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Zusammenfassung 

Die anthropogenen CO2 Emissionen haben die CO2 Konzentration der Atmosphäre erhöht 

und damit Einfluss auf die Funktionen des globalen Kohlenstoffkreislaufes und Klimas. 

Unsere CO2-Emissionen beeinflussen so das Ökosystem der Erde und schaden 

letztendlich auch der menschlichen Gesellschaft. Die Abscheidung von CO2 und folgende 

Speicherung im tiefen Untergrund wird zurzeit breit diskutiert, um die CO2 Emissionen stark 

und nachhaltig zu reduzieren. Tiefe geologische Strukturen, wie z. B. erschöpfte Erdgas- 

und Ölfelder, gelten dabei als mögliche Speicherreservoire mit der nötigen Kapazität. 

Allerdings können spätere Leckagen des CO2 aus der Speicherstätte und die daraus 

resultierenden Umweltfolgen nicht vollkommen ausgeschlossen werden. 

In dieser Arbeit wurde der Einfluss von hohen CO2 Konzentrationen auf die mikrobielle 

Gemeinschaft beispielhaft in zwei Ökosystemen untersucht: a) die Fluide eines 

Erdgasfeldes als Modell für ein potentielles Speicherreservoir und b) ein vulkanischer CO2-

Austritt als natürliches Analogon für eine CO2-Leckage in oberflächennahe Böden. Ziel der 

Untersuchung war es, die unter Einfluss von CO2 auftretenden oder sich aus den 

geochemischen Veränderungen des Ökosystems ergebenden Anpassungen der 

mikrobiellen Gemeinschaft zu dokumentieren. 

Diese Arbeit dokumentiert die dynamische Entwicklung der bakteriellen Gemeinschaft im 

Erdgasfeld. Die mikrobielle Gemeinschaft war dabei klar von Sulfat-reduzierenden 

Bakterien dominiert, deren Abundanz und Aktivität im zeitlichen Verlauf deutlich zunahm. 

Die in einer vorhergehenden Arbeit beschriebenen methanogenen Archaeen wurden in 

dieser Arbeit als produktionsbedingte Anreicherungen in den Fluiden identifiziert. Die 

mikrobielle Gemeinschaft veränderte sich stark im zeitlichen Verlauf, was auf 

produktionsfördernde technische Maßnahmen zurückgeführt werden konnte. Versuche mit 

superkritischem CO2 (unter in situ nahen Bedingungen) belegten eine überraschende 

Widerstandsfähigkeit von thermophilen, Gram-positiven und sporen-bildenden Clostridiales 

in den Produktionsfluiden. 

Die kombinierten mikrobiellen und geochemischen Analysen am natürlichen CO2-Austritt 

dokumentierten Unterschiede in der Verteilung der mikrobiellen Aktivitäten 

(aerobe/anaerob) zwischen den CO2-beinflussten Bodenschichten und den unbeeinflussten 

Referenz-Böden. Mittels molekularer-biologischer Methoden wurden als potenzielle 

Indikatorspezies Thaumarchaeota in den CO2-assoziierten Böden identifiziert. Die 

ökologische Nische der Organismen wurde dabei mit sauren pH-Werten und limitierter 

Sauerstoff-Verfügbarkeit im CO2-beinflussten Boden in Verbindung gebracht. 

Zusammenfassend konnten diese mikrobiellen Untersuchungen beider Ökosysteme 

wichtige Informationen zu der Anwendung und den Auswirkungen der 

Kohlendioxidspeicherung und einer möglichen Leckage des CO2 in die oberflächennahen 

Böden geben. 



  iii 
 

 

Summary 

The post-industrial anthropogenic CO2 emissions had a severe effect on the atmospheric 

CO2 concentrations and the mechanisms underlying the global carbon cycle and climate 

functions. Consequently, human-made CO2 emissions will imbalance the ecosystem of the 

earth and harm the human society and welfare. Carbon Capture and Storage (CCS) is 

under political and scientific debate as large-scale solution to reduce the industrial 

emissions of CO2. Deep geological structures, like depleted gas or oil reservoirs, are 

considered as suitable reservoirs providing sufficient storage capacity for CO2. However, 

one major concern for CCS is the possible leakage of CO2 from its storage reservoir and 

subsequent effects on the environment. 

This work evaluates possible effects of high CO2 concentrations on the microbial 

population in i) the fluids of a natural gas reservoir as analogue for a potential CO2 storage 

site and ii) a terrestrial volcanic CO2 vent which provides a natural analogue for CCS 

leakage scenario into the upper soil environment. The overall aim of this work was to 

investigate the changes and adaptation mechanisms of the microbial community in its 

structure and function with CO2 as stress factor affecting the geochemical conditions of the 

respective habitat. 

This work documented dynamic developments of the bacterial population in the gas 

reservoir. Sulphate-reducing bacteria were predominant in the formation fluids, and their 

abundance and activities increased in the course of this work. In this work the 

methanogenic archaea, previously documented for the reservoir, were identified as 

production-related enrichment and localised within the well head facility. The bacterial 

community structure revealed temporal variations that were correlated with technical 

measures to increase the gas productivity. The incubations with supercritical CO2 (under 

near in situ conditions) revealed a surprising resistance for thermophilic, spore-forming and 

Gram-positive Clostridiales against the bactericidal effects of high pressurised CO2. 

The geochemical and microbiological parameters at the natural CO2 vent system 

revealed differences in the distribution of microbial activities (aerobic/anaerobic) between 

the CO2 affected soil surface and the unaffected reference soil environment. The analysis 

of the microbial community structure identified Thaumarchaeota as potential microbial 

indicator species in the upper soil environment of the vent centre. The predominant 

Thaumarchaeota species were presumably connected to soil acidification and O2 limitation 

with hypoxic/anoxic microclimate in ecological niches within the CO2 affected soil column. 

In synthesis, the microbiological investigations in both ecosystems provide important 

information for the application and consequences of CCS in hydrocarbon reservoirs and in 

case of a potential CO2 leakage from the storage reservoir. 
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Abbreviations 

°C degree Celsius 

16S rRNA (gene) encoding gene for the small subunit (16S) of ribosomal RNA 

amoA ammonia monooxygenase subunit A 

AOA ammonia oxidising archaea 

AOB ammonia oxidising bacteria 

BLAST 

BGR 

basic local alignment search tool 

Bundesanstalt für Geowissenschaften und Rohstoffe 

bp base pair 

BP before present 

cbbL encoding gene for biggest subunit (L) of RUBISCO 

CCS Carbon Capture and Storage 

CO2GeoNet CO2 geological storage - European Commission's network of 

excellence of 6th framework program (2004-2009) 

CPR  carbon dioxide production rate 

d day 

DR deep reservoir fluids 

dsrA or dsrB gene of dissimilatory sulphite reductase subunit A or B 

EPS extracellular polymeric substances 

EU European Union 

GC gas chromatography 

Gt giga tones (1 Gt = 1 000 000 t) 

GTBP Isopore™  Millipore product line for black polycarbonate filter discs 

h hour 

HPLC high performance liquid chromatography 

ICP-AES inductively coupled plasma atomic emission spectroscopy 

IGÖ Institut für Grundwasserökologie 

IPCA interacting principal component analysis 
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IPCC International Panel on Climate Change 

ka 1000 years 

LMWOA low molecular weight organic acids 

m-/µM milli-/micromol L-1  

mcrA encoding gene of methylcoenzyme M reductase subunit A 

mL millilitre 

MPR methane production rate 

NCBI National Center for Biotechnology Information 

PCI phenol-chloroform-isoamyl solution 

PF production fluids 

ppm parts per million 

p-value probability value (limit of significance 0.05) 

qPCR quantitative PCR 

RECOBIO-2 recycling of sequestrated CO2 by microbial – biogeochemical 

transformation in the deep subsurface 

RUBISCO ribulose-1,5-biphosphate carboxylase/oxygenase 

sc supercritical (in context with CO2) 

SD  standard deviation 

SEM standard error mean 

SRP sulphate-reducing prokaryotes 

SRR sulphate reduction rate 

TCC total cell counts 

TDS total dissolved solids (salinity in g L-1) 

TMA trimethylamine 

Tn Tagn (n=days of incubation) 

T-RF terminal restriction fragment 

T-RFLP terminal restriction fragment length polymorphism 

v/v volume per volume 
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 1.1. The global carbon cycle and involved microbial processes 

The global carbon cycle model describes the net exchanges between the main reservoirs 

of carbon on earth – the lithosphere, hydrosphere, atmosphere, and biosphere (Figure 1). 

The cycling of carbon is mediated by a network of geological, geochemical and biological 

processes, like volcanic activity, erosion, weathering, the dissolution/buffering of carbon in 

the oceans, and biological fixation and mineralisation. By far the biggest carbon reservoir 

is the lithosphere containing 75*106 Gt as sedimentary carbon (carbonate mineral species; 

>60*106 Gt) and kerogen i.e., deposits of organic matter, which is maturing and thus 

supplying fossil fuels (~10% of the global carbon content) [36]. The ocean’s hydrosphere 

comprises the second largest pool of carbon (38*103 Gt), most actively exchanging with 

the other three compartments. The lithosphere adds carbon mainly as carbon dioxide 

(CO2) into the atmosphere via carbonate weathering and volcanic activity [36]. However, 

the concentration of CO2 in the atmosphere (735 Gt carbon) is controlled by the 

dissolution into the ocean’s hydrosphere following: 

CO2(gas) � CO2(aqua) + H2O � H2CO3  � HCO3 
- + H+  � CO3

2- + 2H+ (1) 

 
Figure 1: Global carbon cycle with carbon contents of the main reservoirs (following Falkowski et 
al. [36]) and input of anthropogenic CO2 emissions (red arrows with input rates as Gt year (y)-1). 
The additional emissions are accumulating mainly in the atmosphere and the oceans (as dissolved 
CO2) with a significant proportion remaining in an unknown sink [36, 126]. The carbon content of 
the biosphere was collected from various references including the recent estimations for the marine 
subsurface biosphere after *Kallmeyer et al. [86] and estimations of the terrestrial biosphere after 
**Whitmann et al. [172]. Biologically mediated processes were indicated with green arrows 
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The biosphere accumulates organic carbon via the photosynthetic and chemolithotrophic 

fixation of gaseous/dissolved CO2 from the atmosphere or hydrosphere. The organic 

carbon biologically fixed (primary production) is mineralised back to CO2 and equilibrates 

with the atmosphere or the dissolved carbon pool of the hydrosphere [36, 150]. The 

mineralisation of the organic matter is mainly mediated by microorganisms (see below). In 

the hydrosphere (including freshwater and the ocean) the sedimentation of particulate 

organic matter comprises a central mechanism for the storage of carbon (carbon sink). In 

the oceans’ hydrosphere, the carbon is transported into deep ocean layers and deposited 

in marine sediments, effectively storing the carbon for thousands of years [165]. The 

exchange of carbon from the terrestrial ecosystems with the atmosphere is considered to 

proceed much faster over decades. The total amount of carbon stored in the (living and 

dead) biomass of plants comprises the biggest carbon sink within the terrestrial biosphere 

[36]. 

1.1.1. Microbial carbon fixation and (re-)mineralisation pathways 

The microbial biosphere is actively fixing inorganic carbon (like CO2) into organic carbon 

(autotrophy) via several carbon fixation pathways. The most abundant is the Calvin-

Benson-Bassham cycle (Calvin cycle) including the enzyme ribulose-1,5-biphosphate 

carboxylase/oxygenase (RuBisCO) [105]. This key enzyme is present in Cyanobacteria, 

phototrophic Proteobacteria, and is ubiquitously found in the chloroplast-endosymbionts of 

algea and plants. The enzyme catalyses the first and rate limiting step of the fixation of 

CO2 with the carboxylation of ribulose-1,5-biphosphate [7]. 

Besides the Calvin cycle, five further CO2 fixation pathways have been documented, 

some of these restricted to single phyla or metabolic groups: (i) the reductive citric acid 

cycle (Aron-Buchanan cycle) in green-sulphur bacteria and some anaerobic/microaerobic 

bacteria [77, 153], (ii) the reductive acetyl CoA (Wood-Ljungdahl) pathway in acetogenic 

prokaryotes [26], iii) the 3-hydroxypropionate (Fuchs-Holo) bi-cycle in anoxygenic 

phototrophic Chloroflexi [65], and iv-v) two cycles recently identified for Crenarchaeota 

(Thaumarchaeota) together referred to as 4-hydroxybutyrate cycles [11, 70]. The latter 
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two differ mainly in the activation of the intermediate succinyl-CoA, which is further 

converted to acetyl-CoA, and in the oxygen sensitivity of the respective enzymes. This 

oxygen sensitivity restricts their distribution to either (micro-) aerobic Sulfolobales [11] or 

anaerobic Desulfurococcales and Thermoproteales [70]. 

The aerobic oxidation of organic carbon, that is, respiration processes using oxygen as 

final electron acceptor, is conducted by aerobic and facultative aerobic prokaryotes and by 

eukaryotes, including higher plants and organisms [105]. The anaerobic mineralisation 

using alternative electron acceptors (like sulphate, metals, nitrate etc.) or fermentation is 

restricted to prokaryotes and yeast [105]. In the upper aerated soil layers most of the fixed 

organic carbon is aerobically oxidised (root respiration and microbially mediated 

mineralisation) but the full extent depends strongly on climate zones, diurnal and seasonal 

effects [143]. Water saturated habitats with limited oxygen input comprise a terrestrial sink 

of organic carbon, as the organic matter is mineralised more slowly under anaerobic 

conditions. In peat lands/bogs, freshwater sediments, rice fields and permafrost soils the 

organic matter is oxidised by a sequence of anaerobic fermentation, acetogenesis, and 

methanogenesis [18]. The emitted methane was partially oxidised back to CO2 at the 

aerobic/anaerobic interface by aerobic methanotrophic bacteria [94]. In the anoxic 

compartments of freshwater habitats the methane was oxidised by a syntrophic consortia 

of anaerobic methanotrophic archaea and sulphate-reducing or nitrifying bacteria [24, 

142]. 

 In marine environments the remineralisation of the carbon primary production is mainly 

proceeding via the microbial loop [5]. Roughly 80% of the fixed carbon is oxidised to CO2 

(released as HCO3
2-) by microorganisms within the upper 100 to 200 m of the water 

column. Depending on the oceans primary production in the photic zone, between 5 to 

25% of the primary fixed organic matter can be transported into the deeper ocean layers 

(biological carbon pump) and 1 to 3% of the carbon finally reaches the sediments [36, 

141]. In the coastal shelf regions, where the carbon input is rather high, the organic matter 

is mainly oxidised by sulphate-reducing prokaryotes in synthrophy with fermenting 
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microorganisms [83]. In marine sediments, where other alternative electron acceptors are 

depleted, the organic matter is finally mineralised by methanogenic archaea [66]. 

 1.2. Anthropogenic CO2 emissions and global climate changes 

During the last ~150 years (post-industrial time) the atmospheric CO2 concentration 

increased from its pre-industrial concentration (280 ppm) to about 380 ppm by 2006 

(Figure 1) [74]. This increase was directly connected to the anthropogenic usage of fossil 

hydrocarbon resources [36, 61, 74]. Simultaneously, the global average temperature 

increased by about +0.8°C, which – according to the International Panel on Climate 

Change (IPCC) – is “very likely” [74] correlated with the increased anthropogenic CO2 

input into the atmosphere. 

The additional anthropogenic input of carbon and the warming potential of CO2 in the 

atmosphere effectively change the functions of the global carbon cycle. The annual 

additional input of CO2 is only to about 50% accumulating within the atmosphere, while 

about 40% are dissolved in the ocean’s hydrosphere. A significant proportion of CO2 does 

remain in an unknown sink complicating our estimates of the total mass balance of the 

carbon cycle [36, 126]. The additional input of CO2 into the oceans decreases the pH, as 

result of the dissolution process according to equation (1). Already today the ocean’s 

proton concentration has increased by 30% compared to pre-industrial values. The ocean 

acidification reduced the ocean’s primary production in the photic zones due to decreasing 

calcification rates of marine plankton e.g. coccolithophore algae [179]. The changed 

primary production will further affect the transport and storage mechanism of carbon 

(biologic carbon pump) in the deep ocean layers and sediments. The raising global 

temperature will further reduce the uptake of CO2 from the atmosphere and the primary 

production due to the lesser solubility of CO2 in warmer surface waters [56]. For terrestrial 

habitats, the increasing temperature is expected to amplify the carbon mineralisation rate 

of the organic matter stored within the boreal forests, increasing the net-release of CO2 

into the atmosphere [80]. Thereby, the central storage mechanisms for carbon in the 

terrestrial ecosystem will be less effective under increasing global temperatures. 
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Following, the IPCC’s best estimate, about 800 ppm in the atmosphere will increase 

the global average temperature by 3°C [74], which will severely imbalance the global 

climate system and the carbon fluxes between the earth’s carbon reservoirs. To prevent a 

temperature increase above 2°C, the global emissions of all potential greenhouse gasses 

(GHGs), e.g. CO2, CH4, N2O (NOx) and SO2, must be massively reduced by 2020. Based 

upon the Kyoto protocol the European Union declared a net reduction by 20% until 2020 

compared to the emissions of 1990 (by 30% if other developed countries commit to 

comparable cuts) [128]. The German government declared the ambitious aim to reduce 

the GHGs emissions even by 80-95% until 2050 [34].  

1.2.1. Options for the reduction of CO2 emissions for Germany 

About 83.5% of Germany’s GHG emissions are connected to the production and 

consumption of energy, including electricity production, transportation, industrial 

production process, and heat production (Figure 2). In total, about 77% of this energy is 

produced by fossil fuel combustion, like coal-fired power plants [33]. 

 

 

 

 

 

Figure 2: Relative emissions of GHGs 
subdivided into the producing sectors for 
Germany in 2010 (in %; obtained from 
European Environment Agency [35]). 

 

Thereby, the reduction of CO2 emissions is centrally influenced by two factors: the 

reduction of our energy demand and the resources or technique used for energy 

production. The development and establishment of “renewable energy” techniques (e.g. 

solar or wind energy) as main energy resource will presumably need several decades. 

Furthermore, the utilisation of fossil fuels as energy resource is expected to buffer 

variations in the energy demand and production by renewable resources also beyond 
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2050 [75]. However, the emission of CO2 from the energy producing sector has to be 

effectively reduced to achieve Germany’s ambitious climate policy aims in the future. 

One option currently discussed to reduce the industrial emissions of CO2 is Carbon 

Capture and Storage (CCS), which is basically the separation of CO2 at its emission 

source and its later storage in appropriate reservoirs [61]. The high CO2 emissions from 

the energy sector promote the installation of CCS directly at point emission sources, like 

coal-fired power plants. The separation of the CO2 will be integrated into the electricity 

production chain followed by the transport of CO2 to the later storage sites [61]. At the 

moment the storage of CO2 in deep geological formations, like saline aquifers and 

depleted gas and oil reservoirs, is considered most suitable for Germany [73, 112]. The 

qualification of a deep geological formation for CCS is rated according to its overlying 

geological structure (sealing capacity), its depth (below 800 m depth), and the storage 

capacity (available pore space) [73]. The documented and evaluated potential CCS 

reservoirs in Germany will provide a storage volume for about 10 Gt of CO2 . With an 

estimated emission of 3 Gt in 40 years, this would equal the industrial CO2 emissions of 

Germany for several decades [93]. 

The highest storage potential is seen in saline aquifers which fulfil the site selection 

criteria in depth and sealing capacity. However, the real extent of these potential 

reservoirs in Germany is unknown as so far only a small proportion of the saline aquifers 

have been catalogued. The estimates of the storage potential therefore are ranging 

between 6.3 to 12 Gt CO2 [93]. Depleted hydrocarbon reservoirs provide a storage 

capacity of about 2.7 Gt CO2 [112]. Despite the lower storage capacity, hydrocarbon 

reservoirs have some advantages like: 

i) An existing technical infrastructure.  

ii) A good knowledge of the provided pore space (storage capacity) deduced from 

the volume of produced oil/gas. 

iii) The existence of considerable sealing capacity, since the hydrocarbons 

accumulated over geological time scales (stratigraphic or structural hydrocarbon 

traps).  
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iv) Enhanced oil/gas recovery (EO/GR) comprises an already well-established 

application [13], for the (re-)injection of co-produced CO2 into oil and gas bearing 

reservoir formations to enhance its productivity (e.g. Weyburn Project [32]). 

These factors will considerably promote the development of CCS for the storage in 

depleted hydrocarbon reservoirs [112]. Thereby, the application of CCS on industrial 

scales will presumably start earlier in depleted oil and natural gas reservoirs than in saline 

aquifers (IPCC roadmap [73]).  

 

 1.3. Geochemical effects of CO2 injection into a storage reservoir 

The injection of CO2 into a depleted hydrocarbon reservoir will lead to considerable 

geochemical and physical changes of the reservoir system, which will affect the storage 

capacity and long-term safety. A storage depth of more than 800 m below the surface will 

secure pressure and temperature conditions needed to inject CO2 in its supercritical (sc) 

aggregate state (Figure 3a). Supercritical CO2 is volatile and diffusive like its gaseous 

state, but relatively incompressible like fluidal CO2 and is an excellent solvent for non- to 

moderately polar organic molecules [118]. The injected CO2 will have a density of >600 g 

m-3 under the storage conditions below 800 m depth. Thereby, scCO2 will require a 

smaller pore volume of the storage horizon as gaseous or liquid CO2. In consequence, the 

final storage capacity will increase by two orders of magnitude using scCO2 (Figure 3b).  

   

Figure 3: a) Phase diagram of CO2 (indicating the temperature and pressure of the supercritical 
point; Pc) and b) depth dependent density and volumetric effect of CO2 in feasible storage 
reservoirs [73]. 

a) b) 
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The injected scCO2 will accumulate at the top boundaries of the storage horizon due to 

its lesser density compared to the reservoir fluids. Therefore, the overlying geological 

structure (cap rock) has to be highly impermeable to secure the stratigraphic or structural 

trapping of CO2 [73, 110]. Formation fluids and hydrocarbons, present in the pore space 

prior to the CO2 injection, will be displaced downwards increasing the pressure in the 

formation. In case of an overestimation of the maximum injection rate the pressure 

increase could induce fissures and fractures in the storage horizon or even in the 

overlying cap rock [154]. Due to capillary forces CO2 will also be retained as small bubbles 

(residual trapping) in the pore space or as a thin film of supercritical fluid on the mineral 

surface. This residually trapped scCO2 will increase the reactive surface area of the 

scCO2 in contact with the formation fluids [110]. 

Simultaneously with the injection and the migration of the scCO2 in the reservoir, the 

CO2 will dissolve into the fluid (solubility trapping; according to equation [1] shown in 1.1; 

CO2 is present as single supercritical phase at the beginning of the injection). The total 

amount of CO2 soluble in the formation fluid will depend on the pressure, temperature, 

and the ionic strength of the formation fluid. Generally, the higher the salinity of the 

formation fluid is, the lower the saturation point for CO2 will be [29]. 

Due to the dissolution of CO2 into the formation fluids the pH will decrease following the 

increasing proton concentration. The acidification will influence the saturation equilibrium 

of dissolved ions leading to the dissolution of the mineral matrix [89, 110]. These reactions 

will consume protons and thereby vice versa increase the alkalinity. The final buffering 

capacity of the formation fluids, that is, the proton consuming mineral dissolution 

processes, depends mainly on the mineral composition of the storage horizon [110]. For 

example, the injection and dissolution of scCO2 was shown to increase the concentrations 

of Ca2+, Mn2+ and Fe2+ in formation fluid systems (e.g. Fri-I formation CCS pilot project) 

following the dissolution of minerals, like calcite and iron/manganese-oxyhydroxides [89]. 

Supercritical CO2 was shown to mobilise also acetate and other organic compounds from 

a sandstone matrix [89, 149]. It is expected, that the dissolution of the mineral matrix will 
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further enhance the mobilisation of organic material and heavy metals into the formation 

fluid [178]. 

In well-buffered fluid systems with a suitable mineral matrix to consume the protons, 

the alkalinity will increase up to the oversaturation with CO3
2-. In the presence of divalent 

ions the CO3
2- will precipitate as carbonate (e.g. CaCO3 calcium carbonate (calcite)) [110]. 

Abiotic mineralisation processes are seen as the major long-term trapping factor that will 

secure a safe detention of the injected CO2 in the storage reservoir [110, 111]. Both 

processes, solubility and mineral trapping, will presumably proceed for thousands of 

years, but at least as long as the trapped scCO2 will recharge the pool of dissolved CO2 

species [110] according to equation (1). 

 

 1.4. Microbial populations in potential storage reservoirs 

Hydrocarbon reservoirs represent hotspots within the terrestrial and marine deep 

biosphere with sometimes elevated population sizes and mineralisation activities 

compared with soil or sediment subsurface systems [19, 63, 82, 107]. At the moment 

hydrocarbon reservoirs are representing the best situated option for CO2 storage, and the 

following chapter will summarise some microbiological aspects of these geological 

systems. 

1.4.1. The environmental conditions in reservoir ecosystems 

The microbial populations in hydrocarbon reservoirs are controlled by the reservoir 

temperature, salinity (osmotic strength), abundance of essential inorganic nutrients, and 

appropriate energy resources [102]. The temperature is generally seen as the limiting 

factor for the presence of living microorganisms, while the other factors are controlling the 

size and activity of the population [63, 107]. Despite the documented growth at 113°C of 

the cultured Pyrolobus fumarii [12], microbial hydrocarbon degradation is restricted to 

reservoir systems with in situ temperatures below 80-90°C [173]. 

The hydrocarbons stored in the reservoir provide ample organic substrates and 

electron donors for the microbial population. Therefore, the depletion of inorganic 
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nutrients, mainly phosphor and nitrogen, and the abundance of electron acceptors are 

considered as mineralisation rate limiting factors [63, 102, 169]. Suitable electron 

acceptors besides carbon dioxide are Fe3+, Mn4+ and SO4
2-, while oxygen is typically 

absent [107]. The alternative electron acceptors are provided from embedded or overlying 

marine evaporites, the mineral matrix (e.g. Fe3+ containing siderite), coal, and shale 

layers. Nitrate and nitrite are generally only present in low amounts [112]. 

The electron donors in natural gas fields are basically limited to saturated alkanes (C1 

to C5), while organic acids (mainly acetate) can be supplied by associated coal and shale-

layers [103]. In contrast, oil bearing hydrocarbon formations contain a broad spectrum of 

hydrocarbons for example, cyclic aromatics, saturated/non-saturated alkanes, 

naphtalenes and asphaltenes (with >100 carbon atoms per molecule). A considerable 

proportion of the organic matter in oil reservoirs is not or only badly soluble in the 

formation fluids. Therefore, the microbial activities are predominantly found at the oil/fluid 

interfaces [63]. 

1.4.2. Microbial community composition and activities in reservoirs 

The limited availability of potential electron acceptors restricts the microbially mediated 

degradation processes in reservoirs to fermentation, methanogenesis, acetogenesis, 

reduction of metals, and sulphate [107]. The microbial community is often differentiated 

into distinct microbial populations for high- and low-temperature environments [20, 72, 99, 

134]. The biological degradation of hydrocarbons within the reservoir is well documented 

[63], e.g. the microbial souring (HS- production) in oil reservoirs leading to heavier and 

less valuable oil [47]. Sulphate-reducing bacteria and methanogenic archaea have been 

cultivated from a variety of oil fields [121, 131, 132, 134, 160] degrading also complex 

hydrocarbons [1, 22]. Furthermore, thermophilic spore-forming sulphate reducers 

degrading hydrocarbons were stimulated in arctic marine sediments indicating the input of 

these organisms from hydrocarbon reservoirs [71, 92]. However, the microbial populations 

in hydrocarbon reservoirs are presumably acting in complex synthrophic networks 

specialised on the degradation of hydrocarbons [107, 120] as visualised in Figure 4. 
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The central mechanism for the degradation of complex organic material like 

hydrocarbon mixtures is the stepwise hydrolysis into smaller organic compounds resulting 

in a pool of reduced carbon species (short chain alkanes, fatty acids etc.). Acetate 

comprises a central intermediate (Figure 4) for the final mineralisation of the organic 

matter. This final step is generally processed either by sulphate-reducing prokaryotes or 

methanogenic archaea [107, 120]. The acetate can be the product of direct hydrolysis of 

the complex organic matter, or secondary generated from the reduced carbon pool. 

Besides, also acteogenic bacteria produce acetate from accumulated CO2 and hydrogen 

to generate acetate using reductive acetyl CoA (Wood-Ljungdahl) pathway (Figure 4).  

 

Figure 4: Scheme of hydrocarbon or complex organic matter 
degradation in reservoirs [105, 107, 120]. The stepwise hydrolysis 
of the organic matter is leading to a pool of reduced carbon 
species, CO2 and hydrogen which are further and finally 
mineralised to the end products CO2 and CH4. Intermediately 
produced H2 and CO2 can be used to reductively produce acetate 
via the Wood-Ljungdahl pathway (acetogenesis). 

 

Depending on the abundance of oxidised metals and sulphate, complex hydrocarbons 

are likely degraded by heterotrophic metal-reducing, sulphate-reducing or fermentative 

organisms. Bacterial sulphate reducers in hydrocarbon reservoirs were identified as 



22   

 

Deltaproteobacteria, e.g. Desulfovibrionales and Synthrophobacterales [22, 159], and of 

the Firmicutes from the Clostridiales order (e.g. thermophilic Desulfotomaculum spp.) 

[121, 160]. The deeply branching bacterial phylum Thermodesulfobacteria is the third 

sulphate-reducing bacterial taxon detected in hydrocarbon environments [17]. Putative 

sulphate-reducing prokaryotes seem to be ubiquitously distributed in hydrocarbon 

reservoirs. Several heterotrophic sulphate-reducing bacteria were documented to reduce 

besides sulphate also various metals or to grow by fermentation [120]. Furthermore, 

metal-reducing bacteria that do not reduce sulphate, were identified from the 

deltaproteobacterial Desulfuromonadales (Geobacteraceae), and from the thermophilic 

phylum Deferrribacteres [54, 55]. Facultatively anaerobic bacteria, like Shewanella and 

Pseudomonas spp., were also repeatedly described for reservoirs [134, 176]. 

While the complete dissimilatory reduction from sulphate (6+) to sulphide (2-) is mainly 

restricted to the above mentioned taxa, reduction of more reduced sulphur compounds, 

like sulphur, thiosulphate or sulphide, is far more distributed. Several heterotrophic 

fermenters are also capable of the respiration of sulphur compounds. For example, 

Geotoga and Petrotoga spp., which are so far exclusively detected in hydrocarbon 

reservoirs [176], were documented to ferment alcohols and sugar compounds, but also to 

respire sulphur and thiosulphate [21, 114]. 

Methanogens are metabolically restricted to the final mineralisation steps due to their 

low substrate versatility. The major methanogenic phyla comprised Methanococcoales, 

Methanomicrobiales and Methanobacteriales [20, 82, 134]. In low-temperature 

hydrocarbon reservoirs the generally mesophilic Methanosarcinales (Methanohalobium 

and Methanosarcina) were repeatedly detected [e.g. 50, 116]. 

Under thermophilic conditions synthrophic acetate oxidation coupled to 

hyrogenothrophic methanogesis is thermodynamically more favourable than acetoclastic 

methanogenesis [82]. For high temperature hydrocarbon reservoirs an enrichment of a 

hydrogenothrophic methanogen (Methanoculculus) and a putative acetate oxidising 

organism (Smithella) was documented [52]. In low temperature environments, both 

hydrogenotrophic and acetoclastic methanogens were documented [28, 50], leaving a gap 
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in the knowledge about the limiting factor for the distribution of these organisms. Besides 

the methanogenic community, several hyperthermophilic sulphate reducers were 

identified in the genus Archaeoglobus. So far several organisms from the family of 

Archaeoglobaceae have been cultivated from high-temperature oil fields that grow with 

hydrogen/CO2, acetate and lactate [49, 134]. Crenarchaeota were detected by non-

cultivation approaches (16S rRNA based techniques), but identified as possible 

mesophilic contaminants in hydrocarbon reservoirs with seawater injection [99]. 

1.4.3. Inhibitory effects of supercritical CO2 

The bactericidal effect of scCO2 on bacteria is mainly documented for food borne 

pathogens. Supercritical CO2 was applied as disinfectant for food processing machines 

and medical instruments/material [27, 87]. Food with heat sensitive flavour, nutrients, 

texture, or colouring can be treated under relatively low temperatures due to the low 

supercritical point of CO2 (see also Figure 3). The survival during treatments with highly 

pressurised CO2 was studied on pure cultures from typical food-borne pathogens, 

including Escherichia coli (Gammaproteobacteria), Bacillus subtilis (Bacilli, spores), 

Salmonella typhimurium (Gammaproteobacteria), and Listeria monocytogenes (Bacilli, no 

spores) [44 \reference therein]. Garcia-Gonzales et al. [44] reviewed the industrial 

applications and studies on the biochemical effects of CO2 on pathogens or spoilage 

bacteria summarising in seven steps (a-g in Figure 5) the mechanisms for the inactivation 

of the microorganisms. 

The physiological inactivation (Figure 5) starts with a shift of the external pHex. This will 

affect the pH homeostasis and increase the maintenance energy costs (a in Figure 5). 

