
 

 

Glycolate and glyoxylate metabolism in higher 

plants: How natural and artificial pathways 

contribute to plant metabolism 

 

 

 

 

Von der Naturwissenschaftlichen Fakultät 
der Gottfried Wilhelm Leibniz Universität Hannover 

zur Erlangung des Grades 
Doktor der Naturwissenschaften 

Dr. rer. nat. 

 

 

 

 

 

 

genehmigte Dissertation 
von 

Dipl. biol. Christian Blume 
geboren am 07. März 1983 in Kiel 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent:   Prof. Dr. Christoph Peterhänsel 

Korreferent:  Prof. Dr. Hans-Peter Braun 

Tag der Promotion:  10. Juni 2013 



Abstract 

Abstract 

Photorespiration is the salvage reaction for 2-phosphoglycolate produced by the oxygenase function of 

Rubisco. The higher plant pathway has been defined by mutant screens in Arabidopsis thaliana. 

Although the biochemistry of this pathway is well accepted nowadays, data indicate a more complex 

mechanism of glycolate conversion with several branching points. The theory of a more complex 

mechanism is based on observations in higher plants that cannot be explained by following the major 

pathway. Additionally, the theory is supported by experiments with cyanobacteria, the evolutionary 

ancestors of chloroplasts. Cyanobacteria have three pathways for photorespiratory glyoxylate 

conversion that coexist within the same organism. Two pathways recycle glyoxylate to glycerate, 

which can be phosphorylated to reenter the Calvin Benson Bassham Cycle. One of them resembles the 

plant type photorespiratory cycle, the other resembles the bacterial glycerate pathway. A third pathway 

oxidizes glyoxylate to CO2. In this work, I will present data on a glyoxylate conversion pathway in the 

chloroplast of higher plants that might represent a functional equivalent of the second cyanobacterial 

photorespiratory pathway. Beside investigations for a better understanding of the photosynthetic 

pathway in plants, I was also interested in transgenic approaches with the key aspect of either reducing 

or redirecting photorespiration. Regarding flux rates, photorespiration is the second most important 

pathway in plants. Photorespiration is often considered to be a wasteful process, because CO2 and 

ammonia are released while at the same time energy in form of reducing power and ATP is consumed 

by this pathway. Consequently, transgenic approaches were engineered into Arabidopsis and tobacco 

plants to lower the losses through photorespiration. However, in the last decade, more and more data 

were published showing that photorespiration is an essential part of primary metabolism and plays an 

important role in energy dissipation instead of being a wasteful process only. Based on these results, 

the benefits and downsides of photorespiration and of the transgenic approaches are re-considered in 

this thesis. 

 

Keywords: energy balance of photorespiration, photorespiratory bypasses, pyruvate dehydrogenase 

complex  



Zusammenfassung 

Zusammenfassung 

Die Photorespiration verwertet 2-Phosphoglycolat, das durch die Oxygenase4 Funktion von Rubisco 

gebildet wird. Der Stoffwechselweg wurde durch Mutantenanalyse in Arabidopsis thaliana 

aufgeschlüsselt. Obwohl die Reaktionsfolge des Stoffwechselweges mittlerweile anerkannt ist, gibt es 

ebenfalls Daten, die auf einen komplizierteren Mechanismus mit mehreren Gabelungen hinweisen. Die 

Theorie, die einen komplizierteren Verlauf vorhersagt, resultiert aus Beobachtungen, die sich nicht mit 

dem etablierten Model erklären lassen. Zudem wird die Theorie durch Experimente mit 

Cyanobakterien, den evolutionären Vorfahren heutiger Chloroplasten, gestützt. Cyanobakterien 

besitzen drei Stoffwechselwege zum Abbau von photorespiratorischem Glyoxylat, die parallel im 

gleichen Organismus vorkommen. Zwei dieser Stoffwechselwege produzieren Glycerat, welches 

phosphoryliert wird, um es dem Calvin Benson Bassham Zyklus zurückzuführen. Einer davon ähnelt 

dem pflanzen-typischen Stoffwechselweg, wohingegen der andere dem bakteriellen Glycerat-

Stoffwechselweg entspricht. Ein dritter Stoffwechselweg oxidiert Glyoxylat komplett zu CO2. In 

dieser Arbeit werde ich Daten präsentieren, die ein funktionelles Äquivalent eines zweiten 

cyanobakteriellen Stoffwechselweges der Photorespiration in höheren Pflanzen andeuten. Neben der 

Analyse mit dem Ziel, die einzelnen Reaktionen der Photorespiration besser zu verstehen, habe ich 

mich zusätzlich mit transgenen Ansätzen beschäftigt, die das Ziel haben, Photorespiration zu 

vermindern oder umzuleiten. Von der Durchflussmenge her gesehen ist die Photorespiration der zweit-

wichtigste Stoffwechselweg in Pflanzen. Photorespiration wird häufig als verschwenderisch 

angesehen, da CO2 und Ammonium freigesetzt werden und gleichzeitig Energie in Form von 

Reduktionsäquivalenten und ATP verbraucht wird. Als Konsequenz wurden transgene Ansätze in 

Arabidopsis und Tabak eingebracht, mit dem Ziel, Verluste durch Photorespiration zu vermindern. 

Allerdings wurden in der letzten Dekade immer mehr Ergebnisse veröffentlicht, die zeigen, welch 

starke Interaktion die Photorespiration mit dem Pflanzenmetabolismus verbindet. Zudem spielt die 

Photorespiration eine wichtige Rolle in der Ableitung von überschüssiger Energie als nur ein 

verschwenderischer Stoffwechselweg zu sein. Basierend auf diesen Resultaten wurden die positiven 

wie auch die negativen Seiten der Photorespiration erneut abgewogen. 

 

Schlagwörter: Energiebilanz der Photorespiration, Alternativwege der Photorespiration, 

Pyruvat-Dehydrogensekomplex 
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1 General introduction 

1.1 Photosynthesis 

1.1.1 The core enzyme: Rubisco 

Rubisco is the core enzyme of carbon fixation as it fixes anorganic carbon into an organic compound. 

The incorporated carbon is subsequently reduced in the Calvin Benson Bassham cycle (CBB cycle). 

On the molecular level, Rubisco catalyzes the ligation of carbon dioxide (CO2) and ribulose 1,5 

bisphosphate (RuBP) that produces two molecules 3-phosphoglycerate (3-PGA). This reaction can be 

considered as the most important process on earth as nearly all living organisms depend on this 

process. Rubisco had great evolutionary success and Raven (2009) estimated that 99.5 % of all 

autotrophic organisms use Rubisco for carbon fixation, whereas heterotrophic organisms are 

dependent on the uptake of the fixed carbon from autotrophs. Despite of its evolutionary success, 

Rubisco is regarded to be an inefficient enzyme. Rubisco is a very slow catalyst and carboxylates only 

1-4 molecules RuBP per second per catalytic center in rice plants (Parry et al., 2007). The slow 

catalytic rate of Rubisco is one reason for the high abundance of this protein. Furthermore, Rubisco 

confuses CO2 and O2. Although it has a 100 times higher specificity for CO2 than for O2 (Jordan and 

Ogren, 1981), every forth reaction catalysed by Rubisco is actually an oxygenation (Sharkey, 2001). 

This observation can be explained by the current abundances of the two gases in the atmosphere, 

which are 0.04% for CO2 and 21% for O2. These two downsides contribute to the fact that Rubisco is 

the most abundant protein on earth (Ellis, 1979; Raven, 2013). Oxygenation of RuBP produces one 

molecule each of 3-PGA and 2-phosphoglycolate (2-PG) and is the initiation reaction of 

photorespiration, a process with high energy costs for the recycling of carbon to the CBB cycle. 

Although photorespiration has been described as light dependent decarboxylation of glycolate by 

Zelitch (1966) already in 1966 and glycolate has been observed as an early photosynthetic product 

already in 1948 (Benson and Calvin, 1950), the production of glycolate by the oxygenase function of 

Rubisco has first been postulated by Ogren in 1971 (Bowes et al., 1971).  

Rubisco is activated in the light, which requires carbamylation of a lysine residue and subsequent 

binding of Mg2+ at the active site (Salvucci and Ogren, 1996). Under physiological conditions, 

carbamylation of lysine by CO2 is limited by both, the low speed of the reaction and by inhibiting 

sugar phosphates bound to the active site of Rubisco. In both cases, light dependent action of Rubisco 

activase is assumed to activate Rubisco by an unidentified mechanism. Rubisco activase lowers the 

Km for carbamylation and most importantly helps to release the tightly bound sugar phosphates from 

the active site (Portis et al., 1986; Wang and Portis, 1992). In higher plants, Rubisco is a protein 

complex of approximately 550 kDa in size and consists of eight small and eight large subunits forming 

eight active sites (Spreitzer and Salvucci, 2002; Andersson, 2008). 
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In summary, the highly abundant protein Rubisco is a slow catalysts and has a dual function, which 

catalyzes the initiation reactions of two of the major pathways in plants, the CBB cycle and 

photorespiration. 

1.1.2 The dark reaction of photosynthesis: The Calvin Benson Bassham cycle 

The CBB cycle has been investigated by Calvin and coworkers in the 1950s by feeding radioactively 

labeled CO2 to the unicellular green algae Chlorella and identification of the substances with 

incorporated label by two dimensional paper chromatography (Benson and Calvin, 1950). The CBB 

cycle is responsible for the primary production of carbohydrates used for storage and translocation of 

chemically bound energy. In higher plants, the CBB cycle is located in the chloroplast and constitutes 

of eleven enzymes catalyzing thirteen reaction steps (Raines, 2003). The CBB cycle can be 

categorized into three stages: carbon fixation, reduction of the integrated carbon and regeneration of 

the substrate for Rubisco. CO2 enters the CBB cycle at the site of Rubisco, which produces two 

molecules 3-PGA. As already mentioned, another source of carbon for the CBB cycle is 

photorespiratory 3-PGA. After reduction of carbon at the expense of ATP and NADPH, the 

triosephosphate glyceraldehyde 3-phosphate (GAP) leaves the cycle. Three carboxylation reactions of 

Rubisco are necessary to fix the one atom molecule CO2 into the three carbon atom compound GAP 

without any depletion of the CO2 acceptor RuBP in the CBB cycle. By the fixation of three molecules 

CO2 and the subsequent metabolism to recycle RuBP, nine molecules ATP and six molecules NADPH 

are consumed. The huge flux to provide reduced carbon for all anabolic pathways qualifies the CBB 

cycle to be the greatest energy sink in green tissue (Szecowka et al., 2013). 

