Experimental studies on the tumor suppressor p53, the myc proto-oncogene and tissue compatibility in the basal metazoan phylum Placozoa

Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktorin der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation

von Dipl.-Biol. Karolin Ursula Luise von der Chevallerie geboren am 22. Dezember 1981 in Großburgwedel

2013

Referent: Prof. Dr. Bernd Schierwater Korreferent: Prof. Dr. Dieter Steinhagen Tag der Promotion: 12.12.2013

Dedicated to my family.

Zusammenfassung

Ein maßgeblicher Schritt der Evolution bestand im Zusammenschluss einzelliger Organismen (Protozoen) zu Vielzellern (Metazoen). Er ermöglichte die Ausdifferenzierung diverser Zelltypen und Gewebe, die dann für unterschiedlichste Ansprüche spezialisiert wurden. Die Entstehung einer solchen Komplexität brachte jedoch die Notwendigkeit mit sich, molekulare Instrumente zu entwickeln welche das zelluläre Gleichgewicht innerhalb eines Gewebes aufrechterhalten und die Integrität jedes Organismus schützen können. Der Zellzyklus (der periodische Ablauf von Ereignissen in einer sich teilenden Zelle) unterliegt strengen regulativen Einheiten und Netzwerken von immenser Komplexität. Defekte in zellzyklusrelevanten Genen sind häufig Ursache schwerwiegender Erkrankungen wie beispielsweise Krebs und stehen darum im zentralen Fokus vieler Forschungsprojekte.

Der kleine marine Invertebrat Trichoplax adhaerens gehört zum Stamm der Placozoa. Sein einfacher Bauplan, die simple Lebensweise und seine genetische Ausstattung legen den Schluss nahe, dass es sich bei ihm um den letzten noch lebenden gemeinsamen Vorfahren der Metazoen handelt. Gehen wir davon aus, dass Trichoplax dem evolutionsgeschichtlich ersten Vielzeller am ähnlichsten ist, können wir annehmen, dass die Mechanismen zur Zellzykluskontrolle in diesem Tier entsprechend einfach sind. Im Rahmen der vorliegenden Dissertation wurden zwei genetische Netzwerke in Trichoplax adhaerens untersucht, die einen erheblichen Einfluss auf die Kontrolle des Zellzyklus in höheren Tieren haben: (i) der Tumorsuppressor p53 sowie sein molekularer Gegenspieler Mdm2 und (ii) das Netzwerk der Myc/Max Transkriptionsfaktoren. Des Weiteren wurden (iii) Regenerationsexperimente durchgeführt, die die Vermischung verschiedener Placozoen- Linien beinhalteten und dazu beitragen, Verwandtschaftsverhältnisse innerhalb des Phylums aufzuklären.

(i) Die Verabreichung von Inhibitoren, die den p53-Anteil einer Zelle künstlich erhöhen, führte in *Trichoplax* zu einem signifikanten Anstieg der Apoptose- Rate. Des Weiteren veränderte sich das Mengenerhältnis von Rand- und Zentralgewebe der Tiere drastisch, was sich in ungewöhnlichen phänotypischen Ausprägungen äusserte. Die Ergebnisse unserer Studie lassen darauf schließen, dass die Funktion des p53/Mdm2 Netzwerkes der Placozoen ähnlich der von höheren Tieren ist und der Kontrolle des Zelltodes dient.

(ii) Die Funktionen der Transkriptionsfaktoren Myc und Max wurden mittels *in situ* Hybridisierung, Gen- "Knockdown", rekombinanter Proteinexpression und der Applikation von spezifischen Inhibitoren untersucht. Unsere Ergebnisse sprechen dafür, dass das Netzwerk in *Trichoplax* unter anderem eine wichtige Funktion bei der Zelldifferenzierung übernimmt. Die Expression beider Gene variiert je nach Entwicklungsstadium der Tiere und die Abwesenheit der Proteine (erreicht durch "Knockdown" und Inhibitorapplikation) ist hochgradig letal.

(iii) Das Phylum Placozoa zeichnet sich durch eine überraschend hohe Diversität aus. Genetische und morphologische Analysen weltweit gesammelter Individuen beweisen, dass mindestens 19 verschiedene Placozoen-Linien (Haplotypen) existieren. Im Zuge dieser Dissertation wurden Regenerationsexperimente durchgeführt, bei denen Gewebestücke genetisch unterschiedlicher Linien zusammengefügt wurden. Je nach Kombination der verschiedenen Haplotypen verwuchsen die Transplantate gänzlich oder temporär, wurden desweilen aber auch sofort abgestoßen. Dieses Phänomen lässt darauf schließen, dass Placozoen in der Lage sind, eigenes von fremdem Gewebe zu unterscheiden. Außerdem bestätigen unsere Ergebnisse vorherige Resultate zur Phylogenie innerhalb der Placozoa, die auf der Analyse verschiedener molekularer Markersysteme fußen. Die beobachtete Verwachsungsrate hängt direkt mit dem genetisch ermittelten phylogenetischen Verwandtschaftsgrad zusammen, was als weiteres Argument dafür verstanden werden kann, dass es sich bei den unterschiedlichen Haplotypen womöglich um verschiedene Spezies, Gattungen und Familien des Phylums Placozoa handeln könnte.

Stichworte: Placozoa, p53 und mdm2, myc und max, "Allorecognition"

Abstract

A crucial step within evolution was the fusion of unicellular organisms (Protozoa) to multicellular animals (Metazoa). This enabled the differentiation of diverse cell types and tissues, which then were specialized for various demands. The evolution of such a complexity, however, came along with the requirement to develop molecular instruments that were able to maintain cellular homeostasis within a tissue and to protect integrity of the organism. The cell cycle (the periodic procession of incidents in a dividing cell) underlies severe regulative units and networks of immense complexity. Defects in cell cycle relevant genes often are reason for serious diseases such as cancer and thus are main focus of diverse research projects.

The small marine invertebrate *Trichoplax adhaerens* belongs to the phylum Placozoa. Its simple bauplan characteristics, way of living and genetic equipment suggest that this organism represents the last recent common ancestor of the first multicellular animal. Proceeding from the assumption that it is most similar to the evolutionary first metazoan organism we can conclude that mechanisms for cell cycle control in this animal therefore are accordingly simple. In the course of the present thesis, two genetic networks in *Trichoplax adhaerens* were investigated which have a substantial influence on the control of the cell cycle in higher animals: (i) the tumor suppressor p53 and its molecular counterpart Mdm2 and (ii) the network of the Myc/Max transcription factors. Furthermore, (iii) regeneration experiments have been conducted that include the artificial fusion of different placozoan lineages and help to unravel relationships within the phylum.

(i) The application of inhibitors that artificially increase the amount of p53 in a cell, led to a significant increase of cells undergoing apoptosis in *Trichoplax*. Furthermore, the proportion of central and marginal tissue changed drastically which resulted in remarkable phenotypic characteristics. Results of the study suggest that the function of the p53/Mdm2 network in Placozoa are similar to its function in higher animals and serves the control of apoptosis.

(ii) The function of the transcription factors Myc and Max has been investigated by means of *in situ* hybridization, gene "knockdown", recombinant protein expression and application of specific inhibitors. Our results suggest that the network in *Trichoplax* has an important function, *inter alia*, in cellular differentiation. The expression of both genes varies depending on the developmental stage of the animal and absence of proteins (via "knockdown" and inhibitor application) is highly lethal.

(iii) The phylum Placozoa is characterized by a surprisingly high diversity. Genetic and morphological analyses of worldwide sampled individuals prove the existence of at least 19 different placozoan lineages (haplotypes). In this thesis, regeneration experiments were conducted in which fractions of different genetic lineages were united. Depending on the combination of different haplotypes transplants merged completely or transitory whereas some were rejected instantly. This behavior pleads for the capability of the animal to distinguish own from foreign tissues. Our results furthermore confirm previous findings on the phylogeny of the Placozoa, which is relying on the analyses of different molecular marker systems. Observed intergrowth rate directly correlates with the genetically determined phylogenetic relationship what is yet another argument that haplotypes most probably correspond to different species, genera and families of the phylum Placozoa.

Keywords: Placozoa, p53 and mdm2, myc and max, allorecognition

Contents

1	Intr	oduction	14
2	Experimental Studies		32
	2.1	Inhibitors of the p53-Mdm2 interaction in the placozoon Trichoplax adhaerens	33
	2.2	The Myc/Max network at the base of the metazoan tree of life	46
	2.3	Regeneration and self/non-self recognition in Placozoa $\ \ldots \ \ldots \ \ldots \ \ldots$	74
3	Gen	eral Discussion	92
	3.1	General Discussion	93
Α	Appendix 99		99
	A.1	Inhibitors of the p53-Mdm2 interaction in the placozoon Trichoplax adhaerens	100
	A.2	The Myc/Max network at the base of the metazoan tree of life	105
	A.3	Regeneration and self/ non-self recognition in the phylum Placozoa $\ . \ . \ .$	123
Cι	ırricu	lum Vitae	127
Ac	know	vledgements	129
Li	st of	Publications	131

List of Figures

1.1	Placozoan morphology.	16
1.2	The p53-Mdm2 relationship.	18
1.3	The Myc/Max network	19
1.4	Modes of allorecognition in <i>Hydractinia symbiolongicarpus</i>	21
2.1.1	Time course of population size and animal sizes after inhibitor treatment.	37
2.1.2	Phenotypic changes after inhibitor treatment	38
2.1.3	Phenotypic abnormalities after inhibitor treatment	39
2.1.4	TUNEL- and BrdU staining 72 h after inhibitor application	40
2.2.1	Alignment of Myc and Max protein sequences.	56
2.2.2	Western blot analysis of expressed proteins	57
2.2.3	Whole mount in situ hybridization of tamyc and tamax	58
2.2.4	Live imaging of transfected animals	59
2.2.5	Time course of population and animal size during <i>tamyc</i> and <i>tamax</i>	
	knockdown	60
2.2.6	Amount of cell proliferation events after "knockdown" of <i>tamyc</i> and <i>tamax</i> .	61
2.2.7	Increase of apoptosis after $tamyc/tamax$ gene knockdown	62
2.2.8	Time course of population and animal size after treatment with the	
	10058-F4 inhibitor	63
2.2.9	BrdU and TUNEL staining of inhibitor treated individuals after 24 h $$	
	and 72 h	64
2.3.1	Frequencies of transient tissue intergrowth.	80
2.3.2	Exemplary intergrowth and cell migration 24 hours after transplantation.	81
2.3.3	Xenografting can lead to morphological alterations in the acceptor tissue.	82
A.2.1	Gel filtration of the taMax-containing ÄKTA- fraction	106
A.2.2	Light microscopy of "knockdown" individuals.	107
A.2.3	Animal population size after treatment with the 10058-F4 inhibitor. \ldots	109
A.2.4	Light microscopy of $Trichoplax$ individuals after treatment with 10058-F4	
	inhibitor (5 μ M)	111
A.3.1	Grafting procedure exemplified by a <i>Trichoplax adhaerens</i> autograft	123

List of Tables

2.2.1	Primer sequences used for insert amplification for the pETDuet-1 construct. 50
2.3.1	Haplotypes used in this study
A.1.1	Raw data on animal population size after inhibitor treatment 100 $$
A.1.2	Raw data of animal sizes after inhibitor treatment
A.1.3	Data on presence of abnormal <i>Trichoplax</i> phenotypes after inhibitor
	treatment
A.1.4	Raw data on BrdU and TUNEL staining after inhibitor treatment. $. \ . \ 104$
A.2.1	Sequence information on taMyc and taMax
A.2.2	Raw data of animal population sizes after "knockdown"
A.2.3	Raw data on animal sizes after "knockdown"
A.2.4	Raw data on BrdU signal after gene "knockdown"
A.2.5	Raw data on TUNEL staining 24h after initial $tamyc/tamax$ gene "knock-
	down"
A.2.6	Statistical analyses on BrdU and TUNEL staining
A.2.7	Raw data on population sizes after treatment with different concentrations $% \left({{{\left[{{\left[{\left({\left[{\left[{\left[{\left[{\left[{\left[{\left[{\left[{\left[{\left[$
	of the 10058-F4 inhibitor
A.2.8	Raw data on animal sizes after treatment with the 10058-F4 inhibitor 120
A.2.9	Raw data on BrdU signal after treatment with the 10058-F4 inhibitor
	$(5\mu M)$
A.2.10	Raw data on TUNEL signal after treatment with the 10058-F4 inhibitor
	$(5\mu M)$
A.2.11	Statistical analyses on BrdU and TUNEL staining
A.3.1	Primers used for genetic haplotype and clade identification
A.3.2	Cross classification - Raw data of grafting experiments
A.3.3	Data used for boxplot analyses
A.3.4	Statistical analyses on donor/acceptor roles
A.3.5	Results of PCR analyses

Abbreviations

5'	five prime
3'	three prime
A	adenine
ARC	allorecognition complex
ASW	artificial seawater
bHLHL-Zip	basic helix-loop-helix leucine zipper
bp	base pairs
BrdU	bromodeoxyuridine
BSA	bovine serum albumin
С	cytosine
°C	degree Celsius
CDK	cycline dependent kinase
cDNA	complementary DNA
cf.	<i>confer</i> (compare)
DAPI	4',6-diamindino-2-phenylindole
$\rm ddH_2O$	double distilled water
DEPC	diethylpyrocarbonate
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
dUTP	deoxyuridine triphosphate
DTT	dithiothreitol
e.g.	exempli gratia (for example)
EDTA	ethylenediaminetetraacetic acid
EPEI	ethoxylated polyethylenimine
EtOH	ethanole
fig.	figure
FPLC	fast protein liquid chromatography
G	guanine
Н	haplotype
h	hours
HCl	hydrochloric acid

HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HRP	horseradish peroxidase
i.e.	$id \ est \ (that \ is)$
IPTG	isopropyl-
JGI	Joint Genome Institute
KD	knockdown
LB	lysogeny broth
М	molar
MB	Myc box
mg	milligram
min	minute
ml	milliliter
mM	millimolar
mm	millimeter
MO	morpholino oligonucleotide
$\mu { m g}$	microgram
μ l	microliter
$\mu { m m}$	micrometer
Ν	normal (chemically)
NaCl	sodium chloride
NCBI	National Center for Biotechnology Information
ng	nanogram
nm	nanometer
no.	number
OD	optical density
PCR	polymerase chain reaction
RACE	rapid amplification of cDNA ends
RNA	ribonucleic acid
rpm	rotations per minute
RT	room temperature
SDS	sodium dodecyl sulfate
sec	seconds
Т	thymine
TBS	tris-buffered saline
TBST	tris-buffered saline $+0.1\%$ Tween-20
TBSTT	tris-buffered saline $+0.1\%$ Tween-20 $+0.1\%$ TritonX
TAME	p-toluenesulfonyl-L-arginine methyl ester
TPCK	tosyl phenylalanyl chloromethyl ketone

Tris	tris(hydroxymethyl)aminomethane
TSA	thyramide signal amplification
TUNEL	terminal deoxynucleotidyl transferase-mediated deoxyuridine

triphosphate nick end labeling

Chapter 1

1 Introduction

"In den Seewasseraquarien des Zoologischen Institutes der Universität Graz lebt ein bisher noch nicht beschreibenes Thier, dessen Organisation und Lebenserscheinung mir ein so gründliches und lange fortgesetztes Studium zu erfordern scheint, daß ich [...] voraussichtlich erst nach langer Zeit zum Abschluss meiner Untersuchungen über dasselbe gelangen werde..."

(Franz Eilhard Schulze, 1883)

The phylum Placozoa, a historical overview

In 1883 Franz Eilhard Schulze, a German zoologist described his observations on the simplest known metazoan animal thus far [1]. He discovered a small, disc shaped creature in a seawater aquarium in the University of Graz (Austria) and after closer investigation he named it after its obvious morphology *Trichoplax* (Greek 'tricha' = hair, 'plax' = plate) adhaerens (Latin 'adhaere' = to stick). Due to the absence of similarities to other known phyla, Schulze then proposed its phylogenetic position to be isolated and close to the root of the metazoan Tree of Life (ToL). After a more detailed description of the animal by Schulze in 1891 [2], the zoologist Thilo Krumbach erroneously claimed *Trichoplax* to be an aberrant hydrozoan larvae [3]. Even though Krumbachs theories had their critics [4, 5], the initial interest in *Trichoplax adhaerens* decreased drastically for a long period.

Karl Gottlieb Grell a German zoologist then brought *Trichoplax* back to discussion in the early seventies, introducing the new phylum 'Placozoa', named after Otto Bütschlis 'Placula Hypothesis' about the origin of Metazoa [6, 7]. With Grells publications on the formation of egg cells [8] the interest in *Trichoplax* rekindled and substantial scientific efforts were made to unravel its morphology, biology and phylogenetic position in the following years (for review see [9]).

In recent years the phylum Placozoa turned out to be very diverse harboring several genetic lineages and species (termed haplotypes) distributed worldwide (cf. [10-15]). The phylogenetic position of Placozoa is close to the base of the metazoan tree of life and thus this animal can provide crucial insights into the evolution of multicellularity [16, 17]. The sequencing of the genome of *Trichoplax adhaerens*, the so far only described representative of the phylum Placozoa [18] revealed a remarkable conservation of the genetic repertoire from Placozoa to higher animals and highlights Placozoa as a model system for different areas of science including applied research (e.g. [19-22]).

Placozoan morphology and ecology

The marine invertebrate *Trichoplax adhaerens* represents the simplest organized animal known thus far with the simplest known bauplan characteristics [1, 2]. It has an average size of a few millimeter in diameter and comprises of only five different somatic cell types forming three distinct layers: the upper and the lower epithelium which encloses a lose formation of interconnected fiber cells (fig. 1.1 and references therein). The animal dispenses any axis has no defined shape and is evocative of an amoeba [1, 2, 23, 24]. The lack of organs, neuronal and muscular cells a basal lamina or an extracellular matrix suggests its evolutionary origin to be close to the base of Metazoa and recent overall analysis suggests the Placozoa to be the best surrogate for the 'Urmetazoon', while the

1 Introduction

relationship of animal phyla at the base of the tree of life remain heavily discussed (cf. [9, 16, 17, 25-29]).

The upper epithelium of *Trichoplax* consists of monociliated, flattened cover cells with interspersed highly refractive structures, the so-called 'shiny spheres'. The function of these degenerated cells is not clear yet but investigations give hints for a probable defensive function [31]. The lower epithelium is much more dense, overtakes a nutritive function and is responsible for the movement of the animal. It is made up of ciliated cylinder cells responsible for locomotion as well as ingestion of food via pinocytosis [32-35], and flask-shaped gland cells excreting enzymes for extracellular digestion [36]. Sandwiched in between the epithelia, the fiber cells are interconnecting the upper and lower epithelium forming a loose syncytial network [37, 38]. The continuous change of shape during movement of the animal is coordinated by contraction of these cells [39, 40]. The multipotent stem cells, the postulated fifth cell type, are located at the margin of the animal. They mark the boundary of the upper and lower epithelium and differentiate during development of the animal [41].

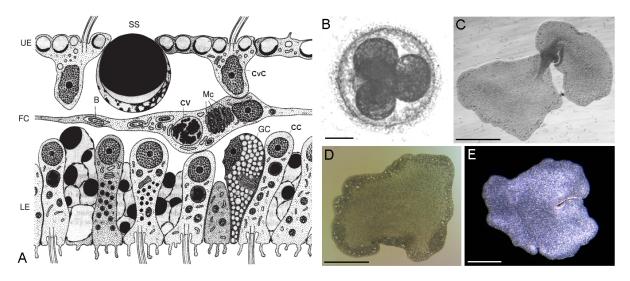


Figure 1.1: Placozoan morphology.

(A) Schematic cross section of *T. adhaerens* (modified after [7]) upper epithelium (UE), lower epithelium (LE) fiber cells (FC) cover cell (CvC), shiny sphere (SS), bacteria (B), concrement vacuole (Cv), mitochondrial complex (Mc), gland cell (GC) and cylinder cell (CC).

(B) Egg cell in the 4-cell stage.

- (C) Vegetative reproduction via binary fission.
- (D) Birefringent granules at the margin of a *Trichoplax* individual,
- (E) Trichoplax adhaerens in the stereomicroscope.

Scale bar in (B) marks $20 \,\mu\text{m}$, bar in (C, D, E) marks $100 \,\mu\text{m}$.

The phylum Placozoa is much more diverse than initially thought [10]. Extensive taxon sampling revealed the existence of at least 19 different genetic lineages (haplotypes) distributed worldwide in the littoral of predominantly tropical and subtropical oceans [13, 15]. The recent finding of a placozoan species in the Atlantic Ocean in the north of

1 Introduction

France (Roscoff) however demonstrates the animals' ability to adapt also to cold water [42]. Morphological analysis and genome sequencing has revealed taxonomic diversity and tissue grafting between diverse haplotypes (as described in this thesis) confirms that different genetic lineages likely represent different species and higher taxonomic units. [13, 14]. A comprehensive revision of the taxonomy of the phylum Placozoa thus is an important field of current research.

Under standardized laboratory conditions Placozoa mainly reproduce vegetatively via binary, respectively, multiple fission [43]. They can also form spherical swarmers which are choked off the upper epithelium of a mother individual. This mostly occurs under suboptimal culturing conditions and likely serves the distribution of animals to conquest new habitats in nature [44]. The formation of egg cells under certain conditions suggests the existence of sexual reproduction, however under laboratory conditions embryos are dying aback after reaching the 128-cell stage [8, 30, 45-47]. While molecular data imply the existence of sexual reproduction [47, 48], the life cycle of Placozoa remains unclear.

Observations on the way of living of placozoan species are solely based on laboratory cultures and material sampled from the ocean (e.g. stones or mussel shells). The reason is that the animals are to small and translucent to be observable in the wild. Placozoans are found in company of other marine invertebrates such as cnidarians or sponges, but no interaction has been observed so far [12]. Despite the lack of organs and neurons *Trichoplax adhaerens* shows directed movement towards light sources, i.e. positive phototaxis [49-51]. Analysis of the *Trichoplax* genome revealed the presence of genes encoding for G-protein coupled receptor proteins found in photoreceptor cells (opsins) and regulatory genes important in embryonic eye development (Pax genes) suggests the existence of a primitive photoreceptor cell in the Placozoa [52, 53]. Recent findings also indicate a positive reaction to temperature gradients whereas the individuals preferred warmer temperatures when exposed to a gradient of $15 \,^{\circ}\text{C} - 20 \,^{\circ}\text{C}$ [54]. All together these results show that *Trichoplax* is able to convert external stimuli and respond with coordinated behavior. It is likely that the reaction is coordinated by dint of fiber cells, which could therefore be seen as proto-neuronal/muscular cells [55].

The tumor suppressor p53 and its ubiquitin ligase Mdm2

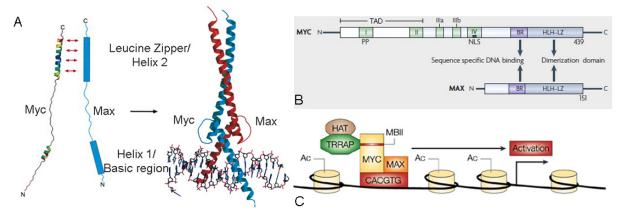
p53 is deemed to be one of the most important genes to study in the context of cancerous diseases as more than 50% of all human malignancies are accompanied by a mutations in this gene [56]. Simultaneously discovered by Albert DeLeo, Sir David Lane and Alberto Levine in 1979 [57-59], it soon was clear that the gene product of p53, the p53 protein plays an important role in modulating cellular transformation of tumor cells. Now fittingly known as the 'guardian of the genome' [60], p53 is renowned to resume an essential function in the regulation of cell growth, division and apoptosis as well as in differentiation and development (for review see e.g. [61-63]).

Under unstressed conditions the level of p53 in the cell is relatively low and the protein is held inactive by its negative regulator Mdm2, an ubiquitin ligase that binds to the p53 protein. Mdm2 has an ubiquitin ligase activity and thereby marks the protein for subsequent degradation by the proteasome (cf. [64]). The p53 pathway is activated in response to various stress signals as e.g. DNA damage leading to an interruption of p53-Mdm2 interaction by means of posttranscriptional modifications [65]. The p53 protein then transcriptionally activates the expression of target genes. Activated genes are responsible for cell cycle arrest, respectively, senescence induced e.g. by the cyclin dependent kinase inhibitor p21 [66], or apoptosis e.g. by the Bcl-2 homology domain 3-only protein PUMA (p53-upregulated modulator of apoptosis, [67]) to name but a few. Beside this transcriptional-dependent function, p53 can also induce apoptosis by affecting the survival of mitochondrial proteins, microRNA processing or DNA repair [68-70].



Figure 1.2: The p53-Mdm2 relationship.

(A) Various cellular stress signals lead to the disruption of p53-Mdm2 interaction activating the p53 pathway. Target genes now regulate stress responses such as senescence or apoptosis (modified after [62]).


(B) Structure of the Mdm2 and p53 protein: p53 binding domain (p53-BD), acidic- and RING finger domain in Mdm2; transactivation domain (TAD), DNA binding domain (DNA-BD) and oligomerization domain (4-mer) in p53 (modified after [63]).

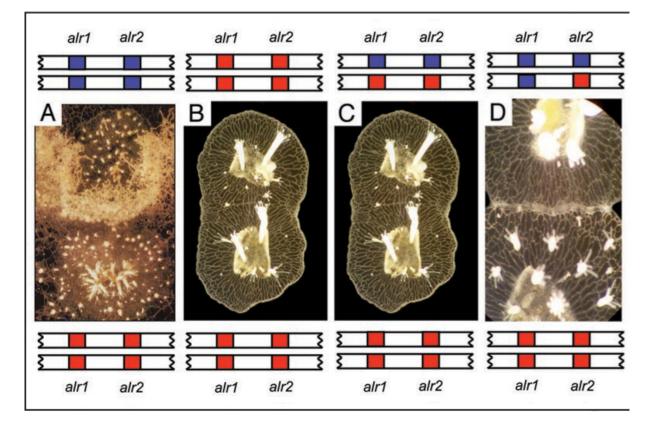
The human p53 protein has, as the name implies, a size of 53kDa. It contains an N-terminal transactivation domain responsible for binding to interacting proteins such as the negative regulator Mdm2. The central DNA-binding domain mediates sequence specific binding of the protein to corresponding DNA regions. As human p53 forms a tetramer to bind to the DNA, the oligomerization domain (4mer) is structurally conserved. The human Mdm2 protein consists of 149 amino acids with a N-terminal domain to specifically bind the p53 protein. The central part of the protein contains an acidic region conterminous to a zinc finger region responsible for binding to various regulatory factors. The ubiquitin ligase activity of Mdm2 is mediated by the C-terminal RING finger domain (cf. fig. 1.2 and references within).

A recent publication of Lane in 2010 revealed that the genome of *Trichoplax adhaerens* encodes for both a p53- and an Mdm2-like protein [71]. The *Trichoplax* p53 and Mdm2 do posses all necessary functional domains known from their human homologues. In this thesis, first experimental approaches for unraveling the role of p53 and Mdm2 in Placozoa have been conducted. The application of two inhibitors of p53-Mdm2 interaction (roscovitine and nutlin-3 [72, 73]) provides first insights into the function of a possible p53/Mdm2 network in Placozoa and highlights its importance for the organism.

The Myc/Max transcription factor network

Cell behavior, such as the initiation of proliferation, apoptosis, differentiation or quiescence has to be tightly regulated in all Metazoa. The *c-myc* proto-oncogene encodes a transcription factor (Myc) that has a high impact on the control of these incidents (cf. [74]). Originally identified as a nucleotide sequence that "may encode the oncogenic potential of the avian virus MC29" [75] the *myc* gene soon achieved ambiguous fame as its deregulation contributes to a large number of human tumors. It belongs to the family of *myc* genes whereas *c-myc*, *L-myc* and *N-myc* are known to cause malignances if deregulated (for review see e.g. [76]). Later on the Max protein (Myc associated factor X) was discovered to overtake the central function in a transcriptional network that also includes other basic-helix-loop-helix zipper (bHLHLZip) proteins [77]. Myc and Max belong to the bHLHLZip transcription factors and form heterodimers that specifically bind to enhancer sequences (E-boxes with the specific sequence CA C/T GTG) of the DNA causing transcriptional activation or respectively repression of target genes [78, 79].

(A) Organization of Myc and Max; both proteins are forming a fork-like structure and bind to the major groove of the DNA (modified after [80, 81]).


(B) Conserved domains of Myc and Max; Myc-boxes I-IV in green, the basic region in violet and the helix-loop-helix-leucine zip in blue. The transactivation domain (TAD) phosphorylation sites (PP) the region encoding for nuclear localization signal (NLS) are indicated (modified after [74]).
(C) Myc and Max transcriptionally can activate target genes by recruiting TRRAP for regulation of histone acetylation (modified after [82]).

With a size of ~ 49 kilo Dalton (kDa) the human c-Myc Protein comprises of a N-terminal basic domain and a C-terminal leucine zipper both forming two separated alpha helices. The C-terminal leucine zipper of Myc is the nucleus of Myc/Max dimerization and the N-terminal part of the protein is responsible for DNA binding. The conserved Myc homology boxes (I-IV) are essential for Myc function [83]. The Myc interacting protein Max has a size of $\sim 18 \, \text{kDa}$ in human and is build up of a basic DNA binding domain and a bHLHLZip Zip region (fig. 1.3 and references within). The Myc protein is an important transcriptional regulator that may translocate to the nucleus for binding to Max and subsequently to the DNA. Genes targeted by the Myc/Max complex are mainly involved in cell cycle progression including apoptosis and cellular metabolism. A cleavage product of the Myc protein lacking the nuclear localization signal site is functional in the cytoplasm and has an impact on cellular differentiation as well as on cytoplasmic organization. Alterations in Myc protein distribution within a cell also seem to be an important regulative element of the Myc/Max network [84]. Recent analyses additionally suggest Myc to have a Max-independent function that activates RNA polymerase IIIdependent transcription [85] making the Myc/Max network even more complex. The genes regulated by the Myc/Max network are manifold (e.g. p53) constituting about 15% of all human genes [86]. Myc expression itself is regulated by mitogenic factors triggered by cellular growth signals and also via posttranscriptional phosphorylation in the transactivation domain [87]. Regulation of gene expression by Myc can be carried out via transcriptional activation or repression and is often associated with the recruitment of histone acetyltransferases by the nuclear cofactor TRRAP (transformation/transcription domain-associated protein [88]). Deregulation of myc by means of insertional mutagenesis, chromosomal translocation and gene amplification [74] are involved in tumor formation.

Homologues of Myc and its binding partner Max have been found in all metazoan lineages and in two unicellular relatives: the choanoflagellate *Monosiga brevicollis* and the ophistokont *Capsaspora ovczarzaki* [88]. The Myc protein of *Monosiga* furthermore was proven to interact with Max for binding to E-box sequences [89, 90]. This finding indicates the origin of the Myc/Max network to predate the evolution of Metazoa. Research on this important network in the simplest animal, *Trichoplax adhaerens*, will help to further elucidate the function of these transcriptional factors in course of evolution and their role in cell cycle regulation. Experiments conducted in course of this thesis underline the evolutionary preservation of the network and also highlight Placozoa as a model system for applied cancer research.

Placozoa and allorecognition

The skill to discriminate between 'self' tissue and tissues of genetically different individuals of the same species is a capability termed allorecognition. With the evolution of the

immune system, organisms became capable of differentiating between distant relationship and close kinship [91].

Figure 1.4: Modes of allorecognition in *Hydractinia symbiolongicarpus*.

Drawing represents allorecognition loci on chromosomes, colors indicate analogy of alleles (modified after [91]).

- (A) Rejection occurs when no haplotype is shared by the colonies.
- (B), (C) Colonies fuse if they share at least one haplotype.
- (D) If one allele is shared colonies undergo transitory fusion.

Allorecognition is a mechanism displayed by all major invertebrate taxa like sponges, cnidarians or tunicates [92-94]. In sessile marine invertebrates the mechanism is important for the maintenance of colonial integrity, as different genetic lineages compete for limited habitats. Representative for this mechanism is the hydroid *Hydractinia symbiolongicarpus* that inhabits shells carried by hermit crabs [95]. While colonies of the same genetic lineage fuse, unrelated colonies actively 'fight' about space. Competing colonies thereby discharge nematocytes to the contact zone with intend to destroy the foreign tissue. Transitory fusion occurs between closely related colonies and is characterized by the occurrence of a necrotic band with a subsequent rejection of tissue approximately 12-24 hours after initial fusion. The mechanism controlling the identification of own and foreign tissue in *Hydractinia* is determined in two gene loci, allorecognition 1 (*alr1*) and *alr2* that encode a putative transmembrane protein [96]. Individuals sharing at least one haplotype of these loci undergo fusion whereas the lack of a mutual haplotype results in rejection of tissue. Only individuals with an identical allele perform transitory fusion (fig. 1.4 and references therein).

In 1984 Schwartz first demonstrated regeneration ability in *Trichoplax* by grafting of tissue between two animals [23]. In this thesis, grafting experiments between different placozoan lineages have been performed. Fusion, rejection and transitory fusion has been observed in course of investigations suggesting the presence of a primitive allorecognition system also within the Placozoa. These experiments could qualify *Trichoplax* as a model for the evolution of the allorecognition machinery and could furthermore help to unravel the taxonomic relationship within the Placozoa.

Placozoa as a model organism

With the evolution of a metazoan life form from a unicellular ancestor came the requirement to control the progression of cell division and cell death (apoptosis) within a tissue [97, 98]. Imbalances in the regulation of these processes inevitably lead to a reduced fitness of tissue and may even result in serious disorders such as cancer [99]. The molecular mechanisms controlling cell cycle events in Metazoa are very complex and even though they are permanent focus of extensive state-of-the-art research, there are still many crucial questions. Besides well-known invertebrate model organisms such as *Drosophila melanogaster* and Caenorhabditis elegans [100, 101], non-Bilaterians like Poriferans, Cnidaria and Ctenophores are needed to unravel the emergence of developmental or physiological traits as well as the underlying complex molecular processes for cell cycle control [102]. Due to its simple anatomy the fresh water polyp Hydra (Cnidaria) for example turned out to be a good model for answering a broad range of questions concerning the evolution of Metazoa [103]. Placozoa are presumably a even better model system because of their basal phylogenetic position and their extreme simple morphology [17]. Given the ancestral features of the placozoan genome it is beyond doubt that this phylum will soon become an important model system not only for evolutionary biology but also for applied research.

The aim of this thesis is to highlight the applicability of placozoans as a model system to address questions concerning cell cycle control, regeneration and the evolution of the immune system. *Trichoplax* fulfills all of the demands for classical model systems. The way of cultivating Placozoa is straightforward, they have a short generation time and the genome has been sequenced [17, 18, 24]. Additionally, the flat and translucent morphology of Placozoa make them resemble a 'crawling cell culture' permitting the application of standard methods to whole organisms. *Trichoplax* has a remarkable ability for regeneration. After cutting an individual the wound closes within approximately 20 minutes and even grafting of tissue between two individuals is possible [23]. This characteristic opens diverse prospects for experimental designs. Looking at the genome it is conspicuous that despite its simple morphology many genes controlling complex mechanisms in higher animals are conserved within the Placozoa [18, 22]. To unravel the function of the genetic equipment necessary to control essential functions such as the regulation of cell cycle and cellular homeostasis, differentiation or regeneration in this simple animal, will provide unique insights into the evolution of multicellularity and will help to better understand the origin of diseases caused by deregulations of these processes as it is the case in cancer.

References

- 1. Schulze, F.E. (1883). Trichoplax adhaerens, nov. gen., nov. spec. Zool Anz 6, 92-97.
- Schulze, F.E. (1892). Über Trichoplax adhaerens. In Abhandlungen der Königlichen Preuss. Akademie der Wissenschaften zu Berlin. (Berlin: Verlag der königlichen Akademie der Wissenschaften), pp. 1-23.
- Krumbach, T. (1907). Trichoplax, die umgewandelte Planula einer Hydramedusae. Zool Anz 31, 450-454.
- Schubotz, H. (1912). Ist Trichoplax die umgewandelte Planula einer Hydromeduse? Zool Anz 39, 582-585.
- Schulze, F.E. (1914). Einige kritische Bemerkungen zu neuerern Mitteilungen über Trichoplax. Zoolog. Anz. 64, 33-35.
- 6. Bütschli, O. (1884). Bemerkungen zur Gastraea-Theorie. Morph Jahrb 9, 415-427.
- Grell, K.G. (1971). Trichoplax adhaerens F.E. Schulze und die Entstehung der Metazoan. Naturw. Rdsch. 24, 160-161.
- Grell, K.G. (1971). Embryonalentwicklung bei Trichoplax adhaerens F. E. Schulze. Naturwiss 58, 570.
- Syed, T., and Schierwater, B. (2002). Trichoplax adhaerens: discovered as a missing link, forgotten as a hydrozoan, re-discovered as a key to metazoan evolution. Vie Milieu 52, 177-187.
- Voigt, O., Collins, A.G., Pearse, V.B., Pearse, J.S., Ender, A., Hadrys, H., and Schierwater, B. (2004). *Placozoa - no longer a phylum of one*. Curr Biol 14, R944-945.
- Signorovitch, A.Y., Dellaporta, S.L., and Buss, L.W. (2006). Caribbean placozoan phylogeography. Biol Bull 211, 149-156.
- Pearse, V.B., and Voigt, O. (2007). Field biology of placozoans (Trichoplax): distribution, diversity, biotic interactions. In Symposium on Key Transitions in Animal Evolution. (Phoenix, AZ), pp. 677-692.
- 13. Eitel, M., and Schierwater, B. (2010). The phylogeography of the Placozoa suggests a taxon-rich phylum in tropical and subtropical waters. Mol Ecol 19, 2315-2327.
- Guidi, L., Eitel, M., Cesarini, E., Schierwater, B., and Balsamo, M. (2011). Ultrastructural analyses support different morphological lineages in the phylum Placozoa Grell, 1971. J Morphol 272, 371-378.

- Eitel, M., Osigus, H.-J., DeSalle, R., and Schierwater, B. (2013). Global diversity of the Placozoa. PLoS One, 8(4): e57131. doi:10.1371/journal.pone.0057131.
- Schierwater, B., de Jong, D., and Desalle, R. (2009). Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol 41, 370-379.
- Schierwater, B., Eitel, M., Jakob, W., Osigus, H.J., Hadrys, H., Dellaporta, S.L., Kolokotronis, S.O., and DeSalle, R. (2009). Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern 'Urmetazoon' Hypothesis. Plos Biology 7, 36-44.
- Srivastava, M., Begovic, E., Chapman, J., Putnam, N.H., Hellsten, U., Kawashima, T., Kuo, A., Mitros, T., Salamov, A., Carpenter, M.L., et al. (2008). *The Trichoplax* genome and the nature of placozoans. Nature 454, 955-960.
- de Jong, D., Eitel, M., Jakob, W., Osigus, H.J., Hadrys, H., DeSalle, R., and Schierwater, B. (2009). *Multiple Dicer Genes in the Early-Diverging Metazoa*. Molecular Biology and Evolution 26, 1333-1340.
- Loenarz, C., Coleman, M.L., Boleininger, A., Schierwater, B., Holland, P.W., Ratcliffe, P.J., and Schofield, C.J. (2011). The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep 12, 63-70.
- 21. Vij, S., Rink, J.C., Ho, H.K., Babu, D., Eitel, M., Narasimhan, V., Tiku, V., Westbrook, J., Schierwater, B., and Roy, S. (2012). Evolutionarily ancient association of the FoxJ1 transcription factor with the motile ciliogenic program. PLoS Genet 8, e1003019.
- Ringrose, J.H., van den Toorn, H.W., Eitel, M., Post, H., Neerincx, P., Schierwater, B., Maarten Altelaar, A.F., and Heck, A.J. (2013). Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nat Commun 4, 1408.
- Schwartz, V. (1984). The radial polar pattern of differentiation in Trichoplax adhaerens F.E. Schulze (Placozoa). Z. Naturforsch. 39c, 818-832.
- 24. Schierwater, B. (2005). *My favorite animal, Trichoplax adhaerens.* Bioessays 27, 1294-1302.
- 25. Grell, K.G. (1981). Trichoplax adhaerens and the origin of Metazoa. In Origine dei Grandi Phyla dei Metazoi, Convegno Intern. pp. 107-121.

- 26. Miller, D.J., and Ball, E.E. (2005). Animal evolution: the enigmatic phylum placozoa revisited. Curr Biol 15, R26-28.
- Schierwater, B., Desalle, R., Jakob, W., Schroth, W., Hadrys, H., and Dellaporta, S. (2006). Total evidence analysis identifies Placozoa as basal to extant Metazoa. Integrative and Comparative Biology 46, E126-E126.
- 28. Schierwater, B., and Desalle, R. (2007). Can we ever identify the Urmetazoan? Integr Comp Biol 47, 670-676.
- 29. Osigus, H.J., Eitel, M., and Schierwater, B. (2013). *Chasing the urmetazoon: Striking a blow for quality data?* Mol Phylogenet Evol 66, 551-557.
- Grell, K.G. (1972). Eibildung und Furchung von Trichoplax adhaerens F.E.Schulze (Placozoa). Z Morph Tiere 73, 297-314.
- 31. Jackson, A.M., and Buss, L.W. (2009). Shiny spheres of placozoans (Trichoplax) function in anti-predator defense. Invertebrate Biology 128, 205-212.
- Kuhl, W., and Kuhl, G. (1963). Bewegungsphysiologische Untersuchungen an Trichoplax adhaerens F. E. Schulze. Zool. Anz. Suppl. 26, 460-469.
- Kuhl, W., and Kuhl, G. (1966). Untersuchungen A⁴/₄ber das Bewegungsverhalten von Trichoplax adhaerens F.E.Schulze. Zeitschr A-kolog u Morph Tiere 56, 417-435.
- Kuhl, W. (1971). Bewegungsverhalten von Trichoplax adhaerens (Motor Behaviour of Trichoplax adhaerens). W. Kuhl, ed. (Göttingen: IWF Wissen und Medien gGmbH (http://www.iwf.de), Nonnenstieg 72, D-37075 Göttingen).
- 35. Ueda, T., Koya, S., and Maruyama, Y.K. (1999). Dynamic patterns in the locomotion and feeding behaviors by the placozoan Trichoplax adhaerens. Biosystems 54, 65-70.
- Grell, K.G., and Ruthmann, A. (1991). *Placozoa*. In Microscopic Anatomy of Invertebrates, Placozoa, Porifera, Cnidaria, and Ctenophora, Volume Vol. 2, F.W. Harrison, Westfall, J.A., ed. (New York: Wiley-Liss), pp. 13-28.
- 37. Grell, K.G., and Benwitz, G. (1981). Ergänzende Untersuchungen zur Ultrastruktur von Trichoplax adhaerens F.E. Schulze (Placozoa). Zoomorphology 98, 47-67.
- Buchholz, K., and Ruthmann, A. (1995). The mesenchyme-like layer of the fibre cells of Trichoplax adhaerens: A syncytium. Z Naturforsch [C] 50c, 282-285.
- Behrendt, G., and Ruthmann, A. (1986). The cytoskeleton of the fiber cells of Trichoplax adhaerens (Placozoa). Zoomorphology 106, 123-130.

- 40. Thiemann, M., and Ruthmann, A. (1989). *Microfilaments and microtubules in isolated fiber cells of Trichoplax adhaerens (Placozoa)*. Zoomorphology 109, 89-96.
- Jakob, W., Sagasser, S., Dellaporta, S., Holland, P., Kuhn, K., and Schierwater, B. (2004). The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 214, 170-175.
- von der Chevallerie, K., Eitel, M., and Schierwater, B. (2010). Focus on an unexpected discovery in Roscoff - a warm water species of the phylum Placozoa. Cah Biol Mar 212, 21.
- 43. Thiemann, M., and Ruthmann, A. (1991). Alternative modes of sexual reproduction in Trichoplax adhaerens (Placozoa). Zoomorphology 110, 165-174.
- Thiemann, M., and Ruthmann, A. (1988). Trichoplax adhaerens Schulze, F. E. (Placozoa) - The formation of swarmers. Z. Naturforsch. 43, 955-957.
- Grell, K.G. (1973). Trichoplax adhaerens (Placozoa). Eizellen und Furchungsstadien. In Encyclopaedla Cinematographica. (Inst. wiss. Film, Göttingen, Film E 1920).
- 46. Grell, K.G., and Benwitz, G. (1974). Elektronenmikroskopische Beobachtungen über das Wachstum der Eizelle und die Bildung der 'Befruchtungsmembran' von Trichoplax adhaerens F.E.Schulze (Placozoa). Z Morph Tiere 79, 295-310.
- 47. Eitel, M., Guidi, L., Hadrys, H., Balsamo, M., and Schierwater, B. (2011). New insights into placozoan sexual reproduction and development. PLoS One 6, e19639.
- 48. Signorovitch, A.Y., Dellaporta, S.L., and Buss, L.W. (2005). *Molecular signatures for sex in the Placozoa*. Proc Natl Acad Sci USA 102, 15518-15522.
- 49. Bergmann, T. (2007). Experimentelle Studien zur Expression und Funktion von Opsin-Genen in Trichoplax adhaerens., Master thesis
- 50. von der Chevallerie, K. (2008). First experimental approaches to vision, proliferation and apoptosis in Trichoplax adhaerens., Master thesis
- 51. Cramm, M. (2009). Experimentelle und genetische Studien zur Phototaxis in Trichoplax adhaerens., Master thesis
- 52. Sagasser, S. (2011). On development and evolution of Trichoplax adhaerens (Placozoa), PhD thesis
- 53. Hadrys, T., DeSalle, R., Sagasser, S., Fischer, N., and Schierwater, B. (2005). The Trichoplax PaxB gene: a putative Proto-PaxA/B/C gene predating the origin of nerve and sensory cells. Mol Biol Evol 22, 1569-1578.

- 54. Reinke, P. (2011). Verhaltensgenetische Studien an dem Placozoon Trichoplax adhaerens., Bachelor thesis
- 55. Schierwater, B., Kolokotronis, S.O., Eitel, M., and DeSalle, R. (2009). The Diploblast-Bilateria Sister hypothesis: parallel revolution of a nervous systems may have been a simple step. Commun Integr Biol 2, 403-405.
- 56. Joerger, A.C., and Fersht, A.R. (2007). Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26, 2226-2242.
- 57. DeLeo, A.B., Jay, G., Appella, E., Dubois, G.C., Law, L.W., and Old, L.J. (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 76, 2420-2424.
- 58. Lane, D.P., and Crawford, L.V. (1979). *T antigen is bound to a host protein in* SV40-transformed cells. Nature 278, 261-263.
- Linzer, D.I., and Levine, A.J. (1979). Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43-52.
- 60. Lane, D.P. (1992). Cancer. p53, guardian of the genome. Nature 358, 15-16.
- 61. Vousden, K.H., and Prives, C. (2009). Blinded by the Light: The Growing Complexity of p53. Cell 137, 413-431.
- Levine, A.J., and Oren, M. (2009). The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9, 749-758.
- 63. Meek, D.W. (2009). Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9, 714-723.
- 64. Momand, J., Zambetti, G.P., Olson, D.C., George, D., and Levine, A.J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237-1245.
- 65. Manfredi, J.J. (2010). The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24, 1580-1589.
- Macleod, K.F., Sherry, N., Hannon, G., Beach, D., Tokino, T., Kinzler, K., Vogelstein,
 B., and Jacks, T. (1995). p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev 9, 935-944.
- Nakano, K., and Vousden, K.H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7, 683-694.

- Suzuki, H.I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., and Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature 460, 529-533.
- Moll, U.M., Wolff, S., Speidel, D., and Deppert, W. (2005). Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17, 631-636.
- 70. Ahn, J., Poyurovsky, M.V., Baptiste, N., Beckerman, R., Cain, C., Mattia, M., McKinney, K., Zhou, J., Zupnick, A., Gottifredi, V., et al. (2009). Dissection of the sequence-specific DNA binding and exonuclease activities reveals a superactive yet apoptotically impaired mutant p53 protein. Cell Cycle 8, 1603-1615.
- Lane, D.P., Cheok, C.F., Brown, C., Madhumalar, A., Ghadessy, F.J., and Verma, C. (2010). Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle 9, 540-547.
- Lu, W., Chen, L., Peng, Y., and Chen, J. (2001). Activation of p53 by roscovitinemediated suppression of MDM2 expression. Oncogene 20, 3206-3216.
- 73. Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844-848.
- Meyer, N., and Penn, L.Z. (2008). Reflecting on 25 years with MYC. Nat Rev Cancer 8, 976-990.
- 75. Sheiness, D., Fanshier, L., and Bishop, J.M. (1978). Identification of nucleotide sequences which may encode the oncogenic capacity of avian retrovirus MC29. J Virol 28, 600-610.
- Nilsson, J.A., and Cleveland, J.L. (2003). Myc pathways provoking cell suicide and cancer. Oncogene 22, 9007-9021.
- 77. Blackwood, E.M., and Eisenman, R.N. (1991). Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211-1217.
- Grandori, C., and Eisenman, R.N. (1997). Myc target genes. Trends Biochem Sci 22, 177-181.
- Blackwell, T.K., Kretzner, L., Blackwood, E.M., Eisenman, R.N., and Weintraub, H. (1990). Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149-1151.
- Nair, S.K., and Burley, S.K. (2003). X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193-205.

