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Summary 
 

Dynamin1, dynamin related protein1 (Drp1) and a selection of myosins are the proteins used 

in this work to investigate how small molecules can modulate their enzymatic activity. 

Myosins use ATP to generate mechanical force; whereas dynamins use GTP binding and 

hydrolysis to generate force in the nucleotide induced self-assembled structure. Nucleotide-

dependent conformational changes of myosins and dynamins are involved in specified 

cellular functions with the force generated. Membrane remodeling, squeezing of inviginated 

vesicles, mitochondrial fissioning are a few to mention for dynamins. Muscle contraction, 

cargo transport, maintanance of stereocilliary bundles in the inner ear, are some of the force 

mediated functions associated with myosins. Malfunction of the myosins and dynamins are 

implicated in cancer, cardiomyopathies, blindness, epilepsy and neurodegenerative diseases. 

Combination of mutagenesis, genetic manipulation, siRNA knock down, and biophysical 

techniques like X-ray diffraction have been used during the course of this work to 

characterize the proteins function invivo and invitro. The chemical biological studies on these 

proteins in combination with other tools assisted in understanding how small molecules can 

modulate their enzymatic properties like hydrolysis activities, sliding of myosins on actin and 

self-assembly properties of Drp1 to mention a few.  

In the first part of this work, protein engineering of dynamin1 was used in generating stable, 

oligomerization incompetent mutant forms. A minimal functional fusion dynamin1, 

containing the N-terminal GTPase domain and C-terminal GED domain was produced to 

address how small molecules influence on the bundle signaling element (BSE) formed by 

these two domains. The non-classical dynamin Drp1 specific modulator, sertraline which is a 

psychotropic drug was identified after systematic studies on Drp1‟s assembly property in an 

ionic dependent manner. Computational analysis using comparative structure method with D. 

discoideum dynaminA GTPase domain identified R247 in Drp1 GTPase domain as a key 

interacting residue for cardiolipin binding to Drp1which is equivalent residue to R239 in 

dynaminA. This Drp1-cardiolipin interaction is nucleotide dependent and affinity of 

cardiolipin is 50 fold higher to Drp1 in the presence of ATP. Similar computational method 

was used in producing stable monomeric forms of dynamin2 and dynamin3 and was used in 

crystallization experiemnts. Protein-small molecule affinity in this work was studied by using 

the state of the art biophysical technique, microscale thermophoresis (MST).   

In the second part of the thesis, we screened a series of halogenated 1-OH-carbazoles for their 

potency to activate or inhibit the enzymatic activity of myosin motors from different classes.  
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Myosin activity was measured following ATP turnover in the presence of 30 mM F-actin and 

using an invitro motility assay. Additionally, we determined the binding mode for this class of 

effector molecules by co-crystallizing selected 1-OH-carbazoles with the Dictyostelium 

myosin-II motor domain. The identification of the allosteric binding site on myosin-II 

provided the basis for the identification of compounds that show greater potency towards 

other myosin isoforms with the help of molecular docking studies. 3,4,6-

tribromododecahydro-1H-carbazol-1-ol was identified as a myosin-Ib specific inhibitor with 

an IC50 value of 4.2 ± 2.1 µM. 2,4,6-triiodophenol and pentabromophenol specifically 

inhibited myosin-VI ATPase activity with IC50 values of 7.9 ± 1.9 µM and 13.7 ± 2.9 µM, 

respectively. X-ray crystallography was used to determine structural details of small molecule 

effector-myosin II motor domain complex. The crystal structure of the myosin II motor 

domain of D. discoideum complexed with pentachlorocarbazole was solved at 2.7 Å 

resolutions. Our results demonstrate the potential of combining biochemical, X-ray 

crystallographic and modeling approaches in the search for potent allosteric effectors of 

enzyme function. Homology modeling of myosin IXb and docking studies with various 

halogen-substituted carbazoles assisted in identifying compounds that have modulating effect 

on myosin IXb in-vitro. The calculated free energy of binding of the small molecules to the 

myosins from the docking studies was used as one of the criterion to select the compounds to 

test them in in-vitro assay. ‎3,4-omordid,6-iyhtem-1H-carbazol-1-ol, specifically inhibited the 

actin-activated ATPase rate of myosin IXb in invitro assay, was one of the compound selected 

from the molecular docking analysis.  

Thus, my work in chemical biology of dynamin, dynamin related protein1 and myosin is 

valuable tool for ligand based drug discovery. The knowledge of the structure and binding 

mode of the compounds facilitates to identify class- and isoform-specific inhibitors through 

the analysis of the pharmacophore of the binding sites. Small molecule modulators can be 

used as cell biological tools, like sertraline which was identified, inhibited the mitochondrial 

fissioning (preliminary data), which in turn is a proof for its modulating effect on Drp1. Thus, 

structural and functional characterization of dynmain, dynamin related protein1 and myosin 

by small molecules in a chemical biological perspective provides interesting and illuminating 

scientific principles for drug like molecule‟s discovery. The impact of this work will be on the 

development of human health, which is a major factor for any growing society. 

Keywords: 

Small molecules, myosin VI, phenols 
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Zusammenfassung 
 

Dynamine, Dynamin verwandte Proteine1 (Drp1) und Myosine zählen alle zu den 

Motorproteinen. Sie werden durch die Hydrolyse von GTP- oder ATP-Nukleotiden 

angetrieben. Sie üben alle ihre Motoraktivität aus, um spezifische zelluläre Funktionen 

durchzuführen mit der generierten Kraft. Das Abschnüren von invaginerten Vesikeln, die 

Teilung von Mitochondrien, Ladungstransport, Aufrechterhaltung von Stereozilienbündeln im 

inneren Ohr und Muskelkontraktion sind einige der Funktionen, die zu nennen sind. 

Fehlfunktion der Motorproteine steht im Zusammenhang mit der Ausbildung von Krebs, 

Blindheit, Kardiomyopathie, Epilepsie und neurodegenerativen Erkrankungen. 

Ortsspezifische Mutagenese, genetische Manipulation, siRNA knock down, Microarray-

Technologie, biophysikalische Techniken, wie NMR und Röntgenbeugung haben unser 

Verständnis von Motorproteinen verbessert. Die Grundlage der vorliegenden Arbeit wird 

durch die Untersuchungen verschiedener Klassen kleiner Moleküle, die die Motoraktivität 

verändern, Proteinengineering und Röntgenkristallographie gebildet. Halogenierte Carbazole, 

Phenole und psychotrope Wirkstoffe wurden auf ihre biologischen Aktivitäten getestet. 

Myosine verschiedenster Klassen und Isoformen der gleichen Klasse wurden rekombinant 

hergestellt und für die Untersuchung der Verbindungen auf ihre Spezifität und Affinität 

verwendet. Der Myosin Ib-spezifische Inhibitor 3,4,6-Tribromdodecahydro-1H-carbazol-1-ol 

mit einem IC50 von 4,2 ± 2,1 µM, die Myosin VI-spezifischen Inhibitoren 2,4,6-Triiodphenol  

und Pentabromphenol mit IC50 von 7,9 ± 1,9 µM bzw. 13,7 ± 2,9 µM und der Dynamin-

verwandte Protein 1-spezifische Modulator Sertralin, der zu den psychotropen Wirkstoffen  

zählt, wurden identifiziert. Die Kristallstruktur von Myosin II im Komplex mit 

Pentachlorcarbazol wurde bis zu einer Auflösung von 2,7 Å gelöst. Diese Struktur zeigte den 

Bindungsmodus des Carbazols, mit dem es möglich erscheint, die Unterschiede in der 

biologischen Aktivität verschiedenster halogenierter Carbazole auf die Motorfunktion von 

Myosinen zu erklären. Homologiemodellierung von Myosin IXb und Dockingstudien mit 

unterschiedlichen Halogen-substituierten Carbazolen unterstützten die Identifizierung von 

Substanzen mit höheren theoretischen Affinitätswerten. 3,4-Dibrom-6-methyl-1H-carbazol-1-

ol inhibierte spezifisch die Aktin-aktivierte ATPase-Rate von Myosin IXb. Im Fall der 

Dynamine, zeigten vergleichende, strukturunterstützte Mutagenesestudien die Bedeutung von 

R247 für die Drp1-Funktion. Mutation von R247 spielt eine Rolle in der Ausbildung 

länglichgeformtenMitochondrien. Der gleiche Ansatz diente auch der Darstellung der 

monomeren Formen von Dynaminen und Dynamin-verwandten Proteinen mit den 

entsprechenden Mutationen. Protein-Liganden-Wechselwirkungen wurden durch neue 
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Techniken, wie Microscale Thermophorese, untersucht. Chemisch-biologische Studien dieser 

Motorproteine sind für die ligandenbasierte Wirkstoffentwicklung von Bedeutung. Das 

Verständnis der Struktur und des Bindungsmodus der Substanzen ermöglicht die 

Identifizierung Klassen- und Isoformspezifischer Inhibitoren durch die Analyse des 

Pharmakophors der Bindungsstelle. Kleine molekulare Modulatoren können als 

zellbiologische Werkzeuge verwendet werden, Sertralin, das durch unsere Screens 

identifiziert wurde, inhibiert die Mitochondrienspaltung, was einen Nachweis für seinen 

modulierenden Effekt auf Drp1 darstellt. Zelluläre Prozesse, wie Apoptose können durch die 

Verwendung solcher Substanzen untersucht werden, da Mitochondrienspaltung und Apoptose 

miteinander in Beziehung stehen.  

Aus diesem Grund liefern strukturelle und funktionale Charakterisierungen von 

Motorproteinen aus chemisch-biologischer Betrachtungsweise interessante und erleuchtende 

wissenschaftliche Grundlagen für die Entwicklung Wirkstoff-ähnlicher Moleküle. Die 

Bedeutung dieser Arbeit wird die Entwicklung menschlicher Gesundheit betreffen, die einen 

wesentlichen Faktor für jede wachsende Gesellschaft darstellt.   

Schlüsselwörter: 

Niedermolekulare Wirkstoffe, Myosine VI, Phenole 
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1. Introduction 

‘‘Movement is life, Stagnation is death’’ (law of Dharma). All types of cells have a 

common feature, which give them the shape and rigidity to maintain their static and dynamic 

properties. This common feature is attributed to well controlled spatiotemporal interactions of 

molecular motors with cytoskeletal proteins. The cytoskeletal proteins are broadly classified 

into microfilaments, intermediate filaments and microtubules. Cytoskeleton remodeling 

coordinated with the motor proteins is crucial for maintenance of cell physiological functions, 

cell development, survival and proliferation. Nanoscopic to macroscopic movements in living 

systems are driven by biological molecular motors that are designed to convert chemical 

energy into mechanical motion (Oster, 2000 ; Oster, 2000 ; Oster, 1999 ; Wang, 1998 ; Elston, 

1998) where conformational changes in the motor domains are amplified and tramsmitted to 

their lever arms, which lead to large intramolecular conformational changes (Spudich, 2001 ; 

Vale, 2000). Starting with flagella rotary motion in bacteria, polymerase migration on nucleic 

acid templates, cargo disposal to destined targets within cells, spindle pole separation and 

opposed chromatin movement during cell division, movement of entire cells by retraction are 

all carried out by motor proteins (Berg, 2003; Endow, 1991; McMacken et al., 1977). The 

central feature of molecular motors is the generation of force as a consequence of nucleotide 

induced conformational changes. Amongst the best known molecular motors are myosins that 

use the actin filament for transport functions and generation of contractile forces, while 

kinesins and dyneins are mictrotubule-based motors. Like the classical motor proteins myosin, 

kinesin and dyneins, dynamin owe the ability to generate force through a mechanism that 

involves nucleotide-dependent conformational changes and self assembly in the course of 

executing their cellular funtions (Kull, 1998 ; Marx, 1998; Gulick, 1998 ; Sack, 1997 ). Thus, 

the family of dynamin proteins can be regarded in the broadest sense as GTP-dependent 

molecular motors. Dynamin are regarded as molecule possessing both motor-like 

mechanochemical properties and GTPase-like regulatory functions.  

 

  The focus of this thesis is to find specific small molecule probes to modulate 

the enzymatic properties of myosins and dynamins. Identifying specific small molecule 

probes provides a powerful tool to study the motor functions and to probe the complex 

biological processes of myosin and dynamin.  
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Figure 1: Chemical structure of adenosine triphosphate (ATP) and guanosine 

triphosphate (GTP). 

 

1.1 GTP-Binding Proteins  

1.1.1 General Overview 

GTP binding proteins regulate a wide range of important cellular functions such as cell 

proliferation, regulation of senescence, cell survival, induction of tumor cell invasion, 

metastasis, cell movement, phagocytosis, growth cone guidance, and cytokinesis nuclear 

transport, angiogenesis, exocytic and endocytic pathways, vesicle budding, movement along 

cytoskeletal elements, vesicle targeting, translocation of newly made polypeptides across 

membranes and so on (Bos, 1992; Bourne and Stryer, 1992; Campuzano and Modolell, 1980; 

Chrzanowska-Wodnicka and Burridge, 1992; David-Pfeuty et al., 1979; Ellis and Mellor, 

2000; Lad et al., 1980; Ridley, 2001; Rosenblatt et al., 1980; Slebos and Rodenhuis, 

1992).The characteristic G-domain is conserved in all GTPases. Based on sequence similarity 

and cellular function, GTPases can be classified into many different subfamilies. Well known 

members are: 
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1: The Ras family members (Ras, Rap, Ral, M-Ras, Rab, Rin, Rho, Rac, Ran and ARF). 

2: The α-subunit of hetero-trimeric G proteins. 

3: The translation factors of protein biosynthesis (IF, EF and RF). 

4: The signal recognition particles (SRP54, Ffh) and their receptors (SRα/β, FtsY). 

5: Large GTPase of the dynamin and dynamin-like protein families, (Dynamin1, Vsp1p, 

hGBP1). 

 

GTPases function by either responding to or controlling the activity of a range of 

upstream and accessory proteins like guanine nucleotide dissociation inhibitors (GDIs), 

guanine nucleotide exchange factors (GEFs), and GTPase-activating proteins (GAPs), with 

the strength of the specific interaction critically depending on the nucleotide state of the G-

proteins (Fig. 2). Binding and hydrolysis of GTP induces transitions between at least four 

different conformational states,  

 

1: GDP-bound form, 

2: The nucleotide-free form,  

3: The GTP-bound form,  

4: The transition state during hydrolysis.  

 

The effector molecules are only bound in the GTP-bound state, which is also referred 

to as the “on” state. The GDP-bound state is referred to as the “off” state, because no 

interactions with effector molecules and thus no signal transduction events can take place 

while the protein is in this state. GDP dissociation and GTP hydrolysis are mediated by 

guanine nucleotide exchange factor (GEFs), guanine nucleotide-dissociation inhibitor (GDI), 

and the GTPases-activating proteins (GAPs). The GTPase cycle, is activated by GEFs, which 

promote the release of GDP and allow its replacement by GTP. This reaction is negatively 

regulated by GDIs. Active GTP-bound GTPases can then promote the activation of different 

effectors until they return to their GDP-bound inactive state upon hydrolysis of the GTP into 

GDP, which is catalyzed by GAPs. Thus the GTPase activity is controlled and regulated by 

GAPs, GDIs and GEFs. 

 

 



5 

 

 

 

Figure 2: The GTPase cycle, inactive GDP-bound GTPases are activated by guanine 

nucleotide exchange factors (GEF), which promote the release of GDP and allow its 

replacement by GTP. This reaction is negatively regulated by guanine nucleotide 

dissociation inhibitors (GDI). Active GTP-bound small GTPases can then promote the 

activation of different effectors until they return to their GDP-bound inactive state upon 

hydrolysis of the GTP into GDP, which is catalyzed by GTPase activating proteins 

(GAP). 

 

1.1.2 Dynamin and Dynamin Related Proteins 

Dynamins are generally classified as „large GTPases‟. In addition to having a larger 

GTPase domain, dynamin and dynamin related proteins are distinguished from other GTPases 

by their low GTP affinities and GTP-dependent oligomerization. In addition, members of the 

dynamin family were shown to interact with lipid membranes and this interaction increases 

their GTPase activity. The following table summarizes the functions of some of the dynamin 

superfamily members. 
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Table 1: Summary of the dynamin superfamily and their cellular functions. 

Protein Localization Functions 

Dynamin Plasma membrane, Golgi, 

endosomes 

Vesicle formation , fission 

Vps1 Golgi Vesicle formation, transport 

Dnm1/Drp1 Mitochondrial outer 

membrane 

Mitochondrial fission, 

Morphology 

Mgm1/Msp1/OPA1 Mitochondrial inner or outer 

membrane, or matrix 

Mitochondrial morphology 

Pragmoplastin Cell wall  Membrane morphology 

ADL Cell wall, chloroplast Membrane bio-genesis 

hGBP1 Cytoplasm  Antiviral activity 

Mx Cytoplasm, Nucleus Antiviral activity 

 

1.1.2.1 Large GTPases: The Dynamin Superfamily  

  Dynamin is a high molecular weight, cytoplasmic guanosine triphosphatase; the 

dynamin family has been investigated for the involvement in endocytosis, even though 

dynamin was primarily investigated for a novel microtubule-based motors. In particular, 

dynamins capacity for rapid recycling of clathrin-coated vesicles at the D. melanogaster  

synapse first became apparent from independent studies carried out by Koenig and Ikeda, 

1989; Koenig et al., 1989; Poodry and Edgar, 1979; Ramaswami et al., 1994. Various studies 

have also confirmed the role of dynamins in membrane fission events, anti-viral activity, plant 

cell plate formation and chloroplast biogenesis.  

 

Dynamin family members share common structural features but the overall degree of 

sequence similarity and homology varies among the different family members, in agreement 

with their diverse functions. The structural similarity is mostly attributed to the conserved 

core of the GTPase domain which comprises approximately 160 amino acid residues, and 

consists of a mixed six-stranded β-sheet that is surrounded by five α-helices, whereas the Ras 

protein has 184 amino-acid residues that is considered to be the minimal GTP binding protein. 

The minimal distinguishing architectural features that are common to all the dynamins are the 

GTPase domain (~300 amino acids) containing the tripartite GTP-binding motifs (G1, G2, G3 
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and G4) (Fig. 4), which are required for the guanine–nucleotide binding and hydrolysis. The 

G1 motif, which is also known as P-loop, coordinates the phosphates of the GTP nucleotide. 

The P-loop is  also known as Walker A motif, is a GTP or ATP binding motif found in most 

of the nucleotide binding proteins and found   in most cellular organisms and is contained in 

10 to 18% of all gene products (Ramakrishnana et al., 2001). This motif has the pattern of 

GXXXXGK (T/S) where X is any amino acid and G,K,T and S are glycine, lysine, threonine, 

and serine respectively. Whereas the reported consensus sequence of the Walker B motif is 

(R/K) XXXXGXXXXLhhhhD, where R, K, G, L and D denote arginine, lysine, glycine, leucine, 

and aspartic acid residues respectively. X represents any of the 20 standard amino acids and h 

denotes a hydrophobic amino acid. Structurally, P-loop NTPases are α/β proteins that contain 

regularly recurring α-β units with the β-strands forming a central, (mostly) parallel β-sheet 

surrounded on both sides by α-helices. During nucleotide hydrolysis the P-loop does not 

significantly change its conformation, but stays bound to the remaining phosphate groups. P-

Loop binding has been shown to cause structural changes in the bound nucleotide (Fig. 3), 

and in the distant Walker B motif which consists of a conserved aspartate (or, less commonly, 

glutamate) residue. The aspartate residue coordinates magnesium ions and the glutamate is 

essential for the nucleotide hydrolysis. G2-motif which has a conserved threonine amino acid 

residue is involved in catalysis and is also referred to as switch1. The G3 motif, which is also 

known as switch2, containing the amino acid sequence DXXG is responsible for interaction 

with the γ-phosphate of the nucleotide. The fourth motif, interacting with base and ribose of 

GTP is the G4 motif.  

Dynamins have a larger GTPase domain than the classical small GTPases like Ras. 

Moreover dynamins and dynamin-related proteins have the distinguished property of 

oligomerization-dependent GTPase activation. The minimal functional and structural domains 

necessary to belong to the dynamin superfamily are the GTPase, Middle and GED domains. 

Additional domains are present in most non-classical members and allow specific targeting to 

sites of action. Domain organization of dynamins consists of five distinct domains. They are 

as follows: 
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p21Ras Dnm1 

1: Large amino-terminal GTPase domain, containing three GTP-binding motifs. 

2: A self-assembly region, Middle domain with potential self-assembly properties. 

3: A Pleckstrin homology domain (PH), involved in membrane binding. 

4: A coiled-coil domain also called GTPase effector domain that stimulates the GTPase 

activity and participates in self-assembly. 

5: And a Proline/Arginine-rich domain (PRD) that was found to increase dynamin–

dynamin interactions and contains several SH3-binding sites for binding dynamin to 

its interacting partners.  

 

 

Figure 3: Cartoon representation of the small GTPase p21Ras GTPase domain and the 

large GTPase Dnm1 GTPase domain. Pdb id: 1ctq (p21Ras) and 2aka (Dnm1). The 

common central core has β- sheets surrounded by helices. 

 

 

Figure 4: Comparison of G-domain motifs, G1-G4 of dynamins, dynamin related 

proteins (Drp) and a small GTPase (pRas). 
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1.1.2.2 Classical Dynamins 

Classical dynamins have five identifiable domains, a GTPase domain, a middle domain, 

a PH domain, a GED, and a PRD. The middle domain of classical dynamins lacks sequence 

similarity to other known structural motif. The middle domain has been implicated in 

dynamin self assembly. The PH and PRD domains are responsible for protein-protein 

interactions and protein targeting. The PH domain can additionally interact with lipid 

membranes, while the PRD domain binds to the Src-Homology-3 (SH3) domain of interacting 

proteins (Praefcke and McMahon, 2004). 

 

 While D. melanogaster and C. elegans have only one gene for dynamin (Chen et al., 

1991; Clark et al., 1997; van der Bliek and Meyerowitz, 1991) mammals have three dynamin 

genes with distinct tissue distributions. Dynamin1 is restricted to neurons with 5 splice 

variants, dynamin2 is ubiquitously expressed and has 4 splice variants, and dynamin3 is 

expressed predominantly in testis but also found in lung and brain (Urrutia et al., 1997). 

Alternative splicing creates at least 27 variants showing differential expression in mammalian 

tissue (Cao et al., 1998; McNiven et al., 2000a). Domain organization of classical dynamins to 

non-classical dynamins is shown in the Fig. 5. 

 

Dynamin1 was first purified from calf brain as a microtubule-binding protein (Obar et 

al., 1990). Cloning of the dynamin cDNA revealed a GTP binding site, which was  found to 

show homology to anti-viral MX proteins and the yeast vacuolar sorting protein Vps1p (Obar 

et al., 1990).  Purified dynamin1 was found to have a specific GTPase activity, which is 

stimulated to high levels by microtubules (Obar et al., 1990). The D. melanogaster dynamin 

homolog is the product of the shibire gene, a locus previously implicated in endocytosis 

(Chen et al., 1991; van der Bliek and Meyerowitz, 1991). Flies carrying a temperature 

sensitive mutation in their shibire gene have a pleiotropic phenotype. Around the endocytic 

cups or necks long spirals were observed. Further, increase in temperature resulted in rapid 

reversible paralysis, which was considered as most striking phenotype (Chen et al., 1991). 

The paralysis is due to a defect at the presynaptic membrane (Fig. 6) (Kosaka and Ikeda, 

1983a, b). EM analysis showed an accumulation of endocytic pits whose necks are encircled 

by single or double electron dense bands (Koenig and Ikeda, 1999, 2007). Over expression of 

dynamin with mutations K44E and S45N in the GTP binding domain in cultured cells have a 

dominant negative effect on receptor-mediated endocytosis. Coated pits failed to become 

constricted and coated vesicles failed to bud, while coated pit assembly, invagination, and the 
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recruitment of receptors into coated pits were unaffected (Damke et al., 1994). In GTPγS 

treated nerve terminals, tubular invaginations of the plasmalemma were found. The walls of 

these invaginations were decorated by transverse electron-dense rings showing positive 

immuno reactivity for dynamin (Takei et al., 1995). Dynamin was shown to be identical to 

dephosphin, a substrate of protein kinase C that undergoes stimulus-dependent 

dephosphorylation at the nerve termini, suggesting a role in rapid synaptic vesicle recycling 

(Robinson et al., 1993).  

 

 

 

 

Figure 5: Domain organization of various dynamins, dynamin like and dynamin related 

proteins. PH domains (red), PRD domain (light blue) are also shown. The corresponding 

identifiers for the ORFs for E. coli GenBank J05620, H. pylori GenBank AE000605 and 

M. tuberculosis GenBank Z95324. Modified and color coded cartoon representation of 

various dynamins. Inspired by Alexander M. Van der Bliek (van der Bliek, 1999). 
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All of these data point towards an important role of dynamin in the release of vesicles 

from the plasma membrane. Structural analysis of dynamin1 shows that it exists as a tetramer 

(Muhlberg et al., 1997) that can assemble into rings and spirals (Hinshaw and Schmid, 1995) 

and forms helical tubes on a lipid bilayer (Sweitzer and Hinshaw, 1998; Takei et al., 1995). 

These structures are similar to collared structures seen at the base of coated pits of Shibre 

flies. The structure of mammalian dynamin1 GTPase domain in the nucleotide-free state was 

solved by using X-ray crystallography (Reubold et al., 2005). 

 

Another mammalian dynamin, dynamin2, has been proposed to play a role in 

endocytosis (Altschuler et al., 1998; Henley et al., 1998; Kasai et al., 1999; Volchuk et al., 

1998), at the trans Golgi network (Jones et al., 1998; Yang et al., 2001), as a signal 

transduction molecule regulating transcription (Fish et al., 2000), or as a link to the actin 

cytoskeleton (McNiven et al., 2000a; McNiven et al., 2000b; Slepnev et al., 2000). Dynamin 2 

interacts with cortactin and regulates actin assembly. A dynamin2 mutant with decreased 

affinity for GTP was found to have decreased actin dynamics within the cortical actin 

network.   

 

Mutants of cortactin that show less binding to the Arp2/3 complex or dynamin2 have 

decreased actin dynamics. Dynamin2 promotes the association of actin filaments nucleated by 

Arp2/3 complex and cortactin with phosphatidylinositol 4, 5-bisphosphate (PIP2)-containing 

lipid vesicles (Schafer, 2002, 2004). It is also important in mediating focal adhesion and 

stress-fiber formation (Yoo et al., 2005). Dynamin2 mutation induces prominent decoration of 

microtubules. Further, it has been reported that dynamin2 is required for proper dynamic 

instability of microtubule, hence is essential for organelle motility (Otsuka et al., 2009; 

Tanabe and Takei, 2009).Mutations in the dynamin2 protein were found in patients with 

Charcot-Marie-Tooth (CMT) disease, which is an inherited peripheral neuropathy.  

 

Along with dynamin2, dynamin3 is also highly expressed in the testis. Dynamin3 does 

not colocalize with clathrin, suggesting that these two dynamins have distinct functions in 

sertoli cells. Mice lacking the klotho gene, which functions as an aging-suppressor, show 

deficiencies in spermatogenesis alongside drastically reduced expression levels of dynamin2 

and dynamin3 in the testis, indicating a possible association of these proteins with 

spermatogenesis (Kamitani et al., 2002). Over expression of a specific dynamin3 splice 

variant in mature neurons caused a marked remodeling of dendritic spines. This suggests that 
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dynamin3 is a postsynaptic dynamin that interacts with Homer. This interaction plays a 

significant role in dendritic spine morphogenesis and remodeling (Gray et al., 2003). A 

specific dynamin3 splice variant interacts with cortactin and modulates actin-membrane 

dynamics in developing neurons (Gray et al., 2005). Recently, it has been shown that 

dynamin3 is additionally involved in the growth and development of mega karyocytes (Reems 

et al., 2008). 

 

 

 

 

 

Figure 6: (A-B) Electron micrograph of clathrin-coated pit from D. melanogaster shibire 

nerve termini with a dense collar material seen at neck. (C) Invaginating tubule decorated 

with a striation pattern and a terminal clathrin-coated pit are observed in synaptosomes 

treated with GTPγS (Kosaka and Ikeda, 1983a; Takei et al., 1996). 

 

1.1.2.3 Dynamin Like Proteins (DLPs) and Dynamin Related Proteins 

(DRPs) 

Compared to the five-domain structure of classical dynamins, DLPs lack the PH and 

PRD domains Fig. 7. From yeast to humans, there is at least one DLP homologue per 

organism involved in mitochondrial division. Like classical dynamins, DLP oligomerize into 
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multimers and form rings. Recently it has been reported that the mutation A395D in the 

middle domain of human Dlp1 is lethal, as a consequence of defects in mitochondrial and 

peroxisomal fission (Waterham et al., 2007). Sequence homology does not allow 

distinguishing the regions between the middle domain and PH domain in dynamin-like 

proteins. However, some Dlps such as A. thaliana ADL2 contain a region that binds 

specifically to phosphatidylinositol-4-phosphate (PtdIns4P) and may have a similar function 

as the PH domain (Kim et al., 2001). This domain is also responsible for the recruitment of 

proteins at the constriction site in mitochondria, which acts as pseudo-PRD domain.  

 

 

 

Figure 7: Domain organization of Drp1 Isoform1. Drp1 contains several domains 

characteristic of dynamin family such as GTPase domain, a middle domain, a GTPase 

effector domain (GED). Drp1 has also a glycogen synthase kinase 3 beta (GSK3β) 

interacting domain and uncharacterized B domain.  

 

The levels of Drp1 mRNA are high in brain, moderate in skeletal and heart muscle and 

low in other tissues (Smirnova et al., 1998).  Drp1 was thought initially to play a role in 

vesicular transport similar to that of dynamin (Imoto et al., 1998). However, dominant-

negative mutations in human Drp1 have no effect on the secretory or on the endocytic 

pathway (Smirnova et al., 1999), but have a dramatic effect on mitochondrial distribution. The 

yeast homolog of Drp1, Dnm1p is one of three dynamin related proteins in yeast (Gammie et 

al., 1995). Dnm1p has been found to be localized to sites of mitochondrial division. Cryo-EM 

studies have proven the role of Dnm1p‟s mechano-chemical role which is important during 

mitochondrial division (Mears et al., 2010). The mitochondria in Dnm1p mutant yeast cells 

collapse into a clump near the nucleus, which normally have peripheral distribution 

(Smirnova et al., 2001). Initially these proteins were implicated in vesicle trafficking 

(Gammie et al., 1995). Both Dnm1p and Drp1 have later been localized to the outer 

membrane of mitochondria at constriction or fission sites. Cells transfected with mutants of 
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these proteins show a defect in mitochondria fragmentation (Bleazard et al., 1999; Labrousse 

et al., 1998; Labrousse et al., 1999; Otsuga et al., 1998; Sesaki and Jensen, 1999; Smirnova et 

al., 2001; Smirnova et al., 1998). DynaminA from D. discoideum is most closely related to the 

Dnm1p subfamily (Wienke et al., 1999). 

