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Abstract

In the eye, the main contributor to the outer blood-retinal barrier (BRB) is the intact retinal pigment 

epithelium (RPE). A breakdown of the barrier can occur naturally, caused by advanced age due to  

related diseases such as age-related macular degeneration (AMD) or diabetic retinopathy (DR). 

Current treatment methods target disease progression using anti-angiogenic factors and steroids.

Current research focuses on cell culture with the associated limitation that the RPE cells develop in 

the absence of their physiologic partner, the retinal photo receptors.

To gain a better understanding of the complex circumstances that lead to compromises in the 

outer BRB, this project established a new approach  based on existing Ussing chamber systems 

for the use of rat tissue. The Ussing chamber examines the transepithelial electrical resistance 

(TEER) of the excised tissue and allows   changes in the transepithelial transport to be measured. 

Furthermore, the Ussing chamber allows the applying and testing of  diverse substances on the 

TEER and the  resulting effect on  transepithelial transport. In the adult rat, the RPE developed in its 

natural environment and rat eyes are large enough to harvest intact RPE tissue that allows for the 

mechanical removal of sclera.

The results presented in this thesis show stable TEER values with little variance when using the 

RPE in its complex including retina and sclera (RRS sample). The stability of RRS recommends its 

use for future research projects, especially when the barrier function of aged animals is studied. Its 

TEER was measured for a period of 100 minutes and established to be 152 ± 12 Ω·cm2 (n=12) 

with a decrease of 11% over this time period. After the mechanical removal of sclera and retina 

(RPE-tissue), the TEER of RPE decreased by 25% after 80 minutes. This constellation  reveals that 

the RPE without retina is not a suitable model  for studying its physiology. TEER values of the RPE-

choroid tissue were established at 133  ± 7 Ω·cm2 (n=32). Significantly greater TEER values than 

RRS or RPE were observed for RPE including retina but devoid of sclera (RR sample; 209  ± 13 

Ω·cm2; n=9). TEER measurements of sclera (7 ± 2 Ω·cm2; n=9) and retina (19 ± 2 Ω·cm2; n=7) 

showed their contribution to the TEER of the RPE complex, while the RR measurements showed 

that these values are not simply additive. Sodium-fluorescein (332 Da) was added to the apical 

bathing solution to study the transepithelial transport of a small non-ionic compound in the tissues 

described.  Among the RPE-bearing explants, the RR complex demonstrated the greatest amount 

of fluorescein transport from apical to basal.

The results indicate that this Ussing chamber assay presents a newly established method for 

studying the outer blood-retinal barrier. They reveal that the disruption of the RPE-retina complex 

by retinal removal changes the RPE’s barrier function and that the presence of the RPE-retina 

complex may be essential for the functionality and vitality of the RPE. 
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Zusammenfassung

Das retinale Pigmentepithel (RPE) ist der Hauptbestandteil der äußeren Blut-Retina-Schranke 

(BRS). Mit zunehmendem Alter entwickeln sich häufig Augenkrankheiten wie altersbedingte 

Makuladegeneration (AMD) oder diabetische Retinopathie (DR), welche die BRB beeinträchtigen.

Derzeitige Therapieansätze bedienen sich antiangiogener Substanzen und Steroiden, die den 

Krankheitsverlauf von vielen Patienten eindämmen können.

Um die Umstände, die zu der Beeinträchtigung der äußeren BRS führen, besser untersuchen zu 

können, wurde in dieser Arbeit ein auf einer Ussing-Kammer basierender neuer Ansatz etabliert.   

Die Kammer ist darauf spezialisiert den transepithalen elektrischen Wiederstand (TEER) und den 

transepithalen Transport von adulter Ratten-RPE zu bestimmen. Darüber hinaus erlaubt es diese 

Methode, die Auswirkungen verschiedener Substanzen auf die TEER und auf den transepithalen 

Transport zu untersuchen. Ratten bieten weiterhin die Vorteile, dass an ihnen Krankheitsmodelle 

etabliert sind und die Größe ihrer Augen die Entfernung der Lederhaut (Sclera) erlaubt, ohne das 

RPE dabei zu verletzen. 

Eine konstante TEER wurde erreicht, nachdem das RPE-Gewebe in Kombination mit Sclera und 

Retina (RRS Gewebe) untersucht wurde.  Die TEER von RRS wurde über einen Zeitraum von 100 

Minuten etabliert und lag bei 152 ± 12 Ω·cm2 (n=12). In diesem Zeitraum fiel die TEER um 11% ab. 

Diese Werte  machen die Verwendung des RRS empfehlenswert, insbesondere wenn ältere Tiere 

verwendet werden, weil deren RPE einer höheren Anfälligkeit für Verletzungen ausgesetzt ist. Es 

zeigte sich, dass die TEER der RPE nach der Entfernung von Retina und Sclera (RPE-Gewebe) 

nach 80 Minuten um 25% abfiel. Daraus wurde abgeleitet, dass dieses Gewebe nicht für die 

Evaluierung der physiologischen RPE geeignet ist. Der TEER-Wert  des RPE-Gewebes wurde mit 

133  ± 7 Ω·cm2 (n=32) gemessen. Signifikant höhere Werte als bei RPE und RRS wurden von RPE-

Retina (RR) erhalten (209 ± 13  Ω·cm2; n=9). TEER-Messergebnisse von Sclera (7 ± 2 Ω·cm2; n=9) 

und Retina (19 ± 2 Ω·cm2; n=7) deuten darauf hin, dass diese Gewebe nicht nur einen rein 

additiven Effekt zur TEER besitzen. Der transepithale Transport von apical nach basal von kleinen 

nicht-ionischen Molekülen über das RPE wurde mit Hilfe von Natrium-Fluoreszein (332 Da) 

analysiert.  Von RPE, RRS und RR zeigte der RR-Komplex die höchste basale 

Fluoreszeinkonzentration.

Die Ergebnisse weisen darauf hin, dass das Ussing-Kammer-System eine neu etablierte Methode 

zur Evaluierung  der äußeren BRS in Ratten  ist. Es zeigte sich, dass die Trennung der RPE von der 

Retina die Barrierefunktion der RPE beeinflusst, und dass der RPE-Retina-Komplex essentiell für 

die Funktionalität und Vitalität der RPE zu sein scheint.
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1	 Introduction

The eyes of primates have evolved into one of their order’s defining organs. They are capable 

of the amazing translation of light into nerve signals. They allow seeing and differentiation 

between consistent light sources and short-lived light flashes and are capable of 

distinguishing different wavelengths which are then translated into colors by the brain. Their 

location in the primate skull enables great depth perception. 

When eyesight is lost or reduced, alternative forms of orientation have to be acquired. Bio-

medical research has made it possible to largely eliminate or reduce those forms of blindness  

and vision impairments that were related to the cornea or the lens. 

As a result of these advances, age-related macular degeneration (AMD) and diabetic 

retinopathy (DR) are today the leading causes of blindness in the commonly called “western 

world” (1-4) while the two most dominant physiological imbalances that lead to AMD and DR 

are choroidal neovascularization (CNV) and diabetic macular edema (DME). Although for both 

diseases a limited number of approaches can help the afflicted persons, these treatments do 

not target the underlying pathogenesis. 

In AMD as well as in DR, among others, the retinal pigment epithelium (RPE), which is  also 

the integral part of the outer blood retinal barrier (BRB), plays a pivotal role. To gain access to  

more successful treatment methods for the devastating effects of vision loss, the biology of 

the involved RPE needs to be evaluated in greater detail. The desire to advance the current 

approaches of RPE cell culture, led to the idea of creating a new model for studying the   

physiological RPE characteristics. This was realized by harvesting tissue from the rat eye. 

Evaluation of the early experiments led to improvements in the design parameters, while the 

latest modifications resulted in a model that is stable for a time period of two hours. This 

model was established for RPE explants from rats on the basis of existing Ussing chamber 

assays.

1.1 	 The Blood-Brain Barrier (BBB) and Other Epithelial Barrier Systems 

In 1885 Nobel Laureate Paul Ehrlich performed the first experiments that later led to the 

discovery of the blood-brain-barrier (BBB). By injecting into the blood stream of animals an 

organic dye used for microscopic staining, he observed that all organs except the brain were 

stained. In 1915, his student Edwin Goldmann injected a similar stain directly into the brain, 

which was then stained while the rest of the body remained unchanged.
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The existence of the BBB  was formally demonstrated by Reese and Karnovsky in 1967 (5) 

when they injected horse radish peroxidase intravascularly. The subsequent electron-

microscopy clearly showed tight junctions as a barrier for their enzyme.

Tight junctions and their barrier function have now been studied for over 40 years. In 1964 

Sedar and Forte (6) demonstrated that the tight junctions containing gastric mucosa of Rana 

pipiens  showed a greater electrical conductance when the chelating agent EDTA (4 mM) was 

used. This effect was based on a widening of the intercellular space in the zonula adhaerens 

(intermediate junctions) and a marked separation of apposed leaflets in the desmosomes 

(macula adhaerens). The changes in the zonula occludens (tight junctions) were not as 

obvious, but appeared to be expressed in an increased frequency of the openings or 

separations in this epithelium. The effects of EDTA were reversible, after the tissue was 

placed in a bathing solution containing 2 mM Ca2+. 14 years later Meldolesi et al. showed 

that the tight junctions of the pancreatic lobules in guinea pigs were disassembled after 1-2 h 

of incubation with 0.5 mM ethylene glycol tetraacetic acid (EGTA) (7). This effect was 

successfully restored by reintroducing Ca2+. The observed changes in desmosomes and in 

some tight junctions, were well demonstrated using the freeze-fracture technique.

Other factors that have been shown to influence tight junction integrity in a variety of tissues 

are pronase (8), hypertonic solutions (9, 10), the cytokines IL-13  (11), interferon-γ (12)and 

tumor necrosis factor-α (TNF-α) (13), Vascular endothelial growth factor (VEGF) (14), 

hepatocyte growth factor (HGF) (15), pitavastatin (16), ethanol and hydrogen peroxide (17), 

zonula occludens toxin (ZOT) and its derivative zonulin (18, 19). Also some plant cytokines 

were shown to cause displacement and proliferation of some junctional proteins (20) and 

others.

To gain a better understanding of the outer BRB, which can be understood as a specific 

barrier of the BBB, it is helpful to take a look at the anatomy of the eye.

1.2	  Anatomy of the Eye and the Retina

The vertebrate eye is part of the brain. It was dissociated from it in early development, and 

yet continued to keep nerve connections to it (21). It is spherical in shape and is for its most 

part encapsulated by a fibrous collagen tissue called the sclera. The thickness of the sclera is 

dependent on the animal and on its position on the eyeball. In humans it is of considerable 

thickness and reaches 1 mm at its posterior pole and 0.3  mm on the site where the rectus 
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muscle is inserted (22). Light enters the eye through the transparent cornea and travels 

through the aqueous humor of the anterior chamber, followed by the lens, before it enters the 

vitreous. The bending of light that occurs at the air-cornea surface accounts for two-thirds of 

the bending necessary to focus the light on the photoreceptor cells in the back of the eye 

(21). The active adjustment to focusing the light happens by the lens. The amount of light that 

enters the eye is controlled 

by the iris, which controls 

the central opening - the 

pupil.

After the light has traveled 

through the transparent 

vitreous, it crosses the 

retina, which has been 

c a t e g o r i z e d i n t o t h e 

following ten layers: [1] inner 

limiting membrane, [2] nerve 

fiber layer, [3] ganglion cell 

layer, [4] inner plexiform 

layer, [5] inner nuclear or 

bipolar layer, [6] outer 

plexiform layer [7] outer 

nuclear layer, [8] external limiting membrane, [9] photoreceptor layer and [10] retinal pigment 

epithelium. 

Two distinct photoreceptor cell types are capable of recognizing and transmitting light 

signals: Rods and cones. Rods are responsible for the detailed recognition of light, while 

cones recognize color and are less light-sensitive. Their distribution varies greatly from 

species to species, with nocturnal animals having a greater amount of cones in their retina, 

especially in their area of central vision. Additional light energy is  captured by the 

melanosomes of the RPE and to some extent by the melanosomes of the vascular choroid, 

which is not part of the retina. 

The RPE is bordered by Bruch’s membrane, an elastin- and collagen- rich extracellular 

matrix. Its inner layer is defined as the basal membrane of the RPE, followed by two 

collagenous zones separated by an elastic layer and concludes with the innermost layer of 
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Figure 1-1: Anatomy of the eye. Top view. 



the choroid: the basement membrane of 

the choriocapillaris. The choroid and 

especially the choriocapillaris (CC) is  a 

meshwork of fenestrated vessels, with a 

very high blood flow: The CC accounts 

for 70% of the total blood flow in the eye 

(23, 24).

The blood flow to the retina is ensured by 

two circulatory systems: the retinal arteries and the choroidal vessels. The retinal vessels 

originate from the central ophthalmic artery and branch out into the nerve fiber layer and the 
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Figure 1-2: Model of the retina and and 
underlying tissue. 1 Inner glial limiting 
membrane, 2 Layer of nerve fibers, 3 
Ganglion cell, 4 Ganlionic cell layer, 5  Inner 
plexiform layer, 6 Inner nuclear layer, 7 
Outer plexiform layer, 8 Amacrine cell, 9 
Bipolar cell, 10 Horizontal cell, 11  Outer 
nuclear layer, 12 Cone cell, 13  Rod cell, 14 
Layer of rods and cones, 15 Retinal 
Pigment Epithelium (RPE), 16 Bruch’s 
membrane,17 Choroicapillaris, 18 Choroid, 
1 9  S c l e r a . I m a g e m o d i fi e d f r o m 
Microanatomy eye model, Item F16, 3B 
Scientific GmbH, Hamburg, Germany

A B

Figure 1-3: Macro-anatomy of the choriocapillaris. The images  show the great density of 
vessels. A. Anterior (retinal) view of a choroidal cast in the posterior pole of a human eye (x130) 
B. Scleral view of a choroidal cast in the posterios  fundus. An arteriole (A) joins  the 
choriocapillaris (C) at a right angle (x300). Images taken from Yonega et al. 1983 (194).



ganglion layer. In the human eye the point of central vision, the fovea, is avascular and about 

0.5 mm in diameter (25, 26). It is in the center of the macula, a region of about 5 mm 

diameter. This region is exclusively supplied with oxygen by the choroidal blood flow. 

The photoreceptors comprise an “inner” and 

“outer” segment. The inner segment contains the 

nucleus and the majority of the cell body, while the 

outer segment is packed with about 1000 disks 

containing the visual pigment rhodopsin. Upon 

absorption of a sufficient amount of photons, the 

light signal is translated into an electric signal that 

gets carried to the brain via the neurons. The 

reconfiguration of the rhodopsin takes place in the 

RPE cells. The isomerization process from all-

trans retinal to 11-cis retinal is separate from the 

process in which older optic discs are shed by the 

rods or cones and phagocytosed by the RPE. A 

large degree of the phagocytosed material also 

gets recycled and transferred back to the 

photoreceptors (27, 28).

1.2.1	 The Retinal Pigment Epithelium (RPE)

The RPE is the outermost layer of the retina and the essential component of the outer blood-

retinal barrier (BRB). 

It is a highly polarized epithelium consisting of a monolayer of cells that have a predominantly 

hexagonal shape, while the individual cells  secure the barrier with their junctional complex 

consisting of tight junctions and adherens junctions. In most tissues, desmosomes are part of 

the junctional complex, however they are absent in avian, rat, mouse and human RPE (29).

Tight junctions are primarily comprise occludin and a group of tetraspan transmembrane 

proteins with 24 family members: the claudins (30, 31) of which nine have been identified in 

RPE (32). Claudins form either homo or hetero oligomers which determine the size and ion 

selectivity of the pore they form (33, 34). The regulatory process of this pathway is regulated 
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Figure 1-4: Association between RPE 
microvilli and rod cells. After Miller and 
Steinberg 1977 (150).



by RhoA signaling and has been shown 

to involve actinomyesin driven processes 

(35, 36). In the process of opening and 

closing, the aqueous channels allow 

other substances to pass passively. In 

the RPE cells  nine claudins have been 

identified to date: Claudin-1, -2, -3, -10, 

-12, -15, -16, -19 and -20 (32).