- Fieber, W., Schneider, M.L., Matt, T., Krautler, B., Konrat, R., and Bister, K. (2001). Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. J Mol Biol 307, 1395-1410.
- Pelengaris, S., Khan, M., and Evan, G. (2002). c-MYC: more than just a matter of life and death. Nat Rev Cancer 2, 764-776.
- 83. Stone, J., de Lange, T., Ramsay, G., Jakobovits, E., Bishop, J.M., Varmus, H., and Lee, W. (1987). Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 7, 1697-1709.
- Craig, R.W., Buchan, H.L., Civin, C.I., and Kastan, M.B. (1993). Altered cytoplasmic/nuclear distribution of the c-myc protein in differentiating ML-1 human myeloid leukemia cells. Cell Growth Differ 4, 349-357.
- Gallant, P., and Steiger, D. (2009). Myc's secret life without Max. Cell Cycle 8, 3848-3853.
- Dang, C.V., O'Donnell, K.A., Zeller, K.I., Nguyen, T., Osthus, R.C., and Li, F. (2006). The c-Myc target gene network. Semin Cancer Biol 16, 253-264.
- Lutterbach, B., and Hann, S.R. (1994). Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol Cell Biol 14, 5510-5522.
- 88. Bouchard, C., Dittrich, O., Kiermaier, A., Dohmann, K., Menkel, A., Eilers, M., and Luscher, B. (2001). Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev 15, 2042-2047.
- Sebe-Pedros, A., de Mendoza, A., Lang, B.F., Degnan, B.M., and Ruiz-Trillo, I. (2011). Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28, 1241-1254.
- 90. King, N., Westbrook, M.J., Young, S.L., Kuo, A., Abedin, M., Chapman, J., Fairclough, S., Hellsten, U., Isogai, Y., Letunic, I., et al. (2008). The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783-788.
- Sherman, L.A., and Chattopadhyay, S. (1993). The molecular basis of allorecognition. Annu Rev Immunol 11, 385-402.

- 92. Kuznetsov, S.G., and Bosch, T.C. (2003). Self/nonself recognition in Cnidaria: contact to allogeneic tissue does not result in elimination of nonself cells in Hydra vulgaris. Zoology (Jena) 106, 109-116.
- Ben-Shlomo, R. (2008). The molecular basis of allorecognition in ascidians. Bioessays 30, 1048-1051.
- 94. Gauthier, M., and Degnan, B.M. (2008). Partitioning of genetically distinct cell populations in chimeric juveniles of the sponge Amphimedon queenslandica. Dev Comp Immunol 32, 1270-1280.
- 95. Rosengarten, R.D., and Nicotra, M.L. (2011). Model systems of invertebrate allorecognition. Curr Biol 21, R82-92.
- 96. Lakkis, F.G., Dellaporta, S.L., and Buss, L.W. (2008). Allorecognition and chimerism in an invertebrate model organism. Organogenesis 4, 236-240.
- 97. Ameisen, J.C. (2002). On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 9, 367-393.
- 98. Grosberg, R.K., and Strathmann, R.R. (2007). The Evolution of Multicellularity: A Minor Major Transition? Annu. Rev. Ecol. Evol. Syst. 38, 621-654.
- Kastan, M.B., and Bartek, J. (2004). Cell-cycle checkpoints and cancer. Nature 432, 316-323.
- 100. Beckingham, K.M., Armstrong, J.D., Texada, M.J., Munjaal, R., and Baker, D.A. (2005). Drosophila melanogaster-the model organism of choice for the complex biology of multi-cellular organisms. Gravit Space Biol Bull 18, 17-29.
- 101. Brenner, S. (2009). In the beginning was the worm. Genetics 182, 413-415.
- 102. Collins, A.G., Cartwright, P., McFadden, C.S., and Schierwater, B. (2005). Phylogenetic context and Basal metazoan model systems. Integr Comp Biol 45, 585-594.
- 103. Galliot, B. (2012). Hydra, a fruitful model system for 270 years. Int J Dev Biol 56, 411-423.

Chapter 2

2 Experimental Studies

2.1 Inhibitors of the p53-Mdm2 interaction increase apoptosis and produce abnormal phenotypes in the placozoon *Trichoplax adhaerens* (F.E. Schulze)

von der Chevallerie K.¹ Rolfes S.¹ Schierwater B. ^{1,2}

¹ Division of Ecology and Evolution, Stiftung Tierärztliche Hochschule Hannover, Germany
² Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America

This is the authors version of a manuscript submitted to Development Genes and Evolution.

Abstract

Recent identification of genes homologous to human p53 and Mdm2 in the basal phylum Placozoa raised the question whether the network overtakes the same functions in the most primitive metazoan organism as it does in higher animals. We here describe inhibition experiments on p53/Mdm2 interaction in *Trichoplax adhaerens* by applying the inhibitors nutlin-3 and roscovitine. Both inhibitors had a strong impact on the animals' health by significantly increasing apoptotic events. Treatment with roscovitine also decreased cell proliferation, which likely is reducible to its function as cyclin-dependent kinase (CDK) inhibitor. Phenotypic abnormalities have been observed during long-term application of both inhibitors and either treatment is highly lethal in *Trichoplax adhaerens*. The findings of this study suggests a conserved role of the p53/Mdm2 network for apoptosis since the origin of the Metazoa and advocate the deployment of Placozoa as a model for p53, apoptosis and possibly cancer research.

Keywords: Placozoa, p53, Mdm2, nutlin-3, roscovitine

Introduction

Trichoplax adhaerens, the only described species of the basal phylum Placozoa offers peculiar opportunities to investigate complex mechanisms such as the control of apoptosis at the base of the metazoan tree of life (cf. [1-3]). Sequencing of the *Trichoplax* genome in 2008 revealed a surprisingly high diversity of protein coding genes, which look like an apparent discrepancy to its extremely simple bauplan [4-7].

The tumor suppressor p53 and its ubiquitin ligase Mdm2 have lately been shown to be conserved from Placozoa to human [8]. In higher animals p53 has been shown to have a protective function that ensures the integrity of a cell. In case of cellular stress or DNA damage, the protein is able to induce the transcription of target genes important for repair mechanisms or to provoke entrance into the apoptotic pathway (for review cf. [9, 10]). The negative regulator of p53, Mdm2, is antagonizing p53 in case of normal conditions [11]. In invertebrates, protein homologues to Mdm2 have yet been identified for seven species only. This suggests the early evolution of p53 regulation on the one hand but also supports the hypothesis of an ancient Mdm2-independent p53 modulation [12, 13]. P53 is indispensable for the retention of a tissues fitness conspicuously coherent regarding the fact that 50% of all known human tumors are a result of p53 deregulation [14]. The p53/Mdm2 interplay hence is an area of intense research. It is particularly extraordinary that Mdm2 is missing in well-known invertebrate model systems like *Caenorhabditis* or *Drosophila* [15, 16]. This information pleads for a derived function of the network in these organisms, which likely evolved an Mdm2-independend way of p53 regulation. However, the lack of Mdm2 in *Caenorhabditis* and *Drosophila* makes it questionable whether these species can be appropriate models for p53 research [12, 17].

Knowledge on the presence of p53 and Mdm2 in Placozoa has so far been based on sequence analyses only [8]. We here describe the first experimental approaches to unravel functions of p53/Mdm2 interaction in the primitive animal *Trichoplax adhaerens*. The application of two inhibitors, nutlin-3 and roscovitine, was used to find out whether these proteins overtake functions in Placozoa that are analogous to the ones known in higher animals. Nutlin-3 is a cis-imidazoline that chemically obstructs the p53/Mdm2 interface and thus their interaction [18]. The purine roscovitine, commonly known as cyclin-dependent kinase (CDK) inhibitor, has also been shown to have an effect on Mdm2 expression on mRNA and protein level [19]. Both inhibitors cause imbalances in the p53/Mdm2 network by accumulation of p53 [20]. Besides observations of treated *Trichoplx* individuals via light microscopy, cell proliferation and apoptosis during treatment was monitored by means of Bromodesoxyuridine- (BrdU) incorporation and terminal deoxynucleotidyl transferase-mediated deoxyurdine triphosphate nick end labeling (TUNEL) essays. The results of our experiments reinforce the assumption that the p53/Mdm2 interplay has a fundamental impact on the progression of programmed cell death in *Trichoplax adhaerens*.

Material and Methods

Animal material

Trichoplax adhaerens (Haplotype 1, the "Grell" strain) was cultured as previously described in [21]. The animals were fed with *Pyrenomonas helgolandii* and *Chlorella salina* ad libitum. Experiments were performed with individuals of different sizes that were preliminary checked for not showing phenotypic irregularities.

Inhibitor treatment

The inhibitors were dissolved in dimethyl sulfoxide (DMSO) and were diluted in artificial seawater (ASW, salinity 35 ‰) up to $10 \,\mu$ M (nutlin-3, Calbiochem) and $20 \,\mu$ M (roscovitine, Calbiochem). Control experiments were performed with 0.1 % DMSO in ASW and ASW only. Animals were kept in one well glass chamber slides (one well cell culture chamber, Sarstedt, 2 ml volume) for daily counting and microscopic observations. The ASW containing the appropriate concentration of inhibitor and food solution respectively was changed every 48 hours (h) to avoid osmotic stress due to evaporation of water. Four individual experiments have been performed.

For subsequent BrdU or TUNEL staining as described below, the previous application of inhibitors was done in glass culture dishes (50 ml volume) in the same concentrations as used before. In these experiments an ASW control was not necessary since physiological data had already revealed that DMSO application has no impact on the animals' fitness (unpublished data).

The BrdU essay

For the detection of cell proliferation after inhibitor treatment animals were treated each with roscovitine $(20 \,\mu\text{M})$, nutlin-3 $(10 \,\mu\text{M})$ or DMSO $(0.1 \,\% \text{ control})$ for 72 hours. Individuals were then fed with BrdU (Sigma, 50 ng/ml) for 4 h. After fixation in Lavdowsky fixative (Ethanol/TBS/Acetic Acid/Formaldehyde: 11/11/1/2) for one hour at room temperature the samples were permeabilized in TBS (pH 7.5) containing 0.5% Tween-20 (TBST) for 12 h at 4 °C. The tissue was further permeabilized by proteinase K digestion (4 ng/ml) in TBST for 5 min. After stopping the reaction with glycine (1 mg/ml) two more washes with TBST were performed. Animals were then rinsed in 2 N HCL (in TBST) for 30 min and after three further washing steps in TBST, the tissue was quenched with 3% H₂O₂. Samples were washed afterwards with TBST two more times and then blocked in 0.1%Bovine Serum Albumin (BSA, Sigma) in TBST for 30 min. For detection of incorporated BrdU, a horseradish peroxidase labeled polyclonal sheep BrdU antibody (Abcam) was diluted 1:100 in TBST+BSA (0.1%) and samples were incubated three hours at room temperature. The detection of the antibody was performed using the Thyramide Signal Amplification Kit #23 (TSA B, Invitrogen) following the manufacturers protocol. Nuclei were subsequently counterstained with 1x 4',6-diamino-2-phenylindole (DAPI) in TBST for 10 min and after two terminal washes in TBS samples were mounted with Vectashield (Vector Labs) for microscopy.

The TUNEL essay

Animals were treated with inhibitors, fixed and permeabilized as described above. Apoptotic cells were then labeled using the ApopTag ® red *in situ* Kit (Chemicon International) following the manufacturers instructions. Subsequently nuclei were counterstained with 1x DAPI in TBST for 10 min, as described for BrdU staining, and samples were mounted on slides with Vectashield.

Microscopy

All microscopic pictures were made with a Zeiss Axiovert 200M connected to a digital camera (Zeiss, Axio Cam MRn). Zeiss Filter sets used for fluorescence pictures were 02 (DAPI) and 25 (Alexa Fluor 546). Pictures were modified using the Adobe Photoshop Elements 8.0 program to increase contrast only. Animal sizes and amount of proliferative or respectively apoptotic cells has been estimated utilizing the ImageJ software version 1.44. The proportions of proliferating (BrdU) and dying cells (TUNEL) have been estimated by counting the DAPI signals and calculate the relation to signal from BrdU and TUNEL.

Statistics

T-test analyses were conducted in Excel ® (Microsoft Office ® 2007) for all experiments. To compare animal sizes after inhibitor treatment, both controls (ASW and 0.1% DMSO) were compared with the experiments (nutlin-3 or roscovitine) independently and mutually. For analyses of apoptotic, respectively proliferating cells, values of experiments were compared with the DMSO control only as no ASW control was performed.

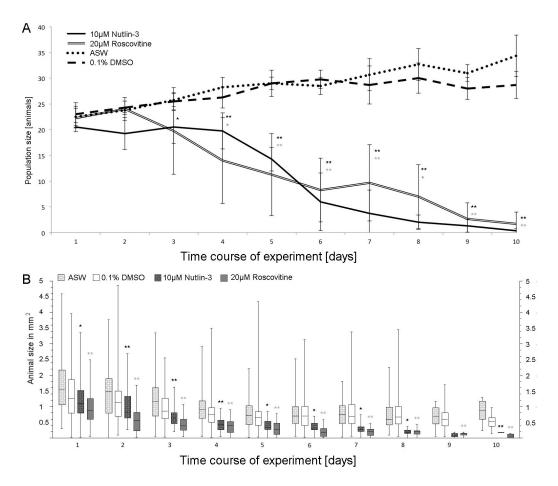


Figure 2.1.1: Time course of population size and animal sizes after inhibitor treatment.

The application of $10 \,\mu$ M nutlin-3 and $20 \,\mu$ M roscovitine was lethal within 11 days of treatment. All animals treated with the inhibitors were dead at day 11 (here not indicated).

(A) The number of animals decreases over time and significantly differs from the controls (ASW and 0.1% DMSO) after 3 days of nutlin-3 treatment and four days after initial roscovitine application.

(B) An overall reduction of size was observed directly after initial treatment for both inhibitors. Whiskers mark minimum and maximum body size, the box represents the upper and the lower quartile and the horizontal line indicates the median. Asterisks mark significances for nutlin-3 (black) and roscovitine (grey) treatment. p < 0.05 = *, p < 0.01 = ** and p < 0.001 = ***. For raw data and statistics see table A.1.1 and A.1.2.

37

Results

Both inhibitors have a strong impact on the animals' physiology.

Long-term application of the inhibitors led to severe stress for the animals, which was observed after application of nutlin-3 as well as roscovitine.

The overall number of $10 \,\mu$ M nutlin-3 treated animals was significantly reduced after 3 days (p < 0.05) compared to DMSO and ASW controls. The 20 μ M roscovitine treated animal population significantly decreased even after 4 days (p < 0.05). Treatment was lethal to all individuals latest after 11 days (cf. fig. 2.1.1 A and 1B). Death of treated individuals was generally preceded by decrease of size (fig. 2.1.1 B) whereas this was instantly significant the day after initial treatment (p < 0.05 for nutlin-3 treatment and p < 0.01 for roscovitine application; cf. fig. 2.1.1 B and fig. 2.1.2). The control experiments in ASW and 0.1 % DMSO did show a reduction in animal size but not in population size (fig. 2.1.1 A and B).

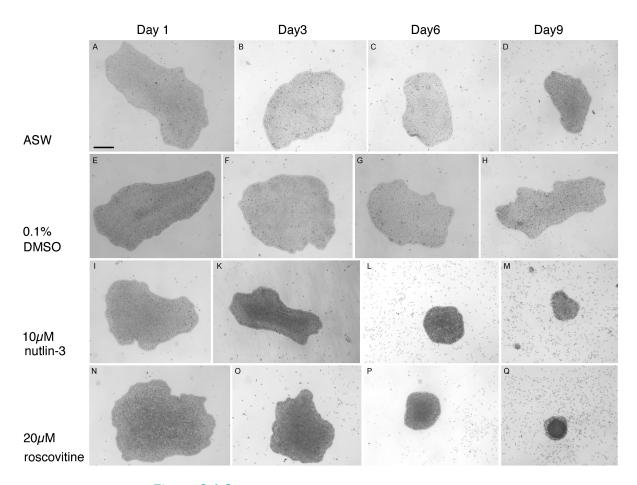


Figure 2.1.2: Phenotypic changes after inhibitor treatment.

Light microscopy of animals treated with 10 μ M nutlin-3 (I-M) and 20 μ M roscovitine (N-Q) as well as ASW only (A-D) and 0.1% DMSO (E-H). Day 1 (A,E,I,N), day 3 (B,F,K,O), day 6 (C,G,L,P) and day 9 (D,H,M,Q) after initial treatment. ASW and DMSO control animals do not show phenotypic conspicuities whereas nutlin-3 and roscovitine treatment was accompanied by a reduction of size. Size bar in A marks 100 μ m for all pictures.

A certain proportion (up to 21.4% in case of nutlin-3 and up to 19.6% for roscovitine) of individuals reproducibly showed distinct changes in body shape within the first six days of treatment (fig. 2.1.3). In three out of four experiments the expression of fringed hunches at the animals' margin happened after application of both inhibitors respectively and holes in the center of animals were observed in two of four experiments with roscovitine (fig. 2.1.3, A-C). Control experiments and lower concentrations of inhibitors did not result in any of such shape changes (data not shown).

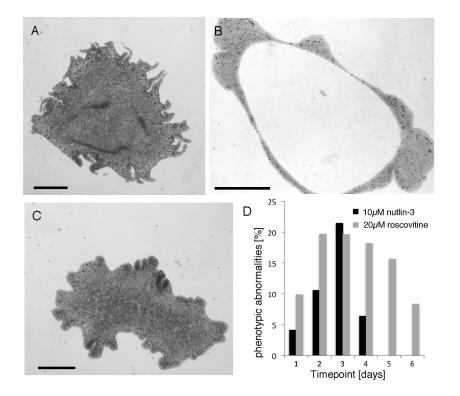


Figure 2.1.3: Phenotypic changes after inhibitor treatment.

Abnormalities were observed within the first six days of treatment with both inhibitors: fringed hunches and central holes after roscovitine treatment (A, day 2; and B, day3) and fringes only after nutlin-3 application (C, day 2). The overall percentages of animals with phenotypic changes (D) affirm an impact of inhibitor treatment on the animals' physical appearance. However, the observed effects turned out to be not significant (p > 0.05 for all experiments). The size bar marks 100 μ m (A and C) and 200 μ m (B). For raw data and statistics on phenotypes see table A.1.3.

Inhibitor treatment increases apoptosis and roscovitine has an impact on cell proliferation.

Besides the abnormal phenotypic effects resulting from inhibitor treatment, outcomes of BrdU and TUNEL staining indicate that treatment with nutlin-3 and roscovitine significantly affects programed cell death (fig. 2.1.4). After 72 h of nutlin-3 treatment, the average amount of apoptotic cells increased by 3.8% compared to the DMSO control. Roscovitine treatment for the same interval resulted in an increase of apoptotic cells by 1.9% compared to the control. Both values differ significantly from the DMSO control (p < 0.001). Nutlin-3 treatment in contrast did not significantly affect cell proliferation. Although average cell proliferation rate in each approach was equally reduced by ~10\% after application of the particular inhibitors, merely the decrease caused by roscovitine turned out to be significant (p < 0.05).

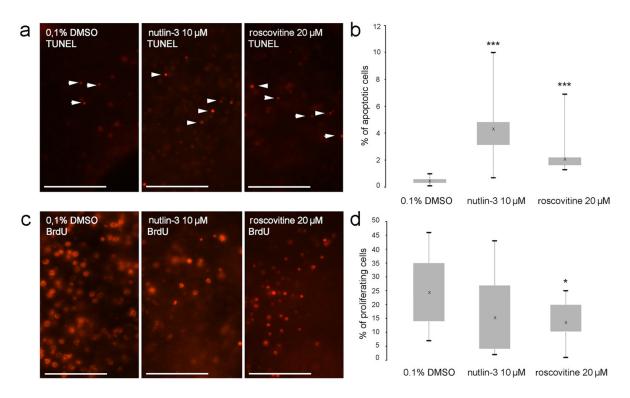


Figure 2.1.4: TUNEL- and BrdU staining 72h after inhibitor application.

Apoptotic- (TUNEL, upper panel) and proliferating cells (BrdU, lower panel). Apoptosis was highly significant increased after treatment with both, $10 \,\mu$ M nutlin-3 and $20 \,\mu$ M roscovitine (p < 0.001) respectively whereas proliferation was significantly decreased (p < 0.05) after treatment with $20 \,\mu$ M roscovitine only. Boxplot shows maximum and minimum (whiskers), upper and lower quartile (box) and the average (cross). Asterisks mark significant deviations from the DMSO control. The size bars marks $20 \,\mu$ m. For raw data and statistics see table A.1.4.

Discussion

Nutlin-3 and roscovitine have been known to induce the accumulation of p53 in a cell leading to p53-induced apoptosis (cf.[20]). Despite intense research efforts, many functions of the vertebrate p53/Mdm2 interaction and their targets still remain a closed book. Thus, knowledge of the network in different animal phyla, especially in lower metazoans, will provide crucial insights from disparate perspectives. So far known functions of p53 in invertebrates are related to the protection of genome integrity in early embryos as well as in germ-line cells but also to the regulation of stem-cell proliferation and development [15, 22-24].

Inhibition of p53/Mdm2 interaction triggers apoptosis and is lethal in Placozoa.

Nutlin-3 is known to bind to the human Mdm2 protein and thereby prevent its role as a p53 antagonist [18]. This may also be the case in Placozoa particularly since the *Trichoplax* Mdm2 protein has been shown to be able to bind to human p53 [17]. The observed increase of apoptosis in nutlin-3 treated animals could be caused by p53 accumulation in line with p53-induced programmed cell death. The usage of roscovitine in the laboratory mainly addresses questions concerning its function as a cyclin dependent kinase (CDK) inhibitor but its role in down regulation of Mdm2 has previously been demonstrated [19, 25]. Augmentation of apoptosis due to roscovitine treatment of *Trichoplax* individuals can be a result of both; CDK as well as Mdm2 inhibition.

Roscovitine treatment affects cell proliferation and both inhibitors produce abnormal phenotypes.

Nutlin-3 treatment of *Trichoplax* individuals did not affect cell cycle progression as monitored by the BrdU essay. This stays in contrast to the effect triggered by roscovitine application: Treatment with roscovitine caused a significant decrease in cell proliferation. This effect could be related to its function as CDK inhibitor since roscovitine treatment is known to cause cell cycle arrest (cf. [25]). The amount of cell proliferation events differs significantly between Trichoplax individuals, depending on the animals' developmental stage (means: swarmer, before/after fission) and size (unpublished data). This explains the high variance of BrdU signal (fig. 2.1.4) and leads us to the speculation that an average reduction of signal ($\sim 10\%$) may point to an effect on cell cycle progression induced by both inhibitor treatments. The reduction of body size during long-term inhibitor treatment further supports the assumption that cell proliferation is affected by both inhibitor treatments. ASW and DMSO control also showed a decrease in size that, however, likely is a consequence of suboptimal culturing conditions during the experiment and differs significantly from the treatments. Abnormal phenotypes have been observed after treatment with both inhibitors whereas the effect caused by roscovitine was stronger. The described phenotypes provide strong evidence for a disturbance of animals' development: The enlarged margin, respectively the central hole, suggests an imbalance in the control of central to marginal tissue growth ratio which usually is tightly regulated in placozoans [26]. It may be the case that the inhibitor treatment also has an influence on stem cell proliferation that was not detectable in our experiments, as proliferation of epithelial cells is frequent and possibly masks signal from cells with a lower proliferation rate. Altered stem cell proliferation as a consequence of inhibitor treatment could explain the enlargement of the animals' margin, since placozoan stem cells are known to be located in the area close to the margin and control the animals' growth and division rate [27].

Conclusion

The overall results of this study provide evidence for a p53/Mdm2 network in Placozoa that has similar functions to the ones found in higher animals and which is also involved in developmental processes. Future studies on p53 and Mdm2 in Placozoa will help to understand this network from a very basal point of view and thus will help to encourage research also on the evolution of human malignancies.

Acknowledgements

K. vdC. was funded by an Evangelische Studienwerk Villigst e.V. PhD fellowship, an "Otto Bütschli" scholarship from the Tierärztliche Hochschule Hannover and a travel grant from Boehringer Ingelheim Fonds. We are grateful to Dr. Ismail M. Hanif for providing the inhibitors and for coming up with the initial idea for the experiments.

References

- Schierwater, B., de Jong, D., and Desalle, R. (2009). Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol 41, 370-379.
- Schierwater, B., Eitel, M., Jakob, W., Osigus, H.J., Hadrys, H., Dellaporta, S.L., Kolokotronis, S.O., and DeSalle, R. (2009). Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern "Urmetazoon" Hypothesis. Plos Biology 7, 36-44.
- 3. Osigus, H.J., Eitel, M., and Schierwater, B. (2013). *Chasing the urmetazoon: Striking a blow for quality data?* Mol Phylogenet Evol 66, 551-557.
- Srivastava, M., Begovic, E., Chapman, J., Putnam, N.H., Hellsten, U., Kawashima, T., Kuo, A., Mitros, T., Salamov, A., Carpenter, M.L., et al. (2008). *The Trichoplax* genome and the nature of placozoans. Nature 454, 955-960.
- Ringrose, J.H., van den Toorn, H.W., Eitel, M., Post, H., Neerincx, P., Schierwater, B., Maarten Altelaar, A.F., and Heck, A.J. (2013). Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nat Commun 4, 1408.
- de Jong, D., Eitel, M., Jakob, W., Osigus, H.J., Hadrys, H., DeSalle, R., and Schierwater, B. (2009). Multiple Dicer Genes in the Early-Diverging Metazoa. Molecular Biology and Evolution 26, 1333-1340.
- Eitel, M., Osigus, H.-J., DeSalle, R., and Schierwater, B. (2013). Global diversity of the Placozoa. PLoS One, accepted.
- Lane, D.P., Cheok, C.F., Brown, C., Madhumalar, A., Ghadessy, F.J., and Verma, C. (2010). Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle 9, 540-547.
- 9. Levine, A.J., and Oren, M. (2009). The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9, 749-758.
- Vousden, K.H., and Prives, C. (2009). Blinded by the Light: The Growing Complexity of p53. Cell 137, 413-431.a
- 11. Manfredi, J.J. (2010). The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24, 1580-1589.
- Momand, J., Villegas, A., and Belyi, V.A. (2011). The evolution of MDM2 family genes. Gene 486, 23-30.

- Muttray, A.F., O'Toole, T.F., Morrill, W., Van Beneden, R.J., and Baldwin, S.A. (2010). An invertebrate mdm homolog interacts with p53 and is differentially expressed together with p53 and ras in neoplastic Mytilus trossulus haemocytes. Comp Biochem Physiol B Biochem Mol Biol 156, 298-308.
- 14. Joerger, A.C., and Fersht, A.R. (2007). Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26, 2226-2242.
- 15. Jin, S., Martinek, S., Joo, W.S., Wortman, J.R., Mirkovic, N., Sali, A., Yandell, M.D., Pavletich, N.P., Young, M.W., and Levine, A.J. (2000). *Identification and characterization of a p53 homologue in Drosophila melanogaster*. Proc Natl Acad Sci U S A 97, 7301-7306.
- Derry, W.B., Putzke, A.P., and Rothman, J.H. (2001). Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science 294, 591-595.
- 17. Lane, D.P., and Verma, C. (2012). Mdm2 in evolution. Genes Cancer 3, 320-324.
- Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844-848.
- Lu, W., Chen, L., Peng, Y., and Chen, J. (2001). Activation of p53 by roscovitinemediated suppression of MDM2 expression. Oncogene 20, 3206-3216.
- Brown, C.J., Lain, S., Verma, C.S., Fersht, A.R., and Lane, D.P. (2009). Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9, 862-873.
- Schierwater, B. (2005). My favorite animal, Trichoplax adhaerens. Bioessays 27, 1294-1302.
- Pankow, S., and Bamberger, C. (2007). The p53 tumor suppressor-like protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS One 2, e782.
- 23. Jessen-Eller, K., Kreiling, J.A., Begley, G.S., Steele, M.E., Walker, C.W., Stephens, R.E., and Reinisch, C.L. (2002). A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls. Environ Health Perspect 110, 377-385.
- 24. Pearson, B.J., and Sanchez Alvarado, A. (2010). A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development 137, 213-221.

- Meijer, L., Borgne, A., Mulner, O., Chong, J.P., Blow, J.J., Inagaki, N., Inagaki, M., Delcros, J.G., and Moulinoux, J.P. (1997). Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243, 527-536.
- 26. Schwartz, V. (1984). The radial polar pattern of differentiation in Trichoplax adhaerens F.E. Schulze (Placozoa). Z. Naturforsch. 39c, 818-832.
- Jakob, W., Sagasser, S., Dellaporta, S., Holland, P., Kuhn, K., and Schierwater, B. (2004). The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 214, 170-175.

2.2 The Myc/Max network at the base of the metazoan tree of life

von der Chevallerie K.¹ Topf A.² Sagasser S.^{1,3} Tsiavaliaris G.² Schierwater B.^{1,4}

 1 Division of Ecology and Evolution, Stiftung Tierärztliche Hochschule Hannover, Germany 2 Institute for Biophysical Chemistry, OE4350, Hannover Medical School, 30623 Hannover, Germany

³ Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden

⁴ Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America

This manuscript is an authors version of a manuscript to be submitted to *Molecular Biology and Evolution*.

Abstract

The Myc/Max network of transcription factors is well conserved throughout animal kingdom. By binding to specific DNA sequence motifs, the bHLHL-Zip proteins are involved in the regulation of cell cycle, metabolism, apoptosis and differentiation. Deregulations of the c-myc gene are reason for a large proportion of known malignancies. Placozoa hold a pivotal role regarding the evolution of multicellularity as they are most closely related to the hypothetical "Urmetazoon". The sequencing of the Trichoplax genome in 2008 revealed the presence of Myc/Max homologues and has led us to investigate their role in this simple animal. By means of *in situ* hybridization and Myc/Max gene inhibition studies we got first insights of this important network at the very base of the metazoan tree of life. In this study, first experimental approaches were done to unravel the function of the Myc/Max network in the basal phylum Placozoa. By means of both, gene inhibition and RNA expression studies, we gained insights into function of these genes in Placozoa. The gene knockdown of *tamyc* and *tamax* as well as the chemical inhibition of Myc/Max dimerization by the small-molecule inhibitor 10058-F4 significantly increased the amount of cells undergoing apoptosis. Chemical inhibition of Myc/Max interaction did not influence cell proliferation in Trichoplax. In contrast, knockdown of tamyc/tamax decreases the amount of cell division events after shorter time and did up regulate proliferation rate a longer time after initial knockdown. As the lack of *tamyc* function results in an increase of apoptosis in the animals' marginal area and the expression pattern of *tamyc* and *tamax* furthermore did reveal prominent gene activity in this region, where the Placozoan stem cells are presumed to be located, our results suggests that the function of *tamyc* possibly is involved in differentiation processes.

Keywords: Myc/Max network, Placozoa, development

Introduction

About 30 % of all known human malignancies are induced or at least accompanied by a deregulation of the myc gene. Genes of the myc proto-oncogene family (*c-myc*, *L-myc* and *N-myc*) are known to be involved in the regulation of various mechanisms affecting cell cycle control including metabolism, protein biosynthesis, cell adhesion and differentiation to name but a few. Point mutations in the myc gene or translocations respectively duplication of the gene regions can result in an overexpression of the gene as well as an increased Myc protein stability. For example Burkitt's lymphoma is a cancer of the lymphatic system

caused by chromosomal translocation of the myc gene that displaces the gene proximal to an immunoglobulin enhancer leading to massive overexpression of the gene [1].

Myc belongs to the basic helix-loop-helix-leucine-zipper (bHLHL-Zip) proteins and together with the bHLHL-Zip protein Max, Myc is proceeding in a network whereas the switch between Max-Max and Myc-Max dimerization represses or activates the transcription of target genes (for review see e.g. [2-4]). By binding to specific E-box sequences of the DNA (consensus sequence CACGTG) and subsequent recruitment of co-regulators Myc's scope as transcription factor is known to comprise 10-15 % of all gene loci found in mammals and *Drosophila melanogaster* which makes it a critical master control gene [5, 6]. Homologues of the *myc* gene have been found in all metazoan lineages including the cnidarian *Hydra vulgaris* in which it is active in rapidly proliferating cells of the Myc protein has been demonstrated to interact with Max suggesting a similar role as in multicellular organisms [9]. We now investigated the Myc/Max network at the very base of the metazoan tree of life.

Trichoplax adhaerens is the up to now only described representative of the phylum Placozoa [10, 11]. With only five different somatic cell types forming three distinct layers, this organism possesses the simplest known animal bauplan. Monociliated cover cells with interspersed likely degenerated cells, the shiny spheres, form the upper epithelium and likewise ciliated cylinder cells together with gland cells make up the lower epithelium. Enclosed by both epithelia, the fiber cells form a syncytial network (cf. [12]). The marginal region of the organism inhabits the multipotent stem cells, known to be essential for the animals' development [13]. As Placozoa represent the best living surrogate for the most basal metazoan phylum, regulative mechanisms controlling complex incidents like the cell cycle may be the most primitive and thus possibly the simplest [14, 15]. The genetic equipment of Placozoa is much more diverse as it would be expected, relatively speaking compared to its simple bauplan characteristics [16]. Understanding the role of an important regulatory network as the Myc/Max network in Placozoa will clearly help to better understand the role of this system also in higher animals.

Here we describe first experimental approaches to unravel the function of *myc/max* homologues in *Trichoplax adhaerens* (*tamyc* and *tamax*). Whole mount *in situ* hybridization experiments display the expression patterns in this ancient animal. A gene knockdown (KD) of both: *tamyc* and *tamax* by means of morpholino oligonucleotides (MO) has been conducted as well as the chemical inhibition of taMyc/taMax dimerization by the small-molecule inhibitor 10058-F4 [17]. Effects of this treatment have been monitored via light microscopy and fluorescent staining of cell proliferation (BrdU) and apoptosis (TUNEL). First experimental efforts to express taMyc/taMax proteins have been conducted and lay the foundation for further research in this field. Results of our study indicate an

involvement of *tamyc/tamax* in the control of developmental processes. Inhibition of taMyc by means of MO knockdown as well as inhibitor treatment is lethal and causes an increase of apoptosis whereas cell proliferation affected by KD but not by the inhibitor. The outcome of *tamyc/tamax* expression studies by *in situ* hybridization furthermore suggests that the genes are active mainly in the *Trichoplax* stem cell lineage suggesting their role to be crucial for animal growth and development. The usage of Placozoa as a model system for further research on the Myc/Max network will substantially extend our knowledge on the evolution of cell cycle regulation.

Material and Methods

Animal material

Trichoplax adhaerens (the "Grell" strain [18]) was used in this study. Culturing conditions were standardized as described before [10]. Animals were fed ad libitum with the unicellular algae Pyrenomonas helgolandii and Chlorella salina.

Total RNA isolation and full-length cDNA synthesis

Approximately 100 individuals have been picked and rinsed in artificial seawater (ASW). After 18 h starvation, animals have been homogenized in 500 μ l homogenization buffer (HomI buffer: 0.1 M Tris HCl pH 8, 0.01 M ethylenediaminetetraacetic acid (EDTA) pH 8, 0.1 M NaCl, 0.025 M dithiothreitol (DTT) and 0.5 % sodium dodecyl sulfate (SDS) in ddH₂O) with 25 μ l ProteinaseK (10 mg/ml, Carl Roth, Germany) at 55 °C for 30 min. Nucleic acids then have been isolated with phenol-chlorophorme isoamylalcohole (Roti ® Aqua- Phenol/C/I, Carl Roth, Germany) and a subsequent isopropanol precipitation. The pellet has been resuspended in diethylpyrocarbonate-treated (DEPC, Carl Roth, Germany) water and DNA then was digested with DNaseI (Fermentas) following the manufacturer's instructions. Quality of RNA has been determined by gel electrophoresis and total RNA (~ 100 ng) has then been used for full-length cDNA preparation using the Gene RacerTM Core Kit (Invitrogen) according to the manufacturer's instructions.

5' RACE amplification of cDNA ends

Comparative Blast searches were done for identification of myc and max homologues in *Trichoplax adhaerens* (NCBI: tamyc, GenBank accession no XM_002113921.1 and tamax GenBank accession no XM_002107825.1. To obtain information on the 5' end of the tamyc and tamax genes for subsequent MO design, a gene-specific primer (tamyc 5'-CAGCAATACATAACTGATACTTCATC-3';tamax 5'- AAGAGCCCATCATAACGCTTT GGAGCG -3') has been combined with the 5' Race Primer of the Kit (Gene RacerTM Core Kit, Invitrogen) and 1 μ l of the full-length cDNA (diluted 1:10) was used in a final volume of 25 μ l. The fragments have been amplified with the BioTaqTM DNA Polymerase (Bioline)

49

system using the following "Touch Down" PCR conditions: initial denaturation 5 min at 95 °C, 5 circles of 30 sec at 95 °C, 30 sec at 72 °C, 1 min at 72 °C, 5 circles of 30 sec at 95 °C, 30 sec at 70 °C, 1 min- 72 °C, 25 circles of 30 sec - 95 °C, 30 sec - 68 °C, 1 min - 72 °C and a final elongation step for 7 min at 72 °C. Fragments have been precipitated and were subsequently cloned into the pGemT vector system (Promega). Ligation then has been transformed into Top10 competent cells and after selection of positive clones via blue-white screening the plasmid has been isolated with the Miniprep Kit (Wizard ® Plus SV Minipreps, Promega) following the manufacturers protocol and sequenced (LIGHTrun, GATC).

No.	Gene	Trivial Name Primer	Restriction site	Primer sequence
1	tamax	max_fw_hind	HindIII	gc aagctt ATG AGT GAC GAA GAT AAG TAC
2	tamax	max_rv_not	NotI	ga gcg gcc gct CTC TGC TTT GAC CTT TTT AGT
3	tamyc	myc_fw_SgfI_His	SgfI	ga gcgatcgc tcatcaccatcatcaccac ATG GCA GTT CAT GCG GAA GCC
4	tamyc	myc_rv_Xho	XhoI	ga <i>ctcgag</i> ATT TCT TTT GCT CTT TAA AAT

Table 2.2.1: Primer sequences used for insert amplification for the pETDuet-1 construct.

Restriction sites used for ligation are indicated in italic. The His-tag sequence in primer no. 3 is underlined. The base pairs 'gc' (in primer no.1) and 'ga' (primer 2 - 4) were added to protect restriction sites from degradation. Reverse primer sequences are specified in reverse complement direction.

Amplification of full-length tamyc and tamax fragments for sequence analysis and construction of tamyc/tamax/pETDuet-1 plasmids for protein expression.

Full-length fragments of tamyc/tamax were amplified for cloning into the bicistronic vector pETDuet-1 (Novagen). The primers for amplification of full-length fragments have been equipped with flanking 5' and 3' restriction sites for each multiple cloning site of the vector respectively (table 2.2.1). The *tamyc* fragment additionally was provided with a 5' His Tag sequence for later precipitation of the protein. Fragments have been amplified from full-length cDNA using the KAPAHiFiTM DNA polymerase (PeqLab) with the following PCR conditions: 5 min -95 °C, 40 cycles of (30 sec - 95 °C, 30 sec - 60 °C, 1 min - 72 °C) and 4 min - 72 °C. Products have been precipitated and cloned into the pGemT vector system for sequencing as described before. Sequences were used for analyses (described below) and after identification of appropriate clones, full-length *tamyc* and *tamax* have been cut out of the vector by using the respective restriction sites. Fragments were gel-purified and subsequently cloned into the expression vector. The pETDuet[™] -1 vector has been cut with HindIII (Fermentas) and NotI (Fermentas) and the max fragment was ligated first. After transformation of the $tamax/pETDuet^{TM}$ -1 construct into Escherichia coli (One Shot ® TOP10F' Chemically Competent E. coli, Invitrogen), colonies were selected by means of ampicillin resistance and plasmids have been checked for correct insertion of *tamax* fragment via PCR using the same *tamax* gene specific primer set as above (table 2.2.1, primer 1 and 2). Plasmids with the correct insert then have been cut

with the restriction enzymes SgfI (Promega) and XhoI (Fermentas) for subsequent ligation of *tamyc*. Transformation has been performed and colonies were selected by means of ampicillin resistance. Success of incorporation of both inserts into the petDuet-1 vector later on was checked with the forward primer of the *tamax* fragment combined with the reverse primer of *tamyc* (table 2.2.1, primer 1 and 4). Elongation time for this PCR approach has been prolonged to 90 sec, beside conditions were maintained as described above.

Expression and purification of taMyc and taMax proteins

Constructs oft petDuet-1 with the full-length tamyc/tamax fragments were transformed into Rosetta (BL21), F-ompT hsdSB(rB- mB-) gal dcm pRARE (Cam^R). Bacteria were grown in a preparatory culture over night at 37 °C and were inoculated into a 4 liter culture in (LB broth with ampicillin 75 ng/ml) at 20 °C after induction of protein expression. Expression was induced at an optical density (OD) of 0.4 - 0.8 (measured at 600 nm) with isopropyl- β -D-thiogalactoside (IPTG, 0.1 mM) and lasted 16 h. Cells were pelletized and resuspended in lysis buffer (50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH 7.4 and 500 mM NaCl and 3 mM 2-Mercaptoethanol) with proteinase inhibitors (cOmplete EDTA free, Roche, Mannheim; 10 μ g/ml p-toluenesulfonyl-L-arginine methyl ester (TAME), 8 μ g/ml tosyl phenylalanyl chloromethyl ketone (TPCK), 0.2 μ g/ml pepstatin, 0.5 μ g/ml leupeptin, 0.1 mM phenylmethanesulfonylfluoride) and with 5 mg/100 ml lysozyme. After 30 min incubation on ice the suspension was sonicated on ice for 3 min in total (Branson Sonifier 250, Heinemann Ultraschall und Labortechnik, Schwäbisch Gmünd). Benzonase (5000 units, Sigma) then was added and the mixture was incubated 30 min on ice. The sample has been centrifuged at 30.000 rpm (Ti70 Rotor, Beckmann Coulter Optima XPN-90) for 60 min at 4 °C and the cleared supernatant was loaded on a nickel NTA column (Ni-NTA Superflow, Quiagen Hilden). Affinity chromatography was done at 4 °C in a ÄKTA purifier (FPLC system ÄKTA purifier 10, GE Healthcare, Freiburg). After equilibration of the column with buffer A (50 mM HEPES, pH 7.4, 500 mM NaCl, 3 mM 2-Mercaptoethanol, flow rate 3 ml/min, 6 column volumes, CV) the proteins were injected (0.5 ml/min) and the column was washed with buffer A (50 mM HEPES, pH 7.4, 500 mM NaCl, 3 mM 2-Mercaptoethanol, flow rate 3 ml/min, 6 CV), and subsequently with buffer B (50 mM HEPES, pH 7.4, 1 M NaCl, 3 mM 2-Mercaptoethanol, flow rate 3 ml/min, 6 CV). The column then was washed 3 CV with buffer A containing 5 % elution buffer (50 mM HEPES pH 7.4, 500 mM NaCl, 500 mM imidazole, 3 mM 2-Mercaptoethanol), and with 5 CV of buffer A including 10 % elution buffer. Elution of proteins was carried out in a gradient of buffer A with elution buffer whereas the proportion of elution buffer finally is 100 %. Fractions (collected with Frac-900, GE Healthcare, Freiburg) were checked on a SDS-polyacrylamide gel and the proteins were further purified via gel-filtration (using the ÄKTA system, mentioned above) on a high load 26/60 Superdex

200 prepgrade (GE, Healthcare, Freiburg) column equilibrated in storage buffer (50 mM TrisHCl pH 7.4, 500 mM NaCl, 2 mM EDTA, 1 mM DTT, 3 mM benzamidine and 3 % Sucrose). Fractions were checked on a SDS gel, purified taMyc/taMax was concentrated with Vivaspin 20 centrifugal concentrators with a polyethersulfone membrane (Sartorius Stedim Biotech, Göttingen). The proteins were frozen in liquid nitrogen and stored at -80 °C. After gel purification, proteins also were subjected on SDS-polyacrylamide gel and subsequently blotted to a nitrocellulose membrane (SuperSignal ® West Dura Extended Duration Substrate, Thermo scientific) in a blotting machine (Trans-Blot Semi-Dry Electrophoretic Transfer cell, Biorad, Munich). The membrane then was blocked in 1xTBS-T Puffer (50 mM Tris HCl pH 7.5; 150 mM NaCl, 0,05 % Tween-20) containing 5 % milk powder for 30 min and incubated in 0.2 $\mu g/\mu l$ Penta-His antibody (Quiagen). A secondary anti-mouse (HRP, Thermo scientific) antibody was used to detect proteins of interest and coloration of membrane was performed with the SuperSignal ® West Dura Extended Duration Substrate kit (Thermo Scientific, Rockford, USA) and the blot was imaged with a digital imaging system (ImageQuant LAS 4000, GE Healthcare). Calculations on protein sizes were made with the "Protein Molecular Weight Calculator" (www.sciencegateway.org).

Sequence analyses

Sequences obtained from full-length gene amplification described before have been compared to predicted protein sequences in NCBI. Protein sequences then were aligned using the in Seaview version 4.12.12 with subsequent manual modifications in compliance to [8]. Besides *Trichoplax* proteins, sequences included in this analysis were taken from human (huMyc/huMax, GenBank accession no NP_002458 / NP_002373), chicken (ckMyc/ckMax, GenBank accession no NP_001026123 / P52162) and *Hydra vulgaris* (hyMyc/hyMax, GenBank accession no GQ856264 / GQ856264).

Probe synthesis for RNA in situ hybridization

Gene fragments for RNA *in situ* probe synthesis were amplified from the full length- cDNA using the primer pairs 5'-GCGGAAGCCTTTTCAAATAA-3'/5'-GGTTAACACGAACG TTA-3' (*tamyc*) and 5'-AGTACTTGGACGTCGATATTGAC-3'/5'-CAATCGGACGGTAA CGTGAAC-3' (*tamax*). PCR conditions were: initial denaturation for 5 min at 95 °C, 35 cycles of 30 sec - 95 °C, 30 sec - 60 °C, 1 min - 72 °C, and a final elongation step for 4 min at 72 °C. Fragments had a size of 449 base pairs (bp) (*tamax*) and 348 bp (*tamyc*). After purification, the fragments have been ligated into the pGemT vector system and subsequent cloning and plasmid isolation were done as described before. After sequencing of the fragments (ABI Prism 310 Genetic Analyzer) the plasmids were diluted 1:100 and used as DNA template for a total volume of 25 μ l per PCR-reaction utilizing the SP6/T7 primer sites of the pGemT vector for amplification of fragments. PCR conditions were: 5

 \sim

min - 95 °C, 35 cycles of (30 sec - 95 °C, 30 sec - 52 °C, 1 min - 72 °C) and a final elongation step for 4 min at 72 °C. *Tamyc*- and *tamax*- fragments were subsequently precipitated and RNA probes were transcribed using digoxygenin- (Dig) or fluorescein-labeled dUTPs (Roche) and SP6/T7 Polymerase (Roche) following the manufacturers protocol. Probes were purified by lithium chloride precipitation and solved in DEPC-treated water (Roth, Germany). Sense probes of respective fragments were used as negative controls.

Whole mount RNA in situ hybridization

Animals were fixed in Lavdowsky fixative (44 % EtOH, 44 % TBS, 8 % formaldehyde, 4 % acetic acid) and permeabilized in Tris buffered saline (TBS, 150 mM NaCl, 0.1 M Tris HCl pH 7.5) containing 0.5 % Tween-20 (Carl Roth, Germany) and 0.5 % TritonX (Carl Roth, Germany) hereafter termed TBSTT. In situ hybridization was subsequently performed using a protocol modified after Jakob et al. 2004 [13]. Hybridization of probes was done at 60 °C for at least 12 h in hybridization buffer containing 50 % formamide. 5x saline-sodium citrate (SSC), 0.1 % Tween, 500 μ g/ml tRNA (Sigma) and 0.092 M citric acid. After hybridization, samples were washed with SSC (containing 1 % SDS) in declining concentrations (2x SSC, 1x SSC, 0.2x SSC, 0.1x SSC) each step for 15 min at 60 °C. Samples stained with fluorescein were then terminally washed with TBSTT at RT. After rinsing in TBS samples were mounted with Vectashield (Vector Labs) for microscopy. Dig-labeled samples were incubated in blocking solution (TBSTT with 0.1 % BSA, Sigma) for 30 min after the last wash with SSC buffer. The anti-Dig antibody (Roche) was diluted 1:1000 in the blocking buffer and samples were incubated for one h at RT. After several washing steps with TBSTT and terminally with ddH_2O , the antibody was detected by application of BM Purple (Roche). After coloration of tissue (after approximately 30 min at RT) the solution was removed by several washes in ddH_2O and samples were mounted for microscopy as described above.