 

Inhibition of Drp1 by overexpression of a dominant-negative mutant leads the loss of 

the mitochondrial membrane potential and the release of cytochrome C which causes a 

reproducible swelling to the organelle. Inhibition of Drp1 blocks cell death, implicating 

mitochondrial fission as an important step in apoptosis (Frank et al., 2001; Phillips et al., 

2001). Ishihara and Mihara have shown that Drp1 is essential for embryonic development and 

required for synapse formation in mice (Ishihara et al., 2009; Masaike et al., 2007; Taguchi et 

al., 2007).Transfection of Drp1 and their K38A mutant leads to constriction of ER membrane 

with periodic Drp striation, providing an insight into the close associations of mitochondria 

and the endoplasmic reticulum (Pitts et al., 1999; Yoon et al., 2000; Yoon et al., 1998; Yoon 

et al., 2001). 

1.1.2.4 Vps1p 

The absence of the PRD and the PH domain makes Vps1p non-classical dynamin in the 

yeast S. cerevisiae. Vps1p is involved in vesicle trafficking from the Golgi (Rothman et al., 

1990; Wilsbach and Payne, 1993). Vps1p seems to function in vesicle trafficking at the Golgi 

rather than at the plasma membrane, (Nothwehr et al., 1995; Wilsbach and Payne, 1993) and 

is probably involved in the formation of clathrin coated vesicles at the Trans Golgi network 

(TGN) (Bensen et al., 2000). Vps1p also controls the number of peroxisomes in S. cerevisiae, 

since in a Vps1p mutant only one or two giant peroxisomes remain. Analogous to the function 

of other dynamin-related proteins, Vps1p is also involved in a membrane fission event that is 

required for the regulation of peroxisome abundance (Hoepfner et al., 2001; Vizeacoumar et 

al., 2006). 

1.1.2.5 Mgm1p/OPA1 

The domain architecture of this family of proteins is similar to that of DLPs, except for 

the additional mito-leader sequence at their amino terminal. Mgm1p and Msp1p both have a 

large N-terminal extension that contains a mitochondrial targeting sequence(Jones and 

Fangman, 1992; Pelloquin et al., 1999a; Pelloquin et al., 1999b). Mgm1p is the third dynamin 
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family member in S. cerevisiae that defines its own subfamily (Jones and Fangman, 1992). 

Mgm1 homologues are S. pombe Msp1p (Pelloquin et al., 1998), human OPA1 (Alexander et 

al., 2000; Delettre et al., 2000)and a homolog in C. elegans. Mgm1p was found to be 

necessary for mitochondrial genome maintenance. Mgm1p is localized to mitochondria, but it 

is controversial whether it associates with the outer membrane or localizes to the inter 

membrane space (Shepard and Yaffe, 1999; Wong et al., 2000). S. pombe Msp1p was 

localized to the matrix side of the inner mitochondrial membrane and its overproduction leads 

to an alteration of mitochondrial structure and function.  

 

Optic atrophy1 (OPA1) is the only known human dynamin with a mitochondrial 

targeting sequence and is thought to function similar to that of Mgm1p. Mutations in human 

OPA1give rise to dominant optic atrophy, a glaucoma that is caused by atrophy of retinal 

ganglion cells and the optic nerve, resulting in blindness (Delettre et al., 2001). RNAi 

knockdown of OPA1 expression in cultured cells results in mitochondrial fragmentation, 

disruption of cristae structure and a loss of the mitochondrial membrane potential. This leads 

to apoptosis (Olichon et al., 2003). OPA1 mutation R445H associated with dominant optic 

atrophy impairs oxidative phosphorylation and mitochondria fusion (Zanna et al., 2008). 

1.1.2.6 Plant Dynamins 

Mostly plant dynamins are involved in chloroplast division (Gao et al., 2003; 

Miyagishima et al., 2003).They all lack the PRD and the PH domain, except for ADL3. 

Phragmoplastin and ADLs (Arabidopsis dynamin-like) are higher plant members of the 

dynamin family. Phragmoplastin from soybean localizes to the cell plate in dividing cells (Gu 

and Verma, 1996). ADL1 (Park et al., 1997) was localized to the thylakoid membranes of 

chloroplasts and might be involved in the biogenesis of thylakoids (Park et al., 1998). ADL2 

is localized to chloroplasts by its N-terminal amino acids and is most closely related to 

Dnm1p (Kang et al., 1998). ADL2b was observed to localize at the tips and at the constriction 

sites of mitochondria and is involved in Arabidopsis mitochondrial division. The Arabidopsis 

dynamin-related proteins DRP3A and DRP3B play key roles in both mitochondrial and 

peroxisomal fission (Fujimoto et al., 2009). 
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1.1.2.7 Mx Proteins 

Mx proteins are interferon induced anti-viral proteins of 70 to 80 kDa found in all 

vertebrates. They are capable of inhibiting the multiplication of negative stranded RNA 

viruses like influenza virus by abolishing virus polymerase function (Pavlovic et al., 1993; 

Pitossi et al., 1993). Mx proteins are not associated with membranes but localize to the 

cytoplasm (e.g. mouse Mx2) or the nucleus (e.g. mouse Mx1) (Zurcher et al., 1992a, b, c). Mx 

family proteins contain an N-terminal GTPase domain and variable C-terminal domains, 

depending on their function and location. Mx proteins exert their antiviral function by various 

mechanisms, e.g. by binding to the nucleo capsid and blocking nuclear import (Kochs and 

Haller, 1999a, b) or by inhibiting viral transcription (Praefcke et al., 1999). Mx proteins have 

been shown to assemble into homo oligomers (Melen et al., 1992). Similar to the GED of 

classical dynamin, human MxA contains a C-terminal domain that is involved in activating 

GTPase activity and promotes oligomerization (Haller et al., 1998). It has been shown that a 

functional GTP-binding motif is necessary for virus inhibition. 

1.1.2.8 Guanylate-Binding Proteins (GBPs)/Atlastins 

These proteins are arguably the least conserved members of the dynamin family. 

hGBP1 is a type-II interferon inducible large GTPase of 67 kDa with intracellular anti-

pathogenic activity and their antiviral activity is lower compared to that of Mx proteins 

(Anderson et al., 1999). Like dynamin, hGBP1 displays low nucleotide affinity, is stable in 

the absence of nucleotide, and undergoes nucleotide dependent oligomerization (Praefcke et 

al., 1999; Prakash et al., 2000a; Prakash et al., 2000b). The crystal structure of hGBP1 shows 

differences in the connectivity of secondary structure elements compared to dynamin1 but the 

intramolecular interactions are thought to be similar to those that have been predicted for 

dynamins for their GTP and GED domains. GBPs are not found in D. melanogaster or C. 

elegans, but there is a weak homologue in A. thaliana. Unlike dynamin, GBPs can hydrolyse 

GTP not only to GDP, but also to GMP (Prakash et al., 2000a). 

1.1.2.9 Bacterial Dynamin-Like Proteins 

Many eubacteria have dynamin-like proteins that consist of GTPase domain, middle 

domain and GED. yjda is an E. coli ORF with a predicted GTPase domain sequence that is 

characteristic of dynamin family members (GenBank J05620). The predicted protein has C-



17 

 

terminal domains and putative coiled-coils as in other dynamin family members. This 

suggests that the Yjda protein forms a multimeric assembly with mechano-chemical 

properties similar to those of dynamin. Other bacteria such as H. pylori and M. tuberculosis 

have similar ORFs with unknown functions (van der Bliek, 1999). The structure of the 

bacterial dynamin like protein (BDLP) from N. punctiforme has been solved by X-ray 

crystallography in presence and absence of GDP. Similar to dynamins, BDLP also undergoes 

helical self-assembly and tubulates lipid bilayer (Low and Lowe, 2006). 

1.1.3 GTPase Activity of Dynamins 

Purified dynamin exists in tetramer/monomer equilibrium under high salt condition, 

higher than 300 mM NaCl (Binns et al., 1999) and forms ring and spiral structures under low 

salt conditions, lower than 50 mM NaCl (Hinshaw and Schmid, 1995). Assembly into rings or 

spirals is a common feature of dynamins (van der Bliek, 1999). Classical dynamin (Hinshaw 

and Schmid, 1995; Takei et al., 1995), Dlp1 (Smirnova et al., 2001; Yoon et al., 2001), 

phragmoplastin (Zhang et al., 2000), ADL2 (Kim et al., 2001), dynaminA (Klockow et al., 

2002) and Mx proteins (Kasai et al., 1999) have been shown to form rings or spirals. The 

GED is important for self-assembly (Okamoto et al., 1999; Smirnova et al., 1999) and an 

interaction of the GED with the GTPase domain and with the middle domain was shown 

biochemically and by yeast two-hybrid analysis (Muhlberg et al., 1997; Smirnova et al., 

1999). Interactions between the GED and the GTPase and middle domain were found in Mx 

proteins as well (Praefcke et al., 1999; Schumacher and Staeheli, 1998). GED interaction with 

the GTPase domain stimulates GTPase activity (Muhlberg et al., 1997). The mechanisms of 

dynamin‟s basal and assembly-stimulated hydrolysis are unknown. The issue whether it acts 

by accelerating GDP release or rather like a classical GAP via an arginine finger is not settled 

yet (Marks et al., 2001; Sever et al., 1999). The recent crystal structure of human dynamin1-

derived minimal GTPase-GED fusion protein, which is a dimeric in the presence of the 

transition state mimic GDP.AlF4
-
, gave insights on how assembly stimulated GTP hydrolysis 

might be achieved. 

 

Dynamins display low nucleotide affinity compared to small GTPases (µM range) and 

have a high basal turnover rate with reported values ranging from 8-30 x 10
-3 

sec
-1

(Marks et 

al., 2001; Sever et al., 2000a, b). The GTPase activity shows co-operativity to its 

oligomerization induced GTPase rate and reaches a value of 1-5 sec
-1

 at a dynamin 

concentration of 1 µM (Stowell et al., 1999; Tuma and Collins, 1994). Assembly on suitable 
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templates leads to an increase in GTPase activity, e.g. a 16-fold increase upon assembly on 

microtubules (Obar et al., 1990). The highest activation found so far has been observed after 

assembly on lipid nano tubes that led to a 1000-fold increase in GTPase activity (Marks et al., 

2001; Sever et al., 2000a, b). Point mutations in the human dynamin1 GTPase domain, mainly 

in their G1, G2, G3 and G4, the GTP binding motifs, dramatically lowered both the rate of 

assembly stimulated GTP hydrolysis activity and the affinity for GTP (Damke et al., 2001a; 

Damke et al., 2001b; Song et al., 2004a; Song et al., 2004b). 

1.1.4 Dynamin: a Molecular Motor or a Regulatory Protein 

There is a long running debate whether dynamin is a motor protein or works as a 

regulatory GTPase. Dynamin self-assembles into rings or spirals in low salt conditions or in 

the presence of lipid nanotubes (Sweitzer and Hinshaw, 1998). This stimulates GTPase 

activity over 100-fold. Dynamin rings accumulate at the neck of the endocytic cup. GTP 

hydrolysis by dynamin induces a conformational change, which in turn is responsible for 

force generation and leads to membrane fission. These observations led to the first model for 

the function of dynamins Fig. 8. The model suggests that dynamins assemble in the GTP-

bound form and form collar-like structures at the deep invaginated coated pits. GTP 

hydrolysis causes one of two conformational changes, either constriction of assembled 

structure or helical expansion, which leads to the pinching-off of coated vesicles. According 

to Stowell et al., this model of molecular spring is called as „Pinchase‟. 

 

On the other hand, some data support a model where dynamin functions as a classical 

signaling GTPase. An Arg to Ala point mutation in the GED was reported to have a reduced 

assembly stimulated GTPase activity, while the basal turn-over rate is normal. Cells 

transfected with this R725A mutant showed increased endocytosis in contrast to the expected 

reduction (Sever et al., 1999), suggesting that dynamin functions like other GTPase 

superfamily members, as a regulatory enzyme. GTP-bound dynamin recruits downstream 

effectors to the coated pit; the effectors in turn mediate coated vesicle formation. As the neck 

narrows and vesicle formation is about to complete, dynamin self-assembly triggers GTP 

hydrolysis, which terminates interactions with downstream effectors (Fig. 8, arrow3). 

Impairment of self-assembly in the GED mutants will prolong the GTP-bound state and 

hence, accelerate vesicle formation. 
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Dynamin is an important component of the endocytic machinery, to understand its role 

as a mechano-chemical enzyme or as a regulatory protein, it is important to understand 

dynamin‟s oligomerization-stimulated GTPase activity. Whether it generates force or it 

inhibits the signal between the adapter proteins in the downstream by it assembly-stimulated 

hydrolysis rate. This is possible once structures of dynamin in different nucleotide states have 

been solved. But still there is no evident which nucleotide states are functionally important. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Two models of dynamin function. Model 1: As a mechanochemical enzyme, 

dynamin uses chemical energy released from GTP hydrolysis for fission of the neck of a 

coated pit, either by constricting dynamin collars (arrow 1) or by expanding (arrow 2) the 

helical pitch of dynamin rings. Model 2: As a regulatory enzyme, the dynaminGTP 

complex, which is localized to coated pits, recruits and/or activates effector molecules 

that are required for vesicle formation. GTP hydrolysis triggered by assembly of dynamin 

at the neck (arrow 3) serves to terminate interactions with downstream effectors (Song 

and Schmid, 2003). 
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1.1.5 Dynamins and Their Interacting Partners 

1.1.5.1 Drp1- Cdks 

Cyclin dependent kinases (Cdks) belong to the family of threonine/serine kinase (ST – 

kinases), and require cyclins, to functionally construct and activate their active site. Cdk2 is 

formed by two lobes (Fig. 9). The N-terminal lobe contains a G-loop in which 

phosphorylation of the residue T14 and Y15, renders the Cdk/cyclin complex inactive. The 

bigger C-terminal lobe contains the T-loop also called activation loop, in which 

phosphorylation of T160 is crucial for the Cyclin/Cdk complex activation. Cdks are 

regulatory components during proliferation, differentiation, and apoptosis in neuron and other 

cells. Cdks are present throughout the mammalian cell cycle. Their cyclin partners undergo a 

periodic synthesis and destruction cycle, which means the concentration of cyclin, varies from 

G1 to M phase in cell cycle Fig. 10. In vertebrates, the earliest cell divisions are very different 

from normal adult cell divisions. At very early stage cell divisions are rapid and synchronous, 

but there are long gaps from the thirteenth cell division just after midblastula transition. 

Cyclins A, B, E and Cdk-1 and 2 are controlling elements during embryonic cell division, 

whereas Cyclin D-1, 2, 3 and Cdk-4, 6 are very important during normal adult cell division. 

Regulation of mitochondrial dynamics during mitosis is important to assure that daughter 

cells inherit them. Improper mitochondrial numbers have been implicated in a number of 

diseases. Previous studies from two-hybrid screen have shown that Xenopus protein XDrp1 

interacts with both embryonic and somatic forms of cyclinA, but not with B type cyclins 

(Funakoshi et al. 1999). 

 

In addition Cdk5/p35 is known to phosphorylate dynamin1 and amphiphysin1 

(Nguyen and Bibb, 2003; Tomizawa et al., 2003). In contrast to other Cdks, Cdk5 does not 

depend on cyclins to get activated nor for its substrates to get phosphorylated (Tomizawa et 

al., 2002). But, Cdk2 in neurons initiates death by suppressing E2F-1/Rb- dependent 

transcription at neuronal G1/S check point (Nguyen et al., 2002). Thus, it became apparent to 

study on dynamin1 and Drp1-Cdk2/cyclinA interactions individually. An assay system was 

developed to check for the dynamin1 and Drp1‟s phosphorylation status by the cyclin 

dependent kinase2/cyclinA complex. This led to discover the novel phosphorylation site in 

Drp1.  
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Figure 9: Cartoon representation of Cdk/Cyclin complex of the PDB id: 3qhw. The blue 

surface and blue cartoon represents the Cdk and the orange surface and the cartoon 

represents the cyclin. The T-loop is shown in pink surface, C-helix in red surface and G-

loop in green surface. 

 

 

 

 

 

 

 

 

 

Figure 10: Sketch of the regulatory proteins cyclins and cdks at various cell-cycle 

phases (Morgan, 1997). 
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a b 

1.1.5.2 Dynamin1 and Amphiphysin1-SH3 Domain 

Amphiphysin proteins are highly conserved from yeast to human. Their domain 

organization starts with an amino-terminal BAR (Bin1-Amphiphysin-Rvs) domain, a central 

variable domain and a carboxyl-terminal Src homology 3 domain (SH3) Fig. 11 and Fig. 12. 

BAR domains initiate membrane bending by mediating interactions with acidic phospholipids 

and homo/heterodimerization (Farsad et al., 2001; Slepnev et al., 1998; Takei et al., 1999). 

SH3 domain mediates protein-protein interactions and in amphiphysins, this domain interacts 

with dynamin1 and synaptojanin1 (David et al., 1996; McPherson et al., 1996). 

 

 

 

 

 

 

 

 

Figure 11: Domain organization and sequence annotation of amphiphysin. 

 

 

 

 

 

 

 

 

 

 

Figure 12: (a) Cartoon representation of SH3 domain (pdb id: 1bb9) and (b) BAR 

domain (pdb id: 2fic). 
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There are two isoforms of amphiphysin in mammals, amphiphysin1 which expresses 

in brain, and amphiphysin2 expresses as splice variant in brain at high levels as well as in 

striated muscle. Muscle amphiphysins do not have clathrin and AP-2 binding sites (Antoine et 

al., 1999; Di Paolo et al., 2002; Farsad et al., 2001), and are independent of clathrin coats or in 

other words clathrin independent functions (Antoine et al., 1999; Leprince et al., 2003; 

Leprince et al., 1997; Saiz et al., 1999; Wechsler-Reya et al., 1997a; Wechsler-Reya et al., 

1997b; Wechsler-Reya and Barres, 1997). Amphiphysin2 forms heterodimers with 

amphiphysin1 and are localized with presynaptic cytomatrix (Bauerfeind et al., 1998).They 

are enriched at coated endocytic intermediates. The role of amphiphysin in presynaptic vesicle 

endocytosis is important and dynamin1, synaptojanin1 are their endocytic intermediate 

interaction partners (Shupliakov et al., 1997), Mutations in Rvs, the amphiphysin homolog in 

S.cerevisiae causes defects in endocytosis (Lombardi and Riezman, 2001). Amphiphysin 

plays vital role in actin dynamics during synaptic vesicle recycling in neurons (Sivadon et al., 

1995). Disrupting the interactions of amphiphysin2 with dynamin1 by proline-arginine rich 

domain peptide (PRDp) stalls fissioning in reticulospinal presynaptic axon.  

 

1.2 ATP Binding Proteins: Myosin 

Myosins are members of hydrolase enzyme family, capable of converting chemical 

energy of ATP hydrolysis directly into mechanical energy to generate force and directed 

movement. Myosins are involved in a wide spectrum of biochemical and biophysical events 

in the eukaryotic cells. These include movement of cells, load-dependent anchoring, 

cytokinesis, vesicle transport, golgi organization, sensory signal transduction, cortical tension 

maintenance and neurite outgrowth (Brown and Bridgman, 2003a; Brown and Bridgman, 

2003b; Sellers, 1999; Wylie et al., 1998; Yumura and Uyeda, 2003).  

The interplay between myosins and actin filaments are not only necessary for cellular 

events, but in some cases they are also needed to maintain or to form organized structures like 

stereo-cilia of inner hair cells. The interaction between myosins and actin is an example for 

cytoskeletal remodeling owing to the concept of cellular dynamics. Class 2 muscle myosins 

were studied extensively and became the founding member of myosin superfamily, for this 

reason it has been called as conventional myosin, whereas other myosins are called 
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unconventional myosin. There are atleast 24 classes of myosins; they are phylogenetically 

classified on the basis of motor domain sequences (Fig. 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Phylogenetic tree based on sequence homology of 267 myosin head domains 

from 24 classes (Foth, 2006). 

 

 

The functional diversity and various roles of myosins are reflected by the expression 

pattern of myosins in various cell types (Bement et al., 1994a; Bement et al., 1994b). There is 

evidence that in a single cell type about 12 different myosins is expressed, while on the other 

hand; different member of the same class of myosins may have different functions (Reck 

Peterson et al., 2000). Myosin classes MVIII, MXI and MXIII exclusively belongs to plant 

myosins. There are about 40 myosin genes in human, spanning 12 classes. The following 

table lists some of the important functional motifs present within different myosins (Berg et 

al., 2000; Lee et al., 2000; Oliver et al., 1999; Pollard et al., 1991; Post et al., 1998) 
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Table 2: Different classes of myosin and their functional motifs. 

Myosin Class Motifs Function 

MI 
Polybasic domain Anionic phospholipid 

binding 

MII 

Coiled-coil Cytokinesis, muscle 

contractility 

 

MIII 
Protein kinase domain Signaling in photo 

transduction 

MVI 
Reverse gear Transport, reverse 

movement, hearing 

MXVI 
Ankyrin repeats Protein-protein 

interaction 

MXVIII 
PDZ Protein-protein 

interaction 

MXV 
Extended Stereocilia formation, 

actin bundling, hearing 

 

MX 
PH domain Phospholipid binding 

MVII,MX,MXII,MXV 
FERM Binding to membrane 

associated proteins 

MIX 
Rho-GAP Regulation of actin 

MI,MIV 
SH3 Protein-protein 

interaction 

MV,MX 

PEST Calpain recognition 

vesicle transport, 

smooth ER, 

centrosomes 

 

MIV,MVII,MX,MXII,MXV 
MyTH4 Microtubule binding 
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1.2.1 Molecular Properties of Myosins 

 Though myosin motor domains are highly conserved, the kinetics varies between 

different classes and isoforms. The fraction of time spent by myosin on actin filament during 

the acto-myosin ATPase cycle is called duty ratio. The duty ratio may be low or high 

depending on the class of myosins, myosin II have low duty ratio. Other relevant properties 

are the processivity and directionality, which are crucial factors for any given myosins. 

Motors that have to carry or transport cargo usually have high duty ratio, thus walk several 

steps along the actin filament without detachment. But those myosins which detach after a 

short or single step, i.e. motors with low duty ratio are not functionally suited to carry out 

cargo transport within the cells. Such motors with low duty ratio combine together or form 

molecular assemblies to perform their functions, whereas class 2 and class 18 myosins being 

the exceptions, one best example is the conventional myosins during muscle contraction 

(Geeves and Holmes, 1999) which works as molecular assemblies. In regard to directionality, 

the plus end of the actin points towards the cell periphery. So, in which case the myosins that 

walk towards the cell periphery are plus end directed myosins such as myosin I, myosin V. 

Whereas myosin VI (Wells et al., 1999) move towards the minus end of the filament. There 

are some indications that myosin IX also move towards the minus end of the filament, i. e. 

from the plasma membrane to the interior of the cell. Hence, the duty ratio, processivity and 

directionality parameterize any given myosins. 

1.2.2 Architecture and Structure Details of Myosins 

The main architectural elements of the myosin structure are the myosin head, the neck 

region/ lever arm and the tail domain (Fig. 14). The myosin head can further be subdivided 

into motor domain where ATP hydrolysis and actin binding takes place. The lever arm 

contains variable number of (0 to 7) binding sites for calmodulin-like light chains. The lever-

arm produces the force upon the conformational change during strong actin binding and 

product release after ATP hydrolysis, and the magnitude of this force depends on the length of 

the neck. The lever arm is the regulatory part of the myosin motor head which homes essential 

and regulatory light chains at least in the case of myosin II. Several studies on the motor 

domain have led to a model for force transduction that supposes, the N-terminal SH3-like-β-

barrel subdomain (absent in class-I myosin) and the upper and lower 50 kDa domains 

(primary topological elements in motor domain) remain relatively unchanged due to 

conformational restriction with respect to actin in the acto-myosin complex. And the force is 
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produced mostly from a rigid body movement of the neck along with the converter domain, 

which is a subdomain of the myosin motor domain that connects the neck Fig. 15. They are 

triggered by the conformational changes in the motor domain (mainly in the U50 kDa). The 

outcome of the movement of the lever arm is called „„power stroke‟‟. The involvement of 

switch I and switch II in the complex communication pathways between the nucleotide 

binding pocket and actin binding region have improved our understanding (Reubold et al., 

2003) about the affinity of myosin motor to actin, nucleotide and  products (like ADP, Pi) and 

the generated force. Loop 1, near the nucleotide binding pocket which is about 25 kDa from 

the amino-terminus and Loop 2 near the actin binding interface, which is about 75 kDa from 

the amino-terminus, were considered to be highly dynamic part of the motor domain. 

 

 

Figure 14: The cartoon representation of the myosin motor domains includes SH-3-like-

β-barrel in pink, Lower 50 kDa in blue, Upper 50 kDa in red domain and converter 

domain in cyan. 

 

Myosin as a protein family shares a high structural similarity between their motor 

domains. Among the myosins, myosin VI has a unique insert of about 50 amino acids at the 

converter region. The varying length and spacer between IQ motifs could affect the stiffness 

of the neck, the relative disposition of the heads and possibly the regulation of unconventional 
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myosin (Sellers, 2000). Important parameters of myosin motors, like step size and sliding 

velocity are characterized by the amount of converter rotation and the length of the neck 

region . 

 

 

Figure 15: C-terminal converter domain (purple) connecting the motor domain and the 

neck region. Surface representation of essential light chain (red) and regulatory light 

chain (cyan) are also shown. 

 

 

The soluble fragment obtained upon limited proteolysis of myosin, is called 

subfragment1 or S1 Fig. 16. The S1 or myosin head contains as said above, the motor domain 

and neck region. The motor domain comprises the ATP binding pocket and the actin binding 

site. Thus, understanding the conformational changes taking place within this fragment can be 

translated into the understanding of the mechanics of the myosin motor and its implication in 

contractility, rigidity and movement in the cellular context. The complete picture of the 

coupling between the acto-myosin reaction cycle and the generated force may be evident from 

understanding myosins with different nucleotide bound state or crystal structures in different 

conformation of the lever arm or intelligent protein engineering or high resolution electron 

microscopic acto-myosin complex structures. This might change the paradigm of muscle 
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biology. The attempt to perturb the intrinsic mechanical properties by small molecule 

effectors is an interesting approach in the myosin field, and in further chapters of my thesis I 

have addressed and added some more value in the direction of myosin‟s chemical biology. 

 

 

Figure 16: Cartoon and surface representation of proteolytic fragment of myosin from G. 

gallus generated by papain digestion. Motor domain and myosin neck region are in 

cartoon and surface representation (blue surface). The essential light chain is shown in 

red and regulatory light chain is shown in cyan. The coordinates of the myosin strucuture 

is obtained from the pdb id 2mys (Rayment et al., 1993).  

 

1.2.3 The Myosin II Motor Domain of D. discoideum 

D. discoideum conventional myosin II is an abundant protein that has been shown to be 

involved in cytokinesis, cell protrusion and development (Bosgraaf, 2006; Hostetter, 2004). 

This conventional motor has been used in our studies not only to modulate their kinetic 

properties by small molecule modulators, but to obtain the structural details of the motor 

domain in complex with nucleotide transition analogs and small molecule modulators. 
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Part of the myosin-actin interface, the so-called cardiomyopathy loop (CM-loop), the 

mutation of R403Q in human cardiac myosin at this interaction site causes familial 

hypertrophic cardiomyopathy (Sasaki et al., 2002, 2003). Loop 2 is another interacting motif 

for actin through ionic interactions. The strut-loop is a four amino acid loop – 
590

DPLE
593

 

which has an extended conformation, they keeps the upper and lower 50 kDa domains apart 

thus acting as a mechanical strut. Variations in the length of strut-loop have been implicated 

in weak actin association to myosin. Amino acid residues 
457

DISGFE
462 

form the switch II; 

the switch II keeps hold the water that attacks ATP Fig. 17 and Fig. 18. This loop acts as the 

door and opens up during the phosphate release but this model is still under debate. The long 

helix from 466 to 497 (the sequence numbers are according to the myosin II structure of D. 

discoideum), which connects the central core and the actin binding helix-loop-helix motif has 

a kink at residue485 and this kink is stabilized by F506, L508 and I687. This relay helix 

transduces and amplifies local rearrangements due to conformational changes during ATP 

hydrolysis to the converter and the lever arm regions. Mutation of key residues like F506G, 

F487A in the relay helix has been shown to perturb the communication between the catalytic 

pocket and the acting binding regions (Tsiavaliaris et al., 2002).  

 

 

 

 

 

 

 

 

Figure 17: The ATP binding loops switch 1 (green), switch 2 (orange) and the P-loop 

(red) forms the active site. The nucleotide is shown in stick representation (pink). 
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 Motor domains with artificial lever arm of myosin II from D. discoideum can be 

purified in sufficient quantity for kinetic and structural studies. Translation of the mechanism 

obtained from this model myosin can be used to understand the basics of the molecular 

mechanisms of other higher eukaryotic and mammalian myosins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Structural and functional elements of myosin motor domain. 

1.2.4 The Cross Bridge Cycle 

The cross bridge cycle can be explained with the reaction scheme shown in Fig. 19 with 

six states from a to f, for simplification. Nucleotide-free myosin strongly binds to actin in the 

so called rigor complex (state a). The affinity of myosin to actin is strong in this state. ATP 

binds to the rigor complex to form A.M.T. ATP binding to the acto-myosin complex causes 

dissociation of actin to form M.T (state b). ATP is hydrolyzed by myosin resulting in M.D.Pi, 

which is a state where myosin has weak affinity for actin (state c). At state e, Pi release leads 

to the force generating power stroke, followed by ADP release from A.M.D, culminating in a 
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rigor cross bridge state A.M to bring about the next cycle (Cooke, 1995; Geeves et al., 2005; 

Geeves and Holmes, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: (a) Scheme showing the acto-myosin energy conversion cross bridge cycle 

(adopted from (Geeves et al., 2005)). Myosin is strongly bound to actin in the rigor 

complex in the state a.The equilibrium is shifted upon nucleotide binding during which 

myosin is released from actin. Upon hydrolysis of the bound nucleotide, myosin has 

weak affinity for actin like shown in the state c. Upon Pi release myosin produces pre-

powerstroke. Later ADP release causes myosin to enter into the next cycle during which 

the lever arm produces the powerstroke. (b) The pathway of the cross bridge cycle and 

the model adopted to explain the chemical kinectics reactions, where, A-Actin; M-

Myosin; T-ATP; D-ADP; Pi-Inorganic Phosphate are the corresponding acronyms. 
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1.3 Diseases Related to Myosin and Dynamin Dysfunction 

Laing early onset distal myopathy, myosin storage myopathy, Familial Hypertrophic 

Cardiomyopathy (FHC), Fukuyama-type congenital muscular dystrophy, amyotrophic lateral 

sclerosis are some of the diseases caused by myosins (Banks and Fisher, 2008; Hirokawa et 

al., 2010; Lopez et al., 2008; Walsh et al., 2010a; Walsh et al., 2010b). The summary of the 

diseases and related myosins causing them are shown in Table 3. According to a keyword 

search for myosins performed at the Drug Bank database (http://www.drugbank.ca), a 

bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, 

pharmacological and pharmaceutical) and drug target (i.e. sequence, structure, and pathway) 

information, 17 approved small molecule drugs are targeting myosin related diseases . 

