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Abstract 

Abstract 

Cytokines belong to a class of proteins which have essential functions throughout the body. 

They can influence tissue development, hematopoiesis and the immune defense. Sometimes, 

cytokines can cause programmed cell death and also certain diseases. 

 

In the present work, the production and purification process using recombinant E. coli strains 

was developed for four cytokines: 16-kDa human prolactin (hPRL), human Activin A (hActivin 

A), murine hematopoietic signal peptide-containing secreted 1 (mHSS1), as well as murine 

protein family with sequence similarity 163, member A (Fam163a). 

 

For the purification of 16-kDa hPRL, a combination of anion exchange membrane 

chromatography and size exclusion chromatography was applied. An affinity chromatography 

procedure was used in the polishing step to remove endotoxins. Finally, the apoptotic activity 

of purified 16-kDa hPRL was verified in vitro and in vivo.  

 

Activin A is one of the most important hematopoietic cytokines. The human HSS1 and 

Fam163a have exhibited pro-angiogenetic activity. The current strategy for obtaining of the 

three cytokines is based exclusively on production in eukaryotic cells. Within this thesis, for the 

first time, the production of these three cytokines as thioredoxin (Trx) fusion proteins in E. coli 

was attempted. As an initial step in the production process, the cultivation conditions of the 

recombinant bacteria were optimized. hActivin A was entirely produced in form of inclusion 

bodies, whereas Fam163a was produced almost as completely soluble fusion protein. The 

fusion with Trx allowed production of soluble mHSS1 but only in small amounts compared 

with the insoluble part.  

 

The inclusion bodies of Trx-hActivin A were used as the starting material for purification. After 

renaturation and purification of his-tagged fusion protein via immobilized metal ion affinity 

chromatography (IMAC) based on membrane adsorber technology, the fusion protein was 

subsequently cleaved with the tobacco etch virus (TEV)-protease. The released hActivin A did 

not maintain its solubility in the absence of the Trx fusion partner. 

 

Due to degradation, the purity of IMAC purified Trx-Fam163a was poor. After cleavage of the 

fusion protein, the released Fam163a was successfully isolated via immunoprecipitation using 

anti-his antibody beads. The target protein was detected in the flow through and the recovery 
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Abstract 

was limited using this method. However, the bioactivity of purified Fam163a was proven via 

scratch assay.  

 

Instead of soluble Trx-mHSS1, the inclusion bodies were applied to the purification process. 

The fusion protein was purified under optimized denaturing conditions following refolding in 

vitro. Subsequently, Trx-mHSS1 was cleaved using TEV-protease, resulting in the release of 

soluble mHSS1 and Trx. The isolation of mHSS1 was achieved by another IMAC. Finally, the 

angiogenetic effect of purified mHSS1 was confirmed using different activity assays.  

 

Key words: recombinant cytokines; fusion protein; thioredoxin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 

Zusammenfassung 

Zusammenfassung 

Zytokine gehören zu einer Klasse von Proteinen, die im ganzen Körper essentielle Funktionen 

haben. Sie können die Gewebeentwicklung, die Blutbildung und die Immunabwehr 

beeinflussen. Manchmal können Zytokine den programmierten Zelltod oder auch bestimmte 

Krankheiten verursachen. 

 

Im Rahmen dieser Arbeit wurde der Produktions- und Aufreinigungsprozess für vier Zytokine 

unter Verwendung rekombinanter E. coli Stämme durchgeführt: 16-kDa humanes Prolaktin 

(hPRL), humanes Activin A (hActivin A), murines Hematopoietic Signal Peptide-containing 

Secreted 1 (mHSS1), sowie murines Protein Family With Sequence Similarity 163, Member A 

(Fam163a).  

 

Für die Aufreinigung von 16-kDa hPRL wurde eine Kombination von Anion- 

austauschermembran- und Größenausschlusschromatographie eingesetzt. Außerdem wurde eine 

Affinitätschromatographie als Polierschritt zum Entfernen von Endotoxinen verwendet. 

Abschließend wurde die apoptotische Aktivität des aufgereinigten 16-kDa hPRL in vitro und in 

vivo nachgewiesen.  

 

Activin A ist eines der wichtigsten Zytokine in Bereich der Blutbildung. Die humanen HSS1 

und Fam163a zeigten Aktivität bei der Angiogenese. Bisher basierte die Gewinnung der drei 

Zytokine ausschließlich auf der Produktion in eukaryotischen Zellen. In der vorliegenden 

Arbeit wurde erstmalig versucht, die drei Zytokine jeweils als Thioredoxi (Trx)-Fusionsprotein 

in E. coli zu produzieren. Als Teil des ersten Prozessschrittes wurden die Kultivierungs- 

bedingungen der rekombinanten Bakterien optimiert. hActivin A wurde vollständig in Form 

von Einschlusskörpern produziert, während Fam163a nahezu komplett als lösliches 

Fusionsprotein gebildet wurde. Die Fusion mit Trx ermöglichte die Produktion von löslichem 

mHSS1. Allerdings war die Menge im Vergleich zum unlöslichen Teil sehr klein. 

 

Die Einschlusskörper von Trx-hActivin A wurden als Ausgangsmaterial für die Aufreinigung 

verwendet. Nach der Renaturierung und Aufreinigung des His-getaggten Fusionsproteins 

mittels immobilisierter Metallaffinitäts-chromatographie (IMAC) basierend auf Membran- 

adsorber Technik erfolgte die Spaltung des Proteins mit Tobacco Etch Virus (TEV) -Protease. 

Ohne Fusion mit Trx konnte hActivin A seine Löslichkeit nicht beibehalten. 

 

Aufgrund von Abbauprozessen war die Reinheit des mittels IMAC-aufgereinigten 



IV 

Zusammenfassung 

Trx-Fam163a gering. Nach Spaltung des Fusionsproteins wurde das freigesetzte Fam163a 

mittels Immunopräzipitation unter Verwendung von Anti-His-Antikörper-Beads erfolgreich 

isoliert. Das Zielprotein wurde in Durchfluss detektiert wobei die Rückgewinnung mit dieser 

Methode limitiert war. Jedoch wurde die Bioaktivität des aufgereinigten Fam163a mittels 

Scratch Assay bestätigt. 

 

Anstatt des löslichen Trx-mHSS1 wurden die entsprechenden Einschlusskörper für den 

Aufreinigungsprozess eingesetzt. Das Fusionsprotein wurde unter optimierten Denaturierungs- 

bedingungen aufgereinigt und es folgte die Renaturierung in vitro. Anschließend wurde 

Trx-mHSS1 mittels TEV-Protease zur Freisetzung von Trx und löslichem mHSS1 gespalten. 

Die Isolierung von mHSS1 erfolgte mittels einer zweiten IMAC. Schließlich wurden die 

angiogenen Effekte durch verschiedene Aktivitätsassays bestätigt.  

 

Schlagworte: rekombinante Zytokine; Fusionsprotein; Thioredoxin 
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DNA 
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defined non-inducing broth 
   

DsbA 
 

protein disulfide isomerase 1 
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fast protein liquid chromatography 
  

Fr.  
 

fraction 
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g 
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fractional shortening 

gram 
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reduced glutathione  
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oxidized glutathione 
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glutathione S-transferase 
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human arterial coronary endothelial cells 
  

HEK 
 

human embryo kidney 
   



VI 

Abbreviations 

HPLC 
 

high performance liquid chromatography  
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hematopoietic signal peptide containing membrane domain-containing 1 
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hematopoietic signal peptide-containing secreted 1 
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IL-6 
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OD 

 
optical density 

   
PAGE 

 
polyacrylamide gel electrophoresis  
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polymerase chain reaction 
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RNA 
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reactive oxygen species 

   



VII 

Abbreviations 

rpm revolutions per minute 

SARS-CoV3CL (pro) 3C-like protease of severe acute respiratory syndrome coronavirus 

S-DAB 
 

simple-to-prepare defined autoinduction broth 
 

SDS 
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1 Introduction and aim of the work 

1 INTRODUCTION AND AIM OF THE WORK 

Cytokines are a class of signaling proteins that are used extensively in cellular communication, 

immune function and embryogenesis (1, 2). They can be classified into families by structure as 

follows: the interferons, the chemokines, the members of the tumor necrosis factor (TNF) 

family, the haematopoietins, the epidermal growth factor (EGF) family and transforming 

growth factor-α (TGF-α) family and the cysteine knots (including TGF-β, vascular endothelial 

growth factor (VEGF) (3-5). 

Cytokines have been applied not only into various research areas but also directly for 

therapeutic purposes. For instance, the cytokines which can inhibit growth of tumor cells have 

been used in cancer therapy (6). The restoration of the damaged tissues or organs depends on 

the application of cytokines which regulate the proliferation and differentiation of cells. 

Additionally, cytokines play a critical important role in treatments with stem cell 

transplantation (7). On the other hand, some cytokines demonstrate negative effects on tissues. 

They can lead to apoptosis of cells, which can be associated with diseases and tumors (8, 9). In 

some cases, the increase of cytokine expression serves as a useful biomarker for clinical 

prognosis (10). 

Due to the varied and extensive applications, there is a great need for cytokines which have 

been well studied. The development of recombinant protein technologies has contributed to 

large-scale production of cytokines. Moreover, in recent years more and more new proteins 

have been discovered and characterized as cytokines and their properties and potential function 

will be investigated.  

16-kDa prolactin (PRL), a proteolytic N-terminal fragment of intact PRL, is identified as 

cytokine, and its apoptotic effect associated with peripartum cardiomyopathy (PPCM) has 

received more and more attention from the research community (11, 12). There have been reports 

about production of the protein previously (13), but this protein was produced from E. coli and 

often contained endotoxins, which are cytotoxic to endothetial cells (14).  
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1 Introduction and aim of the work 

Activin A is a well known cytokine of the TGF-β superfamily, which consists of two 

homodimeric βA subunits and plays an important role in haematopoiesis (15, 16). It induces 

hemoglobin synthesis (17) and potentiates the proliferation and differentiation of erythroid (18). 

Moreover, Activin A takes part in mesoderm induction (19), neural cell differentiation (20), 

bone remodeling (21). The production of Activin A has been already described in literature and 

biologically active Activin A was obtained exclusively from eukaryotic cells (22). However, no 

paper about successful production of Activin A in E. coli has been published. 

Hematopoietic signal peptide-containing secreted 1(HSS1) and protein family with sequence 

similarity 163, member A (FAM163A), are two novel cytokines which have no structural 

homology to any known proteins. HSS1 is reported to regulate tumor growth (23) and 

FAM163A can promote neuroblastoma cell proliferation (24). Recently, both cytokines 

expressed by human embryo kidney (HEK) cells have been found to exhibit pro-angiogenetic 

activities. So they are expected to be employed into reperfusion of the cardiac coronary artery. So 

far, there has been no report about production of both cytokines in E. coli. 

The aim of this work is the development, optimization and performance of the production and 

purification processes of four cytokines in E. coli. The work comprises of two parts. In the first 

part, the production of 16-kDa human prolactin (hPRL) is to be optimized and the endotoxin in 

protein solution is to be removed. Finally, biological activity of purified 16-kDa hPRL is to be 

tested.  

The second part comprises of production of human Activin A (hActivin A), murine HSS1 

(mHSS1) and murine FAM163A (Fam163a). These target proteins are fused with the solubility 

tag thioredoxin (Trx) and expected to be expressed as soluble fusion proteins. After the 

separation of fusion partners the bioactivities of target cytokines are to be tested. Particular care 

should be taken to identify and prevent the difficulties in the entire process, including cultivation, 

cleavage of fusion protein and subsequent purification. 
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2 Theoretical background 

2 THEORETICAL BACKGROUND 

2.1 Cytokines 

 

Cytokines are proteins, peptides, or glycoproteins that are secreted by specific cells of diverse 

embryological origin and produced widely throughout the body. They are a category of 

signaling molecules used extensively in cellular communication and they affect their target 

cells by binding to specific receptors, triggering the receptors to deliver signals to the cell in 

which it is expressed. Cytokines are divided into groups depending firstly on their biologic 

activity: interferons, interleukins and growth factors (3). 16-kDa PRL, Activin A and HSS1, 

also FAM163A are members of the last family which plays important roles in the regulation of 

anti-angiogenesis, angiogenesis and haematopoiesis.  

 

2.1.1 16-kDa Prolactin  

Prolactin was originally identified as a lactotrophic hormone secreted by the pituitary gland (25, 

26). There are several forms of PRL after post-translational modification such as glycosylation 

(27), phosphorylation (28) and proteolysis (29). 16-kDa PRL was first discovered more than 20 

years ago as a proteolytic fragment from intact 23-kDa rat PRL by acidified mammary extracts 

(30).  

 

Structure 

16-kDa PRL consisting of 146 amino acids is produced by the removal of about a quarter of 

23-kDa PRL molecule with 199 amino acids from the C-terminus as shown in Fig. 2.1. The 

protease responsible for the cleavage was identified as cathepsin D (CD) (12, 29, 31). There are 

only 3 cysteines left in the sequence and the single disulfide bond involves Cys-4 and Cys-11 at 

the N-terminus is primarily responsible for the tertiary structure of the protein.  
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Fig. 2.1 Proteolytical cleavage of 23-kDa PRL into a N-terminal 16 kDa fragment and a C-terminal 7 kDa 

fragment (31). 

 

 

16-kDa PRL and anti-angiogenesis 

Angiogenesis is an important process of proliferation and differentiation and is identified as the 

formation of new capillaries from preexisting blood vessels (32). 16-kDa PRL found in the 

hypothalamus of rats and mice and in the pituitary glands and circulation of humans inhibits 

angiogenesis, including capillary endothelial cell migration and organization into microvessels 

(33). 

Ferara et al. first reported the anti-angiogenic activity of rat 16-kDa PRL. It was shown to 

inhibit the growth of cultured bovine adrenal cortex endothelial cells (BACE) stimulated by 

basic fibroblast growth factor (bFGF) in a dose–dependent manner, the best characterized 

cytokine simulating angiogenesis. In contrast, the intact rat 23-kDa PRL had no effect on these 

cells (34). The recombinant human 16-kDa PRL inhibited the basal growth of bovine and 

human vascular endothelial cells in vitro even at very low concentrations (35, 36). In vivo, 

normal development of capillaries in chicken embryo chorioallantoic membrane was also 

inhibited by the recombinant human 16-kDa PRL (37).  

In addition, 16-kDa PRL could stimulate cell apoptosis (38-40) and the programmed death of 

BACE cells could be induced by 16-kDa PRL, because it could activate the nuclear factor-κB 
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(NF-κB) by causing degradation of its inhibitor (IkB-α) (40). It inhibits serum-induced DNA 

synthesis in adult bovine aortic endothelial cells and this inhibition is associated with cell cycle 

arrest at both the G0–G1 and the G2–M phases (41). 

 

16-kDa PRL and peripartum cardiomyopathy  

PPCM is characterized by an acute onset of heart failture in women in the late stages of 

pregnancy up to several months postpartum (42, 43). It involves systolic dysfunction of the 

heart and a decrease of the left ventricular ejection fraction with associated congestive heart 

failure (44) and an increased risk of atrial and ventricular arrhythmias, thromboembolic events 

(45), and even sudden cardiac death (46). 

It has been reported that, 16-kDa PRL caused PPCM (12) as shown in Fig. 2.2. PPCM is 

resultant in transgenic mice defective in the signal transducer and activator of transcription 3 

(STAT3). STAT3 is involved in protection from oxidative stress by upregulation of 

antioxidative enzymes such as reactive oxygen species (ROS) and scavenging enzyme 

manganese superoxide dismutase (MnSOD) (47, 48). Consecutive lack of anti-oxidative 

enzymes, protective factors in the post-natal heart, induces increased oxidative stress which in 

turn enhances CD activity. This leads to proteolytic cleavage of 23-kDa PRL into its 

detrimental 16 kDa form which induces endothelial cell apoptosis, capillary dissociation, and 

vasoconstriction (49).  
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Fig. 2.2 Schematic model for the development of PPCM (12).  

 

2.1.2 Activin A 

Activin A is a protein initially discovered in follicular fluid with the capability to suppress 

follicle stimulating hormone (50). It was then identified as a member of the TGF-β superfamily 

of cytokines and that the receptors for Activin A signaling were members belonging to TGF-β 

receptor superfamily (51). This protein is also called erythroid differentiation protein because it 

can regulate the growth of erythroids (18, 52).  

Structure 

Human Activin A (hActivin A) is a homodimer protein consisting of 2 βA-polypeptide chains 

comprised of 116 amino acids as shown in Fig. 2.3.A (53, 54). Each polypeptide contains 9 

Cys-residues. Between Cys-314 and Cys-322, Cys-321 and Cys-391, Cys-350 and Cys-423, 

Cys-354 and Cys-425 there are 4 intramolecular disulfide bonds (55), which are important to 

the bioactive conformation of Activin A. Cys-390 can form an interchain to another polypeptide 

with an intermolecular disulfide bond (53, 56). The mature human βA chain (hActivin βA) 

shares 100% amino acid sequence identity with bovine, feline, mouse, porcine and rat βA (16).  
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The structure of Activin A dimer is shown in Fig. 2.3.B. Each βA-monomer comprises of two 

pairs of anti-parallel β-sheets, forming first a short and a long finger. These slightly curved 

finger-like projections stretch out from the cysteine-knot core of the molecule creating concave 

and convex surfaces for receptor and monomer interactions. The α-helix (wrist region) of the 

monomers sits in the contralateral concave surfaces created by the finger-like projections of the 

β-sheets (57). 

      A.                                B. 

 

 

 

 

 

 

 

 

Fig. 2.3 A. Schematic diagram of the 1-D structures of Activin A (53). The black line between the monomers 

represents a disulfide bond. B. Structure of Activin A dimer (57). The characteristic finger (anti-parallel β-sheets) 

and wrist (α-helical) regions of the molecule are noted. The disulphide bonds are marked in red.   

 

Activin A and haematopoiesis 

Haematopoiesis is the process of forming blood cells, which occurs during embryogenesis and 

throughout life (58). Defects in haematopoiesis can result in some of the most common and 

serious human diseases, including anaemia (59) and leukaemia (60). All blood cells are derived 

from a common progenitor, the haematopoietic stem cell (61). The production of hematopoietic 

cells is under the tight control of a group of hematopoietic cytokines. Like other members in 

TGF-β superfamily, Activin A shows functional similarity and is well known to play important 

roles in regulation of hematopoiesis.  

Activin A functions as a morphogen during embryonal development, inducing the formation of 

different structures including the hemopoietic system (62). Activin A expression is induced 
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during hemopoietic differentiation (63) and different cell types within the hemopoietic system 

are under the influence of Activin A, for example, megakaryocytes, B-cells, T-cells and 

erythrocytes.  

Broxmeyer et al. were first to show that Activin A enhanced the formation of colony forming 

units granulocyte erythroid macrophage megakaryocytes (CFU-GEMM), whereas it did not 

affect CFU granulocyte macrophage numbers (64, 65). Through experiments performed on 

tumor cells, including human myeloma cells and mouse hybridoma and plasmacytoma cell 

lines, Activin A was observed to cause apoptotic death in cells of the B lineage and that the 

mechanism was identified as cell cycle arrest induced by Activin A (66). In T-cells, Activin A 

cooperated with interleukin-6 (IL-6) which is a stimulator of T-cell proliferation. When both 

Activin A and IL-6 are added to thymocyte cultures, proliferation is enhanced (67). Moreover, 

previous studies have suggested Activin A enhances erythropoiesis. It induced the 

differentiation of erythroleukemia cells at low concentrations (1-10 ng/mL) (68), increased 

hemoglobin synthesis (17, 69) and transcription of globin genes (70).  

 

Further bioactivities and distribution 

Activin A is also involved in skin morphogenesis and wound healing, inducing the 

differentiation of human monocytes into Langerhans cells (LC), which represent a well 

characterized subset of dendritic cells located in the epidermis of skin and mucosae (71). 

Moreover, the functions of Activin A in embryonic stem cells are also well-known. It induces 

mesoderm and endoderm in mouse embryoid bodies (72). Furthermore, Activin A has been 

used to induce human embryonic stem cells to differentiate into definitive endoderm in culture 

(73). 

Activin A is widely expressed in cells including fibroblasts, endothelial cells, hepatocytes, 

macrophages, bone marrow monocytes etc (74). The bioactivities of the factor are observed in 

adult tissues, such as reproductive organs, brain, heart and liver (74). 
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Production of Activin A 

Due to various functional roles and potential therapeutic applications, significant amounts of 

purified recombinant Activin A are needed. Activin A was initially isolated based on small-scale 

hgh-performance liquid chromatography (HPLC) from porcine ovarian follicular fluid and 

ovine amniotic fluid (75). Subsequently, recombinant human Activin A has been produced in 

several mammalian cell line expression systems. In addition, uncleaved high molecular weight 

precursor forms of Activin A are produced in mammalian cells (76). The recombinant human 

Activin A is also reported to be produced in baculovirus-insect cells (77) as well as bovine 

Activin A (78). However, in this study it was observed that insect cells producing Activin A 

have a more rapid rate of lysis than other cells, suggesting a possible consequence of the role of 

Activin A in apoptosis (77). Production of human Activin A using engineered Pichia pastoris 

has become very popular in the recent years. This microbial system can be easily modified 

using genetic engineering and the Activin A produced is folded correctly and bio-functional. 

Furthermore, higher yields of immunoreactive protein were detected compared to the other 

three approaches mentioned above (22). 

Production of recombinant Activin A in E. coli has been attempted and the expression of the 

Activin A monomer in the bacterial system without any strategy resulted in significant 

formation of aggregates (79). Obtaining of bioactive Activin A has also been achieved by 

refolding solubilized Activin βA which was only described in a patent (80)  

 

2.1.3 Protein family with sequence similarity 163, member A  

FAM163A belongs to proteins of the FAM163 family and was first discovered as 

neuroblastoma-derived secretory protein (NDSP) (24), which is secreted by cells of 

neuroblastoma, the most common extracranial solid tumor in children (81, 82). The gene of 

FAM163A was found on human chromosome 1 at open reading frame 76 (24), so it has the 

alternative name C1orf76. 
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Structure 

Human FAM163A consists of 167 amino acids. The sequence of this protein in mouse is well 

conserved in human. The homologue containing 168 amino acids was also identified, which 

shares over 80% protein homology with human FAM163A and the first 37 amino acids in both 

protein sequences are identical (24). 

Sequence analysis of the protein revealed that the first 30 amino acids are consistent with a 

signal peptide with a putative cleavage site between leucine 30 and glutamine 31(24). 

Downstream from the signal peptide, there is a C-C motif at position Cys-34 and Cys-35 and 6 

additional cysteine groups suggesting that FAM163A may be a part of the C-C family of 

chemokines (83). These 8 cysteines have the potential to form 4 intramolecular disulfide bonds.  

