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4AbstratIn this thesis, we investigate the transport properties of low-dimensionalorrelated nanosystems. Even though we an not simulate low-dimensionalnanosystems in their full experimental reality, we approah this goal in threesuessive steps, extending the basis for future theoretial and experimentaltransport studies.In the �rst step, we investigate one-dimensional ondutors, i.e. the spin-less fermion model and the Hubbard model. In that regard, we use the timeevolving blok deimation (TEBD) method to simulate �nite systems drivenout of equilibrium by an applied potential bias. Using the Fourier analysisbased extration (FABE) method � a proedure whih we have developedbased on the analysis of a related lassial model (LC line) � we are ableto alulate the stationary urrent using the results of the TEBD simula-tions of systems with a �nite size. We show the full I�V harateristis ofthe one-dimensional spinless fermion model with nearest-neighbor Coulombinteration VH and several I�V harateristis of the one-dimensional Hub-bard model with onsite Coulomb interations UH, using two di�erent setupsto generate urrents (turning on/o� a potential bias).Sine in an experimental situation lattie vibrations play an importantrole, in the seond step we investigate the appliability of the TEBD methodto nanostrutures oupled to a bosoni bath. As TEBD has never beenapplied to suh systems before, we have to ompare our results with thosefrom well-established methods suh as the numerial renormalization group(NRG) proedure. Thus, we hoose a two-site fermioni system oupled toa bosoni bath, for whih NRG alulations are available, and �nd that theTEBD results agree with the NRG data.In the third step we take into aount that realisti nanowires are notexatly one-dimensional but their band struture onsists of several one-dimensional subbands. To over those ases, we modify the TEBD ode suhthat it an be applied to two-dimensional strutures, and simulate a lad-der system desribed by the tight-binding Hamiltonian. Exat results fromone-partile equation of motion alulations on�rm our TEBD simulationoutomes.Keywords: TEBD, low-dimensional orrelated nanosystems, stationary ur-rent



5ZusammenfassungIn dieser Arbeit untersuhen wir die Transporteigenshaften von niedrigdi-mensionalen, korrelierten Nanosystemen und wie die theoretishen Ergeb-nisse experimentell gemessen werden können. Obwohl wir keine niedrigdi-mensionalen Nanosysteme in ihrer vollständigen, experimentellen Umgebungsimulieren können, nähern wir uns dieser Zielsetzung in drei aufeinanderfol-genden Shritten. Dadurh erweitern wir die Basis für zukünftige theoretis-he und experimentelle Studien.Im ersten Shritt untersuhen wir eindimensionale Leiter, insbesondere dasspinlose Fermionen Modell und das Hubbard Modell. In diesem Zusammen-hang benutzen wir die zeitentwikelte Blokdezimierungsmethode (TEBD)um endlih groÿe Systeme im durh ein externes Potential erzeugten Niht-gleihgewiht zu simulieren. Mit Hilfe der Fourieranalyse basierten Extrak-tionsmethode (FABE) � einer Prozedur die wir mittels Analyse eines ver-wandten klassishen Modells (LC Modell) entwikelt haben � sind wir in derLage den stationären Strom anhand der TEBD Simulationen eines endlihgroÿen Systems zu berehnen. Wir zeigen die vollständigen I�V Eigen-shaften des eindimensionalen spinlosen Fermionen Modells mit nähster-Nahbar Coulomb-Wehselwirkung VH und zudem I�V Eigenshaften deseindimensionalen Hubbard Modells mit Vor-Ort Coulomb-Wehselwirkung
|UH| mit Hilfe zweier Setups zur Erzeugung eines Stromes (An-, bzw. Ab-shalten der angelegten Spannung).Da in einer experimentellen Umgebung besonders Gittershwingungen einewihtige Rolle spielen, untersuhen wir im zweiten Shritt die Anwendbarkeitder TEBDMethode auf Nanostrukturen welhe an ein bosonishes Bad gekop-pelt sind. Da zudem TEBD niemals zuvor auf solhe Systeme angewen-det wurde, müssen zunähst Vergleihe mit etablierten und auf dieses Prob-lem optimierten Methoden, wie zum Beispiel die Methode der numerishenRenormalisierungsgruppe (NRG) angestellt werden. Daher wählen wir einfermionishes Zwei-GitterplatzModell, welhes an ein bosonishes Bad gekop-pelt ist, und für das NRG Rehnungen verfügbar sind. Dabei erhalten wireine Übereinstimmung der TEBD- mit den NRG-Daten.Im dritten Shritt berüksihtigen wir, dass realistishe Nanodrähte nihtwirklih eindimensional sind, sondern dass ihre Bandstruktur aus vielen eindi-mensionalen Teilbändern aufgebaut ist. Um diese Situationen abzudeken,wird zunähst der TEBD-Code so modi�ziert, dass er auf zweidimensionaleSysteme angewandt werden kann. Anshlieÿend simulieren wir ein Leitersys-tem welhes durh den tight-binding Hamiltonoperator beshrieben wird. Dieexakten Ergebnisse aus Einteilhen-Bewegungsgleihungs-Rehnungen bestä-tigen unsere TEBD Ergebnisse.



6Shlagworte: TEBD, niedrig-dimensionale korrelierte Nanosysteme, stationärerStrom
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9
Chapter 1IntrodutionOur understanding of eletroni transport in one-dimensional ondutors ispartly based on experimental outomes suh as for instane the transportthrough single-walled arbon nanotubes whih �rst showed up in 1991 [1℄.The �rst transport experiment for those strutures, whih an be down toa few nanometers in diameter, has then been reported in 1997 [2, 3℄ wherea potential bias has been applied to two leads (referred to as soure anddrain) onneted to the nanotube, and the resulting urrent through thenanotube has been measured. Due to the small diameter of those strutures,they are often onsidered to be one-dimensional, but in fat the band stru-ture is omposed of multiple one-dimensional subbands. Thus, eletroniorrelations are important and the Fermi liquid theory for normal ondu-tors an not be applied. Aording to the Tomonaga-Luttinger liquid (TLL)theory [4, 5, 6, 7℄, for the experimental setup of a nanotube onneted toomparably in�nitely large soure and drain, a quantized ondutane of

4e2/h for eah subband is predited, whih has been suessfully measuredfor metalli nanotubes [8℄. Various other pseudo one-dimensional strutureshave been prepared and investigated, suh as for instane metalli atomihains on surfae substrates [9℄, or strutures based on anisotropi (for in-stane stepped) surfaes.While experimentalists have to work hard to prepare suh strutures, the-oretiians have it by far easier in one dimension. By ontrast, it is quitea hallenge to get theoretial results for transport problems inluding thein�nitely large reservoirs used in experimental setups, and thus theoretialinvestigations on transport in one dimension are often restrited to �nitesystem sizes (see for instane [10, 11℄ for simulations of �nite systems), andsoure and drain are often modeled as part of the one-dimensional stru-ture. Although the transport properties of one-dimensional ondutors havebeen investigated both numerially and theoretially [12, 5, 7, 13, 14, 15℄,most of those studied are restrited to either small applied potential biases(`small' ompared to the order of the band width in latties and to the Fermiveloity in ontinuous models) or small Coulomb interations, treating theeletron-eletron interation pertubatively.



10 Chapter 1. IntrodutionThe transport properties of those systems for applied biases whih areweak ompared to the energy sale of the system are desribed by the TLLtheory and exat equilibrium properties are available from Bethe Ansatzsolutions for instane for the spin 1
2
XXZ hain in Bethe's original work [16℄(and losely related the spinless fermion model), the Kondo model and theHubbard model [17, 18℄. Without Coulomb interations, exat results arealso available for higher applied voltages [15℄.The nonlinear regime has mostly been investigated in quantum ontatproblems, where the interation is on�ned to a small region of the system,suh as the Kondo model or the interating resonant level model (IRLM).Within the framework of the TLL theory, urrent-voltage harateristis havebeen studied for the transport through a weak link [19, 20℄, for instane a one-dimensional interating fermion system for a weak or strong potential barrier.Reently, the e�ets in the nonlinear regime have also been investigated [21℄,and a few works onerned with the full I�V harateristis showed up [22,11, 24℄. Again, their interest lies mainly on systems with a small interatingregion onneted to non-interating leads, suh as the IRLM or the singleimpurity Anderson model (SIAM) and none onentrates on one-dimensionalorrelated ondutors, i.e. where the Coulomb interation is present in thewhole system.A major goal of this thesis is to investigate, determine and understand thenonlinear transport properties of low-dimensional orrelated ondutors inwhih the Coulomb interation is not on�ned to a small region but presentin the whole system. As eletronis on a nanosale has beome more inter-esting in reent years, it is important to gain a better understanding of thoseproesses to reveal the full sope of quantum wires as eletroni omponents.In this thesis, we do not try to reprodue a spei� experimental situation,but to generally understand e�ets in orrelated one-dimensional ondutors.For that, our approah is to study a nanowire whih is either itself hargedsuh that parts of the nanowire at as soure and drain or (more relatedto an atual experimental situation) to whih an external voltage is applied.Nevertheless, several experimental aspets an not be ignored. Among many,the following three are the most important ones. First, many nanowireshave a length-to-diameter ratio of 1000 and more, thus exeeding the presentnumerial possibilities. Seond, a nanowire is not stritly one-dimensionalbut its band struture rather onsists of multiple one-dimensional subbands,and third, lattie vibrations have to be taken into aount. The onnetionof the nanowire to a surfae and its oupling to leads is not onsidered in thisthesis. Therefore, this thesis onsists of three major parts: the investigationof one-dimensional orrelated ondutors, the study of a system oupled toa bosoni bath, and a researh on the appliability of our methods to low-



11dimensional quantum systems.In the �rst and major part we study one-dimensional ondutors, i.e.the half-�lled spinless fermion model and the Hubbard model away fromhalf-�lling. Even though both models are exatly solvable by the BetheAnsatz and their properties for small applied biases are desribed by theTLL theory, their transport properties in the nonlinear regime are not ana-lytially aessible. Thus, we use the time evolving blok deimation (TEBD)method [25, 26℄ to simulate the �nite systems driven out of equilibrium us-ing two di�erent setups. In the �rst setup (I) we initially (at time t = 0)apply a potential bias to soure and drain (the two halves of the system).For t > 0 we let the system evolve without potential bias and measure theurrent �owing through the bond between soure and drain. In the seondsetup (II) for t = 0 we prepare the system without a potential bias and applya voltage for t > 0, whih also generates a urrent. We again measure theurrent through the bond between soure and drain.Reently, several numerial methods for simulating the realtime dynam-is of quantum latties have been developed [27, 28, 29℄, suh as for instanethe time-dependent density matrix renormalization group (td-DMRG) or theTEBD method. Both methods an be desribed within a ommon mathe-matial framework, the matrix produt states (MPS) [29, 30, 31℄. The greatadvantage of the MPS desription is the possibility to keep only the most`relevant' states and disard all others. Fortunately, the ontribution of eahstate deays very quikly, suh that a rather small number χc of states (theShmidt dimension) has to be kept to get aurate results. However, asthe entanglement in the system rises, χc rises as well, thus de�ning thelimit of what an be simulated anyway. The td-DMRG method has beensuessfully applied to study transport properties in quantum lattie sys-tems [22, 11, 32, 33, 34, 10, 35, 23, 36, 37, 38℄, suh as for instane thementioned SIAM, the IRLM or the Hubbard model and the spinless fermionmodel, even for strong orrelations (see for instane [39℄). However, the orig-inal TEBD method has not yet been applied to eletroni transport problemsat all.Although the use of the TEBD method is restrited to low-dimensionalsystems, it has a great advantage over the td-DMRG method. While theparallelization or the DMRG proedure is quite ompliated [40, 41℄, TEBDis naturally parallelizable with an extremely low overhead, whih will bepresented in hapter 4 in this thesis. Using the TEBD method, we are ableto ompute the ground state and simulate the realtime evolution of a �nitesystem of size N for a �nite time t. Using one of the two setups desribedabove, the system �rst goes into a transient phase in whih a noisy andosillating urrent is �owing. As the osillations beome smaller, the urrent



12 Chapter 1. Introdutionapproahes a onstant value while the system goes into a quasi-stationaryphase whih is ontinued until the partile front wave hits one of the bordersof the system.Sine we are interested in the stationary behaviour of larger struturesand espeially in the DC transport properties (of in�nitely large systems),we have to extrapolate the simulation results to the limits N →∞ and then
t→∞. As �nite-size e�ets in quantum systems are very omplex [42℄ andsine we know only little about the in�uene of the borders in �nite systemson the quasi-stationary urrent, we �rst study a related lassial mode, theso-alled LC line. With the aid on our �ndings, we develop a Fourier analysisbased extration (FABE) method, whih allows us to alulate the stationaryurrent in in�nitely large systems using numerial data from small systemsand short simulation times, for instane our TEBD simulation results.Using TEBD and the FABE method, we determine the full I�V harater-istis of the spinless fermion model and I�V harateristis of the Hubbardmodel. Without Coulomb interation, these models are exatly solvable usingthe one-partile equation of motion formalism, and for small applied potentialbiases preditions from the TLL theory are available. All results from thesespeial ases on�rm the validity of our approah. We �nd that while for thelinear regime the spei� setup does not matter, it is highly deisive for thenonlinear urrent-voltage harateristis. For setup (I) the system shows apositive di�erential ondutane all over the full voltage range and saturatesat a �nite value. For setup (II) a negative di�erential ondutane oursfor higher applied voltages, even impeding a urrent �ow for large enoughvalues. Both e�ets in setup (II) that also our in the non-interating ase,ome from the �nite bandwidth and the nonlinear dispersion of the exita-tions [42, 43℄.As already mentioned, lattie vibrations (generally dissipation) play animportant role in experimental situations. Thus in the seond part of thisthesis, we study the appliability of the TEBD method to systems oupledto a bosoni bath. For that purpose we hoose a model that an be analyzedusing TEBD and for whih highly aurate (TD) NRG ((time dependent)numerial renormalization group) simulation results are available for om-parison: a two-site fermioni system oupled to a bosoni bath [44℄. Thismodel desribes the essentials of a two-eletron transfer in a dissipative envi-ronment, whih has been suggested to be an important mehanism in manybiologial proesses, for instane in DNA [45℄.Up to the present day, both methods, TEBD and NRG have been usedto alulate the ground states and realtime dynamis of quantum systems,but a diret omparison has not been yet arried out. While (TD) NRGis well-suited for suh simulations, providing very aurate desriptions for



13small quantum systems oupled to a bosoni bath, TEBD an in priniplebe used for even more extended impurities, suh as large moleular bridgesor nanowires. Our analyses show that even though the TEBD results agreewith the NRG outomes, it is very hard to simulate the ground state sine avery high Shmidt dimension is needed to get a su�iently small trunationerror. Moreover, even though the realtime evolution needs only a reasonablysmall Shmidt dimension, unfortunately a very small time step is neessaryto obtain aurate results, whih is due to very long time sales in whih thetransfer proesses in this model take plae.In the third part of this thesis we extend the TEBD method in view ofthe fat that realisti nanowires are not truly one-dimensional. It is basiallypossible to use TEBD also for higher-dimensional systems by building ane�etively one-dimensional system. With this mapping strategy, we use theTEBD method to simulate a ladder system whih is desribed by the tight-binding Hamiltonian. We use the two setups desribed above in di�erent waysand �nd by omparison with one-partile equation of motion alulationsthat the TEBD method gives orret results for suh systems. It neverthelessremains a hallenge to apply TEBD to two-dimensional systems with a widerextent.This thesis is organized as follows: In the next hapter we introdue thelassial LC line and the extration method (FABE) used in the followinghapters. We study several �nite-size and �nite-time e�ets of the lassialmodel, deriving many of its properties, suh as the period of the retangularosillation, or the origin of a rapid osillation on top of the quasi-stationaryplateau. In the third hapter we investigate stationary and transient ur-rent properties in a quantum tight-binding model, applying the one-partileequation of motion method and the FABE method from the seond hap-ter. Based on the lose onnetion to the lassial LC line we show theappliability of the FABE method to quantum systems. The fourth hapterexplains how we have implemented the parallel TEBD method and what er-rors are to be expeted for the following simulations. In the �fth and sixthhapter we apply our methods to the spinless fermion model and the Hub-bard model. We obtain the full I�V harateristis of the spinless fermionmodel (inluding a negative di�erential ondutane and saturation e�ets).Moreover, we show that the period of the spinless fermion model for di�erent
VH hanges only due to the �nite renormalized band width. Our investiga-tions on the Hubbard model reveal I�V harateristis for one setup whihshow a similar saturation of the urrent as for the spinless fermion model.For desribing a one-dimensional system in an experimental environment, wehave to take lattie vibrations into aount. The TEBD method is thereforeadapted and used to simulate the two-site fermioni system oupled to a



14 Chapter 1. Introdutionbosoni bath in the seventh hapter and omparisons with NRG results [44℄are arried out. As the band struture of a realisti nanotube onsists ofmultiple one-dimensional subbands, we simulate a ladder system desribedby the tight-binding model using TEBD in the eighth hapter.All important (in this thesis) realized implementations, alulations and�ndings are summarized in the last setion of eah hapter. Finally, wesummarize all of our �ndings and give an outlook for further work in theninth hapter. Some alulations are listed in appendies.



15
Chapter 2Classial LC lineIn this hapter we start with the investigation of �nite-size and �nite-timee�ets in lassial osillator-systems to explain orresponding e�ets in sim-ulation results from quantum systems. Classial osillator-systems typiallyonsist of marosopi elements, suh as a mass-spring system or � more ele-tronially � an LC-Line built upon ondensators, indutors and maybe resis-tors. Some lassial setups are furthermore omparable to quantum mehan-ial systems, regarding for instane partile densities and urrents. Thoselassial setups are in most ases easier to desribe and the orrespondingmodels more often solvable than their quantum mehanial pendants. Fur-thermore, they open the way to understanding the origin of quantum e�etsand they are a useful tool for gaining more informations about quantum sys-tems, for instane by omparing model parameters and simulation results.In the following, we onentrate on the so-alled LC line, shown in �g-ure 2.1. The LC line has been under researh as an eletrial iruit im-plementation of a Toda hain [46, 47, 48℄, a nonlinear osillator hain that,among others, desribes the propagation of soliton waves. Further investiga-tions of the LC line have so far been foused on the ontinuous and linearase, for instane tunneling rates in single or double metal-insulator-metaljuntions whih behave similar to apaitors with Q = C · U [49℄. As theonnetion between those `apaitors' an be modeled by an indutor, wearrive at the LC line whih we use to desribe some of the basi e�ets in
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Figure 2.1. Classial LC line with onsite applied potentials φi.



