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2012



Referent: Prof. Dr. Philipp Sibbertsen, Leibniz Universität Hannover

Koreferent: Prof. Dr. Matei Demetrescu, Universität Bonn

Tag der Promotion: 02.04.2012



III

Acknowledgements

This thesis was built on the support of so many. First and foremost I am deeply grateful to

my mentor and co-author Prof. Dr. Philipp Sibbertsen. Despite his more than full workload he

contributed so much encouragement and guidance and invested his knowledge to keep track of

everything. I am also thankful to Prof. Dr. Matei Demetrescu who agreed straightforwardly to

be the second examiner and to Prof. Dr. Olaf Hübler for chairing the examination board.
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Kurzzusammenfassung

Die Analyse von Strukturbrüchen umfasst die Ermittlung von Anzahl und Position von struk-

turellen Brüchen in Zeitreihen. Durch das wachsende Interesse im Finanzmarktbereich in den

letzten 50 Jahren wurde die Forschung für das korrekte Auffinden von Brüchen immer wichtiger,

um entsprechende Prozesse präzise modellieren, testen und prognostizieren zu können. Diese 4

Beiträge untersuchen verschiedene Ansätze bei dem Vorherrschen von langfristigen Abhängig-

keiten in den Zeitreihen, auch bezeichnet als langes Gedächtnis.

Kapitel 2 und 3 basieren auf dem Ansatz der atheoretischen Regressionsbäume (ART). In einem

ersten Schritt wird ein stark angepasster Baum aufgespannt, der die potentiellen Bruchpunkte

enthält. Er entsteht durch das Anpassen von stückweise linearen Funktionen an die Zeitreihe. In

dem zweiten Schritt wird die Überanpassung korrigiert mit Hilfe einer Zurückschneideprozedur,

die die Äste mit dem geringsten Erklärungsbeitrag entfernt. In Kapitel 2 wird gezeigt, dass

das häufig verwendete BIC (Bayesianische Informationskriterium) als Zurückschneideprozedur

unter langem Gedächtnis nicht gut arbeitet aufgrund seines zu schwachen Strafterms. Eine

einfache, aber effektive Methode für das Zurückschneiden wird vorgestellt, die den zu geringen

Einfluss des Strafterms entsprechend ausgleicht. In Kapitel 3 (gemeinsam verfasst mit Philipp

Sibbertsen) wird eine Modifikation des BIC, das LWZ (Liu, Wu und Zidek (1997)), vorgestellt,

welches die gut erforschten Eigenschaften des BIC und die Besonderheiten bei langem Gedächt-

nis miteinander vereint. Dies wird nun mit alternativen Zurückschneideverfahren wie dem BIC

und dem LIC (Lavielle und Moulines (2002)) verglichen und Konsistenz der Schätzung auf Basis

der atheoretischen Regressionsbäume kann gezeigt werden. ART stellt sich als überaus schneller

Ansatz zur Schätzung der Anzahl und Position von Sturkurbrüchen heraus.

Die folgenden Beiträge in Kapitel 4 und 5 befassen sich mit Problemen der Strukturbruchanalyse

in Bezug auf die Testverfahren CUSUM und MOSUM. Zusätzlich zum Mittelwert einer Zeitreihe

kann ebenfalls der Lange-Gedächtnis-Parameter zeitabhängig sein. In Kapitel 4 (gemeinsam

verfasst mit Philipp Sibbertsen) wird ein CUSUM-Quadrat-Test basierend auf Leybourne et

al. (2007) verwendet, um das Verhalten des langen Gedächtnis gegen einen Bruch in diesem

zu testen. Die Testalternative umfasst den Bruch in der Persistenz sowohl vom stationären in

den instationären Bereich als auch umgekehrt. Bedauerlicherweise ist diese Testprozedur nicht

robust gegenüber zusätzlichen Brüchen im Mittelwert und erleidet starke Verzerrungen in der

Size. Deshalb sind adjustierte kritische Werte unerlässlich, wenn bekannt ist, dass ein Mittel-

wertbruch im datengenerierenden Prozess vorliegt.

Ein anderer Ansatz bezüglich des Zustand abhängigen Verhaltens von Parametern wird im ab-

schließenden Kapitel 5 (gemeinsam verfasst mit Florian Heinen) beleuchtet. Die Testidee des

CUSUM Testes wird modifiziert zu einem Monitoring-Ansatz. Dieser erlaubt die schnelle Ent-

deckung einer Änderung in der langfristigen Abhängigkeitsstruktur, also dem Parameter des

langen Gedächtnis. Der MOSUM Test kann unproblematisch erneut ausgeführt werden, so bald

neue Daten vorliegen, ohne in Probleme des multiplen Testens zu geraten.

Schlagwörter: Langes Gedächtnis, Strukturbrüche, ART, Informationskriterien, CUSUM, MO-

SUM
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Short summary

In time series analysis the change-point analysis describes the detection and localization of

structural breaks. During the last 50 years the growing interest in financial markets nourished

the research in finding breaks in different parameters to model, test and forecast the underlying

process correctly. These four contributions investigate different approaches when it comes to

long-range dependencies, named long-memory behavior.

Chapter 2 and 3 focus on approaches based on atheoretical regression trees (ART). In the first

step a tree is constructed well overfitted with potential breakpoints due to the fitting of piecewise

constant functions to the time series. In the second step the overestimation is adjusted through

a pruning procedure that cuts back branches with the lowest contribution. In chapter 2 it is

shown that the bayesian information criterion (BIC), which is commonly used as a pruning

method, does not operate well in the long memory framework because of an inferior penalty

term. A simple but effective procedure is presented to deal with this underweight impact of the

penalty term. In chapter 3, co-authored with Philipp Sibbertsen, a modification of the BIC, the

LWZ (Liu, Wu and Zidek (1997)), is presented to overcome long-range dependence issues and

use the well-researched properties of the BIC at the same time. It is compared to alternative

pruning criteria like the BIC or LIC (Lavielle and Moulines (2002)). Also consistency of the

estimation using tree-based methods is shown. ART are highlighted as a fast approach for

change-point detection that can estimate the number and location of structural breaks both in

a single algorithm with minor impacts through long memory behavior.

The following essays in chapter 4 and 5 overcome problems regarding change-point analysis in

the context of CUSUM and MOSUM testing. Based on the idea that not only the mean is at

risk of changing over time the long memory parameter could additionally be time-dependent. In

chapter 4, co-authored with Philipp Sibbertsen, the CUSUM-squared based test for a change in

persistence by Leybourne et al. (2007) tests long memory behavior versus a break in persistence

from stationary to non-stationary long memory and vice versa in the alternative. Unfortunately

this test procedure is not robust against shifts in the mean and suffers from serious size distortions

when mean shifts occur. Therefore, adjusted critical values are needed when it is known that

the data generating process has a mean shift.

A different perspective on the regime changing behavior is taken in the concluding chapter 5,

co-authored with Florian Heinen. The CUSUM idea is modified to a monitoring technique that

allows the detection of a single change in the long-run correlation structure of a time series at

some unknown future point in time. The MOSUM test can be executed once new data arrives

without running into multiple testing problems. Different forms of boundary functions for the

test are derived and the finite sample performance is investigated.

Keywords: long memory, structural breaks, ART, information criteria, CUSUM, MOSUM
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Introduction
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Introduction

In the last 50 years the study of detection and location of structural breaks in time series de-

veloped effectively both in the statistical and econometric literature. The growing interest in

financial markets and at the same time strong shocks like world wars and global economic and

oil crises led to the awareness that conventional time series models were not sufficient any longer.

Change-point analysis became an area of research that gained attention and spread out not only

in finance but in medicine, chemistry, meteorology, physics, computer science and engineering.

Early contributions to the change-point analysis made by Chow (1960), who suggested a test for

structural break detection at a known date, and Brown et al. (1975), who developed the theory

for tests of significance for cumulative summation (CUSUM), laid the foundation for multiple

break detection. By examining macroeconomic time series Nelson and Plosser (1982) began to

model the mean through a stochastic model rather than a deterministic trend and later Perron

(1989) modeled breaks for explaining shocks. He found out that a misspecification of these

shocks would bias unit root tests. Zivot and Andrews (1992) reconsidered Perrons findings and

saw disadvantages in his choice to set the breakpoints. Therefore Zivot and Andrews (1992)

modeled their own breakpoint estimator. On that basis Andrews (1993) proposed a test for de-

tection of a break at unknown break dates however with average sample properties. For further

overviews see Hansen (2001) and Banerjee and Urga (2005).

More recently Bai and Perron (1998, 2003) extended their work to a multiple breakpoint esti-

mator when the date is unknown. Their estimator, later referred as the Bai-Perron-estimator,

provides a basis for change-point analyses not only for time series. It is a consistent estimator

with good small sample properties and can serve as a benchmark when it comes to breakpoint

detection. However, the Bai-Perron-estimator is computationally intensive and therefore not

feasible for long time series (Cappelli et al. (2008) see more than 600 time points too long as a

rule of thumb). Additionally the Bai-Perron-estimator depends on the pre-specification of the

maximum number of breaks which increases the computational time disproportionately with

larger maxima. Moreover recent studies have shown that the Bai-Perron-estimator is unsuitable

for long memory time series (Rea (2008)).

Long-range dependency models have been most successful for economic time series. Large evi-

dence for the effective modeling based on long memory processes can be found at e.g. Christensen

and Nielsen (2007), Shimotsu (2006), Bhardwaj and Swanson (2006), Deo et al. (2006), Hurvich

et al. (2005), Granger and Hyung (2004), Breidt et al. (1998) and Andersen and Bollerslev

(1997). The persistence indicates local trends and long cycles and can handle e.g. long-term

dependencies on financial markets. On the other hand this behavior makes it very challenging

for breakpoint detection procedures to find the correct breaks (see Sibbertsen (2004)). The

biggest challenge is to distinguish between true long memory behavior and regular breaks in

the mean and inevitably the literature started discovering spurious long memory behavior. For



3

instance Perron and Qu (2010), Granger and Hyung (2004), Gourieroux and Jasiak (2001) and

Diebold and Inoue (2001) find examples where long memory can easily be confused with breaks

in the mean and conclude that the distinguishing is very hard because both processes are almost

observationally equivalent (Shimotsu (2006)). Nevertheless they do not consider that certain

behavior can be explained through different modeling approaches and it does not indicate the

true data generating process. Choi and Zivot (2007) showed that even after adjusting for breaks

in the mean there is still substantial evidence for long memory. That’s why it is so crucial

to detect all mean shifts regardless of the persistence in order to avoid misleading conclusions.

The estimation of the long memory parameter e.g. is heavily biased when there are structural

changes in the mean or in the long memory parameter itself (see Granger and Hyung (1999)

and Diebold and Inoue (2001)). What makes it even more appealing for current research is the

fact that the well-established Bai-Perron-estimator tends to fail finding the correct number and

location of breakpoints when it comes to high persistence and hence reasonable alternatives are

required (Rea (2008)).

This thesis focusses on detecting structural breaks in the mean occurring at unknown dates

when there is long-term persistence, named long-memory behavior. To this purpose the use of

a fast non-parametric procedure based on regression trees is suggested. In the first step the tree

is spanned and constructs a well overfitted tree with potential breakpoints due to the fitting of

piecewise constant functions to the time series. In the second step the overestimation, especially

for short series, is adjusted through a pruning procedure that cuts back branches with the lowest

contribution to the deviance reduction to gain the optimal partitioning. This binary splitting

in time series analysis was first justified by Hartigan (1975) and later Breiman et al. (1993)

derived the large sample theory that is seen by Wu et al. (2008) as a preferred method when it

comes to partitioning. When applying atheoretical regression trees (ART) to time series some

open questions following Rea et al. (2010) are:

• What is the best tree selection and pruning procedure?

• Do ART find or add breaks through the fitting of piecewise constant functions?

• What are the effects of serial correlation on the performance?

• Are ART robust to any kind of noise structure or a lack of breaks?

• How do ART handle long-range dependencies?

The first two questions are fundamental for the breakpoint estimation. How to construct op-

timal break detection procedures and whether it provides consistent estimates for the number

and location of the breaks is the key element of change-point analysis. The robustness can be

checked via monte carlo studies. Obviously an increase in the length of the series leads to more

robust results. The natural focus here marks the impact on the performance of ART when it

comes to long memory behavior.
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In chapter 2 and 3 two different approaches for the pruning procedure will be introduced. Both

show good robustness properties when it comes to serial correlation and long-range dependen-

cies and reveal superior performance to alternatives. In chapter 2 it is shown that the bayesian

information criterion (BIC), which is commonly used as a pruning method, does not operate

well in the long memory framework because of an inferior penalty term. A simple but effective

procedure is presented to deal with this underweight impact of the penalty term. In chapter 3,

co-authored with Philipp Sibbertsen, a modification of the BIC, the LWZ (Liu, Wu and Zidek

(1997)), is presented to overcome long-range dependence issues and use the well-researched prop-

erties of the BIC at the same time. It is compared to alternative pruning criteria like the BIC or

LIC (Lavielle and Moulines (2002)). Also consistency of the estimation using tree-based methods

is shown. ART are highlighted as a fast approach for change-point detection that can estimate

the number and location of structural breaks both in a single algorithm with minor impacts

through long memory behavior.

The following essays in chapter 4 and 5 overcome problems regarding change-point analysis in

the context of CUSUM and MOSUM testing. Based on the idea that not only the mean is at

risk of changing over time the long memory parameter could additionally be time-dependent. In

chapter 4, co-authored with Philipp Sibbertsen, the CUSUM-squared based test for a change in

persistence by Leybourne et al. (2007) tests long memory behavior versus a break in persistence

from stationary to non-stationary long memory and vice versa in the alternative. Unfortunately

this test procedure is not robust against shifts in the mean and suffers from serious size distor-

tions when mean shifts occur. Therefore, adjusted critical values are needed when it is known

that the data generating process has a mean shift. These are given for the case of one mean

break. Response curves for the critical values are derived and a monte carlo study showing the

size and power properties under general de-trending is given.