 

FAM163A in angiogenesis 

Angiogenesis is necessary for many physiological processes, including embryonic vascular 

development and differentiation, wound healing and organ regeneration (84). The stimulation 

of angiogenesis is performed by various cytokines and FAM163A was found to promote 

angiogenesis. 

To identify factors secreted from C-X-C motif chemokine receptor 4 (CXCR4) positive cells of 

bone marrow from patients with cell therapy after acute myocardial infarction, ProteinChip 

arrays were performed by the team of Prof. Dr. Kai Wollert (Department of Cardiology and 

Angiology, Hanover Medical School). Subsequently, out of 280 secreted proteins represented on 

the ProteinChip arrays 230 genes of proteins were amplified with specific primer and transfected 

in HEK cells. By analysis of pro-angiogenetic activity, FAM163A was identified as one of 10 

overexpressed proteins in the conditioned supernatants, which stimulated and induced the 

proliferation of human arterial coronary endothelial cells (HACEC) and the sprouting of 

capillaries. 
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Further bioactivities and distribution 

The protein can promote neuroblastoma cell proliferation. To inhibit FAM163A expression in 

the neuroblastoma cells, a small hairpin RNA against FAM163A (sh FAM163A) was produced 

in these cell lines. And FAM163A inhibition by shFAM163A was able to cause phenotypic 

changes of cells (24).  

The mRNA expression of FAM 163A was tested in 18 normal adult tissues and the transcript 

levels of this protein were found to be very low in normal tissues such as the adrenal gland, 

cerebrum, colon, ileum and ovary (24). Additionally, It was reported that, FAM163A was 

expressed in tumor cells and that compared to other cell types the expression of FAM163A were 

2-to 4-fold higher in supernatant of neuroblastoma (24). So the increasing FAM163A 

expression levels in neuroblastoma tumor stages 1- 4 were detected and this suggested that this 

protein may serve as a useful biomarker for neuroblastoma (24). 

 

2.1.4 Hematopoietic signal peptide-containing secreted 1  

The growth factor HSS1 was first discovered during a search for novel proteins expressed in 

murine hematopoietic stem cells (85). This protein exhibits structural properties or motifs 

characteristic of a cytokine but has no structural homology to any known protein or protein class 

in the current protein database. Human HSS1 (hHSS1) has an alternative name INM02 (86) and 

it is also called C19orf63 because this protein resides on chromosome 19 at open reading frame 

63 (23). 

 

Structure 

The amino acid sequence for hHSS1 comprises of 254 amino acids (23, 86). It was reported that 

the amino acid sequences of mHSS1and hHSS1 share 86% identity with each other (23). The 

signal peptide is represented by approximately the first 27 amino acids, which is cleaved into the 

mature proteins and indicates the secretablity of HSS1. There are 4 cysteines in this protein. 
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Moreover, HSS1 is glycosylated, as the predicted sequence presents two possible glycosylation 

sites at residues 182 and 198 (23).  

hHSS1 has a splice variant hematopoietic signal peptide containing membrane domain- 

containing 1 (hHSM1), which contains a membrane spanning domain and comprises of 262 

amino acids (23). Most notable is a polyglycine stretch at the carboxyl terminal end of hHSM1, 

which is predicted to be located at the intracellular membrane and may play a role in intracellular 

signaling. This isoform was also amplified by polymerase chain reaction (PCR) from cDNA 

libraries, confirmed for both human and mouse (23). 

Bioactivities and distribution 

Like FAM163A, hHSS1 is also one of 10 proteins which could promote pro-angiogenisis in 

tested cells (described in 2.1.3, FAM163A in angiogenesis). Moreover, the protein has been 

reported to suppress neuroblastomas (23, 87). The effect of hHSS1 on the well studied 

glioma-derived cell lines A172 and U87 cells was investigated. It was reported that the growth of 

pcDNA3.1-hHSS1 transfected A172 cells was dramatically decreased relative to 

mock-transfected clones. In addition to a reduction in proliferation, expression of the hHSS1 

gene in U87 cells induced morphological changes and the detection of cell aggregate formation 

in U87 cells that probably reflected the loss of contact inhibition in these cells (23). Thus, these 

observations suggested that hHSS1 has a function in the modulation of tumor growth and 

suppression. Additionally, hHSS1 is expressed in normal brain tissues (88) but cannot be 

detected in glioblastoma cell lines, suggesting that it could function as a diagnostic marker for the 

above-mentioned cancers (23). More specifically, the deletion of the region of human 

chromosome 19 that encompasses the genes encoding HSS1 is associated with the presence of 

ovarian cancer (89, 90). 

The mRNA corresponding to the hHSS1 was found to be ubiquitously expressed (87). 

Specifically, the mRNA corresponding to the polypeptides of the invention were found to be 

expressed in bone marrow, colon with mucosal lining, fetal liver, leukocyte, lymph node, ovary, 

prostate, small intestine, spleen, testis, thymus and tonsil (86, 87).  
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2.2 Production of recombinant proteins in E. coli 

2.2.1 Inclusion bodies 

The overexpressed proteins often result in the formation of aggregates. These have been 

reported in different host systems, not noly in E. coli, but also in bacillus, yeast, insect cells etc 

(91). The proteins overexpressed in E. coli accumulate as inclusion bodies and in many cases 

the inclusion bodies constitutes 20% to 50% of the total cellular protein of the cell (92). In 

addition to the heterologous protein, very low amounts of host proteins, ribosomal components 

and DNA/RNA fragments are also found in inclusion bodies (93). 

The exact reason for protein aggregation into inclusion body formation in E. coli is not clear 

yet. The high local concentration of protein synthesis in the cytoplasm of E. coli cells, and the 

lack of mammalian post-translational modifying enzymes and foldases during high-level 

expression of protein could be the main reasons for intracellular aggregation (94). In cases of 

proteins containing more cysteines, the reducing environment of bacterial cytosol prevents 

formation of disulfide bonds necessary for proper folding (95). There has been no direct 

correlation between formation of inclusion bodies and properties of proteins, such as molecular 

weight, hydrophobicity, folding pathways and so on (96). A great variety of experimental 

approaches indicates that the formation of inclusion bodies results from partially folded 

intermediates in the intracellular folding pathways of the protein and not from the completely 

unfolded or native protein (95, 97, 98). Although protein expression in the form of inclusion 

bodies is undesirable, it is convenient and effective to isolate the protein of interest from 

inclusion bodies. Subsequently, it is necessary to convert the inactive misfolded proteins from 

inclusion bodies into the soluble active form by renaturation. In some cases, this way can result 

in high recoveres.  
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2.2.2 Refolding of inclusion bodies 

Refolding is a process, where the protein with incorrect conformation folds into its 

characteristic and functional structure. Proteins from inclusion bodies are commonly 

solubilized by high concentrations of chaotropic agents such as guanidinium hydrochloride or 

urea. Then the solubilized protein solution must be transferred into conditions that allow the 

formation of the native state. Refolding of protein can either be carried out before or after 

purification and the techniques of protein renaturation includes dilution, dialysis, 

chromatographic methods etc. Disulfide bonded proteins need special requirements.  

 

Dilution 

For small-scale refolding of protein, dilution is the simplest method and it helps to reduce 

protein aggregates. Most frequently, protein refolding by dilution is performed with the final 

protein concentration 10-50 µg mL
-1

 (99). However, scale-up of protein refolding is limited by 

this method and a lot of refolding buffer and additional cost-intensive concentration steps are 

required. Pulse renaturation, where a small amount of solubilized protein is added in pulses or 

continuously into the refolding buffer, helps to improve the yields of refolded recombinant 

protein. It has been reported that this process was successfully applied to the recovery of 

γ-interferon (100) and lysozyme (101). 

 

Dialysis 

The most commonly used method for removal of the solubilizing agent is dialysis. During 

dialysis the denaturant concentration decreases with time to the concentration in the refolding 

solvent. As the concentration of denaturant is decreased, the rate of folding into the 

intermediate and native structures increases. Refolding via dialysis is preferred performed in a 

stepwise manner. This method has been successfully used for refolding antibodies (102). The 

unfolded protein sample is first brought to equilibrium using a high concentration of denaturant, 
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then with an intermediate concentration and then with low concentration. The difference from 

the one-step dialysis is the establishment of equilibrium at each denaturant concentration. 

 

Protein refolding based on chromatography 

Besides dilution and dialysis, refolding can be also performed by chromatography. Refolding 

via chromatographic processes is attractive because it can be easily automated and can often be 

combined with simultaneous partial purification. In some cases, they are much more efficient 

than traditional refolding strategies (103). Generally, after the denatured proteins of interest 

bind to the matrix, refolding using a decreasing denaturant gradient and optimization of elution 

leads to purification of protein in bioactive form. For example, refolding of lysozyme and 

interleukin-2 have been successfully achieved by use of size exclusion chromatography (101) 

and ion exchange chromatography (104), respectively. Using nickel-chelating chromatography 

the renaturation and purification of secreted protein acidic and rich in cysteines (SPARC) has 

also been reported (105).  

 

Disulfide bonded proteins 

In the presence of reducing agents such as dichlorodiphenyltrichloroethane (DDT) and 

β-mercaptonethanol, the non-native disulfide bonds of disulfide-containing proteins are 

disrupted. For efficient formation of disulfide bonded proteins an oxdizing agent is necessary. 

Oxidization can be achieved by adding a mixture of oxidized and reduced thiol reagents, such 

as reduced/ oxidized glutathione (GSH/GSSG), cysteine/cystine, cysteamine/cystamine (106). 

For example, GSH/GSSG at a total concentration of 5-15 mM with a ratio of 2:1 and 5:1 is 

very popular for protein renaturation and these conditions allow rapid disulfide exchange 

reactions until the protein reaches its native stable form (107-109). 
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2.2.3 Improving solubility of recombinant proteins 

Temperature and medium 

The production of soluble proteins is under the influence of cellular metabolism of the host, 

which can be controlled by a number of environmental factors. At first, temperature plays an 

important role for the correct folding of expressed proteins. When E. coli cells are cultivated at 

high temperatures, the cells grow too fast and overexpressed recombinant proteins lacking the 

required accessories cannot fold intto their native forms. It is well known that, the aggregation 

of recombinant proteins is limited at reduced temperatures. Additionally, medium composition 

is critical for protein production. For example, Terrific broth (TB) medium could not only result 

in higher cell density but also improve the solubility of trypsin-streptavidin compared with the 

regular Luria Bertani (LB) medium (110). 

 

Fusion proteins 

In response to the rapidly growing field of proteomics, the application of recombinant proteins 

has greatly increased in recent years. Fusion of target proteins with many different proteins has 

been widely used for the purification of recombinant proteins. Proteins fused with glutathione 

S-transferase (GST) (111) or maltose-binding protein (MBP) (112) were discovered early. The 

solubility of different eukaryotic polypeptides could be improved with the help of these fusion 

partners (111-113) and the proteins purified by one-step affinity chromatography and eluted 

with 10 mM GSH or maltose respectively.   

Also hydrophilic tags, such as transcription termination anti-termination factor (NusA) or 

protein disulfide isomerase 1(DsbA) have been well described. Usually, E. coli NusA protein 

promotes hairpin folding and termination, while DsbA increases the solubility of the target 

protein in the cytoplasm and periplasm of E. coli (114, 115). Recently, a fusion system with 

small ubiquitin-related modifier protein (SUMO) containing an external hydrophilic surface 

that facilitates efficient expression of recombinant proteins in E. coli has been described (116). 

Several proteins, including the 3C-like protease of severe acute respiratory syndrome 



17 

2 Theoretical background 

coronavirus (SARS-CoV3CL (pro)), nucleocapsid, and membrane proteins, have been 

recombinantly expressed using the SUMO fusion system (117). However, proteins with these 

tags cannot be purified with a specific affinity matrix and the fusion construct must be used in 

combination with a small affinity tag for purification.  

 

Thioredoxin fusion protein  

Fusion with Trx which is also a hydrophilic tag, is a very popular strategy in protein expression. 

The Trx of E. coli remains soluble even when overexpressed and has accumulated 40% of the 

total cellular proteins (118). In contrast to other fusion partners like GST (26kDa) and MBP 

(40kDa) Trx is small (12 kDa in native form) which represents a relatively modest portion of 

any fusion protein. Trx has inherent thermal stability and its tertiary structure reveals that both 

the N- and C- terminus of Trx are accessible on the molecule’s surface, in good positions for 

potential fusions to other proteins (119, 120).       

A wide variety of secreted mammalian cytokines and growth factors have been successfully 

produced in soluble form in E. coli cytoplasm as C-terminal fusions to Trx, especially the 

cytokines rich in cysteins (120). The mechanism is shown in Fig. 2.4. The Trx at the 

N-terminus is translated first. The reduced Trx binds to a target protein via the hydrophobic 

interaction surface, followed by nucleophilic attack of the N-terminal active site thiolate on the 

target disulfide in a thiol-disulfide exchange reaction, resulting in a transient protein-protein 

mixed disulfide. Intramolecular attack by the second thiol group of Trx results in oxidized Trx 

and the reduced target protein (121). Moreover, it has been found that Trx fusion proteins are 

not only soluble, but also exhibit high levels of bioactivity, such as fusion with bone 

morphogenetic protein-2 (BMP-2) (122).  
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Fig. 2.4 Mechanism of reduction of the disulfide bond of a protein substrate (X) by Trx (121).  

 

Cleavage of fusion protein  

Generally, the fusion partner should be cleaved from the target protein. The removal of the tag 

from a protein of interest can be accomplished with a site-specific protease and the cleavage 

should not reduce the bioactivity. The most commonly used proteases are enterokinase (123), 

tobacco etch virus (TEV)-protease (124), thrombin (125) and human rhinovirus (HRV3C) 

(126) 

TEV-protease is the common name of the 27 kDa catalytic domain of the nuclear inclusion 

protein encoded by the tobacco etch virus. The seven-amino-acid sequence E-N-L-Y-Q-G-S in 

the fusion protein would be recognized by TEV-protease and the two fragments can be 

separated from each other (124). The efficiency of cleavage is dependent on both the fusion 

partner and the protein of interest. It is reported that TEV-protease demonstrates a relatively flat 

activity at pH values between 4 and 9 and temperatures between 4°C and 34°C (127). 
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3. EXPERIMENTS  

 

3.1 Production of 16-kDa human Prolactin 

16-kDa hPRL is a monomer, a non-glycosylated polypeptide with 140 amino acids and an 

N-terminal proteolytic fragment of full-length 23-kDa hPRL. The recombinant E. coli BL21 

(DE3) pT7L-16-kDa hPRL was used for production and the vector contained a synthetic 

16-kDa hPRL cDNA-sequence with an inducible T7 promoter (40).  

 

3.1.1 Expression of 16-kDa hPRL 

The main culture with TB medium was inoculated with pre-culture and then incubated at 37°C. 

When OD600 reached 1.5, protein expression was induced by adding 0.5 mM isopropyl- 

β-D-thiogalactopyranosid (IPTG). After expression at 37°C for 4 h, the bacterial cells were 

harvested by centrifugation and the pellets were suspended in lysis buffer and then ruptured by 

sonication. The soluble part was separated from the insoluble part by high-speed centrifugation. 

For detection of 16-kDa hPRL expression, the soluble and insoluble fractions of cell lysate 

were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

with blue silver staining. The protein fractions before induction were used as reference as 

shown in Fig. 3.1.  

The result of SDS-PAGE analysis shows, 4 h after induction the recombinant protein was 

expressed in TB medium, which quickly resulted in high cell density. The protein detected at 16 

kDa was found accumulated in inclusion bodies which were found to be 76% of the total 

insoluble proteins by densitometric analysis via Software Gel-Pro Analyzer 6.0 (see Appendix 

5.5.4.2). 
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Fig. 3.1 Expression of 16-kDa hPRL in TB medium at 37°C after 4 h induction presented using 12% SDS-PAGE 

with blue silver staining. The cell lysate before induction (lanes 3 and 4) and 4 h after induction (lanes 1 and 2) are 

shown. The black arrow indicates 16-kDa hPRL. BI: before induction; insol: insoluble fraction; sol: soluble 

fraction; M, protein molecular marker (Fermentas SM0661). 

 

Moreover, the medium composition played an important role of 16-kDa hPRL expression. For 

example, in LB medium there was neither soluble nor insoluble 16-kDa hPRL production 

identified at all tested temperatures (18°C, 26°C and 37°C) during 12 h of culture. The obtained 

pellets of inclusion bodies were washed twice in wash buffer and then solubilized for the 

following purification of 16-kDa hPRL by 2-step chromatography. 

 

3.1.2 Purification of 16-kDa hPRL from inclusion bodies 

 

3.1.2.1 Anion exchange chromatography  

For the first purification, an anion exchange chromatography (AEC) using a membrane 

absorber filled with strong anion exchangers was employed. 16-kDa hPRL has an isoelectric 

point of 5.9 acting as an acidic protein and is strongly negatively charged at the basic pH. The 

solubilized protein sample was loaded onto the membrane absorber connected to a fast 

performance liquid chromatography (FPLC) system. The membrane was equilibrated with 

binding buffer prior to use. The proteins which did not bind to the membrane were washed 

away with the same buffer. Subsequently, a gradient elution with NaCl was performed (0-1 M) 
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as shown in Fig. 3.2. The FPLC protocol is found in Appendix 5.5.7.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Chromatogram of AEC-purification of 16-kDa hPRL from solubilzed inclusion bodies. The 

UV-absorption (AU) and conductivity (mS/cm
2
) dependent on time are shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.3 AEC-purification of 16-kDa hPRL from solubilzed inclusion bodies presented using 12% SDS-PAGE with 

silver staining. The black arrow indicates 16-kDa hPRL. SI: solubilzed inclusion bodies; F, fraction; M, protein 

marker (Fermentas SM0661).  
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The solubilized inclusion bodies before purification and the elution fractions were analyzed by 

SDS-PAGE using silver staining as shown in Fig. 3.3. No detection of 16-kDa hPRL in the 

flow through indicated a good binding between this protein and its ligand. 16-kDa hPRL was 

eluted in a wide range of NaCl concentration. The high concentration protein was eluted from 

0.2 M to 0.4 M NaCl but these fractions also contained many impurities from host cells (Fr. 18- 

20). The fractions from the second peak eluted with 0.4-0.8 M NaCl were pooled for the 

following refolding step. 

The pooled protein solution was introduced into a dialysis membrane and the refolding was 

performed by a two-step dialysis over 72 h. For the first 6 h, the proteins were dialyzed against 

10 volumes binding buffer to reduce the concentration of NaCl. Then, the urea in the protein 

solution was removed by dialysis against 500 volumes dialysis buffer with 20 mM 

ethanolamine, pH 9.0. It was necessary to refresh the buffer at least 4 times. After the proteins 

were slowly refolded into their bioactive form, the buffer was changed to 50 mM NH4HCO3, 

100 mM NaCl, pH 7.5. Finally, the protein solution was concentrated via ultra filtration before 

the second purification. 

 

3.1.2.2 Size exclusion chromatography  

The second purification was carried out on size exclusion chromatography (SEC) and the 

16-kDa hPRL was expected to be separated from other impurities by passing through the 

column at different time points according to their molecular masses. The concentrated protein 

solution was loaded onto the column which was previously equilibrated with buffer. The 

protocol is seen in Appendix 5.5.7.2 and in Fig. 3.4 the chromatogram of the SEC is shown. 
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Fig. 3.4 Chromatogram of SEC-purification of 16-kDa hPRL from concentrate after refolding. The UV-absorption 

(AU) and conductivity (mS/cm
2
) dependent on time are shown.  

 

      A.                                                 B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 A. SEC-purification of 16-kDa hPRL from concentrate after refolding presented using 12% SDS-PAGE 

with blue staining. The black arrow indicates 16-kDa hPRL. B. Native-PAGE analysis of Fr. 18 and Fr. 25 (12 % 

with silver staining). Conc.: protein concentrate after renaturation; F, fraction; M, protein marker (Fermentas 

SM0661).   
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As shown in Fig. 3.5.A, two peaks were detected respectively at 20 and 25 min. Subsequently, 

the fractions from the peaks are analyzed by SDS-PAGE and silver staining. In the first peak, 

16-kDa hPRL and the contaminating proteins (mainly near 30 kDa) were washed down 

together (Fr. 18- 22). The clean fractions of 16-kDa hPRL, free of any impurities were proven 

to be in the second peak with lower UV-value.  

To determine whether the interchain disulfide bond was formed between two 16-kDa hPRL 

molecules, which resulted in the products in peak 1, the band locations of Fr. 18 and Fr. 25 

were analyzed by native-PAGE with silver staining. From Fig. 3.5.B it can be observed that the 

position of the band from Fr. 25 is lower than from Fr. 18. So it suggests that the protein in 

peak 2 is a monomer with correct refolding and that a dimer has been formed from the protein 

in peak 1, which was first washed down from the column. Subsequently, the 16-kDa hPRL in 

peak 2 was pooled and dialyzed against 20 mM ethanolamine pH 9.0.  

 

3.1.3 Endotoxin assay and removal of endotoxin 

Endotoxin, also called lipopolysaccharides (LPS), is a major contaminant in recombinant 

proteins in E. coli (128). The presence of a low endotoxin level (10 EU mL
-1

, 1 ng mL
-1

) in 

recombinant protein preparations can cause negative effects in host organism such as endotoxin 

shock, tissue injury and even death (128-130). So it is essential to determine the endotoxin 

concentration and remove it prior to testing the bioactivity of purified protein solution. In this 

work, the endotoxin concentration in the purified 16-kDa hPRL was detected by means of 

limulus amebocyte lysate (LAL)-Test. A commercial reaction kit was effective in removing 

endotoxin where the protein solution was passed through a column and the endotoxin bund to 

the affinity matrix (see in Appendix 5.5.8). The final product of 16-kDa hPRL (0.528 mg ml
-1

, 

concentration determined by Bradford assay described in Appendix 5.5.4.1)
 
was revealed below 

0.1 EU mL
-1

 while immediately after two-step chromatography 1.2×10
4
 EU mL

-1 
was measured. 

Finally, the sample was stored at -20°C with 15% glycerol (end concentration) until use. 
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3.1.4 Test of biological activity 

The tests of biological activity of purified recombinant 16-kDa hPRL were performed by the 

team of Prof. Denise Hilfiker-Kleiner (Department of Molecular Cardiology and Angiology, 

Hanover Medical School). In vitro, its effect on NF-κB activation in neonatal rat 

cardiomyocytes (NRCM) was investigated. In vivo, the fractional shortening (FS) in the left 

ventricular of wild type mice was evaluated after injected with purified 16-kDa hPRL over 7 

days.  

3.1.4.1 In vitro 

The expression of C-C motif chemokine ligand 2 (CCL2) is under the control of NFκB, which 

is well known to be the cause of inflammation and cell death (131). The CCL2 expression 

levels in NRCM exposed to 16-kDa hPRL and only with Bay (a pharmacological inhibitor of 

NFκB) were determined via PCR and parallel the CCL2 expression without any stimulation 

factors was used as the control. The result of CCL2 expression levels is shown in Fig. 3.6.A. 

