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Abstract

The goal of quantum information science is to accomplish tasks that are impossi-
ble within classical concepts using quantum systems. This thesis examines settings
in which the quantum world can actually go beyond the classical world and con-
siders how certain quantum features can be utilized to perform the task of secure
communication using quantum key distribution.

In the first section we report on our study of the quantum steering effect. This
effect describes a certain kind of quantum correlation, that is conceptually stronger
than entanglement but weaker then the violation of a Bell inequality. We use the
steering effect to investigate the non-classical features of bright light beams in the
Gaussian regime. In particular, we see that steering, in contrast to entanglement,
is directed. We focus on the bi- and tripartite setting and compare our findings to
experimental data.

In the second section we focus on the task of quantum cryptography and present
a protocol for key distribution using Gaussian quantum states. We show that this
protocol is secure against the most general attacks, even when only a finite number
of exchanged signals are considered. The main technical tool we use is an uncer-
tainty relation for the smooth min- and max-entropies. We show that a positive
key length is achievable using a setup that is experimentally realizable with current
technology.

In the third section, we examine a strong form of security in quantum informa-
tion, namely device independent security. We are interested in finding the origin of
this strong form of security and show that it is actually equivalent to the extremality
of the observed probability distribution of outcomes. We further introduce an even
stronger independence condition called algebraic security and discuss examples.
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Zusammenfassung

Das Ziel der Quanteninformation ist es mithilfe von Quantensystemen bestimm-
te Aufgaben zu bewältigen die mit rein klassischen Methoden unmöglich sind. In
dieser Arbeit wird untersucht in welchem Sinne die Quantenwelt sich von der all-
täglichen, makroskopischen Welt unterscheidet und wie die besonderen quanten-
mechanischen Eigenschaften zur sicheren Übertragung von Information mithilfe
der Quanten - Schlüsselerzeugung genutzt werden kann. Die Arbeit gliedert sich in
drei Teile.

Zunächst beschäftigen wir uns mit dem Quanten-Steering-Effekt. Dieser Effekt
beschreibt eine spezielle Art der Quantenkorrelation, die stärker ist als Verschrän-
kung, aber gleichzeitig schwächer als die Verletzung einer Bell-Ungleichung. Wir
nutzen den Steering-Effekt zur Untersuchung von nicht-klassischen Eigenschaff-
ten an hellen Lichtstrahlen im Gaußschen Regime. Insbesondere sehen wir, dass
Steering im Gegensatz zur Verschränkung eine gerichtete Eigenschaft ist. Wir inter-
essieren uns hauptsächlich für die Situation mit zwei und drei Parteien und verglei-
chen mit experimentellen Daten.

Im zweiten Abschnitt geht es um Quantenkryptographie und wir präsentieren ein
Protokoll für die Quanten-Schlüsselverteilung mit Hilfe von Gaußschen Zuständen.
Wir zeigen die Sicherheit unseres Protokolls gegen allgemeine Attacken, auch un-
ter Berücksichtigung endlicher Schüssellänge. Unser Hauptwerkzeug hierbei ist die
entropische Unschärferelation für Min- und Max-Entropien. Wir zeigen dass mit
unserem Protokoll eine positive Schlüsselrate unter heute experimentell realisier-
baren Bedingungen möglich ist.

Das dritte Kapitel behandelt eine besonders starke Form der Sicherheit, nämlich
geräteunabhängige Sicherheit. Wir interessieren uns hierbei für den Ursprung die-
ser starken Form von Sicherheit und zeigen, dass diese Sicherheit gleichbedeutend
mit der Extremalität der beobachteten Wahrscheinlichkeitsverteilung der Messer-
gebnise ist. Wir werden zusätzlich noch eine stärkere Form der Sicherheit einfüh-
ren, die wir algebraische Sicherheit nennen, und Beispiele diskutieren.

Stichworte: Steering-Effekt, Quanten-Schlüsselerzeugung, Gaußsche Systeme
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1. Introduction

Overview and Contributions

This chapter will give an outline and a non-technical introduction to this thesis.
The “lottery example” in section 1.3 has been published in [DFSW10a].

1.1. Outline

This thesis will be concerned with the study of quantum correlations and how cer-
tain correlations can be used to perform quantum key distribution. The main part
will be divided into three topics: the study of the steering effect, with a focus on the
Gaussian regime, the development of a proof of cryptographic security for a proto-
col using Gaussian states and the study of extremal quantum correlations as well as
their connection to device independent security.

This first chapter will be written on an introductory level and its purpose is to
give a summary of our results. We will further give an elementary introduction to
the history of quantum mechanics, the nature of Bell correlation inequalities and
the history of quantum cryptography.

The second chapter will define our terminology and summarize the technical
preliminaries. These will cover the basic structure quantum mechanics, the struc-
ture of classical models and the formalism of Gaussian systems.

The third chapter will present different aspects of the steering effect. We will ex-
plain the definition and connection to other correlation regimes and then focus on
the steering effect for bipartite and tripartite Gaussian systems.

In chapter four we will use Gaussian systems in a quantum cryptographical con-
text. We will present a proof of security for a protocol with squeezed vacuum states,
that is secure against general attacks and promises a positive key using technology
that is currently available. The main tool here will be the application of the entropic
uncertainty relation for smooth entropies.

In the fifth chapter we will study device independent cryptography and show that
the origin of this strong form of security is connected to the extremality of quantum
correlations. In particular we will show that, in an error free scenario, an eavesdrop-
per will not learn anything about the outcomes of the honest parties if and only if
the observed correlations are extremal.
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1.2. Historical approach to quantum correlations

Since its development about a hundred years ago, quantum physics has become an
essential part of our understanding of nature today. Technology and science both
use quantum effects routinely and the control of small quantum systems, down to
the level of individual systems has has made significant progress. Still, many ques-
tions concerning the structure remain open. One line of inquiry within quantum
mechanics is concerned with the question, in which way the quantum mechani-
cal description of the world differs from the classical description. When looking
back on the historical development of quantum mechanics, this question has been
studied from different angles for quite some time and it took more than fifty years
before it became clear that there is a quantitative bound that distinguishes all that is
possible within classical mechanics from quantum mechanics. Today we call these
bounds Bell inequalities after J. Bell who discovered the first inequality of this kind
in the 1964[Bel64]. A collection of the work by Bell can be found in [Bel87].

We will now present a short historical overview on the development of quantum
mechanics, with focus on the notions of entanglement, steering and Bell inequal-
ities. This naturally does not claim to be a complete account of all contributions
but rather a collection of important steps. For a more complete summary we refer
to e.g. [Kra90] and [Kum08]. A useful collection of reprints of papers from 1916 to
1926 can be found in [vdW69], a collection of works by Schrödinger can be found in
[Sch63].

The development of quantum physics started at the turn of the 20th century with
a number of observations that were not explainable in the by then common frame-
work of classical mechanics. One example for this is the black body radiation that
had been studied since the work of Kirchhof (ca. 1860) and led to the theory of radi-
ation by M. Plank (1900) where he introduced a fundamental portion of energy that
he later called a “Wirkungsquantum”. The second example is the radiation spec-
trum of elements like hydrogen, that was independently studied by J. Rydberg and
W. Ritz (1888) and ultimately lead to the introduction of the atomic model by N.
Bohr (1913). The third effect was the frequency dependence of the photoelectric
effect discovered by P. Lennard (1902) and discussed by A. Einstein (1905).

During the following years, more experimental evidence was collected and dif-
ferent theoretical models were proposed, but it was not before the midst of the
1920th that a general foundation was developed. This was done through two ap-
proaches, namely the development of the matrix mechanics through M. Born, P.
Jordan based on work by W. Heisenberg and the development of wave mechanics
by E. Schrödinger. Both approaches were shown to be equivalent by Schrödinger
shortly after. For a collection of the work by Heisenberg, Born and Jordan see [vdW69],
the work by Schrödinger can be found in [Sch63]. This development triggered a
phase in physics that is today referred to as the “golden years” of quantum mechan-
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ics, in which many of the problems that had been discovered during the previous
50 years could now be solved within this new theory. In 1932 J. von Neumann pub-
lished a book on the mathematical framework of quantum mechanics that defined
the mathematical foundation of the theory for a long time [vN32].

Despite the huge success of quantum theory, some of the basic questions about
the nature of these systems had not been properly addressed. Fundamental objects,
like Schrödinger’s wave function, still lacked a proper interpretation. In 1926 M.
Born had shown that the norm-square of a wave function in position representation
can be interpreted as the probability density for results of a position measurement.
This did not provide any interpretation for the wave function itself. In hindsight,
certain concepts that were developed during this early period and based on semi-
classical ideas did later not proof useful and today only of interest in the historical
context. We shall not repeat these here, but focus on the arguments that later lead
to the modern view on quantum physics, the Einstein-Podolski-Rosen paper, which
we will in the following simply denote the EPR paper.

Einstein had been one of the founding fathers of quantum theory, most notably
due to his work on the photoelectric effect from 1905 that earned him the Nobel
price in 1921, but also due to his work on the quantum foundation of the specific
heat in metals 1907 [Ein07]. In the 1920th however, Einstein was known to be a
“critic” of quantum mechanics. Here, the term critic should not imply that Ein-
stein had in any way doubted the, even at that time experimentally well confirmed
predictions of the theory, but rather that Einstein repeatedly asked the question
whether quantum mechanics was indeed the “finest” description of nature possi-
ble.

An important historical date here is the Solvay conference on physics 1930. The
Solvay conferences were a series of conferences that Einstein had attended before
(another notable year in this regard is 1927), and had posed different Gedankenex-
perimente concerned with the nature of quantum physics, which were then solved
by N. Bohr. That year he proposed the “Lichtwaage”, a device that should be able
to precisely measure the energy of a photon at an exactly determined time, which
stood in contrast to the time-energy uncertainty relation. For a detailed account of
these two conferences we refer to [Kum08].

In short, the experiment consisted of a box with a small hole that could be opened
at a given time to allow a single photon to escape the box. The loss of energy from
the box could then be determined by simply weighing the box. After a while, Bohr
gave a counterargument to Einstein’s example stating (put in a simplified way), that
due to general relativity, the change of mass inside the box would lead to a different
running time of the clock, thus making the joint determination of time and energy
with arbitrary precision impossible. By physicists of that time, this was seen as a
great victory of Bohr over Einstein and later repeatedly quoted as such.

In 1935 Einstein, N. Rosen and B. Podolski published a paper [EPR35] which
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should revolutionize quantum mechanics, although at that time it went seemingly
unnoticed within the scientific world. An “answer” to the paper was produced by
Bohr, published in the same journal and was considered by many physicists as a
reply sufficient to refute Einstein’s criticism. An exception to this general trend was
Schrödinger supported and further developed Einstein’s idea [Sch35b]. A second
notable exception was W.H. Furry [Fur36], whose contributions will be described
below. Today, we know that even though the EPR paper was not discussed in the
physical literature, many physicists of that time were concerned about it, especially
since Einstein’s reputation lead to a massive echo in the popular press, that even
surprised Einstein himself. For a more detailed account on this time and the reac-
tion by other physicists we also refer to [Kum08].

The question that was addressed by EPR was, if the description of nature pro-
vided by quantum mechanics was complete, that is, if quantum theory was really
the most fundamental theory possible. In physics, many theories were known to
be a coarse-grained version of an underlying theory. One example for this is the
behavior of gases as described in statistical physics, which can be explained by us-
ing the Newtonian theory of motion for the single particle. A second example is the
electric current, which can be described with the flow of single electrons. A natural
question was, if there exists also such an underlying theory for quantum mechan-
ics.

In the EPR paper, an example was constructed to support the existence of an un-
derlying theory. In order not to be to technical in this first section, we will only give a
plaintext explanation using a different wording than used in the original paper, but
we shall see examples of states showing the described behavior later in this thesis.

Consider a bipartite state that is divided between a first party, say Alice, and a
second party, called Bob. They are allowed to perform quantum measurements,
for instance position and momentum. Suppose, what they find is that whenever
they both measure the momentum of their systems they coincide, while whenever
they measure the position they differ just by a sign. In both cases, if we consider
the situation from Alice’s perspective, after measuring the position of her system,
she will be able to predict with certainty the outcome of a position measurement
by Bob, and likewise for the momentum measurement.

If we were observing systems governed by classical physics this would not be sur-
prising, as it just states that the signals traveling to Alice and Bob travel with exactly
the same momentum in opposite directions. In quantum mechanics however, this
collides with an uncertainty principle, which forbids a joint measurement with ar-
bitrary precision of position and momentum of a particle. One could argue, how-
ever, that the example above does not directly violate this principle as Alice can only
predict one of Bob’s results with certainty, but the contradiction emerges if one sees
that the two systems can be arbitrary far apart for this effect. That means that the
system on Bob’s side is forced to give the correct answer to any of the two ques-
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tions without knowing which one was actually posed on Alice’s side. This implies,
as there is no connection between Alice’s and Bob’s lab, the outcomes on Bob’s side
must be preexisting in some form, possibly not accessible by the two.

In the last part of his paper series from 1935 [Sch35a], Schrödinger compared
the situation with a teacher and a pupil1. Every day the teacher asks the pupil two
questions in random order. He observes, that everyday the pupil gives the answer
to the first question always correctly, while answers to the second question might
be wrong. As the pupil does not know, which question the teacher will ask first on
a specific day, the only conclusion the teacher can draw from this is that the pupil
actually knows the answers to both questions, but for some unknown reason, tends
to forget the answer to the second one having given the first one correctly.

For Schrödinger and Einstein there are in principle two possible consequences
from this example: first, the quantum mechanical description of a single parti-
cle by its wave function might not be the finest description possible, or second,
there is an objective change in the state on Bob’s side when Alice preforms her
measurement. They both dismissed the second possibility. Schrödinger used the
term “steering” for this phenomenon, as is seems as if Alice’s measurement would
steer Bob’s state into either a position or a momentum eigenstate. Einstein called
this second possibility later the “spooky action at a distance”. In the pupil exam-
ple above, Schrödinger concludes with the observation, that the process that the
teacher compares the correctness of the first answer to a book of solutions will not
change the answer given, especially as the answer could be fixed in the pupils note-
book.

As noted above, the scientific community did not seem to recognize the novelty
and the implications of the EPR example, partly due to an apparent lack of under-
standing, partly because some physicists accepted that Bohr had found an incon-
sistency in the EPR argument and thus proven it wrong. Sources of historical docu-
ments for this can be found in [Bor69], [Sch49]; for a detailed discussion we refer to
[How95].

In 1951 a quantum physics lecture book by D. Bohm was published, which con-
tained a rephrasing of the EPR experiment into experimentally more practical terms
[Boh51]. It had been shown by Schrödinger before, that any non commuting pair
of quantum observables could produce the steering effect, but it was the work of
Bohm to derive a Stern-Gerlach like setup, which was in principle experimentally
feasible. In 1957 Bohm and Y. Aharonov further discussed this setup and discussed
different approaches for the state of the individual system that might be compatible
with the predictions of quantum mechanics [BA57]. This approach is connected to
a question that was discussed in [Fur36]. Here the observation was made, that the
EPR effect was related to the fact that the state is pure on the joint system, and that

1We will describe the situation in our own words.
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the contradiction would vanish, if a process existed that would transform the two
parts of the EPR system from a pure to a mixed state. Bohm and Aharonov then
discussed the existence of such local mixed states in their example situation.

In 1961 finally, J. Bell approached the question from a general point of view. Where
Bohm and Aharonov had pointed out that in their setup certain realizations of local
states would produce different predictions that are not compatible with the quan-
tum mechanical prediction, Bell considered a situation to test every local classical
model, however it might be constructed. We will give a detailed description of clas-
sical models in section 2.2 and an example on the construction of Bell type inequal-
ities in the next subsection. With this formulation, it was possible to construct an
experimental situation to test, whether quantum mechanics is actually inconsistent
with any local classical model, i.e., whether a finer version of quantum mechanics
in the sense of Einstein is indeed possible. The original inequality by Bell was later
reformulated by J.F. Clauser, M.A. Horne, A. Shimony and R.A. Holt into the form
that is commonly used in experiments with qubits today and will be denoted as the
CHSH inequality [CHSH69].

The first experimental verification, that the CHSH inequality is violated was per-
formed by A. Aspect in 1982 [AGR82]. In 1980, B.S. Tsirelson [Tsi80] had shown that
the CHSH inequality would also have a maximal value when considering quantum
physics and could, in principle, also be used to invalidate quantum mechanics ex-
perimentally. These kinds of correlations have, however, not been observed until
today (c.f. chapter 2.2). In 1989, R.F. Werner considered again the connection be-
tween classically correlated states, i.e., mixtures of product quantum states in the
sense of [vN32], and the violation of a Bell inequality. In [Fur36] it was noted, that
these states could not be used to display the steering phenomenon and thus (as
we know today, c.f. section 3.1) not violate any correlation inequality of Bell type.
Werner showed, that the inverse implication is not true - there exist states that obey
all correlation inequalities of Bell type, but are not a classical mixture of product
quantum states [Wer89].

It should also be noted that the concept of the steering phenomenon, which can
be seen as the heart of the EPR argument, was not considered for a long time, espe-
cially after the discovery of the Bell type inequalities. The modern formulation that
we will be using in the following, and the connection to other correlation measures,
was given 2007 by H.M. Wiseman, S.J. Jones and A.C. Doherty [WJD07].

1.3. A short story about Bell inequalities - The
quantum lottery

We will now present a short story to motivate the reasoning behind Bell type corre-
lation inequalities. This was originally written as part of a popular science introduc-
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tion in [DFSW10a] and will be given here in a slightly enhanced way of presentation.

It was a sunny day when Bob, a physicist experienced with Newtonian physics,
wandered about the fair. He walked among the roller coasters, had some cotton
candy and was pretty much enjoying himself, when he passed a lottery tent that
caught his attention. In bright letters above the tent, a sign said that “Honest Eves
Lottery” will be the first lottery to allow the customers to check their chances of
winning beforehand. Bob was surprised, as he had always thought of lotteries as
scams, ripping the people of their money in a quiet obvious fashion. The basic
concept of lottery was, that there are two kinds of lottery tickets - wins and losses, of
which a customer draws one at random from a big pot of tickets. The ratio between
wins and losses, however, is set by the owner of the lottery. In an extreme case,
could simply put only losses in the pot and hope that no customer would recognize
this. If, on the other hand, the potential customer of the lottery would know about
his odds, he could calculate whether the bet was fair, and decide whether he wants
to take the risk.

Bob entered the lottery and looked at the prices. One lottery ticket cost 1$, a
winning ticket would get the customer 2$ in return. So the lottery would give fair
chances, if there was an equal number of wins and losses in the pot. If he could
determine the ratio of wins in the pot, he could decide whether he should play. Bob
walks over to the counter and asks the girl about the details. On the front of each
ticket there are two fields which can be opened and display either a X or a O sign.
The ticket wins when the two signs are equal and loses when they are different. To
shorten notation, we will assign symbols to the fields, namely front left (FL) and
front right (FR). If Bob wants to determine the number of winning tickets, he has to
determine the probability how many of the cards show equal sign, so Prob(FL= FR).

If he was allowed to randomly draw a large number of tickets from the lottery
bowl and look at the two fields on the front, he could simply determine the ratio of
winning to loosing tickets. But the girl at the counter, Eve, says that this would be
to simple - if Bob wanted to open both fields on the front, he would have to actually
buy the ticket. But there are other ways to determine the correlation he is interested
in. The tickets are equipped with two extra fields on the backside (say BL for the left
and BL for the right one, see Fig. 1.1(a)). Bob is allowed to draw as many tickets from
the bowl free of charge, as long as he does not open both fields on the front. Also,
the tickets are designed in a way that whenever a field is opened, the corresponding
field on the opposite side of the ticket is blacked out, see 1.1(b). If for example Bob
chooses to open FL the field BL is blackened and he will not learn anything about
it. In other words, Bob must choose one of three possible tests for each ticket, i.e.,
he can open either FL and BL, BL and BL or BL and FR. Now Bob starts to think,
how this could help him to get a lower bound on Prob(FL = FR), which in turn is
equivalent to giving an upper bound on Prob(FL 6= FR).
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Figure 1.1.: (a) A single lottery ticket. (b) Opening one field on the front will
blacken the corresponding field on the back.

The simplest, and most advantageous, case for him would be, if he would always
observe correlations in his three test. In this case we would observe three equations,
FL= BL,BL= BL and BL= FR, which have to be true at the same time, so the chain
of equations FL = BL = BL = FR would tell him that in this case also the values on
the fields he is interested in would always have to coincide, i.e., FL = FR. In this
case, all tickets in the pot would be winning tickets, so Bob does not expect this
to happen. How would the estimation be, if the observed correlations on the test
cases are close to maximal? Bob needs to estimate Prob(FL 6= FR), but in all cases
where FL 6= FR, the chain of equalities FL = BL = BL = FR has to be broken at least
at one point. In this way, when he tests the correlations, any loosing ticket will lead
to a different combination of symbols in at least one of his three tests, and he can
estimate

Prob(FL 6= FR)≤ Prob(FL 6=BL)+Prob(BL 6=BL)+Prob(BL 6= FR). (1.1)

So, Bob begins to draw tickets and determines how often the symbols on the field
he checks coincide. To his surprise, his tests reveal that the probability for the sym-
bols he can check to be unequal is roughly 15%. This also means, that the probabil-
ity that the fields on the front do not coincide is less then 45% and therefore he wins
with a probability of at least 55%. Bob is surprised to see that this lottery is not only
fair, but gives an advantage to the player. On average, he expects to make a profit of
0.10$ in every round, so he decides to spend his remaining money on lottery tick-
ets. As he opens the tickets, however, he becomes more and more worried as most
of his tickets are actually losses - he gets winning tickets with a probability of only
15%. So, poor Bob loses most of his money to Eve and has to end his day at the fair
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Figure 1.2.: The four fields and correlations observed by Bob. The correlation
marked in red is the one he wants to estimate.

earlier as planned.
On his way home, Bob tries to find out, where his reasoning went wrong. After

some thought, he concludes, that the only assumption he made in his derivation
was, that once he pulls a ticket from the bowl, all symbols in the fields are deter-
mined, and opening one field will just reveal a preexisting symbol. If the lottery
tickets would on the other hand contain active elements, the observed behavior
would be explainable. This would mean that, whenever he opens one of the fields,
a signal will travel to the other fields, changing their configuration to match what-
ever distribution the lottery owner wants the customer to observe. If this was true, it
actually would be possible to go beyond the observed numbers - in this case a per-
fect correlation on the three test configurations would be possible together with a
perfect anti-correlation on the winning fields, but probably the owner did not want
to make his cheating strategy so obvious.

Feeling pretty smart, Bob returns to the fair the next day to confront Eve with
his reasoning and request his money back (maybe with an extra allowance for not
telling anybody her trick). To his surprise, Eve is not impressed at all. She says that
there is no signal traveling between the left and the right side of the ticket, and that
she is willing to make a new bet with him on this. She will sell Bob the whole lottery
pot and will give him ten-times his money back if he is able to confirm his claim.
Bob agrees, takes the pot and leaves the tent to call a good friend of his, Alice. They
meet and decide on a way to check if there is any signal traveling between the sides
of the card. To do so, they cut the cards in half, one side is given to Alice and the
other side to Bob. They agree on a time at which each ticket should be opened
and they will decide at random whether the front or the back should be considered.
Any signal that would travel between the half tickets would travel at most at the
speed of light, so Alice takes a spaceship to Alpha Centauri to ensure that no signal
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from Bob could reach her in time when they open the fields. After meeting back on
earth they compare their findings, and if the observed correlations had changed,
they would have proven that Eve was using actively communicating lottery tickets.
Unfortunately for them, even in this spacelike separated environment the observed
correlations do not change.

Now, Bob is out of ideas. He returns to the lottery and begs Eve to reveal her secret
to him. Eve gently smiles, and points him towards the nearest quantum mechanics
lecture, as the lottery tickets can be realized using quantum mechanical states.

Let us end the story here and discuss, how these lottery tickets are realized in
nature. We note that in real life the quantum states realizing the described lottery
tickets are way more fragile, but basically all the properties of the tickets can be
found in the laboratory. A way of realizing the ticket is the use of polarized light.
One could think of a single lottery ticket as been presented by two single photons,
one for the left and one for the right side of the ticket. The polarization of the pho-
tons can be measured by sending a photon through an analyzer and detect it on a
photon counter. If one aligns the analyzer in e.g. the horizontal direction, one can
either observe a click of the counter or no click, which corresponds to the two out-
come possibilities, i.e., the X or O symbols of the ticket. The two sides of the ticket
correspond to the configurations of the analyzer, e.g., horizontal and vertical. Also
here the measurement of one will prevent the measurement of the other.

But how can we interpret the results? In the story we have seen that two intuitions
from classical physics lead to a contradiction with quantum physics. First is the
assumption that every physical system can in principle be described by a list of
quantities, and all responses of the system to outside interaction can be determined
from this list. In the story, this was the assumption that the symbols on the lottery
ticket were determined prior to opening the fields. The second assumption was
locality, i.e., that there is no communication between the two sides of the ticket,
once they are space like separated. From this it was deduced that the inequality
(1.1) has to hold. This in turn also means that any violation of the inequality implies
that one of the assumptions is wrong.

The question which of the assumptions has to be dropped, cannot be definitely
answered within quantum mechanics, although there are hints. Quantum mechan-
ics as such does not contain any non-local behavior, while the existence of classical
parameters is not part of the theory. More severely, however, is the fact that any
theory which would drop the locality assumption would stand in contrast to rela-
tivity. This is why we, in accordance with most physicists today, subscribe to a sta-
tistical interpretation of quantum mechanics. This means that lists of parameters
cannot be associated with individual quantum particles. Moreover, this means that
quantum mechanics does indeed only describe experiments in a statistical sense,
namely, the probability of obtaining certain outcomes in the limit of an infinitely
often repeated experiment, but makes in general no prediction about an individual
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event.
On the other hand, this does not imply that we need to perform an infinite num-

ber of measurements, before we can make predictions. We will see in the following
chapters that it is part of a proper description of quantum mechanics to include
the estimation procedure in the consideration and to perform the statistical analy-
sis accordingly. Chapter 4 will be concerned with establishing security for a quan-
tum key distribution protocol, where the difficult part exactly is to determine an
extractable key from only a finite run of the experiment.

Connection to the CHSH-inequality

In the last section we showed how to derive an inequality for the correlation of bi-
partite systems under the assumption of an underlying classical model. This in-
equality is probably the best known Bell type inequality and named the CHSH-
inequality [CHSH69]. Usually, this inequality is presented in terms of expectation
values of operators and not probabilities, so we will make the connection here. We
will use a basic quantum mechanical notation that will be formally introduced in
chapter 2.1.

