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Zusammenfassung

In dieser Arbeit untersuchen wir Werte der Fibonacci-Zetafunktion sowie dreier Vari-
anten dieser Funktion fiir geradzahlige Argumente auf algebraische Unabhangigkeit iiber
dem Korper Q) der rationalen Zahlen. Wir betrachten die unendliche Menge, die aus den
Werten dieser vier Funktionen besteht, und geben eine vollstandige Klassifikation ihrer
Teilmengen in iiber @ algebraisch unabhéngige und abhéngige Mengen an. Dabei be-
zeichnen wir in natiirlicher Weise eine Menge als algebraisch unabhangig beziehungsweise
abhangig iiber Q, falls die Elemente dieser Menge diese Eigenschaft haben.

Die Unabhéangigkeitsergebnisse in dieser Arbeit basieren auf einem Satz von Neste-
renko aus dem Jahre 1996 iiber die Werte der Ramanujan Funktionen P, () und R an
algebraischen Stellen. Zur Anwendung kommt ferner ein Determinantenkriterium fiir al-
gebraische Unabhéngigkeit, das von Elsner, Shiokawa und Shimomura entwickelt wurde.
Dieses Kriterium kam bereits in einer im Jahre 2011 erschienenen Publikation zur An-
wendung, um erste allgemeine Resultate zur algebraischen Unabhéngigkeit der in dieser
Arbeit untersuchten Zahlen zu beweisen. Wir greifen die Methode von Elsner, Shiokawa
und Shimomura auf und ergénzen ihre Ergebnisse.

Als weiteres Hilfsmittel dienen Laurent-Reihenentwicklungen gewisser Jacobischer ellip-
tischer Funktionen, die in engem Zusammenhang zu den von Ramanujan eingefiihrten ¢-
Reihen stehen. Dabei werden Identitiaten von Zucker (1979) verwendet. Die betrachteten
Zetafunktionen lassen sich schliellich als Polynome in drei algebraisch unabhangigen
Groflen darstellen. Hier spielen vollstandige elliptische Integrale eine wesentliche Rolle.

Auflerdem beweisen wir Ergebnisse zur linearen Abhangigkeit und Unabhangigkeit tiber
Q der in dieser Arbeit betrachteten Zahlen.

Abschlieflend préasentieren wir quantitative Resultate. Wir beweisen ein Lemma, das es
gestattet, das MaB fiir algebraische Unabhéangigkeit von einer Zahlenmenge unter gewis-
sen Abschwéchungen auf eine andere Menge von Zahlen zu tibertragen, wenn die beiden
Mengen durch ein quadratisches System von Polynomen verbunden sind. Unter Verwen-
dung eines quantitativen Ergebnisses von Nesterenko aus dem Jahre 1997 leiten wir ein
Unabhéangigkeitsmaf fiir die in dieser Arbeit untersuchten Zahlen her.

Schlagworter: Algebraische Unabhangigkeit, Fibonacci-Zahlen, Nesterenkos Satz iiber
Ramanujan Funktionen






Abstract

In this thesis we investigate values of the Fibonacci zeta function as well as those of
three other types of this function at positive even integers with respect to algebraic in-
dependence over the field QQ of rational numbers. We study the infinite set consisting of
the values of these four functions and give a complete classification for all of its subsets
in algebraically independent and dependent sets over Q. In a natural sense we call a set
to be algebraically independent or dependent over Q, respectively, if this property holds
for the elements of this set.

The independence results in this thesis are based on a theorem of Nesterenko from the
year 1996 on the values of Ramanujan’s functions P, () and R at algebraic points. More-
over, we apply a determinant criterion for algebraic independence developed by Elsner,
Shiokawa and Shimomura. This criterion was already used in a paper published in 2011
to obtain a first general result on algebraic independence of the numbers studied in this
thesis. We pick up the method from Elsner, Shiokawa and Shimomura and complete the
results of that paper.

As further auxiliary means we use the Laurent series expansions of certain Jacobian
elliptic functions, which are closely connected to the g-series introduced by Ramanu-
jan. Thereby we use some identities found by Zucker in 1979. The zeta functions to
be discussed may finally be expressed as polynomials in three algebraically independent
quantities. Here the complete elliptic integrals play an essential role.

Furthermore, we prove results on linear dependence and independence over @ of the
numbers treated in this thesis.

At the end of this work we present quantitative results. We prove a lemma, which
makes it possible to transcribe the measure of algebraic independence of one number set
to another with a certain weakening when these sets are connected by some quadratic
polynomial system. Using a quantitative result of Nesterenko from 1997 we derive a
measure of algebraic independence for the numbers studied in this thesis.

Keywords: Algebraic independence, Fibonacci numbers, Nesterenko’s theorem on Ra-
manujan functions
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1. Introduction

Algebraic independence theory is one of the classical branches in analytic number theory.
The first result in this area, the Lindemann-Weierstrass theorem about values of the ex-
ponential function at algebraic points, was published by Weierstrass [44] in 1885. By this
work, he generalized earlier results from Hermite and Lindemann who proved the tran-
scendence of e and 7, respectively. With his proof on the transcendence of m Lindemann
gave a negative answer to the old question on the possibility of squaring the circle.

Later Siegel and Shidlovskii, in 1929 and 1957, respectively, created a theory for FE-
functions that contains the Lindemann-Weierstrass theorem as a special case. Siegel
introduced E-functions as entire functions whose Taylor series coefficients are algebraic
numbers with certain arithmetical properties. In general they are confluent hypergeomet-
ric functions and the exponential function is the simplest example. The Siegel-Shidlovskii
method is described in [39].

In 1949 Gelfond [23] proved algebraic independence results of values of the exponential
function at transcendental points. This was a generalization of Hilbert’s seventh prob-
lem solved independently by Gelfond and Schneider in 1934 with different methods. In

particular, they proved the transcendence of the numbers \/5\/5 and e™. In the 1970’s
Chudnovsky extended Gelfond’s approach to another class of functions, namely elliptic
functions. He could prove that the numbers 7 and I'(1/4) and also 7 and I'(1/3) are
algebraically independent [9)].

In the last 30 years there has been further progress in this area, partially based on
multiplicity estimates for polynomials in analytic functions. It became possible to study
modular functions in view of transcendence questions. In 1996 Nesterenko [32] proved a
result on algebraic independence of the values of Ramanujan’s functions P, () and R at
algebraic points. As a corollary he obtained the algebraic independence of the numbers
7, ™ and I'(1/4).

We remark that it is still an open problem if e + 7 is transcendental or even irrational.
The same holds for the number e - 7.

In this thesis we study algebraic independence properties of reciprocal sums of Fibonacci
numbers F,, and Lucas numbers L,,, defined by

FUIO, F1 = 1, Fn+2:Fn+1+Fn (77/2 O)

and
L() = 2, L1 = ]., Ln+2 = Ln+1 -+ Ln (n Z 0) s

respectively. It is well-known that both sequences satisfy the Binet-type formulas

" =P
Fn:—a Ln:gon—i_wn’ nZO?
py— ( )
where
1+
L
is the Golden Ratio and
1 1—-+5
qp:——: .
%) 2



1. Introduction

The Fibonacci and Lucas numbers have various interesting properties. A wide overview
is given in [25].

With the subsequent survey in Section 1.1 to 1.3 on irrationality and transcendence
results for series involving reciprocal Fibonacci and Lucas numbers, we follow an unpub-
lished manuscript by Duverney and Shiokawa [15].

1.1. Irrationality results

In 1989 André-Jeannin [2] was the first to prove the irrationality of the series

00 1 00 _1) 0 1 0 _1)
SI:ZZIE’ Sgizzl%, SgiZZIL—n, and 54:;%

He used a continued fraction expansion, much inspired by Apéry’s proof of the irrationality
of {(3) (see [3]).

Five years later Bundschuh and Vé&énénen [7] used Padé-approximations to the g-
exponential function and its derivative to prove that S; ¢ Q(v/5). They also found
the following irrationality measure for Si: For (p,q) € Z x IN, with ¢ large enough, we
have

s -2

q
This measure was improved to 7.893 by Matala-Aho and Vaénénen in [28]. In particular,
this proves that S; is not a Liouville number.

The series S3 and S; have been studied in 1998 by Véénénen [43], who also gave
irrationality measures for them. Tachiya [41] found another proof for S; ¢ Q(v/5) and
also for Sy, S3, 54 ¢ Q(v/5) by developing Borwein’s method from [5]. Eight years after
André-Jeannin’s first proof had been published, an elementary proof of the irrationality
of S, using only simple properties of the g-exponential and the ¢-logarithmic function,
was given by Duverney in [11].

All these results have been successively improved by Prévost [37] and Matala-Aho and
Prévost [29]: For example, let

S5 = nz::l i

where t € Q\ {0} satisfying |t| < (1++/5)/2. Then Sj is irrational and has an irrationality
measure of 2.874. The same result holds if the Fibonacci sequence F,, is replaced by the
Lucas sequence L,. In this case the irrationality measure is 7.652.

Duverney [12] proved in 1997 the irrationality of the series

oo 1)
Sg 1= Z—( F; .

n=1

= 8.621 °
q®

‘ 1

However, his proof does not lead to any irrationality measures. Moreover, the elementary
methods developed in [12] does not enable us to prove the irrationality of the series




1.2. Transcendence results

although these numbers are, in fact, transcendental (and so is Sg), as we will see in the
next subsection.
It is an open problem to prove the irrationality of the sum

=1
Zl.

S5

1.2. Transcendence results

Seven years after the first irrationality result concerning reciprocal sums of Fibonacci and
Lucas numbers, Duverney, Ke. Nishioka, Ku. Nishioka and Shiokawa [14] (see also [13])
succeeded in proving the transcendence of the numbers

=1 =1 =1 =1
ZFZS’ ZLQS’ ZFQSn—Ij ZLin

for any positive integer s. It can also be derived from the methods in [13] and [14]
that the series Sg is transcendental. These results are based on Nesterenko’s theorem on
Ramanujan functions [32] (see Subsection 1.4).

It follows that the numbers

are transcendental because of the following identities which have been proven by Jennings
[24]:

There are many transcendence results for reciprocal sums of Fibonacci and Lucas num-
bers, which contain subscripts in geometric progressions. For instance, Erdos and Graham
[22] asked for the arithmetical nature of the sums

o0 [e.9]

57::ZF1 and SS::ZL;.

n=1 2"+1 n=0

They were inspired by the well-known identity

=1 7 —
2w~

2"1

=



1. Introduction

This follows from i

1 FQk_l
=3 2= k>1
nZ:OFQn FQk ( - )

which can be proven by induction using the formula

., m
FLFm—l - (_1) == F2m—l (m Z 1)

in the case of m = 2*. Both of the numbers S; and S were proven to be transcendental
by Bundschuh and Petho [6] and Becker and Tépfer [4], respectively. They used a method
introduced in 1929 by Mahler in [26] and thereafter known as Mahler’s method. Basically,
it applies to analytic functions f satisfying a functional equation of the form

f(z") = ®(z, f(x))

where ® is a rational function with algebraic coefficients and r is an integer greater than
1.

1.3. Algebraic independence results

Algebraic independence of numbers like S7 has been established in 1997 by Ku. Nishioka
[34] by using an extension of Mahler’s method. For example, Nishioka proved that for
fixed integers a > 1 and d > 2 the numbers

Z

are algebraically independent over Q.
Later, Nishioka, Tanaka and Toshimitsu [35] obtained more general results: Let again
a > 1 and d > 2 be fixed integers. Then the numbers

i (m,l € N)

ad"+l

leN
Fd"+l ( )

n=1

are algebraically independent over Q. The same result holds for the numbers

o0 o0 1
and _ (mleN).
; Fogni)™ ; (Lagn1)™ ( )

Tanaka [42] proved the algebraic independence of the numbers

- 1
—_ meN, >0
2| )

over Q. A remarkable special case is the transcendence of the series

1



1.3. Algebraic independence results

In 2007 Elsner, Shimomura and Shiokawa [16, 17, 18, 19, 20] began their joint work on
the Fibonacci zeta function

=Y & (R(s)>0),

which extends meromorphically to the whole complex plane (cf. [30]), and the related
series

e n+1 > e n+1
=S50 a=Y . ae=3 S

n=1 n=1"" n=1

at positive even integers s. Steuding [40] proved that (r(s) is hypertranscendental, which
means that it satisfies no algebraic differential equation.
In [18] the algebraic independence of the sets

{Cr(2),Cr(4), Cr(6)},  {Cr(2), Cr(4), Cr(6)"},
{C(2),¢e(4),CL(6)},  {C(2),¢1(4),¢(6)"}

over @ is proven. Moreover, for any integer s > 4 the authors expressed each of the series
Cr(2s),(5(2s),Cr(2s) and (f(2s) as rational functions in the three series of the same type
in the above sets, i.e. for s > 4 we have

(r(2s) € Q(¢r(2),Cr(4),Cr(6)),  (p(25) € Q(Ch(2), (h(4), C(6))
(L(2s) € Q(C(2),CL(4),¢u(6)) . ¢(25) € Q(¢(2),¢h(4),¢(6)) -

For instance, they obtained

15 1
ﬁgF(zx) + 373 (1) 157 (256¢r(2)° — 3456¢r(2)° + 2880¢F(2)*

+1792¢x(2)*Cp(6) — 11100¢x(2)? + 20160¢x(2)*¢r(6) — 10125¢#(2)?
+7560(r(2)¢p(6) + 3136(F(6)* — 1050(r(6)) -

CF(S) =

Similar results were proven in [19] for the series

VO
Sro Lm L

2n—1 n=1 = n=1

> n+1 2n 1)28+1 0 (271 _ 1)23+1
d _
Z FQn 1 7 o Z L2n 1

n=1

Other sets containing the values of (r(2s),(5(2s),(.(2s) and (}(2s) for s = 1,2,3 were
treated in [20]. Here, Elsner, Shimomura and Shiokawa investigated all subsets of

[':= {CF(Z)v CF(4>7 CF(6)7 C;(Q)v C;(4)7 CF(6)*7 <L<2)7 CL(4>7 <L<6)7 Cz(2>7 CZ(4>7 C.L(6)*}



1. Introduction

and decided on their algebraic independence. They proved that every four numbers in I’
are algebraically dependent, whereas every two numbers in I' are algebraically independent
over Q. Furthermore they could show that 198 of the 220 three-element subsets of I' are
algebraically independent over Q. For the remaining 22 three-element subsets of I, explicit
algebraic relations were given. Since not all of these 22 relations were published in [20],
we put a complete list of the identites in the appendix of this thesis.

In [17] the authors obtained a more general result for the Fibonacci zeta function at
positive even integers. By using a new algebraic independence criterion they proved that
for positive integers s; < so < s3 the series (r(2s1), (r(2s2) and (r(2s3) are algebraically
independent over @ if and only if at least one of the numbers s; is even.

1.4. Outline of this thesis

In this thesis we study more general problems, which go back to a proposal from Professor

Elsner. The main idea is to generalize the results in [20] by using the approach from [17],

where actually more general binary recurrences are treated: Let a, 8 € Q with |3] < 1

and a8 = —1, where Q denotes the field of algebraic numbers over Q. We define the

sequences

o — pg"
a—p3"

which satisfy the recurrence formula

U, = Vi=a"+p8"  (n=0),

Xogo = (a+B) X1 + X, (n>0).

In particular, for 8 = ¢ = (1 — v/5)/2 we get the Fibonacci numbers U,, = F,, and the
Lucas numbers V,, = L,,.

We remark that it is also possible to treat these sequences with a8 = +1 by the same
method as presented in this thesis. Algebraic independence results for series involving
such sequences were also obtained by Elsner, Shimomura and Shiokawa [16]. In our case,
aff = —1, we treat any sequences U,, and V,, satisfying the second order recurrence formula
Xpio =aX,11+ X, (n >0), where a is an arbitrary algebraic number from the set

Q\{B—-1/8|8€Q\{0} A |8 =1}.

For s € IN we study the series

—2s - 1 * —2s - (_1)714—1
Oy = (0= B)" ) By = (0= B)" )
n=1 " n=1 n
— 1 R NG Vs
Wy, 1= ; W’ U == ; Van :

The above mentioned results from Elsner, Shimomura and Shiokawa [18, 20, 17] for the
values of (r(2s), (5(2s), (1(2s) and (;(2s) with s € IN are also true for the more general
series ®oq, P35, Wy, and V3.



1.4. Outline of this thesis

We introduce the infinite set

Q= {Dyg,,, D5, Wag,, U5, | 51, 52, 53, 54 € N} (1.1)

2599

and investigate which subsets of {2 are algebraically independent over Q.

The results go back to Nesterenko’s theorem on Ramanujan functions [32]. As an
immediate consequence we will obtain the algebraic independence over ) of the quantities
K/m, E/m, and k under certain conditions. Here, K and E denote the complete elliptic
integrals of the first and second kind, respectively, with the modulus k£ € C\ {0, +1},
defined by

! dt U1 — k22
K:K(k):/o N E:E(k):/o ,/thdt.

To conclude on independence results for subsets of €2 we will use a determinant criterion
from Elsner, Shimomura and Shiokawa [17] which is introduced in Section 2 of this thesis.
The sums ®q,, &5, Uy, and W3, can be written as series of hyperbolic functions. With
some identities from Zucker [46] we will be able to express the latter in terms of g-series
and then as polynomials in K/m, F/7, and k with rational coefficients.
For k* € C\ ({0} U[1,00)), and K’ = K (k') with k? + k' = 1 the equations

K’
=e c=—
¢ ’ K

give the relation among ¢ and the quantities K/7, E/m, and k. From Zucker [46] we get
the identities

00 s—1
1
¥y =277 Z cosech®(n7c) = @s—1) Z 0s—j-1(5)Azj41(q), (1.2)
n=1 T j=0
—2s = 2s (_1)371 —
T =27 " sech®(nme) = o) > oo jo1(s)Bajsa(q), (1.3)
n=1 T j=0

3, im0 2 Zsech% ((2n —2 1)7?0) _ ((2—81_)5;>! ; oo 1 (5)Dasn(0), (1.4)

n=1

> 2n — 1)me 1 S
$4:=2""") " cosech® (( 5 ) ) = @) > e jo1(5)Cajia (), (1.5)
| &

n=1

where the g-series As;11(q), B2j+1(q), Co+1(q), and Dsji1(q) for j > 0 are defined by

p2i+1g2n X (1)t gn
Agjyi(q) = nz::l Togn Bajii(q) = ; =g ;
o n2j+1qn > (_1)n+1n2j+1qn
Coja(g) = ) T g2 Dajia(q) =) [ g2
n=1 n=1



1. Introduction

The coefficients 0;(s) are the elementary symmetric functions of the s — 1 numbers —1,

=22 ..., —(s—1)* for s > 2, defined by o¢(s) = 1 and
oi(s) = (=1 > ] (1<i<s—1). (1.6)
1<r < <ri<s—1
Now let

qg= 62 _ effrc7 5 _ _677rc/2 :
where 3 € Q defines the sequences U,, and V,,. Then, with a = —1/3 we obtain

a2n _ 5271 ﬁ—Zn _ 5271 enTe _ gmnme 2
U n p— pr— p— p— 1 h > O .
9 " " P a—ﬁsm (nmc) (n>0)
Similar computations give
2 2n—1
Uspqw = " cosh ( n2 7rc) n>1),
Vo, = 2cosh (nmc) (n>0),
2n —1
Von_1 = 2sinh < n2 7TC> n>1).

Therefore, by decomposing our reciprocal sums into two parts, we have the following
representations of ®q,, ®5 . Ws,, and Wi as series of hyperbolic functions:

= 1 =1
Dy, — (Oé_ﬁ)_%ZUQs +(a_ﬁ>_ZSZU25 = 234-21, (1.7)
n=1 2n—1
i _]_ 2n 1 2n+1
e () (UQS) +(a=-p)* Z % = X3 — X, (1.8)
n=1 2n—1 n=1 2n
=1
\IIQS_ZV2S +Zv2s =24+ 2o, (1.9)
2n—1 n—=1
e 2n+1
\Irzszz v% +Z st == . (1.10)

The g-series Agji1, Baj1, Cojy1 and Dyjyq are generated from the Laurent series ex-
pansions of the squared Jacobian elliptic functions ns? z, nc? z, dn® z and nd” z. By these
expansions we obtain expressions of the corresponding g-series in terms of K/m, E/m and
k. For example, in [38] we find the following identities for the well-known Ramanujan
functions:

P(g®) :=1—244,(q) = (%) (% -2+ k2)
Q(¢?) == 1+ 240A5(q) = (?) (1— K+ &), (1.11)
R(¢*) :=1—504A5(q) = (%) % (1+4£*) (1—2K) (2—K%).



1.4. Outline of this thesis

Ramanujan [38] introduced these functions as

P(z)=1-24 Z o1(n)z", Q(z) = 14240 Z o3(n)z", R(z) =1-504 Z os5(n)z"

n=1

where o,(n) is the divisor function, defined by

or(n) =Y d,

dn

not to be confused with the elementary symmetric functions from (1.6). He also showed
that they satisfy the differential equations
dap 1

(P =Q),

Q 1 AR 1
=12 A

2
dz S(PQ k). e _2(PR @)

In 1969, Mahler [27] proved that the functions P(z), Q(z), and R(z) are algebraically
independent over C(z). This result is based on the above differential equations. We will
use Mahler’s result in Section 5.4 of this thesis. In 1996, Nesterenko [32] proved the
following theorem on the values of Ramanujan’s functions. Its corollary and the resulting
lemma play a fundamental role in the proofs of our main theorems.

Theorem 1.1 (Nesterenko [32]). Let p € C with 0 < |p| < 1. Then we have

tr. deg (Q(p, P(p), Q(p), R(p)) : Q) > 3.

Corollary 1.1. Let p € Q with 0 < |p| < 1. Then the numbers P(p), Q(p), and R(p) are
algebraically independent over Q.

Together with (1.11) this corollary implies the following lemma:

Lemma 1.1. Let ¢ = e ™ € Q with 0 < |q| < 1. Then the numbers K/x, E/x, and k
are algebraically independent over Q.

A proof of Lemma 1.1 will be given in Section 2.

Combining the identities (1.2) to (1.10) with the Laurent series expansions of the Ja-
cobian elliptic functions given in Section 3, we will obtain explicit expressions for the
reciprocal sums Pq5, O3, Vo, and Wi as polynomials in K /7, E/m and k with rational co-
efficients. To these polynomials, we will apply an algebraic independence criterion stated
in Section 2.

In Section 4 we investigate the one-type three-element subsets of 2 defined in (1.1),
namely the sets

{D3,,, D5, , P

2517 2899 283

} y {\112517 \11252, \11253} y and {\I/* \I]* \I]*

2519 2599 253 }

for pairwise distinct positive integers si, s9, s3. The independence properties of the set
{DPas,, Pas,, Pas, } have already been studied in [17].



1. Introduction

Section 5 provides results for the mixed subsets of €. We will prove that any two
numbers in () are algebraically independent over ), whereas any four numbers in 2 are
algebraically dependent over Q. To investigate the independence properties of three-
element subsets of €2, a huge number of cases remains to be discussed. Therefore, it will
be convenient to classify several cases with the help of some tables.

We also study linear independence properties of numbers in 2 and add results on
algebraic independence of the functions ®o4(q), P3.(q), Vas(q) and Vi (q) over C(q).

In the last section of this thesis we present quantitative results. We prove a general
lemma on algebraic independence measures and apply it to Nesterenko’s quantitative
version of Theorem 1.1. Hence, we obtain algebraic independence measures for three-
element subsets of (2.

