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Zusammenfassung

Die wachsenden Bandbreitenanforderungen an moderne drahtlose Kommunikationsnetze
stellen eine Größe Herausforderung dar, die durch die Einführung neueartiger Anwen-
dungen verschärft wird. Lösungsansätze wurden in der letzten Zeit sowohl in Ingenieurs-
und Wirtschaftswissenschaften als auch durch Regulierungsbehörden vorgestellt. Dazu
gehört die Verwendung von White Spaces, d.h. spektrale Ressourcen, die einem lizen-
zierten Dienst zugeordnet sind, jedoch zu einem bestimmten Zeitpunkt in einem bes-
timmten Ort nicht eingesetzt werden sind. In diesem Zusammenhang hat Dynamic Spec-
trum Access (DSA) besondere Aufmerksamkeit erhalten. Der Grund dafür ist dessen
Flexibilität, die in das herkömmliche Spektrum-Management eingeführt werden kann.
Aufbauend auf neuer entstehenden Technologien wie Software Defined Radio (SDR) und
Cognitive Radio (CR) kann DSA den Einsatz innovativeren rekonfigurierbaren Systemen
erleichtern. Unter der Berücksichtigung des Standortes oder auf Basis von Context Aware-
ness, d.h. Umgebungswahrnehmung, können DSA-fähige Systeme ihre Betriebsfrequenzen
dynamisch wählen.

White Space Devices (WSD) sind DSA-fähige Systeme, die opportunistisch (möglicher-
weise lizenzfrei) im nicht ausgelasteten Spektrum betrieben werden können. In den vergan-
genen Jahren haben WSD sowie die darauf basierenden Anwendungen einen Aufschwung
genommen. Zuerst hat die International Telecommunications Union (ITU) erklärt das
Breitband-Internet als das wichtigste Werkzeug, um die Fortschritte in den Informations-
und Kommunikationstechnologien zu steigern. Zweitens haben einige entwickelte Länder
White Spaces als effektives Mittel zur Unterstützung des Breitband-Wachstums vorge-
sehen. Die Einführung von WSD weckte großes Interesse, weil diese das Anbieten einer
Reihe von neuen Services ermöglicht. Beispielsweise können Breitband-Internet-Zugang
für unterversorgte Gebiete, Backhaul für drahtlose lokale Netzwerke, Datenverkehr Of-
fload aus anderen Netzen, Machine to Machine Communications (M2M) und Smart Grid
angeboten werden. Um von den oben genannten Chancen profitieren können, müssen
WSD in der Lage sein, White Spaces effektiv auszunutzen und gleichzeitig lizenzierte
Dienste ausreichend zu schützen. Geolocation/Database Access (GDA) ist die Methode,
die zur Bestimmung von White Spaces im neuen freigewordenen Spektrum der bisherigen
TV-übertragung in den USA genutzt wird. Trotz kleiner Unterschiede wird GDA auch
von den meisten europäischen Regulierungsbehörden kurz- bis mittelfristig als die am
besten geeignete Methode betrachtet. In diesem Zusammenhang kooperieren entwickelte
Länder zusammen, um die regulatorische Arbeit zu minimieren sowie ein Mindestmaß an
Harmonisierung unter den gewählten Lösungen zu gewährleisten. Trotz dieser Bemühun-
gen stellt sich die Frage, ob die GDA-basierten Lösungen, die mittlerweile in entwickelten
Ländern angenommen sind, auch für den weltweiten Einsatz geeignet werden.

In der vorliegenden Dissertation werden alternative Lösungen basierend auf Spectrum
Sensing dargestellt. Insbesondere werden Verfahren analysiert, die die Zusammenar-



IV

beit zwischen Sensorknoten ausnutzen, z.B. Cooperative Spectrum Sensing (CSS) und
Wireless Sensor Networks (WSN). Ein neues Verfahren wird eben auch vorgeschlagen,
welches eine Art von Context Awareness verwendet. Dieses stammt von einer Gruppe
von WSD, die in der Lage sind Signale zu detektieren und zu klassifizieren. Die Grun-
didee basiert sich auf einer Kombination von Signalverarbeitungsalgorithmen, die kom-
plementäre Eigenschaften besitzen. Basierend auf seiner Robustheit gegen Mehrwegeaus-
breitung, Umgewissheit des Rauschens und Frequenzausgleiche wird jeder Stufe der Klas-
sifizierungskaskade der am besten passenden Algorithmus gewählt. Unter solchen unter-
schiedlichen Betriebsbedingungen sind mit einem kustomisierten Sensing-Plattform zwölf
Kandidaten untersucht worden. Das Plattform ist eine virtuelle Testumgebung, die sich
von herkömmlichen Matlab-Simulation unterscheidet indem alle Ziel-Signale in detail-
lierten gemäß den entsprechenden Standards implementiert sind. Die dadurch entstehende
Klassifizierungskaskade ist in der Lage mit weltweit eingesetzten TV Standards zu koex-
istieren. Alternativ kann auch dieser Kaskadenklassifizierer verwendet werden, um Pro-
gram Making and Special Events (PMSE) in den TV Bändern proaktiv zu schützen. Ferner
kann der vorgestellte Klassifizierer die Koexistenz von WSD Systemen verschiedender Art
gewährleisten. Die Herleitung eines Verfahrens für Multi-standard Context Awareness in
beliebigen wenig ausgelasteten Frequenzbänder ist eine direkte Erweiterung der vorgestell-
ten Arbeit. Ausserdem unterstützt das in dieser Dissertation vorgestellte Konzept die
Realisierbarkeit von Sensing basierten Lösungen in den Entwicklungsländern.

Schlagwörter: Cognitive Radio, Signaldetektion und -klassifizierung, Spectrum Sensing.



Abstract

The need to accommodate the increasing bandwidth demands for new applications is a big
issue in modern wireless communications. In order to circumvent this problem, substantial
effort has been undertaken by engineering, economics, and regulation communities to
exploit white spaces, i.e. spectral resources that are allocated to some incumbent service
but are not used in a particular time in a particular geographic area. Dynamic Spectrum
Access (DSA) has received particular attention in the context of white spaces due to its
potential to introduce flexibility into the static spectrum management model worldwide
adopted. Built on top of emerging technologies such as Software Defined Radio (SDR)
and Cognitive Radio (CR), DSA can leverage the deployment of innovative reconfigurable
systems that take into account their geographic location, or obtain context awareness by
other means, to dynamically select their operating frequencies.

White Space Devices (WSD) are DSA-capable systems that can operate opportunistically,
possibly on an unlicensed basis, wherever underutilized spectrum exists. WSD and appli-
cations based thereon have recently gained momentum after the International Telecom-
munications Union (ITU) declared broadband Internet access as the prime tool to boost
progress in the Information and Communication Technologies (ICT) domain. The fast-
paced introduction of WSD into the market is of great interest as it has potential to open
up a new world of opportunities, including broadband Internet access for underserved
areas, backhaul for wireless local area networks, offload data traffic from other networks,
machine to machine (M2M) communications, and smart grid to name a few. However,
ICT societies will only benefit from the aforementioned opportunities if WSD rely on
methods able to effectively exploit white spaces while affording sufficient protection to
incumbent services. Geolocation/Database Access (GDA) has been the method adopted
to allow WSD operation in the spectrum freed up by the TV switchover in the U.S. Inspite
of some minor differences, most European regulatory agencies also consider GDA as the
most feasible method in the short to medium term. However, notwithstanding the efforts
to harmonize the solutions adopted among developed countries, one aspect seems to have
been overlooked in the rule-making process for WSD: Do GDA-based solutions adopted
in developed countries fit developing countries too?

This dissertation deals with alternative solutions based on spectrum sensing, especially
those that enforce cooperation among multiple sensing nodes, e.g. Cooperative Spectrum
Sensing (CSS) and Wireless Sensor Networks (WSN). Instead of relying on geolocation,
the proposed approach takes advantage of a kind of context awareness that a set of coop-
erating WSD obtains by detecting and subsequently classifying the signals conveyed in its
cooperation footprint. The underlying idea of multi-standard context awareness is that, by
suitably combining different signal processing techniques offering complementary features,
one can design cascade classifiers able to deal with the coexistence situations raised by the
operation of WSD collocated with incumbent services. The technique that best suits each



VI

stage of the classifier is chosen on the basis of its robustness against issues raised by the
practical implementation of spectrum sensing, e.g. multipath fading, noise uncertainty,
and frequency offsets. Twelve candidate techniques are examined under such different op-
eration conditions using a custom-built virtual testbed, which differs from conventional
Matlab simulation in that all target signals are implemented in detailed accordance to
corresponding standards. The outcomes of this analysis are used to populate the stages
of a cascade signal classifier that is shown able to coexist with the TV broadcast stan-
dards most deployed worldwide. Alternatively, the proposed cascade signal classifier can
be employed to proactively protect Program Making and Special Events (PMSE) systems,
and to provide a contingency for self-coexistence between WSD whenever the standard
beacon-based methods fail. The derivation of extensions to obtain multi-standard context
awareness in whatever underutilized bands is straightforward along the lines above. In
addition to providing a deeper understanding on a number of aspects related to node
cooperation, the concept of multi-standard context-aware WSD introduced in this disser-
tation reinforces the suitability of sensing-based solutions for developing countries.

Keywords: Cognitive radio, signal detection and classification, spectrum sensing.
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ŜPER,x Periodogram estimate of Sx

Ŝα
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Chapter 1

Introduction

In the modern society, the radio frequency (RF) spectrum constitutes a vital resource for
a number of applications that rely on wireless communications. One issue raised when
new wireless applications need to be accommodated is that, though the RF spectrum
spans from 3 kHz to 300 GHz, its useful portion lies below 15 GHz for most applications.
Eventually, higher frequencies can be used to accommodate larger bandwidth require-
ments but this results in shorter reach, i.e. transmitted signals are received over shorter
distances. Therefore, wireless communication systems for frequencies above 15 GHz are
more economically viable in dense urban areas or for fixed point-to-point communications.
Such technical and economical constraints become even more stringent when it comes to
mobile communications. In this case, the use of very low frequencies raises antenna size
issues so that the frequencies commercially feasible span only up to about 4 GHz. These
reasons render the useful RF spectrum to be regarded as a limited resource.

For more than one century, which dates back to the early days of the wireless telegraphy,
techniques for improving the efficiency of spectrum usage have been receiving attention
from both academy and industry. Thanks to this continued effort, tremendous progress
has been achieved on virtually all technological fields that may influence the way a wireless
communication system uses the spectrum. This includes, but is not limited to, antenna
characteristics, backhaul requirements, duplexing techniques, frequency reuse, interference
mitigation, modulation and multiple access schemes, polarization, power control, resource
allocation, and routing. However, notwithstanding the progress made thus far, there still
exist many reasons for spectrum underutilization.

In this chapter, we describe the causes of spectrum underutilization and review the state
of the art in regulatory and technical solutions to mitigate them. We begin in Section
1.1 with some ideas currently under discussion to flexibilize spectrum management. We
also overview some emerging technologies aimed at supporting these ideas. In Section 1.2,
we summarize the latest moves towards more flexible regulations and explain how they
exploit underutilized spectrum to support broadband growth. We continue in Section 1.3
with an in-depth overview about the underlying principles, advantages, and drawbacks
of the two methods currently regarded as the most promising to determine underutilized
spectrum. This puts in place the technical background for Section 1.4, where we carry out
a techno-economical analysis crucial to set out the motivation of this dissertation later on
in Section 1.5. Before closing the chapter, we highlight our key contributions in Section
1.6, outline the remainder of the dissertation in Section 1.7, and provide a record of the
own publications related to the dissertation in Section 1.8.
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1.1 Background

This section is divided in three parts that are as follows. First, we look at some promising
spectrum management policies and techniques recently advanced as a means to tackle the
spectrum underutilization problem. Second, we introduce emerging technologies based on
which a number of methods have been proposed to facilitate the flexibilization discussed
in the first part. Basically, these methods are able to determine spectrum availability and,
in doing so, allow to accommodate future applications using underutilized spectrum. In
the third part, we give some figures on the bandwidth needs of such future applications.

1.1.1 Dynamic Spectrum Access

Regulatory agencies worldwide typically use allocation and assignment processes to man-
age the interaction between services in neighboring frequency bands and in different geo-
graphical areas. Though this two-step method keeps interference under acceptable levels,
its incentives for efficient spectrum utilization are limited because huge regions of spec-
trum are assigned on a static, long term basis [1]. Apart from this inherent underutilization
caused by current spectrum management policies, other sources of underutilization include
large peak-to-average power ratio (PAPR) of wireless systems that have dedicated spec-
trum, limited rejection of practical receivers to adjacent channel interference, and, not
surprisingly, the simple fact that population is non-uniformly distributed [2].

Frequency assignment data from regulatory agencies usually shows little or no unassigned
spectrum in most bands of interest. However, static frequency charts fail to reflect how well
a certain type of service (specific party) is making use of allocated (assigned) frequencies.
Monitoring tasks are therefore necessary to determine the actual degree of spectrum usage.
Several measurement campaigns carried out at in the recent years at different times and
places report similar findings that confirm spectrum underutilization. In [3], utilization
levels between 15% and 85% were observed depending on the geographic location and
the time of the day. Low spectrum utilization was also perceived by [4], especially in the
bands between 3 GHz and 6 GHz. Constant use below 300 MHz and around 900 MHz
was reported in [5] but large amounts of “premium” spectral resources showed either any
or only sporadic activity in between these frequency bands. More recently, a study on the
spectrum occupancy of 11 European countries found that 49% to 56% of the TV channels
in the 470−790 MHz bands are unused [6]. Such spectral resources, which though allocated
and assigned are not being used at a particular time in a particular geographic area, are
referred to as white spaces.

To a certain extent, the notion of white space has been modifying the belief that spectrum
scarcity is created solely by inefficient regulatory policies. This paradigm change is moti-
vating engineering, economics, and regulation communities to search for novel spectrum
management policies and techniques that can allow wireless devices to improve the cur-
rent spectrum usage by exploiting white spaces. Among some ideas envisioned to tackle
this problem, dynamic spectrum access (DSA) has been receiving particular attention due
to its potential to introduce flexibility into a so far static way of managing spectrum
resources. In DSA networks, wireless devices need not be locked into a fixed set of operat-
ing frequencies. This flexibility can leverage the deployment of innovative reconfigurable
systems that are either context-aware or take into account their geographic location to
dynamically select operating frequencies.
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Various approaches to spectrum reform can be put under the umbrella of DSA. Among
these approaches, the one of interest in this dissertation is the overlay-based hierarchical
access model [7]. This model prioritizes access to spectrum, so that lower priority unli-
censed systems are allowed to share spectrum with higher priority licensed systems. As
long as unlicensed systems are capable of determining spectrum availability prior to initi-
ate transmissions, they can be sure they will not generate harmful interference to licensed
systems. Unlicensed systems can thus convey data opportunistically over the frequency
bands identified as white spaces. In this fashion, more flexible regulations based on the
overlay model can lead to more efficient wireless systems thus improving the current lev-
els of spectrum utilization. As an additional advantage, this model has been regarded in
the literature as the most compatible with existing allocation and assign policies [7][8].
Nevertheless, overlay operation brings about several challenges to the practical implemen-
tation of DSA, e.g. the need for frequency rendezvous that comes along with increased
flexibility [9]. Unlike traditional wireless systems, which operate using a fixed set of fre-
quencies known a priori, DSA-capable systems need to determine what frequencies to use
before commencing operation. Synchronization issues also arise as any two wireless de-
vices need to agree beforehand on what channel to use for establishing a communications
link between each other.

1.1.2 Emerging Technologies

Considerable research effort has been made over the past decade to meet the complex
reconfigurability needs raised by DSA. Software-defined radio (SDR) and cognitive ra-
dio (CR) are emerging technologies regarded as DSA enablers because of the following
reasons. With its baseband processing performed in software, SDR possesses the ability
to reconfigure operation frequency, modulation type, transmit power, and other physical
layer parameters according to the current conditions of the operation environment. This
is possible at run-time thanks to recent advances in digital signal processing and generic
hardware components used to implement communication functions in SDR, e.g. micro-
processors, field programmable gate arrays (FPGA) and other software reconfigurable
hardware. When built on top of SDR, CR provides wireless devices with the awareness
required to understand the context they find themselves in and autonomously configure
themselves in response to a predefined set of goals [1]. Simply put, the sinergy arising be-
tween SDR and CR consists of a software controlled communication vehicle whose control
and applications follow CR principles [8][10].

Under the overlay model, CR principles can be guided by any means able to determine
spectrum availability and, in doing so, identify white spaces. In this context, approaches
that can afford sufficient protection to license holders without posing excessive computa-
tional burdens on CR devices are of utmost importance to the commercial feasibility of
future DSA networks. A (non-exhaustive) list of methods that can be used to determine
spectrum availability include:

• Geo-location/database access (GDA) denotes a method for CR devices to ob-
tain from a database a list of permitted channels before initiating operation and
without sensing the spectrum for licensed signals [11]. Exemplary information avail-
able at the database includes the services granted protection, their locations, pro-
tection requirements, and operation channels.
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• In spectrum sensing, the problem to be solved at the CR device translates into
the estimation of a specific parameter of the licensed signal (to be detected) using a
test statistic. Decision on the channel availability is made via statistical hypothesis
testing, e.g. by constructing a test statistic and comparing it to a detection threshold
based on some test criterion [12].

• Disabling beacons are digitally modulated signals especially designed to convey
information to sensing-capable CR devices [13]. Within an area covered by disabling
beacons, CR devices can be instructed about what channels to avoid so as not to
interfere with other licensed systems operating nearby.

• Cyclostationary signatures are similar to beacons in the sense that they can be
intentionally embedded in digital signals for the sake of facilitating signal detec-
tion and classification. Additional uses of cyclostationary features include frequency
acquisition, network identification, and frequency rendezvous [14].

• The concept of cognitive pilot channel (CPC) refers to a dedicated RF link used
to convey information to CR devices. Including available frequency bands, services,
load situation, and network policies, CPC information allows CR devices to connect
to whatever service available on whatever frequency [15].

1.1.3 The Increasing Need for Bandwidth

The modern society is becoming increasingly mobile and more dependent of information
and communication technologies (ICT). An issue common in such ICT societies is the
increasing bandwidth needs of innovative features and applications. Typically, this growing
bandwidth demand is introduced along with new generations of smartphones, tablets, and
laptops, which are high-end mobile devices having potential to multiply the traffic created
by basic mobile phones in up to five hundred times [16]. Current estimates point out that
the mobile data traffic by 2015 will exhibit a 26-fold increase over 2010, corresponding to
a compound annual growth rate (CAGR) of 92%. Adding up the contributions of fixed
Internet and managed Internet protocol, expected to be about 32% and 24%, respectively,
results in an overall traffic growth of 32% in the same period [17].

Clearly, the success of future wireless services depends on the ability of ICT societies to
accommodate the growing demands for capacity and quality. Aiming at finding solutions,
regulatory and technical work is currently being undertaken through a number of authori-
ties. The International Telecommunications Union (ITU) is responsible for both global and
regional levels. At the regional level, further harmonization efforts are usually necessary
to adequate and implement the ITU recommendations, e.g. the regulation activities car-
ried out by the European Conference of Postal and Telecommunications Administrations
(CEPT). Locally, the RF spectrum framework is set and managed by national regulatory
agencies such as the Federal Communications Commission (FCC) in the U.S., and the
Office of Communications (Ofcom) in the U.K.

In the next section, we summarize the latest moves towards more flexible regulations.
The first part of the section briefly overviews the arguments used by the FCC, Ofcom,
and CEPT to define a preferred method for determining white spaces. The second part
describes how some exemplary plans set out in both global, regional, and national levels
intend to exploit white spaces to support broadband growth.
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1.2 Towards White Space Use

1.2.1 Recent Advances in White Space Regulation

The practicality and efficiency of methods aimed at determining white spaces have been
largely discussed by regulatory agencies, both in country- and region-wide levels. Pioneer-
ing work has been carried out in the U.S., where the FCC will allow unlicensed operation
of CR-based TV band devices (TVBD) in the spectrum freed up by the digital switchover.
The TV bands were selected due to their superior propagation and penetration charac-
teristics (as compared to higher frequencies) and static behavior (changes in location
and frequency of TV transmitters occur unfrequently). In [18], the FCC determines that
TVBD can use GDA as the sole means to identify white spaces. Subsequently, multiple
database administrators were selected for an initial period of 5 years [19] and the first
public trials were concluded without any report of critical nature [20]. The reasoning used
by the FCC to drop the sensing requirement, mandated to be combined with GDA in an
earlier Report & Order [21], is that license holders will be granted adequate protection
by means of GDA and other provisions of the rules. As such, mandatory sensing require-
ments would impose additional burdens to TVBD. According to the FCC, this could slow
down the introduction of TVBD to the market, thus making the uptake of unlicensed ap-
plications based on CR more difficult. In parallel, based on experience acquired through
extensive prototype testing [22], the FCC recognizes spectrum sensing as a promising
method and defines requirements for sensing-only TVBD. Device certification will occur
under a rigorous “proof-of-performance” standard in this case, meaning that sensing-only
TVBD have to pass laboratory and field tests prior to certification.

The Ofcom refers to GDA as the most important method in the short to medium term and
allows both GDA and spectrum sensing methods to be used independently [23]. Despite
of the similarities between the approaches ruled by the FCC and Ofcom, differences exist
under some aspects. The most distinguishing aspect is that the Ofcom intends to specify
algorithms for determining white spaces [24][25], whereas the FCC leaves the database
structure, administrative functions, and services up to the market [18]. While the focus
of the Ofcom seems to be on facilitating harmonization, a vital task within the European
regulatory framework, the FCC seems to be aiming at an optimized database design. With
respect to spectrum sensing, the Ofcom believes that there may be advantages in aligning
requirements for sensing-only TVBD on an international basis, i.e. through CEPT. So,
rule making activities for such devices are waiting for developments in Europe.

In [26], the CEPT points out GDA as the most feasible method and argues that spectrum
sensing is not required as long as GDA can provide sufficient protection to license holders.
The CEPT agrees that the combined use of GDA and sensing may be positive but its
benefits need to be further investigated. European countries that decide to adopt GDA
will have the flexibility to select the parameters and algorithms for the database according
to their own national circumstances. A certain degree of harmonization will be ensured
by providing exemplary algorithms and general guidelines for the exchange of information
between TVBD and the database.

Technical standards have recognized importance as their employment provides advantages,
such as economies of scale, interoperability, and efficient usage of spectrum and energy.
Aware of these advantages and driven by the latest regulatory decisions discussed above,
the Internet Engineering Task Force (IETF) has started working on a protocol to access
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white space databases (PAWS) [27]. In essence, PAWS consists of an effort to standardize
a data model for databases and a query method for TVBD to retrieve information from
databases. Both tasks are important for the development of end devices. At the time of
this writing, the IETF is determining use cases and requirements on top of which PAWS
will be defined. The use cases addressed in the first drafts include broadband Internet
access in rural and underserved areas, backhaul for wireless local area networks (WLAN),
and offload data traffic from other networks.

Though conceptually different, GDA, disabling beacons, and CPC are similar in the sense
that they require additional infrastructure from stakeholders and coordination efforts
from regulators. As disabling beacons and CPC compete with GDA as enabler of prior
knowledge, they have received less support in the context of DSA. The Ofcom addresses
disabling beacons in its studies but concludes that the method does not merit further
investigation [23]. The rationale behind this conclusion builds on top of the three main
drawbacks of the beacon approach. First, TVBD within an area covered by the disabling
beacon can be “shielded” from receiving beacon signals such that interference protection
cannot be ensured. Second, efficiency concerns arise as TVBD access to white spaces may
be unnecessarily prohibited if the area covered by beacons is larger than needed. Finally,
spectrum otherwise available for TVBD is required for the beacon transmission. Neither
disabling beacons nor CPC is considered by the FCC [18]. This makes of the ECC the
only regulatory agency that considers further investigating the use of disabling beacons.
This, however, seems to be conditioned to the standardization of the CPC along the lines
proposed in [28].

1.2.2 Using White Spaces to Support Broadband Growth

Due to its proven potential to create job opportunities, increase productivity, and boost
economies, broadband Internet access has been considered by the ITU as the prime tool
to tackle today’s challenges. In what is intended to be the beginning of a series of re-
ports, the ITU’s Broadband Commission for Digital Development presents an approach
to benefit healthcare, education, energy efficiency, environmental protection, public safety,
civic participation, and economic growth [29]. In a second report, the ITU provides some
facts and figures to help bringing recommendations into effect [30]. Also, related policy
challenges are addressed through a roadmap of regulatory issues that includes the estab-
lishment of consistent licensing frameworks for broadband deployment and optimization
of RF spectrum use.

So as not to lose the opportunities above, support for broadband growth should be coordi-
nated on a countrywide basis. In line with the goals set by the ITU, countries worldwide are
planning to release larger amounts of RF spectrum and reallocate them for new purposes.
In the U.S., the FCC will make available 500 MHz of spectrum for wireless broadband
until 2015, 300 MHz of which exclusively for mobile use [31]. Concerning white spaces, the
recommendation 5.13 of the American National Broadband Plan is of particular interest
as it promotes the development and deployment of opportunistic uses across more radio
spectrum. The first action proposed to meet this goal is to provide more technical room
for innovation by supporting the development of CR technologies, e.g. by allowing them
to use spectrum currently held by the FCC. In a second action, the FCC will investigate
ways to apply GDA to frequencies other than the TV bands. As license holders will be
protected by means of GDA, TVBD that are also capable of spectrum sensing can carry
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out parallel measurements to assess the actual spectrum usage in these bands. Reporting
these findings back to the database can help improve opportunistic uses.

Europe’s vision for the period 2010− 2020 was set out in the first quarter of 2010. With
smart growth, sustainable growth, and inclusive growth as mutually reinforcing priorities,
Europe 2020 [32] defines seven initiatives to catalyze progress and support targets put for-
ward by the European Comission. One of these initiatives establishes a digital agenda [33]
aimed at accelerating the roll-out of broadband Internet in Europe. Thereby, broadband
access should be made available for all citizens by 2013. By 2020, the aim is to deliver
speeds of at least 30 Mbps for all citizens and reach 50% of the households subscribing
to speeds above 100 Mbps. Each member state should develop and make operational its
own national broadband plan by 2012, including the spectrum allocations needed to meet
the target of 100% coverage of 30 Mbps by 2020. As economies of scale can be leveraged
by using the same equipment and by offering the same services, the European Comission
will harmonize spectrum bands where necessary.

Targeting at having Europe’s best broadband network by 2015, the British government
also intends to release spectrum below 5 GHz over the next 10 years. Accordingly, 500 MHz
should be released for new mobile communication uses. To meet this ambitious target, a
first draft of plan was set out overviewing public sector holdings, market demand, as well
as the key next steps [34]. The draft classifies candidate bands as prioritized for release,
subject to immediate investigation, or subject to posterior investigation. Spectrum below
1 GHz was left to posterior investigation despite the wide range of possible applications for
these bands, e.g. business radio, terrestrial TV broadcasting, wireless broadband access,
cognitive white space use, machine to machine communications (M2M), and utilities like
smart metering and smart grid. The reason is that the U.K. government is expecting such
applications to be accommodated using TV white spaces [35].

1.3 Determining White Spaces

As seen in the previous section, substantial regulation effort is being undertaken to fa-
cilitate white space exploitation. In well developed ICT societies, such as the U.S. and
the U.K., white spaces are being already regarded as an effective means to accommodate
the increasing bandwidth needs bring about by future wireless applications. This, per se,
puts in place the motivation for the bigger picture goal of this dissertation, which involves
the study of methods to determine white spaces. Therefore, in the first two parts of this
section, we provide some background on the fundamental operation principles of GDA
and spectrum sensing. Our emphasis is solely on GDA and spectrum sensing because, as
seen in Section 1.2, the former is the method with the best chances of reaching the market
first and the latter comes as the second most preferred by regulators. In the third and
last part of this section, we present a high-level comparison between GDA and spectrum
sensing. Rather than in the related work, the comparison established here is “unbiased”
in the sense that we look at the detection capability and performance limiting factors of
each method regardless of regulatory trends and political/commercial reasons.

Recalling that the investigation of potential white space use in frequency bands other
than in the TV bands has been already directed in the U.S. [31], we denote CR-based
unlicensed devices hereafter as white space devices (WSD). Instead of mere TVBD, whose
operation is confined strictly to the TV bands, WSD can operate wherever underutilized
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spectrum exists. Therefore, we think the use of WSD is more appropriate than TVBD to
reflect the intrinsic flexibility of DSA devices and networks.

1.3.1 The GDA Method

GDA can be viewed as a kind of management system that assists WSD in selecting opera-
tional frequencies, thus eliminating the need for sensing the spectrum for licensed signals.
Frequency selection is carried out on the basis of information on available frequencies as-
sociated with locations in the database and location information received from WSD [26].
Approaches based on GDA use RF propagation models to estimate the electromagnetic
field strength received at a the geographical location of WSD. Through this process, it is
possible to determine a protected contour within which WSD are not allowed to transmit
co-channel with the licensed system that should be granted protection. Keep-out regions
determine the limits above which undesired field strengths at the protected contour exceed
acceptable levels. In practice, keep-out regions are obtained by adding safety margins to
the protected contour. So are specified the areas beyond which WSD can use white spaces
without causing harmful interference to those licensed receivers operating at the edge of
the protected contour [36].

A pictorial view of the GDA method is given in Figure 1.1, where the main tower in the
middle plays the role of a licensed transmitter registered in the database. The peripheral
systems placed outside the protected contour of radius dP are GDA-capable WSD sys-
tems, each composed of a base station (BS) and multiple customer premise equipments
(CPE). The margins dB and dC are added to protected contour dP so that the resulting
keep-out regions can accommodate specific transmission characteristics of BS and CPE,
respectively, e.g. antenna height, front-to-back ratio, and transmit power. It is clear from
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Fig. 1.1: The protected contour dP adopted in GDA delimits the area within which WSD
are prohibited to transmit co-channel with the licensed transmitter. Margins dB

and dC are further required to keep undesired field strengths at the edge of the
protected contour below acceptable levels.



Chapter 1. Introduction 10

the figure that protection to a given licensed system can only be granted as long as the op-
eration details of that system are registered in the database. If this information contains
errors, or cannot be known far in advance to be registered in the database, protection
against harmful interference from WSD cannot be guaranteed using GDA.

Advance registration in the database is particularly difficult for itinerant program making
and special events (PMSE) systems that are not at fixed locations and operate in in-
termittent, occasional, or one-time basis. To protect such use cases, the FCC and CEPT
adopt different strategies: the former will reserve safe harbor channels where WSD are not
allowed to operate [18], whereas the latter will allow both stationary and temporary sites
to have their locations stored in the database [37]. However, if the number of transmitters
operating simultaneously is too large to be accommodated in the safe harbor channels,
PMSE will likely have to compete with WSD for unused frequencies. This will be the
case of major sport contests or live theatrical productions that fail to registrate in the
database. According to [38], this condition could be avoided by reserving more safe har-
bor channels in each location. The FCC decided not to reserve more spectrum to PMSE
usage but continues to pursue the issues above in a pending proceeding, targeted at more
efficient PMSE operation and improved immunity to interference.

Even in the case that the service to be protected has its operation details correctly and
timely stored in the database, there exist other reservations about the use of GDA. De-
pending on the accuracy of RF propagation modeling, determination of white spaces by
means of GDA may be imperfect. A false alarm occurs when a white space is overlooked,
i.e. a channel that is actually idle is deemed to be occupied by mistake. A missed detec-
tion occurs if a channel actually occupied is misperceived as idle. False alarms and missed
detections must be avoided to increase spectrum utilization and minimize harmful inter-
ference to (and from) licensed services, respectively. Since both errors are intrinsic to the
process of determining white spaces by any practical method, false alarm rate (FAR) and
missed detection rate (MDR) are the metrics typically used to characterize the accuracy
with which WSD are able to identify white spaces.

The accuracies of four well known propagation models used in GDA are quantified in
[39]. The FAR of the free space model, the simplest model analyzed, is higher than 90%.
More complex, the Longley-Rice model considers a large set of parameters in the estima-
tion of field strengths including climactic effects, soil conductivity, permittivity, Earth’s
curvature, and surface refractivity. Still, with FAR higher than 30%, the Longley-Rice
model results in an unacceptably large white spaces loss. A major finding provided in
[39] is that elevation data can greatly improve accuracy, e.g. the Longley-Rice model with
terrain loses only about 8% of the available channels and gives zero MDR. This matches
well the concerns about the complexity of GDA raised in [18] and [24], where the required
efficiency is expected to call for highly sophisticated and computationally expensive signal
propagation models.

In order to get instructed about white space availability, a WSD needs first to determine
its own location and report it to the database. The database then estimates the frequencies
available at that location and reports back to that WSD on which frequencies and with
which power levels it can transmit at the indicated location1. This process gives rise to
two issues discussed in the sequel: location determination and dissemination of location
information.
1 In the U.K., the Ofcom mandates the database to provide additional information, e.g. a notification

about whether complementary sensing should be performed too [25].
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1.3.1.1 Location Determination

The process of determining location of WSD has important implications in any GDA
system because it involves establishing system parameters such as resolution, accuracy,
and reliability. A possible approach to cope with resolution issues is to pick the BS location
instead of the individual locations of its served CPE. In this case, the GDA method will
allow WSD to use only those channels available in the BS’s coverage area. This rather
conservative approach avoids determining location on a too frequent basis (e.g. every time
a new WSD has joined the unlicensed network or has moved in between two database
updates) but results in a median white space loss above 80%. This means that GDA is
largely dependent of the accuracy of the position determination carried out by WSD. In
fact, it is shown in [39] that location errors ranging from 1.6 Km to 4 Km can yield white
space losses from 20% to 80%. So, to be efficient, the GDA method imposes the need of
CPE able to determine individual locations with error not larger than 800 m. However,
as observed by the Ofcom [25] and the ECC [26], the required accuracy depends on the
granularity used for coverage modeling, i.e. the size of the pixel used to represent a given
geographical location. Each pixel is associated with a list of available frequencies and the
pixel size depends on the planning decisions made when populating the database. Too
large pixels prevent WSD from using an area larger than actually necessary to protect
the licensed system, whereas too small pixels imply both larger number of computations
at the database and larger amount of data to be transferred to and stored at WSD.
Hence, depending on the pixel size and WSD location accuracy, the location uncertainty
region may cover several pixels. Such complexity issues can be tackled using the concept
of location uncertainty, whereby lower granularity grid points are assigned the minimum
allowed transmit power within the location uncertainty region [11]. The transmit powers,
to be minimized within this region, come from a higher granularity grid computed by
the database. Since only lower granularity grids are sent to WSD, the approach reduces
communication bandwidth and storage size at the expense of transmit power levels that
decrease as the amount of location uncertainty increases.

The dependency of GDA on the performances of each individual WSD can be illustrated
with an example. Assume that the database relies on a sophisticated propagation model
to estimate the field strengths received in a certain geographical area. Assume further
that this area is represented using a pixel size so small that the allowed transmit powers
can be mapped onto a highly granular grid. In this setting, the excessive burden imposed
on both database and individual WSD leads to efficient white space use only if each WSD
can determine its position with accuracy compatible with the pixel size. Solutions to this
problem are mostly based on over-the-air techniques, some of which have been assessed
in the context of WSD in [40]. Accordingly, enhanced observed time difference (E-OTD)
and methods based on the cell ID of a mobile phone caller need 4 s to 6 s to determine
a location. Beside capable of providing very low latencies, solutions that rely on the cell
ID are network-centric and, as such, impose no impact on the WSD design. As for the
disadvantages, the use of the cell ID can yield location errors as large as the cell area,
e.g. 150 m in a pico-cell or more than 30 Km in a large cell. E-OTD is fast too but,
with errors in the range 40 − 400 m, it is in most cases not accurate enough to meet
the ±50 m requirement mandated by the FCC [18]. A position solution that is accurate
to 5 − 20 m is the global positioning system (GPS). However, the use of GPS for WSD
applications is made difficult due to its acquisition time of at least 30 s (up to 15 min),
high power consumption, and low availability. Other issues arise as GPS cannot detect the
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weak signals that result from small-sized antennas used in portable WSD and/or indoor
use cases where availability of satellite signals is difficult to guarantee. These limitations
can be overcome by using stronger signals from other networks to assist the GPS receiver
[41]. In such assisted GPS (A-GPS), signals from mobile phone networks are used to allow
accurate localization even in dense, urban, and indoor scenarios where plain GPS signals
are attenuated by 20 dB. In another approach, known as TV-GPS [42], TV signals are
used as an alternative to cellular signals. The higher transmit power, better penetration,
frequency diversity, and larger bandwidth of TV signals allows TV-GPS to provide power
margins up to 50 dB over plain GPS. Nevertheless, both A-GPS and TV-GPS introduce
extra costs to WSD design and are useful only if the required signals are available in the
area where the WSD of interest finds itself in.

1.3.1.2 Location Dissemination

It is evident from the discussion above that the performance of GDA is limited by the
ability of each individual WSD in determining its position. Even in the case that WSD
are accurate enough (relative to the pixel size), another performance limiting factor of
GDA relates to how actual is the information exchanged between the databased and
WSD. White space information made available via GDA to WSD suffers from two types
of delays. The first delay type is introduced by the estimation of available frequencies,
which may not reflect the current spectrum availability. Such delays are intrinsic to any
GDA approach because the signal propagation models used in the estimation process
do not measure the actual field strengths. The second delay type results from the time
interval required by each WSD to get instructed about eventual changes in the sets of
available frequencies and power levels allowed at its location. This may occur in a number
of situations, e.g. a WSD has been activated from power-off condition, the database has
been updated, or a WSD has moved from its last position reported to the database.

The frequency of database checks and re-checks raises concerns on database burden too,
particularly in case of portable WSD. The challenge here is to find an update frequency
that can balance between the different needs of licenced services and WSD. The FCC
mandates WSD to poll the database (for updates) at least on a daily basis and everytime
operation position changes by more than 100 m [18]. A second requirement implies adding
a mobility margin to the keep-out region. This latter approach contributes to increased
white space losses because it prohibits a WSD from using channels available at its current
position but blocked off within the extended keep-out region required to handle mobility.
This condition can be illustrated with an example, where a portable WSD is moving at,
say, 100 km/h. If this WSD accurately determines its location and re-checks the database
each and every minute, the required additional margin of 1.6 Km will result in a medium
white space loss of 20% [39]. To prevent such loss, the Ofcom follows a different approach
and requires the database to append an area of validity and a time-validity stamp to the
information provided to WSD [25]. Following this additional information, a WSD must
cease transmissions either if the time validity expires or if that WSD moves outside the
area of validity.

White space losses introduced by the aforementioned mobility margins can be mitigated by
programming WSD to poll the database at higher frequencies. Since this implies additional
burden both to database and WSD, an alternative approach is to let the database push
updates to WSD. Whether in poll- or push-based architectures, WSD need to provide
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information to the database before having received any information from the database.
Hence, a WSD that relies solely on GDA has no other means to determine spectrum
availability prior to report its location to the database. Such “uninformed” transmissions
have potential to generate harmful interference to licensed systems, so WSD should be
prohibited to transmit in this case. In turn, without WSD location (or at least a location
uncertainty region), GDA cannot feed the propagation model and the task of estimating
available frequencies becomes impossible. Considering that a common channel, e.g. some
sort of CPC, may not be available across the entire coverage area of the BS, beacon signals
can be advanced to avoid the bootstrapping problem above [39]. However, in addition to
the drawbacks of the beacon method discussed earlier in this section, this approach makes
use of the BS position and thus may lead to inneficient usage of white spaces.

1.3.2 The Sensing Method

Spectrum sensing denotes the process whereby WSD detect and/or classify RF signals
transmitted in a given channel or frequency band. The bottom line in the sensing process
is that the sensing receivers used in WSD, hereafter referred to simply as WSD, pick
up intended and unintended signals [1]. As unintended signals can drown out and mask
intended signals, approaches based on sensing must ensure that WSD can properly distin-
guish the signals transmitted by licensed systems from those due to the noise ground and
interference generated by other systems operating nearby. As we will see later in Chapter
2, such decision-making is accomplished via statistical hypothesis testing that basically
consists of using a test criterion to compare a test statistic to a detection threshold.
The test statistic depends on the signal processing technique used to sample the channel,
whereas the detection threshold determines a WSD sensitivity, i.e. the weakest signal that
WSD is able to detect. The test criteria applied to spectrum sensing are typically binary,
composite, or sequential [12]. Since each test criterion relies on different assumptions, it
is possible to optimize different aspects of the decision-making process, e.g. maximize
detection rate for a given constant FAR (CFAR), minimize prior knowledge of unknown
signal parameters, minimize number of samples required for detection, etc.

In constrast to GDA, spectrum sensing allows a WSD to determine white spaces by mea-
suring the actual field strength within its sensitivity region. Though capable of operating
without any reliance on propagation models, sensing-based WSD largely depend on the
signal processing technique used to collect the channel samples. The choice of the sig-
nal processing technique constitutes a crucial step in the design of sensing approaches
because it not only determines the test statistic but dictates the amount of prior infor-
mation required for detection, e.g. knowledge about the structure of the signals to be
detected, number of samples needed to produce a certain desired accuracy, computational
complexity, etc. Depending on the signal processing technique used, spectrum sensing also
can provide for signal classification ability, robustness against different RF impairments,
among other advanced features useful for WSD applications.

Signal processing techniques for spectrum sensing can be grouped as follows. Blind tech-
niques do not need to know anything about the signals to be detected. This minimum
amount of prior information required for detection allows for flexibility in the sense that
the same detector can be used to scan the spectrum for virtually any signal type. Blind
techniques carry out detection irrespective to the signal type, so they are particularly
suitable for operation scenarios where WSD operate collocated with multiple licensed
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systems based on different standards. This, of course, as long as the desired performance
levels can be met. Semi-blind techniques differ from their blind counterparts in the sense
that they need to known the noise power in order to work. However, it is generally hard
to distinguish between two different signals using techniques that are blind or semi-blind.
In this case, it is advisable to use signal specific techniques that rely on the underlying
features inherent to the structure of a certain signal type. Techniques that exploit specific
features may fail entirely for a signal type other than the intended one. Even for the in-
tended signal type, the performance obtained by using signal specific techniques may vary
significantly depending on the parameterization of the signal feature used for detection.
This is particularly true for licensed systems that dynamically select one among multiple
transmission modes, each assigning different values to the feature (in order to fit different
operation conditions) exploited in the detection process.

For a fixed operation bandwidth, it is straightforward that the agility of a signal processing
technique also can be assessed in terms of the number of samples required for detection.
Techniques that require less samples are thus faster than those that need more samples
to give the same accuracy. Such techniques, which offer low sensing time requirements,
are referred to as fast techniques. Blind and semi-blind techniques are usually classified
as fast because they typically work based on a reduced number of samples, e.g. collected
over a sensing time that corresponds to a single received symbol. Specific features may
be spread through several symbols, so signal specific techniques are frequently referred to
as fine techniques. In view of the fact that different signal processing techniques usually
require different amounts of information to work, alternative criteria to compare different
sensing techniques might be based on (i) the minimum amount of information that should
be available a priori or (ii) arbitrarily setting the sensing time so as to guarantee that the
number of samples collected is large enough.

In the sequel, we overview the state of art in spectrum sensing with respect to a number
of aspects including its categogies, the assumptions usually made and their corresponding
implications, the performance limiting factors, and the issues arising in practical imple-
mentation. Similarly to what we have done for GDA, our goal here is to provide subsidies
to the comparison that we will carry out later on in Section 1.4.

1.3.2.1 Single-band Spectrum Sensing

Sensing the spectrum for licensed signals is not always a hard task but it may become
challenging depending on some technical limitations and regulatory assumptions that can
be made during the rule making of WSD operation. In what follows, we will see that these
limitations include the number of dimensions used to represent white spaces, the type of
licensed device to be detected (receiver or transmitter), the bandwidth of the operation
environment (narrowband or wideband), and the degree of standardization of licensed
signals, to name some.

To begin with, we observe that the amount of underutilized spectrum that can be identi-
fied via sensing is largely affected by the signal dimensions used to represent white spaces.
Assuming a bidimensional signal space, we define a temporal white space as a channel that
is perceived as idle after a WSD has observed the channel for sufficient time, i.e. the signal
processing technique has collected enough channel samples. Following this definition, tem-
poral white spaces can be exploited regardless of WSD location. As shown in Figure 1.2,
this extremely simplifies the sensing task because WSD can operate inside the coverage
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Fig. 1.2: As temporal white spaces are defined over a bidimensional signal space (time
and frequency), the sensing task can be simplified by reducing the sensitivity
requirement imposed on WSD to that of ordinary licensed receivers.

area2 of the licensed system. The licensed signals captured by WSD are strong enough
in this case, so temporal white spaces can be determined with sensitivity similar to that
of ordinary licensed receivers and without placing any unnecessary computational burden
on WSD [43]. Nevertheless, the notion of temporal white space fails to reflect the case of
a channel occupied in a certain area but idle outside that area.

Defined over a three-dimensional signal space, spatial white spaces can be exploited to
increase spectrum utilization, particularly when WSD operate outside the coverage area
of the licensed system. Because of the inherent uncertainty about the location of licensed
receivers, caused by their “passive” nature, it is commonly assumed that licensed receivers
are much harder to detect than licensed transmitters [7]. Under this assumption, there
is room for a condition to occur whereby WSD accurately detect the activity of a given
licensed transmitter but generate interference to licensed receivers which operate on the
coverage edge of that detected licensed transmitter. This worst-case condition, referred to
as the hidden terminal problem, is examined in Figure 1.3. Required to avoid interference
at licensed receivers, the protection margin dS increases with the transmit power of WSD
and decreases with the power margin factor of the licensed system. The power margin
factor gives minimum conditions for a licensed receiver to successfully receive licensed
signals under different RF impairments including path loss, shadowing, and multipath
fading [43]. Though able to alleviate the hidden terminal problem, the protection margin
dS implies the need of a detection threshold low enough to maintain a larger sensitivity
region with radius dP + dS. As with any method aimed at determining white spaces,
prohibiting access to underutilized spectral regions that are larger than actually needed
leads to increased white space losses.