1.1.3 The light reaction of photosynthesis 

Energy for CO2 fixation is provided by the light reaction of photosynthesis. Plants are capable of 

converting light energy into chemically bound energy. In this process, light energy is used to induce 

electron shuffling by the oxidation of water. The electrons are transported via the electron transport 

chain (ETC) to ferredoxin, which can be used to reduce NADP+. The light reaction is dominated by 4 

protein complexes, which are located in the thylakoid membrane (Nelson and Ben-Shem, 2004), while 

only three of them form the ETC. At photosystem II (PSII), light energy is used to split water into 

molecular oxygen, protons and electrons. The oxygen is released and is the source of atmospheric 

oxygen (Igamberdiev and Lea, 2006). The protons produce an electrochemical gradient, the 

protonmotive force, over the thylakoid membrane, which is used for the production of ATP from ADP 

and anorganic phosphate (Pi) by the ATP synthase. ATP is a ubiquitous energy carrier throughout all 

living organisms. The electrons originally derived from water are transferred from PSII to 

plastoquinone, which additionally binds protons in the stroma forming plastoquinol. These protons are 

released to the lumen by reoxidation of plastoquinol to plastoquinone at the cytochrome b6f complex. 

This enhances the protonmotive force. The electrons are further transferred to photosystem I (PSI) via 
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the cytochrome b6f complex and plastocyanine. This complex is again using light to enhance the 

reducing power of the electrons before transferring them to ferredoxin. Ferredoxin is soluble in the 

stroma and is used for several reducing reactions in the chloroplast (Hanke and Mulo, 2012). One of 

the ferredoxin dependent enzymes is the ferredoxin-NADP+ oxidoreductase (FNR). FNR generates the 

reducing equivalent NADPH. In summary, the products of the light reaction are molecular oxygen, 

NADPH and a proton gradient that is used for ATP synthesis.  

In high light, the light reaction provides the cell with virtually unlimited amount of reducing power. 

Under CO2 limitation, the capacity of the dark reaction cannot keep pace by regeneration of electron 

acceptors (Demmig-Adams and Adams, 1992), which results in production of reactive oxygen species 

(ROS). As a consequence, plants evolved strategies to dissipate excess energy and to cope with ROS.  

1.2 Photoinhibition and photoprotection 

1.2.1 Photoinhibition 

Under high irradiance, the photosystems absorb more energy than can be used by assimilatory electron 

sinks. The effect is even more severe in drought or at high temperatures, when CO2 availability is 

limiting. This can result in an overload of electrons in the electron transport chain, which can severely 

damage the photosystems by generation of ROS (Demmig-Adams and Adams, 1992). The lack of 

appropriate electron acceptors, mainly NADP+, causes reduction of O2 and induces oxidative stress. O2 

reduction at the photosystems produces superoxide (O2
-). O2

- is further converted to hydrogen peroxide 

(H2O2) by superoxide dismutase (Asada, 2000). Additionally, high irradiance causes production of the 

ROS singlet oxygen (1O2) at PSII. This highly excited state is generated by triplet chlorophyll, which 

is produced at high photon flux. Singlet oxygen is highly reactive and damages lipids as well as 

proteins at the site of its formation. The D1 protein in the core of PSII is frequently damaged by 1O2, a 

process called photodamage. As a consequence, the protein has to be removed and replaced. Actually, 

D1 has the lowest half life of all plastid encoded proteins, with a turnover time (t1/2) of approximately 

2 h (Sundby et al., 1993). A persisting period of high irradiance causes photoinhibition, when the rate 

of D1 translation cannot keep pace with its ongoing oxidation and degradation. Moreover, 1O2 and 

H2O2 inhibit the translation of D1 protein, resulting in retarded replenishment of D1 to reach the full 

potential of PSII (Nishiyama et al., 2004). Thus, energy dissipation is an important process in plants 

exposed to high irradiances or drought. To avoid an over-reduced state, plants evolved various 

strategies that reduce the probability of photoinhibition, which are summarized as photoprotective 

mechanisms. 

 

 



General Introduction  4 
 

1.2.2 Photoprotective mechanisms 

Plants evolved two major mechanisms avoiding photoinhibition. (i) They reduce the absorption or 

channeling of light energy and (ii) they provide multiple electron sinks that avoid overreduction of the 

ETC and/or that recover NADP+. 

High photon flux increases the turnover number of water splitting of photosystem II. This results in 

acidification of the thylakoid lumen. Decrease of luminal pH initiates several short-term processes that 

help to dissipate energy or to reduce light harvesting. Acidification is a signal to induce state transition 

of light harvesting complex II (LHCII) to PSI (Horton, 1983). Consequently, less energy is absorbed 

by PSII and fewer electrons are fed into the ETC. The higher capacity of PSI results in efficient 

transfer of electrons from the ETC to ferredoxin. Secondly, luminal acidification induces the 

production of violaxanthin, which is incorporated into to the thylakoid membrane. Violaxanthin 

quenches energy from chlorophyll by heat dissipation (Havaux and Niyogi, 1999). Thirdly, the 

orientation of the light harvesting complexes in the membrane towards the light source is modified in 

response to acidification of the lumen. This results in lower efficiency of light harvesting and 

increased heat dissipation (Foyer et al., 1990).  

The reduction of oxygen at the photosystems is the initiation reaction of the water-water cycle. The 

photoprotective role of this pathway has been reviewed by Asada (2000). O2
- is reduced to H2O2 by 

superoxide dismutase. H2O2 is discussed to be a messenger molecule, which might be involved in 

retrograde signaling for further adjustment of the redox state (Foyer and Noctor, 2005). However, 

hydrogen peroxide is also a highly reactive component that is further reduced to H2O by ascorbate 

peroxidase. The electron donor for this reaction is ascorbate. Monodehydroascorbate reductase 

converts resulting monodehydroascorbate (MDA) to ascorbate by oxidation of ferredoxin. 

Alternatively, ascorbate can be recycled by oxidation of glutathione (GSH), which is subsequently 

reduced by glutathione reductase at the expense of NADPH (Hossain and Asada, 1984; Noctor and 

Foyer, 1998). Summarized, although reduction of oxygen at the photosystems is a necessary evil by 

the production of toxic ROS, plants also benefit from this pathway. The water-water cycle is an 

efficient way to eliminate high reducing power in the chloroplast as the electrons originating from 

water splitting at photosystem II are retransferred to oxygen to produce water (Park et al., 1996; 

Asada, 2000). 

Regeneration of NADP+ is crucial to avoid an over-reduced state of the ETC (Nogales et al., 2012). 

Endo et al could verify the role of cyclic electron flow via the NADPH dehydrogenase complex 

(NDH) in photoprotection (Endo et al., 1999). NDH is integrated in the thylakoid membrane and 

shows high homology to mitochondrial complex I (Battchikova et al., 2011). Again, the complex uses 

the reducing power of NADPH for building up a protonmotive force over the thylakoid membrane. 

Cyclic electron flow is also realized via ferredoxin and the cytochrome b6f complex of the ETC (Iwai 
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et al., 2010). Both pathways feed electrons back into the ETC by the reduction of plastoquinone. The 

net result of cyclic electron flow is ATP synthesis at the expense of NADPH. 

The malate valve is also involved in the prevention of oxidative stress (Scheibe et al., 2005). This 

process exports reducing power from the chloroplast. Plastidal malate dehydrogenase (MDH) reduces 

oxalacetate (OAA) to malate. Malate is exported from the chloroplast and is oxidized by the cytosolic, 

peroxisomal or mitochondrial isoenzyme (Raghavendra and Padmasree, 2003). The transport process 

is catalyzed by a dicarboxylate transporter that exchanges malate for OAA (Kinoshita et al., 2011). 

However, the importance of the malate valve for redox homeostasis has recently been doubted by 

Hebbelmann et al. (2012), because knockout mutants of the plastidal MDH did not show a chlorotic 

phenotype that would be expected in plants under oxidative stress. 

In summary, plants evolved a number of strategies to prevent oxidative stress under conditions in 

which sink capacity of the CBB cycle is reduced due to limitation of the substrate CO2. However, due 

to the oxygenase activity of the carbon fixing enzyme Rubisco, high rates of photorespiration are 

achieved even under ambient atmospheric CO2 concentrations. Thus, the sink capacity of this pathway 

is also considered to play a major role in photoprotection (chapter 1.3.7). 

1.3 Photorespiration 

1.3.1 The major pathway in higher plants 

The photorespiratory pathway of higher plants was resolved by an EMS mutant screen in Arabidopsis 

thaliana (Somerville and Ogren, 1979; Somerville, 2001). Basically, plants were grown under non-

photorespiratory high CO2 conditions before non-chlorotic plants were shifted to ambient air and 

thereby, chlorosis was induced in photorespiratory mutants. Chlorotic plants were shifted back to high 

CO2 to rescue the severe photorespiratory phenotypes. Subsequently, photorespiratory mutants were 

screened for the mutated genes by analyzing changes in metabolites and enzyme activities. In total, the 

major photorespiratory cycle in higher plants is a complex pathway that requires the joined action of 

enzyme activities in three organelles (Figure 1). In the chloroplast, 2-PG is dephosphorylated by the 

plastidal 2-phosphoglycolate phosphatase (PGP). Glycolate formed by this function is transported into 

the peroxisome where it is oxidized to glyoxylate by glycolate oxidase (GO). Hydrogen peroxide 

(H2O2), a byproduct of this reaction, is detoxified by the highly abundant catalase (CAT). Glyoxylate 

is transaminated to glycine by either glutamate:glyoxylate transaminase (GGT) or serine:glyoxylate 

transaminase (SGT). Glycine is transported into the mitochondrion, where the joined functions of 

glycine decarboxylase (GDC) and serine hydroxymethyl transferase (SHMT) ligate two molecules 

glycine to serine thereby releasing CO2 and ammonia (NH3). Ammonia is refixed in the chloroplast by 

glutamine synthase (GS) and ferredoxin-dependent glutamine:oxoglutarate aminotransferase (Fd-

GOGAT). Serine is exported back to the peroxisome and is transaminated by SGT to 
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hydroxypyruvate. Peroxisomal hydroxypyruvate reductase (HPR1) reduces hydroxypyruvate to 

glycerate, which is transported into the chloroplast. Finally, glycerate is phosphorylated by glycerate 

kinase (GLYK) to 3-PGA, which can reenter the CBB-cycle. 

Figure 1: The major pathway of photorespiration in higher plants. 