 

Table 3: Various classes of myosins and related diseases caused by them. 

Myosin Diseases 

β-cardiac myosin II Familial hypertrophic cardiomyopathy(FHC) 

Myosin III 
Distal arthrogryposis 

(congenital contractures of limbs) 

Myosin V 
Griscelli disease 

(Hypo-pigmentation) 

Myosin VI Hearing loss 

Myosin VIIA 
Usher syndrome 

(Deafness and vision loss) 

Myosin IX May-Hegglin anomaly (Thrombocytopenia) 

Myosin XV Deafness, loss in balance 
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1.3.1 Small Molecule Effectors of Myosins and Dynamins   

 Small molecules act as an agonists or antogonists. When such molecules bind to their 

target proteins they can lead to changes in local ionic concentration, permeability, diffusion 

rate, and conformational changes. These small molecules can be characterized as activators, 

inhibitors or modulators of the target proteins aacording to the specific activity brought about 

by the small molecules. 

 

 Myosin displays a potential therapeutic target, because they are involved in diversified 

functions like transport of cargos inside the cells, muscle contractions and sensory signal 

processes. The interactome of myosin signifies its role in funadamnetal cellular processes. 

They can bind to membrane associated proteins, phospholipids, and to microtubules. They are 

also involved in signaling process; they communicate between proteins and propagate the 

processed communications, thereby actively involving in signaling within cellular milieu. 

Since myosin is involved in various cellular functions, they are prone to be lethal to the cells 

when they are unable to be functional. Characterizing such motors is the first thing in 

understanding the diseases caused by their malfunctions (Savoia, 2010 ; Savoia, 2010 ; 

Veugelers et al., 2004). In cases like Toxaplasma gondii parasites, myosinA is involved in the 

host cell invasion and parasite‟s locomotion (Dobrowolski et al., 1997; (Heaslip, 2010 ; 

Heaslip, 2010). Small molecule inhibitors or activators that are class specific and isoform 

specific for myosin could be used to modulate the enzymatic activity. 2,3-butanedione-2-

monoxime; 4-Methyl-N-(phenylmethyl)benzenesulfonamide,(±)-1,2,3,3a-Tetrahydro-3a-

hydroxy-6-methyl-1-phenyl-4H-pyrrolo[2,3-b]quinolin-4-one;2,4-dichloro-6-(3,4,5-tribromo-

1H-pyrrole-2-yl)phenol or tribromodichloropseudilin; pentachloropseudilin; 

pentabromopseudilin (PBP) and resveratrol are reported to act as myosin small molecule 

effectors (Chinthalapudi et al., 2011; Higuchi and Takemori, 1989; Kagawa et al., 2006; 

Preller et al., ; Ramamurthy et al., 2004; Watanabe et al., 2010). 

 

In case of dynamin related protein1 or dynamin1, small molecules that inhibits 

mitochondrial division, endocytosis have been shown to play vital roles as therapeutic targets. 

Inhibiting Drp1 activity reduces the mitochondrial morphological phenotype that is exclusive 

for some disease conditions like Parkinson‟s, Alzheimer‟s and Huntington‟s diseases. 

Ischemia, which is characterized by shortage of blood supply to a particular tissue results in 

low levels of oxygen or glucose in the tissue. In such case, reperfusion takes place in ischemic 
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tissues, which causes oxidative stress and lead to local inflammation. During reperfusion, 

programmed cell death (PCD) is activated. Drp1 initiates mitochondrial fragmentation in the 

reperfusion injury area to release cytochrome c, ultimately leading to the caspase activation 

and apoptosis. It has been shown that in cardio-myocytes conditioning, inhibition or over-

expression of dominant negative Drp1 mutant K38A saves cells from stimulated 

ischemic/reperfusion injury (SIRI). But, on the other hand, dysfunction of fusion proteins 

leads to lowered mitochondrial respiration, alteration in mtDNA, which leads to neurological 

disorders like Dominant Optic Atrophy (DOA) and Charcot-Marie-Tooth type 2A diseases 

(CMT2A). Inhibition of Drp1 in such cells can reduce the severity of the disease conditions 

by reducing the fusion process. On the other hand, classical dynamin1 inhibitors have been 

shown to be effective in the treatment for epilepsy. Dynasore, tyrphostins, iminodyn are some 

of the known inhibitors that are reported so far for dynamins and dynamin related proteins 

(Hill et al., 2001; Hill et al., 2005; Hill et al., 2009; Hill et al., 2004; Odell et al., 2010; 

Tanaka and Youle, 2008). 
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CHAPTER 2   
 

Materials and Methods 
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2.1 Buffer Recipes 

Buffer A 

 

RbCl 12 g/l 

MnCl2.4H2O 50 mM 

Potassium acetate, pH 7.5, 30 ml of 1 M stock solution  

CaCl2.2H2O 1.5 g/l 

Glycerol 150 g/l 

Adjust the pH to 5.8 with 0.2 M acetic acid 

 

Buffer B (per liter) 

 

MOPS, pH 6.8, 20 ml of a 0.5 M stock solution 

RbCl 1.2 g 

CaCl2.2H2O 11.0 g 

Glycerol 150 g   

 

Buffer P1 

 

Tris.Cl, pH 8.0, 50 mM 

EDTA 10 mM 

RnaseA  100 µg/ml 

 

Buffer P2 

 

NaOH 200 mM 

SDS (w/v) 1% 

 

Buffer P3 

 

Potassium acetate, pH 5.5, 3.0 M 

 

Buffer QBT (equilibration buffer) 

 

NaCl 750 mM 

MOPS, pH 7.0, 50 mM 

Isopropanol (V/V) 15% 

Triton X-100 (V/V) 0.15% 

 

Buffer QC (Wash buffer) 

 

NaCl 1.0 M 

MOPS, pH 7.0, 50 mM 

Isopropanol (V/V) 15% 

 

Buffer QF (Elution buffer) 

 

NaCl 1.25 M 

Tris.Cl, pH 8.5, 50 mM 

Isopropanol (V/V) 15% 
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DD-EP Buffer 

 

Sodium phosphate, pH 6.4, 10 mM 

50 mM sucrose 

 

DD-Cure Buffer 

 

Sodium phosphate, pH 6.4, 10 mM 

Sucrose 50 mM 

MgCl
2 5 mM 

CaCl
2 0.5 mM 

 

Soerensen phosphate buffer 

 

Na2HPO4 0.356 g/l 

KH2PO4 1.99 g/l 

 

Cure buffer 
 

MgCl
2
 2 mM 

CaCl
2 2 mM 

 

Bonner’s solution 

 

NaCl 0.6 g/l 

KCl 0.75 g/l    

CaCl2 0.3 g/l 

2.2 Competent Cells 

Competent cells were prepared by diluting an overnight bacterial-culture to 1:50 and 

letting them grow until an optical density of 0.3 – 0.4. The cells were incubated on ice for 15 

minutes. Sterile falcon tubes were pre-chilled and the cells were centrifuged for 10 min., at 

3000 rpm, at 4° C. The cell-pellet was re-suspended in 1/3 of the original volume in ice-cold 

buffer A and left on ice for 15min. Cells were spun again for 10 min, at 3000 rpm, in 4° C. 

The obtained pellet was further re-suspended in 1/12 of the original volume in ice-cold buffer 

B, and left on ice for at least 15 min. Finally 100 µl aliquots were flash frozen in liquid 

nitrogen. The buffers used in the above procedure were all sterilized by filtration. 

2.3 Transformation of Plasmid DNA into Competent Cells 

An aliquot of competent cells were thawed on ice for 20 min, 50-150 ng/µl of plasmid 

DNA was added to this aliquot. After gentle tapping of the micro centrifuge tube the mixture 
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was incubated for 10 min on ice. Cells were heated to 90 sec at 42° C, and immediately 

transferred to ice and incubated for 20 min. After which 900 µL of LB media were added and 

shaken at 200 rpm at 37° C for an hour in a table top shaker. This 1mL culture was spun at 

2200 g using a table top centrifuge. 850 µL of the media was removed and the remaining 

pellet was re-suspended with remaining media in it and used to plate on the LB agar plates 

with corresponding antibiotics. 

2.4 Plasmid DNA Isolation 

Commercially available Qiagen kits were used for mini and maxi plasmid DNA 

isolations. A single colony from a freshly streaked plate was inoculated in LB medium 

containing the appropriate selective antibiotic. Cells were harvested by centrifugation at 6000 

g for 15 min at 4° C. The obtained bacterial pellet was resuspended in buffer P1. After adding 

buffer P2 and vigorous mixing, the lysate was incubated for 5 min at room temperature. 

Prechilled buffer P3 was added and the resupension was incubated for 20 more min at room 

temperature. Cartridges were used to clear the lysate; the obtained supernatant was allowed to 

pass through Qiagen columns which were equilibrated with buffer QBT, under gravity flow. 

The Qiagen-tip column was washed with buffer QC and the DNA was eluted with buffer QF, 

DNA was precipitated using 0.7 volumes of isopropanol and immediately centrifuged at 5000 

g for 60 min at 4° C. The obtained DNA pellet was washed with 70% ethanol. Finally the 

pellet was air-dried and dissolved carefully in 10 mM Tris.Cl, pH 8.5.   

2.5 D. discoideum Growth on Plates and in Shaking Culture 

D. discoideum cells can be grown on tissue culture Petri dishes or in shaking culture at a 

constant temperature of 20 °C. The cells are cultured in HL5-C axenic medium containing 10 

U/ml of penicillin/ streptomycin to prevent bacterial growth and the appropriate concentration 

of G418 (10-20µg/ml) in order to maintain the selection pressure on transformed cells. 

Untransformed wild type cells (AX2) or AX3 ORF
+
 cells are grown without G418. 

Transformed cells harboring a pDX vector with a neo
R
 cassette are grown in the presence of 

10 to 20 µg/ml G418. The concentration depends on the particular construct expressed. Cells 

producing the dynaminA protein grow in the presence of 20 µg/ml G418 while cells 

producing Myosin2-DymAGTPase fusion grow with 10 µg/ml G418. For large-scale 

production, the cells were grown in flasks in shaking culture. The flasks were filled to no 

more than half their nominal volume with medium and shaken at 180 rpm. Wild type cells and 
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the transformants used in this work grow to a density of about 1 × 10
7
 cells/ml with a 

doubling time of roughly 12 hrs. Cells are diluted when or before they reach1 × 10
7
 cells/ml, 

an exchange of the medium is not necessary. Upon dilution, the cell density should not drop 

below 5 × 10
5
 cells/ml. On plates cells are grown until they are confluent and then washed off 

with medium. Alternatively, cells could be washed with Bonner‟s solution while adherent on 

the plate and then washed off with Bonner‟s for downstream processing. Fresh medium was 

added and the remaining cells continue growing. Plates can be stored at 4 °C for several 

weeks without exchanging the medium. A confluent 9 cm Petri dish contains about 1 × 10
7
 

cells.  

2.6 D. discoideum Electroporation 

Cells were harvested at a density of 3 × 10
6
cells/ml by centrifugation at 1,000 g for 5 

min, with a pre-chilled 15 ml centrifuge tubes. The cell pellet was washed with Soerensen 

phosphate buffer once. Cells were washed twice with cold DD-EP (D.discoideum 

electroporation) buffer and re-suspend in the same buffer at 1 × 10
7
 cells/ml {if it is ORF+ 

cells, then it  should be resuspended at 5-8 x 10
6
 cells/ml}. In the meantime a 4mm 

electroporation cuvette was pre-chilled. 20-35µg of plasmid DNA were mixed in 0.8 ml of 

cell suspension in a microfuge tube, and then this mixture was transferred into the 0.4 cm 

electroporation cuvette and chilled further for 5 min on ice. After a gentle tapping of the 

cuvette and drying the outer surface with a tissue, electroporation procedure was done     

immediately with the preset protocol for D. discoideum with a voltage set of   1200 Volts, a 

pulse length of 1 ms, the total number of pulses not exceeding 2, and an interval between two 

pulses of 5s. Bio-Rad Gene Pulser Xcell was used throughout this work for the 

electroporation of D. discoideum. The cuvette was immediately returned to ice. After 5 to 10 

min cells were transferred to a Petri dish filled with 12 ml HL5-C medium. Alternatively cells 

can be first “cured” by mixing with 0.5 volumes of Cure Buffer in a well of a 24-well plate.  

The plate is shaken at 100 rpm for 15 min at 21oC. Next the whole mixture is transferred to a 

petri dish containing 12 ml medium. Cells were allowed to recover for 12 to 24 hours before 

applying selection for transformants. 
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2.7 Preparation and Cryo-Conservation of D. discoideum Spores 

Cells are collected from liquid plate or suspension culture. Cells grown to a density of 

less than or equal to 5 × 10
6
 cells/ml works best. They were washed in MES buffer and re-

suspended at 2 × 10
8
 cells/ml. 300 µl of this suspension were spreaded on a MES-agar plate. 

Plates were dried until there was only a thin film of liquid left (the amount of liquid has a big 

effect on spore formation). The plates are incubated upside down for 48 hrs before harvesting 

the spores by tapping the inverted plate smartly on the benchtop. Spores from 3 plates are re-

suspending in 1 ml10 % glycerol and 100 µl aliquots are frozen by putting them into the –

80 °C freezer. The spores are stored at –80 °C. 

 

Vegetative D. discoideum cells can be stored frozen without the need to make spores. 

Cells are washed with cold Bonner's Standard Solution and re-suspended at high density 

(>10
8
 cell/ml) in HL5-C medium containing 10 % DMSO. Aliquots of the suspension are put 

for 2 hrs in a –20 °C freezer. Slow cooling is essential and a towel wrapped around the box 

containing the tubes may help slowing down the cooling and provide insulation in the 

following transfer to a –80 °C freezer. The cells are stored at -80 °C. The thawing process 

should be quick (e.g. warming the tubes on the hand palm) and are transferred immediately to 

a Petri dish with fresh medium. Once the cells have attached (after about 30 min), the medium 

is exchanged to get rid of DMSO. 

2.8 Polymerase Chain Reaction (PCR) 

The polymerase chain reaction allows the amplification of specific DNA sequences in 

vitro. Two oligonucleotides flanking the sequence of interest are used as primers for DNA 

polymerisation, one on each strand. The template double strands are heat denatured (95 °C) 

and then the primers present in excess are allowed to anneal to the template strands in a 

sequence specific manner at a temperature about 5-10 K below their melting temperature Tm. 

For the extension heat stable DNA polymerases from thermophilic organisms are used that are 

not inactivated during the denaturation. The DNA polymerisation is carried out at a 

temperature optimal for enzyme activity (72 °C). During multiple cycles the target sequence 

is amplified exponentially. In this work the Finnzymes Phusion High-Fidelity DNA 

polymerase was used. 

 

The following reaction mixture was used for all PCR reactions presented in this work: 
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5x buffer (HF)      5.0 µl 

dNTPs (10 mM)                1.0 µl 

Primer (100 µM)                0.5 µl  

Template DNA      20-100 ng 

H2O        40 µl     

  Phusion High-Fidelity DNA polymerase        1.0 µl 

 

The following times and temperatures for denaturation, annealing and extension were used 

throughout except when necessary to optimize for some constructs. 

 

Table 4: PCR cycle scheme 

Initial Denaturation 98 °C 3 min 1cycle 

Denaturation 

Annealing 

Elongation 

95 °C 30 s 
 

25cycle 
68 °C 30 s 

72 °C 4 min 

Elongation 72 °C 10 min 1cycle 

 

2.9 Restriction Enzyme Mediated Digestion of DNA 

 Sequence specific cleavage of DNA is carried out by use of restriction endonucleases. 

For analytical purposes about 200 ng of DNA are cut in a total volume of 10 µl. In preparative 

restriction digests, 2-5 µg of DNA are cut in a total volume of 50 µl. Buffer conditions and 

temperature are used according to the manufacturers (Fermentas, NEB) instructions and the 

amount of enzyme added should not exceed 1/10 of the total volume to ensure a low glycerol 

concentration. Digestion is usually carried out with several units of enzyme per µg of DNA 

for 3-4 hrs. 

2.10 Separation of DNA-Fragments on Agarose Gels 

DNA fragments can be separated according to their size by agarose gel electrophoresis. 

The concentration of the agarose dissolved in TAE-buffer depends on the size of the 

fragments to be separated but 1.4 % gels have been used throughout this work. The DNA 
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sample is mixed with 1/5 volume of 6x sample buffer. A voltage of 75 V is applied to 

minigels (6.5 × 10 cm) for about one hour. In the gel the DNA is visualized under UV light 

after staining with ethidium bromide, an intercalating agent that becomes fluorescent upon 

binding DNA. 

2.11 Purification of DNA from PCR Reactions and Agarose Gels 

Fragmented DNA intended for cloning is separated on an agarose minigel using broad 

wells for the larger amounts (usually 50-100 µl). On each side of the broad well, a small 

aliquot of the digest is run in a normal sized well. The lanes on the side of the preparative lane 

are cut and stained with ethidium bromide, while the preparative lane itself is not, in order to 

avoid DNA damage. The position of the DNA band of interest is marked with a scalpel on the 

side-lanes under UV-light. The gel is reconstituted and the band of interest is excised from the 

preparative lane. The DNA is extracted from the excised gel slices using the QIAquick Gel 

Extraction Kit (QIAGEN). The purity and the amount of recovered DNA are checked on an 

analytical agarose gel prior to the use in ligation. 

2.12 Ligation of DNA Fragments 

DNA fragments that have complementary 5‟ or 3‟ overhangs or blunt ends that can be 

joined covalently using T4 DNA-ligase. The fragments are mixed with 2 µl 10x ligase buffer 

and 1 µl ligase (5 WeissU/µl; Fermentas) in a total volume of 20 µl. A molar ratio of 3-10 

insert/vector is used. Ligations were carried out for 2 hrs at room temperature. In some cases 

ligations were also carried out overnight at 16 °C. 

2.13 SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Proteins can be separated by their molecular weight on SDS polyacrylamide gels. 

Depending on the size of the proteins, gels with 10 % to 15 % polyacrylamide are used. 

Minigels with a size of about 6 × 8 cm and 10 to 14 wells are used. The protein sample is 

mixed with an equal volume of 2x sample buffer and boiled for 5 min. 10-12 µl of this 

mixture are loaded per lane. The gel is run with 180 V, 40 mA for 55 mins. For two gels, the 

current value is doubled. The gels are stained with Coomassie staining solution for 30 mins 

and destained for 15 min.  
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10x SDS running buffer (stock solution) 

Tris        30 g/l 

Glycine                         144 g/l 

SDS        10 g/l 

 

2x sample buffer 

 

Tris, pH 6.8      100 mM 

SDS           4 % 

β-mercapto-ethanol         2 % 

Glycerol        20 % 

Bromophenol blue      0.2 g 

 

Coomassie stain 

 

Coomassie brilliant blue R250    2.0 g 

Coomassie brilliant blue G250    0.5 g 

Methanol       50 ml 

Ethanol                450 ml 

Dissolve Coomassie; add 

Glacial acetic acid    100 ml 

H2O      400 ml 

 

Destain  

 

Ethanol      5.0 % 

Acetic acid       7.5 % 

2.14 Western Blotting 

5x Transfer buffer 

Glycine      960 mM 

Tris, pH 8.3      125 mM 

Adjust volume to 1 l 

 

TBS 

 

Tris, pH7.6        74 mM 

NaCl                  150 mM 

Adjust volume to 1 l 

 

TBST 

 

TBS + 0.5% Tween 

 

 

Proteins can be transferred to a membrane by electrophoresis. The bound protein is 

then specifically detected using an enzyme linked antibody and an enzymatic reaction. A 
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semidry blotting machine is used for the transfer. The gel and the membrane (Whatman
®

, 

PROTRAN
®
 Nitrocellulose Transfer membrane) are briefly equilibrated in Transfer buffer. 

The blot is assembled by sandwiching 2 Gel-Blotting-paper 6 × 8.5cm (Whatman
®
, 

Schleicher & Schuell
®
), the gel, the membrane and 2 Gel-Blotting-paper from bottom to top 

order. All components should be pre-wetted and there must be no air bubbles between gel and 

membrane. The sandwich is placed in the middle of the blotter machine and the voltage is 

applied such that the anode is at the side of the membrane. The transfer is done at room 

temperature at 12 volts for 1.5hr.  

 

For specific detection, the membrane is incubated with an antibody directed against 

the protein of interest (primary antibody), washed and then incubated with an enzyme linked 

secondary antibody directed against the Fc part of antibodies from the species in which the 

primary antibody was raised. First, the membrane is blocked in 10ml TBS buffer with 5% 

skimmed milk powder from Roth
®
 for 2 hr at room temperature. The membrane is then 

washed twice for 10mins each with TBST. Then the membrane is incubated with the primary 

antibody, which was prepared in 10ml TBS plus 3% milk powder, in case of mouse- anti-

Penta-histidine a 1:5000 dilution and in case of rabbit-anti- DymA a 1:2000 dilution was used. 

The membrane is incubated in blocking solution containing an appropriate dilution of the 

primary antibody at 4 °C over night on a shaker. The membrane is washed 3 times for 10  

min with TBST. The incubation with the secondary antibody (e.g. 1:10,000 of horse radish 

peroxidase conjugated antibody) in TBST is done for 1.5 hr at room temperature and the 

membrane is again washed 3 times for 10 min in TBST. 

For detection, the Super signal
®

 West Dura Extended Duration Substrate (Thermo 

Scientific) is used. Equal volumes of the two reagents are mixed and a total volume of about 

0.6 ml per cm
2
 of membrane is used. After 5 min incubation under low light or dark, the 

membrane is dried on a Whatman paper. Bio Rad Chemidoc equipped with CCD camera is 

used in chemi-luminescence mode to detect the signal. 

2.15 Analytical Protein Preparations 

LB50 

 

Tris, pH 8.0     50.0 mM 

EDTA        2.0 mM 

EGTA        0.2 mM 

NaCl      50.0 mM 
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The medium from a confluent 9 cm Petri dish of D. discoideum is removed and the cells 

are washed on the plate with Bonner‟s solution. The cells are then harvested in 1 ml of 

Bonner‟s, transferred to a 1.5 ml reaction tube and centrifuged at 3,000 rpm in a benchtop 

centrifuge. The supernatant is removed and the cells are lysed for 10 min at room temperature 

by addition of 1 ml of LB50 containing protease inhibitors and 0.5 % Triton
®
 X-100. The 

tubes are centrifuged for 30 min at full speed at 4° C. The supernatant is discarded. An aliquot 

can be saved for SDS-PAGE or western-blot. Protein is solubilized by homogenizing the 

pellet with 70 µl of LB300 containing 10 mM of the appropriate nucleotide (ATP for myosin, 

GTP for dynamin) using a Roth
®
 plastic pistil. After 20 min of centrifugation at full speed the 

supernatant and the pellet are analyzed by SDS-PAGE. 

2.16 Purification of DynaminA 

10-15 l of HDX cells are grown to a density of about 5 × 10
6
 cells/ml to 1 × 10

7
 cells/ml 

with 10 µg/ml of G418 (10 l culture at 8× 10
6
 cell/ml yield about 70 g of cells). The cells are 

harvested by centrifugation for 8 min at 1,000 g in a Beckmann J6 centrifuge. All followings 

steps and centrifugations are performed in the cold room, at 4 °C or on ice. The cells are 

washed once with cold PBS and centrifuged for 8 min at 1,000 g as before. The weight of the 

resulting cell pellet is determined (about 70 g from 10 l at 8 × 10
6
 cells/ml). The pellet is 

resuspended in 10 cell volumes of LB50 plus protease inhibitors and the cells are lysed by the 

addition of another 10 cell volumes of LB50 containing protease inhibitors and 1 % Triton
®
 X-

100. After 30 min on ice, the completeness of lysis is checked under the microscope. The 

lysate is centrifuged at 30,000 g for 1 hr (e.g. in a Beckman JA-14 rotor). The supernatant is 

discarded, an aliquot saved for SDS-PAGE. The pellet is washed without resuspension with 

lysis buffer containing protease inhibitors and centrifuged for another 5 min. The pellet is 

extracted in 2 cell volumes of LB300 containing protease inhibitors, 12 mM MgCl2 and 10 mM 

GTP using a Dounce homogenizer with tight pistil. The extract is centrifuged at 20.000 g for 

20 min (e.g. in a Beckman JA-25.50 rotor). The supernatant is dialyzed against 2 x 2 l of LB50 

containing 5 mM benzamidine (for 3hr and overnight). The dialyzed solution is centrifuged at 

3.000 g for 15 min. A column (16 mm diameter) containing 30 ml of DEAE Fractogel 

(Merck) is equilibrated with LB50 containing 5 mM benzamidine. The supernatant is loaded 

onto the column with a flow rate of 3 ml/min and washed with the equilibration buffer until 

the baseline of UV absorption is stable. The protein is eluted with a linear gradient from 0 to 

30 % LB500 over 5 column volumes. Dynamin A elutes early at a conductivity of about 11 

mS/cm, while actin elutes later at a conductivity of about 13 –14 mS/cm. The fractions 
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containing dynamin but no actin are pooled and the resulting NaCl concentration is estimated. 

The pooled fractions are brought to 40 mM NaCl, rebound to an 8 ml DEAE column and step 

eluted with lysis buffer containing 100 mM NaCl for concentration. Protein concentrations of 

up to 8 mg/ml can be reached this way. Sucrose is added to a final concentration of 3 % (w/v) 

and small aliquots are flash frozen in liquid nitrogen and stored at –80 °C. 

2.17 Purification of DynaminA Domains Fused to Myosin II Motor Domain 

of D. discoideum 

Cells are grown, harvested and lysed as described above (purification of dynaminA) but 

LB0 is used instead of LB50. The first pellet is washed with extraction buffer containing PMSF 

and centrifuged for another 5 min. The pellet is extracted in 2 cell volumes of extraction 

buffer containing protease inhibitors, 10 mM ATP and 2 mM GTP using a Dounce 

homogenizer with tight pistil. The extract is centrifuged at 20.000 g for 20 min (e.g. in a 

Beckman JA-25.50 rotor). The supernatant is then applied with a flow rate of 2 ml/min to an 

immobilized affinity chromatography (IMAC), the NiNTA column (e.g. Pharmacia XK16/20, 

30 ml bed volume) equilibrated with low salt buffer. The column is washed with a flow rate 

of 3 ml/min with 10 column volumes (CV) of low salt buffer, with 10 CV of high salt buffer 

and with 10 CV of low salt buffer with 40 mM imidazole (8 % imidazole). The fusion protein 

is eluted with a gradient from 8 % to 100 % imidazole buffer over 5 CV and fractions of 3 ml 

are collected. The peak fractions are pooled and dialyzed over night against storage buffer. 

The protein is then concentrated using 20 ml Viva spin concentrators with 50 kDa cutoff 

(Vivascience). Depending on purity, the protein can be further purified over a preparative 

Superdex 200 gel filtration equilibrated in storage buffer. Alternatively it can be flash frozen 

in liquid nitrogen directly after adding sucrose to a final concentration of 3 % (w/v). 

 

Extraction buffer    

 

Hepes, pH 7.3       50 mM 

K acetate       30 mM 

NaCl      300 mM 

Mg acetate       10 mM 

β-mercapto-ethanol        7 mM  

 

Low salt buffer 

 

Hepes, pH 7.3       50 mM 

K acetate       30 mM 

Benzamidine         5 mM 
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High salt buffer 

 

Hepes, pH 7.3       50 mM 

K acetate     300 mM 

Benzamidine         5 mM 

 

Imidazole buffer 

 

Imidazole, pH 7.3    500 mM 

Benzamidine         5 mM 

 

Storage buffer     

 

Tris, pH 8.0       20 mM 

MgCl2          1 mM 

DTT          5 mM 

2.18 GST-Amphiphysin1-SH3 Domain Purification 

Lysis buffer 

 

Tris-HCl, pH 7.5      20 mM 

NaCl      200 mM 

Triton      0.1% 

 

Wash1 buffer 

 

Phosphate buffered saline (PBS) 

DTT        1.0 mM 

NaCl        0.5 mM 

 

 

Wash2 buffer 

 

Tris-HCl, pH 7.5      20  mM 

NaCl       200 mM 

DTT           1 mM 

PMSF           1 mM 

 

Wash3 buffer 

 

Tris-HCl, pH 8.0      50 mM 

NaCl       150 mM 

DTT           1 mM 

 

 

Plasmid DNA was kindly provided by Dr. Thomas Reubold. Transformation of the 

plasmid was directly done in expression cells (E. coli BL21). Overnight primary culture was 

used to inoculate 6 l secondary culture. Cells were grown at 37°C until the cell density 
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Amphiphysin1- SH3          dynamin1 

reached up to 0.8 OD600. 0.3 mM IPTG was used for induction. Cell were allowed to grow 

overnight at room temperature. Cells were harvested at 4,000 rpm for 15 min. Cells were 

washed once with ice cold PBS. 0.5 mM PMSF, 4 Roche
®
 protease cocktail tablets and 10 mg 

of lysozyme per gram of cell were added along with lysis buffer. For about 45 min cells were 

slowly rocked in cold room. Cells were sonicated for 8 min with 2 min interval for each pulse 

of 1 min. Cells was centrifuged for 45 min, at 15,000 rpm using JLA16.250 rotor. In mean 

time Glutathione Sepharose 4B From GE Healthcare (10 mL bed volume) was washed with 

distilled water and PBS. The supernatant was allowed for batch binding with the beads for 

approximately 20 min with slow rocking. At very slow rate by gravity flow the supernatant 

was collected. Three wash step purification was carried out with following buffers; 50 mL of  

wash1 buffer, 25 mL of wash2 buffer and finally with 25 mL of wash3 buffer. The protein was 

finally eluted with wash3 buffer with 10 mM Glutathione reduced (15mL). The fractions were 

checked by SDS PAGE. The peak fractions were pooled, concentrated and flash frozen using 

liquid nitrogen. 

 

 

 

 

 

 

Figure 1: Gel picture showing, on the left amphyphysin1-SH3 domain and on the right 

dynamin1 purified using SH3 domain as affinity tag. Dynamin purified using this 

strategy was used for all the biochemical experiments. 