Gene "Knockdown" via morpholino oligonucleotides (MO)

Sequences for MO design have been taken from the 5'ends of tamyc/tamax amplified and sequenced as described above. MO's for tamyc and tamax were obtained from Gene Tools, LLC and delivered into cells following the "Special Delivery" protocol provided by the manufacturer. For this, Special Delivery MO's were prepared by hybridization of oligonucleotides (26mer: 16 bases complementary to the 3' End of the MO and a 10 bases adenine overhang; MO: DNA equals 1.4 : 1) for 10 min at RT. The Special Delivery MO/DNA stock solution had a final concentration of 0.5 mM. The transfection solution then was prepared by mixing 5.6 μ l of the 0.5 mM Special Delivery MO/DNA stock solution with 188.8 μ l ddH₂O and a subsequent addition of 5.6 μ l of the 200 μ M ethoxylated polyethylenimine (EPEI, Gene Tools, LLC) Special Delivery solution. After vortexing, the mixture was incubated 20 min at RT and then was applied to the animals in 2 ml ASW (final concentration of MO in ASW: 1.4 μ M). After 18 h, several washing steps with ASW served to remove the chemical and success of transfection was subsequently monitored via fluorescence microscopy. Fresh MOs were then added at a concentration of 1.25 μ M to maintain gene KD. Control experiments were performed by omission of oligonucleotides (ASW control) and the application of a MO, specific for the Cnidarian Hox gene Cnox-2 (Cnox-2 control, [19]) which is not present in the Trichoplax genome. Long-term experiments were conducted in glass chamber slides (one well cell culture chamber, Sarstedt) to enable daily observations of the animal's condition via bright field microscopy. Individuals were cultured under standard laboratory conditions (light/dark 12 h/12 h and 24 °C) and were fed ad libitum. To avoid osmotic stress due to higher salt concentrations caused by evaporation of liquid, the ASW/MO mixture was changed every 48 h. Physiological changes were monitored every 24 h via bright field microscopy and population size was gathered by counting of animals. To monitor a possible influence on cell proliferation and cell death, animals were also used for BrdU (24 h and 72 h) and TUNEL (24 h) -staining after initial gene KD.

Inhibition of Myc/Max dimerization through application of the 10058-F4 inhibitor.

To further validate the gene KD approach, the inhibitor 10058-F4 (Sigma) was applied to the animals. The small molecule inhibitor was diluted in ASW up to indicated concentrations. Control animals were kept in ASW only and in ASW containing 0.1 % DMSO. Animals were fed *ad libitum* and cultured in glass chamber slides under culturing conditions described above. The ASW/inhibitor mixture was changed every second day, as described above for KD analyses. Samples were observed daily via bright field microscopy and animals were counted to estimate population sizes. For the observation of proliferation and apoptosis of cells during treatment animals were also used for BrdU- and TUNEL-staining 24 h and 72 h after initial application of inhibitor.

Detection of Bromodeoxyuridine (BrdU) incorporation by means of Tyramide Signal Amplification (TSA)

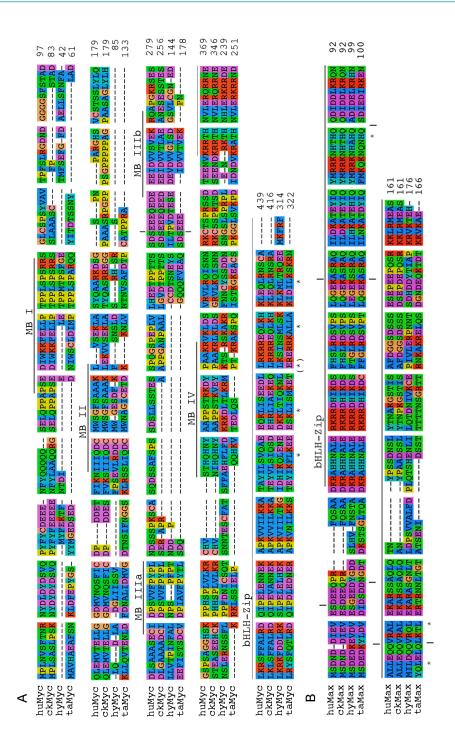
Detection of cell proliferation after blocking taMyc and taMax expression (via KD) or inhibition of Myc/Max interaction (10058-F4 inhibitor) was performed by means of the Bromodeoxyuridine (BrdU) staining method. Before fixation of *Trichoplax* individuals in Lavdowsky fixative as described before, BrdU (Sigma) was diluted to a concentration of 50 ng/ml in culture medium and fed to the previously treated (KD /inhibitor) animals for 6 h. The samples were then fixed in Lavdowsky fixative as described before and permeabilized by washing four times 15 min in TBS (pH 7.5) containing 0.5 % Tween-20 (TBST). The tissue was further permeabilized with 4 ng/ml ProteinaseK for 10 min at RT. The reaction was stopped with 1 mg/ml glycine in several washing steps. Samples were then rinsed in TBST two times for five min. Afterwards, animals were incubated in 2 N HCL (in TBST) for 30min and after three further washing steps in TBST, the tissue then was quenched with 3 % H_2O_2 (in TBST) to ensure specificity of the afterwards applied thyramide signal amplification (TSA) staining method. Samples were subsequently rinsed in TBST two more times and blocked in 0.1 % bovine serum albumin (BSA, Sigma) in TBST for 30 min. For detection of incorporated BrdU a horseradish peroxidase labeled polyclonal sheep BrdU antibody (Abcam) was diluted 1:100 in blocking solution and Samples were incubated two h at RT. Detection of the antibody was performed using the TSA Kit #23 (Invitrogen) following the manufacturers protocol. Nuclei were subsequently counterstained with 4',6-diamindino-2-phenylindole (DAPI, 1x in TBS) for 10 min. After two terminal washing steps in TSB samples were mounted with Vectashield (Vector Labs) for microscopy.

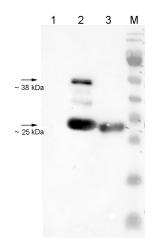
Terminal deoxynucleotidyl transferase-mediated deoxyurdine triphosphate nick end labeling (TUNEL) staining

After the initial steps of fixation and permeabilization as described before, apoptotic cells were detected via the TUNEL staining method using the ApopTag ® Red *In Situ* Apoptosis Kit (Chemicon International) following manufacturers protocol. After DAPI staining as described above, samples were terminally washed in TBS and mounted for microscopy with Vectashield (Vector Labs).

Microscopy and statistical analyses

Animal fitness, signal of BrdU and TUNEL essay, success of transfection with MO's and results of RNA *in situ* hybridization were examined via fluorescence microscopy and light microscopy respectively (Zeiss, Axiovert 200M using the filter sets 09 for fluorescein, 02 for DAPI and 25 for TSA) pictures were taken with a digital camera (Zeiss, Axio Cam MRn and ICc3). Images were subsequently edited by usage of Adobe Photoshop Elements 8.0 to improve contrast only. Animal sizes for KD analyses and inhibitor treatment as well as the amount of proliferating and apoptotic cells were estimated by usage of ImageJ version 1.44. Cell numbers were estimated by counting nuclear DAPI signals and values were put into relation to counted TUNEL/BrdU signals. For statistical analyses, a student's t-test has been performed in Excel ® (Microsoft Office ® 2007). Control experiments were summed up and were compared with the experiments.




Figure 2.2.1: Alignment of Myc and Max protein sequences.

Alignment of Myc (A) and Max (B) protein sequences reveal high similarities throughout the animal kingdom. Sequences were taken from NCBI: human (hu) Myc/Max GenBank accession no. NP_002458 / NP_002373; chicken (ck) Myc/Max GenBank accession no. NP_ 001026123 / P52162; *Hydra* (hy) Myc/Max GenBank accession no. GQ856264 / GQ856264 and *Trichoplax* (ta) Myc/Max GenBank accession no. XP_002113957 and XP_002107861. Conserved Myc boxes and basic helix-loop-helix zipper (bHLHL-Zip) regions are marked. Dashes indicate introns and asterisks conserved leucine residues.

Results

1. Sequence analyses

Sequencing of the 5' RACE PCR product exhibited a 135 bp (tamyc) and a 150 bp (tamax) fragment. Both 5' untranslated regions (UTRs) do contain an intron with a size of 4125 bp (tamyc) and 437 bp (tamax). The tamyc 5' end further includes an alternative start methionine 33 bp prior to the predicted start. Analyses of the full-length coding sequence showed that predictions [20] are in accordance to the tamyc/tamax fragments sequenced in this study. Three variable nucleic acids have been found: in *tamyc* (position 285: C/T) and 289: T/C) and one in *tamax* (position 132: T/C) whereas the detected substitutions however do not result in changes of protein sequence (cf. table A.2.1). Analyses of the Trichoplax protein sequence did show an overall sequence similarity of 24.8 % to the human Myc protein, 27.88 % to chicken and 21.02 % to Hydra vulgaris (fig. 2.2.1). The highest sequence similarities were found in the C-terminal Myc-boxes (MB I-IV and in the N-terminal bHLHL-Zip region (MB I: 59 %, MB II: 47 %, MB IIIa 75 %, MB IIIb 54 %, MB IV 27 % and the bHLHL-Zip 56.5 % similarity *Trichoplax* to human c-Myc respectively). The intron-exon sites of the Myc protein are conserved whereas the *Trichoplax* protein has an additional intron also found in the Hydra vulgaris sequence. In contrast to the human, chicken or the Hydra Myc protein, one of the octameric leucines is missing in the bHLHL-Zip region and is replaced by a glutamic acid. The Trichoplax Max protein is even more conserved than taMyc with an overall similarity of 44 % to human 42.05 % to Hydra and 46.58 % to chicken. The highest degree of homology was found in the bHLHL-Zip (46 % identical to human Max).

Figure 2.2.2: Western blot analysis of expressed proteins.

Shown is: before induction (1), concentrated protein (2), $\ddot{A}KTA$ taMax fraction (3) and the marker (M) Two protein products (Myc and Max) are visible at ~ 38 kilo Dalton (kDa) and ~ 22 kDa. The $\ddot{A}KTA$ fraction of the taMax protein (3) was used for further gel filtration purification.

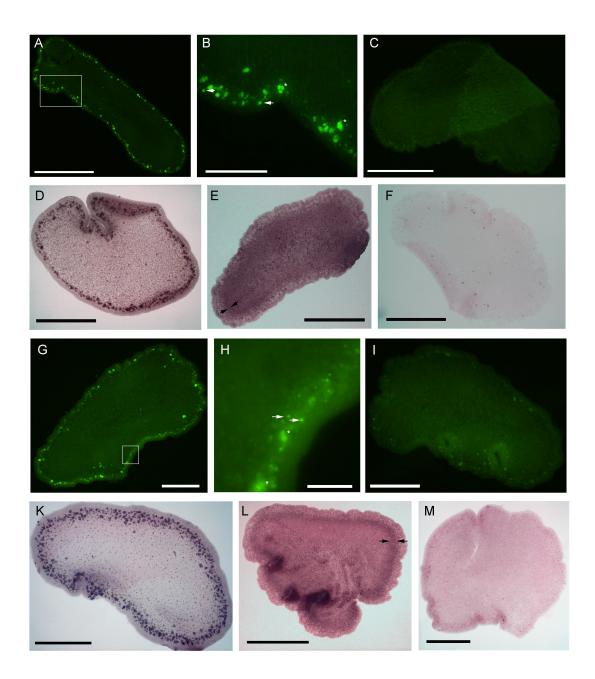


Figure 2.2.3: Whole mount *in situ* hybridization of *tamyc* and *tamax*.

RNA *in situ* hybridization of the *tamyc* (A-F) and *tamax* (G-M) genes. Fluorescein signal (A) and the higher magnification of the inlet (B) shows strong *tamyc* gene expression in small cells (arrowheads in B) and cell clusters (asterisks in B) of the animals' marginal region. The same pattern can be observed in (D). The staining in (E) shows a different pattern and the signal is distributed evenly over the whole animal. *Tamax* gene expression shows a similar pattern as *tamyc*: signal can be found in small cells (arrowheads in H, higher magnification of the inlet in G) and big cells or clusters (asterisks in H), in the marginal region of *Trichoplax adhaerens* (G and K) or distributed ubiquitous with higher signal density in the region close to the margin (L). Sense probe negative controls (C, F, I and M) show no distinct but low background signal, which however differs from real signal. The size bar marks 100 μ m (A, C-G, I-M), 50 μ m (B) and 20 μ m (H).

2. Recombinant protein expression of taMyc and taMax

Previously calculated protein sizes of the constructs are 37.36 kDa for taMyc and 19.97 kDa for taMax. Expression of taMyc and taMax proteins was successful (fig. 2.2.2). The Max protein turned out to be stable and well solvable. Fractions can be used for binding studies and antibody production. But even after further purification via gel filtration, the taMax protein contains certain contaminations (fig. A.2.1). Most of the taMyc protein remains in the bacterial pellet what drastically reduce protein yield (data not shown).

3. Whole mount in situ hybridization

In situ hybridization of both, tamyc and tamax, did reveal strong similarities whereas expression pattern of both genes is found in two distinct manifestations: Signal either (i) is found in the outer margin of the animal in small cells as well as cell clusters (fig. 2.2.3 A, D, G and K, small cells indicated by arrows and clusters by asterisks in fig. 3 B and H), or it is (ii) distributed evenly over the whole animal with a ring of slightly stronger expression near to the margin (fig. 2.2.3 E and L, area of higher expression is implied by arrows) whereas expression is restricted to smaller cells. Sense controls did not give specific but weak background signal (fig. 2.2.3 C, F, I and M).

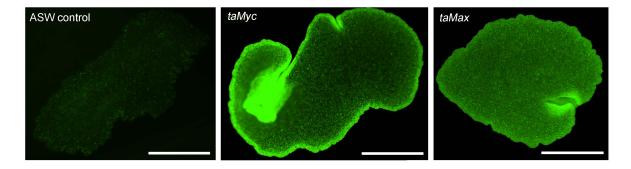


Figure 2.2.4: Live imaging of transfected animals.

18 h after transfection with fluorescent MOs of tamyc and tamax, signal can be detected equally distributed in the animals. The area of supposedly higher signal intensity in the tamyc-transfected animal is due to folding of the animal and apparently higher signal intensity at the animals' margin can be explained with higher cell density in this area. The ASW control does not show any signal, but a low amount of autofluorescence. The bar marks 100 μm .

4. Gene "Knockdown" via morpholino oligonucleotides (MO)

Fluorescence microscopy of living transfected animals does show a uniformly distribution of signal given by the fluorescein-labeled MO's in contrast to control animals (fig. 2.2.4). Folding of the animal while movement and higher cell densities in the marginal region (both visible in fig. 2.2.4 B) give the impression of higher signal strength in this area, which however is not the case.

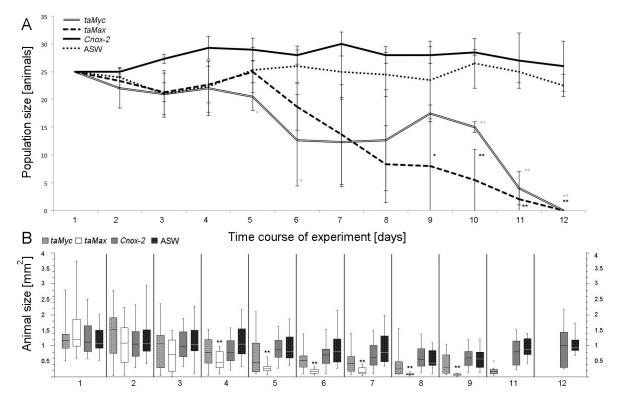


Figure 2.2.5: Time course of population and animal size during tamyc and tamax "knockdown".

Upper graph: Population sizes of *tamyc* and *tamax* KD animals decrease in course of experiment. The amount of *tamyc* KD animals significantly differs from the controls at day four of experiment whereas the amount of *tamax* KD individuals significantly deviate from controls at day five. Bars indicate the standard deviation, for raw data see table A.2.2 A.

Lower graph: Animal sizes of treated individuals are reduced during treatment. Sizes of animals transfected with *tamax* MO is significantly reduced after three days and transfection with *tamyc* MO results in smaller animal size significant after five days. Boxplot shows whiskers (minimum and maximum values), upper and lower quartile of values (box) and the median (dash in box). For raw data on boxplot analyses see table A.2.3 A.

Significances in A and B are denoted by asterisks (grey for *tamyc* and black for *tamax*, p < 0.05 *, p < 0.01 **, p < 0.001 ***), for statistical calculations see table A.2.2 B and A.2.3 B.

4.1 Observations on animal fitness

In all experiments, KD of *tamyc* and *tamax* was lethal latest after 11 days (fig. 2.2.5A). Death of individuals was accompanied with a reduction in size (fig. 2.2.5B). Beside, shrinkage together with a globular form of treated animals, no phenotypic abnormalities could be observed during the experiments (fig. A.2.2). Control individuals were stable in population- and animal-size over the indicated experimental period.

4.2 BrdU and TUNEL essay

Cell proliferation monitored with the BrdU essay did result in a significant decrease of proliferation 24 h and an increase of cell division events 72 h after initial KD (p < 0.05). Overall proliferation monitored by BrdU was distributed evenly over the whole animal. Experimental time points generally exhibit an overall change in proliferation rate. (fig. 2.2.6).

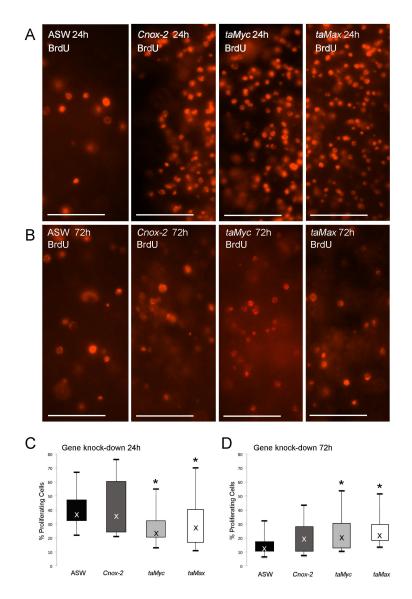


Figure 2.2.6: Amount of cell proliferation events after "knockdown" of tamyc and tamax.

The upper panels show cell proliferation by means of the BrdU essay 24 h after KD (A) and 72 h after KD (B). Boxplot depiction of data reveals that proliferation is affected by *tamyc/tamax* gene KD and firstly results in a significant decrease (after 24 h, C) and subsequently in a significant increase of cell proliferation 72 h (D) after initial transfection (p < 0.05). Signal of proliferating cells (red) is found ubiquitously in all cell types. The bars mark 20 μ m. Boxplots show whiskers (minimum and maximum values), upper and lower quartile of values (box) and the median (dash in box). For raw data, statistics and boxplot analyses see table A.2.4 and A.2.6.

The TUNEL essay revealed a significant increase of apoptotic cells 24 h after initial KD of both: *tamyc* and *tamax*. The occurrence of programmed cell death roughly was tripled (fig. 2.2.7). Cell death was augmented from an average of 0.57 % (ASW) and 0.66 % (*Cnox-2*) of apoptotic cells in control experiments to an average of 1.5 % in *tamyc* and 1.8 % of dying cells in *tamax* KD experiments.

5. Inhibition of Myc/Max dimerization through application of the 10058-F4 inhibitor Different concentrations of the 10058-F4 inhibitor have been tested. Concentrations higher than 5 μ M turned out to be lethal shortly after application and thus 5 μ M turned out to be appropriate for treatment (cf. fig. A.2.3).

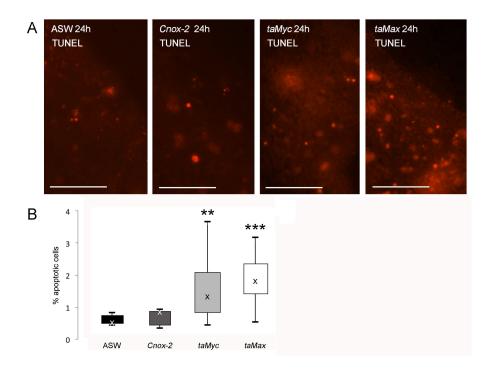


Figure 2.2.7: Increase of apoptosis after *tamyc/tamax* gene "knockdown".

The amount of cells undergoing apoptosis (arrowheads in A) is significantly increased 24 h after initial gene KD (B, p < 0.01 **, p < 0.001 ***). The bars mark 20 μ m. Boxplot indicates whiskers (minimum and maximum values), upper and lower quartile of values (box) and the median (dash in box). For raw data, statistics and boxplot analyses see table A.2.5 and A.2.6.

5.1 Observations on animal fitness

As already observed in tamyc/tamax knockdown experiments, chemical interruption of Myc/Max interaction is also lethal for *Trichoplax* individuals. Animals died latest after 8 days of inhibitor treatment (5 μ M, fig. 2.2.8, upper panel). As observed in KD experiments, the size of individuals significantly decreased before death (fig. 2.2.8, lower panel) and shrinkage comes along with a globular form of treated animals. Phenotypic abnormalities were not observed (fig. A.2.4).

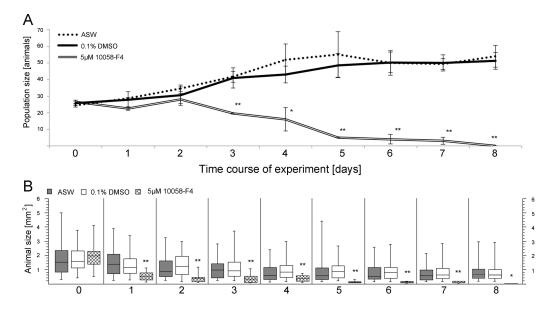
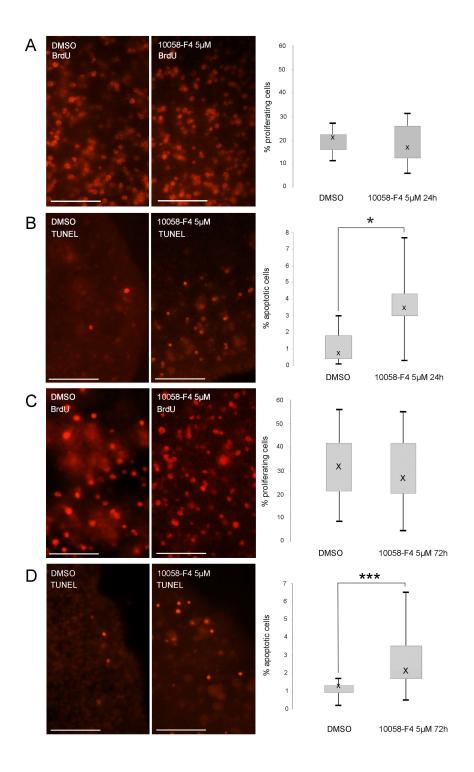


Figure 2.2.8: Time course of population and animal size after treatment with the 10058-F4 inhibitor.

Animal population size (A) and animal size (B) decreases after initial treatment with the 10058-F4 inhibitor (5 μ M). Significances are indicated by asterisks (p < 0.05^{*}, p < 0.01^{**}) Boxplot shows whiskers (minimum and maximum values), upper and lower quartile of values (box) and the median (dash in box). For raw data, boxplot data and statistics see table A.2.7 and A.2.8.

5.2 BrdU and TUNEL essay


Similar to KD results, inhibitor treatment did significantly increase the amount of apoptosis in *Trichoplax* compared to the DMSO controls whereas increase was even stronger after inhibitor treatment than after KD, 24 h (1.07 % in DMSO control and 3.89 % after inhibitor treatment) and 72 h (1.3 % in DMSO control and 2.9 % after inhibitor treatment). Cell proliferation however was not affected by inhibitor treatment (cf. fig. 2.2.9), which stays in contrast to the results of performed KD experiments.

Discussion

The Myc/Max proteins are conserved within the Metazoa

Conserved motifs are found within the *Trichoplax* Myc and Max proteins suggesting similarities in functions known from higher animals, namely dimerization and binding to E-box sequences (e.g. [21]). The substitution of one critical leucine by glutamic acid in the C-terminal bHLHL region may probably influence the dimerization capacity of the *Trichoplax* Myc protein and thus their function as transcription factor. However, one substitution merely, if at all, reduces and not prohibits binding capacity [22]. The role of amino acid composition of proteins will be further examined by protein binding essays.

Information on 5' UTR of *tamyc* and *tamax* gained in course of this study and 5' UTRs sequences from transcriptome analyses differ in length, which however does not change the respective open reading frames (unpublished data, for information on genomic scaffolds cf.

Cell proliferation (A and C, monitored via BrdU) is not affected by treatment with the 10058-F4 inhibitor. In contrast, the amount of apoptosis (B and D, monitored by the TUNEL essay) is significantly increased after 24 h (B, p < 0.05, indicated by asterisks) and 72 h (D, p < 0.001). Boxplot indicates whiskers (minimum and maximum values), upper and lower quartile of values (box) and the median (dash in box). For raw data, statistics and boxplot analyses see table A.2.9, A.2.10 and A.2.11. The bars mark 20 μ m.

A.2.1B). The large intron in the 5' UTR of *tamyc* and the additional start methionine prior to the predicted start of *tamyc* further plead for different protein isoforms and could be an incidence for different modes of gene expression control [23, 24]. Sequence information on the protein-coding region gained in course of this study nonetheless gives proper knowledge on protein structure, as conserved myc/max motifs indispensable for protein function are present.

Expression of taMyc/taMax proteins will enable additional approaches to further shed light on the myc/max network in Placozoa.

Experiments performed so far revealed that the expression of full-length *tamyc* is associated with poor solubility. Future experiments should include the expression of shorter Myc transcripts. Former studies on the protein demonstrated that expression of the C-terminal part of the protein only (containing the DNA binding domain and the motif indispensible for dimerization with taMax) will enable experimental binding approaches as well (as e.g. in [25]), and extraction of protein will likely be more frugal. Nevertheless, crystallization studies on the full-length taMyc protein provide innovative insights into the biochemistry of the transcription factor and thus further approaches should be conducted. The usage of different tags for immune precipitation of proteins to probably increase solubility and pureness [26].

The taMax protein was expressed successfully. However, even after gel-filtration of the protein contaminations still are visible on SDS page and western blot. Optical measurements of the protein further revealed a high amount of DNA and other background impurities (data not shown). For perspective approaches the usage of a FLAG-tag instead of the HIS-tag could solve this problem, as various $E. \ coli$ proteins can bind to the nickel NTA used for HIS-tag purification [27]. The usage of other expression systems than $E. \ coli$ could also help to increase purity and protein yields in future approaches [28, 29].

Recombinant expression of the taMyc and taMax protein will open new possibilities regarding experiments on the Myc/Max network in Placozoa. Protein binding studies will further broaden our knowledge on the function of these proteins at the base of the metazoan tree of live as e.g. target genes in *Trichoplax* can be identified by means of protein binding essays. Antibodies then can be synthesized to understand the role of protein interaction within the animal. Preliminary results of protein expression lay the foundation to successful unravel the biochemistry of the Myc/Max network in Placozoa.

Tamyc and tamax are highly expressed in the Placozoan multipotent stem cell area.

The expression pattern of *tamyc* and *tamax* apparently is very similar. Given that the proteins interact while transcriptional activation or repression of target genes [30], this is not surprising at first sight. However, a Myc independent role of Max is broadly known from other organisms and expression usually is ubiquitous even though at lower levels

(cf. [31]), which however cannot be discerned by our approach. Expression of tamyc and tamax thus likely differs at least temporally if not spatially what could not be shown in this study and has to be further validated by double *in situ* hybridization using both probes on one animal.

The pattern of tamyc/tamax expression clearly is dependent on the "growing-/ developmental stage" of the individual. As the placozoan life cycle still is unresolved, it is problematic to determine certain stages. Placozoan growth executes in an oscillating manner whereas proliferation mainly is restricted to the central or the marginal part of an individual respectively [32]. As a result the animal possesses excess, respectively too little central or marginal tissue at a certain time point of development. Former proliferation studies by means of BrdU incorporation confirmed this assumption (unpublished data). Individuals pictured in fig. 2.2.4 A and G (respectively D and K) do have a smooth margin and clearly pass through another growth stage than animals pictured in fig. 2.2.4 E and L which exhibit a wavy boundary. Both stages do show dissimilar patterns of Myc/Max expression in the marginal region (i) and throughout the whole animal (ii). Differences in tamyc/tamax expression associated to different morphological characteristics of the animal suggest the existence of different developmental stages that exhibit different levels and patterns of tamyc/tamax expression.

(i) Expression is strong in the stem cell region of individuals (fig. 2.2.4 A, D, G and K). Signal is found in small cells (arrows in fig. 3 B and H) as well as in large, bulky cells or rather cell clusters (asterisks in fig. 2.2.4 B and H). The outer margin of Placozoa is known to be the area of cell differentiation and the stem cells are located at the contact zone of upper and lower epithelia giving rise to different cell types [13]. Expression of myc often is associated with differentiation processes whereas the protein can either block or facilitate differentiation [33]. In *Hydra, myc* and *max* are both expressed in proliferating nematoblasts and *max* additionally throughout epithelial cells of the body column [8]. Signal of *tamyc* in the stem cell region of *Trichoplax adhaerens* likely is linked directly to differentiation events and the self-renewal of multipotent stem cells. Cell clusters then could be a result of the accumulation of proliferating stem cells that have not fully differentiated thus far. Signals in small cells then could be dedicated to stem cells that migrate towards their place of destination.

(ii) Signals found in fig. 2.2.4 E and L is restricted to small, interspersed cells evenly distributed over the whole individual with a ring of higher signal density close to the margin. This pattern likely is deducible to proliferation of epithelial cells as cell proliferation is under control of the Myc/Max network (for review see e.g. [3, 34]). The ring-shaped region of augmented signal strength (enclosed by arrowheads in fig. 2.2.4 E und L) then represents an area with higher proliferative activities. Co-staining of proliferating cells via BrdU and determination of protein abundance will help to further support the re-

66

sults of this study and will greatly extend knowledge on the Myc/Max network in Placozoa.

Gene knockdown and inhibition of taMyc/taMax interaction both lead to an increase of apoptosis and does affect cell proliferation.

The gene KD approach was performed with MO's that were designed to bind to the 5' end of the mRNA and thereby prevent translation of proteins (cf. [35]). Success of KD analyses thus merely can be verified by western blot analyses using a protein specific antibody, in our case anti tamyc/tamax or by quantitative analyses on expression levels of possible Myc/Max target genes [36]. As species-specific antibodies are not available to this point and target genes still remain to be identified, a second approach to simulate absence of myc/max expression was chosen to compare effects and thus assess specificity of MO approach. Myc/Max heterodimerization chemically was prevented by application of the inhibitor 10058-F4 [17].Transfection of animals with MO's was successful, clearly visible in the fluorescence microscope (fig. 2.2.4). Inhibitor treatment furthermore gave results similar to the effects achieved by KD performance. The outcomes indicate that both approaches are affecting Myc and Max on the mRNA level (MO's) as well as on protein level (Inhibitor). However, results of the study have to be further validated by biochemical approaches.

Downregulation of the myc gene leads to defects that can have diverse manifestations in different model systems. In human cell lineages decrease of cMyc inhibits cell proliferation and can also induce apoptosis in certain cancer cells [37]. In the model system D. *melanogaster*, a downregulation of myc results in growth defects deducible to disorders in cellular growth, delay in development and female sterility [38]. The $Hydra\ myc$ gene hymyc1 has been shown to be important for maintenance of cellular homeostasis in the interstitial stem cell lineage [7]. Downregulation enhances proliferation of interstitial stem cells that lead to imbalances in cell differentiation. Myc's impact on the control of cell growth and -proliferation is expected being conserved throughout animal kingdom [3].

Gene KD analyses and inhibition of Myc/Max interaction in *Trichoplax adhaerens* both are lethal for the organism (fig. 2.2.5 and fig. 2.2.8, cf. also fig. A.2.2 and A.2.4). The amount of apoptotic cells furthermore was increased in both cases equally. Cell proliferation however was affected in both directions after MO treatment but not after inhibitor application. 24 h after initial gene KD the proliferation rate was decreased and 72 h of MO treatment resulted in an increase of cell division events. As the proliferation rate of both experimental KD approaches (after 24 h and 72 h) generally fluctuates, we cannot exclude external factors to be the explanation for this such as culturing conditions or seasonal variation in animal population and -size. Further experiments to increase sample size and to include additional time points for monitoring proliferation events will give us more information. Genetic and biochemical inhibition of taMax does have similar

effects as the inhibition of taMyc. It thus seems reasonable that the effects observed after inhibition of Max likely are assigned to the loss of Myc function. Max is required for all hitherto known Myc functions except for transcriptional activation by RNA polymerase III [39]. Discrete effects of *tamyc* or *tamax* downregulation could not be detected by experimental approaches and thus results of experiments are discussed mutually.

We assume that downregulation of *tamyc/tamax* does affect placozoan stem cell proliferation or rather differentiation processes, as *tamyc/tamax* gene expression is prominent in the placozoan stem cell region and thus likely is involved in developmental processes. Additionally, a diminution of size and the reduction or rather loss of the ability to reproduce furthermore pleads for defects in developmental processes. Future experiments now have to focus on other methods to highlight developmental processes in Placozoa. The ParaHox gene of *Trichoplax*, *Trox-2* [13] can be used as a reference gene for double staining approaches and thereby possibly gives a more precise idea about the connection between the Myc/Max network in Placozoa and developmental processes.

Cell division is driven by Myc/Max target genes and thus, downregulation of Myc or Max likewise predominantly result in a reduction or rather complete inhibition of cell cycle events e.g. [37]. After genetic and chemical inhibition of Myc/Max function in Placozoa, BrdU signal as a result of cells entering the S-phase of the cell cycle is still strong. Apparent differences in nuclei sizes are deducible to different cell types on the one hand and distinct stages of the cell cycle that comes together with different levels of chromatin condensation. The BrdU staining is restricted to the chromatin and thus signal may appear brighter and nuclei bigger when chromatin is de-condensed. We assume that cell proliferation possibly is not under complete control of the *tamyc* gene. As placozoan reproduction principally consists of augmentation in size by massive proliferation and subsequent binary fission, it is conceivable that cell proliferation is not exclusively beyond the control of only one genetic network. Unknown feedback loops and rescue mechanism may play important roles in maintaining the proliferative activity of the individual, however this does not prevent defects in the long run as long-term inhibition of taMyc and taMax is lethal. The observed decrease of proliferation in dependence to chosen experimental time points has to be revised carefully and further experiments should be performed to validate present results. Myc is known to be involved into the control of apoptotic events, but the mechanism behind this control is not fully understood (cf. [40, 41]). In other organisms, myc downregulation is often associated with a reduction of apoptosis [42]. In our experiments we could however observe an increase in cell death due to Myc/Max inhibition and KD. Myc also was shown to prevent cells from undergoing apoptosis in certain cell lines [43] and thus downregulation of myc can also increase apoptosis under certain circumstances [44-46] Apoptosis generally is scarce in Trichoplax adhaerens (unpublished data) implying that the mechanism is tightly regulated in Placozoa. Placozoa mainly

reproduce by increasing size and subsequently divide, they do not possess organs and the organism has simple bauplan characteristics reducing the necessity of massive apoptosis due to developmental processes as known from other animals [47]. The increase of dying cells due to tamyc/tamax inhibition mainly is restricted to marginal regions of the animal and thus to the area, where the stem cell are presumed to lie. Assuming that tamyc plays a dominant role in placozoan cell differentiation processes could explain both, the increase of apoptosis after myc downregulation and the unaffected high proliferation rate. Cells that fail to differentiate due to a lack of tamyc die via apoptosis and cell cycling is not exclusively under the control of the Myc/Max network.

Conclusion

The results of this study highlight the importance of basal animal model systems to address questions concerning highly complex mechanisms such as cell cycle control. With the evolution of multicellularity the requirement of molecular tools to control cellular homeostasis arose and thus investigations on these mechanisms in evolutionary older animals as e.g. Placozoa does give us information on primordial functions. The outcomes of performed experiments plead for a role of taMyc/taMax in animal development but do not clearly confirm its function in cell cycle control *per se*. Further studies on taMyc/taMax protein interaction and *whole mount* protein detection by means of specific antibodies will help to greatly enlarge our knowledge on the network at the base of the metazoan tree of life.

Acknowledgements

K. vdC. was funded by an Evangelische Studienwerk Villigst e.V. PhD fellowship, an "Otto Bütschli" scholarship from the Tierärztliche Hochschule Hannover and a travel grant from Boehringer Ingelheim Fonds.

References

- Taub, R., Kirsch, I., Morton, C., Lenoir, G., Swan, D., Tronick, S., Aaronson, S., and Leder, P. (1982). Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A 79, 7837-7841.
- Meyer, N., and Penn, L.Z. (2008). Reflecting on 25 years with MYC. Nat Rev Cancer 8, 976-990.
- 3. Eilers, M., and Eisenman, R.N. (2008). Myc's broad reach. Genes Dev 22, 2755-2766.
- 4. Lüscher, B., and Vervoorts, J. (2012). Regulation of gene transcription by the oncoprotein MYC. Gene 494, 145-160.
- Fernandez, P.C., Frank, S.R., Wang, L., Schroeder, M., Liu, S., Greene, J., Cocito, A., and Amati, B. (2003). *Genomic targets of the human c-Myc protein*. Genes Dev 17, 1115-1129.
- Orian, A., van Steensel, B., Delrow, J., Bussemaker, H.J., Li, L., Sawado, T., Williams, E., Loo, L.W., Cowley, S.M., Yost, C., et al. (2003). *Genomic binding by* the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev 17, 1101-1114.
- Ambrosone, A., Marchesano, V., Tino, A., Hobmayer, B., and Tortiglione, C. (2012). Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris. PLoS One 7, e30660.
- Hartl, M., Mitterstiller, A.M., Valovka, T., Breuker, K., Hobmayer, B., and Bister, K. (2010). Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra. Proc Natl Acad Sci U S A 107, 4051-4056.
- Young, S.L., Diolaiti, D., Conacci-Sorrell, M., Ruiz-Trillo, I., Eisenman, R.N., and King, N. (2011). Premetazoan ancestry of the Myc-Max network. Mol Biol Evol 28, 2961-2971.
- Schierwater, B. (2005). My favorite animal, Trichoplax adhaerens. Bioessays 27, 1294-1302.
- 11. Eitel, M., and Schierwater, B. (2010). The phylogeography of the Placozoa suggests a taxon-rich phylum in tropical and subtropical waters. Mol Ecol 19, 2315-2327.

- Guidi, L., Eitel, M., Cesarini, E., Schierwater, B., and Balsamo, M. (2011). Ultrastructural analyses support different morphological lineages in the phylum Placozoa. Grell, 1971. J Morphol 272, 371-378.
- Jakob, W., Sagasser, S., Dellaporta, S., Holland, P., Kuhn, K., and Schierwater, B. (2004). The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 214, 170-175.
- Schierwater, B., de Jong, D., and Desalle, R. (2009). Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol 41, 370-379.
- Schierwater, B., Eitel, M., Jakob, W., Osigus, H.J., Hadrys, H., Dellaporta, S.L., Kolokotronis, S.O., and DeSalle, R. (2009). Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern "Urmetazoon" Hypothesis. Plos Biology 7, 36-44.
- Ringrose, J.H., van den Toorn, H.W., Eitel, M., Post, H., Neerincx, P., Schierwater, B., Maarten Altelaar, A.F., and Heck, A.J. (2013). Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nat Commun 4, 1408.
- Huang, M.J., Cheng, Y.C., Liu, C.R., Lin, S., and Liu, H.E. (2006). A smallmolecule c-Myc inhibitor, 10058-F4, induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia. Exp Hematol 34, 1480-1489.
- Grell, K.G., and Benwitz, G. (1971). Die Ultrastruktur von Trichoplax adhaerens F.E. Schulze. Cytobiologie 4, 216-240.
- Jakob, W., and Schierwater, B. (2007). Changing hydrozoan bauplans by silencing Hox-like genes. PLoS One 2, e694.
- Srivastava, M., Begovic, E., Chapman, J., Putnam, N.H., Hellsten, U., Kawashima, T., Kuo, A., Mitros, T., Salamov, A., Carpenter, M.L., et al. (2008). *The Trichoplax* genome and the nature of placozoans. Nature 454, 955-960.
- Blackwell, T.K., Kretzner, L., Blackwood, E.M., Eisenman, R.N., and Weintraub, H. (1990). Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149-1151.
- Ellenberger, T. (1994). Getting a grip on DNA recognition: structures of the basic region leucine zipper, and the basic region helix-loop-helix DNA binding domains. Current Opinion in Structural Biology 4, 12-21.
- 23. Cenik, C., Derti, A., Mellor, J.C., Berriz, G.F., and Roth, F.P. (2010). *Genome-wide functional analysis of human 5' untranslated region introns.* Genome Biol 11, R29.

- 24. Le Hir, H., Nott, A., and Moore, M.J. (2003). *How introns influence and enhance eukaryotic gene expression*. Trends Biochem Sci 28, 215-220.
- Fieber, W., Schneider, M.L., Matt, T., Krautler, B., Konrat, R., and Bister, K. (2001). Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. J Mol Biol 307, 1395-1410.
- 26. Terpe, K. (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60, 523-533.
- 27. Hengen, P. (1995). textitPurification of His-Tag fusion proteins from Escherichia coli. Trends Biochem Sci 20, 285-286.
- Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72, 211-222.
- 29. Geisse, S., Gram, H., Kleuser, B., and Kocher, H.P. (1996). *Eukaryotic expression* systems: a comparison. Protein Expr Purif 8, 271-282.
- Blackwood, E.M., and Eisenman, R.N. (1991). Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211-1217.
- Hurlin, P.J., and Huang, J. (2006). The MAX-interacting transcription factor network. Semin Cancer Biol 16, 265-274.
- Schwartz, V. (1984). The radial polar pattern of differentiation in Trichoplax adhaerens F.E. Schulze (Placozoa). Z. Naturforsch. 39c, 818-832.
- 33. Conacci-Sorrell, M., and Eisenman, R.N. (2011). Post-translational control of Myc function during differentiation. Cell Cycle 10, 604-610.
- Dang, C.V., O'Donnell, K.A., Zeller, K.I., Nguyen, T., Osthus, R.C., and Li, F. (2006). The c-Myc target gene network. Semin Cancer Biol 16, 253-264.
- 35. Bennett, C.F., and Swayze, E.E. (2010). RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50, 259-293.
- Grandori, C., and Eisenman, R.N. (1997). Myc target genes. Trends Biochem Sci 22, 177-181.
- 37. Vita, M., and Henriksson, M. (2006). *The Myc oncoprotein as a therapeutic target for human cancer.* Semin Cancer Biol 16, 318-330.

- 38. de la Cova, C., and Johnston, L.A. (2006). Myc in model organisms: a view from the flyroom. Semin Cancer Biol 16, 303-312.
- Gallant, P., and Steiger, D. (2009). Myc's secret life without Max. Cell Cycle 8, 3848-3853.
- 40. Nesbit, C.E., Tersak, J.M., Grove, L.E., Drzal, A., Choi, H., and Prochownik, E.V. (2000). *Genetic dissection of c-myc apoptotic pathways.* Oncogene 19, 3200-3212.
- 41. Pelengaris, S., Khan, M., and Evan, G. (2002). *c-MYC: more than just a matter of life and death.* Nat Rev Cancer 2, 764-776.
- Prendergast, G.C. (1999). Mechanisms of apoptosis by c-Myc. Oncogene 18, 2967-2987.
- Gatti, G., Maresca, G., Natoli, M., Florenzano, F., Nicolin, A., Felsani, A., and D'Agnano, I. (2009). MYC prevents apoptosis and enhances endoreduplication induced by paclitaxel. PLoS One 4, e5442.
- 44. Adhikary, S., and Eilers, M. (2005). *Transcriptional regulation and transformation* by Myc proteins. Nat Rev Mol Cell Biol 6, 635-645.
- D'Agnano, I., Valentini, A., Fornari, C., Bucci, B., Starace, G., Felsani, A., and Citro, G. (2001). Myc down-regulation induces apoptosis in M14 melanoma cells by increasing p27(kip1) levels. Oncogene 20, 2814-2825.
- 46. Zhang, P., Li, H., Wu, M.L., Chen, X.Y., Kong, Q.Y., Wang, X.W., Sun, Y., Wen, S., and Liu, J. (2006). c-Myc downregulation: a critical molecular event in resveratrolinduced cell cycle arrest and apoptosis of human medulloblastoma cells. J Neurooncol 80, 123-131.
- 47. Twomey, C., and McCarthy, J.V. (2005). *Pathways of apoptosis and importance in development.* J Cell Mol Med 9, 345-359.

2.3 Regeneration and self/non-self recognition in the phylum Placozoa

von der Chevallerie, K.¹ Kosubek, J.¹ Schleicherova, D.¹ Eitel, M.^{1,2} Schierwater, B.^{1,3}

¹ Division of Ecology and Evolution, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany

² The Swire Institute of Marine Science, Faculty of Science, School of Biological Sciences, The University of Hong Kong, Hong Kong

³ Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America

This is the authors version of a manuscript in submission to Zoology

74

Abstract

The ability to discriminate 'self' from 'non-self' tissue was one of the key inventions during metazoan evolution. Allorecognition is well studied in colonial marine invertebrates such as Sponges, Cnidaria and Tunicates where it is known to be responsible to maintain genetic integrity. We here describe evidence for tissue recognition mechanisms in the basal metazoan phylum Placozoa. By means of grafting experiments we observed chimeric fusion, rejection and transitory fusion of genetically distinct placozoan lineages. The results of our study suggest the existence of a primitive allorecognition machinery already within the Placozoa. The method could furthermore become a helpful tool to determine additional criteria for placozoan taxonomic classification and could highlight this animal group as a model system also for human transplantation research.

Keywords: Placozoan phylogeny, regeneration, allorecognition, Trichoplax adhaerens

Introduction

The exceptionally eclectic marine invertebrate *Trichoplax adhaerens* is the so far only described species in the phylum Placozoa (for review see e.g. [1,2]). Extensive sampling and phylogenetic analysis with different molecular markers revealed that the phylum Placozoa consists of at least 19 distinct genetic lineages (haplotypes H1-19) distributed worldwide [3]. Placozoan lineages cluster in different clades (I-VII) forming two main groups (A and B) with the subgroups A1 and A2 (c.f. [4]). The genetic diversity found thus far suggests the presence of different species, genera and families within the phylum [4,5]. However, description of new species is not trivial. Even though former studies revealed morphological differences [6], such characters are hard to assign to haplotypes because of ontogenetic plasticity and micro-environmental culture differences. The lack of the complete life cycle under laboratory conditions [7,8] is furthermore limiting experiments on taxonomic classification as no interbreeding experiments can be performed. Besides genetic and morphological analyses, observations on the ecology of different placozoan species do further confirm a high taxonomic diversity (unpublished data). The demands of haplotypes regarding their habitats are diverse and hard to simulate in the laboratory. That is why only a fraction of the known genetic lineages were successfully cultivated thus far (cf. [3-5,9,10]).

With the simplest known animal bauplan (e.g. [1]) and a basal position within the metazoan tree of life [11,12], Placozoa have drawn keen interest within the past years. Genome sequencing efforts revealed the existence of surprisingly complex genomic equip-

ment [13,14]. As the organism is the best living surrogate for the "Urmetazoon" it is eligible to become a promising model system not only for evolutionary biology [12,15]. Placozoa possess a remarkable effective ability to regenerate - they are able to close wounds within minutes and to regenerate a whole individual out of a small proportion of tissue [16,17]. Regeneration is quite common in invertebrates [18-20] but the velocity and efficiency of regeneration in Placozoa is outstanding within animal kingdom.

In course of evolution, the capacity of distinguishing 'self' from 'non-self' became of immense importance whereas sessile colonial organisms had to avoid fusion with foreign tissue to sustain their own kind (cf. [21]). Marine colonial invertebrates undergo natural transplantation when different colonies grow into contact. Allorecognition is widely distributed within marine sessile invertebrate species such as sponges, cnidarians and tunicates and seems to be important in protection against germ line parasitism (e.g. [22-26]). The fusion of conspecifics to chimeric individuals thereby often is restricted to the early stages of development as animals exhibit an ontogenetic shift in the allorecognition response (e.g. [27,28]). Sponges are known to have a great regeneration capacity and grafting of genetically distinct conspecifics mostly comes along with rejection of foreign tissues. Investigations on the demosponge Amphimedon queenslandica even demonstrated that thorough mixture of cells of two individuals sort into territories two weeks after initiation of sponge metamorphosis [24]. However, natural chimerism of the demosponge Scopalina lophyropoda was reported [29] and the authors suggest a benefit in lower total individual mortality risks due to different fitness levels of cells. A recent publication of Pomponi et al. [30] furthermore shows that interspecific sponge hybridomonas can be produced by fusion of non-dividing somatic cells with dividing cells of a different species. Colonial cnidarians such as e.g. the Hydrozoon Hydractinia symbiolongicarpus or the Anthozoon Pocillopora damicornis are capable to discriminate self and close kin from foreign tissues, but lack an allorecognition response in the first 2-8 months post settlement [28,31]. The fresh water cnidarian Hydra vulgaris on the opposite is not able to discriminate between self and conspecifics and thus the discrimination ability is either lost or reduced possibly due to its solitary lifestyle [32]. Studies on the anthozoan genus Montipora demonstrated that even when foreign tissue successfully was removed by allorecognition responses, motile cellular structures could be observed within the gastrovascular canals of Montipora capitata species after previous fusion and rejection of Montipora flabellata tissues [33]. The researchers hypothesize these cells to be a result from chimeric fusion of the two species during larval stage with a subsequent reabsorption of one partner. Fusion between linked colonies frequently was observed also in bryozoans. Frequency of intergrowth thereby positively correlated with the degree of relatedness of individuals and observations suggest an ontogenetic shift in the allorecognition response approximately two weeks after metamorphosis [34]. The urochordate Botryllus schlosseri is a well-studied

 \sim

model for invertebrate allorecognition (for review see e.g. [35]). Contact of genetically distinct *Botryllus* individuals results in fusion or rejection of tissues. After fusion with allogeneic individuals, one competitor generally is resorbed but blood, soma and germ cells remain chimeric [36].

