
Invariant Bergman spaces

Von der Fakultät für Mathematik und Physik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation
von

Sweitse Johannes van Leeuwen, M.Sc.,

geboren am 15.1.1984 in Wageningen, die Niederlande.

2012



Referent: Prof. dr. Bernhard Krötz
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Abstract

The goal of this thesis is to realize the space of square integrable func-
tions in an isometric and equivariant way as a space of holomorphic func-
tions. The first example of such a realization was the Segal–Bargmann
or heat kernel transform on Euclidean space. Up to normalization, it is
nothing else than convolution with the heat kernel. The heat kernel on
Euclidean space is replaced by an arbitrary holomorphic function κ on a
Riemannian symmetric space G{K.

Under certain conditions on κ, the image of this transform consists
entirely of holomorphic functions and there exists a Hilbert structure on
the image making the transform a partial isometry. The main result of
this thesis is an explicit form of this Hilbert structure: Let Fκ denote the
Fourier transform of κ. Then, if the inverse Laplace transform of |Fκ|�2

exists, this image is a weighted Bergman space. Its weight is precisely this
inverse Laplace transform and need not be positive.

The method is robust, in the sense that it can be modified to include
also Hardy-type spaces. Unfortunately, an impractical technical assump-
tion shows up in the general case. The method applies to Euclidean
space and compact Lie groups. Partial results are obtained in the case
of non-compact Riemannian symmetric spaces. The remaining questions
are studied by example.

Keywords: Segal–Bargmann transform
Bergman spaces
Laplace transform
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Kurzfassung

Ziel dieser Dissertation ist, der Raum von quadratisch integrierbaren
Funktionen isometrisch und mit Behalt einer Gruppenwirkung als Raum
holomorphen Funktionen zu schreiben. Das erste Beispiel solch einer
Darstellung war die Segal–Bargmann- oder Wärmeleitungskern-Transfor-
mation auf dem Euklidischen Raum. Bis auf Skalierung ist diese Trans-
formation genau eine Faltung mit dem Wärmeleitungskern. Dieser Kern
auf dem Euklidischem Raum wird hier ersetzt durch eine beliebige holo-
morphe Funktion κ auf einem Riemannschen symmetrischen Raum G{K.

Unter gewissen Bedingungen auf κ bildet diese Transformation quadra-
tisch integrierbare Funktionen auf holomorphen Funktionen ab und gibt
es eine Hilbertstruktur auf dem Bild die die Transformation zu partieller
Isometrie macht. Das Hauptresultat dieser Dissertation ist eine explizite
Form dieser Hilbertstruktur: Sei Fκ die Fourier-Transformierte von κ.
Wenn die inverse Laplace-Transformierte von |Fκ|�2 existiert, ist das
Bild ein gewichteter Bergman-Raum. Das Gewicht ist genau diese inverse
Laplace-Transformierte und kann auch negative Werte annehmen.

Diese Methode lässt sich in viele Richtungen erweitern, zum Beispiel
zu Hardy-Räume. Eine unpraktische, technische Voraussetzung taucht auf
im allgemeinen Fall. Die Methode wird betrachtet für Euklidische Räume,
kompakte Lie Gruppen und nichtkompakte Riemannsche symmetrische
Räume. Im letzen fall ergibt sich nur ein Teilrestultat. Die offene Fragen
werden in einigen Beispiele betrachtet.

Schlagworte: Segal–Bargmann-Transformation
Bergman-Räume
Laplace-Transformation
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Introduction

This thesis is about representations of Lie groups on spaces of holomorphic func-
tions, and in particular unitary representations on weighted Bergman spaces.
Shortly after World War II, these representations rapidly gained popularity. A
beautiful, but quite general motivation for research in this direction is given by
Valentine Bargmann in [Bar47]:

Apart from possible applications in Mathematical Physics cf. [Dir45]
this investigation has an intrinsic mathematical interest as a detailed
analysis of the unitary representations of a non-compact group.

The representation theory was picked up by Harish Chandra Mehrotra, whereas
the applications in Mathematical Physics were studied by Irving Segal. I will
describe the development of these two lines of research and their connection
with this thesis.

Harmonic analysis In the quoted paper by Bargmann, he gives a classifi-
cation of all irreducible representations of the Lorentz group. They come in
four types, two of them indexed by an interval and two by an integer. The
former are called continuous series representations and the latter discrete series
representations, or discrete series for short. These discrete series are realized as
unitary representations on spaces of holomorphic functions over the open unit
disc, square integrable with respect to a certain weight. Around the same time,
similar results were obtained by Israil Gelfand and Mark Năımark and by Harish
Chandra.

A few years later, Harish Chandra found a generalization of Bargmann’s results
for certain semisimple Lie groups [Har56]. This was part of his groundbreaking
work on representations of semisimple Lie groups. One of his main results is the
implementation of André Weil’s abstract harmonic analysis: He discovered the
Plancherel formula for semisimple Lie groups. See [Har70] for his own survey
of this work. Blossoming years for the harmonic analysis on Lie groups and
symmetric spaces followed. They culminated in the Plancherel theorem for
symmetric spaces, simultaneously described by Erik van den Ban and Henrik
Schlichtkrull [vdBS97] and by Patrick Delorme [Del98].

Meanwhile, the study of holomorphic function spaces was taken up by Gelfand
and Gindikin. They initiated a program to decompose L2pGq as a direct sum
of function spaces over complex domains with an action of the group G [GG77].
This in turn led to an increased interest in Hardy spaces on domains in complex
Lie groups, for example the domains discovered by Robert Stanton and Grigori
Olshanski [Sta86, Ols91], also known as Olshanski semigroups.

By the end of the century, the discrete series representations and the Hardy
spaces corresponding to them were well understood. Also, after the work of
Karl-Hermann Neeb [Nee00], there was a good understanding of Hilbert spaces
of holomorphic functions and their reproducing kernels. Bernhard Krötz real-
ized that this theory would extend to Bergman spaces as well, and proved in
[Krö98] a Plancherel theorem for the classical Hardy and Bergman space on the
Olshanski semigroup: The observation is that these spaces are determined by
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their kernels, which are the Cauchy-Szegő and Bergman kernel respectively. In
order to decompose the space, one only has to decompose the kernel.

Together with Hilgert, Krötz extended this theory to compactly causal sym-
metric spaces in [HK99]. In the same paper, positive weight functions are con-
sidered, leading to the notion of weighted Bergman spaces. Shortly afterwards,
the Plancherel theorem is proved [HK01]. Again, the decomposition is done in
terms of the reproducing kernel of the Hilbert space.

The focus of this thesis lies on Bergman spaces that can be embedded equiv-
ariantly and isometrically in L2. This type of spaces might play a role in the
Gelfand–Gindkin program, as they are natural representations over a domain in
the complexification of a Lie group. This application will serve as a motivation
for this thesis.

What is contained is a closed theory of invariant Bergman spaces on Euclidean
space and compact Lie groups. When these techniques are applied to non-
compact Riemannian symmetric spaces, a new condition on the kernel is needed.
At the end of this thesis, I propose a method to lift this condition. Although
the first example looks promising, it is also slightly misleading; the general case
needs a detailed and much more technical approach and is not in the scope
of this thesis. The examples provide a motivation and a direction for further
research. I feel that a satisfying solution is within reach of present knowledge.

The Segal–Bargmann transform Although harmonic analysis provides a
motivation for this research, the main application and leading examples come
from a different stock. One of the pioneers in this direction was again Bargmann
[Bar61]. Shortly after Irving Segal, he described the transform that is now
known as Segal–Bargmann transform or heat kernel transform. In fact, the
transform is just a convolution with the heat kernel.

This transform is a unitary map from L2pRnq to a Hilbert space of holomorphic
functions on Cn, which is a weighted Bergman space. This space is usually
called after Bargmann, Fock or sometimes Fischer. This Bargmann space carries
a representation equivalent to the Schrödinger representation on L2pRnq. The
advantage of the Bargmann space over L2-space is that both the position and
momentum operator act in a natural, although unbounded way on functions in
the Bargmann space. For example, if f is analytic, then f 1 is again analytic,
whereas the derivative of a square integrable function is not even a function in
general.

The transform takes a prominent place in Segal’s work on quantum physics, and
he passed his idea to his students. It figures for example in the work of Bertram
Kostant on type I groups, and also Bent Ørsted writes about it, amongst others
in [ÓØ96]. Under the direction of another of Segal’s students, Leonard Gross,
the Segal–Bargmann transform made a comeback at the end of the last century.
His students Brian Hall, Bruce Driver and later also Jeffrey Mitchell wrote a
series of articles on this transform. See [HM08] for a list of references.