2 We think it is more suitable not to use the terms protected contour and coverage area interchangeably
because (i) the corresponding radius of these areas need not necessarily be equal and (ii) the former is
defined in the context of GDA, whereas the latter is typically used in spectrum sensing.
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Fig. 1.3: Defined over a three-dimensional signal space (time, frequency, and space),
spatial white spaces reveal more underutilized spectrum but bring about new
challenges. For instance, by adding the margin dS we can tackle the hidden
terminal problem at the expense of increased sensitivity requirements.

Macroscopic white space is the term used to denote underutilized spectrum that implies
the absence of active licensed transmitters in a large sensitivity region. Exploitation of
macroscopic white spaces is characterized by a binary power mask that allows WSD to
transmit with maximum power in the absence of licensed transmissions or not to trans-
mit at all otherwise. In [44], a power/rate control and channel assignment optimization
problem is formulated to exploit microscopic white spaces even when licensed and WSD
systems are close to each other. The proposed algorithms rely on multi-level power masks
that are set according to spatial variations in white space availability. Thereby, sensitivity
regions can be made as small as the coverage area of the licensed transmitter. This elim-
inates potential white space losses caused by the introduction of the protection margins
required to alleviate the hidden terminal problem.

As an alternative to eliminate protection margins, WSD can “look” at the reverse RF
leakage emitted by heterodyne-type receivers. Present in both analog and digital receivers,
RF leakages are due to local oscillator (LO) power that inevitably couples back through
the input port and radiates out of the receiver antenna [45]. The received LO leakage is an
unmodulated frequency tone, so it can be detected by using narrowband techniques. Apart
from these benefits, one practical issue raised by receiver detection is the error introduced
by the variability of the LO leakage power level, e.g. −30 dBm to −90 dBm for analog
receivers [45] and −72 dBm to −90 dBm for digital receivers [46]. In either case, these high
variable power levels make it difficult for practical WSD to detect LO leakages. Also, the
approaches in [45] and [46] have limited applicability (short-range communications only)
and need prior knowledge of the receiver’s intermediate frequency (IF). Specifically, the
approach in [46] is based on a sophisticated signal processing technique that is onerous
to WSD implementation.

Sensing algorithms are tailored to detect the presence of licensed signals over a pre-
determined signal space. Though the utilization of other signal dimensions, such as the
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code dimension, may not be straightforward, multi-dimensional awareness has potential to
allow more efficient spectrum utilization [47]. This, however, may come at the expense of
larger sensitivity regions that require more sophisticated signal processing and additional
computational complexity.

1.3.2.2 Multi-band, Multi-resolution, and Wideband Spectrum Sensing

One may believe at this point that all the “pains” of the sensing process are caused by the
number of dimensions over which white spaces are defined, and by the need to transform
the problem of detecting licensed receivers in that of detecting licensed transmitters [7].
In fact, this is not the case as the hidden terminal problem can be caused by other factors
that include severe multipath fading and shadowing [47]. To protect potential hidden
terminals, regulators mandate stringent protection margins that typically translate into
sensitivities below the noise floor [18][23][26]. Along with such physical limitations and
regulatory requirements, the opportunistic nature of DSA networks may require sensing-
based WSD to scan several GHz of spectrum to find white spaces.

The simplest way to tackle the latter problem is to break wide operation bandwidths into
multiple non-overlapping subbands. Known as multi-band spectrum sensing (MBSS), this
method allows WSD to sense the resulting subbands using more simple narrowband signal
processing techniques. Subbands are sensed one at a time, so some degradation in agility is
expected when determing white spaces via MBSS. To minimize the detection delay, which
is a performance-critical factor in DSA, it is preferable to sense multiple bands in parallel
[48]. At the RF front-end, MBSS can rely on either tunable narrowband bandpass filters
(BPF) or digital windowing techniques, e.g. based on the fast Fourier transform (FFT).
Analog solutions lack on flexibility because they require bulky filter banks [52], whereas
digital solutions imply extremely high rates that are difficult to implement in practice. The
Nyquist sampling theorem can be satisfied by high-resolution high-speed analog-to-digital
converters (ADC), but the cost and power consumption burdens on a hardware design
having such requirements are likely prohibitive for most WSD applications [53]. As another
drawback, the finite length of the FFT window may cause digital domain filtering to suffer
from energy leakages that lead to degraded FAR [54]. Whether implemented in analog
or digital domain, MBSS usually assumes independent and identically distributed (i.i.d.)
noise samples that require ideal filter design [49]. This is difficult to achieve in practice,
so the required robustness against narrowband noise is usually provided at the expense of
additional filters. See, e.g. [50] and [51] for applications of interference alleviating filters
and prewhitening filters in the context of WSD.

Recent advances in information theory demonstrate that signal sparsity allows the exact
recovery of signals sampled at sub-Nyquist rates [55][56]. Such compressive sensing sets
a fixed sampling rate according to the maximum sparsity order of the underutilized spec-
trum. As this information is subject to temporal and spatial variations, better reduction
of acquisition costs can be achieved with techniques that estimate the actual sparsity
order and are thus able to adaptively minimize the sampling rates used [57]. Algorithms
based on matrix completion and joint sparsity recovery seem also capable of providing
effective solutions [58]. However, concerning the practical implementation of compressive
sensing, efforts are still underway to catch up experimentation with theory. An example
of what is being done in this sense can be found in [59], which presents a new compressive
sensor that does not require a high-speed clock anywhere in the sensing path.
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Multi-resolution spectrum sensing (MRSS) is similar to compressive sensing in the sense
that it can be implemented using low-power hardware. MRSS is a digitally-assisted analog
technique that needs no analog filter in the RF signal path [60]. In MRSS, the received sig-
nals are correlated with a window signal generated in the digital domain and subsequently
sampled using a low-bandwidth ADC. This allows to flexibility in bandwidth adjustment
(not available in purelly analog approaches) and relaxed requirements on power consump-
tion (not available in purelly digital approaches). As for the shortcomings of MRSS, all of
which are common to MBSS, joint decisions over multiple frequency bands are not con-
sidered and the frequency allocation plan of the licensed system is required for detection.
The first disadvantage is specially critical when the available white spaces are spread over
several non-contiguous bands. Joint decisions on the spectrum availability made across
these bands could maximize the aggregate opportunistic throughput [52][61]. The second
disadvantage relates to the need of using other means to obtain additional information
about the operation center frequencies and bandwidths (in some cases not available in
practice) prior to the application of MBSS or MRSS.

In fact, MBSS and MRSS are special cases of a more abrangent concept denoted wideband
spectrum sensing (WSS). In contrast to single-band, multi-band, and multi-resolution
methods, whose performance can be characterized in terms of FAR and MDR only, WSS
approaches depend on other types of errors. These errors may include the notions of sub-
carrier occupancy error rate, band occupancy error, and wideband spectral error discussed
in [62]. Notwithstanding its channel bonding ability, i.e. to transmit over non-contiguous
white spaces, WSS still needs substantial research to become practical. For a survey on
WSS and its open research issues, see, e.g. [49] and the references therein.

1.3.2.3 Cooperative Spectrum Sensing

So far in this section, we have discussed spectrum sensing from the perspective of an
individual WSD. Thereby, white spaces are determined locally in a standalone fashion.
Type and color of the noise process, shadowing, fading, location of the licensed system, and
limited detection capability constitute some sources of uncertainty that make it difficult
for a single WSD to detect weak licensed signals attenuated by bad channel conditions.
A well investigated remedy to this fundamental problem is diversity. If copies of a signal
are conveyed (or received) over multiple physical channels, the risk that all channels
simultaneously experience shadowing or fading can be dramatically reduced [63]. The
higher the number of channels the more probable will be the accurate detection of at least
one of the copies. Reception at different locations makes independently faded copies of
the signal available at WSD, thus generating a kind of spatial diversity. Whether obtained
on the transmitter or receiver side, diversity usually requires devices equipped with more
than one antenna. Multi-antenna techniques are power-hungry, costly, and complex, so
that they are more advantageous for some applications than for others. In particular, the
distance among antennas required to guarantee channel independence may make the use
of multiple antennas impractical for mobile devices, e.g. in case of portable WSD that are
limited by size and/or hardware complexity.

Techniques that “mimic” antenna arrays can be employed to obtain diversity under the
above restrictions. One such technique is cooperative spectrum sensing (CSS), whereby
multiple spatially distributed WSD share their individual antennas to form a virtual multi-
antenna array. The increase in reliability obtained by instructing multiple WSD, referred
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to as nodes in the context of CSS, to scan the same channel can significantly mitigate the
hidden terminal problem [64]. When directed to scan different channels, multiple nodes
can alternatively “team up” to reduce detection delays or to scan wideband operation
enviroments without the need of WSS [52]. In either case, CSS has been regarded in the
literature as a promising approach to maintain a high global performance with relaxed
requirements on individual nodes. Most of the issues arising in local spectrum sensing
can be thus resolved through cooperation. However, to obtain a more accurate picture
of the current spectrum occupancy, CSS needs to exchange and posteriorly combine the
sensing information acquired locally by each WSD engaged in cooperation. While the
processes of information acquisition, information exchange, and information fusion are
essential to any CSS scheme, each of them is composed of elements for which different
design options can be selected. A pictorial description of CSS is provided in Figure 1.4,
where each information process is represented as a “folder” containing several “boxes”.
Each box accounts to an element for which design options, shown in the figure as floating
text, can be selected to address different system needs. The boxes inside the information
acquisition folder have already been described earlier in this section. Hence, in what follows
our emphasis is put on the processes of information exchange and information fusion.

In the information exchange process, the cooperation scheme dictates how node interaction
takes place [12][43]. As this has implications in agility, power consumption, and robustness,
the scheme used exerts preponderant influence in the performance achievable in CSS.
Centralized architectures are managed by some kind of master node, which is usually
the only entity able to make decisions. When implementing centralized CSS in centralized
networks, it is natural to let the BS act as master node. In this case, besides typical control
tasks, the BS sends enabling signals to instruct its served CPE about which channel to
sense, when to sense, and for how long to sense. Distributed architectures are characterized
by the lack of a central entity. All nodes communicate among themselves and decisions are
made on a local basis. As long as some consensus can be ensured by using algorithms that
avoid selfish node behavior, it seems natural to implement distributed CSS in distributed
networks. Alternatively, at the expense of increased node complexity, centralized CSS
lends itself also to distributed networks. In this case, any ordinary node playing the role
of the master node can coordinate the tasks of sensing and information fusion.
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Fig. 1.4: A pictorial description of CSS. “Folders” depict information processes common
to any CSS scheme. “Boxes” correspond to elements for which design options,
shown as floating text, can be selected to address different system needs.
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Both centralized and distributed architectures require a bidirectional control channel. The
master node broadcasts control signals in the downlink whereas ordinary nodes send local
information back to the master in the uplink. On the one hand, we have seen in Section 1.2
that approaches requiring licensed (or at least harmonized) spectrum for signalling and
control tasks are typically less supported by regulators. On the other hand, establishing a
point-to-point link between each ordinary node and the master node becomes challenging
on an unlicensed basis [12]. In this context, dedicated solutions are not applicable because
control channels have to be dynamically allocated according to the white space availability.
Also, like any wireless channel, control channels over white spaces will also be susceptible
to RF impairments. Hence, the gains achieved via CSS will be limited in practice by errors
that occur when local information is exchanged over imperfect control channels [65].

Originally proposed to increase transmission rates, maximize spatial reusability, and en-
large coverage range in various types of networks (see [66] and references therein), relay
nodes are used in CSS to increase the reliability of the information exchange process. The
bottom line in relaying is to let those nodes assigned a bad control channel forward their
local information to their neighbors. Among the neighbors, the node with the best path
towards the master node serves as relay node. Increased accuracy can be obtained by
pairing the nodes such that the “stronger” node in each pair acts as relay for the “weaker”
one. In case of amplify-and-forward relaying, CSS is known to reduce detection delays but
this agility gain largely depends on the power level received at the relay nodes, and on
the power they use to retransmit the received signals [67]. As another advantage, spatial
white spaces can be exploited also in the direction dimension by forming a distributed
zero-forcing beamformer of relay nodes. If combined with rateless coding, such cooperative
beamforming can efficiently exploit discontinuous white spaces while keeping complexity
at acceptably low levels [68]. Reliable exchange of information can also be achieved in CSS
by grouping cooperating nodes in clusters. A node selected to act as cluster head (CH) can
play the role of relay node or accumulate functions of both relay node and master node.
In relay mode, cluster-based CSS can reduce errors introduced by the report of local infor-
mation over faded control channels [69]. As in relay-assisted CSS, the premise for this to
work is that CH have control channel gains larger than the ordinary nodes in the cluster.
A CH operating in master mode is responsible for combining local information collected
in its cluster and for forwarding these findings to other CH, so network-wide decisions on
white space availability can be made. In general, regardless of how the control channel is
implemented, practical channels used to this end typically have limited bandwidth. This
constitutes a problem in the implementation of CSS, particularly when the number of
nodes is large.

While being an optional element in the information exchange process, node selection can
address the above issues by censoring unreliable nodes. A simple censoring approach for
narrowband CSS schemes that rely on binary hypothesis testing and hard combining
consists of using two detection thresholds. Reliable nodes, allowed to report their local
information to the master node, are those nodes whose test statistics lie below the smallest
threshold and above the largest threshold. If the test statistic lies in the region between
the two thresholds, the node is classified as unreliable and prohibited to report its findings
to the master node. This approach decreases the average number of bits sent to the master
node, over both perfect and imperfect reporting channels, with little performance loss in
comparison to the case where any censoring scheme is employed [70]. One aspect to keep
in mind is that the optimization of individual thresholds (not necessarily equal) is a hard
task [71] that becomes harder when multiple thresholds need to be set for each single
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node. Provided that the nodes are well synchronized, censoring can also be performed by
allowing a node to gain (or lose) confidence whenever its decision matches (or not) the
global consensus and prohibiting low-confidence nodes to report [72]. Another alternative,
suitable for performance critical applications where concerns about the bandwidth of the
control channel may be milder, is to distinguish reliable nodes from unreliable nodes
by assigning different weights to the summary statistics. If the weight coefficients are
selected so as to represent the impact of each individual contribution to the global decision,
the aggregate opportunistic throughput of the unlicensed network can be maximized.
Optimum weight assignments can be obtained along the lines used in [52], where a linear
combination of summary statistics is proposed for narrowband CSS and then extended to
more sophisticated MBSS and WSS cases.

It is evident from the discussion above that CSS can achieve different levels of performance
depending on the format (data or decision), precision (infinite or finite), and size (raw sens-
ing data, multi-bit decisions, or one-bit decisions) of the local information available at the
master node. In soft combining, each node reports with infinite precision by sending either
its entire set of collected samples or a summary of test statistics. Though larger amounts
of sensing information allow to achieve a certain detection performance using less nodes
[73], this imposes large sensing overheads to the information exchange process. Therefore,
practical implementation of CSS requires a balance between amount of information ex-
changed and number of nodes. The motivation for quantized soft combining, where raw
sensing data is represented with less precision, is that simple messages are better suitable
for energy-constrained systems. Despite of the additional noise introduced by quantiza-
tion, two or three bits can be employed in most cases without noticeable performance loss.
Though this makes it easier to convey local information over practical bandwidth-limited
report channels, the performance of quantized soft combining still requires tight synchro-
nization among nodes. If frequency offsets cannot be avoided, sensing overheads can be
cut down by using one-bit decisions. As this minimum bandwidth requirement is achieved
at the expense of virtually any performance degradation [64], hard combining becomes an
interesting solution under bandwidth and synchronization constraints. In contrast to the
complex algorithms required in soft combining, hard combining is simple to implement
using sub-optimum fusion rules. One well known example of such rules is the k-out-of-N
rule, which has AND logic (k = 1), majority logic (k ≥ N/2), and OR logic (k = N) as
special cases.

Other performance limiting factors of CSS relate to the operation environment where all
information processes in Figure 1.4 take place. For CSS to obtain diversity, the nodes must
be spread throughout a cooperation footprint [64]. Otherwise, correlated shadowing will
hinder the contributions of nodes placed physically close to one another from improving
the global performance achievable through cooperation [74]. The master node could drop
those contributions found to be correlated before fusion but this is not efficient in the
sense that energy would have already been wasted to report “useless” information. Node
mobility constitutes another big issue because it makes the required node density more
difficult to maintain. For instance, allowing the nodes to move in a cluster-based setting
may cause the node density to vary over time inside each cluster. In this case, each CH
has to be concerned about minimizing the probability of assigning sensing tasks to nodes
that are not currently associated with its cluster [75]. In fact, ensuring detection within
a certain cooperation footprint depends not only on the number of nodes but also on
their sensitivity and position. These are well-known issues in wireless sensor networks
(WSN), where the nodes have small batteries of finite energy and follow some wake-up
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cycle to extend the network lifetime. If wake-up cycles are scheduled so as to minimize the
areas covered by multiple active nodes, the number of nodes required by a deterministic
node placement is one order of magnitude lower than by scattering them randomly [76].
While this gain is a decreasing function of the fraction of time during which the nodes are
powered on, the distribution of active and sleeping times does not affect detection delays
significantly. In fixed WSN, the node density required to assist a set of “passive” WSD, i.e.
neither sensing capable nor allowed to engage in CSS, is known to be reasonable [77]. Also,
at the expense of additional control signalling and tighter synchronization requirements,
some room for improvement can be envisioned by allowing sensing-capable WSD within
the coverage range of the WSN to contribute their local findings.

1.4 Comparing Coexistence Methods

In this two-part section, we establish a high-level comparison between GDA and spectrum
sensing. The first part of the section capitalizes on the previous section to compare GDA
and spectrum sensing from a purely technical perspective, whereas the second one intro-
duces non-technical concerns that are important to allow white space use in developing
countries too. Ensuring universal access to white spaces constitutes a task of utmost im-
portance to optimize usage of RF spectrum, particularly in the developing world where
WSD and applications based thereon can hopefully leverage the ITU’s broadband strate-
gies aimed at speeding up ICT progress.

1.4.1 Technical Aspects

GDA and spectrum sensing rely on different principles to determine white spaces. Each
principle has its advantages but also drawbacks that give rise to different implementa-
tion issues. Hence, even when we look at one of these methods in isolation, the perfor-
mance achievable by a certain implementation can largely vary depending on a number
of performance limiting factors. For the discussion that follows, we provide in Table 1.1 a
“quick-reference” guide that summarizes the major issues and performance limiting factors
discussed in Section 1.3.

As seen in Table 1.1, the resulting performance achieved by using either method depends
on a series of parameters and settings that are implementation dependent. This makes it
difficult to draw conclusions without making assumptions on the underlying specifications
related to how each method is implemented. One possible way to establish a high-level
comparison, perhaps the only one available in the literature at the time of this writing,
is to represent the sensitivity requirements adopted in spectrum sensing in terms of the
keep-out regions used in GDA [11]. In this fashion, both methods can be analyzed on
the basis of field strengths as illustrated in Table 1.2 [78]. On the one hand, considering
that GDA and spectrum sensing require keep-out regions 12% and 74% larger than the
protected contour, respectively, it seems natural to argue that this discrepancy reflects
the extent to which the former is more efficient than the latter [11]. On the other hand,
the received power level may fall down far below the mandatory sensitivity level before
the pictures observed at a TV receiver start to degrade [23]. Thus, TV receivers operating
well beyond the protected contour can be protected by spectrum sensing but not by GDA.
The FCC seems to misinterpret this fact in [22], where it classifies any detection outside
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Table 1.1: Performance limiting factors of GDA and spectrum sensing.

Method Issue Limited/dictated by Ref.

GDA

Information acquisition
• Signal propagation model [6][39]
• Location dimension [39]

Location determination
• Resolution (pixel size) [6][25][26]
• Location accuracy [40][41][42]
• Location reliability [11]

Location dissemination
• Update frequency [18]
• Mobility margins [25][39]
• Bootstrapping [39]

S
p
ec

tr
u
m

S
en

si
n
g

Narrowband Information acquisition
• Signal space dimension [43][44][47]
• Signal processing technique [12][43]
• Hypothesis testing [12]

Wideband

Subband division
• BPF design [48][49]
• Windowing technique [54]
• Prewhitening filter [50][51]

Power consumption • ADC resolution [53]
Sampling rates • Sparsity order estimation [57][58][59]

Cooperative

Operation environment
• Cooperation footprint [12][64]
• Node spread (diversity) [64][76]
• Node density (mobility) [75][77]

Information exchange
• Cooperation scheme [43][67][69]
• Control channel [65]
• Node selection [70][72]

Information fusion

• Decision format
[12][73]• Decision precision

• Decision size
[12][64]• Fusion rule

the protected contour as a false alarm. As observed in [78], some of these detections may
have been true detections as long as the prototype testing was conducted outside the
protected contour but inside the keep-out region.

Though capable of providing a rough picture of how efficiently GDA and spectrum sensing
can protect licensed services, the above approach entirely fails to capture the performance
dependencies shown in Table 1.1. The methodology used to set the field strengths, taken
as basis in the comparison, raises fairness concerns too. The field strengths of GDA are
predicted using the statistical ITU model [79], whereas those reflecting the sensitivity of
spectrum sensing are computed in terms of mandatory protection requirements. Recently,
a comparison between the Longley-Rice model with terrain and the ITU model has re-
vealed that the former leads to larger local variability than the latter but the amount of
white spaces detected is in average similar for both models [6]. This means that both [11]
and [78] consider a GDA approach relying on one of the most efficient propagation models
available. In contrast, they evaluate spectrum sensing based on the mandatory sensitivity
rather than on its actual capabilities.

Other evidences that there has always been some inclination in favouring GDA can be
found in the literature, e.g. the issues raised by the processes of determining location and
of disseminating such information are usually ignored. In contrast, spectrum sensing is
analyzed from a perspective that highlights all those issues that a standalone WSD might
experience. As seen in Section 1.3, such local issues can be solved (or at least largely



Chapter 1. Introduction 24

Table 1.2: Exemplary keep-out regions of GDA and spectrum sensing [78].

Type
Minimum field Distance
strength (dBu) (Km)

Protected contour 41 125
GDA keep-out region 36 131
Sensing keep-out region 19 218

alleviated) by enforcing node cooperation. An attempt to address this gap for the case of
distributed CSS is provided in [80]. The message left is that even high-level conclusions
are hard to draw without picking a specific implementation of each method.

At the time we started working on coexistence methods for WSD applications, a question
that arose was whether we should go with GDA or spectrum sensing in this dissertation.
The trivial answer to this fundamental question could be “pick the method that can best
determine white spaces”. However, as seen above, the notion of best is implementation
dependent in this case, so none of the contributions available in the literature could provide
us with a clear path to follow. To overcome this limitation, we recall that the amount of
available white spaces is likely as dependent of the cardinality of the signal space as on
the method used to determine white spaces. So, if high-level comparisons are unavoidable,
it seems more appropriate to compare GDA and spectrum sensing on the basis of the
same number of signal space dimensions. In Table 1.3, we classify a GDA approach as
“typical” or “advanced” according to its ability to process additional location information,
e.g. terrain information. Spectrum sensing approaches are classified according to their
capabilities of achieving reliable detection over a given signal space. “Local” sensing can
exploit temporal white spaces only, while “cooperative” approaches additionally exploit
spatial and microscopic white spaces. Approaches that rely on cooperative beamforming
to exploit directional white spaces are denoted as “advanced” sensing. Using Table 1.3 it
is possible to perform high-level comparisons where GDA and spectrum sensing are more
likely to stand on equal footing. Low-level assessment is of course more laborious but it
has the advantage of taking into account the actual capabilities of each method. In either
case, the most important aspect here is that there is not any fair baseline based on which
GDA and local sensing can be compared.

In general, any method aimed at efficiently determining white spaces will have its advan-
tages but will also bring about practical implementation challenges. This is due to the
fact that coexistence in DSA networks encompasses non trivial tasks that need to be im-
plemented to simultaneously commit to antagonistic goals. Of utmost importance among
these goals are the maximization of the overall system performance (accuracy, agility, reli-

Table 1.3: White space detection capabilities of GDA and spectrum sensing.

Signal GDA Spectrum Sensing
Space Typical Advanced Local Cooperative Advanced

2D • • • • •
3D • • • •
4D • •
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ability, and robustness) and the minimization of system costs (computational complexity,
bandwidth requirements, and power consumption). CSS solves some local detection prob-
lems but the processes of information exchange and information fusion introduced thereby
impose additional requirements. Nevertheless, most issues arising in CSS can be tackled
at the network level thus reducing cost, power, and computational burdens imposed to
individual WSD. In contrast, the treatment of two out of three systemic issues associated
to the implementation of GDA is limited by the way individual WSD are designed.

1.4.2 Non-technical Aspects

It turns out from Section 1.2 that the regulatory efforts to promote DSA are being led
virtually by developed countries only. To minimize unnecessary work, the FCC and CEPT
have been collaborating, an effort that has its value as it allows to some harmonization be-
tween the solutions adopted in the U.S. and Europe. In this process, one aspect that seems
to have been overlooked is whether such solutions fit developing markets too. Precarious
infrastructure, low household income, and low education are typical issues of developing
markets that impose additional requirements on the adoption of new technologies. At a
first glance, the goals of spectrum management should be broadly the same in both de-
veloped and developing countries − regardless of the existence of differentiating factors
between these environments [81].

1.4.2.1 The Digital Divide

Before ellaborating on the statement made in [81], let us look at some recent trends that
are shaping ICT market developments. We begin examining the latest values of the ICT
development index (IDI). IDI accounts to a composite indicator used by the ITU to track
ICT progress with respect to readiness (level of networked infrastructure and access),
intensity (level of use), and impact (resulting from efficient use) [82][83]. The current in-
dicators embedded in the IDI are fixed telephony, mobile telephony, international Internet
bandwidth, households with computers, and households with Internet (for readiness); In-
ternet users, fixed broadband, and mobile broadband (for intensity); adult literacy and
gross secondary and tertiary enrolment (for impact).

Notwithstanding the overall improvement in the IDI observed in the recent years, Table
1.4 reveals disparities in both intra- and inter-regional levels. In the intra-regional level,
we represent such disparities as gaps resulting from the deduction of the lowest IDI from
the highest one. The increasing gaps, exhibited from 2002 to 2010 in Africa, Asia & Pa-
cific, and Commonwealth of Independent States (CIS), suggest that high ranked countries
are improving more than low ranked countries in these regions. This is a global tendency
until the Arab States, Europe, and the Americas showed gap decreases of 0.05, 0.12, and
0.41, respectively, from 2008 to 2010. In the inter-regional level, Europe is the benchmark
because it is the world’s leading region in ICT infrastructure and services uptake. Consid-
ering the best ranked country in each region, we see that Asia & Pacific, the Arab States,
and CIS improved 0.32, 0.60, and 0.43 more than Europe, while Africa and the Americas
improved 0.81 and 0.33 less than Europe. With gaps as large as 0.35 in the Americas and
1.30 in Africa, all regions improved less than Europe in terms of the worst ranked country
in each region. Digital divide is the term used to denote these gaps [84].
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Table 1.4: Evolution of the IDI by Region (adapted from [82] and [83]).

IDI A B C D E F

2002
max 2.57 5.84 3.36 2.71 5.99 5.18
min 0.52 0.99 1.07 1.77 2.00 1.05
gap 2.05 4.85 2.29 0.94 3.99 4.13

2007
max 3.44 7.23 5.20 4.13 7.27 6.33
min 0.73 1.06 1.41 2.11 2.74 1.29
gap 2.71 6.18 3.80 2.02 4.54 5.04

2008
max 3.64 7.68 6.11 4.54 7.85 6.54
min 0.79 1.08 1.46 2.25 3.12 1.35
gap 2.85 6.60 4.66 2.29 4.73 5.19

2010
max 4.00 8.40 6.19 5.38 8.23 7.09
min 0.83 1.38 1.58 2.50 3.61 2.31
gap 3.16 7.02 4.61 2.88 4.61 4.78

A: Africa, B: Asia & Pacific, C: Arab States,
D: CIS, E: Europe, F: The Americas.

Whether between developed and developing countries or within a single region or country,
digital divides are typically characterized in terms of aspects such as penetration rates,
mobile cellular subscritions, Internet users, and personal computers. Table 1.5 illustrates
the digital divide observed in 2010 in terms of service penetration per 100 Inhabitants.
Taken in isolation, any of these indicators fails to reflect the big picture of the digital
divide. This explains why the IDI has been advanced as a more powerful tool. Revisiting
Table 1.4 from this perspective suggests that the digital divide between developed and
developing countries is increasing on a global basis and, in some cases, on a regional basis
too. The ITU adds that the cost of ICT services constitutes a main barrier to their uptake
because it influences or even determines their use. Between 2008 and 2009, an average
price fall of 42% was verified for fixed broadband services, the largest one if compared to
mobile cellular (25%) and fixed telephony (20%) [82]. However, as shown in Table 1.6 as a
percentage of the average monthly gross national income (GNI) per capita, mobile cellular
prices increased on a global basis from 2009 to 2010. This condition is particularly alarming
in Africa, where penetration rates are still quite low in some countries. Also, substantial
variations in the average broadband prices still exist across regions. These disparities in
relative costs per region indicate that much more of the household income has to be spent
in developing countries (unaffordable 112%) than in developed countries (1.5%) [83].

In view of these facts, we partially agree with the statement in [81] that developed and
developing countries have the same spectrum management goals. On the one hand, the
underlying principles used to establish, leverage, and maintain flexible and efficient spec-
trum management systems may eventually be the same in both environments. On the

Table 1.5: Service penetration per 100 inhabitants in 2010 (adapted from [83]).

Service
Developing Developed
Countries Countries

Mobile Cellular 70.1 114.2
Internet 21.1 68.8
Fixed Broadband 4.2 23.6



Chapter 1. Introduction 27

Table 1.6: Evolution of the service affordability by region (adapted from [82] and [83]).

Service A B C D E F G H

Fixed Telephony
2009 17.4 3.6 4.0 1.3 1.3 2.9 1.2 7.7
2010 17.0 3.8 4.4 1.1 1.1 3.1 1.1 7.8

Mobile Cellular
2009 17.7 3.0 4.7 2.7 1.1 3.0 1.2 7.5
2010 24.6 4.6 7.4 4.1 1.6 5.1 2.0 11.4

Fixed Broadband
2009 482.8 46.0 71.0 10.4 1.8 10.1 2.0 173.9
2010 291.3 27.3 52.6 7.3 1.4 22.4 1.5 112.2

A: Africa, B: Asia & Pacific, C: Arab States, D: CIS, E: Europe,
F: The Americas, G: Developed Countries, H: Developing Countries.

other hand, from Tables 1.4-1.6, it is evident that the rule making for white spaces should
not neglect the business implications of technically feasible methods, e.g. with respect
to specific social and economical factors. In this regard, it is necessary to provide stake-
holders with estimatives of what consumers are willing/able to pay for before introducing
white space services into the market. Some questions arising in this techno-economical
context might include:

1. What is the preferred method among GDA, CSS, and WSN?

2. What aspects make one method preferred over the other?

3. Are these preferences equal for developed and developing countries?

Answers for the above questions can be formulated along the lines in [85] and [86]. Based
on simple expressions for transmission efficiency and incremental cost, i.e. the additional
capital expenditure (CAPEX) over a simple SDR arrangement, these contributions suggest
that the selection of a given coexistence method depends on aspects that are closely related
to the perspective taken in the analysis. In what follows, we use this framework to examine
the business models discussed in [80] and [87] as potential candidates to introduce WSD
into the market and then draw our replies to questions 1 to 3 above.

1.4.2.2 Techno-economical Analysis

From Table 1.1, we can infer that the minimum implementation costs of GDA involve
constructing a database (CDB), embedding location-aware components in WSD (CL), and
establishing a bidirectional control channel to provide connectivity between the database
and WSD (CC). The incremental cost of GDA is then given by

CGDA = CDB +N × (CS + CL + CC), (1.1)

where the number of nodes (N) and the cost of the sensor equipping each individual node
(CS) reflect the assumption in [85] that WSD do not register in the database but are able
to perform spectrum sensing. Under this assumption, the transmission efficiency of GDA
can be expressed as the ratio of the amount of time available for transmission (tT) to the
total amount of time corresponding to tasks other than data transmission

ηGDA =
tT

tT + tS + t̄M + tQ/FQ

, (1.2)
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where tS is the sensing time per frame, t̄M is the average medium access time per frame,
tQ is the time to enquire the database, and FQ is the number of frames per query.

As seen in the Section 1.3, WSN can alleviate requirements on node spread/density thus
addressing diversity and mobility issues that arise in CSS. In an alternative implemen-
tation, information about the channel availability can be received from some CPC and
forwarded to those WSD within the coverage area of the WSN [85]. The incremental cost
of this approach can be written as

CWSN = CSN +N × (CL + CC), (1.3)

where CSN is the cost of constructing the WSN and N , with some slight abuse of notation,
represents the number of nodes in the WSN (though they do not possess sensing capabil-
ities here). The transmission efficiency of this approach has the same form of (1.2) and
is therefore omitted. It is worth noting, however, that (1.3) eliminates sensing costs but
introduces other costs associated with location-aware hardware (as each node needs to
know its location). Also, it does not model the costs of coordination and regulatory efforts
required to harmonize spectrum for CPC. Hence, it is clear that the actual incremental
cost of such CPC-WSN combined approach is higher than that derived in [85].

The infrastructure costs CDB and CSN in (1.1) and (1.3) pose high CAPEX to stakehold-
ers, so that GDA and WSN may make less economic sense in countries where minimum
telecommunications infrastructure lacks. Even if stakeholders and governments agree to
share CAPEX and prioritize such deployments, high operational expenses (OPEX) to
maintain both database and WSN will still exist. According to the business models pro-
posed in [80], CAPEX and OPEX of GDA can be funded by charging database admin-
istrators with license fees and consumers with subscription or per-query fees. In [87],
stakeholders that already hold licensed spectrum form a kind of joint venture to coop-
eratively exploit white spaces in the spectrum resulting from the sum of their licensed
frequency bands. It is then shown through cash flow analysis that WSN-aided operation
of WSD can be profitable in urban and suburban areas but, as in conventional infrastruc-
ture telecommunication projects, stakeholders have to think long-term. In a well devel-
oped telecommunication market, where the average revenue per user (ARPU) comes from
subscription fees, the minimum pay-back period is about five years.

While the business models in [80] and [87] may work fine in well developed countries, Table
1.6 suggests that any additional burden on consumers, even if minimum, will discourage
white space use in the developing world. In contrast to GDA and WSN, CSS does require
neither infrastructure nor location awareness, so its CAPEX is limited to the development
and implementation of sensing-based WSD that are of lower cost. Also, depending on the
regulatory framework and business model adopted, consumers may operate WSD free of
license and subscription fees in a fashion that could be similar to typical WLAN devices
broadly deployed today. The corresponding OPEX in this case is almost exclusively limited
to WSD power consumption, which should be low. The incremental cost and transmission
efficiency of CSS are then [85]:

CCSS = N × (CS + CC) (1.4)

ηCSS =
tT

tT + tS + t̄M
. (1.5)

Another aspect that is relevant to the present discussion is connectivity. Loss of connec-
tivity between WSD-database, WSD-WSD, or WSD-WSN constitute concerns that are
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common to all methods under analysis here. In the developed world, connectivity between
WSD and the database will be over the Internet. According to Table 1.5, this is hard to
provide in the developing world where around 80% of the people are still excluded from
using the Internet. Even in the event that WSD could access the database over mobile
cellular networks, the opportunities unleashed by white space would be limited to about
70% of the people living in developing countries. In either case, we know from Table
1.6 that the corresponding cost CC is certain to be much higher in developing countries
than in developed countries. As for CSS and WSN, connectivity issues are milder because
these methods do not necessarily require access to the Internet. The control channel can
be implemented by other means, e.g. in-band coexistence beacons can be used to convey
control signalling over white spaces at the expense of some throughput loss. Hence, since
CC can be reduced to a minimum, the use of CSS and WSN seems particularly appealing
in areas where the Internet is not available or for service connectivity applications such
as video streaming that do not require Internet access [88]. Finally, it can be seen from
(1.2) and (1.5) that GDA performs at most as efficient as CSS (for FQ arbitrarily large)
so its use in the developing world seems thus far hard to justify.

This impression finds support in [85], where preference relations are shown to depend
also on the operation environment where candidate methods are to be deployed in. Such
operational contexts are given along with some exemplary applications in Table 1.7, where
the symbol “−” stands for the lack of either feasible combinations or known applications.
As seen in Table 1.8, GDA is the most preferred method by regulators for environments
where the occurrence of white spaces remains static in both time and space, e.g. in the TV
bands. For environments where this is not the case, and white space availability may follow
stochastic processes in time, space, or both, the solutions based on CSS or WSD dominate
as the most preferred by regulators. The aforementioned study is further extended in
[86] to show that different stakeholders are prone to assign different weights to different
aspects. This makes it possible for different preference relations to arise when we rank the
same set of methods yet from different perspectives. Licensed users are granted the right
to use spectrum on a primary basis, so the preferences given in Table 1.9 are exactly the
same as those of regulators as long as white spaces do not exhibit stochastic behavior.
Otherwise, the symbol “x” stands for the fact that licensed users do not care about the
method used so that no preference arises. However, when we look at the preferences of
unlicensed users, shown in Table 1.10, we see that WSN dominates as the most preferred
coexistence method.

Our analysis of non-technical issues suggests that developing countries need to minimize
CAPEX and OPEX related to infrastructure. In contrast, developed countries will likely

Table 1.7: Characteristics & Applications of DSA Operational Contexts (adapted from [85]).

Spatial
Static Periodic Stochastic

T
e
m

p
o
ra

l Static
TV

WSN
CDMA

broadcast mobile

Periodic
Daytime Rotating −
broadcast radar

Stochastic WLAN − Public
Safety
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Table 1.8: Most preferred DSA methods from the regulator perspective (adapted from [85]).

Spatial
Static Periodic Stochastic

T
e
m

p
o
ra

l Static GDA WSN CSS/WSN

Periodic GDA WSN CSS/WSN

Stochastic CSS/WSN CSS/WSN CSS/WSN

Table 1.9: Most preferred DSA methods from the licensed user perspective (adapted
from [86]).

Spatial
Static Periodic Stochastic

T
e
m

p
o
ra

l Static GDA WSN x

Periodic GDA WSN x

Stochastic x x x

capitalize on existent infrastructure to create new business opportunities. That being said,
our answers to the questions posed earlier in this section are as follows:

1. What is the preferred method among GDA, CSS, and WSN?

A: In general, GDA and CSS are the preferred methods for static and stochastic
environments, respectively, but a specific preference relation cannot be established
without knowledge of the stakeholder assuming the implementation costs.

2. What aspects make one method preferred over the other?

A: Stakeholders account to a major aspect here because they largely influence the
analysis outcomes. Other aspects include but are not limited to: cost-effectiveness,

Table 1.10: Most preferred DSA methods from the unlicensed user perspective (adapted
from [86]).

Spatial
Static Periodic Stochastic

T
e
m

p
o
ra

l Static x WSN WSN

Periodic Trading WSN WSN

Stochastic WSN WSN WSN
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transmission efficiency, accuracy, and ability to deal with broader (regulatory and
institutional) contexts.

3. Are these preferences the same for developed and developing countries?

A: Provided that the stakeholders are aware of what consumers can pay for,
we rank GDA ≻ CSS ≻ WSN and GDA ≻ WSN ≻ CSS as the preference relations
more likely to arise in developed countries. In such markets, large infrastructure
projects are typically less budged contrained due to the higher ARPU and shorter
pay-back period. Developing countries are characterized by the need of minimizing
both CAPEX and OPEX, so the stakeholders need to make the most out of their
choice, e.g. by choosing the method that is the most preferred for the majority of
potential operation environments. Depending on the budged limitations, we expect
either CSS ≻ WSN ≻ GDA or WSN ≻ CSS ≻ GDA to arise.

1.5 Chapter Summary and Thesis Objectives

1.5.1 Chapter Summary

Make use of white spaces is a natural path towards increased spectrum efficiency. Whether
in the TV bands or in whatever bands where the spectrum is underutilized, DSA can
help meet the increasing bandwidth needs that new wireless devices and services bring
about. This is particularly important to boost the growth of broadband Internet, regarded
by the ITU as the prime tool to tackle a number of global issues and leverage ICT
progress. Innovative policies and plans are currently being set out to accelerate both DSA
development and the roll-out of broadband Internet.

In our opinion, the benefits envisioned by the ITU are doable provided that DSA policies
and broadband plans to be implemented do not contribute to an increase in the (currently
increasing) digital divide. White spaces access needs to be granted on a universal basis. In
this context, we define a universal solution as a set of policies, plans, and methods intended
at leveraging white space use − also in the developing world. As defined here, the notion of
universal solution calls for methods capable of determining white spaces in most operation
environments, while posing low CAPEX, low OPEX, and keeping computational burdens
as low as they can possibly be.

GDA cannot compose a universal solution because its use suits spatially static environ-
ments only and is limited to developed markets where the Internet has large penetration.
Another intrinsic drawback of GDA is that most issues arising in its practical implementa-
tion are not solvable at the database side, thus imposing higher costs, power consumption,
and computational burdens to WSD.

Approaches that enforce cooperation among nodes, such as CSS and WSN, are better
suitable to take part in a universal solution because of their broader scope of application
and the fact that most of their practical implementation issues can be tackled at the
network level. Indeed, provided that individual nodes are made of low complexity and low
cost, both CSS and WSN can compose a universal solution. In either method, the overall
computational complexity depends on the design options used to implement the processes
of acquisition, exchange, and fusion of information shown in Figure 1.4. Nevertheless, when
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fabrication costs come into consideration, we have to consider not only the complexity of
such network-centric schemes but also their ability to achieve economies of scale.

1.5.2 Thesis Objectives

The observations made in the previous section have motivated us to rewrite our bigger
picture goal as the study of spectrum sensing methods that determine white spaces by
enforcing cooperation among nodes. We have seen in Section 1.3 that most work available
in the CSS literature focusses on the processes of exchange and fusion of information,
whereas the information acquisition process has received less attention to date. The liter-
ature also has analyzed local spectrum sensing in terms of blind and semi-blind techniques
only, so there are practically no counterparts of these analyses for the case where indi-
vidual nodes rely on signal specific techniques. Low complexity and low, or possibly any,
requirements of prior knowledge of the structure of the signals to detect are interesting
for more general applications. However, lack of signal classification ability is one limita-
tion of blind and semi-blind techniques that may difficult operation in different markets,
thus hindering future WSD from achieving economies of scale. Analyses that extend the
related work on CSS with signal specific techniques are therefore desirable, both for a
better understanding of the information acquisition process as well as a design guide for
future WSD.

This sets out the specific goal of the present dissertation, which is to develop an approach
to leverage economies of scale in the information acquisition process, i.e. in terms of signal
processing tasks carried out at the local level. The proposed approach takes advantage of
the context awareness that a set of cooperating WSD obtains when it is capable of detect-
ing, and subsequently classifying, the RF signals conveyed in its cooperation footprint.
The underlying idea is that, by suitably combining different signal processing techniques
offering complementary features, we can define a unique design that is able to deal with a
number of coexistence situations raised by the introduction of WSD into practical markets
where multiple standards are deployed. The design of multi-standard context-aware WSD
is worth research because it allows universal white space exploitation and, in doing so,
has potential to contribute to the decrease of digital divides in both regional and global
levels.

For the specific case of the TV bands, we propose a three-stage cascade signal classifier that
allows WSD to coexist with the TV broadcast standards most deployed worldwide. Beside
the requirements on context awareness and universality mentioned above, the other design
directives of the proposed cascade classifier are commited to complexity, reliability, agility,
robustness, and ability to cope with most challenges raised by practical multi-standard
environments. Alternatively, the proposed cascade classifier can be employed to protect
PMSE systems on a proactive fashion or to provide a contingency for self-coexistence
among future TVBD standards in case other methods fail, e.g. IEEE 802.22 CBP, IEEE
802.22.1 disabling beacons, or ECMA-392 alien beacons. While we illustrate our approach
for multi-standard context-aware WSD in the context of the TV bands, the construction
of cascade classifiers aimed at facilitating coexistence in whatever underutilized bands
should be straightforward along the lines discussed in this dissertation.
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1.6 Key Contributions

This section lists our key contributions. The first contribution, perhaps the most important
made in this dissertation, is the introduction of the concept of multi-standard context-
aware WSD. By exploiting the distinguishing features of this novel concept, we provide
a deeper understanding on CSS using signal specific techniques. On top of these two
contributions, we design a cascade classifier that allows to coexistence in the TV bands
while mitigating digital divides and leveraging economies of scale. We also substantialize
our performance assessments through extensive simulation work. This is realized using
MESS, a spectrum sensing platform that we developed using Matlab.

In the sequel, we briefly describe each of these contributions.

• Multi-standard context-aware WSD: At the time of this writing, the majority
of publications available in the literature evaluated detection performance having
only digital TV broadcast in mind. In a few very rare exceptions, the literature
addressed the detection of TV broadcast signals in both digital and analog formats.
Even in those cases, the study was always restricted to a single market, e.g. North
America or Europe. Our concept of multi-standard context-aware WSD can be dis-
tinguished from the related work, as well as from the literature on spectrum sensing
in general, in the sense that it considers multiple markets where a larger number of
different incumbent systems may operate in. Built on top of this broader scope of
application, our analysis of CSS reveals nuances of signal specific techniques that are
less understood from the perspective of the traditional single-target single-market
approach. As nuances we mean those signal type dependencies that, though negligi-
ble in case of blind or semi-blind techniques, yield significant performance variations
in case of signal specific techniques. Also, in most cases of interest, the literature has
not managed yet to perform standard classification. Multi-standard context-aware
WSD exploit explicit signal features that, in contrast to implicit signal features, can
be extracted without going into the “internal details” of the signal. This reduces the
signal processing needs placed on the classification process.