The apical side of the RPE faces the 

lumen of the eye. On this side the RPE is 

equipped with microvilli that engulf the 

cones and rods from the photoreceptors. 

One RPE cell is associated with 15 - 40 photoreceptors of differing rod/cone distribution, 

depending on the location in the eye (37, 38). On the basolateral side the RPE cells are in 

proximity to the fenestrated choriocapillaris, only separated by Bruch’s  membrane. The RPE 

is involved in a multitude of necessary processes assuring uninterrupted vision. It is 

responsible for delivering nutrients and 

oxygen to the photoreceptor outer layer, as 

well as removing their metabolites and plays 

a pivotal role in the visual cycle by restoring 

the visual chromophore 11-cis-retinal from 

the all-trans-retinal, which was generated 

after the absorption of a photon changed its 

conformation (39, 40). However the RPE is 

not the exclusive location of the isomerization 

from all-trans retinol to 11-cis retinal: another 

known process takes place in the Müller cells 

of the retina (41, 42). The pigments of the 

RPE absorb light energy that is not necessary 

for vision. With the capture of this  excess 

light the RPE protects the photoreceptors 

from photo-oxidation damage (43). The need 

for a protection is apparent when the 
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Figure 1-6: Association of photoreceptor 
cells and RPE cells according to their 
location in the eye. Graph was  developed 
from examining rhesus  monkey Thick solid 
line: mean RPE density. Dashed line: Mean 
cone number per RPE cell. Thin solid line: 
Mean number of rods  and cones combined per 
RPE cell. Image taken from Snodderly et al. 
2002 (37).

Figure 1-5: RPE cell layer from rat. Actin staining 
with rhodamine-phalloidine. Pseudo color.



perfusion rate and the oxygen saturation of the blood of the choriocapillaris, are considered. 

1.4 L of blood per minute per 100 g tissue circulate through this tissue with a venous (!) O2 

concentration of 90%, while blood from retinal veins show an O2 concentration of 45% 

(44-46).

During the development of the eye, the RPE produces and secretes growth factors (e.g. 

vascular endothelial growth factor [VEGF]), angiogenic (e.g. interleukine (IL)-8, monocyte 

chemotactic protein [MCP]-1, IL-6) and angiostatic (e.g. MCP-3, interferon gamma-induced 

protein [IP]-10) cytokines and chemokines that are essential for the development of the 

choriocapillaris and the retina (46-48). It has been shown that the RPE produce immune-

proteins such as complement factor H (CFH) and possess immune-receptors (48-50).

Another essential function of the intact RPE is the removal of water from the retina. The 

source of this  retinal water is the high metabolic rate of the retinal cells, as well as the water 

contained in the vitreous (51, 52).

In their natural environment, the photoreceptor outer segments (POS) are exposed to high 

amounts of light and oxygen, which leads to the accumulation of radical oxygen species 

(ROS) (53). To maintain healthy and functioning POS, this waste material is shed and 

replaced by new material generated by the photoreceptors, while the shed POS are 

phagocytosed and broken down by the RPE.

1.3 	 Two Retinal Diseases Involving the RPE

A number of retinal diseases exist of which only a few are associated with the RPE. The 

dysfunctional RPE may only be the result of prolonged hyperactivity based on the problems 

originating, for example in the vasculature, however its eventual breakdown leads to the more 

severe complications in disease progress. Here only two diseases will be introduced in which 

the RPE does play an intrinsic role.

1.3.1	 Age-Related Macular Degeneration (AMD) 

AMD is  the leading cause of blindness in the developed world and a complex disease in 

which genetics, environmental and demographic risk factors are involved (54-56). In the 

United States AMD affects 6.4% of the population aged 40 years and above or 13.3% of 

those aged 60 and above (57).
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AMD’s complexity has not yet allowed it to be understood entirely but more and more pieces 

that form the mosaic of AMD have been revealed. 

The pathology of AMD starts to become evident with the definition of its two types: The dry 

and the wet form. Wet AMD is defined by the formation of new blood vessels  derived from 

the choroid (choroidal neovascularization or CNV) that breach Bruch’s membrane. In a first 

step fluid accumulates below the RPE, impairing vision by lifting the retina from its  surface. As 

a result, affected individuals start seeing straight lines to be crooked. The new vessels can 

eventually grow through the RPE layer. In these more aggressive stages, the breach of the 

outer BRB  leads to photoreceptor decay and eventually blind spots in the central vision (58, 

59).

The formation of CNV is  oftentimes explained by the lack of sufficient oxygen supply to the 

photoreceptors (60-63). The primary driving force of angiogenesis is VEGF (64-66), which is 

first targeted when treating the disease (67). It is essential to stop angiogenesis, because the 

new blood vessels are leaky.

Only 15% of all AMD cases are associated with the wet form, the majority of cases are 

classified as dry AMD (2). In dry AMD, the retina deteriorates in regions with dysfunctional 

RPE based on the separation of RPE and photoreceptors. This is commonly believed to be 

caused by basal deposits of lipids and cellular material that develop into drusen. The 

components of large drusen include apolipoprotein E, β-amyloid, vitronectin, 

immunoglobulins, activated complement components including C5b-9 and complement 

factor H as well as MHC-II antigens. All of these factors were synthesized locally by the retina, 

RPE, or the choroidal cells and improperly digested by the RPE (3, 68-71).

The formation of drusen is central in AMD pathogenesis because it has been associated with 

the thinning of the retina, destruction of the RPE and subsequently the loss of 

photoreceptors. Dry AMD can progress into wet AMD, but this is  not a certain path. Currently 

no treatment for dry AMD exists while clinical studies are under way (72, 73).

Commonly found components in the cytoplasm of aged RPE that are associated with drusen 

are lipofuscin granules - autofluorescent material that accumulates over the lifetime of the 

largely non-mitotic RPE (74-76). Lipofuscin is generated in an environment that is high in 

oxygen and exposed to visible light, which contributes to the formation of reactive oxygen 

species (ROS). Eventually these granules can take up a substantial amount of the cells’ 

cytoplasm (77). Some of the granules’ components are photosensitive and are formed as a 

by-product of the vitamin A cycle. The best-characterized photodegradable component is  N-
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retinylidene-N-retinyl-ethanolamine (A2E). It has been shown that the photodegradation of 

A2E releases a product that has the ability to form advanced glycation endproducts (AGE), 

which are also commonly detected in drusen (78) hence it is suggested that drusen play a 

pivotal role in the early onset of AMD. Thus the early stages of pathogenesis that lead to RPE 

dysfunction have been attributed to aging (68, 69).

Some groups have suggested that the limited mitotic activity of the aged RPE cells leads to 

senescence and hence to a reduction in their metabolic capabilities and the accumulation of  

improperly digested waste products. Partial success to restore their function was shown 

when RPE cells were targeted and destroyed by laser pulses taking advantage of their self-

renewal potential as a possible treatment plan (79, 80). Other groups have focused on the 

involvement of immunological factors, especially those deriving from the complement system 

(49, 81).

After AMD is diagnosed, it is  treated by a combination of intravitreal anti-VEGF and/or steroid 

injections and verteporfin photodynamic therapy (PDT) (82). However, this approach is only 

successful in a limited portion of the patient population. Repeated intraocular injections of 

VEGF antagonists are dreaded by the patients and are not free of risks, as VEGF fulfills 

important physiological functions in the retina and choroidal microvasculature (47, 83).

The risk of AMD has been shown to be reduced when smoking is reduced or avoided, 

physical activity is increased and a diet of less fatty ingredients is chosen, while ingestion of 

vitamins and mineral supplements has also proven to be beneficial in certain patients (84-87).

1.3.2	 Diabetic Macular Edema (DME)

Diabetic macular edema (DME) is one complication of patients with diabetic retinopathy (DR).

The amount of people affected by DR or DME varies within the reports, but lies between 10% 

and 20% of diabetic patients (4, 88-91), with 10% to 16% of the US population being 

affected by diabetes (92, 93).

In DME, extracellular fluid leaks through the dysfunctional inner blood-retinal barrier, which is 

made up of the endothelial cells lining the retinal blood vessels, leading to its accumulation in 

the subretinal space and eventually retinal swelling (4, 88, 94-97) . The excess fluid that the 

RPE fails  to remove contributes to the severity of the edema (96). In most cases the 

accumulation of fluid leads to the disruption of the outer BRB. The changes in the hydrostatic 

conditions in the eye can furthermore lead to an influx of fluid to the retina. 
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Hyperglycemia is described to be the key factor that leads to DME. As diabetes is  starting to 

be accepted as an inflammatory disease, it is not surprising that leukocytes have been 

involved in the process of vessel damage (95, 98, 99), where rolling leukocytes generate 

proteolytic enzymes that damage the endothelium and lead to the recruitment of more 

leukocytes. As this has become more clear, anti-inflammatory treatments have been used to 

positively affect DR in animal models (100).

1.4 Interleukin-1β 

The multipotent cytokine Interleukin (IL)-1 affects many processes in the inflammatory 

response including activation of antigen presenting cells, chemotaxis and angiogenesis (101). 

IL-1 exists as two agonistic proteins: IL-1α and IL-1β. Both forms bind to the same receptor 

and the differences between the responses they trigger are negligible, however one great 

difference exists in their location. The former is present primarily in the cytosol and active as a 

precursor or an associated molecule, while IL-1β is  largely secreted by inflammatory cells and 

present in the circulation or in local tissues (101). The characterized IL-1 receptor antagonist 

(IL-1 Ra) functions by actively blocking the IL-1 receptor site and is hence a physiological 

inhibitor (102). Involvement of IL-1β in eye-related diseases such as in retinopathy (103-105) 

and age related degeneration (106, 107) has been reported. Abe et al. showed that the 

application of IL-1β to RPE cultures leads to a reduction in the tight junctional protein 

occludin and hence a reduction in TEER over a period of several days (108). The angiogenic 

aspects of IL-1β are based on its induction of VEGF-A, COX-2/prostanoids and CXC 

chemokines (109, 110) via the NF-κB pathway (111).

On RPE cells the IL-1β receptor has been shown to be predominantly expressed on the 

apical side (48), while a decrease in TEER after the application of an inflammatory cytokine 

mixture consisting of TNF-α, IL-1β and interferon-γ (IFN-γ) was reported for cultured RPE 

cells. However no reports exist that evaluated the effect of IL-1β on the barrier on its own.

1.5	 Evaluating the Outer Blood-Retinal Barrier

The outer blood retinal barrier (BRB) can be understood as a specific barrier of the BBB 

because the vertebrate eye is part of the brain (21). The biology of this barrier has been 
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studied by evaluation of the transepithelial electrical resistance (TEER, also TER or Rt) and the 

transepithelial transport and the transepithelial potential (TEP), which are dependent upon the 

intactness of the tissue as well as the proper development and physiological function of the 

tight junctions in the RPE.

The TEER is a measure of the amount of ions crossing the epithelium and is composed of the 

trans- and paracellular resistances. In epithelia with relatively low resistances (below 400 

Ω·cm2), the transcellular resistance is much greater than the paracellular one, hence the 

TEER reflects the paracellular resistance, to which the tight junctions (TJs) are the main 

contributors (112).

To obtain the TEER, a voltage pulse is placed over the epithelium, and the corresponding 

electric current is read. The resistance is calculated according to Ohm’s law (R=V/I), while 

further multiplication with the exposed endothelial surface area results in the TEER. This 

multiplication is necessary to normalize the values because the resistance is inversely 

proportional to its area: When the voltage is kept constant, the corresponding current is lower 

in a tissue with smaller surface area, resulting in greater resistance.

Researchers understand the TEER as a measure for the amount of closed TJs at a given 

time-point, while the paracellular flux is an indicator for the epithelial permeability over a 

period of time. The switch between open and closed is attributed to aqueous channels in 

each diffusion barrier (113, 114). No other model has been proposed thus far.

The TEER is also used to determine confluence of cell cultures. While the TEER value is a  

measure for the intactness of the RPE sheet, a greater TEER value does not necessarily 

mean a more physiological RPE.

The transepithelial potential (TEP) is defined as the difference between the apical (Va) and 

baso-lateral membrane potential (Vb) (TEP= Vb - Va). To obtain these values a microelectrode 

is inserted into the cell and referenced to the apical or basal solution respectively (115). 

In RPE research the continuing challenge is the creation of an appropriate cell culture that 

mimics the physiological interactions of the RPE in vivo, while the great heterogeneity of the 

RPE cells (116) has hampered the establishment of such a culture. The National Institute of 

Health (NIH) has set a goal to create and distribute a human based RPE culture to give the 

field a common reliable and well established cell line with a standardized protocol to increase 

the quality of the available cell cultures (117).
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1.5.1	 Transepithelial Electrical Resistance (TEER) Values of RPE Cell Cultures

The TEER in cell culture is measured with epithelial volt-ohm meter (EVOM) devices, which 

are ideally used on cells that have been grown on permanent transwell filter systems to 

minimize measuring errors.

The widely used human RPE cell line ARPE-19 arose spontaneously from a primary cell 

culture under laboratory conditions. It was reported to achieve mortality and senescence 

while its TEER was first described to be between 50 and 100 Ω·cm2 (118). Another group 

reported the values of ARPE-19 cells  to be as low as 40 Ω·cm2 (119), and state that similar 

values were reached in the work of the original ARPE-19 publication (118).

Primary porcine RPE cell cultures have been reported to have a TEER of 80 Ω·cm2 (120). 

Primary rat RPE cell cultures measured a TEER between 100 and 300 Ω·cm2 (121). Another 

frequently used cell line is derived from rat: the RPE-J cell line was produced by transfection 

of the primary cells  culture with a heat sensitive SV40 virus (122) and shows TEER values of 

350 Ω·cm2, while the Na/K ATPase and N-CAM were not located at their physiological 

position - in RPE, unlike almost all other epithelia with the exception of the choroid plexus, 

the Na/K pumps are located on the apical membrane (123-126) .

The immortal human D407 RPE cell line fails  to express pigments but retains differentiation 

at high passage numbers (127). While the original group did not report TEER, others 

described it to be less than 85 Ω·cm2 (128), and one group reported a baseline as low as 25 

Ω·cm2 for their experiments (129). 

In 2006 the above mentioned human fetal RPE cell line was described to resemble the 

physiology and morphology of native RPE, while expressing large numbers of RPE-specific 

markers that are found on native RPE cells (117, 130). Its  original TEER values were 

measured at 501 ± 138  Ω·cm2, while another group reported values between 800 - 1,200 

Ω·cm2 (131). A possible explanation for the variation in TEER values may be found in 

unintentional cloning effects, which occur when not all cells of the culture dish are scraped 

and transferred and reseeded to start a new culture, leading to a selection of certain 

subtypes. 

1.5.2	 Transepithelial Electrical Resistance (TEER) Values of Non-RPE Cell Cultures

TEER values of other cell-type cultures are frequently compared for their respective research. 

They include MDCK I (Madin-Darby canine kidney, strain I) cells, MDCK II (strain II) cells and 
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T84 (human colon adenocarcinoma) cells. MDCK I show morphological and biochemical 

characteristics of renal collecting duct epithelia, with high TEER values of 2,000 - 9,000 

Ω·cm2 (132-134). MDCK II show morphological and biochemical characteristics of renal 

proximal tubule epithelia with low TEER of 70-180 Ω·cm2 (132-134), while T84 cells have 

characteristics of intestinal epithelia with moderately high TEER 900-1500 Ω·cm2 (134, 135). 

The human intestinal cell line HT-29/B6  shows TEER values of 390 Ω·cm2 (136) and the 

human umbilical vein endothelial (HUVEC) cells have reported TEER values between 25 

Ω·cm2 (137) and 74 Ω·cm2 (138). In a model of rat brain capillary endothelial cells (RBEC) the 

TEER value was 114 Ω·cm2 and increased to 130 cm2 after statin treatment (16).

Unfortunately it is also not uncommon for groups to report only relative changes in TEER 

values (139-145), which makes it very difficult to reproduce the data.