 

2.19 Purification of Dynamin1 
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Lysis buffer  

 

Hepes, pH 7.5     50 mM 

NaCl                160 mM  

KCl       30 mM 

DTT         2 mM  

EGTA        1 mM 

EDTA        1 mM  

Benzamidine       5 mM 

 

Elution buffer 

 

MES, pH 6.8      50 mM 

NaCl        1.2 M 

EGTA        1 mM 

MgCl2        5 mM 

DTT        2 mM 

 

 

In this purification method, the knowledge that dynamin1 interacts with amphiphysin-

SH3 domain was exploited to purify dynamin1 almost to purity of 95%. The vector, 

pFastBac-HTb which carries dynamin1 gene between the restriction sites BamHI and SalI is 

transformed into DH10BAC E. colifor bacmid preparation. The transformed DH10BAC cells 

were plated onto LB agar plates containing kanamycin 50 µg/mL, gentamicin 7 µg/mL, 

tetracycline 10 µg/mL, X-gal 100 µg/mL and IPTG 40 µg/mL. Following blue-white colony 

screening after 48 hrs, the positive white colonies were streaked again and incubated at 37 °C 

for 16 hr. Bacmid was prepared from this positive clone, and was used to  transfect  Sf9 cells 

using Cellfectin-reagent
®
. Hands on Invitrogen

®
 protocol was used for transfection. After 

optimizing the amount of bacmids to use and cell density to use during transfection, P0 virus 

stocks were produced and for the P1 viral stock production P0 was used. Protein production at 

P1 stage was checked by lysing the cells and running SDS-PAGE. Further culture was scaled 

up to 6 l by infecting them with P1 viral stock. Times for harvesting cells were analyzed by 

time point experiment to check the protein production. Cells were harvested cells between 65 

- 69 hrs after infection with P1 viral stock. 

 

Cells after harvesting at appropriate time, was spun down at 2500 rpm for 6min.The 

obtained pellet was washed with cold PBS. Lysis buffer of volume 50 mL for pellet obtained 

from 1 l culture was used. Protease inhibitors TAME, TPCK, Leupeptin, PMSF were added to 

1x from the stock of 100x. The pellet was re-suspended and kept in ice box and 50 mL more 

of the lysis buffer with protease inhibitors and 1% triton was added. The re-suspended cells 
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were rocked in an ice box for 45 min. After   sonication of the cell for 2 min the suspension 

was spun at 15,000 rpm for 45 min using a JLA 16.250 rotor. In the meantime    Glutathione 

Sepharose 4B from GE Healthcare
®
 was washed with cold distilled water, PBS and lysis 

buffer at 3,000 g for 6 min for each. 250-500 µg of GST-Amphiphysin-SH3 protein was 

allowed for batch binding to the beads for 20 min. The supernatant from the Sf9 cells after 

centrifugation was mixed with the GST-Amphiphysin-SH3 incubated beads. The protein-

protein complex was allowed for 20 min incubation in the cold room in a rocker at low speed. 

Glutathione Sepharose beads - GST-Amphiphysin-SH3-Supernatant was poured into a glass 

column and allowed to flow under gravity. Three wash steps were included before eluting the 

protein, wash1 was with PBS, wash2 was with lysis buffer with PMSF and other protease 

inhibitors, wash3 with lysis buffer alone. Finally the dynamin1 was eluted with 5 mL of 

elution buffer.  Using SDS PAGE the samples were analyzed for purity. 95% pure protein was 

obtained. Protein was buffer exchanged with lysis buffer with 5 mM MgCl2 using vivaspin20 

concentrator from Sartorius
®
.   

2.20 Purification of Dynamin Related Protein1 

 

Lysis buffer 

 

HEPES, pH 7.5       50 mM 

NaCl             300 mM 

Benzamidine          5 mM 

β-mercaptoethanol         7 mM 

1mg/mL of lysis buffer Lysozyme 

PMSF          5 mM 

Triton          1% 

 

GPC buffer 

 

HEPES, pH 7.4      50 mM 

NaCl             100 mM 

Benzamidine         5 mM 

DTT          2 mM 

MgCl2          5 mM 

 

Drp1 expressing Rosetta
®
 pLysS BL21 (DE3) cells were grown till the OD600 of 1.1, 

and then the culture was induced with 0.5 mM IPTG, after induction cells were grown at 

room temperature for 9 hrs. Cells were harvested at 4200 rpm, for 20 min, the pellet was 

washed once with ice cold lysis buffer without protease inhibitors. 40 mL lysis buffer for one 
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liter of cell culture and a total volume of 240 ml of lysis buffer was used to resuspend the 

pellet. Complete, EDTA-free Protease inhibitor cocktail tablets in Easypack
®
 used according 

to the manufacturer‟s protocol along with 40 µg of RNAse was added and incubated for 20 

min in ice with slow stirring in cold room followed by sonication for 15 min with 1 min 

interval for every one minute of sonication. The lysate was centrifuged at 13,000 rpm for 30 

min using a JLA16.250 rotor. The supernatant was filtered using 0.22 µm syringe filters and 

loaded onto a NiNTA column which was washed with 5CV of lysis buffer with no additives. 

Supernatant was loaded at a flow rate of 2 mL per min. The column was washed with lysis 

buffer containing 20 mM Imidazole, pH 8.0 until absorbance measured at 280 nm has 

returned to base-line level. Bound protein was eluted in a gradient of 90 ml totoal volume 

starting with 20 mM imidazole to 500 mM imidazole, at the flow rate of 1 ml/min.Drp1 

containing fractions were identified by SDS-PAGE and peak fractions were pooled and 

concentrated with 50 kDa cutoff Vivaspin20. 

 

A Hiload ™ 26/60, Superdex™ 200, Prep grade prepacked gel filteration column was 

used to further purify the protein. The column was equilibrated with 2 CV of GPC buffer. 7.8 

mL loop was washed twice with GPC buffer. The concentrated protein was injected into the 

loop. Flow rate was maintained with keeping the pressure of the column under 0.5 MPa. 

Using a fractionation collector the eluted sample was collected and was analyzed with PAGE. 

Peak fractions were pooled, concentrated and aliquots of 50 µL were stored at -

80°C.Theobtained protein was 95% pure and was suitable for crystallization, kinetic and 

biochemical analysis. 

2.21 Purification of Minimal Construct GG1 (dynamin1) and GGA 

(dynaminA) 

The minimal construct was purified as maltose binding protein as fusion partner. The 

GG1 comprises of 6-320 residues of GTPase domain cloned between EcoRI, XbaI and 726-

750 residues of C-terminal GTPase effector domain cloned between XbaI, HindIII similarly 

the GGA comprises of 2-316 residues of GTPase domain cloned between EcoRI, XbaI and 

815-848 residues of C-terminal GTPase effector domain cloned between XbaI, HindIII both 

the constructs in pMALC2X vector from New England Biolabs (NEB). 
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MBPHK200 

Hepes, pH 7.5       20 mM 

KCl      200 mM 

EDTA          1 mM 

DTT          1 mm 

MBPHK200+ 

Hepes, pH 7.5       20 mM 

KCl      200 mM 

EDTA          1 mM 

DTT          1 mM 

PMSF        10 mM 

Roche Complete protease inhibitor cocktail  

Lysozyme 1mg/mL 

 

MBPHK25 

Hepes, pH 7.5      20 mM 

KCl       25 mM 

EDTA         1 mM 

DTT         1 mM 
 

MBPHCBK100 

Hepes, pH 7.5      20 mM 

KCl                 100 mM 

EDTA          1 mM 

DTT         1 mM 

 

GFC buffer 

 
Hepes, pH 7.5      20 mM 

KCl                 150 mM 

MgCl2            4 mM 

EGTA         2 mM 

DTT          1 mM 
 

 

BL21 (DE3) bacterial cells carrying respective the construct with ampicillin as 

selection marker were used. An overnight primary culture was used to inoculate a 6 l 

secondary culture. Cells were grown at 37°C until the cell density reached up to 0.8 OD600 

using terrific broth (TB media). 0.3 mM IPTG was used for induction. Cells were allowed to 

grow for 6 hr at 30°C. Cells were harvested at 4000 rpm for 15 min. Cells were washed once 

with ice cold PBS. Cell pellet was further washed with MBPHK200 buffer. 20 ml of 

MBPHK200+ buffer per gram of cells was used to re-supend the obtained pellet and the cell 

suspension were slowly rocked in cold room for 45 min. Cells were sonicated for 8 min with 
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2 min interval for each pulse of 1 min . Cells were centrifuged for 45 min, at 10,000 rpm 

using JLA16.250 rotor at 4°C.  The lysate was further diluted with 30 ml MBPHK200 buffer. 

Amylose resin high flow from NEB was packed in a column and sequentially washed with 

filter sterile Millipore water and equilibrated with 3CV MBPHK200 buffer. The supernatant 

was passed through the column at 1 ml/min rate and washed with 5CV low salt MBPHK25 

buffer. The protein was finally eluted with 10 mM Maltose. SDS PAGE was run to check the 

fractions. The peak fractions were collected and concentrated; further purified with Superdex 

75 pre-packed gel filtration column using the GFC buffer, and the eluted protein was 

concentrated and frozen at -80°C. 

2.22 Steady-State Kinetics 

Steady state ATPase/GTPase activity assay, was performed using the PK/LDH - linked 

ATPase assay system. NADH oxidation was followed using an absorbance change with 

excitation at 340 nm. The assay was performed at 25° C in a buffer containing 25 mM Hepes, 

pH 7.5, 25 mM KCl and 5 mM MgCl2, buffer condition vary for dynamins and dynamin-

related proteins. Proteins to be investigated were added to a cuvette containing 0.5 mM DTT,  

0.2 mM NADH, 0.5 mM phosphoenolpyruvate (PEP), 0.02 mg/mL lactate dehydrogenase 

(LDH), and 0.05 mg/mL pyruvate kinase (PK). Actin activation of myosin ATPase activity 

was measured by adding actin to the enzyme solution, finally 1 mM ATP or GTP according to 

the experiment, was added to this reaction mix to initiate the reaction, the change in NADH 

absorbance was recorded for periods of up to 900 s to 1800 s. Table 5 shows the solubility of 

the psychotropic drugs that has been used in the inhibition of dynamin and dynamin related 

protein1 GTPase activity. The stock solutions were prepared and stored in -80 °C. The 

working solutions were diluted with 30 mM Tris for the assay.  
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M……………………………….....Myosin 

D………………………………......Dynamin 

ATP……………………………….Adenosine-5'-triphosphate 

ADP……………………………….Adenosine diphosphate 

GTP……………………………….Guanosine-5'-triphosphate 

GDP……………………………….Guanosine diphosphate 

PEP………………………………..Phosphoenolpyruvate 

NADH…………………………….Nicotinamide adenine dinucleotide 

ΔA…………………………………Change in Absorbance (Oxidation of NADH to NAD
+
) 

εNADH............................................... 6220 M
-1

cm
-1

(molar extinction coefficient for NADH at          

340 nm) 

d……………………………………Path length (0.27cm) 

c……………………………………Concentration of the protein (µM) 

 

ATP     ADP  

   PK  
 

    ADP + PEP         ATP + Pyruvate 

 LDH 
 

             Pyruvate + NADH          Lactate + NAD
+
 

 

 

GTP    GDP 

   PK  
 

   GDP + PEP        GTP + Pyruvate 

 LDH 
 

             Pyruvate + NADH          Lactate + NAD
+
 

 

                         ΔA         =      εNADH *Δ [NADH]*d 

 

   Δ [NADH]*       =        ΔA/ εNADH*d 
 

                   ATPase/GTPase    =     

M 

D 

 

Equation 1: Steady-state ATPase/GTPase assay. A coupled assay system 

 

 Equation 1: Steady-state ATPase/GTPase assay. A coupled assay system 

reaction scheme and equation to calculate the activity. 
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Table 5: Summary of psychotropic drug’s molecular weight and solubility 

Name of the pscychotropic 

drug 
Molecular weight solubility 

 

Chlorpromazine 

 

355.33 

 

50 mg/mL in water 
 

Clomipramine 351.33 25 mg/mL in water 

Maprotiline 313.86 50 mg/mL in water 

Fluoxetine 345.8 DMSO 

Paroxetine 374.83 DMSO 

Sertraline 342.69 DMSO >20 mg/mL 

Fluvoxamine 434.41 DMSO 

 

2.23 Stopped Flow Kinetics 

 

 
 

Figure 2: Sketch diagram of a single mixing stopped flow instrument. 

 

 

Stopped flow techniques were performed to study the chemical kinetics of solutions. 

Two reactant solutions were mixed rapidly with constant volumes. The reactions can be 

monitored, followed as a function of time. The readout is change in absorbance or 
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fluorescence, binding of nucleotide to proteins was studied with mant-analogues of ATP/GTP 

and ADP/GDP. The mant-analogues were excited directly at 365nm and the emitted light was 

detected after passage through a KV389 cut-off filter. Data analysis was carried out using the 

Kinetic studio 1.08 software. The Fig. 2 is the single mixing sketch of the stopped flow 

apparatus which was used in this work to study transient kinetics (www.hi-

techsci.com/techniques/stoppedflow). 

2.24 In-vitro Motility Assay 

2.24.1 Buffers 

Assay buffer (AB) 

 

Imidazol pH 7.4  25 mM 

KCl    25 mM 

MgCl2     4 mM 

EGTA*             1 mM 

DTT *   10 mM 
*Freshly added 

 

Buffer I 

 

BSA/AB    0.5 mg/ml BSA in AB 

 

Buffer II 

 

Glucose §  5 mg/ml 

Glucose oxidase § 0.1 mg/ml  

Catalase§  0.02 mg/ml 
§20µl of each stock solutions in 1 ml of bufferI 

 

ATP Stock Solution 

 

ATP                         2 mM in buffer I 
Stock solutions stored at -20 °C 

2.24.2 Actin Labelling 

Rabbit skeletal actin was labelled with TRITC-Phalloidin. 2µM F-actin was sheared by 

pipetting up and down in buffer I. Dilute this actin 100 times in the same buffer and incubated 

with phalloidin on ice over night with gentle rocking. 
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2.24.3 Flow Cell Construction 

 

Nitrocellulose solution is prepared in 1% amylacetate. The micro centrifuge tube 

containing the solution is tightly sealed with para film and incubated in room temperature. 

Distilled water is taken in a 2 l beaker. Using 20 µl pipette carefully the surface of the water 

was layered with a drop of nitrocellulose solution slowly.  18mm square coverslips are coated 

with a nitrocellulose film that is formed on a clean water surface. Remove the coverslips and 

keep in a clean tray to drip of the water, once the coverslip is ready prepare the glass slide. 

Place two parallel glue band about 10 mm apart onto the slide which by itself acts as spacers 

and creates a channel between them once the cover slip is placed, the coated side of the 

coverslip is faced inside. Store the flow cells at 4 °C. 

2.24.4 Assay Procedure 
 

  

Once the flow cell is prepared, the steps mentioned below were followed 

 

1. Add 7 to 8 µL of 0.025 mg/ml HIS antibody and incubate the flow cell for 5 min  

2. Add 30 to 50 µL  of Assay Buffer(AB)   

3. Add 7 to 8 µL of myosin with 2R repeat of interest, in our case ( we used myosin2-

765-2R construct)  and incubate the flow cell for 4 min  

4. Wash once with buffer I   

5. Add 10 µL of  Unlabeled actin (2 µM) and incubate it for  2 min  

6. Add 30 to 50 µL of  buffer III (ATP)  

7. Add 30 to 50 µL of  Assay Buffer (AB) and wash the flow cell once  

8. Add 30 to 50 µL of  Assay Buffer (AB) and wash once  

9. Add 10 µl of labeled actin and incubate it for 2 min  

10. Add 30 to 50 µL of  Buffer II  

11. Mount it for visualizations  

12. Initiate the reaction with bufferII containing ATP 

13. Mount the flow cell for recordings 
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2.24.5 Hardware and Software 
 

The movement of actin filaments over the myosin-decorated nitrocellulose surface was 

determined with an Olympus IX70 microscope equipped with an 60x oil-immersion objective 

(PLAPO/TIRF) with temperature of 30°C enclosed in a box. The pixel size was defined by 

the reaction setup: When a camera-binning of 2x2, a microscopic magnification of 1.5 

together with a 60-fold objective magnification was used, calibration with an object 

micrometre resulted in a pixel size of 0.144 μM.  TRITC-fluorescence was excited at a 

wavelength of 545 nm and the fluorescence emission was detected at a wavelength of 570 nm. 

The corresponding filters were implemented in the microscope. Cell
R
 software for microscope 

control and data acquisition are used, Hamamatsu 1394 Orca-ERA CCD-camera for imaging, 

DiaTrack 3.01 is used for image processing and data analysis. Final histograms and graphs 

were prepared using Origin8G-8.0.63.988 SR6 software. 

2.25 Microscale Thermophoresis 

MST is a technique, which detects changes in the hydration shell of molecules and 

measures enzyme activities and bio molecules interactions under close to native conditions. 

Infrared lasers are used to produce precise microscale temperature gradients within thin glass 

capillaries that are filled with buffer of choice, in our study the buffer was 25mM HEPES pH 

7.5, 100mM KCl, 5mM MgCl2, and 1mM DTT. The small molecules of interest 

triiodophenol, pentabromophenol and tribromophenol were prepared in 90% DMSO as 100 

mM stock solution, Myosin VI was labeled according to the manufacturer‟s protocol except 

for the buffer of choice.  The labeled protein was kept at constant 118 nM concentration. The 

small molecules (TIP, PBPh, and TBP) with the starting concentration of 200 µM were 

serially diluted to yield a final concentration of 0.00305 nM (16 times). Four readings at 

different laser powers and heating the reaction mixture up to 30 sec and cooling for 5 s gave a 

thermophoresis curve, from which KD value of the small molecule for the myosin VI was 

estimated. This is a recent biophysical method, which requires very less protein, highly 

efficient, less time consuming and can be useful for applications like protein-protein 

interaction, protein-lipid, protein-small molecule effector, protein-DNA interactions 

(Wienken et al., 2010). 



60 

 

2.26 Live Cell Total Internal Reflection Fluorescence (TIRF) Microscopy 

The HeLa cell line used in this study was maintained at 37 °C in Dulbecco‟s Modified 

Eagle Medium (DMEM; Invitrogen, UK) supplemented with 10% fetal calf serum (FCS), 2 

mM L-glutamine, and penicillin/streptomycin (Sigma-Aldrich, UK).  To maintain selection 

for cells containing the relevant pQCXIP-S1-eGFP-FM4-FCS-hGH construct, this medium 

was also supplemented with puromycin (1.66 µg/mL).   

 

For siRNA knockdown of myosin VI, we used a double knockdown protocol in which 

cells were transfected with a SMARTpool collection of four independent siRNA primers on 

days one and three using Oligofectamine (Invitrogen, UK) according to the manufacturer‟s 

instructions. Before siRNA knockdown, cells were grown to 70 percent confluence in a six 

well tray.  For each knockdown, siRNA primers were diluted in Optimem I and transfected 

into individual wells of the six well tray at a final concentration of 90 nM.  Efficiently 

depleted cells were imaged on day five.     

 

For live cell Total Internal Reflection Fluorescence (TIRF) microscopy studies, cells 

were grown on 25-mm round coverslips (VWR International, UK) and imaged at 37º C in 

CO2-independent medium (Invitrogen, UK).  Imaging was conducted on a Zeiss TIRF 3 

microscope (Carl Zeiss, Inc., UK) with a 488 nm argon laser line. Images were acquired with 

a 100x lens, Hamamatsu Photonics EM-CCD digital camera (Hamamatsu Photonics, Japan), 

and AxioVision Imaging Software (Carl Zeiss, Inc., UK).  Samples were imaged in five 

minute intervals at maximum speed (approximately 4 frames per second) at points 25, 32, 39, 

46, and 53 minutes after the addition of 1 µM AP21998.   

 

2.27 Mass Spectrometry 

Drp1 after phophorylation by Cdk2/cyclinA, was loaded onto an SDS gel Fig. 3. The 

samples were treatred with cystein alkylating agent, acrylamide at room temperature for 30 

min, prior to loading to SDS gel.The sample has been digested using trypsin; the 

phosphopeptides were isolated and concentrated using TiO2 (Titanium dioxide) beads. This 

work was done in collaboration with Prof. Andreas Pich, Mass spectrometry laboratory, 

Hannover Medical School.  
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Figure 3: The protein sample sent for mass spectrometry analysis. The samples marked 

as red star on the gel indicates the Drp1 sample treated with Cdk2/CycA complex in the 

reaction mixture. 

 

2.28 Crystallization of Proteins and Crystal Handling 

2.28.1 X-Ray Diffraction 

X-ray diffraction from crystalline solids occurs as a result of the interaction of X-rays 

with the electron charge distribution in the crystal lattice. The ordered nature of the electron 

charge distribution, whereby most of the electrons are distributed around atomic nuclei which 

are regularly arranged with translational periodicity, means that superposition of the scattered 

X-ray amplitudes will give rise to regions of constructive and destructive interference 

producing a diffraction pattern (Hiltner & Krieger, 1969; Marchesini et al, 2003).  

The diffraction maxima are some times individually considered to be the result of 

diffraction of the incident X-ray beam of Wavelength (λ) from crystal lattice planes, having 

miller indices h k l and spacing dhkl. Diffraction occurs at an angle of incidence equal to the 

Bragg angle θB, i.e. Bragg‟s law is obeyed: 
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l = 2dhkl sinqB  

 

The way in which the separate scattered or diffracted rays combine to form an image depends 

on three factors associated with each ray: (a) the direction of the ray, (b) the amplitude and (c) 

the phases. In X-ray crystallography, the diffracted beams are separately observed and their 

intensities measured as the spots on an X-ray film or by direct quantum counting in a 

diffractometer (detector). By identifying the Miller indices (hkl) of the crystal plane-giving 

rise to each diffracted beam, the direction of the beam is specified. From the measured 

intensity of the beam its amplitude can be deduced by a simple relation, where the amplitude 

of the wave |Fhkl| is proportional to the square root of the intensity measured on the detector. 

So the direction and the amplitudes information about each beam are known, but 

unfortunately there is no direct method available yet for observing the phases of each 

diffracted beams, which is the third necessary piece of information needed before 

mathematical recombination (Fourier calculations) is possible to produce an image of the 

structure. This constitutes what is known as the phase problem in crystallography (Taylor, 

2003). 

 

The solution of a crystal structure therefore consists of applying some technique for 

obtaining the approximate phases of at least some of the X-ray reflections (Molecular 

Replacement, Multiple Isomorphous Replacement, Single Anomalous Dispersion, Multiple 

Anomalous Dispersion and so on), and the process of structure refinement is one in which the 

knowledge of phases is extended to all reflections and is made as accurate as possible for all 

reflections. Apart from the direct methods of obtaining some initial phases, both the solution 

and refinement processes depend on the ability to calculate structure factors for a proposed 

approximate arrangement of some or all of the atoms in the crystal structure. It is possible to 

calculate simultaneously both the amplitude |Fhkl| and phase αhkl of each beam that would be 

diffracted by the proposed structure. Since the phases cannot be compared with any 

observable quantities, the validity of the proposed structure must be tested by comparison of 

the calculated values of the amplitudes of the structure factor Fc with the observed amplitudes 

|F0|. This is represented by a reliability index or R factor: 
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Rfactor =
Fo - Fcå

Foå
 

Electron density at a position (xyz) in the unit cell of a crystal is the summation of all 

the hkl planes, i.e. electron density at (xyz) = the sum of contributions to the point (xyz) of 

waves scattered from plane (hkl) whose amplitude depends on the number of electrons in the 

plane, added with the correct relative phase relationship or, mathematically, 

r x, y, z( ) =
1

V
Fhkl

hkl
å exp iahkl( )exp -2p i hx+ ky+ lz( )( )  

Where, V is the volume of the unit cell and αhkl is the phase associated with the structure-

factor amplitude |Fhkl|.  

 

In this thesis, D. discoideum myosin II•carbazole complexes diffracted from 2.8 Å to 

3.5 Å on Bruker proteum X8 rotating anode.  

2.28.2 Hanging and Sitting Drop Vapor Diffusion 

In the hanging and/or sitting drop vapor diffusion method, a small drop consisting of 

protein- and reservoir solution is equilibrated against a large volume of reservoir solution 

containing the precipitating agent. During the equilibration process between drop and 

reservoir, liquid is diffusing through the gas phase out of the drop into the reservoir. Thereby 

the concentration of protein and precipitating agent is slowly increased in the drop, leading to 

super saturation and ideally to conditions favorable for crystallization. Drops consisting of 

each 2 µl of protein and 2 µl of reservoir solution are equilibrated against 750 µl of reservoir 

solution in 24-well Limbro
®
 plates (MP Biomedicals). The rim of each well is greased with 

vacuum grease from GE Bayer Silicones
™

. Cover slip 22 mm Thick Circles from Hampton 

Research
™ 

with drops of protein and reservoir is placed onto the well in hanging drop fashion. 

During screening or optimization of initial crystallization conditions plain cover slips from 

Jena Bioscience 
™

 are used. In the hanging drop method, the drop is placed on the coverslip 

so that it is hanging above the reservoir solution. In the sitting drop method the drop is placed 

on a micro bridge that is placed into the well. 
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2.28.3 Cryo-Protection of Crystals 

During this work most of the data collection was carried out with cryo-cooled crystals, 

which are kept at 100 K by a stream of liquid nitrogen. Special care has to be taken during the 

process of freezing the crystals, as their diffraction quality can be impaired during freezing. 

Usually it is necessary to transfer the crystal to a solution containing a cryo-protectant prior to  

freezing in order to avoid the formation of ice crystals. The choice of the cryo-protectant can 

influence the diffraction quality of frozen crystals. A variety of cryo-protectants should be 

tested, namely sugars, alcohols, and low molecular weight PEGs. In an experiment to screen, 

mother liquor is mixed with various concentrations of the cryo-protectant. Then the minimal 

concentration of cryo-protectant that prevents the formation of ice-crystals is determined by 

forming a film using a MiTeGen micro mount nylon-loop and this cryo-protected mother 

liquor is completely soaked into a bath of liquid nitrogen followed by visual inspection of the 

frozen liquid film. The liquid film should not become opaque. The liquid film can be checked 

for ice rings in the x-ray beam. Then the behavior of the crystals in the cryo-protected mother 

liquor is examined under the light microscope, in order to sort out cryo-protectants that 

damage the crystals. In a final step, the diffraction properties of crystals mounted with various 

cryo-protectants are determined. Twenty five percent ethylene glycol l turned out to be a good 

cryo-protectant for all crystals produced during this work (with exception of the crystals of 

full-length dynamin3,). Usually, the concentration of the precipitating agent was slightly 

increased over that of the well-solution in the solution for cryo-protection. Optimal soak times 

have to be determined experimentally. In this work soaking times between 3 to 5 mins were 

used. When incorporating small molecules, reservoir and cryo-solutions containing the small 

molecules of interest were gradually diluted in four steps and the fifth step was 100% cryo-

solution with small molecule. In each step, the crystal was soaked 3 min and finally the 

crystal was scooped up using a micromount loops and gently immersed in liquid nitrogen. 

The frozen crystals were stored in a magnetic cryo vials from Molecular Dimensions 

limited
™

.   

2.28.4 Crystal Mounting for Data Collection 

All data was collected under cryogenic conditions using an Oxford cryo-stream to cool 

the crystal during data collection. While mounting crystals for data collection, they need to be 

transferred from their storage containment to the goniometer without thawing. Crystal cap 

tubes are unscrewed while submersed in liquid nitrogen in a table top isotherm using a crystal 
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wand (Hampton) to hold the cap and using tweezers to hold the tube. A cryo-tongue 

(Hampton) is cooled in liquid nitrogen and used to transfer the crystal-cap with the crystal 

mounted in the loop from the table top isotherm to the goniometer.  

 2.28.5 Data Collection and Processing 

Five test shots separated by a 90° rotation are taken to assess crystal quality. Data is 

collected using the oscillation method. The rotation angle is 0.5 or 1.0°, depending on the data 

quality obtained from the particular crystal. The important parameter that governs the data 

collection strategies are: unit cell of the crystal, orientation of the crystal‟s longest axis with 

respect to the incident X-ray beam and the crystal mosaicity. The exposure time has a role in 

improving data quality, but care must be taken not to destroy the crystal with very long 

exposure until or unless the crystal is stable. The detector used and its sensitivity to record the 

diffracted x-ray beam play crucial roles in data quality at high resolution. Data collection 

strategy, image handling, temperature maintenance were set by using the PROTEUM2 from 

BRUKER AXS, Integration of the data was performed using SAINT and SADABS was used 

to scale the data. Data reduction and quality were checked by using XPREP (Sheldrick GM). 

 

The goal of data collection is to obtain data with completeness close to 100 %. 

Whenever long exposure time is used   in order to obtain high resolution reflections care has 

to be taken that low-resolution spots are not saturated. The data is cut at an RmergedF of about 

40 % or an Rmeas of about 30 % or I/sigma cut-off 2. XDS -X-ray Detector Software (Kabsch, 

1993) is used for data processing of data obtained from a single crystal monochromatic 

diffraction; the data is processed using the following three input scripts namely XDS.INP, 

XSCALE.INP and XDSCONV.INP 

2.28.6 Structure Solution, Refinement and Model Building 

The software packages CNS, CCP4, COOT (Brunger et al., 1998; Murshudov et al., 

1996; Pottertonet al., 2003; Pottertonagin et al., 2004; Emsley) were used during structure 

solution, refinement and model building. CNS was also used for model preparation for 

molecular replacement (MR); in most cases the default settings of the provided input files 

were used. MR phases and CNS model were used in automated model building using 

Arp/wARP, which is used for phase improvement and interpretation of electron density. 

Additional phase information that came from Arp /wARP was used and refined with refmac.  



66 

 

2.28.7 Simulated Annealing 

During model preparation for molecular replacement, simulated annealing was 

performed to minimize the model structure, Torsion angle dynamics was used for this 

purpose. With 200 minimization cycles to regularize geometry preceded the torsion angle 

molecular dynamics. The slow cool protocol was used with the starting temperature of 3000 

K and the drop in temperature per cycle was set to 25 K. finally after 100 cycles of 

minimization, the coordinates were used in for initial model building and phase improvement. 