• Cooperation based on signal specific techniques: One interesting open ques-
tion in the context of CSS is how the use of different signal processing techniques af-
fects the performance improvement derived via cooperation. This dissertation largely
contributes to a better understading on this aspect as it shows that: (i) the achiev-
able cooperation gain depends on the signal processing technique used at the local
level, (ii) the extent to which CSS can be beneficial depends on several aspects other
than the number of cooperating nodes, (iii) these performance limiting aspects in-
clude both type and amount of uncertainty present in the operation environment,
(iv) there may be some advantages in using node selection algorithms when only im-
perfect knowledge of the noise power is available, (v) noise uncertainty affects most
techniques equally, regardless of target signal type, but detrimental sinergies may
occur when the feature used for detection oscillates, and (vi) CSS can compensate
for performance degradations introduced by sampling frequency offsets.

• A cascade classifier for coexistence in the TV bands: Recalling the current
levels of spectrum underutilization and the typically static behavior of TV band
incumbents, a WSD will likely spend much of its operation time on channel mon-
itoring tasks. Therefore, it is desirable to implement the first stage of our cascade
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classifier using blind or semi-blind techniques. They are fast, so detection delays can
be kept low. With respect to signal classification, we exploit in the second stage the
fact that most standards deployed today adopt multi-carrier transmission schemes.
In this case, a natural way to obtain classification ability is to use a classifier that
exploits the periodicities introduced by the cyclic prefix. This is relatively efficient,
of low complexity, and agile too. Those less numerous cases that cannot be resolved
on the basis of the cyclic prefix are treated at the third stage. There, our focus
is on achieving advanced classification abilities even if, in doing so, some detection
delay is introduced. The highlight of the proposed cascade classifier is that its stages
are carefully designed to possess complementary features. In addition to the desired
multi-standard classification ability, this allows to a level of robustness hard to be
obtained using individual signal processing technques.

• The MESS platform: Originally envisioned as a standardized evaluation scenario
to comparing approaches proposed by different research groups on a fair basis, the
MESS platform ended up becoming much more than we had ever thought it could be.
It was based on what we call virtual testbed, a concept that differs from conventional
Matlab simulation in the sense that all target signals are implemented in detailed
accordance to corresponding standards. This allows to visualize (and gain insight on)
issues that cannot be captured by other means. Beside of accomplishing its major
goal of allowing our thorough assessment of several signal processing techniques
(not available in the literature at the time of this writing), MESS has its value
as integrating research platform, enabler of own algorithm development, baseline
for future research, and, particularly, as a promising commercial product to support
the assessment, development, and implementation of signal processing techniques for
WSD. To the best of our knowledge, such a product is currently available neither
in the academy nor in the industry.

1.7 Chapter Outline

This dissertation is organized as follows. In Chapter 2, we review the related work that has
served as the basis for the contributions provided in this dissertation. We start with the
essential steps that any digital receiver follows when performing signal detection. Having
the basics in place, we introduce the underlying elements composing the spectrum sensing
problem and discuss the assumptions usually made to formulate it as a decision problem.
We survey selected publications, which contribute to the signal processing techniques
currently regarded as the most promising for WSD. We close the chapter with a list of
gaps identified in the related work.

Chapter 3 is mostly devoted to MESS, the simulation tool that we developed to evaluate
the signal processing techniques surveyed in the related work. Written in Matlab, MESS
consists of four major functional blocks: signal generation, channel generation, signal de-
tection, and signal classification. Along with careful descriptions of each of these functional
blocks, we explain what sources of uncertainty of the operation environment are taken into
account and how these uncertainties are modeled in MESS. Our approaches to generalize
the results in the related work and obtain context-awareness via signal classification are
also discussed in this chapter.
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In chapter 4, we present a thorough performance assessment of virtually all signal process-
ing techniques surveyed in the related work. The chapter begins presenting our simulation
results obtained under ideal operation conditions. Taking this ideal performance as base-
line for comparisons, we then extend our assessment to the case where different sources of
uncertainty are considered. This includes multipath fading, noise uncertainty, frequency
offsets, and joint impacts observed in the presence of two (or more) of these sources. From
this simulation work, we identify the pros & cons of each candidate method, draw our
conclusions and, based on them, determine the signal processing techniques required by
the concept of multi-standard context-aware WSD introduced in this dissertation.

Chapter 5 summarizes the contributions made in this dissertation. Here, we make our final
remarks and highlight the insights gained during the long process of studying, implement-
ing, assessing, and selecting signal processing techniques for multi-standard context-aware
WSD. We also list some key issues in which we believe promising future research can be
carried out. This includes extensions for two different scenarios, studied in our previous
work, where the results presented in this dissertation may find application.

1.8 Publications Record

From May 2010 to June 2012 we contributed with the European Cooperation in Science
and Technology (COST) within the scope of the IC0902 Action. Entitled “Cognitive Ra-
dio and Networking for Cooperative Coexistence of Heterogeneous Wireless Networks”,
IC0902 aims at integrating the CR concept across all layers of a communication system.
The IC0902’s deliverables will be used to define an European platform for CR and CR
networks by December 2013. Specifically, we worked with the IC0902’s working group 2
on the definition of cognitive mechanisms that take advantage of cooperation of devices
in spatial proximity. This work resulted in the following first-author papers:

1. J. P. Miranda, M. D. Pérez Guirao, A. Lambertucci, and L. A. DaSilva, “Worst Case
Analysis of Single-stage Sensing in WRANs”, 1st Workshop of the COST Action
IC0902, Bologna, Italy, Nov. 2010.

2. J. P. Miranda, J. Kibiłda, and L. A. DaSilva, “Spectrum Sensing by Program Making
and Special Events in the Post-switchover Era: Achievements of a Short Term Scien-
tific Mission”, 2nd Workshop of the COST Action IC0902, Barcelona & Castelldefels,
Spain, Oct. 2011.

Particularly, part of the results in 2. was obtained during a one-week short-term scientific
mission (STSM) carried out in April 2011 at CTVR, the telecommunications research
centre headquartered in Trinity College Dublin, Ireland.

The work in 1. and 2. consists of smaller sets of results, which were subsequently extended
and published in the following first-author papers:

3. J. P. Miranda, H. Tchouankem, J. Kibiłda, and L. A. DaSilva, “Return Path for
iTV using Whitespaces: A Novel Application for 802.22 WRAN”, In Proc. of IEEE
Wireless Advanced, pp. 95-100, London, U.K., June 2011.
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4. J. P. Miranda, J. Kibiłda, and L. A. DaSilva, “Semi-blind Channel Monitoring Mech-
anisms for Post-switchover Wireless Microphones”, In Proc. of IEEE Globecom, pp.
1-6, Houston, U.S., Dec. 2011.

The papers 1. to 4. contain preliminary ideas and results that relate directly to the two
applications described in the Chapter 5 of this dissertation. In 3., we introduce the idea of
providing the return path for interactive TV (iTV) over white spaces. The advantages of
this approach over other access technologies currently used in iTV are multi-fold: interac-
tive data can be transmitted in overlay with higher priority broadcast data, the fact that
home users are not likely to interact all the time can be exploited to set the return path on
an on-demand basis, and broadcasters are not required to cooperate (and share revenues)
with telecommunications or Internet service providers. A second idea, introduced in 4.,
aims at improving immunity to interference in future CR-based PMSE systems. Unlike in
the usual overlay-based hierarchical access model, where TVBD should detect and avoid
licensed services and PMSE, the proposed approach is concerned about spectrum sensing
carried out by PMSE rather than for PMSE. Within this framework, we provide in-band
and out-of-band channel monitoring mechanisms to ensure quality of service of future
PMSE. We then show via simulation that the proposed mechanisms are capable of ex-
ploiting complementary features of multiple signal processing techniques while incurring
no performance loss in comparison to their use in isolation.

In parallel to the above, we worked from February 2010 to June 2012 as a teaching assistant
supporting the course “Cognitive Wireless Networks”. Our main task was to design, test,
operationalize, and supervise laboratory experiments for undergraduate students. This
work was documented in the following handouts:

5. J. P. Miranda, C. König, and M. D. Pérez Guirao, “Implementation of a Simple
Air-interface for Overlay-based Cognitive Radio”, Skriptum zum Laboratorium für
Netze und Protokolle (NUP), chapter 4, pp. 59-86, Apr. 2010.

6. J. P. Miranda and H. Tchouankem, “Simple Air-interface for Energy-based Coop-
erative Spectrum Sensing”, Skriptum zum Laboratorium für Netze und Protokolle
(NUP), chapter 5, pp. 55-75, Apr. 2011.

7. J. P. Miranda and H. Tchouankem, “Simple Air-Interface for Energy-based Coop-
erative Spectrum Sensing”, Skriptum zum Laboratorium für Netze und Protokolle
(NUP), chapter 5, pp. 53-73, June 2012.

The testbed consists of a single licensed user following a cyclic hopping pattern and
operating collocated with a network of CR devices. In order to avoid collisions, the CR
network monitors a shared RF environment defined by five non-overlapping channels in the
5.745−5.845 GHz range. Our major contribution here was the continuous improvement of
the single-node setting initially used in 5. The modifications introduced in 6. and further
improved in 7. made the CR network capable of operating also in multi-node mode, and
were of utmost importance for the measurement campaigns that generated the real-world
CSS results in 3.
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Finally, some joint work with the colleague H. Cao (discussed in his own Ph.D dissertation)
was performed on cyclostationary signatures:

8. H. Cao, Q. Cai, J. P. Miranda, and T. Kaiser, “Cyclostationary Multitone Beacon
Signal for Opportunistic Spectrum Access”, In Proc. of the 4th ICST Crowncom,
pp. 1-6, Hannover, Germany, June 2009.

9. H. Cao, Q. Cai, J. P. Miranda, and T. Kaiser, “Cyclostationary Beacon for Assisting
Spectrum Sensing in Opportunistic Spectrum Access”, Majlesi Journal of Electrical
Engineering, vol. 5, No. 1, pp. 65-72, Mar. 2011.

10. H. Cao, J. P. Miranda, and J. Peissig, “Enhanced Spectrum Awareness with Ex-
tended Information Carried on Embedded Cyclostationary Signatures for Cognitive
Radio”, In Proc. of IEEE Globecom, pp. 1506-1512, Anaheim, U.S., Dec. 2012.





Chapter 2

Related Work

This chapter reviews the related work that has served as the basis for the contributions
presented later on in this dissertation. We start in Section 2.1 with a brief review of
the essential steps that digital receivers follow when performing signal detection. We
then introduce the underlying elements composing the detection problem and, as these
are introduced, discuss the assumptions available to formulate the sensing problem as
a decision problem. After these basics are put in place, we arrive at the core of this
chapter, Section 2.2, where we review some selected publications in a summary of the
signal processing techniques currently regarded as the most promising for WSD. Section
2.3 closes the chapter with a list of gaps identified in the related work, whose subsequent
investigation has provided the backbone of the present dissertation.

2.1 Tests, Rules & Optimality Criteria

Consider the continuous-time received signal

r(t) = s(t) ∗ h(t) + w(t), (2.1)

where s(t) denotes the target signals, i.e. the signals that WSD need to detect for coex-
istence reasons, h(t) is the channel impulse response, w(t) is a zero-mean additive white
Gaussian noise (AWGN) process introduced by the channel, and “∗” stands for the con-
volution operation. As shown in Figure 2.1, the task of any digital receiver encompasses
three basic processes: demodulation, sampling, and detection. Usually placed at the re-
ceiver front-end, the demodulator is composed of a frequency down-conversion block and
a receiving filter. After the demodulator, r(t) is recovered to a baseband pulse z(t) that
is made available to the sampler. The baseband pulse is then sampled at sampling fre-
quency fs = 1/Ts so that a test statistic z(nTs) can be constructed at the end of each
sampling period Ts. At the detector, decision-making is performed to determine the mean-
ing of z(nTs). If the receiving filter used in the demodulator is linear, its output is also a
Gaussian process and z(nTs) is a continuous-valued random variable [91].

Unlike typical digital receivers, WSD need not necessarily demodulate the received signals.
This means that the sensing task reduces to signal detection, eventually followed by signal
classification depending on the application needs. Viewed this way, the detection process
can be formulated as a statistical decision problem that consists of a set of hypotheses, a
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Fig. 2.1: Simplified block diagram of a typical digital receiver (adapted from [91]).

test statistic, a decision rule, and a criterion of optimality. Different performance levels can
be achieved depending on how the signal detection process is modeled. In what follows,
we discuss the fundamental assumptions that may be used to formulate the detection
process as a decision problem. Specifically, according to the type of hypotheses used to
represent the true states of nature, we overview the rules and optimality criteria usually
applied to support the decision-making in spectrum sensing.

2.1.1 Binary Hypotheses

In the context of spectrum sensing, the true states of nature correspond to two possible
channel statuses. Idle channels, where s(n) is absent, are interpreted as white spaces and
thus perceived by WSD as available to use. Occupied channels, where s(n) is deemed to
be present, should be avoided by WSD. Let a channel be declared idle under the null
hypothesis and occupied otherwise. The detection problem can be represented in discrete-
time domain by using the following binary hypotheses set

{

H0 : r(n) = w(n)

H1 : r(n) =
∑L−1

m=0 h(m)s(n−m) + w(n),
(2.2)

where n = 1, 2, . . . ,M are the samples collected and L is the channel order. In such binary
hypothesis testing, detection is performed by choosing the hypothesis that results from the
comparison

z(n)
H0

⋚
H1

γ, (2.3)

where γ denotes the detection threshold and the condition z(n) = γ means that decision
is arbitrary. Hereafter, for ease of notation, we write the test statistic z(nTs) simply as
z(n) and assume that the functional dependence on the sampling period Ts is implicit.

It is evident from (2.3) that how well the detection process can distinguish between H0 and
H1 is crucial to minimize both white space losses and interference to licensed systems. By
misperceiving H0 for H1, WSD will “see” the channel as occupied when it is actually idle
and will not transmit on this channel. Such false alarms lead white spaces to be overlooked
and must be avoided to increase spectrum utilization. Likewise, if WSD misperceive H1 for
H0, they may initiate transmissions on this channel and in doing so will greatly interfere
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with “hidden” licensed systems. Therefore, the accuracy of the detection process is usually
expressed in terms of the probability of false alarm and the probability of detection

Pfa = Pr[z(n) > γ|H0] =

∫

Z1

p (z|H0) dz (2.4)

Pd = Pr[z(n) > γ|H1] =

∫

Z0

p (z|H1) dz, (2.5)

where p (z|Hi) is the conditional probability density function (p.d.f.) of z, Zi is the decision
region under hypothesis Hi, i ∈ {0, 1}, and Pmd = 1−Pd denotes the probability of missed
detection.

2.1.2 Simple Hypotheses

The utmost goal of WSD is to identify the presence of licensed signals, while making sure
that both Pfa and Pmd are kept as low as they possibly can be. If false alarms and missed
detections are equally costly, the optimum criterion that minimizes the average number
of incorrect decisions is the likelihood ratio test (LRT) [91]:

p (z|H0)

p (z|H1)

H0

⋚
H1

P (H1)

P (H0)
. (2.6)

Supposing that the licensed system and WSD do not communicate, the prior probabilities
P (Hi), i ∈ {0, 1}, in (2.6) are unknown to WSD. In this case, the Neyman-Pearson (NP)
criterion is optimum in the sense that it can be applied to minimize Pmd constrained to a
fixed Pfa. If P̄fa denotes the target Pfa required by some application (or mandated in some
standard), the NP criterion can be implemented as a LRT with γ given by the Lagrange
multiplier that satisfies [92]

Pfa =

∫

Z1

p (z|H0) dz =

∫ ∞

γ

p (ℓ|H0) dℓ = P̄fa, (2.7)

where ℓ(z) is the likelihood ratio on the left size of (2.6). When determined on the basis
of a certain fixed Pfa, the detection threshold γ is said to ensure CFAR detection. Here we
should mention that the NP criterion is flexible in the sense that it can be used to construct
LRT where any of the hypotheses is rejected in favour of the other hypothesis. The reason
why γ is usually determined as a function of P̄fa, instead of the target probability of missed
detection P̄md, will become evident a little later on in Section 2.2.

LRT and its NP-based variation are referred to as simple hypothesis testing because they
assume that each of the hypotheses corresponds to a single distribution for z [93]. However,
the null hypothesis of (2.2) describes a situation where only noise is received, though WSD
actually pick up interference from unintended signals too. If w(n) is treated as noise floor,
p (z|H0) depends solely on the sum of the power of all noise sources and unwanted signals
within the WSD sensitivity region [1]

σ2
w|dB = −174 + NF + 10 logB, (2.8)
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where B is the channel bandwidth and NF accounts to the noise figure (in dB) of WSD,
i.e. the ratio of the actual output noise to that which would remain if the WSD itself did
not introduce noise. Based on the notion of noise floor, it is seems reasonable to assume
simple hypothesis testing under H0. However, the received noise level observed in practice
may change over time thus making it difficult for WSD to obtain an accurate estimation
of σ2

w in some cases [49]. Thus, despite of having eliminated the parameters of unintended
signals, p(z|H0) is still dependent of knowledge of σ2

w that may be unavailable. Several
parameters are unknown under H1, not only because the fundamental information about
s(n) may not be available to WSD but also due to the lack of synchronization between
WSD and licensed transmitter, and degrading effects introduced by the channel.

In the sequel, we describe a way to model the condition where many possible distributions
can occur under a single hypothesis.

2.1.3 Composite Hypotheses

The existence of at least one unknown parameter characterizes composite hypothesis test-
ing. Thereby, each hypothesis can be viewed as a family of distributions on z indexed by
the values of the unknown parameters [93]. In contrast to simple hypothesis testing, each
of these values describes a situation where s(n) is actually absent (under H0) or present
(under H1). To handle composite hypothesis-testing problems, it is possible to construct
a test taking as input the estimatives of all possible unknown parameters instead of their
actual values. One such test is the generalized likelihood ratio test (GLRT) [94]

p (z|ŝH1
, ŵH1

)

p (z|ŵH0
)

H0

⋚
H1

γ, (2.9)

where the unknown parameters of target signal and noise are replaced with their maximum
likelihood estimates (MLE), here identified by the superscript “∧”. Though not optimum,
GLRT is robust, easy to implement [12], and its use has been recently advanced for
acquisition purposes in the context of global navigation satellite [94]. GLRT also finds
application in some cases where analysis based on the NP criterion is mathematically
intractable [52].

2.2 Signal Processing for White Space Devices

The previous section has described the underlying elements composing the spectrum sens-
ing problem, as well as the options available to model it. Independent of the decision rule
and the optimality criterion used, the test statistic largely affects the outcome of the sens-
ing process. This impact is multi-fold in the sense that the performance that results from
using different test statistics is essentially different, not necessarily in terms of accuracy
only, but also with respect to several other performance and operational metrics. Such
metrics include agility, amount of prior knowledge required for detection, computational
complexity, classification ability, and robustness, to name some. The extent to which such
variations in performance occur closely relates to the meaning of the test statistic, which,
in turn, depends on the signal processing technique used in the sampling process.
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In the remainder of this section, we summarize the most promising signal processing
techniques for WSD. In the first part, which comprehends the subsections 2.2.1 and 2.2.2,
we address blind and semi-blind techniques that impose minimum requirements on the
amount of prior information required for detection. Spanning from subsections 2.2.3 to
2.2.5, the second part is devoted to signal specific techniques that improve accuracy,
robustness, and/or provide signal classification ability at the expense of longer sensing
time, increased knowledge about the structure of s(n), or both.

Throughout the rest of this dissertation, we refer to each of these subsections as a class of
signal processing techniques. Except for Section 2.2.5, each class relies on the same under-
lying principle to perform detection but different levels of performance can be achieved
by different test statistics within a class. We refer to the test statistics used to implement
the sensing methods simply as methods.

2.2.1 Energy Detection

We have seen in the previous section that the detection of target signals in the presence
of noise implies choosing between two situations in (2.2). An intuitive way to accomplish
this task is to use the average energy of the received signal r(n) as test statistic:

zED(n) =
1

M

M−1∑

n=0

|r(n)|2 . (2.10)

The test that results from substituting (2.10) into (2.3) is known as energy detection (ED).
ED is a semi-blind signal processing technique that is simple, of low complexity, and does
not require any knowledge about the structure of s(n). As for the disadvantages, distinc-
tion between the target signals and WSD signals cannot be established based on |r(n)|2.
The use of ED is therefore limited to applications where sensing tasks need not be per-
formed while other WSD simultaneously transmit. At the expense of tight synchronization
requirements, one can enforce quiet periods during which all WSD cease transmissions
and (eventually engage in CSS to) scan the operation environment for white spaces.

2.2.1.1 Performance Analysis

Despite of the limitations above, ED is by far the most regarded method in the context of
local spectrum sensing and one of the couple of methods considered when it comes to CSS.
One reason for this popularity is that the performance analysis of ED can be made quite
simple provided that some assumptions are put in place. As (2.10) corresponds to a sum
of M i.i.d. Gaussian random variables, the distribution of zED is central and non-central
chi-squared with M degrees of freedom under H0 and H1, respectively [43]. For M large
enough, the central limit theorem can be applied to model zED as asymptotically normally
distributed

zED(n) ∼
{

H0 : N (Mσ2
w, 2Mσ4

w)

H1 : N (Mσ2
w +Mσ2

s , 2Mσ4
w + 4Mσ2

wσ
2
s ),

(2.11)
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where σ2
s = ‖s‖2 /M is the average power of s(n). The sensing time required to achieve an

acceptable detection accuracy typically requires M ≥ 20, so the Gaussian approximations
in (2.11) are of practical interest. Based on this assumption, the performance of ED can
be analyzed in closed-form using [52]

PED
fa = Pr[zED(n) > γ|H0] ≈ Q

(
γ −Mσ2

w

σ2
w

√
2M

)

(2.12)

PED
d = Pr[zED(n) > γ|H1] ≈ Q

(

γ −Mσ2
w −Mσ2

s

σw

√

2Mσ2
w + 4Mσ2

s

)

, (2.13)

where the Marcumm Q-Function

Q(x) =
1√
2π

∫ +∞

r

e−x2/2dx (2.14)

gives the tail probability of a zero-mean unit-variance Gaussian random variable. Closed-
form expressions for the performance of ED under Rayleigh, Nakagami, and Rician fading
channels can be found in [95]. In general, the detection performance of a method is charac-
terized in terms of its receiver operating characteristic (ROC) where Pd is plotted against
Pfa. Figure 2.2 illustrates the ROC of ED, which is concave and lies above the line Pd = Pfa

as in any continuous LRT [93]. The complementary ROC plots Pmd against Pfa.

Ideally, the larger the number of samples over which r(n) is averaged the more accurately
ED can distinguish between H0 and H1. The minimum number of samples required to
achieve any operation point (Pfa, Pd) in the ROC can be computed using [52]

MED
min =

⌈

2
[

Q−1(Pfa)−Q−1(Pd)
√
1 + 2SNR

]2

SNR−2

⌉

, (2.15)

where ⌈y⌉ =min{x ∈ Z|x ≥ y} is the ceiling function and the signal-to-noise ratio (SNR)
in linear scale is given by:

SNR =
σ2
s

σ2
w

=
‖s‖2
Mσ2

w

. (2.16)
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Fig. 2.2: Family of ROC curves illustrating the performance of ED obtained via (2.12)
and (2.13) for different SNR values with M = 1500 samples.
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According to Figure 2.3, the number of samples that ED requires to meet any operation
point (Pfa, Pd) in the ROC asymptotically scales as O(1/SNR2) in the low SNR regime.
Hence, the challenge of scanning the frequency band of interest is not just about accurately
determining white spaces but doing it in a timely manner. In this process, the average
power of the target signal will change depending on the characteristics of s(n) and the
distance between licensed transmitter and WSD. Since this information is likely unknown
at sensing-only WSD, σ2

s is difficult to estimate and the sensing receiver can never know
its operating SNR exactly. Recalling the performance expressions of ED, (2.12) needs to
know only σ2

w whereas (2.13) imposes the need of additional information about σ2
s . Due

to this reason, the detection threshold is usually set based on the p.d.f. of zED under H0.
In this case, the NP criterion can be applied to rewrite (2.7) as [1]:

γED = σ2
w

[

1 +
Q−1(P̄fa)√

M

]

. (2.17)

2.2.1.2 Noise Uncertainty and SNR Walls

As a semi-blind technique, ED is optimum in terms of the NP criterion when only σ2
w is

known a priori [52]. In the ideal case that σ2
w is perfectly known, (2.15) ensures that reliable

detection is possible at arbitrarily low SNR by suitably increasing M . Moreover, threshold
determination is straightforward using (2.17). However, the received noise level changes
over time in practice. It may be possible to obtain a rough estimate of σ2

w based on noise-
only samples [96] but, whenever the availability of noise-only samples becomes difficult to
guarantee, ED becomes highly susceptible to noise uncertainty [49]. This susceptibility to
noise uncertainty can be potrayed by rewriting (2.15) as

MED
min ≈ 2 [Q−1(Pfa)−Q−1(Pd)]

2

[

SNR− (ρ− 1
ρ
)
]2 , (2.18)
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where the parameter ρ determines the knowledge of σ2
w available for detection and the

estimated noise power σ̂2
w ∈ [(1/ρ)σ2

w, ρσ
2
w]. If ρ = 1, perfect knowledge of σ2

w is assumed
and (2.18) converges to (2.15). Otherwise, ρ > 1 indicates that WSD cannot be sure
about the actual σ2

w and this uncertainty increases with ρ. According to this model, ED
can detect the presence of s(n) as long as γED > ρσ̂2

w. In practice, however, the achievable
performance will be constrained even under a moderate degree of noise uncertainty be-
cause the number of samples M → ∞ as SNR ↓ (ρ− 1

ρ
). This inability of ED in detecting

signals with power smaller than that of γED − σ2
w creates a SNR wall

SNRwall =
ρ2 − 1

ρ
(2.19)

in the neighborhood of which the number of samples required for detection approaches
infinity. Figure 2.4 shows how the imperfect knowledge of σ2

w introduces SNR walls that
can fairly degrade the performance of ED. From this figure it is clear to see why the notion
of SNR wall has been advanced as representation for the limit to the SNR under which
reliable detection is impossible no matter how many samples are collected.

The detection of weak signals “buried” in noise of uncertain power is a big issue. This fun-
damental limitation was first identified in [97] but later on shown to be not an exclusive
drawback of ED. Indeed, it is well known today that SNR walls exist for every moment
detector and for any practical detector with finite dynamic range [98]. More generally, the
detection limits of a certain method depend on its prior knowledge of s(n), i.e. the SNR
walls of different methods are created by the different kinds of uncertainties present in the
operation environment [99]. Uncertainty in the marginal noise distribution is pointed as
the sole reason for the SNR walls in ED, whereas other sources of uncertainty jointly con-
tribute in the case of signal specific techniques, e.g. color of the noise and time-selectivity
of the fading process.

In general, the impact of such modeling uncertainties is an open research problem in the
context of CSS but some ED-based insights can be found in the literature. For instance,
if soft combining is used, CSS cannot improve the nominal SNR wall defined in (2.19)
but can effectively mitigate the impact of noise uncertainty provided that the SNR walls
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are defined in average or on probability [100]. The intuition behind this finding is that
the variance of the test statistic decreases as the number of WSD engaged in cooperation
increases. Hence, any closed subinterval of [(1/ρ)σ2

w, ρσ
2
w], within which σ̂2

w varies with
certain probability, can be made narrower. Similar results are obtained for hard combining
in [101], where OR logic is shown to be the fusion rule least susceptible to noise uncertainty
while AND logic is the most. Also, according to [102], the use of AND logic in the presence
of noise uncertainty is not advisible because it may cause the global detection performance
obtained via CSS to be worse than that achieved by a single WSD.

2.2.2 Eigenvalue-based Detection

The signal processing techniques that have been proposed to overcome the performance
degradation associated with the SNR wall phenomenon are mostly based on signal specific
methods. Among these methods, eigenvalue-based detection (EBD) has been receiving
particular attention because it is a signal processing technique that is able to work blindly
or semi-blindly. In contrast to ED, EBD relies on spatial diversity (obtained either through
multi-antenna techniques or CSS) to exploit the underlying properties of the covariance
matrix of r(n). As seen in Section 1.3, multi-antenna techniques are power-hungry, costly,
complex, and thus less simple to implement in portable WSD. In what follows, we assume
that portable WSD are of limited size and complexity and, as such, use CSS as the natural
diversity enabler for EBD.

2.2.2.1 General Approach

Consider an operation environment where i = 1, 2, . . . , N WSD operate collocated with
j = 1, 2, . . . , P licensed transmitters, each device being single-antenna device. If the num-
ber of WSD within the cooperation footprint is N > P , from the perspective of the ith
WSD the binary hypotheses set in (2.2) becomes

{

H0 : ri(n) = wi(n)

H1 : ri(n) =
∑P

j=1

∑Lij

m=0 hij(m)sj(n−m) + wi(n),
(2.20)

where Lij and hij(m) are respectively the channel order and the channel coefficient be-
tween the jth licensed transmitter and the ith WSD. As inherent in CSS, hij(m) can be
independent or correlated for different i depending on how the WSD engaged in cooper-
ation are spatially distributed.

By making Lj = max
i

(Lij), it is possible to define the vectors

r(n) = [r1(n), r2(n), . . . , rN(n)]
T (2.21)

hj(n) = [h1j(n), h2j(n), . . . , hNj(n)]
T (2.22)

w(n) = [w1(n), w2(n), . . . , wN(n)]
T , (2.23)

where the superscript “T ” stands for transpose. This vectorial representation is convenient
as it allows to rewrite (2.20) as:

{

H0 : r(n) = w(n)

H1 : r(n) =
∑P

j=1

∑Lj

m=0 hj(m)sj(n−m) + w(n).
(2.24)
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After some straightforward computation (shown in detail in [103]), the statistical covari-
ance matrix of r(n) can be obtained under the two hypotheses

Rr = E
[
r̂(n)r̂†(n)

]
=

{

H0 : σ
2
wINι

H1 : HRsH
† + σ2

wINι,
(2.25)

where E(·) denotes taking the expectation, the superscript “†” stands for transpose-
conjugate (Hermitian), ι is a smoothing factor, INι is the identity matrix of order Nι,
and the Wishart matrix H = [H1,H2, . . . ,HP ] has coefficients of the form:

Hj =






hj(0) . . . . . . hj(ιj) . . . 0
. . . . . .

0 . . . hj(0) . . . . . . hj(ιj)




 . (2.26)

Now let λmax = λ1 ≥ λ2 ≥ . . . ≥ λNι = λmin > 0 denote the eigenvalues of Rr ordered
in strictly decreasing order. Following [104], the distributions of λ under H0 and H1 are
respectivelly given by p(λi|H0) = σ2

w, ∀i, and

p(λi|H1) =

{

σ2
i + σ2

w 1 ≤ i ≤ P

σ2
w P ≤ i ≤ Nι,

(2.27)

where σ2
1 , σ

2
2, . . . , σ

2
P are the target signal powers received at the ith WSD.

2.2.2.2 Test Statistics

It is evident from (2.27) that the eigenvalues of Rr can be used as test statistic. In practice,
since the sensing task is usually limited to a number of samples that is finite and possibly
small, only a sample of the statistical covariance matrix in (2.25) will be available to WSD.
If M samples are collected, this sample covariance matrix can be computed as [103]:

Rr(n) =
1

M

ι−2+M∑

n=ι−1

r̂(n)r̂†(n). (2.28)

It is possible to construct several detection methods that use the eigenvalues of Rr(n) as
test statistic. Under simple hypothesis testing, a NP-based LRT can be written as the
ratio of the p.d.f. of all eigenvalues under H1 to the p.d.f. of all eigenvalues under H0:

zLRT(n) =
p(λ1, λ2, . . . , λNι|H1)

p(λ1, λ2, . . . , λNι|H0)
. (2.29)

In the asymptotical regime, it is shown in [105] that the above LRT reduces to the Roy’s
largest root test (RLRT)

zRLRT(n) =
λmax

σ2
w

, (2.30)

which decides H1 if λmax > σ2
w and H0 if λmax = σ2

w. From the denominator of (2.30) it is
clear that RLRT relies on prior knowledge of the noise power to distinguish between the
two hypotheses and thus it is a semi-blind technique just like ED.
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For M ≫ ι, a comparison between ED and RLRT can be established along the lines in
[103] and [105]. First, rewrite (2.10) for the case of N cooperative WSD:

zCSS
ED (n) =

1

MN

N∑

i=1

M−1∑

n=0

|r(n)|2 . (2.31)

Next, define ∆λ as the average of all the eigenvalues of Rr(n)

∆λ(n) =
1

Nι
Tr[Rr(n)] (2.32)

=
1

MNι

L−2+M∑

n=L−1

r̂(n)r̂†(n) (2.33)

≈ zCSS
ED (n), (2.34)

where Tr(·) denotes the trace of a matrix. ED and RLRT respectively test ∆λ and λmax

against σ2
w, so the former has reduced statistical power as compared to the latter [105].

Robustness against noise uncertainty can be obtained by combining the energy samples
collected via simple ED. An obvious criterion is to choose the combining matrix such that
the resultant signal has the largest SNR. Let βmax denote the eigenvector corresponding
to the maximum eigenvalue of the statistical covariance matrix of r(n). By exploiting the
properties of the trace of a matrix, it can be show that βmax corresponds to the optimal
combining matrix [108]. This fact is used in a kind of “blindly combined” ED denoted as
maximum eigenvalue detector (MED):

zMED(n) =
1

M

M−1∑

n=0

∣
∣
∣β̂

T
maxr(n)

∣
∣
∣

2

(2.35)

=
1

M

M−1∑

n=0

β̂T
maxr(n)r

T (n)β̂max (2.36)

= β̂T
maxRr(n)β̂max (2.37)

= λmax. (2.38)

MED decides H1 if zMED(n) >
γ
Nι

Tr [Rr(n)] and H0 otherwise. The threshold γ depends
only on Pfa and on the number of samples M , so MED is immune to noise uncertainty. The
method that results from assuming βmax known a priori, denoted in [108] as “optimally
combined” ED, is essentially the same as the RLRT detector in (2.30).

Other well-known EBD methods that are blind, and thus robust against noise uncertainty,
are maximum-minimum eigenvalue (MME) and energy with minimum eigenvalue (EME).
The mathematical intuition behind the MME method is that λ1 = λ2 = . . . = λNι = σ2

w

under H0 and thus λ1/λNι = 1. Since it is highly probable that λ1/λNι > 1 under H1, we
can construct a test statistic using the ratio

zMME(n) =
λmax

λmin

(2.39)
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to decide H1 if zMME(n) > 1 [103] and H0 if zMME(n) = 1. The same intuition lends itself
to construct the test statistic of EME. By replacing λmax in (2.39) by ∆λ we get

zEME(n) =
∆λ(n)

λmin

≈ zCSS
ED (n)

λmin

, (2.40)

which decides H1 if zEME > N and H0 if zEME = 1.

Prior knowledge of parameters other than σ2
w may be not available to WSD in practice. As

seen in Section 2.1, the usual procedure in this case is to formulate the detection problem
using composite hypothesis testing and then apply some sub-optimal test. For the specific
case of unknown channel gains hj(n), we can rewrite the GLRT in (2.9) as

suph,σ2
w
p(r|h, σ2

w)

supσ2
w
p(r|σ2

w)

H0

⋚
H1

γ, (2.41)

where sup(·) denotes taking the supremum. For P = 1, i.e. provided that WSD operate
collocated with a single licensed system only, (2.41) assumes the form [105]:

zGLRT(n) =
λmax

1
N
Tr[Rr(n)]

. (2.42)

Another method based on the GLRT principle is the arithmetic to geometric mean (AGM)
detector. As the name suggests the test statistic of AGM [109]

zAGM(λr) =
1
N

∑N
i=1 λi,r

(
∏N

i=1 λi,r)1/N
(2.43)

is based on the ratio of the arithmetic mean to the geometric mean of the N eigenvalues
of Rr(n), which we assume are collected into the vector λr = [λ1,r, λ2,r, . . . , λN,r].

2.2.2.3 Performance Analysis

Thus far a number of EBD-based methods have been presented but their performances
still remain to be investigated. This involves the tasks of finding the p.d.f. of each test
statistic under H0 and H1 and defining a suitable procedure to set the detection threshold
γ. Both tasks have received great attention recently, with treatments available in the EBD
literature ranging from semi-asymptotical [103] and asymptotical [106] to exact methods
[104] among others [107]. The derivation of eigenvalue distributions and the definition of
thresholds for each of the EBD-based methods described in the aforementioned references
transcend the scope of the present dissertation. In any EBD method, however, we observe
that the bottom line is to take advantage of the fact that the target signals either occupy
a subspace of dimension strictly smaller than N or have non-white spectrum [109]. EBD
is therefore particularly suitable when the samples are highly correlated and ideal ED
is not optimum anymore. This is exactly the case of narrowband PMSE signals, which
occupy less than 1/30 of a TV channel [108]. Neither ED nor EBD requires accurate
synchronization but the former always suffers from SNR walls whereas the latter is robust
against noise uncertainty depending on the method used [103].

As another advantage, the performance of EBD has been shown to be robust in faded and
time-dispersed channels for the following signal types:
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• Advanced Television Systems Committee (ATSC) captures [103].

• Randomly generated signals and PMSE signals [103][108][109].

• Other generic or non-specified signals [104][105][107].

2.2.3 Spectrum Correlation Detection

Signal processing techniques that are blind or semi-blind are advantageous because they
require little or no prior knowledge of r(n). As such, they can be used to detect virtually
any kind of target signal. In practice, however, some prior knowledge about the structure
of s(n) will be frequently available to WSD. If this is the case, there may be advantages
in constructing test statistics to examine the correlation of this a priori information with
an estimate locally computed based on r(n).

2.2.3.1 General Approach

Wireless channels are generally perturbed by multipath fading, so it is reasonable to model
the received signals as being second-order stationary random processes [50]. Under this
assumption, the second-order moment of such a process can be described in the time
domain by its autocorrelation function (ACF)

Rr(τ) = E [r(t)r∗(t− τ)] , (2.44)

where τ is the time lag and the superscript “∗” stands for complex-conjugate. Examining
(2.44) under the two hypotheses in (2.2) yields

{

H0 : Rr(τ) = σ2
wδ(τ)

H1 : Rr(τ) = Rs(τ) + σ2
wδ(τ),

(2.45)

where δ(·) is the Dirac delta sequence. If the autocorrelation sequence {Rs(τ)} is abso-
lutely summable and has finite energy, the Wiener-Khinchin theorem guarantees that the
discrete-time Fourier transform (DFT), also called power spectrum density (PSD)

Ss(f) =

∞∑

τ=−∞

Rs(τ)e
−j2πfτ , (2.46)

exists and uniformly converges for all f ∈ [0, 1]. This allows us to rewrite (2.45) in terms
of its frequency domain description:

{

H0 : Sr(f) = σ2
w

H1 : Sr(f) = Ss(f) + σ2
w.

(2.47)

Since the target signals typically exhibit unique spectral patterns, distinction between H0

and H1 can be made by examining the spectral correlation between Ss(f) and Sr(f). The
test statistic of this spectrum correlation detector (SCD) is [93]:

zSCD(f) = 2π

∫ 1

0

Sr(f)Ss(f)df. (2.48)
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Even in the case that Ss(f) is available a priori, Sr(f) is always corrupted by noise and
therefore needs to be estimated. Since ACF and PSD form a Fourier pair Rr(τ) ⇔ Sr(f),
the spectrum estimation task is usually viewed as equivalent to that of estimating Rr(τ)
and then Fourier transforming the estimated ACF. Though the ACF can be determined
in the limit by using the time-average

Rr(τ) = lim
M→∞

1

2M + 1

M∑

n=−M

r(n)r∗(n− τ), (2.49)

the practical amount of data available to WSD will be limited to a finite set of samples
n = 0, 1, . . . ,M − 1 and hence it is more realistic to use the finite sum [110]

R̂r(τ) =
1

M

M−1∑

n=0

r(n)r∗(n− τ) (2.50)

=
1

M

M−1−τ∑

n=0

r(n)r∗(n− τ), (2.51)

where τ = 0, 1, . . . ,M − 1. The last step leading to (2.51) is just to ensure that the r(n)
values falling outside the interval [0,M − 1] are excluded from the sum.

2.2.3.2 Test Statistics

The class of spectrum estimation techniques that rely on the DFT of an estimated ACF
to obtain the desired PSD is referred to as non-parametric methods. Once an estimate of
the ACF is available, one computationally simple alternative is the periodogram

ŜPER,r(f) =

M−1∑

τ=−M+1

R̂r(τ)e
−j2πfτ , (2.52)

which is an asymptotically unbiased estimator, i.e. the PSD estimates are on the average
equal to the true power spectra as the number of samples goes to infinity [110]:

lim
M→∞

E[ŜPER,r(f)] = Sr(f). (2.53)

A periodogram-based SCD can be constructed by rewriting the test statistic in (2.48) as

zPER(τ) =
1

M

M−1∑

τ=0

ŜPER,r(τ)Ss(τ), (2.54)

which asymptotically converges to LRT at low SNR and, thus, is optimal according to the
NP criterion [50]. A major disadvantage of the periodogram is that it is not a consistent
estimator, i.e. its variance does not go to zero as the number of samples goes to infinity.
Instead, the variance of the periodogram is proportional to the squared magnitude of the
actual PSD [110]:

lim
M→∞

Var[ŜPER,r(f)] ≈ S2
r (f). (2.55)
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Other non-parametric methods, such as the Bartlett method (periodogram averaging), the
Welch method (averaging of modified periodograms), and the Blackman-Tukey method
(periodogram smoothing), are designed to reduce the statistical variability of the peri-
odogram thus providing consistent estimates of Sr(f). To see how spectrum estimation
can be realized consistently via periodogram averaging, assume that K uncorrelated re-
alizations of r(n), denoted as ri(n), i = 1, 2, . . . , K, are observed over 0 ≤ n < M ′. The
periodogram of the ith realization and the average of all K periodograms are [110]

ŜPER,i(f) =
2π

M ′

∣
∣
∣
∣
∣

M ′−1∑

n=0

ri(n)e
−j2πfn

∣
∣
∣
∣
∣

2

(2.56)

and

ŜAVG(f) =
1

K

K∑

i=1

ŜPER,i(f), (2.57)

respectively. If WBAR(f) denotes the DFT of a Bartlett window extending from −M ′ to
M ′, it can be seen from the expectation and variance of (2.57)

E
[

ŜAVG(f)
]

= E
[

ŜPER,i(f)
]

= Sr(f) ∗WBAR(f) (2.58)

Var
[

ŜAVG(f)
]

=
1

K
Var

[

ŜPER,i(f)
]

≈ S2
r (f)

K
(2.59)

that ŜAVG(f) is a consistent estimator because it is asymptotically bias-free and its vari-
ance approaches zero as K approaches infinity. In the Bartlett method, the assumption of
uncorrelated realizations can be relaxed by partitioning a single realization of r(n) into
K non-overlapping sequences of length M ′. The corresponding estimate is obtained by
making ri(n) = r(n+ iM ′) in (2.56)

ŜBAR,r(f) =
2π

M

K−1∑

i=0

∣
∣
∣
∣
∣

M ′−1∑

n=0

r(n+ iM ′)e−j2πfn

∣
∣
∣
∣
∣

2

, (2.60)

where M = KM ′ is the length of the single realization r(n). Hence, for the Bartlett-based
SCD, the test statistic in (2.48) can be rewritten as:

zBAR(τ) =
1

M ′

M ′−1∑

τ=0

ŜBAR,r(τ)Ss(τ). (2.61)

2.2.3.3 Performance Analysis

By exploiting the linearity of the DFT, it can be shown that the quadratic term in (2.60)
follows a central chi-square distribution with two degrees of freedom and, as consequence
of this fact, (2.61) has a central chi-squared distribution with 2K degrees of freedom. This
can be well approximated by a non-central chi-squared distribution χ2

κ(o) as long as the
parameters κ and o are set such that the skewnesses of χ2

κ(o) and zPER are equal and the
kurtoses of χ2

κ(o) and zPER(n) are reduced to a minimum [50]. This approximation allows



Chapter 2. Related Work 54

the probability of false alarm of the Bartlett-based SCD to be evaluated numerically in
closed-form using

P SCD-BAR
fa = Pr [zBAR(n) > γ|H0] (2.62)

= 1− P

(
γ − c1√

c2
σχ2 + µχ2; κ, o

)

, (2.63)

where the first two cumulants

c1 =
1

M ′

M ′−1∑

τ=0

E
[

ŜBAR,r(τ)
]

Ss(τ) = σ2
wSs (2.64)

c2 =
1

(M ′)2

M ′−1∑

τ=0

Var
[

ŜBAR,r(τ)
]

S2
s (τ) =

σ4
w

KM ′2

M ′−1∑

τ=0

S2
s (τ) (2.65)

are obtained from the moment generating function of (2.61) and µχ2 and σχ2 account to
mean and variance, respectively, of the proposed χ2

κ(o) distribution.

Also according to [50], the SCD in (2.61) can reliably detect TV signals at very low SNR.
This is illustrated for the U.S. market, where analogue broadcast is easier to detect than
digital broadcast. This is so because the signals compliant with the National Television
Systems Committee (NTSC) standard have three sharp spectral features (corresponding
to the luminance, chrominance, and audio carriers), while those based on ATSC have only
one (the pilot tone located at the channel lower edge).

2.2.4 Cyclostationary Feature Detection

Modern communications rely on processes that, like source coding and modulation, are
known to couple stationary message signals with pulse trains, sinusoidal carriers, and other
periodic signals. Additional periodicities can be introduced by other processes along the
transmit chain, such as sampling and multiplexing. This relaxes the classical assumption
of stationarity and let the second and the higher order statistics of the target signals vary
periodically over time. Cyclostationary signal analysis reveals underlying cyclostationari-
ties that cannot be visualized in the PSD. This advantage can be exploited in a multitude
of contexts that include interference rejection, blind channel equalization/identification,
blind antenna array beam/null steering, signal identification and detection, and synchro-
nization [111]. In this section, we provide a minimum background on cyclostationary
signal processing theory required to discuss the theoretical implementations of cyclosta-
tionary feature detectors (CFD). Considering the low complexity requirements that are
introduced by portable WSD, we then describe a couple of more practical CFD that will
be used throughout the remainder of this dissertation.

