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AbstratThis work is onerned with the numerial examination of aoustially driven �ows withinthe inner ear on the basis of a omputational model. For this purpose, a omprehensivesystem of di�erential equations and boundary onditions is dedued, whih takes, to asatisfatory extent, the omplexity of the main biophysial mehanisms of the ohlea intoaount.Beside an appropriate representation of the �uid dynamis, also the biomehanialproperties of the basilar membrane as well as the internal ampli�ation mehanism ausedby the outer hair ell motility are onsidered in order to get realisti estimates of thestruture and magnitude of the mean �ow �eld. In the present work, the interior �uidsare modeled on the basis of a two-dimensional simpli�ed domain by using onepts fromthe �eld of ontinuum mehanis. Aording to an approah from Mammano and Nobili[28℄, the mehanial reation of the ohlear partition and also the outer hair ell motilityare represented as one-dimensional osillatory systems. With the aid of the perturbationtheory, two linear subproblems are extrated that an be used for a separate determinationof the aousti and the aousti streaming �eld.The present work introdues a two-stage approah for the numerial evaluation ofthe solutions on the basis of the �nite element method. The �rst step deals with thetime-dependent aousti subproblem. Due to the strong oupling between the di�erentomponents a monolithi approah is onsidered that simultaneously alulates the inter-ating proesses. The seond step is assoiated with the stationary aousti streamingsubproblem that provides a �rst order approximation of the aousti streaming �eld.Finally, the numerial solutions of the omputational model are presented. It is shownthat the results are essentially onsistent with measurements as well as analytial andexperimental onsiderations.Keywords: aousti streaming; ohlea; �uid-struture-interation.
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ZusammenfassungDie vorliegende Arbeit beshäftigt sih mit der numerishen Untersuhung von akustish in-duzierten Strömungen innerhalb des Innenohres auf Grundlage eines Berehnungsmodells.Zu diesem Zwek wird ein umfassendes System aus Di�erentialgleihungen und Rand-bedingungen abgeleitet, das der Komplexität der biophysikalishen ohlearen Vorgängegereht wird.Um möglihst realistishe Ergebnisse in Bezug auf die Struktur und Gröÿenordnung derakustish induzierten Strömungen zu erhalten, werden neben einer angemessenen Darstel-lung der Fluiddynamik zudem auh die biomehanishen Eigenshaften der Basilar Mem-bran sowie der interne Verstärkungsmehanismus - der durh die Bewegungen der äuÿerenHaarzellen hervorgerufen wird - berüksihtigt. Die inneren Flüssigkeiten werden in dieserArbeit mithilfe von Konzepten der Kontinuumsmehanik auf einem simpli�zierten zwei-dimensionalen Gebiet modelliert. Die mehanishe Rükkopplung der Basilar Membranals auh die Bewegung der äuÿeren Haarzellen werden, entsprehend eines Ansatzes vonMammano und Nobili [28℄, jeweils durh ein eindimensionales shwingungsfähiges Systembeshrieben. Mithilfe der Störungstheorie werden shlieÿlih zwei lineare Teilproblemegewonnen, mit denen jeweils eine separate Bestimmung der akustishen Shwingungenund der akustish induzierten Strömung möglih wird.Die vorliegende Arbeit stellt ein zweistu�ges Verfahren zur numerishen Bestimmungder Lösungen auf Grundlage der Finite-Elemente-Methode vor. Die erste Stufe behan-delt das akustishe Teilproblem. Aufgrund der starken Kopplung zwishen den unter-shiedlihen Komponenten wird ein monolithisher Ansatz verwendet, der die interagieren-den Prozesse simultan berehnet. Die zweite Stufe liefert im Anshluss für das zweite Teil-problem eine Näherungslösung erster Ordnung für die akustish induzierten Strömungen.Zum Abshluss werden die numerishen Ergebnisse des Berehnungsmodells dargelegt.Darüber hinaus wird gezeigt. dass die Resultate im Wesentlihen mit Messungen sowieanalytishen und experimentellen Untersuhungen übereinstimmen.Shlüsselwörter: akustish-induzierte Strömungen; Cohlea; Fluid-Struktur-Interaktion.
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Chapter 1IntrodutionThe proess of hearing is a quite omplex mehanism whih is still not fully understood.The auditory system of humans is apable of reognizing aousti signals between 20Hzand 20kHz and a sensitivity range of about 12 orders of magnitude (f. [38℄). As illustratedin �gure 1.1, the soundwave has to pass initially the outer ear, the external auditory analas well as the middle ear (whih onsists of the tympani membrane, the malleus, the inusand the stapes) before reahing the snail-shaped inner ear, whih is known as ohlea (f.�gure 1.2). Within the ohlea the aousti signal is onverted into nerve impulses by anelaborate bio-mehanial mehanism. This mehanism as well as the triggering proess ofthe nerve impulses are mainly aused by the de�etion of tiny hair-bundles, the so-alledstereoilia. In the light of this underlying proesses, the relevane of aousti streamingand its potential in�uene on the bio-mehanial mehanisms are still an open issue.The term aousti streaming is assoiated with the mean motions of a �uid or a gasthat are indued by an aousti �eld. Up to now, a diret examination of suh mean�ows within the ohlea has not yet been possible due to the limited aessibility and thesmall dimensions of the liquid �lled hambers. Furthermore, it an be expeted that theresultant veloities of the aousti streaming �eld are relatively small in omparison to theharateristi veloities of the sound �eld. This work yields numerial estimates of themagnitudes as well as the struture of aousti streaming within the ohlea on the basisof a simulation proess. The objetive of this omputational model is the provision of anew instrument for a substantiated disussion on the physiologial impat of aoustiallydriven �ows within the ohlea. In addition, a ompletely new approah for simulatingaousti streaming within a �uid-struture oupled system like the inner ear is proposedwhih might also be used in a wide range of other appliations.The physial origin of aousti streaming an be found in di�erent dissipation meh-anisms of aousti energy. The propagation of sound waves is usually aompanied bya mean momentum �ux (better known as Reynolds stress) and a mean mass �ux. Suha mean net rate is aused when the transport of momentum, or the transport of massrespetively, aross an unit area is unbalaned over one yle (in the ase of a pure-tone1



CHAPTER 1. INTRODUCTION

Figure 1.1: Struture of the human ear. (soure Boenninghaus and Lenarz [4℄)stimulation). As a result of the sound wave attenuation it an be expeted that also themean momentum �ux as well as the mean mass �ux are weakened at regions of aoustienergy dissipation. The exess mass that an no longer be transported by the sound beammust be released and it appears as if this mass is injeted within the �uid. In the sameway, the exess momentum appears as an additional fore ating on the �uid. In priniple,these virtual mass soures or virtual fore soures are the main ause of aoustially driven�ows. (f. [26, 9, 6℄)Visosity an, for example, be identi�ed as one major kind of the dissipation meha-nisms. But, visous attenuation of aousti energy typially beomes signi�ant either athigh frequenies or next to boundaries due to an enhaned frition of adjaent �uid layers.Sine typial frequenies of the ohlear system are omparatively low, only visous atten-uation within the boundary layers an be onsidered as a ause for substantial mean �ows.Even though the dissipation of aousti energy is restrited to suh a boundary layer, aremarkable mean �ow an also our outside of this boundary layer. A fundamental anal-ysis of these boundary driven �ows goes bak to Lord Rayleigh [35, �352℄. He alulatedan e�etive slip �ow in order to represent the mean veloity of the �uid at the edge ofthe boundary layer relative to the boundary. In this ontext, it is interesting to note thatalthough the e�etive slip �ow is aused by visosity, the dimension of this motion does2



Figure 1.2: Struture of the ohlea. (soure Boenninghaus and Lenarz [4℄)not depend on an assoiated visosity-oe�ient. The reason for this phenomenon lies inthe fat that the resistane to suh a mean �ow also depends on the visosity itself. (f.[26, 35℄) Therefore, even if the visosity of a �uid is small, the resulting e�etive slip �owveloities an beome substantial.Two very important ontributions to the subjet of aousti streaming within the innerear, whih arise from the ohlear travelling waves, ome from Hallauer [20℄ and Lighthill[25℄. Hallauer as well as Lighthill examined the aousti driven �ows on the basis of the-oretial onsiderations. Both approahes use mathematial asymptoti and perturbationtehniques in order to get approximations of the nonlinear �uid motion within the ohlea.While Lighthill fousses on the determination of an estimate of the potential veloitiesof aousti streaming, Hallauer also alulates the streamlines of the aoustially drivenmotions on the basis of his mathematial model.In ontrast to the theoretial onsiderations from Hallauer and Lighthill, an experimen-tal examination of aousti streaming an be traed bak to Békésy [50℄. In his pioneeringwork he performed inter alia studies on mehanial ohlea models. He observed that aboveand below the ohlear partition two eddies arise if the mehanial model is stimulated bya sinusoidal exitation. It turns out that this eddy-like motion an be assoiated with the3
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SystemFigure 1.3: Shemati layout of the omputational model used for simulation of aoustially driven �owswithin the ohlea. On the basis of a perturbation tehnique, the system is separated into �rst and a seondorder system. The �rst order system desribes the linear aousti �eld of the �uid as well as its interationswith the strutures, suh as the oval window, the round window and the basilar membrane. Furthermore,the motility of the outer hair ells is taken into aount whih results in additional fores ating on thebasilar membrane. The �rst order system provides results that an be used by the seond order system inorder to alulate an approximation of aousti streaming.term aousti streaming. Eah eddy is haraterized by an apial direted mean �ow of the�uid-partiles that are loated lose to the ohlear partition and a basal direted meanmotion at the outer boundaries. The longitudinal position of the eddies depends on thefrequeny and orrelates with the harateristi plae. (f. [50, 48℄) A detailed desriptionof these eddy-like mean �ows was arried out by Tonndorf [48℄.Aousti streaming has already been studied in a lot of numerial simulation proesses.Di�erent kinds of numerial approahes for the simulation of aousti streaming were, forexample, reviewed by Boluriaan and Morris [6℄. But up to now, it has not yet sueededto establish an adequate method for the numerial simulation of aousti streaming withinbiophysial systems like the ohlea. The primary reason for this lies in the fat thatthe veloity �eld of the �uid is mainly in�uened by the interations with its adjaentstrutures.In this work a well-proven numerial method is adapted that was suessfully imple-mented by Köster [24℄, who studied the struture of aousti streaming aused by piezo-eletrially driven miro�uidi biohips. Köster used a standard perturbation tehnique inorder to split the nonlinear aousti streaming problem into two linear subproblems. Hisomputational model also inludes a more preise treatment of the aousti radiator, asoriginally suggested by Bradley [9℄.To investigate the in�uene of aoustially driven �ows in the inner ear, an appropriate4



omputational model was developed whih has been studied in a simulation proess. Inontrast to the work from Köster [24℄, this omputational model onsists not only of a �uid-domain but also of strutural omponents that have a signi�ant in�uene on the �uid. Ashemati layout of the model is shown in �gure 1.3. As one an see, the model introduedin this thesis an also be divided into a �rst order system and a seond order system. The�rst order system desribes the linear aoustis within the �uid-domain in ombinationwith the mutual interations of the ohlear strutures, suh as the basilar membrane, theoval window and the round window. The oval window serves as an aousti radiator dueto the diret ontat with the stapes of the middle ear. The round window is overedby a membrane that allows the �uid to move arbitrarily to a ertain degree. The basilarmembrane an also be brought into motion due to the di�erene of the pressure above andbelow the ohlear partition. In turn, suh a displaement of the basilar membrane alsohas an in�uene on the veloity �eld of its adjaent �uid. Furthermore, an additional foreterm that ats on the basilar membrane has also to be taken into aount for the �rst ordersubproblem in order to represent the motility of the outer hair ells. At a seond stage theaoustially driven �ows an be determined on the basis of the results of this �rst ordersystem.As illustrated in �gure 1.4, the analysis of a dynami system by means of the develop-ment and appliation of an appropriate simulation model onsists of di�erent steps. Firstof all, the main purpose and the prinipal targets of the model should be learly spei�edby a problem formulation. In this work, the following statement serves as suh a guidelinethat summarizes the preliminary onsiderations and remarks:The model is intended to verify, whether a signi�ant mean �ow ours.The simulation proess should estimate the order of magnitude of these meanmotions as well as its struture.On the basis of a problem formulation, an abstrat model is usually designed by makingreasonable simpli�ations, olleting spei� data and establishing evaluable mathematialrelations. In this ontext, it is important to ensure that the basi assumptions and simpli�-ations at this stage of modeling lead to a valid model with regard to its purpose. The basimathematial model, used in this work, is presented in hapter 2. In this ontext, funda-mental aspets with respet to the anatomial dimensions as well as the maro-mehanialharateristis of the �uid and the ohlear partition are taken into aount. If no analyti-al solutions of the abstrat mathematial model are found, the model an be transformedinto a omputer-reognizable form (also referred to as omputational model) in order toobtain numerial approximations. The onversion of the abstrat ohlea model into aomputational model is desribed in hapter 3. The implementation is realized by theuse of the �nite element method that mainly omprises the establishment of a so-alledvariational formulation, the onsideration of the solution spaes, a spatial and temporaldisretization and the assemblage of the resultant disretized systems of equations that anbe solved numerially. In order to verify that the model aurately represents the essentialfeatures of the real system, the model has to undergo some prede�ned experiments forthe purpose of validation. If the results of these validation-experiments are not satisfying,5
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Chapter 2ModelingMost people assoiate the word "model" with a physial, often smaller and simpli�ed loneof an original objet whih an be studied for example in wind tunnels or swimming pools.These types of models are known as ioni models. But in general, a model is a representa-tion of an objet or a system. Therefore, also illustrations, funtional diagrams, setionalviews, mathematial relationships, or eletroni iruits an be regarded as models.Espeially in the last few deades the importane of omputational models has in-reased with the possibility of the exeution of omputationally intensive alulations byomputers. Computational models are based on evaluable mathematial relations that annormally not be solved analytially. In suh a ase, it is neessary to determine the solutionby the use of numerial methods. In ontrast to other kinds of models, they are easy tomanipulate and the in�uene of parameters an be simple examined. But the determina-tion of the mathematial relations and physial laws as well as the numerial realizationrequires a lot of system knowledge, expertise and experiene.In general, models an be haraterized by di�erent (ontrary) properties (f. e.g. [8℄).The most important aspets are given by the following items:
• explanatory ↔ desriptive: An explanatory model tries to emulate the internalmode of ation of the system. A desriptive model by ontrast tries to imitatethe behavior of the system without the knowledge of the internal mode of ation.Aording to a blak box, the imitation is only based on the observation of the system.
• stati ↔ dynami: Dynami models take time-dependent proesses of the systeminto aount, whereas a stati model is haraterized by its time-invariane.
• system parameter ↔ parameter-adaption: If the internal (physial) quantitiesand dimensions of a system are known or an be measured, they an be diretlyused as harateristi model parameters. Otherwise, if some quantities annot bedetermined, the unknown parameters might be adjusted by an iterative proess aslong as the behavior of the model does not orrespond to the behavior of the system.7



CHAPTER 2. MODELING
• deterministi ↔ stohasti: In stohasti models, the in�uene of probabilistiand random e�ets are taken into aount. Otherwise, a model will be alled de-terministi if the behavior of the model is learly predetermined by the externalin�uenes.
• time-ontinuous ↔ time-disrete: The state of time-disrete models is only de-�ned at separated points in time. In ontrast, the state variables of a time-ontinuousmodel an be determined at any time within a spei�ed period of time.
• ontinuous spae ↔ disrete spae: Similar to the time-dependent properties"disrete" and "ontinuous", a orresponding distintion an be drawn with respetto spatial state variables. If a model onsist only of individual values that are spatiallyseparated or independent of the loation, the model will be referred to as disrete.If the state of a model is given at any point within a spei� area, the model isontinuous over spae.The model introdued in this hapter onstitutes a deterministi, spae-ontinuous andtime-ontinuous model. But the model is not learly lassi�able with respet to the otherattributes. For example, the �rst-order-subproblem of the model is an highly dynami sys-tem, whereas the seond-order subproblem desribes only the stationary (time-invariant)�ow of aousti streaming in steady state. Furthermore it an be noted that, althoughthe model is mainly onstruted by the use of explanatory omponents, some aspets aremodeled desriptively for reasons of simpliity. With respet to the model-parameters itshould be mentioned that not all quantities are learly prede�ned by diret measurementsor physial estimates. In onsideration of their physial limits, these parameters musttherefore be spei�ed in the ourse of the modeling-proess.Sine a model normally represents the original system only in ertain aspets, its rangeof validity is limited. Therefore, as already disussed in hapter 1, every model is basedon a spei� purpose for whih the model has been developed. Eah model should yieldadequate answers with respet to questions resulting from its purpose, but the validity ofthe model regarding other questions must be doubted. Often, di�erent questions need tobe treated by di�erent models.Another aspet in modeling is the resultant omplexity of the model. On the one handa model should be as e�ient and simple as possible. If a model is designed for universalpurposes, the omplexity and usually also the suseptibility to errors will inrease. Onthe other hand the model should re�et the harateristi aspets as realisti as possible.Therefore it is not easy to deide whether ertain simpli�ations are reasonable and whethera ertain omponent is important or not.This hapter deals with the establishment of an abstrat mathematial model whihdesribes the motions of the �uid as well as its interation with the adjaent tissues. Thebasi simpli�ations and assumptions made by the modeling proess are outlined in setion2.1. The di�erential equations that are used for representing the �uid are established insetion 2.2. In this ontext, a perturbation tehnique is introdued by whih the �uidi sys-tem an be separated into an aousti subproblem and an aousti streaming subproblem.8



2.1. SIMPLIFYING ASSUMPTIONSThe �rst order system is presented in setion 2.3 and desribes the linear aousti reationof the �uid (the aousti subproblem), the passive mehanis of the ohlear partition aswell as the motility of the outer hair ells. The aoustially driven �ows are approximatedby the time-averaged seond order system (the aousti streaming subproblem) whih isdedued in setion 2.4.2.1 Simplifying AssumptionsIn order to obtain an implementable model of the ohlea some simpli�ations and as-sumptions are made while maintaining fundamental aspets to get a valid representationfor estimating the ourrene and struture of aoustially driven �ows within the �uid-�lled hambers of the inner ear. For reasons of lari�ation, the diretion that is assoiatedwith the spiral axis of the oiled ohlea is referred to as longitudinal . The plane perpen-diular to the longitudinal axis is referred to as transversal . The diretion of the basilarmembrane �bres within this transversal plane is denoted as radial . The term vertialis assoiated with the diretion that is perpendiular to the longitudinal and the radialorientations.Dimension The hoie of the dimension is a ruial aspet in modeling. For a widerange of appliations, a three-dimensional model seems to be the most suitable for repre-senting the reality. In ontrast to this, a onsiderable e�ort would be required, partiularlyregarding the development, implementation and exeution of a three-dimensional model.Three-dimensional models of the ohlea were, for instane, realized by Givelberg andBunn [17℄ who used the immersed boundary method, as well as by Cheng et al. [11℄ andBöhnke and Arnold [5℄ who performed �nite element simulations. However, the ourreneof aoustially driven �ows ould not be investigated by these models, due to simplifyingassumptions made by the modeling proess. The present work ignores the variations par-allel to the radial width of the basilar membrane. Therefore, the numerial simulationspresented in this work are based on a two-dimensional model. Nevertheless, for a more de-tailed examination of aoustially driven �ows, a generalization to three dimensions wouldbe desirable.Geometry Due to the redution of the dimension, the spiral oiling of the ohlea annot be taken into aount. It is assumed that the main ause of this snail shell shape of amammalian ohlea lies in a better utilization of the spae and a more e�ient aessibilityof blood vessels and nerve �bers (f. [50℄). Reently, a strong orrelation between thehange of longitudinal urvature and the audible range for di�erent mammalian speiessuggest that the spiral oiling also has a ertain in�uene on the low-frequeny hearinglimit. It is assumed that this e�et is indued by a stronger fous of aousti energy atthe outer boundaries, partiularly at more apial sites where the urvature is higher (f.[29℄). Altogether, the spiral oiling appears to play only a subordinate role and therefore itseems to be reasonable to neglet the longitudinal urvature in order to analyze aoustially9



CHAPTER 2. MODELING
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0 mm 10 mm 20 mm 30 mmFigure 2.1: The two-dimensional shape of the unoiled human ohlea model. The heights of the salavestibuli and sala tympani are taken from Wysoki [52℄. The sala vestibuli and the sala tympani onstitutethe �uid domain Ω and these hambers are bordered by the rigid boundary Γr, the oval window Γow andthe round window Γrw. Both duts are separated by the ohlear partition Γbm.driven �ows. As it an be seen in �gure 2.1 the oiled tube of the ohlea is represented byan elongated �at shape. The height of the sala vestibuli and sala tympani are adaptedfrom Wysoki [52℄, who studied the the dimensions of the hambers on the basis of 25human adavers.Boundaries The boundary of the ohlea model an be divided into the rigid boundary
Γr, the oval window Γow and the round window Γrw (f. �gure 2.1). The oval windowonsists of the stapes whih at as an aousti radiator in order to stimulate the ohlearsystem. The piston-like motions of the stapes an be represented by orresponding dis-plaements of the assoiated boundary. The round window is losed by a �exible membranewhih allows the �uid to move within the ohlea to a ertain extent. For reasons of sim-pli�ation, the funtionality of the round window membrane is imitated by using a spei�boundary ondition as desribed in setion 2.2.3.Cohlear Partition To further redue the omplexity of the model, some anatomialdetails of the interior strutures are also negleted. The Reissner's membrane is a verythin (only two-ell layer thik) partition whih separates the sala tympani from the salamedia. It is assumed that the Reissner's membrane ats not as a barrier of aoustistimuli, but rather as a separation between the perilymph and the endolymph in orderto preserve the eletrial potential di�erene between both �uids. (f. [49℄) Therefore,the basilar membrane in ombination with the sala media and its interior strutures (e.g.the tetorial membrane, organ of orti, hair ells) are represented by the ommon one-dimensional domain Γbm. Furthermore, it is assumed that the ohlear partition an bemodeled as a ontinuum and that it an only be de�eted in vertial diretion. Althoughthe radial width of the basilar membrane annot be taken diretly into aount by a10



2.2. THE FLUID DYNAMICS

0

1

2

3

4

5

6

0 5 10 15 20 25 30

Distance from base [10−3m]

W
id
th

[1
0
−

4
m
]

Figure 2.2: Width of the basilar membrane. The data is taken from Nobili [31℄.two-dimensional representation of the ohlea, it is well aepted that the width plays animportant role within the mehanis of hearing. Therefore, the in�uene of this width isonsidered indiretly by the system of equations as desribed in hapter 2.3.2. Aordingto Nobili [31℄, the width of the basilar membrane is hosen as it an be seen in �gure 2.2.Fluid The sala vestibuli as well as the sala tympani are �lled with a watery �uid(perilymph). Both hambers are onneted by the heliotrema at the apex and onstitutethe �uid domain Ω. In the ourse of the numerial simulation of the �uid, it is assumedthat the ontinuum hypotheses an be applied. Sine the exat spei�ations of this �uidare not known, the perilymph is, similar to the properties of water, assumed to be a slightlyompressible, linearly bulk- and shear-visous �uid.2.2 The Fluid DynamisFluid dynamis is a disipline of natural sienes and a branh of ontinuum mehanis.It deals on the one hand with the motions of a �uid in spae and time and on the otherhand with the various and mutual fores within the �uid ausing the motions.Due to the moleular struture, a �uid is neither fully homogeneous nor isotropi. Foran exat spei�ation of the dynamis of a �uid, it would be neessary to onsider themutual interations of individual moleules and atoms. In priniple, it is quite possible(and sometimes it is also neessary) to model the �uid dynamis on an atomi level tounderstand and simulate a variety of phenomena. But often, the exat physial behaviourof individual partiles is not relevant and the sale of a typial length in the system islarge ompared to the length sales of moleular strutures. In this ase one an takeadvantage of the large number of partiles within a �uid. By averaging physial quantities11



CHAPTER 2. MODELINGover spae and time in an appropriate way, an hypothetial model an be onstruted. Insuh a model all kinemati and kineti quantities an be spei�ed at in�nitesimally smallpoints. Furthermore, it is assumed that all these quantities vary ontinuously so that theirspatial derivatives are also ontinuous. If a model desribes a physial matter as suh aontinuous matter the model will be termed as ontinuum. For a wide range of appliationsa representation of a matter as a ontinuum is well suited.For the mathematial formulation of the dynamis of a ontinuum, two di�erent kinds ofdesriptions have been established. In the Lagrangian spei�ation physial properties arede�ned as a funtion of individual material points and a time parameter. The Lagrangianspei�ation is usually used for the desription of solids, sine the primary interest is theevolution of its urrent on�guration and the analysis of physial quantities at spei�loations of the material. In ontrast to the Lagrangian spei�ation, the idea of theEulerian spei�ation is to desribe physial quantities at spei� loations x in spae,regardless of the material partiles at these plaes. This kind of desription is normallypreferred in the ontext of the analysis of �uid �ows due to potentially large hanges ofthe material on�guration.2.2.1 Conservation EquationsIn ontinuum mehanis the balane equations are the basis for the desription of an arbi-trary material, no matter whether it is a solid, a liquid or a ompletely di�erent material.The onservation of mass equation (whih is also referred to as ontinuity equation) anbe written as
∂ρ

∂t
= − div(ρv) (2.1)where ρ(x, t) denotes the salar density �eld, v(x, t) the vetorial �eld of the veloity and

t the time-parameter. In priniple, the ontinuity equation states that the time rate ofhange of the total mass within an arbitrarily hosen spatial volume must be equal tothe in�ow of mass through the borders of the volume. In a similar way, the balane oflinear momentum an be expressed in terms of the stress tensor σ by whih the fore thatats on the surfae of a spatial region an be determined. If external volume fores (e.g.gravitation) are negleted, the fores ating through the volume surfae must be identialto the time rate of hange of the total linear momentum within the volume. Therefore,the onservation law of linear momentum an be written as
ρ

(∂v

∂t
+ (grad v) · v

)

= divσ. (2.2)Both onservation equations are formulated on the basis of the Eulerian spei�ation. Fur-thermore, it was shown (e.g. [36℄) that the priniple of the balane of angular momentumresults in the relation
σij = σji. (2.3)12