The genetic mechanism of invertebrate allorecognition so far exclusively has been elucidated in the cnidarian Hydractinia symbiolongicarpus and the tunicate Botryllus schlosseri. Active rejection of allogeneic tissue in both organisms can come along with tissue alterations at the contact zone through to destruction of the foreign cells: the colonies 'fight' for space in limited habitats [37]. Therefore, allorecognition also is a powerful factor driving selection. The molecular mechanism for tissue recognition in Hydractinia and Botryllus is known to lie in different gene loci encoding for polymorphic cell surface molecules. The allorecognition complexes (ARC) Alr1/Alr2 in Hydractinia and *fuhc/fester* in *Botryllus*, could be identified by means of breeding experiments and positional cloning [38,39]. Closely related colonies share at least one allele of these loci resulting in fusion or tolerance of competitive colonies [40-43]. Although allodeterminants found so far do not show any homologies, the mechanism is deemed to represent the origin of the immune system also in higher animals with possible homologies in proteins of downstream signaling pathways [21,44]. Besides from evolutionary aspects, research on the allorecognition machinery in other lower animals can give some input into other fields, such as human transplantation research, by identifying general mechanisms in easy-to-culture and easy-to-quantify animal model systems.

In 1984, Schwartz reported on tissue-grafting experiments within individuals of *Tri-choplax adhaerens* [17]. He transplanted marginal and central tissue into the center of a host individual and observed frequent acceptance of these autografts. Grafting of marginal cells thereby resulted in the formation of a new concentric margin as cells kept their marginal differentiation. We now extended his research by using different genetic placozoan lineages as donor and acceptor individuals. The outcome of this study further supports the hypothesis of placozoan taxonomic diversity and suggests the presence of an allorecognition system already in the basal metazoan phylum Placozoa.

Material and Methods

Tissue grafting

Animal material used in experiments was cultured as described in [1,8] and with algaeovergrown microscopic slides equally. Slides were used as additional food source to simulate natural environmental conditions and to increase fitness of diverse lineages. *Trichoplax adhaerens* (16S haplotype H1), H2, H7, H13, H15, H16 and H19 were used for grafting (cf. table 2.3.1). Grafting was performed with a sterile acupuncture needle (thickness 0.3 mm, length 13 mm, Suzhou Tianxie Acupuncture Instruments Co., Ltd.) and solely marginal tissue was grafted. As marginal cells are unable to dedifferentiate to cells of the central tissue, this method produces donut- shaped animals with a concentric second margin and thus successful transplants are easy to detect by eye (cf. fig. A.3.1 D, figure 2.3.1 A and C). Tissues were grafted exclusively into the center of individuals to increase chances for intergrowth. Animal movement is too fast particularly during the regenerative process and tissues, grafted into the marginal region, would simply move apart whereas likelihood of intergrowth is higher when acceptor tissues surround donor tissues. For exemplary visualization of graft intergrowth, donor tissue further was stained with Methylene blue (Carl Roth, Germany) or with the fluorescent DiI (Invitrogen). In each grafting experiment only two individuals were used, one serving as donor and the other as acceptor. We differentiate between three grafting types:

- Autograft: within a clonal lineage
- Intergraft: within a clade
- Xenograft: between two clades

These terms do not necessarily exactly reflect relatedness.

Haplotype	Name of clonal lineage	Clade	Origin, Country	Habitat	Reference
H1	'Grell'	I	Eilat, Israel	algae samples	[2]
H2	'CAR-PAN-4'	1	Bocas del Toro, Panama	mangroves	[4]
H2	'HKG-C1'	1	Hong Kong, China	flow-through seawater system	[3]
H2	'ROS'	1	Roscoff, France	flow-through seawater system	[10]
H7	'OJ-gamma'	III	unknown (aquarium sample)	unknown (aquarium sample)	Osigus et al., unpublished
H16	'KEN-A'	III	Mombasa, Kenya	coral reef	[4]
H19	'ADL-1'	IV	Adelaide, Australia	stony beach	[3]
H13	'M153E-2'	V	Hong Kong, China	mangroves	Eitel et al., unpublished
H15	'M2RS3-11'	V	Hong Kong, China	mangroves	Eitel et al., unpublished

Table 2.3.1: Haplotypes used in this study.

Worldwide isolates from nine haplotypes and four placozoan clades have been used for grafting experiments. To compare fusion success within H2, isolates from different locations and/or habitats were tested.

Microscopy

For visualization of DiI stained individuals, confocal microscopy has been performed using the Leica Confocal TCS-SP5 (Leica Microsystems, Heidelberg GmbH) and DiI coloration was detected with the 546 nm laser line of a helium-neon laser. Stereomicroscopy and light microscopy have been done with a Zeiss Stemi SV6 stereomicroscope and a Zeiss Axiovert 200M, respectively, each connected to digital cameras (Canon "Power Shot" G9, a Zeiss Axio Cam MRn for black and white pictures and a Zeiss Axio Cam ICc3 for color depiction). Pictures have been edited with Adobe Photoshop Elements 8.0 to improve contrast only.

Molecular analysis

In case of intergrowth between different lineages, transplanted animals have been cultivated at least for two weeks and were then checked for genetic chimeras by means of PCR analyses. The DNA of single animals was either isolated on FTA ® Elute Cards (Whatman) depicted in [45] or DNA was isolated via phenol-chloroform extraction described in [46]. In both cases, isolated DNA of single individuals was resuspended in a final volume of 10 μ l distilled water (GIBCO, Invitrogen). After resuspension, 1 μ l of the solution was used as DNA template in a total volume of 25 μ l per PCR reaction. PCR conditions were: initial denaturation at 95 ° - 5min, 45 circles of 95 °C - 30 seconds, 55 °C - 30 seconds, 72 °C 1 minute, and a final elongation step at 72 °C for 4 minutes. A haplotype/clade-specific forward (fw) or reverse (rv) primer was combined with a respective fw or rv universal primer [45] to amplify a 16S-b fragment (see table A.3.1 for primer sequences). Sequence information to design the haplotype-specific primers was taken from [3-5,9]. Positive controls for used primer sets have been performed with genomic DNA from pools of multiple clonal individual for each haplotype. Success of DNA isolation was verified with the universal primer set.

Calculations and Statistics

Results for grafting experiments of certain acceptor/donor haplotypes and vice versa were combined (for raw data see table A.3.2) and percentages of intergrowth were calculated by dividing the number of intergrowths (i) by the number of experiments (n). For boxplot calculations, data were summed up to three taxonomic groups: autografts, intergrafts and xenografts (cf. table A.3.3). Calculations were made with Excel ® (Excel ® for Mac 2011)

Statistical analyses were performed with SPSS Statistics (IBM, version 21.0). To test influences of the donor/acceptor role allocation a Fisher's exact test has been done ([47], cf. table A.3.4). Significances of fusion frequencies in dependence on genetic distances have been calculated by means of the Jonckheere-Terpstra test for independent samples ([48,49], cf. table A.3.3).

Results

Self-compatibility and chimeras

All tested haplotypes were able to steadily accept autografts (fig. 2.3.1, table A.3.2). Intergrafting experiments showed that stable chimera could be generated between *Trichoplax adhaerens* and H2 ('PAN', 'ROS' and 'HKG-C1'). Long-term fusion was verified via PCR (table A.3.4) and stable *Trichoplax* /H2 chimeras have been cultured up to four months. Three H2 clones, derived from different locations, were used for intergrafting experiments (table 2.3.1). Fusion between individuals from different H2 clones was *cum grano salis* \sim

stable. Stability of chimera could only be observed microscopically as the H2 clones do not differ in their 16S sequence. To address this issue divergent genetic markers must be used, i.e. differing alleles of single copy genes or microsatellites of varying length. Under the microscope one could see, however, that transplanted tissue seamlessly integrated into the acceptor individual and donut shaped individuals were detected several days after experiment. This typical phenotype can be observed after successful intergrowth: the transplanted marginal tissue keeps its differentiation and produces a concentric hole in the acceptor animal that is bordered by marginal cells (cf. fig. A.3.1 D, fig. 2.3.2 A and C).

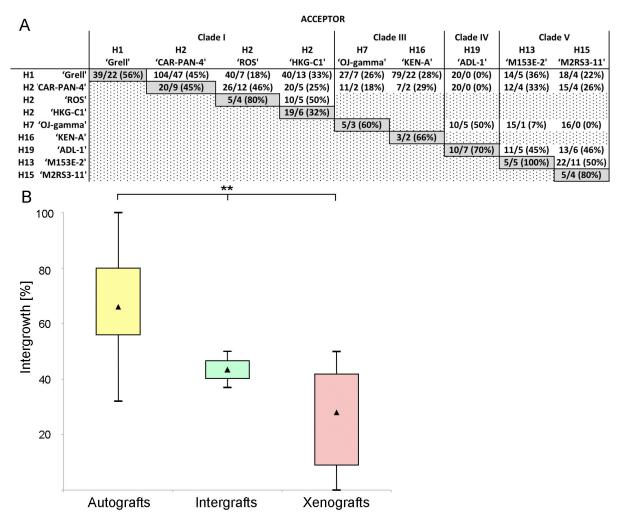


Figure 2.3.1: Frequencies of transient tissue intergrowth.

Frequencies of (transitory) graft intergrowth are shown in (A). Values for reciprocal transplantations were combined (for raw data see table A.3.2). Performed experiments / fusion of individuals are indicated, percentages of intergrowth success are enclosed in brackets. The reduction of fusion ability in inter- and xenografts becomes visible in (B). All tested haplotypes frequently accepted own tissue (autografts in yellow) whereas grafting of different clones of a single haplotype or haplotypes within a clade (intergraft in green) or even between clades (xenografts in red) was less successful. The fusion frequency decreases highly significant in accordance to greater genetic distances of grafted tissues (p < 0.01, Jonckheere-Terpstra test, indicated by asterisks). For data on boxplot analyses and statistics see table A.3.3.

Transitory fusion in xenografts

Xenografting resulted in an initial intergrowth of donor and acceptor tissue, followed by repellence of transplants after 18-48 hours. None of the host individuals did accept xenografts in the long run. Rejection after initial fusion was observed in grafts between *Trichoplax* and H7/H13/H15/H16, H2 ('PAN') and H7/H13/H15/H16, H13 and H7/H19, H15 and H19 as well as H7 and H19. No fusion occurred between H19 and H1/H2 ('PAN') as well as between H7 and H15. Fusion of H7 with H13 only was observed once and repellence occurred shortly (~ 4 hours) after initial fusion. None of these lineages could be verified to form genetic chimeras (table A.3.4). The Fisher's exact test furthermore revealed that there was no notable difference between the two reciprocal transplantation

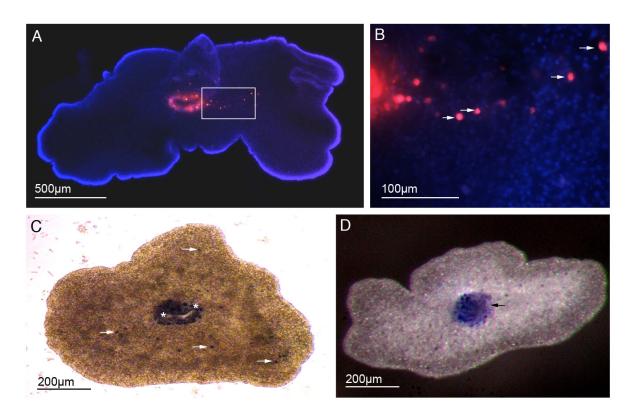


Figure 2.3.2: Exemplary intergrowth and cell migration 24 hours after transplantation.

Autograft between two H2 individuals of the 'PAN' clone are shown to illustrate intergrowth (A) and cell migration (B, higher magnification of the inlet in A). The donor animal was stained with DiI (red) before grafting. After fusion, the animal was fixed and subsequently nucleic acids were stained with DAPI (blue). Arrowheads mark cells migrating into the acceptor individual. An exemplary xenograft of a H2 ('PAN' clone) donor tissue in a H16 ('KEN-A') acceptor individual is shown under light and stereomicroscopy (C and D, respectively). In (C) a view on the lower epithelium is shown, while in (D) one looks on the upper epithelium. The donor H2 individual has been stained with Methylene blue. Cell migration events are detectable (arrowheads). The marginal cells of the donor tissue maintain their marginal differentiation, forming a hole in the middle of the chimera (marked by asterisks in C). In contrast to (C), the concentric margin of the donor tissue is not visible in (D). What one can see here, however, is an intergrowth of acceptor upper epithelium cells (arrowhead).

experiments, i.e. it did not matter which individual served as acceptor and which as donor individual (p > 0.05, table A.3.4). Fusion ability in general declines in accordance to the increase of genetic divergence (fig. 2.3.1B). The Jonckheere-Terpstra test revealed a highly significant monotonic trend (p < 0.01) for fusion frequencies with regards to the genetic distances of donor and acceptor haplotypes (table A.3.3).

Cell migration, tissue alterations and active rejection of grafts during regeneration

Cell migration was observed in auto-, inter-, and xenografts (arrowheads in fig. 2.3.2 B and C). Migrating cells have a spherical appearance and a size of approximately $1 - 2 \mu m$ in diameter. In case of transitory fusion, active rejection of tissue was observed. The donor tissue often did not fuse with the acceptor tissue and, if occurring, intergrowth frequently was restricted to a small proportion of transplanted tissue (fig. 2.3.3 A). In the latter case, the transplant remained loosely connected for approximately 18-48 hours and was subsequently released. In other cases, the upper or lower epithelium of the host animal moved over the previously well-fused transplant and the donor tissue was repelled subsequently (arrowhead in fig. 2.3.2 D). Certain individuals even exposed tissue alterations in the area of transplantation, sometimes still visible also after tissue rejection (fig. 2.3.3 B and C). H7 acceptor individuals even died after H2 or H13 xenografts were rejected.

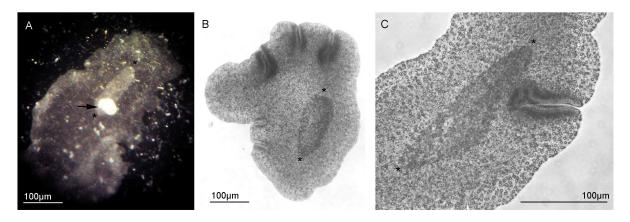


Figure 2.3.3: Xenografting can lead to morphological alterations in the acceptor tissue.

Shown are xenografts between *Trichoplax adhaerens* (H1, acceptor) and H13 (donor) before (A) and after (B, C) donor tissue rejection. 18 hours after grafting (A), the donor tissue (arrowhead) is almost completely repelled and the acceptor tissue around the donor material shows morphological alterations (framed by asterisks). This tissue variation persists even after the donor tissue was rejected (B and at higher magnification in C), strongly indicating allorecognition between the two individuals with different genetic background.

Discussion

Placozoa do posses a self/non-self recognition system

Our experiments have shown that all tested placozoan genetic lineages are able to discriminate between "self" and "non-self" tissue. Placozoa thus do likely possess a primitive self/non-self recognition system possibly similar to the allorecognition systems known e.g. from *Hydractinia* and *Botryllus* [21]. Unfortunately, not all of the identified placozoan lineages can be cultured routinely in the laboratory thus far, limiting our experimental possibilities to few genetic lineages. Additionally, the utilized H16 lineage became extinct in course of the experimental period what further limited the number of experiments. However the results of our studies clearly show that non-related placozoan lineages are able to repel foreign tissues and thereby sustain their own kind.

Placozoan lineages are self-compatible

All of the tested lineages were able to accept autografts as a consequence of the clonal propagation of the Placozoa [50]. Nevertheless, not all of the prepared autografts did fuse (cf. table A.3.3). This can be explained by extensive movement of individuals generally accompanies the regenerative process of Placozoa and the closing of wounds is happening fast [16,17]. Failure in fusion of autografts therefore was due to movement of both: donor and acceptor tissue whereas the acceptor- animal frequently closed the inflicted holes above the donor tissue and thus prevented intergrowth. In future studies, host and acceptor tissue should be prevented from moving to mirror more accurately the fusion rate.

Fusion ability declines with higher genetic divergence of donor and acceptor

Cell surface molecules are known to be responsible for invertebrate allorecognition (cf. [21]). This mechanism involves transmembrane receptor-proteins that allow the detection of foreign cells. Our data suggest that placozoan cells do possess such a recognition system. Auto- and intergraft fusion is more frequent than xenograft intergrowth whereas abundance of autograft fusion > intergraft fusion > xenograft fusion is highly significant (Jonckheere-Terpstra test, p < 0.01). Trichoplax and H2 (at least the 'PAN', 'ROS' and 'HKG-C1' clone) can form stable genetic chimeras, which pleads for close relatedness. Sequencing efforts on the H2 ('PAN' clone) nuclear genome revealed high genetic similarities between Trichoplax and H2 (unpublished data). Therefore proteins of the potential allorecognition machinery should be similar. Unfortunately H7 could not be tested for intergrowth with H16 but we would expect the results to be similar to the observations for Trichoplax with H2 as they belong to one clade and possess striking morphological characteristics namely frailty and density of cilia (own unpublished observations) that further support close relatedness. Chimera of H13 and H15 could not be verified by molecular approaches yet as conducted PCR analyses thus far failed to discriminate between the two haplotypes.

Hence, long-term intergrowth between these lineages remains a speculation and has to be further investigated.

Allorecognition loci have been identified for the cnidarian Hydractinia symbologicarpus (alr1 and alr2 [42]) and the tunicate Botryllus schlosseri (fuhc and fester [38,41]). In these models, transitory fusion of tissue is possible when individuals share a single allele of one locus (*Botryllus*) or, respectively, at least one allele of both loci (*Hydractinia*). In our study, we observed throughout acceptance of grafts only in evolutionary closely related individuals. Transitory fusion and rejection of tissue happened when tissue was grafted between different placozoan lineages. In xenograft experiments we showed that fusion of tissue was only of transient nature and rejection occurred approximately 18-48 h post grafting. PCR analyses further revealed that donor tissue was not detectable in the acceptor individuals after rejection. Transitory fusion might be a result of the existence of a multi-loci allorecognition system in the Placozoa, which generally allows fusion in the first place due to genetic similarities. This multi-level system ensures, however, that foreign tissue will be removed later on, indicating the involvement of at least two, but most probably more membrane-bound allorecognition proteins. Accordingly, the degree of protein sequence similarity would determine the degree of intergrowth. Intergrowth, transitory fusion and rejection should thus directly reflect the evolutionary relationship of individuals, at least with regard to allorecognition proteins. Current placozoan nuclear genome sequencing projects will serve as the basis for future investigations in this field. Comparison of divergent whole genomes will possibly enable the identification of allorecognition genes in the Placozoa. Besides from giving new insights into the nature of allorecognition in lower metazoans, this would also shed additional light on the placozoan taxonomy.

Cell migration and tissue alterations

Tissue staining revealed cell migration in auto-, inter- and xenografts of *Trichoplax*, H2 and H16 individuals at least within the first 48 hours after grafting. Nevertheless, no cells are detectable by molecular approaches after rejection of grafted tissues in xenografts. This could be an indication for destruction of foreign cells in the host individual. Another explanation might be that migrating 'cells' belong to the so-called 'shiny spheres'. These structures are degenerated cells and do contain a greasy fluid (cf. [51,52]) which would also explain the strong signal after DiI coloration being a lipophilic dye. Due to their degeneracy they might have lost their ability to distinguish self from foreign cells and in turn also are not detectable as foreign in the host animal. Nevertheless, this is merely a hypothesis that has to be further investigated as the shiny spheres have been shown to be connected to the fiber cells [6] which would reduce their ability to migrate within the animal. Due to the animals' apparent plasticity, however, a certain mobility of cells within \sim

2

the individual cannot be excluded, including cells connected to shiny spheres. Possibly, shiny sphere are detached during grafting and are able to migrate into the acceptor's upper epithelium.

The occurrence of tissue alterations while rejection of foreign tissues gives hints to incompatibility reactions possibly associated with the release of certain signaling molecules and cytotoxic components. Tunnel assays on altered cells might reveal whether rejection is related to necrosis or apoptosis within tissues as it was observed e.g. in *Hydractinia* [53]. In cnidarians and tunicates, rejection of tissues is either passive or active with the latter coming along with recruitment of nematocytes (Cnidaria) or specializes 'morula' cells (Tunicate) to induce a cytotoxic reaction in the host individual (e.g. [21]). Alterations of host tissues after grafting might be an indication of an aggressive graft rejection.

Grafting experiments can help to unravel placozoan taxonomy

Beside molecular [3-5], morphological [6] and ecological data collected thus far, grafting experiments might help to unravel the relationships within the phylum Placozoa. Data collected in course of this study do support the current view of placozoan phylogeny given by molecular analyses. Close genetic relationship can result in the formation of genetic chimeras as it was observed in grafts between *Trichoplax* and H2 ('PAN', 'ROS' and 'HKG-C1'). Even though grafting experiments seem to be a good complement to morphological and molecular characters to help unravelling the placozoan systematics, one has to bear in mind that proteins of the allorecognition machinery may have been lost in course of evolution or are even more diverged than other genetic markers (see [54]). Genetic equipment and sequences of allorecognition genes thus might be highly diverse between in distantly related haplotypes and particularly in divergent clades. One has to wait for additional placozoan genomes to study the evolution of allorecognition genes and their usability as genetic markers in placozoan systematics.

Conclusions

The phylum Placozoa turned out to be much more diverse than initially thought [3-5]. 19 genetically different lineages have been found so far and despite all sampling efforts this is clearly not the end of the rope. Our study supports the assumption that placozoan taxonomy is diverse and genetic lineages likely even represent different species, genera and families. Results further show that Placozoa are able to discriminate 'self' from 'non-self' tissues and thus do possess a primitive allorecognition system. Future genome sequencing projects and grafting experiments will help to identify proteins involved in self/non-self recognition in Placozoa and will further shed light on phylogenetic relationship within the phylum. Therefore, recreation of the manifold ecological niches hosting the distinct lineages in the laboratory will be necessary which in turn requires a broader knowledge on

the animals ecological needs. Ongoing research in this area will help to understand the biology of Placozoa facilitating further culturing efforts. Besides genetic, morphological and ecological data, grafting experiments will help to further unravel phylogenetic relationships among placozoan lineages and are yet another strong argument that the phylum Placozoa is highly diverse.

Acknowledgments

K. vdC. was funded by an Evangelische Studienwerk Villigst e.V. PhD fellowship, an "Otto Bütschli" scholarship from the Tierärztliche Hochschule Hannover and a travel grant from Boehringer Ingelheim Fonds.

References

- Schierwater B (2005) My favorite animal, Trichoplax adhaerens. BioEssays 27: 1294-1302.
- 2. Grell KG, Benwitz G (1971) Die Ultrastruktur von Trichoplax adhaerens F.E. Schulze. Cytobiologie 4: 216-240.
- Eitel M, Osigus HJ, Desalle R, Schierwater B (2013) Global diversity of the placozoa. PLoS One 8: e57131.
- 4. Eitel M, Schierwater B (2010) The phylogeography of the Placozoa suggests a taxonrich phylum in tropical and subtropical waters. Mol Ecol 19: 2315-2327.
- Voigt O, Collins AG, Pearse VB, Pearse JS, Ender A, et al. (2004) Placozoa no longer a phylum of one. Curr Biol 14: R944-945.
- Guidi L, Eitel M, Cesarini E, Schierwater B, Balsamo M (2011) Ultrastructural analyses support different morphological lineages in the phylum Placozoa Grell, 1971. J Morphol 272: 371-378.
- Grell KG (1972) Eibildung und Furchung von Trichoplax adhaerens F.E.Schulze (Placozoa). Z Morph Tiere 73: 297-314.
- 8. Eitel M, Guidi L, Hadrys H, Balsamo M, Schierwater B (2011) New insights into placozoan sexual reproduction and development. PLoS One 6: e19639.
- Signorovitch AY, Dellaporta SL, Buss LW (2006) Caribbean placozoan phylogeography. Biol Bull 211: 149-156.
- von der Chevallerie K, Eitel M, Schierwater B (2010) Focus on an unexpected discovery in Roscoff - a warm water species of the phylum Placozoa. Cah Biol Mar 212: 21.
- Nosenko T, Schreiber F, Adamska M, Adamski M, Eitel M, et al. (2013) Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogenet Evol 67: 223-233.
- Schierwater B, Eitel M, Jakob W, Osigus HJ, Hadrys H, et al. (2009) Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern "Urmetazoon" Hypothesis. Plos Biology 7: 36-44.
- Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, et al. (2008) The Trichoplax genome and the nature of placozoans. Nature 454: 955-960.

- 14. Ringrose JH, van den Toorn HW, Eitel M, Post H, Neerincx P, et al. (2013) Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nat Commun 4: 1408.
- 15. Schierwater B, de Jong D, Desalle R (2009) *Placozoa and the evolution of Metazoa and intrasomatic cell differentiation*. Int J Biochem Cell Biol 41: 370-379.
- 16. Ruthmann A, Terwelp U (1979) Disaggregation and reaggregation of cells of the primitive metazoan Trichoplax adhaerens. Differentiation 13: 185-198.
- Schwartz V (1984) The radial polar pattern of differentiation in Trichoplax adhaerens F.E. Schulze (Placozoa). Z Naturforsch 39c: 818-832.
- 18. Holstein TW, Hobmayer E, Technau U (2003) Cnidarians: an evolutionarily conserved model system for regeneration? Dev Dyn 226: 257-267.
- 19. Bosch TC (2007) Why polyps regenerate and we don't: towards a cellular and molecular framework for Hydra regeneration. Dev Biol 303: 421-433.
- Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21: 172-185.
- Rosengarten RD, Nicotra ML (2011) Model systems of invertebrate allorecognition. Curr Biol 21: R82-92.
- 22. Lakkis FG, Dellaporta SL, Buss LW (2008) Allorecognition and chimerism in an invertebrate model organism. Organogenesis 4: 236-240.
- Puill-Stephan E, Willis BL, Abrego D, Raina J-B, van Oppen MJH (2012) Allorecognition maturation in the broadcast-spawning coral Acropora millepora. Coral Reefs 31: 1019-1028.
- Gauthier M, Degnan BM (2008) Partitioning of genetically distinct cell populations in chimeric juveniles of the sponge Amphimedon queenslandica. Dev Comp Immunol 32: 1270-1280.
- 25. Muller WE, Muller IM (2003) Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integr Comp Biol 43: 281-292.
- Hauenschild C (1954) Genetische und entwicklungsphysiologische Untersuchungen über Intersexualität und Gewebeverträglichkeit bei Hydractinia echinata Flemm. (Hydroz. Bougainvill). Roux Arch Dev Biol 147: 1-41.

- McGhee KE (2005) The importance of life-history stage and individual variation in the allorecognition system of a marine sponge. Journal of Experimental Marine Biology and Ecology 333: 241-250.
- Wilson ACC, Grosberg RK (2004) Ontogenetic shifts in fusion-rejection thresholds in a colonial marine hydrozoan, Hydractinia symbiolongicarpus. Behav Ecol Sociobiol 57: 40-49.
- 29. Blanquer A, Uriz MJ (2011) "Living together apart": the hidden genetic diversity of sponge populations. Mol Biol Evol 28: 2435-2438.
- 30. Pomponi SA, Jevitt A, Patel J, Diaz MC (2013) Sponge Hybridomas: Applications and Implications. Integr Comp Biol.
- 31. Hidaka M, Yurugi K, Sunagawa S, Kinzie RA (1997) Contact reactions between young colonies of the coral Pocillopora damicornis. Coral Reefs 16: 13-20.
- Kuznetsov SG, Bosch TC (2003) Self/nonself recognition in Cnidaria: contact to allogeneic tissue does not result in elimination of nonself cells in Hydra vulgaris. Zoology (Jena) 106: 109-116.
- 33. Work TM, Forsman ZH, Szabo Z, Lewis TD, Aeby GS, et al. (2011) Inter-specific coral chimerism: genetically distinct multicellular structures associated with tissue loss in Montipora capitata. PLoS One 6: e22869.
- Hughes RN, Manriquez PH, Morley S, Craig SF, Bishop JD (2004) Kin or selfrecognition? Colonial fusibility of the bryozoan Celleporella hyalina. Evol Dev 6: 431-437.
- Rinkevich B (2005) Natural chimerism in colonial urochordates. Journal of Experimental Marine Biology and Ecology 322: 93-109.
- 36. Raftos DA (1991) Cellular restriction of histocompatibility responses in the solitary urochordate, Styela plicata. Dev Comp Immunol 15: 93-98.
- Oren M, Paz G, Douek J, Rosner A, Amar KO, et al. (2013) Marine invertebrates cross phyla comparisons reveal highly conserved immune machinery. Immunobiology 218: 484-495.
- 38. De Tomaso AW, Saito Y, Ishizuka KJ, Palmeri KJ, Weissman IL (1998) Mapping the genome of a model protochordate. I. A low resolution genetic map encompassing the fusion/histocompatibility (Fu/HC) locus of Botryllus schlosseri. Genetics 149: 277-287.

- 39. Mokady O, Buss LW (1996) Transmission genetics of allorecognition in Hydractinia symbiolongicarpus (Cnidaria:Hydrozoa). Genetics 143: 823-827.
- 40. Scofield VL, Schlumpberger JM, West LA, Weissman IL (1982) Protochordate allorecognition is controlled by a MHC-like gene system. Nature 295: 499-502.
- Nyholm SV, Passegue E, Ludington WB, Voskoboynik A, Mitchel K, et al. (2006) fester, A candidate allorecognition receptor from a primitive chordate. Immunity 25: 163-173.
- 42. Cadavid LF, Powell AE, Nicotra ML, Moreno M, Buss LW (2004) An invertebrate histocompatibility complex. Genetics 167: 357-365.
- 43. Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J, et al. (2009) A hypervariable invertebrate allodeterminant. Curr Biol 19: 583-589.
- 44. Dishaw LJ, Litman GW (2009) Invertebrate allorecognition: the origins of histocompatibility. Curr Biol 19: R286-288.
- 45. Signorovitch AY, Dellaporta SL, Buss LW (2005) Molecular signatures for sex in the *Placozoa*. Proc Natl Acad Sci U S A 102: 15518-15522.
- Ender A, Schierwater B (2003) Placozoa are not derived cnidarians: evidence from molecular morphology. Mol Biol Evol 20: 130-134.
- 47. Fisher R (1922) On the Interpretation of χ^2 from Contingency Tables, and the Calculation of P. Journal of the Royal Statistical Society 85: 87-94.
- Jonkheere A (1954) A distribution-free k-sample test against ordered alternatives. Biometrica 41: 133-145.
- 49. Terpstra T (1952) The asymptotic normality and consistency of Kendall's test against trend, when ties are present in one ranking. Indagationes Mathematicae 14: 327-333.
- 50. Grell KG (1984) *Reproduction of Placozoa*. In: Engels W, editor. Advances in Invertebrate Reproduction: Elsevier. pp. 541-546.
- Grell KG, Ruthmann A (1991) *Placozoa*. In: Harrison FW, Westfall, J.A., editor. Microscopic Anatomy of Invertebrates, Placozoa, Porifera, Cnidaria, and Ctenophora. New York: Wiley-Liss. pp. 13-28.
- 52. Syed T, Schierwater B (2002) Trichoplax adhaerens: discovered as a missing link, forgotten as a hydrozoan, re-discovered as a key to metazoan evolution. Vie Milieu 52: 177-187.

- 53. Buss LW, Anderson C, Westerman E, Kritzberger C, Poudyal M, et al. (2012) Allorecognition triggers autophagy and subsequent necrosis in the cnidarian Hydractinia symbiolongicarpus. PLoS One 7: e48914.
- 54. Miller DJ, Hemmrich G, Ball EE, Hayward DC, Khalturin K, et al. (2007) The innate immune repertoire in cnidaria ancestral complexity and stochastic gene loss. Genome Biol 8: R59.

Chapter 3

3 General Discussion

"Nature was not designed to make life easy for biologists."

(Colin Tudge, 2007)

 \mathbf{m}

 \mathbf{m}

3.1 General Discussion

Cell cycle control at the base of the metazoan tree of life

The sequencing of the genome of *Trichoplax adhaerens* in 2008 revealed the presence of more than 11,000 protein-coding genes, a much higher genomic complexity than expected from such a simple animal [1]. Most identified genes are homologous to higher metazoan genes involved in various mechanisms from cell signaling to stimuli perception. With the evolution of Metazoa from a unicellular ancestor came the requirement to control maintenance of cellular homeostasis within a tissue [2]. As Placozoa possess the highest similarities to the hypothetical "Urmetazoon" [3, 4] its genetic repertoire is suspected to hold a primitive or even basal version of genetic networks responsible e.g. for cell cycle control [5]. In this thesis two networks that are of crucial importance regarding cell cycle and apoptosis control in other animals have been investigated in *Trichoplax adhaerens*: (i) the basic helix-loop-helix leucine zipper Myc and Max and (ii) the tumor suppressor p53 with its ubiquitin ligase Mdm2.

(i) First experimental approaches on the Myc/Max network of transcription factors in Trichoplax adhaerens were performed. Deregulations of myc gene expression have been known to be responsible for a large number of human malignancies [6]. By means of gene expression analyses and inhibition studies in combination with the detection of apoptosis (TUNEL) and cell proliferation (BrdU), Myc/Max homologous have been investigated in Trichoplax adhaerens (taMyc and taMax). Both genes are expressed in a similar pattern that varies dependent on the developmental stage of the individual. Artificial downregulation of taMyc and taMax (by means of morpholino oligonucleotides or via inhibitor application) both result in an increase of apoptotic events lethal to the animals. Cell proliferation was monitored after inhibition of taMyc and taMax what however gave controversial results and thus should be reinvestigated under different conditions. Overall the findings of this study suggest that downregulation of taMyc and taMax on mRNA and protein level does affect placozoan stem cell proliferation or rather differentiation processes. Both genes are strongly expressed in the placozoan marginal region where the placozoan stem cells are known to be located and thus taMyc and taMax are most probably also involved in differentiation processes.

Further experiments in this field should confirm and extend recent findings. Particularly experiments on protein binding capability have to be performed to validate interaction of the *Trichoplax* Myc and Max proteins. Recombinant expression of both proteins will furthermore allow the production of antibodies that can be used to unravel protein interaction *in situ* which would essentially enrich our knowledge on *tamyc* and *tamax* mRNA distribution. To further clarify the involvement of the *Trichoplax* Myc/Max network of transcription factors in the development of individuals, double staining with antibodies

against the *Trichoplax Trox-2* protein, which is known to be crucial for the animals' development, will help to detect functional coherences. Previous difficulties in recombinant protein expression occurred in connection with poor solubility of the full-length *Trichoplax* Myc protein. Future approaches thus should focus on shorter transcripts of the protein that contain corresponding domains of interest as e.g. the C-terminal part of the protein that contain DNA and Max binding sites [7].

(ii) Investigations on interactions of the tumor suppressor p53 and its ubiquitin ligase Mdm2 in Placozoa were done by application of known inhibitors of p53/Mdm2 interaction: the purine roscovitine and the cis-imidazoline Nutlin-3 [8, 9]. Both inhibitors turned out to be lethal for the organism and significantly increased the amount of cell death via apoptosis monitored with the TUNEL essay. Application of roscovitine furthermore decreased cell proliferation events detected by means of BrdU incorporation. This however likely is deducible to its function as cyclin-dependent kinase inhibitor [10]. Phenotypic abnormalities could be observed after usage of inhibitors characterized by an imbalance of central-marginal tissue ratios. Overall the study suggests that p53 and Mdm2 are involved in the control of apoptosis and also in developmental processes. Former transcriptome analyses furthermore revealed the existence of different splicing variants of the *Trichoplax* p53 gene (unpublished data) suggesting the interaction to be more complex as initially thought. Additional research including gene expression and protein- interaction studies will help to further shed light on the role of these genes in Placozoa.

Allorecognition in Placozoa

The enigmatic phylum Placozoa possesses the ability to regenerate in an unchallenged manner. Described in detail by Schwartz in 1984 [11] grafting experiments performed in course of this thesis included the usage of different placozoan lineages. Results demonstrate that placozoans do possess the ability to distinguish self from non-self tissue. The regeneration capability further yields the potential to become a valid tool for placozoan taxonomic classification.

Trichoplax adhaerens has been thought to be the only representative of the phylum Placozoa, but the discovery of genetically distinct individuals suggests that variety of species is much more diverse than initially thought [12]. The classification of placozoan genetic lineages into different species, genera and families is a main focus of current research [13]. Molecular markers thus far defined 19 different lineages grouping into seven clades, which in turn cluster into two main groups (A and B) with the subgroups A1 and A2 [14]. Besides genetic criteria, morphological traits and ecological needs are taken into account ([15], Schierwater *et al.* unpublished data). As Placozoa mainly reproduce vegetatively under laboratory conditions, interbreeding experiments cannot be easily [16]. The remarkable regeneration efficiency of different placozoan lineages however

allows grafting experiments in which two genetically distinct individuals are mixed and investigated for intergrowth. Seven of the 19 different haplotypes described thus far have been used for grafting experiments in which marginal tissue was grafted between two genetically distinct placozoan lineages.

Grafting experiments resulted in three distinct reactions after bringing together non-self tissues: (i) fusion, (ii) transitory fusion and (iii) rejection of grafted tissues. (i) Fusion of tissues resulted in the formation of genetic chimeras and was observed in autografts (i.e. between identical haplotypes) as well as intergrafts of H1 and H2. (ii) Transitory fusion is characterized by initial fusion and rejection of tissue after 12-48 hours. The rejection reaction then can come along with tissue alterations at the contact zone. (iii) Immediate rejection does not come along with any intergrowth. Foreign tissues simply move apart after grafting. The outcomes of performed experiments do suggest the existence of a multi-loci self/non-self recognition system in the Placozoa whereas congruities in gene loci result in (transitory) fusion of tissues. Thus, the degree of lineage relatedness, at least regarding the coding region of the recognition system, is mirrored by the degree of intergrowth. The results of our study reflect, in essence, the taxonomy created by former molecular analyses at least regarding the relation of different clades. Likelihood for successful intergrowth generally declines with increased genetic distances. To make a more detailed statement about relationships of lineages within a clade we first and foremost have to increase sample size and include experiments on different individuals of one clade. Not all discovered placozoan lineages can be cultured in the laboratory yet what drastically limits our experimental possibilities. Tissue grafting between placozoan species H1 and H2 demonstrated a close relatedness of these two lineages, as individuals were able to merge to genetic chimeras. The overall results of experiments conducted in course of this thesis further support the hypothesis that Placozoan taxonomy is much more diverse as previously expected and also highlights *Trichoplax* as a model for research on invertebrate allorecognition systems. The identification of the underlying genetic mechanism controlling acceptance or repellence of tissue in this simple organism could help to understand the evolution of histocompatibility also in higher animals.

The potential of Placozoa as a model system for applied research

With its flat, translucent appearance *Trichoplax* can be designated a "crawling epithelia culture". The cultivation of animals is straightforward and their way of reproduction facilitates the maintenance of clonal lineages [17]. As the placozoan genome is sequenced, information on the genetic equipment is accessible [1]. Standard cell biology and developmental genetic methods (e.g. BrdU staining or the TUNEL essay, gene expression and gene knock downs [18-20]) are applicable to the individuals. Its regenerative capacity enables conduction of experiments that open a wide range of experimental possibilities:

Experimentally treated tissues could for instance merge into untreated individuals as a control experiment and one cold also test influences of different chemicals or drugs in one and the same individual (and thus identical conditions) by simply cutting one individual into two or more.

To further qualify the Placozoa as a serious model system on an equal level as well-known models such as *Hydra* [21], *Caenorhabditis* [22] or *Drosophila* [23], the creation of transgenic *Trichoplax* individuals is one of the most important tasks to fulfill. Even though cultivation of animals is straightforward using artificial seawater and a mixture of algae and soil extract, methods have to become more standardized at least for transgenic organisms to avoid the occurrence of threatening contaminations. Epitopes of most commercially available antibodies do not fit *Trichoplax* proteins. As the genome is sequenced, recombinant protein synthesis for antibody manufacture is straightforward. A set of standard antibodies (e.g. cell cycle markers) will help to determine developmental stages of investigated individuals and thus facilitate comparability of e.g. gene expression studies.

In order to get valid information on gene expression pattern within the organisms, e.g. during different developmental stages, microarray technology could be used to test several genes in one approach [19]. Again, the sequenced genome gives us an advantage, as it facilitates also the design of microarrays.

Placozoa do possess a great potential to serve as a model system for many areas of biological research. As the animal is the best living surrogate for the first metazoan, its genetic equipment can be seen as a "basic toolkit" for multicellular organisms. Thus, complicated mechanisms such as signaling pathways and cell cycle control might be rather simple in this frugal organism. Ongoing research in this area will soon further emphasize the importance of Placozoa as a model system not only for evolutionary biology.

References

- Srivastava, M., Begovic, E., Chapman, J., Putnam, N.H., Hellsten, U., Kawashima, T., Kuo, A., Mitros, T., Salamov, A., Carpenter, M.L., et al. (2008). *The Trichoplax* genome and the nature of placozoans. Nature 454, 955-960.
- Grosberg, R.K., and Strathmann, R.R. (2007). The Evolution of Multicellularity: A Minor Major Transition? Annu. Rev. Ecol. Evol. Syst. 38, 621–654.
- Schierwater, B., Eitel, M., Jakob, W., Osigus, H.J., Hadrys, H., Dellaporta, S.L., Kolokotronis, S.O., and DeSalle, R. (2009). Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern "Urmetazoon" Hypothesis. Plos Biology 7, 36-44.
- Schierwater, B., Desalle, R., Jakob, W., Schroth, W., Hadrys, H., and Dellaporta, S. (2006). Total evidence analysis identifies Placozoa as basal to extant Metazoa. Integrative and Comparative Biology 46, E126-E126.
- Schierwater, B., de Jong, D., and Desalle, R. (2009). Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol 41, 370-379.
- Lüscher, B., and Vervoorts, J. (2012). Regulation of gene transcription by the oncoprotein MYC. Gene 494, 145-160.
- Fieber, W., Schneider, M.L., Matt, T., Krautler, B., Konrat, R., and Bister, K. (2001). Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. J Mol Biol 307, 1395-1410.
- 8. Lu, W., Chen, L., Peng, Y., and Chen, J. (2001). Activation of p53 by roscovitinemediated suppression of MDM2 expression. Oncogene 20, 3206-3216.
- Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844-848.
- Meijer, L., Borgne, A., Mulner, O., Chong, J.P., Blow, J.J., Inagaki, N., Inagaki, M., Delcros, J.G., and Moulinoux, J.P. (1997). Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243, 527-536.
- Schwartz, V. (1984). The radial polar pattern of differentiation in Trichoplax adhaerens F.E. Schulze (Placozoa). Z. Naturforsch. 39c, 818-832.

- 12. Voigt, O., Collins, A.G., Pearse, V.B., Pearse, J.S., Ender, A., Hadrys, H., and Schierwater, B. (2004). *Placozoa no longer a phylum of one*. Curr Biol 14, R944-945.
- 13. Eitel, M., and Schierwater, B. (2010). The phylogeography of the Placozoa suggests a taxon-rich phylum in tropical and subtropical waters. Mol Ecol 19, 2315-2327.
- Eitel, M., Osigus, H.-J., DeSalle, R., and Schierwater, B. (2013). Global diversity of the Placozoa. PLoS One 8: e57131.
- Guidi, L., Eitel, M., Cesarini, E., Schierwater, B., and Balsamo, M. (2011). Ultrastructural analyses support different morphological lineages in the phylum Placozoa Grell, 1971. J Morphol 272, 371-378.
- Grell, K.G., and Ruthmann, A. (1991). *Placozoa*. In Microscopic Anatomy of Invertebrates, *Placozoa*, *Porifera*, *Cnidaria*, and *Ctenophora*, Volume Vol. 2, F.W. Harrison, Westfall, J.A., ed. (New York: Wiley-Liss), pp. 13-28.
- Schierwater, B. (2005). My favorite animal, Trichoplax adhaerens. Bioessays 27, 1294-1302.
- Gavrieli, Y., Sherman, Y., and Ben-Sasson, S.A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119, 493-501.
- Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470.
- Jakob, W., Sagasser, S., Dellaporta, S., Holland, P., Kuhn, K., and Schierwater, B. (2004). The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev Genes Evol 214, 170-175.
- Galliot, B. (2012). Hydra, a fruitful model system for 270 years. Int J Dev Biol 56, 411-423.
- 22. Brenner, S. (2009). In the beginning was the worm. Genetics 182, 413-415.
- Beckingham, K.M., Armstrong, J.D., Texada, M.J., Munjaal, R., and Baker, D.A. (2005). Drosophila melanogaster-the model organism of choice for the complex biology of multi-cellular organisms. Gravit Space Biol Bull 18, 17-29.

Appendix A

A Appendix

A.1 Inhibitors of the p53-Mdm2 interaction in the placozoon *Trichoplax adhaerens*

			Nutlin-	3 10µM					Roscoviti	ne 20µM		
			Experiment	the second s		Standard		Experiment				Standard
Day No	No1	No2	No3	No4	Average	Deviation	No1	No2	No3	No4	Average	Deviation
1	22 14	20 20	and the second se	20 21	20.5 19.25	0.8660254 3.1124749	25 27	23 23	21 25	20 21		1.92028644 2.23606798
3	14	20		18		3.20156212	27	6	23	21		8.43726852
4	14	23	1000	22		3.49106001	26	4	9	17	14	8.336666
5	14	18		13	14.25	2.27760839	21	0	8	16		7.98044485
6	13	1		10	-	5.61248608	17	0	6	10	0.00	6.17960355
7	11 3	C	0 0	4		4.49305019 1.41421356	20 15		6	3	9.66666667	7.40870359 6.164414
9	1		0	3	1.333333333		7		0	0	2.666666667	
10	1		0	0	0.333333333		5		0	0	1.666666667	2.3570226
		F		SW		Chandrand	F	F	0.1%		i i	Chan dand
Day No	No1	Experiment No2	Experiment No3	Experiment No4	Average	Standard Deviation	Experiment No1	Experiment No2	Experiment No3	Experiment No4	Average	Standard Deviation
1	25	24	and the second	20	22.5	2.06155281	24	26	22	20	-	2.23606798
2	24	24	24	23	23.75	0.4330127	25	26	23	23		1.29903811
3	27	27		24		1.29903811	26	28	24	24	25.5	1.6583124
4	29	27	1000	31		1.92028644	28	28	23	26		2.04633819
5 6	28 26	28 28		31 30	29 28.5	1.22474487 1.6583124	32 32	31 31	27 28	26 28		2.54950976 1.78535711
7	28	20	29	35	30.66666667		32	51	28	28		3.68178701
8	31		30	37	32.6666667	3.09120617	34		29	27		2.94392029
9	31		29	33		1.63299316	29		30	25	28	2.1602469
10	32		31	40	34.3333333	4.02768199	31		30	25	28.6666667	2.62466929
В												
	ASW/		DMSO/	A C14	+DMSO/		ASW/		DMCO	,	ASW+D	
			•				•		DMSO,			-
			μM Nutlir		1 Nutlin-3		1 Roscovi	tine 20µ			0µM Ros	
1	0.1723		0.12098		09785		0.88289		0.67484		0.728	37
2	0.04779	9* (0.04246*	0.0	0495**		0.85549		0.87525	2	1	
3	0.03896	5*	0.05316	0.0	0623**		0.26917		0.29078	3	0.111	.76
4	0.01015	5* (0.03191*	0.0	0207**	().02787*		0.04834	*	0.0032	7**
5 6	6.207E-05	5*** 0	.0003***	1.02	6E-06***	0	.00889**		0.01046	*	0.0003	***
6 (0.00055	*** 0.	00043***	2.18	4E-06***	0.	00154***	k	0.00116*	**	1.123E-(05***
7	0.00273	** 0	.00462**	0.0	001***	(0.02084*		0.03144	*	0.0019	9**
8 (0.00022	*** 0.	00027***	3.71	9E-06***	0	.00624**		0.0089*	*	0.0002	5***
9 (0.00038	*** 0.	00011***	2.230)8E-05***	* <u>0</u> .	00091***	k	0.00069*	**	5.461E-0)5***
10 (0.00029	*** 0.	00011***	1.34	4E-05***	0.	00058***	k	0.00041*	**	2.782E-0)5***

Table A.1.1: Raw data on animal population size after inhibitor treatment.