2.2.4.1 General Approach

A discrete process x(t) is said to exhibit second order cyclostationarity if its mean and
time-varying correlation are periodic with some period T [112]

µx(t+ T ) = µx(t) (2.66)

Rx(t+ T, τ) = Rx(t, τ) (2.67)
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with mean and autocorrelation defined as:

µx(t) = E [x(t)] (2.68)

Rx(t, τ) = E [x(t)x∗(t− τ)] . (2.69)

The right hand of (2.67) can be expanded in Fourier series [112]

Rx(t, τ) =
∑

α

Rα
x(τ)e

j2παt (2.70)

with Fourier coefficients given by:

Rα
x(τ) = E

[
Rx(t, τ)e

−j2παt
]

(2.71)

= E
[
x(t)x∗(t− τ)e−j2παt

]
. (2.72)

The Fourier coefficients above represent the cyclostationarity of x(t) in the time domain
and are referred to as the cyclic autocorrelation function (CAF) of x(t). For each time
lag τ , the CAF measures the strength of the sinusoid in t at a given cycle frequency α.
The CAF is not identically zero for all nonzero α iff (2.69) contains an additive periodic
component, i.e. if x(t) is cyclostationary.

Provided that T exceeds the width of the CAF, the Parseval’s relation for Fourier trans-
forms can be invoked to approximate (2.72) in terms of its spectrum correlation function
(SCF) [112]:

Sα
x (f) =

∫ ∞

−∞

Rα
x(τ)e

−j2πfτdτ. (2.73)

2.2.4.2 Test Statistics

Now that we have put in place the expressions that describe the Fourier pair Rα
x(τ) ⇔

Sα
x (f) we can turn our attention into their application in the context of CFD. The bottom

line of CFD is that nonlinearities are used to regenerate a spectral line of the received noisy
signal at a cycle frequency α. The test statistic of such generic CFD can be represented
by a quadratic time-invariant system of the form

zCFD(n) =

∫ ∞

−∞

∫ ∞

−∞

kα(τs1 , τs2)x(n− τs1)x(n− τs2)dτs1dτs2, (2.74)

where τs1 and τs2 are time lags normalized by a sampling period Ts. If the kernel kα(τs1 , τs2)
is selected so as to maximize the SNR of the regenerated spectral line, it can be shown
that the optimum detector is the single-cycle detector (SD) [113]

zSD(n, f) =

∫ ∞

−∞

Sα
s (f) ∗ Ŝα

PER,r(n, f)dfe
j2παn, (2.75)

where the ideal Sα
s (f) is obtained from a stored noise-free replica of the target signal s(t)

and then correlated with the cyclic periodogram of the received signal r(n)

Ŝα
PER,r(n, f) =

1

T
RT (n, f + α/2)R∗

T (n, f − α/2), (2.76)
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where RT (n, f) represents the sampled complex envelope of a narrowband spectral com-
ponent with center frequency f and bandwidth on the order of 1/T . Consistency can
be achieved by smoothing/averaging cyclic periodograms [114], just like discussed in the
previous section for the case of conventional periodograms.

It is evident from (2.75) and (2.76) that SD measures the cyclic periodograms of r(n)
only at a single cycle frequency contained in s(t). To regenerate all possible spectral lines,
their complex envelopes need to be summed over all cycle frequencies. This likelihood-ratio
detector is known as multi-cycle detector (MD):

zMD(n, f) =
∑

α

zSDe
−j2παn (2.77)

=
∑

α

∫ ∞

−∞

Sα
s (f) ∗ Ŝα

PER,r(n, f)df. (2.78)

SD and MD offer robustness against noise uncertainty and ability to detect very weak
signals in the presence of noise as major advantages. As for the disadvantages, both
detectors are less practical from the implementation point of view because they are of
high complexity and require substantial prior knowledge of target signals. In MD, the
quantities Sα

s (f) are phase-dependent so that the method is optimal only if the phases
of s(t) are known. SD is a suboptimum solution that employs only one harmonic of the
fundamental cycle frequency but still requires additional information about s(t). The SCF
computation common to both SD and MD involves bidimensional transforms that, unlike
the real-valued unidimensional transforms typical in PSD-based analysis, are in general
complex-valued.

To alleviate the complexity and energy burdens due to FFT computations, signal detection
can be performed in the time domain by constructing test statistics based on the CAF of
r(t). This approach is particularly interesting for “blind” detection of orthogonal frequency
division multiplexing (OFDM) signals because the lack of information about the number
of subcarriers may cause a mismatch of FFT parameters, thus reducing the performance
of FFT-based methods [115]. In case of OFDM, the target signals can be represented in
continuous-time domain as

s̃(t) =
Ns−1∑

k=0

∞∑

l=−∞

Cl(k)g(t− lTSYM)ej2π∆fk(t−lTSYM), (2.79)

where k is the subcarrier index, l is the symbol index, Cl(k) is the complex constellation
transmitted by the kth subcarrier during the lth symbol, g(t) is a pulse shaping filter, TSYM

is the symbol duration, and lTSYM ≤ t ≤ (l + 1)TSYM. The discrete-time representation
of (2.79) is obtained by using a sampling period Ts, i.e. s(n) = s̃(nTs), so the subcarrier
spacing is ∆f = 1/(NsTs). Observing the form of the lth symbol

s̃l(t) =
Ns−1∑

k=0

Cl(k)e
j 2π
NsTs

k(t−lTSYMTs) (2.80)

it is convenient to generate the samples corresponding to each symbol by taking the inverse
FFT (IFFT) of Cl(k), k ∈ [0, Ns − 1]. This yields each symbol having duration equal to
the IFFT length, i.e. TSYM = TFFT, so the subcarrier spacing becomes ∆f = 1/TFFT.
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To absorb the inter-symbol interference (ISI) caused by time-dispersed channels, a cyclic
prefix (CP) is added before transmission. If the CP duration is TCP, this cyclic extension
is accomplished by copying the last TCP/TFFT samples of a symbol and appending them to
the front of the same symbol. In this fashion, a guard period is created in the time domain
and the symbol duration becomes TSYM = TCP + TFFT. Nevertheless, CP-based multi-
carrier systems remain sensitive to synchronization errors. Such errors may compromise
the independence among subcarriers and thus degrade performance, particularly when Ns

is large. In most existing OFDM-based standards, this drawback is mitigated by allocating
pilot symbols with the same amplitude in the frequency domain. The pilot positions are
predefined and follow a pilot insertion pattern created by some pseudo random binary
sequence (PRBS) so as to reduce PAPR. As we will see in Chapter 3, the OFDM-based
target signals considered in this dissertation have both CP and frequency-domain pilots,
so the signal generation process follows the block diagram depicted in Figure 2.5.

Figure 2.6 illustrates how the detection process can take advantage of the cyclostationar-
ities induced by the CP to distinguish between H0 and H1. The discrete autocorrelation
surfaces are highlighted by normalizing α and τ to TSYM and TFFT, respectively. For both
s(n) and r(n), these surfaces occur at α = n/TSYM, n = ±1,±2, ..., with peaks of similar
magnitude at τ/TFFT = ±1. Unlike, the CAF of a stationary process such as AWGN
exhibits magnitudes that are essentially zero for any α except for a peak at α = τ = 0.
This explains the noticeable magnitude gain verified at α = τ = 0 in the CAF of the
received signal. It is evident that CFD needs to know the cycle frequencies where the
cyclostationarities occur in order to determine the presence of r(n) based on its CAF.
Substantial complexity and time savings can be obtained by performing cyclostationary
analysis in the time domain (as compared to SD-based analysis in the frequency domain),
but the full computation of the CAF may still be prohibitive for some applications. To
overcome this practical shortcoming, we can use a “simplified” CAF that measures all
cycle frequencies yet only at some (a priori known) lags of interest, measures α = 0 at all
lags, or a combination of both. For α = 0, Rα

x(τ) and Sα
x (f) reduce to the conventional

ACF and PSD, respectively.

TCP TFFT

Input bit 

stream

s(t)

Serial to 

Parallel

Signal 
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to Serial

Cyclic
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Mask
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...

Fig. 2.5: Simplified block diagram of a baseband OFDM transmitter.
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(b) Noise signal
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(c) Received signal (SNR|dB = −3 dB)

Fig. 2.6: Exemplary CAF plots obtained by making x(t) equal to three OFDM symbols
in (2.72). The negative (symmetric) time lags were omitted for simplicity
(Ns = 2048, CP = 1/4).
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Fig. 2.7: Exemplary ACF plot obtained by making α = 0 and x(t) equal to three OFDM
symbols in (2.72). Time lags are normalized by the useful symbol length TFFT

(Ns = 2048, CP = 1/4).

Figure 2.7 suggests that we can construct a test statistic to exploit the fact that the
time interval between the major peak (at τ = 0) and any secondary peak (at τ = ±1)
in the ACF of an OFDM signal should be equal to the useful symbol length TFFT. In
fact, it can be shown that the ACF coefficients at lags τ = ±TFFT correspond to the log
likelihood ratio test statistic (LLRT) in the low SNR regime [116]. If TD = TFFT/Ts and
TC = TCP/Ts respectively denote the total number of data samples per symbol and the
number of samples in the CP of a symbol, the hypotheses in (2.2) can be rewritten in
terms of the ACF coefficient ϕ(τ) = E [x(t)x∗(t− τ)] /E [x(t)x∗(t)]

{

H0 : ϕ(±TD) = 0

H1 : ϕ(±TD) = ϕchan

(2.81)

with the value under H1 given by [116]

ϕchan =
TC

(TD + TC)

νchanσ
2
s

(νchanσ2
s + σ2

w)
, (2.82)

where the parameter νchan dictates the channel model, i.e. νchan = 1 for AWGN and
νchan =

∑L−1
m=0 E

[
|h(m)|2

]
for a multipath channel of order L.

Based on the NP criterion with CFAR, two test statistics and their corresponding distri-
butions under H0 and H1 are derived in [116] for autocorrelation-based detectors (ACD)
that require different amounts of prior knowledge of target signals. The first proposed
ACD entirely lacks information about the CP length, whereas the second one requires
both CP length and synchronization for detection. On the one hand, perfect synchro-
nization between WSD and licensed transmitters may be quite unrealistic in practice. On
the other hand, some information about TC or TD will typically be available or can be
obtained by testing different values from a likely small set of allowed options.

While the assumptions that the CP length is known and synchronization is perfect can
provide an upper bound on the performance of that would result otherwise, i.e. in case
this information partially or entirely lacks [116], it is more realistic to keep the amount
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of prior information of target signals at a minimum. An alternative ACD, which needs to
know only the number of data samples per symbol TD = TSYM/Ts has the following test
statistic [118]

zACD(n) =
1

M−TD

∑M−TD−1
n=0 Re {r(n)}

1
M

∑M−1
n=0 |r(n)|2

, (2.83)

which evaluates the ACF of r(n) at just one side peak induced by the CP and normalizes
the outcome by the energy of r(n). For a real-valued ACF coefficient, ϕ(τ) = ϕ(−τ) and
any of the side peaks can be used in (2.83) without loss of generality.

By inspecting Figure 2.7 again, we see that the ACF of an OFDM signal exhibits symmet-
ric secondary peaks. This allows one to construct an alternative test statistic that exploits
this symmetry property. The test statistic of this blind twin peak detector (BTPD) is [119]

zBTPD(n) =
∑

τs

1

M

M−1∑

n=0

r(n)r∗(n− τs), (2.84)

where τs are time lags normalized by a sampling period Ts. After having computed the
ACF of r(n), BTPD carries out a peak search to determine the secondary peaks on both
sides of the ACF, i.e. at τs = ±TFFT. The channel is declared occupied in case symmetry
holds. As a by-product of this process, the position of the positive peak relative to τs = 0
can be used to determine the subcarrier spacing ∆f .

2.2.4.3 Performance Analysis

The performance analysis of CFD is in general mathematically intractable and the Monte
Carlo (MC) method has to be used for setting threshold and evaluating Pfa and Pd [52].
The performances of some ACD (not considered in this dissertation) are investigated via
simulation in [116] when generic OFDM signals are detected under AWGN, multipath,
and shadowing scenarios. If different nodes “see” independent channels it is shown that
cooperation can mitigate the undesirable effects introduced by shadowing. The detection
of signals based on the Digital Video Broadcast-Terrestrial (DVB-T) standard [117] over
Rayleigh and Rice fading channels is considered in [118], where it is shown that the
frequency selectivity of the channel does not influence much the performance of ACD.
Among the five state-of-the-art OFDM detectors investigated therein, the ACD in (2.83)
shows performance similar to that of other detectors but has the advantage of needing only
TD to work. The detection of DVB-T signals in noise of uncertain power is investigated
in [119] and [120] when BTPD operates under AWGN and multipath fading, respectively.
Among the four CP-based methods discussed therein, BTPD is the one that offers the best
compromise between detection performance and complexity in real-time implementation
and is robust against noise uncertainty. The double of τs values required in (2.84) makes
BTPD twice as complex as ED (and ACD) but this apparent disadvantage can be used
to obtain a posteriori knowledge of ∆f . Once ∆f has been determined, we can employ
BTPD to distinguish between two OFDM signals that have different subcarrier spacings.
Obtaining signal classification ability at the expense of some increase in complexity seems
reasonable and may become quite desirable if WSD need to resolve for different OFDM-
based target signals within a multi-standard operation environment. As a disadvantage,
ACD and BTPD are dependent of the number of subcarriers and the CP length of the
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target signal. This dependence is studied in [115] for multi-mode generic OFDM signals
and confirmed in [121] for CP-based methods in general.

CFD is applicable to detect non-OFDM signals too. The cyclostationary features embed-
ded in Phase Alternating Line (PAL) signals [122] and frequency-modulated (FM) signals,
conveyed by PMSE, are exploited in [123] to detect the presence of such analogue systems
under AWGN. In case of PAL, it is assumed that prior knowledge of the picture and audio
carriers is available so that a couple of SD can be used to detect the four spectral peaks
induced at ±3.5 MHz and ±15.5 MHz, respectively. However, we will see later in this
section that the narrowband FM-based signals used in PMSE can be centered anywhere
within the TV channel. This means that, in practice, no prior information is available in
this case. This issue is addressed using MRSS under AWGN in [124] and then extended
to multipath fading channels in [125]. Basically, the idea is to construct test statistics
to maximize the SCF over all cyclic frequencies. Beside of being highly complex (MD is
required), both approaches are slightly susceptible to noise uncertainty.

2.2.5 Other Feature Detectors

A number of other feature detectors (OFD), not necessarily cyclostationary, can be used
as signal specific techniques. To keep the sensing time requirements low, it is preferable to
select a feature that is transmitted the most frequently as possible. Since the availability
and strength of a feature largely depend on the target signal, the structure of this section
slightly differs from the rest of this chapter in the sense that: (i) for simplicity, we group
methods having different working principles in the OFD class; and (ii) we discuss the
related work in terms of OFDM-based signals and non-OFDM signals.

2.2.5.1 OFDM-based Signals

In emerging TVBD standards, such as IEEE 802.22 [126] and ECMA-392 [127], the use
of preambles is advanced to perform a number of tasks including synchronization, channel
estimation, frequency offset estimation, and received power estimation. Detection based
on preambles has the advantage of allowing different levels of sensitivity, e.g. depending
on whether the entire preamble is detected or just part of its training sequences [128].
In general, preambles are not used in digital TV standards so that synchronization and
channel estimation have to be realized by other means. Similar to DVB-T, the Integrated
Services Digital Broadcasting-Terrestrial (ISDB-T) standard [129] is OFDM-based and
mandates the use of scattered pilots (SP) modulated at boosted power level to accomplish
these tasks. In contrast, the Digital Terrestrial Multimedia Broadcast (DTMB) standard
relies on time-domain synchronous OFDM (TDS-OFDM) where the CP is replaced by a
known pseudo noise (PN) sequence that, beside of playing the role of a guard interval,
allows to channel estimation and synchronization in the time domain. Together with
ATSC, discussed later on in this section, DVB-T and ISDB-T account for the absolute
majority of TV broadcasts in digital format around the globe, while DTMB is deployed
only in China, Hong Kong, and Macau. Therefore, and since SP are also available in IEEE
802.22 and ECMA-392 signals, we limit the discussion that follows to CP-OFDM signals.
For TDS-OFDM, some sensing algorithms that utilize the PN sequences embedded in the
DTMB frame headers can be found in [130].
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Consider the OFDM signal represented in continuous-time domain

s̃p(t) =

Ns−1∑

k=0

∞∑

l=−∞

Cl(k)e
j2π∆fk(t−TCP−lTSYMTs), (2.85)

where lTSYM ≤ t ≤ (l + 1)TSYM and the indexes (k, l) are in the set P of subcarriers onto
which the SP are mapped. As long as the OFDM parameters of the target signals are
available, the coefficients Cl(k) will be fixed and known for k, l ∈ P. In this case, s̃p(t)
becomes deterministic and can be exploited for detection. If fs is a standard-compliant
elementary sampling frequency, i.e. determined such that target signals fulfill standardized
bandwidth requirements, the test statistic of this scattered pilot detector (SPD) is [118]

zSPD(n) = max
τs∈{0,1,...,Tcyc−1}

∣
∣
∣
∣
∣

M−1−τs∑

n=0

sp(n)r
∗(n+ τs)

∣
∣
∣
∣
∣
, (2.86)

where the sequence sp(n) = s̃p(nTs) is cyclic with period Tcyc. Though capable of out-
performing ED and other four state-of-the-art OFDM detectors under AWGN (at the
expense of an increased amount of information of the target signals), the SPD in (2.86)
can poorly detect DVB-T signals when operating under multipath fading [118].

The drawback above can be overcome by exploiting the property that the mean of the
time-domain symbol cross-correlation (TDSC) of two OFDM symbols is nonzero as long
as those symbols have the same frequency-domain SP. The accumulated TDSC function
can be defined as

ΨTDSC(∆l) =
1

NlNs

Nl∑

l′−l=∆l

Ns−1∑

n=0

xl(n)x
∗
l′(n), (2.87)

where the indexes l and l′ denote the symbols that have the same SP pattern, ∆l = l′ − l
is the symbol index difference, and Nl is the number of correlated symbol pairs having
the same SP pattern. In the context of CR, (2.87) was originally introduced in [121] along
with two different TDSC approaches. The first one, based on the NP criterion, works only
for ∆l fixed. The test statistic is:

zTDSC-NP(∆l) = |ΨTDSC(∆l)| . (2.88)

The second approach relies on maximum ratio combining (MRC) to improve performance
by combining the various ΨTDSC(∆l) that arise when different ∆l are used. This allows
one to construct a new test statistic

zTDSC-MRC(∆l,∆l + ξ) =

∣
∣
∣
∣
∣

∑

∆l

NlNl+ξΨTDSC(∆l)Ψ∗
TDSC(∆l + ξ)

∣
∣
∣
∣
∣
, (2.89)

where the products NlNl+ξ are the combining coefficients and ΨTDSC(∆l)Ψ∗
TDSC(∆l + ξ)

expresses the conjugate product of two accumulated TDSC functions.

TDSC methods perform similarly under both AWGN and multipath fading channels (Rice
and Rayleigh) and are not impacted by DVB-T signals with different CP lengths, though
TDSC-MRC outperforms TDSC-NP at the expense of increased complexity [121]. MRC
is known to be the optimal combining scheme but since it requires knowledge of all the
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fading parameters its optimality comes at the expense of increased complexity and amount
of channel information [131]. TDSC methods are further investigated in [132], where real-
world DVB-T captures and filter bank multi-carrier (FBMC) signals are detected when
knowledge of the noise power and synchronization are both imperfect. Under such practical
operation conditions, it is shown via simulations that the performance of TDSC methods
is independent of noise uncertainty and carrier frequency offsets (CFO) but TDSC-NP is
more robust than TDSC-MRC against sampling frequency offsets (SFO).

CFO and SFO need to be modeled for a better understanding of how the detection process
is impaired in the presence of synchronization errors. Assuming synchronized sampling,
the individual impact of CFO can be considered by passing (2.80) through the channel
and receiving its noisy version at a mismatched carrier frequency f ′

c [133]

r̃l(t) =
1

Ns

Ns−1∑

k=0

H(k)Cl(k)e
j 2π
NsTs

k(t−lTSYMTs)ej
2π

NsTs
ǫct + wl(t), (2.90)

where it is seen that the normalized CFO ǫc = (f ′
c−fc)/∆f equally affects all subcarriers.

If the licensed transmitter and WSD are not synchronized but fc is known a priori by the
former (ǫc = 0), then the individual impact of SFO results from sampling (2.80) using an
incorrect sampling period T ′

s . This introduces a sample timing drift per OFDM symbol
td = (T ′

s − Ts)TSYM that yields

rl(n) =
1

Ns

Ns−1∑

k=0

H(k)Cl(k)e
j 2π
Ns

k

[

n

(

T ′

s
Ts

)

−lTSYM( ǫs
1+ǫs

)
]

+ wl(n), (2.91)

where ǫs = (f ′
s−fs)/fs is the normalized SFO. The detrimental effects introduced by CFO

and SFO are better perceived by looking at the frequency-domain samples of (2.90) and
(2.91). In this fashion, it is shown in [134] that CFO causes the same amplitude reduction
and phase shift of Cl(k), ∀k, whereas these impacts are not equal for all subcarriers in
case of SFO. In addition, both types of frequency offsets create inter-carrier interference
(ICI) due to the loss of orthogonality between subcarriers.

2.2.5.2 Non-OFDM Signals

We have seen that the detection of OFDM signals can be greatly facilitated by exploiting
the cyclostarionarity introduced by appending the CP or correlating the SP mask in the
time domain. Depending on the standard under consideration, non-OFDM signals may
also possess several distinguishing features that can be exploited for detection. The first
step when searching for such features is to examine the structure of the target signals.
For instance, ATSC signals are structured in frames, fields, and data segments, each data
segment consisting of 832 symbols [135]. The first four symbols, denoted as data segment
SYNC, provide synchronization within a data segment. The remaining 828 symbols of a
data segment carry data, which is modulated using eight-level pulse amplitude modulation
(PAM). At the field level, synchronization is provided by PN sequences referred to as data
field SYNC. As shown in Figure 2.8, after the frames are formatted and multiplexed with
SYNC signals, a in-phase pilot is added to every symbol to facilitate carrier recover at
the ATSC receiver.
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Fig. 2.8: Simplified block diagram of a baseband ATSC transmitter (adapted from [135]).

Since the pilot sits at a known location relative to the signal (about 310 kHz away from
the lower channel edge) it is perhaps the most widely feature used in spectrum sensing
for ATSC signals. Algorithms based on the energy and location of the pilot are proposed
in [136] and evaluated using a set of signals especially created in laboratory so as to
reflect real-world conditions. In some of these signals, the pilot tone is attenuated due to
multipath fading thus causing performance losses up to 6.5 dB in both algorithms. All in
all, the pilot-energy algorithm performs slightly (≈ 1 dB) better than the pilot-location
algorithm. Nevertheless, an advantage of the algorithms exploiting the pilot location is
that the noise power needs not be exactly known, whereas algorithms that measure the
pilot energy are susceptible to noise uncertainty.

Whether targeting at the energy or the position of the pilot tone, reliable detection be-
comes hard if strong signals are transmitted in the lower adjacent channel, i.e. the pilot
can be easily shadowed by the power leakage. This issue can be overcome by using interfer-
ence alleviating filters before detection, exploiting other signal features, or a combination
of both. Though this cannot be seen in Figure 2.8, the SYNC signals used in ATSC have
distinguishing features. Unlike the ordinary 8-PAM data symbols, they are periodic binary
modulated signals that are not passed through any randomizer, encoder, nor interleaver.
The PN sequences used in data field SYNC signals are inserted into the data stream at
most every 24.20 ms, while the data segment SYNC symbols occur regularly at intervals
of 77.30 µs. It is evidently better to exploit the data segment SYNC symbols because their
higher repeating rate will allow to reduced sensing time requirements. Also, as compared
to the pilot, the data segment SYNC provides a stronger feature for detection because its
power is spread almost over the whole TV channel. The idea of exploiting the correlation
of two data segment SYNC elements to detect ATSC signals is presented in [51]. The
derivation of a test statistic to this purpose follows the lines used to construct the test
statistics of TDSC methods. To begin with, define the accumulated SYNC function

ΨSYNC(n0, τd) =
1

4Nτd

Nτd
−1

∑

n=0

3∑

l=0

r(n0 + l + 832n)r∗ [n0 + l + 832(n+ τd)] , (2.92)

where n0 is the starting sample index, l the symbol index in a data segment SYNC, τd is
a non-zero positive integer representing the correlation delay in terms of data segments,
and Nτd is the number of pairs of data segment SYNC that are distant τd data segments
from each other.
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For a certain sensing time, the noise embedded in (2.92) is low correlated for different τd

values. This means that performance can be improved by linearly combining the various
ΨSYNC(n0, τd) that result from different τd. The test statistic of this ATSC segment SYNC
detector (ASSD) is

zASSD(n0, τd) = max
0≤n0≤831

∣
∣
∣
∣
∣

∑

τd

NτdNτd+1ΨSYNC(n0, τd)Ψ
∗
SYNC(n0, τd+ξ)

∣
∣
∣
∣
∣
, (2.93)

where NτdNτd+1 are the combining coefficients and ξ = 1 allows to efficient utilization of
all conjugate products of two accumulated SYNC functions ΨSYNC(n0, τd)Ψ

∗
SYNC(n0, τd+ξ)

obtained in a fixed sensing time.

Signals compliant with the NTSC standard have a rate of 29.97 frames/s and consist of
525 lines per frame, each line having duration of 63.55 µs [122]. All but the first nine
lines within a field contain a horizontal SYNC (HSYNC) signal, most followed by a color
burst that serves as a reference signal to the receiver. Since this is analogous to the data
segment SYNC of ATSC, (2.92) and (2.93) can be modified to yield a NTSC horizontal
SYNC detector (NHSD). The performances of ASSD and NHSD have been investigated in
[51] when field captured data files are detected under AWGN. The densities of the HSYNC
signal and the data segment SYNC are about 7.40% and 0.48%, respectively, so NHSD
outperforms ASSD in all cases studied. Intuitive extensions to scenarios other than AWGN
can be made by noting that τd is sufficiently large in ATSC and NTSC. Both detectors
should experience the same timing offsets, frequency offsets, and multipath effects.

In contrast to standard-compliant target signals, PMSE signals are technically more chal-
lenging to detect. PMSE systems adopt devices such as wireless microphones (WM) that
convey nonstandardized signals and thus may fail to make efficient use of spectrum. As
seen in Section 1.3, this is one of the reasons that motivated the FCC in not reserving
more spectrum to WM use in the U.S. [18]. In parallel, significant effort towards improv-
ing the spectrum efficiency of PMSE has been put on digital technologies that rely on
proprietary modulation schemes. Thanks to this effort, it is possible today to pack about
30 digital WM units into a 6 MHz channel. Other critical issues, such as quality of service,
have also been addressed and some chipsets currently available can deliver very high audio
quality with delay as low as 1.89 ms [137]. Nevertheless, to the best of our knowledge, the
task of detecting signals conveyed by hybrid and digital WM has not been addressed to
date1. Particularly, in the context of WSD, most emphasis has been put on the problem
of detecting FM-based WM operated by PMSE in the TV bands.

Consider the FM signal represented in continuous-time domain [51]

s̃FM(t) = Ac cos

[

2πfct+ 2πfdev

∫ t

0

m(u)du+ θ

]

, (2.94)

where Ac, fc, and fdev are the magnitude, center frequency, and frequency deviation of
the carrier used to modulate the audio signal m(t) and the random phase θ is uniformly

1 This may be due to the fact that digital WM operation is typically targeted at higher frequency bands,
e.g. 2.4 GHz and 6.1−6.6 GHz bands. Another possible reason is that, despite of its potential to improve
efficiency, digitisation is still controversial because of the concerns it raises about battery lifetime and
suitability for some PMSE use cases. Hence, though some manufacturers have already started offering
hybrid analogue/digital and purely digital systems, the currently deployed WM are mostly based on
FM.
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distributed in (0, 2π). Typically, the values assumed by m(t) and fdev make (2.94) resemble
a pure sinusoid at low SNR. In the frequency domain, this corresponds to a “spike” that
can be theoretically exploited for detection because of the SNR boost created by the ratio
of the occupied signal bandwidth and the much larger bandwidth of a TV channel.

When the WM input is silent, the phase θ changes very slowly with the time so that the
PSD of a practical WM signal may contain more than a single narrowband spike. Distinc-
tion between the intended WM signals and other unintended signals becomes hard in this
case due to a number of issues [138]. Firstly, the presence of multiple narrowband spikes
also characterizes other signals including spurious emissions, quantization noise, leakages
from adjacent channels, and other RF impairments. This is the reason why the laboratory
tests in [22] had to be carried out in an anechoic chamber. Secondly, lack of standard-
ization results in operational parameters that vary according to manufacturer and device
model, e.g. fc, fdev, and side-tone placements. Since fc is not fixed, multiple WM units
are free to operate anywhere within a TV channel. This issue reinforces the importance of
blind techniques, among which EBD and wavelet-based MRSS have been receiving spe-
cial attention. While EBD usually assumes perfect knowledge of fc [103][108][109], this
assumption can be relaxed in MRSS because the sensing resolution can be matched to
the occupied signal bandwidth (W ) [124]. Wherever the application permits, more so-
phisticated spectrum estimation techniques may be used to estimate fc before performing
detection. This is the case of the pseudospectra obtained via autoregressive modeling. The
magnitude of the peaks exhibited in the pseudospectrum no longer represent the actual
power levels but it can be used to extract the center frequencies of the sinusoids buried
in noise [139]. See [140] for an application of pseudospectra in the context of WM signals.

In the U.S., the FCC mandates that PMSE operation should be 25 kHz offset from the
upper and lower limits of a 6 MHz channel. Formed from a combination of adjacent 25
kHz segments, W should not exceed a maximum of 200 kHz. This limits the total number
of possible carrier frequencies to Nf = 1 + (6 MHz −100 kHz)/(25 kHz) = 237 carriers.
If all possible carrier frequencies are collected into the set F = fc0, fc1 , . . . , fcNf−1

, one can
take advantage of this prior knowledge using the test statistic [51]

z′MF(fc) = max
fc∈F

zMF(fc) (2.95)

with the test statistic for each individual fc being a matched filter (MF) of the form

zMF(fc) =
∑

τs

Rr(τs) cos(2πfcτs), (2.96)

where τs are time lags normalized by a sampling period Ts and the autocorrelation Rr(τs)
is computed for and averaged over different τs values. Since s̃FM(t) and n(t) are both
zero-mean and independent processes, Rr(τs) can be obtained from the sum of ACFs

Rr(τs) = Rs(τs) +Rn(τs), (2.97)

where the Rs(τs) that results from plugging (2.94) into (2.44) can be simplified to

Rs(τs) ≈
A2

c

2
2πfcτs (2.98)

provided that fc is much larger than both fdev and τs [51].
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In general, MF is known to be the optimum detector that maximizes the received SNR
when prior knowledge of the target signal is available. Another distinguishing feature
of MF is that the required number of samples scales only as O(1/SNR) in the low SNR
regime, thus allowing to achieve a given operation point (Pfa, Pd) in the ROC using shorter
sensing time than ED. As for the disavantages, the use of MF imposes tight synchroniza-
tion, high implementation complexity, and high power consumption [47]. With respect to
the specific implementation in (2.96), the optimality of MF holds only when fc is known.
Otherwise, the exhaustive search performed in (2.95) results in increased complexity and
degraded performance. It is also worth noting that, even in case of known fc, (2.96) acts
as a tone detector and as such it is sensitive to those unintended spikes typically present
in practical operation environments.

2.3 Chapter Summary

In this chapter, we have reviewed the related work that served as the basis for the contri-
butions made in this dissertation. Specifically, based on a number of selected publications,
we have summarized the most promising signal processing techniques for TVBD and more
general WSD applications. From this survey, it turns out that the related work currently
lacks contributions on the following aspects:

• Baseline for comparison: Number of samples, channel bandwidth, sensing time,
type and characteristics of target signals, channel model (along with multipath pro-
files where appropriate), and number of runs over which the results obtained through
MC simulation are averaged constitute aspects that play a crucial role in the result-
ing performance of any method. In the absence of one or more of these settings, as
typical in the literature, it is hard to establish fair comparisons even when the meth-
ods being compared belong to the same class, the assumptions made when modeling
the detection process are the same, and/or the operation environment taken into
account is similar.

• Broader scope of application: At the time of this writing, the majority of publi-
cations available in the spectrum sensing literature used to evaluate the performance
of proposed methods having only a single market in mind, e.g. the detection of ATSC
signals in the U.S. or of DVB-T signals in Europe. As we have advocated in Chapter
1, the commercial success of WSD based on a given method depends on the ability of
that method in achieving economies of scale. This calls for WSD designed to operate
in multiple markets where different types of licensed systems, not necessarily collo-
cated deployed, may be operating. On the one hand, it may seem tempting for those
supporting the use of GDA to fulfill this goal by equipping WSD with additional
hardware to determine location. On the other hand, we also have seen in Chapter 1
that GDA introduces extra costs to WSD design, suits only spatially static environ-
ments, and cannot alleviate the digital dividend. Cooperation-based approaches like
CSS and WSN are thus more advantageous because they are network-centric (alle-
viate burdens to WSD design) and offer a broader scope of application. However,
we have seen in this chapter that much has been done in terms of signal detection
but the literature on signal classification has not managed yet to distinguish target
signals based on multiple standards. See, e.g. [141] and the references therein for a
survey on signal classification approaches.
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• Deeper understanding of information acquisition: While most work on CSS
relates to the processes of exchange and fusion of information, the information ac-
quisition process has received less attention to date. At the local level, spectrum
sensing has been typically modeled using techniques that are blind (EBD) or semi-
blind (ED). Therefore, it is hard to name a single contribution that deals with the
case where the nodes engaged in cooperation rely on signal specific techniques to
perform local sensing. In this context, an interesting research question that remains
open is whether different local sensing methods allow to different cooperation gains.
Likewise, the benefits of cooperation have been illustrated mostly in the presence of
multipath fading and shadowing though it is intuitive that CSS also may have po-
tential to alleviate the losses introduced by other sources of uncertainty, e.g. actual
noise level, carrier and sampling frequencies used at the licensed transmitter, etc.

• Realistic operation environments: Robust signal detection using ED is known
to be limited by SNR walls when the uncertainty about the actual noise level is taken
into account. The detection of target signals buried in noise of uncertain power has
received some attention recently, but the literature has not managed thus far to
address the effect of other underlying uncertainties present in the operation envi-
ronment. This includes, for instance, the impact exerted on the detection process
by the lack of exact knowledge of channel fading coefficients, carrier and sampling
frequencies used at the licensed transmitter, and even the type of target signal cur-
rently being detected. Apart from ED and some CP-based methods, e.g. ACD and
BTPD, less is known about how such sources of uncertainty affect the performance
of signal specific techniques.

We deal with all the aspects above in the remainder of this dissertation. Instead of studying
each of them on an individual basis, we develop a comprehensive simulation-based frame-
work that also allows us to analyze the sinergies created when two or more of the above
aspects are considered simultaneously. Using this approach, we expect to contribute to a
deeper understanding of the related work and, eventually, shed light on some promising
research avenue that has been less investigated to date. The outcomes of this study, includ-
ing a thorough analysis on the issue of method selection for future testbed/demonstrator
implementation and the determination of theory gaps that are worth analytical investi-
gation, will hopefully support the development of WSD and their posterior introduction
to the market.





Chapter 3

The MESS Platform

We have seen in Chapter 1 that the choice of the method used to determine white spaces
plays a crucial role in the feasibility of future WSD. Under the assumption that candidate
methods should additionally commit to the decrease of the digital divide, we have argued
that sensing-based approaches that enforce cooperation among nodes are more preferred
for developing markets. Next, we have observed that even such network-centric approaches
will only make economic sense if the cost and complexity of individual nodes is as low
as it can possibly be. Thus, economies of scale can be achieved provided that WSD can
determine the region where they currently operate. In the specific case of the TV bands,
the operation region can be determined on the basis of the signals broadcasted over the
air within the sensitivity region of WSD. The bottom line is that two different digital (or
analog) standards are in general not deployed collocated, so a WSD can take advantage
of the current TV broadcast deployments to identify the region where it finds itself in. In
view of these facts, we have suggested that the context awareness required to distinguish
among different regions can be obtained via signal classification.

In our search for candidate methods that can fit the purpose of signal classification, we
have reviewed in Chapter 2 the signal processing techniques currently regarded as the most
promising for WSD. Since we intend to classify different signal types, it is important to
assess each method not only in terms of its detection performance but also the strength of
the feature that method uses for detection. This kind of assessment calls for a standardized
(or widely accepted) evaluation scenario that allows to establish comparisons without
the need of implementing each and every method. Unfortunately, no such an evaluation
scenario exists and the related work frequently lacks basic information about the settings
used in the simulation work. This makes it difficult to compare two approaches proposed
by different research groups. Such lack of baseline for comparison provided us with the
initial motivation to construct a sensing platform using Matlab. Additional motivation
was provided by the mathematical intractability of some methods (whose performance
can only be evaluated via MC simulation), and, of course, by our interest in contributing
to a better understanding of the gaps highlighted in Section 2.3.

Having these goals in mind, the major design requirement of our sensing platform was the
simulation of multiple detection methods when target signals based on multiple standards
are detected in a realistic operation environment where multiple sources of uncertainty
may be present. Our implementation effort resulted in the multi-environment spectrum
sensing (MESS) platform, described in this chapter in terms of Figure 3.1. We start in
Section 3.1 with an approach to generalize the results in the related work. Basically, we
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Fig. 3.1: Functional block diagram of the MESS platform.

rely on a comprehensive signal generation process that creates target signals in compliance
with the TV broadcast standards most deployed worldwide, non-standardized FM-based
PMSE, and emerging TVBD standards. We continue in Sections 3.2 and 3.3, where we
respectively describe our implementations for the processes of channel generation and
signal detection. Both sections include detailed explanations about what underlying un-
certainties of these processes are taken into account and how they are modeled in MESS.
In Section 3.4, we explain how WSD can obtain context awareness via signal classification
in the TV bands, present the structure of a generic three-stage signal classification block,
and summarize the candidate methods that may be implemented at each stage. We close
the chapter in Section 3.5 with some remarks that, along with our simulation work in
Chapter 4, will guide us into the definition of the method to be used in each stage.

3.1 Signal Generation Block

To be efficient and reliable, the exploitation of white spaces imposes stringent require-
ments on WSD. We have seen in Chapter 1 that such requirements are more or less static
for GDA but become tougher or more relaxed for spectrum sensing depending on the
operation environment1. Also, it turns out from the related work discussed in Chapter 2
that the majority of contributions available in the spectrum sensing literature has consid-
ered simplified operation environments where the goal of WSD is to detect at most two
different types of target signals. The target signals considered are either in compliance
with a given standard, usually a well deployed digital TV broadcast standard, or based
on transmission schemes like OFDM. Eventually, this “common” approach is due to the
three following facts. First, blind techniques perform independently of the received signal,
so the performances obtained for different target signals should be essentially the same.
Second, signal specific techniques may work well for a given type of signal but make less
(or any) sense for other signal types. Finally, it is evident that assuming a single type of
target signal largely simplifies analysis. In particular, provided that certain conditions are
satisfied, the real performance of a method may be approximated by closed-form expres-
sions for the sake of facilitating the numerical analysis. Clearly, this common approach

1 Different protection levels can be granted to high- and low-power TV stations by proportionally specify-
ing larger and smaller protected contours in the database, whereas spectrum sensing cannot distinguish
between these two types of services.
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has been accomplishing the task of providing insights on in what direction signal process-
ing for WSD is going and should further evolve. However, the post-switchover era brings
about more challenging operation conditions that WSD will likely have to cope with. In
what follows, we characterize such operation conditions for the case of the TV bands.

3.1.1 The Post-switchover Era

The digital switchover in the TV bands translates into the immediate need for WSD to
coexist with digital TV standards and the non-standardized WM operated by PMSE. The
ability to coexist with analog TV standards is crucial too because it finds application in
those markets where simulcast services are still offered, i.e. TV broadcast is made available
both in analog and digital formats. In most countries, analog TV stations have not been
fully switched off yet due to a number of technical, commercial, and policy issues arising
in the switchover process [142]. Experience has shown that the transition from analog to
digital TV may occur relatively fast (e.g. fully completed within two years in Norway,
Sweden, and Switzerland) but may also involve longer periods (e.g. five years in the U.K.,
six yeards in Germany, and approximately seven years in the U.S). In addition to these
coexistence requirements, future WSD need to minimize mutual interference when sharing
channels in a common operating area. Mechanisms that allow for this kind of coexistence,
referred to as self-coexistence, have been specified in some emerging TVBD standards that
we discuss in the sequel.

IEEE 802.22 is probably the most prominent standard among all TVBD standards that
have proliferated recently. Regarded as the first standard for operation in TV white spaces,
IEEE 802.22 has been announced in the end of 2011 as the recipient of the IEEE standards
association emerging technology award. Within IEEE 802.22, a self-coexistence operation
mode is used to address the condition where multiple BS having overlapping coverage areas
share the same channel [126]. To avoid mutual interference, the channels are shared on a
per frame basis whereby a subset of the frames in a superframe is exclusively allocated to
each coexisting BS. The degree of self-coexistence obtained through this channel allocation
process can be further improved by regularly transmitting coexistence beacon protocol
(CBP) bursts that convey the identity of the currently transmitting devices.

The IEEE 802.22 standard was modified to allow operation of portable WSD only at a
later standardization step. In contrast, the ECMA-392 standard was designed from its very
beginning to allow both fixed and portable WSD [127]. This is perhaps the reason why
ECMA-392 includes distributed and centralized mechanisms for different self-coexistence
situations. The distributed mechanism allows WSD to detect alien beacons (e.g. 802.22
CBP or 802.22.1 disabling beacons [13]), adjust the beacon period and superframe struc-
ture adopted in ECMA-392 with those of alien WSD, and dynamically control the number
of beaconing WSD to avoid unnecessary large overheads. In the centralized mechanism,
several schemes can be applied depending on whether the self-coexistence situation occurs
between two master-slave networks, two peer-to-peer networks, or a peer-to-peer network
and a master-slave network.

Though both IEEE 802.22 and ECMA-392 mandate mechanisms for self-coexistence, only
the latter addresses coexistence between its standard-compliant WSD and other WSD.
Recalling the recent advancements in white space policy seen in Section 1.2, additional
requirements may be necessary in some markets to address the coexistence between dif-
ferent TVBD standards. In such markets, spectrum sensing can be directed to detect and
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classify signals transmitted by future TVBD standards, i.e. other than ECMA-392, thus
protecting IEEE 802.22 operation from harmful interference. Since the intended WSD can
be shielded from receiving the beacon signals, we envision the use of spectrum sensing
as a contingency tool in case of failure of the self-coexistence mechanisms mandated in
ECMA-392. Due to these reasons, we represent the post-switchover era in this dissertation
by a multi-standard operation environment where WSD share a geographical area with
digital TV, analog TV, PMSE, and emerging TVBD systems. In this realistic operation
scenario, the ability of sensing the spectrum for different types of target signals is a factor
critical to the successful deployment of WSD. This is modeled in MESS through the signal
generation process shown in Figure 3.2. Despite of looking like a “sampler”, the switch on
the farthest left side of this figure actually indicates that only one type of information
source is considered per simulation campaign at a time. Assuming that self-coexistence
between IEEE 802.22 and ECMA-392 is ensured through the mechanisms provided by the
latter, this reflects well a market where only a single TV broadcast standard is deployed.
Markets where simulcast services are still offered need to be analyzed in two distinct
simulation campaigns, one for each format.

3.1.2 Parameterization of Information Sources

The information sources currently implemented in MESS include the TV broadcast stan-
dards most deployed worldwide both in digital (ATSC, DVB-T, and ISDB-T) and in ana-
log (NTSC and PAL) formats, non-standardized (FM-based) PMSE, and emerging TVBD
standards (IEEE 802.22 and ECMA-392). By parameterizing all information sources for
operation on 6 MHz channels, the only channel bandwidth available in ATSC and NTSC,
we ensure that WSD scan roughly the same bandwidth regardless of the target signal.
In case of OFDM, the signal generation process follows the steps in Figure 2.5 with the
input bit stream being random quadrature phase-shift keying (QPSK) symbols with uni-
tary power. The mandatory system parameters and pilot insertion patterns are given in
Table 3.1 and Figure 3.3, respectively. In all standards, the occupied signal bandwidth W
is almost equal to the entire channel bandwidth B. Apart from the pilot insertion pat-
tern, signals compliant with DVB-T and IEEE 802.22 have the same parameterization,
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Fig. 3.2: Detailed view of the signal generation block.
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Table 3.1: System parameters of OFDM-based standards (B = 6 MHz).

Parameter DVB-T ISDB-T IEEE 802.22 ECMA-392

Ns 2048 2048 2048 128
CP ratio 1/32 to 1/4 1/32 to 1/4 1/32 to 1/4 1/32 to 1/8
TCP(µs) 9.33 to 74.67 7.87 to 63.00 9.33 to 74.67 0.58 to 2.33
TFFT(µs) 298.67 252.00 298.67 18.67

TSYM (ms) 0.31 to 0.37 0.26 to 0.31 0.31 to 0.37 0.019 to 0.021
∆f (kHz) 3.35 3.97 3.35 53.57
fs (MHz) 6.86 8.13 6.86 6.86
W (MHz) 5.71 5.57 5.62 5.52

so we expect all but TDSC methods to deliver similar performance when detecting such
signals. ISDB-T mandates the same CP ratios adopted in DVB-T and IEEE 802.22 but
slightly differs from these standards in terms of the useful symbol duration TFFT. This
renders the sampling period Ts to be shorter in ISDB-T than in DVB-T and IEEE 802.22.
In contrast, WSD based on ECMA-392 convey information using shorter symbols, i.e.
around only 20 µs long as compared to more than 300 µs in case of DVB-T, ISDB-T,
and IEEE 802.22. Later in this chapter, we exploit this fact to investigate the effect of
the FFT length on detection performance without incurring the longer simulation times
that would result from the use of the larger modes (4k and 8k) allowed in DVB-T and
ISDB-T. Hence, without any loss of generality, all simulation results obtained for multi-
mode OFDM-based standards are based on the 2k mode unless explicitly stated otherwise.
The typically flat spectra of the OFDM-based target signals used in this dissertation are
shown in Figure 3.4. The ISDB-T spectrum is essentially the same as that of DVB-T and
therefore ommited.