1.5.3	 A Short Overview of the Ussing Chamber

When the TEER of an ex-vivo tissue is examined, the EVOM device cannot be used. A 

different type of device is  used for its evaluation: Diffusion chambers, commonly called 

Ussing chambers to honor their inventor, Danish physiologist Hans Ussing (1911-2000), are 

defined by two half chambers filled with Ringer’s solution (Ringer) that are separated by an 

epithelium. The medium in the half chambers is usually pH controlled via gassing. Ideally an 
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Figure 1-7: Diagram of the original 
Ussing chamber apparatus. 
Abbreviations: A and A′: voltage-
sensing electrodes; a:the air lines to 
aerate the frog skin; B  and B′: 
current-passing electrodes; C: Ussing 
half-chambers; S: location where skin 
is  inserted between the hal f-
chambers; D: battery; W: potential 
divider used to adjust (by using 
current) the voltage across  the skin to 
equal zero (i.e., short-circuited) as 
measured by P: potentiometer 
(voltmeter); M: the microamperemeter 
measures  current passing the skin. 
Any recorded current while the 
chamber is  short circuited is  the 
short-circuited current (μA). Figure is 
taken from Ussing and Zerhahn (146).



Ussing chamber has an option that allows the slow exchange of medium to alter 

experimental conditions. 

What led to the invention of the chamber was Ussing’s desire in the 1950’s to study the 

active ion transport across an epithelium. It was based on the need to eliminate any passive 

driving force responsible for transepithelial sodium transport: The electrochemical potential 

difference. In other words Ussing was interested in short-circuiting his epithelium of choice, 

the frog skin. Any measured current under these conditions (short-circuit current) would then 

essentially be determined by active transport. This led to the understanding that the short 

circuit current across the frog skin was essentially derived from active Na+ transport. 

(146-148). With their work Ussing and Zerhahn layed the groundwork that led to the 

understanding of polarized cells.

Today Ussing chambers are still used for the same purposes, while the measurement of the 

TEER, the transepithelial potential and the movement of fluid are additional aspects being 

studied. The design, application and components vary by manufacturer.

1.5.4	 Experimental Conditions of RPE Explants and Their TEER

Excised RPE explants have been used by a number of groups in the past and are still used at 

present. The animal RPE is usually derived from frog, chicken, rabbit and bovine. Below the 

experimental conditions as well as their TEER values are summarized:

From the family of Bufonidae (true toads), Bufo arenarum (450 Ω·cm2) and in Bufo 

marinus (600 Ω·cm2) tissues have been used with an area of 10 mm2 being exposed to the 

bathing solution at pH 7.9 and room temperature (RT). Tissue was gassed with air. The 

medium was composed as follows (all in mM): 115.5 NaCl, 2.0 KCl, 1.0 CaCl, 2.4 NaHCO3, 

(149).

Miller and Steinberg used Rana catesbeiana, the large bullfrog from the family of Ranidae 

(true frogs) from which they isolated 0.07 cm2 RPE/choroid explants with 2800-5500 Ω 

(196-350 Ω·cm2) with a pH 7.4 using 95% O2 and 5% CO2 and the following medium: 82.5 

NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 27.5 NaHCO3, 10 glucose, (all in mM); 227 mOsm (150).

Similar TEER values (212 Ω·cm2) were reached by another group of the same species with 7 

mm2, pH 7.4 at RT using 95% O2 and 5% CO2 with the following medium: 110 Na+, 2 K+, 1.8 

Ca2+, 1 Mg2+, 90.1 Cl-, 27.5 HCO3-, 10 glucose (all in mM) (151).
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RPE of embryonic chicken (day 13-19), incubated at 37 ºC showed a TEER of 144 ± 22 

Ω·cm2, while the size was 6.2 mm2. pH 7.4 using 95% O2 and 5% CO2, CO2 tension 40 

mmHg; O2 tension 500 mmHg, the medium contained 143  Na+, 3.6 K+, 1.2 Ca2+, 2.5 Mg2+, 

125 Cl-, 2.5 SO42-, 0.5 PO43-, 23 HCO3-, 10 glucose (all in mM) (152). 

TEER of RPE of rabbit (black dutch-belted, male and female 1.2-1.8  kg) has been reported 

at 350 Ω·cm2. The aperture had an area of 7 mm2 and was measured at 37 - 39  ºC, pH 7.4 

using 95% O2 and 5% CO2 gas mixture with the medium containing 143  Na+, 3.6 K+, 1.2 

Ca2+, 2.5 Mg2+, 125 Cl-, 2.5 SO42-, 0.5 PO43-, 23  HCO3-, 10 glucose (all in mM) (153). The 

rabbit RPE (black dutch-belted, male and female 2-2.5 kg) TEER from another group was 

reported to be 90 Ω·cm2 using an area of 12 mm2 and was measured at 37 ºC, pH 7.4 using 

Dulbecco’s phosphate buffered saline (DPBS) (154).

In bovine RPE explants (three to four hours post harvest) Zhang et al. reported TEER of 234 

± 34 Ω·cm2 with an exposed tissue area of 1 cm2 at 37 ºC, pH 7.4 using 95% O2 and 5% 

CO2 gas and medium containing 119 NaCl, 3.6 KCl, 1.2 CaCl2, 2.5 MgSO4, 0.5 Na2HPO4, 

23  NaHCO3, 10 glucose (all in mM) (155). Their publication states that their TEER values were 

comparable to Joseph and Miller’s results from bovine who described a mean TEER of 138 

± 7 Ω·cm2 at 37 ºC with a tissue size of 0.07 cm2 , pH 7.4 using a gas containing 10% O2, 

5% CO2, 85% N2 and medium containing (all in mM): 120 NaCl, 5 KCl, 1.8  CaCl2, 1 MgCl2, 

23  NaHCO3, 10 glucose (115). In this report Joseph and Miller reported that the bovine RPE 

remained stable for 20-30 min, then decreasing with a rate of 30% per hour, which left a 

tissue with an initial TEER of 150 Ω·cm2 at 75 Ω·cm2. They reported having achieved a 

significant improvement in the longevity of the tissue, when 1 mM glutathione was added to 

the medium and they used a lower partial oxygen pressure of 10%. An O2 tension of 80-100 

mm Hg (10-13% PO2), had been shown at the RPE of an intact cat eye (156), while 

glutathione is  intrinsic to the bovine and rat retina and had been shown to have beneficial 

effects (157, 158). These changes led to a stable TEER for 4 - 5 hours and the TEER even 

increased by as much as 50 Ω·cm2. They also reported that the TEER decreased from 270 to 

190 Ω·cm2 when the temperature was increased from 30 to 37 ºC. They also reported having 

used only tissues with a TEER > 90 Ω·cm2 after they evaluated membrane depolarization 

results caused by ouabain (115, 159).

Native human adult RPE was evaluated with a mean TEER of 79 ± 48  Ω·cm2 (values 

ranging from 36 to 148  Ω·cm2) and native human fetal RPE with 206 ± 151 Ω·cm2 (values 

ranging from 18  to 486 Ω·cm2) (160). The use of almost all tissues even with low TEER has 
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been explained by the rare availability, while for bovine RPE this did not play a role. The 

medium for these experiments was kept at pH 7.4 using a gas mixture of 8% CO2 or 10% 

CO2 and contained 113.4 NaCl, 5 KCl, 1.8  CaCl2, 0.8  MgCl2, 1 NaH2PO4, 26.2 NaHCO3, 

15.6 glucose and 1 glutathione (all in mM). The osmolarity of the solution was 284 ± 3 

mOsm. In a further publication of the same group it was reported that the exchange of MgCl2 

with MgSO4 and the addition of 4 mM taurine had no effect on the maintenance of a healthy 

human fetal RPE (161), however the addition of a number of supplements such as vitamins 

and amino acids led to longer tissue survival, and this medium was also used during the 

dissection process.

These reports show that there is common ground for TEER values in RPE research, although 

the detailed experimental settings vary and are not always consistent. Standards for the 

TEER in the RPE have been established, however, they need to be constantly verified and 

modified in the appropriate systems, which makes it difficult to compare results.

This thesis aims to introduce a new model in which ex-vivo tissue from rats is used for the 

first time to gain a better understanding of the outer blood retinal barrier.
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2	 Materials and Methods

2.1	 List of Chemicals and Salts

Name	 	 	 	 Cat. No.	 	 Company

CaCl2 	 	 	 	 C4901 		 	 Sigma-Aldrich, St. Louis, MO

DAPI (4',6-diamidino-2-

phenylindole, dihydrochloride)	H-1200 	 	 Vector Laboratories, Burlingame, CA

Fluorescein-phalloidin 		 F432	  	 	 Invitrogen; Carlsbad, CA

Formaldehyde (3.7-4%) 	 15714-S	 	 Electron Microscopy Sciences; Hatfield, 

	 	 	 	 	 	 	 PA

Glucose 	 	 	 G7528 		 	 Sigma-Aldrich, St. Louis, MO

Glutathione	 	 	 G4251 		 	 Sigma-Aldrich, St. Louis, MO 

KCl 	 	 	 	 P9333 		 	 Sigma-Aldrich, St. Louis, MO

Methanol	 	 	 M 3641	 	 Sigma-Aldrich, St. Louis, MO

MgCl2 	 	 	 	 M8266 	 	 Sigma-Aldrich, St. Louis, MO

Mounting Medium 	 	 H-1000	 	 Vector Laboratories Burlingame, CA

NaCl 	 	 	 	 S7653 	 	 	 Sigma-Aldrich, St. Louis, MO

NaHCO3 	 	 	 S6297 		 	 Sigma-Aldrich, St. Louis, MO

Rhodamine-phalloidin 		 R415 	 	 	 Invitrogen, Carlsbad, CA

Sodium fluorescein 	 	 F6377 		 	 Sigma-Aldrich, St. Louis, MO	

SYTOX Orange 

(dimethylsulfoxide) 	 	 S11368 	 	 Molecular Probes, Eugene, OR

2.2	 List of Equipment	

Name	 	 	 	 Cat. No/Model	 Company

Ag and AgCl electrode pair	 P2020-S 	 	 Physiologic Instruments, San Diego, CA

Analogue/digital converter	 Powerlab/8SP	 	 AD Instruments, Colorado Springs, CO

ATC (automatic temperature

compensation) probe	 	 598115	  	 Beckman Coulter, Brea, CA

Bubble airstone 	 	 N/A	 	 	 Petsmart, Everett, MA

Calomel electrode 	 	 511080	 	 Beckman Coulter, Brea, CA
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Ceiling dissecting microscope 	MG 90	 	 	 Leica, Solms, Germany

Colibri forceps 		 	 AE-4030	 	 Asico, Weatmont, IL

Digital microscope camera  ORCA-ER C4742–95 Hamamatsu Photonics, Hamamatsu, 

       Japan

Dissection forceps	 	 RS-5136 	 	 Roboz Surgical Instruments, 

	 	 	 	 	 	 	 Gaithersburg, MD

Dissecting scissors 	 	 15017-10 	 	 Fine Science Tools, Heidelberg, 

	 	 	 	 	 	 	 Germany

Dissection forceps	 	 5/15 INOX 	 	 Roboz Surgical Instruments 

	 	 	 	 	 	 	 Gaithersburg, MD

Dissecting microscope		 MZ FLIII 	 	 Leica, Solms, Germany

Dissecting microscope		 MZ 95	 	 	 Leica, Solms, Germany

Fluorescent microscope 	 DM RXA	 	 Leica, Solms, Germany

Gas valve	 	 	 3051301-01-M1Q	 Concoa, Virginia Beach, VA

Inverted microscope 	 	 CK2	  	 	 Olympus, Tokyo, Japan

Microplate Reader (fluor.) 	 Spectramax Gemini 	 Molecular Devices, Sunnyvale, CA

Microprobe thermometer 	 BAT-12		 	 Physitemp, Clifton, NJ

Microsurgery scissors 	 	 15017-10 	 	 Fine Science Tools, Heidelberg, 

	 	 	 	 	 	 	 Germany

Osmometer    5004    µOsmette, Precision Systems, Natick, 

       MA

pH meter    Φ340    Beckman Coulter, Brea, CA

Ussing chamber system	 EM-CSYS-2 	 	 Physiologic Instruments, San Diego, CA

Ussing half-chambers 		 P2400	 	 	 Physiologic Instruments, San Diego, CA

Ussing slider (2 mm diameter) 	P2407 		 	 Physiologic Instruments, San Diego, CA

Voltage Current Clamp 	 VCC 600	 	 Physiologic Instruments, San Diego, CA

Water-bath    B-490   Büchi Labortechnik AG, Flawil, 

       Switzerland

Water-pump (heated) 	 	 P/N 07999-000	 Gaymar, Orchard Park, NY
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2.3 List of Consumables

Name	 	 	 	 Cat. No.	 	 Company

0.2 ml reaction vial	 	 05-408-120	 	 Thermo Fisher Scientific, Waltham, MA

1.5 ml reaction vial	 	 05-408-129 	 	 Thermo Fisher Scientific, Waltham, MA

15 ml reaction vial	 	 352097	 	 BD Falcon Franklin Lakes, NJ

18 gauge needle	 	 305195	 	 BD Falcon Franklin Lakes, NJ

30 gauge needle	 	 305106 	 	 BD Falcon Franklin Lakes, NJ

50 ml reaction vial	 	 352074	 	 BD Falcon Franklin Lakes, NJ

Aluminum foil	 	 	 N/A	 	 	 Reynolds, Richmond, VA

Cover glass 	 	 	 12-548-5A 	 	 Thermo Fisher Scientific, Waltham, MA

Electrode tips	 	 	 P2023 		 	 Physiologic Instruments, San Diego, CA

Gloves (vinyl) 	 	 	 V484313 	 	 Medline Industries, Mundelein, IL

Immersion oil	 	 	 11 513 859 	 	 Leica, Wetzlar, Germany

Lint free task wipes 	 	 34155	 	 	 Kimberly-Clark, Irving, TX	

Parafilm M	 	 	 PM996		 	 Pechiney Plastic Packing, Chicago, IL

Sand paper (grit 600)	 	 NC9499188 	 	 McMaster-Carr, Cleveland, OH

Syringe (1ml)	 	 	 309602	 	 BD, Franklin Lakes, NJ

2.4	 List of Substances Applied to the Isolated Retinal Pigment Epithelium

Name	 	 	 	 Cat. No.	 	 Company

BSA (bovine serum albumin)	 A9418-10G 	 	 Sigma-Aldrich, St. Louis, MO

DPBS (Dulbecco’s phosphate 

buffered saline) 	 	 17-515Q	 	 Lonza BioWhittaker, Walkersville, MD

IL-1β (human)   201-LB   R&D Systems, Minneapolis, MN

LPS (lipopolysaccharide)	 L2262	 	 	 Sigma-Aldrich, St. Louis, MO 
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2.5	 List of Specialized Computer Software

Name	 	 	 Use	 	 	 	 Company

LabChart	 	 Data recording and analysis 	 AD Instruments, Colorado Springs, CO

SoftMax Pro 	 	 Microplate data software	 Molecular Devices, Sunnyvale, CA

Keynote 	 	 Presentation and storage	 Apple, Inc, Cupertino, CA

2.6	 Buffer and Solutions

DPBS

Dulbecco’s phosphate buffered saline (DPBS; Lonza BioWhittaker, Walkersville, MD) was 

diluted to a concentration of 1x.

HBSS

Hanks balanced salt solution (HBSS; H9394; Sigma, St. Louis, MO) without calcium, without 

magnesium.

KCl 5.4 mM (400 mg/l), KH2PO4 0.4 mM (60 mg/l), NaHCO3 4.2 mM (350 mg/l), NaCl 136.9 

mM (8000 mg/l), Na2HPO4 0.7 mM (48  mg/l), D-glucose 5.6 mM (1000 mg/l), phenol red 31 

nM (11 mg/l).

DMEM

Dulbecco’s modified Eagle’s medium (DMEM/Ham’s nutrient mixture F-12; D8437; Sigma, St. 

Louis, MO). A partial list of the components is listed here: NaCl 119.7 mM (6996 mg/L), 

NaHCO3 14.3  mM (1200 mg/L), KCl 4.2 mM (311.8  mg/L), CaCl2 • 2 H2O 1.1 mM (155 mg/

L), MgCl2 • 6 H2O 0.3  mM (61.2 mg/L), Na2HPO4 1 mM (71.02 mg/ml), NaH2PO4 0.45 mM 

(54.3 mg/L), and glucose 17.5 mM (3150 mg/L).