10



2. Algebraic independence criteria

In this section we investigate algebraic independence properties of real number sets
{z1,...,2,} and {y1,...,yn} when these sets are connected by some quadratic poly-
nomial system. Lemma 2.3 provides a method to transcribe the algebraic independence
property from one set to another under a certain determinant condition. This lemma
goes back to Elsner, Shimomura and Shiokawa and can be found in [21]. Corollary 2.1
of Lemma 2.3 will be the main tool in the proofs of algebraic independence results on
subsets of (2.

In the second subsection we prove an analogue criterion to Lemma 2.3 for functions in
one variable. This will be applied in Section 5.4.

2.1. A determinant criterion for algebraic independence

Lemma 2.1 (Chain rule for transcendence degrees, [10, Chapter 6.2, Proposition 2|). Let
KCILCM be field extensions. Then

tr.deg(M : K) = tr.deg(IM : L) + tr. deg(LL : K).

The chain rule yields a simple algebraic independence criterion for quadratic polynomial
systems:

Lemma 2.2. Let K be a field satisfying Q CIK C R and zq,...,x, € R. Lety,,...,y, €
Klxy,...,2,] be algebraically independent over K. Then also the numbers x4, ..., x, are
algebraically independent over K.

Proof. We have
KC Ky, ... yn) CK(zq,...,2,).

Therefore, we may apply Lemma 2.1 and obtain

tr.deg(IK(xq, ..., 2,) : K)
=tr.deg(K(z1,...,2) : K(y1,. .., yn)) + tr.deg(K(y1, . .., yn) : K).

Since yi, . . ., y, are algebraically independent over K, i.e. tr.deg(K(y1,...,y,) : K) =n,
we see

tr. deg(IK(zq, ..., x,) : K) > n.

On the other hand tr.deg(K(xy,...,z,) : K) < n is obvious. Hence, we conclude on
tr.deg(K(xy, ..., x,) : K) = n,
and that proves the lemma. O

Now we are able to prove Lemma 1.1 from the preceding section.

11



2. Algebraic independence criteria

Proof of Lemma 1.1. We denote

and
yi =P, 1p=Q«[), ys:=R({.

From the conditions of Lemma 1.1 we have p := ¢*> € Q with 0 < |p| < 1. Therefore,
Corollary 1.1 implies that the numbers ¥, y2, and y3 are algebraically independent over
Q. By (1.11) we have y1,ys2,y3s € Q[z1,x2,23]. Hence, Lemma 2.2 is applicable with
K = Q. This proves that the numbers z1, x5, and x3 are algebraically independent over

Q. O

The main lemma to be applied in this thesis is a modification of Lemma 2.2. In the
notation of Lemma 2.2 we will now assume the numbers z; € R to be algebraically inde-
pendent over K and ask for independence properties of the numbers y; defined implicitely
for j = 1,...,n as solutions of a certain polynomial system.

Lemma 2.3 (Determinant criterion for algebraic independence, [21]). Let IK be a field
satisfying Q@ C K C R. Let z1,...,z, € R be algebraically independent over K and
Y1, .-, Yn € R satisfy the system of equations

fj(xla'-'>$n>yla-"7yn):O (jzla-"7n)7

where f;(Xy,..., Xp, Y1,...,Y,) € K[Xq,...,X,,,)Y1,...,Y,] for j = 1,...,n. Assume
that

Of:
det (8)chi(x1,...,xn,yl,...,yn)> # 0.

Then the numbers yq, ..., y, are algebraically independent over K.

We remark that the statement from Lemma 2.3 is also true for zy,...,z, € C (see
[21]). We won’t need this criterion in the general case but the following slightly weaker
corollary, where we restrict the numbers vy, ..., y, to belong to the ring K[z1,...,z,]:

Corollary 2.1. Let K be a field satisfying Q C IK C R. Let xq,...,z, € R be algebraically
independent over X and let y; = Uj(z1, ..., x,), where U;j(Xy,..., X,) € K[X,...,X,]
forj=1,...,n. Assume that

oU;
det (8X]i(x1,...,xn)> # 0.

Then the numbers yy, . ..,yn are algebraically independent over K.

The key in the proof of Lemma 2.3 is the following proposition, which is a consequence
of [45, Ch.II, § 17, Corollary to Theorem 40]:

12



2.1. A determinant criterion for algebraic independence

Proposition 2.1. Let L be a field satisfying @ C L C R and let Py(Xy,...,X,) €
L[Xy,...,X,] for j =1,...,n. Assume that (xq,...,x,) € R" is an isolated zero of the
system of equations

Pi(Xy,...,X,) =0 (j=1,...,n).

Then the numbers 1, ..., x, are algebraic over IL.

We will give an alternative proof for Proposition 2.1, which is based on the concept of
semialgebraic sets and the Tarski-Seidenberg theorem.

Definition 2.1. Let K be a subring of R. A set S C R" is called semialgebraic over K if
S is a Boolean combination (using finitely many intersections, unions, and complements)
of sets of the form

U(F):={a € R"|F(a) > 0}

with F € K[X1,. .., X,].

Remark 2.1 (see [36, p.32]). Every Boolean combination of formulae of the form F > 0
(where F' € K[X, ..., X,]) is equivalent to a finite disjunction (d; V- - -Vds) of conjunctions

9, of the form
(G:o A /\Hi>0>,
i=1

where the new G, H; are also in K[X7,..., X,].

Lemma 2.4 (Theorem of Tarski-Seidenberg, [36, p.33]). Let S C R™"! be semialgebraic
over IK. Then the projection

S":={a € R"|3b € R such that (a,b) € S}
of S on R™ (along the last coordinate) is itself semialgebraic over K.

Proof of Proposition 2.1. We denote by V(Py,..., P,) the set of all points (ay,...,a,) €
R"™ satisfying
Pi(ay,...,a,) =0 (7=1,...,n).

It is sufficient to consider the polynomial
Fl(X17-~~7Xn) :Plz(Xl,,Xn>++P3(X1,,Xn) E]L[Xl,...,Xn],

because in the real case we have V(Py,..., B,) = V(P?+ --- + P?) = V(F}). Since

(z1,...,7,) € R™ is an isolated solution of Fj(Xj,...,X,), there are rational numbers
T1,...,Tn, T such that the n-dimensional ball B around the center (71, ...,r,) with radius
/1 encloses only the solution (z1,...,z,), i.e. the solutions of the system defined by

F(X1, . X)) =0 A (Xi—r)? 4+ (Xp—m)? <,

satisfy
V<F1)QB: {(xh"'axn)}'

13



2. Algebraic independence criteria

It is clear that
V(R) = (R*\U(R)) N (R \U(-F)),
and so defining I, € Q[X,,...,X,] by

FQ(Xl,...,Xn) ::7‘—(Xl—TI)Q_..._<Xn_Tn)2

we get the Boolean combination

(1, .. 20)} = (]R” \ U(F1)> N (]R" \ U(—F1)> AU(F).

This shows that S := {(x1,...,2,)} is a semialgebraic set over the field K := IL. Applying
Lemma 2.4 (n — 1)-times, we find that every set {x;} (i = 1,...,n) is also semialgebraic
over L.

Then by Remark 2.1 we can express every {x;} by a finite disjunction of conjunctions,

e.g.

s

{z:} = U

o=1

with polynomials G, H,;, € L[X] (1 <o <s;1 < j, <r,) depending on z;. If G, =0
for all o, then V(G,) = R for all ¢ and

V(Gs) N ﬂ U(Ha,ja)]

Jo=1

s To

{zi} = ) UHss),

o=1j,=1
which is an open set in R and therefore a contradiction. Hence,
Gy, Z0 and Gy(z;) =0

for some 0. Since G, € L[X]\ {0}, z; is algebraic over I.. This holds for every i =
1....,n. O

Proof of Lemma 2.53. For j =1,...,n we set

Pj(Xl,...,Xn) = fj(Xla'--;Xnyyla---ayn) G]K(yhayn)[XlaaXn]

The determinant condition in Lemma 2.3 together with the theorem on implicit functions
imply that (z1,...,2,) € R™ is an isolated zero of the system of equations

P(X1,..., X)) =0  (j=1,....n).

Therefore, the conditions of Proposition 2.1 are fulfilled with L := K(y1,...,y,) and we
conclude on
tr. deg(L(z1,...,2,) : L) =0.

By the assumption, we have

tr.deg(IK(zq,...,2,) : K) =n

14



2.2. An algebraic independence criterion for functions in one variable

and hence
tr.deg(IL(z1,...,z,) : K) > n.

Applying the chain rule for transcendence degrees (Lemma 2.1) to the field extensions
K K(yp,...,yn) =L C L(zy,...,2,), we get

tr. deg(lK<y17 cee >yn) . ]K) =n,
as desired. ]

2.2. An algebraic independence criterion for functions in one variable

In this subsection we will prove the following lemma, which goes back to an oral commu-
nication with Professor Elsner and is referred to Lemma 2.3.

Lemma 2.5. Let K be a field extension of C(z). Let fi(z),..., fu(2) be algebraic inde-
pendent functions over IX and g1(2), ..., gn(z) satisfy the system of equations
Fj(fl(z),...,fn(z),gl(z), . ,gn(z)) =0 (j=1,...,n),

where Fj(Xq,..., X, Y1,...,Y,) € K[Xq,...,X,,,)Y7,...,Y,] for j =1,...,n. Assume
that

det <gfé(fl(z),...,fn(z),gl(z),...,gn(z))) Z£ 0.

Then the functions g1(2), ..., gn(z) are algebraically independent over K.
Remark 2.2. The determinant occurring in Lemma 2.5 is a function in z belonging to the
ring

]K[f1(2>7 sty fn(2)791<2)7 s 7gn<z)] :

As an immediate consequence of Lemma 2.5 we obtain the following corollary:

Corollary 2.2. Let K be a field extension of C(z). Let fi(z2),..., fu(2) be algebraic in-
dependent functions over K and let g;(z) = U, (fl(z), o ,fn(z)), where U;j(Xq,...,X,) €
K[Xy,...,X,] forj=1,...,n. Assume that

det(8Uj(f1(z),...,fn(z))) £ 0.

0X;
Then the functions g1(2), ..., gn(z) are algebraically independent over K.

The main tool for the proof of Lemma 2.5 is an analogue to Proposition 2.1 from the
preceding section, which, again, follows from [45, Ch.IL, § 17, Corollary to Theorem 40]:

Proposition 2.2. Let L be a field extension of C(z). Forj=1,...,n let P{(Xy,...,X,)
€ L[Xy,...,X,]. Moreover, let f1(z),..., fu(2) be functions satisfying

Pi(fi(z),.... fa(2)) =0 (j=1,...,n).

Assume that

det(g)]zi(fl(z),...,fn(z))) s

Then the functions fi1(z),..., fu(2) are algebraic over L.

15



2. Algebraic independence criteria

Proof of Lemma 2.5. Let I = ]K(gl(z), o ,gn(z)). For j =1,...,n we set
Pi(Xi,..., X)) = Fj(X1,..., X0, 1(2), ..., gn(2)) € L[Xq, ..., X,].
By the assumptions in Lemma 2.5 we have
Pi(fi(2), . fal2)) = Fi(f1(2), o ful2), 91(2), o gn(2)) =0 (j=1,...,m),

and

det (g?@(fl(z), . ,fn(z))> = det (gfé(fl(z), . ,fn(z),gl(z),...,gn(z))) #0.

Therefore, the conditions of Proposition 2.2 are fulfilled and we conclude on

tr. deg (E(fl(z),...,fn(z)) : ]L) =0.

Using the assumption on the algebraic independence over K of the functions fi(2), ...,
fa(2), we get
tr.deg (L(fi(2),..., fa(2)) 1 K) > n.

Next, we apply the chain rule for transcendence degrees (Lemma 2.1) to the field exten-
sions K C K(g1(2),...,9n(2)) =L C L(fi(2),..., fu(2)) and obtain

tr.deg (K(g1(2),...,90(2)) : K) =n.

This proves the lemma. O
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3. Jacobian elliptic functions and the complete elliptic
integrals

In this section we study the squares of the Jacobian elliptic functions ns z, nc z, nd z and

dn z. These functions satisfy

1 1
nsz=—, ncz=——,
sn z V1 —sn?z
1
dnz=+v1—k?sn?z, ndz=—,
dn z

where w = sn z is the inversion of the elliptic integral of the first kind, defined by

_/w dt
T Vaoou-ee)

There are a total of twelve Jacobian elliptic functions whereof these four will play a
fundamental role in the proofs of the main theorems. We refer to [8] for the reader who

is more interested in the theory of elliptic functions and integrals.

In order to express the numbers ®of, O Wo, and Wi, in terms of K/m, E/m and k, it
is necessary to compute the Laurent expansions for the functions ns? z, nc? z, nd* z and

dn? 2.

3.1. Series expansions of the squared Jacobian elliptic functions

The lemmas in this subsection are taken from [18]. We present slightly different proofs

anyhow, since some details will be used in the next subsection.

Lemma 3.1 ([18]). The coefficients of the expansion

1 0
ns z——2—|—Zc]z

7=0
are given by
o= S8, = (1= B2 kY, o= (14 k) (1 — 263)(2 — k?)
3 ’ 15 ’ 189 ’

(]_2)2]+3 _32620311 (]23)
Proof. By [8, (128.01)], the function w = sn z is a solution of
(w')? = (1 —w?)(1 — kK*w?), w(0)=0.
Hence, the function u = ns? z = w2 satisfies

(u)? = 4w b(w')? = 4w (w2 — 1) (w™? — k?),

17



3. Jacobian elliptic functions and the complete elliptic integrals

namely
(u')? = du(u — 1) (u — k?) = 4u® — 4(1 + k*)u® + 4k>u . (3.1)

Differentiation of (3.1) and dividing by 2u’ leads to
u” = 6u® — 4(1 + k*)u + 2k>.

Substituting u = 27> + > ¢;2%, we get

o0 2 o e}
6z’4+22j(2j —1)e;z% 2 =6 (Zc] ) +12z’2chz2j —4(1+k2)chz2j
=0 =0 =0

+ 6271 —4(1+ k)27 + 287
Equating the coefficients of 272 and the constant terms, we obatin ¢y = (1 + k?)/3 and

= (1 — k*+k*)/15. For j > 2 the coefficients of 2%~ on both sides satisfy

7j—1
2j(2j = 1)e; =6 Y cicjioa +12¢; — 4(1 + k)ej.
=0

Since 1 + k? = 3¢y, we have

—_

J— Jj—2

(j — 2)(2] + S)Cj =3 CiCj—i—1 — 6COCj_1 =3 Z CiCj—i—1-

=1

I
<)

For 7 = 2 both sides vanish and c; is not uniquely determined. To compute ¢y, substitute
u=2"2+4c + 122+ ez’ + ... in (3.1) and compare the constant terms. This yields
co = (1+ k*)(1 — 2k?)(2 — k*)/189. Once cp, ¢; and ¢y are known, the coefficients ¢;
(7 > 3) are uniquely determined. O

Lemma 3.2 ([18]). The coefficients of the expansion

1—F)nd®z=1-k+) d;z¥

j=1
are given by
1
d1 == k2<1 — k2) 5 d2 == —§k2(1 — ]{32)(1 — 2]€2) 5

j—2

(2 — V)vd; = 6dod;_y — 3dy Y _didj—iy  (j > 3).

=1

Proof. The function w = dn z satisfies
(W) =(1-w)w* = (1-k)), w0)=1,
(see [8, (128.01)]). Then the function u = (1 — k?)nd* z = (1 — k?*)w~2 is a solution of

(W) = du(u— (1 = k*)(1 —u) = —4u® + 4(2 — k*)u® — 4(1 — k*)u

18



3.1. Series expansions of the squared Jacobian elliptic functions

or, equivalently, of
u' = —6ut + 42 - K u—-2(1 k),  w(0)=1-k%  «(0)=0

Substituting u = 1 —k* + 3777, d;2% yields
- 2
> 2j(2) — 1)di2 =6 | (1— &%) —k?) Zd 2 4 (Zd z >
=1
+4(2 - k?) ( k2+2dz )—21—k:2)

Equating coefficients, we obtain d; = k*(1 — k?) and for j > 2 we have

J
(25— 1)d; = =2(1 = 2k%)d; — 3 didj_i_1.

Observing dy = —(1 — 2k?)d; /3 and multiplying both sides with d; we get

j—2

§(2) = V)id; = 6dod;_y — 3dy Y _didj—iy  (j > 3).

=1

Lemma 3.3 ([18]). The coefficients of the expansion

(1—k*)(nc®z —1) Zej

are given by
1
e =1—k, 6225(1—]52)(2—]52)7

j—2

j(2] — 1)616]' = 6€2€j71 + 361 Zeiej,i,l (j > 3)

=1

Proof. In [8, (128.01)] we find that the function w = cn z satisfies
(W) =1 —w")((1 =k +Kw’)  w0)=1.
Therefore, the function
=(1-k)nc*z—-1)=1—-k)(w?-1)
is a solution of

(W) = du(u+1)(u+1— k) = 4u® + 42 — kH)u® + 4(1 — K*)u
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3. Jacobian elliptic functions and the complete elliptic integrals

and hence of
u” = 6u® +4(2 — k*)u +2(1 — k?), u(0) =u'(0) =0.
Substituting u = Y7, e;z% leads to

o0 o0

0o 2
> 2j(2j — 1)e;z 2 =6 (Z ejz2j> +A2 k) ez +2(1— k).
j=1

J=1 J=1

Comparing the constant terms yields e; = 1 — k2. Moreover, for j > 2 we find
j—2
2j(2j — 1)e; =42 — k*)e;1 +6 > eiejii.
i=1

In particular e; = (2 — k?)e; /3. Multiplying both sides with e; we obtain

j—2

](2] — 1)6163' = 66263',1 + 361 26163;1;1 (] > 3)
=1

Lemma 3.4 ([18]). The coefficients of the expansion
dn®z =1+ ijz2j
j=1

are given by
1
fi=—kK, fo= §k2(1 + k%),

7j—2

725 =1 fif; =6fafj-1 = 3N Zfifjfifl (7 >3).

i=1

Proof. Since w = dn z is a solution of (w')* = (1 — w?)(w? — (1 — k?)) with w(0) = 1 (see
8, (128.01)]), the function u = dn® z = w? satisfies (v/)? = 4u(l — u)(u — (1 — k?)) with
u(0) = 1. Hence, the proof of this lemma is an analogue to that of Lemma 3.2. O

3.2. Expressions of @, &5 Uy, and V3, in terms of K/m, E/m, and k

In addition to the series expansions from the preceding subsection we will need the ex-

pansions of the functions cosec? z and sec? z, given by

(=1)(2) +1)2%2By; 19
(25 + 2)!

[o¢]
cosec’ z = — + E a/jZZJ , a; =
52
J=0

(J =0), (3.2)
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3.2. Expressions of oy, 5 Vo, and Vi in terms of K/m, E/m, and k

and
SR Y (—1)7(2) + 1)2272(2%72 — 1) Byj1s :
= bz b; = > 0). 3.3
sec” z Z ;2 i 2j +2)! (j=0) (3.3)
Here By = 1/6, By = —1/30, Bg = 1/42, ... denote the Bernoulli numbers. The expan-
sions (3.2) and (3.3) follow from the identities

— cot z = — cosec? z — tanz = sec? Z,

dz ’ dz
and the formulas (4.3.67) and (4.3.70) in [1].
For brevity we omit the argument ¢ in the notation of the g-series Agjy1, Baji1, Coji,

and Dsyjyq from now on.
With (1.2), (1.4), and (1. 7) we obtain

By = 25—1 Zas j-1(8)(Azj1 = (=1)"Dyj11). (3.4)

Zucker [46] proved the identities

2K\ ? 2K AK(K — E 2
(—) ns? ( I) = ( ) + cosec® x — 82 JAQJH—)
T

" ﬁ (25)"
(%)2 (1 — k*)nd? (2K9€) 4[(2E B 8i(_1)jD2j+l((22x—j))2!j'

™ ™

Equating coefficients and using Lemma 3.1, Lemma 3.2, and (3.2) we get the following
relations among the g-series Ay;;1 and the coefficients ¢; as well as among Dy;.; and d;,

respectively:
2K 2542 A22j+3 .
<—) ¢ =a;— (=1 554y (J21),

T (29)!
2K 2742 A 22j+3 .
(7) dj = (=1)"*! 2)) Doji1 (5 21).

For 7 = 0 we have

1 oK\? /3E 1 /(2K\? [(3E
= |1 (= R 2 - (= 2
n= g (- (Y (E2ew)). mim () (2 v s).

Equation (3.4) gives for even integers s the expression

—(231—1)! (05—1( )(A — )°Dy) +ZO’S Cio1(8)(Agjyy — (_1)8D2j+1)>

- (231_1)! [_ s ;41)!2 (1 B (?) (% _5+4k2)>

+ iUSJ'l(S)%gj)! (aj o (%) ] (Cj - dj))] ) (3'5)

(DQS =
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3. Jacobian elliptic functions and the complete elliptic integrals

whereas for odd integers s we obtain

1 (s — 112 2K\ ? )
@232(23—1)![ 24 (1_<7> (1_%))

2 9 J¢\ 292
+ ZUS —j— 1 2;53 ) (aj - (7) (Cj + d]) (36)
The series @3, can be expressed using (1.2), (1.4), and (1.8). For even s we find
1 s—1
&3, = s 1) Zoas—y 1(8)(A2j41 + (=1)°Daji)
=
1 (s — 1)12 2K\ ? )
= — | — 1 -2k
(25—1)![ 24 (1 (71') ( )
s—1 o 2j+2
—1)9(2§)! 2K\
- as_j_l(s)% (aj - (7) (c; + dj)) (3.7)
j=1
and for odd integers s
1 (s— 1)1 2K\? (6E )
5 = - — | — — — 5 +4k
2 (23—1)![ 24 <1 (w> (K ot
s—1 oy 2j+2
—1)(25)! 2K\ %
- Zo—s—j—l(s)% (aj - <7> (¢; = dj))] (3.8)
j=1
holds.
Combining (1.3), (1.5), and (1.9) yields
Wos = 25— 1)1 ZUS —j—1(8)(Cojt1 — (—=1)°Bajt). (3.9)

In [46] we find the relations

() 00 (o () ) s

2K\?  , [(2K=x 2x)%
<7> dIl < - ): 71‘2 +8Z J02]+1 ] | .

We equate the coefficients and use the expansions from Lemma 3.3, Lemma 3.4, and (3.3)
to get the formulas

2K\ ¥ 2%+ ,
(7) ej =bj + <_1)]W32j+1 (j>1),

2K\ 7" L 22943 _
(7) fi= (1" (2j)!02j+1 (7 >1).

22



3.2. Expressions of oy, 5 Vo, and Vi in terms of K/m, E/m, and k

For 7 = 0 we have

1 (4KE 1{/2K\?> 4KE
Bl—é( 2 ‘1)’ Cl—§<(7) T )

From (3.9) we compute for even integers s the expression

1
Wy = m ( (3 - 1)'2 Cy— Zas —Jj= 1 C2y+1 B2j+1>>

B (231_1)![_(8 _81>. (H (?) (“%))

+Zas“ D (@-—(%) <ej—fj>>], (3.10)

and for odd integers s we get

Vo = 5 1_ 1)! [<S _81)!2 <_1 * (%)j

+st —j( 23]gj> ((%) (ej + f3) —@)]. (3.11)

Similar computations give

Vs = (2s 1— 1)! [_ : _81)!2 (_1 * (%)2)

+Zas il 22353]) ((%) (€j+fj)—bj>] (3.12)

if s is an even integer and

|5 (- () (- %)
Zas Ll P <bj (?)+ (e - f;»))] (3.13)
for odd integers s.