16 Chapter 2. Classial LC linehains of oupled quantum sites (one-dimensional quantum wire). While the
LC line has been analyzed for the nonlinear and the linear (and ontinuous)ases, our fous lies on the disrete and linear model for �nite and in�nitesizes.We show that the LC line is well-suited as the lassial representation of aone-dimensional quantum wire desribed by the tight-binding Hamiltonian,while our main fous lies on the behaviour of the urrent, espeially the in�u-ene of �nite-size e�ets and stationary values for the in�nite-size limit. Wepresent solutions for a setup in whih an initial imbalane of harge arrierson the ondensators leads to an osillating, retangular urrent urve as theharge arriers move bak and forth in the LC line: the formerly desribedsetup (I). Saling the system size N to in�nity leads to an enlargement ofthe square wave period, and for large times a stationary urrent Ī is �owing.Subsequently, a method is presented to ompute the stationary urrent Īfor in�nitely large systems using �nite-size simulation results. Based on theomparison of the lassial and quantum mehanial model this approahwill be applied to quantum systems.2.1 Currents in the LC lineFigure 2.1 shows the lassial setup of a one-dimensional wire that possessesmany properties of a one-dimensional quantum hain. This LC line is a om-bination of ondensators and indutors whereas the present model is extendedto enable onsite applied potentials φi. For this setup, the following relationsan be derived using elementary eletrotehnial relations and Kirhho�'slaws

Ji = −CiU̇i ; i = 1, 2, .., N

Vi = Liİi; i = 1, 2, .., N − 1 (2.1)
Ii+1 = Ii + Ji+1; i = 0, 1, .., N − 1and

Vi = Ui − Ui+1 + φi − φi+1 ; i = 1, 2, .., N − 1 (2.2)where I0 = IN = 0 was de�ned. Vi in equation (2.2) results from the po-tential di�erene between the left and right onnetion of the i-th indutor.
Ci denotes the apaity of the i-th apaitor, Ui the voltage drop over theapaitor, Li the indutane of the i-th indutor and Ii and Ji are the ur-rents as shown in �gure 2.1. Qi is the harge of the i-th apaitor and the φi



2.1. Currents in the LC line 17denote externally applied potentials. From the equations above follows
Ii+1 = Ii + Ji+1 = Ii − Ci+1U̇i+1, (2.3)
Liİi = Ui − Ui+1 + φi − φi+1. (2.4)Di�erentiating equation (2.4) with respet to the time t and plugging in U̇ifrom equation (2.3) gives in matrix notation

~̈I = −M~I + ~̇Φ (2.5)with Φ̇i = (φ̇i − φ̇i+1)/Li and
Mij = −δi,j+1

(
1

LiCi

)

− δi,j−1

(
1

LiCi+1

)

+ δij

(
1

LiCi+1

+
1

LiCi

)

. (2.6)Hene, we get
O−1 ~̈I = −O−1M

(
OO−1

)
~I +O−1~̇Φ

⇒ ~̈q = −Ω~q + ~c (2.7)with
~q = O−1~I , ~c = O−1~̇Φ and Ω = O−1MO ; Ωij = δijλi (2.8)where O ontains the normalized eigenvetors ofM in its olumns and λi arethe eigenvalues of M . In index notation it is written as

q̈k = −λkqk + ck ; k = 1, 2, .., N − 1 (2.9)whih desribes a harmoni osillator driven by an external fore. We on-sider an LC line with equal apaities and indutanes
Li = L and Ci = C ∀i (2.10)and temporally onstant applied potentials ~̇Φ = ~0 for whih equation (2.5)redues to

~̈I = − 1

LC
m~I + ~̇Φ (2.11)with

mij = −δi,j+1 − δi,j−1 + 2δij. (2.12)In that ase, the urrent is given by [app. A.1℄
Ii(t) =

√

2

N

N−1∑

k=1

sin

(
kiπ

N

)

[bk sin (ωkt) + dk cos (ωkt)] (2.13)
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ωk =

2√
LC

sin

(
kπ

2N

)

. (2.14)With Q0,i = Qi(t = 0) and φ0,i = φi(t = 0) one has
İi(0) =

1

LC
(Q0,i −Q0,i+1) +

1

L
(φ0,i − φ0,i+1) (2.15)and thus using the orthogonality of the sine funtions, it follows

bk =

√
2

ωkL
√
N

N−1∑

i=1

[
1

C
(Q0,i −Q0,i+1) + φ0,i − φ0,i+1

]

sin

(
kiπ

N

)

. (2.16)We further assume that initially (at time t = 0) no urrent is �owing
Ii(0) = 0 ∀i ⇒ dk = 0 ∀k (2.17)whih leads to the following expression for the urrent through the i-th in-dutor

Ii(t) =

√

2

N

N−1∑

k=1

bk sin

(
kiπ

N

)

sin (ωkt) . (2.18)Another simpli�ation shall be that the hain is divided into two halves inwhih the harge arriers are uniformly distributed for t = 0, i.e.
QL = Q0,i=1,..,N

2
, QR = Q0,i=N

2
+1,..,Nand φi(t) = 0 ∀i, t. (2.19)Figure 2.2 shows the urrent through the indutor LN/2 aording to thegeneral formula for the urrent at site N/2 for any even N

IN
2
(t) =

2(QL −QR)

NLC

N−1∑

k=1

1

ωk
sin2

(
kπ

2

)

︸ ︷︷ ︸

1(k odd) or 0(k even) sin (ωkt)

=
QL −QR

N
√
LC

N/2
∑

k=1

sin
(

2√
LC
ηkt

)

ηk
(2.20)where equation (2.16) was used for bk and equation (2.19) for QL and QR.The substitution k → (2k− 1) was applied during the last transformation toget rid of the sin2-term and the de�nition

ηk = ω2k−1

√
LC

2
= sin

(
(2k − 1)π

2N

) (2.21)
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Figure 2.2. Current I250(t) for a lassial wire of size N = 500through the indutor at position N/2. L = C = 1, QL =
Q0,i≤N/2 = 1 and QR = Q0,i>N/2 = −1was introdued in that ontext. All values for the lassial system (Qi, t, L,

C, et.) are given in S.I. units unless otherwise spei�ed.In �gure 2.2, one an see a retangularly osillating urve, superimposedby small osillations, magni�ed in �gure 2.3. While the retangular shapeof the dominant osillation is understandable through the piture of hargearriers moving bak and forth in the line, the rapid osillation on top of thesquare wave is harder to explain and we will later take a loser look at it. Theperiod Tmaxl of the square wave an be alulated by using equation (2.20)and (2.21) and taking only the smallest frequeny (k = 1) into aount
Tmaxl =

π
√
LC

sin
(

π
2N

) . (2.22)For large system sizes (N ≫ 1) this period is approximately given by
Tmaxl ≈ 2N

√
LC (2.23)and is thus linearly dependent on N . In the seond half period of the urrentin �gure 2.2 one an see a beat upon the rapid osillation. This is dueto the unequally distributed harges whih form an osillating pattern andso reate additional frequenies in the urrent. This e�et also ours inquantum wires, not only after the re�etion at the right border but already
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Figure 2.3. Magni�ation of �gure 2.2. Current I250(t) for a lassi-al wire with L = C = 1 and QL = −QR = 1from the beginning due to using an initial (ground) state with non-uniformloal densities, see hapter 3.2.2 Stationary urrentIn ontrast to the osillating urrent in a �nite system where the hargearriers are sattered at the borders, we assume that the urrent in an in-�nitely large system is onstantly �owing in one diretion. To validate thisassumption one has to exeute the limit N → ∞ �rst, and then take thelimit t→∞. In the limit N →∞ one gets from equation (2.20)
I∞(t) = lim

N→∞
IN/2(t)

=
QL −QR√

LC

1

π

∫ π
2

0

sin
(

2√
LC

sin (x) t
)

sin (x)
dx. (2.24)The solution is given by [app. A.2℄

I∞(t) =
(QL −QR) t

2LC

[
J0 (ϕt) (2− πH1 (ϕt))

+ πJ1 (ϕt)H0 (ϕt)
] (2.25)
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ϕ =

2√
LC

. (2.26)
Jn(x) are the Bessel funtions of the �rst kind and Hn(x) denote the Struvefuntions [50℄.
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Figure 2.4. Solid urve: Current I∞(t) for a lassial in�nite wirethrough the indutor at the middle with L = C = 1, QL = 1 and
QR = −1. The dashed urve is the urrent for a �nite systemwith size N = 30. The onstant line denotes the stationary value
Īl = 1 against whih the solid line onverges.The urrent for the in�nite system (2.25) is shown in �gure 2.4 and itshows that for smaller times the urve for �nite system sizes mathes the onefor the in�nitely large LC line. Hene, a very aurate approximation of thevalue of a stationary urrent in an in�nitely large system an be extratedfrom the value of a orresponding �nite system result. This behaviour willbe later used for the analysis of quantum systems.Using the approximations (A.12) from [app. A.4℄ for the Bessel and Struvefuntions we �nd the value of the stationary urrent in the in�nitely largesystem

Īl = lim
t→∞

I∞(t) =
QL −QR

2
√
LC

. (2.27)



22 Chapter 2. Classial LC lineThe ondutane Gl for the stationary ase is given by
Gl = Īl

V
=

1

2

√

C

L
(2.28)with a loal voltage drop V = (QL −QR) /C in the middle of the hain.2.3 Finite-time and �nite-size e�etsIn order to desribe �nite-time e�ets in the in�nite system we seek for asimpler urrent expression whih does not only give the orret stationaryvalue but also a good approximation for the short-time behaviour. Using theapproximations (A.15) from [app. A.4℄, I∞(t) an be transformed into thefollowing form for t≫ 1

Iapp(t) = Īl +Idev(t)
= Īl +

QL −QR

16

√
ϕ

πt

[
(10π − 32)(sin2(ϕt)

+ sin(ϕt) cos(ϕt))

+ 4(sin(ϕt)− cos(ϕt))
]
+O

(
1

t

) (2.29)with ϕ = 2/
√
LC. Idev(t) denotes the deviation from the stationary urrent

Īl from equation (2.27). The order O (t−1) of the rest term is only valid if theapproximation of H1(x) in (A.15) has an error of smaller order whih holdsas argued in [51℄. As shown in �gure 2.5, expression (2.29) is a persuasiveapproximation even for smaller times and thus forms a good explanatory basisfor short-time e�ets in the LC line. It states a general O(1/√t) deay of theamplitudes of the rapid osillation in the urrent urve, whih is the maximalorder of the error for an approximation of the stationary urrent (2.27) usinga �nite-time (i.e. a �nite-size) result.Instead of looking at the urrent through a single indutor, one an onsiderthe urrent through two or more neighboring ones. We will show that theshort time behaviour of this urrent has some advantages ompared to thesimple IN/2(t) urve. We de�ne the quantity of interest for even N as
Im,N/2(t) =

1

2
IN/2(t) +

1

4

(
IN/2+1(t) + IN/2−1(t)

) (2.30)whih is equal to the expression 1
2
(IN/2(t)+ IN/2+1(t)), whereas for the latterexpression the subsequently explained e�et also ours for odd N for the
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Figure 2.5. Exat urrent I∞(t) (solid line) and approximativeurrent Iapp(t) (dashed line) with L = C = 1 and QL = −QR = 1

substitution N/2→ (N − 1)/2. In the limit N →∞, t→∞, the expression
Im,N/2(t) onverges against the same value as IN/2(t) whih implies that thestationary urrent is as well assessable via the urrent through two or moreadjaent indutors. From (2.18) one gets
Im,N/2(t) =

QL −QR

NLC

N−1∑

k=1

1

ωk

sin (ωkt) sin
2

(
kπ

2

)

·
[

1 + cos

(
kπ

N

)] (2.31)with expression (2.16) for bk and the step distribution for the harges (2.19).In the limit N →∞ it follows
Im,∞(t) =

QL −QR

π
√
LC

∫ π
2

0

sin
(

2√
LC

sin (x) t
)

sin (x)
cos2(x)dx. (2.32)The solution of this integral is given by [app. A.3℄

Im,∞(t) =
QL −QR√

LC

[

J1(ϕt)

(
πϕt

4
H0(ϕt)−

1

ϕ2t2
− 1

2

)

+ J0(ϕt)

(
ϕt

2
+

1

2ϕt
− πϕt

4
H1(ϕt)

)]

. (2.33)This result, plotted in �gure 2.6 together with equation (2.25) for the urrent
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Figure 2.6. Solid urve: Current Im,∞(t) through two adjaentindutors in the middle; equation (2.33). Dashed urve: Current
I∞(t) from equation (2.25) through a single indutor. L = C = 1,
QL = 1 and QR = −1.

I∞(t) through a single indutor, shows almost no rapid osillations. An ap-proximative expression for the rapid osillations Ir(t) ≈ Idev(t) an thereforebe derived using the di�erene between the two urrent expressions (2.33)and (2.25)
Ir(t) = Im,∞(t)− I∞(t)

=
QL −QR

4

[J0(ϕt)

t
−

(
2

ϕt2
+ ϕ

)

J1(ϕt)

]

. (2.34)Using the approximations (A.15) for the remaining Bessel funtions one has
Ir,app(t) =

(QL −QR)

32
√
π (ϕt)5/2 t

[(
5(ϕt)2 + 8(ϕt)3

+ 15ϕt− 6) cos(ϕt)
(
5(ϕt)2 − 8(ϕt)3

− 15ϕt− 6) sin(ϕt)] . (2.35)Hene the rapid osillations have a radial frequeny ϕ = 2/
√
LC = 2π/Tminland thus

Tminl = π
√
LC. (2.36)



2.4. Determining the stationary urrent from �nite system values 25The e�et that the rapid osillations of urrents through two adjaent in-dutors (bonds) anel out is also present in a quantum wire, see hapter 3.This shows the lose resemblane between the lassial LC line and a orre-sponding quantum system.2.4 Determining the stationary urrent from �-nite system valuesThere are various methods to alulate the stationary urrent from simu-lation results stemming from systems with �nite size. The most obviousand easiest way to do so is to use the urve of a urrent through the mid-dle indutor (or the mean value of urrents through two or more adjaentindutors) and to ompute the mean value over a ertain time interval inthe quasi-stationary regime. In ontrast to this approah, we will present amore analytial method using the Fourier transformation. Although we annot prove that the following strategy an be applied to quantum mehani-al systems with ompliated interations, several numerial and theoretialindiations are given in subsequent hapters. We start with a square wavedesribed by its Fourier series
Rm(t) =

4A

π

m∑

k=1

sin ((2k − 1)χt)

2k − 1
(2.37)where m determines the number of harmonis, A denotes the value of thequasi-stationary plateau and χ = 2π/Tmax

R where Tmax
R is the period of thesquare wave. This signal has ertain similarities with the urrent urve

IN/2(t). It possesses a quasi-stationary regime whih beomes in�nite for
χ → 0 (equals N → ∞ for the LC line) and shows a rapid and deayingosillation on top of it. The main di�erene between the omposition of theurrent urve (2.20) and the square wave is the presene of sine-funtions inthe urrent urve that enlose the (2k − 1)-terms.The urrent in (2.20) is dependent on ηk and it is thus onvenient to write
I
[ηk]
N/2(t) where ηk = sin( (2k−1)π

2N
). Choosing an ηk without the enlosing sine-funtions gives

I
[ (2k−1)π

2N ]
N/2 (t) =

2(QL −QR)

π
√
LC

N/2
∑

k=1

sin ((2k − 1)ϕ′t)

2k − 1
(2.38)with ϕ′ = ϕπ/(2N) = π/(N

√
LC). Sine expression (2.38) now desribesa square wave, one an ompare it with (2.37) and get its quasi-stationary
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A =

QL −QR

2
√
LC

= Īl (2.39)whih is equal to the value that was derived for the stationary urrent inequation (2.27). Remarkably, the enlosing sine-funtions do not hange thestationary value, i.e. the expression (2.38) and the urrent in an LC line havethe same stationary value for N →∞. In ase of expression (2.38) this valueis equal to the quasi-stationary value (2.39), whih leads to the idea to alu-late the quasi-stationary value from a given urrent signal in a �nite system(using the proedure desribed below) and use it as approximation for thestationary urrent value for N →∞. Applying the Fourier-transformation
ĨN/2(ω) =

∫ ∞

−∞
IN/2(t)e

iωtdt (2.40)term by term to expression (2.20) gives
ĨN/2(ω) = i · (QL −QR)

N
√
LC

N/2
∑

k=1

δ(ω + ϕηk)− δ(ω − ϕηk)
ηk

(2.41)with equation (2.21) for ηk and ϕ = 2/
√
LC. If numerial data withm valuesare given, one has to apply a disrete Fourier transformation whih preservesthe area underneath a delta peak, suh that for any interval ∆t ontaininga single delta funtion a · δ(x− x0) the peak is of height a/∆t. Taking onlythe �rst (k = 1) and only the positive delta-peak into aount and using thedisrete transformation

f̃(j) =
1

m

m−1∑

k=0

f(k)e−ikjω0 with ω0 =
2π

m
(2.42)and j = 0, 1, ..., m− 1, one gets for the urrent

Īl = Im[ĨN/2(ω1)]N∆t

2
· sin

( π

2N

) (2.43)where Im[ĨN/2(ω1)] is the height of the �rst disrete peak (k = 1). In fat,one an not expet to know the preise form of ηk for ompliated quantumsystems. Instead, one an take a �rst order approximative expression. For
N ≫ 1 it holds sin ( π

2N

)
≈ π

2N
, whih implies that the given urve is a squarewave, and thus

Īl ≈ π

4
Im[ĨN/2(ω1)]∆t (2.44)



2.4. Determining the stationary urrent from �nite system values 27with a relative error of [app. A.5℄
|∆Īl|
|Īl| ≤ π2

8N2
. (2.45)It is important to remark that equation (2.44) is not only an exat result fora square wave, but also an exellent approximation for the LC line urrentwith a maximal error aording to equation (2.45).As our analyses in setion 2.5 reveal, the harge arriers in the LC lineoming from the left half �rst reah the right border at t ≈ Tmaxl /4. Afterthis time the �nite system size has a signi�ant in�uene on the simulationresults. Applying a disrete Fourier transformation means to assume thata periodi funtion is given. For that, and to minimize the upoming errorfor times larger than Tmaxl /4, the following proedure is proposed: From agiven urrent urve IN/2(t) stemming from simulation results, �rst determinea position t = ts in the viinity of Tmaxl /4 � but smaller than Tmaxl /4 � wherethe urve ould be mirrored along a parallel to the y-axis suh that the lossof ontinuity is minimized, whih is the ase for instane at in�etion points.Then onsider a 4ts-periodi funtion, onstruted as follows

IR(t, ts) =







IN/2(t) for 0 ≤ t < ts
IN/2(2ts − t) for ts ≤ t < 2ts
−IN/2(t− 2ts) for 2ts ≤ t < 3ts
−IN/2(4ts − t) for 3ts ≤ t ≤ 4ts

(2.46)and apply the Fourier transformation to the onstruted signal (2.46) and useequation (2.44) to alulate the orresponding stationary value of the urrent,see �gure 2.7. In order to keep the notations short, we all this method forextrating the stationary urrent from outomes of analyses of systems with�nite size the `Fourier analysis based extration' (FABE) method.Let us larify the onstrution (2.46) one again: Assume that one hasa urrent urve with a period of Tmaxl . One takes only the �rst fourth ofthe signal into aount and then searhes for a minimum or maximum inthe negative viinity of Tmaxl /4 suh that a new ontinuous urve an beonstruted using 4 times the remaining signal from t = t0 to ts = tmin or max.Finally, one applies the disrete Fourier transformation to the onstrutedsignal and uses equation (2.44) to alulate the stationary urrent.
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Figure 2.7. Construted signal IR(t, ts) from simulation resultstogether with the Fourier series representation of a square wave
Rm(t) from (2.37) with m = 8 and an ideal square wave R(t).The Fourier transformation of IR(t, ts) and expression (2.44) wasused to alulate the amplitude of R(t).