Following Hall’s paper on the Segal–Bargmann transform for compact Lie groups
[Hal94], several authors generalized this transform in their own ways. Probably
the most interesting result and a direct motivation for this thesis is the article by
Bernhard Krötz, Gestur Ólafsson and Robert Stanton [KÓS05]. After the work
of Krötz and Stanton on the Akhiezer–Gindikin crown domain [KS05], they
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showed that the Segal–Bargmann transform has no direct generalization to this
crown domain. They were able to give some formula, and another solution was
given by Hall and Mitchell in [HM08].

In this thesis, I replace the heat kernel by an arbitrary function. It explains and
sharpens the results of Jacques Faraut in [Far03]. For example, it turns out that
there is a direct generalization of convolution transforms to the crown domain
as long as the decay rate of the Fourier transform of the convolution kernel is
bounded by a certain constant.

Another important example for the theory outlined in this thesis is given in
[KTX05]. In this article, the authors study the Segal–Bargmann transform on
the Heisenberg group. They find that the image of the transform is a sum of two
Bergman spaces. They show that the weights of these two spaces take negative
values. This is the main motivation to extend Faraut’s theory from positive
weights to real-valued weights. Moreover, the example on page 33 suggests that
for non-compact Riemannian symmetric spaces, the image consists of countably
many Bergman spaces in general. It remains to be seen whether these spaces
can be grouped together, resulting in a finite number of Bergman spaces.

For a more physical explanation of this topic, I refer to the book of Folland
[Fol89]. He presents the Segal–Bargmann transform on the Heisenberg group
and its relation to physics. My understanding of the present results is that in
order find an appropriate Fock space for a Riemannian symmetric space, one
needs to take into account the monodromy of a certain subspace of the full
complexification of this space.
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The Euclidean and compact case

We will introduce the method by a short example. Let U � tu P C | |=u|   1u
be an open strip in the complex plane, and κ the holomorphic function on U
defined by

κpuq � 1

2π

»
R

d
4ξ2 � π2

12ξ2 � π2

2ξ

sinh 2ξ
eiuξ dξ. (1)

Note that the decay rate of the square root term matches the size of the strip U .
It is straightforward to show that this inverse Fourier transform κ is holomorphic
on U . In fact, all functions of the form

pψ � κqpuq �
»
R
ψpxqκpu� xq dx

with ψ P L2pRq are holomorphic on U . The map Tκ : ψ ÞÑ ψ � κ is an injective
linear map from L2pRq to the space OpUq of holomorphic functions on U and
commutes with translations in the real direction. Let Bκ � TκpL2pRqq denote
its image. The norm on L2pRq induces a norm on Bκ, just denoted by } � }, and
we find that

}ψ}2L2pRq � }ψ � κ}2 �
»
U

|pψ � κqpuq|2
�

1

2
� cospπ=uq



du, (2)

du being the Lebesgue measure on the strip U . Interestingly, the weight 1
2 �

cosπ=u is negative on part of its domain, but it still gives a norm.

The relation between (1) and (2) is the following:» 1

�1

e2ξy

�
1

2
� cospπyq



dy � 12ξ2 � π2

4ξ2 � π2

sinh 2ξ

2ξ
. (3)

We will describe this relation in detail in the case of Euclidean space, compact
Lie groups and symmetric spaces of non-compact type. Before considering these
cases, let us state a general lemma:

Lemma 1. Let pX,µq be a measure space and U a complex manifold. Let
κ : X � U Ñ C be square integrable on X, holomorphic on U and suppose that
u ÞÑ }κp�, uq}L2pXq is locally bounded on U . Then Tκ : L2pXq Ñ OpUq given by

Tκψpuq �
»
X

ψpxqκpx, uq dµpxq

is a continuous linear map.

Proof. Let ψ P L2pXq. A straightforward application of the theorem on complex
differentiation under the integral from [Mat01] gives that Tκψ is holomorphic in
all of its coordinates. By Hartog’s theorem it follows that Tκψ is holomorphic.
The linearity of Tκ is clear. Since L2pXq is metric, the only thing left to show
is sequential coninuity of Tκ. Let ψj Ñ ψ in L2pXq. We have

|pψj � κqpuq � pψ � κqpuq| �
����
»
X

pψj � ψqpxqκpx, uq dµpxq
����

¤ }ψj � ψ}L2pXq }κp�, uq}L2pXq.
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Recall that OpUq is a Fréchet space. Its semi-norms are the supremum norms on
the compact subsets of U . Since }κp�, uq}L2pXq is locally bounded, it is bounded
on compact subsets, thus Tκψj Ñ Tκψ in each of the semi-norms. This proves
that Tκ is continuous.

Euclidean space and compact Lie groups Let G be Rn or a connected
compact Lie group, and g its Lie algebra. Then G has a complexification GC,
which is identified with G � g by the map Φ : px, yq ÞÑ x exppiyq. Here exp is
the analytic continuation of the exponential map at the identity. We let G act
on GC from the left. Fix a Haar measure dx on G and a Lebesgue measure dy
on g.

Let us recall the Fourier transform on G. Let Ĝ be the unitary dual of G, which
is the set of equivalence classes of irreducible unitary representations of G. We
will denote equivalence classes and their representing elements with π P Ĝ.
Let Vπ denote the representation space of π, and x�, �yπ the Hilbert–Schmidt
inner product pA,Bq ÞÑ trAB� on EndpVπq. The Vπ are finite dimensional
and equipped with an inner product that makes π unitary. Recall that the
representations π extend holomorphically to GC. We find that for y P g

πpexp iyq� � πpexp iyq�1 � πpexp iyq.

The Fourier transform of f P L1pGq is

Ffpπq �
»
G

fpxqπpx�1q dx.

According to the Plancherel theorem, there exists a measure µ on Ĝ such that»
G

fpxqgpxq dx �
»
Ĝ

xFfpπq,Fgpπqyπ dµpπq

for all f, g P CcpGq, and the Fourier transform extends to an isometry from
L2pGq to the space of measurable sections γ : ĜÑ²

πPĜ EndpVπq satisfying»
Ĝ

xγpπq, γpπqyπ dµpπq   8.

Note that when G is compact, the dual space will be discrete.

Let λz, ρz denote the left and right regular representations: λzfpxq � fpz�1xq,
ρzfpxq � fpxzq. Then Fpλzfqpπq � Ffpπq � πpz�1q and Fpρzfqpπq � πpzq �
Ffpπq whenever defined. Another useful property is that Fpf � gq � Fg � Ff
for all f, g P L1pGq. Here � is the convolution

pf � gqpzq �
»
G

fpxqgpx�1zq dx.

The key to the relation displayed in (3) is given by a combination of these two
properties, extended to a neighbourhood of G in its complexification.
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From integral kernel to weight We will first give an implicit construction
of a weight starting from a kernel. Let Y be an open convex neighbourhood of
0 in g and U � G� Y , considered as a submanifold of GC.

Definition 2. A function κ P OpUq is called an admissible kernel on U provided
that u ÞÑ }κp�uq}L2pGq is locally bounded on U .

Remark 3. In the Euclidean case, a function κ P L2pRnq is an admissible kernel
on Rn � Y � Cn if and only if π ÞÑ πpexp�iyqFκpπq is square integrable on
Ĝ � Rn for all y P Y . This follows from the classical Fourier–Laplace theory,
see for example [RS75, Thm. IX.13].

For an admissible kernel κ on U we define the convolution transform

Tκ : L2pGq Ñ OpUq : ψ ÞÑ ψ � κ.
This map is a special case of lemma 1, hence it is a well-defined, continuous
linear map. This convolution transform will be the main object of study. We
note that

Lemma 4. Tκ is injective if and only if the operators Fκpπq have trivial kernel
for µ-a.e. π P Ĝ.

Proof. Tκψ � 0 if and only if FκpπqFψpπq � 0 for µ-almost all π P Ĝ.

Lemma 5. Tκ is G-equivariant.

Proof. Let ψ P L2pGq, x P G and u P U . Then

λxpTκψqpuq �
»
G

ψpyqκpy�1x�1uq dy �
»
G

ψpx�1zqκpz�1uq dz � Tκpλxψqpuq.

Another ingredient we will need is the Laplace transform on Y :

Lwpπq �
»
Y

πpexp 2iyqwpyq dy. (4)

We take w P L1
locpY ;Rq, i.e. locally integrable and real-valued. In order to make

sense of the integral, we impose the condition

xLw�pπq,Lw�pπqyπ   8 for µ-almost every π P Ĝ. (5)

Here w� is the negative part of w, that is w � w� � w� and w�pyq ¥ 0 for all
y P Y . Under this condition the integral (4) is defined, but might return infinite
values.

