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Abstract

Squeezed states of light were observed for the first time in 1985. Since then they have
developed into an important nonclassical tool in the field of high-precision metrology,
for instance in gravitational wave detection, as well as in the field of quantum infor-
mation, e.g. for teleportation and quantum cryptography. For all these applications a
strong squeezing factor is beneficial.
This thesis presents a new benchmark value for squeezed light from non-monolithic
squeezed-light sources. By means of parametric down-conversion, squeezed states
at a wavelength of 1064 nm were generated and a nonclassical noise suppression of
12.3 dB was observed. In contrast to a monolithic resonator, the resonance frequency
of this squeezed-light source can be adjusted to a downstream experiment.
In an additional experiment this squeezed-light source was utilized to determine the
quantum efficiency of photo diodes. The applied method permits high precision since
strong squeezing is sensitive to even low values of optical loss.
In view of the application of squeezed light in future-generation gravitational wave
detectors and quantum information science, a dedicated squeezed-light source was
developed and at a wavelength of 1550 nm squeezing in the continuous-wave regime
was observed for the first time. These squeezed states were employed to quantum-
enhance the sensitivity of a fiber-based Sagnac interferometer. Thus the compatibility
of squeezing at 1550 nm with fiber-based quantum communication was demonstrated.
Furthermore, upon thorough optimization of the squeezed-light generation and detec-
tion at 1550 nm, a quantum noise suppression of 12.3 dB was measured. Moreover,
squeezing in the Fourier audio-band was observed for the first time.
The findings presented in this thesis constitute key research towards the squeezed-light
technology at 1550 nm as it is required for future gravitational wave detectors such as
the recently proposed Einstein Telescope.
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Kurzzusammenfassung

Gequetschte Zustände des Lichts wurden 1985 erstmalig nachgewiesen. Seitdem
haben sie sich zu einem wichtigen nichtklassischen Bestandteil im Bereich der hoch-
präzisen Messtechnik, wie etwa der Detektion von Gravitationswellen, und im Bereich
der Quanteninformation, z.B. für Teleportation und Quantenkryptographie entwickelt.
Für alle Anwendungen ist ein starker Quetschgrad von besonderem Interesse.
Mit dieser Arbeit wird ein neuer Maßstab für den durch nichtmonolithische Quetsch-
lichtquellen erzeugbaren Quetschgrad gesetzt. Mittels parametrischer Abwärtskonver-
sion wurden gequetschte Zustände bei einer Wellenlänge von 1064 nm erzeugt und
eine nichtklassische Rauschunterdrückung von 12.3 dB gemessen. Im Gegensatz zu
einem monolithischen Resonator kann die Resonanzfrequenz dieser Quetschlichtquelle
an ein Folgeexperiment angepasst werden.
Mit dieser Quetschlichtquelle wurde in einem weiteren Experiment die Quantenef-
fizienz von Photodioden bestimmt. Die hier vorgestellte Methode erlaubt aufgrund
der hohen Sensibilität stark gequetschter Zustände auf nur geringste optische Verluste
eine besondere Präzision.
Im Hinblick auf die Verwendung von gequetschtem Licht in Gravitationswellendetek-
toren der zukünftigen Generation und in der Quanteninformation wurde eine weitere
Quetschlichtquelle entwickelt und gequetschtes Licht bei einer Wellenlänge von
1550 nm erstmalig im Dauerstrichbetrieb nachgewiesen. Mithilfe dieser gequetschten
Zustände wurde die Empfindlichkeit eines Faser-Sagnac Interferometers nichtklas-
sisch erhöht. Hierdurch wurde gezeigt, dass gequetschtes Licht bei 1550 nm und
faserbasierende Quantenkommunikation miteinander vereinbar sind.
Mit einer im Hinblick auf optische Verluste optimierten Quetschlichtquelle wurde wie
bei 1064 nm ein Quetschgrad von 12.3 dB gemessen. Darüber hinaus wurde erstmals
gequetschtes Licht bei 1550 nm im Bereich von Audiofrequenzen nachgewiesen.
Die Ergebnisse dieser Arbeit bilden die Grundlage für die Quetschlicht-Technologie
bei 1550 nm, wie sie für zukünftige Gravitationswellendetektoren, wie dem kürzlich
vorgeschlagenen Einstein Telescope, benötigt wird.
Stichworte: Gequetschtes Licht, Gravitationswellendetektor, Quanteninformation
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∆2ô, Var(ô) Variance of Ô
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Ĥ, H Hamilton-operator, Hamilton-function
i− Photocurrent difference
l Cavity round-trip length
µ Purity
µ0 Magnetic permeability
n̂ Number operator
ρ̂ Density operator
ν cavity linewidth (FWHM)
r Squeezing-parameter
σ Standard deviation



xiii

ς Covariance matrix
S(ξ) Squeezing-operator
τ cavity round-trip time
ω Angular frequency
φ Phase angle
p Position
P Laser power
P Electric polarization
q Momentum
V Variance
W(x, p) Wigner-Function
X̂θ , X̂(θ) Generic quadrature-operator
X̂1 = X̂θ=0 Amplitude-quadrature operator
X̂2 = X̂θ=π/2 Phase-quadrature operator
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CHAPTER 1
Introduction

Squeezed states of light are nonclassical states of the electromagnetic field. The first
observation of squeezed states was reported in 1985 in the work by Slusher et al. [1.1].
The conceptual ideas of squeezed states date back to the 1920’s [1.2], however it
took the invention of the laser in the 1960’s to stimulate active research within the
field of quantum optics. The first detailed theoretical analysis of squeezed states was
presented by Yuen [1.3] in 1976.
The basic idea behind squeezed light is intuitive: as a result of Heisenberg’s uncer-
tainty principle even a perfect laser produces light with an intrinsic noise, the so-called
quantum noise. Quantum noise cannot be eliminated. However, it can be redistributed.
At the expense of an increased noise in one variable of the light field, the quantum
noise can be reduced in the conjugate variable. A measurement system can conse-
quently profit from squeezing if it is based on the variable with reduced (squeezed)
noise. In that case it can be more precise than a conventional (classical) measurement
by means of coherent states, for which the quantum fluctuations are equally distributed
over the electric field amplitude and phase quadrature, respectively. It is plausible that
the quantum-enhancement increases with the strength of the squeezing.
Since their first observation, squeezed states have been used, for example, to demon-
strate the Einstein-Podolski-Rosen paradox [1.4, 1.5], as a resource for quantum
teleportation [1.6–1.8], and for the generation of Schrödinger cat states for quan-
tum information networks [1.9,1.10]. Currently, the most prominent application of
squeezed states and the main motivation for the work presented in this thesis is the
sensitivity enhancement of gravitational wave interferometers.
Gravitational waves (GWs) – periodical changes of space-time curvature traveling
through the universe at the speed of light – were predicted by Einstein’s theory of
general relativity as a consequence of accelerated massive objects [1.11, 1.12]. For
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2 INTRODUCTION 1.0

the strongest anticipated astrophysical events, the associated relative length change in
the distance between two points in space is only of the order of 10−22 or less [1.13],
which makes the direct detection of GWs one of the most challenging enterprises in
contemporary experimental physics. A direct detection would not only validate the
theory of general relativity, but it would also constitute the foundation for gravitational
wave astronomy, a novel way to probe the universe for electromagnetically dark
objects [1.14].
In the pursuit of a first detection, several kilometer-scale laser Michelson interferome-
ters (see for example References [1.15–1.17]) have been constructed. The sensitivity
of these GW detectors, which measure the relative change in the distance between their
end mirrors, is ultimately limited by quantum noise, namely the vacuum fluctuations
of the electromagnetic field.
Already in 1981, Caves [1.18] proposed to use squeezed states of light to enhance the
sensitivity of GW interferometers beyond their quantum noise limit. The analysis of
the interferometer response (to a phase signal) showed that the measurement noise
at a given frequency arises only from one quadrature of the vacuum field entering
through the dark port of the interferometer. Caves’ idea was to replace the vacuum
field by a squeezed vacuum field with less noise in this quadrature, thereby reducing
the quantum noise and hence increasing the signal to shot noise ratio.
Following Caves’ suggestion, several table top experiments were set up to prove
the compatibility of the squeezed light technique with todays GW detectors, see
e.g. [1.19–1.22]. Only recently, a squeezed light add-on was successfully integrated
into the km-scale GW detector GEO 600. A broadband noise reduction of up to 3.5
dB in the detector’s shot-noise limited regime has been demonstrated [1.23]. The
demonstrated sensitivity improvement corresponds to a laser power increase by a
factor of 2.2.
Currently, all of the existing GW interferometers are undergoing major upgrades. State
of the art technology will turn them into second-generation, or so-called advanced
detectors [1.24–1.26] with an intended ten-fold improvement in sensitivity. As part
of the upgrades, a considerable increase in laser power is intended. In advanced
LIGO [1.24] for instance, it is planned to store up to 1 MW in the interferometer arm
cavities. This might lead to a critical thermal load on the interferometer components.
Since, in terms of sensitivity improvement, the injection of squeezing is equivalent to
increasing the laser power, here the application of squeezed light would allow for a
reduction of the design laser power in order to reach the same sensitivity [1.27]. How-
ever, in the case that the thermal load can be managed, the squeezed-light technique
can lead to an additional sensitivity enhancement.
Beyond these advanced detectors, plans for third-generation instruments already exist.
One of the most ambitious projects is a joint European proposal, the so-called Einstein
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Telescope (ET) [1.28]. With a broad band improvement by one order of magnitude
over the second generation detectors, ET is meant to constitute an observatory for
routine GW detection. It is planned for ET to utilize cryogenically cooled interfero-
meters, in order to reduce the contribution of thermal noise. This would imply a
change of test mass material to enable efficient cooling. In this respect, the most
promising candidate is crystalline silicon [1.29]. Silicon is opaque to the laser wave-
length used in today’s GW detectors, but it is highly transparent at the wavelength
of 1550 nm. As a consequence, the use of crystalline silicon requires changing the
interferometer baseline laser wavelength from 1064 nm to 1550 nm [1.30, 1.31].

The improvement in the sensitivity of today’s GW detectors by squeezed light is
limited by optical loss inside the detectors [1.23] and by the fact that they are not
quantum noise limited over their entire measurement band (10 Hz–10 kHz) but only
at frequencies above approximately 500 Hz. However, the implementation of ultra
low loss optical components will decrease the loss considerably in second- and third-
generation detectors. Additionally, due to sophisticated seismic isolation and the
reduction of thermal noise, the quantum noise contribution will be significant over
most of the detection band. Hence future GW detectors will benefit considerably
more from the injection of strong squeezing. Since squeezed-light enhancement is
indeed considered for ET [1.28], continuous-wave squeezed states at 1550 nm are also
required.
All of the current GW interferometers are operated with lasers at 1064 nm. Hence, the
squeezed-light research within the GW community has quite naturally been focused
on providing squeezing at that respective wavelength. And indeed, the strongest
squeezing value observed so far (12.7 dB [1.32]) was achieved at the wavelength of
1064 nm. However, a monolithic squeezer was used. Monolithic squeezers are do not
seem to be applicable to GW detectors since dynamic tuning of their resonance fre-
quency to follow the wavelength of interferometer’s laser has not been demonstrated.
The work in this thesis was therefore dedicated to investigate the limits for strongly
squeezed states at both the wavelength of 1064 nm and 1550 nm from squeezed light
source that are compatible with existing and future GW technology.

Structure of the thesis

Most of the research presented in this thesis was published in four peer-reviewed
journal papers. Together with one complementary experiment (Chapter 5), these
constitute the main body of the text.
Chapter 2 presents the background theoretical material, explains some of the key
concepts of quantum optics and holds terms and definitions.
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Chapter 3 introduces the main concepts underlying the generation and detection of
squeezed light. A detailed analysis of the limitations to the detectable squeezing
level is given. The chapter closes with the presentation of a model for the output of a
realistic squeezed light source.
Chapters 4 and 5 both discuss the generation of strong squeezing at the wavelength
of 1064 nm. Chapter 4 presents the realization of strong squeezing by means of a
monolithic squeezed-light source. The direct detection of 11.5 dB is demonstrated
and a squeezing bandwidth of ∼170 MHz is reported. The observed squeezed states
are mathematically analyzed with respect to their Wigner function, density matrix
and photon number distribution. With this experiment the necessary insight for the
generation of strong squeezing was gained. It also provided the foundation for the
experiment presented in Ref. [1.32] in which today’s strongest squeezing was reported
by means of monolithic squeezer made from PPKTP.
Chapter 5 reports the strongest squeezing from a non-monolithic squeezed-light source
observed so far. A noise suppression of (directly measured) 12.3 dB at 1064 nm is
demonstrated at a sideband frequency of 5 MHz. A detailed characterization of the
squeezed-light source performance is provided. By fitting the data to a model, the
value of overall detection efficiency is used to deduce the quantum efficiency of the
photo diodes.
Chapters 6 through 8 report the development of continuous-wave squeezed light at the
telecommunication wavelength of 1550 nm. The first proof-of-principle experiment is
presented in Chapter 6. An advanced setup and the application of squeezed states at
1550 nm in a fiber-based Sagnac interferometer is presented in Chapter 7. Today’s
strongest squeezing of (again) 12.3 dB together with the observation of squeezed light
at sideband frequencies in the audio band is described in Chapter 8.
Chapter 9 provides a summary and overall conclusions.
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CHAPTER 2
Basic quantum optics

This chapter reviews the basic theoretical concepts underlying the experiments pre-
sented in this thesis.

2.1 Quantization of the electromagnetic field

A traveling wave solution for a light field in free space can be derived from the
Maxwell equations. More specific, we consider a monochromatic electromagnetic
field that propagates in z-direction within a one-dimensional cavity with perfectly
reflecting mirrors and assume the electric component to be x-polarized. The electric
field that satisfies Maxwell’s equations with the given boundary conditions reads (in
SI units) [2.1]

Ex(z, t) =
�

2ω2

V�0

�1/2

q(t) sin(kz) (2.1)

and the y-polarized magnetic field can be written as

By(z, t) =
�µ0�0

k

� �
2ω2

V�0

�
q̇(t) cos(kz) . (2.2)

In these equations ω, is the angular frequency of the mode, k = ω/c is the wave num-
ber, q(t) is a time-dependent factor having the dimension of a length and p(t) = q̇(t)
is a time-dependent factor having the dimension of a velocity. The constant coeffi-
cients depend on the chosen system of units and are of no importance for the following
considerations. From Eqs. (2.1) and (2.2), one obtains the Hamiltonian [2.1]

H(q, p) =
1
2
(p2 + ω2q2) , (2.3)

9
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of the single-mode field [2.1]. The transition from the classical to the quantum
mechanical description of the system can be made by applying the correspondence
rule, according to which the canonical variables q and p can be replaced by their
corresponding operators:

q → q̂, p → p̂ . (2.4)

The position operator q̂ and the momentum operator p̂ obey the commutation relation

[q̂, p̂] = ih̄ . (2.5)

Consequently, this yields the operators Êx(z, t) and B̂y(z, t) for the electric and
magnetic field, respectively, and the Hamilton operator is then given by

Ĥ =
1
2
( p̂2 + ω2q̂2). (2.6)

To obtain dimensionless operators, the linear combinations

â = (2h̄ω)−1/2(ωq̂ + i p̂) and (2.7)
â† = (2h̄ω)−1/2(ωq̂− i p̂) (2.8)

can be chosen. These are the so-called annihilation operator â and the creation operator
â†. Their commutator relation is given by

[â, â†] = ââ† − â† â = 1 . (2.9)

This can be used to re-express the Hamilton operator as

Ĥ =
1
2

h̄ω
�

ââ† + â† â
�

= h̄ω

�
â† â +

1
2

�
. (2.10)

To see what information about the system’s energy is contained within this Hamilto-
nian, we first propose an energy eigenstate of the system |n� with the corresponding
energy eigenvalue En, such that

Ĥ |n� = En |n� . (2.11)

As the next step, we apply the creation operator to both sides of Eq. (2.11), such
that â†Ĥ |n� = â†En |n�. The expansion of the left hand side yields h̄ω(â† â† â +
1
2 )â† |n� = Enâ† |n� and by using the commutation relation, Eq. (2.9), one obtains

Ĥ â† |n� = (En + h̄ω) â† |n� . (2.12)
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This is an eigenvalue equation for a new (unnormalized) state â† |n� that is also an
eigenstate of the Hamiltonian and possesses the energy eigenvalue (En + h̄ω). The
same can be done for the annihilation operator, which yields

Ĥ(â |n�) = (En − h̄ω)(â |n�) . (2.13)

Again, a new (unnormalized) eigenstate â |n� is produced with the corresponding
energy eigenvalue (En − h̄ω).
One can interpret the application of the creation operator as bringing the system
into a new state |n + 1� with an increased energy level En + h̄ω. The annihilation
operator does the opposite and creates a new state |n− 1� with decreased energy
En−1 = En − h̄ω. This illustrates the origin of the names creation operator and
annihilaton operator, since â† creates and â annihilates a quantum of energy h̄ω.
The total energy of the system must not be negative. Therefore, a state of minimum
energy has to exist. This is the so-called ground state or vacuum state. It is denoted
by |0�. Since no eigenstate with an energy smaller than the ground state exists, the
application of the annihilation operator to this state is defined by

â |0� = 0 . (2.14)

The eigenvalue equation for the ground state thus is

Ĥ |0� = h̄ω

�
â† â +

1
2

�
|0� =

1
2

h̄ω |0� . (2.15)

From Eq. (2.15), it is evident that the lowest energy level – the zero-point energy – is
E0 = h̄ω/2. We know that the creation operator produces a quantum of energy h̄ω
each time it is applied. By starting from the ground state, the energy eigenvalues of
the Hamiltonian can therefore be constructed according to

En = h̄ω

�
n +

1
2

�
, n = 0, 1, 2, ... (2.16)

As a consequence, the field energy is quantized.
One can define the number operator n̂ as

n̂ = â† â . (2.17)

By comparison with the Hamilton operator in Eq. (2.11), we find the effect of n̂ acting
on a state |n� to be

n̂ |n� = n |n� . (2.18)
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Apparently, the state itself is not changed by the number operator and the number of
quanta (in multiples of h̄ω) is given as the eigenvalue.
The fact that eigenstates form an orthonormal basis entails a normalization condition
of the form:

�n
��n�

�
= δnn� with δnn� =

�
1 if n = n�
0 if n �= n� (2.19)

Let us now consider the annihilation operator acting on an arbitrary state |n�

â |n� = cn |n− 1� . (2.20)

The normalization coefficient cn can be determined by taking the inner product of the
state â |n� with itself and using Eqs. (2.18) and (2.19)

(�n| â†)(â |n�) = �n| â† â |n� = n (2.21)
= �n− 1| c∗ncn |n− 1� = |cn|2, (2.22)

which yields cn =
√

n, and thus

â |n� =
√

n |n− 1� . (2.23)

For the creation operator the calculation can be carried out analogously and we have

â† |n� =
√

n + 1 |n + 1� . (2.24)

From the last result it can be shown that an arbitrary excited state |n� can be obtained
by repeatedly applying the creation operator to the ground state |0�

|n� =
(â†)n
√

n!
|0� . (2.25)

The states described by Eq. (2.25) are known as number states or Fock states.

2.2 Quantum fluctuations

In the preceding section it has been shown that the state |n� possesses a well-defined
energy En = h̄ω(n + 1

2 ). However, it is not a state with a well-defined electric
field [2.1]. With the electric field operator Êx(z, t) = E0(â + â†) sin(kz), the mean
electric field of a Fock state can be determined to be

�n| Êx(z, t) |n� = E0 sin(kz)[�n| â |n�+ �n| â† |n�] = 0 . (2.26)
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But for the energy density, which is related to the mean of the square of this field, we
have

�n| Ê2
x(z, t) |n� = 2E2

0 sin2(kz)
�

n +
1
2

�
. (2.27)

These results can be used to compute the variance of the electric field. The variance
of a quantity is a measure for its fluctuations and for an operator ô it is defined by

Var(ô) = ∆2ô = �ô2� − �ô�2 . (2.28)

The variance is the square of the standard deviation, which is given by

∆ô =
�
�ô2� − �ô�2 . (2.29)

For a Fock state we obtain

∆Êx =
√

2E0 sin(kz)
�

n +
1
2

�1/2
. (2.30)

by inserting the results from Eqs. (2.27) and (2.26) into Eq. (2.29). From Eq. (2.30) one
can see that even when n = 0 the electric field is fluctuating. These fluctuations are
the so-called vacuum fluctuations. They are a direct consequence of the non-vanishing
energy of the ground state.

2.3 Quadrature operators and Heisenberg’s Uncertainty
Principle

The operators â and â† were useful to obtain the quantized Hamiltonian in Sec. 2.1.
However, these operators are non-hermitian (since â �= â∗ and â† �= (â†)∗) and
therefore do not represent observables of the light field. It is useful to introduce the
so-called quadrature operators

X̂1 =
1
2
(â + â†) (2.31)

X̂2 =
1
2i

(â− â†) . (2.32)

These hermitian operators are referred to as the amplitude quadrature (X̂1) and the
phase quadrature (X̂2). With the quadrature operators, the electric field can be
rewritten as

Êx(z, t) ∝ sin(kz)[X̂1 cos(ωt) + X̂2 sin(ωt)] . (2.33)
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It is intelligible from Eq. (2.33) that the quadrature operators correspond to field
amplitudes that oscillate 90◦ out of phase with respect to each other – they are in
quadrature.
The quadrature operators do not commute as they obey the commutation relation

[X̂1, X̂2] =
i
2

. (2.34)

Heisenberg’s uncertainty principle states that for any two non-commuting observables
there is a fundamental limit to the accuracy with which a simultaneous measurement
on both quantities can be conducted. In other words, the more precise one observable
is known, the less precise is the knowledge on the other. For two operators Â and B̂
with a non-vanishing commutator [Â, B̂] = C, the uncertainty relation is given by

∆Â∆B̂ ≥ 1
2
|C| or (2.35)

∆Â2∆B̂2 ≥ 1
4
|C|2 , (2.36)

when expressed by the variances instead of the standard deviations. Together with
Eq. (2.34) it follows for the quadrature operators that

�(∆X̂1)2��(∆X̂2)2� ≥ 1
16

. (2.37)

For an arbitrary Fock state, the expectation value of the quadrature operators are

�n| X̂1 |n� = �n| X̂2 |n� = 0 , (2.38)

but for the squared operators they are given by

�n| (X̂1)2 |n� =
1
4
�n| â2 + â† â† + â† â + ââ† |n� (2.39)

=
1
4
�n| â2 + â† â† + 2â† â + 1 |n� (2.40)

=
1
4
(2n + 1) (2.41)

and
�n| (X̂2)2 |n� =

1
4
(2n + 1). (2.42)

According to Eq. (2.28), this directly yields the variance

�(∆X̂1)2� =
1
4
(2n + 1) = �(∆X̂2)2� (2.43)
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of both quadratures. Evidently, the uncertainty is equally distributed between the two
quadratures and is minimized by the vacuum state

�(∆X̂1)2�n=0 =
1
4

= �(∆X̂2)2�n=0 . (2.44)

A state which minimizes Eq. (2.37) is a so-called minimum-uncertainty state. The
value of 1/4 is referred to as the vacuum noise variance. Note that this value is the
result of setting Planck’s constant to a particular value [2.3], in this case h̄ = 1/2.
Two other common definition exist. The first (h̄ = 1) leads to the commutation
relation [X̂�

1, X̂�
2] = i and the according uncertainty relation ∆X̂�

1∆X̂�
2 ≥ 1/4, such

that the vacuum variance is normalized to 1/2.
The second (h̄ = 2) results in a commutation relation of the form [X̂��

1 , X̂��
2 ] = 2i, with

the corresponding uncertainty relations ∆X̂��
1 ∆X̂��

2 ≥ 1. Here the vacuum variance is
normalized to 1.

