Geometry of moduli spaces of

spin and prym curves of small genus

Der Fakultéat fiir Mathematik und Physik
der Gottfried Wilhelm Leibniz Universitat Hannover
zur Erlangung des Grades
Doktor der Naturwissenschaften
Dr. rer. nat.
genehmigte Dissertation
von
Dipl.-Math. Sebastian Krug
geboren am 20. Februar 1981 in Florsheim am Main

2012



Referent: Prof. Dr. Klaus Hulek

Koreferenten: Prof. Dr. Gavril Farkas und Prof. Dr. Samuel Grushevsky

Tag der Promotion: 2. Juli 2012



Kurzzusammenfassung

Diese Arbeit beschéftigt sich mit geometrischen Eigenschaften der Modulraume S, ,, und
Eg,n von Spin- bzw. Prymkurven von Geschlecht g mit n markierten Punkten. Haupt-
siachlich werden kohomologische FEigenschaften dieser Raume fiir kleines g untersucht,
beispielsweise der Kohomologie-Ring oder der Chow-Ring mit Koeffizienten in Q berech-
net. Da ggyn und Egyn, dahnlich wie der Modulraum Mg,n von stabilen punktierten Kurven,
in natiirlicher Weise als Orbifolds bzw. glatte Deligne-Mumford-Stacks aufgefasst werden
kénnen, besitzen sie auch einen Chen-Ruan Orbifold-Kohomologie-Ring. Auch dieser ist

ein Gegenstand der Arbeit. Der Inhalt gliedert sich thematisch in vier Teile:

Im ersten Teil werden die hyperelliptischen Orte }TSM - gg,n und HiRgvn - Rq,n unter-
sucht. Mit Hilfe der Ergebnisse des ersten Teils, wird im zweiten Teil der Kohomologie-
Ring von Ry und S5 als Q-Algebra durch Angabe von Erzeugern und Relationen zwischen
diesen bestimmt. Der Kohomologie-Ring ist, wie sich zeigt, fiir diese beiden Réume iso-
morph zum Chow-Ring. Der dritte Teil beschéftigt sich mit der Geometrie der Riume Ry,
fiir kleines n. Es wird fiir n < 6 gezeigt, dass die Ry, rationale Varietiiten sind, und dass
der Chow-Ring A* (le) von den sogenannten Randklassen erzeugt wird. Fiir n < 4 wird
die Struktur der Q-Algebra A*(R;,) bestimmt und gezeigt dass sie zum Kohomologie-
Ring H*(R;,,) isomorph ist. Zusétzlich wird die Kodaira Dimension von Rj 11 berechnet.
Da S1, & M1, W Ry, (als Varietiten), decken diese Ergebnisse fiir R;, auch den Fall
S1.n ab. Im letzten Teil der Arbeit geht es um die Chen-Ruan Orbifold-Kohomologie der
Orbifolds/Stacks Rp, fiir beliebiges n € N. Dabei wird der Chen-Ruan-Kohomologie-
Ring Hf z(R1,) als Algebra iiber dem tiblichen Kohomologie-Ring H*(R1,,) behandelt.
Die Ergebnisse dieses Teils fiir allgemeines n beschreiben die (additive und multiplika-
tive) Struktur der Chen-Ruan Kohomologie daher im wesentlichen relativ zur Struktur
der iiblichen Kohomologie. Nur in den Féllen in welchen die letztere Struktur bekannt
ist (wie fiir n < 4 nach dem dritten Teil dieser Arbeit), bestimmen diese Ergebnisse die
Struktur der Chen-Ruan Kohomologie als Q-Vektorraum bzw. als Q-Algebra.

Schlagworte: Modulraume, Spinkurven, Prymkurven.



Abstract

This thesis is concerned with geometric properties of the moduli spaces gg,n and Eg,n of
spin- respectively prym curves of genus g with n marked points. Primarily cohomological
properties of these spaces for small values of g are investigated. In particular the cohomol-
ogy ring and the Chow ring with coefficients in Q are calculated. Since S, and Ry, like
the moduli space M, of stable pointed curve, are orbifolds or smooth Deligne-Mumford
stacks in a natural way, they have a Chen-Ruan orbifold cohomology ring. We also study
this ring. Thematically the content of this thesis can be divided into four parts:

In the first part the hyperelliptic loci Hngm - gg,n and HiRgm - Eg,n are investigated.
Applying results from the first part, in the second part the cohomology ring of Ry and S is
determined as a Q-algebra in terms of generators and relations between these generators.
The cohomology ring turns out to be isomorphic to the Chow ring for these two spaces.
The third part is concerned with the geometry of the spaces Ry ,, for small n. It is shown,
for n < 6, that the spaces le are rational varieties, and that the Chow ring A*(Elyn) is
generated by the so called boundary cycle classes. For n < 4 the structure of the Q-algebra
A*(Ry ) is determined, and A*(R; ) is shown to be isomorphic to the cohomology ring
H*(Ry,,). Furthermore the Kodaira dimension of Rj 1 is calculated. Since, as varieties,
glm = Mlm W El,na these results for Rl,n also cover the case of gl,n- In the last part of
the thesis, the Chern-Ruan orbifold cohomology of the orbifolds/stacks Ry, for arbitrary
n € N is studied. The Chen-Ruan cohomology ring Hf (R ) is treated as algebra over
the usual cohomology ring H*(R; ;). Consequently the results of this part for arbitrary n
describe the (additive and multiplicative) structure of the Chen-Ruan cohomology mainly
relative to the structure of the usual cohomology. Only in those cases in which the latter
structure is known (like for n < 4 by the third part of the thesis), our results determine the

structure of the Chen-Ruan cohomology as a Q-vector space respectively as a (Q-algebra.

Key words: Moduli spaces, spin curves, prym curves.
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Introduction

The objects studied in this thesis are the compact moduli spaces of spin curves and of
prym curves of a given (arithmetic) genus g. These spaces, gg respectively Eg, are normal
projective varieties, which compactify the moduli spaces S resp.! R, of smooth spin- resp.
prym curves of genus g, akin to the way the moduli space of stable curves M, compactifies
the moduli space of smooth curves M,. A smooth spin curve is a pair of a smooth curve
C and a line bundle £ on C such that £%? = w¢, where we denotes the canonical bundle.
Such a line bundle is called a theta characteristic. A smooth prym curve can be defined
analogously by requiring instead that £%2 = O¢, where O¢ is the trivial bundle on C
(the case £ = O¢ is excluded). Equivalently (and more classically) a smooth prym curve
can be seen as a smooth curve C together with an unramified degree 2 cover ¥ — C.
The compactification S, was constructed by Maurizio Cornalba in [Cor89] as a moduli
space of quasi-stable curves X, together with a line bundle £ on X and a homomorphism
b: L% — wx with certain properties. If one views smooth prym curves as curves plus
unramified double covers, the natural way to compactify this space is by allowing stable
curves with admissible double covers. In this way R, was constructed in [Bea77] by Arnaud
Beauville. The interpretation of smooth prym curves as curve plus line bundle, allows also
to construct a compactification of R, analogous to the compactification S, constructed
by Cornalba. This construction was carried out in [BCF04], and it was shown that the
resulting compactification is isomorphic to Beauville’s compactification Eg as varieties.
In this thesis we work with the definition of prym curves as introduced in [BCF04], and
will not use Beauville’s description involving admissible double covers. There is a third
way to compactify S, (and also Ry). Instead of letting the compactification parametrise
certain quasi-stable curves with line bundles, as in Cornalba’s construction, one can also
restrict to stable curves, but allow torsion-free sheaves as extra structure. This approach
was taken by Tyler J. Jarvis in [Jar98], [Jar00], where also more general moduli spaces of
curves with roots of line bundles are constructed. Again the compactification obtained for
Sy and R, is isomorphic to those obtained following the other aproaches.

Like in the case of stable curves, one can also introduce n-pointed spin or prym curves,
i.e. let the underlying quasi-stable curve carry n ordered pairwise different smooth marked
points. The compact moduli spaces parametrising these objects will be denoted by S, ,, and

R, 5. In this thesis we investigate the geometry and especially cohomological properties of

'From here on the abbreviation “resp.” is used for the often needed “respectively”, although this may
not be a common abbreviation in English.
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the spaces gg,n and Rg,n for certain (small) values of g and n. In particular the cohomology
ring and the Chow ring with coefficients in Q is calculated. gg,n and Rg,n, like the moduli
space Mg,n of stable pointed curve, are orbifolds or smooth Deligne-Mumford stacks in a
natural way, so they have a Chen-Ruan orbifold cohomology ring, as introduced in [CR04].
We also study this ring. (Since we nearly always work with coefficients in Q we denote the
rational Chow ring and rational cohomology ring of a variety X by A*(X) resp. H*(X)
instead of Ap(X) and Hg(X), and write A7(X) resp. Hz(X) if we for once need integer
coefficients.)

Before describing the content of this thesis in more detail, we give a very short overview
of some general results known about the geometry of R, , and S, ,. Much more about
this, and also about the historic development of the study of spin resp. prym curves and
their moduli can be found in the survey articles [Far12] and [Farll]. There are morphisms
TGyn Sgn — Mg, and TRym Ry, — Mg, which correspond to forgetting the line
bundle on a spin/prym curve and sending the underlying quasi-stable curve X to its
stable model C. These forgetful morphisms are finite of degree 229 resp. 229 — 1, reflecting
that there are 229 theta characteristics on a smooth curve, and 229 — 1 points of order 2
on its Jacobian. These morphisms are important in investigating ggyn and Rg,m since they
relate these spaces to the more extensively studied Mg,n. One basic geometric property
of Sy, is that the space is not connected, but the disjoint union of the spaces g;n and
Syn
whose space of global sections is even resp. odd dimensional. The restricted forgetful

morphisms o, ?;n — M, resp. o g;n — Ry, are of degree 2971(29 + 1)

resp. 2971(29 — 1). That g;n and ?;n are not connected to each other follows from the

fact that even and odd theta characteristics do never both appear in one family of spin

of even resp. odd spin curves. This means spin curves with theta characteristics

curves over a connected basis, as shown by David Mumford in [Mum?71]. (For families of
possibly singular spin curves it was shown in [Cor89].) The singularities of the normal
varieties S, and R, have been studied in [Lud10] and [FL10] and it was shown that global
pluricanonical forms lift to the desingularisations of these spaces, which is an important
ingredient in computing Kodaira dimensions. By work of Gavril Farkas and Alessandro
Verra the Kodaira dimension of F; and S, is known for all g ([Far10], [FV10]), and the
Kodaira dimension of R, is known for all ¢ < 7 and all g > 14 ([FL10]). The homology
groups of the space of smooth spin curves S; have been investigated and its Picard group
has been computed by J. Harer in [Har90], [Har93].

This thesis is structured as follows:

Chapter 1, ““General Preliminaries”, mainly provides definitions and summarizes known

results which will be used in the later chapters.

In chapter 2 the hyperelliptic loci Hisg,n - gg,n and HiRgm - Fg,n are investigated. These
are the closures of the subvarieties of gg,n and Eg,n whose points parametrise spin resp.
prym curves supported on smooth hyperelliptic curves X, such that the n marked points
on X are fixed by the hyperelliptic involution. We construct and study finite surjective

degree 1 morphisms from quotients of M0729+2 to the irreducible components of HS ,, and
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HiRgm, which factor through isomorphisms to the normalisations of these components. The
existence of these morphisms is certainly known and they were applied in many special
cases before, although the explicit description of them over the boundary of the moduli
spaces we give may be new. The results of this chapter are applied in the third and fifth
chapter.

In chapter 3 the cohomology ring with rational coefficients of Ry and S5 is computed as a
Q-algebra in terms of generators and relations between these generators. The cohomology
ring turns out to be isomorphic to the Chow ring for these two spaces, via the cycle map.
In this chapter we follow the approach of the article [BF09a] by G. Bini and C. Fontanari,
in which these computations are done for S, and also correct some mistakes made in this
article. In addition to the methods of [BF09a] we also apply the morphisms constructed
in chapter 2 to obtain new relations in the cohomology ring. (Note that HS3 = S and
HR> = Ry, since all genus 2 curves are hyperelliptic.)

Chapter 4 is concerned with properties of the varieties El,n and gl,n for small n. We
follow the PhD-thesis of Pavel Belorousski ([Bel98]) in which he computed the rational
Chow ring A*(Mlm) for n < 4 and showed that Ml,n is rational for n < 10. We compute
the Chow ring A*(R;,) for n < 4 and show rationality for n < 6. Since as varieties
gl,n = Rl,n W Ml,n» these results together with Belorousski’s also cover the case of gl,n.

Later (in chapter 5) we show that for n < 4 again A*(Ry,) = H*(R;,,) via the cycle map.

In Chapter 5, the Chern-Ruan orbifold cohomology of the orbifolds/stacks Ry, for arbi-
trary n € N is studied. Here we use many results and ideas from Nicola Pagani’s article
[Pag08], in which the Chen-Ruan cohomology of M1, is computed. The Chen-Ruan co-
homology ring Hf (R ) is treated as algebra over the usual cohomology ring H* (R ).
Consequently the results of this part for arbitrary n describe the (additive and multiplica-
tive) structure of the Chen-Ruan cohomology mainly relative to the structure of the usual
cohomology. Only in those cases in which the latter structure is known (like for n < 4
by chapter 4 of the thesis), our results determine the structure of the Chen-Ruan coho-
mology as a Q-vector space respectively as a Q-algebra. Since the spaces are isomorphic
as varieties, H*(Ry,) = H*(S1,). But the moduli stacks/orbifolds for the two moduli
problems are not isomorphic, and H{ (R ) is not isomorphic to H},5(S1,,). After treat-
ing HY p(R1,n) we sketch what is different for H},5(S1,,). Using the information gathered
in this chapter about automorphisms of pointed genus 1 prym curves, we also analyse
the singularities of the varieties Ry, = gin and M1, in the style of [Lud10], and see
that Ry, has only canonical singularities. Furthermore the Kodaira-Dimension (R 11)
of Ry & gin is computed. (All k(R;,,) for n # 11 have been computed in [BF06].)
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Chapter 1

General Preliminaries

In this chapter we give basic definitions and results, needed in our thesis, and fix notation.

Some general notation and conventions first:

Notation 1.1 (Notation and Conventions applied in the whole thesis)

e In the whole thesis we work with varieties over the field C, and the word “variety”
always stands for “variety over C”. More precisely we mean by a wvariety a reduced
separated scheme of finite type over C. So varieties are not required to be irreducible.
A curve means a projective one dimensional variety. By the genus of a curve we will

always mean the arithmetic genus, unless stated otherwise.

e For any ring B and any group G acting on B we denote by B the subring of
invariants under the action of G.

e For any n € N we denote the set {1,2,...,n} by n. Let N be a finite set, then a
partition of N is a set {I1,..., I, } of sets I; C N, such that N is the disjoint union
of theses sets. An ordered partition is a tuple ([1, ..., I,,) of sets fulfilling the same
condition. Unless explicitly stated otherwise, we require all the sets I; of an (ordered)

partition to be non-empty.

e As already mentioned in the introduction, for a variety X, by A*(X) resp. H*(X) we
denote the Chow group resp. singular cohomology group of X with coefficients in Q.
We often call these the rational Chow group resp. the rational cohomology of X. If
M is a variety which is a moduli space and V' a closed subvariety, then denote by [V]
the usual cycle class of V in A*(M). The “Q-class” of V can be seen as [V]g := 1[V],

where r is the number of automorphism of the objects parametrised by general points

of V. (In Summary 2.6 the sense of this definition will be explained.)

e In these Preliminaries we will distinguish in our notation strictly between moduli
stacks and their coarse moduli spaces, and between morphisms of stacks and mor-
phisms of the coarse moduli spaces. In the later chapters we will not do so. For
example we denote the moduli stack of prym curves by R, , here and the coarse
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moduli spaces by Rg,n- Later Rg,n can also stand for the moduli stack, in cases in
which this is explicitly stated or should be clear from the context. Since we always

” induced

work on the Chow ring of a coarse moduli space with the multiplication “ -
by the multiplication on the Chow ring of the moduli stack, we will also always work
with the pullback along morphisms of stacks, or if we have a morphism f of coarse
moduli spaces, work with the adjusted pullback f® (cf. Summary 1.34, below for the
definitions). Since we do never use the unadjusted pullback f* from chapter 2 on,

we will denote f® instead by f* everywhere except in chapter 1.

e If O is an object of the kind parametrised by a moduli space M, then we denote the
point in M parametrising O as [O]. For example if (X; £;b) is a prym curve of genus
g, then [(X; £;b)] is the corresponding point in R,.

e If we have on a family X — S sections o1, ...,0,, 0; : S — X, we will sometimes
also denote by the symbols o; their images 0;(S) on X. In particular for a family of
curves, » ., 0; can denote the divisor on X which is the sum of the images of the

sections o;.

o If X - S and Y — S are schemes over a scheme S, then Isomg(X,Y’) denotes the
set of isomorphisms from X to Y over S.

1.1 Moduli problems and Moduli spaces.

Definition 1.2 (i) An (n-pointed) nodal curve (X;pi,...,p,) is a tuple of a connected
curve X having only nodes as singularities, and distinct non-singular points p1,....p, € X.
(We allow n = 0. We also often call such a curve a nodal curve with n ordered marked
points.) An isomorphism ¢ : (X;p1,...,pn) = (X', 9], ...,p),) of nodal curves with marked
points is an isomorphism ¢ : X — X' such that ¢(p;) = p] for all ¢ € n.

(ii) An (n-pointed) stable curve (C;p1,...,pp) is an (n-pointed) nodal curve having a finite
group of automorphisms. Having a finite automorphism group is equivalent to the following
stability condition: When we consider as “special points” on an irreducible component of
C the marked points as well as the points in which the component meets the rest of C', then
every component of genus 0 must carry at least three special points, and every component
of genus 1 must carry at least one special point. Shorter: For each component C; of C,
29(C;) — 2+ v(C;) > 0, where g(C;) the genus and v(C;) the number of special points.

We often denote a pointed stable curve (C;p1,...,p,) by €.

Denote by Sch/C the category of schemes over Spec C.
A moduli problem over Sch/C is given by the following data

(1) Specify which objects the moduli space is supposed to parametrise. (For example
(A) nodal curves or (B) stable curves, both for a fixed genus g and a fixed number

of marked points n.)
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(2) Specify what a family of the chosen objects over a scheme S € Sch/C is. Or said
somewhat differently, for each S € Sch/C specify the set .Z(S) of families X' /S of
objects of the moduli problem, in such a way that % (Spec C) corresponds to the set
of objects specified in (1). !

(3) Specify when two families in .#(S) are to be considered equivalent, i.e. declare an
equivalence relation ~g on each .%#(S). Furthermore specify a notion of pullback
along morphisms for these families: Le. for every morphism f : S’ — S of schemes
and every family X/S € .7 (S), define a family f*(X/S) € .Z(S’). We require
that the map f* : .Z#(S) — Z#(5’) defined such is compatible with the equivalence

relations. 2

We continue our examples (A) and (B) of moduli problems by:

Definition 1.3 (i) A family of nodal curve (with n marked points) (¢ : X — S;01,...,00)
is a tuple of

(a) A proper surjective flat morphism ¢ : X — S of schemes over C, such that every

geometric fibre is a nodal curve, and

(b) Sections o; : S — X of ¢, such that the images of the o; are pairwise disjoint, and
do not meet any singularities (i.e. nodes) of the fibres. (One interprets the image of each
section on a fibre as a marked point.)

An isomorphism ¢ of families (¢ : X — S;01,...,04) and (¢’ : X' — S;01,...,0),) of nodal
curves over a fixed basis S is a ¢ € Isomg(X, X”) such that for all ¢ € n, ¥ o 0; = 0.

(Families of nodal curves over analytic spaces S are defined completely analogously, by
replacing everywhere in the definition “scheme(s)” by “analytic space(s)”.)

(i1) A family of stable curves is a family of nodal curves, all whose geometric fibres are
stable curves. The notion of isomorphisms over a fixed S is the same as for stable curves.

This finishes step (2) in the definition of the moduli problems (A) and (B). For step (3),
we consider families of nodal or stable curves over a given S as equivalent, if they are
isomorphic in the sense of Def. 1.3. We define pullbacks of families of nodal and stable
curves via the fibre product (also cf. Def. 1.5 below).

Now if we have defined a moduli problem, this specifies a moduli functor

F : Sch/C — Sets

from Sch/C to the category of sets: On the level of objects, for each S € Sch/C, we
set F(S) := .Z(S)/ ~g, the set of equivalence classes of families over S. And for each
morphism f : 8" — S, F(f) : #(S)/ ~s— F#(5')/ ~g is the map induced by the
pullback f*.

!Strictly speaking one can omit (1) and begin directly by defining the families of the moduli problem.
2To obtain a moduli functor as below, it would also suffice to define pullbacks f* of eqivalence classes
of families instead of defining them individually for each family.
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A “solution” to a moduli problem is a moduli space M € Sch/C, which means that M
fulfils one of the following conditions:

Definition 1.4 (i) M € Sch/C is called a fine moduli space for the given moduli problem
if it represents the functor F.

(i) M € Sch/C is called a coarse moduli space for the given moduli problem, if: There
is a natural transformation W,; from the functor F to the functor of points Mor,s of M,
such that:

1. The map Vs specc : F(Spec C) — M(C) = Mor(Spec C, M) is a bijection of sets.

2. Given another scheme M’ and a natural transformation ¥, from F to Mor,;, there
is a unique morphism 7 : M — M’ such that the associated natural transformation
II : Mory; — Mor s satisfies Wy = 1o Wyy.

Every fine moduli space is a coarse moduli space, and the moduli space for a moduli
problem is unique if it exists. It is well known that the moduli problem (B) of stable
curves of genus g we considered has a coarse moduli space Mg,n» which is a projective
variety, for all pairs g,n € Ny with 2g +n > 3. But only for large n, (B) has a fine moduli
space (in Sch/C). The moduli problem (A) has at least no coarse moduli space which is

a variety.?

A slightly different approach to moduli problems is via moduli groupoids. For our two
examples we first introduce the following notion of morphisms of families of nodal/stable
curves, which is more general than the one introduced in Def. 1.3:

Definition 1.5 A morphism between two families of pointed nodal (or stable) curves
(: X = S,01,...,0p) and (¢ : X' — S’ 0}, ...,0]) is a pullback square in the following

sense: The morphism is a pair (H, h) of morphisms of schemes, such that the diagram

x oy

S_h. g

is cartesian, i.e. the diagram of a fibre product, and such that H oo; = o} o h for all i € n.
(One gets the isomorphisms for fixed S, introduced in Def. 1.3, if one requires h to be the
identity on S.)

With this notion of morphisms one can define the categories (say A and B) of families of
n-pointed nodal resp. stable curves (over Sch/C) of genus g. There are obvious functors
from these two categories to the category Sch/C, of passing from families to their bases.
The categories A and B together with these functors both fulfil the definition of a category
fibred in groupoids over Sch/C:

31.e. it defines a bijection between the equivalence classes of objects of the moduli problem and the
closed points of M.
4 Actually I do not know whether there is a scheme which is a coarse moduli space for (A).
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Definition 1.6 (i) A category fibered in groupoids over a category S is a category M
together with a functor p : M — § satisfying the following conditions:

(1) For every morphism f: 7" — T in S and a object n of M such that p(n) = T, there
exists a unique morphisms ¢ : £ — 7, such that p(p) = f.

(2) Every morphisms ¢ : £ — 1 in M is cartesian in the following sense. Given any other
morphism ¢’ : ¢ — 7 and a morphisms h : p(§) — p(§’) such that p(¢’) o h = p(p),
there exists a unique morphism v : £ — &’ such that p(¢) = h and ¢’ o) = .

We often call a category fibered in groupoids over S shorter a groupoid over S, and
sometimes call a groupoid over Sch/C just a groupoid.

(ii) A morphism between two groupoids M L2y 8, M 25 S over S is a functor ¢ : M —
M’ such that p = p’ oq. Such a morphism g is called an isomorphism if it is an equivalence
of categories between M and M’ (i.e. not only if it is an isomorphism of categories).

We call A and B the moduli groupoids of nodal resp. stable curves. B is usually denoted
as Mg,n- Instead of setting up a moduli problem as describe above, one can also define
families of the moduli problem and morphisms between them first, in such a way that they
constitute a moduli groupoid M LN Sch/C. Declaring two families over a given scheme
S to be equivalent if they are isomorphic via a morphism ¢ with p(¢) = idg, the moduli
groupoid defines a moduli problem and a moduli functor as above. If this moduli functor
has a coarse moduli space M, we also call M a coarse moduli space of the groupoid. To pass
from the moduli groupoid to the moduli functor is in general loosing information. Passing
from the moduli functor to a coarse but not fine moduli space one looses information
again. Accordingly one can say the following about morphisms:

Lemma & Definition 1.7 For any two moduli problems (A) and (B) with corresponding
moduli functors Flu, Fp:

(i) A natural transformation ® : Fy — Fp we also call a morphism of moduli functors.
Such a ® is an assignment as follows: If we denote for S € Sch/C families of the problem
(A) over S in the form X /S and families of the problem (B) by Y /S, then for every
S € Sch/C, ® assigns to every equivalence class of families [X/S] an equivalence class of
families [Y/S] which we denote by ®([X/S]). This assignment is compatible with pullbacks,
i.e. for every morphisms of schemes f : S — S, we have f*®([X/S)]) = ®(f*[X/S5]).

(ii) If the moduli problems have moduli spaces M4 and Mp, then ® induces by the defining

property of coarse moduli spaces a unique morphism of schemes ¢ : My — Mp.

(iii) If there are moduli groupoids A X2 Sch/C and B 25 Sch/C which induce the moduli
functors Fy resp. Fp, then every morphism of groupoids q : A — B over Sch/C induces
uniquely a morphism of moduli functors ® : Fy4 — Fp.

() If q is an isomorphism then ® is a natural equivalence of functors, and if there are

moduli spaces the induced p : Mg — Mp is an isomorphism of schemes.
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An example of a morphism between the moduli groupoids A of nodal curves and B = M, ,,
of stable curves is the forming of the stable model:

Remark 1.8 If (X, py,...,p,) is an n-pointed nodal curve, then there is a unique mor-
phism 5 : X — C, such that 8 contracts to a point each component of X which does not
fulfil the stability condition of Def. 1.2, and § is an isomorphism on all other components
of X. Then (C, 5(p1), .., B(pn)) is an n-pointed stable curve. We call (C, 5(p1), ..., 5(pn))
(and also ) the stable model of (X, p1,...,pn). We often denote the marked points on C
again by pi, ..., pp. One can simultaneously form the stable model of every fibre of a family
of nodal curves (X — S,01,...,0,) to obtain a morphism 5 : X — C over S, for which
(C — S,Booq,...,fo0y,) is a family of pointed stable curves, which we again call the stable
model. (Cf. section 6 of chapter 10 of [ACG11]. Especially cf. Remark (6.9) for the fact
that forming the stable model is a functor from the category of families of nodal curves to
the category of families of stable curves, which implies (since it obviously does not affect
the base of a family) that it is a morphism of moduli groupoids.

In case of this morphism of moduli groupoids we are not interested in the induced mor-
phisms of moduli spaces, since the moduli problem (A) does at least have no nice coarse
moduli space in Sch/C. But the gluing morphisms to boundary cycles we will discuss in
section 1.3, and use later, are examples of morphisms of coarse moduli spaces induced by
morphisms of moduli groupoids, namely by the clutching functors.

Instead of working with the coarse moduli space of a moduli groupoid, it is also possible to
show, in some cases, that the groupoid itself behaves similar to a scheme, and to consider
the groupoid as a fine moduli space for the moduli problem. This means showing that
the groupoid is an algebraic stack. In this thesis an algebraic stack will mean a Deligne-
Mumford stack. We do not define this notion here but refer to the appendix of [Vis89] or to
chapter 12 of [ACG11] for a treatment in the context of moduli spaces of curves. We only
remark that the definition of a (Deligne-Mumford) stack just requires a groupoid to have
certain properties, but does not add any extra structure to the groupoid. Accordingly a
morphism between (Deligne-Mumford) stacks is just a morphism between two groupoids,
which happen to be (Deligne-Mumford) stacks. It is known that the groupoid M, ,, fulfils
the definition of a smooth Deligne-Mumford stack, and is a fine moduli space (in the

category of stacks).

Most of what was said in this section can be found (often in more detail) in chapter 1
of [HM98] or in chapter 10 and 12 of [ACG11]. In most parts of the thesis we will work
more with the coarse moduli spaces of our moduli problems than with the moduli stacks.
But the fact that the moduli groupoids of spin/prym curves are smooth Deligne-Mumford
stacks will be used to apply the intersection theory existing for such stacks.

In the category of analytic spaces there is a description of families of nodal curves which
is equivalent to Definition 1.2, and which we will also use sometimes (cf. Proposition 2.1.
in chapter X of [ACG11]):

Proposition 1.9 A proper surjective morphism m: X — S of analytic spaces is a family
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of nodal curves if and only if the following holds. For any p € X, either w is smooth at p
with one dimensional fibre, or else, setting s = w(p), there is a neighbourhood of p which
is isomorphic, as space over S, to a neighbourhood of (0,s) in the analytic subspace of

C? x S, with equation
vy = f,

where f is a function on a neighbourhood of s in S whose germ at s belongs to the maximal

ideal of Ogs.

1.2 Spin- and prym curves and their moduli spaces.

References for the definition of spin resp. prym curves and the facts about them we collect
here are for example [Cor89] resp. [BCF04]. In case of spin curves also cf. [Lud07], for
a sometimes more detailed discussion. All these references however deal with spin/prym
curves without marked points, but one can check that everything carries over to the case
of pointed spin/prym curves. Jarvis, who gave an alternative description of spin curves

also treated the pointed case (cf. [Jar00]). Also cf. [CCCO7].

Definition 1.10 (i) A semistable curve (X;p1,...,pn) is a nodal curve, such that every
connected component of genus 1 carries at least one special point, and every component
of genus 0 carries at least two special points.

(ii) A component of genus 0 (i.e. isomorphic to P!) of a semistable curve (X,p, ..., pn)
meeting the rest of X in exactly two points and carrying no marked points is called an
exceptional component of X.

(iii) A semistable curve (X,pi,...,pn) is called quasistable, if all components of X not
fulfilling the stability condition of Def. 1.2 (ii) are exceptional components, and if no two
of these exceptional components intersect each other. Families of quasistable curves are
families of nodal curves all whose fibres are quasistable curves.

(iv) The non-exceptional subcurve X of a quasistable curve X is the closure of the com-
plement of all exceptional components of X.

Definition 1.11 (i) A spin curve resp. prym curve of genus g with n marked points is a
tuple X = (X;p1, ..., pn; £;b), where (X;p1,...,pn) is a quasistable curve with n ordered
marked points, and with stable model § : X — C, L is a line bundle on X, such that
the restriction of £ to any exceptional component FE is isomorphic to Og(1). For a spin
curve, b is a homomorphism b : £5? — wx and is not zero at general points of each non-
exceptional component of (X, p1, ..., p,). For a prym curve replace wx by Ox in the above
definition, and additionally forbid the case £ = Ox. The curve (X, p1, ..., p,) is called the
support of the spin- resp. prym curve X, the pair (£;b) the spin- resp. prym structure on
X. A spin- resp. prym curve is called smooth if X is smooth. If we speak about the stable
model € of a spin resp. prym curve X, we mean the stable model € = (C;py, ..., p,) of the

support (X;p1,...,pn).
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In case of a spin curve, one calls X even resp. odd, if the number dim H°(X, L) is even
resp. odd.

(ii) An isomorphism ¢ : (X;p1,...,pn; £;0) — (X501, ..., pn; £'50') of spin- resp. prym
curves is an isomorphism ¢ : X — X’ of the underlying n-pointed nodal curves, such that

there is an isomorphism ~ : ¢* £’ — £ which is compatible with b and ¢'. This means:

®2 @2
((p*ﬁl)@Q LA £®2 resp. ((p*ﬁl)@? v L£©2

@*b’l lb go*b'l ib
5 5!

Prwxr —— wx *Oxr —— Ox

commutes, where ¢ resp. ¢’ are the natural isomorphisms induced by ¢. Note that v is
determined by ¢ up to multiplication by —1.

(iii) A family of spin resp. prym curves (X — S;o01,...,0pn;L,b) is a family of pointed
nodal curves (X — S;01,...,0,) together with a line bundle L on X’ and a homomorphism
b : L% — Wx/s % resp. b : L®? — Oy, such that the restriction to each fibre is a spin
resp. prym curve. Isomorphisms of spin resp. prym curves over a fixed .S are isomorphisms
of the underlying families of nodal curves (cf. Def. 1.3), which are compatible with b and
b’ as above. In the same way one defines morphism of families of spin resp. prym curves
analogously to Def. 1.5.

We define ggyn and ﬁg,n to be the groupoids over Sch/C, which have as their objects
families of n-pointed spin resp. prym curves of genus g, and as morphisms the morphism
between families of pointed spin resp. prym curves just defined. This, as explained in
section 1.1, also defines the moduli problems/functors of n-pointed spin resp. prym curves
of genus g.

(iv) For a given quasistable curve (X;pi,...,p,) we call every line bundle (i.e. invertible
sheaf) £ that fits into the definition of a spin curve or prym curve with support (X;p1,...pn)
a spin sheaf resp. a prym sheaf of (X;p1,...,pn). We sometimes also call the trivial sheaf
a prym sheaf, and speak of non-trivial prym sheaves if we want to exclude it.

(v) Let X := (X;p1,..e, pn; £50), X' := (X0, ...,p00; L;b) be two spin- or two prym
curves, Let € := (C, p1,...,pn), € := (C',p], ..., p},) be the stable models of X resp. X', let
N, N’ be the sets of nodes of C resp. C’, to which exceptional components are contracted
(“exceptional nodes”). Then there is a surjective homomorphism of isomorphism groups

' Tsom((X;p1y ey Pn), (X500, o 0))) — Isom((C p1y ey Py N), (CF5 0, . Pl NT))
which can of course be restricted to a group homomorphism
¥ : Isom(X, X') — Isom((C;p1, ..., pni N), (C'; Yy s D N'))

The isomorphisms lying in the kernel of ¢ are called inessential isomorphisms. In case
of X' = X we speak of inessential automorphisms. We denote the subgroup of inessential
automorphisms of a spin/prym curve X by Auto(X).

SWith wx/s the relative dualizing sheaf of the family of nodal curves X — S.
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The moduli spaces gg,n and Rg,rﬁ For every pair g,n € Ng with 29 +n > 3 there exist
coarse moduli spaces Sy, and Ry, for n-pointed spin curves resp. prym curves of genus
g. They are projective algebraic varieties of dimension 3g — 3 + n, are normal and (which
is a stronger property) have only finite quotient singularities. ® Hence they are Q-cartier,
i.e. for every Weil divisor D on them, there is an m € N such that mD is a Cartier divisor.
The open subsets parametrising smooth spin- resp. prym curves are denoted by S, , and
Ry .. The variety Sy, consists of two connected components ?;n and g;n parametrising

the even resp. the odd spin curves. All ?;n, S gn and Eg,n are irreducible.

Remark 1.12 (i) The definition of isomorphisms of spin/prym curves given in Def. 1.11
(ii) coincides with the definition as for example given in [Cor89], [BCF04] and [FL10]. But
for example in [Cor91] and [Lud10], the isomorphisms of spin curves are pairs of (¢, ), i.e.
they include an isomorphism « of sheaves which is only required to exist in the definition
we use. This choice of definition influences the number of automorphisms of spin/prym
curves. More precisely if we denote for a spin/prym curve X by Aut(X) the automorphism
group according to our definition, and by Aut’(X) the one according to the other definition,
there is an exact sequence

0 — po — Aut’'(X) — Aut(X) — 0,

with s the group of second roots of unity. The image of —1 in Aut’(X) is the inessential
automorphism (id,~p), where 7o : £ — L acts as multiplication by —1 on all fibres (Cf.
[Cor91]). In particular |Aut’(X)| = 2 - | Aut(X)|. Which of these definitions one chooses
does not seem to matter for most questions about spin and prym curves. In particular
the coarse moduli spaces Ry, and S, ,, remain the same, since (id,~) acts trivially on the
local universal deformation space of each spin/prym curve (cf. section 1.5).

(ii) If one uses the definition of isomorphisms which includes the isomorphism 7 of the
spin/prym sheaves, then one can describe generators of the group of inessential automor-
phisms Aut((X) as follows. Let X be the non-exceptional subcurve of the support of X,
X Ty eeny X, its connected components. Then there are unique automorphisms (¢ )?i,*y;(i) for
1 € r, where Vg, acts by multiplying by —1 on the fibres of the spin/prym sheaf £ over 5\(2,
and V%, is the identity restricted to each component )~(j with j # 7. The automorphism
e%, is of order 2 and acts non-trivially restricted to each exceptional components of X
meeting X, and acts trivially on all other components of X. These (¢ )@’75(1) are of order
2 and generate Aut(X). Furthermore | Autj(X)| = 2. Le. the inessential automorphism
(p,7) in Auty(X) correspond to tuples (ay,as, ..., a,) with all a; € {1, —1}, where q; is the
number by which v multiplies each fibre of £ over )~Q For our choice of definition of iso-
morphisms however (ay, as, ...,a,) and (—a1, —ag, ..., —a,) define the same automorphism,
since the automorphism ¢ of X is the same in both cases. Hence | Auto(X)| = 27! with

our definition.

Now we summarize some facts about spin and prym curves

5This follows form the fact that they are locally quotients of the smooth local universal deformation
spaces of spin/prym curves, as we will see in section 1.5.
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Summary 1.13 Let X = (X;p1,...,pn; £;b) be a spin resp. prym curve. Let X be the
non-exceptional subcurve of X, and let D be the divisor on )A(/, which is the sum of all
points in which X meets an exceptional component of X. Let E\f( be the restriction of L
to X. Then:

©2
| X
(ii) Let X; be an irreducible component of X. If X; is exceptional then L x, = Ox,(—1).
If X; is non-exceptional, then it may be singular. Let h : Y; — X; be the normalisation of
X, and @; 1 Y; — X the composition of h with the inclusion X; — X. Let M; be the set of
all points on Y; which are preimages of nodes on X under . We write M; = M; p & M;

(i) For a spin curve, L wy, while for a prym curve E%? = O0z(-D).

where M; i are the preimages of exceptional nodes " and M; N the preimages of non-
exceptional nodes. Then, for [M; g| resp. [M; N] the divisor which sums up all points in
M; N resp. M; g:

goz‘£®2 =wy,([M; n]) if X a spin curve, cp;k£®2 Oy,(=[M; g]) if X a prym curve.

(iii) Let (X, p1, ..., pn) be an n-pointed quasistable curve, 5 : (X;p1,...,pn) = (C;p1, ..oy Pn)
the stable model. Let normalisations Y; of the non-exceptional components of X, and sets
of points M; g, M; n on'Y; be defined as in (i1). Then:

There is a prym structure on (X,p1,...,pn) if and only if for each non-exceptional compo-

nent X; of X the number |M; | is even.

There is a spin structure on (X, p1, ..., pn) if and only if for each non-exceptional component

X; of X the number |M; n| is even.

(iv) The image of the group homomorphism 1 (defined in Def. 1.11 (v)) in the group
Isom((C;p1, ooy n; N), (C'5 s ooy Pl N7)) can be described as follows: Denote by X and X'
the non-ezceptional subcurves of X resp. X', by L and L' the restrictions of the spin/prym
sheaves to these subcurves, and for each ¢ € Isom((C;p1,...,pn; N), (C'sp, ..., pl; N'))
denote by ¢ : X — X' the induced isomorphism. Then ¢ is in the image of ¥ if and only
if gL' = L. (cf. Prop. 2.2.11 in [Lud07])

Remark 1.14 We sometimes also work with the more general moduli spaces of twisted
5t o ) (m’ ) , for r1,...,m, € Z such that Y ;" | r; is
even. For a given (rq, ..., rn) such twisted spln resp. prym curves are defined varying the

spin resp. prym curves .S, resp. R,
definition of a spin- resp. prym curve as follows: If (p1, ..., p,) are the marked points on X,
then the line bundle £ on X is a square root of wx (>, ripi) resp. Ox (D> 1 ripi), instead
of wx resp. Ox. So for (r1,...,r,) = (0, ..., 0) one obtains the usual pointed spin resp. prym
curves. Proceeding completely analogously to the definitions for usual pointed spin/prym
curves above one defines families of twisted spin/prym curves and morphisms between such

=(r 17 Tn) and ﬁ(”’”"r") and corresponding

( 1’ T n) ( 1» 7Tn) to these

moduli problems can be shown to exist as projective Varletles finite over M g,n in the same

families, and thereby defines moduli groupoids S

moduli problems/functors. The coarse moduli spaces S, resp. R,

"Ie. nodes in which X; meets an exceptional component
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way this is done for S, and R, . For this cf. section 4.2. of [CCCO7], where also higher
spin curves, i.e. curves with r-th roots of the canonical bundle for r > 2 are considered.

Proposition 1.15 The moduli groupoids Sy, and Ry, are (for all 29 +n —3 > 0)
smooth Deligne- Mumford stacks. (This holds more generally also for the moduli groupoids
ST g RO )

This proposition seems to be some kind of folklore knowledge. At least, I do not know of a
published proof of it for the definition of S, ,, and R, 5, given by Cornalba (and used in this
thesis). But there is an alternative treatment of spin (and prym) curves by T. Jarvis in (for
example) [Jar98] and [Jar00]. There the moduli problem of (higher twisted) smooth spin
resp. prym curves is compactified using torsion-free sheaves on stable curves instead of
line bundles on quasi-stable curve. In particular in section 2.4 of [Jar00] moduli groupoids
&/ (K) are defined and shown to be smooth Deligne-Mumford stacks. Here K is any line

a,n

/
bundle on the universal curve Cy,, — ./\/lg n, Which exists as a stack. Denote by S (rl’ )

and Rér,ll ira)’ the groupoids of twisted spin/prym curves one obtains by defining obJects
as we did above, but defining the morphisms instead to include an isomorphism of the
(twisted) spin/prym sheaves, as discussed in Remark 1.12 (i). In section 4.2 of [CCCO07]

(7’11 Tn)/

it is stated (in a more general form) that the moduli functors defined by S, and

R(Tlv Tn) 8

g7n
is remarked that this is easy to prove using Proposition 4.2.2. from that section. In the

are equivalent to the moduli functors defined by certain Gg{n (IC), 9 and it

following we will sketch a proof, using 4.2.2., for the somewhat stronger fact that

3_51?{“”” N61/2( Wey /My Z’moz) and ﬁﬁ,f;"“”"’ N61/2<0c9,n(§:riai)>,
=1

(1.1)

as categories fibred in groupoids (i.e. moduli groupoids). ' This together with Jarvis’
proof that all @;{;(K) are smooth Deligne-Mumford stacks of course implies Proposition
1.15. ' Our proof is not self contained but uses several results from articles by Jarvis to

Tn) —(r1,--5s7n) .
T and Ry, ", as is easy to see.

8Which coincide with the moduli functors induced by S(rl’

9Actually the more general moduli functors there are stated to be equivalent to the functor of
ROOTl/T(lC)7 but in our more special situation this agrees with @;/g(K) (see below).

10This compatibility is one reason to prefer the alternative definition of isomorphisms of spin/prym
curves to the one we use in this thesis. Of course it is also possible to change the definition of isomorphisms
in Jarvis’ construction in order to make it compatible with the definition we use, but contrary to Cornalba’s
constructions, in which both definitions of isomorphisms seem quite natural, in Jarvis construction such
a definition would be artificial. One further such reason is that it seems that the “alternative” moduli
groupoid ﬁ; of prym curves is isomorphic to the moduli groupoid of unramified admissible double covers
of stable genus g curves, with a natural definition of isomorphism for such covers, like in Def. 2.6 below. But
we will not show this here. (In [BCF04] it is shown that the coarse moduli spaces for both moduli problems
are isomorphic. Looking at the proof there it would seem that ﬁ; is not isomorphic to the groupoid of
double covers. But this is because an inappropriate definition of isomorphisms of double covers is chosen,
which also does not work for the proof given there.) So probably the alternative stacks glg’n and ﬁ;,n are
all in all preferable as stack structures for spin and prym curves to the stacks S, and R, we use.