2.2. THE FLUID DYNAMICSSymbol Value Name Unit
ρ(0) 998.0 ambient density kg/m3

c0 1484.0 small signal sound speed m/s
ζ 3.0× 10−3 bulk visosity N s/m2

η 1.0× 10−3 shear visosity N s/m2Table 2.1: Constants that are needed for the simulation of the �uid dynamis.This means that the stress tensor must be symmetri.A ontinuum-mehanial system will usually inlude an additional onservation equa-tion that also takes thermodynamial e�ets into aount. In this ontext, either theinternal energy or the entropy of the ontinuum has to be onsidered as an additionalunknown funtion. In this work it is assumed that these thermodynamial e�ets haveno signi�ant in�uene whih means that potential energy �utuations do not hange theveloity-, density- or pressure �eld onsiderably. Therefore, the mehanial system an bedeoupled from the balane law of energy or entropy and its assoiated �elds do not haveto be expliitly taken into aount by the simulation proess. (f. [47℄)2.2.2 Constitutive RelationsThe onservation laws of mass, linear momentum and angular momentum onstitute asystem of 7 equations that ontains 13 unknown funtions (vi, ρ, σij). In order to iden-tify a unique solution of these di�erent �eld funtions the system of equations must besupplemented by further relations that are usually referred to as onstitutive relations. Inontrast to the onservation equations, whih are fundamental priniples of physis andwhih are appliable for all kinds of materials, the onstitutive relations are normally de-dued from experimental observations and may di�er from material to material. Normally,the development of suh onstitutive relations is aompanied with an idealization of thereality.In ontrast to solids, �uids are normally haraterized by the relative motility of itsmoleules. Or more preisely, a �uid at rest annot preserve shear stresses (f. [19℄).Therefore, it has been proven useful to split the stress tensor into an hydrostati stresstensor and a stress deviator tensor with zero trae. In doing this, the stress tensor an bewritten as
σ =

1

3
trσI + s = −pI + s. (2.4)The salar funtion p(x, t) denotes the pressure �eld. It turned out that the dynamis ofa variety of di�erent �uids and gases for a wide range of appliations an be modeled verywell if a linear relationship between the deviatori stress and the strain rate is assumed.In this ontext, the loal strain rate of a material an be desribed in terms of the veloityby the tensor (f. e.g. [19℄)

D :=
1

2

(

grad v + (grad v)T
). (2.5)13



CHAPTER 2. MODELINGFor the spei�ation of the onstitutive relationship, the linear relationship should be inonformity with some basi assumptions of material theory. Aording to [47℄ and [19℄,the following items should, inter alia, be taken into aount:
• Although �uids are in priniple not isometri at the atomi level, an idential behaviorof the hydrodynami properties with respet to all diretions an be usually observedat the maro-mehanial level.
• A physial quantity at a spei� loation is assumed to depend only on the physialproperties of its loal neighborhood.
• The dynamis of the �uid are only a�eted by its urrent and preeding on�gura-tions. This means that the system is deterministi. In most ases, it is su�ient tolimit this kind of "memory" by taking only the urrent rate of hange into aount.
• The priniple of material frame indi�erene states that the hoie of the refereneframe for desribing the onstitutive relations should have no in�uene on �uid dy-namis.As a onsequene of these basi assumptions, it was shown (f. [36℄) that the linearrelationship between the deviatori stress tensor and the strain rate tensor an be written- in its most general form - as

s = λ tr(D)I + 2ηD (2.6)where λ and η onstitutes appropriate onstants of proportionality. The onstant λ isusually replaed by the expression ζ − 2
3η in order to establish material oe�ients thatare assoiated with either the isotropi variation or the deviatori variation. Due to theirphysial interpretation, the oe�ients η and ζ are then referred to as shear visosity andbulk visosity . Using 2.4 and 2.6, the stress tensor an be evaluated to

σ = −pI + (ζ − 2

3
η) tr(D)I + 2ηD. (2.7)Now, the number of unknown funtions an be redued by inserting this expliit de�nitionof the stress tensor into the balane of momentum equation 2.2. In doing so, the divergeneof the stress tensor an be determined aording to the spei�ation of the strain rate tensor2.5 to

divσ = − grad p+ (ζ +
η

3
) grad div v + η∆v. (2.8)Due to the usage of the pressure �eld as an additional unknown salar funtion, anotheronstitutive relation is needed. Sine no thermal e�ets are onsidered by the modelingproess, it is assumed that the pressure depends solely on the density and is given by athermal equation of state p = p(ρ). In aoustis, the deviations of the pressure and thedensity from its respetive ambient values an be approximated by the linear relationship

p− p(0) =
∂p

∂ρ

∣
∣
∣
∣
ρ(0)

(ρ− ρ(0)) = c0
2(ρ− ρ(0)) (2.9)14



2.2. THE FLUID DYNAMICSwhere the onstant of proportionality an be identi�ed as the square of the so-alled smallsignal sound speed c0.2.2.3 Boundary ConditionsIn this work, it is assumed that the veloity of the visous perilymph vanishes relative tothe solid boundaries. This spei�ation is well known as no-slip-ondition. By the useof the Eulerian spei�ation, the no-slip ondition at the rigid boundaries an be simplystated as
v(x, t) = 0 for all x ∈ Γr. (2.10)With regard to moving boundaries, the no-slip ondition implies that the �uid-motion isequal to the assoiated motion of the boundary. Thus, if ζ(x0, t) denotes an arbitrarydisplaement of the boundary whih is de�eted out of its resting position x0, the veloityat the displaed position an be evaluated to
v(x0 + ζ(x0, t), t) =

∂ζ(x0, t)

∂t
(2.11)For the purpose of simpli�ation expliit hanges of the domain, aused by the displae-ments of the moving boundaries, are negleted. This simpli�ation is reasonable and pos-sible, sine the osillations of the boundaries are substantially smaller than the proportionsof the ohlea model. Equation 2.11 onstitutes a Lagrangian spei�ation of the veloityat the boundary. For the adaption of the boundary ondition to an Eulerian spei�ation,a vetorial Taylor expansion of the left hand side an be performed to obtain

v(x0, t) =
∂ζ

∂t
−
(

grad v(x0, t)

)

·ζ − . . . . (2.12)If ξ denotes the vertial displaement of the basilar membrane and if ξow represents thehorizontal displaement of the stapes within the oval window, the boundary ondition 2.12an be simply onretized by using the identities
ζ = ( 0 ξ )T for all x ∈ Γbm+ ∪ Γbm−, (2.13)
ζ = ( ξow 0 )T for all x ∈ Γow. (2.14)In ontrast to the oupling between the �uid and the basilar membrane, it is assumed thatthe round window has no signi�ant in�uene on the �uid in the ase of usual aoustistimulations. Therefore, a �uid-struture-interation with the round window is not diretlytaken into aount by the modeling proess presented in this work. On the one hand themembrane within the round window prevents the leakage of �uid, on the other hand it is�exible enough to allow free movements of the �uid up to a ertain extent. This behavioran be imitated if the boundary pretends to be non-existent with respet to the longitudinalveloity omponent. In other words, no expliit boundary ondition is applied on the �rstveloity omponent at the round window. 15



CHAPTER 2. MODELINGFurthermore, it is assumed that no external fores at on the �uid aross the outerboundaries. In terms of the stress tensor σ, this ondition an be written as
σ(x, t) · n(x, t) = 0 for all x ∈ Γ (2.15)where n indiates the (unit) outward normal vetor with respet to the boundary of the�uid volume. At the beginning of the simulation proess t0, it is presumed that the systemis at rest. As a onsequene, the veloity �eld as well as the displaement variables are setto zero. The pressure and the density �eld are prede�ned by its onstant ambient values

p(0) and ρ(0). Formally, the initial onditions an be written as
v(x, t0) = 0 for all x ∈ Ω, (2.16)
p(x, t0) = p(0) for all x ∈ Ω, (2.17)
ρ(x, t0) = ρ(0) for all x ∈ Ω, (2.18)
ξ(x, t0) = 0 for all x ∈ Γbm, (2.19)
ξow(x, t0) = 0 for all x ∈ Γow. (2.20)2.2.4 Perturbation ExpansionAs mentioned above, aousti streaming is a nonlinear phenomenon aused by the nonlinearterms within the governing equations of the �uidi system. A diret numerial simulationof the fully nonlinear Navier-Stokes-Equations in order to analyze aousti streaming wasperformed, for instane, by Yano [53℄ or Boluriaan and Morris [7℄. In ontrast to the mean�ows expeted within the ohlea, their models aim to simulate aousti streaming that isharaterized by an high Reynolds number . In this ontext, the Reynolds number is a mea-sure that quanti�es the relative importane of inertial fores in relation to visous foreswith respet to the mean �ows. In the sope of low Reynolds numbers, the use of a pertur-bation tehnique has advantages over the fully nonlinear approah, sine the perturbationapproah represents the nonlinear problem by a set of linear sub-problems. Normally, itis su�ient to onsider only the �rst two linear sub-problems. This perturbation methodhas already been suessfully adopted by several authors (e.g. [24, 9, 26℄).For the implementation of the perturbation approah, the unknown funtions are rep-resented by Taylor expansions in the small Mah number ǫ ≪ 1, whih is de�ned as theratio between a typial veloity of the �uid partiles and the small signal sound speed c0.The Taylor series of the veloity-�eld is, for instane, given by

v(x, t, ǫ) = v(x, t, ǫ)|ǫ=0
︸ ︷︷ ︸

=:v(0)

+
∂v(x, t, ǫ)

∂ǫ

∣
∣
∣
∣
ǫ=0

ǫ

︸ ︷︷ ︸

=:v(1)

+
∂2v(x, t, ǫ)

∂ǫ2

∣
∣
∣
∣
ǫ=0

ǫ2

︸ ︷︷ ︸

=:v(2)

+O(ǫ3). (2.21)Similarly, the other �eld-funtions (pressure, density,...) an also be represented by suha perturbation expansion in ǫ. This approah is, of ourse, only appliable under the16



2.3. THE FIRST ORDER SYSTEMassumption that the perturbed problem arises smoothly from an initial problem through theontinuous variation of the parameter ǫ. In this ontext, the initial problem is haraterizedby a zero Mah number, whih means that there will be no partile motions, provided thatthe sound speed remains onstant. Then the system an be fully desribed by the ambientvalues p(0) and ρ(0).Terms of higher order an now be determined by the use of a suessive method. Thisproedure is based on the priniple that terms of di�erent order are independent from eahother (f. [14℄). This means that after substituting the respetive perturbation expansionsfor the unknown funtions, eah equation an be separated into a set of equations, wherebyeah relation onsists only of terms of the same order.Lighthill [26℄ pointed out that this separation of di�erent terms should primarily dependon their numerial dimension and not on their mathematial order. He onluded that theresultant seond order system (whih is used for the evaluation of aousti streaming)neglet a fourth order quantity that would take inertial e�ets of the mean �ows intoaount. These inertial e�ets beome more and more signi�ant for appliations that areharaterized by an high Reynolds number. In these ases, the suessive perturbationmethod would probably fail to approximate the mean �ows orretly.In steady state, the �rst order funtions desribe the harmoni exess values of thefundamental aousti �eld with the angular frequeny ω, provided that the system is stim-ulated by a sinusoidal exitation of the same frequeny. Then, the seond order funtionsan be assoiated with the seond order harmoni �eld of double the frequeny as well asa seond order steady streaming. (f. [24, 9℄) In this work, the main fous lies on thedetermination of this seondary steady �ow �eld, sine it onstitutes a �rst order approxi-mation of aousti streaming. Any higher-order mean �ows are negleted, due to the rapidderease of their magnitudes. Therefore, only the �rst order approximation of the resultantmean �ows is onsidered in this work.The �rst order system of the perturbation approah (hereinafter also referred to asaousti subproblem) is established in hapter 2.3.1. The aousti streaming subproblem,whih orresponds to the averaged seond order system, is dedued in hapter 2.4.2.3 The First Order SystemOn the basis of the perturbation theory, the nonlinear system of equations that desribesthe behavior of the �uid is separated into a �rst and a seond order system. As mentionedabove, the �rst order system desribes the fundamental aousti �eld whih is mainlyin�uened by the �uid-struture-interation with the strutural omponents of the ohlearsystem (f. �gure 1.3). This setion deals on the one hand with the derivation of the�rst order perturbation of the �uidi system (f. hapter 2.3.1) and on the other withthe mathematial modeling of the relevant mehanial and physiologial properties thatrepresents the dynamis of the basilar membrane (f. hapter 2.3.2). 17



CHAPTER 2. MODELING2.3.1 The Aousti SubproblemAfter substituting the perturbation expansions (f. equation 2.21) for the veloity-, pressure-and density-funtions and onsidering only the �rst order terms, the �rst order onservationpriniples of mass and momentum an be written as
∂ρ(1)

∂t
= −ρ(0) div v(1), (2.22)

ρ(0)
∂v(1)

∂t
= divσ(1). (2.23)Aording to equation 2.8, the divergene of the �rst order stress tensor is given by

divσ(1) = − grad p(1) + (ζ +
η

3
) grad div v(1) + η∆ v

(1). (2.24)In the same way, also the thermal equation of state 2.9 an be transformed into a �rstorder version whih results in the simple relation
p(1) = c0

2ρ(1). (2.25)By ombining the previous equations, the stress tensor as well as the �rst order densityfuntion an be eliminated. Then, the aousti subproblem that desribes the fundamentalaousti �eld within the �uid is given by the following system of equations:
1

c02

∂p(1)

∂t
= −ρ(0) div v(1), (2.26)

ρ(0)
∂v(1)

∂t
= − grad p(1) + (ζ +

η

3
) grad div v(1) + η∆v

(1). (2.27)Finally, the boundary onditions have to be adapted. The �rst order approximation of theEulerian spei�ation of the no-slip ondition 2.12 an be evaluated by taking only the�rst order terms into aount. Therefore, the �rst order veloity omponents at the basilarmembrane and at the oval window an be written as
v
(1)(x, t) =

[

0
∂

∂t
ξ(x, t)

]T for all x ∈ Γbm, (2.28)
v
(1)(x, t) =

[

∂

∂t
ξow(x, t) 0

]T for all x ∈ Γow. (2.29)2.3.2 The Passive Mehanis of the Cohlear PartitionThe interations between the �uid and the basilar membrane have a signi�ant in�ueneon the sound �eld within the inner ear. Therefore, it is essential to take the mehanialbehavior of the ohlear partition into aount. In this ontext, an approah, developed18



2.3. THE FIRST ORDER SYSTEM
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h
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ξ

Figure 2.4: The mehanial properties of the basilar membrane an be represented by an array of dampedosillators. Eah osillator is haraterized by its spei� mass m, visosity h and sti�ness k. Vertialdisplaements ξ(x) are aused by external fores.displaement of the basilar membrane ξ(x, t) under the ation of external fores an berepresented by the di�erential equation
m(x)

∂2ξ(x, t)

∂t2
+ h(x)

∂ξ(x, t)

∂t
+ k(x)ξ(x, t) = fp+(x, t)− fp−(x, t) + ϑ(x, t) (2.30)if it is assumed that all fores depend linearly on the displaement of the basilar membrane.The oe�ient funtions desribe di�erent physial properties of the basilar membrane.An adequate hoie of these parameter funtions is not easy, beause the struture of theorgan of orti is not homogeneous and the material properties are di�ult to determine.Furthermore, it is not lear to what extent ertain harateristis may be relevant forthe osillation proess. However, in order to ensure that the oe�ients range withinthe physial limits, they are estimated on the basis of some theoretial and dimensionalonsiderations having regard to the biophysial struture of the organ of orti (f. �gure2.8).The �rst term on the left hand side of equation 2.30 is assoiated with the mehanialinertia of the system. The oe�ient m(x) desribes the mass per unit length at theposition x. Aording to a matlab-routine from Nobili [31℄, the mass is estimated by somedimensional onsiderations of the organ of orti. It is assumed that the organ of orti at thebase has approximately a width of 50µm and a height of 40µm and that both propertiesinrease exponentially up to four times from base to apex. An estimation of the e�etivemass per unit length at a spei� loation an be determined by the produt of an averagedensity of the tissue (whih is assumed to be equal to the density of water), the height ofthe organ of orti and an e�etive width. This e�etive width is alulated as the geometrimean of the width of the organ of orti and the half of the width of the basilar membrane.The resultant mass per unit length is illustrated in �gure 2.5.The seond term of the left hand side of equation 2.30 desribes the damping of the20
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Figure 2.5: E�etive mass per unit length of the basilar membrane that is assumed to be relevant for theinertial e�ets of the basilar membrane.ohlear partition. In onsideration of the realisti struture of the organ of orti, thedisplaement of the basilar membrane is haraterized by a rotary motion of the tunnel ofCorti as shown in �gure 2.8. The reason for suh a motion lies in the signi�ant rigidity ofthe pillar ells. In ontrast to the pillar ells, the outer hair ells and Deiters' ells an bemuh more easily deformed. As a result, the osillation of the ohlear partition is probablyaompanied by shearing motions of the outer hair ells and Deiters' ells. Within thiswork it is assumed that the damping is therefore mainly governed by the intrinsi visosityof these ells. On the basis of the de�nition of shear visosity within Newtonian �uids, theresistane per unit length an be roughly estimated by
ηrad

Hohc(x)

Wohc(x)

∂ξ

∂t
(2.31)where ηrad, Wohc(x) and Hohc(x) are assoiated with the mean visosity of the ells, theradial width and the transversal height of the e�etive segment at the longitudinal position

x. Aording to [31℄, it is assumed that at the base of the ohlea the mean visosity isapproximately 30 times higher than the visosity of water and that the e�etive ratiobetween the radial width and the transversal height is about 10. As it an be seen in �gure2.6(a), it is further assumed that the visosity per unit length dereases about four timesfrom base to apex.For an in�nitesimal small longitudinal segment, the assoiated resistane per unit lengthaused by the shear visosity an be approximated - in a similar way as above - to
∂

∂x

(

ηlonA(x)
∂2ξ

∂x∂t

) (2.32)21
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(b)Figure 2.6: Damping properties of the basilar membrane. (a) The positional visosity is spei�ed by thevertial shearing motion of the segment onsisting of the outer hair ells and the Deiters' ells along theradial diretion. (b) The shearing resistane oe�ient is assoiated with vertial shearing motions of thebasilar membrane segments along the longitudinal axis.
22



2.3. THE FIRST ORDER SYSTEM

10
1

10
2

10
3

10
4

10
5

10
6

0 5 10 15 20 25 30

Distance from base [10−3m]

S
ti
ff
n
e
ss

p
e
r
u
n
it

le
n
g
th

[k
g
/
m

s2
]

Figure 2.7: Virtual sti�ness per unit length of the basilar membrane that is assumed to be relevant forthe resistane aused by a displaement of the ohlear partition.where A(x) is the ross-setional area of the organ of orti at the loation x and ηlon a meane�etive visosity of the assoiated layer. As the spatial derivative of the veloity termindiates, a longitudinal shearing driven resistane an only our if veloities of adjaentlayers di�er. On the basis of the same proportions of the organ of orti as already usedfor the estimation of the mass and under the assumption that the e�etive visosity ηlon isequal to the visosity of water, the oe�ient ηlonA(x) an be estimated as illustrated in�gure 2.6(b). In omparison to the positional shearing driven resistane it turns out thatthe longitudinal oupling plays only a subordinate role and the longitudinal segments anosillate almost independently from eah other.The last term of the left hand side of equation 2.30 represents the fore per unit lengthapplied by the sti�ness of the ohlear partition. Measurements (e.g. [50℄) indiate thatthe sti�ness dereases by two to four orders of magnitude from base to apex. But, thephysial dimensions of di�erent measurements vary over a wide range. Furthermore, itis debatable whether these measurements are physiologially relevant within the workingohlea, sine they are measured during displaements that are onsiderably larger thanrealisti displaements. (f. [38℄) Similar to [28℄, the sti�ness is therefore hosen in suha way that the harateristi frequenies of the traveling wave roughly orrespond to the(human) frequeny-position map whih was introdued by Greenwood [18℄ (f. hapter4.1.3). As a result of this proedure, the sti�ness is set to 2× 105kg/m s2 at the base anddereases by 3.5 orders of magnitude from base to apex. (f. �gure 2.7)The right hand side of equation 2.30 onsiders external fores ating on the basilarmembrane. As a result of the �uid pressure above and below the basilar membrane, twohydrodynami fores fp+ and fp− our. Sine the pressure ats - at a spei� loation x- on the whole width wbm(x) of the basilar membrane, the hydrodynami fores may be23



CHAPTER 2. MODELINGwritten as
fp±(x, t) =

1

2
wbm(x) p

(1)(x, t)
∣
∣
x=(x,±0)

. (2.33)Due to the assignment of two di�erent pressure values at the loation x = (x, 0) (ausedby the one-dimensional representation of the basilar membrane), the seond omponent ofthe oordinates are additional labeled by a sign to indiate the loation. Thus, a positive(negative) sign refers to the loation that belongs to the upper (lower) dut. Atually,due to the anatomial struture and the lateral �xation of a basilar membrane segment(f. �gure 2.3), the pressure should not be aumulated uniformly along the radial width.This issue is taken into aount (in a simpli�ed manner) by introduing an e�etive widthwhih is assumed to be half of the geometri width.The fore ϑ is assoiated to the internal ampli�ation mehanism provided by the outerhair ells.2.3.3 Outer Hair Cell MotilityThe vertial motions of the basilar membrane are aompanied with a shearing displae-ment of the tetorial membrane in relation to the retiular lamina. This kind of motionis the result of di�erent pivots of the tetorial membrane and the retiular lamina aroundwhih they rotate. (f. [28℄) The stereoilia of the outer hair ells are de�eted by theshearing �ow of the endolymph and due to a partial ontat of the stereoilia with thebottom of the tetorial membrane. The de�etion of these hair bundles auses in turn ahange of the ell potential due to a mehanoeletrial transdution mehanism. If thestereoilia are de�eted in the diretion of its tallest outgrowth, the outer hair ell willbe depolarized. Otherwise, a hyperpolarization is aused by a de�etion in the oppositediretion. Having regard to the anatomial struture of the ohlear ross-setion a de-polarization is the result of an upward motion of the basilar membrane (in the diretionof the sala media). In ontrast, a movement of the basilar membrane in the diretion ofthe sala tympani brings about a hyperpolarization of the outer hair ells. As a result ofeletrial stimulation the outer hair ells are apable of hanging its length. Therefore, thelength hange is often referred to as eletromotility. The outer hair ell motility is mainlydriven by a motor protein, whih is known as prestin and whih an be found in the lateralmembrane of eah ell. (f. [1℄) Measurements indiate (f. [1℄) that the length hanges ofouter hair ells are fast enough to have a mehanial e�et on vibrations at aousti fre-quenies. However, to this day there is some dispute about the exat internal mehanismsof the motility and the spei� properties of the outer hair ells. Beause this work is notprimarily onerned with an exat representation of the omplex proesses of the outerhair ell motility, a simpli�ed stimulus-response model (blak box model) is adapted as itwas suggested by Nobili et al. [33℄ in order to take the feedbak from the outer hair ellsinto aount. In this ontext, it is assumed that the relationship between the de�etion ζof the hair bundles and the fore ϑ, whih is applied by the outer hair ells due to their24
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(a)

(b)Figure 2.8: A displaement of the basilar membrane is aompanied with a rotational motion of the tunnelof orti around a pivotal point. Due to the rigidity of the pillar ells in ombination with the retiular laminathe outer hair ells and Deiters' ells are deformed in order to ompensate these motions. In this work, itis assumed that the internal shearing motion of the outer hair ells and the Deiters' ells respetively aremainly responsible for the damping e�et. At the same time, the laminar shearing motion of the tetorialmembrane relative to the retiular lamina auses a de�etion of the stereoilia of the inner and outer hairells. This parallel shift is the result of a di�erent pivotal point around whih the tetorial membranerotates. A de�etion of the hair bundles towards the largest one (whih in priniple an be assoiated withan upward displaement of the basilar membrane) auses in turn a ontration of the outer hair ells dueto a mehanoeletrial transdution mehanism (f. �gure (a)). In ontrast, an elongation of the outerhair ells is the result of a hair bundle de�etion in the opposite diretion (f. �gure (b)). 25
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−β−1 β−1Figure 2.9: The relationship between the outer hair ell driven fore and the hair bundle de�etion anbe represented by a sigmoid funtion (solid line). Due to saturation e�ets the fore is limited to a value
α(x). At the origin the sigmoidal funtion an be approximated by a linear funtion (dotted line) with aslope of α(x)β(x).length hanges, an be represented as

ϑ(x, ζ(x, t)) = α(x) sig
(
β(x)ζ(x, t)

) (2.34)where sig is a sigmoid funtion1 as illustrated in �gure 2.9 and α(x) and β(x) are parametersthat depend on the spei� internal proesses involved in the outer hair ell motility. Thereason for desribing the outer hair ell driven fore by a sigmoidal relationship an bemainly found in saturation e�ets within the outer hair ells that limit the fore. For smallde�etions of the hair-bundles these saturation-e�ets an be negleted and equation 2.34an be linearly approximated by
ϑ(x, ζ(x, t)) ≈ α(x)β(x)ζ(x, t) (2.35)(f. [1, 38, 28, 33℄)In order to alulate the fore-feedbak the de�etion of the hair-bundles have to bedetermined on the basis of the vertial displaement of the basilar membrane. It is as-sumed that the motions of the tetorial membrane relative to the retiular lamina an berepresented as a separate osillator and that this subsystem is mainly stimulated by thevertial aeleration of the basilar membrane displaements. In terms of a linear di�eren-tial equation and aording to [28, 33℄ the de�etion ζ of the hair bundles an therefore bewritten as

mtm(x)
∂2ζ(x, t)

∂t2
+ htm(x)

∂ζ(x, t)

∂t
+ ktm(x)ζ(x, t) = gtm(x)mtm(x)

∂2ξ(x, t)

∂t2
(2.36)1The sigmoid funtion used in this work is de�ned as sig(x) := 1 −

2
e2x+1

. The sigmoid funtion ishosen in suh a way that its values ranges from −1 to 1 and that its slope at the origin is equal to 1.26
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Figure 2.10: The mass (per unit length) of the tetorial membrane that is believed to be relevant for theinertial e�ets of the subordinate osillator that desribes the motion of the tetorial membrane relative tothe retiular lamina.where mtm(x), htm(x) and ktm(x) are oe�ient funtions used for onstituting the spei�inertia, damping and sti�ness of the osillating subsystem. Due to the di�erent orientationof the subsystem and due to some internal losses of the oupling, the external fore atingon the subsystem is only a fration of the vertial aeleration driven fores. This e�etwas taken into aount by the additional gain funtion gtm(x). Aording to Nobili et al.[33℄, it is assumed that the gain funtion is onstant along the ohlear partition and thatthe e�etive fore ating on the subsystem is only a tenth of the vertial fore.The e�etive mass mtm(x) an be assoiated with the mass of the tetorial membrane.The radial width and transversal height of the tetorial membrane at the base of the ohleaan be assumed to be approximately 70µm and 15µm respetively. If both proportionsare assumed to inrease exponentially up to four times and if the density of the tetorialmembrane is nearly equal to that of water, the mass of the tetorial membrane per unitlength an be estimated as shown in �gure 2.10. (f. [31℄)The damping is mainly aused by the shearing motion of the endolymph between thetetorial membrane and the retiular lamina. Due to the laminar regime of this shear, thedamping oe�ient an be estimated by
ηend

