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ABSTRACT 

 The distribution of Sulfur (S) and S-isotopes between fluid and silicate melt upon 

decompression was investigated experimentally. Synthesized volatile-bearing (H2O-S±Cl) andesitic or 

basaltic glasses were used as starting material. The MgO content in the basaltic melts was varied from 

~1 to ~10 wt% to study the influence of small changes in melt composition on S (-isotope) fluid-melt 

distribution at constant Fe content. The initial H2O content in the melt ranged from ~3 to ~8 wt%. 

However, most starting glasses initially contain ~6 wt% H2O. Additionally, ~140 to ~2700 ppm S and 

0 to ~3600 ppm Cl were added to the system. The experiments were performed in internally heated 

pressure vessels (IHPV). Experiments with andesitic melt composition were conducted at constant 

temperature (T) of ~1030°C while T ranges from ~1050 to ~1250°C for basaltic compositions. The 

oxygen fugacity (fO2) was varied from log(fO2/bar) = QFM to QFM+4.2 (QFM: quartz-fayalite-

magnetite buffer). Pressure (p) was released continuously, typically from ~400 to ~70 MPa. The 

decompression rate (r) ranged between ~0.0005 to ~0.2 MPa/s for andesitic systems while a constant r 

of ~0.1 MPa/s was applied for experiments with basaltic compositions. The samples were annealed at 

final p-T conditions for 0 to 72 h (= tA) to allow to investigate the fluid-melt equilibration process after 

decompression. 

 Experiments with andesitic composition performed under oxidizing conditions (> QFM+3) 

and directly quenched after decompression (tA = 0 h; fluid-melt disequilibrium) revealed a strong 

increase of the S(fluid)/S(melt) ratio (S(fluid) = wt% S in the fluid; S(melt) = wt% S in the melt) with 

increasing r, from ~30 at 0.02 MPa/s to ~300 at 0.2 MPa/s. Consistent with this observation, 

S(fluid)/S(melt) was found to decrease by a factor of ~6 during annealing after fast decompression 

(~0.1 MPa/s); i.e. S was resorbed by the andesitic melt. Such a kinetically controlled transient 

degassing of S upon fast decompression was not observed at lower fO2 (~QFM+1 to ~QFM+1.5) in 

andesitic systems and was completely absent (i.e. independent of fO2) in basaltic systems, e.g. S(melt) 

remained almost constant with varying tA.  

 The data showed that near-equilibrium conditions between fluid and melt were achieved 

shortly after decompression; i.e. within ~2 h in basaltic systems and within ~5 h in andesitic systems. 

The fluid-melt partitioning coefficients of S (DS
fl/m

) decreased significantly with increasing fO2; e.g. 

from ~220 at QFM+1 to ~35 at ~QFM+4 in andesitic systems at 1030°C. Data obtained for basaltic 

composition indicated a slight positive correlation between DS
fl/m

 and T in the range of 1150 to 1250°C 

at both oxidizing (QFM+4; DS
fl/m

 ≈ 50 to 80) and intermediate (QFM+1.5; DS
fl/m

 ≈ 90 to 210) redox 

conditions. On the other hand, varying the initial H2O and S content in the melt had an insignificant 

effect on DS
fl/m

. Moreover, the influence of Cl on DS
fl/m

 was small in andesitic systems containing up to 

1000 ppm Cl and negligible in basaltic systems containing up to 3600 ppm Cl. A comparison of the 

obtained data with previously published results showed that under oxidizing conditions (> QFM+3; 

i.e. when S
6+

 was the only S species), bulk melt composition, ranging from basaltic through andesitic 

to rhyolitic, has a minor effect on DS
fl/m

. In contrast, such changes in melt composition strongly 

affected DS
fl/m

 under reducing conditions (~QFM to ~QFM+1; i.e. when S
2-

 became abundant). 

However, changes in MgO content in reduced basaltic systems had only a minor effect on DS
fl/m

.  

 The S-isotope composition of selected glasses before and after decompression was determined 

using secondary ion mass spectrometry (SIMS). Gas-melt isotopic fractionation factors g-m were 

estimated via mass balance calculations. The obtained data indicated no detectable effect of r and tA on 

g-m. The results showed that the S-isotope fractionation between fluid and silicate melt is significantly 

larger than indicated by previous models, at least for reducing conditions. For instance, a fluid-melt 

fractionation of ~ +3.7 ‰ under reducing conditions and of ~ -1.5 ‰ under oxidizing conditions can 

be induced by closed system degassing at ~1040°C. A new model is proposed which allows one to 

calculate g-m for a given fO2 in systems with andesitic to basaltic melt composition. 

 Keywords: Sulfur, basalt, andesite, decompression experiments, kinetics of volcanic degassing, sulfur 

fluid-melt partitioning, sulfur isotope fractionation 



 

 

 

 



 

 

 

KURZZUSAMMENFASSUNG 

 Anhand von Druckentlastungs-Experimenten wurde die Verteilung von Schwefel (S) und S-

Isotopen zwischen fluider Phase und silikatischer Schmelze untersucht. Als Ausgangsmaterial dienten 

synthetisierte, H2O-S±Cl-haltige andesitische und basaltische Gläser. Der MgO-Gehalt in den 

basaltischen Schmelzen wurde variiert (~1 bis 10 Gew%) um den Einfluss von kleinen Änderungen in 

der Schmelzzusammensetzung auf die S (-Isotopen) Verteilung zwischen Fluid und Schmelze bei 

konstantem Fe-Gehalt zu untersuchen. Der initiale H2O-Gehalt bewegte sich zwischen ~3 und ~8 

Gew%, wobei die meisten Ausgangsgläser einen H2O-Gehalt von ~6 Gew% aufwiesen. Außerdem 

wurden ~140 bis ~2700 ppm S sowie 0 bis 3600 ppm Cl dem System initial hinzugefügt. Die 

Experimente wurden in intern beheizten Gasdruckanlagen durchgeführt. Die Andesit-Experimente 

wurden bei einer konstanten Temperatur (T) von ~1030°C durchgeführt, während für Basalt-

Experimente eine T zwischen 1050 und 1250°C eingestellt wurde. Die Sauerstoff-Fugazität (fO2) lag 

zwischen log(fO2/bar) = QFM und QFM+4.2 (QFM: Quarz-Fayalit-Magnetite Puffer). Der Druck (p) 

wurde kontinuierlich abgelassen, i.d.R. von ~400 bis ~70 MPa. Die Druckentlastungsrate (r) variierte 

für andesitische Systeme von ~0.0005 bis ~0.2 MPa/s und lag für Basalt-Experimente bei einem 

konstanten Wert von ~0.1 MPa/s. Die Proben wurden für 0 bis 72 h (= tA) bei finalen p-T Bedingungen 

getempert um die Gleichgewichtseinstellung zwischen Fluid und Schmelze zu untersuchen. 

 Andesit-Experimente, welche unter oxidierenden Bedingungen (> QFM+3) durchgeführt und 

direkt nach der Dekompression abgeschreckt wurden (tA = 0 h; Ungleichgewicht zwischen Fluid und 

Schmelze), zeigten einen starken Anstieg des S(fluid)/S(melt) Verhältnisses (S(fluid) = Gew% S im Fluid; 

S(melt) = Gew% S in der Schmelze) mit steigender r, von ~30 bei 0.02 MPa/s bis ~300 bei 0.2 MPa/s. In 

Übereinstimmung mit dieser Beobachtung wurde eine Abnahme von S(fluid)/S(melt) um etwa das 

Sechsfache während des Temperns, nach schneller Dekompression (~0.1 MPa/s) entdeckt; d.h. S wird 

von der andesitischen Schmelze resorbiert. Eine derartige, kinetisch kontrollierte, vorübergehende 

Entgasung von S während einer schnellen Dekompression wurde bei niedrigeren fO2 (~QFM+1 to 

~QFM+1.5) in andesitischen Systemen nicht beobachtet und fehlte vollständig (unabhängig von fO2) 

in basaltischen Systemen; d.h. S(melt) blieb nahezu konstant mit variierender tA.  

 Die Daten zeigten, dass Gleichgewichtsbedingungen zwischen Fluid und Schmelze kurz nach 

der Dekompression erreicht wurden; d.h. innerhalb von ~2 h in basaltischen und innerhalb von ~5 h in 

andesitischen Systemen. Der Verteilungskoeffizient von S zwischen Fluid und Schmelze (DS
fl/m

) sank 

signifikant mit steigender fO2; z. B. von ~220 bei QFM+1 bis zu ~35 bei ~QFM+4 in andesitischen 

Systemen bei 1030°C. Eine schwach positive Korrelation zwischen DS
fl/m

 und T wurde für Basalte im 

T-Bereich von 1150 bis 1250°C sowohl für oxidierende (QFM+4; DS
fl/m

 ≈ 50 bis 80) als auch für 

intermediäre (QFM+1.5; DS
fl/m

 ≈ 90 bis 210) Redox-Bedingungen beobachtet. Änderungen des 

initialen H2O-Gehalts hatten keinen nennenswerten Effekt auf DS
fl/m

. Der Einfluss von Cl auf DS
fl/m 

in 

andesitischen Systemen mit bis zu 1000 ppm Cl war klein und vernachlässigbar in basaltischen 

Systemen mit bis zu 3600 ppm Cl. Ein Vergleich der Daten mit bisher publizierten Ergebnissen zeigte, 

dass Änderungen in der Schmelzzusammensetzung, von basaltisch über andesitische bis rhyolitisch, 

unter oxidierenden Bedingungen einen unwesentlichen Effekt auf DS
fl/m

 haben. Hingegen zeigten 

derartige Änderungen in der Schmelzzusammensetzung einen starken Einfluss auf DS
fl/m

 unter 

reduzierenden Bedingungen (~QFM bis ~QFM+1). Änderungen des MgO-Gehalts in reduzierten 

basaltischen Systemen hatten jedoch einen nur geringfügigen Effekt auf DS
fl/m

.  

 Das 
34

S/
32

S Verhältnis wurde in den Gläsern ausgewählter Experimente mit Sekundärionen 

Massenspektrometrie (SIMS) bestimmt. Die Fraktionierungsfaktoren g-m (Gas-Schmelze) wurden 

mittels Massenbilanz berechnet. Die ermittelten Daten deuteten keinen nachweisbaren Effekt von r 

und tA auf g-m an. Die Ergebnisse zeigten jedoch, dass die S-Isotopen-Fraktionierung zwischen Fluid 

und Schmelze erheblich größer ist als von bisherigen Modellen prognostiziert, zumindest für 

reduzierende Bedingungen. Beispielsweise kann in einem geschlossenen System bei ~1040°C unter 

oxidierenden Bedingungen eine Fraktionierung von ~ -1.5 ‰ durch Entgasung induziert werden, 

während unter reduzierenden Bedingungen sogar eine Fraktionierung von ~ +3.7 ‰ erreicht werden 

kann. In dieser Arbeit wird ein neues Modell vorgeschlagen, welches die Berechnung von g-m bei 

bestimmter fO2 in Systemen mit andesitischer bis basaltischer Schmelzzusammensetzung ermöglicht.  

Schlagwörter: Schwefel, Basalt, Andesit, Druckentlastungsexperimente, Kinetik vulkanischer 

Entgasung, Fluid-Schmelz Verteilung von Schwefel, Schwefel-Isotopen-Fraktionierung 
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CHAPTER I-A
1
 

KINETIC VS. THERMODYNAMIC CONTROL OF DEGASSING OF H2O-S±CL-

BEARING ANDESITIC MELTS 

 

ABSTRACT 

The sulfur (S) distribution between andesitic melts and fluids, both under near-equilibrium conditions 

and during fast decompression (disequilibrium conditions), has been experimentally investigated. 

Isothermal decompression experiments were conducted at ~1030°C and variable oxygen fugacity (fO2; 

log(fO2/bar) from ~QFM+0.8 to ~QFM+4.2; QFM = quartz-fayalite-magnetite buffer) in internally 

heated pressure vessels (IHPV) using synthetic, H2O- and S-bearing andesitic melts (~4 to 8 wt% H20, 

~140 to 2700 ppm S). Selected glasses were doped with chlorine (Cl; 500 to 1000 ppm) to study the 

influence of Cl on S partitioning. The starting pressure varied from 300 to 500 MPa, and pressure (p) 

was released continuously to reach 150, 100, 70, or 30 MPa. The decompression rate (r) ranged from 

0.0005 to 0.17
 
MPa/s and samples were either directly quenched to preserve disequilibrium conditions 

or annealed for various times (annealing time (tA) = 1 to 72 h) at final p and 1030 °C to achieve near- 

equilibrium conditions.  

The directly quenched experiments revealed a strong increase of the S(fluid)/S(melt) ratio (S(fluid) = wt% S 

in the fluid; S(melt) = wt% S in the melt) with increasing r, from ~30 at 0.02 MPa/s to ~300 at 0.2 MPa/s 

at oxidizing conditions (log(fO2/bar) > QFM+3), i.e., when sulfate (S
6+

) was the only S species. After 

fast decompression (~0.1 MPa/s) subsequent annealing for > 5 h resulted in a decrease of S(fluid)/S(melt) 

by a factor of ~6, i.e., S was resorbed by the melt. In contrast to oxidizing conditions, the S content in 

the melt remained almost constant with varying r and was independent of tA at low fO2 (QFM+1 to 

QFM+1.5), when sulfide (S
2-

) became abundant. Thus, the different behaviors of S
2-

 and S
6+

 during 

kinetically-controlled degassing need to be considered when modeling the volatile release of 

ascending magma.  

                                                      
1
 A modified version of this Chapter I-A is submitted to Geochim. Cosmochim. Acta, Kinetic vs. 

thermodynamic control of degassing of H2O-S±Cl-bearing andesitic melts, Fiege A., Behrens H., 

Holtz F., Adams F. 
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The addition of > 500 ppm Cl to the system slightly increased the S(fluid)/S(melt) under near-equilibrium 

conditions by a factor of ~2 at QFM+1.8. Furthermore, Cl(fluid)/Cl(melt) (wt% Cl in fluid / wt% Cl in 

melt) showed a positive correlation with initial Cl content of the melt and ranged from 1 to 13, largely 

independent of r and tA. The interaction between S and Cl as well as the dependence of Cl(fluid)/Cl(melt) 

on Cl content in the melt may have a significant influence on S/Cl ratios in volcanic gasses. 

 

Keywords: Sulfur fluid-melt distribution, chlorine fluid-melt distribution, andesite, degassing kinetics, 

equilibrium degassing, fractional degassing 

 

1. INTRODUCTION  

S is the third most abundant volatile in silicate melts after H2O and CO2. Because of its polyvalent 

character, S can be involved in various chemical and biogeochemical processes (Faure, 1986; 

Hawthorne et al., 2000). Under geologically relevant conditions S is dissolved as S
6+

 or S
2-

 in silicate 

melts and released as SO2 and H2S to volcanic gases during magma ascent (Symonds et al., 1994; 

Wilke et al., 2011). Degassing of SO2 and H2S from magmatic systems to the atmosphere has a major 

influence on atmospheric chemistry (Arthur, 2000; Oppenheimer et al., 2011). Volcanic eruption can 

release large amounts of S-rich aerosols to the stratosphere (Jugo et al., 2010) and SO2 has an 

especially high potential for climate impact (e.g. Bluth et al., 1992; Mandeville et al., 2009). Magmas 

typically contain several volatiles and, hence, the release of S is controlled by partitioning between the 

fluid and the melt. Experimental results on the partitioning of S between hydrous silicate melts and 

(complex multi-component) fluids are still scarce (see review of Webster and Botcharnikov, 2011; and 

references therein). The available data are mainly based on hydrothermal experiments in which fluid-

saturated melts were at equilibrium (or near-equilibrium) with a fluid phase.  

Experimental studies have shown that the potential of a melt to dissolve S depends largely on its 

composition, e.g. much higher amounts of S can be incorporated in mafic melts than in silicic melts 

(see reviews of Baker and Moretti, 2011; Webster and Botcharnikov, 2011). Information about S and 

other volatile contents of magmas come primarily from melt inclusions in minerals and glasses from 

submarine pillow lavas. Consistent with the experimentally observed trend, the S content of arc 
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magmas decreases by an order of magnitude or more from basalt to rhyolite (see review of Wallace 

and Edmonds, 2011). The crucial role of fO2 on S partitioning is evidenced by recent studies. In a 

simple Fe-free haplogranitic system equilibrated with an H2O-S fluid Keppler (2010) observed a 

strong negative correlation between fO2 and the partitioning coefficient of S between fluid and melt 

(DS
fl/m

 = S(fluid)/S(melt) at equilibrium conditions). DS
fl/m

 was found to decrease from 468 ± 32 at Co-CoO 

buffer to 47 ± 4 at 0.5-1 log units above Ni-NiO buffer and DS
fl/m

 remained constant with further 

increase of fO2 to the hematite-magnetite buffer. Moreover, Zajacz et al. (2012) found that DS
fl/m

 

decreased from about 170 (S
2-

-dominated) to about 20 (S
6+

-dominated) in andesitic systems (1000°C, 

200 MPa). 

Results on the effect of p on S partitioning are controversial. Keppler (2010) found that DS
fl/m

 is largely 

independent of p (50 to 300 MPa) under oxidizing conditions. The experiments conducted by Lesne et 

al. (2011) on a more complex H2O-CO2-Cl-S-bearing basaltic system indicate a minor influence of p 

on S partitioning in the p range of 100 to 300 MPa. In contrast, DS
fl/m

 increases remarkably with 

decreasing p at p < 100 MPa. On the other hand, results of Teague et al. (2008) for andesitic melts 

equilibrated with H2O-Cl-S-bearing fluids imply that DS
fl/m

 strongly decreases with p, from ~2000 at 

800 MPa to ~200 at 200 MPa (at 1250-1300°C; fO2 not reported). However, the experimental dataset 

of Teague et al. (2008) is not large enough to determine a robust trend.  

The effect of T on S partitioning is poorly elaborated since often only small T ranges have been 

experimentally accessible. According to Keppler (2010), in oxidized haplogranitic systems DS
fl/m

 is 

largely independent of T in the range of 750 to 850°C. Zajacz et al. (2012) also observed a minor 

influence of T in andesitic systems and over a larger T range (750 to 1000°C).  

Dissolved H2O in the melt is known to strongly affect melt properties; however, its effect on DS
fl/m

 is 

poorly understood, because in experimental studies a change in H2O content is usually associated with 

a change in fO2 (Scaillet et al., 1995). A variation of DS
fl/m

 between 6 and 816 was determined by 

Webster and Botcharnikov (2011) in the range of 0.8 to 7.8 wt% H2O using the dataset of Moune et al. 

(2009) for a basaltic andesite (1050°C, 300 MPa). Roughly constant fO2 close to the QFM buffer was 

maintained in the experiments of Moune et al. (2009) by varying the H2-pressure in the vessel.  
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The little information available indicates a rather small influence of Cl on the fluid-melt distribution of 

S. In rhyodacitic melts Botcharnikov et al. (2004) found that the addition of Cl has only a minor effect 

on DS
fl/m

 (experiments conducted at 850°C, 200 MPa, and Ni-NiO). The observed slight negative 

correlation of Cl content and DS
fl/m

 was attributed to non-ideal mixing in the fluid. Experimental data 

of Beermann (2010) for a trachybasaltic melt revealed an weak increase of DS
fl/m

 with Cl content from 

~160 at ~0.05 wt% Cl to ~240 at ~3 wt% Cl at QFM+0.7 (hereafter differences of log(fO2/bar) to the 

QFM buffer (Schwab and Küstner,1981) are given to specify fO2).  

It is worth noting that the partitioning coefficient of chlorine between fluid and melt (DCl
fl/m

) shows a 

detectable positive correlation with S content in rhyodacitic, phonolitic, and basaltic melts 

(Botcharnikov et al., 2004; Webster et al., 2009; Beermann et al., 2011). The different trends of DS
fl/m

 

and DCl
fl/m

 are useful for interpreting volcanic gas signatures. Keppler (2010), for example, revealed 

that the DCl
fl/m

 (in contrast to DS
fl/m

) in haplogranitic systems strongly increases with p, implying that 

variations in the SO2/HCl ratio of volcanic gases may indicate p changes in a magma chamber. 

Furthermore, Lesne et al. (2011) noted a preferential release of S over Cl from basaltic melts at low p 

(150 to 25 MPa). Thus, the authors expect a sharp increase in the S/Cl ratios in the released vapor 

phase concomitant to a sharp drop in the S/Cl ratios of the melt upon decompression in a shallow 

magma reservoir. 

In summary, the dataset on DS
fl/m

 (and DCl
fl/m

) is still patchy and the influence of melt degassing 

kinetics on S partitioning in magmatic systems at geologically relevant conditions is poorly 

understood. In order to elucidate the role of melt degassing kinetics on S partition data, we performed 

decompression experiments on andesitic melts with systematic variations of r and tA after 

decompression. If the experimental charge is directly quenched after decompression (tA = 0), the 

distribution of volatiles between melt and fluid may be far away from equilibrium. On the other hand, 

if decompression is followed by long term annealing at constant T and p, equilibrium or at least near-

equilibrium conditions can be achieved and the determined S(fluid)/S(melt) ratios represent DS
fl/m

, i.e. a 

thermodynamic quantity.  
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2. EXPERIMENTAL PROCEDURE 

The experimental strategy is based on a rapid exchange of volatiles between fluid pools and the melt. 

Due to high melt viscosity () a large fraction of the bubbles formed by decompression remain within 

the melt on the timescale of the experiments and act as local sinks and sources for volatiles. Hence, 

fluid-melt partitioning of volatiles can be rapidly re-adjusted in the melt due to short distances 

between fluid pools. On the other hand, volatile diffusivities in melts differ strongly, i.e. H2O diffuses 

much faster than Cl and S (see Watson, 1994; Behrens and Stelling, 2011). This may induce a kinetic 

fractionation of volatiles during degassing. Depending on the time-pressure path of the experiment, 

partitioning of volatiles between fluid and melt may be controlled by kinetics (fast decompression) or 

thermodynamics (long term annealing after decompression).  

Isothermal decompression experiments were conducted at 1030 ± 10°C and variable fO2 (QFM+0.8 to 

QFM+4.2) in IHPV. The experimental approach comprises a three step procedure.  

In the first step a synthetic anhydrous glass with andesitic composition close to the Krakatau andesite 

was prepared by melting a mixture of oxide (Al2O3, SiO2, TiO2, Fe2O3, MgO, Mn2O3) and carbonate 

(Na2CO3, CaCO3, K2CO3) powders in a Pt90Rh10 crucible at 1600°C for 2 h. The crucible was 

quenched in a water bath; the resulting glass was ground and melted again to improve homogeneity 

(~2 h, 1600°C). Table 1 lists the composition of the obtained anhydrous starting glasses measured by 

electron microprobe (EMP, for details see Section 3.1.1).  

In the second step volatile-bearing [H2O, S, ±Cl] glasses were synthesized at 1030°C and high p 

(~450 MPa or ~500 MPa; see Table 2) under fluid-undersaturated conditions in IHPV at variable fO2 

(from QFM+0.8 to QFM+4.2) for 12 to 16 h. Gold (Au) was chosen as capsule material because it is 

the only known metal which does not react with S (or Fe) at high p-T conditions (capsule size for 

synthesis: length: 30 mm; inner diameter: 6.0 mm; wall thickness: 0.2 mm). H2O was added as 

deionized H2O and Cl as 10 wt% HClaq. Anhydrite (CaSO4), gypsum (Ca[SO4]×2H2O), barite (BaSO4) 

or natural pyrrhotite (Fe1-xS; originating from Sudbury, Canada) served as S sources. The mixture 

composed of glass powder- H2O - ±hydrochloric acid - S-bearing mineral was added stepwise into the 

Au capsules and compressed by a piston to minimize entrapped air (added volatile contents: ~4 to 

~8 wt% H2O, ~140 to ~2700 ppm S, 0 to ~1000 ppm Cl). 
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In the third step decompression experiments were conducted in IHPV using smaller Au capsules 

(length: 20 mm; diameter: 4.0 mm; wall thickness: 0.2 mm). One hundred to 200 mg of the 

synthesized glass were ground, placed in a capsule, and compressed using a piston to minimize 

entrapped air. This technique results in the formation of cylindrical melt pools with typical diameter 

and height of ~4 mm and minimizes the influence of the capsule wall on the fluid-melt system in the 

center of the capsule. The experiments were initially annealed for 5 to 60 min at 1030°C and 500, 400, 

or 300 MPa for homogenization. Subsequently, p was released continuously with different r (= 0.0005 

to 0.17 MPa/s) to 150, 100, 70, or 30 MPa). For experiments at redox conditions < QFM+4, a novel 

type of high-p low-flow metering valve was used to release the Argon (Ar) gas p from the IHPV. The 

valve is equipped with a piezoelectric nano-positioning system to allow continuous decompression 

(for details see Nowak et al., 2011). The r for experiments conducted at oxidizing conditions 

(log(fO2/bar) ≥ QFM+4) was adjusted by slowly opening a conventional high-p valve because the 

IHPV used for oxidizing conditions are not equipped with a high-p low-flow metering valve. After 

decompression, samples were either isobarically quenched (rapid-quench technique) to preserve non-

equilibrium conditions or annealed for various times (tA = 0 to 72 h) at final p-T conditions before 

quenching to approach near-equilibrium between andesitic melt and aqueous fluid. Table 2 lists the 

conditions of the conducted syntheses and experiments.  

 

Table 1: Composition (wt%) of the anhydrous andesite and three representative volatile-bearing 

starting glasses determined by EMP or FTIR spectroscopy (H2O) 

Sample ID SiO2 TiO2 Al2O3 
FeOtot 

(a) 
MnO MgO CaO Na2O K2O H2O 

SO3     

(b) 

Cl        

(c) 
Total 

Anhydrous 64.79 1.28 15.62 4.94 0.23 1.40 4.92 3.92 1.80 - - - 98.91 

andesite 0.59 0.07 0.22 0.33 0.04 0.06 0.20 0.25 0.07 - - - 0.78 

AH 
61.23 0.85 14.69 4.52 0.21 1.34 4.80 3.69 1.69 6.61 0.32 - 99.90 

0.63 0.04 0.08 0.28 0.09 0.08 0.15 0.28 0.10 0.03 0.01 - 0.81 

GYMClA 
60.65 0.83 14.92 4.33 0.17 1.41 5.19 3.43 1.65 6.29 0.67 0.05 99.59 

0.34 0.02 0.18 0.07 0.02 0.03 0.06 0.26 0.03 0.24 <0.01 <0.01 0.49 

QFMClA 
60.83 0.79 14.92 4.63 0.15 1.33 4.47 4.05 1.57 6.58 0.07 0.10 99.50 

0.43 0.03 0.15 0.12 0.07 0.03 0.05 0.23 0.02 0.13 <0.01 <0.01 0.42 

Notes: Data in italic: 1 standard deviations based on EMP analysis; number of EMP analyses: 20; (a) FeOtot: total Fe 

concentration in the glass given as FeO; (b) SO3: total S concentration in the glass given as SO3; (c) Cl is considered as an 

additional component to the other constituents. 
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The fO2 prevailing in all experiments was indirectly adjusted via the fH2 in the p vessel. H2 diffuses 

through the capsule wall and controls fO2 by reaction with H2O (H2 + ½ O2 ↔ H2O). To adjust 

reducing conditions Ar and H2 were loaded in different ratios into the vessel, and the prevailing fH2 

during the experiment was continuously recorded using a Shaw-membrane (Berndt et al., 2002). After 

quenching the sample using the rapid quench device, the final p-T conditions were maintained in the 

vessel for several h to measure the prevailing fH2 at the end of the experiment. It is worth noting that p 

reduction involves a decrease of fH2 in the vessel inducing oxidation of the samples (see Section 5.1 

for details). However, in most experiments the final H2-pressure was even lower – typically by a factor 

of 1.1 to 2.5 – than expected from the initially loaded H2, indicating that H2 is preferentially lost 

through the valve during decompression. In some experiments (series SD1) with high initial H2-

pressure the H2 loss was particularly pronounced (up to factors of ~12). On the other hand, 

experiments with low initial H2-pressure typically showed a higher final H2-pressure than expected (by 

a factor of 1.8 to 3.1). This is attributed to a “memory” effect of the autoclave, i.e. H2 stored in the 

metal wall of the autoclave during previous experiments under high fH2 is released. A correlation 

between the observed deviation (measured vs. expected H2) and r or tA was not observed.  

Some synthesis and decompression experiments were carried out in vessels without a Shaw-membrane 

using pure Ar gas as p medium (containing H2 as an impurity). The intrinsic redox conditions in these 

IHPV were determined to be about QFM+3.9 for H2O saturated conditions (water activity a(H2O) = 1; 

Berndt et al., 2002; Wilke et al., 2002; Schuessler et al., 2008). The following equation was used to 

calculate fO2 in the capsule (fO2
capsule

) for a(H2O) < 1 (e.g. Jugo et al., 2010): 

 

      OHafOfO
OaHcapsule

2

1

22 log2loglog 2 


      (1)
 

 

The a(H2O) was close to one, at least at the end of the decompression experiments, because these 

systems all contain an H2O-rich free-fluid phase and the bulk S and Cl concentration is relatively low 

(Table 2). The a(H2O) of the starting glasses were calculated from the amount of H2O dissolved in the 

silicate glasses using the approach of Burnham (1979). If not specified differently, the reported values 
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of fO2 refer to the final H2-pressure in the vessel measured with the Shaw-membrane or to the intrinsic 

redox conditions of the vessel. 

 

3. ANALYTICAL METHODS 

3.1 Glass composition 

3.1.1 EMP and Fe-colorimetric analyses 

The andesitic glass samples were analyzed using a Cameca SX-100 EMP to determine the glass 

composition (15 keV acceleration voltage, 20 µm beam size). The counting time varied from 4 s for 

Na up to 10 or 30 s for all major constituents (Si, Al, Ca, K, Ti, Fe, Mg, Mn). The counting time was 

increased to 240 s for S and to 120 s for Cl to improve the counting statistics. The applied beam 

current was 5 nA (Na), 10 nA (Si, Al, Ca, K, Ti, Fe, Mg, Mn) and 35 nA (S, Cl), resulting in detection 

limits of ~32 ppm for S and ~50 ppm for Cl. NIST U. S. National Institute of Standards and 

Technology) standard 610 and 620 glasses were measured before and after each EMP session to 

evaluate the accuracy of the measurements, especially of the S content. The S content as well as that of 

the main constituents (e.g. SiO2, Al2O3) are within quoted NIST standard errors. However, Na2O was 

often notably lower than expected. This deviation arises most likely from Na migration during EMP 

measurements (Morgan and London, 1996; 2005) or possibly from the loss of small amounts of Na to 

the fluid phase upon degassing. The EMP settings were slightly adjusted for the measurement of S in 

the QFMA and QFMClA experimental series because the S contents of the partially degassed samples 

of both series are close to the detection limit. Increasing the beam current to 100 nA reduced the 

detection limit to about 21 ppm. The bulk Fe
3+

/Fe ratio of selected starting glasses and experimental 

run products was determined by colorimetric wet-chemical analyses (vanadate method) following the 

approach of Schuessler et al. (2008). Typically 6 - 13 mg of sample was used in these analyses. 

 

3.1.2 H2O determination 

The H2O content of hydrous starting glasses was measured by Karl-Fischer titration (KFT). Raw data 

were corrected by an increment of 0.10 wt% H2O to account for unextracted water in the samples after 

analyses, determined to be 0.10 ± 0.05 wt% H2O (Behrens, 1995; Leschik et al., 2004). Run products 
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were analyzed by infrared spectroscopy using doubly polished glass chips with thickness ranging from 

120 to 300 µm, depending on the translucency of the samples. Sample thickness (d) was determined 

using a digital micrometer (precision ~2 µm). Near infra-red (NIR) spectra were collected with a 

Bruker IFS 88 FTIR spectrometer equipped with a Bruker IRscope II IR microscope. A tungsten light 

source, a CaF2 beam splitter, and a mercury-cadmium-tellur (MCT) narrow range detector were used 

in the measurements. For each spectrum, 100 scans were accumulated with spectral resolution of 4 cm
-

1
; 3 to 5 spots were analyzed on each sample. The peak height (absorbance) of the bands at 4500 cm

-1
 

and 5200 cm
-1

 was used to determine the concentration of OH groups and molecular H2O, 

respectively, via the Lambert-Beer law:  

 

)(

1)(1802
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         (2) 
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OHA
OHc







         (3) 

 

where c(OH) and c(H2O) are the concentrations [wt%] of water dissolved as OH groups and as 

molecular H2O respectively, d is the thickness of the section [cm] and ρ the density of the glass [g/L]. 

A refers to the absorbance and  to the linear molar absorption coefficient [L mol
-1

 cm
-1

] of the 

respective NIR combination bands of H2O molecules (~5200 cm
-1

) and OH groups (~4500 cm
-1

). The 

total water content is the sum of c(H2O) and c(OH). 

The  of the andesitic glasses was calculated from the glass composition using the Gladstone-Dale 

rule (Gladstone and Dale, 1863). Mandeville et al. (2002) have shown that the Gladstone-Dale rule is 

applicable to hydrous andesitic glasses. The authors compared the calculated densities to empirically 

determined densities using the float-sink method in sodium polytungstate reference solutions and 

determined a deviation of ±0.03 g/cm
3
. The densities of our glass samples estimated using the 

Gladstone-Dale rule show a deviation of < 1 % from the densities derived from the linear relation 

given by Ohlhorst et al. (2001) for dacitic composition (~65 wt% SiO2 in the dry glass). 

A tangential baseline correction was applied to determine the heights of the water bands. Calibrations 

of the absorption coefficients for dacitic and andesitic compositions using the same baseline correction 
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were published by Ohlhorst et al. (2001) and Mandeville et al. (2002). The applicability of these 

calibrations was tested by plotting normalized absorbances of both NIR bands against each other 

(Fig. 1a). The data points (listed in Table 3) plot in between the lines defined by the absorption 

coefficients for Krakatau andesite and Fe-free andesite from Mandeville et al. (2002) and close to the 

calibration for Unzen andesite from Ohlhorst et al. (2001). An influence of the fO2 was not observed 

(see Fig. 1a). Hence, the difference from the calibration of Mandeville for the Krakatau andesite is 

probably due to small variations in melt composition (e.g. Fe content) and cooling rate at the end of 

the experiment.  

We performed a regression of the data shown in Fig. 1a to determine the absorption coefficients best 

applicable to the decompression samples. Molar absorption coefficients of (5200cm
-1

) = 1.27 ± 0.07 

L mol
-1

 cm
-1

 for the molecular H2O band and (4500cm
-1

) = 0.84 ± 0.07 L mol
-1

 cm
-1 

for the OH group 

band were obtained. It is noteworthy that this calibration is poorly constrained for very low H2O 

contents, i.e. the OH concentration may have a large error. However, the total H2O content is well 

reproduced in the range of 2 to 8 wt% (Fig. 1b); i.e. the deviation of H2O content is typically 

< 0.3 wt% between IR and KFT data. 