A different perspective on the regime changing behavior is taken in the concluding chapter 5,

co-authored with Florian Heinen. The CUSUM idea is modified to a monitoring technique that

allows the detection of a single change in the long-run correlation structure of a time series at

some unknown future point in time. The MOSUM test can be executed once new data arrives

without running into multiple testing problems. We focus on the detection of an increasing

persistence with a process that is becoming non-stationary under the alternative. Different forms

of boundary functions for the test are derived and the finite sample performance is investigated.

The concluding application shows that loss of controllability indicated through an increasing

persistence is indeed a highly probable outcome for economic time series.



Chapter 2

Mean Shift detection under long-range dependencies with
ART
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Mean Shift detection under long-range dependencies with
ART

Published as Leibniz University of Hannover Discussion Paper No. 437.

Revised and resubmitted in Statistical Methods and Applications.

2.1 Introduction

It is an ongoing problem to detect changes in the mean. In the long-memory framework it gets

even more difficult to specify number and location correctly because of the high persistence in

the time series. The long cycles and local trends challenge every breakpoint estimator and make

it hard to distinguish between long memory and mean shifts (see e.g. Sibbertsen (2004)). In

addition undetected shifts in the mean strongly bias estimators e.g. for the memory parameter

and create therefore misleading results.

Granger and Hyung (1999) as well as Diebold and Inoue (2001) showed that long memory be-

havior can easily be confused with mean shifts and that their properties are very similar. That’s

why standard break detection procedures can struggle and are at risk to fail.

There are several methods to specify the presence of structural breaks. Chow (1960) was the

first creating a test on structural changes based on the F statistic when the breakpoint was

known. There are Brown, Durbin and Evans (1975) who suggested the CUSUM approach and

Ploberger and Krämer (1992) who based a structural change test on the cumulative sums of

recursive residuals. Bai and Perron (1998) modeled their own break date estimator and allowed

to have multiple breaks in the mean. Their method was a breakpoint estimator based on OLS

regression which works reasonable for short memory time series. Hence it became the standard

procedure for breakpoint estimation.

The methodology of classification and regression trees of Breiman et al. (1993) was applied to

time series analysis by Cappelli et al. (2008) and Rea et al. (2010). They showed that atheo-

retical regression trees (ART) have reasonable performance in detecting and locating structural

breaks in short-memory time series and perform impressively in comparison with Bai and Per-

ron (1998). However in the long-memory framework the Bai Perron procedure does not work

properly (see Rea (2008)), so least squares regression trees could be a reasonable alternative.

Regression trees operate in two steps. First the growing step spans a tree which is often overfit-

ted (see Rea et al. (2010)) and therefore the second step, the pruning of the tree, is the much

http://www.wiwi.uni-hannover.de/Forschung/Diskussionspapiere/dp-437.pdf
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more important part. Given that the common pruning techniques fail in the long memory frame-

work a new pruning method called elbow criterion will be modeled to overcome this problem. It

still maintains the good properties of the regression trees to specify the number of mean shifts

and detect their location. Additionally it overcomes the problem of overestimation due to long

memory behavior by penalizing accordingly.

The rest of the paper is organized as follows. In section 2.2 the method of atheoretical regression

trees is introduced and different pruning techniques are discussed. The common pruning methods

will be replaced by the elbow criterion. Section 2.3 contains an extensive Monte Carlo study to

analyze the performance of the elbow criterion and its advantage in comparison to other pruning

techniques. In section 2.4 an application to CPI inflation rates is given. Section 2.5 concludes.

2.2 Atheoretical regression trees

ART is a nonparametric procedure that is used to detect and locate structural breaks. It does

not require distributional assumptions about the data or the residuals and hence it is well suited

for a variety of time series. A simple breakpoint model reads

yt = µp+ ǫt

µp =

p∑

i=1

I(ti−1<t<ti)µi

where yt is the value of the time series at time t, ǫt is the error term which is assumed to be

stationary and µp is the mean of the time series up to the breakpoint p. It∈R is an indicator

function which is 1 if t is in the regime i and 0 otherwise. ti with i = 1, ..., p are the breakpoints

with the mean of the regime µi.

A regression tree fits piecewise constant functions to the data and determines thereby potential

breakpoints. The construction of the tree uses a greedy algorithm. That means that at each

step the best split is determined and there is no reconsideration of the already set splits. The

only exogenous predictor variable for the OLS regression is the time t. Though it operates more

like a counter rather than a true predictor.

To determine the best split a measure of node impurity is needed. The sum of squared residuals

(RSS) is used to determine where the node will be set. The mean squared error is given as a

risk function by

R(t) =
1

n(t)

∑

xi∈t
(yi − ȳ(t))2
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where

ȳ(t) =
1

n(t)

∑

xi∈t
yi.

xi are the predictor variables (time points) which belong to one regime and n(t) is the number of

elements in node t. The tree construction splits a node t into a left tL and a right tR child node

for which the sum of the RSS of the left and right node is minimized.

min
t

(R(tL)+R(tR)) =min
t





1
n(tL)

∑

xi∈tL
(yi − ȳ(tL))2

+
1

n(tR)

∑

xi∈tR
(yi− ȳ(tR))2





This can also be written as a maximization of the improvement through the splitting into tL and

tR.

max
t

(R(t)−R(tL)−R(tR))

ART requires at any node O(n(t)) steps to identify the best split (see Rea (2008)). The recur-

sive partitioning produces a hierarchical structure of nodes and leaves (terminal nodes). Every

terminal node represents a regime with a shifted mean. The tree growth until no improvement

can be made by splitting the time series. Thus the location and number of breaks in the data

are determined (see also Zheng et al. (2008)).

An example will be introduced. Considering an ARFIMA(0,d,0) process

(1− L)dXt = ǫt,

where L is the lag operator, ǫt are iid random variables with zero mean and the variance σ2 and

the degree of integration is determinded by the long memory parameter d. A stationary long

memory process is characterized by the value of d in the interval between [0,0.5].

For d = 0.2, a sample size of T = 500 and two breaks from µ1 = 3 to µ2 = 0 and µ3 = 3 at t1 = 200

and t2 = 350 an exemplary time series is shown in figure 2.1.
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Figure 2.1: Exemplary time series with two breaks in the mean

Xt

-2

2

4

6

100 200 300 400 500
time

In figure 2.2 the spanned regression tree is presented. There are four leaves and each is represen-

ting a regime with a different mean. The nodes represent the breakpoints which are detected at

t1 = 200, t2 = 294and t3 = 351. The different estimated mean levels are noted below the encircled

numbers.

Figure 2.2: Regression tree after growing

t <> 351.5

t <> 200.5

3.0897235 
200 obs

1 t <> 294.5

0.383134 
94 obs

2

−0.5493214 
57 obs

3

3.311083 
149 obs

4
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The growing of the tree is literally driven by the data. After the growing process a very well

fitted tree is build, because the only stopping rule is a lack of improvement in the sum of RSS. In

fact the tree often gets quite large and is overfitted (see Rea et al. (2010)). That’s why pruning

techniques are needed to determine which of the nodes are redundant. There is the possibility

of manual pruning which is a quite reasonable way if a priori knowledge can be used.

A nested hierarchy of regimes has been built and can be pruned back by a pruning method.

Pruning works from bottom to top. That means that the first node to cut would be the one

which was grown last, so which gained the weakest node impurity improvement. In our exam-

ple this would be the node at t = 294. In figure 2.2 it is easy to see that this branch was built last.

Widely used pruning methods are e.g. the cost-complexity pruning (see Breiman et al. (1993)),

predictive cross validation, the one-standard-error-rule, Mallows Cp or an information criteria

such as the BIC.

Rea (2008) showed that the cost-complexity pruning is difficult to handle because a complexity

parameter (penalty parameter) has to be chosen. The same dilemma appears with Mallows Cp.

A complexity parameter needs to be determined which directly controls the penalty parameter

and hence the number of chosen breaks. The one-standard-error-rule and predictive cross vali-

dation are dealing also with handling problems and are too vulnerable to the high persistence

behavior.

In the short-memory framework the BIC is the best information criterion (see Bai and Perron

(1998) and Bai Perron (2003)). The penalty term of the BIC depends on the size of the time

series T and the number of terminal nodes p. Kokoszka and Leipus (2002) show that the Bai

Perron procedure which is similar to the BIC information criterion excludes linear sequences

with long-range dependence. Regarding to that it is not astonishing that the BIC does not

handle long memory reliably, which can also be seen in section 2.3.

A new pruning method will be suggested to overcome this problem. The idea of the elbow

criterion is that the optimal break number is reached when the improvement of the sum of RSS

is highest. A typical shape of the sum of the squared residuals shows that there is always a

better fit by including more breaks due to its convex characteristics (see figure 2.3). The key

point is that some splits downsize the risk function even more than others.
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Figure 2.3: Typical shape of the sum of squared residuals depending on the break number

RSS

1 3 5 7 9

number of breaks

The largest improvement in the RSS is made where the trend has the biggest bend. To deter-

mine this bend the slopes of the piecewise constant functions are considered. The RSS function

is extended to the right with a slope of zero, because the tree stopped splitting at that point.

Therefore it be assumed that no improvement of the RSS could be achieved anymore. Calculat-

ing the difference between two adjacent slopes provides a measure for the improvement benefit

through this splitting. The highest benefit is defined as the optimal number of breaks.

This procedure is independent of the length of the time series and the number of terminal

nodes. It determines the optimal number of breaks where the highest improvement can be made

through splitting at that point. The advantage is that the overfitted tree which was grown can

be counterbalanced because all the small RSS improvements become irrelevant. In comparison

the BIC does depend on the size of its penalty term and though it depends on the amount of

suggested breakpoints (see Bai and Perron (2003)).

The elbow criterion considers an absolute deviation between the levels of the RSS function and

by this it can easily respond to different levels of the RSS function through different time series

and persistences respectively. Returning to the example given before the optimal number of

breaks would be 2. In figure 2.3 you can see that at two breaks the improvement through

splitting the sample is highest which expresses in the biggest bend (and smallest angle) of the

RSS function.
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2.3 Monte Carlo study

An extensive Monte Carlo study will demonstrate the performance of the new pruning method

for the long-memory framework in comparison to the BIC. All simulations are computed with

the open-source programming language R (2008) with package support (Zeileis et al. (2002) and

Ripley (2005)). The number of replications is set to M = 1000and we consider a sample size of

T = 500 in order to illustrate the good performance in small samples. All results improve when

using larger samples.

The data generating process is an ARFIMA (0,d,0) with d = 0.2 and d = 0.4 respectively. The

levels of the mean are chosen relatively small on purpose. The considered changes correspond to

the standard deviation of the noise distribution (sǫt = 1) and half of sǫt respectively (leaned on

Bai and Perron (2006)). Small changes e.g. from µ1 = 1 to µ2 = 2 are harder to determine than

large level shifts. Also returning breaks (e.g. µ1 = 1 to µ2 = 2 and back to µ3 = 1) are challenging,

because the small peak in between can be easily overlooked. In case of one mean shift the break

location is set to the 300th observation. Besides it will be shown that the position does not have

a big influence on the results. Considering more mean shifts the break locations will be spaced

equally.

Be aware that the case of no mean shifts is not encountered by this procedure. The regression

trees are build to split data. Finding no break at all is only given by the rather unlikely case that

no improvement in the RSS over the whole time series during the first step can be found. No

splitting is not an option during the growing procedure or in other words: the tree has always

at least two branches.

Comparing the widespread BIC and the elbow criterion underpin the findings of Kokoszka and

Leipus (2002) and Banerjee and Urga (2005). The BIC is not able to handle the long-range

dependencies because of the high persistence and dependencies. The tree misspecifies local

trends and cycles as additional breakpoints and the penalty term of the BIC is not strong

enough to penalize the high persistence. The BIC leads to choose the maximum number of

breakpoints which is spanned by the regression tree, so in most cases no real pruning takes

place.
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Table 2.1: Performance of BIC and elbow criterion

when there is one mean shift

elbow criterion BIC

d = 0.2 mean s.d. % correct mean s.d. % correct

µ1 = 1;µ2 = 2 1.03 0.35 98.60 3.82 1.67 7.40

µ1 = 2;µ2 = 1 1.04 0.34 98.30 3.78 1.68 7.80

µ1 = 1;µ2 = 1.5 1.66 1.37 72.40 4.01 1.89 8.20

µ1 = 1.5;µ2 = 1 1.64 1.30 70.60 3.86 1.78 8.40

d = 0.4

µ1 = 1;µ2 = 2 1.53 1.28 78.10 6.44 1.86 0.40

µ1 = 1;µ2 = 1.5 1.91 1.53 59.00 6.63 1.89 0.10

Table 2.1 displays the huge problems of the BIC to find only one mean shift. It overestimates

the quantity by multiple times. The higher the persistence the more mean shifts will be detected

and the lower is the quantity of a correct determination. For the elbow criterion it is easier to

determine this one mean shift in a stationary long memory process. The higher the level of the

mean shift and the lower the persistence the more accurate is the criterion. Hence the mean is

very close to the correct number of breaks, a very small standard deviation is obtained and the

percentage of a correct chosen number of breaks is high.

The direction of the shift (from a high level to a lower one or vice versa) influences neither the

pruning criterion nor the tree growing process. The following table 2.2 shows that the position

of the mean shift barely influences the performance of the pruning method.