Wgap(x)

Hgap(x)

∂ζ(x)

∂t
(2.37)with ηend, Wgap(x) and Hgap(x) being the visosity of the endolymph, the width and theheight of the gap between the retiular lamina and the tetorial membrane at the position

x. Under the assumption that the endolymph visosity is approximately 1.5×10−3 kg/m s(f. [50℄) and that the ratio between the radial width and the transversal height of the left27
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Figure 2.11: The visosity of the seondary osillator that auses the damping. It is assumed that thevisosity is mainly dominated by the shearing motions of the endolymph between the tetorial membraneand the retiular lamina.inreases from 80 at the base to 320 at the apex, the damping is spei�ed as illustrated in�gure 2.11.It an be observed that the maximal displaement of the traveling wave in the ativeohlea is shifted a little bit in the diretion of the apex in ontrast to the passive ohlea(f. [38℄). Having regard to this harateristi, the resonane frequeny fres of the supple-mentary osillator is believed to derease exponentially from 18000Hz at the base to 60Hzat the apex. As a onsequene, the sti�ness an be uniquely determined by the relationship
ktm(x) = mtm(x) ·

(
fres(x)

)2. (2.38)As pointed out by Nobili et al. [33℄, at a spei� loation x the inertial fore will be nearlyaneled by the sti�ness driven fore if the frequeny of an aoustially-indued vibrationis lose enough to the loal resonane frequeny. In suh a ase, the osillation (at thisspei� loal region) is mainly dominated by the damping term and equation 2.36 an berepresented as
∂ζ(x, t)

∂t
≈
gtm(x)mtm(x)

htm(x)

∂2ξ(x, t)

∂t2
. (2.39)By integrating equation 2.39 over time and by using equation 2.35, the fore that will beapproximately applied to regions of resonant behavior an be written as

ϑ(x, ξ(x, t)) ≈
α(x)β(x)gtm(x)mtm(x)

htm(x)

∂ξ(x, t)

∂t
. (2.40)As a omponent of the right hand side of equation 2.30, the outer hair ell driven fore

ϑ ats diretly on the motions of the basilar membrane. The on�guration of equation28
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Figure 2.12: The e�etive sti�ness of the subordinate osillator indues a ounterating fore that isapplied in the opposite diretion of its displaement.2.40 indiates that the fore works in priniple as a negative damping term at regions of anearly resonant behavior. In order to get numerial estimates of the parameters α(x) and
β(x) that desribe the sigmoidal shape of the funtional relationship 2.34, it is assumedthat the outer hair ell driven fore an potentially neutralize the positional visosity ofthe basilar membrane up to a ertain degree. Therefore, if the positional damping term asgiven in equation 2.31 is equated with the damping term of equation 2.40, the oe�ientfuntion of equation 2.35 an be alulated to

α(x)β(x) =
λ(x)ηradHohc(x)htm(x)

Wohc(x)gtm(x)mtm(x)
. (2.41)Thereby, the additional parameter funtion λ(x) serves as a ontrol parameter in orderto speify the degree of damping anellation. If λ is equal to one, the total positionalvisosity an potentially be aneled by the outer hair ell driven fore. A value above onean also anel damping e�ets aused by longitudinal shearing resistanes. (f. [28, 33℄)2.3.4 Equilibrium stateIf the �rst order system is stimulated by an harmoni vibration of the oval window, thesystem will reah a stable state of equilibrium after a ertain amount of time has elapsed.Aording to Köster [24℄, the equilibrium state of the �uid an be expressed by harmoniosillations of the individual �eld variables at �xed positions. In terms of sin- and cos-29
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(b)Figure 2.13: At any �xed loation x within the �uid domain of the ohlea model, the equilibrium statean be learly desribed by the sine-osine deomposition. Figure (a) illustrates the equilibrium state ofthe veloity on the basis of the vetors v
(cos) and v

(sin), whereas the pressure is haraterized by the values
p
(cos) and p

(sin) as it an be seen in �gure (b).funtions, the stable state an be written as
v
(1)(x, t) = v

(sin)(x) sin(ωt) + v
(cos)(x) cos(ωt), (2.42)

p(1)(x, t) = p(sin)(x) sin(ωt) + p(cos)(x) cos(ωt). (2.43)Therefore, the osillatory motion of the �uid an be uniquely haraterized by the time-independent funtions v(sin)(x), v(cos)(x), p(sin)(x) and p(cos)(x). In this work, the repre-sentation of the equilibrium state with the help of equations 2.42 and 2.43 will be referred toas sine-osine deomposition. Sometimes it is more onvenient to use the omplex exponen-tial form in order to represent the equilibrium state. Then, the veloity- and pressure-�eldare given by
v(1)i (x, t) = v(amp)

i (x) e[ωt+ϕvi
(x)]i, (2.44)

p(1)(x, t) = p(amp)
i (x) e[ωt+ϕpi

(x)]i (2.45)where the supersript (amp) denotes the amplitude and ϕ the argument of the assoiatedquantity. Suh a omplex representation must, of ourse, be understood in the sense thatonly its real part spei�es the value of the physial quantity.30



2.4. THE SECOND ORDER SYSTEM2.4 The Seond Order System2.4.1 The Aousti Streaming SubproblemThe aousti streaming subproblem is established on the basis of the seond order systemthat results from the perturbation approah as desribed in hapter 2.2.4. In steady state,the seond order equations are assoiated with the seond harmoni �elds in ombinationwith a steady �ow �eld. While the determination of the seond harmoni �eld is of nointerest to this work, the evaluation of the steady �ow �eld yields a �rst order approxima-tion of aousti streaming. In order to extrat the steady �ow �eld (hereinafter indiatedby the supersript (dc)) from the seond order system, the operator 〈·〉 that determinesthe temporal average of time-dependent funtions an be applied. The mean of the seondorder equation that is assoiated with the balane-of-mass priniple 2.1 an be written as
ρ(0) div v(dc) = m̃ (2.46)where the term m̃ orresponds with a virtual mass-soure. This soure distribution isaused by the �rst order aousti subproblem and desribes the supply of mass (f. [9℄).In terms of the �rst order �elds, the mass-soure an be evaluated to

m̃ = − 1

c02
div〈p(1)v(1)〉 (2.47)Similarly, the steady omponents of the seondary �ow �elds must ful�ll the time-averagedseond order version of the balane-of-momentum priniple 2.2, whih is given by

grad p(dc)− (ζ +
η

3
) grad div v(dc)− η∆v

(dc) = f̃ (2.48)where f̃ denotes a virtual fore-soure distribution. The fore-soure ats as an externalvolume-fore and depends on the aousti �eld. By using �rst order terms, the fore-souredistribution an be expressed as
f̃ = − 1

c02
〈p(1)

∂v(1)

∂t
〉 − ρ(0)〈(grad v(1))v(1)〉. (2.49)Aording to Bradley [9℄, the orret treatment of the boundary ondition leads to animportant boundary driven mehanism of aousti streaming whih was often negletedby other works. This mehanism is based on the rigorous distintion between the Eulerianand the Lagrangian spei�ation of motion as desribed at the beginning of hapter 2.2. Asan be seen from equations 2.11 and 2.12, the di�erene between both kinds of desriptionsat the boundary arises from onsidering the full Taylor expansion. While both spei�a-tions are idential in the ase of the �rst order perturbation approximation, the di�erenebeomes apparent by taking the seond order terms of the perturbation expansion intoaount. 31



CHAPTER 2. MODELINGBy substituting the respetive perturbation expansion for the �eld variables of equa-tion 2.12 and by applying the mean-operator, the time-averaged seond order boundaryondition an be written as
v
(dc) = −〈(grad v(1))ζ(1)〉. (2.50)The mean of the seond order Lagrangian veloity omponent vanishes, sine eah point ofthe boundary osillates around a �xed loations. The displaement ζ an be evaluated bysolving the initial value problem whih is given by equation 2.11. By performing the usualperturbation approah, the �rst order approximation of the displaement an be alulatedto

ζ(1)i (x0, t) ≈
∫

v(1)i (x0, t) dt =
v(1)i

iω
. (2.51)By using equations 2.50 and 2.51 in ombination with vetor identities2, the mean of theseond order Eulerian veloity an be expressed as

v
(dc) = − 1

ρ(0)c02
〈p(1)v(1)〉+ 1

2
rot〈ζ(1) × v

(1)〉. (2.52)As disussed by Bradley [9℄, this equation allows a better understanding of the underlyingmehanisms of the resultant mean �ows than equation 2.50. Under the assumptions ofpure retilinear (not elliptial) motions of the moving boundaries, it beomes apparentthat the �rst term of the right hand side of equation 2.52 ats as a sink (or a soure) sinethe resultant mean �ow has the same diretion as the �rst order veloity (f. [9, 26℄). Theseond term was often negleted in other works. The magnitude of the ross produt ofthe veloity and the displaement is proportional to the enlosed area of the ellipse thatis formed by the trajetory of the assoiated �uid partile. The diretion of the resultantvetor is perpendiular to this surfae. Due to the retilinear motion of the boundaries,this ross produt vanishes at the boundaries. But if the �uid motion of the adjaent �uidlayers is haraterized by elliptial trajetories, the url of this ross produt will induea slipping mean �ow at the boundaries. A detailed onsideration of the physial origin ofthese mean �ows an be found in [9℄.

2rot(a× b) = (grada)b− (grad b)a+ a div b− b diva32



Chapter 3ImplementationThis hapter is onerned with the numerial implementation of the mathematial model ofthe ohlea system as desribed in hapter 2. The mathematial model onsists of a numberof di�erent partial di�erential equations in ombination with spei� boundary onditions,whih have to be ful�lled on their assoiated domain. In this work the �nite element methodis used in order to alulate a numerial solution of this system of equations. The �niteelement method is a powerful tehnique for the numerial evaluation of (initial) boundaryvalue and eigenvalue problems for a wide range of appliations. Within the framework ofthe �nite element analysis, the solution of a given di�erential equation is approximatedby a linear ombination of a set of spei� basis funtions. In ontrast to some othermethods (e.g. Galerkin methods), these basis funtions (whih are also referred to as formfuntions or interpolation funtions) are haraterized by its systemati onstrution on aset of individual simple sub-domains that form the entire domain of interest. (f. [36℄)The shemati design of the global simulation proess for the omputation of the aous-ti streaming �eld within the inner ear an be seen in algorithm 3.1. In priniple only thestimulation frequeny of the harmoni stapes displaement within the oval window andthe outer hair ell ativity parameter, whih ontrols the in�uene of the additional outerhair ell fore, are required in order to start the numerial omputation. All other physialparameters and properties are prede�ned (f. hapter 2) and an be on�gured within anexternal parameter �le.In a �rst step (f. line 2 of algorithm 3.1), the �uid domain as well as the one-dimensional domain that hosts the basilar membrane have to be divided into a set ofsubdomains, the so-alled elements. The hoie of these elements and the underlyingstrategy of the disretization proess (also known as meshing) are disussed in hapter3.1. On the basis of these meshes, �nite element spaes an be systematially introduedby de�ning appropriate approximation funtions upon the individual subdomains (f. line3). Setion 3.3 deals with the spei� on�guration of the di�erent funtion spaes whihare used for the approximation of the di�erent �eld funtions. In order to establish adisretized formulation of the mathematial model, the di�erential equations have to be33



CHAPTER 3. IMPLEMENTATIONinitially transformed into a so-alled weak form (also known as variational formulation). Inontrast to the original di�erential equation, the requirements on the solution of the weakformulation with respet to its di�erentiability are weakened. Furthermore, the solution ofthe weak form does not need to ful�ll the di�erential equation at individual spei� points,but rather (to some extent) on average over an arbitrarily hosen region in the sense of aspei� weighted integral statement. (f. [36, 23℄) The derivations of the individual vari-ational formulations are presented in setion 3.2. On the basis of the weak formulationsa spatial disretization an now be performed by using appropriate linear ombinations ofthe basis funtion for the spatial funtions. With respet to the �rst order aousti sub-problem, this leads to a number of di�erent linear systems of ordinary di�erential equations(f. hapter 3.4.1). Its assoiated matries an be stepwise assembled by performing loalalulations for eah element (f. line 4). In the next step, whih is assoiated with line5 of algorithm 3.1, the individual systems are ombined to a single system of ordinarydi�erential equations. The resultant matrix equation an be seen in hapter 3.4.2. Lines 7to 12 are assoiated with the temporal disretization of the ordinary di�erential system ofequations. The time integration sheme that is used in this work is presented in hapter3.5. The fully disretization proess of the �rst order aousti subproblem �nally resultsin a single linear system of equations per time-step.If the stable state of equilibrium is reahed at whih all �eld variables an be desribedby an harmoni funtion (f. hapter 2.3.4), the aoustially driven motions an be eval-uated on the basis of the results of the �rst order subproblem. Similar to the aoustisubproblem, individual submatries an be onstituted by using the weak formulations ofthe seond order subproblem. Although, no interations between the �uid and its adjaentstrutures are onsidered by the seond order �ows, an overall matrix, whih ontains allsubmatries, has to be assembled beause a mixed formulation is used for the desriptionof the �uid motions. The load vetor depends on the aousti �eld and an be determinedby alulating ertain mean values over one yle. As disussed in hapter 3.4.3, the steadystate motion of the aousti streaming problem an be represented by a single linear systemof equation whih an be solved in one step.The resultant linear systems of equations have to be solved by the use of an appropriatesolver. As disussed in hapter 3.6, the generalized minimal residual method is appliablefor approximating the solutions of the �rst as well as the mean seond order system.Furthermore, the rate of onvergene an be signi�antly improved by using an inompleteLU deomposition as a preonditioner (f. setion 3.6.3).At the end of the algorithm, the results are analyzed, prepared, reorded and visualizedby the routines of the post-proessing.The omputational realization is based on the �nite element toolbox Alberta [43℄ andthe PETS library [2℄. The toolbox Alberta provides basi data strutures and routinesin order to support the establishment of appropriate meshes and �nite element spaes. Inaddition, it maintains great �exibility to allow the diret integration and implementationof new numerial methods. (f. [42, 44℄) After �nishing the respetive �nite elementdisretizations, the resultant systems of equations are solved with the help of the PETS34



3.1. MESH GENERATIONlibrary [2℄.Algorithm 3.1 Global algorithm for the alulation of aousti streaming within the innerearRequire: frequeny f , outer hair ell ativity parameter λEnsure: aousti streaming �eld1: proedure Main Routine(f, λ)2: generate the meshes3: load �nite element spaes4: alulate �rst order submatries5: assemble �rst order system matries6: alulate e�etive sti�ness matrix7: t← 08: repeat9: t← t+∆t10: alulate e�etive load at time t11: solve �rst order system at time-step t12: until equilibrium state is reahed13: alulate seond order submatries14: assemble seond order system matrix15: alulate seond order load vetor16: solve seond order system17: post proessing18: end proedure3.1 Mesh GenerationAording to line 2 of algorithm 3.1, the �rst step of the numerial simulation proesspresented here is an adequate onstrution of the underlying mesh whih an be used forthe �nite element alulations.The starting point of the mesh generation is a oarse triangulation of the upper dutof the ohlear system whih is initially represented by a retangular box as it is, inpriniple, illustrated in �gure 3.1(a). In order to ahieve the �nal mesh, this triangulationis modi�ed and extended by a three-stage proess. The �rst step onsists of a re�nement ofthe mesh in order to minimize potential errors between the exat solution and its numerialapproximation. In ontrast to a global re�nement of the whole mesh, the omputationale�ort of the simulation proess an be signi�antly redued by using only loal re�nements.The onrete re�nement strategy used in this work is disussed in hapter 3.1.2. At theseond stage the geometry of the sala tympani and sala vestibuli above and below theohlear partition has to be taken into aount by the meshing routines (f. hapter 3.1.3).Finally, an additional one-dimensional mesh is introdued whih is needed in onnetionwith the numerial implementation of the mehanial properties of the basilar membraneand its outer hair ell feedbak fore. The spei� onstrution of this mesh with respetto the individual �uid triangles above and below this partition is reviewed in hapter 3.1.4.35



CHAPTER 3. IMPLEMENTATION3.1.1 Referene ElementsAording to [42℄ it is useful to introdue two di�erent referene elements in order tosimplify the numerial evaluations with respet to the �nite element analysis upon eahindividual element.A set X of d+1 di�erent points xi ∈ R
n will onstitute a single element (also referredto as simplex ) of the mesh M if the vetors x1 − x0, ..., xd − x0 are linear independent.The element Sd is de�ned as the onvex hull of these points, or in terms of a mathematialformulation Sd an be written as

Sd(X) =

{ d∑

i=0

βixi

∣
∣
∣
∣
βi ≥ 0,

d∑

i=0

βi = 1,xi ∈ X
} (3.1)From a geometrial point of view a single simplex an be assoiated with a triangle in thease of d = 2 or, respetively, by a line-segment in the ase of d = 1.For reasons of simpliity, the numerial quadrature (whih will be needed in the ontextof the �nite element analysis) is not performed on eah individual element itself but ratheron a normalized element. In this work, this normalized element is given by

Sd(nor) := Sd(0,e1, ...,ed) (3.2)where ei are the unit vetors of the oordinate system. As it an be easily seen, the element
Sd(nor) an be linked to a spei� element Sd(X) by a linear a�ne mapping x(ν) (f. [42℄).In ontrast to this normalized element, it is more omfortable to establish the basisfuntions of the �nite element spaes by the use of baryentri oordinates due to itssymmetry properties. On the basis of the element

Sd(bar) := Sd(e1, ...,ed+1) (3.3)the baryentri oordinates are assoiated with the oe�ient βi whih are introduedby the de�nition 3.1. Therefore, the element Sd(bar) will be referred to as baryentrisimplex. The relation between the baryentri oordinates on the one hand and the worldoordinates of a spei� or the normalized element on the other hand an be desribed byan invertible mapping.As illustrated by the following sheme, eah element Sd(X) of a mesh an therefore beparameterized over the normalized element Sd(nor) and the baryentri representation Sd(bar)36



3.1. MESH GENERATIONby the invertible mappings x(ν) and x(β).
Sd(nor)

Sd(X)

Sd(bar)

x(ν)

ν(x)

x(β)

β(x)

β(ν)ν(β)

(3.4)In addition, these both mappings indue uniquely an invertible mapping β(ν) from thenormalized oordinates to the baryentri oordinates.3.1.2 Re�nement of the meshWith regard to the re�nement of a triangular mesh, it must be kept in mind that theresultant mesh has also to ful�ll the harateristis of a regular triangulation. Thereby,the term regular triangulation refers to a mesh in whih the intersetion of any two trianglesis either the entire edge of both triangles, a single vertex or empty. Therefore, the splittingof only one triangular element into two sub-triangles will probably lead to a so-alledhanging vertex at the biseted edge, if this edge does not belong to the outer boundary ofthe triangulation.A relative simple method for mesh re�nement would be a global re�nement of allelements into e.g. k2 uniform sub-elements in suh a way that eah edge would be dividedinto k equidistant edges. But it is apparent that suh a global re�nement method leadsto a signi�ant inrease of omputational e�ort and memory onsumption with respetto a �nite element analysis. Therefore, in order to minimize the omputing time and thememory requirements on the one hand and, simultaneously, to maximize the aurayof the �nite element approximation on the other hand, the objetive of loal re�nementstrategy is to onstrut a mesh as optimal as possible by taking both requests into aount(f. [42℄).Furthermore, partiular attention should be paid to the quality of individual elements.A large distortion of a triangle is haraterized by onsiderable di�erenes of its individualside lengths and angles respetively. Sine large distortions are usually aompanied byan higher approximation error, the re�nement method should split the triangles in suh away that its sub-elements are as equilateral as possible. 37



CHAPTER 3. IMPLEMENTATION
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0 mm 10 mm 20 mm 30 mm(b)Figure 3.1: On the basis of a oarse mesh (a) that represents the sala vestibular a reursive routine loallyre�nes the mesh in order to redue the error of the �nite element omputations. The spei� re�nementstrategy is based on an heuristi approah. The resulting mesh (b) is haraterized by a gradual inreaseof its density along the basilar membrane until a point is reahed where the traveling wave will probably bedissipated.
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3.1. MESH GENERATIONThe method used in this work for re�ning the oarse mesh is based on an initial marking-routine whih spei�es for eah element the number of re�nements that should be performedby the re�nement proedure. The typial traveling wave motion of the basilar membranedisplaement (as desribed in detail in hapter 4.1.3) is a result of its interations withthe adjaent �uid. Therefore, it an be expeted that these displaement pattern will bere�eted in the �uid motion to a ertain extent. The signi�ant inrease of the amplitudeof the traveling wave up to a maximum at the harateristi plae in ombination with asubstantial derease of its wave length indiates that the �utuations of the �eld variablesinrease along the ohlear partition until the harateristi plae is reahed.Another important aspet (as disussed in detail in hapter 4.1.4) is that the �eldvariables within the thin Stokes boundary layer next to the basilar membrane should beaurately approximated by the �nite element spae. Aording to Lighthill [26℄, thethikness of this Stokes boundary layer an be estimated to range from about 10µm to
400µm in dependene of the stimulation frequeny of audible sound.On the basis of these heuristi arguments, the number of re�nements of the elementsnext to the basilar membrane is gradually inreased along the partition until a spei�loation is reahed. This loation is spei�ed by the expeted deay of the traveling wave,whih an be estimated by using the frequeny-position map from Greenwood [18℄ asdesribed in hapter 4.1.3.After the elements have been marked aording to the strategy desribed above, there�nement algorithm an be performed. In doing this, the mesh is repeatedly traverseduntil no element of the mesh is marked anymore by a positive re�nement number. At eahelement, whih is labelled with a positive re�nement number, a subroutine is alled for thepurpose of performing a loal re�nement. If neessary, not only the triangle itself, but alsoelements in the neighbourhood have to be re�ned in suh way that the regularity of themesh is preserved. The reursive subroutine used in this work is shematially desribedin algorithm 3.2 and already provided by the Alberta library [42℄.In order to ensure the quality of the mesh, the splitting of a single triangle is onlyallowed at the midpoint of its longest edge. To avoid a hanging vertex, the algorithm willonly perform a re�nement if the longest edge of the triangle is also the longest edge of itsadjaent triangle. In this ase, both triangles an be re�ned simultaneously by using themidpoint of the ommon edge as a new vertex of all four sub-elements. Otherwise, theneighbouring triangle must �rst be re�ned until the ommon edge is at least as long asboth other sides of the adjaent triangle. Therefore, the loal re�nement proedure is areursive proess and a single re�nement of an individual triangle an entail a lot of otherre�nements of other triangles.An example of the resulting mesh is illustrated in �gure 3.13.1(b). It should be notedthat the meshes that are generated for the �nite element alulations are, of ourse, on-siderably �ner than the meshes illustrated in this work.
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CHAPTER 3. IMPLEMENTATIONAlgorithm 3.2 Reursive algorithm of the re�nementRequire: mesh M , individual triangle S2 needed to be re�nedEnsure: re�ned mesh1: proedure refine(M,S2)2: identify longest edge E of triangle S23: if E belongs not to the boundary of M then4: identify neighbouring triangle S2′ adjaent to E5: while S2′ has a longer edge than E do6: re�ne(M,S2′)7: identify neighbouring triangle S2′ adjaent to E8: end while9: derement re�nement number10: split triangles S2 and S2′ at the entre of E11: update M12: else13: derement re�nement number14: split triangle S2 at the entre of E15: update M16: end if17: end proedure3.1.3 Shape of the MeshUp to now, only the upper half of the mesh, whih represents the sala vestibular, is gener-ated by the re�nement proedure of a oarse retangular triangulation. The mesh an nowbe supplemented by re�eting eah element with respet to the longitudinal axis whihontains the ohlear partition. The advantage of this approah is that the arrangementof edges that are adjaent to the ohlear partition and that belong to the upper dut isin onformity with the arrangement of the edges on the other side of the partition. Al-though there seems to be a onnetion of the mesh through the ohlear partition, theelements above and below the basilar membrane are separated from eah other. There-fore, the line segments that are adjaent to the basilar membrane belong to the outerboundary of the mesh. From the tehnial point of view, the line segments at the ohlearpartition must therefore be implemented in dupliate in order to represent the boundarybetween the basilar membrane and the sala vestibular as well as the boundary betweenthe basilar membrane and the sala tympani. In order to onnet both hambers at theheliotrema, the upper and the lower mesh are glued together at the apex. This meansthat the orresponding segments and verties at the heliotrema are - in ontrast to theohlear partition - shared by both hambers. As shown below, this spei� on�gurationfailitates the numerial implementation of the mutual interations between the basilarmembrane and the �uid at both sides. A positive side e�et is that the re�etion of there�ned upper part redues the omputational e�ort, sine the expensive re�nement-routine40



3.2. VARIATIONAL FORMULATIONhas only to be performed for the half of the mesh. The supplemented mesh that resultsfrom the re�etion as desribed above an be seen in �gure 3.2(a).Finally, the mesh has to be adapted in suh a way that the shape of both hambers (asalready disussed in hapter 2.1) is su�iently represented by the �uid domain. Therefore,the transversal heights of the sala vestibular and sala tympani are modi�ed aordingto the measurements from Wysoki [52℄ by multiplying the vertial oordinates with ap-propriate saling fators. As a onsequene, the boundary is linearly approximated by thetriangular elements. In omparison to the model simpli�ations made above, the errorthat arises due to the linear approximation of the smooth boundaries may be onsideredas negligible. The e�et of the vertial saling is illustrated in �gure 3.2(b).3.1.4 Basilar Membrane as a SubmeshThe �uid domain is just one omponent of the whole ohlea model. In addition to the �uiddomain, also the basilar membrane and its interations with the �uid have to be taken intoaount by the numerial implementation. As already desribed above (f. hapter 2.1),the basilar membrane should be represented by an one-dimensional line between the �uid�lled hambers. The additional one-dimensional mesh is onstruted in suh a way thatthe individual line segments oinide with the orresponding boundary edges of the �uiddomain. In summary, the ohlear partition onsists of three di�erent virtual "layers" ofthe same line-segments. The �rst two layers are assoiated with the �uid domain and at asthe boundaries between the ohlear partition and the lower hamber or, respetively, theupper hamber. The third layer represents the basilar membrane for the implementationof its physial properties. The idential arrangement of eah layer with respet to theloation and width of eah line segment is not mandatory, but it signi�antly simpli�es thenumerial realization of the �uid struture interation. Therefore, the basilar membranean in priniple implemented as a submesh of the �uid domain, sine its set of verties isa subset of the verties that belong to the �uid mesh.3.2 Variational FormulationThe �nite element method is based on the variational formulation of the boundary valueproblem. The derivation of the variational formulation an be divided into three steps:1. In the �rst step, the partial di�erential equations of the boundary value problemmust be multiplied with test-funtions. In this ontext, the test-funtions have tobe hosen in suh a way that they are in agreement with the respetive boundary-onditions.2. After that, the resultant statements must be integrated over the domain of interest.3. If possible, the requirements onerning the di�erentiability of individual �eld vari-ables should be �nally weakened by applying Green's �rst identity . 41