2.28.8 Model Building, Structure Interpretation and Figure Preparations 

The molecular model is built into the electron density using the program Coot whenever 

necessary in case if automated model building fails to work. The model after simulated 

annealing and the structure factor files prepared from XDS were used in Arp/wARP, the 

refinement and model building were done hand in hand using refmac for refinement and Coot 

for electron density interpretation. The structure was viewed in Coot or using the PyMol 

Schrodinger, LLC
®
. Figures were prepared using PyMol, and measurements of hydrogen 

bond length, electrostatic surface representation are calculated using Coot. 
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2.28.9 Data Processing Software and Modules  

 

Table 6: Software used and the versions  

Programs/Software suite/Modules Version 

CCP4 suite 6.0.2 

CCP4 interface 1.4.4.2 

Arp/wARP 7.0 

Refmac5 5.5.0109 

CNS_Solve 1.2 

PyMol 1.2r3pre 

COOT 0.6.1-pre-1 

XDS Version May 10,2010 

Autodock 4.0 

MGL tools 1.5.4 

GOLD suite V5.0 

AutodockVina 1.1.1 
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CHAPTER 3 

Results 
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3.1 Functional Characterization of Dynamin Related Protein1 (Drp1) 

 Dynamin related proteins (Drps) compose a diverse family of proteins that self-

assemble in a GTP-dependent manner to assist remodeling of cellular membranes. The 

molecular mechanism by which Drps mediate membrane remodeling events and the specific 

role of their GTPase cycle is still not fully understood. Drp possess unique kinetic properties 

even though they are the members of the GTPase superfamily. Drp have relatively low 

affinity for guanine nucleotides but have high rates of GTP turnover and, under favorable 

conditions they self-assemble. Here, the in the following studies I have used continuous, 

coupled steady-state assay that overcomes the limitations of the fixed time point assays. This 

can be used for the kinetic analysis of Drp GTPase activity under unassembled and assembled 

conditions (Ingerman and Nunnari, 2005). 

 

3.1.1 Ionic Strength Dependence and Cooperativity of Drp1 GTPase 

Activity 

Steady-state GTPase activity of Drp1 were performed with an NADH/PK coupled 

enzyme assay under standard assay condition (25 mM HEPES, 50 mM NaCl, 1 mM DTT, 5 

mM MgCl2). Fig. 1 shows the dependence of the GTPase on Drp1 concentration over a range 

of 0-40 µM.  The rate of GTP hydrolysis increases in a sigmoidal manner indicating a 

cooperative behaviour (Fig. 1, open triangle). Data points were fit with a Hill equation 

yielding a KD value of 22.57 ± 5.18 µM and a Hill-coefficient n = 2.99 ± 1.78. Interestingly, 

at high salt conditions ( 300 mM NaCl) the GTPase activity of Drp1 remained constant 

irrespective of the protein concentrations (Fig. 1, black circles) showing that the cooperative 

nature of the Drp1-Drp1 interaction is reduced by salt. This is in agreement with earlier work 

on dynamins demonstrating the ionic basis of the interaction between dynamin molecules. 

The cooperative behaviour has been demonstrated earlier for dynamin1 (Binns et al., 1999; 

Binns et al., 2000).  
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Figure 1: Steady-state GTPase activity of Drp1. GTPase activity as a function of Drp1 

concentration at low (black) and high (triangle) ionic strengths. The open triangles 

indicate 50 mM NaCl (low) concentration, whereas the black circle represents 150 mM 

NaCl (high) concentration. The rate of GTPase hydrolysis of Drp1 from separate steady-

state measurement is 0.07 s
-1

 (values mentioned are normalized with protein 

concentrations; here and elsewhere in this work) which is very low compared to classical 

human dynamin1 which has the GTP hydrolysis rate of 0.7 s
-1

 ten times higher. A 

saturating amount of GTP concentration of 1 mM was used in the steady-state GTPase 

assays in the reaction mix. 

 

3.1.2 Transient Kinetic Characterization of Drp1 Interactions with 

Nucleotides 

   Stopped-flow techniques in combination with a spectrometer, which is calibrated to 

detect changes in fluorescence signal intensity at a defined wavelength over a fixed time, can be 

used to study enzyme mechanisms on a milliseconds scale. After two solutions are mixed the 

change in conformation upon substrate binding can be correlated to the intrinsic tryptophan. But 

in the case of Drp1, GTP analogs which are fluorescent nucleotides were used as Drp1‟s 

substrate since there is no detectable intrinsic fluorescence change detected. The binding of 

mantd-guanosine nucleotides to Drp1 was investigated under pseudo-first-order conditions. 

Binding of GTP and GDP to Drp1 was studied with mant-analogues of GTP and GDP. The 

mant-analogues were excited directly at 365 nm and the emitted light was detected after passage 

through a KV389 cut-off filter. MantdGTP, mantdGDP binding and mantdGTP, mantGTP-γ-S, 
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Drp1 + mant nucleotides  Drp1.mant nucleotides   Drp1.mant nucleotides* 

K
1
 k

+2
 

k
-2

 

mantdGDP release kinetics at 1 µM Drp1 concentration and range of nucleotide analog 

concentrations were titrated and the curves were fitted with single exponential fit. A very simple 

enzymatic scheme was modeled and K1 (µM
-1

) and k+2 (s
-1

) were determined. The enzymatic 

mechanism was followed as shown in the scheme1. 

Scheme 1:  Enzymatic reaction scheme for Drp1 with its substrate mant nucleotides 

(Binns et al., 2000). 

3.1.2.1 GTP Binding to Drp1 

The binding of fluorescent nucleotide analogues to Drp1 was investigated by 

monitoring mant-fluorescence at different concentrations of nucleotide. Fig. 2a shows the 

change in fluorescence upon mixing 70 µM mantdGTP with 2 µM Drp1. The change in 

fluorescence follows a single exponential curve with rate constants (kobs) Fig. 2c. There are 

several possible mechanisms of binding of mantdGTP to Drp1 that could give rise to this type of 

behavior. These are described previously (Bagshaw, 1977; Bagshaw et al., 1974; Bagshaw and 

Trentham, 1974) in interpreting their results of the binding of ATP to myosin subfragment1. The 

one possibility considered here is that the hyperbolic behavior arises from the binding of 

mantdGTP to Drp1 being a two-step process in which there is a rapid equilibrium to form a 

collision complex, followed by an isomerization of this complex in a process which reports the 

change of fluorescence intensity. 

 

In the mantdGTP binding to Drp1 study, it was observed that upon mixing 2 µM Drp1 

with 70 µM mantdGTP an increase in fluorescence intensity of 2% was observed that could be 

well fitted to a single exponential with a rate constant kobs of 15.2 ± 0.39 s
-1

. The dependence of 

the observed rate constant of binding of mantdGTP to Drp1 was investigated over the range of 5-

150 µM mantdGTP. As the concentration of mantdGTP increased, the background fluorescence 

signal also increased with a reduction in the signal from the binding reaction. Therefore, 

measurements could not be made above this concentration. The estimated 1/K1 which is 

dissociation equilibrium constant for mantdGTP binding to Drp1 is 76.9 ± 4.30 µM and rate 

constant k+2 is 15.2 ± 0.39 s
-1

 and the estimated k-2  from plotting initial rate constant was 

determined to be  10.95 ± 1.35 s
-1

 . In comparison to the classical dynamin2 from previously 

published data, the affinity of mandGTP to Drp1 is higher than the affinity of mantdGTP to 
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dynmain2 which is 91 µM and the k+2 or the rate of isomerization complex to the collision 

complex is ~18 times lesser for Drp1 in comparison to dynamin2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (a) Stopped-flow fluorescence record of the fluorescence change upon mixing 

2 µM Drp1 with 70 µM mantdGTP. Transient shown is the average of four to six 

consecutive shots in the stopped-flow apparatus. (b) Rate of mantdGTP-binding to Drp1. 

Dependence of the observed rate constant of fluorescence change on mantdGTP-

concentration. The second order rate constant (K1k+2) 0.19 ± 0.09 µM
-1

s
-1

 were obtained 

from the slope. (c) Dependence of the observed rate constant of the binding of mantGTP 

to Drp1 on nucleotide concentration from 1 -150 µM. The experiments were performed at 

23 °C; statistical analysis and model fitting were carried out using the Kinetic studio 1.08 

software and Origin8. 
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3.1.2.2 GDP Binding to Drp1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (a) Stopped-flow fluorescence record of the fluorescence change upon mixing 

2 µM Drp1 with 70 µM mantdGDP. Transient shown is the average of four to six 

consecutive shots in the stopped-flow apparatus. (b) Rate of mantdGDP-binding to Drp1. 

Dependence of the observed rate constant of fluorescence change on mantdGTP-

concentration. The second order rate constant (K1k+2) 0.82 ± 0.29 µM
-1

s
-1

were obtained 

from the slope. (c) Dependence of the observed rate constant of the binding of mantGTP 

to Drp1 on nucleotide concentration from 0 – 30 µM. The experiments were performed at 

23 °C; statistical analysis and model fitting were carried out using the Kinetic studio 1.08 

software and Origin8. 
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Similar binding measurements were made with mantdGDP. Again an exponential 

increase in fluorescence was observed as it was for mantdGTP, but this was faster and of 

higher amplitude than that observed for mantdGTP. For example, at 35µM mantdGDP, the 

increase in fluorescence was 4% (Fig. 3a). The increase in signal to noise ratio with respect to 

the increase in mantdGDP concentration limited measurements of mantdGDP binding to Drp1 

to the range of 2.5- 35µM. The observed rate constant of this process was shown to be 

exponentially dependent on mantdGDP concentration (Fig. 3c). This is the expected behavior 

of a two-step binding process. 

 

The maximum observed rate constant k+2 was 48.10 ± 1.65 s
-1

, and the estimated 1/K1 

for GDP binding is 58.8 ± 5.71 µM
-1

. On the basis of the slope of the line in Fig. 3b, the 

apparent second order binding constant K1k+2 is 0.82 ± 0.29 µM
-1

s
-1

. The intercept gives k-2 

31.25 ± 3.11 which is a estimation of off rate value for mantdGDP to Drp1. However, the 

concentration range at which the reaction could be studied was more limited than that of 

mantdGTP, and it cannot be excluded that mantdGDP, like mantdGTP, also binds to Drp1 by 

a more complex mechanism. In a comparative study with dynamin2 mantdGDP binding, 

Drp1 has 3 times lesser affinity for mantdGDP. But in both Drp1 and dynamin2, the affinity 

for mandGDP is higher than affinity for mandGTP. 

 

 3.1.2.3 Nucleotide Dissociation Kinetics of Drp1  

 

              To understand and gain more information about the dissociation of mantd-

nucleotides from Drp1, a solution containing Drp1 with mantd-nucleotide was rapidly mixed 

with a large excess of GTP. Fig. 4a shows that on mixing a solution of 1 µM Drp1, 2µM 

mantdGTP with a solution of 500 µM GTP, there was a 4% decrease in fluorescence. This 

could be fitted to a single exponential with a rate constant of 6.61 ± 0.18 s
-1

, the displacement 

of mantGTP-γ-S with 500 µM GTP yielded a rate constant of 8.02 ± 0.12 s
-1

 Fig. 4b and there 

was a  10% decrease in fluorescence. The displacement of mantdGDP with a solution of 500 

µM GDP Fig. 5a was also fitted to a single exponential with a rate constant of 31.22 ± 0.34 s
-1

 

and the decrease in fluorescence was ~ 10%.   
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Figure 4:  Stopped-flow fluorescence record of the displacement of mantdGTP from 

Drp1. (a) One syringe contained 2 µM Drp1, 2 µM mantdGTP, and the other syringe 

contained 500 µM GTP. The plot is for a fit to a single exponential with a rate constant of 

6.61 ± 0.18 s
-1

 (b) One syringe contained 2µM Drp1, 2 µM mantdGTP-γ-S , and the other 

contained 500 µM GTP. The line is a fit to a single exponential with a rate constant of 

8.02 ± 0.12 s
-1

. The data represent six reactions averaged. 
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Figure 5:  Stopped-flow fluorescence record of the displacement of mantdGDP from 

Drp1. (c) One syringe contained 2 µM Drp1, 2 µM mantdGDP, and the other syringe 

contained 500 µM GTP. The plot is for a fit to a single exponential with a rate constant of 

26.78 ± 0.33 s
-1

 (d) One syringe contained 2µM Drp1, 2 µM mantdGDP, and the other 

contained 500 µM GDP. The line is a fit to a single exponential with a rate constant of 

31.22 ± 0.34 s
-1

. The data represent six reactions averaged. 
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In comparison to that of dynamin2 mantd-nucleotides release, Drp1 has ~5.7 time higher 

mantdGTP release rate and ~1.7 time higher release rate for mantdGDP. Where dynamin2 has 

a rate constant of 1.4 s
-1

 for mantdGTP release and 18.2 ± 1.3 s
-1

 for mantdGDP release.  

 

3.1.2.4 Summary of Nucleotide Binding and Nucleotide Dissociation 

Kinetics  

Interactions of Drp1 with mantdGTP and mantdGDP have been shown as two-step 

process. The data have been interpreted in terms of an initial rapidly reversible process with 

an equilibrium constant K1 (mantdGTP) of 1.2 × 10
4
 M

-1
 followed by an isomerization of the 

Drp1-mantdGTP complex with a rate constant of 15.2 ± 0.39 s
-1

. This results in an apparent 

second-order binding constant of 0.19 ± 0.09 × 10
6
 M

-1
 s

-1
. However, other mechanisms are 

also possible i.e. an isomerization of the Drp1 prior to binding mantdGTP or two distinct 

modes of mantdGTP binding to Drp1 resulting in an equilibrium mixture of both complexes. 

Unlike dynamin2, Drp1 shows two-step process for mantdGDP binding with an equilibrium 

constant K1 (mantdGDP) of 1.7 × 10
4
 M

-1
 followed by an isomerization of the Drp1-mantdGDP 

complex with a rate constant of 47.99 ± 1.65 s
-1

. Dissociation of mantdGTP and mantdGDP 

from Drp1 shows complex behavior.  

 

Table 7: Summary of kinetic data of Drp1 in comparison to dynamin2 kinetics.  

Nucleotide 1/K1 (µM) K1k+2 (µM
-1

s
-1

) k+2 (s
-1

) koff (s
-1

) 

(intercept) 

koff (s
-1

) 

Drp1 

mantdGTP 76.9 ± 4.30 0.19 ± 0.09 15.2 ± 0.39 10.95 ± 1.35 8.02 ± 0.12 

mantdGDP 58.8 ± 5.71 0.82 ± 0.29 47.99 ± 1.65 31.25 ± 3.11 31.22 ± 0.34 

Dynamin2
*
 

mantdGTP 91.0 3.0  280 -  3.1  ± 0.3 

mantdGDP 19.4 3.3  - 64  88 ± 15 

 

Since mantdGTP exists as a single isomer, any speculation on biphasic behavior could 

be ruled out for Drp1. From the above study, it was found that the association rate constant of 

mantdGDP is higher than for the mantdGTP. Also, the above study was done in a salt 
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concentration where Drp1 could not self-assemble which means the GED activation of 

GTPase is not likely to take place, thus this is only the basal GTPase characterization.  

3.2 Mdivi-1 and Sertraline Binding Properties to Drp1 

Sertraline (Fig. 6) is a selective serotonin reuptake inhibitor. To keep the extracellular 

serotonin level, and to prevent it from binding to pre-synaptic receptors, sertraline is used as 

an antagonist against agonist serotonin. It is a FDA (Food and Drug Administrations) 

approved drug in the treatment of panic disorder, obsessive-compulsive disorder, depression 

and bulimia. The pathway by which sertraline is metabolized remains unclear. But it has been 

shown to be de-aminated by monoamine oxidases, a protein which is found on the outer 

membrane of the mitochondria.  

 

Whereas, mdivi-1 Fig. 6 is a direct mitochondrial division attenuator and also 

attenuates apoptosis indirectly (Cassidy-Stone et al., 2008; Tanaka and Youle, 2008). It seems 

to interact specifically with Dnm1, a yeast orthologous of human Drp1. The mechanism of 

action of this drug is also unclear. But it has been shown that the basal GTP hydrolysis of 

Dnm1 is not affected by mdivi-1. The attenuation effect of mdivi-1 on division and apoptosis 

is speculated to be through the inhibition of assembly of Dnm1 around mitochondria. 

 

 

 

 

 

 

 

Figure 6: Chemical structures of mdivi-1 and sertraline. 

 

Thus we characterized the affinity of sertraline and mdivi-1 for Drp1. The binding of 

sertraline changed the fluorescence intensity of labeled Drp1 in microscale thermophoresis 

experiment in concentration dependent manner. The KD value obtained after the fit was 0.914 µM 

for sertraline to Drp1, whereas the KD value of mdivi-1 for Drp1 is 0.26 µM Fig. 7. Thus both 

sertraline and mdivi-1 influences the fluorescence property of the labeled Drp1 implying that they 

can interact with Drp1 even at sub-micro molar concentrations. 
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Figure 7: Graphs showing the thermophoresis and hot/cold effect upon binding of 

sertraline and mdivi1 in microscale thermophoresis experiment. The data is fitted to the 

fluorescence change due to hot/cold effect and thermophoresis effect. The y-axis 

represents the change in fluorescence, whereas the x-axis represents the concentration 

range of the sertraline and mdivi1. The affinity of the effectors mdivi-1 and sertraline for 

Drp1 is obtained from the fitting of the KD equation. 

 

3.3 Assembly Properties of Drp1 Studied by Dynamic Light Scattering  

GTPase activity of classical dynamin increases as a function of dynamin concentration 

(Tuma and Collins, 1994), this finding suggests that dynamin self-association is an important 

feature in the regulation of its enzymatic activity. The cooperative nature of the dynamin-

a 

b 



80 

 

dynamin interaction is influenced by salt, implying that the ionic basis of this interaction and 

its importance. At low salt concentration (25-50 mM NaCl) dynamin self-assembles into 

large, sedimentable structures composed of rings and stacks of interconnected rings (Hinshaw 

and Schmid, 1995). Owing to this idea, and to check whether Drp1 possess similar properties 

we conducted series of experiments. 

3.3.1 Salt Dependence of Drp1 Self-Assembly  

To monitor the state of isolated Drp1 and to examine the assembly property at a given 

salt condition dynamic light scattering (DLS) method was used. The mass and intensity 

distribution profile for Drp1 under different salt conditions were analyzed. DLS yields the 

hydrodynamic radius of a species in solution and thus reflects the state of association at a 

given condition. Viscotek 802 DLS machine equipped with OmniSize acquisition and control 

software was used, sample volumes of 15 to 20 µL were very carefully pipetted into a quartz 

sample cell. Each time the sample cell was washed thoroughly with 2% SDS followed by 

filtered distilled water. This was done to avoid noise from dust particle during the course of 

the measurement. The experiment was performed at 22°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8a: Histogram of distribution of hydrodynamic radii (Rh) obtained from „protein 

as mass model and with intensity distribution‟ of data from dynamic light scattering 

experiments. (a) Drp1 self-associates at  50 mM NaCl salt condition in blue histogram 

where the peaks represents 12.27, 271.62 and 3673.17 nm of Rh with 72.2%, 4.5% and 

23.4% area respectively. Drp1 dissociates at 300mM NaCl salt condition in brown 

histogram, with 10.51 nm Rh with 100% area. 
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Isolated Drp1 at two different ionic strengths, 50 mM and 300 mM NaCl were 

investigated. All the readings were measured at pH 7.6, at concentration 20 µM yielded 

uniformly a hydrodynamic radius for the major species of Drp1 assemblies. The intensity 

distribution is measured directly and this information is sufficient when analyzing nearly 

spherical particles, like in this case we directly measured the intensity distribution over 4 s 

and averaged the experiment after 75 runs. Mass distribution is obtained from the raw 

intensity data obtained, assuming protein model and feeding in an appropriate shape factor. In 

this case we used default shape factor for protein. The Drp1 at low ionic strength yielded 3 

prominent peaks, with a major peak of 72% area had an estimated Rh of 12.27 ± 2.73 nm, 

corresponding to molecular weight of 1237.67 kD, which is ~14 mers Fig. 8a. The summary 

of the results has been shown under the Table 6, whereas Drp1-Drp1 associations are 

perturbed under high salt condition Fig. 8b. In which single peak was obtained with Rh of 

10.51 nm with calculated molecular weight of 857 kD, which is ~10mer. 

3.3.2 Influence of Sertraline and Mdivi-1 on Drp1 Self-Assembly  

To test whether these small molecule effectors, has any effect on the ionic strength 

induced assembly of Drp1, the DLS experiment was performed in the presence of mdivi-1 and 

sertraline.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8b: Histogram of distribution of hydrodynamic radii (Rh) obtained from „protein 

as mass model and with intensity distribution‟ of data from dynamic light scattering 

experiments. (b) Drp1 self-associates at  50 mM NaCl salt condition in blue histogram 

where the peaks represents 12.27, 271.62 and 3673.17 nm of Rh with 72.2%, 4.5% and 

23.4% area respectively. Drp1 dissociates in the presence of 20µM sertraline brown 

histogram, with 10.44 nm Rh with 100% area. 
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Figure 8c: Histogram of distribution of hydrodynamic radii (Rh) obtained from „protein 

as mass model and with intensity as distribution type‟ of data from dynamic light 

scattering experiments. (d) Drp1 dissociates in the presence of both sertraline (blue) and 

mdivi-1 (brown) mimicking the high salt condition, with 14.81 nm Rh (intensity 

distribution type) equivalent to ~10.4 nm in the mass distribution type with 100% area. 

 

Addition of mdivi1 or sertraline in the low salt condition buffer resulted in the peak 

distribution similar to that of high salt distribution profile Fig. 8c which means the small 

molecule effectors have an influence on the Drp1-Drp1 self-assembly.  

3.3.3 Effect of Sertraline on GTP-γ-S Induced Drp1 Self-Assembly  

Next, sertraline‟s influence on GTP-γ-S induced Drp1 self-assembly has been tested. 

The size of the particle corresponding to the peak obtained in the presence of non-

hydrolysable GTP analogue and in the presence of sertraline was 18.4 nm. But only in the 

presence of GTP-γ-S the peak obtained has hydrodynamic radius ~19.1 nm Fig. 8d. Thus it 

might be that sertraline could not compete with GTP-γ-S induced Drp1 self-assembly, but 

restricts from forming huge oligomers. 

 

Thus the results from dynamic light scattering experiments provided the strong 

evidence that, Drp1 self assembles to higher order of oligomers under low ionic strength and 

GTP-γ-S. But under high salt or in the presence of sertraline and mdivi-1 the self-assembly is 

restricted or prevented.   
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Figure 8d: Histogram of distribution of hydrodynamic radii (Rh) obtained from „protein 

as mass model and with intensity as distribution type‟ of data from dynamic light 

scattering experiments. (c) Drp1 self-associates at 50 mM NaCl salt condition in blue 

histogram. GTP-γ-S induces Drp1 self-assembly to higher orders shown in orange 

histogram.  Sertraline could not reverse the effect induced by GTP-γ-S Dp1 assembly 

shown in brown histogram. 

 

 
Table 8:  Summary of dynamic light scattering results 

NaCl condition + 

20 µM Drp1 

GTP-γ-S 

nucleotide 

analog 

Sertraline 

 

Mdivi-

1 

 

No. of 

peaks 

 

Hydrodynamic 

radii (nm) 

 

300 mM  - - - 1 10.51 

50 mM - - - 3 11, 213, 2806 

50 mM - 20 µM - 1 10.44 

50 mM 100 µM - - 2 19.6 

50 mM 100 µM 100 µM - 1 to 3 18.4 

50 mM -  20 µM 1 10.8 
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3.4 Assembly Properties of Drp1 Studied by Analytical Ultra-

Centrifugation (AUC) 

3.4.1 Concentration Dependence of Oligomer Formation 

Sedimentation velocity experiment was performed at protein concentrations of 2.8, 11.2 

and 33.5 μM Drp1 under 25 mM Hepes pH 7.5, 100 mM NaCl, 5 mM MgCl2 buffer 

condition. As can be seen from Fig. 9 the protein undergoes a concentration dependent 

oligomerization reaction. Even at the lowest concentration used the sample displays a two 

distribution profile peaks. The peak with the highest s-value occurs at 19.1 S, with respect to 

the standard sedimentation coefficient s (20, W) to 20.0 S of a smooth compact spherical protein 

molecule in water at 20 °C. The highest oligomers formed must be at least hexamers (not 

tetramers as expected). Since a smooth compact spherical, minimum-hydrated tetramer of 

Drp1 is expected to sediment with an s (20, W) of 16.5 S. 

 

 Additionally, it has to be taken into account that the oligomerization reaction seems to 

be fast and that a reaction boundary is observed. Therefore, at higher protein concentration, 

Drp1 might sediment with an even higher sedimentation coefficient. 

 

 

 

 

 

 

 

 

 

 

Figure 9: c(s) distributions for three different concentrations of Drp1. 

 

The peak with the smallest s-value occurs at 6.6 S, this corresponds to an s (20, W) of 7.0 S. 
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Since the s (20, W) of monomeric, spherical and unhydrated Drp1 is expected to be 6.5 S, this peak 

might at least represent dimers, or a fast equilibrium between monomers and dimers. 

3.4.2 Influence of GTP-γ-S on Drp1 Oligomerization 

The experiment at a concentration of 11.2 μM Drp1 was repeated in the presence of 100 μM 

GTP-γ-S with and without 20 μM sertraline. As can be seen from the c(s)-distribution in Fig. 10, 

the shift due to GTP-γ-S to higher s-values is not pronounced, therefore the formation of higher 

oligomers can be ruled out at the salt concentration used for this experiment. The addition of 

sertraline has no influence on the sedimentation velocity. It has been shown with the DLS that 

sertraline could not reverse the GTP-γ-S induced effect at 50 mM NaCl. The buffer used in AUC 

experiment has the salt concentration of 100 mM NaCl, higher than in the buffer used in the 

dynamic light scattering experiment. This may explain why Drp1 in the presence of sertraline or 

GTP-γ-S has shown no significant shift in its sedimentation coefficient.   

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 10: Influence of GTP-γ-S and Sertraline on the sedimentation behavior of Drp1. 

3.4.3 Influence of GDP on Drp1 Self-Assembly 

 

The experiment at a concentration of 11.2 μM Drp1 was repeated in the presence of 100 μM 

GDP with and without 20 μM Sertraline. As can be seen in Fig. 11, GDP does not shift the c(s)-

distribution to higher s-values, therefore the formation of higher oligomers can be ruled out even 

in this case also. However, a shift to smaller s-values is observed, this might be due to a 
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conformational change of Drp1 in the presence of GDP. The addition of sertraline seems to have 

no influence on the sedimentation velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:  Influence of GDP and Sertraline on the sedimentation behavior of Drp1. 

3.4.4 Influence of GTP-γ-S and GDP on Drp1 Self-assembly 

Whereas both GTPγS and GDP do not induce the formation of higher oligomers under these 

conditions, a shift of the c(s) distribution to lower s-values is observed. This might either be due 

to dissociation of Drp1 oligomers or, more probably, due to a conformational change of Drp1 in 

the presence of nucleotide. This effect is more pronounced in the presence of GDP Fig. 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Comparison of the influence of GTP-γ-S and GDP on the sedimentation of 

Drp1. 
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To check whether the AUC (analytical ultra-centrifuge) run resulted in degradation of 

the protein, 5 μg of each sample after the run were applied on an SDS gel Fig. 13. Since no 

degradation could be observed, the occurrence of several species in the sedimentation velocity 

run is not due to degradation of Drp1. 

 

 

 

 

 

 

 

 

Figure 13: 10% SDS PAGE of the samples after analytical ultracentrifuge (AUC) run. 

Aliquots corresponding to amounts of 5μg were applied onto the gel. Lane 4: Drp1 stock 

solution, lane 1-3 and lane 5-8: aliquots of the samples from cell 1to 7 from AUC. 

3.5 Drp1 Acts as Substrate of the Cdk2/CyclinA Complex 

 To investigate whether Drp1 is a substrate for Cdk2/CyclinA complex, and to examine 

whether the complex can phosphorylate Drp1, a steady-state ATPase assay system was used. 

In this assay release of ADP upon Cdk2/CyclinA catalyzed reaction is used by PK/LDH 

enzyme system and the NADH oxidation was followed by the absorbance change. The detail 

of the assay system is explained in the materials and methods. As a positive control, histone 

H1 is used as the substrate for cdk2/CyclinA complex. As a negative control, the 

phosphorylation of the substrates, histone H1 and Drp1 were analyzed in the presence and 

absence of p27. p27 is a 27 kDa protein which is a potent inhibitor of Cdk2/cyclinA  kinase 

activity. The decrease in absorbance from 0.6 to 0.1 was observed for over 3500 s, the 

reaction reached the saturation point between 3500 s to 4500 s. The assay was initiated with 1 

mM ATP concentration in the reaction mix. The assay way performed under standard buffer 

conditions containing 50 mM HEPES pH 7.3, 150 mM NaCl, 10 mM MgCl2, 2 mM DTT.  

 

The slope of the fit doesn‟t seem to vary between the various Drp1 concentrations 

significantly (Fig. 14). The relative increase in the ATP hydrolysis between the reactions in 

the absence of p27 and to the reaction in the presence of p27 is significantly high Fig. 15. The 
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results from the steady state ATPase assay indicate that Cdk2/CyclinA phosphorylates Drp1 

similar to histone H1 whereas p27 inhibits its phosphorylation. 

 

Figure 14: Steady-state ATPase assay to determine the ATPase activity of Cdk2/CyclinA 

complex. The assay in the presence of histone H1 in black serves as positive control. The 

assay in the presence p27/histoneH1/Cdk2/CyclinA (orange) and p27/Drp1 or dynamin1/ 

Cdk2/CyclinA (magenta) serves as negative control. The Drp1 phosphorylation was 

indirectly measured from the slope of the decrease in 340 nm absorption of NADH. The 

assay was performed in the presence of Drp1 as substrate (left), dynamin1 (right) as 

substrate for Cdk2/CyclinA complex at three different concentrations of Drp1 and 

dynamin1 correspondingly, 0.5 µM in red, 4 µM in green and 20 µm in blue. 

 

 

Figure 15: Cdk2/CyclinA phosphorylation activity of histone H1 as substrate and in 

comparison to that of Drp1 (left), dynamin1 (right) as their substrates.  
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                                 Table 8: Summary of Cdk2/CyclinA ATPase activity in the presence of Drp1 as substrate  

Cdk2/CyclinA + Activity (s
-1

) 

 p27 + Histone1 0.005 

p27 + Drp1 0.004 

Histone1 0.010 

Drp1 0.070 

 

3.5.1 Mass Spectrometry Analysis of Drp1 Phosphorylation 

Since it was observed that Cdk2/CyclinA phosphorylates Drp1, quantitative profiling of 

phosphorylated Drp1 to identify the site of phosphorylation mass spectrometry analysis was 

undertaken. For this purpose Drp1 was incubated with Cdk2/cyclinA complex in the presence 

of ATP.  The sample protein was loaded on a SDS gel. The samples were treatred with 

acrylamide at room temperature for 30 minutes, prior to loading to SDS gel.  

 

The samples were first digested using trypsin. Following which the obtained peptides 

from experiment were subjected to strong-cation exchange chromatography and elutes were 

collected, and enriched for phosphopeptides with TiO2. Enriched elutes were recombined by 

fraction and analyzed using mass spectrometer 

 

However, in some MS spectra the information obtained revealed more than one 

phosphate group but it is possible that the PO4
-
-group is localized at different amino acids. 