The figure is a schematic representation of the major  photorespiratory pathway in higher plants. Green arrows 
represent plastidal reactions, yellow arrows peroxisomal, and blue arrows mitochondrial reactions. The refixation 
of photorespired CO2 by the CBB cycle is included. The enzymes of each step are indicated in bold letters. CBB 
cycle, Calvin Benson Bassham cycle; PGP, phosphoglycolate phosphatase; GO, glycolate oxidase; GGT, 
glutamate:glyoxylate transaminase; SGT, serine:glyoxylate transaminase; SHMT, serine hydroxymethyl 
transferase; GDC, glycine decarboxylase; GS, glutamine synthase; Fd-GOGAT, ferredoxin-dependent 
glutamate:2-oxoglutarate amino-transferase; HPR, hydroxypyruvate reductase; GLYK, glycerate kinase; RuBP, 
ribulose 1,5 bisphosphate; Pi, inorganic phosphate; 3-PGA, 3-phosphoglycerate; HO-pyruvate, hydroxypyruvate 

To date, only one of the transport steps described in here has been characterized (Eisenhut et al., 

2012). Recently, Pick et al. (2013) described PLGG1, the plastidal glycolate/glycerate transporter. The 

photorespiratory pathway includes several enzymatic steps that consume energy. (i) Glycerate 

phosphorylation and ammonia fixation consume ATP. (ii) Hydroxypyruvate reduction and ammonia 

fixation consume reducing power in form of NADH or reduced ferredoxin, respectively. The 

investment of energy and the counterproductive CO2 release during photorespiration are reasons for 

establishing transgenic approaches to plants with the aim of lowering photorespiratory flux 

(chapter 1.3.5). 
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1.3.2 Natural flexibility of photorespiration in higher plants 

Although the major photorespiratory pathway is well established nowadays, there are open questions 

concerning observations made in several publications that cannot easily be explained by following the 

conventional photorespiratory cycle. Furthermore, there is some indication that intermediates in 

photorespiration can be converted in multiple reactions. Some of these reactions are already 

investigated in detail, while others remain to be elucidated.  

Usually, photorespiratory CO2 release by GDC/SHMT follows transamination by GGT1. However, 

mutants of these two enzymes, which were supposed to be essential elements of photorespiration 

(chapter 1.3.1) show photorespiratory CO2 release. This indicates that there might be an alternative 

pathway for glyoxylate conversion. It is known that glyoxylate can be oxidized non-enzymatically by 

H2O2 (Igamberdiev and Lea, 2002), which is produced at high rates in the peroxisome. However, due 

to the vicinity and the excess of H2O2 scavenging catalase, this reaction seems not to be very probable. 

Grodzinsky (1978) discussed that catalase can take over the role of a peroxidase, which decarboxylates 

glyoxylate. Decarboxylation of glyoxylate would produce formate, which could be further oxidized to 

CO2 by the action of mitochondrial localized formate dehydrogenase. Formate could also be 

metabolized by formyl-tetrahydrofolate synthetase, a reaction that would link photorespiration to C1 

metabolism of the plant. The resulting formyltetrahydrofolate could be converted via two more 

enzymatic steps to methylene tetrahydrofolate. At this stage, it can reenter the photorespiratory cycle 

as a substrate for SHMT (Wingler et al., 1999). Another alternative of the major pathway is localized 

in the peroxisome. Initially, the peroxisomal HPR1 was described as hydroxypyruvate reducing 

enzyme (Tolbert et al., 1970). However, when reducing power is limiting in the peroxisome, 

hydroxypyruvate is exported from the peroxisome to be reduced to glycerate by either the cytosolic 

HPR2 (Timm et al., 2008) or by the plastidal HPR3 (Timm et al., 2011). 

In mitochondria, another variant of the major pathway has been observed. In addition to the 

peroxisomal GO, Bari et al. (2004) identified a mitochondrial targeted glycolate dehydrogenase 

(GlcDH). Niessen et al (2007) showed that GlcDH is responsible for mitochondrial glycolate 

conversion and, moreover, that two alanine aminotransferases link mitochondrial glycolate oxidation 

to the major photorespiratory cycle by converting glyoxylate to glycine (Niessen et al., 2012). 

However, the preferred substrate of higher plant GlcDH is still discussed in the literature. Engqvist et 

al. (2009) could only detect low glycolate dependent enzyme activity of this enzyme in vitro. The 

electron acceptor of substrate oxidation remains to be elucidated, but electrons were transferred to 

cytochrome C in vitro. 

Besides to glyoxylate decarboxylation in the peroxisome and mitochondrial glycine decarboxylation, a 

plastidal pathway for photorespiratory CO2 release has been described. Kizaki and Tolbert (1969) 

observed glyoxylate decarboxylation activity in the chloroplast. Due to the light dependence of the 

CO2 release, they presumed H2O2 formed in the Mehler reaction to react with glyoxylate non-
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enzymatically. A non-enzymatic breakdown like this has been described (Tolbert et al., 1949; 

Igamberdiev and Lea, 2002) but even the authors stated that the decarboxylation rate is surprisingly 

high for a non specific reaction (Kisaki and Tolbert, 1969). Zelitch (1972) proposed a light driven 

enzymatic reaction of plastidal glyoxylate decarboxylation. He postulated a chlorophyll associated 

Mn2+ dependent protein that produces H2O2 only for the breakdown of glyoxylate. Additionally, 

Kebeish et al. (2007) transformed a glycolate conversion pathway in A. thaliana that includes a 

decarboxylation step. While measuring the activity, he observed that also wildtype plants are capable 

of glycolate decarboxylation by an unidentified mechanism. Summarized, although plastidal 

glyoxylate decarboxylation is observed multiple times, no specific enzyme could be identified (Kisaki 

and Tolbert, 1969; Zelitch, 1972; Oliver, 1981; Kebeish et al., 2007). Additionally, Goyal and Tolbert 

(1996) described a futile cycle of glycolate oxidation and reduction in the chloroplast. In analogy to 

mitochondrial complex II, they postulated a membrane bound glycolate-quinone oxidoreductase that 

feeds electrons into the electron transport chain to increase the protonmotive force across the thylakoid 

membrane. Formed glyoxylate could be reduced by plastidal NADPH-glyoxylate reductase to 

glycolate. Analogous to the NADPH dehydrogenase, the result of the cycle is ATP production at the 

expense of NADPH. However, this enzyme has not been detected hitherto and this reaction would not 

result in CO2 release. 

In summary, some of the alternative pathways just replace distinct reactions, while others lead to total 

oxidation of glycolate or connect photorespiration with C1-metabolism. In this thesis, the role of the 

pyruvate dehydrogenase complex in plastidal glyoxylate decarboxylation was investigated. 

1.3.3 Evolution of photorespiration 

1.5 billion years ago, the endosymbiosis between a eukaryotic cell and an ancestor of contemporary 

cyanobacteria resulted in the evolution of chloroplasts (Mereschkowsky, 1905; Hedges et al., 2004; 

Howe et al., 2008). Accordingly, cyanobacteria also use Rubisco for carbon fixation. Recent data 

suggest that photorespiration evolved already before the endosymbiotic event, although global 

accumulation of free atmospheric oxygen started only 0.6 billion years ago (Planavsky et al., 2012). 

This might be explained by local accumulation of oxygen and drain of CO2 in dense mats of 

photosynthetic organisms. About 2.3 billion years ago, aggregates of cyanobacteria in stromatolites 

and microbial mats were more common than free floating cells (Giordano et al., 2005). Such a 

microcosmos could have accumulated oxygen, which promoted the oxygenase function of Rubisco. 

Photorespiration is still an integral part of cyanobacterial metabolism. Photorespiratory 2-PG in 

cyanobacteria is also dephosphorylated by a 2-phophoglycolate phosphatase (PGP). Cyanobacteria are 

prokaryotic cells without compartmentalization. As a consequence, oxygen is not the electron acceptor 

of glycolate oxidation like in the peroxisomes of higher plants as resulting H2O2 is toxic. Instead, 

cyanobacteria use glycolate dehydrogenases for glycolate oxidation. Their electron acceptors remain 
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to be determined, but in vitro activity could be measured with the cofactor NAD+. Subsequently, three 

pathways for glyoxylate metabolism were described (Eisenhut et al., 2008, Figure 2).  

 

Figure 2: The photorespiratory pathways 
in cyanobacteria. 

The figure is a schematic representation 
of the photorespiratory pathways in 
Synechocystis. The three pathways are 
kept in different greyscale. The 
refixation of photorespired CO2 by the 
CBB cycle is included in the figure. 
RuBP, ribulose 1,5 bisphosphate; 3-
PGA, 3-phosphoglycerate; HO-
pyruvate, hydroxypyruvate 
 
 
 
 
 
 
 
 
 
 

First, the plant-type photorespiratory C2 cycle and the bacteria-like glycerate pathway are described in 

cyanobacteria. Both pathways convert glyoxylate to glycerate. The bacterial like pathway has only two 

reaction steps, catalyzed by glyoxylate carboligase and tartronic semialdehyde reductase. In the first 

reaction, two molecules glyoxylate are ligated and CO2 is released. In the second step, tartronic 

semialdehyde is reduced to glycerate under expense of reducing power (Eisenhut et al., 2006). Like in 

higher plants, the second pathway includes transamination of glyoxylate to glycine and ammonia 

release by GDC and SHMT. In this reaction, CO2 is also released. Serine is subsequently deaminated 

and reduced to glycerate by serine:glyoxylate transaminase (SGT) and hydroxypyruvate reductase 

(HPR), respectively. To reenter the CBB cycle, glycerate is phosphorylated to 3-PGA in both 

pathways. Interestingly, phosphorylation takes two reaction steps. First, glycerate is phosphorylated at 

the C2 position by a class I glycerate kinase (GLYK), in contrast to the class III GLYK reaction in 

plants (Bartsch et al., 2008), which directly phosphorylates at the C3 position. In cyanobacteria, 3-

PGA is then generated by a phosphoglyceromutase. Additionally, glyoxylate can be completely 

oxidized to CO2. The first oxidation step is catalyzed by a hydroxyacid dehydrogenase followed by 

two decarboxylation events. An oxalate decarboxylase produces formate under CO2 release followed 

by oxygenation of formate to CO2 by formate dehydrogenase. This pathway could be observed in in 

vitro assays, but its relevance in vivo is not validated. Interestingly, the SHMT and the PGP from 

higher plants are not homologous to the cyanobacterial enzymes, although they catalyze the same 

reactions in the same pathway. This indicates a dual origin of the enzymes of the photorespiratory C2 

cycle in higher plants (Kern et al., 2011; Bauwe et al., 2012). 
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1.3.4 Reduction of photorespiration in nature 

Although photorespiration is well integrated into primary metabolism (chapter 1.3.6), 

photosynthetically active organisms evolved pathways and mechanisms to reduce flux through 

photorespiration by concentrating CO2 at the site of Rubisco. This is interesting, as the transgenic 

approaches that reduce photorespiration are often criticized for the reduction of such an important 

pathway.  

Although photorespiration probably evolved early in evolution (Giordano et al., 2005), carbon 

concentrating mechanisms (CCM) evolved several times in different clades, independently. The 

CCMs are based on the differential localization of Rubisco solely in specialized structures, in which 

CO2 is enriched.  

The CCM in cyanobacteria is probably the most effective mechanism to concentrate CO2 (Meyer and 

Griffiths, 2013). The mechanism enables Rubisco of cyanobacteria, which has a Km of about 150 µM, 

to be saturated with substrate at an external CO2 concentration of about 10-15µM (Price et al., 2007). 