Additionally, after NRCM was stimulated with purified protein for 1 h, the expression of IkB-α 

was detected by Western Blot (WB) as shown in Fig. 3.6.B.  

    A.                                                   B. 

 

 

 

 

 

 

Fig. 3.6 A. The evaluation of CCL2 expression in NRCM treated with 16-kDa hPRL (10 nM) or Bay (1 M) as % 

of the control. The untreated cells were used as control. 16kDa, purified 16-kDa hPRL. B. WB of IkB-α 1 h after 

stimulation of NRCM with purified 16-kDa hPRL and actin as a control.  
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Fig. 3.6.A shows that the CCL2 expression in untreated NRCM was recorded as 100%. When 

the cells were treated with only purified 16-kDA hPRL, NFκB was activated and the expression 

of CCL2 was strongly induced with 223% of the control. However, treatment with 1 M Bay 

only caused significant decrease of expression of CCL2. Moreover, a noticeable decrease of 

CCL2 expression incubated with Bay for 1 h before addition of 10 nM 16-kDa hPRL to the 

cells and treated NRCM could be observed. Additionally, the result of the WB demonstrates 

that after NRCM were stimulated with purified protein for 1 h, no IkB-α expression was 

detected by anti-IkB-α antibody in cell lysate, meanwhile actin served as control and was 

detected in both fractions before and after stimulation.  

 

3.1.4.2 In vivo 

 

The echocardiography of wild type mice, which were injected with purified 16-kDa hPRL for 7 

days was performed. The control mice were injected with a control peptide (an E. coli protein). 

The left ventricular internal dimensions at end-systole and end-diastole (LVESD and LVEDD) 

were measured digitally on the M-mode tracings and averaged from at least 3 cardiac cycles 

and the FS was calculated using: 

 

[(LVEDD -LVESD)/LVEDD] × 100 (%). 

 

 

A. 
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   B.                            C.                          D. 

 

 

Fig. 3.7 A. Representative M-mode echocardiograms of mice after 7 days of injection with control peptide and 

purified recombinant 16-kDa hPRL (50 µg every 3 days, total dose 100 µg). B. FS in n=4 mice per intervention. C. 

LVEDD value. D. LVESD value. White bars, control peptide injected mice; black bars, 16-kDa hPRL injected 

mice. 

 

Representative M-mode echocardiograms after 7 days of observation are shown in Fig. 3.7.A 

decrease in LVEDD from 3.75 to 3.72 mm and an increase in LVESD from 1.50 to 2.16 mm 

were observed from the mice injected with 16-kDa hPRL for 7 days, whereas both values of 

LVEDD and LVESD in the control peptide injected mice were reduced. The reduced 

percentage of FS indicates statistically significant impairment of the left ventricular in the 

16-kDa hPRL injected mice compared with the control mice. 

 

 

3.1.5 Summary 

 

The pT7L-16-kDa hPRL was transformed in E. coli BL21 (DE3) and the cells were cultivated 

in TB medium in shake flask to a high cell density. The 16-kDa hPRL was produced as 

insoluble inclusion bodies and subsequently a 2-step chromatography purification was carried 

out. Firstly, an anion exchange chromatography based on membrane adsorber resulted in the 

removal of most impurities. After refolding and concentration followed by size exclusion 

chromatography, the pure 16-kDa hPRL was obtained. Fig. 3.8 shows the flow diagram of the 

production process.  

 

100 mL culture corresponded to 0.41 g wet cell biomass, of which 0.66 mg bioactive 16-kDa 
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hPRL can be recovered with a purity of 95% as estimated by SDS-PAGE, and the endotoxin 

level was less than 0.1 EU mL
-1

. 

 

 

 

  

 

 

 

 

 

 

                                              

                                            

 

 

 

 

 

                              

                       

 

                                          

Fig. 3.8 The flow chart of 16-kDa hPRL production process. 

 

The bioactivity of purified 16-kDa hPRL was confirmed successfully in vitro and in vivo. 

Significant expression of CCL2 in NRCM treated with 16-kDa hPRL was detected while a 

decrease in CCL2 expression was observed when cells were pre-treated with Bay, an inhibitor 

of NF-κB indicating 16-kDa hPRL was involved in mediating the apoptotic action of NRCM 

through the NF-κB signal pathway. In vivo, systematic injection of recombinant 16-kDa hPRL 

induced cardiac dysfunction in normoxic wild type mice. 
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3.2 Production of cytokines using thioredoxin as fusion partner 

 

Activin A is a glycosylated disulfide linked 26 kDa homodimer, each peptide contains 116 

amino acids with 9 cysteines. So far, the successful direct production of Activin A described in 

literature has been exclusively in eukaryotic expression systems. Attempts to produce the 

Activin A monomer (Activin βA) in E. coli resulted in inclusion bodies in the cytoplasm of 

bacteria. As this cysteine-rich protein could not generate correct disulfide bonds, the proteins 

must then be solubilized in vitro and renatured before further purification. However, these steps 

make the overall process more complex and expensive. 

FAM163A contains 167 amino acids with 8 cysteines, which share over 80% protein homology 

with mouse. hHSS1 is a single chain polypeptide containing 254 amino acids with 3 cysteines 

and the sequence homology between hHSS1 and mHSS1 reaches 86%. It is not known, 

whether FAM163A and HSS1 from different species can exchange with one another. To our 

knowledge there have been no reports about expression of both proteins in E. coli. 

In the present study a new process for production of hActivin A, Fam163a and mHSS1 in     

E. coli was established and optimized. It was expected that the three proteins would be 

expressed as fusion proteins with Trx as a fusion partner. Trx can regulate the redox state in 

bacterial cytoplasm and contribute to correct formation of disulfide bridges in these three 

cytokines. In the presence of this tag, synthesis of the target cytokines in inclusion bodies could 

be prevented and their solubility could be improved. 

For production of hActivin A, Fam163a and mHSS1 several steps were involved. After 

construction of the expression vector and the synthesis of fusion protein in recombinant E. coli, 

the fusion protein was purified via immobilized metal ion affinity chromatography (IMAC) 

prior to cleavage where the target cytokine was released. Finally, the isolated proteins of 

interest were employed in bioactivity tests.  
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3.2.1 Construction of expression vector  

The expression vector pET32b-Trx-6×his-TEV-Target Protein was transformed into the host 

cell E. coli BL21(DE3) for production of hActivin A, mHSS1 and Fam163a. The complete 

vector map is presented in Appendix 5.4. The genes corresponding to the three cytokines were 

fused with N-terminal Trx and they were expected to be expressed as a soluble fusion protein in 

E. coli. After amplification, the cDNA PCR products of hActivin βA, mHSS1 and Fam163a 

were inserted into plasmid pET32b as BamHI/XhoI fragments which already contained a Trx 

encoding sequence and a gene marker for selection by ampicillin. The genes of the target 

proteins were incorporated immediately downstream of Trx which was marked with a 6×his tag 

and a TEV-protease recognition sequence. This strategy was expected to enable the target 

proteins to be released from his-tagged Trx after purification of fusion proteins.  

The fusion constructs of hActivin βA, Fam163a and mHSS1 (without the signal sequences) 

consist of 762, 790 and 1060 base pairs respectively, are under the control of a T7 promoter. 

The sequences of base pairs and amino acids of the three proteins are also given in Appendix 

5.4 and Fig. 3.9 shows the schematic diagram of the fusion protein. The recombinant protein 

contains a Trx-6×his tag at the N-terminal, target protein at the C-terminal and a TEV-protease 

cleavage site of seven amino acids between them. Since the size of Trx is 14.5 kDa, the 

expected sizes of Trx fusion with Fam163a and mHSS1 should be 29.3 kDa and 39 kDa 

respectively. And Trx- hActivin βA results in a molecular size of 27.5 kDa.  

 

 

 

 

 

Fig. 3.9 Schematic representation of the expressed fusion protein with the important elements. The site for 

cleavage of the fusion protein is marked with a scissors symbol.  

 

The results and discussion of productions of hActivin A, Fam163a and mHSS1 are separately 

presented in the following chapters. The detailed protocols and description of performance can 

be found in the Appendix.  
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3.2.2 Production of human Activin A 

3.2.2.1 Expression of Trx-hActivin βA 

After the plasmid pET32b-Trx-6×his-TEV-hActivin βA was transformed in E. coli BL21(DE3), 

the cultivation of the recombinant E. coli was performed in LB medium at 26°C. The cells were 

collected at 2, 4, 6, 8 and 12 h after IPTG induction and the OD600 of the samples were adjusted 

with lysis buffer to the same value. After cell disruption by sonication, the separated soluble 

and insoluble fractions of cell lysate were analyzed by SDS-PAGE as shown in Fig. 3.10.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Time course of Trx-hActivin βA production in LB medium at 26°C presented using 12% SDS-PAGE 

with coomassie staining. The black arrow indicates Trx-hActivin βA. The soluble (lane1) and insoluble (lane 6) 

fractions before induction; soluble (lanes 2-5) and insoluble fractions (lanes 7-11) 2, 4, 6, 8 and 12 h after 

induction, respectively. BI, before induction; M, protein marker (Fermentas SM0661). 

 

No soluble Trx-hActivin βA was detected during the cultivation. However, 2 h immediately 

after IPTG induction, all of the expressed Trx-hActivin βA with expected size 27.5 kDa was 

accumulated as inclusion bodies and the concentration of insoluble fusion protein reached its 

maximum 6 h after induction.  
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The cultivation of the recombinant E. coli was also performed in LB medium at 18°C and 37°C 

and both temperatures had no effect in increasing the amount of soluble fusion protein. 

Moreover, TB medium was tested for production of Trx-hActivin βA and the E. coli cells grew 

more quickly in this medium than in LB medium at all tested temperatures. Unfortunately, 

Trx-hActivin βA was produced entirely as insoluble product and the change of medium did not 

make any improvement of Trx-hActivin βA solubility (gels not shown).  

 

3.2.2.2 Purification of Trx-hActivin βA from inclusion bodies 

Since the fusion with Trx did not improve production of soluble hActivin βA, bioactive 

Trx-Activin βA was to be alternatively achieved by purification of previously in vitro refolded 

inclusion bodies. The inclusion bodies of Trx-Activin βA were washed twice and the 

concentration of solubilized fusion protein was estimated by densitometric analysis. After the 

intramolecular and intermolecular disulfide bonds in hActivin βA were completely reduced, 

the fusion protein was diluted to 100 µg mL
-1

ith solubilization buffer without DTT and then 

dialyzed against a 500-fold excess volume of refolding buffer at 4°C for 48 h during which the 

buffer was refreshed at least 4 times. TDCA/Na was also added to the refolding buffer, which 

was reported to improve hActivin βA renaturation significantly (80).  

IMAC using membrane absorber with ligand iminodiacetic acid (Sartobind IDA-75) was 

performed for the purification of Trx-hActivin βA. The protein solution was concentrated via 

ultrafiltration prior to purification and the concentrate was applied to IDA-75 with a binding 

capacity of 3 mg protein connected to a FPLC system. The membrane was preloaded with Zn
2+ 

and equilibrated with binding buffer. After removal of non-specifically bound proteins on 

IDA-75 with binding buffer and wash buffer, the target protein was finally eluted with 

imidazole. The composition of refolding buffer and the FPLC protocol are seen Appendix 

5.5.7.3 "Purification of Trx-hActivin βA". In Fig. 3.11 is presented the chromatogram of the 

IMAC-purification and Fig. 3.12 shows the SDS-PAGE analysis with silver staining of the 

chosen fractions.  
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Fig. 3.11 Chromatogram of IMAC-purification of Trx-hActivin βA from refolded inclusion bodies. The 

UV-absorption (AU) and conductivity (mS/cm
2
) dependent on time are shown. The arrow indicates the elution 

peak of Trx-hActivin βA. 

 

 

 

Fig. 3.12 IMAC-purification of Trx-hActivin βA from refolded inclusion bodies presented using 12% SDS-PAGE 

with silver staining. The arrow indicates Trx-hActivin βA. RI: refolded inclusion bodies before purification; F, 

fraction; M, protein marker (Fermentas SM0661). 
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The fusion protein Trx-hActivin βA could be purified from refolded inclusion bodies via IMAC. 

The fractions Fr. 46-49 containing the majority of the pure Trx-hActivin βA were pooled and 

dialyzed overnight against 25 mM Tris-HCl, pH 8.0 at 4°C for the removal of imidazole. The 

concentration of fusion protein was determined by Bradford assay. 

 

3.2.2.3 Cleavage of Trx-hActivin βA 

For release of hActivin βA, the purified fusion protein must be cleaved in the next process step. 

The Trx, as well as 6×his tag, should be separated from hActivin βA as a common fragment. In 

this work, the commercial AcTEV
TM

–protease was employed for cleavage of Trx-hActivin βA 

because of its site-specific-activity and stability. Additionally, with an N-terminal 6×his tag it 

can be easily removed in the subsequent IMAC. DTT in the buffer was replaced with 5 mM 

GSH/1 mM GSSG, so that more reducing power for TEV-protease could be provided. The 

cleavage was performed at 10°C for 8 h and the protocol is seen in Appendix 5.5.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 Time course of Trx-hActivin βA cleavage with AcTEV
TM

-protease at 10°C and centrifugation of cleavage 

products presented using 12% SDS-PAGE with silver staining. Lanes 1 and 7, purified Trx-hActivin βA; lanes 2-6, 

the samples 0, 2, 4, 6 and 8 h after addition of AcTEV
TM

-protease; lanes 8 and 9: pellet and supernatant after 

centrifugation of cleavage products. FP: fusion protein; P, pellet; S, supernatant; M, protein marker (Fermentas 

SM0661).  



35 

3 Experiments 

As seen in Fig. 3.13, already after 1 h the released Trx with 14.5 kDa could be detected whose 

intensity reached a maximum at 3 h and remained stable during further incubation. The band of 

TEV-protease disappeared after 3 h and during the tested 8 h no protein band at 13 kDa 

corresponding Activin βA could be seen.  

After the cleavage products of fusion protein for 3 h were centrifuged, the supernatant and 

pellet were analyzed by SDS-PAGE as shown in lane 8 and 9. The 14.5 kDa Trx and the 

incompletely digested fusion protein at 27.5 kDa are found in supernatant whereas various 

species are present in pellet: fusion protein, Trx and released hActivin βA at 13 kDa as well as 

an unknown protein at 25 and 14 kDa. The detection of Trx-hActivin βA in pellet indicates that 

perhaps part of the fusion proteins has formed soluble mini-aggregates via refolding which is 

resistant to cleavage with TEV-protease. It seemed that, Activin βA was only soluble as long as 

fused with Trx and they had precipitated after being released from Trx.  

 

3.2.2.4 Summary  

Activin A is a homodimer of the TGF-β family which is well known to play an important role 

of haematopoiesis. The cDNA of hActivin βA was fused with Trx and transformed into E. coli 

BL21(DE3). Trx-hActivin βA was produced entirely insoluble. Since the temperature and 

medium change did not improve the solubility of fusion protein, the inclusion bodies were used 

as starting material for purification.   

Trx-hActivin βA was refolded by dialysis prior to purification of fusion protein via IMAC and 

the renaturation process was performed based on the description in a patent for refolding of 

hActivin A without any fusion partner. It is claimed that, with this method 24% of hActivin A 

produced in E. coli had reconstituted into its natural form which was confirmed by measuring 

of its biological activity. It was observed that the released hActivin βA after cleavage of the 

fusion protein with TEV-protease was detected only in insoluble part. It indicated that the 

method provided in the patent maybe had made the renaturation of Trx-hActivin βA possible 

and hActivin βA had changed its conformation as soon as it was released from Trx. Based on 

this result the work was terminated.  
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3.2.3 Production of murine protein family with sequence similarity 163, member A  

3.2.3.1 Expression of Trx-Fam163a  

After the plasmid pET32b-Trx-6×his-TEV-Fam163a was transformed in E. coli BL(DE3), the 

cultivation of the recombinant E. coli was performed in LB medium at three different 

temperatures (18°C, 26°C and 37°C). The expression of fusion protein was induced with 0.25 

mM IPTG when OD600 reached 0.6. The collected cells were lysed with BugBuster™ Protein 

Extraction Reagent. Subsequently, the soluble and insoluble fractions of cell lysate were 

separated.  

Cultivation at 37 °C 

The production of Trx-Fam163a was performed in LB medium at 37°C. The cells were 

collected at 1, 3, 6, 9 and 16 h after IPTG induction. The soluble and insoluble fractions of cell 

lysate were analyzed by SDS-PAGE and the result is observed in Fig. 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14 Time course of Trx-Fam163a production in LB medium at 37°C presented using 12% SDS-PAGE with 

blue silver staining. The soluble (lane 6) and insoluble (lane 7) fractions before induction; soluble (lanes 1-5) and 

insoluble fractions (lanes 8-12) 1, 3, 6, 9 and 16 h after induction, respectively. The arrow indicates Trx-Fam163a. 

BI, before induction; M, protein marker (Fermentas SM0661). 
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A significant expression of soluble Trx-Fam163a had already been detected 1 h after IPTG 

induction with a molecular weight of about 30 kDa, which matched the expected size of the 

fusion protein. The band intensity increased in the first few hours and the highest concentration 

of fusion protein was present 6 h after induction. Trx-Fam163a as a soluble fraction decreased 

gradually over time and at the end of cultivation its band could be not detected.  

By contrast, the production of insoluble fusion protein continued to rise during the cultivation 

period. Over 90 % Trx-Fam163a was produced in soluble form 1 h after induction while the 

level of inclusion bodies development was very low. 6 h after induction the production of 

insoluble fusion protein had a share of about 10% of the total amount when the concentration of 

soluble Trx-Fam163a reached its maximum. At the end of cultivation Trx-Fam163a was found 

exclusively accumulated in inclusion bodies and a part of them were degraded into smaller 

proteins at 27 and 17 kDa. 

Cultivation at 26 °C and 18 °C 

The production of soluble Trx-Fam163a in LB medium at 26°C and 18°C are shown in Fig. 

3.15. 

      A.                                  B.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.15 Time course of Trx-Fam163a production in LB medium at 26°C (A) and 18°C (B) presented using 12% 

SDS-PAGE with blue silver staining. The fractions before induction (lane 1) and after induction (lanes 2-6) are 

shown. The arrow indicates Trx-Fam163a. BI, before induction; M, protein marker (Fermentas SM0661). 
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The synthesis of soluble Trx-Fam163a at 26°C also began already 1 h after IPTG induction but 

overexpression of the fusion protein was postponed to after 3 h. In comparison with expression 

at 37°C where Trx-Fam163a degradation was profound after 9 h, even prolonging induction at 

26°C for 14 h Trx-Fam163a a soluble fraction is seen to be stable. As a consequence of low 

temperature at 18°C, there was no significant production of soluble Trx-Fam163a visible on the 

gel during the tested time. 

In conclusion, an overexpression of soluble Fam163a with Trx as fusion partner was observed 

at 37°C and 26°C in LB medium while the insoluble fusion protein was quite little. Compared 

to 37°C, the overexpression of fusion protein at 26°C was postponed a few hours. However, the 

lower temperature did not have any beneficial effect on production of soluble Trx-Fam163a and 

no significant synthesis of soluble fusion protein at 18°C was detected. 

 

 

3.2.3.2 Purification of soluble Trx-Fam163a 

 

3.2.3.2.1 Screening via Vivaspure MCMini  

The purification of his-tagged Trx-Fam163a from fresh soluble fraction of cell lysate in 

analytical scale was performed with the help of Vivaspure MCMini spin column pre-packed 

with Ni-IDA agarose in a microfuge. The purification was based on the protocol described in 

Appendix 5.5.5.  

The result of the purification of Trx-Fam163a from fresh soluble fraction of cell lysate is shown 

in Fig. 3.16.A. The spin column was loaded with diluted soluble fraction of cell lysate and there 

was only a little Trx-Fam163a detected in the flow through, indicating good binding between 

his-tagged fusion protein and its ligand. A number of contaminant proteins above 30 kDa had 

been removed already by 3 wash steps. The majority of Trx-Fam163a was found in the first 

elution fraction and pure Trx-Fam163a could be achieved close to homogeneity in the second 

and third fractions (lanes 7 and 8). The weak protein bands less than 30 kDa were initially 

supposed to be non-specifically bound contaminants. 
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           A.                                  B. 

  

 

 

 

 

 

 

 

Fig. 3.16 Purification of Trx-Fam163a from fresh (A) and at room temperature overnight incubated (B) soluble 

fraction of cell lysate via Vivaspure MCMini presented using 12% SDS-PAGE with silver staining. The soluble 

fractions of cell lysate (lane 1) and from the following steps of IMAC (lanes 2-8 in A and lanes 2-4 in B) are 

shown. The arrow indicates Trx-Fam163a. Lysat: soluble fraction of cell lysate before purification; FT, flow 

through; WB: wash fraction with binding buffer; W1, wash fraction with wash buffer 1; W2, wash fraction with 

wash buffer 2; EA, first elution fraction; EB, second elution fraction; EC: third elution fraction; M, protein marker 

(Fermentas SM0661).  

 

 

3.2.3.2.2 Degradation of Trx-Fam163a 

The purification of Trx-Fam163a was also performed after soluble fraction of cell lysate was 

incubated overnight at room temperature as shown in Fig. 3.16.B. It was noticed that, there was 

no Trx-Fam163a detected in primary cell lysate after incubation and the protein bands under 30 

kDa became intensively visible in elution fractions, especially between 25 and 30 kDa as well 

as at 18 and 20 kDa. It was hypothesized that, the soluble Trx-Fam163a might be sensitive to 

bacterial proteases, resulting in unexpected degradation. 

The effect of temperature with time on stability of Trx-Fam163a in soluble fraction of cell 

lysates was studied. The degradation of Trx-Fam163a in the soluble fraction from expression at 

26°C for 6 h at different temperatures (4°C, 20°C and 37°C) was tested for 3 days as shown in 

Fig. 3.17. Temperature plays an important role in degradation of Trx-Fam163a. The higher the 
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temperature was, the more quickly would the protein be degraded. In comparison to the initial 

sample, after only 1 day, more than 98% Trx-Fam163a was not identifiable at 20°C while the 

intensity of bands at 27 and 28 kDa increased. Insoluble protein aggregate formed at 37°C on 

the first day and a completely disappearance of Trx-Fam163a band was detected. It was 

observed from lanes 2-4, degradation has been postponed as a consequence of low temperature 

at 4°C and that still about 40% Trx-Fam163a could be detected on the first day which was 

further reduced in the following 2 days of incubation. Like the 20°C, after only one day, a 

particularly marked decrease of band intensity at 30 kDa and an increase of protein 

concentration at 20, 27 and 28 kDa could be observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17 Time course of degradation of Trx-Fam163a in soluble fraction of cell lysate at different temperatures in 

3 days presented using 12% SDS-PAGE with blue silver staining. Lane 1, fresh soluble fraction of cell lysate from 

expression at 26 °C for 6 h; lanes 2-4, incubated at 4°C; lanes 5-7, incubated at 18°C; lanes 8-10, incubated at 

37°C; lane 11, insoluble fraction of cell lysate after incubation at 37°C for 1 day. The black arrow indicates 

Trx-Fam163a and the red arrows indicate the degradation products. Lysat: fresh soluble fraction of cell lysate; 

insol.: insoluble; d, day; M, protein marker (Fermentas SM0661). 