We introduce the notation

fypxq � fpx exp iyq
for f P OpUq. This enables us to view a function on U as a family of functions
on G. We define the Paley–Wiener type space

D � tψ P L2pGq |Fψ P CcpĜqu.
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The Euclidean case Let us start with the Euclidean case. Then G � Rn,
we set L2pĜq � L2pRn, µq, and the Laplace transform reduces to the classical
two-sided Laplace transform up to a scaling factor of 2. The notation might
seem a bit complicated, but we will see that many of the results established
here also hold in the case of compact Lie groups. We find:

Theorem 6. Let κ be an admissible kernel on U . Suppose that there exists a
w P L1

locpg;Rq satisfying condition (5) and such that

pLwpπqq�1 � |Fκpπq|2 (6)

for µ-a.e. π P Ĝ. Then for all ψ P D we have»
U

|Tκψpx exp iyq|2 wpyq dxdy ¤ }ψ}2L2pGq. (7)

Equality holds if and only if ψ K kerTκ in L2pGq.
Proof. The Laplace transform Lw has the following property: It converges ab-
solutely on an open convex set, say V � Ĝ, and diverges on the complement of
the closure of V . From condition (6) it follows that Fκpπq � 0 for µ-a.e. π P V
and vanishes almost everywhere on ĜzV . We have

}ψ}2L2pGq �
»
Ĝ

|Fψpπq|2 dµpπq (8)

¥
»
V

|Fψpπq|2 dµpπq (9)

�
»
V

|Fψpπq|2|Fκpπq|2|Fκpπq|�2 dµpπq

�
»
V

»
Y

|Fψpπq|2|Fκpπq|2πpexp 2iyqwpyq dy dµpπq (10)

Let us assume for the moment that this integral converges absolutely. Then we
may apply Fubini’s theorem to obtain

�
»
Y

»
V

|Fψpπq|2|Fκpπq|2πpexp 2iyq dµpπqwpyq dy

Since Fκ vanishes outside of V , this equals

�
»
Y

»
Ĝ

|Fψpπq|2|Fκpπq|2πpexp 2iyqdµpπqwpyq dy (11)

We have seen in remark 3 that Fκpπqπpexp iyq is square integrable for any y P Y .
It follows that Fκypπq � Fκpπqπpexp iyq. Thus (11) equals

�
»
Y

»
Ĝ

|Fψpπq|2|Fκypπq|2 dµpπqwpyq dy

�
»
Y

»
Ĝ

|Fpψ � κyqpπq|2 dµpπqwpyq dy

�
»
Y

»
G

|pψ � κyqpxq|2 dxwpyqdy

�
»
G�Y

|pψ � κqpx exp iyq|2 wpyq dxdy.
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This proves the desired inequality of norms (7). Note that in the last line we
have used the absolute convergence of the double integral (10) another time.

Now we show that the double integral (10) converges absolutely. The difference
between (10), which is finite, and»

V

»
Y

|Fψpπq|2|Fκpπq|2πpexp 2iyq |wpyq| dy dµpπq

is just twice »
V

|Fψpπq|2|Fκpπq|2
»
Y

πpexp 2iyqw�pyq dy dµpπq, (12)

so it suffices to show that (12) is finite. We recognize the inner integral as the
Laplace transform of the non-negative function w�. By assumption (5) this
integral is finite for all π P Ĝ. Since this integral is a Laplace transform, the
result is in particular continuous, hence bounded on any compact subset of Ĝ.
Using that ψ P D, it follows immediately that (12) is finite. This shows that
(10) converges absolutely.

Equality of norms holds precisely if equality holds in line (9). This happens
whenever suppFψzV is a null set, or in other words:

xψ,ψ0yL2pGq � xFψ,Fψ0yL2pĜq � 0

for all ψ0 P kerTκ.

This proof hinges on the finiteness of (12). Instead of taking ψ P D there are
of course other conditions that work equally well, such as:

Corollary 7. If w� � 0, inequality (7) holds for all ψ P L2pGq.

Proof. This is immediate from the proof, since (12) vanishes.

On the other hand, the proof of theorem 6 also makes clear what could go wrong:

Corollary 8. The double integral»
U

|Tκψpx exp iyq|2 wpyq dxdy (13)

converges absolutely for all ψ P L2pGq unless

π ÞÑ
»
Y

|Fκypπq|2 w�pyqdy (14)

is unbounded on Ĝ.

Proof. Recall that Fκpπqπpexp iyq � Fκypπq for all y P Y and µ-a.e. π P Ĝ.
Thus either (14) is bounded, in which case (12) is finite for all ψ P L2pGq, or
(14) is unbounded. In the latter case, there exists a ψ P L2pGq such that the
integral (12) does not converge and so (13) does not converge absolutely. Note
that it does not matter that we integrate over V instead of Ĝ, since Fκ vanishes
on ĜzV .
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See example 22 below for a natural yet problematic case.

In order to describe the image of Tκ, we need to describe one more property.
Let us first recall a basic statment from Lebesgue integration:

Lemma 9. If χ : ĜÑ C satsifies

pπ ÞÑ χpπqπpexp iyqq P L1pĜq
for all y P Y , then g :� F�1χ is holomorphic on U and

Fgypπq � χpπqπpexp iyq. (15)

Proof. First we check that g is holomorphic on U . This follows by Lebesgue
dominated convergence once we realize that the exponential function π ÞÑ
πpexp iyq is bounded locally in y by a finite sum of functions π ÞÑ °

l πpexp iylq
for some yl P Y . Since g � F�1χ, this equality extends holomorphically to all
of U , that is

gpx exp iyq � F�1pπ ÞÑ χpπqπpexp iyqqpxq
for all x exp iy P U . Since the gy are bounded and continuous, they have dis-
tributional Fourier transforms Fgy. These functions necessarily agree with the
Fourier transform of the right hand side, which is the desired result (15).

We define

ApUq �
!
F�1ω

���π ÞÑ ωpπqπpexp iyq P L1pĜq for all y P Y
)
.

It follows from lemma 9 that ApUq � OpUq.
Lemma 10. Let κ be an admissible kernel on U . Then TκpL2pGqq � ApUq.

Proof. Let f P TκpL2pGqq and write f � ψ � κ for some ψ P L2pGq. Since
π ÞÑ Fκpπqπpexp iyq is in L2pĜq for any y P Y , and Ff � FκFψ, it follows
that

pπ ÞÑ Ffpπqπpexp iyqq P L1pĜq.
This shows that f P ApUq.

Our next goal is to endow the image of Tκ with a Hilbert structure. Let w P
L1

locpg;Rq. Suppose that it satisfies condition (5) and moreover that

Lwpπq P r0,8s for all π P Ĝ. (16)

We define the map Iw : ApUq Ñ r0,8s by

Iw : f ÞÑ
»
Ĝ

|Ffpπq|2Lwpπq dµpπq.

We write BpU,wq � tf P ApUq | Iwpfq   8u.
Theorem 11. Let κ be an admissible kernel on U . Suppose that there exists a
w P L1

locpg;Rq satisfying condition (5) and such that

pLwpπqq�1 � |Fκpπq|2 (17)

for µ-a.e. π P Ĝ. Then Tκ is a partial isometry onto BpU,wq.
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Proof. First note that |Fκpπq|�2 P p0,8s for µ-a.e. π P Ĝ, so (17) implies (16).
This guarantees that Iw and BpU,wq are defined. Moreover, it tells us that Lw
is nonzero almost everywhere.

From (8–10) we see that for all ψ P L2pGq

}ψ}2 ¥ Iwpψ � κq.

Together with lemma 10 this shows that TκpL2pGqq � BpU,wq.
It follows from theorem 6 that }ψ}20 � Iwpψ � κq if } � }0 denotes the norm
on L2pGq{ kerTκ. Thus the only thing left to show is that Tκ is surjective on
BpU,wq. Let f P BpU,wq, and say V is the set where Lw converges absolutely.
Then Ff vanishes almost everywhere on ĜzV and we have

Iwpfq �
»
Ĝ

|Ffpπq|2Lwpπq dµpπq

�
»
V

|Ffpπq|2Lwpπq dµpπq

�
»
V

|Ffpπq|2|Fκpπq|�2 dµpπq   8,

hence pFκq�1 � Ff P L2pV q. Pick ψ P L2pGq such that Fψ � pFκq�1 � Ff on
V and Fψ � 0 on ĜzV . Then Fpψ � κq � Fκ � Fψ � Fκ � pFκq�1 � Ff � Ff ,
hence f � ψ � κ. This completes the proof.

Remark 12. If the double integral (13) converges absolutely for f � Tκψ, for
example if ψ P D, we have

Iwpfq �
»
U

|fpx exp iyq|2 wpyq dxdy. (18)

We view Iwpfq as an extension of the right hand side, so that we can make
sense of that integral for arbitrary f P ApUq.
Remark 13. We see that under the condition (17) the space BpU,wq with squared
norm Iw turns out to be a Hilbert space.