Table 2.2: Performance of BIC and elbow criterion

when the position of the break varies and there is one mean shift

d = 0.2; µ1 = 1;µ2 = 2 elbow criterion BIC

break at observation mean s.d. % correct mean s.d. % correct

50 1.39 1.02 81.10 4.00 1.88 9.90

250 1.03 0.31 98.90 3.77 1.63 8.00

450 1.39 0.98 80.70 4.07 1.85 8.70

d = 0.4; µ1 = 1;µ2 = 2

50 2.02 1.67 57.00 6.63 1.79 0.30

250 1.44 1.10 80.00 6.31 1.83 0.30

450 1.87 1.46 60.80 6.70 1.73 0.00

The results for multiple mean shifts are reported in table 2.3 and 2.4. The elbow criterion

handles more breaks solid and gives good results in detecting the mean shifts. The positions of

the breakpoints are spaced equally.
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Table 2.3: Performance of BIC and elbow criterion

when there are two mean shifts

elbow criterion BIC

d = 0.2 mean s.d. % correct mean s.d. % correct

µ1 = 1;µ2 = 3;µ3 = 1 2.15 0.39 87.20 3.36 1.13 23.90

µ1 = 1;µ2 = 2;µ3 = 1 2.04 0.64 67.00 4.52 1.48 7.80

µ1 = 1.5;µ2 = 2;µ3 = 1 1.51 0.85 33.40 4.31 1.61 9.50

d = 0.4

µ1 = 1;µ2 = 3;µ3 = 1 1.92 0.75 55.10 5.85 1.58 1.20

µ1 = 1;µ2 = 2;µ3 = 1 1.87 1.21 31.20 6.71 1.65 0.00

µ1 = 1.5;µ2 = 2;µ3 = 1 1.88 1.39 22.90 6.59 1.79 0.70

Table 2.4: Performance of BIC and elbow criterion for multiple mean shifts

elbow criterion BIC

d = 0.2 mean s.d. % correct mean s.d. % correct

µ1 = 1;µ2 = 2;µ3 = 1;µ4 = 2 2.59 1.14 39.90 5.12 1.27 8.30

µ1 = 1;µ2 = 1.5;µ3 = 2.5;µ4 = 1 2.18 0.73 31.40 4.69 1.35 16.00

µ1 = 1;µ2 = 2;µ3 = 1;µ4 = 2;µ5 = 1 3.17 1.66 19.40 5.94 1.26 9.40

µ1 = 1;µ2 = 3;µ3 = 1;µ4 = 3;µ5 = 1 4.05 1.13 53.00 5.20 1.00 26.50

d = 0.4

µ1 = 1;µ2 = 2;µ3 = 1;µ4 = 2 2.08 1.35 19.30 6.81 1.63 1.50

µ1 = 1;µ2 = 1.5;µ3 = 2.5;µ4 = 1 1.83 1.05 16.90 6.43 1.70 0.30

µ1 = 1;µ2 = 2;µ3 = 1;µ4 = 2;µ5 = 1 2.34 1.62 8.30 7.03 1.61 3.30

µ1 = 1;µ2 = 3;µ3 = 1;µ4 = 3;µ5 = 1 2.77 1.61 16.20 6.82 1.36 2.90

In the case of multiple mean shifts the elbow criterion tends to underestimate the number of

mean shifts which implies that some of the small shifts can not be identified. Nevertheless the

chosen transitions are quite regular which is much more difficult to detect for a breakpoint esti-

mator than extreme breaks. This almost cyclic behavior (from µ1= 1 to µ2= 2 and back to µ3 = 1

and µ4 = 2) simulates the most challenging break pattern with local cycles and persistences best.

Hence the good behavior in this cases are very founded results for more obvious (easier to be

detected) breaks.

Studying various noise distributions including normal, t- and double exponential distribution

shows that the noise distribution has no effect at the elbow criterion and the BIC at all. Bai

and Perron (2006) also note in a large monte carlo study that the BIC is not affected by the

distribution of the noise parameter. The impact of serial correlation is more serious and also

extensively illustrated on the BIC in Bai and Perron (2006). They suggest using the LWZ cri-

terion (by Liu et al. (1997)) to impose a higher penalty term within the information criterion.

The elbow criterion reacts to serial correlation surprisingly well. Figure 2.4 illustrates that with

positive correlation the criteria choosing more often the correct quantity of breaks and with
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negative correlation less often. The elbow criterion (solid dots) performs with at least 75% of

correct specifications, where as the BIC (stars) goes down to zero very quickly.

Figure 2.4: Correct break quantity specification for d = 0.3 and the break pattern

µ1 = 1→ µ2 = 2 when there is serial correlation in the DGP
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The diversing performance can be explained through the mixture of long-memory behavior and

serial correlation. High positive correlation overlays the long memory correlation behavior due

to ”small“ sample problems and therefore both criteria improve because of assumed short mem-

ory. High negative correlation on the other hand intensifies the correlation of the long-range

dependencies and challenges the criteria even more.

Finally you can say that the BIC overestimates the number of breaks with high standard devi-

ations (see also Bai and Perron (2006)). The percentage of correctly chosen breaks is often so

small that even educated guessing would be more successful. The ability of the elbow criterion

on the other hand stays reasonable even if there is more than one mean shift. When the per-

sistence increases the criterion tends to underestimate the number of mean shifts. The elbow

criterion as a pruning technique of the atheoretical regression trees shows very good properties

even when multiple mean shifts with small level changes occur in a long memory time series.

There is still a correct detection and specification with high probability. Its good properties still

hold when applying different noise distributions and serial correlation in the error term.
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2.4 Application on inflation rates

To illustrate the good performance of the atheoretical regression trees an application to CPI

inflation rates is given. The time series data starts in January of 1960 (except Australia starts

in 1971) and ends in June 2009. The following table 2.5 shows the results of some OECD

countries when ART with the elbow criterion is applied.

Table 2.5: Breakpoints in inflation rates

of selected OECD countries

Country 1st break 2nd break

Australia Jan 91 -

Canada Aug 72 Dec 91

Germany Sep 70 May 83

Japan Dec 81 -

New Zealand Sep 70 Jun 90

Switzerland Oct 93 -

UK Sep 73 Nov 82

US Jul 73 Nov 82

The atheoretical regression trees find one or two breaks in the inflation rates. Corvoisier and

Mojon (2005) determined three waves where breaks in inflation rates occur. In their opinion

since 1960 most OECD countries had breaks around 1970, 1982 and 1991. This can be very

well encountered by the estimated breakpoints via ART. Hsu (2005) identifies the breakpoints

under the assumption of two known breaks and finds for Germany the breaks at October 1969

and July 1982 and for the US at January 1973 and September 1981. Under the assumption of

one appearing break he determines for the japanese inflation rate the breakpoint at May 1981.

Hence most of his results are very close to the specified breaks by the elbow criterion, however

Hsu has to know a priori how many breaks will occur.

After demeaning the inflation rates using the specified breakpoints the long memory parameter

can be computed by the GPH estimator. In the following table 2.6 the mean of each regime and

the d parameter after demeaning is displayed.
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Table 2.6: Mean of each break regime and demeaned d estimation of selected OECD countries

mean

Country start to 1st break 1st to 2nd break 2nd (1st) break to end d estimation

Australia 9.2991 - 2.6299 0.68

Canada 2.7330 7.2467 1.8732 0.75

Germany 2.6175 5.1386 2.0153 0.50

Japan 7.0455 - 0.8459 0.58

New Zealand 3.3628 11.8101 2.2907 0.40

Switzerland 3.9000 - 0.9489 0.71

UK 4.7109 14.7415 3.7510 0.26

US 2.9175 9.0408 3.0724 0.54

The level differences of the detected breaks are quite high. When there are two breaks in the

inflation rate the mean before the first break and after the second break is often almost the

same and a large peak in between the breaks can be detected. In this situation (when the tran-

sitions are quite regular) ART shows good properties (see section 2.3) and hence underpin that

these breakpoint findings are reliable. After demeaning the data accordingly to the estimated

breakpoints long-range dependencies are still present in the data. This implies that an approach

which accounts for both, long memory and mean shifts, is very rational.

2.5 Conclusion

In this paper a new pruning technique for atheoretical regression trees is introduced. When

the data generating process is long memory and has shifts in the mean function it performs

very reasonable and much better than common pruning methods like the BIC. In a stationary

long memory framework the elbow criterion accomplishes the detection of the breaks no matter

how many shifts appear and where they are situated, even in small samples. With increasing

persistence and decreasing shift level the determination gets slightly underestimated. As the

procedure is well grounded it can also be extended for smooth transition trees (da Rosa et al.

(2008)) and to trend or volatility shifts.



Chapter 3

Estimating the number of mean shifts under long memory
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Estimating the number of mean shifts under long memory

Co-authored with Philipp Sibbertsen.

3.1 Introduction

The detection of changes in the mean is a fundamental issue for many areas of time series anal-

ysis. To specify the number and location of a mean shift can be even more challenging when

the underlying framework consists of long memory behavior (see Sibbertsen (2004)). The high

persistence in the time series with local trends and long cycles makes it hard for every break-

point estimator. Therefore, the biggest challenge is distinguishing between the true long memory

behavior and regular mean shifts. Undetected mean shifts can lead to misleading conclusions

e.g. by biased estimation of the long memory parameter (see Granger and Hyung (1999) and

Diebold and Inoue (2001) for further details).

Bai and Perron (1998) developed a method to specify number and location of mean shifts which

is performing well in a short memory framework. Rea (2008) investigated that the Bai and

Perron procedure does not work properly when it comes to long memory data. It tends to fail

when high persistent behavior becomes too severe. To overcome this problem we adopt the fast

approach of Breiman et al. (1984) via atheoretical regression trees (ART).

Regression trees split a time series into a left and right partition and continue by splitting the

subpartitions recursively. The split choice is based on the location where the highest reduction

in the residual sum of squares can be made. In this first phase the tree is spanned and builds a

well overfitted tree of potential partitions and breakpoints (see Rea et al. (2010)). In the second

phase the pruning technique tries to cut back branches with low contribution to the deviance

reduction to locate the optimal partition of the time series.

The application of ART to time series analysis by Cappelli and Reale (2005) shows the enormous

utility regarding breakpoint analysis and opens a new perspective when it comes to structural

break estimators. They showed that regression trees have reasonable performance in detecting

and locating structural breaks. In comparison with Bai and Perron (1998) the least squares

regression trees perform convincingly even in short-memory time series.

To locate the redundant mean shifts during the pruning phase of ART information criteria are

used. Common pruning techniques such as the BIC fail when it comes to long memory behavior.

Lavielle and Moulines (2002) suggested the LIC for the long memory case, which takes the long

memory parameter into account. However, this requires a pre-specification that the underlying

process is indeed long memory and an estimation of the long memory behavior when there are

mailto: sibbertsen@statistik.uni-hannover.de
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potential mean shifts coexistent. Thus a new information criteria, also Schwarz information

criteria based, will be used to overcome this problem and still maintain the good properties of

the regression trees to specify the number of mean shifts. The LWZ information criterion, first

suggested by Liu, Wu and Zidek (1997), retains consistency but is constructed in a more flexible

way with two parameters that are determined throughout the data generating process. It will be

shown that it performs also in the long memory framework with superior results in comparison

to the alternative pruning criteria.

The remainder of this paper is organized as follows. Section 3.2 outlines the tree-based procedure

and their characteristics. Section 3.3 describes the new LWZ based pruning procedure and

section 3.4 presents the results of the simulation study. It compares the LWZ with the procedure

of Bai and Perron (1998, 2003) and the LIC (Laville and Moulines (2002)). Section 3.5 provides

the conclusion.

3.2 Atheoretical regression trees

Atheoretical regression trees are used to detect and locate structural breaks. Using a nonpara-

metric approach no distributional assumptions are required and a good fit to any kind of time

series can be expected. Our breakpoint model is defined by

yt = µ+ ǫt

µ = (µ1, . . . ,µm)

µk = I(Tk+1<...<Tk+1)δk with δk ∈ R

where yt is the value of the time series at time t, ǫt is the error term which is assumed to be sta-

tionary and µk is the mean of the time series in regime k up to the breakpoint m. The indicator

function is 1 if you are in the regime k and 0 otherwise. k = 1, ...,m are the breakpoints with the

mean of the regime µk.

The regression tree determines breakpoints through fitting piecewise constant functions in an

OLS regression framework. The exogenous predictor variable is the time t which works more like

a counter than a predictor. At each regression step the best split of the time series is determined

and an estimated breakpoint is not reconsidered but set fix in the further analysis.

The determination of the best split is identified with a node impurity measurement. Usually the

sum of squared residuals (RSS) is used as the risk function. The mean squared error is given by

R(t) =
1

n(t)

∑

xi∈t
(yi − ȳ(t))2
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with

ȳ(t) =
1

n(t)

∑

xi∈t
yi.

The predictor variable xi represents the time points which belong to one regime and n(t) is the

number of elements in node t. A node symbolizes a part of the time series with length n(t) i.e.

the root node reflects the whole time series. To construct the tree a node t is split into a left

child node tL and a right child node tR where the sum of the RSS of the left side and the right

side of the node is minimized. That means we start by cutting the time series into two parts

where the minimization of the RSS is highest. The minimization problem describes as follows.

min
t

(R(tL)+R(tR)) =min
t





1
n(tL)

∑

xi∈tL
(yi − ȳ(tL))2

+
1

n(tR)

∑

xi∈tR
(yi− ȳ(tR))2





The total sum of squares can be rewritten as a minimization of the within child nodes sum

of squares. This can also be written as a maximization problem regarding the improvement

through the splitting into tL and tR which maximally distinguishes the time series in the left and

right nodes by generating the highest drop in deviance (see Rea et al. (2010)).

max
t

(R(t)−R(tL)−R(tR)) =

max
t

(

1
n(t)

∑

xi∈t
(yi − ȳ(t))2− 1

n(tL)

∑

xi∈tL
(yi − ȳ(tL))2− 1

n(tR)

∑

xi∈tR
(yi − ȳ(tR))2

)

Each splitting process is a binary decision whether a node is found or not. This is applied

separately to each subgroup recursively until no improvement of the criterion can be achieved.