The most important characteristics of the cyanobacterial CCM are a protein shell as diffusion barrier 

(carboxysome), the localization of carbonic anhydrases and Rubisco inside the carboxysome, and 

transporters that import inorganic carbon into the cell. The transporters are localized in the 

plasmamembrane and import both, CO2 and bicarbonate (HCO3
-). The energy supply for the import is 

variable as there are specialized proteins for the use of ATP, reducing power or an electrochemical 

gradient. The transporters work so efficient that internal CO2 concentrations of 20-40mM are 

measured frequently. If CO2 is imported, it is converted to HCO3
- in the cytosol. HCO3

- can diffuse 

into the carboxysome to the vicinity of Rubisco. Inside the carboxysome, carbonic anhydrases convert 

HCO3
- to CO2, which can then be fixed by Rubisco (Price et al., 2007). 

Green algae like Chlamydomonas and a group of bryophytes, the hornworts, evolved a similar but 

cyanobacteria-unrelated CCM (Meyer and Griffiths, 2013). Rubisco is concentrated in a dense 

structure called pyrenoid (Holdsworth, 1971). Compared to cyanobacteria, the transport process of 

inorganic carbon is more complex as several membranes, each equipped with its own transporters, 

have to be crossed. Chlamydomonas possesses transporters for bicarbonate and it is discussed, 

whether CO2 is also transported actively (Wang et al., 2011). Inside the chloroplast stroma, carbonic 

anhydrases strongly prefers production of HCO3
- from CO2. HCO3

- is channeled by a yet unknown 

transporter into the thylakoid lumen. A carbonic anhydrase is located in pyrenoid spanning sections of 

the lumen, where it produces CO2, which diffuses into the pyrenoid to be substrate for Rubisco 

(Sinetova et al., 2012). 

Higher plants also evolved CO2 concentrating mechanisms to enhance the CO2 concentration at the 

site of Rubisco. The mechanism is quite different from cyanobacterial and algal CCMs, as only CO2 

but not HCO3
- can be taken up from the environment. In C4 metabolism, carbon is primarily fixed by 
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the oxygen insensitive enzyme phosphoenolpyruvate carboxylase (PEPC) to produce the C4 

compound oxaloacetate (OAA). In contrast, the first product of carbon fixation in C3 plants is the C3 

compound 3-PGA. The C4 cycle evolved at least 66 times during evolution (Sage et al., 2011). As a 

consequence, there are multiple similar pathways, as different enzymes are recruited for the carbon 

concentrating mechanism. A few C4 organisms evolved C4 photosynthesis within a single cell 

(Edwards et al., 2004), but in most cases two types of specialized cells are required for C4 

photosynthesis: mesophyll cells and bundle sheath cells (BSC). Several evolutionary steps were 

necessary for the establishment of C4 photosynthesis, as reviewed by Gowik and Westhoff (2011). 

Furthermore, several C3-C4 intermediate species were described. PEPC and, therefore, primary carbon 

fixation is located in the mesophyll cells while Rubisco is exclusively located in the chloroplast of 

BSC. The basic mechanism of C4 photosynthesis is the formation of a C4 acid in mesophyll cells by 

an enzyme that is not sensitive to O2. After being transported to the BSC, the C4 acid is subsequently 

decarboxylated in bundle sheath chloroplasts to enhance the CO2 concentration in close vicinity of 

Rubisco. The resulting C3 acid is transported back to a mesophyll cell to complete the cycle and to be 

available for another carboxylation reaction.  

Another mechanism for lowering photorespiratory flux in nature is changing the specificity factor of 

Rubisco. Form II Rubisco is found in proteobacteria and consists of a dimeric homologue of the large 

subunit (Tabita et al., 2008). The evolution of the form I Rubisco with 8 small and 8 large subunits 

increased specificity of CO2 over O2 by a factor of 5-10 (Jordan and Ogren, 1981). C3 plants express 

Rubisco with the highest observed specificity factor. Organisms containing a Rubisco with a lower 

preference for CO2 express a CCM to reduce oxygenation rates. Interestingly, lower specificity is 

accompanied by higher carboxylation velocity (Bainbridge et al., 1995; Tcherkez et al., 2006). Thus, 

less Rubisco is required for the fixation of CO2 resulting in higher nitrogen use efficiency (Price et al., 

2007). 

1.3.5 Artificial photorespiratory bypasses 

As photorespiration is a pathway with high energy costs, bypasses by biotechnological approaches 

were installed that aim in modulating glycolate metabolism and energy costs leading to advantages for 

these plants (Figure 3). The first bypass installed by Kebeish et al. (2007) into Arabidopsis simulates 

the cyanobacterial glycerate pathway (chapter 1.3.3) although the genes were cloned from E. coli. 

Glycolate is oxidized in the chloroplast by a glycolate dehydrogenase. Two molecules of the resulting 

glyoxylate are ligated to tartronic semialdehyde under the release of CO2 by glyoxylate carboligase 

and reduced to glycerate by semialdehyde reductase. The second bypass engineered by Carvalho et al. 

(2011) into tobacco takes place in the peroxisome. Again, glyoxylate carboligase converts glyoxylate 

to tartronic seminadehyde followed by isomerization to hydroxypyruvate by hydroxypyruvate 

isomerase. In the third bypass described by Maier et al. (2012), glycolate is oxidized by glycolate 

oxidase in the chloroplast of Arabidopsis. The emerging H2O2 is scavenged by transgenic catalase. 
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Malate synthase produces malate from glyoxylate and acetyl CoA. Subsequently, malate is oxidized 

two times by the endogenous enzymes malic enzyme and pyruvate dehydrogenase complex, 

respectively, resulting in two molecules CO2 and one molecule acetyl CoA. The latter can again be 

used as the substrate for the next malate synthase reaction. The first two bypasses produce the 

photorespiratory intermediates glycerate and hydroxypyruvate, respectively, which can be recycled to 

3-PGA. In a strict sense, the third pathway is not a bypass, as it does not generate a photorespiratory 

intermediate but completely oxidizes glycolate to CO2. 

Figure 3: The photorespiratory bypasses of transgenic approaches 

The figures are schematic representations of the photorespiratory bypasses. Black arrows represent the major 
pathway, green arrows plastidal, and yellow arrows peroxisomal reactions. The refixation of photorespired CO2 
by the CBB cycle is included in the figure. (A) Bypass 1 engineered by Kebeish et al, (B) Bypass 2 engineered 
by Carvalho et al, (C) Bypass 3 engineered by Carhalho et al. RuBP, ribulose 1,5 bisphosphate; 3-PGA, 3-
phosphoglycerate; HO-pyruvate, hydroxypyruvate 
 

This is a short overview about the transgenic approaches that alter photorespiration. As part of this 

thesis, the bypasses were reviewed and categorized for their energy costs in detail (Peterhansel et al., 

2012), (chapter 2.22.1). 

1.3.6 Integration of photorespiration into plant metabolism 

Photorespiration is well integrated into plant metabolism. One important link is the dissipation of 

excess energy that will be discussed in the next paragraph. However, equally important is the 

recycling of 3-PGA for the CBB cycle. Moreover, photorespiration takes over a role in the removal of 

toxic intermediates and assimilation of plant metabolites. This chapter focuses on the integration of 

photorespiration into plant metabolism. How alternative pathways address these tasks was investigated 

and discussed within the thesis presented here. 

Photorespiration is closely connected to the CBB cycle, not only by the dual function of Rubisco, but 

also by its products CO2 and 3-PGA. The product of photorespiration and the primary intermediate of 

carbon fixation by Rubisco are both 3-PGA. The importance of photorespiration in the regeneration of 

the CBB cycle intermediate was summarized by Bauwe et al. (2012). They calculated that there is a 
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net loss of fixed carbon when oxygenation exceeds ½ of the carboxylation reaction which is a realistic 

scenario based on the specificity rates of Rubisco (Galmes et al., 2005). Due to photorespiration, three 

quarters of fixed carbon are rescued. Cegelski and Schaefer (2006) showed that flux through the CBB 

cycle is lowered under photorespiratory conditions even when RuBP is recycled in wildtype plants. 

While this can be attributed to lower Rubisco activity as a consequence to of reducing CO2-

availability, it is also shown that the reduction of assimilation in photorespiratory mutants can be 

compensated by supplementing the product of the knock-out reaction (Wingler et al., 2000). These 

experiments demonstrate that regeneration of 3-PGA through photorespiration is mandatory and 

alternative photorespiratory pathways have to address this trait. 

Three toxic compounds are produced during photorespiration: 2-PG, glyoxylate and H2O2. 2-PG was 

shown to inhibit triose phosphate isomerase, an enzyme in the CBB cycle, and phosphofructokinase, 

an enzyme involved in starch degradation (Anderson, 1971; Kelly and Latzko, 1976). Glyoxylate was 

shown to reduce the activation state of Rubisco, but to date the mechanism remains unclear (Cook et 

al., 1985; Chastain and Ogren, 1989; Campbell and Ogren, 1990). The toxicity of H2O2 has multiple 

reasons. Its reactivity facilitates the unspecific oxidation of lipids and thiol groups of proteins (Apel 

and Hirt, 2004; Jang and Imlay, 2007). A regulatory role of H2O2 has been proposed recently (Foyer 

and Noctor, 2005), but photorespiratory H2O2 is efficiently scavenged by catalase, which excludes 

peroxisomal H2O2 from any regulation process under most conditions (Tolbert et al., 1968). 

Photorespiration produces a set of amino acids. Interestingly, the three amino acids glycine, serine and 

glutamate are all linked to glutathione (GSH). GSH is a short molecule of only three amino acids, 

namely glutamate, cysteine and glycine. Glycine and glutamate are intermediates of the 

photorespiratory C2 cycle and of ammonia assimilation, respectively. Cysteine is produced from 

serine and the first step of this pathway, O-acetylation of serine, is mainly catalyzed in mitochondria 

(Wirtz et al., 2012). However, GSH synthesis was only shown to depend on photorespiratory glycine. 

Buwalda et al. (1990) proposed a role for photorespiration in glutathione synthesis, because GSH 

production was depending on light but could be restored in the dark by glycine supplementation. 

Moreover, the photorespiratory intermediates glycolate and glyoxylate could replace glycine. 