1One checks that if g(gf}l"”’r")/ and ﬁ;f,ll"“’r"), and g;f;"”’rn)/ are smooth Deligne-Mumford stacks,

~~~~~~~~

then so are gs} and ﬁg;"“'%). (If one does not want to check that all the defining properties of
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which we refer but which we do not quote.

Sketch of Proof: (Also cf. section 2.2.2. of [Jar0l] for a discussion for more general

higher twisted spin curves, which includes parts of what follows next.) We show (1.1)

=(r1,0rn)’ =(r1,0rn) . . .
for S, , for R it works analogously. For 1/r = 1/2 it can be seen di-

g.n
rectly from the definitions that the moduli groupoids ROOT;,/T% (wcg . /mgn(Z?ﬂ mai))

and 6;,/3 (wcg,n/Mg,n (31, rio;)) as defined in sections 2.2.3. resp. 2.4. of [Jar00] are iso-

o /
morphic. 12 We define a functor ¥ : Sg,ll’""r") — ROOT;,/H2 (ch,n/ﬂg,n(zyzl ri07)) and

show that it is an isomorphism of groupoids. On the level of objects, for a family
X=(f:X— S;01,....,0n;L,b)
of twisted spin curves, set, for 7: X — C, f : C — S the stable model of X — S:

U(X):=(f:C—= S;mo0y,...,moon; T L, mb),

where m.b : m.L — we/g, since mwy /s = we/s- 13

For X1 = (Xl — Sl;Ul, ...,Un;Ll,bl), XQ = (XQ — 52;0'/1, ...,O’;;LQ,bQ),

let (®,¢,7) : X1 — Xy be a morphism with & : X} — &, ¢ : S1 — So, v : Iy 5 ®*Ls.
Then set ¥((®,¢,7)) = (P, ¢,7), where & : C; — Co is the morphism between the stable
models induced by ®. Let m : X1 — Cyi, mo : Xy — Cy denote the contractions to the
stable models. Then 71, m, ® and ® form a fibre square. To be able to define 7 we
first note that the natural morphism p : 71,9*Ly — 379,y (cf. [Har77] Remark 9.3.1.
in chapter III), is an isomorphism in this case, which follows from Proposition 3.1.2. of
[Jar98]. Now 7 is obtained from the isomorphism 1,7 : m1,L; — 71,9*La by composing
with the isomorphism p. The defined ¥ is a functor and a morphism of groupoids. To
prove that ¥ is an isomorphism, it suffices to show that it is an equivalence of categories
on the fibres of the groupoids over every fixed S € Sch/C (cf. Lemma (5.1.) of chapter
12 of [ACG11]). By Proposition 4.2.2. of [CCCO07], ¥ is clearly essentially surjective over
S. It remains to show that W is full and faithful. Here it is not difficult to show, using
again Proposition 4.2.2. (III), that it suffices to check that ¥ is full and faithful on the

inessential automorphisms for each given twisted spin curve over Spec C. But this follows

smooth Deligne-Mumford stacks carry over, one can use that, as we will see in section 1.6, from general
results on stacks it follows that each of the smooth Deligne-Mumford stacks g(gf,ll"“’rn), and ﬁgif”’rn), is
isomorphic to a quotient stacks [X/G] where X is a smooth variety and G is a linear algebraic group acting
with finite stabilisers on X. By the discussion in Remark 1.12, G has to contain a (central) subgroup S
which acts trivially on all of X, and whose generator corresponds to the inessential automorphism (id, o).
Then the grupoid §;T7117~~-mn) resp. ﬁéﬁ;’m’rn) is isomorphic to the smooth quotient stack [X/(G/S2)], which
is Deligne-Mumford since G/S; again acts with finite stabilisers.)

2The definition for @;/Z m(IC) is developed through large parts of the article, but as one can check,
many conditions put on coherent nets of sheaves are empty in case r = 2.

13This is clear on the fibres over each point of S since the part of a quasistable curve which is contracted
by the stable model consists of several disjoint P!’s, hence the canonical sheaf of a quasistable curve is
trivial restricted to this subcurve. For the relative dualizing sheaves on the families this implies the same,
using for example the results from section 3.1.2. of [Jar98].
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from the description of inessential automorphisms in Remark 1.12 above together with the
description of inessential automorphisms of Jarvis’ spin curves ' in Proposition 4.1.11.
(4 proof) of [Jar98].

1.3 Generalities on boundary strata and cycles of Mg,n

In this section we first will explain the stratification of M, by topological type and the
corresponding notions of boundary strata and boundary cycles. Then some properties of
these objects will be shown. Most of the material of this section stems from [ACG11].
The material there is inspired by the appendix of [GP03]. Our notation and definitions
are somehow a compromise between the ones in the two mentioned texts, but closer to
[ACG11]. Some language from graph theory is used.

We want to introduce the dual graph of an n-pointed stable curve. The strata of the
stratification by topological type will correspond to the different dual graphs that are
possible. Cf. example 1.24 below to get an idea of how the dual graph of a stable curve
looks like. We will work with an abstract notion of graphs here, in contrast to the usual
“geometric” graphs. (A geometric graph can be seen as a CW-complex of dimension 1.)
Using this abstract notion of graphs, we define so called stable graphs. Later we will see

that each dual graph of a stable curve is a stable graph, and vice versa.

Definition 1.16 (i) An (abstract) graph is a tuple
I'=(V,Hyja:H—V,i:H— H)

with the following properties:

(1) V is a finite set, called the set of vertices.

(2) H is a finite set, called the set of half-edges. Each half-edge is assigned to a vertex
by the map a.

(3) The map 4 is an involution on H, which may have fixed points. This map defines a
set F, called the set of edges, and a set L C H called the set of legs: L := Fix(i),
E:={{h,h'} | h,h € H, i(h) =K, h # 1}

Note that this data defines a (geometric) graph [I'] if we interpret V' as the vertices of a
graph and F as the edges of this graph, and say that each e € E, connects the two vertices
v and v’ to which the two half-edges constituting e are assigned by a. (e = {h,i(h)} for
some h € H.) By the definition above, v = v’ is possible, in which case e is called a
self-edge of v (or a loop). If we allow a geometric graph to have legs, i.e. edges with one
free end, we can also define a geometric graph |I'| by starting with [I'], and then for every

1 Jarvis does not call them inessential automorphisms. The proposition there is formulated for ob-
jects over Speck of QSPIN, , with is just ROOT;(g(wcg/Mg). But is is clear that the proof works for any
Roorty/n(K) with K a line bundle on C, ..
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h € L attaching such a leg to the vertex v = a(h). This geometric graph |I'| determines
the abstract graph I' and vice versa.

(ii) A stable graph, is an (abstract) graph I' as above together with a “genus map” ¢ :
V' — Z>0, such that

(4) The geometric graph [I'] is connected.
(5) For each vertex v, the stability condition (compare to Def. 1.2 (ii)) holds:
29(v) =2+ n(v) >0

where n(v) is the so called valence of ' at v. It is the number of half-edges attached

to v, i.e. n(v) = la~L(v)].

The genus g(I') of a stable graph I is defined as
g(T) =Y g(v) +h!(T)

veV
where h!(T") is the first Betti number of the connected geometric graph [I'] defined by T.

Denote by v(I"), e(I"), n(I") the cardinality of V', E and L respectively. (In general n(I') #
> vey n(v).) For a given stable graph I" we often write V/(I') , H(T') and so on, to denote
the set V' of vertices resp. H of half-edges, and so on, belonging to T'.

(iii) For a finite set P a P-marked graph is a graph I' together with an injective map
p: P — H with image L = Fix(i), called a marking.

For g,n € Z>o: A stable (g, P)-graph is a P-marked stable graph of genus g. A stable
(g,m)-graph is an n-marked stable graph of genus g.

Definition 1.17 (i) For a graph I' = (V, H,a,i) each pair (V', H') of subsets V' C V,
H' C H defines a subgraph T'(V',H') = (V',H',d’,i'), if the condition a(H') C V' is
fulfilled: Then define I'(V', H') by setting a' := a5/, and for each h € H', 7'(h) :=i(h) if
i(h) € H and i'(h) := h otherwise (i.e. if we include one half of an edge in H' but not the
other half, then this half-edge becomes a leg in the subgraph.)

(i) For a stable graph T' = (V, H, a, i, g), a stable subgraph is a subgraph I'(V’, H') which
is stable with respect to the restricted genus map g’ := gy

(iii) If a graph I' is P-marked, with marking p : P — H, the subgraph has a natural
structure as a P’-marked graph, where P’ := p~'(H')U{h € H'|i(h) ¢ H'}.

(iv) f ' = (V,H,a,i,g) is a stable graph, then each subgraph of the form I'(v) :=
I'({v},a t(v)) for v € V is stable and of genus g(I'(v)) = g(v). I'(v) consists of the
vertex v and all half-edges attached to v. We call the I'(v) the smooth cells 15 of . In a
sense ' is the disjoint union of its smooth cells. At least V' is the disjoint union of the
vertices of all the smooth cells of I', and H is the disjoint union of the sets of half-edges
of all the smooth cells.

15We call them smooth cells because they are the maximal subgraphs of I' which are dual graphs of
smooth curves, cf. Definition 1.21.



1.3 Generalities on boundary strata and cycles of M, ,, 19

Definition 1.18 Let I' = (V, H,a,i,g9,p) and IV = (V' H',d',#, ¢, p’) be two P-marked
stable graphs.

(i) An isomorphism ¢ : T' — T" is a pair ¢ = (v, pg) of bijections oy : V. — V',
o : H— H',such that , ' ooy =pyoa,/opg=pgoi,pgop=p, g opy=g.
Accordingly we define automorphisms of a graph I and the automorphism group Aut(I").

(ii) A contraction ¢ : T'~ T" is a pair ¢ = (cy, cy) of a surjection ¢y : V' — V'’ and a map
cy : H— H' UV, fulfilling the following conditions: The diagrams

H-mguv H-2 g uv
ai la’uidw zl \Liluidvl
VsV H—=HUV

1% CH

commute, cg o p = p'. 6 These conditions imply that the preimage under ¢ of every
smooth cell T'(v) of T” is a subgraph of I'. More precisely: for each v' € V' the pair
(e (), eyt (/"1 (v")) C (V,H) defines a subgraph of I, which we denote by ¢~ }(I'(v')).
Now ¢ 1(I'(v')) is a union of smooth cells of T', hence a stable graph if connected. The
last conditions on ¢ are: For every v € V, ¢ '(I'(¢/)) is connected, and is of genus
g(c7H(T'(v")) = ¢'(v) and of valence n(c~H(I'(v'))) = n(v').

Note that an isomorphism of graphs is an example of a contraction.

In [ACGL11], page 313-314, contractions of graphs are introduced in a more geometric
way: If one looks at the geometric graphs |I”| and |T'|, each contraction corresponds to a
continuous map between these geometric graphs, contracting certain subgraphs of I' into
vertices of IV. By our definition above (CH)‘c;(H,) : ¢;f (H') — H' is a bijection between
the set of the half-edges of I' which are not contracted into vertices with the set of all half-
edges of I". So this yields an inclusion H' < H, which induces an inclusion of the edges
E' — E. We will write the image of these inclusions as ¢ 1(E’) C E resp. ¢ }(H') C H,
in accordance with the geometric meaning of a contraction just explained 7.

(iii) We say that T is a specialisation of I” if there exists a contraction ¢ : I' ~ T,

Remark 1.19 Let I' be a stable (g, P)-graph. For v € V(I'), set P(v) := p~}(T'(v)) :=
p~Y(a"(v)) and let L(v) be the set of legs of I'(v) which are not in the image of p. Then
L(I'(v)) = p(P(v)) U L(v), and the smooth cell T'(v) is P(v) U L(v)-marked in an obvious
way. Assume we are given for each v € V(I') a stable (g(v), P(v) U L(v))-graph T, We

want to show that this defines a specialisation I" of I': The set |4, ., L(v) contains exactly

veV
those half-edges of I which are glued by i to become edges. The L(v)-part of the markings
on the I', identify these half-edges with half edges of the I',. It thus allows us to define

a stable (g, P)-graph I' which arises from T as follows: Replace each smooth cell I'(v) by

We say that a half-edge h € H is contracted into a vertex v’ if cg(h) = v’ € V’. The condition
cg op = p tells us that legs of T are mapped bijectively to the legs of T” by cm. An edge {hi,h2} of T,
between vertices v1, v is either mapped to an edge between cy (v1) and cv (v2) or, if cv (v1) = cv (v2) = v/,
it may be contracted into the vertex v’. This information is contained in the two commutative diagrams.

'"This notation is also used in [ACG11].
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the graph T',, and glue the z(v)-marked legs of the graphs I';, just like the legs of the cells
I'(v) are glued to each other in T'. *® Thanks to the P(v) U L(v)-marking, for each v there
is a unique contraction ¢, : 'y ~» T'(v) of stable (g(v), P(v) U L(v))-graphs. The union of
maps ¢ := |4,y ¢v is a contraction ¢ : '~ T, so I is a specialisation of T.

Ifc:IT'~Tisa contraction, then it is naturally identified with the contraction é: ' ~» T’

one obtains by the construction just described when setting I', := ¢~ *(I'(v)).

Remark 1.20 Usually the marked points on an n-pointed curve are indexed by the ele-
ments of n. But of course this is arbitrary and one can use any set P with n elements as
index set. We call such a curve a P-pointed curve. If P is such a non-standard index set,
we for example write ng p for the moduli space of stable P-pointed genus g curves.

Definition 1.21 Let € = (C;(p;)icp) be a stable P-pointed curve of genus g. Let 7 :
C — C be the normalisation of C.

(i) The dual graph, I'(€) of this curve is the stable (g, P)-graph I'(¢) = (V, H,a,i,g,p)
defined by:

(1) V is the set of irreducible components of C, and g is the map assigning to every such

component its geometric genus, i.e. the genus of its normalisation.

(2) H is the union of two sets: The set H’ consisting of all the points of C' which are
mapped to nodes of C' by m, and of the set {p1,...,pn}.

(3) The involution i : H — H fixes the elements of {p1,...,p,}, and swaps the two
points in H’ belonging to each node. Thus the edges E correspond to the nodes of
C. Self-edges correspond to nodes in which one irreducible component of C' meets
itself.

(4) The map p:n — {p1,...,Pn}, © — p;, makes A into an n-marked graph.

(ii) C consists of the irreducible components C, corresponding to the v € V. Then C is the
disjoint union of smooth curves Cv, where C’ is the normalisation of C),. On each C’ we
consider some “special points” as marked: First there may be some of the marked points
D1, ..., Pn o0 C,,. We denote the set of indices of these points by P(v) C n. We denote the
preimage on C, of each p; with i € P(v) again by p;. Furthermore denote by E(v) the set
of points ¢ on C,, which are preimages of nodes of C. Then ¢, = (@,; (Pi)iep(v), <Q)qei(u))
is a smooth stable curve which is P(v) U L(v)-pointed. We call the collection € of the €,
the pointed normalisation of €.

¥More precisely: T' = (V, H, a, 4, p, g), where V, H, @, § are obtained by just taking the union over the
corresponding sets/maps of the graphs I',. Let 7, : P(v) U L(v) — L(T'») be the P(v) U L(v) marking of
I'y, and let p, := m,|p(v) be the restriction. Then p : P — H is the union over the p,. Finally 7 is a bit
more complicated to define since it has to glue together the E(v)—marked legs of the T",, although they are
still fixed by the involutions i, of the T',. Identify these legs of I', with L(v), and let i, be the restriction
of i, to H(I',) ~ L(v) and let 7’ be the restriction of i to Usev L(v) C H. Then i =i"UlJ

-/
veV by-
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Now note that a smooth cell T'(v) of the dual graph I'(€) can naturally be identified
with the dual graph I'(€,). In particular P(v) = p~}(D(v)) := p~Y(a'(v)) and L(v) =
L(T'(v)) ~ P(v) = H(I'(v)) ~ P(v).

Remark 1.22 For a stable pointed curve € let I' := I'(€) be its dual graph. An automor-
phism ¢ € Aut(€) permutes the nodes and irreducible components of C, while it fixes the
marked points. Each ¢ lifts uniquely to the normalisation C'. The lifted automorphism ¢~
then accordingly permutes the connected components, fixes the preimages of all marked
points p1, ..., pn, and permutes the points of C which are preimages of nodes of C: Let vy,
v9 be nodes of C, such that ¢(v1) = 1o, let o;,0; be the two preimage points on C of the
node v;. Then ¢ restricts to a bijection {e;,01} — {e2,02}.

So it is easy to see that ¢ induces via 95 a wr = (¢v,n) € Aut(') (cf. Def. 1.18 (i)),
where ¢y permutes the vertices V(I') like ¢& permutes the corresponding components of
C, while ¢y acts on H(T') like & acts on the preimage points of the p; and v;.

Definition 1.23 If T is a stable graph, a connected subgraph IV of I" fulfilling the following
conditions is called a rational tree: I is connected to the rest of the graph only by one
(disconnecting) edge, the graph I contains no non-disconnecting edges, i.e. h!(I') = 0,
and all vertices of I have genus 0.

If (C,p1,...,ppn) is a stable curve with dual graph I" then we call a subcurve of (C, py, ..., pn)
a rational tree, if its dual graph I as subgraph of I is a rational tree.

Example 1.24 We consider a stable genus 2 curve € = (C;p1,...,ps4) with 4 marked
points of the following type: C consists of 3 irreducible components C, Co, Cs3, which all
are smooth. C is of genus 1, Cy, C5 are of genus 0. Component C; meets component Co
in two nodes, Cy meets C3 in one node. There are no other nodes. The marked points with
indices 1 and 2 lie on C7, those with indices 3 and 4 on C'5. We symbolize a curve of this
kind by the picture

2 34

1

© O

The encircled number is the geometric genus of the irreducible component is stands close
to. We will usually use pictures of this kind to explain how a curve looks like. Now the
dual graph I' = I'(€) of this genus 2 curve looks as follows:

e

Here we write the genus of each vertex into the gray dot, standing for this vertex. The
vertex on the right hand side with its two legs and the disconnecting edge connecting it to
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the rest of the graph is an example of a (small) rational tree. The graph has one non-trivial
automorphism, exchanging the two edges that connect the genus 1 vertex to the genus 0

vertex in the middle.

Definition 1.25 (i) For a given stable (g,n)-graph I', let Up be the subset of M,
parametrising curves with dual graph T'.

(ii) The Ur are all non-empty, and the collection of the Up for all stable (g,n)-graphs,
forms a stratification of Mg,n. It is called the stratification by topological type. The largest
of these strata is the one belonging to the simplest graph, consisting of one vertex of genus
g, no edges, and n legs attached to the vertex. This stratum is My,. (For n = 0, the
possible stable graphs I' correspond to the classes of stable curves up to homeomorphism,
therefore the name of this stratification.)

(iii) All smaller strata Ur are contained in the boundary of M, and are usually called
boundary strata of M. For simplicity we shall call all strata Ur, including M, ,,, bound-
ary strata. The closures Ar of these Ur will be called boundary cycles. The Ar are of
codimension e(T") in M, ,,. The Ar of codimension 1 will be called boundary divisors.

The boundary Mg, ~ M, is the union of these boundary divisors.

(iv) The Q-classes dr := [Ar]g in A*(M,,,) and H*(M,,,) will be called boundary cycle
classes or shorter boundary classes. Sometimes they are also called boundary stratum
classes.

The geometry of the boundary cycles Ar can be investigated using the following gluing

morphisms. They play an important role in computing Chow- and cohomology rings of
Mgy

Proposition 1.26 (i) Let I' = (V, H,a,i,g,p) be a stable (g, P)-graph. Define a moduli
space Mt by the product

Mr= 1] Mymar= [ Mowyme:
veV(T) veV(T)

Then there is a finite gluing morphism
fF : MP — M% P

surjecting onto Ar. (& is also a representable morphism of stacks.) It corresponds to
taking all pairs of marked points py:, py indexed by elements h,h' € H, such that h and I/
are swapped by i, and gluing py, and py together. “Gluing together” here means identifying
the two points in such a way that the resulting curve obtains a simple node. (This can be
made precise on families of curves using the clutching functor introduced in [Knu83/, also
cf. [ACG11] chapter 10, section 8. These clutching functors define &r as a morphism of
stacks, which then induces a morphism of the coarse moduli spaces, which we call by the

same name.)

1980 we have Mr =[] Mr(y), for I'(v) the smooth cells of I

veV(T)
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If vp : AF — Ar is the normalisation, then &r factors as & @ M gﬁr &1“ s Ar. Here
& can be identified with the quotient morphism Mpr — [Mrp/Aut(T)]. In particular as
morphisms of stacks, & and & have degree | Aut(I')|.

(i1) It follows that all boundary cycles Ar are irreducible.

(iii) Every contraction ¢ : T' ~ T" of stable (n, P)-graphs induces a morphism of stacks
& : Mr — My, which we call a partial gluing morphism. It corresponds to gluing those
marked points which belong to edges which are contracted by c. In this sense the gluing
morphisms of (i) corresponds to the contraction of T to the stable (g, P)-graph consisting
of one vertex and |P| legs.

(iv) For each v € V(T'), let A, be some boundary cycle ofﬁg(v),aq(v). Then the image of
the subset HUGV(F) A, C Hvev(r) Mg(v),a_l(v) under &p s a boundary cycle of Myp,.

(v) For two stable graphs I'1 and I's, we have Ar, C Ar, if and only if 'y is a specialisation
Of Fl .

Proof: For (i), cf. the appendix of [GP03], or for more details [ACG11], chapter 12, section
10.

(iii): Note that M = HU,GV(F,)MF(U/) and Mp = [Loevn Mr,), where T'(v/) and T'(v)
are the smooth cells. Now I is the disjoint union of the stable subgraphs ¢~!(I'(¢)) for
v € V(I') (cf. Definition 1.18 (ii)). We have

Mc—l(l“(v’)) = H F(U) and Ml" = H MC—I(I‘(UI)).
vee—Y(D(v')) v’ el

Let p : P — H(), p' : P — H(I") be the P-markings. Set P(v/) := p/ "(D(v')) :=
P Ha"1(v")), and let L(v') be the set of legs of T'(v/) which are not in the image of p'.
Then L(T'(v)) = p/(P(v')) UL(v') and the stable graph ¢=1(I'(¢')) is P(v') U L(v')-marked
in a natural way. So by (i), there are gluing morphisms

S 1= L)) Memiwwn) = My pronuiw) = Mrw):

The partial gluing morphism &, is Hy/eV(F') &

It is quite clear that & = £ o €., when considering how these morphism correspond to
gluing marked points on curves.

(iv): By definition of a boundary cycle, each A, C Mg(v)’aq(v) corresponds to a stable
(g(v),a~*(v))-graph T'y. Moreover a~!(v) can be identified with P(v) U L(v) (as defined
in Remark 1.19) in an obvious way. Now let ¢ : ' ~ T be the contraction defined by this
collection of (g(v), P(v) U L(v))-graphs 'y, as in Remark 1.19. Since the partial gluing
morphism &z of (iii) corresponding to ¢ is just the product over the gluing morphisms
ér, : Mr, — Mg(vm_l(v), the image of & is [[,ey ) Av € [Levim Mg(v)’a—l(v). With
&r = &r o &, we get that the image of HUGV(F) A, under &r is Ag.

(v): By the discussion for (iii) and (iv) it is clear that Ap, C Ar,, if there is a contraction

c: 'y~ 1.
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To show the “only if” direction: For any stable graph I', we call Ar ~\ Ur the boundary of
Ar. Index the elements of V(I') as vy, ..., v,. We call boundary divisors of Ar, the images
under &1 of loci of the form

X oo X Dy Xooo X Mg,y g(00) © M g(oy),n(oy) X oo X M

M w1 (o) avr).g(or) = M,

where D,, is a boundary divisor of Mg(vi)’n(vi). Each boundary divisor of Ar can be written
as Ar for some specialisation I of T', by the proof of (iv). Now the boundary of Ar is
the union of the boundary divisors of Ar, since the boundary of each Mg(vi),n(vi) is the
union of the boundary divisors of Mg, n(v,)- The latter fact follows from deformation
theory, which tells us that each point of M g, ,(v,) Parametrising a nodal curve, lies in
the closure of the locus in M y(,,) n(v,), Parametrising curves with exactly one node. (Cf.

Summary 1.30 (vii)).

As a boundary cycle, Ar, is irreducible. If Ar, & Ar,, then Ar, must be contained in
the boundary of Ar,, and hence, by irreducibility, in one boundary divisor Al"ll of Ar,.
I} is a specialisation of I'1, as we have seen, and dim Al"ll = dim Ar, — 1. Now either
Ar, = Ar‘ll , or we can iterate the argument until we arrive at a specialisation I/ of T';
such that Ap, = Apy. O

Notation: (i) We will often use non-standard index sets (cf. Remark 1.20) of the following
type when defining gluing morphisms: We use indices of the form e; and o; to indicate
which pairs of marked points will be identified by the gluing morphism. For example we
would denote the gluing morphism corresponding to the graph I' of Example 1.24 by

€0 My 12,01 000 X Mo foy,00,050 X Mo (3405 = M1 12,34y = M1

In this notation one can reconstruct the graph I' just by looking at the indices used. The

notation is very similar to the one used in the articles by Nicola Pagani.

(ii) If A is some boundary stratum we often write {a for the gluing morphism surjecting
to it.

1.4 Generalities on boundary strata of gg,n and Eg,n

Definition 1.27 (i) Let ngn be either gg,n or Eg,n or a space of twisted spin resp. prym
curves gg:;’""?q") resp. Rg;""’rn). Let 7 : Xy, — M, be the forgetful morphism. If Up
is a stratum of the stratification of M,, by topological type, then 7=!(Ur) may have
several irreducible components (all of the same dimension). We define the stratification by
topological type of ng to be the collection of these irreducible components of the 7~ (Ur)
for all the possible stable (g,n)-graphs I'.

(ii) Boundary strata, boundary cycles, boundary divisors, boundary cycle classes and so
on for X, are then defined analogously to the case of M ,.



1.5 Deformation spaces of pointed spin and prym curves 25

1.5 Deformation spaces of pointed spin and prym curves

In this section we give a short summary of the results about local universal deformation
spaces of pointed stable curves, and pointed spin- or prym curves we will need in this
thesis. The moduli spaces M, Sy, and Ry, locally are quotients of these deformation
spaces, by the automorphism groups of their central fibres. We will be interested in how
these automorphism groups act on the deformation spaces. We take these results mainly
from [ACG11] and [Lud07]. More details can be found there. As in [ACG11], we will
describe deformations in the complex analytic category, but we will call “local universal
deformation” what is called a “Kuranishi family” in [ACG11], and so stay closer to the

terminology of algebraic geometry.

Definition 1.28 (i) A deformation of an n-pointed nodal curve € = (C;pi,...,pn), is a
family of n-pointed nodal curves (C — Bj;o1,...,0,) together with a closed point by € B
and a closed embedding C' — C, fulfilling the following condition: For C' — bg the constant
morphism of C' to by, denote by p; : by — C' the section having the point p; as its image.
With by — B the inclusion, the following diagram commutes for all 7 € n:

c—cC 20

S

bp—— B

We often denote such a deformation by (C'— C — (B, bg); 01, ..., 0p).

(i1) A deformation of an n-pointed stable curve € = (C,p1,...,pn) is defined analogously,
replacing the family of pointed nodal curves by a family of pointed stable curves.

(iii) A deformation of an n-pointed spin or prym curve X = (X;p1, ..., pn; L£,b) is a family
(X — S;01,...,0n; L, b) together with a closed point sy € S and an isomorphisms between
X and the fibre of the family over sq.

(iv) A morphism between two deformations of one fixed nodal curves or spin/prym curve
X over two bases (S, sg) and (5’, s{)) is a morphisms of the underlying families in the sense
of Def. 1.5 (i.e. a pullback square), such that s is sent to s, and such that the restriction
to the central fibre induces the identity on X, via the given isomorphisms of X to the

central fibres of each deformation.

(v) A deformation (C — C — (B,b);01,...,0n) of a stable curve €, is called a lo-
cal universal deformation, if every deformation (C' — C' — (B',b);0},...,0,), is, af-
ter restricting it from B” to an open analytic neighbourhood B’ of b, the pullback of
(C —=C— (B,by);01,...,00) via a unique morphism (E’,b(’)) — (B, bg). Le. let €' be the
open subvariety of C’ lying over B’, let &, be the restriction of o] to B’. Then there is a
morphism B < B, sending b{, to by and inducing a commutative diagram as follows, such

20Le. the curve C is identified in an explicit way with the fibre of C — B over by (called the central
fibre), and one further requires that the image of o; restricted to the central fibre C is the point p;.
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that the square in the middle is cartesian

(vi) A local universal deformation of a spin or prym curve is defined analogously.

(vii) If we have a deformation, and speak about an automorphism ¢ of (C — (B, by); 01, ..., 0p)
or (X — (S,s0);01,...,0n; L, b), we mean a automorphism of these underlying families of
pointed curves or spin/prym curves, such that ¢(by) = bg resp. ¢(so) = so. We do not
require that ¢ is an automorphism of the deformation in the sense of (iii). We call such
an automorphism an automorphism of the centred family underlying the deformation.

Notation 1.29 (i) If B is a the n-dimensional unit ball B = {z € C" | |z| < 1}, we will
speak about linear subspaces of B, meaning subsets of the form W = BNV C B, where V' is
a sub vector space of C". By a basis of such a linear subspace W we will mean a basis of V.
If 21, ..., x, are vectors in C", we use the notation spang(x1, ..., z,) := BNspan(zy, ..., Tp).
A linear action of a group G on B will be the restriction of a linear action of G on C"
such that every group element acts as a bijection on B. B is said to be a direct sum of
linear subspaces B=W1 & ... & W,,, with W; =BnNV,, if C"=V1 ® ... ® V,,.

(ii) The next two summaries use the notation introduced in Definition 1.21 and Remark
1.22 for dual curves, pointed normalisations, and the automorphism induced on the dual
graph by an automorphism of the curve. If I' = T'(€) is the dual graph of a stable curve,
e € E(I') an edge, we know that to e belongs a node of €. We will often also name this
node e, or directly call e € E(I") a node.

Summary 1.30 For € := (C;p1,...,pn) a stable n -pointed curve of genus g, there exists a
family (C — (B,bg); 01, ..., 0p), which is a local universal deformation of €. It has, possibly
after restricting B to a smaller open neighbourhood of by, the following properties:

(i) The total space C is smooth and B is isomorphic to an open ball in C3973+7,

(ii) The deformation is a local universal deformation not only for the fibre over by, but for
each of its fibres.

(11i) Every ¢ € Aut(€) on the central fibre extends uniquely to an automorphism (in the
sense of Def 1.28 (vii)) of (C — (B,bo);01,...,00).

(iv) For any isomorphism (of n-pointed curves) between two fibres of the family, there
is a unique ¢ € Aut(€), such that extension of ¢ to C restricts on the two fibres to
this isomorphism. So with (iii), we can in particular make the identification Aut(€) =
Aut((C — (B,by);01,..-,00))-

(v) Hence, locally analytically around the point [€] € Mg, Mg, is isomorphic to the
quotient B/ Aut(€). More precisely, the classification map B — Mg, induced by the
family over B, factors through an open embedding B/ Aut(€) < M.

21This means that the square is the diagram of a fibre product
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We can identify B with the open unit ball in C*973%" in such a way that by = 0 € C39—3+7,
and such that (with T’ := T'(€) the dual graph) all the following properties hold:

(vi) The action of Aut(€) on B is a linear action, in the sense of Notation 1.29 (i).

(vii) There are linear subspaces W,, C B for v € V(T') and linearly independent vectors T,
for e € E(I') such that

B = @ W, ® SpanB({fe}eeE(r))
veV(T)

and such that, over each W, all the nodes of C are retained, and only the irreducible
component of C' corresponding to v is deformed, and actually W, is isomorphic to the
local universal deformation space of &U. Denote by x the coordinate in direction Z.. Let
B’ be a 2-dimensional complex ball with coordinates z1, z9, then locally analytically around
the node e on C, the morphism C — (B, bg) is isomorphic to the projection from {z1 - zo =
xe} C B’ x B to the second factor. So the node e is smoothed in direction Ze, and is

retained over the subspace {x. =0} C B.

(viii) The 3g(v) — 3 + n(v)-dimensional subspace W,, can be further analysed as follows:
W, = Wv,Pt S Wv,Sciu with

3g(v) =3, g(v) =2 n(v), g(v) =2
dim¢c Wy, sen = 4 1, gv)=1, dimcW,pt=qn(v)—-1, gv)=1.
0, g(v) =0 n(v) =3, g(v)=1

The deformations in Wy, py only move the marked points p;, i € P(v) and ey, h € E(v),
but keep unchanged the underlying curve Cy. The space Wi, se, 15 generated by so called
Schiffer variations, at gemeral points of C,. A Schiffer variation deforms the complex
structure of év locally around some point. (More precisely one obtains generators of Wy, sch,
by integrating such Schiffer variations, which are actually first order deformations, cf.

[ACG11], chapter 11, section 2.)

Order the elements of V' as (v, ...,vy|) and of E as (e1, ..., e|g|) in any way. Relative to this
fized order, for any ¢ € Aut(C), the permutations gy and ¢ correspond to permutation
matrices, which we call E:OV and E;E. Now choose a basis Ty, 1, ..., Ty, q(v;) for each space
Wy, , where d(v;) := dim¢ W, = 3¢g(v;) — 3 + n(v;). Then fiz the basis

(Z1, s B3g-31n) = (T 10 o By d(on) )izt V] (T )izt B])

of B. We call such a basis of B a standard basis. For each ¢ € Aut(€), the induced

linear automorphism on B, restricts to isomorphisms W, — Wo, (v) and maps each T

v(v

to aZ () for some a € C*. Hence:

PE
(ix) Relative to the chosen basis of B, an automorphism ¢ € Aut(yp) is represented by a
matriz M (@) of the form:

M) = (M Eer O
0  MgE,,
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here E,, := E:DE, while By, is the “block permutation matriz” obtained by replacing in
the permutation Matriz E,, for every 1 < i < |V|, the entry 1 in the i-th column, by an
identity matriz 1,, of the size d(v;) X d(v;). Mg is a diagonal matriz, while My is a block

diagonal matriz, whose i — th block is of the size d(v;) x d(v;).

Summary 1.31 For an n-pointed spin or prym-curve X := (X;p1,...,pn; L,b) of genus
g, there exists a local universal deformation (X — (S, 50);01,...,0n; Li;b). For the stable
model € = (C;p1,...,pn) of X let (C — (B,by); 01, ..., 04) be the local universal deformation
of €, let T' =T'(€) be the dual graph. We have, possibly after restricting S and B to smaller
open neighbourhoods of sy resp. by, the following properties:

(i) For (X — (S,s0);01,...,0n; L;b), analogs of the properties (i)-(v) listed in Summary
1.530 hold.
(i) The functor of passing from a family of spin resp. prym curves to the stable model,

induces a morphisms ™ : X — C and 7 : (S,s0) — (B, bo) such that the following diagram

commutes:

xX—= ¢

-

(S, 80) T> (B, bo)

The morphisms in the diagram also commute with the sections o; of the two families. We
have already indicated this by giving them the same names for both families.

(111) For every ¢ € Aut(X), if we denote by pe € Aut(€) the induced automorphism on €,
then the action of pg on B is compatible with the action of ¢ on S via w. Furthermore, let
7 : S/ Aut(X) — B/ Aut(€) be the morphisms induced by 7, and let T : Ryn — Mg, %2 be
the forgetful morphism on the moduli spaces, B/ Aut(X) — Mgy, S/ Aut(X) < Ry, be
the closed embeddings from 1.30 (v) and its analogue. Then following diagram commutes:

S/ Aut(X)—— Rg’n

ﬁl \LT
B/ Aut(€)—— M, ,
We write E(I') = Ex W Ea, where En contains the edges corresponding to nodes which

are blown up when passing from C' to X, while Ea contains the others.

One can simultaneously identify (S, so) and (B,bg) with unit balls in C3973%" such that
for (B,bg) all the properties (vi)-(viii) of Summary 1.30 hold, and such that:

(iv) Aut(X) acts linearly on S.

(v) There are linear subspaces U, C S for v € V(I') and linearly independent vectors ije
for e € E(I') such that

S= @ U o spans({Fbeens) © spans({7: beenn)
veV(T)

22Replace Ry,n by Sy,n everywhere in (iii) if [X] € Sy,n
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and such that, over each U, all the nodes (and exceptional components) of X are retained,
and only the irreducible non-exceptional component of X, corresponding to v is deformed.
Furthermore if we denote by y. the coordinate in direction ¥, then {y. = 0} C B is the
locus over which the node resp. exceptional component of X corresponding to e is retained.
Le. this node is smoothed in direction ., resp. the two nodes connecting the exceptional

component to the rest of the curve are smoothed in direction .

Order the sets V., En and Ey as (vi,...,vy|), (€1, €|5|), T€8P. (€EA|+15 -+ €|E]) N
any way. For any ¢ € Aut(X) let o¢ € Aut(€) be the induced automorphism. It induces
permutations v, ¢r on V(L) resp. E(I') (c¢f. Remark 1.22). Now g respects the par-
tition of E(T') into Ea and En and so splits into permutations g, and ¢g, on these
sets. Relative to the order on V, Ean and En fixed above, they correspond to permuta-
tion matrices B, EZPEA and EprA. Choose a basis Yy, 1, s Yo, d(v;) for each space Uy,
(d(v;) := dimc Uy, = 3g(v;) — 3 +n(v;)). Then fix the basis

(15 s B3g—34n) = ((Fois1s os Tosd(vs) i1, [V]> Tei)iz1,...|E|)

of S. By (vi), setting (Z1, ...., ¥3g—34n) := (7 (Y1), ..., T(Y39—3+n)) gives us a basis of B. We
call such simultaneously defined bases of (S, sp) and (B,by) a pair of standard bases.

(vi) The forgetful morphism m : (S,s0) — (B,bo) restricts to isomorphisms U, =, We.
If we rearrange the basis such that iy, ..., §|gy| are the basis vectors of the form g, with

e € En, we can describe m by

39—3+n [En| 39—3+n
- 2 - 39—3
T ( g aiyi) = E a5 T + E o; @i,  for every (ai, ..., a39-34n) € C .,

i=1 i=1 i=|En|+1

In particular 7 is a finite map of degree 21BN which is simply ramified at each subspace
{ye = 0} for e € Ex and not ramified anywhere else. (Here we again denoted by y. the
coordinate in direction J.)

For each ¢ € Aut(€), the induced linear automorphism on B, restricts to isomorphisms

—

W, =, Wo (v) and maps each T to aZy, ) for some a € C*. Hence:

(vii) Relative to the chosen basis of S, an automorphism ¢ € Aut(X) is represented by a
matriz N(p) of the form:

NyEg, 0 0
N(p)=| 0  NpEg, 0
0 0 NEN]E‘PEN
here By, 1= ]EZPEA and Eq, = EZPEN, while By, is the “block permutation matriz”

obtained by replacing in the permutation Matriz Ei,, for every 1 < i < |V, the entry
1 in the i-th column, by an identity matriz 1,, of the size d(v;) x d(v;). Ng, and Ng,
are diagonal matrices, while Ny is a block diagonal matrix, whose © — th block is of the

size d(v;) x d(v;). Then the induced automorphisms pg¢ € Aut(€) is relative to the basis
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T1, ..., T3g—34+n TEpresented by the matrix

NyE,, 0 0
M(ge)=| 0  NpE,,, 0
0 0 N3 Egp,

References/Sketches of Proof: All claims of Summary 1.30 (i)-(viii) can be found in
chapter 11 of [ACG11] or follow directly from discussion there. In particular, cf. Theorem
6.5 and the discussion following it. Also cf. section 3.2.1. of [Lud07]. For Summary 1.30
(ix) cf. [Lud07] Corollary 3.2.14. The claims of Summary 1.31 can be found (for the case
of spin curves without marked points) in section 3.2.2. of [Lud07] (for prym curves also cf.
section 6 of [FL10]). They follow relatively directly from the claims of Summary 1.30 and
from the way in which the local universal deformation of a spin curve X is constructed
in [Cor89] starting from the local universal deformation of the stable model € of X, and
results proved there. (The case of prym curves is analogous, cf. [BCF04]). If one reads
[Cor89] one will find that this construction goes though in the case of pointed spin curves
completely analogously, so that the claims of Summary 1.31 also hold in this case. What
one may also find is a mistake which affects the proof of the analogue of Summary 1.30
(iv) for spin curves (this is Lemma (5.1) in [Cor89]). We give a short explanation of this
mistake and sketch a way of how to repair the proof. (This is probably only understandable
if one reads [Cor89] parallely. We also use the notation introduced there, which does not
coincide with the one in the two summaries above.): Section 4 of [Cor89] contains two

incorrect short sequences:

l1-H—-G —-T"—=1, and 1— H— G — Aut(C) — 1.

The latter sequence is called (4.5). Actually the image of G in Aut(C) is only the (in
general proper) subgroup Auty(C) C Aut(C), of automorphisms which map all nodes of
the stable curve C' which are blown up in passing to the quasi-stable curve C again to nodes
of this kind 3. This is exactly the subgroup of automorphisms of C' which lift to C. Now

in the proof of Lemma (5.1) there appears a ¢ € Aut(C), and it is claimed that & lifts to a
o € G. This would follow from sequence (4.5), but now requires to show that & € Auty(C).
This one can prove as follows: Note, to prepare the proof, that each automorphism of the
centred family underlying any deformation of a (spin) curve (cf. Def. 1.28 (vii)), is locally
induced by a unique automorphism of the centred family underlying the local universal
deformation of this (spin) curve. By Proposition (4.6) of [Cor89] one already knows that
theld = (p: D — B, {y, o) constructed there is a local universal deformation of the spin
curve X, and it is easy to see that U is also a local universal deformation of each of its
fibres p~!(a). This implies that the isomorphism ~ : p~(a) — p~1(b) 2* of Lemma (5.1.)
extends locally uniquely to an isomorphism +' : p~1(U,) — p~ (i) of neighbourhoods on
U of our two fibres. Using that also D — B is the local universal deformation of each of its

fibres, and forming of the stable model of D — B, we obtain that 7 descends to some 7 on

23 Auty, (6) is new notation we introduce here.
2YNote that ~ is meant to be an isomorphism of the spin curves, which are obtained by restricting the
spin structure of I to the quasi-stable curves p~'(a) and p~'(b), not only of the quasi-stable curves.
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D — B (maybe after restricting to smaller neighbourhoods). Choose ¢ € U,, d € Uy, such
that p~!(c) and p~'(d) are smooth and 7/(p~'(c)) = p~1(d). Let € and d be the images on
B. If we choose standard bases of B and B as in Summary 1.31 above, then we can write

in coordinates

c= (Cl, ey Cmy Gt 1y oees 639_3), c= (C%, ey C?n, Cmdls ey 039_3)
where m is the number of exceptional nodes of C, analogously for d, d. Let Lg, L7 be
the (segments of) complex lines which pass through 0 and € resp. through 0 and d on B.
Define subsets of B:

Se = {(ter, ., tem, t2eme, - t2c3g-3) | t € C} N B,
define S; analogously. Then S, and Sy are isomorphic to complex unit discs, and

H: SC — Sd, (tCl, ey tcm, t20m+1, ceey t203g,3) — (tdl, oy tdm, t2dm+1, vy t2d3973)

h:Lz— Ly, (tc], ..ty tmi1, . tesg—3) v+ (tds, .. tdo, tdpmia, ..., tdsg—3)

are isomorphisms which form, together with the restrictions of the cover 7 : B — B, a

commutative diagram

SCLSd

Le—t> 1
Since all automorphisms of C' act linearly on B, h is the restriction of the action of .
Set S := S, ~ {0}, S := Sy~ {0}, then the families of smooth curves p~1(S.) — S
and p~1(S)) — S/ are pullbacks of the family D — B via 7. resp. m4. Hence there is
an isomorphism v : p~1(S.) — p~1(S)) of families of curves, which is compatible with
Hg,. Since 7' locally lifts the action of @, we see that 4" and 7' agree everywhere they
are both defined. So over S. NU,, 7" is an isomorphism of families of spin curves. Since
spin sheaves extend over families of curves uniquely (cf. Remark 3.0.6. of [CCCO0T7]), v
is even an isomorphism of families of spin curves over S.. But then by Lemma (5.3) of
[Cor89], which is proven without using (5.1.), v" extends to an isomorphism of centred
families of spin curves v : p~1(S.) — p~1(Sy). Now if we call o the restriction of 7" to
the central fibre X, the automorphism ¢ induces an automorphism of & which coincides
with 7" over p~1(S.). But then o must be a lifting of the automorphism & which induces
the isomorphism 7. O

Lemma & Definition 1.32 Let (B, by) be the local universal deformation space of a sta-
ble curve € and assume, that we have identified (B, by) with the unit ball in C3973T" and
chosen a standard basis as in Summary 1.30. For ¢ € Aut(€) we say that ¢ extends into
a direction Z' of a vector Z € C" if spang(?) C Fix(p) := {b € B | ¢(b) = b}. Then:

(i) Assume that ¢ fizes the node of C' belonging to an e € E. We will also call the node e.

Let ay and ag be the weights with which ¢ acts on the tangent spaces to the two branches
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of C meeting in e. Let N be the order of ¢. Then  extends in the direction T. if and only
if N|(a1 + a2). If N does not divide aq + oo then we even have Fix(p) C {x. = 0}.

Let X be a spin or prym curve, € be the stable model, (S,by) and (B, by) the local universal
deformation spaces, already suitably identified with the unit ball in C?973%" as in Summary
1.31. Let ¢ € Aut(X), p¢ € Aut(€) the induced automorphism.

(i) If e is of order 2 then we can choose a pair of standard bases of (S, so) and (B, bg)
in such a way that for each pair of nodes e1,ea € E of C' which are swapped by pg, one
has 906(581) = f82; 906(562) = fel'

(i1i) The group of inessential automorphisms Auto(X) (cf. Def. 1.11 (v), Remark 1.12)
acts on (S, sg) as follows: Let (ay,...,a,) € {—1,1}" be the tuple (unique up to multiplying
all entries by —1) which belongs to a ¢ € Autg(X). Then ¢ acts on (S, s9) by ©(Je) = — Ve

for all e € En with the property that e connects two components X; and )Afj of the non-
exceptional subcurve X, such that a; # a;. All other vectors of the standard basis are fived

by .

Proof: (i): By Summary 1.30 (vii), in particular the local description of the deformation
around the node e by z1 - 21 = x., we see that ¢ acts on the coordinate z. by

Te=21-22 > Up'21 - VpP2o = Vﬁ‘,ﬁazme,

where vy is a primitive N-th root of unity. (Also cf. [Pag09].)

(ii) Choose an arbitrary pair of standard bases first. We use that M (y¢) is of the form of
Summary 1.31 (vii). This tells us, since e; and ez are swapped and @¢ has order 2, that

e acts on spang(Ze,, Te,) by a matrix

0
M = ( (11) ,  with ajas = 1.
a9 0

Now we can for example replace Z., by aifel in the base of B, and ¢¢ will act on the new
2

basis as claimed. To still retain a pair of standard bases we also replace g, by %gj’el if

e € Ea or by \/%gjel if e; € FE. It is furthermore clear that this base-change can be done

for all pairs of swapped nodes simultaneously.

(iii): cf. page 10 of [Lud10] O

Lemma 1.33 Let Ar, Apr be two boundary cycles ofﬁgm defined by stable graphs T, T".
Let D and D' be two boundary cycles of gg,n or of Rg,n. Then:

(i) The irreducible components of the set-theoretic intersection Apr N Ap: are all of the
form A for some stable graph A which is a specialisation of I' and I'. Also the irreducible
components of D N D' are boundary cycles of ggyn resp. of Rg,n.

(i) Assume that there is a Ay C Ap N Ap such that for m := codim(Ar, My ,), m' :=
codim(Arr, M), p = codim(Ap, My,,) we have m~+m' = p, i.e. Ar and A “intersect
properly in Ax”. Then let [€] € Tz be any point, and let V, V' and W be the preimages
of Ar, Ap: and Ap on the local universal deformation space (B,by) of €, and choose a
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standard basis on (B, by) as defined in the summaries above. Denote the sets of irreducible
components of V., V' resp. W by {Vi}ier, {Vj’}jEJ resp. {Witrer - All these irreducible
components are then linear subspaces of (B,bg) of codimension m, m’ resp. p. For every
k € K there is eractly one i(k) € I and evactly one j(k) € J such that Wy, C V4, and

Wy C Vj/(k)’ furthermore for these i(k), j(k): Wi = Vi) N Vj/(k)'

(iii) Also if D" is a boundary cycle of Sy, resp. Ry with D" C DN D' in which D and
D' intersect properly, then on the local universal deformation space (S, sg) of any [X] € D"
the analogue of (ii) holds.

Proof: (i) is easy to check. For (ii) let I'(¢€) be the dual graph of €, E be its set of
edges. For every F' C E set S(F) := (\.cpize = 0} (for the coordinates z. as in the
summaries above). Then for each subset ' C E such that the stable graph obtained
from I'(€) by contracting all edges in E ~\ F' is isomorphic to I', the linear subspace
S(F) C B is one of the V;. Furthermore each V; is of this form. Analogously for the V/
and Wy. Denote by F'(V;), F(V]), F(W}) the subsets of £ corresponding to the irreducible
components in this way. It is clear that there must be at least one i(k) and one j(k) such
that Wi C Vir) NV}, Also for such i(k), j(k) one must have F(Viy,)) N F(Vj,,) =0,
since otherwise codim(Vj(x) N Vj’(k), B) < m +m’ and hence Wy, would be contained in a
larger irreducible component of W = V NV’ In particular this implies W), = Vit N Vj’(k),
hence F(Wy) = F(Vig) U F(Vj’(k)). Now assume there is another #/(k) € I such that
Wi C Vi) Then F(Wy) = F (Vi) UF (Vir(ry) UF(Vj’(k)), from which by what we already
discussed it follows that F(Vi)) = F(Vyx)), so i'(k) = i(k). One can see (iii) using (ii)
as follows: Say we are on Ry, let 7 : Ry, — M, be the forgetful morphisms and set
7(D) = A, 7(D") = A’, 7(D") = A”. Then A, A’ intersect properly in A”, and for € the
stable model of X, (ii) holds on the deformation space (B, bg) of €. Now one obtains (iii)
by the description of the forgetful morphism 7 : (S, sg) — (B, bp) from Summary 1.31 (vi)
and by 1.31 (iii), and the definition of boundary cycles of R ,. O

1.6 Rational cohomology and rational Chow ring for smooth
Deligne-Mumford stacks.

We will work with the rational Chow ring as well as with the rational cohomology of our
moduli spaces. Every variety X has a Chow group A.(X) and a (singular) cohomology
group H*(X). But since gg,n and Eg,n are in general singular one might suspect that there
is a problem with the multiplicative structure on A.(X), i.e. the intersection product,
and that A*(...) may not be isomorphic to A.(...). But there is an intersection theory
(with rational coefficients) for smooth Deligne-Mumford stacks and for their coarse moduli
spaces, which has more or less the same properties as the analogous theories for smooth
varieties. Since S, ,, and R, are such stacks by Proposition 1.15, we can apply this theory.

In [Muma83], D. Mumford introduced the rational Chow ring of @Q-varieties and Q-stacks
with global Cohen-Macaulay cover. More generally intersection theory with rational coef-
ficients on smooth Deligne-Mumford stacks was developed in [Vis89] by A. Vistoli. Earlier,
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H. Gillet in [Gil84] had introduced such an intersection theory, under the assumption that
the stack was of finite type over a field, using higher K-theory. We compile some results
about the Chow ring of smooth Deligne-Mumford stacks and their coarse moduli spaces.
References for this are [Gil84], [Vis89] and for some points [Ful98]. Also much of the fol-
lowing is taken from section 2 of [AGVO08], which is a compilation of facts about Chow
rings and cohomology of stacks. We choose the conditions on the stacks in our following
Summaries in such a way that also H. Gillet’s intersection theory and the one introduced
for quotient stacks via equivariant Chow rings in [EG98] apply, and are known to coin-
cide with the one introduced in [Vis89]. 2* So we can use results proven for any of these

intersection theories. We also fix some notation in the Summaries:

Summary 1.34 Let M and M’ be a smooth proper integral Deligne-Mumford stack of
finite type over C. They then have coarse moduli spaces M and M', which are complete
irreducible varieties having only finite quotient singularities. We furthermore assume that
these varieties are projective. 26 Then:

i ere is a natural proper surjective morphism of stacks m: M — M which has degree
) There i tural jecti hi f stack M — M which has d
% where m is the number of automorphisms of the general objects of M.

(ii) There is a Chow group with rational coefficients A.(M) defined in [Vis89], such
that Ax(M) is the group of Q-linear combinations of closed integral substacks of M of
dimension k, modulo a rational equivalence defined in [Vis89]. There is a pushforward
Ty Ax(M) = A (M) and a pullback 7 : Ay (M) — A.(M) which are isomorphisms of
graded Q-vector spaces. If V is a closed integral substack of M then it has a coarse moduli
space V', and V is in a natural way a closed irreducible subvariety of M. If [V] € A (M)
resp. [V] € A (M) are the cycle classes, then m,[V] = L[V], where r is the number of

automorphisms of a general object of V.

Notation: We usually identify A,(M) with A.(M) via 7.. Under this identification we
usually denote the class [V] in A.(M) as [V]g. Hence, for V irreducible, [V] = r[V]g,
where v is the number of automorphisms of almost all objects parametrised by points of V.

(111) On A (M) an intersection product is defined in [Vis89] which has more or less the
same properties as the intersection product on smooth varieties. In particular the properties
described in Proposition 8.1.1 of [Ful98] all hold for this intersection product. For o, €
A (M) we denote the product by « - B. An intersection product on A.(M) is defined by
the identification with A.(M) via w.. This product is dependent on M, not only on M.

25This works since the conditions on M in the following summaries, which are obviously fulfilled for
Sy.n and Ry, imply that the stack M is a quotient stack: By Theorem 4.4 of [Kre09] every smooth
separated Deligne-Mumford stack over a field of characteristic 0 with quasi-projective coarse moduli space
is a quotient stack. So M 2 [X/G] for some smooth irreducible variety X and some linear algebraic
group G acting with finite and reduced stabilisers on X. (G acts with finite reduced stabilisers since M
is Deligne-Mumford, X is a smooth irreducible variety since the natural morphism X — [X/G] is smooth
for a quotient stack, and since we assume M = [X/G] to be smooth and integral). Hence A*(M) can be
identified with the G-equivariant Chow ring of X (cf. [EG98] or [Edil0]). Furthermore the intersection
theory defined on the quotient stack in this way coincides with the intersection theory on smooth Deligne-
Mumford stacks by Vistoli as well as with the one by Gillet. (This is Proposition 11 of [EG98].)

26Most results on M listed here, also hold without some or any of these assumed properties, cf. [Vis89].
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One can define for a, 8 € Ax(M) a product ce § := mm,(7*a- 7* ), which is independent
of M, where m as in (i).

Then ave 3 = %a - B for all a,p € A (M). In particular [M] is the neutral element
of the multiplication e, while for - the neutral element is [M]g. The map A.(M) LN
A (M), multiplying every element by the number m, is an isomorphism of graded Q-
algebras from A.(M) with the multiplicative structure given by the product - to A.(M)

with the multiplicative structure given by e.

Via bivariant intersection theory the ring A*(M) is defined and turns out to be isomorphic
to Ax(M). We will usually just interpret A*(M) resp. A*(M) as Ax(M) resp. Ax(M) with
reversed grading (i.e. A"(M) = A,_.(M), where n is the dimension of M).

Convention: For M € {Ry,Sgn, Mgn}, when talking about the Chow ring A.(M) or
A*(M), we will always use the multiplication - induced by the identification with A.(M)
for the corresponding M € {ﬁg,n;gg,n7ﬂg,n}7 not the “intrinsic” multiplication e. 27 An
advantage of this choice can be seen in (v) below, a disadvantage in (iv).

(iv) For all morphisms of stacks g : M — M’ (with M, M’ as above), there is a pullback
g A(M') = A (M) and if g is proper there is a pushforward g, : Ay(M) — A (M),
such that g* is a homomorphisms of graded rings and g. is a homomorphism of graded
Q-vector spaces. Furthermore the projection formula g.(g* () - B) = a- g«(B) holds for all
a€ A(M), B € A M), where “- 7 denotes the intersection product on M resp. M'.

If f: M — M’ is any morphism of schemes for M, M’ as above, then there is a pullback
f* i Ad(M') — A (M), and if f proper there is the usual pushforward f. : A.(M) —
A.(M"), with the following properties: f* coincides with the usual flat pullback if f is
flat, and is a homomorphism of graded Q-algebras for the ring structures on A, (M) and
A.(M') defined by their “intrinsic” intersection products e. Also the projection formula
holds for these intrinsic products: f.(f*(a) @ ) = a o f. () . Since we work with the
products “- 7 on A,(M) and A.(M') depending on M resp. M', we usually adjust the
pullback: Let m, m’ be the number of automorphisms of the general objects of M resp.
M, then define the adjusted pullback f® by f®(a) := %f*(a) for all « € A*(M'). Now
f® is a homomorphism of graded Q-algebras for the induced multiplications - we use, and
the projection formula f.(f® () - B) = a- f«(B) holds. Furthermore, if f is induced by a
morphism of stacks g : M — M, then f® = g*, using the identification of A*(M) with
A*(M) and A*(M') with A*(M'") introduced above. (We later almost exclusively use the
adjusted pullback f®, and thus will denote f® instead by f*, in every chapter except these

preliminaries.)

(v) If V and V' are closed irreducible subvarieties of codimensions d resp. d' in M, which
intersect properly, i.e. all components W1y, ..., Wy of the set theoretic intersections V NV’

are of the expected codimension d + d', then

Vg - V0o = Z?Zl i[Wjlo, and the multiplicity i; # 0 can be calculated locally on étale

2"With our definition of automorphisms of prym/spin curves, - and e only differ by a factor 2 in the
cases (g,n) = (2,0) and (g,n) = (1,1). For all other values of (g,n), - and e agree. (This holds for all of
My, Sgn and Ry )
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sheets, in the following sense: Let U be a scheme, f : U — M be an étale morphism
of stacks, whose image contains the generic points of those W; with j € L for some set
L Ck. Let f=2(V), f~X (V') and f~1(W;) be the reduced preimages on U. Then f~1(V)
and f~Y(V') intersect properly, and [f~1(V)] - [f~1(V")] = ZjeLij[f_l(Wj)]. (Cf. the
paragraph before Theorem 6.9. of [Gil84]) For our moduli spaces of (spin/prym) curves
this means that we can calculate the intersection multiplicity for a W; on the local universal

deformation space of an object parametrised by a general point of W;.

(Since the morphism from the deformation space to the moduli stack, induced by the uni-
versal family over the deformation space, is étale, as is easy to check.) In particular, if
D and D' are boundary cycles of ngn; ?Q,n or Eg,n which intersect properly, then, with
Lemma 1.33, their Q-classes intersect transversally, i.e. [D]q - [D'lg = [D N D'|g where
DN D' is the (reduced) set-theoretic intersection.

Remark 1.35 (i) Analogously to the intersection multiplicities, also flat pullbacks of Q-
classes can locally be computed on the étale sheets. Hence with Summary 1.31 (vi):

If Ar is a boundary cycle of Mg,n, TSym §g7n — Mg,n the f()igetful ni)rphism. Note that

TS, is induced by the forgetful morphism of stacks TS, Sgn = Mgn. Let Dy, ..., Dy,

be the irreducible component of the (reduced) preimage Tg_ ! (Ar), then in particular each
g,n

D; is a boundary cycle of S, and:

k
s ([Alo) = Y 2% [Dio. (%)

i=1
where r; is the number of exceptional components of a general spin curve parametrised
by D;. Furthermore 72 =7 =7% for our definition of isomorphisms of spin/prym

Sg.n Sgm  San
curves, since m = m’ for m resp. m’ the number of automorphisms of a general object of

Sy.n resp. of M, . (For pullbacks along TRym the same holds.)

(ii) Because of the way we identified A*(M) with A*(M) and A*(M') with A*(M') we
have g, = fx for g : M — M’ a proper morphism of stacks, and f : M — M’ the induced
proper morphism of the coarse moduli spaces. If V is a closed irreducible subvariety of M
then f.([V]) = deg(fjv) - [f(V)], where f(V) is the image (cf. section 1.4. of [Ful98]). The
according formula for @Q-classes is hence f.([V]g) = %/ deg(fjv) - [f(V)]q, where r resp.
r’ is the number of automorphisms of objects parametrised by general points of V resp.
of f(V). There is a notion of degree for proper morphisms of D-M-stacks and with the
conditions put on the stacks in the above summary, we have deg(g) = mT/ deg(f), where