RPE-Ringer solution

This Ringer solution was used by one of the most accomplished RPE research groups led by 

Sheldon Miller. Its components are as follows:

NaCl 120 mM (7012.8  mg/L), NaHCO3 23  mM (1932.2 mg/L), KCl 5 mM (372.8  mg/L), CaCl2 

1.8  mM (199.8  mg/L), MgCl2 1 mM (95.2 mg/L), and glucose 10 mM (1801.6 mg/L). 1 mM of 

the antioxidant or reducing agent glutathione was added immediately before the experiment. 

The salts need to be solved individually before being added together. Otherwise a portion will 
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remained insoluble. Also it is important to note that anhydrous MgCl2 and CaCl2 should be 

stored in a desiccator if used for a prolonged period of time.

RPE-Ringer was used as the most successful medium during this study.

Table 2-1: Summary of the bathing media components. In addition DMEM contained vitamins 
and amino acids that are not listed here. * CO2 requirements  can be calculated using equations  2.1 - 
2.4.

HBSS (9394) DMEM (8437)  RPE-Ringer  RPE-Ringer 
+ fluorescein

Substance MWConc. [mM] Conc. [mM] Conc. [mM] Conc. [mM]
NaCl 58.44 136.9 119.7 120.0 120.0
NaHCO3 84.01 4.2 14.3 23.0 23.0
Na2HPO4 141.96 0.7 1.0 N/A N/A
NaH2PO4 119.98 N/A 0.5 N/A N/A
Pyruvic Acid•Na 111.05 N/A 0.5 N/A N/A
Fluorescein•2Na 376.27 N/A N/A N/A 26.6
Na+ (from 
fluorescein 
sodium salt)

N/A N/A N/A 53.2

Sum Sodium 142.5 137.0 143.0 196.2
Sum Carbonate 4.2 14.3 23.0 23.0
KCl 74.55 5.4 4.2 5.0 5.0
KH2PO4 136.09 0.4 N/A N/A N/A
Sum Potassium 5.8 4.2 5.0 5.0
Sum Phosphate 1.1 1.5 0.0 0.0
CaCl2 110.98 N/A 1.1 1.8 1.8
Sum Calcium 0.0 1.1 1.8 1.8
MgCl2 95.21 N/A 0.3 1.0 1.0
MgSO4 120.37 N/A 0.4 N/A N/A
Sum 
Magnesium 0.0 0.7 1.0 1.0

Sum Chloride 142.3 126.7 130.6 130.6
Sum Sulfate 0.0 0.4 0.0 0.0
Glucose 180.16 5.6 17.5 10.0 10.0

HEPES 238.30 N/A 15.0 N/A N/A
Phenol red • Na 354.38 N/A 0.02 N/A N/A
Glutathione 307.32 N/A N/A 1.0 1.0
Amount of CO2 
required to 
obtain pH 7.4*

0.09% 3.1% 5% 5%

The medium was kept at 38  ºC in a water bath (B-490; Büchi Labortechnik AG, Flawil, 

Switzerland). This temperature was chosen to compensate for an inevitable decline in temp. 

during the pipetting process, and resulted in negligible temperature adjustments.
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To achieve pH 7.4, gas with a CO2 content of 5% (see below) that had been moisturized was 

led through the medium for 2 minutes.

The osmolarity of the control solution was 286 ± 5 mOsm (model 5004; µOsmette, Precision 

Systems, Inc., Natick, MA) with no measurable changes when the cytokines or other 

substances were added.

When the permeability of the RPE cells  was determined, sodium fluorescein (Sigma; F6377) 

was added to the medium destined for the apical bathing solution in a final concentration of 

10 mg/ml. This resulted in an additional 53.2 mM Na+ and a change in the osmolarity to 343 

± 5 mOsm (for more details see below).

2.7	 Gas

Gas containing 10% O2, 5% CO2, 85% N2 (Z03  NI8522000112 Airgas East, Dorchester, MA) 

was used to maintain pH 7.4 in the RPE-Ringer. Others had shown that a reduction in the O2 

tension results in an increase in longevity of bovine RPE cells  (115, 159). The gas was led 

through a fine bubble airstone (Petsmart, Everett, MA) in a 200 ml cylinder that was filled to 

one quarter of its capacity with dH2O. The moisturized gas was led through the medium for 2 

minutes until its pH was stabilized between 7.3 and 7.4.

The CO2 amount necessary for achieving pH 7.4 is calculated by using, the Henderson-

Hasselbalch equation. This equation relates the partial pressure of, in this  case, carbon 

dioxide to the bicarbonate ion concentration and the pH.

€ 

pH = pKa + log [A
−]

[HA]
       Eq. 2.1

with pKa being the acid dissociation constant. For carbon dioxide the pKa is 6.1

[A-] the concentration of the conjugated base and [HA] the concentration of the acid.

When using gas, the formula is adjusted accordingly:

€ 

pH = pK1 + log [HCO3
−]

αPCO2
       Eq. 2.2
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with K1 being the first dissociation constant of carbonic acid, and α being the solubility 

constant of CO2, which is 0.03. α also converts the partial pressure from mmHg to mmols/L. 

PCO2 is the partial pressure of CO2 in the gas tank.

K1 was determined in 1935 by Shedlovsky and MacInnes, while the second dissociation 

does not play a role in the Henderson-Hasselbalch equation and can be neglected for a pH < 

8, after which the arising error rises.

The [HCO3] of the RPE-Ringer is 23 mM.

When using a gas with 8% CO2, the partial pressure is 0.08 atm (8.1 kPa or 60.8 mmHg.

€ 

pH = 6.1+ log 23mmol /L
0.03(60.8mmHg)

= 6.1+ log12.61= 6.1+1.1= 7.2  Eq. 2.3

To be able to calculate the physiologic pH 7.4 based on a known concentration of 

bicarbonate, the following formula needs to be solved:

 

           Eq. 2.4

38.4 mmHg = 5.1 kPa or 0.05 atm, which require a CO2 concentration of 5% in the gas of 

choice.

Note that in a medium that contains Mg2+ and/or Ca2+, these two ions may form MgCO3 and/

or CaCO3, which can lead to an acidification of the solution.

2.8	 The Ussing Chamber System

The Ussing chamber used for this  study consists of three basic elements that were 

purchased from Physiologic Instruments (San Diego, CA): A 2 Chamber System (EM-

CSYS-2), an Ussing chamber consisting of two half-chambers (P2400) and a specially sized 

Ussing slider (P2407), also referred to as insert, with an opening of 2 mm in diameter or an 

area of 0.0314 cm2 (A=π·r2 ⇔ A = 3.14 mm2 or 0.0314 cm2).
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The electric pulses were generated using the Voltage Current Clamp 600 (VCC 600), which 

also allows compensating the system (Physiologic Instruments, San Diego, CA). A heated 

water-pump (Gaymar T/Pump: P/N 07999-000,Orchard Park, NY) was connected to the 2-

chamber system. The temperature in the chamber was measured using a microprobe 

thermometer (Physitemp BAT-12, Clifton, NJ) that was connected to the Powerlab/8SP (AD 

Instruments, Colorado Springs, CO). The pH in the Ussing chamber was measured using a 

Beckman Φ 340 pH/Temp Meter with an automatic temperature compensation (ATC) probe  

(P/N 598115) and a refillable Calomel electrode (511080; all Beckman Coulter, Brea, CA).
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Figure 2-1: The Ussing chamber: A. Half-
chambers (P2400), B. Closeup of the half-chambers 
with the Ussing slider P2407, C. the two chamber 
system EM-CSYS-2 with P2300 chambers  (not 
used in this  work). 1 Half-chamber opening; 2 gas-
tube channel; 3 Space for Ussing slider; 4 Gas 
channel to the medium; 5 AgCl electrode mounting 
hole (for voltage measurements); 6 Ag electrode 
mounting hole (for current measurements); 7 Rubber 
O-ring; 8 Left half-chamber; 9  Right half-chamber; 
10  Ussing slider; 11 Opening of slider (2 mm 
diameter); 12 Gas tube that is  in its  designated 
position connecting to the gas channel; 13  gas 
regulating valve; 14 Snap holder; 15  Water 
circulated heat block; 16 Ussing stand base.



2.9	 Preparation of Electrode Tips

The electrode tips (Physiologic Instruments P2023) were filled using a 5 ml syringe by 

injecting hot bubble-free agar into the tips from their bottom, by holding the narrower end 

down and pressing the agar up into the tips. Only about 20-30 µl of agar were injected, 

which filled the tips to the lower 6-10 mm. After the electrodes were filled, they were placed 

in 3  M KCl. and evaluated using a light microscope. When bubbles were noticed, the 

electrodes were recycled.

2.10	 Electrode Preparation

The current-passing Ag electrode pair was chlorified by leaving them in common household 

bleach for 20 minutes or more. When chlorification needed to be repeated, 600 grid 

sandpaper was used to polish the electrodes. The AgCl electrodes were never chlorified. 

(P2020-S Ag and AgCl electrode pairs both Physiologic Instruments, San Diego, CA). Not 

chlorifying the electrodes led to quick deposition of potassium on one electrode and chloride 

on the other, as well as gas formation within the electrodes. Not chlorifying the electrodes 

influences the short-circuit current (see below).

2.11	 Use of Electrodes

The electrodes were mounted into their designated tips. Any excessive KCl was washed off 

with H2O and dried using a lint-free tissue. Electrodes were then placed in the designated 

holes of the Ussing chamber. After every experimental day, the Ag and AgCl electrodes were 

removed from the 3  M KCl, rinsed with H2O, and dried. The next day the apical electrodes 

were used in the basolateral chamber and vice versa. This allowed reducing the amount of 

electrode care while maintaining stable conditions for the electrodes during a set of 

experiments.

2.12	 Pre-Experimental Preparations of the Ussing Chamber

A piece of Parafilm (Pechiney Plastic Packing, Chicago, IL) no wider than 6.7 mm was placed 

in the Ussing chamber stand, creating an electrical insulation between the stand and the two 

half-chambers to prevent possible short-circuits. Initial experiments without this insulation 
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had resulted in a low, but recordable 60 Hz frequency which was likely caused by an 

undesirable transfer of electricity from the heat block to the chambers (Fig. 2-2).

Figure 2-2: 60 Hz fre-
quency during recor-
dings  when the heat 
b l o c k i n s u l a t i o n i s 
absent. Graph shows the 
recording using LabChart 
software. Independent 
from a given voltage, the 
current shows a  60 Hz 
frequency.

An empty mounting slider P2407 was placed between the two half-chambers, whose rubber 

o-rings were lubricated with immersion oil, and tightened. 

The heated water pump was turned on and 4 ml RPE-Ringer were added to each half-

chamber. Any air bubbles were removed by carefully flushing the system using a 1 ml pipette. 

The gas hoses were placed on the top of each half-chamber and held in place with Parafilm 

that was loosely covering the chamber. This setup was preferred over the use of using the 

designated gas channels, whose use frequently led to the rupture of the RPE. 

The intended side effect was the reduction in fluid evaporation and a slightly increased 

temperature.

2.13	 Compensation of the Voltage Clamp

After the Ussing chamber was assembled, the VCC 600 was set up by taking an initial 

current reading in the “zero” function by pushing the “push to adjust” button. A value of ~64 

µA indicated that the system was ready to be compensated. Values that were much greater 

or lower or not stable indicated that the electrode tips needed to be replaced. 
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The average fluid resistance was 76 Ω. When needed, the voltage offset of the system was 

then adjusted to zero in the “open” function, followed by compensation of the fluid resistance 

by switching the offset switch in either the positive or negative position and adjusting, so that 

the initial voltage in the system was zero. Prior to mounting the tissue, the offset and fluid 

resistance was rechecked and adjusted if needed.

2.14	 Experimental Animals

All animal experiments adhered to the ARVO Statement for the Use of Animals in Ophthalmic 

and Vision Research. The animal protocol was approved and annually reviewed by the Animal 

Care Committee of the Massachusetts Eye and Ear Infirmary (protocol number 04-12-024). 

Brown Norway rats, of varying ages, usually 8  weeks and older, were used for the 

experiments. Animals were fed standard laboratory chow and allowed free access to water in 

a temperature controlled room with a 12-hour light/12-hour dark cycle. Animals were caged 

in pairs or individually. 

2.14.1	 Surgery and Tissue Preparation

Brown Norway rats were anesthetized during the light cycle adaptation using a 1:1 mixture of 

100 mg/ml ketamine and 20 mg/ml xylazine. The dosage was applied intra muscular with a 

concentration of 100 mg/kg ketamine and 20 mg/kg xylazine. Rats of other strains required 

slightly different dosages of anesthetics.

Usually the left eye was enucleated first by gripping the distant part of the conjunctiva and 

starting to cut through it, while not applying any additional pressure to the eye. After the optic 

nerve was cut using FST 15017-10 microsurgery scissors (Fine Science Tools, Heidelberg, 

Germany), Roboz RS-5136 forceps (Roboz Surgical Instruments, Gaithersburg, MD) were 

carefully placed under the eye and the remaining tissue was cut to complete the enucleation. 

The anesthetized animals were then placed on a heating pad maintaining their body 

temperature at 37 ºC or wrapped in aluminum foil until the second eye was harvested.

The eye was placed on a piece of Kimwipe (Kimberly-Clark, Irving, TX) that was moistened 

with RPE-Ringer to assure minimal sticking of the eye to the tissue while assuring optimal 

handling conditions.
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The remaining conjunctiva and muscles on the eye were removed using the FST 15017-10 

dissecting scissors, while the eyeball was held in place with colibri forceps (AE-4030; Asico, 

Weatmont, IL). Additional blood was removed from the large veins of the eye by applying 

slight pressure on them with the blunt side of Roboz 5/15 INOX forceps.

The cornea was pierced using a 30.5 gauge needle to remove the intra ocular pressure that 

would otherwise bulge out at a later step and break the RPE.

When desired, a circular piece of sclera (2.5 - 3  mm diameter) was carefully removed 

between the optic nerve and the limbus from the side opposite to the central retinal artery 

using microsurgery (iris-) scissors with a curved cutting edge to avoid piercing through the 

RPE, while the eye was continuously turned. Attention has to be paid if large veins are 

attached to the sclera. 

After the sclera was removed, a greater circular piece was cut from the remaining eye, still 

not extending into more than one half of the eye. The connection between retina and vitreous 

was mechanically cut. 

2.14.2	 Mounting of the RPE Tissue

For rat eyes the P2407 mounting slider (also referred to as Ussing slider or insert) was used. 

A small amount of RPE-Ringer was applied over the opening of the slider filling the tissue 

collection area. The surface tension assures that the medium spreads over the hole. The 

explant was carefully placed over the slider opening and when desired the neurosensory 

retina was carefully peeled away from the RPE using two dissecting forceps. In the cases in 

which sclera and retina had been removed the tissue spanning over the hole consisted only 

of RPE and choroid (RPE explant), while the more distant areas retained some sclera. The 

sclera gave support during handling of the tissue.

The excess medium was then removed from the mounting slider using Kimwipes  and the top 

slider-half carefully placed on top, while assuring that it did not touch until mounted into the 

Ussing chamber.

Before the mounting sliders were placed in the chamber, the chamber was once again 

compensated if needed.

The medium that had been used for the compensation and to adjust the chamber 

temperature was removed using a 1000 ml pipette. The empty mounting slider was taken out 

of its position and the tissue bearing slider placed in the center of the half chambers, with the 
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apical (retinal) side facing to the left. The chamber was carefully tightened, assuring that the 

sliders did not come apart. 

This step is crucial. If the chambers are too tight, the amount of edge damage will increase, 

but if they are too loose, medium will leak out.

4 ml medium were added to each side of the chamber by alternating 1 ml to the apical and 

basolateral side of the tissue. The alternating application was done to prevent excess 

pressure buildup and possible tissue stress or tearing.

2.15! Occurrence and Removal of Air Bubbles

Despite careful and slow application of medium small air bubbles were trapped on the apical 

side of the mounting sliders, blocking the medium from directly touching the RPE. The best 

way to remove this  bubble was to wait one minute and then carefully pipetting the medium 

toward the bubble using a 1000 ml pipette (Eppendorf, Hamburg, Germany). Attempts to do 

so earlier, had required more pressure and may have caused tissue rupture and a low TEER.