Table 3: Data for calibration of NIR absorption coefficients and concentrations of hydrous species in 

the glasses. 

Sample ID 
fO2 

[QFM] 

H2O [wt%] 

KFT 
a
 

d [cm] ρ [g/L] A(OH) A(H2O) c(OH) c(H2O) 

ASD 3.4 4.84 ± 0.07 0.0133 2460 0.033 0.061 2.15 2.67 

AH 3.7 6.28 ± 0.10 0.0105 2429 0.028 0.076 2.36 4.26 

GY 3.7 6.40 ± 0.08 0.0100 2427 0.028 0.077 2.43 4.53 

GY-C 3.7 6.88 ± 0.09 0.0146 2427 0.034 0.111 2.06 4.45 

AH-C 3.9 8.11 ± 0.13 0.0194 2412 0.043 0.196 1.98 5.97 

SD1 3.6 6.27 ± 0.11 0.0310 2438 0.070 0.202 1.98 3.81 

GY-B 3.6 6.01 ± 0.12 0.0147 2427 0.028 0.116 1.68 4.64 

SD2 3.3 4.16 ± 0.07 0.0422 2456 0.106 0.172 2.19 2.36 

GYClA 0.7 6.32 ± 0.10 0.0199 2434 0.051 0.146 2.28 4.29 

GYMClA 0.8 6.93 ± 0.10 0.0194 2425 0.050 0.132 2.26 4.00 

RED 0.1 6.41 ± 0.11 0.0194 2436 0.052 0.144 2.36 4.35 

QFMClA 0.4 6.48 ± 0.10 0.0290 2422 0.076 0.211 2.30 4.28 

SDR-2 
b
 1.5 2.47 ± 0.07 0.0419 2468 0.075 0.073 1.55 1.00 

AND70 
c
 2.6 3.80 ± 0.10 0.0285 2494 0.069 0.076 2.10 1.53 

Notes: (a) H2O content measured by KFT; (b) glass sample was synthesized for the KFT–NIR calibration but not used for 

decompression experiments; (c) H2O solubility experiments conducted at 70 MPa and 1030 °C, average of 4 experiments for 

NIR and 2 experiments for KFT; see Section 4.2.1. 
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Fig. 1a-b: a) Calibration plot for the absorption coefficients of the OH and H2O combination bands in the NIR. 

Data points and regression are for Krakatau dacitic andesite. 

b) Comparison of H2O contents determined by IR spectroscopy with KFT data for Krakatau dacitic andesite. 

Ma02: Mandeville et al. (2002); Oh01: Ohlhorst et al. (2001) 

 

 

3.2 S Speciation in the melt 

XANES analyses were performed at the S K-edge (ca. 2.47 keV) using the SUL-X beamline at the 

ANKA synchrotron radiation source (Karlsruhe Institute of Technology, Germany) to determine the S 

speciation in the andesitic glasses. The ANKA storage ring operates at a beam energy of 2.5 GeV and 

a beam intensity of 200 mA. The SUL-X beamline uses a wiggler as radiation source. A beam size of 

about 300µm×150 µm was applied to evaluate the bulk S speciation in the andesitic glasses. The 

spectra were collected in fluorescence mode from 2.45 to 2.55 keV. Mainly quick-XAFS scans were 

performed to avoid irradiation damage (XAFS: X-ray absorption fine structure; relevant details for 

quick-XAFS: continuously running bragg axis; 400 to 800 motorsteps/s; measuring 0.2 s/datapoint; 

scanning once). The energy of the monochromator was calibrated to the white line of sulfate in scotch 

tape (2481.4 eV). The spectra energies were corrected to the white line of the gypsum spectrum 

(2482.84 eV) to allow an estimation of fO2 in our experiments based on the model of Jugo et al. 

(2010); see Section 4.1. 
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4. RESULTS 

The bulk composition of all volatile-bearing starting glasses and experimental glasses is close to the 

anhydrous andesite if H2O, S, and Cl are subtracted and oxides normalized to 100 wt% (Table 1). The 

H2O contents are in the range of 4.8 to 7.0 wt% H2O, except for SD2 with ~4.5 wt% H2O and AHC 

with ~8 wt% H2O (Table 3). Most of the glasses synthesized for decompression experiments were 

homogenous, bubble-free, and crystal-free. However, three samples (GYClA, GYMClA and RED) 

contained minor amounts of S-bearing globules indicating that either the dissolution of the added 

gypsum was incomplete or the solubility of S was exceeded. Differences in degassing kinetics and 

initial fluid composition are expected for globule-bearing and globule-free glasses, i.e. an S-rich fluid 

can be easily formed by diffusion of H2O to the globules in the former case while slow diffusion of S 

in the melt and homogeneous bubble nucleation have major control in the latter case.  

In order to determine the bulk S content, ~20 mg of the globule-bearing glasses were powdered, mixed 

with ~100 mg of anhydrous andesite and adequate amounts of H2O, and re-melted for > 6 h in Au 

capsules at the same conditions as used for the initial syntheses. Afterwards, the S content of the 

diluted glasses was analyzed by EMP, and the bulk S content of the undiluted GYClA, GYMClA, and 

RED glasses was estimated by mass balance calculations. In a second approach to quantifying the S 

contents of the globule-bearing starting glasses, pieces from the GYClA-1, GYMClA-1, and RED-2 

decompression experiments were re-melted at 1030°C and 500 MPa for a short term (~30 min). The 

re-melted GYClA-1 and GYMClA-1 samples are pure glasses with bulk S contents similar to those 

inferred from the dilution experiments. The average of the two values (re-melting and dilution) for the 

bulk GYClA and GYMClA S contents was used in mass balance calculations, e.g. to determine DS
fl/m

. 

The re-melted RED-2 sample contains S-bearing globules indicating that the RED starting material 

was Fe1-xS saturated. Hence, the S content based on the dilution experiment was used to estimate the 

total S content. 

All decompression products were homogeneous (except for SD1-300) and most were crystal-free 

(Table 2). Bubbles produced during decompression are common in all run products (Fig. 2). After 

decompression, the H2O concentration in the glasses significantly decreased with decreasing final p 
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(see results of SD1 experiments; Section 4.2.1) and ranged (with a few exceptions, see Table 2) from 

3.1 to 4.2 wt% H2O at a final p of 70 MPa corresponding to a relative loss of 40% to 58% H2O. The  

initial S content in the starting glasses ranged from ~140 to ~2700 ppm and decreased in the partially 

degassed samples at 70 MPa down to contents of ~30 to ~1200 ppm, corresponding to a relative 

variation of 56% to 96%. Cl was added to three starting glasses and the initial bulk Cl content was 

either ~510 ppm (GYMClA) or ~1035 ppm (GYClA, QFMClA). The Cl content in the partially 

degassed glasses was only slightly lower than in the starting glasses and ranged from ~440 to 

~1000 ppm at 70 MPa (for details see Table 2). 

 

Fig. 2: Microscopic images of sample AHC-1 

(decompression experiment conducted at 1030°C and 

~QFM+4.2 with r ~ 0.1 MPa/s, tA ~ 2 h). Bubble sizes 

range from about ~2 to ~70 µm in diameter. 

 

4.1 Speciation of S and redox state of Fe 

Fig. 3a and 3b show S-XANES spectra of selected starting glasses and partially degassed samples 

covering a redox range from ~QFM+0.5 up to ~QFM+4. The spectra of the oxidized samples (e.g. 

GYC; Fig. 3a) show a prominent, sharp peak at ~2482 eV which is related to S
6+ 

in glass. The spectra 

of samples conducted at ≤ QFM+1 show only a small (e.g. GYClA) or no S
6+ 

peak (e.g. QFMA) but a 

broad hump with a center at about 2478 eV corresponding to S
2-

. In addition, a sharp peak at about 

2472 eV, which also originates from S
2-

, occurs in most glasses processed at log(fO2/bar) < QFM+2 . 

Fleet (2005) attributed such an S
2- 

peak in Fe-bearing glasses to the predominance of Fe mono-sulfide 

units; however, the exact assignment of this feature is still pending (Wilke et al., 2011). In general, an 

increasing fO2 leads to a decrease of the S
2- 

features and an increase of the S
6+ 

peak and vice versa. The 
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XANES spectra indicate that the S in the andesitic melt is fully reduced at log(fO2/bar) < QFM+0.5 

and completely oxidized at log(fO2/bar) > QFM+2.8. This observation is in agreement with earlier 

studies (e.g. Jugo et al., 2010; Botcharnikov et al., 2011). No systematic differences were observed for 

XANES spectra recorded in the center and near the rims of the melt, i.e. no redox gradients are visible. 

A method to estimate fO2 in glasses using the peak intensities of S
6+

 and S
2-

 in XANES spectra 

[fO2(XANES)] was proposed recently by Jugo et al. (2010). The method, calibrated on basaltic glasses, 

is based on the assumption that mixtures of end-member glasses with either fully oxidized or fully 

reduced S species can be used as reference samples to determine the proportion of species in glasses 

with mixed S oxidation state. The authors found the following relationships for basaltic glasses: 

 

S
6+

/S = – C  ln{[(I(S
6+

)/SI – A] / B}   
     (4)

 

with    A = 1.2427; B = -0.94911; C = 0.81354    and    I = I(S
6+

) + I(S
2-

) 

 

where S
6+

/S is the molar ratio of S
6+

 and total S (S) in the melt and I(S
6+

) and I(S
2-

) are the 

integrated intensities for spectral ranges characteristic of S
6+ 

and S
2-

. The energy interval for the 

integration proposed by Jugo et al. (2010) is 2481.5 to 2484 eV for S
6+ 

and 2475.7 to 2480 eV for S
2- 

in basaltic glasses (see Fig. 2). According to Jugo et al. (2010) the following relationship describes the 

S
6+

/S ratio as a function of fO2 for basalt: 

 

)101(1
)21.2(6 QFM

SS
           (5) 

 

where QFM is fO2 expressed as log units above QFM. We used this concept to estimate the local fO2 

in the glasses (denoted as fO2(XANES)). This evaluation is based on a specific calibration for andesitic 

glasses determined by Max Wilke (pers. comm.) and applied in Botcharnikov et al. (2011).  

The derived S
6+

/S ratios are listed in Table 2 and displayed in Fig. 4 as a function of the nominal fO2. 

Spectra of glasses with low S content (< 300 ppm, grey shaded symbols in Fig. 4) are often very noisy 

and background features in the high and low energy ranges are not well resolved (e.g. QFMA-5 and 
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GYClA-4 in Fig. 3b) so the determination of peak areas is poorly constrained. Notably, presuming 

equal concentrations of S
2- 

and S
6+ 

in the glass, the S
2- 

features in XANES spectra are less prominent 

than the S
6+ 

features. As a consequence, in S-poor glasses the S
2- 

contribution is often overestimated by 

the integral method, i.e. a noticeable intensity in the S
2- 

range is obtained although the typical spectral 

features of S
2- 

are missing (e.g. GYC-1 in Fig. 3b). For such glasses the S
6+

/S ratio in Table 2 

represents a lower limit and these data are not considered in Fig. 4.  

Another limitation of the integral method is that variations in peak shape in the S
2- 

region due to 

changes in coordination of S
2-

, i.e. the sharp S
2-

 peak at ~2472 eV visible in some spectra, are ignored. 

Additionally, for highly vesiculated samples, where the beam size was much larger than the average 

distance between vesicles, it cannot be excluded that bubbles (and quench products in the bubbles) 

contribute to the spectra.  

Considering all mentioned uncertainties related to the method of Jugo et al. (2010) and the low S 

content in some glasses, the S
6+

/S derived from XANES data show good correlation with the nominal 

fO2 in the melt (Fig. 4a). However, the XANES data generally indicate a (slightly) lower fO2 in the 

capsule when compared to the nominal fO2 in the vessel. This deviation may originate from the 

compositional, p, and T effects on S speciation in silicate melts (see e.g. Fig.13 in the review of Baker 

and Moretti, 2011).  

Further information about the fO2 inside the capsule was obtained from the bulk Fe
3+

/Fe ratios listed 

in Table 2. As noted by Sossi and O’Neill (2011) the vanadate method for determination of Fe
2+

/ Fe
3+

 

ratio is sensitive to reducing agents in the glass, i.e. S
2-

. The authors observed an apparent increase of 

Fe
2+

 consistent with a stoichiometric reduction of 8 moles Fe
3+ 

by 1 mole S
2-

 (see also Appendix of 

Sossi et al., 2012). As a first approximation the measured Fe
3+

/Fe data were corrected using the 

S
6+

/S ratios determined by XANES and total S contents of the glasses based on EMPA. This 

correction was applied only if clear evidence of S
2- 

features were observed in the XANES spectra (see 

above, this Section).  

In general, the Fe
3+

/Fe ratios of the starting glasses and of the experiments with long term annealing 

after decompression (near-equilibrium; tA ≥ 5 h) are close to the predictions made by the empirical 

calibrations of Kress and Carmichael (1991) and the thermodynamic model of Moretti (2005), 
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although some scatter of the data is obvious (Fig. 4b). Different p cannot explain these variations, 

since our data show no systematic correlation to p. Possible explanations are: i) the material for 

analyses was taken from outer parts of the sample and may be not representative of the whole sample 

and ii), in the case of the most oxidizing experiments under intrinsic conditions, the fH2 is unbuffered 

and experiments were performed in two different vessels. 

The Fe
3+

/Fe ratios of samples without or with short annealing after decompression are systematically 

below the trends predicted by the computation models. However, there is no direct evidence for more 

reducing conditions in the melt interiors relative to the prevailing vessel atmosphere during 

decompression. All samples contain a large fraction of bubbles and the major part of the S species is 

located in the bubbles. These species may act as reducing agents for Fe
3+

 in the glass during digestion. 

Fluid components are not considered in the correction of the Fe
3+

/Fe data and, hence, Fe
2+

 is possibly 

overestimated.  

 

  

Fig. 3a-b: S K XANES analyses of selected samples. a) Starting glasses. b) Decompression experiments. The 

normalized absorption is plotted as a function of the excitation energy. The nominal fO2 is given in parentheses 

(e. g. +3.67  QFM+3.67). The vertical lines mark the positions of the three observed S peaks (sharp S
2-

 peak 

at 2470.9 eV to 2473.7 eV; broad S
2-

 peak centered at 2478.3 eV; sharp S
6+

 peak at 2482.8 eV). The energy 

intervals used for the determination of S
6+

/S ratio following the approach of Jugo et al. (2010) are illustrated 

by grey shaded areas for the spectra on bottom. 
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Fig. 4a-b: a) S
6+

/S plotted against the nominal fO2. The solid line was calculated using equation 5 derived by 

Jugo et al. (2010; Ju01) for basaltic composition. Samples with low S content (< 300 ppm) are indicated by 

grey symbols. b) Fe
3+

/Fe plotted against the nominal fO2. Trends for Fe
3+

/Fe vs. QFM at 70 and 500 MPa 

are based on the models of Moretti (2005; M05) and Kress and Carmichael (1991; KC91). 

 

4.2 Partitioning of H2O, S, and Cl  

The distribution of S and Cl between fluid and melt under fluid-melt equilibrium can be described by 

the partitioning coefficients DS
fl/m

 and DCl
fl/m

, respectively, where 

 

D
fl/m

 = X(fluid)/ X(melt)           (6)  

         

and X(fluid)/ X(melt) is the concentration in wt% of S or Cl in the fluid and in the melt, respectively. In 

this study, the concentration of S, Cl, and H2O in the fluid phase was determined by mass balance 

calculation using the measured S, Cl, and H2O content in the glasses before (contents in the starting 

glasses) and after (contents in the partially degassed samples) decompression. It is emphasized that the 

X(fluid)/X(melt) ratio derived from the decompression experiments does not necessarily represent 

equilibrium conditions. In the following the term D*
fl/m 

is used to describe the distribution of volatiles 

between melts and fluid for such kinetic experiments whereas D
fl/m 

refers to near-equilibrium 

conditions.  
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4.2.1 Evolution of H2O contents during decompression and annealing 

The experimental SD1 series was designed to investigate the distribution of H2O and S between fluid 

and melt at various final p (150, 100, 70, and 30 MPa) under oxidizing conditions (~QFM+3). 

Samples were directly quenched after decompression (r ≈ 0.1 MPa/s). Fig. 5a shows clearly that the 

H2O content of the glasses, measured by IR spectroscopy, decreases with final p in the range of 30 to 

150 MPa and is systematically higher than predicted by the computation models of Newman and 

Lowenstern (2002; VolatileCalc model) and Witham et al. (2012; SolEx model). A comparison of all 

decompression experiments with a final p = 70 MPa reveals that the H2O content in these partially 

degassed glasses is largely independent of r, tA, and fO2, ranging from 2.0 to 4.2 wt% H2O with an 

average of 3.54 ± 0.37 wt%. The solubility calculations are applicable to rhyolitic and basaltic 

systems, and the question is whether the deviation from the solubility data is due to differences in 

fluid-melt composition or related to kinetic effects during decompression. In order to clarify this point, 

we performed a set of H2O solubility experiments with the Krakatau andesite at 1030°C and 70 MPa 

for 48 h under oxidizing conditions (~QFM+2.6). In two capsules glass powder was used as starting 

material and two others contained a single glass piece each. Post-experimental glasses were bubble-

rich in the first case and bubble-free in the second case. Identical H2O contents detected by IR of 

3.63 ± 0.10 wt% for all four glasses give confidence that the data represent equilibrium H2O 

solubilities. KFT measurements on the bubble-free glasses support the IR data (see Table 3), 

demonstrating that H2O solubility in the Krakatau andesite is higher than in rhyolite and basalt at this 

p-T condition (1030°C, 70 MPa). Hence, we conclude that the H2O contents of the decompressed 

samples are close to the equilibrium values for the applied r (0.0005 to 0.17 MPa/s). 

 

4.2.2 Evolution of S contents during decompression and annealing 

Fig. 5b indicates that most of the S dissolved in an oxidized melt is released to a fluid phase upon 

decompression in a p range of 150 to 100 MPa, in quite good agreement with the predictions of the 

SolEx model of Witham et al. (2012) although the model was calibrated for basaltic melts. 

Comparison of Fig. 5a and 5b reveals that S is released earlier than H2O during decompression, i.e. the 

H2O content in the melt decreases significantly below 100 MPa when most S has been released to the 
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fluid phase. This trend is confirmed in Fig. 5c, which shows the influence of final p on D*S
fl/m

. These 

findings indicate that S- and H2O-degassing are controlled by different mechanisms. 

 

 
 

 

Fig. 5a-c: Influence of final p on a) H2O content of the melt, b) S content of the melt and c) D*S
fl/m

 at 1030°C 

and ~QFM+3 (r ~ 0.1 MPa/s). Calculated solubility of H2O and S in basaltic and/or rhyolitic melts is plotted 

for comparison, using recent solubility models (see below). The star marks the water solubility in the Krakatau 

andesite experimentally determined at 1030°C, 70 MPa and QFM+2.6 (see text).  

Details about a) and b): the H2O and S data at 500 MPa correspond to the initial concentration in sample SD1. 

Details about c): Given percentages refer to the amount of S or H2O released from the melt within the p ranges 

from 150 to 100 MPa (dotted line) when S is predominantly degassing and 100 to 30 MPa (dashed line) when 

degassing of H2O dominates over S. 

VolCalc (VolatileCalc model of Newman and Lowenstern, 2002); SolEx (SolEX model of Witham et al., 

2012); applied parameters: 7.3 wt% H2O, 1200 ppm S, closed system, PI parameterization. 
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In contrast to the H2O content, the S content in the melt at the final p = 70 MPa is often highly variable 

and depends e.g. on r, tA, and fO2. Under oxidizing, S
6+

 dominated conditions (log(fO2/bar) > QFM+3; 

Fig. 6a), a strong increase of D*S
fl/m

 by a factor of ~10 with increasing r (D*S
fl/m

 = 288 ± 40 at 0.17 

MPa/s and D*S
fl/m

 = 27 ± 1 at 0.02 MPa/s; tA = 0 h) is observed. By contrast, experiments at slightly 

reducing conditions of ~QFM+1.5 (10-20% S
2- 

in the melt) show an increase of D*S
fl/m

 by a factor of 

~1.7 with decreasing r over a slightly smaller range of r (D*S
fl/m

 = 317 ± 35 at 0.1 MPa/s and 

D*S
fl/m

 = 527 ± 100 at 0.02 MPa/s; tA = 0 h). At more reducing conditions (~QFM+0.8; S
2- 

> S
6+

) the 

influence of r on D*S
fl/m

 seems to be negligible; D*S
fl/m

 ~100 over a wide range of r (0.01 to 0.10 

MPa/s; tA = 0 h; Fig. 6b). Significantly higher values of D*S
fl/m

 were estimated with r = 0.0005 MPa/s 

at ~QFM+1 but the S contents of these two experimental glasses (QFMA-5 and QFMClA-5) are 

below the detection limit of the EMP, and the data have high uncertainty. Moreover, Fig. 7a indicates 

a significant influence of fO2 on the fluid-melt distribution of S at tA = 0 h (fluid-melt disequilibrium) 

for a constant r of ~0.1 MPa/s. A strong increase of D*S
fl/m

 from 77 ± 17 to 354 ± 147 is observed in 

the range of QFM+0.8 to QFM+1.5. However, D*S
fl/m

 remains almost constant at higher fO2 (average 

D*S
fl/m

 ≈ 300). 

The influence of tA on D*S
fl/m

 and, thus, of fluid-melt equilibration processes on the fluid-melt 

distribution of S is illustrated by Fig. 8. Fig. 8a displays the results under oxidizing conditions 

(log(fO2/bar) > QFM+3.2) for different combinations of initial and final p: 500 and 70 MPa (AH3, 

AH4, GY3, GY4, GY-C-1, GY-C-2, AH-C-1, AH-C-2), 400 and 70 MPa (SD1-700), or 300 and 100 

MPa (ASD-1, ASD-2). Differences in initial and final p as well as slight variations of r (see Table 2) 

exert no significant effect on the evolution of D*S
fl/m

 with increasing tA. Quenching directly after 

decompression (tA = 0 h) yielded an average “initial” D*S
fl/m

 of 244 ± 106. Annealing for 5 h at final p-

T conditions leads to a strong decrease of D*S
fl/m

 to values below 70. Further annealing up to tA = 48 h 

has no significant effect on the fluid-melt partitioning of S implying that near-equilibrium distribution 

was achieved. On the basis of all data for tA ≥ 5 h a “final” DS
fl/m

 of 39 ± 16 is derived for oxidizing 

conditions at 70 MPa and 1030°C. A relaxation trend was fitted to the data using the estimated 

“initial” and “final” DS
fl/m

 values (A0 and A1, see caption, Fig. 8a) and a relaxation time  = 0.8 h. The 
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good correlation of the regression with the data confirms that (near-) fluid-melt equilibrium conditions 

(equals ~ 6 times ) are reached after ~5 h annealing. 

A different trend for D*S
fl/m

 as a function of tA is observed under more reducing conditions of 

~QFM+1.1 to ~QFM+2.2 (Fig. 8b). In general, these D*S
fl/m

 values
 
have higher uncertainties than 

those under oxidizing conditions (> QFM+3.2). Experiments containing > 6 wt% initial H2O in the 

melt – an H2O content which is comparable to the H2O concentration of experiments shown in Fig. 6a 

and 8a for oxidizing conditions – reveal an almost constant D*S
fl/m

 of 164 ± 65 for tA ranging from 0 to 

19 h at QFM+1.1 to QFM+1.7. On the other hand, samples with lower initial H2O content (~4.6 wt%) 

are characterized by higher D*S
fl/m

 values of ~400 at QFM+1.7 to QFM+2.2 with no significant change 

upon annealing for tA ≤ 5 h.  

The contrasting trends for oxidizing and reducing conditions are also evident when comparing 

disequilibrium values (D*S
fl/m

; tA = 0 h; Fig 7a) to near-equilibrium values (DS
fl/m

; tA ≥ 5 h; Fig. 7b) as a 

function of the nominal fO2. In contrast to the results at disequilibrium conditions, DS
fl/m

 decreases 

remarkably from ~220 to ~50 with increasing log(fO2/bar) from ~QFM+1 to ~QFM+2 at near-

equilibrium conditions. However, comparable to disequilibrium data, DS
fl/m

 seems to be independent of 

fO2 as soon as log(fO2/bar) > QFM+2 (average DS
fl/m

 ≈ 35). Moreover, our results for near-equilibrium 

conditions correlate well with the fluid-melt partitioning data of Zajacz et al. (2012) for andesitic 

systems. The slight differences may refer to differences in melt compositions (e.g. starting glasses of 

Zajacz et al. (2012) contain ~55 to 60 wt% SiO2), p, and/or T. 
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Fig. 6a-b: Influence of r on D
*

S
fl/m

 for samples quenched directly after decompression. a) Oxidizing conditions, 

log(fO2/bar) > QFM+3 and b) reducing conditions, log(fO2/bar) ranging from about QFM+0.8 to QFM+1.5. An 

effect of initial H2O content (~4.6 and ~6.5 wt%) is evident for reducing conditions. The experiments 

conducted with an r of 0.0005 MPa/s (QFMA-5 and QFMClA-5) contain S below the EMP detection limit. The 

black arrows indicate that D
*
S

fl/m
 represent the lower limit in this case. 

 

 

  

Fig. 7a-b: DS
fl/m

 against QFM. a) Fluid-melt disequilibrium conditions. Samples were directly rapid-quenched 

after decompression (tA = 0 h). b) Fluid-melt near-equilibrium conditions (tA ≥ 5 h). DS
fl/m

 values of Zajacz et al. 

(2012; Za12) for andesitic systems based on experiments conducted at 1000°C, 200 MPa and variable fO2 are 

plotted for comparison.  

Only experiments with initial H2O contents of ~6 wt% are shown. 
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Fig. 8a-b: Dependence of DS
fl/m

 on tA at a) oxidizing conditions (> QFM+3.2) and b) more reducing conditions 

(~QFM+1 to ~QFM+2). 

A) Includes a regression line. The parameters for the equation of the fitted regression are:  

A0 = 244 (~initial D*S
fl/m

); A1 = 39 (~final D*S
fl/m

);  = 0.8 h (relaxation time); tA in h 

 

 

4.2.3 Evolution of Cl contents during decompression and annealing 

Cl was added to three starting glasses: GYClA (~500 ppm), GYMClA (~1000 ppm), and QFMClA 

(~1000 ppm). The Cl contents in the decompression experiment glasses are slightly lower than the Cl 

contents of the starting glasses. The D*Cl
fl/m

 are 1 or 2 orders of magnitude smaller than those of S 

(ranging from 1 to 13). Fig. 9a and 9b indicate that r (Fig. 9a) and tA (Fig. 9b) have a minor effect on 

the fluid-melt partitioning of Cl (D*Cl
fl/m

 ≈ DCl
fl/m

). It is worth noting that the determined D*Cl
fl/m

 values 

are close to the equilibrium values predicted by previous studies, e.g., by Webster (1992) for a 

haplogranitic system (e.g. D*Cl
fl/m

 ≈ 9 at 993°C, 910 ppm initial Cl, 194 MPa). 

Parameters which affect Cl partitioning are in particular the fO2 and the initial Cl content. D*Cl
fl/m

 

increases remarkably from 2 ± 1 to 10 ± 3 (average D*Cl
fl/m

 values) with increasing fO2 (from 

QFM+0.8 to QFM+1.8). This effect is probably related to the decreasing Fe
2+

/Fe
3+

 ratio and, thus, 

changes in melt polymerization which has a significant influence on Cl solubility in silicate melts 

(Metrich and Rutherford, 1992). Doubling the initial Cl content (from 500 to 1000 ppm) leads to a 

significant increase of D*Cl
fl/m

 from 4 ± 1 to 10 ± 3 at QFM+1.8, in accordance with observations of 

Webster (1992) for haplogranitic systems.  



CHAPTER I-A 

 

27 

 

  

Fig. 9a-b: Partitioning of Cl between fluid and andesitic melt. a) Influence of r on DCl
fl/m

 at QFM+0.8 and 

QFM+1.8. b) Influence of tA on DCl
fl/m

 at QFM+1.8. 

 

 

5. DISCUSSION 

5.1 Oxygen fugacity 

The fO2 plays a crucial role in distributing S between fluid and melt (e.g. Keppler, 2010; Webster and 

Botcharnikov, 2011; Zajacz et al., 2012) and, thus, the estimation of fO2 should be discussed critically. 

As demonstrated in various studies, the prevailing fO2 within a noble metal capsule can be accurately 

predicted when the H2-pressure in the vessel is known by direct measurements using a Shaw-

membrane or can be reasonably estimated by experience (e.g. Scaillet et al., 1992; Berndt et al., 2002; 

Wilke et al., 2002). A prerequisite for this estimate is that equilibrium between the p medium and the 

interior of the capsule has been achieved.  

Decompression affects the fO2 inside the capsule in several ways. First, p release automatically 

induces a decrease of fH2 in the vessel and, as a consequence, an increase of the fO2 within the capsule, 

i.e., by ~0.7 log units for p reduction from 400 to 70 MPa at 1030°C. As mentioned in Section 2, the 

reduction of fH2 in the vessel can be even larger due to a preferential loss of H2 through the valve upon 

decompression. Another complication arises from the history of the vessel. Even at room temperature 

H2 diffuses into the metallic parts of an autoclave and, depending on duration and H2 p in previous 

experiments, H2 can be either released or consumed by the vessel during an experiment. Measurements 
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with a Shaw-membrane at the end of experiments can only yield information about the total change in 

fH2; the sensor is too sluggish to resolve the timescale of fH2 variation in the vessel.  

The redox conditions inside the capsule are additionally influenced by volatiles dissolved in the melts 

which approach saturation during decompression. For instance, the a(H2O) in the melt will increase 

gradually upon decompression until a(H2O) ~ 1 is reached at about 150 to 200 MPa (see Fig. 5c). This 

accounts for a slight oxidation of the samples by ~ 0.3 log units (assuming initial H2O content of 6 

wt% in the melt). Reactions within the released fluid phase, i.e. dissociation of sulfate (SO4
2-

  SO2 + 

0.5 O2 + O
2-

), can cause further oxidation of the melt. The stability of sulfate in the fluid strongly 

relies on fluid density, i.e., the potential of fluid components to form a complex with charged particles. 

Decompression also affects the relationship between the Fe
3+

/Fe
 
ratio of Fe in the melt and the fO2. 

The model of Moretti (2005) predicts for a p reduction from 500 to 70 MPa a decrease in fO2 by ~0.9 

log units for andesite at 1030°C and constant Fe
3+

/Fe ratio (Fig. 4b).  

 

 

Fig. 10: Integrated S-XANES peak intensity ratios of the 

decompression experiments (I(S
6+

)/Ifinal) in comparison to the starting 

glasses (I(S
6+

)/Iintial). Samples with low S content (< 300 ppm) are 

indicated by grey symbols. 
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Considering the complexity of the processes involved, the overall effect of decompression on melt fO2 

is difficult to predict, although a tendency towards higher fO2 is evident at least for intermediate to 

reducing conditions from comparing the final and initial abundance of S
6+ 

in the glasses (Fig. 10). For 

oxidizing conditions (> QFM+2.7) the S intensity ratio (I(S
6+

)/I) of the run products is typically 

below that of the starting materials, but this is probably an artifact related to low S contents in the 

partially degassed melts after decompression and/or to limitations of the integral method used to 

estimate I(S
6+

)/I (see Section 4.1) . 

The rate of readjustment between sample and vessel is determined by H2 permeation through the 

capsule wall as well as by transport and reactions of H2 and H2O in the melt. Thus, crucial parameters 

are H2 diffusion and solubility in the capsule wall and andesitic melt, H2O diffusion in the melt, the 

amount of polyvalent elements in the melt (here mainly Fe and S), and the dimensions of the melt 

pool. The H2 transport through the Au wall is not the limiting factor due to the high permeability of Au 

for H2 at 1030°C, i.e. sufficient amounts of H2 required for redox-equilibration between the vessel and 

melt interior are transported through the capsule wall within minutes (Chou, 1987). Gaillard et al. 

(2003) observed that the growth of a reduction layer in rhyolitic melts is controlled by the solubility 

and the diffusivity of H2 in the melt weighted by the concentration of the sink (Fe
3+

; also S
6+ 

in our 

experiments), while redox-exchange reactions (e.g. H2 ↔ 2 H
+
 + 2 e

-
 and 2 Fe

3+
 + 2e

-
 ↔ 2 Fe

2+
) and 

H2O dissociation reactions are rather fast. The minimum time (t) required for redox-equilibration of 

the melt can be estimated using diffusivity data for H2 in silicate melts. Based on the diffusion 

equation fitted by Zhang and Ni (2010) to the H2 diffusion data of Shelby (1977) and Shang et al. 

(2009), t required for equilibration of the melt with respect to fH2, is on the order of 1 h for our 

experimental conditions. This estimate is consistent with the minimum tA to achieve a stable DS
fl/m

 

(Fig. 8). 

 

5.2 Kinetics of degassing  

As pointed out previously, the H2O and Cl content in the melt can rapidly adjust to changing 

conditions during decompression while the S content is sensitive to r and tA. The major reason is the 

slow diffusivity of S species in the melt compared to the other volatiles (Zhang et al. 2010; Behrens 
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and Stelling 2011). In Section 5.2.1 and Section 5.2.2 the degassing kinetics of S-bearing melts are 

discussed for oxidizing and intermediate to reducing conditions using plots of the S content in the 

partially degassed melts against r and tA (Fig. 11). No detectable influence of the bulk S content in the 

system on the distribution of S between fluid and melt could be found in the range from 1150 to 2700 

ppm S in the melt. Under reducing conditions even very low initial S contents of ~140 ppm in the melt 

gave consistent results. These findings are in agreement with the results of Keppler (2010) for 

haplogranitic melts. 

 

 
 

  

Fig. 11a-d: S contents in the partially degassed samples plotted against r or tA.  

a) S [ppm] vs. r at log(fO2/bar) > QFM+3. b) S [ppm] vs. r at an average log(fO2/bar) of QFM+1.2. c) S [ppm] 

vs. tA at log(fO2/bar) > QFM+3. d) S [ppm] vs. tA at log(fO2/bar) of QFM+1.1 to QMF+1.8. 