Thereby a hierarchical structure is build through the recursive partitionment of the time series

into nodes and terminal nodes (leaves), where every terminal node represents a final regime with

a shifted mean.

The growing process of the tree continues until no further improvement by splitting the time

series can be made. In practice this would lead to as many terminal nodes as observations

and therefore a minimum number of observations in each child node or a minimum within-

node deviance is set. Denote in what follows the estimated breakpoints by κ̂ = (κ̂1, . . . , κ̂m) =

(T̂1/T, . . . , T̂m/T ) with true values κ0 = (κ01, . . . , κ
0
m). Under assumption 3.1 that bT with T ≥ 1 are

nonnegative constants with probability one, we show adopting arguments similar to those in Bai

and Perron (1998).

Assumption 3.1:

PT (t) ≥ bT
logT

T
for T ≥ 1 and t ∈ T̂T (3.1)

PT (t) denotes the empirical distribution of a random sample.

Lemma 3.1: Let ǫt be I(d) with d ∈ [0,1/2). Then under assumption 3.1, κ̂→ κ0.
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Proof: Denote by ǫ̂t the estimated residuals

ǫ̂t = yt − µ̂k for t ∈ [T̂k−1+1, T̂k]. (3.2)

Here, µ̂k = ȳ(t) = 1
n(t)

∑

t∈[T̂k−1+1,T̂k]
yi and n(t) gives the number of time points t in [T̂k−1 + 1, T̂k].

Thus in our model the mean is piecewise estimated with the arithmetic mean of the respective

observations. It holds
1
T

T∑

t=1

ǫ̂t ≤
1
T

T∑

t=1

ǫt. (3.3)

Furthermore, we have with dt = µ̂−µ0 for t ∈ [T̂k−1+1, T̂k] and ǫ̂t = ǫt −dt

1
T

T∑

t=1

ǫ̂2t =
1
T

T∑

t=1

ǫ2t +
1
T

T∑

t=1

d2
t −2

1
T

T∑

t=1

ǫtdt. (3.4)

Using Lemma 1 in Bai and Perron (1998) which holds also in the long-memory context for d < 1/2

(Beran et al. (1998)) and states that 1
T

∑T
t=1 ǫtdt = oP(1) and the equations (3.3) and (3.4) it can

be seen that 1
T

∑T
t=1 d2

t
P→ 0. This states that κ̂ contains the correct breakpoints among possible

other incorrectly estimated mean shifts. Therefore, the regression tree is overfitted. However,

pruning the tree by any under I(d) consistent information criteria gives the desired consistency

for the number and location of the mean shifts. ♦

3.3 Pruning by means of the LWZ information criterion

The process of pruning is the ex post discarding of branches whose proportion to the error re-

duction is negligible. In order to find out the optimal sequence of partitions and breakpoints

of all candidates a model selection criteria can be employed. The well-established BIC fails in

the presence of long-range dependencies. It retains its consistency but is outperformed in finite

sample studies (Bai and Perron (2004)).

Lavielle and Moulines (2002) suggested an information criterion based on the bayesian informa-

tion criterion that penalizes the estimation with a term including the long memory parameter

d. The LIC is defined by

LIC = min
1≤k≤m

min
κ1,...,κm

m+1∑

k=1

[κkT ]∑

t=[κk−1T ]+1

(yt − µ̂k)
2
+

4k logT

T 1−2d
.

The penalization is chosen in order to obtain a consistent estimator for the change-point and

balances the number of over- and underestimation (see Lavielle and Moulines (2002)). The

information criterion is built exclusively for the long memory case and leads to a necessary pre-

specification of the underlying framework. Also the long memory parameter has to be estimated

without being biased through potential mean shifts.
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Liu, Wu and Zidek (1997) suggested a modified Schwarz criterion to estimate the number of

sections of their multivariate regression model which is denoted as LWZ. This criterion takes

the form

LWZ(m) = ln(S T (T̂1, . . . , T̂m)/(T − p∗))+ (p∗/T )co(ln(T ))2+δ0,

where c0> 0 and δ0> 0 are some constants and p∗ describes the total number of fitted parameters.

T denotes the total number of observations and T̂i the number of observations of regime i. The

idea is to change the well-established Schwarz criterion as little as possible to retain consistency

but also to embrace the desire to construct a more flexible information criterion accordingly.

By minimizing the sum of squares of the residuals a model dependent best criterion is given. A

reasonable choice of c0 and δ0 is suggested by Liu, Wu and Zidek (1997) for short memory pro-

cesses. They set a small δ0 (=0.1) to reduce the potential risk of underestimation with a normal

noise distribution and estimate c0 = 0.299 by equalizing the LWZ to the Schwarz information

criterion, but call for further research to develop a globally optimal pair of c0 and δ0 under a

variety of specifications which will be done in section 3.4.

Bai and Perron (2004) show that the LWZ outperforms the BIC in all short memory cases

including serial correlation. Under long memory the BIC is generally outperformed (see Rea

(2008) and Rea et al. (2010) for demonstrative comparison). The classic BIC is therefore no

competitor when it comes to performance questions.

3.4 Monte Carlo study

In the long memory context a simulation to specify a globally optimal pair for (c0, δ0) of the

LWZ is done. Based on an ARFIMA(p,d,q) process with negligible short memory components

for differentiation reasons no, one and two shifts in the mean of the time series is considered. For

ten different values of the long memory parameter d (stationary and non-stationary) and a level

shift height equally to the variance of the noise distribution (constantly 1) an overall distribution

regarding the percentage of correctly specified breakpoints is computed. Under normal, t- and

double exponential noise all combinations are examined.

Through a two-dimensional grid search procedure for all considered cases the optimal parameter

pair (c0 = 0.26, δ0 = 3.76, marked with a dot in figure 3.1) leads to 83% correct specifications.

The performance deficit of 17% is based on high (nonstationary) d values and challenging break

patterns when there are two mean shifts in the data.
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Figure 3.1: Contour lines for correct specifications over all parameter combinations
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See figure 3.1 for the contour plot of all considered parameter combinations. Yellow lines repre-

sent a low percentage of correct specifications and the more red the contour level line the higher

the percentage of correct specification over all considered cases. The parameter combination

with the highest percentage (83%) is marked with a dot in figure 3.1 and lies at c0 = 0.26 and

δ0 = 3.76. The LWZ would be accordingly

LWZ(m) = ln(S T (T̂1, . . . , T̂m)/(T − p∗))+ (p∗/T )0.26(ln(T ))5.76.

Not surprisingly, the penalization is typically higher than in the BIC (see Yao (1988)). As the

BIC was constructed based on the iid case, the penalty term has to be somewhat stronger to

balance the long-range dependance structure.

Besides an optimal parameter pair the graph also tells us that there is a rather wide central

corridor for results of roughly equally good quality. That implies that the exact parameter com-

bination is subordinate because of the stability of the results. The combination suggested by

Liu, Wu and Zidek (1997) (δ0 = 0.1, c0 = 0.299) is situated at the edge of the red corridor. Due to

the fact that this combination leads to good results in the short memory case and outperforms

the BIC, in general the LWZ is supposed to lead to good specification results as long as the

penalty term is higher than the BIC.

In the short memory case the optimal parameter pair for long memory (c0 = 0.26, δ0 = 3.76) leads

to 89% correct specifications which makes the criterion safe to use for both frameworks without

previous specification analysis. In the short memory case the optimal parameter pair would be

a smaller value for c0 with the same constant δ0 or vice versa.
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The Monte Carlo study serves as a comparison between the new adjusted LWZ criterion, the

ordinary BIC as a benchmark information criterion and the LIC which is specialized in long

memory cases. For ART we used tree growing procedures as implemented in ’tree’ (Ripley

(2005)) as a contributed package in the ’R’ software. A time series with a length of 500 obser-

vations will be used and 100,000 replications are made since the computation time is not an issue.

The question that needs to be addressed after applying regression trees to time series according

to Rea et al. (2010) is whether the pruning method under- or overestimates mean shifts and

is robust against e.g. serial correlation. When there is no mean shift present in the data the

results for the estimated number of mean shifts is given in table 3.1.

Table 3.1: Simulation results for pruning criteria when there are no mean shifts present

LWZ BIC LIC

d % correct mean s.d. % correct mean s.d. % correct mean s.d.

0,05 100,00% 0,00 0,00 59,41% 0,65 0,95 50,23% 0,83 1,03

0,15 99,99% 0,00 0,00 18,86% 1,99 1,48 15,92% 2,15 1,49

0,25 99,94% 0,00 0,03 0,04% 3,36 1,52 0,03% 3,45 1,50

0,35 96,13% 0,04 0,19 0,00% 4,33 1,35 0,04% 4,36 1,33

0,45 77,62% 0,23 0,44 0,00% 4,87 1,18 0,10% 4,48 1,29

0,55 50,38% 0,57 0,65 0,00% 5,11 1,11 1,37% 3,26 1,45

0,65 27,21% 1,02 0,86 0,00% 5,17 1,10 6,14% 2,05 1,22

0,75 13,18% 1,56 1,09 0,00% 5,12 1,12 14,90% 1,34 0,93

0,85 5,91% 2,17 1,26 0,00% 4,99 1,15 24,92% 0,96 0,74

0,95 2,66% 2,70 1,32 0,00% 4,82 1,16 34,03% 0,76 0,65

The LWZ performs well when it comes to low and moderate long memory. For high values of d

the increasing process variance of the underlying long memory tends to cover the true behavior

of the mean. The BIC fails and tends to find at least one mean shift. The LIC develops a valley

distribution. The shape of the estimation with the LIC is conditioned on the penalty term.

With T 2d−1 it degenerates for d values close to 0.5 and increases very strong for higher d values.

For very small d values it performs well again because of the negligible long-range dependency.

That’s why for the LIC rather good results can be observed for low and high d values but not

for moderate ones.

When it comes to a single mean shift at midpoint of the series the characteristics of the pruning

criteria hold. For different break sizes that correspond to the standard deviation of the noise

distribution (sǫt = 1) see table 3.2. The position of the mean shift does not affect the estimations

strongly though mean shifts in the boundary area weaken every criterion.
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Table 3.2: Simulation results for pruning criteria when there is one mean shift present

µ1 = 1, µ2 = 3 LWZ BIC LIC

d % correct mean s.d % correct mean s.d. % correct mean s.d.

0,05 100,00% 1,00 0,00 86,76% 1,14 0,38 86,76% 1,14 0,38

0,15 100,00% 1,00 0,00 49,20% 1,69 0,81 49,20% 1,69 0,81

0,25 99,90% 1,00 0,03 16,40% 2,63 1,13 16,40% 2,63 1,13

0,35 96,52% 0,97 0,18 3,92% 3,60 1,24 3,92% 3,60 1,24

0,45 82,65% 0,89 0,41 0,85% 4,35 1,23 1,04% 4,27 1,23

0,55 65,85% 0,91 0,64 0,27% 4,82 1,17 7,33% 3,54 1,37

0,65 54,00% 1,16 0,89 0,12% 5,03 1,14 29,05% 2,26 1,25

0,75 42,95% 1,63 1,11 0,09% 5,06 1,14 50,13% 1,42 0,96

0,85 29,96% 2,18 1,26 0,07% 4,96 1,15 58,60% 0,99 0,76

0,95 18,83% 2,71 1,32 0,07% 4,81 1,16 57,99% 0,77 0,65

µ1 = 1, µ2 = 2

0,05 38,39% 0,38 0,49 60,40% 1,51 0,72 59,78% 1,52 0,72

0,15 40,94% 0,41 0,49 23,57% 2,40 1,11 22,99% 2,41 1,10

0,25 41,48% 0,41 0,49 6,36% 3,42 1,27 6,14% 3,42 1,27

0,35 42,73% 0,43 0,50 1,59% 4,22 1,26 1,54% 4,23 1,26

0,45 45,51% 0,48 0,53 0,45% 4,77 1,19 1,13% 4,49 1,25

0,55 50,50% 0,67 0,66 0,15% 5,04 1,13 10,22% 3,36 1,44

0,65 51,64% 1,06 0,87 0,09% 5,13 1,11 32,14% 2,10 1,23

0,75 43,09% 1,58 1,10 0,06% 5,10 1,13 50,64% 1,36 0,94

0,85 30,11% 2,17 1,27 0,07% 4,98 1,15 58,33% 0,98 0,75

0,95 19,08% 2,71 1,33 0,05% 4,82 1,16 57,50% 0,76 0,65

The BIC again performs inferior with an average break estimation higher than 1. The LIC

holds its shape and outperforms the LWZ for several combinations. The problem of the LIC still

holds that d has to be estimated first and therefore can lead due to the deviance of the criterion

easily to false results in a practical setting. The LWZ stays comparably constant when the long

memory parameter changes and tends to underestimate the number of mean shifts for stationary

long memory. Tree-based procedures in general overfit for small breaks and short observation

length (see Rea et al. (2010)), hence a criterion which does not exceed this behavior could be a

more than welcome technique.

For more than one mean shift the criteria weaken and are highly dependent on the break size

but fortunately not on the break pattern.

3.5 Conclusion

Estimating the number of mean shifts in a long-memory time series can be challenging. Tree-

based procedures are presented as a powerful yet simple technique (see De’ath, G., Fabricius, K.