MESS can also generate non-OFDM signals. The current version of the platform is capable
of generating ATSC, NTSC, and PAL signals in accordance with the values given in Table
3.2. In contrast to OFDM, where baseband signals are transmitted (fc = 0), non-OFDM
standards are represented here using bandpass signals. The reason for this is twofold. First,
currently non-OFDM TV receivers typically select the desired channel from a number of
available channels and down-convert it to standardized IF values. This has implications
in terms of computational complexity and higher sampling rates but mimics well the
way that non-OFDM TV receivers currently operate. Second, bandpass signals have been
used in [51] with the sampling rates of ATSC and NTSC signals set to 4× fc and 3× fc,
respectively. No “clue” about where these values come from is provided therein, so we
got started with fs = 2.1 × fc to set the sampling rates used in MESS. This is roughly
the sampling rate we ended up using for ATSC. Before being sampled, the ATSC signal
is 8-PAM modulated (except for the data segment SYNC which is transmitted in binary
form) and passed through a vestigial side band (VSB) modulator to eliminate the spectral
redundancy typical in PAM. Unlike in OFDM, where the IFFT process accommodates
the signal in the transmitted bandwidth, the ATSC spectrum needs to be shaped by a
square root raised cosine filter [135]. This shaping results in 620 kHz transition regions
(310 kHz on each side), so the target ATSC signal occupies a bandwidth of 5.38 MHz.
However, in NTSC and PAL, the number of samples collected by using fs = 2.1× fc was
apparently too low to properly generate the color burst [122]. We solved this issue by
progressively increasing fs until we ended up with fs = 200 MHz, which is roughly the
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Table 3.2: System parameters of some non-OFDM standards (B = 6 MHz).

Parameter ATSC Parameter NTSC PAL

Segments/frame 313 Lines/frame 525 625
Symbols/segment 832 Frame rate (fps) 29.87 25.00

Segment (µs) 77.30 Line (µs) 63.55 64.00
fc (MHz) 44.00 Video fc (MHz) 45.75 45.75
fs (MHz) 100.00 fs (MHz) 200.00 200.00
W (MHz) 5.38 Wvideo (MHz) 4.20 4.20

same sampling rate used in [51]. Another peculiarity inherent to analog TV broadcast is
that the reception of composite signals requires two different IF values, one for the video
signal, the other for the audio signal. Since WSD are aimed at detecting the presence
of the target signal rather than actually “understanding” the information it conveys, we
decided to use video-only signals for the sake of simplicity. The standard-compliant video
signals are passed through a lowpass filter, amplitude modulated (AM), and further VSB
modulated so that the occupied signal bandwidth is 4.20 MHz for NTSC and PAL. The
power spectra of the non-OFDM TV broadcast signals used in this dissertation are shown
in Figure 3.5.

The last type of target signal available in MESS reflects the operation of PMSE, where
FM signals are conveyed by WM. In this case, since standardized system values entirely
lack, we implemented the signal generation process along the lines of the signal simulation
method proposed in [143]. The deterministic model and the test scenarios proposed therein
allow to a controlled and reproducible form of WM detection evaluation, which served as
the basis for assessing different methods within the scope of the IEEE 802.22 standard.
As shown in Table 3.3, different speaker modes can be created by suitably selecting the
tone signal, used to represent the audio input m(t), and the frequency deviation fdev. The
resulting target signal is a sum of carrier and tone signal in the silent mode, whereas in
the soft and louder modes it is the carrier with moderate and near the maximum amount
of deviation, respectively. Following the work in [51], we set the carrier frequency fc to
100 times of the maximum frequency deviation (32.6 KHz in loud speaker mode), so that
fc ≫ fdev and (2.98) holds. The sampling frequency used is fs = 2.1×fc and the occupied
signal bandwidth (measured at −80 dB/Hz) is always below 200 kHz regardless of the
speaker mode used. The power spectra of the WM signals used in this dissertation are
shown in Figure 3.6 for all the three speaker modes.

Table 3.3: System parameters of different WM speaker modes (adapted from [143]).

Parameter Silent Soft Loud

m(t) (kHz) 32.0 3.9 13.4
fdev (kHz) ±5.0 ±15.0 ±32.6
fc (MHz) 3.26 3.26 3.26
fs (MHz) 6.85 6.85 6.85
W (kHz) 87.00 87.00 135.00
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(b) IEEE 802.22 (CP=1/4).
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Fig. 3.4: Power spectra of OFDM signals created according to Table 3.1 and Figure 3.3.
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(b) NTSC (video-only signal).
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Fig. 3.5: Power spectra of non-OFDM signals created according to Table 3.2.
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(b) Soft mode.
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Fig. 3.6: Power spectra of WM signals created according to Table 3.3.
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3.2 Channel Generation Block

3.2.1 AWGN Channel Model

In MESS, the channel generation is modeled as shown in Figure 3.7. The switch on the
left side of the figure is a channel selector that allows us to choose between a pure AWGN
channel or multipath fading conditions. Though not explicitly depicted in the figure, the
AWGN process is created as independent in phase (I) and in quadrature (Q) components
having their amplitudes attenuated so as to reflect the SNR received at the WSD front-
end.

However, as seen in Chapter 2, perfect knowledge of the noise power is hard to obtain
in practice due to variations in the received noise level. Our first step to model such
limitation is to compute the actual SNR based on σ2

w perfectly known. Then, we create
two replicas of this ideal SNR and artificially introduce uncertainty about the actual
value of σ2

w in them. This allows the replicas to be viewed as SNR estimates computed
based on an estimated noise power σ̂2

w. The amount of uncertainty introduced in each
replica is selected so that the estimation error ∆σ2

w = σ̂2
w − σ2

w lies within the practical
uncertainty bounds proposed in [49]. Specifically, the detection of target signals in noise
of uncertain power is simulated in this dissertation using the values shown in Table 3.4.
As in [98][99], each ρ value imposes a different uncertainty range that corresponds to
different deviations in the estimated noise power σ̂2

w. Negative and positive deviations are
implemented as lower and upper bounds on the actual SNR.
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Fig. 3.7: Detailed view of the channel generation block.
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Table 3.4: Values assigned to ρ in the noise uncertainty analysis.

ρ Estimate Range ∆σ̂2

w
(dB)

1.00 σ̂2
w = σ2

w (ideal case) none

1.12 σ̂2
w ∈

[
0.89σ2

w, 1.12σ
2
w

]
σ2
w ± 0.50

1.24 σ̂2
w ∈

[
0.80σ2

w, 1.24σ
2
w

]
σ2
w ± 1.00

3.2.2 Multipath Fading Channel Model

Under AWGN conditions, the I and Q components are simply added to the real and imag-
inary parts of the target signal s(t), so that there are no other multiplicative mechanisms
at work. When under multipath fading, l = 1, 2, . . . , L replicas of s(t) are received over
independent paths, each path modeled as a flat fading channel. After passing through the
fading channels, each replica is further perturbed by complex AWGN that is statistically
independent from path to path. Such multipath fading channel can be fully determined
by {αl}Ll=1, {θl}Ll=1, and {τl}Ll=1, which denote the sets of channel amplitudes, phases,
and delays, respectively [131]. In addition, mobility issues raised by the relative motion
between the licensed transmitter and portable WSD are incorporated into the model by
allowing the amplitude of each path to vary according to the Doppler frequencies in the
set {fdop,l}Ll=1. None of these fading parameters is known a priori by WSD.

The above multipath fading process can be set in MESS as time-invariant or time-variant.
In time-invariant channels, the lth path is fully characterized by a combination of ampli-
tude and delay denoted power delay profile (PDP). In this case, since the Doppler shifts
are not taken into account, the amplitudes in {αl}Ll=1 vary only with the random phases in
{θl}Ll=1 and the PDP describes the amount of energy in s(t) that is likely to arrive with a
certain delay from the transmission of a Dirac impulse. The replica of s(t) travelling along
the direct path, i.e. transmitted in line-of-sight (LOS), gives rise to the earliest arriving
contribution to which delay zero is assigned. This earliest contribution is usually used
as reference to set the relative amplitudes of the non-line-of-sight (NLOS) contributions,
where s(t) is attenutated by obstructing objects [144]. Unless explicitly stated otherwise,
all simulations carried out in this dissertation are based on time-varying channels where
the amplitudes in {αl}Ll=1 are affected by both the random phases in {θl}Ll=1 and Doppler
frequencies in {fdop,l}Ll=1.

Despite of the fact that the fading processes arising in LOS and NLOS propagation con-
ditions can be respectively characterized by Ricean and Rayleigh distributions, several
efforts have been done to establish channel models to characterize multipath behavior. In
MESS, the channel generation is flexible in the sense that the channel specifications can
be configured to fit a given application and support algorithm design, validation, and per-
formance prediction in the context of that application. Recalling that we are interested
in evaluating algorithms for WSD, it seems natural to use a channel model conceived
for this kind of application. One such model is the simplified multipath channel model
proposed in [144] to evaluate wireless regional area network (WRAN) technologies within
the scope of the IEEE 802.22 standard. In what follows, we examine the profiles in Table
3.5 with respect to the type of degradation that they can create. Our goal is to minimize
unnecessary simulation efforts by using a smaller set of profiles, namely those exhibiting
the most representative and interesting fading features for WSD applications.
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Table 3.5: Multipath profiles proposed within the scope of the IEEE 802.22 standard
with profile D set to its worst case (adapted from [144]).

Profile A Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

Excess delay (µs) 0 3 8 11 13 21
Amplitude (dB) 0 −7 −15 −22 −24 −19

Doppler freq. (Hz) 0 0.10 2.50 0.13 0.17 0.37
Profile B Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

Excess delay (µs) −3 0 2 4 7 11
Amplitude (dB) −6 0 −7 −22 −16 −20

Doppler freq. (Hz) 0.10 0 0.13 2.50 0.17 0.37
Profile C Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

Excess delay (µs) −2 0 5 16 24 33
Amplitude (dB) −9 0 −19 −14 −24 −16

Doppler freq. (Hz) 0.13 0 0.17 2.50 0.23 0.10
Profile D Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

Excess delay (µs) −2 0 5 16 22 60
Amplitude (dB) −10 0 −22 −18 −21 +10

Doppler freq. (Hz) 0.23 0 0.10 2.50 0.17 0.13

To begin with, we observe that typical outdoor environments are characterized by excess
delays around 10 µs. Such post-echoes are the most significative in practice, in both power
and number. The profile B is interesting because most of its delays lie within this range. In
contrast, the profiles A, C, and D describe areas surrounded by large and distant structures
where larger delays may occur. Despite the similarities between the profiles C and D, the
6th path of the latter accepts ranges of amplitudes αD ∈ [−30,+10] and delays τD ∈ [0, 60]
that allow us to model obstacle mobility. To make the most of this distinguishing feature,
we set the 6th path of the profile D so as to model pre-echoes where s(t) is received at
higher power than that of the direct path. Another distinguishing feature of the profiles B
and D is that they exhibit the least and the largest maximum excess delay τmax in Table
3.5. Defined as the time interval between the first and the last received components [91],
τmax provides a time-domain indication about the type of degradation introduced by the
multipath fading channel. The channel is said frequency-selective if the received multipath
components of a symbol extend beyond the symbol duration TSYM and flat otherwise.

The analysis of time-spreading in the time-delay domain classifies the fading phenomenon
well as long as the target signals are in digital format. For analog target signals, where no
symbols are conveyed, we need to establish a similar relationship in the frequency domain
by comparing the occupied signal bandwidth W to the channel coherence bandwidth f0.
The spectral components received within the frequency range described by f0 ≈ 1/τmax are
affected in a similar manner (flat fading), whereas the channel impact on those components
received outside this range is frequency dependent (frequency-selective fading) [131]. It
follows from this approximation that the coherence bandwidths of the profiles in Table 3.5
are f0,A = 47.62 kHz, f0,B = 71.43 kHz, f0,C = 28.57 kHz, and f0,D = 16.13 kHz. Recalling
Tables 3.1 and 3.2, it is clear that we always have f0 ≪ W . Hence, for any profile in
Table 3.5, the wideband target signals used in MESS will undergo frequency-selective
fading. As for narrowband WM signals, conveyed according to Table 3.3, the channel will
introduce some frequency selectivity but the impact should be definitely milder (compared
to wideband signals) because f0 is at most one order of magnitude smaller than W .
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We have assessed the profiles in Table 3.5 in terms of their time-spreading properties thus
far. However, despite of the insights brought by τmax and f0 about the type of degradation
introduced by our fading channel model, we still lack an understanding about its time-
varying nature, i.e. how {αl}Ll=1 and {θl}Ll=1 vary according to changes caused by motion. A
measure of the time duration over which the channel is expected to respond in an invariant
fashion is given by its coherence time t0. Viewed in the time domain, the time variance of
the channel can be described as fast fading when t0 < TSYM and as slow fading otherwise.
The reciprocal relation t0 ≈ 1/fdop allows us to examine the degradations due to time
variance in the Doppler-shift domain, where fast fading is characterized by W < fdop and
slow fading otherwise [91]. It is then evident that, for the target signals considered in
MESS, all profiles in Table 3.5 have less destructive slow fading characteristics because of
their (same) low maximum fdop = 2.50 Hz.

Based on the above discussion, the simulations under multipath fading conditions carried
out in this dissertation rely only on the profiles B and D.

3.3 Signal Detection Block

3.3.1 Demodulation

Once the target signal has been generated and passed through the channel, the next step
according to Figure 3.1 is to detect it. In MESS, the signal detection process is imple-
mented as shown in Figure 3.8. There, the first task performed at the receiver front-end
after receiving the RF signal from the antenna is demodulation. In coherent detection, the
down-converter used to this end is assumed able to reconstruct the received carrier with
perfect knowledge of its phase and frequency. While desirable for improved performance
and versatility, coherent operation WSD requires tight synchronization and as such places
complexity burdens on their design. The trade-off between performance and complexity
can be addressed by designing more simple WSD able to operate without demodulating
the received signal before detecting it. Such noncoherent detectors make no attempt to
estimate the actual value of the phase of the received signal, so the demodulation process
is typically performed using a local carrier with phase arbitrarily set to zero. Alterna-
tively, depending on the specific method used for detection, complexity requirements can
be further reduced by directly sampling the received complex bandpass signal.

Noncoherent detection is clearly of lower complexity. Therefore, it seems reasonable to
assume that noncoherent implementations are better suitable for WSD whose utmost
goal is to detect target signals without undergoing an unnecessary demodulation process.
Having this in mind, we implemented the signal detection process of MESS with emphasis
on non-coherent methods as shown in Table 3.6. Except for the MF defined in (2.96), which
performs coherent detection, all other methods in MESS do not actually demodulate the
received signal. For the sake of simplicity, we use the term class throughout the rest of
this dissertation to refer to a set of methods that rely on the same underlying principle to
work. The classes that are singleton sets will be simply referred to as the corresponding
method. In general, SCD is a non-singleton class composed of methods that estimate
the PSD of the received signal r(n). However, preliminary results obtained using MESS
suggested that the use of periodogram averaging methods, such as Bartlett and Welch,
provide the same detection performance as the periodogram but this comes at the expense
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Fig. 3.8: Detailed view of the signal detection block.

of substantially longer simulation times. Therefore, unless explicitly stated otherwise, we
consider the periodogram in all simulations involving the SCD method.

Coherent detection is usually carried out by creating a demodulation reference at the re-
ceiver, e.g. by generating local replicas whose phases and frequencies are identical to those
used by the up-converter [91]. Unfortunately, such replicas are derived from the received
signal and ideal synchronization is hard to meet. In practice, there often exists some offset
between the clocks used at receiver and transmitter. A well-known effect of clock offsets is
the mismatch between the local oscillators used in the down- and up-converters of receiver
and transmitter. Our focus on noncoherent methods renders demodulation less necessary
in MESS, but we end up keeping the down-converting block in Figure 3.8 to emphasize
that oscillator mismatches are taken into account. We have seen in Chapter 2 that if the
CFO introduced by using a mismatched carrier frequency f ′

c is larger than the number of
subcarriers Ns, the orthogonality between the subcarriers may get compromised and thus
impair the demodulation of OFDM signals. Since ICI rapidly increases with the amount
of CFO, the impact of the mismatch f ′

c−fc on the detection process is of practical interest
(particularly when Ns is large). In single carrier systems, clock offsets are usually small

Table 3.6: Signal processing techniques currently implemented in MESS.

Target Class Underlying Principle Metric Method Test

Any

ED Received signal energy |r(n)|2 ED (2.10)

EBD Sample covariance matrix Rr(n)

AGM (2.43)
GLRT (2.42)
MME (2.39)
RLRT (2.30)

SCD PSD estimate (periodogram) ŜPER,r(τ) SCD (2.54)

CFD Autocorrelation function Rr(τ)
ACD (2.83)

Any BTPD (2.84)
OFDM

OFD
Accumulated TDSC function ΨTDSC(∆l)

TDSC-NP (2.88)
TDSC-MRC (2.89)

ATSC Accumulated SYNC function ΨSYNC(n0, τd) ASSD (2.93)
PMSE Autocorrelation function Rr(τ) MF (2.96)
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compared to the symbol rate so that the performance degradation due to CFO is dom-
inated by a “fading-like” reduction of the useful signal power. This causes single carrier
systems to be in general less sensitive to CFO than OFDM systems.

In MESS, we model the impacts of CFO on performance by intentionally injecting different
frequency offsets in the target signal. Hence, as with simulcast services, a distinct simula-
tion campaign is needed for each CFO value. In case of OFDM-based signals, we analyze
the impact of the loss of orthogonality between subcarriers by selecting the normalized
CFO values so that ǫc > ∆f . The resulting amplitude reduction and phase rotation is then
artificially created as in (2.90), yet at the transmitter side. As for non-OFDM signals, the
only difference is that the amount of CFO is given in terms of f ′

c − fc, i.e. the difference
(in Hz) between the mismatched and the actual carrier frequencies.

3.3.2 Sampling & Pre-detection

In addition to to determining the individual performance of each method, we are interested
in assessing the strength of the features used for detection. Unlike in most of the related
work discussed in Chapter 2, we direct MESS to perform metric derivations over sensing
times that are not arbitrarily set to produce the best possible results. Here the sensing time
is set in terms of fundamental units, which we use to represent the minimum requirement
of the feature used for detection. In the computation of all the test statistics in Table 3.6,
we set the sensing time so that it corresponds to the minimum number of fundamental
units plus one fundamental unit. The additional fundamental unit, not strictly necessary,
is intended to improve the fairness by allowing all methods to overcome issues that may
eventually arise later on in the pre-detection process, e.g. due to lack of synchronization.
Whenever we analyze a given target signal, we direct blind and semi-blind techniques to
use the same sensing time as the techniques specific for that signal type.

Specifically, the fundamental units, sensing time, and number of samples used in the sim-
ulations performed in this dissertation are given in Table 3.7. The minimum requirement
for the CFD class translates into the need of sampling at least two OFDM symbols, so we
compute the test statistics of ACD and BTPD over three OFDM symbols. According to
Table 3.1, the corresponding sensing times range from 57.75 µs (ECMA-392, CP= 1/32)
to 1.12 ms (DVB-T Mode 2K, CP= 1/4). Likewise, TDSC methods rely on the correla-
tion between the transmitted and received SP patterns to perform signal detection. In this
case, it is desirable to collect a number of samples high enough to allow the correlation
of at least two pilot repetition units (PRU). As seen in Figure 3.3, the PRU is standard
dependent and can span over a different number of OFDM symbols. Using the PRU as
fundamental unit, we compute the test statistics of TDSC methods over sensing times
ranging from 0.75 ms (ECMA-392, CP= 1/32) to 4.48 ms (DVB-T Mode 2K, CP= 1/4).
Extending the rationale to the ASSD method and taking the duration of a data segment
SYNC as fundamental unit yields the sensing time of 0.23 ms used to detect ATSC.

The intuition behind the rationale above stems from the fact that autocorrelation-based
methods need to be fed with a minimum of two fundamental units to detect the target
signal. However, since HSYNC signals are not present in the first 9 lines within a NTSC
field, the minimum sensing time required by the NHSD method should not be less than
the time duration corresponding to 11 lines [51]. Similarly, taking into consideration the
same principle to detect PAL signals, a minimum of 8 lines is required because no HSYNC
signals are conveyed in the first 6 lines of each field [122]. If we define the line duration
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Table 3.7: Simulation settings used for signal specific techniques. For a certain type of
target signal, the same settings are used for blind and semi-blind techniques.

Target Class Method Unit
Number Sensing Number of
of Units Time Samples

CFD
ACD

Symbol 3
57.75 µs 12480

Any BTPD 1.12 ms 61440
OFDM

OFD

TDSC-MRC
PRU 3

0.75 ms 5616
TDSC-NP 4.48 ms 30720

ATSC ASSD Segment 3 0.23 ms 23211
NTSC Not yet

Line
12 0.76 ms 152532

PAL implemented 9 0.57 ms 115200
PMSE MF Time 1 1.00 ms 6846

as fundamental unit for analog TV broadcast, the sensing times used to detect NTSC
and PAL signals are 0.76 ms and 0.57 ms, respectively2. As for PMSE, where WM signal
features (if any) are not strong enough to serve as fundamental unit, we arbitrarily set
the sensing time to 1.00 ms.

Another issue raised by the presence of clock offsets is that the receiver cannot adapt its
sampling frequency to match that of the transmitter. The only option available for the
receiver in this case is to operate at fixed sampling frequency. This condition, known as
non-synchronized sampling, introduces SFO that can potentially create both ICI and ISI.
As long as the ISI created thereby can be absorbed by the CP, its impact is negligible and
ICI becomes the dominant impact on the performance of OFDM systems. In MESS, the
impact of SFO is modeled in the same fashion of CFO as described earlier in this section.
In case of OFDM-based signals, the sample timing drift td that results from a normalized
SFO ǫs is artificially introduced as in (2.91), yet at the transmitter side. As for non-OFDM
signals, the amount of SFO is given in terms of f ′

s − fs, i.e. the difference (in Hz) between
the mismatched and the actual sampling frequencies. Though both normalized frequency
offsets ǫc and ǫs are dimensionless quantities, the latter assumes very small values and
thus is more suitably represented in parts per million (ppm).

The next step in the signal detection process depicted in Figure 3.8 is pre-detection. This
step encompasses all signal processing tasks carried out on r(n) so as to produce a generic
test statistic z(n). As shown in Table 3.6, this includes the derivation of method-dependent
quantities or functions based on which the specific test statistics are constructed. Among
these quantities, the computation of the sampled covariance matrix in (2.28) deserves par-
ticular attention due to the following aspects. First, the limitation of the signal generation
block in dealing with one information source at a time can be interpreted as if the N nodes
engaged in CSS operate collocated with a single licensed transmitter (P = 1). Second, it
has been assumed in Chapter 2 that the nodes are single-antenna devices and that N > P
[103]. This means that, since Rr(n) relies on spatial diversity to work, we have to ensure
that at least two nodes are deployed and operational within the cooperation footprint.
For the sake of fairness, and despite of the fact that all classes other than EBD need only
a single node to work, all simulations in this dissertation are carried out for N = 2 unless

2 As seen in Table 3.6, no signal specific technique aimed at detecting NTSC and PAL signals is currently
implemented in MESS. However, in our future work, we intend to investigate the NHSD method and
adapt it to detect PAL signals. Therefore, in this dissertation, detection of NTSC and PAL using blind
techniques is set so as to allow future comparisons with signal specific techniques.
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explicitly stated otherwise. This makes the pre-detection process dependent of the con-
tributions of all nodes. In MESS, this is modeled by allowing each node to experience an
individual channel that is generated as in Figure 3.7. Also, as explained in Chapter 1, the
emphasis of this dissertation is on the information acquisition process. This allows us to
rely on the following abstractions for the processes of exchange and fusion of information.
First, we do not care about how the information exchange process takes place. Each node
uses a dedicated control channel to report its local findings to the master node (either a
BS or any ordinary node currently serving as master node). The control channels used are
not bandwidth constrained and are always available, so neither censoring nor weighing is
needed. Second, for the sake of simplicity, the information fusion process considers hard
combining (based on AND and OR logic) and the issues related to node density and node
spread are not taken into account.

3.3.3 Detection

The last step depicted in Figure 3.8 is detection. As seen in Chapter 2, this step accounts
to the decision-making process that results from the comparison of a generic test statistic
z(n) against a pre-defined detection threshold γ. In this process, the definition of proce-
dures to set γ is important because it largely affects the resulting detection performance.
Basically, the procedure to obtain a closed-form expression for γ consists of the derivation
of the p.d.f. of z(n) under the hypotheses H0 and H1 followed by the application of some
decision criterion such as LRT or NP. In the case of ED and the Bartlett-based SCD,
this procedure has been illustrated in the steps that yield to (2.17) and (2.63), respec-
tively. Both expressions can be used to evaluate γ numerically as a function of Pfa, i.e.
by using p(z|H0). As for the remaining methods in Table 3.6, however, it is more diffi-
cult to employ closed-form formulae due to the following reasons. In EBD, this difficulty
arises not because of the lack but the multitude of available approaches (see, e.g. [103],
[104], [106], [107] and the references therein). Closed-form expressions are also available
for some methods and in the OFD class, yet each of them depends on a different heuristic
adjusting factor added artificially to account for the assumptions made in [51] (for ASSD)
and in [121] (for TDSC). As for the CFD class, performance analysis is in general math-
ematically intractable and no closed-form expressions are known for the specific cases of
ACD and BTPD implemented in (2.83) and (2.84). Threshold setting through MC sim-
ulation is still commonly adopted to tackle such cases where analysis is mathematically
intractable. In our particular situation, where a number of different methods need to be
assessed via simulation, the MC method becomes attractive as the standard procedure to
set γ. Fairness and consistency concerns that could be raised otherwise, e.g. by using the
method-dependent procedures mentioned above, can be thus avoided.

In view of the facts above, we use MC simulation to set the threshold γ and to evaluate the
method performances in MESS. Our MC experiment, as usual, assigns a one to a success
and a zero to a failure. A success indicates that the value computed for z(n)|H1 exceeds
γ, i.e. a correct detection. A failure indicates the otherwise case, i.e. a missed detection.
For each SNR value, we repeat the MC experiment for Nr independent runs and store
the values of the test statistics z(n)|H0 and z(n)|H1 into the statistic collectors “wfile”
and “rxfile”. Next, we sort out the statistic collector “wfile” in ascending order so that
its values can be used to set γ for a certain Pfa (fixed and equal for all nodes). Since we
are interested in evaluating performance under different CFAR requirements, we parallel



Chapter 3. The MESS Platform 88

assign two values to γ so as to ensure Pfa = 0.1 and Pfa = 0.01 at each node3. Finally, by
dividing the number of successes by the number of runs, we obtain an estimate of Pd for
each pair (SNR, Pfa). If the noise power σ2

w is perfectly known, we have

Pd(SNR) =

∑ {rxfile > sort[wfile(Pfa)]}
Nr

, for σ2
w known, (3.1)

which corresponds to the ratio of the number of times that the test statistics in “rxfile”
exceed γ to the number of runs. In the practical case that some estimation error ∆σ2

w

is present, we compute the test statistic z(n)|H0 from the lower limit of the noise PSD
and the test statistic z(n)|H1 from the upper limit on the actual SNR. The corresponding
statistic collectors that result from this pessimistic assumption4 are denoted as “wfileL”
and “rxfileU”. The same threshold obtained by sorting out “wfileL” in ascending order is
used to determine the presence of the target signal at the upper limit of the noise PSD
(lower limit on the actual SNR). In contrast to the case of known σ2

w, here we choose a
different γ value for each combination of Pfa and ρ values. Hence, for each triplet (SNR,
Pfa, ρ), we parallel compute Pd for all ρ 6= 1 in Table 3.4 using

Pd(SNR) =

∑ {rxfileU > sort[wfileL(Pfa, ρ)]}
Nr

, for σ2
w estimated. (3.2)

In MESS, (3.1) and (3.2) are used to evaluate the detection performance obtained without
using fusion rules, i.e. in case of EBD methods and non-EBD methods relying on a single
node. For the case of i = 1, 2, . . . , N nodes that are based on non-EBD methods, the
global probability of detection Qd and the global probability of false alarm Qfa resulting
from the combination of the individual node contributions will depend on the fusion rule
used. If σ2

w is perfectly known, we calculate Qd using

QOR
d (SNR) =

N∑

i=1

P i
d =

max {rxfilei > sort[wfilei(Pfa)]}
Nr

(3.3)

QAND
d (SNR) =

N∏

i=1

P i
d =

min {rxfilei > sort[wfilei(Pfa)]}
Nr

(3.4)

and Qfa using

QOR
fa (SNR) =

N∑

i=1

P i
fa =

max {wfilei > sort[wfilei(Pfa)]}
Nr

(3.5)

QAND
fa (SNR) =

N∏

i=1

P i
fa =

min {wfilei > sort[wfilei(Pfa)]}
Nr

(3.6)

from where it can be seen that each node is assigned its own threshold. The expressions
for Qd under unknown σ2

w are obtained by substituting the statistic collectors “rxfilei” and
“wfilei” by “rxfileUi” and “wfileLi”, respectively, in (3.3) and (3.4). Likewise, the expressions
for Qfa are obtained by substituting “wfilei” by “wfileLi” in (3.5) and (3.6).

3 Pfa = 0.1 is mandated in the standard IEEE 802.22, whereas Pfa = 0.01 has been adopted in the
literature to represent more stringent CFAR requirements.

4 This assumption is pessimistic in the sense that it yields a detection process designed to cater for worst
case noise uncertainty scenarios.



Chapter 3. The MESS Platform 89

One final remark with respect to the CSS implementation in MESS is that, though the
channel is generated independently for each node, all nodes experience the same fading
parameters and the same SNR. This does not reflect the classical CSS application, where
the nodes with higher SNR (e.g. in LOS with the licensed transmitter) help the nodes with
lower SNR (e.g. in NLOS or suffering from a deep fade). But still, our implementation
models well the case where a group of nodes experiencing low (possibly the same) SNR
team up to improve the performance that each of them would obtain otherwise in a
standalone manner. In this case, since P i

d will almost surely be less than one, ∀i ∈ [1, N ],
we can see from (3.3) and (3.4) that non-EBD methods will always exhibit QOR

d > P i
d and

QAND
d < P i

d. However, according to (3.5) and (3.6), the cooperation gain achievable via
OR logic comes at the expense of QOR

fa > P i
fa whereas AND logic results in QAND

fa < P i
fa.

As the SNR decreases, the probabilities of detection Pd and Qd will in general converge
to the probabilities of false alarm Pfa and Qfa. The exact values depend, of course, on the
detection method used.

3.4 Signal Classification Block

Detection and classification are closely related signal processing tasks. Either one involves
decision-making on the basis of received noisy replicas of the target signal. If only a single
type of target signal is transmitted in the operation environment, as in Figure 3.1, the goal
is to exploit the a posteriori knowledge obtained from the observation of r(n) to infer the
presence or absence of s(t). In contrast, signal classification finds application in operation
environments where multiple types of target signals can be transmitted simultaneously. In
those cases, the classification task can be regarded as complementar to detection since it
additionally allows to distinguish between at least two types of target signals corrupted by
noise. Despite of these similarities, an aspect that differentiates detection from classifica-
tion is that the former can be carried out blindly or semi-blindly whereas the latter is not
possible without reliance on signal specific techniques. Therefore, signal classification for
practical multi-standard environments will typically require the combined use of multiple
classifiers, i.e. signal specific techniques that possess complementary signal classification
abilities. A generic implementation of such multi-standard operation environment is de-
picted in Figure 3.9 in terms of the underlying blocks of the MESS platform. After the
presence of “some” signal is determined, the output of the method that has detected that
signal can be further used to trigger the signal classification block.

For the specific case of the TV bands, we have seen in Chapter 2 that some prior knowledge
about the structure of standardized target signals is frequently available and this infor-
mation can be used for detection as well as for classification. Also, as explained in Section
3.1, TV standards are deployed in most markets in a fashion that follows certain patterns,
e.g. different TV broadcast standards having the same format are usually not adopted in a
single market, the use of both analog and digital formats in the post-switchover era is still
common in some markets, etc. Since the TV broadcast standards currently deployed (or
under assessment for deployment) in a country constitute publicly available information,
we can greatly facilitate the signal classification task by exploiting that information. In
doing so, the context awareness obtained when a WSD detects and subsequently classifies
certain combinations of target signals constitutes helpful information for determining the
market where that WSD currently operates in.
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Fig. 3.9: Generic multi-standard operation environment based on the MESS platform.

Figure 3.10 illustrates how signal classification can be used in the determination of some
exemplary markets. If WSD classify the detected signals as NTSC-compliant, the opera-
tion market will be most likely the Americas. Likewise, the presence of ATSC or ISDB-T
signals provides an indication that WSD operate either in North America or in South
America, respectively. Improved context awareness can be achieved by combining the in-
formation obtained from both analog and digital formats. For instance, if WSD are able to
perceive that IDSB-T signals are simulcast in PAL, we can delimit the operation market to
three countries: Argentina, Brazil, and Uruguay. In some cases, the operation market can
be determined with resolution equal to a single country, e.g. Colombia (DVB-T simulcast
in NTSC) and Greenland (DVB-T simulcast in PAL). Hence, based on the output of the
signal classification block, a WSD can autonomously react to current operation conditions
on a market-wide basis. Examples of reaction include but are not limited to the reduction
of adjacent channel interference by fine tuning the receiving filter according to the allowed

NTSC

PAL

(a) Analog formats.

ATSC

ISDB-T

DVB-T

(b) Digital formats.

Fig. 3.10: TV broadcast standards most deployed in the Americas.
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Fig. 3.11: Detailed view of the signal classification block.

channel bandwidth (6, 7, or 8 MHz), use of prior information about how PMSE operates
in that market to set the resolution used in wavelet-based MRSS or to feed the MF-based
exhautive search in (2.95), return information about the actual spectrum occupancy to
the database (if sensing is used in conjunction with GDA), etc.

Market distinction based on signal classification becomes less straightforward in Africa,
Asia & Pacific, Europe, and the CIS because most countries in these regions adopt (or are
considering adopting) DVB-T as the digital counterpart of the analog PAL. In this case,
WSD can further improve context awareness by additionally scanning the spectrum for
signals based on IEEE 802.22 and/or ECMA-392. However, such future TVBD standards
are not deployed yet, so a more immediate alternative might be exploit the small (yet
allowed) variations in the parameterization5 of target signals based on the PAL standard
[122], e.g. transmission band (VHF or UHF), channel bandwidth (7 or 8 MHz), bandwidth
of the video signal (5.0, 5.5, or 6.0 MHz), and particularly the position of the sound
subcarrier (5.5, 6.0, or 6.5 MHz). This might be an option until 2020, when most countries
should have analog TV stations switched off. This is reasonable time for TVBD standards
to become popular or for other standards currently under development to enter the market.

The signal classification block is implemented in MESS as the three-stage cascade signal
classifier shown in Figure 3.11. The requirements imposed to each stage, shown as floating
text in the figure, are described in the sequel.

5 To cope with extreme ambiguous scenarios, we envision power-plugged WSD able also to classify electric
voltage and frequency. This would make it possible for fixed WSD, as well as for portable WSD while
being charged, to determine the operation market with better resolution, e.g. Western Europe (230 V,
50 Hz) or Eastern Europe and CIS (220 V, 50 Hz).
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3.4.1 First Stage: Blind Detector

As seen earlier in this section, signal detection may be carried out prior to classification
in order to minimize unnecessary signal processing efforts. Accordingly, the first stage
of the cascade classifier in Figure 3.11 is a simple detector, so no classification ability is
required at that point. The goals are to monitor the operation environment and trigger
the second stage whenever H1 is perceived true. For this to work efficiently, it is important
for the first stage to be capable of providing accurate channel occupancy information in
a timely manner even in the low SNR regime. This keeps the detection delay low and
avoids unnecessary classification measures due to false alarms. If we further impose that
less or none prior knowledge of target signals should be required for detection, then the
best design option is to implement the first stage using blind techniques such as AGM,
GLRT, or MME. Alternatively, we can use semi-blind techniques like ED or RLRT at the
expense of degraded robustness against noise uncertainty.

The computational complexity of these methods is given in Table 3.8 in terms of number of
real multiplications (RM) and number of real additions (RA). Each complex multiplication
requires four RM and two RA, and each complex addition requires two RA. The other
columns of the table indicate whether the method possesses classification ability (CA)
and the prior knowledge that it requires to work (PK). All methods in this table but
ED perform EBD, which comprises of two basic tasks. The first, posing RM= MN2ι
and RA= N2ι(M − 1), is the estimation of the sample covariance matrix in (2.28) [103].
As for the second task, related to the eigenvalue decomposition, the exact number of real
operations depends on the algorithm used, e.g. it is on the order of O(N3ι3) multiplications
and additions in case of singular value decomposition (SVD) [145]. If the same number of
nodes is used both in ED and EBD, the complexity of the latter is about Nι times that
of the former but still linear with the number of samples. For M ≫ Nι, i.e. the number
of samples is much larger than the smoothing factor, the dominant term is MN2ι.

3.4.2 Second Stage: Fast OFDM Classifier

Most target signals implemented in MESS are OFDM-based. It is therefore natural to start
classifying them by performing a simple check to determine the presence of periodicities
induced by the CP. This can be performed by a CP-based classifier, made fast and of low
complexity by using either ACD or BTPD. Let Nc be the number of categories, i.e. the
number of types of target signals present in the operation environment. As shown in Table
3.9, and again assuming N cooperating nodes, ACD is as complex as ED but needs to know
all symbol lengths used in the operation environment to compute {TDc

}Nc

c=1. BTPD can

Table 3.8: Summary of requirements for the 1st stage.

Method RM RA CA PK

AGM MN2ι+O(N3ι3) N2ι(M − 1) None None
GLRT MN2ι+O(N3ι3) N2ι(M − 1) None None
MME MN2ι+O(N3ι3) N2ι(M − 1) None None

ED 4MN 2N(2M − 1) None σ2
w

RLRT MN2ι+O(N3ι3) N2ι(M − 1) None None
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Table 3.9: Summary of requirements for the 2nd stage.

Method RM RA CA PK

ACD 4MN 2N(2M − 1) Yes {TDc
,∆fc}Nc

c=1

BTPD 8MN 2N(4M − 1) Yes {∆fc}Nc

c=1

Table 3.10: Allowed subcarrier spacings (in kHz) for 6 MHz channels.

Target 128 2k 4k 8k

DVB-T − 3.35 1.67 0.84
ISDB-T − 3.97 1.98 0.99

IEEE 802.22 − 3.35 − −
ECMA-392 53.57 − − −

detect OFDM signals blindly but is twice as complex as ACD. However, in the context of
signal classification, we observe that both ACD and BTPD require additional knowledge
of all subcarrier spacings {∆fc}Nc

c=1. This information is summarized in Table 3.10 for
the case of the multi-standard operation environment considered in this dissertation. It
can be seen that different ∆f are adopted in multi-mode standards, such as DVB-T and
ISDB-T. Hence, for multi-mode standards, Nc is the sum of the number of modes adopted
by all standards deployed in the market of interest. Moreover, the larger ∆f adopted in
ECMA-392 makes it easier to distinguish that category from all others. Distinction among
those categories representing multiple modes of DVB-T and ISDB-T is possible too, but
we expect the performance of the CP-based classifier to decrease in this case because there
will be less room to accommodate the error inherent to the estimation of ∆f from the
noisy r(n). Generally speaking, as long as all categories have different ∆f and the SNR
is high enough, the condition C1 in Figure 3.11 occurs almost surely so that the second
stage is able to accurately classify OFDM-based standards.

Different conditions arise when ambiguous categories exist. If ∆f is the only information
used to define a category, there are at least two cases of ambiguity that cannot be resolved
at the second stage. The first case, highlighted using light grey color in Table 3.10, is
observed regardless of the SNR experienced by WSD when ∆f = 3.35 kHz. If it is crucial
to distinguish between DVB-T Mode 2k and IEEE 802.22 (depends on market, application,
etc), we need to instruct the second stage to trigger a third SP-based stage. This condition
is identified as C2 in Figure 3.11. Another example of ambiguity is represented by condition
C3, under which the estimate of ∆f obtained by the second stage does not match to any
value in Table 3.10. This condition occurs when the SNR is very low or simply because
no CP-induced periodicities can be found in the signals we are attempting to classify,
e.g. they belong to non-OFDM categories. In either case, we cope with condition C3 by
triggering a third PSD-based stage.

3.4.3 Third Stage: Full Signal Classifier

We refer to the third and last stage of the signal classification block as full signal classifier
because it has been designed to accurately classify any category out of those generated in
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MESS. This means that, at the expense of longer classification time and increased require-
ments of prior knowledge and complexity, here we can tackle all ambiguous conditions
left unresolved by the second stage. Signal classification on the basis of ∆f is not always
possible but, provided that additional information about the SP insertion pattern is avail-
able, Figure 3.3 ensures us that DVB-T Mode 2k and IEEE 802.22 can be distinguished.
If this is the case, we can resolve condition C2 using a SP-based classifier that relies either
on TDSC-NP or on TDSC-MRC. As seen in Table 3.11, both methods need to know all
symbol index differences between two OFDM symbols with the same SP pattern. Unlike
in the second stage, where ∆f varies with the operation mode, ∆l is fixed within a given
standard and thus (since Nc = NSt) we have {∆lc}NSt

c=1. From this table, we also see that
TDSC-MRC is more complex than TDSC-NP. The reason is that the former takes into
account multiples of ∆l0, i.e. the shortest difference between two OFDM symbols with
the same SP pattern, in the correlation whereas the latter considers a single ∆l.

We have seen in Chapter 2 that non-OFDM standards, whether analog or digital, typically
do not convey SP. Instead, in ATSC, NTSC, or PAL, synchronization tasks carried out at
the receiver are supported by periodically inserting SYNC symbols into the data stream
at the transmitter. For this kind of target signals, it is evident that the SP-based classifier
above cannot resolve for condition C3 because there are no SP to correlate. This condition
calls for a classifier that relies on non-OFDM signal specific techniques, such as ASSD or
SCD. By comparing (2.89) to (2.93), we see that ASSD and TDSC-MRC share the same
underlying principle. One drawback of ASSD, also present in its NTSC counterpart and
eventual extension to PAL, is that SYNC symbol densities are much lower than those
of SP. Therefore, we expect the performance of ASSD to degrade faster as compared to
TDSC-MRC, particularly in the low SNR regime. SCD seems a more promising candidate
to classify non-OFDM target signals because it is fast, exploits features other than SYNC
symbols, and is originally designed to work at very low SNR. The prior knowledge that
SCD requires for classification accounts for the set of noise-free replicas of the PSD of
the transmitted signal {Sc(f)}Nc

c=1. Non-OFDM standards do not make use of multiple
operation modes, so this set is composed by the power spectra shown in Figure 3.5.

Though the sharp spectral features present in the spectra of FM-based WM signals shown
in Figure 3.6 make SCD interesting also for detection (and eventual classification) of
PMSE, it is worth noting that this is out of the scope of the proposed signal classification
block. The reason is that PMSE and TV broadcast are fundamentally different due to the
nonstandardized nature of the former. Even under the assumption that the target signal
is FM modulated (can be AM, FM, or digitally modulated in practice), the peaks in its
PSD do not occur at fixed positions as opposed to in ATSC, NTSC, and PAL. Also, as
seen in Chapter 2, operational parameters such as fc, fdev, and W vary depending on a
number of factors that include manufacturer, device model, and operation market. In the

Table 3.11: Summary of requirements for the 3rd stage.

Method RM RA CA PK

TDSC-NP 4NNlTD 2N (Nl − 1) [TD + (TD − 1)] Yes {∆lc}Nc

c=1

TDSC-MRC 4N

[

Nl

∆l0
+
(

Nl

∆l0

)2
]

∆l0TD 2N

[

Nl

∆l0
+
(

Nl

∆l0

)2
]

[TD + (TD − 1)] Yes

SCD 2MN
(
2M + 1

2

)
2MN

(
2M + 5

2

)
− 2 Yes {Sc(f)}Nc

c=1
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unlikely event that all possible combinations of these parameters are available a priori,
the amount of information required for detection would still be too large to be handled by
practical WSD. While the detection of PMSE requires sophisticated spectrum estimation
techniques [139][140], signal classification in this more practical context is to date an open
research problem6.

3.5 Chapter Summary

This chapter has described MESS, a Matlab-based sensing platform that we developed
to assess the performance achieved when different types of target signals are detected in
the presence of different types of uncertainty. The major goal of MESS is to provide us
with a baseline for comparisons, thus far not available in the literature, so it is possible to
compare different methods on a fair basis. Such performance analysis, to be carried out in
Chapter 4, will help us clarify some aspects observed during the implementation of MESS
and define the method to be used in each classifier of the three-stage signal classification
block in Figure 3.11. These aspects include:

• 1st Stage: ED seems the most promising candidate for the first stage in view of its
low complexity. However, it is likely the worst method when it comes to robustness
against noise uncertainty. RLRT is also susceptible to noise uncertainty but possesses
higher statistical power than ED. Hence, we expect RLRT to be more robust than
ED when σ2

w is not exactly known. As complex as any other EBD method, RLRT will
be attractive only if the limitation in performance introduced by SNR walls is not
that significant as compared to what we can achieve using blind EBD methods. If
this is not the case, our choice will be restricted AGM, GLRT, or MME. Performance
should be similar, though GLRT has potential to outperform MME as the number
of cooperating nodes increases, i.e. as 1

N
Tr[Rr(n)] becomes lower than λmin.

• 2nd Stage: If the prior knowledge in Table 3.9 is available, ACD offers the same
classification ability as BTPD but is half less complex. If this is the case, then both
methods are capable of accurately classifying categories composed of OFDM signals
that have different subcarrier spacings. This makes of ACD the most promising can-
didate for the second stage, though our previous work [90] raises one concern about
that method. We showed through simulations that the single-node performance of
ACD is poor when ECMA-392 signals are detected under multipath fading. While
this suggests that it is better to ensure multipath robustness at the expense of in-
creased complexity, i.e. by using BTPD, it remains to be investigated why and under
what circumstances this condition occurs as well as whether it can be mitigated by
enforcing cooperation among multiple nodes.

