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Abstract
Credit risk is the predominant source of risk for a financial institution. It is

measured by the expected loss (EL), which is the product of a claims default
probability (PD) and the expected loss rate given default (ELGD). Dating
back to the structural approach by Merton (1974), several types of models were
developed in the past decades in order to quantify both numbers. Common
feature of the modeling approaches, particularly of those used in practise, is
that ELGD is assumed to be independent from PD. According to empirical
evidence this assumption does not hold. One approach developed by Pykhtin
(2003) relates the processes underlying PD and ELGD by an unobservable
systematic risk factor as well as by unobservable idiosyncratic risk driving
both quantities simultaneously.

This thesis analysis the economic model by Pykhtin (2003) in several ways.
First of all, it is extended to an econometric model by implementing observable
co-variates. Secondly, a Maximum Likelihood estimation (MLE) procedure for
a simultaneous derivation of all model parameters is provided. Since LGDs
are only observable in the event of default, a sample selection bias would arise
from a separate estimation of the parameters driving PD and LGD. This sam-
ple selection problem is the subject of a subsequent empirical and simulation
based analysis. The empirical analysis with Moody’s bond data shows that
the processes underlying PD and LGD are highly correlated with respect to
the common idiosyncratic risk. Thus, a separate estimation is most likely to
yield biased parameter estimates. A performance comparison based on the
same data underlines that an OLS estimation yields less precise LGD fore-
casts than the MLE procedure accounting for the correlation. The simulation
study compares the impact of the sample selection bias on PD, EL, ELGD,
and economic capital forecasts for different data generation processes. It is
shown that biased parameter estimates lead to a systematic underestimation
of economic capital charges, whereas the simultaneous MLE procedure neither
underestimates nor overestimates economic capital in a systematic manner.

Keywords: Asset Value, Loss Given Default, Sample Selection Bias



Zusammenfassung
Kreditrisiken bilden die für das Tagesgeschäft von Finanzinstituten vorherr-

schende Risikoart. Gemessen wird es anhand des erwarteten Verlustes (EL),
welcher als Produkt aus Ausfallwahrscheinlichkeit (PD) und erwarteter Ver-
lustquote bei Ausfall (ELGD) berechnet wird. Ausgehend von dem Struktur-
ansatz von Merton (1974) wurden in den vergangen Jahrzehnten zahlreiche
Modelltypen entwickelt. Diesen und insbesondere den in der Praxis verwen-
deten Ansätzen ist gemein, dass ELGD und PD als voneinander unabhängig
betrachtet werden. Vor dem Hintergrund empirischer Forschungsergebnisse ist
diese Annahme nicht haltbar. Ein von Pykhtin (2003) entwickelter Ansatz
modelliert die Prozesse für PD und ELGD sowohl in Abhängigkeit eines nicht
beobachtbaren systematischen Risikofaktors, als auch von idiosynkratischen
Risiken abhängig, die beide Risikoparameter simultan beeinflussen.

Diese Dissertation analysiert das ökonomische Modell von Pykhtin (2003)
in vielerlei Hinsicht. Zunächst wird es durch die Implementierung von beob-
achtbaren Variablen zu einem ökonometrischen Modell erweitert. Anschließend
wird eine Maximum Likelihood Schätzmethode (MLE) zu der simultanen Be-
stimmung aller Modellparameter vorgestellt. Da LGDs nur bei Eintritt eines
Ausfallereignisses beobachtbar sind, würde bei einer separaten Schätzung der
Parameter, die PD und ELGD beeinflussen, ein Selektionsbias auftreten. Die-
ser Selektionsbias wird in einer empirischen sowie in einer simulationsbasierten
Studie analysiert. Die empirische Analyse anhand von Moody’s Anleihedaten
zeigt, dass die Prozesse, welche PD und LGD zu Grunde liegen, in Bezug
auf das idiosynkratische Risiko hochgradig korreliert sind. Basierend auf den
selben Daten unterstreicht ein Perfomancevergleich, dass separate Schätzun-
gen weniger präzise LGD Prognosen liefern als die MLE Methode, welche die
Korrelation mit berücksichtigt. Die Simulationsstudie vergleicht die Auswir-
kung des Selektionbiases für verschiedene Daten generierende Prozesse auf die
Prognosen für PD, EL, ELGD und ökonomisches Kapital. Es zeigt sich, dass
verzerrte Parameterschätzungen zu einer systematischen Unterschätzung des
benötigten ökonomischen Kapitals führen, während die simultane MLE Me-
thode dieses weder systematisch unter- noch überschätzt.

Schlagwörter: Firmenwert, Sample Selection Bias, Verlustquote
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Chapter 1

Credit Risk – an Introductory
Review

1.1 The Importance of Credit Risk for Financial

Institutions

Managing risks effectively is one of the most important tasks of a financial in-
stitution’s (FI) daily business. In particular, five risk categories have a severe
magnitude on the sustainable success of a FI: credit risk, operational risk, mar-
ket risk, liquidity risk, and systemic risk (compare Duffie & Singleton (2003),
p. 3).

The first pillar of the Basel II framework defines minimum capital require-
ments for the first three risk categories (compare Basel Committee on Banking
Supervision (2006), pp. 12–203). The purpose of these capital requirements
is to cover the financial institution against an unexpected loss, i.e., a negative
deviation from the expected loss associated with, e.g., granting a loan.

Liquidity risk and systemic risk, however, have not been adequately consid-
ered in the Basel II framework, as highlighted by the Global Financial Crisis
(GFC, compare Bank for International Settlements (2009), pp. 23–31). Par-
ticularly, the breakdown of the overnight interbank market due to a loss of
confidence in the aftermath of the Lehman Brothers insolvency on Septem-
ber 15, 2008 resulted in liquidity troubles for many FIs. As a consequence,
one of the Basel Committee on Banking Supervision’s (BCBS) focal points

1



1.1. THE IMPORTANCE OF CREDIT RISK FOR FINANCIAL
INSTITUTIONS

in extending the Basel II framework1 to Basel III, was the introduction of a
global liquidity standard.2 Furthermore, rules, which account for the systemic
risks, resulting from procyclical effects of the capital requirements and from
the interconnectedness of large banks, were provided.3

Nevertheless, the GFC was in first place caused by wrong assessments of
credit risk (compare Gasha et al. (2009), p. 3), i.e., of ‘the risk that the
value of a portfolio changes due to unexpected changes in the credit quality
of issuers or trading partners’ (McNeil et al. (2005), p. 327), inherent in
credit derivatives (compare Bank for International Settlements (2009), pp.
8–10). This is why the BCBS put forth rules on dealing with counterparty
credit risk and external ratings. Both of them were crucial reasons behind
the misspecified risk assessments of derivative products prior to the crisis.
In addition, a supplemental maximum leverage ratio is part of the Basel III
framework (compare Basel Committee on Banking Supervision (2011), p. 4).

Yet, not just since the turmoils on the markets for credit derivatives in the
emergence of the GFC, one could imagine the relevance of credit risk for the
weal and woe of a FI. Figure 1.1 shows this by presenting the average quarterly
amount of loans and leases outstanding by US commercial banks from 1985 to
2011. Furthermore, the figure presents the relation of loans and leases to total
assets for the same data base. On the one hand, one can see the vast and almost
constant growth of the outstanding loan amount, from about $1.5 trillion in
the first quarter of 1985 up to about $6.9 trillion in the fourth quarter of 2008.
On the other hand, the outstanding loan amount to total assets ranges from
59% to 64% during this period. Thus, credit exposures typically are not only a
rising quantity, but they also build the largest block of a financial institution’s
assets. Consequently, the credit risk taken by FIs are enormous and underline
the need for an adequate measurement and management of these risks.
1 Basel II’s single note on liquidity risk: ‘Each bank must have adequate systems for measur-

ing, monitoring and controlling liquidity risk.’ Basel Committee on Banking Supervision
(2006), p. 208.

2 Among other requirements, financial institutions now have to fulfil two minimum stan-
dards to account for liquidity risk. In order to survive a severe stress scenario for one
month, a Liquidity Coverage Ratio > 1 has to be satisfied. In order to maintain a sus-
tainable structure of assets and liabilities, a Net Stable Fundings Ratio also has to be
satisfied with a value > 1. Compare Basel Committee on Banking Supervision (2011),
pp. 8–9.

3 These rules include, e.g., a countercyclical buffer for capital requirements, and raising the
risk weights on exposures to financial institutions relative to the non-financial corporate
sector. Compare Basel Committee on Banking Supervision (2011), p. 5–8.
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1.1. THE IMPORTANCE OF CREDIT RISK FOR FINANCIAL
INSTITUTIONS

Figure 1.1: Loans and leases outstanding by US commercial banks from 1985
to 2011

Year

(a) LaL per Quarter (in $ TN)

1985 1988 1991 1994 1997 2000 2003 2006 2009 2012
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Year

(b)
LaL
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per Month (in %)

1985 1988 1991 1994 1997 2000 2003 2006 2009 2012
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60

65

This figure shows in panel (a) that the quarterly average amount of loans and leases (LaL) outstanding by

US commercial banks increased substantially from 1985 to the end of 2008, where the huge value of write-offs

due to the losses during the GFC stopped the constant growth of loan amounts. In panel (b) the figure shows

the monthly relation between loans and leases outstanding and total assets (TA) of US commercial banks

for the same period of time. Up to the same cut-off point the relation ranges between about 60% and 65%,

while afterwards it decreases sharply to a low point of about 54%. Source: http://www.federalreserve.gov
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1.2. CREDIT RISK MODELS IN ACADEMIC LITERATURE AND
PRACTISE

1.2 Credit Risk Models in Academic Literature

and Practise

1.2.1 Measuring and Modeling Credit Risk

According to the definition of credit risk from the previous section, the main
objective of measuring credit risk is the prognosis of future value reductions for
a portfolio of defaultable claims i = 1, ..., N over a given period of time. Since,
in general, these value reductions, i.e., losses, are stochastic, the challenge
is to determine their distribution or statistic measures of their distribution
(compare McNeil et al. (2005), p. 4).

Principally, this portfolio loss distribution is modeled in two stages. On
the first stage, the monetary loss for one defaultable claim i is defined as the
product of three components:

1. The exposure at default, EADi, which measures the outstanding amount
of a loan when a borrower defaults.

2. A Bernoulli-variable, Di, which is set to 1 if a claim defaults and to 0
otherwise.

3. The loss rate given default, LGDi, which determines the loss severity of
a defaulted claim.

Each component represents a stochastic variable, such that a single claim’s
loss distribution is defined as the joint distribution of the three components.
On the second stage, the monetary losses are aggregated to the portfolio level
by modeling their joint distribution (compare McNeil et al. (2005), p. 4).

In order to model the process behind each stochastic variable, it is necessary
to make assumptions on its distribution, the underlying parameters of this
distribution, and the functional relation to the respective two other variables.
Historical data may provide information regarding the distributional aspects,
the dependency between the three components and borrower-specific, economic
or other potential risk drivers.

In most applications, the exposure at default is assumed to be deterministic.
It is set to the face value of debt or according to a predefined repayment
scheme.4 In contrast, for modeling the default event in a credit risk model,
4 As an exception, Kupiec (2008) builds a credit risk model allowing for stochastic EAD,

which may be applicated to revolving lines of credit.
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1.2. CREDIT RISK MODELS IN ACADEMIC LITERATURE AND
PRACTISE

there exists a large number of suggestions, which may be categorized mainly
in two ways. First of all, the scope of application of a credit risk model defines
the data requirements for its calibration as well as the time horizon and the
interpretation of the model results. The second categorization is defined by
the formulation of the model (compare McNeil et al. (2005), p. 328). Modeling
LGDi by a stochastic or empirical process is comparably recent in this respect
with the major number of contributions provided in the last decade.

Basically, two credit risk model categories are distinguished according to the
scope of application: credit risk management models and credit pricing models
(compare McNeil et al. (2005), p. 327). Credit risk management models are
typically used to compute the loss distribution of a loan or bond portfolio and
to assess the credit risk in terms of loss severity for a predefined probability of
occurrence within a period of one year. Thus, according to McNeil et al. (2005),
one can refer to these models as static models. Risk capital, e.g., according to
the Basel II framework, may be allocated on the basis of static models. In order
to calibrate credit risk management models, historical default and loss data
are required, which are typically scarce since they are not publicly available (at
least for loans) and rare events within a FI’s portfolio. In opposition to this,
credit pricing models are calibrated to market prices of bonds, credit default
swaps or credit derivatives (compare McNeil et al. (2005), p. 401). Thus,
they rely on data, which is publicly available in a high frequency for liquid
markets. These models are typically dynamic in the sense of evaluating the
payoff scheme until maturity and not for a given time horizon. Consequently,
the timing of default, which has a major influence on the payoff scheme, is
substantially more important than in a static model (compare McNeil et al.
(2005), p. 385–386). Furthermore, it is state of the art to build credit pricing
models incorporating so-called risk-neutral measures for PDi and LGDi and
discounting the expected payoffs under these measures by the risk-free interest
rate. The models are calibrated, such that the price of the expected payoffs
under the real-world measures, discounted by a risk-adequate interest rate,
accounting for the credit risk, and the price under the risk-neutral measure
are equivalent.

According to the second broad categorization, one can distinguish between
structural models and reduced-form models. Structural models motivate the
default event economically by a stochastic asset or firm value process. When-
ever the asset value falls below a threshold, representing the firm’s liabilities,

5
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PRACTISE

default is triggered (compare Altman (2009), p. 3). Reduced-form models do
not model the default event as an economic process. They do not incorporate
an explicit dependence of the default event on the characteristics of a firm
like its value or its capital structure (compare Altman (2009), p. 7). Instead,
the default event is modeled as a sudden event with a non-zero probability of
occurrence even for an infinitesimal time interval (compare Altman (2009), p.
7). Following Jarrow & Protter (2004), the choice of the two modeling ap-
proaches mainly differ in the information available to the modeler. Structural
models assume management level information to the modeler, i.e., ‘complete
knowledge of the processes of all firm’s assets and liabilities’ (Gasha et al.
(2009), p. 10). Reduced-form models assume market-level information avail-
able to the modeler, i.e., the incomplete information level of other market
participants concerning the economic processes, driving default and recovery
(compare Jarrow & Protter (2004), p. 2).

The categorizations by scope of application and by model formulation cut
across each other. Static structural models may be referred to as threshold
models. Static reduced-form models, so-called mixture models, depend the
default risk of a claim ‘on a set of common economic factors, such as macroe-
conomic variables’ (McNeil et al. (2005), p. 352). Since the purpose of this
thesis is to investigate credit risk in a management and not in a pricing con-
text, the focus for the remainder of this chapter is on static applications of
credit risk models.

1.2.2 Modeling Credit Risk for Management Purposes

Starting point for the evolution of credit risk models is the structural model
framework by Merton (1974). In a static context of the model framework, the
face value of a zero bond with maturity of one year, Bi determines the debt
value and, hence, the default threshold exogenously. The firm value process is
assumed to be lognormally distributed. Consequently, the default probability,
i.e., the probability that the firm value at maturity, Vi, falls below the default
threshold, can be evaluated as a quantile of the standard normal distribution
(compare McNeil et al. (2005), p. 332):

PDi = P (Di = 1) = P (Vi < Bi) = Φ (−DDi) . (1.1)

6
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DDi measures the so-called distance-to-default, which is interpreted as stan-
dardized equity value of the firm (compare Gasha et al. (2009), p. 5). Φ (·)
is the cumulative distribution function of the standard normal distribution.
LGDi is calculated as the difference between liabilities and asset value.

Although being very simplistic, the Merton-model serves as benchmark and
tool for credit risk analysis in practice (compare McNeil et al. (2005), p. 331).
Several extensions, especially, for applications in the dynamic pricing context,
were provided in the aftermath of Merton’s work. These include the possi-
bility of default before maturity, i.e., within a given period (so-called first-
passage-time models, compare McNeil et al. (2005), p. 336), models with an
endogenous default threshold, which is a result of management’s obstacle to
maximize the equity value (compare Leland (2004), p. 5) and structural mod-
els with incomplete information, i.e., with a partial or non-observability of the
firm value or liabilities (compare McNeil et al. (2005), p. 336). More of inter-
est for practical risk management purposes was the development of the KMV
model by Kealhofer, McQuown and Vasicek in the 1990s (compare McNeil
et al. (2005), p. 336). This industry model accounts for various real-world
issues in calculating default probabilities, which are called expected default
frequencies in the KMV model. An iterative procedure for determining the
current asset value, which is generally not directly observable, the implemen-
tation of a more complex capital structure and the estimation of an empirical
distribution for DDi instead of assuming a normal distribution are key aspects
that differ from the assumptions of the Merton-model (compare McNeil et al.
(2005), pp. 336–337).

As pointed out in the last section, defining the default event and the loss
given default of a single claim is only the first stage of assessing the credit risk
of a portfolio. For the second step of aggregating the individual risk to port-
folio risk, several approaches extend a firm value model by an unobservable
systematic risk factor representing, e.g., the state of the economy that influ-
ences the firm value of each defaultable claim within a portfolio. Most popular
in this respect is to use the so-called Gaussian factor model, firstly applied to
credit risk models by Vasicek (1987). A simple version of this model describes
the asset value return Ri as a linear combination of an average asset value re-
turn, which can be defined as the distance-to-default, a systematic risk factor
F and an idiosyncratic risk factor Ui. Both risk factors are standard normally
as well as independent and identically distributed (i.i.d.) and weighted, such

7



1.2. CREDIT RISK MODELS IN ACADEMIC LITERATURE AND
PRACTISE

that the linear combination of both factors is standard normally distributed.
Consequently, Ri is normally distributed with mean DDi and variance of one:

Ri = DDi +
√
ρF +

√
1− ρZi. (1.2)

In this model setup, defining the average asset value return as distance-to-
default has the consequence that the default threshold becomes 0. 0 ≤ ρ ≤ 1

measures the asset correlation, i.e., the correlation between the asset returns
of two different borrowers i and j. As simplification, ρ is often assumed to be
homogeneous across all borrowers. For a given realization of F = f , the asset
value returns of different borrowers are independent (compare Schönbucher
(2001), p. 50). Furthermore, a conditional distance-to-default, CDDi, may be
defined given such a realization. As a result, the default probability becomes
a conditional default probability (compare Gordy (2003), p. 203) explicitly
depending on the common factor:

CPDi (f) = P (Di = 1|f) = P (Ri < 0|, f)

= Φ (−CDDi) = Φ

(
−
DDi +

√
ρf√

1− ρV

)
. (1.3)

In line with the Merton-framework, DDi may also be written as the inverse of
the probability that claim i will not default, independent from a realization of
the systematic risk factor:

DDi = Φ−1 (1− PDi) = −Φ−1 (PDi) , (1.4)

since PDi is the expected value of CPDi over all realizations of F (compare
Gordy (2003)):

PDi =

∫ ∞
−∞

CPDi (f)φ (f) df = Φ (−DDi) . (1.5)

φ represents the probability density function of the standard normal distribu-
tion. Capturing the requirements for a mixture model formulation, Expression
(1.3) can be utilized to formulate a Bernoulli mixture model representation of
the actual factor model (compare McNeil et al. (2005), pp. 352 and 360–361).
A simple empirical extension of the model decomposes DDi into a linear com-
bination of observable covariates (compare McNeil et al. (2005), p. 355). The
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resulting Probit-model may be estimated by Maximum-Likelihood (compare,
e.g., Gordy & Heitfield (2000)).

Examples for so-called ‘Merton-based’ factor models (compare Koyluoglu &
Hickman (1998), p. 1) comparable to the model presented above are Moody’s
KMV’s CreditPortfolioManager (compare Vasicek (2002)) or J.P. Morgan’s
CreditMetrics (compare Gupton et al. (1997)). The Basel II Internally Ratings
Based (IRB) approach for calculating the regulatory capital for credit risk
also applies this approach (compare Basel Committee on Banking Supervision
(2005)).5

‘Default Mode’ (Altman (2009), p. 9) factor models, like the KMV model
or the IRB approach, define a credit loss only in the event of default. The
so-called ‘Mark-to-Market’ models, however, like CreditMetrics and Credit-
PortfolioView, further define a credit loss for the event of a (downward) rating
migration (compare Gordy (2003), p. 210).6

Concerning LGDi, most credit risk management models assume it to be
a constant or a stochastic variable independent from Di (compare Altman
(2009), p. 10). As a result of the simplifying assumption that LGDi is in-
dependent from default, basic statistic measures may easily be expressed by
closed formulas. For example, the expected loss rate of a defaultable claim is
written as the product of default probability and the expected value of LGDi

in this case (compare Casella & Berger (2002) , p. 183).

1.2.3 The Relation between Default Probability and Loss

Given Default

Figure 1.2 presents quarterly delinquency rates of business loans, outstanding
by US commercial banks in the period from 1987 to 2011. These delinquency
rates are the fraction of delinquent loans to all loans outstanding. They are
used as a proxy for the default probability of each loan within the portfolio
5 In contrast to these portfolio models, McKinsey’s ‘econometric’ (compare Koyluoglu &

Hickman (1998), p. 1) linear factor model CreditPortfolioView transforms the distance-
to-default into a conditional default probability by a logit function (compare Crouhy
et al. (2000), p. 114), i.e., it implicitly assumes a logistic distribution for Zi. Credit Su-
isse Financial Product’s ‘actuarial’ (compare Koyluoglu & Hickman (1998), p. 1) model
CreditRisk+ uses a linear combination of gamma distributed systematic risk factors as a
multiplicative scaling factor for the unconditional default probabilities in order to calcu-
late conditional default probabilities (compare Gordy (2000), p. 122).

6 For comparing surveys of different industry factor models, see, e.g., Koyluoglu & Hickman
(1998), Crouhy et al. (2000) or Gordy (2000).
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of all outstanding loans. As a proxy for the loss given default of each loan,
Figure 1.2 further presents the relation between charge-off rates on all loans
and delinquency rates for the same data. The figure shows that, in addition
to the default probability, loss given default is time variant, too. Furthermore,
both time series tend to move together. Empirical evidence on this observa-
tion is provided by several authors, e.g., Altman et al. (2004), Altman et al.
(2005), Altman (2009), Frye (2000b), Frye (2005), Cantor & Varma (2005), Hu
& Perraudin (2006), and Moody’s (2009). Especially, the latter observation
contrasts the assumption of PDi and LGDi being independent widely used in
credit risk models.

Figure 1.2: Credit risk figures of US commercial banks from 1987 to 2011
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This figure shows that delinquency (Del.) rates and the relation between charge-off (C.-o.) rates

and delinquency rates as proxy for LGD vary over time and tend to move together. Source:

http://www.federalreserve.gov

In response to this contrast, Frye (2000a) suggested to extend the Gaus-
sian factor model for the default process by a second process for the value
of an underlying collateral. Starting with his suggestion, an emerging strand
in the academic literature tries to incorporate a dependency between default
probability and loss given default into credit risk models. The main feature

10

http://www.federalreserve.gov/datadownload/LoadChart.aspx?rel=CHGDEL&series=166c14e3d5ec76b835fd9a59950c636d&filetype=spreadsheetml&label=include&layout=seriescolumn&from=03/01/1985&to=12/31/2011


1.2. CREDIT RISK MODELS IN ACADEMIC LITERATURE AND
PRACTISE

of Frye’s approach is to relate the collateral value, which is assumed to be
normally distributed with expectation µi and standard deviation σi, on the
same systematic risk factor as the firm value (compare Frye (2000a), p. 91):

Ci = µi + σi

(√
ρCF +

√
1− ρCZC

i

)
. (1.6)

0 ≤ ρC ≤ 1 represents the correlation of the collateral value between different
claims. Like the asset correlation, it is assumed to be homogeneous across all
borrowers and time. ZC

i is a standard normally distributed idiosyncratic risk
factor, driving the collateral value. For decreasing values of the systematic risk
factor F , PDi and LGDi = max (1− Ci; 0) jointly increase. max (1− Ci; 0)

defines a lower boundary of 0 and an upper boundary of 1 for LGDi.
Two further approaches rely on the same process definition for the collateral

value, but use different transformations of this value in order to calculate
LGDi and bound it between 0 and 1. The first one is the logit transformation
(compare Düllmann & Trapp (2005), p. 7, and Schönbucher (2003), pp. 148–
150):

LGDLogit
i =

1

1 + exp (Ci)
, (1.7)

and the second one is the probit transformation (compare Andersen & Sidenius
(2005), p. 41):

LGDProbit
i = Φ (−Ci) . (1.8)

Both are frequently used in literature and practise, especially, for regressing
realized values of LGDi on observable covariates (compare, e.g., Bastos (2010)
or Bellotti & Crook (2012)).