Compact Lie groups For the rest of the paragraph, assume that G is a
compact Lie group. Recall that Y � g is an open convex set containing 0 and
U � G exp iY � GC. Let κ be an admissible kernel on U . For simplicity we will
assume that Tκ is injective, i.e. Fκ has trivial kernel. The general case can be
attacked in the same way as before.

The first simplification we obtain is the following: If κ P OpUq, then κ is an
admissible kernel. The next simplification is a counterpart to remark 3:

Lemma 14. If κ P OpUq, we have for all y P Y and π P Ĝ that

Fκypπq � πpexp iyqFκpπq.

In particular, pπ ÞÑ πpexp iyqFκpπqq P L1pĜq for all y P Y .
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Proof. The integrals»
G

κpx exp iyqπpx�1q dx �
»
G

κpzqπpexp iy � z�1q dz

are equal since κ is holomorphic on tG exp ity | t P r0, 1su. Since κy P L2pGq, it

follows that pπ ÞÑ πpexp iyqFκpπqq P L2pĜq. This holds for any y P Y , so in
particular these functions are integrable.

Theorem 6 reads in this case:

Theorem 15. Let κ P OpUq and assume that Tκ has trivial kernel. Suppose
that there exists a w P L1

locpg;Rq satisfying condition (5) and such that

Lwpπq � pFκpπqFκpπq�q�1

for all π P Ĝ. Then for all ψ P D we have»
U

|Tκψpx exp iyq|2 wpyq dxdy � }ψ}2L2pGq.

Proof. We will mimic the proof of theorem 6. Let } � }π denote the Hilbert-
Schmidt norm corresponding to the inner product pA,Bq ÞÑ trAB� on EndpVπq.
Assuming absolute convergence in (19), we have

}ψ}2L2pGq �
»
Ĝ

}Fψpπq}2π dµpπq

�
»
Ĝ

»
Y

}πpexp iyqFκpπqFψpπq}2π wpyq dy dµpπq (19)

�
»
Ĝ

»
Y

}Fpψ � κyqpπq}2π wpyq dy dµpπq

�
»
U

}pψ � κyqpxq}2 wpyq dxdy

The second part of the proof, proving the absolute convergence of (19) for
ψ P D, is almost literally the same as in the Euclidean case and will not be
given here.

The third simplification is that we have no need for the space ApUq: Lemma 14
shows that ApUq � OpUq in this case. So if w P L1

locpg;Rq satisfies condition
(5) and Lw is non-negative, but possibly infinite, we set

Iw : OpUq Ñ r0,8s : f ÞÑ
»
Ĝ

»
Y

}πpexp iyqFfpπq}2π wpyq dy dµpπq

and BpU,wq � tf P OpUq | Iwpfq   8u. With these definitions, theorem 11
goes through almost literally:

Theorem 16. Let κ P OpUq and assume that Tκ has trivial kernel. Suppose
that there exists a w P L1

locpg;Rq satisfying condition (5) and such that

pLwpπqq�1 � FκpπqFκpπq� (20)

for all π P Ĝ. Then Tκ is an isometry onto BpU,wq.
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The proof is the same as in the Euclidean case, with V � Ĝ since we assumed
here that Tκ is injective.

Remark 17. If we integrate the trace on both sides of equation (20), we see that

»
Ĝ

tr

��»
Y

πpexpp2iyqqwpyqdy

�1

�
dµpπq   8,

which is a nontrivial condition on the weight w. Basically it says that all eigen-
values of the inner integral are unbounded as π ‘goes to infinity’, i.e. the norm of
its heighest weight }µπ} goes to infinity. (Compare Theorem 2.1 from [Sai88].)

Some examples We will now give a few examples where the above applies.
At first, let G � R and Y � p�1, 1q. We will identify Ĝ � R and denote
elements in this space with ξ. Say Fψpξq � ³

G
ψpxqe�ixξ dx, then F�1fpxq �³

Ĝ
fpξqeixξdµpξq with dµpξq � dξ{2π.

Example 18. Let φ : R Ñ R be an arbitrary phase function, and let κφ be
defined by its Fourier transform

Fκφpξq �
d

ξ

sinh 2ξ
eiφpξq.

We have |Fκφpξq|�2 � sinhp2ξq{ξ, and we find that w is just the Lebesgue
measure on Y . This example illustrates there is a family tκφu of holomorphic
functions whose convolution transforms Tκφ have the same image. The domain
G� iY is a maximal domain of holomorphy for this family: We easily compute
that if φ is linear, κφ will have poles at �φ1 � i. Also, we have that κφp� � iyq
is square integrable if and only if |y|   1.

Example 19. Consider now G � S1. Write κpxq � °m χmpκqxm, where |x| � 1,
m P Z and χmpκq are the usual Fourier coefficients. Condition (20) reads

|χmpκq|�2 �
»
Y

e�2my wpyq dy.

Consider again Y � p�1, 1q and let wpyq � 1. This gives

κpxq �
¸
mPZ

c
m

sinh 2m
xm.

This funcion extends to the annulus S1 � p 1
e , eq in GC � C�.

Example 20. Say G � R, Y � R and κpxq � 1?
2π
e�x

2{2. Then Fκpξq � e�ξ
2{2

and we find that Tκ is injective. Again, according to condition (10), we have

eξ
2 �

»
R
e�2ξy wpyqdy.

This equality is solved by wpyq � 1?
π
e�y

2

.

Remark 21. The above example has an interesting feature. Let w P L1
locpY,Rq

such that Lwpξq � eξ
2

. We will show that Y has to be unbounded. In general,
the decay rate of Fκ determines the size of Y .
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Proof. The Laplace transform eξ
2

converges for every ξ P R, so it converges
absolutely everywhere. In particular, Lwp0q   8, hence w P L1pY ;Rq.
Suppose that Y is bounded from below. Then there exists a y0 ¡ 0 such that
Y � y0 � p0,8q. Let n P N. Then, on the one hand, we have

lim
nÑ8 e

�2ny0en
2 � 8. (21)

On the other hand, we have

lim
nÑ8 e

�2ny0Lwpnq � lim
nÑ8

»
Y

e�2npy�y0q wpyqdy � 0. (22)

This follows easily from Lebesgue dominated convergence, since the integrands
are bounded by |w|, which is integrable. The left hand sides of (21) and (22) are
equal, so we reached a contradiction. We conclude that Y cannot be bounded
from below. Similarly, we find that Y cannot be bounded from above.

Example 22. It may happen that κ is holomorphic, but has an unbounded
Fourier transform. As we have seen, allowing negative weights destroys the nice
interpretation of the integral (18). We will see what happens for G � Y � R3:
Let w : Y Ñ R : y ÞÑ π�3{2pxy, yy � 3

2 qe�xy,yy, where x�, �y is the standard inner

product on R3. As before, let ξ P Ĝ � R3 be the coordinate on the unitary
dual. Then

|Fκpξq|�2 � xξ, ξy exξ,ξy,
and we may choose Fκpξq � xξ, ξy� 1

2 e�xξ,ξy{2. It is easy to check that the
conditions of theorem 11 are fulfilled. However, the pole in ξ � 0 violates the
condition (14) of corollary 8. Therefore the right hand side of (18) does not
converge absolutely for all f P imTκ and we have to use the left hand side of
this equality instead.

Remark 23. The behaviour sketched in the above example is critical, i.e. it is
lost if we perturb w. Set wa : Y Ñ R : y ÞÑ pxy, yy � aqe�xy,yy. We have three
possibilities:

a ¡ 3
2 : Positivity of Lw is violated and our method does not apply.

a � 3
2 : The right hand side of (18) does not converge absolutely.

a   3
2 : The right hand side of (18) does converge absolutely.

For other weights w, other types of boundary behaviour may occur.

It is not quite clear what kind of weights we should allow. The possibilities
include measures, distributions and hyperfunctions. However, even more general
classes appear naturally, as is demonstrated by the following two examples:

Example 24. We consider the Hardy norm

}f}2H2 � sup
y¡0

»
R
|fpx� iyq|2 dx � w

�
}fy}2L2pRq

	
,

setting wpF q � supy¡0 F pyq. Adapting property (6) to this setting, it follows

that Fκ is the Heaviside function, and κpzq � i
2πz for =z ¡ 0.

22



Example 25. The previous example also has a two-sided version: Let κpzq �
1

1�z2 . Then Y � p�1, 1q and Fκpξq � πe�|ξ|. We find

1

π2
e2|ξ| � wpe�2ξyq.