Interestingly, the negative effect of the external acidification was higher under CO2-

acidified conditions than for a decreased pH without CO2 [60]. This amplification due to 

the CO2 was correlated to the diffusion of aqueous (undissolved) CO2 and HCO3
- ions into 

the membrane double layer disturbing its integrity (b in Figure 5). Following the diffusion 

into the cytoplasm, the internal pHin will decrease (c in Figure 5) which will affect several 

intracellular mechanisms (d-f), like enzyme activity and structure [3], the physiologically 
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important electrolyte balance, and the kinetics of carboxylation /decarboxylation reactions. 

The intracellular CO2 increase will be enhanced due to the changes in the membrane 

integrity which will furthermore affect the loss of vital compounds (g in Figure 5), or even 

lead to the deformation of cells [69]. 

 

 

Figure 5: The proposed physiological negative effects of scCO2 acting in seven steps (a-g) on 
microorganisms according to Garcia et al. [44]. including the acidification of external and internal 
pH, the disturbance of pH homeostasis and proton-motive force (PMF), disturbance of membrane 
integrity, enzyme inhibition (indicating the proposed effect on the ribosome assembly of Andras et 

al. [3]) and reaction kinetics, action on electrolyte balance and the loss of vital compounds. 

 

Already, lower partial pressures of CO2 (in gaseous to liquid state) lead to a 

considerable decrease of the bacterial contamination in the sterilisation goods. However, 

only very high CO2 concentrations in aqueous media, above the supercritical point of CO2, 

lead to an effective sterilisation [79]. Furthermore, the inactivation of spores from food 

spoilage bacteria (e.g. Clostridium botulinum) was effective in a combined treatment of 

scCO2 and heat for about 30 min and more effective in aqueous solutions than on dry 

spores [135]. The direct contact with supercritical CO2 fluid will supposedly lead to the 
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extraction of non-polar to moderately polar compounds (lipids) from the cells or from 

extracellular polymeric substances (EPS) of biofilms as described in chapter 1.3. 

1.4.4. Biologically controlled mineral precipitation under CCS conditions 

Besides the evidence for negative physiological effects of scCO2, our knowledge about 

the microbial potential to survive under the actual in situ CCS conditions within a storage 

reservoir is rather scarce. The geochemical gradient of dissolved CO2 [46, 90] will lead to 

a zone with a severely affected microbial population close to the injection point. Within this 

zone of CO2 saturated formation fluids the microbial population will probably die due to the 

effects described above. In greater distance to this point the concentration and likewise 

the negative influence of the CO2 will gradually decrease and more cells might survive. 

For such zones with lower CO2 concentrations, a biologically controlled storage 

mechanism increasing the capacity and/or storage safety was postulated [115]. However, 

the tolerable threshold concentration of CO2 for the indigenous microbial population, 

mediating such an additional storage mechanism, has not been evaluated so far. 

Important for the survival potential of the reservoir microbiome will be the presence of 

substrates and nutrients for the microorganisms, since the antimicrobial effects will lead to 

increased maintenance energy demands. Kirk et al. [91] calculated the thermodynamic 

constraints acting on iron(III)-reduction, sulphate reduction, and methanogenesis under 

reservoir conditions with CCS application. The free energy available (∆GA) was positively 

affected for iron(III)-reducing reactions with different minerals (e.g. goethite) as Fe3+ 

source, while methanogenesis and sulphate reduction were not influenced. 

In theory, all reactions consuming protons, decreasing “acidic” substrates (sulphate, 

CO2), and/or increasing the alkalinity [10, 163] will influence the storage capacity. These 

microbially mediated changes in the geochemistry of formation fluids are envisioned to 

enhance the dissolution trapping and maybe even the mineral trapping of CO2 [115]. 

However, so far it remains unclear whether microorganisms will either actively affect the 

dissolution equilibrium of CO2 (i.e., bio-mineralisation of CO3
2+ into carbonate 



26   

 

precipitates), or simply act as nucleation sites enhancing the abiotic mineralisation 

mechanism of the CO2 [109]. 

Very important for the survival potential of microorganisms will be their vital state. A 

significant proportion of deep subsurface microbiome is presumably present as spores or 

inactive starving cells [101]. The abundance of Firmicutes in hydrocarbon reservoirs [52, 

121, 134] and the documented CO2 resilience of spores will presumably represent 

important factors for the survival of the microbial population under reservoir conditions 

following the injection of scCO2. 

 1.5. Potential environmental risks of CCS for soil surface ecosystems 

For the injection of CO2 in deep geological formations also the risks and likeliness of 

possible leakages have to be assessed. At CCS/EOR pilot sites like Weyburn, Frio-I or 

Sleipner, the subsurface movements of scCO2 are intensely monitored. The seismic 

measurements are used to evaluate the migration pathways of CO2 within the storage 

horizon and to detect possible leakages [4, 23]. CCS was estimated to be economically 

and ecologically insufficient with a leakage rate of more than 0.5% of the stored CO2 per 

year from the storage reservoir [180]. So far, the mentioned pilot projects have not 

documented considerable leakages (rates presumably below 0.0001%). Nevertheless, in 

concurrency with documented leakages of hydrocarbon reservoirs, the possibilities and 

environmental consequences of a leakage from CCS-storage sites have to be 

investigated [73].  

The risk scenarios expect different pathways for a leakage of CO2 (Figure 6), including 

migration via abandoned wells, diffusion through insufficiently sealing cap rock and along 

existing (or by the pressure increase induced) fractures. Leakages via abandoned wells 

will likely occur in a relatively short outburst that can proceed as long as the pressure is 

elevated in the storage reservoir. Such leakages will presumably be easily detectable and 

sealed [113]. The rather slow diffusion of CO2 through insufficient cap rock or fractures will 

not or only after a certain time period be detectable. Therefore, such leakages 
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compromise a long-term problem depending on the total injection volume and the leakage 

rate [73, 178]. 

 

Figure 6: Overview of possible leakage scenarios according the information  brochure of the 
CO2GeoNet – European Network of Excellence [171]. 

 
Insufficient cap rock systems could lead to broad-scale leakage of CO2 into surface 

aquifers, thus potentially affecting drinking water reservoirs. The mobilisation of heavy 

metals (e.g. arsenic) from the mineral matrix of drinking water aquifers could follow the 

dissolution of leaking CO2 into the aquifer system [178]. Furthermore, heavy metals, 

hydrocarbons and saline formation fluids could be co-transported with the leaking CO2 

from the storage reservoir into drinking water resources [113, 178]. Such leakages will 

reduce the drinking water quality and comprise a severe health risk. The leakage scenario 

along fractures and faults provides another passage into groundwater resources and also 

upper soil layers. This scenario is considered to affect the usage and value of surface 

soils considerably, albeit within a relatively defined area along the geological fracture and 

fault lineages which provide defined CO2 leakage pathways [136]. 

 

 1.6. Natural CO2 seeps as analogues for CCS surface leakage scenarios 

Natural CO2 seeps are characterised by increased CO2 concentrations and fluxes in the 

soil atmosphere or the discharge and following dissolution into groundwater aquifers or 
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marine bottom waters [130, 166]. The introduction of a similar leakage at a CCS pilot site 

is neither legally nor ethically considered feasible, as the final consequences might harm 

humans. Alternatively, the settings of natural CO2 seeps provide suitable analogues to 

establish detection and monitoring systems on the effects of a possible leakage of a CCS 

storage reservoir. The seeps are often evolved in areas with volcanic or seismic activity 

[136, 166] where the CO2 migrates from deep geological sources through impermeable 

layers or along fractures and faults. 

1.6.1. The environmental conditions of surface soils at natural CO2 seeps  

At terrestrial CO2 vent systems, the CO2 reaches the surface soils often in spatially limited 

areas that are by often visible due to patchy or reduced vegetation [9, 104, 133, 139]. The 

geochemical conditions in the venting area correlate with the concentration and fluxes of 

upwards migrating CO2. The minerals of the affected soils were weathered and reduced in 

their content of mineral oxides [155]. The buffering capacity of these soils is often reduced 

as the main buffering minerals (carbonates) are also weathered by the increased influx of 

CO2. Therefore, the soil was often shown to be gradually acidified depending on the CO2 

flux rate and concentration compared to the surrounding non-affected pasture or 

woodland [9, 40, 139]. The aeration of the soil column in the vent area is supressed due to 

the flux of upwards migrating CO2 [9]. Some studies reported an increased water content 

limiting even more the diffusive exchange of the soil environment with the atmosphere [9, 

133].  

Plant communities at such sites seem to compensate the geochemical effects up to 

elevated CO2 concentrations of 20-30% before plants got dismissed leaving only bare 

soils [81, 104]. At the Mommouth Mountain volcano (California, USA) the elevated 

increased CO2 soil gas concentrations due to volcanic activity had a severe effect on the 

woods surrounding the volcano [40]. Within two years from the onset of an increased 

volcanic activity, almost 100% of the conifers died at CO2 concentrations >30% (between 

30-90% measured in 60 cm depth) clearing a total area of 30 ha woodland. 
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Furthermore, plants growing in or around discharge areas were reported to have 

reduced photosynthetic pigmentation (showing yellowish to brown leaves) and root 

respiration rates [138]. But the CO2 threshold concentrations leading to significant 

geochemical or physiological changes that eliminate plant growth are unknown. Moreover, 

these effects are most likely depending on the initial plant coverage, the agricultural 

utilisation, climate zone [143] and quite importantly on the length of the time-period the 

CO2 is present in the soil. 

1.6.2. The influence of CO2 seeps on the microbial soil community 

The effects of high CO2 concentrations on the microbial populations are even less 

understood than for the plant coverage. There are a number of studies concerning 

elevated atmospheric CO2 levels [e.g. 84] and their effect on plant and microbial biomass 

in the rhizosphere. The elevated atmospheric CO2 concentrations varied between 550 and 

800 ppm [25, 84, 174]. Such atmospheric concentrations are expected within the next 

decades if the CO2 emissions will not be reduced. These studies showed an increase in 

photosynthetic activity and net carbon availability for the microbial biosphere that 

increased the microbial mineralisation activities in the upper soil environment [25, 84, 

174]. However, the geochemical conditions in a CO2 vent, i.e. a possible leakage site, will 

represent a completely different environment. For a start, the CO2 concentration within the 

soil atmosphere of volcanic vent centres reaches nearly 100% CO2 in the soil atmosphere 

limiting the oxygen availability [9, 166]. Such high concentrations will result in a loss of 

plant biomass and reduce the rhizosphere associated microbial populations. Thereby, 

also the net carbon input from the plants into the soil will be reduced which corresponds to 

low carbon concentrations previously reported for CO2 vents [133]. In conclusion, the 

microbial population structure could be changed by the CO2 induced soil acidification, 

oxygen limitation, reduced rhizosphere, and the reduced organic carbon availability. 

The decreased aeration can affect the microbial carbon mineralisation activity either by 

changing microbial metabolisms (aerobic/anaerobic) or simply decreasing microbial 

activity rates. Such a reduced mineralisation activity was indicated in CO2 affected soils by 
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reduced ATP content and bacterial cell counts [170]. In case of the Latera volcanic vent 

system, a natural CO2 vent in Italy, the ATP content and bacterial cell counts were also 

reduced [9, 133]. Another indication for effects on the microbial activity was the 

distribution of CO2 fixation genes in CO2 emitting moffetes (terrestrial volcanic CO2 

seeps). The encoding gene (cbbL) and protein variance of RuBisCO allows distinguishing 

between two major types: green-like cbbL type and red-like cbbL type [168]. The latter 

was dominantly present in the CO2-affected soil samples, indicating a CO2-fixing 

community of Alpha- and Betaproteobacteria which are mainly carrying this gene variance 

[164]. However, the total abundance of the gene was significantly reduced within the CO2-

affected soil column. The authors concluded that the high CO2 concentrations inhibited the 

CO2 fixing community and noted that especially sites with elevated CO2 concentrations of 

about 20% showed a considerable reduction in the gene copy abundance of cbbL [164]. 

Besides CO2, volcanic seeps often emit further gases, like CH4 and H2S. For example, 

the Latera volcanic system emitted H2S with the CO2, and showed a considerable 

increase of sulphate reduction activity for the vent centre. The soil column of the vent 

centre was almost anoxic up to shallowest layers due to the high flux rates of CO2 [9]. 

Anaerobic processes, like sulphate reduction and methanogenesis are of special 

importance in the risk scenario of a potential leakage. For example, methane is a very 

potent greenhouse gas with about 23 times the global warming potential of CO2 [74], while 

the toxicity of H2S provides a severe health risks for humans and animals [146]. However, 

neither process is regarded as a typical mineralisation activity in the upper soil 

environment. Anaerobic mineralisation activities in terrestrial soils other than nitrate 

reduction [45] are generally more documented for water-saturated habitats, like freshwater 

sediments [24, 147], rice fields [94], and permafrost soils [145]. Nevertheless, an increase 

in anaerobic mineralisation activities, as postulated for Latera [9, 133], could represent 

severe risk factors that need to be included into the safety estimations of CCS operations. 
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 1.7. Ecosystems description 

1.7.1. The Schneeren natural gas field 

The gas field Schneeren-Husum is located close to the Steinhuder Meer about 40 km 

northwest of Hannover in the North German Basin (Figure 7). The reservoir is built of a 

large Zechstein salt diapir which is structurally trapping the natural gas within a sandstone 

formation of the Upper Carboniferous (Figure 8) [67]. The exploration of the hydrocarbons 

started 1986. Today the field is operated by Gaz de France Suez E&P Deutschland 

GmbH, with actually about 10 wells in production. The whole reservoir can be separated 

into two massifs, Husum and Schneeren, with the latter enclosing the investigated well 

heads Z2 and Z3. The site is used as CCS analogue in a series of BMBF-founded 

projects since it is meeting the selection criteria for CCS [73]. Furthermore, it produces 

sufficient amounts of formation fluids together with the gas to allow a broad geochemical 

and microbial study approach. 

 

Figure 7: Schneeren-reservoir - A) tower crane for deep reservoir fluid sampling; B) industrial site 
of the gas facility; C) well head with surface head-valves; D) microcosms setup for activity 
measurement in production fluids; E) cell assembly in production fluids (may 2010) – scale 5 µm. 

 

The gas and the formation fluids were extracted from a depth of 2000-2800 m with an 

approximated in situ temperature 60-80°C (geothermal gradient of 3°C per 100 meter 

[73]). The produced gas consisted of about (v/v) 89% methane, 7% nitrogen, 3% CO2, 

0.38% ethane and further gaseous hydrocarbons between 0.01 to 0.005% (personal 
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communication). The hydrocarbons were formed in the Upper Carboniferous and late 

Mesozoikum in the source rock by thermal stress of coal layers and are not associated 

with oil deposits [67]. Coal- and shale-bearing layers are also embedded within the 

reservoir rock system. These layers presumably also provide the source for ample organic 

material and ammonium detected in the formation fluids [31, 103]. The formation fluids’ 

salt concentrations reached up to 230 mg L-1 [103], but were also found to be moderately 

saline. The salinity depended on the massif and its sub-compartment in which the 

production horizon was located. For example the included well heads Z2 and Z3, located 

within the central part of the Schneeren massif, contain only 30-60 mg L-1 [31, 103]. 

Isotopic analysis to evaluate the fluids origin revealed the evaporation of meteoric 

Paleozoic waters (low salinity) and/or seawater (high salinity) as main source for the 

formation fluids. The mixing of formation fluids with recent meteoric waters was excluded 

for the reservoir from the isotopic analysis [54]. 

 

 

 

 

 

 

Figure 8: Cross-section 
through the Schneeren-
Husum natural gas field 
(according to Hollmann 
et al. [67]) indicating the 
location of Schneeren 
Z2 within the central 
massif of the Schneeren 
reservoir. 

 

In a previous study, the archaeal microbial community of Z2 and Z3 was already closer 

examined. Ehinger et al. [31] described differences within the archaeal community for both 

well heads. At the beginning of their study, Methanolobus sp. was dominant in both 

formation fluids. While in the course of the study, Methanoculleus sp. became 

predominant in the fluids of Z3. Ehinger et al. [31] also briefly described the abundance of 

several bacterial taxa, like Marinobacter, Desulfotomaculum, Petrotoga spp., albeit the 
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temporal and spatial (differences between the wells Z2 and Z3) dynamics in the bacterial 

community were not reported. In the course of this work, the geochemical conditions, 

microbial activities and community structure of the Schneeren gas reservoir were 

documented in detail from April 2008 to May 2011 (April 2012 for Z3). 

Two different formation fluids were examined from both wells (Figure 7; A and C): the 

production fluids, referring to formation fluids that are co-transported with the gas and 

separated at the surface (gas/water-separation system), and unproduced deep reservoir 

fluids. These deep reservoir fluids were sampled directly at the production horizon in 

~2000-2500 m depth, were the formation fluids are effusing from the gas-bearing 

sandstone layers into the well tubing. For the first time such unproduced deep reservoir 

samples from this reservoir were microbiologically analysed. The comparison of 

unproduced deep reservoir and production fluids included analyses of the water 

chemistry, potential microbial activities, and molecular-biological analyses using 

quantitative PCR (qPCR), fingerprinting techniques (terminal restriction fragment length 

polymorphism; T-RFLP) and state of the art bidirectional 454-amplicon sequencing. 

1.7.2. The Laacher See natural CO2 vent system 

The Laacher See volcanic centre is situated right in the middle of the East Eifel volcanic 

field. This field is part of the Rheinish Massif extending further south building the 

Ardennes in France. The eruption of the Laacher See volcano is the only known large 

explosive eruption (phreatomagmatic) during late Quaternary times (13.1 ka BP) [127]. Its 

ashes were transported as far as Gotland (Sweden) and over the Alpes and are used as 

isochrones for geological dating purposes [14]. 

The morphological centre of the volcano is built by an eruption crater (caldera) that is 

today filled by a lake – the Laacher See. The lake is with 3.3 km² and a maximum depth of 

52 m the biggest caldera lake (morphologically not a maar) in the Eifel region [95, 175]. 

The lake is surrounded by a 90 to 240 m (above lake level) high ring wall that contained 

no natural outlet (Figure 9 A). Already in the 12th century the lake’s water level was 

regulated by a tunnel through the southern crater wall lowering the water table by 



34   

 

approximately 10 m [57]. After this structure collapsed, a new tunnel was constructed in 

the mid-19th century which lowered the lake level by another 5 m. The pastures 

surrounding the lake at its southern to north-western shore line were obtained due to the 

man-made drainage of the lake. Nowadays, these pastures are mainly used for extensive 

cattle farming and sociocultural purposes. 

 

Figure 9: Laacher See ecosystem – A) air photo with B) enlarged section of western shore line 
indication the increasing soil gas concentration (red high concentration; blue background 
concentration) according to Krüger et al. [95]; C) reduced vegetation in the vent centre with D) 
enlarged picture of the dominant plants surrounding the vent centre (plant community analysis 
included in chapter 3.3.); E) Dr. rer. nat. Birte Oppermann and Dr. rer. nat. Martin Krüger at the 
sampling session (with friendly permission of both). 

 

Discharge of gaseous CO2 along the (north-) eastern shore of Laacher See is well 

documented [2, 6, 161]. The isotopic analysis of CO2 dissolved in the groundwater and 

lake body indicated a magmatic origin from the upper mantel hemisphere [48, 58]. The 

gas consists predominantly of CO2 (~ 99%) and the fluxes into the Laacher See have 

been estimated with about 5’000 tons of CO2 per year [2]. Besides the emission of CO2 

from the water body, several vents were identified along the shore line (Figure 9 B). The 

distribution of these mofettes indicated a fault depended distribution of the CO2 seeps 

[95]. 

In the frame of an international EU network of excellence the pasture at the western 

shore line of the Laacher See was investigated [95]. Along the shore line several soil gas 

anomalies were detected with two new vent centres showing CO2 concentrations above 

80% in the soil atmosphere. One of those vents was subject for the microbiological and 

geochemical survey including the weather conditions, gas concentrations/fluxes and 
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geochemical soil profile. In two sampling campaigns, in September 2007 and July 2008, 

the surface soils at three positions along a transect of increasing CO2 concentrations was 

sampled. Samples were taken at the maximum zone of CO2 fluxes in the centre of the 

vegetation free zone (vent centre), as well as in a zone with elevated CO2 concentrations 

at the outer rim of the venting area (medium site). The reference sample was taken in 

proximity of the CO2 vent, in an area where no elevated gas concentration was observed 

(reference site) [81]. In September 2007 additional soil depth profiles were sampled for 

the vent centre and the reference site. 
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 1.8. Motivation and main working objectives 

The study in both ecosystems was motivated by one major hypothesis: The effects of CO2 

in reservoir formation fluids and soil surface environments will be reflected in changes in 

the microbial community (activity and/or population structure). The environmental changes 

will promote organisms which either have a higher resilience potential against the 

negative effects of CO2 or an environmental advantage due to the induced changes in 

their habitat. 

The working objectives of this work are defined as: 

i) This work examines the dynamics of the microbial activity rates, metabolic 

versatility and the microbial community structure (gene copy abundance and 

diversity) with focus on the bacterial population of the Schneeren gas field in the 

period from 2008 to 2012 (chapter 3.1. and 3.2.). 

ii) It gives new insights on the origin of the microorganisms living in the formation 

fluids and examines the influence of the production processes and technical 

measure on the distribution pattern of microorganisms in the reservoir (chapter 

3.1.). 

iii) It evaluates the effect of very high CO2 concentrations (up to saturation) on the 

microbial population in high-pressure incubations using original formation fluids 

and enrichment cultures obtained from the Schneeren formation fluids (Chapter 

3.2.). 

iv) It identifies environmental parameters that differentiate a CO2 affected from an 

unaffected soil ecosystem to estimate the critical soil gas concentration of CO2 

(thresholds) for the microbial biosphere (Chapter 4.3. and 4.4.). 

v) It examines and identifies the occurrence of putative indicator species for CO2-

induced changes of the soil environment and evaluates the significance of such 

community changes for possible leakage scenarios. (Chapter 4.4.) 

 



 

 

 

 

 

 

 

 

 

 2. General Discussion 
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This work investigated the effects of high CO2 concentrations on the microbial population 

in hydrocarbon reservoirs, representing a potential CCS storage reservoir, and the soil 

surface layers of natural volcanic CO2 seeps in relation to the environmental 

consequences of CCS-leakages. The overall aim of this work was to investigate how CO2 

and its anticipated geochemical effects will influence the structure, activity, and 

abundance of microorganisms. Both ecosystems represent distinct environments that 

were investigated for spatial and temporal variations. The following chapters will 

summarise the results and amend the discussion given in the publications (chapter 3.1 to 

3.4).  

 

 2.1. Dynamics of the deep biosphere of the Schneeren gas field and 

consequences of gas-production related technical measures  

The bacterial community structure of the Schneeren reservoir showed a generally diverse 

community including Gammaproteobacteria, Deltaproteobacteria, Firmicutes, Synergistes 

and Thermotogales. According to other reports this community structure seems 

representative for the hydrocarbon-associated deep biosphere in high-temperature 

reservoirs (temperature >50°C) [20, 49, 51, 72, 134]. In a previous study of the Schneeren 

reservoir, the archaeal microbial community of Z2 and Z3 was already documented 

showing a limited diversity of only one potentially methylotrophic Methanolobus sp. and 

another hydrogenotrophic Methanoculleus sp. [31]. The detailed microbiological 

description in this work examines the origin of the bacterial and archaeal organisms in the 

formation fluid system to evaluate which organisms and microbial processes are actually 

important under in situ conditions in the reservoir. The detailed analysis of the microbial 

community structure revealed some surprising temporal and spatial dynamics of the 

Schneeren reservoir biosphere that were correlated with technical measures conducted 

during the study. 
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2.1.1. Evidence for a sulphate-reducing community in the Schneeren 

reservoir and the abundance of methanogenic archaea in the fluids 

In the course of this work, the capability of the microbial population to reduce sulphate and 

to produce methane was tested with various substrate additions. These microcosms were 

compared to non-stimulated microcosms to evaluate the substrate specific potential to 

stimulate the microbial activity. Accompanying the microbial activity measurements, the 

abundance of specific gene markers for sulphate-reducing prokaryotes (subunit A of the 

dissimilatory sulphide reductase; dsrA) and methanogenic archaea (subunit A of the 

methyl Co-enzyme M reductase; mcrA) were monitored in the formation fluids. Both 

processes are important mineralisation activities for hydrocarbon reservoirs [30, 47, 82] 

and were previously briefly described in the Schneeren formation fluids [31].  

The production fluids of both wells showed strongly induced sulphate reduction activity 

with various substrates, including hydrogen, low molecular weight organic acids, 

monosaccharides, and alcohols. For example, the sulphate reduction activity was hundred 

fold higher with hydrogen amendment in comparison to non-stimulated microcosms. The 

potential to metabolise different carbon species indicated the presence of a diverse 

community of sulphate utilising species. Furthermore, sulphate was reduced under high 

temperature conditions close to the in situ values (up to 80°C) in production and deep 

reservoir fluids. 

The quantitative molecular-biological community analyses (qPCR) supported the 

presence of an active sulphate-reducing community in the Schneeren reservoir. The 

abundance of specific gene copy numbers of sulphate-reducing prokaryotes correlated 

positively with the sulphate reduction rates, as both increased simultaneously in the 

course of this work. Likewise, also the abundance of the gene marker specific for 

methanogenic archaea was correlated with the microbial methane production activity. At 

the beginning of this work (2008), the methane production rates and mcrA abundance 

were rather high compared to other gas field formation fluids [116]. The methanogenic 

activity was strongly stimulated by the addition of methanol indicating the activity of the 
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methylotrophic Methanolobus sp. However, after two years the methanogenic activity was 

almost completely dismissed and the mcrA gene abundance strongly decreased. 

Interestingly, the methanogenic activity was significantly reduced at temperatures above 

40°C in incubations with production and deep reservoir fluids. 

Magot et al. [107] summarised two central paradigms to distinguish between organisms 

that were enriched during the production process (in the well head facilities) and those 

indigenous in the reservoir formation. Indigenous organisms detected in the production 

fluids should either be capable to withstand (or be active) under the in situ temperatures, 

and/or should be globally distributed in hydrocarbon reservoirs under similar conditions 

(high- or low-temperature reservoirs)[107]. As stated initially, the global distribution of the 

predominantly detected bacterial taxa showed their presence within high temperature 

reservoirs. For the previously documented archaeal community, Ehinger et al. [31] 

correlated the presence of these taxa also with other community descriptions from high-

temperature environments [20, 116]. 

However, in contrast to Ehinger et al. [31] this work gave evidence for an enrichment of 

the methanogenic archaeal lineages during the production as no methanogenesis was 

detected above 40°C. The gradually decreasing temperature from about 60-80°C in the 

reservoir to 36-42°C in the separation system at the well head (at surface level) likely 

affected the distribution of Archaea. The gradual enrichment of the methanogenic archaea 

in the tubing and gas/water-separation system is in good agreement with reports of the 

methanogenic community of low-temperature reservoirs around 40°C [50, 162] and the 

documented temperature limits at 30-40°C of their cultivated next relatives [85, 117, 177]. 

In conclusion, this work provides evidence for an active sulphate-reducing bacterial 

population under reservoir and well head conditions, while an ecological in situ importance 

of the predominantly detected Methanolobus sp. and Methanoculleus sp [31] is 

questionable. Respectively, the detailed community analyses and the later following 

experiments with high CO2 concentrations were concentrated on the bacterial community 

structure, which seemed of predominant importance for the Schneeren reservoir. 
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2.1.2. Temporal dynamics of the deep biosphere  

The bacterial community structure was monitored from 2009-2011 (included in chapter 

3.1) using a combination of fingerprinting techniques (T-RFLP) and bidirectional 454-

amplicon sequencing for the identification of abundant terminal restriction fragments (T-

RFs). The community description is further amended with respective analyses conducted 

in the high pressure incubations experiments (only for Z3; November 2011 and April 

2012). The majority of the identified bacterial taxa in both deep reservoir and produced 

fluids were related to organisms metabolising various sulphur redox states. For example, 

Desulfovibrionaceae, Desulfobulbaceae and Peptococcaceae are capable to reduce 

several sulphur redox states with a variety of electron donors including alcohols, fatty 

acids and carboxylic acids, and were repeatedly reported for different hydrocarbon 

associated environments [8, 51, 106, 121, 125].  

The overall community structure supported the model of a Schneeren reservoir 

formation dominated by sulphate reduction (i.e. the reduction of more reduced sulphur 

compounds). However, the community monitoring revealed some surprising temporal 

dynamics in the bacterial distribution pattern (chapter 3.1 & 3.2). Such temporal dynamics 

of the deep biosphere have never been documented before for hydrocarbon reservoirs 

and might give some important information about the mechanisms acting on the microbial 

community structure in this type of environment (see 2.1.3.). 

Two phases can be distinguished in the development of the microbial community 

structure (Figure 10). At the beginning (2009), the microbial community was dominated by 

several proteobacterial families of the Deltaproteobacteria (Z2) and Alpha-

/Gammaproteobacteria (Z3) subclasses. Especially the high abundance of putative metal-

reducing organisms (Deltaproteobacteria: Desulfuromonadaceae and Geobacteraceae) 

was prominent in Z2 production and deep reservoir fluids in July 2009. Interestingly, the 

abundance of Geobacteraceae specific-16S rRNA genes was also strongly increased in 

July 2009 compared to a lower Geobacteraceae abundance in the production fluids 

sampled before and after July 2009. Thereby, the quantitative community profile 

supported the community structure pattern of the T-RFLP analysis. 
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Figure 10: Dynamic developments of the bacterial community structure in Z2 and Z3 production 
fluids (2009-2011/2012) and the deep reservoir community (July 2009). Community composition 
was analysed by T-RFLP with the identification of abundant T-RFs using 454-amplicon 
pyrosequencing libraries. Unidentified resembles T-RFs without identification 2. Restriction site: 
fragments cut at the second restriction site resulting in longer terminal fragments. 
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At the end of the monitoring period, Clostridiales became dominant starting with the 

samples analysed for March 2011. Further analyses (only Z3 Figure 10) showed dynamic 

developments during the period of only six month from March till November 2011. During 

this time several proteobacterial taxa “reappeared” (relative increase of abundance) in the 

production fluids of Z3. For both wells a general increase of putatively fermentative 

organisms related to Thermotogales, Thermoanaerobacteraceae, and Clostridiaceae was 

observed after July 2009. In case of the Petrotoga spp. and Thermoanaerobacter spp., 

the next relatives were described to reduce sulphur and thiosulphate in addition to the 

fermentation of saccharides and amino acids [16, 37, 114]. The increase of thermophilic 

spore-forming Clostridiales (including Clostridiaceae and Peptococcaceae) in the 

formation fluids could represent an ecological advantage or resistance of the organisms, 

which could be connected to the production of spores.  

In general, the microbial diversity seemed to increase in the course of eight months 

(until Nov 2011) showing the appearance of several groups that had been absent in 

March 2011. Since the samples of May 2010 were not analysed using T-RFLP, we cannot 

exclude similar seasonal variations in 2010 as in 2011. However, the documented 

changes proofed a surprisingly strong dynamic within the Schneeren system and showed 

considerable variations of the community structure especially in the last year from March 

2011 to April 2012 (Figure 10). 

2.1.3. Indications for the effects of technical measures on the reservoir 

microbiome 

Since the whole Schneeren-Husum massif is economically exploited, technical measures 

were implemented to increase or stabilise the reservoir’s gas productivity. A sequence of 

technical measures was conducted starting in spring 2009 until late 2010. The technical 

measures conducted in this time frame included a repeated acidification to solve mineral 

precipitates (scales) in the tubing system. The scale prevention was followed by a 

perforation approach (in July 2009) that included small-scale explosions in the tubing to 

open new gas bearing sandstone layers in the reservoir (about 1500 m depth). Only 
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because this approach was accompanied by the demounting of several valves in the 

tubing system, the deep reservoir fluids were obtained. Thereby, the formation fluids 

sampled in July 2009 were not directly influenced by the perforation but likely by the 

acidification approach conducted about eight weeks in advance. In addition to these 

technical measures, the gas production rate from the reservoir is controlled and adjusted 

to cope with the seasonal variations in the gas demand. Although the wells are not closed 

during summer, the production rates are decreased. Thus, the flux rate of the formation 

fluids from the reservoir and residence times in the tubing and/or separation tank are 

changed. 

The long-term evaluation of the microbial community structure using different 

molecular-biological methods (qPCR, T-RFLP and 454-pyrosequencing) showed 

considerable temporal dynamics, which could be the consequences of the described 

measures. For example, it is likely that the rather high gene copy numbers of various gene 

markers (incl. universal bacterial, archaeal, and taxon-specific 16S rRNA genes and 

functional genes) during July 2009 were connected with the scaling prevention approach 

which mobilised mineral precipitates in the production horizon. 

The scales dissolving during the acidification might have mobilised biofilms which were 

likely present (following the description of biofilms in the deep subsurface [167]) in the 

production horizons or in the fractures around these zones. The mobilisation of such 

biofilms could in consequences lead to the increased copy numbers of the monitored 

gene markers. Besides the mobilisation of precipitates and biofilms, the acidification likely 

increased the temporal availability of oxidised metals for putative metal-reducing 

organisms [68]. Thereby, the elevated abundance of specific 16S rRNA genes for metal-

reducing Geobacteraceae (July 2009) could represent a stimulation by increased oxidised 

metals. 