CR85: S solubility of Carroll and Rutherford (1985), dacitic melt, H2O saturated ; CR87: S solubility of Carroll 

and Rutherford (1987), dacitic melt, 4.6 to 5.4 wt% H2O 
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5.2.1 S degassing under oxidizing conditions (> QFM+3) 

The amount of S released upon decompression under oxidizing conditions (> QFM+3) decreases 

continously with decreasing r (Fig. 11a). About 70 to 90% of the S initially present in the melt (1200 

to 2700 ppm at 1030°C) is released to the fluid phase during fast decompression (~0.17 MPa/s) from 

~500 to 70 MPa. At the lowest r = 0.02 MPa/s the remaining S content in the melt of ~1200 ppm is 

close to the S solubility. Carroll and Rutherford (1985) found S contents of 1300 to 1500 ppm in 

nearly H2O saturated (andesitic) dacite coexisting with anhydrite at > QFM+4, 100 MPa, and 1025°C 

(indicated by the dashed lines in Fig. 11a). Taking the p dependence of S solubility into account 

(e.g. Carroll and Rutherford, 1985; Lesne et al., 2011), values slightly below 1300 ppm are expected 

for a melt in equilibrium with anhydrite at 70 MPa. 

The variation of S content and, thus, of the D*S
fl/m

 as a function of r at oxidizing redox conditions (Fig. 

6a) is interpreted to reflect a transient distribution of S between fluid and melt. Upon decompression 

volatiles (here H2O, S, ± Cl) are exsolved from a melt to a fluid phase. Fluid bubbles will nucleate and 

volatiles must migrate to fluid pools to allow bubble growth. The fluid composition will change upon 

decompression, depending on the initial volatile budget and on the solubility and mobility of volatiles. 

The transport of S (as sulfate and sulfide ions) and H2O in a silicate melt without convection fluxes is 

controlled by diffusion. Sulfide and sulfate must be charge-compensated by alkali ions and/or alkaline 

earth ions and, hence, S fluxes will be coupled to these mobile cations. In particular Ca
2+ 

shows high 

affinity for sulfate as demonstrated by Delmelle et al. (2011). For the experimental glasses of this 

study a sulfate-to-Ca
2+

 coupling is not hypothesized because of the low abundance of S.  

Anhydrite solubility in hydrous fluid strongly increases with p in the studied p-T range (Newton and 

Manning, 2005). The initially formed high-density fluid has a high capacity for dissolving sulfate, but 

with continuing decompression the density of the fluid decreases and at a final p of 70 MPa the S 

solubility in the fluid becomes very low. At high r the fluid is initially S-undersaturated and sulfate 

diffuses from the melt to the bubbles. Further decompression induces saturation of the fluid in 

anhydrite (i.e. anhydrite crystallizes within the fluid) and back-diffusion of S into the anhydrite-

undersaturated melt. Thus, S contents in the melts after fast decompression are far below the level 

expected for fluid-melt equilibrium. Consistent with this scenario, anhydrite crystals up to 10 µm in 
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length were observed by microscopy and identified by Raman spectroscopy within bubbles produced 

during experiments decompressed at a high rate (r ≥ 0.1 MPa/s) and annealed for ≤ 2 h (see Appendix 

I for details).  

The t required to transport sulfate to the fluid pools upon initial decompression as well as for the back-

diffusion of sulfate into the melt when low p is achieved is controlled by sulfate diffusivity in the melt 

and the distance between the fluid pools. Microscopic investigations indicate that the distance between 

two bubbles in samples directly quenched after fast decompression (~0.1 MPa/s) is typically about 20 

µm. Sulfate diffusion is controlled by melt and sulfate diffusivity in the melt can be estimated using 

the Eyring relationship D = k·T / ·; D = diffusivity [m
2
/s], k = Boltzmann constant and = 

jumping distance,assumed to be ~0.3 nm (Behrens and Stelling 2011). The  of the andesitic melt at 

1030°C is calculated for 6 wt% H2O (≈ initial content, prior to decompression) and 3.6 wt% H2O in 

the melt (≈ final content, after decompression) to be 190 Pa·s and 550 Pa·s, respectively, using the 

computation model of Hui and Zhang (2007). With the derived diffusivities for initial (3.15×10
-13

 

m
2
/s) and final H2O contents (1.09×10

-13
 m

2
/s) the t required for a diffusion distance [x = (2·D·t)

0.5
] of 

20 µm is initially ~10 min and finally ~30 min. It is noteworthy that the model of Giordano et al. 

(2008) predicts slightly higher melt  values, indicating that e.g. the back-diffusion of sulfate into the 

melt may take up to ~60 min. These timescales are consistent with the observed variations in S content 

of the melt with r and tA (Fig. 8 and 11), supporting the idea that S diffusion in the melt is the rate-

controlling parameter under oxidizing conditions. 

 

5.2.2 S degassing under reducing to intermediate conditions 

As for the experiments at oxidizing conditions, most of the S initially present in the melts (~1150 to 

~1600 ppm) is incorporated into the fluid after fast decompression. However, contrary to what occurs 

under oxidizing conditions, the S content in the melt is not affected by the r (Fig. 11b) and post-

decompression annealing (Fig. 11d) under reducing (~QFM+1.1) to intermediate (~QFM+1.8) redox 

conditions. This trend is also observed for Cl-bearing systems (see results of GYClA and GYMClA 

experiments, Table 2), indicating that Cl has no remarkable influence on the degassing kinetics of S at 

intermediate to reducing redox conditions. The average S content measured in the glasses after 
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decompression (~300 ppm) is similar to the S solubility in H2O saturated (andesitic) dacite melts 

coexisting with pyrrhotite at ~QFM, 1025°C and 100 to 200 MPa (Carroll and Rutherford, 1985).  

These observations point to distinct differences in the degassing mechanisms under oxidizing and 

reducing conditions. The diffusivity of sulfide
 
in silicate melt is similar to that of sulfate (Behrens and 

Stelling, 2011). Thus, differences between the transport rates of sulfide
 
and sulfate to the fluid pools 

upon decompression are not expected. Considering the evolution of the S contents in the melt during 

annealing after decompression (Fig. 11d), there appears to be no driving force for back-diffusion of S 

from the fluid into the melt at low p. It is worth noting that no crystalline precipitates were found 

within bubbles in any of the experiments performed at ≤ QFM+1.8. These observations can be 

explained by good miscibility of S species (i.e. H2S, HS
-
) and hydrous components in the fluid under 

intermediate to reducing conditions. Due to the absence of a back-diffusion process at the end of 

decompression over the range of r applied in this study, the calculated D*S
fl/m

 values represent near-

equilibrium conditions at the end of decompression.  

 

5.3. Partitioning of S and Cl between fluid and melt 

5.3.1 Influence of fO2 on DS
fl/m

 

Decompression experiments (rate: ~0.1 MPa/s) conducted under oxidizing conditions (QFM+3) and 

close to fluid-melt equilibrium (tA > 5 h; Fig. 8a) indicate a DS
fl/m

 of 39 ± 16 for a final p ~70 MPa. 

This DS
fl/m

 is similar to data obtained by Lesne et al. (2011) for basaltic compositions (DS
fl/m

 ≈ 67 at 

1150°C, 100 to 300 MPa, and QFM+1.7 to QFM+3.0) and to the results of Keppler (2010) for 

haplogranitic systems (DS
fl/m

 ≈ 50 at 850°C, 200 MPa, and QFM+5). Keppler (2010) also noted a 

minor effect of p in the range of 50 to 300 MPa on DS
fl/m

 in haplogranitic systems. In contrast, 

preliminary experiments of Teague et al. (2008) conducted at 1250 to 1300°C (fO2 unknown) using 

andesitic melt indicate an increase of DS
fl/m

 by a factor of 10 with increasing p from 200 to 800 MPa. 

Furthermore, the data Lesne et al. (2011) obtained for basaltic systems (1150°C, ~QFM+1.7 to 

~QFM+3.1) indicates a minor influence of p on DS
fl/m

 in the range of 100 to 400 MPa but a strong 

increase of DS
fl/m

 by up to two orders of magnitude in the p range of 100 to 25 MPa. Hence, we suggest 
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that a DS
fl/m

 of ~50 is applicable over a wide range of silicate melt compositions and over a p range of 

at least ~70 to ~400 MPa, under oxidizing conditions. 

Our experiments with tA ≈ 20 h (near-equilibrium) and r ≈ 0.1 MPa/s, performed at QFM+1.5 (Fig. 

8a), yielded a DS
fl/m

 of ~150 at a final p ~70 MPa, indicating an increase of DS
fl/m

 with decreasing fO2 

(from ~QFM+3 to ~QFM+1.5) by a factor of about 3. This observation is consistent with findings 

Keppler (2010) made for Fe-free haplogranitic melts at 850°C and 200 MPa. Keppler (2010) 

determined an increase of DS
fl/m

 from ~50 to ~470 with fO2 decreasing from QFM+5.1 to QFM-0.9. 

The strong dependence of DS
fl/m

 on fO2, illustrated in Fig. 7b, is also largely in agreement with earlier 

findings of e.g. Zajacz et al. (2012). The slight differences between our data and the results of Zajacz 

et al. (2012) may arise from small differences in melt compositions, in p, and/or uncertainties in fO2 

determination. 

  

5.3.2 Influence of Cl content on S distribution between fluid and melt 

 Fig. 12 shows that DS
fl/m

 increases by a factor of ~2 at QFM+1.8 if 500 ppm Cl is added to the system 

and remains constant with further increase in bulk Cl content to 1000 ppm. An average DS
fl/m

 of 

261 ± 40 was calculated for Cl-bearing andesitic melts (500 to 1000 ppm Cl). The data of Zajacz et al. 

(2012) indicates that this trend may be extrapolated to bulk Cl contents of ~2600 ppm, but at higher Cl 

contents DS
fl/m

 decreases slightly with bulk Cl content (e.g. DS
fl/m

 ~90 at ~2 wt% Cl). A weak negative 

correlation between DS
fl/m

 and bulk Cl content in rhyodacitic systems at ~QFM+0.6, 850°C, and 200 

MPa was inferred by Webster and Botcharnikov (2011) based on equilibrium experiments conducted 

by Botcharnikov et al. (2004). The authors suggested that the effect of Cl content on DS
fl/m

 might be 

related to changes in activity coefficients of S species in the fluid-melt system. They assumed that 

extraction of cations such as Ca, Na, and K may change the fluid composition and, thus, the activities 

of the S and Cl components in the fluid phase. Beermann (2010) proposed that the extent of cation 

extraction is largely dependent on S speciation and thus on fO2. This dependence on fO2 is suggested to 

be less significant at fairly reducing conditions. Hence, the discrepancy between these results and the 

results of Webster and Botcharnikov (2011) may be due to differences in fO2 and/or melt composition. 
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Fig. 12: Dependence of DS
fl/m

 on Cl content of the starting 

glass. Data from Zajacz et al. (2012) are for andesitic systems 

at 1000°C, 200 MPa and log(fO2/bar) of ~QFM+0.1. 

 

On the other hand, experiments conducted at slightly more reducing conditions (~QFM+0.8) and with 

tA = 0 h, representing fluid-melt disequilibrium conditions, indicate that Cl has only a minor effect on 

D*S
fl/m

 (Fig. 6b). Considering that the effect of Cl-S interaction is probably small for systems with low 

S content (Keppler, 2010), the differences may refer to the significantly lower bulk S concentration 

(~260 ppm) in the starting glass (QFMClA) of the disequilibrium experiments. Thus, it is suggested 

that the observed DS
fl/m

 dependence on bulk Cl content at QFM+1.8 is applicable to S-enriched 

systems containing >260 ppm to ~2600 ppm S and is probably relevant for various redox conditions.  

We suggest that the observed dependence can be explained by the negative correlation between Cl and 

S concentrations found by Webster et al. (2009) in phonolitic and trachytic melts at 200 MPa and 896 

to 1022 °C. The authors proposed that the correlation reflects the dependence of S and Cl on their 

reciprocal solubilities in the studied melt which is in agreement with previous observations in 

rhyodacitic (Botcharnikov et al., 2004) and phonolitic melts (Webster et al., 2006). Assuming a strong 

interaction of Cl and S in the fluid and in the melt, Cl is expected to influence DS
fl/m

 and S is expected 

to influence DCl
fl/m

. Webster and Botcharnikov (2011) noted a positive correlation between S content 

and DCl
fl/m

 based on recent studies on rhyodacitic to basaltic systems (Botcharnikov et al., 2004; 
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Webster et al., 2009; Beermann et al., 2011), and estimated a maximum increase of DCl
fl/m

 by 25 to 

30 % if the melt is saturated with an S-bearing phase. Thus, the observed increase of DCl
fl/m

 with 

increasing fO2 (QFM+0.8 to QFM+1.8; Fig. 9a and 9b) may not only refer to variations in fO2 but also 

to increasing initial S content (260 ppm at QFM+0.8 and ~2600 ppm at QFM+1.8). 

 

5.4. Implications for volcanic systems 

Experimental studies on the distribution of S and Cl between fluid and silicate melt indicate the high 

potential of the Cl/S ratio in volcanic gases to improve the forecasting of volcanic eruptions 

(e.g. Botcharnikov et al., 2004; Keppler, 2010). Fig. 13a shows the molar Cl/S ratio in the melt plotted 

against the molar Cl/S ratio in the fluid phase of all our Cl-bearing experiments in comparison to the 

results of Botcharnikov et al. (2004) for a rhyodacitic melt (850°C, 200 MPa, ~QFM+0.6) and 

Zajacz et al. (2012) for andesitic systems (1000°C, 200 MPa, ~QFM+0.1). The positive correlation of 

Cl/S(fluid) with Cl/S(melt) found by Botcharnikov et al. (2004) for Cl/S(melt) ratios ranging from 13 to 45 in 

rhyodacitic melts is basically confirmed by our data and also by the results of Zajacz et al. (2012) for 

lower Cl/S(melt) ratios (~1 to ~16) in andesitic melts. However, the data from this study with Cl/S(melt) 

ratios < 15 follow a linear trend rather than an exponential one as suggested by Botcharnikov et al. 

(2004).  

Fig. 13b illustrates that Kd values (Kd = [(Cl/S)fluid/(Cl/S)melt]) of our samples and of Botcharnikov et al. 

(2004) are in very good agreement for Cl/S(melt) molar ratios ranging from 0 to 20 with an average Kd 

of 0.029 ± 0.013, indicating that a linear correlation between Cl/S(fluid) and Cl/S(melt) is applicable to 

Cl/S(melt) ≤ 20. The small deviations observed between our data and the data of Zajacz et al. (2012) 

point to slight compositional effects on the Kd; e.g. the andesite studied by the authors is less evolved 

than the Krakatau andesite and bulk volatile contents added to the capsules and within the 

experimental glasses of Zajacz et al. (2012) are significantly higher than in our experiments. The 

kinetic parameters (r, tA) have no notable effect on Kd in our study. Hence, the Cl/S(melt) molar ratio can 

be used to determine the Cl/S(fluid) of a coexisting fluid phase, even if equilibrium between fluid and 

melt phases is not achieved. 
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Fig. 13a-b: Evolution of the Cl/S ratio in the fluid and in the melt. a) Cl/S(fluid) vs. Cl/S(melt) – molar ratios. 

b) Kd values vs. Cl/S(melt) molar ratio. The bold numbers in a) correspond to the initial molar Cl/S ratios in the 

melts of the three experimental series. The Solid line represents the average Kd value calculated using the 

experimental data from this study (Cl/S(melt) ≤ 20). The Dashed line indicates the trend for Cl/S(melt) > 20, based 

on data from Botcharnikov et al. (2004). 

This study: Krakatau andesite (70 MPa; 1030°C; log(fO2/bar): QFM+0.8 or QFM+1.8) 

Botcharnikov et al. (2004): Mt. Unzen rhyodacite (850°C; 200 MPa; ~QFM+0.6)  

Zajacz et al. (2012): Andesite (1000°C, 200 MPa, ~QFM+0.1). 

 

 

Based on the results presented in this study the evolution of the S/Cl ratio in a fluid phase upon 

equilibrium or fractional degassing of an andesitic melt can be modeled. For this purpose, a few 

assumptions have to be made to allow an estimation of DS
fl/m

 (fluid-melt equilibrium) and D*S
fl/m

 

values (fluid-melt disequilibrium) for given fO2. 

A main assumption is that the S-Cl fluid-melt distribution can be described by constant Kd values, i.e. 

Cl/S(melt) ≤ 20 (see above, this Section). Moreover, considering that DS
fl/m

 = 39 ± 16 at QFM+4.2 in Cl-

free systems and that DS
fl/m

 increases by a factor of ~2.1 if 500 to 1000 ppm Cl is added to the system 

(Fig. 12), a DS
fl/m

 of ~81 can be estimated for Cl-bearing oxidized systems (QFM+4.2). Similarly, a 

D*S
fl/

 of ~513 is calculated for Cl-bearing oxidized systems using the average D*S
fl/m

 values of 

244 ± 104 determined in Cl-free experiments directly quenched after decompression (fluid-melt 

disequilibrium). In addition, an average DS
fl/m

 of 261 ± 40 is determined for Cl-bearing melts at 

QFM+1.8 using data listed in Table 2. 



CHAPTER I-A 

 

38 

 

As a first approximation we assume a simple linear relationship between log(fO2/bar) and DS
fl/m

 in the 

range of QFM+1.8 to QFM+4.2 (see Fig. 7). Using the two DS
fl/m

 values for QFM+1.8 (~261) and 

QFM+4.2 (~81) the following equation for Cl-bearing andesitic systems can be derived by simple 

linear interpolation (applicable for: ~500 to ~2600 ppm Cl; QFM+1.8 to QFM+4.2): 

 

DS
fl/m

 ≈ -75   QFM + 396         (7) 

 

Additionally, the data shown in Fig. 9b (experimental series GYMClA) is used to determine an 

average DCl
fl/m

 of 10 ± 3 for andesitic melts containing ~1000 ppm Cl. We assume that this DCl
fl/m

 is 

applicable to a wide range of fO2 (QFM+1.8 to QFM+4.2) in andesitic melts containing initially 

~1000 ppm Cl and >300 to ~1600 ppm S. Table 4 lists the DS
fl/m

 and D*S
fl/m

 values used for calculating 

the degassing trends. 

The following equations were applied to model the evolution of the S/Cl mass ratio during equilibrium 

and fractional degassing, respectively (see also Keppler, 2010).  

 

   




mfl

mfl

initial
fl

D

Dc
c

/

/

1
  equilibrium degassing     (8) 

  1*/
/

1*



mflD

initial

mfl

fl cDc   fractional degassing     (9) 

 

where cfl is the concentration of S or Cl in the fluid phase (in ppm), cinitial is the initial S or Cl content 

in the melt (in ppm) and  is the mass fraction of fluid released. Here, equilibrium degassing describes 

a degassing scenario in which the fluid released from a magma is in equilibrium with the melt prior to 

separation, while fractional degassing occurs when the fluid released from a magma is separated 

immediately after release, without fluid-melt equilibration. 

Fig. 14a shows the evolution of the S/Cl mass ratio in a magmatic fluid upon equilibrium degassing at 

QFM+1.8, +2.8, and +4.2. The degassing trends indicate that fluids released from magmas at 

intermediate redox conditions (QFM+1.8) are characterized by very high S/Cl ratios in the first fluid 

fraction formed upon decompression. By contrast, the first fluid released under oxidizing conditions 
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(> QFM+2.8) shows significantly lower S/Cl ratios. The data show that a sharp increase in the 

S/Cl(fluid) mass ratio detected in volcanic gases can be induced by decompression, especially under 

reducing conditions. In addition, changes in redox conditions in a degassing magma reservoir may also 

be reflected by significant changes in the S/Cl(fluid) ratio. Such oxidizing or reducing events could be 

related to intrusions of e.g. a primitive basaltic melt into the magma chamber. Thus, both scenarios 

may indicate a possible forthcoming eruption. It is emphasized that the application of the model is 

probably limited to andesitic systems. 

The degassing trends plotted in Fig. 14b indicate that S/Cl(fluid) mass ratios in volcanic gases released 

from a magma upon fast ascent (~fractional degassing) can be up to a factor of ~6 higher than those 

released by slowly ascending magma (~equilibrium degassing). Thus, variations detected in the 

S/Cl(fluid) mass ratio of volcanic gases may also help to distinguish between equilibrium and fractional 

degassing (calculation assuming a fast decompression of ~0.1 MPa/s, a log(fO2/bar) of ~QFM+4.2, 

and disequilibrium conditions; see Table 4). Fractional degassing may be more relevant for magmas 

with high ascent rates in conduits and, thus, for predicting hazardous explosive eruptions. Fig. 14b 

shows that dramatic variations of fluid composition should be observed with very small p changes in 

oxidized systems, if fractional degassing occurs and considering that the fluid composition does not 

change significantly after a degassed fluid fraction of 2%. Furthermore, changes in decompression 

style may induce distinct variations in S/Cl(fluid), an important finding which is linked to the observed 

transient exsolution of a large amount of S upon fast decompression from an oxidized andesitic melt; 

this finding may help to improve monitoring of volcanic activities. 

 

Table 4: DS
fl/m

 and D*S
fl/m

 values used for the 

calculation of degassing trends 

QFM DS
fl/m or D*S

fl/m Degassing process 

4.2 81 near-equilibrium 

2.8 186 (a) near-equilibrium 

1.8 261 near-equilibrium 

4.2 513 disequilibrium 

Notes: (a) calculated using equation 7 
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Fig. 14a-b: Modeling of S/Cl mass ratio in a magmatic fluid upon decompression. a) Evolution of the fluid 

phase during equilibrium degassing at variable fO2 (QFM+1.8 to QFM+4.2). b) Comparison of equilibrium and 

fractional degassing at QFM+4.2. 

 

 

6. CONCLUSION 

The experimental approach applied in this work provides first insights into the partitioning of S and Cl 

between fluid and melt in a H2O-S-Cl-bearing andesitic system upon degassing at disequilibrium 

conditions. 

An average D*S
fl/m

 of 300 was determined for Cl-free andesitic melts decompressed quickly (from 

~400 to ~70 MPa; rate: ~0.1 MPa/s) and quenched rapidly after decompression (fluid-melt 

disequilibrium conditions preserved) under intermediate to oxidizing conditions (~QFM+1.5 to 

~QFM+4). Thus, a sharp increase in the relative S concentration may be detected in Cl-free volcanic 

gases released and extracted from a fast ascending magma (fractional degassing). In contrast, at near-

equilibrium conditions DS
fl/m

 decreased with increasing fO2 from ~150 at QFM+1.5 to ~40 at 

~QFM+4. The strong decrease of D*S
fl/m

 from ~300 to ~40 under oxidizing conditions with further 

annealing after fast decompression may be related to a transient exsolution of S and the formation of 

solid S
6+

-bearing phases within the vapor phase upon decompression. These S-bearing phases are 

dissolved again with further annealing after decompression leading to an increase of the S 
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concentration in the melt and, thus, a decrease of D*S
fl/m

. The formation of such phases upon fast 

decompression becomes negligible at intermediate to reducing redox conditions.  

A ~2-fold increase of DS
fl/m

 was observed if 500 ppm Cl was added to an S-enriched system (>> 300 to 

~3000 ppm S). In contrast, the effect of Cl concentration on D*S
fl/m

 (disequilibrium) seems to be 

negligible, at least in S-poor systems. Moreover, no influence of tA or r on DCl
fl/m

 was observed 

(i.e. D*Cl
fl/m

 ≈ DCl
fl/m

). 

The observed dependences of the S and Cl fluid-melt distribution at fluid-melt disequilibrium and 

near-equilibrium on e.g. fO2 and initial volatile content, respectively, need to be considered for 

volcanic degassing scenarios. For instance, DS
fl/m

 derived from commonly conducted equilibrium 

experiments may not be adequate to describe fractional degassing S processes. Hence, our results may 

help to interpret volcanic gas signatures (e.g. HCl/SO2) and may enhance volcanic hazard mitigation. 
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CHAPTER I-B  

BUBBLE FORMATION DURING DECOMPRESSION OF ANDESITIC MELTS 

 

ABSTRACT 

Bubble formation in andesitic melts during continuous decompression (from ~400 to ~70 MPa) was 

investigated experimentally at 1030°C and oxygen fugacities (fO2) of log(fO2/bar) = QFM+0.8 or 

QFM+1.8 (QFM: quartz-fayalite-magnetite buffer). The experiments were conducted in internally 

heated pressure vessels (IHPV). One set of experiments was carried out at variable decompression rate 

(r), ranging from 0.0005 to 0.1 MPa/s. These samples were directly quenched after decompression to 

allow us to investigate the influence of r on bubble formation. A second set of experiments was 

performed at a constant r of 0.1 MPa/s. These samples were annealed for tA = 0 to 72 h at final p-T 

conditions after decompression in order to study changes in vesiculation during magma storage (≈ 

annealing) at shallow depths (~2 to 3 km) after fast ascent. Back scattered electron (BSE) images of 

the samples were analyzed to determine bubble number densities (BND).  

The BND was found to increase strongly with increasing r, from ~10
2.2

 mm
-3

 at 0.0005 MPa/s to ~10
4.5

 

mm
-3

 at 0.1 MPa/s. Moreover, after fast decompression (r ~ 0.1 MPa/s) BND decreased significantly 

with tA, from ~10
4.5

 mm
-3

 at tA = 0 h to ~10
2.8

 mm
-3

 at tA = 72 h. A comparison of the derived BND 

values with recently published data (Cichy et al., 2011; Nowak et al., 2011) showed clearly the 

essential role that decompression style (continuous, multi-step or single step) plays for bubble 

formation.  

The presented results provide important insights on the bubble formation in ascending magmas. The 

data can help to improve models for the estimation of magma ascent rates via BND values determined 

e.g. for natural pumices. 

 

Keywords: Bubble formation, bubble number density, andesite, continuous decompression 
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1. INTRODUCTION 

A good knowledge of bubble forming processes in magmatic systems is a pre-requisite to improve our 

understanding of hazardous, explosive eruptions and pyroclastic flows (see review of Sparks et al., 

1994). However, experimental data at geologically relevant conditions in magmatic systems are rare, 

especially at low r; i.e. r is typically > 0.02 MPa/s for experimental studies (e.g. Cichy et al., 2011; 

Gondé et al., 2011), while r is often < 0.02 MPa/s in natural systems, depending on eruptive style (e.g. 

Cashman, 2004). The experimental approach chosen in this study (decompression experiments; see 

Chapter I-A) results in the formation of bubble-bearing, crystal-free run products. The compiled 

experiments cover a wide range of r (0.0005 to 0.1 MPa/s) and tA (0 to 72 h) and, thus, may help to 

improve our knowledge on (homogeneous) bubble nucleation processes in ascending magmas.  

In order to investigate the effect of r and tA on bubble formation, bubble number densities (BND; i.e. 

the number of bubbles per volume) were calculated for selected decompression experiments (GYClA, 

GYMClA, QFMA and QFMClA; see Table 2 of Chapter I-A). The experimental series QFMA and 

QFMClA (0.0005 to 0.1 MPa/s; 0 h) were chosen to explore the influence of r on BND, while GYClA 

and GYMClA (0.1 MPa/s; 0 to ~72 h) were selected to evaluate possible changes in vesiculation 

during annealing after (fast) decompression. The selected experiments are characterized by a similar 

initial water (H2O) content of about 6.5 wt%, while the initial sulfur (S) content ranges from ~140 to 

~1050 ppm and chlorine (Cl) varies from 0 to 1000 ppm (see Chapter I-A for further details). 

 

2. EXPERIMENTAL PROCEDURE AND ANALYTICAL METHOD 

The experimental procedure is described in Chapter I-A, Section 2. Details on the experimental series 

GYClA, GYMClA, QFMA and QFMClA, chosen for BND studies are listed in Table 2 of Chapter I-

A. 

 

2.1 Estimation of bubble number densities (BND) 

BSE images of the experimental series GYClA, GYMClA, QFMA and QFMClA (collected by 

electron microprobe) were analyzed using the public computer program ImageJ 

(http://rsb.info.nih.gov/ij/) to study bubble formation upon magma degassing. The program allows us 
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to determine e.g. total area, average size, area fraction as well as width and length of the bubbles. 

Moreover, the (average) minor and major axis as well as the angle of the ellipsoid fitted to the bubbles 

are estimated and used for subsequent BND estimations. Two BSE images of each experiment were 

analyzed to determine the BND following the method described in Cichy et al. (2011). The images 

were taken at different magnifications and on different locations of the samples to minimize possible 

truncation effects (see Section 3.1 and e.g. Armienti, 2008). The image sizes range between ~600 × 

~400 µm and ~2500 × ~1850 µm (resolution: ~0.5 to ~2.5 µm/pixel). Noteworthy, BSE images were 

chosen for BND analyses because a higher contrast between bubbles and melt can be achieved when 

compared, for instance, to reflected-light microscopic images. 

The geometric information derived from ImageJ analyses was used to estimate the BND of the 

selected samples following the method of Noguchi et al. (2008); see also Cichy et al. (2011) and 

Nowak et al. (2011). However, the performed ImageJ analyses provide only 2D information about the 

bubble distribution. Hence, the estimation of the BND involves as a final step the 3D correction using 

the CSD-Corrections 1.4 software (http://depcom.uqac.ca/~mhiggins/csdcorrections.html). For the 

correction, the roundness factor calculated by ImageJ (ranging from 0.6 to 0.9) was applied and the 

aspect ratio was set to 1 - 1.1 - 1.2 (short axis - intermediate axis - long axis). The methods used in 

CSD-Corrections 1.4 are described in Higgins (2000, 2002) as well as in Higgins and 

Chandrasekharam (2007). BND values were estimated with both, bubbles at the edges of the image 

excluded and included.  

 

3. RESULTS AND DISCUSSION 

Fig. 1 shows a typical microscopic image of a partially degassed andesitic glass (GYClA-3) under 

plane polarized light. The size of the bubbles range from a few microns up to ~80 µm, a typical feature 

of fast decompressed (~0.1 MPa/s) samples with 0 to ~2 h annealing at final conditions.  

Comparison of BSE images indicate that the amount of bubbles decreases while the size of bubbles 

increases with decreasing r from 0.1 to 0.0005 MPa/s (e.g. QFMClA series; Fig. 2). A comparable 

trend is observed with increasing tA after fast decompression (~0.1 MPa/s; e.g. GYMClA). The 

bubbles appear often elongated and show a preferred orientation (flow structures) – especially in 
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experiments with low r (< 0.02 MPa/s) and/or long term annealing after decompression (tA > 5 h) – 

indicating that convection may occur during the experimental runs. Noteworthy, no significant 

influence of the S and the Cl content in the system, ranging ~140 to ~1000 ppm S and from 0 to ~1000 

ppm Cl, on bubble formation was detected (see Fig. 3). 

 

Fig. 1: Microscopic images of sample GYClA-3 

(r ~ 0.1 MPa/s; tA = 5 h). Bubble sizes range from 

about ~5 to ~80 µm in diameter. 

 

3.1 Accuracy of the BND estimation 

As mentioned previously, the method applied for the estimation of BND values may result in 

truncation effects which can affect BND values significantly (e.g. Armienti, 2008). Such truncation 

effects either arise from the resolution of the BSE image (left-hand truncation) or from the image size 

(right-hand truncation).  

In case of left-hand truncation the number of bubbles with a size close to resolution limit is reduced. 

However, the resolution of the BSE images used in this study was found to be sufficient to detect 

bubbles with a diameter of ≥ 1 µm and microscopic investigations indicate that the amount of bubbles 

with a diameter < 1 µm is negligible. Thus, a reduction of the number density of the smallest bubbles 

is unlikely, i.e. left-hand truncation can be ruled out.  

Right-hand truncation effects occur when the largest bubbles in the sample are excluded or are 

underrepresented in the analyzed area of the sample. This would result in a flattening of the size 

distribution on nearly horizontal trends at large size ranges, however, such trends were not observed; 

i.e. right-hand truncation is unlikely (see Fig. I-C.1 in the Appendix I for bubble size distribution plots 

of selected samples).  
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The BND values derived from the analyses of the same image but with bubbles at the edges of the 

image excluded or included differ by less than 0.12 log units. The BND values obtained from the two 

images of one sample differ typically by < 0.8 log units, indicating a quite homogeneous distribution 

of the bubbles within the samples. The mean of all four analyses (2 images; bubbles at the edges 

included or excluded) are listed in Table 1 and used for interpretation and discussion in the following 

sections. 

 

 

   

Fig. 2: BSE images of QFMClA-1 (left), QFMClA-3 (center) and QFMClA-5 (right). Values for r are 

displayed in the upper right corner of each image. Decreasing r leads to a decreasing number of bubbles and 

an increasing size of bubbles. Some bubbles are elongated and show a preferred orientation (flow structures). 

 

 

Table 1: Bubble number densities (BND). 

Sample ID 

log 

(BND × mm
3
) 

(a) 

r 

[MPa/s] 
tA [h] Sample ID 

log 

(BND × mm
3
) 

(a) 

r 

[MPa/s] 
tA [h] 

GYClA-1 4.82 ± 0.31 0.10 - QFMA-1 4.54 ± 0.38 0.10 - 

GYClA-2 4.65 ± 0.31 0.10 1.10 QFMA-2 4.49 ± 0.21 0.05 - 

GYClA-3 3.91 ± 0.53 0.10 5.00 QFMA-3 4.39 ± 0.13 0.02 - 

GYClA-4 3.03 ± 0.40 0.10 72.06 QFMA-4 4.23 ± 0.43 0.01 - 

GYClA-5 4.92 ± 0.43 0.10 1.05 QFMA-5 2.10 ± 0.40 0.0005 - 

GYMClA-1 4.40 ± 0.58 0.10 - QFMClA-1 4.22 ± 0.44 0.10 - 

GYMClA-3 3.12 ± 0.16 0.10 5.00 QFMClA-2 4.34 ± 0.26 0.05 - 

GYMClA-4 2.47 ± 0.40 0.10 72.06 QFMClA-3 4.32 ± 0.53 0.02 - 

GYMClA-5 3.69 ± 0.14 0.10 1.05 QFMClA-4 3.52 ± 0.22 0.01 - 

  
  QFMClA-5 2.32 ± 0.68 0.0005 - 

Notes: (a): logarithmized BND values [mm3]; provided error: standard deviation (1 sigma) of the four analyses 

performed (2 BSE images; bubbles at the edges included/exclude; see Section 2.1); - : tA = 0 h 
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3.2 Influence of r on BND 

The BND data of experiments with varying r and constant tA = 0 h is shown in Fig. 3a and is compared 

with experimental results of Cichy et al. (2011). The authors investigated the vesiculation during 

decompression (from 300 to 50 MPa) in a partly crystallized rhyodacitic system at 850°C and r 

ranging from 0.0002 to 20 MPa/s. It is emphasized, that the differences in T should have an 

insignificant effect on BND at given r (Hamada et al., 2010). For the samples of the experimental 

series QFMA and QFMClA (this study) a roughly linear increase of log(BND × mm
3
) with 

log(r × s/MPa) is observed (Fig. 3a; BND values given in Table 1). In contrast, Cichy et al. (2011) 

observed a minimum of log(BND × mm
3
) at r ≈ 0.02 MPa/s. Noteworthy, the experiments of Cichy et 

al. (2011) were conducted to investigate decompression-induced degassing and crystallization and all 

experiments contain significant amounts of crystalline phases (including Fe-Ti microlites). According 

to Hurwitz and Navon (1994), microlites (especially Fe-Ti oxides) are important bubble nucleation 

sites and, thus, may also explain the trend observed by Cichy et al. (2011); i.e. heterogeneous bubble 

nucleation processes are studied by Cichy et al. (2011), while homogeneous nucleation is assumed for 

our experiments. However, the microlite number densities (MND) determined by Cichy et al. (2011) 

for their experiments do not show any clear dependence on r (MND ≈ 10
5.5

 mm
-3

 in the range of 

0.0002 MPa/s to 20 MPa/s), making this explanation rather unlikely. On the other hand, Cichy et al. 

(2011) applied a multi-step decompression technique to conduct experiments with r ≤ 0.01 MPa/s. 