CHAPTER 3. IMPLEMENTATION
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0 mm 10 mm 20 mm 30 mm(b)Figure 3.2: (a) The disretization of the �uid domain an be supplemented by re�eting the upper half ofthe mesh with respet to the longitudinal axis. In ontrast to the ohlear partition, where both parts of themesh are separated from eah other, the mesh has to be onneted at the heliotrema. (b) On the basis ofthe measurements from Wysoki [52℄, the shape of the ohlea an be linearly approximated by applying asaling proedure with respet to the vertial axis.
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3.2. VARIATIONAL FORMULATIONAs an be seen from the struture of this setion, the di�erent weak forms an beassoiated with the individual omponents of the ohlear model as illustrated in �gure1.3.For reasons of simpliity this hapter uses the Einstein summation onvention for es-tablishing the weak forms. Therefore, all terms, where an index ours twie, are to beunderstood as the summation of the term over all possible values intended for this index.3.2.1 The First Order SystemAousti Subproblem The �uid dynamis of the �rst order problem an be mainlydesribed by the �rst order onservation equations of mass 2.22 and linear momentum2.23. The weak form of the �rst order equation of the onservation of momentum is givenby
ρ(0)
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ij nj dx = 0 (3.5)where the line above a variable indiates the test-funtions. Due to the boundary ondition2.15, the boundary integral vanishes. Aording to the spei�ation of the stress tensor2.7, the seond integral an be expanded to
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In order to unify the presentation of the spatial disretization proess, it is onvenientto use a more general (and abstrat) notation of the variational formulation. In priniple,the weak form an be interpreted as the sum of di�erent bilinear mappings (whih will alsoreferred to as dual pairs) of the type

〈·, ·〉 : V g∗× V g → R (3.7)where V g denotes the underlying funtion spae with regard to the �eld variable g and
V g∗ represents its assoiated dual spae. Thereby, the �rst argument (the element ofthe dual spae) arises from a linear mapping Kgh ∈ L(V h, V g∗), Hgh ∈ L(V ḣ, V g∗) or
Mgh ∈ L(V ḧ, V g∗) that will be applied on a funtion h ∈ V h or on its �rst or seond timederivative respetively. In onformity with this notation, the variational formulation 3.5,43



CHAPTER 3. IMPLEMENTATIONwhih is expanded by the use of equation 3.6, an therefore be rewritten as
〈Hv1v1v̇(1)1 , v̄1〉V v1∗×V v1 + 〈Hv2v2v̇(1)2 , v̄2〉V v2∗×V v2+

〈Kv1v1v(1)1 , v̄1〉V v1∗×V v1 + 〈Kv2v2v(1)2 , v̄2〉V v2∗×V v2+

〈Kv1v2v(1)2 , v̄1〉V v1∗×V v1 + 〈Kv2v1v(1)1 , v̄2〉V v2∗×V v2+

〈Kv1pp(1), v̄1〉V v1∗×V v1 + 〈Kv2pp(1), v̄2〉V v2∗×V v2 = 0

(3.8)where the subsript of eah dual pair indiates the respetive spaes that are used by thebilinear mapping. The individual funtion spaes are spei�ed in hapter 3.3.The �rst order equation that desribes the balane of mass must also be onverted intoits variational formulation, whih is given by
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dx = 0. (3.9)In the same way as desribed above, the variational form of the mass balane an berepresented - by using the dual pair notation - as
〈Hppṗ(1), p̄〉V p∗×V p + 〈Kpv1v(1)1 , p̄〉V p∗×V p + 〈Kpv2v(1)2 , p̄〉V p∗×V p = 0. (3.10)Basilar Membrane In this work, the passive dynamis of the ohlear partition arerepresented by the di�erential equation 2.30. Its variational formulation an be evaluatedto
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(3.11)where the fore-term on the right hand side an be written as
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αβξ̄ζ dx. (3.12)Similar to above, the weak form an now be transformed into a generalized statement,whih onsist of di�erent dual pairs:
〈M ξξξ̈, ξ̄〉V ξ∗×V ξ + 〈Hξξξ̇, ξ̄〉V ξ∗×V ξ +

〈Kξξξ, ξ̄〉V ξ∗×V ξ + 〈Kξpp(1), ξ̄〉V ξ∗×V ξ+

〈Kξζζ, ξ̄〉V ξ∗×V ξ = 0. (3.13)44



3.2. VARIATIONAL FORMULATIONOuter Hair Cell Motility The additional fore ϑ that might be applied by the outer-hair-ell motility and that ats as an additional load on the basilar membrane an bespei�ed on the basis of the hair bundle de�etion desribed by equation 2.36. Aording tothe strategy mentioned above, the weak form of this di�erential equation an be alulatedto
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dx. (3.14)If eah integral is understood as a bilinear form, the variational formulation an be writtenas

〈M ζζζ̈ , ζ̄〉V ζ∗×V ζ + 〈Hζζζ̇ , ζ̄〉V ζ∗×V ζ +

〈Kζζζ, ζ̄〉V ζ∗×V ζ + 〈M ζξξ̈, ζ̄〉V ζ∗×V ζ = 0. (3.15)It is important to note that, in ontrast to the �uid-visosity oe�ients η and ζ andthe small signal sound speed c0 whih are assumed to be onstant in the present study,most of the oe�ients, used for the representation of the basilar membrane and the outerhair ell motility, are assumed to vary along the longitudinal axis. As a onsequene, thenon-onstant oe�ients must be expliitly taken into aount by performing a numerialquadrature (f. hapter 3.4.4).3.2.2 The Seond Order SystemSimilar to the �rst order problem, the �uid-dynamis of the aousti streaming subprobleman be onverted into a variational formulation by using the mean seond order equationof the momentum onservation 2.48. Its variational formulation is given by
∫

Ω
δij
∂v̄i

∂xj

p(dc) dx+ η

∫

Ω

∂v̄i

∂xj

(∂v(dc)i

∂xj

+
∂v(dc)j

∂xi

)

dx

+ (ζ − 2

3
η)

∫

Ω
δij
∂v̄i

∂xj

∂v(dc)k

∂xk

dx =

∫

Ω
v̄if̃ i dx. (3.16)The generalized formulation of this weak form an be written as

〈Gv1v1v(dc)1 , v̄1〉W v1∗×W v1 + 〈Gv2v2v(dc)2 , v̄2〉W v2∗×W v2+

〈Gv1v2v(dc)2 , v̄1〉W v1∗×W v1 + 〈Gv2v1v(dc)1 , v̄2〉W v2∗×W v2+

〈Gv1pp(dc), v̄1〉W v1∗×W v1 + 〈Gv2pp(dc), v̄2〉W v2∗×W v2 =

〈Sv1, v̄1〉W v1∗×W v1 + 〈Sv2, v̄2〉W v2∗×W v2

(3.17)45



CHAPTER 3. IMPLEMENTATIONwhere a set of di�erent dual pairs need to be introdued. The fore-soure-distribution f̃is represented by the dual elements Svi ∈W vi∗.The weak form of the mean seond order equation 2.46, whih was originally deduedfrom the balane of mass equation, an be evaluated to
ρ(0)

∫

Ω
p̄
∂v(dc)i

∂xi

dx =

∫

Ω
p̄m̃ dx. (3.18)Aording to the other weak forms, this variational formulation an also be onverted intoits uniform version

〈Gpv1v(dc)1 , p̄〉W p∗×W p + 〈Gpv2v(dc)2 , p̄〉W p∗×W p = 〈Sp, p̄〉W p∗×W p (3.19)where Sp ∈W p∗ is assoiated with the mass-soure-distribution m̃.3.3 Funtion Spaes3.3.1 Spatial Solution SpaesThe onstrution of the �nite element spaes must be based on the struture of the orretsolution spaes of the individual �eld variables. This work uses an approah that appliesdi�erent disretization tehniques with respet to the spatial and the temporal variables.For the examination of the spatial solution spae, the time variable is assumed to be �xedto a spei� time. Then, the atual state of the system an be desribed on the basis ofsolution spaes that only take the spatial dimensions into aount. For a more generalizedonsideration of the solution spaes that also take the time-dependene into aount seee.g. [24℄.Due to the omposition of the individual bilinear forms that onstitute the variationalformulation, it seems to be obvious to de�ne the solution spae as the spae that onsistsof all smooth funtions f ∈ C∞(Ω) of whih all partial derivatives up to an order k aswell as the funtion itself are square-integrable funtions (and therefore a member of theLebesgue-spae L2(Ω)). In doing so, the number k depends on the order of derivativesthat an be found within their assoiated bilinear forms. But it has been shown that thisfuntion spae is too small for the representation of solutions that arise from problems thatare desribed by a variational formulation of partial di�erential equations. (f. e.g. [23℄)From the topologial point of view, the orret solution spae an be established by theompletion of this funtion spae with respet to the so-alled Sobolev-norm, whih an bewritten as
‖g‖k :=

(
∑

|α|≤k

‖∂αg‖0
) 1

2 (3.20)46



3.3. FUNCTION SPACESThe supersript α is assoiated with the multi-index notation whih allows a simple repre-sentation of di�erent di�erential operators. This funtion spae is well-known as Sobolev-spae Hk and sine the Sobolev-spae is omplete with respet to the norm ‖ · ‖k, itonstitutes a Banah spae. The funtions of the Sobolev-spae an be haraterized byits weak derivatives. In this ontext, a funtion h ∈ L2(Ω) is referred to as weak derivativewith respet to the multi-index α of the funtion g ∈ L2(Ω), if
∫

Ω
gϕ dx = (−1)|α|

∫

Ω
h∂αϕ dx (3.21)holds for all ϕ ∈ C∞

0 (Ω). Then, it an be shown (f. e.g. [23℄) that a funtion is anelement of the Sobolev-spae Hk if and only if its weak derivatives up to the order k andthe funtion itself are elements of the Lebesgue spae L2(Ω).The funtion spaes of the individual �eld variables an be identi�ed on the basis of theresultant bilinear forms that are onstituted by the variational formulations. By taking thespei� boundary onditions into aount, the funtion spaes of the longitudinal veloityomponent are given by
V v1 =

{

v1 ∈ H
1(Ω)

∣
∣
∣
∣
v1(x) =

∂ξow

∂t
for all x ∈ Γow,

v1(x) = 0 for all x ∈ Γr ∪ Γbm+ ∪ Γbm−

}, (3.22)
V v̇1 = L2(Ω). (3.23)In the ontext of the Sobolev-spaes, a spei�ation of funtion values at the boundarydoes not make sense, sine the d-dimensional Lebesgue measure of the boundary is zero.In order to overome this di�ulty, it has been shown (f. e.g. [23℄) that under ertainonditions regarding the domain Ω, a H1(Ω)-funtion an be uniquely extended by meansof the linear trae operator

T : (H1(Ω), ‖ · ‖1)→ (L2(δΩ), ‖ · ‖0). (3.24)Therefore, if the funtion-values at the boundary domain are interpreted as a square-integrable and d − 1-measurable funtion, the Dirihlet-ondition an be established byusing the trae-operator T.1 But for reasons of simpliity, the trae operator will not beexpliitly stated in the ontext of the delaration of the Dirihlet onditions.By adapting the respetive boundary onditions, the funtion spaes of the vertial1In priniple, the trae theorem an not be applied on the ohlea domain in its urrent form, sine thedomain does not ful�ll the requirements of a so-alled Lipshitz domain. But the domain an be simplytransformed into a Lipshitz domain by inserting a thin gap between the upper boundary of the basilarmembrane and its lower ounterpart. 47



CHAPTER 3. IMPLEMENTATIONveloity omponent an be written as
V v2 =

{

v2 ∈ H
1(Ω)

∣
∣
∣
∣
v2(x) =

∂ξ

∂t
for all x ∈ Γbm+ ∪ Γbm−,

v1(x) = 0 for all x ∈ Γr ∪ Γow ∪ Γrw

}, (3.25)
V v̇2 = L2(Ω). (3.26)Sine the integrals of the variational formulations that are assoiated with the pressure donot ontain any spatial derivatives of the pressure variable, the pressure �eld as well as itstime-derivative an be represented by an element of the funtion spae

V p = V ṗ = L2(Ω). (3.27)So far, only the funtion spaes of the �elds that desribe the �uid dynamis have beenonsidered. In a similar way, also funtion spaes of the �elds that are assoiated with thebasilar membrane displaement and hair bundle de�etion an be introdued. In ontrastto the veloity and the pressure �eld, the domain of the funtions that are assoiated withthe dynamis of the basilar membrane is a one-dimensional sub-spae. On the basis of theweak form 3.11, the funtion spaes of the basilar membrane displaement and its temporalderivatives are given by
V ξ = V ξ̈ = L2(Γbm), (3.28)

V ξ̇ = H1(Γbm). (3.29)The variational formulation of the di�erential equation that desribes the hair bundlede�etion implies that the respetive funtion spaes an be written as
V ζ = V ζ̇ = V ζ̈ = L2(Γbm). (3.30)The aousti streaming subproblem onstitutes a stationary problem. Therefore, thesolution does not depend on the time. On the basis of the variational formulation, thefuntion spaes of the veloity omponents an be written as

W v1 =

{

v1 ∈ H
1(Ω)

∣
∣
∣
∣
v1(x) = v(dc)1 for all x ∈ Γ

}, (3.31)
W v2 =

{

v2 ∈ H
1(Ω)

∣
∣
∣
∣
v2(x) = v(dc)2 for all x ∈ Γ

} (3.32)where the mean veloity omponent v
(dc) at the boundaries an be evaluated from theboundary ondition 2.52 whih bases on the results of the �rst order aousti subproblem.Similar to the aousti system, the variational formulation of the seondary system doesnot onsist on spatial derivatives of the pressure variable. Therefore, the pressure an berepresented by an element of the funtion spae
W p = L2(Ω). (3.33)48



3.3. FUNCTION SPACES
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(b)Figure 3.3: Arrangement of the loal nodes and their respetive baryentri oordinates on (a) line-segments as well as (b) triangular elements. Nodes that are assoiated with funtion spaes of polynomialsof degree at most two are marked by blak dots. The hollow pentagons indiate the nodes in the ase offuntion spaes that are onstruted on the basis of polynomials of degree at most one.3.3.2 Loal Finite Element SpaesAs part of the disretization proess the in�nite-dimensional solution spaes (as spei�edabove) have to be replaed by appropriate �nite-dimensional subspaes. The usual ap-proah for the onstrution of suh �nite-dimensional subspaes in the ontext of the �niteelement method is based on �nite-dimensional loal funtion spaes whih are de�ned oneah individual simplex of the mesh. These loal funtion spaes may then be ombined insuh a way that the resultant global �nite-dimensional spae is a subspae of the solutionspae.In most ases, the �eld variables on a single simplex an be approximated with su�ientauray by using polynomials of degree at most a number d. It is quite obvious thatsuh a polynomial (restrited to a single simplex S) is an element of the Sobolev-Spae
H1(S). It has been shown (f. e.g. [23℄) that a global funtion omposed of individualloal polynomials is an element of the Sobolev-Spae H1(M) if and only if the globalfuntion is a ontinuous funtion on M . Therefore, the overall funtion does not need tobe ontinuously di�erentiable aross the edges of the simplies. In ontrast to the othervariables, the pressure is an element of the less restritive spae L2. As a onsequene, theglobal funtion spae that is used for the approximation of the pressure �eld does not evenneed to be ontinuous aross the simplex-borders.Of ourse, it would be possible to speify eah loal polynomial by using its respetiveoe�ients as degrees of freedom. But this approah would not be very useful, sine theglobal ontinuity ondition an not be diretly taken into aount. In the ontext of the�nite element method, the loal funtions are usually determined by the spei�ation of its49



CHAPTER 3. IMPLEMENTATIONAssoiated Node Loal Basis Funtion
β
0
(bar) = (1, 0) L0

(bar)(S
1
(bar)) := β0

β
1
(bar) = (0, 1) L1

(bar)(S
1
(bar)) := β1Table 3.1: Basis funtions on line segments that span the spae of polynomials of degree at most one (f.[42℄). Eah basis funtion an be assoiated with a ertain node where it doesn't vanish.funtion values and/or spatial derivatives at a number of individual distint points (alsoreferred to as nodes) within the simplex.Sine all �eld variables that are needed in the ontext of the ohlear model presentedhere do not need to be ontinuously di�erentiable at the edges of the simplies, it issu�ient to use elements of the well-known Lagrange family . The Lagrange elements areharaterized by solving the interpolation problem that spei�es only the funtion values(and not the spatial derivatives) at eah node. There are two properties that are essentialfor the appliation of the Lagrange elements in the ontext of the �nite element method:(1) The polynomial is well-de�ned by the funtion values at the nodes of a ertain sim-plex.(2) The polynomial restrited to any sub-simplex is well-de�ned by the funtion valuesat the nodes of the ertain sub-simplex.The interpolation funtions of the Lagrange family are polynomials of up to degree

k. The spae of these polynomials an be naturally identi�ed with the Eulidean spae
R
p, where the dimension p of this spae is given by the binomial oe�ient (d+kk ). Theinterpolation problem an now be interpreted as a mapping from the Eulidean spae R

q,whih serves as a representation of the funtion values at the q nodes, into the polynomialspae mentioned above. In this ontext, it beomes apparent that the number of nodes mustnot exeed the dimension of the polynomial spae in order to ensure that the interpolationproblem is solvable and furthermore that this solution is also well-de�ned. On the basisof the delaration of a set of polynomials N i that belong to the Lagrange family and thatare haraterized by the ondition
N i(nj) = δij (3.34)for all nodes nj the mapping an be simply spei�ed by an appropriate linear ombinationof these basis funtions. In this ase, the resultant interpolation funtion also omplies withproperty (1), sine this kind of mapping ensures the existene as well as the uniquenessof the interpolating polynomial. By the restrition on an arbitrary sub-simplex, the sameline of argument an be used to show property (2). (f. [23℄)In this work, polynomials of degree at most one (for the fore-like variables) and atmost two (for veloity or displaement-like variables) are used. In order to distinguishboth types of loal funtion spaes with regard to their maximal polynomial degree, therespetive spae will be referred to as linear or quadrati. The arrangement of the nodes50



3.3. FUNCTION SPACESAssoiated Node Loal Basis Funtion
β
0
(bar) = (1, 0) Q0

(bar)(S
1
(bar)) := (2β0− 1)β0

β
1
(bar) = (0, 1) Q1

(bar)(S
1
(bar)) := (2β1− 1)β1

β
2
(bar) = (12 ,

1
2 ) Q2

(bar)(S
1
(bar)) := 4β0β1Table 3.2: Basis funtions on line segments that span the spae of polynomials of degree at most two (f.[42℄). Eah basis funtion an be assoiated with a ertain node where it doesn't vanish.Assoiated Node Loal Basis Funtion

β
0
(bar) = (1, 0, 0) L0

(bar)(S
2
(bar)) := β0

β
1
(bar) = (0, 1, 0) L1

(bar)(S
2
(bar)) := β1

β
2
(bar) = (0, 0, 1) L2

(bar)(S
2
(bar)) := β2Table 3.3: Basis funtions on triangular elements that span the spae of polynomials of degree at mostone (f. [42℄). Eah basis funtion an be assoiated with a ertain node where it doesn't vanish.in the linear ase as well as the quadrati ase for both line-segments and triangles isillustrated in �gure 3.3. The respetive set of basis funtions that omply with equation3.34 are listed in the tables 3.1, 3.2, 3.3 and 3.4 with respet to the baryentri referenesystem.Eah linear and quadrati basis funtion with respet to a spei� simplex is thende�ned as

Li(Sd) := Li(bar)(S
d
(bar)) ◦ β(x), (3.35)

Qi(Sd) := Qi(bar)(S
d
(bar)) ◦ β(x). (3.36)The loal funtion spaes for the linear and the quadrati ase are now given by

L(Sd) := span
{
Li(Sd) | i = 1, 2, ...

}, (3.37)
Q(Sd) := span

{
Qi(Sd) | i = 1, 2, ...

}. (3.38)3.3.3 Global Finite Element SpaesAs mentioned above, it is neessary to ensure that the global funtions are ontinuousaross the edges of the simplies in order to guarantee that the Sobolev-spaes ontain theresultant funtions. In terms of a mathematial formulation, the overall linear funtionspae with respet to the �uid-domain an be stated as
L(MΩ) : =

{

f ∈ C0(MΩ)

∣
∣
∣
∣
∀S2 ∈MΩ : f |S2 ∈ L(S2)

}

= span

{

LΩ
1 , L

Ω
2 , ..., L

Ω
dimL(MΩ)

} (3.39)51



CHAPTER 3. IMPLEMENTATIONAssoiated Node Loal Basis Funtion
β
0
(bar) = (1, 0, 0) Q0

(bar)(S
2
(bar)) := (2β0− 1)β0

β
1
(bar) = (0, 1, 0) Q1

(bar)(S
2
(bar)) := (2β1− 1)β1

β
2
(bar) = (0, 0, 1) Q2

(bar)(S
2
(bar)) := (2β2− 1)β2

β
3
(bar) = (0, 12 ,

1
2 ) Q3

(bar)(S
2
(bar)) := 4β1β2

β
4
(bar) = (12 , 0,

1
2 ) Q4

(bar)(S
2
(bar)) := 4β0β2

β
5
(bar) = (12 ,

1
2 , 0) Q5

(bar)(S
2
(bar)) := 4β0β1Table 3.4: Basis funtions on triangular elements that span the spae of polynomials of degree at mosttwo (f. [42℄). Eah basis funtion an be assoiated with a ertain node where it doesn't vanish.where the funtions LΩ

i establish a basis of the global funtion spae and will be spei�edbelow. In the same way, the overall quadrati funtion spae an be represented by
Q(MΩ) : =

{

f ∈ C0(MΩ)

∣
∣
∣
∣
∀S2 ∈MΩ : f |S2 ∈ Q(S2)

}

= span

{

QΩ
1 , Q

Ω
2 , ..., Q

Ω
dimQ(MΩ)

} (3.40)The ontinuity ondition involves the neessity that all funtion values at those loal nodesthat are positioned at the same loation but belong to di�erent simplies are idential.Then, the ontinuity ondition an be guaranteed due to the interpolation ondition (2)as mentioned above. Therefore, it is useful to join these adjaent loal nodes to a ommonglobal node. From a mathematial point of view, a global node onstitutes an equivalenelass of the set of all loal nodes of a mesh. In this ontext, two nodes are members of thesame equivalene lass if and only if both nodes an be represented by idential baryentrioordinates with respet to a ommon sub-simplex (to whih both nodes belong).For the implementation, it is useful to label eah global node and eah global basisfuntion by an index. Therefore, let
IL(M

Ω) :=
{
i ∈ N

∣
∣ 1 ≤ i ≤ dimL(MΩ)

}, (3.41)
IQ(MΩ) :=

{
i ∈ N

∣
∣ 1 ≤ i ≤ dimQ(MΩ)

} (3.42)be the index-families that are assoiated with the global linear and the global quadratifuntion spaes. If eah global node is uniquely labelled by suh an index, the basisfuntions LΩ
i or QΩ

i respetively of the global funtion spaes an be de�ned indiretly by
LΩ
i (nj) = δij for all j ∈ IL(M

Ω), (3.43)
QΩ
i (nj) = δij for all j ∈ IQ(MΩ) (3.44)with nj being the global node that ats as a representative for all loal nodes that belongto this global node. The uniqueness of these basis-funtions is a diret onsequene of theinterpolation ondition (1). In the same way, similar global funtion spaes with regard to52



3.4. SPATIAL DISCRETIZATIONthe basilar membrane domain an be established. The funtion spae of pieewise linearfuntions on individual line-segments of the basilar membrane is given by
L(MΓbm) : =

{

f ∈ C0(MΓbm)

∣
∣
∣
∣
∀S1 ∈MΓbm : f |S1 ∈ L(S1)

}

= span

{

LΓbm

1 , LΓbm

2 , ..., L
Γbm

dimL(MΓbm)

}. (3.45)The funtion spae that uses pieewise quadrati polynomials an be written as
Q(MΓbm) : =

{

f ∈ C0(MΓbm)

∣
∣
∣
∣
∀S1 ∈MΓbm : f |S1 ∈ Q(S1)

}

= span

{

QΓbm

1 , QΓbm

2 , ..., Q
Γbm

dimQ(MΓbm)

}. (3.46)As in the ase of the global nodes that are assoiated with the �uid domain, eah globalnode of the basilar membrane domain is indiated by a unique number. The indies of aglobal node and the basis funtions are hosen in suh a way that the following relationshold:
LΓbm

i (nj) = δij for all j ∈ IL(M
Γbm), (3.47)

QΓbm

i (nj) = δij for all j ∈ IQ(MΓbm). (3.48)For the assembly of the matries that are used to represent the disretized system it isimportant to use an inreasing set of numbers for the index families used in the previousequations. Therefore, these index families are given by
IL(M

Γbm) :=
{
i ∈ N

∣
∣ 1 ≤ i ≤ dimL(MΓbm)

}, (3.49)
IQ(MΓbm) :=

{
i ∈ N

∣
∣ 1 ≤ i ≤ dimQ(MΓbm)

}. (3.50)Furthermore, it is useful to ombine the respetive basis funtions of the global �niteelement spaes LΩ
i , QΩ

i , LΓbm

i and QΓbm

i into the ommon vetors LΩ, QΩ, LΓbm and Q
Γbm.3.4 Spatial Disretization3.4.1 The First Order SystemAousti Subproblem In the last hapter the spatial solution spaes of the individ-ual physial �eld variables have been introdued. As part of the disretization proess,these in�nite dimensional funtion spaes are replaed by the global �nite element spaes,presented in hapter 3.3.3. In this ontext, the individual salar solution funtions are ap-proximated by the linear ombination of the respetive basis funtions. In this work, thetwo omponents of the veloity �eld as well as its �rst time derivatives are represented by53