2.5. Charge distribution 292.5 Charge distributionIn the following we investigate the behaviour of the harge distribution with
Q = C · U with onstant C, to show when the �nite size of a system startsto beome important, and to ompare those results with the analyses ofquantum systems in hapter 3. From equations (2.1) it follows

U̇i =
1

C
(Ii−1 − Ii)

⇒ Ui(t) =
1

C

∫ t

0

Ii−1(t
′)− Ii(t′)dt′ (2.47)where all Ci has been hosen equal to C as usual and Ii(t) is given by equa-tion (2.18). The initial onditions are given with bk from (2.16)

bk =

√
2

ωkL
√
N

N−1∑

p=1

[ 1

C
(Q0,p −Q0,p+1) + φ0,p − φ0,p+1

︸ ︷︷ ︸

u0,p−u0,p+1

]
sin

(
kpπ

N

) (2.48)with ωk = ϕ sin
(
kπ
2N

) from (2.14), ϕ = 2√
LC

, up(t) = Up(t) + φp(t) and
u0,p = up(t = 0). It diretly follows
Ui(t) =

2

NLC

N−1∑

k,p=1

1

ωk
(u0,p − u0,p+1) sin

(
kpπ

N

) (2.49)
·
[
sin

(
k(i− 1)π

N

)

︸ ︷︷ ︸from Ii−1(t)

− sin

(
kiπ

N

)

︸ ︷︷ ︸from Ii(t)

]
∫ t

0

sin (ωkt
′) dt′

=
1

2N

N−1∑

k,p=1

u0,p − u0,p+1

sin2
(
kπ
2N

) sin

(
kpπ

N

)

·
[

sin

(
k(i− 1)π

N

)

− sin

(
kiπ

N

)]

cos

(

ϕ sin

(
kπ

2N

)

t

)

+ U0.(2.50)
U0 shifts the distribution of the initial voltages by an o�set ∑

i Ui,0 = U0.We note that without U0 only voltage di�erenes u0,p − u0,p+1 ontribute,suh that ∑i Ui,0 = 0. Taking a look at �gure 2.8 where the left half of thehain was initially harged, one an see that the harge arriers move bakand forth in the LC-Line as expeted. A orresponding movie is availableon whypsi.om/einhellinger/hargeDistribution.zip. It is quite remarkablethat in addition to the existing voltage plateaus a third level is formed overthe ourse of time. This spei� pattern also appears in investigations ofquantum systems, as disussed in hapter 3.

http://whypsi.com/einhellinger/chargeDistribution.zip
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Figure 2.8. Onsite voltage distribution Ui(t) for t = 0, 15, 35, 60, 80 and 160and system size N = 80. L = C = 1. Shown are voltage drops at the i-thondensator with Ui(t) = Qi(t)/C.



2.6. Final notes on the LC line 312.6 Final notes on the LC line2.6.1 SetupsInstead of initially dividing the system into two halves with di�erent harges
QL and QR, we an distribute the harge arriers homogeneously over thehain, apply a temporally onstant voltage (φ0,L−φ0,R) and get the same re-sult for the urrent as a funtion of time, whih an be seen in equation (2.16)for bk. The reason for this lies in the linear harater of our model whih thusbehaves independently from the hosen setup. This is the main reason whywe an not fully ompare the LC line with a quantum system, sine prepar-ing the lassial system in setup (II) gives the same outomes as for setup(I), in ontrast to the quantum simulation results in subsequent hapters.2.6.2 Applying the FABE approah to retangular sig-nalsThe following passage treats an important detail that arises during the deriva-tion of equation (2.39): There seem to be di�erent funtions ηk whih pro-vide the same quasi-stationary value, for instane sin(π(2k−1)

2N
), cos(π(2k−1)

2N
)and π(2k−1)

2N
, see �gure 2.9. Aordingly, it seems to be a good idea to use thepresented FABE approah even if the spei� equation of a given retangularurve is unknown.Using a osine- instead of a sine-funtion does not hange the urrent-urve at all, sine one obtains the same integral in [app. A.2℄ for I∞(t) with

η = cos(x). Thus, the expression for the urrent in an in�nitely large system,and therefore its stationary value, is unhanged. For ηk = π
2N

(2k − 1) oneobtains the same quasi-stationary value and a similar behaviour with regular,dereasing osillations. For some other trigonometri funtions � suh as thetangent � the shape of the urrent urve is not overshooting at the beginninganymore. Still, it seems as if the urve osillates around the same stationaryvalue. For polynomial expressions it is apparent that there must be at leasta term of the order O(k) to form a quasi-stationary part with the orretvalue, whereas one has to note that the prefator of this term determines thequasi-stationary value itself. When the prefators of higher order terms in
k beome to large, a pre-plateau is formed, for instane shown in the rightbottom part of �gure 2.9. When saling N →∞ the �rst plateau extends toin�nity. One ould expet that whenever two or more plateaus are visible,the value of the �rst plateau will be most likely the one against whih theurrent onverges for N →∞.
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Figure 2.9. Current I [ηk]N/2(t) for di�erent ηk. For reasons of larity,the substitution x = (2k−1)π
2N

with N = 100 was used. The retan-gular signal with the amplitude ±2 in every plot is only a guidefor the eyes.



2.7. Summary 332.7 SummaryIn this hapter we have derived the desription of urrents for a �nite andin�nite LC line in ase of an initial step distribution of the harges. Wefound explanations for several �nite-size e�ets, suh as the retangular orthe rapid osillation and how the urrents through two adjaent indutorsanel out. Using our analyses, we developed a Fourier transformation basedmethod to extrat the stationary urrent from outomes of analyses of �nitesystems, whih we simply all the FABE method for reasons of larity.
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35
Chapter 3Non-equilibrium simulationsTo understand �nite-size and �nite-time e�ets in quantum systems we inves-tigate a system without eletron-eletron interation. The great advantage ofthis model is that exat results from one-partile equation of motion alula-tions are available, see setion 3.3, to test the TEBD method in hapter 4 andthe FABE method for analysing the stationary urrent, whih we presentedin hapter 2.3.1 Tight-binding model

b b b b b b

j = 1 2 N

2
− 2 N

2
− 1 N

2

N

2
+ 1 N

2
+ 2 N − 1 N

tH tH tH tH tH tH
Figure 3.1. One-dimensional tight-binding modelIn the following, we will fous on the one-dimensional tight-binding modelwithout spin (�gure 3.1) whose Hamiltonian is given by

H = H0 +HB (3.1)with
H0 = −tH N−1∑

j=1

(c†jcj+1 + c†j+1cj) (3.2)where tH denotes the hopping amplitude between nearest-neighbor sites, c†j , cjdenote the fermioni reation and annihilation operators and N is the systemsize. To drive the system out of equilibrium we use a step-like potential biasbetween the left- and right-hand halves of the hain
HB =

∆ǫ

2





N/2
∑

j=1

nj −
N∑

j=N/2+1

nj



 (3.3)



36 Chapter 3. Non-equilibrium simulationswith nj = c†jcj . The potential energy step is set by ∆ǫ = |eV | where Vis the voltage bias and e is the elementary harge. It is possible to use asmoother potential pro�le but the results for the stationary urrent usingthe FABE method are only slightly a�eted by the spei� shape as long asthe non-onstant part in the middle is rather smooth and loally on�ned.The tight-binding model origins from the LCAO idea and evolved from thatin 1954 among others through the work of J. C. Slater and G. F. Koster [52℄.Based on its provenane, the model desribes eletrons that are tightly boundto atoms in a solid. Per atom, only one atomi orbital is taken into aountand the overlap of adjaent atomi wave funtions is limited suh that theeletrons are rather loalized and their transitions an be seen as `hopping'.Regarding its appliation, the tight-binding model is the basi lattie modelon whih more ompliated models suh as the spinless fermion model andthe Hubbard model are based. It desribes non-interating free fermions ona (in our ase one-dimensional) lattie that an hop from one site to adjaentsites with a hopping amplitude tH. Aording to the Pauli priniple only oneeletron per site is allowed.Although eletron-eletron interations are signi�ant for the appearaneof many quantum e�ets, they are not part of the tight-binding model. Nev-ertheless, the model has some of the ground state properties and desribesmany realtime e�ets that also appear in more ompliated systems thatinlude Coulomb interations.3.2 SetupsWe employ two di�erent setups to generate urrents in the lattie models [42℄.In the �rst one (I) we prepare the system at time t = 0 in the ground state
|φ(∆ǫ 6= 0)〉 of the Hamiltonian H = H0 +HB (i.e. with potential bias), see�gure 3.2. For later times t > 0 we let the system evolve aording to theHamiltonian H0 (i.e. without potential bias)

|ψ(t > 0)〉 = exp

(

−iH0t

~

)

|φ(∆ǫ 6= 0)〉. (3.4)This setup desribes an inhomogeneous initial state with more partiles inone half of the system than in the other one. Thus partiles �ow from oneside to the other one for t > 0. It orresponds to a one-dimensional satteringexperiment in whih partiles are emitted on one side of the system with en-ergies between [−∆ǫ/2,∆ǫ/2], sattered at the juntion between both systemhalves, and then (partially) transmitted to the opposite side. This piture oftransport through juntions is often used in theoretial investigations.
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Figure 3.2. Setup (I): The harge reservoirs (two halves: soureand drain) have di�erent potentials but are oupled for t = 0. For
t > 0 the potential di�erene is set to ∆ǫ = 0 instantaneously.
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Figure 3.3. Setup (II): The harge reservoirs (two halves: soureand drain) are in equilibrium and oupled for t = 0. For t > 0 apotential di�erene ∆ǫ > 0 is applied.In the seond setup (II) we prepare the system at time t = 0 in the groundstate |φ(∆ǫ = 0)〉 of the Hamiltonian H0 (i.e., without potential bias). Forlater times t > 0 the time evolution of the system is determined by theHamiltonian H = H0−HB, i.e. with a potential bias that auses the urrentto �ow in the same diretion as in setup (I)
|ψ(t > 0)〉 = exp

(

−i(H0 −HB)t

~

)

|φ(∆ǫ = 0)〉. (3.5)Setup (II) desribes the evolution of an initially homogeneous state under thein�uene of a potential gradient, see �gure 3.3. Thus it orresponds morelosely to the atual experimental situation with a voltage soure generatinga urrent in a onduting wire.



38 Chapter 3. Non-equilibrium simulations3.3 One-partile equation of motionA one-dimensional hain in the tight-binding model an be desribed by thesingle partile redued density matrix [53, 54℄
Gij(t) = 〈Ψ(t)|c†icj|Ψ(t)〉. (3.6)

|Ψ(t)〉 = e−(i/~)Ht|Ψ0〉 denotes the wave funtion of the system at time t.If the initial state |Ψ0〉 is hosen to be the ground state of a tight-bindingHamiltonian, it is a Slater determinant
|Ψ0〉 = ψ†

i1
ψ†
i2
..ψ†

in |0〉 (3.7)where |0〉 is the vauum state, ψ†
ij

the fermioni reation operator whihreates a partile in the ij-th eigenstate of the single partile Hamiltonian
H(1) and n is the total partile number. Loal onsite reation operators c†ian be written as

c†i =
∑

k∈IΨ0

Ψ∗
k,iψ

†
k (3.8)with the k-th eigenstate Ψk,l of H(1) in the loal basis. The index set IΨ0ontains all indies of oupied single partile states in Ψ0. The initial singlepartile redued density matrix G0 = G(t = 0) is given by

G0ij =
N∑

k,q=1

Ψ∗
k,iΨq,j〈Ψ0|c†kcq|Ψ0〉

=
∑

k∈IΨ0

Ψ∗
k,iΨk,j (3.9)sine 〈Ψ0|c†kcq|Ψ0〉 = 1 only for k = q and only if the k-th single partilestate is oupied in Ψ0. Preparing the ground state for half-�lling at zerotemperature means that IΨ0 ontains the indies of all eigenstates of H(1)with an eigenenergy smaller than or equal to zero.The time evolution is given by the one-partile equation of motion

d

dt
G(t) = i

~
[H

(1)
t>0,G(t)] (3.10)where H(1)

t>0 denotes the single partile Hamilton matrix of size N × N withwhih the system is evolved in time. More preisely H(1)
t>0 is the one-partilerepresentation of H0 or H0 +HB depending on the spei� setup. Sine it istime-independent, the solution of the di�erential equation (3.10) is given by

G(t) = exp

(

− i

~
H

(1)
t>0t

)

G0 exp
(
i

~
H

(1)
t>0t

)

. (3.11)



3.3. One-partile equation of motion 39De�ning Hd as H(1)
t>0 in its eigenbasis, it holds

H
(1)
t>0 = zHdz† (3.12)where the olumns of z are the eigenvetors of H(1)

t>0 and Hd ontains theorresponding eigenvalues in its diagonal entries. G(t) is then evolved intime with
G(t) =

[

z exp

(

− i

~
Hdt

)

z†G0z exp
(
i

~
Hdt

)

z†
]

. (3.13)Consequently, the dynamis of a tight-binding hain an be omputed nu-merially without additional trunation error with a runtime of O(N3) forany point in time. The partile number expetation values are equal to thediagonal terms of the redued density matrix
〈nk(t)〉 = 〈Ψ(t)|c†kck|Ψ(t)〉 = Gkk(t) (3.14)and the expetation value for the urrent operator

jk = i
etH
~

(

c†kck+1 − c†k+1ck

) (3.15)from site k to k + 1 an be alulated with the o�-diagonal entries
〈jk(t)〉 = i

etH
~

[Gk,k+1(t)− Gk+1,k(t)]. (3.16)For a given (time-dependent) quantum state we de�ne the urrent �owingbetween both halves of the system (�gure 3.1) as the expetation value ofthe urrent operator for the site pair in the middle of the system
J(t) =

〈
jN/2

〉
. (3.17)We note that

J(t) = − d

dt
QL(t) =

d

dt
QR(t) (3.18)where

QL(t) = −e
N/2
∑

k=1

〈nk〉 and QR(t) = −e
N∑

k=N/2+1

〈nk〉 (3.19)are the (time-dependent) harges in the left- and right-hand halves of thehain, respetively. As the number of partiles np is onserved, it holds
QL(t) +QR(t) = −e · np = onst. (3.20)



40 Chapter 3. Non-equilibrium simulationsThe stationary urrent is a onstantly �owing urrent in an in�nitely largesystem after the settling timē
J = lim

t→∞
lim

N→∞
J(t). (3.21)If not otherwise spei�ed, tH = 1 for all numerial simulations and, if units arenot given expliitly, e = ~ = 1. With the single-partile density matrix (3.6)and the time evolution (3.13), we have implemented a program using theMatlab framework, whih is apable of simulating for instane a system ofsize N = 1000 for a full period of the osillating retangular urrent within aouple of minutes on a single ore proessor. For the simulations performedin hapter 8 we have additionally extended this program to work for two-dimensional systems. Thus, the program serves well for performing fast andaurate simulations on tight-binding strutures, giving us the possibilityto ompare our TEBD outomes with numerially exat results for non-interating ases in the following hapters.Generally, urrents (3.17) alulated with the states (3.4) and (3.5) aredi�erent. In the strong-bias limit |∆ǫ| ≫ tH one an show [app. B.1℄ thatthe steady-state urrent remains �nite for the �rst setup while it vanishesfor the seond one. Reently, it has been reported that initial onditions(quenhing an interation term or a tunneling term) an also alter the steady-state urrent �owing through a quantum point ontat between two TLLleads whih have been driven out of equilibrium by an external bias [55℄. Inthe weak-bias limit |∆ǫ| ≪ tH, however, a simple perturbation alulationshows that both setups yield the same linear response for the stationaryurrent in the spinless fermion model and the Hubbard model [app. B.1℄.Thus in this regime both setups an be used indi�erently but in the non-linear regime we must distinguish them. For non-interating fermions insetup (I), the I�V urve is known exatly [15, 56℄

J̄ = (e/h)∆ǫ for |eV | ≤ 4tH,
J̄ = (e/h)4tH for |eV | ≥ 4tH (3.22)with ∆ǫ = |eV | where V is the voltage bias.In most theoretial studies the potential bias swithing is not instanta-neous, but adiabati. This an also be used in numerial simulations, forinstane, see [32, 36℄. Our tests do not reveal any signi�ant di�erenes forthe steady-state urrent depending on the swithing rate as long as the po-tential hanges in a time sale whih is muh smaller than the time saleassoiated with the motion of partiles from one reservoir to the other one.Sine the FABE method (presented in hapter 2) is designed to work with aninstantaneous hange in the potential di�erene and as numerial simulationsare simpler with it, we prefer this approah.