Additionally, Noctor et al. (1999) showed that suppression of photorespiration by increased CO2 

concentrations also diminished glutathione synthesis. This observation could be negated by 

supplementation of one of the photorespiratory intermediates glycolate or glycine. Glutathione plays 

an important role in redox regulation, because it can be oxidized to dimeric glutathione (GSSG) during 

the scavenging of reactive oxygen species (ROS). Interestingly, the same conditions favor 

photorespiration and demand of GSH (Noctor and Foyer, 1998), which makes photorespiration a 

valuable pathway for generation of amino acids for glutathione synthesis. 
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1.3.7 Photoprotection by photorespiration 

Although 2-PG is a futile and toxic byproduct of the dual function of Rubisco and photorespiration is 

often seen as a wasteful process, photorespiration also evolved to be a valuable sink for reducing 

power (Figure 1). The sink capacity of photorespiration has been suggested to be of major importance 

in photoprotection. Kozaki and Takeba (1996) identified ammonia assimilation as a bottleneck of 

photorespiration. Arabidopsis thaliana plants overexpressing glutamine synthase (GS) were found to 

have enhanced tolerance to high light intensities. In contrast, plants with reduced levels of GS were 

more severely affected by high light. Additionally, Osmond and Grace (1995) measured the 

contribution of photorespiration to photon usage. They concluded that photorespiration has a 

protective role because the electrons, which are dissipated by photorespiration, would otherwise lead 

to inhibition or destruction of the PSII center. Thus, the sink capacity of photorespiration could be 

crucial for the installation of transgenic approaches that lower photorespiration. In this chapter, the 

reasons for the sink capacity of photorespiration are explained. 

 
 

Figure 4: The major pathway of 
photorespiration in higher plants. 

The figure is a schematic 
representation of the major 
photorespiratory pathway in higher 
plants including the energy 
balances of each reaction in bold 
letters. Green arrows represent 
plastidal reactions, yellow arrows 
peroxisomal, and blue arrows 
mitochondrial reactions. The 
refixation of photorespired CO2 by 
the CBB cycle is included in the 
figure. RuBP, ribulose 1,5 
bisphosphate; Pi, inorganic 
phosphate; 3-PGA, 3-
phosphoglycerate; HO-pyruvate, 
hydroxypyruvate 
 

As calculated by Peterhansel et al (2010) the oxygenase function of Rubisco and subsequent 

regeneration of RuBP from 3-PGA in the CBB cycle consumes statistically 3 molecules NADPH and 

4.75 molecules ATP (chapter 2.1). Due to the dual function of Rubisco, the same conditions that 

promote accumulation of excess energy due to CO2 limitation, also promote high flux through 

photorespiration (Ku and Edwards, 1977a, b; Lawlor and Fock, 1977; Jordan and Ogren, 1984; Brooks 

and Farquhar, 1985; Cornic and Briantais, 1991), thereby making an alternative sink distinct from 

carbon fixation accessible. The direct investment of energy for the photorespiratory C2 cycle has 

already been summarized (chapter 1.3.1, Figure 1) However, the major energy costs of 

photorespiration are due to CBB cycle activity. While 3-PGA can be metabolized in the CBB cycle the 
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second oxygenation product, 2-PG needs to be recycled at the expense of CO2 release to reenter the 

CBB cycle. CO2 again is a substrate for Rubisco and the reduction in the CBB cycle needs reducing 

power. Interruption of the CBB cycle at various reaction steps is shown to propagate photoinhibition 

by depletion of the CBB cycle and subsequent interruption of this electron sink (Takahashi et al., 

2007). The net balance of energy usage of the CBB cycle as consequence of 2 oxygenations of RuBP 

is five molecules NADPH and 7.5 molecules ATP. Moreover, Haupt-Herting et al. (2001) calculated 

that in plants being exposed to severe drought stress, 60% of total CO2 assimilation is due to re-

assimilation of (photo)-respiratory CO2 (Haupt-Herting et al., 2001). In line with these results Heber et 

al. (1996) showed that photosynthetic electron transfer is only reduced to 71% when CO2-exchange is 

impaired due to stomatal closure. They identified photorespiration as major electron sink. Thus, under 

drought stress, the major activity of the CBB cycle can be directly linked to photorespiration. These 

data indicate the impressive role of photorespiration in energy dissipation. 

Photorespiration can also be viewed as export mechanism for reducing power from chloroplasts 

(Igamberdiev et al., 2001). Glycolate that has been exported from chloroplasts undergoes two 

oxidation events. The first takes place in the peroxisome with oxygen as electron acceptor but here, the 

electrons are not used to generate reducing equivalents (Tolbert, 1981). The second takes place in the 

mitochondrion, in which NAD+ is reduced to NADH. Igamberdiev et al. (2001) demonstrated that 

photorespiratory export of reducing power to mitochondria has high influence on their redox state. 

GDC deficient mutants have enhanced respiratory rates and induce redox transfer by activation of 

malate-oxaloacetate exchange to compensate for this loss. The export of photorespiratory reducing 

power to mitochondria can be such efficient that mitochondria accumulate excess reducing power. 

Reducing power is used by the mitochondrial electron transport chain to produce ATP by the 

generation of a protonmotive force that is used by the mitochondrial ATP synthase. Energy of excess 

NADH is dissipated in the mitochondrial electron transfer chain by uncoupling proteins (UCP) 

(Sweetlove et al., 2006), which enables the leakage of protons to lower the proton motive force.  

Together, the capacity of photorespiration as electron sink strongly contributes to photoprotection. The 

thesis explains how different strategies of glycolate metabolism in photorespiration might contribute to 

energy dissipation and photoprotection. 

1.4 Motivation 
In the last years, several review articles were published about the topic photorespiration. However, 

each of them had its own focus on a special field of this topic. Bauwe et al. (2010, 2012) reviewed the 

evolution of photorespiration, Foyer et al. (2009) reported about enzymes and enzymatic regulation, 

Maurino and Peterhansel (2010) had their focus on metabolic engineering and some reviews show the 

connection between ammonia assimilation and photorespiration (Linka and Weber, 2005; Keys, 2006). 
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The review ‘Photorespiration’ integrates all topics into one article to get an insight into each field of 

photorespiration. 

Photorespiration is one of the major pathways in plants (Szecowka et al., 2013). Photorespiration is the 

result of the oxygenase function of Rubisco and is the origin of a complex pathway that requires 

enzyme activities of three plant organelles: chloroplasts, peroxisomes and mitochondria. 

Photorespiration was first described as light dependent CO2 release in photosynthetic tissue (Decker, 

1954). First motivation to investigate this pathway was given by the observation that photorespiration 

is seemingly contra productive to photosynthesis. While photosynthesis generates oxygen and fixes 

carbon, photorespiration is a process of oxygen uptake and CO2 release. Moreover, the oxygenation of 

ribulose 1,5 bisphosphate (RuBP) by Rubisco produces the toxic product 2-phosphoglycolate (2-PG). 

Recycling of 3-phosphoglycerate (3-PGA) by photorespiration produces two more toxic intermediates, 

H2O2 and glyoxylate. Additionally, photorespiration consumes energy in form of reducing power and 

ATP. Consequently, initial research on the pathway had the long-term objective to reduce flux through 

photorespiration. Approximately 60 years after photorespiration has been described as light enhanced 

respiration (Decker, 1954), this approach is still pursued. Three different pathways were engineered to 

minor losses through photorespiration (Peterhansel et al., 2008). Although two of them are 

successively transformed into the model plant Arabidopsis thaliana and the plants were shown to have 

enhanced growth and assimilation rates, the benefits of the pathways are discussed controversial by 

the community. This is mainly because the negative view of photorespiration is challenged by data 

that indicates an important role of photorespiration in plant metabolism (chapters 1.3.6, 1.3.7). Under 

conditions, when CO2 availability is too low to keep pace with the conversion of light energy into ATP 

and NADPH, an alternative electron sink than CO2 fixation in the CBB cycle is required. 

Photorespiration exports energy from chloroplasts to mitochondria, dissipates reducing power in the 

peroxisomes, and provides a futile cycle of ammonia release and subsequent refixation in chloroplasts. 

But the strongest sink is provided by the strong interconnection of photorespiration and the CBB 

cycle. Haupt Herting et al. (2001)  calculated that 60% of CBB cycle activity in draught stressed plants 

can be deduced to photorespiration. Interestingly, the CBB cycle and photorespiration are directly 

linked by the dual function of Rubisco. Thus, as CO2 becomes limiting, the oxygenase function is 

consequently upregulated to provide the CBB cycle with substrate for carbon reduction and energy 

consumption. A shortage of energy consuming pathways induces the generation of reactive oxygen 

species ROS (Voss et al., 2013). Photorespiration is shown to mitigate ROS production under various 

stress conditions like drought (Haupt-Herting et al., 2001), salinity (Yu et al., 2011) and chilling 

(Cheng et al., 2007) and a role for photorespiratory sink capacity and energy export mechanism in 

redox homeostasis has been postulated (Lepistö et al., 2009; Hebbelmann et al., 2012). In this respect, 

further evaluation is required, how and to which extend the transgenic approaches, which reduce 

photorespiration, could respond to these tasks of photorespiration. 
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The evolutionary origin of photorespiration can be tracked down to the beginning of oxygenic 

photosynthesis. Molecular oxygen could have accumulated locally in dense mats of photosynthesizing 

organisms. Thus, a basal photorespiratory cycle for metabolism of toxic 2-phosphoglycolate (2-PG) 

probably evolved even before the endosymbiotic event between a photosynthesizing prokaryote and a 

eukaryotic cell, which resulted in the evolution of contemporary chloroplasts. Synechocystis, one of 

the cyanobacterial descendants of these photosynthesizing prokaryotes, was shown to have three 

distinct pathways for glyoxylate metabolism. Interestingly, cyanobacteria and higher plants recruited 

different enzymes for catalysis of the same reactions of photorespiration, in especially 2-PG 

dephosphorylation and glycine decarboxylation (Kern et al., 2011). Both, the discovery of the three 

photorespiratory pathways in Synechocystis and the differential recruitment of enzymes for 2-PG 

metabolism demonstrate the variability of photorespiration in nature and indicate that there might be 

evolutionary remnants and alternative reactions. Interestingly, Niessen et al. (2007, 2012) could link a 

mitochondrial localized glycolate dehydrogenase to the major pathway by description of two alanine 

aminotransferases in Arabidopsis and rice. Timm et al. (2008, 2011) detected that there are also a 

cytosolic and a plastidal hydroxypyruvate reductase beneath the peroxisomal isoform in higher plants. 

Taking the metabolic flexibility of photorespiration and the cyanobacterial origin of photorespiration 

into account, a plastidal glycolate conversion pathway as evolutionary remnant seems promising. The 

plastidal decarboxylation of glycolate and glyoxylate has been observed several times in the last 

decades but the decarboxylation enzyme remained to be determined (Kisaki and Tolbert, 1969; 

Zelitch, 1972; Oliver, 1981; Kebeish et al., 2007). 

To investigate the pathway, an established method for evaluation of the mitochondrial complexome 

was applied for the plastidal proteome of Arabidopsis thaliana (Klodmann et al., 2011) High resolution 

MS can be used to identify low abundance enzymes that might be responsible for specific reactions. 

2D-BN/SDS-PAGE in combination with high resolution MS was shown to identify novel complexes 

in mitochondria (Klodmann et al., 2011). If the glyoxylate decarboxylase was attached to plastidal 

PGP to enable metabolic channeling, they could be found with this method. Additionally, 

contaminating organelles can be identified by aberrantly identified proteins. There is a mandatory 

demand to work with highly pure chloroplasts. Contamination could mask plastidal reactions by high 

rates of conversion by peroxisomal or mitochondrial enzymes. Contaminations with peroxisomal GO 

or mitochondrial GDC can be deleterious for all enzymatic activity based investigations in this topic. 

