor time-

dependent changes. Figure 5.15 B shows a representative -P/n leak subtracted recording. 
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Figure 5.15: The proton glutamate mutant E268C is internally accessible to the charged 
methanethiosulfonate compound MTSES, which modifies current and gating charge magnitudes. A (left 
panel). Voltage protocol, applied immediately after opening of the cell, to measure time course of site-directed 
MTSES modification of cysteine 268 and ionic conditions of the experiment (right panel, solutions 1 and III) 
B. Representative -P/n leak subtracted whole-cell recording after opening of a cell expressing E268C ClC-5. 
Inset shows enlarged ionic currents and gating currents at the encircled segment. C. Time-course of steady-state 
current at the end of the +160 mV pulse (upper panel) and gating charge, obtained by integrating the off-gating 
current at the same voltage (lower panel) of the cell shown in (B). Solid lines represent fits to a 
monoexponential function. D. Relative changes of off-gating charge (Qoff) and steady-state current (ISS), 
calculated from initial and final values of 4 experiments like in (B). E. Time constants of MTSES induced 
changes of Qoff and ISS, obtained from exponential fits to the data like in C. Measurements and data analysis 
were performed by A.K. Alekov. (Modified from Grieschat and Alekov, 2012) 
  
 
The first traces after opening show large on- and off-gating currents and relatively low ionic 

current magnitudes. This observation reverses with proceeding modification by MTSES – the 
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gating currents become smaller and ionic current increases – which is well visible in the inset 

of Figure 5.15 B. Figure 5.15 C displays the time-dependent changes of steady-state current 

and integrated off-gating current, respectively, at +160 mV. After opening of the cell, the 

steady-state current first rose, then declined, before a monotonous rising phase began. The 

first two events can be attributed to equilibration processes with the pipette solution and the 

long rising phase is a result of the covalent binding of MTSES to the cysteine residue. With 

similar time dependence the magnitude of the gating charge was decreasing. The modification 

led to a ~5 times decrease of off-gating current and a ~15 times increase of steady-state 

current (Figure 5.15 D). It was shown so far that neither the uncoupling (Section 5.2), nor the 

single channel amplitude (Section 5.3), the anion affinities (Section 5.4) or the voltage 

dependence (Section 5.5) were changed upon protonation of the internal glutamate at different 

internal pHs. But changing its properties by MTSES increased ionic current and decreased 

gating currents, so the gating currents are likely to arise from incomplete transport cycles, 

which is regulated by glutamate 268.  

This inverse relationship between gating current and ionic current, which is also 

indicated in Figure 5.12, can also lead to an alternative data presentation of Figure 5.13. The 

quantities of gating charge (C) and ionic current (I) can be written like Equation 10 and  

Equation 11 and depend on the number of channels (N) in the membrane, the unitary current 

(i) or unitary gating charge (q) and the probabilities of the transporter to perform complete or 

incomplete transport cycles (PC and PNC).  

 

qPNC NC 
 

Equation 10 
 

 
iPNI C   Equation 11

 

 

Since the number of transporters and unitary transport rate or charge, respectively, are 

constant parameters, division of Equation 10 by Equation 11 gives the ratio of the relative 

probabilities for the transporter to perform complete or incomplete transport cycles. Because 

E268Q ClC-5 gave only negligible currents, this could only be done for wildtype and mutant 

E268H ClC-5. Figure 5.16 shows this approach by dividing the capacitances by the ionic 

steady-state current at +165 mV in external standard Cl- solution and the standard voltage step 

protocol (Figure 5.3, upper panel). Validating the observation of larger gating current in 

respect to the ionic currents, the ratio of capacitance to current in symmetrical pH 7.4 was 
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much larger for E268H (Figure 5.16 B) than in wildtype ClC-5 protein (Figure 5.16 A). 

Additionally, there was a ~50% reduction of this ratio in wildtype, when the internal pH was 

lowered to pH 6.3. In E268H ClC-5 the reduction was with ~75% even greater. A 

nontitratable residue at position 268 (E268Q) does not permit transport and produces the 

largest gating currents. Thus, it is conceivable that the presence and nature of a protonatable 

residue at position 268 defines the fraction of transporters to conduct complete transport 

cycles. As the fraction of incomplete transport cycles decreases at low internal pH, the 

interaction of protons with glutamate 268 defines the transport probability of ClC-5 which is 

generally lower for E268H and lowest for E268Q ClC-5. 
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Figure 5.16: Magnitude of change of capacitance depends on internal pH and amino acid at position 268. 
A and B. Nonlinear capacitances from Figure 5.13, divided by the steady-state ionic current in external Cl- 
solution (solution I) at +165 mV for WT ClC-5 (A) and E268H ClC-5 (B). Lines represent fits to the first 
equation of a standard Boltzmann function. (Modified from Grieschat and Alekov, 2012) 
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5.8 The action of internal protons seems to depend on the binding 
of the gating glutamate to the central ion binding site  

 

Another widely conserved glutamate residue for which protonation is essential for ClC 

transporter function is glutamate 211 in ClC-5, the so called gating glutamate. Crystal 

structures of a prokaryotic homologue [86] have shown this glutamate to compete with the 

anion for a binding site. This was shown in a crystal where a protonated gating glutamate was 

mimicked through mutation of this glutamate to glutamine, which had swung out to unblock 

the anion binding site [90]. A recent crystal structure of a eukaryotic ClC transporter [96] 

shows the external gating glutamate for the first time in a third conformation, bound to a 

central anion binding site, thereby blocking this position for the anion and being a possible 

site for the protonation to take place. It was proposed that the protons that neutralize the 

gating glutamate come from the internal side [93], so here, the effects of internal protons were 

investigated at mutants, which have a destabilized binding of the gating glutamate to the 

central anion binding site. 

In ClC-5, serine 168 is one of the conserved coordinating amino acids that stabilize the 

central binding site (serine 107 in EcClC; [86]). Substitution S168P naturally occurs in a plant 

isoform (proline 160 in AtClCa; [142]) which shows a dramatically different anion specifity 

and is a NO3
-/H+ antiporter in the vacuolar membrane. The aforementioned neutralization of 

glutamate was here at least partly mimicked by substituting glutamate with cysteine. The 

effect of internal protons on the current increase in external SCN- was investigated and Figure 

5.17 shows representative whole-cell recordings of cells expressing E211C or S168P, 

sequentially perfused with external Cl- and SCN-, respectively. Similarly to published results 

for E211A [58], the mutant E211C gives only a small, non rectified current in external Cl- 

(Figure 5.17 A), whereas there is a large current increase in external SCN- (Figure 5.17 B). 

Measurements for S168P (Figure 5.17 C and D) show a similar result, but Cl- currents were 

smaller and rectification was generally stronger than in mutant E211C, which is also in 

accordance with a previous report [79]. The normalized current-voltage relationships for 

E211C ClC-5 (Figure 5.17 E, Figure 5.18 A) show a very pronounced current increase in 

external SCN- at both internal pHs 6.0 and 7.4. The current increase is not significantly 

dependent of internal pH and approximately in the range of the current increase of wildtype 

ClC-5 at internal pH 6.0 (Figure 5.18 C). The relative current increase in S168P ClC-5 in 

external SCN- is much larger than in wildtype or E211C ClC-5 (Figure 5.17 F, Figure 5.18 B) 
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and there is a dependence on internal pH, but less pronounced than in wildtype ClC-5. The 

current increase at internal pH 7.4 is the same as in WT at internal pH 6.0 (Figure 5.18 C).  

These results indicate, that a reduced occupancy of the central binding site results in a higher 

transport probability in external SCN-. 
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Figure 5.17. External SCN- enhances ionic currents in ClC-5 mutant E211C and S168P more pronounced 
than in WT ClC-5. A and B. Representative whole-cell current recordings of a cell expressing E211C ClC-5, 
sequentially perfused with external Cl- (A) or SCN- (B) solution at symmetrical pH 7.4 upon voltage jumps 
from -115 mV to +145 mV (n = 4). Measurements were carried out by A.K. Alekov. C. and D. Representative 
measurements of a cell expressing S168P at the aforementioned conditions (n = 7 and 8 for pH 7.4 and pH 6). E 
and F. Normalized currents of E211C (E) and S168P (F) in pH 6.0 and 7.4. Symbols describe currents in SCN- 
and Cl- currents are indicated by lines. Normalization was performed to Cl- currents at +135 mV. (Modified 
from Grieschat and Alekov, 2012) 
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Figure 5.18: In two mutants, current increase in external SCN- at neutral pH are more pronounced, but 
less pH-dependent than for WT. A and B. Ratios of SCN--dependent current increase at various voltages for 
E211C ClC-5 (A) and S168P ClC-5 (B), compared at internal pHs 6.0 and 7.4. Data from Figure 5.17. Two-
sample t-tests were performed and the asterisk indicates a significant difference (p < 0.05). C. Comparison of 
current increase in mutants at internal pH 7.4 (data from A and B) with current increase in WT ClC-5 at internal 
pH 6.0 (data from Figure 5.5 G) at various voltages. Stars indicate significant differences between mutants and 
WT (two-sample t-test, **,p < 0.01; *, p < 0.05). (Modified from Grieschat and Alekov, 2012) 
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5.9 Selectivity and uncoupling of a proton glutamate mutant 
 
The tendency of residue 268 to be protonated changes the magnitudes of capacitances and 

varies with internal pH and pKa of the side chain. But internal pH does not change the relative 

uncoupling in WT ClC-5. Proton transport and uncoupling by external SCN- was also 

investigated in the proton glutamate mutant E268H, which is still mediating robust currents in 