2.4 Quantum states of light

2.4.1 Coherent states

The number states or Fock states introduced in Sec. 2.1 are indeed an adequate de-
scription of light, for example when dealing with single photon phenomena. However,
for continuous-wave quantum optics experiments that usually employ laser light with
a strong excitation, number states are an insufficient concept. This is easily seen by
looking at the mean value of the electric field of a Fock state, which is �n| Êx |n� = 0
for all n. For the classical limit, i.e. for very large photon numbers, this does clearly
not resemble the classical field which at a fixed point in space is a sinusoidal oscilla-
tion. The quantum states which are closest to a classical sinusoidal wave (such as a
continuous-wave laser) are the so-called coherent states which were introduced by
Ron. J. Glauber in 1963 [2.4]. The coherent states are denoted as |α� and satisfy the
eigenvalue relation [2.1]

â |α� = α |α� , (2.45)

where α is a complex number. The expansion in the basis of Fock states yields

|α� =
∞

∑
n=0

Cn |n� . (2.46)
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Inserted in the eigenvalue equation, Eq. (2.45), this gives

â |α� =
∞

∑
n=1

Cn
√

n |n− 1� (2.47)

= α
∞

∑
n=0

Cn |n� . (2.48)

By equating coefficients one obtains

Cn
√

n = αCn−1 , (2.49)

which can be rearranged to obtain

Cn =
α√
n

Cn−1 (2.50)

=
α2

�
n(n− 1)

Cn−2 = . . .

=
αn
√

n!
C0. (2.51)

With this result one can rewrite Eq. (2.46) as

|α� = C0

∞

∑
n=0

αn
√

n!
|n� . (2.52)

The states |α� have to fulfill the normalization condition �α| α� = 1. With the
normalization condition, the constant C0 can be determined and one obtains

|α� = e−
1
2 |α|2

∞

∑
n=0

αn
√

n!
|n� . (2.53)

In the above argument the coherent states emerged from being eigenstates of the
annihilation operator. However, other ways to define a coherent state exist. For
example, one can introduce the displacement operator D̂, which is given by

D̂(α) = exp(αâ† − α∗ â). (2.54)

A coherent state can then be produced by applying D̂ to the vacuum [2.1]

|α� = D̂(α) |0�

= e−
1
2 |α|2

∞

∑
n=0

αn
√

n!
|n� . (2.55)
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The meaning of the complex parameter α (where α = |α|eiΘ) becomes clear when
looking at the expectation value of the number operator n̂ = â† â which is given by

n = �α| n̂ |α� = |α|2 . (2.56)

Thus, |α|2 is the mean number of photons present in the excitation of the coherent
state. To determine the fluctuations of the photon number, one needs to evaluate the
expectation value of n̂2. It is given by

�α| n̂2 |α� = �α| â† ââ† â |α�
= |α|4 + |α|2

= n2 + n (2.57)

and thus
∆2n =

�
n̂2�− �n̂�2 = n , (2.58)

which is characteristic of a Poisson process. For any coherent state |α�, it can be
shown that

�(∆(X̂1)2�α =
1
4

= �(∆(X̂2)2�α . (2.59)

Again, the fluctuations are distributed symmetrically between the amplitude and the
phase quadrature. In contrast to the Fock states, a coherent state of light has fluctu-
ations equal to the vacuum fluctuations for any arbitrary excitation α; and hence all
coherent states states are minimum-uncertainty states.

A useful way to visualize quantum states is the coordinate system spanned by the two
quadratures, the so-called phase-space. The phase-space picture (also called quantum
phasor or ball-on-stick picture) is a combination of the classical phasor picture with
the quantum noise properties of light. In phase-space, a classical electromagnetic
wave would correspond to a well-defined point that rotates around the origin at the
carrier frequency and whose distance from the origin (the length of the phasor) is the
amplitude. From Eq. (2.37) it is obvious that a quantum state cannot be related to
such a well-defined point. Merely a probability with an area of uncertainty which is
defined by the Heisenberg uncertainty principle can be given. Figure 2.1 shows the
illustration of a coherent state and of the vacuum state in the phase-space picture .

2.4.2 Squeezed states of light

One can introduce the generic quadrature operator X̂(θ) as

X̂(θ) =
1
2

�
âe−iθ + â†eiθ

�
. (2.60)
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X1

X2

X1

X2

∆
2
X

1
=

1 4

∆2X2 = 1
4

∆2X2 = 1
4

∆
2X

1
=

14|α|
Θ

Figure 2.1 — Phase-space illustrations of a coherent state |α� of amplitude |α| and phase angle Θ (left)
and of a vacuum state (right) for which |α| = 0 .

By evaluating X̂(θ) for two quadrature angles θ = 0 and θ = π/2, one obtains
the amplitude quadrature X̂1 = X̂(0) and phase quadrature X̂2 = X̂(π/2). Conse-
quently, X̂1 and X̂2 can be used to express the generic quadrature operator as a linear
combination

X̂(θ) = X̂1 cos θ + X̂2 sin θ. (2.61)

A state is said to be quadrature squeezed if

�[∆X̂(θ)]2� <
1
4

for some angle θ . (2.62)

Equation (2.62) states that for a state to be squeezed the uncertainty in one quadrature
needs to be smaller than the uncertainty of a coherent or vacuum state. Still, Heisen-
berg’s uncertainty principle, Eq. (2.36), has to be satisfied, which implies that the
uncertainty in the orthogonal quadrature increases.
Being more specific and considering the operators of the amplitude and phase quadra-
ture, a state is squeezed if

∆2X̂1 <
1
4

(amplitude squeezed) (2.63)

or ∆2X̂2 <
1
4

(phase squeezed). (2.64)

A squeezed state can be generated mathematically through the action of the (unitary)
squeeze operator defined as [2.1]

Ŝ(ξ) = exp
�

1
2
(ξ∗ ââ− ξ â† â†)

�
, (2.65)
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where ξ = reiφ. The parameter r is the squeeze parameter with 0 ≤ r < ∞ and φ is
a phase with 0 ≤ φ ≤ 2π. Now let us consider the action of this operator Ŝ(ξ) to the
state |ψ�

|s� = Ŝ(ξ) |ψ� . (2.66)

In order to determine the variances of X̂1 and X̂2, the expectation values of the
annihilation and creation operator are required. One can make use of the following
properties that are obtained from an application of the Baker-Campbell-Hausdorff
formula [2.5]

Ŝ†(ξ)âŜ(ξ) = â cosh(r)− â†eiφ sinh(r), (2.67)
Ŝ†(ξ)â†Ŝ(ξ) = â† cosh(r)− âe−iφ sinh(r) . (2.68)

Using that Ŝ(ξ) is a unitary operator, Ŝ(ξ)Ŝ†(ξ) = , and restricting the consideration
to the special case of the squeeze operator acting on the vacuum state |0�, it follows
for the variances [2.1]

�∆2X̂1�ξ =
1
4

�
cosh2(r) + sinh2(r)− 2 sinh(r) cosh(r) cos(φ)

�

=
1
4

�
sin2

�
φ

2

�
e2r + cos2

�
φ

2

�
e−2r

�
,

(2.69)

�∆2X̂2�ξ =
1
4

�
cosh2(r) + sinh2(r) + 2 sinh(r) cosh(r) cos(φ)

�

=
1
4

�
cos2

�
φ

2

�
e2r + sin2

�
φ

2

�
e−2r

�
.

(2.70)

The squeezing angle φ determines the quadrature that is squeezed. For φ = 0,
Eqs. (2.69) and (2.70) reduce to

�∆2X̂1�ξ =
1
4

e−2r and (2.71)

�∆2X̂2�ξ =
1
4

e2r. (2.72)

Evidently, when φ = 0 squeezing is present in the amplitude quadrature X̂1. When
setting φ = π, the squeezing will appear in the phase quadrature X̂2. From Eqs. (2.71)
and (2.72) it can be seen that the uncertainty principle is satisfied: when the noise in
one quadrature is squeezed below the vacuum noise, other quadrature exhibits noise
above the vacuum noise level, we say it is anti-squeezed. The phase-space pictures for
an amplitude squeezed state and for a phase squeezed state, respectively, are shown
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Figure 2.2 — Phase-space picture of squeezed vacuum states. Left: illustration of an amplitude squeezed
vacuum state. The uncertainty in the X1-quadrature is squeezed by the factor exp(−2r)
while the X2-quadrature is anti-squeezed by the factor exp(2r), both relative to the
vacuum uncertainty of 1/4. Right: corresponding illustration of a phase squeezed
vacuum state.

in Fig.2.2. Pure squeezed states equalize the uncertainty relation; they are minimum
uncertainty states. However, this is not a necessity, and as we shall see later, it is
usually not the case under experimental conditions since optical loss will degrade the
purity of the states.
When a different choice is made for the angle φ, it is useful to introduce rotated
quadrature operators

�
Ŷ1
Ŷ2

�
=

�
cos(φ/2) sin(φ/2)
− sin(φ/2) cos(φ/2)

� �
X̂1
X̂2

�
. (2.73)

Analogously it can be shown for these new operators that

�∆2Ŷ1�ξ =
1
4

e−2r and (2.74)

�∆2Ŷ2�ξ =
1
4

e2r . (2.75)

Squeezing and anti-squeezing are therefore not restricted to the amplitude and phase
quadrature, respectively, but can appear along any two orthogonally oriented quadra-
tures.
So far, only the special case of squeezed vacuum states was considered. A more
general squeezed state can be obtained by letting the displacement operator act on a
squeezed vacuum state

|α, ξ� = D̂(α)Ŝ(ξ) |0� . (2.76)
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Figure 2.3 — Left: Phase-space picture of the squeezed vacuum state with squeezing along an arbitrary
axis Y1 which is rotated by φ/2. Right: Displaced squeezed state with squeezing in the
amplitude quadrature and coherent excitation α

Obviously, a coherent state is obtained if ξ = 0. To determine the average photon
number in such a state, one needs to evaluate the expectation value of the number
operator

�α, ξ| n̂ |α, ξ� = |α|2 + sinh2(r). (2.77)

It is clear that r = 0 yields the mean photon number of the coherent state [compare
Eq. 2.56)] and α = 0 yields the corresponding value for the squeezed vacuum state.
Furthermore, Eq. (2.77) illustrates that the process of squeezing produces photons
since the expectation value of n̂ is increased by sinh2(r). Calculating the variances
of the quadrature operators of the state once again gives

�∆2Ŷ1�ξ =
1
4

e−2r and (2.78)

�∆2Ŷ2�ξ =
1
4

e2r, (2.79)

which shows that the coherent excitation α does not alter the quantum noise charac-
teristic of the displaced squeezed state. The phase-space illustrations for the vacuum
state with squeezing along an arbitrary quadrature and the according picture for a
displaced squeezed state are depicted in Fig.2.3.



22 BASIC QUANTUM OPTICS 2.5

2.5 State representation

2.5.1 The density operator

The density operator completely describes an ensemble (mixture) of quantum states
as being made up of individual pure states, and the probabilities with which they are
likely to be found. It is defined as

ρ̂ = ∑
i

pi |Ψi� �Ψi| , (2.80)

where pi is the probability of finding the system in the state |Ψi�. For an operator ô,
the expectation value is given by

�ô� = Tr(ôρ̂) . (2.81)

The probabilities naturally obey 0 ≤ pi ≤ 1, ∑i pi = 1, and ∑i p2
i ≤ 1. From that

some important properties of the density operator follow, such as the normalization
condition

Tr(ρ̂) = ∑
i

pi = 1 (2.82)

and the purity condition which holds for a pure state with ρ̂ = |Ψ� �Ψ|

ρ̂2 = |Ψ� �Ψ| |Ψ� �Ψ| = ρ̂ , (2.83)

and thus
Tr(ρ̂) = Tr(ρ̂2) = 1 . (2.84)

Likewise it can be shown that for a mixed state

Tr(ρ̂2) < 1 . (2.85)

Consequently, the trace of the square of the density operator is a measure for the purity
of the quantum state. In terms of the number states the density operator can be written
as

ρ̂ = ∑
n

∑
m
|m� ρnm �n| . (2.86)

The knowledge of all elements ρnm of the density matrix is necessary to determine the
operator ρ̂. In order to calculate the density matrix elements ρnm for a single-mode
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Figure 2.4 — Plot of the density matrix elements ρnm for the vacuum state (left) and for a squeezed
vacuum state (right) with a squeezing factor r = 0.7 which corresponds to squeezing
(anti-squeezing) of −6 dB (6 dB). The illustration is truncated at n = m = 10; dark blue
entries indicate negative values.

(squeezed) vacuum state, one can follow the prescription given in [2.6]. With the
definitions

Ṽx = Vx + 1/2 , (2.87)
Ṽp = Vp + 1/2 , (2.88)

U = 1− 1
2Ṽx

− 1
2Ṽp

and (2.89)

T =
1

4Ṽx
− 1

4Ṽp
(2.90)

the entries can be obtained using the equation

ρnm =

�
m!n!
ṼxṼp

∑
a

(−T)[(m−n)/2]+2aUn−2a

a!(n− 2a)!
�
a + m−n

2
�
!
, (2.91)

if m + n is even, and ρm, n = 0 if m + n is odd. Note that Vx and Vp correspond to
the linear quadrature variances of the quantum state as introduced in Eq. (2.37), but
with the vacuum variance set to 1/2. This expression for the density matrix in the
Fock state basis can be derived from the covariance matrix by first noting that the
Husimi Q-function in the coherent state basis is the generating function for the density
matrix in the Fock state basis [2.6]. The covariance matrix needs to be transformed
from the quadrature basis into the coherent basis to obtain the above formula. The
density matrices for the vacuum state and for a squeezed vacuum state (with 6 dB of
squeezing) are illustrated in Fig. (2.4). The photon numbers n and m range from zero
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Figure 2.5 — Plot of the diagonal elements of the density matrix elements ρnn for n = 0, 1, . . . , 10
which correspond to the probabilities Pn of finding n photons. Left: vacuum state. Right:
squeezed vacuum state with a squeezing factor r = 0.7 which corresponds to squeezing
(anti-squeezing) of −6 dB (6 dB).

to 10. In principle, the Fock basis is infinitely large, but the values of the entries of
the density matrix decrease rapidly with the photon number.
The diagonal elements of the density matrix ρnm give the probabilities Pn of finding a
certain number n of photons in the field, that is

Pn = ρnn . (2.92)

For pure (squeezed) vacuum states with photon numbers n = 0, 1, 2, . . . these proba-
bilities can be determined to be [2.1]

P2n =
(2n)!

22n(n!)2
(tanh r)2n

cosh r
, (2.93)

where r is the squeeze parameter as introduced in Eq. (2.65), and

P2n+1 = 0. (2.94)

As can be seen in Fig. (2.5), the photon number distribution clearly shows an os-
cillatory behavior, with vanishing probabilities for all odd-valued n. This is only
true for a pure squeezed vacuum state and, as we will see later, odd photon numbers
will occur when the purity of the state decreases. The vacuum state contains zero
photons on average, and hence the probability to measure no photon is equal to one.
As mentioned before, the process of squeezing generates photons (see Eq. (2.77)),
and consequently there is a certain probability to detect photon numbers larger than
zero for the squeezed vacuum state.
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2.5.2 Wigner function

The density operator can be used to define the Wigner function for two conjugate
variables (here the position q and the momentum p) as [2.1]

W(q, p) =
1

2πh̄

�
eipx/h̄

�
q +

x
2

��� ρ̂
���q− x

2

�
dx , (2.95)

where ρ̂ is the density operator of an arbitrary (quantum) state. In terms of the
amplitude and phase quadrature, the Wigner function can be expressed as

W(X1, X2) =
1

2π
√

V1V2
exp

�
−1

2

�
(X1 − x1)2

V1
+

(X2 − x2)2

V2

��
, (2.96)

where V1 = ∆2X1 and V2 = ∆2X2 are the variances of the amplitude and phase
quadrature, respectively. The Wigner function, first introduced by Eugene Wigner in
1932 [2.7], is a quasi-probability distribution in phase-space. The term "quasi" stems
from the fact that the Wigner function does not always reflect physical probability
densities, as it can also take on negative values. It is the projection of the Wigner
function onto an arbitrary quadrature that results in a true probability density for that
respective quadrature. For a coherent state, the Wigner function is given by [2.8]

W(X1, X2) =
2
π

exp
�
−2[(X1 − x1)2 + (X2 − x2)2]

�
, (2.97)

where x1,2 correspond to the displacements in phase-space with the coherent excitation
|α| =

√
(x2

1 + x2
2). As already shown, the noise characteristics of coherent states

and of the vacuum state are the same and independent of |α|. Therefore, setting
x1 = x2 = 0 yields the Wigner function of the vacuum state. The Wigner function of
the vacuum state and the Wigner function of a coherent state are depicted in Fig. (2.6).
Note that the normalization pre-factors in Eq. (2.97), and consequently the value of
W, depend on the definition of the vacuum level. In Fig. (2.7), the more general
form of the Wigner function, Eq. (2.96), was used to plot the Wigner function for
two squeezed vacuum states: one with squeezing in the X1 quadrature (left) and the
other with squeezing in the X2 quadrature (right). For each state the uncertainty in
the squeezed quadrature is decreased by a factor of 4 (corresponding to −6 dB or a
squeeze parameter r = 0.7) relative to the vacuum uncertainty of 1/4. The states are
pure and therefore the uncertainty in the anti-squeezed quadrature is increased by the
same factor. As mentioned above, in order to extract a real probability distribution
from the Wigner function, one has to carry out the integration over one quadrature. For
instance, integrating the coherent state’s Wigner function over the phase quadrature
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Figure 2.6 — Wigner function of the vacuum state (left) and of a dim coherent state (right) which is
displaced by x1 = x2 = 3 .
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Figure 2.7 — Wigner function of a squeezed vacuum state. Left: amplitude squeezed state. Right: phase
squeezed state. The uncertainty in the squeezed (anti-squeezed) quadrature is decreased
(increased) by a factor of 4, corresponding to 6 dB or to a squeeze parameter r = 0.7,
relative to the vacuum uncertainty of 1/4.

X2 yields the probability density function for the amplitude quadrature X1

P(X1) =
� −∞

−∞
W(X1, X2)dX2 (2.98)

=
2
π

e−2(X1−x1)2
� −∞

−∞
e−2(X2−x2)2

dX2 (2.99)

=
�

2
π

e−2(X1−x1)2
, (2.100)
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Figure 2.8 — Probability density distribution of the X1 quadrature obtained from the projection of the
Wigner function, that is, by integration over X2. From top to bottom: amplitude squeezed
vacuum state, vacuum state, and phase squeezed vacuum state. The squeezing factor was
again chosen to be −6 dB and the variance of the vacuum state was 1/4.

where
� ∞

∞ exp(−cx2)dx =
√

π/c was used. In the same manner one obtains the
probability density for the phase quadrature

P(X2) =
� −∞

−∞
W(X1, X2)dX1 (2.101)

=
�

2
π

e−2(X2−x2)2
. (2.102)

Equations (2.100) and (2.102) are gaussian probability distributions with a variance
of 1/4 and mean values x1 and x2, respectively. For a squeezed vacuum state with
quadrature variances Vi (i = 1, 2) one finds

P(Xi) =
1√

2πVi
e−

(Xi−xi)
2

2Vi . (2.103)

This is again a gaussian probability function with mean value xi, but with the variance
Vi. A plot of three projections onto the amplitude quadrature X1 is shown in Fig. (2.8).
Once more, it was assumed that the squeezed quadrature (top trace) has a factor of
4 less uncertainty than the vacuum (dashed trace). As a consequence, the phase-
squeezed state exhibits anti-squeezing in the X1 quadrature being 4 times larger than
the vacuum uncertainty.
From Eq. (2.97) it is evident that knowing the variances of the amplitude and phase
quadrature in principle is sufficient to infer the Wigner function. Note that this is true
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only for gaussian states for which the fluctuations of the generic quadrature operator
δX̂θ obey a gaussian probability distribution for all quadrature angles θ. A means to get
more complete information about the Wigner function is quantum-state tomography.
Quantum-state tomography makes use of the fact that the probability distributions
Pθ(Xθ) can be obtained from the projections of the Wigner function at different
angles. W(X1, X2) can than be obtained by back-projection via the inverse Radon
transform [2.9]. The set of Pθ can be acquired by stepwise measuring the variance
Vθ of the generic quadrature operator as introduced in Eq. (2.61) with 0 ≤ θ ≤ π.
Such measurements can be conducted by means of a so-called homodyne detector
which will be discussed in more detail in Sec. 3.2. Details on optical tomography of
quantum states can be found, for example, in [2.10, 2.11].

2.5.3 Covariance matrix

For gaussian states, the covariance matrix is another complete description of a state.
It is fully determined by the variances of the amplitude and phase quadratures. For
multiple party systems, this can be generalized for all quadrature variances of the
single parties and the covariances of all possible combinations of the quadratures. The
covariance matrix is given by

ςi,j = Cov(ζi, ζ j) , (2.104)

where ζ̂ = (X̂A
1 , X̂A

2 , X̂B
1 , X̂B

2 , ...) is a 2n-dimensional vector with the number of
parties n and the covariance Cov(X,Y) is defined as

Cov(X, Y) = �XY� − �X��Y� . (2.105)

The covariance is a generalization of the variance since Var(X) = Cov(X, X). In
terms of the covariance matrix, the Wigner function can be written as

W(ζ) =
1

(2π)n
�

detς
exp

�
−1

2
ζς−1ζT

�
, (2.106)

with detς being the determinant of ς and n the dimension of the covariance matrix.

2.5.4 Purity

So far, only pure states, that is states that minimize the Heisenberg uncertainty
principle were considered. However, optical loss in the experimental setup will entail
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a decrease in purity, since (as we will see in Sec. 3.3.1) the effect of optical loss
essentially corresponds to mixing the state with the vacuum. The purity is defined as

µ = Tr(ρ2) , (2.107)

where ρ is the density matrix. For a squeezed vacuum state, the density matrix in the
Fock state basis has an infinite number of dimensions. It is therefore useful to redefine
the purity as a function of the covariance matrix

µ =
1�

4ndetς
. (2.108)

The factor of four is due to the normalization to the vacuum noise of 1/4 and n is
the dimension of the covariance matrix. For a squeezed vacuum state, the covariance
matrix is a 2×2-matrix. With the choice of a suitable basis, the off-diagonal elements
vanish and the entries on the main diagonal contain the variances of the amplitude
and phase quadrature, respectively. The covariance matrix of a squeezed vacuum state
is then given by

ς =
�

V1 0
0 V2

�
, (2.109)

and the expression for the purity simplifies to

µ =
1

4
√

V1V2
. (2.110)
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CHAPTER 3
Generation and detection of

squeezed states

3.1 Generation of squeezed quantum noise

Various ways to generate squeezed light experimentally exist. The experiments
presented in this thesis are, however, entirely based on degenerate parametric down-
conversion, a process belonging to the class of so-called second-order nonlinear
interactions.

3.1.1 Second-order nonlinear interactions

When light propagates through a dielectric material, a certain macroscopic polarization
can be induced. This polarization describes the response of the medium’s loosely
bound valence electrons to the disturbance of the traversing electric field. Assuming a
driving electric field E the polarization can be written as

P = ε0

�
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

�
, (3.1)

where ε0 is the permittivity of the vacuum and χ(n) is the n-th order susceptibility
of the medium. The term χ(1) is the linear susceptibility and is connected to the
refractive index n =

�
1 + χ(1). Typically, χ(1) ∼ 1. The value of the second-order

nonlinear susceptibility is much smaller, for example, χ(2) ∼ 10−10–10−13 mV−1 for
a medium with a relatively high second-order susceptibility. The class of interaction
processes based on the χ(2) term can be divided into two complementary categories:

31
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up-conversion processes, in which two low-frequency photons are converted into one
photon of high frequency; or down-conversion processes, where one photon of high
frequency is converted into two low-frequency photons.
The need for energy conservation leads to constraints for the light fields participating
in a χ(2) process. Let us denote the low-frequency photons with indices 1,2 and let the
high-frequency photon have the index 3. As a consequence of energy conservation,
for all processes the frequencies have to fulfill

ω1 + ω2 = ω3 . (3.2)

For the experiments presented in this thesis, only two special cases of χ(2) processes
were used. First, second-harmonic generation (SHG) which probably is the simplest
and most widely used up-conversion process. In SHG, the two low-frequency photons
have exactly the same (fundamental) frequency (ω1 = ω2 = ω f ), and consequently
the up-converted field is at twice the fundamental frequency (ω3 = 2ω f ). Second,
degenerate parametric down-conversion, where the high-frequency photon converts
into two photons of exactly half the frequency (ω1 = ω2 = ω3/2). Obviously these
are two complementary processes. As we shall see shortly, degenerate parametric
down-conversion can be used to produce squeezing, while the necessary pump field
needs to be generated by SHG. Note that parametric down-conversion is frequently
referred to as optical parametric amplification (OPA). The process of SHG is the
degenerate case of the more general sum-frequency generation (SFG). Accordingly,
degenerate OPA also has its more general extensions.
The even smaller χ(3) term in Eq. (3.1) is linked to third order effects such as the
optical Kerr effect, Four Wave Mixing, and third-harmonic generation.