To achieve better annotation of the proteins, the proteome of A. thaliana was investigated. 

The article “Photorespiration” gives a complete summary about this important pathway. The article is 

freely accessible online on http://thearabidopsisbook.org. The scope of the book is to ‘provide a 

scholarly and authoritative overview of the state of knowledge about the topic’ 

(http://thearabidopsisbook.org). Thus, the article does not present unpublished data, but shall provide 

the reader with state-of-the-art information about the pathway. The article describes several aspects of 
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photorespiration, provides detailed information about enzymes and enzymatic steps, the flexibility of 

the pathway in cyanobacteria and higher plants, the benefits of photorespiration and why there is a 

controversial dialogue about the importance of the pathway. Data is presented from more than 50 

years of research, from the contradictory data mostly presented by Zelitch and Tolbert till the 

manipulation of the major pathway by various approaches. 

The review “Photorespiratory bypasses: how can they work?” has its focus on 3 pathways that aim to 

enhance plant productivity by biotechnical installation of photorespiratory bypasses. By these, the flux 

through the photorespiratory C2 cycle shall be lowered with the consequence of lower energetic costs. 

These bypasses were never put into relation with each other and there is little understanding, how they 

cope with the new view of photorespiration as a mandatory pathway with an important role in energy 

dissipation. The core of the article lists the energy balances of the pathways calculated on a ‘status quo 

ante’ basis. This means that the energy costs for the reestablishement of the situation before the 

oxygenase event, in especially regeneration of RuBP, are integrated into the calculation. The energy 

balance is used to anticipate the influence of the pathways on primary metabolism and to estimate 

beneficial conditions. 

The manuscript “A role for the chloroplast pyruvate dehydrogenase complex in plant glycolate and 

glyoxylate metabolism” has its focus on an open question of photorespiratory glycolate metabolism. 

Plastidal glycolate and glyoxylate conversion to CO2 has been observed several times in the last 

decades but previous studies about plastidal glycolate or glyoxylate conversion failed to identify the 

responsible glycolate decarboxylase or glyoxylate decarboxylase, respectively. The natural pathway of 

plastidal glyoxylate decarboxylation became the focus of interest as two artificial photorespiratory 

pathways were engineered that base on plastidal glycolate conversion and decarboxylation and show 

enhanced phenotypes. The natural pathway was investigated if it could be a functional equivalent of 

one of these pathways. 

The manuscript ‘The protein complex proteome of chloroplasts in Arabidopsis thaliana’ is a resource 

paper for plant physiologists. It was shown, that a similar technology could identify novel protein 

complexes in mitochondria of Arabidopsis thaliana. The proceedings in resolution of mass 

spectrometric data enable identification of low abundance proteins, which might be assigned to novel 

complexes. The manuscript is associated with a Gelmap software to enable protein search and spot 

identification of all identified proteins. Moreover, the high purity of the chloroplast in combination 

with high resolution mass spectrometry enabled identification and localization of proteins, which had 

no functional annotation before. 
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2 Publications and manuscripts 
 

The review entitled ‘Photorespiration’ by Christoph Peterhänsel, Ina Horst,  Markus Niessen,  

Christian Blume,  Rashad Kebeish,  Sophia Kürkcüoglu, and Fritz Kreuzaler is published in The 

Arabidopsis Book, 8 (2010), e0123. doi:0110.1199/tab.0130. All authors took part in writing the 

article while each author had his own chapter. Christoph Peterhänsel wrote the introduction and the 

conclusion and supervised the contributions of the other authors. Ina Horst wrote the chapter ‘The 

major photorespiratory pathway in Arabidopsis’, Christian Blume the chapter ‘The light side and the 

dark side of photorespiration’, Markus Niessen the chapter ‘Metabolic complexity: Photorespiratory 

pathways in Arabidopsis’, Sophia Kürkcüoglu the chapter ‘Metabolic complexity: Photorespiration is 

necessary for all organisms performing oxygenic photosynthesis, Rashad Kebeish the chapter 

‘Metabolic Engineering: Manipulating photorespiration’. The figures were prepared by Christoph 

Peterhänsel, Ina Horst and Markus Niessen. 

The review entitled ‘Photorespiratory bypasses: how can they work?’ by Christoph Peterhänsel, 

Christian Blume, and Sascha Offermann is published in the Journal of Experimental Botany, 64 

(2012), 709-715. All authors took part in writing while Christoph Peterhänsel was the major 

contributor. Figure 1 and table 1 were prepared by Christian Blume while table 2 was prepared by 

Christoph Peterhänsel.  

The manuscript entitled ‘A role for the plastidal pyruvate dehydrogenase complex for glycolate and 

glyoxylate metabolism’ by Christian Blume, Christof Behrens, Holger Eubel, Hans-Peter Braun, and 

Christoph Peterhänsel has been submitted to Phytochemistry and is currently under revision. Christof 

Behrens performed 2D BN/SDS PAGE and mass spectrometry analysis as well as identifying the 

proteins from the obtained spectra under supervision of Hans-Peter Braun. Evaluation of the protein 

data was performed by Christof Behrens and Christian Blume. Except from the data obtained by 

Christof Behrens, all laboratory work as well as data evaluation was performed and optimized by 

Christian Blume. All authors took part in writing the manuscript while Christian Blume and Christoph 

Peterhänsel were the major contributors. All figures were prepared by Christian Blume, except for 

figure 5 concerning 2D BN/SDS PAGE, which was prepared by Hans-Peter Braun. 

The manuscriped entitled ‘The protein complex proteome of chloroplasts in Arabidopsis thaliana’ by 

Christof Behrens, Christian Blume, Michael Senkler, Holger Eubel, Christoph Peterhänsel, and Hans-

Peter Braun has been submitted to Journal of Proteomics and is currently under revision. Christian 

Blume optimized the chloroplast purification and quality control of the chloroplasts. Christof Behrens 

performed 2D-BN/SDS-PAGE as well as mass spectrometry analysis. Protein data was evaluated by 

Christof Behrens and Hans-Peter Braun, who also prepared the annotation for the Gelmap3.0 software 
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developed by Michael Senkler. Christof Behrens annotated the proteins for subcellular localization 

based on SUBA3 database. All authors took part in writing the manuscript with Christof Behrens and 

Hans-Peter Braun as major contributors. The figures were prepared by Christof Behrens and 

Hans-Peter Braun except for Figure 1 concerning the chloroplast intactness assay, which was prepared 

by Christian Blume. 
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2.1 Photorespiration 
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2.2 Photorespiratory bypasses: how can they work? 
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3 General discussion 
 

Current studies on photorespiration are aiming in two different directions. On the one hand, basic 

research uncovers new relevance of the pathway, evolutionary traits and further interactions with 

primary metabolism. Recent data suggest that photorespiration developed early in evolution. The 

coevolution of oxygenic photosynthesis and photorespiration supports the strong integration of 

photorespiration into primary metabolism. Additionally, alternative routes and enzymes of 

photorespiration are investigated. This research was strengthened by the discovery that cyanobacteria 

contain three different photorespiratory pathways (Eisenhut et al., 2008). As part of this thesis, a role 

for the pyruvate dehydrogenase complex in photorespiratory glyoxylate decarboxylation was 

described. The second direction of research on photorespiration is the establishment of transgenic 

approaches to reduce photorespiratory flux. First, some focus is put on the optimization of Rubisco to 

a higher specificity for CO2 (Andrews and Whitney, 2003; Peterhansel et al., 2008) but Bainbridge et 

al. (1995) among others showed that higher specificity is mostly accompanied by lower catalytic rates, 

which complicates screening for a better performing Rubisco (Whitney et al., 2011). Second, much 

effort is invested in enhancement of the CO2 concentration in the vicinity of Rubisco of C3 plants and 

the installation of the C4 cycle or a cyanobacterial CCM in C3 species are long term objectives 

(Peterhansel, 2011; Covshoff and Hibberd, 2012; Price et al., 2013). The third approach to minimize 

photorespiratory losses begins after oxygen fixation by Rubisco (Figure 3, Kebeish et al., 2007; 

Carvalho et al., 2011; Maier et al., 2012). The three transgenic approaches or bypasses for reduction of 

photorespiration were shortly described in the introduction. A detailed characterization of the bypasses 

with a focus on their energy balances is part of this thesis (Peterhansel et al., 2012, chapter 2.2). 

Evidence was provided that altering the photorespiratory C2 cycle can be advantageous for plants 

under controlled conditions. In the introduction, the importance of photorespiration and its close 

connection to plant metabolism is presented. Taking this into consideration, the observation of 

enhanced growth of the transgenic plants expressing one of the bypasses is surprising. Based on 

current knowledge of photorespiration summarized in the introduction and on the calculation of the 

energy balances described in chapter 2.2, I will re-discuss here the benefits and drawbacks of the 

bypasses in comparison to natural pathways. In addition, the energy balance of the newly identified 

route via the plastidal pyruvate dehydrogenase complex (PDC) is discussed. 

3.1 Energy balance contribution of the photorespiratory bypasses 
In chapter 2.22.1 the energy balances for the photorespiratory bypasses are calculated. In this review, 

we had the main focus on the beneficial side of reducing energy costs of photorespiration. But as it 

was stated in chapter 1.3.7, the capacity of photorespiration as sink for excess energy plays an 

important role in plant metabolism. In this paragraph, I want to evaluate the pathways for benefits and 
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disadvantages of energy consumption. The three bypasses have different energy costs as given in 

table 2 of chapter 2.2. Bypass 3 dissipates more energy than any other photorespiratory cycle, when 

the energy costs for RuBP regeneration are integrated into the calculation. The main reason for the 

high energy costs of this pathway is the complete decarboxylation of photorespiratory glycolate. 

Reduction of this CO2 in the CBB cycle consumes high amounts of energy. This is a disadvantage of 

the pathway under energy limiting conditions. However, as described in the introduction, high rates of 

photorespiration are promoted by high light and drought (Lawlor and Fock, 1977; Brown and Morgan, 

1980; Cornic and Briantais, 1991). Under these conditions, CO2 availability for reduction in the CBB 

cycle is too low to keep pace with light harvesting and generation of NADPH and ATP by the light 

reaction of photosynthesis. Therefore, excess reducing power is available that needs to be dissipated. 

By Bypass 3, a huge electron sink for energy dissipation is made accessible, which could be 

advantageous under the indicated conditions. On the contrary, the bypasses 1 and 2 both have lower 

energetic costs than the major pathway. This can be attributed to bypassing of the transamination step, 

by which the energy consuming refixation of released ammonia is avoided. Additionally, bypass 1 

uses a glycolate dehydrogenase for glycolate oxidation, by which reducing power is made accessible. 