Cl- and SCN- (Figure 5.19 A and B). Currents at neutral internal pH are only augmented by 

the factor of ~7, when compared at +135 mV (Figure 5.19 C). Like in WT, internal pH 6 

evokes a stronger current increase upon SCN- application (Figure 5.19 D and E), the factor of 

which is ~10 (Figure 5.19 F). Current increases at both internal pHs are therefore less 

pronounced than in WT. Proton transport in SCN- is slightly higher than in Cl- (Figure 5.19 G, 

left panel) similarly to WT and with the relative current increases the relative uncoupling is 

calculated to values between 6 and 8 (Figure 5.19 G, right panel).  
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Figure 5.19: Current increase and relative uncoupling in external SCN- is less pronounced in E268H 
ClC-5 than in WT. A. Voltage protocol (upper panel) and representative whole-cell measurement of a cell 
expressing E268H ClC-5 at neutral internal pH. B. Recording of the same cell, bathed in SCN- (solutions 1, I 
and III, see Table 3). D and E. Representative recording of a cell externally perfused with Cl- and SCN--based 
solutions, respectively (solutions 2, I and III). C and F. Current-voltage relationships of experiments shown in 
A, B, D and E, depicting steady-state currents, normalized to the currents in Cl- at +135 mV at internal pH 7.4 
(C) and pH 6.0 (F), respectively (n = 5-7). G. Proton flux in symmetrical pH 7.4 at two voltages (left panel), 
normalized to the proton flux in Cl- at the same voltage and relative uncoupling (right panel), calculated by 
dividing the normalized total transport current by the relative proton flux (Equation 6, n = 9-15). 
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5.10  Structure-function of the voltage sensor in ClC-5 
 
ClC transporters display profound voltage-dependent activation that is abolished by 

neutralization of the charge of the so called gating glutamate (glutamate 211 in ClC-5) by 

mutation [58], [91]. However, the voltage dependence of ClC channels is strongly modulated 

also by mutations of a variety of other amino acids at different positions in the ClC protein. 

Of particular importance is the residue next to the gating glutamate – lysine 210 in ClC-5. It is 

conserved in all mammalian ClC isoforms and has been the subject of previous investigations 

in ClC-1 [91] and ClC-5 [140]. Yet this residue is not conserved in any crystallized isoform 

(Figure 5.20). 
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Figure 5.20: Structure-based multisequence alignment of three crystallized ClC transporter isoforms, 
with ClC-5 sequence included. Alignment was performed with Chimera using MatchMaker function with 
default parameters. Structures of CmClC (Cyanidioschyzon merolae) and SyClC (Synechocystis sp. PCC6803) 
were aligned to the reference structure of EcClC (Escherichia coli) (PDB IDs given in the figure). The ClC-5 
sequence was added and aligned with default parameters afterwards. Highlighted by dashed boxes are amino 
acid positions which are studied for their impact on ClC-5 voltage dependence. 
 

Nevertheless, when superimposing crystal structures of open and closed conformation of 

EcClC and calculating α-carbon RMSD, also in this isoform the residues adjacent to the 

gating glutamate at the beginning of helix F seem to experience some form of motion (Figure 

5.21).  
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Figure 5.21: RMSD of two regions between open and closed conformations of EcClC (PDB ID 1OTS and 
1OTU). Corresponding residues investigated in this thesis are marked by arrows and labels. RMSD of α-
carbons was calculated using Chimera. 
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In ClC-1 mutations of the corresponding lysine 232 had massive impact on the substrate 

specifity and the time and voltage dependence of gating. Moreover, the cysteine mutant 

created a high-affinity binding site for extracellularly applied MTS reagents (see Section 

4.3.6.1) [91]. De Stefano et al. explored the role of lysine 210 in ClC-5 and also reported 

altered substrate specifity without changing the degree of uncoupling and a restoration of 

wildtype behaviour upon MTSET modification [140]. Based on these findings, it appears 

logical to assume that this position might be important not only for substrate specifity, but 

also for voltage-dependent gating in ClC-5. The following chapter describes structure-

functional investigations, aiming to provide deeper insight into the mechanisms of voltage 

sensing. 

Tyr 445
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Arg 147
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Figure 5.22: Crystal structure of EcClC, showing possible interaction partners for the residue 
corresponding to lysine 210 in ClC-5. A. Side view of the crystal structure of EcClC (PDB ID 1OTS) with left 
monomer shown in tan and right monomer with multicoloured helices. B. Detailed view at the right monomer 
from the dimer interface into the protein interior as the black frame indicates. Shown are the gating glutamate 
Glu 148, bound at the external binding site and the adjacent Arg147 (Glu 211 and Lys 210 in ClC-5) on helix F 
(cyan) putative interaction partners Asp 54 and Ala 58 (Asp 76 and His 80 in ClC-5) on helix B (yellow). For 
better orientation Cl- ions are shown as green spheres, bound to the internal and central binding site with 
Ser 107 and Tyr 445 stabilizing the central binding site. 
 

Additionally, the crystal structure of EcClC suggests several residues, which might be 

interaction partners with the residue next to the gating glutamate. The crystal structure of 

EcClC shows the arginine 147 (lysine 210 in ClC-5) at the N-terminus of helix F protrude 

back and outwards from the anion pore (Figure 5.22 B) and in proximity to helix B. Two 

residues on this helix point in the direction of arginine 147. Aspartate 54 (aspartate 76 in 

ClC-5) is conserved in all human ClC isoforms except ClC-Ka, which has an asparagine at the 

corresponding position. It is also conserved in EcClC and CmClC (Figure 5.20). One helix 

turn further towards the extracellular interface, alanine 58 (histidine 80 in ClC-5) is located, a 

non-conserved amino acid (Figure 5.22 B). The RMSD in the helix B region is fairly low 

(Figure 5.21) and it might serve as some kind of scaffold. If in ClC-5 a possible interaction of 
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lysine 210 with residues on helix B can be elucidated, important knowledge about the 

structure and function of ClC-5 and the differences from other isoforms could be obtained. 

Also in this case, cysteine modifications and possibly cross-linking might be an appropriate 

tool. 

5.10.1 Substrate specificity and coupling in the K210C ClC-5 mutant 
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Figure 5.23: Perfusion of NO3
- and SCN- leads to different whole-cell current increases in WT and K210C 

ClC-5 expressing cells. A. Voltage protocol and representative whole-cell measurement of WT ClC-5 at 
symmetrical pH 7.4. B. and C. Current traces of the same cell, externally perfused with NO3

- (B) or SCN-, 
respectively. D-F. Whole-cell current traces, measured at the same cell, expressing K210C ClC-5 with external 
Cl- (D), NO3

- (E), or SCN- (F) solutions (solutions 1, I , II and III, see Table 3). 
 
 
To investigate the effects of K210 on the interaction of ClC-5 with the transported substrates, 

whole-cell measurements in external solutions containing variable anions were performed. 

Representative whole-cell currents of cells, expressing either WT ClC-5 or K210C ClC-5 and 

externally perfused with Cl-, NO3
- or SCN--containing solutions are shown in Figure 5.23. 

Macroscopically, the currents in K210C ClC-5 (Figure 5.23 D-F) were under all tested 

conditions very rectifying, similar to currents elicited from cells expressing WT ClC-5 

(Figure 5.23 A-C). However, in contrast to NO3
- currents in WT (Figure 5.23 B and Figure 

5.24 A) which were about 3 times larger than Cl- currents, there was essentially no current 

increase when external Cl- was exchanged for NO3
- in K210C. This is in accordance with 

previously published results [140]. The currents in external SCN- were ~6 times higher than in 

Cl- for K210C ClC-5, thus demonstrating much less current increase, compared to WT ClC-5. 
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Figure 5.24: SCN- and NO3
- mediate less current increase in K210C ClC-5 than in wildtype. A and B. 

Steady-state current-voltage relationships of WT (A) and K210C ClC-5 (B), normalized to currents at +135 mV 
in Cl-, obtained from experiments like shown in Figure 5.23. Data for Cl- and SCN--measurements in (A) are 
mostly taken from Figure 5.5 (n = 7-17 for WT and n = 6 for K210C).  
 
Larger external anions were found to uncouple ClC transport. There exist therefore two 

different explanations for the observed effects. On one hand, the mutant K210C ClC-5 might 

exhibit a higher selectivity for transporting NO3
- and SCN- when compared to the wildtype, 

while preserving the stoichiometry of the anion/proton antiport. Alternatively, transport 

coupling might be also altered, resulting in a much better coupling between the anion and 

proton transport even for larger anions in the mutant than in the WT. To discriminate between 

these two possibilities, here, the relative proton transport activity of wildtype and K210C 

ClC-5 in external NO3
- was measured via pH-dependent fluorescence changes of 

intracellularly perfused BCECF (Figure 5.25). Robust time- and voltage-dependent pH 

changes could be observed for wildtype and mutant in both Cl- and NO3
- (Figure 5.25 C and 

D, Figure 5.26 B). Proton transport was larger in Cl-. The additional current increase in NO3
- 

for wildtype results in a ~5-9 times uncoupling, relative to Cl-, which corresponds to 

previously published results [79]. A similar relative decrease of proton transport, compared to 

wildtype data, but unchanged total transport current results in a relative uncoupling of ~3 for 

the K210C ClC-5 mutant. This contradicts previous results for the similar mutant K210A 

ClC-5, which was reported to demonstrate an unaltered degree of uncoupling compared to 

wildtype [140]. 
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Figure 5.25: WT and K210C ClC-5 transport protons in both external Cl- and NO3

-. A and B. 
Representative whole-cell current traces at +120 mV of the same cells expressing WT (A) or K210C (B) in 
external Cl- or NO3

- at symmetrical pH (solutions 4 and V or VI). C and D. Representative time-dependent 
internal alkalinisation of the cells from A and B during a 1.5-s +120-mV pulse in external Cl- (upper panel) or 
NO3

- (lower panel), monitored by pH-dependent BCECF fluorescence. Solid lines are linear fits to the data. 
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Figure 5.26: NO3

--mediated uncoupling is less pronounced in K210C ClC-5. A. Transport current from 
experiments like Figure 5.25 A and B at various voltages. Currents were normalized to the currents in Cl- at 
+120 mV. B. Proton fluxes, obtained from the slopes of linear fits to data like in Figure 5.25 C and D and 
normalized to the proton fluxes in Cl- at +120 mV. C. Relative uncoupling by external NO3

-, as a ratio of total 
transport current to proton flux in NO3

-, divided by the respective ratio in Cl- at the same voltage. Significance 
of differences was tested with a two-sample t-test (**,p < 0.01; *, p < 0.05, n = 7-10 for WT; 7-14 for K210C) 
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5.10.2 Effects of K210 mutations on the voltage dependence of ClC-5 
As shown for example in Section 5.5, the removal of external Cl- was chosen to prevent 

possible contaminating effects of ionic currents on capacitance measurements. But this 

maneuver shifted voltage dependence to very positive values, which might impede analysis. 