For abbreviation we shall introduce

0. = Cj—dj, C"‘)+ = Cj—|—dj, A= ej_fj7 A;— = €j+fj, (] > ].), (314)

J J J

where @ji,Aji € Q[k] are even polynomials in k. From Lemma 3.1 to Lemma 3.4 it is
easily seen that

deg, ©7 =2j 42, deg,©F <2j+2, deg, A7 <2j, deg,A] <2j. (3.15)

The following lemma provides exact formulas for the degrees of @;r, A; and Aj*.
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3. Jacobian elliptic functions and the complete elliptic integrals

Lemma 3.5. The polynomials defined by (3.14) satisfy

deg, ©] = 2j+2 (=1),
degi Ay = 2j -2 (=1,
degp A] = 2j (=1).

Proof. From (3.14) we have
O (k) =¢;(k) +d;(k), (= 1),

where ¢;(k) and d;(k) are the coefficients from the series expansions of ns?(z, k) and
(1 — k?)nd?(z, k), respectively. Let A(p) denote the leading coefficient of a polynomial
p(k). Since degy, ¢; = degy, d; = 2j + 2, we have to prove that

Ae) + A(d)) £ 0,

where A(c;) and A(d;) satisfy the recurrence formulas in Lemma 3.1 and Lemma 3.2,
respectively. Since the leading coefficients of ¢;(k) satisfy the same recurrence formula
with also the same initial conditions as the constant terms of ¢;(k), we have an explicit
formula for A(c;). Using the identity

s?(2,0) = cosec? z,
we obtain with (3.2)

(—1)7(2) + 1)22+2 By,
(27 +2)!

)\(Cj) = a; = (] Z 1) :

To conclude on deg, @j = 27 + 2 we will prove that
—Aldj) =b;  (1=1),
where b; = (222 — 1)a; are defined for j > 1 by (3.3). According to Lemma 3.2 we have
ANl = ———— [ —ard,_ ) +33 A . i>3).
( ]) j(2] . 1) ( Jj— 1 Z .7 ) ( )
Moreover, for k = 0 we have

c*(z,0) = sec” z,

and therefore Lemma 3.3 gives the expansion

o0
sec’z =1+ E b 2%
J=1

with

2 1 = .
b1 = 1, bg = g, bj = m <4bj—1 + 3i21bibj—i—1> (] 2 3)‘
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3.2. Expressions of oy, 5 Vo, and Vi in terms of K/m, E/m, and k

Hence, the numbers b; satisfy the same recurrence formula as the numbers —A(d;). Ob-
serving that the initial conditions

2
—ANdy)=1=1by, —\dy) = 3= by

are fulfilled, we conclude on —\(d;) = b; for j > 1 and
Nej) +A(dy) =a; — by =(2-29")a; 20 (5 >1).

This proves the first identity stated in the lemma.
Next, we obtain from Lemma 3.3 and Lemma 3.4 the identities deg; e; = deg,, f; = 27
as well as the recurrence formulas

2 .
Aej) = —j<2j—_1))\(€j71) (j=3)
and 5
A(fj) = B 1))\(fj,1) (j>3).
Hence, by induction on j it can be shown that
—1)7i92i—-1 )
Alej) = A(f;) = % (J=1). (3.16)
We conclude on
deg, Af =2j,  degyA; <2j—-2  (j>1).

It remains to prove the second identity stated in the lemma. For this we denote by Ay (e;)
and \o(f;) the k%2 coefficient of the polynomial e; and f;, respectively. From Lemma 3.3
and Lemma 3.4 we obtain the recurrence formulas

A2<ej>—m<wem—%<ej1>+3;A<e@->x<eul>) (23 @17)

and

Xo(f5) = 3(27;—1) <—2>\(fj—1) —2X2(fj1) — 3;>\(fi)>\(fj—i—1)> (1 =3). (3.18)

Using (3.16) we have
1+2 Z Aej)z¥ = cos(22).
=1
We define

Aeg) := 5
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3. Jacobian elliptic functions and the complete elliptic integrals

to obtain .
cos(2z) =2 Z Mej)z¥
=0

Now we may compute the Cauchy product:

oo j—1
cos?(22) —422)\ ei)A(ej_i) :42 AMe)M(eji1)27?
j=0 i=0 j=1 i=0
oo j—1
_1+4ZZAeZ (ej_i1)2%72. (3.19)
7=2 1=0
Otherwise we have
324] 1 2. 0 (_1)j—124j—5 0
_ Jj—2
cos?(22) —1+jzl —1—|—j§2 2/ =2 2977, (3.20)

which is the well-known power series expansion of cos?(2z). Equating the coefficients in
the right-hand sides of (3.19) and (3.20) yields

Jj—1 i i
(_1)y 124] 5
4 Meejia) = NOED
i=0 J '
and then with (3.16)
j—2 j—164j—T7 i—162j—3(92j—4
(—1yiey —1)i-1021-3(92i~1 _ 1)
)\ i s — )\ s — 21
Zl Aeji1) (2] —2)! (¢51) (27— 2)! (3:21)

Since A(ej) = A(f;), we may substitute (3.21) into (3.17) as well as into (3.18) and obtain
the recurrence formulas

2)\ J=192j-2 3 2221 4
2)\ 1)722-2 3 223 -1
For the polynomial Aj_ = e; — f; this gives
NP o B v T L

(2 = 1) (2)!
where Ay(A}) denotes the k*~*- coefficient of the polynomial A} . Hence, by induction on

j, one proves
(_1)j—124j—3

(25)!

which is nonzero for 7 > 1. We conclude on

degpy A; =2j—-2 (j=1)

Ao(A)) = =1,

and the lemma is proven. O
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3.2. Expressions of oy, 5 Vo, and Vi in terms of K/m, E/m, and k

For the proofs of the main theorems in this thesis we will need explicit formulas for
certain coefficients of the polynomials @j[ and Aj[. Although we will only use the first
two and the leading coefficients, we compute the third coefficients additionally, since the
extra effort is not too large.

Lemma 3.6. Let the polynomials @ji(k’),A»i(k) € Qlk] (j > 2) defined by (3.14) be

J

written as
O, (k) = ajo + apk? + apkt + + O‘jﬁjkm:a
O 1(k) = Bio + Biak* + Bkt + + Bk,
A (k) = o 4+ vak® 4+ ekt + + ek,
Aja(k) = G0+ Gk + 0kt + + 05k

Using (3.2) and (3.3) we have the following formulas for j > 2:

(s

;0 = Aj—1, 51 = W - 5 aj—1,
Bio = aj_1, Bi1 = % - %%‘—1,
Y0 = bj-1, Vi1 = % - %bjla
50 = bi1 5 = % ~ I,

(C(T -8 -2 (4= )

. — - J— 22.7 -
O[],2 (2] . 2)' + 32 a’] 1 Oé],] a] 1
(=1)7712% (=9 + 85 +2%71)  j(45—7) :
Pz = (25 —2)! t e, B = (2 2)a;j_1,
—1)I12% T (7 48 — 2Y) (45— 7 —1)i24-7
i — (=1) ( & ) (4 )bH? %',jz:(-)—,?
(25 —2)! 32 (25 —2)!
PO i al Co VR o) WPICT o L (cyiaw
5],2 - . + b]71> (5],371 - . .
(25 — 2)! 32 (25 —2)!

Proof. As in the proof of Lemma 3.1 we use the differential equation for the function
u = ns*(z, k), namely
(u')? = du(u — 1)(u — k?), (3.22)

differentiated with respect to 2. For k = 0 (3.22) has the solution u = ns?(z, 0) = cosec?z.
Therefore, we make the ansatz

u = ns*(z, k) = cosec’z + f1(2)k* + g1(2)k* + O(k).

Near z = 0 we have ns?(z,k) = 272 + O(z). Hence, the functions fi(z) and g;(z) are
analytic at z = 0. Substituting this into (3.22) and equating the coefficients of k% and k*
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3. Jacobian elliptic functions and the complete elliptic integrals

yields

sinzcosz - f] + (14 2cos 2) - fi = cos® z (3.23)

sinzcosz - gy + (1+2cos’z) - gy

1
= Zsm z- (f])? + (sin* z — 3sin® 2) - f2 + (2sin®z —sin* 2) - f1.  (3.24)

Since f; is bounded at z = 0 we derive from (3.23

COs 2z

fi(z) =

(z —coszsinz) = —

2sin® 2
= 1(z(cot 2)) — E(cot 2)" +

2 4
We multiply (3.24) with tan? z and substitute

3 -2 —
COS 2 (Z—COSZSiIlZ) and fl( ) sin z cos z ZCOS z zZ

fi(z) =

into the resulting equation. Then we obtain

2sin? z 2sin? 2

COS 2

. 3 ’
1
<Sm 291) T ((*tanz)’ + 3(2* cot z)' + 4sin* z — 3) .

Since ¢ is also bounded at z = 0 we determine

sin® 2 1 9 2 3 3 . . 3
g1 =—|2tanz 4+ 32"cot z — =2z — =sinzcosz —sin” zcos z | .
cos 2 16 2 2

This leads to
3z cot?2 3 zcotz 3

——'T——coﬁz—cost
sin? z sin? z 2 sin®z 2

3 3
—cot z — cot® 2) + 12(00‘52 2) — 3 cot? z — cos? z)

_ cotz + 3 1\ 3 1 1 9
-z - = — — cos“ z
sin? z 4 sin? z 2 \sin?z

;(cot z) + 5 _ cos? z>

3
% (cot? 2)" — Zz(cotz)"—l— 5

EI*— SIH SIH SIH EIH

3 3 1
(—E(Cot 2)" — ZZ(COt z)" + §<C0t 2) +1-— 5 €08 22> :

Analogue procedures for nd*(z, k), nc?(z, k) and dn®(z, k) (see also [21]) reveal for the
expansions

nd*(z, k) = 1+ fo(2)k* 4+ ga(2)k* + O(K°)
nc?(z, k) = sec’z + f3(2)k* + gs(2)k* + O(k%)
dn?(z, k) = 14 fo(2)k? + ga(2)k* + O(K5)
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3.2. Expressions of oy, 5 Vo, and Vi in terms of K/m, E/m, and k

around (z, k) = (0,0) the functions

1
f2(2) =sin® 2z = —é(cos 2z — 1),

g2(2) = 1 sin? 2 — 1—16(82 cos z — 11sin z 4 sin 3z) sin z
116 (cosdz —4zsin2z — 8cos2z +7),
f3(2) = %tan z(tanz — z sec? 2) = —i(z(tan 2)" —2(tanz) +2),
g3(z) = 3—12 (2 cos? z — 15 + 13sec? z — 42? sec® z — 13z tan z sec? z + 627 sec* z)

1
= 6—4(222(‘5&11 2)" —13z(tan z)” + 26(tan z)’ + 2 cos 2z — 28) ,

1
fa(z) = —sin?z = E(cos 2z — 1),

L.y : : .
9a(2) = 757z — 1—6(—8zcosz+ 5sin z + sin 3z) sin z

1

16(00542 +4zsin2z — 1).

By (3.14) we have the following identities:

1 4]€2 -2 > _ 2j 2 2 2
—2+ 3 +Z@] (k’)Z = ns (Zuk)+(k —1)1’ld (Z’k>
j=1

z

= cosec’z — 1+ (fi(2) — fa(2) + DE* + (91(2) — g2(2) + fo(2))k* + O(K®),  (3.25)

Zl — 2k2 i @+ 22— 1182(2, k) + (1 — kQ)ndQ(z, k)
= cosec?z + 1 F(F1(2) + fo(2) = D2+ (g1(2) + g2(2) — fo(2))K* + O(K®),  (3.26)
_1+ZA — k*)(nc’(z, k) — 1) — dn®(z, k)

=sec’z — 2+ (f3(2) —sec®z + 1 — f1(2))k* + (g3(2) — f3(2) — ga(2))k* + O(K®),
(3.27)

1+ZA+ 2% = (1= k) (nc*(z, k) — 1) + dn?(z, k)

= secs + (fy(2) — sects + 1+ fu(2))K® + (g5(2) — fol2) + gu(2))K + O(KS) . (3.28)
Hence, for k = 0 we get by (3.2) and (3.3) for every j > 2

Qjo0 = A1,

ﬁj,o = Qj—1,
Y0 = bj—la
0j0 = bj-1.
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3. Jacobian elliptic functions and the complete elliptic integrals

Moreover, by equating the k*-coefficients in (3.25) to (3.28) we obtain the formulas

il aj 2 = fi(2) = fol2) +1 - g , (3.29)
p
il Biv12” = fi(2) + fa(2) = 1+ % , (3.30)
p
i%m 2 = f3(2) —sec’z + 1= fu(2), (3.31)
=i
i 011 27 = f3(z) —sec®z + 1+ fa(z). (3.32)

The series expansions for the right-hand-sides of (3.29) to (3.32) can be computed as
follows:

£i(2) — fal2) — % _ g <—1>j+122j(‘219()2!32j+2 =

fi) + () — & = f; Oy )
f5(2) —sec?z + 1= fi(z) = g (—1)j+122j‘1((2(22j;; By t1) o
f3(z) —sec?z + 1+ fu(z) = g (—1)”12%—1((2(2;;_ DByio—1) sy

Then, from (3.29) to (3.32) we have for j > 2

(—1)722%=3(2By; — 1)

T Tl
B = (—1)j22jf3(25’zj +1)
’ (27 —2)! ’
Via = (=1)72%73((2¥ — 2)By; + 1)
’ (27 —2)! ’
51 = (=122 73277 —2)By; — 1)
’ (25 —2)!
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3.2. Expressions of oy, 5 Vo, and Vi in terms of K/m, E/m, and k

Combining these identities with formulas (3.2) and (3.3) we get the desired formulas

Q1 =

5j,1 =
Vi1l =

0j1 =

(_1)j—122j—3

(25 — 2)!

(122

(2j — 2)!
(=123

(25 —2)1
(_1)j7122j73 _Z

(25 — 2)!

J
- 50-1;

2
J

- 5%‘—17

% bj—l )

9 bj—l .

Equating the k*-coefficients in (3.25) to (3.28) we find

Z ajp1227 = g1(2) — g2(2) + fa(2),
j=1
D Bine? = gi(2) + g2(2) = fol2)
j=1
> i1z 2 = ga(2) — fal2) — a(2).
j=1

Z Oj4122% = g3(2) — fa(2) + ga(2) -

For the right-hand-sides of (3.33) to (3.36) we compute

(27)!

(—1)722775(2(4j — 3) Bgja — 1 — 8 — 2%+1) y

(=1)297°(2(4) = 3)Bajun — 1+ 8] +294) ,

0(2) - 92(2) + o)
-3
5(6) + 0:2) — Ful2)
-3
50— ) — ()

(25)!

I
.Mg

<
Il
—

~—

93(2) — f3(2) + ga(2)

(25)!

(L2 75((29% — 2)(4) = 3) Bayu +1 = 8 + 27)

I
.Mg

<
Il
-

(25)!

(Z1Y2975((2%7% — 2)(4) = 3)Bajun + 148 = 2H) )

22

(3.33)

(3.34)

(3.35)

(3.36)
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3. Jacobian elliptic functions and the complete elliptic integrals

From (3.33) to (3.36) it follows for j > 2

—1)7122%7(2(4j — T)By; + 7 — 8j — 221
J

Qj2 =

(25 —2)! ’
g, (CLPTRITRM) —T)Byy — 948+ 2%7)

»2 (25 — 2)! ’
(LT = 2)(4) — T) By — T+ 85 —2¥71)
732 = (27 — 2)! ’
s (S0 2)(4) — T)By +9 — 8 + 2%
»”e (2 - 2)! |

Again we use the formulas (3.2) and (3.3) and obtain

(17— 85— Y 4 =)

Yz = (27— 2)! LN TR A
C(—1)TRUTT(—9 + 8 4+ 2%7Y) (45— T)
fiz = (27— 2)! T G
(=17 485 — 227 (45— T)
752 = (2j _ 2)! + 39 b]*l ’
5o, - CDTRVTO -8+ i T)
» (25 — 2)! 32 b

The remaining formulas for o j, 8;;, 7v;,j—2 and d; ;1 can be easily derived from the proof
of Lemma 3.5. Hence, the lemma is proven. O
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4. Independence results for one-type subsets of ()

The first general algebraic independence result on particular subsets of €2 can be found in
[17]:

Theorem 4.1 ([17]). Let s1, s9, 83 be pairwise distinct positive integers. Then the numbers
Do, DPos, and Doy, are algebraically independent over @ if and only if at least one of
S1, S9, 83 1S even.

Accordmg to thls theorem we will study the sets {®5, , @5, @5}, { Vo, Vas,, Vo, }
and {W} } in this section.

2817 282 ? 283

4.1. Results for the set {3, . 5ot

2827 283

Theorem 4.2. Let s1, so, 53 be pairwise distinct positive integers. Then the numbers o3

2817
5., and O3, are algebraically independent over Q if and only if at least one of s1, s, 83

18 odd.

The proof of Theorem 4.2 involves the distiction of several cases. At first we will study
the case with three odd integers sy, $2, 3.

Lemma 4.1. Let s; < sy < 83 be positive odd integers. Assume that

$30,,-1(05,-1) — $20,,_1(0,, ) #0 (4.1)
as a polynomial in k. Then the numbers @5, , @5, and ®3,  are algebraically independent

over Q.

Remark 4.1. The condition (4.1) is equivalent to

(©5,-0)%
(653 1)

Proof. Assume contrary to the condition (4.1) that

¢ Q. (4.2)

83@5_3_1(@5_2_1) 82682 1(@_

s3—1

) =0
holds, which is equivalent to

(On) _ (05

S3— == = S2———
652—1 653—1
Since ©,, | = 0O, (k) and ©,, ;| = O, (k) are polynomials in k, we may compute the
integrals
k e t ! k e t !
NS ST
0 63271@) 0 833 1(t)
This gives
o | ©sa )| 1(©5,00% | ais
(O, -1 (k)= (05,-1(0)) a1l
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4. Independence results for one-type subsets of §)

where the last equation follows from Lemma 3.6. With (3.2) we get

(63_271('1‘5»33 _ ai‘;l
(65_3—1““))52 ag

€Q,

which is contrary to the condition (4.2). This proves Remark 4.1. O

Proof of Lemma 4.1. In (3.8) we replace the quantities k, K/m, E /7 by the independent
variables Xy, Xo, X3, respectively, and obtain for odd integers s the function

03,(X1, X2, X3) = (231_1)! [_ (s ;41)!2 (1 _(2x,)? (67)23 _5+4X12)>
- i%—j—l(s)%gj)! (aj — (2X,)¥T? @j)] _

Here ©;, formally a polynomial in &, now denotes the corresponding function from Q[X,].
We compute the derivatives

0ds, B 1 (s —1)1? 9
aXl (k7X27E/7T) - (28—1)' [ 3 (2X2) k
s—1 ; .
—1)7+L(29)! . y
=Y o T x| (4.3
j=1
03, B 1 (s—1)!* ([6FE 9
8X2 (/{Z,XQ,E/TF) = (28—1)'[ 6 ?+2X2(4k —5)
s—1 ; . .
—1)7FH 26 +1 ; _
. Zl Os—j—l(s) ( ) 2(2j+)1 ( ) (2X2)2]+1 @j : (44)
J:
0P;,  (s=1P
X, (k, Xo, E/T) = 225 — 1)1 (2X7). (4.5)
We apply Corollary 2.1 with
K=Q, n=3, =k, :UQIE, xszga
T T

and
Uj:(I);sj(XbXZ;XB); yj:q);gj(kaK/ﬂ_aE/ﬂ) (]:1,2,3)
For brevity we put

0D;.
¢:(]) = ¢j(])<X17X27X3> = 8;J (X17X27X3> (Zhj = 172)3)
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4.1. Results for the set {®5, , @5, , ®5, }

Then we compute

- (913)63203(1) + 01 1>¢;<3>¢§<2>+¢*;<2>¢;<1>¢§<3>). (4.6)

We have to prove the determinant A(k, K/m, E/m) to be nonzero. For the following, let
A(2X5, f) denote the leading coefficient of the polynomial f(Xi, X5, X3) € Q[X1, X, X3]
with respect to the variable 2X5. From the formulas (4.3), (4.4) and (4.5), and with
0o(s) = 1 we obtain

1

)‘(2X27 Qﬁ(u)) (QSU - 1)228u+1 (Gs_u—1>, )
A(2Xa, ¢5(v)) (25, _Sf)QQSvl O, -1
* (Sw — 1)'2
A(2Xs, ¢3(w)) = 225, — 1)1 (4.7)

The maximum of

degy, (91(u)d3(v)¢3(w)) = 25 + (25, — 1) +1 = 2(su + 50)

is attained when (s,, s,) = (S2, s3) and (s,, $,) = (83, S2), since s; < sy < s3. This implies,
that the leading coefficient of A(k, Xo, E//m) satisfies

A(2X2,A)
= A(2X3, 01(2)9;5(3)95(1) — ¢1(3)92(2)93(1))
. 1 _ ’ S3 _ (81 — 1)'2
T (255 — 1)222H1 (On,-0)" (253 — 1)22ss—1 571" 9(25) — 1)
1 S9 _ (81 — 1)'2

— o- ). s} e S A
(253 — 1)2283+1( 1) (259 — 1)22s2=1 75271 9(25) — 1)

- (Sl — 1)'2 _ /
- 22(32+33)+1(282 _ 1)(253 _ 1)(281 _ 1) (83983 1(682 1> 32@52 1(953 1) )

which does not vanish as a polynomial in k& by the assumption (4.1). Since the numbers
k,K/m,E/m are algebraically independent over @, we have A(k, K/m, E/7) # 0, and
therefore Lemma 4.1 is proven. n

In the next lemma, we replace the condition (4.1) by a simpler one. Recall the notation

o-

(k) = ajo+ajik® + okt + - bk (52 2)

from Lemma 3.6.
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Lemma 4.2. Let s; < s9 < s3 be positive odd integers. Assume that

ﬁ a32,0a53,1 (4 8)

52 Qg3.0065.1

@*

2897

Then the numbers @3 and @3, are algebraically independent over Q.

2817

Proof. Using Lemma 4.1 we have to prove that the condition (4.1) or, equivalently, (4.2)
is a consequence of (4.8). Suppose on the contrary, that (4.2) does not hold. Then for
some rational number r # 0 we have

2 2s2\53 __ 2 253 52
(0552,0 + O‘Smlk +oeee 0452,52]6 ) - 7”(049370 + (153,1]'C +eeet CYS:’HSLJ{: ) )

or
s3—171.2 S3 2s983 __ so—17.2 . 25983
520 +S3a5271a820 k +a82 Sgk - T( 530 +82a53 105530 k +a 53 83]{: ) .
Equating coefficients, we obtain
s3 s3—1 __ so—1
Qg = mz83 0 and 835y 10 g = T'S20s5 1002 ()
From these equations we derive
53 _ &82,0a83,1
- )
52 Ug3.005,1
which contradicts our hypothesis (4.8). O

Proposition 4.1. Let sy, o, 83 be pairwise distinct odd positive integers. Then the num-

bers @3, , ®3,,, and D5, are algebraically independent over Q.