3.4. Finite-size e�ets and stationary urrent 413.4 Finite-size e�ets and stationary urrent3.4.1 Finite-size indued osillation
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Figure 3.4. Current in the tight-binding model with size N = 100for a long time sale, alulated using the one-partile equationof motion and setup (I). The initial state was prepared with aompletely �lled left half, a ompletely empty right half and tH =
0 for all bonds.With both setups (I) and (II) one observes qualitatively similar urrents inthe tight-binding model as a funtion of time, see �gure 3.4. First, there is asmall transient regime for t < ta . 3h/tH with very rapid and dominant smallosillations. For long times t > tb ≫ Tmax the urrent beomes very irregularbeause of the progressive dephasing of moving partiles. Between ta and tbwe observe an approximately retangular wave with a period Tmax whihdiverges with inreasing system length (the orresponding leading frequeny

ωmax = 2π/Tmax onverges towards 0 in the thermodynami limit). Theperiod of the retangular osillation is given by [app. B.2℄
Tmax ≈ ~ · N

tH for N ≫ 1. (3.23)Using a semi-lassial piture, partiles �rst �ow from one side of the sys-tem to the opposite side beause of the inhomogeneous density (�rst setup) or
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Figure 3.5. Setup (I): Partile density distributions for times t =
0, 7.5, 17.5, 30, 40 and 80 in units of ~/tH. The initial state hasbeen prepared with |∆ǫ| = 2tH and the system size is N = 80.the potential di�erene (seond setup). In the �rst setup, they are re�etedby the hard wall represented by the hain edge. As there is no dissipationin our model, all re�eted partiles �ow bak with the same veloity in theopposite diretion until they reah the other hain edge and are again re-�eted and so on. Figure 3.5 shows the partile densities at di�erent times.A similar behaviour of the time evolution of the density distribution has al-ready been observed for instane in the spin 1

2
XXZ hain [57, 58℄, whih is



3.4. Finite-size e�ets and stationary urrent 43losely related to the spinless fermion model whih is studied in hapter 5.We also note that the same behaviour is generally observed in the Hubbardmodel for whih the time evolution of the partile densities for a systemof size N = 60 in setup (I) with ∆ǫ = 1.2tH and UH = 2tH an be seenat whypsi.om/einhellinger/hubbardDistribution.zip. One an see the loseonnetion to the harge distributions of the LC line in �gure 2.8. In theseond setup it is basially the same e�et, but sine the potential bias isstill present after the �rst half osillation, the partiles are sattered on theirway bak, and the osillation amplitude is damped. The onrete behaviouran be seen in the urrent urve and partile density distributions for setup(II) in �gure 3.6. The urrent osillates around zero but only a small hangein the partile density distribution generates this urrent (see the last twodensity plots for t = 150 and t = 250 in �gure 3.6). For higher potentialdi�erenes the remaining osillation in the urrent urve beomes smaller,tending to zero for a very high voltage.The progressive degradation of the retangular signal for both setups anbe understood using the same semi-lassial piture. First, all partiles �owin the same diretion but, as they have di�erent veloities, they progressivelyome out of phase. For long times t ≫ tb, whih an be heked up tothe numerial double limit t ≈ 10300~/tH, our simulations using the one-partile equation of motion show that the urrent does not go to zero butontinues to osillate with a period Tmax. This an be understood in thepiture of the lassial LC line as well as for the tight-binding model throughthe dominant amplitude of the ωmax osillation. It is basially the samee�et as if all ontributions to a series representation of a square wave (2.37)would `randomly' ome out of phase. In that ase, the ontribution with thelowest frequeny ωmax, whih is the frequeny of the retangular osillation,determines the frequeny of the remaining irregularly shaped urve.3.4.2 Rapid osillation on top of the square waveSetting the expression (2.22) for the period of the lassial system and equa-tion (3.23) for the period of the quantum system equal, one gets
tH ≈ ~

2
√
LC

for N ≫ 1. (3.24)Further omparison with equation (2.36) gives for the period of the rapidosillation
Tmin = π

√
LC ≈ h

4tH for N ≫ 1. (3.25)

http://whypsi.com/einhellinger/hubbardDistribution.zip
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Figure 3.6. Setup (II): Partile density distributions for times t =
0, 7.5, 100, 150, 250 in units of ~/tH and the urrent for a long timesale for a system of size N = 80. The realtime evolution wasperformed with |∆ǫ| = 2tH. The dashed red lines in the densityplots for t = 150 and t = 250 larify the di�erene in the partiledensities whih feeds the osillating urrent.Instead of preparing the system in a ground state of a Hamiltonian withapplied potentials, one an initially deouple all sites and �ll the left half ofthe system with (unorrelated) partiles, leaving the right half empty. Thisalmost orresponds to hoosing ∆ǫ = 4tH, insofar as a ground state with
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Figure 3.7. Current in the tight-binding model for ∆ǫ = 2tH, al-ulated using the one-partile equation of motion. The dashedlines are urrents through a single bond in the hain while thesolid ones represent the mean value of the urrents through twoadjaent bonds in the middle.this applied voltage and oupled reservoirs still has some orrelations andunequally distributed onsite partile densities in it. The resulting urrenturve in �gure 3.4 in the �rst half period losely resembles the urve shownin �gure 2.2 for the LC line.The magni�ation in �gure 3.4 shows a rapid osillation with a period a-ording to equation (3.25), in ontrast to the osillation shown in �gure 3.7for setup (I) whih is `disturbed' by osillations stemming from orrelationsand an unequal distribution of partiles in the ground state due to a lowerapplied voltage ∆ǫ < 4tH. Although the osillation in �gure 3.7 for setup (II)is very regular, it does not stem from the same `lassial' origin, whih is on-�rmed by the fats that on the one hand two adjaent urrents do not anelout and on the other hand the osillation does not ful�ll equation (3.25).
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Figure 3.8. Solid line: JF(t) from equation (3.27), dashed line:orresponding approximation JF,app(t) from (3.28).3.4.3 Appliability of the FABE approah to quantumsystemsAlthough we have seen the lose onnetion between the tight-binding systemfor initially unorrelated partiles and the lassial LC line, there exists amajor di�erene in the behaviour of the respetive urrents: the damping ofthe rapid osillations. While for the lassial LC line a O(t− 1
2 ) dependeneof the amplitudes aording to equation (2.29) is predited, this derementis di�erent for a quantum system. The expetation value of the urrent forsetup (I) and for initial onditions like in �gure 3.4 (one ompletely �lled andone ompletely empty half) is for N →∞ given by [15, 56℄

JkF(t) = 2etH
~

∞∑

l=k−N
2

Jl(ωt)Jl+1(ωt) (3.26)where k denotes the site, ω = 2tH/~ and Jl(z) are the Bessel funtions ofthe �rst kind and the expression an be simpli�ed to [app. B.3℄
JF(t) = etH

~
ωt

[
(J0(ωt))

2 + (J1(ωt))
2
]
. (3.27)



3.4. Finite-size e�ets and stationary urrent 47Using the asymptoti series expansions (A.15) yields for the urrent
JF,app(t) =

etH
16h(ωt)2

[
5− 32ωt cos(2ωt)

+ 4 sin(2ωt)
]
+

4etH
h

(3.28)whih is plotted together with expression (3.27) in �gure 3.8. The urvehighly oinides with the one shown in �gure 3.4 for t < Tmax/4 whih on-�rms the assumption that the borders in the �nite quantum system for setup(1) only signi�antly hange the urrent after a time Tmax/4, determinedby the veloity of the partile density front wave [56℄ whih moves from themiddle of the hain to the borders. The quasi-stationary value from (3.28) isgiven by J̄ = 4etH/h and the amplitudes of the rapid osillation are dampedwith O(1/t). Moreover, expression (3.25) for the period of the rapid osil-lation � whih was derived only by omparison with the lassial model � ison�rmed by equation (3.28).Sine the latter analysis shows a O(1/t) damping of the rapid osillation,the open question at hand is, if it is reasonable to use the FABE methodfor a quantum system. In fat, a pure square wave desribed by its Fourierseries (2.37) has also a damping of the rapid osillation of O(1/t) and highlyresembles the urrent desribed by (3.27) or depited in �gure 3.4 whenhoosing an appropriate amplitude and number of harmonis. Sine themathematial error (2.45) of our method stems from the di�erene of theanalyzed urve to a square wave, the FABE approah provides an even smallererror than (2.45) for a quantum system prepared in setup (I).In ontrast, the rapid osillation of the urrent in a quantum system pre-pared with setup (II) has an unknown behaviour and it seems unertain iforret results an be obtained using outomes from simulations of �nitesystems and the FABE method. However, �gures 3.9 and 3.10 show thatthe omputed stationary values do not signi�antly hange for system sizeslarger than N ≈ 60. The saling behaviour for setup (I) an be seen in �g-ure 3.11 and on�rms the good appliability of our method also for smallerpotential di�erenes ∆ǫ. Remarkably, the urve for setup (I) approahes thelimit value from above while the urves for setup (II) onverge oming frombelow the limit values.The urve in �gure 3.11 for ∆ǫ = 4tH onverges against 4tHe/h as expetedaording to equation (3.28). The other urve in that �gure for ∆ǫ = 2tH hasthe limit value 2tHe/h as expeted aording to equation 3.22 and the urvein �gure 3.9 onverges against zero. An exat result for ∆ǫ = 2tH and setup(II) is not available. All urves have a deviation from the mentioned valuesof less than 10−7tHe/h for N ≥ 70. Figures 3.9, 3.10 and 3.11 emphasize
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Figure 3.9. Stationary urrents J̄ for setup (II) and ∆ǫ = 2tH,alulated using the presented FABEmethod and di�erent systemsizes. The dashed lines are guides for the eyes.that an extrapolation of the results obtained from the FABE method is notneessary for su�iently high system size N . Thus, in the following hapterswe an use a system size N = 100 for the simulations and diretly apply theFABE method to our simulation results.3.5 SummaryIn this hapter we have shown the lose onnetion of the LC line and thetight-binding model by omparing model parameters and the behaviour ofharge and partile density distributions, respetively. Furthermore, we im-plemented a one-partile equation of motion method. We explained the rapidosillation in the tight-binding model on the one hand by omparison with thelassial model and on the other hand by using the results from [15, 56℄. Fi-nally we showed the general appliability of the FABE approah to quantumsystems and argued that an extrapolation of the stationary urrent valuesobtained by our approah is unneessary for su�iently high system sizes.
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Figure 3.10. Stationary urrents J̄ for setup (II) and ∆ǫ = 4tH,alulated using the presented FABE method and di�erent systemsizes. The dashed lines are guides for the eyes.
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Figure 3.11. Stationary urrents J̄ for setup (I) and for ∆ǫ = 2tHand ∆ǫ = 4tH, alulated using the presented FABE method anddi�erent system sizes. The values for ∆ǫ = 4tH have been dividedby 2, regarding a better omparability of the two urves. Thedashed lines are guides for the eyes.
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51
Chapter 4TEBD methodIn this hapter we introdue the time evolving blok deimation (TEBD)method for the simulation of systems with eletron-eletron interation. Weespeially use this method for simulating the spinless fermion model and theHubbard model in hapters 5 and 6. In hapters 7 and 8 the method is ex-tended and applied to a two-site fermioni system oupled to a bosoni bathand a tight-binding ladder. The TEBD method has been invented in 2003by Guifré Vidal [25, 26℄. The algorithm is based on a spei� representa-tion of quantum states by matrix produt states (MPS) and it was the �rstMPS-based proedure allowing e�ient realtime simulations of interatingquantum systems. For an N-site lattie an MPS is generally written

|Ψ〉 =
∑

{jk}
Γ[1]j1λ[1]Γ[2]j2λ[2] . . .

. . .Γ[N−1]jN−1λ[N−1]Γ[N ]jN |j1j2 . . . jN〉 (4.1)where |j1j2 . . . jN 〉 designs the states of the oupation number basis, λ[k]
(k = 1, 2, . . . , N − 1) are positive de�nite diagonal matries and Γ[k]jk (k =
1, 2, . . . , N) are matries satisfying orthogonality onditions

∑

jk

(
Γ[k]jk

)† (
λ[k−1]

)2
Γ[k]jk = I,

∑

jk

Γ[k]jk
(
λ[k]

)2 (
Γ[k]jk

)†
= I. (4.2)Sums over an index jk run over a omplete basis of the site k, for instane2 states for the spinless fermion model and 4 states for the Hubbard model.Every quantum state of the Fok spae assoiated with a �nite lattie an berepresented exatly in this form if the matrix dimensions an be as large asthe square root of the Fok spae dimension, for instane 2N/2 for the spinlessfermion model and 4N/2 for the Hubbard model. In numerial omputations,however, the matrix dimension must be kept smaller than a relatively smallupper limit χc (Shmidt dimension). Fortunately, for many one-dimensionalsystems this trunation is possible and an lead to a dramati omputational



52 Chapter 4. TEBD methodspeedup while keeping the error in omputed observables onveniently low.This is done by using the Shmidt deomposition of the density matrix at eahbond to alulate the matries λ[k] from its eigenvalues and the Γ[k]jk fromits eigenvetors. For a bipartite split at bond k, the Shmidt deompositionis de�ned by
|Ψ〉 =

χk∑

αk=1

λαk
|Φ[1..k]

αk
〉|Φ[k+1..N ]

αk
〉. (4.3)The vetors |Φ[1..k]

αk 〉 are the eigenvetors of ρ[1..k], the redued density matrixof the left side of the split, the |Φ[k+1..N ]
αk 〉 orrespondingly the eigenvetors of

ρ[k+1..N ] for the right side and the λ2αk
are the eigenvalues of both ρ[1..k] and

ρ[k+1..N ], with
λαk
≥ 0 and χk∑

αk=1

λ2αk
= 1. (4.4)The λαk

are the matrix elements (λ[k])αk
and either of the |Φαk

〉 an be used tobuild the matries Γ[k]jk from equation (4.1). Thus, it is possible to keep onlythe largest χc eigenvalues and throw away the rest while re-normalizing thestate, suh that the sum of the disarded values is smaller than an arbitraryerror ǫ
χk∑

αk=χc

λ2αk
< ǫ. (4.5)The best andidates are states for whih the Shmidt dimension, and henethe dimension of the MPS matries is low (like produt states), or states forwhih the Shmidt oe�ients show an exponential deay, suh that a largenumber of eigenvalues an be disarded without signi�ant information loss.The great advantage of the TEBD algorithm is the possibility to omputethe time evolution of a state using a time-dependent Hamiltonian

|Ψ(t+ δt)〉 = e−
i

~
H(t)δt|Ψ(t)〉. (4.6)In a numerial implementation, δt has to be disrete, suh that the totalsimulation time τ = nt · δt, where nt is the number of time steps and δt thenumerial time step. The time evolution an be used as well to alulate theground state |ψgs〉 of a HamiltonianH . This is done by taking the time to beimaginary and projeting (e�etively `ooling') a starting state |ψP〉 to theground state of H

|ψgs〉 = lim
τ→∞

e−Hτ |ψP〉
||e−Hτ |ψP〉|| . (4.7)



53For a one-dimensional system of size N with nearest-neighbour interation
HN =

N∑

l=1

K
[l]
1 +

N∑

l=1

K
[l,l+1]
2 (4.8)one an split the Hamiltonian into two sums HN = F +G over even and oddsites, with

F =
∑even l

(K
[l]
1 +K

[l,l+1]
2 ) =

∑even l

F [l],

G =
∑odd l

(K
[l]
1 +K

[l,l+1]
2 ) =

∑odd l

G[l]. (4.9)Using the Suzuki-Trotter deomposition for exponential operators
e−

i

~
Hδt = e−

i

~
(F+G)δt

= e−
i

~

F
2
δte−

i

~
Gδte−

i

~

F
2
δt +O(δt3), (4.10)we an redue the proess of time evolution to the suessive appliation ofoperators whih at only on two sites

e−
i

~

F
2
δt =

∏even l

e−
i

~

F
2

[l]
δt,

e−
i

~
Gδt =

∏odd l

e−
i

~
G[l]δt. (4.11)The TEBD algorithm then updates the MPS representation by alulatingthe new Shmidt deomposition at the orresponding bond eah time aftera two-site operator is applied to it. This suession of two-site operatorsimposes a linear dependene of the omputational ost on the system size

N . Eah time a Shmidt deomposition is omputed, we an trunate thedimension of the MPS by keeping only a maximal number of eigenvalues χc,whih is neessary, sine the omputational ost of both Shmidt deompo-sition and update of the MPS representation is of the order O(χc
3) as shownin [25, 26℄.