To circumvent Cl- removal and the problems associated with this, the majority of the 

following experiments was conducted on the background of the nonconducting E268Q 

mutant, because this mutant showed only little differences to the wildtype concerning voltage 

dependence (Figure 5.13) and additionally demonstrated very pronounced nonlinear 

capacitances. Moreover, voltage dependence was further left-shifted by using an internal 

solution with reduced Cl- content [80], [143]. This allowed even better resolving of the right 

shoulder of the capacitance curve and thereby greatly improved the analysis of voltage 

dependence of K210 mutants. 

K210R substitutes the native residue for the arginine found in the EcClC isoform and 

K210C with its aforementioned property to be available for MTS modification are interesting 

candidates for investigations on voltage-dependent gating. Figure 5.27 A-C shows 

representative leak-subtracted whole-cell measurements for E268Q ClC-5 and two double 

mutants K210C/E268Q and K210R/E268Q with nearly no ionic currents and well defined 

gating currents. While for E268Q ClC-5 the amplitudes of on-gating currents were smaller 

than of off-gating currents, this behaviour is reversed in the K210R/E268Q double mutant. 

For K210C/E268Q the magnitudes for on- and off-gating currents were approximately the 

same size. However, both double mutants displayed additional initial off-gating currents at 

negative potentials, when jumping from -30 mV holding potential to test potentials. From this, 

it can be concluded, that a certain percentage of double mutant transporters were already 

activated at -30 mV. Such an assumption might also explain why gating currents were 

generally smaller for the double mutants than in E268Q, because not all transporters were 

deactivated. In fact, capacitance curves shown in Figure 5.27 D report markedly shifted 

voltage dependence for both double mutants, with pronounced voltage-dependent capacitance 

increase even at negative voltages. Table 5 summarizes the values for half-maximal activation 

and the apparent charge, which is displaced during depolarization obtained by fitting Equation 

2 to the data. Mutation K210C shifted the value for half-maximal activation by ~30 mV 

towards less depolarizing values, whereas K210R introduced ~50 mV shift, relative to single 

mutant E268Q. Values for z had a reduced magnitude for double mutants, in the sequence of 

left-shift of the voltage dependence. 
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Figure 5.27: Nonlinear capacitances in double mutants of E268Q ClC-5 show shifted voltage dependence. 
A-C. Representative -P/n leak subtracted whole-cell recordings of HEK293T cells expressing E268Q (A), 
K210C/E268Q (B) or K210R/E268Q ClC-5 (C) at 30 mM internal Cl- and symmetrical pH 7.4 (solutions 10 
and I). Cells were held at -30 mV and voltage pulses from -115 to +165 mV were applied.  D. Normalized 
nonlinear capacitances, measured at the same ionic conditions. Lines represent fits to the first derivative of the 
Boltzmann function. Parameters are given in Table 5. 
 
 
 

 E268Q K210C/E268Q K210R/E268Q 

V0.5 (mV) 80.7 ± 0.6 51.4 ± 3.7 29.1 ± 1.0 

z -1.31 ± 0.01 -1.10 ± 0.02 -1.04 ± 0.01 

n 17 14 16 

 
Table 5: Parameters for fits to data summarized in Figure 5.27 D and numbers of single experiments. 

 
 
A cysteine in place of lysine 210 was previously shown to be accessible to extracellular 

modification with MTS reagents as well in ClC channels as in ClC-5 [91], [140]. In K210C 

ClC-5, MTSET could restore the anion selectivity of the wildtype [140]. Therefore, a similar 

strategy was applied here, to investigate the effects of such modifications on voltage-

dependent gating. Additionally, metal cations are a useful tool to study the accessibility of 

engineered cysteines [144]. Therefore, the effects of extracellular Cd2+ were also studied. To 

ensure, that the observed effects of externally applied compounds are indeed effects on the 
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introduced cysteine, they were all tested on the single mutant E268Q ClC-5, as shown in 

Figure 5.28 A. Neither extracellular application of MTSET nor CdCl2 had significant effects 

on the voltage dependence or the slope of the capacitance curve of E268Q ClC-5 therefore 

only little nonspecific effects could further be expected.  
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Figure 5.28: Modification of engineered cysteines H80C and K210C by extracellular MTSET and CdCl2 
causes a shift of voltage-dependent activation. A-C. Nonlinear capacitances of E268Q (A) K210C/E268Q 
(B), H80C/E268Q (C) and D76C/E268Q (D). Measurements were performed with 30 mM internal and 155 mM 
external Cl- (solutions 10 and I, see Table 3) in presence or absence of extracellular MTSET or CdCl2. For 
comparison, E268Q, K210R/E268Q and unmodified K210C/E268Q from Figure 5.27 D are shown as dashed 
lines and normalization was performed to the maximum capacitance values of the unmodified forms of the 
respective mutants. Solid lines represent fits to the first derivative of the Boltzmann function. Parameters are 
given in Table 6 and Table 7. 
 
Modification of K210C/E268Q by 1 mM MTSET resulted in a ~45-mV left-shift, 

accompanied by a 40-percent reduction of nonlinear capacitance (Figure 5.28 B, orange 

circles). The opposite effect resulted from modification with 0.1 mM CdCl2. Here, the voltage 
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dependence of E268Q (Table 5) was restored but the magnitude of the slope was reduced and 

the size of capacitance change decreased (Figure 5.28 B, open circles). An increase of the 

concentration of extracellular CdCl2 had merely small additional effect on voltage dependence 

and slope, but the size of the capacitances was decreased to a larger extent (Figure 5.28 B, 

green circles).  

 E268Q  
 

 
 

K210C/E268Q   

[compound] (mM) 1 MTSET 1 CdCl2 1 MTSET 0.1 CdCl2 1 CdCl2 

V0.5 (mV) 82.4 ± 1.0 85.2 ± 0.9 5.7 ± 4.1 81.7 ± 1.4 85.5 ± 2.0 

z -1.24 ± 0.03 -1.25 ± 0.02 -1.14 ± 0.03 -1.07 ± 0.04 -1.00 ± 0.03 

n 5 4 14 4 5 

 
Table 6: Parameter values for fits with the first equation of a Boltzmann function to the data presented in 
Figure 5.28 A and B 
 
 

Thus, MTSET application did not restore the behaviour of the single mutant, as previous 

results suggested [140], but rather the divalent metal cation Cd2+ abolished the effects of the 

additional mutation K210C on voltage dependence. It is seen in the EcClC crystal that the 

side-chain of the corresponding arginine in EcClC does not protrude into the anion binding 

pocket, but is directed backwards (Figure 5.22). Homology modelling proposed two residues, 

sporting charged or partially charged side-chains that might be in close proximity to the side 

chain of lysine 210 in ClC-5. Cysteine mutations of those residues aspartate 76 or histidine 

80, respectively, were also tested for external accessibility and possible effects of 

modification. Figure 5.28 C demonstrates that mutation H80C mediated only a mild 5-mV 

shift of voltage dependence with respect to E268Q ClC-5 (Table 7), but allowed external 

modification, not possible without the cysteine substitution.  

 H80C/E268Q   D76C/E268Q  
[compound] (mM) - 1 MTSET 1 CdCl2 - 1 CdCl2 

V0.5 (mV) 75.5 ± 0.9 68.6 ± 0.2 103.3 ± 3.3 79.1 ± 0.5 84.7 ± 1.1 

z -1.24 ± 0.02 -1.26 ± 0.02 -0.87 ± 0.03 -1.21 ± 0.04 -1.06 ± 0.02 

n 11 3 4 4 4 

 
Table 7: Parameter values for fits with the first equation of a Boltzmann function to the data presented in 
Figure 5.28 C and D. 
 
 
 

Compared to K210C/E268Q, MTSET modification of H80C/E268Q (Figure 5.28 C, orange 

rhombi) caused a smaller left-shift, but the capacitance compared to the unmodified form was 
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slightly increased in contrast to the strong decrease in K210C/E268Q. CdCl2 mediated the 

same 30-mV right-shift like in K210C/E268Q associated with the same percentage of 

capacitance decrease, but because H80C/E268Q is only slightly shifted relative to E268Q, in 

this case no restoration of this behaviour was achieved E268Q (Figure 5.28 C, green rhombi). 

Voltage for half-maximal activation is much more positive than for E268Q alone. 