2817 2897

For the proof of Proposition 4.1 we have to show that for odd positive integers s; <
Sy < s3 the condition (4.8) from Lemma 4.2 is fulfilled. For this, we will use the formulas
for a;p and a1 given by Lemma 3.6 and the inequalities stated in the following lemma.
We remark that the numbers a; defined by (3.2) are positive for every j > 0, since

(—1)! Byj2 = | Bajal-

Lemma 4.3 ([17]). Let j > k+ 2 > 4 be integers. Then we have

aJ > 4] k(2k)' )
ag (25)!
Moreover, for every j > 1 we have
Q; ] +1

aj—1 27T j
Proof. By (3.2) and the following inequalities for Bernoulli numbers (cf. [1, 23.1.15])

2(2n)!
(2m)>

2(2n)!
(2m)2n(1 — 21-2n)

< |B2n| < (n > 1),
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4.1. Results for the set {®5, , @5, , ®5, }

we have 27 4+ 1)2%+3 27 + 1)2%7+3
) J 1 J
(Ll C b i (j > 0)
(2m)2i+2 7= (2m)E (1 — 27T ’
which yields for any nonnegative integers j and k
aj o 2)+1 5k \ok-2j —2k-1
— > =472 T(1—2 : 4.9
U S e ) (19)

For k = 7 — 1 we obtain

o _@D-2H) 1
aj_1 (27 — 1)m2 - 2yn?’

which is the second inequality stated in the lemma. Now, put m :=j —k > 2, kK > 2.
Observing that 27/(2k + 3) < 27/7 < 1 —272*71 we have

(2k) 1 - (2k + 3)? 1

27)! ~ k+1)---(2§) = k+1)(2k+2) (2k + 3)2"
B (2k + 3)? 2j +1 oy or \*"
_(2k+2)(2k+2m+1)'2k+1'(2”>k '(2k+3)

241 yg2m  2j+1
< —2 .7_<—
< oM 7 S ok+1

Together with (4.9) we obtain the first inequality from the lemma. O

(27T)2k_2j(1 _ 2—2k—1)'

Proof of Proposition 4.1. Since s1, S9, S3 are pairwise distinct we may assume that s; <
59 < s3. From the formulas for oy and ;1 given by Lemma 3.6 we derive

S3 225373 223372
-5+ — 53+
ﬁ B Olsy 00s5.1 _ ﬁ _ 2 CL5371(283 — 2)‘ _ ﬁ _ 5 a33,1(253 — 2)'
S9 (s5.00s1 S9 So N 225273 S9 o 2252*2
2 ay,_1(255 — 2)! 2T Gy, 1 (250 — 2)!
228272 223372
S — S
. 3a32_1(232 — 2)' 2CL53_1(283 — 2)'
- 92s2—2
82<_82 * CLS2_1<282 — 2)')
S9 2232—2
_ Qgq—1 (282 — 2)' ) ﬁas;;—l _ 22(83—82) (282 — 2)'
92822 89 Usy—1 (283 — 2)'
So| —S
2( 2+ a52_1(232 — 2)')

The conditions of Lemma 4.3 are satisfied for j = s3—1 and k = s — 1, since s3 — so > 2
and sy — 1 > 3 — 1 = 2. Therefore, we conclude on

58 Ass—1 92(s3—s2) (252 — 2)‘ Asg—1 45352 (282 - 2)' -0
S92 Ugy—1 (283 — 2)‘ Agy—1 (283 — 2)_' .
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4. Independence results for one-type subsets of §)

This gives

53 (g, 00045.1
2 2, 3, > O,

S22 Olg3,004,,1
so that the condition (4.8) is fulfilled. Thus, Proposition 4.1 follows from Lemma 4.2. [

Until now, all the indices s1, so, 53 were assumed to be odd. For the proof of Theorem 4.2
it remains to discuss the cases in which at least one index is even.

Proof of Theorem 4.2. 1f s1, s9, s3 are even, then it follows from (3.7) that

o5, B, By, € Qk, K /),

2899 253

so that these numbers are algebraically dependent over Q. We split the remaining cases
into the following two parts:

Case 1: Two indices s; are even, Case 2: Two indices s; are odd.

For the conditions of Lemma 4.3 to be fulfilled we will at first investigate the cases with
2 ¢ {s1, S92, 83}. Then without loss of generality we have the following two cases:

Case 1: s1>1 odd, 4<sy <s3 even,
Case 2: 1<s; <sy odd, s3>4 even.

In (3.7) we replace the numbers k, K/m, E/m by the independent variables X, X5, X3,
respectively. For even integers s we obtain the function

0 (X1, X, Xo) = —— =D ox,2 (1 2x2))
R N O §TH DY ? L
(=1)7(25)! ‘
— Z Ts—j—1( oo <6Lj — (2X2)23+2 @j‘) (4.10)
where ©] now denotes an element from Q[X3]. The derivatives are computed as
oD 1 [(s—1)e )
*(k, Xo, E = 2X5)" k
ax, X E/7) (23—1)![ g (2%)
(=17 (2))! *
- Zas () (2X2)** (0] ) (4.11)
oD 1 (s — 1) )
*(k, Xy, B = — 2X5 (1 -2k
ox, *r X2 E/m) (25—1)![ 52l )
—1) ()16 + 1 :
- Zas B R BETED
0P;
*(k, Xo, E =0. 4.1
an ( ) X2, /7T) 0 ( 3)
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4.1. Results for the set {®5, , @5, , ®5, }

Case 1: The determinant A(X;, X5, X3) defined by (4.6) is simplified to
A(X1, Xa, X3) = 61(2)65(3)03(1) — ¢1(3)65(2)03(1),
since ¢3(2) = ¢%(3) = 0 from (4.13). With
degx, (¢1(2)¢5(3)95(1)) = degx, (41(3)¢5(2)95(1)) = 2(s2 + s3)

we obtain for even integers s,, s,

. 1 ,
)\(2X27 (b]_(u)) - - (25 - 1)223u+1 (@ju—l) )
A2Xo, ¢5(v)) = — e OF

(25, — 1)22501
and A\(2Xo, ¢5(1)) was already computed in (4.7). Hence, we get

A(2X2,A)

. (31 - 1)!2 r + v
o 22(82+53)+1(282 _ 1)(283 _ 1)(281 _ 1) (83683 1(982 1) 682 1<@83 1) ) :

Similar as in Remark 4.1, this leading coefficient does not vanish if and only if

(05,-1)%

(@;1y2¢Q. (4.14)

We recall the notation
OF (k) = Bjo+ Bjak? + Bk + -+ + B ;K% (7122)
from Lemma 3.6. As in the proof of Lemma 4.2 it follows that the condition (4.14) results

from
/832 0683 1
ﬁsg 0532 1
We use the formulas for 3; and ﬁﬂ given by Lemma 3.6. Finally, we may apply

Lemma 4.3 with j = s3—1 and k = s;—1, since the conditions are fulfilled by £ > 4—1 =3
and j — k = s3 — s9 > 2. We conclude on (4.14) as in the proof of Proposition 4.1 from

#

2233—2
S —_—
7& Bsr08s51 ’ Asy—1(2535 — 2)!
553 0/882 1 2282_2
S9 —

Agy—1 (282 — 2)'

Hence, we have proved that ®3, , @3, and @3, are algebraically independent over Q.

Case 2: The determinant A(X7, Xy, X3) takes the following form

A(Xy, Xa, X3) = ¢1(2)05(3)05(1) + 61(3)92(1)¢3(2) — ¢1(3)¢5(2)#3(1) — ¢1(1)95(3)d5(2),
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4. Independence results for one-type subsets of §)

since ¢3(3) = 0. We have
degx, (01(2)05(3)05(1)) = degx, (67(3)05(2)d5(1)) = 2(s2 + s3),
degx, (61(3)05(1)05(2)) = degx, (47(1)05(3)05(2)) = 2(s1 + s3),
hence, by the assumption of Case 2, degy, A = 2(sy + s3). This gives

A(2Xa,A)
= AM2X2, 01(2)93(3)95(1) — ¢1(3)95(2)d5(1))

_ _(81 B 1)!2 — / — /
o 22(s2+53)+1(282 _ 1)(283 _ 1)(281 _ 1)] (83@:3*1(952*1) - 52982*1(@:3*1) ) :

Assume that the right-hand side vanishes, namely

(©5,-1)"

6 )= <%

We express the polynomials ©,_; and ©,_; as in Lemma 3.6 and obtain

S3 Qs 0053,1
52 a82,1653,0

(4.15)

Here, we may have sy < s3, or s3 < s3. To handle all possible situations, we distinguish
the following four cases:

Case 2.1: S9 < 53— 3, Case 2.2: So > s34+ 3,
Case 2.3: S9g =83 — 1, Case 2.4: S9g =83+ 1.

Case 2.1: As in the proof of Proposition 4.1 we get with odd sy and even sz

S9 2232—2

Agg—1 (282 — 2)'
2252—2
(152_1(282 — 2)')

53 8sa-1 _ oa(sy—so) (252 — 2)!

S92 Ugy—1 (283 - 2)' '

53 o a82,0683,1
592 0[82,1653,0

So <—82 +

We have s3 > 6 and s3 — so > 3. Therefore, we may apply Lemma 4.3 with j = s3—1>5
and k= sy —1 >3 — 1 = 2 which gives

83051 aey-sn) (2272 1, 2= 20
52 sy -1 (253 —=2)1 7~ as,1 (255 —2)1 ~

and then
53 0652’0/83371

> 0.
592 0432,1533,0

This contradicts the assumption (4.15).
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4.1. Results for the set {®5, , @5, , ®5, }

Case 2.2: Here, we have s, — s3 > 3 with s3 > 4 and

S3 2283—2

Agy—1 (283 — 2)'

225372
%3 <_83 + CL8371<253 — 2)')

52 Asy—1 92(s2—s3) (283 — 2)|

53 Qg5—1 (282 — 2)' .

‘82 0452,1533,0
53 0452,0533,1

We apply Lemma 4.3 with j = s, — 1 and k =s3—1>4 — 1= 3 and obtain

S92 0452,1533,0

>0,
S3 sy 00583,

a contradiction to (4.15).
Case 2.3: Let s := s > 3. Then equation (4.15) is written as

223
s+1———
s+1  asofsr11 as(2s)!
s 51 5541,0 22572 ’
as—1(2s —2)!
or, equivalently,
Qg 2

t 25— 1)(s+ 1) (4.16)

From the second inequality in Lemma 4.3 we obtain

s+1 - 2
212s (25— 1)(s+ 1)

Obviously, for s > 4 this does not hold. Moreover, for s = 3 in (4.16) we have

7 as 2 1

0w’ GoNETD 10

Hence, also in this case the assumption (4.15) leads to a contradiction.

Case 2.4: Put s := sy > 5. Again, this leads to (4.16), which is impossible as shown in
Case 2.3.

It remains to discuss the two cases with 2 € {s1, 59, s3}, namely:

Case 1: s1>1 odd, 2=3sy <s3 even,
Case 2: 1<s; <8y odd, s3=2.

Case 1: By (4.10) the function ®5, = @} takes the form

DX, Xg, X3) = é (2—14(1 — (2X5)*(1 — 2X7)) + %(a1 - (2X2)4@1+))

1

=T (1 — (2X5)%(1 — 2X?) + % (1 — (2X)4(1 + 14X2 — 14Xf‘))) ‘
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4. Independence results for one-type subsets of §)

The derivatives are written as

02} o2 (5= Liox 27k — 1453

5 (b Xa. B[7) = 25(2X0) (k; S (2X)2(Th — 1487 )

0P} 1 2 4y L 3 2 4

o (b X0 B/m) = o (2X2(2k: 1) 1—0(2(2)(2) (1+ 14k — 14k )) ,
0b?

8X3 (k?,XQ,E/?T) =0.

Since sy and sy are even, we have ¢%(2) = ¢%(3) = 0 and get

A(Xy, Xy, X3) = 01(2)05(3)d3(1) — 61(3)05(2)d5(1)

degy, (¢1(2)¢3(3)85(1)) =4+ (255 — 1) + 1 = 253 +4,

degy, (41(3)85(2)85(1)) = 255 +3 4+ 1 = 255 + 4,

7k — 14k3 —1)1?
A2, 01 (2)65(3)05(1)) = g _331()85283(2)51 TR

1+ 14k% — 14k* —1)1?
N2Xa, 61(3)65(2)03(1)) = — g o 1<)3§233+2(231 —i (O

Hence, the leading coefficient of A with respect to 2X, satisfies

M2X,5, A)
. (81 — 1)'2
360(2s3 — 1)223(25; — 1

1
i ((m — 14k%)s307 | — (5 + Tk? — 7k4> (@;_1)’) ,

and therefore vanishes if and only if

(05,-1)°
(1 + 14k2 — 14k%)

SSEQ.

We express the polynomial @;;_1 as in Lemma 3.6 and obtain 5323,0 =r und B, 08,1 =
7s3r for some nonvanishing rational number r. This gives

_ /883,1 o 2283_3 . 53
653,0 (283 — 2)!&83_1 2
223372

15(283 - 2)!(153_1 ’

783

<~ S3 = (417)

First let s3 > 6. Applying Lemma 4.3 with j = s3 — 1 and k = 3 we find

Age—1 > a3483_4—720 — E s3—4 1 grea
S3—

(2s5—2)] 15 (2s3—2)1 15(2s3 —2)!
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4.1. Results for the set {®5, , @5, , ®5, }

Combining this with (4.17) yields
22532 22537215(2s3 — 2)!
T 15(255 — 2)lay, 1 15(2s5 — 2)12%d
which contradicts the condition s3 > 6. Hence, equation (4.17) does not hold for any

s3 > 6. It remains to investigate the case s3 = 4, in which equation (4.17) is fulfilled.
But, one easily computes that

53

(65)?

(1 + 14k2 — 14k*)3 Q.

Hence, Case 1 is done.
Case 2: We have sy > s;. Therefore, with ¢%(3) = 0 and

degy, (¢7(2)05(3)d5(1)) = degy, (¢5(3
deg, (47(3)83(1)85(2)) = degx, (¢} (1

we conclude on degy, A = 2s; + 4. This gives

A2X5, A)
= M2X2, 01(2)95(3)83(1) — ¢7(3)$3(2)¢5(1))
—(31 — 1)'2 1 9 4 B , B ,
- 360(2sy — 1)2252(2s; — 1)! ((5 + Tk =Tk > (65271) — 52652,1(7]6 — 14k )) .

As in Case 1 we have A\(2X3, A) = 0 if and only if
(05-1)

so—1

(1 + 14k2 — 14k*)

We express ©_,_; as in Lemma 3.6 and obtain &3270 = r und oy, 00,1 = 7sor for some
nonvanishing rational number r. This leads to

€Q.

250 —
TSy = Dol _ 2
2 p— pu— J—
OZS%() (282 — 2)!&82_1 2

225272

— = . 4.18
2 15(2s5 — 2)lay, (4.18)

First let so > 7. Lemma 4.3 with j = s — 1 and k = 3 gives

52

225274
15(2s9 — 2)!
Together with (4.18) we obtain sy < 4, which contradicts the assumption s, > 7. Lastly

it remains to investigate the cases so = 3 and sy = 5. For s3 = 3 equation (4.18) is written
as

Agy—1 >

24 2 189 21

3 = ——
15-4lay 45 2 5
which is a contradiction. For s; = 5 we have

5 _ 28 2 10395 11
~15-8lay 4725 2 5
which is also wrong. Finally, Theorem 4.2 is proven. O]
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4. Independence results for one-type subsets of §)

4.2. Results for the set {VU,, , Uy, Uo,. }

Theorem 4.3. Let s1, 2, s3 be pairwise distinct positive integers. Then the numbers Wo, ,
Vo, and Vo, are algebraically independent over Q if and only if at least one of s1, s2, 53
1S even.

At first we shall treat the case when all of the integers si, o, s3 are even.

Proposition 4.2. Let sq, so, s3 be pairwise distinct even positive integers. Then the num-
bers Wos,, Woy,, and Yoy, are algebraically independent over Q.

Proof. Without loss of generality we may assume that s; < so < s3 holds.
In (3.10) we replace the numbers k, K /7, E/7 by the independent variables X7, X5, X3
and obtain for even integers s the expression

B Xy - ] : [_(s — e (1 +(2X,)? <1 _ 2_X1”)>

(2s —1)! 8 X9
s—1 ; .
—1)7(25)! j _
+ Zasjl(s)% <bj - (2X2)2]+2 Aj )
j=1
We derive
6\11 s -1 Jj+1 2] ) B
8X2 (k, Xy, B /1) = I Z _ioa(s) %(2)@%2 (A7), (4.19)
O0Vq B 1 (s — 1) 2F
X, (k, Xo, B/m) = (25 —1)! [ 2 (2X2 7)
]+1 2] + 1 ) B
+ ZO_S i 1 ) 2(2J+)1 (j ) (2X2)2j+1 AJ (420)
8\1125 . (S - 1)'2
an (kf,XQ,E/ﬂ') = m (2X2) . (421)
For brevity we put
a\IIZSj
¢( ) 1/%( )(X17X27X3) = 00X, (X17X27X3) ( J = 17273)

Then we compute the determinant
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4.2. Results for the set { Uy, , Vos,, Vo, }

We shall prove that this determinant does not vanish as a polynomial in Xy, X5, X3. From
Corollary 2.1 we will then obtain that the numbers Vo, , Uy, and Uy, are algebraically
independent over Q.

The leading coefficients with respect to the variable 2.X5 satisfy

1
)‘<2X27 %(U)) = (28“ _ 1)228u+1 (Asiu71>/7

Sy

/\(2X27¢2<v)) = (281, _ 1)22sv—1A8_1;—1 ’
A(2X, v (w)) = ﬁ (4.23)

From s; < s9 < s3 we see that the maximum of

degy, (1 (w)ha(v)hs(w)) = 25, + (25, — 1) + 1 = 2(s,, + 5)

is attained for (s,,s,) = (s2,s3) and (s,,s,) = (S3,52). The leading coefficient of the
polynomial A(k, X, F'/7) turns out to be

A2X5,A) = M2X2,91(2)12(3)3(1) — 1(3)12(2)1h3(1))

. (81 — 1)'2 _ —
- 22(82+53)+1(282 _ 1)(283 _ 1)(281 _ 1) (S3A83 1(A82 1) S2AS2 I(Ass 1) ) )

which is nonzero if and only if
ssl g, 1 (A, — ) = sl 1 (Ag— ) #0. (4.24)
The condition (4.24) is equivalent to

e (425

which can be deduced in the same way as shown in the proof of Remark 4.1. From
Lemma 3.5 we obtain

deg; (A,

So— 1) = 28283 - 483,
degy,(A;, 1) = 25253 — 455

Since sy < s3, the degrees of numerator and denominator in (4.25) are different and
therefore (4.25) holds. This proves the proposition. O

For the proof of Theorem 4.3 it remains to discuss the cases in which at least one of

the indices s1, s9, s3 is odd. We will need the following lemma on the numbers defined by
(3.3).

Lemma 4.4. Let j > k+ 2 > 4 be integers. Then we have

b (2k)!
= >4 k—, .
b (25)!
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4. Independence results for one-type subsets of §)

Moreover, for every j > 1 we have

b _jt1

> .
bj—l 27T2j

Proof. Both of the inequalities follow immediately from Lemma 4.3 by the relation
b; = (2% — 1)a; .

For 7 > k this gives '

b 291 a5 g

bk 22k+2 -1 Qe Qg ’
which proves the lemma. O]
Proof of Theorem 4.3. If s1, $2, s3 are odd, then it follows immediately from (3.11) that

\II2817 \1[2827 \11253 S Q(ka K/TF),

so that these numbers are algebraically dependent over ) in this case. The remaining
cases can be splitted in the following two parts:

Case 1: Two indices s; are odd, Case 2: Two indices s; are even.

In (3.11) we replace the numbers k, K /7, E/m by the independent variables X, X5, X3,
respectively, and obtain for odd integers s the function

i@AXbX%X@:CBilﬁps;DP(_L+@Xg%
4—§:ogj ' 2;530 (@ngﬂQA;-@>]. (4.26)
We compute the derivatives
iggsu;xa,E/w 25__1'25308] . 2;£§J>(2ngf”(Ajy, (4.27)
b Xa, /) = (251_1)![(8 _21>. (2,)
}:gsjl )ngy‘%”(zxg%+Hq-, (4.28)
25?5@;x5rE/w)_.o (4.29)

To fulfill the conditions of Lemma 4.4 we will at first treat the cases where 1 ¢ {s1, s9, s3}.
Without loss of generality we have the following two cases:

Case 1: 3<s; <sy odd, s3>2 even,
Case 2: s1 >3 odd, 2<sy <s3 even.
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4.2. Results for the set { Uy, , Vos,, Vo, }

Case 1: Since 3(1) = 13(2) = 0 by (4.29) we obtain
A(X1, Xo, X3) = ¢1(1)12(2)1hs(3) — ¥1(2)12(1)15(3) -

For odd integers s, s, we have

1
)‘(2X27 wl(u)) = (28 . 1)225u+1 (Aju—l)/a

Sv
/\(2X2,1/J2<U)) = (23 — 1)22$U—1A;~;—1‘

and \(2Xs,13(3)) was already computed in (4.23). Hence, we get

A(2X5,A)

. (83 — 1)'2 , n ,
o 22(51+sz)+1(231 _ 1)(282 _ 1)(283 _ 1) (SQASQ 1(A81 1) AS1 1(A52 1) )

This leading coefficient is nonzero if and only if

(Af 1)

EANTAS e

By Lemma 3.5 we have

deg,(A] ;)™ = 25150 — 255,

degy (AL )™ = 25150 — 251 .

Since s; < sy, condition (4.30) is fulfilled. This proves that Wo, , Wy, and Vo, are
algebraically independent over @ in this case.
Case 2: By ¢3(1) =0 from (4.29) we have

A(X1, Xa, X5) = ¥1(3)82(1)13(2) + 01 (1)2(2)103(3) — 1 (1)1h2(3)¥5(2) — 1 (2) 82 (1)103(3).
Moreover, we compute
degy, (11(3)¥2(1)13(2)) = deg, (¥1(1)12(3)13(2)) = 2(s1 + s3),
degy, (11(1)¥2(2)13(3)) = degx, (¥1(2)1a(1)13(3)) = 2(s1 + 52),
and, by the conditions of Case 2, degy, A = 2(s; + s3). This gives
A2X,,A)

= A2X2, 91 (3)th2(1)13(2) — 1 (1)2(3)13(2))

(82 — 1)'2 _ /
= A (A AL (AT
22(81+83)+1(251 _ 1)(253 _ 1)(232 _ 1) (51 s1— 1( 83— 1> S35 1( 51— 1) )

The right-hand side is nonzero if and only if

Ei} 3 ZQ. (4.31)
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4. Independence results for one-type subsets of §)

Here, we apply Lemma 3.5 and obtain

degy (A, )™ = 25183 — 451,
degy, (A}

s1—1
Therefore, (4.31) holds for s3 # 2s;.
Expressing the polynomials A7, _; and A] _; as in Lemma 3.6 and assuming (A, ;)" =

. Jr S3 . . .
r- (A} _;)* for some nonvanishing r € Q we obtain

)53 = 28183 — 283 .