Besides these approaches, solely differing in the distributional assumptions
of the loss given default, a suggestion by Pykhtin (2003) takes one further step
in modeling the dependence between PDi and LGDi. In addition to explaining
this dependence by a single systematic unobservable risk factor, he allows the
idiosyncratic risk factors Zi and ZC

i to be correlated as well. The economic
reasoning behind this approach is that the values of tangible assets, which
can be pledged as collateral, are positively related to maintenance expenses,
made by firms. Since firms in financial distress, i.e., firms that are most likely
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to default, often reduce these expenses, a higher default risk coincides with
a higher loss rate given default (compare Pykhtin (2003), p. 74). Pykhtin
assumes the collateral value to be lognormally distributed. Based on this
assumption, he derives closed-form expressions for expected loss and quantiles
of the loss distribution, which allow the calculation of economic capital. Thus,
the model offers a plausible economic intuition, mathematical elegance, and,
due to the less restrictive assumption of a possibly non-zero correlation between
default process and recovery process, a gain in flexibility compared with the
other models.

Nevertheless, two challenges arise for its practical implementation and cal-
ibration. Firstly, the model is a pure economic one by not including any
observable covariates. Secondly, the model requires a simultaneous estimation
of its parameters for a complete parametrization. According to Pykhtin, this
is only possible if the critical assumption of a homogeneous portfolio of bor-
rowers, with respect to default probability and expected loss given default, is
met (compare Pykhtin (2003), pp. 76–77).

1.3 Focus and Structure of this Thesis

The initial contribution, in Chapter 2 of this thesis, is to provide an exten-
sion for Pykthin’s model by observable co-variates. This extension allows to
relate PDi and LGDi on qualitative and quantitative empirical risk factors.
In order to estimate the parameters of this econometric extension of Pykthin’s
model consistently, one has to deal with the fact that empirical values of LGDi

are only observable in the event of default. Such a sample selection problem
was firstly addressed by Heckman (1979), who built an econometric model,
similar to the model in Chapter 2. The parameters of this sample selection
model may be estimated via Maximum-Likelihood estimation (MLE). Bierens
(2007) provides a derivation of the respective likelihood function. All model
parameters are determined simultaneously when applying the MLE procedure.
Generally, a separate estimation of the parameters for the default process and
the recovery process assumes an error term correlation of zero. Therefore, it
yields biased estimators for the model parameters. The model presented in
Chapter 2 extends Heckman’s empirical model by an unobservable systematic
risk factor. Thus, in addition to the sample selection bias, the simultaneous
estimation method has to account for the unobservable systematic risk. For

12



1.3. FOCUS AND STRUCTURE OF THIS THESIS

this purpose, the MLE procedure for the basic model is extended by this factor.
Besides these theoretical contributions, Chapter 2 provides empirical evidence
on the model parameters. The results of an empirical study with Moody’s
bond data on nonfinancial companies show that default and recovery process
are highly correlated, with respect to unobservable idiosyncratic risk. The
high correlation estimates underline the danger of biased parameter estima-
tors when choosing separate estimation methods for the default process and
the recovery process.

The main purpose of Chapter 3 is to measure the quantitative impact of
the selection bias on the estimation quality of LGDi. Using the same data set
as the empirical study in Chapter 2, the absolute and the relative performance
of several empirical models are compared. It is shown that accounting for a
correlation between the idiosyncratic unobservable risk factors is advantageous.
Compared to models, based on stricter assumptions (predetermined correlation
of zero or one), the predictive accuracy for LGDi estimates is higher.

The purpose of Chapter 4 is to provide a more in-depth performance com-
parison between the model, based on Pykhtin’s suggestion, and Ordinary Least
Square (OLS) models. The latter models estimate the parameters of the re-
covery process separately from the parameters of the default process. In a
simulation study, default and recovery data for a given number of borrowers
are generated. Then, parameter estimates, based on a large subsample of the
data, are derived for the competing modeling approaches. In a first step of the
analysis, these estimates are compared to their data generating counterparts.
Contrary to the real world, the latter are known quantities in a simulation
study, enabling the identification of biased estimators. It is shown that the
MLE procedure for Pykthin’s model is able to provide consistent estimators
for the model parameters, whereas the parameters derived by the OLS models
are biased. α and β errors are relatively low compared to the estimates de-
rived by the OLS models. In the second step of the analysis, the parameter
estimates are used to calculate PDi, ELi, and expected LGDi, which are sub-
sequently compared to their data generating counterparts as well. A relative
performance measure of each model’s predictive quality allows for a ranking
of it with respect to the competitors. This part of the analysis shows that
biased parameter estimators propagate to the level of the risk parameters and,
thus, yield a wrong assessment of a defaultable claim’s credit risk. In addition
to this qualitative model comparison, the impact of the estimation bias on
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economic capital charges is investigated quantitatively. This final part of the
analysis reveals that in the precedent model setup a wrong assessment of credit
risk yields a systematic underestimation of the capital charges. The capital
charges, calculated under the MLE procedure for Pykthin’s model, however,
do not predict the required economic capital with such a systematic error. The
results hold for a repetition of the simulation study under alternative assump-
tions concerning the data generating process and, in particular, the value of
the correlation parameter.

Chapter 5 gives a brief outlook on possible extensions to the research topics
analyzed in Chapters 2, 3, and 4. Chapter 6 concludes this thesis by an excur-
sus to Discounted Cash Flow (DCF) theory. A major contribution to this the-
ory, which aims at determining the risk adequate price of cash flows generated
by a firm or a security, was the development of the so-called WACC (Weighted
Average Cost of Capital) textbook formula, firstly presented in Solomon (1963)
(compare Arnold (2005), p. 900). Commenting on a proposal by Miller (2009)
for the calculation of the WACC, which differs from the standard text book
approach, it is shown that - per se - a model is not right or wrong, since a model
always is based on simplifying assumptions. Instead, it is necessary to bear
these assumptions in mind when interpreting the model outcome. Comparable
to the approach by Pykhtin (2003) for modeling credit risk, the comment on
the WACC calculation gives a further example that the flexibility to account
for mutually exclusive assumptions (in the WACC context: financing with
predetermined debt amount vs. financing with predetermined debt-to-value
ratios) may be more suitable to yield superior results over a model based on
more restrictive assumptions than vice versa.
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Chapter 2

Default and Recovery Risk
Dependencies in a Simple Credit
Risk Model

The content of this chapter was originally published as Bade, B., Rösch, D. &
Scheule, H. (2011a), ‘Default and recovery risk dependencies in a simple credit
risk model’, European Financial Management 17(1), pp. 120–144.

2.1 Introduction

The measurement of credit default and recovery risk has enjoyed an unprece-
dented popularity in literature and practice. The rapid growth of credit deriva-
tives in the past decade highlights the challenge to correctly aggregate individ-
ual risks for credit portfolios. The global financial crisis (GFC) has forcefully
shown that the implementation of risk models and regulatory requirements has
not matched this popularity (compare Jorion (2009), Gorton (2009)).

Risk of credit portfolio losses is generally described by three variables: the
default event, the exposure at default, and the loss rate in the event of default.
Modeling and estimating the parameters of the processes and dependencies of
these variables is the important challenge. The level of exposure at default
is commonly treated as the face or notional value of debt and assumed to be
known ex ante and is therefore deterministic.

Research on recovery and loss rates given default (LGDs) is fairly recent,
mainly due to scarcity of data, as recoveries can be observed only after the re-
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alization of (rare) default events. Here there are two streams of literature: the
first stream provides theoretical models for recoveries that incorporate corre-
lations between recoveries and incorporates correlations between defaults and
recoveries (see Pykhtin (2003), Jokivuolle & Peura (2003)). Pykhtin (2003)
follows the Merton (1974) model and defines two processes – one for the asset
value return of a firm that drives the default event by falling below a thresh-
old, and one for the recovery given such an event. The contribution of this
framework is the differentiation between asset value and recovery value and the
conditioning of the latter on the realization of the default event. The second
stream uses simple and independent ordinary least square regression models
for observed recoveries in order to identify risk factors that drive recoveries
or losses given default. Examples include Carey (1998), Citron et al. (2003),
Dermine & de Carvalho (2006), Acharya et al. (2007), Qi & Yang (2009) and
Grunert & Weber (2009).

These two streams in the literature on recovery constitute a gap, as links
between them do not exist. Theoretical models are not tested and analyzed
empirically – Pykhtin (2003) himself states that in his model ‘[The average loss
rate given default] is impossible to estimate’. From the opposite viewpoint,
empirical approaches do not relate to the theoretical models.

Hence, the first contribution of this paper is to provide a bridge over this
gap. A tractable version of the Pykhtin (2003) approach is developed and
used to show how the parameters may be empirically estimated. The model is
applied to a large sample of bond default and recovery histories using bond-
specific and macroeconomic variables for the explanation of both PDs and
recoveries.

Second, in accordance with the current literature (see Frye (2000a), Altman
et al. (2005)), this paper confirms that the default and recovery processes
are highly correlated and concludes that a model approach that addresses
this relationship is needed. Heckman (1979) shows that isolated models for
two variables lead to biased parameter estimates if i) the two variables are
correlated, and ii) one variable can be observed only if the first variable exceeds
a particular threshold. This matches the case where realized recoveries are
estimated, as they can be observed only in the event of default. Empirical
evidence suggests that PDs and recoveries are negatively related. We propose
a simultaneous model in line with Heckman (1979) and argue that previous
approaches in the literature that use isolated models for recoveries are subject
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to this bias.
Finally, this paper suggests an econometric extension of the Heckman (1979)

model that accounts for an unobserved systematic factor in both PDs and
recoveries, and therefore captures the exposure to macroeconomic fluctuations.
This approach allows the measurement of a system of correlations. To our best
knowledge this is the first paper that applies such a model in the context of
credit risk measurement.

The remainder of this paper is organized as follows. In Section 2.2 we de-
velop the theoretical framework, introduce the estimation procedure. Section
2.3 describes the data set and presents the empirical results. In Section 2.4,
we show the implications of applying the models to credit portfolios. Section
2.5 summarizes the paper and sets forth our conclusions.

2.2 The credit default and recovery model

2.2.1 A joint model for default and recovery

Following the seminal firm value model accredited to Merton (1974), a borrower
is assumed to default when the value of assets falls below the value of debt at
maturity.7 In the original model, the asset value is modeled as a log-normally
distributed variable that implies normally distributed log-returns on the asset
value. Let Vit be the log-return of borrower or bond issuer i’s assets in time
period t (i = 1, ..., Nt; t = 1, ..., T ). We express this return by the following
factor model

Vit = β0 + β′xVit +
√
ρV Ft +

√
1− ρVZV

it (2.1)

where xVit =
(
xVit1, . . . , x

V
itK

)′ are K observable and deterministic firm-specific,
industry-specific, or macroeconomic risk factors that influence the asset value
return. β = (β1, . . . , βK)′ are the sensitivities with respect to these factors and
β0 is a constant. Ft is a systematic random variable driving all asset returns
in time period t jointly and ZV

it is a random idiosyncratic variable driving
the return of borrower i’s assets in time period t.

√
ρV and

√
1− ρV are

weighting parameters for the risk factors. All random variables are assumed
7 Other modern credit risk applications that are based on a similar framework include Gordy

(2000), the Basel II Internal Ratings Based Approach for the calculation of regulatory
capital charges, as well as the CreditMetrics framework by Gupton et al. (1997).
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to be independent from each other and across time.
A borrower defaults when the asset return crosses a threshold. Generally

speaking, the market value of assets is not observable for the majority of
banks’ loan portfolios. The asset return in Equation (2.1) is treated as an
unobserved continuous variable linking an observable default event with the
observable covariates xVit . We implement two assumptions common in the
discipline. Firstly, and consistent with Merton (1974), we assume that Ft and
ZV
it are normally distributed and, implicitly, that the unobservable asset return

Vit is also normally distributed with variance equal to unity as Ft and ZV
it are

standard normally distributed. Secondly, the default threshold is set to zero,
i.e., it is absorbed by the parameter β0.

The correlation between the latent return of borrowers i and j in time period
t (i 6= j) is given by ρV , which is known as ‘asset (return) correlation’.

We define the default event as the Bernoulli random variable

Dit =

1 borrower i defaults in t,

0 otherwise.
(2.2)

The PD is then given as the probability that Vit falls below zero (given the
observable covariates), and under the normality assumption we obtain

PDit = P (Dit = 1|xVit ) = P (Vit < 0|xVit )

= 1− Φ
(
β0 + β′xVit

)
(2.3)

where Φ(.) denotes the standard normal cumulative distribution function. In
line with the IRB Approach in Basel II, the conditional probability of default
(CPD) on the realization of a systematic risk factor Ft = ft is given by

CPDit (ft) = P (Dit = 1|xVit , ft) = P
(
Vit < 0|xVit , ft

)
= 1− Φ

(
β0 + β′xVit +

√
ρV ft√

1− ρV

)
. (2.4)

The expectation of the CPD gives the unconditional PD in Equation (2.3)
(compare Gordy (2003)).

For modeling the recovery process, we follow Pykhtin (2003) and apply a
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linear factor model

Yit = γ0 + γ′xYit +
√
ρY Ft + σUit (2.5)

where xYit =
(
xYit1, . . . , x

Y
itL

)′ are L deterministic observable risk factors driving
the recovery, γ = (γ1, . . . , γL)′ represent the loadings of these factors, and γ0

is a constant. The unobservable random risk factor is weighted by
√
ρY . Uit

is a standard normally distributed error term and σ is a constant parameter.
Following Pykhtin (2003), we assume that the recovery rate is given as

RRit = exp (Yit) (2.6)

which implies a log-normal distribution and avoids negative recoveries while
permitting values greater than 1. Please note that we derive recovery rates
from bond prices. This implies that theoretical values are between zero and
infinity. A recovery greater than 1 may result if the bond price after default
exceeds the notional value. Cumulative density functions such as the probit or
logistic function may be taken in other applications where the range of values
is limited to between zero and 1.

Economically, Yit is interpretable as the (potential) return on the exposure
at default (EAD) of the debt holder:

Yit = ln (RRit) = ln

(
LVit
EADit

)
= ln (LVit)− ln (EADit) , (2.7)

where LVit is the liquidation value of firm assets. Empirical calibration to
real data, as in the present paper, ensures realistic values of the recoveries as
observed in practice.

The correlation between the firm value process and the recovery process (and
therefore between default and recovery) is introduced by the joint exposure to
the systematic random factor Ft in Equation (2.1) and (2.5). We now allow for
additional correlation via firm-specific random errors. This is done by splitting
Uit of Equation (2.5) into

Uit = ρUZV
it +

√
1− ρU 2ZY

it (2.8)

where ZY
it is a standard normally distributed random variable that is indepen-
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dent from all other random variables and results in

Yit = γ0 + γ′xYit −
√
ρY Ft + σρUZV

it + σ

√
1− ρU 2ZY

it . (2.9)

Since ZV
it is now in Equations (2.1) and (2.9), the parameter ρU is the cor-

relation between both firm-specific errors. Furthermore, ρU is the conditional
correlation between the asset return and the log-recovery process given the
observable covariates and given the systematic random factor Ft = ft.

2.2.2 Impacts of ρU on the empirical distribution of the

log-recoveries

Model (2.5) looks like an ordinary linear regression model if the systematic
random factor is dropped or its loading is assumed to be zero and the log-
recoveries are calculated from the observed recoveries. However, measurement
of the correlation between the dependent variable in Equation (2.5) and (2.1)
is complicated by the fact that the recovery can be observed only in the event
of an obligor’s default. The isolated estimation of the recovery process yields
biased estimates for γ0 and γ if Equations (2.5) and (2.1) are correlated. This
suggests application of a model where the default and the recovery processes
should be estimated jointly in order to avoid biased parameter estimates, unless
their correlation is zero. Such isolated empirical models are generally applied
both in literature and in practice.

In order to show the effect of correlated error terms between the default
and recovery processes on the distribution of the recovery rates conditional
on default, i.e., the observable distribution, we simulate portfolio defaults and
recoveries for 100,000 homogeneous obligors with ρU = 0 and with ρU = −0.99.
β0 is set to −1.6449, corresponding to a PD of 5%, γ0 is set to four and σ to
2.5. All other parameters are set to zero for transparency. The parameters
approximate the empirical values for a B rating and the results are robust for
other rating classes.

The conditional distributions of the observed log-recoveries are shown in
Figure 2.1. For uncorrelated errors (ρU = 0) the distribution matches the
normal distribution, since default and recovery are independent from each
other. However, for almost perfectly negatively correlated error terms (ρU =

−0.99), the conditional distribution shifts to the left and resembles a truncated
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normal distribution. Thus, the more negative the correlation, the more the
default threshold translates into a threshold for the observed log-recoveries.

As a consequence, a separate estimation of both processes, ignoring the
distributional effects of the correlation parameter, results in a bias of the
estimates, which becomes larger the more default and recovery process are
correlated.

ln (RR)

Rel. Frequency (in %)

−7.5 −6.0 −4.5 −3.0 −1.5 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0
0
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Figure 2.1: Conditional distributions of log-recoveries for a sample portfolio of
100,000 obligors
This figure presents conditional distributions of log-recoveries for a sample portfolio of 100,000 obligors

and different ρU (0.99 and zero). The underlying parameters of the simulations are β0 = −1.6449 (which

corresponds to a PD of 5%), γ0 = 4 and σ = 2.5.

2.2.3 Further model properties

The correlation between two log-recoveries can easily be calculated from Equa-
tion (2.9) as

ρln(RR) =
ρY

ρY + σ2
, (2.10)
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and the correlation between the recovery rates can be derived as

ρRR =
exp

(
ρY
)
− 1

exp (ρY + σ2)− 1
, (2.11)

compare Kotz (1972).
The correlation ρV Y between the asset return and log-recovery is computed

as follows:

ρV Y =

√
ρV ρY + σρU

√
1− ρV√

ρY + σ2
. (2.12)

For the correlation between the asset value return and the recovery rate

ρV,RR =

√
ρV ρY + σρU

√
1− ρV√

exp (ρY + σ2)− 1
(2.13)

applies.
The introduced model setup allows, in accordance with Pykhtin (2003), the

derivation of a closed-form expression for the contribution of a borrower to the
expected portfolio loss. The unconditional expected loss (ELit) of a borrower
is calculated as:

ELit =E
(
Lit|xVit , xYit

)
= Φ2

[
−
(
β0 + β′xVit

)
,−γ0 + γ′xYit

σ
, ρV Y

]
− exp

(
γ0 + γ′xYit +

σ2

2

)
·Φ2

[
−
(
β0 + β′xVit

)
− σρV Y ,−γ0 + γ′xYit

σ
− σ, ρV Y

]
. (2.14)

Φ2 [·, ·, ·] represents the distribution function of the bivariate normal distribu-
tion function.

In the case of infinitely granular portfolios with fully diversified idiosyncratic
risks (compare Gordy (2003)), the expected loss of borrower i conditional on
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the systematic risk factor (CELit) is given by:

CELit

=E
(
Lit|xVit , xYit , ft

)
= Φ2

[
−β0 + β′xVit +

√
ρV ft√

1− ρV
,−γ0 + γ′xYit +

√
ρY ft

σ
, ρU

]

− exp

(
γ0 + γ′xYit +

√
ρY ft +

σ2

2

)
·Φ2

[
−β0 + β′xVit +

√
ρV ft√

1− ρV
− σρU ,−γ0 + γ′xYit +

√
ρY ft

σ
− σ, ρU

]
. (2.15)

Equation (2.15) allows us to compute the portfolio loss distribution of an in-
finitely granular portfolio. Further, the value at risk (VaR) of such a portfolio
can be calculated by setting Ft to the 99.9th percentile of the standard normal
distribution (see Section 2.4.1).

Since ELit is measured relative to the exposure, the expected recovery rate
ERit is calculated as 1 − ELit. The expected recovery rate given default
ERGDit results from taking 1 − ELit

PDit
. While the expected loss measures loss

independent of default status, ERGD determines the recovery rate conditional
on the appearance of default. Thus, observed recovery rates of single bonds
should be compared to recoveries given default, since they are observable only
in the instance of default.

However, observed portfolio loss rates should preferably be compared to
expected losses since portfolios generally consist of both defaulted and solvent
obligors and are thus created independently of default. The relation between
PD, EL, and ERGD holds for the conditional values, i.e., CERGD = 1− CEL

CPD
.

Both, expected and conditional expected loss rates may be used for calculating
regulatory capital (e.g., Basel II) in settings where the recovery is deterministic.
Thus, the presented model provides a valuable extension to Basel II, as recovery
rates may now be modeled as random variables.

2.2.4 Joint estimation of the model parameters via ex-

pected maximum likelihood

The estimation procedure for the Heckman model, which accounts for the
unobservability of recovery rates for non-defaulted obligors, as well as a possible
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correlation between both processes, is suggested by Bierens (2007). In our case,
the introduction of an unobserved systematic random factor provides a further
extension to this model. This leads to a Heckman model with a time-specific
random effect as suggested by Gordy (2000) and Gordy (2003) for the default
process and as implemented in the Basel II framework. The model has never
been applied in the context of credit risk despite its intuitiveness.

Following Bierens (2007), we construct the likelihood function by first con-
ditioning on a given realization ft of the time-specific random effect. In the
instance of a non-default (Dit = 0) the conditional likelihood is

P
(
Dit = 0, DitYit = 0|xVit , xYit , ft

)
=P

(
Dit = 0|xVit , xYit , ft

)
= 1− CPDit.

In the instance of default (Dit = 1) the conditional likelihood is given by:

d

dy
P
(
Dit = 1, DitYit ≤ yit|xVit , xYit , ft

)
=

d

dy
P
(
Yit ≤ yit|Dit = 1, xVit , x

Y
it , ft

)
· P
(
Dit = 1|xVit , xYit , ft

)
=h

(
yit|xYit , xVit , ft, β0, β, γ0, γ, ρ

U , ρV , ρY , σ
)
· CPDit.

h (·) is the conditional density of the observed log-recoveries:

h
(
yit|xYit , xVit , ft, β0, β, γ0, γ, ρ

U , ρV , ρY , σ
)

=
φ
((
yit −

(
γ0 + γ′xYit +

√
ρY ft

))
/σ
)

(
σ/
√

1− ρV
)

Φ
(
−
(
β0 + β′xVit +

√
ρV ft

)
/
√

1− ρV
)

·Φ

− ρU

σ

(
yit −

(
γ0 + γ′xYit +

√
ρY ft

))
+
(
β0 + β′xVit +

√
ρV ft

)
/
√

1− ρV√
1− ρU 2


where φ (·) specifies the density function of the standard normal distribution.

Then, the log-likelihood function is constructed in a four step process:

• Step 1: Calculation of the conditional likelihood function for a given
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period:

Lt (ft) =
nt∏
i=1

{[
Φ
((
β0 + β′xVit +

√
ρV ft

)
/
√

1− ρV
)]1−dit

·
[
Φ
(
−
(
β0 + β′xVit +

√
ρV ft

)
/
√

1− ρV
)]dit

(2.16)

·
[
h
(
yit|xYit , xVit , ft, β0, β, γ0, γ, ρ

U , ρV , ρY , σ
)]dit}

.

• Step 2: Calculation of the expectation of Lt since the realizations of Ft
are not observable:

E [Lt (ft)] =

∫ ∞
−∞
Lt (ft)φ (ft) dft. (2.17)

• Step 3: Calculation of the log-likelihood for a time series of T periods:

` = ln

(
T∏
t=1

E [Lt (ft)]

)
=

T∑
t=1

lnE [Lt (ft)] . (2.18)

• Step 4: Numerical optimization of the log-likelihood function in Equation
(2.18).