(2000)) and are therefore useful for the practitioner (Rea et al. (2010)). To prune the overfitting
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of atheoretical regression trees the BIC is widely used in a short memory framework and sur-

prisingly outperformed by the LWZ under multiple specifications (Bai and Perron (2004)). The

LIC which was derived for long memory shows good properties as well and partially outperforms

the LWZ for some combinations of d. Though the disadvantages of the LIC to depend on the

true value of d last. The LWZ keeps reasonable results even when the framework contains long

memory and thus needs no beforehand knowledge of the data generating process. It is therefore

preferable to the BIC and LIC.



Chapter 4

Testing for a break in persistence under long-range depen-
dencies and mean shifts
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4.1 Introduction

It is well known that structural breaks in the mean of a time series can easily be confused with

long-range dependence. Shifts in the mean can heavily bias estimators for the memory para-

meter and therefore create misleading results. For an overview about the problem of spurious

long memory due to mean shifts see Sibbertsen (2004). In the recent years a change of the

persistence of a time series, this is a change of the order of integration, has come more and more

into the focus of empirical and theoretical researchers. Beginning with Banerjee et al. (1992)

several authors proposed tests for a change in persistence in the classical I(0)/I(1) framework.

A popular stationarity test against a break in persistence was introduced by Kim (2000). Kim’s

test has the disadvantage to reject the null if the data generating process is constantly I(1)

during the whole sample what is theoretically correct but not desirable. Leybourne et al. (2007)

suggest a CUSUM-squares based test to solve this problem. Sibbertsen and Kruse (2009) gen-

eralized this test to the long memory framework by allowing for fractional degrees of integration.

Belaire-Franch (2005) proved that Kim’s test is not robust against mean shifts in the sense that

it has an asymptotic size of one when the data generating process is I(0) with a break in the

mean. Unfortunately, we show that the Leybourne et al. test does not overcome this problem

as it is not robust against mean shifts either. We therefore derive adjusted critical values for the

test under a generalized de-trending allowing for one mean shift.

The rest of the paper is organized as follows. In section 4.2 the test for changes in persistence

is briefly described. Section 4.3 derives its properties under mean shifts and section 4.4 con-

tains some Monte Carlo studies. Section 4.5 gives critical values of the test under a generalized

de-trending procedure. Size and power results are given as well. Section 4.6 contains an em-

pirical example showing the usefulness of our de-trending procedure in practice and Section 4.7

concludes.

mailto: sibbertsen@statistik.uni-hannover.de
http://www.wiwi.uni-hannover.de/Forschung/Diskussionspapiere/dp-422.pdf
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4.2 Testing for a break in persistence under long memory

We assume that the data generating process follows an ARFIMA(0,d,0) process. Sibbertsen and

Kruse (2009) generalized a CUSUM of squares-based type test proposed by Leybourne et al.

(2007) to test in this model framework the hypothesis of constant long-range dependencies versus

a change in persistence. The alternative can be either a change in persistence from stationary

to non-stationary long memory or vice versa. The null hypothesis tested is

H0 : d = d0 for t = 1, . . . ,T,

where we assume 1/2< d0 < 3/2. The alternative hypothesis is either

H01 :






d = d1 ∈ (0,1/2) for t = 1, . . . , [τT ]

d = d2 ∈ (1/2,3/2) for t = [τT ] +1, . . . ,T

or

H10 :






d = d2 ∈ (1/2,3/2) for t = 1, . . . , [τT ]

d = d1 ∈ (0,1/2) for t = [τT ] +1, . . . ,T.

The CUSUM of squares-based test statistic R used in Sibbertsen and Kruse (2009) is given by

R =
inf τ∈ΛK f (τ)
inf τ∈ΛKr(τ)

with the forward statistic

K f (τ) = [τT ]−2d0

[τT ]∑

t=1

v̂2
t,τ

and the reversed statistic of the data generating process

Kr(τ) = (T − [τT ])−2d0

T−[τT ]∑

t=1

ṽ2
t,τ.

Here τ is the relative breakpoint where we assume that τ ⊂ Λ and Λ ⊂ (0,1) and is symmetric

around 0.5. For now we assume τ to be fixed though unknown. [x] is the ceiling function of

x and ν̂t,τ is the residual from the OLS regression of Xt on a constant zt = 1 ∀t based on the

observations up to [τT ]. This is

v̂t,τ = Xt − X̄(τ)

with X̄(τ) = [τT ]−1∑[τT ]
t=1 Xt. Similarly ṽt,τ is defined for the reversed series yt = XT−t+1. Thus, it is

given by

ṽt,τ = yt − ȳ(1− τ)
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with ȳ(1− τ) = (T − [τT ])−1∑T−[τT ]
t=1 yt.

Sibbertsen and Kruse (2009) derive the limiting distribution of this test statistic and provide

response curves in order to compute critical values for different hypothetical memory parameters

d0.

4.3 Behavior of Test under mean shifts

In order to analyze how the CUSUM of squares-based test behaves under mean shifts let us

introduce some notation first. In what follows τ denotes the relative breakpoint in the memory

parameter d and λ denotes the relative position of the mean shift. For the sake of notational

simplicity we only consider the easiest break in mean model allowing only for abrupt changes.

Our model is given by

yt = α+ δDt+ εt (4.1)

with Dt = 1(t ≥ [λT ]+1) with 1(·) being the indicator function. In this model a level shift from α

to δ occurs at some unknown breakpoint [λT ]. We further assume that εt ∼ I(d) with 0≤ d ≤ 1.5.

Thus, a possible choice for εt is an ARFIMA(0,d,0)model. Let furthermore
P→ denote convergence

in probability.

Theorem 4.1.

Given model (4.1) with the assumptions given above. Then:

1. for 1/2< d < 3/2 the value of the test statistic is

R =
inf τ∈ΛK f (τ)
inf τ∈ΛKr(τ)

=
inf τ≤λK f (τ)
inf τ≥λKr(τ)

;

2. for 0≤ d < 1/2 we have R
P→ 1.

The results can also be derived for a general de-trending. The ideas are the same. It only

introduces more notational difficulties and is therefore left out here.

The result means that the minimization takes place over a restricted interval up to the point

where the mean shift occurs or beginning from this point. The further the mean shift is on the

limits of Λ the smaller is this interval either for the forward or reversed statistic. Therefore, the

occurrence of the minimum in this interval becomes less likely. This can be seen when considering

a typical shape of the forward and reversed statistic as given in Figure 4.1. At λ= 0.7 the forward

statistic increases immediately and so the minimum can only be found before the mean shift

distorts the forward statistic. This distortion is big enough for the test statistic to reject the

null in most cases. It should be mentioned that we cannot prove inconsistency of the test in the

sense that the test statistic diverges when a mean shift occurs. This is not the case and thus

allows us to readjust the critical values in the case of mean shifts as it is done in section 4.5.
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Figure 4.1: Forward and backward statistic with λ = 0.7, α = 0, δ = 5 and d = 0.8
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The size distortions are smallest for a mean shift at λ = 0.5 considering that the interval for the

forward and backward statistic have the same length. Therefore, it is less likely that both minima

findings are distorted. Interestingly, these results do not hold for a stationary data generating

process. In this case the test statistic is still conservative. Some Monte Carlo underpinning

these findings is given in the next section.

4.4 Monte Carlo study

Our theoretical findings in section 4.3 can be backed up with Monte Carlo studies. All sim-

ulations are computed with the open-source programming language R (2008). The number of

replications is set to M = 2000and we consider a sample size of T = 1000, set so high in order to

illustrate the asymptotic results. When there is a mean shift from α = 0 to δ = 5 in model (1),

the size varies with the relative position of the mean shift λ as follows.
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Table 4.1: Empirical size when there is a mean shift using estimated response curves

d = 0.6 d = 0.8

λ 0.10 0.25 0.50 0.75 0.90 0.10 0.25 0.50 0.75 0.90

1L 0.15 0.00 3.75 43.95 34.30 0.35 0.60 1.00 2.60 2.90

5L 0.70 0.65 11.75 67.45 57.20 2.40 3.05 5.15 10.00 11.60

10L 1.20 1.05 19.45 77.15 71.35 5.35 7.00 10.55 17.95 19.90

10U 70.40 74.80 15.80 0.50 0.75 19.20 18.45 10.05 6.75 6.60

5U 55.25 62.45 8.40 0.10 0.4 12.00 11.70 5.60 3.30 3.05

1U 30.45 38.30 2.65 0.00 0.10 3.40 2.70 0.80 0.60 0.50

d = 1.0 d = 1.4

λ 0.10 0.25 0.50 0.75 0.90 0.10 0.25 0.50 0.75 0.90

1L 0.75 1.55 1.20 1.20 0.85 0.15 0.20 0.15 0.1 0.15

5L 4.10 6.00 5.10 4.90 4.90 2.25 2.70 2.15 1.70 2.00

10L 9.30 11.95 9.60 10.05 10.45 6.55 5.65 5.50 4.3 5.25

10U 9.45 8.65 9.65 10.35 10.40 5.55 7.00 6.55 6.45 6.1

5U 4.60 4.85 5.40 5.00 6.30 2.00 2.55 2.45 2.55 2.4

1U 1.00 1.30 1.20 1.00 1.00 0.00 0.30 0.10 0.15 0.05

As shown in section 4.3 it leads to distorted size results for 1/2< d < 3/2 no matter what shift

size is used. For d < 1 it remains most likely above the significance level. The size distortion

increases by getting closer to the limits of the Λ interval. For d = 1 as well as for λ = 0.5 the

smallest size distortion can be observed. For d > 1 the test statistic tends to conservative size

results. The test statistic does not diverge because of a mean shift and tends to reject not

properly. Because of the missing mean reverting characteristic for long memory with d > 1 and

the thereby explosive performance of the time series, the mean shift no matter what size has no

such strong impact on the test statistic and hence on the size results.

For this onesided test depending on whether λ is smaller or greater than the interval Λ, elevated

size values appear at the upper and lower bound respectively as shown in Figures 4.2 and 4.3.

Due to the fact, that the true position of the break is unknown, distorted size results can always

appear.
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Figure 4.2: Behavior of the size at the lower 5% tail
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Figure 4.3: Behavior of the size at the upper 5% tail
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The smaller the long memory parameter, the more distinctive is this size behavior. Hence at

the boundaries of the time series the test decision is strongly biased by the mean shift and leads

to a false rejection of the null. The following graphic show the distribution of the minima of

the forward and backward statistics for λ = 0.7 and d = 0.8. It shows that the minima of the

forward statistic cumulate at the boundary of 0.8 and around λ = 0.7. The reversed statistic

shows similar findings with a cumulation at 0.2.
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Figure 4.4: Empirical minima of the forward and backward statistics
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4.5 Adjustment of critical values

Due to the size distortion at the boundaries it is reasonable to adjust the critical values and

take the mean shifts into account. The adjustment of the critical values takes place under the

allowance for one break in the mean. In addition to this situation which is detailed in the theo-

retical part we consider also the adjustment of the critical values if there is a break in the mean

and in the slope of the linear trend. This adjustment procedure goes conform with the situation

of breaks in the conditional mean in the de-trending case. Furthermore, we allow for a smooth

transition between the regimes allowing a higher flexibility in the trend function. The smooth

transition is driven by a logistic transition function. The abrupt mean shift model is a special

case of this more general mean shift model. It should be mentioned that for our adjustment

procedure the existence of the mean shift has to be known. Estimating mean shifts within a long

memory model with breaking persistence is a difficult task and beyond the scope of this paper.

It should be mentioned that the response curves given in this chapter and thus the critical values

of the test depend on λ. However, as in most applications there are at least rough if not exact

ideas about mean shifts in the data, we consider our procedure still as useful for the practitioner.

We simulate the asymptotic distribution of the test statistic depending on d for the cases d = 0.51

to d = 1.49with λ= 0.5. Due to the wide range of possible values of d we fit polynomial functions

to the sequence of critical values depending on d. The adjusted critical values can be displayed
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in response curves given by

qα(d) =
s∑

i=0

βid
i.

qα denotes the α-quantile of the asymptotic distribution and s the maximal polynomial order

which is set to nine. The parameters βi are estimated with OLS. For different values of λ the

response curves are parallel so the functional form remains unchanged for different values of λ

though the parameters change.

Table 4.2: Estimated response curve when a mean shift occurs

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

1L 0.965 0 0 0 -21.507 66.386 -89.993 65.334 -24.904 3.927

5L -162.657 1700.856 -7729.333 20149.046 -33212.416 35896.289 -25444.859 11411.826 -2940.170 331.773

10L 0.931 0 0 0 -2.550 2.475 0 0 -0.675 0.283

10U 1.132 0 0 0 0 0 10.268 -18.031 11.346 -2.557

5U 1.161 0 0 0 0 0 16.821 -30.738 20.506 -4.932

1U 0.975 0 0 0 18.784 -41.418 39.564 -13.136 0 0

OLS estimates for βi (i = 0,1, . . .9) are reported in columns; βi = 0 means that the parameter is set equal to zero.

Table 4.3: Estimated response curve when a mean and a slope shift occurs

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

1L 0.9277 0 0 -1.8787 1.352 0 0 -0.0764 0 0

5L 0.9022 0 0 0 0 -5.2669 9.6113 -6.0405 1.3009 0

10L 1.035 0 0 0 -21.792 86.363 -144.9 123.989 -53.224 9.103

10U 1.068 0 0 0 1.395 -0.732 0 0 0 0

5U 1.065 0 0 0 2.129 -1.083 0 0 0 0

1U 1.1842 0 0 0 2.1661 0 0 -0.2962 0 0

OLS estimates for βi (i = 0,1, . . .9) are reported in columns; βi = 0 means that the parameter

is set equal to zero.

