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Preface 

 
The results of this thesis were achieved in the past three years during my work as a 

scientific assistant at the Institute of Physical Chemistry and Electrochemistry at the 

Gottfried Wilhelm Leibniz Universität Hannover and at the Department of Technical 

Chemistry at the Ruhr-Universität Bochum. The financial support was granted by the 

Deutsche Forschungsgemeinschaft (DFG) (WA 1116/15, SPP1181) under the 

guidance of Prof. Dr. Michael Wark and Prof. Dr. Jürgen Caro.  

 

Six research articles are presented within this thesis. I am the first author in each of 

these papers. The following statement will point out my contributions to these 

articles. I would like to acknowledge the beneficial encouragement during the 

preparation of the manuscript from my co-authors, particularly by Prof. Dr. Michael 

Wark. 

 

The first article in Chapter 2, Proton conductivity of ordered mesoporous materials 

containing aluminium, presents the synthesis of proton conducting mesoporous 

Si-MCM-41 modified with aluminium and was written by myself. The solid state 
27

Al magic angle spinning nuclear magnetic resonance (MAS NMR) measurements 

and interpretation by Dr. Martin Wilkening is appreciated. Furthermore, I performed 

X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS), nitrogen 

adsorption, scanning electron microscopy (SEM) and impedance spectroscopy (IS). I 

acknowledge the fruitful discussions with all co-authors. 

 

In Chapter 3 sulphonic acid functionalised Si-MCM-41 were investigated by small 

angle neutron scattering (SANS) and by MAS NMR measurements. Within this 

chapter, the first article, Detection of homogeneous distribution of functional groups 

in mesoporous silica by small angle neutron scattering and in-situ adsorption of 

nitrogen or water, was written by myself. I kindly thank Dr. Dirk Wallacher for the 

technical support and sample preparation during SANS measurements at the Berlin 

Helmoltz-Zentrum for Neutron Scattering. Dr. Michaela Wilhelm recorded the water 

adsorption isotherms. The SANS measurements were conducted by Prof. Dr. 

Michael Wark and me in equal shares. In addition, I performed the corresponding 

characterization by IS and gas adsorption measurements.  

Prof. Dr. Dieter Freude and I mainly wrote the second article, Highly proton 

conducting sulphonic acid functionalised mesoporous materials studied by 

impedance spectroscopy, MAS NMR spectroscopy and MAS PFG NMR diffusometry, 

with kind support of the co-authors. All solid state NMR measurements, preparations 

and interpretations were performed by Prof. Dr. Dieter Freude. I synthesised the 
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proton conducting materials Si-MCM-41-SO3H that were used for this study and 

investigated IS measurements including discussion.  

  

The first article in Chapter 4, Proton conductivity of SO3H-functionalised 

benzene-PMO, was written by Dr. Christof Köhler and me, with kind support of all 

co-authors. The characterization by XRD, SANS, gas adsorption and IS were 

performed and interpreted by me. Furthermore, I prepared the PMO materials 

presented in this article. All theoretical calculations and discussions were done by 

Dr. Pia Tölle and Dr. Christof Köhler.  

The second article within this Chapter, Small angle neutron scattering and in-situ 

adsorption of nitrogen study on periodic mesoporous organosilica materials, was 

written with kind assistance of Prof. Dr. Michael Wark. All SANS experiments were 

done by Prof. Dr. Michael Wark and me in equal shares. Additionally all gas 

adsorption measurements were performed by me. 

 

The formation of sulphonic acid groups by different oxidation methods is presented 

in the article, Investigation on the optimal oxidation agent for a maximum yield of 

sulphonic, within Chapter 5. Data interpretation as well as manuscript preparation 

was fully conducted by myself. The syntheses of all studied samples were done by 

Jenny Schneider under my supervision. I kindly acknowledge the cooperation with 

her.  
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Abstract 

 
The presented thesis contains six original research articles dedicated to the 

preparation and characterization of organic-inorganic mesoporous materials as 

additives for polymer electrolyte membrane fuel cells (PEMFCs). The mesoporous 

materials Si-MCM-41 and benzene-PMO (periodic mesoporous organosilica) were 

chosen for the investigations. These materials were modified with functional groups 

for enhanced proton conductivity and water-keeping properties. 

In order to improve these materials Brønstedt acidic groups were introduced in the 

framework of mesoporous Si-MCM-41. Therefore, some silicium atoms in the 

framework were substituted by aluminium using different aluminium sources. Here 

NaAlO2 exhibits clearly the best results because the entire aluminium incorporated 

within the framework is tetragonally coordinated as observed by 
27

Al MAS NMR. 

The increase of the proton conductivities results from an improved hydrophilicity, a 

decreased particle size, and newly introduced Brønstedt acidity in the mesoporous 

Al-MCM-41. However, mesoporous Si-MCM-41 materials functionalised by 

co-condensation with sulphonic acid groups exhibit the best results concerning 

proton conductivity, compared to those prepared by grafting. Hence, these materials 

where characterized in more detail by SANS and by MAS NMR measurements. The 

first one indicated that by co-condensation the entire inner pore surface is altered by 

functional groups which are, thus, distributed much more homogeneously than 

samples functionalised by grafting. This result explains the improved proton 

conductivities. Additionally, 
29

Si NMR spectra proved that samples prepared by 

co-condensation lead to a successful and almost complete incorporation of 

mercaptopropyltrimethoxysilan (MPMS) into the mesoporous framework. 

Furthermore, it was shown by 
13

C MAS NMR spectroscopy that the majority of the 

organic functional groups remained intact after H2O2-oxidation. However, proton 

conductivity was further improved by using a more appropriate organic compound, 

namely bis(3-triethoxysilylpropyl)-disulfide (TESPD), and Br2 as an optimum 

oxidising agent for a maximum yield of SO3H-groups (98 %). 

PMO materials of the type (R’O)3Si-R-Si(OR’)3 with benzene as organic bridge and 

a crystal-like periodicity within the pore walls were synthesised as alternative 

starting materials. The benzene-PMO materials offer a multiplicity of reactions due 

to the presence of organic bridges. In addition to that, the crystalline pore walls, 

proven by SANS during in-situ nitrogen adsorption measurements, open up new 

possibilities to form a regular distribution of anchored sulphonic acid groups. If the 

SO3H-functionalisation of benzene-PMO materials was performed at both, benzene 

groups and silanol groups, a homogenous distribution of functional groups was 

achieved. Hence, a drastic increase of proton conductivity compared to pristine 

benzene-PMO and benzene-PMO with sulphonic acid grafted via propyl chains only 

on silica positions is observed.  
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Zusammenfassung 

 

Die vorliegende Dissertation behandelt, in sechs ausgewählten Forschungsarbeiten, 

die Präparation und Charakterisierung von organisch-anorgischen mesoporösen 

Materialien als Additive für Polymerelektrolytbrennstoffzellen. Die mesoporösen 

Materialien Si-MCM-41 und Benzen-PMO wurden für die Untersuchungen 

ausgewählt. Diese Materialien wurden mit funktionellen Gruppen modifiziert, um 

ihre Leistung hinsichtlich Protonenleitfähigkeit und Wasserrückhalt zu verbessern. 

Um die Eigenschaften des silikcatischen Wirtsmaterials vor der Funktionalisierung 

zu optimieren, wurde am Beispiel von Si-MCM-41 Aluminium in das Gerüst 

eingebaut. Hierbei wurden einige Silizium Atome im mesoporösen Gerüst durch 

Aluminium ersetzt. Die Verwendung von NaAlO2 als Al-Quelle erzielte die besten 

Ergebnisse in der Protonenleitfähigkeit, da das Aluminium tetragonal koordiniert im 

Gerüst vorliegt. Im Vergleich zur Grafting Methode, zeigten Si-MCM-41 

Materialien, die mittels Co-Kondensation funktionalisiert worden waren, stets höhere 

Protonenleitfähigkeiten. Aus diesem Grund wurden diese Materialien über 

Kleinwinkel-Neutronenstreuexperimente und MAS NMR Messungen detaillierter 

charakterisiert. Für SO3H-funktionalisiertes Si-MCM-41 konnte auf diesem Wege 

gezeigt werden, dass die Verteilung der Sulfonsäuregruppen nach einer Synthese 

mittels Co-Kondensation deutlich homogener ist als nach Grafting, und damit die 

höhere Protonenleitfähigkeit der durch Co-Kondensation erhaltenen Proben 

begründet. Außerdem bestätigten 
29

Si NMR Spektren einen erfolgreichen und nahezu 

kompletten Einbau von Mercaptopropyltrimethoxysilan (MPMS). 
13

C MAS NMR 

Auswertungen zeigten zudem, dass die funktionellen Gruppen auch nach der 

H2O2-Oxidation intakt bleiben. 