In the lottery story we had considered the probabilities that the symbols on the
four possible positions on the tickets do not coincide and derived the following
inequality:

Prob(FL 6= FR)≤ Prob(BL 6=BL)+Prob(FL 6=BL)+Prob(BL 6= FR). (1.2)

To translate this into a quantum mechanical framework, we need to identify the
different positions of the ticket with observables. There are four positions, i.e., the
front and the back side both either left or right. We want to keep the locality of the
two sides for Alice and Bob, so we will say that the two positions on the left are given
to Alice and the ones on the right to Bob. Then both will have two observables cor-
responding to a measurement of the front and back respectively, where we identify
the back with the index 1 and the front with the index 2. We further associate the
outcome “+1” to the “X ” symbol and the outcome “−1” to the “O” symbol. With
this, the expectation value for e.g. a joint measurement of the observable A1 (corre-
sponding to BL) and B1 (corresponding to BL) is given as

〈A1 B1〉= Prob(BL=BL)−Prob(BL 6=BL) = 1−2Prob(BL 6=BL). (1.3)

The second equality follows, as there are only two outcomes, so Prob(BL= BL)+
Prob(BL 6= BL) = 1. With these identities for all four combinations we can rewrite
(1.2) as

1

2
(1−〈A2 B2〉)≤

1

2
(1−〈A1 B1〉)+

1

2
(1−〈A2 B1〉)+

1

2
(1−〈A1 B2〉) (1.4)
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which is equivalent to

2≥ 〈A1 B1〉+ 〈A2 B1〉+(〈A1 B2〉− 〈A2 B2〉 , (1.5)

i.e., the CHSH inequality in its most common form. One should note here, that
the values presented in the story are actually achievable within quantum mechan-
ics. The maximal violation of the CHSH inequality is given by evaluating on state
called the maximally entangled qubit state, and gives the value 2

p
2 for the right

hand side of (1.5). This corresponds to an expectation value of 1/
p

2 (resp. −1/
p

2
in the A2 B2 case) for the individual expectation values. This in turn corresponds to
a probability of Prob(FL 6= BL) = Prob(BL 6= BL) = Prob(FR 6= BL) = (

p
2−1)/(2

p
2)≈

0, 146 and Prob(FL 6= BL) = (
p

2+ 1)/(2
p

2) ≈ 0, 853, so the values given in the story
are feasible and can even be exceeded by a small margin.

1.4. A short survey on (quantum-)cryptography and
key distribution

The task of cryptography is to enable two or more parties to establish a secure com-
munication. This means, that all messages sent between them cannot be read by an
eavesdropper. The question how to establish a perfectly secure way of communi-
cating is of course very old, at least as old as written language. For a popular survey
on the different cryptographic methods developed over the ages we refer to [Sin99].
We will not present a historical approach here, but rather focus on the different
resources and assumptions used in classical cryptography. We will always use a
common terminology in cryptography and name the honest parties in a bipartite
setup Alice and Bob, and the eavesdropper Eve.

We start by giving a review on basic principles of classical cryptography. The first
is a classification of distribution channels. The main distinction here is between
authentic and general channels. The first one allows an eavesdropper to read mes-
sages in any way possible but she may not erase or alter messages. If we assume for
now that the channel is authentic, the task of secure communication can be seen
as a coding problem. In this class of problems, Alice uses a certain scheme, called
the encoder, to transform her message into a coded message, also called cypher,
which is then transmitted to Bob. We always assume that any classical communi-
cation between the legitimate parties is monitored by Eve, so she has a transcript of
all messages including the cypher. Bob and Eve now apply a decoding operation to
the cypher to reconstruct the original message.

The only way that this is possible for Bob, but not for Eve, is that Bob has some ad-
vantage over Eve. One possibility is, that Alice and Bob agree on a specific method
of encoding the data that is not known to Eve. An example is the encoding into a
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language, or into symbols, that the eavesdropper does not know. This advantage is
lost, however, once the eavesdropper gets hold of a translation.

In modern cryptography a clear distinction is made between the method of en-
cryption, which is always assumed to be fully known by Eve, and the pre-shared in-
formation which is used as a resource in the communication, commonly called the
secret key. This distinction is also called the Kerckhoff principle (see e.g. [Sin99]). In
this case the advantage of Alice and Bob over Eve is given by some information that
is known only to them, called the cryptographic key. Here, the encryption maps
Alice’s key and message to the cypher, while the decryption uses Bob’s key and the
cypher to reconstruct the message. There are two important classes of these key
based schemes.

The first one is called a symmetric key scheme, and assumes that the crypto-
graphic key has in some way been distributed to Alice and Bob beforehand. This
means that Alice and Bob have to meet in some private setting to agree on a key.
Then, whenever they communicate later, they can use the key to encode and de-
code their communication. In this way the pre-shared key becomes a resource
for cryptography, as a key that has been used in some communication cannot be
reused for later communication without compromising the security. It is clear, that
the quality of the encryption will depend on the length of the key and it can be
shown that an encryption scheme can only be perfectly secure if the message and
the key have exactly the same length. The most commonly used encryption scheme
of this category is the one-time pad (see e.g. [Sin99]).

Unfortunately, the symmetric key system requires that the two communicating
parties meet in person, which makes it hardly practical for flexible communication
e.g. via the internet. A different approach is asymmetric encryption. The basic prin-
ciple here is, that Alice and Bob both hold private keys, and use them to generate a
third key, called the public key. This public key does not have to be kept secret, but
is assumed to be known by the eavesdropper. The actual encryption uses on-way
functions. These are functions whose inverse can in the ideal case not be calcu-
lated. This means, that the public key can be used to generate the cypher, but it is
not enough to perform the decoding. For this, additional knowledge about one of
the private keys is required. This asymmetric encryption scheme is standard today
in communication over the internet. It should be noted, however, that there are no
perfect one way functions, but only functions whose inverse is hard to calculate.
Therefore, the security of these systems depends on assumptions on the power of
the eavesdropper, i.e., that it is to costly in time and computational power to cal-
culate the inverse function. Schemes which do not rely on such assumptions have
also been referred to as “unconditionally secure”. This term can be misleading, as it
only refers to the eavesdropper’s system, and might still impose severe restrictions
on the proper working of all devices at Alice’s and Bob’s side.

As mentioned above, the usage of encodings with a key of sufficient length will
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only lead to secure communication once an authentic channel is established. If
the eavesdropper is able to delete or manipulate messages, her role in the commu-
nication becomes active and new attack strategies arise. If for instance Alice and
Bob were to perform an asymmetric protocol without pre-shared information, Eve
could intercept all messages and perform a “man in the middle attack”, in which
she impersonates Bob when talking to Alice and impersonates Alice when talking
to Bob. To do so, she establishes a secure communication with Alice using a private
key of her own and likewise with Bob. As she decodes the message from Alice and
transmits it to Bob, the honest parties will be unaware of Eve’s presence, unless they
meet in person and compare their cypher messages. This attack can in principle be
diminished by using a pre-shared key for authentication, but this would again re-
quire that the honest parties meet in person in the first place. When it comes to
communicating over the internet, authentication is vital for the security, but not
an easy task. If one thinks for instance of online banking, it is necessary for the
bank to verify that the customer has the right to access his account, but also the
customer has, in principle, to verify that he is talking to his bank and has not been
maliciously redirected to some phishing website, that only pretends to be his bank.
This authentication over the internet is done using an involved handling of certifi-
cates.

Until now, we did not make explicit reference to the signals that are sent between
the parties. When we talk about quantum cryptography, however, we always as-
sume that the honest parties are able to exchange quantum signals in addition
to classical signals. Quantum cryptography incudes different types of protocols,
where we will focus on the probably most common application, namely quantum
key distribution (QKD). This task corresponds to the above mentioned scenario
where two honest parties want to establish secure communication and will solve
the problem of how to establish a key that is secret from the eavesdropper. If such
a key is established, classical coding will allow for secure communication as long
as the message is not longer than the established key. We note, however, that QKD
does not remove the necessity of authentication. For this task, a pre-shared key is
still required.

Let us note, that we further assume the laboratories of Alice and Bob being dis-
tinct from Eve’s laboratory, and that Alice and Bob can seal off their laboratories, if
need be. This is important from a conceptual point of view, as every cryptographic
scheme would be nullified, if Eve was allowed to hide in Alice’s closet or place cam-
eras in Bob’s laboratory. There will further be different parts of the equipment that
we will assume to be secure. Most prominently, we will allow Alice and Bob access
to perfect random number generators. This is an important resource, as the secu-
rity of every coding scheme relies on the fact that the eavesdropper has no infor-
mation about the key. We note here that tools from quantum information can also
be used for the generation of true random numbers using quantum processes. This
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is an own field of research, for an example implementation we refer to [FWN+10].

We will now present a historical overview of quantum key distribution. We will
not follow a strict chronological order, but first discuss discrete quantum systems
(finite dimensional) and then continuous variable systems (infinite dimensional).
For a more detailed survey we recommend [SBPC+09], for a survey on quantum
information with Gaussian systems we refer to [WPGP+12].

The first idea of using quantum properties for a cryptographic application dates
back to ideas of Wiesner from the 1970th, later published in [Wie84], where he pre-
sented an idea of making bank notes secure against counterfeit by implanting a
quantum state as a signature. The fact that quantum information cannot be pro-
cessed, in this case copied, without interaction and thus without disturbance can
then be used to detect fraud. At first, his idea did not receive much attention due to
the fact that it was technically unpractical. The first practical quantum cryptogra-
phy scheme was presented in 1984 by Bennett and Brassard, which is today simply
called the BB84 protocol [BB84], which was based on the preparation and read-
out of polarized photons. The first proof of principle was presented shortly after
[BBB+92].

In the BB84, Alice prepares states and sends them to Bob, who then measures the
states. By comparing the results of Bob’s measurements with Alice’s preparation,
they can infer how much information was lost to the environment in the process
and thus to the eavesdropper. This is the prototype of what is called a “prepare and
measure” scheme for quantum key distribution. A different concept was put for-
ward in 1991 by A. Eckert, who used a source of highly entangled photons, i.e., pho-
tons that maximally violate the CHSH inequality. In this scheme, both Alice and Bob
perform measurements and the source of the entangled states can, in principle, be
given under the control of the eavesdropper. This type of scheme is also referred to
as “entanglement based” scheme. It was shown later that the two schemes are in
a certain sense equivalent [BBM92]. In the following years different other schemes
have been proposed, using for instance more measurements. For a collection we
again refer to [SBPC+09].

For the different protocols, the security has to be proven and different techniques
have been developed over the years. In case of the BB84 protocol the first proof
goes back to Mayers [May96]. Later proofs were based on entanglement distilla-
tion [LC99] or error correction [SP00]. In time different aspects of security have
been identified and new security proofs have been developed to include all these
aspects. In the first security proofs, the main point was to limit the information
of the eavesdropper, that is, to minimize the “accessible information” between Eve
and the honest parties. It has been shown [RK05] that this is not a good measure
of security, as the key that has been acquired this way can become insecure, when
used as part of an encryption scheme. This lead to the development of the notion
of composable secure QKD. We will give more technical details about this and the
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technical definition of security in chapter 4.
A mayor result was the general proof by I. Devetak and A. Winter that holds for all

independent and identically distributed (i.i.d.) sources [DW05]. We call the secret
key rate that is acquired using this bound the Devetak-Winter rate (DW-rate), and
note that it is applicable to all attacks, in which the eavesdropper performs the same
action on every signal. These attacks are also referred to as “collective” attacks, to
distinguish them from general attacks, which are also called “coherent” attacks.

The distinction between collective and coherent attacks has only to be consid-
ered in one is interested in a finite number of repetitions of the protocol, as in the
infinite repetition limit the coherent attacks give no advantage over the collective
attacks. In this sense, the DW-rate gives the optimal lower bound of the extractable
key rate in this limit. One way of proving this fact is the use of the quantum de
Finetti theorem (see [KR05] and references therein). In order to proof security also
in the finite key regime one needs to find new proof techniques. The first tech-
nique to be both secure against coherent attacks and applicable to finite key anal-
ysis was the finite quantum de Finetti theorem for qubit systems [Ren05], which
is also composable secure. Later, different proof techniques have been presented,
e.g., based on the post-selection theorem [CKR09] or the entropic uncertainty rela-
tion [TLGR12].

An issue when considering discrete variable protocols is, that the required hard-
ware is rather specific. For instance, in the original BB84 protocol it was assumed
that single photon sources and single photon detectors are available to Alice and
Bob. A different approach to QKD is to use bright lightbeams and to use the field
quadratures as degree of freedom to transmit the key. The main advantage of these
continuous variable (CV) protocols is, that the equipment used, especially the de-
tectors, can be taken from standard telecom components. The first prepare and
measure protocol of this type was proposed by Ralph [Ral99], an entanglement
based version was presented in [CLA01].

The security analysis for CV protocols on the other hand is more involved, as the
security proofs from finite dimensional consideration need to be verified in infi-
nite dimensions. A rigorous proof of for the Devetak-Winter formula in infinite di-
mension can be derived from [BFS11], further detail can be found in [Fur12]. Also
for CV-QKD the asymptotic de Finetti theorem holds, so the DW-rate is asymptot-
ically optimal. The extension of the theorem for finite rounds of the protocol on
the other hand, is not directly possible. Even though the de Finetti theorem holds
asymptotically, it is actually wrong for any finite number of repetitions [CKMR07].
A technique to truncate the dimension of the Hilbert space to make the finite de
Finetti theorem applicable was presented in [RC09], but it was not shown that a
positive key rate is possible using this technique is possible when considering real-
istic parameters. Furthermore in [Ped08] a stability analysis of the technique was
performed, but it could not be shown that it is robust against implementation er-
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rors. Further approaches have been presented in [GP01, vAIC05] without quan-
titative analysis. We will present a proof technique that is applicable also for the
finite-key regime and is composable secure against general attacks in chapter 4.

When talking about a quantum communication architecture, one should finally
not forget, that the QKD part is just one step in the cryptographic protocol. We
have noted above, that requirements about the labs still enter the overall security
evaluation. In the following we will mainly talk about the QKD part, and not be
concerned with the classical communication. When reasoning about the practical
value of quantum cryptography this should not be ignored. Especially, device inde-
pendent key distribution would be for naught, if the classical communication that
is performed with the key is itself not trustworthy.
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2. Preliminaries

Overview and Contributions

This chapter is devoted to presenting an introduction to the formalism used through-
out this thesis. We will describe the formalism of quantum mechanical description
for infinite and finite dimensional systems, the notion of a classical model and the
formalism of Gaussian systems. Our main motivation is to show that, depending
on the specific situation, it is convenient to discuss the quantum system using dif-
ferent frameworks.

We do not claim any novel content here, the chapters purpose is to enhance the
self-consistency of the presentation and readers familiar with the subject can safely
skip this section.

2.1. Basic quantum systems

We will start by giving a review on the basic formalism of quantum mechanics. For
a concise presentation in the language of density operators we refer to [Per95]; for
the formalism of general quantum systems we refer to [Haa92].

Quantum mechanics is a statistical theory. Its formalism will allow us to give
predictions of measurements that are performed repeatedly on equally prepared
systems, which will be explained below. Any experiment consists of a preparation
stage and a measurement stage, where the goal of quantum mechanics is to predict
the probability of a specific measurement outcome, given a specific preparation.

For completeness we note that in general one could include an intermediate step
in the scheme called evolution, in which the state evolved according to some dy-
namics. But the combination of preparation and time evolution will always form a
preparation itself, so we can subsume all time evolution into the preparation. With
the same right, it could also be subsumed into the measurement. It is clear, that the
physics, i.e., the outcome probabilities, will not be altered by this. The inclusion of
the time evolution is also referred to as the “Schödinger picture” while the inclusion
in the measurement is called the “Heisenberg picture”. For further reading we re-
fer to [Bal98], and note that within this thesis, all time evolution will be part of the
preparation.

19



We will usually be discussing multi-partite situation, i.e., experiments in which
different experimenters perform independent measurements. We will also call the
experimenters the parties of the experiment and their respective spaces their lab-
oratories. If not stated otherwise, measurement will be performed within a single
laboratory, while sources can in general send signals to different laboratories.

We associate to any laboratory a system Hilbert space H together with collection
of possible measurements M ⊂ B(H). This set forms a von Neumann algebra, i.e.,
a norm-closed ∗-subalgebra of B(H). For a mathematical introduction to von Neu-
mann algebras and a collection of results, we refer to section A.1 in the appendix
and the standard literature [BR79, BR81, Tak02, Haa92]. Let us denote the set of
possible outcomes as the measurable set (X ,Σ), where Σ denotes a σ-algebra. A
specific measurement F ∈M is then described as a positive operator valued mea-
sure (POVM) that associates to any subset x ⊂X an element Fx ∈M. This means we
can identify a mapping A :Σ→M , and for normalization we set A(X ) = 1. We will al-
ways be interested in measurements with discrete and finite outcome sets, in which
case the measurement is defined by a collection of operators {Fx }with

∑

x Fx =1. A
state will be described as a linear functionalω : M→ [0, 1], withω(1) = 1, such that
the probability of observing the outcome result x while using measurement device
F is given as

Prob(x |F )ω =ω(Fx ). (2.1)

We call the set of all states the state space S(M). Note, that in principle every
measurement might come with a different set of possible measurement results. We
will try to omit this distinction to keep notation short and always assume that the
output space X is large enough to contain all possible outcomes of all measurement
if interest. If we want to make the reference to a specific measurement F , we will
denote the output set XF .

In this way, the formalism of von Neumann algebras defines a probability setup
in an general way. This formalism can in many practical situations be reduced,
namely if the state under consideration is normal. Normal means here, that for
all bounded nets of operators {Fα} it holds that ω(l.u.b.Fα) = l.u.b.ω(Fα). Normal
states were introduced in [vN49]; for details we refer to chapter 2.4 of [BR79]. For
any normal state there exist a density matrix ρω ∈B(H)with tr (ρ) = 1 such that

Prob(x |F )ω = tr
�

ρFx
�

. (2.2)

This especially implies, that any finite dimensional quantum system can be de-
scribed in a density matrix formalism. In the following, we will usually identify nor-
mal states and their corresponding density matrices.
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2.2. Classical models

In the last section we introduced the formalism of quantum mechanics, now we
will introduce the concept of a classical model. The motivation for the study of
these models lies in the question, to which extend quantum mechanics goes be-
yond classical physics. We will further introduce Bell inequalities as a tool to dis-
tinguish classical models from genuine quantum situations. For reference we refer
to the collection of Bell’s original papers [Bel87], a collection of results about Bell
inequalities can be found in [QIP]. A source for the formalism of statistical theories
and quantum mechanics is [Lud83].

The first question we will address in this chapter is, whether it is in principle pos-
sible to find a classical description for any quantum effect. To answer this question
we need to specify, what we mean by “description”. For a specific experiment, the
minimal requirement would be that we need to find a statistical model which is
compatible with classical physics and is able to reproduce the statistical predic-
tions of quantum theory. If we ask the question in such a general way, the answer is
“yes”, as we will see below, even if the model constructed this way might be trivial.
If we refine the question to also be compatible with the concept of locality, i.e., the
possibility of distinguishing different laboratories, the answer will be “no”.

A word on terminology: there are different terms in use for the classical models
due to historical reasons. Most notable, models are referred to as “hidden variable”
models, where the term “hidden” is used to amplify that this model includes pa-
rameters that are not part of quantum mechanics, and further more, might not be
detectible by any experiment for some underlying physical reason. In the following
we will never make explicit reference to whether a classical model contains parts
that are explicitly hidden from the observer, so we will use the terms “local hidden
variable model” and “classical model” synonymously. As we will further see below,
if one allows a classical model without the locality assumption, the question be-
comes trivial, so we implicitly always assume locality when talking about classical
models.

We will again divide the experiment in two parts, the preparation and the mea-
surement, and use the term “source‘” synonymously to “preparation”. The prepa-
ration will be seen as a black box, whose purpose it is to initialize the system under
consideration. In every round of the experiment the system is initialized in a cer-
tain configuration λ from a set of possible configurations Λ. This λ contains all
information available about the preparation at a specific instant and is in the lit-
erature also referred to as the hidden variable. We call a source deterministic, if
it will during each run of the experiment output the same configuration, while a
general probabilistic source will draw at each instance the configuration with a cer-
tain probability, which is given as a probability measure µ. This measure is also
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called the statistical state of the system. We emphasize, that we are only interested
in experiments that can be performed in a statistical sense, experiments that are
unrepeatable are not described by the theory.

The measurement is then the mapping from the configuration to an outcome.
Again, we call the measurement deterministic if it returns the same outcome each
time it is given the same input, and probabilistic otherwise. Call the set of all mea-
surements M, a specific choice of measurement device a ∈M and the set of possi-
ble outcome results of this measurement X . Then the measurement is defined by
its response function which gives for each outcome and each input the probability
of observing the outcome. More specific, it is defined as the probability function
f a : Λ⊗X → [0, 1]. It is normalized such that for any configuration one of the out-
comes will occur, i.e.,

∑

x∈X f a (λ,x ) = 1 for all λ ∈ Λ. We note, that for many practi-
cal applications, the set of possible measurement is given as a parameterized fam-
ily. For instance, in a typical experiment with polarized photons, any measurement
can be described by giving the corresponding parameters in Bloch representation.
We will identify the symbol of the measurement with the set of its settings.

Combining the preparation and the measurement, we see that the probability of
observing the outcome x while measuring the classical model in the state µ with
measurement device a is given as

Prob(x |a )µ =
∫

Λ

µ(dλ) f a (λ,x ). (2.3)

We will use the symbol P for such probability distributions and, if clear from the
situation, omit the explicit reference to the state, i.e., simply write P(a |x ).

We note here, that in practice one is usually not interested in combining an arbi-
trary preparation with an arbitrary measurement, but is concerned with a specific
situation and only interested in experiments that will give meaningful results. This
specific situation, or context, will then define the range of Λ and the structures of
possible measurements f a . We will be only interested in experiments with a mean-
ingful context. We further note that we will consider finite X . In general extension
to continuous X and probability densities P are possible.

A classical model can be transformed into another classical model by renaming
the measurement outcomes, or the measurement settings. This implies, that for
the study of the structure of such models only the cardinality of X and M are of im-
portance. Let us denote the number of settings by M = (|M|) and of outcomes as
K = |X |. In general, the number of outcomes could be different for every measure-
ment, but we can always enlarge a measurement by adding outputs that never oc-
cur, so it is no restriction to set the number of outcomes equal. We have considered
here a single party experiment, so we denote the set of all probability distributions
obeying a classical model in this case as C(1, M , K ).
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If two probability distribution P1(x |a ) and P2(x |a ) both obey a classical model,
then also any convex combination αP1(x |a ) + (1−α)P2(x |a ) for α ∈ [0, 1]. This can
be done by uniting the configuration spaces and drawing either a configuration cor-
responding to P1 or P2 with probability α. As this holds for any probability distribu-
tion with classical model, the space C(M , K ) is convex and as such generated by its
extreme points. The extreme points of C(M , K ) are exactly the deterministic prob-
ability distributions. The proof follows from the above considerations: suppose, P
is extremal, but not deterministic. Then there exists a λ for which at least one re-
sponse can give two outcomes. But then we can enlarge the model by exactly this
random choice, which constitutes a non-trivial convex decomposition which con-
tradicts extremality. Conversely, if P is deterministic, we can always find a model in
which the configuration is directly given as the outcomes. But any decomposition
of such a model is necessarily trivial.

We will in the following consider only models with finite M and K , in which case
there are only a finite number deterministic probability distributions, namely M K .
Then, C(1, M , K ) is generated by a finite number of extreme points and thus a poly-
tope, which we will also call the classical polytope. With this consideration, we can
decide the question whether a probability distributions obeys a classical model by
checking, whether it is contained in the classical polytope.

We will show next that the polytope C(1, M , K ) is not enough to distinguish quan-
tum from classical physics, i.e., it is always possible to construct a classical model
for any single quantum system. To do so, we note again that a quantum experiment
is defined by a state ρ and a set of measurement settings A, where each specific
measurement with outcomes from a setχ corresponds to a POVM Fa = {Fa (x )}with
∑

x Fa (x ) = 1. Then the probability of observing outcome x while measuring a is
given as P(x |a ) = tr (ρFa (x )). Please note also that we will restrict to the discussion
of normal states.

We will now present two classical models to describe a generic single-party quan-
tum experiment:

In the first model, we choose the space of hidden variables as the set of all quan-
tum states Λ=S(M), the state that is produced by the source equal toω (hence the
measure is trivial) and the response function f a (λ,x ) = ω(Fa (x )). This model has
the same output statistics as the quantum model and caries the description of the
quantum state itself as classical variable. This model has a deterministic prepara-
tion, as only one configuration is prepared all the time, but defines in general non-
deterministic response functions. This means, that there is no way to determine
the outcome of a specific event, even if the hidden variable is known.

In the second model, we will choose the space of the classical configurations
Λ as Λ = X |M|. Each instance of the hidden variable λ ∈ Λ will then be of the
form λ = {x1,x2, . . . ,x |A |}, where each of the numbers is chosen with probability
Prob(λi = x ) = P(x |i ). Then the response function f a is simply the function pick-
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ing the a -component from λ. Then by definition the outcome probability of the
hidden variable model will again equal the quantum mechanical prediction. In
this case the model has a non-deterministic preparation but deterministic mea-
surement outcomes. Here, the knowledge of the value of λ in a single run of the
experiment would allow the determination of the outcomes of all measurements at
the same time.

We note here, that the construction of the second model can also be used to
turn an arbitrary classical model into a classical model with deterministic response
function. This observation can be useful if one wants to exclude the existence of
a general model. It tells us, that the non-existence of a model with deterministic
response functions will also exclude any other model.

These previous examples show, that an arbitrary quantum experiment can be de-
scribed with a classical model, as long as only one system is considered. Next we
turn to the bipartite situation. For classical models, the bipartite situation is as fol-
lows:

Definition 2.2.1. For a given bipartite experiment with measurement settings a ,b
from finite sets of possible measurement settings MA ,MB and outcomes x , y from fi-
nite sets XA , X B we denote the outcome probability distribution by P(x , y |a ,b ). We
say that this distribution obeys a classical model, if there exist a space of configura-
tions Λ, a probability measure µ and local response functions f a : Λ×XA → [0, 1] for
a ∈MA , g :Λ×X B → [0, 1] for b ∈MB such that

P(x , y |a ,b ) =

∫

µ(dλ) f a (λ,x )g b (λ, y ). (2.4)

We note, that one could also have devised a model with distinct configuration
spaces for both sides. But in this case one could always enlarge the space to include
both, so this case is included in our definition. Again, the set of all bipartite prob-
ability distributions generated by finitely many extreme points and hence again a
polytope, which we denote by C(2, ~M , ~K ). Here ~M = (M A , M B ) denotes the number
of measurement settings for Alice and Bob, where ~K = (KA , K B ) denotes the num-
ber of outcomes. If the number of measurements and outcomes coincide we write
C(2, M , K ).