2.16! Electrical Recordings

A bipolar electric pulse of usually 6 mV was given every 30 seconds. If necessary, the voltage 

of the pulse was adjusted. The electric pulse and readouts were converted into digital signals 

and recorded to computer using a Powerlab analog/digital converter from AD Instruments 

(Powerlab/8SP; AD Instruments, Colorado Springs, CO). LabChart software (also AD 

Instruments) was used to record the signals. Four channels were recorded: The Voltage (mV), 

the corresponding current (µA), the electric pulse (V) and the temperature (ºC) (Fig. 2-3). At 

any given time signals could be analyzed and the TEER (Ω·cm2) could be calculated using the 

following Ohm’s law:

 

€ 

R =
V
I
         Eq. 2.5

With R being the resistance, V the voltage and I the current. 

The resistance is inversely proportional to the surface area, so that the resistance needs to be 

multiplied by the area exposed to the voltage. The unit of the TEER is Ω·cm2, not the intuitive 
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Ω/cm2. In the case of the measurements for rats  using the mounting slider P2407, it is 

0.0314 cm2 as described above.

LabChart allowed note-taking during the ongoing recording. These notes were added at the 

time of recording, a helpful tool for documentation and archiving of the raw data.

2.17	 Administration of Substances to the Apical Side of the RPE Bathing Medium

When desired, 20 minutes after the start of the recordings, 200 µl of the apical bathing 

solution were taken out and mixed with a small volume (2-10 µl) of the respective substance. 

Immediately after mixing, the solution was carefully pipetted back to the side of removal, and 

carefully dispersed using a 1 ml pipette. The applied substances were:

BSA (bovine serum albumin; A9418-10G, Sigma, St. Louis, MO) diluted in DPBS to obtain 

0.1% (w/v).
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Figure 2-3: Recording  the analogue Ussing chamber signals  
using the Powerlab and LabChart soft-ware. Four channels were 
recorded, while a  bipolar voltage pulse (green) was  given every 30 - 60 
seconds. The corresponding current (red) is  read and the TEER 
calculated as explained in the text.



Human IL-1β (201-LB; R&D Systems, Minneapolis, MN) reconstituted in 0.1% BSA in PBS to 

obtain a stock concentration of 100 ng/µl or 20 ng/µl. The final concentration in the Ussing 

half-chamber was either 10 or 50 ng/ml.

Lipopolysaccharide (LPS; Salmonella typhimurium; Sigma, St. Louis, MO) reconstituted in 

saline to obtain a stock concentration of 2 µg/1 µl. The final concentration in the Ussing half- 

chamber was 500 ng/ml.

2.18	 Permeability Measurements Using Fluorescein

Sodium fluorescein (F6377, Sigma, St. Louis, MO; MW 376.27) was used as a permeability 

tracer. The RPE-Ringer was treated as usual and sodium fluorescein was added to reach a 

final concentration of 10 mg/ml. The apical chamber was filled using this medium, while the 

basal chamber was filled using regular RPE-Ringer while maintaining all other experimental 

settings unchanged. After 30, 60, 90 and 120 minutes, 200 µl of medium were taken from 

the basal bathing solution. While the original volume was restored by adding 200 µl RPE-

Ringer to this side, the fluorescein concentration was assessed using a 96-Microplate 

Fluorescence Reader (Spectramax Gemini) and SoftMax Pro, Microplate Data Software(both 

Molecular Devices, Sunnyvale, CA). The concentration for each sample was calculated by 

comparing it to a standard curve that was prepared using the original fluorescein containing 

RPE-Ringer.

2.19	 Data Analysis

The average value of each recorded current response, stretching over 0.4 sec, was taken 

and subtracted from the average of the baseline value directly adjacent to the voltage pulse. 

These values were obtained by using the data pad function of the program LabChart. This 

was repeated in 1 min intervals until all values were analyzed. Following Ohm’s law, the 

resistance was calculated (R=U/I) and multiplied with the area of the mounting slider hole 

(0.0314 cm2) to obtain the TEER in Ω·cm2. The individual graphs were prepared using 

Microsoft Excel. 

Data point intervals 10 minutes apart from all experiments belonging to the same group were 

then copied into a separate Excel sheet. Based on the criteria of exclusion (see below), 
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experiments were eliminated from the total analysis. The success rates of the individual 

experimental series were calculated based on the amount of eliminated experiments. Bar 

diagrams were prepared using Excel. For the overview of all data the program Keynote 

(Apple, Cupetino, CA) was chosen.

2.20	 Criteria for TEER Data Exclusion

TEER analysis revealed that it was necessary to discriminate values that did not fulfill the 

following two criteria:

1. The TEER was not decreasing more than 20 Ω·cm2 within the first 20 minutes 

2. The TEER was > 69 Ω·cm2 within this time period.

The value of 69 Ω·cm2 was chosen because a number of experiments were observed in 

which the resistance was stabilized at this  value. To be more conservative, this value can be 

increased.

2.21	 Histochemisty

2.21.1	 Staining of the Cytoskeleton-Component Actin

The tissue integrity was evaluated by staining the f-actin with rhodamine-phalloidin (R415; 

Invitrogen, Carlsbad, CA) or fluorescein-phalloidin (F432; Invitrogen, Carlsbad, CA), while the 

manufacturer’s instructions were followed. In brief the tissue explant was carefully removed 

from the Ussing slider, placed on a microscope slide and washed with PBS (pH 7.4, 37 ºC). 

The tissue was then placed in 3.7-4% formaldehyde (15714-S; Electron Microscopy 

Sciences; Hatfield, PA) constituted in PBS for 10 minutes at room temperature and 

afterwards washed twice with PBS. The tissue was removed from its container, and placed in 

acetone at -20 ºC for 3-5 minutes. Then the tissue was placed on a microscope slide and 

washed twice with PBS. 200 µl of a 1:40 dilution of methanolic rhodamine-phalloidin stock 

solution in 1% BSA in PBS were pipetted onto the tissue, placed in a glass Petri-dish and 

covered with aluminum foil and incubated for 20 minutes at room temperature. Alternatively 

the staining was performed at 4 ºC overnight in a closed Eppendorf tube to avoid 

evaporation. The staining solution was removed by washing the tissues three times for 5 min 
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in PBS. Mounting medium (H-1000; Vector Laboratories, Burlingame, CA) was added on the 

tissue and a cover slide was placed on top.

2.21.2	 Nuclear Staining Using DAPI (4',6-diamidino-2-phenylindole, dihydrochlo-

	 ride)

When desired, DAPI (H-1200; Vector Laboratories, Burlingame, CA) was used to stain the 

nuclei. DAPI was used in a final concentration of 0.5 µM in PBS and used solely or as the 

final step following all other staining. A volume of 200 µl was applied directly onto the cover 

slide with the RPE tissue and incubated for 15 minutes. Then DAPI was removed and tissue 

was washed twice with PBS .

When the mounting medium with DAPI was applied as intended by the manufacturer, it was 

not possible to detect DAPI in the micrographs.

2.21.3	Dead Cell Analysis Using SYTOX Orange

Where desired, the integrity of the cell membrane of the RPE tissue was evaluated using 

SYTOX Orange (dimethylsulfoxide) (S11368; Molecular Probes, Eugene, OR), a substance 

that stains the nucleic acid in cells with compromised cell membranes. The tissue was 

removed from the Ussing slider and washed twice with PBS. 200 µl of 0.25 µM SYTOX 

Orange diluted in PBS were pipetted onto the tissue and incubated for 15 minutes at room 

temperature. The tissue was then washed twice in PBS.

2.22	 Microscopes and Cameras

Photomicrographs were taken using a digital high-sensitivity camera (ORCA-ER C4742–95; 

Hamamatsu Photonics, Hamamatsu, Japan) through an upright fluorescent microscope (DM 

RXA; Leica, Solms, Germany). Eyes were dissected using one of the following: MG 90 

Ceiling, MZ FLIII or MZ 95 (all Leica, Solms, Germany). Electrode tips were evaluated using 

an inverted microscope (CK2; Olympus, Tokyo, Japan). 
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2.23	 Statistical Significance

Values are expressed as mean ± s.e.m. Significance was determined using Student’s t-test.  

Differences between the experimental groups were considered statistically significant (*) or 

highly significant (**), when the probability value, P was < 0.05 or < 0.01, respectively.
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3	 Results

3.1	 Establishing an Ussing Chamber Assay for the Reliable Measurement of 

	 Transepithelial Electrical Resistance (TEER)

Setting up any new assay takes time and is accompanied by trials, errors and improvements. 

This first section of the results  precisely describes the process of finding the most suitable 

medium for the RPE tissue and the improvement that led to a system that expressed stability 

for a time period of up to two hours.

3.1.1 Experiments Using Hank’s Buffered Salt Solution (HBSS)

For the initial TEER measurements of retinal pigment epithelium tissue explants, Hank’s 

balanced salt solution (HBSS), a medium 

commonly used for RPE extraction was used. 

The results show that the TEER at t0 was 25 ± 4 

Ω·cm2 and declined to 8  ± 2 Ω·cm2 within 15 

minutes Figure 3-1. 

While the literature shows a great variability in 

TEER values (117-119, 121, 149, 150, 153), 

the reduction in TEER in this case was caused 

by the lack of Ca2+, a necessary component for 

the functionality of tight junctions (6).

3.1.2 Experiments Using Dulbecco’s Modified Eagle Medium (DMEM)

Results
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Figure 3-1: TEER of RPE in Hank’s 
balanced salt solution (HBSS) lacking Ca2+. 
The TEER decreases by 69% within 15 minutes; 
n = 9. Error bars are expressed as s.e.m.

Figure 3-2: Variability in early TEER measurements using Dulbecco’s modified Eagle 
medium (DMEM). A: Individual measurements. B: Bar diagrams  of grouped results. Colors 
indicate different time points. Error bars are expressed as s.e.m.



In the following experiments, Dulbecco’s modified Eagle medium (DMEM) mixture F-12 Ham, 

commonly used during RPE cell-culture procedures was used as the bathing medium. 

Figure 3-3: TEER is 
dependent on the 
integr i ty of the 
RPE. A: Intact RPE 
tissue results  in a 
stable TEER of 120 
Ω · c m 2 . B : A 
punctured RPE leads 
to a  strong reduction 
of TEER. C: Apparent 
lack of RPE cells  in 
dark areas  leads  to a 
greater reduction in 
TEER value. D: The 
lack of Ca2+ in HBSS 
medium leads  to the 
rounded shape of 
RPE, loss of tight 
junctions and the 
complete breakdown 
of the TEER. A-D 
actin staining using 
fluorescein-phalloidin 
(A,B,D), or rhoda-
mine-phalloidin (C), 
all pseudo color.

Results
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The results  showed great variability (Fig 3-2) that could be organized in five subcategories: 

Constantly high TEER (110 ± 14 Ω·cm2), constantly medium (55 ± 5 Ω·cm2), constantly low 

(17 ± 1 Ω·cm2), constantly decreasing and suddenly decreasing. The suddenly and 

constantly decreasing  values were eliminated from the analysis  because they did not reflect 

stable experimental conditions. In the cases of high, medium and low TEER values, the cell’s 

actin filaments were stained with fluorescein- or rhodamine-phalloidin (Fig. 3-3). These results 

showed that a TEER of 130 Ω·cm2 coincided with an intact RPE sheet, whereas the TEER of 

50 Ω·cm2 showed tissue damage, and the low TEER of HBSS showed a clearly changed 

morphology of the cells, having rounded shapes and large interstitial spaces. 

Further analysis showed that only TEER values greater than 68  Ω·cm2 would be considered 

for accumulative analysis, resulting in a TEER for RPE cells  of 110 ± 14 Ω·cm2 within the 

measured time period. These criteria eliminated 60% (9/15) of the samples, resulting in a 

40% success rate of successful tissue analysis (Fig. 3-4).

Figure 3-4: Comparison of the TEER 
values using DMEM and HBSS. The 
TEER remained stable over a time 
period of 15 minutes  using DMEM. The 
success rate with the established 
minimum value of 69 Ω·cm2 was 40% 
(6/15). DMEM values are shown in 
black, HBSS in gray. Error bars  are  
expressed as s.e.m.

Figure 3-4 also compares these results to those using HBSS as bathing medium. The low 

initial values of the HBSS experiments indicate that the lack of Ca2+ has an immediate effect 

on the TEER starting when the RPE is exposed to this medium and before the first 
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Figure 3-5: The effect of EDTA added to 
the apical RPE bathing solution. EDTA with 
a final concentration of 10 mM was applied at 
t0. An already decreasing TEER that indicates 
a compromised RPE, is  immediately further 
reduced by EDTA’s capture of free Ca2+. This 
led to a decrease in TEER by 55% within 15 
minutes.



measurement is taken. This was confirmed when the chelating agent EDTA (final 

concentration 10 mM EDTA) was applied to the apical bathing solution of RPE. It was 

demonstrated that the TEER decreased immediately after EDTA application, despite an 

already decreasing TEER (Fig. 3-5).

3.1.2.1	Experiments Using RPE Tissue Without Removing Sclera in DMEM

To further minimize the amount of possible injury that occurred to the RPE during the surgical 

process and as a result to increase the experimental success rate, the sclera was not 

removed from the RPE explants (RPE/sclera). However, the results did not show an 

advantage of using this tissue (Fig. 3-6). The success rate of these experiments was 25% (1 

out of 4). Hence the sclera was continuously removed from the RPE in the following 

experiments. 

3.1.3	 Histological Analysis of the RPE Sheets Using HBSS and DMEM
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Figure 3-6: TEER of RPE without 
removing the sclera. Black bars  represent 
all attempts, white bars  represent those that 
met the exclusion criteria. The success  rate 
was  25% (1/4). Error bars are expressed as 
s.e.m.

Figure 3-7: Localization of nuclei in 
RPE cells after Ussing chamber 
experiment using DMEM as bathing 
medium. A: Fluorescent micrograph of 
RPE cells, stained with DAPI (blue). B: 
Fluorescent micrograph of RPE, 
stained for actin using rhodamine-
phalloidin (green). C: Counterstaining 
for the nuclei with DAPI (blue). D: 
Merged image of B  and C. Arrows 
indicate the localization of bright DAPI 
staining. All pseudo color.



After the actin staining revealed a correlation of the intactness of the tissue and the TEER, 

further tissues were analyzed. When the nuclei were stained using 4', 6-diamidino-2-

phenylindole (DAPI), it was noticed that the majority of the stained RPE sheets of animals 

older than 10 months had 2 nuclei, however the DAPI staining was not homogenous. The 

majority of the nuclei were stained faintly, while some took up more DAPI (Fig. 3-7). This led 

to the question, weather the brightly stained nuclei belonged to dead cells. To evaluate the 

number of dead cells, staining with SYTOX Orange, an assay was performed to reveal cells 

with compromised cell membranes. The results show that no dead cells were detectable 

within the area of TEER measurements. The cells outside the clamped area stained positive, 

indicating damage caused by the pressure of the half chambers (Fig. 3-8). These results 

indicated that these histological approaches could not differentiate between minor differences 

in the TEER of intact RPE sheets.

3.1.4	 Modifications of Physical Parameter

The results showed that the basic parameters of the system were set up; however the 

duration of stable TEER measurements was very limited. In the next steps, the physical 

details of the system were improved and stabilized to address this aspect.

3.1.4.1	Establishment of a Dummy Membrane

To spare animal lives during the phase of improving the physical parameters, a suitable 

dummy membrane was required.
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Figure 3-8: Staining dead RPE cells 
after Ussing chamber experiments 
using SYTOX Orange. Nuclear staining 
of SYTOX Orange reveals  that cells  with 
compromised plasma membrane lay 
outside the Ussing slider opening. The 
inner cells that are in contact with the 
bathing medium are SYTOX Orange 
negative. White perforated line represents 
the borders of the Ussing slider. RPE cells 
were bathed in RPE-Ringer solution.



First a layer of lint-free cleaning tissue (Kimwipes) was used and a TEER of 3  Ω·cm2 was 

observed, which continued to decrease (Fig. 3-9 A). The low value was not suitable for 

simulating an RPE. Then white copying paper (80 g/cm2) was used to simulate a membrane. 

The initial results  showed a TEER of 75 Ω·cm2, closer to that of RPE cells. These results were 

not reliably reproducible (Fig. 3-9 B-C).

The third choice was a plastic paraffin film (Parafilm) that was punctured to create a small 

hole. Its TEER was 27 Ω·cm2 (Fig. 3-9 D). While this value was still low and did not allow  

separation of the two chambers, it could be used to address basic questions, while 

maintaining a constant TEER.