Nowak et al. (2011) revealed a significant influence of decompression style on BND for rhyodacitic 

melt at 1050°C. The authors show that the multi-step decompression technique leads to BND values 

which are more than one log unit higher than those obtained for continuous decompression. Thus, the 

presented data is in agreement with the observations of Nowak et al. (2011) and the non-linear trend 

found by Cichy et al. (2011) can probably be assigned to variations in decompression style.  
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Fig. 3a-b: Bubble formation. a) log(BND × mm
3
) vs. r (logarithmic scaling). Samples of the experimental 

series QFMA, QFMClA, GYClA and GYMClA which have been directly quenched after decompression 

(tA = 0 h) are plotted together with the results of Cichy et al. (2011; Ci11) on rhyodacitic melt compositions 

(experiments of Cichy et al. (2011) with r ≥ 0.1 MPa/s were conducted with continuous decompression 

technique, while those r ≤ 0.01 MPa/s are carried out using a multi-step approach). b) log(BND × mm
3
) vs. tA at 

constant r = 0.1 MPa/s (experimental series: GYClA and GYMClA). 

Horizontal error bars are smaller than symbol size. (a): QFMA experiments: ~140 ppm initial S, Cl-free, 

~QFM+0.8; (b) QFMClA: ~240 ppm initial S, ~1000 ppm initial Cl, ~QFM+0.8; (c) GYClA: ~1000 ppm 

initial S, ~1000 ppm initial Cl, ~QFM+1.8; (d) GYMClA: ~1000 ppm initial S, 500 ppm initial Cl, ~QFM+1.8. 

 

 

3.3 Influence of tA on BND 

The influence of tA on BND was studied at QFM+1.8 (experimental series GYClA and GYMClA; 

BND values listed in Table 1) and at a constant r of ~0.1 MPa/s. Fig. 3b indicates that 

log(BND × mm
3
) decreases significantly within the first ~5 h of annealing. Further annealing after 

decompression has a minor effect on BND; i.e. BND values obtained from one experimental series for 

tA = 5 h and for tA = 72 h, respectively, are identical within error. The observed sharp decrease of 

log(BND × mm
3
) with increasing tA at QFM+1.8 (see Fig. 3b) is probably linked to the very fast 

decompression (r ~ 0.1
 
MPa/s). It is assumed that a fast decompression of the andesitic melt leads to a 

high supersaturation pressure p, thus, the gas (H2O-S±Cl) pressure in the melt is significantly larger 

than the ambient p in the vessel (Sparks et al., 1994). Furthermore, as a consequence of the high p, 

the critical radius size of the bubble nucleus/embryo is lowered, leading to the domination of bubble 

nucleation over bubble growth and/or coalescence upon decompression. The resulting significant 
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decrease of the BND by about 1 log unit within the first few hours of annealing indicates that 

coalescence and/or bubble growth become more important than nucleation. For distinguishing between 

bubble growth and coalescence upon further annealing, a closer look at the fluid concentrations in the 

melt may be useful. In fact, H2O (determined by FTIR spectroscopy) and Cl (determined by EMP 

analyses) contents of the partially decompressed andesitic melts remain almost constant during further 

annealing at final conditions. The slight variations in H2O (3.56 to 3.84 wt%; except GYMClA-4: 1.98 

wt%) and Cl (420 to 470 ppm for GYMClA series; 730 to 890 ppm for GYClA series) concentration 

in the melt are independent of tA. By contrast, minor amounts of S are still released from the melt to 

the fluid phase with further annealing (e.g. GYClA series: Smelt decreases from ~180 ppm to 90 ppm 

upon annealing). Nevertheless, most of the volatiles are exsolved upon decompression. Thus, it is 

supposed that coalescence dominates over bubble growth upon further annealing at final conditions. 

However, Lautze et al. (2011) noted that diffusive coarsening, also known as Ostwald ripening, should 

be the dominant mechanism leading to a decreasing BND with increasing tA. Hence, in addition to 

volatile diffusion, other processes (e.g. convection fluxes), may influence the bubble formation in the 

decompression experiments of this study. 

 

4. IMPLICATIONS TO NATURAL SYSTEMS 

Toramaru (2006) developed a method which allows one to estimate r based on BND data of natural 

pumices. The new data is used in combination with the results of Cichy et al. (2011) to test the model. 

The following equation, based on the numerical simulations of Toramaru (2006) and provided by 

Hamada et al. (2010), was applied to estimate the BND for a diffusion-controlled (andesitic) system 

and 6.5 wt% initial H2O content in the melt (similar to the initial H2O contents of the experiments 

investigated in this Chapter; see Table 2 in Chapter I-A): 
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where CSAT is the H2O content at the saturation pressure expressed as the number of H2O-molecules 

per unit volume of liquid, LB is the surface tension of the bubble-liquid interface in N/m, k is the 

Boltzmann constant (1.38×10
-23

 J/K), T the temperature in K, PSAT is the H2O saturation pressure in Pa, 

ΩL is the molecular volume of H2O in the liquid (fixed to 3×10
-29

 m
3
), DH2O is the H2O diffusivity in 

the melt in m
2
/s and r is the decompression rate in Pa/s.  

he value for LB is estimated using equation 6 in Bagdassarov et al. (2000) as well as the relationship 

provided by the authors for the influence of H2O solubility on LB. In a first approximation, PSAT is 

assumed to be the p at which a H2O activity a(H2O) of ~1 is reached in the andesitic system upon 

decompression. Thus, PSAT strongly depends on the initial H2O content in the melt (here: 6.5 wt%). 

Assuming that the S and Cl contents in the andesitic system are too low to affect a(H2O) to a 

significant extend, PSAT is estimated to be 3.23×10
8
 Pa at 1030°C and an initial H2O content in the melt 

of 6.5 wt% using the model of Burnham (1979). Subsequently, CSAT at PSAT = 3.23×10
8
 Pa was 

calculated to be 4.82×10
27

 m
-3

 for an initial H2O content of 6.5 wt%, using the model of Ochs and 

Lange (1999) to estimate the density of the melt (melt) at 70 MPa and 1030°C (melt = 2.217 g/cm
3
). 

Furthermore, the relationship provided by Behrens et al. (2004) for the estimation of the H2O 

diffusivity in dacitic melts as a function of T and H2O content in the melt is used to calculate DH2O. 

Assuming an initial H2O content in the melt of 6.5 wt% (prior to decompression) and a final H2O 

content of 3.6 wt% (after decompression; see also Chapter I-A, Section 5.2.1), DH2O is estimated to 

decrease from 2.03×10
-11

 m
2
/s to 1.12×10

-11
 m

2
/s during decompression. The average value of 

1.58×10
-11

 m
2
/s was used for the BND calculations. 

DH2O was also estimated using the relationship for andesitic systems provided by Behrens et al. (2004) 

and the general model developed by Zhang and Ni (2010), which uses the cation mole fractions of Si, 

Al, Na and K in the melt and is applicable to a wide range of melt compositions (equation 26 in Zhang 

and Ni, 2010). These two H2O diffusivity models yield ~2.5 to ~4.8 times higher DH2O values when 

compared to the H2O diffusivity model of Behrens et al. (2004) for dacitic melts and the higher DH2O 

would result in ~0.6 to ~0.8 log units lower BND values at given r. However, the equation of Behrens 

et al. (2004) for dacitic melts was chosen for further calculations because of the similar melt 

composition in comparison to the Krakatau andesite. 
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Fig. 4 shows clearly that log(BND × mm
3
) of experiments quenched directly after continuous 

decompression [this study and Cichy et al. (2011)] increases linearly with log(r × s/MPa), in 

accordance with the trend predicted by the Toramaru (2006) model. However, the slopes differ 

significantly. The most apparent explanation for the observed discrepancies is that convection fluxes 

(which are not considered by the Toramaru (2006) model) within the capsule are influencing the 

vesiculation processes. In fact, microscopic investigation as well as the collected BSE images indicate 

that convection processes probably play a minor role for samples decompressed at r ≥ 0.05 MPa/s (i.e. 

flow structures are rare) but may become important at lower r (i.e. flow structures are commonly 

observed; see Fig. 2 and Section 3). Considering that convection processes are to be expected within a 

magma chamber and along a conduit during magma ascent (e.g. Shaw, 1965; Turner and Campbell, 

1986; Witham, 2011), the presented result indicate that the effect of convection on BND certainly 

needs to be considered when modeling bubble nucleation for natural systems. 

 

 

Fig.4: Experimental results of this study and of Cichy et al. (2011) 

are compared with the trend predicted by the model of Toramaru 

(2006). 

Ci11: Continuous decompression experiments of Cichy et al. (2011); 

To06: Calculated using the model of Toramaru (2006). 

Horizontal error bars are smaller than symbol size. 
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Furthermore, experiments annealed for ≥ 5 h after fast decompression (r ~ 0.1 MPa/s) show ≥ 1 log 

unit lower BND values (see Fig. 4, Section 3.3) than those quenched directly after fast decompression. 

This indicates that a good knowledge about possible storage times during magma ascent is required to 

allow an accurate estimation of r on basis of natural pumice samples. Hence, a larger experimental 

dataset is needed to calibrate the Toramaru (2006) model and to include the influence of storage time 

at certain depth(s) on bubble formation in an ascending magma. 

 

5. CONCLUSION  

The presented results on bubble formation upon magma decompression clearly show the high 

importance of decompression style on BND and, thus, confirm the observations of Nowak et al (2011) 

based on preliminary decompression experiments. The observed differences between continuous and 

multi-step decompression may arise from a high p induced by instantaneous p drops of 50 MPa 

during multi-step decompression experiment and leading to a predomination of bubble nucleation 

(Nowak et al., 2011). In respect to continuous decompression, as stated by Nowak et al. (2011), 

nucleation may require a certain p and bubble growth will dominate over nucleation processes upon 

further decompression caused by favorable energetics (e.g. review of Sparks et al., 1994; Nowak et al., 

2011). Nevertheless, the increase of log(BND × mm
3
) with decreasing multi-step decompression rate 

at r < 0.01 MPa/s observed by Cichy et al. (2011) needs to be clarified by further investigation, e.g. the 

large number of crystals present in the rhyodacitic melts of Cichy et al. (2011), leading to 

heterogeneous bubble nucleation, could also explain the discrepancies. 

Furthermore, the data indicates a strong influence of tA after decompression on BND, i.e. even short 

storage times interrupting magma ascent for a few hours, may affect BND significantly. This 

knowledge is important for the interpretation of natural (pumice) samples derived, for instance, from 

explosive Plinian eruptions. 
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CHAPTER II 

SULFUR ISOTOPE FRACTIONATION BETWEEN FLUID AND ANDESITIC MELT 

 

ABSTRACT 

Decompression experiments were conducted to investigate the fractionation of sulfur isotopes between 

fluid and melt upon magma degassing. Synthetic glasses with a composition close to that of Krakatau 

andesite were used as starting material. The starting glasses contained 4.55 to 7.95 wt% H2O, ~140 to 

2700 ppm sulfur (S), and 0 to 1000 ppm chlorine (Cl). The experiments were carried out in internally 

heated pressure vessels (IHPV) at 1030°C and oxygen fugacities (fO2) ranging from QFM+0.8 log 

units up to QFM+4.2 log units (QFM: quartz-fayalite-magnetite buffer). The decompression 

experiments were conducted by releasing pressure (p) continuously from ~400 MPa to final p of 150, 

100, 70 and 30 MPa. The decompression rate (r) ranged from 0.01 to 0.17 MPa/s. The samples were 

annealed for 0 to 72 h (annealing time, tA) at the final p and quenched rapidly from 1030°C to room 

temperature (T).  

The decompression led to the formation of a S-bearing aqueous fluid phase due to the relatively large 

fluid-melt partitioning coefficients of S. Secondary ion mass spectrometry (SIMS) was used to 

determine the isotopic composition of the glasses before and after decompression. Mass balance 

calculations were applied to estimate the gas-melt isotopic fractionation factor g-m. 

The SIMS analyses indicated no detectable effect of r and tA on g-m. However, SIMS data revealed a 

remarkable increase of g-m from ~0.9985 ± 0.0007 at >QFM+3 to ~1.0042 ± 0.0042 at ~QFM+1. 

Noteworthy, the isotopic fractionation at reducing conditions was about an order of magnitude larger 

than predicted by previous works. Based on our experimental results and on existing models for S-

speciation in fluid and silicate melt a new model predicting the effect of fO2 on g-mor
34

S g-m) in 

andesitic systems at 1030°C is proposed. Our experimental results as well as our modeling provide 

essential knowledge for the interpretation of S-isotope signatures in natural samples (e.g. melt 

inclusions or volcanic gases). 

 

Keywords: Sulfur isotopes, magma degassing, isotopic fractionation, andesitic melt 
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1. INTRODUCTION  

Sulfur is a major volatile in volcanic systems and large amounts are released from magmas as a fluid 

phase upon decompression. Thus, a good knowledge of the behavior of S and S-isotopes during 

degassing as well as during magma-fluid interactions is required to improve our understanding of 

volcanic processes and e.g. help monitoring and forecasting of volcanic eruptions. Sulfur is a 

polyvalent element and can be dissolved as S
2-

 and S
6+

 in silicate melts (e.g. Jugo et al., 2010; Metrich 

and Mandeville, 2010; Wilke et al., 2011), while the most relevant species in a fluid phase at 

magmatic conditions are SO2 and H2S (e.g. Katsura and Nagashima, 1974; Gerlach and Nordlie, 1975; 

Moretti et al., 2003). Sulfur has four naturally occurring stable isotopes: 
32

S (natural abundance: 

95.04%), 
34

S (4.20%), 
33

S (0.75%), 
36

S (0.01%); de Laeter et al. (2003). While considerable progress 

has been made in the past decades on the characterization of the partitioning of S between fluid and 

silicate melt at geologically relevant conditions (high p and T) and under fluid-melt equilibrium 

conditions (e.g. Keppler, 1999, 2010; Webster and Botcharnikov, 2011; Zajacz et al., 2012) as well as 

on the kinetics of S degassing (Chapter I-A), experimental data on fluid-melt S-isotope fractionation is 

scarce. 

S-isotope fractionation between a silicate melt and a coexisting fluid phase depends on T and on the 

speciation of S in both phases (e.g. Mandeville et al., 2009; Mandeville, 2010). Ohmoto and Rye 

(1979) revealed the order SO4
2- 

> SO3 > SO2 > S
0
 > H2S > S

2-
 for the retention of 

34
S in a S-bearing 

compound; i.e. release of S to a fluid phase from a melt where SO4
2-
predominates as dissolved S 

enriches the melt in 
34

S because of the greater tendency of oxidized S compounds to retain 
34

S. Hence, 

the magnitude of S isotope fractionation is strongly controlled by the redox conditions in the system 

(e.g. Mandeville, 2010). At oxidizing conditions the degassing of S upon decompression is dominated 

by SO4
2-

 species in the melt and SO2 in the fluid, while under reducing conditions the prevailing 

species are S
2-

 in the melt and H2S in the fluid (e.g. Nagashima and Katsura, 1973; Carroll and 

Rutherford, 1988; Burgisser and Scaillet, 2007; Jugo et al., 2010). Thus, S-isotope composition in the 

melt will progressively become heavier with S-degassing at oxidizing conditions and become lighter at 

reducing conditions. In theory, S-isotope fractionation is approximately proportional to the relative 
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mass difference of the considered S-isotope pairs (e. g. ~2 amu difference between 
34

S and 
32

S) and 

proportional to 1/T 
2
 (T in K, Mandeville, 2010). 

The application of S-isotope to the understanding of high T magmatic processes has, with a few 

exceptions, remained stagnant for the past three decades. Fundamental experimental and theoretical 

studies or compilation by Richet et al. (1977), Sasaki et al. (1979), Ohmoto and Rye (1979), Ohmoto 

and Lasaga (1982), Sakai et al.(1982), Allard (1983), Ueda and Sakai (1984), Miyoshi et al. (1984) 

and Taylor (1986) provide the only relevant data so far. The only existing experimental study 

conducted at magmatic T (800 to 1000°C), investigating the fractionation pairs SO4
2-

 - S
2-

 and        

SO4
2
 - H2S, was performed using molten salt (e.g. Na2SO4 and Na2S; Miyoshi et al., 1984). The T 

dependence for the fluid-melt fractionation of S-isotope has been summarized by Taylor (1986) and 

the equations provided in this study were used by de Hoog et al. (2001) to develop a model for S-

isotope fractionation between fluid and melt. However, this model has not been tested experimentally 

at geologically relevant conditions and remains questionable. The absence of experimental calibration 

is related to the difficulties to determine quantitatively the S-isotopic composition in silicate glasses. 

However, recent advances in the micro-analytical measurement of S-isotopes in silicate glasses using 

SIMS allow us to analyze the S-isotope composition in silicate glasses with S content of a few 

hundreds of ppm and with a precision of ~0.5 ‰ (Mandeville et al., 2008). Thus, it is now technically 

possible to determine isotope fractionation factors based on experimental samples carried out under 

magmatic conditions. 

The present study is focused on the experimental investigation of S-isotopes fractionation between 

fluid and silicate melt. Considering that fluid phases in magmatic systems are generated upon magma 

ascent (degassing), decompression experiments were conducted to simulate natural case studies. Based 

on our experimental results and on existing models for S-speciation in fluid and silicate melt a model 

predicting the isotopic distribution of S between andesitic melts and coexisting fluids is proposed. 
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2. EXPERIMENTAL PROCEDURE 

Selected S-bearing glasses obtained from decompression experiments conducted by Fiege (Chapter I-

A) were used in this study. The isothermal decompression experiments were carried out at constant T 

(1030 ± 10°C) and variable fO2 (QFM+0.8 to QFM+4.2) in IHPV and the applied experimental 

approach is described in detail Chapter I-A. 

The experimental strategy involves three steps: In the first step synthetic anhydrous glasses with an 

andesitic composition close to the Krakatau andesite (Table 1) were prepared by melting a mixture of 

oxide and carbonate powders at 1600°C and 1 atm. In the second step ten volatile-bearing (H2O, S, Cl) 

glasses were synthesized at high p (~500 MPa) and at 1030°C under fluid-undersaturated conditions in 

IHPV. These starting glasses were bubble-free and contained different amounts of H2O (4.55 to 

7.95 wt%) and S (260 to 2700 ppm, see Table 2). Three glasses contained also Cl (0.05 and 0.1 wt% 

Cl; Table 2). The isotopic composition of the starting glasses covers a wide range from 
34

S ≈ -32 ‰ 

to about +23 ‰. The different 
34

S were obtained by adding different S sources, either with known 

(IAEA standards: synthetic barite; see below) or with unknown S-isotope composition (natural 

anhydrite, natural pyrrhotite or synthetic gypsum). The starting glasses GYClA, GYMClA and RED 

contained some S-bearing globules after the first high p annealing. Hence, a portion of these materials 

was re-melted to dissolve the globules and improve homogeneity (see Chapter I-A for details 

concerning the re-melting procedure). In the third step, the volatile-bearing glasses were heated at 

1030 °C ± 10°C and isothermal decompression experiments were conducted in IHPV by releasing p 

continuously from 400, 450 or 500 MPa to lower p (150 to 30 MPa) with different r ranging from 

~0.02 to ~0.2 MPa/s. After decompression, the samples were either rapidly quenched to preserve 

eventually non-equilibrium conditions or annealed for various times (tA = 1 to 72 h) at the final p-T 

conditions before quenching. The annealing at 1030°C after decompression was performed to 

approach near-equilibrium conditions between melt and fluid.  

The nominal fO2 prevailing in each experiment was either i) determined using the Shaw-membrane 

technique (e.g. Berndt et al., 2002; and references therein) or ii) estimated based on the known 

intrinsic redox conditions in the IHPV (Berndt et al., 2002; Wilke et al., 2002; Schuessler et al., 2008). 
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Table 1: Composition of the anhydrous andesitic starting glass determined by electron microprobe or 

FTIR spectroscopy (H2O). 

[wt%] SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O H2O SO3 Cl Total 

Anhydrous 64.79 1.28 15.62 4.94 0.23 1.40 4.92 3.92 1.80 - - - 98.91 

andesite 0.59 0.07 0.22 0.33 0.04 0.06 0.20 0.25 0.07 - - - 0.78 

Notes: Error in italic:1 standard deviations based on microprobe analysis; number of EMP analyses: 20 

 

 

3. ANALYTICAL APPROACH 

3.1 Determination of major element and volatile concentrations in glasses 

The starting materials and the glasses of the decompression experiments were already characterized in 

a previous study aimed at investigating the distribution of volatiles in fluid and melt during 

decompression and subsequent annealing at final p-T conditions (Chapter I-A). Details on the 

analytical techniques (electron microprobe and near infra-red spectroscopy) can be found in the 

Appendix II-A and II-B. 

 

3.2 SIMS, data processing and determination of the fluid-melt isotopic fractionation of S 

The S-isotope composition (
34

S; see below for details on the delta notation) of the andesitic glasses 

was determined by in situ SIMS using the Cameca IMS 1280 of the Northeast National Ion 

Microprobe Facility (NENIMF) at Woods Hole Oceanographic Institution (WHOI). The 

measurements were conducted using a Cs+ primary beam with 10 µm in diameter, 10 kV accelerating 

voltage and 1-2 nA beam current. The secondary ions are collected at 10 kV accelerating voltage, 150 

µm field of view and a mass resolution power (MRP) of 5500. The energy slit is centered and opened 

to 40-60 V. This method of high precision in situ SIMS analysis of S isotopes in glasses down to a few 

hundreds of ppm bulk S has been established recently at WHOI (Mandeville et al., 2008). Mandeville 

et al. (2008) demonstrated that by operating the Cameca IMS 1280 at mass resolving power of 5500 

(M/M), it is possible to avoid interferences from 
29

Si
1
H and 

31
P

1
H with 

30
Si and 

32
S in glass. The 

authors have shown that in situ δ
34

S measurements (15 × 15 micron area) with a precision of ±0.4 to 

0.6 ‰ can be conducted in silicate glasses containing about 500 to 1600 ppm S. 
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The analytical approach further relies on the measurement of S-bearing glass standards with known S-

isotope composition to account for the instrumental fractionation. In-house glass standards at WHOI 

with major element compositions ranging from basalts to high silica glasses were used for this 

calibration (Mandeville et al., 2008). The S-isotope composition of these glass standards (
34

SStd) 

covers a range from about -30 ‰ up to about +20 ‰ and was determined by conventional bulk 

methods (e.g. KIBA reagent extraction method; Sasaki et al., 1979; Ueda and Sakai, 1984; Mandeville 

et al., 2009). The linear relation between 
34

SStd and 
34

SSIMS – found by Charles W. Mandeville and 

Nobumichi Shimizu – clearly indicates that matrix effects related to bulk composition (major element 

and S-isotope) or the oxidation state of S are negligible. 

In addition, to monitor short and long term variations of the instrumental fractionation of the ion probe 

and to allow a correction of the raw isotopic data (see Appendix II-C for details), at least two 

measurements on a selected standard glass (usually MORB glass 892-1; 
34

S = 0.7 ‰) were conducted 

after each 2-3 sample measurements. The accuracy of the analytical approach was also tested by using 

the IAEA standard materials SO6 (BaSO4, 
34

S = -31.1 ± 0.14 ‰) and/or NBS 127 (BaSO4, 


34

S = +20.3 ± 0.14 ‰) as S source for the starting glasses SD1 (SO6) and SD2 (~26.6 % NBS 127 

and ~73.4 % SO6; corresponding to a 
34

S of about -17.4 ‰). SIMS measurements indicate a 
34

S of  

-32.2 ± 0.2 ‰ for SD1 and a 
34

S of -16.6 ± 1.0 ‰ for SD2. Thus, a precision of ~1 ‰ for the SIMS 

analyses of the  experimental andesitic glasses can be assumed. Details on the processing 

procedure of the raw SIMS data are given in the Appendix II-C. 

Most samples were analyzed 2 to 8 times (Table 2), depending on the quality of the single 

measurement (e.g. the internal standard deviation) and each measurement consists of 50 cycles for 
32

S 

and 
34

S, respectively. However, sample SD2-1 could only be analyzed once (Table 2) owing to 

difficulties in identifying bubble-free spots which are large enough for SIMS analyses. Moreover, two 

of the three measurements conducted on GYClA show varying count rates, probably reflecting an 

instable primary beam during the analyses. Consequently, only one measurement of GYClA was 

considered. Hence, the S-isotope data of GYClA and SD2-1 has to be interpreted with caution. The 2 

sigma of the 50 analytical cycles is given as error for these two samples (see Table 2). 
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The corrected S-isotope data of the decompression experiments and the respective starting glass was 

used – together with the measured volatile contents in the melt – to determine the isotopic composition 

of the fluid phase and the isotopic fractionation factors via mass balance calculations for various fO2 

(ranging from~QFM+1 to ~QFM+4). In the following sections, the S isotope composition is reported 

in a conventional delta () notation given in ‰. The Vienna Canyon Diablo Troilite (V-CDT) was 

used as S-isotope reference standard (Coplen and Krouse, 1998; Ding et al., 2001). 

 


34

S = ( [ (
34

S/
32

Ssample) / (
34

S / 
32

SV-CDT) ] – 1 )  1000      (1) 

 

The gas-melt isotopic fractionation factor g-m was estimated using the following assumption: 

 


34

Sg-m = 
34

Sgas – 
34

Smelt ≈ 10
3
 ln g-m        (2) 

 

3.3 Determination of S speciation in melt and fluid using XANES spectroscopy 

The S speciation in most starting glasses and glasses of the decompression experiments was already 

characterized via X-ray absorption near edge spectroscopy (XANES) at the S K-edge (2472 eV) in a 

previous study (Chapter I-A). Additional measurements were performed with a smaller beam size 

(~60×60 µm instead of ~250×150 µm) in this study to detect small scale variation in S speciation 

throughout sample. Details on the XANES measurement can also be found in the Appendix II-D and 

II-E.  

 

4. RESULTS 

The run products obtained after decompression consist of glass and bubbles with quenched fluids 

(decompression experiments). No crystals could be detected. The experimental conditions and the 

volatile concentrations of starting glasses and of glasses after decompression are given in Table 2 

(same data as in Chapter I-A). The major element concentrations determined by EMP revealed that the 

glasses are chemically homogeneous and similar to the anhydrous andesite, if volatiles are subtracted 

and oxides are normalized to 100 wt% (see also Chapter I-A).  
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4.1 Determination of S
6+

/S and fO2 in glasses using XANES spectra  

The S
6+

/S ratios in glasses determined in Chapter I-A via XANES using the model of Jugo et al. 

(2010) are listed in Table 2. These values were used in Chapter I-A to estimate the fO2 inside the 

capsules [fO2(XANES)] via equation 3 (see Section 5.2). The derived fO2(XANES) values often differ 

significantly from the nominal fO2 in the vessel. Possible reasons for these deviations are discussed in 

detail in Chapter I-A. As suggested in Chapter I-A the nominal fO2 is used to discuss and interpret the 

data obtained. However, fO2(XANES) of some (reduced) samples is applied (in addition to the nominal 

fO2) to create a model predicting the effect of fO2 on g-m, in order to account for possible small 

differences between the nominal fO2 in the vessel and within the capsule, which may have a significant 

effect on the S speciation in fluid- and melt-phase, respectively (see Section 5.2) 

 

4.2 Sulfur speciation in the quenched fluid (XANES) 

The results of the XANES measurements with a ~60×60 µm beam size are shown in the Appendix II 

(Fig. II-E.1). Areas containing high volume fraction of bubbles and areas nearly devoid of bubbles 

were selected and compared. Small differences between the spectra of bubble-bearing and bubble-free 

areas can be observed. These variations can possibly be assigned to S species from the quench 

products of the fluid inclusions (see Appendix II-E.). The XANES data indicates that SO2 may be the 

prevailing S species in the fluid phase at QFM+4 while significant amounts of H2S are probably 

present in the fluid at QFM+1 (see Fig. II-E.1 and description of spectra in Appendix II-E.). Thus, the 

fluid-melt isotope fractionation of S at oxidizing conditions (> QFM+3) may be dominated by the 

isotopic fractionation pair SO2 (gas) – SO4
2-

(melt), while H2S(gas) – S
2-

(melt) is probably the most relevant 

fractionation pair at reducing conditions (< QFM+1). However, XANES spectra do not allow a 

quantitative estimation of the H2S/SO2 ratio in the fluid. 

 

4.3 Sulfur isotope fractionation 

Fig. 1 indicates a negative correlation between 
34

Smelt and the fraction of S remaining in the melt 

phase (f) under oxidizing conditions (> QFM+2.7). The relative change in 
34

Smelt with increasing 

release of S seems to be independent on the initial isotopic composition which varied between -32‰ 
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and +18‰ (Fig. 1). Hence, the instrumental S isotope fractionation is assumed to be largely 

independent of the (initial) S-isotope composition of the glass, at least in the studied range of 
34

Smelt. 

Thus, in the following, the initial 
34

Smelt will not be considered for the discussion and interpretation of 

detected fluid-melt isotope fractionation trends. 

 

 

Fig. 1: S-isotopic composition (
34

Smelt) of selected 

experimental series conducted under oxidizing conditions 

(log(fO2/bar) > QFM+2.7) plotted against fraction of S 

remaining in the melt phase (f). The initial 
34

Smelt (0% S 

degassed; f = 1.0) was 18.25 ± 1.12 ‰ (AH), 0.93 ± 0.86 ‰ 

(GYC) or -32.22 ± 0.16 ‰ (SD1), respectively. 
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Fig. 2 clearly shows a significant influence of fO2 on the fluid-melt isotope fractionation. Although 

error bars are large for some experimental products, the dataset (see Table 2) confirms that the fluid-

melt isotope fractionation of S is detectable with the applied experimental and analytical approach. In 

general, 
34

Smelt increases upon (S-) degassing at oxidizing conditions (~QFM+3), while it decreases at 

relatively reducing conditions (~QFM+1). No significant fractionation is observed for the series of 

experiments performed at intermediate redox conditions (~QFM+1.8). The data in Fig. 1 and 2 clearly 

indicates that the fluid has a lower 
34

S than the melt from which it exsolved at oxidizing conditions 

and a higher 
34

S than the melt at reducing conditions, in agreement with the theoretical considerations 

(see review of Taylor, 1986). It is emphasized that Fig. 2 includes data with different r and tA but that 

there is no detectable effect of these parameters on g-m (see next Section 4.3.1). 

 

 

Fig. 2: Isotopic fractionation of S at various fO2. The normalized 


34

Smelt is plotted against fraction of S remaining in the melt phase (f). 

The figure shows all Cl free experiments except AHC, because of the 

varying fO2 within this experimental series. 
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4.3.1 Influence of tA and r on g-m 

In Fig. 3, g-m values of selected experimental series (GYClA, GYMClA and RED) are plotted against 

tA. The experimental series were chosen because they cover a wide range of tA (0 h to ~20 h or ~72 h). 

The data reveals that tA has no significant influence on g-m; i.e. g-m values of the same experimental 

series are similar within error. This is also confirmed by decompression experiments (using starting 

glass GYC) performed with varying r, e.g. g-m = 0.9989 ± 0.0015 at r ~0.16 MPa/s (experiment 

GYC-2) and g-m = 0.9985 ± 0.0013 at r ~0.05 MPa/s (GYC-3). Thus, the g-m values given in Table 2 

can be interpreted as reflecting equilibrium fluid-melt fractionation. 

 

 

Fig. 3: Influence of tA on g-m at constant r of 0.1 MPa/s. The 

experiment GYClA-5 was excluded (see Section 4.3.2). 

 

4.3.2 Influence of fO2 on g-m 

The Fig. 2 and 3 indicate that the fluid-melt S isotope fractionation strongly depends on fO2. The 

whole dataset of g-m values given in Table 2 is reported as a function of QFM in Fig. 4. It is 

emphasized that four points plotted in Fig. 4 need to be interpreted with caution. The data points at 

~QFM+4.2 and g-m ≈ 0.9946 as well as 0.9967 (sample AH-3 and AH-4) were determined from the 

starting glass AH. The uncertainty on the 
34

S of this starting glass is large compared to all other 

starting glasses (
34

S of AH has 1 sigma error of ~2 ‰, Table 2), indicating heterogeneous S-isotope 

distribution. Thus, the low g-m values compared to other experiments at ~QFM+4.2 in Fig. 4 is 
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probably due to a bad estimation of 
34

S in the starting glass. Fig. 1 confirms that the 
34

S in the 

starting glass AH is most probably underestimated and may be about 21-22‰ because the linear 

extrapolation of the points with an f value of ~0.1 and ~0.6 indicates that the 
34

S in the initial melt 

should be ~ +21.8‰. Assuming a 
34

S in the range 21-22‰ for the starting glass AH, the calculated 

g-m would overlap with the other data at ~QFM+4.2 in Fig. 4. The SIMS analyses of the outliers at 

QFM+1.9 and g-m ≈ 1.010 (grey triangle in Fig. 4; GYClA-5) as well as at QFM+2.7 and g-m ≈ 0.993 

(open square in Fig. 4; SD1-1500) showed strongly varying count statistics for 
32

S when measuring on 

different locations on the sample. In addition, the counts for 
32

S detected in GYCLA-5 are 

significantly higher than those of comparable experiments (e.g. GYClA-2). Considering that both 

samples were highly vesiculated, the variation of count statistics may be due to a contribution of S-

bearing phases (possibly quench phases from the fluid) at the bubble-melt interface to the detected S-

isotope signal. Thus, these two samples (GYClA-5 and SD1-1500) as well as the samples AH-3 and 

AH-4 are not considered for following discussions.  

Excluding these four problematic samples, Fig. 4 reveals that g-m is > 1 at log(fO2/bar) < QFM+1.5 

and < 1 at log(fO2/bar) > QFM+2.5. The redox range between QFM+1.5 and QFM+2.5, in which g-m 

changes from less than 1 to more than 1, correlates well with the sulfate-sulfide transition in silicate 

melts (e.g. Jugo et al., 2010; Klimm et al., 2012a).  

Three starting compositions also contained Cl and the results show that the presence of Cl in 

concentrations up to 1000 ppm has a negligible effect on the S isotope fractionation at ~ QFM+1.5. 