k is the number of automorphisms of general objects parametrised by f(M’). So for the
(reduced) preimage V of V on M: deg(gpy) = %/ deg(fjv)- So g«([V]) = deg(gp) - [g(V)] or
equivalently f. ([V]g) = deg(g) - [F(V)]g-

Concerning the homology and cohomology with rational coefficients of smooth Deligne-
Mumford stacks and their coarse moduli spaces, we compile the following results, mainly
taken from section 2 of [AGVO08].

Summary 1.36 Let M, M', M, M’ be as in Summary 1.34. Then:
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(i) One can define H,(M) and H*(M) to be just H.(M) resp. H*(M). For a morphism
g: M — M with f: M — M’ the induced morphism of coarse moduli spaces, one then
defines gy : Hy(M) — H (M) resp. g* : H*(M') — H*(M) to be fi: Hi(M) — H. (M)
resp. f* : H*(M') — H*(M). Then H, is a covariant functor from the 2-category of
smooth proper integral Deligne-Mumford stacks of finite type over C to the category of
graded Q-vector spaces, and H* a contravariant functor from the same 2-category to the

category of graded commutative Q-algebras.

One also defines a cap product N : H*(M) x Hy(M) — H.(M) by carrying over the cap
product N : H*(M) x H.(M) — H.(M). The projection formula g.(¢*a N B) = aN g.f
holds for any morphism of stacks g : M — M’', a € H*(M'), B € H.(M).

(i1) By chapter 19 of [Ful98] for every M there is a cycle map cycy, : Ax(M) — H. (M),
which is a morphism of graded vector spaces, and compatible with pushforward via proper
morphisms. (One can see the collection of the cyc as a natural transformation between the
two functors Ax and H, which go to the category of graded vector spaces.) One defines a
cycle map cycp : Ax(M) — H (M) with the same properties, by composing cyc,s with
the isomorphism my : Ax(M) — A (M).

Notation: For a closed substack V of M and [V] € A*(M) its cycle class, denote
cycp([V]) € Ho(M) again by [V]. For V a subvariety of M denote cyc([V]) resp.
cyer ([Vig) again by [V resp. [V]g. For cyc™ and cycM™, introduced below, we apply

the same convention.

(iii) Via the cap product N one defines homomorphisms
PDy : H*(M) - H (M), aw— an[M], PDy:H*(M)— H(M), a—an[M]|.

PDys and PD g are isomorphisms and are called the Poincaré duality for M resp. for M.

With iy : A*(M) — Ax(M) and iy = Ay — Ax(M) the natural isomorphisms inverting
the grading, we define cycle maps cyc™ : A*(M) — A*(M) and cycM : A*(M) — H*(M)
by cycM = PD/_\jocycM oipg resp. cycM = PD&1 ocycysoipys. These cycle maps are
homomorphism of graded vector spaces compatible with pullback: For g : M — M', f :
M — M’ morphisms of stacks resp. of varieties, we have cyc™ og* = g* o cyc™, and
cycMof® = f® o cycM and cyc™ of* = f* o cyc™. Furthermore for the multiplicative
structures defined by the cup product on H*(M) and H*(M), and for the multiplication -
on A*(M) resp. the intrinsic multiplication e on A*(M), the maps cyc™ resp. cyc™ are

homomorphisms of graded Q-algebras. 28

28That cyc™ and cyc™ are homomorphisms of graded Q-algebras can probably most easily be seen using
the definition of the Chow ring of M via equivariant Chow rings from [EG98], or [Edi10]. Recall from a
previous footnote that M is isomorphic to a quotient stack [X/G] with X a smooth variety. Now, by 3.16.
and 3.26 of [Edil0], H*([X/G]) and A*([X/G]) can be identified with the equivariant cohomology/Chow
rings HG(X) resp. AG(X). Furthermore HG(X) = H*((X x U)/G) and Ag(X) = A*((X x U)/G), where
U is a smooth algebraic variety which “approximates” in some sense close enough the total space EG of the
universal principal G-bundle. Since G acts freely on U, the quotient (X x U)/G is smooth. The cycle map
cyc™ : A*(M) — H*(M) then coincides with the usual cycle map A*((X x U)/G) — H*((X x U)/G)
of smooth varieties (as one can check looking at the definitions in [Edil0]). But this is a homomorphism
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Notation: Since we work on A*(M) with the product - and the adjusted pullbacks f®, we
will also adjust our cycle map cyc™ accordingly, so that it is compatible with this multi-
plication and adjusted pullback. Hence instead of cyc™ we use cycM := PDH 0 CyCps Otps
as our cycle map. ° Because of the multiplicativity of the cycle maps we usually denote
the cup products on H*(M) and H*(M) like the intersection products by “- 7.

Furthermore we have the following two results from [Ste77]:

(iv) The hard Lefschetz theorem holds, i.e.: Let L € H*(M) be the class of an ample divisor
on M. Then for all ¢ € N the map w +— LYUw induces an isomorphism between H™ (M)
and H"T9(M). ([Ste77] Thm. 1.13)

(v) The canonical Hodge structure of H*(M), that would be mized for an arbitrary singular
variety, is pure of weight k for all k > 0. ([Ste77] Cor. 1.5)

This allows us to speak of the pure Hodge structure on our moduli spaces, and especially
to define Hodge numbers.

The following Lemmas will be used sometimes:

Lemma 1.37 Let X be a smooth algebraic variety, let G be a finite group acting alge-
braically on X and let Y = X/G be the quotient. Then

(i) H*(Y) = (H*(X))® (Cf. [Bre72] Page 120.)
(ii) A*(Y) = (A*(X)) (Cf. [Ful98], Example 1.7.6.)

Lemma 1.38 (Faber, [Fab90]) Let f: X — Y be a finite surjective morphism of vari-
eties. If A¥(X) =0 then A¥(Y) =0 as well.

Lemma 1.39 ([Ful98], Proposition 1.8.) If X is a variety, Y a closed subvariety and
U=XN\Y, then for every k € Ny there is an exact sequence

We define certain subspaces of the cohomology and Chow rings of our moduli spaces:

Definition 1.40 For X, € {M,,, Sgn, Ry} we denote by Hy,, (Xg.n) resp. Al (Xgn)
the sub-Q-algebra of H*(X,,) resp. A*(X,,) generated by all divisor classes (not only

boundary divisor classes). Hp(Xgn) resp. A5 (X ) denotes the sub-algebra generated
by all boundary cycle classes (not only divisors).

of graded Q-algebras by Corollary 19.2. of [Ful98]. The claimed compatibility with pullbacks can also be
inferred in this way form the compatibility in case of smooth varieties.

29Probably it would by somewhat better to just work with the moduli stacks instead of the coarse moduli
spaces throughout the whole thesis, instead of making all these adjustments. But firstly I do not like to
rewrite all the following chapters because of this late insight, and secondly we also work with morphisms
between coarse moduli spaces which are not obviously induced by morphisms of the moduli stacks, so for
them one would have to apply the adjusted pullbacks anyway.
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1.7 Calculating excess intersections between boundary cy-
cles of M

g,n
We will sometimes need to calculate excess intersections between boundary cycles. We
take the formulas needed for this from [ACG11] or the Appendix A.4. of [GP03]. 3°

Using the notation from the previous subsection, to compute in ngn an intersection of
a boundary cycle class or := [Ar]g (I a stable (g,n)-graph) with any other class ¢’, is
almost the same as computing (1)« (£f:(0")). More exactly, because of Proposition 1.26 (i),
we have 1

ord’ = m(&r)*(éfi@'))
Calculating the pushforward (£r). often is no problem, since &r is a finite morphism which
can be described quite explicitly.

In case ¢’ = [Ar/]g =: 0 is a boundary cycle class too, there is a recipe how to calculate
§0r) = a6 (1))
First we will describe the normal bundle Ng. for the gluing morphisms &r : Mrp — Mgy,

introduced in the last section. These bundles will be needed to compute our excess inter-
sections. Cf. [ACG11], chapter 13, section 3, page 344-346 for more details.

For any smooth Deligne-Mumford stack M it makes sense to talk about its tangent bundle
Ty . For a definition cf. [ACG11]. Like for smooth schemes, the normal sheaf to a morphism
f M — N of smooth Deligne-Mumford stacks can be defined as

Nf = f*TN/TM

In the case f = &r, the sheaf Ng. is actually a vector bundle (cf. [ACG11], page 345).

Definition 1.41 (i) For I' = (V, H,a,i,g,p) a stable (g,n)-graph, and M as in Proposi-
tion 1.26 (i), and v € V(I') =: V a vertex, we denote by

M+ Mrp = H Mg(v),a_l(v) = Mg(up),a-1 (vo)
veV(T)

the projection to the factor belonging to the vertex vy.

(ii) For any ¢g and P a finite set, we define for any ¢ € P a line bundle LL; on the stack
M%p, called the i-th point bundle: Let 7 : Mg’pu{.} — Mg’p be the forgetful morphism,
that forgets the marked point e. Considered as a morphism of stacks, 7 is the universal
family over M% p. Let w; be the relative dualizing sheaf, and let s; resp. be the section
of 7 corresponding to the marked point with index 4. Then on Mg, p, L; is the pullback
s¥(wx). 3! Informally one can say that the fibre of L; at a point [(C; (pj)jep)] € My p is
the cotangent space to C' at the point p;.

30Tn [ACG11] the derivation of the excess intersection formula contains a small mistake, which leads to
a slightly incorrect formula. This will be explained in a later footnote. This mistake is not present in the
derivation of the same formula in Appendix A.4. of [GP03] (Formula (11)). Still one may prefer [ACG11]
to [GPO03] as a reference, since the definitions involved are more precise there.

310ne can also define L; € Picyun(Mg,p) by describing for each family f : C — B of M, p the line
bundle (L;)s as sj(wy) for s; the i-th section of the family.
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(iii) We define v; := ¢1(L;) € Picg(My p). These tautological classes play an important
role for the intersection theory on moduli spaces of curves.

Recall that M = HUGV(F) Mg(v)@ﬂ(v). With the notation just introduced we have

Nep = Z UF,a(h)LX ® nlt,a(h’)LX"
{h,h'}EE(T)

Now let T and I be two stable (g, n)-graphs. Then look at the following fibre product of

stacks:

— — — [ A—

Ml"l'" = Mr Xﬁg,n Mp/ —_— Ml-v (12)
Tk
— &r —
Mr Mgy,

By Grrv denote a set obtained by choosing 3? one representative of each of the isomorphism
classes of triples (A, ¢, ), where ¢ : A~ T, ¢ : A ~ T are contractions of (g, n)-graphs,
with the property that E(A) = ¢ H(E(T)) U ()1 (EI")) (cf. Def. 1.18 (ii)). Here an
isomorphism (A1, ¢1, ) 5 (Ag, 2, ch) of such triples is an isomorphism A; 5 As of (g,n)-

graphs, compatible with the contractions.
Then by Prop. XII. 10.24 of [ACG11], My is isomorphic to the disjoint union

Mrp/ = H MA (T)

(A, )eGppr

Let & : My — My and £ : My — My be the partial gluing morphisms (cf. Proposition
1.26 (iii)). Use the isomorphism of (1), to identify in the diagram (1.2) the space My
with [Tz ceyecry M. Then we can write & and & in (1.2) as

§ = H gc; resp. 6/ = H fc"

(A,e,c)eGppy (A,e,c)eGppr

In analogy to the excess intersection formula for regular embeddings in smooth varieties,

there is an excess intersection bundle Frps on Mpp = ]_[( Aed) G My, such that

& (&)« ([M]Q)) = &xlctop(Err)). (1.3)

Where, again analogous to the case of smooth varieties, we have Frpr = (£)*(Ng.)/Ner,
where Ng. and Ng are the normal bundles of the maps as explained before. 33 (By Ctop
we denote the top Chern class.)

32The results of the later formulas are independent of this choice
33In [ACG11], equation (1.3) is erroneously assumed to hold with &;(drv) on the left hand side instead.
Since opr = m(fp/)*([ﬂrll), the resulting excess intersection formula (4.33) in chapter 17 misses a

factor on the right hand side.

1
[ Aut(I)]
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It suffices to describe Erp on every connected component of M = H( Aerd)EGpps My.
We denote the restriction of Err to the (A, ¢, ¢/)-component by E(x o) = (&)*(Nep)/Ne, -

But as we have seen above

N = @ M) L @ N0 oy Lo
{h,W}EE(T)
Similarly one obtains
Ngc, = @ nj\,a(h)Lx ® n}k\,a(h’)ﬂ"x’?
{h.WYEEM)N ()~ HET))
Putting this together yields
B ey = @ M.ayLh @ A agnry L (1.4)

{h.h/YecHEM)N()~H(EI)CSE(A)

Inserting this into the formula (1.3) gives us, with CE := ¢~1(E(T)) N (<)~ Y(E(T)),

R G (CON )

B |Autl(I”)] Z (e H (_Wj\,a(h) (¥n) — U;k\,a(h/)(l/}h')) (1.5)

(A,e,c)eGppr {h,h'}€CE

Here we have to interpret the empty product in the case CE = ) as 1 = [M]g.

By projection formula (&r).&f(0r/) = | Aut(I")|ordr. Inserting this into 1.5 we get:

1 * *
opopr = [Aut(D)] - | Aut(l)] Z (€a)+ H (—UA,a(h) (vn) — nA,a(h’)(wh/))

(A,e,d')eGrps {h,h'}€CE

(1.6)
where € : M A — M, is the gluing morphism.

The following formulas can be helpful to calculate the -classes that appear in the excess
intersection formula. For small g they even suffice to express the ’s as a linear combination
of boundary divisors:

Summary 1.42 By 1y ,; denote the class ¢; on the moduli space Mg,n as defined in
Definition 1.41 (iii). Then:

(i) For  : Mg,m-l — Mg,n, and i € n, the following recursion formula holds,

Vgnt1i =T (Wgni) + 0gin+1y

where d¢; 41y denotes the Q-class of the boundary divisor Ay ,y1y of ngnﬂ, whose
general points parametrise pointed curves (C,pi,...,pnt+1) such that C has two smooth
irreducible components, one of which is of genus 0 (i.e. a rational tail) and carries exactly
the marked points p; and pn11, while the other component, of genus g, carries all the other

marked points.
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(11) For any i € 4, 14, = [p], the class of any point p € MOA ~ Ppl,
(111) Y111 = 2—14[]9], where p is any point in My, = P

(iv) On Mo,@u{.} = M07n+1, this yields, already using Notation 1.47 in the last terms,

¢0,ﬁu{o},o = Z 6[U{o} = Z [.a I] = Z [I]

0£ICn~{1,2} 0£1Cn~{1,2} {12}CISn

Example 1.43 As a simple example we use formula (1.5) to calculate the self intersection
(5%1’2} of the boundary divisor class 0 9y € AY(M, ), where d11,2) is defined as in Summary
1.42 (i). Here we have I' = I'" and the graph looks like

The gluing morphism is
&r: My = Ml,{.l} X MO,{LQ,ol} - M1,2-

In this case it is easy to see, that Gpr» = Grr only has one element, namely (T, ¢, c),
where ¢ : T' ~ T is the trivial contraction, i.e. the identity: If we had (A, ¢, ') € Grr for
a graph A # I', then A would have to have 2 edges e; and es, such that ¢ would map e;
to the only edge e of I', while ¢’ would map es to e. But this is impossible, since for any
specialisation A of I, A will be of the following form: There is one rational tree with two
legs, connected by a disconnecting node €’ to a graph which arises as a specialisation of
the genus 1 vertex. It is clear that the contraction has to identify e with €’. So ¢ has to be
an automorphism of I', and it is clear that the only automorphism of I" is the identity.

Hence if we denote the two half-edges of I', constituting the edge e, by e, o1, then formula
(1.5), reads

52;{1,2} (5{172}) = 5: (_nli,a(ol) (1/}'1) - n;‘,a(ol) (1/}01 ))

Since & is just the identity and since ¢, = 0 (because M073 is a point), this simplifies to

fg{l,Q}((S{l,z}) = =Nl a(er)(Yer) = —ﬂ[p],

where for the second equation we used Summary 1.42 (iii), and where [p] denotes the class
of any point of M = P'. If we push this forward by the closed embedding &; (.2 W€ obtain

1
2 _
5{1,2} Y [p],

where now [p] denotes the class of any point on the rational variety M s.
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1.8 Some lemmas for extending morphisms

We call a morphism of complex analytic spaces finite if it is proper and has finite fibres. The
following lemmas can be proven quite easily using basic theorems from complex analysis

and commutative algebra.

Lemma 1.44 Let X, Y be complex analytic spaces, X normal, and U a dense open subset
of X. If f : U —'Y is a holomorphic map, and f: X — 'Y is a continuous map extending
f, then f is holomorphic.

Lemma 1.45 (i) Let X, S and M be complex analytic spaces, X normal, U C X an
open subset. Let m : S —> M be a finite holomorphic map, and let g : X — M and
f:U — S be holomorphic maps, such that the following diagram commutes:

Then f extends uniquely to a holomorphic map fv: X — S, compatible with the diagram.

(i) If furthermore g is finite, then ]7 is finite too.

Lemma 1.46 Let X, Y be algebraic varieties, Y mnormal. Let f : X — Y be a finite

morphism of degree 1, then f is an isomorphism.

1.9 Some properties of Mom

The moduli spaces M, (n > 3) of stable genus 0 curves with ordered marked points where
examined by S. Keel in [Kee92]. Among other things he computed their cohomology ring
(and, what is the same for these spaces, the Chow ring) for all n > 3. We summarize some

facts about these spaces we are going to use.

Notation 1.47 Recall that the boundary divisors of My, correspond to stable (0,n)-
graphs with one edge by section 1.3. Denote by A ; the boundary divisor which generically
parametrises curves consisting of two P'’s meeting in one node, one of which carries exactly
the marked points with indices in J. So, denoting J¢ :=n ~ J, Aj = Aye. It is clear that
we must have 2 < |J| < n — 2 for stability reasons, and that all boundary divisors of M,

are of this form.

We introduce the following further abbreviation for the boundary divisors of Mg : [J] :=
Aj. Furthermore for i1, ...,7m € n, we write [i1, ..., i) = [{i1,..,im}] = Ag, i), and
[i15 s B, J] == [{i1, ..., im} U J] for J C n. Since the objects of Mg, have no automor-
phisms and M, is smooth (see below) there is no need to distinguish Q-classes and usual
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cycle classes of subvarieties, in the sense of Summary 1.34. We denote by [J] also the class
of [J] in the Chow or cohomology ring.

We also apply this notation for boundary divisors of M y, where N is any finite index-set.

Summary 1.48 (S. Keel)
For alln > 3:
(i) Mo, is a smooth rational projective variety of dimension n — 3.

(i) The cohomology ring of My, is generated by the boundary divisors [J], for J C n with
2 < |J| < n—2, as described in Notation 1.47, and is isomorphic to the Chow ring via
the cycle map.

(iii) In more detail:

Z{[J)IJ Cn, |22, |J°[22}] o
{the following relations} ’

I

H*(Mon) = A*(Mo,)
The relations in the Chow ring are:

(1) For all J C n such that 2 < |J| <n —2: [J] = [J9]

(2) For all pairwise different i, j,k,l € n:

Yo W= > U= Y U (1.7)

JCn, JCn, JCn,
i,j€J, klgJ ikeJ, jl¢J iled, jk¢J

(3) For all J,K C n such that |J|, | K|, |J¢|, |K¢| > 2: [J] - [K] = 0 unless one of the
following conditions holds:

JCK, KCJ JCK JCK

(iv) H™ (M) is generated as Q vector space by products of boundary divisors [Jy] - ... -
[Jm] # 0, such that the [Jy] are pairwise different. Furthermore such [Ji], ..., [Jm] intersect
transversally, and every codimension m boundary cylce Z of Mo, can be written in the

form Z = [J1] N ... [ ]

Proof: (i)-(iii) can all be found in the introduction of [Kee92]. Much (maybe all) of (iv)
can also be found in [Kee92], but can also be shown as follows: My ,, C Mgvn is isomorphic
to (P~ {0,1,00}) X .... x (P* . {0,1,00})) N\ A, where A denotes the diagonal and n— 3
factors (P! \ {0,1,0}) appear. Hence My, is isomorphic to an open subset of A"~3 and
hence A*(My,) = 0 by the exact sequence of Lemma 1.39. By Proposition 1.26, each
boundary divisor of Mo,n is isomorphic to some Mgmﬂ X Momﬂ where n; + 1 < n for
i € 2. Hence using the exact sequence of Lemma 1.39 and Proposition 1.26 (iv), we can
show by induction on n that A*(My,,) is generated by the boundary cycle classes of My .
The stable graph belonging to a codimension m boundary cycle Z is a rational tree, and

MZ{J Cn, |J| =2, |J°] > 2}] denotes the polynomial ring over Z generated by the [J].
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it is easy to check that hence Z is of the form Z = [J;] N ... N [Jy,] for pairwise different
[Ji]. By Summary 1.34 (v) the class of Z is equivalent to [J1] - ... - [J;], hence A*(M,,)
is generated by such products. O

1.10 Some notions from birational geometry

Definition 1.49 (i) A variety X is called rational if it is birational to some P"
(ii) X is called unirational if there is a dominant rational map P" --» X with n = dim X.

(iii) X is called uniruled if there is a dominant rational map Y x P! — X, where Y is an

irreducible variety with dimY = dim X — 1.

(iv) X is called rationally connected if any two sufficiently general points z1,z2 € X lie
on a rational curve C' C X.

We have: X rational = X unirational = X uniruled, and in general no implication in the
opposite direction holds. But for complex varieties X of dimension < 2 it is known that
X unirational implies X rational. X rational or unirational implies that X is rationally
connected, and for a complex variety, X rationally connected implies X uniruled. (cf.
[Hui08])

For a smooth variety X over C, rational connectedness is equivalent to the following apriori
stronger condition: Any two points z1, zo € X lie on a rational curve C' C X. (Cf. Corollary
6.8 in [Hui08], as you can see there, one can additionally even require C' to be “very free”
but we do not want to introduce this notion here.) This implies that (except of possibly
the “very free” assumption) the same holds on a singular rationally connected variety X
over C, since one can use a desingularisation and then push rational curves down by the

desingularisation morphism.
Lemma 1.50 If X is a rationally connected variety over C, we have Ag(X) = Q.

Proof: As mentioned above every two points z1,xz9 € X are connected by a, possibly
singular, rational curve C. But for any rational curve Ap(C) = Q. Hence 1 ~ azy on X
for some a € Q. This implies Ap(X) = Q. O

Definition 1.51 (i) Let D be a Cartier divisor on a normal variety X then the Iitaka
dimension x(X, D) is defined as follows: In case dim H°(X, O(nD)) = 0 for all n one sets
k(X, D) = —oo. Otherwise define x(X, D) in one of the following equivalent ways:

1. x(X, D) is the minimal number r € Ny such that the sequence dim H(X, Ox (nD))/n"
is bounded.

2. k(X, D) is the Krull-dimension of the ring €P,,cy, H°(X,O(nD)), minus 1.

3. k(X, D) is max{dim ¢, (X)|n € N}, where ¢, : X --» PV is the birational map
induced by nD.
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From the last characterisation it is clear that (X, D) € {—00,0,1,...,dim X }.

(ii) Let f : X > X bea desingularisation of X and let K ¢ be canonical divisor of X, then
the Kodaira dimension x(X) of X is defined to be the Iitaka dimension x(X) := r(X, K3).

The Kodaira dimension is a birational invariant.



Chapter 2

The hyperelliptic loci of gg,n and
Egan

This chapter will be concerned with the following spaces:

Definition 2.1 For each pair of moduli space and compactification

—_— —_ —_— i_l'_ _ —_——
(Xg,m Xg,n) € {(Mg,na Mg,n)» (Rg,na Rg,n)a (Sg,na Sg,n)a (S;:n, Sg,n)v (Sg"rm Sg,n)}a

denote by HX, , the following subvariety of X, ,: For g > 2 it is the space parametrising
curves (C;pi,...,pn;...) such that C' is smooth, hyperelliptic, and such that pi, ..., p, are
fixed points of the hyperelliptic involution. For ¢ = 1 we have instead the condition that
the elliptic involution on C' fixing p; also fixes all other marked points po, ..., p,. Note that
Xgn =0 if and only if n > 2g + 2.

By HX,, denote the closure of HX,,, in ng. We call this locus the hyperelliptic locus
of ng. We also call the HX,, the moduli spaces of stable hyperelliptic curves resp.
hyperelliptic spin/prym curves (with marked points). !

From an analysis of the locus of stable hyperelliptic curves on the local deformation spaces
as is for example carried out in Lemma 6.15. of Chapter XI of [ACG11], together with the
local description of M, as a quotient of these deformation spaces (cf. Summary 1.30), it
follows that:

Fact 2.2 The space HM,,, is for all g > 1 and n < 2g + 2, an irreducible subvariety
of My, of dimension 29 — 1, which has finite quotient singularities, so in particular is
normal.

We will see that the normal varieties HST ., HS

g, g.,n’

nected components, so the compactifications HS ,,,

HR,,, in general have several con-
HSg,n’

Furthermore not even the irreducible components of these compactifications are normal,

HR,,, are not irreducible.

in general (cf. Remark 2.11).

'With this definition an elliptic curve is also hyperelliptic.
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We show that the normalizations of these compact moduli spaces, are isomorphic to certain
disjoint unions of several of what we call moduli spaces of stable genus 0 curves with sorted
marked points (cf. Definition 2.4). These moduli spaces can be described as quotients by
finite groups acting on moduli spaces M 2442 of stable genus 0 curves with 2g + 2 ordered
marked points. 2 The cohomology rings of the latter moduli spaces are known by work of
S. Keel ([Kee92]).

To construct the isomorphisms we will use the following fact (cf. [GH94| p. 254):

Fact 2.3 For every set B of 2g + 2 distinct points in P! there is a (unique up to isomor-
phism) degree 2 cover f : C — P! ramified exactly over the given points, where C is a
genus g smooth hyperelliptic curve. Moreover for every smooth hyperelliptic curve C there
is such a finite degree 2 morphism f : C — P! ramified over 2g+2 points. The hyperelliptic
involution h on C' swaps the two sheets of this cover, so f can be seen as the quotient map
to C/h =P

The spin- resp. prym sheaves on C' can then be recovered as the invertible sheaves corre-
sponding to certain divisors that are linear combinations of the ramification points. Using
admissible double covers of stable genus 0 curves with 2g + 2 marked points, one can

extend this correspondence to the asserted isomorphisms.

By our construction we at first only know the existence of the isomorphisms and how they
act on the interior of the moduli spaces (Proposition 2.14) . In a second step their behaviour
on the boundary will be determined more explicitly (Proposition 2.19). This description
will then be used to compare the automorphism group of an object parametrised by a point
pE ﬁg,n to the automorphism groups of the objects parametrised by the preimage of
p, on the corresponding moduli space of stable genus 0 curves with sorted marked points.

The results of this chapter will play an important role in computing the cohomology rings
of Ry = HRy and Sy = HS>, in the following chapter, and also in dealing with the
hyperelliptic loci of El,n in chapter 5.

Surely most of what is proven in this chapter is somehow known. In the special cases of
g;r and S, morphisms from Mg, which factor through the isomorphisms constructed
here are are constructed in [BF09a]. The idea of how to construct the isomorphisms in the
general case is quite the same. The hyperelliptic locus H R, is discussed in section 4.2 of

[Verll], where the rationality of most of its connected components is shown.

2.1 Preliminaries

2.1.1 Curves with sorted marked points and admissible (double) covers

Definition 2.4 (i) For us a sorting of depth 1 of a finite set M is a tuple & of non-empty
subsets of M, such that M is the disjoint union of these non-empty subsets (i.e. an ordered

?In the case of HM, this result can be found in [AL02], where it is shown that HM, is isomorphic to
M07[29+2], the moduli space of stable genus 0 curves with 2g + 2 unordered marked points.
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partition of M). A sorting of depth d > 1 of M is a tuple of sets of tuples of sets of ... of
non-empty subsets of M, such that M is the disjoint union of these non-empty subsets,
and such that the word “of” appears d times in the above enumeration. We call these non

empty-subsets of M “lying at the bottom of &?”, the ground sets of &2.

We will actually allow sortings & to take a somewhat less strict form, in order to simplify
notation: If there is a tuple which contains only one set, we will replace it by just the set.
If there is a set containing only one tuple, we only write down the tuple. E.g. we give the
sorting (of depth 3) of the set 10,

2 = ({(01,3), {2,5), (4.6}, {7.8D)} {({9)}, {(110})} ) imstead as
2 = ({({1,3}{2,5}), ({4,6},{7.8})},9,10).

A sorted set is a finite set M with a sorting & of M. Usually we will only write down &
if we speak of a sorted set, since loosely speaking &2 determines M. 2 By an element of a
sorted set &2 we mean an element of the underlying set M.

(ii) An isomorphism ¢ : P — P of sorted sets is a bijection ¢ : M — M’ of the
underlying sets, respecting the sorting. (Respecting the sorting means: (%) = &', where
©(2?) denotes the sorting of M’ one obtains by applying ¢ to all the elements in the ground
sets of Z.)

(iii) We call a sorting label an expression

label := (n, [n1], ..., [ng], [[maa], - Mg ]l o (Ml o Mgt ]])

where the n, n; and m;j, are all in Ny, as well as the s, t; and u. Define [label| :=
t.
Mo DT s D Doy Mk

For a given such label, a label-sorted set is a tuple

g@ = (al, ceey Ay (Al, ...AS), {Bl,la ceny Bl,t1}a ceny {Bu71, ceey Bu,tu}) (*)

consisting of a tuple (a1, ...,ay) of elements a;, a tuple (Ay, ..., As) of sets A;, and u sets
{Bj1,..., Bjs,} of sets Bj, such that for all A;, |A;| = n;, and for all Bj, |Bjx| = mj. 4

Remark: Later, in special cases, we will also use brackets of the form (...) in sorting
labels. Such brackets will have the following meaning: They are to be read as (...) in case
n > 1, and as [....] in case n = 0. We will also denote sorted sets in the form & =
(I,(A,...,As),...) where I stand for the tuple (ay,...,a,) of elements of M. Compatible
with our use in case of sorting labels, brackets of the form (....) in sorted sets are to be
read as (....) if I # 0 and as {....} if I = 0.

3Strictly speaking & does not determine M, but only does so if one sticks to write sortings & strictly
as they are defined above without allowing our simplified notation, and additionally specifies the depth d
of #. (Since set-theoretically also the elements of M will be sets (of sets of ...).)

“These is are of course special sorted sets (of depth < 2). One could also define sorting labels for
arbitrary sorted sets, if one allows for more nested round and square brackets in the labels. All lemmas we
prove later for our sorting labels would also hold for these general sorting labels, but we will not need this.
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(iv) A family of nodal curves with (label-)sorted marked points is a family of nodal curves
X — S, together with a set {01, ...,0,} of v := |label| disjoint sections o;, each meeting
no singular points of the fibres of X — S, and a (label-)sorting & of the set {01, ...,0,}.
We can write such family as (X — S, &) since the sorted set & determines {oy,...,0,}.
Note that the “extreme” special cases of this definition are families of v-pointed nodal
curves (with n = v, s =0, ¢t = 0) and families with v unordered marked points (with e.g.
r=0,5s=0,t=1and |B;| =v) % . The condition on a nodal curve with sorted marked

points to be called stable is the same as for v-pointed nodal curves. 6

(v) An isomorphism of two families of nodal curves over S with label-sorted marked
points (X — S, &) and (X' — S, 2?'), is an isomorphism ¢ of the underlying families of
nodal curves, such that the induced bijection &2 — £’ of the sets of marked sections, is
an isomorphism of sorted sets.

(vi) Let us denote by Mg,label the moduli space of stable curves of genus g with label-
sorted marked points.

To shorten notation we will cancel the appropriate parts of the label if numbers n, s, u or

t are 0. Furthermore we will often write for Mg7([[ml]7_”7[mt”) in applications.

g?[m17"'7mt]

Remark 2.5 One can construct the moduli space MgJabel as a quotient of Mgﬂj for
v := |label| as follows: Let

((al, ceny an), (Al, ...AS), {Bl,la ceny Bl,tl}a veey {Bu,la ---7Bu,tu})

be a sorting of the set {1, 2, ..., v}. Write label as in the definition above, and set label* :=
(n, [na], ..., [ns], [maal, oo, [mag—1], -y [maa], ooy (Mg, ]). One obtains M japer- as the quo-
tient of My, by the action of Sp, X .. X Sp, X Sy, X ... X Sy, permuting the indices
inside the sets A1, ..., As, B11, ..., By, - Finally Mg,label can be constructed as the quotient
of Mg’label* by the action permuting for each j € u the indices in 7] of those of the sets
Bja, ..., Bjt; having the same cardinality. 7

Definition 2.6 (i) Let 2/S := (D — S;{01,...,0,}) be a family of stable genus 0 curves
with v unordered marked points, over a basis S. For us a family of admissible double

SHere note that different sorting labels can define the same class of families. For example one can omit
the n and replace it by n sets A; with one element each. The n is only introduced to shorten notation
later.

5Tt may be a more natural definition of families of nodal curves with sorted marked points, to allow
the marked points from one set A; to form a n;-multi-section (i.e. a finite unramified cover of S of degree
n;, not necessarily connected), and to replace the sections belonging to the sets Bj1 W ... W Bj, by
(mj1 + ... + mj,; )-multi-section together with compatible partitions of the m1 + ... + m: points coming
from each multi-section on all fibres. But note that on the level of coarse moduli spaces, and also for
local deformations this would not make any difference. Since this is the level we are concerned with in
this chapter, and since the alternative definition would complicate the notation in the proofs, we gave a
definition allowing no multi-sections. However it seems to me that the definition allowing multi-sections
would be appropriate if one wanted to study how the (iso)morphisms of coarse moduli spaces constructed
in section 2.2 relate to morphisms of stacks. Remark: Even with this alternative definition the morphisms
a... and b... of Proposition 2.14 would not be induced by morphisms of stacks.

"The isomorphism of nglabel with the described quotient of Hg,l, also holds on the level of stacks.
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covers 8 of 2/8 is a finite surjective degree 2 morphism f : ) — D over S such that Y is
a family of connected nodal curve, and f is étale except over the following loci of D.

1. Over the images of the sections of marked points o;, f is simply branched, i.e. locally
analytically at such a point one can describe f by 2 = u, where x is a local coordinate
of Y over S and u is a local coordinate of D over S. *?

2. Let v € D be a point on D which is a node of the fibre of D over S which contains ~.
Then f may or may not be étale over ~y: For o/ € f~1(7), there is a local coordinate
a of S and a p € {1,2} such that locally analytically around 7 resp. 7, one can
describe Y — S resp. D — S by zy = a resp. uv = aP, and f : Y — D is locally
described by 2P = u and y? = v. 19 (We have p = 2/|f71(v)].)

We often write such a family of admissible covers as ) K955

(ii) An morphism between two families of admissible covers ) 5 9 Sand ) Lo g
is a pair of morphisms (¢, ®) with ¢ : Y — V', & : S — 5’ such that (p, ®) is a morphism
between the families of nodal curves ) — S and )’ — S’, in the sense of Def. 1.5, and
such that there is a morphism ¢ : 2 — 2’ with ¥ o f = £’ 0 ¢, such that also (¢, ®) is a
morphism of families of nodal curves.

(iii) For a /S having label-sorted marked points instead (in particular for v-pointed
curves), we define admissible covers of D and isomorphisms of such covers analogously !

We compile some facts about admissible double covers, which we mostly take from [HM82]
and [AL02]:

Proposition 2.7 For each sorting label label with |label| =: v > 4 even:

(i) There is a normal variety F;label which is the coarse moduli space of admissible double

covers of curves ® with [D] € Mo abel, and there is a finite surjective forgetful morphism

p: Holabel = Mo 1abel,

which is an isomorphism of varieties (but not of stacks).

(ii) For any admissible double cover f: Y — D, with [D] € My, there is a local universal
deformation of admissible covers % L9 (T, to), where (T ,tg) is a complex v — 3
dimensional ball. We denote this deformation by Def. It has the property that ﬁgﬂj locally

8There are also admissible covers of higher degree, defined analogously, and they also have moduli
spaces (cf. [HM82]), but we will not need them in this thesis.

9A local coordinate of ) over S at a point p € Y, means a local coordinate of ) at p which is tangent to
the fibre of ) — S which contains p. The same for D. This definition implies that for so € S the morphisms
fo : Yo = Do on the fibres over sg, is simply branched over the marked points on Dyg.

0Hence, for every node « on a fibre Dy, every point in 4" € f~'(v) is a node of Y, and for every such
the two branches of Yy at «' are mapped to the two branches of Dy at 7, both with the same ramification
index p € {1,2}.

HThe sorting of the marked points does not enter into the conditions on the covering curve ). For the
isomorphisms one requires that ¢ : 2 — 2’ is an isomorphism of curves with label-sorted marked points
(Def. 2.4 (ii).
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around the point [f : Y — D] is the quotient (7 ,ty)/ Aut(f : Y — D). 12 Furthermore:
Let ®' be a curve with label-sorted marked points obtained by partially forgetting the
information about the ordering of the marked points on ©, then f : Y — D' belongs
to Habel- 13 If now we define 2" by partially forgetting the ordering of the sections of
marked points on 2 in the same way, then % Lo (T ,to), which we call Def’, is the
local universal deformation of f:Y — D',

(iii) The covering space Y of an admissible double cover f:Y — © is a semistable curve,
all whose irreducible components are smooth. Furthermore every exceptional component of
Y meets the rest of Y in exactly two points ¢ and qa, such that f(q1) = f(q2).

Proof: (i): In [HM82] Theorem 4 this (except the normality) is shown in the case of
n ordered marked points, i.e. for Ho, (and also for the space of degree d admissible
covers Hg,). Ho, is normal by (ii), which even implies that it has only finite quotient
singularities. But ﬁQ,label can be constructed as a quotient of ngy in exactly the same
way that Mg jaber is constructed as a quotient of My, in Remark 2.5 (i) (also cf. [AL02]).
It is clear that the finite forgetful morphism p’ : Ha, — My, is compatible with forming
these two quotients, hence induces p.

To show that p is an isomorphism of varieties, by Lemma 1.46 it suffices to show that p has
degree 1. But over the dense open Mj jabel, p is clearly bijective. (Since a ® parametrised
by this open set is a P! with an even number of sorted marked points, this follows from
the definition of admissible double covers and Fact 2.3.)

(ii): In the case of Hy, this follows from the discussion on pages 61-62 of [HM82]. There a
local universal deformation for families of degree d admissible covers is constructed, such
that Fdw is locally the quotient of this deformation space by the automorphism group of
the central fibre. A criterion for smoothness of the deformation space is given on page 62,
and this criterion is always fulfilled for d = 2.

Let £ : " — 9" — (T",1y), called def, be any deformation of f : Y — ®’. Reorder the
points on ©’ and extend this order to the sections of marked points on 2”, to make def into
a deformation def of Y — ®. Then def can be locally pulled back from Def. By partially
forgetting the ordering again we see that def locally is a pull back of Def’ over the base
(T ,t0). It remains to show that the local morphism (77,ty) — (,t9) over which this
pull back happens is unique. But if we had two such morphisms, we could again reorder
the marked points, and obtain that def does not pull back from Def locally uniquely.

(iii): Cf. [AL02] Lemma 2.3. (Or Lemma 2.10 (iii) below.) O

2.1.2 Families of stable hyperelliptic (spin/prym) curves and of admis-
sible double covers.

In the following we say that a (pointed) stable curve is hyperelliptic if it is parametrised by
a point of the hyperelliptic locus (in the sense of Definition 2.1) of the appropriate Mg,n.

12¢f. section 1.5 about local universal deformations.
131t is clear that every admissible cover with sorted marked points can be obtained in this way.
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We define hyperelliptic (pointed) spin/prym curves analogously. Then clearly a spin/prym
curve is hyperelliptic if and only if its stable model is.

Summary 2.8 (i) A stable pointed curve € = (C; 01, ...,04) is hyperelliptic if and only if
there is a h € Aut(C) of order 2, such that the fized points of h are isolated, and such that
C/h is a curve of arithmetic genus 0. Such an automorphism is unique and we call it the
hyperelliptic involution on €.

(i) If C — S is a family of stable curves with sorted marked points, all of whose fibres
are hyperelliptic, then there is an h € Autg(C) restricting on each fibre to the hyperelliptic

mvolution.

(iii) For a hyperelliptic spin or prym curve X, the hyperelliptic involution h on its stable
model € lifts to an automorphism of order 2 on X. This lifting is unique if X is smooth.
Also on each family X — S of hyperelliptic spin/prym cures, over an irreducible basis S,
the subgroup Autg(X) C Aut(X — S) contains (at least one) lifting of the hyperelliptic
involution on the stable model C — S. If the family furthermore has any smooth fibres, the
lifting is unique.

Proof: (i): Follows from Lemma 3.5 in Chapter X and Lemmas 6.14. and 6.15 in Chap-
ter XI of [ACG11]. (Except that the definition of stable pointed hyperelliptic curves in
[ACG11] requires genus g > 2, while we also allowed ¢ = 1 with n > 1. But one can
check by reading the proofs there, that everything also works for our slightly more general
definition.)

(ii): This is true, by the proof of the Lemma 6.15 just mentioned, for the universal defor-
mation of each stable hyperelliptic curve. From this it follows over local charts on 7. But
by the uniqueness claim in (i) these involutions over the local charts glue together.

(iii): We show this later in the proof of Lemma 2.12. O

Lemma 2.9 (i) For each family Y L8 of admissible double covers there is an
automorphism h € Autg()), exchanging the two sheets of the degeree 2 cover f:Y — D.
We call h the hyperelliptic involution on ) — D — S. Then D is isomorphic over S to
the geometric quotient Y /h and £ can be identified with the quotient morphism.

(i) For any g > 1 and any n < 2g + 2 the following assignment is a morphism of
moduli functors (in the sense of Def. 1.7): Send (families of) double covers Y RN
D =(D;quy.yqn; {4}, ...,q§g+2_n}) to the stable model of the pointed curve (Y,p1,...,pn),
where p; is the point (resp. section) f~'(g;) for each i € n. Thus the assignment induces
a morphism M, FQ,(n,[29+2—n]) — Mgy, of coarse moduli spaces. As morphism of

varieties, My is a closed embedding with image HM 4,,. 14

The hyperelliptic involution on the resulting family of hyperelliptic curves is induced by the
hyperelliptic involution on the family f:Y — 2.

The assignment even is a morphism of stacks, but this is no embedding of stacks, due to differences in
the automorphism groups of the objects.
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Proof: (i): By the local description of the admissible cover in Definition 2.6 it is clear that
the map exchanging the two sheets is holomorphic and hence a morphism of varieties.
That the defining properties of a geometrical quotient are fulfilled is easy to check.

(ii): It is easy to check that the assignment is a morphism of moduli functors. It is also
clear by Fact 2.3 that a1, Maps the interior Hy (5, 9g+2-n]) t0 HMy, and is 1 : 1 on
this locus. Since Fg,(n’[ggﬁ_n]) is compact, this implies that My is finite of degree 1. By

Lemma 1.46, and since HM, ,, is normal, it follows that My is a closed embedding. [

Lemma 2.10 Let ® be a stable genus 0 curve with 2g+ 2 sorted marked points, such that
the underlying curve D has two irreducible components Dy and Dy meeting each other in
one node y. Let 2 <y < 2g + 2 be the number of marked points on D1, and let Y i) D be
an admissible double cover. Then:

(i) If u even, Y Iy © looks as follows: For Y; := f~Y(D;) (i € 2), fiv, + Yi = D is the
unique double cover of D; branched exactly over all the marked points on D;. The fibre

f7Y(y) consists of two points, and Y1 and Yo meet in each of these two points in simple
nodes:

Set h = “7_2, then the genus of Y1 is h and the genus of Yo is g — h — 1.

(ii) For pu odd: Here fiy, : Y; — D; is the unique double cover of D; branched exactly over
all the marked points on D; and over the point . The fibre f~1(v) consists of one point

in which Y1 and Ys meet in a simple node:

\O\/,’< 16

Set h = “T_l, then Yy is of genus h and Ys of genus g — h.

(iii) Now allow © to have arbitrarily many irreducible components, and let D; be one of

them, then fiy, : Yi — D; is the (unique) double cover branched over all marked points

15We will several times use pictures like this to symbolize admissible double covers. Here we have an
underlying genus 0 curve © with 6 marked points, consisting of two P'’s meeting in one node, one of which
(the red line), carries 4 marked points, while the other one (the blue line) carries 2 marked points. Above
them one sees the covering curve Y which is ramified exactly over the marked points of ® in this case, and
has two components one mapping to the blue resp. red part of © each. The dashed parts indicate that the
covering curve Y is complex and connected. If one would draw only the real points of Y, one would get
something like the non-dashed part.

16This picture is somewhat misleading, since it looks like the two irreducible components of ¥ would
meet in a tacnode, not a simple node.
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on D; and over exactly those nodes v of D on D; with the following property: The tree of
rational curves attached to D; at v carries a even number of marked points. (In particular

we see that Y is unique up to isomorphism.)

Proof: This can be found in [AL02]. But also: By Proposition 2.7 (iii) each Y; is smooth
and fy, : Y; — D; is finite of degree 2, branched over the marked points, possibly branched
over 7, unbranched everywhere else. Since fjy, must be branched over an even number of
points by the Hurwitz formula, (i) and (ii) follow.

(iii): Consider the local universal deformation % L9 (T, tg) of f Y — ®. Let
T (y) C 7 be the subspace over which the node 7 is retained. Let f : #(v) — 2(y) —
() be the restriction of the family over .7 (7). Using the local description of families of
admissible covers at nodes from Definition 2.6 (i) we see: On every fibre Dy, for s; € 7 ()
close enough to sg, and for 41 the node on Dj, to which v deforms, we have [f~1(y1)| =
[£~1(v)|. But almost all fibres over .7 () have only one node, so for them (iii) holds by (i)
and (ii). O

2.1.3 The hyperelliptic local universal deformation of a hyperelliptic
(spin/prym) curve, and automorphisms

Now we describe the locus of (stable) hyperelliptic (spin/prym) curves on the local uni-
versal deformation spaces of such curves 7. For this we use the notation introduced in
section 1.5, and the Summaries 1.30 and 1.31, without further mentioning it:

Let X be a pointed spin or prym curve which is hyperelliptic in the sense of definition 2.1,
let € be the stable model of X which is then a stable hyperelliptic curve. Let X — (.S, s¢)
be the local universal deformation of X and C — (B, bg) the local universal deformations of
¢ 8 Let 2 C B and .¥ C S be the sub-loci of the two deformation spaces parametrising
stable hyperelliptic curves, resp. hyperelliptic spin/prym curves, and let

%%(5&50)» (g%(%ab())

be the restrictions of the universal families. Then it is easy to check that these two fam-
ilies are the local universal deformations of X resp. € in the category of deformations
of hyperelliptic stable curves, resp. hyperelliptic prym/spin curves. We call these families
the hyperelliptic local universal deformations of X resp. €. Most properties of the usual
local universal deformations described in section 1.5 carry over to the hyperelliptic ones.
In particular it is clear that HM g, is locally around [€] isomorphic to %/ Aut(€), and
locally at [X] € HX,,, HX 4, is isomorphic to .7’/ Aut(X).

Let h € Aut(€) be the hyperelliptic involution. Define a partition of the set of nodes
E = FE1 W Es of €, such that F; contains those nodes which are fixed by h while those in
Es are exchanged with an other node by h. En; := Ex N E;, Ea; = EA N E;, for i € 2.

"For stable hyperelliptic curves this can all be found in chapter XI of [ACG11], Lemma 6.15. (+proof).
8We suppress the sections o; of marked points, as well as the spin/prym structure (L,b) on X in the
notation here.
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Choose a pair of standard bases (41, ..., ¥3g—3+n), (Z1, ..., ¥3g—34n ), such that for each node
e which is not fixed by h, h(Z.) = Zp() (cf. Lemma 1.32 (ii)). By Summary 2.8 (i)+(ii),
we have that on (B, by), # = Fix(h). Hence, for suitable linear subspaces H, C W,

B = @ H, ® SpanB<{f€}66E1) ©® SpanB({fe + fh(e)}eEEz)‘
veV (T)

So # C (B,byp) is a linear subspace. By chapter XI of [ACG11], Lemma 6.15, & is of
dimension 2¢g — 1.

Using the explicit description of the forgetful morphism 7 : § — B from Summary 1.31
(vi), one now determines . C (S, sp). Set

Part := {(EY 5, Exy) | EXoWEN, = Enpand h(EY,) = EY 5, h(Ey,) = Ey,}. Then:

S =7 B) = U S ER2Fna) | where PN PN g,

(B

N2 By o) EPart

@ H{; @ spang({Je feck, ) © spang({Je + gh(e)}eeEAyguE]\L, 2) @ spang ({¥e — gh(e)}eeEKr 2)'
veV(T) ’ ’
Here H! := 7—'H, for each v. Note that on each H, T|q; 1S an isomorphism.

+ —
So we see that . is the union of [ := ZLE;AO’QVQ (\EN],Czl/?) linear subspaces P BN Ena) of

(S, 50), each of dimension 2g — 1. 19

Remark 2.11 From this we can conclude that while HM, is a normal variety for all g
and n (since it is locally of the form %/ Aut(<)), the spaces ?S;, HS, and HR, in
general are not. Take for example the point [X] € S5 of a spin curve X = (X; £;b) with X
consisting of two disjoint smooth genus 1 curves X7, Xo, and two exceptional components,
such that each exceptional component meets each genus 1 component in exactly one point.
Such a curve is hyperelliptic. Call € its stable model.

w YO ynon( o

It is clear that the hyperelliptic involution h on € swaps the two nodes e, e, so [En 2| = 2
for X and hence [ = 2. More precisely

y = (le EB Uvz EB SpanS(ﬂel + ?762)) U (le @ Uvz EB SpanS(gﬂ - 3762))

where U,,, U,, are the 2 dimensional deformation spaces of the components X; resp. X»
with their two special points. If X1, X9 are sufficiently general, Aut(€) = {id, h}. As stated

9We will see in Remark 2.28 that [ not necessarily equals the number of irreducible components of
the local analytic neighbourhood of [X] in HX,,, since there can be automorphisms which permute
components of ..

20The two exceptional components have been coloured light green here.
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above, h acts on the pair of vectors (Ze, , Ze,), by (Zey, Zey) > (Zey, Tey ). By Summary 1.31
(vii), a lifting A’ of h to X has only the following four options how to act:

(:'jel ) 3762) = (geza g61 )a (3761 ) gez) — (_gega _gel)7

(g517g€2) = (_?jew 3761)7 (3781715@) = (geza _?761)‘

But since h' has order 2 by Summary 2.8 (iii), the options in the second line can be
excluded. Finally the only inessential automorphism of X acts by (Ze,, Tey) + (—Zey, —Tey)
(cf. Lemma 1.32 (iii)), so we see that the two components of . are not swapped by Aut(X).
So a local analytic neighbourhood of [X] € HS5 has two irreducible components, hence is

not normal.

As we shall see in Proposition 2.14, HS; is irreducible. So, in general, not even the

irreducible components of the HX,, are normal varieties.

The next Lemma provides some properties of automorphisms of hyperelliptic spin/prym
curves we use later. We also prove Summary 2.8 (iii), already used in the previous remark.

Lemma 2.12 (i) For every (pointed) stable hyperelliptic curve € = (C,p1,...,pn), every
v € Aut(€) commutes with the hyperelliptic involution h.

(ii) Definition: For a (pointed) stable hyperelliptic curve €, let Autpy,(€) C Aut(€) be
the subgroup of partial hyperelliptic involutions, i.e. of automorphisms which on each
component of C' act either like the hyperelliptic involution, or like the identity.

(iii) Let ¥ be a disconnecting node of C. Then 7 is fixred by the hyperelliptic involution
h. Let s be the number of such nodes on C. Write C = C1 U Cy such that C1; N Cy = 7.
Then there are involutions hy, hy € Aut(€) such that each h; acts on C; like h, and as the
identity on the rest of C.

Autpy,(€) is generated by these involutions for all ¥, and has order | Autp,,(C)| = 2571

(v) If X is a hyperelliptic prym/spin curve with stable model €, then all elements of
Autp,,(€) lift to X.

(v) If Y — D is a admissible double cover from Hslapel, i-€. [D] € Moabel, for any
sorting label with even |label| > 4, then every element of Aut(D) lifts to Aut(Y — D)
(not uniquely).

Proof: (i): First let €, €’ be two smooth (pointed) hyperelliptic curves, let f': C" — D',
f"” : C" — D" be the quotient maps form the underlying curves to the quotients D' =
C'/h', D" = C"/h", where h', b are the hyperelliptic involutions of € resp. €”. Then every
isomorphism ¢ : € — €” induces a unique g : D’ — D" such that go f’ = wo f”. We refer to
this by (*). In case g(€') > 2, () is shown in [GH94] p. 254-255 2. For g(€’) = 1 the curves
have at least one marked point and then the same holds (Cf. [Har77], Chapt. IV,4.). From
this (i) follows for smooth curves. One can show (i) using the description of the admissible

21Shown for the unpointed case there, but obviously this implies the same for pointed smooth hyperel-
liptic curves
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double cover Y for a given ® from Lemma 2.10, and analysing how the automorphisms
act on each component. We instead argue using the hyperelliptic universal deformation
¢ — (A,by) of €, and the fact that Aut(é — (£,by)) = Aut(€) (cf. Summary 1.30
(iv), and recall that we speak about automorphisms of the centred family underlying the
deformation here, cf. Def. 1.28 (vii)). By Lemma 2.9 (i), h € Aut(€) is even contained in
Autz(€) C Aut(€¢ — (A, by)) and restricts to the hyperelliptic involution on each fibre.
Now a ¢ € Aut(€) not commuting with A would thus induce an isomorphism between two
smooth fibres € and €” of € — (%, by) that would violate (). So such a ¢ does not exist.

(iii): The existence of the h; is clear, and also that they generate Autpy,(€). We have
hih = hy. So Autpy,(C) is generated by any set containing h plus for each of the s
nodes v one of the h;, which we call h5. For a collection 71, ...., ¥, of distinct nodes, it is
impossible for hz, - h5, - ... - hy,, to be the identity or the hyperelliptic involution h. So we
can conclude | Autp,,(C)| = 2511

(iv): We argue using the hyperelliptic local universal deformation (2~ — (., s0),-Z,b)
and the fact that Aut(X) = Awt((Z — (7, s0),-Z,b)) which follows from Summary
1.31 (i). Let hy, € Autyy,(€) be as in (iii), call the subcurve of C' on which it acts
non-trivially C7, the other part Cy. Denote by v the node or exceptional component on
X corresponding to 7;, and denote the two components into which v divides X by X;
(7 € 2), such that each X stabilises to Cj. Chose a fibre X" of the universal deformation,
on which the node v from the central fibre X persists (as node v'), but all other nodes are
smoothed. Then v/ divides X’ in two smooth hyperelliptic curves X}, X} to which X1, X»
deform. The spin/prym sheaf on X' restricts to spin/prym sheaves on X7, X since v/ is
disconnecting. Classes of spin and prym sheaves on smooth hyperelliptic curves correspond
to certain divisors supported on the fixed points of the hyperelliptic involution (cf. Lemma
2.13). So letting the hyperelliptic involution act on X and the identity on X/ defines an
automorphism of the non-exceptional subcurve of X’ respecting the prym/spin structure.
It extends to an automorphism ¢’ of X’ (cf. Summary 1.13 (iv)), which again extends to
apeAut(Z — (S, 50),2Z,b)) (Summary 1.30 (iv)). Now ¢ acts on the central fibre X
as a lifting of hz,.

The only element of Auty,, (&) we have not shown to lift yet is the hyperelliptic involution
h on the whole curve. But this can be shown completely analogously by choosing X’ to be
a smooth fibre. (This finishes the proof of (iv).) Furthermore in this case ¢’ has order 2,
which implies that ¢ and its restriction to the central fibre also have order 2. This proves
the first two sentences of Summary 2.8 (iii). The rest can then be shown arguing as in the

proof of Summary 2.8 (ii).

(v): This can either be checked over the irreducible components of ® using the descriptions
of admissible double covers from Lemma 2.10, or can be proven similar to (iv) using the
local universal deformation of Y — ® and its map to the local universal deformation of D,
which is described in [HM82] page 61-62. (It should also follow from the local description
of Y — ® in Definition 2.6 (and Lemma 2.10), via analytic continuation.) O
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2.2 Construction of the isomorphisms

Lemma 2.13 For g > 1, let qi,...,q2442 be distinct points in P, and f: Y — P! the
(unique) degree 2 cover of P* ramified exactly over these points. Then'Y is a smooth genus
g hyperelliptic curve. Fori=1,....2g+2, define Q; := f~1(q;). Let M be the set of all Q;
and denote by Py, the set of possible partitions of M into a set of m elements and a set
of m' :==2g +2 —m elements. Le.:

Pn:={{A,BY| AL BC M, AWdB=M, |Al=m, |B|=m':=29+2—m}

Let Jr(Y), Js(Y), J(Y), J_(Y) be the sets of isomorphism classes of non-trivial prym
sheaves, resp. spin sheaves, resp. even spin sheaves, resp. odd spin sheaves on Y. ?? (Of
course Jg(Y) = J (Y)W J_(Y).) Then we have:

For any {A, B} € P, and Ry, ..., Ry, the points in A, R, ..., R, the points of B, Q any
of the points Q;:

(i) For all even 2 < m < 2g:

1. ¢pm({A,B}) = Oy(—m - Q + >_"| R;) is a non-trivial prym sheaf of Y, whose
isomorphism class is independent of the choice of Q. Furthermore ¢ m({A, B}) =
Srm ({A, B}) = Oy (=m’ - Q + 3%, Ry).

2. The map ¢rm : Pm — Jr(Y), {A, B} — ¢rm({A, B}) is injective.

3. The map ¢r : Ha<m<g+1, Pm — Jr(Y), obtained as union of the maps ¢rm with
m even

m < g+ 1 is a bijection.

(11) Analogously for spin structures:

1. If g is even, then for all 0 < m < 2g + 2, with m odd:

dsm({A,B}) :=0y((g—1—m)-Q+ > i~ R;) is a spin sheaf of Y.
2. If g is odd, then for all 0 < m < 2g + 2, with m even:

dsm({A,B}) :=0y((g—1—m)-Q+ > ;" Ri) is a spin sheaf of Y.

3. In both cases the isomorphism class of ¢sm({A, B}) is independent of the choice of
Q. Thus the map ¢pgm = Py, — Js(Y), {A, B} — ¢rm({A, B}) is well defined. It

is injective, and the map ¢s : 8 1<m<g+1, Pm — Js(Y), obtained as union of the
m=g+1 mod 2
maps ¢sm with m < g+ 1 is a bijection. Again ¢5m({A, B}) = ¢sm ({A, B}).

(iii) For every g > 2 the bijection ¢g splits into two bijections ¢ : o' (JL(Y)) = J4(Y)
and ¢ : o5 (J_(Y)) = J_(Y). They can also be written (by describing ¢5'(J4(Y)) and

22We are talking about isomorphism classes of sheaves on a fixed curve Y here. For two non isomorphic
(spin/prym) sheaves £, L’ on Y, the (spin/prym) curves (Y, £), (Y, £’) may still be isomorphic.
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b3 (J_(Y)) eplicitly) as:

¢y P Ji(Y)
1<m<g+1,
m=g+1 mod 4

and

o-: W Pu—J()
1<m<g+1,
m=g—1 mod 4

Proof: It is easy to show that, for all i,j € {1,...,2¢9 + 2}, 2p; — 2p; ~ 0. Le. all 2p; are
equivalent.
Using this, all claims of part (i) follow from what is shown in section be 5.2.2. in [Dol10].

All assertions of (ii) follow from the fact that the canonical sheaf of Y is equivalent to
(29 — 2)Q; for any i € {1,...,2g + 2} and the corresponding assertions of part (i) of the
Lemma. (Can also be found in section 5.2.3. of [Dol10])

For (iv): From Lemma 5.2.1. in [Dol10] it follows that h°(¢gm({A, B})) is even if g—m+1 =
0 mod 4 and odd if g —m + 1 =2 mod 4. This proves part (iv) of the Lemma. [J

Proposition 2.14 Fiz as in Definition 2.1 some X4, € {Mgpn, Rgn,Sgn}. We say that
[CM] if Xgn = Mgy, that [CR] if X4, = Rgn and that [CS), if Xgn = Sgn-

We set s :=0 if [CM] or [CR], s :=g—1 if [CS], and we set p:= 0 if [CM], and p:= 2
otherwise. Set u := 2 if [CR], u:= 0 otherwise.

Denote by HX;n the normalisation of HX 4,,. Then:
(i) For each k with w < k <29+ 2 —u, k = s mod u and each choice of a subset T C n
witht :=|T| <k and 0<29+2—k— (n—1t)=:7, define a map