3.1.4.2	Controlling the Chamber Temperature

The first physical parameter addressed was the temperature of the bathing medium within 

the chamber. The system allowed a maximum temperature of 35 ± 1 ºC (Fig. 3-10). When the 

medium was kept at 37 ºC and the chambers were filled using a 1 ml pipette, the medium’s 

temperature was below optimum, as shown. To assure that the medium reached 35 ºC when 

the RPE explants were mounted, it was kept in a heating bath at 38  ºC, allowing minimal 

temperature changes.
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Figure 3-9: TEER values of different 
materials during the search for a suitable 
dummy membrane.
A: Kimwipes. B: Initial results using 80 g/mm2 
copying paper. C: Variability when using the 
same copying paper as  in B. D: Parafilm with 
a punctured hole.

Figure 3-10: Temperature changes of the 
bathing solution in the Ussing chamber.
A microthermometer probe was  placed in the 
basal bathing medium at all times  and the 
temperature of the experiments was  recorded. 
When the Ussing medium that was kept at 37 
ºC the temperature needed 30 minutes to 
reach its maximum value.



3.1.4.3 	Monitoring the Short Circuit Current (SCC) 

The short circuit current (SCC) is a measure for the total net amount of ions that a healthy 

epithelium transfers across the epithelial barrier. When a counter current of this exact amount 

is given, this natural current is “short-circuited” or eliminated. This means that any 

transported current must be actively transported, eliminating any passive transfer.

During the experiments, the SCC is recorded at any given time, as it represents the “baseline 

current” that gets subtracted from 

the current pulses, as it can 

change over time. When unchlo-

rified electrodes in combination 

with paper as membrane replace-

ment were used, the SCC de-

clined within the first 20 minutes 

by 4 µA and over a time period of 

120 minutes by 7 µA (Fig. 3-11 

A-B). In the following experiments 

only chlorified electrodes were 

used.

When the punctured Parafilm was 

used as a membrane, the SCC 

remained constant. This showed 

that the chlorification of the 

electrodes is essential. Here the 

term SSC is not accurate, 

because the change in current  

derives from the constant uptake 

of Cl- on one electrode that is fast 

in the beginning and then slows 

down.

A similar but attenuated effect is 

seen if the electrodes are not 

sufficiently chlorified. This was the 

case when either sclera, Retina/
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Figure 3-11: TEER and the corresponding short circuit 
current. A-B: Unchlorified electrodes were used with 80 g/
cm2 paper as a membrane. C-D: Chlorified Electrodes  and 
punctured Parafilm as membrane. E-F: Sclera as  membrane. 
G-H: Retina/RPE/Sclera tissue as  membrane. I-J: RPE as 
membrane with declining TEER. Black color on left indicates 
TEER blue color on right indicates SSC.



RPE/Sclera or RPE were used. The SSC was not greater than 1.5 µA over a time period of 2 

hours, while changes in TEER did not have any effect on the SCC (Fig 3-11 C-J). Figure 3-11 

F shows that the initial SSC of sclera was below zero, indicating that it was not adjusted to 

zero, because sclera has no ion transporting capability, hence it was not necessary.

To minimize the effect of electrode “autochlorification”, electrodes were placed in their 

opposite direction after every second experiment. 

3.1.4.4	Evaluation of Small Amounts of Medium Leakage Through the Half-

	 Chambers

On some occasions a leak of medium was observed between the two half-chambers. This 

leak would either fill the insert with medium or drip drown. When this was noticed, the 

chambers were tightened. There were no apparent consequences on the TEER (Fig. 3-12), 

so that it was decided that the data could be used for analysis  as long as no change in 

medium volume was seen.

3.1.4.5 	Avoiding Immediate Changes in the TEER After Apical Substance 

	 Application

In the early phase of substance application to the apical side of the RPE bathing solution, 

500 µl of medium were apically removed, mixed with the respective substance and replaced. 

In a number of these experiments, an immediate change in TEER was noticed. Detailed 

analysis showed that the removal and replenishing of 500 µl medium not only resulted in a 
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Figure 3-12: Influence of medium leaking from the Ussing chamber 
on the TEER. In both shown cases  small amounts of liquid were detected 
below the Ussing half-chambers. After the system was tightened, this could 
cause a minor shift in TEER (A), or no change in TEER (B). 



shift of the TEER over time, but that it also transiently changed the TEER at the time-point of 

application (Fig. 3-13). This  phenomenon was avoided by removing only 200 µl, which were 

then mixed with the respective substance before they were carefully placed back into the 

half-chamber.

3.1.5 Application of IL-1β to the Apical Bathing Solution Using DMEM

After the physical parameters were improved, IL-1β in a final concentration of 10 and 50 ng/

ml  or their respective control (0.1% BSA in PBS) were added to the apical bathing solutions 

of the RPE. The substances were added 20 minutes after measurements had started and 

were continued for a total of 80 minutes. The last time point before application was defined 

as t0, while this value represents 20 minutes after the first data point was collected. 

The TEER started to decline about 20 minutes after application of the control. A significant 

difference was seen between t0 and t60 (Fig. 3-14 A). The mean TEER at t0 was 118  ± 8 

Ω·cm2 and the decline toward t60 was 40%.

When IL-1β was added with a final concentration of 10 ng/ml, 20 minutes after the first 

measurement, the mean TEER at t0 was 109 ± 4 Ω·cm2, a statistical significance between the 

time of application (t0) and t20 was observed which continued until t60. The overall variability of 

the measured values was very small (Fig. 3-14 B). The overall drop in TEER was 44%. The 

data resulting from the final concentration of 50 ng/ml IL-1β in the apical solution showed a 

statistical significance between t0 and t30 that continued until t60 (Fig. 3-14 C). The mean 

TEER at t0 was 143 ± 11 Ω·cm2 and the overall drop of TEER was 68% at t60.

When comparing the values of the 10 and 50 ng/ml Il-1β applications to their controls, no 

significant difference was observed between equal time points (Fig. 3-14 D, E), while the time 

points -10, 0 and 10 showed a significant difference when comparing the 10 with the 50 ng/

ml values (Fig. 3-14 F).
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Figure 3-13: Effect of the removal of 500 µl 
medium from the apical bathing medium. A 
transient increase of TEER is  noted followed by a 
reduction in TEER upon replenishing the same 
amount of medium. At t40 the TEER decreases 
abruptly. The cause for this  is not entirely clear, 
but may be linked to changes  in the gas 
distribution (refer to section 3.1.6).
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Figure 3-14: Apical application of IL-1β using DMEM to the RPE/choroid explant. A: 
Application of the carrier control 0.1% BSA in PBS. B: Apical application of 10 ng/ml IL-1β. C: Apical 
application of 50 ng/ml IL-1β. D: Comparison between the control and 10 ng/ml IL-1β shows no 
significant differences. E: Comparison between the control and 50 ng/ml IL-1β  shows no significant 
differences. F: Comparison between 10 ng/ml IL-1β and 50 ng/ml IL-1β  shows differences  at three 
time points. All applications  were done 20 minutes  after the initial TEER value was recorded. Asterisks 
indicate statistical significance p < 0.05. In B  and C only the first stat. significant value is noted; all 
following time points are also stat. significant. Error bars are expressed as s.e.m.



3.1.6	 Changes in Gas Delivery to the Ussing Chamber

The results of the experiments using DMEM showed a decrease in TEER of 40% in the 

control conditions. One explanation involved the application of gas to keep the medium 

oxygenated and the pH stable. The experimental setup made it very difficult to keep the gas 

flow constant, which had caused problems. The gas flow had either stopped or slowed 

down, while attempts to restart or adjust the gassing sometimes caused the RPE to rupture 

and the TEER to drop immediately (Fig. 3-15). Therefore the route of gas application was 

changed from the designated channels of the Ussing chamber to a diffusion exchange 

through the surface of the bathing medium, while a Parafilm seal was used to hold the gas 

tubes in place and to minimize evaporation.

3.1.7	 Establishing the RPE-Ringer Solution as Medium of Choice 

To further improve the method, the medium was changed to a modified Ringer solution, 

henceforth called RPE-Ringer. The measured osmolarity of the medium was 286 ± 5 mOsm 
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Figure 3-15: Use of designated gas 
channels in the Ussing chamber 
leads to immediate TEER reduction 
when gas flow adjustments are 
required. A: The gas was connected at 
the beginning of the experiment. Its 
onset at t4 led to the complete 
breakdown of TEER. B: The gas flow 
had stopped during the measurement 
and was restarted after 78 minutes.

Figure 3-16: TEER values using RPE/choroid explant in RPE-Ringer 
solution over a period of 100 minutes. No significant differences  were 
observed during this time period, while the TEER decreased by 25% between 
t0 and t80. Error bars are expressed as s.e.m.



for all of the experiments. During the first experiments using RPE-Ringer as medium, the 

TEER of the RPE explant showed a decrease of 17% after 60 minutes (∆ t60) and 25% after 

80 minutes (∆t80) (Fig. 3-16 and table 3-1), which was an indication that the RPE-Ringer was 

better suited than DMEM. The mean TEER value at t0 was 97 ± 11 Ω·cm2. The low success 

rate of 29% (5/18  samples) was not seen as problematic. This value did not display the 

specific success rate objectively, but instead gave a general summary of all experiments that 

were started.

3.1.8	 Summarizing the Establishing Phase of the Ussing Chamber Assay

The results obtained during the establishing phase providing valuable insight into the details 

of the experimental conditions. 

It was established that the lack of Ca2+ led to an immediate reduction of TEER using medium 

lacking Ca2+ or adding EDTA.

Criteria for data exclusion were established stating that a) TEER values had to be ≥ 69 Ω·cm2 

within the initial 20 minutes of the experiment and b) TEER must not decrease more than 20 

Ω·cm2 within the first 20 minutes. 

It was shown that staining of actin could not discriminate between the variability of TEER 

values if the sheets were intact, while staining using SYTOX Orange showed that no dead 

RPE cells could be detected after an experiment lasting 100 minutes.

The temperature within the chamber was found to be stabilized at 35 ± 1 ºC and the 

conditions to obtain this temperature with the smallest timely delay were found. Artifacts such 

as immediate changes of TEER after application were identified and eliminated by reducing 

the mixing volume. Finally, control substance and IL-1β were applied to the apical bathing 

solution and the results showed that the system was not sensitive enough to detect 

differences between control and experimental group, while there was a significant decrease 

of TEER within the time span of the experiments (minimum 40%). The way the medium was 

gassed to assure a physiological pH 7.4 was changed. This assured continued gas flow and 

stable pH. Simultaneously the medium was changed to a modified RPE-Ringer solution. The 

results showed a decrease in TEER within the same time period, but an improvement by 2.4 

fold or a total decrease of 17%. These conditions were seen as a significant improvement. A 

schematic overview of the final Ussing chamber set-up is shown in figure 3-17.
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3.2	 Experiments Using the Established Ussing Chamber Assay

After the modified condition showed promising results, it was decided to repeat the 

experiments in which IL-1β was applied apically. First the application of the control substance 

was established.

3.2.1	 Application of Control to the Apical Bathing Solution of the RPE Explant 

When the carrier control experiments were performed using the RPE-Ringer, the mean TEER 

value at t0 was 103  ± 20 Ω·cm2, wherein t0 refers to the last time-point before substance 

application. The first measured recording was taken 20 minutes prior to substance 

application (t-20). No significant difference was observed between t0 and any other time point 

(Fig. 3-18  A). The overall decline in TEER between t0 and t60 was 16%, and between t0 and 

t80 it was 34%. Compared to the experiments using DMEM, this  was an improvement of 

system stability, where a statistical difference was observed between t0 and t60 (Fig. 3-14 A) 

and the TEER decline was at 40% after 60 minutes.
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Figure 3-17: Schematic overview of the Ussing chamber set-up and associated equipment 
after the establishing phase.



3.2.2 Application of IL-1β (50 ng/ml) to the Apical Bathing Solution of the RPE 

 Explant 

A baseline TEER at t0 of 117 ± 3  Ω·cm2 was observed for the experiments in which IL-1β in a 

final concentration of 50 ng/ml was added to the apical bathing solution. Between time-

points t0 and t80, as well as between t-10 and t70 a significant difference was found (Fig. 3-18 

B) while the DMEM measurements showed a significance between t0 and t30. The overall 

decline in TEER at t60 was 22% and at t80 was 27%, compared to 68% with DMEM at t60. 

When comparing the control and the 50 ng/ml IL-1β application, no significant difference 

between the paired time points was observed (Fig. 3-18 C).
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BA

DC

E Figure 3-18: Applications into the apical 
bathing solutions of RPE/choroid explants 
using RPE-Ringer. A: Application of the carrier 
control 0.1% BSA in PBS. B: Apical application of 
50 ng/ml IL-1β. C: Comparison between the 
control and 50 ng/ml IL-1β application shows no 
significant differences. D: Apical application of 
500 ng/ml LPS. The tissues  maintain the same 
TEER value over time. E: Comparison between 
the control and 500 ng/ml LPS shows no 
significant differences. Asterisks indicate statistical 
significance p < 0.05. Error bars are expressed as 
s.e.m.



3.2.3	 Application of LPS (500 ng/ml) to the Apical Bathing Solution

In an additional test of the RPE system, it was decided to check for an effect of 

lipopolysaccharide (LPS) on RPE cells. LPS dissolved from E. coli in a final concentration of 

500 ng/ml was added to the apical bathing solution 20 minutes after the recordings were 

started. Mean TEER at t0 was 139 ± 37 Ω·cm2. The decline in TEER between t0 and t60 was 

1% and between t0 and t80 8% (Fig. 3-18  D). These were the most stable TEER values 

observed of any given experimental settings. No significant difference was observed between 

the LPS application and its control (Fig. 3-18 E).

Table 3-1: Overview of the TEER values of RPE/choroid explants at different time points 
using DMEM and RPE-Ringer media. The last time point before application was  defined as t0; this 
value represents  20 minutes after the first data point was collected. ∆t60 and ∆t80 represent the 
differences  between t60 and t0 or t80 and t0 respectively. Differences  are given as  percentage and 
absolute TEER value. Success  rate describes  the amount of experiments whose results  were 
considered for analysis, vs. those that were eliminated based on the exclusion criteria. 46% (6/13) 
means that 6 experiments  were considered, whereas 13  had been begun. In all cases the first 20 
minutes were counted as -20 and -10. Therefore the t0 reflects  the last measured value before 
application, while in case of Ringer no application, no substance was added at this time point. 
* The success  rate of these experiments  is  not objective because the 18  samples  were not foreseen 
for this experiment, but when a low initial TEER was seen, no substance or control was added.

Table 3-1 gives a summary of the described values and highlights that the change in medium 

from DMEM to RPE-Ringer lowered the TEER decline over a time period of 60 minutes in all 

cases and allowed the measurements to continue until t80 without dramatic TEER decline. 
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t0 t60 t80 ∆t60 ∆t80 Success 
rate

DMEM 
control

118 ± 8 Ω·cm2 71 ± 17 Ω·cm2 NA 40 %
47 Ω·cm2

NA 46%
(6/13)

DMEM 10 
ng/ml IL-1β

109 ± 4 Ω·cm2 61 ± 6 Ω·cm2 NA 44 %
48 Ω·cm2

NA 50%
(8/16)

DMEM 50 
ng/ml IL-1β

143 ± 11 Ω·cm2 46 ± 19 Ω·cm2 NA 68 %
97 Ω·cm2 

NA 64%
(7/11)

Ringer no 
application

102 ± 15 Ω·cm2

n = 5 
85 ± 11 Ω·cm2

n = 5
86 ± 9 Ω·cm2

n = 5
17%

17 Ω·cm2
25%

24 Ω·cm2
* 29%
(5/18)

Ringer 
control

103 ± 20 Ω·cm2

n = 5
85 ± 13 Ω·cm2 68 ± 5 Ω·cm2 18 %

18 Ω·cm2
34 %

35 Ω·cm2
45 %
(5/11)

Ringer 50 
ng/ml IL-1β

117 ± 7 Ω·cm2

n = 7
92 ± 12 Ω·cm2 86 ± 13 Ω·cm2 22 %

25 Ω·cm2
27 % 

32 Ω·cm2
78 %
(7/9)

Ringer 500 
ng/ml LPS

139 ± 37 Ω·cm2

n = 5
137 ± 34 Ω·cm2 128 ± 30 Ω·cm2 1 % 

2 Ω·cm2
8 %

11 Ω·cm2
71 % (5/7)



The success rates depict those experiments that were considered for analysis from the total 

of all started experiments in the specific group. The change of Ringer and gassing methods 

improved the overall rate except in Ringer control, which can be linked to technical difficulties.