3.1.2 Phase matching

For the total momentum of the involved light fields (pi = h̄ki) to be conserved, it
follows for their wave vectors that

k1 + k2 = k3 , (3.3)

where the wave vectors are given by

ki =
ωi
ci

. (3.4)

The propagation velocity ci within the medium, also called the phase velocity of the
respective field, is given by

ci =
c

n(ωi)
, (3.5)
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with c being the speed of light in free space and the frequency dependent index
of refraction n(ωi). One can introduce the phase mismatch parameter ∆k = k1 +
k2 − k3. For SHG and degenerate OPA we have ω1 = ω2 = ω3/2 and thus the
requirement from Eq. (3.3) becomes

n(ω1) = n(ω3) . (3.6)

In the case this is fulfilled (∆k = 0), that is the refractive indices are equal for
both fundamental and harmonic field, the two fields propagate at the same velocity.
Consequently, the relative phase between both fields stays constant. We say the
system is phase matched. A deviation from optimum phase matching will decrease the
efficiency of the nonlinear coupling. Most dielectric media are dispersive so in general
the phase matching condition is not satisfied and ∆k �= 0. Different techniques that
can be applied to bring a system to (or at least very close) to ∆k = 0 exist. Note that
perfect phase matching can only be obtained for plane waves. Within the field of SHG
and OPA the two techniques that are mainly applied are birefringent phase matching
(BPM) and quasi phase matching (QPM). These were also used for the experiments
presented in this thesis.

3.1.3 Squeezed light from parametric down-conversion

In the process of degenerate parametric down-conversion, that is also referred to
as degenerate optical parametric amplification, a pump field b̂ of frequency ωp is
incident on a nonlinear medium. In the course of the nonlinear interaction, pairs of
photons with identical optical frequencies (ω = ωp/2) are generated from the pump
field. The Hamilton operator for such a process reads [3.1]

Ĥ = h̄ωâ† â + h̄ωpb̂†b̂ + ih̄χ(2)(ââb̂† − â† â†b̂) , (3.7)

where â is the signal field consisting of the down-converted photons, and χ(2) is the
second order nonlinear susceptibility describing the coupling strength depending on
the medium. Let us suppose that the intensity of the pump field is much larger than
the intensity of the signal field. We then can assume that the pump is in a classical
state and that the depletion of the pump field due to the down-conversion process is
negligible. Further we assume the pump field b̂ to be described by a coherent state.
Including the time evolution one can write

��βe−iωpt�. Consequently, b̂ and b̂† can
be approximated as βe−iωpt and β∗eiωpt, respectively. Thus, for the approximated
Hamilton operator we have [3.1]

Ĥ = h̄ωâ† â + ih̄χ(2)(β∗ ââeiωpt − βâ† â†e−iωpt) . (3.8)
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Figure 3.1 — Illustration of the single-ended cavity used to model the degenerate parametric down-
conversion below threshold. A nonlinear medium is enclosed between two mirrors. The
left mirror has perfect reflectivity for both the signal field and the pump field. The coupling
mirror has perfect transmission for the pump and a certain reflectivity for the signal field.
The cavity loss rate γ1 is related to the cavity linewidth. The nonlinear interaction is
described by ε = βχ, where β is the amplitude of the pump field and χ is proportional to
the nonlinear susceptibility of the medium.

Since in degenerate parametric down-conversion the frequency of the pump field is
twice the frequency of the signal field (ωp = 2ω), the Hamiltonian can be simplified
to

Ĥ = ih̄χ(2)(β∗ ââ− βâ† â†) . (3.9)

The evolution operator associated with this Hamiltonian is given by

Û = exp
�
− i

h̄
Ĥt

�
= exp(η∗tââ− ηtâ† â†) ,

where η = βχ(2). This result has the form of the squeezing operator as introduced
in Equation 2.65,. It thus becomes evident that the process of degenerate parametric
down-conversion can produce squeezing.
The above considerations correspond to a single-pass of the pump field through the
medium. To increase the interaction between the two participating light fields, the
nonlinear crystal is usually placed inside an optical cavity. Typically, the cavity is
designed such that only the signal field is resonantly enhanced. Once more, let us
suppose the depletion of the pump to be negligible. The pump mode can hence be
treated classically. The resulting Hamiltonian is [3.8]

Ĥ = h̄ωâ† â +
ih̄
2

(εâ† â† − ε∗ ââ) + âΓ̂† + â†Γ̂ , (3.10)

where ε = βχ, with β being the amplitude of the pump, and χ being proportional to
the nonlinear susceptibility of the medium. The losses due to the cavity are represented
by the reservoir operator Γ̂. Let us assume a single ended cavity, as illustrated in
Fig. (3.1), with a single loss rate γ1. The loss rate is sometimes also referred to
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as decay rate or coupling rate. It is defined by γ1 = T/2τ, where T is the power
transmissivity T of the coupling mirror and τ is the cavity round-trip time. The
round-trip time is given by τ = L/c, with L being the optical round-trip length of
the cavity and c is the vacuum speed of light. In such a model, a corresponding loss
rate is ascribed to each loss mechanism. Such additional loss mechanisms include, for
example, intra-cavity loss (e.g. due to absorption and scattering) and loss at the cavity
end mirror. The total loss rate of the cavity is then given by the sum of the individual
loss rates. Here it was assumed that no other loss mechanisms, except for loss due to
the transmission of the coupling mirror, exist. Therefore, γ1 corresponds to the total
decay rate of the cavity. Note that different definitions for the decay rate exist [3.3].
The one given here is a good estimate for relatively high reflectivities, and in that
case is also equal to the cavity half-linewidth, that is the half width at half maximum
(HWHM). For the case that the input at the signal field frequency is just the vacuum
field (with a variance of the fluctuations equal to 1), the spectra of the output noise
variances can be calculated to be [3.8]

Vout
1 (ω) = 1 +

4γ1|ε|
(γ1 − |ε|)2 + ω2

, (3.11)

Vout
2 (ω) = 1− 4γ1|ε|

(γ1 + |ε|)2 + ω2
, (3.12)

where ω = 0 means that the cavity is on resonance. Introducing the pump parameter
ξ = ε/γ1 yields

Vout
1 (ω) = 1 +

4ξ

(1− ξ)2 +
�

ω
γ1

�2 , (3.13)

Vout
2 (ω) = 1− 4ξ

(1 + ξ)2 +
�

ω
γ1

�2 . (3.14)

From the linear variances V, the strength of squeezing and anti-squeezing on a
logarithmic scale VdB can be calculated via the relation

VdB = 10 log10(V). (3.15)

To obtain the squeezing and anti-squeezing when measuring exactly on the OPA
resonance frequency, we set ω = 0 and find the output variance of the signal field
in dependence of the pump parameter ξ as plotted in Fig. 3.2. It can be seen that
for ξ approaching unity, the fluctuations in the X2 quadrature tend to zero and the
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Figure 3.2 — Pump parameter dependent output of an optical parametric amplifier. The squeezing
occurs in the phase quadrature. The amplitude quadrature is anti-squeezed. In principle,
the squeezing/anti-squeezing is infinitely strong when the OPO threshold is reached at
ξ = 1. Left: linear scale with the variance of the vacuum fluctuations equal to one. Right:
logarithmic scale. The limited amount of squeezing and anti-squeezing results from the
limited resolution of the x-axis. The detection frequency was chosen to be equal to the
resonance frequency of the cavity (ω = 0).

fluctuations in the X1 quadrature diverge. The point of maximum squeezing/anti-
squeezing is at ξ = 1. This is the so-called threshold to optical parametric oscillation
(OPO). Above threshold a coherent field at the signal frequency would be produced
and the pump would be significantly depleted. In that case, the assumptions made
within the simple model described here are no longer valid.
For a description of the optical parametric amplification above threshold, see for
example [3.2,3.8]. When the squeezed-light source is operated below threshold, the
predicted squeezing value approaches infinity when approaching threshold. Note
that the process of optical parametric amplification itself and the actual device [for
example the squeezed-light source depicted in Fig. (3.1)] which is said to be an optical
parametric amplifier are both abbreviated as OPA throughout this thesis.

3.2 Detection of quantum noise

In this section, the basic principles of the detection of light are reviewed. First, the
concept of linearization of operators is introduced, a technique that is often used to
simplify quantum optical computations. Subsequently, the direct homodyne detection
of light, that is the use of a single photo-sensitive device to detect the light from
a single laser beam, is outlined. Subsequently, the considerations are extended to
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introduce the balanced homodyne detection which is the most important detection
scheme in continuous-wave quantum optics. Finally, the very central issue of optical
loss, which is crucial in experiments that aim at the detection of strong squeezing, will
be addressed.

3.2.1 Linearization of operators

The linearization of operators was applied for the first time within the field of quantum
optics to model squeezing in a cavity [3.1]. The basic idea is to assume that the
steady state amplitude of the electromagnetic field is much larger than the fluctuations.
In this case, the operator can be expanded about the steady state value and the
calculations can be simplified by linearizing the resulting expression to first order in
the fluctuation terms. For example, applying the linearization to the annihilation and
creation operators yields

â = α + δâ and (3.16)

â† = α∗ + δâ† , (3.17)

where α and α∗ are the complex-numbered steady state expectation values of the
operators â and â† corresponding to the classical amplitudes of the electromagnetic
field. As a consequence of the linearization, all fluctuations are attributed to the
operators δâ and δâ† and hence

�δâ� = �δâ†� = 0 . (3.18)

With the linearized expressions from Eq. (3.16) and Eq. (3.17), the variances of the
quadrature operators can expressed as

∆2X1 =
�
(δâ + δâ†)2

�
=

�
(δX̂1)2� , (3.19)

∆2X2 =
�
(−i(δâ + δâ†))2

�
=

�
(δX̂2)2� . (3.20)

Note that for the sake of simplicity the vacuum level was chosen to be equal to unity.
The linearization can be regarded as the mathematical description of the ‘quantum
phasor’ or ‘ball-on-stick’ picture as introduced in Sec. 2.3. The coherent amplitude α
represents the phasor while the fluctuating term describes the uncertainty circle.
As an example, let us now consider the linearization of the number operator n̂ = â† â.
Assuming α to be real-valued and using the linearized operators as given by Eqs. (3.16)
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and (3.17) yields

n̂ = (α∗ + δâ†)(α + δâ)

= α2 + α
�
δâ† + δâ

�
+ δâ†δâ

≈ α2 + αδX̂1 .

(3.21)

For the last step, the assumption was made that second- and higher-order fluctuation
terms are negligibly small compared to the coherent amplitude. Note that this is the
assumption that justified the linearization in the first place.
The linearized version of the number operator can now be used to calculate its variance
for which we obtain

∆2n̂ = �n̂2� − �n̂�2

= �(α2 + αδX̂+)2� − �α2 + αδX̂+�2

= α2�(δX̂+)2�
= α2∆2X̂1 .

(3.22)

For a coherent state (∆2X̂1 = 1) this yields ∆2n̂ = α2 which is in agreement with the
variance of a random variable with poissonian distribution.

3.2.2 Direct homodyne detection

In experiments, light is usually detected with photo diodes. These are semi-conductor
diodes in which the photoelectric effect converts incident photons into electrons. When
directly detecting a laser beam with a single photo diode, the resulting photocurrent I
is therefore proportional to the number of photons in the optical field

i(t) ∝ â†(t)â(t) . (3.23)

Making use of the linearization of operators once more and again assuming α to be
real, the photocurrent is can be described by

i(t) ∝ α2 + αδX̂1(t) . (3.24)

The resulting photocurrent is the sum of a large direct current (DC) term (that is
proportional to the intensity) and an alternating current (AC) term given by the
fluctuations of the amplitude quadrature scaled by the mean field amplitude. Hence,
in order to gain information about the quantum noise, the fluctuations of the light
field are of interest and have to be measured. To measure the fluctuations δX̂1(ω),
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Figure 3.3 — Schematic diagram of a balanced homodyne detection. The two outputs of the beamsplitter
are detected with photo the diodes PD1 and PD2. The differential phase eiθ between the
inputs can be varied with a phase shifter, typically a piezo-actuated mirror in the beam
path. The difference signal is recorded with a spectrum analyzer.

the resulting photocurrent is typically transformed into a voltage that can be fed
into a spectrum analyzer to obtain a power spectrum. The power spectrum is the
frequency-space equivalent to the variance ∆2 in the time domain. Taking the Fourier
transform of Eq. (3.24) gives

i(ω) ∝ α2 + αδX̂1(ω) , (3.25)

and analogous to Eq. (3.22) the variance of the photocurrent as measured by a spectrum
analyzer is

V(ω) ∝ α2�(δX̂1)2� = α2V1(ω) . (3.26)

The result of a direct detection is the variance of the amplitude quadrature multiplied
by the optical DC power of the light field. Therefore, no information about any other
quadrature can be obtained from a direct detection.

3.2.3 Balanced homodyne detection

One method to conduct a phase-sensitive measurement is the so-called balanced ho-
modyne detection. The signal field is brought to interfere on a symmetric beamsplitter
with a reference field, also referred to as the local oscillator (LO), that originates from
the same laser source. As schematically depicted in Fig. 3.3, two input fields â (the
LO) and b̂ (the signal) are overlapped on a beamsplitter. The beamsplitter ratio is 1/2,
that is the transmissivity and reflectivity are both 50% (in power). Each of the two
outputs is detected with a photo diode (PD) and the differential signal is fed into a
spectrum analyzer. For a generic beamsplitter, the output fields are connected to the
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input fields via �
ĉ
d̂

�
=

�
t r
−r t

� �
â
b̂

�
, (3.27)

where lower case r and t are the reflectivity and transmissivity in terms of field
amplitudes. These are connected to the power reflectivity R and transmissivity T by
r =

√
R and t =

√
T. Assuming a loss-free beamsplitter with R = T = 0.5, the

output fields ĉ and d̂ are given by
�

ĉ
d̂

�
=

1√
2

�
1 1
−1 1

� �
â
b̂

�
. (3.28)

For the annihilation and creation operator of the two output fields it follows

ĉ =
1√
2
(â + b̂) , ĉ† =

1√
2
(â† + b̂†) , (3.29)

d̂ =
1√
2
(−â + b̂) , d̂† =

1√
2
(−â† + b̂†) . (3.30)

The photocurrents i1 and i2 that are generated in the two detectors are proportional to
the light intensities and hence to the number of incident photons:

i1 ∝ ĉ† ĉ =
1
2
(â† + b̂†)(â + b̂) , (3.31)

i2 ∝ d̂†d̂ =
1
2
(−â† + b̂†)(−â + b̂) . (3.32)

Once again we use the linearization procedure to decompose the operators â and b̂ into
their steady-state values and their fluctuations. We write â = α + δâ and b̂ = β + δb̂
and in the following neglect terms like δâδb̂ in the calculations. Setting the phase of b̂
as the reference phase, we can choose β to be real and extract the differential phase
eiθ from â, such that â is replaced by

â = â0eiθ = α0eiθ + δâeiθ . (3.33)

We can now write the photocurrents from Eqs. (3.31) and (3.32) as

i1 ∝
1
2
(α0e−iθ + δâ†e−iθ + β + δb̂†)(α0eiθ + δâeiθ + β + δb̂) (3.34)

=
1
2

�
α2

0 + β2 + 2α0β cos θ + α0(δX̂+
a + δX̂θ

b) + β(δX̂+
b + δX̂−θ

a )
�

, (3.35)
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and

i2 ∝
1
2
(−α0e−iθ − δâ†e−iθ + β + δb̂†)(−α0eiθ − δâeiθ + β + δb̂) (3.36)

=
1
2

�
α2

0 + β2 − 2α0β cos θ + α0(δX̂+
a − δX̂θ

b) + β(δX̂+
b − δX̂−θ

a )
�

, (3.37)

where δX̂+
a = δâ + δâ† and δX̂+

b = δb̂ + δb̂† are the fluctuations of the amplitude
quadrature of the two input fields, and δX̂θ

a = δâe−iθ + δâ†eiθ and δX̂θ
b = δb̂e−iθ +

δb̂†eiθ are the respective generic quadrature operators.
The difference of the two photocurrents is given by

i− ∝ ĉĉ† − d̂d̂† (3.38)
= 2α0β cos θ + α0δX̂θ

b + βδX̂−θ
a . (3.39)

Finally, we obtain the variance of the differential current as measured by the spectrum
analyzer:

Vi− = α2
0V(δX̂θ

b) + β2V(δX̂−θ
a ) . (3.40)

The necessary condition for this detection scheme is a LO power much higher than
the signal power (α2

0 � β2). In this case the term containing β2 can be neglected. In
the limit of a strong local oscillator, the detected variance thus reduces to

Vi− = α2
0V(δX̂θ

b) . (3.41)

This indeed is a remarkable result since this variance only contains fluctuations of the
field entering through the signal port scaled by the DC power of the LO. It does not
contain any noise from the LO field. By changing the phase between the LO and the
signal field, any arbitrary quadrature of b̂ can be investigated. By blocking the signal
port – and thus setting the input to be the vacuum state for which V(δX̂θ

b) = 1 for
all θ – one obtains the shot-noise reference against which the possible squeezing is
measured. This means that whenever we measure a quadrature variance Vi− < α2

0, we
have observed a squeezed state.
Apparently, the shot noise level depends on the power used for the LO. It is crucial to
keep the shot noise level constant throughout data taking in order to avoid misleading
squeezing values.

3.3 Limits to the measurable level of squeezing

So far, only the model of an ideal (lossless) OPA with the output detected exactly
at zero frequency offset with a perfect detection efficiency was considered. In the
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Figure 3.4 — Optical loss modeled by an ideal detector and a beamsplitter with power transmission η,
being equal to the total detection efficiency of the measurement process.

following, a more physical model that is able to predict the outcome of an experiment
is derived. To this end, first the general procedure to model the effect of optical loss
is introduced. We will see that optical loss will severely degrade the squeezing level.
Second, the total detection efficiency that takes into account possible loss channels
of a squeezing setup is detailed. Third, the squeezing bandwidth is examined. Due
to the transfer function, additional constraints are imposed on the output variance if
the squeezed-light source is realized as a cavity. Subsequently, the issue of electronic
dark noise is addressed. Finally, the model for a realistic squeezed-light source is
presented.

3.3.1 Modeling optical loss

The photocurrent and hence the detected spectrum only is an exact electronic repro-
duction of the photon noise if the measurement is conducted with an ideal detector.
The ideal detector creates an electron from each incident photon, that is its quantum
efficiency, which is the ratio of generated electrons to the number of incident photons,
is equal to one. However, in practice the quantum efficiency of available photo diodes
usually is smaller than one. Additionally, effects such as absorption and scattering can
prevent the photon from reaching the detector. All effects can be combined to yield a
total detection efficiency η. The optical loss can be modeled by a beamsplitter with
power reflectivity � = 1− η, as schematically shown in Fig. (3.4). The detector is
ideal, but the beamsplitter has a transmission equal to the total detection efficiency η.
The field incident on the detector is given by

ĉ =
√

η â +
�

1− ηδv̂ , (3.42)



3.3 LIMITS TO THE MEASURABLE LEVEL OF SQUEEZING 43

where δv̂ are the vacuum fluctuations coupling into the measurement process. With
the linearization â = α + δâ, the photocurrent is

i ∝ ĉ† ĉ = ηα2 +
√

ηα
�√

ηδX̂+
a +

�
1− ηδX̂+

v

�
, (3.43)

with the first term corresponding to the DC-part of the current scaled by the detection
efficiency. The second term contains the fluctuations. Calculating the variance as
measured by the spectrum analyzer gives

Vi = ηα2 �
ηV+

a + (1− η)
�

. (3.44)

The same kind of loss model can be applied to the balanced homodyne detector. Let
the variance for the loss-free homodyne detection relative to the shot-noise reference
level be V0. Upon including loss in the analysis, the variance becomes

Vη = ηV0 + (1− η) . (3.45)

Let us assume that the signal input to a homodyne detector has the variance VdB
measured in dB, that is, the linear variance Vlin = 10(VdB/10) . Thus, the resulting
variance after experiencing the optical loss is

Vη,dB = 10 log 10
�
η10

VdB
10 + (1− η)

�
. (3.46)

The dependence of the measured variance on the detection efficiency is plotted
in Fig. (3.5) for four different pairs of squeezing and anti-squeezing values. It is
evident that the effect is stronger for the squeezed variance and that especially strong
squeezing levels are degraded rapidly by optical loss. Furthermore, it can be seen
that the purity, which is proportional to the product of the variances of amplitude
and phase quadrature, changes. To infer the purity one has to use the lossy variances
together with Eq. (2.110). With the vacuum reference set to 1, this yields for the purity

µ =
1�

V1,ηV2,η
=

1�
1 + (η − η2)(V0,1 + V0,2 − 2)

, (3.47)

where Eq. (3.45) for the lossy variances was used and V0,1 and V0,1 are the initial
variances of the loss-free state and η is the detection efficiency. Equation (3.47)
reveals that the impact of optical loss on the purity of the state depends on the degree
of initial squeezing.
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Figure 3.5 — Dependence of the measured noise variance on the total detection efficiency η. Four
pairs of states with initial squeezing and anti-squeezing of ∓18 dB, ∓12 dB, ∓9 dB, and
∓6 dB are shown. The effect is stronger for the squeezed variance, especially when strong
squeezing levels are assumed.

3.3.2 Total detection efficiency

Let us assume a homodyne detection scheme with a total detection efficiency η. The
total detection efficiency is the product of possible inefficiencies in the OPA system.
These are the escape, propagation, homodyne, and quantum efficiency, such that
η = ηescηpropηhomoηqe. In the following, each limiting factor is examined in more
detail.

3.3.2.1 Escape efficiency

The OPA’s escape efficiency is the ratio of the output coupling decay rate to the total
cavity decay rate. The former is related to the transmission T of the coupling mirror,
while the latter is determined by all other intra-cavity losses.

ηesc =
γT

γT + γL
=

T
T + L

. (3.48)
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The round-trip loss L includes possible transmission through a non-perfect high-
reflection coating of the second mirror, absorption inside the nonlinear medium and
scattering from imperfect anti-reflection coatings. It is therefore crucial to use high
quality material in order to minimize L. It is obvious that the escape efficiency
increases with increasing transmission of the coupling mirror. However, one has to
take into account that this will lead to a larger OPO threshold.

3.3.2.2 Propagation efficiency

The propagation efficiency includes the loss that the squeezing experiences due to
scattering, residual reflection and absorption. Scattering can occur at imperfect
surfaces of optics in the beam path. Residual reflection can be caused by imperfect
anti-reflection coatings of lenses and beamsplitters. Absorption will be caused upon
transmission through optical components such as lenses and beamsplitters.