CHAPTER 3. IMPLEMENTATIONthe quadrati �nite element funtions Q with respet to the two-dimensional �uid domain
Ω. Therefore, the individual veloity omponents an be written as

v(1)1 ≈ v̂
(1)
1 ·Q

Ω, v(1)2 ≈ v̂
(1)
2 ·Q

Ω,
v̇(1)1 ≈ ˙̂v(1)

1 ·Q
Ω, v̇(1)2 ≈ ˙̂v(1)

2 ·Q
Ω, (3.51)where the hat-symbol above a variable refers to a nodal vetor. A single omponent ofa nodal vetor is haraterized by its onnetion to a spei� global node. Aording tothe linear ombination it beomes obvious that the funtion value at a spei� node ofthe resultant approximation funtion is idential to the assoiated omponent of the nodalvetor.It has been shown that the right hoie of the �nite element spaes of the mixed systemthat takes the veloity �eld as well as the pressure �eld into aount has a major in�ueneon the stability, auray and onvergene of the simulation proess (f. [36℄). If the basisfuntions of the pressure �eld are, for example, hosen in suh a way that their polynomialdegree is idential to the order of the basis funtions that are used to represent the veloity,the system will beome - in a ertain way - overonstrained. As a onsequene, a signi�antspatial osillation of the pressure funtion an be observed. In ontrast, a stable systeman be ahieved by ful�lling the so-alled Ladyzhenskaya-Babuska-Brezzi (LBB) ondition,whih an be written as

inf
p∈V p\{0}

sup
v∈V v\{0}

〈Kpv1v1, p〉 + 〈K
pv2v2, p〉

‖p‖0‖v‖1
> c (3.52)where V

v = V v1 × V v2 and c > 0 is referred to a onstant. The validity of the LBBondition has not only to be veri�ed for funtions of the underlying solution spae (as e.g.shown by [24℄), but also for the disretized �nite element spaes. In order to ensure that theLBB-ondition is also valid for the disretized �nite element spaes, it has been shown thatthe maximal polynomial degree of the basis funtions that are used for representing thepressure �eld has to be at least one order lower than the respetive basis funtions of theveloity omponents (f. [36℄). Therefore, sine the veloity omponents are approximatedby the use of quadrati basis funtions, the funtion spae of the pressure �eld is onstitutedby basis funtions that are pieewise linear:
p(1) ≈ p̂

(1) · LΩ, ṗ(1) ≈ ˙̂p(1) · LΩ. (3.53)Up to now, the disretized funtion spaes of the veloity �elds do not onsider the bound-ary onditions. The Dirihlet ondition an be implemented by the spei�ation of therespetive funtion values at the boundary nodes. Therefore, it is useful to introdue a set54



3.4. SPATIAL DISCRETIZATIONof di�erent index families in order to realize the boundary onditions:
BL(MΓbm+ )⊂ IL(M

Ω), BQ(MΓbm+)⊂ IQ(MΩ),
BL(MΓbm−)⊂ IL(M

Ω), BQ(MΓbm−)⊂ IQ(MΩ),
BL(MΓow ) ⊂ IL(M

Ω), BQ(MΓow ) ⊂ IQ(MΩ),
BL(MΓrw ) ⊂ IL(M

Ω), BQ(MΓrw ) ⊂ IQ(MΩ),
BL(MΓr ) ⊂ IL(M

Ω), BQ(MΓr) ⊂ IQ(MΩ). (3.54)
Eah family is a subset either of the linear or the quadrati �nite element funtion spae.An index i is an element of one of these subsets if its assoiated node ni belongs to therespetive boundary. Due to the onstrution of the mesh of the �uid domain in onnetionwith the line-segments of the ohlear partition (f. setion 3.1.4), the nodes of the basilarmembrane (in the linear as well as in the quadrati ase) an be linked to the adjaentboundary nodes of the �uid domain. The various mappings from the nodes of the basilarmembrane to the nodes that belong either to the upper dut or to the lower hamber ofthe ohlear model are illustrated by the following sheme:

BL(MΓbm+ ) BQ(MΓbm+ )

IL(M
Γbm) IQ(MΓbm)

BL(MΓbm−) BQ(MΓbm− )

ϕ

φb+

φb−

ψb+

ψb− . (3.55)These mappings onstitute bijetions exept of the funtion ϕ whih is only an injetivefuntion sine the quadrati basis funtions need additional nodes in the middle of eahsimplex. For reasons of simpliity, di�erent sets of boundary nodes an be ombined into asingle set for whih the Dirihlet ondition must be applied. Sine the Dirihlet onditionsof the �rst veloity omponent di�ers from the seond veloity omponent, two di�erentsets of nodes have to be established:
Bv1(1) = BQ(MΓow ) ∪ BQ(MΓbm+) ∪ BQ(MΓbm− ) ∪ BQ(MΓr), (3.56)
Bv2(1) = BQ(MΓow ) ∪ BQ(MΓrw ) ∪ BQ(MΓbm+ ) ∪ BQ(MΓbm− ) ∪ BQ(MΓr). (3.57)As desribed in hapter 2.3.1, the aousti subproblem is mainly haraterized by the�rst order equation of the onservation of mass and by the �rst order equation of theonservation of linear momentum in ombination with the spei�ation of the stress tensor.This system of di�erential equations an be transformed into a semi-disretized system by55



CHAPTER 3. IMPLEMENTATIONusing its variational formulation as introdued in hapter 3.2.1. As mentioned above, thesystem will initially be disretized with respet to the spatial dimensions. The temporaldisretization proess is desribed in hapter 3.5. The semi-disretized system an berepresented by using a set of di�erent matries. These matries an be assembled on thebasis of the dual pairs as introdued in hapter 3.2. In doing this, eah solution spae hasto be replaed by an appropriate �nite element spae. If the test-funtions are suessivelysubstituted by di�erent basis funtions of the underlying �nite element spae and if the �eldvariables are approximated by using equations 3.51 and 3.53, a linear system of equationan be established. Before determining the struture of this linear system of equation,the individual matries should be introdued. In priniple, the matries an be assoiatedwith di�erent terms of the original di�erential system of equation. The Newtonian �uidis haraterized by the linear dependene between the stress tensor and the deformationtensor (f. equation 2.7). This stress tensor is implemented in terms of the matries Kv1v1,
K
v2v2, Kv1v2, Kv2v1, Kv1p and K

v2p. The �rst two matries are given by the followingspei�ations:
Kv1v1
ij =

{

δij if i ∈ Bv1(1)
〈Kv1v1QΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.58)

Kv2v2
ij =

{

δij if i ∈ Bv2(1)
〈Kv2v2QΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.59)At a spei� node, the Dirihlet ondition an be applied by using the Kroneker deltaoperator δij as it an be seen in the �rst row of both matrix-spei�ations. Of ourse, theorresponding funtion value must still be spei�ed. As it will be shown later, the funtionvalue an then be set either on the right hand side of the overall system of equation or withinother matries in an appropriate way. The matries that link both veloity omponentsan be assembled by using the formulas

Kv1v2
ij =

{

0 if i ∈ Bv1(1)
〈Kv1v2QΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.60)

Kv2v1
ij =

{

0 if i ∈ Bv2(1)
〈Kv2v1QΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.61)In order to preserve the Dirihlet ondition, the respetive rows (that are assoiated witha node that belongs to the Dirihlet boundary) have to vanish. For the same reasons, theon�guration of the matries that implement the interation with the pressure �eld is givenby

Kv1p
ij =

{

0 if i ∈ Bv1(1)
〈Kv1pLΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.62)

Kv2p
ij =

{

0 if i ∈ Bv2(1)
〈Kv2pLΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.63)56



3.4. SPATIAL DISCRETIZATIONThe priniple of the onversation of momentum states that the fore that is applied on aolletion of �uid partiles and that an be represented by the use of the stress tensor isequal to the rate of hange of linear momentum (f. [36℄). In the ase of the �rst ordersystem, the time-rate of hange of the momentum an be disretized with the help of thematries Hv1v1 and H
v2v2. Its omponents an be evaluated to
Hv1v1ij =

{

0 if i ∈ Bv1(1)
〈Hv1v1QΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.64)

Hv2v2ij =

{

0 if i ∈ Bv2(1)
〈Hv2v2QΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.65)All terms of the momentum equations are taken into aount by the matries introduedabove. But, the funtion values at the Dirihlet nodes still need to be spei�ed. At theoval window, the �rst veloity omponent is given by the time-derivative of the prede�neddisplaement of the stapes. Sine the longitudinal veloity omponent vanishes at all othernodes of Bv1(1) and there is no other load that has to be onsidered, the right hand sidevetor of the veloity v1 is given by

Fv1i =

{
∂ξow(x)
∂t if i ∈ IQ(MΓow )

0 otherwise . (3.66)Similarly, the seond omponent of the veloity is a�eted by the vertial displaementof the basilar membrane. But in ontrast to the oval window, the displaement of theohlear partition is not prede�ned and it depends on the mutual interation with the �uid.Therefore, the respetive funtion values at the basilar membrane need to be determinedin dependene of the nodal and unknown vetor ˙̂
ξ that spei�es the �rst time-derivativeof the basilar membrane displaement (see below). In doing this, the veloity at the node

ni that belongs to either the upper or lower partition boundary an be equated with theomponent ψb+−1(i) of the veloity vetor ˙̂
ξ in the ase of the upper boundary, or withthe omponent ψb−−1(i) in the ase of the lower boundary respetively. This relation anbe realized by using a matrix that is given by

Hv2ξij =







−δiψb+(j) if i ∈ BQ(MΓbm+ )

−δiψb−(j) if i ∈ BQ(MΓbm−)

0 otherwise . (3.67)Sine the seond veloity omponent vanishes at the other boundaries and sine no externalload exists, the right hand vetor Fv2 is a null vetor. Now, all these matries an be usedto transform the variational formulation of the balane-of-momentum equation into itssemi-disretized formulation, whih an be written as
H
v1v1 ˙̂v(1)

1 +K
v1v1v̂

(1)
1 +K

v1v2v̂
(1)
2 +K

v1pp̂
(1) = F

v1, (3.68)
H
v2v2 ˙̂v(1)

2 +K
v2v1v̂

(1)
1 +K

v2v2v̂
(1)
2 +K

v2pp̂
(1) +H

v2ξ ˙̂ξ = 0. (3.69)57



CHAPTER 3. IMPLEMENTATIONSimilar to the priniple of onservation of momentum, also the balane of mass equationonsists of two di�erent parts. The �rst part desribes the rate of hange of the mass withrespet to the time. Its �rst order term an be transformed into a disretized formulationby establishing the matrix H
pp. Sine no boundary onditions are spei�ed with regard tothe pressure �eld, the entries of this matrix an be evaluated to

Hppij = 〈HppLΩ
j , L

Ω
i 〉L∗×L. (3.70)The seond part is assoiated with the supply of mass. It onstitutes a mixed term, dueto the link to the veloity �eld. By applying the ommon disretization method on the�rst order problem, the matries K

pv1 and K
pv2 an be dedued. Its omponents an bealulated to

Kpv1
ij = 〈Kpv1QΩ

j , L
Ω
i 〉L∗×L, (3.71)

Kpv2
ij = 〈Kpv2QΩ

j , L
Ω
i 〉L∗×L. (3.72)All in all, the disretized �rst order equation that origins from the mass onservation annow be written in terms of the former matries as

H
pp ˙̂p(1) +K

pv1v̂
(1)
1 +K

pv2v̂
(1)
2 = 0. (3.73)The equations 3.68, 3.69 and 3.73 onstitutes the semi-disretized version of the �rst order�uidi subproblem.Basilar Membrane The displaement of the basilar membrane is mainly driven by thedi�erene between the pressure above and below the ohlear partition. Sine the mesh ofthe basilar membrane is, moreover, idential to parts of the boundary that belongs to the�uid domain, it is advisable to use the same type of basis funtions for the evaluation of thedynamis of the basilar membrane as used for the pressure �eld. Therefore, the funtionspae that represents the displaement of the ohlear partition should be disretized byusing the spae L(MΓbm) (f. equation 3.45).Otherwise, the veloity of adjaent �uid-partiles depends on the displaement of thebasilar membrane. Therefore, it would be useful if the displaement of the basilar mem-brane is also available at nodes that are exlusively used by the quadrati basis funtions.In order to meet both requirements a ombined approah is used. Although the prin-iple omputation is based on linear basis funtions, the displaement at the additionalquadrati nodes are also interpolated on the basis of values at the adjaent linear nodes.In doing this, the additional nodes (that are used in order to onstitute the quadrati basisfuntions but that do not belong to the linear basis funtions) an be desribed by theindex family

IQ\L := IQ(MΓbm)\
{
ϕ(i)

∣
∣ i ∈ IL(M

Γbm)
}. (3.74)A simple linear interpolation tehnique that an be used for determining the displaementat the nodes that orrespond to the index family 3.74 needs to have aess to the respetive58



3.4. SPATIAL DISCRETIZATIONvalues at its diret neighbors. Therefore, the indies of the neighbors of the node that isassoiated with index i ∈ IQ\L are given by the set
IN (i) :=

{
j ∈ IL(M

Γbm)
∣
∣ j belongs to the same simplex as i}. (3.75)In summary, the disretization proess is realized by using matries, whose struture isbased on the funtion spae Q(MΓbm) (f. equation 3.46). But in ontrast to the matriesabove, its entries are assembled by using dual pairs that are de�ned on the funtion spae

L(MΓbm) (f. equation 3.45). Then, the sti�ness matrix is given by
Kξξ
ij =







1 if i, j ∈ IQ\L and i = j

−1
2 if i ∈ IQ\L and j ∈ IN (i)

〈KξξLΓbm

l , LΓbm

k 〉L∗×L if ϕ(k) = i, ϕ(l) = j exist
0 otherwise . (3.76)The �rst two rows realize the interpolation of the displaement by evaluating the averagevalue of the two neighbouring displaement values. The third row is assoiated with thelongitudinal varying sti�ness of the basilar membrane.Of ourse, it would also be possible to diretly implement the linear interpolation by anadaption of the entries of the matrix K

v2v2. Furthermore, other implementation tehniquesmight also be implemented like ubi C2 splines. But a possible higher auray seems tobe disproportionate to the resultant omputational e�ort.As desribed in hapter 2.3.2, the damping of the osillatory model onsists of twodi�erent damping omponents. Both, the longitudinal shearing resistane as well as theintrinsi visosity of the ohlear partition at a spei� point are onsidered by the matrix
Hξξij =

{

〈HξξLΓbm

l , LΓbm

k 〉L∗×L if ϕ(k) = i, ϕ(l) = j exist
0 otherwise . (3.77)The disretized ounterpart of the term that desribes the inertial reation of the basilarmembrane is given by

Mξξ
ij =

{

〈M ξξLΓbm

l , LΓbm

k 〉L∗×L if ϕ(k) = i, ϕ(l) = j exist
0 otherwise . (3.78)Now, the dynamis of the passive basilar membrane are fully desribed by the matries

K
ξξ, Hξξ and M

ξξ. As mentioned above, the ohlear system is stimulated by the �uid-pressure above and below the partition. This external pressure-load an be represented bya matrix, whose omponents an be evaluated to
Kξp
ij =

{

〈KξpLΩ
l , L

Γbm

k 〉L∗×L if ϕ(k) = i, ϕ(l) = j exist
0 otherwise . (3.79)59



CHAPTER 3. IMPLEMENTATIONFurthermore, an additional fore may be applied by the outer hair ell motility. Sine thisexternal load is assumed to be proportional to small de�etions of the hair bundles, thedisretization proess yields the matrix
Kξζ
ij =

{

〈KξζLΓbm

l , LΓbm

k 〉L∗×L if ϕ(k) = i, ϕ(l) = j exist
0 otherwise . (3.80)Now, a semi-disretized system that simulates the displaement of the ohlear partitionan be established by using the matries introdued above. In doing this, the variationalformulation 3.11 an be transformed into the ordinary di�erential equation

M
ξξ¨̂
ξ +H

ξξ ˙̂
ξ +K

ξξ
ξ̂ +K

ξp
p̂
(1) +K

ξζ
ζ̂ = 0. (3.81)Outer Hair Cell Motility As desribed in hapter 2.3.3, the de�etion of the stere-oilia is modeled as an additional osillator. Therefore, the assoiated di�erential equationonsists of a sti�ness-, a damping- and a mass-term. These physial harateristis arere�eted in the matries Kζζ, Hζζ and M

ζζ. The matries an be evaluated on the basis ofthe variational formulation 3.14. Aording to the basis funtions of the basilar membranemotion, the de�etions of the hair bundles are also approximated by pieewise linear fun-tions, beause the displaement of the ohlear partition is a diret ause of the de�etion.The omponents of the matries an be assembled by using the following formulas:
Kζζ
ij = 〈KζζLΓbm

j , LΓbm

i 〉L∗×L, (3.82)
Hζζij = 〈HζζLΓbm

j , LΓbm

i 〉L∗×L, (3.83)
Mζζ
ij = 〈M ζζLΓbm

j , LΓbm

i 〉L∗×L. (3.84)The oupling to the basilar membrane displaement is realized by the matrix M
ζξ whoseomponents an be alulated to

Mζξ
ij = 〈M ζξLΓbm

j , LΓbm

i 〉L∗×L. (3.85)By the use of these matries, the di�erential equation that desribes the de�etion of thehair bundles an be transformed into its semi-disretized formulation, whih is given by
M

ζζ¨̂
ζ +H

ζζ ˙̂
ζ +K

ζζ
ζ̂ +M

ζξ¨̂
ξ = 0. (3.86)3.4.2 Multiphysial CouplingThe �rst order system an be regarded as a multiphysial problem, sine the system anonly be realistially desribed by the simultaneous onsideration of multiple physial phe-nomena. The multiphysial oupling of the aousti subproblem an be summarized bythe following interations:60



3.4. SPATIAL DISCRETIZATION
• The displaement of the basilar membrane is diretly a�eted by the �uid pressureabove and below the ohlear partition.
• The �uid veloity at the basilar membrane above and below the ohlear partitiondepends on the displaement of the basilar membrane.
• The outer hair ell fore appears as an additional load whih ats on the basilarmembrane.
• The outer hair ell fore is mainly in�uened by the displaement of the basilarmembrane as a onsequene of the relative motions of the retiular lamina withrespet to the tetorial membrane.Therefore, the dynamis of the �uid, the basilar membrane and the tetorial membraneonstitute three di�erent physial proesses that have to be simultaneously taken intoaount by the overall simulation proess, sine the individual proesses have a mutualin�uene on eah other.In ontrast to the interation of these three omponents, the oupling between the�uid and the round window is realized through an internal boundary ondition with re-spet to the longitudinal veloity �eld (f. hapter 2.2.3). Due to this spei� kind ofimplementation, the interation between the round window and the �uid an therefore notbe onsidered as a multiphysial phenomenon. Also the �uid itself may be onsidered as aoupled system, sine the pressure and the veloity variables are oupled by the onserva-tion priniples and onstitutive relations as desribed above. Sine the �uid dynamis aremodeled as a whole by the interplay between the pressure and the veloity �eld, this kindof interation is referred to as a mixed formulation rather than a oupled phenomenon.Multiphysial interations between two physial proesses are often ategorized by thedegree to whih they are oupled. In literature, a distintion is often made between astrong and weak oupling. But neither a formal de�nition nor a quanti�ation has beenestablished up to now in order to objetify the degree of oupling.In priniple, two di�erent approahes for the numerial implementation of a multiphys-ial problem an be distinguished. The �rst approah for simulating multiple proessesinvolves the onsideration of the oupled proesses as one monolithi system of equations.It is a straightforward method whih naturally takes the oupling into aount even ifthe mutual interations have signi�ant in�uenes on eah individual proess. The majordrawbak of this proedure is that the resultant system of equations may beome quitelarge and its assoiated matrix is potentially badly onditioned. In ontrast, the seond ap-proah is based on separate sub-routines that are speialized in the numerial omputationof the di�erent physial phenomena that are involved. In this ase, the oupling is realizedby the transfer of relevant data, whih an be taken into aount by spei� boundaryonditions, load terms, geometri shape or onstitutive relations. If the oupling is notunidiretional, the results of the proesses may have a mutual in�uene to suh an extentthat the omputation of eah sub-system has to be repeated (under onsideration of theupdated data) by an iterative sub-proess in order to ahieve aurate results. Whether61



CHAPTER 3. IMPLEMENTATIONsuh an iterative proess is really neessary depends mainly on the degree of in�uene oneah other. In many appliations, it seems to be su�ient to transfer the oupling-relevantdata from one proess to the other just one time per time-step or even only an oasionalupdate every few times steps is enough to adequately represent the multiphysial system.An advantage of suh a partitioned method lies in a more e�etive omputation of eahindividual sub-proess sine eah sub-routine an be numerially optimized and in mostases the resultant sub-systems of equations are signi�antly smaller and better ondi-tioned than the overall system. Furthermore, the modular design of the implementation,whih is haraterized by the appliation of di�erent modules for eah individual physialphenomena, failitates the reuse of the software with respet to other omputations. (f.[36, 15℄)In this work, the multiphysial problem is realized by a monolithi system of equa-tions. It an be assumed that a partitioned realization of the oupling involves a substan-tial omputational e�ort that is probably needed by the appliation of the sub-iterations(as mentioned above) due to the strong interdependene between the �uid, the basilarmembrane and the outer hair ell motility. Therefore, it an not be expeted that thepartitioned implementation has signi�ant advantages with respet to the omputationale�ort over a monolithi realization. Furthermore, the modular design is aompanied witha substantial inrease of the ode omplexity, due to the additional implementation of ad-equate interfaes, data transfer protools, �nite element interpolations and the monitoringof the sub-iteration proesses. Moreover, the ohlear system is a highly spei� problem(in partiular with regard to the basilar membrane), so that the resultant ode an not beeasily adopted by other appliations for the simulation of aoustially driven �ows withina �uid-struture oupled system. Nevertheless, also the monolithi sheme is aompaniedby inreased requirements on the software arhiteture.Aording to the equations 3.68, 3.69, 3.73, 3.81 and 3.86, the fully oupled monolithisystem of the �rst order aousti subproblem an be represented as
Mü+Hu̇+Ku = F (3.87)whih onstitutes a system of seond order linear ordinary di�erential equations. The nodalvetor u ombines the individual nodal vetors of the �uid veloity, �uid pressure, basilarmembrane displaement and hair bundle de�etion and this overall vetor an be writtenas

u =
[

v̂
(1)
1 v̂

(1)
2 p̂

(1)
ξ̂ ζ̂

]T . (3.88)Due to the similarity of equation 3.87 to equations of motions where the vetor u isusually identi�ed with the displaement of the motion, the matries M, H and K areoften referred to as the mass matrix, the damping matrix and the sti�ness matrix. From aphysial point of view it must be noted that these terms are not preise with respet to theordinary di�erential equation presented here, sine the nodal vetor u onsists not only ofdisplaement omponents but also of veloity omponents. By using the sub matries ofthe individual equations as introdued in setion 3.4.1, the sti�ness matrix an be written62



3.4. SPATIAL DISCRETIZATIONas
K =












K
v1v1 K

v1v2 K
v1p 0 0

K
v2v1 K

v2v2 K
v2p 0 0

K
pv1 K

pv2 0 0 0

0 0 K
ξp

K
ξξ

K
ξζ

0 0 0 0 K
ζζ












. (3.89)The disretized damping matrix of the �rst order subproblem an be represented as
H =












H
v1v1 0 0 0 0

0 H
v2v2 0 H

v2ξ 0

0 0 H
pp

0 0

0 0 0 H
ξξ

0

0 0 0 0 H
ζζ












. (3.90)Finally, the overall mass matrix an be determined to
M =












0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 M
ξξ

0

0 0 0 M
ζξ

M
ζζ












. (3.91)
By the monolithi matrix representation, the interdependenies (or in other words theoupling) between di�erent �eld variables are easily reognizable by the sub-matries thatare not loated on the main diagonal.The right hand side of the �rst order semi-disretized formulation 3.87 onsists onlyof entries belonging to the longitudinal veloity omponents that are assoiated with thedisplaement of the oval window. Therefore, the load vetor an be written as

F =
[

F
v1 0 0 0 0

]T . (3.92)
3.4.3 The Seond Order SystemAousti Streaming Subproblem As shown in hapter 2.4, the mean motion of theseondary �ow is haraterized on the one hand by the seond order supply-terms of themass and momentum and on the other hand by the virtual soure-distributions of massand momentum. The supply of linear momentum in terms of the seond order meanvariables v

(dc) and p(dc) an be represented by the matries G
v1v1, Gv2v2, Gv1v2, Gv2v1,63



CHAPTER 3. IMPLEMENTATION
G
v1p and G

v2p. In order to take also the boundary onditions into aount, the indies ofthe boundary nodes are ombined into the set
Bv(dc) = BQ(MΓow ) ∪ BQ(MΓrw ) ∪ BQ(MΓbm+ ) ∪ BQ(MΓbm−) ∪ BQ(MΓr). (3.93)Using this index family, the �rst two matries an be assembled by using the relations

Gv1v1
ij =

{

δij if i ∈ Bv(dc)
〈Gv1v1QΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.94)

Gv2v2
ij =

{

δij if i ∈ Bv(dc)
〈Gv2v2QΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.95)As in the ase of the �rst order subproblem, the Kroneker delta symbol allows the spe-i�ation of the veloity omponents at the boundaries by the values of the right handside. By taking into aount that all other entries at those rows that are assoiated with aboundary node must vanish, the matries that onnet both veloity omponents are givenby

Gv1v2
ij =

{

0 if i ∈ Bv(dc)
〈Gv1v2QΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.96)

Gv2v1
ij =

{

0 if i ∈ Bv(dc)
〈Gv2v1QΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.97)Due to the LBB-ondition (f. setion 3.4.1) the maximal degree of the polynomial ba-sis funtions that represent the pressure variable must be one order less than the basisfuntions of the veloity �eld. Therefore, the oupling to the pressure variable an beimplemented by the matries

Gv1p
ij =

{

0 if i ∈ Bv(dc)
〈Gv1pLΩ

j , Q
Ω
i 〉Q∗×Q otherwise , (3.98)

Gv2p
ij =

{

0 if i ∈ Bv(dc)
〈Gv2pLΩ

j , Q
Ω
i 〉Q∗×Q otherwise . (3.99)The fore soure distribution results in the load vetor Sv1 and S

v2, whose omponents anbe alulated to
Sv1i =

{

f̃1(x) if i ∈ Bv(dc)
〈Sv1, QΩ

i 〉Q∗×Q otherwise , (3.100)
Sv2i =

{

f̃2(x) if i ∈ Bv(dc)
〈Sv2, QΩ

i 〉Q∗×Q otherwise . (3.101)Aording to equation 2.49, the �rst row of these relations spei�es the values at theDirihlet boundaries, whereby the oordinate x indiates the respetive loation of the64