54 Chapter 4. TEBD method4.1 ParallelizationThe total (single ore) CPU time used to obtain the results in this thesisamounts to approximately four million hours. Even though many onurrentsimulations have been performed, this thesis would have not been realiz-able in the given time with a serial TEBD method. Aordingly, a parallel(i.e. multi-threaded) version of the TEBD algorithm has been developed andoptimized to run on SMP mahines with up to 150 CPU ores. These om-putational resoures have been provided by the Regional Computing Centerfor Lower Saxony at the Leibniz Universität Hannover (RRZN).The basi sheme aording to whih a serial TEBD performs the updatesof the MPS representation is
t← 0while (not simulation �nished) {for (l = 2 : 2 : N − 1) // l evenall TEBDl;for (l = 1 : 2 : N − 1) // l oddall TEBDl; (4.12)for (l = 2 : 2 : N − 1) // l evenall TEBDl;ompute expetation values (e.g. urrent)

t← t+ dt

}where TEBDl updates the l-the bond and is de�ned in [app. (C)℄. Thealternate updating of even and odd sites aording to (4.11) makes the TEBDalgorithm highly parallelizable sine one an exeute every all of TEBDl inone for-loop simultaneously using N/2 threads. However, it is very importantto use a well-suited synhronization sheme to get a low overhead and lowwaiting time of the threads. The diagram in �gure 4.1 shows a simpli�edversion of the proess of one update of all bonds. In fat, even more threadsare started and they are speialized on di�erent tasks, but the level of detailof this sheme is high enough to show the low overhead that a multi-threadedTEBD algorithm produes.All threads start with even bonds and as soon as a thread has �nished,it updates the next available odd or even bond if its two neighbors havealready been updated. This proedure is ontinued until all bonds have beenproessed aording to the sheme (4.12). The threads then wait for allothers to �nish, i.e. they wait at a so-alled barrier. When all threads are
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b Start n=4 threads on n/2 processors

thread #1 thread #2 thread #3 thread #4

time

for N-1=10 bonds

TEBD2

TEBD10

TEBD4 TEBD6 TEBD8

TEBD1

sleep

TEBD5

TEBD9

TEBD7

TEBD3

sleep

sleep

sleepsleep

TEBD2

TEBD4TEBD6

TEBD8TEBD10

sleepFigure 4.1. Single iteration of the outer while-loop of a parallelTEBD aording to the serial sheme (4.12). Only during `red'phases a signi�ant loss in parallelization ours.available, the desired expetation values are omputed and the proedurestarts again from the beginning. In fat, twie as muh threads are startedthan proessors (ores) are available. The operating system swithes fromthread to thread whih auses only a small overhead if not muh memoryis used in every thread, whih ought to be transferred between ahe andRAM. Aordingly, it is important to organize a thread suh that always theminimal amount of private memory (loal variables) is alloated. Also notethat a waiting (sleeping) thread needs almost no CPU time.One an see gray and red `sleep' times in �gure 4.1. Even while threads arewaiting (gray sleep phases), as long as at least as muh threads are workingas proessors are available, the operating system will split the CPU timeover the remaining threads. Only during red sleep phases a signi�ant loss



56 Chapter 4. TEBD methodin parallelization ours, whih in the given example means that only half ofthe ores are used.The implemented multi-threaded version of TEBD has an extremely lowoverhead with less than 1% for 10 proessors (ores) and less than 10% forup to 150 proessors (ores). The TEBD method has been implementedin C++, using pthreads for multi-threading, a self-written synhronization(barrier) sheme and stak system. Sine the LAPACK pakage in its mostreent version is not thread-safe, Intel's MKL library has been used for thediagonalization of the density matrix ρ(R), see [app. C℄. The overall ost ofa TEBD simulation is slightly higher than that of a DMRG alulation ona single proessor. If several proessors are used in parallel, the overhead ofDMRG alulations beome rapidly prohibitive, exeeding 100% for as fewas 4 proessors [40℄. Thus, our TEBD implementation is already twie asfast as DMRG for 4 proessors and the di�erene is likely to inrease rapidlywith the number of proessors.4.2 Error souresOne obvious error soure is the one stemming from the disretization of timein order to numerially ompute equation (4.6). Therefore, it is neessaryto keep the atual time step δt small enough to have a good approximationof H(t) in the interval [t, t + δt]. However, the main error soures in thealgorithm are the Suzuki-Trotter approximation and the Shmidt trunation.In order to improve the time step error, one an use higher-dimensionalSuzuki-Trotter formulas, at a omputational ost whih sales linearly withhigher-order approximations [59℄, or we an derease the time step δt, whihalso omes at a linear ost.The dominating error in probably all setups of interest is thus the truna-tion error. It is also very di�ult to ompensate for this error, beause of the
O(χc

3) saling of the omputational ost. As a trivial example, when start-ing a real time evolution with a state with Shmidt dimension smaller than
χc, the simulation runs with a onstant trunation error. As the simulationontinues, there omes a point where more states than χc are needed, and thetrunation error quikly overomes the Trotter error, whih basially de�nesa runaway time for the simulation, as reported in [57℄, see also �gure 5.2. Areasonable and often used estimator of the trunation error is the disardedweight

Dk = 1−
χm∑

αk=1

λ2αk
(4.13)
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Figure 4.2. Current for non-interating fermions for setup (I).Shown are TEBD results (dots) and one-partile equation of mo-tion outomes (lines) for di�erent system sizes N . The TEBDresults for ∆ǫ = 4tH are not shown for reasons of larity, but theyalmost perfetly agree with the displayed equation of motion out-omes.for a bipartite split at the k-th bond where χm < χc is the number of kepteigenvalues. Figure 4.2 shows the very good agreement between our TEBDsimulations and the exat alulation using the single partile redued densitymatrix (3.6) and the one-partile equation of motion (3.10) for the tight-binding model. More detailed analyses of simulation errors are presented inthe respetive setions 5.1 and 6.1 where the TEBD method is applied to thespinless fermion model and the Hubbard model.4.3 Notes on the omputation of stationary ur-rentsUsing both methods, TEBD and the FABE approah from hapter 2, weinvestigate the stationary urrents in the spinless fermion model and in theHubbard model in hapters 5 and 6. In that ontext, we ompare our out-omes with exat results for the systems without Coulomb interation. An-



58 Chapter 4. TEBD methodalytial results are known for setup (I), see equation (3.22). For setup (II),exat results are alulated numerially using the one-partile equation ofmotion with a system size of N = 1000. We have found that our proe-dure yields stationary urrent values whih agree with an overall error of lessthan 5% with the exat results. Additionally, it has been heked by Alex Co-juhovshi that our FABE method alulations agree with the �eld-theoretialanalysis and td-DMRG simulations [22℄ for the IRLM. We nevertheless haveto remark that the IRLM is far easier to simulate than the spinless fermionmodel or the Hubbard model, sine for higher Coulomb interations the or-relations (and thus the needed Shmidt dimension) within the nanowire growmore quikly than in the IRLM.For the following disussions of the stationary urrent results, we remarkthat the value of the potential bias is given by a parameter ∆ǫ of the Hamil-tonian, whih orresponds to an external �eld. However, the potential di�er-ene measured in experiments might di�er from this value [12, 60℄ and a volt-age is applied to leads whih are onneted to the quantum wire. The e�etsof leads attahed to a TLL have been widely investigated [19, 61, 62, 63, 64℄and it has been shown that the ondutane is given by e2/h independentlyof the Coulomb interation within the TLL. Moreover, this result oinideswith experimental outomes.However, the motivation in this thesis is to understand the e�ets in or-related nanostrutures and thus our main interest does not lie on the in-�uene of attahed leads, but on transport properties of isolated orrelatednanowires. Conerning this matter, reently the ontatless transport in aHubbard-like system ould be observed experimentally during the free ex-pansion of an initially on�ned atomi loud within a homogeneous optiallattie [65℄.4.4 SummaryIn this hapter, we have explained how we implemented a multi-threadedversion of the TEBD algorithm, whih is apable of running on 150 oreswith an extremely low overhead. In addition, we have shown that our meth-ods to simulate and extrat the stationary urrent (using TEBD and theFABE approah) work well for several test models for whih exat resultsor omparative data are available, suh as non-interating fermions and theIRLM.
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Chapter 5Spinless fermion modelIn this hapter, we investigate a one-dimensional lattie model representingorrelated ondutors driven out of equilibrium by a potential bias. Forspinless fermions the Hamiltonian without a potential bias is

H0 = − tH N−1∑

j=1

(c†jcj+1 + c†j+1cj)

+ VH N−1∑

j=1

(

nj −
1

2

)(

nj+1 −
1

2

) (5.1)where tH denotes the hopping amplitude between nearest-neighbor sites, VHis the Coulomb repulsion between spinless fermions on nearest-neighbor sites,and nj = c†jcj. This so-alled spinless fermion model an be interpreted as asystem of spin-polarized eletrons. At half-�lling (N/2 fermions in an N-sitelattie) this Hamiltonian desribes an ideal ondutor for −2tH < VH ≤ 2tH.Although the losely related spin 1
2
XXZ hain has been studied in severalworks using the td-DMRG method [10, 57, 58℄, the nonlinear properties ofthe model (espeially its full I�V harateristis) have not been investigated.The low-energy behaviour of this lattie model is desribed by the TLL the-ory [5, 7℄ for whih two parameters are important: The veloity of elementaryexitations (renormalized Fermi veloity) v and the dimensionless orrelationexponent K. From the Bethe Ansatz solution we know the relation betweenTLL parameters and the parameters tH and VH of the spinless fermion modelat half-�lling

v = π
aLtH
~

√

1−
(
VH
2tH)2 [

arccos

(
VH
2tH)]−1 (5.2)and

K =
π

2

[

π − arccos

(
VH
2tH)]−1 (5.3)where aL is the lattie onstant whih we set aL = 1 in all numerial simula-tions. To drive the system out of equilibrium we use the step-like potentialbias ∆ǫ from equation (3.3).
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Figure 5.1. One-dimensional ondutor onsisting of two oupledleads. A bias between its right- and left-hand halves is appliedand the urrent is measured in the middle of the system at thejuntion between both sides (dashed onnetion).The above system an be seen as two oupled interating leads onsisting ofthe sites {1 . . . N
2
} and {N

2
+1 . . .N}, respetively, see �gure 5.1. The ouplingis given by a hopping term t′H between the left- and right-hand sides of thesystem (i.e., between site N/2 and site N/2 + 1) and an additional oupling

V ′H( nN/2 − 1/2)( nN/2+1 − 1/2). We restrit ourselves to the homogeneoussystem (t′H = tH and V ′H = VH), but our approah is also appliable to systemswith weaker links, suh as for instane a quantum dot [32, 22℄.Aording to the TLL theory, the stationary urrent (3.21) in the linearregime is given by [5℄̄
J =

e2

h
KV =

e

h
K∆ǫ for V ≥ 0. (5.4)The states initially prepared with setup (I) or (II) are all half-�lled for t = 0.If a weak potential bias is applied, the system remains approximately half-�lled, and thus we expet that the TLL preditions (5.4) are valid for oursimulations in the linear regime.We should point out that in setup (I) the two leads are deoupled withrespet to the Coulomb interation V ′H for the alulation of the ground state.Our tests have revealed that otherwise a strong dependeny of the stationaryurrent on the system size appears, that is, for smaller system sizes thestationary urrent beomes higher but for N → ∞ it approahes the sameonstant value as the value one gets with V ′H = 0 for t = 0. Choosing V ′H = 0for the omputation of the ground state therefore dereases the �nite-sizeerror.



5.1. Simulation parameters and errors 615.1 Simulation parameters and errorsFor the realtime simulations, we use the TEBD method desribed in hapter 4with a maximal Shmidt dimension in the range of 300 ≤ χc ≤ 500, depend-ing on the spei� parameter ombination. We use a site-dependent χc(site)and allow our simulations to adapt χc(site) if test values (disarded weight,entanglement entropy) show the neessity to do so. We have to remark thatfor higher |VH| and ∆ǫ the orrelations (and thus the needed Shmidt dimen-sion) within the spinless fermion model grow very quikly. Hene, the hosen
χc-range an lead to signi�antly larger errors in the regime |VH| ≥ 1.6tH and
∆ǫ ≥ 3tH.
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Figure 5.2. Disarded weight DN/2 for di�erent parameters. solidblak urve: ∆ǫ = 0.5tH, VH = 0.8tH, dashed blue urve: ∆ǫ =
tH, VH = 1.6tH, dotted red urve: ∆ǫ = 2tH, VH = 0. The vertiallines indiate the runaway times desribed in the text.Figure 5.2 shows the disarded weight for di�erent parameters for a splitin the middle of the hain. One an see the runaway time (see hapter 4)indiated by the vertial lines. However, the maximal disarded weight overall simulations, sites and times up to 40~/tH we measured is yet smallerthan 10−6. Our simulations reveal that when taking a maximal Shmidtdimension of χc = 600 instead of 300, the runaway time is shifted only about20% to larger times and the quantities of interest are only slightly hanged.



62 Chapter 5. Spinless fermion modelMoreover, the stationary urrent omputed with the FABE approah, is onlyhanged by less than 0.5%.We use a time step δt = 0.01, a system size N = 100 and a typial simu-lation runs approximately 1/2 to eight hours for a ground state alulationand about four hours to one week for a realtime evolution. We have used 12threads for a TEBD simulation on average. The total single-ore CPU timeneeded to obtain the simulation results in this hapter amounts to approxi-mately two million hours.5.2 Simulation resultsIn this setion, we disuss our results for the stationary urrent in the spinlessfermion model and show our �ndings for the �nite-system period as a funtionof the interation strength VH.5.2.1 Current-voltage harateristis
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Figure 5.3. Current-voltage urve of the spinless fermion modelwith setup (I) for several positive VH. For VH = 0 the urrenthas been omputed using TEBD and the one-partile equation ofmotion (eom). The lines are guides for the eyes.In setup (I) the urrent in the non-interating system is proportional to
∆ǫ up to the band width of the system, aording to equation (3.22). For
VH > 0 �gure 5.3 shows that the urrent inreases sub linearly with ∆ǫfor a �xed interation strength VH and that it dereases monotonially with
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Figure 5.4. Magni�ation of �gure 5.3. The lines indiate the linearresponse aording to the TLL theory (5.4) for small ∆ǫ.inreasing VH for a �xed potential bias ∆ǫ. The magni�ation in �gure 5.4shows a omparison with the linear response in the TLL theory (5.4) for small
∆ǫ, using the Bethe Ansatz solution parameters (5.3). The good agreementon�rms the validity of our approah. Obviously, an inreasing VH does notonly redue the urrent but also the range of the potential bias ∆ǫ for whihthe linear response approximation remains valid.In �gure 5.5 we observe a behaviour for attrative interations VH < 0whih is quite similar to the non-interating ase. The urrent inreasesalmost linearly with ∆ǫ and then saturates at a VH-dependent maximum. As
VH is inreased, the maximal urrent is dereased but also a higher linearondutane is present for small applied voltages. Figure 5.6 shows that fornegative interations our results agree as well with the TLL theory (5.4) forsmall ∆ǫ. Again, inreasing |VH| seems to redue the range of the potentialbias ∆ǫ for whih the linear response approximation remains valid.We an easily understand the appearane of the plateaus in the I�V urvesfor large applied voltages. In setup (I), one half of the hain initially on-tains more partiles than the other one due to the applied potential bias ∆ǫ.When ∆ǫ is large enough to separate the system into a ompletely �lled anda ompletely empty reservoir (i.e., when saturation ours), inreasing theapplied voltage does not inrease the urrent anymore. Aording to expres-sion (3.22), this saturation ours for non-interating fermions at ∆ǫ = 4tH.For an attrative interation VH < 0, the partiles are more likely to stiktogether and thus even more partiles gather in one half of the system. There-fore, saturation ours for even smaller applied voltages, see �gure 5.5. When
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Figure 5.5. Current-voltage urve of the spinless fermion modelwith setup (I) for several negative VH. The dashed lines indi-ate the theoretial beginning of the urrent plateaus aordingto (5.5). The solid lines are guides for the eyes.
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Figure 5.6. Magni�ation of �gure 5.5. The lines indiate the linearresponse aording to the TLL theory (5.4) for small ∆ǫ.
VH > 0, the e�et is reversed, and thus saturation ours at higher values
∆ǫ > 4tH, beyond the potential range shown in �gure 5.3. The dereasing ofthe plateau heights with inreasing |VH| is not yet understood.We an approximately determine for whih potential di�erene ∆ǫ thesystem reahes saturation. Removing a single partile from the ompletely



5.2. Simulation results 65�lled reservoir or adding one partile to the empty half osts an energy∆ε/2−
VH − 2tH . Thus, saturation ours if

∆ε ≥ 2VH + 4tH . (5.5)Figure 5.5 shows that this approximation �ts well to the numerial data for
VH ≤ 0 whereas the saturated regime aording to (5.5) for VH > 0 liesoutside the potential range shown in �gure 5.3, as mentioned above.
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Figure 5.7. Current-voltage urve of the spinless fermion modelwith setup (II) for several positive VH. For VH = 0 the urrenthas been omputed using TEBD and the one-partile equation ofmotion (eom). The lines are guides for the eyes.While for setup (I) the di�erential ondutane is always positive, we ob-serve a negative di�erential ondutane in setup (II) for VH ≥ 0, see �g-ure 5.7. The urrent seems to vanish for very large potential biases as pre-dited by strong-oupling perturbation theory for this setup. We note thatthe urrent beomes smaller with inreasing VH for a small potential bias.For larger ∆ǫ the behaviour of I as a funtion of VH is no longer monotoni.Additionally, it an be seen that the position of the maximum of I as a fun-tion of ∆ǫ is shifted to higher values with inreasing VH. The magni�ationfor small ∆ǫ (�gure 5.8) on�rms again that our results agree with the TLLtheory in the linear regime and that the range of the linear response regimeshrinks with inreasing interation strength.For setup (II) and VH < 0, �gure 5.9 shows again a negative di�erentialondutane and a vanishing urrent for very large potential biases. In on-trast to the ase VH > 0 for this setup, we see that the maximum of the
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Figure 5.8. Magni�ation of �gure 5.7. The lines indiate the linearresponse aording to the TLL theory (5.4) for small ∆ǫ.
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Figure 5.9. Current-voltage urve of the spinless fermion modelwith setup (II) for several negative VH. The lines are guidesfor the eyes.urrent is shifted to lower values of ∆ǫ for inreasing |VH|. Finally, the datain �gure 5.10 shows the good agreement between our results and the TLLtheory preditions in the small bias regime. We again see, that the inter-ation strength rapidly redues the range of potential biases for whih thelinear response remains valid.
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0 to 2tH, it diminishes from ∆ǫ = 2tH and reahes zero at 4tH. As a result,the urrent is maximal for ∆ǫ ≈ 2tH and vanishes for large ∆ǫ. Similarly, wean understand the non-monotoni behaviour in interating ases (VH 6= 0)in terms of the overlap of the elementary exitation bands in the spinlessLuttinger liquids in the two halves of the system. However, the e�etivebandwidth is renormalized like the Fermi veloity in equation (5.2). There-fore, the maximum of the urrent is reahed for a smaller potential bias ∆ǫwhen VH beomes negative as shown in �gure 5.9, and shifted to a higher po-tential bias when VH is inreased, see �gure 5.7. Our onlusion agrees withthe �ndings in [43℄ where it is shown that within a similar one-dimensionalmodel a negative di�erential ondutane is mainly aused by �nite eletrodebandwidths.



68 Chapter 5. Spinless fermion model5.2.2 In�uene of VH on the period TmaxOur results show a further e�et of VH on the �nite-system urrent. Whilefor VH > 0 the period of the retangular osillation beomes smaller, it growsfor negative interations.
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v(VH) Tmax(VH = 0). (5.6)Thus, the period is fully determined by the time-sale of the non-interatingsystem Tmax(VH = 0) from (B.15) and the renormalized Fermi veloity vfrom expression (5.2).