• 3rd Stage: Our goal with respect to the third stage is two-fold. First, we need to
choose one TDSC method to implement the SP-based classifier. Ideally, TDSC-MRC
outperforms TDSC-NP at the expense of increased complexity. In the practical case
of imperfect synchronization, TDSC-NP becomes attractive because its performance
is similar to that of TDSC-MRC. This behavior was observed in single-node sim-
ulations in the presence of SFO [132], but still lacks an analytical treatment, e.g.

6 Among the applications discussed in Chapter 5, we describe an alternative approach that may be used
to ensure PMSE coexistence in the post-switchover era.
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as done in [121] for CFO. Second, Figure 3.5 suggests that differentiation among
ATSC, NTSC, and PAL signals is possible on the basis of the sharp spectral fea-
tures present in their spectra. While this makes SCD the most promising method
to implement the PSD-based classifier, we still need to check whether SCD can also
be used to detect the typically flat spectrum of OFDM-based signals. In the event
that SCD can exploit the different signal edges of the spectra in Figure 3.4(a) and
Figure 3.4(b) to reliably distinguish between DVB-T Mode 2k and IEEE 802.22, we
could drop the SP-based classifier and use a single (PSD-based) classifier to resolve
for both condition C2 and condition C3.





Chapter 4

Simulation Results

In this chapter, we use MESS to carry out a thorough assessment of the detection per-
formance that each method in Table 3.6 achieves when detecting different target signals
under different operation conditions. The results presented in what follows are derived
from an extensive series of simulations conducted from October 2011 to May 2012 at the
high-performance parallel computing cluster system of the Regional Computing Center of
Lower Saxony [146]. The task of dealing with the huge amount of data generated during
over 50000 simulation hours was challenging from a number of perspectives, particularly
with respect to the presentation of the outcomes. Our concern was about figuring out a
way to present the results of interest while keeping redundancy reduced to a minimum.
Therefore, throughout the remainder of this dissertation, we use the notion of best-case
curves to characterize the performance that a class obtains when we (i) use the fusion
rule yielding the highest Qd (OR logic) to (ii) combine the local results of the most accu-
rate method belonging to that class (iii) under the mildest CFAR requirement (Pfa = 0.1).
Conversely, worst-case curves describe the performance that results from (i) the combined
use of the fusion rule yielding the lowest Qd (AND logic) and (ii) the least accurate method
within a class (iii) under the most stringent CFAR requirement (Pfa = 0.01). Whenever
we realize that further support is necessary for our exposition of ideas, we provide detailed
analysis plots. Such additional plots are intended to help us explaining the (eventually
large) gaps between best- and worst-case curves, e.g. by comparing the methods within a
class in terms of all combinations of fusion rule and CFAR requirement, rescaling axes so
as to improve visualization, combinations of both, etc. Unless explicitly stated otherwise,
the gains and losses mentioned in our discussions are measured at the operation region of
interest, i.e. in terms of the SNR where Pd ≥ 0.99 is first met.

The remainder of this chapter consists of seven parts that are organized as follows. In the
first part, we carry out an exemplary statistical analysis on the sample data accumulated
on the statistic collectors “wfile” and “rxfile”. The second part presents the results obtained
under AWGN when no uncertainty is present in the operation enviroment. Such “ideal”
performance will serve as the baseline for comparisons with the case where different sources
of uncertainty are considered. In parts three to five, we extend the AWGN analysis to
the case when uncertainty about channel fading parameters, noise power, the carrier
frequency and the sampling rate used at the licensed transmitter is present in the operation
environment. For each source of uncertainty, we consider the impact exerted by the type
of target signal and number of nodes on the performance degradation introduced by that
source. This allows us to rank each method in terms of its robustness against multipath
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fading, noise uncertainty, and clock offsets. Specifically, we are interested in checking
if there exist methods that exhibit substantial performance degradation (as compared
to the AWGN case) when detecting some but not all types of target signals. A second
aspect that we are interested in is to look at whether the fundamental detection limits of
those methods can be further shifted by using an increased number of cooperating nodes.
Other operation conditions known to influence the AWGN performance, such as fusion
rule, CFAR requirement, symbol length, and CP ratio are also taken into account in the
analysis. In the sixth part, we summarize the lessons learned, draw our conclusions, and
use them to determine a specific structure for the generic signal classification block in
Figure 3.11. Part seven closes the chapter.

4.1 Exemplary Statistical Analysis

The underlying principle of MC simulation relies on the strong law of large numbers,
which states that the arithmetic mean of a sequence of i.i.d. random variables converges
almost surely to an expected value that is the same for all variables in that sequence [147].
This central result in probability theory allows us to approximate the expected value of
a random event by arithmetically averaging a number of independent experiments, each
and every experiment having the same distribution as the event of interest. As in any
stochastic method, there will always exist some error related to the ability of the MC
estimate in approximating the exact expected value. When characterized by the standard
deviation of the difference between the MC estimate and the exact expected value, this
error is on the order of 1/

√
Nr [148]. Hence, at the expense of significant effort (in terms of

computer run time), we can minimize the error associated to the MC estimate simply by
making Nr arbitrarily large. Similar accuracy improvements can be achieved by decreasing
the variance of the MC estimate. When it comes to variance reduction, a number of
numerical techniques can be applied to exploit known information about the problem
and use this information to improve the accuracy of the MC experiment. For instance,
more efficient experiments can be obtained by modifying the statistical properties of the
random processes input to the simulator. Some techniques, e.g. importance sampling (IS),
modify the underlying sampling p.d.f’s to bias the sampling. This artificially increases the
likelihood that a run produces a nonzero score. To compensate for this biasing, the weight
assigned to each run is selected so that unbiased scores can still be produced. However,
despite of its potential to reduce the simulation run time, an IS experiment is context-
dependent in the sense that the simulation densities and weights introduced thereby have
to be designed for each individual problem at hand [148]. One strong implication of this
fact is that the power of the IS technique largely depends on the choice of such parameters
and this choice often poses a nontrivial problem.

In our specific case, the test statistics implemented in MESS may follow different distri-
butions. This means that at least each class in Table 3.6 requires its own IS scheme1. Even
if we neglect the development and integration efforts required to implement IS on MESS,
this implementation would suit only those methods whose test statistics follow (or can
be approximated by) distributions that are well understood. This is not the case here, so

1 This issue is in general common to variance-reduction techniques, where the price of acquiring and
dealing with the required information has to be paid before actually achieving some (if any) reduction
in variance [148].
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we decided not to use neither IS nor any variance-reduction technique in this disserta-
tion. Instead, recalling that our run-time limitations are mild thanks to the availability of
the high-performance computer cluster system mentioned earlier in this section, we use
a “brute force” approach that relies on large Nr. To determine Nr in a MC experiment, a
popular rule of thumb is to use a ratio where the numerator is on the order of 10 to 100
and the denominator is the a priori probability of the event of interest. Assuming that
the resolution of the measured probabilities should be in the range from 0.1 to 0.01, this
corresponds to 100 ≤ Nr ≤ 10000 for each experiment, e.g. for each simulated SNR point.
By assigning values from this range to Nr, we ensure that the error associated to the MC
estimates will be on the order of 0.1 to 0.01. We could pick the setting giving the smallest
error but, before starting with large scale simulations, it is advisable to analyze how these
different settings influence other aspects of the data gathered through simulation.

Among a number of statistical tools available for data visualization [149], histograms can
be used to estimate the p.d.f. of the data set under analysis from the distribution of the
data values. Exemplary histograms are provided in Figure 4.1 for the case of ECMA-
392 signals detected via ED under AWGN conditions. In this case, the approximation in
(2.11) relies on the central limit theorem and, as such, we expect the conditional p.d.f’s
p (zED|H0) and p (zED|H1) to follow asymptotic normal distributions. This is exactly the
case here, as the histograms of zED under both hypotheses clearly approach the estimated
bell-shaped p.d.f’s, superimposed on the plots as dashed lines, as Nr increases. Notwith-
standing the intuitive nature of Figure 4.1, detecting normality from a histogram is often
a hard task, particularly when the data set is small as in Figure 4.1(a). In such cases, it is
useful to obtain additional information about the data set via normal probability plots. As
illustrated in Figure 4.2 for the statistic collector “rxfile”, this tool allow us to verify on a
graphic manner whether our sample data comes from a normal distribution. The bottom
line here is to compare the sample data in “rxfile” to a straight line resulting from a linear
fit of the sample order statistics of that statistic collector. The closer the points are from
the straight, the more difficult it is to distinguish the sample data from normal data. The
outliers, i.e. points that do not lie on the straight, account for deviations from normality
and the number of outliers clearly decreases as Nr increases.

The statistical analysis presented in this section has illustrated only the case of ED, but
similar results for the remaining methods implemented in MESS are straightforward to
obtain. Setting Nr = 10000 is more than enough for the central limit theorem to hold, so all
the method distributions considered in this dissertation can be treated as asymptotically
normal. This number of runs keeps the error of our MC estimates on the order of 0.01,
which is low enough to allow accurate analysis in the operation region of interest.

4.2 AWGN Performance

Having the system and simulation settings put in place, it is now time to start presenting
our results. In this section, we present a set of results that reflect simulations carried out
when no source of uncertainty is present in the operation enviroment and the noise is pure
AWGN. The performance derived in such idealized scenario will serve as the baseline for
comparisons with the more challenging scenarios investigated later on in this section when
different sources of uncertainty are taken into account.
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(a) Nr = 100 runs.
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(b) Nr = 1000 runs.
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(c) Nr = 10000 runs.

Fig. 4.1: Impact of number of runs on the distribution of the test statistic zED. The
exemplary histograms depicted here were obtained by using ED to detect
ECMA-392 signals under AWGN (CP = 1/8, SNR|dB = −15 dB, 20 bins).
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(a) Nr = 100 runs.
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(b) Nr = 1000 runs.
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(c) Nr = 10000 runs.

Fig. 4.2: Impact of number of runs on the normality of the statistic collector “rxfile”. The
exemplary normal probability plots depicted here were obtained by using ED to
detect ECMA-392 signals under AWGN (CP = 1/8, SNR|dB = −15 dB).
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(b) Worst case.

Fig. 4.3: Detection performance of DVB-T signals under AWGN (Mode 2k, CP=1/4).

4.2.1 OFDM-based Target Signals

When the target signals are based on DVB-T, it is seen in Figure 4.3 that losses ranging
from 3 dB to 4 dB are introduced by switching from the best- to the worst-case curves.
If we keep the fusion rule unchanged, decreasing the CFAR requirement from 0.1 to 0.01
yields a degradation of 1 dB for all methods. Changing the fusion rule from OR logic to
AND logic introduces additional losses of 1 dB to 2 dB depending on the class and CFAR
requirement. The EBD class works independently of fusion rule but its performance still
depends on the specific method used. Here, RLRT is the best EBD method and AGM,
GLRT, and MME perform essentially the same and about 2 dB worser than RLRT. Since
ED and SCD are singleton classes, the losses observed are caused only by fusion rule and
CFAR requirement. As for CFD and OFD, the specific method used also plays a role in
the achievable performance and the best (worst) methods within these classes are BTPD
(ACD) and TDSC-MRC (TDSC-NP). All in all, the top performers are SCD and EBD
while CFD and OFD account to the least and second least accurate classes. The sensing
time is 1.12 ms for all but the OFD class, where it is 4.48 ms.
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(b) Worst case.

Fig. 4.4: Detection performance of ISDB-T signals under AWGN (Mode 2k, CP=1/4).

Recalling from Table 3.1 and Figure 3.3 that the OFDM parameterizations used in DVB-
T and ISDB-T are quite similar, we expect no significant changes when comparing these
standards. This is confirmed in Figure 4.4, where the sensing time is again set to 4.48 ms
for OFD and 1.12 ms for the remaining classes. This comparison suggests that performance
does not vary much if WSD operate collocated with licensed transmitters based only on
OFDM-based standards. However, the detection of OFDM signals is known to be largely
dependent of the CP ratio, symbol length, or both depending on the class used [115][121].
To confirm the results in the related work, we first examine the influence of the CP ratio
by comparing the results shown in Figure 4.4 (CP=1/4) to those in Figure 4.5 (CP=1/32).
EBD and ED are composed by blind and semi-blind methods and therefore immune to
variations in the CP ratio. SCD is robust too because the PSD of an OFDM signal remains
essentially the same as we vary the CP ratio. As for OFD, we confirm that TDSC-MRC
and TDSC-NP are only slightly susceptible to such changes, and the 1 dB loss observed
here matches well to that reported in [121]. In contrast, CFD gives losses of 9 dB (best-case
curves) and 12 dB (worst-case curves) as expected from [115].
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(b) Worst case.

Fig. 4.5: Detection performance of ISDB-T signals under AWGN (Mode 2k, CP=1/32).

From Table 3.1 we also see that DVB-T and IEEE 802.22 follow the same OFDM pa-
rameterization, except for the slightly larger bandwidth occupied by signals based on the
former. Therefore, we expect ED and EBD to achieve similar performance for both stan-
dards. CFD and SCD should not be affected much neither because of the same symbol
length, same CP ratio, and similar spectra (see Figure 3.4) used in DVB-T and IEEE
802.22. We confirm this in Figure 4.6, where the results shown for all but the OFD class
are essentially the same as those obtained for DVB-T under both best- and worst-case
conditions. In case of OFD, we know from Figure 3.3 that the SP cells are “boosted” by
a factor 4/3 in DVB-T but transmitted with unitary gain in IEEE 802.22. Since both
standards adopt the same symbol length, the performance gap of OFD observed between
Figures 4.3 and 4.6 can be explained in terms of the ratio of the power of SP cells to the
power of all cells (SP and data) of any subcarrier in a single PRU. The PRU adopted in
DVB-T repeats itself every four symbols, so its power ratio (sp/s)

2 is:

(4/3)2

12 + 12 + 12 + (4/3)2
=

16

43
. (4.1)
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In IEEE 802.22, the pilot insertion rate is lower than in DVB-T so that the PRU repeats
itself only every seven symbols. In this case, we have (sp/s)

2 equal to:

12

12 + 12 + 12 + 12 + 12 + 12 + 12
=

1

7
. (4.2)

Since the power ratio in (4.1) is larger than in (4.2), it is easier to detect DVB-T using
TDSC methods than IEEE 802.22. Indeed, the performance gap due to differences in the
amplitude and periodicity of the pilot insertion pattern used in DVB-T and IEEE 802.22
can be as high as 20 dB. This is better seen at the detailed analysis given in Figure 4.6(c),
where the x-axis is rescaled up to 10 dB. We also see in this figure that, in contrast to in
DVB-T and ISDB-T, the performances of TDSC-MRC and TDSC-NP are essentially the
same for IEEE 802.22. In this case, the reduced computational complexity of TDSC-NP
makes it more attractive than TDSC-MRC.

To complete our analysis about the detection of OFDM-based target signals, we still need
to examine the impact that the symbol length exerts on this process. DVB-T and ISDB-T
use TSYM up to 1.49 ms (in 8K mode with CP=1/4), whereas ECMA-392 conveys informa-
tion using shorter symbols around only 20 µs long. Hence, despite the fact that DVB-T,
ISDB-T, and ECMA-392 are all OFDM-based standards, the detection of target signals
complying with these standards clearly imposes different requirements on the design of
WSD. We analyze this impact by comparing Figure 4.3 (TSYM = 0.37 ms) to Figure 4.7
(TSYM = 19 µs). ECMA-392 signals are detected using 0.75 ms for the OFD class and
57.75 µs for all remaining classes. Slightly larger than in DVB-T, the performance gap
between best- and worst-case curves in ECMA-392 lies between 2 dB and 7 dB. The
most and the least accurate performers remain the same as in DVB-T. Depending on the
class used to detect ECMA-392 signals, the impacts of fusion rule and CFAR requirement
account for losses ranging from 1 dB to 6 dB. Since the impact of such design options
is more severe in ECMA-392 than in DVB-T, our results suggest that method selection
should be carried out on a target-dependent basis. Specifically, for ED, EBD, and CFD,
we observe a relatively mild average loss (≈ 4 dB) that can be explained by adding up
the impacts above. With losses as high as 11 dB (best-case curves) and 13 dB (worst-case
curves), OFD is the class most significantly impacted by a shorter TSYM. This matches
well our expectations because, as seen in Figure 3.3, ECMA-392 transmits SP cells using
unitary power and employs a PRU that repeats itself only every 13 symbols. The ratio
(sp/s)

2 that results from this setting is:

12

12 + 12 + 12 + 12 + 12 + 12 + 12 + 12 + 12 + 12 + 12 + 12 + 12
=

1

13
. (4.3)

However, different TSYM are used here, so we cannot predict performance deviations by
comparing (4.1) to (4.3) directly. In such cases, we should also consider the number of
OFDM symbols observed over the sensing time considered. For the specific case of Figures
4.3 and 4.7, the number of fully observed symbols is 14 and 35, respectively. Multiplying
these numbers by the corresponding power ratios in (4.1) and (4.3) yields average power
ratios of 5.21 and 2.69. Hence, when TDSC methods are employed along the lines in Table
3.7, it is evident that ECMA-392 signals should be more difficult to detect than DVB-T
signals. The same reasoning can be applied to Figures 4.6(c) and 4.7(c) to explain why
TDSC methods perform better for ECMA-392 than for IEEE 802.22 despite of the fact
that the ratio (sp/s)

2 is larger in (4.2) than in (4.3).
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(c) Detailed analysis of OFD: TDSC methods.

Fig. 4.6: Detection performance of IEEE 802.22 signals under AWGN (CP=1/4).
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(c) Detailed analysis of OFD: TDSC methods.

Fig. 4.7: Detection performance of ECMA-392 signals under AWGN (CP=1/8).



Chapter 4. Simulation Results 109

Further insight about the joint impact of CP ratio and symbol length can be obtained by
comparing Figure 4.5 (CP= 1/32, TSYM = 0.26 ms) to Figure 4.7 (CP= 1/8, TSYM = 19
µs). It can be seen that the ability of CFD in reliably detecting target signals is limited to
−7 dB (best-case curves) or −1 dB (worst-case curves) in ISDB-T but it is still possible
at −13 dB (best-case curves) and −9 dB (worst-case curves) in ECMA-392. This means
that, depending on the CP ratio used and in contrast to all other classes, the performance
of CFD may degrade even when TSYM increases.

4.2.2 Non-OFDM Target Signals

By comparing Figure 4.3 to Figure 4.8, we observe some similarities in the detection of
DVB-T and ATSC signals. First, all but the OFD class incur losses of 2 dB to 5 dB when
we move from the best- to the worst-case curves. Second, a performance degradation of 1
dB is verified for all but the OFD class when we decrease the CFAR requirement from 0.1
to 0.01. Third, SCD and OFD are the most and the least accurate classes. Recalling that
the sensing time used in the simulations is roughly five times longer for DVB-T than for
ATSC (see Table 3.7), it is clear that signals based on the former are harder for SCD to
detect than those based on the latter. This is expected because, as seen in Figure 3.4(a),
only the edges of the DVB-T spectrum can be exploited by SCD. In contrast, 3.5(a) shows
that the ATSC spectrum can be better “seen” by SCD because the ATSC pilot creates a
sharp spectral feature whose position does not change much over time. As for the OFD
class, here represented by the ASSD method, switching from OR to AND logic with CFAR
requirement kept unchanged yields losses up to 5 dB. Conversely, by increasing Pfa from
0.1 to 0.01 with fusion rule kept unchanged yields losses of 2 dB. Adding up these losses
explains the performance gap of 7 dB between best- and worst-case curves.

The poor performance of ASSD observed here is, in part, due to an issue that arises in
the threshold setting process and the way we tackle this issue in MESS. The symbols
conveying data segment SYNC signals are designed to have better SNR than ordinary
data symbols. While intended to facilitate synchronization in typical ATSC systems, here
this imposes the need for a threshold setting process able to adaptively set γ according to
the type of symbol (SYNC or data). We have seen in Section 3.3.3 that MESS determines
the value of γ solely on the basis of the σ2

w simulated for each SNR value. To avoid the
condition that γ cannot be suitably set because MESS does not know the type of symbol
currently being detected, we normalize each segment before transmission. Both conditions
are shown at the detailed analysis in Figure 4.8(c), where the x-axis is rescaled up to 20
dB. The dotted curves reflect the inability of MESS to operate with fixed γ when ATSC
signals are generated as in [135]. This condition occurs only at specific SNR values, namely
those where a segment conveying data segment SYNC symbols is generated more than
Pfa × Nr, e.g. 0.01 × 10000 = 100 times. The continuous curves reflect the performances
obtained using different CFAR requirements to detect ATSC signals with normalized data
segment SYNC symbols. It can be seen from this figure that segment normalization solves
the threshold issue but introduces some sort of “saturation” as we approach the operation
region of interest, i.e. 4 dB are needed to improve from Pd = 0.9 to Pd = 0.99 regardless
of fusion rule and CFAR requirement. Hence, beside being the method most sensitive to
changes in the design options adopted, the lack of an adaptive threshold setting procedure
makes ASSD need SNR higher than all remaining methods to reliably detect ATSC signals.
Under worst-case assumptions and sensing time of 0.23 ms, this need translates into 9 dB
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(all other methods achieve the same performance below −18 dB). Alternatively, longer
sensing time can improve performance.

Recalling that the system settings adopted in NTSC and PAL are only slightly different
(see Table 3.2), we do not expect substantial differences in performance when detecting
signals based on these standards. This is confirmed in Figures 4.9 and 4.10 for sensing
times of 0.76 ms and 0.57 ms, respectively. It can be seen that the performance of all but
the EBD class degrade up to 4 dB when we switch from best- to worst-case curves. Also,
both figures exhibit losses of 2 dB when we change the fusion rule from OR to AND logic
with the CFAR requirement kept unchanged, and of 3 dB when we increase Pfa from 0.1
to 0.01 with the fusion rule kept unchanged. The impact of such design options in NTSC
and PAL is thus similar as in the other TV broadcast standards analyzed thus far. As in
ATSC, the synchronization signals adopted in NTSC and PAL introduced issues in the
threshold setting process and the way we found to suitably set γ was to normalize HSYNC
signals before transmission. However, since the SYNC lines used in NTSC/PAL are more
abundant than the segment SYNC signals used in ATSC, this solves the threshold issue
at the expense of some degradation in the performance of energy-based methods, e.g. ED,
RLRT, and SCD. In case of ED, a comparison among Figures 4.8, 4.9, and 4.10 reveals
that the losses due to normalization of NTSC and PAL signals are up to 5 dB and 10
dB as compared to ATSC. Due to the same reason, the performance degradation verified
for the EBD class when we switch from the best- to the worst-case curves is of 6 dB in
NTSC and 11 dB in PAL. As shown at the detailed analyses in Figures 4.9(c) and 4.10(c),
AGM, GLRT, and MME give essentially the same performance whereas RLRT is here
the worst EBD method. SCD remains by far the best method but, despite of the longer
sensing times used in the simulations of NTSC and PAL (see Table 3.7), its performance
is only slightly better than in case of ATSC. The reason is that, beside the reduction in
the signal energy caused by normalization, we do not generate audio in NTSC and PAL.
Once the audio information is omitted, SCD can only exploit the two spectral features
created by the luminance and chrominance subcarriers.

Figure 4.11 suggests that all but the SCD class perform the same regardless of the WM
speaker mode used (see Table 3.3). Accounting to losses of 2 dB, changes in the fusion
rule and CFAR requirement impact the detection of WM in a manner similar to that
observed for analog TV broadcast. In general, the performance gap between the best- and
the worst-case curves ranges from 1 dB to 4 dB. OFD, here representing MF, and ED are
the second-worst and worst performers though we observe that the number of lags used to
compute (2.96) is critical to the achievable performance of MF. For instance, a 3 dB gain
can be derived by increasing τs from 30 to 100 lags, so that MF becomes able to detect
WM signals in SNR as low as that observed for EBD. This, however, comes at the expense
of longer simulation time. As for SCD, the loud and soft speaker modes are respectively 2
dB and 3 dB harder to detect than the silent speaker mode. This is expected because, as
seen in Figure 3.6, typical WM spectra exhibit spectral features that are sharper for the
silent speaker mode than for the other speaker modes. This is better seen at the detailed
analysis in Figure 4.11(c). Even at −30 dB, the strongest spike (centered at fc) in the
PSD of the silent speaker mode still can be distinguished from the noise floor, whereas
the spikes exhibited by the spectra of soft and loud speaker modes are large in number,
weaker in amplitude, and sit close to one another, thus making it more difficult for SCD
to detect WM signals based on these modes. Therefore, and as in [103], all simulations of
WM signals presented throughout the remainder of this dissertation will be based only
on the soft speaker mode.
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(c) Detailed analysis of OFD: ASSD method.

Fig. 4.8: Detection performance of ATSC signals under AWGN.
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(c) Detailed analysis of EBD.

Fig. 4.9: Detection performance of NTSC signals under AWGN.
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(c) Detailed analysis of EBD.

Fig. 4.10: Detection performance of PAL signals under AWGN.
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(c) Detailed analysis of SCD: received spectra at −30 dB.

Fig. 4.11: Detection performance of PMSE under AWGN (different WM speaker modes).
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4.3 Multipath Fading

Now that we have analyzed the AWGN channel, our next step is to extend the analysis
in Section 4.2 with practical issues that can substantially impair the detection process.
To begin with, we consider the case where the target signals are detected under fading
conditions. The channel is a six-tap multipath fading channel, created by making L = 6
in Figure 3.7 and fed with the profiles B and D in Table 3.5. In Tables 4.1 and 4.2, we
summarize the simulation results obtained for this setting in terms of the deviations (in
dB) observed when we switch from the ideal AWGN case to the more practical case of
multipath fading. Negative and positive deviations reflect losses and gains, respectively, as
compared to the AWGN case. Throughout the remainder of this dissertation, we refer to
average method deviation (AMD) as the total deviation averaged over all types of target
a method can detect. This allows us to rank the multipath robustness of that method as
poor (AMD ≤ −5), fair (−5 < AMD ≤ −3), average (−3 < AMD ≤ −2), good (−2 <
AMD ≤ −1), and excellent (AMD > −1).

4.3.1 Impact of Target Signal Type

It may seem from Tables 4.1 and 4.2 that OFDM-based target signals become in general
more difficult to detect than non-OFDM target signals when multipath fading is consid-
ered. However, care should be taken in this kind of statement because of the different
sensing times (see Table 3.7) and sampling frequencies (see Tables 3.1 and 3.2) used in
the simulations. Deviations in the performance of most methods do not vary much with
fusion rule and CFAR requirement for a given type of target signal, but substantial dis-
crepancies are observed when we direct a given method to detect its whole set of target
signals (see Table 3.6). For instance, the AMD values of ED and SCD indicate that they
are robust against multipath when non-OFDM target signals are considered but perform
poorly when it comes to OFDM-based target signals. Indeed, this impact of the target
signal type on detection performance is expected due to the two following reasons. The
first, responsible for the fairly positive AMD observed when ED and MF detect PMSE,
relates to the SNR boost in the vicitinity of the WM signal created by W ≪ B. Probably,
and again because of the small W/B, the multipath fading channel is behaving linearly. If
the channel frequency response is linear, the replicas of s(t) are only being shifted in time
and this does not affect performance negatively. Hence, since “what” the MF is picking up
is actually better than the sum of FM signals and noise described by r(t), the (filtered)
received energy is larger in the multipath case than in the AWGN case. The second reason
is that, in contrast to in the other OFDM-based standards, the TCP adopted in ECMA-392
are too short to absorb the maximum delay spreads τmax,B and τmax,D (see Tables 3.1 and
3.5). Since TCP < τmax, ISI is certain to occur under both profiles. This explains the low
AMD of most methods when detecting ECMA-392 signals.

In view of the above, the emphasis of the discussion that follows is placed on ECMA-392
only. Operation under ISI best supports the development of an understanding about how
detection performance is impaired by multipath. Of particular interest for us are ACD,
BTPD, and SCD, as highlighted using light grey color in Table 4.1. We begin looking at
the full set of results of these worst performers under both profiles B and D. Then, we
increase the number of nodes to investigate whether and under what circumstances CSS
can effectivelly mitigate the losses introduced by the multipath fading channel.
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Table 4.1: Performance deviation in dB introduced by multipath fading for OFDM-based target signals (compared to AWGN).

Method
DVB-T ISDB-T IEEE 802.22 ECMA-392

AMD RobustnessProfile B Profile D Profile B Profile D Profile B Profile D Profile B Profile D
Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst

ED −4 −3 −4 −4 −4 −3 −4 −4 −3 −3 −3 −3 −9 −9 −11 −12 −5.19 Poor
AGM −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −2 −2 −2 −2 −1.25 Good
GLRT −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −2 −1 −2 −1.13 Good
MME −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −2 −2 −2 −2 −1.25 Good

RLRT −4 −4 −4 −4 −4 −4 −4 −4 −1 −1 −1 −1 −7 −8 −12 −12 −4.81 Fair
SCD −4 −3 −3 −2 −4 −3 −3 −2 −1 −2 −1 −2 −10 −7 −22 −20 −5.56 Poor
ACD −2 −1 −2 −2 −2 −1 −2 −2 0 +1 0 +1 −6 −6 FAIL −1.71 Poor

BTPD −1 −1 −2 −2 −1 −1 −2 −2 +1 +2 +2 +3 −9 −10 −20 −22 −4.06 Fair
TDSC-NP 0 0 0 +1 −1 0 −1 −1 +3 +6 +3 +5 0 0 +3 +3 +1.31 Excellent

TDSC-MRC 0 0 0 0 −1 0 −1 0 +4 +2 +4 +2 −1 −1 +1 +1 +0.63 Excellent

Best: OR logic and Pfa = 0.1, Worst: AND logic and Pfa = 0.01, AMD: Average Method Deviation.

Table 4.2: Performance deviation in dB introduced by multipath fading for non-OFDM target signals (compared to AWGN).

Method
ATSC NTSC PAL PMSE (Soft Mode)

AMD RobustnessProfile B Profile D Profile B Profile D Profile B Profile D Profile B Profile D
Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst

ED −1 −1 −3 −3 +1 0 +1 +1 0 0 +1 0 +4 +4 +4 +4 +0.75 Excellent
AGM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 Excellent

GLRT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 Excellent
MME 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 Excellent
RLRT 0 0 −2 −2 −1 0 0 1 0 0 0 0 −2 −2 −2 −2 −0.75 Excellent
SCD 0 0 −1 0 0 +2 0 +1 +2 −1 +2 −1 −3 −3 −2 −2 −0.38 Excellent
ASSD −1 −1 0 +1 NA NA NA NA NA NA NA NA NA NA NA NA −0.25 Excellent

MF NA NA NA NA NA NA NA NA NA NA NA NA +7 +5 +7 +7 +6.00 Excellent

Best: OR logic and Pfa = 0.1, Worst: AND logic and Pfa = 0.01, AMD: Average Method Deviation.
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(b) Worst case.

Fig. 4.12: Detection performance of ECMA-392 signals under multipath (profile B).

By switching from the best- to the worst-case curves in Figure 4.12, the losses in perfor-
mance for profile B are relatively mild for ED and SCD (2 dB) and only moderate for the
remaining classes (6 dB). Figure 4.13 suggests that the impact of profile D is similar to
that of profile B for all classes but EBD and CFD. In case of EBD, the methods AGM,
MME, GLRT, and RLRT perform the same (Pd = 0.99 is achieved at −20 dB), so the
10 dB gap between profile B and profile D is caused solely by the more stringent CFAR
requirement adopted under worst case conditions. However, when AND logic is used as
fusion rule and each node is imposed to deliver Pfa = 0.01, the CFD class, represent-
ing the ACD method in this setting, performs poorly under profile B but entirely fails
under profile D. This is expected because our previous work in [90] shows that a single
ACD-based node performs poorly when ECMA-392 signals are taken into consideration
in conjunction with profile A (see Table 3.5). In that paper, the simulated performance of
ACD at 20 dB is limited to Pd ≈ 0.40 while BTPD achieves Pd = 0.99 at the same SNR.
In the sequel, we provide a more detailed analysis of this issue not presented in [90] due
to the space limitations imposed to that conference paper.
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Fig. 4.13: Detection performance of ECMA-392 signals under multipath (profile D).

4.3.2 Impact of Number of Nodes

As said earlier in this section, we are interested in investigating the extent to which CSS
can alleviate the losses introduced by multipath fading. Thus far, we have worked with
N = 2, so the natural next step is to look at the impact caused on performance when the
number of nodes engaged in cooperation increases. Some simulation results for N = 10
and N = 20 are presented in Figure 4.14, where the curves for N = 2 are plotted again
to serve as baseline for the computation of the cooperation gains derived for larger N . In
case of ACD, it can be seen from Figure 4.14(a) that cooperation buys us nothing when
under worst case conditions. Also, the improvement in the global probability of detection
achievable under best case conditions comes at the expense of deteriorated probabilities
of false alarm. Specifically, for Pfa = 0.1, ACD provides QOR

d ≈ QOR
fa with the latter

assuming values in the ranges [0.6320, 0.6720] for N = 10 and [0.8650, 0.8920] for N = 20.
This corresponds to global probabilities of false alarm that are respectively degraded in
more than 300% and 400% as compared to the N = 2 case.
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Fig. 4.14: Detection performance of ECMA-392 signals under multipath (profile D) for
different number of nodes. Best (worst) case curves reflect the use of OR
(AND) logic and Pfa = 0.1 (Pfa = 0.01).
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As for BTPD, Figure 4.14(b) shows that an increased number of nodes yields losses under
worst-case conditions but a substantial 12 dB gain can be achieved by increasing N from 2
to 20 when under best-case conditions. In this case, it may be tempting to further increase
N until the resulting cooperation gain “neutralizes” the losses due to multipath. We do not
pursue on this here because the cooperation gains do not increase linearly with the number
of nodes2, so it is unlikely that we can manage to obtain the remaining 8 dB required
to provide AWGN-like performance under multipath fading conditions this way. Another
aspect worth mentioning is that, like in ACD, the cooperation gains derived in BTPD
come at the expense of a degradation in QOR

fa . For Pfa = 0.1, QOR
fa varies (as a function

of the SNR) in the ranges [0.1800, 0.1930] for N = 2, [0.5900, 0.6320] for N = 10, and
[0.7920, 0.8430] for N = 20. However, BTPD differs from ACD in the sense that it is able
to detect ECMA-392 signals for all combinations of system options tested, e.g. a better
balance between QOR

d and QOR
fa can be achieved by combining OR logic with Pfa = 0.01.

For N = 20, this allows us to improve the range of values of QOR
fa to [0.1490, 0.1770] while

the resulting QOR
d still outperforms that obtained for N = 2 in 10 dB.

When SCD is used at the local level, 4.14(c) shows that less can be achieved in terms of
cooperation gains by increasing the number of nodes. The absence of improvement in Qd

under both best- and worst-case conditions suggests that the additional costs introduced
by cooperation (see Section 1.3) may become difficult to justify here. On the other hand,
it is important to note that the global probability of false alarm provided by SCD is low,
as compared to ACD and BTPD, and does not vary much as N increases. For instance,
QAND

fa lies in [0.0020, 0.0070] for N = 10 and in [0.0010, 0.0070] for N = 20, whereas QOR
fa

lies in [0.1330, 0.1520] for N = 10 and in [0.1400, 0.1690] for N = 20. So, we think it is
more appropriate to refer to SCD as method suitable for CSS applications requiring low
Qfa, rather than as a “poor” performer in terms of cooperation gains.

It turns out from the above findings that the use of different methods allows us to derive
different cooperation gains. The gains observed here are essentially different in terms of
how much Qd overcomes Pd, but may differ in terms of Qfa too. Methods able to provide
big improvements in Qd, even if at the expense of some degradation in Qfa, are interesting
for those applications where the emphasis is on protecting licensed systems that operate
collocated. In contrast, methods that cannot improve Qd that much, but have potential
to keep Qfa as low as Pfa (or even lower than Pfa if using AND logic), are interesting for
applications that focus on efficient white space utilization. This suggests that, in order
to realize the theoretical benefits of cooperation, special care is needed when selecting
the method to be used at the local level. With respect to the methods analyzed here, the
combined use of BTPD and SCD seems particularly promising to balance such contrasting
goals thus serving both types of applications. For instance, a two-stage WSD could first
detect the faded OFDM signals using BTPD (high Qd) and then further refine results by
using SCD (high Qfa). However, it can be seen from (2.83) and (2.84) that the double
time lags required in BTPD makes it twice as complex as ACD. Hence, it is desirable
to determine the reasons why ACD fails to detect ECMA-392 signals under worst-case
conditions while BTPD does not. Finding a remedy for this issue, if there is any, would
make of ACD a less complex alternative to couple with SCD. The natural starting point for
such an investigation is the underlying working principle used by both ACD and BTPD,
namely the ACF of the received signal.

2 The cooperation gain saturates as N increases without limit. For instance, it is shown in [64] that a
small number of ED-based nodes (N ∼ 10-20) is enough to realize the full benefits of cooperation.
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After being passed through the multipath fading channel, the discrete-time received signal
can be written as

r(n) =

L∑

k=1

αks(n− k) + w(n), (4.4)

where the coefficients αk are the complex channel amplitudes and L is the channel order.
In the discrete-time domain, we can rewrite the ACF of the received signal in (2.44) as

Rr(τs) = E [r(n+ τs)r
∗(n)] , (4.5)

where τs are discrete time lags normalized by a sampling period Ts. Plugging (4.4) into
(4.5) and rearranging the terms, we get

Rr(τs) = E

[
L∑

k=1

αks(n + τs − k)

L∑

k=1

α∗
ks

∗(n− k)

]

=
L∑

k=1

L∑

j=1

αkα
∗
jE [s(n+ τs − k)s∗(n− j)] . (4.6)

The values assumed by the expectation in (4.6) are known to be

E [s(n+ τs − k)s∗(n− j)] =

{

Rs(τs), if k = j

0, otherwise,

so we can simplify it as:

Rr(τs) = Rs(τs)

L∑

k=1

|αk|2 , if k = j. (4.7)

However, if we increase the number of discrete time lags in one unit (4.6) becomes

Rr(τs + 1) =

L∑

k=2

L∑

j=1

αkα
∗
jE [s(n+ τs + 1− k)s∗(n− j)]

= Rs(τs)

L∑

k=2

αkα
∗
k−1, (4.8)

for k − 1 = j and zero otherwise. Further increasing τs yields:

Rr(τs + 2) = Rs(τs)

L∑

k=3

αkα
∗
k−2 (4.9)

Rr(τs + 3) = Rs(τs)

L∑

k=4

αkα
∗
k−3 (4.10)

...
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...

Rr(τs + L− 2) = Rs(τs)

L∑

k=L−1

αkα
∗
k−L+2 (4.11)

Rr(τs + L− 1) = Rs(τs)
L∑

k=L

αkα
∗
k−L+1. (4.12)

Expanding the sums in (4.7)-(4.12) and writing the result in matrix form gives









Rr(τs)
Rr(τs + 1)

...
Rr(τs + L− 2)
Rr(τs + L− 1)










︸ ︷︷ ︸

RL

= Rs(τs)










α1 α2 α3 . . . αL−1 αL

α2 α3 α4 . . . αL 0
...

...
...

. . . 0 0
αL−1 αL 0 . . . 0 0
αL 0 0 . . . 0 0










︸ ︷︷ ︸

TL










α∗
1

α∗
2
...

α∗
L−1

α∗
L










︸ ︷︷ ︸

SL

, (4.13)

which for the six-tap channel used in MESS becomes:










Rr(τs)
Rr(τs + 1)
Rr(τs + 2)
Rr(τs + 3)
Rr(τs + 4)
Rr(τs + 5)











︸ ︷︷ ︸

R6

= Rs(τs)











α1 α2 α3 α4 α5 α6

α2 α3 α4 α5 α6 0
α3 α4 α5 α6 0 0
α4 α5 α6 0 0 0
α5 α6 0 0 0 0
α6 0 0 0 0 0











︸ ︷︷ ︸

T6











α∗
1

α∗
2

α∗
3

α∗
4

α∗
5

α∗
6











︸ ︷︷ ︸

S6

(4.14)

Finally, by taking the inner product 〈R,R〉 we arrive at

R
†
R = |Rs(τs)|2 S†

T
†
TS, (4.15)

where the term |Rs(τs)|2 reflects the AWGN contribution and the term S
†
T
†
TS reflects

the fading contribution, i.e. if detection is carried out only in the presence of AWGN and
the number of samples collected is large enough, then S

†
T
†
TS = 1 and R

†
R = |Rs(τs)|2.

The following conclusions can be drawn from the derivation above. First, the PDP de-
scribing the multipath fading channel accounts for a performance limiting aspect of any
ACF-based method. Second, as seen from the matrix TL in (4.13), the extent to which
the detection performance is impacted by the PDP will be in general more dependent of
the contribution of the latest path than those of the earlier paths. For the specific channel
at hand, we see from the matrix T6 in (4.14) that the contribution of the sixth tap is the
one that dominates the overall degradation caused by the fading. The excess delays and
amplitudes defining the sixth tap in Table 3.5 are substantially different for profiles B
and D, so it is reasonable to expect different levels of performance. However, while (4.15)
explains the variations observed in the performance of ACD under multipath fading, it
does not provide much insight on why the method works under profile B but not under
profile D. In the sequel, we show that the answer to this question also depends on aspects
other than the channel amplitudes and channel delays in (4.15).
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We have seen in Chapter 2 that detection methods can be implemented in different ways,
depending on the amount of prior knowledge of target signals available for detection. In
the specific case of ACD, this prior knowledge may involve information about the symbol
length [118], CP length, and synchronization [116]. BTPD, in contrast, is regarded to as
a blind technique in [119] and [120] because it does not require any information to work.
However, BTPD additionally needs to perform a peak search followed by a symmetry
check in order to determine the secondary peaks introduced by the CP on both sides of
Rr(τs). Having that said, it is clear that the assumptions above can be used interchangeably
in the implementation of both ACD and BTPD.

Consider the case where the useful symbol length TFFT is known a priori. Since the desired
side peaks of Rr(τs) will sit at τs = ±1, we can derive substantial run-time savings by
evaluating only those two time lags of interest. Under this assumption, Figure 4.15(a)
shows that multipath fading created by profile B should not be an issue as long as the SNR
is high enough. The reason is that the PDP described by the profile B does not impact the
position of the side peaks. This can be clearly seen by zooming in the vicinity of τs = +1,
as shown in the upper right side of Figure 4.15(a). Suppose now that information about
TFFT entirely lacks and it is hard to estimate it on a timely manner3. If this is the case,
we need to evaluate Rr(τs) over a range of time lags and search its side peaks inside that
range. Such peak search procedure consists of departing from τs = 0 and progressivelly
increasing (or decreasing and increasing in case of BTPD) the time lag index until peaks
are eventually found. However, without exact knowledge of TFFT, ACD has no “reference”
that allows distinction between the desired peaks and other undesired peaks, e.g. that
may have been introduced by the multipath fading channel. While BTPD relies on the
symmetry of Rr(τs) to resolve for the desired peaks, this works only if the undesired peaks
are not symmetric. This condition is illustrated in Figure 4.15(b), where it is seen that
some of the unintended peaks are strong enough in magnitude to be misperceived as the
desired peak even in the high SNR regime. The presence of such unintended peaks in
Rr(τs) yields high FAR for both ACD and BTPD. Also, since they are exactly symmetric,
they may compromise the process of determining TFFT blindly using BTPD.

Let us now extend our analysis to the profile D. Under the assumptions that TFFT is
exactly known and only the time lags τs = ±1 are used for detection, Figure 4.16(a)
shows that the desired side peak cannot be detected at the time lag where it is expected
to be sitting at. Instead, it is “spread” around a different time lag whose value depends on
the maximum delay spread τmax. This is better seen by zooming in the vicinity of τs = +1,
as shown in the upper right side of Figure 4.16(a). The maximum values of the received
side peak (actually a pulse) will lie somewhere within the range τ ∈ [TFFT, TFFT + τmax].
Hence, even if knowledge of TFFT is available, ACD does not work properly when profile D
is considered. BTPD works fine thanks to its peak search. Apart from the spreading caused
by the multipath fading channel, Figure 4.16(b) differs from Figure 4.15(b) in the sense
that it exhibits no strong unintended peaks that could cause false alarms. Therefore, the
FAR of ACD and BPTD are lower here than for profile B. Also, the detection of ECMA-
392 under profile D should not be an issue using ACD as long as some peak search is
carried out. As for BTPD, the spreading of the desired side peaks will cause the blind
determination of the useful symbol length to overestimate the actual TFFT.
3 The set of possible TFFT values increases as a function of the number of OFDM standards operating

collocated and the number of operation modes allowed within each standard. Hence, the estimation of
TFFT via successive testing may yield unnaceptably high detection delays in practical multi-standard
operation scenarios.
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Fig. 4.15: Autocorrelation function of ECMA-392 signals received at 20 dB under
multipath fading described by profile B. The autocorrelation function of the
transmitted (noiseless) ECMA-392 signal is provided for comparison.

It turns out from our analysis that the level of performance achieved by ACD and BTPD
depends not only on the PDP describing the fading process (as shown in (4.15)), but also
on both knowledge of TFFT available for detection and how that knowledge is exploited by
the detection process. Unintended peaks introduced by the channel decrease in number
and amplitude as τmax increases, but very long delays (as in profile D) cause the secondary
peaks in the ACF to be spread around the expected time lag. When TFFT is known a priori
and τmax is small (as in profile B), satisfactory detection performance can be derived by
evaluating Rr(τs) only at those time lags where the side peaks introduced by the CP are
expected to be sitting at. In contrast, when τmax is large (as in profile D), we may need to
ensure performance through peak search regardless of the amount of information about
TFFT available for detection. This maximizes the likelihood of detecting spread side pulses
and avoids ACD to fail entirely when ECMA-392 signals are considered.
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Fig. 4.16: Autocorrelation function of ECMA-392 signals received at 20 dB under
multipath fading described by profile D. The autocorrelation function of the
transmitted (noiseless) ECMA-392 signal is provided for comparison.