3.4. SPATIAL DISCRETIZATIONatual node. The seond row is assoiated with the fore distribution within the bulk.Now, the semi-disretized system that represents the supply of fore in ombination withthe fore soure distribution an be written as
G
v1v1v̂

(dc)
1 +G

v1v2v̂
(dc)
2 +G

v1pp̂
(dc) = S

v1, (3.102)
G
v2v1v̂

(dc)
1 +G

v2v2v̂
(dc)
2 +G

v2pp̂
(dc) = S

v2. (3.103)The supply of mass with respet to the seond order subproblem is assoiated with thematries Gpv1 and G
pv2. Similar to above, the set

Bp(dc) = BL(MΓow ) ∪ BL(MΓrw ) ∪ BL(MΓbm+ ) ∪ BL(MΓbm− ) ∪ BL(MΓr) (3.104)spei�es the indies that are assoiated with the boundary nodes in order to establishthe Dirihlet boundary ondition. With the help of this set of indies, the entries of thematries an be alulated to
Gpv1
ij =

{

0 if i ∈ Bp(dc)
〈Gpv1QΩ

j , L
Ω
i 〉L∗×L otherwise , (3.105)

Gpv2
ij =

{

0 if i ∈ Bp(dc)
〈Gpv2QΩ

j , L
Ω
i 〉L∗×L otherwise . (3.106)In order to implement the Dirihlet boundary ondition, the respetive entries on the maindiagonal of the matrix G

pp must be set to 1. In terms of mathematial formulation, thismatrix is given by
Gpp
ij =

{

δij if i ∈ Bp(dc)
0 otherwise . (3.107)Similar to the fore soure distribution, the mass soure distribution (f. equation 2.47)an be implemented as a right hand vetor Sp. Thereby, a distintion between the internaldistribution and the boundary values must be drawn. Then, its omponents are given by

Spi =

{

m̃(x) if i ∈ Bp(dc)
〈Sp, LΩ

i 〉L∗×L otherwise . (3.108)Finally, this load vetor in ombination with the matries, introdued above, an bebrought together in the system of equations
G
pp
p̂
(dc) +G

pv1v̂
(dc)
1 +G

pv2v̂
(dc)
2 = S

p (3.109)in order to obtain the semi-disretized formulation of the seond order mass onservationequation. 65



CHAPTER 3. IMPLEMENTATIONThe overall mean seond order system, whih yields a �rst order approximation of theaoustially driven �ows, an be established by ombining equations 3.102, 3.103 and 3.109.This system an be written as






G
v1v1 G

v1v2 G
v1p

G
v2v1 G

v2v2 G
v2p

G
pv1 G

pv2 G
pp













v̂
(dc)
1

v̂
(dc)
2

p̂
(dc)






=







S
v1

S
v2

S
p






. (3.110)3.4.4 AssemblageThis hapter is onerned with the assemblage of the individual sub-matries that areneeded to establish the time-variant �rst order system 3.87 as well as the stationary meanseond order system 3.110. In priniple, the assemblage strategies are based on the toolboxAlberta [42, 44℄. Most of the entries of these matries an be written as a dual pair

〈LN i, Rj〉, where N i and Ri denote (not neessarily the same lass of) basis funtions and
L represents an ellipti di�erential operator (f. [23, 42℄). Suh an ellipti di�erentialoperator an be written as

(Lu)(x) := − div(A(x) grad u(x)) + (b(x))T (grad u(x)) + c(x)u(x) (3.111)where the oe�ient funtions are given as
A : M → R

d×d,
b : M → R

d,
c : M → R. (3.112)The individual omponents of these oe�ients should belong to the funtion spae L∞.In this work, all di�erential operators an be represented by an ellipti di�erential operatoras shown in equation 3.111. Aording to the derivation of the variational formulation (f.hapter 3.2), the dual pair an be transformed into the form

〈LN i, Rj〉 =
∫

(gradN i)
T A (gradRj) dx+

∫

N i b
T (gradRj) dx+

∫

c N i Rj dx

(3.113)Furthermore, the integral over the whole mesh an be splitted into a set of integralsthat are spei�ed on eah individual simplex. Therefore, the dual pair an be updatedaording to the relation
〈LN i, Rj〉 =

∑

S∈M

[∫

S
(gradNkS(i))T A (gradRkS(j)) dx+

∫

S
NkS(i) bT (gradRkS(j)) dx+

∫

S
c NkS(i) RkS(j) dx

] (3.114)66



3.4. SPATIAL DISCRETIZATIONwhere eah index i of the global basis funtions have to be replaed by an index l thatis assoiated with the respetive loal basis funtion via the mapping l = kS(i). Asdesribed in hapter 3.3.2, the basis funtions are spei�ed with respet to the baryentrioordinates. Therefore, the basis funtions an be replaed by their baryentri ounterpartwith the help of the mapping β(x). By the use of the hain rule, the gradient of the basisfuntions an be alulated to
gradNkS(i)(x) = gradNkS(i)

(bar)(β(x))

=

(

Dβ(x)

)T(

gradβ N
kS(i)
(bar)(β(x))

) (3.115)In ontrast to the basis funtions, the numerial integration is performed over the normal-ized referene element. By transforming the integral from the world oordinates x to thenormalized oordinates ν and by using equation 3.115, the �rst term of the right hand sideof equation 3.114 an be evaluated to
∫

S
(gradNk(i)(x))T A(x) (gradRl(j)(x)) dx =

∫

S

(

gradβ N
k(i)
(bar)(β(ν))

)T (

Dβ(x(ν)) A(x) (Dβ(x(ν))T
)

(

gradβ R
k(i)
(bar)(β(ν))

)

|detDx(ν)| dν

(3.116)The gradient of the basis funtions an be prealulated for all simplies, sine it dependsonly on the unvarying normalized and baryentri elements as well as the prede�ned basisfuntions itself. Therefore, only the term in the middle that onsists of the oe�ientfuntion and the Jaobian-matries of the baryentri oordinates with respet to theworld oordinates as well as the determinant have to be evaluated for eah individualelement. The seond term of the right hand side of equation 3.114 an also be expressedin terms of the normalized oordinates as
∫

S
Nk(i)(x) (b(x))T (gradRl(j)(x)) dx =

∫

S

(

Nk(i)
(bar)(β(ν))

) (

Dβ(x(ν) b(x)

)T

(

gradβ R
k(i)
(bar)(β(ν))

)

|detDx(ν)| dν

(3.117)In ompliane with the �rst term, only the parts that depend on the world oordinateshave to be evaluated at eah individual simplex. The last term within the squared braketsof equation 3.114 an be alulated to
∫

S
c(x) Nk(i)(x) Rl(j)(x) dx =

∫

S
c(x)

(

Nk(i)
(bar)(β(ν))

) (

Rk(i)(bar)(β(ν))

)

|detDx(ν)| dν
(3.118)67



CHAPTER 3. IMPLEMENTATIONUnder the assumption that the oe�ient funtions are onstant on eah simplex of themesh, a numerial quadrature method must only performed only one at the beginning ofthe assemblage proess for all ombinations of the loal basis funtions. All other termsare onstant and an be separated from the integrals. A more detailed desription of theassemblage proess an be found in [42, 44℄.As shown in hapter 2, some oe�ient funtions vary depending on the spatial oor-dinates. In these ases, a numerial quadrature approah has to be used in order to getnumerial approximations of the respetive integrals. Aording to [42, 23℄, the quadraturemethods are based on the formula
∫

S
f(ν) dν ≈

n∑

i=0

wif(νi) (3.119)where wi denotes a weight that is assoiated with an ith quadrature point νi.3.5 Temporal DisretizationUp to now, the �rst order problem is only transformed into a semi-disretized formulation,sine equation 3.87 further depends on the ontinuous time-variable t. In priniple, itwould also be oneivable to disretize the time in a similar way as the spatial variablesby the use of �nite elements. But, if the entire time frame is disretized by �nite elements,the approah will result in an exessive inrease of the number of required �nite elementnodes and - as a onsequene - the assoiated system of equations would be very huge.The number of variables an be signi�antly redued, if the temporal disretization byspae-time �nite elements is only performed with respet to a short time-slot. Then, aniterative method an be used to solve the dynamis of the system within the entire timeframe by an individual onsideration of suessive time-slots. The methods that use �niteelements for the time-disretization are known as spae-time �nite element methods.In this work, the time-disretization is realized by an impliit diret �nite di�erenesheme due to the simpliity and robustness of these methods. The term "diret" meansthat, in ontrast to e.g. mode superposition methods, the system of equation will be notinitially transformed into a di�erent formulation before the numerial integration is per-formed. The �nite di�erene sheme is haraterized by the division of the entire timeinterval into a set of sub-intervals ∆ti = [ti, ti+1]. On the basis of these segments the solu-tion is suessively approximated at eah instant of time ti. Obviously, the omputationale�ort of the time-integration is diretly proportional to the number of time-steps. There-fore, the length of an sub-interval should be hosen in suh a way that on the one hand theresultant approximation will be as good as possible and that on the other hand the requiredomputational e�ort will be minimized. In this work, the time-steps ∆ti are assumed tobe onstant with respet to a spei� simulation experiment. The aousti reation of the�rst order linear subproblem is mainly indued by the harmoni stimulation at the ovalwindow. Therefore, it seems to be a good idea to link the length of a sub-interval to therespetive stimulation frequeny.68



3.5. TEMPORAL DISCRETIZATIONIn many appliations, expliit integration methods are preferred due to a potentiallymore e�etive omputation at eah time-step. But, it an be shown that the stability ofexpliit integration methods an only be guaranteed for intervals below an upper limit.This upper limit depends on eah individual problem itself and it may be that the time-steps have to be hosen very small. In this ontext, a time integration tehnique is referredto as stable if the growth of an arbitrarily indued error is bounded. In ontrast to expliitintegration shemes, impliit methods are more robust in the fae of the hoie of thetime-step. Commonly, impliit methods are not restrited to suh an upper limit and theyan therefore be onsidered as an unonditionally stable approah.As already mentioned above, the spatial disretization of the �rst order problem resultsin a seond order linear ordinary system of di�erential equations (f. equation 3.87). It isalways possible to transform suh a seond order system into a �rst order formulation bythe introdution of new variables. On the basis of suh a onversion, a standard approahfor �rst order problems like the impliit bakward Euler method, the Crank-Niolson methodor the Runge�Kutta method might be performed. These methods mainly di�er from eahother in regard to the degree of preision with whih the solution might be approximated.But due to the doubling of the variables, whih is aompanied with a signi�ant higheromputational e�ort and an inreased requirement of memory, this kind of proedure isnot implemented for the numerial integration of the �rst order problem.Therefore, a diret disretization of the seond order ordinary di�erential equation ispreferred. This work uses an approah that was originally suggested by Houbolt [21℄. Theapproximation tehnique from Houbolt is a seond order method, whih means that theerror per time-step is of the order ∆t2. Furthermore, the sheme is numerially stable sineit is an impliit approah. (f. [3℄) The integration sheme from Houbolt uses the followingbakward �nite di�erene approximations for the �rst and seond time-derivative:
u̇t+∆t = −

1

6∆t

(

2ut−2∆t− 9ut−∆t+ 18ut− 11ut+∆t

), (3.120)
üt+∆t = −

1

∆t2

(

ut−2∆t− 4ut−∆t+ 5ut− 2ut+∆t

). (3.121)The semi-disretized formulation of the �rst order problem at time t+∆t an be writtenas
Müt+∆t+Hu̇t+∆t+Kut+∆t = Ft+∆t. (3.122)By substituting the approximations 3.120 and 3.121 for the veloity-like vetor u̇t+∆t andthe aeleration-like vetor üt+∆t, the fully disretized �rst order subproblem an be rep-resented by the simple linear system of equations

Aut+∆t = b. (3.123)In this ontext, the matrix A an be evaluated to
A =

2

∆t2
M+

11

6∆t
H+K. (3.124)69



CHAPTER 3. IMPLEMENTATIONAs it an be seen, it is su�ient to determine the matrix A only one at the beginning ofthe numerial time integration proess due to the stationary harater of the mass matrix
M, the damping matrix H and the sti�ness matrix K. The load term b an be alulatedto

b =

(
1

∆t2
M+

1

3∆t
H

)

ut−2∆t −
(

4

∆t2
M+

3

2∆t
H

)

ut−∆t

+

(
5

∆t2
M+

3

∆t
H

)

ut+ Ft+∆t. (3.125)In ontrast to the stationary matrix on the left hand side of equation 3.123, the load term
b has to be updated at eah time-step due to the dependeny on the time-varying loadvetor Ft+∆t (whih takes aount of the prede�ned displaements of the oval window) andthe inlusion of the state vetors u at the preeding three time-steps.In literature, several other tehniques for the numerial disretization an of oursebe found. For example, the Newmark-method and the Wilson-method (f. e.g. [3℄) aretwo other similar approahes that an also be used in the ontext of a linear seond orderordinary di�erential equation.3.6 Linear SolverThe disretization proess of the �rst order system results in a sequene of linear systemsof equations (f. 3.123). Under the assumption of a onstant time-step, the linear systemsare haraterized by a onstant, large, sparse and non-symmetri matrix as well as a time-varying right hand side vetor. In order to get a numerial solution of eah system, thegeneralized minimal residual method (GMRES) is used due to its appliability for non-symmetri systems. The iterative GMRES approah was originally developed by Saad andShultz [40℄ and it is based on a projetion method that approximates the solution withinthe so-alled Krylov subspae.The aoustially driven �ow �eld an be ahieved by solving the symmetri systemof equations as desribed in hapter 3.4.3. Although the symmetry of the matrix allowsthe usage of more e�ient methods (e.g. the Lanzos algorithm), the GMRES methodis also used for solving the mean seond order system. Due to its major importane forthe numerial simulation proess presented in this work, the main aspets of the GMRES-method are brie�y outlined in this hapter. The notation is orientated towards the originalwork from Saad and Shultz [40℄. Further details to this subjet an additionally be foundin [39℄.The speed of onvergene of an iterative solver an be signi�antly enhaned by trans-forming the linear system of equations into a better onditioned system. The basi usageof a preonditioner in the ontext of the GMRES-method is desribed in setion 3.6.2. Inthis work, an inomplete LU deomposition is used as a preonditioner. The algorithmused for deduing suh an inomplete fatorization is presented in setion 3.6.3.70



3.6. LINEAR SOLVER3.6.1 Generalized Minimal Residual MethodIn general, the linear system of equation an be represented as
Ax = b (3.126)with A ∈ R

n×n being a regular matrix, x ∈ R
n the vetor of unknowns and b ∈ R

n theright hand side vetor. If x0 denotes an initial guess of the solution, the error an bequanti�ed by the residual
r0 = b−Ax0. (3.127)The GMRES-method aims to minimize the residual within the a�ne spae x0+Km where

Km denotes the Krylov subspae whih an be spei�ed on the basis of the residual vetorand the system matrix as
Km(A, r0) = span{r0,Ar0,A

2r0, . . . ,A
m−1r0}. (3.128)Initially, an orthonormal basis of the Krylov subspae is onstruted by means of anorthogonal projetion method from Arnoldi as desribed in algorithm 3.3 from line 8 to 13.Having regard to the numerial stability, the algorithm adapts the modi�ed Gram-Shmidtorthonormalization proess. To further enhane the reliability of the orthonormalizationproess, the Gram-Shmidt based algorithm an, for example, be replaed by the moreomputationally intensive Householder orthogonalization (f. [39℄). It is important to notethat the Hessenberg matrix H

[m] an be extrated from Arnoldi's proedure as a byprodutof the orthogonalization proess. Hessenberg matries are haraterized by their vanishingentries below the �rst subdiagonal. If the orthogonal basis vetors of the Krylov spae Kmare ombined into the matrix V
[m], the relation

AV
[m] = Vm+1H

[m] (3.129)an be diretly dedued from algorithm 3.3. Furthermore it an be seen that the �rst basisvetor v1 an be identi�ed with the residual vetor r0. Aording to the equation
x = x0 +V

[m]
y (3.130)all elements x of the a�ne subspae an be expressed as a linear ombination of theorthogonal basis funtions by the use of an appropriate hoie of the vetor y. In terms ofa formal notation, the GMRES-method is based on the minimization of the funtion

J(y) := ‖b−Ax‖2 = ‖b−A(x0 +V
[m]

y)‖2 (3.131)where the approximation x should, by de�nition, belong to the a�ne Krylov subspae andan therefore be onretized by using equation 3.130. In onsideration of equations 3.12771



CHAPTER 3. IMPLEMENTATION
Algorithm 3.3 Generalized Minimal Residual MethodRequire: regular matrix A, right hand side vetor b, initial guess x0, maximal dimension m ofthe Krylov spae, tolerane ǫEnsure: best approximation of the solution within the Krylov subspae1: proedure gmres(A,b,x0,m,ǫ)2: r0 ← b−Ax0, β ← ‖r0‖2, v1← r0/β3: if β < ǫ then4: return x05: end if6: Alloate H = (H

ij
)1≤i≤m+1

1≤j≤m

= 07: for j = 1→ m do8: wj ← Avj ⊲ Arnoldi's method9: for i = 1→ j do10: H
ij
← wj · vi11: wj ← wj −H

ij
vi12: end for13: H

j+1,j ← ‖wj‖214: for i = 1→ j − 1 do ⊲ Triangular Matrix Transformation15: (

H
ij

H
i+1,j

)

←
(

ci si

−si ci

)(

H
i,j

H
i+1,j

)16: end for17: δ ←
√

H
jj

2 +H
j+1,j

218: cj ← H
jj
/δ, sj ← H

j+1,j/δ19: H
jj
← δ20: g

j
← cjgj, g

j+1← −sjgj21: if |g
j+1| ≥ ǫ and j < m then22: vj+1 ← wj/Hj+1,j23: else ⊲ Least Squares Problem24: for i = j → 1 do25: yi =

1
Hii

(g
i
−∑j

k=i+1 Hik
yk)26: end for27: return x = x0 +

∑j

i=1 yivi28: end if29: end for30: end proedure
72



3.6. LINEAR SOLVERand 3.129, the expression within the norm of equation 3.131 an be transformed as
b−A(x0 +V

[m]
y) = r0 −AV

[m]
y

= βv1 −Vm+1H
[m]

y

= V
[m+1](βe1 −H

[m]
y)

(3.132)where the notation β = ‖r0‖2 is used for reasons of simpliity. Sine the orthonormalmatrix V
[m+1] has no e�et on the eulidean norm, the minimal residual within the a�neKrylov subspae an also be spei�ed by the equivalent formulation

x
[m] := x0 +V

[m]
y
[m], where (3.133)

y
[m] := argminy ‖βe1 −H

[m]
y‖2. (3.134)The advantage over the initial formulation of the the minimization problem (f. equation3.131) lies in the more e�ient omputation in ombination with the simultaneous ontrolof the residual size. This e�etive omputation an be ahieved through a transformationof the Hessenberg matrix

H
[m] =












H11 H12 · · · H1m

H21 H22 · · · H2m

H32 · · · H3m. . . ...
Hm+1,m












(3.135)
into an upper triangular form by performing plane rotations in order to suessively elim-inate the entries Hi+1,i in an iterative proess. In this ontext, eah rotation matrix anbe written as

Ωi =


















1 . . .
1

ci si

−si ci
1 . . .

1


















(3.136)
where the 2×2-blok that auses the rotation is positioned at the i-th row and i-th olumn.The two values ci and si result from the urrent state of the matrix that depends on therotations performed before. If this urrent state is desribed by

H
[m,i] := Ωi · · ·Ω1H

[m] (3.137)73



CHAPTER 3. IMPLEMENTATIONthe two values an be alulated to
ci =

H[m,i]
i+1,i

√

(H[m,i]
ii )2 + (H[m,i]

i+1,i)
2
, (3.138)

si =
H[m,i]
ii

√

(H[m,i]
ii )2 + (H[m,i]

i+1,i)
2
. (3.139)Of ourse, these transformations must also be applied to the term βe1 in order to get anequivalent restatement of the eulidean norm. After m rotations, this vetor and the uppertriangular matrix an be represented as

g := Ωm · · ·Ω1βe1, (3.140)
R := Ωm · · ·Ω1H

[m] = H
[m,m]. (3.141)Due to the invariane of the eulidean norm to the rotations Ωi, the minimization problem3.134 an therefore be written as

miny ‖βe1 −H
[m]

y‖2 = miny ‖g −R
[m]

y‖2. (3.142)In this ase, the residual an be minimized by determining the unknown vetor y in suh away that the �rst m entries of the resultant vetor within the norm vanish. This is possibledue to the triangular on�guration of the matrix R
[m]. But the last entry of the resultantvetor an not be a�eted by y, sine the last row of the matrix onsists only of zeros. Asa onsequene, the eulidean norm of the minimal residual must be equal to the absolutevalue of the last entry gm+1.As illustrated in algorithm 3.3 from line 14 to line 22 and as desribed by Saad [39℄,the respetive rotations an be performed at eah iteration separately for eah new olumnof the matrix H

[m] without additional omputational e�ort. Therefore, the derease of theresidual error an be diretly monitored at eah iteration without alulating the urrentapproximation. If the residual error falls below the prede�ned tolerane, the approximationan be alulated by determining y
[m] (as mentioned above) and inserting these oe�ientsinto the linear ombination 3.133 (f. algorithm 3.3 from line 24 to 27).Apart from numerial errors, the GMRES-proedure yields the exat solution after niterations at the latest. But the omputational e�ort as well as the memory requirementsare diretly related to the maximal dimension of the Krylov subspae and therefore alsoto the maximal number of iterations. The demands on the memory an be limited byprede�ning the maximal dimension of the Krylov spae. If the residual error still exeedsthe prede�ned tolerane, the GMRES-algorithm might be start again by taking the ur-rent approximation as the initial guess of the subsequent run. This approah is knownas restarted GMRES . This restarted version was also used for the numerial simulationsperformed in this work, where the maximal dimension of the Krylov subspae was set to30.74



3.6. LINEAR SOLVER3.6.2 PreonditioningThe e�ieny of the iterative solvers an be signi�antly improved by using a preondi-tioner. The preonditioner should transform the linear system into an equivalent formula-tion that is haraterized by a better rate of onvergene. The transformation an usuallyperformed by the appliation of a left preonditioner Pl and/or a right preonditioner Pr.Then, the preonditioned system of equations an be written as
PlAPrxP = Plb where xP = P−1

r x. (3.143)Usually, the preonditioners are onstruted in suh a way that the resultant matrix ofthe preonditioned system approximates the identity matrix as well as possible; in short
PlAPr ≈ I. But, in order to take pro�t from the preonditioning proess, the onstrutionof the transformation matries should involve a minimum of omputational e�ort. In theontext of the GMRES-method, the right hand side preonditioning has advantages overthe left approah beause of two di�erent aspets. Firstly, the urrent norm of the residual(omputed at eah iteration) refers, in ontrast to the left preonditioning approah, not tothe preonditioned system but rather to the initial system. This point might be important,sine the stop riterion is normally spei�ed with respet to the initial system. Seondly,the right hand side appliation allows a variation of the preonditioner at eah iterationwhih opens possibilities for a better in�uene on the iterative progress. A formal andmore detailed onsideration of preonditioning an, for example, be found in [39℄.For the implementation of a right preonditioner the algorithm 3.3 has to be modi�edat two lines. At line 8, the preondition matrix Pr have to be inserted at the right handside and, at line 27, the approximation must be alulated aording to

x = x0 +PrV
[m]

y. (3.144)3.6.3 Inomplete LU deompositionThis work uses an inomplete LU deomposition (ILU) as a preonditioner. As the nameimplies, this inomplete fatorization is based on the well-known LU deomposition, whihsplits the original matrix into a produt of a lower triangular and an upper triangularmatrix. The exeution of the full deomposition proess is omputationally intensive andalthough the matrix A is only sparsely populated, it an be expeted that the resultantfatorization onsists of two dense (triangular) matries. In ontrast, the inomplete LUdeomposition an be written as
A = LU+R (3.145)with L being a sparse lower triangular matrix, U a sparse upper triangular matrix and Rthe residual that takes the resultant error into aount. In literature, di�erent approahesan be found for establishing di�erent kinds of suh a deomposition. 75



CHAPTER 3. IMPLEMENTATION
Algorithm 3.4 Inomplete LU deompositionRequire: matrix A, maximum level of �ll pEnsure: inomplete LU deomposition1: proedure ilu(A,p)2: for i = 1→ n do ⊲ Initialization3: for j = 1→ n do4: if A

ij
6= 0 then5: A

ij
← 06: else7: A

ij
←∞8: end if9: end for10: end for11: for i = 2→ n do12: for k = 1→ i− 1 do ⊲ Extended Gaussian Elimination13: if lof

ik
≤ p and A

kk
6= 0 then14: A

ik
← A

ik
/A

kk15: for j = k + 1→ n do16: A
ij
← A

ij
−A

ik
A

kj17: lof
ij
← min{lof

ij
, lof

ik
+ lof

kj
+ 1}18: end for19: end if20: end for21: for k = 1→ n do ⊲ Erasure22: if lof

ik
> p then23: A

ik
← 024: end if25: end for26: end for27: end proedure
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3.7. SINE-COSINE DECOMPOSITIONIn this work, the so-alled ILU(p)-proedure is adopted to alulate an appropriatepreonditioner. As illustrated in algorithm 3.4 from line 12 to 20, this approah is, in prin-iple, based on the Gaussian elimination whih is supplemented by an additional markingstrategy in order to speify the non-zero pattern of the matries. The Gaussian algorithmsuessively eliminates the entries below the main diagonal by adding an appropriate mul-tiple of row k to row i for all rows i = k+1, . . . , n. This method yields the upper triangularmatrix U as well as the lower triangular matrix L as a byprodut. Both of them an bestored in a single matrix, sine the entries of the main diagonal of the lower triangularmatrix are equal to one and do not need to be stored expliitly. The marking strategy isbased on the so-alled level of �ll value lof ij, whih an be simultaneously alulated foreah entry. Initially, almost all entries of the matrix have a level of �ll of ∞ exept forthe non-zero entries as well as the entries upon the main diagonal, whih are labeled withthe level 0 (f. algorithm 3.4 from line 2 to 10). Eah modi�ation of a spei� entry isaompanied with an update of its level of �ll. Aording to line 17, the new level of �llan be alulated as
lof ij = min{lof ij, lof ik + lofkj + 1}. (3.146)One a whole row has been updated, all entries, whose level of �ll exeeds the prede�nedmaximum level p, are not taken into aount by the inomplete LU deomposition andare therefore erased (f. algorithm 3.4 from line 21 to 25). The analysis and a detaileddesription of the inomplete LU deomposition an for example be found in [39℄.In this work, the GMRES-method was transformed by using a preonditioner generatedby the ILU(2) method. It has been shown that an higher maximum level normally induesa longer alulation time.3.7 Sine-Cosine DeompositionFor reasons of onveniene, the equilibrium state is represented by using the sine-osinedeomposition as introdued in hapter 2.3.4. Sine the sine-osine deomposition is iden-tial with the �rst non-onstant term of the Fourier series, the oe�ients u(sin) and u