3.3	 Retaining the Retina and Sclera on the RPE Sheets

The results  using RPE sheets with RPE-Ringer solution had been an improvement compared 

to the DMEM experiments. To further minimize the TEER decline, a change was introduced 

that stabilized the TEER values. The RPE explant had been obtained by removing the sclera 

and retina, however after retina removal, a number of pigments were seen on the retina that 

may have caused possible damage (Fig. 3-19). To avoid this additional stress factor on the 

RPE, the retina was retained on the RPE.

3.3.1	 Measuring the TEER of the Retina/RPE/Sclera (RRS) Explant
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Figure 3-19: Micrograph of RPE and retina individually after retina removal. A: Actin staining 
reveals  an intact RPE sheet, while little black dots  are melanosomes within the RPE, especially in the 
microvilli. B: Actin staining of the retina highlights  retinal vessels and melanosomes. C: Magnification of 
B  reveals  that the pattern has  the same size as  the RPE cells. D: Tuloidin-blue cross  section of RPE and 
choroid after retinal removal shows that a large fraction of the microvilli are still present on the RPE. BM: 
Bruch’s membrane, CC: choroid capillaries, CH: choroid. Magnification: 20 x (D).
A, B, C pseudo-color.



A Retina/RPE/Sclera (RRS) tissue complex was extracted and the TEER was recorded. Its 

mean TEER at t0 was 147 ± 11 Ω·cm2. For these and the following experiments (retina/RPE, 

RPE, retina, sclera) t0 represents the first value at the initiation of the measurements, because 

no substance was added. The decline of TEER after 80 minutes was 2% and after 120 

minutes 15% (Fig. 3-20 A and table 3-2). The overall TEER values showed little variability and 

the success rate was at 80%. In order to compare these values to the previous results, the 

t20 value needs to be considered. Table 3-3  lists the data that can be compared to the values 

of the previous application experiments. The t20 value of this series is equivalent to the t0 of 

the experiments with application. The t80 compares to t60 and t100 to t80, respectively.

3.3.2	 Measuring the TEER of the Retina/RPE (RR) Explant

The results of the Retina/RPE (RR) complex are shown in figure 3-20 B. The mean TEER 

value at t0 was 192 ± 12 Ω·cm2, with a decline in TEER of 9% after 120 minutes. Interestingly 

the t10 value was 10% greater than the t0 value. The increase of TEER in this set of 
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Figure 3-20: TEER values of RPE tissues including retina with or without sclera and individual 
retina and sclera values. A: RPE/Retina/Sclera  explant. B: RPE/Retina explant. C: Retina. D: Sclera. N-
numbers varied over the time course of the recorded values as noted in the charts. The recordings  of 
sclera were not continued for the full time period. Error bars are s.e.m.



experiments stressed the importance of giving the cells  an equilibration time of 10-20 

minutes before applying any substance.

3.3.3	 Individual TEER Values of Retina and Sclera

The individual measurements of retina showed an initial TEER of 19 ± 2 Ω·cm2, which 

remained very stable over the recorded time period (Fig. 3-20 C). The TEER of sclera was not 

measured over a prolonged time. The initial value was at 7 ± 2 Ω·cm2, while one data point 

was more than 3  times the value of the average values with an average TEER of 5 Ω·cm2 

between t10 and t50 as shown in figure 3-20 D.
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Table 3-2: Overview of the TEER values at different time points using RRS (Retina/RPE/
Sclera) and RR (Retina/RPE). t0 is  defined as initial measured value. ∆t80 and ∆t120 represent the 
differences  between t80 and t0 or t120 and t0 respectively. Differences  are given as  percentage and 
absolute TEER value. Success  rate describes  the amount of experiments whose results  were 
considered for analysis, vs. those that were eliminated based on the exclusion criteria. 80% (12/15): 12 
experiments qualified for analysis, 15 had been started in total.

t0 t80 t120 ∆t80 ∆t120 Success 
rate

RRS
147 ± 11 Ω·cm2

n = 12
145 ± 10 Ω·cm2

n = 12
126 ± 6 Ω·cm2

n = 11
2 % 

2 Ω·cm2
15 %

22 Ω·cm2
80 %

(12/15)

RR
192 ± 12 Ω·cm2

n = 7
196 ± 13 Ω·cm2

n = 7
175 ± 13 Ω·cm2

n = 6
-2 % 

-4 Ω·cm2
9 %

18 Ω·cm2
64 %
(7/11)

Retina
19 ± 2 Ω·cm2

n = 7
20 ± 2 Ω·cm2 

n = 4
18 ± 3 Ω·cm2

n = 3
-2 % 

-1 Ω·cm2
7 %

-1 Ω·cm2
N/A

Sclera
7 ± 2 Ω·cm2

n = 9
N/A N/A N/A N/A N/A

t20 t80 t100 ∆t80-20 ∆t100-20 ∆t120-20

RRS
152 ± 13 Ω·cm2

n = 12
145 ± 10 Ω·cm2 136 ± 8 Ω·cm2 5 % 

7 Ω·cm2
11 %

16 Ω·cm2 
18%

27 Ω·cm2  

RR
214 ± 14 Ω·cm2

n = 7
196 ± 13 Ω·cm2 192 ± 14 

Ω·cm2
9 % 

18 Ω·cm2
10%

22 Ω·cm2 
19%

40 Ω·cm2

Table 3-3: Data of TEER values from Retina/RPE/Sclera (RRS) and Retina/RPE (RR) to 
facilitate data comparison with the values of the application experiments. ∆t80-20 and ∆t100-20 
represent the differences  between t80 and t20 or t100 and t20 respectively. Differences  are given as 
percentage and absolute TEER value.



3.3.4	 Comparing the Individual Tissues

Figure 3-21 shows an overview of the different tissue resistances. The first 15 minutes of 

each measurement were considered and the values are displayed as mean. The first 15 

minutes were chosen for this overview to be able to obtain sufficient values to reach a stable 

value for RPE/choroid explants. The RPE values were derived from experiments without 

application, or from the time period prior to application of any substance. A highly significant 

difference was found between the Retina/RPE/Sclera (152 ± 12 Ω·cm2) and the Retina/RPE 

tissues (209 ± 13  Ω·cm2) as well as  between the Retina/RPE and RPE (133  ± 7 Ω·cm2) (for 

both p < 0.01), while the difference between retina (19 ± 2 Ω·cm2) and sclera (7 ± 2 Ω·cm2) is 

also significant (p < 0.01). Highly significant is also the difference between RPE, RRS and RR 

compared to these two tissues. The high TEER of the Retina/RPE sample was unexpected.

3.4	 Evaluation of Fluorescein Transport Across the RPE Barrier

To examine the permeability of the barrier of the tissues with their differing TEER values, the 

transport of fluorescein (10 mg/ml) from the apical to the basolateral side was evaluated. 

The TEER values of these experiments are displayed in figure 3-22 and table 3-4. They were 

in line with those of the previous ones with the Retina/RPE reaching the greatest measured 

values of 230 ± 10 Ω·cm2, and the RRS showing very consistent TEER. Interestingly the initial 

TEER of RPE was greater than the one from RRS (193  ± 41Ω·cm2 and 116 ± 14 Ω·cm2 

respectively), while the TEER of RPE alone decreased rapidly. 60% of the RPE/choroid 

experiments had to be discarded because the chamber was leaky.

Results

 53

Figure 3-21: Comparison of the 
TEER values of the examined 
tissues of the eye. The values  of 
the fi rs t 15 m inu tes  o f the 
respective tissues  were analyzed 
and the average calculated to 
obtain the TEER values. No 
significance was found between 
Retina/RPE/Sclera and RPE tissues. 
All tissues including RPE were 
highly significant to either retina or 
sclera (not indicated by asterisks) ** 
Represents  p < 0.01. Error bars 
represent s.e.m.



The high TEER values of the RR tissue did not correlate with a low fluorescein concentration 

in the basolateral medium as expected. Instead the medium obtained from the basal RPE/

Retina chamber held significantly greater concentrations of fluorescein than the RRS 

chamber at t60, t90 and t120 (Fig. 3-23  and table 3-5). The fluorescein concentration of the RR 

samples was also significantly greater than that of the RPE medium at t60. In contrast, the 

medium of the RPE samples at t30 and t60 showed the lowest fluorescein concentrations of 
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Figure 3-22: TEER values of the distal eye tissues 
with an apical sodium-fluorescein concentration of 
10 mg/ml in RPE-Ringer. A: Retina/RPE/Sclera. B: 
Retina/RPE. C: RPE/choroid. There was a dramatic drop 
in TEER observed in all examined tissues. In order to 
evaluate the fluorescein concentration (see below) it was 
necessary to exempt these values from the usual 
exclusion criteria. D: Retina. E: Sclera. n = 3  in all 
tissues. Error bars are s.e.m.

E

A B

DC



any measured tissue. While the increases in basolateral fluorescein concentration in RRS and 

RR were highly linear (r2 = 0.9997 and r2 = 0.9999), the increase for RPE was less linear (r2 = 

0.95).

As expected the sclera showed the greatest amount of fluorescein in its basal medium, while 

no significant difference was found between the fluorescein concentrations of retina and 

sclera (Fig. 3-24). However all retina and sclera values showed significant differences to the 

tissues including RPE (RRS, RR, RPE). Sclera and retina fluorescein concentration increases 

were both highly linear as expected (r2 = 0.9993 for retina and r2 = 0.9957 for sclera).
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Table 3-4: Overview of TEER values during the evaluation of the RPE barrier using 10 
mg/ml sodium fluorescein in the apical bathing solution. t0 represents  the first measurement 
of the series, while ∆t80-20 and ∆t120-20 show the changes  of the t80 and t120 value compared to t20. 
The t20 value was chosen to make comparisons  to previous results  more consistent. Differences 
are given as percentage and absolute TEER value.

Table 3-5: Basal fluorescein concentration of all measured tissues in µg/ml. 200 µl were 
taken after the indicated time points  and photometrically analyzed and compared to the 
standard to obtain the reported concentrations.

t0 t20 t80 t120 ∆t80-20 ∆t120-20

RRS
116 ± 14 

Ω·cm2

n = 3

104 ± 8 Ω·cm2

n = 3
99 ± 7 Ω·cm2 99 ± 5 Ω·cm2 15 % 

17 Ω·cm2
15 %

17 Ω·cm2

RR
230 ± 10 

Ω·cm2

n = 3

264 ± 20 
Ω·cm2

n = 3

238 ± 6 Ω·cm2 210 ± 11 
Ω·cm2

10 % 
26 Ω·cm2

20 %
54 Ω·cm2

RPE
193 ± 41 

Ω·cm2

n = 3

131 ± 25 
Ω·cm2

n = 3

82 ± 19 Ω·cm2 67 ± 14 Ω·cm2 37 %
49 Ω·cm2

49%
64 Ω·cm2

Retina
19 ± 3 Ω·cm2

n = 3
13 ± 3 Ω·cm2

n = 3
10 ± 3 Ω·cm2 13 ± 3 Ω·cm2 20 %

3 Ω·cm2
0 %

0 Ω·cm2

Sclera
9 ± 4 Ω·cm2

n = 3
8 ± 4 Ω·cm2

n = 3
6 ± 4 Ω·cm2 6 ± 4 Ω·cm2 22%

2 Ω·cm2
26%

3 Ω·cm2

RRS RR RPE Retina Sclera

30 min 0.096 ± 0.03 0.175 ± 0.05 0.092 ± 0.04 2.10 ± 0.42 5.02 ±1.15

60 min 0.474 ± 0.05 0.769 ± 0.06 0.368 ± 0.12 4.87 ± 0.61 11.30 ± 2.26

90 min 0.847 ± 0.08 1.377 ± 0.11 0.881 ± 0.15 7.83 ± 1.52 16.51 ± 3.23

120 min 1.250 ± 0.14 2.003 ± 0.15 1.683 ± 0.22 10.95 ±1.83 21.23 ± 3.69
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BA

C D

r2 = 0.999

r2 = 0.999 r2 = 0.953

Figure 3-23: Fluorescein concentration of the basal bathing medium of RPE-containing 
tissues. A: Overview of the concentration using RRS, RR and RPE tissues with increasing time points 
from left to right: white: 30 minutes, light gray: 60 min, intermediate gray: 90 min, dark gray 120 min. 
Asteriks indicates significance p < 0.05. B. Linearity of the increase of basal fluorescein concentration in 
RRS (B), RR (C) and RPE (D). n = 3 (A-D). Asteriks indicate significance p < 0.05.
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A

B C

Figure 3-24: Fluorescein concen-
tration of the basal bathing 
medium of retina and sclera. A: 
Overview of the concentration using 
Retina and Sclera with increasing time 
points from left to right: white: 30 
m i n u t e s , l i g h t g r a y : 6 0 m i n , 
intermediate gray: 90 min, dark gray 
120 min. Student’s T-test showed no 
differences between the values. B. 
Linearity of the increase of basal 
fluorescein concentration in Retina (B) 
and Sclera (C). n = 3 for A-C.



4	 Discussion

RPE research plays a pivotal role in understanding the underlying mechanism has led to eye 

diseases such as AMD and DR. Over the years there have been several groups that have 

used RPE cultures or tissue explants to gain a better understanding of the physiology of RPE. 

However, there is a great need in the field to obtain a widely accepted and accessible 

method for attaining that goal.

4.1	 Relevant Points of Discussion on the Establishment of a Suitable Ussing 

	 Chamber Assay

Data that have led to the assessment on how to improve the system (e.g. IL-1β application 

using DMEM and the preceding gas delivery) are not discussed in this section. All relevant 

conclusions that had been drawn from those experiments are described in the Results 

section, and the appropriate changes were made and described there. This first part of this 

discussion is focuses on two crucial aspects of successful implementation in order to 

evaluate the TEER of rat RPE explants.

4.1.1	 Defining a Minimum TEER Value Describing Intact RPE

To evaluate the gathered data, a minimum value expressed in TEER had to be established. 

for an intact barrier. Data suggested that this value was found in a TEER > 68  Ω·cm2. Tissues 

with values at this mark remained stable for at least 20 minutes, while TEER values below it  

rapidly decreased further. Values that remained consistently below this value represented 

compromised tissues as shown in figure 3-3. The definition of this  value was crucial and 

allowed making clear cuts along recorded values, especially during the early phase when 

limitations in the dissection method yielded a variety of stable low TEER values. These 

definitions were established using DMEM medium.
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4.1.2	 Choice of Medium and Gas

The initial experiments using RPE were done using DMEM as the RPE bathing medium. 

DMEM is a medium widely used for RPE culture, independent of the species of origin (32, 

120, 128, 162). Results showed that during this phase, the system was not suited for 

comparison studies. The TEER frequently dropped at similar time points in a number of 

control experiments. The reasons were searched in the medium of choice and one initial 

explanation was the presence of HEPES (15 mM) in DMEM in combination with the exposure 

to laboratory light. HEPES was reported to be toxic in thymocyte cultures at a concentration 

of 25 mM after light exposure for more than 30 minutes (163). In the experimental settings of 

the Ussing chamber, the HEPES concentration is lower, but the time of exposure is greater.

As another possible limiting factor in DMEM, the presence of phenol red in a concentration of 

24 µM was considered. Phenol red has protective properties against ROS production in the 

RPE and acts as a weak estrogen (164-166). The affinity of phenol red is 0.001% that of 

estradiol (166), the major estrogen in humans, which is  effective at 1 µM (164). The great 

differences in concentration led to the conclusion that this component is a less likely to be a 

possible risk factors for RPE stability. 

However, the reasons may not have been the medium itself, but rather in complications in the 

delivery of the gas intended to maintain a stable pH. The DMEM that was used requires a 

CO2 concentration of 3.1% (table 2-1). It was noticed that the use of the gas channels of the 

Ussing chamber did not allow for a constantly equal gas flow, which made it impossible to 

assure the pH 7.4 at all times. 