5.3. Summary 695.3 SummaryIn this hapter we have applied the TEBD method and our FABE approahto obtain stationary urrent values in the full voltage range for the spinlessfermion model. We found that while in the linear regime the results aremostly independent from the spei� setup, the non-linear harateristisare primarily determined by it. For setup (I) the system shows a positivedi�erential ondutane over the full voltage range and the urrent satu-rates at a �nite value for both, repulsive and attrative interations VH. Forsetup (II) we observe a negative di�erential ondutane and for large appliedvoltages the urrent vanishes. The e�ets from setup (II) also our in thenon-interating ase and ome from the �nite bandwidth and the nonlineardispersion of the exitations [42, 43℄.Finally, it turned out that the period of the osillating urrent in the�nite system is fully determined by the time-sale of the non-interatingsystem Tmax(VH = 0) from (B.15) and the renormalized Fermi veloity vfrom expression (5.2), aording to equation (5.6).
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71
Chapter 6Hubbard modelSo far in this thesis we have investigated one-dimensional non-interatingquantum systems in hapter 3 and extended this study to interating spinlessfermions in hapter 5. However, spinless fermions are in most ases far awayfrom a realisti desription of eletrons in a solid. The simplest model whihovers eletron-eletron interation for partiles with spin is the fermioniHubbard model [66, 67, 68℄.This model has been under permanent researh sine its invention in theearly 1960s. Among others, the model was widely studied to investigateheavy fermions, the magneti properties of solids and high-temperature su-perondutivity. Over the years, several methods have been used to studythe Hubbard model, for instane mean �eld alulations [69℄, studies us-ing perturbation theory and numerial methods like the quantum MonteCarlo [70, 71℄ or the DMRG method [72℄.At half-�lling the one-dimensional Hubbard model desribes a Mott-insula-tor for any value of the repulsive onsite Coulomb interation UH > 0 while forall other �llings it is a metal. This Mott-metal-insulator transition shows theompetition between the kineti energy of the fermions and the repulsion UHof two partiles [73℄. At half-�lling and for UH > 0, the system tries to avoiddoubly oupied states suh that eah site is preferably oupied with a singleeletron, and harge �utuations around this state are energetially veryexpensive. On the ontrary, the kineti energy term in the Hamiltonian triesto deloalize the partiles into Bloh states, leading to a metal for UH = 0.The one-dimensional Hubbard model without a potential bias is exatlysolvable with the Bethe Ansatz solution and several properties suh as thefull phase diagram and elementary exitations are well known [74, 17, 18℄.For small applied voltages, the transport properties are desribed by the TLLtheory [5, 7℄ and the stationary urrent in the linear regime is given by

J̄ =
2e2

h
KV =

2e

h
K∆ǫ. (6.1)However, the orrelation exponent K an not be obtained analytially, butfrom numerial solutions of the integral equation of Lieb and Wu [75℄. Onegets, that while for an attration UH < 0 the ondutane in the linear



72 Chapter 6. Hubbard modelregime is inreased, it beomes smaller for a repulsive interation UH > 0.This behavior agrees with the harateristis of the urrent-voltage urves inthe spinless fermion model with respet to VH.The Hubbard Hamiltonian for a one-dimensional lattie without a potentialbias is
H0 = − tH N−1∑

σ,j=1

(c†σ,jcσ,j+1 + c†σ,j+1cσ,j)

+ UH N∑

σ,j=1

(

nσ,j −
1

2

)(

nσ,j −
1

2

)

+ ǭ

N∑

σ,j=1

nσ,j (6.2)where tH is the hopping amplitude, UH denotes the onsite Coulomb repulsionbetween two spins, c(†)j are the fermioni annihilation (reation) operator forsite j and spin σ, and nσ,j = c†jcj . The reason for adding an additionalpotential o�set ǭ to every site is given in setion 6.1. We drive the systemout of equilibrium by using the previously presented setups (I) and (II) withthe Hamiltonian
HB =

∆ǫ

2





N/2
∑

σ,j=1

nσ,j −
N∑

σ,j=N/2+1

nσ,j



 , (6.3)perform TEBD simulations and extrat the stationary urrent (3.21) usingthe FABE method presented in hapter 2. Sine the Hubbard model is aninsulator for half-�lling, the following simulations are performed away fromhalf-�lling with a �xed partile number np, leading to a ouple of problemswhih are desribed below.6.1 Simulation parameters, modi�ations anderrorsFor the following simulations, we use the TEBD method desribed in hap-ter 4 with a maximal Shmidt dimension of χc = 1000. The maximal dis-arded weight over all simulations, sites and times up to 40~/tH we measuredis smaller than 10−6. For the non-interating ase we ompare our TEBDresults with exatly available results from one-partile equation of motionalulations and �nd that the outomes for the stationary urrent mathwithin an error of less than 10−3. We use a time step δt = 0.01, a system size
N = 100 and a typial simulation runs approximately 2-4 weeks for a groundstate alulation and about two months for a realtime evolution. We have



6.2. Simulation results 73used 16 threads for a TEBD simulation on average. The total single-oreCPU time needed to obtain the simulation results in this hapter amountsto approximately one and a half million hours.As already mentioned above, there is a problem in the alulation of theground state with a �xed partile number np. Basially, the time evolutionof TEBD is grand anonial, allowing any partile number from 0 to 2Nfor the Hubbard model. To fore the system into having a spei� partilenumber one an use an implementation of TEBD with partile symmetry,but tests performed by Alex Cojuhovshi showed that this is only appliablein a regime whih is slightly away from the �lling whih the system naturallyprefers due to the applied onsite potentials. Thus, we have introdued theadditional potential o�set ǭ in equation (6.2) with whih we an ontrol thepreferred total partile number of the system. We use a Newton gradientmethod during the imaginary time evolution to adapt the potential o�set,i.e. we inrease or derease the potential o�set after eah time step, depen-dent on whether the total partile number is urrently too low or too high.Unfortunately, this proedure an lead to very long (up to four weeks) groundstate alulations. It would have been easier to perform the TEBD groundstate simulations with a given (and �xed) potential o�set ǭ, but the atual
ǭ whih is needed to enfore a ertain partile number np depends on thesystem size N , on UH and on the applied potential ∆ǫ.For all following simulations, we use a �lling of 0.9, i.e. 90 partiles in aHubbard model with one hundred sites, whih is slightly below half-�lling.Note that for the realtime evolution, the potential o�set ǭ keeps its valuefrom the omputation of the ground state.6.2 Simulation resultsIn this setion we show the omputed potential o�sets for various Coulombinterations UH and applied potentials ∆ǫ. Furthermore, we show I�V har-ateristis for the Hubbard model for setup (I). Unfortunately, due to limitedomputational resoures, the high omputational ost and reurring tehnialproblems at the RRZN, results for setup (II) are not available.6.2.1 Equilibrium onsite potentialsDue to our Newton-gradient proedure for the imaginary time evolution, wehave obtained the potential o�set ǭ for repulsive and attrative Coulombinteration, see �gures 6.1 and 6.2.
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Figure 6.1. Potential o�set ǭ for setup (I) and positive UH. Thelines are guides for the eyes.
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Figure 6.2. Potential o�set ǭ for setup (I) and negative UH. Thelines are guides for the eyes.



6.2. Simulation results 75When the repulsion between the partiles is inreased, the potential o�set fora onstant number of partiles is dereased as expeted, see �gure 6.1. For anattrative Coulomb interation this e�et is generally reversed, but for highervoltages, the potential o�set is again dereased with both an inreasing ∆ǫand an inreasing |UH|, see �gure 6.2. This e�et is not yet understood.6.2.2 Current-voltage harateristisIn setup (I) the urrent shows a similar behavior as in the spinless fermionmodel. For small applied biases it is proportional to the bias (as preditedby the TLL theory), but for larger voltages it saturates at a �nite value,dependent on the interation strength |UH|. While the height of the plateauis dereased with inreasing |UH| we observe the beginning of a seond plateaufor a repulsive interation, whih an be easily understood.Sine we simulate the system with a �lling of 0.9, when ∆ǫ is inreased,there omes the point when one of the system-halves approahes half-�llingand thus this half beomes gapped for UH > 0 (the �rst plateau). Only whenthe applied voltage is inreased to a value high enough to overome the Mottgap, the number of eletrons in this half an inrease beyond one per site andthe urrent is again inreased. For still higher voltages the urrent saturatesat its atual maximum when one half of the system has a maximal �llingand the other one is empty. The position of the seond plateau is shifted tohigher values of ∆ǫ with inreasing UH, in agreement with the inrease of theMott gap, see �gure 6.3.We note that our results an not be ompared with the TLL preditions,sine we do not have suitable values for the small bias regime. As we knowthat for positive UH (K < 1) the linear ondutane should be smaller withlarger |UH|, and vie versa for negative UH (K > 1), �gures 6.3 and 6.4indiate this behaviour.For negative UH and higher voltages in setup (I) the urrent as a funtion oftime deays slowly towards its stationary value. This deay is quik enoughfor a system of size N = 100 to obtain the stationary value from largertimes, but for times t ≈ Tmax/4 (where Tmax is the period of the retangularosillation) this value is not yet reahed, see �gure 6.5. Our FABE approahhas shown to be valid if we use simulation results from times t < Tmax/4,but several tests with one-partile equation of motion outomes show thatthe method also works �ne with data from times t < Tmax/2. For the resultsobtained for negative UH we have thus used data from times up to t ≈ Tmax/2where neessary.Finally, we note that in ontrast to the spinless fermion model, the period
Tmax of the �nite-site retangular osillation remains onstant for all UH.
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Figure 6.3. Current-voltage urve of the Hubbard model withsetup (I) for several positive UH. For UH = 0 the urrentsomputed with the one-partile equation of motion math theTEBD results. The lines are guides for the eyes.
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Figure 6.4. Current-voltage urve of the Hubbard model withsetup (I) for several negative UH. The lines are guides forthe eyes.
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Figure 6.5. Currents through the middle bond in the Hubbardmodel with a system size N = 100 for setup (I) as a funtion oftime.
6.3 SummaryIn this hapter, we extended the TEBD method to be able to enfore a �xedpartile number to a system by adapting an applied potential o�set. We sim-ulated the one-dimensional Hubbard model and obtained I�V harateristisfor setup (I). Due to limited omputational resoures, the high omputationalost and reurring tehnial problems at the RRZN, results for setup (II) arenot available. Despite similar e�ets as in the spinless fermion model, wefound the beginning of a seond plateau for positive UH. When the appliedvoltage is inreased, one half of the system reahes half-�lling and thus be-omes a Mott insulator. Only when the voltage is larger than the Mott gap,the urrent is inreased again.
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79
Chapter 7Two-site system oupled to a bosoni bathAs it has been argued before, lattie vibrations play an important role inatual experimental situations, suh that we should add a bosoni bath to ourone-dimensional orrelated nanostruture. Unfortunately, no exat resultsor omparative data are available for the systems we investigated in thelast hapters, but sine the TEBD method has never been used to simulatesuh systems, we have to test its appliability �rst. Therefore, we havehosen to simulate a system whih is losely related to our problem and forwhih omparative data from (TD) NRG [76℄ ((time dependent) numerialrenormalization group) simulations are available: a two-site fermioni systemoupled to a bosoni bath [44℄. The impurity is desribed by the extendedHubbard model whih ombines the nearest-neighbor Coulomb interationfrom the spinless fermion model and the onsite interation from the Hubbardmodel.At half-�lling (i.e. with two partiles in the impurity), this model de-sribes the essentials of a two-eletron transfer in a dissipative environment.Also most investigations on suh transfer proesses fous on single-eletrontransfer and it has been argued that the two-eletron transfer has a majorontribution in many proesses, suh as in DNA [45℄ or in proteins [77℄.The original NRG method was proposed by Wilson to solve the Kondoproblem [78, 79℄, but reently the method has been extended to simulatequantum impurities oupled to a bosoni bath and the realtime dynamisof systems out-of-equilibrium (see for instane [80℄). While (TD) NRG pro-vides a very aurate desription of the bosoni bath, the TEBD method anprinipally be used to simulate even more extended impurities, suh as largemoleular bridges or nanowires. However, so far TEBD has not been usedto simulate a quantum system in a bosoni bath and it is thus important toompare both methods to proof the appliability of the TEBD algorithm tosuh problems.



80 Chapter 7. Two-site system oupled to a bosoni bath7.1 Two-site fermioni system in a bosoni bathWe investigate a two-site extended Hubbard model embedded in a dissipativeenvironment (bosoni bath). The �rst site is alled (D)onor while the seond

bosonic bath

|↑↓, 0〉 |0, ↑↓〉

|↑, ↓〉, |↓, ↑〉

tH tH

donor acceptor

Figure 7.1. Loal basis of the two-site extended Hubbard model.The doubly oupied states are oupled to a bosoni bath.one is the (A)eptor, see �gure 7.1. The Hamiltonian is given by
H = Hel +Houpl +Hbwith the two-site operator

Hel =
ǫ

2

∑

σ=↑,↓
(c†DσcDσ − c†AσcAσ)− tH∑

σ

(c†DσcAσ + c†AσcDσ)

+UH(nD↑nD↓ + nA↑nA↓) +
VH
2

∑

σ,σ′

∑

i,j=A,D;i 6=j

niσnjσ′ (7.1)and the terms for the bosoni bath and its oupling to the two-site system
Hb =

∞∑

n=1

ωnb̃
†
nb̃n,

Houpl =
∑

σ

(nAσ − nDσ)

∞∑

n=1

λn
2
(b̃†n + b̃n). (7.2)



7.1. Two-site fermioni system in a bosoni bath 81The parameter ǫ desribes an applied potential di�erene on the two fermionisites. c(†)D,Aσ are the fermioni reation and annihilation operators for Donor(D) and Aeptor (A), b̃(†)n are the bosoni ones and the fermioni partilenumber operator is nD,Aσ = c†D,AσcD,Aσ. The hopping parameter is tH andthe onsite and nearest-neighbour Coulomb interation strength is determinedby UH and VH. The two-site extended Hubbard model (7.1) is thus an ex-tension of the normal Hubbard model by the nearest-neighbour Coulombinteration VH whih we already know from the spinless fermion model. Itan be shown that the dynamis of the system is governed only by the dif-ferene Ũ = UH− VH and aordingly we will hoose VH = 0 for all followingsimulations.In all following simulations, the partile number in the fermioni part ofthe system is set to np = 2. Thus, the loal dimension of the two-site systemis 4 whih is apparent from �gure 7.1.7.1.1 Mapping to a semi-in�nite hainThe oupling term Houpl onnets every bosoni state to the two-site system.Suh a `star' Hamiltonian annot be simulated with TEBD sine the methodis based on the possibility to perform an alternate update of bonds whihare not nearest neighbors. The problem of using TEBD for two-dimensionalsystems will be treated in hapter 8 in partiular. However, the Hamiltonianan be mapped onto a semi-in�nite hain [81℄ where only the �rst bosonisite ouples to the fermioni system. For the mapping we need to know thebath spetral funtion whih is hosen [44℄
J(ω) = 2παω for 0 < ω < ωc (7.3)and zero otherwise. The parameter α desribes the oupling strength betweenthe bath and the two-site system. For simulation outomes, all variables aregiven in units of the ut-o� frequeny ωc. The semi-in�nite Hamiltonian is

H = Hel+√η0
2

(b†0+b0)
∑

σ=↑,↓
(nAσ−nDσ)+

Nbath∑

n=0

ǫnb
†
nbn+

Nbath−1∑

n=0

tn(b
†
nbn+1+b

†
n+1bn)(7.4)where ideally the length of the bosoni hain Nbath →∞ and

η0 =

∫ ωc

0

J(ω)dω =

∫ ωc

0

2παωdω = πω2
cα. (7.5)Figure 7.2 shows the orresponding setup. The onsite potentials ǫn and
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Figure 7.2. Two-site fermioni system oupled to a semi-in�nitebosoni hain.hopping terms tn for the semi-in�nite bosoni hain from expression (7.4)an be alulated using the following reursion relation, whih is initializedfor site m = 0 by
U0n =

γn
ηs

ǫ0 =
∞∑

n=0

ξnU
2
0n

t0 =
1

ηs

√
√
√
√

∞∑

n=0

(ξn − ǫ0)2γ2n

U1n =
1

t0
(ξn − ǫ0)U0nwith

ηs =
√
η0 = ωc

√
πα

γn = ηs

√

Λ2 − 1

Λ2n+2

ξn =
2ωc

3

Λ3 − 1

Λn(Λ3 − Λ)
.



7.1. Two-site fermioni system in a bosoni bath 83The reursion proeeds for m > 0 as
ǫm =

∞∑

n=0

ξnU
2
mn

tm =

√
√
√
√

∞∑

n=0

[(ξn − ǫm)Umn − tm−1Um−1,n]2

Um+1,n =
1

tm
[(ξn − ǫm)Umn − tm−1Um−1,n]and runs from m = 0 to Nbath − 1 to ompute the ǫm and tm for all sites.

Umn denotes an auxiliary variable and Λ is the disretization parameter. Allthe sums whih run to in�nity inlude terms ξn or γn whih both deayexponentially with n, wherefore we an ut the summations at a �nite value
Nsum = 104. Our tests have shown that a higher value Nsum = 105 does notnotieably hange our results. Sine even with an optimized proedure veryhigh powers of Λ are to be alulated, a big-integer lass [82℄ is needed toavoid roundo� errors [83℄.7.1.2 General simulation parametersThe hopping term tn in (7.4) deays exponentially with tn ∝ Λ−n, whihnaturally allows us to take only a �nite number of bosoni sites into aount.Nevertheless, the loal dimension mb of a bosoni site stays in�nite, whihmeans that we have to ut the loal dimension and thus allow only a �nitenumber of bosons per site. For the model and parameters onsidered here, wehave used a maximal mb = 8 for the TEBD simulations, whih orrespondsto maximally seven bosons per site.For the mapping onto a linear hain, the energy ontinuum has to be log-arithmially disretized into intervals [Λ−(n+1)ωc,Λ

−nωc] with n ∈ N0 whereonly a single mode of eah interval ouples to the impurity. This proess isharaterized by the disretization parameter Λ. The disretization is losslessfor Λ = 1 but in that ase the hopping terms tn do not deay exponentiallywith n. Instead, a Λ > 1 has to be used whih is small enough to give orretresults but yet large enough suh that the hain an be ut at a su�ientlysmall length Nbath. For the TEBD simulations, the length of the bosonihain has been set to Nbath = 40 suh that the hopping term at its end issmaller than 0.02 for Λ = 1.1. We have heked that this length is su�ientfor all following simulations sine our outomes do not notieably hange for
Nbath = 30.