4.4 Noise Uncertainty

Another issue that arises in the practical operation of WSD is uncertainty about the noise
level. In this section, we present simulation results obtained when the target signals are
“buried” in noise of uncertain power. Firstly, we consider the impact exerted by the type
of target signal on the performance degradation introduced by the SNR wall phenomenon.
Specifically, we check if there exist methods that suffer from SNR walls when detecting a
certain type of target signal but not all types of target signals. We then investigate whether
the fundamental detection limits of those methods susceptible to noise uncertainty can be
further shifted by using an increased number of cooperating nodes. As in the multipath
case, this allows us to assess whether CSS can mitigate the impact of noise uncertainty. To
close our analysis, we look at other operation conditions known to influence performance
in the ideal case, e.g, fusion rule, CFAR requirement, and symbol length.
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The AMD values shown in Tables 4.3 and 4.4 suggest that all methods but ED, RLRT,
and SCD are robust against noise uncertainty when the channel is AWGN. Indeed, it is
evident from (2.11) and (2.30) that ED and RLRT are susceptible to noise uncertainty. As
for SCD, nothing can be inferred by inspecting (2.54) directly but our simulation results
show that, depending on the type of target signal, the absence of exact knowledge of σ2

w

may introduce SNR walls that substantially degrade detection performance. The same
behavior is also verified for multipath fading channels, as illustrated for the case of profile
B in Tables 4.5 and 4.6. By comparing Table 4.3 to Table 4.5, we see that AMD does not
change much for most methods when the target signals are based on OFDM. This reflects
well the fact that most methods are virtually immune to multipath, as seen in Section
4.3. However, unlike most methods, ED, RLRT, and SCD show AMD improvements of
3.75, 3.44, and 2.38, respectively, when we switch the channel from AWGN to multipath.
The reason is that, while the ideal performances of these methods decrease substantially
under multipath, their SNR walls remain the same as when under AWGN. Hence, since
the deviations in performance decrease in average, the observed AMD increases. A similar
analysis of the joint effects of noise uncertainty and multipath fading can be carried out
for the case of non-OFDM signals by comparing Tables 4.4 and 4.6. Extensions for profile
D are also straightforward to obtain.

In what follows, our emphasis is placed on the analysis of methods that are susceptible to
noise uncertainty: ED, RLRT, and SCD. In order to allow direct comparisons between ideal
operation conditions (σ2

w is perfectly known) and noise uncertainty conditions (knowledge
of σ2

w is imperfect), we use the ρ values in Table 3.4.

4.4.1 Impact of Target Signal Type

ED and RLRT are methods that perform independent of the target signal type even if the
noise is of uncertain power. This is confirmed in Figures 4.17 and 4.18, where some minor
performance variations are due to the different sensing times used in the simulations (see
Table 3.7). In either case, a small deviation of only ±0.5 dB (ρ = 1.12) about the true
value of σ2

w, e.g. noise level changes or due to some irreducible residual uncertainty after
σ2
w has been estimated, introduces SNR walls that degrade the detection performances in

up to 13 dB relative to the ideal case (ρ = 1.00). In the particular case of ED, for which
nominal SNR walls can be computed in closed form, our results in Figure 4.17 support
well those presented in [100] and [102] as they suggest that (2.19) provides a lower bound
on the actual detection limit. For the types of target signal in Figure 4.17, we can clearly
see that the simulated SNR wall is always better than that computed via (2.19).

In contrast to ED and RLRT, SCD largely depends on the type of target signal when
σ2
w is only imperfectly known. If the target signals are non-OFDM, as originally proposed

in [50], it is easy to improve performance because no SNR wall is created. In such cases,
where the spectrum of the target signal exhibits sharp spectral features (see Figure 3.5),
SCD is virtually immune to noise uncertainty. This is confirmed in Figure 4.19 for ATSC,
NTSC, and PAL. Similar results can be obtained for WM signals, regardless of the speaker
mode used. In contrast, performance losses ranging from 5 dB to 11 dB are observed in
Figure 4.20 when we direct SCD to detect OFDM-based signals. Before pursuing on this
specific issue of SCD (and along the same lines used in our analysis of multipath), let us
first investigate whether CSS can alleviate the losses in performance caused by SNR walls
in more general cases.



C
h
a
p
t
e
r

4
.

S
im

u
l
a
t
io

n
R

e
s
u
l
t
s

127

Table 4.3: Performance deviation in dB introduced by noise uncertainty for OFDM
signals detected under AWGN as compared to σ2

w ideally known (ρ = 0).

Method
DVB-T ISDB-T IEEE 802.22 ECMA-392

AMD Robustnessρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24

Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst

ED −13 −11 −15 −12 −13 −9 −15 −12 −11 −11 −13 −12 −10 −8 −11 −9 −11.56 Poor
AGM −1 −1 −1 −1 −1 0 −1 0 +1 +1 +1 +1 0 −1 −1 −1 +0.06 Excellent

GLRT −1 −1 −1 −1 −1 0 −1 0 +1 +1 +1 +1 −1 0 −1 −1 +0.06 Excellent
MME −1 −1 −1 −1 1 0 −1 0 +1 +1 +1 +1 0 −1 −1 −1 +0.06 Excellent
RLRT −12 −11 −14 −13 −11 −11 −14 −13 −12 −10 −14 −12 −8 −7 −11 −10 −11.44 Poor
SCD −11 −8 −12 −9 −11 −8 −12 −9 −9 −9 −11 −10 −9 −5 −10 −7 −9.38 Poor
ACD 0 +1 +1 +1 0 +1 +1 +1 0 +1 +1 +1 +1 +1 +1 +1 +0.81 Excellent

BTPD 0 0 0 0 0 0 0 0 +1 0 +1 0 0 0 0 0 +0.13 Excellent
TDSC-NP 0 0 0 0 0 0 0 0 0 0 0 0 +1 0 +1 0 +0.13 Excellent

TDSC-MRC 0 0 0 0 0 0 0 0 0 0 0 0 +1 0 +1 0 +0.13 Excellent

ρ = 1.12 ↔ σ2
w ± 0.5 dB, ρ = 1.24 ↔ σ2

w ± 1.0 dB Best: OR logic and Pfa = 0.1, Worst: AND logic and Pfa = 0.01, AMD: Average Method Deviation.

Table 4.4: Performance deviation in dB introduced by noise uncertainty for non-OFDM
signals detected under AWGN as compared to σ2

w ideally known (ρ = 0).

Method
ATSC NTSC PAL PMSE (Soft Mode)

AMD Robustnessρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24

Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst

ED −10 −8 −11 −10 −6 −6 −7 −7 −3 −3 −4 −4 −10 −7 −11 −8 −7.19 Poor
AGM 0 +1 +1 +1 +1 0 +2 +1 0 0 +1 +1 +1 0 +1 +1 +0.75 Excellent
GLRT 0 +1 +1 +1 +1 0 +2 +1 0 0 +1 +1 +1 0 +1 +1 +0.75 Excellent
MME 0 +1 +1 +1 +1 0 +2 +1 0 0 +1 +1 +1 0 +1 +1 +0.75 Excellent
RLRT −8 −7 −11 −10 −7 −5 −10 −7 −3 −3 −5 −5 −12 −11 −15 −14 −8.31 Poor

SCD −1 0 −1 0 0 0 0 0 0 −1 0 −1 −1 0 −2 0 −0.44 Excellent
ASSD −1 −2 −1 −2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A −1.50 Good
MF N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0 0 −1 0 −0.25 Excellent

ρ = 1.12 ↔ σ2
w ± 0.5 dB, ρ = 1.24 ↔ σ2

w ± 1.0 dB Best: OR logic and Pfa = 0.1, Worst: AND logic and Pfa = 0.01, AMD: Average Method Deviation.
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Table 4.5: Performance deviation in dB introduced by noise uncertainty for OFDM
signals detected under multipath as compared to σ2

w ideally known (ρ = 0).

Method
DVB-T ISDB-T IEEE 802.22 ECMA-392

AMD Robustnessρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24

Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst

ED −10 −8 −11 −9 −10 −6 −11 −9 −11 −9 −9 −10 −3 −2 −4 −3 −7.81 Poor
AGM 0 +1 +1 +1 0 +1 +2 +1 0 +1 +1 +1 0 +1 +1 +1 +0.81 Excellent

GLRT 0 +1 +1 +1 0 +2 +1 +2 0 +1 +1 +1 0 +1 +1 +1 +0.88 Excellent
MME 0 +1 +1 +1 +2 +2 +1 +2 0 +1 +1 +1 0 +1 +1 +1 +1.00 Excellent
RLRT −8 −7 −11 −10 −7 −7 −11 −10 −10 −9 −11 −12 −4 −2 −5 −4 −8.00 Poor
SCD −8 −6 −9 −7 −8 −6 −9 −7 −11 −7 −12 −8 −3 −3 −4 −4 −7.00 Poor
ACD +1 0 +1 +1 +1 0 +1 +1 0 +1 +1 +1 +1 0 +1 0 +0.69 Excellent

BTPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0.00 Excellent
TDSC-MRC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0.00 Excellent
TDSC-NP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0.00 Excellent

ρ = 1.12 ↔ σ2
w ± 0.5 dB, ρ = 1.24 ↔ σ2

w ± 1.0 dB Best: OR logic and Pfa = 0.1, Worst: AND logic and Pfa = 0.01, AMD: Average Method Deviation.

Table 4.6: Performance deviation in dB introduced by noise uncertainty for non-OFDM
signals detected under multipath as compared to σ2

w ideally known (ρ = 0).

Method
ATSC NTSC PAL PMSE (Soft Mode)

AMD Robustnessρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24 ρ = 1.12 ρ = 1.24

Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst

ED −10 −7 −11 −9 −7 −6 −8 −7 −3 −3 −5 −4 −14 −11 −16 −13 −8.38 Poor
AGM 0 +1 +1 +1 +1 0 +1 +1 0 0 +1 +1 0 0 +1 +1 +0.63 Excellent
GLRT 0 +1 +1 +1 +1 0 +1 +1 0 0 +1 +1 0 0 +1 +1 +0.63 Excellent
MME 0 +1 +1 +1 +1 0 +1 +1 0 0 +1 +1 0 0 +1 +1 +0.63 Excellent
RLRT −8 −7 −11 −10 −6 −8 −7 −10 −3 −3 −5 −5 −11 −11 −14 −13 −8.25 Poor

SCD 0 0 0 0 0 0 0 0 0 0 0 0 −2 −1 −2 −1 −0.38 Excellent
ASSD 0 −1 −1 −1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A −0.75 Excellent
MF N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0 −1 −1 −1 −0.75 Excellent

ρ = 1.12 ↔ σ2
w ± 0.5 dB, ρ = 1.24 ↔ σ2

w ± 1.0 dB Best: OR logic and Pfa = 0.1, Worst: AND logic and Pfa = 0.01, AMD: Average Method Deviation.
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(b) Worst case.

Fig. 4.17: AWGN performances of ideal ED (ρ = 1.00) and ED under noise uncertainty
of ∆σ̂2

w = σ2
w ± 0.5 dB (ρ = 1.12) for different target signals.

4.4.2 Impact of Number of Nodes

Thus far, our simulation work has shown that ED and RLRT are always susceptible to
noise uncertainty but SCD suffers from the SNR wall phenomenon only when it comes to
the detection of OFDM-based target signals. Our next step is to analyze the impact of an
increased number of nodes on the detection performances that these methods can deliver
when σ2

w is not perfectly known. As in our multipath fading analysis, the cooperation
gains derived when N increases are assessed by comparing simulation results obtained
for N = {2, 10, 20} nodes. We restrict the analysis that follows to the case of OFDM-
based target signals and, without any loss of generality, consider the ECMA-392 standard.
Similar results for DVB-T, ISDB-T, and IEEE 802.22 are straightforward to obtain along
the lines used here.

According to the best-case curves shown in Figures 4.21(a) and 4.22(a), the ideal gains
(ρ = 1.00) derived by increasing N from 2 to 20 nodes are 4 dB and 5 dB when ED and
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(a) Best case.

−40 −35 −30 −25 −20 −15 −10 −5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal−to−Noise Ratio [dB]

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

Impact of Noise Uncertainty (N=2, N
r
=10000)

 

 

ATSC
DVB−T
ECMA−392
PMSE (WM)

ρ=1.00 ρ=1.12

(b) Worst case.

Fig. 4.18: AWGN performances of ideal RLRT (ρ = 1.00) and RLRT under noise
uncertainty of ∆σ̂2

w = σ2
w ± 0.5 dB (ρ = 1.12) for different target signals.

SCD are respectively employed at the local level. On the other hand, if the fluctuation
about the true value of σ2

w is of ±0.5 dB (ρ = 1.12), the same increase in the number
of nodes buys us nothing in terms of performance improvement. The SNR walls remain
fixed at around −9 dB for ED and −13 dB for SCD, regardless the number of nodes used.
In case of ED, this matches well to the related work in [98]−[102] where it is shown that
SNR walls cannot be “shifted” via CSS. If we now look at the worst-case curves on Figures
4.21(b) and 4.22(b), it is clear that hard combining local contributions using AND logic
results in a global performance that deteriorates as N increases with σ2

w perfectly known
(ρ = 1.00). When the uncertainty about the true noise floor is of ±0.5 dB (ρ = 1.12), any
visible losses are introduced as N increases. Nevertheless, and like in the best-case curves
where OR logic is used, the global detection performances of ED and SCD are limited by
SNR walls respectively located at −8 dB and −11 dB.

As explained in Section 3.5, the use of SCD to detect OFDM-based target signals has been
motivated due to its potential to improve the third stage of the generic signal classification
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(a) ATSC.
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(b) NTSC.
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(c) PAL.

Fig. 4.19: AWGN performances of SCD under different amounts of noise uncertainty for
different non-OFDM target signals. Best (worst) case curves account to the
use of OR (AND) logic and Pfa = 0.1 (Pfa = 0.01).
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Fig. 4.20: AWGN performances of ideal SCD (ρ = 1.00) and SCD under noise
uncertainty of ∆σ̂2

w = σ2
w ± 0.5 dB (ρ = 1.12) for different OFDM signals.

block in Figure 3.11 in terms of agility and complexity. However, the coupling SCD-OFDM
has shown some “bad signs” as the achievable performance is limited by SNR walls that,
as in ED, cannot be shifted through CSS. Though SCD can still be regarded as the most
promising candidate to detect non-OFDM signals, the reason for its “signal-dependent”
susceptibility to noise uncertainty is worth investigating.

Our starting point for such investigation are the spectral masks of OFDM signals received
at different SNR levels, as Figure 4.23 illustrates for ECMA-392 when the knowledge of
σ2
w is perfect4. It is seen in Figure 4.23(a) that the signal edges are sharp in the high SNR

regime but, in Figure 4.23(b), they progressively degrade, and subsquently disappear, as
the SNR decreases. The region where the signal edges undergo critical deterioration spans
from −10 dB to −15 dB and, thus, encompasses the values where walls occur in Figures
4.20 and 4.22. Since the signal edges are the only spectral features that can be exploited

4 We omit the plots for σ2
w = 1.12 and σ2

w = 1.24 because OFDM spectra do not seem to change much
in the presence of noise uncertainty.
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Fig. 4.21: AWGN performances of ideal ED (ρ = 1.00) and ED under noise uncertainty
of ∆σ̂2

w = σ2
w ± 0.5 dB (ρ = 1.12) when ECMA-392 signals are detected using

different number of nodes.

for detection in OFDM, the uncertainty about their positions seems to contribute jointly
with the noise uncertainty to the SNR walls of SCD.

The next aspect to verify is whether the SNR walls observed here really characterize the
detection limits of SCD, i.e. whether the sample complexity of the method approaches
infinity in their neighborhoods. If this is the case, then the use of an increased number of
samples M should not yield any performance improvement when σ2

w is not exactly known.
However, what we see in Figure 4.24 actually contradicts this expectation. First, Figure
4.24(a) shows that it becomes possible to distinguish the signal edges from the noise floor
when M is one order of magnitude larger than before. Second, since the edges are now
visible at lower SNR, it is evident that the global detection performance of SCD should
improve. This is confirmed in Figure 4.24(b), where the SNR walls improved in roughly
10 dB (as compared to Figures 4.20 and 4.22) when σ2

w = 1.12.

Summing up our analysis on the SNR walls experienced by SCD, we observe that the
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Fig. 4.22: AWGN performances of ideal SCD (ρ = 1.00) and SCD under noise
uncertainty of ∆σ̂2

w = σ2
w ± 0.5 dB (ρ = 1.12) when ECMA-392 signals are

detected using different number of nodes.

robustness of the method depends on the joint uncertainty about the actual σ2
w and the

actual position of the spectral feature exploited for detection. If the target signals are
non-OFDM, SCD does not suffer from SNR walls because the spikes related to the ATSC
pilot and the subcarriers (luminance and chrominance) used in NTSC/PAL occur at fixed
positions. In contrast, the detection of OFDM-based target signals is more challenging in
the presence of noise uncertainty because the exact position of the signal edges exploited
by SCD becomes hard to determine as the SNR decreases. The use of an increased number
of samples makes it possible for SCD to “see” the signal edges at lower SNR, thus improving
the performance of the method also under noise uncertainty. However, if the SNR keeps
decreasing, there will be some value for which the signal edges will disappear again, e.g.
around −22 dB in Figure 4.24(b). Hence, while we can shift SNR walls at the expense of
complexity, this does not prevent the occurrence of the SNR wall phenomenom. It is also
worth noting that, though intuitive, these findings are based on observations only and
thus not intended to replace a formal proof justifying the behavior of SCD.
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(b) Low SNR regime.

Fig. 4.23: Spectral masks of ECMA-392 signals received at different SNR levels
(ρ = 1.00, M ≈ 10000 samples).

Now that we have shed some light on what might be introducing SNR walls in SCD, it is
time to turn our attention to the case shown in Figure 4.25 where an increased number
of RLRT-based nodes engage in cooperation. When we assume perfect knowledge of σ2

w,
Figure 4.25(a) shows that the cooperation gains achievable by RLRT can be as large as
7 dB when we increase N from 2 to 20 nodes. The same increase in N yields gains of
9 dB and 10 dB when the uncertainty about the true σ2

w is of ±0.5 dB (ρ = 1.12) and
±1.0 dB (ρ = 1.24, not depicted), respectively. This suggests that, unlike what we have
observed for ED and SCD, cooperation can effectively alleviate the detrimental effects
caused by noise uncertainty when RLRT is used at the local level. In order to understand
why CSS yields rather different results when based on ED and RLRT, we need to find
the distributions of the test statistics zCSS

ED and zRLRT.

Deriving an approximation to the distribution of zRLRT corresponds to finding an accurate
representation for the p.d.f. of λmax under H0 and H1. This has been an open problem in
multivariate analysis for several decades and no acceptable method for dimension larger
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(a) Spectral mask received at −15 dB (ρ = 1.00).
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Fig. 4.24: Impact of number of samples on the spectral masks and on the performance of
SCD for ECMA-392 signals (M ≈ 100000 samples).

than two (N > 2) is known to date [151]. Moreover, though substantial research effort
has been carried out to study λmax in the high dimensional setting, i.e. in the joint limit
as both N,M → ∞ (see, e.g. [105], [151], and the references therein), we should not use
asymptotic approaches here because both N and M are finite in our case.

As for zCSS
ED , the test statistic of the ith node under the assumption that all nodes collect

the same number of channel samples

ziED(n) =
1

M

M−1∑

n=0

|ri(n)|2 (4.16)

is essentially the same as (2.10). If each node reports its entire set of samples, i.e. soft
combining is used, the master node can issue a decision using (2.31). In this case, since the
sum of Gaussian random variables is itself a Gaussian random variable [147], it is evident
that the distribution of zCSS

ED can be approximated as asymptotically normal. In MESS,
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Fig. 4.25: AWGN performances of ideal RLRT (ρ = 1.00) and RLRT under noise
uncertainty of ∆σ̂2

w = σ2
w ± 0.5 dB (ρ = 1.12) when ECMA-392 signals are

detected using different number of nodes.

however, we use hard combining. Thereby, instead of reporting its full test statistic, each
node reports only a single-bit decision described by:

πi(n) =

{

0, ziED < γi

1, ziED ≥ γi.
(4.17)

Recalling that any censoring scheme is implemented in MESS (see Section 3.3.2), i.e. all
nodes are allowed to report their local findings to the master node, the presence of target
signals on the channel currently being scanned can be determined using

zCSS
ED (n) =

{

H0 :
∑N

i=1 π̃i < γmaster

H1 :
∑N

i=1 π̃i ≥ γmaster

(4.18)
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with the detection threshold used at the master node set according to the fusion rule
used to combine the received decision bits5, i.e. γmaster = 1 for OR logic and γmaster = N
for AND logic. Suppose now that individual node decisions are collected into the vector
π̃ = [π̃1, π̃2, . . . , π̃N ]

T . Our next step consists of finding the probability mass function
(p.m.f) of the vector π̃ under H0 and H1. However, we observe that even if these p.m.f’s
were available and we could use (2.6) to construct the LRT

p (π̃|H0)

p (π̃|H1)

H0

⋚
H1

γopt, (4.19)

the computation of an optimal detection threshold γopt for each individual node is mathe-
matically intractable under the NP criterion (see [52] and the references therein). Indeed,
by assuming uncorrelated node decisions, we could manage to formulate a decision prob-
lem that can be verified in polynomial time. We do not pursue on this here because, even
if we are able to approximate the distribution of zCSS

ED , we will still lack that of zRLRT.

It turns out from the above discussion that the task of finding closed-form approximations
for the distributions of zCSS

ED and zRLRT becomes difficult when hard combining is used and
the number of cooperating nodes is larger than two (but finite), respectively. A less formal,
yet possible, explanation for the fact that cooperation shifts SNR walls in RLRT but not
in ED might go as follows. While the ED-based CSS approach adopted here performs
hard combining to issue a decision about the current channel status, RLRT relies solely
on λmax. This means that only the contribution of the node experiencing the best channel
realization matters for the detection process. Hence, what RLRT actually does is far from
suboptimum hard combining and can be interpreted as some kind of “node selection”
(see Chapter 1). It seems therefore interesting to investigate whether, when under noise
uncertainty, node selection can make ED-based CSS achieve cooperation gains similar to
those observed for RLRT. We do not pursue on this issue here because, even if the SNR
walls in Figure 4.21 improve as in Figure 4.25, the best-case performance derived thereby
will still lie below what can be achieved using blind EBD methods.

The exact extent to which blind EBD outperforms semi-blind EBD can be analyzed with
the help of Figures 4.26 and 4.27. In these figures, we consider ECMA-392 signals detected
under best- and worst-case conditions, respectively, when the uncertainty about the true
value of σ2

w is of ±0.5 dB (ρ = 1.12). By comparing Figure 4.25(a) to Figure 4.26, we
see that the performance gap between RLRT and any of the blind EBD methods under
best-case conditions lies around 6 dB provided that N ≥ 10. Similar gaps can be observed
under worst-case conditions by comparing Figure 4.25(b) to Figure 4.27, though in this
case the gains of blind EBD over semi-blind EBD can be realized even when the number
of nodes is small, e.g. N = 2. Hence, recalling that all EBD methods pose roughly the
same computational complexity (see Table 3.8), it does not seem to exist any advantage
in using semi-blind techniques in our setting. Within blind EBD methods, it is clear from
Figures 4.26 and 4.27 that, unless N = 2, AGM is outperformed in up to 2 dB by both
GLRT and MME. This is expected since, compared to (2.41), the test statistics (2.39)
and (2.43) are clearly suboptimal for N is large enough. Therefore, despite the slightly
better robustness of MME (≈ 1 dB) against noise uncertainty observed in our simulations,
GLRT is the method of choice when it comes to EBD.
5 MESS does not care about how the information exchange process takes place, so the control channel

between any ordinary node and the master node can be assumed as perfect (π̃i = πi).
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(a) AGM.
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(b) GLRT.
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(c) MME.

Fig. 4.26: Best-case AWGN performance of blind EBD methods under noise uncertainty
of ∆σ̂2

w = σ2
w ± 0.5 dB (ρ = 1.12) when ECMA-392 signals are detected using

different number of nodes.
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(a) AGM.
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(b) GLRT.
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(c) MME.

Fig. 4.27: Worst-case AWGN performance of blind EBD methods under noise
uncertainty of ∆σ̂2

w = σ2
w ± 0.5 dB (ρ = 1.12) when ECMA-392 signals are

detected using different number of nodes.
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4.5 Frequency Offsets

The last practical issue taken into account in this dissertation is raised by the presence of
mismatches between the local oscillators used at the licensed transmitter and WSD. As
seen in Chapter 2, such oscillator mismatches cause CFO that can reduce the amplitude
and shift the phase of the received signals. Earlier in this chapter, we have also seen that
single carrier systems are usually less susceptible to CFO but OFDM-based sytems may
experience demodulation problems in the presence of CFO. Therefore, our analysis of
CFO focussed on ODFM-based target signals only. In order to assess the impact of CFO
on detection performance, we assigned values to the normalized CFO out of two possible
ranges. To define the first range, we departed from the ideal AWGN case (ǫc = 0) and
increased the normalized CFO until ǫc = ∆f . The second range starts with ǫc > ∆f and
ends up with some exact multiple of ∆f , e.g, 3×∆f . The step size used is 0.1×∆f for both
ranges. Despite of the loss of orthogonality between subcarriers experienced when ǫc > ∆f ,
the losses compared to the case ǫc = 0 were of ≈ 1 dB (and not larger than 2 dB) for all
methods. Though the losses observed are slightly lower for ECMA-392, due to its smaller
number of subcarriers, this suggests that the methods implemented in MESS are robust
against CFO regardless the type of target signal. However, we know that clock offsets also
impose the need for WSD to operate in the absence of perfect synchronization with the
licensed transmitter. In this case, our simulation results suggest that the performances of
all but TDSC methods are not affected much by non-synchronized sampling. The AMD
values shown in Table 4.7 suggest that the performance of TDSC-NP is good, whereas
TDSC-MRC can only be regarded as a fair performer when under SFO. In case of DVB-
T, this matches well the results presented in [132]. We know from Table 4.1 that TDSC
methods are excellent performers under multipath fading, so the joint effect of fading and
SFO yields results that are virtually the same as those in Table 4.7.

In the sequel, we present some simulation results obtained in the presence of frequency
offsets. In view of the preliminary discussion above, our focus will be on the performance
that TDSC methods derive under different levels of synchronization. As done in the anal-
yses of multipath fading and noise uncertainty, we begin with an assessment of the impact
that the type of target signal exerts on the detection process. Then, we show that the
performance degradation caused by SFO cannot be alleviated by taking longer sensing
times because the deteriorating effects introduced thereby accumulate over the time. To
support this finding, we extend the derivation provided for CFO in [121] to the case of
SFO. As a by-product, the expression for the TDSC function obtained in this derivation
will help us explaining why TDSC-NP outperforms TDSC-MRC in the presence of SFO.
Finally, we show that it is possible to mitigate the performance losses due to SFO by
increasing the number of nodes engaged in CSS.

Table 4.7: Performance deviation in dB introduced by sampling frequency offsets in
TDSC methods (as compared to the AWGN case with ǫs = 0).

Method
DVB-T ISDB-T ECMA-392

AMD Robustness±20 ppm ±40 ppm ±20 ppm ±40 ppm ±20 ppm ±40 ppm
Best Worst Best Worst Best Worst Best Worst Best Worst Best Worst

TDSC-NP −1 −1 −4 −4 0 −2 −3 −3 0 0 −1 0 −1.58 Good
TDSC-MRC −2 −2 −8 −8 −2 0 −7 −8 0 0 0 −1 −3.17 Fair
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Fig. 4.28: AWGN performance of TDSC-NP when DVB-T signals Mode 2k CP= 1/4 are
detected under different synchronization levels using a sensing time of 4.48 ms
(equivalent to three PRU).

4.5.1 Impact of Target Signal Type

When the target signal is compliant with the DVB-T standard, Figure 4.28 shows the
performance derived by TDSC-NP when different levels of synchronization levels are con-
sidered. As expected, it is seen from this figure that the loss in performance due to SFO
increases as ǫs increases. By varying ǫs from 0 ppm to ±50 ppm, the maximum loss can
be as high as 7 dB under best-case conditions or 9 dB under worst-case conditions. This
means that the degradation caused when we switch from best- to worst-case conditions is
basically the same as in the ideal AWGN case (ǫs = 0). One might argue at this point that
ǫs = ±50 ppm represents a SFO that is too large to occur in practical systems. However,
we observe that this actually depends on the sensing time. In [132], the authors consider
ǫs ∈ [2, 6] ppm but use a sensing time of 50 ms, while here we use only 4.48 ms (equivalent
to three PRU). The role played by the sensing time in the impact of SFO on the detection
performance of TDSC methods will be clarified later on in Section 4.5.2.
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Fig. 4.29: AWGN performance of TDSC-MRC when DVB-T signals Mode 2k CP= 1/4
are detected under different synchronization levels using a sensing time of 4.48
ms (equivalent to three PRU).

With all settings kept unchanged, Figure 4.29 shows the performance derived by TDSC-
MRC with non-synchronized sampling. Here, the losses introduced by SFO can be as high
as 13 dB under best-case conditions or 15 dB under worst-case conditions. By compar-
ing Figures 4.28 and 4.29, it is clear that the susceptibility of TDSC-MRC to SFO is
similar to that of TDSC-NP as long as the licensed transmitter and WSD are perfectly
synchronized or the normalized SFO is relatively low, i.e. ǫs ≤ ±30 ppm under best-
case conditions or ǫs ≤ ±20 ppm under worst-case conditions. If this is not the case, the
performance of TDSC-MRC degrades much faster than that of TDSC-NP. This suggests
that the statement in [121] that TDSC-MRC outperforms TDSC-NP at the expense of
increased computational complexity holds true, yet only under the assumption of tight or
nearly-tight synchronization. For more practical cases, where synchronization between the
licensed transmitter and WSD may entirely lack, lower complexity and better robustness
against SFO makes of TDSC-NP the best choice among TDSC methods.
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(a) TDSC-NP.
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(b) TDSC-MRC.

Fig. 4.30: AWGN performance of TDSC methods when ECMA-392 signals CP= 1/8 are
detected under different synchronization levels using a sensing time of 0.75 ms
(equivalent to three PRU).

The superiority of TDSC-NP is shown in Figure 4.30, this time for ECMA-392. The loss
in performance is less than 1 dB for TDSC-NP, regardless of CFAR requirement, fusion
rule, and synchronization level. In contrast, the performance degradation experienced by
TDSC-MRC exceeds 2 dB when ǫs ≤ ±50 ppm under worst-case conditions. This means
that, whether using TDSC-NP or TDSC-MRC, the impact of SFO is milder when it
comes to the detection of ECMA-392 signals. Despite of the shorter sensing time of 0.75
ms used to detect ECMA-392 signals, the robustness of TDSC-NP against SFO observed
in Figure 4.30(a) outperforms that in Figure 4.28 in up to 8 dB. As for TDSC-MRC, the
robustness improvement is better and up to 13 dB according to Figures 4.30(b) and 4.29.
The deviations in performance observed here are, in part, due to the different number of
subcarriers used in DVB-T and ECMA-392 (see Table 3.1). However, in the presence of
SFO, the sensing time affects the detection performance of TDSC methods in a fashion
different than that observed thus far. We take a closer look at this issue in the sequel.
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Fig. 4.31: AWGN performance of TDSC-NP when DVB-T signals Mode 2k CP= 1/4 are
detected under different synchronization levels using a sensing time of 8.96 ms
(equivalent to six PRU).

4.5.2 Impact of Sensing Time

Figure 4.31 shows the performance derived by TDSC-NP when we double the sensing time
used in Figure 4.28 with all other simulation settings kept unchanged. Though the longer
sensing time of 8.96 ms can improve the performance achieved using non-synchronized
sampling in up to 2 dB under best-case conditions and 3 dB under worst-case conditions,
the losses due to SFO observed here remain essentially the same as in Figure 4.28. Simi-
larly, the performance obtained by TDSC-MRC in Figure 4.32 outperforms that in Figure
4.29 in about 3 dB to 4 dB. Nevertheless, with respect to the performance degradation
introduced by SFO, TDSC-MRC reacts to longer sensing times in a different fashion than
TDSC-NP. The losses observed for sensing time equal to 8.96 ms are typically larger than
those for 4.48 ms. Hence, in contrast to TDSC-NP, the degradation in the performance of
TDSC-MRC with non-synchronized sampling increases with the sensing time. The same
behavior is verified also for ECMA-392 signals, as shown in Figure 4.33.
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Fig. 4.32: AWGN performance of TDSC-MRC when DVB-T signals Mode 2k CP= 1/4
are detected under different synchronization levels using a sensing time of 8.96
ms (equivalent to six PRU).

We have verified via simulations two aspects related to the performance of TDSC methods
that deserve an analytical analysis. First, we are interested in finding out why TDSC-NP
outperforms TDSC-MRC when the normalized SFO is large. Second, a better under-
standing about why TDSC-NP and TDSC-MRC behave differently when we increase the
sensing time in the presence of SFO is needed. The bottom line of such an analysis in-
volves the derivation of an expression that models the impact caused by non-synchronized
sampling in the detection performance of TDSC methods. In our context, this basically
consists of feeding the accumulated TDSC function in (2.87) with OFDM symbols that
have been received using an incorrect sampling period T ′

s as in (2.91). For the sake of sim-
plicity, we begin with a single pair of symbols whose indexes l and l′ indicate that both
symbols in that pair have the same SP pattern. In this case, since we do not accumulate
the correlations due to multiple symbol pairs, Nl = 1 and (2.87) reduces to the TDSC



Chapter 4. Simulation Results 147

−30 −25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal−to−Noise Ratio [dB]

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

Impact of Sampling Frequency Offset (N
r
=10000)

 

 

ε
s
=0 (ideal)

ε
s
=±20 ppm

ε
s
=±30 ppm

ε
s
=±40 ppm

ε
s
=±50 ppm

Best case

Worst case

(a) TDSC-NP.

−30 −25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal−to−Noise Ratio [dB]

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

Impact of Sampling Frequency Offset (N
r
=10000)

 

 

ε
s
=0 (ideal)

ε
s
=±20 ppm

ε
s
=±30 ppm

ε
s
=±40 ppm

ε
s
=±50 ppm

Best case

Worst case

(b) TDSC-MRC.

Fig. 4.33: AWGN performance of TDSC methods when ECMA-392 signals CP= 1/8 are
detected under different synchronization levels using a sensing time of 1.50 ms
(equivalent to six PRU).

function of two OFDM symbols [121]:

R(l, l′) =
1

Ns

Ns−1∑

n=0

rl(n)r
∗
l′(n). (4.20)

From (2.91) we know that:
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1
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r∗l′(n) =
1

Ns

Ns−1∑

k′=0

H∗(k′)C∗
l′(k

′)e
−j 2π

Ns
k′
[

n

(

T ′

s
Ts

)

+l′TSYM( ǫs
1+ǫs

)
]

+ w∗
l′(n). (4.22)



Chapter 4. Simulation Results 148

Plugging (4.21) and (4.22) into (4.20) yields:
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Expanding the exponentials and rearranging the sums we get:
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Recalling the shift theorem of the DFT, it turns out that the last sum in the first term
of (4.24) corresponds to a circularly shifted Kronecker Delta [152]

1
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e
j 2π
Ns

(
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(k−k′)n
= δ

[(
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s
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{

0, k 6= k′

1, k = k′
, (4.25)

which thanks to the orthogonality property of the DFT is still a Kronecker Delta, i.e. a
single peak that exists iff k = k′. Similarly, the noise contributions due to the last sum in
the second and in the third terms of (4.24) account both for the circularly shifted DFT
of the noise process. The statistical properties of w(n) are not affected neither by phase
rotation nor by circular shift, so we can define

Wl(k
′) = e

−j 2π
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k′
(

ǫsl
′

1+ǫs

)
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[
Ns−1∑

n=0

wl(n)e
−j 2π

Ns

(

T ′

s
Ts

)

k′n

]

(4.26)

with W ∗
l′ (k) defined in the same fashion.
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Using (4.25) and (4.26), we rewrite (4.24) as:

R(l, l′) =
1

N2
s

Ns−1∑

k=0

|H(k)|2Cl(k)C
∗
l′(k

′)e
j 2π
Ns

k
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]
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+
1

N2
s
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k=0

H(k)Cl(k)W
∗
l′ (k)

+
1

N2
s

Ns−1∑

k′=0

H∗(k′)C∗
l′(k

′)Wl(k
′)

+
1

Ns

Ns−1∑

n=0

wl(n)w
∗
l′(n). (4.27)

Wl(k
′) and W ∗

l′ (k) are zero-mean random variables, so that multiplying them by complex
channel gains and complex constellations that are independent yields zero. This allows us
to drop the second and the third terms in (4.27) when Ns large enough (this is reasonable
because we can make Ns in (4.20) as large as the number of collected samples M). Breaking
the first term of (4.27) in pilot subcarriers and non-pilot subcarriers yields

R(l, l′) =
1

N2
s
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]
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+
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n=0

wl(n)w
∗
l′(n) (4.28)

where σ2
SP denotes the squared amplitudes of the SP signal, which are fixed and known

for k ∈ P. It can be shown, e.g. along the lines in [121], that the contribution due to the
non-pilot subcarriers has zero mean and its variance is small as compared to the variance
of the noise in the low SNR regime. Hence, ignoring the second term in (4.28), we can
approximate the TDSC function as

R(l, l′) ≈ σ2
SP

N2
s

∑

k∈P

|H(k)|2 ej
2π
Ns

k

[

ǫs(l−l′)
1+ǫs

]

TSYM

+
1

Ns

Ns−1∑

n=0

wl(n)w
∗
l′(n), (4.29)

where the first term is deterministic and the second one is a zero-mean noise term. The
following conclusions can be drawn from (4.29). First, and in contrast to (3) derived in
[121] for the case of CFO, the amplitude reduction and phase rotation caused by SFO
affect each subcarrier independently. Second, these deteriorating effects are dependent of
the symbol index difference ∆l = l′ − l. Hence, in the accumulation of TDSC functions in
(2.87), we are also accumulating the SFO related to each of the Nl symbol pairs considered
in the correlation. This explains why longer sensing times can provide some performance
gain but the losses due to SFO remain essentially the same as those verified for shorter
sensing times. Third, it is clear from (2.89) that TDSC-MRC allows to SP symbols having
different ∆l. This increases the number of symbols used in the correlation, thus making
TDSC-MRC to be more susceptible to SFO than TDSC-NP.
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(b) ǫs = ±20 ppm.
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(c) ǫs = ±50 ppm.

Fig. 4.34: AWGN performances of TDSC-NP when ISDB-T signals Mode 2k CP= 1/4
are detected under different synchronization levels using different number of
nodes. The sensing time is 8.96 ms (equivalent to six PRU).
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(b) ǫs = ±20 ppm.
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(c) ǫs = ±50 ppm.

Fig. 4.35: AWGN performances of TDSC-MRC when ISDB-T signals Mode 2k CP= 1/4
are detected under different synchronization levels using different number of
nodes. The sensing time is 8.96 ms (equivalent to six PRU).
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4.5.3 Impact of Number of Nodes

We have seen that we can improve the performance of TDSC methods by increasing the
sensing time but this does not affect the losses introduced by SFO. We now look at the
case where an increased number of nodes relies on cooperation as an attempt to mitigate
those losses. In what follows, we consider the detection of IDSB-T signals using sensing
time equal to 8.96 ms. As before, our simulation results are generated for N = 10 and
N = 20, with additional curves for N = 2 provided as baseline for the computation of
cooperation gains.

Figure 4.34 shows that the gains achieved by TDSC-NP under best-case conditions are
of 3 dB and 6 dB when we increase N from 2 to 10 from and 2 to 20, respectively. As
seen before for ACD and BTPD, the cooperation gains derived in TDSC-NP come at the
expense of a degradation in QOR

fa . For Pfa = 0.1, QOR
fa varies (as a function of the SNR)

in the ranges [0.1840, 0.1960] for N = 2, [0.6270, 0.6730] for N = 10, and [0.8610, 0.9000]
for N = 20. A better balance between QOR

d and QOR
fa can be achieved by combining

OR logic with Pfa = 0.01. For N = 20, this allows us to improve the range of values
of QOR

fa to [0.1740, 0.1890] while the resulting QOR
d still outperforms that obtained for

N = 2 in 6 dB. Since these gains are observed regardless of the amount of SFO present
in the operation environment, they suggest that CSS based on TDSC-NP can provide the
same improvement in performance whether synchronization is tight (ǫs = 0), imperfect
(ǫs = ±20 ppm), or lacks (ǫs = ±50 ppm).

In contrast, as seen in Figure 4.35, the cooperation gains derived by TDSC-MRC slightly
depend on the synchronization level available. For instance, if the licensed transmitter
and WSD are relatively well synchronized (ǫs ≤ ±20 ppm), Figure 4.35(b) shows that
TDSC-MRC achieves the same cooperation gains as TDSC-NP. However, in the practical
case that synchronization lacks or be very imprecise as in Figure 4.35(c) (ǫs = ±50 ppm),
the gains achieved by increasing N from 2 to 10 and from 2 to 20 are of 5 dB and 7
dB, respectively. The degradation in the global probability of detection introduced by
cooperation is similar to that reported above for TDSC-NP, so the use of a more stringent
individual CFAR requirement is recommended also for TDSC-MRC.

4.6 Signal Classification Block (Revisited)

The goals of the present section are to summarize the major conclusions drawn from our
simulation work and, based on them, determine the best methods to be used in the generic
signal classification block in Figure 3.11.

The simulation outcomes are summarized in Table 4.8. Method robustness, imported from
Tables 4.1-4.7, is as before expressed in terms of AMD. The cooperation gain accounts
to the improvement (in dB) observed in the global probability of detection when we
increase N from 2 to 20. Methods giving average gains show improvements between 4 dB
and 10 dB, whereas improvements below and above this range characterize low and high
gains, respectively. In the sequel, we use this table to discuss the pros & cons of each of
the methods considered in this dissertation. For ease of explanation, we group methods
according to the amount of prior knowledge they require to work.
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Table 4.8: Summary of the major results of the simulation work carried out in this chapter.

Method

Robustness Under Different Operation Conditions
Multipath Noise Sampling Cooperation

Fading Uncertainty Offsets Gain
OFDM Non-OFDM OFDM Non-OFDM OFDM Non-OFDM

ED Poor Excellent Poor Poor Excellent Excellent High

AGM Good Excellent Excellent Excellent Excellent Excellent Average
GLRT Good Excellent Excellent Excellent Excellent Excellent Average
MME Good Excellent Excellent Excellent Excellent Excellent Average
RLRT Fair Excellent Poor Poor Excellent Excellent Average
SCD Poor Excellent Poor Excellent Excellent Excellent Low

ACD Poor NA Excellent NA Excellent NA High
BTPD Fair NA Excellent NA Excellent NA High

TDSC-NP Excellent NA Excellent NA Good NA Average
TDSC-MRC Excellent NA Excellent NA Fair NA Average

ASSD NA Excellent NA Good NA Good Average

MF NA Excellent NA Excellent NA Excellent Average

4.6.1 Blind Techniques

The candidate blind techniques for the first stage are AGM, GLRT, and MME.

• Pros: Our simulation work has shown that blind techniques outperform both semi-
blind and signal specific techniques in terms of detection performance, robustness,
and agility in most cases studied. This has been verified under different operation
conditions (AWGN, multipath fading, noise uncertainty, frequency offsets) and for
a number of target signals types having different characteristics (digital vs. analog,
OFDM vs. non-OFDM, wideband vs. narrowband). The blind techniques evaluated
deliver similar performance and are virtually immune to noise uncertainty, CFO,
and SFO. Good performance is delivered also in the presence of multipath fading.
In this case, GLRT is slightly better than AGM and MME when target signals are
based on the ECMA-392 standard.

• Cons: All blind techniques studied in this dissertation perform EBD, which basically
consists of estimating the sample covariance matrix and decomposing its eigenvalues.
Estimation of Rr(n) usually requires a large number of samples, but can be carried
out offline. Also, the use of algorithms such as SVD allows to obtain the vector λr

directly without the need to compute the whole Rr(n). Even though, the complexity
posed by EBD methods is linear with M but on the order of O(N3ι3). Fortunately,
the smoothing factor ι can be set arbitrarily low and the number of nodes N ∼ 10-20
required to realize the benefits of cooperation is also relatively low.

• Conclusion: Unless only two nodes engage in cooperation, AGM is outperformed
by both GLRT and MME in most cases studied. For the number of nodes considered
N ∈ {2, 10, 20, 50}, MME performs the same as GLRT and is slightly more robust
against noise uncertainty. However, since 1

N
Tr[Rr(n)] becomes lower than λmin as

N increases, GLRT has potential to outperform MME for a number of cooperating
nodes large enough. This makes of GLRT the method of choice to implement
the first stage of the proposed signal classifier.

4.6.2 Semi-blind Techniques

The candidate semi-blind techniques for the first stage are ED and RLRT.
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• Pros: Provided that the noise level is exactly known, our simulation work has shown
that RLRT performs similar to its blind EBD counterparts. For the particular case of
OFDM-based target signals detected in the presence of AWGN, RLRT outperforms
AGM, GLRT, and MME in up to 2 dB. RLRT outperforms ED in most cases studied,
but the latter is Nι times less complex than the former. Also, the cooperation gains
achieved by using ED and RLRT at the local level are high and average, respectively.
This suggests that ED may be suitable for reducing fast sensing complexity in some
applications, e.g. where N is large and the noise level can be estimated on the basis
of noise-only samples collected prior to initiating WSD operation.

• Cons: Due to the susceptibility of semi-blind techniques to uncertain in the marginal
noise distribution, a deviation of only ±0.5 dB about the true σ2

w is usually enough
to create SNR walls. In case of ED and RLRT, our study suggests that SNR walls are
essentially the same regardless of target signal type, channel type, fusion rule, and
CFAR requirement. The distinguishing aspect in favor of RLRT is the improvement
in SNR walls observed as N increases. While this illustrates the potential of CSS in
alleviating the SNR wall phenomenon, the resulting performance derived thereby is
still below what can be achieved using blind EBD methods.