The appearance of Clostridiales corresponded with the increased water production for 

both wells in succession of the perforation approach (personal communication). 

Therefore, the increased abundance of Clostridiales after July 2009 could resemble the 

influx of so far unproduced formation fluids changing the community fingerprint. Likewise, 
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the later reappearing Proteobacteria could resemble a time-depended recovery of these 

organisms related to the production of formation fluids. 

In combination with the previous chapters, this study revealed a pronounced temporal 

dynamic in relation to the technical measures. In the months (years) following July 2009, 

the microbial community structure seemed to recover from the massive human 

intervention. For a more precise correlation, however, the frequency of the sampling 

approach has to be directly aligned with the technical measures. The results of the 

Schneeren reservoir community structure propose a more throughout monitoring of the 

deep biosphere to understand the underlying feedbacks of the reservoir ecosystem to 

technical measures and gas production rates. For closer inspections and interpretations 

one would need further down-hole sampled deep reservoir fluids, which were 

unfortunately not available for this study. 

 

 2.2. Survival of reservoir organisms despite the bactericidal effects of 

supercritical CO2  

The microbial community in November 2011 and April 2012 of the Z3 formation fluids 

mainly consist of several Clostrididales taxa, Thermotoga, Gammaproteobacteria and 

Bacteroidetes (see Figure 10 in chapter 2.1.2.). The community structure after the in vitro 

experiment with scCO2 showed that almost exclusively the spore-forming, thermophilic, 

and Gram-positive Clostridiales survived the incubation under high pressure. This result is 

in direct conflict to other previously reported studies about the bactericidal effects of 

scCO2 (e.g. for spores and spore-forming Firmicutes [27, 79]) and suggests further 

examinations for the resistance of these reservoir associated organisms. 

2.2.1. Effects of supercritical CO2 on the microbial community structure 

Two high pressure incubations with scCO2 were designed to mimic different conditions 

within a potential storage reservoir during the injection of CO2 (zones according to Gaus et 

al. [46]): (i) close to the injection point resulting in a completely CO2 saturated formation 
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fluid (ii) within the diffusion plume in distance to the injection point where the fluids are 

undersaturated with CO2. Both experiments were conducted with formation fluids from the 

Z3 well head (described above). The latter experiment (ii) was conducted with a 

stimulated microbial population directly obtained from Z3 production fluid. In the following 

discussion, the two experiments are described as (i) “saturation experiment”, referring to 

the CO2 saturated conditions in the reactor system, and the (ii) “stimulation experiment”, 

according to the stimulation phase in advance of the actual incubation with CO2. For a 

detailed description of the experimental setup please refer to section 3.2 Figure 22; p. 

118. 

During both experiments no sulphate reduction activity was detected over the course of 

the high pressure incubations with scCO2. The monitoring included the evaluation of the 

total cell density (cell counts using SybrGreen staining Figure 11) and the abundance of 

sulphate reducers, via qPCR of dsrA gene copy numbers. During the stimulation 

experiment no significant changes of cell density and dsrA gene abundance were 

detected, while both parameters declined during the saturation experiment. 

Figure 11: High pressure 
incubation with scCO2 A) 
stimulated batch culture 
(stimulation experiment), scale 
20 µm; B) cell density at the 
end of the high pressure 
incubation with scCO2 (after 
40 days), scale 20 µm; D) 
enlarged image section of A), 
scale 10 µm; C) sarcina-like 
cells detected in the formation 
fluids, scale 5 µm; microbial 
cells were stained with 
SybrGreen® fluorescence dye; 
Reactor setup with E) the 100 
mL bag made of gold foil and 
F) the reactor incubation 
system (BGR; ©Dr. C. 
Ostertag-Henning) 

 

The accompanying microbial community analysis (T-RFLP) revealed only minor 

changes during the saturation experiment. The stimulation experiment showed structural 

community changes similar to the control setup indicating that a not CO2-related effect 

was changing the community. After pressure and CO2 were released from the incubations 
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systems at the end of each experiment, fluid material from the reactor systems and the 

accompanying controls was transferred (reactivation approach). All transfers were further 

incubated without CO2 (under ambient pressure) to evaluate whether the detected 

microorganisms were able to cope the prolonged CO2 stress. The reactivation approach of 

both experiments revealed surprisingly minor differences in the microbial sulphate 

reduction activity comparing the previously scCO2-affected systems with the control 

setups that were not incubated with CO2 (Figure 27, p. 142). 

In conclusion, the microbial reactivation approach revealed an actively growing 

microbial population after the incubation with scCO2 for several weeks. For both 

experiments thermophilic, Gram-positive and putative spore-forming Clostridiales were 

predominant in the reactivation approach after the scCO2 incubations were finished. For 

example, in the reactivation approach of the saturation experiment even ~95% 

(Peptococcaceae) of the population were affiliated to the taxon. 

This result was rather surprising considering the ample documentations for the 

bactericidal or bacteriostatic effects of scCO2 already on the basis of several minutes or 

hours of incubation time (reviewed by Garcia et al. [44]). The potential to survive under 

elevated CO2 concentrations was indicated for sulphate-reducing prokaryotes in an report 

on the German CCS pilot project “Ketzin” [119]. In case of the drilling and CO2 injection 

test site “Ketzin” (Berlin, Germany), microorganisms plugged the sandstone pores with 

produced biomass and FeS precipitates in advance of the CO2 injection. These 

microorganisms were presumably fed by the drilling mud (containing organic solvents, 

emulsifiers etc.) and likely also originated from the drilling fluids. The plugged pore space 

was cleaned with the injection and release of nitrogen removing the microbial biomass 

and FeS precipitates from the injection well. In the following injection of CO2 the cell 

numbers were strongly reduced, but still a significant proportion of the microorganisms 

survived the injection [119]. 

Following the CO2 dispersion in the “Ketzin” reservoir, the abundance of active cells 

increased and sulphate-reducing bacteria reappeared in the formation fluid. However, the 

authors missed to document the microbial community induced by the drilling mud and/or 
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the initially present population before the drilling approach was started. Additionally, the 

documented community structure remained ambiguous about the phylogenetic relation for 

the detected sulphate-reducing bacteria (Desulfovibrionales or Desulfotomaculum) [119]. 

In contrast, the here documented phylogenetic affiliation of the organisms in Schneeren 

fluids gives important indications for the possible survival mechanisms. 

2.2.2. Mechanisms increasing the survival potential of microorganisms 

The high pressure incubations with scCO2 implied a rather high survival potential of spore-

forming Clostridales (see above). The most abundant families were Pepptococcaceae and 

Thermoanaerobacteraceae in the community of the reactivation approach. The first 

include a Desulfotomaculum sp. that was affiliated to sulphate reducers from various high 

temperature oil fields [96, 121, 125, 160].  The Thermoanaerobacter sp. was affiliated with 

fermentative organisms from geothermal sources and hydrocarbon reservoirs [16, 38, 39, 

122]. However, the DNA based analysis directly after the saturation experiment showed 

the presence of several additional taxa in the fluid, e.g. a rather high abundance of 

Pseudomonas spp. Nevertheless, this has to be interpreted with caution since the 

presence of cells and amplifiable DNA does not necessarily indicate the survival of these 

organisms, and likely included also dying cells with damages beyond repair [3, 78]. 

The Gram-positive cell wall structure and/or the formation of spores seemed to be of 

importance for the survival of the organisms. The higher CO2 resistance of vegetative 

Firmicutes cells was connected to their Gram-positive cell wall structure in previous 

studies [27, 79]. For example, the spore-forming species Bacillus subtilis (aerobic growth) 

was included in a study investigating the simulated leakage of CO2 into an aquifer system 

[152]. This study showed that all tested pure cultures reacted negatively to high CO2 

concentrations in growth and cell yield with the highest resilience for the tested Gram-

positive Bacillus species. Although the pH in the microcosms was buffered to minimise pH 

shifts, all cultures reacted quite pronounced on the high CO2 concentrations [152]. 

Independent from the acidification by CO2, the diffusion of CO2 and HCO3
- into the cell 

membrane and cytoplasm (see Figure 5; p. 24) was shown to severely reduce the 
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potential of microorganisms to survive [60, 76]. In case of Gram-positive cells, the dense 

peptidoglycan structure was interpreted to represent an effective diffusion barrier [27]. 

Accordingly, also the dense structure of spore coat and cortex, besides the low water 

content of the spore’s cytoplasm, could likewise reduce the negative effects. Although the 

artificial groundwater systems does not resemble an adequate analogue for a deep CCS 

storage horizon in CO2 concentrations and physical conditions [152], the survival of 

facultative aerobic Bacilli further emphasises the ecological advantage of Gram-positive 

and spore-forming organisms. 

Despite this environmental advantage for Firmicutes, also several non-sporulating and 

Gram-negative organisms “reappeared” in the reactivation microcosms after the scCO2 

was released. For example, Geotoga sp. and Petrotoga sp. were not detected directly 

after the stimulation experiment, but detected later in the reactivation assessment. The 

lower abundance of these taxa in comparison to the control setups indicated a certain 

sensitivity or inhibition of these organisms during the scCO2 incubations. Their later 

detection in the reactivation phase might represent a grown population that survived 

below the T-RFLP-detection limit. The Thermotogae might survive due to their typically 

present enlarged outer membrane. This “toga”-like outer membran contains up to 20 cells 

per sheath, structuring Thermotoga-biofilms and possibly also helping the cells to adhere 

to mineral and particle surfaces [21, 100, 114, 144]. 

The formation of extracellular polymeric substances (EPS) could also enhance the 

resilience of organisms during the conducted experiments and especially in the real 

reservoir system. Microorganisms embedded in biofilms are usually surrounded by a 

complex matrix of polysaccharides, glycoproteins, glycolipids and even extracellular DNA 

[41, 158], which builds a diffusion barrier and/or zone with buffering capacity for the CO2 

[156]. For example, embedded in a biofilm the survival rate of Bacillus mojavensis was 

increased in incubations with scCO2, albeit the exposure did not exceed 20 minutes [115]. 

The experiments compared the resilience of biofilm assembled cells with planktonic cells, 

showing after the scCO2 contact a decrease in the cell numbers by several orders of 
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magnitude for the planktonic culture, and a better regrowth potential of the biofilm cells 

[115]. 

2.2.3. Consequences for potential CCS storage reservoirs 

The potential of microorganisms to survive the presence of scCO2 (i.e. under in situ 

conditions CO2-saturated fluids) is of importance for the geochemical storage mechanisms 

(see chapter 1.3.). The storage mechanisms can be described by the injectivity of CO2, as 

a function of the permeability of the storage site, and the final storage capacity, which 

include the available pore space volume and the CO2 fraction dissolved in the formation 

fluids [110]. However, the question is whether microbial activity will more likely enhance 

mineral trapping mechanisms [110, 111, 115] or decrease the permeability and storage 

potential for CO2 in the reservoir [119].  

The here documented experiments with scCO2 showed the survival potential of 

putative fermentative (e.g. Thermoanaerobacteraceae) and sulphate-reducing bacteria 

(Desulfotomaculum). Desulfotomaculum represents the genus with the largest number of 

thermophilic sulphate-reducing cultures from hydrocarbon reservoirs and geothermal 

fluids that are able to metabolise a broad spectrum of organic substances [see e.g. 37, 

121]. The substrate versatility of Desulfotomaculum spp. makes these organisms to 

generalists globally distributed in high temperature environments [20, 51, 122]. 

Fermentative organisms play an important role in the degradation of organic matter, the 

production of hydrogen, and are also globally distributed in hydrocarbon reservoirs [51, 

53].  

In conclusion, the surviving organisms are most likely present in the selected storage 

reservoirs in future. Their resilience for high CO2 concentrations under realistic in situ 

conditions (in pressure and temperature) has to be taken into account for CCS site 

selection and applications. Corresponding to the effects at the “Ketzin” pilot project [119], 

microbial sulphate reducers might actually plug the pore space with produced 

biofilm/biomass and FeS particles, thus reducing the available pore space for CO2. 

However, the here documented experiments showed that in the direct injection zone 
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(saturated CO2 concentrations) likely no cell growth or respiration activity will occur. 

Thereby, the effective plugging of the pore space around the injection zone by biomass 

seems unlikely. 

Since a real storage reservoir does not resemble a closed reactor system, the diffusion 

of CO2 in the reservoir will lead to considerable CO2 concentration gradients [46, 90], with 

zones of completely unaffected formation fluids. Geochemical in situ processes might 

further limit the bacteriostatic effects, as the mineral matrix provides a certain buffering 

capacity decreasing the concentrations of free HCO3
- and CO3

2- ions [89, 110]. 

Furthermore, the demonstrated mobilisation of dissolved organic matter might provide 

suitable microbial substrates [149]. In conclusion, organisms with the highest resistivity, 

which are according to this work Clostridiales, will presumably find suitable conditions 

within a relative broad area of the storage horizon. Within these areas a putative 

synthrophy of surviving fermentative and sulphate or metal-reducing prokaryotes can 

enhance mineral precipitation increasing the storage capacity, via mineral trapping 

mechanisms, as postulated previously ([110, 115, 163] see also Introduction 1.3. and 

1.4.4.). 

Further studies will have to evaluate the influence of EPS and biofilm formation, spore 

formation and the mineral buffering capacity on the long-term (100’s-1000’s of years) 

survival of microorganisms during and after CO2 injection. With this knowledge it will be 

possible to better estimate the CO2 threshold of the microbial population, and to determine 

which effects the microbial activity will have on the storage potential of the CCS storage 

reservoir formation. 

 



52   

 

 2.3. CO2 induced differentiation of affected and unaffected soil 

environments  

The flux of CO2 into the upper soil environment induces changes in the soil geochemistry 

as reported previously [9, 40, 81, 136], and will likely also affect the microbial community 

structure. For a better differentiation between CO2-affected and unaffected soil 

environments, we have to evaluate which microbial parameters (activity, cell abundance, 

genetic community fingerprint etc.) are actually influenced by CO2. Only based upon a 

significant differentiation it will be possible to determine the ecological consequences of 

high CO2 concentrations in soil ecosystems, and accordingly the risks of leakages from 

possible CCS storage sites. 

The here studied soil ecosystem on the pastures along the shoreline of the Laacher 

See showed variations in microbial parameters with increasing CO2 concentrations in the 

soil (Figure 12). The evaluated microbial activities were rather heterogeneously distributed 

for the uppermost 20 cm of soil surface. While in the upper ten centimetres no 

methanogenesis activity was detected at any site (chapter 3.4), it increased with depth 

(e.g. 10-20 cm) in the vent centre compared to the reference site (chapter 3.3). However, 

no significant CO2-induced changes in the geochemical profile (e.g. pH and organic 

carbon content) were revealed for the uppermost 20 cm, despite of the microbial activities. 

Besides their heterogeneous distribution in the soil column, seasonal effects lead to 

additional variation in the distribution of microbial activities in the soil surface. In July 2008 

both aerobic and anaerobic mineralisation activities were relatively high corresponding to 

enhanced microbial respiration activities during summer [143]. The distribution of the 

activities during summer 2008 showed a significant correlation of anaerobic microbial 

processes (sulphate reduction) with the increased CO2 concentrations at the medium site 

and the vent centre, respectively. However, the microbial activities measured in 

September 2007 showed no likewise correlation with CO2, and were much lower than 

during summer 2008. To differentiate seasonal from CO2-induced variations in the 
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microbial activities, a high spatial and temporal resolution of sampling is needed which 

was unfortunately not obtained during this work. 

In conclusion, the results of activity measurements indicated a reduced aeration status 

in the vent centre soil environment during summer, corresponding to the anoxic conditions 

described for other volcanic CO2 vents [9, 40, 104, 133] (Figure 12).  

 

Figure 12: Ecosystem setting of the natural CO2 vents at  Latera (A) and the Laacher See (B air 
photograph & C at the pasture). For both vents the typical reduction of plant coverage is visible with 
a circle of bare soil surrounding the CO2 emitting seep. The pictures originated from A) Oppermann 
et al. [133]; B) final report on joint geoecological research of natural CO2 sources in the East Eifel, 
Germany (Krüger et al. [95]) – modification: detail of the western shore line with the location of the 
vent centre indicated with the red mark; C) picture originally included in the publication chapter 3.3. 

 

2.3.1. Identification of putative indicator species in the soil surface 

The microbial community composition was investigated in more detail to identify possible 

indicator species promoted by CO2 and the changes of the soil environment using 

denaturing gradient gel electrophoresis (DGGE). For the bacterial community no other 

environmental factor besides the sampling depth was identified influencing the community 

composition. In contrast, the archaeal community composition showed a pronounced 

differentiation with increasing CO2 concentration; with a predominance of 

Thaumarchaeota associated sequences in the vent centre (nine out of ten sequences 

from the vent surface soils). 
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The Thaumarchaeota (incl. group 1.1a and 1.1b) have been reclassified from the 

Crenarchaeota phylum and contain the only so far cultivated ammonia-oxidising archaea 

(AOA) [15]. In the soil surface samples of the vent centre also the abundance of 16S 

rRNA gene copies (qPCR essay [129, 137]) of the phylum was increased, as was the 

abundance of ammonia-oxidising archaea (using an AOA specific qPCR assay  [43, 98]). 

Thus, the gene copy abundances and the phylogenetic fingerprint showed a good 

correlation and revealed also a pronounced predominance of the Thaumarchaeota and 

AOA in the archaeal community of the vent centre. The differentiation of the archaeal 

community allowed a significant correlation with the CO2 induced effects. 

Several soil ecosystem studies revealed the importance of the Thaumarchaeota 

(mainly group 1.1b) as possible ammonia oxidisers for acidic habitats [59, 88, 97, 123, 

124]. However, at the Laacher See vent centre the measured pH of the bulk soil showed 

no CO2 induced acidification in the uppermost soil surface. Only in the deeper soil column 

the pH showed a sharp decrease in the vent centre (chapter 3.3). Nevertheless, the 

microclimate in soil aggregates can be quite different from the actually measured bulk pH 

[42]. Respectively, the abundance of Thaumarchaeota in the surface soils of the vent 

centre could reflect a small scale acidification promoting these organisms. Despite the 

problems to verify bacterial indicator species, the predominant position of 

Thaumarchaeotes proposed them as possible indicator species for high CO2 

concentrations in combination with the accompanied soil acidification. 

2.3.2. Ecological niches for Thaumarchaeota 

Despite the qualitative and quantitative predominant position of Thaumarchaeota in the 

surface soil environment, the organisms were also very abundant in the depth profiles of 

both sites, reference site and vent centre, respectively. However, the cluster analysis 

showed a significant separation of the depth-associated sequences from those identified 

within the surface layers (included in the supporting information of the Chapter 3.4.). 

Especially the reference site showed a high phylogenetic differentiation towards the next 

cultivated relative (between 90-97% sequence similarity) with depth. 
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In addition to the distribution of AOA in acidic habitats, these organisms were abundant 

and active in water saturated habitats with limited oxygen input, like peat bogs [157] and 

freshwater sediments [64], and even in the suboxic water column of the Black Sea [43]. 

Marine AOA, phylogenetically related to group 1.1a Thaumarchaeota, have a higher 

substrate affinity for ammonia than ammonia-oxidising bacteria (AOB) and heterotrophs 

using ammonia as N-source [108]. Furthermore, studies documented the uptake and 

oxidation of ammonia at low oxygen concentrations which might enhance the 

environmental advantage of these organisms in oxygen limited environments like the 

Black Sea suboxic zone [43, 62, 140]. 

These findings need to be verified for the terrestrial AOA community (dominantly group 

1.1b Thaumarchaeota) in the surface and deeper soil layers of terrestrial ecosystems or 

the CO2 vent environments. Their environmental advantage in microaerobic and acidic 

habitats has to be defined for soil habitats. Previous findings already proposed a 

physiologic differentiation for AOA in terrestrial habitats from the cultivated marine 

representatives [148].  Hence, a stimulation by organic fertiliser indicated a heterotrophic 

AOA community (group 1.1b  in [148]) in contrast to the autotrophic marine community. In 

this context, their share in the global cycling of organic carbon and nitrogen has to be 

evaluated to actually link the phylogenetic variability of Thaumarchaeota with the 

abundance of AOA and an ecological function  [151]. In conclusion, the here documented 

results clearly emphasise a more detailed consideration of the nitrogen cycle in the CO2 

vent-associated soil environment. Such volcanic CO2 vents might represent suitable 

ecosystems to evaluate the effects of oxygen limitation and acidification affecting the 

distribution of Thaumarchaeota and/or AOA in soil ecosystems.  
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 2.4. What can we learn from the microbial community of the Laacher See 

soil environment for the risk assessment of CCS leakages? 

The survey at the Laacher See CO2 vent, a natural analogue for a CCS leakage, was 

focused on the identification of indicator species in the microbial community and/or shifts 

in the microbial activity profile. The results suggest the abundance of anaerobic/acidic 

niches and a predominance of Thaumarchaeota in the CO2 affected soil column. 

However, not all results were as significantly CO2-related as previously reported for the 

Latera vent system [9], non-volcanic CO2 moffetes [164], and artificial test fields for CCS 

leakage scenarios [170]. Despite these studies, still important questions for the 

transformation of the results to CCS-leakage scenarios remain unanswered. The time 

dependence factor for the development from an unaffected soil column towards a CO2-

affected ecosystem could not be deduced from the Laacher See soil environment study. 

However, it is expected that at least one or two vegetation periods would be needed to 

produce significant differences in the plant coverage in a vent centre (i.e., leakage site) 

[40, 104, 170]. For the effects of CO2 on the microbial biosphere such time frames may 

not be accurate, and the changes in the community structure are going to occur faster. 

For an accurate estimate of the time-related development within the plant and microbial 

community, artificial test fields are most likely the best option. Under defined 

environmental conditions the time scale for induced changes can be evaluated and also 

possible recovery rates of CO2-affected ecosystems. Nevertheless, the natural setting at 

the Laacher See with gradually increased CO2 concentrations in the soil revealed some 

significant dynamics in the microbial community. These dynamics can help to evaluate 

specific concentration thresholds for CO2 in the soil environment.  

The soil gas survey (chapter 3.3) documented spatial variations in the soil atmosphere 

for the CO2 concentrations especially for the medium site. The CO2 concentrations at this 

site varied from 10-60% (in 60 cm soil depth; 12.5 m in Figure 13). The isotopic signature 

of the CO2 indicated a mixture of biotic and magmatic CO2 at the medium site. The 

variations in the gas concentration at the medium site corresponded well with the model of 
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a horizontal diffusion of CO2 from a point emission source (fault/fracture) localised at the 

vent centre. 

 

 

 

 

 

Figure 13: Seasonal variation of CO2 
concentrations at 60 cm depth along 
the N-S traverse at vent “1”. The vent 
centre is located at 20 m. Source: 
[95; p. 53]. 

 

Horizontally diffusing CO2a is possibly channelled along permeable soil layers [166]. 

Additionally, the gas concentration at the Laacher See medium site reflects temporal 

variations, caused by e.g. water content, air pressure, and wind speed (chapter 3.3), 

which have a pronounced influence on the final flux rate of CO2. Generally, the medium 

site showed the highest seasonal variability in the evaluated microbial mineralisation 

activities of all sites (chapter 3.4). The abundances for specific gene markers for 

anaerobic processes and AOA were elevated corresponding to the numbers in the vent 

centre. However, also similarities with the reference site were documented, as the cluster 

analysis (DGGE fingerprint) showed a significant correlation for the community 

composition of medium and references surface soil samples (chapter 3.4 and supporting 

information). 

The microbiological analyses revealed an intermediate position of the medium site 

showing similarities with both the references site and the vent centre. In correspondence 

to these results, the microbial CO2 fixing community was especially affected under 

medium CO2 concentrations in terrestrial, volcanic mofettes [164]. The lowest cbbL (red-

like type) genetic variability and strongest variation in the gene abundance was detected 

in the soil profile with 10-30% CO2 in the soil atmosphere. Videmšek et al. [164] 

postulated that the CO2 fixing community might be more severely affected in soil columns 
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with strong fluctuations in the CO2 concentrations. Accordingly, other soil ecosystem 

studies reported a decreasing root respiration, changes in plant species composition, and 

altered microbial activities in the upper layers of the soil column already at CO2 

concentrations of 5-20 % in the soil atmosphere [9, 40, 104, 138, 139]. Consequently, the 

CO2-induced alteration of the microbial community at the Laacher See medium site 

indicated a tolerance threshold of about 10-20% CO2 in the soil atmosphere. 

In conclusion, the microbiological monitoring of the natural analogue revealed 

important factors about the development of soil ecosystems under CO2 influence. The 

results identified Thaumarchaeota as predominant species in the vent centre and thus as 

potential indicator species at least for the Laacher See vent systems. The ecological niche 

for these organisms and their function as ammonia oxidisers is not fully understood, but 

seems to correlate with specific environmental conditions in their habitat, like suboxic 

conditions and acidic soil environment [e.g. 43, 124]. Furthermore, the microbial 

monitoring supported the findings of geochemical investigations that the impact of a 

possible CCS leakage will be locally centred at defined fault/fracture zones [95, 136, 166]. 

Further this work documented dynamically affected soil layers surrounding the leakage 

centre (i.e. medium site) with strong variations in the microbial community profiles and 

activity distribution. 
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 3. Short summary of publications and author’s contribution 

Chapter 4.1.: Pronounced microbial population dynamics in a Northern 

German gas reservoir connected to production-related technical measures 

With a previous study approach on the reservoir formation fluids considering mainly  the 

methanogenic archaeal community [31] this report comprises to date the longest 

microbiological monitoring with new investigations regarding the bacterial community. For 

the first time, unproduced deep reservoir fluids (sampled down-hole at the perforation 

horizon) were microbiologically analysed from this reservoir. These samples enabled a 

closer comparison with the produced formation fluids for spatial differentiations in the 

microbial community structure. Furthermore, the microbial community inhabited in saline 

formation fluids revealed a surprising temporal variability in its potential mineralisation 

activity and community structure. In conclusion, this investigation obtained a detailed 

picture of the bacterial community in the formation revealing significant anthropogenic 

influences on the deep biosphere by technical measures related to the gas-production. 

Authors: Janin Frerichs, Claudia Gniese, Tillman Lueders, Nils Hoth, Michael Schlömann, 

and Martin Krüger 

Author’s contribution: 

Janin Frerichs obtained the fluid samples, conducted the activity measurements, the 

majority of the molecular investigations (qPCR, T-RFLP), and evaluated the respective 

results. Claudia Gniese participated in several sampling approaches and conducted 

additional T-RFLP analyses that are included in the supplemental material. The 454-

amplicon pyrosequencing was prepared and interpreted by Janin Frerichs with the help of 

the groundwater research group under the supervision of Tillmann Lüders (IGÖ Helmholtz 

Zentrum Munich). Claudia Gniese, Michael Schlöman and Tillmann Lüders reviewed and 

amended this manuscript. Janin Frerichs and Martin Krüger designed the experiments 

and wrote the manuscript. 
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Chapter 4.2.: Viability and adaptation potential of indigenous 

microorganisms from natural gas field fluids in high pressure incubations 

with supercritical CO2 

The application of CCS will lead to a diffusion gradient within the reservoirs’ environment 

that were simulated in experiments mimicking conditions (i) close to the injection point 

with interface contact of scCO2 fluid and formation brine (ii) within the diffusion plume in 

distance to the injection point. The later was conducted with an actively mineralising 

community under sulphate-reducing conditions referring to the postulated mobilisation of 

organic matter from the sandstone matrix. The results of this study proved the survival 

potential of thermophilic, spore-forming Clostridiales which were predominant in the 

microbial community after the high pressure experiments with scCO2. The approach with 

formation fluids from an analogue CCS storage reservoir comprises the first investigation 

of an indigenous microbial population with a close evaluation of survival and adaptation 

potential for the microbial community.  

Authors: Janin Frerichs, Jana Rakoczy, Christian Ostertag-Henning, and Martin Krüger* 

Author’s contribution: 

Experiments were designed and conducted by Janin Frerichs under the supervision of 

Martin Krüger. The technical application of the high pressure reactors was supervised by 

Christian Ostertag-Henning. The activity measurements of reactivation incubations and 

total cell counts were prepared by Janin Frerichs with the help of Jana Rakozy. Chemical 

analysis were prepared and interpreted by Janin Frerichs. The dataset of the water 

chemical analysis was obtained by the BGR in-house facilities for water chemistry. 

Microbial community analyses (T-RFLP) were conducted and statistically evaluated by 

Janin Frerichs. Janin Frerichs prepared the full manuscript while Jana Rakozy, Christian 

Ostertag-Henning, and Martin Krüger reviewed and amended the manuscript. 
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Chapter 4.3.: Effects of elevated CO2 concentrations on the vegetation and 

microbial populations at a terrestrial CO2 vent at Laacher See, Germany 

The description of the Laacher See volcanic vent system at the pastures of the 

north/western shore line included a broad gas measurement approach verifying the fluxes 

and extension of the terrestrial vent system and the origin of the CO2 from the upper 

mantle hemisphere. The study was amended with geochemical parameters (pH, oxygen 

concentrations) and a botanical survey evaluating the influence of the CO2 on the plant 

community/coverage. For the respective soil horizon (10-20 cm) microbiological results 

were included regarding the bacterial/archaeal 16S rRNA gene copies and activities.  The 

report comprises an introductive presentation of the Laacher See natural CO2 vent 

ecosystem for the following microbiological study approach on the 

distribution/identification of putative microbial CO2 indicative organisms. 

  

Published as: 

Krüger M, Jones D, Frerichs J, Oppermann BI, West J, Coombs P, Green K, Barlow 

T, Lister R, Shaw R, Strutt M and Möller I (2011).  

“Effects of Elevated Co2 Concentrations on the Vegetation and Microbial Populations at a 

Terrestrial Co2 Vent at Laacher See, Germany.” International Journal of Greenhouse Gas 

Control 5: 1093-1098. 

 

Author’s contribution: 

Samples were obtained by the whole party of authors (expect for Janin Frerichs) 

integrated into the CO2GeoNet community. Janin Frerichs provided activity 

measurements and qPCR results and wrote respective parts of the manuscript. David 

Jones, Tom Barlow, Bob Lister, Richard Shaw, Michel Strutt, and Ingo Möller conducted 

the gas measurement on the sampling sites and evaluated the data set.  Julia West, 

Patricia Coombs, and Kay Green conducted the botany survey and wrote respective parts 

of the manuscript. Birte I. Oppermann conducted the geochemical analysis and provided 

the data set. Martin Krüger and Ingo Möller designed the experiments and wrote the 

paper. 
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Chapter 4.4.: Microbial community changes at a terrestrial volcanic CO2 vent 

induced by soil acidification and anaerobic microhabitats within the soil 

column 

The study revealed differences in microbial activity and community structure for the vent 

centre which were highly affected by annual factors that interacted with the CO2 and its 

secondary induced factors of aeration, soil pH, mineral weathering etc. The community 

analyses revealed a significant predominance of Thaumarchaeota for the vent centre that 

was evident also in the monitoring of marker genes (Ammonia oxidising archaea (AOA) 

and 16S rRNA specific for Crenarchaeota/Thaumarchaeota) and the analyses of lipid 

biomarker distribution in the soil column. 

The distribution pattern and the discussed dominance of Thaumarchaeota for acidified 

environments lead to the conclusion that the phyla represent indicator species that were 

promoted by the environmental conditions induced by the seeping CO2. In general, the 

results indicated a spatially highly restricted centre for the CO2 influence that was partially 

overprinted by interaction with depth dependent and seasonal variations. Carbon dioxide 

provides an environmental factor that affects the habitat conditions (pH, aeration etc.) and 

influences via these secondary factors the microbial community structure. 

 
Published as: 
Frerichs J, Oppermann BI, Gwosdz S, Möller I, Herrmann M, Krüger M (2013). 

„Microbial Community Changes at a Terrestrial Volcanic CO2 Vent Induced by Soil 

Acidification and Anaerobic Microhabitats within the Soil Column.” FEMS Microbiology 

Ecology  84: 60-74. 

Author’s contribution: 

Samples were obtained by Martin Krüger, Birte Oppermann and Ingo Möller. Janin 

Frerichs conducted activity measurement, qPCR and DGGE analyses of soil samples with 

the accompanied statistical analyses. Birte Oppermann conducted the lipid biomarker 

analyses and geochemical analyses (total organic carbon etc.) and wrote the respective 
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parts of the manuscript. Ingo Möller conducted the gas measurement at the site and 

provided the data interpretation in connection to the IJGHG publication. Simone Gwosdz 

and Martina Hermann conducted qPCR analyses of ammonia oxidising archaea and 

bacteria. Martina Hermann, Birte Oppermann, and Ingo Möller reviewed and amended the 

manuscript. Janin Frerichs and Martin Krüger designed and wrote the manuscript. 

 

3.1.1. Publications not included 

Krüger, M., J. West, J. Frerichs, B.I. Oppermann, M.-C. Dictor, C. Jouliand, D. 

Jones, P. Coombs, K. Green, J. Pearce, F. May, and I. Möller (2009): 

“Ecosystem effects of elevated CO2 concentrations on microbial populations at a 

terrestrial CO2 vent at Laacher See, Germany.” Energy Procedia 1:1933-1939. 