84 Chapter 7. Two-site system oupled to a bosoni bathApplied to the presented two-site model in a bosoni bath, the equilibriumNRG (whih orresponds to the imaginary time-evolution for TEBD) startswith the two-site fermioni system and takes only the �rst bosoni site(n = 0) into aount. If Hn is the Hamilton operator inluding the im-purity and all sites of the bosoni system up to site n the NRG uses therenormalization group transformation to to ompute the `next' Hamiltonian
Hn+1 whih inludes all bosoni sites up to n+ 1. In eah step, only the Nslowest eigenstates of the Hamiltonian are retained. In order to give aurateresults, the NRG method needs a su�iently quik exponential deay of thehopping terms tn suh that in every iterative step the rest of the hain on-tributes only perturbatively [84℄. For the following NRG simulations results,the disretization parameter has therefore been hosen Λ = 2. Typially, aloal bosoni dimension mb ≥ 8 is used and Ns = 100 states are kept in eahiteration. All NRG results presented in this thesis are based on simulationswhih have been arried out by Sabine Tornow and whih already have beenpublished in [44℄.7.2 Simulation resultsSine the partile number in the two fermioni sites is �xed to np = 2, wede�ne the following observables

d̂D = |↑↓, 0〉〈↑↓, 0| = n̂D↑n̂D↓

d̂A = |0, ↑↓〉〈0, ↑↓| = n̂A↑n̂A↓

n̂DA = |↑, ↓〉〈↑, ↓|+ |↓, ↑〉〈↓, ↑| = n̂D↑n̂A↓ + n̂D↓n̂A↑ (7.6)whih measure the double oupany d̂D, d̂A of donor and aeptor and theombined population of the singly oupied states n̂DA.7.2.1 Equilibrium propertiesThe equilibrium double oupany expetation values for ǫ = 0 in the pre-sented model have been alulated using NRG and TEBD, see �gure 7.3. Forthis symmetri model (ǫ = 0) these expetation values are equal for donorand aeptor (in the equilibrium state)
〈d̂D〉eq = 〈d̂A〉eq = 〈d̂〉eq. (7.7)Eah TEBD simulation took almost one month on 8 ores. On the one hand,a very 'high' maximal Shmidt dimension χc = 150 ompared to the loaldimension of the bosoni bath mb = 8 had to be used. We note that the
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Figure 7.3. Low-temperature equilibrium probability for doubleoupany 〈d〉eq as a funtion of the oupling parameter α for
ǫ = 0 and tH = 0.1ωc. Λ = 2 for NRG and Λ = 1.1 for TEBDwith a hain length Nbath = 40, a maximal Shmidt dimension
χc = 150 and a loal dimension of the bath mb = 8. Note that
Ũ = UH − VH, as desribed in the text.simulation time of the TEBD method sales with O(χ3

c) and O(m3b) , wherein ase of a loal dimension of 8, a simulation performs 64 times worse thana simulation of the spinless fermion system with the same χc. This salingan be seen in [app. C℄, sine the density matrix is of size (χc ·mb)× (χc ·mb)and the main omputational time is needed to diagonalize it. On the otherhand, TEBD has never been the best andidate to alulate the ground(equilibrium) state of a system sine the imaginary time evolution is typiallymuh slower than for instane the orresponding NRG or DMRG routine.Consequently, it turns out to be very hard to simulate the equilibrium stateof a system oupled to a bosoni bath using the TEBD algorithm.We note that the double oupany 〈d̂〉eq dereases with inreasing Ũ , asexpeted, and inreases with inreasing α (see �gure 7.3). For further inter-pretations see [44℄, where several aspets of the model have been investigatedin detail.



86 Chapter 7. Two-site system oupled to a bosoni bath7.2.2 Realtime dynamisFor the realtime simulations performed in this setion, we prepare the systemsuh that initially two eletrons are loated in the donor and none in theaeptor. The bosoni bath is empty for t = 0. We then let the system evolvein time and the partiles start moving from donor to aeptor. The result forthe double oupany 〈dA〉 together with the NRG simulation outomes anbe seen in �gure 7.4. First, we note that our data agrees with the results from
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Figure 7.4. Probability for double oupany 〈dA(t)〉 as a funtionof time for α = 0.04, ǫ = 0 (for t>0), Ũ = −ωc and tH = 0.1ωc.
Λ = 2 for NRG and Λ = 1.1 for TEBD with a hain length
Nbath = 40, a maximal Shmidt dimension χc = 150 and a loaldimension of the bathmb = 8. The initial state has been preparedwith the two eletrons at the donor site and an empty bosonibath. The line denotes the NRG results from [44℄ and the dotsare TEBD outomes for omparison.the NRG simulation. One an see a dominant osillation stemming from aoherent osillation between the two sites. It is damped, due to the ouplingto the bosoni bath, i.e. the presene of dissipation in the impurity. Asan be explained in the framework of the spin-boson model, this osillationdisappears for larger values of α leading to an overdamped urrent, see [44℄.In �gure 7.5 we see the realtime evolution of the partile number dis-tribution 〈nbi〉 of the bosoni bath. For t = 0 no bosons are in the bath
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Figure 7.5. Partile number distribution 〈nbi〉 as a funtion of time,in the bosoni bath for the realtime evolution with the same pa-rameters as for the simulations from �gure 7.4.but as the simulation ontinues, the oupling to the impurity reates bosonswhih start to move along the hain. A orresponding movie is available onwhypsi.om/einhellinger/bosoniBathDistribution.zip. In this movie, it be-omes more learly, that the propagation speed of the bosons is (apparentlyexponentially) redued over time. Thus, we found that a length of Nbath = 40is enough to simulate the time sale depited in �gure 7.4. Even though in�gure 7.5 it looks as if the bosons had almost (in terms of time) reahed the
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88 Chapter 7. Two-site system oupled to a bosoni bathborder, this is atually not the ase.We have performed the above simulations with various disretizations Λ =
1.1, 1.5, 1.8, 2 and found no di�erene in our outomes. Thus, we an on�rmthat the simulations performed with Λ = 2 using the (TD) NRG methodmost probably reveal the true harateristis of the system.The TEBD simulations have been performed with a maximal Shmidt di-mension χc = 150, resulting in a maximal disarded weight (4.13) D = 10−6.Although we have seen the appliability of the TEBD method to systemsoupled to a bosoni bath, the realtime evolution performs really badly sinewe have to use a very small time step δt = 10−3. In ase of a Suzuki-Trotterexpansion of p-th order, the error is of the order O(δtp+1), i.e. for the seondorder expansion (4.10) we have used, it is O(δt3). Unfortunately, TEBD isonly highly parallelizable if a high Shmidt dimension χc is needed and not asmall time step. For the simulations performed in hapter 7 only eight threadsould be used until the overhead quikly exeeded 10%. Thus, further e�ortshould be put in optimizing the TEBD algorithm for suh ases, for instaneby using a higher (for instane fourth) order Suzuki-Trotter deomposition
eδt(F+G) = esδtF/2esδtGe(1−s)δtF/2e(1−2s)δtGe(1−s)δtF/2esδtGesδtF/2+O(δt5) (7.8)with s = 1/(2− 21/3). Using this deomposition, a one hundred times largertime step ould be applied at less than three times the omputational ostfor eah time step. Alternatively, one ould also work on a Krylov basisusing a Lanzos diagonalization routine or with a higher order Runge-Kuttaproedure (whih is admittedly non-unitary). Some of these solutions havealready been implemented for the td-DMRG method [85℄. However, thisseems to be the main task if one is interested in using the TEBD methodfor systems oupled to bosoni baths. In addition, an optimized basis forthe bosons [86, 87℄ ould also improve the performane of ground state andrealtime simulations.7.3 SummaryIn this hapter, we suessfully extended the TEBD method and applied itto an impurity system oupled to a bosoni bath. We ompared our out-omes for the ground state and realtime alulations with (TD) NRG resultsfrom [44℄ and found both data in good agreement. Moreover, we performedour simulations with various disretizations Λ = 1.1, 1.5, 1.8, 2 and found nodi�erene in our outomes, thus on�rming that (TD) NRG alulations with

Λ = 2 atually give orret results.



7.3. Summary 89Admittedly, TEBD does not perform well, neither for the ground statealulation nor for the realtime evolution of a system oupled to a bosonibath. An optimized basis for the bosons [86, 87℄ ould improve this behaviourfor imaginary and realtime evolutions, while for the realtime evolution animproved time evolution approah seems neessary.Nevertheless, we have proven the general appliability of the TEBD methodto suh problems, suh that with an improved method (or using an adaptedtd-DMRG algorithm for instane), we ould prinipally study larger quan-tum systems oupled to phonon baths, suh as moleular juntions [88℄ ornanowires whih are beyond reah for the (TD) NRG method.
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91
Chapter 8Ladder systemsAs already emphasized in the introdution (hapter 1), realisti nanowiresare not truly one-dimensional. Our �rst step towards higher-dimensionalsystems is a ladder system, i.e. a two-dimensional model with a width ofonly a few lattie sites. Although various methods suh as the DMRG al-gorithm have been applied to study two dimensional systems [89℄ like thetwo-dimensional t-J-model or the Hubbard model, most researh is onen-trated on ground state alulations and none is onerned with the realtimedynamis of orrelated ondutors. However, the TEBD method has notbeen used yet to study the realtime evolution of two-dimensional systemsdriven out-of-equilibrium by an external bias.Although at a �rst glane, it might seem di�ult to apply TEBD to atwo-dimensional system, sine the Suzuki-Trotter deomposition an not beused, it an be ahieved for 2D systems with a small extent in one dimension(ladder systems) by projeting several sites onto a single one. This amountsto building an e�etively one-dimensional Hamiltonian with nearest-neighborinteration, see �gure 8.1. For every e�etive site in the new model we takethe full Hilbert spae into aount, i.e. given that no original sites, eah witha loal dimension m, ontribute to one e�etive site, the dimension of thee�etive site will be mno . However, one an not simply work in the e�etivemodel as if it were one-dimensional by onstrution, but has to keep in mindits two-dimensional origin, for instane when omputing expetation values.It is espeially important to take the fermion anti-ommutation relation intoaount.



92 Chapter 8. Ladder systems

Figure 8.1. Mapping of all sites and bonds in the smaller dimension(width) onto a single site and bond.8.1 Tight-binding ladder systemThe model whih is hosen to show the appliability of TEBD to two-dimensional models is desribed by the tight-binding Hamiltonian
H = −tH [N−1∑

x=1

W∑

y=1

(c†xycx+1,y + c†x+1,ycxy)

+
W−1∑

y=1

N∑

x=1

(c†xycx,y+1 + c†x,y+1cxy)

]

−
N∑

x=1

W∑

y=1

ǫxy (8.1)where c(†)xy is the fermioni annihilation (reation) operator for site (x, y), tHdenotes the hopping term and ǫxy is an on-site potential. Whenever onlytwo di�erent potentials are applied in the system, we refer to the potentialdi�erene as ∆ǫ. We study the model at half-�lling. In the following, thesystem is restrited to a width W = 2 and a length N = 60. As we want toshow the appliability of the TEBD method to suh two-dimensional systems,we exlude any Coulomb interation to be able to ompare our results withone-partile equation of motion (3.10) outomes, sine results for interatingsystems are not available.8.2 Simulation parameters and errorsFor the simulations whose results are presented in the following setion, weuse a maximal Shmidt dimension χc = 750, a system length N = 60 and atime-step δt = 0.01. Sine the loal dimension of the (spinless) tight-bindingmodel is m = 2, the loal dimension of the e�etive model is m = 4, as
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1 4 5 8 9

2 3 6 7 10Figure 8.2. Conseutive numbering of the sites in a ladder system.The bold bonds are highlighted to show the path along whih thesites are numbered, but apart from that all bonds are equal.for instane for the Hubbard model whih was presented in hapter 6. Oneould see the two legs in the ladder systems as the two spin hannels in theHubbard model and aordingly the hopping from the �rst to the seond legas a spin-�ip.As we are simulating fermions, it holds that due to the fermion anti om-mutation relation, a term c†jcj+n gives the phase
(−1)

∑j−1
i=1 ni(−1)

∑j−1+n
i=1 ni = (−1)

∑j−1+n
i=j ni (8.2)where ni denotes the partile number for site i and a numbering of the sitesis neessary, see �gure 8.2. In a nearest-neighbor model in one dimension webasially have the terms c†jcj+1 and c†jcj . It is lear from equation (8.2) that

c†jcj has a phase 1. For c†jcj+1-terms one only gets a ontribution if thereis a partile at the (j + 1)-site and none at site j. Thus, nj = 0, whihalso gives 1 for the phase of a nearest-neighbor hopping term. Although fora one-dimensional setup the phases an be negleted, it is di�erent for thepresented ladder system where terms c†jcj+3 with a possibly negative phaseappear, see �gure 8.2. E�etively, there is no di�erene between hardorebosons and fermions in one dimension with nearest neighbor hopping sinewithout loops in the system, the partiles an not be interhanged. However,this an happen in the presented fermioni ladder system.The maximal disarded weight (4.13) for the shown simulation results issmaller than 10−8 and the maximal deviation of the TEBD results from theone-partile equation of motion outomes amounts to a little less than 2%for the realtime evolution.8.3 Simulation resultsThe presented system is driven out of equilibrium using the two setups (I)and (II), whih are adapted to the two-dimensional harater of the system.



94 Chapter 8. Ladder systemsFirst, both legs are prepared in the same way in setup (I) and (II) and theurrent JN/2,1st leg + JN/2,2nd leg through the two bonds (�gure 8.3a) in themiddle is measured. Seond, we prepare the system suh that the voltagedi�erene aording to setup (I) or setup (II) is applied between the two legs,see �gure 8.3b, and the total urrent (the sum of the urrents through allbonds) from the �rst to the seond leg is measured.
a) b)

leg

rungFigure 8.3. Two ways of driving the system out of equilibrium: a)All sites in the left half of the system have an applied potential
+∆ǫ/2 while the rest has −∆ǫ/2, either for t = 0 (setup (I)) or for
t > 0 (setup (II)). b) The same preparation, but rotated through90 degrees, i.e. rungs and legs are swithed. The urrent is alwaysmeasured as the sum through all bonds whih are highlighted byred arrows.The orresponding simulation results are shown in �gures 8.4 and 8.5. Wenote that our TEBD results agree with the one-partile equation of motionalulations. However, the urrents and their stationary values are di�er-ent from the results of the one-dimensional system with the orrespondingsetups. This is mostly due to a di�erent ground state in whih the parti-les are deloalized over both legs. Our simulations further show that nourrent is �owing between the two legs for the simulations whose resultsare shown in �gure 8.4 and aordingly no urrent is �owing between therungs in the simulations whose results are displayed in �gure 8.5. We on-lude (only for the realtime evolution) that the legs (respetively the rungs)behave like unonneted one-dimensional strutures for setup (I). Thus weexpet that in an atual experiment inluding isolated harged nanowires,many one-dimensional e�ets should be reproduible, although the stru-tures are not truly one-dimensional. However, further analyses of urrents intwo-dimensional systems inluding eletron-eletron interations need to bedone before we an speulate about a proper experimental setup.
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setup (I)

setup (II)
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Figure 8.4. Current in the ladder system prepared as shown in�gure 8.3a, with ∆ǫ = 3tH and N = 60. The lines are alulatedusing the one-partile equation of motion (3.10) and the dotsdenote TEBD results for omparison.8.4 SummaryIn this hapter, we extended the TEBD method for two-dimensional systems,applied it to a tight-binding ladder and found that our results agree with theexat results from the one-partile equation of motion formalism. Further-more, our �rst results indiate that the legs (respetively the rungs) behavelike unonneted one-dimensional nanowires for the realtime evolution usingsetup (I).
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Figure 8.5. Current in the ladder system prepared as shown in�gure 8.3b, with ∆ǫ = 4tH and N = 60. The lines are alulatedusing the one-partile equation of motion (3.10) and the dotsdenote TEBD results for omparison.



97
Chapter 9Summary, Conlusion & Outlook9.1 Summary & ConlusionThe goal of this thesis has been to investigate basi transport propertiesin �nite and in�nitely large orrelated nanosystems. Additionally, we havestudied the possibilities to desribe an atual experimental situation better,using the time evolving blok deimation (TEBD) method. We have startedour investigations with the lassial LC line and investigated its transportproperties for a setup in whih one half of the system has been initiallyharged. We have found explanations for many �nite-size e�ets, like forinstane the origin of the retangular or rapid osillation, and solved themodel exatly for the in�nite ase. Based on our studies we have developeda `Fourier analysis based extration' (FABE) method, whih allows us toextrat the stationary urrent from outomes of analyses of �nite systems.We have then shown the lose onnetion between the LC line and a quan-tum system desribed by the tight-binding model and we implemented aone-partile equation of motion algorithm to solve the quantum system ex-atly. The general appliability of our FABE approah to quantum systemshas been �rst shown in that ontext and we argued that an extrapolation ofthe stationary urrent values obtained by our approah is unneessary if thesystem size is su�iently high (N ≥ 70 in our ase).For the investigation of orrelated quantum systems suh as the spinlessfermion model or the Hubbard model, we have implemented a a multi-threaded version of the TEBD algorithm, whih is apable of running on150 ores with an extremely low overhead. Using the TEBD method and ourFABE approah, the full I�V harateristis of the half-�lled spinless fermionmodel and also I�V harateristis of the Hubbard model away from half-�lling have been obtained. For the Hubbard model, we have extended theTEBD method to enfore a �xed partile number to the system by adaptingan applied potential o�set during the imaginary time evolution. Thus, wehave been able to perform all simulations with the same band �lling (0.9).For our simulations, we have used two di�erent setups to generate a urrent.In setup (I) the initial state has di�erent partile numbers in its two halves



98 Chapter 9. Summary, Conlusion & Outlookdue to an applied potential di�erene while the system evolves in time withan overall equal onsite potential. In setup (II) we alulate the initial statewithout a potential di�erene but turn it on for the realtime evolution.While our results for the linear regime are mostly independent from thespei� setup, the non-linear behaviour of the system is primarily determinedby it. For setup (I), we �nd a positive di�erential ondutane for the fullvoltage range and a saturation in the I�V urves for higher potential biases.With setup (II) we observe a negative di�erential ondutane that an beunderstood in terms of the overlap of the elementary exitation bands inthe spinless Luttinger liquids in the two halves of the system. Both e�ets� the plateaus and the negative di�erential ondutane at large potentialbiases � also appear in the non-interating ase, and are due to the �nitebandwidth of the system. For the spinless fermion model, we have foundthat the period of the retangular urrent urve in the �nite system is fullydetermined by the time-sale of the non-interating system Tmax(VH = 0)and the renormalized Fermi veloity v. For the Hubbard model, a seondplateau has been observed for positive UH whih ould be explained in termsof the band struture of the model. Several omparisons (with one-partileequation of motion results, exat results and other numerial data) haveshown that our methods for simulating and extrating the stationary urrent(using TEBD and the FABE approah) give orret results.We have then explored the possibilities to inlude experimentally relevantextensions, suh as lattie vibrations (i.e. oupling to a bosoni bath) anda higher dimensionality of our nanostruture. First, we have suessfullyextended the TEBD method and applied it to a two-site fermioni systemoupled to a bosoni bath. Our results have been found to agree with equi-librium and realtime (TD) NRG alulations from [44℄. Performing severalsimulations with di�erent disretizations Λ = 1.1, 1.5, 1.8, 2, we have foundno di�erene in the results, whih on�rms the validity of (TD) NRG alu-lations with Λ = 2. For a �rst test, we have extended the TEBD method fortwo-dimensional systems and applied it to a tight-binding ladder. We foundthat our results agree with the one-partile equation of motion alulations,and thus we have proven that TEBD an in priniple be use to simulate suhsystems.