Animals were treated with Nutlin-3 (10 μ M) and Roscovitine (20 μ M) in four independent experiments and were counted daily (A). Statistical analyses (B) were performed with a two-tailed T-test. P-values are indicated and significances are highlighted with asterisks: p < 0.05 *, p < 0.01 ***, p < 0.001 ***.

A.1 Inhibitors of the p53-Mdm2 interaction in the placozoon *Trichoplax adhaerens*

А

A								
		10100100	Day1				Day2	
	0.1% DMSO	ASW		Roscovitine 20µM	0.1% DMSO	ASW	•	Roscovitine 20µM
No. samples	81	98	72	84	91	90	75	56
	16.3231728		12.06779167	9.568	14.6341319		10.14993333	5.761089286
Standard deviation		7.4704374	5.948545922	4.914228378		7.46855523	5.27872515	3.639351783
Minimum	2.933	0.213	0.19	0.494	0.628	0.948	2.643	0.166
Median	15.518	12.695	10.9105	8.6435	14.792	11.35	8.307	5.6925
Maximum	45.844	39.57	33.573	24.908	37.676	48.561	26.874	16.846
lower Quartile	10.641	8.09075	8.04875	6.02475	8.9505	7.0025	6.481	2.418
upper Quartile	21.617	18.57425	15.12875	12.493	18.8835	14.92675	13.277	8.15875
			Day3				Day4	
	0.1% DMSO	ASW		Roscovitine 20µM	0.1% DMSO	ASW		Roscovitine 20µM
No. samples	96	80	73	51	93	90	46	44
Average	12.0277188	9.5746375	6.551013699	4.400431373	9.33095745	8.19874725	4.317553191	3.945688889
Standard deviation	6.4992532	5.13002725	2.807819622	2.756764097	4.78004903	5.81595977	2.11697346	2.560011891
Minimum	0.488	0.334	0.007	0.387	0.404	0.256	0.377	0
Median	11.738	8.601	6.28	3.893	8.962	7.417	4.167	4.017
Maximum	33.438	25.495	16.235	10.702	29.138	34.888	9.42	8.991
lower Quartile	7.15475	6.2335	4.631	2.584	6.33975	5.1565	2.723	1.856
upper Quartile	15.98825	12.65625	8.02	5.9805	11.7985	9.643	5.6515	5.235
			Day5				Day6	
	0.1% DMSO	ASW	Nutlin-3 10µM	Roscovitine 20µM	0.1% DMSO	ASW	Nutlin-3 10µM	Roscovitine 20µM
No. samples	108	96	15	39	65	66	15	24
Average	7.41075229	7.62501042	3.907	3.114525	7.49198462	7.76989394	3.531058824	2.016625
Standard deviation	4.54853908	6.40020231	2.421557671	2.180252187	4.80115835	5.39581514	1.814386996	1.543898281
Minimum	0.156	0.281	0	0	0.572	0.189	0	0.185
Median	7.259	6.5825	3.429	2.837	7.042	6.975	3.003	1.744
Maximum	22.058	43.341	8.507	7.729	25.17	31.329	6.936	5.809
lower Quartile	4.36	4.1705	2.85625	1.24125	4.722	4.098	2.719	0.57675
upper Quartile	10.294	8.34725	5.30925	4.6855	9.991	10.0145	4.654	3.001
			Day7				Day8	
	0.1% DMSO	ASW	Nutlin-3 10µM	Roscovitine 20µM	0.1% DMSO	ASW	Nutlin-3 10µM	Roscovitine 20µM
No. samples	59	57	9	23	58	59	7	14
Average	7.72226667	8.34837097	3.0332	1.924	7.19842857	8.2246	1.918571429	1.870133333
Standard deviation	4.12965629	6.09125725	1.79001714	1.271002754	4.6059325	6.34178848	1.062105168	1.034304395
Minimum	0.289	0.517	0	0	0.935	0.481	0	0
Median	7.379	6.7785	2.805	1.9785	5.938	6.738	1.706	2.135
Maximum	18.114	33.754	7.42	4.561	22.502	34.516	3.634	4.271
lower Quartile	4.67875	4.72575	2.23025	0.89775	4.29	4.5965	1.551	1.3145
upper Quartile	10.279	10.6845	3.58175	2.82625	9.846	10.07475	2.494	2.3405
			Day9				Day10	
1	0.1% DMSO	ASW	1000	Roscovitine 20µM	0.1% DMSO	ASW		Roscovitine 20µM
No. samples	0.1% DMSO 22	ASW 36	Nutlin-3 10µM	Roscovitine 20µM	0.1% DMSO	ASW 21		Roscovitine 20µM
No. samples		36	Nutlin-3 10µM			21	Nutlin-3 10µM	
No. samples Average	22 6.83636364	36	Nutlin-3 10μM 1	. 8	18	21 5.29486364	Nutlin-3 10μM 1	5
No. samples Average	22 6.83636364	36 6.24330556	Nutlin-3 10μM 1 0.962	8 1.239666667	18 8.58210526	21 5.29486364	Nutlin-3 10μΜ 1 1.821	5 0.7828
No. samples Average Standard deviation	22 6.83636364 3.22902019	36 6.24330556 3.50347845	Nutlin-3 10μM 1 0.962 0.962	8 1.239666667 0.530476725	18 8.58210526 3.42996263	21 5.29486364 2.09572544	Nutlin-3 10μM 1 1.821 0	5 0.7828 0.496386704
No. samples Average Standard deviation Minimum	22 6.83636364 3.22902019 0.488 6.907	36 6.24330556 3.50347845 0.395 5.866	Nutlin-3 10μΜ 1 0.962 0.962 0	8 1.239666667 0.530476725 0 1.401	18 8.58210526 3.42996263 2.295 8.764	21 5.29486364 2.09572544 1.486	Nutlin-3 10μΜ 1 1.821 0 1.821 1.821	5 0.7828 0.496386704 0.256 0.58
No. samples Average Standard deviation Minimum Median	22 6.83636364 3.22902019 0.488	36 6.24330556 3.50347845 0.395	Nutlin-3 10μΜ 1 0.962 0.962 0 0 0.962	8 1.239666667 0.530476725 0	18 8.58210526 3.42996263 2.295	21 5.29486364 2.09572544 1.486 5.3355	Nutlin-3 10μΜ 1 1.821 0 1.821	5 0.7828 0.496386704 0.256

4

В

D						
	ASW/	DMSO/	ASW+DMSO/	ASW/	DMSO/	ASW+DMSO/
Day	10µM Nutlin-3	10µM Nutlin-3	10µM Nutlin-3	20µM Roscovitine	20µM Roscovitine	20µM Roscovitine
1	0.11298	0.00039***	0.00612**	1.969E-05***	1.332E-09***	3.127E-08***
2	0.06632	8.802E-06***	0.00075***	3.07E-08***	3.345E-15***	1.81E-12***
3	1.775E-05***	3.092E-10***	1.284E-08***	1.133E-09***	4.743E-13***	2.067E-12***
4	6.695E-08***	2.661E-10***	3.128E-07***	8.644E-11***	7.807E-06***	6.607E-08***
5	0.01755*	0.00192**	0.00651**	3.003E-05***	6.399E-08***	1.301E-06***
6	0.00226**	0.00145**	0.00139**	2.013E-06***	5.225E-07***	3.918E-07***
7	0.00864**	0.00087***	0.00333**	2.394E-06***	2.768E-09***	7.974E-08***
8	0.02732*	0.01253*	0.01902*	0.00063***	0.00011***	0.00024***
9	0.23855	0.16082	0.19604	0.00043***	0.0001***	0.0001***
10	0.12816	0.07783	0.1401	0.0001***	7.494E-05***	0.00019***
10	0.12816	0.07783	0.1401	0.0001***	7.494E-05***	0.00019

Table A.1.2: Raw data of animal sizes after inhibitor treatme	ent.
---	------

After treatment with Nutlin-3 (10µM) and Roscovitine (20µM) as well as 0.1 % DMSO and ASW only (negative controls) the body sizes of animals were measured daily (indicated in mm², A). A two-tailed T-test was performed and p-values are stated in (B). Significances are highlighted with asterisks: p < 0.05 *, p < 0.01 **, p < 0.001 ***.

А

<u></u>								
		Experi	ment l			Experii	ment II	
	10µM I	Nutlin-3	20µM R	oscovitine	10µM	Nutlin-3	20µM R	oscovitine
Day of	No. animals	No. abnormal	No. animals	No. abnormal	No. animals	No. abnormal	No. animals	No. abnormal
experiment	monitored	phenotypes	monitored	phenotypes	monitored	phenotypes	monitored	phenotypes
1	21	0	30	9	22	3	25	0
2	29	1	7	0	23	5	21	10
3	26	7	5	0	20	6	13	8
4	18	2			12	0	9	7
5							7	5
6							7	2
		Experin	nent III			Experin	nent IV	
	10µM I	Nutlin-3	20µM R	oscovitine	10µM	Nutlin-3	20µM Ro	oscovitine
Day of	10µM I No. animals	Nutlin-3 No. abnormal				Nutlin-3 No. abnormal		
Day of experiment								
	No. animals	No. abnormal	No. animals	No. abnormal	No. animals	No. abnormal	No. animals	No. abnormal
	No. animals monitored	No. abnormal phenotypes	No. animals monitored	No. abnormal	No. animals	No. abnormal phenotypes	No. animals monitored	No. abnormal
	No. animals monitored 20	No. abnormal phenotypes	No. animals monitored	No. abnormal	No. animals monitored	No. abnormal phenotypes	No. animals monitored 20	No. abnormal
	No. animals monitored 20 16	No. abnormal phenotypes	No. animals monitored 16 14	No. abnormal	No. animals monitored 8	No. abnormal phenotypes	No. animals monitored 20 19	No. abnormal
	No. animals monitored 20 16 14	No. abnormal phenotypes	No. animals monitored 16 14 16	No. abnormal	No. animals monitored 8	No. abnormal phenotypes	No. animals monitored 20 19 17	No. abnormal
	No. animals monitored 20 16 14 10	No. abnormal phenotypes	No. animals monitored 16 14 16 16 16	No. abnormal	No. animals monitored 8 10 7	No. abnormal phenotypes	No. animals monitored 20 19 17 19	No. abnormal
	No. animals monitored 20 16 14 10 5	No. abnormal phenotypes	No. animals monitored 16 14 16 16 16 10	No. abnormal	No. animals monitored 8 10 7 13	No. abnormal phenotypes	No. animals monitored 20 19 17 19 15	No. abnormal
	No. animals monitored 20 16 14 10 5 4	No. abnormal phenotypes	No. animals monitored 16 14 16 16 16 10	No. abnormal	No. animals monitored 8 10 7 13	No. abnormal phenotypes	No. animals monitored 20 19 17 19 15 11	No. abnormal
	No. animals monitored 20 16 14 10 5 4 2	No. abnormal phenotypes	No. animals monitored 16 14 16 16 16 10	No. abnormal	No. animals monitored 8 10 7 13	No. abnormal phenotypes	No. animals monitored 20 19 17 19 15 11 14	No. abnormal

В

Day	Nutlin 10µM	Roscovitine 20µM
1	0.57339	0.55026
2	0.38187	0.48107
3	0.52287	0.61148
4	0.60167	0.71799
5	0.85997	0.75337
6	1	1
7	1	1
8	1	1
9	1	1

Table A.1.3: Data on presence of abnormal *Trichoplax* phenotypes after inhibitor treatment.

Data indicate the number of monitored individuals and the amount of *Trichoplax* individuals with divergent phenotypic characteristics in four independent experiments (A). Statistical revision of data with a two-tailed T-test however did not reveal any significances (B, p > 0.05).

	0,1% C	MSO in ASW	(48h)				10µM N	utlin-3 in ASW	48h)			20µM Rosc	ovitine in ASV	V (48h)	
Name	Nuclei	TUNEL Signal	Quot	tient P	ercentage	Name	Nuclei	TUNEL Signal	Quotient	Percentage	Name	Nuclei	TUNEL Sinal	Quotient	Percentag
ier1a	291	3	0.010	30928		Tier1a	329	16	0.04863222		Tier1a	286	4	0.01398601	1.
ïer1b	677	5				Tier1b	313		0.02875399		Tier1b	302		0.01986755	
ïer1c	626	2		19489	0.3	Tier1c	472		0.01059322		Tier2a	289		0.06920415	6.
ier2a	647		0.0030			Tier2a	432	20	0.0462963		Tier2b	377		0.02917772	2
ïer2b	716	e		37989	0.8	Tier2b	368		0.10326087		Tier2c	357		0.03081232	3
ier2c	793	3		37831	0.3	Tier2c	463		0.03239741		Tier3a	497		0.01810865	1
ier3b	659	3		55235	0.4	Tier3a	468		0.03205128	3.2	Tier3b	438		0.01826484	1
lier3c	471	2			0.4	Tier3b	400	18	0.045		Tier3c	410		0.01707317	1
lier4a	487	e		32033	0.1	Tier3c	264		0.07575758	7.6	Tier4a	521	7	0.0134357	1
Tier4b	654	4			0.6	Tier4a	336		0.04166667	4.2	Tier4b	343		0.02040816	
lier5a	653	1		53139	0.2	Tier4b	307		0.05863192	5.9	Tier6a	231	3	0.01298701	1
Tier5b	357	2			0.6	Tier4c	443		0.03160271	3.1	Tier6b	233	4	0.01716738	1.
Fier5c	440	2		54545	0.5	Tier5a	415		0.00722892	0.7					
Fier6a	301	1		32226	0.3	Tier5b	282		0.03191489	3.2					
Tier6b Tier7a	574 625	1		87108 0.0016	0.9	Tier5c Tier6a	402 553		0.04477612 0.02893309	4.5 2.9					
lier7a lier7b	625 916	1		10917	0.2	Tier6a Tier6b	553 348		0.02893309	2.9					
ner/b	916	1	0.00.	10917	0.1	Tier6c	348 138		0.03735632	3.7 6.3					
	504 5000005	2.882352941	0.005	20125 0	45 20 44 4 7 6				0.04278172			257	8.083333333	0.00007400	2.22
Average	581.588235					Average	374.055556				Average				
Stdev Minimum	165.041905 291	1.67621257 1		10561 0. 10917	265944813 0.1	Stdev Minimum	93.7843106 138		0.02203605 0.00722892	and the second	Stdev	91.471307 231	4.348531042	0.01482495	1.4821858
Median	626	2				Median	384		0.00722892		Minimum Median	350		0.01298701	1.
Maximum	916	6			0.4	Maximum	553		0.103951149		Maximum	521		0.01818675	6.
									0.10326087	10	waximum	521	20	0.06920415	0.
					0.6				0.04904924	4 075	unner Quartile	417	0.5	0.02260055	2 22
upper Quartile	659 471	4		38552	0.6 0.3	upper Quartile lower Quartile	440.25	18	0.04804824 0.03168076		upper Quartile lower Quartile	417 288.25		0.02260055 0.01630138	2.225
upper Quartile lower Quartile	659 471	2 6 DMSO in ASI	0.007 0.003	38552 19489		upper Quartile	440.25 317	18 10 M Nutlin-3 in AS	0.03168076 W (48h)	3.125		288.25 20µM Ros	5.5 covitine in AS	0.01630138 W (48h)	
upper Quartile lower Quartile B Name	659 471	2 6 DMSO in ASI BrdU si	0.007 0.003 W (48h) gnal	38552 19489 Quotient	0.3 Percenta	upper Quartile lower Quartile ge Name	440.25 317 10µ1 Nucle	18 10 M Nutlin-3 in AS i BrdU signa	0.03168076 W (48h) al Quotient	3.125 Percentag	lower Quartile	288.25 20μM Ros Nuclei	5.5 covitine in AS BrdU signal	0.01630138 W (48h) Quotient	1.62 Percentag
upper Quartile lower Quartile B Name Tier1a	659 471 0,1 9	6 DMSO in ASI BrdU si 815	0.007 0.003 W (48h) gnal 6 64 0	38552 (19489 Quotient 0.07852761	0.3 Percenta	upper Quartile lower Quartile ge Name 8 Tier1a	440.25 317 10μΓ Nucle	18 10 A Nutlin-3 in AS i BrdU signa 396	0.03168076 W (48h) al Quotient 8 0.0202020	3.125 Percentag 2	lower Quartile e Name 2 Tier2a	288.25 20μM Ros Nuclei 903	5.5 covitine in AS BrdU signal 115	0.01630138 W (48h) Quotient 0.12735327	1.62 Percentag
upper Quartile lower Quartile B Name Tier1a Tier1b	659 471 0,1 9	6 DMSO in AS BrdU si 815 685	0.0073 0.0033 W (48h) gnal 0 64 0 316 0	38552 (19489 Quotient 0.07852761 0.46131387	0.3 Percenta 1 7	upper Quartile lower Quartile ge Name 8 Tier1a 46 Tier1b	440.25 317 10μΓ Νucle	18 10 M Nutlin-3 in AS i BrdU signa 396 612 4	0.03168076 W (48h) a Quotient 8 0.0202020 5 0.0735294	3.125 Percentag	lower Quartile e Name 2 Tier2a 7 Tier2b	288.25 20μM Ros Nuclei 903 604	5.5 covitine in AS BrdU signal 115 151	0.01630138 W (48h) Quotient 0.12735327 0.25	1.62 Percentage
upper Quartile lower Quartile B Name Tier1a Tier1b Tier2a	659 471 0,1 9	2 6 DMSO in ASV BrdU si 815 685 764	0.007: 0.003: W (48h) gnal 0 316 0 212 0	38552 (19489 Quotient 0.07852761 0.4613138 0.27748691	0.3 Percenta 1 7 1	upper Quartile lower Quartile ge Name 8 Tier1a 46 Tier1b 28 Tier2a	440.25 317 10μr	18 10 M Nutlin-3 in AS i BrdU signs 396 612 4 405 12	U.J.168076 U.J.168076 Quotient 8 0.0202020 5 0.0735294 5 0.3086419	3.125 Percentag 2 1 8 3	e Name 2 Tier2a 7 Tier2b 1 Tier2c	288.25 20μM Ros Nuclei 903 604 815	covitine in AS BrdU signal 115 151 205	0.01630138 W (48h) Quotient 0.12735327 0.25 0.25153374	Percentage
upper Quartile lower Quartile B Name Tier1a Tier1b Tier2b	659 471 0,1 9	2 6 DMSO in ASD BrdU si 815 685 764 799	0.0073 0.0033 W (48h) gnal 0 64 0 316 0 212 0 286 0	38552 19489 Quotient 0.07852761 0.46131387 0.27748691 0.35794743	0.3 Percenta 1 7 1 3	upper Quartile lower Quartile 8 Tier1a 46 Tier1b 28 Tier2a 36 Tier2b	440.25 317 10μπ Νucle	18 10 A Nutlin-3 in AS i BrdU signs 396 612 4 405 12 542 14	0.03168076 (48h) 0.0202020 0.0735294 0.03086419 8 0.2730627	3.125 Percentag 2 1 8 3 3 2	e Name 2 Tier2a 7 Tier2b 1 Tier2c 7 Tier1a	288.25 20μM Ros Nuclei 903 604 815 625	5.5 covitine in AS BrdU signal 115 151 205 67	0.01630138 W (48h) Quotient 0.12735327 0.25 0.25153374 0.1072	1.62 Percentage 1 2 2 1
upper Quartile lower Quartile B Name Tier1a Tier15 Tier2a Tier2b Tier25 Tier3a	659 471 0,1 9	2 6 DMSO in ASI BrdU si 815 685 764 799 672	0.0073 0.0033 W (48h) gnal 0 316 0 212 0 286 0 120 0	38552 19489 Quotient 0.07852761 0.46131387 0.27748691 0.35794743 0.17857143	0.3 Percenta 1 7 1 3 3	upper Quartile lower Quartile ge Name 8 Tier1a 46 Tier1b 28 Tier2a 36 Tier2b 18 Tier3a	440.25 317 10µt Nucle	18 10 10 10 10 10 10 10 12 12 14 14 14 12 14 14 12 15 12 14 14 15 12 15 12 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	U.03168076 U.03168076 Quotient 8 0.0202020 5 0.035294 5 0.3086419 8 0.2730627 1 0.1194379	3.125 Percentag 2 1 8 3 3 2 4 1	Name 2 Tier2a 7 Tier2b 1 Tier2c 7 Tier1a 2 Tier1b	288.25 20µM Ros Nuclei 903 604 815 625 815	5.5 covitine in AS BrdU signal 115 151 205 67 97	0.01630138 (48h) Quotient 0.12735327 0.25 0.25153374 0.1072 0.1190184	1.62
upper Quartile lower Quartile B Name Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b	659 471 0,1 9	2 6 DMSO in AS BrdU si 815 685 764 799 672 814	0.007: 0.003: gnal 0 64 0 316 0 212 0 286 0 120 0 53 0	238552 19489 2000tient 0.07852761 0.46131387 0.27748691 0.35794743 0.17857143 0.06511057	0.3 Percenta 1 7 1 3 3 7	upper Quartile lower Quartile 8 Tierta 46 Tiertb 28 Tier2a 36 Tier2b 18 Tier3a 7 Tier3b	440.25 317 10µ1 Nucle	18 10 10 10 10 10 10 10 10 10 10 10 10 10	0.03168076 W (48h) 0.0202020 0.0735294 0.03086419 0.03086419 0.03086419 0.0235744 0.194379 0.0285714	3.125 Percentag 2 1 8 3 3 2 4 1 3	e Name 2 Tier2a 7 Tier2b 1 Tier2c 7 Tier1a 2 Tier1b 3 Tier1c	288.25 20µM Ros Nuclei 903 604 815 625 815 647	5.5 covitine in AS BrdU signal 115 151 205 67 97 50	0.01630138 W (48h) Quotient 0.12735327 0.25 0.25153374 0.1072 0.1190184 0.07727975	1.62
Name Name Tier1a Tier2b Tier2b Tier2b Tier2b Tier3b Tier3b	659 471 0,1 9	2 6 DMSO in ASV BrdU si 815 685 764 799 672 814 952	0.007: 0.003: 9nal 0 64 0 316 0 212 0 286 0 120 0 53 0 181 0	38552 19489 Quotient 0.07852761 0.46131387 0.27748691 0.35794743 0.35794743 0.35794743 0.06511057 0.19012605	0.3 Percenta 1 7 1 3 3 7 5	upper Quartile lower Quartile 8 Tier1a 46 Tier1b 28 Tier2a 36 Tier2b 18 Tier3a 7 Tier3b 19 Tier4a	440.25 317 10µ/ Nucle	18 10 10 10 10 10 10 10 10 10 10 10 10 10	0.03168076 W (48h) U (48h) U (48h) U (400) U (400) U	3.125 Percentag 2 1 8 3 2 4 1 3 7	lower Quartile 2 Tier2a 7 Tier2b 1 Tier2c 7 Tier1a 2 Tier1b 3 Tier1c 6 Tier3a	288.25 20µM Ros Nuclei 903 604 815 625 815 625 815 647 405	5.5 covitine in AS BrdU signal 115 151 205 67 97 50 18	0.01630138 W (48h) Quotient 0.12735327 0.25 0.25153374 0.1072 0.1190184 0.07727975 0.04444444	1.62
upper Quartile lower Quartile B Name Tier1a Tier1b Tier2a Tier2b Tier2a Tier3a Tier3a Tier3b Tier4a	659 471 0,1 9	2 6 DMSO in ASV BrdU si 815 685 764 799 672 814 952 952 949	0.007: 0.003 0.	38552 19489 Quotient 0.07852761 0.46131387 0.2774869 0.35794743 0.17857143 0.06511057 0.30511057 0.30511057	0.3 Percenta 1 7 1 3 3 7 5 2	upper Quartile lower Quartile 8 Tier1a 46 Tier1b 28 Tier2a 36 Tier2b 18 Tier3a 7 Tier3b 19 Tier4a 22 Tier4b	440.25 317 10µ1 Nucle	18 10 10 10 10 10 10 10 10 10 10	0.03168076 (48h) (48h) (0.0202020 5 0.0202020 5 0.3086419 8 0.2730627 1 0.1194379 8 0.0285714 0.0265666 7 0.0444810	3.125 Percentag 2 1 3 3 2 4 4 3 7 5	e Name 2 Tier2a 7 Tier2b 1 Tier2c 7 Tier1a 2 Tier1b 3 Tier1c 6 Tier3a 5 Tier3a	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629	5.5 covitine in AS BrdU signal 115 151 205 67 97 50 18 4	0.01630138 W (48h) Quotient 0.12735327 0.25153374 0.1072 0.1190184 0.07727975 0.0444444 0.0063593	1.62
Name Name Name Iier1a Tier2a Tier2b Tier3b Tier3b Tier4b Tier4b Tier4b Tier4b Tier4b Tier4b Tier4b Tier4b	659 471 0,1 9	6 DMSO in ASI BrdU si 815 685 764 799 672 814 952 949 879	0.007: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.007: 0.003: 0.	38552 Quotient 0.07852761 0.46131387 0.27748691 0.35794743 0.17857143 0.06511057 0.19012605 0.19012605 0.22023187 0.38339022	0.3 Percenta 1 3 3 7 5 2 2	upper Quartile lower Quartile 8 Tier1a 46 Tier1b 28 Tier2a 36 Tier2b 18 Tier3a 7 Tier3b 19 Tier4a 22 Tier4b 38 Tier5a	440.25 317 10µ1 Nucle	18 10 M Nutlin-3 in AS i BrdU signa 396 612 4 405 12 542 14 427 5 555 3 607 2 75 30	0.03168076 (48h) (48h) (0.0202020 5 0.0202020 5 0.3086419 8 0.2730627 1 0.1194379 8 0.0285714 7 0.0666666 6 0.	3.125 Percentag 2 1 8 3 3 4 1 3 5 4 4 4 4 4 4 4 4 4 4 4 4 4	lower Quartile 2 Tier2a 7 Tier2b 1 Tier2c 7 Tier1a 2 Tier1b 3 Tier1c 6 Tier3a 5 Tier3b 0 Tier3b 0 Tier3b 0 Tier3b 0 Tier4	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 662	5.5 covitine in AS BrdU signal 115 151 205 67 97 50 18 4 157	0.01630138 Quotient 0.12735327 0.25153374 0.1072 0.1190184 0.07727975 0.0444444 0.0063593 0.23020528	1.62
Name Name Tier1a Tier2a Tier3a Tier3a Tier3b Tier4a Tier4b Tier5a	659 471 0,1 9	2 6 DMSO in ASU BrdU si 815 685 764 7799 672 814 952 949 949 827	0.007: 0.003: 90000: 9003: 9003: 9003: 9003: 9003: 9003: 9003: 9003: 900	38552 19489 Quotient 0.0785276 0.4613138 0.277469 0.277469 0.277469 0.27747 0.27747 0.27747 0.277487 0.277477 0.277477 0.2774777 0.2774777777	0.3 Percenta 1 3 3 7 5 2 2 7	upper Quartile lower Quartile 8 Tierla 46 Tierlb 28 Tier2a 36 Tier2b 18 Tier3a 7 Tier3b 19 Tier4a 22 Tier4b 38 Tier5a 35 Tier5b	440.25 317 10μ/ Νucle	18 10 10 10 10 10 10 10 10 10 10	0.03168076 W (48h) Quotient 8 0.020200 5 0.0735294 5 0.3086419 8 0.02306271 1 0.1194379 8 0.0285714 7 0.0666666 7 0.044810 2 0.4308131	3.125 Percentag 2 1 8 3 3 2 4 4 1 3 7 5 5 5 4 4 4 2 4 4	Name 2 Tier2a 7 Tier2b 11 Tier2c 7 Tier1a 2 Tier1b 3 Tier1c 6 Tier3a 5 Tier3b 0 Tier4a 3 Tier4a	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 682 721	5.5 covitine in AS BrdU signal 115 151 205 67 97 50 18 4 157 118	0.01630138 W (48h) Quotient 0.12735327 0.25153374 0.1072 0.1190184 0.07727975 0.0444444 0.0063593 0.23020528 0.16366158	1.62
Name Name Name Tier1a Tier2a Tier2a Tier3b Tier4a Tier4b Tier5a Tier5b Tier5a	659 471 0,1 9	2 6 DMSO in AS BrdU si 815 685 764 799 672 814 952 949 879 827 694	0.007: 0.003: 9nal 0 64 0 316 0 212 0 286 0 120 0 53 0 181 0 209 0 337 0 288 0 100 0	38552 19489 Quotient 0.07852763 0.4613138 0.2774869 0.35794743 0.17857143 0.0651105 0.19012609 0.2202318 0.38339022 0.38339022 0.3482466 0.3482469	0.3 Percenta 1 7 1 3 3 7 5 2 2 7 2	upper Quartile lower Quartile 8 Tier1a 46 Tier1b 28 Tier2a 36 Tier2b 18 Tier3a 7 Tier3b 19 Tier4a 22 Tier4b 38 Tier5a 35 Tier5b 14 Tier6a	440.25 317 10µл Nucle	18 10 10 10 10 10 10 10 10 10 10	0.03168076	3.125 Percentag 2 1 8 3 3 4 1 1 3 7 5 4 4 4 4 4 4 4 4 4 4 4 4 4	lower Quartile 2 Tier2a 7 Tier2b 1 Tier2c 7 Tier1a 2 Tier1a 3 Tier1c 6 Tier3a 5 Tier3b 0 Tier4a 3 Tier4b 8 Tier5a	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 682 721 360	5.5 BrdU signal 115 151 205 67 97 50 18 4 157 118 50	0.01630138 Quotient 0.12735327 0.25 0.25153374 0.1072 0.1190184 0.07727975 0.0444444 0.0063593 0.23020528 0.16366158 0.13888889	1.62
upper Quartile lower Quartile B Tier1a Tier1b Tier2b Tier2b Tier3b Tier3b Tier4a Tier4b Tier4b Tier5b Tier5b Tier5b Tier6a	659 471 0,1 9	2 BrdU si BrdU si BrdU si BrdU si 685 672 814 952 814 952 819 827 634 650	0.007: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.007: 0.003: 0.	38552 19489 0.07852761 0.07852761 0.4613138 0.27748691 0.35794743 0.17857143 0.06511057 0.22023182 0.3833002 0.34824661 0.34824662 0.34482462 0.34482465 0.34485465 0.3445565656656565656565656565656565656565	0.3 Percenta 1 7 1 3 3 3 7 7 5 2 2 2 6	upper Quartik lower Quartik 8 Tierta 46 Tiertb 28 Tierta 46 Tiertb 18 Tierta 18 Tierta 19 Tierta 19 Tierta 22 Tiertb 38 Tiers5 35 Tiers5 26 Tierta 26 Tierta	440.25 317 10µ/ Nucle	18 10 10 10 10 10 10 10 10 10 10	0.03168076 V (48h) V (48h) V (48h) 0.002020 5 0.0735294 5 0.0735294 5 0.0735294 5 0.023627 1 0.1194379 8 0.022302 1 0.1194379 0.0666666 6 0.0 2 0.4308131 7 0.076923 3 0.0159509	3.125 Percentag 2 1 8 8 3 7 5 5 4 4 1 3 7 5 5 4 4 2 4 2	Name 2 Tier2a 7 Tier2b 11 Tier2c 7 Tier1a 2 Tier1b 3 Tier1c 6 Tier3a 5 Tier3b 0 Tier4a 3 Tier4a	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 682 721	5.5 BrdU signal 115 151 205 67 97 50 18 4 157 118 50	0.01630138 W (48h) Quotient 0.12735327 0.25153374 0.1072 0.1190184 0.07727975 0.0444444 0.0063593 0.23020528 0.16366158	
Name Name Irer1a Irer2a Irer3a Irer3b Irer4b Irer5b Irer5b Irer5b Irer6a Irer6b Irer7a	659 471 0,19 Nuclei	2 BrdU si 815 685 764 799 672 814 952 949 827 694 827 694 650 732	0.007: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.007: 0.003: 0.003: 0.007: 0.003: 0.007: 0.007: 0.007: 0.007: 0.007: 0.003: 0.	38552 19489 Quotient 0.07852761 0.4613138 0.27748691 0.35794743 0.35794743 0.35794743 0.35794743 0.35794743 0.35794743 0.35794743 0.35994745 0.35994745 0.359947450 0.359947450 0.359947450 0.359947450 0.359947450 0.359947450 0.359947450 0.359947450 0.359947450 0.359947450 0.359947450 0.359947450 0.359947450 0.359947450 0.35994750 0.35994750000000000000000000000000000000000	0.3 Percenta 7 1 3 3 7 5 2 2 2 6 8	upper Quartik lower Quartik 8 Tier1a 8 Tier1a 8 Tier1a 18 Tier3a 7 Tier3a 7 Tier3a 19 Tier4a 38 Tier5a 35 Tier55 35 Tier55 35 Tier56 4 Tier6a 26 Tier7b	440.25 317 10µ/ Nucle	18 10 10 10 10 10 10 10 10 10 10	0.03168076 V (48h) Quotient 8 0.0202020 5 0.073524 5 0.308418 8 0.2730627 1 0.1194379 8 0.0285714 0.0666666 7 0.0666666 0 0.044810 0 0.056920 3 0.015590 7 0.035940	3.125 Percentag 2 1 3 3 7 5 5 4 4 4 4 4 4 2 4 8 8 8 4 2 4 5 5 5 5 6 8 4 4 4 4 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8	Name 2 Tier2a 7 Tier2b 1 Tier2c 7 Tier1a 2 Tier1a 3 Tier1c 6 Tier3a 5 Tier3b 0 Tier4a 3 Tier4b 8 Tier5a 2 Tier5a 2 Tier6a	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 682 721 360 582	5.5 brdU signal 115 151 2055 67 97 50 18 4 157 118 50 109	0.01630138 W (48h) Quotient 0.12735327 0.25153374 0.1072 0.10722975 0.0444444 0.0063593 0.13268288 0.13888889 0.18728522	1.62
Name Name Tier1a Tier1b Tier2b Tier3b Tier4b Tier3b Tier4b Tier5a Tier5a Tier65 Tier6a Tier6b Tier6a Tier6b Tier7a Average	659 471 0,19 Nuclei	2 5 DMSO in ASS BrdU si 6655 764 799 672 814 952 949 949 949 879 827 694 650 694 650 949 827 694 837 837 837 837 837 837 837 837	0.007: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.004: 0.005: 0.	38552 19489 Quotient 0.07852760 0.4613138 0.2774869 0.35794743 0.17857145 0.1901260 0.2202318 0.38339022 0.34824660 0.1440922 0.26138460 0.1440922 0.26138460 0.14407022	0.3 Percenta 1 7 1 3 3 7 5 2 2 7 7 2 6 8 8 2 3.92307 9 2 3.92307 9	upper Quartili lower Quartili ge Namu 36 Tier1a 46 Tier1a 36 Tier2b 38 Tier2b 19 Tier3a 19 Tier3a 19 Tier4a 21 Tier4b 22 Tier5a 35 Tier5a 36 Tier5a 37 Tier5a 36 Tier5a 37 Tier5a 36 Tier5a 37 Tier5a 38 Tier5a 39 Tier5a 36 Tier5a 37 Tier5a 38 Tier5a 39 Tier5a 30 Tier5a 314 Tier7a 32 Zeverage	440.25 317 10µ1 Nucle	18 10 10 10 10 10 10 10 10 10 10	0.03168076 W (48h) Quotient 8 0.0202020 5 0.03086419 8 0.2730627 1 0.1194379 8 0.225714 7 0.0666666 7 0.04448131 7 0.066666 6 0.0 2 0.4308131 3 0.0155509 7 0.035940 8 0.457039	3.125 Percentag 2 1 8 3 2 4 4 2 4 4 2 4 2 2 4 2 2 4 2 4 2 4 4 2 4 2 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	Name 2 Tier2a 7 Tier2b 1 Tier2c 7 Tier2b 2 Tier1a 2 Tier1a 2 Tier1b 3 Tier1c 6 Tier3a 5 Tier4a 3 Tier4a 2 Tier5a 2 Tier6a 4 6 Average	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 682 721 360 582 721 360 649	5,5 arcovitine in AS BrdU signal 115 115 115 115 1205 67 97 50 18 4 157 118 50 109 95.0833333	0.01630138 W (48h) Quotient 0.12735327 0.25 0.25153374 0.1072 0.190184 0.07727975 0.0444444 0.0663593 0.23020528 0.130866158 0.13888899 0.1388889 0.138788522 0.134193582	1.62
Name Name Name Irier1a Tier1b Tier2b Tier3a Tier3b Tier3b Tier5b Tier5b Tier5a Tier5b Tier5A Tier5b Tier5A Tier5b Tier5A Average Stdev	659 471 0,19 Nuclei	2 5 DMSO in ASS 8 815 6 85 6 75 6 75 9 49 9 7 8 5 8 7 9 7 8 5 8 7 9 7 9 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	0.007: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.003: 0.007: 0.003: 0.007: 0.003: 0.000: 0.	Quotient 0.07852761 0.46131387 0.27748691 0.35794742 0.19012605 0.2023182 0.34824667 0.34824667 0.34824667 0.34824667 0.34824667 0.34824667 0.34824667 0.34824667 0.3482467 0.3482467 0.348247 0.349247 0	0.3 Percenta 1 1 7 1 3 3 7 5 2 2 2 7 2 6 8 8 2 3.92307 4 11.68471	upper Quartik lower Quartik ge Name 46 Tier1b 28 Tier2a 36 Tier2 18 Tier3a 7 Tier3b 19 Tier4a 22 Tier4b 38 Tier5c 14 Tier6a 15 Tier7b 692 Average 14 Stder	440.25 317 10µ7 Nucle	18 10 Image: Image and the image	0.03168076 W (48h) Quotient Quoti	3.125	lower Quartile Part Contemporation Part Conte	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 682 721 366 582 721 366 582 721 366 582 721 366 582 721 366 721 721 721 721 721 721 721 721	5,5 brdU signal 115 151 155 67 97 50 18 4 4 157 118 50 109 95,0833333 57,1933247	0.01630138 W (48h) Quotient 0.12735327 0.25 0.25153374 0.1072 0.1190184 0.0772975 0.0444444 0.0063593 0.23020528 0.13888892 0.13888822 0.14193582 0.0152935	1.62
Name Dierla Name Dierla Tierla Auterage Stdev Winimum	659 471 0,19 Nuclei	2 5 DISO in ASS 815 6685 764 672 814 952 949 949 949 949 827 694 827 694 952 949 949 949 952 949 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 949 952 952 953 954 955 955 955 955 955 955 955	0.007: 0.003:	Quotient 0.07852761 0.46131382 0.2774869 0.35794743 0.17857143 0.06511057 0.38339022 0.34824666 0.14409227 0.34824666 0.14409227 0.34824666 0.144071038 0.2615384 0.14071038	0.3 Percenta 1 7 1 3 3 7 5 2 2 2 7 7 2 6 8 9 23.92307 4 11.68471 7 7 7	upper Quartik lower Quartik 8 Tier1a 46 Tier1b 28 Tier1a 46 Tier2a 36 Tier2b 38 Tier3a 37 Tier3b 38 Tier3 38 Tier3 38 Tier3 38 Tier3 39 Tier4b 39 Tier4b 30 Tier3 30 Tier5 4 Tier3 30 Tier5 30 T	440.25 317 Nucle	18 10 Image: Image and the state of the	0.03168076 (48h) (48h) Quotient 0.020202 0.0308419 0.02730627 0.1194379 0.02540 0.044810 0.0 0.044810 0.0 0.044810 0.045230 0.075923 0.055909 7 0.035404 0.1457093 0.0155509 0.1457039 0.0154509 0.1457039 0.0154509 0.01550 0.0155 0.015	3.125 Percentag 2 1 8 3 2 4 4 1 3 7 5 4 4 2 2 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 4 2 2 4 4 4 2 2 4 4 4 4 4 2 2 4 4 4 2 2 4 4 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	lower Quartile	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 682 721 360 582 721 360 649 151.781641 360	5,5 BrdU signal 115 115 115 115 115 115 118 205 67 97 50 18 4 4 157 118 50 109 95.0833333 57.1933247	0.01630138 Quotient 0.12735327 0.25 0.25153374 0.1072 0.13014 0.0722975 0.0444444 0.0722975 0.0444444 0.0722975 0.04448889 0.1388889 0.1388889 0.1388889 0.1388889 0.1388889 0.1388889 0.1388889 0.1388252 0.1439352 0.0752935 0.0063533	1.62
Upper Quartile lower Quartile B Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier4b Tier6a Tier6b Tier6a Tier6b Tier65 Stdev Minimum Median	659 471 0,19 Nuclei	2 5 DMSO in ASS 8 815 6 85 6 75 6 75 9 49 9 49 9 9 9 9 9 9 9 9 9 9 9 9 9	0.007: 0.003: V (48h) gnal 64 0 212 0 286 0 120 0 286 0 120 0 288 0 181 0 209 0 337 0 209 0 181 0 209 0 181 0 100 0 170 0 100 0 170 0 100 0 170 0 100 0 170 0 100	Quotient 0.07852761 0.46131387 0.27748691 0.35794743 0.35794743 0.35794743 0.36511057 0.19012605 0.20023182 0.38339027 0.38339027 0.38339027 0.3843466 0.3482466 0.3482466 0.3482466 0.3482466 0.3482466 0.3482466 0.3482466 0.3482466 0.3482466 0.3482466 0.3482466 0.3482466 0.348246 0.3482466 0.348246 0.348466 0.348466 0.3484666 0.348466666666666666666666666666666666666	0.3 Percenta 7 2 2 2 2 2 2 2 2 2 2 2 2	upper Quartik lower Quartik ge Name 46 Tier1b 28 Tier2a 36 Tier2 18 Tier3a 7 Tier3b 19 Tier4a 22 Tier4b 38 Tier5c 14 Tier6a 15 Tier7b 692 Average 14 Stder	440.25 317 10µt Nucle	18 10 Image: Image and the state of the	0.03168076 (4.48h) 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	3.125 Percentag 2 3 3 3 5 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 4 2 2 4 4 4 2 2 4 4 4 4 2 2 4 4 4 4 2 2 4 4 4 2 2 4 4 4 4 2 2 4 4 4 4 2 4 4 4 4 2 4 4 4 4 4 4 2 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	lower Quartile Part Contemporation Part Conte	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 682 721 366 582 721 366 582 721 366 582 721 366 582 721 366 721 721 721 721 721 721 721 721	5,5 BrdU signal 115 151 151 155 67 97 97 50 18 4 4 157 118 50 99 95 0833333 57.1933247 4 103	0.01630138 W (48h) Quotient 0.12735327 0.25 0.25153374 0.1072 0.1190184 0.0772975 0.0444444 0.0063593 0.23020528 0.13888892 0.13888822 0.14193582 0.0152935	1.62
Name B Name Tier1a Tier1a Tier2b Tier3a Tier3b Tier4a Tier4b Tier5b Tier5a Tier5b Tier5a Tier5b Tier5a Tier5b Tier5a Tier5b Tier64 Minimum Median Maximum	659 471 0,19 Nuclei	2 5 DMSO in ASS 8 815 6 85 764 952 814 952 949 949 879 949 879 949 879 949 949 949 949 949 949 949 9	0.0073 0.003 0	Quotient 0.07852761 0.46131382 0.2774869 0.35794743 0.17857143 0.06511057 0.38339022 0.34824666 0.14409227 0.34824666 0.14409227 0.34824666 0.144071038 0.2615384 0.14071038	0.3 Percenta T Percenta T Percenta Percenta Percenta 1 Percenta Percenta 1 Percenta 1 Percenta 1 Percenta 1 Percenta 1 Percenta Percenta 1 Percenta Percenta Percen	upper Quartik lower Quartik 8 Tierta 46 Tiertb 28 Tierta 46 Tiertb 28 Tierta 36 Tierta 38 Tierta 38 Tierta 35 Tierta 38 Tierta 35 Tierta 38 Tierta 38 Tierta 38 Tierta 38 Tierta 39 Tierta 39 Tierta 30 Tierta 30 Tierta 31 Tierta 31 Tierta 31 Tierta 31 Tierta 32 Tierta 33 Tierta 33 Tierta 34 Tierta 35 Tierta 35 Tierta 35 Tierta 36 Tierta 37 Tierta 37 Tierta 38 Tierta 38 Tierta 38 Tierta 38 Tierta 38 Tierta 38 Tierta 39 Tierta 39 Tierta 39 Tierta 39 Tierta 30 Tierta	440.25 317 10µ7 Nucle	18 10 Image: Image and the second	0.03168076 (4.48h) 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	3.125 Percentag 2 1 8 3 2 4 4 1 3 5 5 4 4 4 4 2 4 2 4 2 4 4 2 4 4 2 4 4 4 2 4 4 2 4 4 2 4 4 4 2 4 4 4 4 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	lower Quartile	288.25 20µM Ros Nuclei 903 604 815 625 847 405 629 649 151.781641 360 638 903	covitine in AS BrdU signal 115 151 152 153 153 163 184 4 157 118 50 109 95.083333 57.1933247 4 103 205	0.01630138 W (48h) Quotient 0.12735327 0.25153374 0.1072 0.25153374 0.07727975 0.0444444 0.07727975 0.0444444 0.0663593 0.13888889 0.138788522 0.14193582 0.0752935 0.0752935 0.063593 0.3312108	1.62 Percentage 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
upper Quartile lower Quartile B Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier4b Tier5a Tier6b Tier5a Tier6b Tier5a Tier6b Tier7a Average Stdev Minimum Median Maximum	659 471 0,19 Nuclei	2 5 DMSO in ASS BrdU si 815 6685 764 799 952 949 952 949 952 949 952 952 953 187.61 5804 93.1 187.61 5804 93.1 187.61 5804 93.1 187.61 5804 93.1 187.61 5804 952 952 952 952 952 952 952 952	0.007: 0.003:	Quotient 0.07852761 0.07852761 0.46131383 0.27748691 0.35794743 0.17857144 0.06511055 0.19012605 0.1409225 0.245138466 0.14409225 0.14409225 0.14409225 0.14409225 0.11747155 0.23902255 0.11747155 0.2451318555 0.24515555 0.2451555555 0.24515555555555555555555555	0.3 Percenta T S Percenta Percenta	upper Quartil low-er Quartil ge Namu # Tier1a 46 Tier1a 46 Tier2b 36 Tier2b 18 Tier3a 19 Tier4a 22 Tier4i 22 Tier5b 14 Tier5a 36 Tier5a 37 Tier5b 41 Tier7a 413 Stdev 7 Minimum 22 Greida 36 Maximum 35 upper Quartile	440.25 317 10µ1 Nucle 156.749 rtile	18 10 a BrdU sign 36 612 2 405 12 2 405 12 2 405 12 2 555 3 6 607 30 7 761 30 7 563 6 8 6 678 100.8633 8 6 555 4 8 100.8633 815 30 70 12	0.03168076 (48h) Quotient Quo	3.125 Percentag 2 1 8 3 2 4 4 1 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 4 2 2 4 4 4 2 2 4 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	lower Quartile	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 649 151.781641 360 638 903 724.5.2	5,5 BrdU signal 115 115 115 115 115 115 115 11	0.01630138 W (48h) Quotient 0.12735327 0.25 0.25153374 0.1072 0.140134 0.0727975 0.0444444 0.0727975 0.04444444 0.0063593 0.138288289 0.13828829 0.13828829 0.13828829 0.1382832 0.1312108 0.0653533 0.3312108 0.25153374 0.19801524	1.62
Name B Name Tier1a Tier1a Tier2b Tier3a Tier3b Tier4a Tier4b Tier5b Tier5a Tier5b Tier5a Tier5b Tier5a Tier5b Tier5a Tier5b Tier64 Minimum Median Maximum	659 471 0,19 Nuclei	2 5 DMSO in ASS 815 764 655 764 952 949 879 949 879 949 879 949 879 949 949 949 949 949 949 949 9	0.007: 0.003:	338552 119489 Quotient 0.07852761 0.07852761 0.07852763 0.35794748 0.35794748 0.35794743 0.35794743 0.35794743 0.3482465 0.14409225 0.1407103 0.32902255 0.11747156 0.06511057 0.22023188 0.46131387 0.3482465 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.4813187 0.4814187 0.4814187 0.48141	0.3 Percenta T S Percenta Percenta	upper Quartik lower Quartik 8 Tierta 46 Tiertb 28 Tierta 46 Tiertb 28 Tierta 36 Tierta 38 Tierta 38 Tierta 35 Tierta 38 Tierta 35 Tierta 38 Tierta 38 Tierta 38 Tierta 38 Tierta 39 Tierta 39 Tierta 30 Tierta 30 Tierta 31 Tierta 31 Tierta 31 Tierta 31 Tierta 32 Tierta 33 Tierta 33 Tierta 34 Tierta 35 Tierta 35 Tierta 35 Tierta 36 Tierta 37 Tierta 37 Tierta 38 Tierta 38 Tierta 38 Tierta 38 Tierta 38 Tierta 38 Tierta 39 Tierta 39 Tierta 39 Tierta 39 Tierta 30 Tierta	440.25 317 10µ1 Nucle 156.749 rtile	18 10 a BrdU sign 36 612 4 405 12 4 405 12 4 405 12 2 555 3 6 6 765 30 7 10 761 30 7 30 763 66 8 5 4 815 300 8 5 4 815 30 70 12 2	0.03168076 (42b) (42b) (42b) (42b) (42b) (42b) (42b) (42b) (50073524) (5007562) (5007562) (5007562) (5007562) (5007562) (5007562) (500	3.125 Percentag 2 1 8 3 2 4 4 1 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 4 2 2 4 4 4 2 2 4 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	lower Quartile	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 649 151.781641 360 638 903 724.5.2	5,5 BrdU signal 115 115 115 115 115 115 115 11	0.01630138 W (48h) Quotient 0.12735327 0.25153374 0.072 0.190184 0.07727975 0.0444444 0.063393 0.0444444 0.063393 0.0444444 0.063393 0.16366158 0.1388889 0.1828522 0.14193582 0.01752935 0.063593 0.01312108 0.25153374	1.62
Name Iter1a Tier1a Tier1b Tier2a Tier2b Tier3a Tier4b Tier5a Tier6a Tier65 Tier6a Tier65 Tier68 Vinimum Median Maximum UpperQuartile	659 471 0,19 Nuclei	2 5 DMSO in ASS 815 764 655 764 952 949 879 949 879 949 879 949 879 949 949 949 949 949 949 949 9	0.007: 0.003:	338552 119489 Quotient 0.07852761 0.07852761 0.07852763 0.35794748 0.35794748 0.35794743 0.35794743 0.35794743 0.3482465 0.14409225 0.1407103 0.32902255 0.11747156 0.06511057 0.22023188 0.46131387 0.3482465 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.3482465 0.46131387 0.4813187 0.4814187 0.4814187 0.48141	0.3 Percenta T S Percenta Percenta	upper Quartil low-er Quartil ge Namu # Tier1a 46 Tier1a 46 Tier2b 36 Tier2b 18 Tier3a 19 Tier4a 22 Tier4i 22 Tier5b 14 Tier5a 36 Tier5a 37 Tier5b 41 Tier7a 413 Stdev 7 Minimum 22 Greida 36 Maximum 35 upper Quartile	440.25 317 10µ1 Nucle 156.749 rtile	18 10 a BrdU sign 36 612 4 405 12 4 405 12 4 405 12 2 555 3 6 6 765 30 7 10 761 30 7 30 763 66 8 5 4 815 300 8 5 4 815 30 70 12 2	0.03168076 (42b) (42b) (42b) (42b) (42b) (42b) (42b) (42b) (50073524) (5007562) (5007562) (5007562) (5007562) (5007562) (5007562) (500	3.125 Percentag 2 1 8 3 2 4 4 1 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 4 2 2 4 4 4 2 2 4 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	lower Quartile	288.25 20µM Ros Nuclei 903 604 815 625 815 647 405 629 649 151.781641 360 638 903 724.5.2	5,5 BrdU signal 115 115 115 115 115 115 115 11	0.01630138 W (48h) Quotient 0.12735327 0.25 0.25153374 0.1072 0.140134 0.0727975 0.0444444 0.0727975 0.04444444 0.0063593 0.138288289 0.13828829 0.13828829 0.13828829 0.1382832 0.1312108 0.0653533 0.3312108 0.25153374 0.19801524	1.62 Percentage 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

Method	Nutlin 10µM / DMSO	Roscovitine 20µM DMSO
BrdU (48h)	0.09551	0.02811*
TUNEL (48h)	4.834E-08***	3.837E-05***

Table A.1.4: Raw data on BrdU and TUNEL staining after inhibitor treatment.