 

Oppermann, B.I., W. Michaelis, M. Blumenberg, J. Frerichs, H. M. Schulz, A. 

Schippers, S. E. Beaubien, and M. Krüger (2010): 

“Soil microbial community changes as a result of long-term exposure to a natural 

CO2 vent.” Geochimica et Cosmochimica Acta 74:2697-2716. 
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Abstract 1 

Natural gas reservoirs represent extreme but nevertheless often densely populated habitats 2 

for microorganisms with regional but also local and sometimes temporal variations in their 3 

geochemical conditions, which are also influenced by gas production-related measures. So 4 

far, in such ecosystems only little is known about the natural and man-made dynamics in the 5 

microbial biosphere. 6 

To get a better understanding of these dynamics and it’s the underlying environmental 7 

factors, a detailed micro- and molecular biological study was conducted over three years in 8 

the Schneeren-Husum natural gas field in North Germany. Saline formation fluids from two 9 

neighbouring wells (Z2 and Z3) differed in various geochemical parameters revealing 10 

spatially separated compartments already within one reservoir formation. For the first time in 11 

situ sampled deep reservoir formation fluids were studied for the Schneeren reservoir, thus 12 

allowing a detailed perception of the microbial population and its distribution within the 13 

reservoir and the gas production system.  14 

The molecular biological and microbial investigations indicated a general functional 15 

advantage sulfur metabolism for the Schneeren formation. Despite previous findings the 16 

methanogenic community likely comprised a gas production-related enrichment within the 17 

tubing system. Finally, the long-term monitoring of the bacterial population revealed a 18 

remarkably high variability in the microbial community structure, i.e. its size, activity potential 19 

and composition. The taxa Desulfotomaculum, Desulfovibrio, Geobacteraceae, 20 

Pseudomonadaceae, Acteobacterium and Alphaproteobacteria were detected with varying 21 

abundance in the different fluids. However throughout this study, a significant shift in the 22 

community towards thermophilic spore-forming Clostridiales was observed that was 23 

correlated with production-related measures to increase gas-productivity.24 
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4.1.1. Introduction 

The knowledge about microbial populations in deep geological formations, the so-called 

deep biosphere, has become increasingly important in the last two to three decades [48]. 

Although mostly hidden to human perception, these organisms fulfill important functions in 

global elemental cycling [38]. Hydrocarbon reservoirs often represent microbial hotspots 

within the deep biosphere exceeding in both, cell numbers and mineralization activities, 

other subsurface habitats [38, 39, 48].  

The activity of methanogenic and sulphate-reducing prokaryotes is of special 

importance for hydrocarbon reservoirs as they are considered as final physiologic active 

units in organic matter degradation [18, 30]. In consideration of the specific reservoir 

temperature, the microbial community present in reservoirs above 50°C generally consist 

of Clostridales (Desulfotomaculum, Thermoanaerobacteraceae), Proteobacteria (mainly 

Deltaproteobacteria), Bacteroidetes, Deferribacteres, Thermotogea and methanogenic 

Archaea, e.g. Methanococcoales, Methanobacteriales etc. [22, 30]. 

In addition to exploration of new hydrocarbon reservoirs, a more recent focus has been 

set on another aspect: the reservoirs’ storage capacity itself. According to the International 

Panel on Climate Change (IPCC), there is a need to massively reduce emissions of 

greenhouse gases like CO2 [24]. One currently discussed option is Carbon Capture and 

Storage (CCS), a technique that requires large-scale storage capacities which are 

assumed for depleted gas or oil reservoirs and saline aquifers [23]. Besides geochemical 

storage mechanisms, biologically controlled carbonate precipitation is considered to 

secure storage safety and capacity of CO2 in suitable reservoirs [32]. However, only little 

is known about the specific temporal and spatial variations of the physiologically active 

community responsible for the organic matter degradation in deep reservoir systems. 

Thereby, also an approximation of microbially mediated or enhanced CO2 storage 

mechanisms will remain insecure until the microbial population is closer examined and 

functions are better understood. 
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The reservoir massif Schneeren (part of the Schneeren-Husum reservoir; Lower 

Saxony, Germany) studied for this report originated from the Upper Carboniferous [20, 27] 

with a temperatur range of 60- 90°C for the gas bearing sandstone horizons. The whole 

reservoir is technically and geologically rated feasible for CCS applications [23], but no 

injection of CO2 has been conducted so far. In a previous report considering the archaeal 

community of this model gas reservoir, differences in the community structure of two wells 

(Z2 and Z3) have been detected revealing the predominance of either Methanolobus spp. 

or Methanoculleus spp. in the produced formation brines [11]. 

This study presents a detailed long-term monitoring of the microbial community in the 

formation brines of the Schneeren reservoir, thereby evaluating the metabolic versatility of 

the community and the extent of temporal variations in its activity and structure. 

Furthermore, this study includes the examination of deep reservoir fluids directly sampled 

in situ from the gas producing horizon. This allows for the first time a comparison for this 

reservoir of its specific reservoir community in produced and deep reservoir fluids. Our 

overall aim was to distinguish the indigenous biosphere and its microbial key-players from 

possible contaminants or enrichments in the production system. Further, to evaluate 

potential effects of technical interventions on the microbial biosphere. Our results will 

broaden the knowledge of the deep biosphere dynamics which is an important parameter 

for prospective applications like CCS in such deep geological reservoir formations. 

4.1.2. Methods 

Sampling procedure 

Between 2008 and 2011, six sampling sessions were conducted at the gas formation 

plant Schneeren-Husum in the North German plain (Lower Saxony, Germany). A detailed 

description of the site and sampling procedure was given by Ehinger et al. [11]. Two well 

heads, Z2 and Z3, were chosen for the microbiological survey. Samples of produced fluids 

(PF used in the figures and tables) were sampled in May 2008, November 2008, April 

2009, July 2009, and May 2010. The samples were taken at the well-head facility from the 

gas/water-separation system (temperature 38-45°C). The sample of May 2008 was used 
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only for activity measurements while an additional sample for further molecular biological 

analysis was taken in March 2011. In July 2009, deep reservoir fluids (DR) were sampled 

directly at the perforations zones with constant influx of the reservoir water into the tubing 

system (down-hole sampling; about 2500 m depth). The deep reservoir fluids were 

sampled with an iron bailer of approximately two litre volume that was flushed twice with 

sterile Milli-Q water before sampling and when changing the bore hole. All fluid samples 

were immediately transported to the lab for further analysis. 

Water chemistry 

For the investigation of the water chemistry, the fluids were immediately upon arrival 

filtered (0.45 to 0.22 µm depending on the analysis) and stored at 4°C or frozen (-20°C). 

Total inorganic carbon (TIC) and dissolved organic carbon (DOC; 0.45 µm filtered) were 

measured using catalytic high temperature combustion with a Shimadzu TOC-VCPN 

carbon analyser (Shimadzu, Japan). Anions were determined by ion chromatography with 

a DX-500 ion chromatograph system (Dionex, Germany). Ammonium was detected by 

flow injection analysis according to DIN EN ISO 11732 and cations were analysed by 

inductively coupled plasma optical emission spectroscopy (ICP-OES; Spectro Analytical 

Instruments GmbH & Co. KG, Germany).  

The low molecular weight organic acids (LMWOA) from C1-C4 were measured using a 

high performance liquid chromatograph (Agilent 1200 series) equipped with a guard 

column (Eclipse Plus C8 Guard; 4.6 x 12.5 mm; 5 µm), a silica-based separation column 

(Eclipse Plus C8 4.6 x 150 mm; 5 µm; temperature set to 20°C), and a diode array 

detector (G1315D) set at 220 nm. Gradient flow rate of mobile phase was 1 ml min-1 using 

0.05 M sulphuric acid and methanol (gradient: 30 sec 10 vol% methanol; 9 min 40%). The 

filtered (0.22 µm) and thawed fluid samples were amended with 50 mM sulphuric acid 

prior to the measurement (injection volume 10 µl).  

The stable isotopic signature of CH4 and CO2 was measured using Thermo Fisher 

MAT252 GC-IRMS. The δ13C values are expressed as ‰ vs. “Vienna Pee Dee Belemnite” 
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(VPDB) while δD values were measured against “standard ocean mean water” (SMOW) 

[42]. 

Determination of microbial activities in the reservoir fluids 

For activity measurements, the fluids were filled into heat sterilised serum bottles under 

strict anaerobic conditions (Mecaplex anaerobic chamber systems). All microcosms were 

sealed with butyl stoppers and repeatedly flushed with N2 to remove O2. The experiments 

were conducted in triplicates and incubated in the dark at 30°C (up to 80°C). Various 

amendments were supplemented in 10 mM final concentration (unless stated otherwise) 

to stimulate the microbial activity: H2/CO2 [20/5% (vol/vol) of the headspace], formate, 

acetate, benzoate, lactate, pyruvate, succinate, fructose, ethanol, methanol [5-10 mM]. 

Hydrogen, acetate, and methanol were amended on regular basis for the activity 

monitoring while the other substrates were applied only to fluids of one to two sampling 

sessions. 

For better comparison, production fluids of both wells, Z2 and Z3, were repeatedly 

amended to reach 20 mM sulphate since the fluids differed considerably in their intrinsic 

sulphate concentration. Additionally, fluids were not amended (“no additions”) to measure 

the indigenous activity of the microbial community (control). Sterilised controls were 

prepared by adding sodium azide (0.02 g per 100 ml fluid) or formaldehyde (2% vol/vol) to 

differ between microbial mineralization activity and non-biogenic degassing.  

Headspace gas samples were taken weekly to analyse the methane and CO2 

concentration using a GC 14B gas chromatograph (Shimadzu) with a flame ionization 

detector and a methanizer (SRI Instruments Europe GmbH) to quantify the CO2 [35]. 

Sulphate reduction was followed via the production of copper sulphide from dissolved 

sulphide (HS-) [4].  

Microbial activities are given in nmol mL-1 day [d]-1 with the standard deviation (SD) of 

two to three replicates. In substrate amended microcosms, the activity was classified as 

induced if values were significantly increased above values of the controls (p-value <0.05; 

student’s t-test using SPSS, Chicago, USA). Due to the sulphate content of the original 
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formation fluids and the presence of FeS precipitates in the samples, the sulphate 

reduction rates have to be interpreted as bulk sulphate turnover [21]. However, in the 

following document, the complex bulk sulphate turnover was seen convenient to 

determine the significantly substrate-induced microbial sulphate reduction. 

Nuclein acid extraction and quantitative PCR 

The molecular biological samples were filtered immediately upon arrival onto a 0.22 µm 

polycarbonate filter and stored at -20°C. Volumes between 100 to 500 ml were used for 

DNA extraction without pre-filtration as previously described by Ehinger et al. [11] to avoid 

the exclusion of particle associated microorganisms (please refer to Figure 18). The DNA 

was extracted using phenol-chloroform extraction protocol (16) performed with 

modifications that are described in the supporting information in detail.  

For quantitative PCR (qPCR), specific standards of each target gene were prepared 

from pure cultures (obtained from the German Collection of Microorganisms and 

Cellcultures DSMZ) with defined copy numbers according to the processing described by 

Schippers et al. [44]. A complete list of the tested qPCR assays and processing is given in 

the supporting information (Table 5; including the publication sources).  

Community analyses using T-RFLP and 454-pyrosquencing 

For terminal restriction fragment length polymorphism (T-RFLP), bacterial 16S rRNA 

gene amplicons were prepared (Ba27f /907r (17)) following the conditions described by 

Pilloni et al. [40]. The primer Ba27f was 5’-FAM labelled to determine the specific 

fragment size after digestion with MspI (Bacteria) [28, 40]. The distribution and abundance 

of T-RFs was determined using the T-REX platform after denoising the fingerprint profiles 

and aligning the T-RFs according to Culman et al. [6]. 

Already existing clone libraries and a T-RF database of Z3 fluids (published by Ehinger 

et al. [11]) were extended with a 454-amplicon pyrosequencing approach. The new 

analyses were performed with samples from July 2009 (produced and deep reservoir 

fluids) and March 2011(produced fluids) to compare the formation fluids for spatial and 

temporal differences. The preparation of bacterial amplicon libraries (bidirectional with 
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Ba27f  and 519r) has been described in detail by Pilloni et al. [40, 41]. The demultiplexed 

reads were quality-clipped with Greengenes using an average Q20 cutoff over a moving 

window of 50 bp [9]. Trimmed reads were classified and diversity indices were inferred 

using the RDP pyrosequencing pipeline [45]. This workflow has been shown to yield 

robust and highly reproducible read abundances for dominating taxa across replicate 

samples [41]. For linking pyrotag with T-RFLP datasets, amplicon pools of matching 

forward- and reverse-reads were assembled into contigs with the SEQMAN II software 

(©2013 DNAStar Inc.). Assembly thresholds were at least 98% sequence similarity over a 

50-bp match window. Only contigs containing at least one forward and one reverse read 

were considered for analyses which resulted in a substantial further denoising of our 

dataset and a focussing on dominating read amplicon pools. The next relative for each 

contig was identified using the RDP integrated seqMatch tool [28, 40, 41, 45].  

The terminal fragment length of contigs was predicted in silco (using TRIFLe [25]) and 

linked with the abundant T-RFs in the T-RFLP data matrix. Accordingly, the microbes 

represented by abundant T-RFs were identified [40, 46] representing between 83 - 94% of 

the overall microbial community. In addition, a number of enrichment cultures from the 

activity measurements (using production fluids in April 2009) were analysed by T-RFLP 

fingerprinting. A more detailed description and results are included in the supplement 

(Figure S3 including the identification of T-RFs). 

4.1.3. Results 

Fluid chemistry 

The arithmetic mean of important geochemical parameters was calculated for each well 

head (Z2 and Z3 in Table 1) using the dataset obtained from 2008 to 2011. The produced 

fluids of Z2 and Z3 showed in direct comparison some considerable differences. For 

example, a higher salinity of Z2 fluids (TDS at 65 ± 2.2 g L-1), but higher sulphate 

concentrations of Z3 fluids (984 ± 32 mg L-1). The stable isotopic signatures of the 

dissolved methane was δ13C (CH4) -24.5 ± 3.2‰ and δD -194.9 ± 45.5‰ confirming a 

thermogenic origin of the produced gas [47]. Likewise, the CO2, accounting for about 3% 
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of the produced gas [11], did originate from geochemical reactions (δ13C (CO2) -4.9 ± 

0.6‰). 

Produced and deep reservoir fluids of well head Z3 differed in Fe(II) concentrations 

(Table 1), i.e. 2.6 ± 1 mg l-1 Fe(II) in the produced fluids, while the deep reservoir fluid 

contained about ten times more Fe(II) (31 ± 7 mg l-1). The produced Z3 fluids were rich in 

black Fe(II)-sulphide precipitates indicating a higher sulphide concentration which 

decreased the aqueous ferrous iron content. 

Table 1: Variation of physiochemical characteristics of collected fluids produced during 
2008-2011in comparison to a previously published dataset. 

 
*arithmetic mean with standard deviation for each parameter of sampled fluids separately for each 
well head (PF: produced fluids: ±SD for six sampling campaigns during 2008-2011; DR: deep 
reservoir fluids: ±SD of two separate samples per well head in July 2009). 
**manual (handheld) optical refractormeter used at the sampling site giving a first indication of the 
quality of the sampled fluid (no standard deviation calculated) 
n.d. not determined. 

 

However, in summary only minor temporal geochemical variations were detected over 

the course of this study for the produced fluids (SD <10%) and spatially in comparison 

with the in situ sampled deep reservoir fluids (Table 1). Thus, the produced fluids likely 

originated from the gas-producing sandstone horizon and did not comprise condensates 

from the tubing system. 

 

 

Well head Z2 Z3 

Parameter PF* DR* PF* DR* 
EC [mS cm-1] 89.2 ± 2.1 85.6 ±4.6 43.1 ±0.5 43.8 ±1.9 
salinity [g L-1]** 65-68 68 27-29 28 
pH 6.9 ± 0.5 6.5 ±0.3 7.6 ± 0.5 7.2 ± 0.6 
Cl- [mg L-1] 35785 ± 1731 37981 ± 409 15301 ± 716 15810 ± 918 
SO4

2- [mg L-1] 297 ± 13 325 ±11.5 984 ±32 1010 ± 33 
Ca2+ [mg L-1] 946 ± 76 985 ±8  143 ±37 165 ± 15 
Fe2+ [mg L-1] 38 ± 9 38 ± 6 2.6 ± 1 31 ± 7 
Na+ [mg L-1] 22704 ± 1160 23546 ± 319 10773 ± 1624 11165 ± 467 
NH4

+ [mg L-1] 47 ± 2 48 ± 1 18 ± 13 19 ± 1 
DOC [mg L-1] 65 ± 5 69 ± 7 85 ± 14 n.d. 
TIC [mg L-1] 190 ±1 240 ±39 401 ±7.5 n.d. 
Acetate [mM] 2.3 ± 0.5  2.4 ± 0.5 2.6 ± 0.2 2.7 ± 0.3 
Isotopic signature of produced gas (both well heads) 
∆ 13C (CH4) -24.5 ±3.2  
∆ D -194.9 ±45.5  
∆ 13C (CO2)  -4.9 ±0.6  
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Long-term monitoring of activity and gene abundance in produced fluids 

 Although the isotopic origin of the produced natural gas did not indicate a biogenic 

origin of the natural gas, the methanogenic community of both well heads has been well 

documented in previous publications [11]. For a further assessment of the origin of the 

microbial population, it was important to understand the metabolic and physiologic 

adaptation of the methanogenic and sulphate-reducing community. 

Rather high methanogenic activities were detected under ambient incubation 

conditions (30°C and atmospheric pressure). The rates were by a factor of four higher in 

produced fluids of Z2 than in fluids of Z3 (Figure 14). The amendment of different 

methanogenic substrates revealed a pronounced induction of methylotrophic 

methanogens (methanol) while hydrogenotrophic or acteoclastic methanogens were not 

significantly stimulated.  

 

Figure 14: Activity pattern of potential methanogenesis (A) and sulphate reduction rates (B) in 
produced fluids of Z2 (black) and Z3 (white). The upper limits of microbial activity in the control 
setup (no addition) were indicated as dashed lines (short dash for Z2 and long dash for Z3) to 
illustrate the induction potential of various the substrates. Profiles were obtained with fluids in May 
(*) and November 2008. Error bars represent standard deviation of three replicated microcosms 
per substrate.  

 

However, increasing the incubation temperature revealed a pronounced temperature 

dependency of the methanogenic community as no activity was detected above 45°C 

(Figure 15A). Further, the temporal variability of the methanogenic and sulphate-reducing 

activity was quantified from amended and unamended microcosms at several time-points 

(Figure 19 in the supporting information). From 2008 to 2010, the methanogenic activity 
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strongly decreased and no significant stimulation using methanol amendment was 

observed after April 2009 (p: >0.1). 

The sulphate reduction rates were low for both fluids in unamended microcosms (at 

30°C). However, several different substrates significantly stimulated sulphate-reducing 

prokaryotes. A strong stimulation was documented for H2/CO2 in both fluids (Figure 14). 

Additionally, albeit with lower stimulation potential, low molecular weight organic acids 

(LMWOA; e.g. lactate, acetate) induced sulphate reduction.  

For microbial sulphate reduction no temperature dependency was apparent as 

documented for the methanogesis activity (see Figure 15B). Furthermore, the potential 

activity and the stimulation of the sulphate-reducing community by hydrogen (significance 

of the induction between p: 0.001 to 0.02) were stable over the study from 2008 to 2010 

(Figure 19 in the supporting information). 

 

Figure 15: Microbial methane production (A) and sulphate reduction (B) activities for produced Z3 
fluids (April 2009) over a temperature gradient. Error bars represent the standard deviation of 
triplicate microcosms. 

 

Despite, the reduced activity of the methanogenic community, the sulphate-reducing 

population seemed to be highly active over the whole study. This result was also 

confirmed by the monitoring of bacterial and archaeal gene markers in the produced fluids 

(Figure 16). The archaeal gene copies for 16S rRNA and methyl Coenzym M reductase 

(mcr subunit A) were about two to three orders of magnitude higher in Z2 fluids than in Z3 

fluids, likewise mimicking the higher methanogenesis activity of the Z2 originated fluids. 
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However, by the end of this study, the mcrA gene copy numbers decreased considerably 

corresponding to the declining methanogenesis activity for both well heads. 

 

Figure 16: Temporal variations in the community size and composition as 
detected by quantitative PCR in produced and deep reservoir fluids of Z2 (left) 
and Z3 (right). Universal quantification of 16S rRNA genes for Bacteria and 
Archaea (upper panels) and the selective quantification of group specific and 
functional genes (lower panels) as determined with assays listed in Table 5 
(supporting information). 

 

In contrast, the high abundance of dissimilatory sulfide reductase (dsr subunit A) 

correlated with the time-dependent increase of the sulphate reduction activity. Both fluids 
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showed high dsrA copy numbers that increased by one to three orders of magnitude, e.g. 

1.4 ± 0.1 107 dsrA gene copies were detected in produced fluids of Z3 in March 2011. To 

identify the fraction of archaeal sulphate reducers detected with the dsrA assay, the 

Archaeoglobus specific dsrB gene was used. However, Archaeoglobus specific dsrB 

genes were only detected in low numbers in Z2 fluids (November 2008 and July 2009) 

and were below the detection limit for Z3 fluids. Thus, indicating a sulphate-reducing 

community dominated by Bacteria. Interestingly, the estimation of Geobacteraceae 

specific 16S rRNA genes revealed a strong increase of these organisms in July 2009 (1 ± 

0.1 107 gene copies mL-1) and a decrease afterwards back to the level of November 2008 

(Figure 3). 

 

Microbial activity and gene marker distribution for the deep reservoir fluids  

For the first time, also in situ sampled deep reservoir fluids were included in the 

microbiological characterization of the Schneeren reservoir. The comparison of the 

microbial activities and gene marker abundances of deep reservoir fluids with those of the 

accompanied produced fluids can give further important information for the distribution of 

the microbial population within the reservoir. 

Both deep reservoir fluids (Z2 and Z3) showed rather high sulphate reduction rates 

without substrate additions (e.g. 14.8 ± 2.6 nmol ml-1 day-1 for Z3 at 50°C), but no 

indigenous methanogenic activity which is in accordance to the isotopic signature of the 

produced gas (Table 2).  

Table 2: Induction potential of selected amendments that significantly stimulate activities in 
produced (PF) and deep reservoir (DR) fluids in July 2009. 

Fluid 
samples 

Methanogenesis rates 
in nmol mL-1 day-1 

Sulphate reduction rates 
in nmol mL-1 day-1 

no additions methanol no additions H2/CO2 fructose 
Z2 PF 14.3 ± 1.0 33.3 ± 3.1 3.2 ± 2.7 11.3 ± 4.6 (-) 
Z2 DR (-) (-) 21.8 ± 5.4 31.3 ± 2.2 (-) 
Z3 PF. 0.9 ± 0.4 30.5 ± 9.0 0.4 ± 0.04 73.4 ± 1.5 10.5 ± 0.9 
Z3 DR (-) (-) 14.8 ± 2.6 44.8 ± 0.4 (-) 
(-) not detected 
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Furthermore, sulphate reduction was significantly stimulated (e.g. 44.8 ± 0.4 nmol ml-1 

day-1 Z3 at 50°C) in deep reservoir fluids that were amended with hydrogen, while 

methanogenesis was not stimulated by any amendment. 

The gene abundance of 16S rRNA gene markers was considerably reduced for the 

deep reservoir fluids of both well heads (Figure 16). However, the archaeal population 

was stronger affected showing a decrease by three orders of magnitude in the deep 

reservoir fluids compared to the produced fluids. The distribution of specific gene markers 

in the deep reservoir fluids mirrored the abundance profile of the produced fluids. In 

correspondence to the distribution of 16S rRNA gene copies, the numbers of the 

functional and specific gene markers were comparably reduced.  

In summary, the microbiological characteristics of the deep reservoir fluids showed 

significant similarities with the accompanied produced fluids. The abundance and activity 

of sulphate-reducing bacteria was seen as important proxy for the in situ importance of 

these organisms in the reservoir formation. For a further characterization of the microbial 

key players, the bacterial community was analysed in detail. 

Microbial diversity analyses 

The bacterial community composition, its diversity, and temporal and spatial dynamics 

were analysed with a combination of T-RFLP and 454-amplicon pyrosequencing (Table 

3). The utilised workflow has recently been shown to allow a highly reproducible and semi-

quantitative measure of microbial community structure and rRNA gene ratios in 

subsurface samples [41]. In July 2009, produced and deep reservoir fluids’ amplicons 

were affiliated to Proteobacteria (16-72%), Bacteroidetes (2-18%), Acidobacteria (max 

6.25% in deep reservoir fluids of Z2) and Firmicutes (2-54%).  

The evaluated community structure showed distinct differences between both well 

heads as already indicated by our other results. In Z2s’ deep reservoir and produced 

fluids, Deltaproteobacteria, namely the taxa Desulfovibrio and Desulfuromonadaceae 

were highly abundant. In contrast, the produced Z3 fluids were mainly dominated with 

Alphaproteobacteria (e.g. Sphingomonadales 6.8%), Gammaproteobacteria 
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(Alteromonadales 2.2%) and with Clostridiales of the genus Acetobacterium (54%). The 

bacterial amplicons of Z3 deep reservoir fluids appeared to be largely affiliated to 

Gammaproteobacteria of the genus Pseudomonas (see Table 3) and, with lower 

abundance, to the alphaproteobacterial orders Rhizobiales (4.5%) and Sphingomonadales 

(1.9%) and the family Erythrobacteraceae (1.2%). However, due to the low quality of 454-

amplicon reads of the produced Z3 fluid (July 2009), further analyses were not conducted 

(i.e. identification of T-RFs) with this dataset. 

Table 3: Phylogenetic affiliation of partial bacterial 16S rRNA gene of 454-amplicons 
pyrosequencing analysis and diversity estimations of deep reservoir (DR) and produced 
fluids (PF) in July 2009 and March 2011. 

 

*OUT, operational taxonomic unit (3% divergence); 1Numbers of contigs passing the 
quality control, i.e., at least one forward and reverse read per contig must be assembled 
(at 3 % distance level) resembling an at least 470bp long consensus sequence. (-), not 
detected in the amplicon libraries; ND, not determined. 

 

 July 2009 March 2010 
Z2_PF Z2_DR Z3_PF Z3_DR Z2_PF Z3_PF 

Bacteria (numb. of reads) 2019 3804 250 4684 5222 4222 
Relative abundance of taxa (in %) 
Unclassified Bacteria 16.98 17.84 4 4.65 1.09 2.23 
Proteobacteria 46.98 34.98 16 71.95 10.84 2.87 
 Deltaproteobacteria 36.04 14.40 4 0.75 10.11 2.63 
  Desulfovibrio 10.69 7.62 (-) 0.02 4.21 1.97 
  Desulfuromonadaceae 23.56 2.84 3.6 0.6 2.25 0.02 
   Geobacteraceae 8.27 1.94 3.6 0.06 (-) 0.02 
 Alphaproteobacteria 0.99 8.38 7.2 8.03 (-) (-) 
 Gammaproteobacteria 9.46 5.41 4.4 60.42 0.71 0.19 
  Pseudomonadaceae (-) 0.91 (-) 57.5 0.19 0.18 
  Alteromonadaceae 8.76 2.96 2.2 0.94 0.48 (-) 
 Betaproteobacteria (-) 5.65 (-) 1.94 (-) 0.02 
Clostridia 14.46 11.77 54 2.22 83.90 87.38 
Unclassified Clostridiales 11.09 3.83 0.4 0.04 10.81 45.81 
  Acetobacterium (-) 0.02 48.4 1.24 (-) (-) 
 Thermoanaerobacteraceae (-) 0.02 1.6 0.04 (-) 4.85 
  Caminicella (-) 0.05 (-) (-) 51.02 4.52 
  Desulfotomaculum (-) 1.48 0. 8 0.04 3.6 1.44 
Bacilli (-) 6.86 (-) 4.65 (-) (-) 
Bacteroidetes 18.32 3.23 4.4 2.35 1.65 5.99 
Synergistetes (-) (-) 1.2 (-) 1.8 0.04 
Actinobacteria 0.40 6.91 (-) 6.85 0.04 (-) 
Acidobacteria (-) 6.25 (-) 3.27 0.02 (-) 
Thermotogae (-) 2.10 2 (-) (-) 1.03 
Nitrospira (-) 2.63 (-) 0.41 (-) (-) 
Diversity estimations (3% distance level) 
OTUs* 262 1140 ND 761 138 140 
Chao1 272 1557 ND 1101 149 150 
Shannon Index (H’) 4.62 6.12 ND 3.78 3.33 3.37 
Eveness (E) 0.83 0.87 ND 0.57 0.67 0.68 
Assembled contigs1 46 78 ND 34 33 38 
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Reads of produced fluids from March 2011 showed a strong temporal increase of 

Clostridia for both well heads while the abundance of Proteobacteria was drastically 

decreased (Table 3). Amplicons from produced Z2 fluids were affiliated to members of the 

genera Caminicella and Desulfotomaculum. Reads of Z3 fluids were mainly identified as 

unclassified Clostridiales (45.8%) ,the family Lachnospiraceae (16.9%) and as members 

of the phylum Bacteroidetes (6%).  

In addition to 454-amplicon pyrosequencing, the fluid samples from July 2009 and 

March 2011 were analysed with T-RFLP to evaluate more specifically the distribution of 

microorganisms on species level (Figure 17 and Table 4). For July 2009, T-RF 66, 

identified as Arthobacter sp., was present in varying abundance in all fluid samples and 

were slightly increased in the produced fluids. Corresponding to the read abundance,  

 

Figure 17: Comparison of bacterial community structure using T-RFLP with produced (PF) and 
deep reservoir fluids (DR) in July 2009 and March 2011. The identified TRFs (length in bp) 
corresponded to 83-94% of the total community as indicated in parentheses. The T-RFs were 
identified using constructed contigs of 454-amplicons with the predicted TRF as listed in Table 4. 
Fragment patterns were obtained with restriction enzyme MspI. 
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several T-RFs of the Z2 fluids were affiliated with Deltaproteobacteria, i.e. T-RF 121 and 

509 which were affiliated to an unclassified Desulfuromonadales bacterium and 

Desulfovibrio sp., respectively. 

In the deep reservoir fluids of Z3, an uncultured Pseudomonadaceae (T-RF 490) was 

highly abundant which was already indicated by the 454-amplicon classification results. 

For the produced Z3 fluid, T-RF 214 affiliated to Acetobacterium sp., and T-RF 147 

identified as uncultured Novosphingobium (Sphingomonadales) were increased compared 

to the deep reservoir fluid. 

Like the amplicon libraries, also the T-RFLP fingerprint profiles indicated a pronounce 

community change in March 2011 (Figure 17 and Table 4). T-RF 66 (Arthobacter sp.) and 

several others were reduced or even completely absent in the produced fluids of Z2 and 

replaced by one dominant fragment identified as Clostridiales of the genus Caminicella (T-

RF 481). For Z3, several new T-RFs appeared replacing former, e.g. T-RF 220 identified 

as Clostridium boliviensis and T-RF 484 identified as Clostridium caminithermale. 

Table 4: Identification of abundant T-RFs corresponding to Figure 17. The next relatives [GenBank 
accession number] were assembled with the contigs from the 454-amplicons using the SeqMatch 
tool (RDP platform; %ID represents the sequence similarity of the closest relative). 

 

 

T-RFs %ID Next relative [Accession N
o
] T-RFs %ID Next relative [Accession N

o
] 

66 100 Arthrobacter sp. [AB496410] 214 99.6 Acetobacterium carbinolicum [AB546237] 

86 98.9 Marinilabilia salmonicolor [M62422] 220 99.8 Clostridium boliviensis [AY943862] 

89 98.8 Bacteroides sp. [AY695838] 231 99.8 Desulfotomaculum geothermicum [AJ621886] 

121 100 Desulfuromonadales sp. [AB260047] 263 99.6 uncultured Petrotoga [EU999020] 

130 98.9 Desulfobotulus sp. [U85470] 481 97.5 Caminicella sporogenes [AJ320233] 

139a 99.6 uncultured Marinobacter [EU999012] 484 97.9 Clostridium caminithermale [AF458779] 

139b 99.2 Geoalkalibacter subterraneus [EU182247] 490 99.8 uncultured Pseudomonadaceae [JN030548] 

139c 98.7 Prolixibacter bellariivorans [AB541983] 495 99.5 Clostridium beijerinckii [CP000721] 

138 99.7 uncultured Desulfotomaculum sp. [EU999019] 509 99.6 Desulfovibrio sp. [U85475] 

147 97.1 uncultured Novosphingobium sp. [EU36028] 286* second restriction site of TRF 162b 

162a 97.6 Pelobacter carbinolicus [CP000142] 231* second restriction site of TRF 121 

162b 99.4 Desulfovibrio indonesiensis [AB54625] 472* second restriction site of TRF 66 

191 95.6 uncultured Thermovirga sp. [DQ647105] 76/84/290 Not in the 454-amplicon libraries 
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4.1.4. Discussion 

Fluid geochemical monitoring 

The combined dataset of Z2 and Z3 (Table 1) documented a pronounced heterogeneity 

between both well heads although located within the same compartment of the formation 

(i.e. reservoir block), e.g. the values of the salinity and sulphate concentration. The 

formation fluids in the North German Basin generally originated from marine pore water 

that was buried with the sediment during the sandstone genesis [20]. The salinity of 28 

and 65 g L-1 (total dissolved salts) was within the lower range of 40-230 g L-1 for formation 

fluids in this area [20, 27]. The fluids of Z2 and Z3 may migrate from pools of deeply 

buried ancient meteoric waters into the production horizons of the wells. The immixing of 

recent meteoric waters into ancient marine pore waters, thereby reducing its salinity, was 

excluded for the reservoir from isotopic analysis [27].  