(cos),whih represent the steady state of the time-varying solution vetor u, an be determinedaording to the relations
u
(sin) =

2

N

N−1∑

n=0

u(t∗ + n∆t) sin(2πf(t∗ + n∆t)), (3.147)
u
(cos) =

2

N

N−1∑

n=0

u(t∗ + n∆t) cos(2πf(t∗ + n∆t)) (3.148)where N := T/∆t and t∗ is the time at whih the equilibrium state is ahieved. Theveloity oe�ients v
(sin) and v

(cos), the pressure oe�ients p(sin) and p(cos), as well asthe displaement oe�ients of the basilar membrane ξ(sin) and ξ(cos) an be extrated inonsideration of equation 3.88. 77



CHAPTER 3. IMPLEMENTATIONWith the help of the sine-osine deomposition, the time-averaged load vetor of theseond order system 3.110 an be determined in a simpli�ed way. By substituting thesine-osine representation for the veloity and pressure funtions and applying the mean-operator, the mass soure distribution 2.47 an be written as
m̃ = − 1

2c02
div
(
p(cos)v(cos) + p(sin)v(sin)). (3.149)In addition, the fore soure distribution 2.49 an be expressed in terms of the sine- andosine-oe�ients as

f̃ = −πf
c02
(
p(cos)v(sin)− p(sin)v(cos))−

ρ(0)

2

(
(grad v(cos))v(cos) + (grad v(sin))v(sin)). (3.150)Sine the boundary ondition 2.52 is also based on the results of the �rst order equilibriumstate, it is onvenient to use its simpli�ed representation whih is given as

v
(dc) = − 1

2ρ(0)c02

(
p(cos)v(cos) + p(sin)v(sin))+

1

4πf
rot
(
v
(cos)× v

(sin)). (3.151)
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Chapter 4ResultsIn this hapter the numerial results of the omputational model, introdued in this work,are presented. In order to ensure the orret funtionality of the model, the numerialresults are ompared to experimental studies, measurements and analytial estimates.The auray of the �rst order system is ruial for the orretness of the results of theseond order system, whih provides estimations for the ourrene of aoustially driven�ows within the inner ear. Therefore, the �rst part of this hapter (f. setion 4.1) isonerned with an aurate veri�ation of this aousti system. It is analyzed under anharmoni stimulation of the oval window at di�erent frequenies, amplitudes and outerhair ell ativity parameters.Partiular attention is paid to the equilibrium state of the �rst order system, sine it isthe basis for the numerial alulation of aousti streaming. This steady state is ahievedwithin a short time frame. The transient e�et is onsidered in setion 4.1.1. Today, itis well aepted that the motions of the basilar membrane an be haraterized on thebasis of a typial traveling wave pattern. The basilar membrane motions arise, inter alia,through the hydrodynami fores as well as the outer hair ell driven fores, whih areboth analyzed in setion 4.1.2. The resultant displaements in omparison to the travelingwave pattern of the ohlear partition are reviewed in setion 4.1.3. Furthermore, it hasbeen shown that some boundary layer e�ets are mainly responsible for aoustially driven�ows. In setion 4.1.4, the motion within this thin boundary layer are therefore omparedwith an analytial approximation developed by Lighthill [25℄.As disussed in hapter 2.3.3, the motility of the outer hair ells an be ontrolledby the ativity parameter λ. The outer hair ell motility is modeled in suh a way thatthe resultant fores (that at on the ohlear partition) partially eliminate the positionaldamping of the basilar membrane. As a result, an ativity parameter greater than oneindues potentially a loal negative damping. Due to the linearization of the sigmoid-funtion, the natural limitation of the outer hair ell fore an not be taken into aountby the model presented in this work. Therefore, in order to maintain the stability of thepresent linear model, the ativity parameter should be smaller than one. If the ativity79



CHAPTER 4. RESULTSparameter is set to zero, the outer hair ell motility will not be taken into aount bythe simulation proess and the omputational model an be referred to as passive. Inthe ontext of this work the term ative, in ontrast, is assoiated with λ = 0.9 whihensures the stability of the system on the one hand and on the other hand provides asigni�ant ampli�ation of the ohlear displaement as it an be seen in this hapter.Unless otherwise indiated, the amplitude of the oval window displaement is set to 10nm.The seond part of this hapter 4.2 deals with the time-averaged seond order systemthat yields a �rst order approximation of the aousti streaming �ow �eld. In this ontextdi�erent physial mehanisms are onsidered that are responsible for the ourrene ofaousti streaming. First of all, the distintion between the Lagrangian and the Eulerianspei�ation of the aousti �eld yields a mean �ow �eld that appears without takingthe seond order system into aount (f. setion 4.2.1). As disussed in hapter 4.2.2,it beomes apparent that this aousti driven �ow �eld transports mass. Therefore, thetransported mass must be released at regions where the aousti �eld dissipates. Thisphenomenon is re�eted in the mass soure distribution that appears at the right handside of the seondary mass onservation equation. The mass soure driven seond ordermean �ows are reviewed in setion 4.2.2. In a similar same way, also momentum an betransported by the aousti �eld whih results in a virtual fore soure distribution withinthe seond order system. The impat of this fore distribution on induing aoustiallydriven �ows is disussed in setion 4.2.3. As already mentioned above, it turned out thatthe most important ause for aousti streaming �eld an be assoiated with the foreswithin the thin boundary layer next to the basilar membrane. Therefore, the stresseswithin this boundary layer are ompared with Lighthill's approximations. The resultantseond order �ow �eld is desribed and evaluated in the last setion 4.2.4. In this ontext,the �ow �eld is ompared with experiments made by Tonndorf [48℄ and the magnitude ofthe resultant veloities are ontrasted with the analytial results from Lighthill [25℄.4.1 Harmoni Stimulation of the First Order System4.1.1 Initial Transient E�etIn all experiments performed in this work, the omputational model is stimulated by anharmoni exitation of the oval window. At the beginning of eah experiment, the modelis in a resting state, whih means that the pressure of the �uid is onstant over the wholedomain and that there are no motions with respet to the veloity of the �uid and thedisplaement of the ohlear partition.Before the system ahieves a steady state, it takes about 6 to 16 periods in the ontextof the numerial simulations presented here. The duration of this transient e�et dependsmainly on the outer hair ell ativity parameter due to an inreased mutual in�uenebetween the �uid, the basilar membrane and the outer hair ell motility. The auray ofthe osillatory equilibrium state an be further enhaned by extending the duration of thisinitial time frame.80



4.1. HARMONIC STIMULATION OF THE FIRST ORDER SYSTEMThe �gures of appendix A.1 illustrate the �rst two periods of this transient e�et ata stimulation frequeny of 1024Hz in the passive ohlea model. After a quarter period,the veloity of the sinusoidal stimulation at the oval window is maximal and an inwarddireted motion an be observed as shown in �gure A.1. As a result of this inward stapesdisplaement, the adjaent pressure of the �uid within the sala vestibuli inreases. Inontrary, the veloity of the �uid at the round window is not presribed by a Dirihletboundary ondition and the motions are ompletely �exible. As a onsequene, the pressurenext to the round window is nearly time-invariant and its amount is the ambient value.Without loss of generality, the ambient pressure of the omputational model is hosen tobe zero for the purpose of simpli�ation. (In reality, the ambient pressure is approximatelyequal to the atmospheri pressure, sine the oval window separates the sala tympani froman air-�lled spae within the middle ear. (f. [13℄))Due to the pressure-di�erene aross the ohlear partition, a fore is exerted upon thebasilar membrane aording to equation 2.33. This pressure-driven fore auses instantlya displaement of the ohlear partition, whih also begins to vibrate aording to itsloal physial properties (sti�ness, damping, mass, width, ...) and the fores ating onthe basilar membrane. It an be learly seen that the displaement, in turn, signi�antlyin�uenes the veloity �eld of the �uid.While the wave front of the pressure propagates along the longitudinal axis, the veloityof the oval window displaement dereases whih indues a negative exess pressure at theadjaent �uid layers as shown in �gure A.2. The negative pressure di�erene at the base ofthe basilar membrane in ombination with the elasti reation of basilar membrane auses,in turn, a loal upward direted displaement of the ohlear partition.As illustrated by the following �gures (A.3-A.8), this interplay between the pressure dif-ferenes, �uid motions and basilar membrane osillations results in a typial �uid-strutureoupled wave motion along the ohlear partition up to a point of dissipation. In this on-text, a distintion between the pressure wave within the �uid and the displaement waveon the ohlear partition an be drawn (f. [38℄).4.1.2 Fores ating on the Basilar MembraneAfter ahieving a steady state of osillation, the system an be analyzed on the basis of thesine-osine representation or, alternatively, the amplitude-phase desription as desribedin hapter 2.3.4 and 3.7.Figure 4.1(a) illustrates the dynamis of the pressure above and below the ohlearpartition using the sine-osine representation. First of all, it an be noted that the exesspressure vanishes at the base of the sala tympani over the whole period. In ontrast,the pressure at the base of the sala vestibuli varies due to the exitation of the ovalwindow. The hydrodynami fores an be haraterized by its wavelike variation alongthe basilar membrane. It an be observed that the wavelength dereases from base to theplae where the wave dissipates. Exept for the basal region, the pressure above and belowthe ohlear partition are, in a ertain sense, opposite to eah other. More spei�ally, a81
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(b)Figure 4.1: (a) Pressure above and below the basilar membrane at a stimulation frequeny of 1024Hz inthe passive ohlea model: p
(cos)
+ (red line); p

(cos)
−

(red dashed line); p
(sin)
+ (blue line); p

(sin)
−

(blue dashedline). (b) Resultant fores per unit length ating on the basilar membrane: fp
(cos) (red line); fp(sin) (blueline).
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4.1. HARMONIC STIMULATION OF THE FIRST ORDER SYSTEM
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Figure 4.2: Comparison between the motility driven fores ϑ of the outer hair ells and the hydrodynamifores fp at a stimulation frequeny of 1024Hz in the ative ohlea model: fp
(cos) (red line); fp(sin) (blueline), ϑ(cos) (red dashed line); ϑ(sin) (blue dashed line).

loal maximum of the pressure on the upper side of the basilar membrane (at a spei�time) is aompanied with a loal minimum on the lower side and vie versa. Furthermore,it an be seen that the propagation of the pressure wave along the ohlear partition isharaterized by a dereasing phase veloity.As mentioned above, this pressure wave arises through the interation between the �uidand the physial properties of the basilar membrane. The basilar membrane is stimulatedby the pressure driven fores ating on the partition. Aording to equation 2.33 thehydrodynami fores per unit length, illustrated in �gure 4.1(b), are proportional to thepressure di�erenes and the width of the basilar membrane at eah loation. Similar tothe individual pressure fores, the ombined hydrodynami fore an also be haraterizedby its wavelike propagation along basilar membrane in ombination with a dereasingwavelength and phase veloity.Beside these hydrodynami fores, the ampli�ation mehanism based on the outer hairell motility auses an additional internal fore in the ative ohlea model. Figure 4.2illustrates these internal fores at equilibrium state that arise from a stimulation frequenyof 1024Hz. In ontrast to the hydrodynami fores, the envelope of this motility drivenfore is haraterized by a signi�ant inrease up to a ertain plae where the fore reahesits maximum. At this loation, the internal outer hair ell fore is onsiderably greaterthan the external pressure fore. Behind this point, the fore dissipates within a shortdistane. Furthermore, it an be observed that both fores have a phase di�erene ofabout 90 degree. 83
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(b)Figure 4.3: Envelopes (a) and phases (b) of the traveling wave in the passive ohlea model omputed atonstant stape displaement for a set of di�erent frequenies: 128Hz (red line), 256Hz (blue line), 512Hz(green line), 1024Hz (blak line), 2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).
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4.1. HARMONIC STIMULATION OF THE FIRST ORDER SYSTEM
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(b)Figure 4.4: Maximal displaement of the basilar membrane in the passive ohlea model (a) and the ativeohlea model (b) at di�erent stimulation amplitudes and frequenies: 128Hz (red line), 256Hz (blue line),512Hz (green line), 1024Hz (blak line), 2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).
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Figure 4.5: The frequeny-position map (solid line) from Greenwood [18℄ assigns the harateristi plaesto their orresponding stimulation frequeny. The triangles illustrate the harateristi plaes resultingfrom the passive ohlea model whereas the dots represent the harateristi plaes in the ative ase.4.1.3 Traveling Wave on the Basilar MembraneThe pressure waves are the result of the interplay between the �uid and the ohlearpartition. Today, it is well aepted that the dynamis of the basilar membrane an bedesribed as a traveling wave. The term "traveling wave" is assoiated with a harateristidisplaement pattern of the ohlear partition. This pattern is haraterized by followingproperties (f. [38, 13℄):
• The amplitude of the traveling wave inreases until a point of maximal displaement(peak) is reahed. Often, this loation is referred to as harateristi plae. Behindthis plae, the amplitude falls to zero within a short distane.
• The phase of the osillatory displaements dereases monotonially along the basilarmembrane. This phase lag may amount to up to several yles until the travelingwave dissipates.
• The traveling wave is aused by (passive) mehanial interations between the �uidand the strutures of the ohlea. This means that the traveling wave is, in partiular,not a result of any other internal (physiologial) proesses.
• In ontrast to the aousti waves, whih propagate at speeds of about 1500m/s, theveloity of the traveling wave motion of the basilar membrane is signi�antly slower.The present omputational model has been performed for a set of di�erent frequenies,stimulation amplitudes and outer hair ell ativity parameters.86



4.1. HARMONIC STIMULATION OF THE FIRST ORDER SYSTEMPassive Cohlea Model Figure 4.3 shows the envelopes and phases of the travelingwaves of the basilar membrane at stimulation frequenies of 128Hz, 256Hz, 512Hz, 1024Hz,2048Hz, 4096Hz and 8192Hz in the passive ase. The sine- and osine-oe�ients of theassoiated displaements an be found in appendix A.3. It beomes apparent that theresultant displaements of the ohlear partition meet the requirements of the typialtraveling wave motion as desribed above. The phase lag adds up to just under four ylesat the lower frequenies and inreases to more than �ve yles at higher frequenies.As it an be learly seen, the longitudinal position of the harateristi plae dependsmainly on the frequeny. Greenwood [18℄ empirially developed a funtional relationshipthat assigns the harateristi plaes to their orresponding stimulation frequeny. Withregard to the human ohlea this frequeny-position map is given by
f = 350 ·

(

10
2.1
lbm

(x−lbm) − 0.85

) (4.1)where lbm denotes the length of the basilar membrane. Figure 4.5 shows that the maximaldisplaements of the traveling wave are loated up to about 5mm loser to the base in thepassive ohlea model than in the ase of Greenwood's examination.There is a broad onsensus that the energy that auses the traveling wave motion ismainly transmitted by the �uid and only insigni�antly by the basilar membrane itself (f.[38, 28℄). Aording to equation 2.32, longitudinal oupling an only be provided by theshearing resistane term. The results of the omputations have also shown that this termhas no signi�ant in�uene on the shape of the traveling waves.Aording to experimental data at basal sites of the ohlea, the amplitude of thebasilar membrane displaement inreases linearly with the stimulation intensity below aspei� sound pressure level. But above this spei� stimulation level, it an be observedthat the growth of ohlear response is not as high as the inrease of the stimulationlevel. (f. [38℄) Measurements of the guinea pig ohlea, for example, show that above asound pressure level of about 20dB the rate of response dereases down to 0.12dB/dB (f.[45, 46, 22, 34℄). Therefore, it beomes evident that the mehanis of the ohlea mustbe a�eted by some nonlinearities. Of ourse, suh a nonlinear phenomena an not bere�eted by the appliation of a linear ohlea model as used in this approah. Figure 4.4(a)illustrates the linearity of the omputational model presented here. This nonlinear behavioran be (partially) taken into aount by the implementation of the sigmoid-funtion (asalready disussed in hapter 2.3.3) that desribes the nonlinear relation between the outerhair ell fore and the hair bundle de�etion.Ative Cohlea Model So far, only the traveling wave in the passive ohlea modelhas been onsidered. But, suh a passive behavior represents only the mehanis of a deadohlea. The dynamis of the living ear are quite di�erent to those of a postmortem ohlea.As already disussed, the omputational model, presented here, provides the possibility toontrol the ativity of the outer hair ell driven fore by means of a parameter 0 ≤ λ ≤ 1,as originally suggested by Mammano [28℄. 87
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Figure 4.6: Envelopes of the traveling wave at a onstant frequeny of 1024Hz for a set of di�erent outerhair ell ativity parameters. The undermost line illustrates the envelope in the passive ase (λ = 0.0)whereas the uppermost line is assoiated with the ative ohlea model (λ = 0.9). It an be seen thatthe inremental inrease of the ativity parameter by a value of 0.1 is aompanied with a suessiveampli�ation of the envelope.In priniple, this approah is based on the loal ompensation of the positional visosityof the basilar membrane. If λ is set to zero, no outer hair ell driven fore will at on thebasilar membrane. This ase desribes the passive mehanis of the ohlea as alreadyanalyzed above. Otherwise, the �uid visosity an be almost ompletely aneled, byinreasing the outer-hair-ell ativity parameter.Figure 4.6 shows the resultant envelopes of the traveling waves at di�erent outer hairell ativity parameters. In order to ensure the stability of the osillations of the ohlearpartition, the upper limit of the ativity parameter is set to 0.9. Thus, the resultant netdamping (whih takes the anelation of the outer hair ell motility into aount) is at least10% of the original damping that arises from the positional visosity of a radial segment.First of all, it should be noted that the ampli�ation of the traveling wave motion isaompanied by a spatial shift of the peak in the diretion of the apex. Suh a shift is mostlyonsistent with experimental studies. It is an indiation that the energy of the travelingwave motion is enhaned by the outer hair ells. (f. [38℄) Therefore, the harateristiplaes are loser to the funtional relationship from Greenwood than in the passive ase(f. �gure 4.5).It an be learly seen that the maximal displaement of the basilar membrane inreasesin dependene of the outer hair ell ativity parameter up to the tenfold of the maximaldisplaement in the passive ase. In literature di�erent de�nitions of the ohlear ampli�ergain are used (f. [38℄). In this paper, the gain is understood as the di�erene betweenthe amplitudes of the ative and the passive ohlea at the same loations on the basilarmembrane. Within the ohlea of the guinea pig, gains between 65dB and 78dB weremeasured at the harateristi plaes of frequenies between 17kHz and 19kHz(f. [45,88
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(b)Figure 4.7: Envelopes (a) and phases (b) of the traveling wave in the ative ohlea model omputed atonstant stape displaement for a set of di�erent frequenies: 128Hz (red line), 256Hz (blue line), 512Hz(green line), 1024Hz (blak line), 2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).
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Figure 4.8: Positional gain of the envelopes at di�erent frequenies in the ative ohlea model (λ = 0.9)with respet to the envelopes in the passive ohlea model (λ = 0.0): 128Hz (red line), 256Hz (blue line),512Hz (green line), 1024Hz (blak line), 2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).46, 22, 34℄). As shown in �gure 4.8, suh a gain of the amplitude an not be ompletelyreprodued by the omputational model presented in this work. Nevertheless, the modelpresented in this work provides an instrument to investigate the e�ets of the ampli�ationmehanisms on the resultant aoustially driven �ows. On the basis of these results, furtheronlusions may be drawn with regard to the impat of aousti streaming at even highergains.In addition, the traveling wave is haraterized by an higher phase lag than inthepassive ohlea model (f. �gure 4.7 (b)). In onsideration of the envelopes (f. �gure 4.7(a)) it an be seen that the respetive shapes in the ative model are signi�antly sharperthan in the passive ase. This property of the ampli�ation mehanism is believed to bea very important aspet with respet to the aousti pereption, beause it enhanes thefrequeny seletivity.4.1.4 Motions within the Stokes Boundary LayerBeause the dissipation of aousti energy within the thin Stokes boundary layer next tothe basilar membrane is a major ause for seond order �ows, partiular attention has tobe paid on an aurate numerial approximation of the motions within these boundarylayers. The results of the omputational model presented in this work an be validated byomparing the numerially determined motions with some theoretial onsiderations fromLighthill [25℄. In his very important ontribution, Lighthill estimated the dimension ofaousti streaming within the inner ear on the basis of a mathematial desription of the�ow �eld adjaent to the basilar membrane. In this ontext, he suggested to approximatethe three-dimensional distribution of the �uid motion next to the traveling wave of the90



4.1. HARMONIC STIMULATION OF THE FIRST ORDER SYSTEM
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(b)Figure 4.9: Comparison between the numerial results of the omputational model (solid lines) presentedin this work and the theoretial approximation (dashed lines) of the �uid motions within the Stokes bound-ary layer from Lighthill [25℄ near to the harateristi plae at a stimulation frequeny of 1024Hz in thepassive model. Figure (a) illustrates the longitudinal veloity omponents whereas (b) shows the vertialomponents. The red, blue and blak lines are assoiated with the the osine-part, the sine-part and theamplitude of the respetive veloity omponent.
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CHAPTER 4. RESULTSbasilar membrane by the superposition of solutions of the Laplae equation
∂2φ

∂x2
2
+
∂2φ

∂x3
2
− k2φ = 0 (4.2)where φ denotes the veloity potential. By the use of the so-alled WKB method (alsoknown as Liouville-Green method), Lighthill reasoned that the �uid motion outside of athin boundary layer of the basilar membrane near to the harateristi plae an be mainlyapproximated by a two-dimensional irular motion perpendiular to the radial axis. Interms of a mathematial formulation, this motion an be written as

v1 =
∂φ

∂x1

= iξe−kx2 , (4.3)
v2 =

∂φ

∂x2

= ξe−kx2 . (4.4)But in order to meet the no-slip boundary onditions at the basilar membrane, equation4.3 and 4.4 have to be adapted aording to Rayleigh's law of streaming [35℄, yielding
v1 = iξ

(

1− e−x2
√

iωρ/η

), (4.5)
v2 = ξ

(

1 +
(
1− e−x2

√
iωρ/η

)ω

c

√
η

iωρ

). (4.6)Figure 4.9 shows the numerially determined motions within the thin boundary layer inomparison to the analytial results from Lighthill. The thikness of the boundary layer anbe approximately determined to 5
√

η/ρω. With regard to typial stimulation frequeniesand the spatial dimensions of the ohlea, the Stokes boundary layer is omparatively small.Therefore, it is very important that the �nite element disretization proess onstruts amesh that is su�iently small to ensure an adequate approximation of the veloity andpressure �eld. It an be noted that the motions lose to the boundary are nearly idential.The greater the distane to the ohlear partition, the greater the deviation of the numerialresults from the analytial approximations.In onsideration of the di�erenes between both approahes, these deviations betweenthe results seem to be relatively small. In ontrast to the omputational model presentedhere, Lighthill's model negleted the energy dissipation due to visous fores within the bulkas well as some interfering e�ets arising from the interation with the solid boundaries.In addition to this, by the use of the Laplae equation 4.2 it is assumed that the motionsan be desribed as an irrotational and inompressible �ow. Otherwise, also the numerialevaluation has the well-known limitations in auray, based on the loal resolution of themesh, the hoie of form-funtions as well as other numerial e�ets. Whilst taking all theseaspets into aount, the omputational model yields very good results when omparingthe numerial results of the motion within the Stokes boundary layer with the analytialapproximations from Lighthill.92



4.2. FLUID FLOWS DRIVEN BY THE SECOND ORDER SYSTEM4.2 Fluid Flows driven by the Seond Order System4.2.1 Di�erene between Eulerian and Lagrangian Mean MotionsAs already mentioned in hapter 2.4.1, a distintion between the Eulerian and the La-grangian spei�ation of the �uid-motion is essential for studying aoustially driven �ows.With respet to the �rst order system, suh a distintion is not neessary sine both spe-i�ations lead to equal results in the ase of the equilibrium state. But with regard to theseond order system a di�erene between both desriptions arises through the nonlinearterms.The distintion between both onepts has already been onsidered in the ontext ofthe derivation of the seond order boundary ondition 2.52. The same approah an alsobe used to desribe the di�erene of both veloity spei�ations within the bulk of the�uid. At the boundaries the Lagrangian veloity vanishes due to the no-slip ondition.But if the Lagrangian seond order mean veloity v
(L) is taken into aount, the di�erenean be evaluated to

v
(dc)− v

(L) = − 1

ρ(0)c02
〈p(1)v(1)〉+ 1

2
rot〈ζ(1)× v

(1)〉 (4.7)where ζ
(1) denotes the �rst order displaement of the �uid partile (f. [9, 26℄). Theanalysis of the resultant veloities, alulated by the omputational model, has revealedthat this di�erene plays only a subordinate role in the ontext of aousti streaming withinthe bulk of the inner ear.With respet to the boundary ondition at the ohlear partition, it beomes apparentthat the �rst summand on the right hand side of equation 4.7 an be assoiated witha vertial in�ow or out�ow. In onsideration of the spei� assumptions made by themodeling proess, the seond term desribes, in ontrast, a slipping �ow. Both the resultantslipping �ows and the vertial �ows are illustrated in �gure 4.10. It an be notied thatthe amount of the slipping veloity exeeds the amount of the vertial veloities by severalorders of magnitude.The Eulerian slipping �ow at the basilar membrane was also taken into aount in thework from Lighthill [25℄. On the basis of the �rst order veloity omponents 4.5 and 4.6,Lighthill alulated the seond order mean veloity at the ohlear partition as

v(dc)1 =

√
√
√
√ ρ

µπf

(v(amp)
2 )2

4
. (4.8)It has been revealed that the slipping �ow alulated by the omputational model slightlyexeeds the theoretial estimates from Lighthill (f. �gure 4.10). 93



CHAPTER 4. RESULTS

0

1

2

3

4

0 5 10 15 20 25 30

Place on the BM [10−3m]

V
e
lo
c
it
y
[1
0
−

7
m
/
s]

(a)

−8

−6

−4

−2

0

2

4

6

8

0 5 10 15 20 25 30

Place on the BM [10−3m]

V
e
lo
c
it
y
[1
0
−

1
4
m
/
s]