The non-linear functional wpF q � 1
π2 supyPY F pyq solves this problem.

In the following we will select w P L1
loc, so that we may think of Iw as the

norm on a weighted Bergman space with weight w. On the other hand, this
construction opens up new possibilities and it might be interesting to generalize
the weights w to the dual of the space tπpexp i�q |π P Ĝu. We will not pursue
this possibility here.
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A converse approach Theorem 11 could be reformulated in the following
way: If κ is an admissible kernel and |Fκ|�2 is in the image of the Laplace
transform, then we can find a weight such that the image of Tκ is a weighted
Bergman space. In this paragraph we will study the opposite problem: What
kind of weights give rise to a convolution transform?

In order to answer this question, we will study these two steps:

1. Take the Laplace transform of a weight, and compute its inverse square
root.

2. Show that the function obtained in this way is square integrable, and its
inverse Fourier transform is an admissible kernel.

We will just discuss the Euclidean case. The case of compact Lie groups is
not essentially different; the only complicaion is that we would need a detailed
description of the πpexp iyq and the Laplace transform in this case. This is not
in the scope of this thesis.

Let w P L1
locpRn;Rq. We write for ξ P Rn the Laplace transform as

Lwpξq �
»
Y

e�2xξ,yy wpyqdy. (23)

Let V be the domain where Lw converges absolutely. We assume that

Lwpξq ¡ 0 for almost all ξ P V. (24)

We define

κ̂pξq �
#
pLwpξqq� 1

2 if ξ P V
0 otherwise.

Then κ̂ satisfies |κ̂|2 � pLwq�1 almost everywhere on Rn. This completes step
1. For the second step, define Y � Rn by y P Y if and only if there exists an
open neighbourhood Q Q y such that

sup
y1PQ

}κ̂p�qe�x�,y1yq}L2pRnq   8. (25)

Lemma 26. Let w P L1pRn;Rq, suppose that (24) holds and let κ̂ and Y be
as above. Then Y is convex and open, and F�1κ̂ is an admissible kernel on
Rn � iY .

Proof. The defining property of Y is an open condition, so Y is open. Since the
Laplace transform converges absolutely on a convex set, Y is convex as well.
For the last point, just apply remark 3.

Remark 27. The weight w and the kernel F�1κ̂ satisfy condition (6) by con-
struction. Note that we did not recover condition (5). Instead, we assumed
absolute integrability of (23) on some set V and put κ̂ � 0 elsewhere.

Under mild conditions on w and its Laplace transform, we can actually deter-
mine the set Y that figures in the above lemma. Let convS denote the convex
hull of a set S and S� its interior.
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Lemma 28. Let w P L1pRn;Rq and suppose that (24) holds. Suppose moreover
that suppw� is compact and contained in the interior suppw� of suppw. Then,
if pLwq�1 is locally integrable, Y � convpsuppwq�.

Proof. We will check first that Y � psuppwq�, i.e. for any y P psuppwq� there
is an open neighbourhood Q of y in that set such that (25) holds. Since |κ|2 �
pLwq�1 is locally integrable, it is sufficient to check that Lw has a certain growth
rate as }ξ} Ñ 8. To be more precise: As }ξ} Ñ 8, we want that Lw grows
faster than e�2xξ,yy�ε}ξ} for some ε ¡ 0 locally constant in y P suppw�. We
prove this property pointwise, but it is not hard to see that the proof actually
extends locally. So let y0 P suppw�.
Consider the unit sphere S in Rn. Let ξ0 P S. We claim that there is an open
neighbourhood P of ξ0 in S, and ΞP , εP ¡ 0 such that»

Rn
e�2xλξ,y�y0y wpyqdy ¡ eεPλ (26)

for all λ ¡ ΞP and all ξ P P . By compactness of S, this claim establishes the
desired growth of Lw. Let us turn to the proof of the claim.

Since K � suppw�Yty0u is compact and contained in suppw�, we can find an
open subset V � suppw such that

xξ0, yy   xξ0, y1y
for all y P V and y1 P K. In particular, we can find a neighbourhood P of ξ0 and
a constant ε ¡ 0 such that xξ, yy   xξ, y1y � ε for all ξ P P . Taking exponents
and absorbing all bounded quantities in the constants εP and ΞP readily verifies
equation (26).

Since Y is convex and psuppwq� � Y , it follows that convpsuppwq� � Y .

We will prove that Y � convpsuppwq� by contradiction. Suppose that there
exists a y P Y which does not lie in the closure of convpsuppwq�. Then there is
ξ P Rn such that e�2xξ,yy grows faster than Lwpξq in a cone around the direction
of ξ. Thus κ̂pξqe�xξ,yy goes to infinity in this direction. This is however in
contradiction with (25), so Y is contained in the closure of convpsuppwq�. Now
we use that Y is open to finish the proof.

Remark 29. The above lemma nicely illustrates what one would expect, namely
that w is positive near the boundary of its support. This phenomenon can be
phrased and proven in several different ways, one of which is presented here:

Let a, b P R, w � w� � w� a signed measure on the open interval pa, bq and
assume that w� is finite on pa, bq. Let ca, cb ¡ 0 and set

W pξq � cae
�2ξa � cbe

�2ξb �
» b
a

e�2ξy dwpyq.

Lemma 30. There exist Ξ, ε ¡ 0 such that

}ξ} ¡ Ξ ñ e2xξ,y0y �W pξq ¡ eε}ξ}

locally for y0 P pa, bq. If W�1 is locally integrable, F�1
�
W� 1

2

�
is an admissible

kernel on R� ipa, bq.
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Proof. We will have a look at the open unit interval p0, 1q and the limit ξ Ñ �8,
which is a perfectly general setup. Almost by definition, w�pp n

n�1 , 1qq Ñ 0 as

nÑ8. Choose N such that w�pp N
N�1 , 1qq   1

2c1. Thus

W pξq ¡ 1

2
c1e

�2ξ �
»
p0, N

N�1 s
e�2ξy dw�pyq.

This proves the desired growth rate, and given the local behaviour, we may insert
this in (25) to obtain that Y � pa, bq for the admissible kernel κ̂ �W� 1

2 .

This proof generalizes to convex hulls of discrete sets in higher dimensions.

We finish this paragraph with some elementary examples:

Example 31. As a first example, we take G � R and the Heaviside function as
weight, so Y � p0,8q. Then

Lwpξq �
» 8

0

e�2ξy dy.

We see immediately that κ̂pξq � ?
2ξ for ξ ¡ 0 and κ̂pξq � 0 for ξ ¤ 0.

The corresponding kernel κ � F�1κ̂ is holomorphic on the upper half space
G exp iY � tz P C |=z ¡ 0u and square integrable on the G-orbits. The kernel
of Tκ is given by tψ P L2pGq | suppFψ � p�8, 0su.
Example 32. Suppose the weight is a strictly positive integrable function with
(at most) polynomial decay, as for example

Lwpξq �
» 8

�8
e2ξy 1

1� y2
dy.

Then Lwp0q � π, and Lw is infinite everywhere else. Thus κ � 0 and Y � R.
This example shows that w needs serious decay in some directions to define a
nontrivial integral kernel.

Example 33. The weight w need not be positive locally, but cannot be too
negative either. This would violate the positivity of Lw. This is demonstrated
in the example

Lwpξq �
» 1

�1

py2 � aqe2ξy dy.

We find that

Lwpξq � p1� 2ξ2p1� aqq sinh 2ξ � 2ξ cosh 2ξ

2ξ3

and so Lwpξq ¡ 0 for a   1
3 only. Here Y � p�1, 1q.
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The Riemannian symmetric case

We will now consider the situation for Riemannian symmetric spaces of the non-
compact type. Again we will start with considering analytic continuation and
the Fourier transform in this setting. Once this is done, we will only need to
make some small changes to the Euclidean case to obtain our results for the Rie-
mannian symmetric case. We will not discuss the case of compact Riemannian
symmetric spaces here.

Let G be a non-compact real semi-simple Lie group. To avoid complications, we
will assume that it is linear and connected. Choose a maximal compact subgroup
K of G. The Cartan decomposition of the Lie algebra of G is g � k` p, where
k is the Lie algebra of K, and p the orthogonal complement of k with respect to
the Killing form on g.

Choose a maximal abelian subspace a � p, and write Σ � a� for the root system
of g with respect to a. Let W denote its Weyl group. Fix a positive system
Σ� � Σ, and let g � n ` a ` k be the corresponding Iwasawa decomposition.
Here n is the sum of the root spaces gα for α P Σ�. Let A and N be the analytic
subgroups of G with Lie algebras a and n. The Iwasawa decomposition for G
gives that N �A�K Ñ G : pn, a, kq ÞÑ nak is a diffeomorphism onto, so there
are maps

k : GÑ K : nak ÞÑ k

a : GÑ A : nak ÞÑ a.