Let us now compare to the structure used within quantum mechanics. We denote
the joint Hilbert space of systems A and B as HA B =HA ⊗HB , the state ρA B and the
measurements FA and FB respectively. Then the probability for finding a pair of
outcomes x , y given the measurement settings a and b is given as

P(x , y |a ,b ) = tr
�

ρA B FA ⊗ FB
�

. (2.5)

We will call the set of all probability distributions with a bipartite quantum model
as Q(2, M , K ). It also is a convex set, but in contrast to C it is no polytope.
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We note again, that if we do not need to respect the locality requirement of 3.2,
we can always find a classical model in the form 2.3 as

P(x , y |a ,b ) =

∫

µ(dλ) f (a ,b )(x , y ). (2.6)

It is clear, that this polytope C(1, M 2, K 2) will be larger then the polytope C(2, M , K )
corresponding to 2.5. As an example, if we consider two measurement settings per
side and two possible outcomes per measurement, we will in the first case have a
polytope with 44 extreme points, where in the second case it has only 22 · 22. This
should certainly not be surprising, as the one party setting does not require locality
and hence both outcomes might depend on both settings, where in the bipartite
case there is no dependence in the A laboratory on the settings and outcomes in
the B laboratory. But this no-signalling principle will actually be even a further dis-
tinction. The study of these non-signalling correlations well not be part of our in-
vestigation, but we briefly note that all non signalling correlations form a polytope,
called P , and there are proper inclusions C(2, M , K )⊂P(2, M , K )⊂ C(1, M 2, K 2). For
the M = K = 2 example, P has 24 vertices. For further reading we refer to [PBS11]
and references given therein.

The above reasoning helped to clarify, under which conditions bipartite quantum
probability distributions cannot be modeled with a classical model, namely if P ∈
Q(2, K , M )\C(2, K , M ). We note that the same reasoning also holds for any number
of parties N 6= 1, i.e., P is a proper quantum mechanical probability distribution, if
it lies in Q(N , M , K )\C(N , M , K ).

To answer the question, whether a given probability distribution is not-contained
in C, one wants to construct appropriate tests. One possibility would naturally be to
find a complete parametrization of C, which is in principle possible but nut an easy
problem. For further reference we refer to [QIP]. A more natural question is then,
whether it is possible to find functions of P that can certify that P is not part of C.
Such functions are also called witnesses. One type of witness is defined via the faces
of the polytope. Every face will give rise to a linear function inequality, and points
inside the polytope will fulfil all these inequalities. Conversely, if a single inequality
of this type is violated, then the probability distribution is not contained in C. These
inequalities will also be called Bell inequalities.

We note, that the nomenclature here is not so strict: also non-linear inequalities,
or inequalities that do not correspond to a face of maximal dimension are some-
times called Bell inequalities. We will only consider inequalities corresponding to
proper faces in the following.

We have seen, that the classical polytope is generated by a finite number of Bell
inequalities. The quantum set Q is on the other hand not a polytope, but as a
convex set generated by its extreme points. The determination of these extreme
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points can again be done by optimizing linear functionals, which were introduced
by Tsirelson as a quantum analogue to the Bell inequalities and are today called
Tsirelson inequalities [Tsi80]. It is clear that any Bell inequality will also define a
Tsirelson inequality. These inequalities can be used to distinguish quantum me-
chanical probability distributions from the aforementioned non-signalling correla-
tions P .

For the (2, 2, 2)-setup the structure is especially simple, as all Bell inequalities
are equivalent to the CHSH-inequality [Fin82]. If we call the maximal value of the
CHSH-inequality β , it follows that for the classically allowed maximum βC = 2, for
quantum βQ = 2

p
2, while for non-signalling βP = 4.

2.3. Gaussian systems

We will now review the treatment of systems within the Gaussian regime through
their Wigner function [Wig32]. For a concise introduction to quantum optics we re-
fer to [WM04], a basic mathematical treatment of unbounded operators with focus
on canonical conjugate pairs can be found in [RS78], a good summary of general
distribution functions is [HOSW84] and for a review on Gaussian systems with fo-
cus on quantum information see [WPGP+12].

We have seen in the previous section that in general quantum systems do not
permit a description in familiar classical terms. Especially, if one considers classical
physics, the expectation value of any observable f can be described as a configura-
tion space average of the system in state µ as




f
�

µ =

∫

µ(dλ) f (λ). (2.7)

If one considers the configuration space of the movement of a single particle in
one dimension, we can describe its configuration by specifying the position x and
momentum p , so the associated Hilbert space will become L2(R2). In this case, we
can reformulate 2.7 by introducing a configuration space density Pµ(x , p ) such that




f (x , p )
�

µ =

∫

dx dp f (x , p )Pµ(x , p ). (2.8)

In quantum mechanics on the other hand, the expectation value of a system in
state ρ for an operator F is given as

〈F 〉ρ = tr (Fρ). (2.9)

We will now review how to derive a description for the behavior of light fields that
is similar to the classical configuration space description and works well if mea-
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surements of quadrature operators, which will be defined similar to position and
momentum, are considered.

This will be done by associating to the system a phase space together with a set
of operators, called X and P , that form a canonical conjugated pair. Then we can
associate a (quasi-) probability function, called Wigner function Wρ to the quan-
tum stateρ such that for any quantum mechanical measurement operator F (X , P),
which is a Weyl ordered function of the canonical conjugated variables, there exists
a classical function f (x , p ) such that

〈F 〉ρ = tr (Fρ) =

∫

dx dp Wρ(x , p ) f (x , p ). (2.10)

This formulation was introduced by Wigner in [Wig32] and generalized to all Weyl
ordered functions in [Moy49]. For the history of the Weyl order we refer to [Wey50]
and [HOSW84].

A single bosonic mode of an optical system can be described with respect to a
conjugated pair of unbounded, self-adjoint operators (R1, R2), also called field op-
erators, that obey the canonical commutation relation

[R1, R2] = 2i . (2.11)

Here where we note that the value of the constant on the right depends on the cho-
sen scale system, where we choose the convention that the vacuum state will have
variance 1, which corresponds to a value ħh = 2. We will associate to each mode
space of two real dimensions, which in remembrance of classical physics is also
called the the phase space of the system, together with the symplectic form

Σ=

�

0 1
−1 0

�

. (2.12)

We will be interested in the detection of quadrature components of the light field,
which we will call the amplitude operator R1 = X and phase operator R2 = P . We
note, that in other publications these operators are also designated as position and
momentum operator.

In an n-mode system there will likewise be 2n field operators, two for each mode,
which we will call {Ri } with i = 1...2n . In this notation the field operators with odd
index correspond to amplitude the ones with even index to phase. The symplectic
form for the n-mode system is then given by

Σ=
n
⊕

k=1

Σ. (2.13)

With this, the commutation relation between two field operators is given as [R j , Rk ] =
2iΣ(j ,k ), for j , k ∈ {1, 2n}.
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Consider again a system with n-modes. We denote by ξ ∈Rn a vector in phase
space and by ~R = (R1, R2, ..., R2n−1, R2n )T the vector of field operators. We define the
family of Weyl operators (c.f. [HOSW84]) as

W (ξ) = exp
�

iξTΣ~R
�

. (2.14)

If one orders the components of the phase space vector accordingly, i.e., ξ =
(p1,x1, ..., pn ,xn ), this expression becomes

W (ξ) = exp

 

i
n
∑

i

(p P −x X )

!

, (2.15)

and one observes that the operator implements phase space translations. We
have now the tools to make the connection between phase space function and the
quantum state. Let ρ denote the quantum state, then the characteristic function of
the state is given as

χ(ξ) = tr
�

ρW (ξ)
�

, (2.16)

and the Wigner function of the state is given as the symplectic Fourier transform

Wρ (ξ) =
1

2π

∫

dηχ(η)exp(iηΣξ). (2.17)

Up to now, the construction has been general and any quantum state has an
associated Wigner function. We will now specialize on states with a specific type
of Wigner function, namely Gaussian states. Their defining property is, that their
Wigner function is Gaussian, i.e., is completely described by its first and second
moments.

Definition 2.3.1. Consider a n-mode quantum system with field operators Ri , i =
1, ..., 2n. We call a state ρ a Gaussian state, if its Wigner function is of the form

Wρ (ξ) =
1

(2π)n
p

det (Γ)
exp

�

−
1

2
(ξ−ξ0)TΓ−1(ξ−ξ0)

�

, (2.18)

whereξ0 = tr
�

ρ~R
�

is the mean expectation vector andΓwithΓi ,j = tr
�

ρ
¦

Ri , R j

©

+

�

the covariance matrix.

We will be using the standard nomenclature for Gaussian states, c.f. [WM04].

Definition 2.3.2. We will call a Gaussian state

the vacuum state ξ0 =~0 Γ=1
a squeezed vacuum state if ξ0 =~0 and Γ 6=1

a coherent state ξ0 6=~0 Γ=1
.
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In what will follow, we will always consider vacuum states, and usually in a bipar-
tite setting. In this case, the state is defined by the covariance matrix, which we will
write as

Γ=

�

A C
C T B

�

, (2.19)

where the blocks A and B correspond to the subsystems of Alice and Bob and C to
the correlations.

Positivity of a state can be expressed in terms of a covariance matrix as follows:

Lemma 2.3.3. For an N -party Gaussian state it holds

ρ ≥ 0⇔ Γ+ iΣ≥ 0. (2.20)

The question, whether a state is separable is in general a bit more involved, but
if one is only interested to decide separability for a N party setting in a 1 to K split,
there is a necessary and sufficient criterion.

Lemma 2.3.4. A state with covariance matrix γA B is entangled, if

γA B +

�

Σ 0
0 −Σ

�

< 0. (2.21)

The covariance matrix is always given with respect to a local choice of basis states.
Many interesting properties, such as entanglement and the optimal extractable key
rate, do not depend on these choices. One can therefore choose a basis bringing
the covariance matrix into a simplified form, the Simon normal form [Sim00]

Γ=











λa 0 cx 0
0 λa 0 −cp

cx 0 λb 0
0 −cp 0 λb











with λi ≥ cx ≥ |cp |. Here cx and cp describe the correlations between Alice’s and
Bob’s outcomes of the amplitude and phase measurements. These quantities char-
acterize the state independent of any local basis transformations. However, their
dependence on the original (e.g., measured) matrix Γ involves q diagonalization-
like process of bringing Γ into this form by suitable local symplectic transforma-
tions. It is therefore often easier to use local symplectic invariants with a direct
expression in terms of Γ. We use the set [Sim00]

I1 = det[A] =λ2
a (2.22)

I2 = det[B ] =λ2
b (2.23)

I3 = det[C ] =−cx cp (2.24)

I4 = det[Γ] =
�

c 2
x −λaλb

�

�

c 2
p −λaλb

�

. (2.25)
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We will further define some abbreviations: Consider a bipartite Gaussian state
ρA B with covariance matrix Γ. Comparing with 2.19, we call the covariance ma-
trix of the reduced state on Alice’s side ΓA = A and the reduced state on Bob’s side
ΓB = B . Without loss, we always call the upper-left entry of any 2× 2-submatrix
the amplitude quadrature X and the lower right entry the phase quadrature P . If
Alice and Bob both perform amplitude measurements, the probability distribution
of outcomes will again be a Gaussian distribution with covariance matrix

ΓX :=

�

A11C11

C T
11 B11

�

=

�

Γ11Γ13

Γ31Γ33

�

, (2.26)

and likewise for the joint phase measurement:

ΓP :=

�

A22C22

C T
22 B22

�

=

�

Γ22Γ24

Γ42Γ44

�

. (2.27)
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3. Einstein-Podolski-Rosen Steering

Overview and Contributions

This chapter reports on our study of Einstein-Podolski-Rosen steering. The theoret-
ical work was performed in collaboration with Jörg Duhme and R.F. Werner in the
quantum information theory group in Hannover. The experiments have been car-
ried out in the group of R. Schnabel at the Albert Einstein Institute in Hannover by
T. Eberle and V. Händchen in cooperation with S. Steinlechner and A. Samblowski.
Results for the have been published in [EHD+11b, EHD+11a] for the two-way situ-
ation and in [HES+12] for the one-way situation.

3.1. Introduction and definitions

The concept of steering was introduced by Schrödinger in 1935 as part of a reply
to the EPR paper (see section 1.2). The main observation in his example was, that
if one interprets the wave function of pure states as the finest possible description
of a quantum system, then quantum mechanics contains a process, that does not
respect locality. The modern concept of steering was introduced in [WJD07], where
it was also shown that it is equivalent to a criterion previously introduced by M.
Reid in [Rei89]. For a review on the early years and experimental implementations,
we refer to [RDC+09].

There are two approaches to the description of the steering effect. One is based
on the formalism of classical models, as introduced in section 2.2 and will allow us
to place steering in a correlation hierarchy. The second one is more operational and
based on the question whether given states have a common refinement. We will
start by giving an example to illustrate the effect in the operational approach. Then
we will give the general definition and show the equivalence. Our focus will be on
Gaussian systems, and we discuss steering properties for this regime in a bipartite
and tripartite scenario.

In what follows, we will always assume that two, or more parties in their respec-
tive laboratories perform the experiment, where the laboratories are space-like sep-
arated, and that the parties will be named by Alice, Bob and Charlie.

We note, that our definition of steering corresponds to [WJD07], where the ideas
of Schrödinger were formalized and the modern definition was given. There ex-
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ist a different use of the term “steering” in the literature in connection to so called
“steering-ellipsoids”, which is based on [Ver01]. Although based on similar consid-
erations, this notion of steering is not equivalent to ours and will not be discussed
in what follows.

We start by describing the steering effect for a concrete qubit example. The orig-
inal argument was made using the EPR state, as given in [EPR35]. We will instead
base our description on a pair of maximally entangled qubits, which allow a clearer
description.

Let ρA B ∈ B(C2⊗C2) be a maximally entangled state. Then the reduced state on
Bob’s side ρB will be maximally mixed, i.e., ρB = 12/2. This state permits an infi-
nite number of decompositions into pure states, i.e., any pair of antipodal points
on the Bloch sphere will give such a decomposition. The observation for maximally
entangled states is now, that whenever Alice and Bob perform the same projective
measurement on their local states, they will always find the same outputs. If Alice
performs e.g. a PauliσX measurement and obtains the result+1, Bob’s conditioned
state is also in the +1 eigenstate of σX . This means that in this case the decom-
position corresponding to Bob’s local state is in the σX basis, and likewise if Alice
measures Y in the σY basis. This means that the local state can be decomposed in
two ways

ρB = 1/2|ψ+X 〉〈ψ
+
X |+1/2|ψ−X 〉〈ψ

−
X |= 1/2|ψ+Y 〉〈ψ

+
Y |+1/2|ψ−Y 〉〈ψ

−
Y |, (3.1)

whereψ denotes the respective pure eigenstate. This decomposition is now in con-
flict with the idea that the pure state is the finest description of a single quantum
particle. If this was true, then either only one of the decompositions is realized in
the specific instance and the choice which one depends on the measurement on
Alice’s side, or both are realized at every instance. The first possibility conflicts with
the space-like separation of Alice and Bob, as the decomposition will take place in-
stantly. The second possibility conflicts with the idea that the pure state is the finest
description possible for the individual system.

As noted by Schrödinger in [Sch35b], this contradiction will always occur if the
states on Bob’s side, conditioned on a specific measurement outcome on Alice’s
side, are pure. In the same paper he also showed that this property does not change
under local unitary dynamics, which is clear when considering the local states at
Bob’s side in the Bloch sphere representation. If the local states are not pure, how-
ever this effect vanishes at some point, as we will show now.

Denote by ρA B (w ) = w |ψ〉〈ψ|+ (1−w )1/4, w ∈ [0, 1], a bipartite Werner state
[Wer89] where ψ is a maximally entangled state. If we further consider Alice mea-
surement to be eitherσX orσY , the local states on Bob’s side will be in the equato-
rial plane of the Bloch sphere (in a suitable basis). The situation is depicted in Fig.
3.1(a). If the parameter is set to w = 1 the four restricted states are pure, hence on
the surface of the Bloch sphere. In the parameter is w = 0 they are maximally mixed
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and coincide in the origin. For any intermediate value, they are equally distant to
the origin, the distance given by w . We denote the partial states on Bob’s side con-
ditioned that Alice measured in basis a ∈ {0, 1} and received outcome x ∈ {+,−} as
ρB
(a ,x ).

ρ
(+,1)

B

ρ
(-,1)

B

ρ
(+,2)

B

ρ
(-,2)

B

ρ
(+,1)

B

ρ
(-,1)

B

ρ
(+,2)

B

ρ
(-,2)

B

ω

ω

ω

ω

ψ
X ψ

X 

ψ
Y 

ψ
Y 

}w

(a) (b)

Figure 3.1.: Common refinement for qubits. The circle circle indicates the X-Y
plane of the Bloch sphere (a) Reduced states on Bob’s side for Werner
states corresponding to values 1 (red, pure states), w (green, mixed)
and 0 (blue, maximally mixed). (b) A refinement of the states ρB

into states ω.

A common refinement of the states is found, if there exist states that correspond
to outcomes for both possible measurements on Alice’s side, which we denote by
ωx1,x2 , where x1 corresponds to the first and x2 to the second measurement. This
means, there are numbers p1, p2, p3, p4 ∈ [0, 1] such that

ρB
(+,1) = p1ω+++(1−p1)ω+− ρB

(−,1) = p2ω−++(1−p2)ω−−

ρB
(+,2) = p3ω+++(1−p3)ω−+ ρB

(−,2) = p4ω+−+(1−p4)ω−−.

In Fig. 3.1(b) we have drawn an example of a common refinement. It is clear, that
this common refinement will usually not be unique, except all the refining states
are pure and inside the equatorial plane. This corresponds to the maximal case for
which a common refinement is possible and will occur at w = 1/

p
2, as can be seen

from the construction.
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From the previous example we have seen some basic features of steering: a state
displays steering, if the states on Bob’s side conditioned on measurement on Alice’s
side do not permit a common refinement. The construction of a common refine-
ment becomes easier the more mixed the local states are.

We will next give a the definition of steering based on the existence of classical
models. We recall from section 2.2, that a probability distribution has a classical
model, if there exist a parameter space Λ and response functions f , g such that

P(x , y |a ,b ) =

∫

µ(dλ) f a (λ,x )g b (λ, y ). (3.2)

Let us now define an important subclass of these states, namely those in which
the local response functions are realizable within quantum mechanics.

Definition 3.1.1. A probability distribution obeys a local quantum model on the A
side, if there is a Hilbert space HA , a collection of quantum states ρA (λ) ∈ S(HA ) and
POVMs Fa = {F x

a } such that f (λ, a ,x ) = tr (ρA (λ)F x
a ).

A bipartite probability distribution is called separable, if it obeys a local quantum
model for both sides, i.e., if it holds that

P(x , y |a ,b ) =

∫

µ(dλ)tr (ρA (λ)F x
a )tr (ρB (λ)G

y
b ). (3.3)

A probability distribution which is not separable is called entangled.

Observe, that the notions of separability and entanglement are commonly de-
fined for states. In the above definition only the states depend on the hidden vari-
able, so we can write

P(x , y |a ,b ) = tr (ρA B F x
a ⊗G y

b ), (3.4)

with

ρA B =

∫

µ(dλ)ρA (λ)⊗ρB (λ). (3.5)

A state is called separable, if it has such a decomposition into product states. Thus,
every separable probability distribution has a realization with a separable state.
Conversely it is straightforward to see, that all probability distributions that arise
by local measurements of separable states are again separable in the above sense.
In the following, we will identify the notion of separability for states and probability
distributions when appropriate.

The notion of steerability can now be described in this framework. The distinc-
tion between general and separable states has been, that for separable states we can
assign a local model that is quantum for both Alice and Bob. The steering property
now emerges, if one only makes this requirement for one side.
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Definition 3.1.2. We say that a probability distribution is non-steering from Alice to
Bob, if we can find a classical model for Alice’s side and a quantum model for Bob’s
side, i.e., if it holds that

P(x , y |a ,b ) =

∫

µ(dλ) f a (λ,x )tr (ρB (λ)G
y
b ), (3.6)

otherwise it its called steering.

We note here, that steering is, in contrast to the existence of a general LHV model
or the notion of separability, directed, i.e., we need to distinguish between steering
from Alice to Bob and from Bob to Alice. We often omit the explicit mentioning of
the direction, if the direction is clear from the context.

Bell ineq. violated ⇒ Steering ⇒ Entanglement

LHV Model ⇐ Non-Steering ⇐ Separability

Figure 3.2.: Sketch of implications.

The three notions (LHV, steering, separability) form a hierarchy, which can be
seen from the definitions. If a distribution (or a state) violates at least one Bell in-
equality, it is steering and if it is steering it is entangled. Conversely, if it is separable
it cannot be steering, and if it is not-steering, it has a LHV model. We have summa-
rized the relations in Fig. 3.2.

The natural question now is, whether these implications are actually strict. In
the pioneering work [Wer89] a model for qubits was constructed that showed that
there exist entangled states which admit a classical model for any projective mea-
surement. This showed that at least one of the implications must be strict. The
model constructed there was actually of the form 3.6, thus of the steering type (al-
though this was not mentioned in the paper). In [Bar02] it has been show that there
are entangled states admitting a classical model for all POVM measurements on
qubits, where the model constructed was not of steering type. We will see below,
that all three implications are strict in the Gaussian regime, but for a general setting
with arbitrary dimensions and arbitrary measurement, the strictness is not clear.

We will next present a formulation that was derived in [WJD07, CJWR09]. Com-
paring to the above reasoning about separable states, we note that the requirement
on Bob’s side corresponds to a restriction on his partial state. Denote by ρB the
state observed by Bob. Being a quantum state, this state admits different decom-
positions in purer states of the form ρB =

∫

µ(dx )ρx . This can of course be done
for any quantum state and this decomposition is non-unique, unless the state is it-
self pure, in which case it is trivially non-steering. The notion of non-steering now
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requires, that there is in fact a “true” decomposition of the state that corresponds
to the local hidden variable ρB =

∫

µ(dλ)ρλ. This decomposition is in particular
independent of the choices and results made on Alice’s side. In the literature, this
state is also referred to as the local hidden state (LHS).

Finally, we will return to the example from the beginning of the section and define
the formalism of common refinements in a general sense.

Corollary 3.1.3. Bob’s local state ρB corresponds to a local hidden state, if the states
restricted to Alice’s settings and outcomes ρB

(a ,x ) have a common refinement, where

ρB
(a ,x ) is the state conditioned on the event that Alice has measured with measurement

a and observed outcome x .

Proof. Suppose, there is a local hidden state. Then we can sort the states in the de-
composition of Bob’s side according to the outcomes on Alice’s. We can in fact make
a regrouping with respect to any outcome of all possible measurements on Alice’s
side, as her side is just classical. Denote by x ∈ |X ||A | the vector corresponding to the
output for all measurement settings on Alice’s side. Then we have a decomposition
of ρB as

ρB =
∑

x

∫

µ(dλ)p (x |λ)ρB (λ) (3.7)

=
∑

x

ρ
x
B , (3.8)

where ρ
x
B =

∫

µ(dλ)p (x |λ)ρB (λ) denotes the average with respect to the hidden
variable. This gives a refinement of the state, as any restriction to a specific result
can be recovered by taking the appropriate average

ρB
(a ,x ) =

∑

x ,(x )a=x

ρ
x
B , (3.9)

where it is important that by construction these states are again proper quantum
states.

Conversely, if we have found such a refinement, we know that there exists a local
hidden state model, which is just given via this decomposition. Observe, that this
common refinement is usually not unique. If the refinement is unique, the refining
states are necessarily pure.

3.2. Steering in the Gaussian regime

We have seen in the previous section, that steering is a quantity that lies in-between
separability and the violation of a Bell inequality. In general, these notions do not
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have to coincide. In [Wer89] it was first shown, that not all three can be equiva-
lent by giving an explicit classical model that was not separable. Indeed, the model
presented was actually a one-sided classical model. In [WJD07], using results from
[AGT06], it was shown, that all three notions are strictly different when consider-
ing qubit systems and projective measurements. In general, the question is not
answered. The first explicit demonstration of the effect experimentally was done
in [OPKP92]. For a recent review on the theoretical and experimental progress we
refer to [RDC+09].

We are interested in the Gaussian regime, that is, in experiments using Gaus-
sian states and homodyne measurements. Here the notion of steering is a sensible
benchmark for experiments. To see this, first note that no experiment in this regime
will ever violate a Bell inequality. This follows directly from the definition of Gaus-
sianity: any Gaussian state has a positive Wigner function, which in this case can
be interpreted as an outcome probability distribution of values, e.g., for a bipartite
system with an outcome vector {xA , pA ,x B , p B }. The classical hidden variable here
is just such an outcome tuple sent to Alice and Bob and response functions that
just read out the respective values. Still, there is not always a one-sided classical
model. To see this, observe that in the construction the measurement values on
both sides were preexisting. This also implies that this model is not necessarily re-
alized by quantum mechanics, e.g., if the measurement operators corresponding to
classically joint measurable quantities do not commute.

On the other hand, the Gaussian regime gives a fairly simple criterion for the
steering property. This is due to the fact, that all properties of the state can be de-
duced from its covariance matrix. We start by exploring the definition (3.1.2) in the
Gaussian regime. Our formulation is similar to the presentation in [CJWR09]

Theorem 3.2.1. Consider a Gaussian state ρA B with covariance matrix

γ=

�

A C
C T B

�

(3.10)

under Gaussian measurements, so probabilities are given as

P(x , y |a ,b ) = trρA B Wa ,b (x , y ). (3.11)

Then the following conditions are equivalent:

(1) P is non-steering, i.e. of the form:

P(x , y |a ,b ) =

∫

µ(dλ) f a (λ,x )tr (ρB (λ)G
y
b ), (3.12)

with a ,b ∈ {X , P}, Gb Gaussian measurement and ρB (λ) a Gaussian state.
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(2) It holds that
γ+ iΣB ≥ 0. (3.13)

where ΣB = 0⊕Σ = 0⊕
�

0 1
−1 0

�

denotes the symplectic form on Bob’s sys-

tem.

(3) There exists a matrix UB with

γ≥
�

0 0
0 UB

�

and UB + iΣ≥ 0. (3.14)

Proof. We will proof the three implications sequentially.

(1)⇒ (2) Call the measurements under consideration Ra , Rb , where {Ra } are the classi-
cal observable on Alice’s side. Consider an arbitrary combination X =

∑

ca Ra+
∑

cb Rb , ca , cb ∈ C. Then, taking the expectation value of X ∗X in the given
state, and observing that the Ra operators commute with each other and the
Rb s, the positivity condition 〈X ∗X 〉 ≥ 0 is equivalent to

®�

ca

cb

�

|(γ+ΣB )

�

ca

cb

�¸

≥ 0, (3.15)

which gives condition (2).