The double mutant D76C/E268Q showed the same voltage dependence as the single 

E268Q mutant, but the slope was slightly reduced (Figure 5.28 D). The possibility for 

modification was also tested on the mutant D76C/E268Q by applying 1 mM extracellular 

CdCl2 (Figure 5.28 D, green pentagons) and only a shift of voltage dependence in the range of 

5 mV, like in E268Q was provoked. In contrast, unlike in E268Q, a reduced change of 

capacitance was noticed. 

Noteworthy, in contrast to covalent MTS modification, which is only reversible after the 

application of reducing agents like dithiothreitol [140], the effect of CdCl2 application was 

nearly instantly reversible and was mainly dependent of the speed of removal (Figure 5.29).  

 
 
 

5 ms

200 pA

20 s
200 pA

CdCl
2

A B

K210C ClC-5

+150 mV

solution

 
Figure 5.29: Effect of extracellular CdCl2 is instantaneous and readily reversible. A. Schematic display of 
local perfusion and representative –P/n leak-subtracted current traces at +150 mV of a cell expressing K210C 
ClC-5 in Cl- solutions 10 and I. Traces were recorded at time points indicated in B at corresponding gray 
shades, when the cell was driven in and out of a stream of solution, supplemented with 1 mM CdCl2. B. Steady-
state current amplitudes for the cell shown in A, recorded in 1-s intervals. Arrows indicate time points of 
current traces shown in A and black bars are the periods the cell was exposed to CdCl2. 
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5.10.3 Effects of internal and external anions on the gating of E268Q 
and K210R/E268Q ClC-5 

Reduction of the internal Cl--concentration shifts the voltage dependence of ClC transporters 

to less depolarizing values [80], [143]. That means internal chloride can be considered as a 

voltage-dependent blocker. This indicates the existence of an internal ion binding site that 

directly modifies the following voltage-dependent transitions. Measurements of nonlinear 

capacitances at three different internal Cl- concentrations were performed in HEK293T cells 

expressing either E268Q ClC-5 or the voltage-shifted K210R/E268Q ClC-5 double mutant 

(Figure 5.30 A and B). 
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Figure 5.30: Nonlinear capacitances are shifted by internal [Cl-] and mutation K210R changes apparent 
Kd for internal Cl-. A and B. Normalized nonlinear capacitances of E268Q (A) and K210R/E268Q ClC-5 (B) 
at different internal Cl- concentrations (solutions 1, 10, 11 and I) at symmetrical pH 7.4. Solid lines are fits of 
the first derivative of the Boltzmann function (for parameters see Table 8). Dashed lines describe data from 
Figure 5.27 D for comparison. C. Summary of midpoints of capacitance curves from Table 8 plotted against the 
decadic logarithm of the internal Cl- concentration. Lines represent linear fits to the data and report on the 
apparent Kd for internal Cl- at 0 mV.  
 

 [Cl-
int] (mM) 1 30 105 

V0.5 (mV) 2.8 ± 1.1 80.7 ± 0.6 118.7 ± 1.9 

z -0.88 ± 0.02 -1.31 ± 0.01 -1.27 ± 0.00 E268Q 

n 6 17 4 

V0.5 (mV) -57.0 ± 1.5 29.1 ± 0.4 64.9 ± 1.1 

z -0.62 ± 0.03 -1.04 ± 0.01 -1.15 ± 0.03 K210R/E268Q 

n 4 16 5 

 
Table 8: Values for voltages of maximum change of capacitance (V0.5) and slope z, obtained from fits to 
Equation 2 of n individual cells from Figure 5.30. Data for 30 mM are taken from Table 5. 

 

  

At 1 mM internal Cl- the half-maximal voltage of activation (V0.5) for E268Q was strongly 

left-shifted to ~0 mV (Figure 5.30 A), whereas the additional mutation K210R shifted this 
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value to -60 mV (Figure 5.30 B). Additionally, the slope of the capacitance curve was 

reduced, more pronounced in the double mutant (Table 8). Compared to 30 mM internal Cl-, 

an elevated concentration of 109 mM shifted voltage dependence towards more depolarizing 

values and the slope was only little altered in E268Q ClC-5, whereas its value was increased 

for K210R/E268Q. Analogous to the interpretation of Orhan et al. for ClC-4, also for ClC-5 it 

can be conceived that internal anions mediate a voltage-dependent block, which can be 

described by the following reaction scheme: 
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According to the model, internal anions (A-) serve as voltage-dependent blocker and the 

activation of transport cycles can only be initiated after chloride first unbinds from the closed 

transporter (CB). The mathematical description of this model has been provided previously 

elsewhere [143], [145]. It predicts that when anion binding and unbinding is fast (i.e. the 

observed rate-limiting reaction is the C-O transition), the half-maximal activation of ClC-5 

should depend exponentially on the Cl- concentration (Equation 12). Accordingly, plotting 

these values against the decadic logarithm of the internal Cl- concentration should result in a 

linear dependence. Indeed, this was the case as well for E268Q, as for the double mutants 

K201R E268Q ClC-5. The X-axis intercept in this plot provides according to Equation 12 the 

apparent binding affinity (Kd) of ClC-5 for internal anions. This procedure reveals a value of 

approximately 1 mM E268Q ClC-5, whereas the apparent binding affinity for the double 

mutant K210R/E268Q is 10 mM. Therefore, a mutation at the outer vestibule of the anion 

pore affects the affinity for internal anions. 

Analogously to the previous experiments, the effects of external anions on E268Q 

ClC-5 and on the double mutant K210R/E268Q were tested. In accordance to the effects 

described for ClC channels but also for some of the mammalian ClC transporters, depleting 

extracellular Cl- shifted the voltage dependence to more depolarizing values, imposing that 

binding of external anions favours voltage-dependent activation. Depleting extracellular Cl- 
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shifts the voltage dependence to more depolarizing values. Figure 5.31 shows capacitance 

curves for E268Q and K210R/E268Q with 0.1 mM external Cl-. Values for 155 mM Cl- from 

Figure 5.27 D were used for normalization and are presented as dashed lines. 
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Figure 5.31: Removal of external Cl- enhances and shifts nonlinear capacitances in E268Q, whereas a 
double bell-shaped capacitance curve in K210R/E268Q becomes visible. Nonlinear capacitances of E268Q 
and K210R/E268Q ClC-5, measured with 30 mM internal Cl- and external Cl- reduced to 0.1 mM at 
symmetrical pH 7.4 (solutions 10 and IV). For comparison, dashed lines represent the fits to data in 155 mM 
Cl-

ext from Figure 5.27 D. Solid lines represent fits to the first derivative of a standard Boltzmann function 
(E268Q) or the sum of two of such functions (K210R/E268Q). Parameters are given in Table 9.   
 
 

 E268Q K210R/E268Q 

V0.5 (mV) 130.4 ± 2.1 131.4 ± 1.8 

z -0.91 ± 0.02 -0.95 ± 0.22 

V0.5 (mV)  10.3 ± 4.6 

z  -0.76 ± 0.03 

n 3 4 

Table 9: Mean parameter values for trace fitting of one (E268Q) or the sum of two (K210R/E268Q) 
derivatives of the standard Boltzmann function to n individual cells from Figure 5.31. 
 
 

For E268Q, voltage-dependent changes of capacitance were larger and shifted towards more 

depolarizing values by ~50 mV and the value for z decreased from -1.31 to -0.91 e0 (Table 9). 

Removing external Cl- decreased nonlinear capacitances of K210R/E268Q dramatically but 

also led to the appearance of a second local maximum in the capacitance curve. The change of 

capacitance was distributed over a much broader voltage span and on single-cell level the 

relative magnitude of left maximum varied, but was usually the smaller of both. The voltage 

dependence of the nonlinear capacitances could be fitted with the sum of two derivatives of a 

standard Boltzmann function with parameters are given in Table 9. The right maximum had 
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same voltage dependence as E268Q (similar V0.5 and z). The left maximum was at 10 mV 

with a slope of -0.76 e0. 

5.10.4 Gating kinetics of ClC-5 and K210/E268Q mutants 
As seen in Figure 5.27 an additional mutation at position 210 changed the appearance of 

gating currents and the voltage dependence of nonlinear capacitances with respect to the 

single mutant E268Q. This was also true for modifications of the cysteine substitution of 

lysine 210. To analyze if there is also a difference of kinetics of the depolarization activated 

process that gives rise to gating currents, the time dependence of those currents can be studied 

using so called envelope protocols [143], [146](Figure 5.32 A, upper panel). During this 

protocol, depolarizing pulses of a certain voltage for incrementing durations are applied to the 

cell. With increasing time, more ClC-5 transporters are activated and those contribute to the 

off-gating charge at the end of the pulse, measured after a jump to -100 mV. Plotting the 

integral of the off-gating currents (Qoff) versus the time of the depolarizing pulse, reports on 

the activation kinetics at the respective voltage. A preceding constant reference pulse of 

+150 mV was included in all protocols and was used for normalization. 
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Figure 5.32: Envelope protocols report altered time courses of off-gating charge movement. A. Envelope 
protocol (upper panel) and representative recording of a HEK293T cell, expressing E268Q ClC-5 (solution 10 
and I). From the holding potential, a +150-mV step was applied, followed by a test pulse of -100 mV to elicit a 
large off-gating current which was used for normalization. After this, voltage pulses of different voltages (here: 
+120 mV) were applied for incrementing durations at each sweep before jumping to -100 mV. The off-gating 
currents of those voltage jumps were integrated normalized to the integrated gating current at +150 mV. B. 
Normalized time-dependent development of off-gating charges after activation at +120 mV for various mutants 
and external modifications, as indicated. For clarity, some points were omitted. Red lines represent exponential 
fits with one or two exponentials. 
 