The scattering of the data is mainly due to the analytical precision of the SIMS technique. Based on 

the experimental data in Table 2, an average g-m of 0.9985 ± 0.0007 is derived for oxidizing 

conditions at log(fO2/bar) ≥ QFM+2.8 (samples AH-3, AH-4 and SD1-1500 excluded) and an g-m of 

~1.0042 ± 0.0024 is calculated for relatively reducing redox conditions at log(fO2/bar) ≈ QFM+1. It is 

emphasized that the fractionation factors are identical within error if only experiments with tA > 5 h or 

r ≤ 0.05 MPa/s are considered for the calculation of the mean values (~0.9988 ± 0.0013 at > QFM+4 

and ~1.0032 ± 0.0027 at ~QFM+1), indicating that equilibrium isotopic distribution was attained in 

the experiments. 
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Fig. 4: S-isotope fractionation factor g-m plotted against fO2. For 

clarity, the typical errors for g-m and fO2 are illustrated by the 

black cross in the upper right corner. The final p of the 

decompression experiments was typically 70 MPa (see Table 2). 

(a) SD1 experiments: quenched at final p of 30, 70, 100 or 150 

MPa (see Table 2).  

(b) AH experiments: uncertainty on the 
34

S of the AH starting 

glass is large compared to other starting glasses due to 

heterogeneous S-isotope distribution (see Section 4.3.2). 

 

 

5. DISCUSSION 

The experimental results presented in this study provide first constraints on the fractionation of S-

isotopes between H2O-S-(Cl)-fluids and silicate melts during magma degassing at geologically 

relevant conditions. As mentioned above, the influence of r and tA at final p on S-isotope fractionation 

is negligible within the investigated redox range. Hence, the observed influence of fO2 on g-m may 

reflect equilibrium isotope fractionation effects occurring upon closed system degassing, even if 

experiments were directly quenched after decompression (tA = 0 h). This is not surprising as kinetically 

controlled isotopic fractionation processes are rare in high T processes occurring in magmatic systems 

(O'Neil, 1986). Thus, our results indicate that S-isotopic equilibrium between fluid and andesitic melt 
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is reached during a degassing controlled by an r ranging from ~0.01 to 0.16 MPa/s. On the other hand, 

based on the same set of experiments, kinetically controlled degassing mechanisms were revealed in 

Chapter I-A for the release of S from oxidized andesitic melt upon fast decompression. In Chapter I-A 

it is noted that equilibrium distribution of S between fluid and melt was only reached after a tA of ≥ 5 h 

at oxidizing conditions, whereas the same isotopic distribution was observed independently of tA in 

this study, indicating that fluid-melt S-isotopic fractionation is not affected by the kinetics of S 

degassing.  

  

5.1 Comparison with the de Hoog et al. (2001) model  

In the following discussion, the new data is compared to the model of de Hoog et al. (2001), which is 

based on experimental data and theoretical considerations from the 70s and early 80s (summarized by 

Taylor, 1986). The 
34

Sg-m values for each experiment, calculated following equation 2, were used to 

determine average 
34

Sg-m values for each experimental series at a given fO2 (GYB, GYC, etc., see 

Table 2). Fig. 5 shows the relationbship between (average) 
34

Sg-m and fO2. The 
34

Sg-m value of the 

AH experiments is different from other values at ~QFM+4.2 due to the large uncertainty on the 
34

Smelt 

in the AH starting glass (see Section 4.3.2). The effect of fO2 on 
34

Sg-m calculated for 1030°C 

following the model of de Hoog et al. (2001) is plotted for comparison. The de Hoog-model relies 

basically on T dependences of g-m provided by Miyoshi et al. (1984) and Taylor (1986) as well as on 

equations of Marini et al. (1998) and Wallace and Carmichael (1992) linking fO2 to the speciation of S 

in the fluid and in the melt, respectively. The de Hoog-model underestimates the isotopic fractionation 

at reducing conditions by about one order of magnitude. In addition, the extrapolation of the de Hoog-

model to log(fO2/bar) > QFM+2.1 leads to unrealistic low 
34

Sg-m values. The discrepancies, especially 

those observed for oxidizing conditions, may be related to the modeling approach in the de Hoog-

model. An accurate model for the evaluation of g-m and, thus, of 
34

Sg-m must include the four 

predominant S-isotope fractionation pairs: i) SO2 gas – SO4
2-

melt, ii) H2S gas – SO4
2-

melt, iii)  SO2 gas – S
2-

melt 

and iv) H2Sgas – S
2-

melt (Mandeville et al., 2009). However, the model proposed by de Hoog et al. 

(2001) does not account for two of these fractionation pairs (i and ii). These pairs are mainly 
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controlling the isotope fractionation under oxidizing conditions, explaining the problems of the 

de Hoog-model to predict accurately 
34

Sg-m for log(fO2/bar) > QFM+2.1. Moreover, the differences 

observed at ~QFM+1 indicate that the T dependence of 
34

Sg-m determined by Miyoshi et al. (1984) in 

the T range of 600 to 1000°C and used by de Hoog et al. (2001) for the estimation of  H2Sgas – S
2-

melt) 

is probably not applicable for silicate melts at high T conditions (i.e., > 1000°C). The experimental 

data of Miyoshi et al. (1984) have to be applied with caution to silicate systems considering that the S-

isotope fractionation factor (SO4
2-

melt – H2S gas) was determined between SO4
2-

 in NaCl or LiCl-KCl 

melts and H2S in an aqueous fluid and that (SO4
2-

melt – S
2-

melt) was determined by decomposing 

anhydrous Na2SO3 in NaCl and LiCl-KCl melts. In a first approximation, the T dependence 

determined for (SO4
2-

melt – H2S gas) may be more realistic, considering that the fluid composition is 

similar to that expected in natural systems. 

 

 

Fig. 5: 
34

Sg-m of all experimental series plotted against fO2. The 

displayed trend line was calculated for 1030°C following the approach 

of de Hoog et al. (2001) and is plotted for comparison. The dotted 

trend represents an extrapolation of the de Hoog et al. (2001) model. 

The AH data is distinguished from other results due to the large 

isotopic variation detected in the AH starting glass. 

GYClA-5 and SD1-1500 were excluded for the calculation of the 


34

Sg-m values (see Section 4.3.2). 
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5.2 Modeling of the fluid-melt S-isotope fractionation 

The comparison of the new experimental data with the de Hoog-model shows that an improved model 

for the evaluation of g-m is barely needed. Our experimental data has been used to develop such a 

model for T ≈ 1030°C. A good knowledge of the S speciation in the melt and the coexisting fluid at 

given p-T-fO2 is required for the calculations.  

Sulfur speciation in melt: The fO2 of each experiment can be utilized to estimate the molar fraction of 

S dissolved as sulfate-species in the melt, x(SO4
2-

)melt, using equation 3 provided by Jugo et al. (2010).  

 

x(SO4
2-

)melt = S
6+

 / S = 1 / (1 + 10
(2.1 – 2  QFM)

)       (3) 

 

where S is the sum of S dissolved as sulfide (S
2-

) and sulfate (S
6+

) in the melt and x(SO4
2-

)melt = 1 – 

x(S
2-

)melt.  

Sulfur speciation in fluid: The H2S/SO2 molar fraction in the gas phase was calculated using the 

program DCompress provided by Alain Burgisser (CNRS, Orleans, France) which is based on data of 

Burgisser et al. (2008) to model the degassing of rhyolitic melts and on unpublished data of Burgisser 

et al. to model the degassing of basaltic melts. The program allows us the estimation of the H2S/SO2 

molar fraction in a S-O-H fluid coexisting with basaltic (at 1000 to 1400°C) or rhyolitic melts (at 710 

to 910°C) for given fO2. The decompression (from 3000 to 700 MPa) of a rhyolitic (at 900°C) and a 

basaltic melt (at 1030°C) containing initially 6 wt% H2O, 1000 ppm S and 0.1 wt% gas was simulated 

for fO2 ranging from QFM-1 to QFM+5. The modeled molar H2S/SO2 fractions in the fluid phases 

were used to determine the fraction of SO2 [x(SO2)fluid = (mol SO2) / (mol SO2 + mol H2S)] and H2S 

[x(H2S)fluid = 1 – x(SO2)fluid] in the fluid phase as a function of fO2 for a rhyolitic and basaltic 

composition. 

The main assumptions for the new model are: a) The fluid-melt isotope fractionation can be described 

by (SO2 gas – SO4
2-

melt) at very oxidizing conditions and b) by H2S gas – S
2-

melt) at very reducing 

redox conditions. The average g-m of ~0.9985 derived from experiments conducted under oxidizing 

conditions (log(fO2/bar) > QFM+2.8) is assumed to represent the fractionation pair SO2 gas – SO4
2-

melt, 

considering that x(SO4
2-

)melt and x(SO2)fluid are nearly 1 at log(fO2/bar) > QFM+2.8. Furthermore, an 
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average g-m of ~1.0042 was estimated for log(fO2/bar) ≈ QFM+1.1 (experiments RED-1 to RED-4; 

AHC-3), corresponding to x(SO4
2-

)melt and x(SO2)fluid of ~0.5 in basaltic systems. The values of  

x(SO4
2-

)melt and x(SO2)fluid are calculated using the model of Jugo et al. (2010) and the DCompress 

program, respectively. The g-m fractionation factor of ~1.0042, and the determined value for (SO2 gas 

– SO4
2-

melt), are used to estimate a value of (H2S gas – S
2-

melt) for basaltic systems. The same approach 

can be used to estimate a value of (H2S gas – S
2-

melt) at QFM+1.1 for rhyolitic systems if x(SO2)fluid is 

modeled using DCompress for rhyolite melts. The estimated (H2S gas – S
2-

melt) values are 1.0099 and 

1.0050 for basaltic and rhyolitic systems (Table 3). The calculations were repeated using the S
6+

/S 

ratio estimated from the XANES spectra to account for the observed discrepancies between the 

prevailing fO2 in the vessel and fO2(XANES). In this case, the estimated (H2S gas – S
2-

melt) values are 

1.0073 and 1.0046 for basaltic and rhyolitic systems. The fractionation factor (H2S gas – SO4
2-

melt) was 

estimated using the results of Miyoshi et al. (1984) who used Na2SO4 melt and (aqueous) H2S fluid in 

their experiments. Subsequently, (SO2 gas – S
2-

melt) can be calculated using equation 4.  

 

(SO2 gas – S
2-

melt) = (SO2 gas – SO4
2-

melt) + H2S gas – S
2-

melt) – (H2S gas – SO4
2-

melt)  (4) 

 

The application of the data of Miyoshi et al. (1984) to extract (H2S gas – SO4
2-

melt) for silicate systems 

may be problematic (see Section 5.1), but can be tested using the T dependence of SO2 gas – H2Sgas) 

given by Taylor (1986) based on theoretical calculations of Richet et al. (1977). If the average values 

derived for H2Sgas – S
2-

melt) and (SO2 gas – S
2-

melt) (Table 3) are used to calculate the fractionation 

between H2S and SO2 in a fluid phase, a value of SO2 gas – H2Sgas) of 1.0023 is obtained, which is 

similar to the value calculated using the data in Taylor (1986).  

The fluid-melt fractionation factors used for the modeling of the isotopic fractionation are summarized 

in Table 3. They were applied to calculate fractionation factors at given fO2 [g-m(fO2)] using the S 

speciation in the fluid- (estimated using DCompress) and melt-phase (estimated using XANES data 

and the model of Jugo et al., 2010); see Appendix II-F for details. 
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Fig. 6 shows the modeled isotopic fractionation trends. All four trends correlate well with the 

experimental data. The trends calculated for a basaltic melt composition (blue lines) seem to show a 

better correlation with the measured 
34

S values when compared to rhyolite trends (red lines). 

However, the T for the calculations in rhyolitic system using DCompress is limited to 900°C, and the 

observed differences between the measured 
34

S values and the modeled trends may be related to 

both, compositional and T differences (i.e. differences between those applied for the DCompress 

modeling and those of the conducted experiments).  

The differences between the modeled trends and the experimental data can also be explained by a 

(slight) shift of the sulfide-sulfate transition in the studied andesitic system when compared to the 

basaltic samples used by Jugo et al. (2010) to determine equation 3 which was applied to estimate 

x(SO4
2-

)melt. In fact, Baker and Moretti (2011) noted that the dependence of S
6+

/S on fO2 is 

significantly affected (e.g.) by T, p and melt composition. Nevertheless, as mentioned above, 

fO2(XANES) shows a good correlation with nominal fO2 (if doubtful XANES data is excluded). Fig. 

4A in Chapter I-A also indicates that the sulfide-sulfate transition in the studied dacitic andesite 

glasses may be shifted by ~ +0.5 log units. According to the data shown in Fig. 5 the sulfide-sulfate 

transition in dacitic andesite glasses is suggested to be at an fO2 of about QFM+1.8. However, a clear 

determination of the sulfide-sulfate transition in dacitic andesite glasses is needed to (possibly) 

improve our model. 

In general, the fluid-melt S-isotope fractionation at oxidizing conditions is very well constrained by 

our data. Noteworthy, an extrapolation of the S-isotope data presented in Mandeville et al. (2009) for 

natural samples of the climactic eruption of Mt. Mazama (relevant degassing T estimated for the 

samples range from 840 to 975°C) indicates an g-m of about 0.9982 at 1030°C and fairly oxidizing 

conditions (~QFM+1.7 to QFM+1.9 log units), which is within error of our experimental data for 

oxidized systems. In contrast, the lack of experimental data at log(fO2/bar) << QFM+1 leads to a large 

error on the estimation of H2Sgas – S
2-

melt). However, considering that equilibrium (S-)isotope 

fractionation effects refer to the effect of atomic mass on bond energy (e.g. O'Neil, 1986) and 

assuming that differences in bonding energies of S-isotopes in melts are negligible when comparing 
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different silicate melt compositions, the average H2Sgas – S
2-

melt) of 1.0067 ± 0.0026 determined on 

the basis of our data can be applied to a wide range of reduced magmatic systems at 1030°C. 

 

 

Fig. 6: Modeled dependence of 
34

Sg-m on fO2 for rhyolitic and 

basaltic melt. 
34

Sg-m values of all experimental series are plotted for 

comparison. 

AH experiments excluded, due to the large uncertainty on 
34

Smelt in 

the AH starting glass (see Section 4.3.2). 

 

Table 3: Estimated fluid-melt S-isotope fractionation factors for 1030°C. 

Method (SO2 gas – SO4
2-

melt) H2Sgas – S2-
melt) (SO2 gas – S2-

melt) (H2S gas – SO4
2-

melt) 

oxidized experiments 0.9985 - - - 

basalt / fO2 - 1.0099 1.0122 - 

basalt / XANES - 1.0073 1.0095 - 

rhyolite / fO2 - 1.0050 1.0072 - 

rhyolite / XANES - 1.0046 1.0069 - 

Miyoshi et al. (1984) - - - 0.9963 

average 0.9985± 0.0007 1.0067 ± 0.0023 1.0090 ± 0.0025 0.9963 ±0.0002 

Notes: oxidized experiments: average g-m derived from experiments conducted at log(fO2/bar) > QFM+2.8 

basalt / fO2: used basaltic melt composition for the DCompress calculations and the nominal fO2 (Table 2) 

basalt / XANES: used basaltic melt composition for the DCompress calculations and the XANES data (Table 2) 

rhyolite / fO2: used rhyolitic melt composition for the DCompress calculations and the nominal fO2 (Table 2) 

rhyolite / XANES: used rhyolitic melt composition for the DCompress calculations and the XANES data (Table 2) 

Miyoshi et al. (1984): 103 ln (SO4
2-

melt – H2S gas) = 6.3  (106 / T 2) 
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5.3 Modeling S-isotope composition of volcanic gasses 

The isotopic composition of volcanic gases released from a melt can be estimated using the equations 

given by Holloway and Blank (1994) for closed and open system degassing, respectively: 

 


34

Sm-f ≈ 
34

Sm-i – (1 – f )  10
3
  ln g-m   closed system    (5) 

 


34

Sm-f ≈ (
34

Sm-i + 10
3
)  (f 

g-m) – 1
) – 10

3
  open system    (6) 

 

where f is the fraction of S remaining in the melt as well as
34

Sm-i and 
34

Sm-f are the initial and the 

final isotopic composition in the melt phase, respectively. Subsequently, the isotopic composition of 

the released fluid phase (34
Sfluid) can be determined using equation 7:  

 


34

Sm-i = (1 – f )  
34

Sfluid + ( f )  
34

Sm-f        (7) 

 

The fractionation factor g-m for a given fO2 can be estimated applying the model described in Section 

5.2 and using the average g-m values of the four fractionation pairs listed in Table 3. The derived g-m 

values (listed in the figure captions of Fig. 7) can be used to model the isotopic composition of a 

released fluid (
34

Sfluid) upon open and closed system degassing (Fig. 7). Significant differences 

between the modeled trends for closed system and open system degassing are only observed if less 

than 30% of the S in the melt is released. Thus, distinguishing between closed and open system 

degassing based on the S isotope signature of a volcanic gases may only be possible for a moderate 

decompression event or at the beginning of an intense decompression (e.g. initial phase of a volcanic 

eruptions). Fig. 7a and 7b also indicate that even under intermediate redox conditions (~QFM+1.5) a 

remarkable fluid-melt S-isotope fractionation should be expected. 

Most importantly, the data reveals that the first fluid released by open system degassing may be up to 

~10 ‰ lighter (oxidized magmas) or up to ~35 ‰ heavier (reduced magmas) than the 
34

S of the 

source magma. Considering that fast decompression combined with open system degassing often 
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occurs during explosive, hazardous volcanic events, a distinct change in 
34

Sfluid detected in the 

volcanic gas should be expected prior or during the initial phase of the eruption. 

  

  

Fig. 7a/b: 
34

Sfluid plotted against the relative fraction of S degassed from the melt at log(fO2/bar) ranging from 

QFM-0.5 to QFM+3.2. a) Closed system degassing. b) Open system degassing.  

The g-m values for given fO2 were estimated using our model for the dependence of g-m on fO2. 

g-m = 1.0067 for QFM-0.5; 1.0045 for QFM+0.8; 0.9988 for QFM+1.5; 0.9983 for QFM+1.8 and 0.9985 for 

QFM+3.2) 

 

5.4 Implications to studies on natural systems 

The new experimental data presented in this study is of great value for a better interpretation of natural 

S-isotope compositions detected e.g. in pumices, scoria or volcanic gases. Ohba et al. (2008), for 

instance, applied the chemical trap method (using KOH solution) to monitor the volcanic gas signature 

at Miyakejima (Japan).The authors estimated a 
34

Sgas-magma of about -0.3 to -1.0 ‰ for two degassing 

periods (2001 to summer 2002; summer 2002 to 2005). Ohba et al. (2008) noted that the fO2 required 

to produce the observed fractionation may be about QFM+1.3 to QFM+1.9 and, thus, ~0.5 log units 

higher than estimated petrologically by Yasuda et al. (2001). Ohba et al. (2008) proposed a fluid-melt 

disequilibrium in terms of fO2 to explain the observed discrepancies. However, the results of Ohba et 

al. (2008) rely on calculation procedures of Marini et al. (1998) for the estimation of g-m for a given 
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fO2, fH2O and T. The Marini et al. (1998) model is comparable to that of de Hoog et al. (2001) and 

also lacks for two of the predominant S-isotope fractionation pairs (see Section 5.1). Considering the 

new experimental results presented in this study, the isotopic fractionation determined by Ohba et al. 

(2008) may be explained by comparable redox conditions as determined by Yasuda et al. (2001). This 

example shows that our findings need to be considered for the interpretation of magmatic S-isotope 

signature. However, the T dependence still needs to be verified to allow the application to a wide 

range of magmatic systems. 

 

6. CONCLUSION 

A new experimental approach was applied to investigate S-isotope fractionation between fluid and 

silicate melt. The obtained results provide, for the first time, constraints on fluid-melt S-isotope 

fractionation at geologically relevant p-T condition with close to natural fluid-melt compositions. 

The data shows that previous models (e.g. de Hoog et al., 2001) based on experiments using simple 

compositions (e.g. molten salt Na2SO4 and Na2S analogies), theoretical or compilation type studies 

from the 70s and 80s (summarized by Taylor, 1986) may significantly underestimate the isotopic 

fractionation. Reasons for the observed discrepancies may be i) fundamental mistakes of previously 

published models and ii) the very limited data available in literature on S-isotope fractionation, which 

is probably not applicable to magmatic systems. 

In general, measuring S-isotope compositions of volcanic material can be of great importance to 

investigate degassing processes (e.g. distinguish between open and closed system degassing), 

understand atmospheric transport processes of volcanic gas-ash-clouds and/or assess the source(s) of 

volatiles in magmatic systems. The presented data will help to understand and interpret related S-

isotope signatures and especially isotopic data of reduced systems may need to be re-interpreted. The 

observed independence of g-m, on the bulk Cl content indicates that the estimated fractionation factors 

and trends may be applicable to complex multi-component fluid-melt systems.  
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CHAPTER III  

DISTRIBUTION OF S AND S-ISOTOPES BETWEEEN H2O-S±CL FLUIDS AND 

BASALTIC MELT 

 

ABSTRACT 

Decompression experiments (from 400 to 70 MPa) were conducted to investigate the sulfur (S) 

distribution and S-isotope fractionation between basaltic melts and coexisting fluids. Volatile-bearing 

[~3 to ~7 wt% water (H2O), ~300 to ~1200 ppm S, 0 to ~3600 ppm chlorine (Cl)] basaltic glasses 

were used as starting material. The MgO content in the melt was either ~1 wt% (Mg-poor basalt) or 

~10 wt% (alkali basalt) to investigate the role of compositional changes on S distribution. The 

experiments were performed in internally heated pressure vessels (IHPV) at 1050°C to 1250°C, 

variable oxygen fugacities (fO2; ranging from log(fO2/bar) ~QFM to ~QFM+4; QFM = quartz-fayalite-

magnetite buffer) and at a constant decompression rate (r) of 0.1 MPa/s. The annealing time (tA) at 

final pressure (p) and temperature (T) after decompression was varied from 0 to 5.5 h to study the 

fluid-melt equilibration process.  

S and H2O contents in the melt decreased significantly during decompression, while the Cl contents in 

the melt remained almost constant. No changes in H2O and Cl content were observed with tA, while S 

decreased slightly with tA < 2 h; i.e. fluid-melt near-equilibrium conditions were reached within ~2 h 

after decompression, even in experiment performed at the lowest T of 1050°C. Thus, fluid-melt 

partitioning coefficients of S (DS
fl/m

) were determined from experiments with tA ≥ 2 h.  

The experiments showed that MgO (~1 to 10 wt%), H2O (~3 to ~7 wt%) and Cl content (< 0.4 wt%) in 

the melt have no significant effect on DS
fl/m

. Consistent with previous studies, DS
fl/m

 decreased strongly 

with increasing fO2; e.g. at ~1200°C DS
fl/m

 ≈ 180 at QFM+1 and DS
fl/m

 ≈ 40 at QFM+4. A positive 

correlation was observed between DS
fl/m

 and T in the range of 1150 to 1250°C at both oxidizing 

(QFM+4; DS
fl/m

 = 52 ± 27 to 76 ± 30) and intermediate (QFM+1.5; DS
fl/m

 = 94 ± 20 to 209 ± 80) redox 

conditions. Data compiled at 1050°C and reducing conditions (~QFM; DS
fl/m

 = 58 ± 18) indicated that 

the trends may be extrapolated to 1050°C, at least for intermediate to reducing conditions. 
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The S-isotope composition in glasses of selected samples was measured by secondary ion mass 

spectrometry (SIMS). Gas-melt isotopic fractionation factors (g-m) were calculated via mass balance. 

At 1200°C an average g-m of 0.9981 ± 0.0015 was determined for oxidizing conditions (~QFM+4), 

while an average g-m of 1.0025 ± 0.0010 was estimated for fairly reducing conditions (~QFM+1). 

Under reducing conditions (~QFM) and 1050°C an average g-m of 1.0037 ± 0.0009 was determined. 

The data showed that equilibrium fractionation effects during closed system degassing of basaltic 

melts at T relevant for magmatic systems (1050 to 1250°C) can induce an S-isotope fluid-melt 

fractionation of about +4 ‰ in reduced systems and of about -2 ‰ in oxidized systems. 

 

Keywords: Sulfur fluid-melt distribution, sulfur isotope fractionation, magma degassing, basalt 

 

1. INTRODUCTION  

S is the third most abundant volatile in natural silicate melts (besides H2O and CO2) and the highest 

concentrations are found in basaltic magmas which often contain >>1000 ppm S (e.g. Perfit et al., 

1983; le Roux et al., 2006; Moune et al., 2007; Wallace and Edmonds, 2011). During crystallization, S 

is mainly incorporated in accessory phases (mainly sulfides, e.g. Parat et al., 2011) but a significant 

fraction of S is also released to the fluid phase in late stage crystallization processes or upon 

decompression due to high fluid-melt partitioning coefficients ranging from 1 to 2800 (Keppler, 1999; 

Newman and Lowenstern, 2002; Lesne et al., 2011; Webster and Botcharnikov, 2011; Witham et al., 

2012). Such magmatic S-bearing fluids have a crucial role in the formation of high T ore deposits (e.g. 

porphyry-type) or can be responsible for the release of high amounts of S to the atmosphere in case of 

volcanic eruptions, leading e.g. to climate impact (see review of Oppenheimer et al., 2011). 

The distribution of S between fluid and basaltic melt at (near-) equilibrium conditions has been 

investigated in a few studies within the last decades; however, the dataset is still patchy. The existing 

data on basaltic melt compositions (and other compositions) has been summarized in the review of 

Webster and Botcharnikov (2011). The available S fluid-melt partitioning dataset is obtained in 

basaltic melts for T ranging from 1050 to 1150°C, fO2 varying from log(fO2/bar) ≈ QFM to QFM+3.2 

[hereafter differences of log(fO2/bar) to the quartz-fayalite-magnetite (QFM) buffer are given to 
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specify fO2] and a p range of 25 to 800 MPa (Teague et al., 2008; Moune et al., 2009; Beermann et al., 

2011; Lesne et al., 2011; Webster and Botcharnikov, 2011). Additional experiments of Gorbachev 

(1990) conducted at 500 MPa and 1100°C are difficult to interpret because fO2 is not reported.  

None of the available studies systematically investigated the influence of T on the fluid-melt 

partitioning coefficient of S (DS
fl/m

) in basaltic systems. Noteworthy, Lesne et al. (2011) observed a 

significant compositional effect on DS
fl/m

 in basaltic systems implying that the data obtained in 

different studies at T of 1050 to 1150°C for different compositions cannot be compiled to extract a 

general temperature effect on DS
fl/m

. 

The influence fO2 on DS
fl/m

 in basaltic systems was investigated by Beermann (2010). The author 

observed, for instance, that DS
fl/m

 increases from 27 ± 7 at QFM+3.2 to 200 ± 51 at QFM+0.7 in Cl-

bearing (~0.05 to ~0.55 wt% Cl) trachybasaltic systems at 200 MPa and 1050°C. The only systematic 

work investigating the influence of p on DS
fl/m

 in basaltic systems was published by Lesne et al. (2011). 

The experiments were conducted under intermediate to oxidizing conditions (QFM+1.7 to QFM+3.1), 

at 1150°C and 25 to 400 MPa and reveal that DS
fl/m

 increases strongly from ~10 to ~40 at 100 MPa to 

~600 to ~3000 at 25 MPa in basaltic systems. 

Recent studies show that the role of other volatiles present in the melt phase may influence 

significantly DS
fl/m

. A strong influence of H2O content in the systems on DS
fl/m

 is indicated by the 

results of Moune et al. (2009), but was not yet confirmed by systematic experimental investigations. 

Beermann (2010) observed a significant increase of DS
fl/m

 along with increasing Cl content in the 

basaltic systems, e.g. under oxidizing conditions (~QFM+2) DS
fl/m

 increases from ~1 at 0.05 wt% bulk 

Cl in the system to ~96 at ~3.5 wt% Cl. A similar positive correlation between Cl content and DS
fl/m

 

was observed for phonolitic (Webster et al., 2009) and andesitic melts (Chapter I-A), while data 

Botcharnikov et al. (2004) for rhyodacitc systems indicate a slight negative correlation between Cl 

content and DS
fl/m

. The influence of Cl on DS
fl/m

 is not fully understood, however, the authors suggested 

that this effect can possibly be attributed to changes in fluid and melt properties, to non ideal mixing in 

the fluid phase and/or to interactions between the volatiles (e.g. H2O, Cl, S) as well as between 

volatiles and cations within the melt and the coexisting fluid phase.  
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More experimental data and thermodynamic models on equilibrium distribution of S between fluid 

and (basaltic) melt are crucially needed to interpret the composition of gases released on top of active 

volcanoes and to relate magmatic processes at depths with the response at the surface (via changes of 

the gas composition). However, two additional types of information are necessary to fully interpret the 

S signatures in volcanic gases: i) kinetic studies are required to check for the conditions (e.g. 

decompression rate) at which equilibrium fluid-melt S distribution is occurring during degassing of 

ascending magmas and ii) the S-isotope fractionation between fluid and silicate melt must be known to 

interpret the isotopic composition of volcanic gases.  

Although disequilibrium distribution of S between fluids and melts may be of minor importance in 

basaltic systems due to the low melt viscosity and fast diffusion of volatiles within the melt, kinetic 

effects may be expected in basaltic systems with very fast ascent rates (e.g. ≥ 0.1 MPa/s). However, all 

available studies on fluid-melt distribution of S in basaltic systems are based on equilibrium 

experiments and kinetic experiments are needed to evaluate whether kinetic degassing effects of S 

occur in basaltic systems or not. 

Degassing of S is accompanied with S-isotope fractionation effects between fluid and silicate melt. 

The isotopic fractionation depends mainly on T (e.g. Mandeville et al., 2009) and on speciation of S in 

both phases (Mandeville, 2010) but the isotopic fractionation between S species in fluid and (silicate) 

melt at magmatic conditions is not well constrained. The existing models (e.g. Marini et al., 1998; de 

Hoog et al., 2001) are based on one experimental study of the S-isotope fractionation between fluid 

and melt conducted by Miyoshi et al. (1984) as well as on theoretical data of Richet et al. (1977). 

However, Miyoshi et al. (1984) used molten salt as melt phase and the applicability of the data to 

silicate melt systems can be questioned because the tendency to retain 
34

S in salt melts upon 

decompression is probably not equivalent to that in silicate melts. Fiege (Chapter II) performed 

experiments using an andesitic system and determined a fluid-melt S-isotope fractionation of about +4 

to +10 ‰ at 1030°C (i.e. melt becomes enriched in 
34

S upon degassing) at reducing conditions and of 

about -2 ‰ (i.e. melt becomes depleted in 
34

S upon degassing) at oxidizing conditions. The large 

scatter at reducing conditions is attributed to the lack of data at very low fO2, at which S in the fluid-

melt system is fully reduced (~QFM); i.e. the existing data were extrapolated from ~QFM+1 to 



CHAPTER III 

 

83 

 

~QFM. Thus, more experimental data are urgently required to constrain the fractionation factor at 

reducing conditions, to determine the T dependence of the fractionation and to verify the applicability 

of the fractionation factors determined for an andesitic melt by Fiege (Chapter II) to other silicate melt 

compositions. 

In this study, degassing of basaltic melts containing up to 1200 ppm S was simulated by 

decompression experiments to study the influence of fO2 on DS
fl/m 

and g-m as well as of T on DS
fl/m 

and 

g-m in basaltic systems. The experiments were performed at different oxygen fugacities with 

log(fO2/bar) ranging from ~QFM to ~QFM+4 and at T of 1050 to 1250°C. The initial H2O and Cl 

content in the melt varied in the range of 3 to 7 wt% and 0 to 3600 ppm, respectively, which allows us 

to determine the influence of bulk H2O and Cl content on DS
fl/m

. To understand the possible influence 

of melt polymerization and, thus, of S-diffusivity and kinetics of S-degassing, the MgO content in the 

anhydrous starting glasses was either ~1 or ~10 wt%; i.e. XMg = MgO/(MgO+FeOtot) molar ratio in the 

melt ranges from ~0.2 to ~0.7 (FeOtot = total iron concentration in the glass given in FeO). The 

variation of the MgO content allows us to study possible effects of changes in basaltic melt 

composition on DS
fl/m

 at almost constant FeOtot content (note: FeO is known to have a strong influence 

on S-solubility; see e.g. review of Wallace and Edmonds, 2011). 

Decompression experiments using volatile bearing basaltic melts were carried out at a constant 

continuous r of 0.1 MPa/s and with tA ranging from 0 to ~5 h to study fluid-melt equilibration 

processes. Experiments quenched directly after decompression (tA = 0 h) may represent disequilibrium 

conditions, while decompression experiments followed by annealing for ~5 h at constant T and p may 

represent equilibrium or at least near-equilibrium conditions. Possible kinetic effects may be preserved 

in samples with tA = 0 h. On the other hand, determined S(fluid)/S(melt) ratios of samples with tA = 5 h 

may represent the partitioning coefficient DS
fl/m

, i.e. a thermodynamic quantity.  

Finally the S-isotope composition of selected starting glasses and partially degassed glasses was 

analyzed by SIMS to allow us to estimate the fluid-melt S-isotope fractionation during decompression. 
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2. EXPERIMENTS 

2.1 Improvement of experimental strategy for basaltic systems 

A primary objective of this study is to investigate the kinetics of S and S-isotope degassing in basaltic 

systems at geologically relevant T (e.g. ~1050 to ~1250°C) via decompression experiments. However, 

conducting (decompression) experiments with S-bearing melts at T > 1050°C (i.e. close or above the 

melting point of Au) is problematic because typical noble metal containers for higher T (Pt, AuPd) are 

known to react with a S-bearing fluid-melt system. Containers such as olivine (Beermann et al., 2011) 

or quartz glass (Fleet et al., 1991) are useless for continuous decompression experiments as differences 

between p inside the capsules and p inside the vessel during decompression cannot be ruled out. 

Lesne et al. (2011) developed a new experimental approach using AuPd capsules, which allows one to 

conduct experiments at T > 1050°C and which is based on the mixture of carbonate and oxide 

powders, a decarbonization step and the addition of H2O as brucite. However, this method is 

constrained by a major disadvantage since the starting composition of the melt is calculated via 

weighed in properties and may vary significantly between each synthesis. In addition, AuPd was found 

to be not flexible enough to conduct continuous decompression at rates of ~0.1 MPa/s; i.e. the capsules 

usually fail during decompression. Hence, a new experimental approach was developed to allow us to 

conduct continuous decompression experiments at T > 1050°C.  