S3 551,0%3,1

S1 531,1'753,0
In the case s3 = 2s; this is equivalent to
0
g — 251,002s1,1 (4.32)
631,1/7281,0

We use Lemma 3.6 and derive

b 243173 b 2451—3
s1—1 | 75 oy S1Y26-1 _
9 — ' (481 - 2)' ' . b231,1(481 — 2)' 51

o 2281—3 S1 225173 S1 )
bos 1 | o 2
2ol s, — 21 2707 b (21— 2)0 2

(481 — 2)!b251_1
(281 — 2)!()51_1
Now we may apply Lemma 4.4 with j = 2s; — 1 and k£ = s; — 1 and obtain
(481 — 2)!b2$171 > 451 :
(281 - 2)![)31,1

a contradiction to (4.33). Hence, (4.32) does not hold and this case is also solved.
It remains to treat the two cases with 1 € {sy, 59, s3}:

which gives
= 2%171 (4.33)

Case 1: s1=1 < sy odd, s3>2 even,

Case 2: s1=1, 2<sy <s3 even.

Case 1: By (4.26) the function Wy, = Wy takes the form
1
Uy(X1, X, X3) = §<_1 + (2X5)?) .

The derivatives are
oV,

a_)(l(k’XQ’E/ﬂ—) = 07
O, 1
a—)(z(k,Xg,E/ﬂ') = §<2X2),
g—;I(lZ(k’,XQ,E/ﬂ') =0.
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Since 11(1) = 93(1) = 13(2) = 0, we get the following simple expression for the determi-
nant A:

A(Xy, Xo, X3) = —101(2)1h2(1)13(3).

All the factors 11(2), 12(1), and ¥53(3) have nonvanishing leading coefficients with respect

to the variable 2X5. Therefore, the polynomial A(X;, X5, X3) does not vanish and with

Corollary 2.1 we conclude on the algebraic independence of Wy, , Wo,,, and Wy, over Q.
Case 2: Here we have ¢(1) = 13(1) = 0, and we find

A(Xy, X, X3) = P1(3)2(1)13(2) — ¥1(2)12(1)13(3) -

Moreover, we compute

degx, (¢1(3)1a(1)13(2)) = 253 + 2,
degy, (11(2)12(1)¢s(3)) = 252 + 2.

Observing s3 > so we find

(59— 1)I? -
(253 - 1)(232 _ 1)' <A53,1) .

A2X2, A) = A2X5, 41 (3)¢(1)¥5(2)) = 5553

From deg;, A;, | > 4 we conclude on (A, ;)" # 0. Hence, A(X, X, X3) # 0 and this
completes the proof of Theorem 4.3. [

4.3. Results for the set {V; 5 b )

281 ? 2827 283

*

Theorem 4.4. Let sy, s2, 83 be pairwise distinct positive integers. Then the numbers V3,

V3,, and V3 are algebraically independent over Q if and only if at least one of s1, s, 83

15 odd.
At first we will study the case when all integers s1, so, s3 are odd.

Proposition 4.3. Let sy, 9, 83 be pairwise distinct odd positive integers. Then the num-

bers W5, , Vs, , and V3, are algebraically independent over Q.

Proof. Without loss of generality we may assume that s; < so < s3 holds.
We replace the numbers k, K/7, E/m in (3.13) by the independent variables X;, Xo,
X3, respectively, and obtain for odd integers s the function

W3 (X1, Xo, X3) = o 1_ N [(s — 1) (1 + (2X5)? (1 - 2_)(3))
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The derivatives are

o, . (C1PH2)! oy 22y
ax, X BIm) = Gy 2 o) g XYY 43y
o
oW, ! (s —1)12 2F
X, (h X, B/7) = (25 — 1)![ 2 2Xe =0
1)7+1 2915 + 1 . 3
+Zos (Y 2(2J+)1< ) (2x,)1 A; (4.35)
ov3, s—1)P
% 2 (k Xy, E/nt) = — ﬁ(QXz) : (4.36)
We denote

6\1125-
w:(]) :w:(])<X17X2?X3) = ‘] (X17X27X3) (Z7j = 17273>

Then we have

Very similar to the preceding subsection, the leading coefficient of A(k, Xy, E/m) with
respect to 2.X, satisfies
A(2X5,A)
= A(2X2,¥1(2)¥5(3)¥3(1) — ¥1(3)¥5(2)¥5(1))

. —(81 - 1)'2 _ _
= 22(52+53)+1(282 _ 1)(283 _ 1)(281 _ 1) (53/\33 1(/\52 1) 82/\32 1(A33 1) ) ,

which is nonzero if and only if

s3lg, 1 (A, ) - s2l\ g, 1 (Ag,— ) #0. (4.38)
Again, condition (4.38) is equivalent to
(A"
¢ Q. (4.39)
(Asg 1)

Since sy < s3, from Lemma 3.5 we obtain
degy,(A;,_1)* < degy(Ag_1)™.

Hence, condition (4.39) is fulfilled and the proposition is proven. O
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4.3. Results for the set {V3, , W5 W5 1}

For the proof of Theorem 4.4 it remains to discuss the cases in which at least one of
the integers s1, s9, S5 is even.

Proof of Theorem /.4. For three even integers s1, $9, s3 we see from (3.12) that
\113817 \IIZSQ? 333 E Q(k7 K/Tr) ’

such that these three numbers are algebraically dependent in this case. It remains to
investigate the following two cases:

Case 1: Two indices s; are even, Case 2: Two indices s; are odd.

In (3.12) we replace the numbers k, K/m, E /7 by the independent variables X7, Xo, X3,
respectively, and obtain for even integers s the function

W5 (X1, X, X) = 5 i o [(s —81)!2 (1 - 2%
* Sivsm(s)%@ ((25:)77 Af - bj)] . (4.40)
=
For the derivatives we get
aa‘l)’fls(k,XQ,E/ﬁ) = 28 T ZUS ol —1) J(jj) (22 (AT, (4.41)
Z‘I;f;<k,x2,E/w> - = ! - [_(s —21). ox)
o R x|
%q)?;(k’X%E/W) =0 (4.43)

Without loss of generality the two cases can be written as follows:

Case 1: s1>1 odd, 2<sy <s3 even,
Case 2: 1<s; <sy odd, s3>2 even.

Case 1: Since ¥35(2) = %(3) = 0 we get

A(Xy, Xo, Xs) = 97(2)95(3)95(1) — ¢7(3)93(2)5(1) -

degy, (U1(2)15(3)¥5(1)) = degy, (¥7(3)5(2)15(1)) = 2(s2 + s3)

o1



4. Independence results for one-type subsets of §)

the leading coefficient of A with respect to 2X, satisfies

A(2X5,A)

o _(31 - 1)!2 ’ + /
o 22(53+52)+1(283 _ 1)(282 _ 1)(251 _ 1) (83A83 1(AS2 1) A82 1(A83 1) ) :

This does not vanish if and only if

(A, )

SANTRE -

Condition (4.44) follows with Lemma 3.5 and so < s3 from
degy,(AL,_1)™ < degy (A1)

‘P*

This proves the algebraic independence of the numbers W3 Do

this case.
Case 2: We have 9}(3) = 0 and therefore

A(Xy, Xa, X3) = ¢1(2)53)93 (1) +91 (3)¢3 (1)13(2) =11 (3)43(2) 15 (1) =41 (1)4h5(3)43(2) -

Moreover, we compute

degy, (¥1(2)¥3(3)¥3(1)) = degx, (Vi (3)¥5(2)95(1)) = 2(s2 + s3) ,
degy, (V1 (3)¥3(1)¥3(2)) = degx, (Vi(1)¥5(3)15(2)) = 2(s1 + s3)

which leads to degy, A = 2(sz + s3) by the assumption of Case 2. This gives

5515 and W5 . over Q in

A(2Xs,A)
= AM2X2, ¥1(2)¥5(3)v3(1) — v (3)¥3(2)¢5(1))

. —(81 — 1)'2 ;o _ n ,
- 22(33+52)+1<233 _ 1)(282 _ 1)(281 _ 1) (S3AS3 1(A82 1) 82A52 1(A83 1) )

The right-hand side is nonzero if and only if

H ¢qQ. (4.45)

By Lemma 3.5 we have

degy (A, _1)* = 25253 — 4s3,
degk(A;:_l)SQ = 28283 — 282 .

Therefore, (4.45) holds for sy # 2s3. Since s9 is odd by the assumption of Case 2, this

inequality is fulfilled and we conclude on the algebraic independence of W3, , ¥5_ . and
U3, over Q from Corollary 2.1. This completes the proof of Theorem 4.4. ]
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5. Independence results for mixed subsets of ()

So far we did only study algebraic independence properties of four particular subsets of
2, namely {(I)281’ (1)2527 CD283}? {(D;slv (P;sy CI)353}7 {\112517 \112527 \11253}7 and {\11351, \P;sy 111553}'
It remains to investigate the sets consisting of at least two different types of numbers in
Q). By the first theorem in this section we treat the two-element subsets of €.

5.1. Two-element subsets of

Theorem 5.1. Any two numbers in 2 are algebraically independent over Q.

To handle the cases with s; = 1 or s, = 1, respectively, we shall extend the definition
(3.14) of @f and A;-t for 5 > 1 by suitable quantities in the case of 7 = 0. For odd integers
s > 3 we observe from (3.6), (3.8), (3.11) and (3.13) the following formulas for the leading
coefficients with respect to the variable 2.X5:

_1)5
( 25 25) - 228+1(28 — 1) s—1>
AN2X, T — i/ﬁ
( 2 25) - 225+1 (28 — 1) s—1
—1)3
INCS OO 7 N Gl S Ve

225+1(25 — 1)

Now, we may compute these leading coefficients in the case s = 1 and define

A2X,, ®y) = i(—1+2k2) = —%@g,
MN2Xy, BF) = i(—5+4k2) _. %@0,
A2X,, W) = é = %AJ,
A2X, U5) = é _ —éAg.
This gives
@g_%—gk?, @g_—§+§k2, A =1, Ay =-1. (5.1)

Together with Lemma 3.5 we obtain

deg,©7 = 2j+2 (j20),
degk/\ji

IN
N
<.
<
v

23



5. Independence results for mixed subsets of ()

Proof of Theorem 5.1. For the unmixed sets {®ay,, P2y, }, {P3,,, P5,, }, {Was;, Pas, }, and
{Ws,,, ¥s,, } the statement of Theorem 5.1 follows immediately from the proofs of Theo-
rems 4.1 to 4.4. Therefore, it remains to prove Theorem 5.1 for mixed two-element subsets
of €2. This leaves six cases to be discussed.

We apply Corollary 2.1 by setting

K
]K:Q<E/7T)> n=2, r =k, L2 = —,

(e

and use the notation from the preceding section. We remark that we prove the algebraic
independence over Q(F/7) in the following six cases, apart from two exceptional sets.
For these two exceptions we can only prove the algebraic independence over Q.

Case 1: {Dgs,, P35, } C Q. The determinant from Corollary 2.1 turns out to be

232

A X = det (S0 ) = 61032 - @)

For s; = s5 (mod 2) the leading coefficient of A with respect to 2X, satisfies

1

A2X5,A) = _22(81+82)(251 —1)(25, — 1) (

52@32 1(631 1>/ 51@31 1(622 1)1)

Otherwise, for s; # s (mod 2), we get

1
22(51+82)(281 — 1)(282 — ].) (

>\(2X27A): 52@52 1(@3F1 1)/ 31@31 1(@;2 1),)

To prove the algebraic independence of o5, and @5, over Q(E/), we shall show that
A(2X5,A) # 0 holds in any of the four following subcases.

Case 1.1: s1 = s9 =0 (mod 2): Suppose that

(05, -1)™

o5 )= =@

This gives

92s2—3 S9 92522
Qsi—1 | 7o oy 4 so—1 So —
2 o O151,0ﬂ52,1 o 1 (282 - 2)' 2 ’ _ 2 CL32_1(282 — 2)'

51 B Bsy.00sy 1 N 9251-3 1 . 92812
oot (281 - 2)' 2 o=t ! as1—1(231 - 2)‘

But, we have

225272 223172 223272
2 . 52 a52,1(252 — 2)' . 82a31,1(251 — 2)' * Sla52,1(252 — 2)' <0
S1 22s1-2 N 92512 ’
S+
P 125, — 2)1 T o 2s —2)!

o4



5.1. Two-element subsets of ()

a contradiction.
Case 1.2: s1 =0, s =1 (mod 2): Assume that

((—)5_1—1)82 c Q
(O4_1)
First let so > 3. We conclude on
a 92523 82a 92522
s1—1 N P e | J—
2 o Q51,0051 - 1 (282 o 2)| 2 ’ i 52 CLS2,1(282 — 2)'

S1 (g, 00y 1 2251—3 s1 - 225172 .
Qo1 | =777 — —Qs—1 1
* (25, —2)1 2% as,—1(2s1 — 2)!

As in Case 1.1 this leads to a contradiction.
Now let s, = 1. Assuming

o-
s1—1
———cQ
(09 )
leads to
1 . 40631’0 . 4a31—1
S1 N 5%1,1 o 2231—3 1
D - T oy o dsi-1
(257 — 2)! 2
5 2281—3 81
= =—. —
I D P R
381 . 2281_3 . S1
— 10 as,_1(251 —2)!  4|Byg,|
5
— 5= | Bss, |

which is not fulfilled for any s; € IN.
Case 1.3: s1 =1, s =0 (mod 2): Assume that

(04, 1)

o5 _)= <@

For s; > 3 this gives

( 2252—3 S9 > 225272
Qs1—1 | 7o a1~ 4 0sa—1 So —

— | 2
8_2 o /881,0682,1 o (282 2) 2

51 /832,0681,1 2281 3 S1 2 51
el R L s1+

251 —2)1 2
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5. Independence results for mixed subsets of ()

which is false for si,so € IN. For s; = 1 we have

223273 So
— — (g,
By (255 —2)1 277! 92524 L=
So = — = — —_ — _—
? 2ﬁ52,0 2&52,1 CLS2,1(282 — 2)' 4
2282—2 52
<— —389 = =
27 41255 — 2)! T 2|Ba,|
1
= o | Bas, |

which is not fulfilled for any s, € IN.
Case 1.4: s1 = sy =1 (mod 2): Assume that

(©5-1)™

s1—1

(@;271)81 €Q

First let s1,s9 > 3. Then we have

2282—3

S9o 2232—2
As1 -1 | 755y 7 @sa—1 —
8_2 — ﬁ51,0a5271 _ 1 <282 B 2)' 2 > a’82—1(282 - 2)'

S1 0452,0551,1 92s1—3 N s o 92512 )
Qgy— —— + —Qs,— 1
= (@2s—2) T 2! g, —1(251 — 2)!

which is impossible as shown in Case 1.1.
Now let so = 1,s; > 3. We have

1 4651,0 _ 4@3171

s1 _5551,1 B - 22513 51
N\ @ o T

5 2231—3 N S1
<:> S = — - —
YTy a1 (25 —2)1 2

which is false for any s; € IN as shown in Case 1.2. For s; =1, s, > 3 we get

2252—3 So
T — < Ug,—
Qlgy 1 (282 —2)' 2 21 225274 N So
S9 = — = — = — R
’ 20452,0 2013271 CL3271(282 — 2)' 4
2282—2
— 389 = —

(152,1(282 — 2)' ’

which is obviously not fulfilled, since the left-hand side is positive, whereas the right-hand
side is negative. Finally, for s; = so = 1 we see that

of 12k

e, et @
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5.1. Two-element subsets of ()

Case 2: {®Pas,, Uas, } C Q2. We shall prove the nonvanishing of

ACY), X)) = det(z;EB s > = (1)a(2) — 1 (2)n(1).

In the case of s; =0 (mod 2) we have

1
22(81+82)(281 — 1)(282 — 1) (

>‘(2X27A) = 52As;271(@s_1 1) 31@31 1(A52 1)/> )

whereas for sy =1 (mod 2) we obtain

1

_ I ¥ /
A<2X27 A) - 22(81+82)(281 . 1)(232 o 1) (82AS2 1(681 1) @.91 I(ASQ 1) ) °
As before, the algebraic independence of the numbers @y, and Wy, over Q(FE /) follows
from ©: ) ©r )
51 1 ¢ Q OI‘ 81 1 ¢ Q7
(AL—1) (AL-)™
depending on whether s; is even or odd. Suppose, on the contrary, that
(O5,-)2=r-(AL)"  or (O] )7 =r- (AL )", (5:2)

for some nonvanishing r» € Q. By Lemma 3.5 we obtain

deg, (O

s1—1

) 2 =128189 > 25189 — 251 > degk(Asz 1)51 ,
and this contradicts the equations in (5.2).

Case 3: {®qs,, V5, } C Q. We investigate the determinant

AGLX) = det (S0 S ) = o) - v

If sy =0 (mod 2) we have

1
22(s1+52) (287 — 1)(289 — 1) (

A2X5,A) = — 32A52 1(@; 1) 51@51 1(A32 1)/) )

otherwise, for s; =1 (mod 2), we get

1

AN2X5,A) =
( 2, ) 2 (31+82)(251 — 1)(282 — 1)

(32A52 1(931 1) _Sl@s1 1(A§:2 1),) .

The algebraic independence of ®o5, and Ui over Q(E/x) follows from

289
(05,-1)
(AL )

(©5,1)*

¢ Q and (Ai oD

¢Q,
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5. Independence results for mixed subsets of ()

which is a consequence of the inequality

degk<@i

s1—1

)52 = 28182 > 28132 — 231 Z degk(A;‘; 1)81 )

similar to Case 2.
Case 4: {®5,,, Vo, } C Q. We investigate

A X = det (S D) = i) - w0

For s; =0 (mod 2) we have

1

A2Xy, A) = —
( 2 ) 22(81+82)(281 - 1)(282 - 1)

(2A82 1(681 1)/_ 631 I(A;Fg 1>,) ’

whereas for s; =1 (mod 2) we get

1

)\(2X27 A) = 22(S1+52)(251 — 1)(252 - 1)

($2A52 1(@51 1) 31681 1(A52 1),) :

Again, the algebraic independene of ®3, and Wy, over Q(E/7) follows from

(0, 4) (©5,-1)”
sl d A Sl VA
(AL #Q  en (AL #Q
by
deg; (©F )™ = 25159 > 25159 — 251 > deg, (AL )™ .
Case 5: {®5, , W5, } C Q. Here, we have to prove, that the determinant

A x) = det (S0 U ) = ot - vies0)

does not vanish. In the case s; =0 (mod 2) the leading coefficient of A satisfies

1

)\(2X27 A) = 22(S1+52)(231 — 1)(252 - 1) (

52A52 1(@:1 1)/ 31@51 1(A§t2 1),) .

For s; =1 (mod 2) we obtain

1

A2X5,A) = _22(814-82)(251 —1)(2s, — 1) (

82A82 1(@;1 1) Sl@sl 1(A§E2 1)/)

The numbers ®3, and V3, are algebraically independent over Q(E /), since

(©4,-1)*
(AL

(05,-1)* ¢Q.

¢ Q and (Ai o
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5.1. Two-element subsets of ()

which follows from

degk(@;tl 1) 2 =125189 > 25189 — 251 > degk(Ai_l)sl .

Case 6: {Was,, V3, } C Q. We get
._ 0i(1) 9i(2) 1 _ . .
AGX) = det (5 ) = e - i)
For s; = sy (mod 2) we have to prove the nonvanishing of

1
)‘<2X27A> = _22(s1+52)(231 _ 1)(282 _ 1) (S2A82 1(AS1 1) o 81A81 1<A§:2 1)/) :

Otherwise, for s; # sy (mod 2), we get

1
)‘(2X2> A) = _22(S1+52)(231 _ 1)(252 _ 1) (82A82 1(A81 1) 81AS1 1(A;F2 1)/)

Case 6.1: s1 = s, =0 (mod 2): We assume

(As,

S1— 1)

so—1

By Lemma 3.5 we have
degk(AS_l 1)82 = 28182 — 482
deg, (A ;)™ = 25155 — 257 .

Hence, if s; # 2s9 assumption (5.3) is false. Let s; = 2s9. Then (5.3) leads to

22823 S9 289-3
bas,—1 <_W - EbSQ—l 2 + 2
1 _ '7252,0532,1 . ( S2 — ) 2 b52_1(282 — 2)'

2 682,07252,1 2452—3 == 2432—3 )
bs — 5 b So— So —
2\ (4sy — 2y~ 7272 27 bogy_1(dsy — 2)]

which is equivalent to

243274 223273

b282_1(482 — 2)' - _b52_1(282 — 2)' ’

The last equation has no solution s, € N, since the numbers b; are positive for every
J=>0.

Case 6.2: s1 =0, s =1 (mod 2): We prove

(Ay-1)”
(Ao ¢Q,
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5. Independence results for mixed subsets of ()

which is clear for s; > 4 and sy = 1, since A; = —1 and deg, A, | = 251 —4 > 4. Let
s1 > 2 and sp > 3. Assuming (A ;)% =r-(A,,_;)® for some nonvanishing r € Q leads
to degy(A;,_1)* = degy(A,,_;)** and with Lemma 3.5 to s; = sy, which is impossible
since s; is even whereas sy is odd. For the remaining case, where s; = 2 and s, = 1, we
have AT = Aj = 1. Indeed, ¥, and ¥} are algebraically dependent over Q(E/7), since
U,, Ui € QK /m, E/7]. Therefore, we apply Corollary 2.1 with

E K

]K:Q7 ry = —-, To = —.
™ ™

We have to prove that the determinant
._ (1) ¥i(2) \ _ " ]
A X = det (D0 ) = e - i)

does not vanish. Using the expressions

g L] K\' 1 K2+1KE
T3 e\ r 12\ 7 6 72’

given by (3.10) and (3.13), we compute

2
A(Xy, Xy) = 3 3 Z0.

That proves that the numbers W, and U} are algebraically independent over Q.
Case 6.3: s1 =1, s5 =0 (mod 2): We prove

(A1)

AL F

Since A = 1 and deg;, A} ;| = 2sy — 2 > 2 there is nothing to show in the case s; = 1.

Therefore, let s; > 3. Assuming (A7 ) = r - (A]_,)™ for some r € Q \ {0} gives

deg, (AL _))*2 = deg,(A],_1)®, which is not fulfilled.
Case 6.4: s1 = so =1 (mod 2): We prove
(Azfl)sz ¢ Q
Ay 7

which is clear in both of the cases s1 = 1, s > 3 and s, = 1, s; > 3, respectively, since
AF = +1and A;E ¢ Q for (j > 2). Therefore, let s; > 3 and so > 3. Then, the assumption
(AL )2 =r-(A,_y)* with r € Q\ {0} leads with application of Lemma 3.5 to s; = s5

and then by Lemma 3.6 to

2251—3

b ( 81b ) 225172
si-1 | T7o0 oy 5 Usi—1 s1 +
581,0751,1 . (281 2)‘ 2 o ' b8171<231 — 2)'

1_

N 781,0581,1 N b 2251_3 Slb 228172 ?
s o
a7\ (25 —2)1 27! L by (251 — 2)!
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5.1. Two-element subsets of ()

which is not fulfilled for any s; € IN.

In the remaining case s; = sy = 1 the numbers W, and W} are algebraically dependent
over Q(E/m), since Wy, V3 € Q[K /7, E/m|. We apply Corollary 2.1 with

E K
]K:Q7 Ty = -, Ty = —
n T

and prove the nonvanishing of the determinant

1 1/K\?
Uy=—+ - —
? 8 T3 <7r) ’
1 1/K\*> KE
UV==-—+-|—) ——
28 * 2 (7?) 2
This gives
A(Xy, Xp) = X5 #£0
Finally, this proves Theorem 5.1. O
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5. Independence results for mixed subsets of ()

5.2. Three-element subsets of 2

As in the proofs so far, the investigation for three-element mixed subsets of ) also ends
up in proving the irrationality of some quotient r, whose numerator and denominator
are powers of the polynomials @;-t and Af In the case where the leading coefficient
A(2X5, A) of the determinant A consists of two terms, there are exactly 36 possible forms
this quotient r can take. The following table lists the first 20 cases.