9.2. Outlook 999.2 OutlookThe methods for extrating the stationary urrent presented in this thesisan be applied to other systems, suh as systems with quantum dots or wiresoupled to leads inluding eletroni and also bosoni degrees of freedom. Abosoni bath added to the drain ould for instane hinder partiles emittedfrom soure from being re�eted at the hard edge by taking away their kinetienergy. Sine then omputations for the urrent from a longer time-intervalould be taken into aount, we would get more aurate results using smallersystem sizes. As we already suessfully applied the presented methods tothe spinless fermion model, the Hubbard model and a non-interating laddersystem, we believe that they will be very useful to study nonlinear transportproperties of orrelated low-dimensional ondutors. We have mostly testedour approah in the limit of transparent oupling between soure and drain,thus it has to be heked if the methods still work when the hybridizationbetween the leads is very small, i.e. when a weak oupling for instanethrough a quantum dot is present.Unfortunately, we have found that TEBD performs poorly for the groundstate and realtime alulations of bosoni systems. Using an optimized basisfor the bosons [86, 87℄ ould in priniple improve this behaviour, but never-theless, an improved time evolution approah (higher order Suzuki-Trotter,Runge-Kutta, Krylov-methods) seems to be neessary to e�iently applyTEBD to suh problems. Nevertheless, with an improved method (or anextended td-DMRG algorithm for instane), we ould study larger quantumsystems oupled to bosoni baths, whih are beyond reah of the (TD) NRGmethod.
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101
Appendix A
LC lineA.1 Current in the �nite LC lineThe formal solution of equation (2.11) is given by [90℄

qk(t) = bk sin (ωkt) + dk cos (ωkt) (A.1)with bk, dk ∈ R given by initial onditions at time t = t0 = 0 and
ωk =

√

λk
LC

. (A.2)The matrix mij in equation (2.12) an be analytially diagonalized. Usingequation (2.12), its eigenvalue equation
N−1∑

j=1

mijpk,j = λkpk,i

⇒ − pk,i−1 − pk,i+1 = (λk − 2) pk,i (A.3)is solved by
pk,i =

√

2

N
sin

(
kiπ

N

) and λk = 2− 2 cos

(
kπ

N

) (A.4)where pk,i = (~pk)i denotes the i-th omponent of the k-th eigenvetor of mijand pk,0 = pk,N = 0 was de�ned.Proof:
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) (A.5)
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Using ~q = O−1~I from equation (2.8) and knowing that O ontains the nor-malized eigenvetors ~pk of mij in its olumns, it follows

Ii(t) =

N−1∑

k=1

pk,iqk(t) =

√

2

N

N−1∑

k=1

sin

(
kiπ

N

)

qk(t) (A.6)and with the formal solution (A.1) and equation (A.6), one gets
Ii(t) =

√

2

N

N−1∑

k=1

sin

(
kiπ

N

)

(bk sin (ωkt) + dk cos (ωkt)) (A.7)where ωk, using equations (A.2), (A.4) and cos(2x) = 1 − 2 sin2(x), is givenby
ωk =

√

λk
LC

=
2√
LC
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(
kπ

2N

)

. (A.8)Note:Sine O−1 = OT one an write down ck expliitly
ck =
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i=1
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ki
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=
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)(

φ̇i − φ̇i+1

) (A.9)whih gives us a better understanding of the ondition ck(t) = 0. Simply put,it means that φk(t) = φk+1(t) +Kk;Kk ∈ R suh that one ould for instane`drive' the system with a homogeneous external �eld and yet it would holdthat ck(t) = 0 ∀t.



A.2. Solution of the integral (2.24) 103A.2 Solution of the integral (2.24)We use the substitutions η = sin (x), a = 2t√
LC

, ϕ = 2√
LC

and get
I∞(t) =

QL −QR√
LC

1

π

∫ π
2

0
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2LC
[J0 (ϕt) (2− πH1 (ϕt)) + πJ1 (ϕt)H0 (ϕt)] (A.10)where Jn(x) are the Bessel funtions of the �rst kind and Hn(x) denotesthe Struve funtion, both desribed for instane in [50, 91℄. The solutionof the integral in the seond last transformation was found with the help ofMathematia and an be heked by plugging in the integral de�nitions ofthe mentioned funtions.A.3 Solution of the integral (2.32)As in [app. A.2℄ we use the substitutions η = sin (x), a = 2t√

LC
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] (A.11)where Jn(x) are the Bessel funtions of the �rst kind and Hn(x) denotesthe Struve funtion, both desribed for instane in [50, 91℄. The solution of



104 Appendix A. LC linethe integral was found with the help of Mathematia and an be heked byplugging in the integral de�nitions of the mentioned funtions.A.4 Approximations of the Bessel and StruvefuntionsThe Bessel funtions of the �rst kind and Struve funtions have the followingapproximations whih beome exat for x→∞
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. (A.12)Using these expressions together with equation (2.25) leads to
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. (A.13)Note that the order terms have been rewritten
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πϕt
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) (A.14)whih explains the unexpeted frational value. One �nally obtains expres-sion (2.27) for the stationary urrent whih does not provide an approxi-mate expression for the short-time behaviour of the urrent, sine all time-dependent terms anel out.



A.5. Remainder approximation for the Taylor series expansion 105Instead, one an use the asymptoti series expansions from [50, 92℄ andthe approximation of H1(x) from [51℄
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x2
− J0(x) (A.15)whereas one an plug the approximate expression for J0(x) into the equationfor H1(x). Unlike J0(x),J1(x) and H0(x), the approximation of H1(x) stemsfrom [51℄ sine the simple asymptoti approximation has a higher error forsmall x as shown in �gure A.1. Using the given equation for H1(x) is alsoruial for an aeptable error for the approximative urrent expression (errorshown in �gure A.2). Aarts and Janssen [51℄ state that the approximationof H1(x) has a squared approximation error on [0,∞) equal to 2.2 · 10−4 byParseval's formula but annot give a preise behaviour of the remainder for

x → ∞. Using the approximations (A.15), equation (2.25) for I∞(t) an betransformed into expression (2.29) for t ≫ 1. Figure A.2 shows the relativeerror between the exat solution (2.25) and the approximation urve (2.29).A.5 Remainder approximation for the Taylorseries expansionOne an use Lagrange's remainder approximation for the Taylor series ex-pansion around zero [90, 50℄
T [f(x)]
n (x) =
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i=0

f (i)(x)|x=γ

i!
xi (A.16)whih is given by

R[f(x)]
n (x, γ) =

f (n+1)(x)|x=γ

(n+ 1)!
xn+1 (A.17)where an upper index (n) in round brakets denotes the n-th derivation and

γ ∈ [0, x] ⊂ R. In order to give an upper or lower border for the error, one
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asymptotic series
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Figure A.1. Solid urve: Struve funtion H1(x). Two approxima-tions are shown: See [93℄ for the expression of the asymptotiapproximation (dotted line) and equation (A.15) for the approx-imation based on J0(x) (dashed line).has to hose those γ that maximize, respetively minimize the remainder.The maximal error of an n-th order Taylor series expansion of a funtion
f(x) in the viinity of zero is given by

En[f(x)] =
maxγ(|R[f(x)]

n (x, γ)|)
|f(x)| . (A.18)The approximation sin(x) ≈ x leads to R

[sin(x)]
1 (x, γ) = −x2 sin(γ)/2 suhthat the maximal error for 0 ≤ x ≤ π

2
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2
. (A.19)
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Appendix BNon-equilibrium simulationsB.1 Perturbation theory for small and large bi-asesAs we hange the applied potential bias in both setups (I) and (II), theHamiltonian is atually time-dependent and we an write it as

Ĥ(t) = Ĥ0 +∆ǫĤ1 · h(t) (B.1)where for setup (I) h(t) = Θ(−t) and for setup (II) h(t) = Θ(t) with Θ(0) =
1. Thus, for setup (I) we initially (for times t < 0) prepare the system inthe ground state |Ψ1〉 of Ĥ0 +∆ǫĤ1 and the time evolution for t ≥ 0 of the(expetation value of the) urrent is given by

J(t) = 〈Ψ1|Ĵ(t)|Ψ1〉 with Ĵ(t) = e
i

~
Ĥ0tĴ0e

− i

~
Ĥ0t. (B.2)For small applied potentials ∆ǫ, and if the ground state of Ĥ0 is not degen-erate, it holds

|Ψ1〉 = |Ψ0〉+∆ǫ · 1

Ĥ0 − E0

M̂1|Ψ0〉+O(∆ǫ2) (B.3)with
M̂1 = Ĥ1 − 〈Ψ0|Ĥ1|Ψ0〉 (B.4)where |Ψ0〉 is the ground state of Ĥ0, and E0 the orresponding groundenergy. Plugging expression (B.3) into equation (B.2) one gets

J(t) = 〈Ψ0|Ĵ(t)|Ψ0〉
︸ ︷︷ ︸

=〈Ψ0|Ĵ0|Ψ0〉

+∆ǫ · 〈Ψ0|
(

Ĵ(t)
1

Ĥ0 −E0

M̂1

+M̂1
1

Ĥ0 − E0

Ĵ(t)

)

|Ψ0〉+O(∆ǫ2) (B.5)



110 Appendix B. Non-equilibrium simulationsFor setup (II) the system is initially prepared in the ground state |Ψ0〉 of Ĥ0and evolved in time with Ĥ2 = Ĥ0 +∆ǫĤ1. Thus, it holds
J(t) = 〈Ψ0|Ĵ(t)|Ψ0〉 with Ĵ(t) = e

i

~
Ĥ2tĴ0e

− i

~
Ĥ2t (B.6)and using time-dependent perturbation theory
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) (B.7)one gets after a short alulation
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+Ĥ1
1
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|Ψ0〉+O(∆ǫ2) (B.8)We note that up to the order O(∆ǫ), equation (B.5) for setup (I) and equa-tion (B.5) for setup (II) are equal if 〈Ψ0|Ĥ1|Ψ0〉 = 0 and Ĵ0 ∝ [Ĥ0, Ĥ1], whihis given (or an easily be ahieved) for our models and setups.For large biases ∆ǫ and setup (II), the time evolution is determined by
Ĥ = λĤ0 + Ĥ1. Time-dependent perturbation theory
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) (B.9)yields
J(t) = 〈Ψ0|Ĵ(t)|Ψ0〉+ λ · i
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Ĥ1t and Ĥ0(t

′) = e
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Ĥ1t′Ĥ0e

− i
~
Ĥ1t′ . (B.11)Inserting (for instane) the Hamiltonian for the spinless fermion model (5.1),one an see that the expetation value of the urrent vanished for ∆ǫ→∞.B.2 Period of the retangular osillation in thetight-binding modelThe following alulation has already been performed in [94℄. The timeevolution of the single partile redued density matrix (3.10) is given by

Gij(t) = exp

(

− i

~
εqt

)

Gkq(0) exp
(
i

~
εkt

) (B.12)



B.3. Current in the in�nite tight-binding model 111in the eigenbasis of a time-onstant single partile Hamiltonian H(1). Ψk,idenotes the i-th omponent of the k-th eigenvetor of H(1) and εk the orre-sponding eigenvalue. A Fourier transformation gives
G̃kq(ω) = δ [εk − εq − ~ω]Gkq(0). (B.13)For the tight-binding model with zero onsite potentials one has
Ψk,i =

√
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N + 1
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kiπ
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,

εk = −2tH cos

(
kπ
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. (B.14)The period of the largest (retangular) osillation is then given by
Tmax = π~

tH sin
(

π
N+1

) ≈ ~ · N
tH for N ≫ 1. (B.15)B.3 Current in the in�nite tight-binding modelThe expetation value of the urrent for setup (I) and for initial onditionslike in �gure 3.4 (one ompletely �lled and one ompletely empty half) is for

N →∞ given by [15, 56℄
JkF(t) = 2etH

~

∞∑

l=k−N
2

Jl(ωt)Jl+1(ωt) (B.16)where k denotes the site, ω = 2tH/~ and Jl(z) are the Bessel funtions of the�rst kind. Reformulating the sum and utilizing the Bessel reursion relation
2l

z
Jl(z) = Jl+1(z) + Jl−1(z) (B.17)gives for z 6= 0 and k = N/2

JF(ωt) := J
N/2F (ωt) =

4etH
~ωt

∞∑

l=0

[
(J2l+1(ωt))

2 · (2l + 1)
]
. (B.18)With [50℄

∞∑

l=0

(4l + 2ν + 2)J2l+ν+1(z)J2l+ν+1(w)

=
zw

z2 − w2
[zJν+1(z)Jν(w)− wJν(z)Jν+1(w)] (B.19)
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JF(t) = 2etH

~
lim
t′→t

ωtJ1(ωt)J0(ωt
′)− ωt′J0(ωt)J1(ωt

′)

(πωt′)−1((ωt)2 − (ωt′)2)
. (B.20)Applying l'H�spital's rule one gets

JF(t) = etH
~
ωt

[
(J0(ωt))

2 + (J1(ωt))
2
]
. (B.21)
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Appendix CTEBD update shemeIn the following part SVD and TEBDn are de�ned as funtions and writtenin pseudo-ode. Let χl

c be the Shmidt dimension for site l and χl
c ≤ χc ∀l.

m denotes the loal dimension, N the number of lattie sites, i, j, k, o, p =
1, 2, .., m, ξl+1 = 1, 2, .., m · χl+1

c and U l is the time evolving operator forthe l-th bond. With α = 1, 2, .., χl−1
c , β = 1, 2, .., χl

c and γ = 1, 2, .., χl+1
c thesingular value deomposition (SVD) is de�ned as:

φβ ←
{EW [

ρ(R)
xy

]
: EW [

ρ(R)
xy

]
> ε and β ≤ χc

}

Φ
ξl+1

β ←
{EV [

ρ(R)
xy

]ξl+1

β
: EW [

ρ(R)
xy

]
> ε and β ≤ χc

}where Φ
ξl+1

β is the ξl+1-th omponentof the β-th eigenvetor
χl
c ← size(φβ)

R←
χl
c∑

β=1

φβ (renormalization fator)
λ
[l]
β ←

√

φβ/RAn eigenvalue of ρ(R) is only kept if it is larger than ε (a small numberdependent on the system) and it the maximal Shmidt dimension χc is notexeeded. Aordingly, all eigenvetors whose orresponding eigenvalues donot ful�ll these requirements are disarded. We further de�ne TEBD1 with
l = 1:

θijγ ←
m∑

o,p=1

χl
c∑

β=1

Γ
[l]o
β λ

[l]
β Γ

[l+1]p
βγ λ[l+1]

γ U lop
ij

ρ
(R)

x=j(χl+1
c −1)+γ,

y=j′(χl+1
c −1)+γ′

←
m∑

i=1

θijγ · θ*ij′γ′all SVD;
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Γ
[l+1]j
βγ ←

Φ
j(χl+1

c −1)+γ
β

λ
[l+1]
γ

Γ
[l]i
β ←

1

λ
[l]
β

·
m∑

j=1

χl+1
c∑

γ=1

θijγΦ
j(χl+1

c −1)+γ
βand TEBDl:

Θαijγ ←
m∑

o,p=1

χl
c∑

β=1

λ[l−1]
α Γ

[l]o
αβλ

[l]
β Γ

[l+1]p
βγ λ[l+1]

γ U lop
ij

ρ
(R)

x=j(χl+1
c −1)+γ,

y=j′(χl+1
c −1)+γ′

←
m∑

i=1

χl−1
c∑

α=1

Θαijγ ·Θ*
αij′γ′all SVD;

Γ
[l+1]j
βγ ←

Φ
j(χl+1

c −1)+γ
β

λ
[l+1]
γ

Γ
[l]i
αβ ←

1

λ
[l−1]
α λ

[l]
β

·
m∑

j=1

χl+1
c∑

γ=1

ΘαijγΦ
j(χl+1

c −1)+γ
βand TEBDn−1 with l = n− 1:

Ωαij ←
m∑

o,p=1

χl
c∑

β=1

λ[l−1]
α Γ

[l]o
αβλ

[l]
β Γ

[l+1]p
β U lop

ij

ρ
(R)
x=j,y=j′ ←

m∑

i=1

χl−1
c∑

α=1

Ωαij · Ω*
αij′all SVD;

Γ
[l+1]j
β ← Φj

β

Γ
[l]i
αβ ←

1

λ
[l−1]
α λ

[l]
β

·
m∑

j=1

χl+1
c∑

γ=1

ΩαijΦ
j
βfor the TEBD update sheme given in (4.12).
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