Several experimental methods were tested. For instance, preliminary syntheses conducted in AuPd or 

Pt capsules usually failed after very short time (< 10 min), probably due to the reaction of a high-T 

acidic S-rich fluid with the capsule material. Such a reaction was mentioned in previous studies and is 

directly related to the siderophile character of Pd and Pt (e.g. Webster and Botcharnikov, 2011). 

Beyond that, the addition of H2O as brucite [Mg(OH)2] in order to delay the formation of a aggressive 

S-rich fluid during heating (see Lesne et al., 2011) was also quite unsuccessful. In addition, Fe can 

diffuse into the AuPd or Pt capsule material (e.g. Barr and Grove, 2010), which may lower the melting 

point of the capsule material significantly and can cause capsule failure. However, Fe-loss to a Pt-

capsule wall was found to be of minor importance if run durations are short (< 6 h, see Section 4). 

Moreover, test decompression experiments showed that the Pt-capsule will not fail (or lose significant 
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amounts of iron) if H2O and S were already dissolved in the melt before conducting the experiment. 

Based on these experiences, the following experimental procedure was successfully applied. 

 

2.2 Experimental procedure 

In a first step a synthetic anhydrous MgO-free glass with a composition typical for an alkali basalt 

(composition OB93 used by Freise et al., 2009) was prepared by melting a mixture of oxide (Al2O3, 

SiO2, TiO2, Fe2O3, MgO, Mn2O3) and carbonate (Na2CO3, CaCO3, K2CO3) powders in a Pt90Rh10 

crucible at 1600°C and 1 atm. for 2 h. The crucible was quenched in a water bath. The glass was 

ground, melted (1600°C, 1 atm., 2 h) and quenched again to improve homogeneity. Part of this glass 

was enriched in Mg (using dried MgO powder), following the same procedure, to produce i) a Mg-

poor basaltic glass (~1 wt% MgO added) and ii) a Mg-rich alkali basaltic glass (~10 wt% MgO 

added). The Mg-poor basalt and the alkali basalt served as starting material for the following 

decompression experiments. The compositions of the obtained anhydrous starting glasses are listed in 

Table 1. 

In a second step volatile enriched [H2O, S, (Cl)] starting glasses were synthesized in IHPV using either 

the Mg-poor basalt or the alkali basalt. These syntheses were conducted in Au capsules (6 mm inner 

diameter; 0.2 mm wall thickness) at 1050°C (sub-liquidus), ~500 MPa and fO2 ranging from ~ QFM+0 

to ~QFM+4. Water was added using deionized H2O, Cl using 10 wt% HClaq and S using gypsum 

(Ca[SO4]×2H2O); added volatile contents: ~3 to ~7 wt% H2O, ~300 to ~1200 ppm S; 0 to ~3600 ppm 

Cl. The mixtures were filled stepwise into Au-capsules and compressed by a piston to minimize 

entrapped air and welded shut. The obtained glasses contain significant amounts (about 10 vol%) of S-

free crystals (typically olivine (ol), clinopyroxene (cpx) and (titano-) magnetite (mt), depending e.g. 

on fO2) as they were carried out at sub-liquidus conditions.  

Third, ~200 mg of crushed and grounded glass were loaded into Pt capsules (diameter = 4 mm; wall 

thickness = 0.2 mm), compressed with a piston and welded shut. The samples were placed in an IHPV 

and annealed for ~10 min at 400 MPa, 1150 or 1200°C and ~QFM+0 to ~QFM+4 to dissolve the 

crystals in the melt and determine the starting conditions (e.g. melt composition including H2O, S and 
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Cl content as well as S-isotope composition). This step only applies for experimental series conducted 

at T above the melting point of Au (i.e. it does not applied to the series ABLA and ABLClA, Table 2).  

In a fourth step, isothermal decompression experiments were conducted in IHPV at 1050 to 1250°C in 

Au (1050°C) or Pt capsules (>1050°C) at fO2 ranging from ~QFM to ~QFM+4. The capsules had a 

length of ~18 mm (diameter = 4 mm; wall thickness = 0.2 mm) to allow expansion of the loaded 

material (~150 mg of crushed and ground glass) during decompression. Again the material was 

compressed with a piston to minimize entrapped air and welded shut. Thus, almost cylindrical melt 

reservoirs are generated during the experiment (diameter: ~2.5 to 4.5 mm; height: ~4 mm) which 

minimizes the influence of the capsule wall on the fluid-melt system in the center of the cylinder. The 

samples were annealed for short term (~10 min) prior to decompression and, subsequently, p was 

released continuously from ~400 to ~70 MPa at a constant rate of ~0.1 MPa/s. The samples were 

either directly quenched (isobaric, rapid-quench technique) after decompression to preserve fluid-melt 

non-equilibrium conditions or annealed for various times (tA = 0 to ~20 h for 1050°C experiments and 

tA = 0 to ~5 h for experiments at T > 1050°C) at final p-T conditions before quenching to approach 

fluid-melt near-equilibrium conditions. The experimental conditions of the conducted syntheses and 

decompression experiments are listed in Table 2. 

 

Table 1: Composition [wt%] of the anhydrous MgO-free, MgO-poor basalt, alkali basalt glasses. The 

composition was measured via EMP (see Section 3.1.1)  

[wt%] SiO2 TiO2 Al2O3 FeOtot† MnO MgO CaO Na2O K2O P2O5 Total 

MgO-free 54.30 2.89 16.42 11.86 0.14 - 10.06 3.37 1.01 0.44 100.48 

basalt 0.29 0.05 0.16 0.24 0.10 - 0.07 0.13 0.02 0.04 0.44 

MgO-poor 52.46 2.80 16.14 10.98 0.15 0.94 10.55 3.31 1.03 0.41 98.79 

basalt 0.41 0.05 0.14 0.15 0.11 0.03 0.08 0.08 0.02 0.03 0.62 

alkali  46.78 2.72 14.87 10.57 0.14 10.52 9.80 2.93 0.92 0.40 99.64 

basalt 0.49 0.05 0.18 0.31 0.08 0.45 0.15 0.47 0.06 0.05 1.19 

Notes: italic values: standard deviations (1 sigma) based on microprobe analyses; number of EMP analyses per sample: 20 

† FeOtot: total iron concentration in the glass given as FeO 
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2.3 Redox conditions 

The fO2 prevailing in the capsules of syntheses and experiments were indirectly adjusted via the 

hydrogen fugacity (fH2) of the pressure vessel, considering that hydrogen (H2) diffuses through the 

capsule wall and controls fO2 by reaction with H2O: H2 + ½ O2 ↔ H2O. Oxidized syntheses and 

experiments were carried out in IHPV without Shaw-membrane using pure Ar gas. These IHPV 

contain H2 as an impurity and the intrinsic redox conditions were estimated to be QFM+3.9 at a H2O 

activity a(H2O) of 1 (Berndt et al., 2002; Wilke et al., 2002; Schuessler et al., 2008). Intermediate to 

reducing redox conditions were adjusted using an Ar-H2 gas mixture as pressure-medium and the 

prevailing fH2 during the experiment was continuously recorded using a Shaw-membrane 

(Berndt et al., 2002). After quenching the sample, fH2 in the vessel was measured while maintaining 

the final p-T conditions. Noteworthy, the Shaw-membrane was partly obstructed during 

decompression experiments of the series ABLA and ABLClA conducted at 1050°C and under 

reducing conditions (~QFM). Thus, in a first approximation the initially loaded H2-pressure (~13 bars) 

was used to roughly estimate the fO2 in the vessel. However, these values may only represent a lower 

limit of the fO2 adjusted in the capsule due to expected H2 loss from the vessel upon p release (see 

below, this Section).  

The a(H2O) of all syntheses was calculated using the approach of Burnham (1979) to account for the 

influence of H2O on the redox conditions inside the capsules. The equation 1 in Chapter I-A was 

applied to estimate the nominal fO2 of the starting glasses for given a(H2O) (see also Jugo et al., 2010). 

On the other hand, a(H2O) of the decompression experiments was always close to one (fluid phase 

contains minor amounts of S and Cl only) and fO2 was calculated assuming a(H2O) = 1. 

Noteworthy, decompression induced changes in redox conditions within the vessel and inside the 

capsule are to be expected, e.g. due to increasing a(H2O) in the melt and decreasing fH2 in the vessel 
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during decompression (see Chapter I-A and references therein). In addition, consistent with 

observations in Chapter I-A, a preferential loss of H2 through the decompression valve was observed 

which also leads to a significant decrease of fH2 in the vessel during p release. Thus, fO2 cannot be 

kept absolutely constant during decompression. Nevertheless, syntheses and experiments of one 

experimental series were always carried out under similar redox conditions; i.e. the estimated fO2 

values are typically identical within error (±0.5 log units; see Table 2).  

To account for the expected loss of H2, selected experiments (experimental series labeled with ABG, 

see Table 2) were conducted with higher H2 partial pressures than would be required for isobaric 

experiments (i.e. the loaded H2-pressure was a factor ~1.6 higher than the H2-pressure applied for the 

isobaric synthesis of starting glasses). From the determination of the H2-pressure at the end of the 

experiment, a loss of H2 by a factor of 1.2 to 12.3 (average 6.7) is observed for experiments carried out 

at T ≥ 1150°C. This loss is slightly higher than that observed in Chapter I-A for decompression 

experiments conducted at 1030°C. The higher loss can be explained by the high initial H2-pressure 

loaded into the vessel for the experiments of this study (typically 5 to 20 bars). It is emphasized that 

the loading of H2 in excess to the vessel cannot fully compensate the H2 loss upon decompression. 

However, the nominal fO2 values of these decompression experiments are relatively close to the 

nominal fO2 of the starting glasses (difference is typically < 0.5 log units).  

The decompression induced changes of fH2in the vessel and of fO2 inside the capsule imply that a re-

adjustment via H2 diffusion through the capsule wall and within the sample occurs during the 

experiment. The time required for fH2 and fO2 equilibration significantly depends on T and capsule 

material. The permeability of H2 is significantly lower through Au (by a factor of ~2) than through Pt 

(Chou, 1987). Considering the influence of T on the permeability, H2 may be transported about 5 times 

faster through the Pt capsule wall of experiments conducted at 1200°C than through the Au wall of the 

1050°C experiments. The equation provided by Zhang and Ni (2010) based on the H2 diffusion data of 

Shelby (1977) and Shang et al. (2009) can be used to roughly estimate the time required for fH2 

equilibration within the melt (see also Chapter I-A). However, the estimation may provide minimum 

durations, as the solubility of H2 in the melt plays a crucial role to H2 mobility (e.g. Gaillard et al., 

2003). The calculations indicate that the time needed for H2 to diffuse from the wall to the center of 
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the capsule will decrease by a factor of ~1.5 if T increases from ~1050 to ~1200°C. Hence, the fO2 

equilibration after decompression may be significantly faster (by a factor of > 7) for experiments 

conducted at T ≥ 1150°C in Pt-capsules in comparison to those performed at 1050°C in Au-capsules.  

Noteworthy, decompression experiments with andesitic melt performed at 1030°C in Au-capsules 

(Chapter I-A) indicate that (near-) redox equilibrium conditions between the vessel and the fluid-melt 

system inside the capsule are already achieved during or shortly after decompression a an r of 

~0.1 MPa/s. Thus, redox equilibrium is assumed for all experimental results presented in this study. 

In addition to the estimation of fO2 from the H2-pressure [fO2(nominal)], S and Fe speciation data 

obtained for selected run products were used to estimate the fO2 in the experiments. The derived 

values are compared to the estimated fO2(nominal) to evaluate the accuracy and applicability of 

fO2(nominal); see Section 4.1. However, if not specified differently, the fO2 values reported in the 

following sections refer to fO2(nominal). 

 

3. ANALYTICAL METHODS 

3.1 Glass composition 

3.1.1 Electron microprobe (EMP) 

The glass compositions of the quenched samples (except for the H2O content) were determined using a 

Cameca SX-100 electron microprobe (EMP, 15 keV acceleration voltage; 20 µm beam size). Na was 

analyzed at a beam current of 5 nA for 4 s (counting time). This setting was applied to minimize the 

Na migration during EMP measurements (Morgan and London, 1996, 2005). The major constituents 

(Si, Ti, Al, Fe, Mn, Mg, Ca, K, P) were measured with a beam current of 10 nA and a counting time of 

10 s. Counting time and beam current were further increased to 120 s and 35 nA for Cl and to 240 s 

and 35 nA for S to improve counting statistics (detection limit: ~32 ppm for S, ~50 ppm for Cl). NIST 

(U. S. National Institute of Standards and Technology) standard glasses 610 and 620 were measured 

during each microprobe sessions to evaluate the accuracy of the measurements and to allow a 

correction of the raw S data. The relative deviation of S contents from the value given for the standard 

glasses is < 5 % [NIST 610 contains ~560 ppm S (Evans et al., 2008; Guillong et al., 2008; Webster et 

al., 2009) and NIST 620 ~1120 ppm; see https://www-s.nist.gov/srmors/].  
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3.1.2 H2O determination 

Near infra-red (NIR) measurements were conducted on doubly polished glass chips to determine the 

H2O concentrations in the glasses. The thickness of the prepared sections ranges from ~50 to ~300 

µm, depending on the translucency of the respective samples. The NIR spectra were collected using a 

Bruker IFS 88 FTIR spectrometer equipped with a Bruker IRscope II IR microscope. A tungsten light 

source, a CaF2 beam splitter, and a mercury-cadmium-tellur (MCT) narrow range detector were used 

in the measurements. 100 scans were accumulated for each spectrum (spectral resolution: 4 cm
-1

) and 

3 spots were analyzed on each glass sample. The concentrations (in wt%) of OH groups c(OH) and 

molecular H2O c(H2O) dissolved in the basaltic glasses was determined using the heights 

(absorbances) of the bands at 4500 cm
-1

 (OH groups) and 5200 cm
-1

 (H2O) respectively and applying 

the following equations (Lambert-Beer law): 

 

)(

1)(1802
)(

2

2
2

OHd

OHA
OHc









        (1) 

)(

1)(1802
)(

OHd

OHA
OHc









        (2)
 

 

where d is the thickness of the section in cm and ρ is the density of the glass in g/L. A(H2O) and 

A(OH) refer to the absorbance of molecular H2O and OH groups, respectively. and are 

the linear molar absorption coefficient in L mol
-1

 cm
-1

 of the respective NIR peak. The total H2O 

content is the sum of c(H2O) and c(OH). 

The densities () of the glasses were estimated using the relationship provided by Ohlhorst et al. 

(2001) for basaltic melts. Densities calculated using the empirical equation given by Shishkina et al. 

(2010) for basaltic glasses are consistent with the calibration of Ohlhorst et al. (2001); i.e. densities 

differ by < 3 % for water contents ranging from 0 to 10 wt%. To verify the applicability of the 

equation given by Ohlhorst et al. (2001) to melt compositions of this study, the densities were also 

calculated from glass compositions using the Gladstone-Dale rule (Gladstone and Dale, 1863; see 

Chapter I-A for details). The deviation of the densities estimated using the linear relation given by 
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Ohlhorst et al. (2001) from the Gladstone-Dale densities was found to be << 1 %, independent of the 

melt composition (i.e. Mg-free, Mg-poor or alkali basalt).  

Tangential baseline correction was applied to determine the heights of the water bands. Absorption 

coefficients can change as a function of melt composition (Silver et al., 1990). To test the applicability 

of the coefficients given in the literature, selected starting glasses were analyzed by Karl-Fischer 

titration (KFT, see methods in Behrens, 1995; Leschik et al., 2004; Behrens et al., 2009). For the 

determination of absorption coefficients, additional water-bearing glasses with water contents ranging 

from 1.7 to 8.5 wt% were synthesized (~1200°C, 500 MPa) and measured by KFT and NIR. These 

glasses contain 0, ~1 and ~8 wt% MgO, corresponding to a XMg of 0 to ~0.7, to account for a possible 

influence of Mg content on the calibration.  

In Fig. 1 the normalized absorbances of both NIR bands are plotted against each other (relevant data is 

listed in Table III-A1 in the Appendix III) together with the calibrations for basaltic glasses proposed 

by Ohlhorst et al. (2001) and Shishkina et al. (2010). The samples with XMg of ~0.7 correlate well with 

the regression line of Ohlhorst et al. (2001) indicating that this calibration is applicable to all 

experimental glasses with alkali basaltic composition (= 0.56 L mol
-1

 cm
-1

 and  L 

mol
-1

 cm
-1

). This observation is confirmed by Fig. 2a showing that the total water content (based on 

KFT measurements) is well reproduced in the range of ~2 to ~6 wt% H2O. Noteworthy, the basaltic 

melt studied by Ohlhorst et al. (2001) is characterized by a similar XMg of ~0.7. On the other hand, 

starting glasses synthesized at 1050°C, showing a XMg of ~0.55 in the melt, plot perfectly on the 

calibration line of Shishkina et al. (2010) for basaltic melts with similar XMg of ~0.6, indicating that 

the linear molar absorption coefficient given by these authors can be used to determine the H2O 

contents of experimental samples conducted at 1050°C (= 0.65 L mol
-1

 cm
-1

 and 0.69 

L mol
-1

 cm
-1

). In contrast, the data of glasses containing 0 to 1 wt% MgO (XMg: 0 to ~0.2) cannot be 

described by the calibrations of Ohlhorst et al. (2001) and Shishkina et al. (2010). Thus, regressions 

were performed for all Mg-free and Mg-poor (~1 wt% MgO) samples, respectively. A third regression 

was determined based on both sets of glasses (Mg-free and Mg-poor). The absorption coefficients 

derived from this regression (= 0.848 L mol
-1

 cm
-1

 and  L mol
-1

 cm
-1

 were used 

to estimate the water content by NIR in the Mg-poor glasses. The calculated NIR water content 
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correlates well with the bulk KFT water content (Fig. 2b), at least in the range of 2 to 8 wt% H2O, and 

the difference between KFT and NIR determination is typically < 0.2 wt% H2O. 

 

 

Fig. 1: Calibration plot for the absorption coefficients of the OH and H2O 

combination bands in the NIR. 

Sh02: Shishkina et al. (2010); Oh01: Ohlhorst et al. (2001)  

 

  

Fig. 2a-b: a) NIR H2O contents vs. KFT H2O contents for alkali basalt glasses. b) NIR H2O contents vs. KFT 

H2O contents for Mg-poor basalt glasses.  

The NIR H2O contents were calculated using either (a) the absorption coefficients provided by Ohlhorst et al. 

(2001) for basalts or (b) the new absorption coefficients determined for Mg-poor and Mg-free basalts (see 

Section 3.1.2). 
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3.1 S-isotope composition in the glasses 

The 
34

S/
32

S ratios were measured in selected glasses (prior to decompression and after decompression) 

using the Cameca IMS 1280 at Woods Hole Oceanographic Institution (WHOI). The analyses were 

carried out using a 10 µm Cs
+
 primary beam with an acceleration voltage of 10 kV and a beam current 

of 1-2 nA. The secondary ions produced by the primary beam are collected at 10 kV acceleration 

voltage with a 150 µm field of view and a mass resolving power of 5500. The energy slit is centered 

and opened to ~50 V. These settings have proven their reliability in previous sessions and allow to 

determine the S-isotope composition in (silicate) glasses with low S contents (<<1000 ppm) with an 

external precision of ~0.5 ‰; see Mandeville et al. (2008) and Chapter II.  

Measurements of Charles W. Mandeville and Nobumichi Shimizu on silicate glasses with 

compositions ranging from basaltic to high silica and 
34

S ranging from about -30 ‰ to about +20 ‰ 

[determined by conventional bulk S-isotope methods, e.g. KIBA reagent extraction method 

(Sasaki et al., 1979; Ueda and Sakai, 1984; Mandeville et al., 2009)] show that the instrumental 

fractionation is independent of melt composition and follows a linear trend. Thus, routine 

measurements of a basaltic glass standard with well known S-isotope composition (
34

S ~ 0.7 ‰) 

allow to determine the instrumental fractionation and correcting the raw 
34

S/
32

S ratios. In order to 

monitor short (and long) term variations of the instrumental fractionation, this basaltic glass standard 

was measured (at least) twice before and after 2 to 3 sample measurements. Each sample was analyzed 

2 to 5 times depending on the quality of the single measurement (e.g. the internal standard deviation) 

and each measurement consists of 50 to 60 cycles for 
32

S and 
34

S, respectively. 

This analytical approach is equivalent to the procedure applied by Fiege (Chapter II) for andesitic 

melts. Thus, the raw data was processed following the same procedure as described in Chapter II (i.e. 

see Appendix II-C.).  

The S-isotope composition will be reported in a conventional delta () notation given in ‰ (equation 

3). The Vienna Canyon Diablo Troilite (V-CDT) was used as S-isotope reference standard (Coplen 

and Krouse, 1998; Ding et al., 2001). The 
34

Sg-m values as well as the gas-melt isotopic fractionation 

factors g-m were estimated using equation 4. 
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34

S = ( [ (
34

S/
32

Ssample) / (
34

S / 
32

SV-CDT) ] – 1 )  1000     (3) 


34

Sg-m = 
34

Sgas – 
34

Smelt ≈ 10
3
 ln g-m       (4)  

 

3.2 S and Fe speciation 

S K-edge (ca. 2.47 keV) XANES analyses were carried out using the SUL-X beamline at the 

synchrotron radiation source ANKA (Karlsruhe Institute of Technology, Germany) to determine the S 

speciation in the basaltic glasses. The ANKA storage ring (circumference: 110.4 m) operates at a 

beam energy of 2.5 GeV and a beam intensity of 200 mA. The SUL-X beamline uses a wiggler as 

radiation source. The energy of the monochromator was calibrated to the white line of S
6+

 in scotch 

tape (2481.4 eV). The spectra were collected in fluorescence mode from ~2.45 to ~2.55 keV and with 

a beam size of about 200 µm × 100 µm. Quick-XAFS scans (bragg axis is continuously running; 

XAFS: X-ray absorption fine structure) were performed to avoid irradiation damages [relevant details 

for quick-XAFS: ~330 motorsteps/s; energy increments: 0.3 eV in the edge region (~2.46 to 

~2.50 keV) and 1 eV in the pre- and post-edge region].  

The energies of the derived spectra were corrected to the white line of the spectrum of gypsum 

(2482.84) to allow an estimation of fO2 within the capsule based on the model of Jugo et al. (2010) for 

basaltic melt. The method relies on the estimation of the S
6+

/S ratio in a first step, followed by the 

calculation of fO2. Noteworthy, some S
6+

/S ratios are below 0 or above 1, indicating the limitation of 

the approach for relatively oxidized or reduced systems (see Table 2). In accordance with the 

equations provided by Jugo et al. (2010), it is assumed that S
6+

/S ratios ≥ 1 indicate an fO2 of 

≥ QFM+4.2 and S
6+

/S ratios ≤ 0 may refer to an fO2 of ≤ QFM-0.8. However, these values have high 

uncertainty. The approach applied for the fO2 estimation using S-XANES spectra is described in detail 

in Chapter I-A.  

The bulk Fe speciation of selected experimental samples, conducted at ~QFM+1 to ~QFM+4, was 

measured by colorimetric wet-chemical analyses (Schuessler et al., 2008). The derived Fe
3+

/Fe 

values were corrected for Fe
3+

 reduction by S
2-

 during sample digestion according to the findings of 

Sossi and O’Neill (2011) and using the S
6+

/S ratios determined by XANES (see also Chapter I-A). 
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The corrected Fe
3+

/Fe ratios are listed in Table 2 and are used to further constrain the redox 

conditions inside the capsule (see Section 4.1). 

 

4. RESULTS 

Syntheses and experiments performed at 1050°C contain significant amounts of crystals, while 

samples carried out at higher T (1150 to 1250°C) are crystal-free (Fig. 3). All decompression 

experiments are vesiculated, indicating that volatiles are released to a fluid phase upon decompression. 

The amount of bubbles decreases upon further annealing after decompression and, simultaneously, the 

bubbles (or fluid pools) are growing (compare Fig. 3a and 3b) and often migrating to the capsule wall 

(compare Fig. 3c and 3d). The crystals observed in the samples performed at 1050°C and ~QFM 

comprise ol (Fo80) and sometimes smaller amounts of cpx (En40Wo48Fs12); see Fig. 3e and 3f. The size 

of the crystals in the starting glasses ranges between 5 and 25 µm in diameter and was found to 

increase slightly upon decompression (~5 to ~35 µm). The crystal size remains constant during further 

annealing after decompression. The crystal volume fraction does not change significantly during 

decompression and upon annealing after decompression (~10.2 ± 2.6 vol%; determined via point 

counting method).  

The bulk composition – analyzed by EMP and IR spectroscopy (H2O content) – of all volatile-bearing 

starting glasses and experimental glasses performed at 1150 to 1250°C are similar within error (2 

sigma) to the respective anhydrous starting glasses (alkali basalt of Mg-poor basalt) if H2O, S and Cl 

are subtracted and oxides are normalized to 100 wt%. Experiments conducted at 1050°C show slight 

differences in melt compositions when compared to the starting glasses, induced by the crystallization 

of ol (and cpx). The average MgO and FeO contents re-calculated on an anhydrous basis are ~5.0 wt% 

and ~9.6 wt%, respectively, and lower than those in the anhydrous alkali basaltic starting glass, while 

all other constituents show slightly higher concentrations. 

The glasses of all samples are chemically homogenous and show typically no detectable concentration 

gradients between fluid pools or towards the capsule wall. However, the FeO content of some glasses 

from experiments performed in Pt capsules at T ≥ 1150°C tends to be slightly lower than in the 

corresponding starting glass. In addition, EMP data of a few experiments (ABLClF-5, ABGAx-1x, 
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ABGClC-1x) indicates a small decrease of the FeO content (by < 10 %) from the center to the wall of 

the capsule. However, the FeO contents of glasses in the center of the capsules are always similar 

within error to the concentration in the corresponding starting glass. EMP measurements of the Pt 

capsule materials of decompression experiments (run duration: ~6 h; 1200°C) reveal that the first few 

µm (< 20 µm) of the capsule wall may contain up to ~3 wt% FeO under reducing conditions 

(~QFM+1) and up to ~1 wt% FeO under oxidizing conditions. However, the FeO content in the Pt 

capsule wall decreases to zero 10 to 20 µm away from the melt-wall interface. These profiles can be 

used to roughly estimate the Fe-loss to the capsule wall using mass balance calculations. The 

calculations indicate that the Fe-loss to the capsule wall relative to the initial FeO content in the melt is 

< 1 % for experiments conducted under reducing conditions and < 0.5 % for experiments performed 

under oxidizing conditions. It is assumed that these minor changes in melt composition, related to the 

Fe-loss to the capsule wall, are not affecting the degassing processes of H2O, S and Cl upon 

decompression.  

 

Fig. 3a-f: BSE images of selected decompression 

experiments (r = 0.1 MPa/s). a) Experiment ABLClF-2 (T = 

1200°C; tA = 0 h); b) ABLClF-4 (1200°C; 5.5 h); c) ABLA-

3 (1050°C; 0 h). d) ABLA-1 (1050°C; 5 h); e) ABLA-3 

(1050°C; 0 h). f) ABLClA-1 (1050°C; 5 h). 

ol: Olivine; cpx: Clinopyroxene  
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4.1 Speciation of S and Fe in the melt 

The redox equilibrium between vessel and melt interior after decompression can be tested using S and 

Fe speciation data obtained via S-XANES and Fe-colorimetric analyses. Fig. 4a indicates that the 

Fe
3+

/Fe ratios of most samples analyzed correlate well with fO2(nominal), following the trends 

predicted by computation models (Kress and Carmichael, 1991; Moretti, 2005). Most points plot close 

to the trends calculated by the model of Kress and Carmichael (1991) and this model is used to 

estimate the fO2 inside the capsule based on Fe
3+

/Fe ratios [fO2(Fe)]. Fig. 4b indicates that the derived 

fO2(Fe) values show generally a good correlation with fO2(nominal). The calculated fO2(Fe) values of 

five samples (ABLA, -1; ABGAx-0x, -2x, -3) are ~0.8 to ~1.2 log units higher than fO2(nominal). 

These discrepancies possibly refer to uncertainties of the computation model used for the estimation of 

fO2(Fe); e.g. the influence of p on Fe
3+

/Fe at given fO2 is probably underestimated by the model of 

Kress and Carmichael (1991). On the other hand, uncertainties in the S
6+

/S ratio, estimated using 

XANES spectra, and used to correct the measured Fe
3+

/Fe ratios can easily cause artificially high 

Fe
3+

/Fe ratios. This is supported by Fig. 4c, indicating that the estimated S
6+

/S ratios are generally 

in accordance with the fO2(nominal) at oxidizing conditions, but may differ significantly (by > 1 log 

unit) at intermediate to reducing redox conditions. The deviations observed for several partially 

degassed samples performed at < QFM+2 is most likely related to the bad quality of the XANES 

spectra of glasses with low S contents (< 300 ppm). In addition, the integral method suggested by Jugo 

et al. (2010) to quantify fO2 via S-XANES spectra of reduced glasses may only provide a rough 

estimation of fO2 because a sharp S
2-

 peak at ~2472 eV is not considered (see also Chapter I-A). 

Indeed, the glasses of three out of five samples showing significant discrepancies between fO2(Fe) and 

fO2(nominal) contain < 250 ppm S and XANES spectra of all five samples show a distinct S
2-

 feature 

at about 2472 eV. In addition, according to Baker and Moretti (2011), the fO2 at which the S
6+

/S
2-

 ratio 

in the melt equals 0.5 (sulfide/sulfate transition) can change significantly with changing melt 

composition, p and T; i.e. the sulfide/sulfate transition (at 100 MPa) may drift by ~1 log unit towards 

more oxidizing conditions for H2O saturated melts when compared to H2O poor melts. Considering 

that the applied S-XANES calibration provided by Jugo et al. (2010) relies on hydrous but typically 

not H2O-saturated basaltic glasses synthesized at 1050°C and 200 MPa, the sulfide/sulfate transition in 
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the glasses of this study, which are often H2O saturated, may be at slightly higher fO2 than suggested 

by Jugo et al. (2010). This could also explain the deviations observed in Fig. 4c. 

A comparison of the fO2 calculated using S-XANES spectra [fO2(XANES)] with fO2(Fe) confirms the 

large uncertainty of the XANES data obtained for reduced samples (Fig. 4d). As expected from the 

discussion above, fO2(XANES) and fO2(Fe) are in good agreement under intermediate to oxidizing 

redox conditions (≥ QFM+1.5) but may differ significantly (by ~0.7 to 2.5 log units) under reducing 

conditions (< QFM+1). Noteworthy, four out of six samples showing significant deviations between 

fO2(XANES) and fO2(Fe) refer to XANES spectra from which a S
6+

/S ratio < 0 was extracted, which 

is certainly impossible (AB36-0; ABLA-1; ABGAx-0x, -4). Thus, these fO2(XANES) values have to be 

interpreted with caution. In addition, the glasses of the problematic samples often contain < 250 ppm S 

and typically show a sharp S
2-

 peak at ~2472 eV. 

Furthermore, as mentioned previously, the Shaw-membrane was obstructed during experiments of the 

series ABLA and ABLClA. It is emphasized that the Fe and S speciation data available for these 

experiments (see Table 2) indicate similar fO2 values (average values: log(fO2(Fe)/bar) ~ QFM+0.3; 

log(fO2(XANES)/bar) ~ QFM+0.1) as estimated based on the H2-pressure initially loaded to the vessel 

(~QFM). 

To conclude, the good correlation between the prevailing fO2 in the vessel [fO2(nominal)] and fO2(Fe) 

(Fig 4a and 4b) indicates that fO2(nominal) provides a good estimation of the prevailing fO2 in the 

capsule even for experiments quenched directly after decompression. Hence, re-adjustment between 

the redox conditions in the vessel and within the sample is fast and (near-) redox equilibrium between 

vessel and melt interior is achieved during decompression, confirming previous estimations based on 

H2 permeability (see Section 2.3 and Chapter I-A). In the following sections, fO2(nominal) will be 

used to interpret and discuss the obtained results. 

 

 

 

 

 



CHAPTER III 

 

101 

 

 

 

  

  

 

Fig. 4a-d: Comparison of the redox conditions in the vessel with Fe- and S-speciation data. a) Fe
3+

/Fe vs. 

fO2(nominal) in the vessel. b) fO2(Fe)in the capsule vs. fO2(nominal) in the vessel. c) S
6+

/S vs. fO2(nominal) in 

the vessel. d) fO2(Fe) in the capsule vs. fO2(XANES) in the capsule. 

fO2(nominal), prevailing fO2 in the vessel determine using either the H2-pressure measured in the Shaw-

membrane or the (known) intrinsic redox conditions in the vessel. 

fO2(Fe), calculated using the corrected Fe-colorimetric data and the model of Kress and Carmichael (1991). 

fO2(XANES), based on XANES data, determined using the approach of Jugo et al. (2010). 
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4.2 Fluid-melt distribution of H2O, S and Cl 

The distribution of volatiles between fluid and melt under fluid-melt equilibrium is described by the 

partitioning coefficients D
fl/m

 (for S: DS
fl/m

), where 

 

D
fl/m

 = X(fluid) / X(melt)           (5)  

         

and X is the concentration in wt% of the volatile in the fluid and in the melt, respectively. H2O, S and 

Cl contents in the starting glasses and in the partially degassed glasses of the decompression 

experiments were measured (EMP and IR) and used to estimate the volatile contents in the fluid phase 

by mass balance calculations. The derived X(fluid) / X(melt) ratios may not represent equilibrium 

conditions. Thus, the term D*S
fl/m

 is used in the following to describe the S fluid-melt distribution for 

kinetic experiments, while DS
fl/m

 (= partitioning coefficient) is used when near-equilibrium conditions 

are evident. 

Noteworthy, the alkali basaltic starting glass was used for most experiments conducted under 

oxidizing conditions, while most experiments carried out under intermediate (~QFM+1.5) to reducing 

conditions (≤ QFM+1) have Mg-poor basaltic composition. In the following sections results for Mg-

poor basalt with XMg ≈ 0.2 and alkali basalt with XMg ≈ 0.7 will be compared to evaluate the possible 

effects of melt composition on fluid-melt distribution of S. 

 

4.2.1 Evolution of H2O contents during decompression and annealing 

The H2O content in the melt decreases significantly during decompression from 400 to 70 MPa 

(r = 0.1 MPa/s) and remains constant upon further annealing at final p-T conditions (tA = 0 to 5.5 h; 

see Fig. 5a, 5b and 6a; Table 2). Melt composition (i.e. bulk H2O, S, Cl and MgO content) and fO2 

have no significant effect on the H2O content at final p of 70 MPa (values are similar within error). 

H2O contents measured in glasses of decompression experiments conducted at 1150 to 1250°C are 

always between 2.0 and 3.0 wt% H2O (47 experiments) except for four experiments which are slightly 

below 2.0 wt% H2O and three experiment with slightly more than 3.0 wt% H2O. For these last 

experiments, the error bar is relatively high because IR-glass sections were thin (< 100 µm). An 
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average value of 2.4 ± 0.4 wt% H2O is obtained for data at 1150 to 1250°C and this value is within the 

error of all analyzed glasses, except for experiment AB36A-1 (see Table 2 and Fig. 5a and 5b). 