3.3.2.3 Photo-electric quantum efficiency

The quantum efficiency of the photo diodes is given by the percentage of photons
incident on the detector that generate an electron-hole pair in the semiconductor
material. A similar measure is the spectral responsivity Rλ of the detector. The
responsivity is usually given in amperes per watt, and thus describes the amount of
electric power (photocurrent) that can be generated from the optical power of the
incident light. The quantum efficiency and the responsivity Rλ[A/W] are related by

ηqe =
Rλhc

λe
≈ Rλ1240

λ

W nm
A

, (3.49)

where h is Planck’s constant, c is the speed of light in free space, λ is the wavelength
in nm, and e is the elementary charge. The quantum efficiency depends on the
semiconductor material and on the wavelength. A typical material for the detection
of laser light at 1064 nm and 1550 nm is indium gallium arsenide (InGaAs). The
respective second-harmonic wavelengths of 532 nm and 775 nm are usually detected
with photo diodes made of silicon.
As already described earlier, each optical loss process introduces more contributions
from the vacuum fluctuations and degrades the squeezing. For that reason, custom-
made photo diodes and super-polished optics with custom made coatings were used
when setting up our squeezed-light sources.
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3.3.2.4 Homodyne efficiency

The homodyne efficiency describes the spatial overlap between the signal and the local
oscillator modes on the homodyne detector’s 50/50 beamsplitter. A mismatch between
the two modes leads to imperfect interference. The mismatch can be quantified by the
so-called fringe visibility

VIS =
Imax − Imin

Imax + Imin
, (3.50)

where the maximum and minimum intensities Imax and Imin are measured with a
single detector in one of the output ports by sweeping the relative phase between the
two input fields. Assuming equal powers in the two input ports of the detector, we
visibility is 0 ≤ VIS ≤ 1, where 1 means a perfect overlap and 0 no overlap at all.
The mode-mismatch of the two fields translates quadratically into the loss of optical
power, such that the homodyne efficiency is

ηhomo = VIS2 . (3.51)

As an example, let us suppose the homodyne visibility is 99%. The corresponding
efficiency ηhomo = 0.992 ≈ 0.98, so that 1% mode-mismatch equals a loss of 2% in
optical power.

3.3.3 Squeezing bandwidth

The bandwidth over which squeezing can be generated is limited by the linewidth of
the squeezed-light source for the fundamental field, that is the field to be squeezed.
Figure 3.6 shows the squeezing and anti-squeezing as a function of the measurement
frequency normalized to the cavity bandwidth. In order to plot Fig. 3.6, the squeezing
spectrum as given by Eqs. (3.13) and (3.14) was plotted as a function of the sideband
frequency which ranges up to ten times the cavity half-linewidth. The pump parameter
was set to ξ = 0.5. It becomes evident that the maximum level of noise suppression
can only be obtained well within the linewidth of the cavity. The cavity’s full width at
half maximum (FWHM) linewidth ν can be determined by the ratio of the cavity’s
free spectral range (FSR) and the cavity finesse F

ν =
FSR
F . (3.52)

The free spectral range can be obtained from the cavity’s optical roundtrip-length l
and the vacuum speed of light c:

FSR =
c
l

. (3.53)
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Figure 3.6 — Squeezing and anti-squeezing from an ideal OPA as a function of the sideband fre-
quency. The quadrature variances are plotted depending on the measurement frequency
ω normalized to the cavity bandwidth γ1. The pump parameter was set to ξ = 0.5.

The finesse of the cavity is determined by the mirror reflectivities and possible intra-
cavity loss, such as absorption loss and loss due to scattering. When we denote
� =

√
R1R2, where R1 is the power reflectivity of the coupling mirror and R2 is the

combination of the power reflectivity of the end mirror and of all intra-cavity losses,
the finesse is given by [3.6]

F =
π

2 arcsin
�

1−�
2√�

� . (3.54)

For the case of � ≈ 1, two common approximations to the exact equation exist

F =≈
π
√

�

1− �
≈ π

1− ρ
. (3.55)

In the first approximation, the error in F is smaller than 1% for F > 6.4 and smaller
than 0.1% for F > 20. For the second approximation, the error is smaller than 1%
for F > 160 and smaller than 0.1% for F > 1570.
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3.3.4 Phase noise

The strength of the detectable squeezing is not only limited by optical loss. With
increasing squeezing strength, the stability of the relative phase of the local oscillator
and of the squeezed beam becomes more and more important. A jitter in the relative
phase can have numerous origins, for example unstable locking loops, residual phase
modulations or acoustically induced mirror motion. If this phase noise is faster than
the time required for the spectrum analyzer to record a single data point, this point will
not be a pure measurement of the variance at the angle θ. Instead, the result will be
an integration over a range of angles θ ± ∆θ. In that case, a part of the anti-squeezed
quadrature will couple into the measurement and the squeezing will no longer be
maximal. Under the influence of the random phase fluctuations, the state that is
described by the Wigner function from Eq. (2.97) will evolve into a mixed state. The
Wigner function of a phase-diffused squeezed vacuum state is given by [3.5]

W(X1, X2) =
1

2π
√

V1V2

�
exp

�
−1

2

�
(Xφ

1 )2

V1
+

(Xφ
2 )2

V2

��
Φ(φ)dφ , (3.56)

where

Xφ
1 = X1 cos φ + X2 sin φ and (3.57)

Xφ
2 = X2 cos φ− X1 sin φ . (3.58)

If one assumes the phase noise to be gaussian, the distribution function Φ(φ) is
completely described by the standard deviation σ and can be written as

Φ(φ) =
1√

2πσ2
exp

�
− φ2

2σ2

�
. (3.59)

The effect that phase fluctuations have on a squeezed state is illustrated in Fig. 3.7. The
plots show the Wigner function of a vacuum state that is squeezed by −10 dB in the
phase quadrature and is anti-squeezed by +10 dB in the amplitude quadrature. Perfect
phase stability was assumed for the left plot, enabling a pure state with maximum noise
suppression. With increasing phase noise, the state is more and more transformed into
a mixed state with a reduced degree of squeezing.
When assuming the standard deviation of the normally distributed phase fluctuations to
be small, phase jitter with an rms of θfluc is equal to the homodyne detector measuring
at a phase offset θfluc. The resulting variances can then be written as [3.7]

V �
1,2 = V1,2 cos2 θfluc + V2,1 sin2 θfluc , (3.60)
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Figure 3.7 — Wigner function of a squeezed vacuum state with −10 dB of squeezing in the phase
quadrature X2 and 10 dB of anti-squeezing in the amplitude quadrature X1. Left: no
phase noise was assumed, so that σ = 0. Middle: phase fluctuations with σ = 0.1 (≈ 6◦).
Right: phase fluctuations with σ = 0.3 (≈ 17◦). It can be seen that with the increase in
phase noise the state is more and more transformed into a mixed state with a reduced
degree of squeezing.

where V1,2 are the variances as given by Eqs. (3.13) and (3.14) such that

V1,2 = 1 ± 4ξ

(1∓ ξ)2 +
�

ω
γ1

�2 . (3.61)

The effect that phase noise has on the detected quadrature variances is plotted in
Fig. 3.8. Once more, a pure vacuum state with 10 dB of squeezing was assumed.
The phase fluctuations were set to θfluc = 6◦, such that the state equals the phase-
diffused squeezed vacuum state corresponding to the Wigner function depicted in
Fig. 3.7 (middle). The dashed lines represent the reference variances without the
influence of phase fluctuations. The solid lines correspond to the variances under the
influence of phase noise. While the anti-squeezing stays unchanged, the squeezing is
degraded from −10 dB to −6.8 dB. The frequency dependence of the effect is due to
the decrease of the nonlinear gain. The reason is that at high frequencies the upper
and lower sidebands acquire a large phase shift for each round trip, which essentially
limits the nonlinear interaction.
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Figure 3.8 — Squeezing and anti-squeezing as a function of sideband frequency including phase fluc-
tuations. The dashed lines correspond to the quadrature variances without phase noise.
The solid lines illustrate the effect of a phase jitter with θ = 6◦. The quadrature variances
are plotted as a function of sideband frequency ω normalized to the cavity bandwidth γ1.
The pump parameter was set to ξ = 0.52.

3.3.5 Electronic dark noise

Every (homodyne) detector has a certain electronic dark noise. This is the noise
measured by the spectrum analyzer when all input ports are blocked, that is when no
light is incident on the detector. When conducting a balanced homodyne measurement,
the clearance of the shot-noise reference level from the detector dark noise is crucial. If
the clearance is not large enough, it will significantly contribute to the measured noise
level. Consequently the measurable squeezing will be reduced. This makes the signal
to dark noise ratio an important figure in an experiment that aims for the detection
of strong squeezing. Ideally, the electronic dark noise is the uncorrelated sum of the
electronic noise produced by the components that are used for the homodyne detector
circuitry. Low-noise components should therefore be considered when designing the
detector. Additionally, the spectrum analyzer’s dark noise has to be taken into account.
Likewise, stray fields from electronic oscillators and possible noise from the power
supply will contribute to the final dark noise level. For the homodyne detectors that
were used in the experiments presented in this thesis, a ‘self-subtaction’scheme was
applied in order to directly cancel the DC part of the photocurrent. Details on the
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design can be found in [3.9]. The subtraction of the photocurrents was realized prior
to the first electronic amplification stage, such that only the photocurrent fluctuations
were converted into a voltage. On the one hand, this allows for high electronic gains
within the circuit. On the other hand, this permits the use of a strong local oscillator.
By those means, dark noise clearances of up to ∼25 dB could be realized.
In earlier experiments it used to be customary to state an inferred squeezing value,
which was obtained by subtraction of the dark-noise. Throughout this thesis, squeezing
values were only corrected for electronic dark noise to compare them with the values
predicted by theory. Whenever this was done, it is clearly stated. All other values
represent direct observations.

3.4 Model of a realistic squeezed-light source

In the following the above considerations are combined to yield a model for a squeezed-
light source that is suitable to be compared with experimentally obtained data. In order
to get an expression that is more convenient from the experimentalist’s point of view,
we start by noting that the pump parameter ξ = ε/γ1 can also be equated with the
ratio of the pump field amplitude to the threshold pump field amplitude [3.4]. This can
be expressed in terms of the pump power P and the threshold pump power, such that
ξ =

√
P/Pth. We incorporate the total detection efficiency η = ηescηpropηhomoηdet

by using Eq. (3.46) to determine the effect of losses on the variances from Eq. (3.11)
and (3.12). This yields

V1(Ω�) = 1 + ηescηpropηhomoηdet
4
√

P/Pth

(1−
√

P/Pth)2
+(Ω�)2

, (3.62)

V2(Ω�) = 1− ηescηpropηhomoηdet
4
√

P/Pth

(1+
√

P/Pth)2
+(Ω�)2

, (3.63)

where we have introduced the normalized frequency Ω� = f / 1
2 ν, with the spectrum

analyzer’s measurement frequency f and the cavity (FWHM) linewidth ν. To include
phase noise in the simulation we use Eq. (8.2) and obtain

V �
1(Ω�) = V1(Ω�) cos2 θfluc + V2(Ω�) sin2 θfluc , (3.64)

V �
2(Ω�) = V2(Ω�) cos2 θfluc + V1(Ω�) sin2 θfluc . (3.65)

We will see in the following chapters that this model indeed is able to give precise
predictions of the experimental outcome.
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CHAPTER 4
Strong squeezing at 1064 nm
from a monolithic squeezed

light resonator

Squeezed states of light constitute an important nonclassical resource
in the field of high-precision measurements, for example, gravitational
wave detection, as well as in the field of quantum information, for
example, for teleportation, quantum cryptography, and distribution of
entanglement in quantum computation networks. Strong squeezing
in combination with high purity, high bandwidth, and high spatial
mode quality is desirable in order to achieve significantly improved
performances contrasting any classical protocols. Here we report on
the observation of 11.5 dB of squeezing, together with relatively high
state purity corresponding to a vacuum contribution of less than 5%,
and a squeezing bandwidth of about 170 MHz. The analysis of our
squeezed states reveals a significant production of higher-order pairs of
quantum-correlated photons and the existence of strong photon-number
oscillations.

Originally published as M. Mehmet et al. Phys. Rev. A 81, 013814 (2010).

4.1 Introduction

Squeezed states as well as number states (Fock states) are so-called nonclassical
states. They allow the measurement, the communication, and the processing of
information in a way not possible with coherent states that are governed by vacuum

53
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fluctuations. Squeezed states of light and correlated photon pairs have been used to
realize interferometric measurements with sensitivities beyond the photon counting
noise [4.1–4.6], to demonstrate the Einstein-Podolski-Rosen paradox [4.7–4.10], as a
resource for quantum teleportation [4.11–4.13], and for the generation of Schrödinger
cat states for quantum information networks [4.14, 4.15]. In view of applications
in long-distance quantum communication, purification and distillation of entangled
photon-number states and entangled two-mode squeezed states were experimentally
demonstrated [4.16–4.18].
Fock states are characterized by photon counting detectors, whereas squeezed states
are traditionally characterized in the phase space of position and momentum-like
operators [4.19, 4.20]. Appropriate operators are the noncommuting amplitude
and phase quadratures of the field, X̂1 and X̂2, respectively. Their variances obey
a Heisenberg uncertainty relation, ∆2X̂1 · ∆2X̂2 ≥ 1/16, with the vacuum noise
variance normalized to 1/4. A squeezed state is realized if the quantum noise of one
quadrature is squeezed below the vacuum noise level, at the expense of increased
noise of the other quadrature. For an overview we refer to Ref. [4.21]. The relation
between the quadrature operators and the photon-number operator n̂ is revealed by
the Hamilton operator of the quantized harmonic oscillator:

Ĥ = h̄ω(n̂ + 1/2) = h̄ω(X̂2
1 + X̂2

2), (4.1)

where h̄ is the reduced Planck constant and ω the light’s angular frequency. One can
think of the two expressions in equation (4.1) corresponding to the particle picture
and the wave picture of quantum physics, respectively. These can be used to calculate
the mean photon number of squeezed states. Note that this number is always greater
than zero. Consider now a squeezed state without displacement in phase-space. Such
a state is called a squeezed vacuum state, and one can write �X̂2

i � = ∆2X̂i. If such
a state is pure, that is, has minimum uncertainty, only even photon numbers can
be observed [4.22, 4.23]. Furthermore, if the squeezing effect is strong a so-called
odd-even photon-number oscillation is realized that includes not just the existence
of photon pairs but also the existence of higher even numbers of quantum-correlated
photons.
This article presents the generation and characterization of squeezed vacuum states
with strong odd-even photon-number oscillations revealing a significant contribution
of correlated photon numbers up to 10 and higher. This result is made possible
because our squeezed vacuum states are strongly squeezed, are of high purity, and are
in a well-defined spatial Gaussian fundamental mode. These properties are of great
importance for applications in high-precision measurements as well as in quantum
information. Our squeezed light source also exhibits a broad squeezing bandwidth
and thus constitutes a bright source of quantum-correlated photons.
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4.2 Experimental setup

At present the most successful squeezed light sources are based on parametric pro-
cesses in nonlinear optical materials. In the regime of pulsed laser radiation the optical
Kerr effect has recently enabled the observation of nearly 7 dB squeezing [4.24]. In
the regime of continuous-wave laser radiation, squeezing of vacuum fluctuations
by up to 10 dB was observed utilizing optical parametric oscillation (OPO) below
threshold [4.25, 4.26].
The squeezed vacuum states investigated here were produced via type I OPO be-
low threshold in a nonlinear standing wave cavity, similar to the experimental setup
in [4.26]. In order to observe high levels of squeezing the entire experiment was
optimized for low phase fluctuations and low optical loss. A schematic diagram of
the experimental setup is shown in Fig. 4.1(a). The main light source was a 2-Watt
continuous-wave laser at 1064 nm. It was used to generate a second-harmonic light
field to pump the parametric squeezed light source and to provide the local oscillator
(LO) beam for balanced homodyne detection. Both laser fields were sent through
traveling wave filter cavities that were kept on resonance using Pound-Drever-Hall
modulation-demodulation control schemes. The filter cavities therefore acted as op-
tical low-pass filters that reduced potential phase noise and provided clean gaussian
fundamental modes. The filtered second-harmonic pump beam had a power of up to
600 mW and was subsequently injected into the OPO cavity.
In order to minimize the internal optical loss of the squeezed light source we designed
the OPO as a monolithic (bi-convex) cavity, similar to the resonator used in [4.27].
It was made from a 7% doped Mg:O LiNbO3 crystal measuring 6.5×2×2.5 mm3

with end faces of 8 mm radii of curvature (see inlay in Fig. 4.1). While the back
of the crystal had a high reflection coating for both the wavelengths involved, we
chose a rather low power reflectivity of 88% at 1064 nm (and < 1% at 532 nm) for
the coupling front face in order to increase the ratio of out-coupling rate and cavity
round-trip loss. The crystal was controlled to keep its phase-matching temperature
close to 60◦C using Peltier elements, and the main laser frequency was tuned to
match the resonance condition of the OPO cavity. An assembly drawing of the crystal
mounting is shown in Fig. 4.1(b).
No control fields at or near the fundamental wavelength of 1064 nm were injected
into the squeezed light source during data taking. Thus all photons around 1064 nm
leaving the OPO cavity originated from the parametric down-conversion process. The
out-coupled squeezed states, that is, the photons at 1064 nm, were separated from
the 532-nm pump upon reflection at a dichroic beam splitter (DBS) and subsequently
analyzed by means of balanced homodyne detection. To this end the bright and
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spatially filtered LO beam was precisely adjusted to the spatial mode of the squeezed
beam. We achieved a fringe visibility of 99.8% at the homodyne detector’s 50-50
beam splitter, which proves that the squeezed states were indeed in a well-defined
Gaussian fundamental mode.
A homodyne detector is the only known means to observe and characterize strongly
squeezed states. Today’s single-photon detectors do not reach the same high quantum
efficiencies and have an insufficient photon-number resolution. It has been shown
that homodyne detection data of quantum states can indeed provide their full quan-
tum information [4.28–4.30]. The phase angle θ between the local oscillator (LO)
and the signal beam defines an arbitrary quadrature of the signal’s quantum state
X(θ) = cos(θ)X1 + sin(θ)X2 [4.21]. In our experiment θ was controlled with a
piezo actuated mirror in the LO path which allowed us to precisely set the phase angle.
For example, to measure the squeezed quadrature X(0) = X1 or the antisqueezed
quadrature X(π/2) = X2. The collected data was readily converted into variances
by a spectrum analyzer that was also used to select a certain Fourier frequency f and
resolution bandwidth ∆ f . The vacuum noise reference was measured with the same
settings but with the squeezed field input blocked.

4.3 Observation of high-purity strongly squeezed states

The traces in Fig. 4.2(a)-4.2(c) represent three different squeezed vacuum states from
our OPO source in terms of pairs of squeezed (bottom trace) and anti-squeezed

Figure 4.1 (preceding page) — Experimental apparatus. (a), Schematic diagram of the experimental
setup. A small part of the 1064-nm output of the 2-W laser system
was used as local oscillator while the majority was sent to an external
second-harmonic generation (SHG) cavity which provided the 532-nm
pump beam to drive the OPO. Travelling wave filter cavities (FC1064
and FC532) in both paths were used to provide stable and well-defined
laser beams. Squeezed vacuum states at 1064 nm were generated by
type I OPO below threshold in a nonlinear monolithic cavity. A bal-
anced homodyne detector was used to measure the states’ quadrature
variances. DBS, dichroic beam splitter; PD, photo diode; SA, spectrum
analyzer. (b), Exploded assembly drawing of the oven enclosing the
squeezed light source. The nonlinear crystal, copper plates, Peltier
elements, and thermal insulations are shown. The inlay shows a photo-
graph of the monolithic squeezed light source made from 7% doped
MgO:LiNbO3.
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(top trace) vacuum normalized quadrature variances V1 = ∆2X̂1/∆2X̂1,vac and
V2= ∆2X̂2/∆2X̂2,vac, respectively. For a pump power of 30 mW [Fig. 4.2(a)] the
squeezed variance (V1) was 2.9(±0.1) dB below and the antisqueezed variance (V2)
was 2.9(±0.1) dB above the vacuum noise level. Within the measurement error bars
of ±0.1 dB the state shows minimum uncertainty and therefore perfect purity. Upon
driving the OPO with 150 mW pump power [Fig. 4.2(b)] we observed normalized
variances of -6.2(±0.1) dB and 6.7(±0.1) dB, respectively. The strongest squeezing
level was measured with a pump power of approximately 600 mW [Fig. 4.2(c)]. With
this setting 16.0(±0.1) dB of antisqueezing and a noise reduction of 11.5(±0.1) dB
below the vacuum noise level was achieved.

In practice, squeezed vacuum states generally cannot have perfect purity due to
both residual optical loss and residual phase noise. The former results in an admix-
ture of the vacuum state and the latter results in a mixture of phase- space rotated
states [4.25, 4.31]. Here, we make the attempt to describe all the three squeezed states
measured by a fixed amount of optical loss assuming zero phase noise. This approach
is reasonable for the following reasons: (i) previous investigations have shown that
our setup is stable and phase noise is low [4.26], (ii) in contrast to squeezing in the
audio band [4.32, 4.33], at MHz Fourier frequencies no displaced or thermal states
are present that could mix into the state, and (iii) no evidence was found for a non-
Gaussian statistic in our measured data. All three pairs of variances observed can then
be consistently calculated using Vi = ηγV �

i + (1− ηγ), where V �
1 = 1/V �

2 represent
the pure state variances before any decoherence has occurred. Here, (1− ηγ) repre-
sents the overall contribution of the vacuum state, in power. The detection efficiency
η accounts for all losses outside the squeezed light source and γ is the OPO cavity
escape efficiency accounting for all losses inside the squeezed light source. We find
that all of the measured variances (shown in Fig. 4.2) can indeed be modeled by
a vacuum noise contribution as low as (1− ηγ) = (4.8 ± 0.2) %, independent of
the pump power used. This result supports our assumption that phase noise is not
significant in our set-up. The loss value of 4.8% is consistent with an independent loss
analysis of all the optical components used in our set-up; however, an independent
measurement of the quantum efficiency of the photo diodes of the homodyne detector
typically has large uncertainties, and we estimate this value to (98 ± 2)%. Such a
low optical loss should enable the observation of more than 13 dB of squeezing,;
however, pump powers above 600 mW stably controlled and within a clean funda-
mental mode were not available in our experiment. Note that even though the optical
loss was constant throughout our experiments, the purities for the three squeezed
states generated were different. For a Gaussian squeezed state the purity is given by
Tr(ρ2) =

√
V1V2 [4.34], where V1 and V2 are again the vacuum noise normalized

variances of the squeezed and antisqueezed quadratures, respectively, and ρ is the
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Figure 4.2 — Quadrature noise variances as measured by balanced homodyne detection of three different
states produced by the OPO. All traces were recorded at a Fourier frequency of f =5 MHz,
with a resolution bandwidth of ∆ f =100 kHz and video bandwidth of 100 Hz, and
were normalized to the vacuum noise. The data still include electronic detector dark
noise; hence all traces represent direct observations without any data postprocessing.
(a) Squeezed vacuum state that was generated with a second-harmonic pump power of
Psh=30 mW. A nonclassical noise reduction of 2.9 dB below vacuum noise was observed,
with the respective antisqueezing of 2.9 dB above shot noise. (b), Squeezed vacuum
state generated with an increased pump power of Psh=150 mW. Squeezing of 6.2 dB was
measured with 6.7 dB of antisqueezing. (c), Driving the OPO at maximum pump power
Psh=600 mW yielded squeezing and antisqueezing of 11.5 dB and 16.0 dB, respectively.
The subtraction of the detector dark noise would further increase the value of maximum
squeezing to 11.6 dB.
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density matrix of the quantum state. Assume a pure state with 3.05 dB (initial) squeez-
ing. Then 4.8% optical loss impairs the squeezing strength resulting in a state with
2.84 dB squeezing and 2.94 dB antisqueezing. Taking into account the accuracy of our
measurements, these values agree well with the measurements shown in Fig. 4.2(a).
According to the aforementioned formula, the first measured state had a purity of
about 0.99. For the states in Fig. 4.2(b) and (c) one finds the purity of 0.94 and 0.60,
respectively. Despite constant loss the most strongly squeezed state shows the lowest
purity; however, considering the squeezing strength, the value of 0.6 still reflects a
relatively high purity.
Figure 4.3 presents the Wigner function [4.28, 4.29, 4.35] of the squeezed vacuum

state with variances of −11.5 dB and 16 dB with respect to the vacuum noise vari-
ance. The Wigner function represents one of several possible phase-space probability
distributions for quantum states. Since it is Gaussian for squeezed vacuum-squeezed
states, it is particularly easy to obtain simply by measuring its second moments. The
entire statistical properties of the state can than be summarized in a finite dimensional
space, namely, by the covariance matrix. Hence, for squeezed vacuum states mixed
with the ordinary vacuum state only the variances of the squeezed and antisqueezed
quadrature are required to calculate the Wigner function which is then given by