In addition, we define the map log : AÑ a. It is the inverse of the exponential
map of G, which is a diffeomorphism on a. Let a� denote the positive Weyl
chamber ty P a |αpyq ¡ 0 for all α P Σ�u and a�� its dual cone. Note that
the Killing form is definite on p, so it induces an inner product on a and a�.
Consequently, we may identify these spaces with Euclidean space. The norm on
a also induces a geodesic distance in G.

Since G is linear, it has a complexification GC with Lie algebra gC. Let kC
denote the complexification of k, and KC the analytic subgroup of GC with Lie
algebra kC. Likewise define aC, nC, AC and NC. Let M be the centralizer of A
in K and set B � K{M . Since M normalizes N , the map a is left-M -invariant
in addition to being right-K-invariant. Also kpmgq � mkpgq for all m PM and
g P G.

The Riemannian symmetric space X associated to G is the quotient G{K. Fol-
lowing [GK02, Krö04] we will introduce a complexification and crown domain
for this space. First of all, let XC � GC{KC denote the complexification of X.
Now define

Ω �
!
y P a

��� |αpyq|   π

2
for all α P Σ

)
.

The complex crown of X is defined as

Ξ � G exppiΩqKC{KC � XC.

The map a : G Ñ A is right-K-invariant, so it is well defined on X. It is even
analytic and extends holomorphically to Ξ:

a : Ξ Ñ TΩ : naKC ÞÑ a.
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Here TΩ � A exppiΩq, Ξ � NCTΩKC{KC, n P NC and a P TΩ.

Let us do a small computation. Pick g P G and y P Ω. We show that

apg exp iyq � apgq � apkpgq exp iyq.
The only thing we will need in addition to the above decompositions of G and Ξ
is that A normalizes NC. This however follows immediately from the fact that
A normalizes N : For a P A, Adpaq : n Ñ n extends to a complex linear map.
Let us write g � nak. Since Ξ is G-invariant, we can write kpgq exp iy � n1a1 for
some n1 P NC and a1 P TΩ. Then the formula reduces to apnan1a1q � a � apn1a1q,
which holds since an1a�1 P NC.

We will need some more notation and definitions before we can define the Fourier
transform. Set mα � dim gα, and ρ � 1

2

°
αPΣ� mαα. We write for ξ P pa�qC

and g P G
apgqξ � eξplog apgqq.

Now for some function theory and integrations.

Throughout the paper we will switch continuously between right-K-invariant
functions on G and functions on X, usually omitting the identity coset, and
similarly for XC.

Let dg denote a left-invariant Haar measure on G. Let dk be normalized Haar
measure on K. Then there is a unique left invariant measure dx on X such that»

G

fpgq dg �
»
X

»
K

fpxkq dk dx

for all f P L1pGq. We define the Fourier transform of f P C8
c pXq as

Ffpλ, bq �
»
G

fpgq apb�1gqρ�iλ dg.

Here pλ, bq P a��B. See for example chapter III of [Hel94] for more details. The
Plancherel theorem in this case states that there exists a Weyl group invariant
measure µ on a� �B such that the Fourier transform extends to an isometry

F : L2pXq Ñ L2pa�� �B,µq.

Write X̂ � a�� � B for short. The Plancherel measure is explicitly known:
dµpλ, bq � |cpλq|�2dλdb, where db is K-invariant normalized Haar measure on
B and dλ comes from a suitably normalized Lebesgue measure on a� viewed as
Euclidean space. The function cpλq is Harish-Chanrda’s c-function. It will suf-
fice for now that |cpλq|�2 is a tempered distribution on a�. See for an exposition
of the c-function and its properties for example [GV88]. For later reference, we
set dµpλq � dλ

|cpλq|2 .

A remark on the slightly unconventional definition of the Fourier transform is
in place here. In view of our next lemma, we will need to apply the Fourier
transform to functions on G rather than functions on X. With this definition,
a function on G is made right-K-invariant before applying the standard Fourier
transform on G{K. We will need the following property of the Fourier transform
on X: If ψ, χ P L2pXq and χ is left-K-invariant, then

Fpψ � χqpλ, bq � Fψpλ, bq � Fχpλq.
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We define the spherical function with parameter λ P a� for g P G as

φλpgq �
»
K

apkgqρ�iλ dk.

Note that the spherical function is bi-K-invariant. It extends uniquely to a
bi-KC-invariant function on Ξ, cf. [Krö04, Prop 2.1.1]. We will denote this
extension by the same symbol.

If f is a function on Ξ, we write fy for the right shift with exp iy, i.e. fypgq �
fpg exp iyq for g P G. Generally, fy will not be right-K-invariant.

We will follow the same steps as in the Euclidean case. Let us start with
some definitions. We take Y � Ω an open, convex and Weyl group invariant
neighbourhood of 0. We set U � G exp iY � Ξ.

We call κ P OpUq an admissible kernel on U provided that it is bi-K-invariant
and u ÞÑ }κp�uq}L2pGq is locally bounded on U . The additional left-K-invariance
follows naturally from the definition of a convolution transform. Note that κ
is determined by its restriction to exp a� and is locally bi-KC-invariant. The
property described in remark 3 is replaced by [Far03, Thm. 4.4]:

}κy}2L2pXq �
»
a�
�

|Fκpλq|2 φλpexp 2iyqdµpλq, (27)

for all y P Y . In particular we have |Fκypλq|2 � |Fκpλq|2φλpexp 2iyq for almost
all λ and all y P Y . We set

Tκ : L2pGq Ñ OpUq : ψ ÞÑ
»
G

ψpgqκpg�1�qdg

as before and define the Laplace transform for w P L1
locpY ;Rq by

Lwpλq �
»
Y

φλpexp 2iyqwpyq dy.

Since Y and φ are Weyl group invariant, we might as well take w to be Weyl
group invariant. Instead of carrying condition (5) everywhere with us, we just
assume that Tκ is injective and Lw converges absolutely on all of a�.

We find the same obstruction as in corollary 8:

Theorem 34. Let κ be an admissible kernel on U and assume that Tκ is injec-
tive. Suppose there exists a w P L1

locpY ;Rq such that

Lwpλq � |Fκpλq|�2

for almost all λ P a�. Then, if

λ ÞÑ |Fκpλq|2Lw�pλq (28)

is bounded on a� and if ψ P L2pXq,

}ψ}2L2pXq �
»
U

|Tκψpx exp iyq|2 wpyq dxdy

and the double integal on the right hand side converges absolutely.
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Proof. Since |Fκ|2Lw � 1 is bounded, (28) is equivalent to the fact that
|Fκ|2L|w| is bounded. Therefore all integrals below are absolutely convergent
and we have for ψ P L2pXq

}ψ}2L2pXq �
»
X̂

|Fψpλ, bq|2 dµpλ, bq (29)

�
»
X̂

|Fψpλ, bq|2|Fκpλq|2Lwpλq dµpλ, bq (30)

�
»
X̂

»
Y

|Fψpλ, bq|2|Fκpλq|2φλpexp 2iyqwpyq dy dµpλ, bq

�
»
X̂

»
Y

|Fψpλ, bq|2|Fκypλq|2 wpyq dy dµpλ, bq

�
»
X̂

»
Y

|Fpψ � κyqpλ, bq|2 wpyq dy dµpλ, bq

�
»
X

»
Y

|pψ � κqpx exp iyq|2 wpyq dxdy.

We proceed along the same lines as in the Euclidean case. We define

ApUq �
!
F�1ω

��� pλ, bq ÞÑ ωpλ, bq
a
φλpexp 2iyq P L1pĜq for all y P Y

)
.

It is not clear whether ApUq is included in OpUq or not. One could try to prove
a result like lemma 9 using the bounds on φλpexp iyq from [Krö04, KÓS05]. We
will not pursue this question because corollary 37 is sufficient for our purpose.
We still have

Lemma 35. Let κ be an admissible kernel on U . Then TκpL2pXqq � ApUq.
In view of equation (27), the proof of lemma 10 applies with the obvious modi-
fications.

Choose w P L1
locpY ;Rq such that Lw is defined and non-negative almost every-

where on a�. Define for f P ApUq

Iwpfq �
»
X̂

|Ffpλ, bq|2 Lwpλq dµpλ, bq

and set BpU,wq � tf P ApUq | Iwpfq   8u. Now we can state another version
of theorem 11:

Theorem 36. Let κ be an admissible kernel on U and assume that Tκ is injec-
tive. Suppose that there exists a w P L1

locpY ;Rq such that Lw � |Fκ|�2 almost
everywhere on a�. Then Tκ is an isometry onto BpU,wq.