Um die Protonenleitfähigkeit weiter zu erhöhen wurde die organische Verbindung 

Bis(3-triethoxysilylpropyl)-disulfid (TESPD) verwendet. Zusätzlich wurde Br2 als 

Oxidationsmittel eingesetzt, wodurch eine maximale Ausbeute an SO3H-Gruppen 

erzielt werden konnte (98%). 

Als alternative Ausgangsmaterialien wurden PMOs des Typs (R’O)3Si-R-Si(OR’)3 

mit Benzen als organische Gruppe und einer quasi-kristallinen Periodizität innerhalb 

der Porenwand synthetisiert. Benzen-PMOs ermöglichen aufgrund ihrer organischen 

Gruppen eine Vielzahl von Funktionalisierungsmöglichkeiten. Die Kristallinität der 

Porenwände wurde mittels SANS Experimente und in-situ Stickstoffadsorption 

nachgewiesen und ermöglicht eine regelmäßige Verteilung von funktionellen 

Gruppen. Durch eine SO3H-Funktionalisierung an den Benzengruppen als auch an 

den Silanolgruppen, wurde eine homogene Verteilung protonenleitender Gruppen 

erzielt. Die gemessenen Protonenleitfähigkeiten übertrafen deutlich die des reinen 

Benzen-PMOs.  
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1 Introduction 

 

1.1 Motivation 
Although various media report about falling birth rates, the United Nations estimate 

that the world population will increase from 7 billion to 9.2 billion by the year 

2050.
1,2

 At the same time, the desire for mobility and comfort, and thus the demand 

for energy, increases.
3,4

 However, the growing world population and rising energy 

requirements are in contradiction to the amount of available fossil fuels. In addition, 

wasteful consumption and the recovery of these non-renewable fossil fuels have a 

strong environmental impact, since substances in the atmosphere, such as nitric 

oxides and carbon dioxide, are decomposing the ozone layer.
5
 As a consequence of 

this the protection ability of the ozone layer against ultraviolet radiation is decreased, 

which is potentially damaging to all life forms on earth, especially for 

phytoplanktons, which produce more than 50 % of the oxygen in the atmosphere 

during photosynthesis. Hence, the natural greenhouse effect is greatly intensified, 

causing global warming.
6 

In the long term, this would have fatal consequences for 

mankind. Therefore, alternative energy sources are in the focus of recent research. 

Two promising technologies, usually stationarily used to transform natural energy 

into electrical energy, are solar
7
 and wind energy,

8
 respectively. Another 

environmentally friendly production of energy is made possible by fuel cell 

technology - which is used for mobile applications.
9,10

 This converts chemical energy 

directly into electrical energy by the reaction of hydrogen and oxygen into water. 

The most used methods for hydrogen production are reforming
11

 and water 

electrolysis.
12

 It is thus a secondary energy, since primary energy is always expended 

for its production. A completely environmentally friendly energy production by 

hydrogen takes place only if renewable energy sources are used for its production.  

The fuel cell consists of two electrodes that are located in electrolyte solutions, 

which are separated by a proton-conducting membrane. The electrodes are connected 

                                                 
1 G. Dubois, P. Peeters, J.P. Ceron, and S. Gössling, Transportation Research 2011 (45), 1031-1042. 
2 A.B. Stambouli and E. Traversa, Renewable and Sustainable Energy Reviews 2002, (6), 297-3036. 
3 K. Mori, Journal of the Japan Institute of Energy 2004 (82), 594-602. 
4 International Energy Agency. World Energy Outlook 2008, Fact Sheet, IEA/AIE, Paris 2008. 
5 F.S. Rowland, Philosophical Transactions of the Royal Society B: Biological Sciences 2006 (361), 769-790. 
6 C. Parmesan and G. Yohe, Nature 2003 (421), 37-42. 
7 U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, Nature 1998 

(395), 583-585.  
8 M.I. Hoffert, K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, and T.M.L. Wigley, 

Science 2002 (298), 981-987. 
9 C.K. Dyer, Journal of Power Sources 2002 (106), 31-34. 
10 J.A. Paradiso and T. Starner, IEEE Pervasive Computing 2005 (4), 18-27. 
11 R.D. Cortright, R.R. Davda, and J.A. Dumesic, Nature 2002 (418), 964-967. 
12 H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, Solid State Ionics 1981 (3), 359-363. 

http://en.wikipedia.org/wiki/Global_warming
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via an external circuit with a consumer and are bathed in reactant gases. A major 

type of fuel cell is the PEMFC. The most important, high efficient, and life insuring 

component of a PEMFC is the proton-conducting membrane. These membranes must 

satisfy two relevant requirements: 1) allow proton transport from the anode to the 

cathode, and 2) act as a gas separating barrier (H2, O2). In general, they are made of 

organic polymers containing acidic functionalities such as carboxylic, sulphonic or 

phosphoric groups.
13,14

 In the presence of water, dissociation takes place, allowing 

H3O
+
-hydrated proton transport. Hence, the performance of the membrane depends 

on the amount of ionic groups and on the hydration rate. Its development is therefore 

in the focus of current research, in order to improve PEMFCs.
15,16

 Currently, Nafion
®
 

is the most often used polymer membrane in PEMFCs,
17

 combining a hydrophobic 

perfluorinated backbone with hydrophilic side chains carrying very strong acidic end 

groups (-SO3H). The SO3H-groups are necessary for the proton conductivity, as well 

as for the interaction with hydrophilic water molecules. A major drawback of 

Nafion
®
 nonetheless continues to be the difficulty to maintain a defined high relative 

humidity, which is necessary to avoid swelling or shrinking of the membrane and the 

complete loss of proton conductivity at temperatures above 373 K when water is 

evaporating. Hence, the highest application temperature for Nafion
®
 is 353 K.

18
 

Higher working temperatures of about 413-453 K, however, are favourable, as the 

cooling of the fuel cell is simplified (in mobile systems), the tolerance towards 

carbon monoxide, which poisons the expensive platinum electro catalyst, is 

increased, and finally, the faster cathode kinetics lead to smaller amounts of the 

noble metal catalyst. For this reason, there is a great interest in developing alternative 

membranes for fuel cells, which show high proton conductivity, high temperature 

water-keeping properties, and are made of low-cost thermo stable polymers. Possible 

candidates are aromatic-based polymers, such as polysulphones (PPSU),
19

 poly 

(benzimidazoles) (PBI),
20

 poly(-imides), or the so called poly(aryletherketones) 

PEEK.
21

 These materials, however, need to be functionalised with proton conducting 

sulphonic acid groups. 

A promising approach for future generations of membranes for PEMFC is the 

incorporation of solid inorganic-organic additives to the polymer membrane, such as: 

TiO2, SiO2, SnO2, ZrO2, or certain zeolites.
22

 The preparation of these membranes is 

                                                 
13 Q. Li, R. He, J.O. Jensen, and N.J. Bjerrum, Chemistry of Materials 2003 (15), 4896-4915. 
14 C. Song, Catalysis Today 2002 (77), 17-49. 
15 J.W. Fergus, Journal of Power Sources 2006 (162), 30-40. 
16 Z.G. Shao, P. Joghee, and I.M. Hsing, Journal of Membrane Science 2004 (229), 43-51. 
17 B. Ladewig, Nafion Nanocomposite Membranes for the DMFC, Vdm Verlag Dr. Müller, 2008. 
18 K.A. Mauritz and R.B. Moore, Chemical Reviews 2004 (104), 4535-4585. 
19 J. Kerres, W. Cui, and S. Reichle, Journal of Polymer Science 1996 (34), 2421-2427. 
20 Y.L. Ma, J.S. Wainright, M.H. Litt, and R.F. Savinell, Journal of the Electrochemical Society 2004 (151), 8-16. 
21 D.J. Jones and J. Roziere, Journal of Membrane Science 2001 (185), 41-48. 
22 C. Laberty-Robert, K. Valle, F. Pereira, and C. Sanchez, Chemical Society Reviews 2011 (40), 961-1005. 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=36673148100&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=40861176300&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7404521944&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=35336058900&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=35336058900&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=35376556000&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=35376556000&zone=
http://www.amazon.de/exec/obidos/search-handle-url?%5Fencoding=UTF8&search-type=ss&index=books-de-intl-us&field-author=Bradley%20Ladewig
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implemented by dip-coating,
23

 casting,
24

 spraying,
25

 or spin coating.
26

 It is, however, 

very difficult to obtain homogenous membranes due to particle agglomeration and 

segregation inside the polymer matrix, especially for micro-sized particles.
27

 

Nevertheless, several authors have illustrated an improved performance of the 

membrane at high temperatures and low humidity for different organic-inorganic 

composite membranes with highly dispersed metal oxide particles in the structure of 

Nafion
®
.
28,29

 Another approach to prepare new organic-inorganic composite 

membranes is to synthesise ordered mesoporous solids functionalised with proton 

conducting groups. Compared to non-porous and non-ordered materials, they show 

many advantages, including: (i) a higher amount of proton conducting groups due to 

high surface area, (ii) the absorption of water inside the pore volume and hence 

increased water-keeping properties, as well as (iii) their long-range ordered 

mesopores, which can help to guide protons through their pore channels.   