Figure 5.32 A (lower panel) shows a representative recording of time-dependent development 

of off-gating currents of E268Q ClC-5 at +120 mV. Mean normalized values for 

measurements of this and other mutants at this voltage are summarized in Figure 5.32 B. 
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 Gating charges develop in an exponential manner. Figure 5.33 shows detailed the activation 

time courses of WT ClC-5 (Figure 5.33 A) and the various mutations (Figure 5.33 B, C, E) 

and cysteine modifications (Figure 5.33 D and F) at different voltages and time constants and 

amplitudes are shown in Figure 5.34. In some cases, gating currents at +30 mV were too 

small to provide a reliable analysis and were therefore omitted. Although wildtype ClC-5 

mediates, in contrast to the mutants measured here, substantial transport currents, gating 

currents could be recorded and time dependence could be fitted with double exponential 

functions (Figure 5.33 A). Fast (τ1) and slow (τ2) time constants were in the range 0.3-0.4 and 

2.0-3.5 ms, respectively (Figure 5.34 A). Mutant E268Q ClC-5 (Figure 5.33 C) reached 

higher Qoff values than wildtype, which can not be attributed to left-shifted voltage 

dependence, resulting in larger gating currents already at lower voltages. However, the 

voltage dependence of the mutant is shifted at most towards more depolarized values (see 

Table 4). Voltage-dependent time constants for this mutant were slowed down to values of 

0.6-1.0 and 4.3-7.7 ms for τ1 and τ2, respectively (Figure 5.34 C). The double mutant 

K210C/E268Q (Figure 5.33 B) exhibited already at +30 mV well-defined off-gating currents, 

and the values for +120 mV reached the same magnitude as at the preceding +150 mV 

reference pulse, which, however, can be due to the left shift of voltage dependence. The time 

dependence was faster than in mutant E268Q and had values similar to wildtype, disregarding 

measurements at +60 mV, showing quite large errors (Figure 5.34 B). When this mutant was 

modified by 1 mM external CdCl2 (Figure 5.33 D, Figure 5.34 D), kinetics became slower, 

resembling the behaviour of the single mutant E268Q (superimposed in Figure 5.32 B). This 

probably reflects the restoration of the voltage dependence to E268Q values, mediated by 

CdCl2 as demonstrated before in this work (Figure 5.28 and Table 7). The double mutant 

K210R/E268Q (Figure 5.33 E) that strongly shifted the voltage dependence towards less 

depolarizing voltages demonstrated also smaller time constants for the fast component, which 

further diminished at high voltages (Figure 5.34 E). The magnitude of gating currents was 

already at 25% at the beginning, explained by the left-shifted voltage dependence – even at 

the holding potential a certain percentage of ClC are activated and deactivate subsequently 

during the -100-mV test pulse. Interestingly, the magnitude of gating currents at +90 and 

+120 mV reached the same steady-state value, which was also the same magnitude as at +150 

mV. This finding was even more distinct in the MTSET-modified form of K210C/E268Q 

(Figure 5.33 F), exhibiting a very strong voltage dependence of τ1, which was the fastest of all 

measured time constants at +120 mV (Figure 5.34 F).  
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Figure 5.33: Normalized time courses of off-gating currents at various voltages, measured using the same 
solutions and envelope protocols similar as shown in Figure 5.32 A, upper panel. The time-variable voltage 
step was carried out at different voltages and charges were normalized to the +150 mV reference pulse, 
included in each sweep. Red lines are mono- or biexponential fits and time constants and amplitudes are 
depicted in Figure 5.34. (n = 3-7). 
 
Very importantly here, τ2, which was only visible above +90 mV, had negative amplitude and 

describes therefore a form of deactivation, which was also time- and voltage-dependent. This 

deactivation was stronger at more positive voltages in a way, that the 10-ms reference pulse of 

+150 mV evoked less off-gating currents than all of the other tested voltages, which therefore 

reached values above 1 after less than 1 ms (Figure 5.34 F). Also, gating currents at +120 mV 
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first increased and then decreased and reached lower steady-state values than the other 

voltages (Figure 5.33 F). Both can be seen in a representative measurement in Figure 5.35. 

The described behaviour could also be observed at +90 mV and in the mutant K210R/E268Q 

at +120 mV and seems to be therefore dependent on the voltage range where those mutants 

activate.  
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Figure 5.34: Mean voltage-dependent time constants and amplitudes of exponential fits for development 
of off-gating currents from Figure 5.33. Time constants are displayed on a logarithmic scale. 
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Figure 5.35: Off-gating currents can display a form of time- and voltage-dependent depletion. 
Representative whole-cell measurement of a HEK293T cell expressing K210C/E268Q ClC-5 after modification 
with 1 mM MTSET, recorded at +120 mV under the conditions shown in Figure 5.32. 
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5.10.5 Voltage-dependent modification of K210C ClC-5 by MTSET 
Because the residue modified by MTSET – K210C – is directly adjacent to the gating 

glutamate and mutations were shown here to directly modify voltage dependence, also a 

voltage dependence of modification is conceivable. Yang and Horn demonstrated the voltage-

dependent movement of the voltage sensing S4 domain of the skeletal muscle sodium channel 

by determining reaction rate constants of covalent MTSET modification of a cysteine mutant 

[147]. They proposed a simple model assuming that the exposure of the cysteine in the S4 

domain to the outside is a fast and voltage-dependent first order transition and that the 

subsequent binding of MTSET to the cysteine is a slow second order reaction and voltage-

independent: 

 

α(V)

β(V)
Cysin Cysout

[MTSET]kon
Cys-SET

fast slow

 

Scheme 3

 

According to their model the rate of modification is linearly dependent on the concentration. 

They further assumed that the cysteine is located outside the electric field, so that the local 

MTSET concentration is not affected by it.  

MTSET modification of K210C/E268Q ClC-5 induces a pronounced left shift of 

capacitances (see Section 5.10.2 and Figure 5.28 B) and the magnitude of gating currents 

decreased. This decrease was monitored to assess rates of modification. Figure 5.36 B shows 

time courses of modification of K210C ClC-5 by 1 mM external MTSET from observation of 

the charge of the off-gating (Qoff) at +120 mV at four different holding voltages. Gating 

currents decreased monoexponentially with rate constants (i.e. reciprocal time constants) 

increasing with higher voltage (Figure 5.36 D). Even at -70 mV, a decrease of off-gating 

current was detectable 

The concentration dependence was assessed at +70 mV (Figure 5.36 C) and plotting rate 

constants versus the concentration reveals a saturating behaviour (Figure 5.36 D) and not a 

linear relationship, as predicted by the model of Yang and Horn.  
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Figure 5.36: MTSET modification of K210C ClC-5 is voltage- and concentration-dependent. A. Voltage 
protocol, used to follow time course of MTSET modification. Vhold was varied for measuring voltage 
dependence of modification. The off-gating charge upon the +120 mV voltage jump to -120 mV was monitored 
and the protocol was applied in 2-s intervals. B and C. Time course of MTSET modification at different holding 
voltages (B) or different MTSET concentrations (C). Values were normalized to the off-gating charges before 
modification took place. Concentration-dependent modification (B) was measured at +70 mV and data for 1 
mM MTSET come from (A). For clarity, some intermediate data points were omitted. Red lines represent 
monoexponential fits to the data. D and E. Time constants for exponential fits, displayed as rate constants 
versus the holding voltage (D) and the MTSET concentration (E), respectively.  
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5.11  Functional specialization of ClC transporters with respect to 
the voltage-dependent gating and nonlinear capacitances 

The presence of gating currents in ClCs was first detected in ClC-5 [80], but other ClC 

transporter isoforms also display those nonlinear capacitances. The low membrane insertion 

upon heterologous expression of ClC-3 in the past has handicapped electrophysiological 

access and contradicting and ambiguous reports have been published. Zhao et al. [148] have 

found a dileucine cluster in the N-Terminus of ClC-3 which acts as a retention signal and 

when those amino acids are mutated to alanine (ClC-313-19A), substantial membrane insertion 

was achieved [148]. When expressed in HEK293T cells and measured using the whole-cell 

patch clamping technique, robust outwardly rectifying Cl- currents could be observed (Figure 

5.37 A) similar to ClC-5 with pronounced on- and off-gating currents. Although gating 

currents could not be observed in previous works on ClC-4 [60], [143], a closer examination 

of leak-subtracted recordings demonstrated the existence of those currents in this isoform, too 

(Figure 5.37 B). As in ClC-5, the voltage-dependent development can be described with a 

Boltzmann function. Also, by applying sinusoidal protocols and by utilizing the lock-in 

functionality of the patch clamp amplifier, voltage-dependent changes of whole-cell 

capacitances in ClC-3, -4 and -5 could be recorded under the same conditions and compared 

(Figure 5.37 C). When normalized to the Cl- currents at +135 mV, large differences in 

capacitance magnitudes can be seen, which were also reflected in the size of the gating 

currents in whole-cell recordings. Compared to ClC-3 and ClC-5 gating currents as well as 

changes in capacitance were tiny, but voltage dependence resembled ClC-3, which had the 

highest normalized capacitances. ClC-5 ranges between the other isoforms in the size of 

capacitances, but voltage dependence is strongly shifted towards depolarizing voltages. 
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Figure 5.37: ClC-3 and ClC-4 also display nonlinear capacitances which differ from ClC-5 with respect 
to magnitude and voltage dependence. A. and B. Voltage protocol and representative –P/n leak subtracted 
whole-cell recordings (solutions 12 and XVIII) of a cell expressing ClC-3, bearing a mutation for enhanced 
plasma membrane insertion (A) or ClC-4 (B). Depicted as enlarged insets are the off-gating currents. 
C. Capacitance curves of ClC-3 to -5, normalized to the current at +135 mV. Red lines represent fits to the first 
derivative of a standard Boltzmann function (Equation 2). ClC-3 and ClC-4 measurements were performed by 
R. Guzman and A.K. Alekov, respectively. (Modified from Guzman et al. (submitted)) 
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6 Discussion 

6.1 Fluorescent Measurements of endosomal pH 
Mammalian cells are characterized by a variety of morphologically and functionally different 

intracellular organelles, but ClC-5 is localized mainly in the plasma membrane and in a 

subpopulation of early endosomal vesicles. Elucidating the physiological effects of disease-

causing mutations or other modifications of ClC-5 function, like chloride concentration, anion 

species or pH, requires therefore the existence of pH markers that predominantly report the 

acidity of the endosomes in which ClC-5 is also present. The standard methodology to 

perform such investigations is to use endosomal markers with conjugated pH-sensitive dyes. 