W(X1, X2) =
(4π)−1

�
∆2X̂1∆2X̂2

exp

�
− 1

2 X2
1

∆2X̂1
+
− 1

2 X2
2

∆2X̂2

�
,

where ∆2X̂i are again the variances of the quadratures X1 and X2, respectively,
with the vacuum noise variance of 1/4. The vertical axis in Fig. 4.3 represents the
quasiprobability density of the quadrature phase space. The Wigner function is a
phase-space quasiprobability distribution, since the quadratures cannot simultaneously
have precisely defined values. What can be precisely measured is one projection of
the Wigner function onto the axis of the phase space at a time. The projections are the
probability distributions of the particular quadrature and, here, have a Gaussian shape
with squeezed or antisqueezed variances with respect to the vacuum noise variance
(dotted curves). Contour lines of the Wigner function have an elliptical shape and are
thus squeezed in comparison with the circular contour lines of the vacuum state (not
shown in Fig. 4.3).
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Figure 4.3 — Wigner function of the squeezed vacuum state produced by our OPO. The projections
(solid curves) onto the two quadratures yield the gaussian probability distributions with
variances of −11.5 dB and 16 dB relative to the projections belonging to a pure vacuum
state (dotted curves).
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4.4 Squeezed vacuum states in the photon-number basis

All photons that are present in a squeezed vacuum state produced by OPO stem
from parametric down-conversion of second-harmonic pump photons. This is also
true for a mixture of a squeezed vacuum state with an ordinary vacuum state. For
strongly squeezed states not just the detection of photon pairs but also of higher-order
photon pairs is expected. However, the overall loss of photons must be sufficiently
low to enable such an observation. Since the Wigner function represents the full
quantum information of a state it can be used to calculate the state’s density matrix
ρn,m in the photon-number (Fock) basis, which is another complete description of
the state. The photon-number distribution P(n) can be obtained from the diagonal
elements of the density matrix. Figure 4.4 shows a plot of the first matrix elements
(absolute values) up to photon numbers n, m = 10 of the observed squeezed state
with noise variances of −11.5 dB and 16 dB relative to the vacuum noise. In order
to calculate the density matrix [4.21, 4.36] photon numbers of up to n = m = 170
were considered, which ensured convergence of all the matrix elements. Similarly,
the density matrices for the additional two states have also been generated. Their

Figure 4.4 — Density matrix of the squeezed state of Fig. 4.2(c). Plot of the absolute values of the
density matrix elements with photon numbers up to 10 for the −11.5-dB squeezed and 16-
dB antisqueezed state. The diagonal elements give the probabilities of finding 0,1,2. . . n
photons. Due to the state’s high purity, the probabilities for finding an odd number of
photons is significantly suppressed.
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Figure 4.5 — Photon-number oscillation. The probability P(n) of detecting n photons is plotted for
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distributions clearly show oscillatory behavior. With increasing squeezing the number of
higher-order photon pairs grows. For clarity the inset shows a zoomed view restricted to
probabilities up to 0.1.

diagonal elements, that is, the photon-number distributions of the states, are depicted
in Fig. 4.5. The formula used and the numerical values of the density matrix elements
are given in the Appendix. For the 11.5-dB squeezed state a strong odd/even photon-
number oscillation is visible. Even the probability of detecting n = 10 photons is
significantly higher than the probability of detecting n = 9 photons. This oscillation
further continues for greater photon numbers but is not shown here. For our squeezed
states with less squeezing the oscillation flattens out at lower photon numbers, but
the odd/even oscillation is even more pronounced at lower photon numbers. For the
2.9-dB squeezed state the probability of finding n = 1 photon is as small as 0.5%.
Note that for displaced squeezed states additional photons are added to the state and
the odd photon numbers cannot all have zero probability, even if these state are pure.
However, weakly displaced squeezed states show photon-number oscillations with
larger periods. Such states were originally theoretically analyzed in [4.37].
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The photon numbers calculated here are detected per bandwidth in hertz and per
detection time interval in seconds. Obviously, the higher the squeezing bandwidth the
higher the number of photons per second.

4.5 Observation of high-bandwidth squeezing

For applications in high-speed quantum communication and information processing
high photon counting rates or, equivalently, fields with squeezing over a broad Fourier
spectrum are essential. The half-width half-maximum (HWHM) squeezing bandwidth
can be defined as the spectral width over which the squeezed variance increases from
its lowest variance at small Fourier frequencies V1 to V1 + 0.5 · (1−V1). Here the
variances are again normalized to unity vacuum noise. Although continuous variable
quantum states are often quoted to provide the possibility of high bandwidths, only
modest values of the order of a few tens of MHz have been realized (see, for example,
Refs. [4.27, 4.38]). Figure 4.6 shows the spectral analysis of the strongly squeezed
field from our source with a HWHM squeezing bandwidth of 170 MHz. In contrast
to Fig. 4.2, here the electronic dark noise of our homodyne detector was subtracted.
At ∼100 MHz the dark noise reached the measured quantum noise. At frequencies
below 5 MHz the measurement was limited by the resolution bandwidth chosen.
Since our set-up did not use control beams which might introduce technical noise at
low frequencies, a white squeezing spectrum can be expected for lower frequencies
if parasitic interferences with frequency-shifted scattered photons are sufficiently
suppressed as demonstrated in Refs. [4.32, 4.33].
The spectrum of the squeezed and antisqueezed quadrature variances (V1 and V2,
respectively) for the below-threshold OPO can be calculated by [4.25]

V1,2 = 1 ± ηγ
4
√

Psh/Pth

(1∓
√

Psh/Pth)2 + 4K2
, (4.2)

where Psh is the power of the second-harmonic pump and Pth is the pump power
needed to reach the OPO threshold. The detection efficiency η is calculated as the
product of the propagation efficiency, the square of the homodyne visibility, and the
quantum efficiency of the homodyne detector photo diodes. The OPO escape efficiency
γ = T/(T + L) is determined by the transmittance T of the out-coupling mirror
and the intracavity round-trip loss L. The dimensionless parameter K = 2π f /κ
is the ratio of the Fourier frequency f and the decay rate κ = (T + L)c/l of the
cavity with round-trip length l. The theoretical curves in Fig. 4.6 were modeled using
equation (4.2), with the best agreement obtained upon assumption of the following



4.5 OBSERVATION OF HIGH-BANDWIDTH SQUEEZING 65

 170

R
e
la

ti
v
e
 N

o
is

e
 P

o
w

e
r 

[d
B

]

-14
-12
-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 6  8  10  20  40  60  80 100

Frequency [MHz]

Vacuum

Squeezed

Anti-squeezed

Figure 4.6 — High bandwidth squeezing spectrum. Squeezing (bottom trace) and anti-squeezing (top
trace) are shown relative to the vacuum noise variance. The measurements were performed
from 5 MHz to 100 MHz. This was limited by the fact that the dark noise clearance of the
homodyne detector was too low towards higher frequencies. The traces are averages of 3
measurements each done with a resolution bandwidth of 1 MHz and video bandwidth of
3 kHz. The data was fitted to a model and revealed a squeezing bandwidth of 170 MHz
(thin line).

values: a pump beam at 53.5% of the threshold power, the output coupler transmittance
of 12%, the round-trip loss within the crystal of approximately 0.1%, and a total
detection efficiency ηγ=95.2% in agreement with our analysis presented in Sec. 4.3.
The squeezing bandwidth of our source is given by the Fourier frequency where the
squeezed variance has increased to −2.7 dB. According to the theoretical curve in
Fig. 4.6 this bandwidth is 170 MHz. This result can be used to calculate the rate of
down-converted photons from a full longitudinal mode of our source. To this end, we
split the half free spectral range of our source of 5.5 GHz into 55000 frequency bins of
100 kHz each. For every bin i, the photon-number distribution Pi(n) was calculated.
By summing these distributions, we find that the spectrally weighted representative
photon-number distribution of the central OPO cavity mode around half the pump
light frequency Pf (n) = 1/55000 · ∑i Pi(n). This distribution can now be used to
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calculate the mean number of photons per second and bandwidth averaged over the
band of 5.5 GHz. Multiplying with 5.5 GHz provides the rate of down-converted
photons from this mode of as high as 2.79× 108s−1, corresponding to a power of
52 pW.
Another relevant value is given by the mean number of correlated photons in the
case of a single-photon detection. For a parametric down-conversion source operated
far below its threshold and with zero photon loss this number is two because the
detection of a single photon proves the presence of, in total, two photons. In order
to calculate this number for our source we set Pf (0) = 0 and calculate the mean
value of the renormalized remaining distribution. For the 11.5-dB squeezed state
presented in Fig. 4.6 we obtain �n� f = 5.93. Implying that whenever a single-photon
detector clicks (possibly without any photon-number resolution) this event proves
the presence of, on average, almost six quantum-correlated photons, including the
detected photon(s).

4.6 Conclusion

In order to observe strong squeezing levels, we operated an optical parametric oscilla-
tor comparatively close to its threshold. In this regime not just single-photon pairs, but
a significant number of multiple or higher-order photon pairs were produced. This con-
trasts typical parametric down-conversion experiments in the photon counting regime
where the probability of observing more than two quantum-correlated photons is
negligible. The density matrix in the photon-number basis of our −11.5-dB squeezed
state not only reveals strong photon-number oscillations but also quantum correlations
between photons in the following way: Whenever a photon was photoelectrically
detected by the homodyne detector, there was an almost unity probability that an
additional odd number of photons were physically realized and were detected by the
same detector. In photon counting experiments our squeezed state might therefore be
used to overcome the problem of insufficient photon counter efficiencies. The quality
of our squeezed states will also enable a great step forward in many applications
currently under discussion. In high-power laser interferometers for gravitational wave
detection [4.4–4.6] the application of an −11.5-dB squeezed state reduces the shot
noise equivalent to a laser power increase by a factor 14. The interference of two
such states on a 50-50 beamsplitter would produce strong Einstein-Podolsky-Rosen
entanglement [4.12, 4.13, 4.39] and its high bandwidth may result in the ultrafast
generation of quantum keys [4.40]. Our squeezed light source may also find applica-
tions in future hybrid quantum information networks. Its well-defined fundamental
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Gaussian spatial mode yielded a high fringe contrast with a spatially filtered local
oscillator of 99.8% and enables efficient coupling to other systems, for example to
atoms coupled to optical cavities [4.41–4.43], in order to realize quantum interfaces
of light and matter.

ACKNOWLEDGEMENTS
We would like to thank B. Hage, J. DiGuglielmo, A. Thüring, C. Messenger and J.
Fiurášek for many helpful discussions. This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG) through Sonderforschungsbereich 407 and the Centre
for Quantum Engineering and Space-Time Research QUEST.

APPENDIX
In order to calculate the density matrix elements ρm,n we followed the prescription
given in Ref. [4.36], whereby the entries can be obtained using the following equation:

ρm, n =

�
m!n!
ṼxṼp

∑
a

(−T)[(m−n)/2]+2αUn−2α

a!(n− 2a)!
�
a + m−n

2
�
!

, (4.3)

where Ṽx = Vx + 1/2, Ṽp = Vp + 1/2, U = 1− 1
2Ṽx

− 1
2Ṽp

and T = 1
4Ṽx

− 1
4Ṽp

.
Note that Vx and Vp correspond to the linear quadrature variances of the quantum state
as introduced in Eq. (4.2), but with the vacuum variance set to 1/2. This expression
for the density matrix in the Fock state basis can be derived from the covariance
matrix by first noting that the Husimi Q-function in the coherent state basis is the
generating function for the density matrix in the Fock state basis. The covariance
matrix needs to be transformed from the quadrature basis into the coherent basis to
obtain the aforementioned formula.
We calculated ρm,n for the three states in Figs.4.2(a)– 4.2(c). For the first state
[Fig.4.2(a)] we chose vacuum normalized variances of −2.84 dB and 2.94 dB being
within our experimental error bars. These numbers correspond to an originally pure
state with 3.05 dB of squeezing and 3.05 dB antisqueezing that was degraded by 4.8%
of optical loss. For the remaining two states we chose the variances according to the
values in Fig. 4.2(b) (−6.2 dB and 6.7 dB) and Fig. 4.2(c) (−11.5 dB and 16.0 dB).
The calculation was done with photon numbers up to 170 to ensure the convergence
of all entries, but the respective density matrices ρ(a), ρ(b), and ρ(c) presented below
were truncated at n=m=10. For clarity the diagonal elements representing the photon
number distribution (as shown in Fig. 4.5) are printed in bold red.
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ρ(a) =





.9416 0 −.2137 0 .0594 0 −.0174 0 .0052 0 −.0016
0 .0049 0 −.0019 0 .0007 0 −.0002 0 .0001 0

−.2137 0 .0485 0 −.0135 0 .0040 0 −.0012 0 .0004
0 −.0019 0 .0008 0 −.0003 0 .0001 0 −0 0

.0594 0 −.0135 0 .0038 0 −.0011 0 .0003 0 −.0001
0 .0007 0 −.0003 0 .0001 0 −0 0 0 0

−.0174 0 .0040 0 −.0011 0 .0003 0 −.0001 0 0
0 −.0002 0 .0001 0 −0 0 0 0 0 0

.0052 0 −.0012 0 .0003 0 −.0001 0 0 0 0
0 .0001 0 −0 0 0 0 0 0 0 0

−.0016 0 .0004 0 −.0001 0 0 0 0 0 0





.

ρ(b) =





.7538 0 −.3360 0 .1834 0 −.1056 0 .0622 0 −.0372
0 .0131 0 −.0101 0 .0071 0 −.0048 0 .0032 0

−.3360 0 .1500 0 −.0820 0 .0473 0 −.0279 0 .0167
0 −.0101 0 .0078 0 −.0055 0 .0037 0 −.0025 0

.1834 0 −.0820 0 .0449 0 −.0259 0 .0153 0 −.0092
0 .0071 0 −.0055 0 .0039 0 −.0026 0 .0018 0

−.1056 0 .0473 0 −.0259 0 .0150 0 −.0089 0 .0053
0 −.0048 0 .0037 0 −.0026 0 .0018 0 −.0012 0

.0622 0 −.0279 0 .0153 0 −.0089 0 .0053 0 −.0032
0 .0032 0 −.0025 0 .0018 0 −.0012 0 .0008 0

−.0372 0 .0167 0 −.0092 0 .0053 0 −.0032 0 .0019





.

ρ(c) =





.3026 0 −.1946 0 .1532 0 −.1272 0 .1082 0 −.0933
0 .0126 0 −.0140 0 .0143 0 −.0140 0 .0135 0

−.1946 0 .1256 0 −.0993 0 .0828 0 −.0707 0 .0613
0 −.0140 0 .0156 0 −.0159 0 .0157 0 −.0151 0

.1532 0 −.0993 0 .0789 0 −.0660 0 .0566 0 −.0493
0 .0143 0 −.0159 0 .0162 0 −.0160 0 .0155 0

−.1272 0 .0828 0 −.0660 0 .0555 0 −.0478 0 .0417
0 −.0140 0 .0157 0 −.0160 0 .0158 0 −.0153 0

.1082 0 −.0707 0 .0566 0 −.0478 0 .0413 0 −.0362
0 .0135 0 −.0151 0 .0155 0 −.0153 0 .0148 0

−.0933 0 .0613 0 −.0493 0 .0417 0 −.0362 0 .0318





.
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CHAPTER 5
Strong squeezing as an

estimator for optical loss

In Sec. 3.3.1 the effect of optical loss on the measured squeezing level
was theoretically investigated. It was shown that especially large factors
of noise suppression are considerably degraded even by small amounts
of additional optical loss. Consequently, the measurement of strong
squeezing can be utilized to precisely infer the total optical loss in the
system. This chapter presents how this can in particular be exploited to
deduce the quantum efficiency of photo diodes with high accuracy.

5.1 Introduction

The total efficiency with which squeezed states can be detected is given as the product
of the inefficiencies that occur once the squeezing is produced. As already described in
Sec. 3.3 these can basically be divided into the escape efficiency ηesc, the propagation
efficiency ηprop, the homodyne efficiency ηhomo, and the quantum efficiency ηqe.
Consequently, in the case that all but one loss terms are known, the remaining term
can be derived from the total loss budget. The accuracy of that procedure only depends
on the uncertainty of the known parameters. Usually, the biggest unknown is the
quantum efficiency of the photo diodes. To determine the quantum efficiency or the
responsivity of a photo diode, a measurement on the absolute power of the incident
light beam needs to be carried out. Absolute power measurements can be performed
with power meters. Commercially available power meters typically have absolute
errors of ±2 up to ±5 % [5.1–5.3] such that the value for the quantum efficiency is

73
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equally prone to large errors. The use of the level of squeezing as an estimator for the
optical loss is more promising since only relative power measurements are involved.
However, it was shown in Sec. 3.3.4 that an insufficient stability of the phase between
the homodyne local oscillator and the signal field will also degrade the measured
squeezing. It is therefore important to distinguish between those two effects.

5.2 Experimental setup

The experimental setup can be divided into four main stages: laser preparation (1),
pump field preparation (2), generation of squeezed vacuum states (3), and detection
of squeezed vacuum states (4). The stages are indicated in the schematic shown in
Fig. 5.1 and are described in more detail below.

5.2.1 Laser preparation

The light source in our setup was a diode-pumped, monolithic non-planar Nd:YAG
ring laser (Mephisto by Innolight). The output was about 2 W of continuous-wave
single mode radiation at 1064 nm. A Faraday isolator was incorporated to prevent
retro-reflections into the laser. The combination of half-wave plate (HWP) and
polarizing beam splitter (PBS) was used to adjust the overall input power. In a next
step a phase modulation was imprinted onto the light by means of a home-made,
resonantly enhanced electro-optical modulator (EOM). The modulation frequency
of 122.9 MHz was provided by a voltage controlled oscillator (VCO). Subsequently,
a partially transmissive mirror with 95% reflectivity split the beam into two parts.
The transmitted beam was mode-matched to the TEM00 mode of a mode-cleaning
filter cavity (MC1064). As shown in Fig. 5.2 this filter cavity was designed as a
Fabry-Pérot ring-cavity composed of three mirrors that were rigidly attached to an
aluminum spacer. The transmissivity of the two plane/plane mirrors (M1 and M2)

Figure 5.1 (preceding page) — Schematic of the experimental setup. A detailed description of the four
stages is given in the text. The first stage included preparing a local
oscillator beam and providing an input field to the second-harmonic
generator. In the second stage, the pump field for the parametric down-
conversion process was generated from the infrared light by frequency
doubling. The generation of squeezed vacuum states in a hemilithic
optical parametric amplifier (OPA) is described in stage three, and
in stage four the quadrature variances are measured with a balanced
homodyne detector.
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Figure 5.2 — CAD drawing of the mode cleaner cavities MC1064 and MC532. The geometric layout of
the spacer and the radius of curvature of M3 was equal for cavities operating at 1064 nm
and 532 nm. The cavity round-trip length is 42 cm and the resulting FSR≈ 714 MHz.
The reflectivities of the plane/plane mirrors for different polarization and wavelengths
lead to the following values for the Finesse F and the (FWHM) linewidth ν. MC1064:
Fp ≈ 280, νp ≈ 2.5 MHz, and Fs ≈ 4200, νp ≈ 170 kHz. MC532: Fp ≈ 560,
νp ≈ 1.7 MHz, and Fs ≈ 13400, νp ≈ 50 kHz. The spacer for MC1064 was made of
aluminum. The spacer for MC532 was made of invar.

was 1.1% (700 ppm) for p-polarized (s-polarized) light. The cavity had a round-trip
length of 42 cm (⇒ FSR ≈ 714 MHz) and had a design finesse of approximately 280
(4000) for p(s)-polarized light. The linewidth (FWHM) was 2.5 MHz for p-polarized
light and 180 kHz for s-polarized light. A Pound-Drever-Hall locking scheme [5.5]
was used to stably control the cavity to be resonant with the carrier frequency of
the laser. The error signal was derived by detecting the reflected light with a photo
diode (PD1064) and multiplying the output with an electronic local oscillator from
the same VCO. This demodulated signal needs to be low-pass filtered in order to
extract the DC-term, which constitutes the final error signal. An introduction to the
PDH-locking scheme can be found in [5.6]. To actuate the cavity length we used
split-feedback to the piezo-driven curved mirror (M3 in Fig. 5.2) and Peltier elements
that were attached to the aluminum spacer. This cavity was utilized to reduce phase
fluctuations and mode distortion on the transmitted light, thereby providing a local
oscillator (LO) beam of maximum quality. Another HWP-PBS combination in front
of MC1064 enabled accurate LO power adjustment. The power adjustment was done
in front of MC1064 in order to profit from the non-degeneracy of the polarization in
a three-mirror cavity. Hence, the polarization of the LO beam was maintained, even
though the PBS might have distorted the polarization when different power levels
were adjusted.
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5.2.2 Pump field preparation

The frequency conversion from 1064 nm to 532 nm was accomplished by means of
intra-cavity type I phase-matched second-harmonic generation (SHG). As illustrated
in Fig. 5.3, the frequency doubling cavity was designed as a hemilithic standing-wave
resonator, defined by a coupling mirror and the backside of the nonlinear medium
itself. The nonlinear medium was a 7% magnesium oxide doped lithium niobate
(MgO:LiNbO3) crystal. The doping of 7% results in a phase matching temperature
of approximately 60◦. The dimensions of the crystal measured 6.5×2×2.5 mm3.
The front and rear face of the crystal were equally curved with a radius of curvature
(ROC) of 8 mm. The coupling mirror had a radius of curvature of 25 mm, and had a
reflectivity of 90% at 1064 nm and a residual reflectivity (R< 2%) at 532 nm. The
rear side of the crystal was highly reflective (R≥99.95%) for both the fundamental
and harmonic wavelengths, whereas the crystal’s front side was AR coated (R<0.1%)
for the involved frequencies. The reflectivity of the coupling mirror was chosen
to be 90% for 1064 nm resulting in a finesse of ∼ 60. The refractive index of the
crystal was n=2.23 and the air gap between the crystal and the coupling mirror was
23 mm, resulting in a cavity waist size w0 ≈ 29µm. Within an oven design the
crystal was embedded between two copper plates with a Peltier element underneath.
The Peltier element was used to adjust the temperature of the crystal to the phase-
matching temperature. As the temperature sensor a negative temperature coefficient
thermistor (NTC) was placed inside a bore hole in the lower copper plate. A home-
made temperature controller compared the NTC signal with the set point to provide
the necessary feedback current for the Peltier element. Active stabilization of the
crystal temperature is important to minimize the phase mismatch and thereby enabling
efficient frequency conversion. Approximately 1.7 W at 1064 nm were available in

SHG

R= 90% @  1064
R <  2% @   532
roc = 25mm

Coupling mirror

R ≥ 99.97%@ 1064
R ≥ 99,95%@  532

AR @ 1064
AR @  532

MgO:LiNbO3 - crystal

Peltier elementRing piezo

Refractive index
n=2.23
Air-gap: 23mm
roc = 8mm 

6.5 mm
2.5 mm

2.0 mm

Figure 5.3 — Schematic layout and optical properties of the SHG and photo of a MgO:LiNbO3-crystal.
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Figure 5.4 — SHG transmission and corresponding error signal. Traces were recorded by scanning the
cavity length.

reflection of the partially transmissive mirror (Mp). This field was mode-matched to
the TEM00-mode of the SHG cavity. The photo detector (PDSHG) in transmission of
the SHG was used to monitor the efficiency of the mode-matching. The same detector
was used to demodulate the transmitted light at 122.9 MHz in order to derive the error
signal to implement a locking scheme to stabilize the SHG on resonance with the
1064 nm input field. Figure 5.4 shows the DC-signal and the corresponding error
signal as recorded with PDSHG when the cavity length was scanned over more than
one FSR. Approximately 1 W of second-harmonic radiation at 532 nm was available
when the SHG was locked. The 532 nm field was separated from the 1064 nm field on
transmission through a dichroic beam splitter (DBS). The pump field passed through an
optical diode to prevent the SHG from back reflected light, a combination of half-wave
plate and polarizing beam splitter for power adjustment, and was then mode-matched
to the TEM00-mode of a mode-cleaning cavity (MC532). The geometric layout of
MC532 is equal to the mode-cleaner used for 1064 nm. The optical properties of
both ring cavities are summarized in Fig. 5.2. The SHG process also up-converts
the phase-modulation that was initially imprinted on the 1064 nm light. Therefore, a
PDH error signal for MC532 could be generated by detecting the reflected light with a
photo diode (PD532) and demodulating at 122.9 MHz. For this locking loop, feedback
was solely applied to the piezo. The reason is the spacer being made of invar, a nickel
steel alloy that has an extremely low coefficient of thermal expansion. Therefore, a
temperature change would not cause the spacer to change its length. The locking loop
was designed such that MC532 could be stably locked with input powers ranging from
some milliwatts up to approximately 100 mW.
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OPA

R@1064 = 90%
R@ 532  = 20% 
rocin  = 25mm
rocout= 20mm

Coupling mirror

R@1064 
= 99.95 ±0.05 %
R@532 > 99,9% 

R@1064 < 0.1%
R@ 532  < 1%

PPKTP - crystal

Peltier elementRing piezo

Refractive index
n (1064)=1.8302
n (532)=1.8894 
Air-gap: 23mm
roc = 12mm 

9.3 mm

2 mm
1 mm

Figure 5.5 — Left: Schematic of the nonlinear cavity and summary of the basic optical properties of
the squeezed-light source. Right: photo of a PPKTP crystal on a copper plate. The copper
plate is part of an oven that is used to bring the crystal to its phase-matching temperature
of approximately 38◦.