This might be due to different parallel phosphorylation or an artifact caused by the database 

search. The results from mass spectrometry identified a unique phosphorylation site. In the 

peptides 1, 3 and 4, S548 and in the peptide 5, S616 were unambiguously identified as the site 

of phosphorylation. The results are summarized in the table below.  
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Table 9: Peptide mass finger printing 

Peptide Fragments Peptide  

536
VPSALAPASQEPSPAASAEADGKLIQDSR            

536
VPSALAPASQEPSPAASAEADGKLIQDSR      

536
VPSALAPASQEPSPAASAEADGK 

peptides 1,3,4 

 

607
SKPIPIMPASPQKGHAVNLLDVPVPVAR   peptide 5 

531
DKSSKVPSALAPASQEPSPAASAEADGK   

531
DKSSKVPSALAPASQEPSPAASAEADGK               

531
DKSSKVPSALAPASQEPSPAASAEADGK   

 

peptide 2 

39
SSVLESLVGR                                                      peptide 6 

39
SSVLESLVGR 

 
peptide 7 

 

 

The interesting result is that the neuronal Drp1 (isoform 1) is the only Drp1, that has the 

additional region of amino acid residues spanning from 533-569, whereas this region is absent 

in all other isoform of Drps. The S616 is a known phosphorylation site and is phosphorylated 

by Cdk1/CyclinB complex and has been shown to tubulate mitochondria during cell 

starvation. Our results show that Drp1 is one of the substrate for Cdk2. The [S/T]P motif is 

the minimum sequence required for Cdks to recognize their substrate and this is the motif of  

Drp1 S548. But the consequence of this phosphorylation during cell cycle is not known yet 

and will be an interesting topic to study. 

3.5.2 FRET-Based Displacement Experiments of the CyclinA/p27 Complex 

by Drp1 and Dynamin1  

To analyze whether Drp1 could displace the protein-protein interactions between 

cyclinA-p27, fluorescence resonance energy transfer (FRET) experiment was performed. In 

this experiment CFP and YFP were the FRET pairs. The FRET pairs, the CFP was tagged to 

cyclinA and YFP was tagged to p27. The FRET signal is decreased upon the displacement of 
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cyclinA to p27 by Drp1. The assumption here is that , if the substrates either Drp1 or 

dynamin1 competes with cyclinA-p27 interactions, then with addition of excess of substrates 

it is also possible to displace the interaction between cyclinA and p27. The assay was 

performed under 40 mM Tris pH 7.5, 150 mM NaCl, 5 mM MgSO4, 5 mMDTT buffer 

condition. The fraction of bound YFP-p27 was calculated as follows: 

 

 

Equation 2: Calculation of the fraction of bound YFP-p27 to the Drp1 and dynamin1 

 

Figure 16: Cartoon representation of CyclinA/p27 complex. This is one of the 

experimental p27-cyclinA interactions proved by x-ray crystallography. CyclinA is 

shown in orange, p27 is shown in magenta. The cartoon in the right is the 

Cdk2/cylinA/p27 complex structure; coordinates are obtained from the PDB id: 1jsu. 

 

The fraction of p27 bound to cyclinA remains unchanged  with increasing protein 

concentrations of Drp1. The readouts of the emission at 485 nm (for CFP) and 527 nm (for YFP) 

after excitation at 430 nm are recorded using Fluoroskan Ascent plate reader. The FRET signal 

remains stable during incubation of Drp1 with the complex, which means the p27-cyclinA is not 



92 

 

perturbed by Drp1. The results of the FRET-titration indicate that the p27 - cyclinA interaction 

can be displaced by an excess of dynamin1 but not of Drp1 Fig. 17. Thus, it can be assumed that 

dynamin1 is recognized by cyclinA facilitating the phosphorylation of dynamin1 by Cdk2, while 

the Cdk2 inhibitor, p27 blocks this recognition by cyclinA. But it cannot be excluded here that 

dynamin1 competes with cyclinA for binding to p27.On the other hand, Drp1 interaction does not 

interferes with the interaction between p27-cyclinA interactions. The above work was done in 

collaboration with Gunnar Weninger, methodological advice for the FRET studies and proteins 

(Cdk2, CyclinA, p27) were kindly provided by the collaborator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: The FRET-signal decreases with increasing amounts of added dynamin1 

(open triangle) and with increasing incubation time. Whereas Drp1 (closed squares)1 

binds to the p27-CyclinA complex like dynamin1. But dynamin1 displaces one of the fret 

pair unlike Drp1.The plot is the representation of Drp1 and dynamin1 at various 

concentrations. The fraction of p27 bound to CFP-CyclinA from the formula given above. 

 

3.6 Binding Affinity of Drp1 for Cardiolipin and the Influence of 

Nucleotides on Drp1-Cardiolipin Interaction 

  Mitochondrial lipids such as cardiolipin play a major role in mitochondrial fusion and 

fission process. Proteins that are involved in membrane remodeling to initiate fusion or fission 

process first have to alter the lipid environment. Hence it is necessary to study the protein-



93 

 

lipid interactions to understand the remodeling processes. It has been shown that mitoPLD, a 

fusion implicated protein interacts with cardiolipin. Since fusion and fission are highly 

dynamic process, we wanted to quantify the Drp1-cardiolipin interaction.  

 

 To study the Drp1 interaction with cardiolipins and its interaction in the presence of 

nucleotides, microscale thermophoresis method was used. This method detects the changes in 

the hydration shell of molecules upon binding to their substrate close to native conditions. 

Infrared lasers were used to produce precise microscale temperature gradients with in thin 

glass capillaries that are filled with buffer of choice. The nucleotides like ATP, GTP-γ-S were 

also titrated in the presence of cardiolipin with labeled Drp1. The KD for cardiolipin was 

obtained in an individual experiment. Once affinity value for cardiolipin is obtained, Drp1 

was titrated with non-hydrolysable GTP analog and ATP in the absence of cardiolipin. And 

the experiments were performed and analyzed to see how ATP and GTP-γ-S could alter the 

affinity of Drp1 to cardiolipin. These experiments yielded the lipid affinity in the presence 

and absence of nucleotides for Drp1 Fig. 18. Three readings at different laser powers, if 

translated in terms of increase in temperature it could be from 2° to 8°C temperature rise from 

room temperature was measured.  KD values were calculated either from thermophoresis, 

temperature jump or from the combination of both the effects. Heating the reaction mixture up 

to 30sec and cooling for 5 s gave a determination curve; from which KD values were 

estimated. Results are summarized in the Table 10. 

 

 

 

                                      Table 10: Summary of cardiolipin affinity to Drp1 in the presence of nucleotides 

 

 

 

 

 

 

 

 

 

 

 

Labeled 

Drp1 

(230 nM) 

 

 

Complex KD (µM) 

a. Cardiolipin 7.21 

b. Cardiolipin + ATP 0.14 

c. Cardiolipin+ GTP-γ-S 1.50 
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 Figure 18: Alexa 647, a fluorescence marker labelled Drp1 titrated with  (a) Cardiolipin, 

where the fluorescence intensity change was observed due to thermophoresis and 

temperature jump effect was fitted to obtain the affinity value of cariolipin for Drp1 (b) 

Cardiolipin and ATP, where the fluorescence intensity change due to thermophoresis 

effect was fitted to obtain the affinity value of cardiolipin for Drp1 (c) Cardiolipin and 

GTP-γ-S, where the fluorescence intensity change due to thermophoresis effect was fiited 

to obtain the affinity value of cardiolipin for Drp1.  
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3.7 Homology Modeling and Structural Analysis of the Drp1 GTPase 

Domain in Complex with Nucleotides and Cardiolipin   

 

The sequence similarity between human Drp1 (isoform 1) and dynaminA of D. 

discoideum was 79.5% for their GTPase domain Fig. 19. Based on x-ray crystallographically 

solved dynaminA structure, Drp1 structure was homology modeled. This core of the GTPase 

domain and the helices around the core β-sheets were structurally well conserved except for a 

few inserts in Drp1 Fig. 21. 

 

humdrp1 MEALIPVINKLQDVFNTVGADIIQLPQIVVVGTQSSGKSSVLESLVGRDLLPRGTGIVTR 60 

DymA    MDQLIPVINKLQDVFNTLGSDPLDLPQIVVVGSQSSGKSSVLENIVGRDFLPRGSGIVTR 60 

        *: **************:*:* ::********:**********.:****:****:***** 

 

humdrp1 RPLILQLVHVTQEDKRKTTGEENGVEAEEWGKFLHTKNKLYTDFDEIRQEIENETERISG 120 

DymA    RPLILQLTHLPIAD--------DGSQTQEWGEFLHKPNDMFYDFSEIREEIIRDTDRMTG 112 

        *******.*:.*        :* :::***:***.*.:: **.***:**.:*:*::* 

 

humdrp1 NNKGVSPEPIHLKIFSPNVVNLTLVDLPGMTKVPVGDQPKDIELQIRELILRFISNPNSI 180 

DymA    KNKGISAQPINLKIYSPHVVNLTLVDLPGITKVPVGDQPTDIEQQIRRMVMAYIKKQNAI 172 

        :***:*.:**:***:**:***********:*********.******.::: :*.: *:* 

 

humdrp1 ILAVTAANTDMATSEALKISREVDPDGRRTLAVITKLDLMDAGTDAMDVLMGRVIPVKLG 240 

DymA    IVAVTPANTDLANSDALQLAKEVDPEGKRTIGVITKLDLMDKGTDAMEVLTGRVIPLTLG 232 

        *:***.****:*.*:**::::****:*:**:.**************:*******:.** 

 

 

humdrp1 IIGVVNRSQLDINNKKSVTDSIRDEYAFLQKK--YPSLANRNGTKYLARTLNRLLMHHIR 298 

DymA    FIGVINRSQEDIIAKKSIRESLKSEILYFKNHPIYKSIANRSGTAYLSKTLNKLLMFHIR 292 

        :***:*********: :*::.*  :::::  **:***.****::***:***.*** 

 

humdrp1 DC------ 300 

DymA    DTLPDLKV 300 

 

 Figure 19:  Sequence alignment of the GTPase domain of Drp1 and dynaminA. The 

sequences are 61.7 % identical and 79.5 % similar. The alignment is based on 

Needleman-Wunsh method lit. 

 

Our preliminary modeling and computational analysis showed that R247 residue in 

Drp1 which is equivalent to R239 in dynaminA GTPase domain sequence of D. discoideum is 

important in coordinating the nucleotide in the active site of dynaminA structure Fig. 20. 

Drp1 R247E mutant expressing cells formed elongated mitochondrial tubules and 

significantly decreased BAX oligomeirization. This has further experimentally confirmed by 

other groups in a recent study (Montessuit et al., 2010). Our modelling studies on the R239 of 

dynaminA and its importance in interaction with the ATP similar to that of R239 interaction 
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with GTP as in the crystal structure of dynaminA explained how ATP can accommodate into 

the active site of the dynaminA GTPase domain. Docking studies were performed using 

GOLD program, and docking was performed in the presence of GTP and ATP in an 

individual run and the grid was centred on K208 of dynaminA crystal strucuture.  

 

The GTPase domain of D. discoideum dynaminA clearly showed the importance of 

R239 in coordinating with the GDP ribose oxygen. Our docking experiment proved that this 

residue is also important for ATP coordination too. This coordination is mediated with the 

backbone carbonyl atom of the arginine.  

 

 

Figure 20: Ligplot comparing the interacting amino acids of D. discoideum dynaminA 

with GTP (left) and ATP in the nucleotide binding pocket (right). The figure shows the 

interaction of the ribose with arginine 239, the equivalent amino acid residue to arginine 

247 in Drp1. 

 

In an another individual docking experiments with 2 phosphate head group containing 

cardiolipins and with Drp1 GTPase domain homology model as target confirmed the importance 
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b 

of R247, i.e. the arginine to cardiolipin interaction might take place between the phosphate head 

group and the backbone carbonyl group. It was shown that the binding of ATP to Drp1 stabilizes 

the quaternary structures Fig. 22. But extensive molecular dynamics calculations in the presence 

of waters are needed to understand the detailed interactions especially when studying with 

charged lipid molecules that have resonance structure. This would help in assessing particular 

interaction when the head group of cardiolipins gets tucked in due to proton availability from the 

water group. Cardiolipins has a resonance structure in bilayers and other conformations in 

solution (Kates et al., 1993).  Cardiolipin binding to Drp1 is important and has been shown that 

cardiolipin containing liposomes is required for tBid assisted Drp1 induced Bax oligomerization.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: (a, b) Homology models of Drp1 GTPase domain based on multiple structure 

alignment. (a) Stereo view of Drp1 GTPase domain and labeled with the residues implied 

in dominant negative phenotype (b) superimposed stereo view of modeled Drp1 and 

dynaminA GTPase domain from the pdb id:1jx2. 
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Figure 22: (top) Superimposed cartoons of experimentally solved dynaminA GTPase 

domain (pdb id: 1jwy) structure in orange with homology modeled Drp1in blue. R247, 

R239, GDP are shown as sticks (bottom) cartoon representation of Drp1 homology model 

in blue. The docking of cardiolipin on the modeled Drp1 GTPase domain shows the 

possibility of R247 interaction with the head group of the cardiolipin.  
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3.8 Crystallization Experiments of Drp1 

 Crystal structure of Drp1 and derivation of functions from the 3-dimensional structure would 

provide evidence about the existing theories on mitochondrial fissioning, interactions with 

cardiolipins, assembly stimulated GTP hydrolysis, force generation coupled to conformational 

changes, interactions with regulatory molecules such as cyclinA. To achieve this aim, complete 

range of commercially available crystallization trials has been screened to crystallize Drp1. Drp1 

full length, Drp1 full length with sertraline, Drp1 full length with ADP meta-vanadate, Drp1 in 

complex with Cdk2/cyclinA complex were a few crystallization projects that has been  focused 

during this thesis work. Until now the attempts to obtain diffractable crystals were rate limiting. 

Comparable mutant constructs of Drp1 to dynamin3 mutant constructs of monomer, has also been 

made and is in the pipeline to crystallize.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Crystals obtained from the commercially available crystallization screenings 

with Drp1. 

 

The I481 of dynamin3 equivalent is I489 of Drp1 is mutated to D and H687, F688 of 

dynamin3 equivalent is H672, and L673 of Drp1 is mutated to D, S respectively. These 

monomer constructs are in the pipeline to produce diffractable crystals.  
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3.9 Use of Psychotropic Drugs as Potential Dynamin and Drp1Modulators 

Psycotropic drugs modulate the level of brain monoamines and neurotransmitters 

(Preziosi, 1977). Previously it has been shown that selective serotonin reuptake inhibitor 

(SSRI), is a mixed-type inhibitor of dynamin1 with respect to both GTP and l-α-phosphatidyl-

l-serine in vitro, implicating  its role in the regulation of  neurotransmitter transport by 

modulating synaptic vesicle endocytosis (Otomo, 2008 ; Takahashi, 2010). The mechanism of 

action might be through the inhibition of dynamin1 GTPase activity. Selected psychotropic 

drugs (see introduction) were used for the study of their modulating effects on dynamin and 

Drp1.  Chlorpromazine, sertraline have been shown to inhibit the GTPase activity of 

dynamin1. This study focused on the modulation of GTPase activity of neuron specific, 

neuron enriched dynamin1, and Drp1 isoform1 by the psychotropic drugs. To obtain the 

affinity, and to test their specificity and potency by the pharmacologically active compounds 

such as sertraline, fluvoxamine, and chlorpromazine for dynamin1 and Drp1, steady-state 

kinetics and microscale thermophoresis were performed. The following are a few drugs used 

for the study: 

 

 Chlorpromazine - antipsychotic-phenothiazin class  

 Clomipramine - antidepressant-tricyclic 

 Maprotiline - antidepressant-tetracyclic 

 Fluoxetine - antidepressant 

 Paroxetine - antidepressant 

 Sertraline - antidepressant 

 Fluvoxamine – antidepressant 

 

The drug molecules were prepared either in water or DMSO as stocks. The solubility 

of the compounds are summarized in the material and methods chapter, and from this stock, 

the compounds were further dissolved in 30 mM Tris-buffer for performing the assays. 

Sertraline and fluvoxamine had an effect on dynamin1 and Drp1‟s GTPase activity, other 

drugs had no or very high IC50 value for dynamin1. 
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Table 11: Psychotropic drugs and their molecular structures 

Psychotropic Drugs Chemical Structure 

Chlorpromazine 

 

Clomipramine 

 
 

Maprotiline 

 

Fluoxetine 

 

Paroxetine 

 

Sertraline 

 

Fluvoxamine 
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3.9.1 Fluvoxamine and Sertraline are Potent Inhibitors of Drp1 and 

Dynamin1 GTPase Activity  

 

Fluvoxamine seems to inhibit dynamin1 full length protein Fig. 24b, but not the 

minimal construct (GG1) Fig. 25b which consist of the GTPase domain and C-terminal GED. 

We can speculate that fluvoxamine might bind to PH domain or middle domain of 

dynamin1therby inhibiting the dynamin1GTPase activity, but sertraline on the other hand 

seems to have different IC50 values for the full length dynamin1and GG1 proteins. The lower 

IC50 value for GG1means, sertraline preferentially could influence the GTPase activity via 

binding to GED binding groove in the N-terminal GTPase domain. Recent GG1 structure in 

complex with GDP.AlF4
 –

 (Chappie et al., 2010), provides structural detail about the GED 

binding and its influence on stimulated GTP hydrolysis rate. Both fluvoxamine and sertraline 

drugs have been used in the treatment of antidepression (Takahashi et al., 2009), 

antipsychotic. But the mechanism of action is not clear for these drugs; except for the fact that 

drugs like chlorpromazine is well known endocytosis inhibitor (Otomo et al., 2008). 

Understanding the mechanism of action of these drugs by inhibiting dynamin1‟s GTPase 

activity is important, for this purpose the full length proteins that were produced 

recombinantly in Sf9 cells in case of dynamin1 and in E. coli in case of Drp1 were used. The 

minimal construct which has GTPase domain and C-terminal GED (GTPase effector domain) 

of dynamin1 also recombinantly produced in E. coli and used in the assay system. Other than 

steady-state kinetics, the compounds that had an effect on GTPase activity with the dynamin1 

full length, GG1and Drp1 have been used in screening with crystallization conditions to 

obtain crystals. 

 

In case of Drp1, sertraline however unable to compete GTP binding site or in other 

words sertraline is unable to inhibit GTP dependent polymerisation of the protein (from 

dynamic light scattering and analytical ultracentrifuge data). The mechanism, how sertraline 

inhibits Drp1‟s stimulated GTPase activity can be speculated i.e. sertraline may bind to the 

GED binding site and thereby inhibits the GED induced GTPase activity (inhibition of 

assembly stimulated GTPase activity). In summary, the compounds efficiency to perturb 

GTPase activity of the GG1, dynamin1 and Drp1, using kinetic, biophysical and cell 

biological experiments gave us insight into the importance of sertraline. The IC50 of sertraline 

for Drp1 is 8 µM Fig. 26, kinetic data in an ionic dependent manner also showed that 

sertraline inhibited the assembly stimulated GTPase activity of Drp1. From the above studies 
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a 

b 

and the results derived from them showed that sertraline and fluvoxamine can be used as 

modulators or as an effector for dynamin1 and Drp1. 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: (a) Steady-state GTPase hydrolysis activity of dynamin1 in the presence of 

sertraline and (b) fluvoxamine. IC50 of sertraline for dynamin1 full length is 71 to 130 

µM and IC50 of fluvoxamine for dynamin1 full length is 14 µM. The concentration range 

for sertraline is 0.1 µM – 1000 µM, and 0.1 µM – 100 µM for fluvoxamine were used in 

the assay. 
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Figure 25: Plots showing the steady-state GTPase hydrolysis inhibition activity of 

dynamin1 minimal construct (GG1) which has the GTPase domain and c-terminal GED 

domain. (a) Sertraline and (b) Fluvoxamine.  The sertraline had an effect on the GTPase 

hydrolysis rate of GG1; IC50 of sertraline is 8.1 µM for the dynamin1 minimal construct 

almost no inhibition is observed with fluvoxamine on GTPase hydrolysis activity. 
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Figure 26: Inhibition of Drp1 GTPase activity by sertraline. 

 

   

3.9.2 Engineering, Production, and Crystallization of Genetically Modified 

Dynamin1 Constructs for High Resolution Structure Determination 

3.9.2.1 Engineering of Various Full-Length and Truncated Dynamin1 

Constructs   

 

  The c-terminal PRD domain of dynamin1, have been modified to histidine arginine 

rich (HRD) domain Fig. 27. For this purpose the c-terminal have been synthetically made and 

inserted at the c-terminal of dynamin1. We were interested in perturbing the intrinsic disorder 

by changing the propensity for secondary structural elements that has been predicted by 

domain prediction plot Fig. 28a. We optimized the protein sequence at the proline/arginine 

rich domain, and we were able to clone this construct in pFastHtb, express and purify them 

from sf9 cells produced with baculo virus system, but the expression level became the rate 

limiting for further experimental analysis. Replacement caused 6% variation with the original 
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full length sequence and reduced the disordered propensity significantly; we calculated the 

disordered propensity of the sequence using a web based tool Fig. 27. 

 

 

10        20        30        40        50        60 

PRD;   VSTPMPPPVDDSWLQVQSVPAGRRSPTSSPTPQRRAPAVPPARPGSRGPAPGPPPAGSAL 

       :.:::   ::::::::::::::::. ...  ::::::::  ::::.:: : ::  ::.:: 

HRD;   VETPMHHHVDDSWLQVQSVPAGRRNHNEEHEPQRRAPAVHHARPGERGHAHGPHHAGEAL 

               10        20        30        40        50        60 

 

               70        80        90       100       110      

PRD;   GGAPPVPSRPGASPDPFGPPPQVPSRPNRAPPGVPSRSGQASPSRPESPRPPFDL 

       :::  : .: ::.:: :::  :::.  :::  :: .:.:::: .: :. : :::: 

HRD;   GGAHHVHERHGAEPDHFGPHHQVPEPHNRAHHGVHEREGQASHERHEEHRHPFDL 

               70        80        90       100       110      

 

Figure 27: Sequence comparison of PRD and modified HRD (histidine - arginine rich 

domain) domains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: (a) Fold index plot, where the area under green represents the ordered region 

and the area under red represents the intrinsically disordered region of the protein 

sequence (bip.weizmann.ac.il/fldbin/index). (b) Represents the domain organization of 

human dynamin1 and its sequence annotation. 
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PRD HRD 

 

 

Figure 29: (a) Domain prediction plot for wild type dynamin1 proline rich domain (PRD) 

(b) Domain prediction plot after rational insertion of histidines at the PRD of the 

dynamin1 sequence (http://globplot.embl.de/). The blue histogram represents the 

disorderness over the predicited PRD of the human dynamin1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: (a) Dynamin1 constructs prepared during the course of this work and their 

domain organizations. 

 
 
 
 

http://globplot.embl.de/


108 

 

a b 

c d 

We were also interested in understanding the mechanism of known endocytosis 

inhibitor like chlorpromazine; we also found that fluvoxamine another drug like molecule 

could inhibit full length dynamin and not the minimal construct. The minimal constructs were 

designed with the aim to prove the indirect influence of GTPase effector domain (GED) on 

dynamin‟s basal and assembly stimulated GTP hydrolysis. The minimal construct was 

purified as maltose binding protein as fusion partner. The GG1 comprises of 6-320 residues of 

GTPase domain cloned between EcoRI, XbaI and 726-750 residues of C-terminal GTPase 

effector domain cloned  between XbaI ,HindIII similarly the GGA comprises of 2-316 

residues of GTPase domain cloned between EcoRI, XbaI and 815-848 residues of C-terminal 

GTPase effector domain cloned between XbaI ,HindIII both the constructs in pMALC2X 

vector. 

 

         

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Dynamin GTPase domains in cartoon representation and c-terminal myosin 

helix in line representation (a) pdb id: 1jx2, dymA GTPase domain in brown and c-

terminal myosin helix in blue (b) pdb id: 2aka, dnm1 GTPase domain in green and c-

terminal myosin helix in in red (c) superpose of the hydrophobic grove, suspected GED 

binding pocket (d) superpose of 1jx2-GDPfree form in brown and 1jwy-GDP bound form 

in pink. 
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The minimal constructs we rationalised were inferred from the myosin II-dynaminA 

GTPase domin structure (pdb id: 1jx2, Hartmut Niemann) and myosin II-dynamin1 GTPase 

domain structure (pdb id: 2aka, Hartmut Niemann) Fig. 31a,b,c,d. The knowledge and the 

model obtained from hGBP (human guanylate binding protein, Prakash et al., 2000) also 

assisted in preparing the constructs, The hydrophobic groove where the myosin helix binds to 

the GTPase domain in both the structure are similar, except for the groove area, dynaminA 

GTPase domain has compact and smaller groove area compared to the rat Dnm1 GTPase 

domain Table 12. We are not sure about the difference, why almost three times more basal 

GTPase activity for myosin II-dnm1 fusion than myosin II-dymA fusion protein. It might be 

this hydrophobic pocket which influence the GED binding might have influence during GTP 

binding or transition state but not in GDP bound state because no major conformational 

difference has been observed with GDP bound and GDP free state structure in dymA GTPase 

domain except for the Q34 flip in the G1 motif Fig. 32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Gln34 in orange is GDP bound dynaminA GTPase domain structure whereas 

Gln in red is unbound form; in cyan is Gln40 is dnm1GTPase domain GDP free form. 

Both Gln and GDP are shown in sticks. 

 

A simple Kyte-Doolittle hydropathy index observation shows that higher the hydropathy 

lesser the GTPase activity. TRGLV is 2.4 (myosin II-dynaminA fusion); RTLVPR is -3.3 

(myosin II-dnm1 fusion); DEMLRMYHALKEALSIIGDINTTTV is 2.8 (c terminal GED in 

GG1 construct). The values for individual amino acids are taken from Expasy server.We 

further measured the GTPase activity of all necessary constructs and screened complete set of 
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commercially available crystallisation conditions for dynamin1 full length, dynamin3-Δ PRD, 

MBP-GG1 proteins. Table 12 summarizes the basal GTPase activity of some of the constructs 

we prepared.  

 

3.9.2.2 GTPase Activity Test of Various Dynamin1 Constructs 

The basal GTPase activity of a range of constructs were measured under standard 

steady-state assay condition 25 mM HEPES pH7.3, 150 mM NaCl/KCl, 5mM MgCl2, and 0.5 

mM DTT. The measured GTPase activity provided the basis for cross validation of the dynamin 

activities that has been measured with the presence of inhibitors and modulators. The summary of 

the measured GTPase activites have been shown in the table below. 

 

   Table 12: Basal GTPase activity of various dynamin, dynamin fusion and myosin proteins used in this thesis 

 
Dynamin Constructs 

 

Basal GTPase s
-1

 

DynaminA Full length  (D. discoideum) 0.112   ±     0.020 

Myosin II-dynaminA fusion  (D. discoideum) 0.119   ±    0.030 

Myosin II-dynamin1 fusion (R. norvegicus) 0.610   ±     0.070 

Maltose binding protein-GG1fusion (H.sapiens) 0.210   ±     0.020 

Dynamin related protein1 (H. sapiens) 0.070   ±    0.006 

Dynamin1 full length (H. sapiens) 0.270  ±    0.040 

Myosin II motor domain (D. discoideum) 0.018  ±    0.003 
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3.9.2.3 SH3-Domain Mediated Binding of Amphiphysin1 to Dynamin1 

  Neuronal amphiphysin1 is a 125 kDa dynamin1 binding protein involved in clathrin 

mediated endocytosis in neurons. The mechanism how it regulates the binding of dynamin1 is 

not clear. Amphiphysin1 heterodimer with amphiphysin2 assist dynamin1 interaction with 

clathrin coat and membranes. We quantified the affinity of amphiphysin1-SH3 domain with 

microscale thermophoresis Fig. 33, dynamin1 was labeled with NT-647 dye from the 

manufacturer. SH3 domain was serially diluted and titrated. The thermophoresis effect against 

concentration curve yielded the affinity of 270 mM. The SH3 domain of amphiphysin1 

commonly recognizes PXXP motifs, and it binds to specific site from 833–838 of dynamin1 

which has the amino acid sequence PSRPNR. Since the SH3 domain of amphiphysin1 has 

nanomolar affinity for dynamin1, it is used as a affinity tag during the purification of 

dynamin1. 

 

  To examine whether SH3 domain‟s interaction has influence on dynamin1 GTPase 

activity, the steady-state kinetics was performed in the presence of the SH3 domain at 150 

mM NaCl salt condition, but we could not observe any significant change or no difference at 

all.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Response curve from microscale thermophoresis experiment. The nano 

temper response for labeled dynamin1 that was titrated against amphiphysin1-SH3 

domain. The KD value obtained from the fit is 270 nM. Thermophoresis effect is the 

nano-temper response in the graph. 
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The GTPase hydrolysis rate has no significant difference as observed 2.2 min
-1

 and 3.7 

min
-1

 for without and with SH3 domain respectively. This might be obvious. Because the 

protein – protein interaction domain has an adapter role than that of effector role to act like a 

GED. From our results we can say that, SH3 domain has no role in stimulating GTPase 

hydrolysis activity of dynamin1 or to intervene in the basal GTPase hydrolysis activity.  

 

4. Small Molecule Effectors of Myosin Motor Activity 

4.1 Structure-Based Identification of Myosin VI Specific Inhibitors  

In this work halogenated carbazoles and phenols were studied as potential modulators of 

myosin motor activity. Small molecule effectors of motor proteins that are cell permeable, 

specific, hold potential as therapeutic drugs and as cell biological tools. Upon identification of 

such small molecule effectors; optimization and several rounds of refinement using pharmaco-

kinetics procedures, the effector molecules can be used as drug candidates targeting myosin, 

one of the important motor proteins within the cell for a specific therapeutic purpose.  

 

 Unconventional class-6 myosins are exclusively expressed in higher eukaryotes and 

encoded by a single gene (MYO6) (Sellers, 2000). In contrast to all other myosins studied so 

far, myosin VI was shown to traffic towards the pointed end of polarized actin filaments. 

These property origins from a structurally unique, class-specific insertion within the catalytic 

motor domain, redirecting the lever arm around 120° relative to that of plus-end directed 

myosins (Bahloul, 2004; Bryant, 2007; Chevreux, 2005; De La Cruz, 2001; Liao, 2009; 

Menetrey, 2005; Mukherjea, 2009; Park, 2007). In agreement with the directionality of the F-

actin, it was shown that myosin VI participates in a multitude of fundamental physiological 

processes involving endocytosis, secretion, the intracellular transport of organelles and 

vesicles as well as normal and cancerous cell migration (Aschenbrenner, 2003; Dunn, 2006; 

Geisbrecht, 2002; Hasson, 2003; Mermall, 1994; Yoshida, 2004). 