(2)⇒ (3) We set UB as the Schur complement UB = B − C T A−1C . Then from (2) it
follows:

0 ≤ inf
φAφB

〈
�

φA

φB

�

|(γ+ iσB )|
�

φA

φB

�

〉

= inf
φAφB

(〈φA |AφA〉+ 〈φA |CφB 〉+ 〈CφB |φA〉+ 〈φB |B + iΣBφB 〉)

Now setψA =
p

AφA

= inf
ψAφB

(〈ψA |ψA〉+ 〈A−1/2ψA |CφB 〉+ 〈CφB |A−1/2ψA〉+ 〈φB |B + iΣBφB 〉)

= inf
ψAφB

(〈ψA |ψA〉+ 〈A−1/2ψA |CφB 〉+ 〈CφB |A−1/2ψA〉

+〈A−1/2CφB |A−1/2CφB 〉− 〈A−1/2CφB |A−1/2CφB 〉+ 〈φB |B + iΣBφB 〉)
= inf

ψAφB

(||ψA +A−1/2CφB ||2−〈A−1/2CφB |A−1/2CφB 〉+ 〈φB |B + iΣBφB 〉)

=(∗) inf
φB

〈φB |(B −C T AC + iΣB )|φB 〉

Where in the last step (*) we used that the minimum of the norm is attained
forψA =−A−1/2CφB .
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With this, condition (1) follows as

〈φ|γ−
�

0 0
0 Ub

�

|φ〉= 〈φ|γ−ΣB +ΣB −
�

0 0
0 Ub

�

|φ〉 (3.16)

= 〈φ|γ+ iΣB |φ〉− 〈φB |UB + iΣB |φB 〉= 0. (3.17)

(3)⇒ (1) The condition (3) follows via construction of the one-sided classical model.
Alice chooses a Gaussian random variable from the distribution with covari-
ance γ−1⊕U and sends a state with covariance U to Bob. To proof the claim,
we need to show that the quantum mechanical expectation value is recovered
for all Weil operators:

trρA B W (α,β )
qm
=

¬

e aα+bβ
¶

P

=

∫

µ(da db )e aα+bβ tr (ρB W (β ))

= exp

®�

α
β

�

�

�

�

�

�

γ−1⊕U

�

�

�

�

�

�

α
β

�¸

·exp



β |Uβ
�

= exp



ξ|γξ
�

.

This theorem allows us to decide the existence of the classical model by checking
the matrix inequality (3.13). This criterion can equivalently be expressed in terms
of symplectic invariants:

Proposition 3.2.2. Let γ be the covariance matrix of a Gaussian state and the syllep-
tic invariants I2, I4 be defined as in 2.22. Then it holds that

γ+ iΣB ≥ 0⇔
I4

I2
≥ 1. (3.18)

Proof. Observe that the positivity is conserved under local symplectic transforma-
tions, so without loss, we can consider the matrix γ in Simon normal form. We use
the construction via the Schur complement UB an in 3.2.1. Then one calculates

UB = B −C T A−1C (3.19)

=

�

λb 0
0 λb

�

−
�

cx 0
0 −cp

��

1/λa 0
0 1/λa

��

cx 0
0 −cp

�

(3.20)

=







λb −
c 2

x

λa
0

0 λb −
c 2

p

λa






. (3.21)
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Note, that we have λaλb ≥ c 2
x ≥ c 2

p , so the trace of UB is positive and the symplec-
tic positivity is equivalent to the positivity of the determinant, and it holds

0 ≤ det(UB + iΣ) (3.22)

= det







λb −
c 2

x

λa
i

−i λb −
c 2

p

λa






(3.23)

= (λb −
c 2

x

λa
)(λb −

c 2
p

λa
)−1 (3.24)

= I4/I2−1; (3.25)

which proofs the claim.

3.2.1. The Reid criterion

The following criterion was proposed by M. Reid in [Rei89]. It is again best under-
stood in terms of the possibility of a local refinement. Suppose, the state is non-
steering, then there exists a local refinement in quantum states. In particular, these
states do obey the uncertainty relation. If on the other hand an uncertainty rela-
tion can be violated when conditioning on certain actions on Alice’s side, such a
refinement is clearly impossible.

Considering the bipartite situation with Gaussian states and homodyne mea-
surements, the Reid criterion is given as follows:

Var (Xb |Xa ) ·Var (Pb |Pa )≥ 1. (3.26)

Here Var (Xb |Xa ) denotes the variance of the variable Xb on Bob’s side, conditioned
on measurement results Xa on Alice’s side. The terminology is such that X is called
amplitude and P is called phase. One should note that there is no canonical way
of assigning these labels to measurement outcomes. In general, this means that
the above inequality has to hold for all measurements, if the state is non-steering.
On the other hand, a violation for any choice of measurement is enough to certify
steering. To see the equivalence to the criteria above, we show that the quantity can
be expressed in terms of symplectic invariants.

Proposition 3.2.3. For a Gaussian state with covariance matrix γ it holds that

Var (Xb |Xa ) ·Var (Pb |Pa ) =
I4

I2
. (3.27)

Proof. First note, that the correlation between Alice and Bob is optimal for mea-
surements whose bases have been chosen such that all diagonal elements in the
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sub-matrices vanish. In this case, we can express the covariance matrix as

γA B =











λ1 0 cx 0
0 λ2 0 −cp

cx 0 λ3 0
0 −cp 0 λ4











(3.28)

The conditional variance of, e.g., Bob’s X result conditioned on Alice’s result is

Var (Xb |Xa ) =λ3(1−
c 2

x

λ1λ3
). With this we can calculate

Var (Xb |Xa ) ·Var (Pb |Pa ) = λ3

�

−
c 2

x

λ1λ3

�

λ4

 

−
c 2

p

λ2λ4

!

= λ3λ4−
λ3

λ2
c 2

p −
λ4

λ1
c 2

x +
c 2

x c 2
p

λ1λ2

= (λ1λ2λ3λ4−λ1λ3c 2
p −λ2λ4c 2

x + c 2
x c 2

p )/(λ3λ4)

= I4/I2

3.2.2. EPR-Steering from a single squeezed source

For the experimental realization of EPR-steering, one needs a sufficiently strong
source of entangled light. We report in the following on an entanglement source
that is build up by a single source of squeezed light, which is entangled with a vac-
uum mode forming vacuum class, or short v-class, entanglement. We will present
data obtained from a measurement that was published in [EHD+11b], which was
to our knowledge the first reported observation of v-class steering. We note that
in more recent experiments, e.g. [EHD+11a], even higher levels of steering from v-
class entanglement have been observed. For a survey on observed steering values,
we refer to [SBES11, RDC+09].

The main ingredient for the experiment, which is schematically depicted in Fig.
3.3, is the source of squeezed light at 1550nm. The squeezing is generated by type I
parametric down-conversion in a periodically poled potassium titanyl phosphate
crystal (PPKTP). This crystal is coated and cut to form a half-monolithic cavity,
which is driven at a pump frequency of 775nm and temperature controlled to achieve
phase matching. The 775nm light is itself created in an up - conversion process in-
side another PPKTP crystal from a 1W driving laser at 1550nm. From this driving
laser, a fraction is removed to form the local oscillators for the homodyne detection.

The variances of the squeezed and anti-squeezed quadrature that is achievable in
this setup is defined by the properties of the squeezer and the initial pump power
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Figure 3.3.: Schematics of the squeezed light source and the homodyne detection.
Red lines indicate the path of 1550nm light, orange lines indicate path
of 775nm light.

(see e.g. [TYYF07] and references therein). We can empirically describe the func-
tional connection as

Varsq ,a sq (P) = 1±ηγ
4
p

P/P0

(1∓
p

P/P0)2+4k ( f )2
, (3.29)

whereη is the detection efficiency, γ the escape efficiency of the squeezing cavity,
P0 is the threshold power and k ( f ) = 2π f /κ the ratio between the Fourier frequency
f and the cavity decay rate κ= (T + L)c/l , where T is the output coupler transmis-
sion, L the intra cavity loss, c the speed of light and l the cavity round trip length.
In the given experiment, fixed parameters were f = 5MHz, l = 79.8mm, and the
parameters that were determined via a fit of the measured data were ηγ = 0.91,
P0 = 445mW and T + L = 0.105.

Results of the measurement are presented in Fig. 3.4. For different values of the
pump power the amplitude and phase quadratures for Alice and Bob were mea-
sured, each for 5 ·106 times, then the conditional variances were calculated and the
corresponding EPR value was determined. Error bars for the pump power were es-
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Figure 3.4.: Experimental results and theoretical model for the conditional vari-
ances of the X quadrature (blue) and P quadrature (red) and the
EPR value (green). The solid lines represent the theoretical model
with excess noise, the dashed lines the model without excess noise for
comparison. For the X quadrature, the two models coincide.

timated from experimental considerations. For comparison, we have plotted the
theoretical curves corresponding to equation (3.29), where we found a good agree-
ment with the experimental findings for the amplitude quadrature (solid blue line),
but a significant deviation in the phase quadrature (red dashed line). This differ-
ence was later identified as classical excess noise due to detector saturation. We
have modeled this pump power dependent effect, by adding a noise of the form

E N (P) =
ηE N

(1−
p

P/P0)2
, (3.30)

where ηE N = 0.016 leads to the best fit.
One should note here, that other sources of noise are in principle also possible,

where a prominent candidate would be phase noise [FHD+06]. We did, however,
not observe significant signs of phase noise in the data, so this source of noise could
be neglected (cf. [EHD+11a, 6.1])

The minimal value for the EPR parameter that was reached in this experiment
was 0.502± 0.006 for a pump power of 225 mW. As mentioned in the beginning of
this section, in later experiments lower values could be realized. In [EHD+11a] a
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value of 0.31 was reached with a similar experimental setup for v-class entangle-
ment. This could be achieved by significantly reducing the excess noise. To our
knowledge, the lowest EPR value observed up to now was 0.04 in an experiment
using two sources of squeezed light at 1064nm [SBES11].

3.2.3. One-way steering

From the definition of steering, one sees that steering is an asymmetric quantity,
i.e., the roles of Alice and Bob in the bipartite case are not interchangeable. This
means that there are cases in which models exist that are classical on Alice’s side
and quantum on Bob’s side, but not vice versa. This is a different situation from the
existence of a general classical model for both sides, i.e., the non-violation of all Bell
inequalities, and also from the existence of a separable quantum model. Between
these notions, there is again a strict hierarchy. The violation of at least one Bell
inequality implies the steering effect for both directions, while the steering effect
for one direction implies the non-separability of the state.

At least one Bell inequality violated
⇒ ⇒

A steers B < B Steers A
⇓ ⇓

State entangled

Figure 3.5.: Implications of directed steering.

We have depicted the logical implications in Fig. 3.5. The question, in which
situation the converse implications holds, is still open. We know that none of the
converse implications hold for qubits, and we will see that the same is also true in
the Gaussian regime. What follows directly from Fig. 3.5 is, that the existence of
one-way steering also implies that entanglement cannot automatically imply the
violation of a Bell inequality, i.e., there have to exist entangled states that do not
violate any Bell inequality.

The existence of a genuine one-way situation, i.e., a situation that is steering in
one direction but not the other, was posed as an open question in [WJD07]. In
[WJD+08], steering with asymmetric strength was discussed for the first time. In
[MFO10], a setup for the observation of one-way steering in the Gaussian regime
was proposed, which is based on an intra-cavity nonlinear coupler and thus dif-
ferent from our approach. While for the general situation, no answer can be given
yet, in the special case of the Gaussian regime such a situation can be experimen-
tally demonstrated, which has recently been performed at the AEI in Hannover
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[HES+12].

Vacuum

Squeezed light source

μ
Loss

Alice Bob
50/50

Figure 3.6.: Sketch of the setup for the demonstration of one-way steering.

The experimental setup is depicted in Fig.3.6. As the source of squeezed light at
1550nm we use again a type I parametric down conversion in a half-monolithic cav-
ity. The entanglement is created by superimposing this light with a vacuum mode
on a 50/50-beamsplitter. The two output beams are then sent to Alice and Bob, who
perform homodyne detection. For details on the setup, compare the description in
section 3.2.2. The asymmetry is then realized by adding variable loss to Bob’s arm
in the setup. The loss is modeled by sending the light through a half wave plate and
a polarizing beam splitter.

The experimental results, together with a numerical simulation are depicted in
Fig. 3.7. As criterion for the steering effect, the Reid-EPR value was calculated from
the experimental data for both directions, i.e.

EPR(A |B ) =Var (Xa |Xb ) ·Var (Pa |Pb ) and EPR(B |A) =Var (Xb |Xa ) ·Var (Pb |Pa ).
(3.31)

The advantage of using the conditional variances is, that no full tomography is
required. As we have seen in section 3.2.1, for the correct choice of local basis, the
Reid-EPR value will exactly match the minimal value that is obtained by evaluating
the EPR value from the symplectic invariants

EPR(A |B ) =
I4

I1
and EPR(B |A) =

I4

I2
. (3.32)

For the numerical simulation we used a model with input squeezing and anti-
squeezing as free parameters and the excess noise fixed to 1%. The best fit for
the two graphs in Fig. 3.7 is then obtained for a squeezing of 10.2 dB and an anti-
squeezing of 15.6 dB. The squeezing value of 10.2 dB was also directly confirmed
from an independent measurement. To determine the statistical variation subsets
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Figure 3.7.: Experimental results (dots) and theoretical model (lines) for the EPR
values for different additional losses on Bob’s side. Blue: EPR(A|B),
Red: EPR(B|A). The shaded areas indicate the regions with two-way,
one-way and no steering.

of length 106 were chosen for 104 times from the original sample of 5 ·106 measure-
ment values. These deviations have been found to be relatively small (< 0.02) and
hardly visible in the figure. The error bars on the vacuum contribution was esti-
mated from the experimental situation.

What can be seen from Fig. 3.7 is, that the experimental and theoretical results
match nicely. For a vacuum contribution below ca. 40%, the steering effect is vis-
ible in both directions, for a contribution above ca. 70%, no steering effect can be
observed anymore. In the intermediate region one-way steering is visible in which
the steering effect is present from Bob to Alice, but not vice versa.

3.2.4. Three partite situation

In the previous section we have seen that in the bipartite situation directed steering
can be observed. If one considers a multi-party scenario, there arise a variety of
possible situations in which a certain fraction of the parties might or might not be
able to steer another fraction. As an example we will now discuss the three partite
case between parties Alice, Bob and Charlie (A,B and C ).

46



One first notes, that there are two different situations to be considered. The first
are bipartite steering situations, in which one party steers a second party while the
third party is ignored. These bipartite restrictions will also be called the one-to-
one steering case. For instance one could ask, whether Alice is able to steer Bob’s
system, which we will call steering from A to B (A → B). The second situation to
consider is, when two parties are treated as one system, which we refer to as two-
to-one or one-to-two steering. In this case, one could ask, whether Alice is able
to steer Bob and Charlie (A → BC steering) or likewise if Bob and Charlie are able
to steer Alice (BC → A steering). One should note here, that the term steering is
even more misleading than in the bipartite case. An operational meaning has to
be given first in terms of the probability distributions and the existence of a local
model. If the system is, say, A to BC non-steering then there exists a classical model
for Alice and a joint quantum model for Bob and Charlie producing the observed
correlations. Likewise, the BC to A non-steering system has a joint classical model
for Bob and Charlie and a quantum model for Alice. In this situation, we can extend
theorem 3.2.1 to the multi partite case and get the extension of condition (3.13) as
practical tool to check steering in the three partite case.

Definition 3.2.4. A Gaussian state with covariance matrix γ is A→ BC non-steering,
if it holds that

γ+ iΣBC ≥ 0, (3.33)

where ΣBC =







0 0 0
0 Σ 0
0 0 Σ






is the symplectic form on the BC system.

Likewise, the system is BC → A non-steering if it holds that

γ+ iΣA ≥ 0, (3.34)

where ΣA =







Σ 0 0
0 0 0
0 0 0






is the symplectic form on A.

One should note here, that the interpretation of the classical model treats two of
the systems as one. In a A → BC non-steering situation, the measurement opera-
tors on the BC system, that give the right probability distribution, have no locality
constraints on the joint BC system. In particular, there is no need that these are
implementable with local operations and classical communications on the B and
C system.

Even without considering the Gaussian case, we can extract some connections
between the different types of steering. In fact, the one-to-two and two-to-one
steering properties are largely determined by the one-to-one properties, as the fol-
lowing two theorems will show. The first theorem describes the dependence of the
two-to-one situation of the one-to-one.
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Lemma 3.2.5. For any three partite steering situation we have

C → A steering⇒ BC → A steering, (3.35)

Proof. We will prove the converse implication

BC → A non-steering⇒C → A non-steering. (3.36)

By definition, the left hand side means that the joint three partite probability distri-
bution P(a ,b , c |A, B ,C ) can be written as

P(a ,b , c |A, B ,C ) =

∫

µ(dλ) tr (ρA FA (a )) · f BC (λ,b , c ). (3.37)

But then by ignoring the B system, we will get a valid response function for the B
system alone, i.e., f B (λ,b ) :=

∑

c f BC (λ,b , c ) and

P(a ,b |A, B ) =

∫

µ(dλ) tr (ρA FA (a )) · f B (λ,b ), (3.38)

which is the right hand side of 3.35.

As we will see in the example below the converse is not true, i.e., there are states
that are BC → A steering, but neither C → A nor B → A. The following theorem
shows the dependence of the one-to-two on the one-to-one case.

Lemma 3.2.6. For any three partite steering situation it holds that

A→ B steering⇒ A→ BC steering. (3.39)

Proof. Similar to the proof of lemma 3.2.5, one shows the converse implication, i.e.,

A→ BC non-steering⇒ A→ B non-steering, (3.40)

by showing that the model for the left hand side will give a model for the right hand
side after ignoring the C system.

The converse is again not true.

We finally note an implication between separability and two-to-one steering.

Lemma 3.2.7. For a tripartite Gaussian state with covariance matrix γA BC under
Gaussian measurements it holds that

B −AC seperable and C −A B seperable⇒ BC → A non-steering.
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Proof. We start by restating the first condition on the left. The state is B −AC sepa-
rable, if it holds that

ΘBγA BCΘB + i







Σ 0 0
0 Σ 0
0 0 Σ






≥ 0,

whereΘB =12⊕
�

1 0
0 −1

�

⊕12 implements the partial transpose on the B system.

Multiplying from both sides with ΘB we see, that this condition is equivalent to

γA BC + i







Σ 0 0
0 ΣT 0
0 0 Σ






≥ 0. (3.41)

Likewise, using the second condition on the left the state is C −A B separable, if

γA BC + i







Σ 0 0
0 Σ 0
0 0 ΣT






≥ 0. (3.42)

Now we add equations 3.41 and 3.42:

γA BC + i







Σ 0 0
0 ΣT 0
0 0 Σ






+γA BC + i







Σ 0 0
0 Σ 0
0 0 ΣT






≥ 0

2γA BC + i







2Σ 0 0
0 ΣT +Σ 0
0 0 ΣT +Σ






≥ 0

2(γA BC + i







Σ 0 0
0 0 0
0 0 0






) ≥ 0,

which is, after dividing out the 2, the condition for BC → A non-steering.

Example situation

As a model for three partite steering, we will discuss a setup that is similar to the
one used in the one-way steering experiment in the previous section. We will again
use a single source of squeezed light, which is superimposed with vacuum on a first
beam splitter (BS1). One output is send to Alice, the second is superimposed with
vacuum on a second beam splitter (BS2), whose two outputs are sent to Bob and
Charlie. The situation is depicted in Figure 3.8.
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Figure 3.8.: Sketch of the setup for the demonstration of three-partite steering.

In general different sources of imperfections can be considered here. First, the
state as produced by the squeezing source will not be a pure state in a real exper-
iment. Furthermore, all optical paths will be subject to loss and possibly noise, as
well as the measurement which will also introduce excess noise. To shorten the
presentation, we will assume pure input states and apply symmetric loss. In our
figures, we will fix the loses and chose the beam splitter angles θ1 and θ2 as param-
eters, which are linked to the transmittance t of a beam splitter via t = cos(θ )2 .
We note that here the role of Bob and Charlie are interchangeable, i.e., the state on
the Bob system with the second beam splitter set to θ2 = π/r +x is the same as for
Charlie with θ2 = π/r − x . A more formal treatment of noise sources will follow in
section 4.5.1.

In Fig. 3.9 the results for the bipartite steering situations are depicted for a sym-
metric loss of 13%. We are only interested in whether steering is present, but not
with which strength. This also means, that the input squeezing, which basically de-
termines the squeezing contrast, is not so important in this case and will be fixed at
10 dB. We are thus varying the angles of the beam splitters, and see in which region
which type of steering is present. In the six panels of Fig. 3.9, we have plotted the
steering region for the six possible directions.

One notices that certain combinations of steering directions are not observed,
namely that if the system is A→ B steering it cannot be C → B steering at the same
time. This also implies, that at the same time only three of the six possible steering
directions can be present. In the left panel of Fig. 3.9 we have indicated how many
of the individual one-to-one steering inequalities are violated. We note again the B
to C symmetry.
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Figure 3.9.: Sketch of three partite steering regions. The six panels on the right
show the regions in which the one-to-one steering is present. The left
panel shows how many directions of steering can be observed at the
same time. In red areas, three directions are present at the same time,
in yellow regions two, in blue regions one and in the white region no
one-to-one steering is present. The region does not cover the extreme
angles 0 and π.

The number of one-to-one directions that are present at the same time is gov-
erned by the overall symmetric loss. The situation depicted in Fig. 3.9 is typical for
a range of loss up to 25%. Between 25% and 33% there are no areas with three steer-
ing directions, but still six areas with two directions, while above 33% only three
areas with two steering directions are left.

We remark, that in the figure the extremal values for the angles are not drawn,
i.e., θ1,2 = (0,π/2). As we have noted above, the figures do not contain excess noise.
This also means that steering is detectible even if the steering parameter is very
close to 1. If one of the mirrors is tuned to full transmission or full reflection the
corresponding steering inequalities cannot be violated any more, i.e., if the first
mirror is reflective, no steering is observed, if it is transmitting, no violation from A
or to A is observed, and the same reasoning holds for the second mirror and B or C
respectively.

The situation for steering in the one-to-two setting is depicted in Fig. 3.10. Here,
the behavior is again governed by the final loss. The figure shows the behavior up to
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Figure 3.10.: Sketch of three partite one-to-two steering regions. The panels on
the right show the regions separately, the panel on the left shows
an overlay. The colors correspond to regions with one (blue), two
(yellow) or three (red) simultaneous steering directions.

25% loss. Between 25% and 33%, the area with three steering directions vanishes,
above 33% also the areas with two steering directions vanish and above 50% loss no
steering is possible.

The situation for two-to-one steering is depicted in Fig. 3.11. It can be seen that
this kind of steering is the easiest, in the sense that over a wide range of parameters,
all three steering directions are present. The region with three steering directions
will only vanish, if the loss is above 40%, and even up to 50% loss there remain three
areas of two directions.

In summary, we have seen that with a single squeezed source and an appropri-
ate adjustment of beam splitters, all interesting configurations of steering can be
achieved in a tripartite setting.

3.3. Discussion and Outlook

Steering is one of the basic properties of quantum correlations and is equivalent to
the question, whether a given probability distribution can be realized with a one-
sided classical model. It can be used also in a situation in which the violation of a
Bell inequality is not possible, e.g., in the Gaussian regime. Steering, in contrast to
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Figure 3.11.: Sketch of three-partite two-to-one steering regions. The panels on
the right show the regions separately, the panel on the left shows
an overlay. The colors correspond to regions with one (blue), two
(yellow) or three (red) simultaneous steering directions.

entanglement or the violation of a Bell inequality, is a directed quantity and we have
seen that a one-way steering situation for a bipartite setup can be experimentally
realized. We have further shown how to extend this to the tripartite setting.

In contrast to the Gaussian regime, where the question when a state is steering
can be decided by a condition on the covariance matrix, similar conditions are not
known for finite dimensional systems. In [CHRW11] the concept of steering wit-
nesses was introduced, in an analogous construction to Bell inequalities, but gener-
ally little is known about the structure of the non-steering set. It would be interest-
ing to see, which configurations of steering can arise in a tripartite qubit situation.
To our knowledge, directed steering has not been addressed explicitly for qubits.
Another question that arises in connection with qubits are possible monogamy re-
lations. It is known, that in the (3, 2, 2)-case there is a monogamy of the CHSH-
inequality, namely if Alice and Bob can violate the CHSH inequality on some de-
grees of freedom, it cannot be violated on the same degrees of freedom between
Alice and Chary or Bob and Charley. This is a specialty of the CHSH-inequality and
does not hold for the (3, 3, 2)-case. It would be interesting to investigate, whether
the same behavior is true for steering.

In the continuous variable case, a natural extension of the question would be,
what steering situations arise, of one considers either a larger set of measurements
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or non-Gaussian states. Here, the theoretical approach could be motivated by the
study of different, experimentally realizable situations. On the other hand, if gen-
eral measurements are considered it is not clear whether the set of states that per-
mit the violation of a Bell inequality is strictly smaller than the steering set. It might
be an instructive endeavor to construct a state that is not violating any Bell inequal-
ity but is steering for arbitrary measurements.

Finally, there is the question if there are general connections between steering
and quantum communication. In [BCW+12] it wa shown that steering is neces-
sary for one-sided device independent cryptography. The intuition behind this is
straightforward: if a system is non-steering from Alice to Bob, then there is a clas-
sical model on Alice’s side and when her devices are untrussed, Eve could have full
information about her system.
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4. Cryptography with Gaussian states

Overview and Contributions

This chapter describes a new cryptographic security proof and a modified proto-
col for entanglement based cryptography with continuous variable (CV) quantum
states. The work was performed in cooperation with F. Furrer, V. Scholz and R.F.
Werner from the quantum information theory group in Hannover and M. Berta, A.
Leverrier and M. Tomamichel from the ETH Zürich. Our main contribution is the
application of the entropic uncertainty relation to a CV-QKD protocol, the estima-
tion of the max-entropy in this case and the numerical optimization of the system
parameters in the simulation under realistic conditions. Results were presented in
[FFB+12]. Estimations of the experimental parameters were done in collaboration
with T. Eberle and V. Händchen from the group of R. Schnabel at the Albert Einstein
Institute in Hannover.

4.1. Setting and assumptions

The goal of any cryptographical scheme is to allow some parties to perform a com-
munication task, in our case, to communicate without being spied on by an eaves-
dropper. The power of a cryptographic scheme is measured on the one hand in the
amount of information that can be transmitted in a given time and on the other
hand on the assumptions made in the derivation. We start this chapter by first pre-
senting our setup and the assumptions in a concise but non-technical way. The
technical details will be presented in the respective sections below. The main rea-
son for this is, that we find the presentation easier to follow, even if this requires
some repetition.

We will be interested in cryptographic situation in which two parties, Alice and
Bob, want to establish a key which is secure against an eavesdropper, called Eve.
The main assumption made in the following is, that Alice and Bob are in full control
over their laboratories. This means, that we can make a clear separation of the
zones of influence of Alice, Bob and Eve. We will be interested in a entanglement
based protocol, in which an entangled state is prepared and one part of this state is
given to each of the two parties.
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In many studies of entanglement based cryptography in the literature, this source
is given to Eve, thus giving her full control over the state. As we will explain below,
this is not easy in our situation, which is why we will place the source in Alice’s
lab. With this, the situation can be described as follows: Alice prepares in her lab a
certain number of bipartite states and sends one half of each state to Bob. During
the transmission, Eve is allowed to interact with the states in any way allowed by
quantum mechanics. Upon arrival of the states at Bob’s laboratory, she is not able
to interact any more, only Bob is allowed to perform measurements. The procedure
in which the states are prepared and measured are known beforehand to all parties
and we assume, that they can be performed arbitrarily well. The main requirement
here is, that the devices operate stationary and memoryless. Other imperfections
will simply be attributed to Eve. For example, noise in the phase of the detectors will
diminish the quality of the correlations an thus reduce the secret key rate, possibly
overestimating the lost secrecy.