When it was decided to change the medium, it was decided to use only basic components 

and the choice fell on a Ringer solution that was first reported in 1991 and used for bovine 

tissue explants and later for cell culture of human fetal RPE cells (115, 117). Shortly after the 

medium was changed, the gassing conditions were addressed, so that the use of the new 

medium was accompanied by improved stability of gassing delivery. The results showed a 

general improvement in the stability of the TEER, and were continuously used.

Making adjustments to the medium currently used may be a possibility for further 

improvements in the stability of the system. However this has not been tested.
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4.2	 Discussion of the Results After the Ussing Chamber Implementation

Below the experiments are discussed that were conducted after the establishing phase was 

concluded; reference is made to the data following section 3.2.

4.2.1 Application of IL-1β to the Apical Bathing Solution (RPE-Ringer) of RPE 

 Explants

In 2008  an article was published describing the presence of IL-1β receptor 1 on the apical 

side of human fetal RPE cells in culture (48), which was an exciting indication that IL-1β may 

have a direct effect on RPE cells. A possible source of IL1-β on the retinal side are immune 

cells resident in the retina, cells of or within the vitreous, RPE itself or infiltrated leukocytes 

that entered the eye through the retinal vessels. To examine if IL-1β had an effect on the 

barrier function of the RPE, it was applied to the apical bathing solution of RPE explants 

devoid of retina and sclera. No differences between IL-1β (50 ng/ml) and the control 

application were observed, and no visible damage to the RPE cells was detectable using 

actin staining. However the TEER of control and IL-1β application decreased over the time 

period of the experiments.

This decrease indicated that the Ussing chamber system was not yet sufficiently stable to 

detect possible effects of the applied substance on the RPE. 

When the retina was more closely examined, it became evident that a great number of 

microvilli had been compromised during that process of mechanical removal. It is likely that 

the microvilli are the bearer of the IL-1β receptors, which would explain the tolerance against 

IL-1β. Yet the answer could be much simpler: IL-1β at the given concentration has no effect 

on the barrier function of the RPE. 

4.2.2	 Exposure of the Apical RPE Membrane to LPS

LPS is a major component of the outer membrane of Gram-negative bacteria and is in vision 

science most commonly used to generate a model of uveitis, an inflammatory disease in 

which leukocytes infiltrate the eye. In this endotoxin induced uveitis (EIU) LPS is injected into 

the footpad of a rodent generating a severe inflammatory response especially in the eyes 

(167). As one of many effects of EIU, infiltrated neutrophils compromise the outer BRB (168). 
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In contrast to the EIU approach, this study wanted to analyze the direct effect of LPS on the 

RPE.

Compared to any other application, including the control, the application of LPS seemed to 

stabilize the TEER. This was not significant, but it showed for the first time that differences in 

TEER behavior could be detected with this system. 

The high values of this series can be traced back to one very high value, while the overall 

TEER was very stable across the individual measurements. These data suggest that the RPE 

can detect and react to LPS exposure, which is in line with the reported presence of TLR4, 

the universal receptor for LPS, on RPE cells  (168-170). Yet these publications did not reveal 

whether TLR4 is located on the retinal or choroidal side of the RPE. 

A study by Ishibashi’s group (171) showed that IL-6  and VEGF expression increase after LPS 

stimulation on mouse RPE cell cultures, while this  increase is absent in the RPE of TLR4-/- 

mice. VEGF has been associated with the onset of AMD, and its blockage or capture is the 

leading therapeutic agent aimed to soothe the effects of AMD, because its inhibition stops 

the growth of blood vessels (82, 172, 173). While one group suggest that VEGF lowers the 

TEER of the RPE, another group did not find any changes (120, 131). IL-6, a potent 

inflammatory cytokine is an attractant of leukocytes and had also been shown to be 

produced by RPEs in the presence of subtoxic levels of H2O2 (174). These reports would lead 

to the hypothesis that LPS would rather reduce the TEER.

A consolidation of these results is outstanding. However, the presented results indicate that 

an increase or at least a stabilization of TEER may be an initial reaction of the RPE to 

exposure to LPS. Prolonged exposure may have different effects.

In an immediate response RPE, which has been shown to bear TLR2, TLR4 and several 

TLR1s, may actively secure the barrier toward the choroid through which bacteria could gain 

access to the circulatory system. Keeping bacteria localized in this  fashion, they can, for 

example, become targets for resident macrophages and other leukocytes that respond to the 

IL-6 stimulus. Possibly RPE could be involved in such a phagocytosis - their ability to take up 

microorganisms has been reported (175). 

The above-mentioned reports and the results presented in this thesis make a closer 

investigation into the effect of LPS on RPE a promising target for further investigation. As 

suggested by results that followed this set of experiments (discussed below), the use of RPE 

explants that include retina and sclera may have great benefits instead of using the RPE 

explants.
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4.2.3	 Comparison of the TEER of RPE Explants to Those Including Retina and 

	 Sclera

The results of the IL-1β experiments showed that application of the control substance (0.1% 

BSA in PBS) to the apical bathing solution of the RPE explant, led to a decrease of the TEER 

by 18% after an examination time of 60 minutes (∆t60 - table 3-1). During the same time 

period the TEER of RRS decreased by 5% and that of RR by 9% (∆t80-20 - table 3-3). After an 

additional 20 minutes the TEER of the RPE explants had decreased by a total of 34%, 

compared to 11% of the RRS and 10% of the RR tissues.

Interestingly, the absolute TEER values of RR were significantly greater than those from RRS, 

which was unexpected and will be discussed in the following section.

The data demonstrated that the stability of the TEER of RRS and RR improved three-fold 

compared to that of RPE alone. They were also sustainable for longer time periods with a 

lower decreasing rate.

Based on these results  as well as on retinal micrographs showing pigments on the retina, the 

RPE tissue alone was not considered to represent the physiological nature of the RPE; on the 

contrary, the RPE tissue can be understood as a condition of trauma.

4.3	 Permeability Evaluation Using Sodium-Fluorescein Transport Across the RPE

To assess the permeability of the RPE barrier in a first step, specifically the permeability to 

small non-ionic molecules, sodium-fluorescein was added to the apical bathing solution, and 

the basal fluorescein concentration at different time points was measured. The general 

understanding was that in physiological conditions the TEER is inversely proportional to its 

permeability (131, 162, 176). In physiological conditions the RPE constantly removes water 

from the retinal side (39, 51). While this process is complex, it is  known that it can be altered. 

Lowering the pH via an increase of the apical CO2 concentration induces an increase in fluid 

transport across the RPE (177, 178).

With no fluorescein-specific receptors that would allow for an active transport of fluorescein, 

passive or co-transport via the para- or transcellular pathways remains as a possible option.
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4.3.1	 Fluorescein Transport From Apical to Basal for RPE Tissues Including Retina

The RR tissue, which had the greatest TEER values (192 ± 12 Ω·cm2 at t0) continuously 

showed the greatest basal fluorescein concentration of the examined RPE associated 

tissues. In an apparent discrepancy, however, these experiments did not distinguish between 

the trans- or paracellular pathway.

To get a better understanding of these results, work by the groups of Matter and Cereijido 

was consolidated. They reported a similar discrepancy for the permeability of mannitol (182 

Da) , which is in the same size category as fluorescein (332 Da). When the TJ protein 

occludin was overexpressed in MDCK II cells, they reported a greater amount of mannitol in 

the basal bathing solution compared to control, while the TEER was also greatly increased 

(113). This was explained by a change in the TJ protein conformation, which can fluctuate 

between open and closed status (113, 114). According to this model, the TEER is a measure 

for the closed barriers at a given time point, while the paracellular flux is an indicator for 

permeability over a period of time. The open/closed status was attributed to aqueous 

channels in each diffusion barrier of the TJ strands. 

To determine whether the fluorescein permeability of the experiments of this thesis was 

regulated by the trans- or paracellular pathway further experiments need to be conducted, 

which were not done. The Methods article by Balda and Matter gives an excellent overview of 

discriminating between the two (179). To determine the amount of transcellular pathway, they 

suggest incubating the RPE with 3-10 mg/ml with horse radish peroxidase (HRP, 44 kDa) for 

10 minutes. Other than described in the article, for the rat RPE system, this needs to be done 

prior to placing the RPE in the Ussing chamber because a successful change of medium 

without tissue damage has not yet been achieved. For this  reason the exclusiveness of the 

apical transcytosis is not guaranteed and an accurate numerical assessment of the 

transepithelial transport is not possible. However, the amount of basal release of HRP can be 

determined after 90-120 minutes by enzymatic reaction and subsequent photometric 

analysis. What has to be overcome will be the low concentration in the system with 4 ml 

bathing solution, which will require some adjustments.

To determine the paracellular pathway, which is regulated by the TJ complex, the use of 

tracers with sizes of 40-400 kDa, such as FITC- or rhodamine-labeled dextran, is suggested 

in addition to fluorescein: The greater size selectivity of the TJs, will give a clearer 

understanding of the paracellular pathway and thus an understanding whether the TJs have 
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a functional response to the removal of the retina. Without these or similar experiments it will 

not be possible to answer the question of para- or transcellular transport.

A condition that should also be avoided in future experiments is the difference in osmolarity 

between the basal and the apical bathing solutions, which can be achieved by lowering the 

fluorescein concentration. 

4.3.2	 Fluorescein Transport Across RPE Devoid of Retina and Sclera

To evaluate the barrier integrity of the RPE samples lacking retina and sclera, it was 

necessary to divert from the established criteria for data exclusion because all seven samples 

had shown a decreasing TEER starting at minute one. Those samples that were eliminated 

were leaking fluorescein-containing medium through the Ussing sliders. 

Initially the RPE showed the lowest basal fluorescein concentration, although it had increased 

non-linearly by t90 and t120. The high concentrations at t90 and t120 are thought to be directly 

linked to the breakdown of TEER and therefore the breakdown of the RPE’s integrity. 

A possible explanation of the low values at t30 and t60 is a reduction of fluid transport across 

the epithelium. During the removal of the retina also a number of microvilli are removed as 

suggested in figure 3-19. The removal of the microvilli may not alter the viability of the cells  as 

indicated by cell viability assays, but could be sufficient to reduce the fluid transport.

The underlying hypothesis is that the majority of water transport across the RPE happens 

through the transcellular pathway, which is driven by the K+ and Cl- transport. The catalysts of 

this transport are the Kir 7.1 K+ channels as well as their colocalized Na+-K+-ATPase, which 

are located on the roots of the micorvilli surrounding the photoreceptors, proximate to the 

apical membrane of the RPE (180, 181).

4.3.3	 Increased Apical Na+ Concentration by Sodium-Fluorescein Application

The difference in osmolarity between the apical and basal side of the bathing solutions (343  ± 

5 vs 286 ± 5 mOsm), as well as the increased Na+ concentration on the apical side (from 143 

mM to 196 mM) altered the experimental conditions by more than one component. It is 

expected that these changes primarily target the ion transport of the RPE. However, no 

significant differences in the TEER values were seen. In physiological conditions, the sodium 

gradient between the subretinal space and the lumen of the RPE is maintained by the Na+/K+ 

Discussion

 64



ATPase located on the apical membrane and leads to a co-transport of Na+/K+/2Cl- 

(182-184). While sodium ions are transported out of the cell to the apical side via the Na+/K+ 

ATPase, this leads to an apical influx of Cl-. When this process is  interrupted by oubain, the 

adhesion force between the RPE and the retina is interrupted. The increase in the 

extracellular Na+ concentration can, however, also affect the retinal cells and in this regard 

trigger a secondary effect on the RPE. The functionality of the photoreceptor outer segments 

of rods, which are in direct contact with the RPE, has been shown to be dependent on the 

extracellular Na+ and Ca2+ concentrations as well as the membrane potentials. When sodium 

is removed, the Ca2+ exchange of the POS and hence the response to light is abolished,  but 

this is also dependent on the extracellular Ca2+ concentration (185-188). The exchange of 

internal Ca2+ remains, however, unaffected when the membrane potential changes or if the 

external Na+ concentration changes between the ranges of 55 - 220 mM (188, 189), 

suggesting that a sodium concentration of 193  mM will not affect the functionality of the light 

response in a dramatic way.

However, without further experimental evidence or available publications, on how exactly an 

increase of [Na+] to 193  mM influences the RPE/retina interaction, reducing the sodium-

fluorescein concentration by 20-fold or more is suggested, to avoid this as a possible source 

of intervention. The small surface area of the explant may require a switch to other tracers, 

such as HRP, or inulin, that are either enzymatically activated, or radioactively labelled.

4.3.4	 Summarizing the Fluorescein Transport Experiments

A final conclusion on the trans- and paracellular transport in response to retina or choroid 

removal cannot be provided without the suggested experiments. However, it is anticipated 

that the increase of basolateral fluorescein in the RR sample is the reaction to a signal for 

apical fluid removal. This signal must result from the damages occurring to the choroid. 

Physiologically this is  plausible, because one of the RPEs functions is to remove water from 

the subretinal space and to maintain the retina/RPE interaction (51, 184). If the choroid is 

compromised, there may be a threat of excessive fluid influx, which can jeopardize this 

interaction. The significantly greater TEER in the RR tissues may be a protective reaction from 

RPE towards the retina shielding it from possible damage, or it could be an indicator to 

achieve greater surveillance along the paracellular pathway. 

Discussion

 65



4.4	 Evaluation of RPE Samples Devoid of Retina or Sclera

The removal of sclera and retina (RPE samples) yielded TEER values between 133  ± 7 Ω·cm2 

(n=32) and 103  ± 15 Ω·cm2 (n=5), while the results from the fluorescein transport showed the 

initial TEER at 193  ± 41 Ω·cm2 (n=3). The difference in the absolute TEER values of these 

tissues is not understood in its entire scope.

The greater TEER decrease of RPE compared to RR or RRS shows that an RPE explant from 

rat eyes devoid of sclera and retina is not a suitable model for understanding the ordinary 

physiology of the RPE. The accelerated reduction in TEER is a result of the mechanical retina 

removal, because the results of the retina/RPE complex did not show signs of accelerated 

TEER decrease, while preliminary results of RPE/sclera tissues showed a severe impact on 

the TEER.

To study the ordinary physiology of the RPE, the RRS explants should be used. The greatest 

advantage lies in the continuous presence of the retina, which ensures the continuous  

interaction between photoreceptors and the RPE.

4.5	 The Continuous TEER Decrease in All Systems 

The TEER decrease varies in its amplitude but is consistent in all examined tissues. A 

possible cause for this are the cells on the edge of the insert, whose cell membranes are 

severely compromised by the half chambers, as was demonstrated by the cell viability assay. 

In this process, intracellular components such as growth factors are released without 

surveillance that can act paracrine, possibly leading to reparation processes in which the 

microfilaments, and therefore the barrier, need to be rearranged (190, 191). If reparation 

processes are initiated, a reorganization of the RPE grid and therefore the unraveling of TJs 

would be necessary. Considering the interwoven net of TJs, adherens junctions and 

desmosomes in the RPE, the compromised cells may elicit a reaction in their adjacent healthy 

cells, such that this signal could be carried forward.

4.6	 Sensitivity of the Ussing Chamber Assay as Revealed by TEER Values

When tissue damage in the RPE samples had occurred, this fact was immediately revealed 

by a low initial TEER. In other cases, TEER values were decreasing, while actin or SYTOX 

Orange staining did not show any apparent abnormalities. The TEER analysis was therefore 
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able to distinguish these from intact RPE sheets. This was a major finding because it revealed 

the sensitivity of the Ussing chamber assay for TEER measurements. No additional 

ultrastructural analyses were made to correlate the measured TEER, although highly desirable 

to further strengthen this point.

4.7	 Other Methods for Evaluating an RPE Explant Devoid of Retina

If the removal of the retina from the RPE is desired, different approaches need to be chosen. 

RRS or RR can be incubated with enzymes such as chondroitinase or neuraminidase prior to 

their placement in the Ussing chamber. Both enzymes haven been shown to remove 

interphotoreceptor matrix (IPM) from the retina, which is  the molecular contributor to the 

retina/RPE adhesion (192). 

Another approach can be the use of an established method in which the retina is removed 

from the RPE: Experimental retinal detachment (193). In this  case a 1% sodium hyaluronate is 

injected subretinally to gently separate the retina from the RPE. While this method induces 

apoptosis in the retinal cells, it may also alter the physiology of the RPE, which has not been 

investigated to date.
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