Glasses of decompression experiments conducted at 1050°C show slightly higher H2O contents with 

an average of 2.9 ± 0.2 wt% (Fig. 6a; H2O contents range from ~2.7 to ~3.0 wt% at 1050°C and 70 

MPa), when compared to those performed at higher T. This may be due to a slight negative correlation 

between H2O solubility and T at 70 MPa, which is in accordance with previous studies (e.g. Holtz 

et al., 1995), or due to the slightly different melt composition at 1050°C (see Section 4.). 

The average H2O contents estimated for glasses of experiments carried out at 1050°C and 1150 to 

1250°C, respectively, are similar within error to the H2O solubility in basaltic melt at 70 MPa 

calculated using VolatileCalc (Newman and Lowenstern, 2002) and the empirical model of Moore et 

al. (1998); i.e. a H2O solubility of ~2.5 to 3.0 wt% is predicted by these models. The constant H2O 

contents of the melt, independently on tA, as well as the good agreement with the H2O solubility data 

indicate that H2O contents in melts from all decompression experiments are close to equilibrium 

values. 

 

4.2.2 Evolution of Cl contents during decompression and annealing 

The Cl contents in the partially degassed glasses of the decompression experiments are similar within 

error to the starting glasses (Table 2). Thus, only minor amounts of Cl are released into the fluid phase 

and DCl
fl/m

 is close to 1, in agreement with previous data on CO2-free basaltic systems (Webster et al., 

1999; Chevychelov et al., 2008), and DCl
fl/m

 will not be discussed in the following sections. However, 

the obtained results are used to evaluate the interaction between S and Cl in basaltic systems (see 

Sections 4.2.3 and 5.3). 

 

4.2.3 Evolution of S fluid-melt distribution during decompression and annealing 

The S content in the melt decreases strongly during decompression from 400 to 70 MPa (Fig. 5c, 5d 

and 6b). As illustrated in Fig. 5c and 5d, the S release depends strongly on the prevailing fO2. For 

instance, about 10 to 37 % (average: 21 ± 12 %) of the initial S in the melt is released to the fluid upon 

decompression  at  QFM+4  and  1200°C,  while about 40 to 75 % (average: 59 ± 12 %) are released at 
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Fig. 5a-f: Evolution of the H2O and the S content in the melt and of the S fluid-melt distribution at 1200°C. 

a) H2O content vs. tA at oxidizing conditions (~QFM+4). b) H2O content vs. tA at reducing conditions 

(~QFM+1). c) S content vs. tA at oxidizing conditions (~QFM+4). d) S content vs. tA at reducing conditions 

(~QFM+1). e) D*S
fl/m

 vs. tA at oxidizing condition (~QFM+4). f) D*S
fl/m

 vs. tA at reducing conditions 

(~QFM+1). 
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~QFM+1 and 1200°C. In addition, experiments conducted at oxidizing conditions show that the initial 

S content (ranging from ~800 to ~1200 ppm) significantly affects the final S content in the melt after 

decompression (tA = 0h). The small range of initial S contents in the reduced melts (~690 to 

~880 ppm S) does not allow one to identify a possible correlation with the final S content in the melt. 

Under oxidizing conditions, the Mg content in the melt (XMg: ~0.2 or ~0.7) influences the final S 

content. For instance, melts with initial S contents of ~1200 ppm show a final concentration of ~650 

ppm when XMg ≈ 0.2 and a final concentration of ~930 ppm when XMg ≈ 0.7 (all other experimental 

conditions being identical, Fig 5c). Such an effect of XMg on final S content in the melt is not observed 

at reducing conditions. An influence of the initial Cl content in the melt (0 to 3600 ppm) on S content 

in the melt with tA is not observable.  

The S contents in the glasses remain almost constant upon further annealing at final p-T (contents are 

typically identical within error), independently on fO2, T or melt composition. However, some 

experimental series indicate a slight decrease of the S content in the melt within the first 2 h of 

annealing. Thus, it is proposed that fluid-melt near-equilibrium with respect of S fluid-melt 

distribution is achieved at least for tA ≥ 2 h.  

In line with observations made for the evolution of the S (this Section), Cl (Section 4.2.2) and H2O 

(Section 4.2.1) contents in the melt with tA, D*S
fl/m

 was found to increase slightly between tA = 0 to 2 h 

(Fig. 5e, 5f and 6c) and to remain constant when tA ≥ 2 h. Thus, D*S
fl/m

 values of experiments with 

tA ≥ 2 h should represent near-equilibrium conditions; i.e. D*S
fl/m

 = DS
fl/m

. Changes in initial S and Cl 

content in the melt have no significant effect on D*S
fl/m

 in agreement with previous studies (e.g. data in 

Chapter I-A; Keppler, 2010; Zajacz et al., 2012). An influence of initial H2O content, ranging from ~3 

to ~7 wt%, is also not observed i.e. the derived D*S
fl/m

 values are typically similar within error (see 

Fig. 5 and 6 and data Table 2). This indicates that S obeys Henry’s law in basaltic systems, at least for 

the studied range of bulk H2O and S contents, which is consistent with previously published data for 

more evolved magmatic systems (e.g. Keppler, 2010; Zajacz et al., 2012); see also Fig. III-B.1 in 

Appendix III. Under reducing conditions (~QFM+1) no influence of XMg is indicated by the data (Fig. 

5f). Under oxidizing conditions (~QFM+4), the D*S
fl/m

 values obtained for alkali basalts (XMg: ~0.7) 

are slightly lower than those determined for Mg-poor basalts (XMg: ~0.2) (Fig. 5e). However, the error 
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bars of the D*S
fl/m

 values for Mg-poor basalts are large and values obtained for alkali basalts are often 

identical within error. 

 

 
 

 

 

Fig. 6a-c: Evolution of the H2O and the S content in the 

melt and of the S fluid-melt distribution at 1050°C and 

~QFM+0. a) H2O content vs. tA. b) S content vs. tA. 

c) D*S
fl/m

 vs. tA. 

 

4.2.3.1 Influence of T on S fluid-melt distribution 

Fig. 7 illustrates the influence of T on DS
fl/m

 in the range of 1150 to 1250°C, under oxidizing 

(~QFM+4; Fig. 7a) and intermediate (~QFM+1.5; Fig. 7b) redox conditions. To avoid possible 

variations of DS
fl/m

 as a result of changing XMg of the melt, only data obtained with XMg ~0.2 are 

presented in Fig. 7a (~QFM+4) while data with XMg ~0.7 is shown Fig. 7b (~QFM+1.5). 

Fig. 7a shows that T may have a small effect on DS
fl/m

 at oxidizing redox conditions (~QFM+4); i.e. 

DS
fl/m

 increases slightly from 52 ± 27 at 1150°C to 76 ± 30 at 1250°C. Similar observations are made 

for intermediate redox conditions (Fig. 7b), although the influence of T on DS
fl/m

 is more pronounced at 

~QFM+1.5; i.e. DS
fl/m

 increases by a factor of ~2 from 94 ± 20 at 1150°C to 209 ± 80 at 1250°C. 
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Considering an average DS
fl/m

 of 58 ± 18, determined from experiments performed at 1050°C and 

under reducing conditions (~QFM), the observed correlation between T and DS
fl/m

 may be extrapolated 

to 1050°C, at least for intermediate redox conditions. These observations contrast with data of Keppler 

(2010) for haplogranitic systems which indicate a minor effect of T on DS
fl/m

 in the range of 750 to 

850°C at 200 MPa and ~QFM+1.1. The differences between the results of Keppler (2010) for 

haplogranite and the data obtained in this study for basalt may arise from significant differences in 

melt composition (i.e. the haplogranitic system is Fe-free, while the basaltic melts of this study contain 

~10 wt% FeO; see also Section 5.2). 

 

 

  

Fig. 7a-b: Influence of T on DS
fl/m

. a) Oxidizing conditions (~QFM+4), XMg ~0.2. b) Intermediate redox 

conditions (~QFM+1.5), XMg ~0.7. 

 

 

4.3 Fluid-melt S-isotope fractionation 

The 
34

S values of the glasses (
34

Smelt) analyzed with SIMS range from 0.67 ± 0.42 ‰ to 5.76 ± 0.15 

(Table 3). Mandeville et al. (2008) and Fiege (Chapter II) have shown that the initial S-isotope 

composition in the starting glass has no influence on the instrumental S-isotope fractionation, at least 

in the 
34

Smelt range of about -32 ‰ to +18 ‰. Hence, the initial 
34

Smelt is not considered for the 

discussion and interpretation ofg-m values derived from the individual experiments. 
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Fig. 8 shows that g-m remains constant within error during further annealing after decompression at 

given fO2 and T. This is in agreement with our general knowledge indicating that kinetic isotopic 

fractionation effects are rare in high T processes (e.g. O'Neil, 1986) and consistent with findings in 

Chapter II for andesitic systems. It is assumed that the determined g-m values of all experiments (i.e. 

independently on tA) reflect fluid-melt equilibrium fractionation of S-isotopes for given T and fO2 

conditions at which each individual experiment was performed. 

In general, 
34

Smelt was found to increase under oxidizing conditions and to decrease under reducing 

conditions upon S degassing (see e.g. Fig. 8), consistent with theoretical considerations (see review of 

Taylor, 1986). For instance, experiments conducted under oxidizing conditions (~QFM+4) at 1200°C 

indicate an average g-m of 0.9981 ± 0.0015, while experiments performed at the same T but under 

reducing conditions (~QFM+1) reveal an average g-m of 1.0025 ± 0.0010. Noteworthy, an influence 

of the Mg content in the melts on the g-m is not observed. 

 

 

 

Fig. 8: Evolution of g-m with tA. 
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Table 3: Experimental results. S-isotope data  

Sample ID 
%S 

degassed 


34
Smelt     

[‰, V-CDT] 


34

Sfluid           

[‰, V-CDT] 
g-m 

n 

(SIMS) 

ABWClE-0x xx 4.78 ± 0.11 - - 2 

ABWClE-1 19 ± 1 5.35 ± 0.91 2.33 0.9970 2 

ABWClE-3 26 ± 1 5.76 ± 0.15 2.05 0.9963 2 

ABWClDx-0x xx 3.55 ± 0.36 - - 2 

ABWClDx-1 37 ± 1 3.59± 0.63 3.48 0.9999 2 

ABWClDx-3 46 ± 1 3.91 ± 0.07 3.12 0.9992 2 

ABLB-0 xx 3.36 ± 0.53  - - 3 

ABLB-1 63 ± 1 4.55 ± 0.87 2.67 0.9981 4 

ABLB-2 74 ± 1 5.05 ± 1.45 2.76 0.9977 5 

ABLB-3 65 ± 1 4.51 ± 0.98 2.72 0.9982 3 

Ba12 xx 3.20 ± 0.13 - - 2 

Ba12-1 60 ± 1 2.69 ± 1.43  3.54 1.0008 2 

ABLC-0x xx 5.39 ± 0.21 - - 2 

ABLC-2 69 ± 2 3.79 ± 0.10 6.10 1.0023 2 

ABLC-4 68 ± 2 2.83 ± 0.70 6.60 1.0038 2 

ABGAx-0x xx 4.15 ± 1.00 - - 3 

ABGAx-1x 71 ± 1 1.92 ± 0.46 5.05 1.0031 2 

ABGAx-3 87 ± 1 2.41 ± 0.18 4.40 1.0020 2 

ABGAx-4 77 ± 1 3.29 ± 0.32 4.40 1.0011 2 

ABLA xx 5.05 ± 0.33 xx xx 3 

ABLA-1 58 ± 9 2.94 ± 0.23 6.54 1.0036 2 

ABLA-2 63 ± 1 2.62 ± 0.28 6.48 1.0039 2 

ABLA-3 64 ± 1 1.93 ± 0.73 6.80 1.0049 2 

ABLA-5 70 ± 1 3.25 ± 0.27 5.83 1.0026 2 

Notes: Sample ID: starting glasses are written in italic; xx: not relevant or 0 

 

 

4.3.1 Influence of T on fluid-melt S-isotope fractionation 


34

Sg-m values are determined for each experiment which was analyzed by SIMS. In case of more than 

one experiment being conducted at the same T with the same starting glass (i.e. only tA differs), the 

derived 
34

Sg-m values are used to estimate an average 
34

Sg-m value (for example, an average 
34

Sg-m 

of 3.73 ± 0.94 was calculated for 1050°C and ~QFM, based on four experiments of series ABLA). 

Thus, the data points shown in Fig. 9, illustrating the dependence of 
34

Sg-m on T often refer to more 

than one experiment. 

Under oxidizing conditions (> QFM+2.8) the fluid-melt S-isotope fractionation can be described by 

the fractionation pair: SO2 gas – SO4
2-

melt and thus, by the fractionation factor (SO2 gas – SO4
2-

melt). 

Under reducing conditions (~QFM) H2S in the fluid and S
2-

 in the melt are the only abundant S species 
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in a magmatic fluid-melt system and the fractionation factor (H2S gas – S
2-

melt) applies to describe the 

isotopic fractionation upon S-degassing. 

 

Fig. 9: T dependence of the S-isotope fluid-melt fractionation. SIMS data 

derived from the same experimental series conducted at constant T were 

used to calculate a single 
34

Sg-m value; e.g. the data point at 1/T 
2
 ~ 

5.7×10
-7

 1/K
2
 is based on the four experiments of series ABLA. The trend 

for oxidizing conditions (dashed line) was calculated using the T 

dependence for (SO2 gas – H2S gas) given by Taylor (1986), based on data 

of Richet et al. (1977; Ri77), and the T dependence for (H2Sgas –SO4
2-

melt) 

provided by Miyoshi et al. (1984; Mi84); see Section 5.5.2, equation 

8.The trend for reducing condition (dotted line) is based on data of 

Miyoshi et al. (1984; Mi84); i.e. the T dependence provided by the authors 

for (H2S gas – SO4
2-

melt) and (S
2-

melt – SO4
2-

melt) was used to calculate 

(H2S gas – S
2-

melt) at given T.  

 

The T dependence for (SO2 gas – H2S gas) given by Taylor (1986), based on theoretical considerations 

of Richet et al. (1977), as well as the T dependence for (H2S gas – SO4
2-

melt) provided by Miyoshi et al. 

(1984) based on experiments (T = 600 to 1000°C; atmospheric p) are used to estimate a T dependence 

for (SO2 gas – SO4
2-

melt); see also Section 5.5.2, equation 8. In addition, the T dependences determined 

by Miyoshi et al. (1984) for (H2S gas – SO4
2-

melt) and (S
2-

melt – SO4
2-

melt) are used to calculate 

(H2S gas – S
2-

melt) at given T. Subsequently, trends for oxidizing [(SO2 gas – SO4
2-

melt)] and reducing 
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[(H2S gas – S
2-

melt)] conditions are calculated and plotted for comparison in Fig. 9. The results of this 

study under oxidizing conditions are in agreement with the calculated trends. On the other hand, under 

reducing conditions (~QFM+0.5), the experimental data obtained for basaltic systems indicate 

significantly larger fractionation effects than predicted by the data of Miyoshi et al. (1984). 
34

Sg-m 

determined in this study is 2.56 ± 1.04 at 1200°C and ~QFM+0.5 while relationships of Miyoshi and 

co-workers indicate a 
34

Sg-m of 0.57 ± 0.30 for reducing conditions and 1200°C. Comparable 

observations were made Fiege (Chapter II) for andesitic systems, noting that the T dependences of 

Miyoshi et al. (1984) are probably not applicable to silicate systems (see Section 5.5.1). 

 

5. DISCUSSION 

5.1 Kinetics of S degassing: The contrasting behavior of andesite and basalt 

The experimental data shows that kinetically controlled transient degassing of large amounts of S do 

not occur in basaltic systems, at least within the investigated range of p-T-fO2 conditions and 

r = 0.1 MPa/s. Fig. 5c and 5d show that the S content in the basaltic glasses does not change 

significantly as a function of tA. However, as noted above (Section 4.2.3) a small decrease of S content 

in the melt may be observed within the first 2 h of annealing after decompression (independent of fO2), 

but equilibrium fluid-melt partitioning of S is obtained at least after 2 h annealing at reducing as well 

as oxidizing conditions. This observation made for basaltic systems at oxidizing conditions contrasts 

with data obtained by Fiege (Chapter I-A) for andesitic systems (Fig. 10). The results presented in 

Chapter I-A for oxidized andesitic melts show that significant amounts of S are released to the fluid 

during fast decompression (r ~ 0.1 MPa/s) and that part of the S is then diffusing back into the glass 

during annealing (Fig. 10). Near-equilibrium is reached after ~5 h. This kinetic effect was interpreted 

to be related to the formation of anhydrite within the fluid phase upon decompression. Noteworthy, 

crystalline phases (like anhydrite) were not observed in any of the bubbles of the basaltic samples. 

Differences in fluid composition and, thus, differences in fluid properties when comparing basaltic to 

andesitic systems may be one explanation for the observed discrepancies. In this hypothesis the fluid 

coexisting with the basaltic melt would not become saturated in anhydrite upon decompression. 

However, this is very speculative. It is more reasonable to assume that the lower melt viscosity of 
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basaltic melts when compared to andesitic melts and, thus, differences in S transport rate within the 

melt play a crucial role.  

Assuming that S transport in the basaltic melts is controlled by diffusion (i.e. convection processes are 

negligible), the time t [s] required for fluid-melt equilibration with respect to S distribution after 

decompression can also be estimated via the S diffusivity D(S) [m
2
/s] in the basaltic melt and the 

distance x [m] between fluid pools [with x = (2·D(S)·t)
0.5

]. The distance between two bubbles was 

estimated using back scattered electron (BSE) images (collected via EMP) and is typically < 50 µm at 

1050°C and < 300 µm at 1200°C for experiments quenched directly after decompression (tA = 0 h; 

examples are shown in Fig. 3a and 3c).  

Behrens and Stelling (2011) found that the empirical Eyring equation (equation 6), relating diffusivity 

D [m
2
/s] and viscosity Pa·s], is adequate to estimate the S diffusivity in basaltic systems,  

 









Tk
D            (6) 

 

where k is the Boltzmann constant, T is the temperature [K] and  is the jumping distance (here: 

~0.3 nm). Applying the Eyring relationship to estimate the transport properties of S at 1050°C, using 

the viscosity model of Hui and Zhang (2007) for the alkali basalt composition, and assuming an initial 

H2O content in the melt of 6 wt% (prior decompression) and a final content of ~2.5 wt% H2O (after 

decompression), the derived D values are 8 to 16 times higher than those estimated in Chapter I-A for 

andesitic melts at 1030°C prior to and after decompression, respectively. Noteworthy, most 

experiments of this study were performed at T ≥ 1150°C and the differences in D between andesitic 

melts at 1030°C (Chapter I-A) and basaltic melts at ≥ 1150°C (this study) are calculated to be > 25. 

These differences in D between andesitic and basaltic melts can explain the absence of kinetic, 

transient degassing effects of S upon decompression of basaltic melts.  

Assuming a distance between two bubbles of 50 µm the time t required to reach equilibrium 

conditions in basaltic systems with respect to S fluid-melt distribution ranges between ~4 and ~64 min 

at 1050°C (depending on Mg and H2O content of the melt) and between ~1 and ~3 min at 1200°C. 
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Noteworthy, the model of Giordano et al. (2008) predicts slightly higher values; i.e. run durations 

of up to 85 min may be required to reach equilibrium conditions at 1050°C. Considering that 

decompression from 400 to 70 MPa with r = 0.1 MPa/s takes 55 min, the estimated timescales indicate 

that diffusion controlled transport of S is sufficient to achieve fluid-melt near-equilibrium within 1 or 

2 h after decompression. This is consistent with the experimental data, i.e. S content in the melts 

remains almost constant for tA ≥ 2 h. 

 

 

Fig. 10: Evolution of the S content in the melt during decompression 

(r ~ 0.1 MPa/s) and with tA under oxidizing conditions (> QFM+3). 

Data of this study for basaltic systems is compared to results presented 

in Chapter I-A (Fi13) for andesitic systems. The red arrows illustrate 

the evolution of the S content in the andesitic melt. 

 

5.2 Influence of melt composition on DS
fl/m

 

As shown by the collected data, changing the bulk MgO content of the sample and, thus, changing 

slighly polymerization (and viscosity) of the melt does not affect the fluid-melt distribution of S, H2O 

and Cl (Fig. 5) to a significant extend. The slight increase of DS
fl/m

 with decreasing XMg observed at 
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~QFM+4 (Fig. 5e) is probably negligible considering the high uncertainty of the calculated DS
fl/m

 

values at XMg = 0.2; i.e. DS
fl/m

 values at XMg = 0.2 and XMg = 0.7 are usually identical within error. 

Under oxidizing conditions (~QFM+4) and tA ≥ 2 h (near-equilibrium), an average DS
fl/m

 of 39 ± 25 is 

estimated for basaltic systems at ~70 MPa and ~1150 to ~1250°C. Considering the minor dependence 

of DS
fl/m

 on T under oxidizing conditions (see Section 4.2.3.1, Fig. 7a), the estimated average DS
fl/m

 

value is in agreement with observations of Fiege (Chapter I-A) suggesting that an average DS
fl/m

 of ~50 

can be applied to a wide range of p and silicate melt composition under oxidizing conditions. 

Based on experiments carried out under reducing conditions (~QFM) at ~1050°C and with tA ≥ 2 h 

(near-equilibrium conditions) a DS
fl/m

 of 58 ± 18 is estimated for alkali basaltic melts at p of ~70 MPa 

(see Fig. 6). A similar DS
fl/m

 of 74 ± 30 was calculated using data from Moune et al. (2009) for similar 

melt compositions, T (1050°C) and fO2 (~QFM) but higher p of 200 to 300 MPa. However, p 

variations in the range of 70 to 400 MPa have no significant effect on DS
fl/m

 (see data in Chapter I-A; 

Keppler, 2010; Lesne et al., 2011). In contrast to oxidizing conditions, the change of melt composition 

from basaltic to rhyolitic may influence strongly DS
fl/m 

at QFM to QFM+1. In Chapter I-A a DS
fl/m

 of 

~220 was estimated for andesite at ~QFM+1, ~1030°C and ~70 MPa. This value is in good agreement 

with data of Zajacz et al. (2012) obtained for similar melt composition at ~QFM, 1000°C and 

200 MPa. In addition, Keppler (2010) determined a DS
fl/m

 of about 470 for haplogranitic systems at 

~QFM-0.9, 850°C and 200 MPa. The difference of T between the dataset for haplogranite and other 

systems does not explain this variation of DS
fl/m

 (see Fig. 7 and Keppler, 2010). Noteworthy, the FeO 

content in the different melts ranges from ~10 wt% (basalt; this study) to ~5 wt% (andesite; Chapter I-

A) to 0 wt% (Fe-free haplogranite; Keppler, 2010). Hence, the contrasting observations made for the 

influence of melt composition on DS
fl/m

 under reducing conditions, when compared to oxidizing 

conditions, refers most likely to the large effect of FeO content in the melt on S
2-

 solubility in reduced 

systems (see e.g. review of Wallace and Edmonds, 2011). This is also consistent with the observed 

minor dependence of MgO content on DS
fl/m

 at almost constant FeO contents indicated by the results of 

this study and in agreement Zajacz et al. (2012) noting a negative correlation between DS
fl/m

 and FeO 

content in andesitic melts under reducing conditions (~QFM). 
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5.3 Interaction of S and Cl 

Previous studies investigating the effect of Cl on DS
fl/m

 in trachybasaltic (Beermann, 2010), phonolitic 

(Webster et al., 2009) and andesitic systems (Chapter I-A) showed that DS
fl/m

 increases with the bulk 

Cl content. On the other hand, a weak negative correlation between DS
fl/m

 and bulk Cl content in 

rhyodacitic systems at ~QFM+0.6, 850°C, and 200 MPa was observed by Webster and Botcharnikov 

(2011) based on results of Botcharnikov et al. (2004). However, data of Botcharnikov et al. (2004) has 

a high uncertainty due to the presence of pyrrhotite in most samples. Thus, in a first approach, the 

absence of a correlation between the initial Cl content in the basaltic melt (0 to ~0.36 wt% Cl) and 

DS
fl/m

 indicated by the results in this study seems to be inconsistent with these studies. However, the 

bulk Cl content in some of the previous studies mentioned above was significantly higher than in this 

study (Webster et al., 2009; Beermann, 2010). For instance, the bulk Cl content in the trachybasaltic 

system investigated by Beermann (2010) ranges from ~0.05 to ~3.5 wt% Cl. Noteworthy, the author 

observed no systematic effect of Cl on DS
fl/m

 for bulk Cl contents ≤ 0.55 wt%, which is consistent with 

results of this study. Moreover, considering that the Cl content in basaltic melts of this study remains 

almost constant during decompression and further annealing after decompression at final p-T 

conditions, the DCl
fl/m

 at our investigated conditions is ~ 1, implying that the Cl content in the 

coexisting fluid phase is negligible. Hence, the data of this study and Beermann (2010) indicate that 

changing fluid properties, related to changing fluid composition (e.g. changing contents of Cl and 

charge compensating cations), are responsible for the effect of bulk Cl content on DS
fl/m

 observed in 

previous studies. In agreement with interpretations of Webster and Botcharnikov (2011) it is suggested 

that the effect of Cl on DS
fl/m

 can be explained by changing activity coefficients of S and Cl in the fluid 

phase. Hence, Cl content in the system can only affect the distribution of S between fluid and melt if 

DCl
fl/m

 >> 1, i.e. significant amounts of Cl can be released to a fluid phase upon decompression. 

 

5.4 Influence of fO2 on DS
fl/m

  

Based on the results gained for 1150 to 1250°C for basaltic systems in this study, an average DS
fl/m

 of 

39 ± 25 is determined for oxidizing conditions (~QFM+4), while a DS
fl/m

 of 181 ± 86 is calculated for 

redox conditions of ~QFM+1. Thus, this study confirms that DS
fl/m

 depends strongly on fO2 which 
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influences the S speciation in the melt (e.g. Keppler, 1999; Jugo et al., 2010; Keppler, 2010; Zajacz 

et al., 2012). The relationship between DS
fl/m

 and fO2 (Fig. 11) indicated by the new data is in 

agreement with results presented in Chapter I-A for andesitic systems (~70 MPa, 1030°C) and data of 

Beermann (2010) for trachybasaltic systems (100 to 200 MPa, 1050°C). Noteworthy, only anhydrite- 

and pyrrhotite-free experiments of Beermann (2010) with comparable bulk Cl content (≤ 0.55 wt%) 

are considered in Fig. 11. The data of Zajacz et al. (2012) for andesitic systems (200 MPa, 1000°C) 

follow a similar trend but which is slightly shifted towards lower DS
fl/m

 for a given fO2 at < QFM+2. 

Considering that DS
fl/m

 is rather independent of p in the range of 70 to 400 MPa (see data in Chapter I-

A; Keppler, 2010; Lesne et al., 2011) and the small T dependence indicated in Fig. 7, the slightly 

higher DS
fl/m

 values obtained for experiments conducted at 1150 to 1250°C (this study) when compared 

to experiments performed at 1000 to 1050°C (see data in Chapter I-A; Beermann, 2010; Zajacz et al., 

2012) may be explained by differences in T. On the other hand, under reducing conditions, differences 

in melt composition can also explain the lower DS
fl/m

 determined in previous studies for andesitic 

systems (see Section 5.2). 

 

Fig. 11: Influence of fO2 on DS
fl/m

 (tA ≥ 2h; near-equilibrium). 

Be10: Beermann (2010); equilibrium experiments; only anhydrite- and pyrrhotite-free 

experiments are considered. 

Za12: Zajacz et al. (2012); equilibrium experiments. 

Fi13: Data presented previously in Chapter I-A; decompression experiments; r ≈ 0.1 MPa/s; 

tA ≥ 5 h (near-equilibrium). 
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5.5 S-isotope fractionation 

5.5.1 Applicability of previously published T dependences to silicate melts 

The large discrepancies observed for reducing conditions between the experimental data of this study 

and the trend derived from the data of Miyoshi et al. (1984) – (see Fig. 9; Section 4.3.1) – indicate that 

either the equation given by Miyoshi et al. (1984) for (SO4
2-

melt – S
2-

melt) or for (SO4
2-

melt – H2S gas) or 

both, are not applicable to silicate systems. The equations of Miyoshi et al. (1984) are based on 

experiments performed at 600 to 1000°C and atmospheric p, using either anhydrous Na2SO3 in melts 

of NaCl and LiCl-KCl mixture to determine (SO4
2-

melt – S
2-

melt) or molten NaCl analogues and 

aqueous sodium chloride fluid to determine (SO4
2-

melt – H2S gas). In Chapter II it is suggested that the 

T dependence determined by Miyoshi et al. (1984) for (SO4
2-

melt – H2S gas) may be applicable to 

silicate systems, as the composition of the fluid is similar to that expected in natural systems. 

However, the applicability of the value of (SO4
2-

melt – S
2-

melt) may be questioned. The equilibrium 

isotope fractionation effects result from the effect of atomic mass on bond energy (e.g. O'Neil, 1986), 

the differences between 
34

Sg-m observed in this study and predicted by Miyoshi et al. (1984) are most 

probably related to the significant differences in melt composition and structure when comparing 

silicate melts to molten salt, i.e. the bonding energy of S
2-

 incorporated in a sodium chloride melt may 

differ significantly from that of S
2-

 in a silicate melts.  

Noteworthy, differences in bonding energies of S
2-

 or S
6+

 in basaltic melts when compared to rhyolitic 

melts are probably negligible for fluid-melt S-isotope fractionation effects. Hence, it is proposed that 

the isotopic fractionation factors determined in this study are applicable to a large range of silicate 

melt compositions. This is also confirmed by the good correlation found between the basaltic data of 

this study and results for andesitic composition presented in Chapter II; see Section 5.5.2 and Fig. 12 

in this Chapter. 

 

5.5.2 Modeling S-isotope fractionation in silicate systems 

The isotopic data obtained in this study at 1050°C under reducing conditions (~QFM) and previous 

data obtained for an andesitic composition at 1030°C in the fO2 range of ~QFM+1 to ~QFM+4 (see 

Chapter II) are used to predict the dependence of 
34

Sg-m on fO2. Changes in melt composition from 
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andesitic to basaltic as well as slight changes in T from 1030°C (andesite, Chapter II) to 1050°C 

(basalt, this study) are assumed to have a minor effect on g-m and data are combined together.  

The S-isotope fractionation is controlled by four fractionation factors (SO2 gas – SO4
2-

melt), (SO2 gas – 

S
2-

melt), (H2S gas –SO4
2-

melt) and(H2S gas –S
2-

melt), but the factor at very oxidizing, (SO2 gas –SO4
2-

melt), 

and at very reducing conditions, (H2S gas – S
2-

melt), are expected to control mainly the fractionation 

over the whole fO2 range (see discussion in Chapter II). Thus, these two factors need to be determined 

accurately. In Chapter II we constrained the value of (SO2 gas – SO4
2-

melt) to be 0.9985 ± 0.0007 at 

1030°C, but (H2S gas – S
2-

melt) was not well constrained for reducing conditions and was estimated to 

be between ~1.0046 and ~1.0099 (lower and upper limit, respectively, Fig. 12) at 1030°C. The data 

obtained in this study at ~QFM allow us to improve the value of (H2S gas – S
2-

melt). S in fluid 

coexisting with a basaltic melt is almost exclusively present as H2S at ~QFM and 1050°C, i.e. 

SO2 / (SO2 + H2S) molar ratio is ~0. This information is obtained using the program DCompress, 

provided by Alain Burgisser (CNRS, Orléans, France) and based on data of Burgisser et al. (2008) and 

unpublished data of Burgisser et al.. The model of Jugo et al. (2010) shows that S
2-

 is the only relevant 

species in the basaltic melt at these conditions, i.e. S
6+

/S ≈ 0. A 
34

Sg-m of 3.73 ± 0.94 was 

determined for experiments performed at 1050°C and ~QFM. Hence, it is suggested that an g-m of 

1.0037 ± 0.0009 describes the isotopic fractionation between S
2-

 in the silicate melt and H2S in the 

fluid at 1050°C. 

Following the approach described in Chapter II the effect of fO2 on 
34

Sg-m was re-calculated for 

T ≈ 1040°C using (SO2 gas – SO4
2-

melt) = 0.9985 ± 0.0007 estimated by Fiege (Chapter II) for 1030°C 

in andesitic systems as well as the new value for (H2S gas – S
2-

melt) of 1.0037 ± 0.0009 determined for 

basaltic systems at 1050°C. The re-calculated value for (SO2 gas – S
2-

melt) is ~1.0060 while (H2S gas – 

SO4
2-

melt) is estimated to be ~0.9964 at 1040°C. 

The evolution of 
34

Sg-m as a function of fO2 is shown by the solid red line in Fig. 12. Fig. 12 shows 

that the evolution of 
34

Sg-m is close to that predicted by the model presented in Chapter II if the lower 

limit of 
34

Sg-m is applied. The large difference to the upper limit is most likely related to the lack of 

data for andesites at < QFM+0.8. 
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Fig. 12: 
34

Sg-m vs. fO2. See Section 5.5.2 for details on the calculation 

of the red trend (1040°C) and the blue trend (1200°C). 

Fi13: This data was previously presented in Chapter II. The modeling 

approach for the grey trends is described in Chapter II, Section 5.2. 

 

As mentioned previously (Chapter II, Section 5.2), the significant differences between the calculated 

trend(s) and some of the andesitic data at intermediate redox conditions is either related to 

uncertainties in the determination of fO2 in the experiments or to the possible influence of p, T and 

melt compositions on the sulfate/sulfide transition (Baker and Moretti, 2011).  

The isotopic data obtained in this study for various T is limited (see Table 3), however, it can be used 

to estimate a preliminary relationship for the dependence of (H2S gas – S
2-

melt) on T. Considering only 

experiments with S
6+

/S < 0.1 conducted at 1200°C and under reducing conditions (i.e. ABL-C-2; 

ABG-Ax-1x; -3) a g-m of 1.0025 ± 0.0011 can be determined, and this value presumably 

represent(H2S gas – S
2-

melt) at 1200°C in silicate systems. In combination with the(H2S gas – S
2-

melt) 

value determined for 1050°C under reducing conditions (1.0037 ± 0.0009) the following preliminary 

equation, based on  regression, is proposed to be applicable to silicate melt systems at elevated T 

(~1000 to 1200°C):  

 

10
3
 ln(H2S gas – S

2-
melt) = 10.84 · 10

6
/ T

2
 – 2.50 ;   T [K];   1 sigma ~ 0.0010   (7) 
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Using the T dependence for (SO2 gas – H2S gas) given by Taylor (1986) based on data of Richet et al. 