 

Identification of degradation products  

Since the proteins at 18, 20, 27 and 28 kDa were detected in elution fractions of IMAC, these 
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proteins were assumed to be fragments with 6×his tag of degraded Trx-Fam163a. For 

identification of Trx-Fam163a degradation products, a WB was performed and the protocol is 

seen in Appendix 5.5.3. The fresh soluble fraction of cell lysate from expression at 26°C for 6 h 

in LB medium and the fraction which incubated at 4°C for 1 day were applied to WB, 

respectively. After gel electrophoresis and transfer to a PVDF membrane, his-tagged proteins 

were detected by the specific mouse monoclonal antibody against 6×his tag and the secondary 

antibody peroxidase-conjugated anti-mouse IgG.  

Fig. 3.18 shows the result of the WB. Based on these results, the degradation of Trx-Fam163a 

was found to have already to occured as it was expressed at 26°C for 6 h. The fusion protein 

was cleaved into above mentioned small fragments less than 30 kDa. The detected proteins also 

took the 6×his tag, whose intensity increased significantly after incubation for 1 day and that 

was the reason for their strong affinity to Vivaspure MCMini. Moreover, the fresh soluble 

fraction of cell lysate from Trx-Fam163a expression at 26°C for 3 h was tested by WB and it 

was found that, degradation of Trx-Fam163a occurred even as it expressed at this temperature 

for 3 h (data not shown). 

                A.                         B. 

 

 

 

 

 

 

 

 

Fig. 3.18 Identification of Trx-Fam163a degradation fragments. A. SDS-PAGE analysis (12% with silver staining) 

of fresh soluble fraction of cell lysate from expression at 26°C for 6 h (lane 1) and incubated at 4°C for 1 day (lane 

2). B. WB of fractions in A with anti-his antibody. The black arrow indicates Trx-Fam163a and the red arrows 

indicate the degradation fragments. M, protein marker (Fermentas SM0671).  
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Effect of protease inhibitors 

Taking account of the possible negative effects of the ingredients in BugBuster
TM

 Protein 

Extraction Reagent in the degradation of Trx-Fam163a, this treatment was replaced by 

sonication for cell disruption. Moreover, to increase the stability of proteins and reduce the 

proteolytic degradation of proteins, protease inhibitors were added to cell lysate. 

Ethylenediaminetetraacetic acid (EDTA) was used to inactivate the metalloproteases and 

phenylmethanesulfonylfluoride (PMSF) was used as serine protease inhibitor. The commercial 

Protease Inhibitor Cocktail was also employed for this study, which is a mixture of protease 

inhibitor with a broad specificity for the inhibition of serine, cysteine, aspartic, thermolysin-like 

protease, and aminopeptidase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19 Stability of Trx-Fam163a in diluted soluble fraction of cell lysate after incubation at 4°C for 2 days with 

different protease inhibitors presented using 12% SDS-PAGE with blue silver staining. Lanes 1, fresh soluble 

fraction of cell lysate; lanes 2-5, incubated with 10 or 20 mM EDTA; lanes 6-9, incubated with 1 or 2 mM PMSF; 

lanes 10-13, incubated with Protease Inhibitor Cocktail. The black arrow indicates Trx-Fam163a. M, protein 

marker (Fermentas SM0661).  

 

10 mM EDTA and 1 mM PMSF, as well as Protease Inhibitor Cocktail were added to protein 

suspension prior to sonication and the protocol is described in Appendix 5.5.11. Their effects 
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were investigated after the fresh soluble fraction of cell lysate was incubated at 4°C for 2 days 

and the results are shown in Fig. 3.19. No protease inhibitors used showed inhibitory effect on 

the degradation of Trx-Fam163a because noticeable reduction of Trx-Fam163a band intensity 

was detected in all fractions on the first day. Moreover, the result remained the same when the 

concentration of inhibitors was increased 2-fold. This might demonstrate that the enzymes 

which were capable of degrading the fusion protein do not belong to the protease family 

mentioned above. 

Analysis of the stability of purified Trx-Fam163a 

The stability of Trx-Fam163a was also studied as a purified preparation. The second elution 

fraction of Trx-Fam163a purification from the soluble fraction of cell lysate with Vivaspure 

Mini, in which Trx-Fam163a seemed very pure, was incubated at 4°C for 3 days of which the 

SDS-PAGE is shown in Fig. 3.20. The band of Trx-Fam163a in the soluble fraction of cell 

lysate at 4°C decreased in intensity as shown on the SDS-PAGE (Fig. 3.17, lanes 1 to 4), while 

the band had almost constant intensity throughout the incubation period. It was evident that the 

enzyme responsible for the cleavage of Trx-Fam163a must be associated with the bacterial 

intracellular proteases in E. coli. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.20 Time course of the stability of by Vivaspure MCMini purified Trx-Fam163a after incubation at 4°C for 3 

days presented using 12% SDS-PAGE with silver staining. Lanes 1-4, incubated for 0, 1, 2 and 3 days, 

respectively. The black arrow indicates Trx-Fam163a. d, day; M, protein marker (Fermentas SM0661).  
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3.2.3.2.3 Upscaling of immobilized metal ion affinity chromatography 

The recombinant E. coli cells containing Trx-Fam163a grown at 26 °C for 3 h were chosen as 

starting material for purification at laboratory scale via FPLC. After treatment with 

BugBuster™ Protein Extraction Reagent, the soluble fraction of cell lysate was applied to an 

IDA-75 membrane preloaded with Ni
2+ 

immediately, because degradation of the fusion protein 

must be kept at a minimum. In order to remove protein contaminants as much as possible, wash 

buffers with varying NaCl concentrations (0-500 mM) were tested. Elution was carried out and 

optimized not only in respect to imidazole concentration (0-400 mM) but also as to elution 

strategy (stepwise or gradient). The chromatogram of optimized Trx-Fam163a purification is 

shown in Fig. 3.21 and the chosen fractions were analyzed by SDS-PAGE with silver staining 

as shown in Fig. 3.22.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.21 Chromatogram of IMAC-purification of Trx-Fam163a from the soluble fraction of cell lysate. The 

UV-absorption (AU) and conductivity (mS/cm
2)

 dependent on time were shown. The arrows indicate the elution 

peaks of Trx-Fam163a. 
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Fig. 3.22 IMAC-purification of Trx-Fam163a from the soluble fraction of cell lysate presented using 12% 

SDS-PAGE with silver staining. The black arrow indicates Trx-Fam163a. Lysat: soluble fraction of cell lysate; F, 

fraction; M, protein marker (Fermentas SM0661).  

 

Although the fresh soluble cell lysate was used as the initial sample for purification it was 

always difficult to separate Trx-Fam163a from the partially degraded products also with the 

6×his tag. A small part of contaminated protein at about 40 kDa could be removed using buffer 

containing 500 mM NaCl. A pre-elution was performed with only 100 mM imidazole and the 

second elution was done using 300 mM imidazole. The FPLC protocol is seen Appendix 

5.5.7.3 "Purification of Trx-Fam163a". Trx-Fam163a was detected in both elution peaks, along 

with its degradation products. Compared to the first peak, the UV-value was lower in second 

peak, where the concentration of eluted Trx-Fam163a was higher. In the posterior part of the 

elution, relatively pure Trx-Fam163a was detected (Fr. 47-51). These fractions were pooled and 

dialyzed against 50 mM Tris-HCl, pH 7.0 for the following cleavage of fusion protein. 

 

3.2.3.3 Cleavage of Trx-Fam163a 

The cleavage of by ultrafiltration using Vivaspin concentrated Trx-Fam163a was performed at 

different temperatures (4°C, 15°C and 30°C) and in buffers with different ratios of GSH/GSSG 

(20:1, 10:1, 5:1, 2:1 and 1:5). AcTEVTM-protease was employed for the cleavage of fusion 
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protein again.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.22 Time course of Trx-Fam163a cleavage with AcTEV
TM

-protease at 4°C with GSH/GSSG in ratio of 5:1 

presented using 12% SDS-PAGE with silver staining. Lane 1, AcTEV
TM

-protease; lane 2, purified Trx-Fam163a; 

lane 3, 3-fold concentrated fusion protein; lanes 4-9, the samples 2, 4, 6, 16, 24 and 36 h after addition of 

AcTEV
TM

-protease. FP, fusion protein; M, protein marker (Fermentas SM0661). 

 

Fig. 3.22 shows the result of Trx-Fam163a cleavage at 4°C for 36 h in buffer with GSH/GSSG 

in the ratio of 5:1 detected by SDS-PAGE with silver staining. The TEV-protease and 

concentrated fusion protein were located in lanes 1 and 2 with 27 and 30 kDa, respectively. It 

could be observed that, the concentration of fusion protein and TEV decreased over the course 

of time. Already after 2 h incubation of AcTEV
TM

-protease and fusion protein a single new band 

at about 15 kDa was detected and in the following 34 h its intensity seemed to increase very 

slowly. The released Fam163a without signal sequence has an expected size of 14.8 kDa which 

is comparable to its fusion partner Trx of 14.5 kDa. So the single band was assumed to be 

composed of the overlapping two proteins which was further identified by mass spectrometry 

(MS) described below. 

Moreover, in the first 4 h an unknown protein detected at about 17 kDa had been noticeable 

which has been identified by WB as cleavage product of Trx-Fam163a with 6×his tag (data not 

shown). It seemed that, this 17 kDa protein came from nonspecific Trx-Fam163a cleavage and 
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it was further digested into Trx and a smaller fragment, because it disappeared toward the end 

of protease assay. Additionally, the band intensity of this 17 kDa protein changed in the 

presence of different ratios of GSH/GSSG. For example, this protein was found in the least 

amount when cleavage was performed at 4°C for 4 h in buffer with GSH/GSSG 2:1 (data not 

shown).  

The degree of cleavage was temperature dependent and an acceleration of cleavage at 15°C and 

30°C was also observed. In the concentrate (lane 3) the protein with an identical size to 

TEV-protease was a degradation product of fusion protein and its possible cleavage product 

with expected size at about 12 kDa was not detected at 4°C but identified at 15°C or 30°C 

during the tested time (data not shown). 

 

Identification of Fam163a via mass spectrometry 

The identification of the band at about 15 kDa via MS was kindly supported by Mr.Manfred 

Nimtz (Helmholtz-Center for Infection Research, Braunschweig). The proteins were cleaved 

with trypsin and the generated peptides were investigated by determination of their molecular 

masses. The experimentally obtained masses were compared with theoretical peptide masses of 

proteins stored in databases using the peptide mass fingerprint search program Mascot.  

The cleavage products of Trx-Fam163a were analyzed by SDS-PAGE with blue silver staining 

as shown in Fig. 3.23.A and the corresponding spectrum of the band at 15 kDa derived from gel 

is shown in Fig. 3.23.B. The peptides of Trx and Fam163a were detected. The mass peaks at 

1490.97 and 2062.10 matched Trx while mass peaks at 1642.79, 2594.13, 3040.36 and 2722.22 

matched the component of Fam163a. And the Mascot analysis of spectrum showed the 

similarity with Trx from E. coli (score 76) and Fam163a (score 58). The non-specific mass 

peaks (for example, at 1773.08) may correspond to contaminants, like keratin or autolysis 

products of trypsin. The sequence of peptide matching mass peak at 2594.13 was further 

analyzed by tandem mass spectrometry (MS/MS) as shown in Fig. 3.23.C. and this method 

provided a high level of confidence of identification of Fam163a with increased the score of 

150 by Mascot.  
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A. 
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Fig. 3.23 Identification of the 15 kDa band derived from gel by MS and MS/MS data analysis. A. Cleavage 

products of Trx-Fam163a presented using 15% SDS–PAGE with blue silver staining. The red arrow indicated 

protein band was selected for MS. M, protein marker (Thermo, 26610). B. The corresponding spectrum of the 

protein band at 15 kDa. C. The corresponding MS/MS spectrum of peptide matching peak masse at 2594.13 

shown in B. The intensity (a u) and the mass-to-charge values (m/z) are shown.  
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3.2.3.4 Purification of Fam163a 

 

3.2.3.4.1 Immobilized metal ion affinity chromatography 

Subsequently, the released Fam163a must be separated from the protein mixture containing 

also incompletely digested fusion protein, TEV-protease and the released Trx. Fam163a without 

his tag was expected to be detected in flow through by passing second IMAC. The isolation of 

Fam163a in analytical scale was performed via Vivaspure MCMini and used buffers for binding, 

wash and elution remained the same as described in 3.2.3.2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.24 Purification of Fam163a from Trx-Fam163a cleavage products via Vivaspure MCMini presented using 

12% SDS-PAGE with silver staining. The protein mixture after cleavage of fusion protein at 15°C for 8 h ((lane 1), 

the fractions from following steps of IMAC (lanes 2-8) are shown. PM: protein mixture after cleavage of 

Trx-Fam163a; FT, fraction of flow through; WB, wash fraction with binding buffer; W1, wash fraction with wash 

buffer 1; W2, wash fraction with wash buffer 2; EA, first elution fraction; EB, second elution fraction; EC: third 

elution fraction; M, protein marker (Fermentas SM0661). 

 

The result of the purification as shown in Fig. 2.24 was different to expectations. No protein 

was detected in the flow though. Elution with 250 mM imidazole was repeated three times and 

the incompletely digested fusion protein and TEV-protease were detected mainly in the first 

elution fraction and the protein bands at about 15 kDa were found in all three elution fractions.  
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The reason for the absence of Fam163a in the flow through was investigated. It is reported that 

naturally occurring proteins, which are rich in histidine, aspartic acid or glutamic acid, exhibit 

high affinity to IMAC resins like his-tagged proteins (132). According to this statement, 

Fam163a containing 8 glutamic acids at N-terminus in a series was assumed to bind IMAC 

ligand and subsequently eluted along with other his-tagged proteins.   

In addition, purification of Fam163a using stepwise elution was also performed and the bound 

proteins were eluted stepwise with 100, 150, 200 and 250 mM imidazole. Fam163a was 

expected to be separated from other his-tagged proteins using different imidazole 

concentrations. The protocol and results of purification are presented in Appendix 5.5.5. 

Subsequently, the first fractions for each imidazole concentration were concentrated using 

trichloroacetic acid (TCA) precipitation (see Appendix 5.5.13) and loaded on the gel using blue 

silver staining and the bands at 15 kDa derived from gel were analyzed via MS. However, the 

identities of the three bands were confirmed as Trx (data not shown). 

 

3.2.3.4.2 Immunoprecipitation  

Immunoprecipitation is a useful method for isolating protein of interest from cellular extracts 

using specific antibodies. In the present work, purification of released Fam163a using 

immunoprecipitation was attempted. It is theoretically possible to pull the his-tagged members 

out of Trx-Fam163a cleavage products mixture with an anti-his antibody and Fam163a as the 

single protein without 6×his tag remains in the flow through. 

The purification of Fam163a was performed using anti-his tag beads with a spin column 

provided in commercial His tagged Protein PURIFICATION KIT. The cleavage products of 

Trx-Fam163a were incubated with the anti-his tag beads overnight at 4°C. After centrifuging 

the flow through (supernatant) was retained. The elution of his-tagged proteins from the beads 

for control was achieved by addition of a competitive 6×his peptide. The protocol is seen in 

Appendix 5.5.12.1 and the result of purification is shown in Fig. 3.25.  
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Fig. 3.25 Isolation of Fam163a from Trx-Fam163a cleavage products using anti-his tag beads presented 

using 12% SDS-PAGE with silver staining. The purified Trx-Fam163a (lane 1), Trx-Fam163a after cleavage 

at 4°C for 36 h (lane 2) and the fractions from following steps of immunoprecipitation (lanes 3-6) are shown. 

FP, fusion protein; FT, flow through; WF: wash fraction; EA: first elution fraction; EB: second elution fraction; 

M, protein marker (Thermo, 26610).  

 

The cleavage products of Trx-Fam163a were present in lane 2, where the fusion protein was so 

completely digested that Trx-Fam163a did not leave any trace behind and only the thick band at 

about 15 kDa and weak band at 27 kDa matching TEV-protease were detected. This 15 kDa 

band was also detected in fractions of flow through and elution respectively, but the band 

intensity in elution was much more than in flow through.  

The bands at 15 kDa detected in flow through and elution fraction were analyzed by MS and 

the corresponding spectrums are shown in Fig. 3.26. The protein in the elution fraction was 

identified as Trx while in the flow through fraction the identity of Fam163a was confirmed. 

Subsequently, the MS/MS analysis of the peptides 1001.64 and 1642.74 indicated their 

extensive homology of Trx (Mascot score 37) and Fam163a (Mascot score 53), respectively 

(data not shown). 

 



52 

3 Experiments 

A. 

 

B. 

 

Fig. 3.26 Identification of the 15 kDa band derived from gel by MS data analysis. A. The corresponding spectrum 

of the protein band from the flow through; B. Spectrum of the protein band from first elution fraction. The 

intensity (a u) and the mass-to-charge values (m/z) are shown. 

Additionally, using the immunoprecipitation complex with anti-his antibody solution and 

protein G sepharose beads was employed for Fam163a purification. The complex was further 

incubated with digested products of Trx-Fam163a. The expectation was that, the his-tagged 

proteins would bind the antibody and also pelleted and subsequently eluted by the addition of 
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the elution buffer whereas Fam163a would be detected in the flow through or wash fraction. 

Contrary to expectations, this method resulted in the unsuccessful separation of Fam163a from 

other his-tagged proteins. The protocol and result are seen in Appendix 5.5.6.1. The binding 

capacity of protein G to the antibody differed from product instructions described and an 

increase of protein G employed did not improve the result (data not shown). 

 

3.2.3.5 Test of biological activity 

In this study, the bioactivity of purified Fam163a and Trx-Fam163a were tested via scratch 

assay. The work was done cooperatively with Dr. Marc Reboll (Department of Cardiology and 

Angiology, Hanover Medical School). Scratch assay is an easy and well-developed method to 

measure cell migration in vitro. The basic steps involve creating a scratch in a cell monolayer 

and capturing the images at the beginning and at regular intervals during cell migration to close 

the scratch (133). The migration of cells toward the wounds is expressed as percentage of 

wound closure:  

(%) of wound closure = [(At=0h-At=∆h)/At=0h] ×100 (%),  

 

where At=0h is the area of wound measured immediately after scratching and At=∆h is the area 

of wound measured at interval (134). 

 

The monolayer of HCAEC was removed with pipette tips and the recovery of denuded area 

monolayer due to cell migration stimulated by purified Trx-Fam163a and Fam163a was 

observed separately at 0 h and 24 h. The cells without any stimulation were used as negative 

control and the cells growing in full medium with 15% foetal calf serum (FCS) and simulated 

with VEGF were used as positive controls. The photomicrographs of wounded HCAEC at 0 h 

and 24 h are presented in Fig. 3.27.A. 

 



54 

3 Experiments 

A. 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

Fig. 3.27 Comparative efficacy of purified Fam163a, Trx-Fam163a and VEGF (each with 100 ng/mL) in scratch 

assay. A. Photomicrographs of wounded HCAEC before and after 24 h treatment with VEGF and purified 

Fam163a, Trx-Fam163a or grew in 15% FCS. The cells without any cytokine treatment were used as negative 

control. B. The effects of different samples on HCAEC migration were potted as a percentage of wound closure.  
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The effects of different samples on HCAEC migration are recorded as a percentage of wound 

closure which is shown in Fig. 3.27.B. After 24 h incubation, the cells in full medium and 

stimulated by VEGF migrated toward the scratch with recovery of 92% and 67%, respectively. 

Compared with the two positive controls, the cells stimulated by purified Fam163a migrated 

slower to close the scratch with recovery of 55%. But the recovery stimulated by Trx-Fam163a 

was the same as the negative control with 47%, indicating less or no bioactivity of the fusion 

protein.  

Positive stimulation of proliferation by Trx-Fam163a had been observed previously (data not 

shown). However, Fam163a with and without Trx fusion demonstrated different stimulation 

effects in the scratch assay. It possiblely indicates there was a difference in folding between the 

fusion protein and that cleaved from Trx. The test of angiogenic activities of Fam163a with 

respect to other aspects will be performed later and so the results are still expected. 

3.2.3.6 Summary  

In the present work, a process of production and purification of Fam163a was developed and 

the flow chart is presented in Fig. 3.28. The production of soluble Fam163a in E. coli 

BL21(DE3) was achieved and the formation of inclusion bodies had been prevented by the 

production of a fusion protein with the solubility tag Trx. The overexpression of Trx-Fam163a 

was detected at 37 °C and 26 °C in LB medium. 

The stability of Trx-Fam163a produced in the soluble fraction of cell lysate was investigated 

and the degradation of Trx-Fam163a was observed when the soluble cell lysate was incubated 

at different temperatures (4°C, 18°C and 37°C) for 3 days. At 4°C Trx-Fam163a was gradually 

degraded, while at 37 °C the degradation was very fast. Moreover, it was found that the fusion 

protein was degraded immediately as it was expressed, even 3 h after IPTG induction. Fam163a 

was degraded by a proteolytic cleavage into several smaller fragments which were detected by 

anti-his antibody. Purified Trx-Fam163a was incubated for comparison but no degradation was 

observed. Therefore, it was believed that the bacterial proteases were involved in the 

degradation of Trx-Fam163a. The three tested inhibitors had no effect on the degradation of 
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fusion protein.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.28 The flow chart of Fam163a production process.  

The fusion protein was purified via IMAC. Following this, the Trx-Fam163a elution fractions 

free of degradation products were pooled for further cleavage and this led to a large loss of 

fusion protein. After removal of imidazole in the protein solution, Trx-Fam163a was digested 

with TEV-protease and the released Fam163a and Trx were detected as overlapping bands at 

about 15 kDa whose identities were confirmed by MS.  

Contrary to expectations, Fam163a could not be purified from the protein mixture after 

cleavage via second IMAC and detected as the single protein in flow through, probably due to 

Construction of 

pET32b-Trx-6×his-TEV-Fam163a 

Transformation in E.coli BL21(DE3) 

and cultivation in shake flask 

Purification of soluble fusion protein 

via IMAC  

 Cleavage of fusion protein with 

AcTEV
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-protease and identification 

of released Fam163a by MS 
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Test of bioactivity 
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eight glutamic acids at the N-terminal which showed the same affinity to bind to the column of 

IMAC. Additionally, the stepwise elution with imidazole did not help to separate Fam163a 

from Trx. 