O o Moge—a,imy) = HXgn,

by setting for every [D] := [(PL, p1, ooy Py {q15 s Gt }, {15 -y 1)) € Mo, (i, ([k—1],[7]))*

alyg’mk’T([Q]) =[(C; Pr,....P,,0c(B))] € HXy,, where:

f:C — P s the unique degree 2 cover, branched exactly over all the 2g + 2 points p;,
¢ and q;. The marked points on C are P; := f~Y(pi) for i € n. Denote by r1, .., those
of the points p; with indices in T together with all the points q1,..,qx_¢; the ordering does
not mater here. Set 5 := s — k, then 5 is even. Set R; :== f~'(r;) (each R; a point), let &
be the divisor class of any point of P! and = := f*(€) 23. Then B is the divisor

k
=1

In case [CM], ignore Oc(B), which is the just O¢ then.

B =

[1]

N | W

23In particular we may choose = = 2R; for any R; if k > 0.
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Then the map a’y is a morphism of varieties, which is an isomorphism to one of the

sk, T
connected comporiqents of HXy . (cf. Definition 2.4 (i) for the notation My (n (k- [)))-)

In case [CS], a’Y maps to a component of HS;Cn ifk = g+ 1 mod 4, and to a

g,n:k,T
component of HS,,, if k =g —1 mod 4.
Two maps alfg,n,kl,Tl and a,’YW“kQ,T2 have the same image if and only if either ki = ko

and Ty =T5 or ki + ke =29+2 andn =Ty WT5. Furthermore every connected component
of the normal variety HX,,, is the image of one of these morphisms.

(it) The morphism a“

Xy T extends to a morphism

b, o - Mo (e (1) — HX gn-

which surjects onto one of the irreducible components of HX,,. It factors through a

morphism
%ot Mo (1)) = HX g
to the normalisation. This X, kT s an isomorphism to one of the connected components
of HX ..
Restricted to the interiors of the moduli spaces, which are normal varieties, the morphisms

, B L
ayg,mk’T, OX, T and bfgm,k,T coincide.

(iii) Hence the number of irreducible components of HX g, is

D> >

2 t
keNy, u<k<2g+2—u \ teN, s. th. 0<t<k
k=s mod m and n+k—2g—2<t

Note that if [CM], the only possible value of k is 0, so there is only one component of
HM;H. Also HM;n =HMg,.

Proof: Obviously the conditions on k and T in case [CM] imply & = 0 and T' = (). In this

: / e _ —— _ — g
proof we use the notation aﬁg’n = aﬁg,mo,@, A7, = OB, 00,00 ng’n = agg, 00 By Fact

2.2, HM 4, is normal, so bﬁw = agg, .- Let p: FQ,(n,[Qg—i—Q—n]) — MO’(mng_n]) be the for-

getful morphism, which is an isomorphism by Lemma 2.9 (iv) and Chlyn - Fg,(n’[gﬁg_n}) —
/

K Mg,n
be the restriction of agz,., to the interior My (n [29+2-n])- Now it is easy to check, using

HM g, the isomorphism introduced in 2.9 (iii). Then define axg, . = 31, ° p~L leta
2.9, that these isomorphisms fulfil all claims of our proposition for the case [CM]. For the
other cases:

(i): Let p : Ho (n(k—1,i7))) — Mo,(n,(jk—1),[-))) Pe the restriction of the isomorphism from

Proposition 2.7 (i) to the interior of the moduli spaces. Then set ¢y . :=a"o p L,
g,mst

where a” : Hy (n,(k—1),17))) — HXgn is the closed embedding which is sending a point

[C i) D] € HZ,(n,([k—t],[r])) to the point [(C; Py, ..., Py, Oc(B))] € HX,,, as defined in
(i). The image of a” is in HX,, by Lemma 2.9 (ii) and Lemma 2.13. That a” is indeed
a morphisms of varieties, one sees as follows: The assignment defining a”, can be caried
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over to the level of families. Here one starts with a double cover C = 2 — S, with
D = (D01, ey Oy {61, oy Ept 1, €], ., €L3), D — S a family of P1s, and assigns to it the
family 2" — S, where 2 := (C, %1, ..., n, Oc(B)) with B = 3Q+3% | ;. Here 3; are the
liftings of the sections o; to C, the ); are also liftings of sections and are defined analogously
to the R; in (i). Q is the lifting of any of the sections of marked points belonging to 2. It
is clear that this assignment is compatible with base change, and so defines a morphism
of moduli functors 2%, and the morphism of coarse moduli spaces induced by this is a”. If
follows from Lemma 2.9 (ii) and the injectivity of the maps ¢ . from Lemma 2.13, that a”
is a bijection to one of the components of HX,,,. Hence (with Lemma 1.46) a” is a closed
embedding since H X, ,, is normal (which follows from the description of the hyperelliptic
local universal deformation in section 2.1.3).

The claims of the last two paragraphs of (i) follow from Lemma 2.13, in particular the

claim for [CS] follows from part (iii) of that Lemma.

(ii): Since H X, is normal, it embeds into HX;R. We have a commutating diagram

/

M ayg,n,k,T HX

0, (i, ([k—t],[7])) on
Vi 0%y mok,T
MO,(n,([k—t],[‘r])) ***** >HXgn

a-—
Mgn

Mo, (1, [2g+2—n]) HM g

where 7 is the morphism forgetting the partition on the 2g+ 2 —n marked points which are
not ordered, while 7/ is the restriction of the finite forgetful morphism 7 : Yg,n — Mg,n.
The “dashed” finite morphism ngn p €xists by Lemma 1.45. Since MO,(nK[k—tL[TD) is

normal ng,n,k,T factors through an ax, kT Mo (n (k=17 — HXg,n. Now X, kT
has degree 1 by (i), thus is an isomorphism by Lemma 1.46.

(iii) is implied by (i) and (ii). O

2.2.1 Conclusions from the Proposition

Corollary 2.15 For all g > 2 and every Q € {HM ., (?S;H)N, (HS, )™ (HRg )™}
we have:

(i) Every connected component of Q is unirational.

(ii) A*(Q) = H*(Q), as graded Q-algebras, via the cycle map. In particular H"(Q) = 0
for all odd n.

(iii) Picg(Q) = AY(Q)

(iv) AY(Q) is generated by the boundary divisors of Q. (Meaning the preimages of the
boundary divisors of the moduli space on its normalization.)

241t is easy to check that it is even a morphism of moduli groupoids.
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(v) B?°(Q) = 0 for p > 0.

Proof: For all these claims it suffices to show them for every connected component of Q.
Let Y be such a component, Y its Interior. Then, by Proposition 2.14 and the Remark
2.5,Y = M0,29+2/G for some subgroup G of Sy442.

(1): Y = Mggg+2/G is of course covered by Mg ag+2, and all spaces M, are rational
(Summary 1.48 (i)).

(ii): By Summary 1.48 (ii), A*(Mo2g+2) = H*(M¢24+2). Using Lemma 1.37 we get:
AY(Y) 2 A" (Mo2g42/G) 2 (A*(Mog42))”
= (H*(Mozg+2))” = H* (Mopg12/G) = H(Y)

(iii): Y is normal, so the Picard group is in a natural way a subgroup of the divisor class

group, cf. [Har77] Remark 6.11.2. and Prop. 6.15. Thus there is an injection

Picg(Y) — AYY)
Since Y & M 24+2/G has only finite quotient singularities, it is Q-factorial, i.e. every
Weil-divisor is Q-Cartier. Thus the map is also surjective.

(iv): By Summary 1.48, A'(Mgo442) = A(2g_1)_1(ﬂo729+2) is generated by the bound-
ary divisor classes, i.e. the map A(Qg_l)_l(ﬂo’zg+2 N Mo og4+2) — A(Qg_l)_l(M07gg+2) is

surjective. The exact sequence
A(gg—1y—1(Mozgr2 ~ Mo2gt2) — Apg_1)—1(Mo2g+2) — Ag—1)—1(Mo2g+2) — 0

then yields A(ag_1)—1(Mo2g+2) = A2g—1)—1(Mo,2g+2) = 0. By Lemma 1.37, then

Ag-1)-1(Y) =2 Agg_1)—1(Mo2g42/G) = (Ag_1)-1(Mo244+2))¢ =0

Again using an exact sequence like the one above we conclude that A(Zg—l)—l(? \Y) —
A(zg_l)_l(?) is surjective, i.e. that A(2g—1)—1(?) =~ AL(Y) is generated by the boundary
divisor classes.

(v): According to [Kee92], every Mo ag+2, is rational. Thus HPY(Mg o442) = HPO(P"3) =
0 for all p > 0, since all K7 are birational invariants (cf. [GH94] p. 494). This implies
HPO(Y) = (H? (Mo g442))% = 0. O

2.3 Description of the morphisms by  , on the boundary.

g,n»
In Proposition 2.14 we constructed morphisms

b, et Mo (k-7 — HXgn-

By the construction we know these morphisms explicitly only on the interior of the moduli
spaces, i.e. on classes of smooth curves. In this section we investigate the behaviour of
ng,n,k,T on the boundary. But first we fix a lot of notation, which will be used in this and
also the next section.
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Notation 2.16 (i) Fix an X, € {Syn, Rgn} and an X = (X;p1, ..., py; £,b) with [X] €
HX,,. Let Cont; : X — € be the stable model of X (¢ = (C;p1,...,pn)). Choose a
D" = (D; (I, M)) with [D"] € My (s 2g+2-n))» I = (q1,--an), M = {d}, ces Qg 19—}, SUCh
that for the (unique up to isomorphism) admissible double cover f : Y — ©” we have
that € is the stable model of the pointed nodal curve (Y; f~1(q1), ..., f~(gn)). Denote by
Conty : (Y5 f~Haq1), ..., f*(gn)) — € the morphism to the stable model, contracting the

exceptional components.

(i) Let h € Aut(€) be the hyperelliptic involution, and let C' — D := C//h be the quotient
morphism. Then since Conty is compatible with h and the hyperelliptic involution on
Y (cf. Lemma 2.9), it induces a morphism conts : D — D. So we have a commutative

diagram
I I I
(L,b) o X 2 ¢ 002y
.
= conty

D2 D (I, M)

Here the same symbol I is used to denote the tuple (p1, ..., pn) of marked points on X as
well as on C, and also the tuple (f~'(q1), ..., f~'(gn)) on Y, since these tuples of marked
points are “identified” by the morphisms Cont; resp. Conto. Here, and in the following,
we indicate by curly arrows that extra structures are attached to some varieties.

(iii) Let 2 — (., s0), € — (%, bo) be the hyperelliptic local universal deformations of
X resp. € (cf. end of section 2.1.2), and let % Lo (Z,to) be the local universal
deformation of the admissible double cover f : Y — ©”. Then (possibly after shrinking
<, T, A appropriately) by forming the stable model one induces morphisms of the two

other families to ¢ — (%, by), which can be seen in the commutative diagram 2°

7 7 7
(37 b) P Cont & Conto @
A

conto

(y,s())%(%,bo)&(g,tg)

25More precisely we first form the stable model of (2~ — (%, 50),Z) and of the family (% — (7, t0), )
where 7 are the preimages on % of the n ordered sections of marked points on Z. The resulting families
of hyperelliptic pointed stable curves are (possibly after reducing the radius of the complex balls .77, F)
pullbacks from the local universal deformation ¢ — (%, bo) via finite surjective maps covy : (.7, s9) —
(AB,bo) and cova : (T, to) = (£, bo).
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Here 2 is the quotient € /h, where h is the hyperelliptic involution on ¢ — (4, by). 26 If
we restrict everything in this diagram to the central fibres over sg, by, tg, we get back to
the diagram of (ii).

(iv) If for example T is a set of sections of some family X — B we denote by [T] the
divisor class in A'(X) which is the sum of all the images of the sections in 7.

Now for a given X € HX,, we would like to use the diagram of local universal defor-

mations defined in (iii), to relate the hyperelliptic deformation of X to the local universal

& T([X]) C MO,(n,([kft},[ﬂ))' This will be possible

on these dense open subsets of the deformations which parametrise smooth curves, since for
-1

smooth curves we already know qu,n, kT

will be used to obtain the description of bx, .. e OO singular curves (in this section), and

s

deformation of curves ©® with [D] € b%l
([X]) explicitly. This relation on the open parts,

also to compare the automorphism groups of the central fibres over sp and ¢y (in the next
section).

Lemma & Definition 2.17 We use Notation 2.16 and also the notation of Proposition
2.14.

(i) Fiz one of the morphisms

byg,n,k:,T 5 MO,(TL,([kft],[TD) — Hgm

such that [X] lies in the image of bygn w1 Denote by Hy 1 the irreducible component of
HX, , which is the image Ofbfg,n,k:,T' Let .5 be the preimage of Hy 1 on . Then FkT
may have several irreducible components V... 7" Pick one of these components
L) and call the restriction of the local universal deformation to it 2°0) — .#\)

(ii) Let 20 5 20 ¢ — B and V' 59 = 9 be the open subfamilies of our
deformations containing all smooth fibres. Then over these sets the diagram of Notation

2.16 restricts to a cartesian diagram *7:

T, M) i (Z', M) (Z', M)y

Cont/ é Cont! é

¢’ !

(L, b) e 270

‘( T/ (I/, M/)
y(j)/ cov) z covl, 7

Here we also refined the extra structures: On each of %(j),, €' and %' there is a unique
hyperelliptic involution. They are compatible with each other via the morphisms in the

diagram. For each of the three families let F' denote the set of 2g + 2 sections which are

%9 (%,bo) is a family of nodal curves of genus 0 (cf. [ACG11], page 210).
2"L.e. the squares in the diagram are squares of fibre products.
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fized by the hyperelliptic involution. Among these sections are the n sections of ordered
marked points, i.e. ' C F'. Set for each family M’ := F' T’ to define on each a sorting
(Z', M")... of F'. Then the above diagram also commutes in the sense that these sections

on the families and their sortings are compatible via the morphisms in the diagram.
Denote by T C Z, resp. T C T the set of sections with indices in T C n (T from ng k1)
(i1i) On 29 there is a set of sections,

A - F with \.Z’] =k, ANT = ’7", such that ¥ = O iy (532 + [.Z’]),
where Q € F' arbitrary, and where s = —k if [CR] and 5 = g — 1 — k if [CS]. This A’ is
unique unless n = 0 and k = g+ 1, in which case the only other possible choice is F' ~ A’.
Use this to define a sorting (T, (T',K')) -y 2 on F', where we set J' := A' N M’ and
K= M~ (A nM). Note that |J'| =k —t and |[K'| = 7.

(iv) Denote the induced sortings Cont) ((f’, <j/,]€/>)£'(j)) 2 on the sections F' of €' by
(Z', (T, K"))¢. Transfer this sorting to % by setting

(Z' (T, K'))a = Conth (T, (T, K'))e).

The hyperelliptic involution of % has a set of 2g + 2 fized point sections f, and these
sections are disjoint and only meet smooth points of each fibre of % — (T ,tg). They are
the f-preimages of the 29+ 2 sections of marked points in TUM on 2. Extend the sorting
(T' (T KNy to a sorting (Z,(T,K))w on F. Set (Z,(T,K)) := f((f, (7, I%))a])

What we have constructed so far is shown in the following diagram, where dashed arrows

point from one extra structure to an extra structure constructed from this one.

(T AT K)) gy — == (T AT K))g — == (T (T . K'))w

@) g O g S g S
A \
[ \
[ \
(i, g) [J) %(J) Cont, @ Cont> 7% (EZV,', <j, I%»gy
\
g f [
-~ conto M
9 9 (Z,(7,K))
(y(]), 80) COVy (%’ bo) COov2 (y7 to)

(v) Restrict the sorting of sections (Z,(J,K)) to a sorting of the set of marked points
on the central fibre D and denote it as (I,(J,K)). Set DY) := (D, (I,(J,K))). Then
[PU)] € Mo n,k—11r)y)» and

ng,n,k,T([Q(j)]) =[X] € HX 4.

28¢f. Definition 2.4 (iii) for the notation.

29By this we mean: Cont} is applied to every one of the sets Z', 7", K'.
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The ©UY) we obtained in general depends on the choice of .9 made in (i), and if
W D) gre the ©U) obtained from the different .#9), then

b5 (X)) = {@W], . 2]} %0
(vi) On X9 resp. € define F, (f, (j,ﬁ>)%(j) resp. (f, <j,i€>)<g by unigely continuing the
sections from j-v", and hence those from j’, ﬁ’, to the whole family. The resulting sections

in J and K on X9 resp. € are not necessarily disjoint and may contain singular points of

fibres. These sorted sets of continued sections are again compatible via Cont, and Conts.

(vii) The varieties 2 ) €, % are normal, and hence forming the first Chern class of line
bundles induces inclusions Picz(2 1)) C AL(2°Y), and so on. 3* If £ is a line bundle
on 29 | which is the pullback of a line bundle from the usual local universal deformation
X — (S,s0), and A € AL(Z'V)) is a divisor such that O, (A) = £ or equivalently
c1(Z) = A, then for any smooth variety Z and any morphism v : Z — 29 we have

V'L =0zW*A).

Proof: Large parts are just definitions or are quite obvious. (i) follows from the description
of the hyperelliptic local universal deformation spaces at the end of section 2.1.2. (ii) is
clear by the construction of Cont; and Conts, and by Summary 2.8 (iii) and Lemma 2.9
(ii).

(iii): By Lemma 2.13, on every fibre X, of (27 — y(j)/,f’) we can write "%IXQ in
the form Ox, (sw + [As]), where {p1, ..., p2g12} are the fixed points of the hyperelliptic
involution on X, and As, is a certain subset of these and w is any of the points p;. We
can choose Ag, such that Ts, = Ag, N I, and such that |Ag, | = k, since the class of X§,
is in the image of b?g,n, kT like it is for every fibre over .. Let A be the subset of the
set of sections ', which restricts to As, on X, Q the section which restricts to w. Then
O o) (32 + [A']) is a prym sheaf on the family 2°@)" — ()" which agrees with .%’ on
X, . Since over a families of smooth curves a prym sheaf can locally be deformed in only
one way, it follows that 2" = O,/ (5Q + [A']).

(iv): From (i) and by definition of families of admissible covers.

(v): By the discussion in the proof of (iii) along with the description of bx, . ko On classes

of smooth curves in Proposition 2.14, if s; € 7@ and t1 € 7' lie over the same point
by of %', then the class of fiber [(Dy,, (Iy,, (Ji,, Kt1,)))] € Mo (n (jk—t,jr))) is mapped to
[(Xs1,Zx,, )] € HXgn by byg,n:]f:T' So by continuity ngnkT([:D]) = [X]. By construc-

tion of bx,.. ko the preimage ng,n,k,T([:{D has one element for each branch of the local

analytic neighbourhood of [X] in HX,,. Furthermore by section 2.1.3, forming the quo-
tient of . by Aut(X) maps each ./ (4) surjectively to one of these branches. This implies

the second claim of (v).

3In some cases [D¥] = [©Y)] for some i # j in r.

31To be able to use the Chow group here we should strictly speaking switch from the analytic to the
algebraic category, and work with local universal deformations over the spectrum of complete local rings
instead of complex balls.
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(vi) is clear. For (vii): We know from section 1.5 that the local universal deformations
X — (S,s0) and C — (B,by) are smooth. The subspaces /) C S and # C B are
both linear, hence complete intersections. So also 29 C X and € C C are complete
intersections. Since they are also regular in codimension 1 they are normal varieties by
Proposition 8.23. of Chapter II of [Har77]. The last equation of (vii) is well known for
smooth varieties (cf. appendix A 3.) of [Har77]). Since X’ is smooth, our claim follows
from the fact that 2" () is a complete intersection in X and Proposition 2.6 (e) of [Ful98].
O

Fix any 2 ). Consider a node v of D, let Z(y) C .7 be the codimension 1 linear
subspace over which - is retained (i.e. not smoothed). Set Z(v) := cova(7 (7)), L (7) :=
covi H(B(W)), let Z(y) = D(v) = T(v), Z(y) = Z(7), be the restrictions of the
families and let I' C 2 be (the image of) the section to which 7 extends on Z(v). Then
the divisor Z2(y) on 2 consists of two smooth irreducible components 2 = % () U Za(7)
such that 2;(v) N Za(y) =T. Set for i € 2, with clo(...) standing for the closure:

Z(7) = Cont; ! (Conta(f(2:(1)) ). £(x) := Z1(0) N Za(),

Zi(y) = clo(Zi(7) ~ E(7)) if £(7) S Zi(v). Otherwise:  Zi(7) = Zi(7) = E(7).
Each 2;(v) ¢ 2°U) and &(vy) ¢ 2V is either a divisor of 2~ or of codimension 2.
(&(v) may have one or two components. The % () := £f~1(Zi(y)) are always divisors,
while f~1(T") is always of codimension 2. But %;(y) may be contracted by Conts, and
Conty(f~1(I')), may be blown up by Cont;'.) Now denote by [Z;(7)] and [€(7)] the
divisor classes in A'(2"). For those which are of codimension 2 set [2;(y)] = 0 resp.
[€(7)] = 0. For a fixed v, write Z =71 UZy, J = J1UJa, K =K1 UKe, T = T1 UTa, such
that Z; contains those sections in Z which meet %;(), Zs those that meet Z2(7), and so
on. Define on 2" U, ﬁ, fi, ji, E analogously.

By T3, I;, J;, K;, denote the sets of points in which the sets of sections 7;, Z;, J;, K; meet
the central fibre D. Then, using the notation of 2.16, 2.17 and of Proposition 2.14:

Lemma 2.18 For the first Chern class c¢1(£) € AY(Z' ), of the spin/prym sheaf £ of
20), and for some z1(7), 20(7), 2e(y) € Z, and Q € F arbitrary :

a(2) =30+ [Tudl+ Y amZ%i0)]+20)20)]+ M) (1)
y€Esing(D)

Now fix a vy, and set b; := |L;| + |J;| + | K;|, zi := 2(7), 2z := zp(7y). 32 Then:
(i) Zi(7y) is of codimension 2 in 2 if and only if by = 2 and furthermore |I; = 0| and
|[Jil = 0 or |[Ki| = 0. In this case [21(7)] = [22(7)] = [€(7)] = 0.
(i) If both Z;(7) are divisors, then & () has two components if and only if by (and hence
also by ) is even.
(1ii) Assume by is odd. Then &(7) is blown up, i.e. a divisor, if and only if [CS]. Further-
more if [CS], z1 + 22 — 225 = 1 mod 2, and —z; + zg = £(b; — 1) — 1 — |T;| — |.J;| mod 2.
If [CR], zo — z1 = |Th| + |J1| mod 2.

32b1, ba > 2, since D is stable.




2.3 Description of the morphisms by .  on the boundary. 69

R

(iv) If by is even, either both components of &(7y) or none are blown up. They are blown
up, if and only if [CS] and |Ty|+ |J1| = by mod 2 or if [CR] and |Ty| + |J1| = 1 mod 2.

Proof: We will use the previous Lemma 2.17 without further mentioning it. “(ii)” is clear

by Lemma 2.10. In this poof = will always stand for = modulo 2.

To show (i) and (iii)-(iv), let s* € S() be a point whose fibre X* is general for the family
Z'(v) = S(v), in the sense that the set theoretic intersections X := X* N Zi(y), and
E*® := X* N &(y) are of codimension 0 in X* if and only if Z;(7) resp. &(v) are divisors,
and sing X® = (X{ NE®) U (X3 NE®). Let )v(f, )VCQ' and E* be the normalisations of these
components, and let £}, £3, L% be the pullbacks of .Z to these normalisations. Let
be the number of components of E® = E*. Denote by T, I?, J?, K the sets of points
in which the sets of sections from 7;,7Z;, J; and K; meet X*. Note |T*| = |Ti| = |Ti,
|I?| = IZ;| = |Ii|, and so on. Denote by I'; C X the set of one or two points in which
X meets the rest of X*. Let r i C )v(; be the preimages on the normalisations. If E® is 1
dimensional, set I'g 1 := E*N X}, 'ps := E* N X3.

We know by 2.17 (iii) that in A'(2°®)"), ¢; (L) =3 + [T"U J']. Since

2=2"y |J 20)uBmH)UEN),

~v€esing(D)

equation (t) follows mostly from the exact sequence of Lemma 1.39. The only thing that
remains to show is that if &() is a divisor and has two components, then the classes of
both divisors appear in ¢;(.¢) with the same coefficient zg. This is shown below.

A fact which we will use again and again is that in A'(2")

(2 (M) = [221()] + [Z2(N] + [€()] = 0, (%)

since it is the pullback of the class of the divisor S(v) from the open ball .77().

Now assume &(y) has two components, call £, Ef the two corresponding components of
E* andfori € 2set I'g;, :=Tg; NE;, I'p;p :=Tg; N E;y. Note that all of the four sets
defined by this consist of exactly one point. Let E'E7 o L% be the pullbacks of .2 to the

two components. Then by (1) and (%) we have
c1(Ly) =211 + 2[lE2] — 280(TE16 + TE24)) — 286(LE 1] + [TE25)). hence:

ci( ;Ex) = (21 —282)TE12] + (22 — 2B2) CE24], for x € {a,b},

and so deg cl(ﬁha) = 21 + 22 — 22E,q4, degc1 (LY ) = 21 + 22 — 2zgp. But since £ and
Ep are exceptional we know that L3, , = Ops(1), L3, = Opg(1). So both are of degree 1
and we must have zg , = zpp =: zp. This finishes the proof of ().

Assume that both X7 and X3 are of codimension 0 in X°. Set e(y) = 1 if E® is of
codimension 0 and €(y) = 0 if it is of codimension 1. For i € 2, set §; = 1 if  meets X;,
d; = 0 otherwise, let w® be the point in which © meets X°®. By (f) and (x) we have:

c1(L}) = [TP] + [J3] + 615[w®]+ (e(7) 2z + (1 — €(7)) 22 — 21)[T1], ()
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c1(£3) = (T3] + [J3] + 23[w* ]+ (e(v)zp + (1 = e(7))z1 — 22) [T2], (%)

ci(Ly) = 21Tea] + 2T —226(Ce1] + [TE2))- (M)

Now we show (i). X may only be a point if the corresponding component Y;* is contracted
when stabilising Y'*. By Lemma 2.10 this implies that b, = 2 and |I;| = 0. By stability
this condition can be fulfilled for at most one ¢ € 2. For the rest of this paragraph assume
it is fulfilled for ¢ = 1. First assume that X7 is not contracted. Then X7 is an exceptional
component, hence E*® is 0-dimensional, since if it would be exceptional, then X*® could not
be quasistable (but only semistable), furthermore p = 2, i.e. E® consists of two points.
Since X7 is exceptional, degec; (L)) = 1 in this case. But by (), degei(L1) = |J1| + 015+
2(z2—21). Hence |J1| = 1 mod 2, and with 2 = by = |I1|+]|J1|+|K1| = |J1|+|K1]| we obtain
|Ji| = 1 and \Kl\ = 1. If on the other hand X7 is contracted, then [%( )] = [%] =0,
the two points of I‘2 C X2 map to one node of X3, and the sections of J1 and IC1 run into
this node, meeting both branches of X7 there transversally. With this compute that (f)
pulls back to

c1(£3) = (T3] + [J3] + 825[w®] + (1] + 615) L], (%)

ie. since Th =T, degeci(LS) = |T| + |J| + | J1] + 025 + 2615. Hence modulo 2, deg 1 (L£3) —
(IT|+1J]) = |J1]. In case [CR], (£3)®? = O by Summary 1.13 (ii), so we get 0 = |.J;| in
this case. In case [C'S] instead (L£3)%? = w)v(s([ 2]), hence dege1 (L) = %(29()?2’)—2—1—2) =
g — 1. Since |T|+|J| = g — 1 also in this case 0 = |J|. So if X} is contracted |J;| = 0 and
|K1| =2 or |J1] =2 and |K;| = 0. This finishes the proof of (i).

From now on, we always assume that both X? are 1-dimensional. To show (iii) assume
by is odd. That then E*® is a point if [C'R] and an exceptional component if [C'S] is clear
by Summary 1.13 (iii). By 1.13 (ii) we know that in this case for [CR], degei(L}) =
degc1(L£S) = 0 and thus with (&), |T1|+|J1| +22 — 21+ 015 = 0, hence z9 — z1 = |T1| +|T2|.
If [CR], by Lemma 2.10 g(X?) = £ (b;+1—2) hence by 1.13 (i) degc1 (L) = 3(b; —1) — 1.
From this and degci(L£};) = 1, we obtain the remaining claims of (iii) with (<), (&), (#).

Now we assume that b; is even, and show (iv). First check, using ({), (&) and (ii), that in
these cases degci(L£$) = |T;] + |Ji|. Then note that by 2.10, g(X?) = (b; —2) = 3b; — 1
Furthermore by 1.13 (ii), if £° is 0 dimensional then degc;(£]) = g(X?) —1+1 = g(X?)
if [CS], and degci(L]) = 0 if [CR]. If E*® is exceptional, degc;(L?) = g(X?) — 1 if [CS],
and degc(£;) = —1 if [CR]. Putting this information together the claims of (iv) follow.
O

The next Proposition refines Proposition 2.14 by describing the finite degree 1 morphisms

bfgm,k,T : MO,(n,<[k_t},[T]>) — ﬁg’n

more explicitly on the boundary of these moduli spaces. We continue to use the notation
introduced in this section and in 2.14.

Proposition 2.19 Choose a © = (D, p1,....Pn, {q1, s @kt }, {4}, -, 4, }) such that [D] €
MO,(n,([k—t],[T]))- Then D is a tree of irreducible components D1, ..., Dy for some M €
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N, which are all isomorphic to P'. Now ngn cr(®]) € HX,, parametrises an object
(X; P1,..., Py; L) (ignore the L, in case [CM]). We first describe the quasistable curve X :

Let f:Y — D be the (unique) admissible double cover. Then in particular, for each D;,
Y; := f~Y(D;) is smooth. Let I; C n, J; C (k—t), K; C T be the sets of indices of the
points pp, qj, q), which lie on D;. Set T; := I;NT. Let L; C M be the set of indices m such
that D, meets D; in a common node v; m. Every node v, divides D into two rational
trees meeting in this node. Denote by D; ,, the one of those two rational trees containing
D; but not Dy,. Let Ij y, S, Jim € (k—1t), K;m C T be the sets of indices of the points
Ph, G, qi, which lie on D; p,. Set Tjp =L N T.

Divide L; into two sets Gi1 and G; 2, such that m € G;1 means that |I; |+ | i m | + | Kim|
1s odd. Then:

(1) The restriction of f, f; : Y; — D, is the unique degree 2 cover of D; = P! branched
over the points py, qi, q. for h € I, j € J;, k € K;, and over exactly those 7; m, for
which m € Gj1. This means that f; is ramified in Ram (i) = |L;| 4+ |.Ji| + | K| +|Giq|
points. Hence Y; has genus g(Y;) = 1(Ram (i) — 2).

Y; meets Yy, in the one or two points contained in F;m == Y (ym). We denote by
P, ...Py, Q1. Qrs, @’1,,62; the preimages of the p;, q;, q;, under f (each of these
preimages is a point). We call D; an extremity of D if |L;| =1, |I;| = 0 and |J;|+|K;| = 2.
D; is an extremity if and only if Y; is an exceptional component of Y.

Now X is the curve obtained from'Y by:

(2) Contract all those exceptional components Y, for which |J;| =0 or |K;| =0. 33

(3) Blow up all the nodes contained in sets I, with m € G; 1 if [C'S], do not blow them

7,m

up otherwise.
(4) Blow up the two nodes contained in a set F;m with m € G, if
OS] and [Tym| + Ji| = 5 (Linl + il + i) mod 2,
orif [CR] and |Tim|+ |Jim|=1mod?2.
The marked points Py, ..., P, on X are the ones corresponding to the points ]31, ,]3” on

Y.

We know (X; P, ..., P,) now, so we are done in case [CM]. In the other cases we still do
not know L. What we will do is to describe the pullback of L to every component of the
normalisation X~ of X. On any exceptional component E of X, Lip = Op(1). By what

we have seen so far, the normalisation of each non-exceptional component of X is one of

3330 all exceptional components are contracted in case [C'M]
34Recall that |I; m| + |Ji,m| + | Kim| is even iff m € G, 2. Note that in this case, if we call X, the part
of X coming from the part of Y lying over D; ,,, then %(|],m| + |Ji,m| + | Ki,m| — 2) is the genus of X .
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the Y;. Let p; 1 Y; — X be the morphism expressing Y; as such a component. We want to
describe ¢} L.

Divide each set L; into L, and L;y, such that m € L;, means that on X, X; := ¢;(Y;)
meets an exceptional component in the points of Iy p,. Le. if m € L;q, either X, =
om(Ym) is an exceptional component not contracted in Step (2), or the nodes in I'; , are

blown up in step (3).
Let & be the class of any point of D; and let = be the divisor class f§ on'Y;. Let Ry, ..., Ry,

be the collection of the following points on'Y; (the ordering does not matter): All points
Py, with h € T;, all points Q; (coming from the Q; on'Y ) with j € J;, and in addition, for
each m € G, 1, the point T, . if m has the property that:

i,m?

[CS] and |Tim|+ |Jim| = =(Lim| + |Jim| + | Kim| — 1) mod 2, 35 or

N

[CR] and |Tim|+ |Jim| =1 mod 2.

Define
$(Ram(i) —2) — 14 |Gi2 N Lip| — ki, if [CS)]
—|Gi2 N Lia| — ki, if CR]

S; =
Then s; is an even integer, and :

i L= Ox/(B;), where B;=

o | &

ki
i:. R
=+ E -
Jj=1

Proof: All claims for [CM] follow from Lemma 2.10. Up to the point at which blowing up of
nodes and contraction of components are described, the proposition consists of definitions
and things which follow immediately from 2.10. The description of X compared to Y in
(2)-(4) follows from Lemma 2.18, if we set for the pair ¢,m we are interested in v = 7;
and let 2, () resp. Z2(7) be the components of Z(7) restricting to D; ,, resp. Dy, ;. To see
this, note that 2 ) — .#0) is a family of nodal curves, and recall the local description of
such families from Proposition 1.9. By this description it is clear that over S(v), a blown

up node v can not deform into a node which is not blown up, or the other way around.

For i € M, set §; = 1 if Q meets X;, §; = 0 otherwise, let w be the point in which 2 meets
X. Then, similar to (#) and so on, in the proof of Lemma 2.18, using (x), (1) from the
mentioned proof, we see that:

c1(9f(L) = [T + [Ji] + 6:5[w] + > (imzEim + (1 = €im) Zm,i — Zim) [T m)

meL;

where the €; , and z are the €(y) and z from the proof of Lemma 2.18, except if ¥,,, ; = Yy,

is an exceptional component which is contracted in passing to X. In this case we have to

B Lim| + |Jim| + | Kim| is odd iff m € Gi1. In this case 1 (|Lim| + |Jim| + |Kim| — 1) is the genus of
Xim.
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set Zim = |Jm| + dmS (compare to equation () in the proof of Lemma 2.18). Note that in
this latter case m € G; 2. We can continue the above equation with

/
%

2

0

= [T+ [T+ D (imzmim + (1= €im)2mi = 2im)[Tim] +
mEGiJ

-=, where

i = 0;5+2 Z €imZE,im + (1 — €m)%mi — Zim-
meG; 2
is defined in the Proposition. Here we used that for m € G; 2, [Lim] = f[7i,m] and that
= f*¢, and € ~ v, on D; 2 P Let par : Z — {0,1} be the map sending all odd
numbers to 1 and all even numbers to 0. With this, and noting that by (1) for m € G; 1,
2[Cim] = f*[vi,m],

(11 [11

c(pi(L) = [T+ L]+ > (par(eimzmim + (1= €m)zmi — 2im))[Tim] + % 2 (9)

mGGiJ

where: §; = si+ Z ((ei7sz7i,m+(l—ei,m)zm,i—zi7m)—par(ei7sz7i,m+(l—ei’m)zm,i—z@m)).
meG; 1

Using that for m € G by (3), €m = 1 if and only if [C'S], and Lemma 2.18 (iii), we find

that par(€;mzeim + (1 — €im)2m,i — 2im) is 1 for [CR] if and only if |T; | + |Jim| = 1.

For [CS], it is 1 if and only if |T; | + |Jim| = 5| Lim| + |Jim| + |Kim| — 1). Comparing

this with the definition of the points Ry, ...., Rg, in our proposition we obtain from (©):
ki -
alel(L) =Y R+ 2ox, 1)
=1

which is of the form claimed in the proposition. To compute §;, use that by Summary 1.13
(ii) (and by (1)-(4)),

deg Cl(goj(ﬁ)) = (|G1'71 N Li,a| + 2|Gi72 N Li,a|) = —|Gi72 N Li7a|, if [CR],

1
2
and if [CS] then: degei(y; (L)) =

1 1 1

§(Ram(i) —-2)—1+ §(|Gi71 N Li,b‘ + Q‘Gi,g N Li,b’) = §(Ram(i) —2)—1+ ‘Gi72 N Lz‘,b|-

For the last line, note that for Ram(i) > 2, 1(Ram(i) —2) = g(¥;) and that for Ram(i) =
0, Y; is the disjoint union of two P!’s and hence degwy, = —4. By (1) we have 5; =
degci(pf(L)) — ki, so 5; is as claimed in the proposition. O

Remark Part (iii) describes the morphism ng,n,k,T only “almost explicitly” in the cases
[C'S] and [C'R], since L is not always completely determined by its pullbacks to all compo-
nents of the normalisation of X. The bundle £ is obtained by gluing together the fibres of
the bundles 7L over the nodes of X, and there can be several non-isomorphic permitted

ways to do this.

Example 2.20 As a first example of an application of Propositions 2.14 and 2.19, we
examine the hyperelliptic locus HR1 2 C Ry 2 and determine the boundary of its compo-
nents. The results will also be used later in this thesis. Firstly by Proposition 2.14, we
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know that HR;2 has two components (lets call them Zg}a and Z27b 36) which are the
images of the two morphisms

(a3

ag, o012yt Mo@o2) — A2 g, L0y Mo — Az

(Of course MO’(Q,[O],[QD = MO’(Z[QD and MU,(ZU]»U]) = My 4, but we keep the general nota-
tion of the Summary here.)

We introduce diagrams to symbolise the “topological type” (cf. section 1.3) of the genus
0 curves with pointed marked curves involved, and also take into account the distribution
of marked points belonging to T', which is the set defining the morphisms. For a general

point of MQ(Z’[O}’[QD resp. MO,(Z[IHI]) the curves are symbolised by:

o e e e
1 9 resp. 1 9

The diagrams are to be read as follows : For both moduli spaces the objects have 4 marked
points, two of which form an ordered pair, while on the other two there is an ordered
partition. In case of MO,(Z[O],[?]) this partition consist of one set containing both points, in
the case M (2,17,11)) of two sets containing one point each. The boxes with indices 1 and 2
stand for the two ordered marked points. These boxes contain a cross if the marked point
is contained in 7. The dots and crosses without boxes stand for the remaining marked
points, where crosses belong to one set of the partition, and points to the other set.

The interpretation of the symbols with regard to Summary 2.14 (i) is: The rational curve
symbolised by such a diagram is mapped to the pair (C,p1,pa, £) where C — P! is the
degree 2 cover ramified over the four marked points on P!, and pq, ps are the preimages
of the marked points symbolised by the boxes. The crosses (regardless whether boxed or
not) indicate the partition of the ramification points, which defines £: Let ¢ and ¢’ be the
preimages of the two marked points symbolised by crosses, then £ = O¢c(q — ¢').

Now on the boundary of M07(27[0]7[2]), M07(2’[1L[1D we find the curves which correspond to
the possible stable degenerations of the general diagrams. Using the notation of 2.14 and
2.19 every such degenerated curve D consist of two components D; and Do, each of which
carries two of the marked points. They meet in the node 712 = 72,1, and in this case
D12 = Dy and Dy 1 = D>. The table below lists all of these possible degenerated curves
resp. their diagrams. In the way we defined the symbols, boxes with or without marked
points stand for points in I, boxed crosses for points in 7" C I, crosses without boxes for
point in J, and dots for points in K. We coloured the subcurve D5 red in the diagrams
and the subcurve Dy blue. The table lists information about the sets of marked points
used in the Proposition 2.19, and with this information the Proposition determines the
type of X such that [D] is mapped to [X]. The last column shows the quasistable curve X
underlying X. Here we coloured the part of X coming from Yj o red and the part coming
from Y5 ;1 blue. Exceptional components of X which arise from blowing up nodes of Y are
coloured green. All components of all X appearing in the table have arithmetic genus 0.

36T be compatible with the notation in section 5.2.
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Each normalisation of a connected component is hence isomorphic to P'. One can use the
summary to show that pullback of £ to the normalisation of a component is then either
O(—1) := Op(—1), O := Op or O(1) := Op1(1). The latter is the case if and only if the

component is exceptional.

Diagram of © ‘ I ‘ Ty ‘ | J1.2] ‘ |K1,2H Iy, ‘ To1 ‘ | J2 ‘ \K271|‘ Sketch of X
For ag o 110y + Mo(2,0,2)) — Ag g
o
2 {1,2} {1,2} 0 0 o |0 0 2 2
1
o(-1) O(-1)
/-/?><é§\-\ {4 o 0 | {2t {2} o0 1 1 2
For a§1,2,2, 1} :M07<27[171]> i} ZQJ,
/@/@></\/\\ o(1)
2 {12y | {1t | © 0 o | 0 1 1 12 /7
! o(-1)
o(-1) O(-1)
/'/?><§\r\ {1} {1} 0 1 {2} 0 1 0 1 2
//?X?\\{l}{l}l 0o | 0] o | 1 {2
eYaNe;

2.4 Comparison of automorphisms

Fix for this whole section one of the morphisms bfgm,k,T : MO,(n,([k—t},[T])) — HXgn
as described in the Propositions 2.14 and 2.19, a © = (D, (I, (J, K))) with class [D] €
MO,(n,([kﬂ],[r])) together with a (pointed) hyperelliptic (spin/prym) curve X = (X, I,L, b)
such that [X] = by . +([D]) € HX yp.

Then one may ask how the automorphism groups Aut(®) and Aut(X) fit together. Here
we will give an answer to this question, for all cases fulfilling the following condition

Condition 2.21 Using the notation of Lemmad& Definition 2.17: Choose the numbering
of the irreducible components .#U) of the hyperelliptic deformation space .# of X in such
a way that ® belongs to .#(1), in the sense of 2.17 (v). Then our condition is that the
action of every ¢ € Aut(X) on . maps (1) again to .71, 37

3TThis condition, by Lemma&Definition 2.17, implies in particular that b%l X T([%]) has only one
g,nsk,

element [D], but is not equivalent to it. We mainly apply our result for S = HS> and Rs = HR», for
which the condition is fulfilled trivially since in this case (-, s0) = (.9, so) always has only one component.
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The results from this section will later make it more easy to push forward stack classes
from the Chow groups along byg . pr In some special cases. (Recall, from Remark 1.35

(ii), that when pushing forward @-classes one has to take into account automorphism

numbers.)

In this section we continue to use the large amount of notation introduced in section 2.3.

Definition 2.22 If © is a stable genus 0 curve with sorted marked points, then we call
those irreducible components of D the extremities of ® which meet the rest of D only in
one point and which carry only two of the marked points.

First we note that by Lemma 2.10 (or Proposition 2.19):

Lemma 2.23 In the situation described in Notation 2.16:
(i) The preimage Y; := f~1(D;) under f : Y — ®, of a irreducible component D; of D is

an exceptional component of (Y, I) if and only if D; is an extremity of ® and carries none
of the n ordered marked points from I. We call such an extremity a genuine extremity.

(i) Cont : X — C resp. Conta : Y — C contracts exactly the exceptional components of
X resp. Y, and conty : D — D contracts exactly the genuine extremities of .

Notation 2.24 Set I := (conta(py), ..., conta(py)), and let J, K be the set of those points
on D that come from those marked points in J resp. K that lie on components of D not
contracted by conty. By H we will denote the set of points of D to which extremities of
® are contracted by conty. We set M:=JUK.

To retain more information about the extremities contracted to points of H, divide
this set into Hjx, Hj, Hx, where Hj; contains the points to which extremities carry-
ing only marked points of J are contracted, Hx contains those coming from extremi-
ties with marked point only from K, while to the points of Hjx extremities that carry
one point of J and one point of K are contracted. Then sort the marked points by
(I,Hyx,(J, Hy), (K,Hg))) (cf. Def. 2.4 (iii), again (...) is to be read as {...} if I = 0,
and as (...) otherwise.).

Lemma 2.25 Using Notation 2.16 and 2.24:

(i) There are (unique) group homomorphisms

Aut((X, 1)) 2% Aut((C, 1)) 22 Aut((D; (7, M, H))) <2 Aut((D; (I, M))),

which make commutative the following diagrams for all o1 € Aut((X, 1)), p2 € Aut((C, 1))
and 3 € Aut((D; (I, M))):

X P1 X C P2 C D Y3 D
Cont1i \LConm gl J{g Contzl icontg
C x1 (1) C sz(goz) ) ﬁ%(ws) D

Furthermore x2 and 1% are surjective.
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(i) The kernel ker x1 consist of those automorphisms that are non-trivial only on the
exceptional components of X. The kernel ker )}, consists of those ¢ € Aut((D; (I, M)))
that are non-trivial only on the (genuine) extremities of (D; (I, M)).

(iii) ker xo = Autpy,((C, 1)), with Autp,,((C, 1)) as defined in Lemma 2.12 (ii1).

Proof: (i): x1 exists, since forming of the stable model is a functor (cf. section 1.1).

For xa: Every ¢ € Aut((C,I)) uniquely induces a compatible automorphism ¢* on the
quotient D = C/h, since it commutes with the hyperelliptic involution h by Lemma 2.12
(i). We have to check that ¢* respects (1, M,H ): Considering that (C,I) is obtained by
stabilising (Y, I ), we see with Lemma 2.23 that the points in H are exactly the images
of those nodes v of C with the property: v is fixed by the hyperelliptic involution, and
the two branches of C' meeting in v are swapped by the hyperelliptic involution. Since ¢
commutes with the hyperelliptic involution, ¢* respects H. The points in TU M are the
images of smooth fixed points of the hyperelliptic involution, and T is the image of I , SO

" also respects these two sets.
The morphism 9, obviously exists and is surjective.

That x2 is surjective follows from Lemma 2.12 (v), and the fact that € is the stable model
of (Y, f~X(q1), ..., f"(gn)) (cf. Notation 2.16), together with the surjectivity of 1.

(ii): Follows from Lemma 2.23 (ii).
(iii): The kernel of x2 consists of all ¢ € Aut(C) such that g(p(a)) = g(a) foralla € C. O
Definition 2.26 (i) A nodal curve with n sorted marked points and sorted nodes, is a tuple

(X; %) of a nodal curve X, a sorted set # whose underlying set consists of n pairwise
different smooth points of X together with all nodal points of X.

(ii) The automorphism group Aut((X, %)), is the subgroup of Aut(X) of automorphisms
respecting the sorted set %, like in Definition 2.4 (ii).

Lemma 2.27 Using Notation 2.16, and the notation introduced in this section:

(1) Aut(X) is a subgroup of Aut((X,I)). We call the restriction of x20 x1 to this subgroup

W1 Aut(X) = Aut((D; (I, M, H))).

Aut(D) is a subgroup of Aut((D; (I, M))) and we call the restriction of the morphism 1,
of Lemma 2.25
Vo - Aut(D) — Aut((D; (I, M, H))).

(ii) Aut((D; (I, Hyx, (J, Hy), (K, Hg))))) is a subgroup of Aut((D; (I, M, H))), and:
Y1 (Aut(D)) = Aut((D; (1, Hye, (1, Hy), (K, Hi))))).
If X fulfils condition 2.21 then also

ba(Aut(X)) = Aut((D; (T, Hyx, {(J, Hy), (K, Hi))))).
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(iii) ker 1y is the subgroup of Aut(®D) of automorphisms acting nontrivially only on ex-
tremities of ®. We have x5 ' (Autpy,(C)) C Aut(X) and ker i = x5 " (Autp,,(C)).

(iv) Assume Condition 2.21 holds. Set N := | Aut((D; (1, Hjk, ((J,Hy), (K, Hg))))|. Let
I' be the number of those extremities of ©, whose two marked points either lie both in J or
lie both in K. We have to distinguish a special case: If all marked points from J U K on
D lie on extremities, and in addition all these extremities carry one point from J and one
point from K, setl :=1'+1 = 1. In all other cases set | :=1". Let s be the number of nodes
v on D dividing D into two parts D1, Do, both of which carry an odd number of marked
points. Let Auto(X) C Aut(X) be the subgroup of inessential automorphisms. Then:

[Awt(@)] =2 - N 3 [ Aut(X)] = | Autpy,y(€)] - | Aute(X)] - N
and thus with | Autpy,(€)| = 2571,
| Aut(X)| = 26170 L | Auto(X)| - | Aut(D)].

One can also write | Autg(X)| = 29~ where u is the number of connected components of
X, the non-exceptional subcurve of X.

39

Proof: The different assertions that one automorphism group is a subgroup of another

one, made in parts (i) and (ii), are all quite obvious.
The first things we prove are the two equations of part (ii).

We start with the commutative diagram of Lemma&Definition 2.17 (iii), with £ = 1 (and
D = ®W). Recall the whole notation introduced in 2.17.

For (Z,(J,K))s, we know by 2.17 (iv) that the (images of the) sections are disjoint and
only contain smooth points of the fibres. Since we know that Cont; resp. Conts act on
the central fibres only by contracting some exceptional components, we can conclude from
this, that on X two sections from (f, (j, IE))%(D can only meet in nodal points of X.
Furthermore, since exceptional components of Y are met by exactly two sections, if a
node of X is contained in at least one section it is contained in exactly two sections. By
(2) of Proposition 2.19 such nodes are either contained in two sections from J or two from

K.

Using (f, <j ,I€>) (1), we give the central fibre X the structure of a nodal curve with
sorted marked points and nodes: Let I= (p1, .., pn) be the tuple of marked points, be-
longing to the data of X already. I coincides with the tuple of smooth points in which
the sections from Z meet X. Let J resp. K be the sets of smooth points of X which are

contained in a section from J resp. from K. Denote by G, Gk the sets of those nodes

38This equation also holds without condition 2.21.

39Tt is possible to use Proposition 2.19 to describe u in terms of properties of ©. But this requires to
distinguish cases. To apply the resulting formula would not be much simpler then to determine for a given
® the underlying curve X of X directly by Prop. 2.19, and then to count the components of X. So we omit
it.
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of X which are contained in two sections from j resp. from K. Let Gy be the set of
all remaining nodes. They are contained in none of the sections of (Z, (7, K)) 5-1). Then
(X, (f, Gy, (J,G), (K, Gk)))) is a nodal curve with sorted marked points and nodes.
Define, using (f, <j , ’%))cg, an analogous sorting of marked points and nodes on C', which
we denote by (f, Gy, G ((J*, G%), (I?/*, G%)))- Here G¥ . is the set of nodes contained

in one section from J and one from K.

By Summary 1.31 (i), and the construction of 2"~ — ., Aut(X) can be identified with the
subset of Aut((2 — (.7, s0)) consisting of automorphisms which respect (I,.#). Under
condition 2.21 it even implies that Aut(X) can be identified with the analogous subset
of Aut((Z' (M — (M s0))). But this is just the subset respecting the sorted sections
(f’ , (j 'K )), which is equivalent to respecting (f, (j , I€>) We conclude

Aut(x) = Aut( (X, (I, Gy, (J,G). (K, Gx)))) ).

Now Cont; maps the sorted points and nodes
(fa G@? <(:]Va GJ)? (I?v GK)>) to (fv Ga» GT]K? <(j*7 G?}), (K*a G;(»)

in the following sense: An exceptional component of X carrying one point from J and one
point from K is contracted to a node, so these two points are both mapped to one node in
G% - Using the description of X in Proposition 2.19 (1)-(4), we see that nodes from G
resp. G are mapped 1:1 to nodes of G*; resp. G%. Furthermore Gy is mapped surjectively
to Gy UG If two nodes from Gy are adjacent to the same exceptional component, they
are mapped to the same node in G jk, the nodes not adjacent to exceptional components
are maped bijectively to Gj. The subsets of points of J resp. K which do not lie on
exceptional components map bijectively to J* resp. K*. Hence

¥ (At (X5 (T,Go, (7. G, (R, Gi)))) )

¢ aut((C5 (TG}, G, (T, G7), (K, G)))))

We want to show that the C can be replaced by =. From the discussion above we conclude
that it suffices to show that any automorpism ¢ € Aut(C') which is contained in the second
group fulfils: ¢ maps all those nodes of C' which are blown up in passing to X again to
such nodes. But this follows from Proposition 2.19 (2)-(4), which characterizes such nodes.

Now nodes of C belonging to G%, G or G} arise by contracting components of Y.
Firstly this shows that the hyperelliptic involution swaps the two branches of such nodes.
Hence they are mapped to smooth points of the quotient D. Furthermore, with Lemma
2.23 and considering how the sorted sets of sections on 2", €, # and 2 fit together
ir/l\the diagrjim of 2.A17 (iii), it implies that g maps (7, G, Gk ((j*, G%), (I?“,G%))) to
(I,Hjyri,((J,Hy), (K,Hg))) in the following sense:

g(I =1, g(J) =7, g(K*)=K, g(G%) =H,, g(Gy)=Hg, 9(G5x)=Hyk,
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while the set of nodes of Gy is mapped surjectively to the set of all nodes of D 40 | This
implies (with Lemma 2.25 (i)):

~ ~

Xe(Aut((C; (1, Gy, Gy, (T*,G5), (K*, Gio))))) = Aut((D; (T, Hy e, ((J, Hy), (K, Hk)))))

and hence the second equation of (ii). The first equation of (ii) is clear by Lemma 2.23
(ii).
(iii): Follows from Lemma 2.25 and Lemma 2.12 (iv).

(iv): Let D* C D be the union of all components of D which are no genuine extremities
of ®. For the first equation, by (ii) it suffices to determine |ker ¢2|: By Lemma 2.25 (ii),
ker 1o consist of the ¢ € Aut(®) which are trivial restricted to D*. In the special case
described in (iv), for which we have set [ := [’ +1 = 1, there is only one nontrivial such ¢.
It acts on all extremities carrying a point from J and a point from K simultaneously by
swapping the marked point from J with the marked point from K. In all cases except this
special one, we have: For each genuine extremity £ C D there is a ¢ acting nontrivially
on E, but trivially on D*, if and only if the two marked point on E both lie in J or both
lie in K. Indeed, for such an extremity there is a unique automorphism ¢ g swapping the
two marked points and acting trivially on all other components of D. On extremities not
of this type, there is a point from J and a point from K. But if these two are exchanged
by an automorphism ¢, all points of J must be exchanged with all points of K by ¢. This
is only possible (while still fixing D*) if we are in the special case treated earlier. In all
other cases ker 1), is generated by these automorphisms ¢, hence has 2! elements. For the
second equation: By (iii), and the fact that ker x1 N Aut(X) = Auto(X) (more or less by
definition of inessential automorphisms) we see |ker 11| = | Auto(X)| - | Autpy,(€)|. Hence
| Aut(2)] = | Autnyy(€)] - | Auto(X)] - N by (). O

Remark 2.28 How do the formulas of part (iv) of the Lemma change if Condition 2.21
does not hold? This means there are » > 1 components .9) of .7, contained in the
orbit of .1 under the action of Aut(X). Write them as sV 7@ ) The first
equation of (iv) remains the same. Concerning the second equation: The proof of the
Lemma still yields the same equation with Aut(X) replaced by Aut((5)) := Aut((2'¥) —
y(j),i,.,?(j))), for all j € r. By definition of r there are automorphisms ¢1, @2, ..., @,
such that ¢;(#M) = 20 for all j € r. Now it is easy to check that o; o Aut((1)) C
Aut((2 — 7, 7,%)) = Aut(X) is the subset of all automorphisms which map .7 to
). Hence as a set: Aut(X) = Aut((1))&pooAut((1))W...6 @, o Aut((1)). So if condition
2.21 does not hold, we have to multiply the right hand sides of the second equation by r
to get the correct result. The same holds for the third formula.

However, if one wants to apply these formulas to compute automorphism numbers, they
will of course only be of use if one has a way to determine r for a given ®. We will not

49Gince a node of Gy corresponds to a node of Y which is not adjacent to exceptional components, it is
either exchanged with another node by the hyperelliptic involution of C, or is fixed and the hyperelliptic
involution maps each branch at the node to itself. In both cases the node is mapped to a node on the
quotient D.
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provide such a result in this thesis 4!, and in all cases in which we apply the Lemma it
will be obvious that condition 2.21 holds.

But here we give an example of a case with r > 1: By Proposition 2.14 HR4 has two
components corresponding to the choice of k € {2,4}. For k = 4 look at the following pair
of [D] € M6 and [X] = bg, 4([D]), where like in Example 2.20 we denote the 4 point
qi,.--,q4 € J by crosses, and the 6 points ¢}, ..., g5 € K by dots:

v ayaaal ay @ o fa

D1 D?
P @ D .
q2 @ / s
/ q4 q4
q1 / /
q2 q3

Exceptional components of X are drawn in light green. Here we require that, as curve
with 4 ordered marked points, (D1, q1, g3, 42, 1) is isomorphic to (Ds, g4, q}, g5, ¢5).- Then
there will be automorphisms

¢ € AUt(Da {QI7 "'7Q47q/17 7q/6})7 p e Aut(X7 {Qh "'aQ47Q/17 7Q%})

such that ¢ is a lifting of 1, and such that both act, loosely speaking, as the reflection
on the dashed orange axis in the image above. Now 9 is not an automorphism of ® =
(D,{J,K}) = (D, {{q1,---,q4},{¢}, -, g} }) since it does not respect the sorting of the
marked points. So ¢ is not the lifting of an automorphism of ®. Note that in this example
D = (ﬁ, (f, Hjk, ((j, Hy),(K,Hg)))) using the notation of the Lemma. But ¢ is an
automorphism of X: By Proposition 2.19, for £ the prym sheaf on X, £x, = Ox, (—-4Q1+
Q1+Q2+Q3) and Lx, = Ox, (—2Q4+Q4) = Ox,(—Q4). We have —4Q1+Q1+Q2+Q3 ~
|, since Q1 + Q2 + Q3 + Q) ~ 4Q) and 2Q; ~ 2@} on X;. Hence

S0*£|X1 = 90*0)(1(_@/1) = OXg(_SO_l(Qll)) = OX3(_Q4) = £|X3'

Analogously ¢*Lix, = L|x,. So the second equation of 2.27 (ii) does not hold in this

example.

Now the induced automorphism g on the stable model € of X swaps the two pairs of
nodes ey, ez and eg, eq which are blown up to obtain E, Es, F3, Ey. If Z.,, ..., Ze, are the
corresponding base vectors of the deformation spaces (B,by) of € (compare to section
2.1.3), then (pe(Te, ), e(Te,)s Pe(Tey), pe(Tes)) = (Teys Teys Tey, Tep)- And @ acts, possi-
bly after multiplying with inessential automorphisms, by (¢ (e, ), ©(Ves)s ©(Yes), p(es)) =
(Yess Yess Yey» Uy )- (This is not difficult to prove, but we do not show it here.) Hence

41Ty give a way to determine r might be slightly interesting, since this would for example allow to
compute the number of irreducible component of the local analytic neighbourhood of any given point of
HX, ., using also the description of the hyperelliptic local universal deformation from section 2.1.3.
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 swaps the two components of the hyperelliptic local universal deformation of X cor-
responding to the partitions (E;N,E;,N) = ({E1, E2},{E3, E4}) and (E;N,E N) =
({Es, Es},{E2, Er}). (Cf. section 2.1.3, and recall that we defined Es n to denote a cer-
tain set of edges resp. exceptional components there.) These are the two components lying
in the image of b§47 4 on ., and we see that they form one orbit, so » = 2. There are
two further components of ., corresponding to (E;N, E5 n) = ({E1, Eq, E3, E4},0) and
(E;’N, Ey n) = (0,{E1, By, E3, Eq}), and they belong to the image of bg, ,. A local ana-
lytic neighbourhood of [X] in H R4 has three irreducible components, one belonging to the
image of bg, 4 and two belonging to the image of bg, 2 (Globally of course H R4 has two
irreducible components, namely the images of bﬁ% 4 and b§472.)

2.5 Application to S, and R;

In this section we apply the results of the Chapter to My, Sy and Rs. Since all smooth
genus 2 curves are hyperelliptic we have My = HM,, S; = HSy and Ry = HR5. These
spaces are normal and (except Sp = ?;r W S, ) irreducible. Hence by Proposition 2.14 we
have isomorphisms from moduli spaces with 2 -2 + 2 = 6 partitioned marked points to
each of Mo, g;, S5, Ra. We call these isomorphisms:

b: Mo = My resp.

— >~ = — ~ — >~
aR : MO,[2,4] —> Ry resp. aq : M07[373] — SQ resp. a—: M07[175] — SQ

We know that they map boundary points to boundary points.

We now use these isomorphisms to gain information about the boundary cycles (cf. sec-

tions 1.3 and 1.4) of M5, Sy and Rs. It is easy to list all boundary cycles of the spaces

MQ[G], MO,[QAH, ..., by writing down the diagrams of the rational curves they generally

parametrise. This is since the stable genus 0 curves are just trees of P!’s, each carrying 3

special points (i.e. marked points or intersection points with other components) to make

them stable. For M 6] We e.g. have the possibilities:

N N >

For the cases with partitioned marked points e.g. MO,[1,5]7 we have the same underlying

curves, but have to distinguish the different possibilities to partition the marked points
into two sets of the given sizes. We indicate this partition by symbolising marked points
in one set of the partition by crosses, and from the other set by dots. In case of MO,[LM
e.g. we find the possibilities:

I T R
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Note that, since we are only interested in listing the boundary cycles, it does not matter
“which” of the points on one component are dots or crosses, but only how many of each
kind there are. Also we can reorder the sub-trees hanging on each line segment of our
diagrams. Thus the list above given for MO,[1,5] is complete, and for example

o o e e

| o not define new cycles, but are equivalent to ,

—eo—o— —t—X—e—

After generating these lists, we can apply Proposition 2.19 which tells us to what kind of
(spin/prym) curve X, a genus 0 curve © belonging to such a diagram is mapped by b, a_,
a4 resp. ar. Since the diagrams describe the general curves of each boundary cycle, this
gives us a list of all boundary cycles of the corresponding space Ms, S, , ?;, and tells
us how the general object X parametrised by each cycle looks like. Furthermore we use
Lemma 2.27 to compute the number of automorphisms of each such general object. How
the latter is done is explained after providing the results in the following tables. We also
give each boundary cycle of M5, and so on, a name in these tables, which will be used in
the next chapter.

For M5, we obtain:

Codim. Cycle D ‘ X ‘ | Aut(X)| ‘
0 M 2
©)
1 Ag ©) 2
1 Ay 4
O @
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B
2 Ao ﬁ 4
2 AOl 4
@
2 Cooo e ><><>< 12
2 0001 J 8

Like in example 1.24 the encircled numbers in the sketch of X, denote the geometric
genus of the component of the curve they stand close to. All components without such an
encircled number have geometric genus 0. Of course all information provided in this table
is known from [Mum83]. We also used the names introduced there for the cycles.

The next tables provide the same for S5, but with an additional column, showing to which
class in A*(M3) the Q-class of each cycle is pushed forward by 7. 4> The column for X
contains a sketch of the underlying quasi-stable curve X. To each of the (non-exceptional)
components into which X is divided by disconnecting nodes, we attached a label [+ or
(=], indicating whether the restriction of the spin sheaf of X to this component is an even
spin sheaf or an odd spin sheaf. For S and Ry some X will have exceptional components,
which we draw in green in our pictures. A list of the boundary strata of Sy is contained
in the appendix of [BF09al, and we continue to use the names introduced for them there.

In the table for Rs coming later, to every (non-exceptional) irreducible component of
X we attached a label with one or two entries (for example ), giving the following
information: The first entry of the label at a component X; is 7' if the restriction Ly, of
the spin sheaf £ of X is the trivial sheaf, and is N if £y, is a nontrivial prym sheaf. If £,
is nontrivial and X; is not normal, the label will contain a second entry, which describes
the pull-back q x, of £jx; to the normalisation of X;. It is ¢, if q x, is trivial, and n if q X,
is a nontrivial prym sheaf. There is also the possibility that Ei x, is a twisted prym sheaf,

42This is computed as follows: Determine the degree m of the forgetful morphism 74 on the given cycle