Case no. | sy mod 2 | s, mod 2 r Case no. | sy mod 2 | s, mod 2 r
(©5,-1)" (Ag,-1)™
0 0 e 0 0 ——
@ (652—1)51 @ (ASQ—I)SI
(©5,-1)" (Ay-1)™

0 1 - 0 1 -
@ (682—1>81 @ (Asz—l)SI
(©5,-1)" (Ag—1)™

0 0 ! 0 0 :
® (O5-1)" & (AL
(©5,-1)™ (A —1)™

0 1 ! 0 1 =1
@ (©5,_1)" (A=
(©5,-1)" (Ay,-1)™

1 1 = 1 1 -
@ (85271>81 @ (A5271)81
(©5,-1)" (Ay,-1)™

1 0 ! 1 0 !
@ (05 )= (AL )=
(6;,)" (A1)

1 1 ! 1 1 !
@ (@:2—1)51 @ (A;:—JSI
(01" (%)

0 0 ! 0 0 -
CE TN
(03" (AL )"

0 1 L 0 1 .
© (05-1)" (AL—)™
(05,1 (AS )™
1 1 — 1 1 =
(©5,_1)% (AL_)=

The remaining 16 possibilities are summarized to the following case:
@:ﬁ: S9
Caseno.@: r:%.
sog—1

62



5.2. Three-element subsets of )

In some cases the leading coefficient A(2X5, A) consists of four terms. In these cases the
quotient 7 to be investigated can take the following forms:

(O5-1)%
Case no. : rT=— — )
@ ( so—1 95271)81
(©F 1)
Case no. : r=-—1"" )
@ (Asz—l - 682—1)81
(AL )7
Case no. : r=— )
(Asg—l - 652—1)51

Theorem 5.2. In all of the above listed 24 cases we have r ¢ Q except for trivial cases
and the following five nontrivial exceptions:

Case no. @ with  ( ) = (
Case no. @ with  ( ) = (
Case no. with  (s1,82) = (
Case no. @ with  ( )= (
Case no. @ with  (s1,82) = (1,

The trivial cases are as follows: s; = sy in @ ,@ , , , @ , @ , , and )

Proof. We shall frequently use the identity

225—3 S

= . 5.4
4s_1(25 — 2)|  4Bay| (5.4)

Case @: For s, s > 4 the statement is shown in the proof of Theorem 4.1 (cf. [17]).
For the remaining subcase (s, s2) = (2,4) we have

(07)" =9(85)*.

This is the first exceptional case stated in Theorem 5.2. Now, without loss of generality,
let s = 2 and sy > 6. Assuming r € @ and applying (5.4) leads to

2232—3 S 9503
aq ——‘ — —26L32_1 2™ + 8_2
Sy (00 (252 —2) 2 _ as,—1(2s9 —2)! * 2
2 g, 0O as,—1(—1 —a 1
20021 21 1) 1
a1
1582 S9 1
= — 5= = |Basl,
2 4B, 50~ P2l

which is only true for s, = 2 or s, = 4.
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5. Independence results for mixed subsets of ()

Case @: The statement follows from the proof of Theorem 5.1, Case 1.2.
Case @: The statement follows from the proof of Theorem 5.1, Case 1.1.

Case @: Let s; > 4. Then, the statement follows from the proof of Theorem 4.1 (cf.
[17]). Now, let s; = 2. Assuming r € Q and applying (5.4) yields

2252—3 82 2s9—3
! (‘ B 2" ot
S2 2,0555,1 _ (255 —2)! _ as,—1(250 —2)1 2
2 o 0V g1 (—1 —a 1
Bsz,002,1 21 ( 1) 1,
a1
1582 S9 1
= <— — = |Ba,|,
2 4By, 50 ~ [ Posl

and this is fulfilled if and only if ss = 2 or sy = 4, contrary to the condition sy = 1
(mod 2).

Case @: For s1,s9 > 3 the statement follows from the proof of Proposition 4.1. Now,
without loss of generality, let s; = 1 and sy > 3. Then, by application of (5.4) the

assumption r €  gives
o — 50432,1 o 5 22523 S9
2T 4o, 4 \ag,_1(25,—2) 2
5

— 5= | Bas, |

which is not fulfilled for any s, € IN.

Case @ : For s; > 3 the statement follows from the proof of Theorem 4.2. Therefore, let
s1 = 1. The assumption r € Q leads to

So — _5ﬁs2,1 _ _§ . 2282_3 N ﬁ
2 4fsy.0 4 \ag,_1(2s, =21 2 )7

which is impossible, similar to Case @ :

Case @: The statement follows from the proof of Theorem 5.1, Case 1.4.
Case : The statement follows from the proof of Theorem 4.2.

Case @: The statement follows from the proof of Theorem 5.1, Case 1.3.
Case : The statement follows from the proof of Theorem 4.1 (cf. [17]).

Case @: For si,s9 > 4 the statement follows from the proof of Proposition 4.2.
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5.2. Three-element subsets of )

Therefore, without loss of generality, let s = 2 and sy > 4. Since A] = 1 and
deg, (A, _1)? = 4s5 — 8 > 8, we conclude on r ¢ Q.

Case @: For (s1,s2) # (2,1) the statement follows from the proof of Theorem 5.1, Case
6.2. For (s1,s2) = (2,1) we have r = 1, since A, = —1 and A} = 1. This is the second
exceptional case stated in Theorem 5.2.

Case @: The statement follows from the proof of Theorem 5.1, Case 6.1.

Case : Let s > 3 and s; > 4. Then the statement follows from the proof of Theo-
rem 4.3. For s, = 1 and s; > 4 the statement holds, since Aar = 1land deg, A, | = 2s; —
4 > 4. Similarly, for s; = 2 and s, > 3 we have A] =1 and degy(A],_)*> =4s, —4 > 8.

Finally let s; = 2 and s, = 1. Here we have r = 1, since A = AJ = 1. This is the third
exceptional case stated in Theorem 5.2.

Case @: In the proof of Proposition 4.3 the statement is shown for si, s > 3. There-
fore, without loss of generality, let s; = 1 and s, > 3. Then, the statement holds, since
Ay = —1and A, | ¢ Q by Lemma 3.5.

Case : In the proof of Theorem 4.4 the statement is shown for s; > 3. For s = 1
and sy > 2 it follows from A; = —1 and A;;_l Q, whereas the latter statement is a
consequence of Lemma 3.5.

Case @ : For (s1,s2) = (1,1) we have r = —1, which is the fourth exceptional case stated
in Theorem 5.2. Otherwise, for (s1,s2) # (1, 1), the statement follows from the proof of
Theorem 5.1, Case 6.4.

Case : The statement follows from the proof of Theorem 4.4.
Case @ : The statement follows from the proof of Theorem 5.1, Case 6.3.

Case : For si,s9 > 3 the statement follows from the proof of Theorem 4.3. W.l.o.g.
let s; =1 and sy > 3. Then the statement holds, since Af =1 and A _, ¢ Q.

so—1

Case @: We conclude on r ¢ Q from

deg, (A1) < 28381 — 251 < 28281 = deg, (O, ;)™ (s1,52 € IN).
Case @: First let s; = s = 1. Then we have
Ch —5 + 4k?
(v A

0o — % -
For s; = 1 and s, > 2 we assume (0y)% = r(A_,_; — O, ;). By equating the constant
terms this yields

(~1)25"

"7 3m(222 — 2)a,,
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5. Independence results for mixed subsets of ()

whereas equation of the leading coefficients gives

4°2 1

r= 52928 T as :
3522 2Q0gy—1 32a52_1

Both equations together mean

which has no solution s, € IN.
For s; > 2 and s, = 1 we assume O, _; = r(Ay — ©;)*. On the one hand we obtain
. 351asl_1

r= —251 s

and on the other hand

$192s
51312 1a51,1

r=(-1) P

= (—1)813816L51_1 .

Obviously, both equations are not solvable simultaneously with s; > 2.
Finally let s1,s9 > 2. We assume r € Q. Equating the constant terms and the leading
coefficients in

(Oésl,o + Oé&,lk2 + -+ asl,slkZSl)SQ =
= 7”((’)@270 - 0532,0) + (782,1 - 0482,1)1{32 +oeet 0432’3211‘282)31

we obtain by Lemma 3.6

EP) 52
r = asl,O o asl—l
- s1 2s s1 451 ’
(782,0 - 0532,0) ! (2 2 - 2) 1a32—1

and i o
2
r = asl,s1 . asl—l
- S1 - s
Osg,s0 (]

Together this yields
(222 2 =1,

which is obviously wrong for sy, s5 > 1.

Case @: For s; = s, = 1 we compute

Of 1—2k* 1
r= = = —.

Ay —©p  2—4k2 2

This is the fifth nontrivial exception stated in Theorem 5.2.
For s; = 1 and sy > 2 we assume (O7)% = r(A,,_; — O, _,). Equating the constant

terms we obtain )

" ge(222 —2)q,,
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5.2. Three-element subsets of )

while by comparing the leading coefficients we get

Py — =

3522252%2_1 382252CL52_1

We conclude on
1 (=»
222 2 2:2
which is not solvable for any s, > 2.

For 51 > 2 and s, = 1 we assume O, _; = r(Ag — Oy )*". On the one hand we obtain

3816131,1
r=-———,

and on the other hand we have

This yields
()t —9) = 20,
which has no solution s; > 2.

The case s1, s2 > 2 remains to be discussed. We assume r € Q. Equating the constant
terms and the leading coefficients in

(531,0 + ﬂ5171k2 4+ 4 ﬁSLSlesl)sz —
- r((r)/s?vo B a5270) + (752,1 - as2,1>k2 + -+ @52,52k252)81
gives by Lemma 3.6

- 55812,0 _ @;?71
(75270 - 045270)51 (2282 - 2)8161?;—1 ’
and
e (2—2%1)203
"= adls, 22l
Together this yields
(2 _ 2231)32<2232 _ 2)31 _
225152 ?
or, equivalently,
(—1)%2(281 — 2l7s1ys2(s2 _ gl=s2ys1 — 1 (5.5)

Obviously (5.5) does not hold if sy is odd. Therefore, let sy be even. We get
(250 — 2l7s)s2(s2 _ glms2)st 5 (951 1)2(2%2 _ )% > 1 (5,55 > 2)
a contradiction to (5.5).

Altogether this proves r ¢ Q for (s1,s2) # (1,1).

Case : We conclude on 7 ¢ @ from

degk(A;tl_l)‘” S 28182 - 282 < 28182 = degk(As_Q_l - 3_2—1>51 .
Therefore, Theorem 5.2 is proven. O
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In Section 4 we studied the one-type three-element subsets of €2, namely the sets
{(I)QSU (I)2827 @253} {(I)2sl 2527 253} {lIIQSN \Ij2827 \Ij283} and {@2317 2527 \Ijgs } for pairwise
distinct positive integers sq, s9, s3. It remains to investigate those three-element subsets
of €2, in which at least two different types of the reciprocal sums &y, @5, Vs, and W3,
are included. These are the sets of the following 16 forms:

{(DQSU (I)2327 (1)355} {CDQSU 2327 q)ésd} {q)Qsla (I)2327 @253}7 {(DQSU \Ij2527 ‘11253}7
{q)2817 (1)2827 \P;%} {q)2817 2327 \11553}7 {(I)231> 2597 \11283} {(I)231> \1[2827 \P283}7
\11353} {(I)251’ 252’ \1[553}’ {\112517 \112527 \11353}7 {\112517 2527 \11353}

{(I)QSN (I)gsy \Ij283}7 {(I)QSN 2599 ‘11353} {(IDQSN \112827 lI1553} {(I)Qsl \Ij2827 \11353}

(®;

2819 2527

Each of these sets has to be studied for all possible configurations (si, s9,s3) € IN°.
Without loss of generality we may assume that s; < sy holds for the sets

{®281a (P2827 253} {¢)2817 ®282a @253} {¢2817 ¢2527 \:[1353}

{¢2817 2527 \11253} {®2817 2527 \2[1383} {\Il2317 \Ij2527 qj;&g}

whereas sy < s3 holds for

{(I)2817 2527 (I)gs;:,} {(I)QSU \112827 ‘11283}7 {(I)QSN 2527 ‘11333}

{CD2517 1112527 \11283}’ {CI)2317 2327 \11353} {\112517 252’ \Ij;sg}

In the following we give a complete table for each of the 16 sets, in which the proof of
algebraic independence for every configuration (s, s9, s3) € IN? is reduced to one of the 24
cases treated in Theorem 5.2. For this we obtain a clustering of 192 cases into 24 groups.

For brevity we shall write A instead of A(2X3, A) in the headers of the tables.
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5.2. Three-element subsets of )

{Pas,, Pos,, P5.. }: For (s1,52,s3) = (1,1,0) (mod 2) we have algebraic dependence.

2s3

config. no. | sy mod 2 | s mod 2 | s3 mod 2 | add. cond. | A # 0by Case no.
1.1 1 1 1
1.2 1 0 0 (9)
1.3 0 1 0 (9)
1.4 0 0 0 (3)
1.5 0 1 1 s1 < 53 (7)
1.6 0 1 1 53 < 81 (@)
1.7 1 0 1 55 < 83 ©
1.8 1 0 1 53 < 89 (1)
1.9 0 0 1 s1< 83 2)
1.10 0 0 1 53 < 81 (1)

{ @y, @5, P35, }: For (s1,52,83) = (1,0,0) (mod 2) we have algebraic dependence.

config. no. | sy mod 2 | s mod 2 | s3 mod 2 | add. cond. | A # 0by Case no.
2.1 0 0 0
2.2 1 0 1 (9)
2.3 1 1 0 (9)
2.4 1 1 1 (1)
2.5 0 1 0 55 < 51 (3)
2.6 0 1 0 s1< 89 (6)
2.7 0 0 1 53 < 81 (3)
2.8 0 0 1 s1< 83 (6)
2.9 0 1 1 53 < 51 2)
2.10 0 1 1 51 < 89 (5)
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{DPas,, Pas,, Waos, }: For (s1,52,53) = (1,1,1) (mod 2) we have algebraic dependence.

config. no. | s mod 2 | s mod 2 | s3 mod 2 | add. cond. | A # 0by Case no.
3.1 1 1 0
3.2 1 0 1 1)
3.3 0 1 1 1)
3.4 0 0 1 @1)
3.5 0 1 0 s1< 83 1)
3.6 0 1 0 53 < 81 (4)
3.7 0 1 0 s1= 83 23
3.8 1 0 0 55 < 83 1)
3.9 1 0 0 53 < 89 (@)
3.10 1 0 0 sy = 53 23)
3.11 0 0 0 51 < 83 @1
3.12 0 0 0 53 < 81 (1)
3.13 0 0 0 s1= 83 22)

{D@as,, Uas,, Yoy, }: For (sq,82,53) = (1,1,1) (mod 2) we have algebraic dependence.
config. no. | sy mod 2 | s; mod 2 | s3 mod 2 | add. cond. | A # 0 by Case no.
4.1 1 1 0 1)

4.2 1 0 1 @1
4.3 0 1 1
4.4 1 0 0 1)
4.5 0 1 0 51 < 83
4.6 0 1 0 53 < 81 1)
4.7 0 1 0 s1= 83
4.8 0 0 1 s1< 89
4.9 0 0 1 53 < 51 1)
4.10 0 0 1 51 =89
4.11 0 0 0 s1< 89 1)
4.12 0 0 0 55 < 81 1)
4.13 0 0 0 s1= 89

70



5.2. Three-element subsets of )

{Pas,, Pos,, Ui, }: For (s1,s2,53) = (1,1,0) (mod 2) we have algebraic dependence.

2s3

config. no. | sy mod 2 | sy mod 2 | s3mod 2| add. cond. | A # 0by Case no.
5.1 1 1 1
5.2 1 0 0 @1
5.3 0 1 0 @1
5.4 0 0 0 @y
5.5 0 1 1 s1< 53 @)
5.6 0 1 1 53 < 81 (1)
5.7 1 0 1 55 < 53 @1
5.8 1 0 1 53 < 8 (1)
5.9 0 0 1 s1 < 83 @1
5.10 0 0 1 53 < 51 (1)

{®@as,, V3,,, V5, }: For (s1,s9,83) = (1,0,0) (mod 2) we have algebraic dependence.

2899

config. no. | sy mod 2 | sy mod 2 | s3mod 2| add. cond. | A # 0by Case no.
6.1 1 0 1 1)
6.2 1 1 0 1)
6.3 0 0 0
6.4 1 1 1 1)
6.5 0 0 1 51 < 83
6.6 0 0 1 53 < 81 1)
6.7 0 1 0 51< 8
6.8 0 1 0 55 < 51 @1
6.9 0 1 1 51 < 89 (15)
6.10 0 1 1 55 < 51 @1
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{®3,,, P35, Yo, }: For (s1,52,53) = (0,0,1) (mod 2) we have algebraic dependence.

2897

config. no. | s mod 2 | s mod 2 | s3 mod 2 | add. cond. | A # 0by Case no.
7.1 0 0 0
7.2 0 1 1 1)
7.3 1 0 1 @1
7.4 1 1 1 1)
7.5 1 0 0 53 < 81 (6)
7.6 1 0 0 51 < 83 @1
7.7 0 1 0 53 < 89 (6)
7.8 0 1 0 55 < 83 @1
7.9 1 1 0 53 < 81 (5)
7.10 1 1 0 51 < 83 1)

{D@5,., Vas,, Yoy, }: For (sq,s2,53) = (0,1,1) (mod 2) we have algebraic dependence.

281

config. no. | sy mod 2 | s mod 2 | s3 mod 2 | add. cond. | A # 0by Case no.
8.1 1 1 1
8.2 0 0 1 1)
8.3 0 1 0 @1
8.4 0 0 0 @1
8.5 1 1 0 s1< 83
8.6 1 1 0 53 < 81 @1
8.7 1 0 1 51 < 89
8.8 1 0 1 S9 < Sy @
8.9 1 0 0 s1< 89 (11)
8.10 1 0 0 55 < 81 @1
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{®5,,, ®5,,, V5, }: For (s1,82,53) = (0,0,0) (mod 2) we have algebraic dependence.
config. no. | sy mod 2 | s, mod 2 | s3 mod 2 add. cond. A # 0 by Case no.
9.1 0 0 1
9.2 0 1 0 @1
9.3 1 0 0 @1
9.4 1 1 0 @1
9.5 1 0 1 51 < 83 @1
9.6 1 0 1 53 < 81 (6)

9.7 1 0 1 51 = 83 23)
9.8 0 1 1 55 < 83 1)
9.9 0 1 1 53 < 59 (6)
9.10 0 1 1 59 = 53 23)
9.11 1 1 1 51 < 83 1)
9.12 1 1 1 3 < 81 (5)
9.13 1 1 1 51 = 83 22)

{®5,,,95,,, V5, }: For (s1,s9,53) =(0,0,0) (mod 2) we have algebraic dependence.

config. no. | s; mod 2 | s mod 2 | s3 mod 2 add. cond. A # 0 by Case no.
10.1 0 0 1 o3
10.2 0 1 0 @1
10.3 1 0 0
10.4 0 1 1 @1
10.5 1 0 1 s1 < 83
10.6 1 0 1 53 < 51 @1
10.7 1 0 1 s1= 53
10.8 1 1 0 1 < S
10.9 1 1 0 53 < 81 @1
10.10 1 1 0 51= 85
10.11 1 1 1 1 < S (15
10.12 1 1 1 55 < 51 @1
10.13 1 1 1 51 = o
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{Was,, Vo, U5, }: For (s1,52,53) = (1,1,0) (mod 2) we have algebraic dependence.

config. no. | sy mod 2 | sy mod 2 | s3mod 2| add. cond. | A # 0by Case no.
11.1 1 1 1
11.2 1 0 0
11.3 0 1 0
11.4 0 0 0 13)
11.5 0 1 1 51< 83 1)
11.6 0 1 1 53 < 81
11.7 1 0 1 59 < 83 1)
11.8 1 0 1 53 < 89
11.9 0 0 1 51 < 53 12)
11.10 0 0 1 53 < 51 1)

{Wa,, V3, U5, }: For (s1,52,53) = (1,0,0) (mod 2) we have algebraic dependence.
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config. no. | sy mod 2 | sy mod 2 | s3mod 2| add. cond. | A # 0by Case no.
12.1 1 0 1
12.2 1 1 0
12.3 0 0 0
12.4 1 1 1 17)
12.5 0 0 1 51 < 83
12.6 0 0 1 53 < 51 (13)
12.7 0 1 0 51< 8
12.8 0 1 0 55 < 51 13)
12.9 0 1 1 51 < 89 (15)
12.10 0 1 1 55 < 51 12)
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{®as,, P35, U, b2 For (s1,82,53) = (1,0,1) (mod 2) we have algebraic dependence.

config. no. | sy mod 2 | s mod 2 | s3 mod 2 add. cond. A # 0 by Case no.
13.1 1 0 0 (9)
13.2 1 1 1 1)
13.3 0 0 1 1)
13.4 0 1 1 51 < 8o 1)
13.5 0 1 1 55 < 81 @1
13.6 0 0 0 s1< 83 @1
13.7 0 0 0 53 < 51 (3)
13.8 0 0 0 51 = 3 23)
13.9 1 1 0 59 < 83 1)
13.10 1 1 0 53 < 82 @
13.11 0 1 0 [s2<81Ase<sy @1
13.12 0 1 0 |sa<siAsy<sy 2)
13.13 0 1 0 |s1<s2A s <sy 1)
13.14 0 1 0 |s1<8 A sz<s 2
13.15 0 1 0 S1 < 89 N\ 81 = S3 @

{ @y, @5, V5, }: For (s1,82,53) =

(1,0,0) (mod 2) we have algebraic dependence.

config. no. | sy mod 2 | sy mod 2 | s3 mod 2 add. cond. A # 0 by Case no.
14.1 1 0 1 (9)
14.2 1 1 0 @1
14.3 0 0 0 1)
14.4 0 1 0 51< 8 @1
14.5 0 1 0 55 < 81 @1)
14.6 0 0 1 s1< 83 @1
14.7 0 0 1 53 < 51 (3)
14.8 1 1 1 59 < 83 1)
14.9 1 1 1 53 < 52 ©
14.10 1 1 1 59 = 83 23)
14.11 0 1 1 $1 < 8y NSy < S3 1)
14.12 0 1 1 |si<saAsz<s 2)
14.13 0 1 1 | sa<siAsy<sy @1
14.14 0 1 1 | sy<s Ass<sy 2)
14.15 0 1 1 S9 < 81 N\ Sg = S3 @
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{®@as,, U, V3, }: For (s1,s2,83) = (1,1,0) (mod 2) we have algebraic dependence.

config. no. | sy mod 2 | s, mod 2 | s3 mod 2 add. cond. A # 0 by Case no.
15.1 1 1 1 1)
15.2 1 0 0 1)
15.3 0 1 0
15.4 1 0 1 S9 < 83 1)
15.5 1 0 1 53 < So 1)
15.6 0 1 1 51< 83 17)
15.7 0 1 1 53< 51 1)
15.8 0 0 0 51< 89 13)
15.9 0 0 0 52< 51 1)
15.10 0 0 0 51= 52
15.11 0 0 1 s3 < 81 AS3 < 8o 1)
15.12 0 0 1 | s3<s1 Asa<sy @1
15.13 0 0 1 s1 < 83 NSy < 89 @
15.14 0 0 1 S1 < 83 NSy < 81 @
15.15 0 0 1 S1 < 83 AS] = S9
{®5,,, Yas,, V5, }: For (s1,s2,53) = (0,1,0) (mod 2) we have algebraic dependence.
config. no. | s; mod 2 | s, mod 2 | s3 mod 2 add. cond. A # 0 by Case no.
16.1 0 1 1 1)
16.2 0 0 0 1)
16.3 1 1 0
16.4 1 0 0 51< 89 (13)
16.5 1 0 0 52< 51 1)
16.6 0 0 1 55 < 53 1)
16.7 0 0 1 53< 89 1)
16.8 1 1 1 51< 83 17)
16.9 1 1 1 $3< 81 1)
16.10 1 1 1 §1=53
16.11 1 0 1 So < 81 NSy < S3 1)
16.12 1 0 1 Sy < 81 AS3 < So 1)
16.13 1 0 1 |51 <s2As1 < sy 12
16.14 1 0 1 | si<saAsz<s 1)
16.15 1 0 1 S1 < 89 AS1 = 83
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According to the exceptional cases of Theorem 5.2 we need to have a closer look at the
sets with configuration 1.10, 5.10, 8.5, 11.8, and 14.10:

Configuration no. 1.10: Let s; = 2, so = 4, and s3 = 1, hence, we are dealing with the
set {®y, Pg, P5}. We have

oot (- () (o)) (- (2) o)
o (1 () () (')

(e () o) B (5)e)
e (- () (o)),

For the determinant A from Corollary 2.1 we compute

Y

which is obviously not the zero polynomial. Therefore, the numbers ®,, ®5, and P are
algebraically independent over Q by Corollary 2.1.
Configuration no. 5.10: Let s; = 2, s = 4 and s3 = 1, hence, we are dealing with the

set { Py, g, U5} where
L1 2K\ ? 2F
\%_§G+(7J O—?J>.