The presence of Fe(II)-sulfide precipitates in the sampled fluids and the typically 

present “rotten-egg” odor indicated the presence of sulphate-reducing prokaroytes. In 

conclusion, the geochemical profile revealed an ecosystem of sulphate rich fluids 

providing an electron acceptor and organic carbon concentrations comparable to other 

natural gas associated saline formation fluids (see 4; 63 mg L-1). The organic carbon was 

likely received from the interaction of formation fluids and coal- and shale-bearing layers 

within the sandstone matrix [27]. The presence of sulphate in ancient meteoric waters was 

connected to the overlying Husum salt diapir of marine evaporites and Permian Zechstein 

salts which supplied the electron acceptor in millimolar concentrations [20]. Combining our 

results with those previously published by Ehinger et al. [11], the geochemical parameters 

of the well heads Z2 and Z3 were documented over almost six years showing only minor 

variations. 

Sulphate reduction as prominent metabolic process in the reservoir 

As indicated by the geochemical data, the reservoir provided a suitable habitat for 

sulphate reducing prokaryotes, which became further evident in the measurement of 



Manuscripts –  Microbial population dynamics in the Schneeren formation 95 

 

activity profiles and abundances of metabolic key-genes (dsrA). The sulphate-reducing 

activity under high temperature conditions in produced and deep reservoir fluid confirmed 

the importance of sulphate reducing prokaryotes for the actual in situ sandstone horizons. 

The sulphate reducing community showed a pronounced metabolic versatility as different 

substrates, like LMWOA, saccharides, and alcohols, were utilised. The capability of the 

microbial population to mineralise these substrates is well documented for oil and gas 

reservoirs [3, 5, 15]. T-RFLP fingerprints of substrate stimulated microcosms from Z2 and 

Z3 fluids additionally indicated a dominance of sulphate reducers (Supporting information 

Figure 20).  

In contrast to sulphate reduction, methanogenesis was induced only by methanol. 

Albeit, the methanogenesis activity exceeded previously reported rates for natural gas 

field reservoirs [12, 33]. According to Ehinger et al. [11], the archaeal community of the 

gas field Schneeren-Husum was dominated with the potential methylotrophic and 

hydrogenothrophic genera Methanolobus and Methanoculleus, respectively [11]. Despite, 

the detection of theses taxa for high temperature environments [37] and the detection of 

mcrA genes in the deep reservoir fluids, no methanogenesis was detected under 

increased temperature constraints (Figure 15).  

Thus indicating an enrichment of methanogenic Archaea within the tubing system, as 

the temperature decreases gradually during the production process. In the water 

separation system the temperature was 38-45°C mimicking the temperature range 

methanogenesis was detected in the microcosm incubations. Moreover, the enrichment of 

Methanosarcinales under well-head conditions is in good agreement with reports of other 

low-temperature environments [14]. In conclusion, our results provide evidences for an 

active sulphate reducing population under reservoir and well head conditions while the 

ecological in situ importance of the predominantly detected Methanosarcinales [11] 

remains unclear. 
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Sulphur transforming microorganisms in the community 

The majority of the identified bacterial taxa in both deep reservoir and produced fluids 

were related to organisms metabolising various sulfur redox states. The detected 

Desulfovibrio spp. and Desulfuromonadales have been repeatedly reported for different 

hydrocarbon associated environments reducing several sulfur redox states with a variety 

of electron donors including alcohols, fatty acids and carboxylic acids [e.g. 29, 34, 37]. 

Pelobacter corbinolicus and Geoalkalibacter subterraneus, found in Z2, were able to 

reduce elemental sulfur next to Fe(III) and used a variety of hydrocarbons as electron 

donor in different reservoir systems [16, 26].  

The Acetobacterium sp., identified here, has been documented as major cultivable 

hydrogen utilising species in oil field fluids [10]. Acetobacterium produces acetate via the 

reductive acetyl-CoA pathway and was documented to live in synthrophic partnerships 

[13]. Despite putative thermophilic taxa, the detected Desulfobutulus sp. was isolated from 

a hydrocarbon-fed bioreactor run at 25°C. The organism was capable to utilise acetate, 

propionate, and butyrate amended to oil field formation fluids [17]. 

A member of the Pseudomondaceae was very abundant in the Z3 deep reservoir fluids 

and was related to an uncultured bacterium clone (GenBank JN030548) from rock fissure 

fluids collected from deep subsurface bore holes. The detected alphaproteobacterial 

Sphingomonadales, an uncultured Novosphingobium (EU36028), has been isolated from 

deep saline aquifer fluids as well. Interestingly, for both taxa hydrocarbon mineralization 

under anaerobic conditions has been described in connection to denitrification and 

fermentation [1, 19]. 

The detected Petrotoga sp. was already described by Ehinger et al. [11] and seems to 

represented a persitent member of the micorbial community of the formation fluids. For 

the cultivated representatives of the genus Petrotoga, e.g. Petrotoga halophila, the 

fermentation of mainly carbonhydrates (mono- and oligosaccharides) was described 

besides the reduction of sulfur and thiosulphate [31]. In general the fluids showed a quite 
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diverse sulfur utilising community that can use a broad spectrum of substrates as 

indicated with the stimulated microcosm experiments. 

Community shift towards a high abundance of Clostridiales 

Surprisingly, the community analysis revealed a strong increase of the thermophilic 

spore-forming Clostridiales by March 2011(Table 3 and 4). The community shift showed a 

pronounced enrichment of two Clostridium spp, Desulfotomaculum spp., and Caminicella 

sporogenes for the production fluids. These taxa were also traced in the deep reservoir 

fluids of July 2009 but became increasingly abundant by March 2011. Especially, the 

detected genus Desulfotomaculum has been repeatedly reported for high temperature 

reservoir formations reducing sulphate, sulfite and elemental sulfur by oxidation of e.g. n-

alcohols, LMWOA and monosaccharides [36, 43]. Cultured representatives of Caminicella  

were described as fermentative heterotrophs from high temperature environments [2]. 

Further, Thermovirga species (only present in minor abundance in Z2) have been 

described as amino-acid fermenting organisms, although strains were also reported to 

reduce elemental sulfur [7]. Interestingly, the enriched Clostridiales have been repeatedly 

postulated as indigenous community members for high temperature reservoirs [8, 22, 37]. 

Since, the Schneeren-Husum reservoir is economically exploited, technical measures 

were constantly implemented to increase or stabilise its productivity. These measures 

changed the fluid production either permanently or temporarily. For example during July 

2009, a new production horizon was perforated into the reservoir rock system, opening 

the unique opportunity for down-hole fluid sampling. However, scaling prevention 

connected to the perforation included an acidification to solve mineral scales within the 

tubing system (personal communication with the industrial company). 

A sequence of technical measures was stared in early Mai 2009 and which is likely the 

cause of the detected quantitative and qualitative community shift. The increase of 

Geobacteraceae in July 2009 indicated an environmental advantage for these organisms 

under the temporally acidified conditions during the scaling prevention, which likely 



98   

 

provided increasing ferrous iron concentrations in the fluids. In long term, the applications 

might lead to an environmental selection of spore-forming Clostridiales. 

Likely, the industrial interventions temporally shifted the redox potential, the pH and 

also possibly oxygen was introduced during the perforation. Further the perforation might 

lead to the influx of so far unproduced formation fluids from the newly opened gas-bearing 

sandstone layers. Therefore, the presence of the thermophilic spore-forming sulphate 

reducers either represents a gradual outcompeting of the primary Proteobacteria clade by 

better adapted Clostridiales or the influx of new reservoir formation fluids that inhabited a 

more indigenous community. Since fluid samples in November 2011 and April 2012 

indicated the “reappearance” of Proteobacteria in the production fluids (Frerichs 

unpublished data), the second scenario seems more probable.  

 

In final conclusion, our results indicated a general functional advantage sulfur 

metabolism for the Schneeren-Husum formation. The long-term monitoring showed a 

highly dynamic microbial community, i.e. in its size, activity potential and structure, which 

was furthermore affected by the technical interventions to increase gas-productivity. The 

detected thermophilic spore-forming Clostridiales and other thermophilic taxa likely 

represent indigenous inhabitants of the reservoir biosphere. This study emphasises the 

need of a detailed microbial community monitoring and the environmental control 

mechanisms acting on the deep biosphere.  These parameters will be important for 

prospective industrial applications like CCS in deep geological systems in future. 
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4.1.5. Supporting Information 

Nucleic acid extraction of saline reservoir formation fluids 

For DNA extraction varying formation fluid volumes were filtered on polycarbonate filters 

(0.22 µm; Nucelopore® Track etched membrane; Millipore Inc.) and stored at -20°C until 

extraction was proceed. The filter retarded cells were lyzed in phosphate buffer (100 mM; 

pH 8.5) using a bead-mill (FastPrep instrument; MP Biomedical Inc.; 20 sec. set at 4.5 ), 

followed by an enzymatic lysis (Lysozym [50mg/L]; ProteinaseK [10 mg/L]; 15 min at 

37°C). The DNA was purified from the aqueous phase with phenol-chloroform-isoamyl 

alcohol mixture (Roth® PCI; 25:24:1) and washed twice with chloroform-isoamyl alcohol 

(Roth®; 24:1). DNA was precipitated from the aqueous phase in 1:1 volume 2-propanol 

and 0.3 M sodium acetate at -20°C for 8-12 hours. The precipitated DNA was washed 

twice with 70% ethanol, dried, and dissolved in ultrapure PCR water (Fluka) and stored at 

-20°C for further use. 

The quantitative real-time PCR was performed using either SYBRGreen I (Power SYBR®; 

Invitrogen) or a combination of primer and FAM/Tamra labeled probes (using TaqMan® 

universal master mix II, Applied Biosystems). Melting curves (68 -95°C) were measured 

after each run using SYBRGreen I-specific fluorescence as detection method. Each 

environmental sample was measured in triplicate with two to three different dilutions to 

check for PCR inhibition. For Archaea and Bacteria , the detection limit was 102 to 103 

16s rRNA gene copies while the other assays detected <50 gene copies (please refer to 

publication sources for detailed description). The results were calculated as gene copies 

mL-1 of fluid sample with a standard error mean of the replicated measurements (SEM 

with n = 5 - 6). The site specific variability was tested using two to three separate 

extractions of fluid samples from November 2008 and April 2009 showing only minor 

variations in the SEM range (data not shown) between the parallel extractions. 
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Short description of processing and results of the microbial community in substrate 

amended microcosms 

Additionally to the community description in the original fluids T-RFLP fingerprints of 

substrate amended microcosms were conducted to analyse the induced community. The 

DNA of the enrichments was extracted after 60 days of incubation under ambient 

conditions (not pressurised at 30°C). The enrichment culture material was pooled from the 

triplicates to increase the total sample volume (min. 50-70 ml). The fluorochrom labled 

amplicons were restricted with AluI (Ehinger et al. (11)) to analyse the enrichments 

amended with acetate, H2/CO2 and methanol from April 2009.  

The abundance levels of the identified T-RFs was determined using the constructed 

data matrix of the T-Rex platform corresponding to the processing of the original fluids . 

Since the appearance of T-RFs in the fingerprint was not seen as good indicator for a 

significant stimulation of the corresponding organisms the constructed data matrix was 

used for quantitative comparison (Culman et al. (6)). The relative abundance levels of T-

RFs were used to virtually form distribution profiles (Figure S3).The given identified T-RFs 

represented the significantly stimulated organisms for each substrate with the abundance 

level given in percentage of the total community. 

In accordance to the original fluid community analyses, the substrate stimulated 

microcosms showed considerable similarities in the distribution of the proteobacterial 

clades and Clostridiales. Although the enrichments were conducted with produced fluids 

of April 2009, the generated amplicon libraries were sufficient for the identification of the 

stimulated community indicating the agreement of the different time points (Figure 20). 

The unamended microcosms of Z2 showed a rather diverse fingerprint with T-RF 338 

affiliated with Desulfotomaculum sp. (10% of the community), T-RF 138 as Petrotoga sp. 

(11%), two T-RFs 72/244 identified as Thermoanaerobacter spp. (25% and 8%, 

respectively), and T-RF 234 identified as an uncultured Marinobacter spp. (20%) that was 

also previously identified by Ehinger et al. (11). The different incubation setups with Z2 

fluid induced under methanol two T-RFs identified as Desulfovibrio spp. (8% and 26%, 
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respectively), T-RF 138 Petrotoga sp. (26%) and an unknown T-RF at 286bp that could 

not be identified. Only one T-RF was induced at 141 bp with acetate that was assigned as 

putuative Sphingomonadaceae, an uncultured Novosphingobium (58%). Hydrogen 

induced T-RF 181 assigned as Desulfovibrio sp. (T-RF 181; 79%) while T-RF 138 was 

decreased (Petrotoga sp. 6.5%). 

The unamended microcosms of Z3 were dominated by one T-RF at 141 that was 

identified as Sphingomonadaceae (93% of the community) and with lower abundance the 

T-RF of the Petrotoga sp. (T-RF 138; 7%). The supplemented substrates induced a much 

higher diversity showing for acetate the stimulation of the already for Z2 detected T-RFs. 

For example T-RF 234 of the uncultured Marinobacter (18.7%), T-RF 181 of Desulfovibrio 

sp. (6.8%), two T-RFs at 249 and 338 bp identified as  Desulfotomaculum spp. (6% and 

3%, respectively), and T-RF 244 a Thermoanaerobacter sp. (14%). In hydrogen amended 

microcosms, T-RF 66 identified as further Desulfovibrio sp. (45%) and the T-RF of 

Petrotoga sp. (T-RF 138; 28%) were dominant. For the methanol amended incubation, the 

T-RF of the putuative Sphingomonadaceae (61%) was highly abundant. 
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Supplemented Tables and Figures 

Table 5: Overview about quantitative PCR (qPCR) assays used in this study. 

 
1
SRP; sulphate-reducing prokaryotes targeting the 

‡
dissimilartory sulphite reductase subunit A 

(dsrA) while subunit B was specifically detected for Archaeoglobus. 
†
methanogens were detected using methyl Coenzym-M subunit A 

 

 

 

Figure 18: Microscopic pictures of produced fluids in May 2011 showing the particle associated 
microorganisms in Z2 in comparison with the “free living” cells in Z3 formation fluids. 
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Figure 19: Variation of microbial methane production (upper panels) and sulphate reduction (lower 
panels) over two years in production fluids of Z2 and Z3 in substrate amended microcosms (open 
symbols) or in controls (closed symbols) showing the indigenous activity. Error bars represent the 
standard deviation of three to six replicates. The grey shaded area illustrates the arithmetic mean 
(solid line) of the indigenous activity with its standard deviation (n=21; outlines of the grey area). No 
methanol amended microcosms were prepared in November 2008.  
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Figure 20: Comparison of bacterial community structure and relative TRF abundance (representing 
cumulative 80-95% of the community) in enrichment cultures of produced fluids (April 2009). The 
TRFs were assigned using the 454-amplicon libraries of constructed contigs with the corresponding 
predicted TRF length and the already existing TRF database of the site (Ehinger et al. 2009) (%ID 
represents the similarity of the closest relative using SeqMatch). Fragment patterns were obtained 
with restriction enzyme AluI. 
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Abstract 

Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to 

reduce the emissions of the climate affecting greenhouse gas CO2. Depleted gas or oil 

reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient 

storage capacity. We investigated the direct influence of high CO2 concentrations on the 

indigenous microbial population in the saline formation fluids of a natural gas field. In 

incubation experiments with formation fluids under near in situ high pressure and 

temperatures the microbial community changes were closely examined at elevated CO2 

concentrations.  

Conditions in the reactor systems simulated reservoir fluids, (i) close to the injection point 

saturated with CO2 and ii), closer to the outer boundaries of the dissolution gradient. While 

total cell number showed only minor variations, no sulphate reduction was detected during 

the incubations with CO2. After transfer to ambient conditions an actively growing 

sulphate-reducing community was re-established. The predominance of spore-forming 

Clostridiales during and after the CO2 stress provided evidence for the resilience of this 

taxon for the antimicrobial influences of supercritical (sc)CO2. The viability potential of 

fermentative and sulphate-reducing bacteria has to be considered in the selection, design, 

and operation of CCS sites.  

 

Figure 21: Description of the experimental and scientific setup of the high pressure reactor 
incubations mimicking different locations within an evolving CO2 concentration gradient. 
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4.2.1. Introduction 

The increasing atmospheric CO2 concentration during the last 150 years was related to 

the anthropogenic usage of the fossil fuels as energy source [21]. One currently discussed 

technique to reduce these emissions, Carbon Capture and Storage (CCS), suggested the 

separation of the produced CO2 and the subsequent injection into suitable storage 

reservoirs [18]. Potential storage sites are deep saline aquifers and depleted gas or oil 

reservoirs that meet the criteria in storage capacity and cap rock integrity to prevent the 

upward-migration of stored CO2  [20]. Furthermore, only storage reservoirs below 0.8 km 

depth are providing the physical conditions to store CO2 in its supercritical state in order to 

minimise the necessary injection volume [20]. The injection involved the accumulation of 

supercritical (sc)CO2 at the top boundaries of the reservoir due the density differences of 

the scCO2-phase and the formation fluids (physical trapping) [29]. With the successive 

dissolution of the CO2 (solubility trapping) in the formation fluids the pH will be acidified 

[23] leading to mineral dissolution and finally to the long-term mineralisation of the CO2 as 

carbonates (mineral trapping) [22; 23; 29]. Altogether, the trapping mechanisms will lead 

to the formation of concentration gradients comparable with contaminant plums in 

groundwater with the highest dissolved CO2 concentrations (saturation) at the injection 

point and the top boundaries [28; 32]. 

The discussed storage sites, especially the hydrocarbon reservoirs, often represent 

hotspots within the terrestrial and marine deep biosphere with elevated population sizes 

and mineralisation activities [19; 27]. The influence of these organisms on the 

geochemical conditions of their environment could enhance the mineralisation trapping 

mechanism for the injected CO2 in the reservoir [31]. Kirk et al. [24] reported that acetate-

dependent iron(III)-reducing bacteria were able to gain even more energy under CCS 

conditions, while the energy availability for sulphate-reducing bacteria and methanogenic 

archaea was unaffected. Urea degrading cultures of Sporosarcina pasteurii decreased the 

porosity of the incubated sandstone core due to biofilm formation and precipitation of 
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calcium-carbonate [36] which was postulated as possible mechanisms to seal leakage 

pathways in the sandstone matrix.  

However, recently severe problems were reported, like the inhibition of urease activity 

under anoxic conditions [28]. Instead of bioaugmentation of organisms and substrates [36] 

the indigenous microbial population presumably can also be stimulated by dissolved 

organic compounds like acetate which accumulated in formation fluids after mobilization 

from the sandstone matrix by scCO2 [22; 40]. 

Also antimicrobial effects of scCO2 are documented, like the reduction of the 

germination indexes of fruit juices and meat products [16]. Supercritical CO2 

permeabilised the cell membranes, decreased intracellular pH, inhibited protein synthesis 

[1], and finally lead to cell death [16]. The negative effects were shown to act stronger on 

planktonic cells than on sessile biofilms [30], and spore-forming organisms seem to 

sustain the CO2 stress due to their Gram-positive cell wall structure [42]. However, these 

studies were conducted on pure cultures or defined mixed cultures, so the knowledge 

about the effects of scCO2 on an indigenous reservoir community is still scarce [32]. 

Particularly, the adaptation potential of a complex environmental microbial community 

stressed with scCO2 is not known. 

Consequently, this study aimed at investigating the potential of indigenous 

microorganisms in saline formation fluids of a natural gas field (North German Plain, 

Germany) to survive during and after simulated injections of scCO2. The experiments 

mimicked the environmental conditions in pressure and temperature in the reservoir for 

different compartments of the CO2 gradient [17; 23]. These zones can be defined as: (i) 

fully CO2 saturated fluids close to the injection point and (ii) lower CO2 concentration in 

more distance to the injection point with non-limiting energy resources. The identification 

of resistant and sensitive community members, potential mineralisation activities and the 

recovery potential after release of the scCO2 allows us to understand the adaptation 

potential of the reservoir biosphere, thus possibly affecting the application of CCS. 
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4.2.2. Methods 

General processing of formation fluids and microbiological characteristics of the formation  

At the well head facility of the gas reservoir produced fluid was sampled from the surface 

gas/water-separation system. For each experiment 10 litre fluid was sterile sampled and 

immediately transported to the lab [27]. To determine the total cell counts (TCC), 

formation fluids were fixed overnight in 2% (v/v) formaldehyde in PBS (130 mM NaCl, 5 

mM Na2HPO4, 5 mM NaH2PO4) at 4°C. The fixed material was sonicated (20 sec at 20% 

in 2 cycles), filtered in appropriate volumes onto 0.22 µm black polycarbonate filters 

(GTBP, Millipore) and stained with SybrGreenI® (Invitrogen; embedded with 

Moviol/glycerol [26]). At least 800 cells per replicate filter were counted and calculated as 

cells ml-1 (SD; n=2-3). Samples for water chemistry were filtered (0.45 µm pore size) and 

stored at 4°C. The concentrations sulphate and other mayor ions were determined by ion 

chromatography with a DX-500 system (Dionex, Germany). 

Ahead of this study, the gas field formation fluids, that is, the water chemistry, the 

microbial activity, and the reservoir community, were monitored over almost 6 years 

(Frerichs unpublished data and Ehinger et al. [12]). The produced fluids of the respective 

well head contained about 984 ± 32 mg L-1 sulphate (10 mM), 2200 mg L-1 HCO3
-, 

considerable amounts of dissolved organic material (acetate, alcohols etc.) and about 28 

g L-1 total dissolved solids (TDS – with 0.39 mol NaCl dissolved) [12]. The microbial 

biosphere in the formation fluids comprised of methylotrophic archaea [12] and a diversity 

of sulphur utilising and fermentative bacterial species including Desulfovibrio, 

Desulfomonadales, Desufotomaculum, Thermoanaerobacter and Petrotogea (Frerichs 

unpublished data). Especially sulphate-reducing bacteria were active, using a variety of 

organic substrates and showed mineralisation activity also at the estimated reservoir 

temperature of about 80°C. Additional high pressure incubations with high CO2 

concentrations (up to 40 bar pure CO2) were conducted in advance of this study. These 

experiments used enrichment cultures obtained from the same reservoir growing on 

fructose. The incubation revealed only very minor reactivation potential of the enriched 



118   

 

organisms. A short description of the method and the results is given in the supporting 

information (with Figure 25 and Figure 26). 

 

Preparation of fluid samples for pressure incubations 

Two separate experiments were conducted with freshly sampled formation fluids. The 

experiments represented the assumed environmental conditions in different 

compartments of the CO2 gradient that would evolve after the injection of scCO2 in the 

reservoir system [17; 23] (refer to Figure 22): a) fully CO2 saturated fluid close to the 

injection point with CO2 saturated formation fluid (saturation experiment) and b) in distant 

to the injection point with a CO2 undersaturated formation fluid that got amended with 

amiable energy resources (stimulation experiment).  

 

Figure 22: Experimental setup (design and conditions) of saturation and stimulation 
experiment with both experimental phase, CO2 incubation and transfers for the 
reactivation approach. The sulphate reduction rates (SRR) were given for each incubation 
set-up in nmol mL-1 day-1 (± SD n=2-3) with the correlation coefficient of the linear 
regression (R2). ‡Transfers were conducted with sample material from the respective 
incubation and incubated under ambient pressure at 50 or 60°C. 
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For the saturation experiment the formation fluid was immediately upon arrival subdivided 

into two setups: (i) pressurised control (10 replicates of 10 ml each), and (ii) one 

experimental batch for the incubation with scCO2 (80 ml).  

For the stimulation experiment the production fluid was stimulated for two weeks prior 

to the actual experiment to enhance microbial mineralisation activity before starting the 

experiment. For stimulation the fluid was filled into heat sterilised glass bottles within an 

anoxic glove chamber (Mecaplex), sealed with butyl stoppers, and repeatedly flushed with 

N2 to remove residual O2. Microcosms were amended with sulphate (final 20 mM) and 

trimethylamine (TMA; 5 mM) and incubated for 14 days at 50°C. At the beginning of the 

high pressure incubation the batch culture was subdivided anaerobically into the following 

setups (see Scheme 1): (i) non-pressurised control (3 replicates of 30 mL each), (ii) 

pressurised control (10 replicates of 10 ml each), and iii) one experimental batch for the 

incubation with scCO2 (100 ml). TMA was chosen to prevent the application of gaseous 

substance other than CO2 in the system. 

For both experiments the starting point was defined by sub-sampling the fluid for DNA 

extraction (community analyses), total cell counts (TCC), sulphate measurement and pH-

values. In case of the saturation experiment the starting point equals the original fluid 

since no delay in the experimental setup was conducted. 

 

Pressure incubation systems and analytical procedure during the experiments 

The pressurised controls without application of CO2 were incubated using a hydrostatic 

pressure systems [33]. Each replicate consisted of a completely filled and sealed vial (10 

mL), connected via a hypodermic needle with a sterile syringes (5 ml). Each syringe was 

filled with sterilised formation fluid to transmit the external hydrostatic pressure onto the 

vial microcosm. Thus prepared microcosms were placed into a cylindrical pressure-proven 

steel vessel that was filled with demineralised water and pressurised to 60 bar using an 

air-driven hydraulic pump system (Dustec GmbH) [33]. The pressurised system was 

heated to 50-60°C whereby the pressure increased to a pressure of 100 to 110 bar. 

During the experiment the pressurised control was sampled at selected time points to 
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minimise the negative effect of repeated decompression and pressurisation [15]. For DNA 

extraction, total cell counts, sulphate concentration and pH-measurement 2-3 replicates 

were withdrawn from the system. At the same time points samples were taken from the 

unpressurised control kept at ambient pressure at 50°C. 

Supercritical CO2 incubations were conducted in a cylindrically shaped gold bag of 

about 100 ml volume closed with a titanium cap [44]. Prior to use, the complete 

assemblage was heat sterilised to prevent contamination problems and to oxidise the 

titanium surface (5h at 400°C). The gold bag was filled with the sample in an anoxic glove 

chamber (Mecaplex) and sealed with the titanium cap. The closed assembly was placed 

into a commercial available pressure vessel (Parr Instrument), filled with demineralised 

water and heated to 50-60°C. The system was pressurised after equilibration of the 

temperature with a syringe pump (Teledyne ISCO, Inc. US) holding the pressure 

continuously at 100 bar. Gaseous CO2 was pressurised to 110 bar to reach supercritical 

state before dispersing it into the fluid within the gold bag. The CO2 solubility in the Z3-

brine at the given temperature, pressure and salinity was calculated using the online 

available NaCl-Saline-CO2 algorithms [10]. 

Temperature and pressure were constantly recorded showing less than 1% variance 

over both experiments (data not shown). Samples were extracted via sampling ports 

directly from the formation fluid phase within the gold bag without pressure loss or 

temperature changes. At each sampling point the pH was measured at ambient pressure 

and room temperature (VWR, pH100), while samples for total cell counts and DNA 

extraction (sample volume between 1-3 ml) were prepared. To minimise the necessary 

sample volume from the scCO2 reactor, a dilution was prepared for the sulphate 

measurement using 1% HNO3. For the exclusion of dilution errors the measured ion 

concentrations were normalised against the sodium concentrations measured in the 

undiluted, original fluid sample (performed as duplicates). Microbial sulphate reduction 

was followed via the decrease of sulphate during the incubation and calculated as nmol 

mL-1 day  [d]-1. The rate was evaluated using the linear regression of sulphate 

concentration over time while only rates with a significant correlation coefficient were 
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considered (significance level R2 >0.65). The geochemical modeling software PHREEQCi 

Version 2.18 [35] was used to calculate saturation indices, species distributions and 

activities and estimate the pH under the in situ and within the reactor systems. 

 

Recovery & viability assessment 

The activity of surviving organisms and possible recovery of the microbial community was 

verified by transfers of fluid material after and during the incubation with scCO2 (see 

Figure 22) into anaerobic and sterilised formation fluid (0.1 µm filtered). The effective 

sterilization of this media was proven as no cells, activity, or extractable DNA was 

observed in the sterilised media with or without added substrates (data not shown). Fluid 

samples of the saturation experiment were transferred at day T0, T16 and T30 and 

amended with sulphate (20 mM) and hydrogen (H2/CO2 80/20 Vol%), since hydrogen has 

been shown to possess the highest stimulation potential (Frerichs unpublished data). The 

activity was compared to original fluid samples that were directly prepared after the 

sampling approach. These control microcosms of original fluid were stimulated with the 

same substrate combination to verify and quantify the activity potential of the transferred 

sample material from the pressurised systems. All transfers and control microcosms were 

incubated at 60°C for 40 days (ambient pressure) and then prepared for DNA extraction 

by pooling the triplicate incubation. 

From the stimulation experiment the final time point after releasing CO2 and pressure 

(T40) was transferred and amended with TMA and sulphate (5 and 20 mM, respectively). 

All transfers were prepared in triplicates from unpressurised and pressurised controls and 

from the sCCO2 reactor. Additionally, the proportion of thermophilic spore formers was 

tested for the scCO2 incubation by transferring a second sample after short autoclaving at 

95°C for 15 min. In the following description this sample is further referred to as “spore-

transfer”.  All prepared microcosms were incubated for at 50°C for 60 days (ambient 

pressure) and then prepared for DNA extraction to compare the community re-established 

in the transfers (see Figure 22). 
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Microbial sulphate reduction activity was measured by the precipitation of copper 

sulphide from continuously accumulating dissolved sulphide (HS-) in the media [4]. Rates 

were calculated as nmol ml-1 day-1 (SD of n=2-3 microcosms; R2>0.65). Possible methane 

accumulation in the headspace was monitored weekly (gas chromatographically [33]) but 

no methanogenesis activity was detected at any time point (data not shown). 

 

Molecular biological analyses 

For DNA extraction fluid samples of the original formation fluid (200-300 ml), of several 

time points during the incubation (about 1-3 ml), and from the pooled transfer microcosms 

(40-60 ml) were filtered onto a 0.22 µm polycarbonate filter (GTTP, Millipore) and stored 

at -20°C until further processing. The filter-retarded cells were lysed in phosphate buffer 

(100 mM; pH 8.5) using bead-mill (FastPrep instrument; MP Biomedicals 10 sec. and 4.5), 

followed by an enzymatic lysis (Lysozym  [50mg/L]; ProteinaseK  [10 mg/L]; 15 min at 

37°C) and purifying the DNA from the aqueous phase with phenol-chloroform-isoamyl 

alcohol mixture (Roth® PCI; 24:23:1). Before DNA precipitation with 2-propanol (-20°C for 

about 12 hours), the extract was washed twice with chloroform-isoamyl alcohol 

(Roth®;24:1) to remove the phenol residues. The resulting DNA was dissolved in 100 µl 

ultrapure PCR water (Fluka) and stored at -20°C. 

Since, sulphate reduction was the predominant mineralisation activity sulphate-

reducing prokaryotes were quantified targeting the dissimilatory sulphite reductase operon 

(subunit a; dsrA) in a quantitative PCR (qPCR) approach [41] using the primers 

DSR1F+/DSR-R [25]. The specifically amplified dsrA gene of Desulfobacterium 

autotrophicum DSM 3382 was used as internal standard and each run was finalised with a 

melting curve to check for unspecific by-products or primer dimers. The specific detection 

limit of the fluid was calculated according to Bach et al. [2] whereas, unspecific PCR 

products in non-template controls (here Ct =>34) were reported to cover the specific signal 

from the samples. Including the dilution factor necessary to overcome co-extracted 

inhibitors and the extraction volume of the formation fluid about 300-400 cells mL-1 were 

calculated as sample specific detection limit. 
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For terminal restriction fragment length polymorphism (T-RFLP) bacterial 16S rDNA 

amplicons were prepared with Ba27f*5’fluorochrom/907r using described PCR protocols 

[37]. Amplification of flourochrome marked amplicons was not successful for the day 16 of 

the saturation experiment due to poor DNA recovery (data not shown) and was excluded 

for day 1 to 37 for the stimulation experiment due to the apparent sedimentation of the 

cells (see Figure 1). The amplicons were digested with MspI [37] and the lengths of 

terminal fragments were determined. The T-RFLP profiles of each fluid sample were 

analised using the t-REX software [5] for denoising the datasets and peak alignment into 

defined T-RF. The alignment was used to evaluate the sample specific abundance of 

each T-RF. Significantly changed T-RFs were identified using in-silico predicted T-RFs 

from established 454-amplicon libraries of the formation fluids (Frerichs submitted 

manuscript). The t-REX integrated MatLab tool was used to analyse Additive Main Effect 

and Multiple Interaction (AMMI) to produce two-dimensional interaction plots evaluation 

the Interacting Principal Components (IPCAnalysis; cumulative about >85% of the 

variation explained) as previously described for T-RFLP community analyses by Culman 

et al. [6]. For the variance model the following variables were defined: CO2 

presence/absence, pressurised/unpressurised, substrate addition (unamended, 

Hydrogen, TMA), transfer/original fluid, day of sampling. 
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4.2.3. Results and discussion 

Conditions during the different incubation experiments 

In the saturation experiment the CO2 concentration was saturated at 0.95 CO2 mol kg-1 

formation fluid [10] (44’000 mg kg-1 brine) which resembled a 19-fold increase of the 

dissolved carbonate concentration. No additional energy or carbon source was amended 

other than the originally provided sulphate and organics (Ehinger et al.  [12] and Frerichs 

unpublished data). The dissolution of CO2 decreased the pH from circumneutral to 5.4 

(Figure 23). The estimated pH would be somewhat lower (3.2) under pressure and 

temperature in the reactor system [35] as no significant mineral phase or substrate with 

buffering capacity was applied. Sulphate concentrations were stable over time and 

decreased slightly in the pressurised (no CO2) system (Figure 23). 