The parameter estimates are consistent, asymptotically existent, and normally
distributed (compare Davidson & MacKinnon (1993)).

2.3 Empirical Analysis

2.3.1 Default and recovery data

The data sample underlying the empirical analysis is provided by Moody’s
credit rating agency. The data set contains the annual ratings of regular US
bond issues, as well as default dates and recovery rates given default. Moody’s
records a default event if: i) interest or principal payments are missed or
delayed; ii) Chapter 11 or Chapter 7 bankruptcy is filed; or iii) a distressed
exchange, such as a reduction in a financial obligation, occurs. The recovery
rate is equal to the price of a defaulted bond measured 30 days after a default
event in relation to the face value of the bond.

Table 2.1 summarizes important descriptive statistics for the data set, which
consists of 187, 638 observations for regular US bond issues of non-financial
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institutions from 1982 to 2009. Coincident with a change in Moody’s rating
methodology in 1982 and the role of ratings in the subsequent analysis, earlier
observations are excluded from this empirical study.

During the observation period a total of 1, 659 defaults occurred, which
yields a default rate (DR) of 0.884%. The mean recovery rate for all defaulted
bonds is 37.541%; the median recovery rate is 32%.

Table 2.1 shows the descriptive statistics per rating category: all bond issues
with a rating higher than Ba are aggregated to an investment grade (IG)
rating; and all bond issues with a rating lower than B are aggregated to rating
C. This categorization addresses the limited number of default events in the
subcategories. The table shows that − as one may expect − the default rate
increases from rating IG to C. The mean recovery rate decreases from rating
IG to C, except for grades Ba (48.607%) and IG (46.823%), which may be
due to the small number of defaults, and hence the small number of recovery
events in both grades.

Table 2.1: Number of observations, default rate, and mean recovery
This table reports descriptive statistics on defaults and recoveries of non-financial bonds from 1982 to 2009.
The data set provided by Moody’s is split up into four rating categories: investment grade (IG), containing
all observations with a Moody’s rating higher than Ba, Ba, B and C, containing all observations with a
Moody’s rating worse than B. Nobs. is the number of observations. Ndef. is the number of defaults. DR
(default rate) is the ratio of the number of defaults to the number of observations in each rating grade.
RRGD∅ is the mean recovery rate of the defaulted bonds in each rating grade. Recovery rate is the ratio of
the price of defaulted debt obligations after 30 days of the occurrence of a default event to par value.
Rating Nobs. % of all obs. Ndef. % of all

def. obs.
DR (in %) RRGD∅

(in %)
IG 146,582 78.120 51 3.074 0.035 46.823
Ba 15,262 8.134 87 5.244 0.570 48.607
B 20,132 10.729 530 31.947 2.633 39.890
C 5,662 3.018 991 59.735 17.503 34.836
Total 187,638 100.000 1,659 100.000 0.884 37.541

Figure 2.2 shows that default and recovery rates vary over time. The default
rate varies from 0.085% in 2007 to 2.157% in 2002 and the median recovery
varies from 16% in 2001 to 75% in 2007. Due to the GFC we observe increasing
default rates and declining recoveries in 2008 and 2009.

The figure also shows the negative relationship between default and recov-
ery rates and identifies the years 1990 and 1991 (First Gulf War), 2001 and
2002 (period following the US terrorist attacks and general downturn in the
US technology industry) and 2008 and 2009 (GFC) as periods of economic
downturn.
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Figure 2.2: Default rates and recovery rates of non-financial bond issues from
1982 to 2009
This figure shows that default and recovery rates vary over time and are negatively related. Default rate is

the ratio of defaulted bond issues to total bond issues per year. Recovery rate is the ratio of the price of

defaulted debt obligations after 30 days of the occurrence of a default event to the par value.

The distribution of the log-recoveries of the defaulted non-financial bond
issues in the Moody’s data set is shown in Figure 2.3 and resembles the con-
ditional distribution of log-recoveries for ρU = −0.99 in Figure 2.1. Thus,
graphical analysis of the data set indicates that default and recovery processes
are highly correlated. This strongly supports our suggested estimation proce-
dure using the Heckman approach.

2.3.2 Summary of models

The univariate analysis above shows that the rating grade is an important
characteristic to distinguish between degrees of idiosyncratic credit risk. Thus
we include three dummy variables for rating grades (xBa, xB, xC) in our multi-
variate analysis. An IG rating is implied if all three dummies take the value of
zero; another rating grade is implied if the respective dummy takes the value
of 1.

Furthermore, we include an ordinal variable measuring a shift (change) in
the rating class in the year before the default status is observed (x∆Rat.). This
variable relates to the rating classes Aaa to C. For example, a downgrade from
Aaa to Baa would be measured as a rating shift of +3, and an upgrade from
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Figure 2.3: Distribution of the log-recoveries from 1982 to 2009
This figure presents a histogram of log-recoveries of defaulted non-financial bond issues in the Moody’s

data set from 1982 to 2009. The data suggest a high positive correlation between the default and recovery

processes (compare Figure 2.2).

Baa to A would be measured as a rating shift of −1. This variable may be
interpreted as the momentum of credit quality changes.

The percentage change in gross private domestic investment (GPDI) lagged
by 1 year (x∆GPDI) is included in the subsequent analysis to account for the
impact of the macro-economy.

Based on these factors we analyze four different empirical models with the
following explanatory variables:

• Model (1): ratings;

• Model (2): ratings and rating shift;

• Model (3): ratings and lagged GPDI change; and

• Model (4): ratings, rating shift and lagged GPDI change.

2.3.3 Results

Tables 2.2 and 2.3 show the estimated parameters for the models where ρV =

ρY = 0 is assumed. The rating grades are significant and have similar exposures
for the default process as well as for the recovery process in all models. This
confirms that a lower rating results in a lower return on firm value, and thus
a higher PD. The same plausible relation applies to the log-recoveries.
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A shift in rating grade in the year prior to default results in a significant
impact on the asset value returns and the log-recoveries. The more severe a
downgrade, the more likely a default event becomes and the lower the recovery
rate (compare Models (2) and (4)). Note that for Models (2) and (4), all
observations with a rating history of at least two years had to be included to
account for the shift in rating in the preceding year. Thus, the number of
observations is reduced to 124,648 for estimating these particular models. In
other words, the first year of observation of a rating is dropped.

The lagged percentage change in GPDI is highly significant in both Model
(3) and Model (4). As one would expect, the stronger the economic investment
growth in the year preceding the observation of the default status, the higher
the asset and recovery value returns, and the lower the default and recovery
risk. In other words, if a downgrade (upgrade) occurred in the past, a default
event is more (less) likely and the magnitude of a recovery given such an event
is lower (higher).

The standard deviation of the log-recoveries is reduced most by accounting
for rating shifts. This underlines the high explanatory power of rating shifts
with respect to changes in credit risk.

As indicated by the graphical analysis in Section 2.3.1, asset value return
and log-recovery are nearly perfectly correlated. From an economic perspec-
tive this is not surprising, since the liquidation value of bond issuer assets is
generally taken as part of the asset value (compare Jokivuolle & Peura (2003)).
Thus, the recovery process is at least partially driven by the same idiosyncratic
component as the default process.

Table 2.3 sets forth the various correlation parameters. In particular, the
correlation between asset return and recovery rate is substantially lower, with
a range between 6.4% and 9.1%.

Tables 2.4 and 2.5 present estimation results for those models that include
the systematic risk factor. The parameters assigned to the rating grades re-
main largely unchanged compared to the models in Table 2.2; in comparison
to these models, the rating shift parameters and the change in GPDI param-
eters are smaller. Thus, ignoring unobservable systematic risk would yield
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Table 2.2: Parameter estimates for the Heckman models without systematic
risk
This table reports the parameter estimates for the Moody’s data set using the Heckman approach for the
empirical model

Vit = β0 + β′xVit + ZV
it ,

Yit = γ0 + γ′xYit + σρUZV
it + σ

√
1− ρU 2ZY

it .

The rating grade at the beginning of (all four models) and the rating shift of the year prior to the year of the
observed default status (∆Rat., Model (2) and (4)) as well as the change in U.S. GPDI (in %) lagged by one
year (∆GPDI, Model (3) and (4)) serve as explanatory variables. For Models (2) and (4), all observations
with a rating history of at least two years (124,648 observations) are used. Standard deviations are reported
in parentheses. All parameters are significant at the 1%-level.
Parameter Model (1) Model (2) Model (3) Model (4)
β0 3.380 3.342 3.359 3.320

(0.038) (0.042) (0.038) (0.043)
βBa -0.849 -0.774 -0.881 -0.794

(0.053) (0.063) (0.054) (0.063)
βB -1.444 -1.446 -1.503 -1.482

(0.042) (0.048) (0.043) (0.049)
βC -2.438 -2.344 -2.459 -2.361

(0.042) (0.049) (0.043) (0.049)
β∆Rat. -0.186 -0.168

(0.017) (0.017)
β∆GPDI 0.021 0.018

(0.002) (0.002)
γ0 9.203 8.642 9.055 8.562

(0.273) (0.275) (0.270) (0.274)
γBa -2.361 -2.042 -2.427 -2.090

(0.168) (0.182) (0.169) (0.183)
γB -4.048 -3.859 -4.174 -3.950

(0.157) (0.165) (0.160) (0.167)
γC -6.710 -6.112 -6.704 -6.153

(0.204) (0.207) (0.204) (0.208)
γ∆Rat. -0.491 -0.437

(0.046) (0.047)
γ∆GPDI 0.059 0.049

(0.005) (0.006)
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Table 2.3: Correlation and standard deviation estimates for the Heckman mod-
els without systematic risk
This table reports the estimated correlations and standard deviations of Models (1) to (4) for the Moody’s
data set using the Heckman approach for the empirical model

Vit = β0 + β′xVit + ZV
it ,

Yit = γ0 + γ′xYit + σρUZV
it + σ

√
1− ρU 2ZY

it .

All parameters are significant at the 1%-level. The correlation between the error terms of the default
and recovery processes (ρU ) results from the same maximum likelihood estimation as in Table 2.2. The
correlation between asset return and recovery rate (ρV,RR) is calculated according to

ρV,RR =
σρU√

exp (σ2)− 1
.

Parameter Model (1) Model (2) Model (3) Model (4)
σ 2.744 2.598 2.715 2.588

(0.070) (0.072) (0.069) (0.072)
ρU 99.843% 99.870% 99.841% 99.878%

(0.000) (0.000) (0.001) (0.000)
ρV,RR 6.355% 8.876% 6.795% 9.094%

an overestimation of the influence of two explanatory variables that capture
observable systematic (GPDI) and idiosyncratic (rating shift) risk.

The asset correlation ρV varies between 3.1% and 3.5%, in line with other
empirical studies.8 The estimate declines when the model is extended by the
change in GPDI (compare Model (1) with (3) and Model (2) with (4)). The
same applies, with a slightly higher magnitude, for correlation of the log-
recoveries, varying between 3.995% and 4.257%. The high sensitivities of the
log-recoveries to the systematic risk factor in all four models (

√
ρY ≈ 0.5 in

each case) underline that liquidation values, i.e., the values of a firm’s securi-
ties, are highly volatile with respect to business cycle fluctuations, as pointed
out theoretically, due to fire sales, by Shleifer & Vishny (1992) and empirically
by Acharya et al. (2007). Almost no correlations can be observed between
recoveries. While the correlation between asset value return and log-recovery
remains nearly unchanged compared to models without a systematic risk fac-
tor, the correlation between asset value return and recovery rate increases from
9.4% to 11.8%.

8 For an overview of empirical studies on asset correlations, see Chernih et al. (2006).
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Table 2.4: Parameter estimates for the Heckman models with systematic risk
This table reports the parameter estimates for the Moody’s data set using the Heckman approach for the
empirical model

Vit = β0 + β′xVit +
√
ρV Ft +

√
1− ρV ZV

it ,

Yit = γ0 + γ′xYit +
√
ρY Ft + σρUZV

it + σ

√
1− ρU 2ZY

it .

The rating grade at the beginning of (all four models) and the rating shift at the year prior to the year of the
observed default status (∆Rat., Model (2) and (4)), as well as the change in U.S. GPDI (in %) lagged by one
year (∆GPDI, Model (3) and (4)) serve as explanatory variables. For Models (2) and (4), all observations
with a rating history of at least two years (124,648 observations) are used. Standard deviations are reported
in parentheses. All parameters are significant at the 1%-level.
Parameter Model (1) Model (2) Model (3) Model (4)
β0 3.451 3.394 3.407 3.349

(0.053) (0.058) (0.055) (0.060)
βBa -0.854 -0.785 -0.858 -0.788

(0.054) (0.064) (0.054) (0.064)
βB -1.495 -1.492 -1.503 -1.497

(0.044) (0.049) (0.044) (0.050)
βC -2.501 -2.427 -2.504 -2.430

(0.044) (0.051) (0.044) (0.051)
β∆Rat. -0.158 -0.157

(0.018) (0.018)
β∆GPDI 0.014 0.014

(0.005) (0.005)
γ0 8.863 8.407 8.690 8.256

(0.297) (0.291) (0.301) (0.292)
γBa -2.263 -1.985 -2.254 -1.985

(0.163) (0.176) (0.163) (0.176)
γB -3.987 -3.824 -3.969 -3.823

(0.156) (0.161) (0.158) (0.162)
γC -6.522 -6.107 -6.482 -6.092

(0.206) (0.205) (0.208) (0.206)
γ∆Rat. -0.376 -0.373

(0.045) (0.045)
γ∆GPDI 0.034 0.036

(0.013) (0.013)
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Table 2.5: Correlation estimates for the Heckman models with systematic risk
This table reports the estimated correlations of Models (1) to (4) for the Moody’s data set using the Heckman
approach for the empirical model

Vit = β0 + β′xVit +
√
ρV Ft +

√
1− ρV ZV

it ,

Yit = γ0 + γ′xYit +
√
ρY Ft + σρUZV

it + σ

√
1− ρU 2ZY

it .

All parameters are significant at the 1%-level. The correlation between the error terms of the default
and recovery process (ρU ), the asset correlation (ρV ), and ρY , result from the same Maximum-Likelihood
estimation as in Table 2.4. The log-recovery correlation (ρln(RR)) is calculated according to

ρln(RR) =
ρY

ρY + σ2
,

and the correlation between the recovery rates (ρRR) is calculated according to

ρRR =
exp

(
ρY
)
− 1

exp (ρY + σ2)− 1
.

The correlation between the default process and the recovery process (ρV Y ) is calculated according to

ρV Y =

√
ρV ρY + σρU

√
1− ρV√

ρY + σ2
,

and the correlation between asset return and recovery rate (ρV,RR) is calculated according to

ρV,RR =

√
ρV ρY + σρU

√
1− ρV√

exp (ρY + σ2)− 1
.

Parameter Model (1) Model (2) Model (3) Model (4)
σ 2.518 2.422 2.507 2.417

(0.070) (0.070) (0.070) (0.070)
ρU 99.810% 99.875% 99.806% 99.870%

(0.001) (0.001) (0.001) (0.001)
ρV 3.411% 3.496% 3.129% 3.250%

(0.012) (0.014) (0.012) (0.014)
ρY 27.186% 26.079% 26.158% 24.527%

(0.035) (0.040) (0.037) (0.040)
ρln(RR) 4.112% 4.257% 3.995% 4.029%
ρRR 0.042% 0.065% 0.043% 0.063%
ρV Y 99.800% 99.865% 99.789% 99.853%
ρV,RR 9.418% 11.568% 9.677% 11.756%
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2.4 Applications of the results to credit portfo-

lios

2.4.1 Sensitivity analysis of single obligation credit risk

In this section, we investigate the quantitative impact of the estimation results
on the credit risk of a single bond. We provide a sensitivity analysis for default
probability, as calculated in Equation (2.3), for expected loss, as calculated in
Equation (2.14), and for expected recovery given default, calculated as 1− EL

PD
.

Furthermore, we calculate values for the conditional expected loss by Equa-
tion (2.15), by setting the realization of the systematic risk factor to 3.09,
which corresponds to the 99.9th percentile of the standard normal distribu-
tion. This is consistent with the current Basel II assumption in relation to
the Internal Ratings Based Approach (compare Basel Committee on Banking
Supervision (2006)). The resulting conditional expected loss is referred to as
VaR, i.e., the loss that will not be exceeded with a probability of 99.9% within
one year. For these calculations, the parameters of Model (4) in Tables 2.4
and 2.5 are used. The rating shift is varied from an upgrade of two rating
categories (−2) to a downgrade of two rating categories (+2). The change in
GPDI varies from −20% to 20%.

Table 2.6 shows the sensitivity analysis for the default probability. In the
base-case scenario (x∆Rat. = x∆GPDI = 0), the PD of a bond issue with in-
vestment grade rating is 0.041%. The PD changes disproportionately for each
10% change of GPDI for each rating grade and shift in the rating grade. For
example, a 10% decrease of GPDI yields a 0.025 percentage point higher PD
of 0.066%, and a 20% decrease yields a 0.064 percentage point higher PD of
0.105% compared to the base-case PD of an IG-rated bond issue.

As indicated by the higher parameter values estimated for Model (4), the
impact of an upgrade or downgrade is more severe. For example, an upgrade
by one rating grade approximately halves the PD from 0.041% to 0.023%.
The higher the value of x∆Rat., the higher the change in PD when the GPDI
changes. With respect to the other rating categories, the PD grows substan-
tially compared to the PD in the IG category. For a Ba-rated bond issue,
the base case PD is 0.522%, and thus about 13 times higher than an IG-rated
bond issue. A bond issue rated B has a PD of 3.203% in the base case (80
times as high), and a C rated bond issue has a PD of 17.905% (about 442
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times as high). The lower the rating and thus the higher the level of the PD,
the stronger the effect of an upgrade or downgrade and the effect of the GPDI
variation. For example, a downgrade by two rating grades would raise the PD
of a C-rated bond issue by nearly 10 percentage points.

Table 2.6: PD sensitivity analysis for each rating grade
This table reports the results of a sensitivity analysis of the Probability of Default (PD) calculated by

PDit = 1− Φ
(
β0 + β′xVit

)
for each rating grade using the parameter estimates of Model (4). x∆Rat. varies from −2 to 2 and x∆GPDI

from −20% to 20%.

Rating IG
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 0.035% 0.021% 0.013% 0.007% 0.004%
-1 0.061% 0.038% 0.023% 0.014% 0.008%
0 0.105% 0.066% 0.041% 0.025% 0.015%
1 0.175% 0.112% 0.070% 0.044% 0.026%
2 0.287% 0.187% 0.120% 0.075% 0.047%

Rating Ba
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 0.465% 0.310% 0.203% 0.130% 0.082%
-1 0.726% 0.493% 0.329% 0.216% 0.139%
0 1.108% 0.767% 0.522% 0.349% 0.230%
1 1.654% 1.167% 0.810% 0.553% 0.371%
2 2.416% 1.738% 1.229% 0.855% 0.585%

Rating B
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 2.929% 2.128% 1.521% 1.068% 0.738%
-1 4.139% 3.064% 2.231% 1.598% 1.126%
0 5.725% 4.317% 3.203% 2.338% 1.679%
1 7.754% 5.956% 4.502% 3.348% 2.450%
2 10.288% 8.046% 6.194% 4.693% 3.499%

Rating C
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 16.888% 13.669% 10.897% 8.555% 6.611%
-1 21.125% 17.392% 14.108% 11.272% 8.868%
0 25.927% 21.702% 17.905% 14.555% 11.655%
1 31.239% 26.572% 22.288% 18.427% 15.012%
2 36.972% 31.943% 27.226% 22.883% 18.959%

The sensitivity analysis of the expected loss presented in Table 2.7 shows
the same qualitative results as the PD analysis. In the base-case scenario, a
bond issue with IG rating has an expected loss of 0.012%, a bond issue with
Ba rating has an EL of 0.208% (about 16 times higher), a bond issue with B
rating has an EL of 1.652% (more than 133 times higher), and a C rated bond
issue has an EL of 10.977% (about 891 times higher).
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Table 2.7: EL sensitivity analysis for each rating grade
This table reports the results of a sensitivity analysis of the Expected Loss (EL) calculated by

ELit = Φ2

[
−
(
β0 + β′xVit

)
,−

γ0 + γ′xYit
σ

, ρV Y

]
− exp

(
γ0 + γ′xYit +

σ2

2

)

·Φ2

[
−
(
β0 + β′xVit

)
− σρV Y ,−

γ0 + γ′xYit
σ

− σ, ρV Y

]

for each rating grade using the parameter estimates of Model (4). x∆Rat. varies from −2 to 2 and x∆GPDI

from −20% to 20%.

Rating IG
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 0.012% 0.007% 0.004% 0.002% 0.001%
-1 0.021% 0.012% 0.007% 0.004% 0.002%
0 0.036% 0.021% 0.012% 0.007% 0.004%
1 0.062% 0.037% 0.022% 0.013% 0.007%
2 0.104% 0.064% 0.038% 0.023% 0.013%

Rating Ba
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 0.199% 0.125% 0.077% 0.047% 0.028%
-1 0.316% 0.203% 0.128% 0.079% 0.048%
0 0.494% 0.324% 0.208% 0.131% 0.081%
1 0.754% 0.504% 0.331% 0.213% 0.134%
2 1.128% 0.769% 0.514% 0.338% 0.217%

Rating B
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 1.584% 1.102% 0.753% 0.504% 0.331%
-1 2.282% 1.619% 1.127% 0.770% 0.516%
0 3.221% 2.328% 1.652% 1.151% 0.786%
1 4.455% 3.281% 2.373% 1.685% 1.174%
2 6.042% 4.533% 3.340% 2.417% 1.716%

Rating C
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 10.673% 8.317% 6.371% 4.794% 3.544%
-1 13.654% 10.828% 8.442% 6.470% 4.871%
0 17.149% 13.834% 10.977% 8.563% 6.566%
1 21.159% 17.355% 14.008% 11.121% 8.681%
2 25.656% 21.389% 17.555% 14.177% 11.262%
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Table 2.8 shows that in the base-case scenario, the expected recovery given
default decreases by about 10 percentage points per rating category, as shown
in Table 2.8. It is striking that the sensitivity of the expected recovery given
default is less volatile, while PD and EL have a relatively high sensitivity
to a rating shift and changes in GPDI. The difference between a very good
realization (upgrade by two rating grades and 20% growth of GPDI) and a very
bad realization (downgrade by two rating grades and 20% decrease of GPDI)
is lowest for an IG-rated bond issue (11.636%) and highest for a C-rated bond
issue (15.788%). The omission of the rating shift and GPDI growth would
result in miscalculations of PD and EL, but still quite precise calculations
of ERGD. The relevance of expected loss on a portfolio level supports the
proposed models.

Table 2.8: ERGD sensitivity analysis for each rating grade
This table reports the results of a sensitivity analysis of the Expected Recovery Given Default (ERGD)
calculated as 1− EL

PD
for each rating grade using the parameter estimates of Model (4). x∆Rat. varies from

−2 to 2 and x∆GPDI from −20% to 20%.

Rating IG
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 66.789% 68.930% 71.016% 73.037% 74.987%
-1 66.076% 68.240% 70.349% 72.394% 74.368%
0 65.313% 67.502% 69.636% 71.707% 73.708%
1 64.496% 66.713% 68.874% 70.973% 73.002%
2 63.624% 65.869% 68.060% 70.189% 72.249%

Rating Ba
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 57.344% 59.650% 61.935% 64.190% 66.403%
-1 56.438% 58.770% 61.081% 63.362% 65.602%
0 55.469% 57.829% 60.168% 62.477% 64.745%
1 54.434% 56.823% 59.192% 61.531% 63.830%
2 53.329% 55.749% 58.149% 60.521% 62.853%

Rating B
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 45.916% 48.194% 50.495% 52.811% 55.136%
-1 44.863% 47.168% 49.495% 51.838% 54.188%
0 43.740% 46.072% 48.427% 50.798% 53.176%
1 42.545% 44.905% 47.288% 49.687% 52.095%
2 41.275% 43.662% 46.075% 48.504% 50.942%

Rating C
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 36.800% 39.153% 41.540% 43.957% 46.396%
-1 35.366% 37.743% 40.157% 42.602% 45.071%
0 33.855% 36.254% 38.693% 41.166% 43.665%
1 32.268% 34.686% 37.148% 39.647% 42.175%
2 30.608% 33.040% 35.522% 38.045% 40.600%

The VaRs in Table 2.9 are between 2.5 (C rating) and 9 times (IG rating)
higher than the corresponding expected losses for the base-case scenario. Fur-
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thermore, the variation of the VaRs with respect to sensitivity to a rating shift
and the change in GPDI is stronger within each rating category than for the
ELs. The difference between a very bad realization and the base-case is as
much as 21 percentage points. Thus, the omission of these inputs may result
in a large miscalculation of the VaR.