The determinant A satisfies

_ 18 ey, 4 16 yeya 8 4 128 045
28350

A(X,, Xy, X Saar X2 X1 ~ 5gar
(X1, Xo, X3) 28357 2771 9g35“2 1+14175 2

12 2
N X;°X7 52 X;°Xy .
14175 14175

Since A # 0, we conclude on the algebraic independence of ®,, ®g, and ¥} over Q.
Configuration no. 8.5: Let s; = 1, s = 1 and s3 = 2, hence, we are dealing with the
set {®F, Uy, Uy} where

ey (0 (5))
e[ G 030 - - () )
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We compute

which is not the zero polynomial. Therefore, the numbers ®3, ¥y, and ¥, are algebraically

independent over Q.

A<X17 X27 X3) =

2
§X§X1 ,

algebraically dependent over Q. We have

4-W5+ WUy — 6y —

Configuration no. 14.10: For s; = sy = s3 =

W = 0.

algebraically dependent over (). Here, we have

2.0y + O+ UL = 0.

The identities (5.6) and (5.7) can be found in [20].
The results of this and the preceding section will be summarized in the following theo-

rem, which therefore forms the main theorem of this thesis:

Theorem 5.3. A three-element subset of 2 is algebraically dependent over @ if and only

if it is contained in one of the following sets:
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{{®231,‘b252,@233} :
{{q)zsla 2327@353}3
{{‘PQSI,‘I’QsQ,‘Png} :
{{\IJQSl 2527‘11353} 3
{{®231,‘b252,®§53} :
{{@2817 232’q)353}:

{{(I)Qsl ) @282 ) ‘11253}

{{q>281 ) \112527 lIIQSS} .
{{(I)QSU q)2827 ‘11353} :
{{q)251 ) 2827 lII;Sg} :

{{(1)251 2827 @253}

{{q)Z.sl? Wys,,s \1’233} :

{{(I)Qsl 2527 ‘11353}

{{¢2517 2827 \11583} :
{{\11281 ) \Ij2827 @553} :
{{\112817 2527 \Ij;sg} :

{{q)2317 2527‘11253}
{{q)2317 2527‘11353}

{{¢2S17 \112827 \I];Ss} :
{{q)Zslv \112827 ‘1’553} :

si € N A (s1,89,83) = (1,1,1)
si € N A (s1,82,53) =(0,0,0)
si € N A (s1,89,83) = (1,1,1)
si € N A (s1,82,53) =(0,0,0)
si € N A (s1,892,83) = (1,1,0)
si € N A (s1,82,53) =(1,0,0)
c 5, € IN A (s1,89,83) = (1,1,1)
si € N A (s1,82,83) = (1,1,1)
si € N A (s1,82,53) = (1,1,0)
si € N A (s1,82,s3) = (1,0,0)
: 5, € IN A (s1,89,583) =(0,0,1)
si € N A (s1,82,83) =(0,1,1)
: 5, € IN A (s1,82,53) = (0,0,0)
si € N A (s1,82,53) =(0,0,0)
si € N A (s1,82,83) = (1,1,0)
si € N A (s1,82,53) = (1,0,0)
: 5, € IN A (s1,89,83) = (1,0,1)
: 5, € IN A (s1,89,53) = (1,0,0)
si € N A (s1,892,s3) = (1,1,0)
si € N A (s1,82,s3) =(0,1,0)

{{Wa, Wy, W3}, { Py, @5, W3} }.

Configuration no. 11.8: For s; =1, s = 2 and s3 = 1 the numbers ¥y, ¥4, and U} are

1 the numbers @5, ®5, and W5 are
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mod 2

—~

=
@)
(o}
[\

~—~

=

od 2
od 2

E)

—~
=
o
(o}
\)

od 2
od 2

=

=

=
o
(oM
\)

)
)
)
)
)
)
)
)
)
od 2)
od 2)
)
)
)
)
)
)
)
)
)

=

g B
S
2
\)

od 2
od 2

=

=
@)
[oN
[\

od 2
od 2

=

=

=
o
[oN
\)

mod 2

=
S
A
\)

M e M M e e e M e M e M e N M o\ ) N N~

N N N N N~ /N N /N N /N N/~ /N



5.2. Three-element subsets of )

In the following diagram we present a guideline illustrating the relationship between
the main results of this thesis ending in Theorem 5.3:

S1, 89, S3 odd $1, 89, S3 even S1, 89, S3 odd
’ Theorem 4.1 ‘ ’ Theorem 4.2 ‘ ’ Theorem 4.3 ‘ ’ Theorem 4.4 ‘
{(1)281’ CI)QSQ? c1)283} {CI)2317 2327 ®§S3} {\112517 \1}2527 \11253} {\112817 2327 \11353}

Y

Theorem 5.3 || three-element subsets of 2

Theorem 5.2 | mixed three-element subsets of Q2
Cases @ to . with exceptions

’ Tables p-i 69 - 76‘ in the Cases @,@ ,. a@ a@
Cases @ to , p. 621

Computation of A in five

exceptional sub cases of

(1),(4),@3) p. 77 .

’ Theorem 5.1 two-element subsets of 2
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5.3. Larger subsets of (2

Up to now, we have investigated all the two-element and three-element subsets of 2 and
decided on their algebraic independence over the rationals. The results are stated in
Theorem 5.1 and Theorem 5.3. It remains to study the subsets of 2 with at least four
elements.

Theorem 5.4. Any four numbers in Q are algebraically dependent over Q.
Proof. Let wy,ws,ws,wy € 2. From the formulas (3.5) to (3.13) we know that
K FE
W1, Wz, W3, Wy € Q |:_7 _7k::| .
™

™

The chain rule for transcendence degrees (Lemma 2.1) applied to the field extensions

Q C Qw1,wa, w3, wy) =1 K CQ (5, EJ{) =1L

T
yields

tr.deg(K : Q) = tr.deg(LL : Q) — tr.deg(LL : K) < 3.
Hence, wy, we, w3, and w, are algebraically dependent over Q. O

Apart from algebraic independencies and dependencies it is interesting to investigate
the linear case. For example, formula (5.7) from the preceding subsection shows that
the numbers ®,, &3, and V; are linearly dependent over Q. What can we prove about
linear independencies and dependencies for large subsets of 2?7 By the following theorem
we state that, under certain conditions, arbitrarily many numbers from €2 are linearly
independent over the field Q(F /7, k).

For any positive integer s we denote by Ws, € €2 one of the numbers ®o,, &5 . Wy, or
w3

Theorem 5.5. Let 1 < 51 < 89 < +++ < 8, € N for some m € IN. Then the numbers
Wasys .., Was, € Q are linearly independent over Q(E /7, k).

Proof. Let uy, ..., u, € Q(F/r, k) with
wiWas, + -+ + umWas, = 0. (5.8)
By the formulas (3.5) to (3.13) and by Lemma 3.6 we have
degop ) Was = 2s.

Therefore, with s, > s; (j = 1,...,m —1), the leading coefficient of the left-hand side of
(5.8) satisfies

2K 2K 2K
0=A (_7U1W281 +F umWZSm) = A <_7 umWZSm) = um>\ (_7 WQsm) .
s m s
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5.3. Larger subsets of ()

Again, by the formulas (3.5) to (3.13) and by Lemma 3.6, we have
2K
) <_,w25m) 40,
T

Hence, we get u,, = 0. Step by step, using the fact that the sequence (s;)1<;j<m, is strictly
increasing, we conclude on

]

Next, we consider linear equations in the four numbers ®o5, 5., Uy, and U5, for any
fixed positive integer s.

Theorem 5.6. For s > 2 the four numbers ®q4, 5., Wy and U5, are linearly independent
over Q, i.e. the linear equation

tsPos + us D5, + v, Vos + w5, =0 (5.9)

has no nontrivial solution tg, us, vs,ws € Q for s > 2. For s = 1 the general solution of
(5.9) is
—2U1(I)2 + u1<I>§ + Ul\D; =0 (u1 € Q) .

Proof. Let s =1 and t1,uy, vy, w; € Q such that
th)g + Ulq)g + Ul\IJQ + wl\I/; =0.
From (3.6), (3.8), (3.11), and (3.13) we obtain

t1-2—14 (1— (%)2(1—%2)) —u1-2—14 (1— (%)2 (%_5+4k2)>
e d (s () )k (2 () (-28)) o

or, equivalently,

1 2K\ 2
2 (t1 —uy — 3vy + 3wy) + (— t1 — bug + 3v; + 3wy) —

2K\ ? 2K 2F
+ (2t + 4duy) (-) k2 + (6uy — 6uwy) =22
T v T

=0,

Since K/m, E/m and k are algebraically independent over @, this yields

tl — U — 3U1 + 3w1 = 0 s
—tl — 5U1 + 31)1 + 3w1 =0 s
2t1 + 4U1 =0 >

6U1 — 6’(1]1 =0 y
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5. Independence results for mixed subsets of ()

with the general solution (¢, uy, vy, wy) = uy - (—2,1,0,1).
Now let s > 2. The leading coefficient with respect to the quantity 2K /7 on the
left-hand side of (5.9) satisfies

2K
A (—, tsPos + us Py, + vsWos + wS\I/§S>
T

(-1
- 225+1(25 — 1) <_tS®;F—1 + Us®f—1 Fo AT £ wsA;t_J =0,

depending on whether s is even or odd. If s is even we conclude on

—t,0, ; +u0 | —v, A, +w, AL =0, (5.10)
where the left-hand side of (5.10) is a polynomial in k of degree 2s with leading coefficient

—t:2%a, 1 +us(2 — 2%)a,_, =0,
which follows from Lemma 3.5 and Lemma 3.6. Hence, we have
te = (272 — 1)u,. (5.11)
Then, the absolute term with respect to k on the left-hand side of (5.10) satisfies
(2 — 212 uga, 1 — vebs_1 + Wby 1 = ((2 — 2173y, — (2% — 1) (vs — ws))as,l =0,

which is equivalent to
21728y = vy — wy. (5.12)

Comparing the k*terms in (5.10) we obtain with Lemma 3.6 and (5.12)
2172y, = vy + w . (5.13)
Both equations (5.12) and (5.13) together give
vy = 217wy ws =0. (5.14)
We substitute the results (5.11) and (5.14) into (5.9) and obtain
(21725 — Dy ®Poy + u @3, 4+ 22 u, Wy, = 0.

Here, we may compare the K F/m*terms. Since s is even, by (3.5), (3.7) and (3.10) we
get
(27 — Dus + 2" uy = (227 — Luy = 0.

With

w

2272 1 < - (s >2)

we conclude on ug = 0 and then on t; = vy = 0. This proves that the numbers @55, @5,
Wy, and W3  are linearly independent over () for any positive even integer s > 2.
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5.3. Larger subsets of ()

If s is odd we have

instead of (5.10). Similar as in the previous case we compute the leading coefficients, the
constant terms and the k?-terms in this polynomial and obtain

us = (217% — 1)ty
21725 = u, — wy,
21_2sts = —Us — Ws,

which leads to
v =0, ws = —217%5¢, .

Then we may compare the K E/7?-terms in
—t, @y, + (2172 — 1)t D5, + 21, U5, = 0.
Since s is odd, by (3.6), (3.8) and (3.13) we get
(V7% — 1)ty -2Vt = —t,=0.
We conclude on uy = w, = 0 and the theorem is proven. O

In the preceding two theorems we stated results on linear independence over @ for
certain subsets of (). But we may also find subsets of {2 containing more than three
elements, that are linearly dependend over Q). For example, we have

(2u+0)Py+uds+ (u—0v)¥;—TvDPy+ 80P, +0v Uy =0 (w,v e Q)  (5.16)
and

(—u—w) P+ udy +w¥s + (u—v—w) Py +vP] + (u—w) Yy

128 16 128 124 31 124 .
+ U——v———w| P+ | ——u+—v+ —w| Pg

3 3 3 3 6 3
4 1 4 .
+ <—§u+ Y + gw) Uy =0 (u,v,w € Q). (5.17)

The identities (5.16) and (5.17) can be proven by formulas (3.5) to (3.13) for s = 1,2, 3.
To prove a general result on such linear dependencies one would need explicit expressions
for all the coefficients of the polynomials @;t and Aj.[ as partially given by Lemma 3.6.
After computing more examples like (5.16) and (5.17) we may conject the following:

Conjecture 5.1. For any positive integer m the solutions of

m

Z (tS(I)gs + us®5, + v Wos + wS\If’Q‘S) =0

s=1

with ts, us,vs,ws € Q (1 < s < m) form a Q-vector space of dimension m. Moreover,
each solution satisfies

v,=0 (s=1 (mod2)),
ws=0 (s=0 (mod?2)).
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5. Independence results for mixed subsets of ()

5.4. Results for Oy4(q), P3.(q), Vas(q), Vi, (q) as functions of ¢

In this subsection we will study the reciprocal sums ®q,, @3, Uo,, and U3 as functions of
the independent variable ¢ = 32. Therefore, the quantities o and /3 are not fixed numbers
anymore but variables satisfying af = —1.
Recall the relation
K’ ! K (k')
wc/2 — _ c =

from Section 1.4. Hence, the reciprocal sums ®of, P5., Wo,, and W5, are written as
functions of ¢ in the following way:

B=—c

@23(‘]) = ; (q*”/Q T (—1)"+1q"/2)28 = ; (qfn +q" + 2(_1)n+1)5 )
oS et &
®3,(q) = ; (g2 + (—1)tign/2)2s nz:; (" + ¢ + 2(—1)n+1)s
= 1 G 1
Vo) = ) G e 2 e e 2
ZAOEDY i = o

— <q—n/2 + (_l)nqn/2)2s (q—n + g+ 2(_1)n)5 :

Let
f(k?) — T — e—wK(\/l—kQ)/K(k)'

Then, ¢ = f(k). By [8, formulae 111.02 and 112.01] we have
lim f(k) =0, lim f(k) =1
and we derive

d
F(h)

= 0= l;)[@(k) (E(WVT—R)K(k) + E(k)K(VT - k2) - K(k) K (V1 - k2))

71_2

= f(k
g )Qk(l — k2)K2(k)
by using Legendre’s Relation (see [8, formula 110.10]). Thus,
f+10,1] = [0,1]

is bijective and therefore the inverse function k = f~1(¢) does exist. Hence, we may treat
k as k(q), such that the elliptic integrals K (k) and E(k) are also functions of q.

It follows from a theorem of Mahler [27] (see also [32]) that the Ramanujan functions
P(q), Q(q), and R(q) are algebraically independent over C(gq). Since

KW@ B 4

>0

P(q),Q(q), R(q) € Q
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5.4. Results for ®o4(q), P5.(q), Yas(q), V5. (q) as functions of q

by the formulas (1.11), we may apply Lemma 2.1 to the field extensions

(o) < (o P(0). Qo). ) € ¢ (4,52, 2D 1))
and obtain
t e (0 (55029 15 i) -
r.deg (C(a,—— ——k(g) | : Clg) | =3.
We define

Q(Q) = {(I)231 (Q)v q);@ <Q)7 \11283((1)7 \11354<Q) DS1,...,84 € ]N} :

The expressions of ®q5, P35, Vo, and Ui, in terms of K /7, E/m, and k, given in Section 3.2,
are valid for any ¢ = f(k). This gives

CI)QS(Q>7 (I);s(Q)7 \II2S<Q)7 \I;;s<Q) S Q {@7 %7 k(Q>:| .

™ ™

Theorem 5.7. Let g1(q), 92(q), 93(q) € Q(q) such that for any algebraic number q with
0 < |q| <1 the values ¢1(q), g2(q), and gs(q) are algebraically independent over Q. Then
the functions g1(q), 92(q), and g3(q) are algebraically independent over C(q).

Proof. We apply Corollary 2.2 with

Then there are polynomials
Uj<X17X27 X3) S Q[X17X27X3] g ]K[Xh X27 X3] (j = 17 27 3) )

given in Section 3.2, satisfying

91(q) = U1 (f1(9), f2(q), f3(0))
92(q) = U2(f1(9), f2(q), f3(0))
93(q) = Us(f1(q), f2(q), f3(q))

The determinant

oU;
an> € Q[X1, Xo, X3] C K[X1, Xy, X3]

A(XhXQ,Xg) = det(

has been proven to be nonzero in Section 4 or in the proof of Theorem 5.3, respectively,
where we have studied independence properties of the values of the functions ¢1(q), g2(q),
and g¢3(q) at algebraic points. Therefore, by Corollary 2.2 the functions g;1(q), g2(q), and
93(q) are algebraically independent over C(q). O

The following corollary is an analogue to Theorem 5.1.

85



5. Independence results for mixed subsets of ()

Corollary 5.1. Any two functions in Q(q) are algebraically independent over C(q).

Proof. Let g1(q), g2(q) € Q(q). Then there is a function g3(q) € (q) such that for any
algebraic number ¢ with 0 < |g| < 1 the values g1(q), g2(q), and g3(q) are algebraically
independent over Q. This is a consequence of Theorem 5.3. Hence, the conditions of
Theorem 5.7 are fulfilled and we conclude on the algebraic independence of the functions
91(q), 92(q), and g5(q) over C(g). This proves the corollary. O

We remark that we did not need Nesterenko’s Theorem 1.1 for the proofs in this sub-
section. All the algebraic independence results for the functions ®o4(q), P3.(q), Yas(q),
and W3 (q) over C(q) go back to Mahler’s result. In general, there is no relation between
the algebraic independence of functions fi(z),..., fu(z) over C(z) on the one hand, and
the algebraic independence of their values at an algebraic point z = z; over @ on the
other hand.
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6. Quantitative results

6.1. An algebraic independence measure for P(q),Q(q), and R(q)

In [32] Nesterenko also stated a quantitative version of Theorem 1.1 on Ramanujan’s
functions P(q), Q(q), and R(q). One year later he improved this result in [33] and gave
the following measure of their algebraic independence over Q.

For each polynomial A(Xy,...,X,) € Q[X1,...,X,], we denote by deg A the degree
of the polynomial A with respect to the totality of variables and by H(A) its height,
that is the maximum of moduli of the coefficients of the polynomial A. Moreover, we set
t(A) = deg A+ log H(A).

Theorem 6.1 (Nesterenko [33], 1997). Let q be an algebraic number, 0 < |q| < 1, and
let wy,we, w3 € C are such that all numbers P(q),Q(q), and R(q) are algebraic over the
field Q(wy,wa,ws3). Then there exists a constant vy depending only on the numbers q and
w; such that the following inequality holds for any polynomial A € Z[X;, X2, X3], A # 0:

|A<w17 W2, W3)| > eXp(_’YSdg logg S) )
where S and d are arbitrary numbers satisfying the inequalities
S > max{log H(A) + deg A - logt(A), e} d>degA.

As an immediate corollary we obtain a first quantitative result for three-element subsets
of ).

Corollary 6.1. Let wy,wsy, w3 € 2 be algebraically independent over Q. Then there exists
a constant v depending only on g = B* and the w; such that the following inequality holds
for any polynomial A € 7] X1, Xo, X3], A#0:

| A(wr, w2, w3)| > exp(—7Sdlog” 5)
where S and d satisfy the conditions from Theorem 6.1.

Proof. Let K := Q(wy,ws,ws) and I := Q(k, K/7, E/x). It suffices to show, that the
numbers P(q), Q(q), R(¢) € L are algebraic over K for ¢ = 3* € Q. Then the statement
follows from Theorem 6.1.

Since wy,ws, and wy are algebraically independent over @, we have tr. deg(IK : Q) = 3.
Moreover, from Lemma 1.1 we have tr.deg(LL : Q) = 3. By the chain rule (Lemma 2.1)
we obtain

tr.deg(LL : K) = tr.deg(LL : Q) — tr.deg(K : Q) =0.

Applying Lemma 2.1 once more gives

0 = tr.deg(LL : K) = tr.deg(L : K(P(q), Q(q), R(q))) + tr.deg(K(P(q), Q(q), R(q)) : K)

and therefore
tr. deg(K(P(q), Q(q), R(q)) : K) =0,
which proves that the numbers P(q), Q(q), and R(q) are algebraic over K. ]
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6. Quantitative results

Corollary 6.1 provides an algebraic independence measure for three numbers wy, wy, w3 €
2 which depends on an implicit constant v varying with the choice of the particular set
{w1, ws,ws}. This implicit dependency can be stated more precisely in an explicit way. In
the following subsection we prove a general lemma.

6.2. A lemma on algebraic independence measures

The lemma to be proven in this subsection may be noticed as a quantitative supplement
to Corollary 2.1. We shall restate the general situation.

Let z1,...,x, € C be algebraically independent over Q. Moreover, let the following
algebraic independence measure be given for the numbers x4, ..., x,: For any polynomial
AeZ[Xy,...,X,], A#0, satistying H(A) < H and deg A < m we have

|A(zy, ..., zn)| >T(m, H) (6.1)

for some function T : Z? — Rs.
Now, let y1, ...,y € Q[z1,...,x,] be algebraically independent over Q, where

yj = Pj(x1,...,zn), PeQXy,....X,] (G=1,...,n).

Let
p; = deg P; (j=1,...,n), u:zlrgdélpj.
Moreover, for any j € {1,...,n} we denote by d; the least common multiple of the

denominators of the coefficients from the polynomial P;, such that
Pl :=d;P; € Z[Xy,...,X,] (j=1,...,n), (6.2)
and
D:=dy---d,.

Additionaly, we shall define the broadness b(A) of a polynomial A as the number of its
monomials.