At the end of the chapter, we will make a comparison of the key rates obtained
by our estimation with the key rates obtained under the assumption of collective
Gaussian attacks,i.e., an eavesdropper that is, in addition to the restrictions above,
confined to performing permutation invariant Gaussian attacks.

Let us further note, that we are interested in finite runs of the experiment. In this
case, one has to be careful how to define the expectation for security. We will give
the definition below, but observe here, that in any finite run of the protocol, there
is also a finite probability for the eavesdropper to correctly guess the key, even if
he has no interaction with the experiment, simply because the set of possible keys
itself is finite. His success probability will decrease exponentially with the num-
ber of signals, but will remain strictly positive. In this sense, we can only hope to
achieve a protocol, which is secure except some small probability. To determine
this probability the protocol will have some security parameters that are chosen in
accordance to the available experimental situation. Especially, they will be chosen
in accordance with the total number of transmitted signals.

After this introduction, let us first go through the different steps of a key distribu-
tion protocol:

Step 0: Preliminaries Prior to the actual key distribution, two steps have to be
performed: First, Alice and Bob have to make sure, that they are indeed who they
claim to be. We will not discuss this authentication step this in the following, but list
it here as an remark. In practical application one way to ensure this, is to assume
that Alice and Bob have a pre-shared key, that is only used for authentication. For
details on such schemes consult [Sti91, GN93]. Second, they agree on the parame-
ters used in the experiment. This step was already mentioned above and ensures,
that the two parties know about all details of the implementation and determine
the appropriate security parameters according to the protocol.

Step 1: The quantum phase In this phase, all quantum signals are processed. It
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is divided in the following steps:

1. Distribution: first a number of signals is given to Alice and Bob. In our specific
protocol, the parties will loose half their signals to sifting, so we assume a
number of 2N signals distributed.

2. Measurement: Alice and Bob measure the incoming signals according to the
protocol, in our case in one of two quadratures. Via public communication
they discard the measurement results, where the bases did not match and are
left with strings of length N . We call these strings the raw key XA and X B and
the state shared between Alice and BobωXA X B . We call the purification of this
state onto Eve’s systemωXA X B E .

3. Parameter estimation: they reveal their measurement results on a randomly
chosen substring of length k . From this, they calculate the quality parameter
and compare if this parameter matches their expectation. If this is the case,
they continue with the protocol, otherwise, they abort.

The process of agreeing on the measurement bases and discarding the bits in
which the bases did not match is also called sifting, the key after this step is referred
to as the sifted key (see e.g. [SBPC+09] for a survey). To keep the notation the the
following shorter, we fix the number of bits after sifting and always assume that
during the sifting process, exactly half of the signals are lost.

Step 2: The classical phase After the quantum phase has been completed and the
protocol did not abort, Alice and Bob know, that the run of the protocol was within
the expected range that they have agreed on beforehand. In particular, they know
how much information could have been distributed to the eavesdropper. They now
perform two classical post processing steps. First they perform error correction,
in which they compare their strings and correct errors, that might have occurred
during the communication. In the second step, called privacy amplification, they
shorten the key while at the same time reduce the knowledge of the eavesdropper
about the key. Both steps will be made more precise in the following. We call the
strings after postprocessing SA and SB respectively, the length of the strings is l .
The classical-quantum state here is called ωSASB E . We call the average number of
extractable secret bits per signal r = l /N the secret key rate of the protocol. Note,
that a rate depends on the specific parameters that are chosen in the process. Rates
that are given in the limit if infinite number of transmitted signals are denoted r∞.

Before giving the technical definitions, let us comment on the direction of classi-
cal communication. We have in the above description not specified, how the clas-
sical communication between Alice and Bob is exchanged, in particular whether
Alice or Bob discloses parts of their information. In general, we could distinguish
between two-way protocols, in which the communication is done in a multi round
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dialogue between the parties, and a one-way scenario in which one party is essen-
tially silent, apart from acceptance notifications. It is clear, that a two way com-
munication is is principle stronger then the one-way one, but tight bounds for the
performance of two-way protocols are in general not known, so we will also use
one-way communication. In this case, there are two possible directions of commu-
nication. Either Alice is active, which is called direct reconciliation, or Bob is active,
called reverse reconciliation (see e.g. [SBPC+09] and references therein). The two
possibilities can give significantly different results, when the eavesdropper has dif-
ferent information about Alice’s or Bob’s key. In our case, however, the source of
communication is placed into Alice’s lab, which basically limits us to direct recon-
ciliation. We will give all definitions with this situation in mind and comment at the
end of the chapter on possibilities of applying reverse reconciliation.

4.2. Tools and definitions

4.2.1. Security definitions

After having described the goals and the setup in the previous chapter, we will now
give the security definitions. As we have noted above, it is important to keep track
of these values for any scheme working with a finite number of signals, as in this
case the probability of an undetected error occurring in the protocol can never be
exactly zero but only be made exponentially small in the number of signals sent. We
will employ the definition of composable security and use the formalism developed
in [Ren05, TLGR12, FAR11, BFS11].

Definition 4.2.1. We call a bipartite state a classical-quantum state (cq-state), if it
can be written in the following way:

ωcq =
∑

x∈X

p (x )|x 〉〈x | ⊗ωx
B , (4.1)

where X is the alphabet on the A system and p a probability distribution, and ωx
B

states on the B system,.

In the protocol described above, Alice and Bob first perform their measurements,
which results in the cq-stateωXA X B E . This state is then via classical post processing
transformed into a cq-state on which the security is evaluated, and that is given as

ωSASB E =
∑

sA s B

p (sA s B )|sA s B 〉〈sA s B | ⊗ωsA s B
E . (4.2)

We will now state the security definitions, where we use the formalism developed
in [Ren05].
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Definition 4.2.2. Robustness: we call a protocol robust, if it does not abort in a sit-
uation in which no eavesdropper is present. We call the probability that an instance
of the protocol does not abort Ppass.

Correctness: we call a protocol εc -correct, when

Prob(sa 6= sb )≤ εc . (4.3)

Secrecy: we call a protocol εs -secret, if

Ppass|ωSASB E −τA B ⊗σE |1 ≤ εs , (4.4)

where | · |1 denotes the 1-norm, τA B = 1/d
∑

s |s s 〉〈s s | is a uniform mixture of corre-
lated states andσE is an arbitrary state on Eve’s system and Ppass denoted the proba-
bility that the protocol does not abort.

Security: a protocol is ε- secure, if it is εc -correct and εs -secret with εc +εs ≤ ε.

Let us note here, that with these definition, any instance of the protocol that is
aborted is count as a success. In other words, a protocol with success probability
0 is perfectly secure. This also implies, that there is a natural tradeoff between the
abort probability and the secrecy. If one considers the average rate, with which se-
cret key can be generated from signals of a certain block length, the success proba-
bility can thus be treated like a free parameter that can be optimized to gain a higher
secret key rate.

The main question of quantum key distribution is now, how long a secret key can
be extracted from a given raw key. This question has been answered first in the con-
text of finite dimensional systems in [Ren05] and later been generalized to infinite
dimensional systems in [BFS11]. The main ingredient in the derivation are theo-
rems about the efficiency of the classical post processing, i.e., the privacy amplifi-
cation and the error correction, where the main technical quantities are the smooth
min- and max-entropies. We will begin by introducing the smooth entropies in the
next section, then give results on the classical post processing and finally give the
key length formula that will be used later on.

4.2.2. Definition and properties of the smooth entropies

We will now give the definition of the smooth min- and max-entropies and recall
their properties. For a more thorough treatment and proofs we refer to the litera-
ture [FAR11, BFS11]. An excellent reference for finite dimensional min- and max-
entropies is [Tom12]. We note here, that log will in the following denote the binary
logarithm, where ln denotes the natural logarithm.

Definition 4.2.3. Let HA and HB be two separable Hilbert spaces. Let ρA B ∈ S(HA ⊗
HB ) and σ ∈ S(HB ) be states. We define the conditional min-entropy of ρA B with
respect toσB as
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Hmin(ρA B |σB ) =− log inf{λ∈R|λ1⊗σB ≥ρA B }, (4.5)

where we set Hmin(ρA B |σB ) = −∞ if the condition cannot be fulfilled for any λ. We
further define the conditional min-entropy with respect to a subsystem as

Hmin(ρA B |B ) = sup
σB∈S(HB )

Hmin(ρA B |σB ). (4.6)

The unconditional min-entropy can be obtained from this definition by consid-
ering a trivial system for B . Then, the unconditional min-entropy is just equal to
Hmin(ρA ) = − log ||ρA || and thus given by the largest eigenvalue of ρA . We see, that
this quantity is 0 for pure states and has a maximum of log d in a d -dimensional
Hilbert space, obtained on the maximally mixed state. 1

Definition 4.2.4. We define the conditional max-entropy of the state ρA B with re-
spect to the system B as

Hmax(ρA B |B ) =−Hmin(ρAE |E ), (4.7)

where ρA B E is a purification of ρA B .

This condition is also referred to as the duality condition; the max-entropy is
called the dual of the min-entropy. Such duality relations also hold for other en-
tropic quantities, e.g., the von Neumann entropy is self dual and the Rényi entropy
of order α id dual to the Rényi entropy of order β for 1/α+1/β = 2.

From the definition one can also determine the unconditional max-entropy, that
can be given as Hmax(ρA ) = 2 log tr

p
ρA and coincides with the Rényi entropy of

order 1/2. Them minimal value is 0 for pure states and log d for maximally mixed
states on a finite dimensional space of dimension d .

Definition 4.2.5. We now define the epsilon smooth min-entropy:

Hε
min(ρA B |B ) = sup

ρ̃A B∈Bε(ρA B )
Hmin(ρ̃A B |B ), (4.8)

whereBε(ρA B ) denotes the epsilon ball aroundρA B measured in generalized fidelity.

Let us recall some of the operational interpretation of the smooth entropies:

Definition 4.2.6. Consider the classical-quantum stateρX E =
∑

x p (x )|x 〉〈x |⊗ρx
E on

the Alice/Eve System. We define the guessing probability as the probability that Eve
correctly guesses Alice’s state with an optimal strategy on her side. It is

pguess(X |E ) =max
{Ex }

∑

i

pX (x )tr (Exρ
x
E ), (4.9)

where the maximum is taken over all POVMs on Eve’s side.
1The unconditional min-entropy will not play a role in the following, so we will omit the term
“conditional” and only talk about min-entropies.
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Theorem 4.2.7. [KRS09] It holds that

pguess(X |E ) = 2−Hmin(X |E ). (4.10)

Proof. We give here the basic ideas of the proof in finite dimensions as presented in
[KRS09], for an extension to infinite dimensional systems, we refer to [BFS11, Prop.
5.5]. We begin by reformulating the definition of the min-entropy 4.6. By including
the parameter λ one gets an optimization over non-normalized states as

Hmin(ρAE |E ) = − inf
σE≤0,trσE=1

inf{λ|λ1⊗σE ≤ρA B } (4.11)

= − inf
ρ̃E≥0
{tr ρ̃E |1⊗ ρ̃E ≥ρA B} (4.12)

= − inf
ρ̃E≥0,1⊗ρ̃E≥ρA B

tr ρ̃E . (4.13)

Now one observes that the last optimization is a semi-definite program. One now
shows that the following duality relation holds:

inf
ρ̃E≥0,1⊗ρ̃E≥ρA B

tr ρ̃E = sup
EAE≥0,trA (EAE=1E )

tr (ρAE EAE ). (4.14)

Furthermore, if the state ρAE is classical on A, the optimization can be restricted to
operators EAE that are classical with respect to A.

Definition 4.2.8. We define the epsilon smooth max-entropy as

Hε
max(ρA B |B ) = inf

ρ̃A B∈Bε(ρA B )
Hmax(ρ̃A B |B ). (4.15)

Then the following duality theorem holds:

Theorem 4.2.9.
Hε

max(ρA B |B ) =−Hε
min(ρAE |E ), (4.16)

where ρA B E is a purification of ρA B .

The following theorem is known as the data processing inequality. It states, that
the application of a local channel to the bipartite state will only increase the en-
tropies. In its general form it is given as follows:

Theorem 4.2.10. LetωA B be a bipartite quantum state, T : B(HB )→B(HB ′ ) a chan-
nel, then it holds that

Hε
min(A |B )ω ≤ Hε

min(A |B
′)1A⊗T (ω) (4.17)

Hε
max(A |B )ω ≤ Hε

max(A |B
′)1A⊗T (ω) (4.18)
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This theorem was proved for finite dimensional systems in [TCR10] and extended
to infinite dimensional system in [FAR11, Prop. 2] and [BFS11, Prop. 4.15].

The following corollary quantifies, that from the fact that two states are close in
purified distance, one can also bound the distance of their epsilon-entropies.

Corollary 4.2.11. Letω,ω̃ be two quantum states with P(ω,ω̃)≤ ε′. Then it holds:

Hε+ε′
min (A |B )ω̃ ≥ Hε

min(A |B )ω (4.19)

Hε
max(A |B )ω ≥ Hε+ε′

max(A |B )ω̃ (4.20)

Proof. The corollary follows directly from the definition. As the ε-ball around ω is
completely contained in the ε+ε′-ball around ω̃, the optimization will be evaluated
over a strictly larger set for ω̃, resulting in the given inequalities.

An important property of the min- and max-entropies is their behavior in the
i.i.d. limit. Here, both entropies asymptotically coincide with the von Neumann
entropy. This behavior can be quantified using the asymptotic equipartition prop-
erty (AEP).

Theorem 4.2.12. Let ρ ∈ S(HA ⊗HB ) be a state with H (A)ρ <∞. Then for any ε> 0
it follows that

1

n
Hε

min(A
n |B n )ρ⊗n ≥H (A |B )ρ −

1
p

n
2 log(η)

Ç

log
2

ε2
, (4.21)

and

1

n
Hε

max(A
n |B n )ρ⊗n ≤H (A |B )ρ +

1
p

n
2 log(η)

Ç

log
2

ε2
, (4.22)

where n ≤ (8/5) log(2/ε2) and η= 2−
1
2

Hmin(A |B )ρ )+2
1
2

Hmax(A |B )ρ )+1.

The proof of this theorem was given for finite dimensional systems in [TCR09]
and extended to infinite dimensions in [FAR11, Prop. 8]. One should note here, that
H (An |B n )ρ⊗n = nH (A |B )ρ .

From this, one directly deduces that the following limits hold:

Corollary 4.2.13.

lim
ε→0

lim
n→∞

1

n
Hε

min(ρ
⊗n
A B |B

n ) =H (ρA B |B ) = lim
ε→0

lim
n→∞

1

n
Hε

max(ρ
⊗n
A B |B

n ). (4.23)
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4.2.3. Error correction

The first step in the classical post processing is the error correction, where we will
describe a one-way error correction with Alice as sender and Bob as receiver, i.e., a
direct reconciliation protocol. For a reverse reconciliation protocol, their roles are
inverted.

The overall target of this step is for Alice and Bob to remove errors from their
strings of bits, so that afterwards they hold two copies of the same string. Error
correction is performed without paying any special attention to the fact that Eve
might be listening in, so all the communication that is used here is given to Eve
which will reduce the amount of secrecy hold by Alice and Bob. The task of error
correction is thus to determine, how many bits Alice has to send to Bob, such that
Bob is able to make his string equal to Alice’s. In the i.i.d. setting, this problem has
been answered for classical systems by the Slepian-Wolf theorem [SW71] and in the
case of a quantum system by Devetak and Winter [DW03]. In these publications it
was shown that in both cases, the asymptotically optimal achievable rate is given
by the conditional entropy H (X |B ), where B is either quantum or classical. In the
case of finite repetitions, the solution was given by Renes and Renner in [RR12] for
finite dimensional systems on Bob’s side and for infinite dimensional systems in
[BFS11]2.

We start by assuming a classical-quantum state ωX B between Alice and Bob. To
explicitly model the error correction procedure, we add a system C for the classical
communication, where we call the alphabet for the messages also C . Then the error
correction code consists of an encoding operation E : l 1(X )→ l 1(C ) on Alice’s side
and a decoding operation D : l 1(C )⊗S(HB )→ l 1(X ). The number of bits transmitted
from Alice to Bob is then given as log2 |C |. For any value of the classical message, we
can describe the decoding operation as POVM {Dc

x }x∈X . An error correction scheme
is then defined by the collection (C , E , D).

Definition 4.2.14. LetωBX be a classical-quantum state between Alice and Bob and
(C , E , D) an error correction scheme. The error probability of the scheme for the given
state is given as

perror(ωX B ) = 1−
X
∑

i=1

ωx
B

�

D E (x )x
�

. (4.24)

The following theorem states states, how to bound this quantity by the smooth
max-entropy. It was first proven in [RR12] and later extended in [BFS11, Thm 8.2].

Theorem 4.2.15. LetωBX be a classical-quantum state between Alice and Bob. Then
for any alphabet C with |C | ≤ |X |<∞ there exist an encoding and a decoding opera-

2Note, that a preprint of the article [RR12] was available 2008.
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tion such that the correction scheme (C , E , D) satisfies

perror =

r

1

|C |
2Hmax(X |B )+3. (4.25)

This theorem has a direct extension to epsilon entropies:

Theorem 4.2.16. Let ωBX be a classical-quantum state and ε > 0. Then for any
alphabet C with |C | ≤ |X |<∞ there exist an encoding and a decoding operation such
that the correction scheme (C , E , D) satisfies

perror =

r

1

|C |
2Hε

max(X |B )+3+2ε. (4.26)

From this we can conclude, that for the situation in which Alice transmits a num-
ber of l EC bits to Bob in order to perform the error correction there is an encoding
and a decoding scheme that will perform the task except with a failure probability
of at most pEC , if

l EC = inf
0≤ε≤pEC /2

dHε
max(X |B )+2 log

1

pEC −2ε
+6e. (4.27)

This can be seen by setting |C |= 2l
EC in (4.26). The number of bits is also referred

to as the leakage of the protocol. It should be noted, that this bound is essentially
optimal, as the following theorem shows:

Theorem 4.2.17. Let ωBX be a classical-quantum state and ε > 0 and (C , E , D) an
error correction code with perror ≤ ε, then

log |c | ≥H
p

2ε
max(X |B ). (4.28)

Even though, the value from eq. (4.27) is theoretically achievable, the concrete
implementation will additionally depend on the code used, and there is no gen-
eral construction method known to actually achieve this. To account for this extra
amount of classical communication that is needed in order to compensate for the
non optimal protocol, one introduces a leakage parameter λ.

Definition 4.2.18. We say that an error correction code has leakage parameter λ≥ 1,
if it holds that in the limit of many repetitions

l EC ≥λ ·H (X |B ). (4.29)

It should be noted here again, that in the limit, the epsilon max-entropy coincides
with the conditional von Neumann entropy.
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For practical applications it is often more convenient not to work with the leakage
parameter, but instead with a derived quantity, called the error correction efficiency
(see e.g. [SBPC+09]). Here, the intuition is, that if the parties have classical strings
XA and X B , the amount of equal bits that can be extracted in an optimal way is given
by the mutual information between the strings I (XA |X B ). Then an error correction
efficiency can be defined in the following way:

Definition 4.2.19. Let (XA , X B ) be bit strings and rEC the number of extractable bits
after error correction. Then an error correction code has efficiency β , with 0≤ β ≤ 1,
if it holds that

rEC ≤β I (XA ; X B ). (4.30)

The two parameters λ and β cannot be converted into each other in a state inde-
pendent way. We will see in section 4.2.6 below, that it holds that

λ=
H (XA )−β I (XA ; X B )

H (XA |X B )
. (4.31)

In practice, any code will be used on a specific block length. That is, even if 109

sifted bits were available, they will usually not be handled at once, but divided into
smaller blocks. This has basically computational reasons, i.e., the gain in efficiency
on the code does not justify the overhead in computation. So, every practical code
will only give his optimal performance for a limited set of parameters, which in
principle should be accounted for when optimizing the QKD protocol. This inves-
tigation is, however, not part of the present thesis. In our protocol we will work in a
regime with a fairly large alphabet and small Gaussian error, for which “of the shelf”
codes are unfortunately not available. For the quantitative investigation we will as-
sume, that a code with an error correction efficiency of β = 0.95 is available, which
corresponds to a leakage parameter of λ ≈ 1.02. This value corresponds to codes
that have been used in a different parameter regime in [JKJL11].

4.2.4. Privacy amplification

The second step of the classical post processing is the privacy amplification. We
will assume here, that Alice an Bob have already performed error correction, so they
have identical strings at hand, which allows us to reduce the investigation to a two
party situation, in which Alice holds a string X of length that she wants to decouple
from Eve.

The intuition behind this is the following. Suppose Alice’s sting has a length of
n X bits, and she knows that of these bits only a number of w bits are known to
Eve. Then Alice applies a function f that maps her string to a smaller string K ,
possibly from a different alphabet, and reduces the number of bits to n K = n X −w .
This function is called a hash function. The privacy amplification is successful, if
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her new string K is uniformly distributed and the eavesdropper has no knowledge
about it.

The techniques presented here have been applied in scenarios without side in-
formation in [BBR88, ILL89]. They were extended to classical side information in
[BBCM95, RW05], to quantum side information on finite dimensional systems in
[RK05, Ren05] and to infinite dimensional systems in [Fur09, FAR11, BFS11]. The
main tool of the technique is the use of two universal hash functions.

Definition 4.2.20. Let K , X be finite sets with |K | ≤ |X |. Let { f } be a family of func-
tions f : x → K and P f a probability distribution on this family. Then ({ f },P f ) is
called a family of two universal X → K hash functions, if

P f ( f (x )− f (y ))≤
1

|K |
. (4.32)

The existence of hash functions was proven in [CW79, WC81]. They can be used
to efficiently decouple a random variable from the environment by mapping it onto
a new variable with reduced alphabet. How efficient this can be performed is de-
termined by the following theorem:

Theorem 4.2.21. Let ρ be a classical quantum state between Alice and Eve, K and
X two finite sets with |K | ≤ |X | and ({ f },P f ) a family of two universal X → K hash
functions. Denote the operator implementing the hash function on the Alice system
by Tf . Then it holds that

E f

�

||Tf (ρ)−
1

|K |
ρ1⊗ρE ||

�

≤
p

|K |2−Hmin(A |E )ρ , (4.33)

whereE f denotes the expectation value over the hash function family,ρ1 is the max-
imally mixed state on |K | symbols and ρE is the reduced state on the Eve system.

The proof has been given for finite dimensional systems in [Ren05, Cor. 5.6.1]
and extended to infinite dimensional system in [BFS11, Thm. 7.4].

The theorem thus states, that by choosing the target alphabet K small enough,
one can decouple the state arbitrarily well from the environment. For cryptograph-
ical application, however, one needs the extension of the theorem to epsilon en-
tropies:

Theorem 4.2.22. Under the same conditions as 4.2.21 for any ε≥ 0 it holds that

E f

�

||Tf (ρ)−
1

|K |
ρ1⊗ρE ||

�

≤
Æ

|K |2−Hε

min(A |E )ρ +2ε. (4.34)

From this, we can derive the estimation of the expected key length or a given
secrecy parameter εs .
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Corollary 4.2.23. Let ρ be a classical quantum state between Alice and Eve, εs ≥ 0.
Then using a family of hash functions, an εs -secret of length l can be extracted from
ρ for all

l ≤ sup
0≤ε≤εs /2

bHε
min(A |E )ω−2 log

1

εs −2ε
c. (4.35)

4.2.5. Key length formula

We have now gathered the necessary tools to state the general key length formula,
as first derived in [Ren05] for finite dimensional systems and generalized in [FAR11,
BFS11] to infinite dimensional systems.

Theorem 4.2.24. Given a classical-quantum state ωXA X B E and classical communi-
cation from Alice to Bob, it is possible to extract an εs -secret and εc -correct key of
length

l =Hε
min(XA |E )− lEC− log

2

ε2
1εc

, (4.36)

where ε ≤ (εs − ε1)/(2Ppass). Here Hε
min is the ε-min-entropy and lEC is the leakage

of the classical error correction code.

Proof. This theorem is a direct consequence of (4.2.21). From there we see that

1

2
|ωXA E −τX ⊗σE | ≤

Æ

|K |2−Hε

min(XA |E )+2ε. (4.37)

To bound the right hand side by εs /Ppass, one needs that

l ≤Hε
min(XA |E )−2 log(

εs

Ppass
−2ε), (4.38)

from which the theorem follows with Ppass ≤ 1.

With this, the estimation of the length of extractable secret key is reduced to the
calculation of the ε-min-entropy and the leakage term. The first term corresponds
to the information that Eve has about Alice’s key, the later to information revealed
to Eve during error correction. We will now discuss properties of these terms.

We note that, as defined in the in 4.1, the symbol l will denote the length of the
generated key after the transmission of N signals, where r = l /N denotes the rate
at which key is generated. It is understood, that the value of r will depend on N .
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4.2.6. Asymptotic key rate

Before coming to the estimation in our case, we want to connect the key length
formula with the known results for the asymptotically extractable key length.

Corollary 4.2.25. For an infinite number of repetitions and perfect error correction,
the key rate formula becomes:

r = lim
n→∞

lim
ε→0

1

n
(Hε

min(XA |E )− lEC− log(
2

ε2
sεc
)) =H (XA |E )−H (X B |E ) (4.39)

Proof. We use the asymptotic estimation 4.23 and the estimation of the leakage
term 4.2.19. First observe, that in the limit, every state can be decomposed into
tensor product states. For these states, the smooth entropies coincide asymptoti-
cally with the respective von Neumann entropy. With the estimation of the leakage
term we arrive at:

r = lim
n→∞

lim
ε→0

1

n
(Hε

min(XA |E )− lEC− log(
2

ε2
sεc
)) (4.40)

= lim
n→∞

lim
ε→0

1

n
(Hε

min(XA |E )−Hmax(XA |X B )− log(
2

ε2
sεc
)) (4.41)

= H (XA |E )−H (XA |X B ) (4.42)

From this, we can also recover a formulation, that is often found in the literature
(see e.g. [SBPC+09]). By substituting the conditional entropies with the mutual
information, we get

r = H (XA |E )−H (XA |X B ) (4.43)

= H (XA )− I (XA ; E )−H (XA )+ I (XA ; X B ) (4.44)

= I (XA ; X B )− I (XA ; E ), (4.45)

where we note, that the quantity I (XA : E ) is evaluated for a strategy, which is maxi-
mally informative for Eve. This is known as the Holevo bound, so by setting

r = I (XA ; X B )−χ(XA ; E ). (4.46)

This formula is called the Devetak-Winter bound for the extractable secret key
rate [DW05]. From this relation, we can now also clarify the correspondence be-
tween the two error correction parameters, mentioned in section 4.2.3. To account
for the practical inefficiencies of error correction codes, one uses either the param-
eter β ≤ 1 to bound the mutual information between Alice and Bob in 4.46, or the
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parameter λ≥ 1 to estimate the leakage term in 4.44. If the key rates corresponding
to the parameters should coincide, we see that

β I (XA ; X B )− I (XA ; E ) =H (XA |E )−λH (XA |X B ), (4.47)

which is true for

λ=
H (XA )−β I (XA ; X B )

H (XA |X B )
, (4.48)

which is 4.31.