Two markers are very often used for such investigations of ClC transporter function – FITC 

conjugated transferrin [57] or VAMPII-fused pHluorin (synapto-pHluorin)[120], [138], [139]. 

The aim of measuring the pH of endosomes containing ClC-5 therefore included the necessity 

to quantify the extent of colocalization of ClC-5 with the two aforementioned markers using 

3D confocal microscopy. 

The experiments reveal, that FITC-transferrin did not colocalize to a substantial degree 

with ClC-5 (Section 5.1). Similarly, the co-expression of ClC-5 and the VAMPII-fused 

pHluorin (synapto-pHluorin) also resulted in a very low degree of colocalization. Such lack of 

colocalization is not surprising, because ClC-5 is mainly part of the endocytotic pathway 

whereas VAMPII is associated mainly with exocytosis [121], [122]. Although ClC-5 

containing endosomes demonstrated a similar staining pattern as synapto-pHluorin containing 

endosomes, these vesicles seem to belong to two different populations. 

A partial colocalization of ClC-4 and ClC-5 was previously shown in transfected 

Caco-2 cells [56], but the extent of colocalization between FITC-transferrin and ClC-5 was 

not quantified. These authors showed later that ClC-4 is an important determinant of 

transferrin uptake in mouse fibroblasts [62]. It seems therefore logical to assume that most of 

the FITC-transferrin uptake occurs due to endogenous activity in HEK293 cells and the 

compartments containing endocytosed transferrin are different from those, in which both 

overexpressed ClC-5 and ClC-4 are localized.  

Hara-Chikuma and colleagues [76] measured endosomal pH in proximal tubule (PT) 

cells of normal and ClC-5 knock-out mice. Compared to wildtype mice, they reported a 

higher pH value in early endosomes of knock-out mice, measured with transferrin-conjugated 

dyes, but an unchanged pH of late endosomes, labelled by α2-macroglobulin-conjugated dyes. 

However, only endosomal-like staining by immunofluorescence in wildtype cells, along with 
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substantial plasma membrane staining in knock-out mice was reported but the colocalization 

of ClC-5 and the applied pH indicators was not quantified. 

Smith et al. utilized synapto-pHluorin to quantify the effects of various Dent’s disease 

mutations [138]. Colocalization to organelle markers was assessed in a semi-quantitative 

manner based on 2D images but co-staining with ClC-5 and synapto-pHluorin was not 

performed. These authors detected ClC-5 in both early and late endosomes in transfected 

HEK-MSR cells, yet the latter of which was shown before not to acidify in a ClC-5 dependent 

manner [76]. The experiments revealed a higher endosomal pH in HEK-MSR cells 

transfected with Dent’s disease mutants when compared to cells transfected with WT ClC-5, 

however, other Dent’s disease mutants had the opposite effect in decreasing endosomal pH. A 

similar approach was used to demonstrate that ClC-5 is able to directly acidify endosomes 

when the V-type ATPase is blocked [139]. In this case however, immunofluorescent images 

revealed qualitatively partially overlapping localization of ClC-5 and synapto-pHluorin.  

The lack of colocalization in presented in this thesis and the data of Hara-Chikuma et 

al. showing no effect of ClC-5 knock-out on the pH of late endosomes suggests that pH 

measurements with this synapto-pHluorin are likely to be contaminated with acidification 

facilitated by other conductances. As an alternative, different experimental systems (native 

mouse PT cells vs. transfected HEK cells) might account for the discrepancies, which make a 

direct qualitative measurement of colocalization of ClC-5 and the respective dyes even more 

plausible.  

The results here show that two of the most commonly used markers for investigating 

endosomal acidity – FITC-conjugated transferrin and synapto-pHluorin – are not optimally 

suitable for investigating ClC-5 function. They further suggest that a careful 3D assessment of 

the colocalization of the used pH marker and ClC-5 in the particular expression system are 

essential for performing quantitative investigations of the physiological role of this isoform. 

They also demonstrate the need of developing new sensors for measuring endosomal 

acidification with higher specificity to the different endosomal subpopulations. Another 

possibility to overcome the problems associated with poor colocalization is to develop 

techniques in which acidity is dynamically measured at the single vesicle level with online 

colocalization to the corresponding ClC protein. 
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6.2 The proton glutamate E268 regulates transport probability of 
ClC-5 

This work provides insights into the mechanism of voltage sensing and regulation of transport 

probability. Smith and Lippiat were the first to describe the presence of gating currents in 

ClC-5 and used them to describe voltage dependence. In analogy to Santos-Sacchi [136], 

additionally, here the voltage dependence was also assessed by measuring the capacitance 

changes, mediated by ClC-5 upon depolarization. Furthermore, the process underlying gating 

currents is likely to be the same that activates ionic currents because Smith and Lippiat [80] 

demonstrated that the conductance-voltage relationship of WT ClC-5 closely resembles the 

charge-voltage relationship of the non-conducting E268A ClC-5 in terms of shape and voltage 

dependence. As suggested in this thesis, the presence of gating currents and nonlinear 

capacitances represent the same molecular process and can therefore be used synonymous. 

The ratio between nonlinear capacitances and ionic transport differed strongly 

depending on one hand on the internal pHs and on the other on the biochemical properties of 

the side chain of the amino acid at position 268. This amino acid is strongly conserved among 

the ClC transporters and is postulated to be at the intracellular end of the proton conduction 

pathway [59], [93]. Results presented in this thesis indicate that a readily protonatable residue 

at this position and/or high internal [H+] reduced the capacitance but increased the probability 

of transport, not only in coupled mode, but also in uncoupled mode, without changing the 

degree of uncoupling. The reason for this was, however, neither a shift of voltage dependence 

of the process activated by depolarizing voltages (Section 5.6) nor altered affinities for the 

transported substrates (Section 5.4). Likewise, the single channel amplitude in external SCN- 

remained unchanged by a better supply of internal H+ (Section 5.3), which was also published 

for NO3
- by another group [79], suggesting that internal protons do not increase unitary 

transport rates independent on the nature of the transported anion. Altogether, the 

aforementioned results show that internal protons modulate a different gating process. This 

process regulates the transport probability of ClC-5, but is different from the prominent 

depolarization-activated gating, manifested in its voltage dependence of the nonlinear 

capacitances and gating charge movements. In ClC-4 the depolarization activated gating 

process is similarly independent of internal pH [143] and an additional gating process was 

detected at hyperpolarization which corroborates the notion that ClC transporter gating is a 

complex voltage and substrate-dependent process. 

Based on the recently published ClC structure showing the gating glutamate 

occupying the central anion binding site Scen [96], it can be postulated that ionic transport 
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requires this residue to first unbind from Scen. The binding of the negative side chain is strong, 

but it is weakened by the transfer of one proton to the gating glutamate at this site. 

Accordingly, when the gating glutamate is substituted by cysteine, which is far less 

protonatable, the effects of internal protons are absent. Additional support for this hypothesis 

is provided by the findings that S168P, which destabilizes the binding of anions or of the 

gating glutamate to the central binding site, reduces sensitivity to internal pH (Section 5.8).  

The results presented here, in conjunction with the solved structures of EcClC and 

CmClC [90], [96] can be used to create a simple schematic model, explaining the occurrence 

of the gating currents in ClC transporters (Figure 6.1). 
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Figure 6.1: Theoretical model scheme on the generation of voltage-dependent capacitance mediated by 
ClC-5. The gating glutamate E211 can be protonated when it accepts a proton at the central binding site, 
delivered by the proton glutamate 268. The protonated gating glutamate swings out and this complete transport 
process does not generate capacitance. When the protonation can not be accomplished, the nonprotonated 
gating glutamate is only able to oscillate between the central and external binding site in a voltage-dependent 
manner and creates capacitance without transport. The internal proton supply and/or the properties of the 
residue at position 268 determine the proportion of completed and incomplete transport-cycles and thereby the 
magnitude of nonlinear capacitances and ionic currents. (From Grieschat and Alekov, 2012) 
 

 The model describes the movement of the gating glutamate between the central (Scen) and the 

external (Sext) anion binding sites and the external solution: when the gating glutamate is 

bound at the central binding site it can accept a proton delivered by the proton glutamate and 

subsequently swing out. The transport cycle can proceed and no capacitance is generated. 