The reduced energy needs of these two bypasses are beneficial when energy is limiting. Under adverse 

conditions, the reduced sink capacity can be deleterious for the plants. As described in the 

introduction, reduced sink capacity can induce oxidative stress in the chloroplasts by production of 

reactive oxygen species (ROS) at the photosystems, which promote photodamage. The question is, if 

alternative photoprotective mechanisms of the chloroplast, which are described in the introduction, can 

effort the need for energy dissipation. Interestingly, the energetic costs of photorespiration vary in 

nature. Cyanobacteria evolved three different photorespiratory pathways, each with different energy 

costs. Energy consuming ammonia refixation is only required in the plant type photorespiratory 

pathway while complete oxidation of glyoxylate has even higher energy costs. In higher plants, 

glycolate oxidation by mitochondrial glycolate dehydrogenase reduces the energy costs of 

photorespiration by 20%. In this concern, it would be interesting to know the fluxes of the pathways 

and if they adapt in response to environmental changes. As described in the introduction, the 

dependence of photoprotection on photorespiration has been shown with mutants of the 

photorespiratory glutamate synthase (GS). Overexpressors as well as knock-down mutants were 

generated to modulate flux through photorespiration (Kozaki and Takeba, 1996). However, GS fixes 

ammonia and the reduced capacity of nitrogen fixation can limit production of the D1 protein of the 

photosystem II, which has a low halftime in high light (Li and Sherman, 2002). The reduced ability of 

D1 regeneration could be the reason for the observed sensitivity of the mutants to high light. 

Moreover, ammonia is reported to have a toxic effect on photosystem II (Drath et al., 2008). However, 

the foremost energy sink of photorespiration that contributes to photoprotection is CBB cycle activity 

(Takahashi et al., 2007). Calculated on the basis of the energy balances by Peterhansel et al. (2010, 

chapter 2.1), this makes 80% of the total energy costs of photorespiration in higher plants. As 
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described in the introduction, Haupt-Herting et al (2001) as well as Heber et al (1996) reported that 

under drought stress, the main activity of the CBB cycle can be deduced to photorespiration. However, 

none of the transgenic approaches reduces the capacity of the CBB cycle as all products of the 

bypasses, which are 3-phosphoglycerate (3-PGA) and CO2, can be metabolized in the CBB cycle. 

Together, it can be concluded that sink capacity of photorespiration is variable in nature. Thus, also 

the variation by the transgenic approaches should not be disadvantageous. The greatest energy sink of 

photorespiration is CBB cycle activity in response to photorespiration. This capacity is not reduced by 

any bypass. On the contrary, CBB cycle activity might be even increased in transgenic lines, as stated 

in the next paragraph. 

3.2 Contributions of photorespiratory CO2 release in the chloroplast 
The bypasses 1 and 3 by Kebeish et al. (2007) and Maier et al. (2012), respectively, shift 

photorespiratory CO2 release from mitochondria to chloroplasts. In bypass 1, decarboxylation is 

catalyzed by glyoxylate carboligase (GCL). In bypass 3, two decarboxylation reactions by malic 

enzyme and the pyruvate dehydrogenase complex take place in the chloroplast. The authors propose, 

that translocation of photorespiratory CO2 release shall increase its refixation probability. In this 

context, it would be interesting to know, to which extend mitochondrial photorespired CO2 in C3 

plants is refixed by chloroplasts under natural conditions. Braun and Zabaleta (2007) proposed a 

mechanism for efficient shuttling of CO2 via carbonic anhydrases and bicarbonate transporters (see 

also Zabaleta et al., 2012). Additionally, Sage and Sage (2009) proposed that the refixation of 

photorespiratory CO2 in rice is very efficient as chloroplasts cover the whole cell surface. As a 

consequence, CO2 released by mitochondria must pass through a chloroplast before diffusing out of 

the cell (Busch et al., 2013). The authors assume that this anatomy enhances refixation probability and 

only low amounts of CO2 are released. In contrast, Haupt-Herting et al (2001) could measure release 

of photorespiratory CO2 from leaves of tomato plants, although they do not provide absolute numbers. 

It would be interesting to measure photorespiratory CO2 release of transgenic plants expressing one of 

the two bypasses 1 or 3 with the methodology established by Haupt-Herting. This could verify the 

postulation that the location of release of photorespired CO2 has an impact on refixation probability. 

Thus, less CO2 would escape from leaves of the transgenic plants compared to the natural condition. 

Interestingly, shift of photorespiratory CO2 release is also suggested to be one of the first steps in the 

evolution of C4 plants (Gowik and Westhoff, 2011). In C3-C4 intermediate species, photorespiratory 

glycine decarboxylation is limited to an inner cell layer, which forces CO2 to pass through a number of 

cells before being released from the leaf (Rawsthorne et al., 1998; Engelmann et al., 2008). The 

passage through multiple cells increases refixation probability of photorespired CO2. The evolution of 

a natural pathway with the same purpose supports the postulations by Kebeish et al. (2007) and Maier 

et al. (2012) that refixation of photorespiratory CO2 can be improved. 
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In the introduction, CCMs of various photosynthesizing organisms were described. They are based on 

the evolution of Rubisco containing compartements, in which CO2 is actively concentrated. CCMs 

evolved independently in cyanobacteria, green algae and higher plants in order to reduce 

photorespiration and to enhance photosynthesis, nitrogen use efficiency and, in higher plants, water 

use efficiency. The shift of photorespiratory CO2 release to the chloroplasts by the bypasses 1 and 3 

can be viewed as basal CCMs as they increase the CO2 concentration in the vicinity of Rubisco. An 

open question is whether the bypass reactions can be as efficient as a true CCM. The naturally evolved 

CCMs are very effective. The cyanobacterial CCM enhances the CO2 concentration by three orders of 

magnitude (Price et al., 2007). The natural CCMs nearly completely suppress the oxygenase function 

of Rubisco by active uptake of carbon from the surrounding. On the contrary, the photorespiratory 

bypasses depend on an internal carbon source, photorespiratory glycolate. Thus, reduction of the 

oxygenase function of Rubisco subsequently reduces CO2 release by the bypasses due to substrate 

limitation, which in turn promotes again the oxygenase function. However, at the equilibrium, the 

carbon concentration in the vicinity of Rubisco should be increased in the transgenic plants although 

the photorespiratory bypasses cannot be as efficient as natural CCMs. 

What does a possible CCM tell us about the energy contribution of photorespiration to plant 

redox-homeostasis? To answer this question, the energy balances of photorespiration and 

photosynthesis are calculated on basis of the values given by Peterhansel et al (2010), chapter 2.12.1 

(Table 1). For the calculation, the production of NADH by GDC is set off against its consumption by 

HPR. The energy costs are calculated in each case for 3 catalyses by Rubisco: 2 oxygenations promote 

release of one molecule CO2 and the refixation by Rubisco is integrated into the calculation. Thus, two 

oxygenations count for three carboxylations. Conclusively, the oxygenase function of Rubisco and 

subsequent photorespiration consumes only about 2% more energy than the dark reaction of 

photosynthesis would consume with the same number of reactions. Moreover, the three carboxylation 

reactions, on which the calculation is based, produce one molecule GAP that can leave the CBB cycle 

without depleting regeneration of RuBP. The calculation does not include anabolic pathways that the 

released GAP will enter. Thus, there is little difference on the energy level if a carboxylation or an 

oxygenation takes place and as a consequence, a CCM has little influence on the redox state. 

Table 1: The energy balance sheet of photorespiration and the CBB cycle calculated for 2 oxygenations with 
subsequent CO2 refixation in the CBB cycle and 3 carboxylations, respectively. 

 2 oxygenations (+1 carboxylation) 3 carboxylations 

 Red. equivalents ATP Red. equivalents ATP 

Reduction of CO2 formed by PR 2 3 - - 

Refixation of NH3 1 1 - - 

Phosphorylation of glycerate - 1 - - 

Reduction of 3-PGA formed by Rubisco 2 3 6 9 

Reduction of 3-PGA formed by PR 1 1.5 - - 

 6 9.5 6 9 

Assuming 2.5 ATP/NADPH 15 9.5 6 9 

  24.5  24 
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3.3 Product contributions of the photorespiratory bypasses 
One of the main tasks of photorespiration is the recycling of 3-PGA for the CBB cycle (chapter 1.3.6). 

The bypasses 1 and 2 produce photorespiratory intermediates, which are converted to 3-PGA. 

Bypass 3 does not recycle 3-PGA. Instead, photorespiratory glycolate is completely oxidized to CO2. 

In the introduction, experiments were described, which demonstrated the necessity of recycling the 

CBB cycle intermediate by photorespiration (Blackwell et al., 1987; Blackwell et al., 1990). However, 

the carbon released by bypass 3 is not lost for the CBB cycle. Refixation by Rubisco redirects the 

carbon to the CBB cycle. Under conditions, where two carboxylation reactions compensate for each 

oxygenase function of Rubisco, the CBB cycle does not deplete (Table 2). All carbon that is released 

by decarboxylation of glycolate is refixed and can be used for formation of RuBP. This regeneration is 

on the expense of glyceraldehyde 3-phosphate use for anabolic processes. In contrast, the major 

photorespiratory pathway and the bypasses 1 and 2 already avoid depletion of the CBB cycle, even if 

the rate of oxygenation doubles the rate of carboxylation. One carboxylase reaction is sufficient to 

maintain the carbon pool in CBB cycle intermediates. The higher requirement for CO2 fixation per 

oxygenase reaction of bypass 3 should be measureable in an enhanced CO2 compensation point. 

Interestingly, this is not observed by Maier et al. (2012). The authors explain this observation by low 

flux through the bypass and to the shift of photorespiratory CO2 release into the chloroplast. The 

benefits of this shift were already described in this discussion. 

Table 2: Compensating stochiometry of carboxylation and oxygenation of different photorespiratory pathways to 
avoid carbon depletion of the CBB cycle. 