For the stimulation experiment the dissolved CO2 concentration was about 7-fold 

increased (0.35 M CO2) compared to the original concentration and the pH decreased 

from circumneutral pH to 6.3 within the first 6 hours after injection (Figure 23). After full 

equilibration the pH was lowered to 5.9± 0.1 (average pH between day T7 and T40). The 

estimated pH of this system (pH 4.2) was partially buffered by the added TMA. The 

sulphate concentration of the stimulated system was alike the saturation experiment 

stable over time, while the pressurised control reactor showed a considerable decrease 

over time (Figure 23). 

Under the actual in situ conditions (80°C, 200 bar 0.39 M NaCl) about 1.04 mol L-1 CO2 

would fully saturate the gas field fluids [10] slightly more than in the saturation 

experiments but the pH was likewise estimated at 3.2. However, this calculated estimation 

is much higher than previously measured values for reservoir formations with scCO2 

injection [13; 22]. Kihm et al. [23] modelled the dissolution and mineralisation processes 

including the fluid convection showing that only very localised around the injection point 

the fluid will be fully saturated with CO2. Therefore, the CO2 concentrations in our 

microbiological experiments simulated realistic conditions for the reservoir corresponding 

to different areas of the CO2 injection plume: (i) in proximity to the interface of brine and 
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scCO2 phase and (ii) in greater distance from the injection well or the formation trapped 

scCO2 plum following the diffusion gradient. For the reservoir system a considerable 

buffering capacity could be expected including mineral dissolution processes [29] and the 

dissolution of organics like acetate [22; 40]. The temperature in the reactor systems (50 

and 60°C) was an adaptation to the short termed experimental setup. At the estimated in 

situ temperatures of 80°C the bacterial activity was much slower than at the chosen 

experimental temperature (Frerichs unpublished data). 

 

 

Figure 23: Development of microbiological and chemical parameters during saturation and 
stimulation experiment showing the pressurised control with open and the scCO2 reactor with filled 
symbols. Upper panel: Total cell counts (TCC) and dsrA copy numbers; Lower Panel: pH-values 
and sulphate concentration. Values of the starting point were indicated in light grey for better 
visualization. At the end of the experiment (30 and 40 days, respectively) two samples were 
recovered from the scCO2 reactor, before release of the CO2 and after release from the 
homogenised residual fluid in the reactor.  Error bars represent the standard deviation and were 
not shown if smaller than the symbol. 

 

Effects of pressure and scCO2 on the microbial sulphate reduction activity 

The stable sulphate concentration during the saturation experiment showed that no 

microbial sulphate reduction was taking place (Figure 22; R2 0.5). In contrast, the sulphate 

concentration in the CO2-free pressurised control replicates decreased resulting in a net 
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sulphate reduction of about 78.± 4.9 nmol mL-1 day-1. The unpressurised and unamended 

original fluid showed, similarly to the scCO2 reactor set-up, no significant sulphate 

reduction (R2 0.52). 

During the stimulation experiment the sulphate concentrations in the scCO2-reactor 

were also not significantly changed (R2 0.35), although some variations were detected 

(Figure 22). The control setups showed a net sulphate reduction of 201± 33.7 and 151± 

16.9 nmol mL-1 day-1 for CO2-free pressurised and unpressurised microcosms, 

respectively.  

The rates of the pressurised controls of both experiments indicated an advantage of 

the sulphate-reducing community under pressure. However, the microbial population of 

both scCO2 systems showed no sulphate reduction activity although pressurised. The 

negative effects of scCO2 were correlated with a disturbance of the membrane potential 

[16]. Thereby, respiration processes using the proton-motive force like dissimilatory 

sulphate reduction could be completely inhibited by the high CO2 concentration. However, 

fermentative organisms generating ATP by substrate-phosphorylation and microorganism 

using for example a sodium driven membrane gradient for ATP generation [38] could 

maybe survive the disturbance of a proton depended membrane gradient. 

 

Influence of high CO2 concentrations on cell numbers and dsrA gene abundance 

The cell density at the starting point of the saturation experiment was 1.8± 0.1 106 cells 

mL-1 and the dsrA abundance about 4± 0.5 104 gene copies mL-1. During the incubation 

the total cell numbers and gene copy abundance of dsrA decreased considerably to about 

1.5±0.4 103 dsrA gene copies mL-1 by the end of experiment in the system (Figure 23). In 

the CO2-free pressurised control the cell density was not changed while the dsrA 

abundance was increased to 6.2±0.06 105 gene copies mL-1. Considering the 

development of the dsrA abundance during the first 16 days, the “saturated” system and 

the pressurised control showed minor differences, while during the second half of the 

experiments the cell and copy numbers were increased in the control setup. This 

development indicated a certain time depended influence factor for the scCO2 incubations. 



Manuscripts – The influence of scCO2 on microorganisms in formation fluids 127 

 

Actually, the here documented experiments compromise the longest incubation 

experiment with a microbial population under scCO2 stress that have been conducted so 

far. In general, the incubation time with scCO2 cover 1-2 days [36; 42] or merely hours [1; 

30] to investigate the effects on the microorganisms. Since, the estimation of cell numbers 

or gene copies does not directly indicate a survival of the organisms, the reactivation 

potential (see below) of the transfer is very important to actually verify the survival 

potential of the microorganisms.  

The stimulation experiment started with a considerably higher cell density of the pre-

enriched batch culture (Figure 23; 1±0.2 107 cells mL-1). Considering the cell density, the 

non-stirred scCO2 reactor system showed a considerable decrease after CO2 application. 

However, the decrease was connected to the sedimentation of the cells. Thereby, these 

samples were also later excluded from the statistical comparison of the community as the 

fingerprints could not explain the community development during the incubation. After CO2 

degassing at the end of the experiment and resuspension of the residual fluid no 

significant decrease in the total cell numbers (1.1±0.1 107 cells mL-1) was detected. More 

importantly, the cell density was alike with the evaluated density of the pressurised control 

(1.5±0.7 107 cells mL-1). In comparison, the cell density of the unpressurised control was 

slightly increased (3.9±0.4 107 cells mL-1). 

The gene abundance of sulphate-reducing prokaryotes (dsrA) was about 5.3±0.6 104 

copies mL-1 at the beginning of the stimulation experiment (Figure 23). Similarly to the 

sulphate concentrations, the dsrA abundance in the scCO2 reactor was not changed 

during the incubation (5.6±0.7 104  gene copies mL-1). The dsrA abundance in the 

pressurised control system increased to 1.2±0.9 107 gene copies mL-1 in correspondence 

with the high sulphate reduction rate. The dsrA gene abundance increased also in 

unpressurised control to 9.6±4 106 gene copies mL-1 fitting to the slightly lower sulphate 

reduction rate compared to the pressurised control fluid.  

In conclusion, the microbial monitoring (activities combined with cell/gene abundance) 

of the incubations with scCO2 revealed a quite pronounced effect of the total CO2 

concentration and the acidification (modelled pH 3.2 and 4.3) of the fluid. Interestingly, the 
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decreasing pH due to the dissolution of CO2 was shown to inhibit microbial growth and 

survival more effectively than acidification by acids (e.g. HCl) [46]. The inhibitory effects of 

high dissolved CO2 concentrations [16] will lead to higher maintenance energy debit (pH 

homeostasis) for the cells preventing considerable cell growth or could lead under energy 

constrains to cell damages and death [30; 32; 42]. Likewise, the population size in the 

stimulation system was more stable as the TMA provided a considerable buffering 

capacity. Furthermore, the substrate could provide also an energy resource for fermenting 

organisms as sulphate reduction was not detectable.  

Considering the CO2 diffusion gradient, the buffering capacity of an potential storage 

reservoir [23], and the possibly mobilised organic material [22; 40] the present microbial 

community might better survive than previously postulated [32; 42]. In the term of CCS, 

these parameters have to be closely evaluate to actually define the proposed influence of 

the microbial population on the reservoir capacity [29; 31], especially in the outer areas of 

the diffusion plume. These results emphasise furthermore, the necessity to evaluate the 

community changes and reactivation potential of organisms after the contact with CO2. 

This will help to verify the resilience and adaptation mechanisms of an indigenous 

community. 

 

Reactivation potential after incubations with scCO2 

After ending the scCO2 incubations, aliquots of the fluid from the pressurised control and 

the scCO2 reactor systems (as well as from unpressurised control in case of the 

stimulation experiment) were transferred to evaluate the needed reactivation time of the 

sulphate-reducing community. Almost all transfers from the scCO2 reactor incubations 

showed the reactivation of sulphate reduction. Methanogenesis was not detected in any 

transfer microcosms independent from the origin from controls or of scCO2 systems under 

stimulated and saturated conditions (data not shown).  

The transfers from saturation experiment, from the pressurised control and scCO2 

reactor, were compared with the prepared microcosms of original fluid. These control 

incubations with original fluid showed a pronounced sulphate reduction activity with 
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hydrogen amendment (141.3±19 nmol mL-1 day-1). However, the transfer of the 

pressurised control reduced only about 10.2±4 and 3.2±0.7 nmol sulphate mL-1 day-1 (with 

hydrogen) after incubation under pressure for 16 and 30 days, respectively. In the scCO2 

transfers no activity was detected after 16 days under CO2 saturated conditions (R2 0.5).  

After 30 days under fully CO2 saturated conditions about 9.9±3 nmol sulphate mL-1 day-1 

was reduced in the transfer microcosms of the scCO2 reactor. The inactivity of the transfer 

after 16 days under CO2 influence indicated that the detected cells (see Figure 23) merely 

represent cell debris and/or dead cells. The used fluorescence dye (SybrGreen) did not 

differ between living and dead cells. Thereby, the cells did not necessarily survive the 

incubations or represent cells with damages beyond repair [16].  

However, the transfer microcosms of the reactor systems, pressurised control and 

scCO2 reactor (after 30 days), were considerably less active than implicated by the activity 

potential of the original fluid (+hydrogen). Presumably, the proportion of transferred dead 

cells was equally increased for both systems. Since the rates of the pressurised control 

were decreased with time a certain time related stress factor seems likely (starvation). 

Anyway, the reactivation potential for sulphate reduction activity even after 30 days under 

CO2 saturated conditions was very surprising, especially, in consideration of the described 

germicide effect of scCO2. The similarities of the sulphate reduction rates in the scCO2 

transfer microcosms and the pressurised control transfer might indicate that also similar 

organisms survived the incubation. For a more detailed explanation the organisms that 

were presumably active in the transfer microcosms need to be identified.  

The stimulation experiment showed no significant differences in the reactivated 

sulphate reduction rate for the different incubation setups (Figure 22 and Figure 26), e.g. 

about 146±5.8 and 122±16.9 nmol sulphate mL-1 day-1 was reduced in the scCO2 transfer 

and the spore transfer, respectively. The detected microbial activity proved that sulphate 

reducers survived the scCO2 incubation in the stimulated experiment for 40 days. 
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The microbial community of the saturated experiment during and after incubation with 

scCO2 

The cell density and sulphate reduction activity detected in the transfer microcosms 

indicated viable cells in the fluid after the incubation under CO2 saturated conditions. 

Therefore, the community structure was evaluated at the starting point, by the end of the 

reactor incubation, and in the afterwards conducted transfer microcosms to reveal which 

community members were able to survive under the CO2 stress. The community structure 

of the saturation experiment showed only minor variations of the pressurised control and 

scCO2 community after the reactor incubations were finished (after 30 days of incubation). 

However, a relatively pronounced shift occurred in comparison to the original fluid at the 

starting point of the experiment (Figure 24 and Table 6; supporting information: Figure 28 

showing the relative abundance T-RFs). The structural likeness indicated that also within 

the pressurised system the community became altered (Figure 24 and in the supporting 

information Figure 28) independently from the application of high (saturated) CO2 

concentrations. The viable organisms in the transfer might represent organisms capable 

to withstand a variety of environmental stress factors (e.g. substrate limitation, starvation 

periods, temperature increase etc.). 

The community structure of the original fluid (before the experiment was started) was 

dominated by the T-RFs 490, 204 and 156/157 identified as an uncultured y-

Proteobacteria, Peptococcaceae (cluster 2) and uncultured Bacteriodetes, respectively. 

Next to these, the T-RFs 264 and 209 were abundant representing a Petrotoga sp. and 

Desulfotomaculum sp., respectively. The general diversity of the community and 

abundance of the taxa was comparable with the previously reported descriptions of the 

formation fluids [12] (and Frerichs unpublished data). 

The community after 30 days under CO2 saturated concentrations (Table 6 and Figure 

28) showed a significant increase of T-RFs identified as putative spore-forming bacteria, 

e.g. two Desulfotomaculum spp. (T-RF 209 and 230/231). Also T-RF 488 related to a 

Pseudomonas sp. was relatively increased. Slightly increased in the scCO2 reactor were 

T-RFs  identified as Thermoanaerobacter spp. (T-RF 138 and 148) and Geotoga spp. (T-
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RF 164/165 and 472). All taxa were also detected in the previous monitoring of the fluid 

community (Frerichs unpublished manuscript). Presumably inhibited organisms in the CO2 

saturated experiment were identified with T-RF 279/280 that was related to 

Anaerobaculum sp. Furthermore, the T-RF 264, which resembled Petrotoga sp., was 

decreased in comparison to the original fluid. 

The pressurised control was very similar to the scCO2 incubation. However, the 

Thermoanaerobacter sp. (T-RF 138), Anaerobaculum sp. (T-RF 279/280), and one 

Geotoga sp. (T-RF 472) was relatively increased compared to the applied original fluid 

and the CO2 saturated incubation.  

Alike to the community structure directly after the reactor incubations of pressurised 

control and scCO2, also the transfer microcosms (with hydrogen) showed relative 

similarities between each other. Furthermore, a pronounced difference with the original 

fluid control microcosms with hydrogen supplementation was apparent (Figure 24 and in 

the supporting information Figure 28). In general, the hydrogen amended microcosms 

showed a relative diversity reduction, which was very pronounced for both reactor 

incubation transfers. The original fluid amended with hydrogen showed several taxa (e.g. 

T-RF 138) that were not detected in the transfers of the reactor setups explaining the 

relative distance in the IPCA plot. Since, the community of this amended microcosm was 

very different it facilitates no direct comparisons, e.g. T-RF 76 resembling a sulphate-

reducing enrichment (Acc. AB518055 not included in Table 6) represented about 25% of 

the community but did not appear in any transfer microcosms. 

Two T-RFs were predominantly enriched in the scCO2 transfer representing together 

more than 93% of the community and both identified as thermophilic spore-forming 

Clostridiales [34; 39], representing Desulfotomaculum spp. (T-RF 209) and an uncultured 

Peptococcaceae 2 (T-RF 204). Additionally, the T-RF of the Petrotoga sp. (T-RF 264) was 

enriched for the pressurised control transfer, but still not detected in the scCO2. The 

organism seems to be inhibited during the first phase of the experiment in the CO2 

saturated system and did not recover in the transfer with scCO2 influenced fluids.  
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In general, the community of the reactor samples after the first phase of the experiment 

and the “recovered” community in the transfers showed surprisingly high similarities 

between both reactor incubations. The relative community richness directly after the 

experiment likely represents the DNA of organisms that were either already dead (DNA 

still intact) or the cells were alive but damaged beyond repair [16] and thus not viable in 

the reactivation approach. For example, Petrotoga sp. and Anaerobaculum sp. could be 

interpreted as significant negatively affected by the high CO2 concentrations. The 

increased abundance of thermophile spore-forming Clostridiales was highly significant for 

the scCO2 incubation. Furthermore, in the both transfers the most abundant organism 

could be related to the same putative sulphate-reducing Desulfotomaculum sp. which 

corresponded well with the similar microbial activity in the reactivation approach.  

 

 

Figure 24: Statistical evaluation of the community changes during incubations with scCO2, in the 
control setups and in the reactivation transfers of the saturation (left) and stimulation (right) 
experiment. The t-REX integrated MatLab tool was used to analise Additive Main Effect and 
Multiple Interaction (AMMI) to produce two-dimensional interaction plots evaluation the Interacting 
Principal Components (IPCAnalysis; cumulative about >85% of the variation explained) as 
previously described for T-RFLP community analyses by Culman et al. [6]. 

Saturation experiment

IPCA 1 (79.54%)
-4 -2 0 2 4 6

IP
C

A
 2

 (
30

.2
%

)

-2

-1

0

1

2

3

original fluid/starting point
T30 of scCO2 incubation 

T30 of control (pressurized)

microcosms amended with H2

IPCA 1 (49.13%)
-4 -2 0 2 4 6

IP
C

A
 2

 (
35

.9
4%

)

-4

-2

0

2

4

6

original fluid
stimulated community (starting point)
T40 of scCO2 incubation

T40 of pressurized control

T40 of unpressurized control

Stimulation experiment

Community composition of:

Transfer control

Transfer pressure

Transfer scCO2 (*spore)

*

Community composition of:



Manuscripts – The influence of scCO2 on microorganisms in formation fluids 133 

 

In conclusion, the viability of the Clostridiales showed their capability to withstand severe 

environmental changes. To survive the very high CO2 concentrations represents an 

environmental advantage of these organisms that was likely connected to their Gram-

positive cell wall structure and the capability to form endospores [9; 45]. 

 

Surviving organisms of an actively growing community under CO2 constrain 

In contrast to the saturation experiment, the stimulation experiment used a sulphate-

reducing enrichment directly obtained for the formation fluids for the experiment. Thus, the 

community of the starting point was already changed in comparison to the original fluid 

due to the stimulation phase in advance of the experiment. However, the stimulated 

organisms were already present in the original fluid, albeit at lower abundance levels 

confirming that these microorganisms represent indigenous habitants of the reservoir (in 

the supporting information Figure 29). 

The different setups of the stimulation experiment (Figure 24) showed the strongest 

shift for the microbial community of the unpressurised control sample, while the population 

of the pressurised control was closer to the starting community (Figure 24 and in the 

supporting information Figure 29). The microbial community from the scCO2 incubation 

was closest to the starting culture possibly reflecting the inactivity of the microorganisms 

during the incubation as also no significant cell growth or sulphate reduction activity was 

detected (Figure 23). The developed communities in the transfers were quite different 

from the community structure directly after the end of the first phase of the stimulation 

experiment. However, the transfers of the scCO2 and the shortly autoclaved spore transfer 

(Figure 24) developed quite similarly and showed a closer relative distance to the 

pressurised than to the unpressurised control. Thus, the pressurisation effected the 

development of the community also beyond the actual incubation under pressure 

(transfers incubated under ambient conditions). 

 Significantly increased for the scCO2 reactor was T-RF 64, 132, and 138, which were 

affiliated to Thermovirga sp., Desulfobutulus sp. and Thermoanaerobacter sp., 

respectively (Table 6). The detected T-RFs 209, 230/231 and 204 were not affected and 
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corresponded to several Desulfotomaculum spp. and the uncultured Peptococcaceae 

already detected in the saturation experiment. Interestingly, the T-RF representing 

Petrotoga spp. (T-RF 264) was decreased alike to the development of the saturation 

experiment.  

In contrast to the saturation experiment the community richness increased in the 

transfer incubations. In both scCO2 transfers several T-RFs (re-)appeared, e.g. TRF 

164/165 identified as Geotoga sp. Furthermore, the already mentioned T-RFs 224 and 

230/231 both identified as spore-forming Desulfotomaculum spp. were increased. As 

listed in Table 6 almost all identified T-RFs were affiliated to organisms isolated or 

documented for high temperature environments and are likely indigenous for the 

indigenous subsurface biosphere of the natural gas field [10; 13; 36]. The T-RFs in the 

scCO2 incubations were predominantly associated to thermophilic spore-forming 

Clostridiales including putative sulphate-reducing organisms, e.g. several  

Desulfotomaculum spp. or Thermovirga sp. (sulphur reducing Synergistaceae) [3; 7; 8; 11; 

14; 34; 39]. The latter organism was enriched in all transfers and related to an isolate 

(Thermovirga lienii 95.5% sequence similarity) that was cultivated from a high temperature 

oil field and likely possessed some heat tolerance. Thermovirga lienii is described to 

ferment also amine compounds and some amino acids. Furthermore, the organism was 

clustered into a group of Clostridiales that could all be related to the fermentation of amino 

acids [7]. The here detected organisms (about 95% similarity; family level) was already 

increased in the course of the reactor experimental phase and further in the transfer 

incubations. The pronounced enrichment in the reactivation approach indicated a 

fermentative degradation of the tri-methylated amine (TMA) added as substrate by the 

organism. 

 

The synthesis of saturation and stimulation experiments revealed a pronounced 

dominance of putative spore-forming Clostridiales, especially for the reactivation approach 

representing the organisms that were still viable. Previously, it was shown that spores of 

Firmicutes compromise a relative high resilience for scCO2  [45; 46]. The thick spore coat 
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and cortex structure  was shown to slow the diffusion of even small molecules 

considerably and the low water content could reduce the acidification [43]. The resistance 

of spores was mainly evaluated on pure cultures (tested for food-borne pathogens) 

showing that sterilization was only effective in combination with temperature increase [45; 

46]. Since, the here surviving organisms were predominantly associated to thermophilic 

taxa the resistance also under increase temperature constrains seems obvious. 

Furthermore, also the vegetative cells of spore-forming Firmicutes were shown to have a 

higher resilience for high CO2 concentration [42]. The thick peptidoglycan layer of the 

Gram-positive cell wall presumably also reduces the diffusion of CO2 into the membrane 

and cytoplasm where it disturbs the membrane integrity and intercellular pH, respectively 

[16; 45; 46].  

In consequence, the selection of Clostridiales by the effects of scCO2 on the 

community will influence their distribution in the potential CO2 storing reservoir structures 

and could possibly even effect the storage capacity [31; 36]. The “recovery” of sulphate 

reducers was previously also shown by Morazova et al. [32] albeit no sulphate reduction 

was documented and the identity and origin of these organisms remained unclear, i.e the 

possible contaminant origin or enrichment on organics supplemented by the drilling mud. 

In conclusion, our experiments with an indigenous microbial population derived from a 

high-temperature hydrocarbon reservoir revealed for the first time a pronounced resistivity 

for spore-forming Clostridiales. These results actually emphasis to study the indigenous 

microbial community more closely to actually interpret the biological control mechanism 

that was previously postulated to affect CCS [31]. 
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1relative sequence similarity of cultivated species with max. 5% divergence (family level) towards 
the here detected sequence; in case of similarities <95% the closest uncultivated relative is given; 
(-) not detected 
2Environmental conditions of the habitat, here temperature optimum and isolation source, provided 
by the NCBI GenBank entry or the taxonomic description. 
3Transfer microcosms were conducted following Scheme 1; hydrogen amended transfers of day 30 
included for saturation experiment; TMA amended transfers for stimulation experiment. 
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4.2.4. Supporting Information 

Description of incubation method and results for hydrostatic/gaseous CO2 incubation 

experiment 

An enrichment culture was grown on mineral media with 28 g L-1 salts and additive 

vitamins, trace elements and selenite-tungstate solution described earlier [2,3]. The 

culture was obtained in dilution series from May 2010 production fluids of the natural gas 

field growing with fructose and sulphate additions (10 mM each). The culture was freshly 

transferred in advance of the experiment amending fructose and sulphate (10 mM each). 

After incubation over night at 30°C the batch culture was sampled for total cell counts 

(TCC) and subdivided into the following setups: (i) unpressurised control (triplicates with 

50 ml each), (ii) pressurised control (10 replicates with 10 ml each), iii) CO2 incubation (12 

replicates with 25 mL each). The replicates of the pressurised control were incubated and 

prepared as described for the control setup of the supercritical CO2 experiments. The CO2 

influenced microcosms were prepared anaerobically in 50 mL glass bottles giving a 50% 

headspace/fluid ratio. Headspaces were replaced with pure CO2 purging the bottle for 5 

min. The pressure-safe reactor used for the incubation was similar to the hydrostatic 

pressure system [1] except for a second inlet valve for gaseous media (Figure 25). All 

glass vessels were interconnected to the gas valve (valve C) in the reactor lid. The 

prepared microcosms were placed in the 5 L steel cylinder that was completely filled with 

demineralised water. The reactor was securely sealed and the partial pressure of CO2 

was applied valve C into the microcosms directly from a connected CO2 gas cylinder 

(controlled via the pre-pressure valve of the CO2 cylinder). The maximum final pressure 

equals the fill pressure of the CO2 cylinder (~50 bar). To secure the integrity of the glass 

bottles the microcosms’ intern-pressure (pin) was transmitted to the outer media (pex water 

filled reactor) via the piston of an empty syringe that was connected to each glass vessel. 

The whole system was placed into a climate chamber heated to 30°C.  

 

The cultures were used to test the effect of high CO2 concentrations on enriched 

organisms form the reservoir (Figure 25) prior to the experiments reported in the main 
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text. During the incubations at 30°C with 40 bar pure CO2 (gaseous phase) the cell 

numbers were slightly decreased and no sulphate reduction was detected in comparison 

to the control setups including pressurised and unpressurised grown enrichments (Figure 

26). The incapability of the enrichments to grow after the release of the CO2 indicated 

some inhibition or cell damage. However, the used autoclave system allowed only minor 

headspace pressures up to 45 bar (gaseous CO2), were restricted to temperatures <50°C, 

and most importantly could not be sampled under stable pressure and temperature 

conditions. The limitations of these experiments lead to the changed experimental design. 

Furthermore, the usage of original formation fluids in the “saturation” experiment was 

more appropriate to answer the question about possible in situ community changes for the 

reservoir, while the “stimulation” experiment represent an actively mineralising community 

stimulated by the substrate addition.  

 

 

 

 

 

 

 

 

 

 

Figure 25: Schematic description of hydrostatic/gaseous 
pressure-proof autoclave systems. The fluid (F) was placed 
in the water filled system and connected with the CO2 valve 
(CO2) via a flexible Teflon tube (tC) and a gas filter (HPLC 
filter with PVDF membrane of 0.2 µm). The internal pressure 
increase (pin) was transmitted by means of piston (P) of an 
connected syringe(S) into the outer media (pex). The pressure 
transmission was controlled at the pressure manometer (M) 
at the second valve that was connected with the hydrostatic 
pump (HP). Each incubation tube was connected as 
described above with the CO2 valve and equipped with the 
syringe to secure an adequately pressure transmission. 
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Supplemented Figures for the main text body: 

 

 

Figure 26: Development of total cell counts and sulphide concentration in incubations with fructose 
fermenting/sulphate-reducing enrichment culture. The CO2 partial pressure was increase to 40 bar 
at 30°C incubation temperature. 
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Figure 27: Sulphide production (normalised for incubation volumes) of the transfer microcosm from 
the stimulation experiment. 

 

Figure 28: Comparison of bacterial community structure giving the relative TRF abundance during 
and after (transfer) incubations of the saturation experiment. Microbial community structure was 
analysed with the web-based software T-Rex (Culman et al. #[5] in the main text) using the 
fragment pattern after restriction with the enzyme MspI. 
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Abstract 

CO2 capture and geological storage offers an option for reducing man-made greenhouse 

gas emissions. But one major concern related to geological CO2 storage is the possibility 

of leakage from the reservoir and subsequent effects on the environment, which cannot 

completely be excluded. This study aims at investigating the environmental impact of CO2 

release from reservoirs into near surface terrestrial environments. To understand the 

effect of CO2 leakage on such an ecosystem, detailed knowledge on the abundance and 

diversity of plants and microorganisms is essential. Therefore, an ecosystem study has 

been conducted within the Network of Excellence “CO2GeoNet” on a natural CO2 vent at 

the Laacher See, Germany. Near surface CO2 conditions and CO2 fluxes of the venting 

area were described by means of conventional soil gas measurement equipment, and 

brought up the difference between the CO2 anomalies and their surroundings. 

A comparison of the soil columns between control sites and the centre of the venting 

area showed a small but significant change in the soil pH below 10 cm. The botanical 

survey revealed some remarkable vegetation changes like the investigation of important 

soil microbial communities showed significant differences between the CO2-rich sites (up 

to 90% and more of soil gas), medium CO2 sites (~20%), and control locations with 

background CO2 concentrations. The ecosystem appears to be adapted to the different 

conditions through species substitution or adaptation, showing a shift towards anaerobic 

and acidotolerant to acidophilic species under elevated CO2 concentrations. At the end, 

this ongoing study should identify possible candidates in the botanical and microbial 

kingdoms, whose presence or absence provide easily detectable indicators for the 

leakage of CO2 from deep reservoirs into near surface terrestrial ecosystems. 
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4.3.1.  Introduction 

The fourth IPCC report on global warming states once again that the rise in average 

global temperatures observed over the last century is most likely due to the release of 

anthropogenic greenhouse gases (IPCC, 2007). It turns out that large-scale solutions are 

needed immediately to quickly reduce greenhouse gas emissions and to mitigate their 

subsequent environmental effects. CO2 capture and geological storage in deep saline 

aquifers or depleted gas and oil reservoirs offers a new option for reducing greenhouse 

gas emissions in large quantities. To proceed with a responsible large-scale deployment 

of this technology, all potential risks should have been studied, understood and, finally, 

minimised to exclude harm to the environment including humans. For this, it is a priori 

important to assess the potential risks associated with the unlikely leakage of significant 

volumes of CO2 from the reservoir into the near surface environment (West et al., 2005; 

West et al., 2006). Although several studies have been published regarding the effect of 

increased atmospheric CO2 concentrations on ecosystems (Jossi et al., 2006), there are 

only very few that have examined the effects of increasing CO2 concentrations in the soil 

column due to upwardly migrating gas. These include a detailed study of a terrestrial CO2 

vent at Latera, Italy (Beaubien et al., 2008; Oppermann et al., 2010), a survey at 

Mammoth Mountain (California, USA) for the influence of volcanic CO2 on soil chemistry 

and mineralogy (Stephens and Hering, 2004) and research at Stavesinci (NE Slovenia) for 

the influence of high soil-gas concentrations of geothermal CO2 on plants (Macek et al., 

2005; Pfanz et al., 2007). 

In order to address some of the above-mentioned issues, this study investigates the 

potential environmental impact of CO2 release from deep reservoirs on near surface 

terrestrial environments. Particularly the effect of CO2 leakage on the abundance and 

diversity of plants and microorganisms is investigated in an ecosystem study conducted 

as a joint activity within the European network “CO2GeoNet” at a natural CO2 vent at 

Laacher See, Germany.  
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The Laacher See volcanic centre is located in the core of the East Eifel volcanic field, 

and comprises of about 100 eruptive centres that cover an area of approximately 330 km². 

The East Eifel volcanic field is located west of the Rhine River in the still uplifting 

Paleozoic Rhenish Massif. The Laacher See eruption is the only known large explosive 

eruption that took place in central Europe during late Quaternary time (~12,900-12,880 yrs 

BP; e.g. Boogard and Schmincke, 1985). The Laacher See volcanic centre is 

morphologically characterised by a basin filled by a lake (Laacher See), with 3.3 km² area, 

surrounded by a steep ringwall rising 90 to 240 m above the basin. The ringwall, which 

can be classified as an extinct volcanic caldera, is made up by different basanitic/tephritic 

cinder cones and the tephra deposits of the Laacher See eruption. The internal structure 

of the Laacher See basin is dominated by an East northeast-West southwest striking 

thrust and four other geological lineaments: 2 running more or less North-South, the other 

Northeast-Southwest. CO2 is produced below the caldera, it emerges from degassings of 

the upper earth mantle and migrates along faults and fractures to the surface (Möller (ed.), 

2009). Release to the atmosphere typically occurs from gas vents, characterised by a 

small core of elevated gas flux. 

 

 

 

Figure 30: Sketch of the 
investigated CO2 vent close to 
the western shore of the lake 
Laacher See; note the vegetation 
change from closed, green 
grassland to patchy Polygonum 

arenastrum-mats towards the 
centre of the vent. 