(1977) as well as the T dependence for (H2S gas – SO4
2-

melt) provided by Miyoshi et al. (1984) a T 

dependence for (SO2 gas – SO4
2-

melt) is estimated to be: 

 

10
3
 ln(SO2 gas – SO4

2-
melt) =  -0.42 (10

3
/T)

3
 – 1.933 (10

3
/T)

2
 – 0.105 (10

3
/T) – 0.41;   T [K] (8) 

 

As shown in Fig. 9, equation 8 reproduces well the data obtained in this study for oxidizing basaltic 

systems at 1150 to 1250°C (see Fig. 9). Thus, equation 7 and 8 are used to estimate(H2S gas – S
2-

melt) 

and(SO2 gas – SO4
2-

melt) for 1200°C. However, considering that a 
34

Sg-m of -1.82 ‰ is predicted by 

equation 8 for 1030°C and that a 
34

Sg-m of about -1.48 ‰ was determined in Chapter II for the same T 

in andesitic systems (value is based on 8 experiments), it is assumed, in a first approximation, that 

~0.24 ‰ need to be added to the values predicted by equation 8 when studying silicate systems. 

Subsequently, following the approach described in Chapter II to estimate the missing two fractionation 

pairs [(SO2 gas – S
2-

melt) and (H2S gas – SO4
2-

melt)] and to calculate the S speciation in the fluid and 

melt phase at given fO2, respectively, g-m is estimated for given fO2 at 1200°C. The derived trend for 

1200°C is shown in Fig. 12 (blue line). The trend indicates that T has a small effect on S-isotope fluid-

melt fractionation under oxidizing conditions, while significant changes are to be expected under 

reducing conditions. 

 

6. CONCLUSION AND IMPLICATIONS TO NATURAL SYSTEMS 

The presented experimental results provide first insights on the kinetics of S degassing during 

decompression in basaltic systems. The experiments show that fluid-melt near-equilibrium with 

respect to S distribution in basaltic systems is achieved shortly (tA < 2 h) after fast decompression from 

400 to 70 MPa (r = 0.1 MPa/s). In contrast to previous results for oxidized andesitic systems (Chapter 

II), no evidence for kinetically controlled transient release of large amounts of S to a fluid phase upon 

fast decompression of basaltic melts is indicated by the experimental results.  
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Another important finding of this study is that changes in melt composition from basaltic to rhyolitic 

have a minor effect on DS
fl/m

 under oxidizing but a major effect on DS
fl/m

 under reducing conditions. 

These differences are presumably related to the large effect of FeO (i.e. Fe
2+

) content in the melt on S
2-

 

solubility. 

Furthermore, experimental data obtained for Cl-bearing basaltic systems (this study and Beermann, 

2010) indicate that the interaction between S and Cl is of minor importance in basaltic systems 

containing ≤ 0.55 wt% Cl. Experiments of this study show that only negligible amounts of Cl are 

released by Cl-bearing basaltic melts (≤ 0.36 wt% Cl) to a fluid phase during decompression. Thus, it 

is reasonable to assume that changing fluid properties related to changing fluid composition are 

responsible for the S-Cl interaction at higher bulk Cl contents (> 0.55 wt%). The observed minor 

release of Cl to a fluid phase upon decompression from 400 to 70 MPa has to be taken into account for 

the interpretation of volcanic gas signatures. For instance, the Cl/S ratio in volcanic gases released by 

alkali basaltic magma, ascending from a deep magma reservoir (~10 to 15 km) to a magma chamber at 

lower levels (~2 to 3 km) is expected to be very low if bulk Cl is ≤ 0.55 wt%.  

The S-isotope data confirm observations made in Chapter II indicating that i) fluid-melt S-isotope 

fractionation in reduced magmatic systems may be significantly higher than previously assumed and 

ii) the T dependence derived from experiments from the 80s, using molten salt, are probably not 

applicable to silicate melts at magmatic p-T conditions. The combined results of this study and of 

Chapter II show that closed system degassing of basaltic melts at ~1040°C can induce a fluid-melt S-

isotope fractionation of about +3.7 ‰ in reduced systems (~QFM) and of about -1.5 ‰ in oxidized 

systems (~QFM+4). Furthermore, results presented in this study show that the fluid-melt S-isotope 

fractionation decreases slightly with increasing T; e.g. at 1200°C a fluid-melt fractionation of up to 

+3.0 ‰ can be expected under reducing. Model calculation indicate that differences of up to ~30 ‰ 

between 
34

S of the fluid and
34

S of the source melt can be reached during open system degassing of 

reduced systems. The results show that monitoring S-isotopes in volcanic gases with modern, high 

precision techniques can become a powerful tool to improve forecasting of volcanic eruptions. 
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SUMMARY AND CONCLUSIONS 

A new experimental approach was applied to investigate kinetics of S (and Cl) distribution between 

fluid and H2O-S±Cl-bearing andesitic and basaltic melt. The data provides first insights into the 

partitioning of S (and Cl) between fluid and melt upon degassing at disequilibrium conditions.  

Experiments, which were conducted under oxidizing conditions (> QFM+3; i.e. when S
6+

 is the only 

S species) with andesitic melt composition, revealed a strong decrease of the S content in the melt by 

about 85% during fast decompression (0.1 MPa/s). After fast decompression subsequent annealing 

for ≥ 5 h resulted in an increase of the S content in the andesitic melt up to ~75% level of the initial S 

content; i.e. the rapidly released S was partly resorbed by the melt during annealing. On the other 

hand, at lower fO2 (QFM+1 to QFM+1.5; i.e. when S
2-

 became abundant), the S content in the 

andesitic melt was found to be largely independent of tA after decompression at the same rate 

(r = 0.1 MPa/s). These observations indicate different behaviors of S
2-

 and S
6+

 during kinetically-

controlled degassing which need to be considered when modeling decompression induced magma 

degassing. 

Experiments with basaltic melt composition show that fluid-melt near-equilibrium with respect to S 

distribution is achieved shortly (tA < 2 h) after decompression from ~400 to ~70 MPa at a rate of 

~0.1 MPa/s, largely independent of fO2 ranging from ~QFM to ~QFM+4. In contrast to data obtained 

for andesitic systems, no evidence for kinetically controlled transient release of S upon fast 

decompression of basaltic melts is indicated by the experimental results.  

The presented results indicate no distinct correlation between bulk H2O content, ranging e.g. from ~3 

to ~7 wt% in the basaltic system, and DS
fl/m

. However, a slight negative correlation between the bulk 

H2O content in the melt and DS
fl/m

 indicated by a few experiments with andesitic composition (Chapter 

I-A, Fig. 6b and 8b) may be due to variations in fO2 (varying from QFM+1.0 to QFM+2.2 for these 

experiments) as well as to the low accuracy of DS
fl/m

 values derived from experiments with low initial 

H2O content, which is related to the applied approach (i.e. mass balance calculations). The addition of 

up to ~1000 ppm Cl to the system has a small but noticeable effect on DS
fl/m

 in S-enriched (>> 300 to 

~3000 ppm S) andesitic systems. On the other hand, data for Cl-bearing basaltic systems (this study; 

Beermann, 2010) shows that the S-Cl interaction is of minor importance in basaltic systems containing 
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≤ 0.55 wt% Cl. Noteworthy, our results show that only negligible amounts of Cl are released by Cl-

bearing basaltic melts (≤ 0.36 wt% Cl) during decompression (i.e. DCl
fl/m

 ~ 1), while a DCl
fl/m

 ranging 

from ~1 to ~13 was determined for andesitic systems. Accordingly, we suggest that changing fluid 

properties related to changing fluid composition are responsible for the S-Cl interaction at higher Cl 

contents in the bulk system (> 0.55 wt% Cl; see Beermann, 2010). The minor release of Cl to a fluid 

phase during decompression (typically from ~400 to ~70 MPa) of basaltic melts has to be considered 

for the interpretation of volcanic gas signatures; i.e. the Cl/S ratio in volcanic gases released by 

ascending basaltic magma is supposed to be very low (probably < 1) when bulk Cl is ≤ 0.55 wt%.  

Another important finding of this study is that strong changes in bulk melt composition from basaltic 

to rhyolitic have only a minor effect on DS
fl/m

 under oxidizing but a major effect under reducing 

conditions. These differences are supposed to be directly related to the large effect of FeO content in 

the melt on S
2-

 solubility (see e.g. review of Baker and Moretti, 2011). The data obtained on S (and Cl) 

fluid-melt distribution at fluid-melt disequilibrium and near-equilibrium, respectively, under varying 

redox conditions as well as with differing initial volatile content, are of high relevance for developing 

volcanic degassing scenarios. 

Bubble formation was investigated on selected andesitic samples via BSE image analyses. A 

comparison of the obtained results with data of Cichy et al. (2011) for rhyodacitic systems indicate the 

high importance of decompression style on BND, confirming the observations of Nowak et al. (2011) 

based on preliminary decompression experiments. In addition, the data shows that even short storage 

times (≤ 5 h) at shallow depths (~2 to 3 km) interrupting the ascent of a magma, have a significant 

effect on BND; e.g. BND decreases by ~1 log unit within 5 h annealing after decompression. Both 

findings need to be considered when interpreting BND values derived from natural (pumice) samples 

and help to understand explosive (Plinian) eruptions. 

Selected samples were analyzed by SIMS to investigate S-isotope fractionation between fluid and 

silicate melt. The results provide first constraint on S-isotope fractionation between fluid and silicate 

melt at geologically relevant p-T condition and with close to natural fluid-melt compositions. The 

compiled data for andesitic and basaltic systems shows that previous models (e.g. de Hoog et al., 

2001) based on experiments using simple melt compositions (e.g. molten salt Na2SO4 and Na2S 
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analogies) as well as on theoretical or compilation type studies from the 70s and 80s (summarized by 

Taylor, 1986) may significantly underestimate the isotopic fractionation in silicate systems, at least 

under reducing conditions. The observed discrepancies can be explained by i) systematic flaws in 

previously published models and ii) the limited (experimental) data available in literature on S-isotope 

fractionation, which is probably not applicable to silicate melts at magmatic p-T conditions. In this 

study we show that closed system degassing of S-bearing silicate melts at ~1040°C can induce S-

isotope fluid-melt fractionation of about +3.7 ‰ under reducing conditions (~QFM to ~QFM+1) and 

of about -1.5 ‰ under oxidizing conditions (> QFM+3). In addition, the obtained data indicates that 

the fluid-melt S-isotope fractionation decreases slightly with increasing T; e.g. at 1200°C a 
34

Sg-m  of 

up to +3.0 ‰ can be expected under reducing conditions while a 
34

Sg-m  of about  -1.3 ‰  was 

estimated for oxidizing conditions. Model calculations based on these experimental results reveal that 

differences of up to ~30 ‰ between 
34

S of the fluid and
34

S of the source melt can be reached upon 

open system degassing of reduced silicate melts. Thus, monitoring S-isotopes signatures in volcanic 

gases with modern, high precision techniques can help to forecast volcanic events. 
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APPENDIX I 

I-A. Microscopic investigation 

 

Fig. I-A.1: Microscopic image of a fluid bubble in the quenched andesitic 

glass. The bubble contains a well-developed translucent crystal with 

monoclinic shape (anhydrite, according to Raman spectroscopy) and 

amorphous material quenched from the fluid. This type of anhydrite-

bearing fluid inclusion is a typical feature of the decompression 

experiments conducted at oxidizing conditions (log(fO2/bar) ~ QFM+4) 

and quenched directly after decompression (tA = 0 h). 

 

I-B. Raman spectroscopy 

Confocal Raman spectroscopy was used to determine the S species in the quenched fluid phase and to 

identify crystals (see Fig. I-A.1). Measurements were carried out on a Bruker Senterra micro-Raman 

spectrometer equipped with an Olympus BX 51 microscope and an Andor DU420-OE CCD (Settings: 

532 nm laser excitation line; 20 mW power; Olympus 50× LWD objective; 20 s accumulation time; 

5 acquisition repetitions, 50 µm pinhole). Unpolarized spectra were recorded in the range of 70 to 

4455 cm
-1

 with a resolution of ±9 cm
-1

. The wavelength accuracy and precision is maintained to better 

than 0.1 cm
-1

. The as-measured raw sets of Raman spectra were baseline- and T corrected, integrated 

and smoothed twice by the application of adjacent averaging over three points. The applied correction 
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caused no artificial modification of Raman bands symmetry. For comparison Raman spectra were 

normalized to the fundamental OH stretching vibration band at ~3550 cm
-1

. 

Bubbles (~50 µm in diameter) near the surface but still closed to the atmosphere were selected for 

Raman measurements. The laser was focused on the sample surface and depth profiles were measured 

down to a depth of 50 µm with a step size of 5 µm. Along such a profile the relative contributions of 

the glass, quenched fluid and (possibly) crystals to the spectra change systematically. Spectra of 

crystals and bubbles always contain contributions of the glass matrix (Fig. I-B.1). This cannot be 

avoided even when using a confocal setup. Nevertheless, the characteristic sharp features from crystals 

and quenched S species can be easily distinguished from the broad bands of the glass (spectrum (d) in 

Fig. I-B.1). 

The spectrum on top (Fig. I-B.1 (a), QFM+4disequi) was recorded on a crystal in a bubble formed in an 

experiment under oxidizing conditions with instantaneous quench after decompression, thus, it 

represents fluid-melt disequilibrium. The most prominent peak at 1010 to 1014 cm
-1

 fits to the 

symmetric stretching vibration of sulfate groups in gypsum or anhydrite. Weak peaks at ~434 and 

~625 cm
-1

 are consistent with published Raman spectra of gypsum (Sarma et al., 1998; Smith and 

Dent, 2005), while the peaks at 664 to 676 cm
-1

 and ~1128 cm
-1

 are characteristic for anhydrite (Sarma 

et al., 1998). An additional weak peak at ~494 to 497 cm
-1

 is expected for anhydrite or gypsum based 

on literature, but it is overprinted by spectral features of the glass. The absence of OH stretching 

vibration bands at 3405 and 3490 cm
-1

 originating from crystalline water in gypsum (Krishnamurthy 

and Soots, 1971)
 
gives clear evidence that the frequently observed monoclinic shaped crystals in the 

quenched fluids under oxidizing conditions and fluid-melt disequilibrium are most likely anhydrite. 

Additionally, a small fraction of gypsum is present in the quench products of the fluid as indicated by 

the peaks at ~434 and ~625 cm
-1

. The distinct peaks at 150 cm
-1

, 219 cm
-1

 and 472 cm
-1

 most likely 

originate from S8 globules which often occur as quench products in S-rich fluids (Bény et al., 1982). 

The presence of S8 globules and gypsum in the quenched products can be explained by dissociation of 

SO2 in the fluid upon cooling. These findings indicate that sulfate is the dominating S species in high p 

fluids (> 200 MPa) while reduced S species (SO2, elemental S) become predominant in low p fluids 

(< 100 MPa) under oxidizing conditions (~QFM+4). 
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If decompression was followed by annealing for ≥ 5 h, anhydrite was absent in bubbles, and spectra 

recorded on bubbles show no systematic variation with annealing time. Since S concentration in the 

melt also remains constant after 5 h annealing (see Fig. 11 in Chapter I-A), we conclude that near-

equilibrium conditions were achieved between fluid and melt. The spectrum (b) for QFM+4equi in 

Fig. I-B.1 gives evidence for precipitated sulfate in quench phases in bubbles after annealing at final p 

and T. In other spectra (not shown here) features of S8 globules or an additional weak broad peak close 

to ~1087 cm
-1

 were observed, the latter is probably caused by vibrations of HSO4
-
 (1050 to 1056 cm

-1
) 

and/or SO2 (1148 to 1151 cm
-1

); (Bondarenko and Gorbaty, 1997; Binder and Keppler, 2011). The 

different observations result from inhomogeneous distribution of quench phases in bubbles and the 

instability of such phases under the laser beam.  

In experiments under reducing conditions a broad, slightly asymmetric band near 2600 cm
-1

 was 

observed (spectrum (c), QFM+1). This band is assigned to stretching vibrations of H2S (~2588 cm
-1

) 

and HS
-
 (~2557 cm

-1
); (Bény et al., 1982; Bondarenko and Gorbaty, 1997). The sharp peak at 

~1071 cm
-1

 is probably related to protonated sulfate species (Bondarenko and Gorbaty, 1997; Binder 

and Keppler, 2011), indicating that S is not entirely reduced under these conditions. No systematic 

changes in the spectra were observed upon annealing after decompression. This finding is consistent 

with constant volatile contents of the melts upon annealing (Fig. I-B.1) and indicates near-equilibrium 

distribution of volatiles between fluid and melt.  
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Fig. I-B.1. Raman spectra after decompression experiments with S and H2O bearing dacitic andesite melts at 

1030°C. Decompression was performed at a rate of ~0.1 MPa/s from 400 to 70 MPa. After decompression the 

samples were either rapidly quenched or further annealed (tA) for 0 to 48 h at final p-T conditions. 

(a): Oxidizing conditions (QFM+4), direct quench (tA = 0 h): Fluid-melt disequilibrium 

(b): Oxidizing conditions (QFM+4), long term annealing (tA = 48 h): Fluid-melt equilibrium achieved. 

(c): Reducing conditions (QFM+1): The spectrum is representative for both, disequilibrium (tA = 0 h) and 

equilibrium (tA = 20 h) conditions. 

(d): Typical spectrum of hydrous glass after decompression. 
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I-C. Bubble size distribution 

 

 

Fig. I-C.1. Bubble size distribution of selected samples (QFMA-1; -3; QFMClA-1; -3). Images sizes range 

between ~600 × ~400 µm (high magnification) and ~2500 × ~1850 µm (low magnification). Bubbles at the 

edges of the images were either excluded or included during image analyses. 

 

 



Appendix II 

 

140 

 

APPENDIX II 

II-A. Electron microprobe analyses 

The glass composition of all samples was determined using a Cameca SX-100 electron microprobe 

(EMP; acceleration voltage: 15 keV – beam size: 20 µm). The applied beam current was 5 nA (Na) or 

10 nA (Si, Ti, Al, Fe, Mn, Mg, Ca, K) and the counting times range from 4 s (Na) up to 10 s or 30 s 

for all major constituents (Si, Ti, Al, Fe, Mn, Mg, Ca, K). Beam current and the counting time were 

increased for the analyses of S (35 or 100 nA; 240 s) and Cl (35 nA; 120 s) to decrease the detection 

limit and to improve the counting statistics, respectively (detection limits: ~32 ppm S; ~50 ppm Cl). 

NIST (U. S. National Institute of Standards and Technology) standards 610 and 620 where measured 

before and after most analyses to constrain the precision of the measurements.  

 

II-B. IR spectroscopy 

Near infra-red spectroscopy was conducted to determine the water contents in the glass samples. The 

spectra were collected using a microscope Bruker IRscope II connected to a FTIR spectrometer Bruker 

IFS 88 equipped with Mercury-Cadmium-Tellurium narrow range detector, a tungsten lamp and a 

CaF2 beam splitter. The spectral resolution was set to 4 cm
-1 

and two to five measurements were 

collected on each sample.  

The measurement of the water content dissolved in glass samples as OH
-
 groups and molecular H2O is 

based on the Beer-Lambert law. Doubly polished glass chips with a thickness of ~120 to ~300 µm, 

depending on the transmittance of the samples, were prepared for the analysis. The thickness was 

determined using a conventional micrometer (precision: 3 µm). The absorbances of the IR active 

bands of molecular water (5200 cm
-1

) and hydroxyl groups (4500 cm
-1

) were used for the estimations. 

The tangential baseline correction described by Ohlhorst et al. (2001) was applied to determine the 

heights of the H2O and OH
-
 bands. The densities of the glasses were calculated following the method 

of Mandeville et al. (2002) using the known glass composition and the Gladstone-Dale rule (Gladstone 

and Dale, 1863). The absorption coefficients determined in Chapter I-A for the andesitic melt 

composition were applied to quantify the water contents in the glasses [(5200cm
-1

) = 1.27 ± 0.07 

L/molcm for molecular water; (4500cm
-1

) = 0.84 ± 0.07 L/molcm for hydroxyl groups]. A detailed 
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description of the NIR measurements and the determination of the absorption coefficients can be 

found in Chapter I-A. 

 

II-C. Processing procedure of raw SIMS data 

In a first step, the raw SIMS data was time interpolated to account for a drift of the instrumental 

fractionation during a 50-cycles measurement (as 
32

S and 
34

S were alternately detected) and 
34

S/
 32

S 

ratios were filtered for a 2 sigma deviation. In a second step, the raw 
34

S values were corrected by the 

long term analytical drift of the instrumental fractionation, using a time based linear interpolation of 

all 
34

S values of the standard glasses analyzed within one analytical sequence (analytical sequences 

are subdivided by e.g. sample exchanges, ion-beam shut down, software reset). The instrumental 

fractionation can be described by the fractionation factor (t-m), calculated using the true (t) 
34

St of 0.7 

± 0.5 ‰ of the monitored basaltic glass standard (MOR basalt 892-1) and the measured (m) 
34

Sm 

values of the standard. The instrumental drift within ~6 days of continuous measurement (≙ only short 

term interruptions between analytical sequences; usually < 2 h) is illustrated in Fig. II-C.1, showing 

that (t-m) ranges from ~0.9825 to ~1.0044. The figure shows that the instrumental drift can be 

described by a polynomial function. However, within one analytical sequence the applied linear 

interpolation should be adequate. In a final step, to account for short term variations, the pre-corrected 


34

S values of the standards measured right before and after a set of 2-3 sample measurements were 

used for a time based correction of the 
34

S values using linear interpolation. Note, this short term 

variation between two standard measurement (within ~2.5 h) is typically < 0.5‰.  
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Fig. II-C.1: Drift of the instrumental fractionation. The different 

analytical sequences are illustrated by different symbols and color. 

 

II-D. S speciation: X-ray absorption near edged spectroscopy (XANES) 

XANES at the S K-edge (2472 eV) was performed on most samples to investigate the S speciation in 

the andesitic glasses and, if possible, in the quenched fluids, using the SUL-X beamline (uses wiggler 

as radiation source) at the synchrotron radiation source ANKA (Karlsruhe Institute of Technology, 

Germany). Noteworthy, the data on S speciation in the glasses is shown in Chapter I-A. ANKA 

operates at a beam energy of 2.5 GeV and a beam intensity of 200 mA. The storage ring has a 

circumference of 110.4 m. The spectra were collected in fluorescence mode from 2.45 to 2.55 keV. 

Quick-XAFS scans (XAFS: X-ray absorption fine structure; bragg axis is continuously running) were 

conducted to avoid irradiation damages (see also Chapter I-A). 5 to 20 spectra were collected on each 

position, depending on the quality of the single spectrum. The spectra were compared systematically 

and only spectra showing no evidence for changes in S speciation (e.g. formation of S
4+

, changes in 

S
6+

/S ratio), caused by irradiation with the X-ray beam during synchrotron analysis (Wilke et al., 

2008), were considered and merged. The energy of the monochromator was calibrated to the white 

line of sulfate in scotch tape (2481.4 eV).  

Two different beam sizes were applied i) to evaluate the bulk S speciation in the andesitic glasses 

(~250×150 µm) and ii) to detect small scale variation in S speciation throughout sample (~60×60 µm). 

These variations can possibly be assigned to S species in the quenched fluid inclusions near the 

surface (see Appendix II-E.). 
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The energies of the spectra were corrected to the white line of the spectrum of gypsum (2482.84 eV) 

to be directly comparable to recent studies (e.g. Jugo et al., 2010; Stelling et al., 2011). The XANES 

spectra collected with the beam size 250×150 µm were used to estimate the fO2(XANES) of the 

experiments following the approach of Jugo et al. (2010). However, in contrast to Jugo et al. (2010), 

we applied the fit parameters for andesitic glass compositions determined by Max Wilke (pers. 

comm.) and used by Botcharnikov et al. (2011), to account for compositional influences. 

 

II-E. S speciation in the quenched fluid 

The determination of S species within bubbles using XANES is difficult because the emitted 

fluorescence decreases exponentially with depth below sample surface. However, the spectra may 

provide a rough estimation of the prevailing S speciation in the fluid. 

The comparison of spectra collected on sample volumes containing no or almost no bubbles with those 

containing large bubble fractions close to the surface (depth ≤ 10 µm) provides qualitative information 

on the S-bearing species in the fluid. It is emphasized that the contribution of the S species in the 

bubbles to the spectra is very small and that the spectra are dominated by contributions of the 

surrounding S in the glass. However, as shown in Fig. D.1, few spectra reveal significant differences 

which may be attributed to S-species in the fluid phase. Fig. D.1 displays selected spectra of AHC-2 

(~QFM+4, r: ~0.1 MPa/s, tA: ~20 h) and RED-3 (~QFM+1, ~0.1 MPA/s, ~5 h) collected on areas with 

very low volume fraction of bubbles (g) and on bubble-rich areas (g+b). Spectra of reference materials 

are plotted for comparison. 

In general, differences in energy position and peak shape of bands related to S
4+

 and S
2-

 species in 

glasses (or fluids) when compared to the peak positions and shape observed in the reference materials 

(sodium sulfite Na2SO3 for S
4+

 and pyrrhotite Fe1-XS for S
2-

) are related to the different stereochemical 

environment and, thus, depend on the chemical composition of the respective S compound (e.g. Fleet, 

2005; Klimm et al., 2012b).  

The spectrum of AHC-2 collected on a bubble-poor area (g) indicates that nearly all S in the glass is 

present as sulfate (S
6+

/S ~1) at oxidizing conditions (~QFM+4). On the other hand, spectra collected 

on areas with a high volume fraction of bubbles [(AHC-2 (b+g)] reveal an additional, small but 
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distinct peak at ~2478.2 eV. This peak most likely refers to sulfite S
4+

 (see reference material; 

Backnaes et al., 2008; Wilke et al., 2008). Noteworthy, Backnaes et al. (2008) as well as Wilke et al. 

(2008) noted that S
2-

 and S
6+

 are the only significant S species observed in quenched silicate glasses. 

Furthermore, it is unlikely that the observed sulfite peak is caused by irradiation as the applied 

analytical approach allows us to distinguish between original and artificial features (see above; Section 

II-D). Hence, the peak at ~2478.2 eV can most probably be attributed to SO2 in the closed bubbles. 

Although the contribution of the S
4+

 peak is small in the spectra, it indicates that SO2 may be the 

dominant S species in the fluid phase at QFM+4. 

 

Fig. II-E.1 a/b: S K XANES spectra of selected experimental glasses and reference 

materials. a) The vertical lines mark the positions of the observed sulfur species. The 

spectra were collected with a beam size of about 60×60 µm, either on bubble free parts 

of the experimental samples (g; glass only) or on areas with a large volume fraction of 

bubbles close to the surface (g+b; glass and bubbles). The sharp peaks at 2482.2 eV, 

present in most displayed spectra, correspond to sulfate (S
6+

, long dashes). The sharp but 

remarkably less prominent peak at 2478.2 eV (AHC-2 g+b) and 2479.2 eV (reference 

material: Na2SO3), respectively, indicates the presence of sulfite (S
4+

, short dashes). The 

broad peak with a maximum at ~2477 eV can be attributed to sulfide (RED-3 g; RED-3 

g+b; Fe1-XS). The sharp peak observed at 2469.6 eV (RED-3 g+b) and at 2471.5 eV 

(reference material: Fe1-XS) also refers to sulfide. The spectrum of sodium sulfite 

(Na2SO3, dark grey) indicates the presence of sulfate in the reference material, most 

likely related to irradiation caused by the X-ray beam (Wilke et al., 2008). 

b) Magnification of plot (A). The bands which may indicate the presence of SO2 (at 

QFM+4) or H2S (~QFM+1) in the fluid phase are marked by black arrow (SO2) or 

dashed line (H2S).  

 



Appendix II 

 

145 

 

Under reducing conditions (~QFM+1; RED-3 spectra) the S
6+

/S ratio was found to be remarkably 

lower in areas with high volume fraction of bubbles closed to the surface (g+b) when compared to 

bubble poor/free areas (g). The high abundance of the broad peak at ~2477 eV observed in the 

vesiculated area is probably related to S
2-

 species in the fluid phase. Hence, it is suggested that 

significant amounts of H2S are present in the fluid phase at QFM+1.  

 

II-F. Modeling of S-isotope fractionation 

The estimated fractionation pairs (SO2 gas – SO4
2-

melt) , (SO2 gas – SO4
2-

melt), H2S gas – S
2-

melt) and 

(H2S gas – SO4
2-

melt) are listed in Table 3 of Chapter II. These values were applied to calculate an 

average fractionation factors describing the S-isotope fluid-melt fractionation for a given fO2 at 

1030°C [g-m(fO2)] using the following equation: 

 

g-m (fO2) =  A  (SO2 gas – SO4
2-

melt) + B  H2Sgas – S
2-

melt)  

  + C  (SO2 gas – S
2-

melt) + D  (H2S gas – SO4
2-

melt)   (eqn. A1)

   

 A = x(SO2) if x(SO2) ≤ x(SO4
2-

)  otherwise A = x(SO4
2-

)   (eqn. A1-1) 

 B = x(H2S) if x(H2S) ≤ x(S
2-

)   otherwise B = x(S
2-

)   (eqn. A1-2) 

 C = 0 if x(SO2) ≤ x(SO4
2-

)    otherwise C = x(SO2) – x(SO4
2-

) (eqn. A1-3) 

 D = 0 if x(H2S) ≤ x(S
2-

)    otherwise D = x(H2S) – x(S
2-

)  (eqn. A1-4) 

  

where x(SO4
2-

) is the molar fraction of sulfate in the melt, x(S
2-

) the molar fraction of sulfide in the 

melt, x(SO2) the molar fraction of SO2 in the fluid and x(H2S) the molar fraction in the fluid. 
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APPENDIX III 

III-A. Data for calibration of NIR absorption coefficients 

Table III-A1: Data for calibration of NIR absorption coefficients and concentrations of hydrous 

species in the glasses. 

Sample ID XMg 
fO2 

[QFM] 

H2O [wt%] 

KFT † 
d [cm] ρ [g/L] A(OH) A(H2O) c(OH) c(H2O) 

AB-A 

~0.7 

0.3 3.30 ± 0.17 0.0127 2751 0.015 0.021 1.36 1.92 

AB-Cl-A 0.5 3.88 ± 0.17 0.0130 2735 0.019 0.025 1.75 2.26 

ABW-B-0x 3.4 4.40 ± 0.22 0.0330 2717 0.047 0.085 1.74 3.14 

ABW-Cl-E-0 3.5 4.73 ± 0.19 0.0318 2718 0.050 0.080 1.86 2.98 

ABWCl0* 3.5 2.69 ± 0.18 0.0310 2767 0.036 0.031 1.36 1.16 

BW-Mg-0* 

~0.65 

1.0 1.66 ± 0.16 0.0219 2784 0.022 0.010 1.14 0.55 

BW-Mg-1* 1.2 2.00 ± 0.16 0.0215 2777 0.023 0.015 1.25 0.79 

BW-Mg-2* 1.9 3.40 ± 0.16 0.0227 2746 0.031 0.037 1.60 1.91 

BW-Mg-3* 2.1 4.38 ± 0.17 0.0227 2726 0.035 0.051 1.81 2.68 

BW-Mg-4* 2.4 5.45 ± 0.17 0.0225 2704 0.036 0.069 1.89 3.63 

ABL-A 
~0.55 

0.0 6.04 ± 0.17 0.0162 2621 0.025 0.071 1.56 4.56 

ABL-Cl-A 0.3 5.97 ± 0.17 0.0039 2619 0.007 0.016 1.87 4.23 

ABW-Cl-Dx-0x 

~0.2 

3.7 5.88 ± 0.20 0.0060 2699 0.011 0.036 1.05 4.70 

ABG-Ax-0x 0.6 5.65 ± 0.19 0.0134 2698 0.030 0.077 1.28 4.54 

ABG-Cl-A-0 0.0 3.37 ± 0.19 0.0177 2756 0.031 0.047 0.98 2.03 

ABG-Cl-B-0 0.2 4.29 ± 0.19 0.0316 2741 0.058 0.111 1.03 2.72 

ABGCl0* 0.9 6.82 ± 0.21 0.0158 2705 0.030 0.088 1.07 4.39 

ABG-0* 0.9 7.10 ± 0.21 0.0165 2690 0.031 0.108 1.05 5.18 

BW1Mg-1* 1.5 2.81 ± 0.18 0.0082 2761 0.015 0.019 1.03 1.76 

BW1Mg-2* 1.7 3.53 ± 0.24 0.0084 2753 0.015 0.023 1.04 2.12 

BW1Mg-3* 2.0 4.56 ± 0.19 0.0080 2727 0.017 0.033 1.18 3.26 

BW1Mg-5* 2.3 6.43 ± 0.19 0.0067 2666 0.011 0.055 0.91 6.46 

BW1Mg-6* 2.5 7.43 ± 0.19 0.0081 2656 0.010 0.071 0.77 7.08 

BW1Mg-8* 2.6 8.51 ± 0.20 0.0073 2605 0.012 0.083 0.96 9.31 

BW-1n* 

MgO 

free 

0.4 1.71 ± 0.16 0.0203 2780 0.031 0.027 0.85 1.03 

BW-2n* 0.6 2.05 ± 0.17 0.0209 2778 0.032 0.030 0.86 1.10 

BW1* 0.8 2.63 ± 0.17 0.0110 2762 0.021 0.024 1.06 1.66 

BW2* 1.1 3.56 ± 0.21 0.0122 2745 0.026 0.037 1.19 2.36 

BW3* 1.3 4.16 ± 0.18 0.0118 2726 0.023 0.051 1.09 3.38 

BW4* 1.6 6.06 ± 0.18 0.0112 2705 0.025 0.060 1.30 4.20 

BW5* 1.3 4.20 ± 0.17 0.0119 2711 0.022 0.063 1.06 4.15 

BW6* 1.7 6.71 ± 0.18 0.0122 2682 0.025 0.083 1.19 5.41 

Notes: † H2O content measured by Karl-Fischer titration; *glass sample was synthesized for the KFT–NIR calibration 

but not used for decompression experiments.  
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III-B. Data for calibration of NIR absorption coefficients 

 

Fig. III-B.1: D*S
fl/m

 or DS
fl/m

 as a function of S(fluid) [wt%]. The D*S
fl/m

 values obtained from experiments 

directly quenched after decompression (tA = 0 h, disequilibrium, red squares) indicate a slight increase of 

D*S
fl/m

 with increasing S(fluid). For tA ≥ 2 h (near-equilibrium, blue circles) such a dependence of DS
fl/m

 on 

S(fluid) is not observed; i.e. the determined DS
fl/m

 are identical within error. This is in agreement with data of 

Zajacz et al. (2012) based on equilibrium experiments; i.e. S obeys Henry’s law for fluid-melt near-

equilibrium conditions and S contents below sulfide saturation. 
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