D (as morphism of varieties), by counting (using the diagrams in the table) the number of non-isomorphic
possibilities to put a sorting on the marked points of a given © (i.e. to distribute the dots and crosses)
so that it still belongs to the given cycle (cf. section 3.1.1 for similar countings). Then (74).[D] = m[A],
where A is the boundary cycle of My which is the image of D. To express this in Q-classes instead, one
uses the automorphism numbers for general X for X € D resp. X € A, which can be found in the tables
(cf. Summary 1.34 (ii)).
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if X; meets any exceptional components (cf. Summary 1.13 (ii)). Then Ei x, is a square

root of a sheaf of degree —r, where r is the (even) number of points in which X; meets

exceptional components, and the label will contain —r as its second entry.

The boundary cycles of E;
Codim. | Cycle | [Awt(X)] | (). ([-]o)
. _
0 S, 2 10[Ms]g
1 A 2 46
1 By 2 300
1 Af 8 501
1 Bf 8 301
P Ct ! 4 2[Aoolo
X%
2 D+ 2 2[Aoolg
T
— e e
° /
2 E / 4 [Aoolg
N
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/ N\
X+ . 8 3[Aotlo
®
ai% / N\
Y+ QK D\ 8 %[Am]@
= ®
7
zZt / 8 3[Ang
f: 5
Lo
L+ | oo ><>< 4 3[A000]Q
—
VI N
M I RV 24 3[A000lQ
AV -
g / N\
Pt @( \WO 16 %[Aom]@
/ N\
Q* X @( wG 16 3[Qootlo
(=] =]
i / N\
U+ \\ 8 [Aoo1]g
A\
i / \
R / \ 16 $[Ao01]o
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The boundary cycles of S,
Codim. Cycle ‘ D ‘ X ‘ | Aut(X) ‘ (m-)«([---]@)
. 5 \ 5 2 6[M3]g
©)
(=]
1 Ay ® 2 480
1 BO_ 2 do
(=]
/
/ N\
1 Al_ /[] 8 361
© @
5 - * ﬁ 2 2[A00]Q
e /
_ [ ] /
2 D | 2 2[Aoo]g
]
:/ /\
2 X~ = 8 $[Aoilo
©
:/ /\
2 Y~ @K \ 8 2[Ano
= ®
7\
2 Z- / [\ 8 3[A0lo
ﬁ 0
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3 L~ e ><>< 4 3[Aooolq
e
: / N\
3 P~ @( wﬁ 8 [Aoo1]g
=
::: / \\
3 U- \ 8 [Aoo1]g
= A\

The boundary cycles of R»
Codim. | Cycle | D | x | 1 Aut(X)] | (7r).([.-])
0 E \ 5 15[ )0
1 D} % 2 60
1 DY I 2 8o
1 Dy { 2 44
1 Dy 4 661
1 D4 4 961
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2 £ [Aoolg
9 B 9 [AOO] 0

Nt

//
2 El’r 4[A00]Q

N2
e
2 EmT / [Aoolg
N4

2 Fl 3[Aoi]q
2 FY [Aotle
2 FI [Aoilg
2 Fiy 3[Ane
2 FT, [Aot]o
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3 Ve I ><><>< 4 3[Aoo0lq
e
e
~ _—
3 GT T >’< 4 3 [Ao()o] Q
— ~
e

4 2[A001]Q

:
>< @K&\ 4 2[Ago1]@
3 Hi, >< 8 [Aootq
Nt

@K&\ 4 2[Aoo1]g
/A\ 8 [Aoo1]e

e/ \FE

3 HY

2.5.1 Automorphism numbers

Here we explain how the automorphism numbers in the previous tables where computed.
One ingredient is:

Lemma 2.29 Let pi,...,p, be n distinct points of P! in general position. We describe,
for different n € N, the group A := Aut(P';{p1,...,pn}) of automorphisms of P! that map
points of the set {p1,...,pn} again to points of this set.

(i) For n <2, A is an infinite group.
(i) For n =3, A has 6 elements corresponding to the permutations of the 3 points.

(iii) For n = 4, A has 4 elements, one is the identity, the others correspond to choosing

two disjoint pairs of the points, and interchanging the points in each pair.
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(iv) Form > 5, A consists only of the identity.

Az+B
Cx+D

A, B,C,D € C. Using this one checks that the assertions of the Lemma are true. [J.

Proof: The automorphisms of P! are the Mébius transformations x — where

We use Lemma 2.29 together with Lemma 2.27 (iv) to compute the number of auto-
morphisms of a general prym- or spin curve X of the cycles appearing in the previous
tables. In our case HiSéF = ?; , HS; = S,, HRy = R3, the hyperelliptic local universal
deformation of a prym/spin curve is the whole usual local universal deformation, so the
deformation space (., s9) = (.9, s9) has only one irreducible component. Hence Condition
2.21 is necessarily fulfilled. By Lemma 2.27 (iv) we have

| Aut(X)| = 25+ . N.

The numbers s of non-disconnecting nodes of X and w of connected components of the
non-exceptional subcurve of X can be counted at the sketch of X included in the table.
(How X looks like was determined using Proposition 2.19.)

It remains to determine N = | Aut((D; (Hyx, {(J, H;), (K, Hg)})))| (note that I = in

our case).

Example: We take the diagram of the general object © = (D; {J, K}) from the table, and
reduce it to a diagram of (D; (Hyg, {(J, Hy), (K, Hg)})) as follows: We keep the markings
that do not lie on extremities, and we introduce for every point to which an extremity is
contracted a circle, in the centre of which we insert a dot if the extremity carried two dots,
a cross if the extremity carried two crosses, a cross and a dot if the extremity carried one
cross and one dot. For example, in the case of the cycle L™ of ?; we obtain

—X—e—

—f—e— \
—x

For M of ?; we obtain

An automorphism must either take all symbols to symbols of the same kind (i.e. dots to
dots, crosses to crosses, circled dots to circled dots,...), or it must take all dots to crosses
and vice versa and all circled dots to circled crosses and vice versa. Now, using Lemma 2.29
(i), it is clear that N = 2 for L™ (it is possible to swap the cross and the dot), and N = 6
for M™. From the diagrams of D, one sees directly that s = 0 in both cases. From the
sketch of X in the table, we see that the non-exceptional subcurve X C X in case of LT
has one connected components, so here u = 1. For M T, X has two connected components,
so there u = 2. Putting all this together the automorphism number is 2 - N = 4 for LT
and 4- N = 24 for M.



Chapter 3
Rational cohomology of R> and S5

In this chapter we determine the rational Chow ring A*(Ry) ! of Ra, as a Q-algebra, in
terms of generators and relations (Theorem 3.14). We also show that it is isomorphic to
the rational cohomology ring H*(Rz) of this space via the cycle map (Thm. 3.12). Gilberto
Bini and Claudio Fontanari did the same for Ss, the moduli space of spin curves of genus 2,
in [BF09a]. In computing the cohomology of Ry we follow their approach in large parts. As
a new ingredient, we also apply the isomorphism ap : M07[274] — Ry, which is a special case
of the isomorphisms constructed in the previous chapter, to compute additional relations
in the Chow/cohomology ring, by pushing forward Keel relations. (As explained in the
introduction of this thesis, using ar to obtain relations was an idea suggested to me by
Orsola Tommasi.)

Concerning Sy, we correct some errors made in [BF09a]. It turns out that, contrary to
what is stated in [BF09al, the classes of the boundary divisors of ?; are not independent
in the Picard group, and as a consequence the first Betti number hl(gg) is 3, not 4.
Also some of the relations in the cohomology rings computed there are not correct. To
obtain new relations to replace them, we use the isomorphisms a : M[)’[g’g} — ?; and
a_ : MO,[L 5] — ?;, also known from the previous chapter. Similar morphisms (from Mg )
to S, and S, are constructed in [BF09a], but are not used to obtain relations.

Remarks and Notation: Strictly speaking, what we compute in this chapter is the
rational Chow ring and the rational cohomology of the stacks Sy and Ro. Or putting it
differently, we compute H*(S5) and A*(Rs) with the multiplication “ - ” induced by push-
forward from the stacks, as explained in Summary 2.6, not with the intrinsic multiplication
“ @ 7. Since the number of automorphisms of a generic spin/prym curve parametrised by
Sy (or Rg) is 2, the map A*(S3) N A*(R2), multiplying each class by 2, becomes an
isomorphism of (Q-algebras, if on the left hand side the multiplicative structure is given by
- and on the right hand side by e. The same holds for H*(Ss) and for A*(Rs), H*(Rs).
Like in the whole thesis, we work with the adjusted pullbacks introduced in Summary 1.34

(iv), and denote them by f* instead of f®.

The names for the boundary cycles of Sy and Rs introduced in the tables of section 2.5

T.e. the Chow ring with coefficients in Q.
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will often be used in this chapter, without explicitly referring to these tables again.

3.0.2 Some remarks and notation

Definition 3.1 We denote by 7r : Ry — Mo, 7y : g;r — My and 7_ : ?; — M,
the “forgetful morphisms”, which corresponds to discarding the additional prym or spin
structure, and passing from the underlying curve X to its stable model C.

We know all boundary cycles of Ry and Sy from the tables of section 2.5, which also tell
us which kind of spin or prym curves each cycle parametrises generically.

Recall that the boundary divisors of Ry are Dy, D1.1, D{, D{ and D{. We assign boundary
divisor classes in A*(Ry) by taking Q-classes:

di = [Dilg, dia:=[Dialg, do:=[Dglg, dy:=I[Dglg, dy:=[Dple-

Equivalently one defines the boundary divisor classes 8y and §; of Mas.

The forgetful map mp : Ry — Mo, is ramified in codimension 1 only at DJ, i.e. is branched
over Ag. So the boundary divisor classes of M» pull back to R as follows (also cf. Remark
1.35 (i)):

7(60) =dy+dy +2dy, and  7(61) =dy +di

The boundary divisors A7, B(")F , AT, Bf of ?; and Ay, By, A] of S, we again know from

section 2.5, and define corresponding classes:
o = [Afle, 87 =I[Bile, of :=[Alle, B =[Bllq

ag = [Agle, By =[Byle, ar:=[A7]e

The pullbacks of dg and d; to these spaces are:
7 (60) = ozar + 25;, iy (61) = QaIr + 2,6’;“,

7w (00) = o +2By, 7 (1) =207

3.1 Morphisms to S, and R.

In this section we introduce several finite morphisms from other moduli spaces to Rs, §;“
and S, . They will later be used to determine relations between cycle classes on our moduli

spaces, by pushing forward known relations, or by using the projection formula.

3.1.1 Surjections from moduli spaces of genus 0 curves with 6 marked
points.

Recall from the beginning of section 2.5 that:
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Lemma 3.2 (& Definition) There are isomorphisms
b: MO’[G] = My resp.

— ~ = — ~ =+ — > =
ap: Mopqg —> R2 resp. ay:Moyps —> Sy resp. a—: Mo s — Sy
These isomorphisms map the boundary of Mo onto the boundary of the images.

By composing every one of the isomorphisms above with the appropriate quotient morphism
out Of 7707,[6} : Mgﬁ — MO,[6}7 0,[4,6] - M0,6 — MO,[4,6]; T0,[3,3] * M076 — M07[373}, and
mo,11,5) - Mo — Mo 1,5, we define surjective finite morphisms:

= 720:1 =
g:Mos — Mo,

=7 48:1 4 =7 72:1 w+ F 120:1 F—
thM076—>R2, f+:M076—>52 and f_iM()ﬁ—)SQ.

(The symbols d : 1 over the arrows indicate that a morphism is finite of degree d.)

Proof: Everything except the degrees of the finite surjective morphisms is just a special
case of Proposition 2.14, as explained in section 2.5. The degrees equal those of the forgetful

morphisms g jg), To,[2,4]5 70,3,3]> 70,[1,5], Which can easily be counted. []

By the previous Lemma we know:
1Y (Ry) & (" (Mog)) 55, H'(85) 2 (' (Mog)) S5,
H*(Sy) = (H*(Mog))57
where the group actions are those of Remark 2.5. As the cohomology of My is known
(cf. Summary 1.48), a computer algebra program could at least compute this invariant
cohomology as graded vector spaces. It was checked that these computation yields the
Betti numbers we obtained by hand in Theorem 3.13.

For our computation of the rational cohomology of Ry and Ss as Q-algebras, we need some
more information about the isomorphism apr, a4 and a_, and the finite surjective maps
fr, f+, and f_ defined from them.

By the tables of section 2.5 we know which boundary divisors get identified by the iso-

morphisms ag, a4 and a_.

Now we can determine how fr, f+ and f- behave on the boundary divisors of M.
Using Notation 1.47, all these boundary divisors are of the form [i1,i2] or [j1, ]2, j3]
(i1, 12, j1,j2,j3 € 6). To which component a boundary divisor of Mg is mapped, can
be seen using the tables of section 2.5. The degree of the map on a given boundary divisor
one gets as in the following example: The boundary divisor [3,4] is mapped to Dj. A gen-
eral point of [3,4] is thus mapped by fg to a point of Djj C Ry corresponding in M 5 4
to a diagram of the form
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One gets that the degree of fr on [3,4] is 4 by counting how many non-isomorphic possi-
bilities there are to assign indices 1,...,6 to the marked points of the diagram, such that
the dots get 3,4, 5,6, the crosses get 1,2 and such that 3 and 4 go to the component with
only two marked points. There are 8 possibilities, but swapping 3 and 4 yields isomorphic
objects.

Behaviour of fr: Mog it Rs: For arbitrary by, by € {3,4,5,6} we have,

e Boundary divisors of the form [b, bo] are mapped 4 : 1 (each) onto Dj,.

e The boundary divisor [1,2] is mapped 24 : 1 onto Dj.

Boundary divisors of the form [1,b1] or [2,b1] are mapped 6 : 1 (each) onto Df.

Boundary divisors of the form [1,2,b;] are mapped 12 : 1 (each) onto D;.

Boundary divisors of the form [1, b1, b2 (or equivalently [2, b1, b2]) are mapped 8 : 1
(each) onto Dj.p.

Behaviour of fi : Mog 2 E;; For arbitrary aj,as € {1,2,3} and by,by € {4,5,6} we

have,

e Boundary divisors of the form [a1, as] or [by, ba] are mapped 6 : 1 (each) onto A .
e Boundary divisors of the form [ay, b1] are mapped 8 : 1 (each) onto By .

e Boundary divisors of the form [a;,a2,b;] (or equivalently [a1,b;,bs]) are mapped
8: 1 (each) onto A .

e The boundary divisor [1,2,3] is mapped 72 : 1 onto Bi".

Behaviour of f_ : Mg 1204 S, : For arbitrary by, by € {2,3,4,5,6},

e Boundary divisors of the form [1, b;] are mapped 24 : 1 (each) onto By .
e Boundary divisors of the form [b1, o] are mapped 6 : 1 (each) onto A .

e Boundary divisors of the form [1, b1, by] are mapped 12 : 1 (each) onto A .
We now use this to compute:

Lemma 3.3 There are the following relations between boundary divisor classes:
(i) In AI(RQ).' d6 + 6d8 — 3d6 +12d; — 8d1.1 =0
(ii) In AY(Sy): 3ad — 48F —8ai + 7281 =0

Proof: (i): Using equation (1.7) from Summary 1.48 with 4, j, k,1:=1,2,3,4 we get

[1,2] +[1,2,5] 4+ [1,2,6] + [1,2,5,6] = [1,3] + [1,3,5] + [1,3,6] + [1,3,5, 6]
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which is the same as
0=1[1,2]+[1,2,5] +[1,2,6] + [3,4] — [1,3] — [1,3,5] — [1,3,6] — [2,4]
Pushing this relation forward by fr we get:
0 = 24[Dg] + 12[D1] + 12[D1] + 4[Dg] — 6[Dg] — 8[D1.1] — 8[D1.1] — 6(Dg)]
= 4[D{] + 24[D{] — 12[D{] + 24[D1] — 16[D1 1]
Using the automorphism numbers from the tables of section 2.5, this can be written as
0 = 8d(, + 48d} — 24d} + 96d; — 64d; .
& 0 =dy+ 6dy — 3d} + 12dy — 8.1
(ii): Using equation (1.7), this time with 4,7, k,l :=1,2,4,5, we get
[1,2] +[1,2,3] +[1,2,6] +[1,2,3,6] = [1,4] + [1,3,4] + [1,4,6] + [1, 3,4, 6]
Pushing this relation forward by f, and proceeding like in part (i) we get:
0 = 24ag — 328; — 64a;] + 5768,

& 0=3a7 — 485 — 8af + 7281

O

3.1.2 Morphisms to the boundary divisors of R, and S,

Now we come to several finite surjective morphisms from other moduli spaces to different
boundary divisors of Ry, ?; and S, . Later they will be used to determine relations between
intersection products of boundary divisors via the projection formula.

Morphisms from M ;

First we define a Morphism ¢ : Mos x Mo3 — [5,6] C Mog. ([5,6] is one of the bound-
ary divisors of Mg, cf. Notation 1.47.) To the pair of [(C;(qo,...,q4))] € Mos and
[(C; (g0, s d5)] € Mos the morphism c assigns [D; (p1,...,ps)] € [5,6] C Mog, where
D is the curve obtained from C' and C’ by gluing the points ¢o and ¢(,, and where p1, ..., ps
are defined as the images of ¢i,...,q4 at D, and ps resp. pg are defined as the images of
q) resp. gh. Mo 3 is just a point, so there is an isomorphism i : M5 — Mo x Mo 3. The
composed map coi is a finite degree 1 morphism onto [5,6]. We compose this morphism
with fr and get a finite Morphism:

/ wd 4:1 /

h{ is 4 : 1 because that is the degree of fr on [5, 6] (cf. section 3.1.1).
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By composing c o with f_ one gets a morphism

=7 6:1 —
hg‘ : M075 — AO

Similar to what was done in section 2.2 for fr, fi+ and f_, one can determine the behaviour
of these two morphisms on the boundary of M0,5. For each boundary divisor of Mog, we
describe to which boundary cycle of Ry resp. Sy (cf. section 2.5) it is mapped by h{, resp.
h&. The boundary divisors of My 5 are (for our choice of the indices of the marked points)
all of the form [i1,42] (i1,72 € {0,1,2,3,4}).

Behaviour of h{ : Mg 5 KN D}y C Rs. For arbitrary a € {1,2} and b € {3,4}:

e The boundary divisor [1,2] is mapped 2 : 1 onto E"" = D N Dy .

e Boundary divisors of the form [a,b] are mapped 1 : 1 (each) onto E"" = D{ N Dj.

The boundary divisor [3,4] is mapped 2 : 1 onto E".

Boundary divisors of the form [0, a] are mapped 2 : 1 (each) onto Fj.; = Dj N Dy..

e Boundary divisors of the form [0, b] are mapped 2 : 1 (each) onto F] = D{ N D;.
Behaviour of h§ : M 5 G, Ay C S, . For arbitrary by, by € {2,3,4}:

e Boundary divisors of the form [by, bs] are mapped 2 : 1 (each) onto C~. (2 : 1 because
two non-isomorphic diagrams of M5 are assigned to two different but isomorphic
diagrams of M1 5 = S5 .)

e Boundary divisors of the form [1,b;] are mapped 2 : 1 (each) onto D~ = A; N By .
e The boundary divisor [0, 1] is mapped 6 : 1 onto X ~.

e Boundary divisors of the form [0, b;] are mapped 2 : 1 (each) onto Y .
We use this to compute:

Lemma 3.4 There are the following relations between cycle classes in the Chow ring of

our moduli spaces:

(i) In A2(E2) 2d6d6’ + 4d6d1 - 4d6d1;1 - d6d6 =0

(ii) In A%(Sy): 16[X g +[C7lg —daga] —ag By =0

(iii) In A% (Ry): [E""]g = 2[E"]g + [E"]g

Proof: (i): Using equation (1.7) with 4,5, k,1:=0,1,2,3 we get
0,1] 4 [2.3] = [0,3] + [1,2

Pushing this relation forward by h{, we get:

0 = 2[D{, N Dy] + 2[Dy N D{] — 2[D{ N Dy.1] — [Dy N D]
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Using the automorphism numbers from section 2.5 this can be written as
0 = 8ddy + 4dydy — 8dfydy.1 — 2dydy
& 2dydy + 4dydy — 4dydy — dydy =0
(ii): We again use the equation
0=1[0,3] +[1,2] — [0,1] — [2, 3]
and now push it forward by hf. Then proceeding as above, we arrive at
0=12[X"]o+[Clo—4[Y lo —agfy

Now we use that Ay NA; = X~ UY ™ is a proper intersection. We can treat all proper inter-
sections of (J-classes of boundary cycles as transversal, since those cycles meet transversally
on the deformation space (cf. Summary 1.34 (v)). Thus ajo; = [X"]g + [Y 7 ]g. Using
this one can rewrite the equation as

0=16[X"|g+[C7]g —4daga; —ay By

(iii) Using equation (1.7) with 4,7, k,1:=1,2,3,4 we get
(1,2 + [3,4] = [1,3] + [2,4]
Pushing this relation forward by h{, and using the automorphism numbers from section

2.5 we get:
A[E"]q + 8[E"]q = 2[E""]q

& [E"]q + 2[E"]q = [E"]q
0

Gluing morphisms whose images are boundary divisors

For Ry and S we introduce the following gluing morphisms whose images are boundary
divisors. They are defined similar to the general gluing morphisms to boundary cyles of
M, as described in Proposition 1.26 (i). For Sy they are introduced and used in [BF09a],
but have different names there. We describe how they behave on general points. 2

2To prove that these gluing morphism exist, one should strictly speaking check that the gluing procedure
of spin/prym curves described for each gluing morphism below, can also be applied to families of such
spin/prym curves. Then one should proof that this induces morphisms of moduli functors (or even of
moduli groupoids/stacks). Here one would use that families of nodal curves can be glued along sections
of marked points, and that this is a functor (the clutching functor, cf. Prop. 1.26 (i)), and a morphism of
groupoids. Then one would show that also the fibres over the sections of marked points of the spin/prym
bundles of the families can be glued consistently. The morphism of moduli functors obtained then induces
a morphism of the coarse moduli spaces as explained in section 1.1. In section 1.7.1. and 1.7.2. of [JKVO01]
such gluing procedures are examined in general for (higher) twisted spin curves in the sense of Jarvis. It is
shown in which cases they define morphisms of stacks. Since our coarse moduli spaces of spin curves are
isomorphic to the moduli spaces of certain of these stacks, the discussion there implies that all the gluing
morphisms below to boundary divisors of Sy exist. For Ry one could show the existence analogously.
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For Rs:

=7 - 1:1
T1 - M171 X R171 —— Dy

The image of a pair of [(X;p)] € M1 1 and [(Y;q; £,b)] € Ry 1 is the point in Dy parametris-
ing the following prym curve (X’; £'): The quasistable curve X' is generated by gluing the
points p and ¢q on the curves X and Y. The prym bundle £’ is obtained from the trivial
bundle on X and the prym bundle £ on Y, by identifying the fibres over p resp. ¢. All
possible choices of identification yield isomorphic prym bundles.

- - 2:1
T s Rip X Rip — Dia

This morphism is defined analogously to 7 . It is of degree 2 since a pair
(X0 £,0)], (X505 L1,6)]) € Ria x Ran

and the transposed pair are mapped to the same point in Dj.;.

- 1:1
Té/ My — D(’)/

A point [(X;p, q)] € M1 2 is mapped to the point parametrising the following prym curve
(X'; £): The underlying quasistable curve X’ is obtained by gluing the points p and g.
There are two ways to glue the fibres of the trivial bundle of X over the points p and ¢
such that a prym bundle on X’ is obtained. One way yields the trivial bundle on X', the
other one yields the non-trivial prym bundle L.

70 :E(l,_;’_l) LN Dy
A point [(X;L;p,q)] € Rﬁf;”” is mapped to the point parametrising the following prym
curve (X’; £'): The underlying quasistable curve X’ is obtained by gluing the points p and
q, and then blowing up the node. £’ is the prym bundle on X, such that if X is the non-

exceptional subcurve of X and E the exceptional component, Ei % & L and L’" g = 0gp(1).

- 1:1
70+ Mo, (2, 121,1) — Do

The morphism h{, : M5 — D}, factors through the moduli space of genus 0 curves with

sorted marked points HO,([ZH%[H) (cf. Def. 2.4 for this notation), and we use this to define
/

T0-

For ?; we will use the following morphisms.

=(1,1) 11
pG :S1s — A
A point [(X;p,q;L,b)] € E}; is mapped to the point parametrising the following spin
curve (X’; £'): The underlying quasistable curve X’ is obtained by gluing the points p and
q. There are two ways to glue the fibres of the bundle £ of X over the points p and ¢ such
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that a spin bundle on X’ is obtained. One way yields an odd bundle, the other one the
even bundle £’. (This is implicit in [Cor89], Example 3.2)

Defined analogously to 7.

a.at ot 2L 44
P18 X S = Ay

Defined analogously to 71, but the node is blown up.

= = 21
P? : 811 xS — BY
Defined analogously to p}

For S, there are the following morphisms.

Defined analogously to pf.

Defined analogously to pg.

s <o 1 —
nS11 xS — A
Defined analogously to p{.

Now we gather facts about some of the moduli spaces of pointed curves that the domains
of the morphisms just defined consist of. Especially this will be facts about the rational
Chow groups of these spaces.

1. Ml,l has only one boundary divisor: ﬁo. It parametrises curves with one node. The
corresponding Q)-class we call dp := [Ag]g

2. Ry, has boundary divisors 137’ and DO, defined analogously to Dj and Df. The
corresponding (-classes we call d” and dT Ry 1 is isomorphic to P!, thus dg = dr in
the Chow group.

3. Ml’g has boundary divisors 30 and 31. A curve parametrised by a general point of
Ay is irreducible with one node. A general curve parametrised by A; consists of two
irreducible components, one smooth elliptic curve and one smooth rational curve

with two marked points. The corresponding (-classes we call 5A0 and 5A1

4. Ri has boundary divisors 136’ , 136 and D;. Where 136’ and 136 are defined analo-
gously to Djj and D). For a prym curve (X;p, ¢; £, b) parametrised by a general point
of D1, X consists of two irreducible components, one smooth elliptic curve and one
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smooth rational curve with two marked points. The prym sheaf £ is non-trivial re-
stricted to the elliptic curve and (necessarily) trivial restricted to the rational curve.
The Q-classes djj and djy are equivalent ig the Chow group, because they are the
pullbacks of the corresponding classes on Ry i.

5. ?;1 and ?1_72 are just M 1 respectively M 2 because an odd prym sheaf on a genus
1 curve is trivial. In later computations, we will usually replace gil and 31_72
by Ml,l respectively MLQ without further mentioning it.

6. gilz The boundary divisors are Zar and EJ . Defined analogously to Ag and BJ .
The corresponding )-classes &(—)‘r and Bar are equivalent in the Chow group, since
ot
S, 2Pl

7. gfg: The boundary divisors are ﬁ*, E(J{ and /Tf The @Q-classes &g and B\J are
equivalent in the Chow group, since they are the pullbacks of the corresponding
classes on ?1,1.

8. Ffél): There are, among others, the boundary divisors Ao and EO whose general
points parametrise irreducible curves with one node that is blown up in the case of
By. The @ classes ¢y and 3y are not equivalent.

The facts listed above are probably all known (for some of them cf. [BF09a], Page 8, and
[BFO9b]). One way of proving them is to use that the moduli spaces of curves with one
marked points which appear in the list are all isomorphic to certain quotients of MOA.
The moduli spaces of curves with two marked points appearing are, after forgetting the
order of the two marked points, isomorphic to certain quotients of Mg 5. For an example
look at Part (ii) of the following Lemma. Forgetting the order of the two marked points
on the genus 1 curves does not change the coarse moduli spaces.

Lemma 3.5 (i) Define the morphism

ma2) s Mos 5 Moy (X (01, pa,00))] = (X5 ({01, 2}, {93, pa}, {po})))],

and let a € {1,2} and b € {3,4} be arbitrary. We define
C"i=mpo1)([1,2]), C'i=mo21)([3,4]), C":=m@a21)(la,b]),

Cra = ma21)([a,0]), C1:=m@21)([b,0])

These images are independent of the choice of a and b, which implies that the moduli space
Mo (21,121,117) has ezactly the five boundary divisors C', C", C", Cy and Cy.1. Denote the
Q-classes by by /', ", c",c1,c1.1.

(ii) There is an isomorphism Mo,[m] — ML[Q] > Mio. By combining this with the
forgetful morphism M[),([Q],[Q],[l]) — M07[4,1] we define a finite surjective morphism 6 :
=7 6:1 -+

Mo, (2 123,01) — M2
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Proof: (i): Easy to check. (For the notation used, cf. 1.47.)

(ii): To a point [(D;{qi,...,qa},p)] € Mo,[u}» let f:Y — D be the admissible double
cover of (D;{q1,...,qs}), and let @ be the set f~1(p). Then [(D;{q1,...,q4},p)] = [(V;Q)]
defines a morphism 6’ : MO,[4,1] — Ml,p] > M. It is easy to check that it is 1:1 on
the locus of smooth curves. Since both moduli spaces are normal projective varieties this

suffices to prove that 6’ is an isomorphism. [J

Lemma 3.6 The following table shows the pushforwards of several classes by the mor-
phisms defined in this section.

’ Morphism class ‘ Pushforward ‘
T 1 2d;,
z / 205
5 o dydf
75 c” 2dydj,
T ¢ 4d{dy
T c1:1 4dfydy 4
s 1 2dj
™ 3o 2dfydy
! 61 2dllydy
7 1 ® 1 djdy
T1 dy®1 dydy
T1 dy®1 dpdy
T 1® do didy
T1:1 b®1 dydy
TI1 1®dj dydy

T1:1 dy®1 dpdi1
T1:1 1 ®dg dpdi

Morphism ‘ class ‘ Pushforward ‘

Ps 1 204

) do 4[C7q
pg Bo 20 By
P 1 265

P ay 20 fy
Po By 4[E]q
Py ag ®1 2af af
Y 1®ag 20 af
i | hiel |  26el
P 1® by 265 of
P S @1 20 B
pf 1®dy 208 By
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e 1 20y

o do 4[C7 g
ng Bo 20 By
s 1 265

ng 3\0 20[5{,80+
U ay @1 2[X g
e Br o1 285 a;
Ui 1® & 2[Y7]q

Proof: By counting the degree of the given morphism on the given cycle, and comparing
the automorphism number of an object parametrised by a general point of the cycle, with
the automorphism number of the object parametrised by the image of such a point, under

the given morphism. [J

3.1.3 Hodge classes

Another type of cycle classes used in our computation, beside boundary cycle classes, are

first Chern classes of the Hodge bundles on moduli spaces, and their pullbacks.

. ~ = — 4 =t — . =t =
Definition 3.7 Let 7p : Riy — My, 7 : S{; — My, #° : S; 5 — M, and

T ?fj) — M 2 be the usual forgetful morphisms, and let 6 : MO,([Z},[2],[1]) — M2 be

the morphism of Lemma 3.5 (ii). Let A, A resp. X be the first Chern class of the Hodge
bundle on MQ, Ml,l resp. Ml,g.

We define classes:

L= (mr)" )\, 1T = (mp)*\, 1= = (r )\, [:= (Fr)"\,

=GN, 1T =GN, L= G, :=0*A
Lemma 3.8 We can describe the pullbacks of l, [T and I~ by the boundary morphisms in
the following way
(i) (M) l=A@1+11
(it) () l=101+1x1
(iii) (t5)*l =1
(iv) ()l = A
(v) (pg)" 1+ =1
(vi) (pg)* I+ =T*
(vii) (p)* It =1t @1+ 101t
(viii) (P T =X@1+1@ A
(ix) ()1~ =1
(x) (15)*1~ = A
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(i) () 1" =A@ 1+1®1"
Proof: First consider the commutative diagram

st s

My, L1,

where f is the morphism corresponding to gluing the two marked points on a curve.
Because of the way [T and [ are defined, it suffices to show A = f*) in order to prove (v).
That this equation indeed is true, is shown in [Mum83], section 10. 3 The assertions (iii),

(iv), (vi), (ix) and (x) can be proved in the same way.

Now we consider the commutative diagram:

- - Tl
Rix xRi1—— Ry
%RX%R\L lﬂ—R
I S g _
Ml,l X Ml,l 4>M2

Where g is the morphism corresponding to gluing two genus 1 curves, each with one marked
point, together at those marked points. In [Mum83], section 10, g*\ = AR1+1®\is
proven (there the notation is slightly different). From this (i) follows. (ii), (vii), (viii) and
(xi) can be proved analogously.

O

If A is the first Chern class of the Hodge bundle on a M1 ,,, n > 1 arbitrary, then for &y the
Q class of the divisor of M, parametrising irreducible curves with one node, A = 1—1250
(cf. [BF09a] Page 8). By pulling these relations back one obtains the following equations:

Lemma 3.9

(i) X = 1500

(i) X = {500

(iii) | = 5080 = £5(2¢ 4+ 2" +2¢7), with ¢, ¢, " as defined in Lemma 3.5 (ii).
(i) I = 57500 = &5 (d +2d3) = Ldp

1
(vi) I = §5(74)*0 = (a5 +28]) = §ag

(vii) T+ = 75 (@) = 15 (ag +250 ) = 100

Lemma 3.10 All the following products are equal to 0 in the rational Chow rings they
are contained in.

3In [Mum83], Mumford works with morphisms of stacks, so the pullbacks computed there coincide with
the adjusted pullbacks we use (cf. Summary 1.34).
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Pdy, Pdg, Pdy, (F)ag, (787, (7)%ag, (7)%F

Proof: Take for example (I7)?af. Using the boundary morphism p§ : Ffél) RN Af

and the fact that of = 3(p§)«(1) we can write (I7)%ag by the projection formula as
2(p8)+(pg)* (I7)%. According to Lemma 3.8 (pg)*(IT) = [, thus (IM)2%ad = %(pg)*(T)Q By
definition | = (7VT)*/)\\ But A is, as shown in [Mums83] section 10, equal to the pullback of A
from Mi 1 to My2. My, is one dimensional, thus (X)2 = 0. This implies (Zl)2 = 0, which
pushed forward by p§ yields (I7)%ag = 0. That the other products listed in the Lemma
are equal to 0 can be proved analogously. U

3.2 Computation of the rational cohomology

3.2.1 The rational Picard group

Lemma 3.11 The rational Chow groups A'(Rs), A1(§2+) and A1(Sy), are isomorphic to
the rational Picard groups Picg(Rz), Picg (?;) resp. Picg(Sy ), and they are generated by
the boundary divisors of the moduli spaces. Furthermore the linear relations of Lemma 3.3

are the only ones. Thus:

(i) A'(Re) = (dhQ @ djQ @ djQ ® d1Q @ d1.1Q) /(d}y + 6df — 3dy + 12d;y — 8d1.1)Q
(ii) AY(S3) = (o Q& B7Q & oy Q& 57 Q)/(3af — 48] — 8af +7257)Q

(iii) A (S3) = Q& By Q& 0 Q

Proof: That the Chow groups of codimension 1 cycles are generated by boundary divisors
and are isomorphic to the rational Picard groups is a special case of Corollary 2.15 (iv)
resp. (iii).

It remains to show that there are no linear relations between the boundary divisor classes
other than those of lemma 3.3.

To do this we compute the intersection numbers of all boundary divisor classes with all
classes of codimension 2 boundary cycles. The latter are the cycles lying above the cycles
Ago and Ag; of My with respect to the forgetful morphisms. Look at the tables in section
2.5 for a list of them. For a codimension 1 cycle D and a codimension 2 cycle E we take
the intersection number to be the number n such that D - E' = n[z] where x is a general
point of the moduli space. Note that in the definition we use the class [z], not [z]g, to be
consistent with [Mum83]. For Ry we get the intersection numbers:
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Underlying cyle of My ‘ cycle class H df ‘ g ‘ i ‘ dy ‘ dy1 ‘
Ao [E"]g —21 X101 0 i
Ago [E"]g 0 |—3] 0| 2 0
Ago [E""]q 1100 i i
Ago [E™"]q i | 0]-3]0 g
Aoy [Filo 0 | 7 | 3 | 0
Aoi Pl | 1100 |-5]0
Aoy [Filq 1010 ]-%]|0
Aoy [Flalo U I L
Aoy [Flalo 101510 |5

If we have a linear relation aydj + aadf) + azdf; + aadi + asdi.1 = 0 between the boundary
components, the vector a = (ay, ..., a5) has to lie in the kernel of the 9 x 5 matrix formed
by the intersection numbers in the table above. One can check, that this matrix has rank
4 and thus has 1-dimensional kernel, and that the relation dj, + 6djj — 3dj, + 12d; — 8d1.1
indeed lies in its kernel.

ot . :
For S, the intersection numbers are:

Underlying cycle of Mo ‘ cycle class H ag ‘ BS“ ‘ af ‘ B ‘
Ago [CT]g -1| 1 i 16
Ao [DF]g o |- 3 0
Ago [Elq 0 |-5| 1 9
Apy [(X*]g % % *% 0
Aoy Yo s 10 0 | —155
Aoy [Z"]q § 1 8§ 1-1| O

One can check that the 6 x 4 matrix formed by the intersection numbers, has rank 3, and
that 3046r — 455{ — 804{r + 72,6’;r lies inside the kernel.

For S, the intersection numbers are:

’ Underlying cycle of My ‘ cycle class H oy ‘ By ‘ oy ‘

Aoo [C7]g -1| 3 8
Aoo (D~ g 0 | —3 z
Ao (X7 ]g £ 10|~
Aot Y g % % _%
Ao1 [Z7 g £ 10| -1

The 5 x 3 matrix formed by the intersection numbers has rank 3.

As examples we will compute some intersection numbers from the tables above. The other
numbers can be computed analogously. From [Mum83], Theorem 10.1, we know that

1 1 1 1

do[Aoolg = P d1[Aoolg = 3P 01[Aoi]g = L do[Aotlg = 1P (1)
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where p is the class [y] of a general point y € Mo.

For X € {RQ,?; ,S5 } let S be one of the codimension 2 cycles on X listed in the tables
above. If  : X — M, is the forgetful morphism, then 7,S = mD for some m € Q, and for
D the Q-class of the image of S under 7, thus D = [Agg|g or D = [Ap1]g. The number m
is listed for all cycles S in the tables of section 2.5. Thus one can compute the intersection
number n of S with the pullback of §; (i = 0,1) by using the forgetful map 7 and the

projection formula:

0SS =nlz] & 4mS =nly] =np

< mo;D=np

Where §;D is one of the four intersections on My known from (1) above.

For the example E"' we have (7r)«[E"']|g = [Aoo]g, thus

T80l E]g = —%[x] and 761 [E"]o = %[x].

We also have Dj N E"' = Dy N E" = () (as one can show using the description of these
cycles from section 2.5), so the corresponding intersection numbers are 0. Using (7g)*dg =
dy + dj + 2df; and (wR)*61 = dy + dy.1, we get di[E"']g = §[z] and

1

(dy + d)[E")g = —417) (3.1)

The intersection Dj N E"' = G’ is proper (use description of these cycles form section
2.5), so by Summary 1.34 (v) we can treat the intersection as transversal and we get
dy[E"g = [G']g. Now G’ consists of one point, and the corresponding prym curve has
4 automorphisms (cf. section 2.5), thus dj[E"']g = 1[z]. By plugging this into equation
(3.1) we obtain the last intersection number dj[E"]q = —3[].

All rows in the above tables can be computed in this way, except for the ones containing
the intersection numbers of E"”, E'" and D~. In computing the first two one has to use
additionally the relation [E""]g = 2[E"']g + [E""]q. For the intersections with [D~]g one
uses the relation 12[X~]o+[C7|g—4[Y "]g = [D~]q. Both relations are proven in Lemma
3.4. O

Remark: In [BF09a], Page 5-6, it is claimed that the boundary divisors of Sy (and S5 )
are independent, which results in wrong Betti (and Hodge) numbers computed for S . It
is claimed that Cornalba’s proof of independence of the boundary classes for genus g > 3
in [Cor89], can also be applied to g = 2. Cornalba’s proof works similar to the proof of
the lemma above by computing intersections of the boundary divisor classes with various
test curves. The proof does not extend to genus 2, because some of the families used
do not yield test curves in the genus 2 case but only points. (For example one family is
constructed by attaching a fixed elliptic curve to a moving point on a fixed g — 1 curve.
For genus g = 2 all the curves in the family are isomorphic.).
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3.2.2 Hodge numbers

Theorem 3.12 For every X € {E,?J,E;}, the rational cohomology of X is algebraic,
i.e. all odd cohomology groups vamnish, and for all n € N we have H**(X) = A"(X) via

the cycle map. Furthermore:
(i) The boundary divisor classes generate the Q-vector space H*(X).

(i) There is an ample divisor L which is a linear combination of the boundary divisor
classes of X, such that LH*(X) = H*(X). Thus the products of L with the boundary

divisor classes generate the Q-vector space H*(X).

Hence the boundary divisor classes generate the Q-algebras H*(X) and A*(X).

Proof: All except part (ii) follows as a special case from Corollary 2.15 (ii) and (iv).

Proof of (ii): X being projective, there is an ample divisor on this space. Like every divisor,
according to lemma 3.11, it is equivalent to a linear combination L of boundary divisor
classes. Of course L is also ample. According to the Hard Lefshetz Theorem, multiplication
with L induces an isomorphism from H?(X) to H*(X). The Hard Lefshetz Theorem holds

for our moduli spaces according to Summary 1.36 (iv) O

Theorem 3.13 R,, ?; and Sy all have Hodge diamonds of the following form

1
0 0
0 n 0
0 0 0 0
0 n 0
0 0
1

with n = 4 for Ry and n =3 for ?;L as well as S, .

Proof: For every X € {E,?J,?;}, h*0(X) = 0 by Corollary 2.15 (v), thus, due to
the symmetries of the Hodge diamond, also h%2(X) = 0, h%3(X) = 0 and A*(X) = 0.
Theorem 3.12 then yields h'''(X) = h%2(X), and the value for n = h1}(X) is given by
Lemma 3.11. O

3.2.3 The cohomology rings in terms of generators and relations.

By Theorem 3.12 we know that for our moduli spaces the Chow ring and the rational
cohomology ring coincide, and that they are generated by the boundary divisor classes.

Now we determine the graded ring structures:

Theorem 3.14 (i) The rational Chow ring A*(Rg) is as a graded Q-Algebra isomorphic
to the quotient Q[dy, dy, dy, di, di:1]/1, where I is the homogeneous ideal generated by the

following (independent) elements:
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do + 6dy — 3dy + 12d; — 8d..1,
dydia,  dydy,  didia,
di(dy —dy),  dia(dy—dp),  4(dia)® + dyda,
2dydy + 4djydy — 4dydy.y — dydy,
do(dp)?,  (do)*dg

(i1) A*(?j) >~ Qlog, By, of, B/, where J is the homogeneous ideal generated by the
following (independent) elements:

3af —4B5 — 8af + 7281,
ol Bl BB, gl = fyaf,
(ag)*Bgs  (ag)*(af = B)

(iii) A*(Sy) = Qlag, By, ]/K, where K is the homogeneous ideal generated by the
following (independent) elements:

24(a7 ) +agay +285 07, 12(8y)% + 2465 of +ag By,

3(ag)? —dag By —8agay + 808y ar

Proof: The general idea of the proof and many of its steps are adopted from [BF09a].

The rational Chow rings of our moduli spaces are generated by the boundary divisors
according to Theorem 3.12. Thus there is a surjective morphism from the quotient algebras
of our Theorem to these Chow rings, if only the elements listed above as generators of the
ideals of relations I, J and K, indeed are equal to zero in the rational Chow ring.

If this is shown, the following fact implies that the morphisms are even isomorphisms:
The homogeneous components of the algebra Q[dy, dfy, dj,, d1,d1.1]/I have Q-vector space
dimensions 1,4,4,1,0,0, ..., whereas the homogeneous components of Qlog, 85, of, 871/J
and Q[oy , By, o7 ]/ K have dimensions 1,3,3,1,0,0, ..., as one can check using a computer
algebra system like Macaulay 2. These are exactly the vector space dimensions of the

homogeneous components of the rational Chow rings (according to theorem 3.13).

To prove most of the relations, we will use the finite morphisms onto boundary divisors
described in section 3.1.2. By these morphisms we will push forward classes and relations.
Many of the relations we will push forward are already described in section 3.1.2. Push-
forwards of boundary cycles are listed in the tables of Lemma 3.6. In the computations
we will use these facts without mentioning that we take them from section 3.1.2.

First we prove the relations for Rs.

The linear relation
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6 + 6(18 — 3d6 +12dy — 8d1.1 =0 (3.2)

holds by Lemma 3.3.

A prym curve corresponding to a point in D{ can not correspond to a point in Dj.;. The
preimage of such a point under 7 : Hl,g — Dy, would have to correspond to a reducible
curve. Such a curve is of the following form: It consists of a component D of genus 1, and
a component E = P! with two marked points on it. D and F meet in one node. The prym
curve generated by gluing the marked points has a genus 1 component corresponding to
D. Restricted to this component its prym sheaf is trivial. The prym curve can thus not
correspond to a point in Dy.1. So D N Dy = (), and:

dydy.y =0 (3.3)
Similarly one can prove

dydp =0 (3.4)
and

didiqn =0 (3.5)

Now we use the morphism 7 : Ml& X El,l — Dy.In A? (ELI) the relation d~g = dé holds.
Thus we also have 1®dfj = 1®d[ in Al(ﬁm X EM). Pushing this forward by 7 one gets:

(r)(1 @ dj) = (r)(1® dp)

& dy ,0/ = d1d6
& di(dy—dy) =0 (3.6)
Similarly, but using 7.1 : Rl,l X El,l — D11, we get:

dya(dy —dj) =0 (3.7)

According to [Mum83], page 321, in A*(Ms) the relation 10\ = §y + 26; holds. Pulling
this back by mg to Ry one gets:

1
l= E% +djy + 2df + 2dy + 2dy.1) (3.8)

Multiplying equation (3.8) with dj.; and using equations (3.5), (3.3) and (3.7) yields:

1
di1l = E(?)dl;ldg + 2(d1;1)2) (3.9)



3.2 Computation of the rational cohomology 111

On the other hand, because of di.; = %(7‘1;1)*(1)) we can write dq.1l = %(7‘1;1)*((71;1)*0 by
the projection formula. According to the Lemmas 3.8 and 3.9
- -1~ 1 =
(ma)l=lel+lal=(dgel)+(1ed)
We use dy.qdy = (7‘1;1)*(d~6 ®1)=(n1)1® d~6) and get:
1 . 1 1, ~ 1 ~
dial = 5(7'1:1)*((7'1:1) l)= 5(7'1:1)*(1(616 ®1)+ 1(1 ®df))

11

1
= 51(611:1(16 + dyadp) = Zdl:lds

By subtracting the equation di.ql = %dlzldg from equation (3.9), and multiplying by 20,
one gets:
4(d11)* + dydi1 =0 (3.10)

The last codimension 2 relation

2d)dll + Ad)dy — Adhdy — ddy (3.11)

we have proven earlier (Lemma 3.4).

To obtain the codimension 3 relations we use that [?d) = (?dj = [?d}, = 0 (cf. Lemma
3.10).

Because of dj = 3(7{/).+1 we can write djl = 1(7{/).((7{/)*1). According to Lemma 3.8 and

3.9 one has

By using dydj = %(Té’)*(% we get

1 1 ~ 1
"y SN\ o I
dol = 2(70)*(1250) 12d0d0

Thus 0 = 12df = Sldydf = 35 (dfy)?df, and so

(dp)*dy =0 (3.12)

Using df) = £(7()+1 we can write djl = 3(73)+((7})*1). According to Lemma 3.8 and 3.9
one has

-1
(T(/))*l == 6(6’ +d"+c)

By using the pushforwards of Lemma 3.6 we get
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1
2( [E")q + dydy + 2dydy)

dof = 5 ()¢ + ¢+ ) = -

Together with the relation 2[E"]q + dydy = dydf; of Lemma 3.4 (iii), this yields

1 T
dyl = Jdydp

Thus 0 = 12djy = Ld\d} = =df(dj)?, and so

dp(dg)> =0 (3.13)

We have proven that the generators of the ideal I are indeed equal to 0 in the rational
Chow ring of Rs.

Now we prove the relations on ?; . The linear relation
3ag —4BF —8af + 728 =0 (3.14)

holds by Lemma 3.3.

Similar to what was done for Ry above, one can show that Af ﬂBfL = (@ and BJ ﬂBfL =0,
so we have the relations
af B =0 (3.15)
BB =0 (3.16)
Proceeding like in the proof of equation (3.6) and using the morphism p$ : gfl X ?il —
AT we get:
af(ozg — ,6’0+) =0 (3.17)

To obtain the codimension 3 relations, similar to the case of Ry we use that af (I7)? =
B4 (17)2 = 0 (cf. Lemma 3.10).

Because of fj = %(pg) 1 we can write 8j 1T = %(p'g)*((pg)*ﬁ). According to Lemma 3.8
and 3.9 one has

By using af By = %(po)*a:{ we get

1 1.
§1 = S).(3a0) =

Thus 0 = B (I7)? = Laf B 1T = (o )?By , and so
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()85 =0 (3.18)

We would also like to make use of af (I*)2 = 0, by expressing af (I)? in a non-trivial way
as a product of boundary divisor classes, but the morphism p§ does not help. We instead
use equation (3.14) to write 3o as 487 + 8af — 728 and to get 0 = (48] + 8ai —
728)(I1)2. Because of 37 (I7)? = 0 this simplifies to

(aff —981)(17)* =0 (3.19)

We can write af I = 1(p?)«((p?)*I"), and here the Lemmas 3.8 and 3.9 yield

~ ~ 1 _ -
(P)IT=1"@l+181" = 2(af ® 1+ 1247)

By using af af = 3(p9).(ag ®1) = F(p?)«(1 @ aF) we get

1 1 . - 1
af It = Z(P?)*(Z(QJ ®1+1®ag)) = ZO‘(TO‘T
+1+ 1,8 Byx1+

Analogously, from 81" = 2 (p7)+((py)*1") we get to

1 1, ~ 1
1 = ()56 @1+ 1067)) = g B

By using af It = %af{af and B It = %aé’af one can now rewrite equation (3.19)

1 1 1 1
0= (af —95{)(1")? = af (Faf — 9587 1" = (o )A(550i — 9= 67)
Thus
(o) (af = B) =0 (3.20)

2

The codimension 3 relations computed in [BF09a], except of (a )?84 = 0, are incompat-
0/ Po

ible with our results.)
Now we come to the relations on S, .

The relation 12(51)2 + 0001 = 0 holds on M, as follows directly from Theorem 10.1. of
[Mumg83]. Pulling this relation back by 7_ yields the first relation

24(ay)? +agay +268;a; =0 (3.21)

Pulling back the relation 10\ = dg 4+ 261 by m_ one gets:

1
I” = 5(ag +2685 +4a7) (3.22)
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Multiplication by 3, yields:

6 = 3 (00 By +2(85)? + 455 a7) (3.23)

On the other hand, because of 5, = %(ng)*(l)), we can write §, 17 = %(ng)*((ng)*l).
According to the Lemmas 3.8 and 3.9

o 1~
Byxi— _ N _ -
(o)1~ == 1250
We use o, B, = %(ng)*(% and get:
o 1 1 ~ 1 _
=By = 5("763)*(550) = 1% By (¥)

By subtracting the equation 3,1~ = %045 B, from equation (3.23), and multiplying by
60, one gets:

12(87)% + 2485 o + ag By (3.24)

(In [BF09a] it is claimed that [=8, = %a& By instead of (x), from this then follows
3(By)? + 68y a; —ag B; instead of equation (3.24).)

To get the last relation we first compute three relations containing classes that can not
immediately be written as products of boundary cycle classes (for the description of the
boundary cycles, cf. the tables of section 2.5). The first of these relations we take from
Lemma 3.4:

16X o+ [Clg —4oya; —oy By =0 (3.25)

In Al(gil) the relation af = Bg holds, which implies for A' (?Il X M 1) the relation
&(')F ®1= Bg ® 1. Pushing this forward by the morphism 7 : ?Il x M1 — Ay C Sy
yields:

(X 7)o =001 (3.26)

(In [BF09a] the authors claim, that one can get the equation oy a; = [  instead
of equation (3.26). Using the projection formula and the morphism 7§ they obtain the
equation ag oy — (78)«(1 ® &) = By ;. Then they claim that (n{).(1 ® &) = a5 a7,
from which their equation would follow. If I understand them correctly, they assume that
gil X Ay is mapped 1 : 1 onto Ay N A by nf. This would be wrong. §1+,1 X Ag is only
mapped onto Y, which is one of the two irreducible components of A; N A}, the other
being X . There is no a priori reason for [Y ~]g and [X~]g to be equivalent, so their
equation does not follow. As one can check after computing all relations, the equation
does not hold.)
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By multiplying equation (3.22) with o, one gets

_ 1 _ o _
oy = ﬁ((ao )2 + 204 By + 4oy ay) (3.27)

(16)«((n5)*1).

D=

On the other hand, because of ay = 3(1§)«(1)), we can write ag !~ =
According to the Lemmas 3.8 and 3.9

ayki— T 1 . ps
(6 :lzﬁ( 0+ 250)

We use [C~]g = 2(1§)«do and ag By = %(778‘)*50 to get :

o = S0). (o5 (o +250) = (10 lg + a5 57)

By subtracting the equation I=ag = £([C~]g + ag By ) from equation (3.27), and multi-
plying by 30, one gets:

5[C7 g = 3(ag)® + ag By + 1205 ap (3.28)

Plugging equation (3.26) into equation (3.25) yields:

166, a7 +[C7]g —daga; —aoyfy =0

By multiplying this with 5 and plunging in equation (3.28) we get

3(ag)? —4ag By —8agay +808,a; =0 (3.29)

This is the last relation we had to check. O

Remarks: (i) One can test these relations by pulling the known relations §od1+12(61)? = 0
and 528(d1)% + (60)*® = 0 (known from [Mum83]) back from M3 to our moduli spaces and
check whether they are fulfilled in the rings that Theorem 3.14 claims to be to the rational

Chow rings.

(ii) While the cohomology rings of ?; and S, have, according to our computation, the
same Betti numbers, they are still non-isomorphic: Otherwise there would have to be a

commutating diagram of homomorphisms of graded Q-algebras

Qlag, By s a1 Qlog, By, o, B
X ig
Qlag, By, o, 671/ (Bag — 4585 — 8af + 7267)

g

Qlag, By, a7/ K ? Qlag, B, af, 611/7
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with ¢ and 1 isomorphisms. This would imply that in Q[ag, By, a7 ]: K = ¢~1h=1(0).
But since J = g7 'h7(0) in Q[ag, B4, af, B3] is not generated by its elements of degree
< 2, the same must hold for 2~1(0). Hence K could not be generated in degree < 2 either,

which would contradict our Theorem.



Chapter 4

Geometry of El,n (and gl,n) for
small n

This chapter is concerned with properties of the coarse moduli spaces RLn and gl,n for
small n. We follow the PhD-thesis of Pavel Belorousski ([Bel98]) in which he computed
the rational Chow ring A* (Hln) for n < 4 and showed that Mlm is rational for n < 10.
We will also compute the Chow ring of our moduli spaces for n < 4 and show rationality
for n <6.

Let us first remark that as varieties gfn = El,n and g;n = Ml,n. This can be seen as
follows: On a smooth genus 1 curve C, we have O¢ = we, and in general any invertible
sheaf of degree 0 on a smooth curve is trivial if it has non-zero global sections. Hence
Rip, = Sin and Sy, = M,. This identity on the interiors can be extended to the
claimed isomorphisms of normal projective varieties by applying Lemma 1.45.

From now on we will only speak about R, in this chapter, knowing that this case together
with Belorousski’s results on Ml,n, also covers the case of gl’n = Rl,n O] Ml,n. But when
properties of the orbifolds or stacks Ry, and Sy, are concerned, like in the next chapter,
we have to treat both spaces separately, since the isomorphisms mentioned above do not
hold on the level of orbifolds/stacks.

Notation: We always work with the Chow ring and the cohomology with rational co-
efficient in this chapter. A*(...) will denote the rational Chow ring, H*(...) the rational
cohomology ring. We will use the shorthand n to denote the set {1,...,n}.

Let 7, : Elm — Ml,n be the forgetful morphism. Since 7, is finite and surjective, the
pullback 7 : A*(M,,) — A*(R1,,) is injective, and we can regard A*(R;,,) as an algebra
over the ring A*(M,,). Now we can express the main results of this chapter as follows:

e Ry, is rational for n < 6 (Corollary 4.25). (Already in [BF06], Lemma 2, it was
shown, using Belorousski’s results, that le = gin is uniruled for n < 10. As also
shown in [BF06] this result is sharp since the Kodaira dimension of Ry, is > 0 for
n =11 and is 1 for n > 12.)
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e The Kodaira dimension x(Ry11) is 1, in contrast to x(Mi11) = 0. For all n # 11,
k(R1,) is computed in [BF06], and is equal to k(M1 ,), also computed there. (This
result is actually part of the next chapter 5 since we use information provided there

to derive it. But thematically it would better fit into this chapter.)

A*(R,) as Q vector space is spanned by the boundary cycle classes for n < 6. (Prop.
4.26)

e We compute the Q-algebra A*(Ry,,) for n < 4, in terms of generators and relations
(Cor. 4.29, Thm. 4.32), and obtain in particular that:

e For n < 3 the pullback 7" : A*(M1,,) — A*(Ry,) is an isomorphism

The pullback 7; : A*(M14) — A*(R14) is not surjective, and unlike A*(M74),
A*(§1,4) is not generated by the boundary divisors.

Remark: The case n = 1 is quite trivial, since Ry 1 MO’(Q,LI), and thus Ry ; is a normal
curve covered by MOA ~ P!, Hence RLI =~ P! and we do not need to treat this case in
the rest of this chapter (cf. Proposition 4.15 (i)).

We give a short sketch of the approach in this chapter:

e The rationality of El,n is obtained by constructing isomorphisms from open parts of

rational parameter spaces of certain plain cubic curves to open parts of Ry ,,.

e These open parts of the parameter spaces will be shown to have trivial Chow ring,
which will be a main ingredient in the proof that the Chow ring A*(Ry ,,) is generated

by boundary cycle classes for n < 6.

e By Belorousski’s work we know A*(My,,), for n < 4, and thus also the subspace
mr A*(M1,,) € A*(Ry,,). We investigate how many boundary cycles of Ry, lie above
a given cycle of M, and conclude that only special boundary cycle classes, called
banana cycle classes, can possibly contribute to A*(Ry,,) \ 7 A*(M1.,,).

e Then we compute relations in A*(R;,) for n < 4 involving these banana cycle
classes, again using finite gluing morphisms to boundary components. For n < 3
these relations suffice to show that also all banana cycles lie in 7;f A*(M1 ,,). Forn = 4
these relations do not suffice to put all banana cycle classes inside 7; A*(M14), and
we compute a matrix of intersection numbers to check that these relations, together
with those pulled back from M 4, are basically all that exist in A*(R1,,).

4.1 The boundary cycles, and other preliminaries

4.1.1 Boundary cycles of M,

First we will introduce a notation for all the boundary cycles of M, of dimension > 0,
for n € 4. This is the notation used in [Bel98], except for the few cycles which were not
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given a name there. First for any n € N, M, has exactly the following boundary divisors:
Ag which is the closure of the locus of curves with one non-disconnecting node, and no
other nodes. Furthermore divisors A; for every subset I C n with |I| > 2, where Ay is
the closure of the locus of curves consisting of a smooth genus 1 component and a smooth
genus 0 component meeting in one node, such that the genus 0 component carries exactly
those marked points with indices in I.

For n = 2 all boundary cycles of dimension > 0 are of course divisors. For n = 3,4, we
now describe each boundary cycle by a picture showing how a general curve parametrised
by this cycle looks like. The kind of pictures we use here was explained in Example 1.24,
except that here we apply the convention that every component without a genus number
near to it is of geometric genus 0. The number in brackets behind the name of a cycle
indicates how many cycles of this type exist. Note that many symbols are used for several
cycles. Such a symbol only fixes a unique cycle if also the number n € 4 is specified.

Codimension 1 boundary cycles of M 3:
2 2
3 1
@
A A

Codimension 2 boundary cycles of M 3:

1
k | )
j l 3
3 (3) AGES

Ay B) Asgi

Codimension 1 boundary cycles of M 4:




120 Geometry of Ry, (and S1,,,) for small n

Codimension 2 boundary cycles of M 4:

AR

Ao (ijy (6) Ao gijky (4) Angiy (4 Ag gy (

Further codimension 2 boundary cycles of M 4:

Aty B) Apegijyy (12) 0 Ay (6) A ey (4)

Codimension 3 boundary cycles of MM:

e

Ao,k gijyr (12) Ao gragijyy ( Ao {igijiy

Further codimension 3 boundary cycles of M 4:

Ao ik B) Auigyeny B) Apgegiinyy (12)

Further codimension 3 boundary cycles of M 4:

Aoy gy (12) Aoy ey (4 D igny (6) Ay gy (6)

Definition 4.1 (i) The boundary cycles of M1, parametrising curves with at least two
non-disconnecting nodes, are called banana cycles. These are boundary cycles Ar belong-
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ing to a graph I' with h!(A) = 1 and without self edges. It is clear that the codimension
of a banana cycle is > 2. Examples of banana cycles are A, 1, Ay 1553 and Ag 51 653

(i) We call a boundary cycle Ar a simple banana cycle if T' has at least two non-

disconnecting edges, and has no disconnecting edges.

Let (I1,...I;) be a partition of n. We define By, . 1, to be Ap, where I' is the following
stable graph: I' has vertices vy, ...,v,. To each v; legs with indices in I; are attached. The
graph has the form of a circuit. L.e. consider the indices 1, ..., as elements of Z/rZ. Then
each v; is connected to v;—1 and v;11 by one edge each. There are no other edges.

Every simple banana cycle is of the form By, ;. for some partition of n. For example
By g2y = Do,y © Mi2 and By oy sy qay = Aq 12y © Mg Ag gy 47} 1s an example of
a non-simple banana cycle.

Proposition 4.2 Let Z C My, be a boundary cycle of M1, of codimension m.

(i) If Z is not a banana cycle, then Z is contained in exactly m different boundary divisors

Dy, ..., Dy,. Furthermore Z is the proper intersection Z = D1 N ... N Dy,.

(11) If Z is a banana cycle, then there is a smallest simple banana cycle By, .. 1

T

containing
Z, and except Ao there are exactly m — r other boundary divisors Dy, ..., Dy, containing

Z. Furthermore Z is the proper intersection Z = By, .1, V" D1 N ...N Dyyp_pr.

(iii) In particular the subalgebra Ay (M) C A*(M1,,) (cf. Def. 1.40) is generated as
Q-algebra by the classes of boundary divisors together with the classes of simple banana
cycles, for all n € N.

Proof: (iii) is a direct consequence of (i) together with (ii). Let (C, p1,..,pn) be a general
pointed curve parametrised by the cycle Z. Let I' be the dual graph of this curve, i.e.
7 = Ar.

The parts (i) and (ii) are implied by:

Let r be the number of non-disconnecting nodes of C, let M be the set containing as
elements all simple banana cycles of Ml,n, and the divisor Ay and MLH. Then:

1. There is a smallest cycle B € M containing Z. B is of codimension r.

/

2. Z is contained in exactly m — r different boundary divisors DY, ..., D/, _,, none of which

isANo. Z=BnNnD/n..NnD,,_,.

We show this by induction on the codimension m. For m = 0, we have Z = M ,, so 1. and
2. hold. For m > 1, first recall that all boundary divisors except Ag are of the form Ay for
some I C n. We have Ar = Ar,, where I'7 is the following stable graph: It consists of two
vertices, one of genus 1 the other of genus 0. The vertices are connected by one edge, the
legs with indices in I are attached to the genus 0 vertex, the others to the genus 1 vertex.
Also note that m —r is the number of disconnecting nodes of C' and of disconnecting edges
of T'.

We distinguish two cases. The first possible case is r = m. But then Z itself is an element
of M, so 1. is clear. Also such a cycle can not be contained in any Dy, since the graph I'y
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contains a disconnecting edge.

In the second case, r < m, I' contains at least one vertex v connected to the rest of the
graph by only one edge e. Let I be the set of indices of the legs attached to v. Then Z is
contained in A;. Now let I' be the graph obtained from I' by contracting e and melting
v with the vertex it is connected to by e. Then Z C Ax, since I' is a specialisation of I.

Let m’ be the codimension of A=, 7’ the number of I"'s non-disconnecting edges. Then

" =r and m' =m — 1. By indugtion hypothesis Ax = BN DyN..ND;, _,_, where B
is of codimension r. It is clear that Z is not contained in a cycle from M smaller than
B, since such a cycle would correspond to a graph with at least r 4+ 1 non-disconnecting
edges. This shows 2. in this case. Also Ay is not contained in Ay, so Ay is not among
Di,...,D;, ., . Set Dy, . = Agthen it is clear that Z C AxNA;=BNDiN...NDy, .
It remains to show Al: NA; C Z = Ar. But it is easy to see that every stable graph I
that is simultaneously a specialisation of [ and I is also a specialisation of I'. So the

claim follows by Proposition 1.26 (iv). O

Remark: Since every boundary cycle contained in a banana cycle is also a banana cycle
in our use of the word, the proposition implies that A%, (M) is as a Q vector space
spanned by products of boundary divisors together with the banana cycle classes. (This
is more or less (2.12) of [Pag08].)

Lemma 4.3 Let Z be a boundary cycle of Ml,n, which we write in a unique way as as
Z=BNnDiNn..NnD, like in the proof of Prop 4.2. Then if B # Ao, Z is a normal

m—r’

variety.

Proof: Let € be a pointed stable curve such that [€] € Z C M ,. It suffices to prove that
locally around any such point [€], the preimage of Z on the local universal deformation