 

One defined gas vent was chosen for this study, located in an almost naturally-

vegetated pasture field on the western side of the lake (Figure 29). The vent is situated in 

an area which became dry land very recently. As a consequence of two tunnel 

constructions in 1164 and 1844, the water level of the lake was artificially lowered by 

about 10 plus 5 m. The terrestrial development of the studied site is therefore very young. 
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Some organic material from former lake deposits is still to be found in deeper soil 

horizons. The vent is clearly visible due to a 5 m wide core of nearly bare soil surrounded 

by an approximately 40 m wide area of variably-impacted vegetation.  

4.3.2. Methods and materials 

Surveys were conducted in September 2007 and July 2008 along a 60 m long transect 

across the vent (Figure 29), providing a spectrum of different CO2 flux rates, soil gas 

concentrations and compositions. In addition to the detailed survey of these conditions 

(soil gas concentrations and gas fluxes), intensive botanical studies and sampling for 

microbiological, mineralogical and geochemical analysis were performed at the same 

time. 

 

Characterisation of the near surface CO2 conditions 

The applied techniques are potential methods for the near surface monitoring of 

geological CO2 storage sites; they were used during both field campaigns in 2007 and 

2008. First, a rapid surveying of the whole study area was undertaken by means of a 

newly developed, mobile open path laser system which was mounted at about 30 cm 

above the ground on a quad bike (for details see Jones et al., 2009). The system detected 

already known CO2 vents, and confirmed and discovered suspicious or unknown 

degassing sites. 

Afterwards, the 60 m long traverse across the strongest vent was intensively 

investigated with conventional soil gas concentration and flux measurement equipment: 

Steel probes and handheld infrared gas sensors (Li-Cor and Dräger instruments) for soil 

CO2 concentration, and commercial and custom-made accumulation chambers for the 

CO2 flux quantifications. The measurements were carried out in 0.5 m intervals. Some 

additional gas samples taken along the traverse for comparative laboratory analyses were 

also used for the determination of carbon isotope ratios (δ13CCO2; by means of a Thermo 

Delta plus XL mass spectrometer) which give hints on the origin of the CO2.  

Botanical impact survey 
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The botanical survey was conducted along the entire length of the transect. The 

investigations registered the percentage cover of identified plant species and groups at 

0.5 m intervals using a 0.5 m x 0.5 m quadrat levels. Field flora books were used to 

identify critical plant taxa (Blamey and Grey-Wilson, 2003; Fitter et al., 1984) and digital 

photographs were taken of each quadrat for a complete visual record. 

 

Microbiological analyses 

Basic soil related field work and lab analyses of soil samples followed conventional 

approaches. Soil pH was measured in a suspension of 10 g of fresh soil in 25 ml of 

distilled water with a pH-redoxmeter GPRT 1400 AN (GSG Greisinger Electronic). Prior to 

organic carbon measurements the soil was dried at 105°C and grounded. Inorganic 

carbon was removed with 50 µL 1N HCl followed by drying the sample on a 40°C heating 

plate (repeated three times). The content of organic carbon was finally determined using 

an elemental analyser (VarioMAX Elementar Analysensysteme). 

Determination of microbial activities:The collected soil samples were first mixed 1:1 

with artificial mineral medium to obtain homogenous slurries (Widdel & Bak 1992). 

Subsequently, 9 ml of medium were added to 3 ml of soil slurry into sterile glass tubes (20 

ml) which were afterwards sealed with butyl-rubber stoppers and screw caps. The 

headspace was either flushed with N2 for methane and anaerobic CO2 production as well 

as sulphate reduction measurements, with air for aerobic CO2 production or with air and 

2% CH4 for aerobic methane oxidation. 

As important indicators of the gross mineralisation in the soil the CO2 production (CPR; 

under aerobic and anaerobic conditions), the anaerobic methane production (MPR), and 

the sulphate reduction rates (SRR) were quantified. The potential aerobic oxidation of 

methane rates in the soil samples were determined in vitro as described previously by 

Krüger et al. (2002). Triplicate tubes were incubated horizontally at 20°C and gently 

shaken once per day to ensure an even distribution of gases or sulphate within the 

microcosms. The rates were calculated per gram of dry weight (gdw) as determined after 

drying at 80°C for 48 h and deviations are expressed as 95% confidence intervals unless 
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stated otherwise. The sulphide content was determined using the formation of copper 

sulphide after Cord-Ruwisch (1985). Methane and CO2 were determined using a GC 14B 

gas chromatography (Shimadzu) as described in Nauhaus et al. (2002), which was 

additionally equipped with a methaniser to quantify the CO2.  

DNA extraction and quantitative Real Time PCR (qPCR): The DNA was extracted from 

0.5 to 1 g of a frozen soil sample following the manufactory’s manual of the FastDNA Spin 

Kit for Soil (Bio 101) with addition of 200 µg of poly-adenylic acid (poly A) to the lysis 

mixture (Webster et al. 2003). The resulting DNA was dissolved in 100 µl ultrapure PCR 

water and used as target for PCR based analysis. 

DNA standards for quantitative real time PCR (qPCR) were prepared as described 

previously by Engelen et al. (2008). Specific fluorescent probes were used targeting the 

ubiquitous 16S rRNA genes of bacterial or archaeal organisms (Takai & Horikoshi 2000, 

Nadkarni et al. 2002). The assays were carried out using the TaqMan PCR Master Mix 

(Applied Biosystems). Each DNA extract was measured in triplicate and in two to three 

dilutions to check for PCR inhibition. Conversion factors for DNA copy numbers to cell 

numbers were: 4.1 for Bacteria, and 1.5 for Archaea (Lee et al. 2009). The detection limits 

for qPCR analyses were 103 DNA copies g-1 dry weight for the assays specific for Bacteria 

and 101 DNA copies g-1 dry weight for the assays specific for Archaea. 

Lipid biomarker studies: The microbiological analyses were supplemented by lipid 

biomarker studies as described in detail by Oppermann et al., 2010. 

4.3.3. Results and discussion 

Gas monitoring and soil chemistry 

The results of the gas surveys are generally very similar from year to year. The soil CO2 

concentration and flux data series of the two years are very homogeneous and well 

correlated as shown by their coefficients of determination (see Table 7).  

Hence, the spatial patterns observed in 2007 could be confirmed in their shapes in 

2008. Figure 30 illustrates the soil CO2 concentrations in 15 and 60 cm depth while Figure 

30 shows the CO2 fluxes from the underground to the atmosphere for the different years.  
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Table 7: Correlation matrix (coefficients of determination, r
2
) of soil CO2 concentrations in 15 and 

60 cm depth and CO2 fluxes for 2007 and 2008. 

 

Three main zones of higher CO2 concentrations and fluxes could be identified along the 

traverse: Between locations 11-17 m, 21-28 m, and 30-42 m, the latter representing the 

so-called centre of the vent where peak concentration values of more than 90 vol% CO2 

were registered in 60 cm depth (Figure 30). But already in a very short distance from 

these distinct anomalies the CO2 concentrations and fluxes drop back to background 

values; demonstrating the limited size of natural CO2 vents. Furthermore, particularly the 

figures of the CO2 concentrations show also the relatively high small scale variability 

which could be quite marked between adjacent measurement points.  

 

 

 

 

 

 

 

 

 

Figure 31: Comparison of 2007 and 2008 
CO2 concentrations in soil gas along the 
traverse across the studied vent 
(September 2007 and July 2008, using 
only points measured in both years). 
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There certainly are also some differences in detail between the two years, but this is to 

be expected given that the sampling locations will not precisely match within a few 

centimetres, and there could be changes in the migration pathways of gas to the surface 

owing to changing underground conditions. One clear difference between the two years 

are the generally higher gas concentrations and fluxes in 2007 (see Figures 2 and 3). 

Data correlations with meteorological parameter suggest that factors such as lower 

atmospheric pressure and higher wind speed drew slightly larger amounts of gas from the 

ground in the autumn and overrode any impeding effect of higher soil moisture.  

 

 

 

 

 

 

 

 

 

Figure 32: Comparison of 2007 and 2008 
CO2 flux data for the traverse across the 
vent. 

 

Carbon isotope analyses (δ13CCO2) were helpful for the characterisation of the venting 

areas since the isotope ratios differ from CO2 rich sites (-4.1 to -2.7 ‰ PDB) to those with 

medium (-1.7 to -0.2 ‰) to low concentrations (-1.0 to 0.8 ‰). The δ13CCO2 values for the 

CO2 rich sites point directly to the upper earth mantle and/or lower earth crust as origin of 

the CO2. Contrastingly, the CO2 gas from medium to low concentration sites is already 

affected by mixing processes and isotope fractionation, probably under the influence of 

some underground carbonate levels. 

In terms of bulk mineralogical compositions and soil chemistry, the analysed samples 

from the centre of the vent (35 m) and the control site (55 m) were relatively similar in the 

top 70 centimetres. Going deeper into the soil, a small but significant change in the soil pH 

was observed below 10 cm (Figure 31). This might influence the activity and composition 
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of the microbial communities, as well as the soil mineralogy as also seen at Latera 

(Beaubien et al., 2008). 

 

 

 

 

 

 

Figure 33: Acidity of two sediment 
cores (pH profiles); in red = area of 
highest CO2-seepage, in green = 
control site; the blue lines show the 
top of the water table, the black the 
rock base. 

 

Botanical investigations 

The botanical survey showed that CO2 soil gas concentrations influence vegetation types 

with grasses predominating below 20% CO2. Above this concentration two predominant 

dicotyledonous plant species were observed and could be used as bioindicators of high 

CO2 soil gas concentrations.  

Main results of the botanical survey are summarised in Figure 32, which shows the 

percentage coverage for total moss, total grass (monocotyledonous plants), Polygonatum 

arenastrum and ‘other’ dicotyledonous flowering plants. P. arenastrum is the only 

observed dicotyledonous plant between 25 and 50 m along the transect where CO2 

concentrations are between ~10-35% at 15 cm depth and ~35-90% at 60 cm depth. 

Where CO2 concentrations are below 20% at 15 cm depth, grasses predominate and 

P. arenastrum is not observed (0-25 m and 40-60 m) although other dicotyledonous plants 

are present. These results can be compared to observations from another natural CO2 

gas vent site at Latera, Italy where only grasses were observed when concentrations of 

CO2 were between 5-40% at 10 cm depth (Beaubien et al., 2008). Indeed, dicotyledonous 

plants did not appear to be able to tolerate CO2 concentrations over 5% at this site. Other 

observations at a controlled injection site in an English pasture also suggested that 
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grasses were more tolerant to higher concentrations of CO2 than dicotyledonous plants 

(West et al., 2008). The observation of a dicotyledonous plant as a bioindicator of 

increased soil gas CO2 is therefore unexpected and also demonstrates that botanical 

changes are site specific, depending also on other factors such as soil moisture, pH 

influencing plant ecology, etc. However, monocotyledonous plants appear, in general, to 

be more tolerant to increased soil gas CO2. 

 

 

 

 

Figure 34: Effect of CO2 emissions on the 
distribution of different botanical 
groups/species along the transect across 
the CO2 vent (centre at approx. 30-35 m); 
x-axis: location in m from S end, y-axis: 
coverage. 

 

Microbial community composition and activities 

The determination of environmentally important microbial activities in the soil samples 

showed significant differences between the CO2-rich sites (>90 % of soil gas), medium 

CO2 sites (20%) and control locations with background CO2 concentrations. To get some 

more detailed information, potential sulphate reduction rates as well as methane 

production and oxidation were determined in sediment samples from the different sites. 

These measurements with samples from vent and non-vent sites should also provide first 

information on the influence of elevated carbon dioxide concentrations on selected 

microbial populations (Figure 34). 

Gross CO2 production was under aerobic conditions about 100-fold higher than under 

anaerobic conditions. Under anaerobic conditions CO2 production was similar at the vent 

and the control site, with 4.34 ± 0.25 and 1.03 ± 0.32 µmol gdw
-1 d-1. In contrast, aerbic 

rates were with 432 ± 57 µmol gdw
-1 d-1 significantly higher at the control site than in the 

vent centre with 121 µmol gdw
-1 d-1. 
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Potential methane production rates without substrate addition in the sediment samples 

from 10-20 cm depth were at about 0.33 ± 0.007 µmol CH4 gdw
-1 d-1 and therefore much 

higher than at the vent centre (location 36 m) than in the control site samples (55 m) 

where they reached 0.12 ± 0.002 µmol CH4 gdw
-1 d-1. Data for methane oxidation under 

aerobic conditions showed the opposite picture: Higher rates of 5.4 ± 0.42 µmol CH4 gdw
-1 

d-1 at the control site compared to 2.2 ± 0.35 µmol CH4 gdw
-1 d-1 in the intermediate CO2 

positions (14 m) and 0.4 ± 0.11 µmol CH4 gdw
-1 d-1 at the centre of the vent. Finally, a 

remarkable aerobic methane oxidation acitivity was found even in sediment samples down 

to 1.5 m depths with an identical pattern (data not shown). This points towards a methane 

supply for the methanotrophic bacteria from deeper sources present in the deepest 

oxygen-poor, organic deposits of the soil column and tracing back to the limnic evolution 

of the study site. 

Sulphate reduction rates were relatively high, between 1.5 to 2.2 µmol gdw
-1 d-1 in the 

samples from the centre of the vent, with the highest activity observed in deeper sediment 

layers below 50 cm depth. Interestingly, sulphate reduction was also detected in deeper 

samples from the control site, albeit at a much reduced rate. The sources of sulphate and 

substrates for the sulfate-reducing bacteria is yet to be determined, but might be 

originating from underground water streams or the decomposition of organic material from 

lake sediment deposits in the deeper soil horizons. 

 

 

 

 

 

 

 

 

 

Figure 35: Differences in microbial activity 
and 16S rRNA gene copies at 10 to 20 cm 
depth 
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In accordance with the microbial activities, total numbers of microorganisms showed 

also significant differences between the individual sites. Cell numbers of Bacteria were 

determined using quantitative PCR (qPCR, [17]): They were highest at the control site and 

substantially lower towards the vent centre; the values decreased from 9.6 x 109 to 8.7 x 

108 gene copies gdw
-1 of soil. For Archaea in contrast, the values increased from control 

site towards the centre, with 7.7 x 106 and 6.5 x 107 gene copies gdw
-1 of soil. 

One explanation for the observed changes in the community composition might be the 

replacement of oxygen in the soil gas with CO2, leading to first microaerobic and then to 

anaerobic conditions. This would thus favour e.g. methane-producing Archaea or 

sulphate-reducing bacteria. To analyse this in more detail, group-specific qPCR assays 

are carried out currently to reveal, whether certain functional groups, like the methane 

oxidising or sulphate reducing bacteria, were absent or stimulated at the CO2-rich sites. 

Another implication for strong changes in the microbial community came from the lipid 

biomarker studies. Although the cell numbers of bacteria decreased, the biomarker 

studies showed that in the CO2 vent, bacterial non isoprenoidical tetraethers lipids were 

contained in higher quantities then at the control site (e.g. in 50-60cm depth 503 µg g-1 

TOC at the CO2 vent site and 302 µg g-1 TOC at the control site). Even though the source 

organisms of bacterial tetraethers are not known yet, they most likely derive from 

anaerobic bacteria (see Oppermann et al., 2010 and references therein). This finding is of 

special interest since ether lipids are more stable than ester lipids that are commonly 

found in bacteria. Bacteria able to synthesis etherlipids are therefore probably better 

adapted to the low pH conditions found at the CO2 vent (Figure 31).  

4.3.4. Conclusions 

CO2 gas fluxes into the Laacher See are roughly estimated in the range of about 5,000 

tons of CO2 per year (Aeschbach-Hertig et al., 1996). Additional CO2 gas seepages from 

the underground occur permanently at the fringes of the lake. Even if a CO2 gas release of 

up to 600 g m-2 d-1 could be registered along the studied vent, our results indicate that the 

effects of the gas vents are spatially limited. Nevertheless, some significant effects of high 
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CO2 concentrations on the terrestrial ecosystem were observed. The ecosystem appears 

to have adapted to the different conditions through species substitution or adaptation, 

showing a shift towards anaerobic and acidotolerant to acidophilic species under elevated 

CO2 concentrations. The present results have stimulated future research activities which 

will include an extensive investigation campaign with gas, water and sediment sampling 

both for the Laacher See and carbonic springs nearby. At the end, this study should 

identify possible candidates in the botanical and microbial kingdoms, whose presence or 

absence provide easily detectable indicators for the leakage of CO2 from deep reservoirs 

into near-surface terrestrial ecosystems. 
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Abstract 

CO2 capture and storage (CCS) in deep geological formations is one option currently 

evaluated to reduce greenhouse gas emissions. Consequently, the impact of a possible 

CO2 leakage from a storage site into surface environments has to be evaluated. During 

such a hypothetical leakage event, the CO2 migrates upwards along fractures entering 

surface soils, a scenario similar to naturally occurring CO2 vents. Therefore, such a 

natural analogue site at the Laacher See was chosen for an ecosystem study on the 

effects of high CO2 concentrations on soil chemistry and microbiology. The microbial 

activities revealed differences in their spatial distribution and temporal variability for CO2-

rich and reference soils. Furthermore, the abundance of several functional and group 

specific gene markers revealed further differences, e.g. a decrease of Geobacteraceae 

and an increase of sulphate-reducing prokaryotes in the vent centre. Molecular biological 

fingerprinting of the microbial communities with DGGE indicated a shift in the 

environmental conditions within the Laacher See soil column leading to anaerobic and 

potentially acidic microenvironments. Furthermore, the distribution and phylogenetic 

affiliation of the archaeal 16S rRNA genes, the presence of ammonia-oxidising Archaea, 

and the biomarker analysis revealed a predominance of Thaumarchaeota as possible 

indicator organisms for elevated CO2 concentrations in soils. 
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4.4.1. Introduction 

The reduction of the potential greenhouse gases CO2 and CH4 in the atmosphere 

becomes obligatory in order to mitigate the effects of global warming (IPCC, 2007). One 

option globally discussed which might offer the necessary large scale applicability is 

carbon capture and storage (CCS) (Haszeldine, 2009). However, before starting CO2 

storage in the deep geological underground, the risks and consequences of an unlikely 

but possible leakage from storage sites into near surface ecosystems have to be 

assessed. The geological setting of volcanic CO2 vents resembles the closest natural 

analogue for possible CCS leakage scenarios, with the CO2 migrating upwards through 

fractures or cleavages into near surface ecosystems (West, et al., 2005). This then leads 

to significantly elevated CO2 concentrations, however, as expected also for a leakage 

scenario only within a very small and defined area.  

Several studies reported geochemical changes in soil induced by upwards migrating 

CO2, like acidification, weathering effects on minerals, and higher soil humidity (Farrar, et 

al., 1995, Stephens & Hering, 2004, Beaubien, et al., 2008), with consequently decreased 

oxygen availability in surface soil horizons (Oppermann, et al., 2010). Negative effects of 

high CO2 concentrations in soil atmosphere were documented on plant development and 

species richness, and also on microbial respiration rates (Macek, et al., 2005, Pierce & 

Sjögersten, 2009). Nevertheless, in such CO2-affected soil ecosystems still only little is 

known about the interactions between soil chemistry, microbial community structures and 

activities, which in turn have a significant influence on ecosystem health, plant 

communities and land use. 

In the Rhenish Massif, located in Middle and Western Europe, dissolved carbon 

species and free CO2 reach the surface at many places, though concentrated in the 

volcanic fields. As one volcanic field the East Eifel in Germany consists of about 100 

former eruptive centres covering an area of approximately 330 km2. The Laacher See 

caldera is situated in the centre of the East Eifel volcanic field in Germany with gaseous 

CO2 discharge along the (north-) eastern border of the lake. The whole volcanic system of 
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the Laacher See is estimated to emit several thousand tons of CO2 per year into the 

atmosphere (Aeschbach-Hertig, et al., 1996). Release of CO2 in this area typically occurs 

from gas vents characterised by a small core of elevated gas flux. The vents on the 

pastures around the lake are often visible due to a 5-6 m wide core of reduced vegetation 

or even bare soil surrounded by an area of variably-impacted vegetation (Krüger, et al., 

2011). The selected site at the western shore had undergone significant human 

modifications. Due to the man-made lowering of the lake’s water level, a relatively large 

area of land was gained to the south and the west of the lake. Today this land is used for 

extensive agricultural purposes, mainly cattle farming. The selected CO2 vent was 

sampled along a transect ranging from high CO2 concentrations in the vent centre (>90% 

of the soil gas), over medium concentrations (20-30% CO2) towards background CO2 

levels at the reference site (Jones, et al., 2009). 

Following the initial introductory description of the gas geochemical and botanical 

characteristics of this vent site (Krüger, et al., 2011), our main objective in the present 

study was to describe in detail effects of elevated CO2 on the ecosystem and the microbial 

community in up to 1.8 m long sediment cores. This should help to identify possible 

indicator species within the biosphere either sensitive or resistant to high CO2 

concentrations. For example, several soil ecosystem studies revealed the importance of 

Crenarchaeota (soil group 1.1c) or recently reclassified Thaumarchaeota (group 1.1b 

(Pester, et al., 2011)) as possible ammonia oxidizers for acidic habitats (Kemnitz, et al., 

2007, Nicol, et al., 2008, Gubry-Rangin, et al., 2010). 

Nevertheless, for CO2 affected sites it still remained unclear which soil parameters (pH, 

humidity, aeration etc.) related to the increased CO2 concentrations cause a differentiation 

within the biosphere. This work therefore concentrated on molecular and microbiological 

investigations in combination with geochemical surveys to identify potential controlling 

parameters for the microbial biosphere. 
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4.4.2. Methods 

Site description 

The studied vent system was located on a pastured field at the western side of the 

Laacher See, a typical maar lake in the East-Eifel, Germany (Krüger, et al., 2011). Several 

vents were visible on the pasture due to 5-10 m wide areas with reduced vegetation and 

bare soil. Based on these observations, measurements of soil CO2 concentration led to 

the selection and final layout of a 60 m long roughly north-to-south transect across one 

terrestrial CO2 vent. 

Soil samples and underlying sediments were collected during two campaigns (2007 

and 2008) along this transect ranging from background to high CO2 soil gas 

concentrations. Samples were taken at the maximum zone of CO2 fluxes in the centre of 

the vegetation free zone (vent centre; location: 36 m, measured from the southern end of 

the transect), as well as in a zone with elevated CO2 concentrations at the outer rim of the 

venting area (medium site; location: 14 m). The reference sample was taken in proximity 

of the CO2 vent, in an area where no elevated gas concentration was observed (reference 

site; location: 55 m). 

Sampling procedure 

In September 2007 and July 2008 surface soils were sampled with three parallel push 

cores per site in direct proximity to each other. The top 10 cm of each core were divided 

into two parts (0-5 and 5-10 cm) and separately pooled from all cores. The sample 

represented the organic rich surface coverage with the main rooting zone within the soil 

column (mineralogical Ah-horizon) and CO2 concentrations and flux measurements were 

also conducted below (at 15 cm depth). After homogenising the composite material, 

subsamples were taken for DNA extraction (stored at -20°C), activity measurements, and 

geochemical analysis (stored at 4°C). The two collected surface samples were separately 

analysed to describe the specific heterogeneity of the soil surface. Unfortunately, the 
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surface samples of 2007 for DNA extraction were discarded as the samples were thawed 

during transport and cross contaminated.  

In addition to the surface sampling, two long soil cores were collected in 2007using a 

steel probe with a “dutch” auger. The cores were sampled in intervals of 10 cm down to 

the maximum depth, i.e. 150 and 180 cm for vent centre and reference site, respectively. 

The humidity of the soil samples was measured from about 1g of each composite sample 

using the “Moisture analyzer” MA100 (Sartorius GmbH Germany). The averaged value for 

the surface was correlated to the CO2 level using Pearson product-moment correlation 

with a probability-value of 0.05. The deeper core samples recovered in 2007 were situated 

below the water table and thus water saturated (Krüger, et al., 2011). 

Soil geochemistry 

The geochemical analysis included an extensive soil gas survey and analysis of soil 

parameters (see below for details), like total organic carbon (TOC), for the reference and 

the vent centre. The soil gas measurements were carried out in 15 and 60 cm depth 

following 0.5 m intervals along the transect. Several additional gas samples were taken 

along the traverse for comparative laboratory analyses and for the determination of 

carbon isotope ratios (δ13CCO2; by means of a Thermo Delta plus XL mass spectrometer). 

The complete description of the methods and results for concentrations and gas flux 

measurements were recently published ((Krüger, et al., 2011)/ supporting information with 

short description). 

Total carbon (TC) and total nitrogen were measured with an elemental analyser (Carlo 

Erba Science 1500 CNS Analyser; Erba Science, Italy) after the soil samples were dried 

at 105°C and milled. For the quantification of total organic carbon (TOC), inorganic carbon 

was removed with HCl. Repeated measurements showed an error of less than ±0.05%. 

An aliquot of the samples were taken for isotopic analyses of TIC and TOC. The δ13C-

values were determined using a Finnigan MAT 252 mass spectrometer after high-

temperature combustion (1020°C) to CO2 in a Carlo Erba NA-2500 elemental analyser 

(Erba Science, Italy). Sulphur was removed with Sulfix (WAKO Chemicals, Japan) after 
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combustion following a method by (Carlson, 1998). Based on replicate measurements of 

reference standards IAEA-CH-6 (IAEA, Austria) and IVA-Sediment (IVA, Germany), the 

analytical precision was better than 0.1‰. Duplicate measurements showed a mean 

deviation of < 0.2‰. Soil pH was determined using a solid body pH electrode in a slurry 

composed of a soil sub-sample suspended in a 0.01 M CaCl2 solution. The method has 

UKAS and MCERTS accreditation and is validated for all soils with a pH between 3 - 10. 

Determination of microbial activities 

Each composite soil sample was converted into a homogenous slurry by the addition of 

artificial mineral medium (see supporting information) in a ratio of 1:1 and aliquoted into 

heat sterilised serum bottles according to Krüger et al. (2011). The anaerobic 

manipulations were performed under an atmosphere of N2/CO2 (90/10 [v/v]) in an 

anaerobic chamber (Mecaplex). The incubations were sealed with butyl stoppers and 

repeatedly flushed with N2 to remove residual O2. For aerobic setups the slurries were left 

open for several minutes to aerate (loosely covered). All incubations were conducted in 

three analytical replicates from each composite soil sample and incubated in the dark at 

20°C. Headspace gas samples were taken daily (up to one week) after shaking of the 

microcosms. Methane and CO2 were determined using a GC 14B gas chromatography 

(Shimadzu) as described by (Nauhaus, et al., 2002), which was additionally equipped with 

a methaniser to quantify the CO2. 

The general microbial mineralization of organic material was quantified as the CO2 

production (CPR) in aerobic incubations. Potential methane oxidation rates (MOR) were 

measured following the depletion of methane in aerated soil samples amended with 5 

Vol.% methane . To determine the initial potential methane production rates (MPR) three 

replicates of an anaerobic slurry from each soil sample were incubated without any 

amendment (Krüger, et al., 2002). 

The determination of potential sulphate reduction rates (SRR) was conducted with 

slurry incubations amended with 10 mM sulphate and set up as described above. The 

produced sulphide was analysed from a withdrawn subsample using hypodermic needles 
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and plastic syringes pre-flushed with N2 via the formation of copper sulphide (Cord-

Ruwisch, 1985).  

 All microbial activities were calculated via the product increase (or reactant decrease) 

over incubation time and expressed in µmol gdw
-1 day-1 (gdw: dry weight). The arithmetic 

mean was calculated from both composite soil samples with three analytical replicates 

(n=6; ±SD) for each year. The linear regression model was calculated and tested for its 

probability using t-test (p-value <0.05). Statistical evaluation of significance of observed 

variance was conducted using factorial ANOVA analysis with a group assignment of CO2 

concentration and year in a 3x2 set up with a significance level of 1% (0.01) for the 

dataset (degrees of freedomSum: 35 (n= 36 data points for each rate)). 

Community analysis using molecular-biological approaches and biomarker analysis 

The community was analysed using 16S rRNA based methods, the abundance of 

functional gene markers, and specific lipid biomarkers. Extended descriptions of DNA 

analysis (primer and PCR specifications; Table 10 for quantitative PCR) and lipid 

extraction are given in the supporting information. In brief: the DNA was extracted from 1 

to 0,5 g of each composite soil sample following the manufacturers manual of the 

FastDNA Spin Kit for Soil (Bio 101; MP Biomedicals) (Webster, et al., 2003).  

The gene abundances of both composite samples were quantified separately and 

averaged giving the mean and standard deviation (SD; 2 samples with 5-6 measurements 

each) to include site specific heterogeneity. The quantification results of the microbial 

community were given as gene copies g-1 of the wet soil samples. Differences in the 

abundance of the genes between the sampling sites were analysed using a paired 

Students t-test with a significance level of p: <0.05 (5%). 

Sequencing of reamplified DGGE-bands was conducted at Seqlab GmbH (Göttingen, 

Germany) with the reverse primers. All sequences were classified using the RDP and 

Green Genes tools. The obtained DNA sequences were aligned with the ARB-SILVA 

aligner and assembled in the existing Parsimony tree of a recent reference database 

(SSURef 106, Feb2011) according to Pruesse et al. (2007). The next relatives were 
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retrieved and used to calculate a phylogenetic tree for the bacterial sequences with the 

ARB software package, while the archaeal tree was further examined regarding the 

environmental affiliation of the representative organisms using the dataset of Nicol et al. 

(2008). The tree (Figure 4) was constructed using the PHYLP(DNA) package adding the 

obtained sequences into the resulting maximum likelihood tree without changing the 

overall topology. The exported tree was used for further analysis using FastUniFrac 

(Hamady, et al., 2009) for statistical examination (Bonferroni corrected p-test) of the 

cluster and the principal coordinate analysis affecting the distribution within the soil 

column. The sequence specific sample factors were determined to distinguish the 

variation factors as: vegetation (bare/grass), CO2 (concentration in percent), O2 

(concentration in percent), pH (acidic; slight acidic and neutral), sampling depth 

(surface/deep core). The sequences (56 bacterial and 34 archaeal partial 16S rRNA gene 

sequences) were submitted to the GenBank database (http://www.ncbi.nlm.nih.gov) under 

accession numbers JF717665-JF717754.  

The extraction, isolation and analysis of fatty acid biomarkers followed the protocol of 

Oppermann et al. (2010) with a few modifications for this study. In short, lyophilised and 

homogenised samples were hydrolysed with 6% KOH in methanol (2 h, 80ºC) and 

extracted with n-hexane to release neutral lipids (e.g. alcohols). Alcohol fractions were 

obtained after separation from other neutral lipids via column chromatography (Merck 

silica gel 60, using dichloromethane and methanol). Further descriptions of the protocol 

are provided in the supporting information.  

4.4.3. Results 

Soil CO2 conditions 

The complete dataset of CO2 concentrations and flux measurements has been published 

recently (Krüger, et al., 2011). In brief, three main zones of elevated CO2 concentrations 

existed along the traverse between 11-17 m, 21-28 m, and 30-42 m, the latter 

representing the centre of the vent.  
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In 2007 the peak CO2 concentration in the soil gas in 60 cm depth reached more than 

90 Vol. % at the vent centre, with flux rates of up to 550 g CO2 m-2 d-1. The oxygen 

concentration at this site in 60 cm depth was below 3 Vol. %. Further upwards in 15 cm 

depth the CO2 accounted for 30 Vol. % of the soil gas, while the oxygen level was 

between 16-18 Vol. %. The strongly decreased oxygen concentration showed that the 

aeration of the soil column at the vent centre was effectively suppressed. 

The medium site was located at 11-17 m with moderately elevated CO2 concentrations 

of 20 Vol. %, 16-18 Vol. % O2 in 60 cm depth, and a flux rate of ~177 g CO2 m
-2 d-1.. 

These values decreased to 4-6 Vol. % CO2  and 20 Vol. % O2 in 15 cm depth.  

Already at a relatively short distance from the vent centre and the medium site, the CO2 

concentrations dropped back to background values of 2 % CO2 in 60 cm, and less than 

one per cent in 15 cm depth (reference site at 51 m). The oxygen level at the reference 

site was around 20 Vol. % at both depths. 

The CO2 concentrations as well as flux rates described above for 2007 were higher 

compared to those of the subsequent field campaign in 2008, which could be correlated to 

the weather conditions. During the autumn sampling in 2007, the weather documentation 

recorded a higher wind speed and lower atmospheric pressure than in 2008, both factors 

supporting the efflux of CO2 (for details see Krüger et al. 2011). Weather conditions are 

important parameters for temporal and spatial variations of CO2 flux rates (pumping 

effects) from vent systems (Beaubien, et al., 2008).  

 The carbon isotopic signature of the CO2 (δ
13CCO2) collected from the soil gas showed 

different isotope ratios for CO2 in the vent centre (-4.1 to -2.7 ‰ PDB) compared to 

medium (-1.7 to -0.2 ‰) and reference site (-1.0 to 0.8 ‰). The δ13CCO2 value measured in 

the vent centre point directly to the upper earth mantle and/or lower earth crust as origin of 

the CO2. Contrastingly, the CO2 collected at medium and reference sites was already 

affected by mixing processes with e.g. atmospheric and biogenic CO2, and by isotope 

fractionation processes. 