Subsequently, the isolation of Fam163a at analytical scale was successfully done by 

immunoprecipitation with anti-his tag beads where Fam163a was detected in flow through with 

extensive homology confirmed by MS, while immunoprecipitation using protein G and 

anti-6×his antibody solution did not work. Finally, based on the result of the scratch assay the 

purified Fam163a was confirmed to be biologically active.  
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3.2.4 Production of murine hematopoietic signal peptide-containing secreted 1 

3.2.4.1 Expression of Trx-mHSS1 

After the plasmid pET32b-Trx-6×his-TEV-mHSS1 was transformed in E. coli BL(DE3), the 

cultivation of the recombinant E. coli was performed separately in LB medium at 18°C, 26°C 

and 37°C. The expression of fusion protein was induced by the addition of 0.25 mM IPTG. 

Moreover, instead of IPTG induction Trx-mHSS1 synthesis in E. coli was also attempted using 

autoinduction medium, which has been reported to significantly improve the cell density and 

solubility of expressed Auto27-243-GST compared with cultures in LB medium (135). The 

carbon substrate consists of glucose, glycerol and lactose in the simple-to-prepare defined 

autoinduction broth (S-DAB) medium and expression of the T7 polymerase is automatically 

induced in late log-phase growth due to the depletion of carbon sources other than lactose (136). 

Finally, the production of Trx-mHSS1 using the two methods was compared with each other.  

 

3.2.4.1.1 IPTG-induction 

 

Cultivation in LB medium at 26 °C 

At first, Trx-mHSS1 was produced in LB medium at 26 °C. The cells were collected at 1, 3, 5, 

7 and 9 h after IPTG induction and disrupted by sonication. The production of soluble and 

insoluble Trx-Fam163a was analyzed by SDS-PAGE and the result is shown in Fig.3.29. 
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Fig. 3.29 Time course of Trx-mHSS1 production in LB medium at 26°C and presented using 12% SDS-PAGE 

with blue silver staining.. The soluble (lane 1) and insoluble (lane 7) fractions before induction; soluble (lanes 2-6) 

and insoluble fractions (lanes 8-12) 1, 3, 5, 7 and 9 h after induction, respectively. The black arrow indicates 

Trx-mHSS1. BI, before induction; M, protein marker (Fermentas SM0661). 

 

After just 1 h after induction by IPTG, in both soluble and insoluble fractions of cell lysate a 

band was visualized at about 40 kDa which was homologous with the expected size of 

expressed Trx-mHSS1. There was an increase in yield of protein in soluble and insoluble 

fractions up until 7 h. Further induction for 2 h resulted in concentration decrease of this 

protein in insoluble fraction only, while it remained constant in the soluble fraction.  

Subsequently, it was necessary to identify the expressed fusion protein in the soluble and also 

insoluble the fractions of cell lysate by WB. The used antibodies were the same as 

indentification of Trx-Fam163a degradation products described in 3.2.3.2.2 and results of 

SDS-PAGE and WB are shown in Fig. 3.30.   
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            A.                          B. 

 

 

 

 

 

 

 

 

Fig. 3.30 Identification of Trx-mHSS1. A. SDS-PAGE analysis (12% with silver staining) of diluted soluble and 

insoluble cell lysate 7 h after induction at 26°C. B. WB of fractions in A with anti-his antibody. The black and red 

arrows indicate Trx-mHSS1 and protein at 32 kDa, respectively. Sol., soluble cell lysate; insol., soluble cell lysate; 

M (A), protein marker (Fermentas SM0661); M (B), protein marker (Fermentas SM0671).  

The proteins with anti-his antibody detected in both soluble and insoluble fractions of cell 

lysate migrated separately as bands of about 39.5 and 32 kDa. The first one matched the 

theoretical mass of expressed Trx-mHSS1. Based on Fig. 3.29, the protein at 32 kDa was 

produced only after induction and it was thought to be a degraded fragment of Trx-mHSS1.  

 

 

Cultivation at 18°C and 37° C 

The production of Trx-mHSS1 in LB-medium was performed at 18°C and 37°C and the 

SDS-PAGE analysis of optimal soluble Trx-HSS1 expression at both temperatures (18°C for 16 

h, 37°C for 4 h) is shown in Fig. 3.31. 
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Fig. 3.31 Production of Trx-mHSS1 in LB medium at 18°C and at 37°C presented using 12% SDS-PAGE with 

blue silver staining. The soluble (lane 1) and insoluble (lane 4) fractions before induction; soluble (lane 2) and 

insoluble (lane 5) fractions after 16 h induction at 18°C; soluble (lane 3) and insoluble (lane 6) fractions after 4 h 

induction at 37°C. The black arrow indicates Trx-mHSS1. BI, before induction; M, protein marker (Fermentas 

SM0661).  

 

Unlike the expression at 26°C, the production of Trx-mHSS1 at 18°C was seen only in the 

insoluble fraction until 4 h after induction with IPTG (data not shown). Induction at 18°C for 

long time had only a slight effect on the solubility of Trx-mHSS1 and even after 16 h only a 

faint band of fusion protein could be detected in the soluble fraction. By contrast, the synthesis 

of soluble and insoluble Trx- mHSS1 at 37°C began 2 h after IPTG induction and after 4 h a 

reduction of band intensity of expressed soluble Trx-mHSS1 could be observed (gels not 

shown). At this time, the concentration of produced soluble Trx-mHSS1was higher than that 

produced at 18°C for 16 h. 

In conclusion, the production of soluble Trx-mHSS1 could be detected both at 26°C and 37°C. 

Contrary to expectations, production at a lower temperature (18°C) did not help to improve the 

solubility of expressed Trx-mHSS1. To achieve more soluble expressed target protein, 26°C 

was considered as the most suitable cultivation temperature.  
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3.2.4.1.2 Autoinduction 

The defined non-inducing broth (DNB) as preculture of recombinant E. coli containing 

Trx-mHSS1 was used to inoculate the main culture S-DAB medium giving a starting OD600 of 

0.02. Then the cultivation using autoinduction medium was carried out at 26°C. The cells were 

collected at 0, 9, 13, 17, 21 and 24 h and disrupted by sonication. Fig. 3.31 shows the time 

course of soluble Trx-mHSS1 production in S-DAB medium.  

 

 

 

 

 

 

 

 

 

Fig. 3.31 Time course of Trx-mHSS1 production in soluble fractions of cell lysate in S-DAB medium at 26°C 

presented using 12% SDS-PAGE with blue silver staining. The soluble fractions after 0, 9, 13, 17, 21 and 24 h 

cultivation of main culture are shown. The arrow indicates Trx-mHSS1. M, protein marker (Fermentas SM0661).  

 

The slow increase in soluble Trx-mHSS1 synthesis could be detected at 17 h, after which a 

reduction of fusion protein was observed. Moreover, compared to cultivation in LB medium at 

the same temperature no significant degradation product of Trx-mHSS1 at 32 kDa was 

detected.  

 

Comparing production of soluble Trx-mHSS1 in LB-and S-DAB media 

The production of soluble Trx-mHSS1 was performed separately in LB- and S-DAB media at 

26°C for 24 h. The OD600 during the 24 h of both cultures were recorded and the growth curves 

are presented in Fig. 3.32.  
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Fig. 3.32 Growth curves of E. coli in LB- and S-DAB media at 26°C for 24 h. The red arrows indicate the optimal 

harvest times, respectively. The black arrow indicates the time for IPTG induction.  

 

After 9 h (7 h after IPTG induction) the growth rate of E. coli in LB medium seemed slow and 

the OD600 remained stable. Compared to the LB medium, the E. coli cells grew slowly in 

S-DAB medium in the first 8 h and OD600 increased gradually up to 11.2 over 24 h. 17 h in 

S-DAB medium and 7 h after IPTG induction in LB medium, where the expressed soluble 

Trx-mHSS1 accounted for the largest share of total soluble proteins, were considered the 

optimal harvest times. At these time points, OD600 in S-DAB medium reached 7.9 

corresponding to 2.92 g/L dry cell mass (DCM), which was much higher than in LB medium 

with 2.5 and 0.93 g/L DCM. 

 

Moreover, the concentration of total proteins in the soluble cell lysate was measured by 

Bradford assay and the calculation of soluble Trx-mHSS1 concentration was performed using 

band densitometric analysis. Table. 3.1 shows an overview of soluble Trx-mHSS1 production in 

LB-and in S-DAB media at 26°C for 24 h. 
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  Table. 3.1 Overview of soluble Trx-mHSS1 production in LB-and in S-DAB media at 26°C for 24 h. 

                                           LB               S-DAB 

  Optimal harvest time (h)                     9 (7 after induction)    17 

  OD600 at optimal harvest time                 2.5                  7.9 

  DCM (g L
-1

)*                             0.93                  2.92 

  Concentration of total soluble protein (mg L
-1

)   93                  243 

  Concentration of soluble Trx-mHSS1 (mg L
-1

)   29.8                  82.3 

  Soluble Trx-mHSS1 in relation to total         32                   34  

  soluble protein (%)  

  Soluble Trx-mHSS1 in relation to             32.1                 28.2 

  DCM (mg g
-1

) 

  *calculation according to statement in (135) 

The share of soluble Trx-mHSS1 in the total soluble protein from LB-medium and S-DAB 

medium was comparable, with 32% and 34% respectively. But the proportion of fusion protein 

amount and dry cell mass for LB-medium with 32.1 mg g
-1

 was higher than for S-DAB 

medium with 28.2 mg g
-1

. So in the following experiments all the samples arose from 

cultivation in LB medium at 26 °C. 

 

3.2.4.2 Purification of Trx-mHSS1  

3.2.4.2.1 Purification of soluble Trx-mHSS1 

The purification of soluble Trx-mHSS1 at analytical scale was previously performed via 

Vivawell 8-Strips with membrane adsorber as the matrix. The membranes were preloaded with 

four metal ions (Co
2+, Cu2+, Ni2+ and Zn2+), respectively. After loading the same amount of 

soluble fraction of cell lysate by centrifugation, the non-bound proteins could be detected in 

flow through. Co2+ showed the strongest binding affinity for the protein of interest compared to 

the other three metal ions. Additionally, binding buffers of different pH were optimized and a 

buffer with pH 6.5 had been determined as the most suitable parameter (data not shown). 
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Subsequently, the membrane was washed with two wash buffers to remove non-tagged proteins. 

Finally, the elution of Trx-mHSS1 was done twice with 250 mM imidazole in binding buffer. 

The protocol is seen in Appendix 5.5.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.33 Purification of Trx-mHSS1 from the soluble fraction of cell lysate via Vivawell 8-Strips presented using 

12% SDS-PAGE with silver staining. The soluble cell lysate (lane 1) and the fractions from following IMAC steps 

(anes 2-8) are shown. Lysat: soluble cell lysate before purification; FT, fraction of flow through; W1A, first wash 

fraction with wash buffer 1; W1B, second wash fraction with wash buffer 1; W2A, first wash fraction with wash 

buffer 2; W2B, second wash fraction with wash buffer 2; EA, first elution fraction; EB, second elution fraction; M, 

protein marker (Fermentas SM0661).  

 

Fig. 3.33 shows the result of soluble Trx-mHSS1 purification. Although Co2+ and the binding 

buffer with pH 6.5 were employed for protein binding, more than 80% of the soluble fusion 

protein was detected in the flow through. This indicated that the great part of soluble 

Trx-mHSS1 as initial material for purification was lost. It was assumed that, the location of 

6×his in the middle of fusion protein was not easily accessible for binding the metal ion when 

Trx-mHSS1 is in its native form. 

Moreover, only a little Trx-mHSS1 was eluted, along with proteins at 13, 17, 32 and 47 kDa. 

Based on the result of WB, these proteins except for at 32 kDa did not refer to degradation 
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products of the fusion protein taking the 6×his tag, and that they might be binding 

nonspecifically to the membrane. In conclusion, due to low yield and poor purity futher 

Trx-mHSS1 purification from soluble cell lysate was not continued.  

 

3.2.4.2.2 Purification of Trx-mHSS1from inclusion bodies 

Since it seemed difficult to purify Trx-mHSS1 from soluble cell lysate, the alternative idea of 

Trx-mHSS1 isolation from inclusion bodies was developed. Quantification of Trx-mHSS1 

concentration in inclusion bodies was carried out by densitometry and the insoluble 

Trx-mHSS1 was evaluated as 84% of the total fusion proteins and it could contain sufficient 

amounts of material for purification.  

 

IMAC under denaturing conditions with subsequent refolding 

At first, bioactive Trx-mHSS1 was expected to be achieved by purification from inclusion 

bodies under denaturing conditions and subsequent renaturation in vitro. The inclusion bodies 

of fusion protein were washed and solubilized previously. Then the protein sample was applied 

to the IDA-75 membrane connected to FPLC, preloaded with Co
2+

 and equilibrated with 

binding buffer. After the membrane adsorber was washed with buffer without NaCl and 

followed with buffer containing 300 mM NaCl, the bound protein was eluted with 250 mM 

imidazole. The FPLC protocol is described in Appendix 5.5.7.3 "Purification of Trx-mHSS1 

under denaturing conditions". In Fig. 3.34 is presented the chromatogram of the purification 

and Fig. 3.35 shows the SDS-PAGE analysis with silver staining of the selected fractions.  
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Fig. 3.34 Chromatogram of IMAC-purification of Trx-mHSS1 from solubilized inclusion bodies. The 

UV-absorption (AU) and conductivity (mS/cm
2
) dependent on time are shown. The arrow indicates the elution 

peak of Trx-mHSS1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.35 IMAC-purification of Trx-mHSS1 from solubilized inclusion bodies presented using 12% SDS-PAGE 

with silver staining. SI: solubilized inclusion bodies before purification; F, fraction; M, protein marker (Fermentas 

SM0661). 
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It can be seen that, there was no Trx-mHSS1 detected in the flow through (Fr. 4) indicating 

good binding between solubilized Trx-mHSS1 and its ligand. The elution with 250 mM 

imidazole was successful. The degraded protein at 32 kDa was also present in the first three 

fractions of elution, but from Fr. 42 the protein seemed to be pure. After the eluted Trx-mHSS1 

(Fr. 40-48) were collected, the concentration was determined and then adjusted to 100 µg/mL. 

Subsequently, they were refolded in vitro by dialysis against 50 mM Tris-HCl, pH 7.5 at 4°C 

for 2 days. The buffer was refreshed at least two times. 

 

Combination of refolding and IMAC 

Alternatively, Trx-mHSS1 was also refolded in vitro on membrane absorbers combined with 

IMAC. The solubilized inclusion bodies were diluted 1:2 with binding buffer and the diluted 

protein solution was loaded onto the IDA-75 membrane equilibrated with binding buffer. After 

loading the sample, the membrane adsorber was washed with 40 mL refolding buffer 

containing 10 mM GSH, 1 mM GSSG and a descending gradient of urea at a flow rate of   

0.5 mL min
-1

. The target protein was finally eluted by refolding buffer containing 1 M urea and  

250 mM imidazole which was subsequently removed by dialysis against 50 mM Tris-HCl, pH 

7.5 at 4°C for 8 h. The FPLC protocol is seen in Appendix 5.5.7.3 "Purification of Trx-mHSS1, 

combination of refolding and IMAC". The chromatogram of IMAC-purification combined with 

refolding is presented in Fig. 3.36 and Fig. 3.37 shows the SDS-PAGE analysis with silver 

staining of the chosen fractions. 
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Fig. 3.36 Chromatogram of IMAC-purification and refolding of Trx-mHSS1 from solubilized inclusion bodies. 

The UV-absorption (AU) and conductivity (mS/cm
2
) dependent on time were shown. The arrow indicates the 

elution peak of Trx-mHSS1 and the black line marks the refolding buffer gradient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.37 Combination of Trx-mHSS1 refolding and IMAC-purification from solubilized inclusion bodies 

presented using 12% SDS-PAGE with silver staining. F, fraction; M, protein marker (Fermentas SM0661).  
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The contaminating proteins such as at 25 and 28 kDa were washed away with refolding buffer 

but Trx-mHSS1 was also detected in the flow through fractions of refolding buffer (Fr. 7- 9). It 

was supposed that, these proteins were removed from the membrane absorber with GSH/GSSG. 

Trx-HSS1 could be seen in the peak of elution, together with its degraded fragment migrating 

at 32 kDa with low intensity.  

 

However, the yield of Trx-mHSS1 refolding via IMAC depends on the initial protein 

concentration of loaded sample. In this study, protein samples with different initial 

concentrations were applied to purification to investigate the effect on renaturation of fusion 

protein. As shown in Fig. 3.38, the amount of pooled Trx-mHSS1 increased when initial protein 

concentration from was raised from 0-333 µg/mL (loading volume always 3 mL and 

corresponding protein content 0-1 mg). When the protein concentration exceeded 333 µg/mL, a 

rapid reduction of eluted Trx-mHSS1 was observed. It seemed that, in the presence of 

denaturant the loaded denatured protein could absorb to the top of the membrane and there was 

a greater chance for denatured fusion protein to form aggregates. When the initial protein 

concentration was too high, the degree of aggregation would be increased greatly. So the 

solubilized inclusion bodies must be diluted to a lower concentration to give rise to properly 

refolded protein. On the other hand, the aggregation of unfolded Trx-mHSS1 or its folding 

intermediate was minimized when the denaturant urea was gradually removed from the 

membrane adsorber in the presence of glutathione redox components, which promotes correct 

formation of disulfide bonds. 
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Fig. 3.38 Effects of initial protein content on eluted Trx-mHSS1 amount from membrane absorber IDA-75. 

 

Comparing refolding pattern via dialysis and chromatography 

When comparing refolding of Trx-mHSS1 via dialysis with via chromatography, the 

advantages were easily recognized. When the purification was combined with refolding, the 

whole process could be finished in a few hours and a large amount buffer for dialysis could be 

saved. However, the purification of Trx-mHSS1 with subsequent refolding by dialysis could be 

performed with a high initial concentration whereas refolding via chromatography must be 

done with only a low initial concentration. When the eluate was concentrated prior to cleavage, 

the protein at 32 kDa that also eluted was noticeable. This result prompted the use of renatured 

Trx-mHSS1 via dialysis for all subsequent work. 

 

3.2.4.3 Cleavage of Trx-mHSS1 

 

AcTEVTM-protease was employed for the cleavage of Trx-mHSS1 and the cleavage of fusion 

protein was performed at 10°C for 16 h as shown in Fig. 3.39.A.  

     



72 

3 Experiments 

    A.                                                      B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.39 A. Time course of Trx-mHSS1 cleavage with AcTEV
TM

-protease at 10°C for 16 h presented using 12% 

SDS-PAGE with silver staining. Lane 1, AcTEV
TM

-protease; lane 2, purified Trx-mHSS1; lanes 3-6, the samples at 

2, 4, 6 and 16 h after incubation of protease. B. Cleavage of Trx-mHSS1 with AcTEV
TM

-protease at 23°C for 6 h 

presented using 15% SDS-PAGE with silver staining. FP, fusion protein; M, protein marker (Fermentas SM0661).  

 

The cleavage seemed to be efficient and the following protein bands could be seen after 2 h 

incubation of fusion protein with TEV-protease: the released mHSS1 at 24.5 kDa and Trx at 

14.5 kDa, the incompletely digested fusion protein at 39.5 kDa, as well as TEV-protease at 27 

kDa whose concentration was very stable during the whole cleavage process. Over time the 

band intensity of Trx-mHSS1 became weaker whereas the released mHSS1 enhanced.  

It was also observed that, Trx-mHSS1 cleavage was also influenced by temperature. A 

relatively high temperature improved the degree of cleavage of fusion protein. For example, 

there was no identified fusion protein on the gel even by silver staining when cleavage was 

performed at 23°C for 6 h as shown in Fig. 3.39.B, indicating complete digestion of the fusion 

protein.  

A WB analysis with polyclonal HSS1 antibody was performed to confirm the identity of 

released mHSS1. Thereby solubilized cell pellet and the purified Trx-mHSS1 from IMAC, as 
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well as the digested product at 10°C for 16 h and 23°C for 6 h was analyzed by SDS-PAGE 

with silver staining and then transferred to the membrane. With the help of conjugated 

goat-anti-rabbit as secondary antibody mHSS1 could be detected.  

 

         A.                                B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.40 Identification of Trx-mHSS1. A. SDS-PAGE analysis (12% with silver staining) of samples during 

purification process. B. WB of fractions in A. 1, solubilized cell pellet; 2, purified Trx-mHSS1 from IMAC; 3, 

digested product of Trx-mHSS1 at 10°C for 16 h; 4, cleavage products of Trx-mHSS1 at 23°C for 6 h; M, protein 

marker (Fermentas SM0671).  

 

Fig.3.40.A shows the SDS-PAGE of different samples and the results of the related WB can be 

seen in Fig. 3.40.B. mHSS1 in fusion protein in the cell pellet and eluate from IMAC was 

detected (lanes 1 and 2). Contrary to expectations, there was no identified band at 32 kDa. The 

reason for this is unknown, probably because of the sensitivity of the polyclonal antibody. In 

lane 3 only the released intact mHSS1 at 24.5 kDa was specifically detected, neither 

TEV-protease nor Trx. In lane 4 except for mHSS1, the incompletely digested Trx-mHSS1 was 

also detected.  
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3.2.4.4 Purification of mHSS1  

 

3.2.4.4.1 Screening with Vivawell 8-strips  

The released mHSS1 must be separated from the protein mixture containing TEV-protease and 

released Trx and possibly incompletely digested fusion protein. Within these proteins mHSS1 is 

the single protein which does not have 6×his and expected to be isolated via second IMAC and 

detected in the flow through. The Vivawell 8-strips was employed for screening of mHSS1 

purification again due to the simplicity and the protocol is described in Appendix 5.5.6. 

       A.                                 B.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.41 Purification of mHSS1 from cleavage products of Trx-mHSS1 at 10°C for 16 h (A) at 23°C for 6 h (B) 

via Vivawell 8-Strips presented using 12% SDS-PAGE with silver staining. The soluble cell lysate (lane 1) and the 

fractions from following IMAC steps (lanes 2-6) are shown. PM: protein mixture after cleavage of Trx-mHSS1; 

FT, fraction of flow through; W1, wash fraction with wash buffer 1; W2, wash fraction with wash buffer 2; EA, 

first elution fraction; EB, second elution fraction; M, protein marker (Fermentas SM0661).  