4.2.7. Entropic uncertainty relation

With the previous results, the calculation of the key rate amounts to the calcula-
tion of the smooth min-entropy and the leakage term. Unfortunately, the smooth
min-entropy can only be calculated in certain cases (e.g. pure states). We will use
an entropic uncertainty relation that allows us to estimate the min-entropy via the
max-entropy. Entropic uncertainty relations have been studied in different forms
for quite a while now [MU88]. The form we are using was put forward in [TR11]
for finite dimensional systems and generalized to infinite dimensional systems in
[BFS11].

Theorem 4.2.26. Let ωA BC be a state on a tripartite system, {E x
A} and {F y

A } POVMs
an the A-system and ε≥ 0. Then

Hε
min(X |B )ω+Hε

max(Y |C )ω ≥− log c , (4.49)

whereωX B andωY C are the classical-quantum states after measurement of E and F
respectively and c =maxx ,y ||(E x

A )
1
2 · (F y

A )
1
2 ||2.

The proof for infinite dimensional systems can be found in section 6 of [BFS11].
We will first give a rough idea of how to apply the uncertainty relation in a cryp-

tographic setting, the details will follow below. Suppose, the protocol runs with N
measurements, then the outcome on Alice’s side XA will be acquired by measuring
a tensor product of single operators chosen at random from E and F . Denote by X c

A

the complementary outcome distribution, i.e., the distribution corresponding to a
measurement where on all places the E and F measurements are interchanged.

From the above definition it holds that:

Hε
min(XA |E )ω ≥− log c −Hε

max(YA |B )ω,

where we have changed the naming of the subsystem to correspond to Eve and
Bob. Now we apply this to Y =X c , so

Hε
min(XA |E )ω ≥− log c −Hε

max(X
c
A |B )ω.
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Using that the measurement basis are chosen randomly for Alice and that the
measurement operators are complementary, one shows that X c

A =XA and

Hε
min(XA |E )ω ≥− log c −Hε

max(XA |B )ω.

This holds for all choices of measurements on Bob’s system, so after performing
the actual measurement we arrive at

Hε
min(XA |E )ω ≥− log c −Hε

max(XA |X B )ω. (4.50)

This expression will allow us to estimate the min-entropy between Alice and Eve
with a max-entropy between Alice and Bob. We also see that the quality of this
estimation will depend on the constant c .

4.3. Cryptographic Protocol

We will now describe the run of our protocol and the emergence of the different
parameters, that can be adjusted. For practical purposes, we will assume, that the
source of the quantum states is placed in Alice’s lab and thus trusted. This is a tech-
nical assumption that will enable us to perform estimation 4.4.1 in a simple fashion.
We will comment at the end of the chapter on possibilities of omitting this require-
ment. We will further only consider the quantum phase of the communication, the
authentication and classical post processing will not be considered explicitly. We
will also for convenience start with a highly symmetric situation, but will note this
at the appropriate positions.

Step 0: Adjustment of parameters Before the actual quantum communication
will take place, Alice and Bob have publicly agreed on the parameters of the pro-
tocol. In practice, this is an optimization procedure based on knowledge about
the available source and the detectors. We will always assume that Alice and Bob
have full knowledge about their devices, hence this optimization is possible. Alice
and Bob will agree on a number of signals to sent and a security parameter. Then
they optimize the working parameters of the protocol, e.g., the abort probability.
Then they know that after a non-aborted run of the protocol, the extracted key will
have the security desired. One should note, that this optimization might depend
on further restrictions, like the availability of efficient error correction codes. Still,
a non-optimal choice of parameters will only lead to a reduced key rate (possibly
zero) but will not compromise the security.

Step 1: Sifting Alice will prepare a number of bipartite entangled states, of which
she sends one half of each state to Bob. The measurement will be done in either the
X or the P basis, and the outcome of each measurement will in principle be a real
number, discretized with the precision of the measurement device. The first step
is to discard all cases, in which their choice of basis did not match, which is done
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via public communication. On average, they will end up with half the number of
originally sent signals. The number of signals after sifting is denoted by N .

Step 2: Mapping to finite alphabet They will then map the outcomes onto the
finite alphabet χ . This mapping comes with two free parameters, the cut-off dis-
tance α and the discretization parameter δ. Whenever in the experiment a result is
observed with an absolute value larger then α, the protocol is aborted. This step is
necessary for the application of the entropic uncertainty relation, as we will see be-
low. Conditioned that the protocol does not abort, all values lie in the region [−α,α],
which we discretize into segments of length δ. For convenience we will choose δ
such that the number of symbols in the alphabetχ = 2α/δ corresponds to a natural
number. We will label the corresponding intervals of the real line as I− = (−∞,−α),
Ix<0 = [x ,x +δ), Ix>0 = (x −δ,x ], I+ = (α,∞). For this choice, the number 0 is not
part of the alphabet and |χ | is a even number. We denote the corresponding pro-
jectors by X (I ) and P(I ) respectively.

In principle, the choices of parameters could be different for Alice and Bob and
also for X and P . We will see later that it is advantageous to choose the cut-off
parameter as large as possible, to obtain a high key rate. If now, for instance, the
loss on Bob’s side was higher then on Alice’s side, it would be a good idea to choose
the α smaller for Bob then for Alice. For the moment, we will nevertheless only
consider the symmetric situation in which Alice and Bob are interchangeable.

We will assume, that after this step, Alice and Bob end up with exactly N signals,
that have all passed the cut-off criterion.

Step 3 - Parameter estimation test: From these N signals, they will then use a
random subset the results of length k for the parameter estimation test. They will
calculate the (generalized) Hamming distance of these outcomes, defined as

d k (X , Y ) = 1/k
k
∑

i=1

|X i −Yi |. (4.51)

If this observed parameter exceeds a preset value d 0, the protocol is aborted.

We note, that we do not take the statistical deviations due to the sifting process
into account. In practice, Alice and Bob would agree in step 0 on an number of
signals they want to distribute, which would then give a sifted key of roughly half
this length. We on the other hand assumed that it is exactly half the length, while
in principle the statistical variations should be included in the optimization of the
protocol parameters.

4.4. Key length estimation

Let us start by giving a plain text description of how the estimation will proceed. We
have seen in 4.2.24, that, given the security parameters, the only quantity to bound
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in order to calculate the secret key rate is the conditional min-entropy of the state.
The plan is then to use the entropic uncertainty relation to bound the min-entropy
via the max-entropy, which is only possible if the state is basically localized on a fi-
nite region in space, otherwise the bound would become trivial. We have included
an abort criterion to account for this, but we still need to bound the entropies of the
actual state, with the state after restriction on the “non abort” space. After that, we
will need to show that the parameter estimation test is indeed sufficient to bound
the max-entropy of the state. Then we can use the bounds from privacy amplifica-
tion to give the extractable key rate. In the process, different free parameters will
emerge, making the proof a bit intricate.

We will now state the theorem and then start collecting the pieces needed for the
proof. Note again, that in the following theorem the source of the states is assumed
to be inside Alice’s lab.

Theorem 4.4.1. Let the security parameters εs and εc be given. Suppose that after
the exchange of N signals, the protocol passes the parameter estimation test (with
parameter d 0 on a subset of length k ) and the cut off test (with parameters α,δ) and
leaks l EC bits of information during the error correction and the correctness test is
passed. Then an εs -secret and εc -correct key can be extracted with length

l = n

�

log
1

c (δ)
− logγ(d 0+µ)

�

− l EC − log
1

ε2
1εc
+2, (4.52)

where n = N − k is the number of signals after the parameter estimation test. Here
c (δ) corresponds to the overlap of the measurement operators occurring in the en-
tropic uncertainty relation and is given as

c (δ) =
δ2

2π
S(1)0 (1,

δ2

4
)2, (4.53)

where S(1)0 is the first radial prolate spheroidal wave function of the first kind. The
term logγ(d 0+µ) corresponds to the estimation of the max-entropy and is given as

γ(t ) = (t +
p

1+ t 2)

 

t
p

1+ t 2−1

!t

, (4.54)

and

µ= |χ |
È

N (k +1)
nk 2

ln
1

εs −ε1−2
p

2g (pα, n )
, (4.55)

and ε1 is chosen such that εs −ε1−2
p

2g (pα, n )≥ 0.

The remainder of this subsection will be devoted to the proof of this theorem.
We will divide the proof into smaller sections and lemmata, that will give the result
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when combined in the end. We note, that in [FFB+12] the variable parameter ε1

was fixed to εs /2.
Abort probability: We have noted that the protocol will abort, if a measurement

outcome is observed whose absolute value exceeds the parameter α. We will again
consider a symmetric situation, in which the systems Alice and Bob and the expec-
tation values for the quadratures are equal. We further assume, that the source is
located in Alice’s lab and that the source produces i.i.d. states. Let us denote by pα
the probability that a value is observed, which does not lead to an abort, i.e., if we
denote the state of a single run byω, it holds that

ω(X (I{−|χ |,|χ |}) =ω(P(I{−|χ |,|χ |})≥ pα. (4.56)

Then, using the i.i.d. assumption, we see that the probability that at least one of
N runs will abort is given by

g (pα, n ) = 1−p n
α . (4.57)

We note here, that the value of α is a free parameter so the value of g (pα, n ) and
can, in principle, be made arbitrarily small. We will see in the end that if one con-
sidered the final extractable key length, there is a tradeoff between the value of α
and the estimation. This way, there will be an optimal α for a fixed value of n . To
get a feeling for the orders of magnitude, we note that according to Thm. 4.4.1 the
square root of the value of g should in the end be chosen small compared to the
security parameter εs . We are at the moment only interested in a rough estimate
of the orders of magnitude. According to definition, pα is the probability, that a
single signal does not exceed α, which should be chosen close to 1, so we consider
pα = 1− 10−a and n = 10b . Then the value of g is given as 1− (1− 10−a )10b . We see
that

g = 1− (1−10−a )10b
(4.58)

= 1−exp(10b log(1−10−a )) (4.59)

≈ 1−exp(−10b−a ), (4.60)

where we made a first order approximation in the last step, as 10−a is small. We see,
that this quantity will vanish only if a >b . Then, it further holds that

g ≈ 10b−a , (4.61)

by approximating the exponential function. Since εs will be in the order of magni-
tude of 10−6 we see that

p

2g < 10−6, which means that b − a should roughly be
15. We will consider b up to 12 (realistic values should not exceed 10), so choos-
ing a ≈ 30 will suffice over the parameter range under consideration. For the state
under consideration, this will lead to a value α≈ 35.
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Application of entropic uncertainty relation: As we have noted, we cannot apply
the entropic uncertainty relation to the state directly, but first need to make the
transition to the state conditioned on the event that the protocol does not abort
after discretization. Then we will apply the uncertainty relation to the restricted
state.

In the following, we keep explicit track of Alice’s choices of measurement bases.
This information will be revealed during the communication and is available to all
parties. To do so, we introduce the random variable Z uniformly distributed over
{0, 1}. Then Alice’s choice over a run of N measurements is given as z N chosen from
Z N . Observe, that we use here that the random number generator is trusted to be
i.i.d.. We associate the measurement basis X to z = 0 and P to z = 1. We further
denote the complementary basis as z . Then the pre-measurement state is given as

ω0,A B EZ N =
∑

z N∈{0,1}N
ωA B E ⊗

1

2N
|z N 〉〈z N |. (4.62)

The measurement operator corresponding to a single measurement site i will
be denoted Pi (z i ), with Pi (0) = X , Pi (1) = P . For a string of measurements z N we
likewise denoted P(z N ) =⊗i Pi (z i ).

We now introduce two POVMs for Alice, the first one corresponding to mea-
surements onto the finite alphabet χ and a second, where we extend the alpha-
bet to cover all Z, thus corresponding to an unrestricted measurement. We denote
the elements of the first POVM by x ∈ χ by {X (x )} and {P(x )} respectively. From
this we define the POVM including the explicit choice of measurement basis z N as
{P(x , z N )⊗ |z N 〉〈z N |} and the post-measurement state as ωXA B EZ N , where XA ∈ χN

is the classical outcome of the measurement. Similar we define the second POVM
with x̃ ∈Z as {P̃(x̃ , z N )⊗ |z N 〉〈z N |} and the corresponding state as ω̃X̃A B EZ N , where
now X̃A ∈ZN . With this definition, we are able to state the estimation:

Lemma 4.4.2. With the notation above, the following two inequalities hold:

Hε+ε′
min (X̃A |EZ N )ω̃ ≥ Hε

min(XA |EZ N )ω (4.63)

Hε
max(X̃A |EZ N )ω̃ ≥ Hε+ε′

max(XA |EZ N )ω, (4.64)

for ε′ =
q

2g (n ,pα)
pp a s s

.

Proof. To show the result, we need to bound the purified distance of the states ω
and ω̃. We denote by Λ=Z\χ the part of the natural numbers, which will result in
an abort in the protocol and by PΛ(z n ) =

∑

x∈ΛP(x , z n ) the corresponding projec-
tor. We will apply this projector to the signals that have not been used during the
parameter estimation. Then, by definition 4.57 and conditioning on the event that
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the protocol did not abort, it holds that ω̃X n
A
(Pλ)) = g (n , pα)/pp a s s . Let us denote

the state conditioned on z n as

ωz n

XA B E =
∑

x n∈χn

|x n 〉〈x n | ⊗ωx n ,z n

B E . (4.65)

Then we can estimate the fidelity as

F (ω̃z n

XA B E ,ωz n

XA B E )
1/2 =

∑

x n∈χn

F (ω̃x n ,z n

B E ,ωx n ,z n

B E )1/2 ≥ 1−
g (n , pα)

pp a s s
, (4.66)

which is just a consequence from the fact that states are equal, except outside of
χ . We further estimate F (ω̃z n

XA B E ,ωz n

XA B E ) = (1−
g (n ,pα)

pp a s s
)2 ≥ 1− 2 g (n ,pα)

pp a s s
, and see that

for the purified distance

P(ω̃,ω)≤
r

2
g (n , pα)

pp a s s
. (4.67)

From this result, the lemma follows by application of the triangle inequality for
the smooth entropies 4.2.11.

In the last estimation we have acquired an “extra” classical register for the choice
of basis. The next lemma tells us, that this register can for our estimation be ne-
glected.

Lemma 4.4.3. LetωXA B EZ N be given as defined above. It holds that

Hε
min(XA |EZ N )ω ≥−n log c (δ)−Hε

max(XA |BZ N )ω ≥−n log c (δ)−Hε
max(XA |X B )ω

(4.68)

Proof. The first inequality is a direct extension on the proof of corollary 7.6 in [Tom12].
The idea is similar to the consideration following theorem (4.2.26). The second in-
equality is a consequence of the data processing inequality (4.2.10).

Estimation of the max-entropy: In the last section we have seen, how to reduce
the measured quantum state to the state restricted to a finite outcome set, and how
to apply the entropic uncertainty relation to transfer a min-entropy estimation into
a max-entropy estimation. In this section we show, how to give an upper bound for
the max-entropy in terms of the observed Hamming distance of outcomes.

Theorem 4.4.4. Let X , Y denote two strings of length n from an alphabet χ . De-

note by d k (X , Y ) = 1/k
∑k

i=1 |X i −Yi | the generalized Hamming distance. Let d PE =
d k (XPE , YPE ) denote the observed distance during parameter estimation of a random
subset of length k . Then the following holds:

Prob
�

d (X , Y )≥ d (XPE , YPE )+µ
�

≤ ε, (4.69)
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for

µ= |χ |
È

N (k +1)
nk 2

log
1

p

Ppassε
. (4.70)

Suppose, d (XPE , YPE )≤ d 0 then

Hε
max(X |Y )≤ n logγ(d 0+µ), (4.71)

with

γ(t ) = (t +
p

1+ t 2)

 

t
p

1+ t 2−1

!t

. (4.72)

The proof will be divided into two parts: First we proof the estimation if no sta-
tistical error are considered, i.e., in the case of infinite repetition, then we will use
sampling theory to estimate the typical deviation for a finite sample.

Lemma 4.4.5. Letχ be a finite alphabet,P(x , y ) a probability distribution over strings
of length n on χn ×χn . For any d 0 > 0,ε> 0 with ProbP(d (x , y )≥ d 0)≤ ε2,

Hε
max(X |Y )P ≤ n logγ(d 0), (4.73)

with γ(x ) = (t +
p

1+ t 2)
�

tp
1+t 2−1

�t

.

Proof. From the definition 4.16 we know, that the smooth entropy is taken over
distributions with an ε distance. Define the following distribution:

Q(X , Y ) =







P(x ,y )
ProbP[d (x ,y )≤d 0]

, if d (x , y )≤ d 0

0, else
. (4.74)

We denote by F (ρ,σ) the fidelity and P(ρ,σ) =
p

1−F (ρ,σ) the purified distance.

Then F (P,Q) = ProbP[d (X , Y )≤ d 0] and P(P,Q) =
p

ProbP[d (X , Y )≥ d 0]≤ ε.
One should note here, that the distributions X and Y are purely classical objects,

so we can use estimations for the classical max-entropy. We use, that the max-
entropy can be bounded by the Rényi-0 entropy (see e.g. [Tom12] and appendix
(A.3) for a definition and [TLGR12] for a similar estimation),

Hε
max(X , Y )P ≤Hmax(X , Y )Q ≤H0(X , Y )Q, (4.75)

with
H0(X , Y )Q =max

y
log |{x ∈χn ;Q(x , y ) 6= 0}|. (4.76)
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In our case this is

H0(X , Y )Q ≤ log |{x ∈χn ;
1

n

n
∑

i=1

|x i | ≤ d 0}| (4.77)

≤ log |{x ∈Nn ;
1

n

n
∑

i=1

|x i | ≤ d 0}| (4.78)

For any λ> 0 it holds:

|{x ∈Nn ;
1

n

n
∑

i=1

|x i | ≤ d 0}| ≤
∑

x∈Nn ,
∑n

i=1 |x i |≤nd 0

1 (4.79)

≤
∑

x∈Nn ,
∑n

i=1 |x i |≤nd 0

exp(−λ(nd 0−
n
∑

i=1

|x i |)) (4.80)

≤
∑

x∈Nn

exp(−λ(nd 0−
n
∑

i=1

|x i |)) (4.81)

= exp(λnd 0)
∑

x∈Nn

exp(−λ
n
∑

i=1

|x i |)) (4.82)

= exp(λnd 0)
n
∏

i=1

∑

x i∈N

exp(−λ|x i |)) (4.83)

= e λnd 0

 

∑

x∈N

exp(−λ|x |)

!n

(4.84)

= e λnd 0

�

1+ e−λ

1− e−λ

�n

, (4.85)

where the last inequality is due to the geometric series. As this holds for any λ≥ 0,
we can determine the minimum with respect to λ, which is attained at λm = log(1+
Æ

1+λ2

d
). Putting this into the last equation gives the result.

The next step to proof is to invoke the finite statistics from parameter estimation.
Denote again XPE , YPE the strings obtained from parameter estimation of length k ,
we have to estimate the probability that d (X , Y ) ≤ d (XPE , YPE ) in the case that the
protocol does not aboard,i.e., none of the observed measurement values exceeds α.
Denote by Ppass the probability, that the protocol does not aboard. Then by Bayes’
theorem it follows that

Prob[d (X , Y )≤ d (XPE , YPE )+µ|“pass”]≤
1

Ppass
Prob[d (X , Y )≤ d (XPE , YPE )+µ].

(4.86)
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The bound on d (X , Y )≤ d (XPE , YPE ) is obtained using standard methods from sam-
pling theory [Ser74]. We have a sample of length N that is divided into the param-
eter estimation part of length k and the raw key part of length n , where N = k +n .
We call the corresponding distances d t ot on the whole string, d PE = d (XPE , YPE ) on
the parameter estimation part and d k e y = d (X , Y ) on the raw key part. We have that

N d t ot = k d PE +nd k e y . (4.87)

We use the bound from [Ser74] to obtain ∀µ> 0

Prob[d k e y ≥ a + µ̃|d t ot = a ]≤ e
−2n µ̃2 N

|χ |2 (k+1) , (4.88)

where χ = d2α
δ
e denotes the alphabet length and we have used, that two measure-

ment values may only differ by |χ |. From 4.87 it follows, that d k e y ≥ d PE + µ↔
d k e y ≥ d t ot + k

N
µ, so

Prob[d k e y ≥ d PE +µ] = Prob[d k e y ≥ d t ot +
k

N
µ] (4.89)

=

∫

a≥0

Prob[d t ot = a ] ·Prob[d k e y ≤ a +
k

N
µ|d t ot = a ]d a (4.90)

≤ e
−2nµ2 nk 2

|χ |2N (k+1) . (4.91)

Now we combine the results. To show that Prob[d k e y ≤ d PE +µ|“p a s s ′′] ≤ ε2 it
suffices to show Prob[d k e y ≤ d PE +µ]≤ Ppassε2. From this we get the estimation

Prob[d k e y ≤ d PE +µ]≤ e
−2nµ2 nk 2

|χ |2N (k+1) ≤ Ppassε
2, (4.92)

which is true for

µ= |χ |
È

N (k +1)
nk 2

log
1

p

Ppassε
, (4.93)

which completes this part of the proof.

Now we have all the tools and estimations to proof Thm. 4.4.1.

Proof of Theorem 4.4.1. We denote byω the state conditioned that the test was passed,

by ω̃ the unconditioned state and by ε′ =
p

2g (pα, n ) the correction due to the re-
striction on the test. Denote the classical information revealed during sifting by Z .
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Then we estimate

Hε
min(XA |EZ )ω

(4.63)
≥ Hε−ε′

min (XA |EZ )ω̃ (4.94)

(4.68)
≥ −n log c −Hε−ε′

max(XA |BZ )ω̃ (4.95)

(4.64)
≥ −n log c −Hε−2ε′

max (XA |BZ )ω (4.96)

dp
≥ −n log c −Hε−2ε′

max (XA |X B )ω (4.97)

(4.71)
≥ −n log c −n logγ(d 0+µ(ε−2ε′)). (4.98)

The inequality labeled dp is the data processing inequality 4.2.10. The theorem

follows, if we use the key length formula (4.2.24) with εs replaced by εs−2
p

2g (pα, n ).

4.5. Results and Discussion

In the last sections, we have derived the bounds needed to estimate the security of
the cryptographic protocol. In this section we will estimate the expected key rates
and compare to bounds from collective and asymptotic estimations.

4.5.1. Key rates against coherent attacks

We will now use the techniques derived above to calculate key rates that correspond
to an achievable experiment. More precisely, we will use the parameters that have
been realized in an experiment at the AEI in Hannover as basis for a numerical sim-
ulation of the experiment and the resulting key rate.

The main ingredient of the experiment is a source of two-mode squeezed light
located in Alice’s laboratory. This source will be built by two sources for single-mode
squeezed vacuum states, whose light is superimposed on a 50/50 beam splitter, also
referred to as the entangling beam splitter. From this, one output is sent to Alice’s
detector and one output is sent to Bob. For a basic description of such a source c.f.
3.2.2.

The source is characterized, by the squeezing (λsq ) and anti-squeezing (λa sq ) val-
ues. We will use a decibel scale, such that the covariance matrix of a single squeezer
before the entangling beam splitter is given as

γ=

�

10−λsq /10 0
0 10λa sq /10

�

. (4.99)

It is always assumed, that the phases are calibrated in a way that the off-diagonal
elements are zero. For a pure Gaußian state, the squeezing and anti-squeezing
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parameters would coincide. We will however not assume, that the initial state is
pure. We further assume the entangling beam splitter to be perfect and model two
sources of loss for the channel: loss and excess noise.
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Figure 4.1.: Extractable key rate against number of sent signals for different
values of loss: 0% (blue solid line), 4% (green dashed line) and 6%
(red dot-dashed line). Input squeezing was 11dB and anti-squeezing
16dB. The excess noise was set to 1% and the security parameters
to εs = εc = 10−6 and the error correction efficiency β = 95%.

Damping is an effect that is present in any optical transmission. Our setup em-
ploys squeezed light at 1550nm, which is transmitted through a low noise standard
telecom fibre. The action of this channel is described as

γ→ (1−µ)γ+µγv a c , (4.100)

where γv a c = 1 is the covariance matrix of the vacuum state and µ is the damping
factor. For 1550nm light, one expects a damping of 0.2 dB/km. This parameter will
be varied later to account for different length of wires.

The second source of noise we consider is excess noise, which comes mainly from
the classical data acquisition. Excess noise is modeled as white noise that is added
to the channel, so via the mapping

γ→ γ+νγv a c . (4.101)

In our setup the technical noise is expected to be 20 dB below the signal, which
corresponds to an excess noise of 0.01.

In figure 4.1, we have plotted the extractable key rate for different values of loss
against the number of sent signals. We note, that we calculate key rates always in
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bits, so more then one bit can be transmitted per run. As input states, we used
always squeezing of 11 dB and anti-squeezing of 16 dB. The security parameters
were set to εs = εc = 10−6 and the error correction efficiency to β = 95%. For this
setting we see, that the minimal number of signals that have to be transmitted in
order to get a positive key rate is≈ 107. If the excess noise is fixed to 1%, the limit for
tolerable noise is 7%, which is reachable only if the number of signals approaches
1012.

4.5.2. Asmyptotics of max-entropy estimation

The estimation of the key length formula 4.2.24 depends on the estimation of the
min-entropy via the uncertainty relation and the max-entropy and the estimation
of the max-entropy with 4.4. In order to evaluate our estimation for the max-entropy,
we will now estimate the asymptotic behavior, as we know, that the max-entropy
will converge to the von Neumann entropy in the limit on large number of repeti-
tions N . We are also interested in the limit ofδ→ 0, which means that the resolution
of the raw key will become arbitrary fine. This limit needs to be made cautious, as
the definitions given in Chapter 4.2.2 have only been made with respect to a sys-
tem on the Alice system with an arbitrary but fixed number of outcomes, not with
continuous outcomes. This can be done but will not be discussed here.

For the analytical part we stick to an idealized situation to keep the derivation
and notation simple. We start by considering an two-mode squeezed state ρ, de-
fined by its covariance matrix Γ. We assume, that all losses are covered by the initial
preparation and that the two generating squeezers are identical. Then the covari-
ance matrix is given by the initial squeezing and anti-squeezing values.