space of € is normal, since Z is the quotient of this preimage by a finite automorphism
group (cf. Summary 1.30). We will show more by proving that this preimage is actually
a linear subspace of the deformation space. Since the preimage of Z is the intersection of
the preimage of B and the preimages of the D} on the deformation space, it will suffice to
show the claim for boundary cycles A which are simple banana cycles, like B, or of the
form Ay, like the D.. Let A = Ar be such a boundary cycle.

Let T'(€) be the dual curve of € € Ar. It is a specialisation of I'. If we are able to
show that for all contractions ¢ : I'(€) ~ T, the subset ¢ 1(E(T)) C E(I'(¢)) is the
same, then our lemma will follow: If there are exactly the contractions ci,...,¢, with
¢i : T'(€) ~ T, then, using the notation of Summary 1.30, the preimage of A is the union
Ui, Nece-1(pmry){ze = 0}. To see this, note that a local deformation can change the
dual graph of a curve only by smoothing nodes, which on the dual graph corresponds
to contracting the corresponding edges. Now {z. = 0} is the locus in which the node
corresponding to the edge e is retained, and a deformation of € leads to curves whose
dual graphs are still specialisations of I' iff it retains all nodes in at least one of the sets
of nodes ¢; !(E(T)). But such curves are exactly those parametrised by Z = Ar. Since
MN.c e E(F)){xe = 0} is a linear subspace of the universal deformation space, the preimage
of A is normal (and smooth) if and only if all the ¢; ' (E(T)) coincide.
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What we want to show, is equivalent to showing that the sets E! := E(T'(€)) \ ¢; 'E(T)
of edges which are contracted by the ¢; are the same for all i € r. If A = Ay, then I has a
genus 0 vertex vg to which legs with indices in I are attached and a genus 1 vertex v; to
which legs with indices in n \ I are attached. The two vertices are connected by one edge.
Now each vertex v of I'(€) either carries legs itself, or there is a rational tree hanging on
v, carrying such legs, or v is of genus 1. Since contractions respect the marked legs, if the
mentioned legs belong to I, v is contracted into vg by every c;. If the legs belong to n ~ I
v is contracted into vy, the same if v is of genus 1. ' Hence all the ¢; act the same on the
vertices of I'(€). Since I' contains no self-edges, an edge of I'(€) becomes contracted by ¢;,
i.e. belongs to E., if and only if it connects two vertices, which are contracted to the same
vertex of I" by ¢;. This shows that all E! are the same.

If A is a simple banana cycle instead, I" only has vertices vy, ..., v, of genus 0, and each v;
carries legs with indices in a subset I; with ) # I; C n. One shows that all E are equal in
this case analogously. O

4.1.2 Boundary cycles of R,

In this section we gather some facts about the boundary cycles of El,n and their relation
to the boundary cycles of My ,.

We will show later that the Chow ring of R, for n < 6 is generated as a Q-vector
space by boundary cycle classes. We know that the same is true for M, by Belorousski’s
thesis, in which also A*(M 4) for n < 4 is computed. So we already know the sub-algebra
7 A*(M1,,) of A*(Ry,,) for n < 4. (Where 7, : Ry, — M1, the forgetful morphism.)

By definition each boundary cycle of R;, lies above one boundary cycle of M, with
respect to 7,. Only in cases where there is more than one boundary cycle of Ry, lying
over a given cycle of M, we can get a contribution to A*(R;,) that does not lie inside
7 A*(M,,). So for the purpose of computing A*(R; ,,), we would like to know how many
boundary cycles are there lying over a given cycle A = Ar of My ,. We can distinguish 3
cases, according to the type of the stable graph I'.

Lemma 4.4 (i) If T has only disconnecting edges, 7, A is irreducible. (Examples: As,
Agzzyy)

(i3) If T has exactly one non-disconnecting edge, then 7, *A has two irreducible components
D" and D". Here D" parametrises prym curves supported on a stable curve C, while D"
parametrises prym curves supported on a semi-stable curve X obtained by blowing up the
non-disconnecting node of a stable curve C. If we denote by 0, d’ and d" the corresponding
Q-classes, then 776 = d" +2d". But d’ = d" in A*(Ry,,), and thus d’ and d" both lie in
Th A*(M1y). (Examples: Ao, Ags r191})

(iii) In the last case I' has two or more non-disconnecting nodes, i.e. A is a banana
cycle. Also in this case there are two irreducible components of 7, 'A. The prym curves

Tt is impossible that these legs at v come from I as well as n ~ I, for otherwise I'(€) could not be a
specialisation of T.
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parametrised by one component are supported on stable curves C, while the other compo-
nent parametrises prym curves supported on the quasi-stable curve X obtained from some
stable C' by blowing up all its non-disconnecting nodes. Like in the case (ii), we call the first
component D" and the second one D", and the Q-classes d" resp. d”. Here 76 = d +2'd",
where | is the number of non-disconnecting nodes on C, but it is not any more true in
general that d’ = d". So we do not know a priori whether d’ and d" are contained in

T A*(Mlm). (Examples: Aa,{1}7 Aﬁ,{12},{12})

Before proving the Lemma, we use it to introduce a notation for the boundary cycles of
Elm for n > 4.

Definition 4.5 (i) All the boundary cycles of M ,,, n < 4, are denoted by symbols of the
form Ajpgex, and the corresponding class is denoted by dingex (cf. beginning of section 4.1.1).
If 7,7 ' Ajndex is irreducible (i.e. in case (i) of the Lemma) we denote this boundary cycle by
Dindex- If 7, ' Ajndex has two irreducible components (i.e. in case (ii) and (iii) of the lemma)

we call them D!

index and Dy defined as in the Lemma above. For the corresponding

index’

Q-classes, we replace ¢ by d in the same way. For example 7/ Ag 112y = Dg,{m} U DE,{lZ}
and 74 g (19} = dg)7{12} + 4dg7{12}. We do the same for the simple banana cycles By, . 1,.,
calling the two components of the preimage B}’l L, and By . For the Q-classes then

* — K mpr
Tabn, g, = b7 +270  holds.

(ii) We call the boundary cycles of Ry, lying over (simple) banana cycles of M, (simple)
banana cycles too.

Proof (of the Lemma): In the case (i), I' consists of one vertex v; of genus g(v1) = 1, to
which some rational trees may be attached. By Proposition 1.26 (i) there is a finite gluing
morphism & @ Mp — Ml,n with image A C Mlm. In this case M can be written as

Mr = Ml,afl(vl) X Mrest

Here M ,.s is some product of moduli spaces of stable pointed genus 0 curves, which
parametrises the rational trees. We can define a morphism

(r: Rl,a_l(vl) X Mrest — Rl,m

corresponding to the following procedure: First apply the same gluing procedure on the
underlying curves as for {r. The genus 1 component of the resulting curve comes from
Rl,ml(vl) and is thus equipped with a non-trivial prym bundle. Endow the genus 0 com-
ponents with the trivial bundle. Identify those fibres of the bundles on the different com-

ponents, which lie over points that are glued together.

The image of (r is an irreducible component of 7, 'A. But if (C,p1,...,p,) is a general
curve parametrised by A, C consists of a smooth genus 1 component D and rational
trees. Then all prym curves having (C,p;,...,p,) as stable model, must be of the form
[(C,p1, ..., pn; L)], where the prym sheaf L restricts to a non-trivial prym sheaf on D and
to the trivial sheaf on the rest of C. (By Summary 1.13 (i), no node can be blown up, and
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on a rational curve no non-trivial prym sheaf exists.) Thus (r surjects on m,, }(A), which
hence is an irreducible variety.

In the cases (i) and (iii): Let r be the number of non-disconnecting edges (r = 1 is case
(ii)). Then I' contains 7 vertices vy, ..., v, forming a circuit as described in Definition 4.1
(ii). This has to be so, since otherwise I' would have to contain more than one such circuit,
and would thus be of genus > 2 . (In case r = 1 this means that there is one self edge
attached to v;.) The rest of I' again consists of rational trees attached to the vertices
v1,...,0p. Let (C,p1,...,pn) be any curve parametrised by A. It consist of one genus 1
subcurve C7, which only has non-disconnecting nodes, and of rational trees attached to

Ch.

We again use Summary 1.13 (i). It implies that for a prym curve (X, p1, .., pn, £,0), having
(C,p1,...,pn) as stable model, either X = C, or X = C’, where C’ is obtained by blowing
up all the non-disconnecting nodes of C. All irreducible non-exceptional components of
X are P's. If D is a non-exceptional component meeting no exceptional component then
L p = Op. Otherwise D meets two exceptional components in points a,b € D and L|p is
a square-root of Op(—a—b), i.e. £L;p = Op(—1). This means that once X = C or X = C’
is fixed, then L|p is fixed on any irreducible component. So £ beyond that only depends
on the way the bundles £ are glued together over the nodes of X. On the rational trees
all possible ways to glue yield the trivial bundle.

In the case X = C' there are two non-isomorphic ways to glue the bundles on components
of C'1. One yields the trivial bundle, in which case the whole bundle £ would be trivial,
which is not allowed. The other yields a non-trivial prym sheaf. Hence there is only one

isomorphism class of prym curves lying over [(C,p1, ..., pn)], with X = C.

In the case X = C’ there is only one isomorphism class of prym curves too: The only inter-
esting part is here C7, the subcurve of C’ obtained by blowing up all the non-disconnecting
nodes of C;. But the non-exceptional components of C| are connected with each other only
via exceptional components E equipped with the bundles Og(1). Hence every two different
ways to glue together the bundles on the components of C1, yield prym curves isomorphic
to each other by inessential isomorphisms.

The unique prym curve supported by C' is parametrised by a point of the boundary cycle
D" and the one supported on C’ is parametrised by a point of D”. Thus the morphism
T @ Rin — My, restricted to D” resp. D" yields a bijective morphisms D” — A and
D" — A. Hence D" and D" must be irreducible. We get 76 = d” + 2'd", where [ is the

number of non-disconnecting nodes on C', by Remark 1.35.

The discussion above also shows that there are finite gluing morphisms
llﬂ/ :Mr — D" C El,n, and wa ZMF — D" C Rl,m

surjecting on D” resp. D". They correspond to: First glue together tuples of curves
parametrised by M by the same procedure defining the morphism &r (Prop. 1.26 (i)).
Then, in case of (f blow up all the non-disconnecting nodes of the resulting curve, in

case of ({' do nothing. Finally endow the resulting curve with the only non-trivial prym
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structure existing on it.

In case (ii), d” and d" are equivalent for the following reason. Let I be the graph that
is obtained by replacing in I' the genus 0 vertex v; and the self-edge attached to it, by a
vertex v' with g(v’) = 1 and without a self-edge. Then I is of type (i). Like in the proof
of (i) there is a gluing morphism

Cre: El,afl(v’) X M,«est — El,n

with image 7,, 1 (Ar). We see that d” and d” are the pushforwards under (v of the boundary
divisor classes dfj and df of ELG—I(U/). Thus pushing forward the relation §) = &f (cf.
Lemma 4.8 (ii)) by ¢ gives us d” = d". O

Remark 4.6 (i) Using Lemma 4.4 it is easy to see that an analogue of Proposition 4.2
holds for Ry, as well, i.e. every boundary cycle is the proper intersection of some boundary
divisors of the form Dy, and possibly one of the divisors D{j and D, or one of the simple
banana cycles of Ry ,. The Q-algebra A% (R1,) C A*(R1,) (cf. Def. 1.40) is generated
by boundary divisor classes and the classes of simple banana cycles.

(ii) Also one can show that, similar to the boundary strata of Mg,n, which correspond to
stable graphs, also the boundary strata of Rlﬁn correspond to graphs. These are stable
graphs of genus 1 with the additional data of a map

c:H—{0,—-1},

satisfying the following conditions: For all h € H, ¢(h) = c(i(h)), and for all v € V,
Zheafl(v) c(h) is even. The interpretation of this map on the dual graph of a curve is that
c(h) = —1 means the node the branch h belongs to is blown up, while ¢(h) = 0 means it is

not blown up. One can then also show a complete analogue of Proposition 1.26, for Ry .

(iii) In particular the proof of Lemma 4.4 tells us how to define for every boundary cycle
D of Ry, a finite surjective gluing morphism

§D3ED—>DCR1,n

where Rp is a certain product of possibly a El,m (1 < m < n) with moduli spaces of
pointed stable genus 0 curves. And Proposition 1.26 (iii) together with the definition of
the boundary strata of Rl,n then quite obviously implies, that the image of a boundary
cycle of Rp under (p is a boundary cycle of Ry .

The analogue of Proposition 4.2 together with Lemma 4.4 also implies:

Corollary 4.7 For alln € N, A% (R1,) is generated as 7, Ay (M1 y,)-algebra by the
classes of simple banana cycles. It also suffices to take as generators only those of type

bllll,..,fm or only those of type b?l,.l. I

tm

Lemma 4.8 For any fitedn > 1 let D{ and D{ as usual denote the two boundary divisors
of Ri, parametrising prym curves with non-disconnecting nodes. Let DM C Dy and
D® C Dy be closed subvarieties. Then
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(i) Dij and D are disjoint.

(i) diy = diy and djjdV) = did?) = 0.

Proof: For n = 1, D{j and D are two different points in Rl,b each one parametrising a
prym curve with two automorphisms. So for n = 1 all the claims are true. For the rest of
the proof we denote these two points in Ry 1 by (D/); and (D})1, and their Q-classes by

; 0 0
" T N /" T D ;
* ) )

(dg)1 and (dfy)1. For n > 1, the boundary divisors D{, D{ of Ry, are the preimages of the
points (D{)1 and (D}); under the morphisms 7 : Ry, — Ry 1 forgetting all marked points

but the first one. So (i) holds for general n. The morphism = is flat, and the boundary
divisors D{j, D} of Ry, both in general parametrise curves with one automorphism. Thus

dy = [ (D)1lg = 7" (dg)r = 7 (dy) =[x (Dp)ilg = dp

and (ii) also holds for all n. O

4.1.3 Summary of Belorousski’s results

In this section we summarize some results from [Bel98].

Summary 4.9 (i) Forn < 10, the varieties M1 ,, are rational. (This result is sharp: M1,
has Kodaira dimension 0 for n =11 and 1 for n > 12, by [BF06], Thm. 3.)

(it) For n <10, A*(M; ) = Q.

(i4i) For n < 10, the Chow ring A*(M1,,) is as Q-vector space generated by boundary cycle
classes.

(vi) For n <5 the Chow ring A*(M1,) is as Q-algebra generated by boundary divisors.
For n > 6 it is not 2.

For n > 4 Belorousski computes the ring A*(M,) in terms of generators, which are

classes of boundary divisors, and relations.
Summary 4.10 (i) The Chow ring of M1 is given by
A*(MLQ) = Q[‘Sm 5{12}]/I

where I is the ideal generated by the two independent codimension 2 relations:
2=0, 62, = 1 090
0= %2y T T 500012}

(i) The Chow ring of M3 is given by

A*(M13) = Q[do, 03, 012}, Og13), Ogasyl/ T

2This assertion for n > 6 is proven only under the assumption that a certain claim by E. Gezler holds,
which was not proven yet. (Cf. Claim 5.1 in chapter 5.)
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where J is an ideal described below. The dimensions of the homogeneous parts of A*(M13)
are 1,5,5,1. The pairing
AF(My3) x A*F(My3) - Q

is perfect.

(iii) The ideal J is generated by the following 10 independent codimension 2 relations:

1 1
5 =0, 65= —55053 — 030(12}, 5%12} = —5505{12} — 030712}

5%13} - _%505{13} — 030{12}, 5?23} = —%505{23} — 030712}
Of12}0113) = 0, Oq12)0723y = 0, Oq13)0723) = 0
03013} = 030(12}, 03023} = 03012}
(iv) The Chow ring A*(M4) is given by
Q[Dq, ..., D12] /K

where D1, ..., D1s are meant to be the 12 classes of boundary divisors and K is an ideal
described below. The dimensions of the homogeneous parts of A*(M14) are 1,12,23,12,1.
The pairing

AF(M 4) x AR 4) — Q

is perfect.

(v) The generators of K are not written down completely explicit in [Bel98], but: K is
generated by 55 independent codimension 2 relations and one codimension 3 relation. They
arise as follows: 30 relations are of the form D; - D; = 0, coming from the 30 pairs of
disjoint boundary divisors. 12 are of the form DZ-2 = ..., and are obtained by calculating the

self intersection of each boundary divisor. The other 13 codimension 2 relations are:
Vi£j#ked 5{ij}5{ﬂ€} = 6{@jk}6{zk} = 5{ij}5{lj} (8 relatz'ons)

Vi gk 1} =4 64(0guy + gjry) = 04(0gany + Ogiziy)

The latter relations form a 5 dimensional space. The codimension 3 relation can be taken
to be
6(50(52,2 — 25052’3 — 50(5274 + 3(50(53,4 =0

where 022, 023, 024, 034 are the Sy-invariant classes

b9,2 1= > Suppys G2 = > Suuen
Hidh{k, 1}, i€d{jk}C4,
sth. {ijkl}=4 sith. |{ij.k}|=3
O2,4 1= Z Ofij{rtyys 034 1= Z Ofifjkiy)-
{331k}, i€d,{j,k,1}C4,

s.th. {i,j,k,}=4 s.th. {i,5,k,l}=4
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Remark: Actually I did not find (i), i.e. the description of the Chow ring of A*(M2) in
[Bel98], but anyway it is easy to compute. (The first relation follows from the fact that dg
is the pullback of a point in M 1, by the forgetful morphism. To obtain the second one,
one can compute explicitly the proper intersection dpds12) = % and the excess intersection
5%12} = —3; using the excess intersection formula, cf. Example 1.43.) The parts (ii) and
(iii) of the Summary come from Thm. 3.3.2. and its proof in [Bel98]. Part (iv) and (v) are
from Thm. 3.5.1. and its proof.

Next we cite some Lemmas shown in [Bel98] we will also use

Lemma 4.11 (0.1.3. in [Bel98]) Let f: X — Y be a bijective morphism between vari-
eties over an algebraically closed field of characteristic zero, and assume that Y is normal.

Then f is an isomorphism.

Lemma 4.12 ((i) is 0.1.5. in [Bel98])

(i) For ay, ..., an € Z, such that Y a; =0, let {3 a;p; ~ 0} be the subset of My ,, of pointed
elliptic curves (C;p1,...,pn) such that > a;p; ~ 0 holds in the divisor class group of C.

Then this subset is a closed algebraic subvariety.

We use the same notation to denote the subset of Ry, consisting of smooth pointed prym

curves (C;p1y ..., pn, L) such that > a;p; ~ 0. It is a closed subvariety too.

(it) If we denote by {> a;p; ~ prym} the subset of Ry, of pointed smooth prym curves
(C;p1y .y pn; L) with prym sheaf L, such that L(—> a;p;) = Oc¢, then this is a closed
algebraic subvariety of Ry .

Proof: Let M; ,[N] be the moduli spaces of smooth n-pointed elliptic curves with full
level N structure for some N > 3. In contrast to M ,, this space carries a universal family
C — M, ,[N] with n sections o; : M;,[N] — C corresponding to the n marked points.
Analogously let Ry ,[NN] be a moduli space of smooth prym curves together with a full level
N structure. It carries a universal family ' — R; ,,[N] with n sections o} : Ry ,[N] — C’
and a universal prym sheaf I on C’. Le. L is a square root of the sheaf Q¢ such that
if p € Ry ,[N] is a point parametrising a prym curve (C;pi, ..., pp; £) with some level N
structure, then the restriction of I to the fibre C1/> = (' is isomorphic to L. Define the line
bundles F := O¢(>_ a;5;) on C and F' := L(—Y_a;d’) on C’, where &; resp. o, are the
images of o; resp. o}. Set

D :={p € M 4[N]| F, = Oc,} = {p € M1n[N]] dimHO(cp,ﬁcp) >1}, and

D = {p S Rl,n[N] |'F|/CZ’, = OC;} = {p € Rl,n[N] | dimHO(C;/mI'TC;) > 1}'

Then by the semi-continuity theorem ([Har77], Thm. 12.8) D and D’ are closed subvarieties
of My ,[N] resp. Ry ,[N]. But {3 a;jp; ~ 0} resp. {3 a;p; ~ prym} are just the images of
D resp. D" under the finite forgetful morphisms M ,[N] — M ,, resp. Ry n[N] = Ri,. O

Lemma 4.13 ((i) is 2.1.3. in [Bel98]) Suppose that ai, ..., ant+1 are integers, such that
Y>a; =0 and |a;| =1 for some i. Then using the notation of Lemma 4.12:
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(1) The closed subvariety {> aip; ~ 0} C My pni1 is irreducible and of codimension 1. It
is isomorphic to an open subvariety of My .

(11) Also {> aipi ~ 0}, {>_ aipi ~ prym} C Ry n41 are irreducible and of codimension 1.

They are both isomorphic to open subvarieties of Ri .

Proof: We show (ii), the proof of (i) is analogous. Set D; := {> a;p; ~ 0}, Dy :=
{3 aipi ~ prym}. Assume WLOG that a,41 = —1. Let f : Riny1 — Ripn be the
morphism forgetting the point p,41. We show that f|p,, fip, are open embeddings, from
which all the assertions of the Lemma follow. Set Uy := Ry, \ Lﬂ?:l{pj ~ > aipits
Uz := Ry~ Lﬂ?zl{pj —> % a;p; ~ prym}. By Lemma 4.12 these are open subvarieties of
Ry p. If (C;p1,....pn; £) is a prym curve from Uj resp. Us there is a unique point py41 on
C such that (C;p1, ..., Pn, Pn+1; £) corresponds to a point in Dj resp. Ds. This is because
every given divisor of degree 1 on an elliptic curve C' is equivalent to a unique point on C.
Thus the morphisms fp, : D; — Uj is bijective. By Lemma 4.11 it is an isomorphism. [J]

4.2 The rational Picard group of Mm and Fl,n

Surely the rational Picard group of Ry, = gfn is known, but I did not find an explicit
reference. The structure of the Picard group follows quite directly from results of [BF09b].

Proposition 4.14 For all n € N:
(i) Picg My, = AY(M1,) = H*(M1,,) and Picg Ry, = AY(R1,) = H*(R1).
(ii) The classes of boundary divisors form a basis of the Q vector space A*(M,).

(iii) The classes of boundary divisors of Ry, span A(Mi ) with the single relation dfj =
diy. Hence the pullback 7% : AY(M1,,) — AY(Ry,,) is an isomorphism.

(iv) Consequently also
T:Z : AEiU(Mlﬂq‘) - A*Div(Rlan)v 7_; : HB?/U (Ml,n) - H;)w (E17n)
are isomorphisms. (A}, (...), Hp,,(...) as in Definition 1.40.)

Proof: (i): Picy = A! holds for every variety having only finite quotient singularities. (cf.
the proof of Cor. 2.15 (iii)) For the equality to the second cohomology group cf. the proof
of part (iii).

(ii) Cf. Theorem (4.1) in chapter 19 of [ACG11], for the same statement for H?(Mj,,).
From this (ii) follows by (i).

(iii): The pullback 7;f is injective since 7, is finite and surjective. By Lemma 4.4 and
Lemma 4.8 (ii) the pullbacks of the boundary divisors of M, generate the same subspace
of Al(ﬁlm) that is generated by the boundary divisors of Ry ,. Thus it suffices to show
that A1(R),) is generated by boundary divisors of R ,. By Thm. 1 of [BF09b], H%(R; ,,)
is generated by the boundary divisors, and by the same theorem H'(R;,) = 0. Since



4.3 Rationality of Ry, and A*(R1,,) = Q, for n < 6. 131

Rl,n has only finite quotient singularities its cohomology with coefficient in C has a pure
canonical Hodge structure (cf. Summary 1.36 (v)). Using this we get

H' (R, 0g, ) =H" (R1,,) € H' (R1n,C) = H' (R1n) ®C =0
Insert H'(R1n, O, ) =0 into the long exact sequence
o > H' (R1n,Op, ) ®Q — H' (R, Ok, ,) ®Q Y H*(Rip,Z)@Q — ...
which is obtained by tensoring the standard exponential sequence with Q. This tells us
that Picg Ry, = Hl(ﬁl,n, O}‘%Ln) ® Q injects into HQ(RLn) by the Chern class map c;.
Since H?(Ry,,) is generated by boundary divisors, this implies that the same holds for
Picg Ry, and also that Picg Ry, = HQ(RL,L).

(iv): The two pullback morphisms are surjective by (iii) and the definition of A}, , H}),,
(Def. 1.40). They are injective since 7, is finite surjective. O

4.3 Rationality of R;,, and A" (Ry,) = Q, for n <6.

Proposition 4.15 With = standing for isomorphism of varieties:

(i) My = MO,(LBD and Ry 1 = M(]’(Q’[Q]), and hence R11 2 P! = My ;. (Cf. Def. 2.4 for

the notation used for moduli spaces of genus 0 curves with sorted marked points.)
(ii) There is an isomorphism f : MO,[IA] = M 2 mapping My 1,4y onto My o.

(iii) There is an isomorphism g : MO’[LQ’Q] 5 Ry 2 mapping My 1,2,29) onto Ry .

(iv) Hence Ry 2 is rational, A*(R12) = Q, and AQ*(RLQ) ~ H*(Ry ).

Proof: We constructed similar isomorphisms quite detailed in Proposition 2.14, the proofs
will be kept shorter here.

(i): Let Ho4 be the moduli space of admissible double covers of stable genus 0 curves,
ramified over the 4 ordered marked points of the genus 0 curve. Write the objects as
(m: X — D;p1,...,ps) where the p; are the marked point on the genus 0 curve D. We
have FQA = MOA. Define a finite surjective morphism ¢ : F274 — Ml,h corresponding to
keeping only the cover with one marked point (X; 7 1(p1)) and forming the stable model.
It factors through the claimed isomorphism M()’(g’l) = F27(371) — My .

Now it suffices to construct a morphism Ha 4 — R; 1, compatible with ¢, on the interior
of the moduli spaces. To define it, like for ¢ we keep (X; 7 1(p1)), but include the prym
sheaf Ox (7~ 1(p1) — 7~ 1(p2)) in the data (forming the stable model of X is not necessary
here, since X is smooth). The extended morphism MOA = FQA — El’l factors through
the claimed isomorphism.

Now we know that the smooth curve Ry is covered by M4 = P!, and hence R = P!

(Hurwitz formula).

(ii): Let Ho41 be the moduli space of 1-pointed admissible double covers of 4 + 1-pointed
genus 0 curves: By this we mean the moduli space parametrising objects (m : X —
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D;p1,....,p4;q4;4"), where (D;p1,...,ps,q) is a 5-pointed stable genus 0 curve, where 7 is
the admissible double cover of the 4 pointed curve (D;py,...,p4) (cf. Def. 2.6) and ¢ is
one of the two points in 7~1(g) (also cf. Def. 2.1.6. of [Bel98] and the discussion following
it, for the existence of this space). We have ﬁ2,4,1 o Moﬁ. There is a finite surjective
morphism ¢ : Ha41 — M2 corresponding to keeping only the stable model of the two
pointed curve (X;¢q’,q") where ¢” is the other point in w=!(q). It factors through the
claimed isomorphism MO,[M} i H2,[4L1 — M 2.

(iii): Define a morphism Hj41 — Rj2 corresponding to again keeping (X;q’,¢"”) and
including the prym sheaf Ox (7~ 1(p1) — 7~ %(p2)) in the data. The extended morphism
Hs41 — Ry 2 factors through the claimed isomorphism MQ[Q,M] = FZ[Q’QM — Ry o

(vi): We know that Moy is rational, A*(Mys) = Q, and A*(Mys) = H*(Mos) by
Summary 1.48. By (iii), EIQ is isomorphic to a quotient Moﬁ /S2 x Sy. So the second two
claims of (iv) follow with Lemma 1.37. Unirationality of RLQ follows directly from RLQ =
Mo 5/Se x So. But Ry is a complex surface, so unirationality implies rationality here.
(One can also proof rationality of ELQ by constructing a birational map fo : $9 -->» ELQ
very similar to f3 : &3 --» RLZ’» we will construct soon. ®3 = P? would, like ®3, be a
certain linear subspace of the space of plane cubics.) O

Next we will, for any 3 < n < 6, construct birational maps f, : ®, --» Ry, where the
®,, are rational parameter spaces. The maps f,, will be isomorphisms on their domain of
definition, and thus will provide the rationality of R, for 3 < n < 6. They will also be
used to prove that A*(R;,) is generated by the boundary cycle classes, for 3 < n < 6.
The construction of these morphisms will work quite similar to the construction of the
birational morphisms to M, in chapter 1 of [Bel98]. We also use a similar notation for

the most part.

Definition 4.16 Let G be the 10-dimensional C-vector space of homogeneous polynomials

of degree three in three variables. IL.e.,

G={f= Z aijkxiyjzk | aijir € C}.
i+k+j=3

We can view G as the space H(IP2, Op2(3)). P(G) = P? is the parameter space of cubics
in P2, For
C:={((a:b:0),[f]) € P* x P(G)] f(a,b,c) = 0},

the projection C — P(G) is the universal family over the parameter space P(G). It is flat.

Provide P? with homogeneous coordinates (x : y : z). We fix a configuration of points and

lines in P2.
e Points: P :=(1:0:0), P,:=(0:1:0),P3:=(1:1:1),Q:=(0:0:1)

e Lines: L the line through P; and P, Lo the line through P, and @, Lq3 is the line
through P; and Ps.



4.3 Rationality of Elyn, and A*(R1,n) = Q, for n < 6. 133

Py

L3

Definition 4.17 Using this configuration we define a subset of P(G):

®3 is the set of cubics C' in P? passing through Pj, P, P3 and @ such that C is tangent to
Ll in P1 and to L2 in Q

Lemma 4.18 (i) The defining conditions of ®3 constitute 6 independent linear conditions
on the space of plane cubics (i.e. linear conditions on the coefficients of homogeneous

polynomials defining such cubics). So ®3 = P3.
(ii) Almost all cubics of ®3 are smooth.

(ii3) If (53 C @3 is the dense open subset parametrising smooth cubics, then there is an
isomorphism

f3: @5 — Rz~ (B® uB® uBY).
Here, using the notation introduced in Lemma 4.12, B%S), Bég), Bég) are the closed sub-
varieties of Ri3 defined by ng) = {p1 — p2 ~ prym}, Bég) = {p1 — p3 ~ prym}, and
B := {ps — ps ~ prym}.

Proof: The defining conditions of ®3 impose the following conditions on the coefficient of

a polynomial f = Zi+j+k ai,j,k.’ljiyjzk, defining a cubic C:
P e C & as 0,0 = 0, Py e C & ap,3,0 = 0, Q cC & ap,0,3 = 0,

PelC < Z a;jr =0, C tangent to L1 at P < a219 =0
i+j+k=3
C tangent to Lo at Q@ < agi2 = 0.

It is easy to check that these linear equations are independent.

To prove (ii) it is enough to show that there is one smooth cubic belonging to ®3, since
smoothness is an open condition. We use ~ to denote equivalence of two sums of points

on an elliptic curve.

Let (C;p1,p2,p3; L) be a smooth genus 1 prym curve with three marked points p1, pe2, p3
and prym sheaf £, and let ¢ € Ry 3 be the point parametrising (C;p1, p2, p3; £). Choose
(C;p1,p2,p3; L) such that ¢ € Ry 3\ (Bf’) UBS’) UB:(,,?’)). Let g the unique point on C' such
that £ = O¢(p1 — q). Embed C into P? by the linear system [2p; + p2|. We denote the
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image of C' and the points p1, p2, p3, ¢ in P? by the same symbols again. We denote by Iy
the tangent of C' at p;. By the choice of the embedding, ps also lies on ;. Let Iy be the
tangent of C' at ¢. Since £ = Oc(p1 — q), 2p1 ~ 2q on C and thus 2q + ps ~ 2p; +po. C'is
embedded by |2p;1 + pa|, so this implies that po also lies on la. We have g # ps by ¢ ¢ B%Q),
q#psbycéd B§2), and ¢ # py by definition of q. Hence the points p1, po, p3, ¢ are distinct.
It is impossible that ps € I or p3 € l9, for otherwise C' would intersect the line in more
than 3 points, counted with multiplicity. If furthermore p;, ¢, and ps are not collinear then
the points p1, p2, 3, ¢ are in general position. But this is guaranteed by ¢ ¢ B§3). Now by
Lemma 4.19 below, there is a unique projective transformation 7' of P? which maps the
points p1, p2, p3, g which are in general position, to the points Pi, Ps, P3, Q) which are in
general position too. This T" has to map I; resp. lo to L resp. Lo automatically. Hence
the image T'(C) of C' is a smooth cubic fulfilling all the defining conditions of ®3. Thus

we have proven (ii).

For later use, note that the resulting smooth cubic T'(C) does only depend on ¢ and not
on the representative (C;p1,p2, p3; L).

Now we show (iii). Several times we will use the following fact: If C'is a smooth cubic from
®3 then the inclusion C' < P? can be regarded as induced by the linear system [2P; + P|
(since the tangent to C' at P; cuts out the divisor 2P + P»).

To define the morphism fs : Dy — Ry 3, first restrict to @5 the universal family of plane
cubics, which lies over the space P(G) of cubics in P? (see above). So we get a flat family
of smooth curves C3 — 53, with C3 smooth. Let P;, ¢ = 1,2, 3, and Q, be the sections on
C3 corresponding to the points P; resp. Q in P?. We denote the divisors on C3 that are
the images of these section by the same symbols. Then the invertible sheaf O¢,(P1 — Q)
is a prym sheaf: O¢,(P1 — Q) restricted to an arbitrary fibre C' of the family C3 — Dy
yields the sheaf Oc(P; — Q). This is a prym sheaf, since 2P + P, ~ 2Q + P, on C by the
definition of ® and thus 2(P; — @) ~ 0. Thus

(C3 — ®3; Py, P, P3; Oc, (P1 — Q))

is a family of smooth prym curves with 3 marked points over 53. Call the morphism this
family induces f3: ®3 = Rj 3.

The image of f3 lies inside R 3 \ (B%S) U Bég) U Bi())g)): If C' is a smooth cubic fulfilling
the defining conditions of ®, so that its image under f3 lies in (ng) resp. B§3) resp. B§3)),
this would imply P» = @ resp. P3 = @ resp. ), P; and P3 are collinear, contradicting the
definition of these points.

In the proof of (ii) we described a construction. It starts with any point ¢ in Ry 3 ~\
(Bf’) U Bég) U B?ES)) and yields a smooth cubic in P?, belonging to 53. If we compare this
construction with the definition of f3, we see that the point in D3 we obtain, is mapped
by f3 to the point ¢ we started with. Thus f3 is surjective.

Furthermore for every c as above, the preimage point of ¢ under f3 that is given by
the construction is the only preimage points that exist: Let C' be a cubic from ®3. The
corresponding point in ®3 is mapped by f3 to the point ¢ := [(C; P, Py, P3; Oc(P1—Q))] €
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Ry 5. If we apply the construction from the proof of (ii) to ¢ and choose as a representative
(C; Py, Py, P3; Oc(Py — @)), then the cubic C' C P? we get has the following properties: It
arises by embedding C' by the linear system |2P; + P5|. On |2P; 4+ P| the unique system
of coordinates is chosen, such that the embedding maps each point P; on C to the point
P; in P2, and such that Q on C is mapped to @ in P2. These properties determine the
cubic C' uniquely. But C has the same properties, thus ¢’ = C.

So now we know that fs is bijective. Thus it is an isomorphism by Lemma 4.11. O

We used the following well known fact:

Lemma 4.19 There is a unique projective transformation T on P? mapping a given con-
figuration of 4 points pi,...,ps in general position (i.e. no three points collinear) to any

other given such configuration p\, ..., py. (By this we mean that T (p;) = p, for alli € 4).

Definition 4.20 For m > 0 define:

(i) @34, C @3 x (P?)™ is the set of tuples (C; Ry, ..., Ry,) such that C is a cubic from ®3
and such that the points Ry, ..., R,, in P? liec on C.

(ii) Let H be the sub vector space of G (cf. Definition 4.16), such that H consists of all
homogeneous polynomials of degree 3 which define cubics parametrised by points of @3,
and the O-polynomial. Then we have P(H) = ®3.

Lemma 4.21 For all m > 0 the projection @34y, — P35 is flat, and P34y, is a irreducible

projective variety.

Proof: (cf. [Bel98| p. 14-15.) By definition of ®3.,, there are projections

<I>3er m (]P)2)m

p3+ml

3

Now py : ®4 — @3 is the natural flat family of cubics over ®. As subvariety of P(H ) x (P?)™,
D34, is defined by m equations

F@1,y1,21) = o = f(Zm Yms 2m) = 0

where f € H and (x; : y; : 2;) are homogeneous coordinates on the i-th P2-factor. Thus the
homogeneous coordinate ring of ®3,,, is the m-th tensor power of the coordinate ring of
®, over the coordinate ring of P(H) = ®3 From this we conclude that ®3.,, is the m-fold
fibre product @34, = P4 Xo, ... Xa, s (With respect to ps). Since flatness is preserved
under base change, the projections ®34,,+1 — P34, we obtain from this fibre product are
flat. So py,, which is the composition of the projections

(I)3+m = .. > Py — ‘I>3

is flat too. Thus, and since ®3 = P? is irreducible, every irreducible component of D3y is
mapped dominantly to ®3. This follows from the fact that every flat morphism between
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varieties is open (cf. [Har77], Exercise II11.9.1). If ®3,, had more than one irreducible
component, this would now imply that almost all fibres of p3i,, are reducible. But we
know that almost all fibres are smooth, since almost all fibres of the family of cubics

&4 — P53 are smooth by Lemma 4.18 (ii), and since @34y, = Py X @y ... Xa5 Pa4. O

Lemma 4.22 (i) For all m > 1 there are open subsets Usiyp, C ®siy, (defined in the
proof ), and morphisms fsim : Usfm — Ri34m, which are open embeddings.

(it) The images of these morphisms are f,(Up) = Ripn \ (Bgn) U Bén) U Bé")), Where in
R, BY" := {p1—p2 ~ prym}, B := {p1—ps ~ prym}, and BS" := {py—ps ~ prym}.

Proof: Let again 53 C &3 be the subset parametrising smooth cubics. Define subsets
V3+m - (IPQ)m by:

Vaim = {(Rl, ,Rm) | R; # Rj for i # j; R; # Pj for all 7, j; R; ¢ Ly U LQ}

where, as above, L1, Lo are the lines through P, and P, resp. through P, and (). Define
Usim := P3pm N (53 X V34m). Pull back to Usyy, the natural family of plane cubics lying
over ®3. The resulting flat family C — Us4,, is a family of smooth cubics by definition of
®;. Like in the proof of Lemma 4.18 (iii) we define sections P; resp. Q corresponding to
the points P; and Q. Furthermore the sections R; : Usyy, — P2 x Usm, corresponding to
the points R;, are (by restricting the target spaces) also sections of the families C — Us .
Similar to what is done in the proof of Lemma 4.18 (iii) we get families of pointed smooth
prym curves

(C = Usm; P1, P2, P3, Ry oy Rin; Oc(P1 — Q)),
These families induce the morphisms f31., : Us4m — Ri34m-

To see that f,, is dominant, we proceed analogously to the proof of Lemma 4.18 (ii): Embed

any prym curve with class
[(C5p1,p2,P3, 71, s Tmi £)] € Ri34m N (B£3+m) U B§3+m) U B§3+m))

in P? by the linear system |2p; + p2|. Then move, by a (unique) projective transformation,
the resulting smooth pointed plane cubic into one fulfilling the defining conditions of U,.
The point in U,, corresponding to this cubic is mapped to [(C;p1,p2, 03,71, .., "m; L)] by
f 3+m-

As in the proof of Lemma 4.18 (ii) we see that the preimage point of a point in Rj 34,
under fs3,,, that we obtain by this construction, is the only preimage point that exists.

Thus fs1., is bijective onto its image. So, by Lemma 4.11, f34,, is an isomorphism onto

its image.

To prove (ii), it only remains to show that the image of fs4,, is contained in Ry 31, \
(B§3+m) U B§3+m) u B§3+m)). This goes just like the proof of the analogous part of Lemma
4.18 (ii). O

Lemma 4.23 Using the notation introduced in the proof of Lemma 4.22:
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For anym € 3 and for any tuple of points R := (R, ..., Ryy) € Vaim, the subset S(R) C @3
consisting of those cubics which pass through all the points R, .., R, is a linear subspace
of 3 =2 P3. Define

S'(R):={(C,R) | CeSR)} C P3ypm.

Then for every R € Vi, at least one of the following three conditions is fulfilled:

(a) S(R) is of codimension m. (I.e. of dimension 3 —m.)
(b) All cubics which are elements of S(R) are singular. In particular S'(R) NUsyy, = 0.

(c) m =3 and fo(S'(R)NUs) C {2p1 + 2p2 — p3 — 1 — 12 — 13 ~ 0}, where the set on
the right side is a subset of R1¢6 as defined in Lemma 4.12 (ii).

Furthermore for each m € 3 the subset Wy, 13 C Vi3 of points fulfilling (a) is open and
dense.

Proof: The cubics in ®3 are exactly those defined by non-zero polynomials of the form:
a(z?z — x2%) + b(zy? — 22%) + c(ayz — 22) + d(y*2 — v2?), a,b,c,de C  (4.1)

This can be shown using the explicit linear conditions on the coefficients listed in the proof
of Lemma 4.18. Furthermore the condition to pass through any given point, translates into
a linear condition on the coefficients of a cubic. Hence S(R) is a linear subspace of the P?
of all plane cubics, as well as of ®3. For m < 2 we show that one of (a) and (b) has to be
fulfilled, using results from chapter V.4. of [Har77], similar as in the proof of Lemma 2.3.2
in [Bel98].

The condition on a plane cubic C' to be contained in S(R) is: C' passes through the
4 +m points Py, Py, P3,Q, Ry, ..., R, € P? and the tangents to C' in P; and @ both pass
through P,. The condition on the two tangents can be translated into a condition that
C' passes through certain points P{ and @’ which are infinitely near to P; resp. @ (cf.
Chapter V.3. of [Har77| for the definition of infinitely near points on a surface). Hence
S(R) can be seen as the linear system of plane cubic curves with assigned base points
Pi, Py, P3,Q, Ry, ..., Ry, P{, @, in the language of chapter V.4. of [Har77].

Assume that m < 2 and (b) is not fulfilled. We would like to say that then (a) is fulfilled
according to Corollary V.4.4. (a) from [Har77]. Firstly under our assumption, there is a
non-singular cubic passing through the 6 + m assigned base points. Hence, as required in
that corollary, no four of the points lie on a line and no seven lie on a conic (Bézout). But in
the formulation of Corollary V.4.4. only one of the points is allowed to be an infinitely near
point, while we have two such points. However looking at the proofs in [Har77] one realizes
that this is because the hypotheses in Corollary V.4.4 are carried over from Proposition
V.4.3., and that the hypotheses can be weakened for Corollary V.4.4. (a) to allow two
infinitely near points: Among the 5 + m points Py, Pa, P3,Q, Ry, ..., Ry, P{ there is only
one infinitely near point, so Proposition V.4.3. says that the linear system of plane cubics
0 defined by these points has no unassigned base points, and Corollary V.4.4. (a) says
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that dim? =9 — (5 4+ m). So in particular Q" is no unassigned base point of 9, hence, by
Remark V.4.0.2. of [Har77], dim S(R) = dimd — 1 = 3 — m. This implies condition (a)
(and shows that in general two infinitely near points can be allowed in V.4.4. (a)).

In case m = 3, we show that —(a) A —(b) implies (c). For every (C,R) € S'(R) N Us,
by definition of Us, C' is smooth. Now —(a) A —(b) implies that dim S(R) > 1, and since
smoothness is an open condition, that there is a (C’,R) € S'(R)NUs with C’ # C. For Ly,
as before, the line through P;, P, in P?, 3L, —C’ ~ 0 in PicP?. For i : C' < P? the inclusion,
i*L1 = 2Py + Py and i*C’ = 2P, + P + P3 + 2Q + Ry + Ry + R3. With 2P; ~ 2@Q hence
2P +2Py—P3—R1—Roy—R3 ~ 0in PicC. So fG((C, R)) € {2p1+2p2—p3—7'1—7'2—7‘3 ~ 0}

Let v31m : ®31m — (P2)™ be the morphism from the proof of Lemma 4.21. Set
Wiy = {R e P |dimv;!,,(R)=3—m}. (3—m = dim P34, — dim(P*)")

Since P34, is projective, and v3 ., is surjective for m < 3, we obtain that W3_, C (P2)ym
is open (and dense) by upper semicontinuity of the fibre dimension. For every R € V13,
one has ;! (R) = S'(R) = S(R). From this we conclude that W3y, = Wi, N Viip,
which implies that W5, is open and dense too. O

Lemma 4.24 Set D := {2p; +2py —p3 —r1 —rg —r3 ~ 0} C Ry . Define the following
subsets of @,

O3 :=Us:=®3, O4:=Us, O5:=Us, Op:=Us~ fi(D)
Then, for 3 <n <6, by definition we have inclusions

These inclusions are all open and dense. Furthermore:
(i) The Oy, and thus also the U,, ®,, are rational varieties.

(ii) Oy, has trivial Chow ring (i.e. A*(Op) = Q).

Proof: (i): The case n = 3 is clear by Lemma 4.18 (i).

The following is similar to the proof of Lemma 1.2.3. in [Bel98]. Recall the definition of
H from Definition 4.20, and note that H C H°(P? Op2(3)). If we denote by Op2(3) the
pullback to (P?)™ of the vector bundle Op2(3) living on the i-th factor of (P?)™, then we
can define a morphism of (geometric) vector bundles

H x (P?)™ == @71 Op2(3)

by sending a point (f;Ry,..., Rpn) € H x (P?)™ to the point (f(R1),..., f(Rm)) in the
fibre of @ Op2(3) over the point (R, ..., Ry,), where by f(R;) we denote the value of the
global section f € H(P?, Op2(3)) in the fibre of Op2(3) at the point R; € P2.

We define K3, to be the kernel of the evaluation morphism ewv, i.e. the preimage of the
0-section of the bundle @&, Op2(3).
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The fibre of K}, over a point R = (Ry, ..., Rp,) € (P?)™ we denote by K'(R). It corre-
sponds to the sub vector space of H which consists of 0 and all those elements of H which
define a cubic C' which passes through all the points Ry, ..., Ry,. Hence S(R) from Lemma
4.23 is the projectivisation of K'(R.).

The restriction K3y, 1= (K% m) Wi 18 @ vector bundle of rank 4 —m over W3, since
dim K’'(R) = dim S(R)+1 =4—m for all R € W3,,,. Let P(K34,,) be the projectivisation
of this bundle.

For 0 < m < 6, we have O34y, C Uy C P34, by definition, and it is easy to check that

O31m = Uzym N (P3 X Wag4n) (%)

The inclusions O34y, C Usgyy € P3yyy are open because Osyy, and Usyy, are defined by
intersecting ®3,, with open subsets of ®3 x (P?). Clearly O3, Usi., are non-empty.

Now P(K34m) — Wsiy, is a sub-bundle of the projective bundle ®3 x W3y, = P(H) X
Wsim, and P(K3im) = P31 N (P3 X Waym) as a subset of @3 x (P?)5. (For this, recall
that the fibre of P(K34,,) over any R € Wi, is S(R).) Then by (x), Op,43 is contained
in P(K34m). As we have seen O3, is open and dense in ®3.,,, hence also in P(K3,,).

But as projective bundle over the rational variety W3, C (P?)", P(K3,.,) is a rational
variety, hence the same is true for the open subvariety Os,.

(ii): This goes very similar to the proof of Prop. 2.3.1. in [Bel98|.
O3 = &)3 is the open subset of smooth cubics in ®3. But ®3 = P(H), and as stated in the

proof of Lemma 4.23, H can be described as the set of polynomials of the form
a(z?z — 22%) + b(vy® — 22%) + c(vyz — 22%) + d(y?2 — x2?), a,b,c,d e C

If d = 0, the defined cubic is reducible, thus &)3 lies inside the complement of the hyperplane
{d = 0} in ®3 = P3. Since &3\ {d = 0} = A3, Oj is an open subvariety of an A% and thus
A*(03) =Q

As shown above for m € 3, O34, is an open subvariety of the projective bundle K3, :=
P(K31m) over Wiy, But Wity € Vayy C (P2 L1)™ =2 AP thus A*(W,,43) = Q. This
implies that A*(K,,3) is generated as Q-algebra by the first Chern class ¢1 (O Rapm(1)); by
Thm. 3.3. in [Ful98]. If i : O34y — K344y, is the open embedding it thus suffices to show
that h*c1(Og,,, (1)) = 0 to proof (ii). Since this pullback is equal to c1(Og,  (1)|05,,,):
it suffices to show that O, (1) has a global section vanishing nowhere on Os,,. Choose
a linear form on H that vanishes only on the codimension-1 subspace S = {d = 0} of H,
i.e. choose the linear form d. It gives rise to a global section of O, +m(1). This section
vanishes nowhere on O3, since O3, is contained inside the complement P(H) X W3 1, \
[P)(S ) X W3+m. O

Proposition 4.15 for n = 1,2, and Lemma 4.22 (i) together with Lemma 4.24 (i) for
3 < n < 6 immediately imply:

Corollary 4.25 Forn <6, §1,n 18 rational.
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Proposition 4.26 Forn < 6:
(i) A*(Rin) = Q
(ii) The Chow ring A*(Ry,) is spanned as Q-vector space by the boundary cycle classes.

Proof: (i): For n = 2 we know this by Proposition 4.15 (ii). We proceed by ”induction”
on n, although the reason for doing so may only become apparent later.

For 3 < n < 6, we call f}, the restriction of the open embedding f, : U, — Ry, to the
open subsets O,, C U,,. By Lemma 4.24 (ii) the images of these f; have trivial Chow ring.
For 3 <n <5, O, = U, and thus the image of f], is Ry, (B%n) UBén) UB:,()n)) by Lemma
4.22 (if). For n = 6 the image is Ry 6~ (B\” UB{’ UB{Y UD) (D defined in Lemma 4.24).

By the exact sequence of Lemma 1.39, to get A*(R1,) = Q it now suffices to show:

1. For all i € 3, A*(Bi(n)) = Q. If n = 6 also show A*(D) = Q.

2. The classes [Bi(n)] in A*(R; ) are all equivalent to 0. If n = 6 show the same for [D].

To show the first, note that by Lemma 4.13, for i € 3 and n > 3, Bz-(n) is isomorphic to
an open subvariety of Ry ,_1, and D is isomorphic to an open subvariety of Ry 5. Now we
apply our induction hypothesis, and get ”1.”. The part ”2.” will be shown in Lemma 4.27
below.

(ii): We know from Summary 1.48, that A*(M,,) is spanned by boundary cycle classes.
Using this, we show (ii) by “induction” on n. For n = 1, by Prop. 4.15, R;; = P! and so
(ii) holds here. Denote by Y;, the boundary El’n N\ R1 . Then by the exact sequences

Ak(Yn) — Ak(ﬁl,n) — Ak(Rl,n) —0 (k S NU)

and by (i) we have A"(R; ) = A""1(Y,,) for r > 1 and A°(R;,) = Q. Now Y, is the union
of boundary divisors D1, ..., D, and by the proof of Lemma 4.4 each D; is the image of a
finite gluing morphisms (p, : Rp, — R1,. Here Rp, is of the form EL@\I)U{,} X MOJU{O}
if D; = Dy with I Cn, |I| > 2.1If D; is D or Dg, then Rp, = Mg pu{e.0}- The Q-vector
space A*(Y;,) is generated by the subspaces ((p,)« A*(Rp,), and the same holds for all
A"(Ry,) (n > 1). But all the moduli spaces the Rp, are products of, have Chow groups
generated by their boundary cycle classes, by the induction hypothesis and Summary 1.48
mentioned above. Furthermore if one pushes forward by an (p, a boundary cycle class,
then the result is a boundary cycle class of Ry, (cf. Remark 4.6 (iii)). Thus all A™(R;,,)
for » > 0 are generated by boundary cycle classes. U

Lemma 4.27 (i) For all 3 <n <6, i € 3 the classes [Bi(n)] € A*(Ry1,) are equivalent to
0.

(i1) The class [D] is equivalent to 0 in A*(Ry).

Proof: (i): First note that it suffices to show that the class of B = {p; — pa ~ prym} is
equivalent to zero on Ry, since every class [Bi(n)] is obtained by pulling back [B] via the



4.3 Rationality of Ry, and A*(R1,,) = Q, for n < 6. 141

forgetful morphism 7 : Ry, — Ri2, and renaming indices if necessary. But we already
know by Proposition 4.15 (ii), that A*(R;12) = A°(R12) = Q. Since B is of codimension
1, thus [B] =0 in A*(R12).

(ii) For 76 : R16 — M 6 the forgetful morphism and for D’ the set {2py + 2ps — p3 — 11 —
ro — 13 ~ 0} in My (cf. Lemma 4.12), we have D = 75 '(D’) and hence [D] = 77[D'] in
A*(Ry6). But A*(M;6) = Q according to Theorem 2.0.1. of [Bel98], hence [D'] =0. O

Remark: In [Bel98] isomorphisms from rational varieties with trivial Chow ring onto open
subvarieties of M, are constructed for n < 10, similar to our embeddings O,, — R1, for
n < 6. The complements of these open subvarieties of M7, are composed of subvarieties
of the form {)_ a;p; ~ 0}. Belorousski shows that these closed subvarieties define classes
that are equivalent to 0 in the Chow ring A*(Mj ;). From this, as in the Lemma above,
A*(M ) = Q follows.

To show that the classes are 0 in A*(M ,,), moduli spaces of pointed admissible covers are
utilized. We denote by Fg,b’n the moduli space of n-pointed admissible double covers of
stable b + n pointed genus 0 curves, defined like in the proof of Proposition 4.15 (i). The
covering curves in such a cover are of genus g = %b — 1. Usually one denotes this moduli
space by Fg,g,n instead.

If we choose b = 4 always, the covering curves are of genus 1. Now one can define a
surjective morphism X : Ha 4, — M1, corresponding to only keeping the covering genus
1 curve with the n marked points, and forming the stable model. This A is a proper
morphisms with fibre-dimension 1. Also there is the finite surjective morphism 7 : Ha 4., —
Mo 44y, corresponding to forgetting the cover and only retaining the underlying rational

curve with its marked points.

Denote by D a closed subvariety of M, that Belorousski wants to show to have class
[D] = 0in A*(M; ;). The boundary of Hs 4, consist exactly of those points lying over the
boundary of Mg ,+4 with respect to 7. But on the other hand the images of some of the
boundary cycles of Hg 4, under A meet the interior of M ,,. Usually D will be the image
of such a boundary cycle B of Hg 4, under A (or more precisely, it will be the intersection
of such an image with M ;). One can pull back Keel relations from Mo,n+4 to F2,47n via
7, and use them to express B in A* (F2,4,n) as linear combination of other boundary cycles
By, ..., By of Ha 4y, such that A\(By), ..., A(B,) all do not meet M ,,. This will then prove
[D] =0 in A*(My ).

It is possible to define a morphism )\ : FQA,” — RLn and to use it to apply Belorousski’s
method directly to Ry . (This morphism is constructed similar to the one in Proposition
4.15 (iii).)

How do boundary cycles B C FQAJL, such that A(B) meets M, look like? There are for
example boundary divisors which generally parametrise covers X — D with the following
properties: The covering curve X has one smooth rational component Xy and one smooth
genus 1 component X;. Xy meets X; in only one point and X carries exactly one of the b
ramification points p; and one of the n marked points g;. It is also possible that X consists
of two disjoint components X(()l) and X(()Q) which are mapped to the same component of D,
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and meet X7 in two different points that are mapped to the same point on D. In this case

X(()l) carries a marked point ¢; and Xéz) carries a marked point g, and X contains none

of the b ramification points. These covers arise as limits: In the first case let the marked
point g; approach the ramification point p;. In the second case denote by q} the second
point in the fibre of the admissible cover that contains the point ¢;. Then let ¢ approach
q;. In both cases the stable model of X is a smooth genus 1 curve. But the marked points

on this resulting curve are in a special position.

We also remark that it is possible to define a finite surjective morphism F2747n — Ml,nﬂ
(and FQAJL — El,nﬂ)’ by interpreting the first of the 4 ramification points as a marked
point on the cover. But this morphism may be less useful than A here, since it maps fewer

boundary divisors of F2747n to the interior of Mlﬂ’b-‘t-l'

4.4 The Chow rings A*(R;,) for n < 4

First we prove relations involving the banana cycle classes of Rj,, which are the only
boundary cycle classes we do not already know to lie inside 7;; A*(M1,,) by Lemma 4.4.

Lemma 4.28 (i) In A*(Ry3): d ay = 24,

a {1}’
(ii) In A%(Ry3): dg,{i} = 2dy, (y for i = 1,2,3. Thus d’o’é7{i},d;{i} € 753 A2(My3) for
i=1,2,3.

iii) In A%2(R13): For all possible {i,j,k} =3
(ii1) : p J
/! _ /! /! u /!
2dy, 11y = do 1ijy + do iky — do,gixy T do3-
(ZU) In AQ(E1’4):
(do, gy — dagiy) = 2(dg g — dogjy)  forall i j €4 (4.2)
( g,{li} — g,{lj}) = Q(dg,{lz} — dg,{lj}) fOT all Z,j (S {2,3,4} (43)
And for all {i,j,k, 1} = 4:
dpy iy o g T 45 gy + 45y = o gy + 4o gigey + 4o ik + doa (4.4)
= Adg iy + ooy + D iy + dp ) (45)
(v) In A3(Ry4), for all possible {i,j,k, 1} = 4:
1"  oqr 1" or 1" _ ogr
Do,y 45y = 2oy fisp Qoqiy diiky = 2o,y by Do gy iy = 298,051 4i-
! r 1 r 1 r s * *x (AT
Sodg, iy igyr Go iy 167y Qoniy figmye By, (ikys B (i) o7y 94 D igy gy e i 73 AT (M 1a).
Furthermore
1" Y T _ o
&y gijy = Doy ey Dy gigy = DB (ki hry-
Hence also dq,{z‘j}’ d’ iy €71 A* (M 4).
i) In A%(R1.4), for all possible {i, ], k, 1} = 4:
(iv) : P j

2dj3 1igy iy = 90, gh iy 90003y — 90,40y 40y T 90, (i)
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Proof: (i): The subvarieties D’ ) and D! 1 of the rational variety Rj o, are points, and
thus [DY {1}] (Dl {1}]. But due to the different number of inessential automorphisms of

the prym curves parametrised by these points, for the Q)-classes we get
dy 1y = (D5 3] = 2[D;, 1yl = 245, (13-

(ii): For ¢ € 3 let m; : Ry 3 — ELQ be the morphism forgetting the i-th marked point. We
% _ 3

have: For ¢ # j € 3, w}d! o= dg,{j} + d’ci’{k} and widy, (n = dj 4 +dj gy, 7 where k

is the unique element of 3 \ {i,j}. Pulling back the relation proven in (i) by the different

forgetful morphisms 71, 7o and 73 we obtain

dg,{2} + d:;,{:%} = 2(d;,{2} + d;,{za}) (4.6)
do (1) + da g3y = 205 1y + o, g3)) (4.7)
dy 1y +da 21 = 2(dp, 1y + 0, g2y) (4.8)

Combining these equations we get the equations of (ii). They in turn imply that d” ., and
o, {i}
d { y are both rational multiples of the class 739, iy = da{ y T 2d, Ly

(iii) First we prove for all i # j € 3:
! Ui
da iy + dagy = dogiy + dos

From this the equations of (iii) follow directly. The proof is analogous to the proof of
Lemma 3.2.1. in [Bel98]. The cycles involved are all contained in the divisor Dj C Ry 3.
We use the finite surjective gluing morphism

_ L
Coy s Mo 123,00y = Do C Ru.

(Cf. Remark 4.6.) Choose any i, j, k with {7,7,k} = 3. On M07{172737.70} >~ My we have
the Keel-relation (cf. Summary 1.48, also for the notation used)

(i8] + [jo] = [ij] + [eo].
Pushing this relation forward by ¢ py gives the equation
U U _ /! /!
2(dy, i + do gy) = 2(dg ;5 + do3)-

((D(/)/ is 2 : 1 on any of the divisors involved, except on [eo], where it is 1 : 1. This is
compensated by the fact that the general curve parametrised by Do 3 = ¢ 6'([.0]) has two
automorphisms.)

iv): This time, for j € 4, let m; be the morphism R; 4 — R 3 forgetting the j-th point.
J b

Fori e 3 and j € 4\ {i} we have ﬂ'*d;{ = dg’{i} +dg7{i]} and widy (= dy o+ dp

o, {i

Pulling back the equations of (ii) by all the possible 7; we obtain

3Here d; (1 denotes two different classes on the right and on the left side, since our notation is unige
only if also the n of El,n is given.



144 Geometry of ﬁlm (and ?Ln) for small n

forming several different combinations of these equations we get the equations (4.2) and
(4.3) of (iii).

Equation (4.4) of (iii) is proven analogous to Lemma 3.4.1. of [Bel98]: The cycles involved
are all contained in the divisor Djj C Ry 4. We use the gluing morphism
Cop Mo, 4000 — Dj C Rig
existing by Remark 4.6. On M07{17-~474,.70} we have the Keel-relation
[ik] + [igk] + [ikl] + [igkl] = [ie] + [ijo] + [ile] + [ijlo].
Pushing this relation forward by (py gives equation (4.4) multiplied by 2. (Like in the
proof of (iii) we have to take into account automorphism numbers.)

Pushing forward the same Keel-relation by the gluing morphism
Cpp i Mo g1, 400 — Dy C Ria

instead of (pr, and then applying Lemma 4.4 (ii), yields equation (4.5).
To prove most of the equations in (v) and (vi) we use for {i,7,k,l} = 4 the gluing mor-
phisms

CDyijy 1E1,{k,z,.} X MO,{Z’J,O} — Dyyy C Ry 4,

CDyijny : Ry (1,01 X Mo (i jk0t = Dyijiy C Ria
By (ii) we have the equation d, @y = 2d7, gy in A*(Ry3). Pushing d// @ ®1=2d; (, ®1
forx.zvard by (p,, ;, vields d’é,{x},{m = Qd%{l},{ij}’ Also by (ii) we know dgi{.}@)l = 2d;’{.}<§>1,
which, pushed forward by C.D{m gives d@{ij},{ij} = 2dg7{ij}7{ij}. In A*(R q1,4}) the equatl(?n
dg7{l} = ng,{l}} holds by (i). We puslidg’{l} ®1= 2d;,{l} ®1 for.ward by (D, to obtain
d:)/z,{l},{ijk} = 2d’;¥7{l}7{zjk}. By (iii) on Ry g1 41 we have the equation:

s

2dy, 1oy = do gory + o gory — do gy + do s
We push this forward by (p,,,, and obtain the equation of (vi).
It only remains to show the equations in (v) involving dg {7} and d; {ij} They are proved
using the boundary morphisms

D oy Mo igior e} X Mogriore0y = D gy C Ria,
and  Cpr o Mo gijerea) X Moihor00) = D gy C© R
Now d7 1y = (Cpy )« (L@ [k, .1])3101 i tray qry = €0y )+ (1@ [K, 1)) But the Keel-
relation [k,01] = [k,!] holds in A'(Mg k0, 0,}), thus df;,{ij} = dg7{kl}{kl}' The relation
involving d& {ij} is proven analogously, using ( D oy instead of ¢ DYy O

Corollary 4.29 (i) For n =1,2,3, the pullback 7 : A*(M1,,) — A*(R1,,) is an isomor-
phism of Q-algebras.

(i) The Q-vector space A*(R1,4) is spanned by the subspace 77 A*(M1.4) together with the
class dg,{u} € A%(Ry4).
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Proof: The pullback 7,7 is injective for arbitrary n since 7, is finite and surjective. We know
by Proposition 4.26 that the Chow rings A*(R;,) for n < 4 are generated by boundary
cycle classes, and by Lemma 4.4, among these classes only the banana cycle classes can
fail to lie in 7" A*(M1,,). One can list easily all the banana cycles that exist on Ry, for
n < 4 using the list of boundary cycles of M, in Section 4.1.1 and Lemma 4.4 (iii).

(i): The banana classes d (iy do iy € A%(Ry3) lie in 75 A*(My3) by part (ii) of Lemma

(e o i
4.28. The other banana classes that exist on 12 resp. 1 3, can not cause problems, since

they are all of dimension 0. So by the rationality of Ry and R; 3 they are equivalent to
a rational multiple of any other point on El,g resp. Ry 3.

(ii): The banana classes of Ry 4 of dimension > 0 lie in A?(R;4) and A3(R;4). All the
banana classes in A3(R;4) are shown to lie inside 7} A*(M4) in Lemma 4.28 (v).

So A*(Ry,4) is spanned by 7;: A*(M 4), and the banana classes in A?(Rj 4), i.e. the classes
of the form d/alz,{i}’ dy, 1y dg’{ij} or djg (v Using the equations (4.2) and (4.3) in Lemma
4.28 (iv) we get
Vij €4 do gy =2 gy = dy gy — 2
=Vi,jed 2dg7{i} — Tzféa,{i} = Zd/olc,{j} - 7'4*50(’“}
=Vijed (dy gy —dy ) €5 A (M)

Analogously one shows

Vij €4 (o — dogy) (500 — da ) (500 —dspp) € 78 A"(Maa)

This, ‘Bgether with dg’{i} + 2&;7“} = Ti 0o} € T4 A*(Ym), and d’ﬁ’v{h‘} +2dj 1y €
7y A*(M1,4), implies that A*(Ry4) is spanned by 77 A*(M14) and say the two banana
cycle classes dﬁ,{l}? dg,{lz}‘ But if we choose (4,7, k,1) = (1,2,3,4) in equation (4.4) from
Lemma 4.28 (iv) , it can be rewritten as

2dy, 1y +2d5 119y = (dyy 1y — doy g3y) + (45 19y — d5 114y) +do 13y + o 123y + o 124y + doa-