After 48 h of treatment with Nutlin-3 (10 μ M) and Roscovitine (20 μ M), animals were monitored for apoptosis (A, TUNEL) and cell proliferation (B, BrdU). Statistical analyses were performed with a two-tailed T-test and significances are indicated with asterisks (p < 0.05 *, p < 0.001 ***).

A.2 The Myc/Max network at the base of the metazoan tree of life

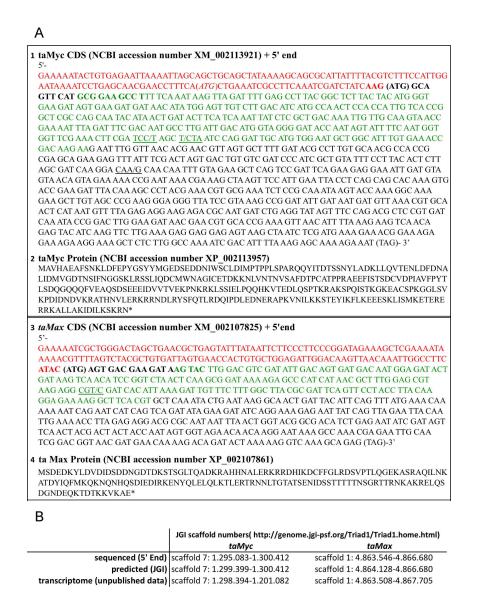


Table A.2.1: taMyc, taMax sequence information.

(A) Information on the *tamyc* (A1, 2) and *tamax* (A3, 4) cDNA- and protein sequences were taken from NCBI¹. The sequenced 5' end is written in red, fragments used for RNA *in situ* probes in green. Sequences used for morpholino oligonucleotide manufacture are printed in bold. Start and stop codons of cDNA were put into brackets. Alternative nucleotide compositions are underlined. Asterisks indicate stop codons of the protein sequences.

(B) Localization of *tamyc* and *tamax* genomic scaffolds. The 5' end sequenced in this study, the predicted open reading frame (taken from JGI^2 and NCBI) and unpublished transcriptome data of the whole fragments.

¹http://www.ncbi.nlm.nih.gov, ²http://genome.jgi-psf.org/Triad1/Triad1.home.html

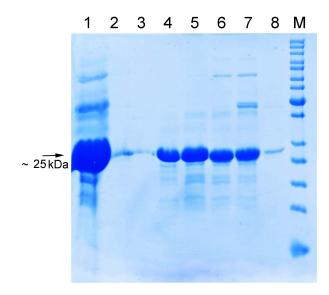


Figure A.2.1: Gel filtration of the taMax-containing ÄKTA- fraction.

Before gel filtration (1), fraction A7 (2), A11 (3), A15 (4), B15 (5), B14 (6), B13 (7), B11 (8), marker (M). The taMax protein can be found at a size of 25 kDa. Impurities of the protein are still visible after gel purification.

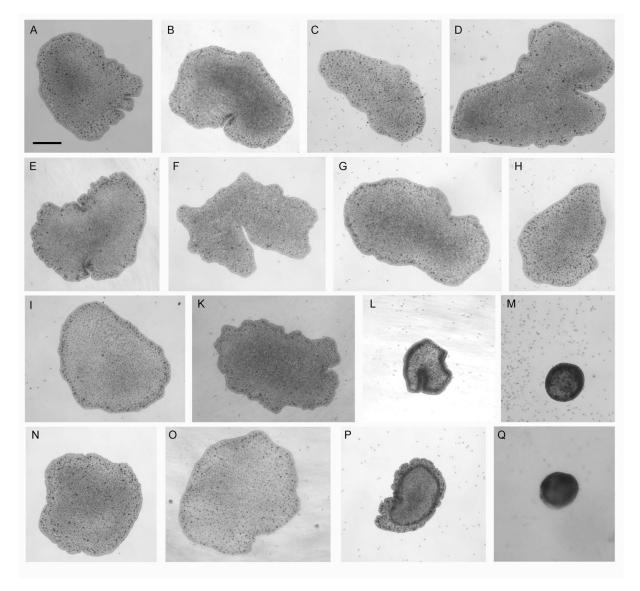


Figure A.2.2: Light microscopy of knockdown individuals.

ASW control (A - D), *Cnox-2* control (E - H), *tamyc* KD (I - M) and *tamax* KD (N - Q) Pictures were taken after one day (A, E, I, N), three days (B, F, K, O), five days (C, G, L, P) and seven days (D, H, M, Q). The size bar in (A) marks 100 μ m and is representative for every picture.

∢										
			taMyc					taMax		
Day	Experiment No1 Experiment No2	Experiment No2	Experiment No3	Average	Standard Deviation Experiment No1 Experiment No2	Experiment No1	Experiment No2	Experiment No3	Average	Standard Deviation
ľ	25	25	25	25	0	25	25	25	25	0
1	24	17	25	22	3.559026084	23	22	25	23.3333333	1.247219129
2	26	17	20	21	3.741657387	23	22	19	21.3333333	1.699673171
ŝ	28	22	16	22	4.898979486	25	25	18	22.6666667	3.299831646
4	23		18	20.5	2.5	27		23	25	2
S	1	19	18	12.6666667	8.259674462	13	23	20	18.6666667	4.18993503
9	1	19	17	12.3333333	8.055363982	1	21	19	13.6666667	8.993825042
~	0	17	21	12.6666667	9.104333522	0	8	17	8.333333333	6.944222219
8	0	16	19	17.5	1.5	0	0	16	∞	80
5	0	14	16	15	1	0	0	11	5.5	5.5
10	0	1	7	4	3	0	0	4	. 2	2
11	0	0	0	0	0	0	0	0	0	0
			ASW					Cnox-2		
Day	Experiment No1 Experiment No2 Experiment No3	Experiment No2	Experiment No3	Average	Standard Deviation Experiment No1 Experiment No2	Experiment No1	Experiment No2	Experiment No3	Average	Standard Deviation
0	25	25	25	25	0	25	25	25	25	0
Т	24	23	25	24	0.816496581	25	25	25	25	0
7	22	21	20	21	0.816496581	26	23	33	27.3333333	4.18993503
ŝ	25	22	20	22.3333333	2.054804668	31	23	34	29.3333333	4.642796092
4	28		25	26.5	1.5	29		34	31.5	2.5
S	28	24	26	26	1.632993162	27	25	32	28	2.943920289
9	26	22	27	25	2.160246899	34	23	33	30	4.966554809
2		23	26	24.5	1.5		24	32	28	4
80		22	25	23.5	1.5		21	35	28	7
5		27	26	26.5	0.5		24	33	28.5	4.5
10		30	20	25	5		25	29	1 27	2
11		27	18	22.5	4.5		24	28	26	2

te	aMyc/ASW	taMyc/Cnox-2	taMyc/Cnox-2+ASW	taMax/ASW	taMax/Cnox-2	taMax/Cnox-2+ASW
1	0.48182	0.29912	0.18979	0.56144	0.13178	0.17047
	1	0.189	0.3776	0.8149	0.14428	0.37757
1	0 93356	0 30694	0 44904	0.062396	0 1338	0 25485

4

2	1	0.189	0.3776	0.8149	0.14428	0.37757
3	0.93356	0.30694	0.44904	0.062396	0.1338	0.25485
4	0.07766	0.05797	0.03784*	0.74152	0.23806	0.3607
5	0.08866	0.06873	0.01101*	0.08237	0.06148	0.01427*
6	0.09821	0.05757	0.01567*	0.15816	0.08781	0.03075*
7	0.15881	0.18182	0.09035	0.12354	0.12713	0.02827*
8	0.04216*	0.20738	0.09034	0.19717	0.20064	0.06077
9	0.00932**	0.0995	0.01358*	0.03553*	0.26675	0.03178*
10	0.06919	0.0237*	0.00474**	0.24901	0.09517	0.02274*
11	0.03775*	0.00587**	0.00199**	0.03775*	0.00587**	0.00199**

В

Day No

1

Table A.2.2: Raw data of animal population sizes after "knockdown".

Given are numbers of individuals counted up to 11 days after initial knockdown experiment in three independent experiments (A). Averages and standard deviations were used for graphical representation. Statistical analyses have been performed with a two-tailed t-test (B). Significances are indicated with asterisks: p < 0.05 *, p < 0.01 **.

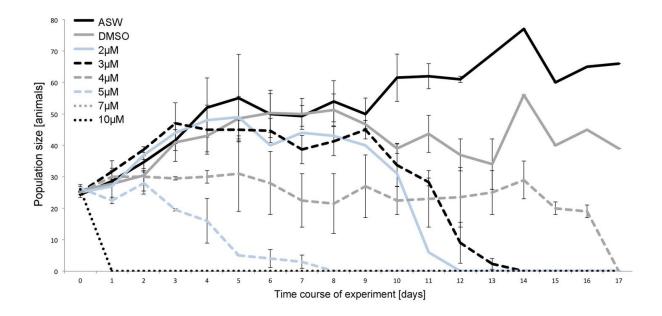


Figure A.2.3: Animal population size after treatment with the 10058-F4 inhibitor. Shown is the time course of animal population after treatment with different concentrations of the 10058-F4 inhibitor.

4

А

		Da	y1			Da	v2	
	Мус	Max	Cnox	ASW	Мус	Max	Cnox	ASW
Number of Values	43	48	44	58	41	42	55	49
Average	12.9471163	14.8664583	12.8356818	12.3298966	14.1549268	11.216	11.3899455	12.7541837
Standard Deviation	5.56390223	7.17011353	6.12819308	5.02612966	8.34008814	7.20842514	6.84748594	7.37944966
Standard Error	5.50031269	7.09657196	6.0597195	4.98335331	8.24020324	7.12411318	6.78607227	7.30528245
Median	11.755	12.107	11.2875	10.9	15.376	10.957	10.632	10.907
Minimum	5.24	6.019	1.881	2.802	0.189	0.267	2.104	0.743
Maximum	28.049	37.283	25.829	30.351	33.388	27.317	33.171	35.025
lower Quartile	9.368	9.99925	8.30875	9.35075	7.794	4.83225	6.7355	8.451
upper Quartile	13.81	18.60875	16.464	15.0865	19.094	15.77725	14.646	15.124
		Da	у3			Da	iy4	
	Мус	Max	Cnox	ASW	Мус	Max	Cnox	ASW
Number of Values	52	43	61	44	35	34	47	40
Average		7.22154545			and the second se	5.39054286		New York Contractory of the Dente
Standard Deviation		5.28812562		6.0687954	5.13261773			6.56694691
Standard Error		5.22903856				2.93781915	4.42981278	6.488298
Median	10.845	7.2105	9.944	10.329	7.818	4.716	8.008	10.642
Minimum	0.303	0.191	1.743	0.207	0.285	0.186	1.675	0.562
Maximum	24.87	18.679	27.032	29.38	22.181	11.182	22.035	30.359
lower Quartile	3.046	1.9595	6.70375	8.545	4.53775	3.077	5.35325	7.543
upper Quartile	13.421	11.88875	14.49325	15.024	12.05875	8.137	11.6635	15.477
		Da	•	West-10.000		Da		
	Мус	Max	Cnox	ASW	Мус	Max	Cnox	ASW
Number of Values	53	41	66	62	34	31	61	58
Average		2.94234146				1.89493548		25.11.1 TO 18.1.1.1 TO 19.1.1.1
Standard Deviation	a second contraction of the second second	1.75560426		and the second of the second second	and the second second second second	0.92213686		6.16370385
Standard Error	6.6404539		3.96699365			0.90761411		
Median	4.551	2.578	8.743	8.0815	5.2935	1.752	7.141	7.912
Minimum	0.457	0.427	1.249	2.782	0.852	0.385	0.586	0.183
Maximum	28.441	9.07	18.247	20.126	23.9	4.847	18.476	33.033
lower Quartile	1.797	2.08	6.423	6.169	3.2965	1.2935	4.45	4.892
upper Quartile	10.966	3.349	11.801	12.83575	6.76325	2.394	8.913	12.20025
		Da	•				198	
	Мус	Max	Cnox	ASW	Мус	Max	Cnox	ASW
Number of Values	34	13	66	49	24	13	39	19
Average	5.19574286		7.17770149			0.91692857	6.70685	5.5622381
Standard Deviation		1.29035062		5.74334024			4.07483979	
Standard Error		1.24659713				0.41843589		
Median	4.39	1.5425	6.367	8.019	2.675	0.922	5.727	4.337
Minimum	0.319	0		2.595	0.867	0		0.817
Maximum	18.353	4.576	28.445	27.881	19.32	1.719	18.525	12.644
lower Quartile	2.0155	1.10925	3.9395	5.004	1.067	0.71425	3.5555	3.796
upper Quartile	6.552	2.90375	10.1095	13.2435	4.93	1.1455	9.083	8.469
	Мус	Da Max	Cnox	ASW	Мус	Day Max		ASW
Number of Values	19	7	38	1.42.0024111.4	2	1	CHOREN DO NO NO	ASVV 19
							8.24006667	9.46385
Average Standard Deviation	4.5293	0.35624007	6.36061538		1.7055 1.2895		4.66946175	3.3494642
Standard Deviation		0.33586635					4.52118689	
Median	3.60924113	0.33586635	6.118	5.818	1.05287234		4.52118689	8.633
Minimum	0.633	0.772	0.964	0.86	0.416	0	2.13	3.94
Maximum	11.7	1.23	20.868	12.7	2.995	0	15.76	3.94 15.994
lower Quartile								7.27675
nower Quartile	1.285	0.62075	3.797	3.16775	1.06075	0	3.946	1.2/0/5
upper Quartile	7.14425	1.007	8.1805	7.9475	2.35025	0	11.5685	12.36725

В						
Day No	taMyc/Cnox-2	taMyc/ASW	taMyc/Cnox-2+ASW	taMax/Cnox-2	taMax/ASW	taMax/Cnox-2+ASW
1	0.93031	0.56518	0.69477	0.15388	0.03691*	0.03279*
2	0.40565	0.08114	0.12955	0.90481	0.32445	0.5363
3	0.5836	0.29627	0.35274	0.00139**	0.0009***	0.00023***
4	0.56876	0.00851**	0.0688	0.0003***	1.255E-06***	9.486E-06***
5	0.05862	0.02772*	0.01195*	5.358E-06***	1.138-13***	3.195E-06***
6	0.28386	0.02125*	0.05805	5.503E-10***	5.644E-09***	1.080E-09***
7	0.04893*	0.00025***	0.00292**	0.00021**	7.813E-06**	3.724E-05***
8	0.12196	0.6066	0.16458	3.327E-06***	1.489E-05***	2.181E-06***
9	0.09722	0.12552	0.0743	0.00032***	0.00016***	0.00012***
11	0.08417	0.00564**	0.0185*	0.12105	0.01457*	0.03761*
12	0.17554	0.03486*	0.07902	0.17554	0.03486*	0.07902

Table A.2.3: Raw data on animal sizes after "knockdown".

Size of individuals was measured daily. Values stem from three independent experiments and the animal sizes are indicated in mm² (A). Minimum, maximum, median, upper and lower quartile was used for boxplot depiction. Significances are indicated with asterisks: p < 0.05 *, p < 0.01 ** (B).

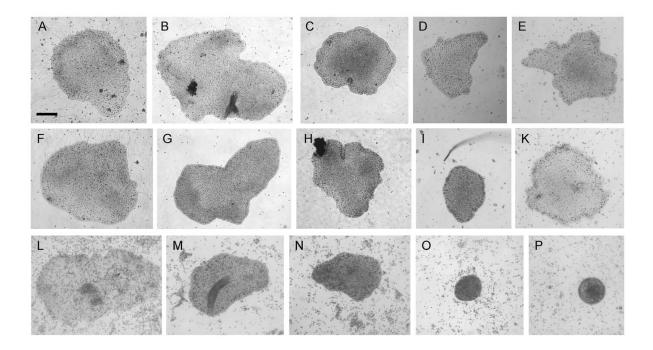


Figure A.2.4: Light microscopy of *Trichoplax* individuals after treatment with 10058-F4 inhibitor (5 μ M). ASW control (A-E), 0.1 % DMSO (F-K) and 5 μ M inhibitor 10058-F4 (L-P). Day 0 (A,F,L), day 2 (B,G,M), day 4 (C,H,N), day 6 (D,I,K) and day 7 (E,K,P). The bar marks 100 μ m for all pictures.

А

	Knoc	k Down (ASW	/)			Knock	Down (Cnox	-2)	
Name	Nuclei	BrdU signal	Quotient	Percentage	Name	Nuclei	BrdU signal	Quotient	Percentage
Tier1a	663	184	0.2775264		Tier1a	346	263	0.76011561	76
Tier1c	407	192	0.47174447		Tier1b	194	86	0.44329897	44
Tier2b	678	317	0.46755162	47	Tier2a	390	259	0.66410256	66
Tier2c	680	455	0.66911765	67	Tier2b	830	303	0.36506024	37
Tier3a	613	369	0.60195759	60	Tier3a	657	227	0.34550989	35
Tier3b	506	223	0.44071146	44	Tier3b	878	216	0.24601367	25
Tier3c	460	219	0.47608696	48	Tier4a	895	192	0.21452514	21
Tier4a	575	172	0.29913043	30	Tier5a	614	221	0.35993485	36
Tier4b	801	286	0.35705368	36	Tier5b	539	113	0.2096475	21
Tier5a	746	166	0.22252011	22	Tier6a	559	132	0.23613596	24
Tier6b	566	239	0.42226148	42	Tier6b	492	363	0.73780488	74
Tier7a	693	266	0.38383838	38	Tier8a	730	172	0.23561644	24
Tier7b	553	165	0.29837251	30	Tier8b	555	156	0.28108108	28
Tier8a	553	181	0.32730561	33	Tier8c	502	370	0.73705179	74
Tier8b	601	203	0.33777038	34	heroe	502	570	0.75705175	74
Tier9a	533	179	0.3358349	34					
Average	601.75	238.5	0.39929898		Average	584.357143	219.5	0.4168499	41.7857143
Stdev	101.030008	79.8506418	0.39929898	11.5108644	Stdev	195.717583	83.4965782	0.20584433	20.5432595
Minimum	407	165	0.22252011	22	Minimum	195.717585	86	0.2096475	20.5452555
Median	801	455	0.66911765	67	Median	895	370	0.76011561	76
Max	588	211	0.37044603	37	Max	557	218.5	0.35272237	35.5
upper Quartile	678.5	211	0.46859983	47	upper Quartile	711.75	218.5	0.60890167	60.5
lower Quartile	548	180.5	0.32026181	32.25	lower Quartile	494.5	160	0.23860538	24.25
lower quartie	540	100.5	0.52020101	52.25	lower quartie		100	0.23000330	24.25
	Knoc	k Down (taM	vc)			Knock	Down (taM	ax)	
Name		k Down (<i>taM</i>) BrdU signal		Percentage	Name		k Down (<i>taM</i> BrdU signal	-	Percentage
Name Tier1a	Nuclei	BrdU signal	Quotient	Percentage	Name Tier1a	Nuclei	BrdU signal	Quotient	Percentage
Tier1a	Nuclei 830	BrdU signal 187	Quotient 0.2253012	23	Tier1a	Nuclei 776	BrdU signal 361	Quotient 0.46520619	47
Tier1a Tier1b	Nuclei 830 938	BrdU signal 187 123	Quotient 0.2253012 0.13113006	23 13	Tier1a Tier1b	Nuclei 776 670	BrdU signal 361 465	Quotient 0.46520619 0.69402985	47 70
Tier1a Tier1b Tier2a	Nuclei 830 938 820	BrdU signal 187 123 170	Quotient 0.2253012 0.13113006 0.20731707	23 13 21	Tier1a Tier1b Tier1c	Nuclei 776 670 687	BrdU signal 361 465 265	Quotient 0.46520619 0.69402985 0.38573508	47 70 39
Tier1a Tier1b	Nuclei 830 938 820 848	BrdU signal 187 123	Quotient 0.2253012 0.13113006 0.20731707 0.11320755	23 13	Tier1a Tier1b	Nuclei 776 670 687 635	BrdU signal 361 465 265 136	Quotient 0.46520619 0.69402985 0.38573508 0.21417323	47 70 39 21
Tier1a Tier1b Tier2a Tier2b	Nuclei 830 938 820	BrdU signal 187 123 170 96	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024	23 13 21 22 55	Tier1a Tier1b Tier1c Tier2a Tier2b	Nuclei 776 670 687 635 517	BrdU signal 361 465 265	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456	47 70 39 21 27
Tier1a Tier1b Tier2a Tier2b Tier3a	Nuclei 830 938 820 848 801	BrdU signal 187 123 170 96 442	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907	23 13 21 22	Tier1a Tier1b Tier1c Tier2a	Nuclei 776 670 687 635	BrdU signal 361 465 265 136 138	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455	47 70 39 21 27 31
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b	Nuclei 830 938 820 848 801 723	BrdU signal 187 123 170 96 442 374	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024	23 13 21 22 55 52	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c	Nuclei 776 670 687 635 517 550	BrdU signal 361 465 265 136 138 168	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456	47 70 39 21 27
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a	Nuclei 830 938 820 848 801 723 558	BrdU signal 187 123 170 96 442 374 108	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839	23 13 21 22 55 52 19	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a	Nuclei 776 670 687 635 517 550 742	BrdU signal 361 465 265 136 138 168 239	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243	47 70 39 21 27 31 32
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b	Nuclei 830 938 820 848 801 723 558 834	BrdU signal 187 123 170 96 442 374 108 167	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981	23 13 21 22 55 52 19 20	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b	Nuclei 776 670 687 635 517 550 742 335	BrdU signal 361 465 265 136 138 168 239 38	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284	47 70 39 21 27 31 32 11
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a	Nuclei 830 938 820 848 801 723 558 834 539	BrdU signal 187 123 170 96 442 374 108 167 188	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406	23 13 21 22 55 52 19 20 35	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a	Nuclei 776 670 687 635 517 550 742 335 269	BrdU signal 361 465 265 136 138 168 239 38 34	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405	47 70 39 21 27 31 32 11 13
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a Tier6b	Nuclei 830 938 820 848 801 723 558 834 539 758	BrdU signal 187 123 170 96 442 374 108 167 188 238	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417	23 13 21 22 55 52 19 20 35 31 23	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b	Nuclei 776 670 687 635 517 550 742 335 269 272	BrdU signal 361 465 265 136 138 168 239 38 34 34 50	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353	47 70 39 21 27 31 32 11 13 13 18
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a Tier6b Tier7a	Nuclei 830 938 820 848 801 723 558 834 539 758 763	BrdU signal 187 123 170 96 442 374 108 167 188 238 179	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026	23 13 21 22 55 52 19 20 35 31 23	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4c	Nuclei 776 670 687 635 517 550 742 335 269 272 553	BrdU signal 361 465 265 136 138 168 239 38 34 50 145	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615	47 70 39 21 27 31 32 11 13 18 26
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a Tier6b Tier7a	Nuclei 830 938 820 848 801 723 558 834 539 758 763	BrdU signal 187 123 170 96 442 374 108 167 188 238 179	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026	23 13 21 22 55 52 19 20 35 31 23	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4c Tier5a	Nuclei 776 670 687 635 517 550 742 335 269 272 553 549	BrdU signal 361 465 265 136 138 168 239 38 34 50 145 86	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615 0.15664845	47 70 39 21 27 31 32 11 13 18 26 16
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a Tier6b Tier7a	Nuclei 830 938 820 848 801 723 558 834 539 758 763	BrdU signal 187 123 170 96 442 374 108 167 188 238 179	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026	23 13 21 22 55 52 19 20 35 31 23	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4c Tier5a Tier6a	Nuclei 776 670 687 635 517 550 742 335 269 272 553 549 501	BrdU signal 361 465 265 136 138 168 239 38 34 50 145 86 229	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615 0.15664845 0.45708583	47 70 39 21 27 31 32 11 13 18 26 16 46
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a Tier6b Tier7a	Nuclei 830 938 820 848 801 723 558 834 539 758 763	BrdU signal 187 123 170 96 442 374 108 167 188 238 179	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026	23 13 21 22 55 52 19 20 35 31 23	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4c Tier5a Tier5a Tier6a Tier7a	Nuclei 776 670 687 635 517 550 742 335 269 272 553 549 501 735	BrdU signal 361 465 265 136 138 168 239 38 34 50 145 86 229 90	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615 0.15664845 0.45708583 0.12244898	47 70 39 21 27 31 32 11 13 18 26 16 46 12
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a Tier6b Tier7a	Nuclei 830 938 820 848 801 723 558 834 539 758 763	BrdU signal 187 123 170 96 442 374 108 167 188 238 179	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026	23 13 21 22 55 52 19 20 35 31 23	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4c Tier5a Tier5a Tier6a Tier7a	Nuclei 776 670 687 635 517 550 742 335 269 272 553 549 501 735	BrdU signal 361 465 265 136 138 168 239 38 34 50 145 86 229 90	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615 0.15664845 0.45708583 0.12244898	47 70 39 21 27 31 32 11 13 18 26 16 46 12
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5b Tier6a Tier6b Tier7a Tier7b	Nuclei 830 938 820 848 801 723 558 834 539 758 763 738	BrdU signal 187 123 170 96 442 374 108 167 188 238 179 174	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026 0.23577236	23 13 21 22 55 52 19 20 35 31 23 24	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4c Tier5a Tier5a Tier6a Tier6a Tier7a Tier8a	Nuclei 776 670 687 635 517 550 742 335 269 272 553 549 501 735 491	BrdU signal 361 465 265 136 138 168 239 38 34 50 145 86 229 90 205	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615 0.15664845 0.45708583 0.12244898 0.41751527	47 70 39 21 27 31 32 11 13 18 26 16 46 12 42
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a Tier6b Tier7a Tier7b	Nuclei 830 938 820 848 801 723 558 834 539 758 763 738 738	BrdU signal 187 123 170 96 442 374 108 167 188 238 179 174 203.833333	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026 0.23577236	23 13 21 22 55 52 19 20 35 31 23 24 28.16666667	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4b Tier4c Tier5a Tier6a Tier6a Tier7a Tier8a	Nuclei 776 670 687 635 517 550 742 335 269 272 553 549 501 735 491 552.133333	BrdU signal 361 465 265 136 138 168 239 38 34 50 145 86 229 90 205 176.6	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615 0.15664845 0.45708583 0.12244898 0.41751527	47 70 39 21 27 31 32 11 13 18 26 16 46 12 42 30.06666667
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a Tier6b Tier7a Tier7b	Nuclei 830 938 820 848 801 723 558 834 539 758 763 738 738	BrdU signal 187 123 170 96 442 374 108 167 188 238 179 174 203.833333 99.4717995	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026 0.23577236	23 13 21 22 55 52 19 20 35 31 23 24 28.1666667 12.5288556	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4c Tier5a Tier5a Tier6a Tier7a Tier8a Average Stdev	Nuclei 776 670 687 635 517 550 742 335 269 272 553 549 501 735 491 552.133333 157.467824	BrdU signal 361 465 265 136 138 168 239 38 34 50 145 86 229 90 205 176.6 117.736882	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615 0.15664845 0.45708583 0.12244898 0.41751527	47 70 39 21 27 31 32 11 13 18 26 16 46 12 42 30.0666667 15.905834
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a Tier6b Tier7a Tier7b Average Stdev Minimum	Nuclei 830 938 820 848 801 723 558 834 539 758 763 738 762.5 110.499246 539	BrdU signal 187 123 170 96 442 374 108 167 188 238 179 174 203.833333 99.4717995 96	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026 0.23577236 0.23577236 0.13277586 0.11320755 0.55181024	23 13 21 22 55 52 19 20 35 31 23 24 28.1666667 12.5288556 13	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4c Tier5a Tier6a Tier6a Tier7a Tier8a Average Stdev Minimum	Nuclei 776 670 687 635 517 550 742 335 269 272 553 549 501 735 491 552.133333 157.467824 269	BrdU signal 361 465 265 136 138 168 239 38 34 50 145 86 229 90 205 176.6 117.736882 34	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615 0.15664845 0.45708583 0.12244898 0.41751527 0.2995454 0.15690974 0.11343284 0.69402985	47 70 39 21 27 31 32 11 13 18 26 16 46 12 42 30.0666667 15.905834 11
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5b Tier6a Tier6b Tier7a Tier7b Average Stdev Minimum Median Max	Nuclei 830 938 820 848 801 723 558 834 539 758 763 738 762.5 110.499246 539 938 782	BrdU signal 187 123 170 96 442 374 108 167 188 238 179 174 203.833333 99.471795 96 442 176.5	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026 0.23577236 0.23577236 0.13277586 0.11320755 0.55181024 0.22995073	23 13 21 22 55 52 19 20 35 31 23 24 28.16666667 12.5288556 13 55 23	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4c Tier5a Tier6a Tier6a Tier7a Tier8a Average Stdev Minimum Median Max	Nuclei 776 670 687 635 517 550 742 335 269 272 553 549 501 735 491 552.133333 157.467824 269 776 550	BrdU signal 361 465 265 136 138 168 239 38 34 50 145 86 229 90 205 176.6 117.736882 34 465 145	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615 0.15664845 0.45708583 0.12244898 0.41751527 0.2995454 0.15690974 0.11343284 0.69402985 0.26692456	47 70 39 21 27 31 32 11 13 18 26 16 46 12 42 30.0666667 15.905834 11 70
Tier1a Tier1b Tier2a Tier2b Tier3a Tier3b Tier5a Tier5b Tier6a Tier6b Tier7a Tier7a Tier7b Average Stdev Minimum Median	Nuclei 830 938 820 848 801 723 558 834 539 758 763 738 762.5 110.499246 539 938	BrdU signal 187 123 170 96 442 374 108 167 188 238 179 174 203.833333 99.4717995 96 442	Quotient 0.2253012 0.13113006 0.20731707 0.11320755 0.55181024 0.51728907 0.19354839 0.20023981 0.34879406 0.31398417 0.23460026 0.23577236 0.23577236 0.13277586 0.11320755 0.55181024	23 13 21 22 55 52 19 20 35 31 23 24 28.16666667 12.5288556 13 55 23 32	Tier1a Tier1b Tier1c Tier2a Tier2b Tier2c Tier3a Tier3b Tier4a Tier4b Tier4c Tier5a Tier6a Tier6a Tier7a Tier8a Average Stdev Minimum Median	Nuclei 776 670 687 635 517 550 742 335 269 272 553 549 501 735 491 552.133333 157.467824 269 776	BrdU signal 361 465 265 136 138 168 239 38 34 50 145 86 229 90 205 176.6 117.736882 34 465	Quotient 0.46520619 0.69402985 0.38573508 0.21417323 0.26692456 0.30545455 0.32210243 0.11343284 0.12639405 0.18382353 0.26220615 0.15664845 0.45708583 0.12244898 0.41751527 0.2995454 0.15690974 0.11343284 0.69402985 0.26692456 0.40162518	4 77 33 2 2 3 3 3 1 1 1 1 2 1 1 4 1 3 30.0666666 1 5.90583 1 77 2

	Knoc	k Down (ASW	/)			Knock	Down (Cnox	-2)	
Name	Nuclei	BrdU signal	Quotient	Percentage	Name	Nuclei	BrdU signal	Quotient	Percentage
Tier1a	676	42	0.06213018	6	Tier1a	375	47	0.12533333	13
Tier1b	229	27	0.11790393	12	Tier1b	599	55	0.0918197	9
Tier1c	600	61	0.10166667	10	Tier2a	772	218	0.28238342	28
Tier2a	339	48	0.14159292	14	Tier2b	778	334	0.42930591	43
Tier2b	382	40	0.10471204	10		419	109	0.2601432	26
Tier3a	654	210	0.32110092		Tier3a	393	74	0.18829517	19
Tier3b	794	193	0.24307305	24	Tier3b	825	311	0.3769697	38
Tier3c	734	192	0.26158038	26		671	196	0.29210134	29
Tier4a	454	66	0.14537445	15	Tier4b	747	82	0.10977242	11
Tier4b	519	64	0.12331407	13	Tier5a	488	50	0.10245902	10
Tier4c	387	49	0.12661499	13	TOTAL CONTRACTOR CONTRACTOR	695	62	0.08920863	9
Tier5a	532	49 64	0.12030075	13	Tier6a	538	38	0.07063197	7
Tier5b	485	87	0.12030073	12		533	55	0.10318949	10
									27
Tier6a	634	63	0.09936909	10	000000000000000000000000000000000000000	623	167	0.26805778	11
Tier6b	620	50	0.08064516	8	Tier7b	578	130	0.22491349	22
Tier7a	661	61	0.09228442	9					
Tier8a	673	133	0.19762259	20					
Tier8b	434	49	0.11290323	11					
Average	544.833333	83.2777778	0.14619835	14.5555556	Average	602.266667	128.533333	0.20097231	20.0666667
Stdev	147.58171	55.9243592	0.06696254		Stdev	140.384456		0.10999338	
Minimum	229	27	0.06213018	6	Minimum	375	38	0.07063197	7
Median	794	210	0.32110092		Median	825	334	0.42930591	43
Max	566	62	0.12180741	12	Max	599	82	0.18829517	19
upper Quartile	659.25	81.75	0.17087969	17.25	upper Quartile	721	181.5	0.2752206	27.5
lower Quartile	439		0.10242801		lower Quartile	510.5			10
		k Down (taM					Down (taMa		
Name	Nuclei	BrdU signal	Quotient	Percentage	Name	Nuclei	signal	Quotient	Percentage
Tier1a	317	117	0.36908517	37	Image1b	570	147	0.25789474	26
Tier1b	850	454	0.53411765	53	Image1_c	330	55	0.16666667	17
Tier1c	752	185	0.24601064	25	lmage1	793	106	0.13366961	13
Tier2a	970	336	0.34639175	35	Tier2a	870	146	0.16781609	17
Tier2b	643	313	0.48678072	49	Tier3a	770	137	0.17792208	18
Tier2c	726	276	0.38016529	38	Tier3b	732	131	0.17896175	18
Tier3a	362	38	0.10497238	10	Tier3c	967	196	0.20268873	20
Tier3b	800	79	0.09875	10	Tier4a	840	250	0.29761905	30
Tier3c	797	99	0.12421581	12	Tier4b	639	190	0.29733959	30
Tier4a	825	180	0.21818182	22	Tier4c	665	190	0.28571429	29
Tier4b	633	112	0.17693523	18	Tier5a	1141	174	0.15249781	15
Tier4c	817	192	0.23500612	24	Tier5b	852	166	0.19483568	19
Tier5a	455	71	0.15604396	16	Tier5c	768	161	0.20963542	21
Tier5b	693	71	0.1024531	10	Tier6a	466	158	0.33905579	34
Tier5c	591	64	0.10829103	11	Tier6b	348	86	0.24712644	25
	548	104	0.18978102		Tier6c	298	153		51
Tier6a		100			and a second secon	584	171	0.29280822	29
Tier6a Tier6b	522	103	0.19731801	20	Tier7a	504	T/T	0.25200022	
second manufacture and second	522 451	103 105	0.19731801 0.23281596	20	57 CC	882	198	0.2244898	22
Tier6b									22
Tier6b Tier7a Tier7b	451	105	0.23281596	23 13	Tier7b		198	0.2244898	
Tier6b Tier7a Tier7b Average	451 577	105 75	0.23281596 0.12998267	23 13	Tier7b Average	882	198	0.2244898	24.1111111
Tier6b Tier7a Tier7b Average	451 577 648.894737	105 75 156.526316	0.23281596 0.12998267 0.23354202	23 13 23.4210526 12.8034362	Tier7b Average	882 695.277778	198 156.388889 43.438512	0.2244898	24.1111111
Tier6b Tier7a Tier7b Average Stdev	451 577 648.894737 173.269457	105 75 156.526316 109.330194	0.23281596 0.12998267 0.23354202 0.12776632	23 13 23.4210526 12.8034362 10	Tier7b Average Stdev	882 695.277778 223.82528	198 156.388889 43.438512	0.2244898 0.24112025 0.08760128 0.13366961	24.1111111 8.76158845
Tier6b Tier7a Tier7b Average Stdev Minimum	451 577 648.894737 173.269457 317	105 75 156.526316 109.330194 38	0.23281596 0.12998267 0.23354202 0.12776632 0.09875	23 13 23.4210526 12.8034362 10 53	Tier7b Average Stdev Minimum	882 695.277778 223.82528 298	198 156.388889 43.438512 55	0.2244898 0.24112025 0.08760128 0.13366961	24.1111111 8.76158845 13
Tier6b Tier7a Tier7b Average Stdev Minimum Median	451 577 648.894737 173.269457 317 970	105 75 156.526316 109.330194 38 454	0.23281596 0.12998267 0.23354202 0.12776632 0.09875 0.53411765	23 13 23.4210526 12.8034362 10 53 20	Tier7b Average Stdev Minimum Median	882 695.277778 223.82528 298 1141	198 156.388889 43.438512 55 250	0.2244898 0.24112025 0.08760128 0.13366961 0.51342282	24.1111111 8.76158845 13 51

Table A.2.4: Raw data on BrdU signal after gene "knockdown".

Data on cell proliferation were collected 24 h (A) and 72 h (B) after initial KD. Values for minimum, median, maximum, upper and lower quartile were used for boxplot analyses.

	Kr	ock Down (AS	W)			Knoc	k Down (<i>Cnox-</i>	2)	
Name	Nuclei	TUNEL signal	Quotient	Percentage	Name	Nuclei	TUNEL signal	Quotient	Percentage
Tier1	837	4	0.00477897	0.5	Tier1b	233	2	0.00858369	0.9
Tier1_b	592	4	0.00675676	0.7	Tier2	223	2	0.00896861	0.9
Tier2	572	4	0.00699301	0.7	Tier2b	493	2	0.0040568	0.4
Tier2b	591	5	0.00846024	0.8	Tier3b	512	4	0.0078125	0.8
Tier2c	750	3	0.004	0.4	Tier4	763	2	0.00262123	0.3
Tier3	772	3	0.00388601	0.4					
Tier3c	586	3	0.00511945	0.5					
Average	671.428571	3.714285714	0.00571349	0.571428571	Average	444.8	2.4	0.00640857	0.66
Stdev	102.583565	0.699854212	0.00159338	0.148461498	Stdev	201.06954	0.8	0.00257413	0.25768197
Minimum	572	3	0.00388601	0.4	Minimum	223	2	0.00262123	0.3
Median	837	5	0.00846024	0.8	Median	763	4	0.00896861	0.9
Max	592	4	0.00511945	0.5	Max	493	2	0.0078125	0.8
upper Quartile	761	4	0.00687488	0.7	upper Quartile	512	2	0.00858369	0.9
lower Quartile	588.5	3	0.00438949	0.45	lower Quartile	233	2	0.0040568	0.4
	Kn	ock Down (tal	/yc)			Knoc	k Down (<i>taMa</i>	x)	
Name	Nuclei	TUNEL signal	Quotient	Percentage	Name	Nuclei	TUNEL signal	Quotient	Percentage
Tier1	524	13	0.02480916		Tier1	485	11		2.2
Tier1b	390	14	0.03589744	2.3	Tier1c	519	13	0.02504817	2.5
Tier1c	528	2	0.00378788	0.4	Tier2b	584	11	0.01883562	1.9
Tier2	306	4	0.0130719	1.3	Tier2c	520	6	0.01153846	1.1
Tier2b	719	9	0.01251739	1.3	Tier3	611	9	0.01472995	1.5
Tier3	441	15	0.03401361	3.4	Tier3b	915	8	0.00874317	0.8
Tier3b	346	7	0.02023121	2	Tier3c	709	9	0.01269394	1.3
Tier3c	835	4	0.00479042	0.5	Tier4	442	7	0.0158371	1.6
Tier4	499	4	0.00801603	0.8	Tier4b	628	10	0.01592357	1.6
Tier4b	283	5	0.01766784	1.7	Tier4c	517	14	0.0270793	2.7
Tier5	359	3	0.00835655	0.8	Tier5	545	10	0.01834862	1.8
Tier5b	424	5	0.01179245	1.1	Tier5b	475	12	0.02526316	2.5
Tier5c	752	5	0.00664894	0.6	Tier5c	375	12	0.032	3.2
Tier6	425	9	0.02117647	2.1	Tier6	440	10	0.02272727	2.2
Tier6b	503	5	0.00994036	0.9	Tier6b	466	2	0.00429185	0.5
Tier6c	596	8	0.01342282	1.3					
Tier7b	573	3	0.0052356	0.5					
Tier7c	353	13	0.0368272	3.7					
Average	492	7.111111111	0.01601129	1.511111111	Average	548.733333	9.6	0.01838271	1.82666667
Stdev	151.907501	4.039924214	0.01043841	0.95387449	Stdev	127.465795	2.916619047	0.00724307	0.71504468
Minimum	283	2	0.00378788	0.4	Minimum	375	2	0.00429185	0.5
Median	835	15	0.0368272	3.7	Median	915	14	0.032	3.2
Max	470	5	0.01279464	1.3	Max	519	10	0.01834862	1.8
upper Quartile	561.75	9	0.02094016	2.075	upper Quartile	597.5	11.5	0.02388772	2.35
lower Quartile	366.75	4	0.00810116	0.8	lower Quartile	470.5	8.5	0.01371194	1.4

Table A.2.5: Raw data on TUNEL staining 24h after initial tamyc/tamax gene "knockdown".

Amount of TUNEL signal was estimated 24 h after KD. Values for minimum, median, maximum upper and lower quartile were used for boxplot depiction.

Method	taMyc/Cnox-2	taMyc/ASW	taMyc/Cnox-2+ASW	taMax/Cnox-2	taMax/ASW	taMax/Cnox-2+ASW
BrdU (24h)	0.06665	0.01918*	0.02363*	0.10778	0.0627	0.04637*
BrdU (72h)	0.44033	0.01548*	0.04922*	0.26435	0.00109*	0.01301*
TUNEL (24h)	0.073	0.02052*	0.00417**	0.00327**	0.00029***	1.028E-05***

Table A.2.6: Statistical analyses on BrdU and TUNEL staining.

Statistical analyses of data in table A.2.4 and A.2.5 have been performed with a two-tailed t-test. Significances are indicated with asterisks p < 0.05 *, p < 0.01 **, p < 0.001 ***.