In this case, the joint measurement of amplitude and phase on both sides has the
same classical statistics.,i.e., ΓX = ΓP . Suppose (for sake of completeness), that the
X quadrature is chosen with probability px , then it follows that

d (X |Y )Γ = pX d (X |Y )ΓX +(1−pX )d (X |Y )ΓY = d (X |Y )ΓX . (4.102)

In our case, the distance has to be evaluated on the alphabet χ , so we have

d (X |Y )ΓX =
|χ |/2
∑

i=−|χ |/2

|χ |/2
∑

j=−|χ |/2

|i − j |
∫

�i j

dξWΓX (ξ), (4.103)

where the symbol �i j indicates integration over the plaquette at position i j . For
small δ, this sum can be replaced by the integral

d (X |Y )ΓX ≈
1

δ

∫

dξ|ξ1−ξ2|WΓX (ξ) := d a (4.104)
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This quantity however can be treated analytically. It holds that

d a = 2

Ç

Γ11−Γ12

π
Erf[

α
p

Γ11−Γ12

]−O(exp[−
α2

2Γ11
]). (4.105)

Where Erf is the error function and Γ = ΓX . We have collected all terms that vanish
with α large enough. In this limit, the error function is one, and by plugging in the
entries of the covariance matrix we arrive at

d a p = 2

Ç

γ11−γ12

π
=

2
p
π

p
10−sq/10. (4.106)

If we now go back to the discrete version, the distance has to be scaled in units of
δ, so dδ = d a p/δ. This approximation is good for small values of δ. In the limit
δ→ 0, for any fixed set of other parameters, the dδ will become arbitrary large. We
will next determine the behavior of γ. In the limit x →∞ it holds that

logγ(x )→ log(2e x ), (4.107)

where e is the Euler constant.
To see this, observe that limx→∞

�

x/(
p

x 2+1−1)
�x
= e .

Combining these results, we arrive at the asymptotic behavior

γ(dδ→0) = log(
4e
p
π

p

10−sq/10))− log(δ). (4.108)

This results holds for an i.i.d. Gaussian state for α large enough, N → ∞, δ → 0.
In the same limit, we know, that the max-entropy converges to the conditional von
Neumann entropy, which in this case is just the Shannon entropy of the classical
distribution of the measurement results. So we can compare the quality of our esti-
mation of the max-entropy in this asymptotic sense:

We start from 4.73
1

N
Hmax(X |Y )≤ logγ(d 0). (4.109)

The left hand side will give in the limit the discrete version of von Neumann entropy

1

N
Hmax(X |Y )→H (X |Y )δ =

1

2
log





4πe

δ2
10−

sq
10

 

10
a sq
10

10
a sq
10 +10−

sq
10

!

 . (4.110)

We se that the term in the round brackets is approximately 1 if squeezing and anti-
squeezing are high enough (say >10). For high enough squeezing in that sense we
have

H (X |B )' log

�

2
p
πe

δ

p

10−
sq
10

�

≤ log

�

4e

δ
p
π

p

10−sq/10

�

' logγ, (4.111)

82



where the ' should be a reminder, that equality only holds in the aforementioned
limit. The difference of the quantities can now be calculated to be log[ 2

p
e
π
] ≈ 0.07.

This shows that asymptotically, the estimation of the max-entropy via the function
γ gives no significant reduction in the key rate.

4.5.3. Comparison with collective attacks

After having given the security proof in the previous section and calculating ex-
pected key rates against general, coherent attacks, we will now describe how to es-
timate the security in the case of collective Gaussian attacks. In this case, we can
use a different strategy than for coherent attacks. Under collective attacks, the state
of Alice and Bob is the same in every instance of the protocol, so they are able to
perform state tomography. Then, using the fact that the attacks are Gaussian, they
can estimate the displacement and covariance matrix of the state and construct the
purification of the state. This purification can then be used to bound the informa-
tion of the eavesdropper. We can then further estimate the min-entropy in the key
length formula via the von Neumann entropy using the asymptotic equipartition
theorem (AEP). The results of this section have also been published in [FFB+12],
where the technical parts are contained in the appendix.

The protocol in case of collective Gaussian attacks is basically the same as in the
case of coherent attacks. Both parties will again perform measurements at random
and the key will be generated from amplitude and phase measurements. They are
in principle free to choose further measurements for the state estimation. We will
for now not specify on a specific estimation procedure but just assume that it will
reconstruct a state from a certain confidence set CεPE , except with probability 1−
εPE . We note, that we will assume that the state is a squeezed vacuum state. We
denote the number of transmitted signals n and the number of signals used for the
tomography by k . In contrast to the case of collective attacks, there is no need for a
restriction of the possible outcomes. For any realistic detector, there will certainly
be an upper limit, but we will not be concerned with this in the following. This also
implies that the protocol may give a zero key rate, but will never abort.

Theorem 4.5.1. In a protocol described above and under the assumption of collec-
tive Gaussian attacks, an εs -secure and εc -correct key of length l can be extracted,
provided that not more then lEC bits have leaked during error correction, where

l ≤ n inf
Γ∈CεPE

H (XA |E )−
p

n∆− lEC− log
1

ε2
1εc

, (4.112)

where the inf is taken over the confidence set corresponding to the measurement, ε≤
(εs −ε1)/(2) and
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∆= 4 log(2
1
2

Hmax(XA )+1+1)

r

log
8

(εs −ε1)2
. (4.113)

Proof. Starting point of the proof is again the key length formula (4.2.24), where the
task is to bound the smooth min-entropy Hε

min(XA |E ). But under the assumption
of collective attacks, we can directly apply the AEP (4.2.12), which gives

Hε
min(X

n
A |E

n )≤ nHε
min(XA |E )−

p
n4 log(2

1
2

Hmin(XA |E )+2
1
2

Hmax(XA |E )+1)

Ç

log
2

ε
.

(4.114)
In order to simplify the expression, we use the following estimations:

Hmax(XA |E ) ≤ Hmax(XA ) (4.115)

−Hmin(XA |E )≤Hmax(XA |C ) ≤ Hmax(XA ), (4.116)

where the two inequalities on the right follow from the data processing inequal-
ity 4.2.10 and the first inequality for the min-entropy is the duality relation which
holds for arbitrary purifications (C is an auxiliary system). With these estimations
it follows that

2
1
2

Hmin(XA |E )+2
1
2

Hmax(XA |E ) ≤ 2
1
2

Hmax(XA )+1, (4.117)

which proves the form of δ. To complete the proof we observe, that the minimum
over the von Neumann entropy for states with the same second moments is at-
tained for Gaussian states. This principle can be found in [GPC06, NGA06].

In Fig. 4.2 we have plotted the secure key rate against collective attacks using
(4.112). We see, that compared to the coherent attacks, under collective attacks the
expected key rate is higher, as is the robustness against noise. In the given parame-
ter range, a positive key rate was obtainable up to 25% additional loss.

For our analysis we chose a model for the confidence set where every entry of the
covariance matrix is varied with a

p
n fluctuation, i.e.,

Cεp e =
�

Γ̃|Γ̃∈
�

Γi j (1−
f (εp e )p

n
),Γi j (1+

f (εp e )p
n
)
��

, (4.118)

where f (εPE ) gives the desired confidence. In the Gaussian case the function is
derived e.g. in [LGG10] and scales such that Erf( f ) = 1−εp e , where Erf is the error
function.

To complete the analysis, we will now compare the collective and coherent case
with the asymptotic limit derived from the Devetak-Winter bound. We have seen in
section 4.2.6, that this bound in our case takes the form
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Figure 4.2.: Extractable key rate against number of sent signals for different
values of loss under the assumption of collective Gaussian attacks:
0% (blue solid line), 15% (green dashed line) and 25% (red dot-
dashed line). Input squeezing was 11dB and anti-squeezing 16dB.
The excess noise was set to 1% and the security parameters to εs =
εc = εp e = 10−6 and the error correction efficiency β = 95%.

rDW =β I (XA ; X B )− I (XA ; E ). (4.119)

It is also clear from the construction that the bound obtained for collective at-
tacks will converge to the Devetak-Winter bound in the limit of infinite repetition.

In Fig. 4.3 we compared the key rates for coherent, collective and asymptotic for a
fixed number of 109 signals. We see again that the coherent rate is much worse then
the rates obtained under the assumption of collective attacks and in the asymptotic
limit.

4.6. Discussion and Outlook

In this chapter we presented a new technique to proof security of a continuous vari-
able QKD protocol. Our technique is based on the entropic uncertainty relation and
allowed us to predict a positive key rate for today feasible experiments that are se-
cure against coherent attacks. The secure key rates obtained from our proof do,
however, not converge to the Devetak-Winter bound in the limit if infinite repeti-
tion. When considering the similar proof technique in the finite dimensional case,
this would be the case, so one should search to improve the estimation.
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Figure 4.3.: Extractable key rate against added noise for the Devetak-Winter rate
(blue solid line), collective attacks (green dashed line) for 109 signals
and coherent attacks (red dot-dashed line) for 109 signals. Input
squeezing was 11dB and anti-squeezing 16dB. The excess noise was
set to 1% and the security parameters to εs = εc = εp e = 10−6 and the
error correction efficiency β = 95%.

In our scheme there were two important estimations: first we used the uncer-
tainty relation to estimate the min-entropy, and second we used an explicit con-
struction to estimate the max-entropy as a function γ, only dependent on the ob-
served differences in the measurement results. We have further seen, that the sec-
ond estimation is asymptotically only by 0.07 bits below the optimum, which indi-
cated that there is not much room for improvement here. To improve our bound,
one should thus try to improve the entropic uncertainty relation in our case. The
uncertainty relation as presented here is tight in general, but there is no reason, why
it should be tight for the squeezed states under consideration. One should thus try
to find a state dependent version of the uncertainty relation which can improve the
bound under realistic, and testable assumptions.

In order to apply the uncertainty relation, we had to use an estimation to effec-
tively truncate the state on the region that is seen by the detectors. More precisely,
we needed to bound the probability that any measurement value lies outside this
region. To make this estimation, we chose to place the source in Alice’s lab, which
simplified the estimation. It would be interesting to derive bounds, which are not
dependent on this assumption. Unfortunately, placing the source in Alice’s hand is
probably the strongest requirement, so any different estimation will probably fur-
ther reduce the key rate.
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The way we did the overall estimation had the advantage, that only assumptions
about Alice’s lab enter the estimation. We calculated the rates under the assump-
tion, that Alice is in every round able to perform position or momentum measure-
ment without error in the basis choice. When an actual experiment is involved, this
is not realistic, but one would have to include a deviation from the ideal situation
in the calculation of the constant c in the uncertainty relation.

In the study of Gaussian QKD, one needs extra tools to break the “3 dB loss limit”.
This can either be accomplished with post selection [SRLL02] or reverse reconcilia-
tion [GG02]. Both techniques are not compatible with our proof scheme. The post
selection would require to ignore certain parts of the outcomes, which would con-
flict with the use of the uncertainty relation, i.e., which would make the estimation
trivial. The reverse reconciliation on the other hand is not compatible with the fact
that the source has to be located in Alice’s lab. It would be interesting to investi-
gate, under which circumstances a version of the entropic uncertainty relation is
possible that is compatible with post selection.

Finally we note, that in the presentation we used a highly symmetric situation,
applying the same loss on both sides and only considering states with an ampli-
tude/phase symmetry. If one drops these assumptions, one needs to introduce
more free parameters in the optimization. The cut-off parameter α and the dis-
cretization parameter δ will then be optimized separately for Alice and Bob, and
position and momentum.

We further note that, though not part of this thesis, to the best of our knowl-
edge there are no off-the-shelf implementations for error correction codes in the
required parameter regime available. These will have to be created to make the
scheme applicable in practice.
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5. Extremal Quantum Correlations

Overview and Contributions

In this chapter we will investigate device independent cryptography from a general
perspective and show that in an error free scenario device independent security is
equivalent to the extremality of the observed probability distributions. This work
was performed in collaboration with F. Furrer and R.F. Werner in the quantum in-
formation group in Hannover. Results were published in [FFW11].

5.1. Introduction

The main virtue of quantum cryptography lies in the fact, that quantitative bounds
can be given on the amount of information that has leaked to the environment
during communication and, hence, to any eavesdropper. These security consid-
erations, however, are usually based in a specific framework, i.e., under certain as-
sumptions concerning the preparation and the measurements that are used. For
example in the historically first implementation, the BB84 protocol[BB84], one as-
sumption was that the legitimate parties transmit only single qubits.

There are actually two assumptions included here, namely first that in each trans-
mission event only a single indivisible system is generated and second that this
system has Hilbert space dimension 2. If either of the two conditions is dropped,
the protocol becomes insecure: information about the basis choice of the bit value
might be accessed from parts of the signal that are not visible to Bob, thus, compro-
mising the security (see e.g. [Lüt00, SBPC+09]). Some of these assumptions can be
dropped, by employing a different protocol, e.g., a decoy state protocol to remove
the assumption of single systems ([Hwa03], for a review see also [SBPC+09]).

It was realized, that quantum mechanics might, at least in principle, offer ways to
circumvent a wide range of such assumptions by employing appropriate tests and
ultimately arrive at a level of security that is independent of the proper functioning
of the devices used. This idea was put forward first under the term of self testing de-
vices in [MY98] and applied to QKD in quantitative form in a security proof against
collective attacks in [ABG+07]. In both cases, the test was based on a violation of
the CHSH inequality.

The intuition behind the proof is as follows: First observe that if two parties
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share a pair of maximally entangled qubits, they are able to maximally violate the
CHSH inequality using appropriate measurements. But moreover, the converse is
also true, i.e., whenever a maximal violation of a CHSH inequality is observed, the
states that are present must be located on a qubit subspace and on this subspace
form a maximally entangled pair. This also implies that the results from such mea-
surements are uncorrelated from any other measurement, especially of those of an
eavesdropper. In this case we also say that the correlation are independent from
the eavesdropper.

In the literature, device independent QKD was first proven secure against collec-
tive attacks in [ABG+07] and later generalized to commuting measurements [HR10]
and causally independent measurements [MPA11]. For an overview on the first
years of device independence and extensions to general non-signaling theories we
also refer to [Hän10].

Our main motivation is to identify the origin of this independence and whether
it is a special feature of the CHSH inequality or a generic feature of all Bell inequali-
ties. We are thus not interested in a specific protocol, but want to answer the ques-
tion for a general situation with an arbitrary (but finite) number of participants,
measurements and outcomes. In section 5.3, we find that perfect independence
from third party measurements is given if and only if the corresponding probability
distribution of outcomes is extremal in the set of all probability distributions. Con-
cerning the initial question, this implies that any unique maximal violation of a Bell
inequality implies extremality of the underlying probability distribution, and thus,
independence of external measurements. Conversely, there are extremal proba-
bility distributions that offer perfect independence without a maximal violation of
a Bell inequality. The connection between extremality and security has also been
studied in the context of general non-signalling theories [BLM+05] and applied for
a bipartite situation under the assumption of individual attacks in [BHK05].

In section 5.4, we will further study a stronger notion of independence, we named
algebraic security, which is connected to the uniqueness of the representation of
the system under consideration. We will consider examples in section 5.5 and show
that in certain cases, security also implies algebraic security.

Our study of extremal correlations and their connection to cryptography was per-
formed in collaboration with F. Furrer under the supervision of R.F. Werner at the
University of Hannover and published in [FFW11]. We thank V. Scholz and D. Gross
for useful discussions.

5.2. Correlation tables and quantum representations

We consider an arbitrary statistical experiment conducted by N honest parties that
are at distinguishable locations and collaborate to perform the experiment. In every
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run of the experiment, each experimenter chooses a specific measurement from a
set of measurement devices and observes a measurement result from a set of pos-
sible outcomes defined by the measurement device in use. During the run of the
experiment, all experimenters are considered to be independent from each other,
particularly in their choices of measurements. When the experiment has been con-
ducted, the acquired data is brought together and a the probability distributions P
of outcomes are determined which will be the objects of study in the remainder of
the chapter.

One should note here, that in a general situation, the number of measurement
devices could be different from experimenter to experimenter and likewise the num-
ber of possible results could be different for all measurement devices. We will re-
strict to a symmetric situation to keep the notation short. The technical results do
not depend on this and can be generalized to the asymmetric situation. We further
restrict to finite discrete sets of measurements and outcomes. We will comment at
the end of the chapter on the possibilities of dropping this assumption.

Definition 5.2.1. In the following we always assume an experiment conducted by N
parties, with M possible measurement devices and K outcomes, which we will call
the (N , M , K ) situation. We will call the measurement setting of the i -th party s i and
the outcomes x i , where i ∈ [1, N ], s i ∈ [1, M ] and x i ∈ [1, K ]. We further denote the
collection of all settings for a specific run by s = (s1, s2, ..., sN ) and of all outcomes by
x = (x1,x2, ...,xN ). Then the probability for obtaining an outcome x while given a
setting s is denoted by P(x |s ). The normalization condition gives that

∑

x P(x |s ) = 1
for all s .

One should however note, that not all these probability distributions can actually
be realized by quantum mechanics with independent measurements as required
above. To do so, one first needs to discard all probability distributions that allow
signaling, i.e., for which the outcome of a part depends on the measurement setting
of another. Formally this non-signalling condition demands that P(x i |s i ) = P(x i |s )
for all i ,x i , s . We denote the set of all probability distributions that fulfill the no-
signalling condition by P . It is known, that the no-signaling set is a polytope, and
that it is strictly larger then the set obtainable by quantum means.

A smaller set is the one that can be realized with a classical local hidden variable
model. This set also forms a polytope, its extreme points are points with a deter-
ministic assignment of outcomes. We denote this set by C. The faces of maximal
dimension of this polytope correspond to proper Bell inequalities. The structure
of this polytope can in principle be constructed, and classifications are known for
systems up to a certain degree. A survey on the topic together with a more de-
tailed collection of known results and references can be found online in the list of
open problems in quantum information [QIP]. The (2, 2, 2)-case is known to have an
exceptionally simple structure, as all Bell inequalities are equivalent to the CHSH-
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inequality [Fin82]. General constructions for the classical polytope are known in
some cases. A complete description of the (N , 2, 2) has been presented in [WW01].
For a review on general constructions, we refer to [PLZ06].

We are now interested in all probability distributions that can be realized within
quantum mechanics, denoted by Q. These distributions are said to have a quantum
representation in the following sense:

Definition 5.2.2. A probability distributionP(x |s ) admits a quantum representation
if there exists: a Hilbert space H, POVMs {Fi (x i , s i )} and a state ω : B(H)→ C such
that

[Fi (x i , s i ), Fj (x j , s j )] = 0 ∀i 6= j (5.1)

and

P(x |s ) =ω(F (x |s )), (5.2)

where F (x |s ) = F1(x1|s1) · ... ·FN (xN |sN ). We denote this as (H,ω,{Fi })-representation.

Let us first note that there is a strict inclusion of the sets, namely C ⊂Q ⊂ P . We
summarize a few geometrical facts about Q: first, it is convex, but not a polytope. In
contrast to C, which was defined by finitely many Bell inequalities, the boundary of
Q cannot be defined by any finite number of linear inequalities. Nevertheless, any
extreme point of Q maximizes a linear inequality, which we call a Tsirelson inequal-
ity. This nomenclature corresponds to the most famous CHSH case, in which the
maximal value of the CHSH functional in C is given by 2 [CHSH69], while the maxi-
mal value allowed by quantum mechanics is 2

p
2, as shown by Tsirelson [Tsi80]. In

this sense, every Bell inequality defines a Tsirelson inequality, while conversely ev-
ery Tsirelson inequality defines a generalized Bell inequality, though not necessarily
a proper one. There are points, for which the generalized Bell and the Tsirelson in-
equalities give the same bound, e.g., the classical deterministic points.

For a given Bell inequality, the problem of finding the maximal value within Q
can be solved via a hierarchy of semi-definite programs [DLTW08, NPA08]. The use
of this hierarchy is in principle always possible, although the resources needed for
the optimization do not scale efficiently. We remark, that it can also be helpful to
consider non-linear inequalities for the study of Q. In [Mas03] this was done to give
a complete characterization of all full correlation tables in Q in the (2, 2, 2)-case.

From the definition of a quantum representation 5.2.2 it is in general possible
to find different representations for the same probability distribution. An obvi-
ous construction method for a equivalent representation is to connect the repre-
sentations with a unitary transformation. We will in the following say that two
quantum representations are equivalent, if they can be connected with a unitary
transformation. We will next show how to use a version of the Stinespring theorem
[Sti55, Pau02] to find a dilation of a given state into standard form.
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Theorem 5.2.3. For any quantum representation (H,ω,{Fi }) there exists a represen-
tation (H̃,ρ,{F̃i }), where the {F̃i } are projection operators, ρ = |Ω〉〈Ω| is a pure state
cyclic for the algebra generated by the projections A(F ) such that

P(x |s ) = tr (ρF̃ (x |s )). (5.3)

Here, cyclic means, that {G |Ω〉|G ∈A(F )}=H.

Proof. The proof is performed by explicit construction and is similar to the con-
struction used in the GNS-construction [BR79]. It has been presented previously,
e.g., in the supplement of [FFW11].

Starting from the given representation (H,ω,{Fi }), one first uses a version of the
Naimark dilation theorem to make the measurements projective. It suffices to show
this procedure for one of the observables on one of the sites and to ensure that pro-
jectivity of the other observables is preserved. Then this technique can be applied
to all observables on all sites successively. Consider without loss, the observable
{F1(x |1)}x . Define bH=

⊕K
i=1 H and Px as the projection on the x -th summand. De-

fine further the isometry

V : H→ bH s.th. Vφ =
K
⊕

i=1

p

F1(x , 1)φ. (5.4)

Now set

F̂1(x |s ) =







Px s = 1
V F1(1, s )V ∗+(1−V V ∗) s 6= 1,x = 1
V F1(x , s )V ∗ s 6= 1,x 6= 1

. (5.5)

As V is an isometry, i.e., V ∗V = 1, one directly sees that V ∗F̂1(x |s )V = F1(x |s ) and
that projective measurements remain projective. For all other sites (j 6= 1), we set
bFj (x |s ) =

⊕

x Fj (x |s ). It follows, that bFj (x |s )V = V Fj (x |s ), and with this, we see that
the bFj commute for different j and so the product can be unambiguously defined.
Setting bω(·) =ω(V ·V ∗)we obtain a representation with projective measurements.

The fact that the state can be chosen pure and cyclic is a direct consequence of
the GNS-construction (A.1.3).

Now we have gathered the ingredients to state the definition of security and to
discuss the connection to quantum representations.

5.3. Cryptographic setting

We have seen in the previous subchapter how probability distribution are repre-
sented within quantum mechanics. Now, we are interested in the cryptographic
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setting. The question here is, how much information about the measurement re-
sults of the legitimate parties can be inferred by an eavesdropper. As usual, the
eavesdropper may perform any operation permitted by quantum mechanics and
has arbitrary resources, but is not allowed to interfere with the laboratories. The
property of not being able to interfere with the laboratories is modeled by choosing
the measurement operators of the eavesdropper commuting to the legitimate par-
ties. An important assumption we make here is, that the probability distributions
are known without error. This condition is not realistic, as it can never be achieved
in an experiment. We will comment on the possibility to circumvent this restriction
at the end of the chapter.

In addition to the measurements on his part of the system, the eavesdropper has
full prior knowledge about the outcome statistics of the system, i.e., full knowl-
edge about the probability distribution P. This means, that if the outcomes are
not equally distributed, he can utilize this prior knowledge. In the extreme case of
deterministic points, he would obtain full information about the outcomes in ev-
ery run without performing any measurement at all. These cases can however be
accounted for, as the legitimate parties are always assumed to know P. In the fol-
lowing we will thus be interested in deciding whether the eavesdropper can gain
additional information by performing measurements.

All legitimate parties and the eavesdropper will be modeled by quantum systems,
where the fact that the eavesdropper has no direct access to their laboratories is
modeled by choosing the measurement operators forming her POVM {Ey } com-
mutung with all the operators of the legitimate parties, i.e., [Ey , Fi (x |s )] = 0.

Let us note here, that it is an open question, whether this commutation require-
ment is equivalent to modeling the eavesdropper on a different tensor factor then
the legitimate parties, where the later condition clearly implies the former. These
notions are known to be equivalent if the underlying system has finite dimensions
but the answer to the general question, called the “Tsirelson conjecture”, is still
open. It has been shown to be equivalent to open problems in algebra, like the
“Kirchberg conjecture” and “Connes’ embedding problem”. For further reading on
this topic we refer to [SW08, JNP+11].

Definition 5.3.1. We say that the probability distribution P is independent of the
eavesdropper, if for any quantum representation (H,ω,{Fi }) and any positive opera-
tor Ey with [Ey , Fi (x |s )] = 0 for all i it holds that

ω(Ey F (x |s )) =ω(Ey ) ·ω(F (x |s )) =ω(Ey ) ·P(x |s ). (5.6)

As argued above, this independence condition is trivially satisfied for all classical
deterministic points. We will thus refine the definition to exclude these trivial cases.

Definition 5.3.2. We say that a probability distribution contains security if it is in-
dependent and not of product form, i.e., P(x |s ) 6=

∏N
i=1P(x i , s i ).

94



The amount of extractable security in the probability distribution is then given
by the prior distributions of outcomes, and maximal if the outcomes are equally
distributed. As we are only interested in deciding, whether a probability distribu-
tion contains any security, and to use the same notation as [FFW11], we will call a
probability distribution secure, if it contains security.

Let us compare this to the situation in chapter 4. Here, the main ingredient for
the security proof of QKD protocols was the privacy amplification theorem which
stated how much information was contained in a distribution held by Alice, when
considering the quantum system of the eavesdropper. The theorem was thus for-
mulated for a bipartite Alice/Eve split, while in the actual protocol Alice and Bob
need to perform additional error correction to make their outcome strings equal
while loosing bits in the process. The maximal information Alice could extract this
way was given by the min-entropy, which was given as the guessing probability
for an optimal measurement strategy by Eve. The situation here is per definition
a multi-party situation that was formulated without respect to any error correc-
tion. In fact, there is no guarantee that the secure N -party probability distributions
contain sufficient correlations, so there could be situation in which Eve is uncor-
related, i.e., does not learn by measurements, but the legitimate parties might still
not be able to extract any key. If definition 5.6 is fulfilled, we already know that the
optimal guessing strategy for Eve is given by the maximal value in the prior prob-
ability distribution and we would thus be able to bound the min-entropy between
Eve and the legitimate parties, but we do not get an estimation for the leakage term
that appears in the error correction.

After these definitions, we can now state the characterizing theorem:

Theorem 5.3.3. A probability distribution contains security, if and only if it is ex-
tremal and not classical, i.e., extremal in Q\C.

Proof. We first show that security implies extremality. Suppose, P is secure but not
extremal. Then there exist a convex decomposition P = λP1 + (1− λ)P2 with λ ∈
[0, 1]. Now choose a direct sum representation for P1 and P2. This means we choose
representations (Hj ,ωj , Fj (x |y )) and H = λH1⊕ (1−λ)H2, F (x |y ) = λF2(x |y ) + (1−
λ)F2(x |y ). Choose E1/2 as the projector on the respective summand. One checks,
that these commute with the measurements [E j , F (x |y )] = 0. Then the condition
(5.6) directly gives, that P = P1 = P2, so the decomposition is indeed trivial and P
is extremal. As we have explicitly excluded product form for P in the definition of
security and all extremal correlations in C are of product form, it it is clear that P is
not in C.

Conversely, suppose P is extremal in Q\C. First observe, that, as P is extremal and
not in C, it cannot be of product form. Choose an arbitrary operator E commuting
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with the F (x |s ) and set λ=ω(E ) and

P1(x |s ) =
1

λ
ω(E · F (x |s )) (5.7)

P2(x |s ) =
1

1−λ
ω
�

(1−E ) · F (x |s )
�

. (5.8)

Then it follows that P(x |s ) =ω(F (x |s )) =λP1(x |s )+(1−λ)P2(x |s ). But P is extremal,
so the decomposition must be trivial and P = P1 = P2. But then equation (5.7) is
exactly the independence condition (5.6).