Table 2.9: VaR sensitivity analysis for each rating grade
This table reports the results of a sensitivity analysis of the Conditional Expected Loss (CEL) calculated by

CELit = Φ2

[
−
β0 + β′xVit +

√
ρV ft√

1− ρV
,−

γ0 + γ′xYit +
√
ρY ft

σ
, ρU

]
− exp

(
γ0 + γ′xYit +

√
ρY ft +

σ2

2

)

·Φ2

[
−
β0 + β′xVit +

√
ρV ft√

1− ρV
− σρU ,−

γ0 + γ′xYit +
√
ρY ft

σ
− σ, ρU

]

for each rating grade using the parameter estimates of Model (4). x∆Rat. varies from −2 to 2 and x∆GPDI

from −20% to 20%. ft is set to 3.09, corresponding to the 99.9th percentile of the standard normal distri-
bution. The CEL may hence be interpreted as Value-at-Risk.

Rating IG
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 0.103% 0.064% 0.038% 0.023% 0.013%
-1 0.170% 0.107% 0.066% 0.040% 0.024%
0 0.275% 0.176% 0.111% 0.068% 0.041%
1 0.433% 0.283% 0.182% 0.114% 0.070%
2 0.668% 0.446% 0.291% 0.187% 0.118%

Rating Ba
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 1.112% 0.761% 0.512% 0.338% 0.218%
-1 1.638% 1.144% 0.784% 0.527% 0.348%
0 2.363% 1.682% 1.175% 0.806% 0.542%
1 3.338% 2.421% 1.724% 1.205% 0.827%
2 4.620% 3.413% 2.477% 1.765% 1.235%

Rating B
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 5.903% 4.434% 3.272% 2.373% 1.690%
-1 7.895% 6.039% 4.540% 3.355% 2.435%
0 10.352% 8.061% 6.172% 4.645% 3.436%
1 13.311% 10.549% 8.223% 6.302% 4.748%
2 16.795% 13.541% 10.741% 8.381% 6.429%

Rating C
x∆Rat.�x∆GPDI -20% -10% 0% 10% 20%
-2 25.544% 21.309% 17.507% 14.158% 11.267%
-1 30.533% 25.877% 21.608% 17.769% 14.383%
0 35.890% 30.885% 26.200% 21.898% 18.023%
1 41.517% 36.256% 31.227% 26.513% 22.178%
2 47.299% 41.888% 36.609% 31.557% 26.815%

2.4.2 Portfolio loss distributions

In order to investigate the magnitude of the systematic risk factor on portfolio
risk, we simulate portfolio default and loss distributions. Our sample portfolio
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consists of the 13,392 non-financial bond issues of the Moody’s data set that
did not default in 2009. Along with the rating information on each bond
issue, we take the rating shift and the change in GPDI in 2009 into account.
The effect of the two latter covariates on the sample portfolio is analyzed by
comparison of the default and loss distributions drawn for Models (1) and (4).
The random sampling of these models is executed 100,000 times for the sample
portfolio.

Table 2.10 shows default probabilities, expected losses, and expected re-
coveries given default calculated according to these models. For Model (1),
the average PD is 0.518% and the average EL is 0.298%. For Model (4)
x∆GPDI = −23.1% and the rating shift is set to zero for the calculations of
each rating category. The average PD and the average EL are calculated by
averaging the PD and EL for each observation in the sample portfolio. The
rating shift is taken into account in these values. The average PD (with a
value of 1.036%) is nearly doubled in comparison to Model (1). The expected
loss of 0.617% is even higher in relation to Model (1). The ERGDs are calcu-
lated by taking 1− ELav.

PDav.
. The average ERGD in Model (4) is reduced by two

percentage points compared to Model (1).

Table 2.10: PD, EL and ERGD for a bond in the sample portfolio
This table reports the PD, EL and ERGD for each rating grade using the parameters of Models (1) and
(4). In Model (4) x∆Rat. = 0 and x∆GPDI = −23.1% are assumed for each rating grade. For the portfolio
average, PD and EL are computed for each bond in the sample portfolio, then aggregated by weighting the
value for each bond with its portfolio share. The ERGDs are calculated by taking 1− ELav.

PDav.
.

Model (1)
Rating PD EL ERGD
IG 0.028% 0.008% 69.911%
Ba 0.471% 0.195% 58.592%
B 2.524% 1.306% 48.262%
C 17.111% 10.536% 38.424%
Mean 0.518% 0.298% 42.558%

Model (4)
Rating PD EL ERGD
IG 0.121% 0.012% 89.807%
Ba 1.238% 0.209% 83.141%
B 6.228% 1.671% 73.163%
C 27.318% 11.059% 59.517%
Mean 1.036% 0.617% 40.407%

Figure 2.4 shows the distributions of the simulated portfolio default rates
for Model (1) and Model (4). Comparing the two distributions yields two
observations: the latter distribution shifts to the right and it has much heavier
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tails. The first observation is in line with the higher PD estimate for Model
(4). The average default rate is 0.518% for the first distribution and 1.036% for
the second distribution. Both values are quite similar to their estimates. The
second observation underlines that the distribution of the default rate is more
volatile for similar asset correlations the higher is the PD (compare Gersbach
& Lipponer (2003)). Both distributions are positively skewed, since they are
bounded on the left at zero.

Portfolio Default Rate (in %)
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Figure 2.4: Portfolio default rate distributions, Model (1) and Model (4)
This figure shows the distributions of the simulated portfolio default rates for Model (1) and Model (4).

Defaults and recoveries for 2010 are randomly sampled for a portfolio consisting of the 13,392 observations

for non-defaulted, non-financial bonds of 2009 by applying the parameters of Model (1) and Model (4) with

the systematic risk factor. The above distribution for the portfolio default rate is generated using 100,000

iterations.

The same conclusions can be drawn for the portfolio loss rate distributions
presented in Figure 2.4. Contradicting the portfolio default rate, the average
portfolio loss rate is not as close to the expected loss calculated in Table 2.10
as are the PDs and average default rates. The average loss rate for Model (1)
is 0.314%, which is slightly higher than the expected loss of 0.298%. For Model
(4), the portfolio loss is 0.647%, which is also slightly higher than the expected
loss of 0.617%. It is notable that this number is equal to the expected portfolio
loss only in the instance of an infinitely granular portfolio, i.e., a portfolio with
an infinite number of debt obligations. The sample portfolio consists of only
13,392 observations, so that idiosyncratic risk is not fully diversified and the
expected portfolio loss is underestimated.

The large difference between Model (1) and Model (4) in both expected
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losses and portfolio loss distributions again supports the importance of ac-
counting, especially for rating shifts. In other words, calculating the expected
portfolio loss for Model (4) by simply weighting the expected loss of each rat-
ing grade with its portfolio weight and aggregating these values results in a
loss of 0.327%. This number is slightly higher than in Model (1) and much
lower than the average portfolio loss resulting from the simulation study.
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Figure 2.5: Portfolio loss rate distributions, Model (1) and Model (4)
This figure shows the distributions of the simulated portfolio loss rates for Model (1) and Model (4). Defaults

and recoveries for 2010 are randomly sampled for a portfolio consisting of the 13,392 observations for non-

defaulted, non-financial bonds of 2009 by applying the parameters of Model (1) and Model (4) with the

systematic risk factor. The above distribution for the portfolio default rate is generated using 100,000

iterations.

2.5 Summary

The literature and current banking practice do not address various properties
of credit risk. Default probabilities, recovery rates, and correlations are often
modeled as constant and deterministic over time. Secondly, conditional pa-
rameters such as recoveries that are conditional on the occurrence of default
are modeled using unconditional OLS regression models, which do not take
conditionality into account and lead to bias in the estimated parameters.

In response to these shortcomings, this paper provides an approach for
estimating time-varying default probabilities and recovery rates that are con-
ditional on default and based on observable information. By extension, the
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residual correlation between the default and recovery processes of a portfo-
lio of borrowers is included via systematic random effects. The dependence
structure is modeled via correlated error terms.

Empirical analysis links bond recoveries with credit ratings and business
cycle information and provides evidence for the relationship between credit
quality, recovery rate, and correlation. We investigate default and recovery
data provided by Moody’s with respect to the sensitivities of rating grades as
proxies for specific bond issue characteristics as well as macroeconomic factors.

The main findings are as follows. The rating grade and rating shift pro-
vide a highly significant explanation for default risk and recovery risk of US
bond issues. Further, macroeconomic factors add explanatory value. Finally,
the default and recovery processes are highly correlated, which underlines the
importance of the stipulated conditional relationship.

The Global Financial Crisis reveals that current credit portfolio risk models
exhibit a low degree of transparency. Addressing the dependence between the
default and recovery processes is one dimension along which credit portfolio
risk models should improve.
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Chapter 3

Empirical Performance of LGD
Prediction Models

The content of this chapter was originally published as Bade, B., Rösch, D.
& Scheule, H. (2011b), ‘Empirical performance of LGD prediction models’,
Journal of Risk Model Validation 5(2), pp. 25–44.

3.1 Introduction

Calculating an accurate measurement of the credit risk underlying defaultable
obligations such as loans or bonds is probably one of the most challenging
tasks involved in the risk management of a financial institution. The trade-off
between complying with the Basel capital requirements and the opportunity
costs of tying up too much capital makes this task even more challenging.
Appropriate models for the probability of a default event (PD), the exposure
at the time of default (EAD) and the loss given a default event (LGD) have to
be defined and calibrated by empirical data. In particular, the test of modeling
PD and LGD deals with a high level of uncertainty.

Looking at the theoretical and empirical realization of this task in theory as
well as in practice, several gaps are identifiable. First of all, there is wide lit-
erature on analyzing the drivers of either PD (see, e.g., Leland (1994), Jarrow
& Turnbull (1995), Longstaff & Schwartz (1995), Madan & Unal (1995), Le-
land & Toft (1996), Jarrow et al. (1997), Duffie & Singleton (1999), Shumway
(2001), McNeil & Wendin (2007), Duffie et al. (2007)) or LGD (see, e.g., Carey
(1998), Citron et al. (2003), Dermine & de Carvalho (2006), Acharya et al.
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(2007), Altman (2009), Qi & Yang (2009), Grunert & Weber (2009), Cal-
abrese & Zenga (2010)). Many industry credit portfolio risk models are also
based on isolated modules for default probabilities and recoveries in the event
of default. In contrast, approaches to joint modeling and estimation are scarce
(exceptions are, e.g., Pykhtin (2003), Rösch & Scheule (2005), Kupiec (2008),
Bruche & González-Aguado (2010), Rösch & Scheule (2010)), although em-
pirical data shows that default and recovery rates jointly deteriorate during
economic downturns. Figure 3.1 highlights this stylized fact for the reces-
sion years 1990 and 1991 (the time of the Persian Gulf War), 2001 and 2002
(the period following the September 11, 2001 terrorist attacks and the general
downturn in the US technology industry) as well as 2008 and 2009 (the Global
Financial Crisis).
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Figure 3.1: Default rates and recovery rates of non-financial bond issues from
1982 to 2009
This figure shows that default and recovery rates vary over time and are negatively related. Default rate

is the ratio of defaulted bond issues to total bond issues per year. Recovery rate is the ratio of the price

of defaulted debt obligations after 30 days of the occurrence of a default event to the par value. Source:

Moody’s. For a more detailed description of the data see Section 3.3.

Bade et al. (2011a) provide empirical evidence that indeed default process
and recovery process are highly correlated by applying US nonfinancial corpo-
rate bond data to an econometric extension of the economic model introduced
by Pykhtin (2003).

The second gap in the literature is performance comparisons among the sev-
eral different approaches to PD and LGD forecasting. Besides the most recent
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contribution of Qi & Zhao (2011), one exception is Bastos (2010) who com-
pares simple ordinary least squares (OLS) estimation procedures of LGD with
a nonparametric regression tree approach on the basis of root mean squared
errors (RMSEs) and relative absolute errors (RAEs). Nevertheless, the authors
of both papers use data solely from defaulted obligations, as do their prede-
cessors from this strand of literature (see, for example, Caselli et al. (2008)).

This paper addresses these weaknesses by comparing predictions derived
from the model by Bade et al. (2011a) with a quick and dirty mean prediction,
a simple OLS model and a model incorporating a perfect correlation between
default and recovery process as proposed by Rösch & Scheule (2009). Following
Bastos (2010) we do this by calculating RMSEs and RAEs for the recovery
rate estimates of defaulted bonds. In addition, we apply these measures to the
portfolio level: namely the difference between portfolio default rate and PD as
well as between portfolio loss rate and expected loss (EL).

The paper proceeds as follows. Section 3.2 briefly introduces the models
used, including their estimation and the calculation procedures of the required
risk measures based on the derived parameter estimates. In Section 3.3 we
describe the empirical data and the framework of our analysis. The results are
presented in Section 3.4. Section 3.5 concludes the paper.

3.2 Theoretical framework

3.2.1 The general default and recovery process specifica-

tion

Generally, we assume that the default process of a single borrower or bond
issuer i in time period t (i = 1, ..., Nt, t = 1, ..., T ) is driven by a normally
distributed asset value return Vit as introduced by Merton (1974). A default
event occurs if the asset value return, specified by:

Vit = β0 + β′xVit + ZV
it (3.1)

crosses a threshold, generally assumed to be zero. xVit =
(
xVit1, . . . , x

V
itK

)′ are K
observable and deterministic firm-specific, industry-specific, or macroeconomic
risk factors that influence the asset value return. β = (β1, . . . , βK)′ are the
sensitivities with respect to these factors and β0 is a constant. ZV

it is an
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idiosyncratic i.i.d. N ∼ (0, 1) random variable driving the return of borrower
i’s assets in time period t.

Following Bade et al. (2011a) we specify the recovery process by

Yit = γ0 + γ′xYit + σρUZV
it + σ

√
1− ρU 2ZY

it , (3.2)

where Yit is the logarithm of the recovery rate and thus interpretable as (po-
tential) return on the debt amount outstanding. xYit =

(
xYit1, . . . , x

Y
itL

)′ are L
deterministic observable risk factors driving the recovery, γ = (γ1, . . . , γL)′ rep-
resent the loadings of these factors, and γ0 is a constant. ZY

it is i.i.d. N ∼ (0, 1)

and σ is a constant parameter. Yet, since ZV
it is part of Equations (3.1) and

(3.2), the parameter ρU is the correlation between both firm-specific errors
as well as the conditional correlation between the asset return and the log-
recovery process given the observable covariates.

Besides the possible correlation of the default process and the recovery pro-
cess introduced in the model presented above, the second feature, which we
would like to introduce is that, in general, the recovery rate of a debt obli-
gation is only observable in the case of default. In order to account for this
fact, Bierens (2007) derives a maximum likelihood procedure to simultane-
ously estimate the parameters for such a statistical model firstly introduced
by Heckman (1979). The log-likelihood for a single observation i in period t
takes the following form:

Lit = (1− dit) · ln Φ
(
β0 + β′xVit

)
+ dit · ln

(
1− Φ

(
β0 + β′xVit

))
+ dit · ln

φ
((
yit −

(
γ0 + γ′xYit

))
/σ
)

σ (1− Φ (β0 + β′xVit ))

+ dit · ln

(
1− Φ

[
ρU

σ

(
yit −

(
γ0 + γ′xYit

))
+
(
β0 + β′xVit

)√
1− ρU 2

])
. (3.3)

φ (·) specifies the density function and Φ (·) the cumulative distribution func-
tion of the standard normal distribution. dit indicates whether the observed
obligation defaults (dit = 1) or not (dit = 0). Thus, all parameters may be
estimated without the knowledge of values for Vit. Equation (3.3) is then
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maximized over nt observations per period and T periods:

` =
T∑
t=1

nt∑
i=1

Lit. (3.4)

3.2.2 Model assumptions and consequences

For the general framework presented above especially two restrictive assump-
tions are of particular interest. The first one is the assumption that, condi-
tional on given realizations of the observable risk-factors, both processes are
uncorrelated, i.e., ρU = 0. In this case the observed log-recoveries are normally
distributed (see the dark bars in Figure 3.2). The assumption of uncorrelated
error terms allows a separate estimation of the parameters underlying both
processes in the model, since Lit simplifies to:

Luncorr.it = (1− dit) · ln Φ
(
β0 + β′xVit

)
+ dit · ln

(
1− Φ

(
β0 + β′xVit

))︸ ︷︷ ︸
LProbit
it

+ dit · ln
φ
((
yit −

(
γ0 + γ′xYit

))
/σ
)

σ︸ ︷︷ ︸
LRecovery
it

. (3.5)

The parameters of LProbitit are estimated by a standard probit procedure via
maximum likelihood (see, e.g., Gordy & Heitfield (2000), Gordy & Heitfield
(2002) or Hamerle et al. (2003)):

`Probit =
T∑
t=1

nt∑
i=1

LProbitit . (3.6)

Due to the independence of the recovery process from the default process,
the parameters of LRecoveryit need not necessarily be estimated via maximum
likelihood. For convenience, a simple OLS regression of the observed log-
recoveries may be run.9

The second possible restrictive assumption to the model is that default and
recovery processes are perfectly positive correlated, i.e., ρU = 1, and that
β0 = γ0

σ
as well as β = γ

σ
. In other words, both processes are driven by

9 Please note that many other transformations of the recovery rates, such as logit or probit,
are possible (see, e.g., Dermine & de Carvalho (2006) or Bastos (2010)), but in order to
ensure that results are comparable to the unrestricted model we focus on the logarithmic
transformation.

47



3.2. THEORETICAL FRAMEWORK

the same explanatory variables and each variable has the same standardized
exposure in both processes. Thus, the default barrier translates into a cut-off
point for the observed log-recoveries. Their distribution equals a truncated
normal distribution (see the lighter bars in Figure 3.2).

ln (RR)

Rel. Frequency (in %)

−5.5 −4.5 −3.5 −2.5 −1.5 −0.5 0.5 1.5
0

5

10

15

20

25

ρU = 0.99 ρU = 0

Figure 3.2: Distributions of observable log-recoveries for a sample portfolio of
100,000 obligors and differently correlated error terms

This figure presents distributions of log-recoveries for defaulted obligors in a sample portfolio of 100,000

obligors under different assumptions concerning the correlation between default and recovery process. The

underlying parameters of the simulation for uncorrelated error terms (dark pattern), i.e., ρU = 0, are

β0 = 1.6449 (which corresponds to a PD of 5%), γ0 = −2.3551 and σ = 1. The underlying parameters

of the simulation for perfectly correlated error terms (pale pattern), i.e., ρU = 1, are β0 = 1.6449 (which

corresponds to a PD of 5%), γ0 = 2.46735 and σ = 1.5.

The log-likelihood for a single observation under this restriction simplifies
to the log-likelihood of a Tobit model:10

LTobitit =
(
1− dTobitit

)
· ln Φ

(
γ0 + γ′xYit

σ

)
+ dTobitit · ln

φ
((
yit −

(
γ0 + γ′xYit

))
/σ
)

σ
. (3.7)

Since the default barrier generally is assumed to be zero, the truncation of
10 For the derivation of such a likelihood, see Bierens (2004). For an empirical application

for bond defaults and recoveries, see Rösch & Scheule (2009).
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the log-recoveries is made at zero too. Nevertheless, real data may contain
recovery rates greater than one, i.e., log-recoveries greater than zero. These
observations should be treated as non-defaults, such that dTobitit 6= dit in these
cases. The maximum likelihood function is:

`Tobit =
T∑
t=1

nt∑
i=1

LTobitit . (3.8)

3.2.3 Calculation of risk measures

In order to predict the risk of a debt obligation, the parameters derived by
the methods presented above are only of secondary interest. The primary risk
measures of importance are the PD, the EL and the recovery rate in the case
where such an obligation defaults (expected recovery given default (ERGD)).
Generally, these three ratios are linked by:

ERGDit = 1− ELit
PDit

. (3.9)

Since we assume an asset value process for the default event, the PD is given
as the probability that Vit falls below zero (given the observable covariates).
Under the normality assumption we obtain:

PDit = 1− Φ
(
β0 + β′xVit

)
. (3.10)

For EL and ERGD, respectively, the assumptions concerning the link be-
tween default and recovery process have to be considered. In the general case
the parameter estimates of Equation (3.4) are used to calculate the expected
loss by:

ELgeneralit =Φ2

[
−
(
β0 + β′xVit

)
,−γ0 + γ′xYit

σ
, ρU
]

− exp

(
γ0 + γ′xYit +

σ2

2

)
·Φ2

[
−
(
β0 + β′xVit

)
− σρU ,−γ0 + γ′xYit

σ
− σ, ρU

]
. (3.11)

Φ2 [·, ·, ·] represents the distribution function of the bivariate normal distri-
bution. For the more restrictive case of uncorrelated error terms it is most
convenient to calculate the expected recovery given default at first and the
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expected loss afterward by applying the parameter estimates of Equation (3.6)
to the PD and rearranging Equation (3.9). If the parameters of the recovery
process with log-recoveries as dependent variable are estimated by simple OLS,
ERGD is calculated by:

ERGDOLS
it = exp

(
γ0 + γ′xYit + 0.5

)
. (3.12)

With the parameters derived under the assumptions of the Tobit approach in
Equation (3.7) we obtain EL by:

ELTobitit = Φ

(
−γ0 + γ′xYit

σ

)
− exp

(
γ0 + γ′xYit + 0.5σ2

)
· Φ
(
−γ0 + γ′xYit + σ2

σ

)
. (3.13)

Please note that in the Tobit case the PD is computed as:

PDTobit
it = Φ

(
−γ0 + γ′xYit

σ

)
. (3.14)

3.3 Data and Methodology of the performance

comparison

3.3.1 Default and recovery data

The data sample underlying the empirical analysis is provided by Moody’s
credit rating agency and is the same as the one used by Bade et al. (2011a).
The data set contains the annual ratings of regular US bond issues, as well
as default dates and recovery rates given default. Moody’s records a default
event if interest or principal payments are missed or delayed, Chapter 11 or
Chapter 7 bankruptcy is filed or a distressed exchange, such as a reduction
in a financial obligation, occurs. The recovery rate is equal to the price of a
defaulted bond measured thirty days after a default event in relation to the
face value of the bond.

Table 3.1 summarizes important descriptive statistics for the data set, which
consists of 187, 638 observations for regular US bond issues of non-financial
institutions from 1982 to 2009. Coincident with a change in Moody’s rating
methodology in 1982 and the role of ratings in the subsequent analysis, earlier
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observations are excluded from this empirical study.
During the observation period, a total of 1, 659 defaults occurred, which

yields a default rate (DR) of 0.884%. The mean recovery rate for all defaulted
bonds is 37.541%; the median recovery rate is 32%.

Table 3.1 also shows the descriptive statistics per rating category: all bond
issues with a rating higher than Ba are aggregated to an investment grade
(IG) rating, and all bond issues with a rating lower than B are aggregated to
rating C. This categorization addresses the limited number of default events in
the subcategories. The table shows that, as one may expect, the default rate
increases from rating IG to C. The mean recovery rate decreases from rating
IG to C, except for grades Ba (48.607%) and IG (46.823%), which may be
due to the small number of defaults, and hence the small number of recovery
events in both grades.