 

Fig. 3.41.A shows the result of screening of isolation of mHSS1 from the protein mixture after 

cleavage of Trx-mHSS1 at 10°C for 16 h where the three proteins mentioned above were 

present. A successful purification of released mHSS1 was not achieved via second IMAC, 

because not only mHSS1 but also the incompletely digested fusion protein was detected in the 

flow through, which indicated a weak binding between the 6×his tag of Trx-mHSS1 and its 
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ligand. However, this result was in accordance with the assumption described in 3.2.4.2.1 and 

when Trx-mHSS1 is present in its native conformation, it is difficult to access the 6×his tag 

which is probably hidden in fusion protein. The Trx and TEV-protease seemed to be tightly 

bound to the membrane and eluted mainly with 250 mM imidazole. A part of released mHSS1 

was found in elution fractions probably because of non-specific interactions with the membrane 

adsorber. 

In contrast, pure mHSS1 was obtained when mHSS1 was isolated from the protein mixture 

after cleavage of the fusion protein at 23°C for 6 h was performed as shown in Fig.3.41.B. The 

fusion protein was completely digested into mHSS1 and Trx, which was detected in the flow 

through and the second elution fraction.  

 

3.2.4.4.2 Upscaling of immobilized metal ion affinity chromatography 

The scale-up purification of released mHSS1 via IMAC was performed and an IDA-75 

membrane connected to FPLC system was once again employed. The membrane adsorber was 

equilibrated with binding buffer and subsequently loaded with digestion products of the fusion 

protein at 23°C for 6 h. After flow through of mHSS1 and washing the membrane, Trx and 

TEV-protease were further eluted with buffer containing 250 mM imidazole for control.  

In Fig. 3.42 and Fig. 3.43 the chromatogram and SDS-PAGE analysis of chosen fractions with 

silver staining are shown. Similarly to the screening via Vivawell 8-strips, the released mHSS1 

without 6×his tag did not bind to the membrane adsorber and it was detected in the flow 

through after sample loading. The purity of purified mHSS1 was assumed to be more than 95% 

via SDS-PAGE analysis with silver staining. The TEV-protease and Trx with 6×his tag were 

detected in the first three fractions, as well as an unknown protein at about 13 kDa, which was 

thought to be a smaller fragment of Trx. Moreover, by determination of mHSS1 and Trx 

concentration by Bradford assay, mHSS1 was found to be only 32% of the fusion protein.   
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Fig. 3.42 Chromatogram of IMAC-purification of mHSS1 from cleavage products of Trx-mHSS1 at 23°C for 6 h. 

The UV-absorption (AU) and conductivity (mS/cm
2
) dependent on time were shown. The arrow indicates the 

elution peak of his-tagged proteins and the black line marks the flow through fractions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.43 IMAC-purification of mHSS1 from cleavage products of Trx-mHSS1 at 23°C for 6 h presented using 12% 

SDS-PAGE with silver staining. PM: protein mixture after cleavage of Trx-mHSS1; F, fraction; M, protein marker 

(Fermentas SM0661).  
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3.2.4.5 Size exclusion-HPLC 

Size exclusion-HPLC was carried out in order to determine the presence of related impurities 

like aggregates and different conformational forms of the purified mHSS1. The system set-up 

and chromatography conditions are described in Appendix 5.5.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.44 Size exclusion-HPLC profile of purified mHSS1 preparation. The arrow indicates the buffer peak. 

 

The size exclusion-HPLC profile of purified mHSS1 preparation is presented in Fig. 3.44.  

There are two peaks the in chromatogram from SE-HPLC and the retention time of peaks 1 and 

2 was 22.7 min and 27.1 min, respectively. Peak 1 was smaller than peak 2, but the protein 

molecular weight in peak 1 was higher than in peak 2. The results of the SDS-PAGE analysis 

show that the subunit molecular weight of the two protein fractions was the same. Moreover, 

the identities of the two proteins were confirmed by WB using anti-HSS1 antibody as shown in 

Fig. 3.45. Since the protein in peak 1 flew through the column more quickly than peak 2, it was 

thought to be the aggregated mHSS1 with incorrect folding. When the areas of both peaks were 

compared, mHSS1 in peak 2 held 67.4 %. The mHSS1 in peak 2 was used in the following 

activity test.  
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                     A.                 B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.45 Identification of proteins peaks from size exclusion-HPLC. A. SDS-PAGE analysis (12% with silver 

staining) of peaks. B. WB analysis (20%) of fractions in both peaks . Lane 1, protein in peak 1; lane 2, protein in 

peak 2. M (A), protein marker (Fermentas SM0661); M (B), protein marker (Bio-Rad, 161-0374). 

 

3.2.4.6 Test of biological activity 

The hHSS1 expressed in HEK cells displayed pro-angiogenic activity of HCAEC as described 

in 2.1.4. The biological activity of mHSS1 produced in recombinant E. coli was tested by Dr. 

Mortimer Korf-Klingebiel (Department of Cardiology and Angiology, Hanover Medical 

School). The cells were incubated with purified mHSS1 or fusion protein Trx-mHSS1 alone, or 

the two proteins in combination. The cells treated without any cytokines were used as negative 

control while cells grown with 15% FCS or stimulated with VEGF were used as positive 

control, which are well known to promote pro-angiogenesis.  
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3.2.4.6.1 Proliferation 

The proliferation of HCAEC was evaluated based on cultivation in a microtiter plate. HCAEC 

were grown in 96-well plates with 15% FCS and prior to the proliferation assay the cells were 

starved for 4 h in medium containing 0.5% FCS. Three samples were added to the wells of 

microtiter plate and the cells were cultured for a further 24 h. Bromodeoxyuridine (BrdU) is a 

synthetic nucleoside that is an analogue of thymidine which can be incorporated into the newly 

synthesized DNA of replicating cells during S phase of the cell cycle (137). The amount of 

incorporated BrdU in the cells can be detected with the help of antibodies and quantified using 

a spectrophotometer.  

 

 

 

 

 

 

 

 

Fig. 3.46 Comparative efficiency of 15% FCS and various purified samples (each with 100 ng/mL) in HCAEC 

proliferation as % of the negative control. The cells without any cytokine treatment were used as negative control. 

In comb.: mHSS1 and Trx-mHSS1 in combination; Neg-Cont.: negative control. 

The effects of the various samples on HCAEC proliferation are presented in Fig. 3.46. The 

culture without a supplement of any cytokines had its rate of BrdU incorporation defined as 

100%. So that in other samples the rates were evaluated as a % of this control. The full medium 

with 15% FCS resulted in a large effect on endothelial cell proliferation and was recorded as 

132% at the end of the test. The proliferation of cells treated with the three samples was 
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observed. Compared with the negative control, the purified mHSS1 alone did not stimulate cell 

proliferation very significantly and its efficiency was only 111%. Notably, the proliferation 

achieved with Trx-mHSS1 and mHSS1 in combination was comparable to the effect with 

fusion protein alone, 122% and 123% respectively. 

 

3.2.4.6.2 Tube formation 

The biological activity of purified mHSS1 was confirmed by tube formation where the in vitro 

formation of capillary-like tubes by endothelial cells based on matrix gel can be measured. It is 

a powerful in vitro method to screen for various factors that promote or inhibit angiogenesis 

(138).  

Endothelial cell tube formation was assayed in a 24-well plate coated with growth factor 

reduced matrix gel. The HCAEC were supplemented with 0.5% FCS in the presence of VEGF 

or purified mHSS1 and incubated at 37°C for 16 h. Microscopic pictures were taken at the end 

of the experiment as shown in Fig. 3.47.A. The pictures were analyzed based on various 

parameters, such as the number of tubes, the tube length and branching points. 

 

A. 
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B. 

 

 

 

 

 

 

 

Fig. 3.47 Comparative efficacy of VEGF and purified mHSS1 (each with 100 ng/mL) in the tube formation assay. 

A, graphical depiction of tube formation after treatment with VEGF and purified mHSS1 at 37°C for 16 h and the 

cells without any cytokine treatment were used as negative control. B, evaluation of the network formation as % of 

the negative control. Neg-Cont.: negative control. 

 

Fig. 3.47.B shows that the network formation in the negative control was recorded as 100% and 

VEGF was sufficient to support endothelial morphogenesis in this 3D model of angiogenesis 

with 208 % efficiency of control. It was observed that HCAEC formed branching networks 

when stimulated with purified mHSS1 with 182 % of the control.  

 

3.2.4.6.3 Mouse aortic ring assay 

It was demonstrated that mouse or rat aorta rings reproducibly generate microvessel outgrowths 

in fibrin or collagen gels, and provide a sensitive assay for the study of angiogenesis in a 

chemically defined environment (139). In this present work, this assay was performed in 

growth factor reduced matrix gel in 24-well plates and the cells were cultured for up to 2 weeks 

in a medium with 1% FCS and incubated with mHSS1. A negative control was stimulated with 

unconditioned serum-free medium. Cellular outgrowth was assessed by phase contrast 
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microscopy and expressed as the number of vessels and branching, as well as their maximal 

length.  

 

Fig. 3.48 Photomicrographs of microvessel outgrowth from the mouse aorta treated with purified mHSS1 (100 

ng/mL). The mouse aorta without cytokine treatment was used as control. 

 

Fig. 3.48 shows the photomicrographs at the end of test. In the negative control, the serum-free 

medium failed to support angiogenesis from mouse explants. In the tested culture in the present 

of serum and stimulated with mHSS1, only isolated and dispersed fibroblast-like cells migrated 

into the gel within the early phase. Subsequently, microvessel outgrowth arose from the edges 

of the parental vessels and the initial linear sprouting of endothelial cells progressively 

branched, anastomosed and formed a micro vascular network. 

 

3.2.4.6.4 Scratch assay 

In this study, the monolayer of HCAEC was removed with pipette tips. The effect of mHSS1 

on HCAEC migration was observed and the cells stimulated with VEGF were used as a 

positive control, while the cells without any cytokine treatment were used as negative control. 

The photomicrographs of wounded HCAEC before and after treatment at 6, 9 and 18 h are 

presented in Fig. 3.49.A. The recovery of the wound stimulated by different samples over 18 h 

was plotted as a percentage which is shown in Fig. 3.49.B. 
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A.  

 

 

 

 

 

 

 

 

 

B.  

 

 

 

 

 

 

 

 

Fig. 3.49 Comparative efficacy of VEGF and purified proteins (each with 100 ng/mL) in the scratch assay. A. 

photomicrographs of wounded HCAEC before and after treatment with VEGF and purified mHSS1 at 6, 9 and 18 

h. The cells without any cytokine treatment were used as negative control. B. Effects of different samples on 

HCAEC migration were plotted as a percentage of wound closure. In comb.: mHSS1 and Trx-mHSS1 in 

combination; Neg-Cont.: negative control. 
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The positive control VEGF showed significant migration of the cells toward the scratch and 

after 18 h, the recovery was more than 90%. The HCAEC responded typically to the actions of 

the tested three samples. During the whole period, the cells stimulated with mHSS1 migrated 

almost at the same rate as the cells treated with Trx-mHSS1 at the leading edge of the scratch 

and the percentage of wound closure at end of the test was recorded as 74% and 72%, 

respectively. In contrast, for the cells treated with mHSS1 and Trx-mHSS1 in combination the 

recovery was only 60%.   

 

3.2.4.7 Summary 

In the present work, a process of production and purification of mHSS1 was developed and the 

flow chart is presented in Fig. 3.50.  

The mHSS1 cDNA was fused with Trx and inserted into plasmid pET32b and then transformed 

into E. coli BL21(DE3). Production of soluble Trx-mHSS1 could be detected after cultivation 

in LB medium at 26°C, but its concentration was still low compared to overexpessed inclusion 

bodies. The solubility of produced Trx-mHSS1 was not improved by a change of cultivation 

temperature. Moreover, soluble Trx-mHSS1 could be produced in S-DAB medium instead of 

IPTG induction, however its yield was less than in LB medium.  

Due to the 6×his tag not being exposed to its ligand in its conformation and nonspecific binding 

of contaminants, the soluble cell lysate was replaced by inclusion bodies as initial material for 

the purification of Trx-mHSS1 via IMAC. The renatuation of purified Trx-mHSS1 was 

achieved by dialysis against refolding buffers. Alternatively, refolding of Trx-mHSS1 was 

performed on a membrane adsorber combined with IMAC. Although this could be done only 

with very low initial protein concentrations, it might offer an attractive approach for 

purification of other proteins in the future.  

It was necessary to perform the cleavage of Trx-mHSS1 at a relatively high temperature, so that 

the fusion protein would be completely digested into mHSS1 and Trx, which were separated 
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from each other in the subsequent IMAC. In this case, the overall yield of mHSS1 from a 1 L 

bacterial culture (cultivation in shake flask) was 12.6 mg.  

The biological activities of the purified proteins were tested successfully and not only pure 

mHSS1 but also fusion protein could promote pro-angiogenesis, as could the two proteins in 

combination. 

 

 

 

 

 

~ 

 

 

 

 

 

 

 

 

Fig. 3.50 The flow chart of the mHSS1 production process. The specified protein amount refers to a 1 L culture 

from cultivation in shake flask. 

Construction of 

pET32b-Trx-6×his-TEV-mHSS1 

Transformation in E.coli BL21 

(DE3) and cultivation in shake 

flask 

Isolation and solubilization of 

inclusion bodies  

Purification of fusion protein via 

IMAC and renatuation by dialysis 

Complete cleavage of fusion 

protein with AcTEV
TM

-protease 

Purification of released mHSS1 via 

IMAC  

Size exclusion-HPLC  

≈675 mg Trx-mHSS1 

≈136 mg Trx-mHSS1 

≈18.8 mg mHSS1 

≈12.6 mg mHSS1 

Test of bioactivity 

≈31 mg mHSS1 
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4. SUMMARY AND OUTLOOK 

 

Cytokines are small cell signaling proteins which can regulate the proliferation and 

differentiation of cells and they also have critical importance in the restoration of damaged 

tissues or organs. However, some cytokines may have a negative effect on cells and in some 

cases they are associated with diseases and tumors. Therefore, characterization of cytokines has 

received more and more attention from the research community. Due to various applications, 

cytokines are needed with increasing quantity. Generally, although the produced cytokines from 

eukaryotic cells are bioactive, the production amounts are limited through this medium.  

In the present work, the production and purification of four cytokines in recombinant E. coli 

was developed and optimized. In the first part of the work, the optimized production and 

purification of 16-kDa hPRL was described thought to be the major cause of PPCM. After a 

2-step chromatographic purification by anion exchange membrane-and size exclusion 

chromatography followed by removal of endotoxins, the apoptotic activity of purified 16-kDa 

hPRL on NRCM via the activation of NF-κB signaling was confirmed. Moreover, the 16-kDa 

hPRL injected mice exhibited left ventricular dilatation. In the future, the production of 16-kDa 

hPRL based on this developed protocol can be scaled up. For example, the production scale can 

be transferred from 500 mL shake flask to 2 L bioreactor.  

In the second part, a new process for production and purification of hActivin A, mHSS1 and 

Fam163a was developed. Activin A has a prominent role in the area of haematopoiesis, while 

hHSS1 and FAM163A have exhibited pro-angiogenetic activities. In order to have soluble 

production of these three cytokines, they were fused with N-terminal Trx and expressed as 

fusion proteins.  

The fusion with Trx did not improve solubility of hActivin βA at all and Trx-hActivin βA was 

expressed entirely as inclusion bodies. However, Trx-Fam163a could be detected only in the 

soluble fraction of cell lysate. For mHSS1, the amount of soluble fusion protein was low 

compared with insoluble part.  

For purification of hActivin A, work was only completed until cleavage of soluble Trx-hActivin 
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βA. The renaturation of Trx-hActivin βA by dialysis was performed prior to purification of the 

fusion protein via IMAC. The released hActivin βA from the cleavage of fusion protein was 

found to be insoluble which indicated the innative conformation of released target protein. It 

seems extremely difficult to determine the proper refolding conditions for Activin A which 

possesses 9 intramolecular and intermolecular disulfide bonds. Mason AJ et. al examined the 

relationship between the efficiency of secretory expression of Activin A by use of animal cells 

and the structure of an expression vector. They reported that besides the region for the amino 

acids sequence of Activin A, a pro-sequence region is essential for refolding (79). This report 

suggests that in future work a new construct of Trx-hActivin βA with the pro-sequence should 

be created, where the solubility of the target protein can be improved.  

Although the Trx fusion was effective in increasing soluble Fam163a production, it was 

difficult to purify the protein. So far, purified Fam163a is only available at the analytical scale. 

At first, degradation resulted in a low yield of intact fusion protein which was sensitive to the 

bacterial proteases and digested into several smaller fragments during expression. Trx-Fam163a 

was purified via IMAC, together with its digestion products. In order to avoid too many 

contaminants being present after the subsequent cleavage, the fusion protein could only be 

pooled from small quantities. In the second purification step, the released Fam163a from the 

fusion protein could be only achieved using immunoprecipitation with anti-his tag beads. 

Finally, Fam163a demonstrated the bioactivity to close the scratch on a monolayer of HCAEC 

whereas Trx-Fam163a had less effect. 

Currently, the production of Fam163a is limited by the application of anti-his tag beads and its 

disadvantages are well recognized, including cost and scale. As described in 3.2.3.4.1, 8 

glutamic acids in a series at the N-terminus of Fam163a were assumed to bind the IMAC ligand 

with the same affinity like 6×his tag. A new construct of fusion protein in the absence of 6×his 

tag could be created to solve this problem. Instead of the 6×his tag, the fusion protein is 

expected to combine IMAC with its own 8 glutamic acids and a TEV-protease recognition-site 

can be replaced with another protease without a 6×his tag. Moreover, it is necessary to 

investigate a better method to prevent Fam163a degradation. 
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The low affinity of the 6×his tag in soluble Trx-mHSS1 for its ligand created significant 

difficulties during purification. So instead, the solubilized inclusion bodies containing the 

fusion protein were applied to IMAC. Refolding of Trx-mHSS1 was achieved with dialysis in 

vitro. Alternatively, renaturation of the fusion protein could be combined with IMAC. After 

complete cleavage of Trx-mHSS1 at a higher temperature, the released mHSS1 could be 

obtained in the second purification via IMAC. Finally, with or without Trx fusion, the refolded 

mHSS1 was biologically active and stimulated proliferation, migration of HCAEC and tube 

formation and induced cell spouting in a mouse aortic ring assay. 

In the future, the production of Trx-mHSS1 based on this developed protocol will be scaled up, 

as it exhibited similar bioactivity to mHSS1. In addition, new constructs can be created. Instead 

of between Trx and mHSS1, the 6×his tag can be placed at the N-terminus of Trx, where it may 

make it more accessible for binding in native state. Moreover, a new construct of mHSS1 

without Trx fusion can be made. This ―naked‖ mHSS1 with 6×his tag can be expressed alone 

and renatured after purification, saving the work of cleavage. Furthermore, it would make sense 

to compare its expression ś solubility and efficiency for refolding to fusion with Trx. Dr. 

Mortimer Korf-Klingebiel has attempted to make this new plasmid and it was often observed 

that mHSS1 was unstable and its sequence would change suddenly. Strangely, a gene which 

was confirmed by sequencing before was found have been replaced by a new gene in the 

subsequent purification of the plasmid. However, in most cases, the genes were found to have 

been deleted. 

In addition, from the feedback of Dr. Mortimer Korf-Klingebiel, when the cells were treated 

with endotoxin-containing Trx-mHSS1, an expression of chemokine C-X-C motif ligand 1 

(CXCL1) could be detected. CXCL1 is a well-known pro-inflammatory cytokine and its 

expression can be induced by endotoxins. By contrast, the endotoxin-free Trx-mHSS1 

exhibited no stimulation. It seems that, it is enough to stimulate the cells with very low 

endotoxin levels. So removal of endotoxins in purified mHSS1 and Trx-mHSS1is a necessity.  