When one imagines voltage-dependent gating charge movement it becomes graspable that a 

protonated and therefore neutral gating glutamate cannot contribute to this. In accordance 

with this assumption, gating currents could not be detected upon substitution of the gating 

glutamate by the neutral alanine [80] or the mostly protonated and therefore neutral cysteine 

(Figure 5.17 A). Conversely, when no transport is possible, because the proton glutamate is 
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mutated to glutamine and is unable to protonate the gating glutamate, the negatively charged 

side chain is only able to switch between both closed conformations, (Scen, Sext). This 

restricted conformational change is responsible for the observed capacitance changes. The 

pronounced gating currents seen in the transporting WT ClC-5 do not contradict the 

postulated model, because the absolute open probability of this isoform is very low, as 

determined by non-stationary noise analysis (Section 5.3). In addition, a protonatable residue 

with a higher pKa of the side chain (e.g. histidine) in place of the proton glutamate has a lower 

tendency to pass the proton on to the gating glutamate and the model predicts larger 

capacitances in this case, which are also experimentally observed for this mutant (Figure 

5.12). According to the presented scheme, also a higher internal proton concentration 

facilitates the proton transfer from the proton to the gating glutamate and leads to low 

capacitance, which is also confirmed in the experiments (Figure 5.16). 

 Several unexplained experimental findings reported by other groups can be easily 

explained by the model postulated here. For example, it becomes clear why, in contrast to 

mammalian ClC transporters, the bacterial isoform EcClC is still able to mediate uncoupled 

Cl- flux when the proton glutamate is neutralized. The gating glutamate in EcClC might be 

bound more weakly at Scen, which would result in much higher probability to swing to Sext and 

be protonated from the external side, thereby opening the conduction way for Cl-.  

It should be finally noted that there are findings that might not fully agree with the 

model presented in Figure 6.1. On one hand, mutation E268H not only shifts the ratio of 

transport to capacitance (i.e. alters transport probability), but also changes the degree of 

uncoupling by external SCN- (see Section 5.9). The model predicts however no qualitative 

difference between a higher pKa of the proton glutamate 268 side chain or a higher internal 

proton concentration. Unfortunately, the method used to measure proton flux in this work is 

not suitable to accurately quantify absolute coupling stoichiometries and therefore, only 

relative uncoupling with respect to Cl- upon external SCN- application was determined. So it 

is not possible to discriminate, if in E268H ClC-5 SCN- uncouples less efficiently than in WT 

or if Cl- transport per se is less coupled to H+ movement. An investigation on the coupling 

efficiencies of various proton glutamate mutants of EcClC [149] left this parameter nearly 

unchanged compared to wildtype. However, the different behaviour of proton glutamate 

mutants of EcClC and ClC-5 with nonprotonatable residues at this position makes the direct 

transfer of these results very difficult. 

The results concerning proton transport in external SCN- presented in this thesis differ 

from results in ClC-4 [60] and results of another group which expressed analyzed ClC-5 in 
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Xenopus laevis oocytes [59], reporting strong decrease of H+ flux upon SCN- application. The 

differences to ClC-4 can be easily explained, based on the much higher overall transport 

probability of this isoform [60]. In this case, the maximum possible 100% transport 

probability is much earlier reached and application of external SCN is not able to induce a 

further increase, but only uncouples transport. The differences to the results of Zdebik et al. 

are on the other hand most probably due to differences in the expression system. The internal 

conditions are not exactly known and cannot be controlled in Xenopus oocytes but can be of 

crucial importance. For example, in this work and from others it is shown that lower internal 

Cl- concentration will result in increased transport probability. 

 

 

6.3 Lysine 210, positioned in the immediate proximity of the 
gating glutamate, alters anion/proton antiport coupling and 
voltage dependence of ClC-5 

In order to characterize the function of lysine 210 in ClC-5 transport, one experiment shown 

here, investigated possible effects on transport coupling in various external substrates.  

The residue next to the gating glutamate was subject of previous investigations in ClC-1 [91] 

and also in ClC-5 [140] and in both cases strong impact on the  anion selectivity was reported. 

WT ClC-1 favours in terms of conduction Cl- to NO3
-, whereas the corresponding mutation 

K231A reverses this behaviour [91]. ClC-5 prefers in terms of transport specificity the large 

uncoupling anion NO3
- over Cl-, but mutation K210A shifts this behaviour well towards Cl- 

[140]. This tendency was also seen for the mutant K210C ClC-5 in the same publication, 

where NO3
- currents were slightly decreased compared to Cl- currents. This is in agreement 

with results presented in this thesis, also reporting about the same current magnitudes for 

external Cl- and NO3
- 

Measuring proton transport, De Stefano et al. reported a relative uncoupling of ~3-4 in 

external NO3
- for both the K210A mutant and wildtype, denoting only an altered substrate 

specifity [140].  However, this finding partly contrasts with results in this thesis. Here, mutant 

K210C ClC-5 mediates NO3
- currents with about the same magnitude as Cl- currents, but 

uncoupling in NO3
- was less pronounced than in wildtype (Section 5.10.1). This value was 

also ~3 and therefore comparable to K210A, yet relative uncoupling in wildtype reached 

values of ~5-7 in measurements presented in this thesis. This value is supported by previous 

results from the same group, using a different method to determine the absolute coupling 

stoichiometries in Cl- and NO3
- [79]. For WT ClC-5 they reported a 2 to 1 Cl-/H+ 
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stoichiometry and a 12-22 to 1 NO3
-/H+ stoichiometry, which results in 6-12 times relative 

uncoupling – values much different than the recently published ones [140] and comparable to 

the values presented in this thesis for the wildtype. Therefore, the unchanged uncoupling 

detected by De Stefano et al. [140] could be due to insensitivities of the chosen method. 

Unfortunately, as mentioned before, the method used in this thesis is not capable to determine 

absolute transport stoichiometries. Therefore, the mutation K210C could bring about stronger 

NO3
-/H+ coupling or weaker Cl-/H+ coupling to mediate the detected relative uncoupling. 

De Stefano and colleagues postulated no change of voltage dependence of Cl- currents 

in K210A and only a small change for K210C but they gained this notion merely by 

comparing current magnitudes at two different voltages and not by quantifying V0.5, as 

pursued in this thesis. For K210R they assessed a stronger alteration of voltage dependence, 

which is consistent to the result presented here. Although in this thesis, the nonconducting 

double mutant K210C/E268Q was used to determine voltage dependence, previous 

experiments (Figure 5.13) showed that the additional proton glutamate mutation does not alter 

voltage dependence dramatically.  

 

6.4 The effects of mutations and modification at position 210 are 
diverse and suggest complex amino acid interactions 

It is obvious, that the properties of the side chain adjacent to the gating glutamate modifies 

voltage sensing of ClC-5 (Section 5.10.2), but it is puzzling what the determinants are. The 

conservative mutation of lysine to arginine (both possess long, either neutral or positively 

charged residues) shifts voltage dependence much more than the shorter and neutral or 

negative cysteine. Furthermore, when this cysteine is modified by the MTSET, this elongation 

and reintroduction of positive charge does not restore the properties similar to the long and 

positively charged lysine, but shifts the voltage dependence by another 50 mV towards 

hyperpolarizing voltages. 

In contrast, extracellular application of Cd2+ restores voltage dependence and kinetics 

of activation to values very similar to those of E268Q (Figure 5.28 and Figure 5.33 ). It could 

be hypothesized that Cd2+ assumes a transient binding to the deprotonated sulfhydryl group 

and still possesses positive charge to somehow mimic the properties of the native lysine. 

However, magnitudes of capacitances and gating currents are not restored to the large values 

of E268Q. From those results of site-directed cysteine modification, neither clear effects of 

charge, nor of size can be deducted. It appears therefore that the amino acid at position 210 

does not directly move in the membrane electric field and serves as a part of the voltage 
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sensor of ClC-5, but interacts with other amino acids and the specific energy of this 

interaction modulates voltage-dependent gating. Possible candidates for such interactions are 

residues from the external part of helix B (see Figure 5.22) and namely with amino acids 

histidine 80 and aspartate 76, which are located only 3-5 Å away from K210. In addition, it is 

possible that the residue at position 210 does not interact with a single partner, but with 

different ones, depending on the size of the substituted residue. Because of this, depending on 

which amino acid is the interaction partner, the same charge can have a dramatically different 

effect. Nevertheless, the strong effects of mutations at this position on voltage dependence 

and selectivity argue that not only movements of the gating glutamate take place during 

transport.  

The effects of cysteine modification were two-fold – MTSET modification of 

K210C/E268Q shifted the voltage dependence to hyperpolarized values, along with a 

decrease of capacitance (Section 5.10.2), when normalized to the data of the unmodified 

cysteine mutant. This might be explained by a higher baseline capacitance at a given holding 

potential – The strong left-shift of V0.5 to 0 mV in MTSET modified K210C/E268Q (Figure 

5.28 B) would lead to a certain percentage of activated ClC-5 even at -30 mV holding 

potential, and therefore cause a quite high capacitance. Only the remaining nonactivated ClC 

could contribute to the voltage-dependent increase nonlinear capacitance, rendering the bell-

shaped curve shallower. This assumption is however inconsistent with the reduction of 

capacitance, when the voltage dependence is shifted to more positive values by Cd2+, which 

should result in more transporters contributing to the capacitance at the same given holding 

potential. Similar inconsistency is observed also for the H80C/E268Q double mutant, for 

which MTSET increased the capacitance, along with slightly shifting the voltage dependence 

to less positive voltages. Furthermore in D76C/E268Q, Cd2+ strongly decreases capacitance 

without dramatic voltage shift. In K210C/E268Q the decrease of capacitance seems to exhibit 

a different dependence on the Cd2+ concentration than the left-shift of voltage dependence 

does. All these observations indicate a complex process, which is strongly dependent on the 

position of the substituted amino acid in the protein. At least in case of Cd2+ the diverse 

effects could also be linked to the divalent nature of the cation or to the possible voltage 

dependence of instantaneous binding and unbinding. It can not be concluded yet, if K210 

interacts with residues of helix B, but cross-linking experiments in the future might be the 

answer to this. 
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6.5 Voltage-dependent kinetics of ClC-5 activation are associated 
with simultaneous deactivation 

The kinetics of activation of ClC-5 can directly be linked to the voltage dependence of 

activation. Mutants or modification, which shifted the voltage dependence to less positive 

values activated with a smaller time constants (τ1 and τ2, Section 5.10.4). Vice versa, right-

shift upon Cd2+ modification of K210C/E268Q slowed activation kinetics down to values 

similar to the absence of the cysteine substitution the same way as voltage-dependence was 

restored. Apparently also a third process has to be taken into account which is best seen at the 

most left-shifted MTSET-modified K210C/E268Q – gating charge reduction (inactivation) 

that is time- and voltage-dependent (Figure 5.33 and Figure 5.35). 