Since the rating grade as well as the rating shift in the year prior to the
observed rating status (ratingit − ratingit−1) are statistically and economically
significant for the data set, we include rating dummies as well as an ordinal
variable for the rating shift as explanatory variables in the empirical study.11

Table 3.1: Number of observations, default rate, and mean recovery
This table reports descriptive statistics on defaults and recoveries of non-financial bonds from 1982 to 2009.
The data set provided by Moody’s is split up into four rating categories: investment grade (IG), containing
all observations with a Moody’s rating higher than Ba, Ba, B and C, containing all observations with a
Moody’s rating worse than B. Nobs. is the number of observations. Ndef. is the number of defaults. DR
(default rate) is the ratio of the number of defaults to the number of observations in each rating grade.
RRGD∅ is the mean recovery rate of the defaulted bonds in each rating grade. Recovery rate is the ratio of
the price of defaulted debt obligations after 30 days of the occurrence of a default event to par value.
Rating Nobs. % of all obs. Ndef. % of all

def. obs.
DR (in %) RRGD∅

(in %)
IG 146,582 78.120 51 3.074 0.035 46.823
Ba 15,262 8.134 87 5.244 0.570 48.607
B 20,132 10.729 530 31.947 2.633 39.890
C 5,662 3.018 991 59.735 17.503 34.836
Total 187,638 100.000 1,659 100.000 0.884 37.541

In order to account for the time series variation of default and recovery
rates shown in Figure 3.1, we include the lagged change of GPDI as further
explanatory variable in the study.
11 Since, for bonds originated in the year of observation, ratingit − ratingit−1 yields a

missing value (MV), we include a dummy variable for these observations and set ratingit−
ratingit−1 = 0. Through this, we are able to keep these observations in the data set
and differentiate between observations with ratingit − ratingit−1 = 0 and ratingit −
ratingit−1 = MV .
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Since all explanatory variables are lagged by one year, they can be treated
as known quantities when predicting PD, EL and ERGD.

3.3.2 Model validation framework

In the empirical study we compare four banks with competing approaches to
the projection of future defaults and losses:

• Bank 1 simply estimates PD, EL and ERGD by historical averages, which
is probably the most convenient but most likely also the least accurate
method to predict future default or recovery rates.

• Bank 2 follows the restrictive approach of Equation (3.5), i.e., it esti-
mates the PD with the Probit approach of Equation (3.6), which allows
an incorporation of firm-specific, industry-specific and macroeconomic
covariates and an explanation of the marginal effect of each considered
variable on the likelihood of a default. With regard to LGD forecasts,
Bank 2 uses an OLS regression with the natural logarithm of the recovery
rate of defaulted bonds as dependent variable.

• Bank 3 uses the Tobit approach of Equation (3.7) to obtain the relevant
parameters from the historical data.

• Bank 4 uses the general Heckman approach of Equation (3.3) to forecast
PD and LGD simultaneously.

In detail, the model validation framework for our performance comparison
consists of five steps, which are repeated 10,000 times in order to exclude
sample effects:

Step 1: we select 90% of the data as a random sample and treat the remain-
ing 10% of the data as out-of-sample.

Step 2: with the in-sample data we estimate the relevant parameters of
the models underlying the banks’ prediction techniques. For each model, we
investigate four different specifications containing the following explanatory
variables.

• Specification 1: ratings.

• Specification 2: ratings and lagged GPDI change.
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• Specification 3: ratings and rating shift.

• Specification 4: ratings, rating shift and lagged GPDI change.

Step 3: these parameters are incorporated to estimate PD, ERGD and EL
for each observation of the in-sample data set as well as for the out-of-sample
data set.

Step 4: on the single borrower level we follow the approach by Bastos (2010)
and compare the realized recovery rates of the defaulted bonds RRjt, where
j = 1, . . . , ndef.t , in each data subset with their estimates via RMSE:

RMSERR =

√√√√√( T∑
t=1

ndef.t

)−1

·
T∑
t=1

ndef.
t∑
j=1

(
RRjt − ERGDmodel

jt

)2
, (3.15)

and RAE:

RAERR =

∑T
t=1

∑ndef.
t
j=1

∣∣RRjt − ERGDmodel
jt

∣∣∑T
t=1

∑ndef.
t
j=1

∣∣∣RRjt − ERGDsimple
jt

∣∣∣ · 100. (3.16)

RMSE measures the accuracy of the estimates in absolute terms while RAE
measures the accuracy relative to a benchmark estimator. For convenience we
use the arithmetic mean of the realized recovery rates calculated by Bank 1
for the corresponding rating grade of each observation as simple predictor.

Step 5: on the portfolio level we aggregate the PDs and ELs of the borrowers
in the both subsamples to portfolio PDs and ELs by:

PDPF =

(
T∑
t=1

nt

)−1 T∑
t=1

nt∑
i=1

PDit (3.17)

and:

ELPF =

(
T∑
t=1

nt

)−1 T∑
t=1

nt∑
i=1

ELit. (3.18)

Since we only get one value per risk measure and portfolio that is compared
with the realized portfolio default rate and portfolio loss rate, respectively, we
have to calculate RMSE and RAE over the 10,000 iterations of this random
sampling procedure. We do this for the out-of-sample portfolio.
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3.4 Results

3.4.1 Single borrower level

Table 3.2 shows the RMSEs in-sample and out-of-sample by Bank and speci-
fication. On average, the least accurate predictive power is reached by using
the arithmetic mean of observed recovery rates (Bank 1) as forecast for ERGD
in-sample as well as out-of-sample. Despite the highest average RMSE, the
standard deviation for the in-sample RMSEs of Bank 1 (0.0006) is the lowest
of all four banks in each specification. In contrast, the out-of-sample standard
deviation of Bank 1’s RMSEs is the highest. Thus, Bank 1 not only has the
least accurate method to predict future (i.e., out-of-sample) recovery rates for
defaulted bonds on average, but also the most insecure method.

Using a simple OLS regression and calculating ERGDs on the basis of the
regression results yields improved results compared to Bank 1’s approach. The
RMSEs are reduced on average and for the out-of-sample data in standard
deviation, too. The more elaborate the model specification, the lower the
averageRMSEin−sample

RR . Out-of-sample, adding GPDI to the regression model,
i.e., switching from Specification 1 to 2 or from 3 to 4 reduces the predictive
accuracy. With the exception of switching from Specification 1 to 2 for the
out-of-sample data, the standard deviation of the RMSEs increases with the
number of variables taken into account in both subsamples.

The Tobit procedure used by Bank 3 yields a further improvement of the
results compared with Banks 1 and 2. Nevertheless, some qualitative differ-
ences are apparent. In contrast to Bank 2, the incorporation of GPDI yields
more accurate recovery rate forecasts; RMSE decreases on average as well as its
standard deviation. On the other hand, incorporating the rating shift increases
RMSE as well as its standard deviation and thus lowers the predictive power of
the Tobit model for recovery rates. Unusually, the average RMSEout−of−sample

RR

is lower than the average RMSEin−sample
RR for each model specification.

The Heckman model implemented by Bank 4 yields the best results for the
average RMSE. The predictive power rises by adding more explanatory vari-
ables to the model specification. The standard deviation of RMSE, though, is
higher than for the other banks’ predictions in-sample and higher than Bank
2’s predictions out-of-sample. Due to the computational complexity of the like-
lihood function, too little recovery data in the sample might be an explanation
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for a higher number of outliers for the recovery rate estimates compared with
the other models. Since such outliers have a higher loading in a quadratic mea-
sure like RMSE than for a measure based on the absolute value like RAE, the
distribution of RMSE itself is more sensitive to these. Thus, a higher standard
deviation of RMSEs, which itself is the square root of a quadratic measure, is
likely to be caused by this connection.

Table 3.2: Results for RMSE on the recovery rate level
This table reports the average RMSEin−sample

RR and average RMSEout−of−sample
RR of the survey. RMSE

is calculated by Equation (3.15). Standard deviations are reported in parentheses.
Bank 1 Bank 2 Bank 3 Bank 4

RMSEin−sample
RR

Specification 1 0.28623 0.27280 0.26855 0.26632
(0.00060) (0.00130) (0.00126) (0.00134)

Specification 2 0.28623 0.27281 0.26821 0.26592
(0.00059) (0.00130) (0.00123) (0.00133)

Specification 3 0.28623 0.27231 0.26864 0.26553
(0.00060) (0.00133) (0.00127) (0.00137)

Specification 4 0.28623 0.27224 0.26833 0.26520
(0.00060) (0.00134) (0.00126) (0.00138)

RMSEout−of−sample
RR

Specification 1 0.28633 0.27380 0.26842 0.26665
(0.01386) (0.01195) (0.01167) (0.01258)

Specification 2 0.28631 0.27402 0.26808 0.26636
(0.01394) (0.01152) (0.01141) (0.01241)

Specification 3 0.28629 0.27373 0.26851 0.26617
(0.01406) (0.01202) (0.01171) (0.01281)

Specification 4 0.28630 0.27388 0.26823 0.26598
(0.01413) (0.01218) (0.01167) (0.01279)

The results for RAEin−sample
RR and RAEout−of−sample

RR presented in Table 3.3
broadly confirm the results above. Relative to the results of Bank 1, the
Heckman model performs best, followed by the Tobit approach and the OLS
approach, which only performs a little better than the historical average. No-
table is that in-sample the standard deviation of the RAEs increases with
decreasing average RAE, while out-of-sample the result is the opposite.

In order to check whether the results are data specific, we excluded all
observations which have a missing value (62,990 observations) for ratingit −
ratingit−1 and repeated the study. Tables 3.4 and 3.5 present the results of
this robustness check for RMSE and RAE. Qualitatively, the previous results
remain unchanged. In absolute terms the data reduction has contrary effects.

55



3.4. RESULTS

Table 3.3: Results for RAE on the recovery rate level
This table reports the average RAEin−sample

RR and average RAEout−of−sample
RR of the survey. RAE is

calculated by Equation (3.16). Standard deviations are reported in parentheses.
Bank 1 Bank 2 Bank 3 Bank 4

RAEin−sample
RR

Specification 1 100 99.067 97.275 95.026
- (0.417) (0.433) (0.590)

Specification 2 100 99.121 97.121 94.897
- (0.413) (0.424) (0.571)

Specification 3 100 98.367 96.856 94.271
- (0.418) (0.437) (0.605)

Specification 4 100 98.376 96.841 94.240
- (0.420) (0.437) (0.621)

RAEout−of−sample
RR

Specification 1 100 99.657 97.477 95.323
- (7.272) (6.525) (5.712)

Specification 2 100 99.785 97.322 95.217
- (7.142) (6.399) (5.600)

Specification 3 100 99.114 97.070 94.654
- (7.236) (6.451) (5.537)

Specification 4 100 99.214 97.065 94.664
- (7.385) (6.523) (5.611)

While RMSE for Bank 1 rises on average, it decreases for almost every speci-
fication of the other three banks. Relative to Bank 1, each of the other three
banks performs better than for the whole data set, as Table 3.5 shows.

Table 3.4: Robustness check results for RMSE on the recovery rate level
This table reports the average RMSEin−sample

RR and average RMSEout−of−sample
RR of the robustness check.

RMSE is calculated by Equation (3.15). Standard deviations are reported in parentheses.
Bank 1 Bank 2 Bank 3 Bank 4

RMSEin−sample
RR

Specification 1 0.28625 0.27267 0.26810 0.26618
(0.00066) (0.00145) (0.00143) (0.00151)

Specification 2 0.28625 0.27251 0.26761 0.26596
(0.00065) (0.00144) (0.00142) (0.00151)

Specification 3 0.28625 0.27167 0.26700 0.26482
(0.00066) (0.00145) (0.00145) (0.00152)

Specification 4 0.28625 0.27152 0.26674 0.26487
(0.00066) (0.00145) (0.00143) (0.00153)

RMSEout−of−sample
RR

Specification 1 0.28638 0.27407 0.26793 0.26649
(0.01579) (0.01324) (0.01318) (0.01400)

Specification 2 0.28638 0.27421 0.26746 0.26639
(0.01566) (0.01329) (0.01315) (0.01390)

Specification 3 0.28638 0.27335 0.26685 0.26527
(0.01582) (0.01359) (0.01339) (0.01416)

Specification 4 0.28637 0.27351 0.26658 0.26543
(0.01553) (0.01355) (0.01328) (0.01396)
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Table 3.5: Robustness check results for RAE on the recovery rate level
This table reports the average RAEin−sample

RR and average RAEout−of−sample
RR of the robustness check.

RAE is calculated by Equation (3.16). Standard deviations are reported in parentheses.
Bank 1 Bank 2 Bank 3 Bank 4

RAEin−sample
RR

Specification 1 100 98.641 96.450 94.778
- (0.470) (0.490) (0.617)

Specification 2 100 98.575 96.225 94.611
- (0.469) (0.494) (0.612)

Specification 3 100 97.864 95.648 93.879
- (0.474) (0.494) (0.606)

Specification 4 100 97.826 95.576 93.984
- (0.473) (0.500) (0.618)

RAEout−of−sample
RR

Specification 1 100 99.440 96.700 95.121
- (8.342) (7.253) (6.517)

Specification 2 100 99.483 96.485 94.989
- (8.381) (7.310) (6.615)

Specification 3 100 98.778 95.916 94.264
- (8.516) (7.365) (6.573)

Specification 4 100 98.830 95.838 94.389
- (8.407) (7.290) (6.577)

3.4.2 Portfolio level

The results of the performance analysis for the portfolio default rate are pre-
sented in Table 3.6.12 The Probit approach of Bank 2 and the Heckman ap-
proach of Bank 4 yield almost identical RMSEs, which are lower than for Bank
1 and Bank 3. Bank 3’s Tobit approach yields the worst predictions of all four
banks for the first three model specifications. Specification 4 shows a slightly
higher RMSEDR for Bank 1. The draw between Bank 2 and Bank 4 is con-
firmed by RAEDR. For Specifications 1 and 2 the Heckman approach yields
a lower value for RAEDR and for the remaining two specifications the Probit
approach is advantageous.

The results for the portfolio loss rate shown in Table 3.7 are much more
widespread. Here, the simple prediction by historical average is the best pre-
dictor for future portfolio loss rates, followed closely by the Heckman approach
of Bank 4. The Tobit approach performs rather poorly with a 20% worse loss
estimation against the historical average, indicating that default and recov-
ery process are not perfectly correlated. The worst performance is reached
12 Note that the portfolio loss rate may also be compared with the value-at-risk of the

LGD models considered in this paper. This would require accounting for an unobservable
systematic risk factor to capture the comovement of default and recovery processes. Bade
et al. (2011a) introduce such models.
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Table 3.6: Results for RMSE and RAE of the portfolio default rate
This table reports RMSE and RAE of the survey for the portfolio default rate.

Bank 1 Bank 2 Bank 3 Bank 4
RMSEDR

Specification 1 0.000668 0.000668 0.000674 0.000669
Specification 2 0.000679 0.000675 0.000680 0.000675
Specification 3 0.000681 0.000676 0.000684 0.000677
Specification 4 0.000684 0.000675 0.000683 0.000676

RAEDR

Specification 1 100 100.000 100.591 99.941
Specification 2 100 99.256 99.837 99.192
Specification 3 100 99.099 100.207 99.227
Specification 4 100 98.668 99.652 98.746

by Bank 2, with more than 35% fewer accurate loss rate predictions. Thus,
an estimation of two separate models for PD and LGD followed by a calcula-
tion of the expected loss based on the parameters derived from both models is
not suitable. It results in a high degree of misspecification, since the possible
correlation between the processes is ignored.

Table 3.7: Results for RMSE and RAE of the portfolio loss rate
This table reports RMSE and RAE of the survey for the portfolio loss rate.

Bank 1 Bank 2 Bank 3 Bank 4
RMSELR

Specification 1 0.000462 0.000616 0.000550 0.000463
Specification 2 0.000466 0.000618 0.000554 0.000466
Specification 3 0.000463 0.000626 0.000557 0.000465
Specification 4 0.000470 0.000629 0.000560 0.000469

RAELR

Specification 1 100 136.607 120.479 100.912
Specification 2 100 135.682 120.010 99.967
Specification 3 100 137.819 121.082 100.214
Specification 4 100 137.341 120.604 100.197

We provide the same robustness check on the portfolio level as on the sin-
gle borrower level. Table 3.8 shows the results. Due to the data reduction,
RMSEDR and RMSELR deteriorate for all four banks. The draw between
Bank 2 and Bank 4 concerning the default rate forecast switches to a marginal
advantage for the Probit approach. The portfolio loss rate predictions of Banks
2 to 4 relative to Bank 1 improve compared to the primary results. Yet the
Heckman approach yields the best predictions if more explanatory variables
than the rating grade are taken into consideration.
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Table 3.8: Robustness check results for RMSE and RAE on the portfolio level
This table reports RMSE and RAE of the robustness check for the portfolio default rate and the portfolio
loss rate.

Bank 1 Bank 2 Bank 3 Bank 4
RMSEDR

Specification 1 0.000874 0.000874 0.000878 0.000874
Specification 2 0.000862 0.000859 0.000863 0.000859
Specification 3 0.000875 0.000868 0.000874 0.000870
Specification 4 0.000876 0.000867 0.000872 0.000868

RAEDR

Specification 1 100 100.000 100.306 99.966
Specification 2 100 99.628 99.988 99.631
Specification 3 100 99.263 99.804 99.374
Specification 4 100 98.882 99.366 98.975

RMSELR

Specification 1 0.000595 0.000777 0.000664 0.000599
Specification 2 0.000587 0.000766 0.000652 0.000586
Specification 3 0.000600 0.000782 0.000666 0.000595
Specification 4 0.000591 0.000773 0.000658 0.000587

RAELR

Specification 1 100 131.485 110.730 100.292
Specification 2 100 131.982 110.707 99.698
Specification 3 100 132.489 111.229 99.334
Specification 4 100 133.427 111.760 99.252

3.5 Conclusion

Various work in the literature on default rates and recovery rates, as well as
recent contributions suggesting a joint modeling of both variables, show the
high complexity of these quantities and the challenge involved in obtaining
an accurate measurement. While many previous contributions focused on the
qualitative and quantitative drivers to both variables, this paper compares the
predictive performance of several modeling approaches. RMSEs and RAEs
are calculated for four banks, with each bank using a different approach to
forecast future defaults and losses. In order to check their contribution to
the predictive power of each bank’s approach, four different combinations of
explanatory variables are investigated.

The results show that a disjunct consideration of default and recovery ig-
noring the high correlation between both quantities yields not only biased pa-
rameter estimates, but also a worse predictive power for future losses than the
general approach applied by Bade et al. (2011a). Especially on the portfolio
loss level, the relative inaccuracy is severe.

While the portfolio default rate estimates may not be considered as signif-
icantly differing among the four banks, the portfolio loss rate as well as the
recovery rate of a single borrower is predicted best with the general model
allowing default and recovery to be correlated. Nevertheless, the quick and
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dirty solution also yields a relatively accurate measure of the future portfolio
loss rate.

Thus, accounting for the high correlation of default and recovery rates high-
lighted during past economic downturns – most recently by the Global Finan-
cial Crisis – is a necessary condition for a suitable credit risk model. This
paper provides further evidence that the model suggested by Pykhtin (2003)
and adopted by Bade et al. (2011a) is a suitable model fulfilling this require-
ment.
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Chapter 4

Statistical Methods of LGD
Estimation – a Comparison

The content of this chapter was submitted to European Journal of Operational
Research and is currently under revision.

4.1 Motivation

Measuring the credit risk of a defaultable obligation is a challenging task for
most financial institutions. Especially, the tradeoff between meeting the reg-
ulatory requirements of the Basel II framework and the opportunity costs of
tying up too much capital when adopting an Internal Ratings Based (IRB)
approach emphasize the importance of this task. Namely, internal models
require an appropriate predictive power for the probability that an obligor de-
faults (Probability of Default – PD) and the expected loss rate in the case of
default (Loss Given Default – LGD).13

Reviewing the academic research on credit risk models, one finds a vast
literature on determining the drivers behind either PD (see, e.g., Leland (1994),
Jarrow & Turnbull (1995), Longstaff & Schwartz (1995), Madan & Unal (1995),
Leland & Toft (1996), Jarrow et al. (1997), Duffie & Singleton (1999), Shumway
(2001), McNeil & Wendin (2007), Duffie et al. (2007), Tong et al. (2012)) or
LGD (see, e.g., Carey (1998), Citron et al. (2003), Dermine & de Carvalho
(2006), Acharya et al. (2007), Altman (2009), Qi & Yang (2009), Grunert &
13 Furthermore, the outstanding obligation of a borrower in the case of default (Exposure

At Default – EAD) has to be estimated. However, since the EAD may be assumed as
deterministic, we will not consider it further in this paper.
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Weber (2009), Calabrese & Zenga (2010)). Particularly, the LGD parameter
has received an increasing popularity in the past decade. Despite the growing
attention practitioners and theoreticians paid to default risk and loss risk in
the past twenty years, the Global Financial Crisis highlighted the need for
further research.

First of all, there exist only very few modeling approaches controlling for the
dependence between default rates and recovery rates (i.e., 1− LGD). Exam-
ples are, e.g., Pykhtin (2003), Rösch & Scheule (2005), Kupiec (2008), Bruche
& González-Aguado (2010), Rösch & Scheule (2010), Jacobs Jr. & Karago-
zoglu (2011). Bade et al. (2011a) provide empirical evidence that the default
process and recovery process are highly correlated by applying US nonfinan-
cial corporate bond data to an econometric extension of the economic model
introduced by Pykhtin (2003).

The second for a long time unattended but evolving stream in the liter-
ature is performance comparisons among the several different approaches to
PD and LGD forecasting. Examples are Hlawatsch & Ostrowski (2011), who
compare different estimation procedures based on simulated credit portfolios,
and Bellotti & Crook (2012), who compare several approaches to modeling
and transforming LGD on the basis of mean squared errors (MSEs) and mean
absolute differences. Zhang & Thomas (2012) compare linear regression mod-
els with survival analysis models for LGD and find a better performance of
the former. Other examples are Qi & Zhao (2011), Bastos (2010), and Caselli
et al. (2008). All authors despite Hlawatsch & Ostrowski (2011) rely on em-
pirical data. However, Bade et al. (2011b) adapt a performance comparison
to the model and the data of Bade et al. (2011a). They show that the econo-
metric version of the model by Pykhtin (2003), which considers defaulted and
non-defaulted claims too, performs better than naive OLS models in predict-
ing LGDs on the single borrower level. Like Bellotti & Crook (2012), they
extend the comparison to the portfolio level and find a better performance of
the sophisticated model as well. Anyway, due to the scarce set of explana-
tory variables the model does not outperform the simple historical average on
portfolio level. This result is supported by further recent contributions of Frye
(2010) and Frye & Jacobs Jr. (2010). They find that, based on time-series
data of portfolio default rates and recovery rates, more sophisticated credit
risk models – one of them is the model by Pykhtin (2003) – do not necessarily
produce statistically significant better predictions for credit portfolio losses.
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Considering these empirical findings, we identify four minimum standards
for a well-conceived credit risk model. The first one is that the model is able
to account for the co-movement of default rates and realized LGDs. A second
basic requirement is that at least the qualitative influence of potential credit
risk factors should be revealed during the parametrization of the model. That
is, significant parameter estimates should be assigned only to variables, which
are included in the data generating process. A theoretic foundation of the
model may help to increase the plausibility and reliability of the estimates in
this respect. Thirdly, and even more importantly, the LGD forecasts derived
from the model parameters should fit realized LGDs precisely. Since LGD
forecasting models hardly do so in absolute terms (compare Bellotti & Crook
(2012)), we alleviate this requirement to an improvement in the predictive
quality relative to other models. As Frye (2010) points out, data dependence
in terms of the size of the data set, the homogeneity of the portfolio, and the
credit risk of each borrower is a concern and a good model should reduce this
dependence. Finally, a modern credit risk model, in addition, should be able
to yield good predictions for PD, expected LGD, and EL, which are used for
pricing and capital allocation purposes.