   

 Thus, myosin VI is an interesting therapeutic target. Selective inhibitors are postulated 

to have medicinal relevance. Despite the potential of myosin VI as drug target, inhibitors of 

the actomyosin ATPase activity were not identified. Already known allosteric small-molecule 

inhibitors with selectivity for class-1, -2, and -5 myosins do not exhibit potency against 
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myosin VI. This might in be in particularly due to the differences in the structural and kinetic 

features of the myosin VI motor domain, showing the rationale for the design of new inhibitor 

scaffolds. 

 

One of the allosteric binding pockets in myosin is located 16 Å away from the active 

site. This pocket is surrounded by strut-loop, cm-loop, loop-2, loop-4 and helix-loop-helix. 

This collectively forms the actin binding region on myosins. The difference in the allosteric 

binding pocket between the structural models of D. discoideum myosin II (pdb id: 2jhr) and S. 

scrofa myosin VI (pdb id: 2v26) lies in the cavity size or the volume of the allosteric binding 

pocket. The difference is brought about by the sequence in this potential binding pocket. H430 

and D433 are the equivalent residues for R428 and L431 in comparison to the sequence of D. 

discoideum myosin II. The allosteric binding pocket shown in the Fig. 34 is the preferred 

binding site for most of the small molecule inhibitors tested by us (Fedorov et al., 2009; 

Martin et al., 2009; Preller et al.). K265, A424, R428, L431 are the major interacting amino 

acid residues with the small molecule effectors known so far. Whereas K232, T426, H430, 

D433 are the corresponding residues in myosin VI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Comparison of Allosteric Binding Site of D. discoideum Myosin II and S. 

scrofa Myosin VI Motor Domain (a) Potential allosteric binding pocket of myosin II, 

shown as a structural comparison at the allosteric pocket with myosin VI. Amino acid 

residues in stick representation (Pink = myosin VI; orange = myosin II). (b) Close-up 

view of the pentabromopseudilin (green stick model) binding site in D. discoideum 

myosin II. The side chains in line representation, superimposed with myosin VI (blue) 

side chains with myosin II (orange). 
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This project started with understanding and comparing well characterized allosteric 

binding pockets, and screening a set of compounds, testing them in in-vitro assays, to see the 

influence of the compounds on the on the basal and actin-activated ATP hydrolysis activity. 

In-vivo assay like vesicle fusion assay combined with live cell TIRF imaging was also 

performed using the small ligand AP21998 induced vesicle fusion system (Jaiswal, 2009 ). 

Initial protein-small molecule interaction studies were performed in-silico. 

 

All the phenols for investigations were drawn using JME editor, and the 2-dimensional 

sketch coordinates were supplied to the GlycoBioChem - PRODRG2 

(http://davapc1.bioch.dundee.ac.uk/prodrg/) server for minimization. The output from the 

server produced mol2 format files. The resulting mol2 files were again supplied to autodock 

for ligand preparations. This includes protonation and energy minimization of the ligands. The 

output PDBQT files of the ligands were used in autodock vina, in targeted docking mode. The 

receptor, i.e. myosin VI coordinate file was prepared using autodock MGL tools 

(http://mgl.scripps.edu/), the grid center and grid size were also obtained from autodock. 

Finally, using a self-written PBS script file autodock vina was executed. The following 

configuration file is in the materials and methods section. 

 

  Table 13: Polyhalogenated phenols and their calculated free energies of binding 

Phenols Molecular formula 

Calculated energies 

(predicted free energy of 

binding) 

kcal/mol 

2,4,6-Triiodophenol (TIP) C6H3O1I3         -5.6 

Pentabromophenol (PBPh) C6H1O1Br5                     -5.4 

3,5-Bis(trifluoromethyl)phenol 

(TFMP) 
C8H4O1Fl6 -7.6 

3,4,5-Trimethoxyphenol (TMP) C9H12O4 -5.4 

2,4,6-Tribromophenol (TBP) C6H3O1Br3 -5.8 

 

 

The docking study provided different poses for the phenols in the allosteric binding 

pocket. They were ranked from one to five; Fig. 35 shows the preferred binding pose of the 

individual phenols that were top ranked from the docking studies. Following the docking 
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experiments, the microscale thermophoresis technique was used to determine the affinity of 

the compounds for myosin VI.  

 

The low molecular weight effectors used in the above docking studies resulted in 

different free energy of binding. The halogen bonding and the hydrophobic interactions vary 

with their substituents. 3,5-Bis(trifluoromethyl)phenol has the least predicted free energy 

whereas pentabromophenol and 3,4,5-Trimethoxyphenol has the highest calculated free 

energies. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 35: Myosin VI models showing the docking results with (a) Pentabromophenol 

(b) 2,4,6-Tribromophenol; (c) 3,4,5-Trimethoxyphenol; (d) 3,5-

Bis(trifluoromethyl)phenol; (e) 2,4,6-Triiodophenol; (f) model showing cleft occupied by 

all the phenols. 
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4.1.1 Functional Characterization of Myosin VI Specific Inhibitors 

 In the present study, we describe the effect of polyhalogenated phenol derivatives 

on the in vitro steady-state ATPase activity and in vivo function of human myosin VI. 

The basic understanding of the enzymology allowed us to specifically test small molecule 

effectors on their inhibitory activity. Our data indicates that the myosin ATPase activity 

can be specifically targeted by the bioactive small-molecule inhibitors 2,4,6-

Triiodophenol (TIP, also known as Bobel-24 or AM-24) and 2,3,4,5,6-Pentabromophenol 

(PBPh), leading to a decrease of the catalytic activity of myosin VI in vitro. In-vivo, 

treatment of live cells with TIP and PBPh leads to a phenotype that is comparable with a 

myosin VI knockdown, indicating a selective blockade of the myosin motor function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Microscale thermophoresis plot, fitted to the fluorescence intensity 

change obtained from the thermophoresis effect. The change in thermophoresis 

movement of labeled myosin VI upon binding to pentabromophenol (green) and 

triiodophenol (blue) is measured as the change in fluorescence intensity. KD 

represents the affinity value of the phenols to myosin VI. 
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The results obtained gave the order of affinity of the compounds to myosin VI as follows: 

Pentabromophenol>2,4,6-triiodophenol with the values of 44, and 61 µM respectively 

Fig. 36. TMP, TFMP, and TBP had produced no significant change in the fluorescence 

intensity. 

 

4.1.2 Inhibition of Myosin VI ATPase Activity by PBPh and TIP 

After the preliminary phenol-myosin VI interaction studies, steady state kinetic 

experiments were performed to test the influence of the compounds on the myosin ATP 

hydrolysis activity. The small molecule effector TIP display a biphasic behavior with 37% 

initial inhibition at 0.8±0.5 µM and 63% inhibition at 37±2.6 µM concentrations. Whereas 

PBPh decreased the maximum rate of actin activated ATPase rate of myosin VI at 13.7 µM 

concentration. Fig. 37 shows the  ATP hydrolysis rate inhibition by myosin VI by both TIP 

and PBPh. 

  

 

Figure 37: Steady-state ATPase activity. Chemical inhibition of the actin-activated 

steady-state ATPase activity of myosin VI by TIP  and PBPh results in an IC50 value 

of 7.9 ± 1.9 µM and 13.7 ± 2.67 . Steady-state ATP hydrolysis activity of myosin VI 

in the presence of 0.1-100 µM of the inhibitors.  
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The characteristics of the two curves upon fitting the ATPase steady-state assay 

data are different for TIP and PBPh. TIP has more gradual slope than PBPh, which has 

steep fall. The other phenols 3,5-Bis(trifluoromethyl)phenol; 3,4,5-Trimethoxyphenol, 

and 3,4,5-Tribromophenol either had no or had effect at higher concentrations of the 

compounds on Myosin VI ATP hydrolysis activity. From the binding and activity assays, 

it could be inferred than TIP and PBPh can bind and modulate the myosin VI motor 

activity. Particularly the specificity of TIP was tested for myosin VI. Myosin I, myosin II 

and β-cardiac myosin ATPase hydrolysis activity was not perturbed by the TIP. The table 

below summarizes the TIP‟s activity on other classes of myosin. 

 

 

Table 14: Specificity of TIP for myosin VI and its influence on other myosins ATPase activity 

Myosin Isoforms 
Basal ATPase 

activity (s
-1

) 

Actin activated 

ATPase activity 

(s
-1

) 

Inhibition 

HMM 0.03 - n.a 

Myosin IB 

0.07 0.7 

Triiodophenol / 

inhibition at 

above 50 µM 

Myosin ID 
0.04 1.2 

Triiodophenol / 

no inhibition 

Myosin IIC 
0.02 1.19 

Triiodophenol / 

no inhibition 

β-cardiac myosin 

0.034 - 

 

Triiododphenol / 

no inhibition 
 

 

4.1.3 Inhibition of Myosin VI Cellular Function by Halogenated Phenols 

  TFMP, TMP, and TBP have no effect on actin-activated ATP hydrolysis activity 

of myosin VI. So, as to confirm the specific inhibitory effect of PBPh and TIP in in-vivo, 

vesicle fusion assay was done and TIRF mode in microscopy was used for visualization. 

In this experiment HeLa cells were treated by the compounds of interest. Treatment of 
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cells with 2,4,6-Triiodophenol or 2,3,4,5,6-Pentabromophenol reduces the number of 

exocytic fusion events at the plasma membrane in vivo Fig. 38. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38: Representative graph of fusion assay:  HeLa cells treated with different 

triiodophenol concentration (1.25, 5, 20 and 40 µM). The exocytic fusion of vesicles 

to plama membrane is inhibited by triiodophenol. 

 

TIRF microscopy was used to study and  quantify the total number of fusion 

events at the base of sets of ten cells treated with AP21998 and either TIP or PBPh and 

monitored at specific, five minute intervals between 25 and 60 minutes after this 

treatment.  The results showed that treatment with increasing concentrations of TIP (0.2 

µM, 1 µM, 3 µM, 5 µM, 25 µM) results in correspondingly stronger decreases in the 

number of fusion events at the plasma membrane, as compared with mock cells (23%, 

46%, 67%, 85%, and 100% decreases, respectively). Similarly, treatment with increasing 

concentrations of PBPh (0.2 µM, 1 µM, 3 µM, 5 µM, 25 µM) results in correspondingly 

stronger decreases in the number of fusion events (34%, 44%, 72%, 92%, and 100% 

decreases, respectively).   

 

The moderate, 46% or 44% decreases in the number of fusion events after 

treatment of cells with 1 µM TIP or PBPh are comparable to the 42% decrease in fusion 
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a d b c 

events seen after a knockdown of myosin VI with a SMARTpool collection of four 

independent siRNA primers.  In addition to this quantitative similarity to myosin VI 

knockdown cells, there are qualitative similarities in the appearance and distribution of 

vesicles at the base of cells treated with TIP or PBPh and myosin VI knockdown cells.  

As a negative control, cells treated with 25 µM TBP were monitored in a similar manner 

and found to have no significant deviation from mock cells in the number of secretory 

fusion events at the plasma membrane Fig. 39.   

 

 

 

Figure 39: Total number of vesicle fusion events at the plasma membrane. From 

left to right, sample images of the TIRF field at the base of a mock cell (a), a cell 

treated with 5 µM 2,4,6-Triiodophenol (b), a cell treated with 5 µM 2,3,4,5,6-

Pentabromophenol (c), and a cell in which myosin VI has been knocked down by 

siRNA transfection (d).  Pink squares mark the approximate locations of fusion 

events over the course of a 5 second movie.   

 The selection of the lead compounds that only differ in the modifications of the 

phenol-ring and the unique inhibitor scaffold that does not resemble any other myosin 

inhibitor described so far are the structural requirements for the selective myosin VI 

inhibition. The predicted binding mode within the known pseudilin binding site indicates 

an allosteric mechanism underlying the chemical inhibition. In summary, both closely 

related organo-halogenic compounds exhibit very similar interaction profiles with myosin 

VI, indicating that the phenolic scaffold is a good lead. Fine-tuning and optimization of 

the compounds could lead to the generation of potent, highly selective myosin VI 

inhibitors with therapeutic potential as well as useful tool compounds. The results are 

summarized in the table. 
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Table 15: Summary of myosin VI specific inhibitors TIP and PBPh. 

Parameter Assay TIP PBPh 

∆Gbind,free (kcal/mol) Docking -5.6 -5.4 

KD (µM) Thermophoresis 61 ± 3.0 44 ± 3.83 

IC50 (μM) NADH assay 
0.8 ± 0.5 and 

37 ± 2.6 
13.7 ± 2.67 

IC50 (μM) Live cell imaging 1.6 ± 0.6 1.5 ± 1.9 

4.2 Carbazoles as Modulators of Myosin Motor Activity  

            Carbazoles are aromatic heterocyclic organic compound. They have a tricyclic 

structure, consisting of two six-membered benzene ring fused on either side of a five-

membered nitrogen-containing ring Fig. 40. The compound's structure is an indole 

structure but in which a second benzene ring is fused to the five-membered ring at the 2-3 

position of indole (equivalent to the 4a-8a double bond in carbazole). Graebe and Glazer 

were the first to isolate carbazoles from coal tar in 1872 (Knolker and Reddy, 2008). In 

1965, Chakraborty, (Chakraborty et al., 1995a; Chakraborty et al., 1995b; Chakraborty 

and Roy, 1991, 2003; Chakraborty et al., 2009) described the isolation and antibiotic 

properties of carbazole alkaloids from Murraya koenigii Spreng. Most of the carbazole 

alkaloids have been isolated from the taxonomically related higher plants of the genus 

Murraya, Glycosmis, and Clausena from the family Rutaceae. Further natural sources of 

carbazole alkaloids are streptomyces, blue-green algae hyella caespitose, aspergillus, 

actinomadura and the ascidian didemnum granulatum species.  

 

 

 

 

 

 

Figure 40: Chemical structures of carbazoles 
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                    Table 16:  List of Carbazole compounds used for molecular modeling and kinetic studies 

KIN.No. 
Molecular 

Structure 

Molecular 

Formula 

Molecular 

Weight (kDa) 

79 

 

C12H6Br3NO 419.8941 

80 

 

C12H5Br4NO 498.7902 

81 

 

C13H8Br3NO 433.921 

82 

 

C13H9F2NO 233.213 

83 

 

C12H7F2NO 219.187 

84 

 

C14H9F2NO2 261.224 

85 

 

C13H6Cl5NO 369.458 

86 

 

C12H4Cl5NO 355.431 

87 

 

C14H8Br3NO2 461.931 

88 

 

C13H10FNO 215.223 

89 

 

C12H8FNO 201.196 
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90 

 

C13H9F2NO 233.214 

91 

 

C12H7F2NO 219.187 

92 

 

C13H8F3NO 251.204 

93 

 

C12H6F3NO 237.177 

95 

 

C12H5Cl4NO 320.986 

96 

 

C13H8Cl3NO 300.568 

97 

 

C12H6Cl3NO 286.541 

98 

 

C13H7Cl4NO 335.013 

99 

 

C12H5Cl4NO 320.986 

100 

 

C14H11Br2NO 369.051 

101 

 

C13H9Br2NO 355.025 
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Carbazole derivatives are well known for their various pharmacological activities, 

including anti-HIV, anticancer, antibacterial and antifungal activities (Arakawa et al., 1999; Barta 

et al., 2009; Hu et al., 2007; Hu et al., 2006; Okumura et al., 2006). Natural and synthetic 

carbazoles represent an important and heterogeneous class of anticancer agents. Natural carbazole 

alkaloids in-spite of its many biological activities displays also cytotoxicity against varieties of 

tumor cell lines. Many carbazole derivatives have been tested for cytotoxic activity, some of them 

have also entered clinical trials, but only a few have been approved for the treatment of cancer so 

far, since the clinical application of many carbazoles has encountered problems like severe side 

effects or multidrug resistance. So, it is necessary to screen diversified carbazole molecules on 

various biological targets. We tested the listed carbazoles with myosin as target. 

 

So, considering the fact that, myosin II motor domain of the slime mold D. discoideum 

represent as excellent model proteins, as they can be produced in recombinant form in sufficient 

quantities for detailed kinetic and crystallographic studies. Investigation of the effect of different 

carbazole derivatives on the basal and actin-activated ATPase activity of class-2, class-5, and 

class-1 myosins and crystallization experiments with myosin II in complex with Mg•ADP•VO3 

and several carbazole compounds were also carried out in this work. Depending on the 

substitution pattern of the respective carbazoles, the results showed differences in myosin class 

specific effects, including inhibition as well as activation of myosin and actomyosin ATPase 

activity.  

 

4.2.1 Free Energy Calculations of Carbazoles Binding to Myosins Using 

a Molecular Mechanics Approach 

Modeling tools, like molecular graphics tools (MGL) package for input data 

preparation and docking programs like autodock vina with efficient algorithms can 

provide the theoretical binding scores for the small molecules upon binding to the 

receptors. In this section results obtained from using myosins from different classes as 

receptors and halogenated carbazoles as ligands is presented. The simple schematic 

flowchart in Fig. 41 represents the experimental scheme that has been used during the 

molecular docking studies. 
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The results obtained from autodock vina were used as a starting point to get an idea about 

the preference of carbazoles for particular myosin isoforms, for example myosin II from 

D. discoideum has preference of KIN86 which is a penta-chlorinated 1-OH carbazole 

over KIN79 which is a brominated 1-OH carbazole. Similarly, myosin IXb homology 

models of C. elegans, R. novergicus and myosin Vb of D. discoideum were also used for 

the docking studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Flowchart for docking of myosin models with carbazoles using 

autodock- vina 

 

The table below summarizes the docking results of some of the myosin isoforms with 

carbazoles. The predicted binding values are in kcal/mol. KIN83 which is fluorinated at 

R3 and R6 position has the highest calculated free energy value for myosin IXb of R. 

novergicus. The variation of the sequence of myosin IXb of R. novergicus to myosin IXb 

of C. elegans at serine drastically changes the preference from fluorinated to chlorinated 

carbazoles. The united atom scoring function in autodock vina allows the degrees of 

freedom only to polar hydrogens but not to any hydroxyl groups in the docking site. This 

Add polar hydrogen and 

remove waters, other bound 

molecules from receptor 

Prepare clean PDB 

Files of Protein and 

Small molecules 

PDBQT files of 

protein and Small 

molecules 

Grid coordinates are 

obtained from MGL 

tools 

Run autodock vina with a 

Configuration file and a 

PowerArchiver Backup Script 
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might have an internal steric constrains when an allosteric pocket has -OH group 

containing amino acid side chains. Moreover the ten-fold increase in exhaustiveness 

parameter from 8 to 80 has improved and increased the probability of finding the minima 

in the energy landscape.  

 

Table 17:  Summary of molecular docking results of carbazoles on various myosin classes 

Myosin 

motor 

domain 

used as 

receptors 

Organism to 

which the myosin 

belongs to 

Calculated free 

energy values 

in kcal/mol 

Substituted 

functional groups  

Availability of 

experimental 

data 

 

 

Myosin IXb 

C. elegans 1. KIN86   -7.9  

2. KIN99   -7.6  

3. KIN101 -7.5  

4. KIN79   -7.4  

 

5Cl,1OH 

4Cl,1OH 

2Br,1Me,1OH 

3Br,1OH 

Yes 

 

Myosin IXb 

 

R. novergicus 1. KIN83   -8.2  

2. KIN93   -8.2  

3. KIN89   -8.1  

4. KIN99   -8.0  

 

2Fl,1OH 

3Fl,1OH 

1Fl,1OH 

4Cl,1OH 

No 

 

 

Myosin 

Vb_0K 

D. discoideum 

 
1. KIN93   -8.0  

2. KIN91   -7.9  

3. KIN83   -7.7 

4. KIN89   -7.5 

3Fl,1OH 

2Fl,1OH 

2Fl,1OH 

1Fl,1OH 

No 

Myosin 

Vb_6k 
D. discoideum 

 
1. KIN101   -6.9  

2. KIN93     -6.9  

3. KIN97     -6.9 

4. KIN86     -6.9 

2Br,1OH 

3Fl,1OH 

3Cl,1OH 

5Cl,1OH 

No 

Myosin II D. discoideum 

 
1.KIN86   -8.1 

2.KIN99   -7.8 

3.KIN84  -7.7 

4.KIN93   -7.7 

5Cl,1OH 

4Cl,1OH 

2F,1OAc 

3Fl,1OH 

Yes 

 

 

Mostly the carbazoles with high affinity values docked between the upper and 

lower 50kDa cleft in the myosin structure. They bind to the similar allosteric site where 

pentabromopseudilin binds. The mechanism of inhibition of selected carbazoles has been 
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investigated by systematic kinetics study of several myosin classes and in particular 

myosin II isoforms. Blind docking and site specific (target based) docking simulations on 

various myosins guided us through the modeling assisted drug discovery (MADD). 

Modeling programs like Modeller was very helpful in using multiple structures to 

genertate homology models. Thus, to prepare and validate the homology models of 

myosin IXb and myosin V MODELLER was used Fig. 42. Homology models of myosin 

IXb and myosin Vb were built using MODELLER. This modeling program is a script 

based command line module. With user assisted inputs, one can efficiently generate a 

model containing all non-hydrogen atoms. Also, MODELLER implements comparative 

protein structure modeling by satisfaction of spatial restraints, so the user has an 

opportunity to do loop optimization, multiple alignments of protein sequences and/or 

structures. These two important steps have been used in preparing the models in this 

work. 

 

 

 

Figure 42: Homology models of Myosin IXb, prepared using MODELER, these 

models were used in docking studies with carbazoles 
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Table 18: Comparison of amino acids around the allosteric binding site of D. discoideum myosin II with 

different myosin isoforms. Color coded according to residue property. 

Myo II D. 

discoideum 

 

LYS 265 

 

K 

 

ALA424 

 

A 

ALA420 

 

A 

ASP590 

 

D 

ALA618 

 

A 

ARG428 

 

R 

ILE617 

 

I 

LEU431 

 

L 

Myo V D. 

discoideum 
K F S D F M K D 

Myo IXb H. 

sapiens 
K S S D A A V D 

Myo IXb R. 

norvegicus 
K S S D A A V D 

Myo IXb C. 

elegans 
K C A D A S V H 

Myo XI N. 

Tabacum 
R V A D E R E D 

   

 

Myosin II of D. discoideum and myosin IXb of C. elegans had preference for 

penta-chlorianted carbazole, whereas myosin Vb of D. discoideum and myosin IXb of R. 

novergicus had preference for fluorinated carabazoles Fig. 43, 44. Preference of the halogen 

substituted carbazoles might be due to the variation in the hydrophobicity in the allosteric 

binding pockets of various myosins. The table above shows a close comparison of amino 

acids around the known allosteric binding pocket of myosin II of D. discoideum to other 

myosins. 

 

  To identify the binding site for 2,3,4,6,8-pentachloro-9H-carbazol-1-ol 

(KIN86), the penta-chlorinated carbazole as the candidate compound was crystallized with the 

D. discoideum myosin II motor domain complexed with Mg
2+

.ADP.VO3. The structure was 

solved by molecular replacement using the structure of D. discoideum myosinII.ADP.VO3 

complex as a starting model (pdb id: 2JJ9) and refined to 2.7 Å resolution (the final values of 

Rwork and Rfree are 20% and 28% respectively). Crystallization of other carbazoles like 3,4-

dibromo-6-methyl-9H-carbazol-1-ol (KIN101), KIN79 with the D. discoideum myosin II 

motor domain and other myosin isoforms are in progress but could not be completed within 

the time frame of this work.  
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Figure 43: Docking results of chlorinated and fluorinated carbazoles to myosin II motor 

domain of D. discoideum. 

 

 

 

 

 

Myosin II/KIN84              Myosin II/KIN86                                           

 

Myosin II/KIN93              Myosin II/KIN99                                           

 

      KIN84                        KIN86                            KIN93                  KIN99    



130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   

 

 

Figure 44:  Docking results of brominated and chlorinated carbazoles to myosin IXb of 

C. elegans. 

4.2.2 Inhibiting Potency of Pre-Selected Carbazoles on Myosin ATPase 

Activity  

 Steady-state ATPase assays could further confirms the modeling data. KIN101, one of 

the top ranked small molecule effector from docking results which has Br at R3, R4 and CH3 

Myosin IXb/KIN79            Myosin IXb/KIN86 

Myosin IXb/KIN99                     Myosin IXb/KIN101 

KIN79                        KIN86                             KIN99                         KIN101 
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at R6 positions had modulating effect on myosin IXb‟s actin-activated ATPase activity in an 

individual activity assay. KIN101 is a potentially inhibitor compared to other KINs. Whereas, 

KIN79 is specific to myosin Ib (Fig. 45). R3, R4 and R6 positions of KIN79 were substituted 

with bromines. Myosin II from D. discoideum had a preference for range of carbazole 

compounds with different affinity values. KIN86 was selected, as it was the top scored 

molecule for myosin II from the docking studies. R2, R3, R4, R6, and R8 positions were 

substituted with chlorines. Crystals of myosin II in complex with KIN86 were used for 

soaking experiment, and the complex structure gave us insight in the binding mode of 

carbazoles to myosins.  

 

Table 19: Summary of KIN79 effect on actin-activated ATPase activity of myosin isoforms 

KIN79 Actin-activated ATP hydrolysis activity 

parameters 
  IC50 (µM) 

kmin (s
-1

) 

D. d Myosin II 

 

40.5 ± 1.7 

0.03 

D. d Myosin Vb 

 

26.9 ± 16.9 

0.24 

O. c Myosin II HMM 

 

171.5 ± 1.75 

0.09 

D. d Myosin Ib 

 

4.2 ± 2.1 

0.03 
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Figure 45:  Steady state ATPase activity of myosin II, myosin V, myosin Ib and HMM. 

(a,b,c,d) Actin-activated ATPase activity of different myosin isoforms in the presence of 

KIN79 (e) Normalized ATPase rate shows KIN79 specificity for D. discoideum myosin 

Ib in violet curve. The inserted table gives the IC50 values for respective myosins for 

KIN79. 

 

The actin-activated ATPase activity of myosin Vb from D. discoideum is reduced 

by 3,4,6,-tribromo-1-hydroxycarbazole (KIN79) with an IC50 value of 26 µM. This compound 

additionally inhibits myosin II of D. discoideum with IC50 of 40 µM. KIN79 is a most potent 

compound for myosin Ib of D. discoideum with IC50 of 4.2 µM. In contrast, 2,3,4,6,8-

pentachloro-1OH-carbazole (KIN86) exhibits the opposite effect by activating  actin-activated 

ATPase activity  of myosin II  of D. discoideum , but has an inhibitory effect on HMM up to 

the concentrations of 10 µM and 8 µM, respectively. 

 

From the modeling, kinetic and structural data, It could be shown that 3,4,6-

tribromophenol-9H-carbazol-1-ol (KIN79) is an inhibitor with low IC50 of 4.2 μM for myosin 

1b. But, 2,3,4,6,8-pentachloro-9H-carbazol-1-ol(KIN86) is an activator of actin-activated 

ATPase rate of myosin II of D. discoideum.Thus the results obtained shows that halogenated 

a b 

c 
d
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carbazoles can be used as an allosteric inhibitors and activators to perturb the activity of 

myosins. 

 

KIN86 is a chlorinated carbazole which activates actin-activated ATPase rate for D. 

discoideum myosin II but inhibits rabbit skeletal heavy meromyosin (HMM). Steady state 

kinetics can clearly show the inhibition and activation of actin-activated ATPase rate of 

various classes of myosins as shown in Fig. 46. Increase in the actin filament movement is 

clearly seen in in-vitro motility analysis; narrow distribution from 400 trajectories signifies 

the data quality.  

 

 

 

Figure 46: Steady state ATPase activity of myosin II, in the presence of KIN86 with 

concentration ranging from 0.1-100 µM. On the left, inhibition of the actin-activated 

ATPase rate in the case of rabbit HMM. The fit on the right shows KIN86 activating the 

actin-activated ATPase rate in the case of myosin II. The assay was performed in the 

presence of 30 µM of actin. 

 

In agrrement with the steady-state kinectics data, KIN86 mediated activation of D. 

discoideum myosin II in the in-vitro motility assay also Fig. 47. The histograms show the 

average sliding velocity of rhodamine-phalloidin-labeled actin filaments in the absence and 

presence of 5 µM KIN86. D. discoideum myosin II moves actin filaments with an average 

velocity of 0.76 ± 0.15 µm s
-1

, addition of 5 µM KIN86 in the same flow cell increases the 

average sliding velocity to 1.08 ± 0.16 µM s
-1

. 
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Figure 47: KIN86-mediated activation of D. discoideum myosin II in the in vitro motility 

assay. Increase in the actin filament movement in in-vitro motility analysis indicated 

KIN86 can act as activator and inhibitor for diiferent myosins. 

 

4.3 Crystal Structure of the Myosin II Motor Domain in Complex with 

2,3,4,6,8-pentachlorododecahydro-1H-carbazol-1-ol (KIN86) 

4.3.1 Structural Characterization of the KIN86 Binding Site 

 

  Primary screens of carbazole derivatives were performed with myosins as target 

biological system in the in-vitro assays. The phenomenon of interest for this study were 

myosin ATPase activation, inhibition of actin activated ATPases and inhibition of active 

tension generation. Elucidating these points would provide a clue about the properties of 

myosin intermediate states and help understanding the mechanisms underlying the muscle 

contraction. 
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Figure 48: (a) KIN86 binding site and interacting residues, (b) 2F0-Fc density map of the 

KIN86 binding site. 

 

The myosin II motor domain structure of D. discoideum solved in complex with 

KIN86 had the overall fold of the motor domain to already reported myosin II motor domain 

structures. The meta-vanadate ion shows tetrahedral interaction, and the distance between the 

vanadium atom and the β-γ-bridging oxygen is 2.1 Å. The meta-vanadate thus fully replaces 

the position of the γ-phosphate. Therefore, the nucleotide meta-vanadate complex at the active 

site resembles ATP. The electron density for KIN86 is unambiguous Fig. 48b and shows the 

inhibitor to bind in a pocket close to actin binding residues and located 18.9Å away from the 

nucleotide-binding site. The experimentally observed conformation of KIN86 is planar in 

agreement with Hückel‟s rule, with extra two electrons coming from the unshared pair in sp2 

hybrid orbitals on nitrogen atom. The translational and rotational displacement of the 

molecule by itself varies from one carbazoles to the other, which is evident from our docking 

data.Upon binding of KIN86, the changes brought about in the main chain compared to the 

pdb structure 2JJ9, which is the myosin II structure with no small molecule effector is almost 

negligible. The calculated r.m.s.d is approximately 0.332 Å up to amino acid 648. Mostly, the 

small molecules influence the side chains along the relay pathway between the nucleotide 

binding pocket and the allosteric binding site (Chinthalapudi et al., 2011).  