This theorem links the definition of uncorrelated, or secure, probability distri-
butions to the geometric property of extremality. Unfortunately, the characteri-
zation of all extremal correlation tables, or even the certification of extremality is
no easy task, even in a scenario with small (N , M , K ). One way of certifying ex-
tremality is to show that a given probability distribution maximizes a non-trivial
Tsirelson inequality, which can be done via a hierarchy of semi-definite programs
[NPA08], which becomes impractical also for small (N , M , K ). As a second direct
consequence, one sees that the requirement in definition 5.3.1 that independence
should hold for “any” quantum representation of the probability distribution is ac-
tually not severe as with theorem 5.3.3 independence of one representation auto-
matically implies independence for any other representation.

5.4. Algebraic security

We now come to a strengthened definition of security. Where in the previous sec-
tion we were interested in certifying independence for all measurement operators
necessary to determine the given probability distribution, we turn our attention
now to the complete algebra generated by these operators.

Definition 5.4.1. For a given set of positive operators {Fi } ∈B(H), we denote by A(F )
the algebra generated by the operators, i.e., the smallest closed ∗-subalgebra of B(H)
containing the Fi .

This definition makes explicit reference to a specific representation of the proba-
bility distribution. We will denote the direct sum of all inequivalent representations
of P as U (P), and the set of all possible representations of all possible probability
distributions for a given (N , M , K )-setting as U (N , M , K ). This set is also called the
universal C ∗-algebra for the (N , M , K )-case.

We now introduce a stronger notion of independence, where we follow in our
nomenclature again [FFW11].
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Definition 5.4.2. We call a probability distribution algebraically secure, if it does
not factorize, and for any operator E commuting with the Fi (x |s ) and any operator
F̃ (x |s )∈A(F ) it holds that

ω(E · F̃ (x |s )) =ω(E ) ·ω(F̃ (x |s )). (5.9)

This property can be related to algebraic uniqueness, which means that for the
probability distribution, any two quantum representations are unitarily equivalent.

Theorem 5.4.3. A probability distribution is algebraically secure if it is algebraically
unique, i.e., extremal in Q\C and has a unique representation.

We note here, that the definition of algebraic uniqueness is equivalent to the con-
dition that U (P) consists of only one direct summand.

Proof. First, suppose that the distribution is algebraically secure. We need to show,
that all representations are unitarily equivalent. Let (H1,ω1, F1(x |s )), (H2,ω2, F2(x |s ))
be two representations in standard form. Then the extremality condition (5.9) eval-
uated for F̃1 ∈ A(F1) and F̃2 ∈ A(F2) gives that ω1(F̃1) = ω2(F̃2). Otherwise, the di-
rect sum representation evaluated with E chosen as projector on the first or second
summand will give a contradiction. Next we use that in standard form, the states
are pure and define the unitary operator U : H1→H2 as U F̃1|Ω1〉= F2|Ω2〉. Because
the states are cyclic for their respective spaces, this implies that U can be extended
to the whole space and thus, the representations are unitarily equivalent. As the
representations have been arbitrary, this means that all representation are unitarily
equivalent.

To show the converse, suppose, the probability distribution is algebraically unique.
Consider an arbitrary 0 ≤ E ≤ 1, commuting with the F (x |s ). We define the state
ω̃ as ω̃(A) = 1

ω(E )ω(
p

E A
p

E ). Since P is extremal, this state together with the op-
erators F (i |s ) is a valid quantum representation of P. But then E is equivalent to
1, which implies 5.9. As E was chosen arbitrary, this means that the state is alge-
braically secure.

Let us discuss the relation between security and algebraic security from a ge-
ometrical point of view. Fundamental objects are two convex sets, the set of all
quantum representations, which we denote by S, and the set of all probability dis-
tributions Q. We can formally introduce the map Γ : S →Q that maps every quan-
tum representation to its corresponding probability distribution. We know, that
this map is linear, surjective, i.e., every quantum probability distribution has a rep-
resentation, but not injective, i.e., not every representation is unique. As mentioned
above, the geometric structure of Q and S is in general not known. in particular, the
existence of faces cannot be excluded in higher dimensions. In fact, in the (3, 2, 2)-
case, the set Q has a face, i.e., there exist a proper Bell inequality without quantum
violation, which was shown in [ABB+10].
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Figure 5.1.: Sketch of the set of quantum representations S (above) and the
set of probability distributions Q (below). An extremal probability
distribution can either correspond to a unique point (a) or to a face
of S (b). Other faces of S can be mapped to faces of Q (c). Not all
extremal points of S are also extremal for Q (d).

The possible configurations are visualized in Fig. 5.1 (which has also been pre-
sented in [FFW11]). First, there is the possibility that a single extremal point of S
is mapped to an extremal point P ∈ Q. In other words, the inverse Γ−1(P) is a sin-
gle point. Then P is algebraically secure (this corresponds to point (a) in Fig. 5.1).
Other extreme points of Q can correspond to a face of S, in which case the point is
secure, but not algebraically secure (b). One should further note, that not all points
in the boundary of Q are extreme points, as the boundary of Q can have faces (c),
and that not all extreme points of S are mapped to boundary points in Q (d).

5.5. Examples

The (N,2,2) case

A situation that is well understood is the (N , 2, 2)-case, i.e., the N party situation with
two dichotomic observable per site. For reference see e.g. [RS89, WW01, Mas05].
In this case, all irreducible quantum representations are equivalent to an N-qubit
representations. That is, the Hilbert space is given as H=

⊗N
i=1C

2 with an arbitrary
pure state |ψ〉 ∈ H . The measurement operators on each of the tensor factors are
parameterized by a single angle θi . They can be chosen as
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F (1|1) =
1

2
(1+σz ) (5.10)

F (2|1) =
1

2
(1−σz ) (5.11)

F (1|2) =
1

2
(1+ sin(θi )σx + cos(θi )σz ) (5.12)

F (2|2) =
1

2
(1− sin(θi )σx − cos(θi )σz ), (5.13)

where theσx/z denote the corresponding Pauli matrix. With this, any correlation
table in Q(N , 2, 2) is defined by the state |ψ〉 and the N angles {θi }. Note here, that
any non-irreducible representation can be written as direct sum of at most 4N + 1
irreducible quantum representations.

Extremality can now be certified, if one can show that the given probability dis-
tribution maximizes a Tsirelson inequality. This Tsirelson inequality, or functional,
τ : Q→ R, is specified by a set of coefficients {c (x |s )} as τ(P) =

∑

x ,s c (x |s )P(x |s ).
Then the maximal value of the Tsirelson inequality is given by

Qc =max
P∈Q

τ(P) =max
P∈Q

∑

x ,s

c (x |s )P(x |s ). (5.14)

If one has found such a maximizing P, in order to show extremality one further
needs to assure, that P is not inside a face. A maximum can in general be calculated
using a hierarchy of semi-definite programs, as described in [DLTW08, NPA08]. Us-
ing the representation for the (N , 2, 2) case, we can analyze the optimization prob-
lem a bit further. We see that the optimization of 5.14 can be translated into the op-
timization of a measurement operator C , which is defined as C =

∑

x ,s c (x |s )F (x |s ).
By taking the irreducible representation of the corresponding probability distribu-
tion, we see that it is determined by the parameters θ1, . . . ,θN of the measurement
operator. The optimization is then given by

Qc = max
ψ,θ1,...,θN

〈ψ|C (θ1, . . . ,θN )|ψ〉. (5.15)

If there is a unique set of parameters |ψ〉,θ1, . . . ,θN the corresponding probability
distribution has a unique representation and is thus algebraically secure. As an
example, the Mermin inequalities [Mer90] have a unique maximum in this sense
and lead thus to algebraically secure points. If there exists more then one set of
maximizing parameters, the corresponding probability distributions and all points
in their convex span are secure, but not algebraically secure points.
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The (2,M,2) case for full correlations

The extremal correlations in the (2, M , 2)-case have been analyzed by Tsirelson in
[Tsi85]. In this case, the question of deciding extremality can be simplified, if one
does not consider general probability distributions, but full correlation tables. We
denote the {±1}-valued measurement operators for Alice by A i and for Bob by Bi ,
with i ∈ {1, M }. In the notation of the previous chapters, this means e.g. that
A i = FA (1|i ) − FA (2|i ). The set of full quantum correlations QC is then given by
correlations c i j = tr (A i B jρ). It has been proven in [Tsi85] that the study of ex-
tremal correlation tables can be simplified, as all extremal correlation tables that
are not deterministic have vanishing marginal expectation values, i.e., tr (A i ) = 0=
tr (B j ),∀i , j ,∈ {1, M }. This implies that non-deterministic extremal correlation ta-
bles in QC are also extremal in Q. Also, extremal correlation tables with unique
representation are algebraically secure.

The main tool in the study of extremal correlation tables are c-systems. A c-
system is a collection of vectors x i , y j , i , j ∈ {1, M } in an Euclidian vector space with
dimension M , satisfying ||x i || ≤ 1, ||y j || ≤ 1. It holds, that for every correlation table
there exists a c-system with

〈x i |y j 〉=ω(A i B j ). (5.16)

Observe, that a single correlation table can in general have different, non equiv-
alent c-systems. These c-systems provide an elegant way of studying extremality:
for an extremal correlation table, all corresponding c-systems are isometric to each
other. Further, ||x i ||= ||y j ||= 1 and the linear hull of the {x i } and {y j } coincide. We
call the dimension of these linear hulls the rank of the c-system r . The question of
uniqueness of the representation can now be answered in terms of the rank: if the
rank is an even number, all representations are equivalent, while if the rank is odd,
there are exactly two non-equivalent representations.

With this, the question of extremality can be decided by constructing the corre-
sponding c-system and check the extremality conditions.

5.6. Discussion and Outlook

Our main motivation in this chapter was to clarify, where the security in device in-
dependent setup is based on, and whether there is any special role of the CHSH
inequality. This led to the definition of independence and security based on the
fact that an eavesdropper cannot learn anything about outcomes on the sites of the
legitimate parties by measurement. This property was then shown to be equiva-
lent to extremality of the corresponding probability distribution, thus, rephrasing
the problem of determining security to the problem of extremality. The proof was
general for any number of parties, measurements and outcomes, which shows that
the CHSH-inequality has no special role, but is used as a certificate for extremality.
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We have noted however, that in general the sets of extremal probability distribu-
tions cannot be easily constructed. We have further defined the stronger notion of
algebraic security which states that the independence condition has to hold for all
operators generated by the measurements of the legitimate parties, and that was
linked to the algebraic uniqueness of the probability distribution. Finally we have
discussed the connection between the two notions and presented some examples.
In summary, we have provided a novel set of tools for the study of device indepen-
dent cryptography.

Concerning practical applications, however, there are issues not addressed in our
work. The first and most serious task is to find bounds on the independence, that
also work with a finite accuracy. We have noted, that we only considered probabil-
ity distributions that are extremal, whereas in a real situation one can only certify
a certain distance to an extremal state. If one would want to use our technique for
practical estimation of device independent security one needs to say how the in-
dependence condition scales in a parameter ε, if the probability distribution is at
least ε-close to an extremal point in an appropriate distance measure. Unfortu-
nately, up to now no practical bounds for this are known. The challenge here is to
find a bound that holds for all quantum representations, a problem that is even in
the (2, 2, 2)-case not simple.

One possible line of research would be to consider the problem under additional
symmetries. It is known, that device independent security bounds in the (2, 2, 2)-
case can be obtained when considering only collective attacks [ABG+07] or com-
muting measurements [HR10]. It would be interesting to understand, whether sim-
ilar techniques work in a general situation.

As mentioned in the beginning of the section, we have only considered a scenario
in which the legitimate parties choose from a discrete set of measurement and are
in return given an outcome from again a discrete set. It would be interesting to see,
if these restrictions could, in principle, be dropped. Concerning QKD, one should
however keep in mind that for any practical communication protocol a digitization
at some point is almost unavoidable.

The study of algebraically unique probability distributions is interesting by its
own right. The characterization of the state space in higher dimensions and its
possible representations has implications for different topics. As far as we know
however, even in low dimensional cases, this will involve a massive numerical ef-
fort.
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6. Conclusion

Investigating ways in which quantum physics can outperform classical physics was
the main motivation behind this thesis. We have seen that on the level of single
systems this seems not to be the case and even seems that quantum physics is
restricted in comparison to classical physics, as certain actions, like disturbance
free measurements, are no longer possible. However if one considers systems with
two separated parties, it becomes clear that quantum mechanics cannot be seen
as “classical mechanics plus some extra rules”, instead it permits correlations be-
tween the systems that are not compatible with any local classical theory. These
quantum correlations can then be used to accomplish tasks like secure key distri-
bution, which is impossible when only only classical communication is permitted.

In Chapter 3, we investigated the steering effect - a certain kind of correlation
both different from entanglement and the violation of a Bell inequality. Steering
describes precisely what was addressed in the original EPR paper. There are two
motivations for the study of steering.

It is of fundamental interest to characterize the set of all steering, or equivalently
non-steering, states. We have seen that in general the set of all non-steering proba-
bility distributions is convex but not a polytope, and is in this respect similar to the
set of all quantum correlations. There are a number of questions relating to to the
structure of these two sets, i.e., whether a situation can arise in which the boundary
of the non-steering set and the quantum set have common non-trivial faces. Un-
fortunately, no method other than direct construction is known so far for this, and
there is little knowledge about the steering properties beyond the two qubit regime.
It would be interesting to investigate the three qubit regime and see whether the
conjectured monogamy relation holds.

When concerned with Gaussian systems the steering effect can be used as a bench-
mark for the correlations between the parts of the experiment. In the Gaussian case
the violation of a Bell inequality is not possible, while the question whether a state
is entangled is possibly not fine enough, hence it is interesting to classify states ac-
cording to their steering properties. We have seen that in the Gaussian case states
can be experimentally realized that display one-way steering, i.e., steering from Al-
ice to Bob but not vice versa. In the case of tripartite steering, we have found an
even richer structure of steering, and it would be interesting to see these states re-
alized in an experiment.
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In Chapter 4, we presented a protocol for continuous variable quantum key dis-
tribution. We have proven that it is secure against coherent attacks, composable
secure, works in the finite key regime and gives a positive key rate when consid-
ering technology that is available today. To the best of our knowledge, this was the
first protocol to match all these requirements. The techniques employed are similar
to those applied to finite dimensional systems, but in contrast to the finite dimen-
sional case our findings are asymptotically not optimal.

The main feature of the security proof was the possibility to perform privacy am-
plification, which can be quantified in the finite key regime by the min-entropy.
This min-entropy is, except in some special cases, difficult to calculate, so the cer-
tification of security is largely equivalent to the estimation of this min-entropy for
a given system. We showed how to use a version of the entropic uncertainty rela-
tion to estimate the min-entropy by the max-entropy in a situation where Alice and
Bob perform homodyne measurements We then showed how to bound the max-
entropy by a function that only depends on the observed correlations. We have
further seen that asymptotically, this second estimation is close to optimal, hence
the difference between the finite key regime and the asymptotic rates for key distri-
bution originates in the entropic uncertainty relation.

To improve the results presented here one could search for a state dependent
entropic uncertainty relation that is better suited for the situation under consid-
eration. Second, one needs to improve the estimation on the parameter range of
the observed measurements. In our estimation, we placed the source in Alice’s lab,
while in general it would be desirable to place the source in Eve’s hand and to certify
the parameter range on observations alone. Placing the source in Eve’s hands would
also allow the discussion of reverse reconciliation, which could be used to improve
the key rate. Additionally it should be checked whether it is possible to make the
application of the entropic uncertainty relation compatible with post selection.

In Chapter 5 we investigated device independent security from a general point
of view. We showed how to formulate the notion of security in terms of an indepen-
dence relation of probability distributions and also that a probability distribution
is perfectly secure if and only if it is extremal in the set of all quantum probability
distributions. We further introduced the notion of algebraic security and showed
that this notion is equivalent to the algebraic uniqueness of an extremal probabil-
ity distribution. Our findings imply that device independent security is no special
feature of the CHSH-inequality, but that conversely any Bell-type inequality can be
used to certify extremality.

The main unresolved issue in our approach is, however, that it up to now only
holds for extremal probability distribution but not for almost extremal ones. In
any practical situation, one would only be able to certify extremality up to a small
error, which has to be included in the security analysis. If our approach should be
used in a real situation, one would need to extend the theory to provide quantitative
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results also for almost extremal correlations. A step before trying to find such bound
in general would be to investigate the situation under additional assumptions. A
natural assumption would again be, that the legitimate parties are provided with
an additional independence promise on their measurements.

The question, how to certify algebraic uniqueness is interesting in its own re-
gard. We have seen that certain correlation inequalities like the CHSH-inequality
or the Mermin inequality will be maximized on probability distributions that are
algebraically secure. It would be interesting to see, for which correlation inequality
this feature holds, and whether it might be possible to find a sufficient criterion to
show that the maximal state of a given inequality is algebraically secure.

105





A. Appendix

A.1. Some facts about C ∗- and von Neumann algebras

In this appendix, we summarize some facts about C ∗ and von Neumann algebras,
which will be used to model general quantum systems. For standard textbooks on
the subject we refer to e.g. [BR79, BR81, Tak02].

Quantum mechanics of general systems can be described within the formalism
of von Neumann algebras. This mathematical structure was first studied by Murray
and von Neumann during the 1930th under the name “operator rings” and are also
known as “W ∗-algebras”. Their motivation was to define a general framework for
quantum physics that would retain the interpretation of spectral theory as given in
the matrix mechanics defined by Born, Jordan and Heisenberg. It was later realized,
that von Neumannn algebras are indeed a special case of C ∗-algebras, as defined
by Gelfand, Naimark and Segal at the end of the 1940th. For more details on the
history, we refer to the first chapter of [BR79]. We will follow the presentation that
is common in the literature and first define general C ∗-algebras and discuss sone of
their properties before specifying von Neumann algebras.

Definition A.1.1. An algebra A is called a ∗-algebra, if it has an involution ∗ with
(A B )∗ = B ∗A∗, A∗∗ = A and (a A+b B )∗ = a A∗+b B ∗ for A, B ∈A, a ,b ∈C. An algebra
with norm is called a Banach algebra, if it is complete with respect to that norm.

An algebra is called a C ∗-algebra, if it is a Banach ∗-algebra for with for all A ∈A
it holds that ||A∗A ||= ||A ||2.

C ∗-algebras provides the necessary structure for the discussion of statistical phe-
nomena. Especially they come with a natural concept of positivity, namely an ele-
ment a ∈A is called positive (a ≥ 0), if there exists an operator B ∈A with A = B ∗B ,
and strictly positive, if this B 6= 0. We call the set of all positive elements A+ We will
here only be interested in unital algebras, i.e., in algebras with contain the identity
operator 1.

An important role will fall to the dual space of the algebra, denoted by A∗, which
consists of all continuous linear functionals on the algebra. An element ω ∈ A∗ is
called positive, ifω(A)≥ 0 for all A ∈A+. We call such a positive functional a state,
ifω(1) = 1.
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Next we will define a characterization of mappings between two C ∗ algebras. Let
A1,A2 be two C ∗-algebras. We call a linear mappingπ : A1→A2 a ∗-homomorphism,
if π(A B ) = π(A)π(B ) and π(A∗) = π(A)∗. Observe, that a ∗-homomorphism always
maps positive elements to positive elements. Furthermore, any ∗-homomorphism
is continuous and it holds ||π(A)|| ≤ ||A || (see 2.3.1 in [BR79]).

Definition A.1.2. A representation of a C ∗ algebraA is a ∗-homomorphism into some
B(H). A representation is called faithful, if it is a ∗-isomorphism, i.e., if Ker(π) = 0.

A vector Ω ∈ H is called cyclic for the representation, if lin span{AΩ|A ∈ A} is
dense inH. Every vectorΩ∈H defines a linear functional onA viaω(A) = 〈Ω|π(A)Ω〉.
Such a functional is always positive, and if π is non-degenerate, i.e., if {ψ|π(A)ψ =
0∀A ∈ A} = 0 and ||Ω|| = 1 it is a state. States of this form will also be called vector
states.

Now we have the necessary tools ready to state an important construction prim-
itive for C ∗-algebras, namely the Gelfand-Naimark-Segal (GNS) construction:

Theorem A.1.3. Let A be a C ∗-algebra andω∈A∗ a state. Then there exist a Hilbert
space H, a representation π : A→ B(H) and a cyclic vector Ω such that the collection
(H,π,Ω) is a cyclic representation for A, i.e., ω(A) = 〈Ω|AΩ〉. This representation is
unique up to unitary equivalence.

The proof for the theorem is constructive and can be found in [BR79].

The special class of C ∗-algebras that is important for quantum physics are the von
Neumann algebras. We will define a von Neumann algebra by its bi-commutant.

Definition A.1.4. For M ⊂ B(H) we denote by M′ the commutant of M, i.e.,M′ =
{B ∈B(H)|[A, B ] = 0∀A ∈M}.
An algebra M⊂B(H) is called a von Neumann algebra, if

M′′ =M. (A.1)

An important property of von Neumann algebras is, that they are closed in differ-
ent topologies. This property can also be seen as an equivalent definition.

Definition A.1.5. Let H be a Hilbert space, M⊂H.

• The map A ∈M→ |〈ω||Aω〉| defines a seminorm on B(H) for any Ω ∈H. The
topology induced by these seminorms is called the weak topology.

• For any trace class operator ω ∈M∗ the map A ∈M→ |ω(A)| defines a semi-
norm on B(H). The topology induced by these seminorms is called the weak∗
topology.

• The map A ∈M → ||AΩ|| defines a seminorm on B(H) for any Ω ∈ H. The
topology induced by these seminorms is called the strong topology.
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• For any collection of operators Ωk ,
∑

k ||Ωk ||<∞ the map A ∈M→ ||
∑

k AΩk ||
defines a seminorm on B(H). The topology induced by these seminorms is
called the strong∗ topology.

Theorem A.1.6. Let M ⊂ B(H) contain the identity. Then the following conditions
are equivalent:

• M′′ =M.

• M is weakly closed.

• M is weakly∗ closed.

• M is strongly closed.

• M is strongly∗ closed.

A.2. Distance measures on the state space

We are often interested to compare quantum systems and to decide, if they are sim-
ilar, the sense that they show a similar behavior. It is clear, that there is no unique
measure of closeness in this sense, but that there are many candidates, in which re-
spect this closeness could be quantified. In this work we are particularly interested
in two distance measures, given their operational meaning - the trace distance and
the (generalized) fidelity. In the following, we will give the definition for these quan-
tities and their operational meaning for both finite dimensional and general quan-
tum systems. Basic definitions of the quantities are part of the standard textbook
material, e.g. Chapter 9 in [NC00]. Applications to smooth entropies can be found
in [TCR10, Tom12] for the finite dimensional and [BFS11] for the infinite dimen-
sional case.

We first note the standard definitions. Let H be finite dimensional, ρ,σ ∈ B(H)
states. Then the trace distance is defined as d (ρ,σ) = 1/2tr |ρ −σ|.1 The trace
distance quantifies the distinguishability between the states, i.e., the optimal dis-
tinguishing operator between ρ andσ will have success probability 1/2+d (ρ,σ).

The second important measure is the fidelity, defined as F (ρ,σ) = ||pρ⊗
p
σ||2.

The fidelity can be reformulated according to Uhmann’s theorem as

F (ρ,σ) =max
φ,ψ
|



φ,ψ
�

|2, (A.2)

where the maximum is taken over all purifications. An important property of the
fidelity is, that it is monotonic under trace non-increasing operations. This means

1We note, that depending on the literature, the factor 1/2 might or might not be included in
the definition.
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that, if T is a trance non-increasing operation, it holds

F (T (ρ), T (σ))≥ F (ρ,σ). (A.3)

From this, we can derive as a distance measure the purified distance P(ρ,σ) =
p

1− F (ρ,σ). The name referrers to the fact, that it holds that

P(ρ,σ) =min
φ,ψ

D(φ,ψ), (A.4)

where the minimization is taken over all purifications of ρ andσ.
Both the purified distance and the trace norm form proper metrics on the state

space. They can be estimated via each other according to the following set of in-
equalities:

D(ρ,σ)≤ P(ρ,σ)≤
p

2D(ρ,σ). (A.5)

Furthermore, the purified distance inherits the monotonicity from the fidelity,
i.e., if T is a trace-non increasing map, then

P(T (ρ), T (σ))≤ P(ρ,σ). (A.6)

We will next show, how to generalize the concept of fidelity to (possibly subnor-
malized) states on von Neumann algebras. The basic idea here is to extend Uh-
mann’s theorem and use this as a definition. To do this, one uses the concept of
projective embedding.

Consider von Neumann algebras M,N . We say that M has a projective embed-
ding in N , if there exists a projector P , such that PNP is isomorphic to M. We note
here, that using a projective embedding we can interpret the normalizing proce-
dure in a natural way as adding an extra measurement outcome with the interpre-
tation of “no measurement”. We can now define the generalized fidelity.

Definition A.2.1. Letω,ν be states on the von Neumann algebra M. Then we define
the generalized fidelity as

F (ω,ν ) = sup
M,→N

sup
π
|
¬

ξωπ |ξ
ν
π

¶

|2, (A.7)

where the first supremum runs over all projective embeddings and the second runs
over all representations such thatω(x ) =

¬

ξωπ |xξωπ
¶

and likewise ν (x ) =
¬

ξνπ|xξνπ
¶

.

We note, that if M is a full B(H), the definition coincides with the definition
given above. This is a direct consequence of the monotonicity of the fidelity. Us-
ing the generalized fidelity, we can now define the purified distance as P(ω,ν ) =
p

1− F (ω,ν ). The generalized fidelity and purified distance inherit many proper-
ties from the finite dimensional case, especially the monotonicity holds:

Corollary A.2.2. Let T be a completely positive contraction, ω,ν states on the von
Neumann algebra M. Then it holds

P(T (ω), T (ν ))≤ P(ω,ν ) and F (T (ω), T (ν ))≥ F (ω,ν ). (A.8)

110



A.3. The Rényi entropy

We will summarize some fact about the Rényi entropy. For further reference and
proofs we refer to [Tom12] and references therein.

Definition A.3.1. The Rényi entropy of order α ≥ 0 a classical probability distribu-
tion X is defined as

Hα(X ) =
1

1−α
log

 |X |
∑

i=1

pαx

!

. (A.9)

The cases α= {0, 1,∞} are defined via the appropriate limits and can be rewritten
as:

H0(X ) = log |X |, (A.10)

H1(X ) = H (X ), (A.11)

H∞(X ) = min
x
− log |px |. (A.12)

The Rényi entropy of order 1/2 is called max-entropy, the entropy of order 2 is called
collision entropy and the entropy of order∞ is called min-entropy.

Definition A.3.2. The quantum Rényi entropy of order α of a state ρ is defined as

Hα(ρ) =
1

1−α
log
�

tr (ρ)α
�

, (A.13)

where the appropriate limits are defined accordingly.

Theorem A.3.3. The α Rényi entropies obey

H0 ≥Hα ≥Hβ ≥H∞, ∀α≤β . (A.14)
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