The water content in the surface soil samples was not significantly correlated to the 

increasing CO2 concentrations for both years (p-value >0.1), probably influenced by the 
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preceding rain period in 2007. In this year, the soil humidity was 32±3 % at the reference 

and 22±2 % at the medium CO2 site. The vent centre was almost water-saturated and 

highly inhomogeneous (48±20 %) with depth. In 2008, the humidity was 10±1 % in the 

reference and 19-20 % in medium and vent site, respectively. The soil pH in the top 10 cm 

was with 6 similar for CO2-affected and unaffected sites, However, it changed drastically 

with depth. At the vent centre, the pH in the deeper soil samples was significantly lower, 

between 5.2-3.9, while it remained around 5.5 at the reference site (Krüger et al. 2011). 

Soil carbon and nitrogen  

The concentration of total organic carbon showed at both sampling sites strong variations 

with depth (Figure 35). The highest concentrations were detected at the reference site 

below 90 cm soil depth (14.0-18.4% wt. of dry soil). In the soil horizons above this zone 

the TOC-concentrations decreased up to 60 cm depth, followed by a strong increase 

between 50 and 60 cm. Further upwards, between 20 and 50 cm the concentrations of 

soil TOC are relatively low (1.1-1.4% wt. of dry soil). In the Ah-horizon the concentrations 

of soil TOC rose again (3.0-5.8% wt. of dry soil). The concentration of soil TOC in the vent 

centre followed the trend of three zones with high concentration observed at the reference 

site. In the centre, the TOC concentrations were overall higher in the upper part of the 

profile (0-70 cm; 4.5-10.8% wt. of dry soil), but decreased in the lower part of the profile 

(70-150 cm; 0.5-5.5% wt. of dry soil). 

The δ13C-values (Figure 35) of soil TOC in the Ah-horizon (0-20cm) showed only small 

differences between vent centre and reference site (-26.9 to -27.3‰ and -26.8 to -27.2‰, 

respectively). Towards the first maximum in TOC concentrations in 60 cm depth, the δ13C-

values showed a 13C enrichment at both sampling sites with -24.0‰ and -22.1‰ at the 

CO2 vent and the reference site, respectively. In the deeper soil horizons, the δ13C-TOC-

values remained relatively 12C-enriched in the vent centre (-25.0‰ and -25.6‰), whereas 

the δ13C-TOC-values at the reference site showed an enrichment of 13C. 

Inorganic carbon was not present in significant amounts in the studied soil samples. 

The concentrations of total nitrogen in soil at the reference site are by a factor of 8 to 13 
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smaller than the TOC concentrations (Figure 35). The steep increase of soil TOC 

concentration in 110-150 cm was not mimicked by the TN leading to a change of the C/N 

ratio in the depth profile. In contrast, at the vent centre the C/N ratios remained relatively 

stable in this zone, but showed a greater variability between 40 to 80 cm depth. 

 

Figure 36: Development of total nitrogen (black bars), total organic carbon ( TOC; light grey), and 
total inorganic carbon (TIC; dark grey) in relative concentrations, and of the δ13C-values of soil 
TOC (black circles with standard error mean; SEM n=3) within the depth profile of 2007 [depth in 
cm on the vertical axis]. For better comparison of the spatial differences between the sites the 
horizontal axes for relative concentration [wt%] and δ13C vrs. V-PDB [‰] were mirrored to each 
other. 

 

Microbial activities in the surface soil layers 

The surface soils of 2007 showed generally low microbial mineralisation activity with 

potential CO2 production rates (CPR) between 0.016- 0.031 µmol gdw
-1d-1, corresponding 

to rates found in other soil environments (Kirschbaum, 1995). The sulphate reduction 

rates (SRR) were highest under medium CO2 concentration (1.6 ± 0.3 µmol gdw
-1 d-1) and 
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decreased at the reference site (0.9± 0.1 µmol gdw
-1 d-1). In contrast, the methane 

oxidation rates (MOR) were highest at the reference site (2.4± 0.55 µmol gdw
-1 d-1), and 

decreased with increasing CO2 influence to 0.7± 0.55 µmol gdw
-1 d-1 (medium site) and 

further to 0.13± 0.14 µmol gdw
-1 d-1 in the vent centre. Below the Ah-horizon in the deep 

cores collected in 2007, high potential rates of sulphate reduction were detected for both 

reference site and vent centre albeit only low methanogenesis was detected in the depth 

profile (data not shown). 

 

Figure 37: Statistical analysis of rate dependent and site specific heterogeneity of potential 
microbial activities 
measured in the surface 
soils of 2007 and 2008. 
The sulphate reduction 
rate (SRR), methane 
oxidation rate (MOR), and 
CO2 production rate 
(CPR) were measured in 
triplicate incubations from 
two composite soil 
samples for each year (n= 
24). The median (solid 
line) was calculated from 
the dataset while error 
bars represented the 
confidence interval (CI 
95%) and given outlines 
were marked as thin X.  

 

In 2008, the CPR in surface soil samples were highest at medium CO2 concentrations 

with 5.8± 2.9 µmol gdw
-1 d-1. The SRR were again highest under medium concentrations 

with 2.5± 0.5 µmol gdw
-1 d-1 (vent centre: 1.3± 0.6 µmol gdw

-1 d-1), while at the reference site 

the rates were similar to the potential activity in 2007 (0.69± 0.14 µmol gdw
-1 d-1). Likewise, 

the MOR were highest for the reference site again (1.8± 1.7 µmol gdw
-1 d-1). At the medium 

site and vent centre, 0.4 ± 0.2 to 0.2 ± 0.1 µmol gdw
-1 d-1 of methane were oxidised, 

respectively. In this study, no methane production was detected in anaerobic microcosms 

with soils samples from the top10 cm, both from 2007 and 2008. In contrast, low rates of 

methanogenesis have been reported with samples from deeper soil horizons (Krüger, et 

al., 2011).  
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The relatively heterogeneous distribution and temporal variation of the potential 

activities along the transect, with sampling depth and also between the two years, 

required a closer statistical investigation of potential influencing factors (Figure 36). In the 

first step, a linear regression model did not show a significant correlation between 

selected microbial activities and the increasing CO2 concentrations (p: >0.2; data not 

shown). Subsequently, a more complex model (Two-way ANOVA, Table 11) was applied, 

which revealed an abundant interaction between the CO2 concentrations and seasonal 

factors affecting the potential sulphate reduction rates. Due to the generally low SRR in 

September 2007, CO2 showed no significant influence on SRR (using Holmes-Sidak t-test 

for pairwise comparisons), while the influence became significant during midsummer in 

2008 (p: <0.01). In contrast to this, the methane oxidation rates were influenced by the 

increasing CO2 concentrations (p: <0.001, Table S2) in both years.  

Quantitative microbial community composition 

The copy numbers for Bacteria were relatively similar at all sites, with 8.3 ± 4x109, 1.6 

±0.8x1010, and 1.4 ±0.5x1010 16S rRNA copies g-1 for reference, medium site and vent 

centre, respectively. The archaeal 16S rRNA gene copy numbers were about two orders 

of magnitude lower than the bacterial with approx. 108 gene copies g-1 in the soil samples 

(Figure 37). The overall community size (total abundance of 16S rRNA gene copies) in the 

soil surface samples (only 2008) was not affected by the increasing CO2 concentrations 

(p: >0.05).  

The analysis of more specific gene markers revealed differences between the sites. 

The abundance of genetic markers for the Crenarchaeota, determined with primers for 

both 16S rRNA genes and the key gene for ammonia-oxidising Archaea (AOA with amoA 

gene), was highest at the vent centre, and significantly lower at the medium und reference 

sites (p-value for both genes <0.001). The copy numbers for ammonia-oxidising Bacteria 

(AOB) were compared with the numbers of AOA rather low at all sites and not correlated 

to CO2 (p: >0.07). 
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Figure 38: Site specific profiles of universal and specific 16S rRNA genes and functional genes 
analysed with quantitative PCR (as listed in Table S1). Bars represented the mean value for the 
surface soils of 2008 with error bars giving the standard deviation (SD; n=2 composite samples (5 
to 6 measurement per sample in different dilutions)). AOA: Ammonium oxidising Archaea (amoA 
gene copies); AOB: Ammonium oxidising Bacteria (amoA gene copies); SRP: sulphate reducing 
prokaryotes (dsrA gene copies). 

 

The functional gene mcrA for the methanogenic Archaea was detected at the reference 

site with 1.8±0.8x107 gene copies g-1 and slightly decreased at the medium site 

(2.7±1.7x106 gene copies g-1). At the vent centre the gene copies for mcrA were below the 

detection limit. Functional gene markers for sulphate reducing prokaryotes (drsA gene), 

were highest in samples from the CO2 affected sites (with up to 1.2±0.9x107 gene copies 

g-1) compared to the reference site (p-value: <0.01) (Figure 3). The abundance of Fe(III)- 

and Mn(IV)-reducing Geobacteraceae was lowest at the vent centre  

(4.2±3x106  gene copies g 1)  

The quantitative community composition in samples from the deep cores collected in 

2007 differed considerably from the surface samples (Table 8). The overall gene copy 

abundance showed only minor changes at the vent centre but a significant increase in the 

archaeal community size at the reference site with depth (p: <0.01). The analysis of 

specific gene markers revealed decreasing copy numbers for Crenarchaeota and AOA 

with depth at both sites. Nevertheless, both genes were, in contrast to the results for the 

surface samples, more abundant in the deeper sediments at the reference site than at the 

vent centre. 
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Table 8: Quantitative analysis of the microbial community composition in selected deep soil layers 
of 2007, determined using 16S rRNA genes and functional genes (for AOA, AOB, SRP, 
methanogenic Archaea) (± SD; n=2 samples; 5 to 6 measurements per sample).  

 
AOA: Ammonium-oxidising Archaea 
AOB: Ammonium-oxidising Bacteria 
SRP: Sulfate-reducing prokaryotes 

 

The Geobacteraceae 16S rRNA gene copy numbers and the mcrA gene copies for 

methanogenic Archaea were significantly increased by several orders of magnitude at the 

reference site (p: <0.0001), while the abundance of SRP was increased in the vent centre 

(p: <0.01).  

Phylogentic analysis of the microbial community 

The phylogenetic analysis of the partial 16S rRNA gene sequences with DGGE revealed 

only minor differences between the two surface soil samples. The diversity of the bacterial 

was greater than that of the archaeal community.  

The dominating part of the bacterial sequences was affiliated to the Betaproteobacteria, 

Acidobacteria and Bacilli, which have previously been associated to terrestrial soil 

communities. The isolation source of the closest relatives to the identified sequences was 

searched for indications about specific habitat conditions, e.g. acidic pH, anoxic 

environments, or increased CO2 levels. The presence of such environmental parameters 

was similar for all sites, indicating no significant differentiation of the bacterial communities 

along the transect in the surface layers. With depth, (2007 deep cores; Table 12) both the 

vent centre and reference site showed a higher proportion of next relatives from 
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potentially anoxic and aquatic habitats, like earthworm gut, marine, and freshwater 

sediments. Further statistical testing of the distribution of selected phylotypes for site 

specific clustering showed that no significant differentiation along the gradients (CO2; O2; 

pH etc) occurred in the bacterial community. Therefore, no indicative bacterial phylum was 

specific or dominant at the CO2 affected sites (Table 9 and Table 12).  

Within the archaeal 16S rRNA DGGE profile only a few phylotypes were detected (Tab 2). 

However, in contrast to the bacterial community, the identified archaeal communities 

indicated a distinct shift in the community composition under elevated CO2. The 

community was significantly different (p: >0.001; pairwise comparison Bonferronii-

corrected) between the vent centre and the reference or medium site, respectively. On the 

other hand, medium and reference site were not significantly distinct from each other (p: 

1). The deep core (Table 13) samples clustered distinctively from the respective surface 

samples (p: 0.001) indicating a further depth-induced shift in the community, independent 

of the CO2. 

Table 9: Identified sequences from DGGE bands of the surface soil samples (2008) for archaeal 
partial 16S rRNA genes. The sequences were identified using the RDP classifier and the seqmatch 
tool to search for next neighbours (% similarity giving the seqmatch similarity score; isolation 
sources as recorded in the GenBank entry). Sequences of deeper soil samples are provided in the 
supporting information. 
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*The pH of the isolation habitat was retrieved if available from the GenBank entry or the original publication 

 

The genetic variance of the soil profiles was further analysed using a principal component 

analysis (Fast UniFrac), correlating the soil specific parameters, like depth, pH, etc. (see 

methods), responsible for the cluster formation. The first principal component contributed 

with about 85%to the variance, while the second principal component only accounted for 

10% (Figure 40 in the supporting information) (cumulative pc1+ pc2= 95%). 

The database searches for the archaeal sequences (Table 9) and the constructed 

maximum likelihood tree (Figure 38) showed that the majority of the vent centre 

associated sequences clustered into the group 1.1b of the Thaumarchaeota. Members of 

the group 1 Thaumarchaeota have previously been postulated as AOA for soil habitats 

(Pester et al., 2011). Also the seqmatch hits (RDP) for isolated closest relatives showed 

that the majority of the archaeal sequences from the vent centre affiliated to 

Nitrososphaera sp. JG1 (JF748724) , with sequence similarity varying from about 90 to 

97%, Nitrososphaera sp. JG1 is a mesophilic AOA of the group 1.1b Thaumarchaeota 

which was cultivated from soil. In contrast to the vent centre the archaeal sequences of 

the reference and medium site were mainly affiliated to the methane-producing 

Methanolobus (Table 9 and Figure 38).  
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Figure 39: Phylogenetic analysis of archaeal 16S rRNA partial genes (~450 bp obtained with 
DGGE). The maximum likelihood tree (filter settings: pos-variation ssuref Arch) using the 
PHYML(DNA) method was constructed with the published reference sequences (name and 
accession numbers (Acc)) while adding the obtained sequences (GenBank acc. number with site) 
of this study without changing the overall tree topology. The clades were named according to 
previous publications (Brochier-Armanet et al., 2008; Nicol et al., 2008; Pester et al., 2011) and 
separated between neutral (blue) and acidic (red) habitats. The Korarchaeota were used as 
outgroup and the scale bare represents 10% estimated sequence divergence. Sequences obtained 
from the deep core samples of 2007 are marked with [�]. 
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Biomarker analyses of the bacterial and archaeal community  

The concentrations of bacterial derived C14 to C18 fatty acids were highest at the vent 

centre depth (1608.4 µg g-1 TOC; 110-120 cm) and decreased towards the surface to 

959.3 µg g-1 and 1057 µg g-1 for vent centre and reference site, respectively. Also the 

relative distribution of fatty acids changed, as in the upper horizons a relative increase in 

terminally branched fatty acids was detected at both sites (supporting information with 

complete list in Table S2, e.g. i-15:0, ai-15:0, i-17:0 and ai-17:0). The deeper soil horizons 

(110-120 cm) contained higher concentrations of monounsaturated, straight chain fatty 

acids with even numbers of carbon atoms, e.g. 16∆9, 18∆9 and 18∆10. In general, the 

bacterial biomarkers showed no characteristic changes that might have been used as 

marker molecules for CO2 affected soils.  

In contrast to the bacterial biomarkers, significant differences in the archaeal 

community were identified using the distribution of GDGT (Figure 39). The concentrations 

of especially the acyclic GDGTs were highest at the vent centre, showing an enrichment 

of the acyclic GDGT and crenarchaeol, with its typical cyclic moieties (GDGT #1 and #6 in 

Fig 39b), in 50-60 cm of the vent centre (#1/#6 = 1.7). At the reference site crenarchaeol 

was detected only in low concentrations (0.06 to 0.09 µg-1 g TOC; 110-120 cm). 

 

Figure 40: 
Differences in the 
distribution of 
archaeal GDGTs (a) 
with lipid structures 
(b) indicative for 

Eurarcheaota 
(structure 1 to 5; #1 

typically 
Methanogens) and 

Crenarchaeota/ 
Thaumarchaeota 

(crenarchaeol #6) in 
selected sample 
depths of the CO2 
vent centre and the 
reference site in 
September 2007. 
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4.4.4. Discussion 

The Laacher See vent system was chosen as natural analogue to identify the long-term 

ecosystem effects of possible CO2 leakages from deep storage sites, like oil and gas 

reservoirs, into surface soil environments.  

Soil geochemical parameters under the influence of high CO2 levels 

The establishment of risk scenarios for CCS necessitates the investigation of potential 

environmental CO2 effects to be expected in case of a potential leakage into surface 

ecosystems. In such a scenario, the most likely environmental consequences of increased 

CO2 concentrations for soil ecosystems are reduced aeration and oxygen availability, 

reduced pH, mineralogical alterations and a reduction or change of the vegetation. For the 

Laacher See site, the geochemical results indeed indicated a reduced aeration and an 

increased acidification of the soil with depth due to elevated CO2 concentrations and 

fluxes. Other geochemical alterations of the soil were less pronounced than in previous 

studies. 

The soil organic carbon in surface soil samples from both reference and vent centre soils 

showed δ13C values around -28‰ close to the values of C3 plants (Clark & Fritz, 1997). A 

relatively high number of dicotyledonous flowering plants using the C3 pathway was 

documented for the field site (Krüger et al., 2011), although other studies reported 

monocotyledonous plants to be more tolerant towards CO2 (West, et al., 2009). In the 

deeper soil layers the δ13C values showed a stronger enrichment in 13C at the reference 

site than at the vent centre. These results contradict previous findings at the Latera vent 

system, where the TOC was strongly affected by incorporation of 13C-enriched volcanic 

CO2 (Oppermann, et al., 2010). However, the concentrations of TOC were significantly 

lower at the Latera vent site. Therefore, at the Laacher See the relative enrichment of 13C 

in the TOC at the reference site might be caused by higher microbial degradation rates of 

organic material, while the degradation rates were lower or inhibited at the vent centre as 

consequence of elevated CO2 concentrations. 
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The detailed geochemical profiles of the soil cores also showed substantial variations in 

TOC concentration (Figure 35), which might have been caused by the anthropogenic 

modifications of the lake’s water level, i.e. a lowering in two steps of in total 15 m. Before 

the first lowering by about 10 m in the 12th century (the second by 3-5 m took place in the 

19th century) the sampling sites should have been covered by a water column of up to 5 m 

height. After this human intervention, the sites were most likely located in the vicinity of 

the shoreline. The lowering of the water level increased the erosion rate from the newly 

surfaced land and organic material from dead water or land plants depending on the 

vicinity of the water table should have been transported to the lake. Within the soil depth 

profile the zones of high TOC concentrations were interpreted as reminiscence of this 

erosion process following water level lowering. 

 CO2 induced formation of anaerobic microhabitats  

The CO2-induced alterations of geochemical parameters, changes in plant cover, gas flux 

rates or soil gas composition, etc., alone or in combination affect the soil ecosystem and 

consequently the indigenous microbial communities. The reduced aeration of the soil due 

to elevated CO2 concentrations and fluxes in CO2 vents, and the consequently anaerobic 

and more reduced conditions in the soil lead to decreasing microbial cell numbers with 

increasing CO2 concentrations (Oppermann, et al., 2010, Rousk, et al., 2010). On the 

other hand, anaerobic microbial activities and communities, like sulphate-reduction or 

methanogenesis, have been described to be positively correlated with higher CO2 levels 

(Beaubien et al., 2008). However in contrast to previous studies, the quantification of 16S 

rRNA genes in the surface soils at the Laacher See site showed only minor differences in 

the overall distribution of archaeal and bacterial gene copy numbers between the sites.  

The more specific gene markers, like the Geobacteraceae 16S rRNA gene, showed a 

significant decrease under high CO2 concentrations in the surface soil samples and also in 

the analysed depth profiles down to 150 cm (p: 0.007). The mobilization of metal 

compounds in the soil matrix has been reported as one consequence of elevated CO2 

concentrations, as well as the reduced content of oxidised metals (Fe2O3) (Stephens & 



Manuscripts – Predominance of Thaumarchaeota at the Laacher See  187 

 

Hering, 2004, Beaubien, et al., 2008). Since the Geobacter group is well documented as 

metal reducers in e.g. anaerobic iron-rich aquifers (Holmes, et al., 2007 /and reference 

therein), their reduced abundance might be indicative for the leaching effects of CO2 in the 

vent centre soils.  

The presence of high CO2 concentrations and the consequently reduced aeration were 

correlated with the differences of microbial activities in surface soil layers. Especially the 

high activities observed in the soils samples of in 2008; e.g. for sulphate reduction, 

showed significant differences between the reference and the CO2-affected sites. 

Accordingly, high abundances of dsrA genes (sulphate reducing prokaryotes) were 

detected with about 1 to 2 orders of magnitude higher gene copies at the vent centre (p: 

<0.001). Since volcanic CO2 vents often emit gas with considerable amounts of H2 and 

H2S (Beaubien et al., 2008), a general consequence for a CCS leakage scenario is seen 

in the development and persistence of anaerobic microhabitats around the localised CO2 

emitting source. The increased abundance and activity of sulphate reducing prokaryotes, 

i.e. H2S production, represents a potential hazard for the surrounding environment 

(Roberts, et al., 2011). This has to be further investigated for CCS leakage scenarios, 

especially the timescale from the onset of the leakage towards an altered microbial 

population adapted to the anaerobic conditions. 

CO2 induced alteration of the microbial community  

The microbial community composition was investigated in more detail using DGGE to 

identify further indications for CO2 induced changes of the soil environment. For the 

bacterial community no other environmental factor besides the sampling depth was 

identified, which influenced the community composition. For sequences with low similarity 

scores (% similarity) the hits in the GeneBank dataset, the environmental affiliation could 

not be reliably linked. The factor “depth” revealed sequences with next relatives in 

potentially anaerobic environments, e.g. from sediments of freshwater or marine habitats, 

which was seen as further indicator for the limnic origin of the Laacher See site.  



188   

 

In contrast, the isolated archaeal sequences shared surprisingly well the environmental 

conditions with their next cultivated relatives identified from the databases, regarding the 

limnic (sedimentary) and volcanic origin of the soil environment. Two habitat conditions 

were repeatedly affiliated with the vent centre community: uranium contaminated soil, and 

Si-oxide minerals (quarz and felspar). Both fit well to the Laacher See site, since the soils 

and sediments in and around Maar lakes of the Eifel and Röhn have been described to be 

rich in uranium (Scharpenseel, et al., 1975), while the remnants of weathered volcanic 

soils are rich in silica-minerals (Wada, 1985), and CO2 can enhance these weathering 

processes (Stephens & Hering, 2004).  

Furthermore, the archaeal community composition showed differences along the transect 

with increasing CO2 concentrations, i.e. a predominance of Crenarchaeota / 

Thaumarchaeota associated sequences in the vent centre. Especially sequences 

belonging to the group 1.1b were abundant at the vent centre. This group was reported to 

be highly abundant in acidic soils (Jurgens et al., 1997; Nicol et al., 2008; Gubry-Rangin et 

al., 2010). Thus, in contrast to the Bacteria, the phylogenetic affiliation of the archaeal 

community showed a significant correlation with the CO2 concentration and the dependent 

secondary environmental effects (vegetation, soil aeration, and pH). Although the bulk soil 

pH measurements did not indicate a CO2-induced lower pH in the surface soils (Krüger et 

al., 2011), the microenvironment in and around soil particles has been shown to vary 

considerably from the macro-environmental conditions in such parameters, like pH or 

redox state (Foster, 1988). Reasons for their development might be small-scale diffusional 

barriers or local differences in substrate / organic matter availability and composition, and 

thus in microbial turnover rates. 

Interestingly, the abundance of Crenarchaeota / Thaumarchaeota increased with depth in 

layers that were presumably largely anoxic. The next cultivated relative, Nitorsosphaera 

sp. JG1 (Kim, et al., 2012 (online first)), was identified as a mesophilic ammonium 

oxidising Archaeon. This cultivated organisms shared between 90-97% sequence 

identities with the DGGE bands along the CO2 gradient and also in the depth profile. This 
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increasing phylogenetic diversity of the archaeal sequences might reflect a broader 

physiological capability of the community, important for the soil biosphere.  

The dominating archaeal GDGT was a typical membrane compound of methanogenic 

Archaea (De Rosa & Gambacorta, 1988 /reference therein). However, the community 

profile and group abundance suggests for the vent centre that at least a fraction of these 

GDGTs has been produced by Thaumarchaeota (DeLong, et al., 1998), especially since 

the methanogens only represent a smaller fraction of the CO2 associated community. 

Corresponding to this, crenarchaeol was the dominant lipid biomarker found in the vent 

centre, thus confirming the abundance of Thaumarchaeota as already indicated by qPCR 

and DGGE analyses.  

 

In conclusion, while the bacterial diversity did not show significant changes, the elevated 

CO2 concentrations at the vent centre induced an environmental differentiation favouring 

Thaumarchaeota (group 1.1b), which might thus be considered as “indicator species”. 

Another question currently under debate is about the definition of “thresholds” for CO2 

related environmental consequences. Decreasing root respiration, changes in plant 

species composition, and altered microbial activities were already reported at 

concentrations of 5-20 % CO2 in the upper layers of the soil column (Macek et al., 2005; 

Pfanz et al., 2007; Pierce & Sjögersten, 2009). The Laacher See vent site showed 

changes already at the medium site (qPCR and potential activities) with around 20 % CO2 

in the gas phase. Consequently, a potential environmentally relevant threshold for CO2 for 

soil environments might indeed be defined at 10-20 %. 
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4.4.5. Supporting Information 

Soil gas concentration and flux measurements  

The 60 m long traverse across the terrestrial vent was intensively investigated during 

both field campaigns in 2007 and 2008, respectively. In short (for a closer description refer 

to (Krüger et al., 2011)): Soil gas concentration (for CO2, O2, CH4, and N2) and flux 

measurement equipment used combined steel probes and handheld infrared gas sensors 

(a Geotechnical Instrument plus Li-Cor and Dräger instruments) pulling out soil gas for 

concentration recording, and custom-made accumulation chambers for CO2 flux 

quantifications. The presented data was concentrated on the three selected sites used for 

the microbiological investigations. 

Composition of the medium for activity measurements 

For the artifical mineral medium a basal solution was prepared (Widdel & Bak, 1992) 

containing (all in g per litre of distilled water): NaCl, 5.0; MgCl2 ·6 H2O, 0.4; KCl, 0.5. After 

autoclaving, the media was completed within the anaerobic chamber with separately 

sterilised stock solutions (final concentration given in g per litre (mM)): NaHCO3, 2.52 (30); 

NH4Cl, 0.25 (4.7); KH2PO4, 0.2 (1.5); trace element solution; vitamins; selenite and 

tungstate solution (Widdel et al., 1983; Tschech & Pfennig, 1984; Widdel & Bak, 1992). 

The medium was reduced with Na2S in 0.05 mM final concentration. The final pH of the 

media was 7.3. 

Quantitative PCR (qPCR) 

Defined concentrations for each target gene were prepared from pure cultures to provide 

specific standards for quantitative PCR (qPCR) as described previously ((Engelen et al., 

2008). A complete list of the tested quantitative PCR assays is given in Table 10. The 

qPCR master mix contained either SYBRGreen I (Invitrogen) or a combination of primer 

and a specific FAM/Tamra labelled probe were used (TaqMan®, Applied Biosystems). 

Melting curves were measured after the amplification with SYBRGreen I-specific 

fluorescence. Each DNA extract was measured in triplicate and in two to three different 
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dilutions to check for PCR inhibition. For Crenarchaeota and Bacteria the detection limit 

was 102 to 103 cells, while the other assays detected <50 cells (please refer to publication 

sources for detailed description). The results were calculated as gene copies g 
-1 of wet 

soil and for both composite samples (n=10 to 12 measurements) and averaged for each 

CO2 concentration (±SD of 2 composite samples). 

Table 10: Overview about quantitative PCR (qPCR) assays with target gene, primer name and 
sequence, amplification temperature, and publication source 

 
1Ammonia-oxidising archaea; target gene 

+ammonia monooxygenase subunit A (archaeal typ) 
2Ammonia-oxidising bacteria ; target gene +ammonia monooxygenase subunit A (bacterial typ) 
3Sulphate-reducing prokaryotes; target gene *diss. sulphide reductase subunit A 
4methanogenic archaea; target gene #methyl Coenzyme M reductase α-subunit 

 

The primer specificity for the group specific qPCR assays was checked using the 

“probe check” tool (under: http://www.microbial-ecology.de/probebase/). As confirmed with 

this tool and by the literature, the Crenarchaeota assay (Ochsenreiter et al., 2003) 

included the recently established phylum Thaumarchaeota with different reclassified group 

1 Crenarchaeota (Brochier-Armanet et al., 2008). Nevertheless, to avoid misinterpretation 

of the publication source the results and method were continuously referred as 

Crenarchaeota. 

Denaturing gradient gel electrophoresis (DGGE) and sequence analysis  

The protocols for PCR and following DGGE were described by Wilms and colleagues 

(2006) and references therein (del Panno et al., 2005). In detail: a 626bp-fragment of the 
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bacterial 16S rRNA gene was amplified using the primers 341F 

(CCTACGGGAGGCAGCAG) and 907R (CCGTCAATTCCTTTGAGTTT) with 32-38 

amplification cycles. For the amplification of the archaeal 16S RNA gene a nested PCR 

approach was used. In the first step the primers S-D-Arch-0025-a-S-17 

(CTGGTTGATCCTGCCAG) and S-*-Univ-151 7-a-A-21 (ACGGCTACCTT 

GTTACGACTT) were applied to obtain the full-length archaeal 16S rRNA gene fragment 

(about 35 amplification cycles). The final 550 bp long fragment was amplified with S-D13 

Arch-GC-0344-a-S-20 (often also Arch344f; ACGGGGCGCAGCAGGCGC GA) and 915R 

(GTGCTCCCCCGCCAATTCCT) with only a reduced number of cycles (20-25) to prevent 

an overamplification of the 16S rRNA gene. The negative control of the first PCR was 

used as template in the nested PCR to check for cross contamination and unspecific 

amplification. 

DGGE was conducted using an INGENYphorU-2 system (Ingeny, Goes, Netherlands) 

with about 300 ng DNA from the PCR Product loaded onto polyacrylamide gels (6%, 

wt/vol) in 1x TAE. The gradient ranged from 50 to 70% for Bacteria and 30-80% for 

Archaea with 100% denaturant corresponding to 7 M urea and 40% formamide. The DNA 

was eluted from the DGGE bands in 50 µl PCR water (Fluka; Ampuwa®) for 48 h at 4°C. 

After centrifugation, 1-5 µl of the supernatant was taken as a template for re-amplification 

of the eluted DNA using the same reaction mix and PCR-program as for initial 

amplification. 

Extraction, isolation and analysis of Biomarkers 

Further protocol modifications developed from Oppermann et al. (2010): Glycerol 

dibiphytanyl glycerol tetraether (GDGT), contained in the alcohol fraction, were analised 

and quantified using a Prostar Dynamax HPLC coupled to a 1200L triple-quad mass 

spectrometer (Varian, USA). Separation of compounds was achieved with a Nucleodur 

100-3 CN column (2 x 150 mm, Macherey-Nagel, Germany, mobile phase: n-hexane and 

propanol, flow rate: 0.2 mL min-1). Compounds were ionised applying atmospheric 

pressure chemical ionisation positive ion mode, Corona current: 5 µA, vaporising gas: 
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400°C (17 psi), drying gas: N2, 200°C (12 psi), nebulising pressure: 58 psi, capillary 

voltage: 90 V). Masses with m/z 950 to 1400 were scanned. GDGTs were tentatively 

identified using LC- retention times and published mass spectra. The GTGT and GDGTs 

were quantified using the relative intensity of their [M+H]+  and [M+H]+ +1 ion compared 

to a standard of known concentration. A complete list of analysed lipid structures is given 

in Table 13. 
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Supplemented Tables & Figures 

Table 11: Statistical analysis of variations for the activity profiles using Two-way ANOVA with post-
hoc analysis1 to identify influencing factors within the years (Season: mid-summer and autumn) 
and CO2 concentrations of the transect stations. 

 
1Post-hoc analysis using a t-test for the pairwise comparison of different factors to identify the interaction 
between seasonal and CO2 effects (using Holm-Sidak method). The results were summarised if consistent 

for all pairwise comparisons within the group assignment. 



Manuscripts – Predominance of Thaumarchaeota at the Laacher See  199 

 

Table 12: Complete list of identified sequences of the deep core samples for bacterial and archaeal  
partial 16S rRNA genes. The partial sequences were identified using the RDP classifier and 
seqmatch to search for relatives (isolation sources as recorded in the GenBank entry. 
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Table 13: Concentrations of bacterial fatty acids (C14 to C18) from two sampling depths from the 
CO2-vent and the reference site (with relative abundance in brackets). Fatty acids were 
abbreviated; giving the numbers of carbon atoms, and the position unsaturated bounds. Position of 
methyl branches were abbreviated with i-, ai- and m- for iso-, anteiso-, and mid chain methyl 
branched, respectively. Site and/or depth specific biomarkers showing a relative increase in 
comparison to the other samples were indicated in bold script. 
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Figure 41: Principal component analysis demonstrating the clustering within the 
archaeal community (16S rRNA partial sequences) using the FastUniFrac tool 
with the tree generated in ARB (Fig 4; maximum likelihood tree PHYLP(DNA) 
program). The Principal components 1 and 2 explained cumulative 94% 
variation within the cluster. 

UniFrac PCoA analysis of archaeal sequence distribution
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