Proof. Recall that the injectivity of Tκ implies that Fκ is non-vanishing. Then
(29–30) gives immediately that

}ψ}2L2pXq � IwpTκψq.
Together with lemma 35 this shows that Tκ is an injective linear map from
L2pXq to BpU,wq. Moreover, we see that Iw induces a norm on BpU,wq and
that Tκ is isometric with respect to this norm. It remains to check surjectivity:
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Let f P BpU,wq. Then

Iwpfq �
»
Ĝ

|Ffpλ, bq|2Fκpλq|�2 dµpλ, bq,

so there exists a ψ P L2pXq such that Ffpλ, bq � Fψpλ, bqFκpλq and it follows
that f � ψ � κ.

It follows immediately from lemma 1 that

Corollary 37.
BpU,wq � OpUq.

We see that the results obtained here strongly resemble the results in the Eu-
clidean case. Still, there are two major problems: The first one is that the
spherical functions are not explicitly known in all cases. The second one is that
we assumed that Y � Ω, the latter set being bounded. In remark 21 we have
seen that some kernels require weights with unbounded support. This problem
is illustrated in the next example for one of the simplest cases.

Example 38. Let G � SLp2,Cq with compact subgroup K � SUp2q and let

α P a� be the positive root. Suppose that Lwplαq � el
2

for all l P R. Then, if

Lwplαq �
»
Y 1

φlαpexp 2iyqwpyq dy,

it follows that Y 1 is unbounded.

Proof. Let y � � η 0
0 �η

�
, η P R. According to [Hel84, p. 433], we have

φlαpexp 2iyq � sin 4ilη

l sinh 4iη
� sinh 4lη

l sin 4η
.

Just as the classical Laplace transform, this integral converges absolutely every-
where. Therefore we can apply the same trick as in remark 21. It follows that
Y 1 is unbounded.

Conclusion Recall that the map Tκ is G-equivariant. Thus, in all three cases
described above, Tκ intertwines the left regular representation with a representa-
tion on a Hilbert space of holomorphic functions. This Hilbert space consists of
holomorphic functions satisfying a certain spectral decay and its Hilbert struc-
ture is the completion of a Bergman-type inner product. It is remarkable that
the weight of this inner product need not be positive. However, the Laplace
transform of this weight is positive.

From example 38 we see that the Segal–Bargmann or heat kernel transform on
Riemannian symmetric spaces does not fit in the framework established here,
cf. [KÓS05]. Generally, the decay rate of the Fourier transform of the kernel
function κ is bounded by the size of Ω.
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Crownlike domains

In the previous section we have seen that the method presented there only works
if the Fourier transform of the kernel κ has bounded exponential decay. The
bound depends on the size of the set Ω. In this section we will make the first
steps to remove this condition and work through three of the easiest cases. We
will assume that Fκ decays faster than any exponential, but it is easy to adapt
the following method to intermediate cases.

An example of type A1 Let G � SLp2,Cq with maximal compact subgroup
K � SUp2q and Iwasawa decomposition g � npgqapgqkpgq. If g � �

a b
c d

� P
SLp2,Cq, we choose

npgq �
�

1 r2pac̄� bd̄q
0 1



apgq �

�
r 0
0 r�1



kpgq � r

�
d̄ �c̄
c d



,

where r � p|c|2 � |d|2q� 1
2 . The root system is Σ � t�αu, with positive root

α

��
t 0
0 �t




� 2t

and consequently apgqρ � r2 in the notation deployed above. We compute that

Ω �
"�

t 0
0 �t


 ���� |t|   π

4

*
.

We will be mainly interested in the complexification of A, which is

AC �
"�

z 0
0 z�1


 ���� z P C�
*
.

Its Lie algebra is aC � C, and the exponential map exp : aC Ñ AC is many-
to-one. Let Γ � exp�1pteuq � 2πiZ � � 1 0

0 �1

�
, so that log : AC Ñ aC{Γ is

a well-defined isomorphism. The problem we will deal with in the following
is basically the problem of choosing the right branch of Γ for this logarithm.
Therefore we will carefully keep track of the points in aC, although this might
not seem to make sense. For example, eiπ � e�iπ, but we will consider them
as different points. Alternatively, one could keep track of the branch with an
additional variable.

Recall the following definition of the spherical functions

φλpgq �
»
K

apkgqρ�iλ dk �
»
B

apb�1gqρ�iλ db.

It is clear from our application to the Fourier transform that this definition of
a spherical function is the most useful one. On any compact subset of Ω, the
spherical functions are bounded by CeR|λ| for some C,R ¡ 0. They extend
analytically to the sets Ξ and exp 2iΩ in XC.

Suppose that κ is bi-K-invariant and that its Fourier transform decays faster
than e�R|λ| for all R ¡ 0. Then for g P G and y P Ω, we have

κpg exp iyq � 1

#W

»
a�

Fκpλqφλpg exp iyq dµpλq. (31)
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We define

ar � Ω� Zϑ, ϑ �
�
π
2 0
0 �π

2



.

Note that ar is an open dense subset of a, and that ϑ satisfies the relation
g exp iϑ � exp iϑ � τg, where τ is an involution of G preserving the Iwasawa
decomposition: It fixes A, inverts N and flips K. This allows us to define an
extension Φλ of φλ to the set G exp iar in the following way: Let y � lϑ P ar.
Then

Φλpg exp ipy � lϑqq �
»
K

apkg exp ipy � lϑqqρ�iλ dk

�
»
K

apk exp ilϑ � τ lpgq exp iyqρ�iλ dk

�
»
K

apexp ilϑ � τ lpkqτ lpgq exp iyqρ�iλ dk

� apexp ilϑqρ�iλφλpτ lpgq exp iyq

In princple the term apexp ilϑqρ�iλ is ill defined, but we might spell this out as

� epρ�iλqplog apexp ilϑqqφλpτ lpgq exp iyq

Clearly exp ilϑ P AC, so we might drop the a, and let the log and exp cancel
each other, resulting in what we take as definition of Φλpg exp ipy � lϑqq:

� epρ�iλqpilϑqφλpτ lpgq exp iyq.

Substituting φ for Φ, equation (31) reads for y � lϑ P ar

κpg exp ipy � lϑqq � 1

#W

»
a�

Fκpλq epρ�iλqpilϑq φλpτ lpgq exp iyq dµpλq.

We will also write κlϑpg exp iyq for the above expression. If we set y � 0 we find

κpg exp ilϑqq � 1

#W

»
a�

Fκpλq epρ�iλqpilϑq φλpτ lpgqq dµpλq

� 1

#W

»
a�

Fκpλq epρ�iλqpilϑq φλpgq dµpλq.

This follows since an easy computation shows that φλpgq � φλpτpgqq for g P G.
Hence we see that shifting by ϑ causes the Fourier coefficients of κ to pick up a
factor of epρ�iλqpiϑq. This factor pops up because XC is not simply connected.

In particular, since K � τpKq, we can define the Laplace transform of w P
L1

locpar;Rq by

Lwpλq �
¸
lPZ

e�2lλpϑq
»

Ω

φλpexp 2iyqwpy � lϑq dy.

It is the sum of the Laplace transforms on the sets tΩ � lϑ | l P Zu, weighted
with |epρ�iλqpilϑq|2 � e�2lλpϑq. This factor appears squared, just as we used ππ�
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in the definition of the Laplace transform for compact Lie groups. We also view
φλpexp 2iyq as the square of φλpexp iyq.
Now, if we apply the machinery from the last section on all copies of Ω, we find
the following: For ψ P L2pXq, if the integrals involved converge absolutely, we
have the equality of norms

}ψ}2L2pXq �
¸
lPZ

}ψ � κlϑ}2l ,

with

}f}2l �
»
G�Ω

|fpg exp iyq|2 wpy � lϑqdgdy.

Remark 39. We may assume that w is Weyl group invariant and reformulate
the above in terms of Weyl group symmetrized functions such as¸

σPW
e�2lλpσϑq.

At some points in the computation we have used special features of SLp2,Cq.
We will see in the next examples that the situation becomes more complicated
for other symmetric spaces.

A rank two example The method sketched above goes through for SLp2,Rq,
but already for SLp3,Rq we encounter a serious problem. Let εj : EndpR3q Ñ
R : amn ÞÑ ajj , 1 ¤ j,m, n ¤ 3, and choose two positive roots α � ε1 � ε2 and
β � ε2 � ε3. Let Σ � t�α,�β,�pα� βqu be the root system of SLp3,Rq. Set

θα �
�
�π

2 0 0
0 �π

2 0
0 0 0

�

, θβ �

�
�0 0 0

0 π
2 0

0 0 �π
2

�



and extend θ to a linear map θ : Σ Ñ a : γ ÞÑ θγ .