The size and power properties of the test using the estimated response curves for one break in

the mean are reported in Tables 4.4 and 4.6, and for a break in the mean and the slope in Table

4.5 and 4.7 respectively.

Table 4.4: Empirical size for mean shift

d 0.55 0.70 0.85 1.25

1L 0.4 1.0 0.7 2.2

5L 3.3 5.3 3.9 3.4

10L 8.5 9.7 9.8 8.1

10U 10.4 9.3 11.1 10.2

5U 5.6 5.0 5.8 5.8

1U 1.0 1.2 1.3 1.2
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Table 4.5: Empirical size for mean and slope shift

d 0.55 0.70 0.85 1.25

1L 0.6 0.8 1.3 1.0

5L 3.5 5.4 6.2 5.4

10L 8.9 9.9 11.7 9.8

10U 9.6 8.5 8.9 10.1

5U 5.9 5.0 4.5 5.2

1U 1.0 1.0 1.1 1.0

Table 4.6: Power Experiment for one break at the 5% level

d 0.8 → 0.4 0.4 → 0.8 0.6 → 0.0 0.0 → 0.6 0.6 → 0.4 0.4 → 0.6

83.7 96.2 96.0 77.0 58.5 54.9

Table 4.7: Power Experiment for one break in the mean and slope at the 5% level

d 0.8 → 0.4 0.4 → 0.8 0.6 → 0.0 0.0 → 0.6 0.6 → 0.4 0.4 → 0.6

96.5 95.6 92.1 92.0 67.3 64.9

The size experiments with these adjusted critical values show that it is useful to correct for the

effect of the mean shift. When it is known or likely that the time series contains a mean shift the

test gains good size properties and appropriate power results. This is very helpful to know when

you consider the additional size distortion if the mean shift is neglected. It should be mentioned

that the model can also be extended to more than one break.

4.6 Empirical Example

In order to show the usefulness of our adjustment procedure we consider harmonized monthly

CPI inflation rates for the UK from 01.1989 to 03.2008 and USA from 01.1950 to 03.2008.

The data is obtained from Datastream. The series are depicted in Figure 4.5 and 4.6 below

where also the fitted trend functions, the residuals and the break in the persistence parameter

is shown. The data for the USA is the same as in Sibbertsen and Kruse (2009) to obtain com-

parability. Both series exhibit long-range dependence before and after de-trending. For the UK

we obtain for the whole series a value of d = 1.151 before the de-trending and d = 0.835 after

de-trending. For the USA we have d = 1.215 before and d = 1.227 after de-trending. Both series

do have long-range dependencies even after a general de-trending allowing for shifts in the trend.

Applying the test of Sibbertsen and Kruse (2009) for the constancy of the persistence and ne-

glect possible breaks in the trend the null of no break in the persistence parameter is rejected

for both series at the 10% level indicating a change in the memory. For the USA this finding

goes conform with the findings in Sibbertsen and Kruse (2009).
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However, these results change when allowing for a break in the mean and the slope of the trend

function and applying our general de-trending procedure before applying the test for a break in

persistence. The series with the fitted trend function and the residuals are shown in Figures 4.5

and 4.6.

Figure 4.5: UK inflation with trend and residuals
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Figure 4.6: US inflation with trend and residuals
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Both series have clear mean shifts. However, after eliminating these mean shifts there still

seems to be a persistence change within the residuals of the UK inflation rates whereas the

residuals of the US inflation do not look like having a breaking persistence. Application of the

test for changing persistence confirms this. Whereas the null of a constant persistence cannot be

rejected for the US inflation at any level of significance the null for the UK inflation can be re-

jected at the 1% level of significance indicating both a breaking trend plus a breaking persistence.

Estimating the breakpoint for the persistence break in the UK inflation shows a break at τ= 0.54

which is 07.1999. The breakpoint is indicated by the dashed line in Figure 4.5. Estimation of

the memory parameter gives d = 0.799before the break and d = 1.034 after the break suggesting

that the UK inflation follows basically a random walk since mid of 1999.

4.7 Conclusion

In this paper we show that the Leybourne et al. (2007) test on a break in persistence becomes

biased when the data generating process has a shift in the mean function. The test is therefore

not robust against mean shifts. The size of the test is most likely even higher than the chosen

significance level. Therefore, the null of no change in persistence is falsely rejected by the test

due to mean shifts. Mean shifts do effect the test decision even more when they occur at the

extreme ends of the sampling period.
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As the test is distorted when a mean shift occurs, it is useful to correct for this effect when it

is known or likely to have mean shifts in the data. We give adjusted critical values for the case

of one mean shift (and trend shift) and provide response curves for them. It is shown that the

test has good size and reasonable power properties.

Without applying our adjustment procedure the null of a constant persistence has to be rejected

for both series. After the application of our adjustment procedure to monthly inflation rates of

the UK and the US it can be seen that the null of constant persistence cannot be rejected any

more for the US after a general de-trending whereas it still gets rejected for the UK. Hence, we

find a breaking trend and a breaking persistence for the UK inflation.

4.8 Appendix

4.8.1 Proof

Proof of Theorem 4.1:

1. Let us first assume that 0.5< d < 1.5. Let us furthermore assume that τ ≤ λ. The case τ ≥ λ
is analogous with an interchange of the forward and reverse statistics.

The main advantage of our simple breakpoint model is that we only have to consider the

case of a de-meaning of the time series. Due to the fact that a level shift occurs we consider

the case of de-meaning instead of de-trending which would be appropriate in the case of a

broken trend. For the residuals of (4.1) we have before the persistence break

ê j = ε j− [τT ]−1
[τT ]∑

t=1

εt

respectively afterwards

ê j = ε j− [(1− τ)T ]−1
T∑

t=[τT ]+1

εt − [(1− τ)T ]−1δ

T∑

t=[τT ]+1

Dt + δD j.

Assume τ≤ b≤ λ and t= [bT ]. For a fixed τ the mean shift is behind the assumed persistence

shift and thus the forward statistics remains unchanged:

K f (τ) = [τT ]−2d0

[τT ]∑

t=1

v̂2
t,τ→ L f

d(τ).

Have in mind that the test always works under the alternative and therefore the existence

of a persistence shift is assumed.
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For the reversed statistic ṽt,τ we obtain:

ṽ[bT ],τ = ṽ[λT ],τ+ ṽ[λT ]+1,τ

=

T−[λT ]∑

j=1

ε j−
T−[λT ]∑

j=1

ε̄− δ
T−[λT ]∑

j=1

D̄

+

T−[bT ]∑

j=T−([λT ]+1)

ε j−
T−[bT ]∑

j=T−([λT ]+1)

ε̄− δ
T−[bT ]∑

j=T−([λT ]+1)

D̄+
T−[bT ]∑

j=T−([λT ]+1)

δD j

with ε̄ and D̄ being the mean of ε and D over the respective time interval.

If λ ≤ τ the reversed statistic remains unchanged and we have for the forward statistic:

v̂[bT ],τ = v̂[λT ],τ + v̂[λT ]+1,τ

=

[λT ]∑

j=1

ε j−
[λT ]∑

j=1

ε̄− δ
[λT ]∑

j=1

D̄

+

[bT ]∑

j=[λT ]+1

ε j−
[bT ]∑

j=[λT ]+1

ε̄− δ
[bT ]∑

j=[λT ]+1

D̄+
[bT ]∑

j=[λT ]+1

δD j.

The statistic is minimized over all τ ∈ Λ up to λ in the first situation and afterwards in

the second. This means that up to τ = λ the forward statistic remains unchanged and

afterwards the mean shift will effect the residuals by reason that the de-meaning has to

consider the mean shift. Thus, for τ > λ the square of the forward statistic increases and

therefore the minimum is in the interval τ≤ λ and it is greater or equal the minimum which

is obtained without a mean shift.

We have a similar argument for the reversed statistic. For τ > λ it remains unchanged.

The changing mean does not affect the recursive de-meaning and thus the residuals remain

unchanged. For τ< λ the reversed statistic increases and the minimum is thus in the interval

τ ≥ λ. This proves the first part of the theorem.

2. Let us finally consider the case where 0≤ d < 0.5. Because of the arguments used before,

the minimum of the forward statistic is located earlier than λ and that of the backward

statistic later than λ. Therefore, we are in a similar situation as in Sibbertsen and Kruse

(2009), Theorem 4, and can therefore adopt the same arguments as in their proof. ♦



Chapter 5

Monitoring a change in persistence of a long range depen-
dent time series
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Monitoring a change in persistence of a long range depen-
dent time series

Co-authored with Florian Heinen.

Published as Leibniz University of Hannover Discussion Paper No. 479.

5.1 Introduction

The assumption of structural stability of an econometric model is a major issue in time series

econometrics. If the parameter estimates stem from an unstable relationship they are not mean-

ingful and additionally inference can be biased and forecasts yield inaccurate results (see e.g.

Hansen (2001), Andrews and Fair (1988), Ghysel et al. (1997), Garcia and Perron (1996) or

Clements and Hendry (1998)). In reaction to these findings a large amount of literature emerged

that incorporated structural change in the inference techniques or analyzes forecasting subject

to structural change more closely (see e.g. Perron (1989), Zivot and Andrews (1992) or Pesaran

and Timmermann (2005)). Recently the possibility of a change in persistence, i.e. a change in

the memory structure of the time series as a special case of structural instability, has become

object of study (see e.g. Kim (2000), Kim et al. (2002), Busetti and Taylor (2004), Banerjee

et al. (1992), Leybourne et al. (2003) or Leybourne et al. (2007)). This work has been placed

within the I(0) vs. I(1), or vice versa, framework where the focus lies on short memory time

series with an exponentially decaying autocorrelation structure.

However, since the seminal papers of Granger and Joyeux (1980) and Hosking (1981), long mem-

ory time series have become widely used in economics to model highly persistent time series as

diverse as inflation rates or realized volatility (see e.g. Hassler and Wolters (1995) and Corsi et

al. (2008)). Baillie (1996) provides an overview about various applications of long memory time

series in economics.

Despite these facts little work has been done to test for a change in persistence in long range

dependent time series. Notable exceptions are Beran and Terrin (1996), Ray and Tsay (2002),

Sibbertsen and Kruse (2009) or Yamaguchi (2011). These test belong to the class of so-called

”one-shot” tests (see Chu et al. (1996, p. 1045)), i.e. tests that are applied a posteriori to detect

a structural break within a historical data set.

Because breaks can occur at any given time and also new data arrives steadily it is desirable for

the applied econometrician to detect a change in persistence as soon as possible. This leads to a

sequential testing problem (see Siegmund (1985) for an overview). As the usual ”one-shot” tests

work with constant critical values they cannot be applied sequentially given that the true null of

mailto: heinen@statistik.uni-hannover.de
http://www.wiwi.uni-hannover.de/Forschung/Diskussionspapiere/dp-479.pdf
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no change would eventually be rejected with probability one (see Robbins (1970)). Starting with

Bauer and Hackl (1978) a strand of literature has emerged that studies monitoring procedures

that allow to detect structural change whenever new data arrives. Important contributions on

this field are Chu et al. (1995), Kuan and Hornik (1995), Chu et al. (1996), Leisch et al. (2000),

Altissimo and Corradi (2003), Zeileis et al. (2005), Andreou and Ghysels (2006) and Hsu (2007).

These papers contribute to the literature on monitoring structural stability on different levels

ranging from theoretical contributions to detecting structural change in the conditional mean or

the conditional variance or comparing different types of rejection regions for the null.

In this paper we use a monitoring approach based on moving sums of residuals and place it

into a long memory framework. We develop a procedure to detect an increase in persistence

for the case that the process becomes non-stationary. This is important because an increase

in persistence implies a loss of controllability for important macroeconomic time series such as

inflation rate or the European overnight rate (EONIA) (see Sibbertsen and Kruse (2009) and

Hassler and Nautz (2008)). Further, a change in persistence also affects forecast accuracy in

long memory time series (see Heinen at al. (2009)).

The rest of the paper is organized as follows: In section 5.2 we describe the test procedure we

use and develop the asymptotic behavior. We further discuss and motivate different forms of

boundary functions for the test. In section 5.3 we undertake a simulation study to asses the

finite sample performance of the monitoring test. Section 5.4 contains an empirical application

before section 5.5 concludes. All proofs are collected in the appendix 5.6.

5.2 Monitoring a change in persistence

We assume that the data generating process follows an ARFIMA(p,d,q) process as proposed by

Granger and Joyeux (1980)

Φ(L)(1− L)dyt = Θ(L)εt, with εt
iid
∼ (0,σ2) and t = 1,2, . . . ,T . (5.1)

The differencing parameter d can take fractional values but is assumed to be |d| < 1
2. Thus the

process yt is in the stationary region (see e.g. Beran (1995)).

Bauer and Hackl (1978) propose the use of moving sums of cumulated residuals (MOSUM) to

detect parameter changes in regression models. These tests are further investigated by Chu et

al. (1995).

We are interested in detecting a change in persistence, i.e. a change in the fractional differencing

parameter d, in the monitoring period T +1 up to [Tτ], τ > 1. Where [·] denotes the integer part
of its argument.
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In particular, we test the null of no change in persistence, i.e. d = d0 within the monitoring

period where |d0| < 1
2, against the alternative of an increase in persistence. More formally we

test the null that

H0 : dℓ = d0, ℓ = T +1, . . . , [Tτ] , (5.2)

against the alternative that at some point in the monitoring period the persistence increases

and 1
2 < dℓ < 3

2. Thus we test whether the process stays in the stationary region throughout the

whole monitoring period or changes into the non-stationary region with an infinite variance at

some point in the monitoring period. For the period from t = 1, . . . ,T we follow Chu et al. (1996)

and make the ”noncontamination” assumption that

dt = d0, t = 1, . . . ,T ,

with |d0| < 1
2. Consider for simplicity the case of an ARFIMA(0,d,0) process.