Besides the optimization of the production of mHSS1 and Fam163a, the future work may 

involve the production of other cytokines, which have been also isolated from bone marrow 
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cells and exhibit pro-angiogenetic activity. For example, interleukin-25, this cytokine from    

E. coli culture is already commercially available (Thermo Fisher Scientific, Karlsruhe). It is 

also possible to express the protein with Trx fusion in recombinant E. coli and that the purified 

protein can be compared with the commercial interleukin-25, which can be used as a standard 

in tests.  
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5. APPENDIX 

 

5.1 Materials 

 

5.1.1 Chemicals 

 Reagent                               Manufacturer, location                  

acetic acid 
 

AppliChem GmbH, Darmstadt 
 

acrylamide/bisacylamide (37.5:1)  Carl Roth GmbH& Co, Karlsruhe  
 

agar 
 

Carl Roth GmbH& Co, Karlsruhe  
 

AgCl 
 

Carl Roth GmbH& Co, Karlsruhe  
 

ampicillin 
 

Fluka Chemie AG, Seelze  
  

APS 

β-Mercaptoethanol  

Sigma Aldrich Chemie GmbH, Steinheim 

Fluka Chemie AG, Seelze  

bromophenol blue Fluka Chemie AG, Seelze  
  

BSA 

CH3COONa  

Sigma Aldrich Chemie GmbH, Steinheim  

Fluka Chemie AG, Seelze  

citric acid 
 

Fluka Chemie AG, Seelze  
  

CoCl2·6H2O 
 

Fluka Chemie AG, Seelze  
  

Coomassie brilliant blue G250 Fluka Chemie AG, Seelze  
  

Coomassie brilliant blue R250 Fluka Chemie AG, Seelze  
  

CuCl2·2H2O 
 

Fluka Chemie AG, Seelze  
  

DTT 
 

Fluka Chemie AG, Seelze  
  

EDTA 
 

Fluka Chemie AG, Seelze  
  

ethanolamine 
 

Fluka Chemie AG, Seelze  
  

Fe (III) Citrate Sigma Aldrich Chemie GmbH, Steinheim  
 

formaldehyde 
 

Fluka Chemie AG, Seelze  
  

glucose 
 

Carl Roth GmbH& Co, Karlsruhe 
 

glycine 
 

Carl Roth GmbH& Co, Karlsruhe 
 

GSH 
 

Sigma Aldrich Chemie GmbH, Steinheim  
 

GSSG 
 

Sigma Aldrich Chemie GmbH, Steinheim  
 

H3BO3 
 

Sigma Aldrich Chemie GmbH, Steinheim  
 

imidazole 

F3Fe(CN)6  

Sigma Aldrich Chemie GmbH, Steinheim  

Fluka Chemie AG, Seelze  

K2HPO4 
 

Fluka Chemie AG, Seelze  
  

KH2PO4 
 

Fluka Chemie AG, Seelze  
  

lactose 
 

Carl Roth GmbH& Co, Karlsruhe 
 

methanol 
 

Carl Roth GmbH& Co, Karlsruhe  
 

MgSO4·7H2O Fluka Chemie AG, Seelze  
  

http://www.dict.cc/englisch-deutsch/manufacturer.html
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MnCl2·4H2O 

NaAc 

Na2S2O3 
 

Fluka Chemie AG, Seelze  

Fluka Chemie AG, Seelze 

Fluka Chemie AG, Seelze  
  

Na2CO3 
 

Carl Roth GmbH& Co, Karlsruhe  
 

Na2MoO4.2H2O Merck KGaA, Darmstadt 
  

NaCl  
 

Merck KGaA, Darmstadt 
  

NaH2PO4 

NaN3  

Fluka Chemie AG, Seelze  

Fluka Chemie AG, Seelze    

NaOH 
 

Sigma Aldrich Chemie GmbH, Steinheim  
 

(NH4)2HPO4 AppliChem GmbH, Darmstadt 
 

(NH4)2SO4 
 

Amersham Biosciences, Piscataway, USA  
 

NH4HCO3 
 

Fluka Chemie AG, Seelze  
  

NiSO4·7H2O 
 

Fluka Chemie AG, Seelze  
  

phosphoric acid Sigma Aldrich Chemie GmbH, Steinheim  
 

PMSF 

potassium haxacyanoferrate (Ш)  

Sigma Aldrich Chemie GmbH, Steinheim  

Fluka Chemie AG, Seelze  

SDS 
 

Sigma Aldrich Chemie GmbH, Steinheim  
 

TCA 
 

Sigma Aldrich Chemie GmbH, Steinheim  
 

TEMED 
 

Carl Roth GmbH& Co, Karlsruhe  
 

TDCA/Na 
 

Sigma Aldrich Chemie GmbH, Steinheim  
 

Titriplex III 
 

Fluka Chemie AG, Seelze  
  

Tris 
 

Sigma Aldrich Chemie GmbH, Steinheim  
 

Tris-base 
 

Amersham Biosciences, Piscataway, USA  
 

Tris-HCl 
 

Carl Roth GmbH& Co, Karlsruhe 
 

Triton X-100 
 

Merck KGaA, Darmstadt 
  

trpytone 
 

Fluka Chemie AG, Seelze  
  

Tween 20 
 

Serva Elektrophoresis GmbH, Heidelberg 
 

urea 
 

Carl Roth GmbH& Co, Karlsruhe 
 

yeast extract 
 

Carl Roth GmbH& Co, Karlsruhe 
 

Zn(CH3COO)2.2H2O Carl Roth GmbH& Co, Karlsruhe 
 

ZnSO4·7H2O 
 

Fluka Chemie AG, Seelze  
  

 

5.1.2 Consumable materials 

 Material                        Types, manufacturer and location                      

 Centrifugal concentrator           Vivaspin® 2, Sartorius Stedim Biotech GmbH, Göttingen 

 Falcon tubes                     15 and 50 mL, Sarstedt AG & Co. KG, Nuembrecht 

 Fiber pads                       Bio-Rad Laboratories GmbH, Munich 

 Shake flasks                     100 and 500 mL, VWR international GmbH, Darmstadt 

 Syringes                        1, 5 and 10 mL, B.Braun Biotech, Melsungen  

 Syringe filters 0.2µm              Sartorius Stedim Biotech GmbH, Göttingen 

http://www.dict.cc/englisch-deutsch/manufacturer.html
http://www.dict.cc/english-german/to+draw+up+into+a+syringe.html
http://www.dict.cc/english-german/to+draw+up+into+a+syringe.html
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 PVDF membrane                 Bio-Rad Laboratories GmbH, Munich 

 Pipette tips                      Sarstedt AG & Co. KG, Nuembrecht 

                                                                                                                                                                                                                                                                                                                                                  

 

5.1.3 Enzymes 

Benzonase (Cat. No 70746-4), Novagen, Darmstadt 

AcTEV™-protease (Cat. No 12575-015), Invitrogen, Darmstadt 

Lysozyme (Cat.62971), Sigma Aldrich Chemie GmbH, Steinheim 

 

5.1.4 Antibodies 

WB for identification of Trx-mHSS1and degradation fragments of Trx-Fam163a  

Primary antibody: 

Mouse monoclonal anti-6×his antibody (GE Healthcare, Freiburg) 

Secondary antibody: 

Goat anti-mouse secondary antibody conjugated to peroxidase (Bio-Rad Laboratories GmbH, 

Munich) 

 

WB for identification of mHSS1 

Primary antibody: 

Rabbit polyclonal anti-C19orf63 (mHSS1) antibody (N-term) (Abgent, San Diego, USA) 

Secondary antibody: 

Goat anti-rabbit secondary antibody conjugated to peroxidase (Bio-Rad Laboratories GmbH, 

Munich) 

 

Immunoprecipitation using protein G 

Mouse monoclonal anti-6×his antibody (GE Healthcare, Freiburg) 

 

5.1.5 Molecular weight markers 

PageRuler 
TM

 unstained protein ladder, SM 0661 (Fermentas, St. Leon-Rot) 

PageRuler
 TM 

prestained protein ladder, SM 0671 (Fermentas, St. Leon-Rot) 

Unstained protein molecular marker, 26610 (Thermo Scientific, Bremen))   

Prestained protein molecular marker, 161-0374 (Bio-Rad Laboratories GmbH, Munich) 
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5.1.6 Columns and membrane adsorbers  

Column: 

SEC: Proteema100Å (Polymer Standards Service, Mainz) 

Membrane adsorber: 

IMAC: Sartobind IDA-75 (Sartorius Stedim Biotech GmbH, Göttingen) 

AEC: Sartobind Q75 (Sartorius Stedim Biotech GmbH, Göttingen) 

 

Spin column: 

Vivaspure MCMini (Sartorius Stedim Biotech GmbH, Göttingen)  

8-Strips: 

Vivawell 8-Strips, 15 layers (Sartorius Stedim Biotech GmbH, Göttingen) 

 

5.2 Equipments 

 Equipment                  Types, manufacturer and location                         

 Autoclave                   Systec V-150, Systec GmbH, Wettenberg 

 Electrophoresis chamber       Mini Protean Tetra Cell, Bio-Rad Laboratories GmbH, Munich 

 FPLC                      BioLogic AVR7-3, Bio-Rad Laboratories Inc., Munich 

 Incubator                   CertomatR HK, B.Braun Biotech, Melsungen 

 pH-electrode                  Checker® Hanna Instruments Ltd, Leight on Buzzard, UK 

 Pipettes                     Research®, Eppendorf AG, Hamburg 

 Shaker                      MTS 4, IKA Werke GmbH, Staufen     

 Ultrasonic probe              Labsonic M, Sartorius Stedim Biotech GmbH, Göttingen      

 Spectrophotometer            Multiskan, Thermolabsystems GmbH, Langenselbold  

 Thermocentrifuge             Megafug1.0RS, Heraeus Holding GmbH, Hanau 

 Thermocentrifuge             Fresco 17, Heraeus Holding GmbH, Hanau  

 Thermomixer                Compact, Eppendorf AG, Hamburg 

 Vortex mixer                 VM-300, NeoLab Migge GmbH, Heidelberg 

 Western blot system           Criterion Blotter, Bio-Rad, Laboratories GmbH, Munich  

 

5.3 Bacterial strain 

The strain E. coli BL21(DE3) (Novagen, Darmstadt) was employed as the competent cells for 

production of 16-kDa hPRL, hActivin A, Fam163a and mHSS1. The transformation of the four 

http://www.dict.cc/englisch-deutsch/manufacturer.html
http://www.dict.cc/englisch-deutsch/ultrasonic+probe.html
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expression vectors are performed individually.  

 

5.4 Expression vectors 

PT7L-16-kDa hPRL 

The vector PT7L-16-kDa hPRL was provided from Prof. Denise Hilfiker-Kleiner (Department 

of Molecular Cardiology and Angiology, Hanover Medical School). It contains cDNA of 

16-kDa hPRL (40) which is under the control of an IPTG inducible T7 promoter and ampicillin 

resistance. 

 

pET32b-Trx-6×his-TEV-TP 

The expression vector pET32b-Trx-6×his-TEV-TP is used for the production of hActivin A, 

Fam163a and mHSS1. TP stands for the three cytokines. With a Lac-operator the protein 

expression can be induced by IPTG and the expression vector contains an additional gene of 

ampicillin-resistance as the selection marker. The vector map is shown in Fig. 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Vector map of pET32b-Trx-6×his-TEV-TP. TP, target protein (hActivin βA, Fam163a or mHSS1). 

TP 

pET-32b-Trx-6×his–TEV-TP 
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The sequences of bases encoding Trx-6×his-TEV and the corresponding amino acids as 

one-letter-code are presented. The coding areas for 6×his tag and TEV-protease recognition 

sequences are separately marked by a blue and red background. The cDNA of hActivin βA was 

amplified by Dr. Axel Schambach (Institute of Experimental Hematology, Hanover Medical 

School). The mHSS1 and Fam163a genes were amplified by Dr. Mortimer Korf-Klingebiel 

(Department of Cardiology and Angiology, Hanover Medical School). The cDNA- and amino 

acids sequences of hActivin βA, Fam163a and mHSS1 are also given below, respectively. 

 

Trx-6×his-TEV: 

atgagcgataaaattattcacctgactgacgacagttttgacacggatgtactcaaagcggacggggcgatcctcg

tcgatttctgggcagagtggtgcggtccgtgcaaaatgatcgccccgattctggatgaaatcgctgacgaatatca

gggcaaactgaccgttgcaaaactgaacatcgatcaaaaccctggcactgcgccgaaatatggcatccgtggtatc

ccgactctgctgctgttcaaaaacggtgaagtggcggcaaccaaagtgggtgcactgtctaaaggtcagttgaaag

agttcctcgacgctaacctggccggttctggttctggccatatgcaccatcatcatcatcattcttctggtgagaa

tctttattttcagggatcc 

 

MSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKL

NIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLAGSGSGHMH

HHHHHSSGENLYFQGS 

 

hActivin βA:   

cttggagtgtgatggcaaggtcaacatctgctgtaagaaacagttctttgtcagtttcaaggacatcggctggaat

gactggatcattgctccctctggctatcatgccaactactgcgagggtgagtgcccgagccatatagcaggcacgt

ccgggtcctcactgtccttccactcaacagtcatcaaccactaccgcatgcggggccatagcccctttgccaacct

caaatcgtgctgtgtgcccaccaagctgagacccatgtccatgttgtactatgatgatggtcaaaacatcatcaaa

aaggacattcagaacatgatcgtggaggagtgtgggtgctcatag 

 

GLECDGKVNICCKKQFFVSFKDIGWNDWIIAPSGYHANYCEGECPSHIAGTSGSSLSFH

STVINHYRMRGHSPFANLKSCCVPTKLRPMSMLYYDDGQNIIKKDIQNMIVEECGCS  

 

Fam163a: 

cagtattactgctgcaagaagggcacagatggcgaggatgctgaggaggaagaggaagaggaggaacacggccttt

ccatccatccccgagtccccgcctgcaatgcctgcagctcccacgtcctggacggcagaggcggcctggcacctct

caccagcgagtcctgcagccagccgtgtggggtggccagccactgtaccacttgctccccttaccgcacccccttt

tacatacggacagctgacatggtgcccaacgggggtggaggcgagaggctctccttcgcccctacacactacaaag
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aggggggaaccccatccctcaagttggcagcaccacagaattacccggtgacctggccaagttctgggcatgaggc

cttcactaatccaagggctattagtaccgatgtataa 

 

QYYCCKKGTDGEDAEEEEEEEEHGLSIHPRVPACNACSSHVLDGRGGLAPLTSESCSQ

PCGVASHCTTCSPYRTPFYIRTADMVPNGGGGERLSFATHYKEGGTPSLKLAAPQNYP

VTWPSSGHEAFTNPRAISTDV 

 

mHSS1:  

ggctgccgggccgggactggtgcgcgaggggctggggcggaaggtcgagagggcgaggcctgtggcacggtggggc

tgctgctggagcactcatttgagatcgatgacagtgccaacttccggaagcggggctcactgctctggaaccagca

ggatggtaccttgtccctgtcacagcggcagctcagcgaggaggagcggggccgactccgggatgtggcagccctg

aatggcctgtaccgggtccggatcccaaggcgacccggggccctggatggcctggaagctggtggctatgtctcct

cctttgtccctgcgtgctccctggtggagtcgcacctgtcggaccagctgaccctgcacgtggatgtggccggcaa

cgtggtgggcgtgtcggtggtgacgcaccccgggggctgccggggccatgaggtggaggacgtggacctggagctg

ttcaacacctcggtgcagctgcagccgcccaccacagccccaggccctgagacggcggccttcattgagcgcctgg

agatggaacaggcccagaaggccaagaacccccaggagcagaagtccttcttcgccaaatactggcacatcatcct

ggggggggccgtgttgctcacagccctgcgtcctgctgcgccagggcccgcgccaccgccacaggaggcctga 
 

SGCRVGASARGTGADGREAEGCGTVALLLEHSFELGDGANFQKRGLLLWNQQ

DGTLSATQRQLSEEERGRLRDVAAVNLYRVRVPRRPGTLDSEAGGHVSSFVPAC

SLVESHLSDQLTLHVDVAGNVVGLSVVVYPGGCRGSEVEDEDLELFNtSVQLRS

TAPGPETAAFIERLEMEQAQKAKNPQEQKSFFAKYWHLILGGAVLLTALRPAAG

PAPAPTEA 

 

 

5.5 Methods 

 

5.5.1 Working with recombinant E. coli strains 

 

5.5.1.1 Media compositions 

LB:  10 g tryptone; 5 g yeast extract; 10 g NaCl; 1000 mL dd H2O  

TB:  solution 1: 12 g tryptone; 24 g yeast extract; 4 mL glycerol; 900 mL dd H2O  

      solution 2: 2.31 g KH2PO4; 12.54 g K2HPO4; 100 mL dd H2O  

Antibiotic: ampicillin stock solution (25mg/mL) 
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DNB and S-DAB (135): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 *autoclave 

**sterilize by filtration 

 

 

5.5.1.2 Transformation 

8 µL plasmid (16-kDa hPRL: 55 µg µL
-1

; hActivinA: 214 µg µL
-1

; Fam163a: 179 µg µL
-1

; 

mHSS1: 203 µg µL
-1

) is added to 10 µL competent cells and the mixture is placed immediately 

on ice and incubated for 5 min. The cells are then heated for 2 min at 42°C and incubated on 

ice for 2 min. Then, 250 µL LB medium is added to the cells and the mixture is incubated at 

37°C for 1h. Finally, the cell suspension is spread onto a LB agar plate with ampicillin 

(75µg/mL) for selection and incubated overnight at 37°C. 

 

 

 

Groups Components S-DAB 

(mL) 

DNB 

(mL) 

Magnesium* 0.586 g/L MgSO4·7H2O 20 20 

 

 

Carbon source* 

2.94 g/L glucose  

250 

 

11.07 g/L glycerol 

7.6 g/L lactose 

10.91 g/L glucose  50 

Trace** 2.1 mg/ L Na2MoO4·2H2O 0.2 0.2 

 

 

Elenments** 

2.5 mg/L CoCl2·6H2O  

 

 

0.5 

 

 

 

0.5 

15 mg/L MnCl2·4H2O 

1.5 mg/L CuCl2·2H2O 

3 mg/L H3BO3 

33.8 mg/L Zn(CH3COO)2·2H2O 

14.1 mg/L Titriplex III  

Nitrogen* 4 g/L (NH4)2HPO4 20 20 

 

Phosophate and other salts* 

13.3 g/L KH2PO4 100 100 

1.55 g/L Citric acid 20 20 

0.10 g/L Fe (III) Citrate 20 20 

pH (6.8) adjusting* 5 M NaOH 13.5 13.5 

Solvent* ddH2O 556.5 756.5 
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5.5.1.3 Cultivation of E. coli and expression of recombinant proteins 

 

LB-and TB media 

A pre-culture is prepared by transferring an isolated single colony from the agar plate into   

20 mL of LB-and TB media with ampicillin (60 µL from stock solution). After incubation 

overnight at 130 rpm and 30°C, the main culture of 100 mL medium with ampicillin (300 µL 

from stock solution) is inoculated with 2 mL pre-culture. The bacteria are cultivated at 37°C 

and the expression of recombinant protein is induced by the addition of IPTG until OD600 

reaches 0.6-0.8 (LB medium) or 1.5-2.0 (TB medium). 

 

S-DAB medium 

The preculture with 20 mL LB medium with ampicillin (60 µL from stock solution) is shaken at 

37°C for 4-6 h until OD600 reaches 1.0. Subsequently, DNB medium is inoculated with LB 

medium pre-culture to give a starting OD600 of 0.02. The DNB medium preculture is shaken at 

37°C for 6-7 h until OD600 is between 1.5 and 2.0, then it is used to inoculate the main S-DAB 

culture to give a starting OD600 of 0.02.   

 

Cell harvest  

After expression, the cells are transferred to 50 mL falcon tubes (2 mL Eppendorf tubes for 

smaller amounts) which are subsequently centrifuged at 4000 g for 20 min. The supernatants 

are decanted and the cell pellets are frozen at -20°C or applied directly to the proceeding step.  

 

5.5.1.4 Cell lysis 

The cell pellets are disrupted by sonication or lysed directly with a treatment of Bugbuster
TM

 

Protein Extraction Reagent (Novagen, Darmstadt). For detection of the expression of the target 

proteins, the OD600 is always adjusted to 10. 

 

Cell lysis by sonication 

The cell pellets are resuspended in lysis buffer and the cell suspension is sonicated three times 
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on ice for 1-2 min with 30 sec breaks.  

 

Lysis buffer    50 mM Tris, pH 8.0 

              0.1% (v/v) Triton X-100 

              1 mM PMSF 

              5 U benzonase  

             2 mM MgCl2  

 

Cell lysis with Bugbuster
TM 

Protein Extraction Reagent
 

The cell pellet is resuspended in Bugbuster
TM 

Protein Extraction Reagent. 100 U lysozyme and 

2.5 U Benzonase per 1 mL Bugbuster
TM

 are added to the suspension in order to improve the 

protein extraction efficiency. Then the cell suspension is incubated for 20 min at room 

temperature.  

 

Separation of soluble and insoluble cell components  

After cell lysis, the soluble proteins are separated from insoluble proteins and cell debris by 

centrifugation of cell lysate at 4°C and 17000 g for 45 min. Then the supernatants and pellets 

are collected. For the detection of expressed insoluble target proteins, the pellets are 

resuspended in lysis buffer with an OD600 of 10.  

 

5.5.1.5 Washing and solubilization of cell pellets 

The pellets are resuspended in wash buffer and incubated at room temperature for 10 min. After 

centrifuging the suspension at 4°C and 17000 g for 20 min, the pellets are collected. 

Subsequently, the washed inclusion bodies are suspended in solubilization buffer and incubated 

whilst being constantly shaken overnight at room temperature for complete solubilization.  

 

Wash buffer for all the inclusion bodies: 

                                             50 mM Tris, pH 7.5 

                                             25 mM EDTA 

                                             0.5 M NaCl 

                                             1 M urea 

                                             0.1% (v/v) Triton X-100 
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Solubilization buffer for incusion bodies of 16-kDa hPRL: 

                                             20 mM ethanolamine, pH 9.0 

                                             8 M urea  

                                             1% (v/v) β-mercaptonethanol 

                                              

Solubilization buffer for incusion bodies of hActivin βA and mHSS1: 

                                             50 mM Tris-HCl, pH 8.0 

                                             8 M urea  

                                             0.5 M DTT 

 

5.5.2 Electrophoresis and staining  

 

5.5.2.1 Native PAGE  

 

Gel preparation 

The gels are prepared as shown in Table. 5.1. 

         Table. 5.1 Recipe for Native-PAGE gel (2X). 

 

Components Stacking gel   Separating gel (12%) 

Acrylamide/Bisacrylamide-solution (37.5:1) 1 mL 2.625 mL 

1.5 M Tris-HCl, pH 8.8 -- 4.225 mL 

0.5 M Tris-HCl, pH 6.8 2.5 mL -- 

ddH2O 6.4 mL 3.475 mL 

25% APS 15 µL 15 µL 

TEMED 10 µL 10 µL 

  

Sample preparation 

The samples are mixed 1:1 with loading buffer.  

Loading buffer: 2 mL 1M Tris-HCl, pH 6.8; 2 mL (55% ig (v/v)) glycerol; 4 mL 1% (m/v) 

solution of bromophenol blue; 5.4 mL ddH2O 

Gel running 

After running at 100 V for 30 min, the voltage is shifted to 200 V and the gels run for a further 

45 min. 

Running buffer 25 mM Tris-base; 192 mM glycine; pH 8.3 
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5.5.2.2 SDS-PAGE 

 

Gel preparation 

The gels are prepared as shown in Table. 5.2.    

     Table. 5.2 Recipe for SDS-PAGE gel (2X). 

 

 

Sample preparation 

The samples are 1:1 mixed with LaemmLi-buffer, then heated at 95°C for 5 min. 

SDS-sample-buffer: 20 mM Tris-HCl; 2 mM EDTA; 5 % SDS (w/v); 0.02 % (w/v) 

bromophenol blue; pH 6.8 

LaemmLi-buffer: 80 % (v/v) SDS-sample-buffer; 10 % (v/v) glycerol (55% ig (v/v)); 10 % (v/v) 

β-mercaptoethanol 

 

Gel running 

After running at 100 V for 30 min the voltage is shifted to 200 V and the gels run for a further 

45 min. 

SDS-running buffer (1x TGS): 25 mM Tris-base; 192 mM glycine; 0.1 % SDS (w/v); pH 8.3 

 

 

 

Components   Stacking gel  

     (6%) 

           Separating gel 

  (12%)      (15%)     (20%) 

Acrylamide/bisacrylamide (37.5:1)    0.75 mL  3 mL 4 mL 5 mL 

1.5 M Tris-HCl, pH 8.8   2.8 mL 2.8 mL 2.8 mL 

0.5 M Tris-HCl, pH 6.8    630 µL    

SDS (1%)    300 µL  1 mL 1 mL 1 mL 

ddH2O    3.77 mL  3.2 mL 2.2 mL 1.2 mL 

25% APS    10 µL  20 µL  20 µL 20 µL 

TEMED    10 µL  20 µL 20 µL 20 µL 
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5.5.2.3 Staining 

All operations are performed on a shaker. 

Coomassie staining 

The protocol is listed below: 

1. Stain the gel in the stain solution for at least 45 min, until the gel is a uniform blue color.  

2. Destain the gel in the destain solution for 1 - 2 h.  

Stain solution: 0.25% (m/v) Coomassie brilliant blue R250; 10% (v/v) acetic acid; 40% (v/v) 

methanol; 50% (v/v) ddH2O 

Destain solution: 10% (v/v) acetic acid; 40% (v/v) methanol; 50% (v/v) ddH2O 

Blue silver staining 

The protocol is listed below: 

1. Wash the gel with ddH2O for 5 min, repeat 3 times. 

2. Stain the gel in the stain solution for 2 - 4 h. 

3. Destain the gel with ddH2O for at least 30 min until a clear background is reached. 

Stain solution: 0.12% (m/v) Coomassie brilliant blue G250; 10% (v/v) phosphoric acid; 10% 

(m/v) (NH4)2SO4; 20% (v/v) methanol; 80% (v/v) ddH2O 

Silver staining 

The protocol is listed below: 

1. Lay the gel in silver-destain-fix solution for at least 30 min. 

2. Wash gel shortly with ddH2O for 2 times. 

3. Lay the gel in Farmer ś reducer for 2.5 min. 

4. Wash gel with ddH2O for 5 min. Repeat the wash step until the gel is colorless. 

5. Lay the gel in 0.1% (m/v) silver solution for 30 min. then discard the solution. 

6. Wash gel with ddH2O for 2 times for 30 sec.  

7. Rinse gel with 2.5% (v/v) Na2CO3 solution. 

8. Lay the gel in 100 mL 2.5% (v/v) Na2CO3 solution with 400 µL formaldehyde. Wait until 

yellow-brown bands appear. 