Every summand on the right hand side lies in 7; A*(M} 4), either by what we have just
shown or by Lemma 4.4. So d&{l} + dg,{m} € 75 A*(M,4), and claim (ii) of our Lemma
follows. 0

We cite the following Lemma from [Bel98]:

Lemma 4.30 (3.4.8. in [Bel98]) The following 23 linearly independent classes span the
Q-vector space A> (My4):

do{ijy (6 classes),  do qijry (4 classes), o4,  Ogijy qry (9 classes),

ey Opgeap Oy e
Ogjk,(1iyy (3 classes), Oy (o34)y,  Of2,{134}}
The 23 x 23 matriz of the intersection numbers of these 23 classes has full rank. (In [Bel98]

this matriz is not written down, but it is stated that one can compute it by Fabers algorithm

[Fab99].)
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Lemma 4.31 The class dg (12} € A2%(Ry4) is not contained in 7} A*(Mi.4).

Proof: We choose (i,j,k,1) = (1,3,2,4) in equation (4.4) from Lemma 4.28 (iv), and
multiply it by d’A (12} Since every boundary cycle class on the right hand side of (4.4)
can be expressed as a product of dj with some other boundary divisor class, we can apply
Lemma 4.8 (ii) and obtain:

o1y 12y + Ao poyd 1oy + A5 15y ds 1oy + A 14y 10y =

The intersections dg,{m}dg (12} dgmdé (12) are proper, and each of Dg’{m} N Dg,{m} and
Dg (a0 Dg, (12} is a point which parametrises a prym curve without non-trivial auto-
morphisms. Thus dg {13}0% (12) = dﬁ {14}dg, {12y = 1. Note that the intersection numbers
d’ {1}dg (12) and d’ {2}dg (12) must be the same since we can replace one by the other
by exchanging the names of the indices 1 and 2. Thus d” {1}d5 (2 = =d {2}d:3’ () = = -1

Using such ”swapping of indices” arguments, one can show that for all {7, j, ', j'} = 4:

/! // /!
da (iyTa 5y = Tagiy@a iy Doy @541y = Doy @315y

/! /!
and  d (4d5 (51 = df iy 10

Multiplying equation (4.4) by dg7 (14} We get
/! /! i i 1! /! /! 2 _
o 1395 14y T Ao (2395 {12y + A5 13y 45 12y + (dp 14y)” = 0

Inserting d {1}d5 (4 = =d {2}dg (1ay = —1 and d’ {13}dg (1ay = 1, yields (dg {14}) =1.
We obtain (d/37{14}) = 1 by an analogous argument, using equation (4.5) instead of (4.4).

Here we have to take into account, that the curve parametrised by the point Dg (13} N

DE,{12} or Dg7{14} N Dg,{m} has 8 automorphisms.

Lemma 4.30 gives 23 classes which generate A*(M74). We pull back these classes via 74.
Let M be the 23 x 23 matrix of intersection numbers of the pulled back classes. M is just
the intersection matrix of Lemma 4.30, multiplied by deg 74 = 3, and thus has full rank.

We want to determine the intersections of dg (12} and dg (12} with these 23 classes gen-
erating 7} A*(M14). By Lemma 4.8 (ii) the intersections with all of the first 11 classes
are 0. The class 7 019y 34y = df12} {34} intersects both dg,{u} and dg,{m} properly. The
points Dg (23N D19} (34) resp. Dg {2y N D12} 434y parametrise prym curves with 2 resp.
4 automorphisms. (The first prym curve has a non-trivial automorphism swapping the
two non-disconnecting nodes, the second prym curve caries a lifting of this automorphism,
and furthermore its number of inessential automorphisms is 2.) Thus dg {12}d{12}{34} =3
and dg7{12}d{12}{34} = %. It is easy to check that the components of all the other 11 pulled
back classes, do meet neither Dg {12} hor Dg {12} SO the intersections with these classes
are 0. From our calculations above we know (dj {12}) = 1 and (dj {12}) = 1. We get
d” 5.{12} djs. (12; = 0, since DB (23 N Dj 1oy = = (). Putting together thls mformatlon we see
that the 25 x 25 matrix of intersection numbers of the 23 pulled back classes together with
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the classes dg7{12} and dg{w} is of the form:

M
L1
2 14
1
3 1
1 1
1 8

The empty spaces in the matrix are meant to be filled by zeros. Since the 23 x 23 matrix
M sitting in the upper left corner has full rank, it is easy to see that the whole matrix
has at least rank 24. So dimg A%(R; 4) > 24. Together with Corollary 4.29 (ii) this implies
that dimQ A? (§174) =24 and dg7{12} ¢ TZ A* (M174). O

Theorem 4.32 (i) The Chow ring A*(Ry4) is given by

QID1, ... Dia, df 13)/1

where D1, ..., D19 are the 12 divisor classes obtained by pulling back the 12 boundary di-
visor classes of M14, and where I is an ideal described below. The dimensions of the

homogeneous pieces of the Chow ring are 1,12,24,12,1. The pairing
A¥(Ri4) x A**(Ri4) = Q

is perfect.
(ii) The ideal I is generated by the union of:

1. All the 56 relations one obtains by pulling back the generating relations of the ideal K,
described in Summary 4.10 (v). (55 are in codimension 2, one in codimension 3.)

2. The following relations involving dg (12} (12 in codimension 3, one in codimension 4.)
Here we denote the pullback of a boundary divisor 6. of MIA via T4, by the same symbol
0. again:

1/

6{13}dﬁ7{12} - 0, 5{14}(1%7{12} = O, (5{23}dg7{12} - 07 6{24}(1%,{12} - 0

V{i,j, k} C{1,...,4}: (5{ijk}dg7{12} =0 (4 relations),
04 g,{m} =0, do %,{12} =0,
25{12}dg,{12} = dg5{12}(5{123} + 5{124} - 5{34} +04),
203435 119y = dpd(3a3 (0{134) + Og234y — Og12) + 0a)

(d5 12))” = 20462340134
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Proof: (i): The Q-algebra 7} A*(Mi,4) is generated by Dy, ..., D12, since these are the
pullbacks of the generators of A*(M7 4) (cf. Summary 4.10 (iv)). So together with the class
dgﬁ (12} they generate A*(R; 4) by Corollary 4.29 (ii). This Corollary also implies together
with Lemma 4.31 and Summary 4.10 (iv) that the dimensions of the homogeneous pieces
are 1,12,24,12. 1.

The perfect pairing claim in (i) follows for k£ # 2 from the analogous statement in Summary
4.10 (iv), since the only graded piece of the Chow ring which is not contained in 7; A*(M 4)
is A%2(Ry4). For k = 2 it follows from the fact that the intersection matrix in the proof of
Lemma 4.31 has rank 24.

(ii): We say that a relation between elements of Q[D1, -'-,D127dg7{12}] is true if it holds
in A*(Ry14). It is clear (since 7] is injective) that the pullbacks of the 56 generating
relations of K yield 56 independent true relations. We know that A3 (§174) and A?* (EIA)
are generated by products of the Dy, ..., D1s. The degree 3 part of the polynomial ring
Q[Dy, ...,Dlz,dg7{12}] with adjusted grading deg dg,{m} := 2, is spanned over the degree
3 part of Q[D1, ..., Di2] by the 12 elements of the form Did%{w}. So if I’ is an ideal
generated by the 56 old relations and 12 independent true codimension 3 relations involving
the elements Did/’g”{m}, we get that the degree < 3 pieces of Q[Dl,...,Du,dg’{lQ}]/I’
and A*(R;4) coincide. Furthermore the degree 4 component of Q[Dy, ..., D12, dg’,{u}]/ll
is then spanned by products of the D; together with the class (dg7{12})2. So if I is an
ideal generated by I’ and one true codimension 4 relation expressing (dg {12})2 in terms
of products of the D;, then Q[D;, ...,Dlg,dg{u}]/l = A*(Ry,4). This includes that the
degree > 5 homogeneous parts of Q[D, ..., D12, dg7{12}]/1 are 0. To check this, note that
every element of such a homogeneous part can be generated by the Dy, ..., D12, and that
the sub-algebra of Q[D;, ..., D12, dg’ {12}] /I generated by these divisor classes is isomorphic

to A*(My ) by definition of I and Summary 4.10 (iv).

Now the ideal I defined in (ii) is of the form just described, provided that the relations
we used to define it are true: That the new relations are independent as required, is clear
with Lemma 4.30. We will check that they are true:

The relation 506% (123 = 0 is true by Lemma 4.8 (ii). All the other relations of the form
Didg, {2y = 0 are obtained by observing that the divisors D; involved do not even meet
Dg{u} as sets. We calculated in the proof of Lemma 4.31 that (dg7{12})2 = 1. The in-
tersection 040 934)0(34} is proper, and the point Ay N Aggzgy N Ayzyy parametrises a prym
curve with 2 automorphisms. (There is an elliptic involution on the genus 1 component).

Thus (dg7{12})2 =1 = 20401234} 034}-

The remaining two relations are just the equations one gets from Lemma 4.28 (vi), if one
chooses {i,j} = {1,2} resp. {i,7} = {3,4}. All one has to do is to expresses the boundary
cycles whose classes appear in the equations in the natural way as intersections of boundary
divisors (cf. Remark 4.6 (i), Proposition 4.2). Here one also uses that Djg (34) = Dy (12} B8
subvarieties of Ry 4 and thus dg7{34} = dg,{u}')



Chapter 5

Orbifold cohomology of El,n

Following Nicola Paganis article [Pag08] where the Chen-Ruan cohomology H R(Ml,n) of
Mlm is computed as an algebra over the usual cohomology ring of M ,,, we do (nearly) the
same for le. For any n € N, the two moduli spaces Rlﬁn and gfn are isomorphic as coarse
moduli spaces, but differ slightly as stacks or orbifolds, since some of the singular objects
in gin have more exceptional components than their counterparts in Ry, which leads to
additional inessential automorphisms. Very similarly §1_,n is isomorphic to Ml,n as variety
but differs slightly as a stack. Accordingly H(’ER(gin) is not isomorphic to H}p(Rin)-
After examining H}, 5 (R1,,), we will (in section 5.5.6) remark on how HER(ELL) differs
from H{ 5 (R1y).

After providing the necessary general background in Chen-Ruan cohomology in the first
section, the second and fourth section of this chapter deal with the additive structure of
HY, R(Elﬂ)' The main results there will be the description of the inertia stack 11 (R ,) by
giving a decomposition into 1-sectors (Thm. 5.32), and Thm. 5.40 expressing the graded
Q vector space Hf p(R1,,) explicitly as a direct sum of H*(Ry,,), and known other coho-
mology spaces. Section 3 in between provides information about the simple banana cycles
of Elm, many of which appear as supports of 1-sectors. These are 1-sectors belonging
to inessential automorphisms, and they are responsible for the main differences between
H*(Ry,) and H*(My,,).

The fifth section is concerned with the multiplicative structure of H}p(R1,). Of course
here one would like to determine this ring as a (Q-algebra, in terms of generators and rela-
tions. But unfortunately since even the ring structure of the usual cohomology H *(El,n)
is far from known, this seems out of reach. (H*(Ry,,) is a part of H}.5(R1,).) What is
possible, is to (mostly) determine the structure of H}, ,(R1,,) as an H*(Ry ,)-algebra, in
terms of generators and relations. We determine independent generators of this algebra,
and many relations involving these generators (Thm. 5.58). For each n € N, these rela-
tions are all that exist, if and only if Hj,(R1,), the subalgebra of H*(R;,,) generated
by boundary cycle classes of Ry ., is already the whole even part H 2*(§17n) of the coho-
mology. For M, the analogue is an old but still not proven claim by Ezra Getzler, but I
do not know whether one should expect the same for Flmz
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Claim 5.1 (E. Getzler, [Get97], page 1) (i) Foralln € N, Hy,(M1,) = H*(Mi,).

(ii) The space of relations between the boundary cycle classes of My, in H*(Mi,,) is
generated by the pushforwards of (Keel-)relations from the spaces My, via the gluing
morphisms to the boundary cycles, together with the relations obtained on H*(Mj,,)
from the new relation in H*(M1 4) computed in [Get97].

In a sixth section we will use the information gathered in [Pag08] and the earlier parts
of this chapter about the automorphisms of objects in Mlm resp. Ry, to determine the
singular locus and the locus of canonical singularities of Ml,n and Elm. This will be done
in the style of [Lud07], and also implies a result about lifting of pluricanonical forms, that
is necessary to make computations of the Kodaira dimension of these spaces rigorous. In
the last part of this section we compute the Kodaira dimension of El,ll, which seems to
be the only El,n for which the Kodaira dimension was not known before.

The results on H} (Ri,,) obtained are mainly relative to H*(Ry,,). Unlike to the case
of Ml,n, whose cohomology was investigated in work of E. Getzler, not much is known
about H*(Rj ). In an appendix to this chapter (section 5.7) we show that the Chow-Rings
A*(Ry ) computed for n < 4 in section 4.4 coincide with H*(R;,) via the cycle map. So
for n < 4 our results determine the structure of Hf 5 (R1,,) as a Q-algebra.

5.1 Orbifolds and the Chen-Ruan orbifold cohomology

We give a short summary of the basic definitions and results of Chen-Ruan orbifold coho-
mology, mainly from [CRO04], [Pag06] and [Pag08].

Definition 5.2 Let X be a paracompact Hausdorff space.

(i) Let U C X be open. Then a complex uniformising system of dimension n for U is
a triple (V, G, p, ) such that: V' is a connected open subset of C", G is a finite group,
p: G — Aut(V) a group homomorphism (not necessarily injective), where Aut(V') is the
group of holomorphic automorphisms of V. And w : V. — U is a continuous map that
factors through the quotient V/G := V/p(G) and induces a homeomorphisms V/G — U.

(ii) An embedding of complex uniformising systems (V,G, p,7) — (V' G’ p/,7') is a pair
(p,\), where ¢ : V. — V' is a holomorphic embedding, 7 = 7’ 0 ¢, while A : G — G’ is a
group homomorphism such that ¢ o p(g) = p'(A(g)) o ¢.

We will usually suppress the p in our notation of uniformising systems.

(iii) A complex orbifold atlas on X is a family V of complex uniformising systems (V, G, )
such that: The family of the 7(V') covers X. Let (V,G, ), (V',G',7") € V. Then for every
point = € (V) N7w(V'), there is a (V,G",x") € V such that x € #(V") C #n(V)n=w(V").
Furthermore, if 7(V) C 7(V’) then there exists an embedding of uniformising systems
V.G, 7m) = (V',G",n").

(iv) Two orbifold atlases are called equivalent if they have a common refinement with

respect to embeddings of uniformising systems. A complex orbifold [X] is a paracompact
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Hausdorff space X together with an equivalence class of complex orbifold atlases on X.

(v) For a complex orbifold [X], it makes sense to say that a given uniformising system
(V,G,m) belongs to the orbifold. For each point x € X, there is a uniformising system
(Vi, Gy, Tz), belonging to [X], such that: V;, is the complex n-ball centred at o, 7~!(z) = o,
i.e. G, fixes 0. One calls G, the local group at z, and calls [X] a reduced orbifold if G,
acts effectively on V, for every z € X.

Definition 5.3 (i) For a complex orbifold [X] we define the k-th inertia orbifold (or
inertia stack) I, ([X]) to be the set of all tuples

Ik([X]) = {(SE,g)|IE €X, g= (glv '--79,14:)7 g1,--, 9k € GCL‘}/ ~

where ~ is defined by: (z,(g1,...,9%)) ~ (2, (g}, ..., g},)) if © = 2’ and there is a g € G,
such that ggjg_1 = g;. for each j € k. Note that ~ is trivial if G is abelian. In case k =1,
L([X]) = {(x,9)}/ ~ is endowed with an orbifold structure by charts

T(ayg) : (Vi Cl9)) = Vi /C(9g)

around each point (z,g) € I;([X]), where Vi = Fix(g) is the subset of V, fixed by g, and
C'(g) is the centraliser of g in G,. For general k this is generalised to charts

T(z,g) + (ngv C(g)) - Vzg/c(g)

around (z,g) € Ix([X]), where V£ := V' NV n...NVZ* and C(g) = C(g91) N C(g2) N
. NC(gk).

(ii) For any k there is a forgetful morphism xy : I ([X]) — [X], sending (z, (91, ..., gx)) to
x. The connected components of I ([X]) are called the sectors of I ([X]) or the k-sectors
of [X]. If [S] C I([X]) is such a sector, we usually denote it by (Y, g1, ..., gr), where
Y := xx([S]) is called the support of [S] and gi,...,gx are the group elements belonging
to some point (z, (g1, ...,9x)) € [S]. Note that Y and (g1, ...,gx) determine [S]. Also note
that one sector of I;([X]) is ([X],1) where 1 stands for the unit in G, for any = € X.

The term “k-sectors” is not really standard. Usually the 1-sectors except ([X], 1) are called
the twisted sectors, while ([ X], 1) is called the untwisted sector. The 2-sectors are sometimes
called double-twisted sectors. But we will not use this terminology often.

(iii) For every 2-sector (Y, g, h) C I»([X]), there are forgetful morphisms:

(X1,9)

(X3,gh)

By the same symbols we denote the forgetful morphisms p; : I2([X]) — I1([X]), where p;
(for 7 € 3) is the morphism obtained as the union, over all 2-sectors (Y, g, h) C I2([X]), of
the p; introduced before.
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Definition 5.4 Let V be an n-dimensional C vector space, ¢ an automorphism of finite

order mon V.

(i) Then one can choose a basis of V relative to which ¢ is represented by a diagonal
matrix M (y). If ¢ is any primitive m-th root of unity, then

¢
M(p) =
¢hn
for appropriate 0 < b; < m. We define the age of p with respect to ¢ to be

1 n
age(,¢) = — > bi
i=1

This is also called the Reid-Tai sum of ¢ with respect to (. Note that this sum depends
on ¢ but not on the chosen basis of V.

(ii) For (3 := 2™ we denote a(p) := age(y, (1) and call it the age of .

(iii) For a point (z, ¢) € I;([X]) for some orbifold [X], ¢ acts on V, fixing the origin, and
the action on this complex n-ball can be linearised and extended to C". Then we define
a(x,p) = a(p) for this action of ¢ on C". For a sector (Y, g) of I([X]), a(z, ) is the
same for all (z,¢) € (Y, g). We define a(Y, g) := a(x, ) for any (z,¢) € (Y, g), and call
this the age of (Y, g)

Definition 5.5 Now we define the Chen-Ruan cohomology ring H ,([X]) (with rational
coefficients) for an orbifold [X].

(i) Denote by H*(...) the usual singular cohomology with coefficients in Q. By H*([Y]) of
a orbifold [Y] we mean H*(Y) of the underlying topological space. On H*(Y) the usual
cup-product U is defined. (We denote it by “ U ” here, but after this section will return

to our usual convention and write it as “ - 7.)

(ii) As a Q vector space:

Heg([X]) = H*(L([X]) = o, H*((Y,g))
(Y,g) sector of I([X])

(ili) HER([X]) is made into a graded vector space by setting for d € Q

HEp([X]) = D HI729((Y, g)).
(Y,g) sector of I7([X])

This grading is sometimes called the age grading, in general Hg r([X]) is non-zero also for
some d € Q \ Z.

If we write H*((Y,g)) for a 1-sector (Y, g) in the following, we usually interpret it as a
subspace of H} ([ X]).

(iv) On HER([X]) a product * is defined as follows: If p1, po, p3 are the forgetful morphisms
I([X]) — 11 ([X]) as defined in Def. 5.3 (iii). Then for two classes o, f € H{p([X]):

ax = (p3)« (Pi(a) Upz(B) U ciop(E)),
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where U is the usual cup-product, and E is the Chen-Ruan excess intersection bundle on
I5([X]) as defined below.

If there are 1-sectors (X1,g) and (X9, h), such that a € H*(X1,9) and 8 € H*(X3,h)
then pi(a),p5(8) € H*(Y,g,h), and it suffices to know E(yg 4y := E|(y,g,») t0 compute

pi() Ups(B) U ciop(E) = pi(a) Ups(B) U cop(Ey,g,n))
In this case ax 8 € H*(X3, gh).
(v) The CR-excess intersection bundle Ey, ) on a 2-sector (Y, g, h) is defined as follows:

Let G be the group generated by g and h. The fundamental group 71 (P! \ {0,1,00}) is
generated by tree small loops 70, V1, Vee arround the points 0,1,00 € P!, and we have
Y - Y1 = Y'. Any group homomorphism 1 (P' \ {0,1,00}) — G corresponds to a G-
principal bundle on P\ {0,1,00}. Let 70 : C — P'\ {0, 1, 00} be the G-principal bundle
corresponding to the morphism defined by vo — g, 71 + R, Yoo = (gh)~!. This bundle
can be uniquely extended to a ramified G-Galois-cover 7 : C — P!, with C a smooth
curve. G acts on C and so also on H'(C,0¢). Let f : (Y,g,h) — [X] be the restriction of
X2 : Io([X]) = [X]. Then one defines:

Eygn = (H'(C.0¢) ®c f*(Tix)) ",

where Tix] denotes the orbifold tangent bundle of [X] (cf. Example 2.4 of [CR04]), and
where (...)¢ denotes the subspace of G-invariants. Since H'(C,O¢)¢ = 0, and G acts
trivially on Ty, we also have

Etygn = (H'(C,00) ®¢ Ny[X])°,

where Ny [X] is the normal bundle, i.e. the cokernel of Ty — f*(Tjx)).

Remark 5.6 The pullbacks in (iv) of the above definition are pullbacks via morphisms of
orbifolds, i.e. behave like pullbacks via morphism of stacks and can be calculated locally
on uniformising systems. Later when we compute such pullbacks for moduli spaces of
spin/prym curves and their sectors, and are interested in how they act on cycle classes
coming from the Chow ring, we thus have to compute pullbacks over the corresponding
morphisms of stacks, or equivalently compute the adjusted pullbacks as introduced in
Summary 2.6 (iv). (Also cf. Summary 2.4 (iii).)

Summary 5.7 (i) The CR-Product x is associative, and its restriction to H*(([X],1)),
i.e. to the “untwisted sector”, coincides with the usual cup product on X. Also * respects
the age-grading.

(ii) For (Y,g) a 1-sector of [X], and (Y,g~ 1) the sector “inverse to it”, we have:

a(Y,g) +a(Y,g 1) = codim(Y, [X]) !

i) For (Y,g,h), (X1,9), (Xo,h), (X3,9h) and Exy, ) as above:
(Y,g,h)

rk(Ey,gn) = a(X1,9) +a(X2,h) + a(X3, (gh)™1) — codim(Y, [X])

!The codimension of a sub-orbifold is defined as the codimension on the V’s of the uniformising systems.
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(iv) If all local groups of [X| are abelian, then for each k € N, the forgetful morphism
Xk : Ik([X]) = [X] restricts to a closed embedding (Y,g) — [X] (with image Y ), on every

sector (Y, g) of It([X]).

5.1.1 M,,, R,n, S, as complex orbifolds

By the results from section 1.5, Mg,m Eg,n and gg,n are endowed with a complex orbifold
atlas in a natural way: For example for every point [€] € M, locally around [€], M, is
isomorphic to the quotient (B, by)/ Aut(€), where (B, bg) is the local universal deformation
space of €, by Summary 1.30 (v). Analogous results hold for R,, and S,, by Summary
1.31.

We will for the rest of this chapter always consider our moduli spaces as orbifolds with this
structure defined by the deformation spaces. We stick with our definition of automorphisms
of spin or prym curves from Def. 1.11 (ii). So our automorphism groups are smaller as
if we would have included an isomorphism of the spin resp. prym sheaves in the data
of our automorphisms, as done for example in [Cor91] and [Lud10]. To be more precise,
for any spin curve X of Sy, (or a prym curve) denote by Aut(X) the automorphism
group according to our definition, and Aut/(X) the group for the alternative definition.
Then | Aut'(X)| = 2| Aut(X)|, and Aut’(X) is an extension of Aut(X) by the inessential
automorphism ¢, which acts trivially on the support X but acts as multiplication by —1
on all fibres of the spin resp. prym sheaf. Since ¢ extends to every object of S, it acts
trivially on the deformation space. How would the presence of ¢ change the Chen-Ruan
cohomology of Sy ,,?

Denote the Chen-Ruan cohomology ring of Sy, defined using the alternative definition of

automorphisms by Hf,(Sg.n)’, the one defined by our definition by Hf ,(S,,,). Firstly to
each 1 sector (Y,g) of Sy, for our definition, there correspond two 1-sectors (X, ) and
(X, vp) for the alternative definition, such that both of them are isomorphic to (Y,g) as
orbifolds (¢ as above). So dimg H{\5(Sgn)" = 2dimg H} z(Sgn). Furthermore we denote

by [(Sgn,t)] € H*((Sgn,t)) € Hip(Sgn)) the fundamental class of the 1-sector (g, ¢).
Then it is not difficult to show that the multiplication (using the Chen-Ruan product *) by
[(Sgn,¢)] induces, for each 1-sector (X, ) of Sy, an isomorphism between the subspaces

H*((X,¢)) and H*((X,vp)) of H:5(Sgn). The ring HYp(Sgn) is a HE 5(Syn)-algebra,

and as such a algebra generated by the class [(Sgn,¢)], with the single relation [(Sgn,¢)] *

[(Sgnst)] = [(Sgms1)] (= 1), where [(Sy5,1)] is the fundamental class of the untwisted 1-
sector. Put differently H},,(Sg.,)" is isomorphic to the quotient ring Hf 5 (S,.,)[T]/(T?-1),
by the isomorphism sending the variable T to the class [(Sgn,t)]. The relation between

H}p(Ryy) and HEp(Ryy) is completely analogous.
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5.2 First steps towards determining I;(R;,,)

5.2.1 The l-sectors of Ry, = S,

We summarize the following definitions and results about twisted sectors of M, from
[Pag08]. We will use all of these definitions too.

Summary 5.8 (N. Pagani) (i) If (C;p1) is an elliptic curve, G its automorphism group,
then G acts effectively on the cotangent space TIX(C), which is canonically isomorphic to
C. We use this action to identify G with the group of N-th roots of unity un, where
N = |G|. Use the notation € := e to fix one generator of pe. Using the Weierstrass
representation for elliptic curves one can determine which automorphisms exist on which
curves. One obtains that only N = 1,2,3,4,6 are possible. More specifically:

(it) In M 1 there is one isomorphism class of curves Cy = [(€4;p1)], such that G = pa
(where G = Aut((64;p1))) and one isomorphism class of curves Cg := [(€s;p1)] such that
G = pg. For all other curves G = uo.

(iii) In M o, with the same curves €4 and € (with p1,p2 in special position), there is one
isomorphism class of curves Cy = [(€a;p1,p2)], such that G = py and one isomorphism
class of curves C§ := [(6s;p1,p2)] such that G = pg, where ug is the subgroup of the
automorphism group ug of s generated by €. For every smooth elliptic curve (C;p1)
there are three position on which py can be put such that (C;p1,p2) has G 2 uz, we call
the locus of these pointed curves As. If we form the closure Ao of As in Ml,g then Ay =2 P!
as varieties. For all other curves (C;p1,p2), G = {id}.

(iv) In My 3 there is still one isomorphism class Cf = [(€s;p1,p2,p3)] with G = us. The
locus of curves (C;p1,p2,p3) with G D s is called As. Again Az = P!,

(v) For My 4 a curve can have at most 2 automorphisms. The locus of curves (C,p1, ..., pa)

with points in the special position admitting two automorphisms is called Ay. Again Ay =
P!

(vi) For n > 5 any curve of My, has G = {id}.

(vii) Since all the groups are abelian, if (X, g) is a 1-sector of M; ,, then the restriction of
the forgetful map Iy (M) — M to (X, g), which has image X, is a closed embedding.

(viii) From the above one can conclude that the inertia stacks I1(Ri,) decompose into
sectors as follows:

o I}(Mi1) = (M1, 1) J(My1,—1)(Ca, i/ — i) H(Cs,e/€? /€ /€?)
o I1(Mig) = (Mi2,1) (A2, —1) W(CL, i/ — i) W(Cg, €2 /e*)
(M 3) = (Mi3,1) (A3, —1) W(CY, €2 /e*)

Ii(Ma) = (M1,4,1) W(Ag, —1)

o [1(Miy)=(Mip,1)ifn>5
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Here and in the rest of the chapter, if we write something like (Cy,i/ — i) this is an
abbreviation, to make lists of 1-sectors shorter. Here, and also several times later, it has
to be interpreted as (Cy,i) W (Ca, —1). At some points it will mean “(Cy,i) and (Cy, —17)”
or “(Cy,1) or (Cy,—1)” instead, but that should be clear from the context.

Since wc = O¢ on an elliptic curve C, the stacks Ry, and Sff ,, are isomorphic (while

1n = M ). Furthermore, for smooth prym curves with marked points, (C;p1, .., pn; £, b)
all automorphisms come from automorphisms of the underlying curve with marked points
(C;p1,...,pn). Thus there is a forgetful morphism 7 : I;(Ry ) — I1(Mi ). We now de-
scribe the preimages of all sectors of I (M ;) under 7.

Lemma & Definition 5.9 (i) For the following sectors X, we have 7=1(X) = (-
(Co,e/2)e! ), (Cg,é/eh),  (Cg,eé/e")
Le. for all 1-sectors of automorphisms of order divisible by 3.
(ii) For the following sectors X the preimage 71X has exactly one component, and
(711)|W171X is an isomorphism:
(Cyif =), (Ch i/ —1i)
we denote the preimages of these sectors in I1(R1 ) by the same symbols again.

(iii) We describe m=1X for the remaining sectors X, as the union of their connected
components:
T (M, 1) = (Rig, 1), m (Mg, —1) = (Rip, —1)
771_1(1427 _1) = (AQ,CH _1) H’J(Alb, _1)1 771_1(1437 _1) = (A3,a7 _1) H’J(A&b, _1)&) (A3,cv _1)7
Wfl(A4, —1) = (A47a, —1) ) (A4’b, —1) ) (A47C, —1)

The new symbols for 1-sectors occurring in the second and third line we define by explaining
which kind of objects ((C;pi,...,pn; L;b), ) these sectors parametrise. The (C,pi,..,pn)
and automorphism ¢ appearing are the same as in the (A,, —1) for n € {2,3,4}, indepen-

dent of the indices a, b, c. The indices a,b, c correspond to ways L is related to the marked

POINtS P, ...Pn:

o For Ay, L= Oc(p1 — p2), while for Ayy, L is one of the other two possible prym
sheaves.
o For As, and Ayq, L= Oc(p1 — p2).

For A3y, and Aygp, L= Oc(p1 — p3).

For As . and Ayc, L= Oc(p2 — ps3).

Proof: (i) If (%s,p1) is an elliptic curve parametrised by the point Cg, then the elliptic
involution fixes p; and three other points ¢, g2, g3. We know that there are three isomor-
phism classes of prym sheaves on %5, like on any elliptic curve, which are represented by
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O, (p1—q1), O%,(p1 —q2), Og,(p1 — q3). Using for example the Weierstrass representation
in Theorem 3.8. in [Pag08] it is easy to see that any automorphism g in pg with order > 3,
fixes none of the ¢; but cyclically permutes them. Hence for any prym sheaf £ on %, g*L£
is not isomorphic to £. Hence there are no automorphisms of order divisible by 3 on prym
curves of Ry 1. This of course implies the same for Ry, for all n > 1.

(ii) Analogously one has three points q1, g2, g3 on %}, fixed by the elliptic involution of %}.
Again it is easy to see that the automorphisms ¢ and —i, both fix the same of the points
gi, say qi1, and transpose the two other points g2, g3. Hence the prym sheaf Oy, (p1 — q1) is
fixed by i and —i, while O, (p1 — ¢2) and O, (p1 — ¢3) are swapped. Hence there is only
one class of prym curves of Ry, which carries an automorphism of order 4, namely the
one represented by (%4, O, (p1 — q2)). If we denote the point in R, corresponding to this
class by Cy again, part (ii) of our Lemma follows. (The case of C) is analogous.)

(iii): Recall Definition 2.1 and Summary 2.14. It is clear that A,, = HM; , and 7 1(4,) =
HRy,. By Summary 2.14, HR; > has two irreducible components, namely the images

of a;zm’ and a}%w’l{pl}, which are just Ay, and Agp. Similarly HR; 3 has the

2,{p1,p2}
. . / /
three components A3, A3y, A3., which are the images of TRy 5 2.4p1we} CRys2{p1ps}?

alR1,3,2, (po.ps} (cf. Example 2.20). The argument for A4 is analogous. O

Corollary 5.10 The inertia stacks I1(R1,) decompose into sectors as follows:

o Ii(Ri1) = (Rip, YW(R11, —1) W(Ca, i/ =)

o I1(Ri2) = (Ri2,1) W(Az,a, —1) W(Azp, —1) W(Cy, i/ — 1)
I1(R13) = (Ri3,1) W(Asa, —1) W(Asp, —1) W( Az, 1)
I1(Ri4) = (Ria, 1) W(Ase, —1) W(Asp, —1) W(Ase, —1)

o I1(Rin) = (Rin, 1) if n>5

Warning: Since all the automorphism groups are abelian, for all the sectors (Z,g) of
I1(R14), the restriction to (Z, g) of the forgetful morphism xi : I;(R1,,) — Riy, which
would in general by a finite cover, is a closed embedding (cf. Summary 5.7 (v)). The same
is true, as will be shown later, for all sectors of I;(R1,,) (and I (gfn)) We call the locus
Z the support of the sector, but since the forgetful morphism is an embedding, we will

sometimes abuse notation and call the Z’s sectors.

5.2.2 Constructing sectors of [; (}_%M)

Definition 5.11 For k € 4 and z € {a,b,c}, let A, be the closure of Ay, in Ry . The
automorphism —1 that exists on a Ay, extends to Zk,x.

We call basic 1-sectors all the Zk@ as well as the points Cy C ELl and Cj C §1727 for
reasons explained below. We will see that these are all the twisted sectors of I1(R; ) for
any n, that have a non-empty intersection with the interior Ry ,,.
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Definition 5.12 (i) If P = (I1,...,I;) is an (ordered) partition of n with all I; # 0,
denote by Ay, . 7. the boundary cycle of Mlm, which generally parametrises curves with
one smooth elliptic component, to which k rational tails are attached, such that the k-th
tail carries exactly the marked points with indices in I, i.e. Ar, 5, = A N NAp,.
We define the morphism

:Ml,{ol,...,ok} X MO,Il&Jol X ... X M()Jk&J% — Ml,n
to be the gluing morphism surjecting to Ay, . r,, defined in Proposition 1.26 (i). By
fp :ML{,MM,%} X MO,h&JOl X ..o X MO,[kak — Ml,k

we denote the projection to the first factor.

ii) For Ry, we set Dy, 1 = 77'A; 1, where 7, : R, — M, is the forgetful
) 1.9k n 10k ; ) g
morphism. We define a morphism

Cpi= CDH ’’’’’ I, R17{°1,---7°k}><M0,11w01 X---XMO,IkLﬂok_)RLk.
to be the gluing morphisms surjecting to Dy, 1, (cf. Remark 4.6 (iii)). Here we call the

projection to the first factor Fp.

In case |I;| = 1 delete the factor M I;u{o;} in the product and just replace the index o,
by the index in I;.

If we have a (prym) curve from Ml,k resp. Rl,k one can use these morphisms to glue
a rational tree with some marked points on it to each of the k marked points of the
curve, producing a curve in M, resp. Ry,. It is clear that all automorphism of the
old curve lift to the new curve obtained by this procedure, and that this curve has no
new automorphisms. Applying this operation one can construct sectors of Iy (Mln) resp.
I (R ) out of sectors of Iy (M) resp. I1(Ri):

Lemma & Definition 5.13 Let (Z,g) be a basic sector in I1(Ry ) for k € 4 (cf. Def.
5.11).
(i) For a partition P = (I1,...,I,) of n we set

P _ J—
= Cp(Fp'(2)).
We call Z the basic sector associated to ZP.

(i) As we will show in the Proof of Theorem 5.32 below, the automorphzsm g lifts to

Z" C Rin, and does not extend to a larger locus in Ry, hence (7 ,g) is a sector of
(Rl,n)~

(iii) For k =1, i.e. I = n, we will denote the resulting sector by Z.

For k = 2, for all possible Z, we have Z(h’b) Zh),

will write the possible sectors obtained for k =2 as C;

To symbolise this invariance, we
{I,I2} A{11J2} nd A{ILIQ}'

For k = 3 the only possible Z are the Ag,x for xz € {a,b,c}. Here we have

A(II’IQJS) A([1,13J2) A(IQJB,II).
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Also A(11,12J3) _ A(12J1J3) I>,13)

Hence all possible cases for Z(Il’ are covered by the

I,Ip,I . . . . .
A( b 3), when considering all possible partitions (I, I3, Is) of n. To express the invari-
ance under transposing the first two entries, and to get rid of the index x, we write these

sectors as
A{h,b} I3 — A(thJB)

For k = 4 the possible Z are the Ay, for x € {a,b,c}. Here we have

(11712,1'3714) i (I1,13,12,14) (12713,1'1714)
Ay = Agp = A,
—(I1,I2,I3,13) . . . . .
Also Ay, is invariant under transposing the first two or the last two entries of

(11,12, I3, 1), and under replacing by (I3, 14,11, I2). Hence we get all possible A

by taking the sectors
Z;{l{h»b},{fmh}} — A0 0)

4,a

Proof: Only (iii) is more than a definition, and all claimed there is clear, considering the
definition of the Zk,x, and the fact that if g1, ¢o, q3, g4 are the points fixed by the elliptic
involution of a curve C, then Oc(q1 — ¢2) = Oc(q2 — q1) = Oc(g3 — qa). O

In the case of My, the analogous construction of forming Z" = Ep( f;l(Z)) starting
from the basic sectors Z = Cy, C}, Cs, C, C, Ay, yields all sectors of Iy (M) (cf. [Pag08]
Theorem 3.24). For our case of Rl,n this is not quite true, since stable prym curve can have
exceptional components and inessential automorphisms acting non-trivially only on these
exceptional components. Since there are no such inessential automorphisms on smooth
prym curves, the sectors of I1(Ry,) corresponding to such inessential automorphisms lie
entirely inside the boundary of Rj ,. They do not originate from the basic sectors.

Definition 5.14 (i) For (i, ...,I,) a partition of n, recall the definition of the simple
banana cycles By, .. 1,, and Bj, ; from Def. 4.1 (ii) resp. 4.5 (i). Bf, ; is the closure
of the locus of Ri, parametrising prym curves (X;p1,...,pn; £,b) of the following type:
Consider the indices 1,...,m as elements of Z/m. Then the stable model C' of X is a
“circuit” of rational curves: It consist of smooth rational components C1, ..., C,,, such that
each C; meets C;_1 and Cj 11 in one simple node each, and meets on other component. The
component C; carries all marked points with indices in I;. Now X is obtained by blowing
up all nodes in C. The prym sheaf £ restricts to O¢,(—1) on each of the C; and to O(1)

on each exceptional component.

(ii) In case m is even, let ¢, be the inessential automorphism of (X;p1,...,pn; £, b), that
corresponds to multiplying by —1 on the fibres of the prym sheaf over the components
C; with i even, and acting as identity on the fibres over all C; with j odd. (Note that
with our definition of automorphisms this is the same inessential automorphism as the
one multiplying by —1 on the fibres over components with ¢ odd, and by 1 on those with
i even.) We will later often denote partitions of n by P, and sometimes more precisely

denote the automorphism ¢, on B} by ¢p.
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We will see later that each (B}, ; ,im) for m even, is a sector of I;(R1,), and that
together with the sectors obtained from basic sectors in Lemma & Definition 5.13, they
are the only sectors of I (El,n). These “banana-sectors” are the ones that are really new,
compared to the sectors that appear in I;(M7 ;). We will need more information about
the simple banana cycles, then provided in Chapter 4, to compute H}.,(R1,,) later. The
next section will provide this information, also parts of it that will be used only much
later. But before that we state the following

Remark 5.15 (i) We have seen in Summary 5.8 that all objects of any M; ,, have abelian
automorphism groups. The same holds for all objects of M1 ,, since (as shown in [Pag08])
the 1-sectors of Mlm all stem from basic 1-sectors via the procedure explained in Lemma
& Definition 5.13. It is easy to see that an automorphism of a stable genus 1 curve € with
marked points can not exchange two components of €. Hence for each object X of El,n an
automorphism can not exchange components of the non exceptional subcurve. From this it
follows by the description of the inessential automorphism Autg(X) in Remark 1.12; that
Autg(X) is contained in the centre of Aut(X). Since Aut(X) is an extension of a subgroup
of Aut(€) by Autg(X) for € the stable modle of X (cf. Def. 1.11 (v)), it follows that each
Aut(X) is abelian.

(ii) Hence for every 1-sector (X,g) of M1, resp. Rin, (X,g) is isomorphic to its image
X C Ml,n resp. X C Rl,n as variety as well as as orbifold. (The same holds for the
k-sectors for k > 1. Cf. Summary 5.7 (iii).)

5.3 Simple banana cycles

5.3.1 Circular partitions and set-theoretic intersections of banana cycles

The following combinatorial notions are closely related to simple banana cycles on My,
(and Rj,), and their intersection behaviour. To begin with there is quite obviously a 1 : 1
relation between the simple banana cycles of M1 ,,, and the (non-trivial) circular partitions
of n:

Definition 5.16 (and first remarks) (i) Let M be a finite set. An arrangement of M
isamap e : M x M — Ny such that for i1,i0 € M, e(i1,i2) = e(iz,i1). To an arrangement
we define a graph A(M,e), by interpreting the elements of M as the vertices of A(M,e),

and by connecting each pair iy,i € M by e(i1,42) many edges. 2

(ii) An arrangement as string of a finite set M, is an arrangement e, such that the graph
A(M,e) is a connected graph, and no vertex meets more than two edges. (A self edge at

a vertex counts as meeting the vertex twice.)

If M| > 2, this implies: For all i € M, 1 <37, .,,e(4,i) < 2.

2The arrangement e and the graph A(M, e) determine each other uniquely, so everything in this section
could also be done using only graphs instead of arrangements.
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If M is a finite set, together with a fixed such arrangement, we call M a string. We then
denote by ey this fixed arrangement. For h'(A(M,eyr)) the first Betti number, we call
the string M open if h'(A(M,ep;)) = 0 and closed if h'(A(M,ep)) = 1.3

If |[M| > 2, this is equivalent to saying: A string is called closed if for all i € M,

Yiemem(i,i') =2, and is called open otherwise.
We sometimes also call an arrangement as a closed string a circular arrangement.

(iii) If (M, e) is a string, we define a reflexive, symmetric (but usually not transitive)
relation || between elements of M, called neighbouring, by saying i1 € M neighbours
i9 € M, written iy || ig, if e(i1,i2) > 1 or i1 = is.

For |M| > 3, the relation || fixes e. For |M| < 2 it does this only after declaring whether
M should be an open or closed string.

We often write a closed string as (i1, ...., %), by which we mean the set {iy,...,%,,} with
neighbouring relations iy || o || ... || im || 1.

Choosing a circular arrangement of M is furthermore the same as choosing an equivalence
class from the set
{f:M —Z/IM|-Z| f bijective}/ ~,

where ~ is the equivalence relation generated by the relations f ~ f + a for all constant
maps a: M — Z/|M|-Z,and f ~ —f.*

(iv) An end-point of a string M is a point ¢ € M such that >, ;,e(i, i) = 1. A closed
string has no end-points, an open string has one end-point if |M| = 1 and two end-points
otherwise.

Let i1, i2 be the two end points of an open string M (i; = ig iff |[M| = 1). One can make
the open string M into a closed string by increasing the value of eps(i1,72) by 1, we call
this procedure closing the string M. In the opposite direction one can cut open a closed
string M by choosing any pair i1,i2 € M with eps(i1,42) > 1 and decreasing this value by
1.

(v) A subset S C M of a string M is called a set of neighbours in M, if the elements of
S are the vertices of a connected subgraph of A(M,ey). This is equivalent to saying that
for ejyg the restriction of eps to S xS C M x M, (S, epg) is a string. Instead of saying
that S is a set of neighbours, we often say it is a substring (of M), since we can always
consider a set of neighbours S as string, using this induced arrangement.

We say that two substrings S; and Sz in M are neighbours, written Sy || Sa, if firstly
S1 U Ss is a substring and secondly, if the string S; U Sy is open then S; and S5 each
contain at least one of its end-points.

If we write S || Sz for sets Sy, S2 C M this always is also meant to imply that S; and S,
both are substrings of M.

ShY(A(M,ear)) > 1 is not possible for a string. For an open string ear(i1,i2) = 2 never occurs. For a
closed string it occurs iff {i1,i2} = M.

“The relation between this and the former definitions is: We say i1 || 42 iff f(i1) = f(i2) or f(i1) =
fli2) +1or f(in) = f(i2) — 1.
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By S1 || S2 || ... || Sn we mean that for every choice of 1 < ¢ < r < n, firstly U;_, Si
is a substring, and secondly if this substring is open, then its end-points are contained in

Sq U S, and each of S; and S, contains at least one of the end-points.

(vi) If M is an open resp. closed string with |M| > 2, we can define a new open resp.
closed string N by deleting an element i € M. For this set N := M ~ {i}, and if i meets
two edges in A(M,epr) connecting i to points i_ and iy, then replace these two edges by
one new edge between i_ and i, to obtain A(N,ey) (i_ = iy possible if |M| = 2). ®

(vii) A refinement of a string is a pair (IV, p) of a string N and a surjective refinement
map p: N — M. Le for p there is a contraction ¢ : A(N,en) ~ A(M,eps) (cf. Definition
1.18 (ii)), such that ¢ restricted to the sets of vertices N and M, acts as p. For |[M| > 2,
(N, p) is a refinement if and only if for every i € M, p~1(i) is a substring of M, and for
all iy # is € M,

em (i1, i) = > en(J1, ja)-

J1€p1(41),52€p7 1 (i2)
If p: N - M is a refinement map, then either N and M are both closed or both open.

For a given M, the relationship between refinements p : N — M and contractions c¢ :
A(N,en) ~ A(M,epr) is a 1 : 1 correspondence except if [M| < 2. In the letter case
one refinement will always be induced by two different contractions, since a contraction
chooses for each of the two edges connecting the two vertices of A(M, eyr), a preimage-edge
in A(N,en). (This will be discussed in more detail at the beginning of the proof of Lemma
5.28.)

(viii) A circularly arranged set P which is a partition of n (cf. Notationl.1), we will call a
circular partition of n. We often write such partitions as P = (I3, ..., I;5,), and then usually
carry over the circular arrangement to the set of indices m, i.e. arrange as m = (1, ...,m),
without further mentioning it. To simplify notation in later applications, we require in
addition that |P| > 2 for a circular partition.

(ix) If we have a tuple (ay, ..., a,,) this of course defines a closed string (aq, ..., a,,). Hence
to any ordered partition (I, ..., I,) we can associate a circular partition (I1, ..., I,).

(x) A circular partition P’ := (Jy, ..., J;.) is called a refinement of P := (Iy,...,I,), if it
can be obtained by replacing each I; in (Ii,...,Ip,) by an (ordered) partition Jj,, ..., Jj,
of I;. More precisely this means that each J; is contained in one of the I;, and that the
surjective map p : (Ji,...,J) = (I1,...,I;,) sending each J; to the I; containing it, is a
refinement map in the sense of (v).

With respect to the induced arrangement on the set of indices (cf. (iv)), p induces a
refinement map ¢ : 7 — m, such that J; C ;).

(xi) As one would expect we call a circular partition P a common refinement for a collection
of circular partitions P, ..., P, if P is a refinement of each P, k € s. In this case, there
are s refinement maps py, : P — Py.

°Le. set en := ear|n if 3,y enm(i,i') = 1, or obtain ey by increasing the value of eyn (i—,i4) by 1
if Zi’eM em(i,i') = 2.
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We call this P, a coarsest common refinement of Py, ..., P if it has the property that there
is no common refinement P £ P of Py, ..., P,, such that P is a refinement of P. As we see
later, there may be more than one coarsest common refinement for given Py, ..., Ps.
(xii) To a circular partition P = ([1, ..., I,,) of n, with m > 2, we assign a stable (1,n)-
graph

I'NP)=(V,H,a:H—V,i:H—H,g:V —Z>9,p:n— H)
(cf. Definition 1.16) as follows: V' is the set P. Define H', a’ and ¢’, such that A(P,ep) =
(V,H',d',i"). Let g be constant 0, and b : n — V be the map sending each element of a
set I; to I; € V. Then set H := H'Un, a:=a Ub and i := ¢’ Uid,,. The marking p is just
the inclusion n < H = H' Un. Le. ['(P) can be visualised as the graph one obtains by
attaching to each vertex I; of A(P,ep), for each k € I;, a leg labelled by k.

Obviously the I'(P) defined such is the graph of a simple banana cycle (cf. Def. 4.1 (ii)).
On the other hand we can assign to each graph I' of a simple banana cycle in My, a
circularly ordered partition P(T") = (I, ..., I,;,) with m > 2: Let ey (v, v’) be the number of
edges connecting a pair v,v" € V of vertices. Then carry over this circular arrangement ey
of V.= (v1, ...,vm) to the set (I, ..., Iy,), where I; := b~1(v;). It is clear that P(I'(P)) = P
and I'(P(I")) = T'. By this there is a 1 : 1 correspondance between the simple banana
cycles in M1, and the circular partitions P = (Iy, ..., I, of n, with m > 2.

The following example for the relationship between P and I'(P) depicts a stable graph in
the way introduced in Example 1.24

P = <{2a 3}7 {l}a {57 9}7 {6}3 {47 778}> A F(P) = 1

3

Lemma 5.17 Let N, M be strings, either both closed or both open. Then:
(i) For a surjective map p : M — N the following are equivalent:

(1) p is a refinement map

(2) For all S1,S2 C N: S1 || S2= p~1(S1) || p~4(S2). 6

(3) For all substrings S C N, p~1(S) is a substring of M.

(ii) Let v : 2N — 2M be a map between the power sets, such that r(S1USy) = 7(S1)Ur(Ss)
for each S1,Sy € 2N. If r has the property that for Sy, Sy € 2V, Sy || Sy implies r(S1) ||
r(S2), then even

Sull Sz [l 1 Sn = 7(S1) | 7(S2) [ - [ 7(Sh),

SRecall that in our notation A || B includes the assertion that A and B are substrings.
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for any S, ..., S, € 2V,

(iii) If p: N — M is a refinement map, then also for all sets S1,S2 C N,

S1 [ 52 = p(S1) || p(S2)-

(But this condition is strictly weaker than being a refinement map.)

(iv) If M is a finite set with |M| = m > 3 then it can be circularly arranged in 2%'1 different

ways.

(v) If M is a string, and if S1,S2 C M are substrings, then Sy N Sy is either a string, or
consists of exactly two substrings T and T' of M with T }f T'. In the second case T and
T' each contain one end point of the (then open) string S1 and one end-point of the (then
open) string Sa. The second case is only possible if M is closed and S; U Sy = M.

Proof: (i): “(1) = (2)”: WLOG assume that we do not have S; = Sa. For S} || S2, by
definition of refinement maps, p~'(S1) U p~1(S2) = p~1(S1 U S2) has to be a substring of
M. Furthermore if S; U S, is an open string then it is clear that p=1(S1) U p~1(S2) is open
too. Let 71 € S1 and i3 € S be the end-points of S1 U Sy. Then

Y en(ind)= > en(iri)=1.

i'€S1US> i/€S1US>

But by (1) this implies

Yo en(ing) = > en(in, i) = Y enlin,i) =1,

j1€p~ (1), J1€p~ (1), j'€Ep™ (), 17€S51US2
j'ep~1(S1US2) i'€S1US,
and the same for iy instead of i;. This means that the open strings p~'(i1) resp. p~!(is)
are connected to the rest of the string p~1(S1 U S) by only one edge. But this implies that
p~1(i1) C p~1(S1) and p~1(iz) C p~1(S2) each contain an end-point of p~1(S; U Ss).

“(2) = (3)”, is clear by Def. 5.16 (v).
“(3) = (1)”: By (3) for i € N, p~ (i) is a string. One gets that

en(i1,i2) < > em(J1, J2),
Jjiep=t(i1), jo€p1(i2)

since if {i1,i2} is a substring then also p~'({i1,42}) is a substring, and since N is closed
iff M is. So from (3) we can conclude that M is as set the disjoint unions of the substrings
p~ (i) for i € M, and that two such substrings p~!(i;) and p~'(i) are connected (in the
graph A(M, epr)) by at least as many edges, as i1 and iy in the graph A(N,ey). But now
it is easy to see that Zjlepfl(h),jgewl(ig) enm(J1,72) > en(i1,i2) would either imply that
M is closed while N is not, or that M is not even a string.

(ii): The definition of Sy || Sa || ... || Sp in Def. 5.16 (v), can obviously be reformulated
as: Forall 1 < ¢ <7 < mn, Sy || U_,4, Si and Uz;ql S; || Sr. Under the conditions of
the Lemma this implies r(S) || Ui—,41 7(S:) and U;:; r(S;) || 7(Sr), and hence r(S) ||
r(S2) || . || 7(Sn)-
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(iii): This is quite obvious if we look at one of the contractions ¢ : A(N,en) ~ A(M,enr)
corresponding to p. (Cf. Def. 5.17 (vii).)

(iv): There are m! different bijective maps M — Z/|M| - Z, and we formed equivalence

classes of 2m elements each (cf. Def 5.16 (iii)).

(v): For M open the statement is obvious. If either S; or S is M, (ii) is again obvious.
Otherwise the substrings S; and Sy are open strings. Let a and b be the two end-points
of the string Ss. If S contains none of these points either S1 NSy = 0 or S; C So. In
both cases 51N Ss is a string. If exactly one of these points, say a, is contained in S7 then
S1 M Sy contains all elements of S that lie on one side of a and none of the elements lying
on the other side, hence S1 NS5 is a string. If a and b are both in S then either S5 consists
of the elements in M; lying between a and b, in which case S1 NSy = S is a string, or
So is the complement in M of the elements of S; lying strictly between a; and ag. In this
last case S1 NSy is not a string but a union of two strings, and S7; U .S = M. O

Definition 5.18 For a string M we let EnP(M) be the end-points of M if M is open,
and we set EnP(M) = M if M is closed.

Lemma 5.19 Let My and My be two closed strings, N a set, p1 : N — My, ps : N — My
two surjective maps. For all sets S C My and T C My use the notation r12(S) = pgpl_l(S),
r91(T) := p1py 1(T). Then the following two conditions (1) and (2) are equivalent:

(1) The following two conditions hold:
(a) For all sets S, S’ C My resp. T, T" C M, we have

S H S/ = T‘12(S) ” 7’12(5/), and T || T/ = T21(T) H Tgl(Tl). 7

(b) For alli € My set Cy(i) := Mi~i. Then |r12(i)Nr12(C1(7))| < 2, and furthermore
r12(%) N r12(C1(7)) € EnP(r12(7)) N EnP(r12(C1(7))). The analogous statement holds
for, j € Mo, CQ(]) = My ~ {j} and ra1(j) N T21(Cg(j)).

(2) N can be arranged as a closed string in such a way, that with this arrangement
(N, p1) is a refinement of My and (N, p2) is a refinement of M.

Proof: “(2) = (1)”: It is clear that (2) implies (1) (a), by Lemma 5.17 (i) and (iii).
To show (1) (b), define for all i € My, j € My: Ry(i) := p;*(i), Ra(j) := py(j). Set
K1 (i) := py H(C1(3)) and Ka(j) := p5 ' (Ca(4)). We have N = Ry (i) W K1 (i), and by (2) the
Ri(i), Ra(j), K1(i), K2(j) are substrings of N. Now if j € ri2(i) N r12(C1(7)) this means
R1(i) N Ra(j) # 0 # K1(i) N R2(j). But then Ry(j) has to contain one end-point of Ry (1)
and one end-point of K (7). Hence, since the Ry(j) are disjoint there can be at most one
other j' € Ms, such that j" € r12(7) Nr12(C1(i)). This shows the first claim of (1) (b). For
the second claim, note that j € r12(i) Nr12(C1 (7)) implies Ry (i) || R2(j) and K1 (i) || Ra2(j).
Then, using Lemma 5.17 (iii):

r12(i) = p2(R1(1)) || p2(R2(4)) = {j}, and r12(C1(9)) = p2(K1(4)) || p2(R2(5)) = {5}-

" Again, recall that in our notation A || B includes the assertion that A and B are substrings.
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Since also j € ri2(i) and j € r12(Ci(i)), we can conclude that j € EnP(ri2(i)) N
EnP(r12(C1(2))). 8

To show “(1) = (2)”, we first restrict WLOG to the case that N is “as coarse as possible”:
We define a set N by replacing each non-empty set Ri(i) N Ro(j) € N for i € My and
j € Ma, by one element denoted [i, j], and define a surjective map 7 : N — N sending all
elements of each non-empty R;(7) N Ra(j) to [¢,j]. Then it is easy to check that p; = pjom
and py = p2 o 7 for the surjections

p1:N — My, [i,j]+i, and po: N — Mo, [i,7] — j.

It is true that condition (1) resp. (2) holds for (N, My, Ma, p1, p2) if and only if condition
(1) resp. (2) holds for (N, My, Ms, p1, p2), but we will only show the implications we need
in our proof: For condition (1) just note that 712 and r2; are not changed when replacing
(N, p1,p2) by (N, p1, p2). For condition (2), if we have an arrangement ey as string on N,
which makes the p; into refinement maps, we arrange N as a string such that the surjective
map 7 : N — N becomes a refinement map. For this just arrange the preimage 71 ([7, j])
of each point [i,j] € N in an arbitrary way as open string by an arrangement €r1([1,4])
and replace in the graph A(N,ey) each vertex [4, j] by the graph A(w'([4, j]), ex—1(ij)-
9 Then 7 will be a refinement map by Lemma 5.17 (i) (3). Hence, as compositions of two
refinement maps, the p; = p; o 7 are refinement maps with this arrangement of N.

Hence we can WLOG assume that (N, p1,p2) = (N, p1, p2). Note that under this assump-
tion, Ry (i) = py ' (i) = {[i, ] | j € m2(D)}, Ra(j) = p3" () = {[i, 4] | i € r21(j)}-

For |M;| =1 or |M3| = 1 it is clear that conditions (1) and (2) are always satisfied. So
assume WLOG that |M;| > 2 and | M| > 2.

Assuming (1) we now construct an arrangement ey of N = N fulfilling (2), as follows:
The restricted maps py|g, () : Ra(i) — r12(i) C Mz and pyg,(j) + R2(j) — r21(§) € M,
are bijections, and the images r12(i) resp. r21(j) are strings. We use this to arrange the
R (i) and Ra(j) as open strings: First carry over the arrangement of the string r12(7) to
R1(j), and call this arrangement e, ;). If (R1(i),€r,(;)) is an open string, set e’Rl(i) =
€Rr, (i)- Otherwise, we have to cut open (cf. Def. 5.16 (iv)) this closed string: By (1) (b),
1< |T‘12(Cl(i))| = |T12(i) ﬂT‘lg(Cl(i))‘ <2 If |T‘12(i) ﬂTlg(Cl(i))‘ = 2, let j1, jo be its
elements, if |[r12(7) N ri2(C1(7))| = 1 call its only element j. Now in the first case, cut
(R1(i),€R, (7)) open between [i, j1] and [i, j2]. In the second case choose one neighbour j*
of j in My and cut R;(i) open between [i, j| and [i, 7*]. Call the resulting arrangement as
open string again e’R1 () Arrange the Ry(j) as open strings in the same way.

We want ey to restrict on the Rj(i) and Ra(j) to the arrangements e'Rl(i), e’R2(j) just
defined. So we start by defining a arrangement ey, with this property, by for all i1, i € M;
and ji1, jo € Ma setting e)y([i1, j1], [iz, j2]) :=

max{ep, ;) ([i1, 1], [i2, j2]), €p, () ([i1. 1], [i2, 72]) | € My, j € Ma}.

8Note that in general for a string M: j € EnP(M) & (j € M A {j}| M)
YEach A~ '([i,j]), €x-1(i,4))) can be fitted in in two different ways but 7 will become a refinement
map independent of this choice.
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The arrangement €’y defined by this is in general not an arrangement as string yet, since
A(N, €ey) is in general not connected.

By this definition it is clear that always €'y ([i1, j1], [i2, j2]) < 1, with = 1 possible only if:
Either i1 = iz and epr, (j1,72) > 1, or j1 = j2 and epy, (41,92) > 1. We refer to this remark

by ().

Next we show:

(*) For all iy # iz € My we have eny, (i1,82) = 31, neRy (1) fia.j]e R ia) €N (115 5], [i2,57]).
For all j1, jo € My the analogous statement holds.

By (1), ean (i1,42) = O implies > ;. acp (i), ia71€Rs (o) En ([0, 7], [i2, 5']) = 0. So we now

1,71,
may assume ey, (i1,42) > 1. If we have el ([i,J],[,5]) = 1 for some [i1,j] € Ri(i1),
2);

[i2,j'] € Ri(i2), this means that j = j'. So j € ri2(i1) N 712(i2), and then by definition of

/

> Enllin, gl lin, i) = D €y lins ), iz, 4))-
[i1,7]€R1(41),[i2,5']€R1 (32) jeriz2(i1)Nriz(iz)
The ele(j) are < 1 everywhere by their definition. So if |r12(i1) N ri2(iz)] = 1 we are

done. Otherwise by (1) (b), |ri2(i1) N riz2(iz2)| = 2 and we call the two elements of the
intersection jg,jp. Then we have {ii,ia} C 721(ja) N r21(J») By (1) (b) we must have
r21(Ja) = 121(C2(j)) and ra1(ja) = {i1, 12} or ra1(jy) = {i1,i2}. WLOG 7121(ja) = {i1,i2}
and hence r21(jp) = Mj. Recall from our construction of e’N that then the open string
(R2(jb), €, (jb)) is obtained from the closed string (R2(jp), €r,(;,)) by cutting open between

[i1, J»] and [i2, jp]. So in this case 63%2( ([i1, Jb), [i2, 7b]) = O and hence

Jv)

> en(li 3, [, 71) < 1 = ean, (i, i2).

[i1,5]€R1(i1),[i2,5' ] € R1 (i2)

We have proven (x). A direct consequences of (x) is: For all [i,j] € N,

S el [, 5) < 2.

[i".5"leN

This already implies:

(A) For some 1 < m < min{|M;|, |M>|}, €y arranges N as the disjoint union of strings
S1, ..., Sm, such that the different Sj, are not connected to each other by edges in A(N, e/y).

It is clear by the definition of €/y, that each R;(7) and each Ry(j) is contained in exactly
one of the Si. Hence:

(B) My = p1(S1) W ... & p1(Si) and My = pa(S1) W ... W pa(Sm). And py ' p1(Sk) = Sk,
pa ' p2(Sk) = S

(C) The restrictions py|g, : Sk — p1(Sk) are refinement maps between strings, except in
the possible case that m = 1, M; is a closed string and S is an open string. In this case
p1|s; = p1 becomes a refinement map if one closes the string S;. The same holds for po
instead of p;. In particular the p;(Sk) and p2(Si) are substrings of M; and M.
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To show (C): N is the disjoint union of the R1(i) (i € Mj), and by (B), S is (as a set) the
disjoint union of the R; (i) with i € p1(Sk) and the R(i) are substrings of the open string
Sk by construction of €fy,. Furthermore by (1), two Ry(i), R1(") C S can be connected by
an edge only if i || ¢/. Hence we can write the elements of p1(Sk) as i1, ...,4, in such a way
that Ry(i1) || Ri(i2) || ... || Ri(ér), and then we must have i1 || iz || ... || 4. If p1(Sk) is
open, i.e. if m > 2, then this proves that p;|g, is a refinement (using either the definition
of refinement of strings or the criterion of Lemma 5.17 (i) (3)). If m = 1 then p;(Sk) is
closed, but after closing Sy if it is not closed already, we also have R;(i,) || Ri(i1), and
p1|s, is a refinement map by Lemma 5.17 (i) (3).

(D) If Sy is open, and [i, j] € EnP(Sk), then either Ry (i) = {[¢,j]} C Ra(j) or Ra(j) =
{[, 41} € Ra(9).

We get (D), by observing that [i, j] € EnP(Sk), i.e. ely([é, 5]) :== 221 jen en([6: 4] [ 5]) <
2 is equivalent to

[i,5] € EnP(R1(i)) A [i,j] € EnP(Ra(5)) A (IRa(i)] =1 Vv [Re(j)] = 1),

which clearly implies (D). It is clear from the construction of €y, that we would have
ey ([4, 7]) = 2 if one of the first two conditions was not satisfied. If the third condition was
not satisfied there would have to be a j; || j and a i1 || ¢ such that in Ry(4) resp. Ra(j)
we had [¢, 4] || [¢, 7] resp. [i4, ] || [i+,]. Hence again e/ ([z,j]) = 2.

Now we show by induction on m: If €/y is an arrangement on NN, such that (A), (B), (C),
(D) are fulfilled by ((N,€)y), M1, Ms, p1, p2), then there is an arrangement ey of N as a