In order to address the four requirements in this paper, we investigate
whether Bade et al. (2011a)’s econometric extension of the model by Pykhtin
(2003) is able to account for these standards. Initially, we analyze the PD-
LGD relation based on changing model properties graphically. Then, in the
main part of this paper, we elaborate on the other requirements the model
should meet. Unfortunately, the second and the fourth requirement cannot
be tested with real world data, because the data generating processes are un-
known. Hence, the parameters that enter the formulae for calculating the risk
measures mentioned above are unknown as well. Consequently, we need to
create a controlled environment, where each parameter is known, by providing
a simulation study. We calibrate the model to generate defaults and LGDs
dependent on realizations of simulated economic covariates weighted by given
parameters. Afterwards, we estimate the parameters based on the resulting
data set and besides the forecasts for LGD realizations, we calculate PD, EL,
and expected LGD. All these estimates are compared either to the realized val-
ues (in the case of LGDs) or to the calculated values based on the parameters
underlying the data generating process (in the case of credit risk measures)
via a relative performance measure (in-sample and out-of-sample). We repeat
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this process iteratively and are thus able to analyze the data dependence and
the reliability of the competing models. Further, we vary the assumptions
underlying the data generating processes and hereby check the adaptability
and robustness of each model. In the end, we test the forecasting precision
of the model qualitatively and also quantitatively. In addition, we extend the
analysis to measuring the absolute accuracy of economic capital allocations.

The remainder of the paper is organized as follows. Section 4.2 introduces
the different models we consider for our performance comparison. Section 4.3
provides a sensitivity analysis of the data generating model with respect to
important parameters. Section 4.4 presents the results of the simulation study
concerning the forecasting performance of the models compared. In Section
4.5, we extend the simulation study to the predictive power in allocating eco-
nomic capital and present the respective results. Section 4.6 concludes the
paper.

4.2 Introduction of the competing credit risk mod-

els

4.2.1 Model setups and parameter estimation

In many applications (e.g., collateralized lending), default events and recovery
rates are driven by separate but dependent economic processes. Implementing
a Merton (1974) based framework similar to the Basel II IRB approach and
industry credit portfolio models, such as Credit Metrics, we assume a default
event to be triggered by a latent asset value return Vit crossing a threshold, gen-
erally assumed to be zero. Vit is driven by K observables xVit =

(
xVit1, . . . , x

V
itK

)′
and a non-observable idiosyncratic i.i.d. N ∼ (0, 1) random variable ZV

it .
i = 1, ..., Nt and t = 1, ..., T identify different borrowers at different dates. The
xVit are weighted by factor loadings β = (β1, . . . , βK)′, such that

Vit = β0 + β′xVit + ZV
it . (4.1)

β0 is a constant.
Concerning the recovery process, we compare different links of the recovery

process to the default process as well as different functional transformations
of the recovery rate RRit. Recovery rates generally range between zero and
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one (for bond recoveries values > 1 are also possible). Since most estimation
methods, such as OLS regression models, require the dependent variable Yit
to be unrestricted, i.e., between −∞ and ∞, the transformation of recovery
rates is necessary to restrict forecasts of the dependent variable to reasonable
values. Namely, we consider the logistic transformation

Y log
it = ln

(
RRit

1−RRit

)
, (4.2)

and the probit transformation

Y pro
it = Φ−1 (RRit) , (4.3)

which are both commonly used in practice, as well as a simple logarithmic
transformation

Y ln
it = ln (RRit) . (4.4)

In this respect, Φ−1 (·) represents the inverse cumulative standard normal dis-
tribution.While the former two transformations require recovery rates between
zero and one and thus a truncation of values greater than one, the latter trans-
formation allows for these values.

The structure of the recovery process resembles the default process:

Yit = γ0 + γ′xYit + Uit. (4.5)

The L observable risk factors xYit =
(
xYit1, . . . , x

Y
itL

)′ weighted by their respective
loadings γ = (γ1, . . . , γL)′ and the constant parameter γ0 drive the transformed
recovery rates as well as an idiosyncratic error term Uit does.

Next to the transformation of recovery rates, the error term correlation
of Process (4.1) and Process (4.5) are of interest in order to derive proper
estimates for the parameters γ0 to γL from observed data. If we assume ZV

it and
Uit to be uncorrelated, the respective processes are conditionally uncorrelated
with respect to the observable covariates. Consequently, the parameters β0

to βK and γ0 to γL may be derived by separate estimation procedures. For
the default process parameters the Maximum-Likelihood estimation (MLE) of
a Probit model is applied, whereas the recovery process parameters may be
estimated by a simple OLS regression. For the case of an OLS regression,
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Uit is assumed to be standard normally distributed, irrespective of the chosen
recovery rate transformation.

A more general approach of Bade et al. (2011a) inspired by Pykhtin (2003)
is to model Uit as

Uit = σ ·
(
ρUZV

it +

√
1− ρU 2ZY

it

)
(4.6)

and thus to allow ZV
it and Uit, in this case being N ∼ (0, σ) distributed, to

be correlated by ρU . ZY
it is i.i.d. standard normally distributed. Conditional

on the observables xVit and xYit , default and recovery process are correlated
by ρU , too. The economic reasoning behind this modeling approach, which
we will refer to as correlation model throughout the remainder of this paper,
is that collateral values, which define the recovery to a large extend, depend
on idiosyncratic information next to systematic information. E.g., firms in
financial distress often reduce maintaining expenses and consequently the value
of collateral. Therefore, ZV

it is incorporated in Equation (4.1) as well as in
Equation (4.6) to capture this effect.

Due to this modeling approach, a joint estimation procedure for all model
parameters is required, which further accounts for the fact that recovery rates
are solely observable in the case of default. Ignoring the possible correlation of
both processes and the limited observability of Yit yields biased estimates for γ0

to γL as shown by Heckman (1979). In particular, the selection bias of an OLS
estimation is severe if the relation between selected and non-selected observa-
tions (in our case defaulted and non-defaulted borrowers) is small (compare Wu
& Hand (2007)), which is a typical feature of defaults. A MLE procedure for
such a sample selection problem is provided by Bierens (2007) and adopted to
the case of bond recoveries by Bade et al. (2011a). Following Pykhtin (2003),
we restrict the approach of (possibly) correlated error terms to the logarithmic
transformation of the recovery rates, which allows us to derive closed form
expressions, e.g., for the expected loss.

4.2.2 Forecasting of fundamental risk measures

Deriving the parameters of the models presented in the previous section from
observed data is just the first step of our study. Given the parameters and
values for the explanatory variables under consideration, important risk mea-

66



4.2. INTRODUCTION OF THE COMPETING CREDIT RISK MODELS

sures, namely PD, EL, and expected LGD (ELGD), may be calculated for
each model setup of Section 4.2.1. In order to predict the values of each risk
measure, we assume that the factors driving the default risk and loss risk are
quantities known ex ante.14 We indicate these observable variables by xVi,t−1

and xYi,t−1, respectively.
The PD is calculated as

PDit = 1− Φ
(
β0 + β′xVi,t−1

)
, (4.7)

where Φ (·) is the cumulative distribution function of the standard normal
distribution.

For the approaches implying uncorrelated error terms, this paper calculates
the expected LGD at first and the expected loss afterwards via the relation

ELit = ELGDit · PDit. (4.8)

For each possible transformation in Equation (4.2) to Equation (4.4), a differ-
ent measure of ELGD applies:

ELGDlog
it = 1−

∞∫
−∞

exp
(
γ0 + γ′xYi,t−1 + Uit

)
1 + exp

(
γ0 + γ′xYi,t−1 + Uit

) · φ (Uit) dUit, (4.9)

ELGDpro
it = 1− Φ

(
γ0 + γ′xYi,t−1√

2

)
, (4.10)

ELGDln
it = 1− exp

(
γ0 + γ′xYi,t−1 + 0.5

)
. (4.11)

φ (·) denotes the probability density function of the standard normal distribu-
tion.

For the correlation model, however, the expected loss should be computed
14 Consequently, we do not have to predict these measures, which reduces the uncertainty

of the forecasts and allows to focus on the predictive accuracy of the competing model
approaches.
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in a first step by

ELcorr.it = Φ2

[
−
(
β0 + β′xVi,t−1

)
,−

γ0 + γ′xYi,t−1

σ
, ρU

]

− exp

(
γ0 + γ′xYi,t−1 +

σ2

2

)
·Φ2

[
−
(
β0 + β′xVi,t−1

)
− σρU ,−

γ0 + γ′xYi,t−1

σ
− σ, ρU

]
(4.12)

and the expected LGD in the second step by rearranging Equation (4.8).
Φ2 [·, ·, ·] represents the cumulative distribution function of the bivariate nor-
mal distribution.

We validate the estimated values for PD, ELGD, and EL by calculating
relative absolute errors, measuring the accuracy of the estimates relative to a
benchmark estimator. We focus on this relative performance measure, since
an absolute performance measure like the mean squared error or root mean
squared error generally takes a relatively high level of values, especially for
LGD forecasts (compare Bellotti & Crook (2012)). In other words, LGD fore-
casts generally show a low accuracy in absolute terms. For real world data
and on the single borrower level, solely a comparison of estimated LGDs with
realized LGDs of defaulted obligations would be possible (see, e.g., Bastos
(2010), Bade et al. (2011b) or Bellotti & Crook (2012) for contributions on
this topic). This is the case, because no one knows either the actual default
and loss generating processes or the real qualitative and quantitative influences
of potential risk factors. Hence, PDs, expected LGDs, and ELs may be esti-
mated based on assumptions and empirical results in relation to the underlying
risk processes and parameters, but it is impossible to compare the estimates
to their data generating counterparts. The simulation approach adopted in
this paper purports the correlation model and the underlying parameters as
the data generating framework (see Sections 4.3.2 and 4.4.1). By doing so, we
overcome the limitations of real world data. Now, it is possible to include the
risk measures derived by this model via Equation (4.7), Equation (4.8), and
Equation (4.12) in the performance analysis. This allows us to analyze whether
the compared models perform relatively well in predicting future losses and,
moreover, to judge the adequacy of each model setup for pricing and capital
allocation purposes (see for the latter Section 4.5).
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For PD, ELGD, and EL the relative absolute error is calculated by

RAERM =

∑T
t=1

∑nt

i=1

∣∣∣RMdgp
it −RM estimate

it

∣∣∣∑T
t=1

∑nt

i=1

∣∣∣RMdgp
it −RM corr.

it

∣∣∣ · 100. (4.13)

RMdgp
it represents a value of one of the considered risk measures following from

the data generating process. RM estimate
it is the corresponding estimated value

from one of the models calculated by the equations presented in this section,
and RM corr.

it is the corresponding predictor using the parameter estimates de-
rived by the correlation model. Please note that RAERM is aggregated over
all observations i = 1, . . . , nt and periods T . In contrast, for the realized
LGDjt the error measure is solely aggregated over all defaulted obligations
j = 1, . . . , ndef.t , simply because there are no realizations for LGD of non-
defaulted obligations. Furthermore, the realized LGDs are compared to the
expected LGDs derived by the respective estimation models in the numerator
and the estimated expected LGD for the correlation model in the denominator.

RAELGD =

∑T
t=1

∑ndef.
t
j=1

∣∣LGDjt − ELGDestimate
jt

∣∣∑T
t=1

∑ndef.
t
j=1

∣∣LGDjt − ELGDcorr.
jt

∣∣ · 100. (4.14)

The relative performance measure is strictly positive. Values below 100 indi-
cate a better performance of a model’s predictions compared to the benchmark
predictions. Values above 100 indicate the opposite, whereas values of 100 in-
dicate an equal performance of both models, which are compared.

4.3 Sensitivity analysis of important model pa-

rameters

4.3.1 Graphical analysis on the functional relation of PD

and expected LGD

Empirical findings suggest that PD and expected LGD are positively correlated
(see, e.g., Frye (2000b), Altman (2009) or Bade et al. (2011a)). Following the
suggestion of Frye (2000a), Pykhtin (2003)’s correlation model links the two
quantities by the choice of an unobservable systematic risk factor that jointly
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drives the default-process as well as the recovery-process of an underlying
collateral. The simpler econometric version of the model introduced in this
paper does not imply such an unobservable systematic factor. However, it
allows for firm-specific, industry-specific or macroeconomic observables as well
as the correlation parameter ρU connecting Process (4.1) and Process (4.5) by
Assumption (4.6).

Figure 4.1 shows the relation between PD, the linear predictor of the re-
covery process (γ), and ELGD for different choices of ρU and σ. The graphs
for ρU = 0 in the first row show that independent processes for default and
recovery yield expected LGDs independent from PD. The higher the choice
of γ, the lower the expected LGD. A higher fluctuation of log-recovery rates
yields higher ELGDs in the case of γ > 0 and lower ELGDs for γ < 0. Es-
pecially for a positive γ, raising the correlation parameter affects the level of
ELGD and its functional relation to the default probability. Interestingly, an
increasing default probability coincides with a decreasing expected LGD. This
counterintuitive result is even more evident in the case of a very high corre-
lation of default- and recovery-process. The empirical results of Bade et al.
(2011a) suggest such a high correlation. Nevertheless, they also show that PD
and expected LGD both increase even if neither macroeconomic covariates nor
unobservable systematic risk are implied in the model specification. The usage
of rating dummies as firm-specific characteristics has a highly significant ex-
planatory power for both processes within each model specification presented
in Bade et al. (2011a). As a consequence, β, the linear predictor of the default
process, and γ jointly decrease for a decreasing rating grade. Hence, the pos-
itive relation between PD and expected LGD is induced by the co-movement
of the linear predictors.

Figure 4.2 assumes that γ = β+Z, with the variable Z varying from −10 to
10. The figure reveals that, generally, the co-movement of the linear predictors
is no sufficient condition for the positive relation between PD and expected
LGD. If ρU = 0 and Z relatively close to zero, so that ELGD does not reach
its boundaries of either zero or one, then a positive relation of both quantities
is observable. However, for almost perfectly correlated errors and growing σ,
both quantities have a negative relationship.

Finally, Figure 4.3 shows a positive monotone relationship between PD and
expected LGD for various combinations of ρU and σ. In order to derive this
result, we specify both β and γ in dependence of Z. If we interpret Z as an
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Figure 4.1: PD-ELGD dependencies for the correlation model

This figure shows that, dependent on γ, ρ, and σ, PD and ELGD are either uncorrelated or have a negative

relation if β and γ have no functional relationship.

Figure 4.2: PD-ELGD dependencies for the correlation model if γ = β + Z

This figure shows that if γ is a linear function of β, then a higher value for ρ changes the sign of the relation

between PD and ELGD from positive to negative.
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observable quantity, which is known in advance, e.g., lagged GDP-growth, we
can see how important the distinction between observable and unobservable
(or unobserved) information driving default and recovery is. Especially, if
the correlation between the processes is high, adding an observed quantity to
the model specification alters the relation of default probability and ELGD
dramatically from negative to positive. Furthermore, this result explains past
empirical findings: the main factor of the positive PD-ELGD-correlation is
observable co-variates that drive both quantities simultaneously.

Figure 4.3: PD-ELGD dependencies for the correlation model if β = 1 + 0.1Z
and γ = γ0 + Z

This figure shows that if β and γ both are linear functions of an observable factor Z, the functional rela-

tionship is positive, irrespective of the chosen values for ρ, σ, and γ0.

4.3.2 The influence of the correlation parameter on credit

risk forecasts

Why is it important to account for a correlation ρU if we are able to explain the
positive correlation of default probability and expected LGD by implement-
ing observable factors in both underlying processes? In order to answer this
question, we construct a simple simulation study for a homogeneous portfolio
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of borrowers. In a first step, we calibrate the correlation model to three differ-
ent combinations of PD and expected LGD. The first combination refers to a
scenario with relatively low credit risk, where PD = 1% and ELGD = 30%.
The second scenario is referred to as an intermediate risk environment with
PD = 5% and ELGD = 45%, whereas the third scenario assumes a high
level of credit risk with PD = 10% and ELGD = 70%.15 We choose σ = 2

as well as different combinations of ρU and γ0, including the extreme cases
of ρU = 0 (basic assumption of most credit portfolio models) and ρU = 0.99.
The parameter assumptions are based on the empirical findings of Bade et al.
(2011a). Therefore, we are able to test the relative performance of the models
and recovery rate transformations presented in Section 4.2 depending on the
underlying credit risk as well as on the data generating dependence of default
process and recovery process.

For each parameter combination, we randomly draw ZV
it and ZY

it for a port-
folio size of 100,000 borrowers. The resulting defaults and recovery rates are
randomly divided into two sub-samples containing either 90% or 10% of the
total sample, respectively. We use the larger sub-sample as in-sample data
and the remaining sub-sample as out-of-sample data. In the next step, the in-
sample data are used to derive parameter estimates for the models presented
in Section 4.2. Afterwards, each parameter estimate is plugged into the respec-
tive formulae for PD, expected LGD, and EL. These estimates are compared
for the competing models to their benchmark values via the relative absolute
error measures calculated by Equation (4.13). Since the portfolio is homoge-
neous, i.e., each borrower has the same PD, expected LGD, and EL, there is
no distinction between in-sample and out-of-sample for the RAEs, which are
calculated for these risk measures. However, the expected losses conditional
on default events further are compared to the realized in-sample LGDs and
to the realized out-of-sample LGDs by Equation (4.14), potentially yielding
different results for the training data and the validation data. The results for
each step of this sampling procedure are saved and repeated 10,000 times.

The median16 RAEPD differs from 100 at the most in the second decimal
15 Altman (2009) finds average LGDs that vary from about 40% for senior secured bonds

or loans to 75% for discount bonds.
16 Since there is only one estimate for each risk measure per iteration, each corresponding

RAE is susceptible to outliers and so is the mean of the 10,000 RAEs. Thus, we use the
median RAE in order not to be forced into using a more or less arbitrary correction of
such values.
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place for each underlying PD. Thus, under the current setting of default risk
solely driven by β0 and the idiosyncratic factor ZV

it , the relative performances
of the probit approach and the correlation model for predicting the PD are
very similar.

Figure 4.4 presents the median RAEELGD of the respectively best perform-
ing OLS model in dependence of ρU . Only one of the OLS models incorporating
Transformation (4.2), Transformation (4.3) or Transformation (4.4) enters the
figure per scenario. The graph reveals that, irrespective of the correlation and
the scenario, the relative performance of the OLS models to the correlation
model is far worse. The level of the RAEELGD depends on the underlying credit
risk and the estimation method. The relatively best performing OLS model
for the low as well as for the high risk setting is the one incorporating probit
transformed recovery rates with RAEELGD levels of about 3,700. However,
for intermediate credit risk, the logarithmic transformation yields the lowest
RAEELGD of the three OLS models. With values between 6,800 and 7,900,
although, on a much higher level and with a much higher fluctuation compared
to the two other scenarios. As a result, not accounting for the correlation pa-
rameter during the estimation procedure yields seriously biased estimates for
the expected LGD compared to the sophisticated approach accounting for the
correlation parameter. The results for RAEEL are qualitatively the same and
quantitatively very similar to the results for expected LGD. Thus, they are
not reported here.

Figure 4.5 shows the same comparison for the realized out-of-sample LGDs.
It reveals two striking observations. The first is that the relative performance
of the OLS models to the correlation model in predicting realized LGDs de-
clines in ρU . Especially, for higher correlations exceeding 0.7, the RAEOLS

ELGD

increase sharply. Secondly, the general advantage of the simultaneous estima-
tion procedure accounting for ρU in forecasting ELGD and EL does not hold
for realized LGDs. Solely, for the intermediate risk environment, each OLS
model performs weaker than the correlation model, irrespective of the preset
value for the correlation parameter. The median values for RAELGD derived
under the low risk setting are very close to 100 until the preset correlation
exceeds 0.9. However, the values derived under the high risk setting show a
higher gap between the two modeling approaches. For lower and intermediate
values of ρU , the OLS model incorporating logarithmically transformed recov-
ery rates better fits the realized LGDs. Similar to the low risk environment,
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Figure 4.4: Sensitivity of RAEELGD in dependence of ρU
This figure compares the relative absolute errors of the ELGD estimates (RAEELGD) for a homogeneous

portfolio of borrowers. For three different credit risk environments, the estimates by the respectively best

performing OLS model are compared to Pykhtin (2003)’s correlation model. It is shown that, regardless of

ρU , none of the OLS models has a higher predictive accuracy than the correlation model.
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the forecast performance of the correlation model is not superior over the sim-
ple model’s performance before ρU ≥ 0.9. For the in-sample predictions of
LGD, qualitatively equal and quantitatively similar results apply.
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Figure 4.5: Sensitivity of RAEout−of−sample
LGD in dependence of ρU

This figure compares the relative absolute errors of the LGD estimates (RAELGD) for a homogeneous

portfolio of borrowers. For three different credit risk environments, the estimates by the respectively best

performing OLS model are compared to Pykhtin (2003)’s correlation model. It is shown that, in this

setting, the OLS models have a lower predictive accuracy than the correlation model if the preset correlation

parameter is high.

Therefore, the major advantage of the correlation model in forecasting
ELGD and EL, which are used for rating or pricing purposes, cannot be con-
firmed for the prediction of realized LGDs. However, if default and recovery
are simultaneously driven to a high extent by factors that cannot be observed
or are neglected during the estimation procedure, i.e., if the correlation of
the two processes is high, a simplifying modeling approach may yield biased
predictions for LGD. The magnitude of this inaccuracy may not be overcome
by the slight better relative performance in the case of low or intermediate
correlations. Furthermore, the simple construction of the simulation engine
(no incorporation of explanatory variables, the homogeneity of the portfolio, a
relatively high portfolio size, which increases the likelihood of precise estima-
tions) might be the cause of the relatively good fit of the OLS models in these
cases.
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4.4 Simulation study on the model performances

4.4.1 Default and recovery data generation and sampling

In order to verify the last statement concerning the simplicity of the model as-
sumptions, we extend the simulation engine by simulated observables. Namely,
we include five explanatory variables:

1. A macroeconomic variable xmacrot−1 , which once per period is randomly
drawn i.i.d. N ∼ (4, 8.8) for all observations. It may be interpreted as
the percentage change in gross domestic product (GDP).

2. A balance sheet variable xbal.i,t−1, which is drawn randomly from a uniform
distribution with bounds 20 and 80 once per period and obligor. We may
interpret this variable as liquidity or leverage in percent.

3. xsizei,t−1 represents the natural logarithm of firm size (e.g., asset value),
uniformly distributed between ln (1, 000) and ln (1, 000, 000). Due to this
transformation, bigger firm sizes become less likely.

4. xCFROIi,t−1 represents the cash flow return on investment in percent, which
is also randomly drawn N ∼ (15, 30) once per period and obligor.

Further idiosyncratic information (e.g., management ability and behavior) is
captured by the unobservables ZV

it and ZY
it . Due to the higher computational

complexity of the simulation and validation engine, we focus on two extreme
cases for the correlation parameter. The first one refers to a high error corre-
lation of ρU = 0.95 and yields the data generating process

Vit = 0.847 + 0.02xmacrot−1 + 0.01xbal.i,t−1 + 0.025xsizei,t−1 + 0.003xCFROIi,t−1

+ ZV
it , (4.15)

Yit = 1 + 0.03xmacrot−1 + 0.02xbal.i,t−1 + 0.05xsizei,t−1 + 0.005xCFROIi,t−1

+ 2 ·
(

0.95ZV
it +

√
1− 0.952 ZY

it

)
. (4.16)
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The second extreme case incorporates ρU = 0 and yields

Vit = 0.847 + 0.02xmacrot−1 + 0.01xbal.i,t−1 + 0.025xsizei,t−1 + 0.003xCFROIi,t−1

+ ZV
it , (4.17)

Yit = −3.5 + 0.03xmacrot−1 + 0.02xbal.i,t−1 + 0.05xsizei,t−1 + 0.005xCFROIi,t−1

+ ZY
it , (4.18)

where Yit = ln (RRit) in both cases.17 Besides the correlation parameter, we
recalibrate the recovery-processes by adjusting γ0 from 1 to -3.5 and σ from 2
to 1.