9. Lay the gel in 5% acetic acid for 10 min to stop the stain. 
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Silver-destain-fix solution: 80 mL acetic acid; 400 mL ethanol; 400 mL H2O 

Farmers reducer: 0.1% (m/v) Na2S2O3; 0.1% (m/v) potassium haxacyanoferrate (Ш) 

 

5.5.3 Western Blot 

Transfer 

The operation procedures are listed below: 

1. Wash the PVDF membrane with methanol for a few sec. 

2. Soak the gel and the PVDF membrane in transfer buffer for a minimum of 15 min to remove 

salts and detergents.  

3. Saturate two fibered pads in transfer buffer. 

4. Assemble on the black side of a cassette in the following order: 

1 fiber pad 

1 SDS gel 

1 PVDF membrane 

1 fiber pad 

5. Insert the cassette into the electrode module. Be sure to check the direction so that the 

transfer is from the gel to the membrane.   

6. Place a stirrer and a Bio-Ice cooling unit (stored at -20°C) in the buffer tank. Place the 

electrode module in the buffer tank. 

7. Fill the tank with transfer buffer. Place the buffer tank on a magnetic stir plate and stir at 

medium speed.  

8. Attach electrodes and electrophoresis at 100 V for 50 min. 

 

Detection 

The operation procedures are listed below: 

1. Block the membrane in block buffer for 1h with shaking.    

2. Remove the block buffer. Add the primary antibody to the block buffer (anti-6×his 1:5000; 

anti-mHSS1 1:1500) and incubate the blots for 1h with shaking. 

3. Wash 3 times; each time 5 min with block buffer at room temperature. 

4. Add the second antibody to the TBST (1:3000) buffer and incubate for 1 h at room 

temperature with shaking.  
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5. Wash 3 times; each time 5 min with TBST buffer and then 2 times with TBS at room 

temperature.  

6. Wash the blot with AP -buffer for 5 min. 

7. Shake the membrane with Color-Development-Reagent from AP conjugate substrat kit 

(Bio-Rad Laboratories GmbH, Munich) and wait about 5 min for bands to appear. 

Transfer buffer: 25 mM Tris; 192 mM glycine; 10% (v/v) methanol; pH 8.3 

TBS: 25 mM Tris; 150 mM NaCl; pH 7.4 

TBST: 25 mM Tris; 150 mM NaCl; 0.5% (v/v) Tween 20; pH 7.4 

Block buffer: 25 mM Tris; 150 mM NaCl; 2% (w/v) BSA; 0.5% (v/v) Tween 20; pH 7.4 

AP –buffer: 100 mM Tris-HCl; 100 mM NaCl; 5 mM MgCl2; pH 9.0 

 

5.5.4 Determination of protein concentration 

5.5.4.1 Bradford assay 

For this assay, standard BSA solutions (1000 µg mL
-1

, 750 µg mL
-1

, 500 µg mL
-1

, 250 µg mL
-1

, 

200 µg mL
-1

, 100 µg mL
-1

, 50 µg mL
-1

) were prepared. 10 µL of samples and standards are 

added to a 96-well plate, then 300 µL Bradford reagent was added. After incubation of the plate 

at 37°C for 10 min, the absorbance at 595 nm is measured using a SkanIt software (Thermo 

Fisher Scientific, Karlsruhe). Finally, a linear regression of measured absorbance of standard 

BSA can be made and using this equation the concentration of the protein sample is calculated. 

 

Bradford reagent: dissolve 100 mg of Coomassie brilliant blue G250 in 50 mL of 95% ethanol. 

The solution is then mixed with 100 mL of 85% phosphoric acid and made up to 1 L with 

ddH2O. The reagent should be filtered through filter paper and then stored in an amber bottle at 

room temperature. 

 

5.5.4.2 Densitometric analysis 

For concentration determination of a target protein in a mixture, densitometric analysis of a 

stained gel is performed using Gel-Pro Analyzer 6.0 software. (Media, Cybernetics, Marlow, 

UK). A series of standard BSA with different concentrations (1000 µg mL
-1

, 750 µg mL
-1

, 500 
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µg mL
-1

, 250 µg mL
-1

, 100 µg mL
-1

) and samples are loaded onto the SDS-gel, which is 

subsequently stained with Coomassie or blue silver solution. The color intensities of standard 

BSA are used to create a calibration, by which the concentration of the target protein can be 

calculated. 

 

5.5.5 Purification using Vivapure MCMini  

 

The Vivapure MCMini incorporates pre-packed Ni
2+

-IDA agarose resin plugs in ready-to-use 

spin columns and the protein mixture can be separated by rapid centrifugation. The employed 

volume of buffer or solution is always 650 µL.  

 

Purification of Trx-Fam163a 

 

Purification of Fam163a  

The protocol is the same as above. 

 

Purification of Fam163a using midazole stepwise elution 

The other steps are as above. Except that the bound proteins are eluted stepwise with 100, 150, 

200 and 250 mM imidazole and each elution step is repeated 3 times. The eluates were 

subjected to SDS-PAGE with silver-staining as shown in Fig. 5.2. 

Step Buffer or Solution Components Centrifugation  Repeat 

1 Binding Buffer 50 mM sodium phosphate, pH 7.4; 

200 mM NaCl 

1800 g, 1 min 2X 

2 Protein Solution   650 g , 5 min 1X 

3 Binding Buffer 50 mM sodium phosphate, pH 7.4; 

200 mM NaCl 

1800 g, 1 min 1X 

5 Wash Buffer 1 50 mM sodium phosphate, pH 7.4; 500 g, 2 min 1X 

6 Wash Buffer 2 50 mM sodium phosphate, pH 7.4; 

50 mM imidazole 

500 g, 2 min 1X 

7 Elution Buffer 50 mM sodium phosphate, pH 7.4; 

200 mM NaCl; 

250 mM imidazole 

500 g, 3 min 3X 



106 

5 Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2 Purification of Fam163a from Trx-Fam163a cleavage products using imidazole stepwise elution presented 

using 12% SDS-PAGE with silver staining. Lanes 1-12, elution with 100, 150, 200 and 250 mM imidazole, 

respectively; lane 13, Trx-Fam163a after cleavage at 4°C for 12 h. A, first elution fraction; B, second elution 

fraction; C, third elution fraction; PM, protein mixture. M, protein marker (Thermo, 26610).  

 

The incompletely cleaved fusion protein was detected mainly in elution fraction with 250 mM 

imidazole. This protein band at 15 kDa was detected in the elution fractions with 100, 150, 200 

mM imidazole and the band intensities seemed to decrease slowly in the repeated three 

fractions eluted with the above mentioned three imidazole concentrations. It may indicate three 

protein peaks during elution.  

 

5.5.6 Purification using Vivawell 8-strips 

 

A 96-well-plate with a hole frame is combined with the 8 units of Vivawell 8-strips, which are 

located close to one another. For each step 300 µL buffer or solution is always loaded on the 

membrane and subsequently centrifuged. ZnSO4, NiSO4, CuSO4 and CoCl2 (0.5 M in 

equilibration buffer) are used for the screening of metal ions.  
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Purification of soluble Trx-mHSS1 

 

Purification of mHSS1  

The steps and buffers used remain the same as above, except that each wash step is repeated 

only once.  

 

5.5.7 Purification using FPLC  

 

5.5.7.1 Anion exchange chromatography  

 

Step           Parameter Volume          

(mL) 

Flow rate 

(mL min
-1

) 

1 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

2 Load/ Inject Sample Sample 

Static Loop 

 

Auto Inject Valve 

3 0.5 

3 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

4 Linear Gradient A: A-Buffer 1 

B: B-Buffer  

100%-0% 

0%-100% 

15 1 

5 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

6 End of Protocol     

Step Buffer or solution Components Centrifugation  Repeat 

1 Equilibration 

buffer 

100 mM NaAc; 500 mM NaCl; 

pH 4.5  

1200 g, 1 min 2 

2 Metal solution 0.5 M ZnSO4 in equilibration 

buffer 

1200 g, 1 min 1 

3 Binding buffer 50 mM NaH2PO4; 500 mM NaCl; 

pH 8.0 

1200 g, 1 min 2 

4 Protein solution   600 g, 3 min 1 

5 Wash buffer 1 50 mM Tris-HCl, pH 8.0 

 

1200 g, 1 min 2 

6 Wash buffer 2 50 mM Tris-HCl; 100 mM 

imidazole; pH 8.0 

1200 g, 1 min 2 

7 Elution buffer 50 mM Tris-HCl; 250 mM 

imidazole; 200 mM NaCl; pH 8.0 

1200 g, 1 min 2 
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   A-Buffer 1, binding buffer: 20 mM ethanolamine, pH 9.0         

   B-Buffer, elution buffer: 20 mM ethanolamine; 1 M NaCl; pH 9.0 

 

Regeneration and storage of Q75 

The membrane adsorber Q75 is washed with 20% (v/v) ethanol and stored at 4°C. 

                                                                                                         

 

5.5.7.2 Size exclusion chromatography 

 

Step           Parameter Volume 

(mL) 

Flow rate 

(mL min
-1

) 

1 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

2 Load/ Inject Sample Sample 

Static Loop 

 

Auto Inject Valve 

1 0.5 

3 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

30 0.5 

4 End of Protocol     

 

  A-Buffer 1: 50 mM NH4HCO3; 100 mM NaCl; pH 7.5 

 

 

5.5.7.3 Immobilized metal ion affinity chromatography 

For IMAC-purification, the membrane adsorber IDA-75 is prepared with in 10 mL 

equilibration buffer at a flowrate of 1 mL min
-1

 for its pre-loading with metal ions. 

Equilibration buffer: 100 mM NaAc; 500 mM NaCl; pH 4.5 

 

Purification of Trx-hActivin βA  

Prior to purification of Trx-hActivin βA refolding is performed.  

 

Refolding buffer     25 mM Tris-HCl, pH 8.0 

                  1.0 M urea 

                  5 mM GSH/1 mM GSSG 

                  50 mM TDCA/Na 

 

10 mL 0.5 M Zn
2+

 is loaded onto the membrane which is subsequently washed with 15 mL 
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equilibration buffer. Prior to starting the FPLC program, the membrane is washed with 20 mL 

loading buffer (A-Buffer 1) until the conductivity reaches its initial value. 

 

 

A-Buffer 1, binding buffer: 50 mM NaH2PO4; 500 mM NaCl; pH 8.0   

A-Buffer 2, wash buffer 1: 50 mM Tris-HCl, pH 8.0 

A-Buffer 3, wash buffer 2: 50 mM Tris-HCl; 100 mM imidazole; pH 8.0            

A-Buffer 4, elution buffer: 50 mM Tris-HCl; 200 mM NaCl; 250 mM imidazole; pH 8.0 

 

 

Purification of Trx-Fam163a  

10 mL 0.5 M Ni
2+ 

is loaded onto the membrane adsorber and the FPLC protocol is the same as 

for the purification of Trx-hActivin βA. 

 

A-Buffer 1, binding buffer: 50 mM sodium phosphate, pH 7.4; 150 mM NaCl 

A-Buffer 2, wash buffer 1: 50 mM sodium phosphate, pH 7.4; 500 mM NaCl; 20 mM 

imidazole 

A-Buffer 3, wash buffer 2: 50 mM sodium phosphate, pH 7.4; 50 mM NaCl; 100 mM 

imidazole 

A-Buffer 4, elution buffer: 50 mM sodium phosphate, pH 7.4; 150 mM NaCl; 300 mM 

imidazole 

Step           Parameter Volume  

(mL) 

Flow rate 

(mL min
-1

.) 

1 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

2 Load/ Inject Sample Sample 

Static Loop 

 

Auto Inject Valve 

10 0.5 

3 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

8 1 

4 Isocratic Flow A: A-Buffer 2 

B: B-Buffer  

100% 

0% 

8 1 

5 Isocratic Flow A: Buffer 3 

B: Buffer  

100% 12 1 

6 Isocratic Flow A: Buffer 4 

B: Buffer  

100% 20 1 

7 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

8 End of Protocol     
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Purification of Trx-mHSS1 

10 mL 0.5 M Co
2+

 is loaded onto the membrane adsorber and equilibration of the membrane 

remains the same as described above. At first, the purification of Trx-mHSS1 is performed 

under denaturing conditions. Alternatively, refolding is combined with IMAC. 

 

Under denaturing conditions 

 

Step           Parameter Volume 

(mL) 

Flow rate 

(mL min
-1

) 

1 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

2 Load/ Inject Sample Sample 

Static Loop 

 

Auto Inject Valve 

3 0.5 

3 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

8 1 

4 Isocratic Flow A: A-Buffer 2 

B: B-Buffer  

100% 

0% 

8 1 

5 Isocratic Flow A: Buffer 3 

B: Buffer  

100% 12 1 

6 Isocratic Flow A: Buffer 4 

B: Buffer  

100% 20 1 

7 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

8 End of Protocol     

 

A-Buffer 1, binding buffer: 50 mM NaH2PO4; 6 M urea; 500 mM NaCl; pH 8.0 

A-Buffer 2, wash buffer 1: 50 mM Tris-HCl; 6 M urea; pH 8.0  

A-Buffer 3, wash buffer2: 50 mM Tris-HCl; 6 M urea; 300 mM NaCl; 25 mM imidazole; pH 

8.0              

A-Buffer 4: elution buffer: 50 mM Tris-HCl; 6 M urea; 250 mM imidazole; pH 8.0 
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Combination of refolding and IMAC 

 

Step           Parameter Volume (mL) Flow rate 

(mL min
-1

) 

1 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

2 Load/ Inject Sample Sample 

Static Loop 

 

Auto Inject Valve 

3 0.5 

3 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

8 1 

4 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100%-0% 

0%-100% 

40 0.5 

5 Isocratic Flow A: Buffer 2 

B: B-Buffer  

100% 

0% 

20 1 

6 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

7 End of Protocol     

 

A-Buffer 1, binding buffer: 50 mM Tris-HCl; 6 M urea; 500 mM NaCl; pH 8.0         

B-Buffer, refolding buffer: 50 mM Tris-HCl; 1 M Urea; 10 mM GSH/1 mM GSSG; pH 8.0 

A-Buffer 2, elution buffer: 50 mM Tris-HCl; 1 M Urea; 250 mM imidazole; pH 8.0 

 

Purification of mHSS1 

10 mL 0.5 M Co
2+

 is loaded onto the membrane adsorber and equilibration of the membrane 

remains the same as described above. 

 

Step           Parameter Volume (mL) Flow rate 

(mL min
-1

) 

1 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

2 Load/ Inject Sample Sample 

Static Loop 

 

Auto Inject Valve 

3 0.5 

3 Isocratic Flow A: A-Buffer 1 

B: B-Buffer  

100% 

0% 

5 1 

4 Isocratic Flow A: A-Buffer 2 

B: B-Buffer  

100% 

0% 

5 1 

5 Isocratic Flow A: Buffer 3 

B: B-Buffer  

100% 10 1 

6 End of Protocol     
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 A-Buffer 1, binding buffer: 50 mM Tris-HCl; 100 mM NaCl; pH 8.0     

 A-Buffer 2, wash buffer: 50 mM Tris-HCl, pH 8.0 

 A-Buffer3: 50 mM Tris-HCl; 100 mM NaCl; 250 mM imidazole; pH 8.0 

 

Regeneration and storage of IDA-75 

The membrane adsorber IDA-75 is regenerated by passing 10 mL of equilibration buffer and 

the metal ions are removed by passing 10 mL 1 M H2SO4. After the membrane is washed with 

at least 20 mL equilibration buffer, it is stored in equilibration buffer with 0.02% NaN3. 

 

5.5.8 Endotoxin assay and removal of endotoxin 

Determination of endotoxins concentration in purified 16-kDa hPRL is carried out using a 

Endosafe® PTS
TM 

system (Charles River Laboratories Boston, MA, USA) with a cartridge 

range 0.1-10 EU mL
-1

 in accordance with the manufacturer’s instruction. The reaction kit 

(EndoTrap® red, Hyglos GmbH, Bernried) is employed for endotoxin removal following the 

provided protocol.  

 

5.5.9 Dialysis 

The dialysis membrane (Spectra/Por®, Rancho Dominguez, CA, USA) is rinsed with distilled 

water for 1 h and washed under running water for several times prior to use. Then the 

membrane is filled with protein solution and introduced into the dialysis buffer.  

 

5. 5.10 Cleavage of fusion proteins 

Prior to cleavage of fusion proteins, the imidazole in the protein solution is removed by dialysis 

and the protein concentration is determined by Bradford assay. The cleavage is performed at 

different temperatures and the conditions for cleavage are as follows: 

 

Fusion protein                                     20 µg 

20×TEV buffer (1M Tris-HCl, pH 8.0; 10 mM EDTA)     7.5 µL 

0.1 M DTT *(only for Trx-mHSS1)                     1.5 µL 

AcTEV 
TM

 protease (10U)                             1.0 µL   

ddH2O                                            to 150 µL 

 



113 

5 Appendix 

*For Trx-Activin βA, 0.1 M DTT is replaced by 0.1M GSH/0.02 M GSSG. 

For Trx-Fam163a, 0.1 M DTT is replaced by GSH/ GSSG (0.4 M/0.02 mM, 0.2 M/0.02 M,                                

0.1M/0.02 M, 0.04 M/0.02 M, 0.02 M/0.1 M). 

 

 

5.5.11 Protease inhibitor  

0.5 M EDTA is dissolved in 50 mM Tris, pH 7.5 and added to the cell lysate with a final 

concentration of 10 or 20 mM. PMSF is prepared in 100% isopropanol and added to the cell 

lysate with a final concentration of 1 or 2 mM. For the commercial Protease Inhibitor Cocktail 

for purification of Histidine-Tagged Proteins (Sigma-Aldrich Chemie GmbH, Steinheim), 100 

or 200 µL of this inhibitor solution is added to 10 mL cell lysate.  

 

 

5.5.12 Immunoprecipitation 

 

5.5.12.1 Anti-his tag beads 

Modification from protocol provided from His tagged Protein PURIFICATION KIT 

(Medical & biological laboratories, Nagoya, Japan). 20 µL anti-his tag beads suspension is 

dispensed into the protein solution after cleavage and the mixture is incubated with gentle 

end-over-end mixing overnight at 4°C. After that, the Eppendorf tube is centrifuged at 400 g for 

5 min and the flow through (supernatant) is retained. Then the anti-his tag beads are washed 

twice in 300 µL wash buffer by pipetting up and down several times and the supernatant is 

retained. Subsequently, the resuspended anti-his tag beads are transferred in 300 µL wash 

buffer to the spin column and 20 µL elution peptide with his tag solutions are added to the 

anti-his tag beads. After incubation for 30 min at room temperature and centrifuging for 10 sec 

the eluate is retained. For the second elution, 20 µL elution peptide solution is added to the 

anti-his tag beads. After incubation for 5 min at room temperature and centrifuging for 10 sec 

the second eluate is retained. 

 

5.5.12.2 Protein G  

20 µL anti-his antibody solution is pipetted onto 50 µL protein G sepharose beads (Cabiochem. 
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EMD chemicals, San Diego, USA) suspension and the mixture is incubated with gentle 

end-over-end mixing overnight at 4°C. Subsequently, this complex is incubated with 1 mL 

cleavage products at 4°C for 3 h. After centrifuging the suspension at 400 g for 5 min, the flow 

through (supernatant) is removed and the beads are washed twice in 300 µL of wash buffer by 

pipetting up and down several times. Finally, the his-tagged proteins are expected to be eluted 

from the sepharose beads in elution buffer by pipetting up and down. The fractions from the 

purification were analyzed by SDS-PAGE and the results are shown in Fig. 5.3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Isolation of Fam163a from Trx-Fam163a cleavage products using protein G sepharose and anti-6×his 

antibody solution presented using 12% SDS-PAGE with blue silver staining. Trx-Fam163a after cleavage at 4°C 

for 12 h (lane 1), anti-6×his antibody (lane 2) and the fractions from following steps of immunoprecipitation (lanes 

3-7) are shown. AB-his: anti-6×his antibody; FT, flow through; WA: first wash fraction; WB: second wash fraction; 

EA: first elution fraction; EB: second elution fraction; M, protein marker (Thermo, 26610).  

 

In Lane 2 are presented the light and heavy chains of anti-his antibody, at about 26 and 52 kDa 

respectively. Most of the anti-6×his antibody remained unbound with respect to protein G and 

its bands in the flow through are evident in lane 3. In the elution fraction not only the light and 

heavy chains of the antibody but also the incompletely digested Trx-Fam163a at 30 kDa with 

antibody were detected. However, the protein band at 15 kDa could be found only in the flow 

through and it could be the released Fam163a or Trx which did not bind to the antibody or a 

combination of the two proteins. 
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Wash buffer:     10 mM sodium phosphate, pH 7.0; 150 mM NaCl 

Elution buffer:    500 mM acetic acid, pH 3.0 (adjust the pH with 0.005% NH4OH) 

 

5.5.13 TCA precipitation 

100 % (w/v) TCA stored at 4°C is added to the sample until concentration reaches 20 % (v/v) 

and after good mix is placed on ice for 1 h. Next, the supernatant is removed after centrifuging 

at 4°C and 17000 g for 10 min and the pellet is rinsed with ice cold acid acetone. After 

centrifuging again, the supernatant is removed and the pellet is air-dried and is subsequently 

resuspended in buffer for SDS-PAGE. 

 

5. 5.14 Size exclusion-HPLC 

The HPLC system is provided with a quaternary pump (L-6200A, Hitachi Europe, Munich), a 

thermostatted autosampler (Triathion, Spark Holland, AJ Emmen), a column compartment 

(TSKgel G3000SWXL, 30 cm x 7.8 mm, Sigma Aldrich, Steinheim) and a multiple wavelength 

ultraviolet detector (L-7400, Hitachi Europe, Munich). SE-HPLC is performed under the 

following conditions: 

 

Flowrate                     0.5 mL min
-1 

Temperature                  30°C 

Time for analysis              40 min 

Wavelength of detector         215 nm 

Mobile phase                 8.1 mM Na2HPO4; 1.1 mM K2HPO4; 400 mM NaCl; pH 7.5 
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