5.2.3 Generation of squeezed vacuum states

The squeezed vacuum states at 1064 nm were generated by intra-cavity parametric
down-conversion. In contrast to the squeezed light source presented in the previous
chapter, the squeezing resonator was constructed in a half-monolithic (hemilithic)
configuration similar to the SHG design in Fig. 5.3. As the nonlinear medium a crystal
made of periodically poled potassium titanyl phosphate (PPKTP) was chosen. The
optical properties of the crystal and the basic optical layout of the OPA are summa-
rized in Fig. 5.5. Compared to MgO:LiNbO3, which was used for the monolithic
squeezer, PPKTP has a larger nonlinear coefficient and shows less absorption at 1064.
Both facts make PPKTP a very promising material to enable efficient squeezing.
In fact, the strongest squeezing reported so far (−12.7 dB) was demonstrated in an
experiment [5.7] where we used a monolithic PPKTP squeezer in order to reduce the
intra-cavity loss to a minimum.
The realization of the mode-matching of the green pump field into the squeezed light
resonator was non-trivial. Since the coupling mirror of the resonator merely had
a reflectivity of ∼20% for the 532 nm light, almost no reference cavity mode was
available. In such cases, the classical gain is often used as an indicator. Let us assume
that the cavity is locked and the auxiliary beam is detected with a photo diode in
transmission. When the pump field is injected, parts of it will down-convert and
interfere with the auxiliary field. As a consequence, when scanning the relative phase
(e.g. with a piezo actuated mirror) the voltage on the photo detector will oscillate
periodically. Optimizing these interference fringes in terms of the maximum voltage,
is equal to maximizing the mode overlap within the resonator. The classical gain
is the factor by which the voltage on the photo diode is amplified due to the pump
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field with respect to the initial voltage with no pump field. However, here we chose
another method to align the pump. When sufficient power is available for the auxiliary
beam, the squeezed light source can also be used as an SHG. The generated green
light was transmitted through the DBS and was then mode-matched into MC532.
The mode spectrum in (reverse) transmission of MC532 was detected with PDrev
when the flip-mirror #4 was set to reflect the light. In contrast to the pump field
adjustment via the classical gain, this method provided a means to accurately quantify
the mode-matching efficiency of the pump. It was determined to be 97%.

5.2.4 Detection of squeezed vacuum states

In order to minimize optical loss, the number of optical components needs to be kept
small. One dichroic beamsplitter (DBS) and two HR steering mirrors were used to
guide the squeezing into the homodyne detector beamsplitter (HBS). With only two
additional HR mirrors, the homodyne detector was set up in a triangular geometry as
illustrated in Fig 5.1. In total only three lenses were used in the squeezed light path:
L1 (ROC = 50 mm) to focus the divergent beam exiting from the squeezing resonator,
and L2 and L3 (both ROC = 25 mm) to focus the beam onto the homodyne photo
diodes. Custom-made InGaAs PIN diodes were used for our homodyne detector. They
had an active area of 300 µm in diameter and had no protective glass window. The
HBS splitting ratio is highly sensitive to the angle and could be precisely adjusted by
monitoring the DC-difference signal of the homodyne detector. Assuming identical
gain for the two diodes, bringing the DC-difference voltage to zero means that the
HBS is adjusted correctly at a 50% splitting ratio. Or vice versa: possible (small)
differences in the gain of the two photo diodes can be balanced by the appropriate
HBS tilt. The smaller the difference voltage, the better is the common mode rejection
(CMR) of the homodyne detector circuit. A large CMR is desirable because this
leads to a strong cancellation of possible technical noise present in the local oscillator
field. If all the correlated technical noise vanishes, the LO is quantum-noise limited at
all frequencies. In order to quantify the CMR one needs to compute the sum of the
voltages measured individually on each diode when the other is blocked and compare
it to the difference voltage. This could only be done at a LO power that did not saturate
the single detectors. Such a measurement typically resulted in values ∼8 V for the
sum and ∼1 mV for the difference, such that

CMR = 10 log10

�
1

8000

�
≈ −40 dB . (5.1)

The performance of the homodyne detector was tested by measuring the output noise
for different powers of the LO. An increase or decrease of the power by a factor of
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2 resulted in a 3 dB increase or decrease of the measured noise level, which verified
the homodyne detector’s linearity and indicated that LO was quantum noise limited.
In squeezing experiments the homodyne visibility (VIS), that is the interference con-
trast between the local oscillator and the squeezed (signal) field on the 50/50 beam
splitter, is crucial because any mode mismatch quadratically translates into optical
loss. To adjust the homodyne visibility a bright beam was needed that resembled
the squeezed vacuum output of the OPA and could be interfered with the LO. To
this end the auxiliary beam (see Fig. 5.1) was matched to the TEM00 mode through
the HR-coated rear surface of the OPA. When flip-mirror #3 was unflipped, a photo
diode (PDOPA) detected the reflected light and by demodulating at 122.9 MHz, an
appropriate PDH-error signal was produced to lock the OPA length. The transmit-
ted light propagated congruent with the mode to be squeezed. For high precision
alignment of the mode-overlap we used the diagnostic mode cleaner MCD (another
ring-cavity similar to the MC-cavities) as a reference. First, the auxiliary beam was
guided via flip-mirror #2 towards MCD, whose transmission spectrum was monitored
with PDMCD. The lens (L1) in the squeezing path was positioned so that the resulting
focus exactly met the waist size of MCD. The mode-matching was done with the
steering mirrors M1 and M2. A mode-matching of > 99.7% was obtained. Second,
using the steering mirrors M3 and M4, the local oscillator beam was aligned to match
the mode defined by MCD with almost equal efficiency. Flip-mirror #1 guided the
light on a monitoring photo detector PDvis that was used to measure the interference
fringes when the relative phase between LO and auxiliary beam was scanned. By
carefully adjusting the power of LO and auxiliary beam to be equal, a visibility of as
high as 99.4±0.1% was achieved.

5.3 Observation of 12.3 dB squeezing at 1064 nm

During data taking the auxiliary field was blocked. This ensured true vacuum squeez-
ing and avoided the degradation of the squeezing level due to excess noise from
the auxiliary beam. To keep the squeezed light source on resonance, the cavity
length was tuned manually. This was accomplished by adjusting the offset of the
HV-amplifier connected to the piezo that moved the coupling mirror. As an indi-
cator for the squeezed light source being on resonance, the signal on the spectrum
analyzer was used. The detected quadrature is continuously rotated from squeezing
to anti-squeezing when scanning the phase of the green pump field by moving the
phase shifter (mirror Mθ) in front of MC532. The cavity could be precisely adjusted
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Figure 5.6 — 1064 nm-squeezed light from the hemilithic squeezed light source. The squeezer was
pumped with 70 mW at 532 nm. The LO power was 18 mW. All traces were recorded in
zero-span mode at 5 MHz sideband frequency and with RBW = 300 kHz and VBW =
300 Hz. Each trace was fitted for its means value by a simple linear regression. The
obtained mean values are given by the solid lines with their corresponding values specified
on the right. The squeezing was 12.32 ± 0.25 dB below the vacuum noise; the anti-
squeezing was 18.89 ± 0.25 dB above the vacuum noise. The detector dark noise was
almost 25 dB below the vacuum level and was not subtracted from the data.

on resonance by maximizing the anti-squeezing. To optimize the gain, the crystal
temperature was also accurately tuned to its optimum.
At a sideband frequency of 5 MHz, a pump power of 70 mW yielded maximum
squeezing. The corresponding data as collected by the spectrum analyzer are depicted
in Fig. 5.6. The traces were recorded as zero-span measurements with a resolution
bandwidth (RBW) of 300 kHz and video bandwidth (VBW) of 300 Hz. The vacuum
noise level was measured when only the LO input to the HBS was opened. The
corresponding LO power was ∼ 18 mW. The anti-squeezed vacuum noise and the
squeezed vacuum noise were measured by injecting the output of the squeezed light
into the signal port. Again, the phase of the pump was used to control the quadrature
angle. The detector dark noise was measured when both, LO and signal input were
blocked. It was approximately 25 dB below the vacuum noise and was not subtracted
from the data. Hence, the resulting squeezing value of 12.3 dB is a direct observation.
The anti-squeezing was 18.9 dB above vacuum noise. In order to get more detailed
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Figure 5.7 — Anti-squeezing and squeezing as a function of the pump power. The measurement
frequency was 5 MHz. All points were obtained from an average of two single traces
of the vacuum noise, the squeezing and the anti-squeezing measured in zero-span mode
with RBW = 300 kHz and VBW = 300 Hz. Subsequently, squeezing and anti-squeezing
were normalized to the vacuum level. The detector dark noise is still included in the
data. Hence all values represent direct observations. The uncertainty in the pump power
originated from the 3% uncertainty of the power meter; the vertical error-bars correspond
to the standard deviation (±0.25 dB) of the linear regression.

information on the performance of the squeezer, such zero-span measurements were
conducted for various pump power values. Measured in transmission of MC532, these
ranged from 4 mW up to 76 mW. The results are plotted in Fig. 5.7; the numeric values
as they were used in the plot are summarized in Table 5.1. Each data point is an
average of two individually measured traces, hence the value of maximum squeezing
is slightly less compared to the single trace above.

5.4 Experimental data vs. theory

The model introduced in Sec. 3.4 can be used to fit measurement data for the total
detection efficiency and the phase noise. This model does not include a term that
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Pump power [mW] Anti-sqz [dB] Sqz [dB] σfit[dB]
4 ± 0.12 3.46 -3.36 0.25
8 ± 0.24 4.71 -4.44 0.25
12 ± 0.36 6.06 -5.51 0.25
18 ± 0.54 7.38 -6.92 0.25
24 ± 0.72 9.29 -8.22 0.25
30 ± 0.90 10.55 -8.96 0.25
36 ± 1.08 11.83 -9.74 0.25
43 ± 1.29 13.21 -10.49 0.25
50 ± 1.50 14.62 -11.17 0.25
57 ± 1.71 16.51 -11.83 0.25
65 ± 1.95 17.34 -11.97 0.25
70 ± 2.10 18.92 -12.30 0.25
76 ± 2.28 19.72 -12.31 0.25

Table 5.1 — Measurement data: Anti-squeezing and squeezing vs. pump power. The error in the pump
power is ±3% due to the uncertainty of the power meter. The error of ±0.25 dB in the
anti-squeezing and squeezing values is the standard deviation σfit as given by the linear fit.

resembles the contribution of electronic detector noise. Therefore, the measurement
data need to be corrected by subtraction of the dark noise. Moreover, the pump
power needs to be normalized with respect to the efficiency of the mode matching
between the pump field and the TEM00-mode of the squeezing resonator. This will
effect the resulting threshold power. In order to correct the data, first the dark noise
was subtracted from every trace (anti-squeezing, vacuum, and squeezing) before
normalizing all traces to the (new) vacuum. Second, the pump power was scaled by
the 97% mode matching efficiency. The corrected data are summarized in Table 5.2.

5.4.1 Direct measurement of the linewidth and free spectral range

The frequency dependence of the model is given by the ratio of the measurement
frequency and the cavity’s half-linewidth. The linewidth of the squeezing resonator is
usually inferred from the transmission of the coupling mirror, the intra-cavity loss,
the transmission of the HR-mirror and the optical length of the cavity. All of these
values are difficult to assess. Therefore, a second laser, referred to as the probe laser,
was used to directly determine the linewidth and the free spectral range (FSR) of the
squeezed-light source. The modification that had to be realized in order to conduct the
measurement are shown in Fig. 5.8. The probe laser was overlapped with the auxiliary



5.4 EXPERIMENTAL DATA VS. THEORY 85

Pump power [mW] Anti-sqz [dB] Sqz [dB] σfit[dB]
3.9 3.46 -3.37 0.25
7.8 4.72 -4.47 0.25

11.6 6.07 -5.55 0.25
17.5 7.39 -6.98 0.25
23.3 9.30 -8.30 0.25
29.1 10.56 -9.07 0.25
34.9 11.84 -9.87 0.25
41.7 13.22 -10.64 0.25
48.5 14.64 -11.35 0.25
55.3 16.53 -12.04 0.25
63.1 17.36 -12.19 0.25
67.9 18.93 -12.54 0.25
73.7 19.74 -12.55 0.25

Table 5.2 — Corrected measurement data: Anti-squeezing and squeezing vs. pump power. Here,
electronic detector dark noise was subtracted from the anti-squeezing and the squeezing
values. The pump power mean values were corrected for the mode matching efficiency of
97%. The error in the pump power still is ±3%.

beam on a partially transmissive mirror (M1) and was hence also mode-matched to
the fundamental mode of the cavity. A second partially transmissive mirror (M2) was
used to split the two beams in one part that bypassed the cavity and one part that was
transmitted through the cavity. By means of the flip-mirrors, both beams (bypassed and
transmitted) could subsequently be detected with the same photo detector (PDGHz).
This detector had a bandwidth >4 GHz and was connected to a spectrum analyzer. As
before, the length of the cavity was stabilized by means of the auxiliary beam. To
measure the linewidth the transmitted light was detected. The cavity transfer function
was then readily obtained by operating the spectrum analyzer in ‘max-hold’mode and
scanning the probe laser frequency. The frequency adjustment was accomplished by
actuating on the laser’s built-in piezo which changed the output frequency by 1 MHz
per applied volt. A typical result is displayed in Fig. 5.9. The peaks correspond to
the beat signal between the carrier field and the probe laser. By changing the probe
laser detuning, a frequency range from 2 MHz up to 110 MHz could be mapped out.
Trace (a) is the spectrum analyzer signal as recorded in transmission, and thus is
the amplitude transfer function of the cavity. The line width can then be obtained
by fitting a pole of the form 1/(1 + i(x/ fc)) to the data, where fc is the cutoff
frequency which is equal to the half linewidth of the cavity. The spectral response of
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Figure 5.8 — Schematic of the experimental setup for direct measurement of the cavity linewidth. To
overlap the probe laser with the auxiliary (carrier) beam, the mirror M1 was incorporated.

-80

-70

-60

-50

-40

-30

-20

 10  20  30  40  50  60  70  80  90  100  110

N
oi

se
 P

ow
er

 [d
Bm

]

Frequency [MHz]

(a)

(b)

Figure 5.9 — Measurement of the cavity linewidth. The peaks are the beat signal between the probe
laser and the main laser. Trace (a) is the transfer function detected in transmission of the
cavity. Trace (b) was recorded when the cavity was bypassed.
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Figure 5.10 — Measurement of the free spectral range of the squeezing cavity. The peaks are the
beat signal between the probe laser and the main laser. The detuning corresponding to
one FSR was determined to be 3.607 GHz, 3.6098 GHz, 3.6102 GHz, 3.609 GHz, and
3.6115 GHz.

the bypassed signal, that is the pure beat signal, is shown as trace (b). As it is flat up
to a frequency of 80 MHz, this frequency was chosen as the maximal frequency for
the fit. A total of nine measurements were made. The resulting half-linewidth was
calculated to be ν/2 = 28.996 ± 0.534 MHz. Similarly, the FSR of the squeezing
resonator could be determined. To this end, the cavity length was periodically scanned
and the transmitted intensity was monitored with the second photo diode (PDDC)
resulting in an oscilloscope image similar to Fig. 5.4. The beat frequency could now
be controlled to be exactly zero by observing the transmission peak of the probe
laser and the spectrum analyzer signal simultaneously. From degeneracy, the probe
laser was then shifted until the transmission peak appeared exactly at one FSR on the
oscilloscope. At that particular moment the spectrum analyzer signal was recorded.
31 measurements of that kind were conducted, yielding a value for the free spectral
range of FSR = 3.6104± 0.0044 GHz. One set of six such measurements in shown
in Fig. 5.10. This leads to a cavity finesse of F = FSR/ν ≈ 62.3 ± 1.2.
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Figure 5.11 — Squeezing and anti-squeezing as a function of the pump power. The corrected data were
fitted for the total detection efficiency η, the threshold power Pth and the phase noise
θfluc. The best fit was obtained with η = 0.96, Pth = 89.2 mW, and θfluc = 0.4◦.

5.4.2 Deriving the detection efficiency via the level of squeezing and
anti-squeezing

The obtained value of 29 MHz for the linewidth can now be used in the model,
Eqs. (3.62)–(3.65), by setting ν/2 = 29 MHz. Figure 5.11 illustrates the result from
fitting the data as given in table 5.2 for the total detection efficiency, the phase noise,
and the threshold power. Dashed lines are the anti-squeezing and squeezing values as
predicted by the model when inserting the resulting parameters of the fit: η = 0.96,
Pth = 89.2 mW, and θfluc = 0.4◦. As the result, we find the total detection efficiency
of our system to be 96%.

5.4.3 Loss analysis

As mentioned above, the total detection efficiency is calculated as the product of
escape efficiency ηesc, propagation efficiency ηprop, homodyne efficiency ηhomo, and
the quantum efficiency ηqe. A detailed analysis was carried out to determine each of
the efficiencies separately.
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Homodyne efficiency

The homodyne efficiency, which is the visibility squared, can easily be determined
with high accuracy. As already stated earlier, the visibility was measured to be VIS =
99.4±0.1%. This translates into a homodyne efficiency ηhomo = VIS2 = 98.8 ± 0.2.

Propagation efficiency

To investigate the propagation loss, the transmitting components were investigated in
more detail. In an independent measurement, the residual reflection due to each of the
lenses was determined to be smaller than 0.05%. Only three lenses were used, one to
refocus the beam exiting the squeezed-light source; and one in front of each of the
homodyne detector photo diodes. Including the possible absorption in the fused-silica
lenses, the total loss due to a single lens is estimated to be smaller 0.1%. The residual
reflection at the AR coating of the 50/50 beamsplitter was measured to be smaller than
0.02%. A total of four HR steering mirrors and one dichroic beamsplitter was used in
the squeezed-light path. All of those mirrors were super-polished and had a reflectivity
greater 99.995%. The last item to consider is the the coupling mirror of squeezing
resonator. It was 6 mm thick half-inch substrate made of generic fused-silica. The AR
coating and the absorption are estimated to contribute another 0.1%–0.2% of optical
loss. The product of all these efficiencies yields a minimum propagation efficiency of
ηprop ≈ 99.6%.

Escape efficiency

The escape efficiency, as given by Eq. (3.48), is determined by the reflection of the
coupling mirror and the intra-cavity round-trip loss. The round-trip loss includes the
residual reflection of the crystal’s AR coating, the loss due to absorption and scattering,
and the transmission through the HR coating on the crystal’s rear side. The finesse of
the cavity was determined to F = FSR/ν ≈ 62.3 ± 1.2. From this one can infer an
effective reflectivity, which comprises all losses, of 90.6±0.2%. The HR was specified
to 99.95±0.05% by the manufacturer. By using the HR side as the coupling mirror
and detecting the reflection pattern when scanning the cavity length, the reflectivity
was determined to be 99.96% by comparison with a Finesse-simulation [5.9]. In [5.10]
the absorption within a PPKTP crystal similar to the one used here was determined
to be 1.2× 10−3 m−1. Thus, the intra-cavity loss is governed by the quality of the
AR coating. Assuming the coating to be perfect, the coupling mirror transmission
would be 9.36±0.2%, which yields a maximum escape efficiency of ηesc,max ≈ 99.6.
However, if the AR coating has a residual reflectivity of 0.05%, this adds another
0.1% to the roundtrip loss and the escape efficiency decreases to ηesc ≈ 98.5.
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5.4.4 Quantum efficiency of the photo diodes

It is now possible to obtain the quantum efficiency of the photo detectors by dividing
the total detection efficiency η = 96% by the product of the efficiencies obtained
above. First, an absolute lower limit for the quantum efficiency can be derived by
setting the escape efficiency equal to the maximum escape efficiency. This yields
ηqe,min = η/(ηhomoηpropηesc,max) = 0.98 ± 0.002. Using the escape efficiency of
98.5%, the obtained lower limit for the quantum efficiency is ηqe = 0.99 ± 0.002.

5.5 Conclusion

From the observation of squeezing levels of up to 12.3 dB, a total detection efficiency
of 96% was determined. In order to derive a value for the quantum efficiency of
the photo diodes used in the homodyne detector, the possible sources of loss were
analyzed in detail. It was found that 1.6% can be attributed to the imperfect homodyne
visibility and the propagation loss. The biggest uncertainty is given by the loss due
to the escape efficiency of the squeezed light source. Assuming the least possible
amount of loss, yielded the lower limit of 98 ± 0.2% for the quantum efficiency. A
residual reflection at the AR coating of 0.05% was assumed to illustrate the effect of
additional intra-cavity loss. The new resulting lower limit for the quantum efficiency
was 99 ± 0.2%. To infer the escape efficiency more precisely it is planned to set up
an experiment which provides more knowledge on the value of round-trip loss. One
means to realize this, is to incorporate the crystal into a high-finesse cavity. In this
case, the impedance matching is much more sensitive to the intra-cavity losses and
deviations form the nominal values will be more prominent.
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CHAPTER 6
Squeezed light at 1550 nm

We report on the generation of cw squeezed vacuum states of light at
the telecommunication wavelength of 1550 nm. The squeezed vacuum
states were produced by type I optical parametric amplification in a
standing-wave cavity built around a periodically poled potassium titanyl
phosphate crystal. A nonclassical noise reduction of 5.3 dB below the
shot noise was observed by means of balanced homodyne detection.

Originally published as M. Mehmet et al. Opt. Lett. 34, 1060–1062 (2009).