 

 

1.2 Fuel Cell Technology 
The idea to produce electricity with the help of the fuel cell is more than 170 years 

old. In 1838 Prof. F. Schönbein (1799-1868) found that a current is generated by the 

reversible reaction of hydrogen and oxygen gas. Based on these results, William 

Grove developed the first fuel cell ("galvanic gas battery") in the same year.
30

 Here, 

two platinum electrodes were immersed in sulphonic acid and flushed with hydrogen 

or oxygen. In order to increase the activity of the platinum electrodes, a deposited 

layer of Pt-sponge was used in each glass tube. However, after 1866 Werner von 

Siemens developed the first dynamo and the interest in fuel cells vanished, due to the 

electro-dynamic principle providing much easier electrical power and the knowledge 

in the field of electrochemistry being sufficient. In the middle of the 20
th

 century the 

National Aeronautics and Space Administration (NASA) used an alkaline fuel cell 

(AFC) successfully for the first time in the aerospace industry.
31

 Since high 

investment costs made further processing very difficult, though, fuel cells continued 

to be used only in aerospace and the military sector. At the end of the nineties, the 

                                                 
23 H. Choi, E. Stathatos, and D.D. Dionysiou, Applied Catalysis B: Environmental 2006 (63), 60-67. 
24 C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. Pineri, Polymer 2001 (42), 359-373. 
25 C. Sanchez, C. Boissiere, D. Grosso, C. Laberty, and L. Nicole, Chemistry of Materials 2008 (20), 682-691. 
26 C.J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Advanced Materials 1999 (11), 579-586. 
27 M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, Journal of the Electrochemical Society 1995 (142), 463-468. 
28 A.K. Sahu, G. Selvarani, S. Pitchumani, P. Sridhar, and A. K. Shukla, Journal of Electrochemistry Society 

2007 (154), 123-128. 
29 A. Sacca, A. Carbone, E. Passalacqua, A.D. Epifonia, S. Licoccia, E. Traversa, E. Sala, F. Traini, and R. 

Ornelas, Journal of Power Sources 2005 (152), 16-23. 
30 www.diebrennstoffzelle.de, December 2011. 
31 B.Y.S. Lin, D.W. Kirk, and S.J. Thorpe,  Journal of Power Sources 2006 (161), 474-483. 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=12240589900&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7202224693&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7201888308&zone=
http://www.scopus.com/source/sourceInfo.url?sourceId=18063&origin=resultslist
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interest in fuel cell technology increased, especially by the automotive industry due 

to the scarcity of current energy resources.
32

  

Every fuel cell is composed of two electrodes, a cathode and an anode. Hydrogen 

and oxygen react in a controlled platinum catalysed reaction to form water 

("cold combustion"). At the anode, hydrogen molecules are oxidised to form 

hydrogen cations and electrons, which pass through an electrical conductor (bipolar 

plate) to the cathode, where oxygen atoms are reduced. Conventional fuel cell 

systems with Nafion
®
 proton conducting membranes operate at around 348 K and an 

operating pressure between 2.5 and 18 bar, depending on the fuel cell system used 

and its application. The excess pressure ensures the wetting of the membrane. 

 

 
Figure 1: Fuel cell assembly. 

 

The formation of harmless carbon dioxide is illustrated in Equation 1.2.1, which, 

compared to carbon monoxide, does not block absorption sites on the platinum 

catalyst surface. The yield of carbon dioxide grows with increasing temperature. 

                                             CO + H2O              CO2 + 2 H
+
 + 2 e

- 
              (Eq. 1.2.1) 

The platinum catalyst is needed due to the high activation energy of hydrogen and 

oxygen dissociation. During the first reaction step, the formation of an intermediate 

hybrid compound takes place, followed by the dissociation of this platinum hydride 

and the formation of protons and electrons. 

                                             2 H2 + 4 Pt               4 Pt-H                               (Eq. 1.2.2) 

                                             4 Pt-H                      4 Pt + 4 H
+
 + 4 e

-      
          (Eq. 1.2.3) 

At the anode side, the recombination of protons, electrons, and oxygen takes place.  

                                              O2 + 4 H
+
 + 4 e

-      
       2 H2O                          (Eq. 1.2.4) 

Figure 2 shows the most important fuel cell types. They all have in common that 

hydrogen reacts with oxygen, yet differ in their implementation, since they employ 

different electrolytes and temperatures. 

 
 

                                                 
32 A.E. Farrell, R.J. Plevin, B.T. Turner, A.D. Jones, M. O’Hare, and D.M. Kammen, Science 2006 (311), 506-

508. 
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Figure 2: Different types of fuel cells.

33
 

 

One of the most important properties rendering the fuel cell technology as very 

attractive is its thermodynamic efficiency. For instance, the theoretical maximum 

efficiency of an ideal hydrogen-oxygen fuel cell is 94.5 %.
34

 However, depending on 

the operating temperature and the type of fuel cell efficiencies in practice, the 

efficiency is minimised to about 40 %. This is explained by the fact that the output 

voltage (U) is always lower than the theoretical voltage called “open circuit voltage” 

(Uth). These losses depend on the current density and are determined by the kinetics 

of electrode reactions. The resulting voltage (U) is determined by the following 

equation: 

                                                    U = Uth - U                                               (Eq. 1.2.5) 

U is the sum of all voltage losses, which are shown in Figure 3. ΔUrev is the 

reversible voltage loss. ΔUA is the voltage loss which is caused by cathode and anode 

polarizations, as well as by the activation process for electrochemical reactions. A 

nearly linear fall in voltage can be observed as the current density increases, since 

there is a resistance to current flow within the fuel cell according to Ohm’s Law. At 

very high current densities, the hydrogen reaction rate is also high. The hydrogen 

cannot diffuse to the electrode fast enough to react, however, limiting mass transfer 

and causing rapid voltage drops to zero (ΔUdiff). 

 
Figure 3: Voltage losses in fuel cell operation due to electrode kinetics.

35
 

                                                 
33 www.brennstoffzelle-nrw.de/index.php?id=39 (11/2011). 
34 F. Barbir and T. Gómez, International Journal of Hydrogen Energy 1996 (21), 891-901. 
35 Dissertation R. Marschall, New solid proton conductors: Functionalized mesoporous SiO2 materials for 

application in high temperature PEM fuel cell membranes, Hannover, p.19. 
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A comparison between a fuel cell and a Carnot heat engine is illustrated in Figure 4. 

While in the case of a Carnot heat engine electrical energy derives only with detours 

from chemical energy, fuel cells directly produce electrical energy.
36

 In addition, fuel 

cells have a much greater efficiency, since it is not limited by the Carnot factor.  

 

 
Figure 4: Energy conversions in a Carnot or fuel cell process. 

 

In Figure 5, Carnot efficiency is compared with the theoretical efficiency of a H2/O2 

fuel cell’s function contingent upon temperature. While the efficiency of a Carnot 

heat engine increases with increasing temperature, it decreases in the case of a fuel 

cell. This can be explained by the calculation of efficiencies. 
 

Carnot Heat Engine 

                                               
2

1

2

12 1
T

T

T

TT
el 


      |   T2 > T1                 (Eq. 1.2.6) 

T1: outlet temperature 

T2: operation temperature 

 

The Equation (1.2.6) shows that increasing operation temperature (T2) leads to an 

increase in the efficiency of a heat-power engine. In contrast, the efficiency of a fuel 

cell is calculated from the free reaction enthalpy, standard reaction entropy, and the 

standard formation enthalpy. 
 