										_		
Fundationant Fundationant		ASW		Condend of	DMSO	La Constante	DMSO		Property.	Fundation to the sector	2μM	Chandrad
EoN No3	Ha .	No4	Average		No1 No2	No3	No4	Average	Deviation	No1	Average	Deviation
	25	23	24.333333333	0.942809042	25	25 25	5 28	25.75	1.299038106	25	x	
	28	29	28.66666667	0.471404521	25	33 21		27.75	4.968651729	27	,	,
	37	35	34.66666667	2.054804668	29	38 31	1 24	30.5	5.024937811	37	ı	
	41	46	41.66666667	3.299831646	39	48 32	2 45	41	6.123724357	44		r
	61	56	52	9.416297928	39	49 37		43	5.099019514		ļ	,
	72	55	55	13.88044188		47 49		48.5	7.123903424	67	<u>i</u>	
	52	58	20	7.483314774			1 58	5	6.219927652		,	
	50	53	49.333333333	3.299831646	47			50	4.949747468		,	
	62	54	54	6.531972647	48			51.25	5.068283733		1	
	55		50	S			-	46.6666667	1.247219129		,	,
	69		61.5	7.5				39	1.632993162	1985	ı	,
	66		62	4		52 40	6	43.6666667	5.906681716	9	ţ	,
	60		61	1	42		0	37	5.099019514		ı	
	69		69	0			6	34	80			
	17		17	0		56	16	56	0			
	60		60	0		40	6	40	0			
	65		65	0		45	100	45	0			
	66		99	0		50		39	0			
		ЗиМ				4µM			SμM			
Expe	ent	Exper		Standard	Experiment Experiment	int	Standard	Experiment	Experiment		Standard	
-	No2	No2	Average	Deviation	No3 No3	Average	Deviation	No1	No4	Average	Deviation	
	25	25	25	0	25	25 25		25	28		1.06066017	
	33	27	31.66666667	3.399346342	28			24	21	22.5		
	40	38	38.66666667	0.942809042	28			23	33		3.53553391	
	44	41	47	6.480740698	30	2	5 0.5		19	19.5	0.35355339	
	55	36	45	7.788880964	28	32 30		9	26	16	7.07106781	
	42	44	45	2.943920289	19	43 31	1 12	5	5	S	0	
	41	43	44.66666667	3.858612301	18	38 28	8 10		00	4	2.82842712	
	36	35	38.66666667	4.496912521	14	31 22.5	8.5	0	9	e	2.12132034	
	35	43	41.333333333	4.642796092	12	31 21.5	5 9.5	0	0	0	0	
	41	46	45	2.943920289	17	37 27	7 10	0				
	27	31	33.66666667	6.798692685	18	27 22.5	5 4.5	0				
	30	28	28.333333333	1.247219129	14	32 23	8	0				
	0	15	6	6.480740698	14	33 23.5	5 9.5					
	0	4	2.3333333333	1.699673171	18							
	0	0	0	0			9					
					22							
					21							
					0							
1ª	7µM			10µM								_
					Standard							
Ave	Average	Deviation	Experiment No1	Average	Deviation							
			36									
			0		-							
				8								

В

10058 10058 2µM/D 2µM/D .2961 0.933 .0626 0.510 .6667 0.683 .9224 0.483 .78875 0.579 .4444 0.390 .7146 0.514 .5591 0.374 .5533 0.074 .7836 0.0453 .807* 0.355	MSO ASW+DMSO 33 0.91422 39 0.42553 39 0.61657 46 0.9189 92 0.94393 72 0.30042 34 0.3146 466 0.27632 411 0.15122 18 0.3141 33* 0.02411	 10058-F4 3µM/ASW 0.284 0.06661 0.35826 0.46333 0.37533 0.42098 0.05384 0.08909 0.35611 0.04464 0.00182** 0.00317** 	10058-F4 3μΜ/DMSO 0.27964 0.09951 0.32329 0.64212 1 0.53801 0.08461 0.14316 0.5019 0.34142 0.02292* 0.00864**	10058-F4 3μM/ ASW+DMSO 0.19464 0.05476 0.20899 0.80161 0.33197 0.33459 0.01455* 0.05452 0.33935 0.15358 0.0173*	10058-F4 4μM/ASW 0.32946 0.06574 0.00663** 0.03121* 0.11642 0.04836* 0.00783 0.01056* 0.07015 0.00935** 0.01302*	10058-F4 4μM/DMSO 0.37916 0.41897 0.09357 0.03989* 0.13816 0.04382* 0.0098** 0.01069* 0.02811* 0.00439**	10058-F4 4µМ /ASW+DMSO 0.3607 0.14832 0.01455* 0.02767* 0.06649 0.00795** 0.00029*** 0.00029*** 0.00074*** 0.00508**
22961 0.933 60626 0.510 66667 0.68 9224 0.483 8875 0.579 4444 0.390 67146 0.514 55591 0.374 55591 0.374 55633 0.074 15633 0.045 1807* 0.035 -	33 0.91422 39 0.42553 59 0.61657 46 0.9189 92 0.94393 72 0.30042 34 0.3146 46 0.27632 41 0.15122 18 0.3141 33* 0.02411 95* 0.03752*	0.284 0.06661 0.35826 0.46333 0.37533 0.42098 0.05384 0.08909 0.35611 0.04464 0.00182** 0.00317**	0.27964 0.09951 0.32329 0.64212 1 0.53801 0.08461 0.14316 0.5019 0.34142 0.02292*	0.19464 0.05476 0.20899 0.80161 0.53197 0.39459 0.01455* 0.05452 0.33935 0.15358 0.0173*	0.32946 0.06574 0.00663** 0.03121* 0.11642 0.04836* 0.00783 0.01056* 0.07015 0.00935**	0.37916 0.41897 0.09357 0.03989* 0.13816 0.04382* 0.0098** 0.01069* 0.02811* 0.00439**	0.3607 0.14832 0.01455* 0.02767* 0.06649 0.00795** 0.00029*** 0.00074*** 0.00508**
30626 0.510 36667 0.681 39224 0.483 38875 0.579 4444 0.390 37146 0.514 35591 0.374 45437 0.063 25633 0.074 37836 0.045 1807* 0.0359	39 0.42553 59 0.61657 46 0.9189 92 0.94393 72 0.30042 34 0.3146 46 0.27632 41 0.15122 18 0.3141 33* 0.02411 95* 0.03752*	0.06661 0.35826 0.46333 0.37533 0.42098 0.05384 0.08909 0.35611 0.04464 0.00182** 0.00317**	0.09951 0.32329 0.64212 1 0.53801 0.08461 0.14316 0.5019 0.34142 0.02292*	0.05476 0.20899 0.80161 0.53197 0.39459 0.01455* 0.05452 0.33935 0.15358 0.0173*	0.06574 0.00663** 0.03121* 0.11642 0.04836* 0.00783 0.01056* 0.07015 0.00935**	0.41897 0.09357 0.03989* 0.13816 0.04382* 0.0098** 0.01069* 0.02811* 0.00439**	0.14832 0.01455* 0.02767* 0.06649 0.00795** 0.00029*** 0.00074*** 0.00508**
66667 0.683 29224 0.483 28875 0.579 4444 0.390 37146 0.514 35591 0.374 45437 0.063 25633 0.074 37836 0.045 1807* 0.035	9 0.61657 46 0.9189 92 0.94393 72 0.30042 34 0.3146 46 0.27632 41 0.15122 18 0.3141 33* 0.02411 95* 0.03752*	0.35826 0.46333 0.37533 0.42098 0.05384 0.08909 0.35611 0.04464 0.00182** 0.00317**	0.32329 0.64212 1 0.53801 0.08461 0.14316 0.5019 0.34142 0.02292*	0.20899 0.80161 0.53197 0.39459 0.01455* 0.05452 0.33935 0.15358 0.0173*	0.00663** 0.03121* 0.11642 0.04836* 0.00783 0.01056* 0.07015 0.00935**	0.09357 0.03989* 0.13816 0.04382* 0.0098** 0.01069* 0.02811* 0.00439**	0.01455* 0.02767* 0.06649 0.00795** 0.00029*** 0.00074*** 0.00508**
9224 0.483 8875 0.579 4444 0.390 87146 0.514 95591 0.374 95437 0.063 97836 0.0453 1807* 0.0359	46 0.9189 92 0.94393 72 0.30042 34 0.3146 46 0.27632 41 0.15122 18 0.3141 33* 0.02411 95* 0.03752*	0.46333 0.37533 0.42098 0.05384 0.08909 0.35611 0.04464 0.00182** 0.00317**	0.64212 1 0.53801 0.08461 0.14316 0.5019 0.34142 0.02292*	0.80161 0.53197 0.39459 0.01455* 0.05452 0.33935 0.15358 0.0173*	0.03121* 0.11642 0.04836* 0.00783 0.01056* 0.07015 0.00935**	0.03989* 0.13816 0.04382* 0.0098** 0.01069* 0.02811* 0.00439**	0.02767* 0.06649 0.00795** 0.00029*** 0.00074*** 0.00508**
28875 0.579 14444 0.390 37146 0.514 35591 0.374 15437 0.063 15633 0.074 17836 0.045 1807* 0.035	92 0.94393 72 0.30042 34 0.3146 46 0.27632 41 0.15122 18 0.3141 33* 0.02411 95* 0.03752*	0.37533 0.42098 0.05384 0.08909 0.35611 0.04464 0.00182** 0.00317**	1 0.53801 0.08461 0.14316 0.5019 0.34142 0.02292*	0.53197 0.39459 0.01455* 0.05452 0.33935 0.15358 0.0173*	0.11642 0.04836* 0.00783 0.01056* 0.07015 0.00935**	0.13816 0.04382* 0.0098** 0.01069* 0.02811* 0.00439**	0.06649 0.00795** 0.00029*** 0.00074*** 0.00508**
14444 0.390 37146 0.514 35591 0.374 45437 0.063 25633 0.074 17836 0.045 1807* 0.035	72 0.30042 34 0.3146 46 0.27632 41 0.15122 18 0.3141 33* 0.02411 95* 0.03752*	0.42098 0.05384 0.08909 0.35611 0.04464 0.00182** 0.00317**	0.53801 0.08461 0.14316 0.5019 0.34142 0.02292*	0.39459 0.01455* 0.05452 0.33935 0.15358 0.0173*	0.04836* 0.00783 0.01056* 0.07015 0.00935**	0.04382* 0.0098** 0.01069* 0.02811* 0.00439**	0.00795** 0.00029*** 0.00074*** 0.00508**
37146 0.514 35591 0.374 35591 0.063 35633 0.074 97836 0.045 1807* 0.035	34 0.3146 46 0.27632 41 0.15122 18 0.3141 33* 0.02411 95* 0.03752*	0.05384 0.08909 0.35611 0.04464 0.00182** 0.00317**	0.08461 0.14316 0.5019 0.34142 0.02292*	0.01455* 0.05452 0.33935 0.15358 0.0173*	0.00783 0.01056* 0.07015 0.00935**	0.0098** 0.01069* 0.02811* 0.00439**	0.00029*** 0.00074*** 0.00508**
35591 0.374 45437 0.063 25633 0.074 07836 0.045 1807* 0.035 - - - -	46 0.27632 41 0.15122 18 0.3141 33* 0.02411 95* 0.03752*	0.08909 0.35611 0.04464 0.00182** 0.00317**	0.14316 0.5019 0.34142 0.02292*	0.05452 0.33935 0.15358 0.0173*	0.01056* 0.07015 0.00935**	0.01069* 0.02811* 0.00439**	0.00074*** 0.00508**
15437 0.063 15633 0.074 17836 0.045 1807* 0.035 - - - -	41 0.15122 18 0.3141 33* 0.02411 95* 0.03752*	0.35611 0.04464 0.00182** 0.00317**	0.5019 0.34142 0.02292*	0.33935 0.15358 0.0173*	0.07015 0.00935**	0.02811* 0.00439**	0.00508**
25633 0.074 07836 0.0453 1807* 0.0359 	180.314133*0.0241195*0.03752*	0.04464 0.00182** 0.00317**	0.34142 0.02292*	0.15358 0.0173*	0.00935**	0.00439**	
07836 0.0458 1807* 0.0359 	33* 0.02411 95* 0.03752*	0.00182** 0.00317**	0.02292*	0.0173*			0.02152*
1807* 0.0359 	95* 0.03752*	0.00317**			0.01202*		0.02152*
· · ·			0.00864**		0.01302	0.02292*	0.01215*
	-	0.0021**	0.00004	0.00562**	0.01334*	0.10885	0.04581*
		0.0051	0.01427*	0.02635*	0.03213*	0.33853	0.19201
	-	-	-	-	0.20592	0.23391	0.04442*
	-	-	-	-	0.055	0.10918	0.09874
	-	-	8-	-	0.04785*	0.08432	0.07172
	-	-	-	-	-	-	0.06021
58-F4 10058	-F4 10058-F4 5µM	10058-F4	10058-F4	10058-F4 7µM	10058-F4	10058-F4	10058-F4 10µM
I/ASW 5µM/D		7µM/ASW	7µM/DMSO	/ASW+DMSO	10µM/ASW	10µM/DMSO	/ASW+DMSO
	56 0.16094	0.00054***	0.06488	0.00156**	0.00054***	0.06488	0.00156**
1081 0.305	22 0.8668	-	-	-	-	-	-
071*** 0.012	.00048***	-	-	-	-	-	-
1504* 0.020	.0.00342**	-	-	-	-	-	-
0701** 0.0002	*** 0.00054***	-	-	-	-	-	-
042* 0.021	0.0014**	-	-	-	-	-	-
	-	-	-	-	-	-	-
	-	-	-	-	-	-	-
	-	-	-	-	-	-	-
	-	-	5 -	-	-	-	-
	-	-	-	-	-	-	-
	-	-	-	-	-	-	-
	-	-	-	-	-	-	-
	-	-	-	-	-	-	-
	÷	-	-	-	-	-	-
		-	-	-	-	-	-
	-						
1,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58-F4 10058 /ASW 5μM/DI 421* 0.473 081 0.302 71*** 0.0121 504* 0.0021 701** 0.0021 42* 0.0212 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	58-F4 10058-F4 10058-F4 \$µM /ASW 5µM/DMSO /ASW+DMSO 421* 0.47356 0.16094 081 0.30522 0.8668 71*** 0.01219* 0.00048*** 504* 0.02013* 0.00342** 701** 0.001211* 0.00054*** 42* 0.02121* 0.0014** - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	38-F4 10058-F4 100-F4 100-F4 100-F4 100-F4 100-F4 100-F4 100-F4 100-F4	58-F4 10058-F4 0.006488 0.0054*** 0.006488 0.006488 0.006488 0.006488 0.0014** -	58-F4 10058-F4 10058-F4 5µM 10058-F4 10058-F4 7µM 10058-F4 7µM /ASW 5µM/DMSO /ASW+DMSO 7µM/ASW 7µM/DMSO /ASW+DMSO 421* 0.47356 0.16094 0.0054*** 0.06488 0.00156** 081 0.30522 0.8668 - - - 71*** 0.01219* 0.00048*** - - - 0.02013* 0.0048*** - - - - 701** 0.0002*** 0.00054*** - - - 0.02121* 0.0014** - - - - 42* 0.02121* 0.0014** - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	38-F4 10058-F4 100 100 100 <th>38-F4 10058-F4 10058-F4 5μM 10058-F4 10058-F4 10058-F4 7μM 10058-F4 100-74 100-74</th>	38-F4 10058-F4 10058-F4 5μM 10058-F4 10058-F4 10058-F4 7μM 10058-F4 100-74 100-74

Table A.2.7: Raw data on population sizes after treatment with the 10058-F4 inhibitor.

Animals were counted daily after initial treatment with the 10058-F4 inhibitor. Shown is the animal population size at different time points of the experiment (A). The average value (with standard deviation) was used for graph depiction. Significances are indicated with asterisks p < 0.05 *, p < 0.01 **, p < 0.001 *** (B).

4

А

					•			
	ASW	DMSO	2μΜ	Da 3µM	γ0 4μM	5μΜ	7μΜ	10µM
Number of Values	87	71	16	73	35	34	25	30
Average		17.3919737					16.9332727	0.01283
Standard Deviation		9.03170553			7.75360623			9.0670467
Median	15.077	15.861	21.3125	13.073	15.741	19.5315	14.9815	18.116
Minimum	1.324	2.075	11.515	2.362	6.716	2.529	0.927	2.48
Maximum	56.781	41.468	40.743	27.949	33.9	45.764	44.685	38.99
upper Quartile	23.503	23.1855	27.631	16.968	21.47075	22.8195	23.23125	24.2565
lower Quartile	8.4965	11.53125	15.184	9.984	10.46275	14.05975	9.663	12.166
				Da	Sand and second sec			
	ASW	DMSO	2μΜ	3μM	,- 4μM	5μΜ	7μM	10µM
Number of Values	99	92	24	85	35	32	0	0
Average	14.84588	13.1727097	13.55108	10.5078519	10.8134688	5.5283871	0	0
Standard Deviation	9.42702012	7.83156967	7.4467789	5.20598791	7.19576345	3.03644189	0	0
Median	13.6035	11.535	13.319	10.202	8.6225	5.235	0	0
Minimum	1.162	1.289	1.962	0.898	2.866	0.835	0	0
Maximum	43.635	38.036	35.454	22.271	28.354	12.073	0	0
upper Quartile	20.75775	17.432	18.882	14.414	13.1455	7.5005	0	0
lower Quartile	7.2545	7.51	6.698	7.023	5.53675	2.815	0	0
				Da				
	ASW	DMSO	2μM	3µM	4μM	5μM	7μM	10µM
Number of Values	71	105	30	103	41	31	0	0
Average				7.01640594			0	0
Standard Deviation		7.90519543				2.99473443	0	0
Median	8.6395	12.202	6.75	6.014	10.364	3.473	0	0
Minimum	1.777	0	1.508	0.269	2.619	0.729	0	0
Maximum	36.51	32.619	23.8	27.269	26.135	13.502	0	0
upper Quartile	16.067	19.371	9.963	8.82	14.4015	4.48375	0	0
lower Quartile	5.132	6.694	3.2415	3.272	5.5965	1.78225	0	0
	ASW	DMSO	2μΜ	Da 3µM	γ5 4μM	5μΜ	7μΜ	10µM
Number of Values	95	115	39	98	51	21	0	0
Average	10 00000 40	11 4245243	5.68882927	8.05092708	8.23768627	3.80518182	0	0
	10.6080349	TT. 12 102 10						
Standard Deviation		7.26055507	3.63335751	5.41025265		3.15679391	0	0
			3.63335751 5.454	5.41025265 7.2065		3.15679391 3.2275	0	0 0
Standard Deviation	7.14966217	7.26055507			4.9642708			
Standard Deviation Median	7.14966217 9.555	7.26055507 9.014	5.454	7.2065	4.9642708 7.393	3.2275	0	0
Standard Deviation Median Minimum	7.14966217 9.555 1.758	7.26055507 9.014 1.033	5.454 0	7.2065 0.883	4.9642708 7.393 1.139	3.2275 0.519	0	0 0
Standard Deviation Median Minimum Maximum	7.14966217 9.555 1.758 31.758	7.26055507 9.014 1.033 42.599	5.454 0 16.155	7.2065 0.883 22.506	4.9642708 7.393 1.139 22.926	3.2275 0.519 11.699	0 0 0	0 0 0
Standard Deviation Median Minimum Maximum upper Quartile	7.14966217 9.555 1.758 31.758 14.1075	7.26055507 9.014 1.033 42.599 15.30525 5.54325	5.454 0 16.155 8.174	7.2065 0.883 22.506 11.026	4.9642708 7.393 1.139 22.926 10.887 3.9735	3.2275 0.519 11.699 5.35575	0 0 0	0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile Iower Quartile	7.14966217 9.555 1.758 31.758 14.1075 4.2175 ASW	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO	5.454 0 16.155 8.174 2.411 2μΜ	7.2065 0.883 22.506 11.026 3.87925 Da 3μΜ	4.9642708 7.393 1.139 22.926 10.887 3.9735 γ4 4μΜ	3.2275 0.519 11.699 5.35575 1.051 5µМ	0 0 0 0 7μΜ	0 0 0 10µM
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values	7.14966217 9.555 1.758 31.758 14.1075 4.2175 ASW 119	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 128	5.454 0 16.155 8.174 2.411 2μΜ 41	7.2065 0.883 22.506 11.026 3.87925 Da 3μΜ 118	4.9642708 7.393 1.139 22.926 10.887 3.9735 γ4 4μΜ 44	3.2275 0.519 11.699 5.35575 1.051 5µМ 15	0 0 0 0 7μΜ	0 0 0 10µМ
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values Average	7.14966217 9.555 1.758 31.758 14.1075 4.2175 ASW 119 7.72159259	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 128 9.8727913	5.454 0 16.155 8.174 2.411 2µM 4.48142424	7.2065 0.883 22.506 11.026 3.87925 Da 3μM 118 6.19853846	4.9642708 7.393 1.139 22.926 10.887 3.9735 γ4 4μΜ 44 7.69616667	3.2275 0.519 11.699 5.35575 1.051 5µM 15 3.862125	0 0 0 0 7μΜ 0 0	0 0 0 10µМ 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation	7.14966217 9.555 1.758 31.758 14.1075 4.2175 ASW 119 7.72159259 5.84195159	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 128 9.8727913 6.5429913	5.454 0 16.155 8.174 2.411 2µM 41 4.48142424 2.45706384	7.2065 0.883 22.506 11.026 3.87925 Da 3μΜ 118 6.19853846 4.07993858	4.9642708 7.393 1.139 22.926 10.887 3.9735 γ4 4μΜ 44 7.69616667 4.39985406	3.2275 0.519 11.699 5.35575 1.051 5µM 15 3.862125 2.13323138	0 0 0 0 7μΜ 0 0 0	0 0 0 10µМ 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median	7.14966217 9.555 1.758 31.758 14.1075 4.2175 ASW 119 7.72159259 5.84195159 5.868	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 128 9.8727913 6.5429913 8.087	5.454 0 16.155 8.174 2.411 2µM 4.48142424 2.45706384 4.154	7.2065 0.883 22.506 11.026 3.87925 Da 3μΜ 118 6.19853846 4.07993858 5.256	4.9642708 7.393 1.139 22.926 10.887 3.9735 γ4 4μΜ 44 7.69616667 4.39985406 6.6095	3.2275 0.519 11.699 5.35575 1.051 5µM 15 3.862125 2.13323138 3.7855	0 0 0 0 0 7μΜ 0 0 0 0 0	0 0 0 10µМ 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum	7.14966217 9.555 1.758 31.758 14.1075 4.2175 ASW 119 7.72159259 5.84195159 5.868 0.787	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 128 9.8727913 6.5429913 8.087 8.087	5.454 0 16.155 8.174 2.411 2µM 41 4.48142424 2.45706384 4.154 0.64	7.2065 0.883 22.506 11.026 3.87925 Da 3μΜ 118 6.19853846 4.07993858 5.256	4.9642708 7.393 1.139 22.926 10.887 3.9735 γ4 4μΜ 44 7.69616667 4.39985406 6.6095 2.129	3.2275 0.519 11.699 5.35575 1.051 5µM 15 3.862125 2.13323138 3.7855 0.636	0 0 0 0 0 7μΜ 0 0 0 0 0 0 0	0 0 0 10µМ 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum	7.14966217 9.555 1.758 31.758 14.1075 4.2175 ASW 119 7.72159259 5.84195159 5.868 0.787 27.283	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 128 9.8727913 6.5429913 6.5429913 8.087 0.796 34.253	5.454 0 16.155 8.174 2.411 2µM 4.48142424 2.45706384 4.154 0.64 10.886	7.2065 0.883 22.506 11.026 3.87925 Da 3μΜ 6.19853846 4.07993858 5.256 0 0 21.423	4.9642708 7.393 1.139 22.926 10.887 3.9735 γ4 4μΜ 44 7.69616667 4.39985406 6.6095 2.129 17.919	3.2275 0.519 11.699 5.35575 1.051 5µM 15 3.862125 2.13323138 3.7855 0.636 7.777	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 10µМ 0 0 0 0 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile	7.14966217 9.555 1.758 31.758 14.1075 4.2175 ASW 119 7.72159259 5.84195159 5.868 0.787 27.283 11.2935	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 2.542913 6.5429913 6.5429913 8.087 0.796 34.253 12.734	5.454 0 16.155 8.174 2.411 2μΜ 41 4.48142424 2.45706384 4.154 0.64 10.886 5.412	7.2065 0.883 22.506 11.026 3.87925 Da 3µM 118 6.19853846 4.07993858 6.19853846 4.07993858 0 21.423 7.919	4.9642708 7.393 1.139 22.926 10.887 3.9735 γ4 4μΜ 44 7.69616667 4.39985406 6.6095 2.129 17.919 10.7585	3.2275 0.519 11.699 5.35575 1.051 5µM 15 3.862125 2.13323138 3.7855 0.636 7.777 5.642	0 0 0 0 0 7μΜ 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum	7.14966217 9.555 1.758 31.758 14.1075 4.2175 ASW 119 7.72159259 5.84195159 5.868 0.787 27.283	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 128 9.8727913 6.5429913 8.087 6.5429913 8.087 0.796 34.253	5.454 0 16.155 8.174 2.411 2µM 4.48142424 2.45706384 4.154 0.64 10.886	7.2065 0.883 22.506 11.026 3.87925 Da 3μΜ 6.19853846 4.07993858 5.256 0 0 21.423	4.9642708 7.393 1.139 22.926 10.887 3.9735 y4 4μΜ 44 7.69616667 4.39985406 6.6095 2.129 17.919 10.7585 4.24075	3.2275 0.519 11.699 5.35575 1.051 5µM 15 3.862125 2.13323138 3.7855 0.636 7.777	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 10µМ 0 0 0 0 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile	7.14966217 9.555 1.758 31.758 4.2175 ASW 119 7.72159259 5.84195159 5.84195159 5.843 0.787 2.7283 1.2935 3.1775	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 9.8727913 6.5429913 6.5429913 8.087 0.796 34.253 12.734 4.524	5.454 0 16.155 8.174 2.411 2μΜ 4.48142424 2.45706384 4.154 0.64 10.886 5.412 2.674 2μΜ	7.2065 0.883 22.506 11.026 3.87925 Δα 3μΜ 6.19853846 4.07993858 5.256 0 21.423 7.919 3.421 Δα 3μΜ	4.9642708 7.393 1.139 22.926 10.887 3.9735 y4 4μΜ 44 7.69616667 4.39985406 6.6095 2.129 17.919 10.7585 4.24075 y5 4μΜ	3.2275 0.519 11.699 5.35575 1.051 5µM 53.862125 2.13323138 3.7855 0.636 7.777 5.642 1.98575	0 0 0 7μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile	7.14966217 9.555 1.758 31.758 4.2175 ASW 119 7.72159259 5.84195159 5.84195159 5.843 0.787 2.7283 1.2935 3.1775	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 9.8727913 6.5429913 6.5429913 6.5429913 6.542913 4.524 2.734 4.524 DMSO	5.454 0 16.155 8.174 2.411 2μΜ 4.48142424 2.45706384 4.154 0.64 10.886 5.412 2.674 2μΜ	7.2065 0.883 22.506 11.026 3.87925 Δα 3μΜ 6.19853846 4.07993858 6.19853846 4.07993858 5.256 0 21.423 7.919 3.421 Δα 3μΜ	4.9642708 7.393 1.139 22.926 10.887 3.9735 y4 4μΜ 44 7.69616667 4.39985406 6.6095 2.129 17.919 10.7585 4.24075 y5 4μΜ	3.2275 0.519 11.699 5.35575 1.051 5μΜ 2.1322138 3.7855 2.13223138 3.7855 2.13223138 3.7855 2.13223138 3.7855 2.13223128 3.7855 2.13223128 3.7855 2.13223128 3.7855 2.13223128 3.7855 3.7855 2.13223128 3.7855 3.7755 3.7757 3.7757 3.7757 3.7777 3.7777 3.7777 3.7777 3.7777 3.7777 3.7777 3.7777 3.7777 3.7777 3.7777 3.7777 3.7777 3.7777 3.77777 3.77777 3.77777 3.77777 3.77777 3.777777 3.77777777	0 0 0 7μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average	7.14966217 9.555 1.758 31.758 4.2175 ASW 119 7.72159259 5.84195159 5.84195159 5.843 0.787 2.7283 1.2935 3.1775 ASW	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 9.8727913 6.5429913 6.5429913 6.5429913 6.5429913 4.524 9.8727913 6.542913 4.524 2.535 12.734 4.524 DMSO	5.454 0 16.155 8.174 2.411 2μΜ 4.48142424 2.45706384 4.154 0.64 10.886 5.412 2.674 2μΜ 35 4.20955556	7.2065 0.883 22.506 11.026 3.87925 Δα 3μΜ 6.19853846 4.07993858 6.19853846 4.07993858 5.256 0 0 21.423 7.919 3.421 Δα 3μΜ	4.9642708 7.393 1.139 22.926 10.887 3.9735 y4 4μΜ 44 7.69616667 4.39985406 6.6095 2.129 17.919 10.7585 4.24075 y5 4μΜ 57 3.58653381	3.2275 0.519 11.699 5.35575 1.051 5µM 15 3.862125 2.13323138 3.7855 0.636 7.777 5.642 1.98575 5µM 12 1.32107692	0 0 0 7μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation	7.14966217 9.555 1.758 31.758 4.2175 ASW 119 7.72159259 5.84195159 5.84195159 5.842 0.787 27.283 11.2935 3.1775 3.1775 8.02905455 6.64193246	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 9.8727913 6.5429913 6.5429913 6.5429913 4.253 34.253 34.253 12.734 4.524 DMSO 167 9.7161194 6.01101638	5.454 0 16.155 8.174 2.411 2μΜ 4.48142424 2.45706384 4.154 0.64 10.886 5.412 2.674 2.674 2μΜ 35 4.20955556 2.30310759	7.2065 0.883 22.506 11.026 3.87925 Δα 3μΜ 6.19853846 4.07993858 6.19853846 4.07993858 5.256 0 21.423 7.919 3.421 Δα 3μΜ 111 7.146 4.55402361	4.9642708 7.393 1.139 22.926 10.887 3.9735 y4 4μΜ 44 7.69616667 4.39985406 6.6095 2.129 17.919 10.7585 4.24075 y5 4μM 57 3.58653381 6.1725	3.2275 0.519 11.699 5.35575 5μΜ 5μΜ 1.051 3.862125 2.13323138 3.7855 2.13323138 3.7855 2.13323138 3.7855 2.1325 2.1325 5.642 1.98575 5.642 1.98575 2.642 1.98575	0 0 0 7μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation Average Standard Deviation Median	7.14966217 9.555 1.758 31.758 4.2175 ASW 119 7.72159259 5.84195159 5.84195159 5.842 0.787 2.7283 11.2935 3.1775 8.02905455 8.02905455 6.64193246 5.4185	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 9.8727913 6.5429913 6.5429913 6.5429913 4.253 12.734 4.524 DMSO 167 9.7161194 6.01101638 8.84525	5.454 0 16.155 8.174 2.411 2μΜ 4.48142424 2.45706384 4.154 0.64 10.886 5.412 2.674 2μΜ 35 4.20955556 2.30310759 3.6625	7.2065 0.883 22.506 11.026 3.87925 Da 3μM 6.19853846 4.07993858 4.079948 4.07993858 4.07993858 4.079948 4	4.9642708 7.393 1.139 22.926 10.887 3.9735 y4 4μΜ 44 7.69616667 4.39985406 6.6095 2.129 17.919 10.7585 4.24075 y5 4μM 57 3.58653381 6.1725 1.696	3.2275 0.519 11.699 5.35575 5μΜ 5μ 3.862125 2.1322138 3.7855 2.1322138 3.7855 2.132213 5.642 1.98575 5.642 1.98575 2.642 1.98575	0 0 0 7μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 10µМ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation Average Standard Deviation Median Median	7.14966217 9.555 1.758 31.758 4.2175 5.84195159 5.84195159 5.84195159 5.84195159 5.842 0.787 2.7283 11.2935 3.1775 8.02905455 6.64193246 5.4185 0.899	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 0.791 6.5429913 6.5429913 6.5429913 4.0796 34.253 12.734 4.524 DMSO 167 9.7161194 6.01101638 8.84525 1.362	5.454 0 16.155 8.174 2.411 2μΜ 4.48142424 2.45706384 4.154 0.64 10.886 5.412 2.674 2μΜ 35 4.20955556 2.30310759 3.6625 0.99	7.2065 0.883 22.506 11.026 3.87925 Da 3μM 6.19853846 4.07993858 4.07993858 5.256 0 21.423 7.919 3.421 Da 3μM 111 7.146 4.55402361 5.592 1.072	4.9642708 7.393 1.139 22.926 10.887 3.9735 y4 4μM 44 7.69616667 4.39985406 6.6095 2.129 17.919 10.7585 4.24075 y5 4.24075 y5 4.24075 57 3.58653381 6.1725 1.696 17.256	3.2275 0.519 11.699 5.35575 5μΜ 5μΜ 1.321323138 3.7855 2.13323138 3.7855 0.636 7.777 5.642 1.98575 5μΜ 12 1.32107692 0.81011684 0.855 0.546	0 0 0 7μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation Average Standard Deviation Median Median Minimum	7.14966217 9.555 1.758 31.758 4.2175 5.84195159 5.84195159 5.84195159 5.84195159 5.84195159 5.84195159 5.84195159 5.841955 8.02905455 6.64193246 5.4185 0.899 52.524	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 0.791 6.5429913 6.5429913 6.5429913 4.253 12.734 4.524 DMSO 167 9.7161194 6.01101638 8.84525 1.362 30.001	5.454 0 16.155 8.174 2.411 2μΜ 4.48142424 2.45706384 4.154 0.64 10.886 5.412 2.674 2μΜ 35 4.20955556 2.30310759 3.6625 0.99 10.742	7.2065 0.883 22.506 11.026 3.87925 Da 3μM 6.19853846 4.07993858 4.07993858 5.256 0 21.423 7.919 3.421 0 3 4 1 1 1 1 1 1 1 1 1 1	4.9642708 7.393 1.139 22.926 10.887 3.9735 y4 4μM 44 7.69616667 4.39985406 6.6095 2.129 17.919 10.7585 4.24075 y5 4.24075 y5 4.24075 57 3.58653381 6.1725 1.696 17.256 9.21775	3.2275 0.519 11.699 5.35575 1.051 5µM 15 3.862125 2.13323138 3.7855 0.636 7.777 5.642 1.98575 5µM 12 1.32107692 0.81011684 0.855 0.546 3.395	0 0 0 7μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation Average Standard Deviation Median Median	7.14966217 9.555 1.758 31.758 4.2175 5.84195159 5.84195159 5.84195159 5.84195159 5.842 0.787 2.7283 11.2935 3.1775 8.02905455 6.64193246 5.4185 0.899	7.26055507 9.014 1.033 42.599 15.30525 5.54325 DMSO 0.791 6.5429913 6.5429913 6.5429913 4.0796 34.253 12.734 4.524 DMSO 167 9.7161194 6.01101638 8.84525 1.362	5.454 0 16.155 8.174 2.411 2μΜ 4.48142424 2.45706384 4.154 0.64 10.886 5.412 2.674 2μΜ 35 4.20955556 2.30310759 3.6625 0.99	7.2065 0.883 22.506 11.026 3.87925 Da 3μM 6.19853846 4.07993858 4.07993858 5.256 0 21.423 7.919 3.421 Da 3μM 111 7.146 4.55402361 5.592 1.072	4.9642708 7.393 1.139 22.926 10.887 3.9735 y4 4μM 44 7.69616667 4.39985406 6.6095 2.129 17.919 10.7585 4.24075 y5 4.24075 y5 4.24075 57 3.58653381 6.1725 1.696 17.256	3.2275 0.519 11.699 5.35575 5μΜ 5μΜ 1.321323138 3.7855 2.13323138 3.7855 0.636 7.777 5.642 1.98575 5μΜ 12 1.32107692 0.81011684 0.855 0.546	0 0 0 7μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

				Da	v6				
	ASW	DMSO	2μΜ	3μM	4μM	5μΜ	7μΜ		10µM
Number of Values	114	122	31	98	47	6		0	0
Average	8.07558879	8.98201639	5.2719375	6.00439583	6.58068889	1.03228571		0	0
Standard Deviation	6.36613433	6.01816715	2.53945763	3.66272016	4.91946549	0.49552936		0	0
Median	5.369	7.8815	5.211	5.5035	4.545	1.079		0	0
Minimum	0.938	0.858	1.198	0.723	1.693	0		0	0
Maximum	29.27	31.794	12.501	18.363	26.639	1.674		0	0
upper Quartile	11.53025	11.263	7.17725	7.91525	9.55	1.3195		0	0
lower Quartile	3.504	4.122	3.23675	3.00075	3.253	0.917		0	0
	ASW	DMSO	2μΜ	Da 3µM	γ7 4μM	5µM	7μΜ		10µM
Number of Values	112	138	29	99	38	2		0	0
Average	6.75354082	8.17142857	5.78643333	5.602	6.57044444	1.125		0	0
Standard Deviation	4.88040368	5.96775412	3.13354544	3.72806855	4.02454035	0.79549607		0	0
Median	5.406	6.241	5.374	5.278	5.8485	1.686		0	0
Minimum	1.019	0.979	0.86	0.705	1.434	0		0	0
Maximum	24.323	32.969	12.844	18.167	21.392	1.689		0	0
upper Quartile	9.645	10.69725	7.763	7.07475	8.6805	1.6875		0	0
lower Quartile	2.768	3.63675	3.47175	2.6035	3.74975	0.843		0	0
		51460		Da					10.11
	ASW	DMSO	2μM	3µM	4μM	5μΜ	7μΜ	•	10µM
Number of Values	63	102	29	102	38	0		0	0
Average				5.62448515		0		0	0
Standard Deviation		5.95270673			3.35067767	0		0	0
Median	6.307	6.103	3.491	5.081	4.423	0		0	0
Minimum	1.034	1.158	0.658	0.918	0.681	0		0	0
Maximum	34.357	34.227	8.754	17.894	14.64	0		0	0
upper Quartile	10.074	9.858	5.23825	7.645	5.9885	0		0	0
Lauran Orrantila	2 0455	1 01 2	2 C11E	2 002	2 606	0		0	0
lower Quartile	3.9455	4.012	2.6115	2.983	2.686	0		0	0
lower Quartile	3.9455 ASW	4.012 DMSO	2.6115 2μM	2.983 Da 3μM		0 5µM	7μΜ	0	0 10µM
lower Quartile Number of Values				Da	y9	N	7μΜ	0	-
	ASW 73	DMSO 83	2μM 17	Da 3µM	99 4μΜ 49	5μΜ	7μΜ	-	10µM
Number of Values	ASW 73 6.78482192	DMSO 83	2μM 17 3.69394444	Da 3µМ 89	9 4μΜ 49 4.97176596	5μM 0	7μΜ	0	10μM 0
Number of Values Average	ASW 73 6.78482192	DMSO 83 6.67480952	2μM 17 3.69394444	Da 3µM 89 4.53748276	9 4μΜ 49 4.97176596	5μΜ 0 0	7μΜ	0	10μΜ 0 0
Number of Values Average Standard Deviation	ASW 73 6.78482192 4.75110337	DMSO 83 6.67480952 5.62727274	2μM 17 3.69394444 2.2700426	Da 3μΜ 89 4.53748276 3.26450149	9 4μΜ 4.97176596 3.29419945	5μΜ 0 0	7μΜ	0 0 0	10μΜ 0 0
Number of Values Average Standard Deviation Median	ASW 73 6.78482192 4.75110337 5.081	DMSO 83 6.67480952 5.62727274 4.939	2μΜ 17 3.69394444 2.2700426 3.2705	Da 3µM 4.53748276 3.26450149 3.731	γ9 4μM 4.97176596 3.29419945 4.718	5μΜ 0 0 0 0	7μΜ	0 0 0 0	10μΜ 0 0 0
Number of Values Average Standard Deviation Median Minimum	ASW 73 6.78482192 4.75110337 5.081 1.079	DMSO 83 6.67480952 5.62727274 4.939 1.575	2μΜ 17 3.69394444 2.2700426 3.2705 0.459	Da 3μΜ 89 4.53748276 3.26450149 3.731 0.439	y9 4μM 4.97176596 3.29419945 4.718 0.381	5μΜ 0 0 0 0 0	7μΜ	0 0 0 0 0	10μΜ 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429	DMSO 83 6.67480952 5.62727274 4.939 1.575 28.354	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337	Da 3μΜ 89 4.53748276 3.26450149 3.731 0.439 18.316	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267	5μΜ 0 0 0 0 0 0 0	7μΜ	0 0 0 0 0 0	10μΜ 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113	DMSO 83 6.67480952 5.62727274 4.939 1.575 28.354 7.83575	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126	Da 3μΜ 89 4.53748276 3.26450149 3.731 0.439 18.316 5.2135	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10	5μΜ 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW	DMSO 83 6.67480952 5.62727274 4.939 1.575 28.354 7.83575 3.16525 DMSO	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μ Μ	Da 3μM 89 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 Day 3μM	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM	5μΜ 0 0 0 0 0 0 0 0 0 0	7μΜ	0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 10μΜ
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81	DMSO 83 6.67480952 5.62727274 4.939 1.575 28.354 7.83575 3.16525 DMSO 98	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ	Da 3μM 89 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 Da 3μM	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 10μΜ
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481	DMSO 83 6.67480952 5.62727274 4.939 1.575 28.354 7.83575 3.16525 DMSO 98 9.85868687	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444	Da 3μΜ 89 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 Bay 3μΜ 3.78959036	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 45 5.73286047	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172	DMSO 83 6.67480952 5.62727274 4.939 1.575 28.354 7.83575 3.16525 DMSO 98 9.85868687 7.07800445	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444 1.54284363	Da 3μΜ 89 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 Day 3μΜ 84 3.78959036 3.03900284	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 45 5.73286047 3.83750679	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88	DMSO 83 6.67480952 5.6272724 4.939 1.575 28.354 7.83575 3.16525 DMSO 98 9.85868687 7.07800445 7.89	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444 1.54284363 1.385	Da 3μΜ 89 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 Day 3.78959036 3.03900284 2.767	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 5.73286047 3.83750679 4.702	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556	DMSO 83 6.67480952 5.62727274 4.939 1.575 28.354 7.83575 3.16525 DMSO 9.85868687 7.07800445 7.89 1.369	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.2304444 1.54284363 1.385 0.656	Da 3μΜ 89 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 Day 3μΜ 84 3.78959036 3.03900284 2.767 0.662	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 (10 4μM 5.73286047 3.83750679 4.702 1.199	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556 39.721	DMSO 83 6.67480952 5.62727274 4.939 1.575 28.354 7.83575 3.16525 DMSO 9.85868687 7.07800445 7.89 1.369 33.088	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444 1.54284363 1.385 0.656 5.037	Da 3μΜ 89 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 Day 3μΜ 84 3.78959036 3.03900284 2.767 0.662 15.548	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 (10 4μM 5.73286047 3.83750679 4.702 1.199 18.97	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556	DMSO 83 6.67480952 5.62727274 4.939 1.575 28.354 7.83575 3.16525 DMSO 9.85868687 7.07800445 7.89 1.369	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.2304444 1.54284363 1.385 0.656	Da 3μΜ 89 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 Day 3μΜ 84 3.78959036 3.03900284 2.767 0.662	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 70 4μM 5.73286047 3.83750679 4.702 1.199	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556 39.721 9.069 4.104	DMSO 83 6.67480952 5.62727274 4.939 1.575 28.354 7.83575 3.16525 DMSO 9.85868687 7.07800445 7.89 9.85868687 7.07800445 7.89 1.369 33.088 13.604 4.551	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444 1.54284363 1.385 0.656 5.037 3.044 0.966	Date 3μΜ 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 3μΜ 3μ 3.73959036 3.03900284 2.767 0.662 15.548 4.7775 1.883	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 5.73286047 3.83750679 4.702 1.199 18.97 7.672 2.777	5μM 0	7μΜ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556 39.721 9.069 4.104 ASW	DMSO 83 6.67480952 5.6272724 4.939 1.575 28.354 7.83575 3.16525 DMSO 98 9.85868687 7.07800445 7.89 9.85868687 7.07800445 1.369 33.088 13.604 4.551	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444 1.54284363 1.385 0.656 5.037 3.044 0.966 2μΜ	Date 3μΜ 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 3μΜ 34 3.78959036 3.03900284 2.767 0.662 15.548 4.7775 1.883 Day 3μΜ	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 45 5.73286047 3.83750679 4.702 1.199 18.97 7.672 2.777 /11 4μM	5μM 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556 39.721 9.069 4.104 ASW	DMSO 83 6.67480952 5.6272724 4.939 1.575 28.354 7.83575 3.16525 DMSO 98 9.85868687 7.0780045 7.07800445 1.369 3.3088 1.3.604 1.3.604 4.551	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444 1.54284363 1.385 0.656 5.037 3.044 0.966 5.037 3.044	Date 3μΜ 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 3μΜ 34 3.78959036 3.03900284 2.767 0.662 15.548 4.7775 1.883 Day 3μΜ	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 45 5.73286047 3.83750679 4.702 1.199 18.97 7.672 2.777 /11 4μM	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th>7μΜ</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>10μΜ 0 0 0 0 0 0 0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>	7μΜ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556 39.721 9.069 4.104 ASW 5.62601786	DMSO 83 6.67480952 5.6272724 4.939 1.575 28.354 7.83575 3.16525 0MSO 98 9.85868687 7.07800445 7.07800445 7.07800445 1.369 33.088 13.604 4.551	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444 1.54284363 1.385 0.656 5.037 3.044 0.966 2μΜ 0.966	Da 3μΜ 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 Day 3μΜ 84 3.78959036 3.03900284 2.767 0.662 15.548 4.7775 1.883 Day 3μΜ 6 3.36004444	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 45 5.73286047 3.83750679 4.702 1.199 18.97 7.672 2.777 /11 4μM 4μM	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0	7μΜ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556 39.721 9.069 4.104 ASW 5.62601786 5.64590333	bMSO 83 6.67480952 5.6272724 4.939 1.575 28.354 7.83575 3.16525 bMSO 98 9.85868687 7.07800445 7.07800445 7.07800445 1.369 33.088 13.604 4.551 bMSO 74 8.59304054 5.44936734	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2.24875 2.23044444 1.54284363 1.385 0.656 5.037 3.044 0.966 5.037 3.044 0.966 0.0566 5.037 3.044 0.966 0.0577 0.0566 0.0566 0.0577 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0577 0.0450 0.0566 0.0577 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0577 0.0566 0	Da 3μΜ 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 3μM 84 3.78959036 3.03900284 2.767 0.662 15.548 4.7775 1.883 3μM 2.3604444 2.36004444 2.2285111	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 45 5.73286047 3.83750679 4.702 1.199 18.97 7.672 2.777 11 4μM 36 7.546 5.60874218	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th>7μΜ</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>	7μΜ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation Number of Values Average Standard Deviation Median	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556 39.721 9.069 4.104 ASW 5.64590333 6.7665	bMSO 83 6.67480952 5.6272724 4.939 1.575 28.354 7.83575 3.16525 bMSO 98 9.85868687 7.07800445 7.07800445 7.07800445 1.369 33.088 13.604 4.551 bMSO 74 8.59304054 5.44936734 7.029	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2.24875 2.23044444 1.54284363 1.385 0.656 5.037 3.044 0.966 5.037 3.044 0.966 0.0566 5.037 3.044 0.966 0.0570 0.0566 0.0566 0.0566 0.0566 0.0566 0.0577 0.0450 0.0566 0.0577 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0566 0.0577 0.0450 0.05666 0.0566 0.0566	Da 3μΜ 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 3 μΜ 84 3.78959036 3.03900284 2.767 0.662 15.548 4.7775 1.883 3.6004444 2.2285111 2.698	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 45 5.73286047 3.83750679 4.702 1.199 18.97 7.672 2.777 11 4μM 36 7.546 5.60874218 6.089	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 5μΜ 0 0 0 <th>7μΜ</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>	7μΜ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation Mumber of Values Average Standard Deviation Median Minimum	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556 39.721 9.069 4.104 ASW 5.64590333 6.7665 1.702	bMSO 83 6.67480952 5.6272724 4.939 1.575 28.354 7.83575 3.16525 bMSO 98 9.85868687 7.07800445 7.07800445 7.07800445 1.3604 4.551 bMSO 74 8.59304054 5.44936734 5.44936734 7.029 1.72	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444 1.54284363 1.385 0.656 5.037 3.044 0.966 5.037 3.044 0.966 0.057 0.056 0.05	Da 3μΜ 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 Day 3μΜ 84 3.78959036 3.03900284 2.767 0.662 15.548 4.7775 1.883 3.6004444 2.2285111 2.698 0.617	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 45 5.73286047 3.83750679 4.702 1.199 18.97 7.672 2.777 11 4μM 36 7.546 5.60874218 5.60874218	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5μΜ 0 0 0 0 0 <th>7μΜ</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>	7μΜ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation Median Mumber of Values Average Standard Deviation Median Minimum	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556 39.721 9.069 4.104 ASW 5.64590333 6.7665 1.702 26.936	bMSO 83 6.67480952 5.6272724 4.939 1.575 28.354 7.83575 3.16525 bMSO 98 9.85868687 7.07800445 7.07800445 7.07800445 1.3604 3.3.088 1.3.604 4.551 bMSO 74 8.59304054 5.44936734 5.44936734 5.429.166	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444 1.54284363 1.385 0.656 5.037 3.044 0.966 5.037 3.044 0.966 0.057 0.056 0.05	Da 3μΜ 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 b 3.78959036 3.03900284 2.767 0.662 15.548 4.7775 1.883 b 3.6004444 2.2285111 2.698 0.617 11.033	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 45 5.73286047 3.83750679 4.702 1.199 18.97 7.672 2.777 11 4μM 36 5.60874218 5.60874218 5.60874218	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 5μΜ 0 0 0 <th>7μΜ</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>	7μΜ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Standard Deviation Mumber of Values Average Standard Deviation Median Minimum	ASW 73 6.78482192 4.75110337 5.081 1.079 26.429 9.113 3.298 ASW 81 7.56181481 5.62964172 6.88 0.556 39.721 9.069 4.104 ASW 5.64590333 6.7665 1.702	bMSO 83 6.67480952 5.6272724 4.939 1.575 28.354 7.83575 3.16525 bMSO 98 9.85868687 7.07800445 7.07800445 7.07800445 1.3604 4.551 bMSO 74 8.59304054 5.44936734 5.44936734 7.029 1.72	2μΜ 17 3.69394444 2.2700426 3.2705 0.459 9.337 4.126 2.24875 2μΜ 9 2.23044444 1.54284363 1.385 0.656 5.037 3.044 0.966 5.037 3.044 0.966 0.057 0.056 0.05	Da 3μΜ 4.53748276 3.26450149 3.731 0.439 18.316 5.2135 2.254 3μM 84 3.78959036 3.03900284 2.767 0.662 15.548 4.7775 1.883 3.3600484 2.2285111 2.2285111 2.2698 0.617 11.033 4.005	y9 4μM 4.97176596 3.29419945 4.718 0.381 15.267 6.514 2.5925 /10 4μM 45 5.73286047 3.83750679 4.702 1.199 18.97 7.672 2.777 11 4μM 36 7.546 5.60874218 5.60874218	5μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5μΜ 0 0 0 0 0 <th>7μΜ</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>	7μΜ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