Using these data generation processes, we produce time series of 20 periods
for a portfolio size of 5,000 borrowers. From each time series containing 100,000
observations, we treat the observations of the first 19 periods (i.e., 95% of
the data) as in-sample and the last period as out-of-sample. Then, like in
the previous section, the in-sample data are used to estimate the parameters
of the various models presented in Section 4.2.1. In order to determine the
influence of the explanatory variables in each model, we specify four different
combinations of these:

• Specification 1: xmacrot−1 ;

• Specification 2: xbal.i,t−1, xsizei,t−1, and xCFROIi,t−1 ;

• Specification 3: xmacrot−1 , xbal.i,t−1, xsizei,t−1, and xCFROIi,t−1 , plus a beta distributed
pseudo-variable xpseudoi,t−1 that is not incorporated in the data generating
process and thus should have no statistical significant power in explaining
the realized default events and recovery rates; and

• Specification 4: xmacrot−1 , xbal.i,t−1, xsizei,t−1, and xCFROIi,t−1 .

Especially, the third specification allows us to test whether the parameter
estimates are biased and their influence thus might be neglected despite its
significance in the data generating process. Furthermore, this specification
allows us to check whether the pseudo-variable erroneously proves to have
an explanatory power. All parameter estimates are saved and in a next step
17 The default processes in (4.15) and (4.17) are calibrated to an average PD of about 4.17%.

The recovery process in (4.16) is calibrated to an average expected LGD of about 64.4%.
The recovery process in (4.18) however is calibrated to an average expected LGD of 74.6%
in order to generate most of the realized LGDs within the range of zero and one.
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utilized to calculate the default probability, the expected loss given default, and
the expected loss, which are compared via RAE to PD, expected LGD, and
EL derived from the original parameters. In contrast to the analysis in Section
4.3.2, each risk measure is borrower specific and thus the relative errors may
be calculated in-sample as well as out-of-sample. The comparison of realized
and estimated recovery rates for the defaulted obligations is performed as well.
We repeat all steps 10,000 times.

4.4.2 Economic and statistical significance of the param-

eter estimates

Table 4.1 presents the parameter estimates derived by the simultaneous MLE
approach for both data generation engines. It is shown that, irrespective of
the assumptions underlying the data generating process, the parameters of the
explanatory variables in the default process are economically correct specified
on average. Statistically, the model needs to be fully specified (Specification 4)
or overspecified (Specification 3) in order to yield average estimates that do not
differ significantly from the preset parameter values. Solely, the intercept β0 is
not correctly specified if the estimation model does not contain all observable
information. On average, βpseudo < 0.0005 and neither is economically nor
statistically significant.

If the preset correlation is 0.95, the economically correct Specification 4
does not yield as good parameter estimates for the recovery process as the
overspecified Specification 3. γmacro, γbal., and γsize are slightly underestimated
if the pseudo-variable is not included in the model specification, whereas the
influence of these variables on average is measured correctly if this actually
redundant variable is included. For γ0 and ρU , the average predictions are
improved as well if we estimate Specification 3 instead of Specification 4. The
influence of the pseudo-variable on the recovery-rate neither economically nor
statistically differs from zero with significance.

Considering the case of conditionally independent processes for default and
recovery, ρU and γ0 are both either overestimated (Specifications 1, 3 and 4)
or underestimated (Specification 2). Nevertheless, the data generating param-
eters for the model intercept as well as for the correlation are in the range
of a half standard error around their respective estimates, corresponding to
relatively narrow confidence intervals and a low probability of declining the
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null-hypothesis of γ0 = γ̂0 or ρU = ρ̂U , respectively.

Table 4.1: Average parameter estimates for the correlation model
This table reports the average parameter estimates for different specifications of Pykhtin (2003)’s correlation
model derived during the simulation study of Section 4.4.1. In order to produce data for the different
estimation procedures, the default process was parameterized as

Vit = β0 + βmacro x
macro
t−1 + βbal. x

bal.
i,t−1 + βsize x

size
i,t−1 + βCFROI x

CFROI
i,t−1 + ZV

it

and the recovery process as

Yit = γ0 + γmacro x
macro
t−1 + γbal. x

bal.
i,t−1 + γsize x

size
i,t−1 + γCFROI x

CFROI
i,t−1 + σ

(
ρU ZV

it +

√
1− ρU 2 ZY

it

)
.

OV (original value) refers to the preset parameters of these data generating processes. The average standard
errors are reported in parentheses. All average parameter estimates with an * are not statistically different
from the preset values in the data generating processes at the 5%-level.

ρU = 0.95 ρU = 0

Parameter OV Sp. 1 Sp. 2 Sp. 3 Sp. 4 OV Sp. 1 Sp. 2 Sp. 3 Sp. 4
β0 0.847 1.619 0.915 0.848 0.848* 0.847 1.619 0.915 0.848 0.848

(0.008) (0.042) (0.047) (0.042) (0.008) (0.042) (0.047) (0.043)
βmacro 0.020 0.020 0.020* 0.020* 0.020 0.020 0.020* 0.020*

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
βbal. 0.010 0.010 0.010* 0.010* 0.010 0.010 0.010* 0.010*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
βsize 0.025 0.025 0.025* 0.025* 0.025 0.025 0.025 0.025

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
βCFROI 0.003 0.003 0.003* 0.003* 0.003 0.003 0.003* 0.003*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
βpseudo 0.000 0.000* 0.000 0.000*

(0.033) (0.033)
γ0 1.000 2.560 1.119 0.992 0.779 -3.500 -1.798 -3.831 -3.189 -3.186

(0.122) (0.131) (0.140) (0.163) (1.517) (0.882) (0.744) (0.743)
γmacro 0.030 0.030 0.030 0.027 0.030 0.031 0.034 0.034

(0.003) (0.003) (0.003) (0.013) (0.009) (0.009)
γbal. 0.020 0.020* 0.020 0.019 0.020 0.017 0.022 0.022

(0.001) (0.001) (0.001) (0.005) (0.005) (0.005)
γsize 0.050 0.050* 0.050 0.046 0.050 0.044 0.055 0.055

(0.009) (0.009) (0.009) (0.016) (0.014) (0.014)
γCFROI 0.005 0.005 0.005 0.005 0.005 0.004 0.006 0.006

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)
γpseudo 0.000 0.001* 0.000 0.001*

(0.083) (0.073)
ρU 0.950 0.945 0.950* 0.947 0.866 0.000 0.111 -0.222 0.194 0.196

(0.008) (0.005) (0.006) (0.039) (0.622) (0.509) (0.456) (0.456)
σ 2.000 2.028 2.015 1.995 1.912 1.000 1.172 1.153 1.107 1.107

(0.051) (0.051) (0.050) (0.048) (0.138) (0.136) (0.126) (0.126)

Table 4.2 presents the results for a separate estimation of the model param-
eters. On average, the estimates derived for the default-process by the Probit
model do not differ from those derived by the estimation procedure for the
correlation model. Concerning the recovery-process, the pattern for a preset
correlation of ρU = 0.95 clearly shows a significant bias for the predictions from
γ0 to γCFROI in relation to the data generating parameters. The influence of
these variables is strongly underestimated or even erroneously shown to be
negative in the case of the macro-variable. However, the parameters derived

80



4.4. SIMULATION STUDY ON THE MODEL PERFORMANCES

under the favorable data generating assumptions of ρU = 0 and σ = 1 prove to
be relatively precise and even more precise than the parameters derived by the
simultaneous estimation procedure. The non-existent influence of the pseudo-
variable is correctly revealed on average for both data generating processes.
Due to the different transformation of the recovery-rates, the results for the
parameter estimates of the other OLS regression models lack of quantitative
comparability and thus are not reported here.

Table 4.2: Average parameter predictions of separate estimation procedures
for default- and recovery-process
This table reports the average parameter estimates for the default-process, using the Probit approach,
and the recovery-process, using an OLS regression of log-transformed recovery rates, derived during the
simulation study of Section 4.4.1. OV (original value) refers to the preset parameters of the data generating
processes shown in Table 4.1. The average standard errors are reported in parentheses. All average parameter
estimates with an * are not statistically different from the preset values in the data generating processes at
the 5%-level. Estimates for ρU and σ are not provided by this approach, since ρU = 0 and σ = 1 are preset
assumptions of the estimation procedure.

ρU = 0.95 ρU = 0

Parameter OV Sp. 1 Sp. 2 Sp. 3 Sp. 4 OV Sp. 1 Sp. 2 Sp. 3 Sp. 4
β0 0.847 1.619 0.915 0.848 0.848* 0.847 1.619 0.915 0.848 0.848

(0.008) (0.042) (0.047) (0.043) (0.008) (0.042) (0.047) (0.043)
βmacro 0.020 0.020 0.020* 0.020* 0.020 0.020 0.020* 0.020*

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
βbal. 0.010 0.010 0.010* 0.010* 0.010 0.010 0.010* 0.010*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
βsize 0.025 0.025 0.025* 0.025* 0.025 0.025 0.025 0.025

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
βCFROI 0.003 0.003 0.003* 0.003* 0.003 0.003 0.003* 0.003*

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
βpseudo 0.000 0.000* 0.000 0.000*

(0.033) (0.033)
γ0 1.000 -1.366 -1.595 -1.591 -1.591 -3.500 -2.063 -3.443 -3.502 -3.502

(0.015) (0.056) (0.058) (0.056) (0.017) (0.091) (0.089) (0.088)
γmacro 0.030 -0.002 -0.002 -0.002 0.030 0.029 0.030* 0.030*

(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)
γbal. 0.020 0.004 0.004 0.004 0.020 0.020 0.020* 0.020*

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
γsize 0.050 0.006 0.006 0.006 0.050 0.049 0.050* 0.050*

(0.003) (0.003) (0.003) (0.008) (0.008) (0.008)
γCFROI 0.005 0.000 0.000 0.000 0.005 0.005 0.005* 0.005*

(0.000) (0.000) (0.000) (0.001) (0.001) (0.001)
γpseudo 0.000 0.000* 0.000 0.000*

(0.007) (0.007)

For each estimate and model specification per iteration, a p-value is cal-
culated. This p-value corresponds to the probability of the null-hypothesis
that the estimated parameter value is zero being not rejected, i.e., that the
estimate is not statistically different from zero. Thus, for preset parameter
values that differ from zero, the fraction of statistically significant estimates
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to total estimates should be maximized, whereas for preset parameter values
equal to zero this fraction should be minimized. In other words: for actually
significant parameters, the fraction measures the β error, while for actually
insignificant parameters the fraction measures the α error with respect to the
null-hypothesis.

The parameter estimates for the default-process all are able to fulfill this
requirement, irrespective of the two estimation procedures considered in this
paper. The parameter estimates derived for the recovery-process are likely to
be biased if the preset correlation exceeds zero, as already shown by Table
4.2. This result gets further support by looking at Table 4.3, which reports
the fraction between significant estimates at α = 5% and all estimates for
each parameter. On the one hand, it is shown that if ρU = 0.95, then the OLS
regression models have obvious problems to identify the significance of actually
significant variables, i.e., these models produce estimates with a high β error.
Especially, the influences of xsize and xCFROI are hardly of statistic significance
in more than 25% of all iterations. Yet, the simultaneous estimation yields
statistically significant estimates for each variable, exempt from the pseudo-
variable, in at least 90% of all iterations. The fraction with respect to this
variable exceeds 5% for each model, albeit by just a few percentage points for
the correlation model, the OLS model with logarithmic recovery rates, and
the OLS model with probit-transformed recovery rates. Only the OLS model
with logit-transformed recovery rates shows a relatively high fraction of more
than 10% for the pseudo-variable. On the other hand, the table shows that if
ρU = 0, the OLS models do not have the identification problem that occurs for
the high correlation. As long as the estimation model is not underspecified, like
for Specification 1, then the MLE approach for the correlation model does not
have an identification problem concerning the explanatory variables. Anyway,
the problems concerning a correct estimation of ρU shown in Table 4.1 also
reveal themselves when looking at the relatively high fraction of correlation
estimates significantly 6= 0, which may be due to the short data sets.

Considering the accuracy of parameter estimates, the previous results sug-
gest a tradeoff between the flexibility to account for a possible correlation > 0

and overestimating this correlation if the data generating correlation is zero on
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Table 4.3: Fraction of the parameter estimates with a p-value < 5% for the
different estimation procedures deriving parameters for the recovery process
This table reports the fraction of estimates with a p-value < 5% to all estimates, derived for each parameter
of the recovery process by the competing models presented in Section 4.2 during the simulation study of
Section 4.4.1.

ρU = 0.95 ρU = 0

Correlation model
Parameter Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4
γ0 99.48% 100.00% 99.96% 99.48% 16.87% 93.72% 97.02% 97.04%
γmacro 99.32% 99.70% 91.90% 68.00% 89.76% 89.57%
γbal. 100.00% 99.70% 91.92% 91.49% 96.54% 96.69%
γsize 99.95% 99.65% 92.17% 83.60% 94.49% 94.39%
γCFROI 100.00% 99.70% 91.89% 78.96% 92.35% 92.32%
γpseudo 5.09% 4.51%
ρU 99.32% 100.00% 99.70% 91.89% 32.49% 40.44% 37.41% 37.20%
σ 100.00% 100.00% 100.00% 100.00% 99.86% 99.86% 99.88% 99.92%

OLSln

Parameter Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4
γ0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
γmacro 35.15% 31.70% 31.70% 100.00% 100.00% 100.00%
γbal. 99.03% 98.92% 98.93% 100.00% 100.00% 100.00%
γsize 26.02% 25.80% 25.80% 100.00% 100.00% 100.00%
γCFROI 5.75% 5.68% 5.68% 100.00% 100.00% 100.00%
γpseudo 5.37% 5.09%

OLSlog

Parameter Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4
γ0 21.50% 58.63% 50.16% 53.98% 100.00% 100.00% 100.00% 100.00%
γmacro 65.11% 64.68% 64.66% 100.00% 100.00% 100.00%
γbal. 78.63% 79.20% 78.64% 100.00% 100.00% 100.00%
γsize 17.48% 17.24% 17.50% 98.59% 98.94% 98.94%
γCFROI 7.25% 7.54% 7.61% 100.00% 100.00% 100.00%
γpseudo 11.57% 4.92%

OLSpro

Parameter Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 1 Spec. 2 Spec. 3 Spec. 4
γ0 100.00% 99.45% 98.74% 99.35% 100.00% 100.00% 100.00% 100.00%
γmacro 69.61% 67.62% 67.62% 100.00% 100.00% 100.00%
γbal. 87.76% 86.54% 86.56% 100.00% 100.00% 100.00%
γsize 16.00% 16.09% 16.01% 99.86% 99.93% 99.93%
γCFROI 6.26% 6.58% 6.60% 100.00% 100.00% 100.00%
γpseudo 5.16% 4.98%
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the one hand or simplifying the estimation approach and deriving biased pa-
rameter estimates if the data generating correlation exceeds zero on the other
hand.

4.4.3 The predictive power of the competing approaches

Table 4.4 provides the average RAEout−of−sample
RM derived for the four differ-

ent estimation model specifications under the assumptions of Section 4.4.1.
Hereby, the fully specified correlation model serves as benchmark model for
calculating the RAEout−of−sample

RM , which is indicated by the value 100 in the
respective cells of the table.18 First of all, the table underlines the equiva-
lence of the Probit approach and the MLE approach, which accounts for the
correlation parameter, when considering the estimation of parameters for the
default-process. Irrespective of the underlying correlation, both approaches
yield very similar RAEs for each Specification. Relative to the full model in
Specification 4, especially, the model Specifications 1 and 2 perform far worse
in predicting PDs and the expected loss. The relation EL = PD · ELGD
explains this result, since the interactions of these risk measures lead to in-
teractions in the predictive power of the different approaches underlying their
estimation. Thus, a notable improvement in one of these measures necessar-
ily improves one of the other measures due to the underlying improvement in
estimating the process-parameters, e.g., β0.

The estimates for expected LGD are by far more precise if the correlation
parameter is estimated together with the loadings of the explanatory variables.
Each OLS regression model misspecifies the influence of observable covariates,
as already shown in the previous section, and yields predictions for expected
LGD that are severely outperformed by the correlation model. If the preset
correlation is zero, the quality of the estimates depends more on the specifi-
cation than in the case of ρU = 0.95. Particularly, for the correlation model,
the predictions of the simultaneous approach improve significantly, while the
predictions of the simple models do not in the case of ρU = 0.

Generally, the correct Specification 4 yields the best estimates for each of
the three risk measures under consideration. Overspecifying the estimation
18 The predictive quality of the competing models relative to the benchmark does not differ

much between in-sample and out-of-sample. Neither the ranking among the specifications
of each model nor among the models are altered by the choice of the data sample. Thus,
we do not report the in-sample results here.
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model by the pseudo-variable does not influence the predictive power as much
as the underspecified estimation models 1 and 2. As shown in the previous
section, the insignificance of the pseudo-variable is correctly revealed in most
of the cases and thus its influence on the forecasts is negligible.

In contrast to these results, the estimates for the realized LGDs show only
little variation in RAE, underlining the difficulties of a precise LGD estimation.
None of the competing estimation procedures shows a notable improvement
among the four Specifications. Contrarily, for logistically transformed recovery
rates, more explanatory variables yield higher RAEs.

Table 4.4: Out-of-sample performance of the competing models
This table reports the average out-of-sample relative absolute errors calculated for the competing models
introduced in Section 4.2. The mean RAEs are computed from 10,000 iterations of the simulation engine
presented in Section 4.4.1.

ρU = 0.95 ρU = 0

Model Sp. 1 Sp. 2 Sp. 3 Sp. 4 Sp. 1 Sp. 2 Sp. 3 Sp. 4

RAEout−of−sample
PD

Correlation model 1360.5 1031.5 109.9 100.0 1341.7 1005.4 110.0 100.0
Probit 1360.5 1031.5 110.4 100.3 1341.7 1005.4 110.0 100.0

RAEout−of−sample
EL

Correlation model 1315.4 929.8 109.8 100.0 1605.5 1176.2 109.9 100.0
OLSln 1300.8 898.8 384.6 384.1 1601.2 1162.8 172.0 165.0
OLSlog 1416.5 1134.1 942.3 939.1 1680.5 1370.4 669.0 667.6
OLSpro 1305.7 903.6 443.6 443.3 1581.8 1125.4 358.6 357.7

RAEout−of−sample
ELGD

Correlation model 202.2 148.4 107.8 100.0 1192.1 695.4 108.4 100.0
OLSln 828.1 981.9 979.5 979.2 1175.4 781.6 615.2 614.2
OLSlog 2042.7 2541.3 2506.4 2499.0 2090.0 2488.0 2721.3 2719.5
OLSpro 991.8 1105.6 1093.0 1092.9 1268.2 1205.9 1315.3 1315.2

RAEout−of−sample
LGD

Correlation model 100.2 100.5 100.0 100.0 106.2 101.1 100.0 100.0
OLSln 109.1 109.5 109.1 109.1 107.6 103.5 104.6 104.6
OLSlog 124.6 132.9 128.5 128.4 108.7 115.5 119.9 119.9
OLSpro 110.6 111.6 110.5 110.5 121.5 115.3 116.5 116.4

Summarizing the results of this section, the suggested trade-off concerning
the correlation parameter and the choice of an estimation procedure reveals
itself as non-existent when looking at the predictive power of the competing
approaches. The joint estimation outperforms the other models in the case
of assumptions that are not fulfilled by simple OLS estimation procedures
(high correlation), and it does so in the case of assumptions leading to some
estimation problems for the joint estimation procedure (low correlation).
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4.5 Forecasting economic capital requirements

4.5.1 The measurement of unexpected loss

A precise prediction of PD, expected LGD, and EL are basic requirements
for a proper measurement of the credit risk underlying a loan, bond or other
defaultable claim. The more precise the measurement of credit risk, the closer
the approximation of the risk adequate credit spread for a financial claim.
However, the risk adequate pricing as well as the coverage against the downside
risk of financial obligations is a key determinant for the sustainable success of
a financial institution.

Generally, this downside risk is calculated as the unexpected loss, i.e., the
difference between Value-at-Risk (VaR) and expected loss:

ECit = V aRit − ELit
= LGDdown

it · CPDit − ELGDit · PDit. (4.19)

This fraction of the bank’s exposure should be held as economic capital. The
VaR corresponds to the 99.9% quantile of a borrower’s loss distribution with
respect to the realization of systematic risk. It either may be computed or sim-
ulated directly or obtained by the product of a downturn LGD, LGDdown

it , and
a default probability conditional on a negative realization of systematic risk,
CPDit. For the purpose of deriving distributions for these three measures,
credit portfolio models are often extended by a standard normal distributed
unobservable systematic risk factor, as Pykhtin (2003) does theoretically and
Bade et al. (2011a) do empirically for the correlation model of Equation (4.6).
Estimating such a model and, especially, the correlation model discussed in
this paper is computationally challenging. Thus, we simplify this approach by
plugging in the 0.1 percentile of the distribution of the observable macroeco-
nomic variable instead of its respective realization from t−1 into the formulae
for PD, expected LGD, and EL, presented in Section 4.2.2, to derive estimates
for CPD, downturn LGD, and for VaR.

Extending the validation framework of Section 4.4.1, we are able to calculate
relative absolute errors, in-sample and out-of-sample, by Equation (4.13), for
the economic capital. Furthermore, we are able to calculate the fraction of
iterations with underestimated capital requirements and overestimated capital
requirements respective to the total number of iterations as well as the average
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difference between actual and estimated capital needs conditional on over- or
underestimation.

4.5.2 The adequacy of economic capital allocations by

the competing models

Table 4.5 reports the results of the framework extension with respect to the
out-of-sample data.19 It shows that, basically, the previous results concerning
the order of the competing models hold for the capital requirements as well. In-
terestingly, the RAEs calculated for the economic capital with the parameters
of Specification 2 are much higher on average for each model than those for the
other specifications and do not differ among the models. The reason behind
this is the assumption of βmacro = γmacro = 0. That is, systematic influence on
the fluctuation of default rates and loss rates is neglected in this specification.
Consequently, the unexpected loss calculated from the parameter estimates is
zero, resulting in identical RAEs for each model. The fraction of underesti-
mates for the economic capital by this specification is high compared to the
other specifications as further shown in this table.

Focussing on the results for the correct Specification 4 shows that the ap-
plication of the correlation model is the only one of the models compared that
does not systematically understate the economic capital requirements. The
fraction of underestimations is about 50% and the average difference between
actual economic capital and predicted economic capital conditional on either
under- or overestimation is nearly equal for both cases, at least for ρU = 0. But
recalling the improvement of the correlation estimates when using Specifica-
tion 3 instead of Specification 4 for ρU = 0.95 supports the conclusion that this
result holds irrespective of the underlying assumptions for the correlation pa-
rameter. In this case, the overspecified model yields almost equal averages for
under- and overestimations, like the correct model does in the case of ρU = 0.

Regarding the other models, a relatively high correlation underlying the
data generating process yields severely biased predictions of the economic cap-
ital. For Specification 4, at least 85% of the estimates are below the actual
requirements, corresponding to an average underestimation of 0.455% with
respect to the credit exposure. The relatively weak performance shown by
19 Once more, there is no notable difference between the in-sample and the out-of-sample

results.
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the OLS model incorporating logistically transformed recovery rates in Sec-
tion 4.4.3 holds with an average underestimation of economic capital by about
2.9% of the exposure and about 98.6% underestimated economic capital re-
quirements in the case of ρU = 0.95. In the case of ρU = 0, this model shows
the highest fraction of overestimated capital requirements (91.6%) with av-
erage overestimations of about 1.1% for economic capital. The OLS model
with correctly transformed recovery rates tends to overestimate the economic
capital needs (∼ 40 : 60) if ρU = 0. The estimation procedure with probit
transformed recovery rates understates the capital allocation systematically
in the case of ρU = 0.95. In fact, it tends to do so in the case of ρU = 0.
Quantitatively, however, the biases are not as dramatic as the biases by the
OLS model with logistically transformed recovery rates.

Comparing the relative and the absolute performance of the models under
consideration with respect to adequate capital allocations reveals an important
issue: although the RAEs are seemingly in an acceptable range, the absolute
performance of the OLS models in the case of ρU = 0.95 is far away from
being adequate for capital allocation purposes. Thus, the relative ranking
of the model’s predictive performance should not serve as a single decision
criterion. A joint consideration with the absolute performance is necessary in
order to determine the predictive quality of a model.