H2/O2-Fuel Cell 

                                 















H

ST

H

STH

H

G

f

R

f

Rf

f

R
el

22
1           (Eq. 1.2.7) 

ΔfH°:  standard formation enthalpy 

ΔRG°: free reaction enthalpy 

ΔRS°: standard reaction entropy 
 

 

Here, two different values are possible (depending on the operation temperature) for 

the standard enthalpy ΔfH°: 

 

i) combustion of hydrogen: 

H2 + 
1
/2 O2 H2O(g)| ΔfHR=-241.83 kJ/molhigher heating value (HHV)      (Eq. 1.2.8) 

 

                                                 
36 M.W. Ellis, M.R. Von Spakovsky, and D.J. Nelson, Proceedings of the IEEE 2001 (89), 1808-1817. 
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ii) condensation to liquid water: 

H2 + 
1
/2 O2 H2O(l)|ΔfHR=-285.84 kJ/mol lower heating value (LHV)        (Eq. 1.2.9) 

 

In order to obtain higher values for the efficiencies, the LHV is used almost 

exclusively in literature.
37,38

 Equation (1.2.7) shows that, in contrast to a Carnot heat 

engine, an increase in temperature causes a decrease in efficiency.  

  
Figure 5: Ideal efficiency of a hydrogen-oxygen fuel cell against the Carnot efficiency depending on 

the temperature T2.
29

 

 

 

1.2.1 Proton Exchange Membrane Fuel Cell 

The focus of this thesis lies on additives for proton conducting polymer membranes 

used in PEMFC (Fig. 6). Therefore, a more detailed description of this type of fuel 

cell follows. 

Compared to other types of fuel cells, PEMFCs exhibit some advantages. They 

generate a high power density,
39

 start up quickly,
40

 owing to the electrolyte working 

at low temperatures, and are also tolerant to shock and vibration due to plastic 

materials and an immobilised electrolyte.
41

 The latter also simplifies the sealing of 

the anode and the cathode with respect to diffusion of gases. The heart of the fuel cell 

is the proton conducting membrane and must fulfil several requirements: 

 high ionic conductivity for rapid transport of the respective ionic species, 

 low permeability of the reactants (gas and fuel), 

 electrically non-conductive to prevent electrical short circuit, 

 chemical and mechanical long-term resistance, 

 good water uptake, and 

 thermal stability. 

                                                 
37 S.H. Chan, C.F. Low, and O.L. Ding, Journal of Power Sources 2002 (103), 188-200. 
38 S. Miachon and P. Aldebert, Journal of Power Sources 1995 (56), 31-36. 
39 C. Lim and C.Y. Wang, Electrochimica Acta 2004 (49), 4149-4156. 
40 J.H. Kim, E.A. Cho, J.H. Jang, H.J. Kim, T.H. Lim, I.H. Oh, J.J. Ko, and I.J. Son, Journal of the 

Electrochemical Society 2010 (157), 118-124. 
41 W. Glasspool and J. Atkinson, Sensors and Actuators 1998 (1-3), 308-317. 
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There are several polymer membrane systems which are competitive for use in 

PEMFC systems: perfluorinated polymers with proton-conducting sulphonic acid 

groups like Nafion
® 

(Dupont de Nemours),
42

 Dow
®

 (Dow Chemical),
43

 Flemion
®
 

(Asahi Chemical),
44

 or Aciplex-Ss (Asahi Glas).
45

 However, all these materials are 

limited to low operation temperature and/or high humidity. Beside the two electro 

catalytic electrodes, which are separated by the proton conducting membrane, bipolar 

plates are used around the membrane electrode assembly (MEA) (Fig. 6). These 

regulate the flow of reactant gases and the removal of product water. In addition, 

they are also responsible for heat evacuation and electrical contact. Since the voltage 

of a single PEMFC (1.23 V at 298 K) is not sufficient, several cells are assembled 

into a fuel cell stack.
46

 

 

Figure 6: PEMFC stack with construction elements.
47

  

 

 

1.3 Proton Conductivity Mechanisms 

In general, three mechanisms are used to describe proton conductivity in the case of 

the polymer electrolyte membranes: 

I. surface diffusion along functional groups, 

II. structural diffusion according to the Grotthuss mechanism, and 

III. the vehicle mechanism, diffusion of mobile species. 

 

Gierke et al. presented an example for surface diffusion which uses the cluster-

network model for Nafion
®
.
48

 Thus, there is a classic transfer of protons along the 

                                                 
42 S.C. Yeo and A. Eisenberg, Journal of Applied Polymer Science 1997 (21), 875-898. 
43 M. Wakizoe, O.A. Velev, and S. Srinivasan, Electrochimica Acta 1995 (40), 335-343. 
44 N. Yoshida, T. Ishisaki, A. Watakabe, and M. Yoshitake, Electrochimica Acta 1998 (42), 3749-3757. 
45 www.hydrogen.energy.gov/program_plans.html, December 2011. 
46 J. Hamelin, K. Agbossou, A. Laperrière, F. Laurencelle, and T.K. Bose, International Journal of Hydrogen 

Energy 2001 (26), 625-629. 
47 www.fctec.com, December 2011. 
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functional sulphonic acid anions which protrude into the non-ordered clusters that 

were formed by the swelling of the Nafion
®

 membrane and exhibit different pore 

diameters. This mechanism is superimposed in highly hydrated proton conductors, 

such as Nafion
®
, by the Grotthuss mechanism.

49
 In this case, the water molecules in 

Nafion
®

 form via hydrogen bonds molecular chains in which the proton is transferred 

by structural defects, thus, by hydrogen bond breaking and formation. 
 

 
Figure 7: Cluster-network model.

48
 

 

Hereby, two intermediate ions are formed: the Zündel ion (H5O2
+
) and the Eigen ion 

(H9O4
+
), which enable proton transport. The transfer time of a proton from a Zündel 

ion to an Eigen ion lies in the range of 1.3-1.5 ps, followed by the transformation of 

the Eigen ion back to the Zündel ion, as shown in Figure 8. 

 
Figure 8: Proton transfer from Zündel-ion (left) over Eigen-ion (middle) to Zündel-ion (right). 

 

 

The Zündel-ion exhibits a hydroxonium-ion (H5O2
+
) in the centre of the water 

cluster, which is coordinated four times by water molecules (Fig. 8, left). The proton 

which is placed between two oxygen atoms hops to one of them, leading to a charged 

atom with three hydrogen bonds. This hydronium-ion (H3O
+
) is solvated by three 

water molecules via hydrogen bonds and forms the Eigen-ion (Fig. 8, middle). 

The vehicle mechanism is based on the attachment of a proton to a water molecule, 

leading to the formation of a vehicle (H3O
+
) or a larger complex (H5O2

+
 or H9O4

+
). 

The formation of protons by the oxidation of hydrogen at the anode leads to a high 

proton concentration. The resulting concentration gradient causes a diffusion of the 

formed vehicle through the membrane towards the cathode and thus the transport of 

                                                                                                                                          
48 W.Y. Hsu and T.D. Gierke, Journal of Membrane Science 1983 (13), 307-326. 
49 N. Agmon, Chemical Physics Letters 1995 (244), 456-462. 
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protons from anode to cathode. In contrast to the Grotthuss mechanism, no hydrogen 

bond breaking and formation causes the proton transport. Hence, the proton transport 

depends on the diffusion coefficient of the vehicle. 

 

 

1.4 Inorganic-Organic Composite Membranes 

 
Figure 9: Diffrent types of composite inorganic-organic membranes. 

 

The focus of this work is not the development of new proton-conducting polymers, 

but the improvement of water storage of current Nafion
®

-based systems by suitable 

organic/inorganic proton-conducting additives. 