 

Structural analysis showed that the carbazole-derivatives bind to the same site as 

pentabromopseudilin Fig. 48a, at the tip of the myosin motor domain, near actin-binding 

region. Thus, halogenated 1-OH-carbazoles emerge as promising lead compounds for the 

a b 
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development of myosin-directed therapeutic drugs. In conclusion all the results show how 

small effector molecules affect energetic coupling and thereby myosin motor functions. 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49: A close up view of superimposed myosin II pdb coordinates of structure with 

small molecule effectors.   On the left is the side view of the actin binding cleft marked in 

red line whereas in the right, the cleft highlighted and enlarged in box, the actin binding 

interface where effectors molecules are observed in crystal structures of 2JHR, 2X9H, 

2XO8, 3MNQ, 3MJX. 

 

The inner face of this KIN86 binding pocket is formed by helix13 and helix 21 and 

loop 2, which are connected by a helix-loop-helix motif that covers part of the cleft and U50 kDa 

in a lid-like fashion as similar to PBP binding mode. The myosin motor domain does not undergo 

any major conformational change upon binding of KIN86, except for local changes directly 

involved in the coordination of the effector molecule. The interactions of the small molecule 

modulators like tribromodichloropseudilin; pentachloropseudilin; pentabromopseudilin and with 

the basic residue corresponding to K265 in myosin II are conserved among the known complex 

structures and this is also the case with the KIN86 carbazole. Except blebbistatin, all the other 

allosteric modulators, are approximately 16 to 18 Å away from the catalytic site Fig. 49. In the 

resulting conformation K265 apperas to be closer to K423 compared to the uncomplexed 

structure . The relay pathway is shown in the Fig. 50.  
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Figure 50: (Top) Overall view of the myosin motor domain in cartoon representation. 

KIN86 is shown in spheres mode and nucleotide in stick representation. Blue, upper 50-

kDa domain; orange, lower 50-kDa domain; green, SH3-like domain. (Below)  

Schematic illustration of the relay pathway connecting the allosteric pocket and the 

nucleotide binding site in the presence of KIN86-myosin II.ADP.VO3.Mg
2+

 motor 

domain structure.  

 

 

 

 

     KIN86 
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Table 20: Data collection and refinement statistics 

 

Space group                                                                        C2221 

Cell dimensions 

a, b, c (Å)                                                                           89.2  1446.6  153.7 

 

Resolution (Å)                                                                    20.0-2.7 

Rmerge (%)                                                                        0.40 

<I/σI>2.4 

Completeness                                                                      100 

Redundancy                                                                        5 

 

Refinement 

Resolution                                                                           20.0-2.7 

Rwork/Rfree (%)                                                                 20/28 

No of reflections working /test set                                       26158/1377 

 

No.Atoms 

 

Proteins                                                                              5483 

Ligands/ions                                                                       51 

Water                                                                                 198 

Average B-Factors (Å
2
)                                                      38 
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4.3.2 B-Factor Analysis of the X-ray Structures of the Myosin II Motor 

Domain in Complex with Different Inhibitors 

In the structure presented in this work, the waters were added to the protein and 

refined using CNS and Refmac. During the process of model validation of the final refined 

structures, some waters were removed using the distance criteria in COOT. The following B-

factor plots show comparison between the myosin II structures without (PDB id: 2JJ9) and 

with ligand (PDB id: 2X9H, 2JHR). 

 

The physical meaning of the B-factors depends on the resolution of the data obtained. 

In the case of the presented structural details, the low B-factors for the residues around the 

KIN86 binding site K265, A420, A424, R428, L431, D590, I617, A618 might represent the 

degree of confidence of the atomic position. The KIN86 almost freezes all the residues except 

I617 compared to the pentabromopseudilin at the allosteric binding pocket in the myosin 

structure. But in comparison with uncomplexed myosin structure 2JJ9, both KIN86 and 

pentabromoseudilin bound structures 2X9H and 2JHR respectively reduced the dynamics of 

the allosteric pocket. Restricting the flexibility of the side chains might perturb the relay 

pathway between the allosteric binding pocket and the nucleotide pocket. This brings about 

the alteration in the kinetic properties of myosin for their nucleotide hydrolysis, which again 

is coupled with the affinity of myosin to actin. Thus B-factors play an important role in 

describing the protein‟s intrinsic disorder and indicate the changes after and before small 

molecule effectors binds to it. 

 

The thermal fluctuations of atoms from their mean position can be calculated and used 

as an indicator for the dynamics of a polypeptide or functional protein. The backbone atoms 

and side chains are constantly in thermal motion; displacements of atoms from their mean 

positions indicate the degree of protein flexibility. Upon binding to the substrates the intrinsic 

flexibility of myosin may vary, and this is evident from the results presented above. Myosins 

have the allosteric site, which change its conformation upon substrate binding or product 

release to allow actin to dissociate or to bind. The B-factor analysis can help revealing the 

dynamic properties of the allosteric site and thus facilitate in defining a descriptor during the 

development of new myosin effectors based on the scaffold. The changes in overall myosin 

three-dimensional structure are subtle even upon small molecule effector binding to its 

allosteric site. The r.m.s.d of the backbone C-α atom between complexed and uncomplexed 
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structures are minimum as mentioned before. But, the noticeable wobbling of side chains 

along the relay path i.e. the communication pathway between the allosteric and active sites 

implies the effectiveness in interactions and the perturbation of the energetic couplings 

between acto-mysoin complexes brought about by the KIN86.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51: B-factor plots: Normalized B-factor between 2x9h in red (myosin II/KIN86), 

2jhr in blue (myosin II/pentabromopseudilin) and 2jj9 in green (myosin II/no 

inhibitor).For example there is clear difference in the normalized B-factor values around 

207-212 residues dotted circle which is a loop1 region. 
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Figure 52: B-factor plots: Normalized B-factor between 2x9h in red square (myosin 

II/KIN86), 2jhr in blue circle (myosin II/pentabromopseudilin) and 2jj9 in green triangle 

(myosin II/no inhibitor), The plot highlights the normalized B-factors of the residues 

K265,A420,A424,R428,L431,D590,I617,A618 which forms the allosteric binding site of 

KIN86. 

 

The careful understanding of B-factors, not only provide the insight about the protein 

flexibility, but also might tell about the conserved waters, that may be important for hydrogen 

bonding either with the protein or with the bound ligands. During the processes like, defining 

the quantitative structure active relationship (QSAR) studies of similar ligands with the 

proteins, the initial step is to pose the ligands on to the available X-ray co-crystal structure 

and keep the conserved waters. So, B-factor analysis assists and gives an idea about the water 

molecules that‟s necessary during QSAR studies.  
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Discussion 
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5.1 The Combinatorial Approach  

 

 

 

Figure D1: Scheme used in my work to identify the small molecule modulators of 

myosin, dynamin1 and Drp1. 

 

5.1.1 Psychotropic Drugs as Potent Effectors of Dynamin1 and Drp1  

 

Dynamin and dynamin related proteins are interesting pharmacological targets among 

the proteins involved in endocytosis, vesicle sorting and mitochondrial division. The 

structural and functional differences between the classical dynamin and non-classical 

dynamin provides for the development of selective and potent modulators that can be used as 

novel treatments for the diseases associated with endocytosis and mitochondrial division. The 

semi-carbazone compound dynasore inhibits dynamin and Drp1 GTPase activity with ~15 and 

80 µM respectively (Nankoe, 2006; Macia, 2006). Since there is a need for specific 

compounds to modulate various dynamins and dynamin related proteins, it is important to 

screen different class of small molecules. Particularly psychotropic drugs which act on the 
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receptors of the post synaptic neurons to control the level of neurotransmitters in the brain 

have been implicated in the treatment of depression, anxiety and other psychotic states. The 

recycling of the vesicles containing neurotransmitters within pre-synaptic neuron and uptake 

of the neurotransmitter bound receptors on the post-synaptic neurons are mediated by 

dynamin. Neuroleptic drug chlorpromazine inhibits Low-Density-Lipoprotein receptor 

recycling, implying that psychotropic drugs can interfere with endocytosis (Wang, 19). Since 

it has been shown that inhibitors of dynamin1 could have potential use as anti-psychotic 

drugs, a few psychotropic drugs that are approved by FDA and that are used in psychological 

illness were investigated on knowledge based screening of drugs. Mechanism of action of 

these drugs for particular psychotic states vary upon which particular receptor is being 

blocked in the neurons. Sertraline, the Drp1‟s anti-assembly agent found in our study, belongs 

to the class of drugs called selective serotonin reuptake inhibitor (SSRI). It is a derivative of 

1-napthylamine and works by increasing the serotonin level at brain by blocking serotonin 

reuptake, thus affecting the receptor numbers and distribution in the brain (Koe, 1983). There 

are some studies indicating that psychotropic drugs may also work through intercalation in 

membrane phospholipids (Oruch, 2010). As a proof of concept, the psychotropic drug 

fluvoxamine here in our study is speculated to bind to the lipid binding domain of dynamin1. 

 

 

Classical serotonin (5-HT) transmission between neurons is shown in the Fig. D1.  

Therefore, Chlorpromazine, sertraline and fluvoxamine which are generic drugs are tested for 

their effect on the GTPase activity of dynamin1, dynamin related protein1 and minimal 

dynamin1 (GG) proteins. Sertraline was used to test for its effects on self-assembly stimulated 

Drp1 GTPase activity and dynamin1 GTPase activity. The IC50 values of two selective 

serotonin reuptake inhibitors i.e. sertraline and fluvoxamine were 70 and 14 µM for dynamin1 

full length protein, respectively. IC50 of sertraline for Drp1 was between 15 to 30 µM and for 

the minimal dynamin1 the IC50 was 8 µM. From the results, it‟s clear that sertraline is a mixed 

type of inhibitor i.e. dynamin1 minimal construct (GG1) which has no middle domain and PH 

domain has lower IC50 value  than the dynamin1 full-length, whereas Drp1 which has no PH 

domain can be also influenced by the sertraline for its assembly induced GTP activity. The 

kinetic analysis revealed that fluvoxamine is a non-competitive inhibitor of dynamin1 GTPase 

with respect to GTP. Fluvoxamine has no effect on GG1 or Drp1, indicating that it binds to 

PH domain. Structurally fluvoxamine is similar to phosphoinositide with a head and a tail 

group. Our results indicate that sertraline and fluvoxamine inhibit dynamin1 GTPase activity 
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and could be potential modulators of dynamins. Thus, sertraline and other psychotropic drugs 

expanded our understanding of the biological space for dynamin and dynamin related 

proteins.  

 

 Thus, „„Understanding risk factors of diseases and the way they have to be treated for 

mental illness patients are important‟‟.  

5.1.1.1 Characterization of Sertraline as a New Allosteric Inhibitor of Drp1 

Self-Assembly 

Drp1 like classical dynamin1 also has ionic strength dependent GTP hydrolysis 

activity, i.e. at low ionic strength concentration, GTP hydrolysis activity of Drp1 increases 

with the increase in protein concentrations. Whereas, there is no significant change of the 

basal GTP hydrolysis activity of Drp1 at high ionic strength concentration that has been 

observed at the similar protein concentrations range to that of the concentration range in low 

ionic strength. This increase in the hydrolysis activity can be linked to the assembly 

stimulated effect of the Drp1. Particularly sertraline, a newly identified small molecule 

modulator of Drp1 seems to convert assembly competent population of Drp1 to incompetent 

conformation. Thereby inhibiting the assembly stimulated GTP hydrolysis activity of Drp1. 

Mass distribution profile from DLS at low ionic strength had three different peaks with three 

different apparent hydrodynamic radiuses (Rh). Whereas, in case of high ionic strength a 

single peak was obtained, implying the mono-dispersity of the protein at this ionic strength. 

But, the presence of the psychotropic drug sertraline, Drp1 seems to reverse the effect on 

Drp1‟s propensity to form polymers. Upon addition of sertraline at low ionic condition, a 

single peak was obtained as similar to that of high ionic condition. This suggests that, 

sertraline can act as an anti-polymerization agent for Drp1. Analytical ultracentrifuge (AU) 

data shows the influence of GTP-γ-S and GDP on Drp1 assembly property. In comparison to 

GTP-γ-S, GDP shifts the s-values implying that it might induce conformational change of 

Drp1. But in the presence of sertraline Drp1 had no effect on GDP induced sedimentation 

coefficient shift. Thus, sertraline might have a role as anti-polymerization agent and act as an 

inhibitor of assembly stimulated GTPase activity of Drp1 but not a direct inhibitor of basal 

GTPase activity of Drp1. Also, the binding efficiency of Drp1 for GDP is higher than that of 

GTP. This can be correlated to, why GDP could possibly induce significant conformational 

change and there by shifting the s-value in the AUC experiment. 
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5.1.1.1.1 Drp1 Acts as a Substrate of Cdk2/CyclinA  

The fraction of Drp1 that is found around mitochondria is about 3% of the total protein 

(Smirnova et al, 2001). There has to be a mechanism of how Drp1 is regulated from 

cytoplasmic pool to the mitochondrial outer membrane during programmed cell death (PCD). 

Thus the steps like (i) recruitment of Drp1 by adapter proteins, (ii) Drp1 nucleation, (iii) 

assembly stimulated GTP hydrolysis and (iv) disassembly from the scaffold lipid membranes, 

should be highly regulated. Understanding the interaction partners and the modifications of 

Drp1 post translationally helps in resolving and dissecting the steps mentioned above. 

Previous studies have shown that, phosphorylation of Ser616 by Cdk1/CyclinB (Chang et al, 

2007), Ser637 by protein kinase A (PKA) and also by Ca
2+

/calmodulin-dependent protein 

kinase Iα (CaMKIα) (Han et al, 2008), other modifications such as, sumoylation of Drp1 and 

its role for the Bax/Bak association (Wasiak et al, 2007) all have physiological importance for 

post tranlationally modified Drp1. Even some other studies have shown that Drp1 in Xenopus 

specifically bind to cyclinA (Funokoshi et al, 1999). Some of our own studies on the 

interaction between Drp1 and cyclin dependent kinase (Cdk2) indicated that Drp1 is being 

phosphorylated by Cdk2. In which, S548 is identified as one of the amino acid as 

phosphorylation site in Drp1. We also showed that Drp1 does not compete for p27 binding 

site in the CycA/p27 complex, but instead binds to cylinA. Combining the steady-state 

kinetics and FRET data it can be inferred that Drp1 can bind to cylinA and still can be 

inhibited from getting phosphorylated. There might my other regulatory or adaptor proteins to 

signal the Cdk2 to phosphorylate Drp1 or to inhibit p27 from binding to Cdk2/CycA complex 

so as to get Drp1 phosphorylated. But the current study could not provide enough evidence 

about other interacting partners or signaling proteins. Thus Drp1 is one of the substrate for 

Cdk2/CyclinA complex, and a new phosphorylation site in Drp1 was identified. However, the 

physiological relevance for this phosphorylation event is not clear at the moment. But S548A 

and S548D mutant Drp1 construct can be used to study the biochemical and cell biological 

analysis; this will prove the importance of the newly identified phosphorylation site.  

Furthermore screening of crystallization conditions to co-crystallize the non-ubiquitibnated 

CyclinA-Drp1 fullength was also set up during the course of this work. This will give an 

insight into the protein-protein interactions and their regulatary mechanism on Drp1 during 

mitosis, where Cdks plays an important role.  
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5.1.1.1.2 ATP Increases Drp1 Binding Affinity to Mitochondrial Lipids 

 When normal cells are exposed to toxic substances or irradiation, they undergo 

necrosis. During necrosis, mitochondrial swelling, DNA fragmentation and membrane rupture 

take place which results in severe inflammation around the damaged cells. In contrast to 

necrosis, apoptosis also called programmed cell death (PCD) takes place during tissue 

proliferation to remove unwanted cells. Apoptosis is necessary during development of organs 

like brain, limbs and also PCD is crucial process in peripheral nerve fiber formation.  

Inhibition of apoptosis leads to cancer or deregulation in neuron growth, leading to 

neurodegenerative diseases. In another intriguing study of lipid-protein interaction; it was 

found that, cardiolipin, the lipid enriched on mitochondrial membrane, could bind to Drp1 and 

this interaction is enhanced by ATP. But we could not confirm the importance of ATP on 

Drp1-cardiolipin‟s interaction and its physiological role.  

 

 Cardiolipins are phospholipids, with two pK values, the low pK1 (1.04) and high 

pK2(>8.0) (Kate et al., 1993). The mammalian cardiolipins have four polyunsaturated chains, 

with two phosphate head groups. It is the only lipid produced in mitochondria and is absent 

from the cytosol until cell death. During apoptosis (Gonzalvez et al., 2008; Schug, 2009; 

Schug and Gottlieb, 2009) when cells commit suicide, the mitochondria has to be destructed. 

This is because mitochondria are the power house of the cell. Contact sites in mitochondria 

are enriched with cardiolipins (Kerr et al., 1972), the tbid protein which carries the apoptotic 

stimuli targets and remodels the contact sites on mitochondria and assist for Bax 

oligomerization (Epand et al., 2002a; Epand et al., 2002b) and thus leading to the cells to 

apoptosis and emphasize the importance of cardiolipins. Taffazin gene is one more factor that 

assists in remodeling cardiolipins, malfunction of taffazin has (Bione et al., 1996; Bione et al., 

1994; Bione et al., 1995; Bione et al., 1993) been implicated in many diseases including 

Barth‟s syndrome. The chain length of cardiolipin has a very important consequence in its 

biological and biochemical role. The dissections of cardiolipin‟s role in cell death, 

mitochondrial fissioning and ATP synthesis are crucial.  Results from our studies provide us 

some hint on the local environment of mitochondria and Drp1‟s affinity for mitochondrial 

membrane.  
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5.1.1.2 Molecular Engineering of Optimized Dynamin Constructs for 

Structure Determination and Functional Studies 

It has been shown that I697A has significant influence on assembly of dynamin1 into 

multimers (see Fig. 28b for domain organization). Studies have also shown purified GED 

alone tend to (to form multimers) oligomerize in vitro (>600kda) (Chugh et al., 2006; Chugh 

et al., 2007). Peptides from 654-681 residues and 712-740 residues in dynamin1 have 

tendencies to aggregate into tetramer, hexamer respectively (Okamoto et al., 1997; Okamoto 

et al., 1999). The functional importance of GED might be, that it acts allosterically, may 

contribute one of it arginine to the catalytic center but this possibility can be ruled out, 

because similar entry routes are blocked in rat dynamin1(Reubold et al., 2005). GED may 

interact and stabilize switch II and with accumulating evidence it might be that GED is not a 

classical GAP (GTPase activating protein). Dynamins which are the large GTPase family of 

proteins, for which there is new structures available now, (Chappie et al., 2010; Chappie et 

al., 2009). Many approaches can be followed so as to obtain the three dimensional 

conformation of the full length protein. Site directed mutagenesis or creating mutants from the 

knowledge of homologous proteins or using scaffold proteins are some of the ways to obtain 

enough soluble form of proteins. Thus our GG1, GGA minimal constructs and mutants 

contructs  to obtain the dimeric form of dynamin1, dynamin3, dynmin related protein1 have 

gave us an insight of how high molecular weight oligomerizing proteins can be studied 

systematically.  

 

 

5.1.2 Small Molecule Effectors of Myosin 

 
Myosins play fundamental roles in a wide range of physiological functions within 

every human cell. Muscle contraction, cell migration, intracellular transport, endocytosis, and 

protein secretion are some of the roles of myosin in muscle and non muscle cells. Non-muscle 

myosin IIa and IIb as well as myosin Va were shown to play a major role in cancer cells, 

providing essential functions in cell migration and metastasis (Carmona-Fontaine et al., 

2008a; Carmona-Fontaine et al., 2008b; Choi et al., 2008; Giannone et al., 2007; Gupton et 

al., 2005). Alterations in cell motility are a prerequisite for cancer cells to migrate from the 

primary site into surrounding tissues to disseminate and to metastasize. The inhibition of 

myosin II has been shown to strongly affect migration due to loss of motile activity and 
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cohesive forces, a prerequisite for invasive cancer cell migration. Recently, it was shown that 

myosin VI and optineurin are important in the regulation of fusion pores formed between 

secretory vesicles
 
and the plasma membrane during the final stages of secretion (Bond et al., 

2011). Polarized trafficking of vesicle-bound membrane proteins in neurons is mediated and 

directed by myosin VI, which results in enrichment of surface proteins in axons (Tommy et 

al., 2011). The importance of myosin VI in sound transduction (in auditory system) and 

balance has been well documented (Ahmed et al., 2003; Coling et al., 1997; Duncan et al., 

2006; Friedman et al., 1999; Hilgert et al., 2008; Melchionda et al., 2001; Mohiddin et al., 

2004; Sato, 2006; Schultz et al., 2005; Seiler et al., 2004). Known inhibitors of myosins such 

as blebbistatin, BDM (2,3-butanedione monoxime), and BTS (N-benzyl-p-toluol-sulfonamide 

are unspecificity, toxic, and have side effects. Hence using such compounds as therapeutic 

applications in cancer treatment pose a severe  restrictions.  

 

As mentioned in the beginning of the discussion, high resolution X-ray structures of 

protein-inhibitor complexes and their biochemical, biophysical, and cell biological 

characterization are prerequisite to identify potent, specific and non-toxic inhibitors. Crystal 

structure analyses led to the identification of a carbazole binding sites in the myosin motor 

domain. The sites show a considerable amino acid sequence variance between individual 

myosin isoforms, which allows the development of highly selective myosin inhibitors. Such 

as myosin VI allosteric binding cavity volume is small in compared with that of myosin II, 

and this explains why small scaffolds like phenols have an inhibitory effect on myosin VI. 

But X-ray structures are necessary to define the changes that alter the myosin VI motor 

activity.  

5.1.2.1 Mechanism and Specificity of Myosin Inhibition by Halogenated 

Carbazoles and Phenols    

Myosin effectors are useful tool in order to dissect the functional role of myosin in 

vivo and in vitro. Myosin is considered as an attractive drug target for the treatment of 

diseases like familial hypertrophic cardiomyopathy, cancer, deafness and distal 

arthrogryposis. Mutational studies revealed that the disruption of commmunication between 

active site and lever arm in myosin II D. discoideum  results in the blockage of motor activity, 

improper fruiting-body formation, cytokenesis and growth of D. discoideum cells in 

suspension (Tsiavaliaris et al., 2002). Mutation in loop2 of myosin V, which is a surface loop 

in the actin binding region, alters the myosin affinity for actin, thereby decreasing the 
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processivity of myosin V (Christoper et al., 2004). Thus, actin-activated ATPase and in-vitro 

motility are mostly affected due to changing the charge distribution or hydrophobicity of 

loop2, cardiomyopathy loop and strut loop (Naoya sasaki et al., 2002). The strut loop which is 

a connector between upper and lower 50 kda domain depends on its length and plasticity, can 

also be perturbed by small molecule modulators, which could further lead to alteration in 

subdomain interactions with actin.  

 

Small molecules can be used to bring about the parallel effects in comparison to the 

mutagenesis experiments. This further increases the degree of confidence in understanding the 

manipulation and fine tuning of the motor activity of myosins. Hence, the intricate 

communication pathways by comparing the mutagenesis experiments and availbale X-ray 

crystallographic models of complex structures along with kinetics data can be a valubale tool 

in designing potent and class specific and isoform specific myosin inhibitors. Therefore, 

studying the effects of small molecule compounds like carbazoles and phenols on myosin 

function is a promising way to develop new drugs for therapeutic application in cancer 

treatment and other myosin related diseases. Infection of the host cells by protozoa  

 

P. falciparum and T. Gondii movement in the host cell is myosin meditated, in such 

cases myosin of the protozoa can also be one of the target for treatment of diseases like 

malaria, and toxoplasmosis. The fundamental principle in understanding a disease is to 

understand the molecular components involved in causing that disease. Once the pathway is 

established, the next step is to understand the mechanisms at molecular level. It is at this 

stage, a small molecule can be used to probe the enzymatic activity either to act as an agonist 

or antagonist. The small molecules can be a biomarker in which case imaging is possible to 

track down the localization of the enzymes involved or a drug like molecule can be used in 

which, it helps to activate or inhibit the enzyme activity or a pharmacological chaperone can 

be used to assist the target protein in regaining the functions that has been lost due to 

mutations or misfolding.  

 

Both carabzoles and phenols that were screened and tested had an effect on the 

enzymatic activity of myosin. So, series of halogenated carbazoles were screened and tested 

on the different myosin classes to check their potency and specificity. The effect of different 

carbazole derivatives and phenols on the basal and actin-activated ATPase activity of class-2, 
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class-5, and class-1 myosins were studied. KIN79, a penta-brominated carbazole was 

identified as one of the specific inhibitor with low IC50 of 4.2 μM for myosin Ib.  

 

Despite the great success in identifying selective inhibitors of myosin classes-1, -2 and 

-5, small molecule effectors specifically targeting class-6 myosins have not been described 

yet. The identification of myosin VI effects are one of the focus of recent research, since 

myosin VI and its binding partners participate in signaling and transport processes that have 

been linked to inflammatory processes, apoptosis, and the metastatic spreading of cancer 

cells. Myosin VI has been also shown to reduce the directed migration of cells towards a 

growth factor stimulus (Margarita et al, 2010). The loss of MYO6 expression might cause 

shaker/waltzer behavior and deafness. Along with myosin VI, myosin VIIA and myosin XV 

are the causative agents for hearing loss, Usher syndrome type1B (Friedman et al., 1999).  

  

 In the present study, phenolic effectors scaffold was chosen as potential lead to 

specifically target myosin VI. Previously studies have shown halogenated phenols to act as 

selective antineoplasic agents. TIP was shown to possess antitumor effect on leukemia cells 

and human pancreatic cell lines by inducing Bcl2- and caspase-independent lysosomal and 

mitochondrial cell death. Furthermore, the inhibition profile of TIP revealed the compound to 

function as leukotriene B4 synthesis inhibitor and anti-inflammatory drug. 

 

 We show TIP and PBPh to selectively inhibit human myosin VI motor function in 

vitro and in vivo. We subsequently provide evidence for a direct interaction of TIP and PBPh 

with myosin motor domain in a thermophoretic assay, indicating moderate binding affinities 

in the low micromolar range. Through analyzing the effect of the iodinated phenole derivative 

on a specific, myosin VI dependent exocytic pathway, our data shows a concentration-

dependent reduction of fusion events of exocytic particles at the plasma membrane of HeLa 

cells after TIP and PBPh-treatment. In agreement with the observation that TIP inhibits, but 

does does not abolish exocytic fusion events is the moderate reduction of the steady-state 

myosin ATPase activity in response to TIP exposure. The obtained IC50 values obtained from 

steady-state ATPase data and the in vivo data obtained from live cell imaging are in good 

agreement and indicate a higher responsiveness of the myosin motor in a cellular background 

than in the in vitro assay. 

 

Co-crystal structure of myosin II motor domain from D. discoideum with carbazole 
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KIN86 (focus of this thesis) was solved. The ADP meta vanadate stabilized crystal structure 

provided insight about the binding mode of a planar small molecule like carbazoles. 

Carbazole derivatives are well known for their various pharmacological activities, including 

anti-HIV, anticancer, antibacterial and antifungal activities (Arakawa et al., 1999; Barta et al., 

2009; Hu et al., 2007; Hu et al., 2006; Okumura et al., 2006). Natural and synthetic carbazoles 

represent an important and heterogeneous class of anticancer agents. Carbazole alkaloids in-

spite of its many biological activities displays also cytotoxicity against varieties of tumor cell 

lines. Many carbazole derivatives have been tested for cytotoxic activity, some of them have 

entered clinical trials, but only very few have been approved for the treatment of cancer so 

far, since the clinical application of many carbazoles has encountered problems like severe 

side effects or multidrug resistance. Due to their polycyclic, planar and aromatic structure 

carbazoles are predestined for intercalation into DNA and therefore DNA remains one of the 

main targets for cytotoxic carbazoles. 

 

The allosteric binding pocket accommodated the KIN86 with both dispersion and non-

covalent interactions. Structural analysis shows that the carbazole-derivative KIN86 binds to 

the similar site as pentabromopseudilin, at the tip of the myosin motor domain, near actin 

binding residues. From the crystal structure we can speculate how small effector molecules 

affect the energetic coupling and thereby myosin motor functions. The communication 

pathway between the allosteric site and the active sites are conserved among the various 

classes of myosin. The polarity and hydrophobicity of the allosteric cleft combined with 

various halogen substitutions of the carbazoles that binds to this cleft brings about the 

specificity and the potency for different carbazoles. From the results, these compounds were 

further classified into activators and inhibitors according to the effect they have on actin-

activated ATP hydrolysis activity of myosins. Thus, by establishing the communication 

pathway with which the small molecule effectors can modulate the association of myosin to 

actin and thereby the cross bridge cycle give clear picture about the chemo-mechanics of the 

motor proteins.  

 

 The structural information obtained for chicken fast skeletal muscle myosin II 

(Rayment et al., 1993), D. discoideum myosin II (Fisher et al., 1995a; Fisher et al., 1995b), 

Chicken smooth-muscle myosin II (Dominguez et al., 1998), Scallop striated myosin II 

(Houdusse et al., 1999) and Pig myosin VI (Menetrey et al., 2007) served in modeling other 

class of myosins and in modeling myosins from the same class from different species. These 
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validated models were used in our docking studies. With the aid of molecular docking 

methods the binding mode of the different class of compounds has been identified. Calculated 

affinity values that were obtained using the molecular docking were used as a guide to select 

compounds for further co-crystallization procedures. In further quantitative studies, the 

correlation between bioactivity and structures of variably substituted carbazoles and phenols 

can be systematically analyzed by quantitative structure activity relationship methods. The 

readouts from the steady-state ATPase kinetics i.e. the IC50 or AC50 values, in-vitro motility 

assay i.e. sliding velocities, and the affinity values obtained using microscale thermophoresis 

can be used as meaningful descriptors during such systematic analysis on the correlation 

studies of bioactivity and small molecule structures. QSAR studies thus provide a systematic 

analysis of chemical libraries of similar classes of small molecules. This further narrow down 

the time required during the process of drug discovery pipeline. 

 

5.2 Outlook 

Understanding of motor proteins–small molecule effectors interactions has increased 

rapidly, particularly through the combination of chemical synthesis, mutagenesis of proteins, 

biophysical techniques such as microscale thermophoresis, dynamic light scattering, and 

analytical ultracentrifuge and structural technique like X-ray crystallography. Thus enabling 

to obtain highly selective effectors of specific dynamin and myosin isoforms which have a 

wide range of potential therapeutic application in the treatment of diseases including epilepsy, 

Alzheimer's, Parkinson's, cancer, deafness and malaria. Our results show that pscychotropic 

drugs, halogenated carbazoles and phenols can thus be used as scaffold to design compounds 

that induces specific functional changes in the motor-activity of myosin, dynamin and Drp1.    
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