Let êt be an ARFIMA(0,d,0) process as in (5.1) and σ̂2
= T−1∑T

i=1 ê2
i a consistent estimator of

σ2. Based on a moving sum of residuals obtained from a fixed window size [Th], 0< h ≤ 1, the

prototypical MOSUM test reads

MS T,h,d = max
T+1≤k≤[Tτ]

σ−1T−
1
2−d

∣
∣
∣
∣
∣
∣
∣
∣

k∑

i=k−[Th]+1

êi−
[Th]

T

T∑

i=1

êi

∣
∣
∣
∣
∣
∣
∣
∣

, (5.3)

for each value k in the monitoring period T +1 through [Tτ].

The next theorem gives the asymptotic behavior of the test statistic in (5.3) if yt follows a long

range dependent process as in (5.1) and (5.2).

Theorem 5.1.

Assume the process yt follows an ARFIMA(0,d,0) process as in (5.1) with |d| < 1
2. Then, as

T →∞, we have for MS T,h,d in (5.3) that

MS T,h,d⇒
1
σ

max
t∈[1,τ]

∣
∣
∣BB0(t,d)−BB0(t−h,d)

∣
∣
∣ ,

where BB0(t,d) denotes a fractional Brownian Bridge depending on fractional Brownian motion

with parameter d. ⇒ denotes weak convergence on a function space.

Under the alternative of a break in persistence the test is consistent.

The limiting distribution thus depends on the increments of a fractional Brownian bridge which

in turn depends on the differencing parameter d of the data generating process. Therefore the

asymptotic critical values of MS T,h,d are determined by the boundary crossing probabilities of

the increments of a fractional Brownian bridge:

IP
{
MS T,h,d ≤ b

}
= IP

{∣
∣
∣BB0(t,d)−BB0(t−h,d)

∣
∣
∣ ≤ b

}

. (5.4)
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The use of the test statistic in (5.3) is beneficial because the sequential application of usual

CUSUM tests as in Sibbertsen and Kruse (2009) with constant critical values will eventually

reject a correct null of no change in persistence with probability one (see Robbins (1970)).

Generally, every strictly increasing function b(t) = zq(t) could serve as a boundary function where

z is some suitable scaling factor and q(t) is some monotonically increasing function in time.

However if the boundary function grows too slowly the monitoring test will commit the type one

error almost surely as it will detect a break in persistence with probability one. On the contrary

if the boundary grows too quickly the test will loose power because a break in persistence cannot

be detected anymore. For the short memory case a variety of different boundary functions have

been proposed (see Andreou and Ghysels (2006, p. 92) for an overview). In particular Altissimo

and Corradi (2003) derive a boundary function based on the almost sure asymptotically uniform

equicontinuity of the Brownian bridge obtaining an almost sure boundary function. This is

convenient because it gives the rate of convergence with which the sequence of functions converges

to a relatively compact set in the sense of an Arzelà-Ascoli theorem (see e.g. Davidson (1994,

p. 335)). This provides useful information as we are interested in the behavior of the limiting

distribution independently of the test statistic. We also derive almost sure results similar to the

ones obtained by Altissimo and Corradi (2003) which are collected in the next theorem.

Theorem 5.2.

Let BB0(t,d) = B(t,d)− tB(1,d) be a fractional Brownian bridge. Then, d−1
T |BB0(t,d)| is almost

surely asymptotically uniform equicontinuous in t ∈ [0,1]. With dT ≔
√

2T 2d+1 log log(T ).

The use of this theorem is that it provides the rate with which the increment of the fractional

brownian bridge becomes asymptotically uniform equicontinuous. In the proof this derived to

be
√

2log log(T ). Hence, if we use this growth rate for the boundary function we will obtain a

slowly growing function and therefore detect a change in persistence but at the same time the

growth rate of this function is independent of the long memory parameter under the null d0.

Different forms of the boundary function are possible. For example one could use the boundary

function

b1(t) = z
√

2t log2(t) , (5.5)

where log2(t)≔ log(log(t)). This boundary function is based on the law of iterated logarithm and

is motivated by the fastest detection of change because it grows as slowly as possible. From

theorem 5.2 we deduce the boundary function

b2(t) = z
√

2log2(t) . (5.6)
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Because both boundary functions rely on the square root of a logarithm one needs to find a way

to deal with values ≤ log(1) to ensure real valued boundaries. One way of doing so is to define

log′2(t)≔






1, if t ≤ exp(1)

log log(t), if t > exp(1),

similar to Leisch et al. (2000). Another way which avoids the constant behavior of the boundary

function at the beginning of the monitoring period is to define

log′′2 (t)≔






t, if t ≤ exp(1)

log log(t), if t > exp(1).

Formally this leads to four possible boundary functions

b3(t) = z
√

2t log′2(t) (5.7)

b4(t) = z
√

2t log′′2 (t) (5.8)

b5(t) = z
√

2log′2(t) (5.9)

b6(t) = z
√

2log′′2 (t) . (5.10)

One could think of different boundary functions such as functions that are dependent on the

long memory parameter under the null to account for the gradually increasing variance of the

process. However, unreported simulations showed that such a boundary function does not

perform satisfactorily and we therefore restrict ourselves to the above boundary functions.

5.3 Monte Carlo evidence

We start by providing some Monte Carlo evidence on the small sample behavior of the usual

MOSUM test as considered in Leisch et al. (2000) under long range dependence. Table 5.1

shows some of the simulation results.

τ = 4 τ = 6 τ = 8

d h = 0.25 h = 0.5 h = 1 h = 0.25 h = 0.5 h = 1 h = 0.25 h = 0.5 h = 1

0.1 66.22 57.26 51.08 70.04 62.80 53.72 72.52 67.12 57.02

0.2 98.06 96.38 91.90 99.28 97.94 94.90 99.76 98.98 96.86

0.3 99.96 99.90 99.64 100.00 100.00 99.96 100.00 100.00 99.96

0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 5.1: Empirical size of the fluctuation test by Leisch et al. (2000) [in %] for T = 250 and α = 5%.

As expected the generalized fluctuation test does not keep its size. Even if the long memory is

only moderately present the test does not allow a secure conclusion whether a change in persis-

tence is present or not because the boundary functions are too narrow.
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In order to assess the finite sample performance of the monitoring procedure described in section

5.2 we consider different values for the long memory parameter d = 0.1,0.2,0.3,0.4, the monitoring

window h = 0.25,0.5,0.75,1 and the out-of-sample monitoring period τ = 2,4,6,8,10. We also

consider different sample sizes of T = 200,250,300 and the different boundary functions bi(t), for

i = 3, . . . ,6, from (5.7) to (5.10) for the simulations. The number of Monte Carlo repetitions is

set to M = 10000and the levels of significance are set to α = 1%,5%,10%.1

Boundary function b3(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 6.86 7.10 8.59 6.26 6.95 9.03 7.07 6.97 8.60

0.2 6.77 6.80 8.73 6.47 6.56 8.52 5.75 6.82 8.97

0.3 5.68 7.12 9.76 6.16 7.08 9.54 6.21 7.08 10.24

0.4 10.77 12.29 16.43 9.96 12.82 16.18 10.07 12.24 16.09

Table 5.2: Empirical size of the monitoring procedure [in %] for T = 250 and α = 5%.

Table 5.2 shows the size results for the boundary function motivated by the law of iterated

logarithm. Using this boundary we obtain a procedure that is generally oversized. This overre-

jection of the correct null becomes more severe as the degree of persistence increases and/or the

monitoring window h increases.

Table 5.3 displays the respective results based on the almost sure results from theorem 5.2. These

results are more promising compared to the ones of boundary b3(t) as the nominal size level is

better adhered to. Looking at the dependencies between the size, the long memory parameter

d, the monitoring window h and the monitoring period τ we see that a moderate window size of

h = 0.5 or h = 0.75 is generally preferable regardless of the monitoring period τ. If the persistence

increases a reduced window size of h = 0.5 yields the most accurate size results. Reducing the

window size even further to h = 0.25, however, leads to overrejection again as unreported results

show.

As the boundary function b6(t) is only a slight modification of boundary function b5(t) the same

argument as above applies to the results in table 5.4. The only difference is that the test

overrejects somewhat when using boundary function b6(t).

1Some of the results here and in the sequel are unreported to save space but can be obtained from the authors
on request.
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Boundary function b5(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 7.55 7.02 7.09 7.12 6.16 6.69 7.30 6.56 6.29

0.2 6.76 5.85 6.56 6.64 5.85 5.60 5.90 5.66 5.23

0.3 5.15 4.87 4.87 5.08 4.28 4.29 5.16 3.89 3.92

0.4 5.61 5.10 5.78 4.86 4.12 4.28 4.32 3.63 3.89

Table 5.3: Empirical size of the monitoring procedure [in %] for T = 250 and α = 5%.

Boundary function b6(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 7.00 7.52 8.65 6.75 6.71 8.42 7.34 7.05 7.59

0.2 7.13 6.92 8.60 6.69 6.31 7.33 6.02 6.20 6.70

0.3 6.12 6.96 8.94 5.96 5.86 7.26 5.84 5.58 6.49

0.4 10.26 11.22 13.96 8.39 9.61 10.83 7.67 8.06 9.53

Table 5.4: Empirical size of the monitoring procedure [in %] for T = 250 and α = 5%.

The size results for the α = 10% level are unreported but show the same general behavior of

the previously discussed results. However, in this setting it becomes even more obvious that

the boundary function b5(t) yields the best performance over all considered settings. Generally

the size distortions are minor and acceptable and also comparable to the short memory case as

reported in Leisch et al. (2000).

In an empirical setting the long memory parameter d0 is unknown and has to be estimated.

We therefore conduct the size experiment again but this time using an estimated d0. Generally

every consistent estimation method is applicable but estimators that converge faster than the

asymptotic distribution to the true value of d0 are preferable. One such estimator is the approxi-

mate maximum likelihood estimator proposed by Beran (1995) which is
√

T consistent. Another

popular method to estimate d0 is the log-periodogram regression (see Geweke and Porter-Hudak

(1983)). The rate of convergence of this estimator is
√

m where m is the number of frequencies

used. The estimator is consistent as long as (m log(m))/n→ 0 as m,n→∞, with n being the

sample size (see Hurvich et al. (1998)). In our simulations we use this estimator with T 4/5

frequencies. The results are reported for the α = 5% level in table 5.5.
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Boundary function b5(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 8.68 7.62 8.50 8.62 7.14 7.48 7.72 7.20 6.42

0.2 7.12 6.62 6.02 7.44 6.08 5.82 6.36 5.86 5.42

0.3 5.74 4.98 5.26 5.14 4.28 4.40 4.26 4.24 4.04

0.4 5.36 4.86 5.38 4.32 4.36 4.34 3.74 3.42 4.04

Table 5.5: Empirical size of the monitoring procedure with estimated d0.

We observe small size distortions for smaller values of d0 and larger monitoring periods but

generally the size is well kept even if we estimate the long memory parameter.

When the persistence changes from stationary to non-stationary the MOSUM test will eventu-

ally detect this with probability one due to consistency (see theorem 5.1).2 Therefore it is more

interesting how fast a change in persistence can be detected.

To study the detection delay we consider breaks from the stationary region, namely d0 =

0.1,0.2,0.3,0.4, to the non-stationary region, d1 = 0.6,0.7,0.8,0.9,1. The break occurs within

the monitoring period at t∗ =
[
ρτT

]
, where ρ = 0.3,0.5,0.7 and τ = 2,4,6,8,10 as above and [·]

denotes the integer part of its argument. We use a sample size of T = 250 and the boundary

functions bi(t), for i = 3, . . . ,6, from (5.7) to (5.10). As an example the average detection delay

for the α = 5% level for the boundary function b5(t) for different breaks is displayed in tables 5.6,

5.7 and 5.8.

2This has also been confirmed in unreported simulations.
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Boundary function b5(t)

τ = 2 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 53.33 43.40 37.23 77.61 63.15 49.58 91.34 72.67 56.20

0.2 79.23 63.41 54.45 112.58 95.82 81.91 126.86 112.28 95.50

0.3 112.44 92.12 76.31 144.79 137.08 122.53 158.95 156.00 148.96

0.4 133.96 118.80 99.73 150.59 158.25 151.10 157.33 172.92 172.75

τ = 4 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 57.89 46.73 38.50 91.25 71.51 57.13 116.31 90.09 69.96

0.2 94.31 72.12 59.49 149.92 118.26 98.78 186.03 152.03 127.12

0.3 160.65 109.40 86.93 222.47 183.72 152.57 265.43 240.25 210.58

0.4 225.64 167.07 121.51 272.32 258.26 214.56 293.90 309.68 282.91

τ = 6 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 53.52 41.29 32.36 96.13 71.78 56.47 124.22 94.77 72.26

0.2 98.55 69.55 55.80 167.16 124.39 104.44 217.05 169.95 138.28

0.3 190.16 111.91 85.96 282.65 204.74 165.30 339.06 276.86 231.03

0.4 315.36 192.13 126.20 380.04 315.26 239.72 419.28 396.05 320.28

Table 5.6: Average detection delay of the monitoring procedure for T = 250, α = 5% and ρ = 0.3.

Table 5.6 shows the results for the case of an early break within the monitoring period. As one

expects the detection is easier and therefore faster if the difference between d0 and d1 is large.