There are already numerous studies that show that homogeneous distribution of 

inorganic particles improves the performance of a Nafion
®
 membrane at high 

temperature and low humidity.
50

 Sahu et al. investigated Nafion
®
-silica-membranes 

with different amounts of SiO2 (2.5-15 wt-%).
28

 The composite membranes showed 

improved performance in a wide range of humidity, compared to pure Nafion
®
, 

which is explained by the increased water affinity due to the SiO2 particles 

supporting the proton conductivity a low humidity and high temperature. Possible 

proton conducting groups in the membrane or on the surface of the additives may be 

imidazole,
51

 phosphoric acid,
52

 or sulphonic acid groups.
53

 The latter have proved to 

be more advantageous for the use in PEMFC systems.
54

 A promising alternative to 

the previously used, most non-porous or microporous nanoparticle additives for 

                                                 
50 A. Sacca, A. Carbone, E. Passalacqua, A. D. Epifonia, S. Licoccia, E. Traversa, E. Sala, F. Traini, and 

R. Ornelas, Journal of Power Sources, 2005 (115), 16-24. 
51 R. Marschall, M. Sharifi, and M. Wark, Microporous and Mesoporous Materials 2009 (123), 21-29.  
52 R. He, Q. Li, G. Xiao, and N.J. Bjerrum, Journal of Membrane Science 2003 (226), 169-184. 
53 R. Marschall, I. Bannat, J. Caro, and M. Wark, Microporous and Mesoporous Materials 2007 (99), 190-196. 
54 M. Schuster, T. Rager, A. Noda, K. D. Kreuer, and J. Maier, Fuel Cells 2005 (5), 355-362. 
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proton-conducting membranes, are ordered mesoporous solids.
55

 Li et al. reported 

sol-gel-derived mesostructured zirconium phosphates with proton conductivities of 

about 1·10
-6

-1·10
-8

 S/cm.
56

 Although the conductivity values of these mesoporous 

acid free silica xerogels or anatase thin films show good proton conductivity, their 

performance as an electrolyte in a PEMFC has not yet been tested.
25

 Compared to 

these nonfunctionalised materials, organic acid modified materials prepared by 

grafting or by co-condensation, have shown better proton conductivities.
57

 For 

example, acid functionalised zeolite nanocrystals showed proton conductivities in the 

range of 1.2·10
-3

-2·10
-2

 S/cm,
58

 which are one or two orders of magnitude lower than 

those of Nafion
®

 at 100 % relative humidity and room temperature. The proton 

conductivity depends on the degree of functional groups, acid strength, and the pore 

structure. McKeen et al. have studied proton conductivity of a series of pure-silica 

zeolite beta, MCM-41, and MCM-48 containing sulphonic acids, phosphoric acid, or 

carboxylic acid groups.
59

 They found that aryl sulphonic acid functionalised samples 

showed the highest proton conductivity, followed by materials functionalised with 

propyl sulphonic acid, phosphoric acid, and carboxylic acid. Furthermore, 

mesoporous materials showed higher proton conductivities compared to the 

microporous materials, MCM-41 materials are also more conductive than the 

corresponding MCM-48. 

Thus, compared to materials with non-ordered pore structure, organically 

functionalised silica materials with high pore ordering, such as SBA-15, MCM-48, 

and especially MCM-41, are promising additives for fuel cell applications. An 

alternative way to obtain inorganic-organic ordered porous materials is obtained by 

the synthesis of PMOs, where organic groups are already incorporated in a three-

dimensional network structure (section 1.5.4). The hydrophilic nanoparticles can be 

used to derive the resulting product water at the cathode to humidify the membrane. 

Decisive factors are the nature, extent, and density of the functional groups, and the 

distribution of the mesoporous nanoparticles in the polymer matrix 

(Fig. 9, sandwich-structure (1), inhomogeneous distribution (2), and homogenous 

distribution (3)), so that the water and protons can perform optimally in their pore 

systems and the product water can be distributed homogenously throughout the 

membrane. The performance of future generations of fuel cell membranes, which 

operate at temperatures above 373 K and low humidity, will significantly depend on 

the optimisation of these proton-conducting porous additives.  

 

 

                                                 
55 M. Yamada, D. Li, I. Honma, and H. Zhou, Journal of the American Chemical Society 2055 (127), 13092-

13093. 
56 H.B. Li and M. Nogami, Advanced Materials 2002 (14), 912-922. 
57 R. Marschall, I. Bannat, A. Feldhoff, L. Wang, G.Q. Lu, and M. Wark, Small 2009 (5), 854-865. 
58 C.A Alabi and M.E. Davis, Chemistry of Materials 2006, (18), 5634-5642. 
59 J.C. McKeen, Y.S. Yan, and M.E. Davis, Chemistry of Materials 2008 (20), 5122-5124. 
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1.5 Mesoporous Materials 

 

1.5.1 Introduction of Mesoporous Materials 

Mesoporous materials are very important in nature and technology due to their 

physical and chemical properties.
60,61

 According to the International Union of Pure 

and Applied Chemistry (IUPAC), the porous materials are divided into three groups 

(Table 1).  

 

Table 1: Nanoporous materials according to the IUPAC. 

material pore diameter example 

microporous D < 2 nm zeolite 

mesoporous 2 nm < d < 50 nm MCM-41, SBA-15 

macroporous D > 50 nm porous glass 
  

 

The first materials with ordered mesoporous and uniform pore diameters were 

introduced in 1992 by the Mobil Oil Corporation (Mobil’s Composition of Matter, 

MCM). Depending on which template is used, a pore diameter size of 1.5-10 nm is 

possible.
62

 Figure 10 shows three materials of the M41S family: MCM-50, MCM-41, 

and MCM-48.
63

 

 
Figure 10: Description of three M41S phases: A) lamellar MCM-50, B) hexagonal MCM-41, C) cubic 

MCM-48.
63

 
 

For the synthesis of MS41S materials quaternary ammonium cations and anions such 

as bromides, chlorides, or hydroxides are used. These surfactants consist of a polar, 

hydrophilic head group, and a hydrophobic chain. The hydrophilic head group can be 

cationic,
19

 anionic,
64

 zwitterionic,
65

 or neutral.
66

 Surfactants are surface active and 

thus reduce the surface tension of a solvent. 

                                                 
60 M. Hartmann, Chemistry of Materials 2005 (17), 4577-4593. 
61 Y. Tao, H. Kanoh, L. Abrams, and K. Kaneko, Chemical Reviews 2006 (106), 896-910. 
62 C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck, Nature 1992 (352), 84-87. 
63 Q. Huo, D.I. Margolese, and G.D. Stucky, Chemistry of Materials 1996 (8), 1147-1160. 
64 A. Badiei, R. Vahidifar, and A. Hasheminasab, Iranian Journal of Chemistry 2008 (12), 352-359. 
65 J.W. Park, D.S. Jung, and M.E. Seo, Microporous and Mesoporous Materials 2008 (112), 265-276. 
66 J. Demel, J. Cejka, and P. Stepnicka, Journal of Molecular Catalysis 2007 (112), 26-34. 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7201667400&zone=
http://www.scopus.com/source/sourceInfo.url?sourceId=12878&origin=resultslist
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7402420106&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7102458198&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7005951661&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=8888927000&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=8888927000&zone=
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Figure 11: Micelle formation in different media: water (A) and oil (B).

67
 

 

At a certain concentration, the surfactant forms micelles (critical micelle 

concentration, cmc). Depending on which solvent is used, micelles of the type A 

(polar solvent) or type B (non-polar solvent) are obtained (Fig. 11). The formation of 

spherical micelles is preferred, since the ratio between volume and surface is 

minimal and thus yields a maximum value of entropy. The micelle structure depends 

on the concentration of the surfactant in water and on the temperature (Fig. 12). 

When the concentration of the surfactant is further increased, different types of 

aggregates can be obtained: rod-like, mesophase, or lamellar phase.
68

 

 
Figure 12: Phase diagram for the binary system Cetyltrimethylammoniumbromide (CTAB) in water, 

depending on surfactant concentration and temperature. 
 

Table 2 gives an overview of the possible aggregates, the resulting structure, as well 

as an example for each structure. The package-parameter P can be calculated as 

follows: 

                                    
CLA

V
P

0

                                          (Eq.1.5.1.1)

  

V: chain length 

A0: surface of the head group 

Lc: chain length 

 

 

 

 

 

 

                                                 
67 J.A. Elemans, A.E. Rowan, and R.J.M. Nolte, Journal of the American Chemical Society 2002 (124), 263-266. 
68 C. Tanford, Journal of Physical Chemistry 1972 (76), 88-92. 
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Table 2: Expected structure depending on the package-parameter P. 

P Structure example 

1
/3 cubic   SBA-1 

½ hexagonal MCM-41, FSM-16, SBA-3 

½-
2
/3 cubic MCM-48 

1 lamellar MCM-50 

 

 

1.5.2 MCM-41 

MCM-41 is the most important compound of the M41S family and exhibits a regular 

hexagonal arrangement of cylindrical mesopores. For their synthesis, a silica source 

like sodium silicate or tetraethylorthosilicate (TEOS) is typically used.  