Then with respect to the basis pθα, θβq, the crown domain

Ω �
!
H P a

��� γpHq   π

2
for all γ P Σ

)
consists of all the points λθα � µθβ satisfying the equations

|2λ� µ|   1 |2µ� λ|   1 |λ� µ|   1 pλ, µ P Rq

and is depicted in the figure on the next page. We see that the lines correspond-
ing to the conditions γpHq � π

2 mod π divide the a-plane in cells.

We observe that the cells come in two sizes and any two cells of the same size are
of the same shape. Let us focus on the hexagonal cells first. We note that some
of the cells map to the same region in XC under the mapping H ÞÑ exp iH �KC.
Let us say that two cells are equivalent if this is the case. Since exp 2iθα,β P K,
the cells marked with a � are equivalent to Ω. Also for example the cells Ω�X
and Ω � Y are equivalent. We find that there are three equivalence classes of
big hexagonal cells, and we may choose representatives Ω, Ω�X and Ω� 2X.
A short computation yields that X � 1

3 p4θα � 2θβq and Y � 1
3 p�2θα � 2θβq.
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Ω θα

θβ XY

� �

� � �

For H P a, define

τH : GC Ñ GC : g ÞÑ exp�iH � g � exp iH.

Now we are in good shape to repeat the method sketched earlier. Let l,m P Z.
We define the spherical function on G exp ipΩ� lX �mY q as

Φλpg exp ipy � lX �mY qq � eipρ�iλqplX�mY q � φλppτ lXτmY qpgq exp iyq.

Here the involutions τX , τY and τXτY map G to itself and preserve its Iwasawa
decomposition. They are different involutions of G fixing three different copies
of GLp2,Rq inside G. For this computation it is crucial to forget about right-
K-invariance for the moment, so that we can choose the logarithm in an orderly
fashion.

This defines a spherical function on the hexagonal cells and we can work our
way through the formulae of the previous section. The problem clearly lies in
the triangular cells. Still we can say some things about them:

We recover a different type of automorphism if we walk along Zγ � 2
3θγ , γ P Σ,

from the big cell to one of the triangular cells next to it. It is easy to see that
τZγ is an automorphism of order 6 of GC. These are the automorphisms I expect
to appear in the definition of the spherical functions of the triangular domains.
Also, the notion of ‘holomorphic in τZγz’ for z P GC might be relevant. From
the picture we see that crossing two walls will restore everything to normal. For
example, the automorphism τ�1

Zα
τZβ is nothing else than τY since Y � Zβ �Zα.

Note that all these automorphisms commute, so it is irrelevant how we walk
around a crossing of lines.

It is quite interesting to study these automorphisms. For example, if γ P Σ,
τ3
γ is the identity on XC, but τγ itself does not preserve KC. Instead, it maps
K � SOp3q to different compact subgroups of SUp3q.
We see that in rank two and higher the structure is already quite complicated
and it is unclear whether the method presented in the previous paragraph gen-
eralizes to this situation or not.
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Rank one revisited The picture becomes a bit more clear if we study the
‘intermediate’ case of a restricted root system of type BC1. Let us have a look
at the rank one symmetric space SUp1, pq{SpUp1q � Uppqq for p ¡ 1.

Taking adjoints and complex conjugates is done with respect to the complex
structure of G itself. The symbol i is reserved for the imaginary unit in the way
we used it before.

The Lie algebra

g � sup1, pq �
"
X P slp1� p,Cq

����X�
��1 0

0 Ip



�
��1 0

0 Ip



X � 0

*

of G � SUp1, pq has �1 eigenspaces under the Cartan involution X ÞÑ �X�

k �
"�

u 0
0 U


 ����U � �U�, u� trU � 0

*

p �
"�

0 y�

y 0


 ���� y P Cp
*
.

From now on it is convenient to write 1 � p � 1 � p matrices as p1, 1, p � 1q �
p1, 1, p� 1q matrices. We choose a maximal abelian subalgebra

a �
$&
%
�
�0 t 0
t 0 0
0 0 0

�


������ t P R

,.
-

of p. Let Ht denote the above matrix. Define α P a� by αpHtq � t. Then the
restricted roots of g with respect to a are

Σ � t�α,�2αu
and the corresponding root spaces are given by

g�α �
$&
%
�
�0 0 z�

0 0 �z�
z 	z 0

�


������ z P Cp�1

,.
-

g�2α �
$&
%
�
� u 	u 0
�u �u 0
0 0 0

�


������u P C, u � �ū

,.
- .

The eigenspace g0 is given by a�m, where

m �
$&
%
�
�u 0 0

0 u 0
0 0 U

�


������U � �U�, 2u� trU � 0

,.
- .

We will now introduce one by one the notions we used in the case of SLp2,Cq.
We find that

Ω �
!
Ht

��� |t|   π

4

)
.

We set ϑ � Hπ
2

. The points tHt | γpHtq � π
2 mod π for some γ P Σu divide a

in a series of intervals. Since exp 2iϑ P K, it suffices to look at a fundamental
interval of length 2ϑ:

37



Ω Λ1 Λ2

ϑ

We see that except for Ω, there are two other connected components or cells,
denoted here by Λ1,2. These two cells are identified with each other under the
affine Weyl group, which is the group acting on a generated by

ρ : Ht ÞÑ Ht�π � Ht � 2ϑ and σ : Ht ÞÑ H�t.

We define ar � aztHt | γpHtq � π
2 mod π for some γ P Σu, so ar is dense in a.

We define the automorphism

τ : GC Ñ GC : g ÞÑ exp�iϑ � g � exp iϑ.

On g, it acts as �
�u ȳ z̄
y v w̄
z w U

�

 τÞÝÑ

�
� v y iw̄
ȳ u �iz̄
iw iz U

�

.

In particular, we can read off what τ does to the root spaces:

X
τÞÝÑ

$'&
'%
X if X P m

�X if X P g�2α

	iX if X P g�α

From this it is clear that τpGq � G, but τ2pGq � G. Moreover, we find that
τ2pKq � K, where K is of course the maximal compact subgroup of G with Lie
algebra k. It follows that τ3pKq � τpKq.
The results so far point in the following direction:

Let ξ P Ξ � G exp iΩ. We have φλpξq �
³
K
apkξqρ�iλdk and we would like to

define its counterpart on τpΞq:

χλpτpξqq �
»
K

apτpkξqqρ�iλ dk.

This definition hinges on the right extension of a to the set τpGq exppiΩzt0uq.
Here we have to exclude 0, as we can see from the picture at the top of this page.
It should satisfy the Weyl symmetry χλ � χ�λ and should extend anlytically to
2Ωzt0u. It is not clear how this function should be defined, but let us see what
it would be good for:

Let ξ P Ξ and l P Z. Define the extended spherical function

Φλpξ exp ilϑq � epρ�iλqpilϑq �
#
φλpτ lpξqq if l is even

χλpτ lpξqq if l is odd.

With this function we define an extended Fourier transform

κpξ exp ilϑq � 1

#W

»
a�

FκpλqΦλpξ exp ilϑq dµpλq
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and ditto Laplace transform for w P L1
locpar;Rq

Lwpλq �
¸
l even

e�2lλpϑq
»

Ω

φλpexp 2iyqwpy � lϑqdy

�
¸
l odd

e�2lλpϑq
»

Ωzt0u
χλpexp 2iyqwpy � lϑqdy.

These transforms are adapted to the main problem of this thesis and may allow
us to repeat the story for Riemannian symmetric spaces without the lower bound
on the spectral decay of the convolution kernel. However it is clear that there
is still a lot to do before we could think of proving such theorems.
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réductifs. Ann. of Math. (2), 147(2):417–452, 1998.

[Dir45] P. A. M. Dirac. Unitary representations of the Lorentz group. Proc.
Roy. Soc. London. Ser. A., 183:284–295, 1945.

[Far03] J. Faraut. Analysis on the crown of a Riemannian symmetric space.
In Lie groups and symmetric spaces, volume 210 of Amer. Math. Soc.
Transl. Ser. 2, pages 99–110. Amer. Math. Soc., Providence, RI, 2003.

[Fol89] G. B. Folland. Harmonic analysis in phase space, volume 122 of An-
nals of Mathematics Studies. Princeton University Press, Princeton,
NJ, 1989.

[GG77] I. M. Gelfand and S. G. Gindikin. Complex manifolds whose spanning
trees are real semisimple Lie groups, and analytic discrete series of
representations. Funkcional. Anal. i Priložen., 11(4):19–27, 96, 1977.
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[Krö98] B. Krötz. On Hardy and Bergman spaces on complex Olshanski semi-
groups. Math. Ann., 312(1):13–52, 1998.
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