Consequently the detection delay is rather small if the persistence changes from stationary, say

d0 = 0.2, long memory to non-stationary, say d1 = 0.8, and even faster if the process becomes a

unit root process after the break. In fact, the detection delay for larger breaks is comparable

with the short memory case (see table 3 in Leisch et al. (2000)). This is encouraging given

the well known slow rate of convergence in long memory time series. Another result is that

it is easier and faster to detect a change in persistence if the width of the monitoring window

[Th] is rather small. Detection delays for values of h = 0.25 and h = 0.5 are generally smaller

compared to larger values of h. This is also in line with the findings of Leisch et al. (2000) for

the short memory case. It is well known also in related areas of the structural change literature

(see e.g Pesaran and Zimmermann (2005) for results regarding forecasts under structural breaks)

that smaller windows of data are usually better to detect and deal with structural change. The

results for later breaks within the monitoring period are shown in tables 5.7 and 5.8. The general

conclusions from above remain valid but the detection delay becomes even smaller if the breaks

occurs later. This is also a similar behavior to the short memory case reported in Leisch et al.

(2000).
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Boundary function b5(t)

τ = 2 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 44.55 35.39 28.67 65.85 54.45 43.62 74.23 60.25 48.20

0.2 65.49 55.62 47.31 89.16 82.66 72.46 96.55 91.89 81.20

0.3 85.56 78.49 68.26 110.59 112.02 106.93 118.37 123.46 118.71

0.4 89.62 92.35 84.78 99.62 115.70 117.50 95.06 110.72 125.06

τ = 4 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 51.01 35.76 29.86 88.67 68.46 52.90 113.94 87.37 67.87

0.2 88.44 64.41 51.54 141.47 116.89 98.79 172.76 150.65 129.69

0.3 143.60 108.29 82.25 190.48 174.08 152.71 223.04 217.80 204.48

0.4 169.54 153.31 114.90 204.31 218.35 201.99 225.85 250.99 241.94

τ = 6 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 36.59 24.66 16.15 87.80 65.26 47.83 122.35 90.52 67.80

0.2 86.31 58.32 41.59 158.73 120.80 99.18 204.27 169.67 140.36

0.3 174.06 106.13 74.87 242.96 201.27 163.20 289.19 264.62 229.60

0.4 235.73 181.23 121.38 287.28 279.41 231.81 303.02 332.77 302.43

Table 5.7: Average detection delay of the monitoring procedure for T = 250, α = 5% and ρ = 0.5.
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Boundary function b5(t)

τ = 2 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 28.02 24.45 18.84 39.55 35.59 30.44 41.95 38.81 31.69

0.2 39.24 38.55 33.06 53.02 52.25 50.44 54.65 53.90 52.27

0.3 45.85 53.02 50.46 61.29 69.01 69.73 50.52 60.77 69.68

0.4 27.52 44.96 50.19 21.71 38.06 52.93 -77.72 -86.60 -61.95

τ = 4 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 38.81 24.41 16.72 69.65 58.49 44.95 86.56 79.32 63.26

0.2 66.51 51.73 40.02 101.49 101.71 92.10 121.38 117.65 112.30

0.3 90.24 82.78 69.57 124.50 133.20 131.38 146.83 156.16 159.54

0.4 77.71 100.90 92.53 96.81 138.45 144.58 93.48 140.91 166.83

τ = 6 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 12.08 4.92 -5.71 68.34 50.98 33.94 99.05 76.97 55.14

0.2 63.08 37.87 20.33 120.52 103.78 87.11 155.37 142.54 128.07

0.3 104.40 85.53 57.51 163.12 161.03 145.76 188.54 197.29 196.56

0.4 110.33 132.11 96.32 139.56 185.50 185.40 148.29 215.15 222.53

Table 5.8: Average detection delay of the monitoring procedure for T = 250, α = 5% and ρ = 0.7.

5.4 Empirical Application

To illustrate the use of the monitoring approach we analyze monthly US price inflation series

from Stock and Watson (2005).3 In particular we consider the first difference of the logarithmic

implied price deflator for durable goods. This series has also been under investigation from

Cavaliere and Taylor (2008) who report a change in persistence from I(0) to I(1). However, they

did not consider the possibility of fractional integration in the series although inflation related

time series are likely to show long memory behavior (see e.g. Hassler and Wolters (1995)). The

sample spans from 01/1959 to 12/2003. The series is depicted in figure 5.1.

3The data is available at Mark Watson’s website at: http://www.princeton.edu/∼mwatson/wp.html.

http://www.princeton.edu/~mwatson/wp.html
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Figure 5.1: First difference of logarithmic price deflator for durable goods.

To determine the value of the long memory parameter we use log-periodogram regression as

proposed by Geweke and Porter-Hudak (1983). The decision of how many frequencies should

be used in the regression is a trade-off between reducing the bias and reducing the asymptotic

variance. We use T 1/2 frequencies to deal with potential short memory components in the data

(see e.g. Agiakloglou et al. (1993)). For the whole sample this yields an estimate of d̂ = 0.61.

This value is highly significant as judged by its p-value which is < 1e−03.

To test whether a change in persistence can be detected in the data we apply the CUSUM of

squares test for a change in persistence proposed by Sibbertsen and Kruse (2009) to the whole

sample. This leads to a test statistic of R = 0.0373 which is significant at the α = 5% level in

favor of an increasing persistence. The estimated breakpoint is at t∗ = 107which is 11/1967 (the

dotted line in figure 5.1).

To use the monitoring approach we split the sample in an in-sample part ranging from 01/1959

to 12/1965 and leave the rest as monitoring period. This yields a τ ≈ 5. The estimated d0 within

the in-sample period is d̂0 = 0.23.

For the application of the MOSUM test we use the boundary function b5(t) and set h = 0.5. The

first time the sequence of test statistics exceeds the α = 1% boundary function is at t = 55 in the

monitoring period. This is equivalent to an estimated breakpoint at t∗ = 139 which is 06/1970

(the dashed line in figure 5.1). The first time the sequence of test statistics exceeds the α = 5%

and α = 10% boundary functions is only one period earlier.
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The estimation of d1 in the monitoring period yields d̂1 = 0.68. Thus we can confirm a change

in persistence with high probability from stationary long memory to non-stationary long memory.

Notably the detection delay is rather short and we obtain a fast indication of the change in

persistence from using the monitoring procedure.

5.5 Conclusion

Detecting a change in persistence as soon as possible is of paramount interest because structural

change affects the subsequent analysis of the data heavily. The usual approach is to use one-

shot tests to detect a change in persistence a posteriori. However, these tests cannot be applied

sequentially because a correct null of no change would eventually be rejected with probability

one. We propose a monitoring procedure based on moving sums that allows to detect a change in

the long memory parameter of a long range dependent time series whenever new data arrives. By

means of a Monte Carlo experiment we show good size properties and also study the detection

delay when a change in persistence occurs. Depending on the width of the monitoring window

and the difference between the pre- and post-break long memory parameter the detection is

rather fast. Smaller monitoring windows generally prove more useful to detect a change in

persistence early and also larger differences between the long memory parameters are detected

faster.

In an empirical illustration of the method we are able to confirm a change in persistence from

stationary to non-stationary long memory in an inflation time series.

5.6 Appendix

5.6.1 Proof of Theorem 5.1

First, let k = [Tt] for each value in the monitoring period then write the test statistic as

MS T,h,d = max
T+1≤k≤[Tτ]
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êi

∣
∣
∣
∣
∣
∣
∣

.

Then using the FCLT for fractionally integrated processes (see Sowell (1990) and Davidson and

de Jong (2000)) and the continuous mapping theorem (CMT) we have

MS T,h,d ⇒ max
T+1≤[Tt]≤[Tτ]

σ−1 |B(t,d)− tB(1,d)−B(t−h,d)+ (t−h)B(1,d)|

= max
T+1≤[Tt]≤[Tτ]

σ−1
∣
∣
∣BB0(t,d)− [B(t−h,d)− (t−h)B(1,d)]

∣
∣
∣

= max
T+1≤[Tt]≤[Tτ]

σ−1
∣
∣
∣BB0(t,d)−BB0(t−h,d)

∣
∣
∣ ,
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where BB0(t,d) denotes a fractional Brownian bridge.

To prove consistency we consider that at some point in the monitoring period, say k∗, the

persistence changes from stationary long memory with 0< d0 <
1
2 to non-stationary long memory

with 1
2 < d1 <

3
2 and then split the test statistic into its stationary and non-stationary parts. We

write the test statistic as

MS T,h,d0 = max
T+1≤k≤[Tτ]
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,

where k = [rT ] for some r > 1. Part III only contains I(d0) variables due to the noncontamination

assumption.

We have to distinguish two cases:

(i) k∗ ≤ [rT ] − [Th] ⇒ in this case both I and II contain I(d1) variables

(ii) [rT ] − [Th] ≤ k∗ ≤ [rT ] ⇒ in this case only I contains I(d1) variables.

Ad (i):

The case (i) is depicted in figure 5.2 where [rT ] is denoted by k1 and [rT ] − [Th] is denoted by

k0. The gray shaded area is the monitoring window.

T

in−sample out−of−sample

[T ⋅ τ]k* k0 k1

[T ⋅ h]

Figure 5.2: MOSUM case (i).
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Write the test statistic as

MS T,h,d0 = max
T+1≤[rT ]≤[Tτ]
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Now, the first part is I(d0) and is correctly standardized. Therefore, using the arguments from

above it converges to −hB(1,d0) which is the standard deviation of the fractional Brownian

motion. For the second part the standardization is obtained from d0 but the variables are I(d1)

and so the expression diverges and we obtain

MS T,h,d0 = op(1)+Op

(

T d1−d0
)

. (5.11)

Ad (ii):

The situation (ii) is depicted in figure 5.3.

T

in−sample out−of−sample

[T ⋅ τ]k*k0 k1

[T ⋅ h]

Figure 5.3: MOSUM case (ii).
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Now only I contains I(d1) variables. Write the test statistic as

MS T,h,d0 = max
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êi −
[rT ]−[hT ]∑

i=1
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With the arguments from case (i) we obtain

MS T,h,d0 = Op

(

T d1−d0
)

+op(1)+op(1) , (5.12)

where the second part of the above expression does not expand with T anymore and therefore

vanishes as T →∞. �

5.6.2 Proof of Theorem 5.2

Denote by dT ≔
√

2T 2d+1 log log(T ). By the reverse triangle inequality we have for some r ∈ [0,1]

d−1
T
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∣
∣ ,

for distinct values r and r′. Using the notation from Altissimo and Corradi (2003, p. 232) we

write S (r, δ) = (r′ : |r− r′| ≤ δ). Now, by the fact that (see Davidson (1994, p. 335ff.))
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θ′∈S (θ,δ)
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and the LIL for the fractional Brownian motion (see e.g. Taqqu (1977)) we have for the second

part of the right side

limsup
T→∞

sup
r∈[0,1]

sup
r′∈S (r,δ)

d−1
T

∣
∣
∣(r− r′)B(T,d)

∣
∣
∣ ≤ 2δσ ,

with σ the variance of the fractional Brownian Motion. As δ→ 0 the whole part approaches

zero which ensures the asymptotic uniform equicontinuity almost surely.

For the first part of the right hand side we have by self-similarity
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Now note that

dT =

√

2T 2d+1 log log(T ) =
√

T 2d+1
√

2log log(T ) = T d+1/2
√

2log log(T ) .

Therefore we obtain

limsup
T→∞

(

2log log(T )
)− 1

2 sup
r∈[0,1]

sup
r′∈S (r,δ)

∣
∣
∣B(r)−B(r′)

∣
∣
∣ .

Because |B(r)−B(r′)| is almost surely Hölder continuous of order strictly less than H (see Biagini

et al. (2008, p. 11)) and limsupT→∞
(
2log log(T )

)− 1
2 tends to zero as T →∞ it follows that the

above expression is almost surely asymptotically uniform equicontinuous. �
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Krämer, W., Sibbertsen, P. (2002): Testing for structural change in the presence of long

memory. International Journal of Business and Economics 1(3), 235 – 242.

Kuan, C.-M., Hornik, K. (1995): The generalized fluctuation test: A unifying view. Econo-

metric Reviews 14, 135 – 161.

Kuan, C.-M., Hsu, C.-C. (1998): Change-Point Estimation of fractionally integrated pro-

cesses. Journal of Time Series Analyses 19(6), 693 – 708.

Lavielle, M., Moulines, E. (2002): Least-squares estimation of an unknown number of shifts

in a time series. Journal of Time Series Analysis 21(1), 33 – 59.

Leisch, F., Hornik, K., Kuan, C.-M. (2000): Monitoring structural changes with the gen-

eralized fluctuation test. Econometric Theory 16, 835 – 854.

Leybourne, S., Kim, T., Smith, V., Newbold, P. (2003): Tests for a change in persis-

tence against the null of difference stationarity. Econometrics Journal 6, 291 – 311.

Leybourne, S., Taylor, R., Kim, T. (2007): CUSUM of squares-based tests for a change

in persistence. Journal of Time Series Analysis 28, 408 – 433.

Liu, J., Wu, S., Zidek, J. (1997): On segmented multivariate regression. Statistica Sinica

7, 497 – 525.

Nelson, C.R., Plosser, C.R. (1982): Trends and random walks in macroeconomic time se-

ries: Some evidence and implications. Journal of Monetary Economics 10 (2), 139 – 162.

Perron, P. (1989): The Great Crash, the Oil Price Shock and the Unit Root Hypothesis.

Econometrica 57, 1361 – 1401.

Perron, P., Qu, Z. (2010): Long-Memory and Level Shifts in the Volatility of Stock Market

Return Indices. Journal of Business and Economic Statistics 28(2), 275 – 290.



65

Pesaran, M.H., Zimmermann, A. (2005): Small sample properties of forecasts from au-

toregressive models under structural breaks. Journal of Econometrics 129, 183 – 217.
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