The formation mechanisms for the M41S materials are shown in Figure 13 and 14. 

The synthesis of the desired mesoporous material can be achieved through two 

possible ways. One of the most accepted mechanisms, the true liquid template 

mechanism (TLCT), is shown in Figure 13. After the formation of rod-shaped 

micelles from amphiphilic molecules, an ordered hexagonal structure is built. The 

inorganic Si-molecules (here TEOS) are deposited subsequently to the micelles. 

However, 
1
H-NMR and transmission electron microscopy (TEM) showed that the 

concentration of the surfactant was far below the cmc.
69

 Thus, the formation of these 

mesostructures cannot be explained by the route in Figure 13.  

 

 
Figure 13: Formation mechanisms of MCM-41.

70
 

 

Another explanation is shown in Figure 14, the so called cooperative 

self-organisation process mechanism, which was proposed by Firouzi et al. based on 
1
H-NMR, 

29
Si-NMR, and neutron scattering investigations.

71
 It shows that, 

depending on the surfactant concentration, both spherical as well as cylindrical 

micelles can be formed (Fig. 14 A). After adding a silica precursor, a hexagonal 

phase is formed without condensation of the silica precursors. The silica anions 

interact with the surfactant and form a silicatropic liquid crystal (SLC) (Fig. 14 B). 

                                                 
69 C.Y. Chen, S.L. Burkett, H.X. Li, and M.E. Davies, Microporous Materials 1993 (2), 27-34. 
70 M.E. Davis, Nature 2002 (417), 45-49. 
71 A. Firouzi, D. Kumar, L.M. Bull, T. Besier, P. Sieger, Q. Huo, S.A. Walker, and B.F. Chmelka, Science 1995 

(267), 1138-1143. 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=6603085346&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7402293724&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7006099834&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=6602296009&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=6505971659&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7006211611&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7403745827&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7005062811&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7005062811&zone=
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As shown below, these SLC build SLC phases (Fig. 14 C), although the 

concentration of the surfactant is very low. 

 
Figure 14: Formation of a SLC phase.

71 

 

1.5.3 Functionalisation Methods for Mesoporous Materials 

The functionalisation of inorganic mesoporous materials with organic groups is 

particularly attractive, since the resulting material combines the enormous functional 

variation of organic chemistry with the thermal stability of inorganic chemistry. 

Furthermore, the inorganic and organic compounds might have properties which 

differ completely from those of their individual and isolated compounds.
72

 

Grafting 

 
Figure 15: Grafting of mesoporous pure silica phases with MPMS and oxidation to SO3H-groups.

72
 

 

Basically, two strategies are used to anchor organic groups to a structured silica 

surface by formation of covalent bonds: (1) subsequent modification of the pore 

                                                 
72 F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, Angewandte Chemie Internationale Edition 2006 (45), 

44-72. 
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surface (grafting) or (2) simultaneous condensation of the silica source and the 

organosilica (co-condensation).
73

 

The grafting method refers to the subsequent modification of the inner pore surface 

with organic groups. Basically, alkoxysilanes of the type (R’O)3SiR,
74

 less frequently 

chlorosilanes ClSiR3,
75

 or aminosilanes HN(SiR3)2,
76

 react with the free silanol 

groups on the inner or outer surface (Fig. 15). By varying the organic residue R, 

different organic groups can be realised. The grafting method exhibits the advantage 

that, after functionalisation, the mesoporous system of the starting material is usually 

retained. However, if the alkoxysilanes react preferentially at the pore mouth, pore 

blocking is especially a limiting factor and further leads to a highly inhomogeneous 

distribution of the functional groups, since the diffusion of further molecules into the 

pores is hindered.  

Another serious problem that hinders the wide application of grafting to modify 

mesoporous silica materials is the importance of OH-groups (silanol groups) on the 

inner surface. Thus, many interesting and important modifications are not possible 

due to the absence of an alternative reactive centre. 

Co-Condensation 

 
Figure 16: Co-condensation method for the organic modification of mesoporous pure silica. 

 
 

An alternative way to synthesis organically modified mesoporous silica materials is 

the co-condensation method. Here, the alkoxysilanes of the type (R’O)3SiR are added 

simultaneously with a silica source (TEOS) to a solution of structure-directing 

surfactants, leading to materials in which the organic groups are anchored covalently 

inside the pore walls and are thus direct components of the silica matrix. This method 

has the advantage that there is no pore blocking and the organic groups are 

homogenously distributed. However, there are also some disadvantages: with an 

increasing amount of functional groups incorporated into the silica framework, the 

mesoporous order decreases, which can lead to a totally disordered product. 

Furthermore, the amount of incorporated functional groups into the pore walls is 

generally lower than the amount in the starting reaction. These can be explained by 

                                                 
73 A. Stein, B.J. Melde, and R.C. Schroden, Advanced Materials 2000 (12), 1403-1419. 
74 I.J. Bruce and T. Sen, Langmuir 2005 (21), 7029-7035. 
75 A. Sah, H.L. Castricum, A. Bliek, D.H.A. Blank, and J. Elshof, Journal of Membrane Science 2004 (243), 

125-132. 
76 O.G. Nik, B. Nohair, and S. Kaliaguine, Microporous and Mesoporous Materials 2011 (143), 221-229. 
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the fact that (R’O)3SiR contained in the solution may homocondensate instead of 

cross-linking with the silica precursor.  

In addition to that, an increase of organic groups leads to a reduction of pore 

diameter, pore volume, and surface area. Moreover, it is not possible to remove the 

template by simple calcination, as it is done for pure silica based materials, since this 

would destroy the organic functionality. Hence, only extraction methods can be used, 

which is more time-consuming.
77

 

 

1.5.4 Periodic Mesoporous Organosilicas 

Periodic mesoporous organosilicas were first successfully synthesised in 1999 by 

three different independent research groups.
78,79,80

 Until that date, specific 

modifications of mesoporous materials with organic molecules were only realised by 

grafting or co-condensation. For the synthesis of organic-inorganic composite 

materials by hydrolysis and condensation reactions, organo-bridged R silica 

precursors of the type (R'O)3Si-R-Si(OR')3 were used. Hatton et al. reviewed a 

variety of successfully used precursors.
81

 In contrast to the functionalised materials 

prepared by grafting or co-condensation, the organic groups in the case of PMO 

materials are incorporated in a three-dimensional network structure inside the 

mesoporous walls (Fig. 17). Hence, these organic units are distributed completely 

homogenously in the mesoporous matrix, their amount no longer being a limiting 

factor which could destroy the mesoporous structure and reduce the pore diameter or 

pore volume drastically. In addition to that, the presence of the organic bridges R 

allows a multiplicity of chemical reactions; therefore, PMO samples can be 

functionalised with a large array of desired groups. However, the use of organo 

bridged silica precursors, which exhibit sulphonic acid groups, cannot be used for the 

synthesis of PMO since chemical byproducts are formed due to esterfication. As 

typical for mesoporous materials, the pore walls of PMO materials are in most cases 

X-ray amorphous. However, some PMO materials offer π-π interactions between the 

organic bridges in the walls resulting, as in the cases of benzene,
82

 ethane,
83

 

divinylbenzene,
72

 or biphenyl,
84

 a crystal-like organisation of the organic bridges R 

within the pore walls. The powder X-ray diffraction (XRD) pattern of these PMO 

                                                 
77 P.T. Tanev and T.J. Pinnavaia, Science 1995 (267), 865-867. 
78 S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, and O. Terasaki, Journal of the American Chemical Society 

1999 (121), 9611-9614. 
79 J. Melde, B.T. Holland, C.F. Blanford, and A. Stein, Chemistry of Materials 1999 (11), 3302-3308. 
80 T. Asefa, M.J. MacLachlan, N. Coombs, and G.A. Ozin, Nature 1999 (402), 867-871. 
81 K. Landskron, B.D. Hatton, D.D. Perovic, and G.A. Ozin, Science 2003 (302), 266-269. 
82 J.M. Knaup, P.Tölle, C. Köhler, and Th. Frauenheim, European Physical Journal 2009 (177), 59-67. 
83 W.L. Cavalcanti, R. Marschall, P. Tölle, C. Köhler, M. Wark, and Th. Frauenheim, Fuel Cells 2008 (8), 244-

251. 
84 T. Asefa, M.J. MacLachlan, N. Coombs, and G.A. Ozin, Nature 1999 (402), 867-869. 
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materials shows reflections at small- 0°), that are assigned to 

the high ordering of the mesoporous, in addition to reflections in the wide-angle 

range (2θ>10°). This is explained by the existence of a periodicity on the molecular 

scale and was also confirmed by high-resolution transmission electron microscopy 

(HRTEM) images, which showed numerous lattice fringes along the pore axis. 