• Conclusion: Recalling that all EBD methods pose roughly the same com-
putational complexity (see Table 3.8), there seems to exist no advantage
in using RLRT in our setting. Despite of the pros highlighted above, it is
hard to find application for ED too because there will always exist some
residual uncertainty after the noise power has been estimated.

4.6.3 Signal-specific Techniques for the 2nd Stage

The candidate signal specific techniques to implement the CP-based classifier at the second
stage are ACD and BTPD.

• Pros: All in all not the best but not the worst methods, ACD and BTPD can be used
as fast OFDM classifiers with agility and computational complexity comparable as
ED. They are virtually immune to CFO and SFO, and, in contrast to ED, robust
against noise uncertainty. Besides, yielding the highest cooperation gains among
the methods studied (up to 12 dB), the use of CP-based methods at the local level
allows a group of nodes to maximize the benefits of cooperation.

• Cons: The CP-based methods investigated are very sensitive to variations in the CP
length. If the target signals are transmitted in 2k mode, changing the CP ratio from
1/4 to 1/32 deteriorates performance in 12 dB. Our simulation work also suggests
that this loss relates to the number of subcarriers and will be larger for larger modes,
e.g. 4k and 8k. Another aspect common to ACD and BTPD is their susceptibility
to variations in the symbol length, again dictated by the number of subcarriers
used. However, it is possible to distinguish between ACD and BTPD when it comes
to multipath fading. Both methods undergo major losses (up to 22 dB) but, while
the performance of BTPD increases with the SNR in all cases studied, ACD fails
entirely when operating under worst-case conditions and in the presence of very long
echoes (profile D). This disadvantage is inherent to ACD and cannot be alleviated
via cooperation.
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• Conclusion: For the number of nodes considered N ∈ {2, 10, 20}, the degradation
in the global probability of false alarm due to hard combining based on the OR logic
can be alleviated at the expense of better sensors, i.e. by setting Pfa = 0.01 at each
node. This combination of OR logic and more stringent CFAR requirement brings
Qfa up to an acceptable level while keeping the cooperation gain almost unchanged.
Assuming that ACD and BTPD are to be implemented “as is”, the latter
is the method of choice to implement the second stage of the proposed
signal classifier6.

4.6.4 Signal-specific Techniques for the 3rd Stage

4.6.4.1 SP-based Classifier

The candidate signal specific techniques considered to implement the SP-based classifier
at the third stage are TDSC-NP and TDSC-MRC.

• Pros: TDSC methods play a key role in our setting because, among the methods
studied, they are the only capable of distinguishing between DVB-T 2k and IEEE
802.22. They are virtually immune to noise uncertainty, CFO, and provide superior
robustness against multipath fading even under ISI, i.e. when TCP < τmax. When
under imperfect synchronization conditions, the degradation introduced by SFO in
the performance of TDSC methods can be effectively alleviated via cooperation. In
contrast to CP-based methods, TDSC-NP is robust against CP length variations.
TDSC-MRC is only slightly sensitive (≤ 1 dB) to such variations.

• Cons: Our simulation work has shown that TDSC methods are dramatically affected
by variations in the pilot power ratio. Such variations are practical, and reflect the
different amplitudes and periodicities mandated for SP in different standards. Losses
up to 20 dB are observed when we compare IEEE 802.22 (SP have unitary gain and
repeat themselves every seven symbols) to DVB-T 2k (SP are boosted by 4/3 factor
and repeat themselves every four symbols). The performance of TDSC methods also
varies according to symbol length changes. In this case, the loss observed can be as
high as 13 dB when TSYM decreases from 0.37 ms (DVB-T 2k CP= 1/4) to 0.19 µs
(ECMA-392 CP= 1/8). As another drawback, TDSC-NP and TDSC-MRC are the
only among the methods studied that are impacted by non-synchronized sampling.
Both methods perform similarly for ǫs ≤ ±30 ppm, but TDSC-NP is more robust
than TDSC-MRC against SFO in at least 6 dB for ǫs ≥ ±50 ppm.

• Conclusion: As seen in Figure 3.11, the SP-based classifier is triggered on-demand,
only in the particular case that distinction between DVB-T 2k and IEEE 802.22 is
made necessary. This means that the longer sensing time required by TDSC methods
to achieve desirable performance levels (e.g. 50 ms) is affordable in our setting. In
most cases studied, TDSC-NP has been shown less susceptible to SFO than TDSC-
MRC. Also, when nodes team up to compensate for performance degradations due
to SFO, the cooperation gains derived by TDSC-NP are independent of ǫs whereas

6 We are currently working on the incorporation of peak search procedures into ACD. We expect that
the resulting modified ACD (MAD) allows us to exploit the benefits of both ACD and BTPD, yet
posing computational complexity similar to the original ACD (half of BTPD).
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the gains derived by TDSC-MRC vary with the level of synchronization. In view of
its lower complexity and better behavior in the lack of perfect synchro-
nization, TDSC-NP is the method of choice to implement the SP-based
classifier at the third stage of the proposed signal classifier.

4.6.4.2 PSD-based Classifier

The candidate signal specific technique considered to implement the PSD-based classifier
at the third stage is SCD. In what follows, we also comment on the possibility of dropping
the SP-classifier and using only the PSD-classifier at the third stage.

• Pros: Our simulation work has shown that SCD is the top performer in most cases
studied. In particular, when directed to detect non-OFDM signals in the presence of
AWGN, SCD has confirmed its ability of accurate signal detection at very low SNR,
e.g. as low as −44 dB for WM signals (silent mode) and −40 dB for TV broadcast.
The method delivers similar performance also under more practical operation con-
ditions due to its excellent robustness against multipath fading, noise uncertainty,
CFO, and SFO. Among the signal specific techniques evaluated, SCD is the method
that gives the lowest Qfa (comparable to that of blind EBD methods) regardless of
the target signal type.

• Cons: One disadvantage of SCD is that it is the only method among those evaluated
whose performance varies (up to 3 dB) with the WM speaker mode. However, since it
still outperforms all other methods in at least 14 dB, this is a minor issue. In contrast,
two major concerns arise when it comes to detection of OFDM-based target signals.
The first relates to the poor performance of SCD in the presence of multipath fading,
e.g. losses observed in case of ECMA-392 (up to 22 dB) are comparable to those
of CP-based methods. The second issue is that SCD experiences SNR walls that,
unlike in ED and RLRT, seem to be caused by the joint uncertainty about the actual
σ2
w and the position of the OFDM signal edges exploited for detection.

• Conclusion: SCD can be employed to detect OFDM-based signals at the expense
of some performance degradation when in the presence of multipath fading. Under
noise uncertainty, a very high number of samples is required to shift SNR walls so as
to provide performance similar to blind EBD methods. TDSC-NP also needs many
samples to achieve the desired performance, but it is clearly more advantageous than
SCD due to its superior robustness against multipath fading and noise uncertainty.
On the other hand, if the targets are non-OFDM signals, SCD is by far the best
method in all disciplines evaluated. Hence, while its use seems less interesting
when it comes to resolve both condition C2 and condition C3 (see Figure
3.11), SCD is the method of choice to resolve condition C3 in isolation, i.e.
to implement the PSD-based classifier at the third stage of the proposed
signal classifier.
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4.7 Chapter Summary

This chapter has provided a thorough assessment of the performance derived by 12 differ-
ent signal processing techniques, some of them currently regarded as the most promising
for WSD and applications based thereon. Over 50000 hours of simulations were carried
out by running the MESS platform (see chapter 3) on a high-performance parallel com-
puting cluster system. This extensive series of simulations allowed us to rank each of the
candidate methods in terms of its robustness against multipath fading, noise uncertainty,
and clock offsets.

It turns out from the above study that CP- and PSD-based methods can exhibit substan-
tial performance degradation as compared to the AWGN case when detecting some but
not all types of target signals in the presence of modeling uncertainties. Such signal-type
dependencies were first observed when we directed ACD to detect ECMA-392 signals un-
der multipath fading. If the false alarm rate at each node is 0.01 and the fading process is
characterized by profile D, ACD fails entirely and this drawback cannot be alleviated via
cooperation. The presence of very long delays, which cannot be resolved by the short CP
length mandated in ECMA-392, spreads the secondary peaks in the ACF of the received
signal around the expected time lag. Hence, and in contrast to BTPD, ACD fails because
of its reliance on prior knowledge of TFFT and the lack of a peak search procedure. Our
findings further suggest that the detection performance of SCD under noise uncertainty
is strongly dependent of whether the target signals are based on OFDM. As the SNR
becomes fairly negative, SCD cannot keep track of the position of the OFDM signal edges
and the method start suffering from the SNR wall phenomenom. As for TDSC methods,
performance is shown to be dramatically affected even if the noise is pure AWGN because
of variations in the pilot power ratio of the received signal. In this case, the losses ob-
served are due to the different amplitudes mandated for SP in different standards. TDSC
methods are also the only among those studied that are impacted by non-synchronized
sampling, TDSC-NP being more robust than TDSC-MRC.

The learning outcomes of the above study, which provide insights also on other operation
conditions such as fusion rule, CFAR requirement, symbol length, and CP ratio, were used
to populate the blocks of the generic signal classifier described in chapter 3. The resulting
three-stage cascade classifier was designed having in mind a feature set of practical in-
terest: agility, robustness, context-awareness, and universality. Its agility follows from the
fact that channel monitoring is carried out blindly using GLRT, and fast classification of
OFDM-based signals (accounting for most standards deployed today) is done by BTPD.
Robustness is achieved by combining individual methods that possess complementary fea-
tures, i.e. GLRT is robust against all practical issues studied, the performances of BTPD
and TDSC-NP under multipath and sampling frequency offsets, respectively, can both
be improved via CSS, and, in our setting, SCD works well at very low SNR in all cases
studied. The proposed cascade classifier is context-aware in that it allows WSD to coex-
ist with the TV broadcast standards most deployed worldwide. Alternatively, it can be
employed to protect PMSE systems on a proactive fashion, and to provide a contingency
for self-coexistence between IEEE 802.22 and ECMA-392 in case other methods fail. Fi-
nally, our cascade classifier was conceived to take advantage of cooperation among nodes.
The minimization of CAPEX and OPEX makes it attractive for developing countries, so
universality follows.





Chapter 5

Conclusions

A task of utmost importance in the modern ICT society relates to make efficient use of
RF spectrum, specially when it comes to accommodate the growing bandwidth demands
introduced along with new wireless devices, services, and applications. However, despite of
the significant progress witnessed in engineering, economics, and regulation thus far, spec-
trum underutilization remains a big issue to date. Recently, novel spectrum management
policies, models, and techniques have been advanced to improve current spectrum uti-
lization levels. Among the approaches to spectrum reform, DSA is regarded as one of the
most promising due to its potential to leverage innovative reconfigurable systems. In the
last decade, DSA-capable systems have received increasing attention thanks to advances
in digital signal processing and the sinergies that arouse between emerging technologies
like SDR and CR. Such systems support the deployment of WSD, aimed at exploiting
white spaces on an opportunistic (possibly unlicensed) basis. This opens up a new world
of opportunities, including broadband Internet access for underserved areas, backhaul for
WLAN, offload data traffic from other networks, and M2M, just to name a few.

In parallel to the developments above, the ITU has been advocating an approach in which
access to broadband Internet access plays the key role in creating job opportunities, in-
creasing productivity, and boosting economomies. In line with the goals set by the ITU,
several countries worldwide engaged in releasing larger amounts of spectrum and reallo-
cating them for the purpose of supporting broadband growth. Both North America and
Europe, which are the world’s leading regions in WSD regulation and ICT infrastructure,
respectively, are considering the use of white spaces. Collaboration efforts between the
FCC and CEPT are being undertaken, so unnecessary regulatory work is reduced to a
minimum and some harmonization is ensured. Notwithstanding the value of these efforts
towards the ITU’s millenium goals and the introduction of WSD into the market, one
aspect seems to have been overlooked in this process: Do solutions adopted in developed
markets fit developing markets too?

In this dissertation, we have argued that the benefits envisioned by the ITU will only be
achieved if WSD can contribute to reduce digital divides. This calls for methods capable
of determining white spaces in most operation environments, while posing low CAPEX,
low OPEX, and keeping computational burdens to WSD as low as they can possibly be.
Approaches that enforce cooperation among nodes, such as CSS and WSN, become par-
ticularly attractive in this context because most of their practical implementation issues
can be tackled at the network level. Nevertheless, when fabrication costs come into consid-
eration, it is interesting that such network-centric schemes can achieve economies of scale.
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With this respect, we have presented an approach that has potential to leverage economies
of scale in the information acquisition process, i.e. in terms of the signal processing tasks
carried out at the local level. The proposed approach takes advantage of a kind of context
awareness that a set of cooperating WSD can obtain as long as it is capable of detecting,
and subsequently classifying, the RF signals conveyed in its cooperation footprint. The un-
derlying idea is that, by suitably combining different signal processing techniques offering
complementary features, we can design cascade signal classifiers that are able to deal with
a number of coexistence situations raised by the introduction of WSD into the market.
For the specific case of the TV bands, we have designed a three-stage cascade classifier
that allows WSD to coexist with the TV broadcast standards most deployed worldwide.
Alternatively, the proposed cascade classifier can be employed to protect PMSE systems
on a proactive fashion, and to provide a contingency for self-coexistence between future
TVBD standards in case other methods fail, e.g. IEEE 802.22 CBP, IEEE 802.22.1 dis-
abling beacons, or ECMA-392 alien beacons. While we have illustrated our concept using
the TV bands, the construction of cascade classifiers aimed at facilitating coexistence in
whatever underutilized bands should be straightforward along the lines discussed here.

The remainder of this chapter is organized as follows. We start in Section 5.1 with a sum-
mary of the contributions made in this dissertation. This includes some final remarks on
the proposed three-stage cascade classifier, as well as other key insights gained during the
steps of studying, implementing, assessing, and selecting the signal processing techniques
used at each of its stages. Section 5.2 closes the chapter, and the dissertation, with a list of
directions that we believe are promising for future research. We also discuss two different
scenarios where the results presented in this dissertation may find application.

5.1 Summary of Contributions

This section summarizes our key contributions. The first contribution, perhaps the most
important made in this dissertation, is the concept of multi-standard context-aware WSD.
By exploiting the distinguishing features of this concept, we have provided a deeper un-
derstanding on CSS using signal specific techniques at the local level. On top of this two
contributions, we have then designed a cascade classifier that not only allows to coexis-
tence in the TV bands but can potentially mitigate digital divides and achieve economies
of scale. The extensive simulation work needed to substantialize our performance assess-
ments could be realized thanks to MESS, so we have granted the sensing platform a place
in the contributions list of this dissertation.

5.1.1 Multi-standard Context-aware WSD

This dissertation has introduced the concept of multi-standard context-aware WSD. The
novelty of this concept relies on the following distinguishing aspects:

• Broader scope of application: At the time of this writing, the majority of publica-
tions available in the literature evaluated detection performance having only digital
TV broadcast in mind. ATSC and DVB-T were the standards typically considered
in the studies about WSD coexistence carried out in North America and Europe. In
a few very rare exceptions, the literature addressed the detection of TV broadcast
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signals in both digital and analog formats. Even in those cases, the study was always
restricted to a single market, e.g. detection of ATSC and NTSC in North America,
DVB-T and PAL in Europe. The present dissertation can be distinguished from the
related work, as well as from the literature on spectrum sensing in general, in the
sense that it considers multiple markets where a substantially larger number of dif-
ferent incumbent systems may be operating in. Another distinguishing aspect is that
our analysis have been carried out from a post-switchover perspective. This allows
the analysis of a broader set of coexistence situations arising between TV simulcast,
PMSE, and future TVBD standards such as IEEE 802.22 and ECMA-392.

• Signal type dependencies: Built on top of the broader scope of application de-
scribed above, our analysis has revealed some nuances of signal specific techniques
that would have likely remained obscure if we had adopted the traditional single-
target single-market approach. As nuances we mean those signal type dependencies
that, though negligible in case of blind or semi-blind techniques, yield significant per-
formance variations in case of signal specific techniques. This dissertation has shown
that this is particularly true in case of OFDM-based standards, where the use of
different number of subcarriers, CP length, symbol length, pilot insertion pattern
(both SP amplitude and periodicity) impacts performance in tens of dB. Moreover,
as summarized later on in this section, our study on signal type dependencies has
allowed the identification of critical drawbacks associated to the use of some signal
specific techniques (ACD and SCD) in the presence of modeling uncertainties.

• Standard classification: The related work has shown that much has been done
in terms of signal detection but, in most cases of interest for WSD, the literature
has not managed yet to perform standard classification. We have seen in Chapter 2
that extraction of implicit signal features is made difficult due to the complex and
expensive signal processing needs posed by the computation of the SCF. Another
shortcoming raised by the use of implicit signal features is that the class labeling is
frequently limited to modulation. This is clearly not enough to distinguish among
currently deployed standards, particularly those based on OFDM. In contrast, the
cascade classifier proposed in this dissertation exploits explicit signal features, which
can be extracted without going into the “internal details” of the signal. Accurate
standard classification is possible by exploiting complementary explicit features,
such as CP, SP, and PSD.

5.1.2 Cooperation based on Signal Specific Techniques

The related work reviewed in Chapter 2 reflects well most work found in the CSS liter-
ature, where either ED or EBD are typically used to model the information acquisition
process. To the best of our knowledge, there exist no counterparts of these analyses where
signal specific techniques are used at the local level. In this context, this dissertation has
contributed to a deeper understanding on the following aspects:

• Cooperation gains: One interesting open question in the context of CSS is whether
the use of different methods at the local level yields to different levels of performance
improvement. This dissertation has shown that, as the number of cooperating nodes
increases, CP-based methods derive the highest gains whereas PSD-based methods
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derive the lowest gains. The degradation in the global FAR due to hard combining
based on OR logic can be mitigated by imposing more stringent CFAR requirements
at each node. However, as summarized in the sequel, we also have shown that the
extent to which CSS may be beneficial depends on a number of aspects other than
the number of cooperating nodes.

• Cooperation in the presence of multipath fading: The benefits of CSS are
usually illustrated using nodes that experience fading, shadowing, or are in a deep
fade. According to the related work, such local detection issues can be mitigated by
enforcing cooperation among nodes. We have confirmed this behavior for all methods
but ACD, which fails entirely under some particular condition. To determine this
condition, we have shown analytically that the contribution of the last channel
tap dominates the degradation caused by fading in the performance of ACF-based
methods. Whenever ISI occurs, the channel will either introduce unexpected peaks
in the ACF of the received signal (profile B) or spread the peak due to the CP
within a range as wide as the maximum channel delay spread (profile D). ACD has
prior knowledge of the position of the intended peak but lacks information about
the the channel’s PDP, so it fails entirely under profile D. This cannot be alleviated
by means of node cooperation.

• Cooperation in the presence of noise uncertainty: Most work on this subject
deals with ED, which is known to suffer from SNR walls when there is uncertainty in
the noise marginal distribution. Color of the noise and time-selectivity of the fading
process constitute souces of uncertainty that may jointly contribute to the creation
of SNR walls, but less is known about how exactly they impact the signal specific
techniques studied in this dissertation. Our contribution with this respect has been
twofold. First, our simulation work has suggested that there may be a chance to
improve the SNR walls of ED provided that node selection algorithms are used.
This observation has been drawn on the basis of insights gained for RLRT, whose
cooperation gains under noise uncertainty are similar to under ideal conditions.
Second, we have shown that, regardless of target signal type, operation in noise
of uncertain power affects all methods equally. The only exception is due to SCD,
which may become susceptible to noise uncertainty depending on the sharpness of
the spectral features and changes in the positions where such features occur in the
PSD of the received signals.

• Cooperation in the presence of frequency offsets: Another practical issue
that WSD will likely have to cope with is raised by imperfect synchronization. This
calls for methods that are robust against frequency offsets, both CFO and SFO. This
dissertation has shown that, among the methods evaluated, only TDSC methods are
sensitive to SFO. Our contribution with this respect has been multi-fold. First, we
have shown that the performance of TDSC methods is largely affected by the target
signal type, e.g. due the use of different symbol lengths and pilot insertion patterns.
Second, we have confirmed that TDSC-MRC outperforms TDSC-NP at the expense
of increased complexity, yet only under tight synchronization requirements. Third,
we have modeled analytically the impact exerted by SFO in the TDSC function. This
has made it possible to visualize the accumulation of SFO over time, thus justifying
the better robustness of TDSC-NP. Fourth, our simulations have suggested that CSS
can compensate for degradations due to SFO, but the gain of TDSC-MRC varies
with the level of synchronization whereas that of TDSC-NP is fixed.
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5.1.3 A Cascade Classifier for Coexistence in the TV Bands

The three-stage cascade signal classifier proposed in this dissertation has been designed
to be of practical interest. Its design has been carried out having the following features
in mind:

• Agility: Recalling the current levels of spectrum underutilization and the typically
static behavior of TV band incumbents, the proposed cascade classifier will likely
spend most of its operation time on channel monitoring tasks. Since we have imple-
mented the first stage using GLRT, channel monitoring can be carried out blindly
and very fast thus keeping detection delays low. With respect to signal classification,
we have exploited the fact that most standards deployed today are ODFM-based.
Hence, the natural way to obtain classification ability without increasing detection
delays is to use a fast OFDM classifier. This task has been accomplished in the
second stage by BTPD, which has agility comparable as simple ED. Those less nu-
merous cases that cannot be resolved on the basis of the CP are treated at the third
stage, where we have proposed the use of SCD and TDSC-NP. SCD is fast too, so it
is possible to classify non-OFDM standards on a timely manner. TDSC-NP requires
longer sensing time, but it is the only method among those studied here that is able
to distinguish ODFM standards having the same subcarrier spacing.

• Robustness: The choice of GLRT as the method used in the first stage provides
excellent robustness against all practical issues studied. In the second stage, BTPD
is virtually immune to noise uncertainty and frequency offsets, and its fair perfor-
mance under multipath fading can be improved via CSS. Cooperation also works
effectively in the third stage to improve the performance of TDSC-NP when per-
fect synchronization lacks. In our setting, SCD works well at very low SNR in all
cases studied. Summing up, the highlight of the proposed cascade classifier is that
its stages have been designed to possess complementary features. This also includes
robustness against variations in the CP length or SP power ratio.

• Context-awareness: Knowledge of the structure of standardized target signals is
frequently available a priori. When target signals are based on TV broadcast stan-
dards, additional information becomes available in the form of deployment related
patterns, e.g. different standards that have the same format (digital or analog) are
usually not deployed collocated, simulcast services are still offered in most markets,
etc. Information about the TV standards deployed in a certain market is in gen-
eral publicly available, so we can use it to facilitate the signal classification process.
Specifically, markets where digital TV signals are simulcast in analog format can be
determined by classifying both the standards they adopt. If market determination
is less straightforward only on this basis, we can additionally scan the spectrum for
variations of the PAL standard or TVBD standards. The context-awareness obtained
thereby renders our cascade classifier able to operate in most markets worldwide.
Also, the use of our cascade classifier in WSD poses reduced fabrication costs, which
would increase otherwise if we had one specific WSD design for each market consid-
ered. This has clear potential to leverage economies of scale.

• Universality: Our cascade classifier has been conceived to take advantage of coop-
eration among nodes. As compared to other methods for determining white spaces,
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CSS reduces infrastructure costs, eliminates costs associated with location-aware
hardware, and poses milder connectivity issues since it does not necessarily require
access to the Internet. The minimization of both CAPEX and OPEX resulting from
these advantages makes CSS attractive for developing countries, where the telecom-
munications infrastructure is precarious and the household income is low. Provided
that the proposed cascade classifier can be made of low cost (out of the scope of this
dissertation), its use at the local level of CSS can realize all the above features while
respecting our commitment to promote white space use also in developing contries.
Hopefully, this can contribute to the decrease of digital divides in both regional and
global levels.

5.1.4 The MESS Platform

The performance assessments in this dissertation rely on extensive simulation work that
has only been possible thanks to MESS, the Matlab-based spectrum sensing platform to
which we have dedicated the Chapter 3. Originally envisioned as a standardized evaluation
scenario to comparing approaches proposed by different research groups on a fair basis,
MESS has ended up becoming much more than we had ever thought it could be. MESS
is based on what we call virtual testbed, a concept that differs from conventional Matlab
simulation in the sense that all target signals are implemented in detailed accordance to
corresponding standards. This allows to visualize (and gain insight on) issues that cannot
be captured by other means.

Beside of having accomplished its major goal of allowing a thorough assessment of several
signal processing techniques (not available in the literature at the time of this writing),
the work on MESS has been proven extremely rewarding in the following ways:

• Integrating research framework: MESS has played a key role as the framework
integrating our contributions on the gaps identified in the related work (see Chapter
2). Perhaps, if we had looked at each of those gaps in isolation, we would not had
come up with the concept of multi-standard context-aware WSD introduced in this
dissertation.

• Own algorithm development: MESS has given us the chance to develop novel
signal processing skills, both in analog and digital formats. Implementation efforts,
such as amendments needed to overcome the lack of accurate documentation, careful
evaluation of simulation outcomes, and extensive code debugging, have all left us
valuable insights. These insights can be used to improve the methods implemented
or even in the development of our own algorithms, e.g. MAD.

• Commercial feasibility: MESS has been attracting interest in both North Amer-
ica and Europe due to its potential for becoming a commercial product to support
the assessment, development, and implementation of signal processing techniques
for WSD. To the best of our knowledge, such a product is not currently available
neither in the academy nor in the industry. Unfortunately, we had to freeze negotia-
tions with the company1 that was willing to collaborate due to the time constraints
raised by the writing of the present dissertation.

1 Though we did not come to sign a non-disclosure agreement, for the time being we think that letting
the interested company anonymous is convenient to both parties involved.
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• Encourage future research: Now that the main code and core functions have been
put in place, a number of extensions can be envisioned for MESS at the expense of
minimum implementation effort. We discuss some of them in the next section.

5.2 Suggestions for Future Research

This dissertation has touched on many aspects crucial to the design of WSD. Some of
these aspects have received an in-depth treatment, while others have been studied more
superficially. In either case, and despite the progress that has been made in this disserta-
tion, there exist a variety of open issues related to WSD that deserve further investigation.
In this section, we list some key issues in which we believe promising future research can
be carried out. This includes two different scenarios where the results presented in this
dissertation may find application.

5.2.1 Emerging Coexistence Situations

Due to superior propagation and building penetration characteristics the TV bands have
been selected by regulatory agencies worldwide to accommodate the first CR-based ser-
vices and applications. Not surprisingly, most research efforts carried out thus far have
assumed that WSD will operate collocated with a single licensed transmitter (P = 1).
Under this assumption, this dissertation has considered the coexistence between TV band
incumbents, such as TV broadcast and PMSE, and WSD based on the standards IEEE
802.22 and ECMA-392. Possible extensions of this setting include:

• Other targets: The types of target signals currently implemented in MESS suffice
to assess the performance of different detection methods, whether blind or signal
specific, CP- or pilot-based. The results presented here can also be used to provide
an estimate about how performance would look like in case other target signals
come into consideration. However, recalling that MESS is very flexible and scalable,
it seems interesting to improve the signal generation block with other signal sources.
Among the candidate sources, the most promising are those based on emerging stan-
dards that consider the use of white spaces, e.g. Long Term Evolution (LTE), Super
Wireless Fidelity (Super WiFi) within the scope of the IEEE 802.11af standard, and
Worldwide Interoperability for Microwave Access (WiMAX) within the scope of the
IEEE 802.16h standard. All of these standards are OFDM-based, so implementation
in MESS is just a matter of creating new “flags” that point to the mandatory sets
of system parameters and pilot insertion patterns.

• Other bands: While the P = 1 assumption models coexistence in typical broadcast
scenarios, it may not suit forthcoming coexistence situations created by approaches
that jointly consider TV white space and licensed services operating in frequencies
other than the TV bands. This is the case, for instance, of cellular networks where
TV white spaces are currently being viewed as a promising means to offload data
traffic and/or deploy smart grid services. In such cellular scenarios, there will likely
be multiple licensed transmitters sharing the same frequencies. Therefore, the de-
velopment of algorithms that need not rely on the P = 1 assumption have received
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great attention recently [103][107][109]. This related work can serve as initial guide
for the amendments in the MESS code, as required to simulate P ≥ 2.

5.2.2 Practical Implementation

Despite of the “brute force” simulation-based approach adopted in this dissertation, we
recognize that accurate knowledge of the distributions of a certain test statistic z under
both hypotheses are valuable quantities. First, efficient approximations for the distribution
of z enable the analytical computation of that test’s performance in terms of Pd and Pfa.
Second, and as a consequence of the former, the minimum number of samples needed
to provide a given performance can be determined in closed-form, e.g. as in (2.15) and
(2.18). Notwithstanding the importance of this knowledge to practical WSD, the search
for such approximations implies analytical work that is time consuming and does not
necessarily ends up with something efficient. Now that the amount of methods to analyze
has been reduced to one third of the initial candidate set via simulation, one possible next
step would be to update and deepen the related work in Chapter 2 with emphasis on the
distributions of ACD, GLRT, TDSC-NP, and SCD. This could include:

• ACD: As explained in Chapter 4, we are currently working on the incorporation
of peak search procedures into ACD. We expect that the resulting MAD allows
us to exploit the benefits of both ACD and BTPD, i.e. the robustness against
multipath fading of the latter with computational complexity of the former. In case
this idea turns out to be fruitful, the work in [116] can serve as starting point for
an asymptotic analysis of MAD. Within this framework, we also can study the
impact on the performance, particularly the classification performance, of MAD
when information about subcarrier spacings is available a priori.

• GLRT (P = 1): For the low dimensional setting (both N and M are finite), exact
distributions for MED, EME, and MME have been recently derived in [104]. Rep-
resented in terms of complex zonal polynomials, the proposed distributions allow
to formulate closed-form expressions for Pfa that can be used to exactly set the de-
tection threshold λ. In case of MME, the performance derived via this procedure is
shown to outperform the asymptotical approaches in [103] and [106]. At the time of
this writing, and to the best of our knowledge, the literature had not yet found effi-
cient approximations for GLRT. Therefore, it might be worth investigating whether
it is possible to express the distributions of GLRT using complex hypergeometric
functions along the lines in [104].

• GLRT (P ≥ 2): The related work discussed in Chapter 2 is by no means intended
to be a complete treatment of signal processing techniques for WSD. In case of EBD,
for instance, a number of methods can be constructed to exploit the eigenvalues of
Rr(n). Derived under the GLRT criterion, the spherical test (ST) detector

zST(n) =

∏N
i=1 λi

(
1
N

∑N
i=1 λi

)N

has been receiving attention due to the closed-form approximations recently pro-
posed in [153]. Therein, easily computable analytical formulae for Pfa, Pd, and Qd
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are derived by matching the moments of zST to the Beta distribution. It is shown
that the proposed Beta approximation fits almost exactly the simulations and, for
large P , outperforms zGLRT. In view of these facts, and recalling that some advan-
tages may be achieved by relaxing the P = 1 assumption, the state of the art points
out zST as the currently most promising EBD method. Minimum implementation
effort is required to introduce the method into MESS.

• TDSC: For the high dimensional setting (Nl,M → ∞), the distribution of TDSC
is close to being circularly symmetric complex Gaussian [121]. By exploiting the
fact that |zTDSC-NP| and |zTDSC-MRC| are both asymptotically Rayleigh distributed
under H0, it is possible to to derive an accurate closed-form expression to compute
λ in terms of Pfa. While this suffices to demonstrate the potential of TDSC, real-
world WSD require approaches that can estimate detection power and define λ for
arbitrary values of Nl and M . At the time of this writing, and to the best of our
knowledge, the literature had not yet studied the distributions of TDSC for practical
low dimensional settings where the number of samples and the number of observed
symbol pairs having the same SP pattern are both limited.

• SCD: The asymptotic optimality of SCD, in the sense that the method asymptot-
ically approaches the LRT detector at low SNR when M is large enough, is proven
in [50] using the periodogram to estimate the PSD of the received signal. However,
the derivation of χ2

κ(o) used therein to approximate the distribution of zSCD, and
in turn set λ via (2.63), relies on the Bartlett method. As explained in Section 3.3,
we used both the Bartlett and Welch methods in the beginning but our preliminary
results indicated that, despite of substantially longer simulation times, periodogram
averaging gives the same detection performance as the simple periodogram. In view
of this, two distinct lines of investigation can be adopted. The first is to assess the
accuracy of using χ2

κ(o) to approximate the distributions of the periodogram-based
SCD, zPER, following the steps done in [50] for the Bartlett-based SCD, zBAR. The
second one is to study the asymptotic optimality of zBAR (zBAR is likely suboptimum
compared to zPER, so the first line of investigation seems more promising).

5.2.3 Characterization of Classification Performance

Under the P = 1 assumption used in this dissertation, the probability of correctly classi-
fying signals based on a given standard corresponds to the probability of correctly detect-
ing those signals. This allowed us to assess the classification performance that a certain
method delivers in a multi-standard operation environment by performing distinct simu-
lation campaigns, one for each standard. Possible extensions of this setting include:

• Simultaneously active transmitters of different kind: The actual setting does
not model those practical events where WSD simultaneously pick up signals of dif-
ferent formats and types. This is clear to occur in markets where simulcast services
are still offered. Alternatively, the assumption of multiple target signals of different
kind can be justified by the condition where WSD interfere with licensed transmis-
sions, e.g. due to missed detections or shadowed beacon signals from other WSD
operating in the same area. Though this assumption does not invalidate the results
obtained thus far using MESS (unintended received signals are treated as noise),
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it requires an assessment of classification performance in terms of probability of
missed classification Pmc. If Z = {zA, zB, . . . , zZ} denote the set of values assumed
by a generic test statistic z in the presence of noisy signals based on the standards
A, B, . . ., Z, respectively, Pmc is the probability that z > zA, ∀z 6= zA, given that
A is true. Currently, we are working on the code amendments required to compute
Pmc using MESS. They are relatively simple (depending on the size of Z), but must
avoid storage issues raised by the size of the resulting variables/workspaces.

• Categorical data analysis: According to the extension above, the test statistic z
has a measurement scale consisting of a set of categories, e.g. it may be measured as
“standard A present”, “standard B present”, . . ., “standard Z present”. Hence, in the
context of standard classification, we can treat z as a categorical response variable.
This allows us to use standard statistical models to describe how the distribution of z
changes according to levels of explanatory variables, which in our case can be either
categorical (e.g. channel type) or continuous (e.g. SNR). In multi-standard operation
environments, categorical responses with more than two categories account to the
prevailing condition. Within this framework, the simultaneous determination of the
odds of outcome in one category instead of in all others calls for multi-category
logit models [154]. We have not assessed yet the effort to increment MESS with
such models, but we are aware that other statistical computing software such S-
Plus, R, Stata, and SPSS may have advantages over Matlab.

5.2.4 Applications

A number of applications can be envisioned to demonstrate the feasibility of the cascade
signal classifier proposed in this dissertation. Two of them, specific for the case of the TV
bands, are described in the sequel.

5.2.4.1 On-demand Return Path for Interactive Television

The context-awareness achieved via signal detection and classification can be exploited to
provide a return path for interactive television (iTV) over white spaces. This first applica-
tion is illustrated by the interaction channel model shown in Figure 5.1. In this figure, TV
broadcast and forward interaction path are both conveyed in a single downstream which
can based on ATSC, DVB-T, ISDB-T, or any digital TV standard supporting interactiv-
ity. The interface between the TV set and the broadcaster is provided by the cognitive
interactive terminal (CIT). The CIT’s building blocks (not depicted) are a network inter-
face unit and a set-top box, the latter equipped with our three-stage signal classifier. In
practice, the interaction network adapter can be viewed a BS deployed collocated with the
broadcast transmitter site. Since the broadcast and forward interaction channels conveyed
in the downstream have priority (licensed) access to spectrum, the (unlicensed) upstream
used to send interactive data from the home user back to the broadcaster needs to be set
in overlay with the downstream on a non-interfering basis. Spectrum resources assigned to
the return path should be then selected from available white spaces, e.g. channels found
to be unused within the frequency band licensed to the broadcaster.

Once having selected a channel and started using it, the CIT periodically monitors this
channel to ascertain that it remains free of licensed activity. To that end, we can enforce
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Fig. 5.1: An interaction channel model for iTV over TV white spaces (adapted from [159]).

quiet periods during which transmissions on the return path cease and the CIT performs
spectrum sensing as shown in Figure 5.2. The channel samples collected over a quiet period
allow the CIT to issue a local decision about whether licensed signals are present or absent.
In this process, an individual CIT has to cope with fading, shadowing, and penetration
losses. These local detection issues can be mitigated by using CSS, in which multiple CIT
share sensing information to get a more accurate picture of current spectrum occupancy.
This implies that, besides its typical control tasks, the BS has to send enabling signals
to instruct the CIT in its coverage area about what channel to sense, when to sense,
and for how long to sense. The task of defining how long the quiet periods last is of
utmost importance here since it determines both the accuracy of the channel monitoring
scheme and the duration of the transmit periods over which CIT are allowed to transmit
interactive over the return path.

The reason why such an application is desirable is multi-fold. First, iTV has been con-
sidered a key feature to make digital TV appealing to end users and provide additional
revenue to manufacturers and broadcasters [155]. Through services that facilitate digital
inclusion, such as t-learning, t-government, and t-commerce, iTV has gained attention
as an efficient way to bring the Internet to mass markets [156]. Hence, iTV seems to be
the perfect application to supporting our goal of mitigating digital divides. Second, the
interaction channel model proposed in Figure 5.1 is dynamic, smart, and spectrally effi-
cient. It is dynamic in the sense that it exploits the fact that home users are not likely
to interact all the time to set the return path on an on-demand basis. Smart here means
that it provides an alternative way for gaining access to spectrum in case licenses are dif-
ficult to obtain. As for spectral efficiency, better use of spectrum is achieved by using the
same medium to transmit interactive data in overlay with higher priority broadcast data.
Third, ATSC and ISDB-T are flexible standards in the sense that they mandate no spe-
cific access technology to provide the interaction channel [157][158]. Though flexibility is
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Fig. 5.2: In-band channel monitoring process carried out by a single CIT. To ascertain
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almost always welcome, the access technologies currently considered for this purpose usu-
ally require broadcasters to cooperate (thus sharing revenues) with telecommunications
or Internet service providers. In its family of standards, DVB specifies a return channel
terrestrial (RCT) to convey data in the forward and return interaction paths [159]. Unfor-
tunately, DVB-RCT is not straightforward to implement because neither sensing method
nor channel monitoring mechanisms are specified in the standard. Hence, in contrast to
other access technologies, white space technologies do not require broadcasters to coop-
erate. This cuts down revenue sharing, thus increasing broadcasters’ profits.

To the best of our knowledge, our previous work in [89] was the first study on the applica-
tion of a TVBD standard as access technology for the return path of iTV. We considered
the settings for sensing periodicity, sensing duration, and number of cooperating CIT
needed to fulfill the requirements on dynamic frequency selection mandated in the IEEE
802.22 standard. Possible extensions of this work might include:

• Improve local level performance: Carried out in the “early days of MESS”, when
only a few methods were implemented, the numerical analysis, simulation work,
and testbed experimentation all rely on ED. Strictly speaking, CIT do not need
advanced classification abilities but the extent to which their detection performance
can be improved by using blind techniques (GLRT) or signal specific techniques
(ACD and TDSC-NP) is worth investigating. To updade the numerical analysis
accordingly, we depend on the availability of approximations for the distributions of
these methods as highlighted earlier in this section. Updading the simulation work
is straightforward using the current version of MESS. As for the testbed, substantial
implementation work is required, particularly with respect to the estimation of the
eigenvalues of the covariance matrix required in GLRT. Among the tools available
to that end, the literature has been typically calling upon SVD algorithms [160] or
symmetric bidiagonalization methods [161].
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• Improve system and channel models: The system model used in the numerical
analysis assumes that CIT contributions are uncorrelated and the noise process is
AWGN. The simulation work is done for both AWGN channel and multipath fading
channel generated according to profile A (see Table 3.5). However, these models do
not reflect the correlated shadowing experienced in the testbed measurements due
to the fact that the cooperating CIT are placed too close to one another. In order
to produce numerical, simulative, and experimental results that are comparable,
we need to relax the assumption of uncorrelated contributions and improve MESS
with correlated fading channel models. A different system aspect that might be
improved is the single-channel perspective. By extending analysis to a multi-channel
environment, as considered in the experiment, we would be able to quantify the
agility gain suggested as tie-break criterion for making the sensing settings.

5.2.4.2 Channel Monitoring Mechanisms for Cognitive PMSE

PMSE systems have been thus far allowed to operate in the TV bands with lower priority
than broadcast TV. However, the transition from analog to digital TV has been viewed
with some worry by the WM industry, particularly in the U.S. where the FCC will allow
unlicensed operation of WSD in the spectrum freed up by the digital switchover. Two
major concerns are about how to mitigate harmful interference from WSD to PMSE and
how to ensure that the WM operated by PMSE will still be able to find idle frequencies
where they can operate. Indeed, both are relevant concerns because providing coexistence
between WSD and PMSE is a challenging task for both GDA (see Chapter 1) and spectrum
sensing (see Chapter 2).

In this context, the trend consists of applying CR principles to enhace the sensing capa-
bilities of the scanning receiver units (SRU) used in current WM systems, mostly based
on simple ED, thus improving immunity to interference [162][163]. Such CR-based sys-
tems are referred to as cognitive PMSE (C-PMSE). Unlike in the usual overlay-based
hierarchical access model, where opportunistic unlicensed users should detect and avoid
licensed users, C-PMSE are concerned about sensing carried out by WM rather than for
WM. Within this framework, specific channel monitoring mechanisms are needed to en-
sure quality of service of PMSE. Assuming that at least one dedicated antenna is available
for sensing, the SRU can carry out the channel monitoring mechanisms depicted in Figure
5.3 in an alternated fashion.

The first mechanism, shown in Figure 5.3(a), considers out-of-band channel monitoring,
i.e. it is intended for channels not currently occupied by WM transmissions. The number
of channels to be sensed is always limited in practice, so SRU can use fast sensing to scan
all channels in acceptable time. Preliminary fast sensing results serve to populate a list of
reserve channels based on radio environment maps (REM) [164]. After all channels have
been scanned and the REM entries initialized, the SRU performs fine sensing on the last
channel that it has declared idle through fast sensing. Basically, this means that the SRU
declares a channel as suitable for WM transmissions only if it has been declared idle also
through fine sensing.

Upon having selected a channel and assigned it for WM transmitter use, the SRU initiates
in-band channel monitoring using the second mechanism shown in Figure 5.3(b). Here,
whenever the channel is declared occupied through fast sensing, the SRU has to rely on
other link quality parameters to determine the existence of a urgent coexistence situa-
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Fig. 5.3: Generic channel monitoring mechanisms to ensure quality of service in future
C-PMSE systems.

tion (UCS). This may include additional mechanisms to monitor bit error rate and/or
received signal strength indication, as proposed in [163]. By comparing current channel
measurements to the thresholds stated in the service level agreeement (depends on the
PMSE application), the SRU decides about triggering fine sensing or handling transmis-
sions immediately to a new channel. Out-of-band channel monitoring maintains the REM
updated, so a reserve channel can be retrieved on-the-fly in case of UCS or detection of
target signals during fine sensing. In either case, and before initiating the channel switch
procedure, the SRU double-checks the status of the reserve channel using the fine sensing
loop of Figure 5.3(a).

The channel monitoring mechanisms described above are characterized by two distinguish-
ing features. First, since WM transmitters are powered off during out-of-band channel
monitoring, the methods used at both fast and fine sensing blocks in Figure 5.3(a) do not
need possess any classification ability. Second, unlike the bursty interactive data conveyed
in the return path of iTV, WM systems have 100% duty cycle. Consequently, we cannot
enforce quiet periods (as in Figure 5.2) in case of in-band channel monitoring and the
SRU should perform sensing tasks while WM transmitters are powered on. This calls for
methods with classification ability for both fast and fine sensing blocks in Figure 5.3(b),
particularly methods capable of distinguishing WM signals from other signals found in
the TV bands.

In our previous work [90], we analyze the pros & cons of five potential detection methods
with respect to computational complexity, amount of prior information required for detec-
tion, classification ability, and performance under AWGN and frequency-selective fading.
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Our analysis suggests that methods based on the CP can be used for fast sensing as long
as ECMA-392 can be detected. For fine sensing, we suggest methods that exploit SP and
have complementary features to fast sensing methods. For most cases of interest, we show
through computer simulations that the combined uses of ED and TDSC-NP (out-of-band
monitoring), and BTPD and TDSC-NP (in-band monitoring) incur no performance loss
in comparison to fast sensing methods in isolation.

Possible extensions of this work might include:

• Improve operation environment: The proposed channel mechanisms suit well
operation environments where C-PMSE need coexist with OFDM-based systems
only. This may not be realistic in those markets where digital TV is still simulcast
in analog format or the digital standard adopted is non-OFDM, e.g. ATSC. Recalling
that in C-PMSE sensing is carried out by WM rather than for WM, it is evident
that prior knowledge of the structure of WM signals will be available because the
entity managing the system exactly knows fc, fdev, W , side-tone placements, and
other operational parameters that can be exploited by the detection process. Under
the assumption that this is exactly the case, SCD can distinguish WM signals from
most types of non-OFDM signals currently found in the TV bands. This renders the
three-stage classifier proposed in this dissertation a better option for both in-band
and out-of-band monitoring.

• Improve system and channel models: Besides suiting most practical scenarios,
the extension above improves both local level performance and robustness against
noise uncertainty. The simulation work has been updated throughout this disserta-
tion, where we have also considered frequency offsets and extended the single-node
analysis to the case of multiple cooperating nodes. Nevertheless, we have not man-
aged yet to address two aspects that are crucial to C-PMSE. The first consists
of improving MESS to consider a multi-channel perspective, as required to real-
ize REM. Further implementation effort is also required in a second aspect, which
relates to the integration of MESS and the additional mechanisms required to deter-
mine UCS. Both aspects are currently under investigation within the broader scope
of the “C-PMSE Project” [165], organized in a consortium of research and industry
and funded by the German Federal Ministry of Economics and Technology.
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