4.6 Conclusion

A well-conceived credit risk model needs to fulfil four standards in order to
suitably forecast future defaults and losses. This paper analyzes whether a
simplified version of Bade et al. (2011a)’s econometric extension to Pykhtin
(2003)’s correlation model generally may fulfil these requirements.

First of all, the model has to account for the empirical observation that
default rates (as realization of PD) and LGD (as realization of expected LGD)
move jointly. We show graphically that the positive relation of both quanti-
ties may solely be explained by observed factors20 that drive both quantities
simultaneously, irrespective of the values chosen for ρU . Thus, the underlying
20 Either macroeconomic, e.g., GDP or firm-specific, e.g., ratings, compare Bade et al.

(2011a).
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Table 4.5: Relative absolute errors and absolute accuracy of economic capital
estimates
This table reports the average relative absolute errors of economic capital calculated for the competing
models introduced in Section 4.2. The mean RAEs are computed from 10,000 iterations of the simulation
engine presented in Section 4.4.1. Furthermore, the fraction of underestimates to total estimates as well as
the average amounts of over- and underestimation for the economic capital are presented.

ρU = 0.95 ρU = 0

Sp. 1 Sp. 2 Sp. 3 Sp. 4 Sp. 1 Sp. 2 Sp. 3 Sp. 4

RAEout−of−sample
EC

Correlation model 439.2 1688.6 101.3 100.0 548.4 2108.7 101.5 100.0
OLSln 451.3 1688.6 181.9 181.3 550.0 2108.7 103.7 102.3
OLSlog 1112.6 1688.6 1101.6 1101.4 599.4 2108.7 328.8 328.5
OLSpro 488.1 1688.6 308.0 307.8 548.7 2108.7 114.0 112.7

Fraction of underestimates for ECout−of−sample

Correlation model 47.0% 99.9% 50.7% 49.7% 47.8% 99.9% 50.5% 50.4%
OLSln 57.2% 99.9% 85.3% 85.5% 46.5% 99.9% 42.7% 42.5%
OLSlog 91.8% 99.9% 98.5% 98.6% 34.6% 99.9% 8.5% 8.4%
OLSpro 66.9% 99.9% 95.2% 95.3% 47.8% 99.9% 61.3% 61.4%

Average amount of underestimation for ECout−of−sample

Correlation model 0.594% 4.520% 0.133% 0.126% 0.949% 7.155% 0.170% 0.168%
OLSln 0.821% 4.520% 0.456% 0.455% 0.905% 7.155% 0.137% 0.135%
OLSlog 2.844% 4.520% 2.871% 2.871% 0.547% 7.155% 0.029% 0.028%
OLSpro 1.057% 4.520% 0.805% 0.804% 0.955% 7.155% 0.237% 0.234%

Average amount of overestimation for ECout−of−sample

Correlation model 0.598% 0.001% 0.135% 0.138% 0.951% 0.001% 0.172% 0.169%
OLSln 0.401% 0.001% 0.030% 0.029% 1.001% 0.001% 0.213% 0.210%
OLSlog 0.058% 0.001% 0.005% 0.005% 1.556% 0.001% 1.122% 1.122%
OLSpro 0.257% 0.001% 0.009% 0.008% 0.946% 0.001% 0.152% 0.149%

processes are not necessarily required to be linked directly by a correlation
parameter to explain the co-movement of PD and expected LGD.

Secondly, at least the qualitative impact of potential drivers for the default
risk and loss risk should be revealed correctly. In a simulation study, we
show that simple OLS models, even if correctly specified, have difficulties to
reveal this impact if the correlation parameter preset in the data generating
processes is high. However, a MLE approach for the simultaneous estimation
of the parameters from the default process and the recovery process, which
accounts for the possible correlation, is able to identify variables from pseudo-
variables properly. Due to the short data sets, the correlation parameter is not
estimated correctly if its data generating counterpart is low.

Even a 100 percent precise estimation of the model parameters has no major
advantage if an uncorrect model yields similar or maybe even better forecasts
with less effort. Thus, the third requirement is the LGD forecasting quality of
a credit risk model relative to other modeling approaches. This quality should
neither depend on the underlying risk environment nor on the attributes of
the data generating process. In a simulation based analysis of three different

89



4.6. CONCLUSION

scenarios (low credit risk, intermediate credit risk, and high credit risk), we
show that the flexible model yields comparable forecasts for lower correlation
values preset in the data generating process and also outperforms simple OLS
models for high correlations. In a more sophisticated setting, implementing
explanatory covariates in the simulation engine, we show that, even in the case
of assumptions in favor of the OLS models (ρU = 0), the flexible model out-
performs the OLS models. Consequently, Pykhtin (2003)’s modeling approach
pays off at the latest in a more realistic setting, where data are generated by
observable risk factors and not simply by unobservable idiosyncratic risk.

The fourth requirement is that a credit risk model may be adopted for pric-
ing purposes and the allocation of economic or regulatory capital. Thereto, we
need to investigate the relative performance in predicting realized LGDs and,
additionally, the underlying risk measures, namely PD, EL, and expected LGD.
Like the second one, this requirement can only be tested in a simulation-based
environment, where the data generating model and its underlying parameters
are known quantities. Thus, we extend the simple and the sophisticated simu-
lation study to the analysis of these risk measures. We show that, apart from
the PD forecasts, none of the competing models is able to perform as well as
the correlation model. For high preset correlation values, they perform even
far worse than the benchmark, while the correlation model performs far better
than the benchmark. Concerning the absolute performance of the forecasts for
economic capital, the simple models seriously underestimate the capital needs
if the preset correlation is high, while the flexible model neither systematically
under- nor systematically overestimates the economic capital.

To conclude, the flexibility to account for the different assumptions of the
data generating process, most importantly the correlation parameter, reveals
the superiority of the correlation model over less sophisticated approaches,
neglecting the possible correlation of default- and recovery-process, with re-
spect to forecasts of future LGDs. Even more importantly, it reveals that
a risk-adequate pricing and a sufficiently but not excessively high allocation
of economic capital are complementary features of the credit risk modeling
approach analyzed in this paper.
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Chapter 5

A Brief Outlook to Further
Research Topics

5.1 Basic Results of this Thesis

A review of the previous chapters yields one basic insight: implementing a
dependence structure between default probability and loss given default is a
major requirement for modeling credit risk suitably. The empirical result of
co-moving default probabilities and losses given default, derived by Altman
(compare Altman et al. (2004), Altman et al. (2005), Altman (2009)), Frye
(compare Frye (2000b), Frye (2005)) and many other authors, is supported for
nonfinancial companies by analyzing Moody’s bond data in Chapter 2. More-
over, the results of previous authors are extended by strong evidence that, in
addition to systematic risk, idiosyncratic risk factors – either observable or
not – play a key role in explaining this co-movement. Given that observable
idiosyncratic risk factors, like the rating grade, or systematic risk factors, like
the change in gross private domestic investment, influence the processes un-
derlying default and recovery simultaneously, the positive relation of PD and
LGD may already be explained by these factors. Nevertheless, the empirical
analysis shows that the unobservable idiosyncratic risk factors, driving both
processes, are almost perfectly correlated. Hence, the positive relation of PD
and LGD is even stronger than the relation explained by the observable factors.

The empirical evidence on the high correlation suggests to estimate all pa-
rameters of a joint model for PD and LGD, including the correlation param-
eter, simultaneously, using the MLE method. Following statistical theory, a
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separate estimation of disjunct models for both risk measures, excluding the
correlation parameter, yields biased estimators for the factor loadings of the
recovery process. As a consequence of the high correlation estimates, this sam-
ple selection bias, which is due to the non-observability of LGD in the case of
a non-defaulted claim, is likely to be severe. When looking at the accuracy
of the two modeling approaches for predicting LGD in Chapter 3, the estima-
tion bias may be assessed to be an economic issue as well. Accounting for the
correlation parameter in the estimation procedure leads to a higher predictive
accuracy for LGD than a separate estimation of the process parameters. Thus,
the estimation bias is statistically and economically relevant, since accounting
for this bias allows for a more precise assessment of a defaultable claim’s credit
risk.

The empirical findings get strong support by the results of the simulation
study in Chapter 4. First of all, it is shown that, if default and loss data
for a portfolio of borrowers are generated by a high correlation, a simultane-
ous estimation procedure for all model parameters, including the correlation
parameter, yields consistent parameter estimators. A separate estimation of
the model parameters, excluding the correlation parameter, however, yields
statistically biased parameter estimators, as predicted by statistical theory.
Additionally, realizations of these biased estimators may even have a wrong
sign, yielding a misleading economic interpretation of the underlying risk fac-
tor. Based on the parameter estimates, important credit risk parameters,
especially, the economic capital, are predicted and compared to their data
generating counterparts. It is shown that, if the estimators for the model pa-
rameters are biased, the capital requirements, covering a financial institution
against an unexpected loss, are systematically underestimated. The simultane-
ous MLE procedure corrects for the estimation bias. Consequently, the credit
risk parameters and, in particular, the economic capital charges are neither
underestimated nor overestimated in a systematic manner.

5.2 Suggestions for Further Analyses

Albeit the supportive results from the empirical and simulation based analysis,
for implementing the modeling approach by Pykhtin (2003), there remain sev-
eral possibilities for extending the analysis. First and foremost, the empirical
analysis of Chapter 2 and Chapter 3 should be repeated with an alternative
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data base to bond data, e.g., bank data with a greater set of explanatory vari-
ables. In this respect, it would be interesting to see whether some of these
variables add explanatory power solely to one of the two processes, as opposed
to both processes. Certainly, the magnitude of the correlation parameter is
also of key importance. It determines the degree of a possible sample selection
bias when choosing separate procedures for estimating the model parameters.
In order to derive more reliable predictions for credit risk, improving the data
quality is also an important issue.

A further concern, with regard to empirical data, is the bimodality of LGD
distributions, which often can be observed, although not explained by any
variables (compare Schuermann (2005), p. 4). A comparison between esti-
mation methods, trying to account for the bimodality (see, e.g., Bellotti &
Crook (2012) or Hlawatsch & Ostrowski (2011)), and the estimation method,
suggested in this thesis, may contribute to a more comprehensive analysis of
different modeling approaches. Additionally, nonparametric approaches like
regression trees (see, e.g., Bastos (2010)) or density estimators (see, e.g., Cal-
abrese & Zenga (2010)) as well as survival analysis (see, e.g., Zhang & Thomas
(2012)) may be part of future model comparisons.

The design of the model comparison, especially in a simulation study, may
be altered as well. On the one hand, the impact of the study settings on the
results is an interesting topic for further analysis. Particularly, the portfolio
size and composition, the number and distribution of explanatory variables,
the relation between in-sample and out-of-sample portfolio, and the definition
of the data generating model may be altered. On the other hand, different
performance measures to RAE and RMSE may be applied. E.g., Hlawatsch
& Reichling (2010) apply two criterions from PD validation, the area under
curve and the accuracy ratio, to validating LGD estimates.

Finally, a possible contribution of further research is the extension of the
model. Particularly, the implementation of different distributional assump-
tions for the unobservable systematic and idiosyncratic risk factors, like the
fatter tailed t-distribution, is an interesting concern. The normal distribution is
viewed as understating the loss, associated with rare events, like default (com-
pare Frey et al. (2001), p. 1). For contributions on implementing t-copulas in
factor models, see, e.g., Frey et al. (2001), Frey & McNeil (2003) or Hamerle
& Rösch (2005). Another imaginable direction for extending the model is to
apply it for pricing purposes, e.g., of risky bonds or credit derivatives. In this
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context, however, one problem, when calibrating the pricing model to observed
spreads, is to identify the implied recovery rate (compare Schönbucher (2003),
p. 159).

Regarding the results of this thesis and the future research topics, suggested
in the previous paragraphs, it is obvious that there are still a lot of challenges
remaining. Both in the field of credit risk, in general, and the dependence
between default and recovery, in particular, empirical work is the main source
of improving and extending existing models and estimation methods, with
respect to their predictive accuracy.
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Chapter 6

Comment on "The weighted
average cost of capital is not quite
right

The content of this chapter was originally published as Bade, B. (2009), ‘Com-
ment on "The weighted average cost of capital is not quite right"’, The Quar-
terly Review of Economics and Finance 49, pp. 1476–1480.

6.1 Introduction

For years finance literature deals with the question how future cash flows have
to be discounted in order to obtain their adequate present value. Many special
cases and the corresponding valuation equations including adequate adjust-
ments for the cost of capital were investigated. Names like Gordon-Shapiro,
Modigliani-Miller and Miles-Ezzell are just the tip of the iceberg of large contri-
butions to corporate financial theory. The textbook formula for the Weighted
Average Cost of Capital (WACC) accounting for the capital structure and the
resulting tax consequences is taught if not in all but at least in most finance
courses around the world.

In his article "The weighted average cost of capital is not quite right",
Richard A. Miller questions if the WACC yield correct normal profits to both
equity and debt holders and if tax consequences should be accounted for in
the denominator of a valuation equation at all. He derives a so called "non-
linear WACC" which in his opinion is superior to the standard approach of
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calculating the WACC.
The purpose of this paper is to show that the traditional WACC are able

to yield sufficient normal profits to satisfy both investor groups and that the
NLWACC are only valid for a very restrictive set of assumptions while the
WACC textbook formula is always valid.

The paper is organized as follows: section 6.2 addresses the question of the
correct normal profit and section 6.3 the question of the correct tax treatment.
Section 6.4 concludes the paper.

6.2 Conclusion 1: The traditional WACC are

inadequate to produce a sufficient normal

profit

6.2.1 The fundamental Principle: No Arbitrage

In finance the correctness of every valuation model is based on the fundamental
principle of no arbitrage. That means that cash flows of equivalent risk have
to be priced equivalently. In terms of project valuation the value of the project
cash flows at time t (Vt) is obtained by discounting the cash flow and the value
of the project cash flows of time t + 1 (CFt+1 + Vt+1) with the appropriate
cost of capital rt representing the return on an alternative investment with
identical risk:

Vt =
CFt+1 + Vt+1

1 + rt
. (6.1)

Assuming a project generating cash flows until time T yields a present value
of the project of

Vt =
T∑

s=t+1

CFs∏s−1
i=t (1 + ri)

. (6.2)

If the cost of capital and the cash flows are constant over time, equation 6.2
simplifies to

Vt =
CF

r
·
(

1− 1

(1 + r)T−t

)
. (6.3)
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In order to compare the results derived by Miller with the ones in this
article the same example is used. For a project with a lifetime T = 8 and an
investment I0 = 200, 000 the break-even cash flow yielding a net present value
of zero (normal profit) will be derived under various financing assumptions.
It is assumed that if the project would be financed by equity as well as by
debt the debt-to-value ratio would be 1

4
at time 0. The risk adequate cost

of capital at this ratio are for the debt holders rD = 6% and for the equity
holders rE = 12% respectively. The WACC are calculated as follows:

WACC =
3

4
· 12% +

1

4
· 6% = 10.5%. (6.4)

For simplification it is assumed that the tax rate equals zero.

6.2.2 The WACC under Autonomous Financing

"A firm is autonomously financed exactly then when it’s future amount of
debt Dt is already a certain quantity today" (see Kruschwitz & Löffler (2005),
p. 66). For the considered project this definition means that an amortization
schedule for D0 = 50, 000 has to be fixed. Since not only the total cash flows to
the investors but also the payments to each group of them should be constant
over time, an annuity schedule is appropriate. The annuity payment is

CFD = 50, 000 ·
(

1

6%
·
(

1− 1

1.068

))−1

= 8, 051.80, (6.5)

which is the same amount as calculated by Miller.
In order to obtain a time constant payment to the equity holders, too, it

is necessary to make the assumption that the risk of these payments is not
affected by the amount paid to debt holders so that rE = 12% is constant as
well. Then the following payment is obtained:

CFE = 150, 000 ·
(

1

12%
·
(

1− 1

1.128

))−1

= 30, 195.43, (6.6)

which is also the same amount as calculated by Miller.
In the next step debt values Dt and equity values Et are calculated for each

period using Equation (6.1) (see Table 6.1). Based on these values the total
value of the project, the debt-to-value ratio dt and the WACC for each period
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are derived. As the last two columns of Table 6.1 show the debt-to-value ratio
and the WACC at first are the same as in the article of Miller. But in the
subsequent years the debt-to-value ratios decline and consequently theWACC

grow. So, the WACC are not constant over time. Hence, for calculating the
present value of CF1 to CF8 it is necessary to take Equation (6.2) and not
Equation (6.3) as did in Miller’s article.

Table 6.1: Cash flows, equity and debt values under autonomous financing
The table shows the cash flows to equity holders and debt holders as well as the total cash flows for every
period. Furthermore it shows the values of equity and debt, the total value of the project, the debt-to-value
ratio and the WACC for every period.
Period CFE

t Et CFD
t Dt

0 -150,000.00 150,000.00 -50,000.00 50,000.00
1 30,195.43 137,804.57 8,051.80 44,948.20
2 30,195.43 124,145.70 8,051.80 39,593.30
3 30,195.43 108,847.75 8,051.80 33,917.10
4 30,195.43 91,714.06 8,051.80 27,900.33
5 30,195.43 72,524.32 8,051.80 21,522.55
6 30,195.43 51,031.81 8,051.80 14,762.11
7 30,195.43 26,960.20 8,051.80 7,596.04
8 30,195.43 0.00 8,051.80 0.00
Period CFt = CFE

t + CFD
t Vt = Et +Dt dt WACCt

0 -200,000.00 200,000.00 25.00% 10.50%
1 38,247.22 182,752.78 24.60% 10.52%
2 38,247.22 163,738.99 24.18% 10.55%
3 38,247.22 142,764.85 23.76% 10.57%
4 38,247.22 119,614.39 23.33% 10.60%
5 38,247.22 94,046.87 22.88% 10.63%
6 38,247.22 65,793.92 22.44% 10.65%
7 38,247.22 34,556.24 21.98% 10.68%
8 38,247.22 0.00 - -

The result of an autonomous financing policy is in line with the result
taking the "nonlinearWACC (NLWACC)" by Miller since the NLWACC =

10, 5533% are simply the internal rate of return (IRR) of an investment of
200,000 yielding a yearly cash flow of 38.247,22 for 8 years. But calculating
EVAs or the project values for t > 0 based on these would lead to wrong results
because the IRR changes with declining investment horizon.

6.2.3 The WACC under Financing based on Market Val-

ues

Taking Equation (6.3) to calculate the present value of time constant cash flows
requires the assumption that the debt-to-value ratio and as a consequence the
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WACC remain constant over time. Such a financing policy with at present
already certain future debt-to-value ratios is referred as financing based on
market values (compare Kruschwitz & Löffler (2005), p. 70).

In the example the required cash flow with constant WACC is

CF = 200, 000 ·
(

1

10.5%
·
(

1− 1

1.1058

))−1

= 38, 173.86, (6.7)

which is lower than the total cash flow under the assumption of a fixed
amortization schedule. Table 6.2 shows debt and equity values and also the
cash flows to each investor group. Regarding the latter it is remarkable that
both are not constant over time any more. As a result of the constant debt-
to-value ratio the CFE

t decline form period 1 to period 8 and the CFD
t grow

during that time.
Are these cash flows sufficient to satisfy the providers of debt financing and

also the providers of equity financing? The answer is: yes they are. Since the
cash flows to debt holders are calculated using the required interest rate of
6% and all of the debt is repaid after period 8 none of their financial claims
are outstanding after the project has finished. The cash flows to the equity
holders are calculated as the residual of the total cash flows and the debt
service. In order to fulfill the financial claims of the equity holders as well,
the residuals have to return the equity cost of capital of 12% in every period.
Rearranging Equation (6.1), rEt easily can be obtained as the required 12% for
every period. Hence, the statement that "by not calculating separately the
normal profit amounts for debt and equity financing, the WACC understates
the necessary CF" (see Miller (2009), p. 132) is doubtable.

The IRR in this case equals the WACC and not the NLWACC. Hence,
the NLWACC are a special case of the IRR under the assumption of an
autonomous financing policy which yields time constant cash flows to debt
holders and to equity holders as well.

99



6.3. CONCLUSION 2: INCLUDING THE TAX RATE IN THE WACC
SEEMS MISPLACED

Table 6.2: Cash flows, equity and debt values under financing based on market
values
The table shows the cash flows to equity holders and debt holders as well as the total cash flows for every
period. Furthermore it shows the values of equity, debt and the total value of the project.
Period CFE

t = CFt − CFD
t Et = Vt −Dt CFD

t = Dt−1 · (1 + rD)−Dt Dt = 0.25 · Vt
0 -150,000.00 150,000.00 -50,000.00 50,000.00
1 30,880.39 137,119.61 7,293.46 45,706.54
2 30,687.19 122,886.78 7,486.67 40,962.26
3 30,473.69 107,159.50 7,700.16 35,719.83
4 30,237.78 89,780.85 7,936.07 29,926.95
5 29,977.10 70,577.45 8,196.75 23,525.82
6 29,689.05 49,357.69 8,484.80 16,452.56
7 29,370.76 25,909.86 8,803.10 8,636.62
8 29,019.04 0.00 9,154.82 0.00
Period CFt Vt

0 -200,000.00 200,000.00
1 38,173.86 182,826.14
2 38,173.86 163,849.03
3 38,173.86 142,879.33
4 38,173.86 119,707.80
5 38,173.86 94,103.27
6 38,173.86 65,810.25
7 38,173.86 34,546.48
8 38,173.86 0.00

6.3 Conclusion 2: Including the tax rate in the

WACC seems misplaced

Of course, ignoring taxes would be the wrong choice since they yield an interest
tax shield of τ · rd · Dt−1. For valuing these tax shields different approaches
exist:

• Calculate the cash flows and the cost of capital as if no debt is raised.
Then value the unlevered project and add the present value of the tax
shields to obtain the value of the levered project.21

• Calculate the cash flows of the project as if no debt is raised. Account
for the tax shields by adjusting the debt cost of capital by a tax factor
(1− τ) and calculate the WACC by the textbook formula

WACCt =
Et
Vt
· rEt +

Dt

Vt
· rDt · (1− τ) .22 (6.8)

21 This method is referred to as the "adjusted present value APV " method. Compare Berk
& DeMarzo (2007), pp. 581-585.

22 This method is reffered to as the WACC method. Compare Berk & DeMarzo (2007),
pp. 577-579.
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• Calculate the cash flows of the project taking into account the interest
payments. No tax adjustment of the cost of capital is required.

Which of the three methods is superior in the sense of computational com-
plexity depends on the assumptions made on the financing policy and the
sensitivities which should be analyzed. But under the same assumptions all
three methods yield the same result (compare also Berk & DeMarzo (2007),
p. 605).

In his conclusion, Miller states that "the stockholders still require rE and
the bondholders still require rD, regardless of the tax deductability of interest
payments." Although this statement is not wrong it neglects that from the
point of view of the project the required cash flows for zero normal profit are
lower with taxes than without. The quantitative impact of the tax advantage
is best obtained by comparing these. Using the NLWACC then means a loss
of information.

6.4 Summary

The valuation of a firm or a project is not quite easy. Besides the uncertainty
concerning the estimation of cash flows and the risk adequate cost of capital one
mistake is avoidable: the formulation of a valuation model not considering the
assumptions on the financing policy and the resulting tax advantages correctly.
Hence, the same cash flows may yield different project values and accordingly
different cash flows may yield the same project values.

As shown in the previous sections, concluding that the WACC textbook
formula is inadequate and that taxes rather should be implemented in the
income statement, seems to be premature, since the WACC formula is far
away from being inadequate. In fact it is always valid. It simply requires
to be calculated with the correct debt-to-value ratios which are time varying
unless a time constant ratio is assumed. Furthermore the tax adjustment in the
denominator of the valuation equation allows for easier comparisons of different
tax rates since no new computation of the income statement is required for
each tax rate. The NLWACC not only yield incorrect project values for most
assumptions according to the financing policy. When used to derive a time
constant cash flow yielding a NPV = 0 they furthermore do only provide an
answer to the question which cash flows the investors receive but not which
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cash flows have to be generated by the project.
Though, stating that the NLWACC are superior to the WACC is inap-

propriate, since rather it is the other way around.
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