 
Figure 17: Synthesis of PMOs with a crystal-like arrangement of the bridging organic units R in the 

pore walls.
72
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2 Proton conductivity of aluminium                    

functionalised Si-MCM-41 

 

2.1 Summary 
 

Highly proton conductive additives for polymer electrolyte membrane fuel cells have 

already been developed by surface functionalisation of mesoporous Si-MCM-41 with 

sulphonic acid or imidazole groups. It is also known that zeolites, e.g. mordenite or 

ZSM-5, exhibit high proton conductivity with increasing temperature and decreasing 

Si/Al ratio. 

This chapter describes the influence of Brønstedt acidic aluminium sites in the 

framework of mesoporous Si-MCM-41 materials on proton conductivity. Hence, 

some silicium atoms in the walls were substituted by aluminium. For this, different 

aluminium sources, i.e. sodium aluminate, aluminium sulphate and aluminium 

isopropoxide (AIP) were added to the synthesis gel. By adjusting the Si/Al-ratios 

from 8 to 40, it was found that the proton conductivity of the mesoporous aluminium 

silicates, measured by impedance spectroscopy, are significantly enhanced by 

increasing aluminium content, reaching a conductivity of 3·10
-3

 S/cm at 413 K. The 

increase in proton conductivity compared to Al-free Si-MCM-41 results from (i) an 

improved hydrophilicity enhancing the water storage capability, (ii) a decreased 

particle size from the micrometre to the nanometre scale (50-100 nm) and (iii) the 

existing Brønstedt acidity in the mesoporous Al-MCM-41. The aluminium source 

NaAlO2 gives clearly the best results, because the entire aluminium incorporated 

within the framework is tetragonally coordinated, while for samples prepared with 

Al2(SO4)3 or AIP also octahedral coordination of oxygen around the aluminium 

centers is observed by 
27

Al MAS NMR.  
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3 Characterization of Si-MCM-41-SO3H by 

SANS and MAS NMR 

 

3.1 Summary 
 

Mesoporous Si-MCM-41 materials functionalised by co-condensation with sulphonic 

acid groups exhibit the best results concerning proton conductivity and water storage 

at relevant temperature and low relative humidity. In order to get a deeper insight, 

these materials where characterized in more detail by SANS and by MAS NMR 

measurements. 

The first article describes SANS combined with in-situ adsorption of N2 or a 

H2O/D2O mixture (42:58) to get detailed insight into the distribution of SO3H-groups 

within the pore channels, pore blocking effects, and possible structural changes of 

proton conducting SO3H-functionalised Si-MCM-41. The basic idea of the 

experiment was the contrast matching between the silica walls and the adsorbed 

gases in the pores. At 298 K a H2O/D2O mixture of 42:58 exhibits the same neutron 

scattering length density (SLD) as SiO2 and therefore quenches the diffraction 

signals of non-modified host material Si-MCM-41. However, in contrast to pure 

Si-MCM-41, the first diffraction peak of a grafted Si-MCM-41-SO3H does not 

disappear completely, when the pores are filled with matching water. Hence, the 

H2O/D2O mixture, which SLD is tuned to be equal to that of SiO2, is not able to 

match with walls functionalised with organic moieties. This indicates that regions 

with SLDs different to that of SiO2, are present in the sample, probably 

predominantly at the pore mouths. For a sample functionalised by co-condensation 

almost no quenching of the neutron diffraction was found. This indicates that by 

co-condensation the entire inner pore surface is altered by functional groups, which 

are, thus, distributed much more homogeneously than samples functionalised by 

grafting. This more homogenous distribution of SO3H-groups also explains the 

higher proton conductivities. 

In the second article functionalised Si-MCM-41-SO3H samples prepared by 

co-condensation were investigated by MAS NMR spectroscopy and MAS PFG NMR 

diffusometry. 
29

Si NMR spectra of the functionalised samples proved a successful 

and almost complete incorporation of mercaptopropyltrimethoxysilan (MPMS) into 

the mesoporous framework. The linkage between the functional group and the 

siliceous framework is threefold and twofold, where 31.0 % of all silicium atoms in 

the sample belong to T3 groups and 5.9 % to T2 groups. 
13

C CP MAS spectroscopy 

confirms that that the majority of the organic functional groups remained intact after 

the oxidation in 30 % H2O2. Furthermore, only small differences of the water self-

diffusion coefficient were measured by MAS PFG NMR diffusometry in opposite to 

the drastic changes of conductivity. The increase of conductivity (at 353 K from 

9.51 to 260 · 10
-5

 S/cm) from 20 % to 40 % functionalisation can be explained by the 

reduction of the activation energy of the charge relocation in a denser lattice of 

proton donator sites.  
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4 Investigation on proton conducting      

SO3H-functionalised benzene-PMO  

 

4.1 Summary 
In previous chapters detailed investigations of proton conductance properties have 

been reported for Si-MCM-41 materials functionalised with sulphonic acid or 

aluminium groups. The benzene-PMO materials described now offer two advantages 

compared to Si-MCM-41; on the one hand, the presence of organic bridges allows a 

multiplicity of reactions and on the other hand, the crystalline pore walls open up 

new possibilities to form a regular distribution of anchored sulphonic acid groups. 

The first article describes different routes for SO3H-functionalisation of 

benzene-PMO materials. If grafting is performed at both, benzene groups and silanol 

groups, an ion exchange capacity (IEC) of 1.61 mmolH+/g is achieved. Due to this 

high content of proton conducting groups combined with the flexibility of the propyl 

spacer, a drastic increase of proton conductivity is observed compared to pristine 

benzene-PMO and benzene-PMO with sulphonic acid grafted via propyl chains only 

on silica positions. The proton conductivity of benzene-PMO functionalized with 

sulphonic acid groups has been characterized using experimental and theoretical 

methods.  

The second article within this chapter presents SANS measurements with in-situ 

nitrogen adsorption investigated on benzene-PMO samples. We found that by 

complete pore filling with nitrogen the reflection of pristine benzene-PMO at 

q=0.14 Å, representing the long range order of mesopores and thus in general the 

contrast of wall and pore, disappears completely, while the reflections at q=1.44 Å 

and q=1.66 Å remain almost unchanged. This proves the molecular-scale periodicity. 

Furthermore benzene-PMO materials were functionalised by tethering SO3H-groups 

to the surface using MPMS. With progressing N2 adsorption the intensity of the main 

signal at q≈0.14 Å decreases at low adsorption levels. After capillary condensation a 

complete matching of the neutron scattering reflection of the main signal is obtained, 

since a very low functionalisation degree was achieved (0.67 mmolH+/g). However, 

benzene-PMO functionalised with SO3H-groups at the silica groups as well as at the 

benzene rings (1.61 mmolH+/g) behaves differently. Nitrogen adsorption and finally, 

complete filling of the mesopores does not lead to any changes in the SANS patterns. 

This indicates that for a high degree of functionalisation with homogenous 

distribution of the functional groups, the SLD of SO3H-modified benzene-PMO 

walls and that of adsorbed N2 become different.  
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benzene-PMO 

Monir Sharifi, Christof Köhler, Pia Tölle, Thomas 

Frauenheim, Michael Wark  

Small 2011 (8), 1086-1097. 
http://onlinelibrary.wiley.com/doi/10.1002/smll.201001931/abstract 

 

 

 

 

 

 

 

 

 

 

 



   26 

 

4.3 Small angle neutron scattering and in-situ 

adsorption of nitrogen study on periodic 

mesoporous organosilica materials 

Monir Sharifi, Dirk Wallacher, Michael Wark  

Be submitted to Beilstein Journal of Nanotechnology 
 

 

 

  

 

 

 

 



   27 



   28 



   29 



   30 



   31 



   32 



   33 



   34 

 



   35 



   36 

 



   37 

 

 

 

 

 

 



   38 

 

 

 

 

 

 



   39 

5 Enhanced proton conductivity by more     

appropriate functional groups and   

oxidation methods 

 
 

5.1 Summary 
 

This chapter presents studies on TESPD functionalised Si-MCM-41 materials that 

were oxidized in the absence of any catalyst or solvent with different oxidising 

agents: Br2, H2O2 or HNO3 in order to find an optimum oxidising agent for 

transferring sulphur containing compounds attached within the mesopore channels 

into SO3H-groups with a maximum yield. 