					Day	/12					
	ASW	DMSO	2μΜ		3μM	4μΜ	5μΜ		7μΜ		10μΜ
Number of Values	42	53		0	34	43		0		0	0
Average		5.04130189			3.33724242			0		0	0
Standard Deviation		6.03384249		0	2.96340011			0		0	0
Median	4.914	3.234		0	2.478	6.29		0		0	0
Minimum	0.785	0.644		0	0.536	1.443		0		0	0
Maximum	17.841	34.279		0	17.37	32.948		0		0	0
upper Quartile	7.352	5.29		0	3.51	10.635		0		0	0
lower Quartile	3.026	2.217		0	1.862	3.774		0		0	0
	ASW	DMSO	2μΜ		Day 3µM	/13 4μM	5μΜ		7μΜ		10μΜ
Number of Values	48	55		0	6	32		0		0	0
Average	7.3870625	5.37808929		0	2.06466667	8.085		0		0	0
Standard Deviation	5.26315158	5.97991983		0	1.1323771	3.18782398		0		0	0
Median	6.032	2.7135		0	1.5545	8.072		0		0	0
Minimum	0.827	0.483		0	1.069	2.171		0		0	0
Maximum	30.173	23.4		0	4.276	15.751		0		0	0
upper Quartile	9.11125	5.86225		0	2.49425	10.447		0		0	0
lower Quartile	3.95325	1.59425		0	1.2335	6.0045		0		0	0
	ASW	DMSO	2μΜ		Day 3µM	/14 4μM	5μΜ		7μΜ		10µM
Number of Values	49	27		0	0	43		0		0	0
Average	6.18464	7.21467857		0	0	8.41411628		0		0	0
Standard Deviation	4.44826708	5.16291924		0	0	4.75639918		0		0	0
Median	4.9285	6.1125		0	0	7.249		0		0	0
Minimum	0.85	0.754		0	0	1.198		0		0	0
Maximum	24.106	23.916		0	0	18.355		0		0	0
upper Quartile	8.654	10.0495		0	0	11.281		0		0	0
lower Quartile	2.87275	3.01125		0	0	4.2395		0		0	0
					Day	/15					
	ASW	DMSO	2μΜ		3μΜ	4μM	5μΜ		7μΜ		10μΜ
Number of Values	34	27		0	0	45		0		0	0
Average	5.13014286	6.26775		0	0			0		0	0
Standard Deviation		3.77824968		0		0.94745722		0		0	0
Median	3.985	5.7595		0	0	1.389		0		0	0
Minimum	1.027	1.002		0	0	0.581		0		0	0
Maximum	13.504	16.062		0	0	4.058		0		0	0
upper Quartile lower Quartile	7.3795			0	0			0		0	
lower Quartile		7.394		0	0	2.45		0		0	
	2.568	7.394 3.76325		0 0	0	2.45 0.996		0 0		0 0	0
			2μΜ			2.45 0.996	5μΜ		7μΜ		
Number of Values	2.568	3.76325	2μΜ		0 Day	2.45 0.996 / 16	5μΜ		7μΜ		0
Number of Values Average	2.568 ASW 35	3.76325 DMSO	2μΜ	0	0 Day 3µM 0	2.45 0.996 /16 4μM	5μΜ	0 0 0 0	7μΜ	0	0 10μΜ 0 0
Average Standard Deviation	2.568 ASW 35 4.82502778	3.76325 DMSO 26	2μΜ	0	0 Day 3μΜ 0 0	2.45 0.996 /16 4μΜ 39	5μΜ	0	7μΜ	0	0 10μΜ 0 0 0
Average	2.568 ASW 35 4.82502778 2.98059142 4.262	3.76325 DMSO 26 5.65144444 3.25379702 5.093	2μΜ	0 0 0 0	0 Day 3μΜ 0 0 0 0	2.45 0.996 4µM 1.97476923 0.84916675 1.76	5μΜ	0 0 0 0 0	7μΜ	0 0 0 0 0	0 10μΜ 0 0 0
Average Standard Deviation Median Minimum	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983	3.76325 DMSO 26 5.65144444 3.25379702 5.093 0.481	2μΜ	0 0 0 0 0	0 Day 3μΜ 0 0 0 0 0	2.45 0.996 4µM 1.97476923 0.84916675 1.76 0.675	5μΜ	0 0 0 0 0 0	7μΜ	0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0
Average Standard Deviation Median Minimum Maximum	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076	3.76325 DMSO 26 5.65144444 3.25379702 5.093 0.481 14.32	2μΜ	0 0 0 0 0 0	0 Day 3μΜ 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4µM 1.97476923 0.84916675 1.76 0.675 4.354	5μΜ	0 0 0 0 0 0 0	7μΜ	0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0
Average Standard Deviation Median Minimum Maximum upper Quartile	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076 6.2185	3.76325 DMSO 26 5.65144444 3.25379702 5.093 0.481 14.32 7.6305	2μΜ	0 0 0 0 0 0 0 0	0 ΒμΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4µM 1.97476923 0.84916675 1.76 0.675 4.354 2.5925	5μΜ	0 0 0 0 0 0 0 0	7μΜ	0 0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0
Average Standard Deviation Median Minimum Maximum	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076	3.76325 DMSO 26 5.65144444 3.25379702 5.093 0.481 14.32	2μΜ	0 0 0 0 0 0	0 Day 3μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4µM 1.97476923 0.84916675 1.76 0.675 4.354 2.5925 1.3725	5μΜ	0 0 0 0 0 0 0	7μΜ	0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0
Average Standard Deviation Median Minimum Maximum upper Quartile	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076 6.2185	3.76325 DMSO 26 5.65144444 3.25379702 5.093 0.481 14.32 7.6305	2μΜ 2μΜ	0 0 0 0 0 0 0 0	0 ΒμΜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4µM 1.97476923 0.84916675 1.76 0.675 4.354 2.5925 1.3725	5μΜ	0 0 0 0 0 0 0 0	7μΜ	0 0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0
Average Standard Deviation Median Minimum Maximum upper Quartile	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076 6.2185 2.405	3.76325 DMSO 2.65144444 3.25379702 5.093 0.481 14.32 7.6305 3.0585		0 0 0 0 0 0 0 0	0 Day 3μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4 µ M 1.97476923 0.84916675 1.76 0.675 4.354 2.5925 1.3725		0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0
Average Standard Deviation Median Minimum Maximum upper Quartile Iower Quartile	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076 6.2185 2.405 ASW	3.76325 DMSO 2.65144444 3.25379702 5.093 0.481 14.32 7.6305 3.0585		0 0 0 0 0 0 0 0	0 Day 3μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4μM 39 1.97476923 0.84916675 1.76 0.675 4.354 2.5925 1.3725 1.3725 4.454 4.3725 4.3755 4.3755 4.3755 4.3755 4.354 4.3556 4.3556 4.3546 4		0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 10μΜ
Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076 6.2185 2.405 ASW 3.57475758	3.76325 DMSO 2.65144444 3.25379702 5.093 0.481 14.32 7.6305 3.0585 DMSO 21		0 0 0 0 0 0 0 0	0 Day 3μM 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4 µ M 1.97476923 0.84916675 1.76 0.675 4.354 2.5925 1.3725 1.3725		0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 10μΜ 0
Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile Number of Values Average	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076 6.2185 2.405 ASW 3.57475758	3.76325 DMSO 266 5.65144444 3.25379702 0.481 14.32 14.32 3.0585 DMSO 21 3.87040909		0 0 0 0 0 0 0 0 0 0 0	0 Day 3μM 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4 µ M 39 1.97476923 0.84916675 1.76 0.675 4.354 2.5925 1.3725 1.3725 4 µ M		0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0
Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076 6.2185 2.405 ASW 3.57475758 1.75255858	3.76325 DMSO 266 5.65144444 3.25379702 5.093 0.481 14.32 7.6305 3.0585 DMSO 21 3.87040909 1.96587574		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Day 3μM 0 0 0 0 0 0 0 Day 3μM 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4 µ M 39 1.97476923 0.84916675 1.76 0.675 4.354 2.5925 1.3725 1.3725 4 µ M		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0
Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076 6.2185 2.405 ASW 3.57475758 1.75255858 3.226	3.76325 DMSO 2.65144444 3.25379702 5.093 0.481 14.32 7.6305 3.0585 DMSO 21 3.87040909 1.96587574 3.207		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Day 3μM 0 0 0 0 0 0 0 Day 3μM 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4 µ M 39 1.97476923 0.84916675 1.76 0.675 4.354 2.5925 1.3725 1.3725 4 µ M 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0
Average Standard Deviation Median Minimum Maximum upper Quartile lower Quartile lower Quartile Number of Values Average Standard Deviation Median Minimum	2.568 ASW 35 4.82502778 2.98059142 4.262 0.983 13.076 6.2185 2.405 ASW 3.57475758 1.75255858 3.226 1.009	3.76325 DMSO 266 5.65144444 3.25379702 5.093 0.481 14.32 2.0 3.0585 DMSO 21 3.87040909 1.96587574 3.207 0.924		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Day 3μM 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45 0.996 4μM 39 1.97476923 0.84916675 1.76 0.675 4.354 2.5925 1.3725 4.372 4μM 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 10μΜ 0 0 0 0 0 0 0 0 0 0 0 0 0

В

D									
	10058-F4	10058-F4	10058-F4	10058-F4	10058-F4	10058-F4 3µM/	10058-F4	10058-F4	10058-F4 4μM
Day			2µM/ASW+DMSO	3μM/ASW	3µM/DMSO	ASW+DMSO	4µM/ASW	4µM/DMSO	/ASW+DMSO
0	0.0367*	0.08679	0.03479*	0.04557*	0.06965	0.0363*	0.82074	0.94788	0.84005
1	0.52752	0.83028	0.7904	0.0003***	0.0105*	0.00082***	0.02924*	0.1393	0.04984*
2	0.00435**	0.01263*	0.00474**	1.597E-07***	1.323E-06***	2.815E-08***	0.30274	0.74826	0.471
3	0.00038***	2.891E-05***		0.01992*	0.00116**	0.00187**	0.08307	0.01442*	0.02524*
4	0.00279**	3.872E-05***	0.0003**	0.03291*	1.166E-05***	0.00038***	0.97843	0.11495	0.40262
5	0.00183**	1.406E-06***	5.695E-05***	0.39289	0.00188**	0.03312*	0.33372	0.00537**	0.05481
6	0.028*	0.00134**	0.00667**	0.01363*	3.808E-05***	0.00045***	0.23679	0.01974	0.06332
7	0.42785	0.04195*	0.12145	0.1281	0.00036***	0.00378**	0.974	0.15021	0.39034
8	0.00064***	0.00064***	0.00046***	0.0029**	0.00142**	0.00076***	0.0077**	0.00639**	0.00483**
9	0.01208	0.03104*	0.01852*	0.00098***	0.00281**	0.00067***	0.034*	0.06154	0.03655*
10	0.00749**	0.00184**	0.00343**	6.404E-07***	1.331E-11***	2.798E-10***	0.0755	0.00048***	0.00406**
11	0.14589	0.1241	0.12826	1.070E-07***	1.500E-08***	6.804E-09***	0.40664	0.36003	0.332
12	-	-	-	0.84517	0.13865	0.03981*	0.4089	0.02356*	0.0115*
13	.	-		0.0188*	0.1877	0.07649	0.51416	0.02298*	0.10388
12	-	-	-	0.17917	0.18875	0.17645	0.02324*	0.32586	0.04305*
15	-	-	-	-	-	-	1.585E-09***	1.231E-10***	6.530E-11***
16	-	-	-	-	-	-	2.930E-07***	8.246E-09***	1.300E-08***
17	-	-		-	÷.	-	0.05649	0.07388	0.0547
_									00000000 005
	10058-F4	10058-F4	10058-F4 5μM	10058-F4	10058-F4	10058-F4 7µM	10058-F4	10058-F4	10058-F4 10µM
Day	5µM/ASW	5µM/DMSO	10058-F4 5µM /ASW+DMSO	7µM/ASW	10058-F4 7μM/DMSO	/ASW+DMSO	10µM/ASW	10µM/DMSO	/ASW+DMSO
0	5μM/ASW 0.28505	5μM/DMSO 0.47678	10058-F4 5μM /ASW+DMSO 0.2826	7μM/ASW 0.90442	10058-F4 7μM/DMSO 0.40706	/ASW+DMSO 0.92156	10μM/ASW 0.23437	10μM/DMSO 0.35769	/ASW+DMSO 0.23205
0	5μM/ASW 0.28505 3.464E-07***	5μM/DMSO 0.47678 6.230E-07***	10058-F4 5μM /ASW+DMSO 0.2826 2.193E-07***	7µM/ASW	10058-F4 7μM/DMSO	/ASW+DMSO	10µM/ASW	10µM/DMSO	/ASW+DMSO
0 1 2	5μM/ASW 0.28505 3.464E-07*** 3.709E-07***	5μM/DMSO 0.47678 6.230E-07*** 3.933E-07***	10058-F4 5μM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07***	7μM/ASW 0.90442	10058-F4 7μM/DMSO 0.40706	/ASW+DMSO 0.92156	10μM/ASW 0.23437	10μM/DMSO 0.35769	/ASW+DMSO 0.23205
0 1 2 3	5μΜ/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05***	5μΜ/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05***	10058-F4 5µМ /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05***	7μM/ASW 0.90442 0.12215	10058-F4 7μΜ/DMSO 0.40706 0.09951	/ASW+DMSO 0.92156 0.11147	10μM/ASW 0.23437	10μM/DMSO 0.35769 0.09951	/ASW+DMSO 0.23205
0 1 2	5μM/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144*	5μM/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103**	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339**	7μM/ASW 0.90442 0.12215 -	10058-F4 7μM/DMSO 0.40706 0.09951 -	/ASW+DMSO 0.92156 0.11147	10μM/ASW 0.23437 0.12215 -	10μM/DMSO 0.35769 0.09951 -	/ASW+DMSO 0.23205 0.11147
0 1 2 3 4 5	5μM/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065***	5μM/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06***	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339** 5.333E-05***	7μM/ASW 0.90442 0.12215 -	10058-F4 7μM/DMSO 0.40706 0.09951 - -	/ASW+DMSO 0.92156 0.11147 -	10μM/ASW 0.23437 0.12215 -	10μM/DMSO 0.35769 0.09951 - -	/ASW+DMSO 0.23205 0.11147
0 1 2 3 4 5 6	5μM/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281*	5μΜ/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218**	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339** 5.333E-05*** 0.00508**	7μM/ASW 0.90442 0.12215 - - -	10058-F4 7μM/DMSO 0.40706 0.09951 - - -	/ASW+DMSO 0.92156 0.11147 - - -	10μM/ASW 0.23437 0.12215 - - - -	10μM/DMSO 0.35769 0.09951 - - -	/ASW+DMSO 0.23205 0.11147 - - -
0 1 2 3 4 5 6 7	5μΜ/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281* 0.1676	5μM/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218** 0.13368	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339** 5.333E-05*** 0.00508** 0.14961	7μM/ASW 0.90442 0.12215 - - - -	10058-F4 7μM/DMSO 0.40706 0.09951 - - - - -	/ASW+DMSO 0.92156 0.11147 - - - -	10μM/ASW 0.23437 0.12215 - - - -	10μΜ/DMSO 0.35769 0.09951 - - - -	/ASW+DMSO 0.23205 0.11147 - - - -
0 1 2 3 4 5 6 7 8	5μM/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281*	5μΜ/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218**	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339** 5.333E-05*** 0.00508**	7μM/ASW 0.90442 0.12215 - - - - - -	10058-F4 7μM/DMSO 0.40706 0.09951 - - - - - - - -	/ASW+DMSO 0.92156 0.11147 - - - -	10μM/ASW 0.23437 0.12215 - - - - - - -	10μΜ/DMSO 0.35769 0.09951 - - - - - -	/ASW+DMSO 0.23205 0.11147 - - - - - -
0 1 2 3 4 5 6 7 8 9	5μΜ/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281* 0.1676	5μM/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218** 0.13368	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339** 5.333E-05*** 0.00508** 0.14961	7μM/ASW 0.90442 0.12215 - - - - - -	10058-F4 7μM/DMSO 0.40706 0.09951 - - - - - - - - -	/ASW+DMSO 0.92156 0.11147 - - - - - -	10μM/ASW 0.23437 0.12215 - - - - - - -	10μΜ/DMSO 0.35769 0.09951 - - - - - - -	/ASW+DMSO 0.23205 0.11147 - - - - - -
0 1 2 3 4 5 6 7 8 9 10	5μΜ/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281* 0.1676 0.1857	5μM/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218** 0.13368	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339** 5.333E-05*** 0.00508** 0.14961 0.18749	7μΜ/ASW 0.90442 0.12215	10058-F4 7μΜ/DMSO 0.40706 0.09951 - - - - - - - - - - - - - -	/ASW+DMSO 0.92156 0.11147 - - - - - - - - - -	10μM/ASW 0.23437 0.12215 - - - - - - - - - -	10μΜ/DMSO 0.35769 0.09951 - - - - - - - -	/ASW+DMSO 0.23205 0.11147 - - - - - - - -
0 1 2 3 4 5 6 7 8 9 10 11	5μΜ/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281* 0.1676 0.1857	5μΜ/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218** 0.13368 0.19564	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339** 5.333E-05*** 0.00508** 0.14961 0.18749	7μΜ/ASW 0.90442 0.12215	10058-F4 7μΜ/DMSO 0.40706 0.09951 - - - - - - - - - - - - - - - - -	/ASW+DMSO 0.92156 0.11147 - - - - - - - - - -	10μM/ASW 0.23437 0.12215 - - - - - - - - - -	10μΜ/DMSO 0.35769 0.09951 - - - - - - - - -	/ASW+DMSO 0.23205 0.11147 - - - - - - - -
0 1 2 3 4 5 6 7 8 9 10 11 12	5μΜ/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281* 0.1676 0.1857 - -	5μΜ/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218** 0.13368 0.19564	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339** 5.333E-05*** 0.00508** 0.14961 0.18749	7μΜ/ASW 0.90442 0.12215	10058-F4 7μΜ/DMSO 0.40706 0.09951 - - - - - - - - - - - - - - - - - - -	/ASW+DMSO 0.92156 0.11147 - - - - - - - - - - - - - - - - - - -	10μΜ/ASW 0.23437 0.12215 - - - - - - - - - - - - - - - - - - -	10μΜ/DMSO 0.35769 0.09951 - - - - - - - - - - - -	/ASW+DMSO 0.23205 0.11147 - - - - - - - -
0 1 2 3 4 5 6 7 8 9 10 11 12 13	5μΜ/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281* 0.1676 0.1857 - - -	5μΜ/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218** 0.13368 0.19564	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339** 5.333E-05*** 0.00508** 0.14961 0.18749	7μΜ/ASW 0.90442 0.12215	10058-F4 7μΜ/DMSO 0.40706 0.09951 - - - - - - - - - - - - - - - - - - -	/ASW+DMSO 0.92156 0.11147 - - - - - - - - - - - - - - - - - - -	10μΜ/ASW 0.23437 0.12215 - - - - - - - - - - - - - - - - - - -	10μΜ/DMSO 0.35769 0.09951 - - - - - - - - - - - - -	/ASW+DMSO 0.23205 0.11147 - - - - - - - -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 12	5μΜ/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281* 0.01281* 0.1676 0.1857 - - - - -	5μΜ/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218** 0.00218** 0.13368 0.19564 - - - -	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.00339** 5.333E-05*** 0.00508** 0.14961 0.18749 - -	7μΜ/ASW 0.90442 0.12215	10058-F4 7μΜ/DMSO 0.40706 0.09951 - - - - - - - - - - - - - - - - - - -	/ASW+DMSO 0.92156 0.11147 - - - - - - - - - - - - - - - - - - -	10μΜ/ASW 0.23437 0.12215 - - - - - - - - - - - - - - - - - - -	10μΜ/DMSO 0.35769 0.09951 - - - - - - - - - - - - - - - - - - -	/ASW+DMSO 0.23205 0.11147 - - - - - - - -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 12 15	5μΜ/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281* 0.1676 0.1857 - - - - - -	5μΜ/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218** 0.00218** 0.13368 0.19564 - - - -	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.0039** 5.333E-05*** 0.00508** 0.14961 0.18749 - - -	7μΜ/ASW 0.90442 0.12215	10058-F4 7μΜ/DMSO 0.09951 - - - - - - - - - - - - -	/ASW+DMSO 0.92156 0.11147 - - - - - - - - - - - - - - - - - - -	10μΜ/ASW 0.23437 0.12215 - - - - - - - - - - - - - - - - - - -	10μΜ/DMSO 0.35769 0.09951 - - - - - - - - - - - - - - - - - - -	/ASW+DMSO 0.23205 0.11147 - - - - - - - -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 12	5μΜ/ASW 0.28505 3.464E-07*** 3.709E-07*** 3.958E-05*** 0.01144* 0.00065*** 0.01281* 0.1676 0.1857 - - - - - - - -	5µM/DMSO 0.47678 6.230E-07*** 3.933E-07*** 1.212E-05*** 0.00103** 4.182E-06*** 0.00218** 0.13368 0.19564 - - - - - - - -	10058-F4 5µM /ASW+DMSO 0.2826 2.193E-07*** 1.071E-07*** 1.832E-05*** 0.0039** 5.333E-05*** 0.00508** 0.14961 0.18749 - - - - - -	7μΜ/ASW 0.90442 0.12215	10058-F4 7μΜ/DMSO 0.09951 - - - - - - - - - - - - - - - - - - -	/ASW+DMSO 0.92156 0.11147 - - - - - - - - - - - - - - - - - - -	10μΜ/ASW 0.23437 0.12215 - - - - - - - - - - - - - - - - - - -	10μΜ/DMSO 0.35769 0.09951 - - - - - - - - - - - - - - - - - - -	/ASW+DMSO 0.23205 0.11147 - - - - - - - - - - - - - - - - - - -

Table A.2.8: Raw data on animal sizes after treatment with the 10058-F4 inhibitor.

Animal size was measured daily in mm² and data were taken from four different experiments (A). Minimum, median, maximum, upper and lower quartile was used for boxplot depiction. Significances are indicated with asterisks p < 0.05 *, p < 0.01 **, p < 0.001 *** (B).

4

Α									
	0,1%	DMSO in AS	N			5µM 100	58-F4 in ASW	(72h)	
Name	Nuclei	BrdU signal	Quotient	Percentage	Name	Nuclei	BrdU signal	Quotient	Percentage
Tier1a	650	56	0.08615385	8.6	Tier1a	636	303	0.47641509	48
Tier1b	282	64	0.22695035	22.7	Tier1b	726	22	0.03030303	30
Tier2a	661	245	0.37065053	37	Tier2a	777	59	0.07593308	7.6
Tier3a	611	62	0.101473	10	Tie2b	762	206	0.27034121	27
Tier3b	338	108	0.31952663	32	Tier2c	746	138	0.1849866	18
Tier4a	651	171	0.26267281	26	Tier3a	422	233	0.5521327	55
Tier5a	641	335	0.5226209	52	Tier3b	642	266	0.41433022	41
Tier5b	775	297	0.38322581	38	Tier4a	379	209	0.55145119	55
Tier5c	325	143	0.44	44	Tier4b	589	142	0.24108659	24
Tier6a	811	320	0.3945746	39	Tier5a	611	279	0.45662848	46
Tier6b	795	166	0.20880503	21	Tier5b	762	191	0.25065617	25
Tier7a	732	364	0.49726776	50	Tier6a	776	178	0.22938144	23
Tier7b	621	352	0.5668277	56	Tier6b	581	42	0.07228916	7.2
Tier8a	981	180	0.18348624	18	Tier7a	772	82	0.10621762	11
Tier8b	877	190	0.21664766	22	Tier7b	606	210	0.34653465	35
					Tier8a	597	28	0.04690117	4.7
					Tier8b	534	131	0.24531835	25
					Tier9a	572	187	0.32692308	33
					Tier9b	572	242	0.42307692	42
Average	650.066667	203.533333	0.31872552	31.7533333	Average	634.842105	165.684211	0.27899509	29.3421053
Stdev	195.165389	105.311517	0.14513625	14.4317643	Stdev	114.400158	84.1809158	0.16376745	15.2720355
Minimum	282	56	0.08615385	8.6	Minimum	379	22	0.03030303	4.7
Median	651	180	0.31952663	32	Median	611	187	0.25065617	27
Max	981	364	0.5668277	56	Max	777	303	0.5521327	55
upper Quartile	785	308.5	0.4172873	41.5	upper Quartile	754	221.5	0.41870357	41.5
lower Quartile	616	125.5	0.21272635	21.5	lower Quartile	576.5	106.5	0.14560211	20.5
В									
	0,1%	DMSO in AS	N			5µM 100	58-F4 in ASW	(24h)	
Name	Nuclei	BrdU signal	Quotient	Percentage	Name	Nuclei	BrdU signal	Quotient	Percentage
1	625	105	0.168	17		863	119	0.13789108	14
12	762	174	0.22834646	23	В	557	129	0.23159785	23
13	553	114	0.20614828	21	С	546	94	0.17216117	17
14	936	205	0.21901709	22		567	53	0.09347443	9
17	554	60	0.10830325	11	E	595	141	0.23697479	24
18	815	118	0.14478528	14	F	401	93	0.2319202	23
3	535	114	0.21308411	21	G	546	94	0.17216117	17
15	899	244	0.27141268	27	н	496	71	0.14314516	14
					L	613	66	0.10766721	11
					1	733	215	0.29331514	30
					к	759	229	0.30171278	30
					L	918	79	0.08605664	9
					м	1040	318	0.30576923	31
					Ν	1056	295		28
					0	809	51	0.06304079	6
	709.875	141.75	0.19488714		Average	699.933333	and the second sec	0.19041625	19.0666667
Average	105.015			4.84767986	Stdov	194.604031	83.8728138	0.08115762	8.22570497
Average Stdev	153.036301	56.605543	0.04840683			15 1100 1051		0.00115/02	0.22570457
Stdev Minimum			0.04840683 0.10830325		Minimum	401	51		6
Stdev Minimum Median	153.036301 535 936	60 244	0.10830325 0.27141268	11 27	Minimum Median	401 1056	51 318	0.06304079 0.30576923	
Stdev Minimum Median Max	153.036301 535	60 244 116	0.10830325 0.27141268 0.2096162	11 27 21	Minimum Median Max	401 1056 613	51 318	0.06304079	6
Stdev Minimum Median Max upper Quartile	153.036301 535 936 693.5 836	60 244 116 181.75	0.10830325 0.27141268 0.2096162 0.22134943	11 27 21 22.25	Minimum Median Max upper Quartile	401 1056 613 836	51 318 94 178	0.06304079 0.30576923 0.17216117 0.25816543	6 31 17 26
Stdev Minimum Median Max	153.036301 535 936 693.5	60 244 116 181.75	0.10830325 0.27141268 0.2096162	11 27 21 22.25	Minimum Median Max	401 1056 613	51 318 94 178	0.06304079 0.30576923 0.17216117	6 31 17

Table A.2.9: Raw data on BrdU signal after treatment with the 10058-F4 inhibitor (5μ M).

Data on cell proliferation were collected 24 h (A) and 72 h (B) after initial inhibitor treatment with the small molecule inhibitor. Values for minimum, median, maximum, upper and lower quartile were used for boxplot analyses.

А									
		6 DMSO in ASV				•	058-F4 in ASW		
Name	Nuclei	TUNEL signal	Quotient	Percentage	Name	Nuclei	TUNEL signal	Quotient	Percentage
Tier1_a	483	12	0.02484472	2.5	Tier1_a	555	18	0.03243243	3.2
Tier1_b	787	5	0.00635324	0.6	Tier1_b	439	34	0.07744875	7.7
Tier1_c	512	8	0.015625	0.15	Tier1_c	765	30	0.03921569	3.9
Tier2_b	484	10	0.02066116	2	Tier2_a	538	17	0.03159851	3.1
Tier2_c	569	10	0.01757469	1.8	Tier2_b	462	19	0.04112554	4.1
Tier3_a	409	5	0.01222494	1.2	Tier2_c	492	29	0.05894309	5.8
Tier3_b	474	5	0.01054852	0.1	Tier3_a	392	17	0.04336735	4.3
Tier3_c	374	9	0.02406417	0.24	Tier3_b	457	13	0.02844639	2.8
Tier4_a	298	9	0.03020134	3	Tier3_c	495	17	0.03434343	3.4
Tier4_c	568	2	0.00352113	0.3	Tier4_a	504	22	0.04365079	4.3
Tier5_a	437	8	0.01830664	1.8	Tier4_b	516	17	0.03294574	3.3
Tier5_b	741	7	0.00944669	1	Tier4_c	504	14	0.02777778	2.7
Tier5_c	836	4	0.00478469	0.5	Tier5_a	423	15	0.03546099	3.5
Tier6_a	665	3	0.00451128	0.5	Tier5_b	430	31	0.07209302	7.2
Tier6_c	869	6	0.00690449	0.7	Tier6_a	391	9	0.0230179	2.3
Tier7_a	693	3	0.004329	0.4	Tier7_a	325	17	0.05230769	5.2
Tier7_b	446	8	0.01793722	1.8	Tier7_b	261	8	0.03065134	3
Tier7_c	580	4	0.00689655	0.7	Tier7_c	352	1	0.00284091	0.3
Average	568.055556	6.555555556	0.01326308	1.07166667	Average	461.166667	18.22222222	0.03931485	3.89444444
Stdev	159.793086	2.773329772	0.00795407	0.84714062	Stdev	105.136023	8.270130696	0.01704644	1.69753816
Minimum	298	2	0.00352113	0.1	Minimum	261	1	0.00284091	0.3
Median	869	12	0.03020134	3	Median	765	34	0.07744875	7.7
Max	540	6.5	0.01138673	0.7	Max	459.5	17	0.03490221	3.45
upper Quartile	686	8.75	0.01821428	1.8	upper Quartile	504	21.25	0.04357993	4.3
lower Quartile	453	4.25	0.00648907	0.425	lower Quartile	399.75	14.25	0.03088813	3.025
В		· · · · · · · · · · · · · · · · · · ·							
		6 DMSO (ASW					058-F4 in ASW		
Name	Nuclei	Signal	Quotient	Percentage	Name	Nuclei	Signal	Quotient	Percentage
Tier1a	400	5	0.0125	1.3	Tier1a	484	14	0.02892562	2.9
Tier1b Tier2a	516 521	5	0.00968992 0.0134357	1.3	Tier1b Tier1c	342 546	19 12	0.05555556 0.02197802	5.5 2.2
Tier2b	469	8	0.01705757	1.7	Tier2a	576	15	0.02604167	2.6
Tier3a	577	1	0.0017331	0.2	Tier2b	506	9	0.01778656	1.7
					Tier3a	476	5	0.0105042	1
					Tier3b Tier3c	606 334	13 6	0.02145215	2.1 1.7
					Tier4a	334	5	0.01796407	1.7
					Tier4b	329	3	0.01960784 0.00911854	6.5
									6.5 3.7
					Tier5a	244	16	0.06557377	
					Tier5b	325	12	0.03692308	3.7
					Tier6a Tier6b	471 656	10 3	0.02123142 0.00457317	2.1 0.5
		5.2	0.01088326	1.1					
Average				1.1	Average	446.571429	10.28571429	0.02551683	2.72142857
Average	496.6			0 50100602	Stdev	120 597677	1 802210275	0.01642260	1 506057
Stdev	59.2101343	2.4	0.00514588		Stdev Minimum	120.587677	4.802210375	0.01643369	1.596057
Stdev Minimum	59.2101343 516	2.4 5	0.00514588 0.0125	1.3	Minimum	473.5	11	0.02134178	2.15
Stdev Minimum Median	59.2101343 516 400	2.4 5 1	0.00514588 0.0125 0.0017331	1.3 0.2	Minimum Median	473.5 244	11 3	0.02134178 0.00457317	2.15 0.5
Stdev Minimum Median Max	59.2101343 516 400 577	2.4 5 1 8	0.00514588 0.0125 0.0017331 0.01705757	1.3 0.2 1.7	Minimum Median Max	473.5 244 656	11 3 19	0.02134178 0.00457317 0.06557377	2.15 0.5 6.5
Stdev Minimum Median	59.2101343 516 400	2.4 5 1	0.00514588 0.0125 0.0017331	1.3 0.2 1.7 1.3	Minimum Median	473.5 244	11 3	0.02134178 0.00457317	2.15 0.5

Table A.2.10: Raw data on TUNEL signal after treatment with 5μ M 10058-F4 inhibitor (5μ M).

Data on apoptosis were collected 24 h (A) and 72 h (B) after initial treatment with the small molecule inhibitor. Values for minimum, median, maximum upper and lower quartile were used for boxplot depiction.

Method	Inhihibitor/DMSO
BrdU (24h)	0.89719
BrdU (72h)	0.65267
TUNEL (24h)	5.761E-07***
TUNEL (72h)	0.04981*

Table A.2.11: Statistical analyses on BrdU and TUNEL staining..

Statistical analyses of data in table A.2.9 and A.2.10. Significances are indicated with asterisks p < 0.05 *, p < 0.001 ***.

A.3 Regeneration and self/ non-self recognition in the phylum Placozoa

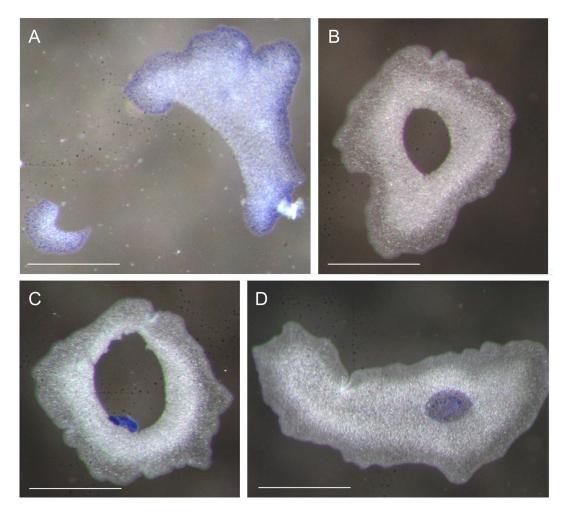


Figure A.3.1: Grafting procedure exemplified by a *Trichoplax adhaerens* autograft.

To visualize the donor tissue, the animal was stained with methylene blue and after this live coloration, a piece of margin was cut off with a sterile acupuncture needle (A). The acceptor individual was prepared for the transplantation by cutting a small hole in the animals' center (B). The blue stained donor tissue was then placed into the hole for tissue intergrowth (C). After 18 hours, the donor tissue completely merged into the acceptor individual (D) forming a central hole surrounded by cells of the donor tissue that keep their marginal fate. Scale bar marks 100 μ m in A-D.

No.	PRIMER NAME	SEQUENCE	FITS FOR HAPLOTYPE
1	H1_spez_rv	5'-ACCGGGCCCCAACCTA-3'	H1, H17
2	H2_spez_rv	5'-CCCAGGGATCCTAACGATC-3'	H2
3	CladeV_spez_rv	5'-CGGATCCTTCTCCTGATT-3'	H4, H9, H13, H14, H15
4	CladeIII_spez_fw	5'-TCCAACGGATCCCTTAGGTACC-3'	H7, H8, H16
5	placo_uni_fw	5'-CGAGAAGACCCCATTGAGCTTTACTA-3'	all known haplotypes
6	placo_uni_rv	5'-TACGCTGTTATCCCCATGGTAACTTT-3'	all known haplotypes

 Table A.3.1: Primers used for genetic haplotype and clade identification.

Haplotype/clade-specific primers (no. 1-4) were combined with the respective universal forward (fw) or reverse (rv) primer (no. 5/6) to specifically amplify parts of the placozoan 16S-b fragment.

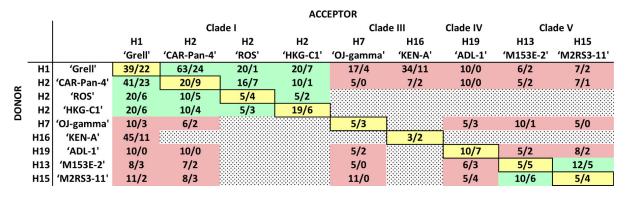


Table A.3.2: Cross classification - Raw data of grafting experiments.

The numbers indicate experiments/successful (transitory) fusion of tissues. In case of grafting of different haplotypes, individuals were used as both: donor and acceptor respectively. Autografts are highlighted in yellow, intergrafts in green and xenografts in red.

	experiment	fusions	fus/exp [%]	taxonomic group
within H1	39	22	56	1
within H2 ('PAN')	20	9	45	1
within H2 ('ROS')	5	4	80	1
within H2 ('HKG')	19	6	32	1
within H7	5	3	60	1
within H16	3	2	66	1
within H19	10	7	70	1
within H13	5	5	100	1
within H15	5	4	80	1
within clade I	240	89	37	2
within clade V	22	11	50	2
clade I / cladeIII	124	33	27	3
clade I / clade IV	40	0	0	3
clade I / clade V	59	17	29	3
clade III / clade IV	10	5	50	3
clade III / clade V	31	1	3	3
Clade IV /clade V	24	11	46	3

	Group 1	Group 2	Group 3
Median	66.00	43.50	28.00
Minimum	32.00	37.00	0.00
Maximum	100.00	50.00	50.00
Upper Quartile	80	46.75	41.75
Lower Quartile	56	40.25	9

Jonckheere-Terpsti	a-Test	
	Fusion Frequ	encies
Number of Levels in taxonomic group	3	
Ν	15	
Observed J-T-Statistic	5.5	
Median J-T-Statistic	34	
Std. Deviation of J-T-Statistic	9.138	
Std J-T-Statistic	-3.119	
Asymptotic significance (2-tailed)	0.002	
a Grouping Variable: taxo	nomic group	

Table A.3.3:	Data used for boxplot analyses.
---------------------	---------------------------------

Intergrowth frequencies were pooled into different taxonomic groups depending on the phylogenetic relatedness of grafted tissues: autografts (group 1) intergrafts (group 2) and xenografts (group 3). For graphical representation via boxplot (figure 2.3.1 B) the median, minimum, maximum, lower and upper quartile values were calculated with Excel ® (Microsoft ® Excel ® for Mac 2011, version 14.2.5). Statistical analyses were performed with the Jonckheere-Terpstra test in SPSS ® Statistics (IBM ® SPSS ® Statistics, version 21.0).

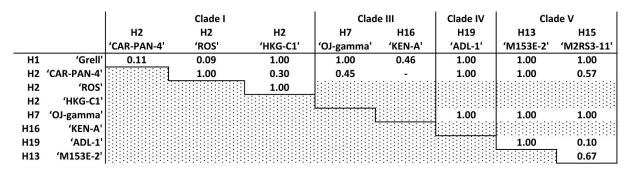


Table A.3.4: Statistical analyses on donor/acceptor roles.

Utilized haplotype combinations were investigated for possible effects on donor/acceptor role allocation. Indicated numbers are the 'p' values of the two-tailed Fisher's exact test. None of the tested haplotype combinations shows significances concerning which haplotype is donor and which acceptor (p > 0.05), thus the arrangement of donor/acceptor individuals does not influence intergrowth success. Analyses were made with in in SPSS ® Statistics (IBM ® SPSS ® Statistics, version 21.0).

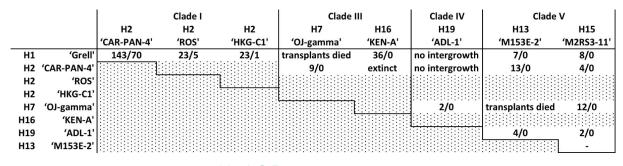


 Table A.3.5:
 Results of PCR analyses.

Data are summed up independent of the genetic background of the donor/acceptor tissue. The first number indicates performed experiments while the second states the number of identified chimeras. Only intergrafts of *Trichoplax adhaerens* (H1) and H2 (here the 'PAN' 'ROS' and 'HKG-C1' clone) tissue produced long-term chimeras. Transplants of H1 and H13 with H7 died before being tested. Some intergraft and xenograft experiments with H16 could not be performed as this lineage died off. Haplotype combinations tested were used as donor and acceptor equally (data not shown). Intergrowth of H13 and H15 could not be tested (-) as their16S sequences are separated by only 1 base pair and PCR-based specific haplotype detection was not successful yet.

Curriculum Vitae

Dipl. Biol. Karolin von der Chevallerie

Lutherstrasse 34, 30171 Hannover, born 22.12.1981 in Großburgwedel

Education

Sept. 2008 - Dez 2013	PhD Student, Leibniz Universität Hannover title of PhD thesis:
	"Experimental studies on the tumor suppressor $p53$, the
	myc proto-oncogene and tissue compatibility in the basal
	metazoan phylum Placozoa"
Oct. 2005 - Aug 2008	M. Sc. (Diplom) Biology Leibniz Universität Hannover
	examination subjects: zoology, genetics, microbiology;
	title of diploma thesis: "First Experimental Approaches
	to Vision, Proliferation and Apoptosis in Trichoplax adhaerens",
	grade: very good
Oct. 2002 - Oct 2005	B. Sc. (Vordiplom) Biology Leibniz Universität Hannover
June 2002	General qualification for university entrance (Abitur)
	Gymnasium Mellendorf, Wedemark
Research Experiences	
Nov. 2009	Cold Spring Harbor Course "Immunocytocemistry,
	In Situ Hybridization & Live Cell Imaging",
	Cold Spring Harbor Laboratories, New York, USA.
Sept. 2008 - Dez 2013	PhD thesis: ITZ, Ecology & Evolution,
	Stiftung Tierärztliche Hochschule Hannover,
	Prof. Dr. Bernd Schierwater.
Feb. 2008 - May 2008	Diploma thesis: Cellular Competition,
	Centro National Investigation Oncológicas (CNIO) Madrid,
	Spain, Dr. Eduardo Moreno.
Nov. 2007 - Aug. 2008	Diploma thesis: ITZ, Ecology & Evolution,
	Stiftung Tierärztliche Hochschule Hannover,
	Prof. Dr. Bernd Schierwater.
Mar. 2007 - Apr. 2007	Research projects: Department of Molecular, Cellular and
	Developmental Biology, Yale University, New Haven, USA,
	Prof. Dr. Stephen L. Dellaporta.
July 2006 - Oct. 2007	Research projects: ITZ, Ecology & Evolution,
	Stiftung Tierärztliche Hochschule Hannover,
	Prof. Dr. Bernd Schierwater.

Teaching Experiences

May 2009 - May 2012	Teaching assistent: Volker Schmid Training Course
	"Experimental Developmental Biology of Marine Invertebrates",
	Station Biologique de Roscoff, France.
Sept. 2008 - Dez 2013	Supervision of Bachelor- and Master thesis, Stiftung
	Tierärztliche Hochschule Hannover.
Nov. 2007 - Dez 2013	Supervision of practical courses: Molecular ecology & evolution,
	Stiftung Tierärztliche Hochschule Hannover.
Grants and Fellowships	
T AAAA D AAAA	

Jan. 2010 - Dec. 2012	PhD fellowship, Evangelisches Studienwerk Villigst e.V.
Sept. 2009	Travel grant, Boehringer Ingelheim Fonds
Sept. 2008 - Dec. 2009	"Otto Bütschli" fellowship,
	Stiftung Tierärztliche Hochschule Hannover

Presentations

von der Chevallerie K. and Schierwater B. (2009) Evolution of Apoptosis and Cell Proliferation in Animals: Genetic Studies on the Placozoan Trichoplax adhaerens, International workshop: Searching for Eve - Basal Metazoans and the Evolution of Multicellular Complexity, evangelische Akademie Tutzing, Germany.

von der Chevallerie K. and Schierwater B. (2009) Evolution of Apoptosis and Cell Proliferation in Animals: Genetic Studies on the Placozoan Trichoplax adhaerens, International Workshop of the Hydrozoan Society, Lecce, Italy.

von der Chevallerie K. and Schierwater B. (2009) Trichoplax adhaerens, a Model Organism not only for Evolutionary Biology, Seminar: Northern Illinois University, Illinois, USA.

von der Chevallerie K., Moreno, E. Schierwater, B. (2009) Patterns of Cell Proliferation in Trichoplax adhaerens (Placozoa), poster presentation "14th Annual DZG Evolution PhD Meeting 2009", Munich, Germany.

von der Chevallerie K., Moreno E., Schierwater B. (2008) Trichoplax & cell proliferation, 2nd North German Evolution and Development Symposium, Zoological Institute Christian-Albrechts- University, Kiel, Germany.

von der Chevallerie K., Bergmann T., Schierwater B. (2007) Opsin genes in Trichoplax adhaerens, 1st North German Evolution and Development Symposium, ITZ, Ecology & Evolution, Stiftung TiHo Hannover, Germany.

Acknowledgements

This thesis wouldn't have been possible without the help of various people that contributed directly or indirectly to the completion of my studies. In this section I'll now try to express my appreciation for their material and intellectual support.

First and foremost I'd like to express my deep gratitude to my supervisor Prof. Dr. Bernd Schierwater for giving me this very interesting topic to work on and also for supporting me in every possible way. He did not only help me to challenge every scientific problem I had but also provided me chances to attend meetings and courses that substantial improved my professional and personal skills.

I am furthermore thankful to Prof. Dr. Dieter Steinhagen who willingly agreed to review this thesis and to Prof. Dr. Küster for chairing the disputation.

I had a great time during my work in the ITZ, whose (present and former) team members did not only help me a lot during the time of my studies, but also created such a pleasant atmosphere that it often did not feel like work at all. Without Annkathrin Acktun, Nicole Bartkowiak, Tjard Bergmann, Jutta Bunnenberg, Dr. Sandra Damm, Dr. Michael Eitel, Angie Faust, Wiebke Feindt, PD Dr. Heike Hadrys, Rebecca Herzog, Tina Herzog, Dr. Eckhard Holtorf, Dr. Wolfgang Jakob, Ulrike Oberjatzas, Haju Osigus, Dr. Omid Paknia, Sarah Rolfes, Dr. Sven Sagasser, Dr. Dasa Schleicherova, Björn Seegebarth, Dr. Sabrina Simon and Karina Zimmer the time in the institute would have been only half as good. - Thanks a lot for the help, support and fun!

My academic and personal education would not have been the same without diverse stays abroad and fruitful international collaborations that brought me into contact with great scientists like Prof. Dr. Stephen Dellaporta, Prof. Dr. Rob DeSalle, Dr. Eduardo Moreno, Dr. Neil Blackstone and Dr. John Murray. The participation in three "Volker Schmidt" training courses in Roscoff (France) as a supervisor significantly enriched the time of my studies and I really appreciate the support and help of the people working at the "Station Biologique de Roscoff".

I'd like to thank Prof. Dr. Georgios Tsiavaliaris, Andrea Topf, Katharina Stahl and Christian Wassmann for helping me essentially with the protein expression project.

I am deeply thankful for financial support from Prof. Dr. Bernd Schierwater and the Tierärztliche Hochschule Hannover by giving me an "Otto Bütschli" scholarship. The Böhringer Ingelheim Fonds financially enabled my participation at the Cold Spring Harbor Course in 2009 and the Evangelische Studienwerk e.V. Villigst granted three years of financial support by a PhD fellowship, which made this thesis possible.

Ein großer Dank gebührt natürlich meiner Familie, die mich immer unterstützt und an mich geglaubt hat.- Ihr hattet es auch wirklich nicht immer leicht mit mir!

Vielen Dank auch meinen Freunden (besonders Anne+Andy, Sanny+Timo, Basti+Doro) die mich auch mal ablenken konnten und immer für mich da waren.

Den größten Dank verdient jedoch Dr. Hauke Horn. Er hat stets zu mir gestanden, mich immer unterstützt und manchmal einfach nur ertragen. Dankeschön!

List of Publications

Schierwater B., Eitel M., Osigus H-J, von der Chevallerie K., Bergmann T., Hadrys H.,
Cramm M., Heck L., L.M.R., und R. DeSalle (2010) *Trichoplax and Placozoa: one of the crucial* keys to understanding metazoan evolution. page 289-326 in Key transitions in animal evolution,
R. DeSalle and B. Schierwater, eds. CRC Press.

von der Chevallerie K., Eitel M., Schierwater B. (2010) Focus on an unexpected discovery in Roscoff - a warm water species of the phylum Placozoa. Cah Biol Mar. 212-21.

Schierwater B., Eitel M., von der Chevallerie K., Jakob W. (2011) Der Ursprung der Zelldifferenzierung in Metazoen. Journal: Stiftung Tierärztliche Hochschule Hannover, Die Zelle: Vielfalt - Kommunikation - Wachstum 79-82.

Eitel M., Jakob W., Osigus H-J, Paknia O., von der Chevallerie K., Bergmann T., Schierwater, B. (2013) *Trying to resolve the base of the Metazoa* Deep Metatzoan Phylogeny, The Backbone of the Tree of Life. De Gruyter, in press.

von der Chevallerie K., Rolfes S., Schierwater B. (2013) Inhibitors of the p53-Mdm2 interaction increase apoptosis and produce abnormal phenotypes in the placozoan Trichoplax adhaerens (F.E. Schulze)., Development Genes and Evolution, submitted.

von der Chevallerie K., Topf A., Sagasser S., Tsiavaliaris G., Schierwater B. (2013) The Myc/Max network at the base of the Metazoan tree of life., to be submitted to Molecular Biology and Evolution.

von der Chevallerie K., Kosubek, J. Schleicherova D., Eitel M., Schierwater B. (2013) Regeneration and self/non-self recognition in the phylum Placozoa., in submission to Zoology.