This process of deactivation resembles the gating charge immobilization of cation 

channels, for example the Shaker K+ channel of Drosophila where this voltage- and time-

dependent behaviour was also shown [150]. The effect in this potassium channel was strongly 

dependent on the holding voltage and could be abolished by mutational deletion of a portion 

of the N-terminus. Because cation channels and Cl- transporters share no homology, a 

conclusion on a molecular correlate in ClC-5 is not possible. Further insight might be gained 

however from future investigations on the dependence of the nonlinear capacitances and 

holding voltage of the experiment. 

 

6.6 Voltage-dependent gating presumably involves movement of 
helix F 

The accessibility for covalent MTS modification of the cysteine substituted residue next to the 

gating glutamate was published before for ClC-1 [91] and also for ClC-5 [140], and in this 

thesis, the voltage dependence of modification was assessed, which was faster at depolarizing 

voltages (Section 5.10.5). Thus, additionally to the shifted voltage dependence of K210 

mutants, voltage-dependent MTSET modification indicates that movements not only of the 

gating glutamate but of the whole helix are involved in the gating process. One could imagine 

that, when the protonated gating glutamate 211 swings out, movements of Helix F occur, 

which alter the orientation of residue 210, which is localized in the loop at the beginning of 

this helix and subsequently exposed to the solution at depolarizing voltage. 

 Modification was shown to take place at all tested voltages. This raises several 

possibilities. Perhaps, even at -70 mV a fraction of K210C/E268Q ClC-5 proteins are 

activated, which could be the case, because also in the negative voltage range nonlinear 

capacitance is evoked (Figure 5.27 D). Alternatively, K210C might never be completely 
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excluded from the external solution, even at nonactivating voltages. As a third possibility, the 

short voltage pulses to determine Qoff could be sufficient to cause exposal and subsequent 

modification, which indeed was shown to be fast for thiols in aqueous solution with a rate of 

105  M-1 sec-1 [132].  

The model of Yang and Horn [147] (Scheme 3), previously used to describe voltage-

dependent MTS modifications, predicts a linear dependence between modification rate and 

MTSET concentration, which seems not to be the case for modification of K210C ClC-5. This 

indicates that not all of the assumptions for the validity of this model hold. 

 

6.7 Mutation K210R at the external interface reduces blocking 
effect of internal anions 

Attempting to explain the observed shifts in the voltage dependence for various mutations of 

lysine 210, the apparent binding affinities of ClC-5 for internal anions were assessed in this 

thesis. Mutation K210R increased the Kd value 10-fold, indicating that conformational 

changes at the extracellular edge of the pore directly modulate the binding of internal anions 

(Section 5.10.3). The blocking action of internal anions on ClC-5 might be explained by 

assuming that Cl- binding to the internal binding site disfavours the binding of the negative 

gating glutamate to the central binding site by electrical repulsion [143]. Vice versa this can 

be a reason for the elevated apparent Kd for internal Cl- in the mutant K210R/E268Q – The 

mutation shifts voltage dependence to less depolarized voltages because the gating glutamate 

can reach the central binding site easier and a Cl- ion at the internal binding site cannot bind 

with the high affinity as in WT. Feng et al. [151] reported a much slower transport in CmClC, 

when the gating glutamate is substituted by a shorter aspartate, which is supposed to more 

difficultly reach the internal binding site (Sint).  

The apparent binding constant for internal Cl- was previously assessed for ClC-4 to be 

800 µM [143] and is very similar to values reported here for E268Q ClC-5. It is however 

unclear, whether the observed effects are caused by Cl- binding to the internal or the central 

binding site Sint or Scen (Figure 3.5). The values for these two mammalian ClC transporters 

differ profoundly from values published for the prokaryotic EcClC, which were measured 

using isothermal titration calorimetry (ITC) and reporting a Kd > 20 mM for the Cl- affinity of 

the internal binding site [94]. Interestingly, this group determined the affinity of the central 

binding site to be 700 µM for Cl-. It is therefore possible that either the experiments presented 

here report the binding affinities of internal Cl- to the central binding site, or alternatively 

binding affinities might differ profoundly between the mammalian and bacterial isoforms.  
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6.8 Mutation K210R might mediate voltage-dependent transitions 
that result in bi-phasic voltage sensing  

Measurements with reduced external Cl- showed increased and right-shifted bell-shaped 

capacitance for the single mutant E268Q whereas the double mutant K210R/E268Q featured a 

double bell-shaped capacitance curve (Figure 5.31). This behaviour is presumably not directly 

connected to the left-shift of voltage dependence of K210R/E268Q, because the even further 

shifted MTSET-modified K210C/E268Q does not show this behaviour upon removal of 

extracellular Cl-.  

In analogy to Santos-Sacchi [136] the increase of capacitance can be regarded as the 

generation of a dipole in a certain direction upon depolarization, until V0.5 is reached. After 

this voltage, the dipole is reorienting, which leads to reduction in membrane capacitance. In 

this framework, the double-peak behaviour of mutation K210R/E268Q is interpreted as a 

repeated reorientation of the protein dipole moment (Figure 6.2). 
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Figure 6.2: Voltage-dependent dipole generation opposes the electric field and elevates capacitance. 
Shown is the direction of the electric field (E) and parallel components of the generated dipoles, either in 
direction or opposing the direction of the electric field. The direction and magnitude is voltage dependent and 
weakens or strengthens the electric field, leading to increase or decrease of membrane capacitance. Mutation 
K210R might lead to a voltage-dependent repeat of this dipole movement. 
 

 Since the external electric field obviously does not change its orientation during this process, 

the observed reorientation cannot be simplistically explained by a reversed movement 

direction of charged amino acids in the protein (i.e. the gating glutamate 211) and more 

complex mechanisms should be discussed to encounter for the experimental findings. One 

possibility is that hypothetic interactions of lysine 210 with other residues serve as a spring, 

opposing the movements of the gating glutamate. For the double bell-shaped capacitance 
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curve it might be thinkable, that in one voltage range K210R might interact with certain 

residues in helix B and arrange for the voltage-dependent action of the gating glutamate. 

When higher voltages are applied, the arginine 210 might switch its interaction partners, 

which might change the interaction energy manifested in the model as reduced spring 

constant. Such switches would allow accordingly a reversal of the movement direction of the 

gating glutamate, thereby creating a second event of dipole formation.  

Although no clear role can be attributed to the nature of the substituted side-chain 

concerning charge and length, one can speculate that the bifurcated guanidinium group of 

arginine has more opportunities to find other reaction partners than lysine. As a consequence, 

it can initially interact with one partner residue in the low voltage range and then it interacts 

with the same partner like lysine would do and result in the same voltage dependence as 

E268Q (Figure 5.31). Deciphering the structural basis from existing ClC crystals is obstructed 

by the poor conservation of the residue next to the gating glutamate (Figure 5.20) – arginine 

in ClC-ec1, tryptophan in CmClC and phenylalanine in SyClC. In the future, scanning 

analysis with cross-linkable residues in helix B might provide further evidence for the validity 

of this very speculative mechanism. 

6.9 Physiological importance of gating currents and nonlinear 
capacitances of mammalian ClC transporters 

Gating currents and nonlinear capacitances can be used as an unambiguous hallmark of ClC 

transporter activity to discriminate them from endogenous or somehow upregulated 

conductances, which might be the origin of contradicting ClC-3 reports in the past. 

Particularly by mutation of the proton glutamate, ClC-3, -4 and -5 demonstrated significant 

gating currents and nonlinear capacitances, but of different magnitudes (Section 5.11). ClC-3 

demonstrated largest, ClC-4 lowest changes of capacitance and ClC-5 ranges in the middle. 

Applying the model from (Section 6.2), it can be stated, that ClC-3 is the “worst” transporter 

of all three, while ClC-4 is the “best” transporter. This is reflected in the absolute open 

probabilities, which was previously determined for ClC-4 by non-stationary noise analysis to 

be ~50% [60]. Non-stationary noise analysis under the same ionic conditions shown in this 

thesis reveals a much smaller absolute open probability for ClC-5, which is reflected in larger 

gating currents.  

Those three ClCs are intracellularly localized transporters, apparently with the same 

task of shunting against high positive voltage in endosomes, caused by the V-type ATPase. 

Yet large differences concerning voltage dependence and transport probability argue for 

specializations of each isoform to different intracellular compartments. In those organelles, 
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very diverse concentrations of protons and Cl- are present, which may be accompanied by 

different transmembrane voltages (Figure 3.2). The membrane capacitance influences the 

number of charges which is needed to impose a certain membrane potential [152]. It may be 

speculated that “bad” ClC transporters, that act as “good” capacitors elevate the membrane 

capacitance to lower transmembrane voltage, normally opposing further acidification. 

Thereby they might be able to provide an electrical shunt without actually transporting ions. 

Compartments with conditions requiring charge transport for shunting might be the 

operational area of the “good” transporters. 
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