The amount of sulphonic acid groups, which are finally anchored by organic linkages 

on the mesoporous surface prepared by the co-condensation method were determined 

by ion exchange capacity.   

It is shown that H2O2, which is dominantly used in organic chemistry for such type 

of reactions, exhibits a insufficient yield of only 80 % followed by HNO3 (66 %). 

Only with Br2, being a non-typical oxidation agent, a surpassing yield of 

SO3H-groups was obtained (98 %) exceeding even those of reactions employing 

catalysts or solvents.  

Impedance spectroscopy measurements prove that proton conductivities of the 

loaded samples are extremely high confirming the high content of SO3H-groups. 

This was achieved by complete oxidation of all sulphur precursors, as well as by 

their uniform distribution in the pore channels.  
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6 Closing Remarks 
 

This work is focused on the synthesis and characterization of functionalised 

mesoporous materials, based on Si-MCM-41 and benzene-PMO. As described in 

Chapter 2-5 these materials were modified with sulphonic acid groups since the 

resulting products exhibit the best results concerning proton conductivity and water 

storage at relevant temperature and low relative humidity. These materials are 

promising candidates for composite organic-inorganic membranes in the field of fuel 

cells. This technology is one of today’s greatest research fields due to climate change 

and shortage of resources. 

Beside the functionalisation with organic groups it is very useful to improve the 

inorganic mesoporous framework, as shown in Chapter 2 by the introduction of 

Brønstedt acidic. The Al-MCM-41 materials exhibit enhanced properties in proton 

conductivity and water storage. The aluminium source NaAlO2 showed clearly the 

best results, because all aluminium within the framework is tetrahedrally 

coordinated. For samples with Si/Al ratio of 10 where Al-content and quality of the 

mesoporous structure are in optimum balance, samples showed conductivities of 

about 3·10
−3

 S/cm at 413 K. Thus, compared to pristine Si-MCM-41 an enhanced 

starting material for further functionalisation with organic groups is presented. 

However, a typical modification with MPMS is hindered, since the subsequent 

oxidation of the thiol groups into proton conducting sulphonic acid groups removes 

the incorporated aluminium. One approach to avoid this problem might be the use of 

TESPD or TESPT instead of MPMS. The functionalisation can be performed 

analogue to MPMS by grafting or co-condensation. However, the use of H2O2 is no 

longer mandatory, since Br2 can be used to transfer the di- or tetrasulfide into 

sulphonic acid groups, respectively. Thus, the strong acid condition of a H2O2 

oxidation can be avoided. 

We found out that samples synthesised by co-condensation exhibit higher proton 

conductivities compared to those obtained by the grafting method with same 

loadings. Thus, for further insight SANS experiments combined with in-situ 

adsorption of a H2O/D2O mixture (42:58, at 298 K) were used to describe pristine 

mesoporous Si-MCM-41 and especially proton conducting SO3H-functionalised 

Si-MCM-41. In contrast to pure Si-MCM-41 the first diffraction peak decreased 

obviously, but did not disappear completely even after complete pore filling. This 

indicated that regions with neutron scatter lengths different to that of SiO2 are 

present. For a sample functionalised by co-condensation almost no quenching of the 

neutron diffraction was found. This shows that here all regions of the pores are 

altered by the functional groups proving that the loading is much more homogeneous 

than with grafting by what the functional groups are only anchored at the pore 

entrances. The more homogeneous distribution of groups after co-condensation 

explains the higher proton conductivities observed.  
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However, the grafting method is in some case very important to achieve higher 

loadings of proton conducting groups. In this thesis MPMS or TESPD were used for 

the co-condensation. Thus the proton conducting groups were anchored via 

propyl-chains to the mesoporous surface. The use of organic compounds with short 

chain length (methyl instead of propyl) for the co-condensation might be 

advantageous since the hydroxyl groups on the inner pore surface would be more 

easily accessible for other molecules. Thereby additional grafting with further 

organic groups would be possible increasing the total loading. However, in the case 

of MPMS or TESPD functionalised samples the long propyl-chains would hinder an 

additional grafting. 

Although different characterization methods (XRD, gas adsorption, IR, EDXS, IEC, 

IS, SANS) were performed on MPMS functionalised materials, only with solid state 

NMR measurements a clear evidence for the successful incorporation of MPMS and 

its oxidation was given. 
13

C CP MAS NMR spectra show three signals of the 

functional group ≡Si-CH2-CH2-CH2-SO3H with chemical shift of 11 ppm, 18 ppm 

and 54 ppm, respectively. This confirms that the majority of the carbon species build 

the desired functional group (-SiC3H6SO3H). 
29

Si NMR spectra of the functionalised 

samples proved a successful and almost complete incorporation of MPMS into the 

mesoporous framework. The linkage between the functional group and the siliceous 

framework is threefold and twofold. 

As already mentioned proton conducting benzene-PMO with crystal-like periodicity 

within the pore walls were synthesised as an alternative starting material. For 

grafting SO3H-groups to the benzene ring a loading of 1.42 mmolH+/g is reported, 

which exceeds the best value for grafting on Si-MCM-41 substrate. If grafting is 

performed at both benzene groups and silanol groups (IEC = 1.61 mmolH+/g), a 

dramatic increase of proton conductivity, compared to pristine benzene-PMO and 

benzene-PMO with sulphonic acid grafted via propyl chains only on silica positions, 

is observed. From theoretical calculations it was shown that that protonation of an 

isolated sulphonic acid group is energetically favourable explaining the high proton 

conductivity. However, the loading with proton conducting groups could not be 

further increased, although in contrast to Si-MCM-41, two reactive centres were used 

to anchor sulphonic acid groups: silanol groups and benzene groups. For that reason 

functionalisation of PMO materials by the co-condensation method is required, since 

higher loading can be achieved and additional to that the organic bridge can be used 

for further loading. First experiments show that the relation of the condensation times 

of the used PMO precursor (R’O)3Si-R-Si(OR’)3 and that of the silane bearing the 

functional group (MPMS, MPES) is the key factor. Hence, the incorporation of 

MPMS in an ethane-PMO framework was only successful when both components 

start condensation at the same time. Another approach for the synthesis of high 

proton conducting PMO materials with high amount of sulphonic acid group might 

be the use of precursors of the type (R'O)3Si-R-Si(OR')3 with R= (CH2)x-S2-(CH2)x. 
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Thus, a maximum amount of sulphur is available for subsequent transformation into 

sulphonic acid groups. This oxidation mechanism involves a S-S bond-breaking as 

shown by the oxidization of TESPD functionalised Si-MCM-41. Hereby, different 

oxidation agents (Br2, H2O2 or HNO3) were used in order to find a maximum yield 

for the transformation of sulphur containing compounds into SO3H-groups. We 

found that H2O2, which is dominantly used in organic chemistry for such type of 

reactions, exhibits a insufficient yield of only 80% followed by HNO3 (66%). Only 

with Br2, being a non-typical oxidising agent, a surpassing yield of SO3H-groups was 

obtained (98%) exceeding even those of reactions employing catalysts or solvents. 

However, in the case of TESPD-PMO materials the use of efficient oxidising agents 

such as Br2 or H2O2 is not suitable, since the mesoporous structure would be 

destroyed. Instead, concentrated nitric acid as a mild oxidizing agent (HNO3) is 

appropriate. 

Finally, further detailed investigations on these functionalised mesoporous materials 

with respect to their high proton conductivity and water uptake are necessary. Both 

properties are credited to the mesopores and to the functional groups, which are 

anchored in the inner pore wall. For that reason, a selective pore opening and closing 

might shed light on their influence. Thus, a photoresponsive coumarin derivate can 

be grafted on the pore outlet of proton conducting Si-MCM-41-SO3H. Irradiation of 

UV light longer than 310 nm wavelength to this coumarin-modified 

Si-MCM-41-SO3H induces the photodimerization of coumarin to close the pore 

outlet with cyclobutane dimer. As a result these materials should show drastic 

decreased proton conductivities, since the proton transport through the pore channels 

is hindered. Irradiation to the dimerized coumarin-modified Si-MCM-41-SO3H with 

shorter wavelength UV light around 250 nm regenerates the coumarin monomer 

derivative by the photocleavage of cyclobutane dimer. Furthermore, a controlled 

water release and storage in the final composite membrane might be possible. 
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