 Major pathway / bypasses 1 & 2 Bypass 3 

 
Number of 
reactions 

Carbon invested 
by RuBP-

conversion 

Carbon recycling 
by fixation in 

3-PGA 

Number of 
reactions 

Carbon invested 
by RuBP-

conversion 

Carbon recycling 
by fixation in 

3-PGA 

RuBP-oxygenation 2 10 9 1 5 3 

RuBP-carboxylation 1 5 6 2 10 12 

Sum of investment / 
regeneration 

 15 15  15 15 

 

Photorespiration has another role in the assimilation of metabolites for different purposes than 3-PGA 

regeneration. In the introduction, a possible role of photorespiration in glutathione biosynthesis was 

discussed. It has been shown that photorespiratory glycine is crucial for glutathione synthesis 

(Buwalda et al., 1990; Noctor et al., 1999). One of the roles of glutathione is implied in the scavenging 

of reactive oxygen species (ROS) in the chloroplast (Hossain and Asada, 1984). Thus, 

photorespiration might have another role in the mitigation of oxidative stress in the chloroplast by 

production of glycine for glutathione synthesis. The export of glycine from photorespiration is at the 

cost of regeneration of CBB cycle intermediates. However, none of the bypasses addresses this 

problem. Interestingly, the two established pathways both show an enhanced phenotype mainly under 

low light intensities of 100 µmol m-2 s-1. Under these conditions, few ROS are produced at the 
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photosystems and glutathione demand is low. Increase of the light intensity to 400 µmol m-2s-1 reduced 

the effect of the bypass 1. This is explained by the reduced impact of low energy consumption by this 

bypass under these conditions. In plants expressing bypass 3, photon flux of 600 µmol m–2 s–1 even 

induced a chlorotic phenotype. The authors deduce this to insufficient catalase activity but do not 

discuss glutathione concentrations. However, all bypasses have limited capacity. Photorespiration is 

estimated to have the 2nd greatest flux rate in plant metabolism (Szecowka et al., 2013). No author 

claims that their transgenic approach can fully substitute the photorespiratory C2 cycle. The limited 

capacities of the transgenic approaches imply that the impact of the bypasses decreases as 

photorespiratory flux increases. Thus, high light induces the major pathway and enables glycine und 

thus glutathione synthesis.  

It would be interesting to measure glutathione level in plants overexpressing one of the 

photorespiratory bypasses. Nevertheless, conditions that require enhanced levels of glutathione also 

induce increased flux through the major pathway in the transgenic plants. This should meet the 

requirement of photorespiratory glycine for glutathione synthesis. 

3.4 Balance of a possible plastidal glycolate mechanism via the pyruvate 
dehydrogenase complex 

Bypass 1 and 3 catalyze the decarboxylation of photorespiratory glyoxylate inside the chloroplast. 

However, this reaction has also been observed several times in chloroplasts of wildtype plants of 

different species (chapter 1.3.2). The underlying mechanism has been studied as part of this thesis 

(chapter 2.3). Enrichment of plastidal pyruvate dehydrogenase showed co-purification of glyoxylate 

decarboxylation activity. The success of the enrichment could be verified by 2D-BN/SDS-PAGE, by 

which a complex of approximately 5-7 MDa could be identified, which contains all relevant subunits 

of PDC and that could not be seen on gels with the non-enriched protein fraction. Moreover, 

glyoxylate could be shown to be a competitive inhibitor of pyruvate oxidation by PDC. The products 

of glyoxylate decarboxylation by PDC are CO2 and a hydroxymethyl-residue that is linked to the 

coenzyme of PDC, which is TPP. There is evidence that the hydroxymethyl-TPP cannot be converted 

by PDC and that the cofactor has to be exchanged. The fate of the hydroxymethyl-residue has not been 

resolved hitherto. Comparable with the already discussed bypasses 1 and 3, the naturally occurring 

decarboxylation of photorespiratory glyoxylate in the chloroplast enhances the CO2 concentration in 

the chloroplast as well as refixation probability of photorespiratory CO2. Thus, the pathway might be 

beneficial for the plant (chapter 3.2). Another positive aspect of plastidal glyoxylate decarboxylation is 

detoxification of glyoxylate, which is known to reduce Rubisco activation (Cook et al., 1985; Chastain 

and Ogren, 1989; Campbell and Ogren, 1990). However, in other terms, the proposed mechanism is 

difficult to classify in means of energy balance and relation to primary metabolism. There are too 

many uncertainties about the pathway beyond glyoxylate decarboxylation. The first uncertainty of the 

pathway is that the origin of plastidal glyoxylate could not be resolved. There are several candidate 
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genes for glycolate oxidation, although all of them are unlikely due to various concerns. The plastidal 

enzyme glyoxylate reductase (GR2) is shown to catalyze glycolate oxidation only at a poor rate 

(Simpson et al., 2008). For the second candidate, GlcDH, there is evidence that it is solitarily directed 

to the mitochondria although in silico analysis using the TargetP algorithm (Emanuelsson et al., 2000) 

also suggested a plastidal localization (Bari et al., 2004). A different glycolate oxidizing enzyme in the 

chloroplast was postulated by Goyal and Tolbert (1996) but subunits of the anticipated glycolate-

quinone oxidoreductase failed to be detected hitherto. We also failed to identify this protein with the 

gelmap tool for plastidal protein complexes in Arabidopsis thaliana (chapter 2.4) when searching for 

PGP interacting proteins or complexes with similar size and composition as mitochondrial complex II. 

Moreover, the toxicity of glyoxylate to Rubisco activation state probably prevents major production of 

this compound in the chloroplast. Thus, the most likely source for plastidal glyoxylate is minor efflux 

from the peroxisomes. The second uncertainty of the pathway is the fate of the decarboxylation 

product, hydroxymethyl-TPP. There are several possibilities for conversion of this product. The 

hydroxymethyl-residue can be released from TPP either by a nucleophilic or by an electrophilic attack, 

resulting in formate or formaldehyde, respectively, which could be further oxidized to CO2. On the 

other hand, hydroxymethyl-TPP might be the substrate for a hitherto unidentified enzyme equivalent 

to glyoxylate carboligase from bacteria. In that case, tartronic semiadelyhde would be formed, which 

is also part of the photorespiratory bypass 1 and of the photorespiratory glycerate pathway of 

cyanobacteria. Additionally, there might be a link to C1 metabolism. Hydroxymethyl-TPP is activated 

formaldehyde and analogous to TPP-activated acetaldehyde, which is known to be involved in several 

pathways (Holzer and Beaucamp, 1961). Similar reactions can be assumed for this compound. 

Consequently, with the current knowledge it is impossible to integrate the pathway into plant 

metabolism. A lower energy demand than the major pathway by recycling glycerate without ammonia 

release is possible as well as much higher energy costs due to complete oxidation of glyoxylate. The 

same reasons do not allow the classification of the pathway in terms of plant metabolism. If the 

hydroxymethyl-TPP is not recycled to a CBB cycle intermediate or CO2, decarboxylation of 

glyoxylate by PDC would result in depletion of the CBB cycle. If TPP would not be regenerated by 

release of the active formaldehyde, this pathway might be even toxic due to depletion of TPP. Further 

experiments are necessary to elucidate the reactions beyond glyoxylate decarboxylation and a possible 

role of the pathway in vivo. 

3.5 Concluding remarks 
There is growing evidence that photorespiration is not just the wasteful process it has long been 

considered. Independent data suggests that photorespiration plays an important role as electron sink 

and in the regeneration of CBB cycle intermediates. However, the evolution of pathways that strongly 

reduce the oxygenase function of Rubisco shows that this reaction is not mandatory for energy 

dissipation as long as the CBB cycle has enough substrate. In this respect, the role of the CCM-like 
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strategies of glyoxylate decarboxylation in the chloroplast is interesting. Additionally, three different 

pathways for glyoxylate metabolism evolved in cyanobacteria and metabolic flexibility is also 

observed in higher plants. This indicates that the metabolic identity of the major pathway is not 

mandatory and that alternative pathways can take over its role in the degradation of toxic intermediates 

and/or the regeneration of CBB cycle intermediates. Bypass 1 directly resembles one of the 

cyanobacterial photorespiratory pathways and a functional equivalent of complete oxidation of 

glyoxylate as realized by bypass 3 is also observed in cyanobacteria. The energy costs differ from the 

costs of the major pathway, which might even be advantageous under special conditions. Summarized, 

the recently assigned roles of photorespiration do not exclude that the pathways can be applied. 

Further experiments are required that should focus on a variety of conditions. The same can be 

assigned to glyoxylate decarboxylation by the pyruvate dehydrogenase complex. Further experiments 

shall show, if the observations can be verified in vivo and which conditions may induce this pathway. 
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4 Affix 

4.1 Abbreviations 
 

1O2   singlet oxygen 

2D   two-dimensionsal 

2-PG   2-phophoglycolate 

3-PGA   3-phosphoglycerate 

acetyl-CoA  acetyl-coenzyme A 

ADP   Adenosine diphosphate 

ATP   Adenosine triphosphate 

BN   blue-native 

BSC   bundle sheath cell 

CAT   catalase 

CBB cycle  Calvin Benson Bassham cycle 

CCM   carbon concentratin mechanism 

CO2   carbone dioxide 

complex I  NADH:ubiquinone oxidoreductase 

complex II  succinate dehydrogenase 

Cyt b6f   cytochrome b6f complex 

DHA   dehydroascorbate 

DIT   dicarboxylate transporter 

e-   electron 

EMS   Ethyl methanesulfonate 

ETC   electron transport chain 
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Fd   ferredoxin 

Fd-GOGAT  ferredoxin-dependent glutamine:oxoglutarate aminotransferase 

FNR   ferredoxin-NADP oxidoreductase 

GAP   glyceraldehyde 3-phosphate 

GDC   glycine decarboxylase 

GGT   glutamate:glyoxylate transaminase 

GLYK   glycerate kinase 

GlcDH   glycolate dehydrogenase 

GO   glycolate oxidase 

GR2   glycolate reductase 

GS   glutamine synthase 

GSH   glutathione, reduced 

GSSG   dimeric glutathione, oxidized 

h   hour(s) 

H+   proton 

H2O   water 

H2O2   hydrogen peroxide 

HCO3
-   biscarbonate 

HPR   hydroxypyruvate reductase 

kDa   kilo Dalton 

Km   Michaelis Menten constant 

LHC   light harvesting complex 

m   meter 

MDa   mega Dalton 

MDHA   monodehydroascorbate 
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MDH   malate dehydrogenase 

Mg2+   magnesium ion 

mM   millimolar 

Mn2+   manganese ion 

MS   mass spectrometry 

NAD+   nicotinamide adenine dinucleotide, oxidized 

NADH   nicotinamide adenine dinucleotide, reduced 

NADP+   nicotinamide adenine dinucleotide phosphate, oxidized 

NADPH  nicotinamide adenine dinucleotide phosphate, reduced 

NDH   NADPH dehydrogenase 

NH3   ammonia 

O2   molecular oxygen 

O2
-   superoide 

OAA   oxaloacetate 

PC   plastocyanine 

PDC   plastidal pyruvate dehydrogenase complex 

PEPC   phosphoenolpyruvate carboxylase 

PGP   phosphoglycolate phosphatase 

Pi   inorganic phosphate 

PLGG1   plastidal glycolate/glycerate transporter 

PQ   plastoquinone 

PR   photorespiration 

PSI   photosystem I 

PSII   photosystem II 

redox   reduction-oxidation 
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ROS   reactive oxygen species 

Rubisco  ribulose 1,5 bisphosphate carboxylase/oxigenase 

RuBP   ribulose 1,5 bisphosphate 

s   second 

SDS   sodium dodecylsulfate 

SGT   serine:glyoxylate transaminase 

SHMT   serine hydroxymethyl transferase 

TPP   thiamine pyrophosphate 

UCP   uncoupling protein 

µM   micromolar 

µmol   micromole 
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