6.1 Introduction

Squeezed states of light were proposed to improve the sensitivity of laser interferom-
eters for the detection of gravitational waves (GWs) [6.1] and to establish quantum
communication channels [6.2], e.g., for quantum key distribution [6.3,6.4]. For any
application of squeezed states of light, a low decoherence level is required, i.e., optical
loss and thermally driven noise sources need to be minimized. In this respect the laser
wavelength of 1550 nm has emerged as a very interesting topic. First, at this wave-
length conventional silica-based telecommunication glass fibers show low optical loss
and can be used for the transmission of squeezed states. Losses of as low as 0.2 dB/km
were already measured in the late 1970s [6.5], and ultralow loss (ULL) fibers with
an attenuation of 0.17–0.18 dB/km are commercially available today [6.6]. Second,
at this wavelength, crystalline silicon constitutes an excellent test mass material for
interferometric applications with low optical loss and high mechanical quality [6.7].
GW detectors require the generation of squeezed states in a single spatiotemporal
mode of cw light, whereas quantum channels can also be established in the pulsed
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laser regime. In previous years squeezed states at wavelengths beyond 1.5 µm were
generated mainly in the latter regime, and various degrees of squeezing have been
observed; for example 6.8 dB at 1.5µm [6.8], 3.2 dB at 1.535 µm [6.9], and 1.7 dB at
1.55 µm [6.10]. Recently, 1560 nm cw-squeezed vacuum states showing a nonclassical
noise suppression of 2.4 dB were generated by an optical parametric oscillator based
on periodically poled LiNbO3 [6.11].
Here, we report on the generation of cw squeezed vacuum states at a wavelength of
1550 nm based on periodically poled potassium titanyl phosphate (PPKTP). Squeezing
of 5.3 dB was observed by balanced homodyne detection. The visibility of the mode
matching between the squeezed field and a spatially filtered local oscillator beam was
measured to be 99%, thereby proving a high spatial mode quality of the squeezed
states.

6.2 Experimental setup

The light source in our setup, as schematically depicted in Fig. 6.1, was a high-power
erbium microfiber laser providing about 1.6 W of cw radiation at 1550 nm. The laser
beam was first sent through a ring mode cleaner (MC) cavity with a finesse of 350
and a linewidth of 1.2 MHz for p-polarized light, thus reducing mode distortions of
the laser’s TEM00 spatial mode profile as well as its phase and amplitude fluctuations
at frequencies above the MC linewidth. Approximately 10 mW of the transmitted
light served as a local oscillator (LO) for balanced homodyne detection, while the
remaining power of about one 1 W was used for second-harmonic generation (SHG)
to provide the frequency-doubled pump field for the optical parametric amplification
(OPA). Both SHG and OPA were realized as single-ended standing-wave cavities
formed by two mirrors and the nonlinear crystal in between. In both cavities we em-
ployed a PPKTP crystal of dimension 10 mm×2 mm×1 mm with flat, antireflection
(AR) coated front and end faces. Inside a polyoxymethylene (POM) housing, each
crystal is embedded in a copper fixture mounted on a Peltier element. Together with
an integrated thermistor this enabled us to actively fine tune the crystal temperature
for efficient nonlinear coupling around 55 ◦C. A highly reflective (HR) mirror with
a power reflectivity r >99.98% for both the fundamental and second harmonic field
faces one AR side of the crystal, and a piezodriven outcoupling mirror was mounted on
the opposite side. The OPA outcoupling mirror had 90% and 20% power reflectivity
for 1550 and 775 nm, respectively. For the SHG we also used 90% reflectivity for the
fundamental but only a marginal reflectivity for the second harmonic. The mirrors
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Figure 6.1 — Schematic of the setup. After being sent through a MC cavity, one part of the light is used
as a control beam for the OPA and the local oscillator for balanced homodyne detection.
The other part is frequency doubled in a SHG cavity to provide the 775 nm field to pump
the OPA. The squeezed field leaves the OPA in the counter direction to the pump and
is measured with the homodyne detector. PBS, polarizing beam splitter; DBS, dichroic
beam splitter; HBS, homodyne beam splitter; MC, mode cleaner cavity; PD, photo diode;
EOM, electro-optical modulator.

and the ring-piezo were mounted inside aluminum blocks that were rigidly attached
to the POM housing. Considering the refractive index of n=1.816 for PPKTP at
1550 nm and the spacing of 20 mm between crystal end faces and mirrors, the cavity
waist size w0, free spectral range FSR, and linewidth (FWHM) were calculated to
be w0=60 µm, FSR=2.6 GHz, and FWHM= 43 MHz, respectively. When the SHG
cavity was locked on resonance it produced up to 800 mW at 775 nm, which was
separated from the fundamental by a dichroic beam splitter (DBS). The harmonic
beam passed a combination of a half-wave plate and a polarizing beam splitter for
pump power adjustment, a Faraday isolator to prevent the SHG from retroreflected
light, and an electro-optical modulator (EOM), and was mode matched to the TEM00
mode of another MC cavity (MC775) with characteristics equal to those of MC1550.
The transmitted beam was then carefully aligned to match the OPA-cavity TEM00
mode. The length control of the cavities in our setup was accomplished by means
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of a modulation-demodulation (Pound-Drever-Hall) scheme utilizing custom-made
EOMs and matched photodetectors. Details on the particular implementation can
be found in Fig. 6.1. The squeezed states left the OPA in the counter direction to
the second-harmonic pump, where another DBS separated the two of them. The
measurement of field quadrature variances was accomplished by means of balanced
homodyne detection, for which the squeezed field was subsequently made to interfere
with the LO on a 50/50-beam splitter. A piezoactuated steering mirror was employed
to shift the LO phase relative to the squeezed field. To adjust the visibility we injected
a control beam through the HR back side of the OPA. This control beam was matched
to o the OPA TEM00 mode. The light that was transmitted propagated congruent
to the mode to be squeezed and, by locking the OPA cavity length, could be used
to overlap with the LO on the homodyne beam splitter (HBS). We reached a fringe
visibility of 99.0%. The two outputs of the 50/50-beam splitter were each focused
down and detected by a pair of Epitaxx ETX-500 photodiodes. The difference current
was fed to a spectrum analyzer.

6.3 Observation of 5.3 dB squeezing

To verify our detector’s linearity we took measurements of the vacuum noise power
against the incident LO power at a sideband frequency of 5 MHz, as depicted in
Fig. 6.2. Changing the LO power by a factor of two entailed a 3 dB shift of the
corresponding noise trace, showing that the detector was quantum noise limited and
operated linearly in the measurement regime.
We found the optimum pump power for our OPA to be 300 mW, yielding a noise

reduction of 5.3 dB in the squeezed quadrature. This entailed an increase of 9.8 dB
in the antisqueezed quadrature. To switch between the two, a piezoactuated mirror
was used to phase shift the LO with respect to the squeezed field. The measured
noise curves are depicted in Fig. 6.3. Trace (a) is the measured vacuum noise when
the signal port of the HBS is blocked. The associated power of the incident LO was
approximately 4 mW. Upon opening the signal port and injecting the squeezed field of
the resonant OPA, trace (d) was recorded by linearly sweeping the LO phase, thereby
changing the measured quadrature from antisqueezed to squeezed values. By holding
the homodyne angle fixed, continuous traces of the squeezing (b) and antisqueezing
(c) were recorded. All traces were recorded at a sideband frequency of 5 MHz and
are, apart from (d), averaged twice. The contribution of electronic dark noise of our
detector was negligible (18 dB below the shot noise) and was not subtracted from the
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measured data.

6.4 Conclusion

The observed squeezed noise power was 5.3 dB below shot noise; however, the ob-
served antisqueezing was about 10 dB above shot noise, revealing an uncertainty
product of about a factor of 3 above the minimum uncertainty. With an increased
pump power we observed further increased antisqueezing, but a constant squeezing
level. Following the argumentation in [6.12] this observation implies that our measure-
ment was not limited by phase noise [6.13, 6.14] but by optical losses. With 0.25%
residual reflectance of our crystal AR coatings and 0.1 %/cm absorption loss within
the crystal we estimate the escape efficiency of the OPA cavity to be 90%. Together
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Figure 6.3 — Noise powers of the squeezed light emitted by the OPA at a sideband frequency of 5 MHz
normalized to the shot-noise level [trace (a)]. All traces were recorded with a resolution
bandwidth of 300 kHz and a video bandwidth of 300 Hz. Squeezing (b) and antisqueezing
(c) curves were averaged twice. Curve (d) was recorded by linearly sweeping the LO phase,
which continuously rotated the measured quadrature from antisqueezing to squeezing.

with a propagation loss of approximately 3%, we estimate the quantum efficiency of
our photodetectors to be 90%±4%. This yields a total of 23%±4% optical loss that
degrades the squeezing once it is produced.
We note that PPKTP has already been successfully applied for the generation of
squeezed and entangled states at wavelengths between 532 and 1064 nm [6.14–6.18]
with the maximum squeezing strength of 9 dB observed at 860 nm in [6.14]. The
strongest squeezing to date was reported in [6.12], where a MgO:LiNbO3 crystal
enabled the observation of a noise reduction of 10 dB below shot noise at 1064 nm.
However, at 1550 nm the phase- matching condition of this material is uncomfortably
high, and temperature gradients would significantly complicate the stable operation of
a squeezed-light source. This makes PPKTP the preferable material for the generation
of squeezed light at 1550 nm, and we expect that, by utilizing better photodiodes
and an OPA optimized for better escape efficiency, squeezing levels of 10 dB or even
higher could be observed in future.
In conclusion, we have demonstrated strong squeezing at the telecommunication
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wavelength of 1550 nm. Our experiment proved that PPKTP is an effective material
for the generation of squeezed states at this wavelength. The spatiotemporal mode
of the squeezed field had a high purity, ensuring the compatibility with quantum
memories and quantum repeaters. By implementing a control scheme according
to [6.19] squeezing in the detection band of current GW detectors can be realized.
These detectors are operated at 1064 nm [6.17]; however, future detector designs
might consider silicon as test mass material and the laser wavelength of 1550 nm to
reduce the thermal noise floor.
The authors acknowledge the German Research Foundation and the Centre for Quan-
tum Engineering and Space-Time Research QUEST for financial support.
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CHAPTER 7
A quantum-enhanced fiber

Sagnac interferometer

The injection of squeezed light can be used to improve the sensitivity of
an interferometer beyond the limit imposed by the zero point fluctuation
of the electromagnetic field. Here, we report on the realization of
such a quantum enhanced interferometer with a fiber-based Sagnac
topology. Continuous wave squeezed states at 1550 nm with a noise
reduction of 6.4 dB below shot noise were produced by type I optical
parametric amplification and subsequently injected into the dark port of
the interferometer. A reduction of the interferometer shot noise by 4.5
dB was observed, and the enhancement of the signal-to-noise ratio for a
phase modulation signal generated within the interferometer could be
demonstrated. We achieved a 95% fiber transmission for the squeezed
states, which suggests that corresponding fiber-based quantum metrology
and communication systems are feasible.

Originally published as M. Mehmet et al. Opt. Lett. 35, 1665–1667 (2010).

7.1 Introduction

Fiber Sagnac interferometers are used as optical rotation sensors and fiber optic gyro-
scopes [7.1], but their versatility has led to numerous further application that include,
among others, fiber loop mirrors [7.2] serving as high reflectors, fiber optic current
sensors [7.3], and applications in the automotive industry [7.4].
For a given geometry and laser power, the sensitivity of any such optical measurement
device is fundamentally limited by the so-called shot noise. For uncorrelated photons,

101



102 A QUANTUM-ENHANCED FIBER SAGNAC INTERFEROMETER 7.1

i.e., for coherent states of light, the smallest measurable phase change is given by
∆φ ≥ 1/

√
N, where N is the photon number per measurement time. Consequently,

the sensors’ performance can be improved by increasing the laser power. However,
excess phase and polarization noise stemming from photon-phonon interactions like
stimulated Raman scattering [7.5], stimulated Brillouin scattering, and guided acoustic
wave Brillouin scattering [7.6] constrain the maximum transmittable power through
conventional all-silica fibers. An arbitrary increase in laser power to improve the
sensitivity is therefore not possible.
In 1981, Cave [7.7] envisaged a way how to enable the measurement beyond the
shot-noise limit (SNL). The quantum-mechanical approach to the interferometer re-
sponse (to a phase signal) showed that all the measurement noise comes from only one
quadrature of the vacuum field entering the interferometer through the unused port of
its 50:50 beam splitter. Caves’ idea was to replace the vacuum field by a squeezed
field that exhibits less noise in this quadrature, thereby reducing the quantum noise
and hence increasing the signal to shot noise ratio. The two quadrature components
of the electromagnetic field are the amplitude and phase quadrature, X̂1 and X̂2,
respectively. Their variances are restricted by an uncertainty relation of the form
∆2X̂1 · ∆2X̂2 ≥ 1. The minimum uncertainty state with symmetrically distributed
noise ∆2X̂1 = ∆2X̂2 = 1 corresponds to the field’s ground state and the so-called
vacuum field. A state with a quadrature variance below unity is called a squeezed
state, and the variance suppression factor is called the squeezing factor. Following
Caves’ suggestions several table top experiments demonstrated quantum enhanced
Mach-Zehnder [7.8], polarization [7.9], and Michelson interferometers [7.10–7.12].
In all of these experiments freely propagating continuous-wave (cw) laser beams were
used. Generally, a critical issue in the quantum enhancement of interferometers is
the optical loss introduced by the interferometer, because loss is a decoherence effect
and degrades the squeezing factor. A quantum enhanced fiber-based interferometer is
more difficult to realize because of absorption and scattering in the optical fiber. Also,
the mode matching of a squeezed field into a fiber is critical and should be close to
perfect. The same is true for the quantum efficiency of the final photoelectric detection.
For instance, an optical loss of 20% deminishes a squeezing factor from 10 to 3.6; see,
for example [7.13]. In the pulsed laser regime squeezed states of light are produced by
using the optical Kerr effect in fibers. Unfortunately, the high laser intensities required
set Raman-induced limits to efficient squeezing in optical fibers [7.5]. Squeezed states
of cw laser radiation are efficiently produced by parametric downconversion in optical
resonators containing a second-order nonlinear crystal. Squeezing factors greater
than ten have been realized recently at the laser wavelength of 1064 nm [7.13, 7.14].
Also recently, squeezed states of cw laser light at 1550 nm could be produced [7.15].
This wavelength is in the c-band transmission window of standard telecommunication
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Figure 7.1 — Schematic diagram of the optical setup. The experiment is driven by a fiber laser emit-
ting 1550 nm radiation. SHG, second-harmonic generator producing the 775 nm pump
field; FCs, filter cavities for spatial mode cleaning; PZT, piezo-electric transducer; DBS,
dichroic beam splitter; OPA, optical parametric amplifier generating squeezed states;
LO, local oscillator beam of the balanced homodyne detector, BHD. For characterization
the squeezed field was sent via path 1 onto BHD1. To quantum enhance the Sagnac
interferometer the squeezing was sent along path 2 and was injected into the dark signal
port by using a Faraday rotator, half-wave plate, and a polarizing beam splitter (PBS).
EOM, electro optic modulator to generate a phase modulation signal inside the Sagnac
interferometer. The interferometer signal and the squeezed quantum noise was detected
with BHD2.

fibers, where attenuation and dispersion effects are comparatively weak.
In this Letter, we report the realization of a fiber Sagnac interferometer with a sensi-
tivity beyond its SNL. Squeezed light from a nonlinear resonator was injected into the
fiber interferometer. The interferometer signal and the squeezed quantum noise were
detected by a high-quantum-efficiency balanced homodyne detector. A nonclassical
sensitivity improvement of 4.5 dB was achieved.
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7.2 Experimental setup

Figure 7.1 illustrates our experimental setup. A 10 m fiber Sagnac interferometer was
operated with a cw erbium microfiber laser at 1550 nm. The two output fields of the
50:50 Sagnac beam splitter (SBS) were carefully mode matched into the ends of a 10 m
polarization maintaining PANDA-type fiber with 10.5 µm mode field diameter and
numerical aperture of 0.12. In addition to two lenses in each arm of the interferometer,
aspheric lenses with f = 11 mm were used to compensate for the strong divergence
due to the fiber. The fiber had antireflective (AR) coatings on its end faces to minimize
coupling loss for the traversing light. The single-path transmission efficiency was
determined to be 95(±1)% by a relative power measurement with a single photo
detector in front of and behind the fiber.
For the generation of squeezed light at 1550 nm we employed type I parametric
downconversion (optical parametric amplification) in a 2 mm × 1 mm × 10 mm
periodically poled potassium titanyl phosphate (PPKTP) crystal inside a single-ended
standing wave cavity with coupling-mirror power reflectivity of 90% and 20% for
the fundamental and harmonic field, respectively. The crystal had AR coatings on its
end faces with residual reflection ≈ 0.25%, which together with 0.1%/cm absorption
loss within the crystal and the mirror transmittance of 10% resulted in 90% escape
efficiency. The second-harmonic pump field at 775 nm was generated in another
nonlinear standing wave cavity. For details on the squeezed light generation at
1550 nm we refer to [7.15].

7.3 Characterization of the squeezed states

The squeezed field from the optical parametric amplifier (OPA) cavity was guided by
a flip mirror into a balanced homodyne detector (BHD1) for characterization (path
1 in Fig. 7.1). The visibility with the homodyning local oscillator (LO) was 0.994.
By changing the relative phase θ between LO and signal beam with a piezo actuated
mirror the measured quadrature X(θ) = cos(θ)X1 + sin(θ)X2 was determined.
The collected data are shown in Fig. 7.2. The vacuum (shot) noise reference level
was measured with the signal input blocked. When the signal port was opened and
the phase angle was set to detect the squeezed quadrature [X(0) = X1], a noise
reduction of 6.4 dB below the shot noise was obtained. By switching to the orthogonal
quadrature [X(π/2) = X2] the corresponding antisqueezing of 11.1 dB above shot
noise was recorded. These results can be well explained by a simple model assuming
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Figure 7.2 — Noise powers of the squeezed states initially emitted by the OPA at a sideband frequency
of 5 MHz normalized to the shot-noise level. Shot-noise, squeezed noise, and antisqueezed
noise were averaged twice. X(θ) was recorded by linearly sweeping the LO phase. All
traces were recorded with a resolution bandwidth of 300 kHz and a video bandwidth of
300 Hz; the detector dark noise (20 dB below shot noise) was not subtracted.

16% optical loss, zero phase noise, and an initially pure state with 11.8 dB of squeezing
(solid lines in Fig. 7.2). In our experiment photons were lost owing to the imperfect
escape efficiency [10(±3)%], during propagation [1(±0.5)%], imperfect homodyne
visibility (1.2%), and due to the limited quantum efficiency of our custom-made
photodiodes which we infer to be about 96(±3)%. Obviously the measured squeezing
strength was primarily limited by loss due to the imperfect AR coatings on the PPKTP
crystal itself.

7.4 Squeezed states in a Sagnac interferometer

After the characterization of the field produced by the OPA the squeezed mode was
guided via path 2 (Fig. 7.1) and was precisely modematched to the (dark) signal port
mode of the Sagnac interferometer. To generate a phase-modulation signal inside
the interferometer a broadband electro-optic modulator (EOM) that could be driven
by a signal generator was placed close to the Sagnac beam splitter. The signal at
the output port was analyzed with a second balanced homodyne detector (BHD2).
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Figure 7.3 — Sagnac interferometer output signal as recorded by the balanced homodyne detector. A
6 MHz phase modulation was measured without [trace (a)] and with [trace (b)] squeezed
light input, which yielded a reduction of the interferometer shot noise by 4.5 dB.

Figure 7.3 shows a 6 MHz phase modulation measured with the Sagnac interferometer
without (a) and with (b) squeezed light input. Both traces were normalised to the
vacuum and recorded with a resolution bandwidth of 200 kHz and a video bandwidth
of 200 Hz. The curves were averaged twice; the dark noise was not subtracted from
the data. The Sagnac input power was 200 µW, and the LO power 1.75 mW, which
yielded a dark noise clearance of about 16 dB. The LO phase was set to the signal
maximum; the phase of the pump and the length of the OPA cavity were set to yield
maximum squeezing. By the injection of squeezed vacuum a noise reduction of 4.5 dB
below shot noise was achieved, which corresponds to a coherent state laser power
increase of 2.8 and a phase sensitivity increase by a factor of about 1.7. When the
squeezing was injected into the interferometer further optical loss occurred, which
limited the nonclassical sensitivity improvement. The assumption of an additional
15% loss could account for this degradation. The detection efficiencies for BHD1 and
BHD2 were almost equivalent and did not need to be taken into account. Independent
measurements provided about 2.5(±1)% loss due to the imperfect overlap between
squeezed field and Sagnac, 4(±1)% loss due to the double pass through Faraday
rotator, PBSs, and a waveplate, 1.2% due to the contrast at the Sagnac beam splitter,
and 5(±1)% due to the transmission through the fiber. In addition to that we assume
2(±1)% propagation loss inside the interferometer due to the lenses and the EOM
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and 0.5% loss due to lenses and mirrors needed for the squeezed light input. These
contributions yield an additional loss of approximately 14(±1)% which, given the
experimental uncertainties, accounts well for our observations. Note that light exiting
the fiber (both directions) could be matched to a reference cavity with an overlap of
0.996 and 0.997, respectively, illustrating that the transmission efficiency of 95% was
essentially limited by suboptimal AR coatings.

7.5 Conclusion

In conclusion we have demonstrated the nonclassical sensitivity improvement of a
10 m fiber Sagnac interferometer by 4.5 dB beyond its SNL. The total loss due to the
input mode matching into the fiber and due to the output mode matching to a spatially
filtered local oscillator beam was just 5%. Given that conventional optical fibers
can have losses as low as ∼0.2 dB/km [7.16], the 6.4 dB squeezed states generated
here could be transmitted over a fiber length of 8 km and would still show 3 dB of
squeezing assuming a 5% loss due to input-output mode matching. Our results show
that the quantum enhancement of local area (kilometer-size) optical fiber networks
and fiber-based measurement devices with squeezed light are feasible.
The authors acknowledge the Deutsche Forschungsgemeinschaft (DFG) and the Centre
for Quantum Engineering and Space-Time Research QUEST for financial support.
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CHAPTER 8
Strongly squeezed light at

1550 nm

Continuous-wave squeezed states of light at the wavelength of 1550 nm
have recently been demonstrated, but so far the obtained factors of noise
suppression still lag behind today’s best squeezing values demonstrated
at 1064 nm. Here we report on the realization of a half-monolithic
nonlinear resonator based on periodically-poled potassium titanyl
phosphate which enabled the direct detection of up to 12.3 dB of
squeezing at 5 MHz. Squeezing was observed down to a frequency of
2 kHz which is well within the detection band of gravitational wave
interferometers. Our results suggest that a long-term stable 1550 nm
squeezed light source can be realized with strong squeezing covering
the entire detection band of a 3rd generation gravitational-wave detector
such as the Einstein Telescope.

Originally published as M. Mehmet et al. Opt. Express 19, 25763–25772 (2011).