(b)Figure 4.10: Di�erene between the Lagrangian and the Eulerian seond order mean veloity at theohlear partition. Due to the no-slip ondition this di�erene oinides with the boundary ondition ofthe aousti streaming subproblem. The x-omponent of this di�erene is assoiated with a slipping �owat the basilar membrane. Figure (a) ompares the numerially determined slip veloity (solid line) withthe theoretial estimate of the �ow veloity (dashed line) from Lighthill [25℄ at a stimulation frequenyof 1024Hz in the passive ohlea model. Figure (b) illustrates the x2-omponent of this di�erene whihorresponds to a vertial �ow.
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4.2. FLUID FLOWS DRIVEN BY THE SECOND ORDER SYSTEM

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(a)

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure 4.11: The vetor �eld of �gure (a) illustrates the mass that is transported by the aousti intensity�eld. In the red olored regions the aousti intensity �eld weakens and therefore these areas at as a masssoure. In ontrast to that, the blue olored region ats as a mass sink sine the aousti intensity �eldbeome more intense. Figure (b) shows the resultant seond order mean �ow aused by the mass souresand mass sinks of the �rst order system.
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CHAPTER 4. RESULTS4.2.2 Mass Soure driven StreamingAording to Bradley [9℄, the mean mass of seond order that is transported within the�uid an be written as
〈J (2)〉 : = ρ(0)v(dc) + 〈ρ(1)v(1)〉

= ρ(0)v(dc) +
1

c02
〈I〉

(4.9)where I := p(1)v(1) denotes the aousti intensity . It an be seen that mass an betransported either by the aousti streaming �ow �eld (�rst term) or by the aoustiintensity �eld (seond term). The veloity of the aousti intensity driven mass transport,given by 1
ρ(0)
〈I〉, is shown in �gure 4.11(a). This kind of mass transport is not assoiatedwith a real existing �ow. It ours if the �uid is on average more dense when the diretionof the �uid motion orresponds to the orientation of the mass urrent than at the timewhen the �uid moves in the opposite diretion. In suh a ase it is quite obvious that thetransport of mass is not balaned over one period and a net mass urrent appears.By integrating the intensity driven mass transport over the losed surfae S = δV ofan arbitrarily hosen volume V and by applying the divergene theorem, the relation

1

c02

∫

δV
〈I〉 dS =

∫

V
m̃ dV (4.10)holds. Therefore, it beomes apparent that the aousti intensity driven mass transportis losely related to the mass soure distribution m̃ whih appears in the seond ordermass equation 2.46. It an be onluded that the net inward �ux of the intensity drivenmass transport �eld through a losed surfae oinides with the amount of mass that isreleased within the enlosed region by the mass soure term m̃. Equation 4.10 is validfor an arbitrarily hosen volume. Therefore, mass soures an our in all regions wherethe aousti intensity weakens. In ontrast, regions an also at as a sink if the aoustiintensity �eld strengthens. (f. [9℄)As already disussed in setion 4.2.1, also the osillating boundary strutures are a-pable of ating as a soure or as a sink of mass. If the volume V in equation 4.10 is hosento be idential to the whole �uid-volume of the ohlear enlosure it an be seen that theamount of mass taken up by the basilar membrane and the oval window is equal to theamount of mass that is injeted by the mass soure distribution.The aoustially driven �ows indued by the mass transport mehanism are illustratedin �gure 4.11 (b). But the numerial results show that the veloities of the resultantaousti streaming �ow �eld aused by the mass transport mehanism are negligible inomparison to the other mehanisms.96
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Figure 4.12: The graph illustrates the resultant Reynolds stresses of the omputational model (solidlines) within in the Stokes boundary layer in omparison to theoretial approximations (dashed lines) fromLighthill [25℄. The data originates from the harateristi plae at a stimulation frequeny of 1024Hz withrespet to the passive ohlea model. The red lines depit the shear stress omponent that desribes the
x2-�ux of x1-momentum per unit area. In ontrast, the blue lines are assoiated with the normal stressomponent that represents the x1-�ux of x1-momentum per unit area.4.2.3 Fore Soure Driven StreamingIn this setion, the in�uene of the fore-soure term 2.49 on the apability to generatesigni�ant mean motions is analyzed. In order to understand the physial origin of theresulting fores, Bradley [9℄ pointed out that the fore-soure distribution, aurate to theseond order, an be written as the produt of the �uid-aeleration a = ∂v

∂t + (grad v)vand the density:
f̃ = −〈(ρa)〉+O(ǫ3). (4.11)Therefore, the exerted fore depends mainly on the phase between the �uid aelerationand the density. The fore f̃ an also be represented in terms of the well-known Reynoldsstress tensor whih an be expressed as ρvivj. By using integration by parts, the (�rstorder) mass onservation 2.22 and the produt rule, the fore soure distribution an bewritten as the spatial variation of the Reynolds stress:
f̃ = −ρ(0)〈

∂v(1)i v(1)j

∂xi

〉ej. (4.12)This fore an furthermore be deomposed into a shear stress omponent and a normalstress omponent. The shear stress omponents desribe the �ux of momentum per unitarea perpendiular to its orientation whereas the normal stress omponents are harater-ized by equal diretions of the fore and its �ux.The results of the experiments, performed by the omputational model, show that the97
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(b)Figure 4.13: Figure (a) shows the Eulerian spei�ation of the maximal mean veloity outside the Stokesboundary layer that are determined by the omputational model. By omparison, �gure (b) illustratesLighthill's estimate (f. [25℄) of the maximal mean veloity. The veloities are alulated on the basis ofthe numerial results of the �rst order system at di�erent frequenies and outer hair ell ativities: 128Hz(red line), 256Hz (blue line), 512Hz (green line), 1024Hz (blak line), 2048Hz (purple line), 4096Hz (orangeline), 8192Hz (brown line).
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4.2. FLUID FLOWS DRIVEN BY THE SECOND ORDER SYSTEMfores are predominant at the adjaent boundary layers of the basilar membrane near to theharateristi plae. This observation is in onformity with the theoretial onsiderationsfrom Lighthill [25℄ whose estimation of aousti streaming is mainly based on the Reynoldsstresses ourring within the Stokes boundary layer. In his work he evaluated an e�etiveslip veloity outside of the thin Stokes boundary layer. In terms of the veloity amplitudeof the osillating basilar membrane, this e�etive slip �ow an be expressed as
πfk

2
(ξ(amp))2 − 3πf

2
ξ(amp)

∂ξ(amp)

∂x1

. (4.13)The �rst term as well as one third of the seond term originate from the shear stressomponent that transports the x1-momentum in the x2-diretion. In ontrast, two thirdsof the seond summand an be attributed to the normal omponent of the Reynolds stressdriven fore. A detailed derivation of this slipping �ow estimate an be found in the workfrom Lighthill [25℄.Figure 4.12 shows the numerially determined stresses in omparison to the stresses thatare alulated on the basis of the veloity omponents 4.5 and 4.6 used by Lighthill. Thesmall deviations between both models an presumably be explained by previous di�erenesregarding the �uid veloity (f. �gure 4.9) and the boundary ondition (f. �gure 4.10 (a))as well as the di�erenes with respet to the underlying assumptions at the developmentof both models. Due to the very small dimensions of the Stokes boundary layer, numerialerrors must also be onsidered as a possible ause for this deviation.The formula from Lighthill an be used to alulate the e�etive slip veloity of aoustistreaming on the basis of the �rst order �eld resulting from the omputational model. Theresultant maximal veloities are shown in �gure 4.13 (b). In turn, �gure 4.13 (a) illustratesthe maximal mean veloities outside of the Stokes boundary layer that are alulated onthe basis of the omputational model. By omparing both results it an be notied thatthe veloities of the omputational model are up to one order of magnitude larger thanLighthill's estimates.4.2.4 Békésy's eddiesThe numerial simulation of the omputational model has shown that aousti streaming ismainly driven by boundary layer mehanisms (f. hapter 4.2.3). Aoustially driven �owsthat are based on mass-transport mehanisms (f. hapter 4.2.2) are not as signi�antas the previously mentioned phenomenon. At a spei� frequeny, the mean �uid motionof seond order an be best desribed by two eddies, whih are almost symmetrially ar-ranged to the ohlear partition. Of ourse, this irular movement must be thought of assuperimposed by the �rst order �utuations. But a separated evaluation is useful, sineboth motions an be desribed on di�erent time-lines due to their di�erene between bothveloities. The diretion of the rotation of eah eddy is spei�ed by an apial direted mo-tion of the partiles that are loated next to the partition. Thus, an opposite direted �owours lose to the outer boundary. The veloity of eah eddy varies along its streamlines.99
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Figure 4.15: Lagrangian spei�ation of the maximal mean veloity at di�erent stimulation frequeniesand outer hair ell ativities: 128Hz (red line), 256Hz (blue line), 512Hz (green line), 1024Hz (blak line),2048Hz (purple line), 4096Hz (orange line), 8192Hz (brown line).Next to the ohlear partition, the �uid is aelerated in the diretion of the apex until apoint of maximal veloity is reahed. Shortly behind the position of maximal veloity, thediretion of the �uid motion turns bak and the veloity dereases.Dependeny of the frequeny The longitudinal position of the enter of eah eddy isnearly idential to the position of the maximal displaement of the basilar membrane.Dependeny of the amplitude As it an be seen in �gure 4.16, the maximal veloity ofthe mean �ow is proportional to the square of the stimulation amplitude. Suh a quadratidependene on the veloity was also observed by the experiments from Tonndorf [48℄. Inaddition, the results indiate that the amplitude has no (signi�ant) in�uene on the shapeof the eddies. In other words, the hange of the amplitude auses only a spatially uniform(salar) saling of the vetor �eld that represents the mean �ow.Dependeny of the outer hair ell ampli�ation Figure 4.15 illustrates that theveloity of the aoustially driven �ows grows almost exponentially with the outer hairell ativity parameter. But in ontrast to the amplitude, this growth depends on variousfators suh as the gain of the displaement of the basilar membrane, the phase veloity ofthe traveling wave and its envelope. Furthermore, the ativity parameter also in�uenesthe shape of the eddies. By omparing the eddies of the ative model (f. hapter A.4)with the passive model (f. hapter B.3) it an be learly seen that the inrease of theativity parameter is aompanied with a derease of the eddy size.In summary, it an be noted that the numerial results are almost in onformity withthe experimental studies from Tonndorf [48℄. 101
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(b)Figure 4.16: Maximal mean veloity (Lagrangian spei�ation) at di�erent stimulation frequenies andstimulation amplitudes in the passive ohlea model (a) as well as in the ative model (b): 128Hz (red line),256Hz (blue line), 512Hz (green line), 1024Hz (blak line), 2048Hz (purple line), 4096Hz (orange line),8192Hz (brown line).
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Chapter 5ConlusionThis work was onerned with the numerial simulation of aoustially driven �ows withinthe inner ear. It is the �rst time that the ourrene and magnitude of aousti streamingwas suessfully analyzed on the basis of a omputational model. The relevane of aoustistreaming with respet to its physiologial impat on the mehanisms of hearing is still anopen question. Therefore, the results of this work provide instruments in order to supportthe disussion about the in�uene of nonlinear �ow e�ets within the ohlea.Up to now, aoustially driven �ows were either examined by performing experimentson mehanial models (f. [48℄) or on the basis of analytial onsiderations (f. [20, 25℄).As mentioned by Tonndorf [48℄, mehanial models have the advantage of allowing diretobservation of nonlinear mean �ows. But due to a di�erent saling of the mehanial modelin relation to the human ohlea, the experiments an only provide information about thepriniple struture of a potential mean �ow. Furthermore, the mehanial model has somesigni�ant limitations onerning its usability, for example with respet to the stimulationamplitude and the frequeny range.In ontrast, Lighthill [25℄ analytially derived an estimate of the of magnitude of aous-ti streaming outside the Stokes boundary layer near to the harateristi plae. But hisanalytial model is based on substantial simpli�ations and it does not desribe the on-rete �ow �eld of the seondary mean motion.The omputational model presented in this work overomes most of these di�ulties.On the one hand the model has been performed on the basis of realisti dimensions withregard to the physial properties and, furthermore, there has been no onstraints onerningthe usability as in the ase of mehanial model. On the other hand, the simpli�ationsmade by the modeling proess are not as substantial as in an analytial model. In thisontext it should be emphasized that the omputational model provides information aboutboth the struture of the seondary �ow �eld as well as the magnitude of the mean motion.In omparison to other ohlea models, a very omprehensive and omplex model hasbeen developed in order to be able to simulate the aoustially driven �ows within theinner ear. The omplexity of the presented model is the result of the expliit onsideration103



CHAPTER 5. CONCLUSIONof the dynamial behavior of three major omponents: the �uid, the basilar membraneand the outer hair ell motility.Partiular attention has been paid to an appropriate representation of the �uid in orderto ensure that the system yields aurate results with respet to the linear and nonlinear�ow motions. The dynamis of the �uid was simulated by using onepts from the �eld ofontinuum mehanis.The onsideration of the interations of the �uid with the biologial struture thatseparates the sala tympani from the sala vestibular was a very important aspet inorder to virtually reprodue the harateristi �ow �eld. Therefore, the ohlear partitionwas modeled as an osillatory system as suggested by Mammano and Nobili [28℄. But inontrast to the model from Mammano and Nobili, the external hydrodynami fores havebeen diretly alulated on the basis of the �uid dynamis and not with the help of aphenomenologial approah. While the dynamial reation of the basilar membrane wasevaluated in the time domain, Mammano and Nobili examined the displaements of theohlear partition in the frequeny domain.The displaement pattern of the basilar membrane and also the �ow �eld of the �uidsigni�antly di�er between the ative ase, where the outer hair ell motility is taken intoaount, and the passive ase, where this ampli�ation mehanism is negleted. Thereforethe e�et of the outer hair ell motility on the resultant seondary �ow �eld has alsobeen analyzed. The additional fore exerted by the outer hair ells was alulated on thebasis of an approah suggested by Mammano and Nobili (f. [28, 33℄), who modeled theampli�ation mehanisms as an additional osillatory subsystem.In summary, a set of di�erent di�erential equations and boundary onditions werededued that desribe the omplex dynamis of the whole ohlear system. By the use ofa well-known approah from the perturbation theory, it was possible to split the systemof equations into a set of suessive linear subsystems. With regard to the numerialsimulation of aousti streaming, this perturbation approah was so far only used in theontext of pure �uidi systems. Therefore, it is the �rst time that this approah wasextended to an highly �uid-struture oupled problem like the ohlea.The resultant �rst order subsystem desribes the linear aousti reation of the sys-tem. The spatial disretization of this aousti system, performed by means of the �niteelement method, resulted in a system of ordinary di�erential equations whih, in turn, wasdisretized by using an impliit integration method. Due to the strong oupling betweenthe �uid, the basilar membrane and the outer hair ell motility, the di�erent proesses weresynhronously solved by a monolithi approah. The simulation of this linear aousti re-ation was a very omputationally intensive part of the whole proess, but the auratealulation of the �rst order solution was a ruial requirement for the suessful determi-nation of the seond order mean �ows.The results of this �rst order subsystem were validated against experimental studies,analytial onsiderations and other models. It has been shown that an harmoni stim-ulation at the oval window indues the expeted typial traveling wave motion of the104



ohlear partition. Furthermore, the relationship between the stimulation frequeny andthe assoiated harateristi plaes omplies with empirial experiments (f. [18℄). It hasbeen proven that the main ause for aoustially driven �ows an be found in a boundarylayer driven mehanism. Therefore, partiular attention has been paid to the �uid mo-tions within the thin Stokes boundary layer of the ohlear partition, whih omply, in themain, with analytial approximations developed by Lighthill [25℄ on the basis of theoretialonsiderations from Lord Rayleigh [35, �352℄.It turned out that if the outer hair ell motility is taken into aount by the simula-tion proess, the traveling wave pattern will, inter alia, be loally enhaned near to theharateristi plae. This signi�ant ampli�ation is, in addition, aompanied with aninreased phase lag and an apial peak shift as also observed by Mammano and Nobili [28℄in their omputational model. It should be noted that the linearized model of the outerhair ell motility an not be used to reprodue the nonlinear behavior of the ampli�ationmehanism. Nevertheless, it has been shown that this linear model was an appropriateinstrument to analyze the e�et of the outer hair ell driven ampli�ation on the resultantmean �ows.The time-averaged seond order subsystem yielded a �rst order approximation of theaoustially driven �ows within the inner ear. The appliation of the �nite element methodresulted in a stationary system of equations where the right hand vetor inludes the resultsof the �rst order system in terms of a virtual fore- and mass-soure distribution.It turned out that the resultant aousti streaming �ow �eld is in aordane withthe experimental studies from Tonndorf [48℄. Furthermore, the results of the numerialsimulations indiate that the maximal veloity of the aoustially driven �ows are up toone order of magnitude larger than the analytial estimates from Lighthill [25℄.This work opens up new opportunities in the ontext of investigations with respet tothe bio-mehanis of hearing. Furthermore, the model shows potential for further improve-ments with regard to onvergene and auray. Also an extension for three-dimensionalexaminations would be desirable.
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Appendix AResults of the Passive Cohlea Model
A.1 Initial Transient E�et

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.1: Current state of the ohlea system after 1
4
T seonds at 1024Hz stimulation frequeny. Thevetor �eld illustrates the veloity v

(1) whereas the intensity of the red (or blue) olor represents the amountof the positive (or negative) pressure p
(1).
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−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.2: Current state of the ohlea system after 1
2
T seonds at 1024Hz stimulation frequeny. Thevetor �eld illustrates the veloity v

(1) whereas the intensity of the red (or blue) olor represents the amountof the positive (or negative) pressure p
(1).

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.3: Current state of the ohlea system after 3
4
T seonds at 1024Hz stimulation frequeny. Thevetor �eld illustrates the veloity v

(1) whereas the intensity of the red (or blue) olor represents the amountof the positive (or negative) pressure p(1).
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A.1. INITIAL TRANSIENT EFFECT

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.4: Current state of the ohlea system after T seonds at 1024Hz stimulation frequeny. Thevetor �eld illustrates the veloity v
(1) whereas the intensity of the red (or blue) olor represents the amountof the positive (or negative) pressure p

(1).

−1.5 mm
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0 mm 10 mm 20 mm 30 mmFigure A.5: Current state of the ohlea system after 5
4
T seonds at 1024Hz stimulation frequeny. Thevetor �eld illustrates the veloity v

(1) whereas the intensity of the red (or blue) olor represents the amountof the positive (or negative) pressure p
(1).
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−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure A.6: Current state of the ohlea system after 3
2
T seonds at 1024Hz stimulation frequeny. Thevetor �eld illustrates the veloity v

(1) whereas the intensity of the red (or blue) olor represents the amountof the positive (or negative) pressure p
(1).
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0 mm 10 mm 20 mm 30 mmFigure A.7: Current state of the ohlea system after 7
4
T seonds at 1024Hz stimulation frequeny. Thevetor �eld illustrates the veloity v

(1) whereas the intensity of the red (or blue) olor represents the amountof the positive (or negative) pressure p(1).
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A.1. INITIAL TRANSIENT EFFECT

−1.5 mm
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0 mm 10 mm 20 mm 30 mmFigure A.8: Current state of the ohlea system after 2T seonds at 1024Hz stimulation frequeny. Thevetor �eld illustrates the veloity v
(1) whereas the intensity of the red (or blue) olor represents the amountof the positive (or negative) pressure p(1).
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APPENDIX A. RESULTS OF THE PASSIVE COCHLEA MODELA.2 Rotary Vibrations at Equilibrium State
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0 mm 10 mm 20 mm 30 mm(b)Figure A.9: Equilibrium state of the �rst order system at the stimulation frequeny of 128Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p

(cos). Figure (b) visualizes their imaginary ounterparts v
(sin)and p

(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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A.2. ROTARY VIBRATIONS AT EQUILIBRIUM STATE
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−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure A.10: Equilibrium state of the �rst order system at the stimulation frequeny of 256Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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−1.5 mm
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1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure A.11: Equilibrium state of the �rst order system at the stimulation frequeny of 512Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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A.2. ROTARY VIBRATIONS AT EQUILIBRIUM STATE
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1.5 mm

0 mm 10 mm 20 mm 30 mm(b)Figure A.12: Equilibrium state of the �rst order system at the stimulation frequeny of 1024Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.

115



APPENDIX A. RESULTS OF THE PASSIVE COCHLEA MODEL

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mm(a)
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0 mm 10 mm 20 mm 30 mm(b)Figure A.13: Equilibrium state of the �rst order system at the stimulation frequeny of 2048Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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A.2. ROTARY VIBRATIONS AT EQUILIBRIUM STATE
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0 mm 10 mm 20 mm 30 mm(b)Figure A.14: Equilibrium state of the �rst order system at the stimulation frequeny of 4096Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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0 mm 10 mm 20 mm 30 mm(b)Figure A.15: Equilibrium state of the �rst order system at the stimulation frequeny of 8192Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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A.3. DISPLACEMENT OF THE BASILAR MEMBRANEA.3 Displaement of the Basilar Membrane
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Figure A.16: Traveling wave motion of the basilar membrane at the stimulation frequeny of 128Hz inthe passive ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure A.17: Traveling wave motion of the basilar membrane at the stimulation frequeny of 256Hz inthe passive ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure A.18: Traveling wave motion of the basilar membrane at the stimulation frequeny of 512Hz inthe passive ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure A.19: Traveling wave motion of the basilar membrane at the stimulation frequeny of 1024Hz inthe passive ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure A.20: Traveling wave motion of the basilar membrane at the stimulation frequeny of 2048Hz inthe passive ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure A.21: Traveling wave motion of the basilar membrane at the stimulation frequeny of 4096Hz inthe passive ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure A.22: Traveling wave motion of the basilar membrane at the stimulation frequeny of 8192Hz inthe passive ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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A.4. ACOUSTIC STREAMING FLOW FIELDA.4 Aousti Streaming Flow Field
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0 mm 10 mm 20 mm 30 mmFigure A.23: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 128Hz in the passive ohlea model.
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0 mm 10 mm 20 mm 30 mmFigure A.24: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 256Hz in the passive ohlea model.
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−1.5 mm
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0 mm 10 mm 20 mm 30 mmFigure A.25: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 512Hz in the passive ohlea model.
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0 mm 10 mm 20 mm 30 mmFigure A.26: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 1024Hz in the passive ohlea model.
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A.4. ACOUSTIC STREAMING FLOW FIELD
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0 mm 10 mm 20 mm 30 mmFigure A.27: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 2048Hz in the passive ohlea model.
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0 mm 10 mm 20 mm 30 mmFigure A.28: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 4096Hz in the passive ohlea model.
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0 mm 10 mm 20 mm 30 mmFigure A.29: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 8192Hz in the passive ohlea model.
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APPENDIX B. RESULTS OF THE ACTIVE COCHLEA MODELB.1 Aousti Flow Fields at Equilibrium State
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0 mm 10 mm 20 mm 30 mm(b)Figure B.1: Equilibrium state of the �rst order system at the stimulation frequeny of 128Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p

(cos). Figure (b) visualizes their imaginary ounterparts v
(sin)and p

(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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B.1. ACOUSTIC FLOW FIELDS AT EQUILIBRIUM STATE
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0 mm 10 mm 20 mm 30 mm(b)Figure B.2: Equilibrium state of the �rst order system at the stimulation frequeny of 256Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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0 mm 10 mm 20 mm 30 mm(b)Figure B.3: Equilibrium state of the �rst order system at the stimulation frequeny of 512Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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B.1. ACOUSTIC FLOW FIELDS AT EQUILIBRIUM STATE
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0 mm 10 mm 20 mm 30 mm(b)Figure B.4: Equilibrium state of the �rst order system at the stimulation frequeny of 1024Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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0 mm 10 mm 20 mm 30 mm(b)Figure B.5: Equilibrium state of the �rst order system at the stimulation frequeny of 2048Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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B.1. ACOUSTIC FLOW FIELDS AT EQUILIBRIUM STATE
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0 mm 10 mm 20 mm 30 mm(b)Figure B.6: Equilibrium state of the �rst order system at the stimulation frequeny of 4096Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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0 mm 10 mm 20 mm 30 mm(b)Figure B.7: Equilibrium state of the �rst order system at the stimulation frequeny of 8192Hz in thepassive ohlea model. Figure (a) illustrates the real part of the veloity �eld v
(cos) of the rotary vibrationin ombination with the real pressure �eld p(cos). Figure (b) visualizes their imaginary ounterparts v

(sin)and p
(sin). The intensity of the red (blue) olor represents the amount of the positve (negative) pressure.
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B.2. DISPLACEMENT OF THE BASILAR MEMBRANEB.2 Displaement of the Basilar Membrane
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Figure B.8: Traveling wave motion of the basilar membrane at the stimulation frequeny of 128Hz in theative ohlea model. The red line represents the osine part ξ
(cos) of the osillatory motion, whereas theblue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure B.9: Traveling wave motion of the basilar membrane at the stimulation frequeny of 256Hz in theative ohlea model. The red line represents the osine part ξ
(cos) of the osillatory motion, whereas theblue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure B.10: Traveling wave motion of the basilar membrane at the stimulation frequeny of 512Hz inthe ative ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure B.11: Traveling wave motion of the basilar membrane at the stimulation frequeny of 1024Hz inthe ative ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure B.12: Traveling wave motion of the basilar membrane at the stimulation frequeny of 2048Hz inthe ative ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure B.13: Traveling wave motion of the basilar membrane at the stimulation frequeny of 4096Hz inthe ative ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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Figure B.14: Traveling wave motion of the basilar membrane at the stimulation frequeny of 8192Hz inthe ative ohlea model. The red line represents the osine part ξ(cos) of the osillatory motion, whereasthe blue line is assoiated with the sine omponent ξ(sin). The blak line illustrates the envelope.
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B.3. ACOUSTIC STREAMING FLOW FIELDB.3 Aousti Streaming Flow Field
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0 mm 10 mm 20 mm 30 mmFigure B.15: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 128Hz in the ative ohlea model.
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0 mm 10 mm 20 mm 30 mmFigure B.16: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 256Hz in the ative ohlea model.
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0 mm 10 mm 20 mm 30 mmFigure B.17: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 512Hz in the ative ohlea model.
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0 mm 10 mm 20 mm 30 mmFigure B.18: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 1024Hz in the ative ohlea model.
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0 mm 10 mm 20 mm 30 mmFigure B.19: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 2048Hz in the ative ohlea model.

−1.5 mm

0 mm

1.5 mm

0 mm 10 mm 20 mm 30 mmFigure B.20: Lagrangian spei�ation of aoustiially driven �ows indued by a stimulation frequenyof 4096Hz in the ative ohlea model.
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