The following lemma provides an algebraic independence measure for the numbers
Y1, - - -, Y, depending on the measure of z, ..., x, and some characteristic quantities con-
cerning the polynomials Py, ..., P,:

Lemma 6.1. For any polynomial B € Z[Xy,...,X,], B # 0, satisfying H(B) < H,
b(B) < b and deg B < m we have

1
|IB(y1, -y Yn)| > L (um, bHKE™) ,

where
and T is the function given by (6.1).
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6.2. A lemma on algebraic independence measures

Remark 6.1. It is not usual to take into account the broadness of a polynomial in the
theory of algebraic independence measures. It is clear that the number of monomials of
a polynomial B € Z[X3,...,X,], B # 0, with deg B < m is bounded by

b(B) < (m”‘) .

n

Therefore, if we omit the condition b(B) < b in Lemma 6.1, we obtain the weaker result

1 m+n
B e Yn)| > — , Hk™ | .
Bl o)l > T (g (57 1)

Proof of Lemma 6.1. We use the expression (6.2) to find

B(yi,y .-, Yn) :B(Pl(:vl,...,xn),...,Pn(:vl,...,a:n)),

where the coefficients of the polynomial

P] P!
B(Pl,...,Pn):B(d—l,...,d—”) € QX1 ..., X,]
1 n

are not integers, in general. Multiplying with D8 gives
A(Xy, ..., X,) =D¥BB(P, ... P,) € Z[X,,..., X,].

Then we have ]

B(y17"'7yn):WA(mla"wxn)‘ (63)

It remains to estimate the degree and the height of A. With the use of (6.1) we will then
obtain a lower bound for |B(y1,...,y,)|. Let

B(Xy,..., X,) = Z Biroin X1t -+ X0, Bir,.vin €L

It is well-known (see [45, Theorem 11, §18, Ch.I]) that
deg(P}' -+ Pir) =iy deg Py + -+ + in deg Py = i1py + -+ + inpn -
With 4y +---+14, <mand p; < pfor j =1,...,n this yields
deg A < um.
To estimate the height of A we use [33, Lemma 1.1] and obtain
H(P -+ Pr) < H(R" - H(P)" (n )0t

Furthermore, for any polynomials fi, fo € Q[X1,..., X,] and rational numbers A\, Ay we
have

H(ALfi+ Aafo) < [MIH(f1) + [Ae|H(f2) -
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6. Quantitative results

We derive
H(A) = H(D*“¢PB(P,,...,P,))

- deg B iy deg B pi
=H E Biy,indy © P d BT P

(11 ----- Z'n)

< Z |Bi i

H(ES Py - 250 )

< H(B)DY#P(B) max (H(d\P)* - H(d,P,)" (n + 1)prtFinen)

(741 77777 Zn)

<bHD™ [ [ dyH(P)™ (n+ 1)
j=1

=bHK™.
Finally, from (6.1) and (6.3) we conclude on

1 1 .
|B(y177yn)|:W|A($1>,I’n)|>m (Mm,bH/{ ),
as desired. O

Combining Nesterenko’s result from Theorem 6.1 and Lemma 6.1, we obtain algebraic
independence measures for all three-element subsets of {2 depending only on one implicit
constant.

Let ¢ = B* = e % for ¢ = K'/K. Then, by formulas (1.11), the numbers P(q),
Q(q) and R(q) are algebraic over the field Q(k, K/m, E/w). Therefore, we may apply
Theorem 6.1 with (wy,ws,ws) = (k, K/m, E/7), such that the inequality

A7)
m™ T

holds for any polynomial A € Z[X;, X5, X5|, A # 0, where S and d are defined in
Theorem 6.1. The constant v depends only on ¢,k, K/m and E/m. Since K = K(k),
E = E(k) and k = k(q) (see Subsection 5.4), v does actually depend only on ¢ = .
The algebraic independence measures for all three-element subsets of {2 obtained from
Lemma 6.1 only depend on this fixed constant v. By the following example we apply
Lemma 6.1 with (21,29, 23) = (k, K/m, E/7) and (y1,y2,y3) = (P2, Py, Pg).

Example 6.1. For any polynomial B € Z[X1, X5, X3], B # 0, satisfying H(B) < H,
b(B) < b and deg B < m we have

> exp(—ySd®log” S) (6.4)

1
= 1180377600

| B(®y, By, B )| exp(—1728ySm’ log’ 5),
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6.2. A lemma on algebraic independence measures

where S is an arbitrary number satisfying
S > log(bH) + 72.43m + 12mlog (log(bH) + 84.43m) .

Proof. With (3.5) and (3.6) we compute the polynomials
1 1 1

Pl(XlaXZ:X?)) = ﬁ - 6X22 + §X12X227
Py (X1, X5, X3) = —%}m + éX X5 — 356)(2 + ;X2X2
+ 910)(4 — %X2X4 + 485)(4)(3,
Pa(X, X, Xs) = 121()99160 - 1&13_0X2 * 910X2X2
N N — XX+ ! — XX
360 2 180 180

Loy Wyaye 3Lyuyg 62

- XS+ = —— X5x$
04572 T 315 12 T T g tite
satisfying
K FE K FE K FE
CI)Q Pl(k——), q)4_P2(k——>, (I)6_P3(k,—,—).
T T T
We get
p = max{deg P, deg P5,deg P3} = 12,
1 8 31
and

dy =24, dy = 1440, ds = 120960 .
This yields

3
D =4180377600, ~ = D? H H(Pj)éldeg Fi = 28 686 540 327 344 554 955 144 114 995 200 .

j=1
Now, we may apply Lemma 6.1 and obtain the lower bound

1

4180377 600™
1

~ 4180377 600™
for any polynomial B € Z[X;, X5, X3], B # 0, satistfying H(B) < H, b(B) < b and
deg B < m, where T is the function on the right-hand side of (6.4). Hence, we need to
substitute deg A by um and H(A) by bHx™ in Theorem 6.1 which gives

|B(®2a ®47 (p6)| >

T(pum,bHE™)

T (12m,bH - 28 686 540 327 344 554 955 144 114 995 200™)

1

B(®y. &, &
|B(®2, 4, o)l > erareoom

exp(—1728ySm?log” S)
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6. Quantitative results

where S is an arbitrary number satisfying
S > max {log(bH) + mlog (28 686 540 327 344 554 955 144 114 995 200) + 12mlogty, e} ,
with
t1 :=12m + log(bH) + mlog (28 686 540 327 344 554 955 144 114 995 200) .
Hence, we obtain

S > log(bH) + 72.43m + 12mlog (log(bH) + 84.43m) .

Remark 6.2. According to Remark 6.1 we use the estimate
3
b(B) < (m; ) (B € Z[X1, X5, Xs], deg B < m)

to get rid of the condition b(B) < b in the preceding example. This yields
logb < 3log(m + 3).

Then, for any polynomial B € Z[X;, Xo, X3], B # 0, satisfying H(B) < H anddeg B < m
we have

| B(®y, By, Bg)| > exp(—1728ySm? log” 9)

1
4180377 600™
where S is an arbitrary number satisfying

S > log(H) + 3log(m + 3) + 72.43m + 12mlog (log(H) + 3log(m + 3) + 84.43m) .
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7. Conclusion

In general it is a difficult problem to prove the transcendence of a given number. But,
once the transcendence of two numbers o and [ is proven, it is even harder to answer
the question on their algebraic independence over ), apart from trivial cases where the
algebraic dependence is obvious like § € Q[a]. For instance, it is known for more than
120 years that the numbers e and 7 are transcendental. The problem on their algebraic
independence is still open.

During the last century, a lot of different methods have been established to decide on
the algebraic independence of a given set of transcendental numbers, when these numbers
belong to particular classes like values of E-functions in the case of Siegel-Shidlovskii.
The determinant criterion applied in this thesis is very recent and yet has already led
to interesting results (see [21]). More than 20 years after André-Jeannin’s result on the
irrationality of (#(1), (5(1), (1(1), and (; (1) we are able to prove algebraic independence
results for values of these zeta functions with the help of that determinant criterion. The-
orem 5.3 of this thesis gives a complete answer to the question on algebraic independent
subsets of

{CF(251>7 C;(252)7 CL(253)7 <Z(254> | 81,82, 83,84 € IN} .

Unfortunately, we cannot prove anything on the algebraic character of the values of the
above zeta functions at positive odd integers. This is due to the fact that the identities
from Zucker [46] used in this thesis do not cover the odd case. Also such identities seem
difficult to find. As mentioned in the introduction, even the arithmetic character of (g (3)
is still unknown. The situation is similar to the Riemann zeta function ((s). While this
function is known to take transcendental values at positive even integers, our knowledge
of ((s) at positive odd integers s is rather small. In 1979 Apéry [3] showed that ((3) is
irrational. About 20 years later, Zudilin [47] could prove, that at least one of the numbers
¢(5), ¢(7), €(9), and ¢(11) is irrational. We are far away from algebraic independence
results for such numbers.

By Lemma 6.1 we give a quantitative supplement to the independence criterion from
Section 2. If the algebraic independence for a certain set of numbers is proven, it is natural
to ask for a measure of their independence. Our lemma provides a method to transcribe
the measure from one number set to another, if these sets are connected via polynomials
in an explicit way. It would also be interesting to have such a lemma for the general
implicit situation as in Lemma 2.3.

Further research in this area could also be focussed on the linear case. We could not
prove Conjecture 5.1 up until now, since our knowledge of the Jacobian elliptic functions
investigated in Section 3 is too small. An explicit formula for the Laurent series expansions
of these functions would be very helpful.
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A. Some identities for algebraically dependent numbers
in ()

In [20] Elsner, Shiokawa and Shimomura showed that 198 of the 220 three-element
subsets of
I'= {(I)Qy (I)47 qDG? q);u (I)Za (I)gy @27 \1]47 @67 \1]37 ‘PZU \I]g} cQ.

are algebraically independent over ). For the remaining 22 subsets they computed the
following explicit polynomial identities:
1. {®y, @5, Wi}:  total deg =1,

—2Py + O+ UL =0

2. {Wy, Uy, U5} total deg = 2,

22024 Uy —3-20, — U5 =0

3. { Dy, s, P5}:  total deg = 3,

—22 9% + 30,2 —3-2205Dy — 3D +7-2P5 =0

4. { Dy, Pg, Uo}:  total deg = 3,

—31-209,3 +3-20 D, 0,2 —9-228,%2 +3-220,0,
432202 +35.2305 — 3Py + 30y =0

5. {®y, g, Ug}:  total deg =9,
—31-203,7 — 9. 218 D,% 4 357 - 217 D26 + 63 - 213 Py7 + 63 - 215 P D,°
—9. 214 P,0 — 5439 . 212 P2 Dy3 — 1071 - 29 PPyt — 783 - 24 Dy° + 27 - 212 9,32
—441 - 210 B2 D52 + 693 - 28 DDy + 189 - 22 Pyt 4 27 - 26 B2 W + 81 - 210 22
+1715 - 2" @63 + 2205 - 26 B2 D, + 189 - 2° B D% — 27 - 23 Py + 81 - 2% B,
+81 - 28D, W42 — 3087 - 24 Py? — 189 - 22 DDy + 81 - 22 Py + 27 - 26 (2
+189 g +27 Vs =0

6. {Po, s, Us}:  total deg = 5,

—31-28®,° + 1127 ®y* + 35 - 27 Dgdy® — 5- 23 By + 3. 26 P02
35250y + 3Dy% — 322005 +3-21 W2 4+ 35.2d5 -3V =0

7. { Dy, P;, Uy} total deg = 2,

7-220,% —220y? —5.2205 + Py — Uy =0
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. APy, P5, U6}:  total deg = 6,

7211 3,0 — 3.2 01dy" — 3. 2100,° 427 - 27 ©22D,% 4 15 - 28 04D,
+9-20d, —5.22033 — 9. 2T 012Dy — 21 - 25 Didy* — 523 Dy?
+21-23 952 4922050, +3Py* — 27U —3P% —2Ug =0

A Dy, @5, W5} total deg = 4,

7-200,t —5.200:d,% —3-2°0,° +5.20 0D,
+22 9,2 — 24 Wi? — 5%+ U =0

A Do, Uy, U} total deg = 3,

3-20 0,20, + 200,21+ 3.23,2 —3.230,0,
432052 — 30,4+ 3Ty —5-25T5 =0

APy, Uy, Ui} total deg = 2,

23 0y Wy + Dy — Wy — 22 W% = 0

APy, U, Ui} total deg = 5,

—3- 2103,k + 3. 25Dy 4521002 + 928 0,3 0% — 25 ,?
—15- 27 W — 9 - 26,20 — 28 W3 4 30,7 4+ 15 - 2% B, W
+15-22 3,0 +3-22 052 — 5. 205 — 30 =0

. A{Pg, D5, ¥o}:  total deg = 6,

—2100,0 — 3,280, — 9. 212 Wtk 4+ 57 - 20 Wyt — 9. 211 U, 30

—1581 - 28 W2 d%2 + 67 - 23 Wy + 147 - 2° Uy? g — 531 - 24 W2 d% — 1581 - 26 Wy P2

—4805 - 28 ®%% 4 69 Wy? 4 147 - 27 Wydg — 387 - 22 Wy dk + 16807 - 26 O
—1617 - 25 Bd; — 507 - 2° %% 4+ 161 - 2P — 69 D5 = 0
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14. {®g, @, ¥s}:  total deg =9,

—4805 - 238 @1 4+ 302673 - 234 D2 P30 — 104139 - 231 D D57 4 84015 - 232 @3B
—3999 - 234 @O — 24713493 - 228 O ®23 + 8084853 - 22° P P!

—5598495 - 228 d?®1° — 381171 - 220 O D3> We? + 1788297 - 227 O &3

1262899 - 2% @i W% — 789615 - 22° &7 — 3999 - 228 PiOWy — 50985 - 228 P1OW 42
—501 - 228 ®23Wg* 4 40353607 - 226 d¢% — 73060029 - 22° " D

+257860197 - 222 & @32 — 352947 - 226 O Wy — 53881527 - 222 PP d3?
+361179 - 227 g2 D3 Ws? + 26384589 - 220 P2 d5* — 381171 - 223 B*D;° Wy
—2500029 - 22 ®* P32 W + 1029 - 226 s> Wg! — 589617 - 220 D d:°

1262899 - 223 O d: Wy — 95361 - 222 DgdPWy? — 3591 - 225 P D% W

+126063 - 22! 36 — 50985 - 222 ®x5W 4 284013 - 220 P31 W% — 501 - 223 P33P
+11493 - 222 d32 W — 226 Wb — 7815255 - 220 B + 453789 - 219 Oy %
—352947 - 220 O W + 10782891 - 216 B Di% 4- 361179 - 22 D Di W —

252105 - 220 O We? — 11714871 - 21° ®¢*®3 — 2500029 - 217 P D> Wy

+56889 - 222 B P5We? + 1029 - 22 d*W* 4 1338687 - 213 O d4*

—95361 - 216 ® ;> Wg + 378693 - 216 O di*Ws? — 3591 - 220 P} W?

+1365 - 221 OgWs" — 3400245 - 210 ®3° + 284013 - 21 @3 W — 43167 - 217 P> W2
+11493 - 217 @37 W6 — 6615 - 218 DWW — 3. 220 W® 4 3334989 - 214 Pg?
—842751 - 214 B 0% — 252105 - 214 O U + 2117241 - 21! B2 D3>

+56889 - 216 PP W — 91287 - 21 B2 We? + 787941 - 28 P43

1378693 - 210 032 Wy — 75789 - 212 P diWe® 4- 1365 - 216 dgWe® + 297837 - 24 P34
—85833 - 210 d¥3 Wy + 60705 - 20 DE2We? — 6615 - 213 DEWe® + 3417 - 212 W
—431837 - 28 ®g® — 78057 - 27 B?d — 23079 - 210 B> W — 120015 - 2° P2
—68607 - 26 @ D5 Ws + 29463 - 27 g W* — 3429 - 26 B33 + 37719 - 23 B}* Wy
—6615 - 26 ®3We? + 3427 - 27 U® + 168021 ®g® + 24003 - 2 D + 3429 Ug? = 0

15. {®g, @}, ¥i}:  total deg =6,
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8379 - 28 D ®3 W — 8379 - 212 B d; Wi — 26061 - 213 PP

+19551 - 214 @ P;Ws 4 26061 - 217 P D2 Wi? — 19551 - 218 PP W2
+1519 - 20 d6? 4 48363 - 212 Bg* + 279 W32 + 1319 - 27 d3° + 279 32
1823543 - 216 gt — 277 - 25 WP — 735 - 28 Ddi? — 569037 - 216 gD
—128037 - 27 ®6*®} + 205947 - 2'° d*D;% — 13699 - 21 P d:3

—235445 - 218 g2 D5% 4 302715 - 217 e ®3* + 34209 - 210 @31 — 389205 - 214 @°
—218 6 1 3. 215 4 93 . 219 PA2UEt — 8649 - 218 P2

—20853 - 214 @x3WA? 4 8649 - 214 @x Wk + 21 - 219 Pt — 93 . 216 Pr2Y3
—651 - 28 DU — 201 - 2% @3 WA — 279 - 23U — 735 - 2° D2 U

+735 - 213 ®%Wi? + 819 - 28 PWi? — 2733 - 26 @32 W — 21 - 216 P U3?
120853 - 210 @3 Wk 4201 - 212 Pr A3 — 525 - 2° P2

+651 - 24 DD 42919 - 210 Px2WA% 4+ 267 - 28 Uit = 0



16. {Pg, Vo, Ug}:  total deg =9,

—3441 - 213 W3 W2 + 5481 B + 783 W — 1359 - 26 Uy? — 1323 - 21 B2
—783 - 23 Wy — 10503 - 22 Uyt + 3213 - 27 DUy + 4805 - 212 W3

+837 - 22 Wy Wy — 189 - 216 P W,5 + 3213 - 213 DUy 2 W + 6939 - 210 Ut
—10323 - 219W,2W? — 3969 - 27 B2 Wy + 16155 - 27 U3 Wy — 279 - 212 7,6
—11097 - 2° Wy° — 1323 - 213 P W, + 34911 - 24 W2 W 4 153 - 216 U, 00
—10287 - 29 Uy Wy? — 135 - 2M Uy 4 6237 - 22 DUy + 3213 - 211 DU, Uy
—3969 - 210 ®2W,y% — 567 - 210 D Wy3 + 7371 - 206 P Wy + 51 - 218 W, 00,
—045 - 213 PWyt — 9. 2188 — 221 y,? —

17. {®g, Vo, U3} total deg = 5,

—9-28W,° — 3. 2100, — 35. 210 D Wy® — 21 - 20 Wyt — 3. 290,20k
—105 - 27 DgWy? — 25Wy3 + 63 - 25 W2 W% 4 111 - 26 W Wk? 4 31 . 28 U3
—105- 28 DUy — 3Wy? + 2722 WU + 928 W5% — 35286+ 3% =0

18. {Pg, W, U3}:  total deg = 9,

—87885 - 22° DWW + 1971 W? 4 96579 g — 49049 - 27 O

+64827 - 212 Bt 4 112995 - 220 W® — 1971 - 26 Ui? + 66885 - 220 d* W2

+5145 - 219 B3 W 4 21 - 221 D W? + 13797 - 2P W — 67179 - 27 O W
—61593 - 21 D2 W% — 797475 - 221 P2 Wy 4 1079841 - 214 P ® + 87885 - 220 P Wy !
+11135 - 29 Wg® 4 139671 - 2'° Wg* 4 4185 - 220 W6 — 2672901 - 217 B2 W U2
1158697 - 27 WU 4 1608831 - 210 W W% — 77469 - 228 O W Ui?
—80535 - 21° DWW Wk3 + 26649 - 226 Og W Wi? + 41895 - 213 D? W U
+1203993 - 213 DWW 4 1528065 - 22° B> W2 W — 56889 - 228 P2 W Ui
—336393 - 27 W3° + 377643 - 222 g2 WU — 1398663 - 216 P W2

1147 - 234 DU Wi0 — 194481 - 220 DWWk + 232407 - 22 B W2 W2
+679413 - 221 D W2 Wi? + 213507 - 220 DWWt 4 162477 - 212 Og U

—441 - 230 DgWgWh® + 46305 - 219 O3 WU 4 46305 - 228 P W U2

+57825 - 2° W Wk — 450261 - 2° O Wk + 1523655 - 2° g2 W2

—32679 - 211 W2 Wi 4 372519 - 23 D U3% 4 215649 - 28 g U® — 466965 - 24 Wi
—2408301 - 21 ®* W Wi — 257 W32 4 9. 232 Wx® — 1611 - 224 w7

+124497 - 2 WP Wk + 189 - 233 P W7 — 64827 - 227 O W3 — 30429 - 227 g2 WP
—2499 - 277 W% 4 837 - 227 Wt Wi 4 81 - 2B WP Wit — 567 - 227 W WP
—1563 - 226 W0 + 194481 - 222§ W52 + 265825 - 228 o W?

+583443 - 221 g3 Wi + 247401 - 22 g2 Wi + 40383 - 210 P UE°

—2511 - 22 U Wi2 + 189 - 22 W Wi? 4 5913 - 221 W2yt

+8811 - 228 W5 — 194481 - 217 O Wi — 268569 - 216 Py W2

—3157413 - 21 B> W53 4 891 - 221 W W — 243729 - 217 W3 W42

—14781 - 219 W2 Wi? — 232425 - 212 W Wit 4 157437 - 212 O U

—51921 - 21 W W? — 41391 - 23 U W3? = 0
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19. {®}, Wy, Us}:  total deg = 6,

2,0 3. 211 0r Wyt +3-22W,° 4922922 W,% 4 3. 210 X ,?

+9-26 Wyt — 7. 200,306 + 9. 27T D520, — 9 26 3 W,% — 21 - 20 30, g
+9-23Wy% — 2127 Wy U6 + 9 - 23932 — 81 - 22 P30, — 21 - 26 D5

+27 Wy — 927 WoWg +49 - 27 W% — 2705 —9-2Ws =0

20. {@}, Uy, Ui}:  total deg =4,

—20 Wyt —5.20 30,2 — 25,3 — 5. 28 EW, + 22,2
+26 WUk + 72022 — 5% + U =0

21. {®}, Vg, Ui}:  total deg = 6,

—9 - 2B W PiWi? — 33 217 WP W — 3. 24 Wedh — 725 @53 4 26 Wg?

+9- 2801 —7.210 Wt 4 92 4 28 W3 4 92

-5. 212 \1163 + 218 \Ijzﬁ - 3. 214 \1125 +3. 216 \1163\112 +3. 215 \1162\1122

2B WU — 3. 29 WP Wk + 9. 28 WeWi? — 3. 217 Wg®x W3 99 . 212 W 32
—45 - 28 Wik + 9. 21 WP 4+ 9. 218 @02 4 3. 219 @32t

—35- 28 W2 @23 — 9. 214 @x1 Wt — 45 . 214 @x3WE? — 3. 216 Pi2Ud

+9-2M Prwt 105 - 213 U2 di? — 213 W di3 4+ 3. 212 93

463 - 210 P22 — 21 - 210 PAWEP — 57 . 29 W2 D% 4 3 - 28 W P2

—15- 29057k — 9200305 4+ 3. 20 WU — 9- 20505 =0

22. {Wy, Vg, Ui}:  total deg = 4,
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—22 Wyt — 20 Wy? — 3,7 + 5. 20 Wy + 3. 22 W,
—3-28W2 4 5.2U6 +3W% =0
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