8.1 Introduction

It has been shown by Caves [8.1] that squeezed light can be used to enhance the
sensitivity of (quantum noise limited) interferometers as they pursue the first direct
detection of gravitational waves (GWs). Caves’ analysis revealed that the quantum
noise contribution to the interferometer output signal was almost completely caused
by the vacuum noise coupling into the interferometer through the open port of its
50/50 beam splitter. The replacement of this vacuum field by a field with less quantum
noise in the measured quadrature, namely a squeezed vacuum state, would directly

109
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decrease the photon shot noise on the detector and hence increase the output signal to
noise ratio.
All current GW interferometers are operated with lasers at 1064 nm. Accordingly,
squeezed light research within the GW community has mainly been focused on the
generation of continuous-wave (cw) squeezed light at that respective wavelength.
Maximum squeezing values of 11.5 dB from a bulk lithium niobate (LiNbO3) crys-
tal [8.2] and 12.7 dB from a periodically-poled potassium titanyl phosphate (PPKTP)
crystal [8.3] have been reported. These results were obtained in the MHz regime,
and more importantly they used monolithic resonators to reduce intra-cavity optical
loss. Monolithic resonators are not feasible as a GW detector squeezed light source,
because a fast enough tuning of their resonance frequency to follow the detector’s
baseline laser has not been achieved so far. Active length/frequency stabilization can
be realized by setting up the squeezed light source as a hemilithic (half-monolithic)
resonator and feeding back a control signal to the piezo-driven coupling mirror. The
implementation of the required control scheme usually introduces excess noise (typ-
ically technical laser noise) that masks the squeezing at frequencies below a few
megahertz. In order to generate squeezing within the detection band of today’s GW
detectors, which ranges from about 10 Hz to 10 kHz, Vahlbruch et al. [8.4] proposed
and demonstrated what they called a coherent control scheme. This control scheme
facilitated the detection of squeezed light at frequencies of as low as 1 Hz [8.5]. A
similar control scheme was used to construct the GEO 600 squeezed light source [8.6]
that produced 8–9 dB of squeezing in a detection band from 10 Hz to 10 kHz. Just
recently, this squeezed light source was successfully incorporated as an add-on into the
km-scale gravitational wave detector GEO 600 [8.7,8.8]. The injection of squeezed
vacuum states into GEO 600 led to a broadband noise reduction of up to 3.5 dB in the
detectors’s shot-noise limited regime (above 700 Hz).
With the feasibility of squeezed light injection having been demonstrated, squeezing
could contribute to achieving the envisaged sensitivities of the second generation of
GW detectors such as Advanced Virgo [8.9] and Advanced LIGO [8.10]. Here, the ap-
plication of squeezed light allows for the reduction of the design laser power and thus
the potentially critical thermal load on the interferometer’s optical components [8.11].
Beyond these advanced detectors, plans for third-generation instruments already exist,
e.g. those presented in the recent European design study for the so-called Einstein
Telescope (ET) [8.12]. To improve the displacement sensitivity in the low-frequency
range it is proposed to use cryogenically cooled interferometers with silicon test
masses, which would reduce the thermal noise contribution to the detector sensitivity.
Consequently, these detectors would need to be driven by 1550 nm lasers [8.13, 8.14].
As squeezing enhancement is indeed considered for ET, cw squeezed states at 1550 nm
covering the frequencies from 1 Hz to 10 kHz are required to achieve a broad-band
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reduction of its quantum noise.
Squeezed states of light at a wavelength of 1550 nm have only recently been produced
in the cw regime [8.15–8.17] with the highest value of 9.9 dB reported in [8.17]. So far,
squeezing factors beyond 10 dB were reported from monolithic cavity designs and at
megahertz frequencies only. Here, we report on the observation of 1550 nm squeezed
light from an optical parametric amplifier that was designed as a hemilithic resonator
and generated squeezing values exceeding 10 dB at frequencies of as low as 18 kHz.
Squeezed vacuum states were generated using quasi phase-matched degenerate para-
metric down-conversion, also known as optical parametric amplification, in a crystal
made of PPKTP. The crystal end face and a piezo-driven coupling mirror were used
to realize the squeezing resonator in the desired hemilithic configuration. By means
of balanced homodyne detection, a non-classical noise reduction of 12.3±0.2 dB
was directly observed at a sideband frequency of 5 MHz. Furthermore, we extended
our investigation to the sub megahertz-regime which revealed a squeezing factor of
more than 10 dB from 80 kHz down to a frequency of 18 kHz. A maximum noise
suppression of 11.4±0.5 dB was observed between 60 kHz and 80 kHz. Despite a
considerable degradation of the squeezing level from 18 kHz downwards some degree
of noise reduction expanded well into the detection band of GW detectors with a
remaining 5 dB of squeezing measured at a frequency of 2 kHz.

8.2 Experimental setup

A schematic of our experimental setup is shown in Fig. 8.1. As the laser source we
used a commercially available high power cw erbium microfiber laser with an output
power of 1.5 W. The laser was transmitted through a three-mirror ring cavity (FC1)
that provided spatio-temporal filtering of the beam for the downstream experiment.
Approximately 20 mW of the transmitted light were reserved to be used as the local
oscillator (LO) for balanced homodyne detection (BHD). Approximately 1 W of the
remaining light was sent into a second-harmonic generator (SHG) to furnish the
775 nm pump field needed to drive the optical parametric amplifier (OPA). The SHG
was a single-ended standing wave cavity built by two mirrors with 25 mm radius of
curvature with a double anti-reflection (AR) coated, 10 mm long PPKTP crystal in
between. The end mirror was highly reflective (HR) for both wavelengths; the piezo-
driven coupling mirror had a 90 % power reflectivity for the fundamental and only a
marginal reflectivity (< 0.2 %) for the second-harmonic field. Taking into account
the refractive index of n = 1.816 for PPKTP at 1550 nm and the spacing of 20 mm
between the crystal end faces and the mirrors, the cavity waist size and linewidth
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Figure 8.1 — Schematic of the experiment. Laser: 1550 nm fiber laser. FCs, filter cavities for spatio-
temporal mode cleaning at both wavelengths. PZT, piezoelectric transducer; SHG, external
second-harmonic generator to produce the 775 nm pump field; BS, beam splitter; DBS,
dichroic beam splitter; PDs, photo diodes, SA, spectrum analyzer that converts the
differential current of the two photo diodes into variances; BHD, balanced homodyne
detector for the characterization of the squeezed field.

were w0 = 60 µm and FWHM = 43 MHz, respectively. A second ring cavity (FC2)
with specifications similar to FC1 was incorporated to reduce amplitude and phase
fluctuations on the pump field. In order to servo-control the length of FC1, FC2 and
the SHG to be resonant with their respective carrier fields a modulation-demodulation
locking technique was used. The required phase modulations were imprinted onto
the light using electro-optical modulators (not shown in Fig. 8.1) with frequencies
(101.25 MHz for FC1 and FC2, 138 MHz for the SHG) chosen to be far outside the
cavity linewidth such that unwanted sidebands on the transmitted light were kept
small. The filtered pump beam was then mode matched to the TEM00 mode of the
OPA with a mode matching efficiency of 95%.
Our OPA included a piezo-actuated coupling mirror and a PPKTP crystal of dimen-
sions 9.3 mm×2 mm×1 mm. The crystal end face had a radius of curvature of 12 mm
and was HR coated for 1550 nm and 775 nm, thus serving as the cavity end mirror.
The PPKTP front side was AR coated for both wavelengths. An air gap of 23 mm
length was realized between the AR coated side of the crystal and the coupling mirror.
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As the input/output coupler we chose a half-inch substrate that had a power reflectivity
of 90 % for the fundamental and 20 % for the second harmonic field and had a radius
of curvature of 25 mm. The intra-cavity waist size and linewidth were 40 µm and
63 MHz, respectively. A peltier element beneath the crystal was used to keep the
phase matching temperature at around 40◦C.
The squeezed states propagated in the opposite direction to the pump. By reflection
at a dichroic beam splitter (DBS) the squeezed field was separated from the pump
and was directed towards a balanced homodyne detector. The homodyne detector
essentially consists of a 50/50 beam splitter and two photo detectors (PD1 and PD2)
that detect the light in the output ports. The difference signal is then converted into
a variance by spectrum analyzer (SA). The photo diodes we used for our homodyne
detector were custom-made InGaAs PIN diodes with an active area of 300 µm in
diameter and a quantum efficiency of ∼ 99%.
In squeezing experiments the interference contrast between the local oscillator and
the squeezed (signal) field on the 50/50 beam splitter (also known as the homodyne
visibility) is crucial because any mode mismatch quadratically translates into optical
loss which degrades the squeezing level. To adjust the homodyne visibility a bright
beam was needed that resembled the squeezed vacuum output of the OPA. To this
end an auxiliary beam (omitted in Fig.8.1) was matched to the TEM00 mode through
the HR rear surface of the OPA. With this control beam the OPA length could be
locked and the transmitted light propagated congruent with the mode to be squeezed.
By carefully adjusting the overlap between auxiliary signal beam and LO a fringe
visibility of 99.5% was achieved. During data taking the auxiliary field was blocked.
This ensured true vacuum squeezing and avoided the degradation of the squeezing by
additional noise from the control beam. The rigidity of the cavity construction allowed
us to keep the squeezed light source on resonance by solely applying DC-voltage to
the piezo.

8.3 Observation of 12.3 dB squeezing at 5 MHz sideband
frequency

The two observables of interest were the amplitudes of the amplitude quadrature X̂1
and the phase quadrature X̂2 of the electromagnetic field. The homodyne detector mea-
sured their respective variances which obey an uncertainty relation, ∆2X̂1 · ∆2X̂2 ≥
1/16 [8.18]. The relative phase θ between signal beam and local oscillator defines the
quadrature under investigation, given by X̂(θ) = X̂1 cos θ + X̂2 sin θ. As depicted in
Fig.8.1, in our setup a phase shifter (piezo driven mirror) in the pump path allowed
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Figure 8.2 — Balanced homodyne measurements of the quadrature noise variances. The vacuum ref-
erence was recorded with a LO power of 11.8 mW and a blocked signal port. The OPA
was driven with a pump power of approximately 171 mW. With an open signal port,
the squeezed variance and the anti-squeezed variance were measured by choosing the
corresponding relative phase between signal field and LO. The depicted measurements are
averages of 2 traces that were recorded at a Fourier frequency of 5 MHz, with a resolution
bandwidth of 200 kHz and a video bandwidth of 200 Hz. No data postprocessing was
applied, i.e., the data still include electronic dark noise, and thus represent direct observa-
tions. A linear fit to the linearized variances was used to determine the variance mean
values and the associated standard deviation. The anti-squeezing was at +19.3±0.2 dB
relative to the vacuum noise, whereas the squeezing was at -12.3±0.2 dB.

us to vary the phase of the pump incident on the OPA. This led to a change of the
phase with which the squeezing was produced and hence enabled us to adjust θ to
measure, e.g., the squeezed quadrature (X(0) = X1) or the anti-squeezed quadrature
(X(π/2) = X2), respectively. The pump power fluctuations due to beam pointing
relative to the eigenmode of FC2 were below 1% and could be neglected. The output
signal of the homodyne detector, i.e., the differential current of the two photo diodes,
was converted into variances with a spectrum analyzer. We performed measurements
at a sideband frequency of 5 MHz and with a pump power of approximately 171 mW.
Note that this value is already corrected for the 95% mode-matching efficiency of the
pump field into the OPA and that this correction is also included in all other pump
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power values given below. The data as collected by the spectrum analyzer are shown
in Fig .8.2. Approximately 11.8 mW of LO power was used to obtain the vacuum (or
shot noise) reference level with the signal input port of the 50/50 beam splitter blocked.
When the input port was opened, the phase θ was subsequently adjusted to measure the
anti-squeezed and the squeezed quadrature. A squeezing value of 12.3±0.2 dB below
shot noise was directly measured. The corresponding anti-squeezing was 19.3±0.2 dB
above the shot noise level. The homodyne detector’s electronic dark noise was 26 dB
below the vacuum noise and was not subtracted from the data.

8.4 Characterization of the OPA

For the below-threshold OPA the anticipated variances of the squeezed and anti-
squeezed quadratures (V1 and V2, respectively) can be modeled by [8.19]

V1,2 = 1 ± ηdetηesc
4
√

P/Pthr
�
1∓

√
P/Pthr

�2 + 4 (2π f κ−1)2
, (8.1)

where P is the second-harmonic pump power and Pthr is the amount of pump power
needed to reach the OPA threshold. The total detection efficiency η = ηdetηesc, where
ηdet is the detection efficiency including propagation loss, the homodyne visibility
(that is the quality of the mode overlap of the signal and LO on the 50/50 beam splitter),
and the quantum efficiency of the photo diodes, and ηesc is the escape efficiency of the
OPA cavity defined as ηesc = T/(T + L), with the amplitude transmissivity T of the
coupling mirror and the cavity round trip loss L. With the cavity round-trip length l
and the speed of light c the decay rate of the cavity can be defined as κ = c(T + L)l−1,
and f is the measurement frequency.
The amount of detectable squeezing is not limited by optical loss alone. Fluctuations

in the relative phase between signal and LO can likewise degrade the measured
squeezing level. In an experiment, such phase noise might have numerous origins, for
example unstable locking loops, residual phase modulation, or acoustically induced
mirror motion. When assuming the standard deviation of the normally distributed
phase fluctuations to be small, phase jitter with an rms of θfluc is equal to the homodyne
detector measuring at a phase offset θfluc. The resulting variances can then be written
as

V �
1,2 = V1,2 cos2 θfluc + V2,1 sin2 θfluc . (8.2)

At a Fourier frequency of 5 MHz, we repeatedly took zero-span measurements of
squeezing and anti-squeezing at different pump powers. The collected data are shown
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Figure 8.3 — Pump power dependence of anti-squeezed and squeezed quadrature variances. All values
were obtained from zero-span measurements at 5 MHz. In order to fit the numerical
model, all the data were dark-noise corrected and subsequently normalized to the vacuum
reference.

in Fig. 8.3. All measurements were normalized to their respective vacuum level.
Here, the contribution of the electronic detector dark noise was subtracted and hence
the value of best (optimum) squeezing improved to −12.4 ± 0.3 dB. The horizontal
error bars correspond to the fluctuation of the pump power P during data taking.
For constant monitoring of P, a calibrated photo diode in transmission of a steering
mirror in the pump path was used. The absolute error of a given pump power is
±3 % due to the measurement uncertainty of the power meter used for calibration.
The vertical error bars are the standard deviation of 0.3 dB as given by the linear fit
to each recorded trace. Taking into account the parameters of our cavity, namely
l = 7.98 cm, T = 10 %, L = 0.1 %, and the measurement frequency f = 5 MHz,
we fitted for the total detection efficiency, the threshold power and the amount of
phase noise using our model defined in Eqs. (8.1) and (8.2). This yields the following
values: η = 0.965± 0.002, Pthr = 221± 3 mW, θfluc = 0.66± 0.06◦. We confirmed
these results by inserting the obtained values into Eq. (8.2) to model the frequency
dependence of our squeezer and compared it to measured squeezing spectra. For that
we took measurements from 2.5 MHz to 50 MHz at several pump powers between
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Figure 8.4 — Pump power dependence of the squeezing spectra, experiment and theory. All depicted
traces are averages of 10 individual traces each recorded with a resolution bandwidth
RBW = 500 kHz and video bandwidth VBW = 2 kHz. All traces were corrected for
electronic detector dark noise and were normalized to the vacuum level. The theoretical
predictions (solid lines) were obtained from Eq. (8.2) using η = 0.965, Pthr = 221 mW,
and θfluc = 0.66◦ with the respective pump power values of P1 = 6 mW, P2 = 56 mW,
P3 = 106 mW, and P4 = 180 mW. The remaining cavity parameters were used as given
in the text. The bottom curve shows the squeezing spectrum under the assumption of zero
phase noise.

6 mW and 180 mW. The collected data are depicted in Fig. 8.4. All spectra were
averaged 10 times. As can be seen in Fig. 8.4 our theoretical model does indeed
provide a good prediction of the experimental outcome. We especially note the
quality of the fit with regards to the phase noise parameter θfluc since a considerable
degradation of the squeezing level at frequencies below 5 MHz becomes apparent
when approaching high pump powers. Assuming zero phase noise, the squeezing
level would approach 14 dB as indicated by the bottom curve in Fig. 8.4.
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8.5 Low frequency performance

For the observation of squeezing in the kHz regime, we used our homodyne detector
together with a low-noise FFT-analyzer. This enabled us to measure the quantum
noise from 80 kHz downwards. For all measurements a power of 4.8 mW for the LO
was used. This yielded a vacuum reference level with a clearance from the electronic
dark noise of approximately 15 to 20 dB over the entire FFT window. Therefore,
no data postprocessing to subtract the detector dark noise was applied. The result-
ing noise spectra are shown in Fig. 8.5. The measured anti-squeezing [trace (b)]
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Figure 8.5 — Squeezing at frequencies between 1.5 kHz and 80 kHz. All traces were measured with
RBW of 250 Hz and were normalized to the vacuum noise level corresponding to a LO
power of 4.8 mW. Each measurement point is the averaged root mean square value of
20 [40 for trace(c)] measurements. Trace (a) shows the direct observation of more than
10 dB of squeezing down to a frequency of 18 kHz with a maximum noise suppression of
−11.4± 0.5 dB between 60 kHz and 80 kHz. Below 18 kHz the squeezing level degraded,
reaching approximately −5 dB at 2 kHz. The peak at 8 kHz was caused by a residual,
non-stationary amplitude modulation from FC1. The anti-squeezing [trace (b)] was
16.8±0.5 dB above the vacuum noise level as measured by the homodyne detector [trace
(c)]. Electronic dark noise was not subtracted from the measurement data.

was at 16.8±0.5 dB above the vacuum noise level [trace (c)]. The spectrum of the
squeezed quadrature [trace (a)] showed a maximum non-classical noise suppression of
−11.4± 0.5 dB between 60 kHz and 80 kHz. Going down in frequency the squeezing
slightly decreased reaching −10.7 ± 0.4 dB at 20 kHz. From 18 kHz downwards the
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squeezing level degraded considerably. We attribute this mainly to two characteristics
of our setup. First, no stabilization scheme was used to control the relative phase
between LO and signal field. Hence, acoustically excited motion cannot be compen-
sated for and together with the prolonged measurement times at smaller sideband
frequencies this led to an averaging effect that decreased the observed squeezing level.
Second, no Faraday isolator was incorporated between the squeezing resonator and
homodyne detector to protect the OPA from back-scattered and reflected light. It is
known that stray light can introduce excess noise [8.20, 8.21] and can cause parasitic
interferences [8.5] within the system. Both effects can impair or even completely
annihilate squeezing in the audio band. Despite the roll-up towards lower frequencies,
squeezing of approximately −5 dB could still be observed at 2 kHz.

8.6 Conclusion

By means of balanced homodyne detection we directly observed 12.3 dB of squeezing
of the vacuum fluctuations of a 1550 nm cw laser beam at a sideband frequency of
5 MHz. This non-classical noise reduction was achieved by degenerate parametric
down-conversion below threshold in a standing wave resonator. High quality optics
and the low absorption of the PPKTP crystal made it possible to construct the squeez-
ing resonator as a hemilithic cavity and still keep the optical loss small enough to
detect such strong squeezing. Pump power dependent squeezing values were used
to characterize our squeezer in terms of optical loss and phase noise. By fitting a
theoretical model to the data the overall optical loss and residual phase noise between
signal and LO were determined to be 3.5% and 0.66◦, respectively. Note that the
value obtained for the optical loss includes the escape efficiency of the squeezing
resonator, propagation loss and the subsequent homodyne detection. The amount of
phase noise could most likely be reduced by the implementation of a stable control
for the phase of the pump beam as well as the homodyne detection phase. Assuming
zero residual phase noise, 14 dB of (dark noise corrected) squeezing would then be
detectable in our setup. However, such control schemes are usually not easily realized
without introducing excess noise from the participating light fields and hence were not
pursued here. Although our overall loss value of 3.5% is already small, we believe that
a further loss reduction is possible and that even higher values of squeezing should be
feasible with current technology.
Squeezed vacuum states at frequencies within the detection band of GW interferome-
ters can be used to enhance the sensitivity of the respective detector. These frequencies
typically range from some Hertz up to 10 kHz. Here, we were able to measure up to
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11.4 dB of squeezing below 80 kHz. Even though from 18 kHz downwards acousti-
cally induced modulation and residual stray light degraded the level of squeezing, it
extended into the detection band of a GW detector. Owing to the hemilithic layout of
the squeezed light resonator, a coherent control scheme according to [8.4] is applicable.
With such a control scheme the squeezing spectrum would presumably broaden to
cover the entire range of frequencies down to a few hertz. Additionally, the required
long-term stability would be obtained and an even higher squeezing factor can be
expected since the aforementioned phase noise would be reduced.
We note that squeezed light at 1550 nm is also of interest in the field of fiber-based
quantum communication because this wavelength lies in one of the telecommunication
windows associated with low loss of silica fibers.
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CHAPTER 9
Summary and Conclusion

The research presented in this thesis focuses on the realization of strongly squeezed
states of light at the wavelengths of 1064 nm and 1550 nm in the continuous-wave
regime. Squeezed light at these wavelengths has the potential to contribute to reaching
the envisaged sensitivities of second- and third-generation GW detectors. Furthermore,
squeezed light is a valuable resource in quantum information. Here, especially the
wavelength of 1550 nm is of interest in view of fiber-based quantum communication
because it is in the third telecommunication window of conventional silica fibers
where optical loss is weakest. In several experiments presented here, the limits to the
obtainable factors of noise suppression were investigated and applications of squeezed
light were demonstrated.
A monolithic resonator made from a MgO:LiNbO3 crystal was used to generate
squeezed states at 1064 nm via degenerate parametric down-conversion. The nonclas-
sical states were strongly squeezed (11.5 dB), were of high purity (with a vacuum
contribution < 5%), and were in a well-defined spatial Gaussian fundamental mode
(99.8% mode overlap with a spatially filtered local oscillator beam). These properties
are of great importance for applications in high-precision measurements as well as
in quantum information. The OPA could not be operated closer to threshold than
approximately 54% and thus the squeezing level was effectively limited by an insuffi-
cient amount of pump power. The monolithic squeezed-light source also exhibited a
broad squeezing bandwidth and thus constitutes a bright source of quantum-correlated
photons. Monolithic resonators do not seem feasible as a GW detector squeezed-light
source, because a reliable tuning of their resonance frequency to follow the detector’s
baseline laser has not been achieved so far. Therefore, a squeezed-light resonator in a
half-monolithic configuration was realized. A quantum noise suppression of 12.3 dB
(94%) was directly measured at 5 MHz, this time using a PPKTP crystal. It was found
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that such strong squeezing can be utilized to accurately measure the optical loss of an
optical system. A total detection efficiency of 96% was determined by comparison of
experimental data with the theoretical model. A loss analysis was used to derive an
absolute lower bound of 98% for the quantum efficiency of the photo diodes. These
were made from the same wafer as the photodiode currently used in the GW detector
GEO 600. Therefore, it can be inferred that at maximum 2% of GEO’s overall loss
budget is attributable to its photo detector. This is important in view of the GEO-HF
upgrade in which it is planned to realize a sensitivity improvement by up to 6 dB
with squeezed-light input. Assuming 12 dB of squeezing entering the dark port of the
interferometer, all further loss is required to be smaller 18%, since the total optical
loss within the entire system must not be larger than 20% (see Fig. 3.5).
In a proof of principle experiment it was shown that PPKTP is also a suitable nonlinear
material for the generation of squeezed states at the telecommunication wavelength of
1550 nm. Using off-the-shelf crystals and generic InGaAs photo diodes, a nonclassical
noise suppression of 5.3 dB was achieved at a sideband frequency of 5 MHz.
An increase in the squeezing at the wavelength of 1550 nm to 6.4 dB was accomplished
by using custom-made photo diodes for the homodyne detector. The injection of the
squeezed states into the dark port of a fiber-based Sagnac interferometer yielded a
nonclassical noise reduction of 4.5 dB beyond the interferometer’s shot-noise limit.
These results illustrate that the quantum enhancement of local-area optical fiber net-
works and fiber-based measurement devices with strongly squeezed light are feasible.
It was found that the squeezing level at 1550 nm was primarily limited due to the
residual reflections of the AR coating on the PPKTP crystal facet inside the squeezing
resonator. By using a custom-polished and high-quality coated crystal and optics, a
maximum squeezing level of 12.3 dB could be observed in the MHz regime. The spec-
trum of the squeezed quadrature also exhibited a strong noise suppression of 11.4 dB
at sideband frequencies between 60 kHz and 80 kHz. The analysis of the system
revealed that a total optical loss on the squeezing of 3.5% and phase jitter (between
the squeezed field and the local oscillator field) of ∼ 0.7◦ were the limiting factors
to the detectable squeezing level. Moreover, the same squeezed-light source was
used to demonstrate 1550 nm squeezed light at sideband frequencies within the audio
band for the first time. At 20 kHz, the squeezing was still 10.7 dB below shot-noise.
From 18 kHz downwards the level of noise suppression degraded gradually, reaching
a value of approximately 5 dB at 2 kHz. However, this low-frequency degradation is
well understood and can be overcome by the implementation of the control scheme
already in use in the GEO 600 squeezed-light laser. Consequently, long-term stable
1550 nm squeezed-light sources providing 12-14 dB in the frequency band of the
Einstein Telescope seem viable already today.
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