string, such that ey > €’y !, and such that condition (2) is fulfilled. !

Now to the existence of ey: For m = 1, if S7, My, My are all closed, (C) immediately implies
(2) for en :=€ly. If m =1, Sy open, but M; and M, closed, close (N, €)y) = (S1,€)y) to
obtain a string (N, eyn), fulfilling (2) by (C). For m > 1, the Sy are open, and we show
below that there are end-points [iq, ju| € EnP(S1), and [iy, js] € EnP(Sk) for some Sy, || St,
such that i, || i, € M; and j, || jp in M. Now define a new arrangement e, by keeping all
edges of €y but additionally connect [iq, jo| and [is, j»] by one edge. Then it not difficult
to check that conditions (A)-(D) are still fulfilled with this new arrangement. But the
number of not connected strings in (N, €’§) is m — 1. Hence by induction hypothesis there
is a ey > e, > €y fulfilling condition (2).

To finish the proof, it remains to show that the [iq,j.] € EnP(S1), [ip,js] € EnP(Sk)
with i4 || 4 and jg || jp exist. By (D) we may WLOG assume that there is a [iq, jo| €
EnP(S1) such that Ry(iq) = {[ia,Jal}- By (A)-(C) there is some Sy # S and a i, €
EnP(p1(Sk)) such that i, || ip. Hence i, || 9 || p1(Sk). From this with (1) (a) we get
Ja = r12(iq) || r12(ip) || p2(Sk). Since r12(ip) C p2(Sk), this implies that there is a j, €
r12(ip) N EnP(p2(Sk)) with j, || jp- Now [ip, js] € Sk is contained in EnP(Sg), as can be
concluded from the fact that i, € EnP(p1(Sk)) and j, € EnP(p2(Sk)) using (C) and (D).
([

"By en > ely we mean e ({[i1, j1], [i2, jo]}) > e ({[iv, 1], [iz, jo]for all [ix, j1], [i2, j2] € N.
"'We still assume that (1) holds, and that N is WLOG “as coarse as possible”.
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Lemma 5.20 (i) For two circular partitions Pi = (I, ...,Im), Po = (I{,....,I,) of n
define for k € m and k' € m/,

Mk = {Iz/’ D) ‘IkﬁI{/ #@}QPQ, resp. M;/C/ = {IiEPl ’I;C/QIZ#@}QPl

Then Py and Py have a common refinement if and only if, for all k1,ky € m and all
ki, kS € m/, we have:

(@) My || My || ... | My || My and M || My || ... || My, || M. 2

(b) For all but at most two elements of My we have I{, C Iy, and all IZ{, € M, with
I, € Ij; are in EnP (M) NEnP(Cy), where Cy is the string Uep, gxy Mi- For My,

the analogous claim holds.

(i) P1 and P, can only have more than one coarsest common refinement if there are
ke m, k' € m’ such that I, U I}, = n. In this case, by cyclically permuting the indices if
necessary, we can assume I, U Ijn, =n. Then

U nch ad |J LS.
dem/~{m'} iem~{1}
If this condition is fulfilled, set
S=nnl,=hL~ |J I
'em/~{m'}

Then consider all ordered partitions (K1, Ks) of S, where, contrary to our usual conven-
tion, we allow that one of the K; may be empty (or both if S = 0). If we define for all
these partitions (K1, K2) the partitions

<K1,I{,I§,...’I,',,n/717K27I27...7Im>’ and <K2, ! ! ...,I{’Kl,IQ,...,Im>

m/—1>+m/—2>

then these are exactly all the coarsest common refinements of Py and Pa. (If one of the
K; is empty, we have to delete it in the definition of these circular partitions, since such
partitions do not contain empty sets as elements by our definition.)

(i) If P and P' are two different coarsest common refinements of Py and Py, then P and
P’ do not have a common refinement.

Proof: (i): This is a special case of Lemma 5.19. For the “if” direction, set
My =P, My:= Py, N!Z{IHI/|IEP1, I/EPQ,IQI,#Q},

and p1(INI):=1, p(INTI):=1T,

and note that conditions (a) resp. (b) of (i) are equivalent to (1) (a) resp. (1) (b) of Lemma
5.19.

1): In the following we denote by (*) the condition that Iy Ul;, # n for a cm,k em.
ii): In the followi d b h diti hat I, UI; for all k& K !

12 Again, recall that in our notation A || B includes the assertion that A and B are substrings.
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First we show that if condition (x) holds, then there is at most one coarsest common
refinement P of P; and Ps.

Note that if P’ = (K3,..., K,) is a common refinement of P; and P; and p; : P’ — P,
resp. pa : P' — P, are the refinement maps, then we get a coarsest common refinement P
from P’: Each substring Ky, || ... || Kk, of P’, which is of maximal length according to the
property p1(Kk,) = ... = p1(Kk,) and pa(Kk,) = ... = p2(Ky, ), is replaced by one element
K}, U...U K}, when passing from P’ to P.

By what was just said it is clear that for any coarsest common refinement P of Py, P,
with refinement maps again called p; : P — P; and py : P — Py, we have: For all I € Py,
I' € Py, if p;y*(I) N py ' (I') contains more than one element, then no two of them are
neighbours. This is actually the property that distinguishes coarsest common refinements
from others. So by Lemma 5.17 (v), pl_l(I) N pQ_I(I’) can only contain more than two
elements, if p; 1 (1) U py (I') = P, i.e. if I;, U I; = n. This means that (x) is not fulfilled.

Hence condition () implies for each J € P:
J = pi(J) N p2(J). ()

We use this to show that under condition (%) each neighbouring relation between two
element J,, J, in P is already implied by the fact that P is a coarsest common refinement
of P1 and Pg.

Firstly Lemma 5.17 (iii) implies that for I,, I, € Py and I, I} € P, '3 [ I, NI} || I, NI} is
only possible in P if I, || I, and I/, || I.. So it suffices to give criteria for I, N I} || I, N I}
in this case.

Criterion (A) is for the case that I, = I, and I/, || I} with I/, # I} 4. Then we have:
Jo=I,NIL | LN, =:Jy

in P, if and only if the condition that either I, U I’ U I} # nor I U I} = n is fulfilled.

The “if” direction is true since

{Jas I} = p1r " (Ia) N p3 "L, 1Y)

is a set of neighbours by Lemma 5.17 (v), if I, UI, U} # n. If I, UI] = n then {J,, Jy} =
pfl(Ia) is also a set of neighbours. For the “only if” direction, we use that if the condition
does not hold then

Sy=pr (PN {La}),  Sei=p3"(Po~A{L, 1Y), Tyi=py" (1), To:=p;'(I})

all are non-empty substrings of P, and S1WSaw{J,, J} = P. Furthermore S is a substring
of the open string T7 U T5, and T} consists only of J, and some elements of S7, while 75

BWe attach the a and b to the I and I’ just to distinguish the two elements I, and I, and the two
elements I, and Ij. This should not indicate, that for example I, and I/, appear with the same index in
P ={I1,..,I,) and in P, = (I1,...I},,) respectively.

1 0Of course an analogous criterion holds if we switch the roles of Pi and P, i.e. assume I, = I; and
I, # I.



5.3 Simple banana cycles 171

contains only J;, and some elements of Sy. So {J,} || S1 || {Jp} and hence

{Ja} | S1ll {} || S2 || {Ja}, and thus J, K Jp.

Criterion (B) is for I, # Iy, I, # I;, but I, || I and I}, || I;. Then:
NI | NI
in P, if and only if

(I.CI, vV I,2I,) AN(I,CLy V I, D I}).

For the “if” direction note that under this condition, by Lemma 5.17 (v) and condition
(%),

T = pr ({Ta: 1)) 0 03 (Lo 15 )
is a substring of P. ' Furthermore one can check that under the condition we have
T={I,NI, Iy}, and hence I, N I}, || I, N I},

To show the “only if” direction, assume for example that I, ¢ I, and I, 2 I). Then by
(ii), we have that

S1:=py (L) Npy (P~ A{L}) and Sz :=py ' (1) N oy (P~ {1a})

are non-empty, disjoint substrings of P. Since also p; *(I,) = S1 U{I, NI} and p; (I)) =
So U {I, N1} are set of neighbours we get

St {Zan I} | Sa.

Since I N I; is neither contained in S; nor in Sy this implies I, N I} § I, N ;.

The two criteria we just have proven determine P completely, hence the coarsest common
refinement of P} and P, is unique if condition (x) holds.

If (%) does not hold, and hence WLOG I, U I/, = n, then it is easy to check that all
the partitions that are claimed in (ii) to be coarsest common partitions of P, and P, are
indeed such.

To show that these are all coarsest common partitions that exist, let P be any coarsest
common partition of Py and Py. Then Iy, ..., Iy, I1, ..., I/ ,_, are pairwise different elements
of P, and by Lemma 5.17 (v), Ty := I || ... | I, and Ty = I || ... || I/, are two substrings
of P. If we view T} and T» as sets, then

PN (TyUTy) = py (1) N opy ' (1)

m/

By Lemma 5.17 (v) and the distinguishing property of coarsest common refinements men-

tioned above, there can be at most two elements in p; *(I1) N p2_1(I,'n/), and if there are

5For this reduce the possible cases WLOG to I, UL, UI,UI} =1, Ul and [, UL, UT, UI, = I, UI}.
In the second case apply Lemma 5.17 (v) and (%) to get the claim. In the first case either I, U I, # n, in
which case we again apply (v), or I, U Iy = n, in which case the claim is also clear.
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two, they are not neighbours. Also it is clear that the union over the sets that are elements
of pyH(I1) N py H(I',) is just the set S C n defined in (ii). Hence the elements of P not
contained in the strings T and T” are either only S or two disjoint sets K7, K5 such that
Ky UKy = S. Putting together what we have seen in this paragraph we obtain that all
coarsest common partitions of P; and P, are of the forms claimed in (ii).

(ii): Using the description given in (ii) of the coarsest common partitions in the case when
there is more than one of them, one sees that for any two different of them condition (a)
of (ii) fails to hold. O

Remark 5.21 Lemma 5.20 together with the proof gives us the following (cumbersome)
procedure to determine all coarsest common refinements of two given circular partitions

Pr=(Li,....1n), Po=(I1,.... I )

Write down the M}, and M}, of Lemma 5.20. Then using (i)+(ii), one checks whether there
is a coarsest common refinement, and whether there is more than one. If there is more
than one we can write them all down by (ii). In the case that (i)+ (ii) say that there is
exactly one coarsest common refinement, each Mj, is some substring I/ ter | I T Il |l I for
of P». If My = P» for some k € m, cut the closed string M}, open between its two unique
elements I}, and I} such that I, and I; also appear in some other M; (i.e. I}, I} 5Z Ii).

Call the resulting open strlng Mk If My, is already open, set Mk = Mj. Write Mk as

Jk NG i |- || I G define M, to be the string I, N I’ | NI ]k e M g I, Now

the coarsest common reﬁnement P of P; and P, is obtained from the Ml, Mg, .. Mm as

Jk,1

follows: For each k € m ' glue (i.e. declare to be neighbours) the unique pair of endpoints
Iy N1, € EnP(My) and Iy11 NI, € EnP(Mj1) such that the pair fulfils one of the two
criteria (A) and (B) from the proof of Lemma 5.20. 17

Notation: Until now we usually denoted simple banana cycles in the form By, . p,., for
(I1,...,I,) an ordered partition of n. But since it is clear that the banana cycle only
depends on the associated circular partition P := (I, ..., I,,), we will for the rest of this
chapter write these cycles as By, . .,y or Bp. This should remind us not to count them
too often when they appear as twisted sectors.

Now we determine the “set theoretic” intersections Bp, N Bp, of simple banana cycles.

Lemma 5.22 (i) The intersection Bp, N Bp, is non-empty, if and only if the two circular
partitions Py and Py of n have a common refinement.

In this case, if we let PO PW be qll the coarsest common refinements Py and Py have,

Bp, N Bp, = H‘J Bpw)

$View m as circularly ordered, i.e. m +1 = 1.
Y71f m = 2 there will of course be two such pairs of end points which have to be glued.
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(i4) This implies for the simple banana cycles of Ry :
v 14
Bf, N Bp, = |4 Bpwy and Bp N Bp, = |4 Bh,
k=1 k=1

while B, N Bp, is always empty.

Proof: (i): Recall from Def. 5.16, the definition of I'(P) and P(I') and the discussion of
their connection in (xiii), and the discussion of the connection between contractions and
refinements in (vii). From this we see that for circularly ordered partitions P and P’ the
following are equivalent:

3 refinement p : P’ — P < 3 contraction ¢ : I'(P') = I'(P) & Bp C Bp. (%)

For the last equivalence cf. Def. 4.1 (ii) and Prop. 1.26 (iv).

Hence Bp, N Bp, 2 Bp( k) for each k € v. It is clear that every common refinement P’ of
P, and P, is a refinement of one of the P**)_ hence also Bp: C Bp) for some k € v.

In the opposite direction each pointed curve parametrised by a point of Bp, N Bp, must
have a stable graph I which is a specialisation of I'(P;) as well as I'(P). It is clear that
a stable graph of genus 1 is the graph of a simple banana cycle, (cf. Definition 4.1 (ii)), if
and only if it has more than one vertex, and contains no rational trees.

Now we can contract all rational trees of I and obtain a graph I'” which is still a spe-
cialisation of I'(P;) as well of I'(P»), since these two graphs do not contain rational trees.
So there are contractions I'' ~ T'(P;) and I ~ T'(P2), and I is the graph of a simple
banana cycle. Hence using I'(P(I"")) = I'” from Def. 5.16 (xii), () implies that P(I'") is
a common refinement of P; and P». So it is a refinement of some P*). Hence I and thus
also I' are specialisations of T'(P(*)). Therefore the class of every curve with dual graph
I' is contained in Bp) . We have shown that every point of Bp, N Bp, is contained in one
of the Bpk). That the union over the Bpwx) is disjoint follows from Lemma 5.20 (iii).

(ii) Bp, N By, = 0 is a direct consequence of Lemma 4.8 (i). But this together with (i)
also implies the rest of (ii). This is because for 7, : Ry, — M1, the forgetful morphism,

we have 7, (Bp,) = B}, U Bp,, 7, '(Bp,) = Bp, U B, 7, (Bpwy) = By U Bl O

5.3.2 Cohomology of simple banana cycles

Since the usual rational cohomology of each sector of I1(R;,) appears as summand in
H¢, R(§17H)7 and since all simple banana cycles B(h,..., ) with m even are the supports of
such sectors, we will compute the cohomology of the simple banana cycles here.

First note that for all m € N>, n € N, (I1, ..., I,) a circular partition of n:

B2117~~~:Im> = lella~~-7[m> = B<Il7"'71’m> (51)

as varieties. This follows from Lemma 1.46, since the cycles are normal varieties by Lemma

T

4.3 and since the finite forgetful morphism 7, : Ry, — Mlm, restricted to B< o)

or
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BZ’II o) has degree 1 (cf. the proof of Lemma 4.4). Because of these isomorphisms, in
this subsection, which is concerned with the “inner structure” of the simple banana cycles,
it will suffice to speak about By, . 1., only.

Definition 5.23 Let fp, be the embedding fg, : Bp — MUL, then of course the gluing
morphism {p, factors as {p, = fBp © zBp, Where we denote by zp, : M[‘(P) — Bp
the finite surjective morphism obtained by restricting the codomain of £ Bp, tO the image
Bp,. Analogously we define fpr,, fBg, zpy, and zpy, and note that (pr, = fpr, o zpr, and

CB;; = fB;; O ZBY-

Lemma 5.24 For a partition Iy & Iy = n, let So act on MO,Ilu{.l,.2} X MO,IQU{ol,OQ} by
simultaneously permuting the indices o1 and o5 on the first component and the indices oy
and oo on the second component, defining a quotient (MO,Ilu{-mz} X MO’[2u{Ol7O2})/S2.
Then:

(i) B 1) = (MOJIU{,“Q} X MOJQU{Ol’OQ})/SQ, as varieties, and we may identify ZB(1, 1)

with the quotient morphism.

(i) Let Sy act on H*(M 1, 1e; 05}) T€5P. H* (M {0, ,05}) by interchanging indices o1 and
ey, resp. o1 and oy. Denote by (...)" the So invariant part of each algebra, and by (...)~ the
part on which the non-trivial element of So acts as multiplication with —1. Then the algebra
H*(B<11,12>) is isomorphic to the following sub-algebra OfH@<M0,IIU{.1,-2} XMO,[QU{ol,OQ})-‘

(H* (Mo, 1,Ufe1,003)) T @ (H* (Mo 1,0f01,001)) T & (H* (Mo 1,Ufe,03)~ @ (H* (Mg 1,0(01,003))

(i1i) We denote by DW resp. D@ boundary divisors of MU,Ilu{.l,.Q} resp. M0,12u{01,02}7
and by DO resp. D® the divisors that are obtained from DU resp. D@ by interchanging
the indices o1 and ey resp. o1 and oo. Then the sub-algebra just described is generated by
elements of the form: (DY + DM ®1, 1@ (D@ +D®@) and (DY — D)@ (D — D®),
(iv) We use the notation k)p,| |1, (s) := dimg H*(By, 1)), 91/(s) := dimg Hé(MOJU{.ln}),
hyr((s) == dimg H*(Mg 1fe;051/S2) = (H*(Mo 1010, ,0,})) ", where Sy acts as in (ii). With

this notation:

Ky ns (s) = Z Py (81) Iy (82) + (9ni (51) = Py (51))(9nsa (52) — Py (52))

S1+82=s

The functions gn(s) and hy(s) are known by [Kee92] resp. by [Get98].

Proof: (i): The gluing morphism §B<11112> : Mo,hu{-l,oz} X MOJ2U{OLO2} — By 1y (cf.
Proposition 1.26 (i)) is finite, surjective and of degree 2, since the stable graph I'( By, r,))

has 2 automorphisms '8 . It is clear that ¢ B is invariant under the action of Sy defined

Iy,12)
in the Lemma. It thus factors through a degree 1 morphism

6, : (MO,I1U{01,.2} X MO,IQU{Ol,OQ})/SQ - B<11,12>'

Since Bz, 1,) is normal by Lemma 4.3, ¢’ has to be an isomorphism (of varieties) by Lemma
1.46.

18The non-trivial one exchanges the two edges connecting the two vertices
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(ii): Denote by 1 resp. 2 the morphism as which the non-trivial element of Sy acts on
H*(M 1,0{ey,05}) T€8D. H*(M f,0(0;,0,}), for the actions defined in (ii). We can write

H* (M0711U{.1,.2} X MO,IQU{OLOQ}) = H* (M0711U{.1,.2}) & H* (MO,]QU{OLOQ})

by the Kiinneth formula.

Now by (i) and Lemma 3.1, H*(Bz, 1,)) can be seen as the sub-algebra of this product
formed by the elements that are invariant under @1 ® 2. Denote this sub-algebra by A.
Denote the algebra that is claimed to be isomorphic to H*(By, 1,)) in (ii) by B. It is clear
that B C A.

For the opposite direction, use for any Z() € H*(MO,hU{n,n})? Z®? e H* (Mo,hu{oh@z})v
the notation Z(1) 1= 1 (Z1)), Z(?) := 4 (Z?). By a general fact about invariants of finite
groups (cf. [FH91] Prop. 2.8.) we know that the homomorphism

= 1 _ _
H* (M 1) 2y Z(zM 2 (1) )
(Mo 101,00 @H (Mo tyogoy0q)) A 20 @27 5 (AN AE VAN AR

is surjective. Now A = B follows from the fact that we can write each

o~ o~

ZWez®P1Z2007@ as S ((ZW4+ZW)e(2P+Z2®)+(2V-ZW)g(2?®-Z?)) € B.

N =

(iii): For all Z(M, Z?) as in the poof of (i) define Z(®) := z() 4 Z0, 70 .= 76 _ Z()
(i € 2). Note that by Summary 1.48 (iv), H*(Mg 1, fe;,e,}) Tesp. H* (Mo 1,010, 02}) is as
Q vector space generated by Z()’s (i = 1 resp. i = 2) that are of the form D( 2 D(Z) #
0 where the D,(f) are pairwise different boundary divisor classes of MQ [1U{ey 02} T€SD.
M()’ I,U{oy1,00}- 1O prove (iii) it now suffices to show for all such Z (@) the following:

(1) Z0 = al_)gi) Ce D,(,?, for some «a € Q.

(2) 7@ = al_)gi) . Déi) Ce Dﬁ?_l . 57(7?, for some o € Q.

We will show these claims for Z(!) and Z (1) the cases of Z() and AS) being completely
analogous. First we show (1), by induction on m. For m = 1, clearly Z(1) = Dgl). For
n > 1, in general we have

zO=p®. .pW .pOLpH. .pw . pm, (%)

m

Now every D,(:) is either of the form D,(:) = o1, @3, Ji] or of the form D,(Cl) = [, Ji], for
some J; C I. For divisors of the first kind ﬁ,gl) = D,E:l). We distinguish cases: Either at
least one of the D,gl), (WLOG it is D,%)) is of the first kind (case (A)), or all the D,(cl) are
of the second kind (case (B)). In case (A), equation (%) can be continued by

bW =tap®. D . pm),

=" ...pW  + DM ... DI . 5

l\’)\}—t

for some o/ € Q, where in the second step we applied the induction hypothesis. In case
(B), since D,gl) : D,(;) # 0 for all k # k' € m, we have J, C Jp or Ji O Jp by Summary
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1.48 (iii). Since for all k € m, 0 # Jj, # n, this implies that J, ¢ J, and Ji, 2 J§,, where

Jg i=n~ Jy, hence D,(Cl) 5,9) = [®1, Ji] - [®1, ;] = 0. This implies for case (B):

Now we show (2). For this first note that if all D,(;) are of the form [e1, ey, Ji], then

ZW) = 7z — 7(1) = 0. Hence WLOG Dgl, DgQ, e Dg) are of the form [eq, J;] for some

0<r<mand Dgl), ...,Dfnl) are of the form [e, 9, Ji]. Then

Z0 —pW. .p® .po_pW. . pO . po)

= 150 B0 (DY, DYDY, DW= LD pw.pY DY B,
or r r m or -

For the last equation one argues analogously to the proof of (1) in case (B).
(iv): From (ii) it follows that, for ny := |I1| and ng := |I2]:

HS(B<11,12)) =

DB ((H Fops2))* @ (H (Mo 2))*) & (H (Momys2))” @ (H*(Mong12))-

S1+5s52=s
So, dim@(B<I1,12)) = Zsl+52:5 hn, (Sl)hnz (52) + (gnl (51) - hm(S1))(gn2 (82) — hny (52))' O

The simple banana cycles for m > 3 are easier to treat:
Lemma 5.25 (i) For P = (11, ..., I,) a circular partition of n with m > 3, the morphism

%Bp - MO,I1U{01,02} X MIQU{027.3} Ko X MIm—IU{OM—17.m} X Mlmu{omv'l} — Bp

s an isomorphism of varieties. The same holds for zpy and zpry, .

(ii) Hence zp, is an isomorphism of Q-algebras:
H*(Bp) = H" (Mo 1,0{01,05}) @ H* (Mo [,Ufos,05)) @ - @ H (Mo 1,,0(0,.01})

The same holds for B}, and BY.

Proof: Since the stable graph of B, . 1, for m > 3 has no non-trivial automorphism,

, is an isomorphism since

ZBiry has degree 1 (cf. Proposition 1.26 (i)). Hence 2By 1)

Bp,,....1,,) is normal by Lemma 4.3. The rest is clear by equation (5.1), at the beginning

AAAAA

of this section. O

Corollary 5.26 Since zpp, zpy,, Zpy, (cf. Def. 5.23) are finite surjective, the pullback
along them is injective and by the previous lemmas the pullback is surjective for |P| > 3
and has image H*(Mp(p))SQ C H*(Mp(p)) if |P| = 2. Via these pullbacks ° we usually
identify H*(Bp), H*(B}) and H*(B},) with H*(Mrpp)) if |P| > 3 and with H*(Mryp))®2
if |P| = 2. Assume that n > 3 then in case |P| = 2, with the chosen identification, the

19Recall that, as always, we use the adjusted pullback, as introduced in Summary 1.34 (iv). This makes

olPI=1

a difference especially for Bp for which the general object has automorphisms (if n > 3).
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pushforwards (zpp)« and (zpy)« on the one hand, and (zpy, )« on the other hand, act on
H*(Mrppy) = H* (Mo 1,0fe1,0) ©® H* (Mo 1,0{0,,0,) Y

70223 zWgz@ 1 70 7@ resp. zWgz@ —2.(2Wgz@ 4+ 70 g Z(2),

using the notation from the proof of Lemma 5.24. So restricted to the invariant part

H* (MF(P))S2), the pushforwards acts as multiplication by 2 resp. 4.

For |P| > 3 the pushforwards (zpp)« and (zpy )« act as the identity, while (zpy,)« acts as

multiplication by 21F1-1.

5.3.3 Intersection theory of simple banana cycles

Let P, = (I, ...I,) and P, = (I{,...I] ,) have a common refinement P={(Ji,.., J,), and
let p1 : P — Pi, ps : P — P, be the refinement maps. Then:

Definition 5.27 For any circular ordered partition P we set
N(P):={{li, o} S P[ L[ I, I # I}
(i) If P as above is a refinement of P; define

ON(Py; P) == {{J1, Jo} € N(P) | p1(h) # p1(J2)} 2
It is clear that {Ji, Jo} — {p1(J1), p1(J2)} defines a bijection ON(P;; ﬁ) — N(Py).
(i) For a common refinement P, define CN(Py, Py; P) C N(P) as
CN(Py, Po; P) == {{.11, Jo} € N(P) | p1(J1) # p1(J2) and pa(J1) # p2(Ja2)}
= ON(Py; P) N ON(Py; P).

We also define subsets CNy (P, Po; ]3) C N(Py), CNo(Py, Ps; ]5) C N(P,) as

ONy(Py, Py; P) := {{p1(J1), p1(J2)} | {1, ]2} € CN(Py, Py; P)},

CNa(PL, Py; P) := {{p2(J1), p2(J2)} | {J1, J2} € CN(Py, Py; P)}.

(iii) We call the unordered pairs {I;, >} in N(P ) the nodes of P and the elements of
CN(Py, Py; P) the common nodes of P and P, on P.

(iv) If P is a circular partition of n, we set d(P) := 2 if |P| = 2 and d(P) := 1 otherwise.
Then d(P)|N(P)| is the number of edges of the graph I'(P), or of the nodes of a general
curve parametrised by Bp. So codim(Bp, M1,) = d(P)|N(P)|.

(v) Denote by CCR(P, P») the set of all coarsest common refinements of P; and Ps.

OLet ¢ : A(.IS, ep) ~ A(P1,ep,) be a contraction corresponding to the refinement map p : P Py, and
let E(P) resp. E(Py) be the sets of edges of A(P,ep) resp. A(P1,ep,). Then ON(Py; P) is the set of those
pairs of vertices which are connected by edges in ¢ ™' (E(Py)) C E(P).
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One may think about CN(Pj, Py; P) as determining which nodes of a general curve C
parametrised by By come as well from a node of a general curve of Bp, as from a node of

a general curve parametrised by Bp,. Therefore the name “common nodes”. 2! In particular
we have for any coarsest common refinement P of P;, P,
\P1| +|Py| — |P| = d(P)| ON(Py, Py; P)], and hence, (5.2)

codim(Bp,, M1 ,) + codim(Bp,, M1 ,,,) = codim(Bp, M1,,) + d(P)| CN(Py, Py; P)|, (5.3)

as can be checked using Lemma 5.20 (ii) and its proof. The “common nodes” will corre-
spond to the common edges appearing in the excess intersection formula (cf. Proof of the

next Lemma).

We want to determine the pullback of the class of one simple banana cycle Bp, on M1,
via the gluing map of another simple banana cycle Bp,, i.e {g, (bp,). In a second step
1

this will allow us to compute the intersection bp, bp, on Ml,n-

To be able to use our usual notation for the gluing morphism & Bp, » choose for the cyclically

arranged set P, = (I, ..., I,) a bijection P; = Z/mZ, which is a representative of the
cyclic arrangement, cf. Def. 5.16 (iii). (Of course writing the elements of P; with indices
1,...,m makes it look like P; comes with such a representative anyway, but it is not meant
like this.)

Now we will write the gluing map & Bp, S
ngl :MF(Pl) = H MO,I'L'U{OZ',.I'+1} — Ml,n- 22
iEm

Lemma 5.28 Assume n > 3 for the whole Lemma. For P’ a refinement of a circular
partition P of n, let Con(P’, P) be the set of all contractions of graphs ¢ : T(P') ~ T'(P).
We have | Con(P’, P)| = d(P). (For the definition of T'(P) cf. Def. 5.16)

(i) For a ¢ € Con(P',P) let & : Mr(p/) — Mp(p) be the partial gluing morphism (cf.
Proposition 1.26 (ii)). If P = (I,..., I,), and p : P' — P is the refinement map, we can
write
P = (11,512, Jipns J2.1, oos T )
such that p~Y(I;) = {Ji1, ooy i}
We determine the pushforward of the fundamental class 1pr := [MF(P/)}Q of MF(P/),
(&)wlpr € H*(Mr(py) = H* (][ Mo ru(0s,0001)) :

iEm
In case m > 3, for the only ¢ € Con(P’, P):

(&e)«lpr = D1 ® Dy ® ... ® Dy,  where

2INote that this interpretation is not quite adequate if |]3| = 2 since then the two components of a
general curve meet in two nodes, hence the number of “actual” common nodes on the general curve is
d(P) - | CN(P1, Ps; P)|.

22The indices of the o; and ;41 are elements of Z/mZ, SO @11 = 1.
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i s
D; = H[% U Jitl € H* (Mo 1,0f0;011})
s=1 t=1

Here the [o;,|J;_, Jit] are boundary divisors of M 1,0, cf. 1.47 for the notation.

.’L+l}’
In case m = 2 there is a ¢ € Con(P’, P), such that for (§)«1pr the same formula as in
the case |P| > 3 holds. For the other element ¢ € Con(P’, P), the formula for (§)«1p: is
obtained by replacing o; by e;1 in the definition of the D;. 23

Now define

1
B(P', P) := xlpr 2

(i) We can express the pullback of the class of one simple banana cycle via the gluing map
of another simple banana cycle as follows: Let Py, P> be two circular partitions of n. For
each P € CCR(Py, P2) denote by W(Py, Py; P) the set of all refinements P of P, such that
for p: P — P the refinement map, the following conditions are fulfilled:

1. There is a map r : CN(Py, Py; P) — P, such that for each {J,J'} € CN(Py, P, P)
we have r({J,J'}) € {J, '}, and with this map r:

2. If J € P~ r(CN(Py, Py; P)) then p~(J) = J.

S If r=Y(J) = {{J,J'}} then p~Y(J) = {K1, Kz} for some K1 W Ky = J such that
v(J) € Ky and K1 || p=X(J') in P. Here v(J) denotes the smallest number in J C n.

4. If r=Y(J) = {{J,J'},{J,J"}} such that J' || J || J", then p~*(J) = {K1, K3, K3}
for some K1 W Ko W K3 = J such that v(J) € Ko, K1 #0 # Ky and p~*(J') || K1 ||
Ky | Ks || p~2(J") in P. Again v(J) denotes the smallest number in J C n.

Note that if CN(Py, Py; P) = () then W(Py, Py, P) = {P}.
With this definitions we have:

hp (b)) = D (=D)lONEERDL R B(P, py)

PeCCR(Py,Py) PeY(Py,Py,P)

The only exception from this formula is the case Py = Py with |Py| = |Py| = 2. In that
case fgpl (bp,) = > pey B(P, P) where VU is the set of all refinements P of Pi = Py with
|P| = 4.

(1ii) Hence:

Gy Bp) = D (-plevmil % T B(P, Py

PeCCR(Py,Py) PeW(Py,Py,P)

Z3When pushed forward further to M1, (£.)«1pr and (£+)«1ps are mapped to the same class. So for
computing the intersection on Ml,n the difference between them is not relevant.
#Note that if d(P’) = 2 i.e. if |P’| = 2, then P’ = P and the pushforward for both contractions is just

1p. So all the factor ) does is preventing to count this class twice in this special case.

_1
ap
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* T 1 P p
Cip, (O) = 37 > (-pleN@EPaPl N (P Py)
PECCR(P1,P,) Pew(P1,P2,P)

(iv) Let prl be the embedding prl : Bp, = Ry, then of course the gluing morphism
prl factors as §BP1 = fBP1 O ZBp, , S explained in Definition 5.23. By section 5.3.2,
zpp, is an isomorphism if |P1| > 2 and a quotient morphism of degree 2 if |[P| = 2. For
any refinement P of Py let B(P', Py) denote the Q-class in H*(Bp,) of the subvariety
Bpr C Bp,. Then

(2Bp, )<B(P', P1) = d(P1)B(P', P1)

If we let B"(P', P1) resp. B"(P', P1) be the Q-classes of By, resp. By, in H*(BY,) resp.
H*(Bp,). Then analogously

(zpy, )«B(P', P1) = d(P1)B"(P', 1) and (zpy, )B(P', P1) = d(P)2" 1B (P, Py).
1

Hence, if we work with the identifications of cohomology rings defined in Corollary 5.26
then:

B(P',P) =B(P,P), B'(P,P)=B(P, P), B (P, P)=2"-I"Ipp p).

(v) With this notation:

f]*;ﬁ(bpz)—ng,gl)*&gﬁ(bm= S (rpleN@:RRl Nt B(P )

 degzp _ .
P1 PeCCR(P1,P2) Pev(P,,P,,P)

fggl( P,) = Z (—1)l NP P Z B//(ﬁ, Py)

PECCR(P1,P) PeW(Py,P,,P)
Jip, Wp) = 30 (<)) NP SR PRI (P py)
PECCR(Py,P) PeW(Py,Ps,P)

(vi) For a given circular partition P of n, |P| > 2, let P and Py be two refinements. For
any P € CCR(Py, P,), set CN(Py, Py; P; P) := CN(Py, Py; P)~(ON(P; P)NCN(Py, Py; P)).
Now define (I\’(Pl,PQ;P; P) by mimicking ezactly the definition of W(Py, Py; P) from (i),
except of replacing each CN(Py, Py; P) appearing there by 6N(P1,P2;P; P). Then for
ip p:Bp, — Bp,ip py: Bﬁél — B}, ip py: By, — Bp the inclusions, we have:

B = S ()OS g
PeCCR(Py,P) P (Pr,Pa:P;P)
i*Pl,P,//(B/,<P2,P)) = Z (_1)|CN(P1,P2;15;P)\ Z B//(ﬁ7pl)
PECCR(Py,P2) Pel(Py,PyP;P)
ipp(B' (P, P)) = > (—1)/CN(P1.PaiPiP)| > ol PIHIPI-IPiI-IP2 gr( B )

PGCCR(PhP?) ﬁe@(PhPQ;P;P)
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Proof: Here we use the formulas and notation from section 1.7 to calculate excess inter-

sections.

There are exactly d(P) contractions ¢ : I'(P') ~ I'(P): For p : P/ — P the refinement
map, it is clear that a vertex J of I'(P’) for J € P’ is contracted into the vertex p(J) of
I'(Py) by ¢, since contractions respect the legs of a graph. All edges between two vertices
Ji and Jy with p(J1) = p(J2) are contracted by ¢ since the graph of a banana cycle
contains no self edges. If there are edges between J; and Jy but p(J1) # p(J2), ie. if
{J1,J2} € ON(P, P’), then the set of these edges is mapped invectively to the set of edges
between p(J;) and p(Jz2) by c¢. The only case in which there can be more than two edges
between p(J;) and p(Jz2), and hence in which ¢ is not completely determined by p is the
case P = (p1(J1),p1(J2)), i.e. |P| = 2. In this case there are exactly two edges between
p(J1) and p(Jz), whose preimages in I'(P’) under ¢; must be specified. Hence in this case
there are exactly two different possible contractions I'(P’) ~ T'(P).

(i): Tt is easy to see that the right hand side of the claimed equation
(€)slp =D1® Dy ® ... ® Dy,

is the class [EC(MF(p/))]Q, where &, (MF(P/)) is the image. Since &, has degree 1 as a
morphism of stacks 2° | this is the same as the pushforward of the fundamental class 1p/

of MF(P’) by fc.

(ii): Since we want to use formula (1.5) from section 1.7, we first determine the set
Gr(p)r(p,) appearing there. We claim that for (A, c1,c2) € Grpr(p,), A must be the
graph I'(P) for P some coarsest common refinement of P; and Ps: Every edge of A must
be either mapped to an edge of I'(P1) by ¢1 or of I'(P%2) by ca, by definition of Gp(p,)r(p,)-
These graphs do not have disconnecting edges, and it is easy to check that a contraction
can not map a disconnecting edge to a non-disconnecting one. Hence A is a graph of a
simple banana cycle by Definition 4.1 (ii) and hence by Definition 5.16 (xii) of the form
F(p) for some circular partition P of n. Then the contractions ¢; and ¢y have to induce
refinement maps p; : P — P resp. p2 P — P; since contractions respect the marked
legs of the graphs. Now the condition that no edge of A is contracted by both ¢; and c¢o,
defining Gr(p,)r(p,) 18 equivalent to: P is a coarsest common refinement of P; and Ps.

So the set of all (A, c1,co) allowed in Gr(p)r(p,) is the set of all (I'(P),c1,c2) where
P e CCR(Py, P,) and ¢; € Con(P, Py) and ¢y € Con(P, P,) are contractions. By the
discussion above for a fixed P we have d(P;) - d(P») pairs of contractions (c1,cs). Now a

Gr(p,)r(p,) is obtained by choosing a representative of every residue class in

L—Ij {(c1,¢2) | c1 € Con(P, Py), c2 € Con(P, P2)}/ ~p,
PECCR(Pl,PQ)

250ne can see this as follows: In the proof of Proposition 1.26 (iii), the partial gluing morphisms &,
corresponding to a ¢ : I' ~» I is described as a product of the gluing morphisms corresponding to the
subgraphs of I' which are the preimages of the smooth cells of I'. In our case it is easy to see that these
preimage-graphs have no automorphisms, and thus the factors of £. all have degree 1 by Proposition 1.26
(i). Hence the product & has degree 1 too.
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where (c1,c2) ~p (¢}, ch) if there is a p € Aut(T'(P)) such that (¢10p,ca0¢) = (¢}, c)). A
non-trivial automorphism on I'(P) exists if and only if | P| = 2. In this case |Pi| = || = 2
too, and hence P = P; = P,. Check that we can choose as representatives of the two classes
in {(c1,¢c2) | c1 € Con(P, Py), ca € Con(P, P;)}/ ~p in this case (c1,c2) and (¢}, c2), where
c1 # ¢, and ¢y is any of the two elements of Con(P, P,). So:

_ o d(P1)d(P2)/d(P) o
Mrp)rp,) = H My = H H My p) (*)
(Ase1,e2)EGr(p) )T (Py) PeCCR(Py,P2) h=1

Let & : MF(Pl)F(P2) — MF(Pl) be the forgetful morphism from Diagram 1.2 in Section 1.7,
then using the isomorphism of (%), we can make the identification

d(P,)/d(P)

e= I I I &

PECCR(Pl,PQ) h=1 CECOH(P,Pl)

Since T'(P) has no self edges, an edge between J and J’ is contracted by none of ¢; and
co for a pair (c1,co) if and only if p1(J) # p1(J') and pa(J) # po(J'), ie. if {J,J'} €
CN(Py, Py; P). The set CE appearing in the excess intersection formula (1.5) is the set of
just these edges. So if we denote by E(.J, J') the set of edges {h, '} 26 between the vertices
J and J', the excess intersection formula (1.5) yields, with np ; := np(p) ; (cf. Def, 1.41

(1)) and using |Aut(I'(P2))| = d(P»):

€ (br) =

d(P.
d(lPa) 2 d((;)) >, (& 11 —1p,y(n) = 0p 5 (Vi)

PGCCR(Pl,PQ) CECOH(P,Pl) {h,h/}EE(J,J,),_
{J,J/}ECN(Pl,PQ;P)

()

From now on assume that we are not in the case P| = P» with |P1| = |P2| = 2, and hence
that |P| > 3 for all P € CCR(Py, P2) ?7. Recall that np, s is the projection from Mr(p)
to the moduli space M ju¢p n+y, where h denotes the point belonging to the half edge h,
and where h* belongs to a half edge h* connecting J to its neighbour J” different from .J’
(since |P| >3, J” # J'). By Summary 1.42 (iv), we have:

b= Y K] »)

0AKCJI~{v(J)}

where we choose v(J) € J to be the smallest number in J C n. Using (#), we can check
that for h, h* as above

M. (Wn)-np  (Yn=) = > K] = > [h, K1) [h, K1 UKD).
0£KCJI~{v(J)} KiWKoWKs=J
0AK*CI~{v(J)} v(J)EK2, K1#0#K3
(%)

26Where h is a half-edge attached to J, b’ attached to J'.
2"The formula of (ii) can be checked to hold also in this excluded case directly, using (1).
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We can write the part of (1) in the large brackets as:

Z(_l)‘ CN(Py,P,,P)| H 17}‘3771({]’],}) (¢hr({J7Jl})) (i)

res {J,J'}€CN(Py,Py; P)

where S is the set of all maps r : CN(Py, P2, P) — P such that for each {J,J'} €
CN(Py, P2, P) we have 7({J,J'}) € {J,J'} and where h,.({J, J'}) is the unique half edge
which is part of the edge joining J and J' and which is attached to r({J,J'}). Now
let K(r) be the set of all possible tuples & = (KT‘({JJ’})){J,J'}eCN(Pl,PQ;P) such that
0 # Ky Sr({J,J}) ~v(r({J,J'}), where again v(r({J, J'})) is the smallest number

in r({J,J'}). Then using (#) we can rewrite the product in (1) as

Z H n%7r({J7J/})([hr({Jv J/})vKr({J,J’})D (<>)

H€K(r) \{J,J'}ECN(P1,P2;P)
where [h.({J,J'}), Ky({7,5y)] uses our standard notation for boundary divisors of spaces
Mo ps- Using (i) and (&), we can check that the product in () is (£)+1p for P a certain
refinement of P in U(Py, Py; P) and for a certain ¢ € Con(P, P). Now substitute all this
back into (1) and check that the result is the formula of (ii).

(iii): This is easy to show using the commutative diagrams

e CB;QI R o CB;;I _

F(pl) — > 11n and Mp(pl) —— Rl,n

Mrp,) . My, Mrp,) . M,
1 1

together with 7,; bp, = b, + (2'132‘)17332 and Lemma 4.8 (i).
(iv): We have

1
(ZBPl )*IB(P/’ Pl) = d(P/) Z (ZBPl ° gc)*lpl
ceCon(P’,Py)
1
= a@) Con(P', P1)| - deg/(zp,, ©&) - B(P', P1),

where deg’ denotes the degree as a morphism of stacks, or equivalently the degree as
morphism of varieties adjusted by the automorphism numbers, as in Remark 1.35 (ii). But
zpp, © & 18 (for all ¢ € Con(P’, P1)) the morphism one obtains from {p,, by restricting
its domain from M, to Bp,. Hence deg'(zp,, o &) = deg'(ép,,) = d(P'). Together
with |Con(P’, P1)| = d(P), (iv) follows for the case of Bp,. For B}, everything goes
analogously. For Bp, one has to take into account that the general object of B, has

/ .
2/P'1=1 qutomorphisms.

(v): This is clear by projection formula, (iv), and (ii) resp. (iii).
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(vi): We prove this for ip, p,, the other cases work analogously. Choose a ¢ € Con (P, P),
then

- gc N
Myppy — Mr(p)

zZBr zgr
Pll l BP

Bp, Bp

L ip,pr

commutes, and by the projection formula and (iii) we get

ipy,pr(B" (P, P)) = /7(2’3;1)*&23;(37‘(132713))
Py

B 1 1
~APIE1(Py) d(Py)

Now for each J € P, J is a vertex of I'( P) and we denote by I'(J) as usual the smooth cell
of I'(P) containing J (cf. Def. 1.17 (iii)). Denote by c; : ¢~ 1(I'(J)) ~ T'(J) the contraction
induced by ¢ and by ., the corresponding gluing morphism. We have

p) = H Mry, Mrp)= H M -1y, and & = H &es

Jepr Jepr Jepr

(253, )£ (212 B(Ry, P)) = 2/ P72 (zBy, )+&c (B(Py, P)).

(cf. Remark 1.19). Now if P = (J1,...., Jy,), write B(Ps, P) as in (i) in the from

D1 ®...@ Dy € H* (][ Mr(s,)) = Q) H* (Mr(,),
=1 =

where m = |P|, or as a sum of two such expressions if |P| = 2. For every appear-
ing boundary cycle class D; € H*(Mp J;)) we can compute & 5 (D) by applying ex-
cess intersection formula (1.5). By putting the results together again in H* (Mp( P)) =
X’ H*(M 11y J;))) We obtain (as one can check)

EBPLP)= Y (-DIONEEEPPL ST g(p py) s,
PcCCR(P1,Pz) PeW(Py,Py; P;P)
Together with (iv) this yields (vi). 2 O

Corollary 5.29 Let Py, P> be as above. Using the notation of Lemma 5.28, we determine
the intersection product bp bp, :

bp,bp, = Z (—1)ION (PP, P)] Z bp

PcCCR(Py,P,) Pew(Py,P,,P)

2Note that by condition of Lemma 5.20 (ii), here CCR(P;, P2) will only contain more than one element
if P = (Ji,J2) and P, = (J1,K1,...,Kn,), P» = (La,..., Ln,, J2) for some partitions Ki,.., K,, and
Li,..., Ly, of Jz resp. Jo. In this case CCR(Py, P2) consists exactly of (L1, Lo, ..., Ln,, K1, K2, ..., Kn, ) and
(LngyLng—1y ooy L1, K1, Ko, ooy Kp ).

290One also could proof (vi) analogously to (v) using a slightly generalised version of the excess intersection
formula (1.5), which would determine the pullback of boundary cycle classes to boundary cycles from inside
another boundary cycle. But I did not want to proof this generalised version and do not know a reference.
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D SN LD S

PECCR(Py,P2) Pew(P,,P,,P)
roar o _ CN(P,,P»,P P|—|Py|~|Pa|r
P bp, = Z (_1)| (P1,Py,P)| Z ol P|—|P1|—| 2|b}3
PGCCR(P17P2) ﬁE\I/(Pl,PQ,p)

Proof: Just push forward the equations of Lemma 5.28 (v) via the inclusions [Bp, TESP.
Fay, esp. fr, . 0

5.4 The additive structure of H}(R1,)

5.4.1 The sectors of I;(R;,)

Definition 5.30 (i) In My, k € {2,3,4}, index the marked points by ey, ..., e, and
let By C Ml,{nn}? Es C Ml,{.h.%,g)}, Ey C Ml,{~1,-2,03,-4} be the following points:

Ey := B({e,},{e,}) (i-e. the only banana cycle in Mly{.h.Q}). Es5 is the unique 3°

point
In B({e),05},{05}) Such that the parametrised curve has only two irreducible components
and has an automorphism ¢ which swaps the two nodes, E; is the unique 3! point in

B{e; 05},{03,0,4}) With the same property.

As we shall see below these points lie inside the “hyperelliptic loci” A} = lek (cf.
chapter 2). The non-trivial automorphism on them is the limit of the elliptic involution
on the smooth curves of Ay, Az, Ay. Below there are symbolic pictures of the curves @
parametrised by the Fj. The picture on the right shows the curve parametrised by E4 in
a more “hyperelliptic” fashion (cf. Chapter 2).

(EE {—Q . [>/ 2\/ \/3 \/ 4
E E3 E E

4 ¢ as hyperelliptic involution on [€] € Ey4

©

€] € B,

Denote the preimage points under 7, : Rlﬁn — Ml,n of these points E,, (two for each E,)
by E!! and E!. The prym curve parametrised by E! is supported on the stable curve C
parametrised by E,. For E] it is supported on the curve X obtained from C by blowing

up to the two nodes.

(ii) We define loci in M ,, by, like in Lemma&Definition 5.13, attaching pointed rational
tails to these Eji. We use the morphisms form Definition 5.12. Let (11, I2), resp. (11, I2, I3),

30Bach general point of Bfe;,02},{03}) Parametrises a curve consisting of two components C; = P!, Cy =
P! meeting each other in two nodes ¢1 and g2. C1 carries marked points @1, ez, while C5 carries the marked
point e3. It is easy to check (using the description of automorphisms of P! as M&bius transformations)
that on a P! there is exactly one automorphism exchanging two given points (¢1 and ¢2) and fixing one
other given point (say e; on Cy & p! resp. ez on Cop = IP’l). Also this automorphism has one unique
additional fixed point, and on the component Ci, e2 has to be placed on this fixed point, for not to block
the automorphism.

31The uniqueness of this point can be seen like for Fs.
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resp. (I1, I2, I3, I4) be ordered partitions of n. Then we define:

I, — 1,15}, I _
By = e (7 (Be)), B = (F7, 1 (B3)),

1,12} ,{I3,1 -
Ei{ vl s la) = 511,1'2713,1'4(f]1,112,13,f4(E4))'

Like in 5.13, we write the exponents such that they express invariances of the loci E,{l}
under certain permutations of the sets in the partition (I, ..., Ix).

Analogously define loci E,Z and Ez, in Ry, by attaching rational tails to the E} and
By,

(iii) In M2, let F, be the unique point in the divisor A parametrising a curve with a
non-trivial automorphism. This point represents the following curve C: Mark as p; and po

on P! the two points 0 and co. Glue the points 1 and —1 on the P! together to obtain C.
Then multiplication on P! by —1 induces an automorphism on C' fixing p; and ps.

Denote by Fj and FJ the two points of Ry, lying over Fb, like in (i).
Lemma 5.31 Here we describe for each Zk,x - El,k and Ay, C Mlvk, for k € {2,3,4},

x € {a,b,c}, the boundary Zk,x N Ayp o resp. A~ Ay, . We use the previous definition, but
write for example Ei{1’3}{2’4}} instead of the formally correct Ei{{l}’{3}}{{2}’{4}}}.

(i) For the Ay C My y:
ZQ N Ay = Fy U Eé{l}’{z}}
Az~ Az = E§{1’2}’{3}} U E§{173}7{2}} U E§{2,3},{1}}7

Ay Ay — EOBBAY | U3 E0) | glieaia,

(ii) For the Zk@ - Rl,k
ZQ,CL N AQ,CL — F2// U E;7{{1}7{2}}7 ZQ,b N A2,b — F27" U E;{{l}7{2}} U E;’v{{l}v{Q}}’

Az~ Azy = Eé’»{m}’{?’} U E§7{173},{2} U Eg’{2’3}’{1},

Asp N Ay = Eg"{1’3}7{2} U Eg’{172},{3} U Eg’{2’3}’{1},

Az~ Ao = BP0 pritah ) gridt2h (),
Ao~ Agg = EZL’»{{172}7{374}} U EZ’{{1’3}’{2’4}} U Ezv{{2,3}a{174}}7
Ay~ Agy = By prd2 843 prd(2sh (04
Tyo Ap, = BRI pri0ah a0} | prii2hisa)

Proof: Part (i) is shown in [Pag08] section 3.b.1, but could like (ii) below also be shown
using Propositions 2.14 and 2.19.

(ii): In the proof of Lemma 5.9, we saw that the Ay, are the components of the “hyperel-
liptic locus” HR; , using the notation of Definition 2.1. But for k = 2 we determined the
boundary divisors of these hyperelliptic loci in Example 2.20 as an application of Propo-
sitions 2.14 and 2.19. The decomposition of the boundaries for k¥ = 3 and k£ = 4 can be
determined analogously. O
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Theorem 5.32 The sectors produced from basic sectors by attaching rational tails (as
described in Lemma & Definition 5.13), together with the sectors of the form (B;h....,lm’ tm)

(m even), are all the sectors that appear in I1(Ry.,).

Thus the decomposition of I1(Ry,,) into sectors is:

R )AL - @™oy o @y oy
{11,123}, IsWls=n {I1,12}, I2Wla=n

g Ay g @
({11112}113)7 {{11712}7{137]4}}7
LWlaWlis=n HWlowWlsWls=n

. ‘ I} . .
Heri-o W ei™ig-o W B
{I1,I2}, I2Wls=n m<n, (I,..In),
M eVen [1y.. Wl =n
Proof: If one only wants to show this Theorem, it is probably possible to give a shorter
proof than the following. We will instead give a prove which provides additional informa-
tion that will also be used to prove other statements later.

For a genus 1 prym curve with n-marked points X := (X;p1, ..., pn; £;b) denote the stable
model of X by € := (C;pi1,...,pn). Then any ¢ € Aut(X) induces an automorphism
e € Aut(€) on the stable model €. In this way we can regard as a subgroup of Aut(¢)
the group Aut(X)/H, where H is the subgroup of inessential automorphisms in Aut(X) (cf.
Definition 1.11 (v) and Remark 1.12). For any ¢ € Aut(X), (X, ¢) is an object parametrised
by a point of a 1-sector (Y, g) of Ry . We want to determine which (Y, g) exist.

As seen in the proof of Lemma 4.4, the quasi-stable curve X consists of one genus 1 com-
ponent X’ having only non-disconnecting nodes, to which several rational trees X1, .., X
may be attached. These non-disconnecting nodes are either all exceptional (i.e. blown
up) or all non-exceptional. On the rational trees any automorphism ¢ of the prym curve
acts trivially 32. Hence, for the prym curve X' := (X';p;,, ..., Di,, ®1, -, 3 Lyx1), where
Diys - Diy, 18 the (ordered) subset of the marked points pi, ..., p, which lie on X', there is
an isomorphism Aut(X) = Aut(X’). It correspnds to restricting each ¢ € Aut(X) to an
automorphism ¢y of X'.

Let ¢ := (C";piys .y Di,, ®1, .., ®) be the stable model of X’. Then Aut(¢’) = Aut(<) in
the same way.

Now we will work with local universal deformations of our objects, so recall the notations
and results summarized in section 1.5. Let (X — X — (5, s0); 01, ..., 0n; L, b) be the local
universal deformation of X. And let (B, bg) be the local universal deformation space of €.
Let m: (S, s0) — (B,by) be the forgetful morphism of Summary 1.31 (ii). We denote the
maps as which ¢ resp. ¢ act on (S, sg) resp. (B, by) again by ¢ resp. @g.

Summary 1.31 (iii) in particular implies that, if Fix(¢) C S is the subset fixed by ¢,
then 7(Fix(¢)) C Fix(¢¢) C B. We want to determine Fix(p), because if we extend ¢ to

32This is clear for the corresponding @, and since by Summary 1.13 (i) none of the nodes on the rational
trees is blown up, there are also no inessential automorphisms acting non-trivially on the rational trees.
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X — B, then this extension restricts to an automorphism on a fibre f~1(p) for a p € S
exactly if p € Fix(p). Hence Fix(p) = p~(Y), where Y is the support of (Y, g) and
p:S — Ry, is the map which describes Ry ,, locally around [X] as the quotient S/ Aut(X)
(cf. Summary 1.30 (v) and 1.31 (i)). We will see in this way that for any possible 1-sector
(Y, g), the support Y is one of the supports appearing in the theorem. This will allow us
to show that the sectors in the theorem are all that exist, and also that they are indeed
sectors, since the automorphisms on them do not extend to larger loci.

Let E = E(I'(€)) be as in section 1.5. We can simultaneously interpret E as the set of
nodes of C, and as set of nodes and blown up nodes (i.e. exceptional components) of X.
We will always call the elements of E nodes, even if we interpret them on X. Set v := |E|.

As in 1.31 we identify (S, so) and (B, bp) with the unit ball in C", and endow them with
standard bases

—

(yla XX g‘nfua (ge)eEE) resp. (fl, sy fn,l,, (ge)eEE)'

Now Fix(y) resp. Fix(pg) are linear sub spaces of S resp. B.

We divide E into three subsets: Let E,4 be the set of non-disconnecting nodes of C’,
E, be the set of nodes connecting a rational tree to C’, Fy be the nodes in which two
components of a rational tree of C' meet. Then the permutation ¢g induced on E by ¢,
respects this partition of E, i.e. pg(E,q) = Enq, and so on. We also write V = V' &V},
where V' contains the vertices corresponding to components of C’, V;,. contains the vertices
corresponding to components of the rational trees of C'. Then of course

S = @ U, ® @ U, ® sSpang ({ge}CEEnda {ge}EGEu {gG}GEEtr)

veV! vEVir

where the U, are as in Summary 1.31. Recall Lemma&Definition 1.32 (i), since we will

use it from now on.

Since @ acts trivially on the rational trees, it is clear that ¢ and g extend in the directions
Je resp. T, for e € Ey,. For the same reason spang({U, }vev;,) C Fix(p), where the U, are
as in Summary 1.31. We refer to these two remarks by: ()

Now look at an e € FE,. If ¢ is not inessential, ¢¢ fixes e, and acts non-trivially on the
tangent space to the node e of the component X’ but trivially on the tangent space to
e of the rational tree meeting X’ in e. Hence in these cases Fix(¢¢) C .cp, {2e = 0},
hence Fix(¢) C (,cp, {%e = 0}. If ¢ is an inessential automorphism, then it acts trivially
at each node e € E, on both branches, and ¢¢ and ¢ extend in the direction Z. resp. ¥
33 We refer to this paragraph by: (1)

Let (Z, g) be one of the basic sectors of I(Ry 1), for k € 4, and look at a pair (X, ¢) such that
(X', px/) € (Z,g). Then it is clear that [X] € VAR
Let (7(11""7[]“)

5.13). Now let U be the preimage of Z on the local universal deformation space (S, s()

for some partition (I, ..., I}) of n.
,9) be the corresponding sector obtained from (Z, g) (cf. Lemmad& Definition

33That ¢ extends in direction Z. implies that ¢ extend in direction 7, in this case, since these nodes
are not blown up on X.
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of X' (U = Fix(pxr)). We can identify (S’, s;) with the sub space
P U, @ spang({#ie}ec,,) €S, Then: Uy = Fix(p) N S inside S.
veV’

Since ¢y belongs to a basic sector (Z, g), ¢y and ¢ are not inessential. So together with
(x) and (1), Uy = Fix(p) N S’ yields:
Fix(¢) = Uz ® P Us @ spang({Fie} e, )-
vEVr

Dodi) o) (S, so). This proves that all

,g) are indeed 1-sectors of ﬁlm. This covers all the sectors listed in the theorem

It is easy to check that this is just the preimage of Z
(7(11,...,1k)
except the sectors (BZI1 I tm). Furthermore we have seen that these sectors suffice to
parametrise all pairs (X, ¢) such that (X', ¢y/) is parametrised by a basic sector.

So now look at any pair (X, ¢), where ¢ # id is an inessential automorphism, i.e. p¢ = id.
The existence of such a ¢ implies that the non-exceptional subcurve of X is disconnected,
which is, using Summary 1.13 (i), only possible if the same holds for X’. So by our general

description of the possible X above, [X] is contained in some By, . s where m <n

may be any number (possibly odd). Then it is clear, that (.. _ {y6 :nb} C Fix(¢). Note
that this is just the preimage of Bz Tipd, ) OB (S, s0). But ¢ may also extend in directions
Je for some e € E,4: Recall from Remark 1.12 and Lemma 1.32 (iii), that an inessential
automorphism ¢ corresponds to choosing for each non-exceptional component X/ of X’ a
number a; € {—1,1}, up to multiplying all a; simultaneously by —1, and that ¢ extends
in direction ¥, for e € E,q4 iff € is a node between two components X;, X;» with a; = a;.
Denote by E?, the non-disconnecting nodes for which the two adjacent components have
different a;, m := |E¥,|. Note that m has to be even, since the components of X; are
circularly arranged. Let (I, ..., I,,) be the partition obtained by coarsening the partition
(J1, .., Jmy), by replacing each sequence J;, || .... || Jj, of neighbouring sets, for which
aj, = aj, = ... = aj,, by the union Jj U....U J;, 3* . Then ¢ fixes exactly the preimage of
By, 1y on (S,s0), and it is also clear that [(X, )] € (BZHL-Jm)’ tm). This shows that
all the (BZI1,---, In)? tm) with m < even are indeed 1-sectors of R, and furthermore that
every pair (X, ) with ¢ # id inessential is parametrised by such a sector.

We have shown that all the loci of I(R;,,) listed in our theorem are indeed 1-sectors.
It remains to show that every possible pair (X, ), is parametrised by one of them. By
the above discussion we may already WLOG assume that ¢ is not inessential. Now we
distinguish several cases:

We know that C” is either a smooth elliptic curve (case 1), a rational curve with one
non-disconnecting node (case 2) or a curve parametrised by a general point of a simple
banana cycle B, . .y, where m > 2 is the number of (non-disconnecting) nodes of c’

m>7
(case 3).

In case 1, we know by Corollary 5.10 that (X', px/) is parametrised by a basic sector, so
by the above discussion (X, ¢) is parametrised by one those sectors listed in our Theorem
which are of the form (7(11""’Ik),g).

34This coarsening of the partition corresponds to smoothing all nodes in Enq ~ E .
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In case 2 we can argue as in the footnote to Definition 5.30 (i), to see that there is at
most one non-trivial automorphism of €', which is present if and only if ¢’ is parametrised
by one of the points Ag C Ml,l or Iy C Ml’g of Definition 5.30 (possibly after renaming
the indices of marked points of ¢’). Hence X’ is parametrised by one of Dj, D{,Fy, F3
(again cf. Def. 5.30). By Lemma 5.31 (ii), we conclude that X’ is contained in A; = Ry 1,
Ay, or Agyp. Since X' has no inessential automorphisms | Aut(X)| = |Aut(¢’)| = 2, i.e.
there is only one non-trivial automorphism. So (X', ¢) is parametrised by one of (A, —1),
(A2,4,—1) and (Asp, —1), which again are basic sectors.

In case 3 we distinguish two sub-cases: Either X’ is parametrised by a point of BZ’h )

(case 3.1), or of By, .1, (case 3.2).

Regardless of the sub-case, there is again at most one non-trivial automorphism of ¢, which
is present if and only if ¢’ is parametrised, possibly after renaming its marked points, by
FEs5, B3 or E4 of Definition 5.30. To see this, first note that ¢ can not interchange any
components of C’ since it has to fix the marked points, of which each component at least
carries one. Since an automorphism fixing 3 points on P! is trivial, this already suffices
to show that ¢ has to be trivial if C’ has more than two components. If C’ has two
components we see (as in the footnote to Def. 5.30 (i)) that each component can carry at
most two marked points, and that a non-trivial ¢¢ has to interchange the two nodes of C’.
By definition E5, E3 or E4 are the loci of points parametrising such curves with such an
automorphism. Again by Lemma 5.31 (ii) we conclude that X’ is contained in some Ay, for
k€ {2,3,4} and = € {a,b, c}. In sub-case 3.1 there are again no inessential automorphisms,
so X’ has only one non-trivial automorphism, and thus [(X’, px/)] € (Akz, —1), which is a
basic sector.

In sub-case 3.2., [X'] must be contained in one of the £, for r € {2,3, 4} appearing in Def.
5.30 (ii). There is one non-trivial inessential automorphism of X', and hence | Aut(X’)| = 4,
| Aut(¢’)| = 2. By Lemma 5.31 (ii) we see that E; " is contained in three different supports
of 1-sectors: Two are of the form Zk’m for x € {a,b,c} the third one is the unique Ble,J2>
containing ;" ((J1, J2) a partition of k). Hence Aut(X’) must contain three non-trivial
automorphisms @1, @9, (o3, such that each of the two different sectors (Zk,x, —1) contains
one of [(X', ¢1)] and [(X', p2)], and such that [(X', p3)] € (B{,.1)» t2)- Since | Aut(X')| = 4,
and since our g/ is not inessential, we must have @y = 1 or gy = 2. So once again,

(X', px/) is parametrised by a basic sector.

Now we have shown that all 1-sectors (Y, ¢) of Ry, indeed appear in the list of our Lemma.

O

Remark 5.33 In almost all cases it is clear how the automorphism group Aut(X) for a
prym curve X with [X] € Ry, looks like, since either X has only inessential automorphisms
and Aut(X) is then known by Remark 1.12 (ii), or X has no inessential automorphisms,
and then Aut(X) = Aut(C), for € the stable model. The only exception appears if we are
in the case 3.2. of the proof above, and Aut(X) contains a non-inessential automorphism.
Le. for a prym curve X such that [X] € B, (k € {2,3,4}).

We know that in this case there are two nodes in FE, 4, which we call e; and es, and that
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| Aut(X)| = 4. More precisely Aut(%X) = {id, ¢, p1, 2} where ¢ is inessential, 1> = id and ¢y,
(2 are non-inessential automorphisms, such that 1 = 1. Furthermore ¢¢ := @1 ¢ = @2 ¢
is the automorphism swapping e; and ez on C’, and we know by the discussion in Def. 5.30,
that it restricts to the hyperelliptic involution on the stable hyperelliptic curve €. So by
Summary 2.8 (iii) we know that the liftings ¢ x» and 9 ¥/ of this hyperelliptic involution
are of order 2. Hence the same holds for ¢; and @2 (cf. the proof above) and thus we must
have p? = 2 =2 = id (and thus, with the above, ¢1¢2 = ¢). This determines the group
Aut(X) also in this case.

Lemma 5.34 As varieties all of Ry 1, and Ay, for k € {2,3,4}, = € {a,b,c}, are iso-
morphic to P'.

Proof: We know R;; = P! by Proposition 4.15 (i). If we restrict the finite forgetful
morphisms 7y, : Rl,k — Ml,k to one of the ijx we obtain a finite morphism Zk,x — Ay, C
M, . It is easy to see by the description of the Ay, in Lemma&Definition 5.9 (iii), that
this morphism has degree 1 except in case Z2,b when it has degree 2. We know that the
Ay, C My are all isomorphic to P! by [Pag08], and also by Proposition 2.14 (ii)+(iii). So
in all cases but Zgb the claim follows with Lemma 1.46. For Zz’b we know by Example 2.20
that there is a finite surjective morphism a : P! 2 M4 — Ay of degree 1. By 1.46 again,
a is an isomorphism if Ay is a normal variety. We can prove the normality by showing
that for each [X] € Zzl, the preimage of ZQJ) on the local universal deformation space of
X is normal. This automatically holds for X if its hyperelliptic local universal deformation
space . has only one component, i.e. by the description of . from section 2.1.3, and by
Lemma 5.31, for all cases except [X] € E;’{{l}’{2}}. For [X] € E;’{{l}’{Q}} the hyperelliptic
deformation space has 2 irreducible components, but only one of these belongs to Z27b7 the
other one to ZQ@. So again the preimage of ZQJ, on the local universal deformation space

is normal. O

Remark: It is possible to show the following more precise statement. If P(n,m) denotes
the weighted projective 2-space with weights n and m (cf. [Man08], also cf. [Pag08] Lemma
3.17.), then we have the following isomorphisms of stacks/orbifolds:

° EI,I and nga are isomorphic to P(2,4).
o Asy, Asa, Asp, Ase, Asa, Asp and Ay, are all isomorphic to P(2,2).

Definition 5.35 By Theorem 5.32 and its proof, we know that all 1-sectors (X, g) of Ry,
are of one of the following two types:

(1) X = 7(11""’11“), where Z is a basic 1-sector from Ry (cf. Def. 5.11), k € 4, and
7(11”"’11“) is obtained by attaching rational tails as in Lemmad&:Definition 5.13. In
this cases ¢ is a non-inessential automorphism. We often call these sectors essential

1-sectors.

(2) X = B} with |P| > 2 even, and g = tp inessential. We call these sectors the

inessential 1-sectors.
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Corollary 5.36 Fach support X of a 1-sector (X,g) of El,n s as a variety isomorphic
either to a product
A x Mo,nl X Moﬂw X MO,'@?, X Mﬂ,ml

where n1,no, N3, g > 3 are integers and A is either a point or P1, or X is a simple banana

cycle Bl for m even. By | s isomorphic to MO,MH_Q X ... X MO,HmHQ ifm >4,

-----

or, for m = 2, is isomorphic to the quotient (MO’MHQ X MO"12|+2)/SQ, where Sy acts as

explained in Lemma 5.24.

Proof: If (X, g) is essential (cf. Def. 5.35), the corresponding basic sector Z is a point if Z €
{Cy4, C}} and isomorphic to P!, by Lemma 5.34, if Z € {R11, 4. | k € 4,2 € {a,b,c}}. A

(17 7k)

support Z obtained from Z is clearly isomorphic to Z x M, JL4+1 X e X MQI I|+1

if we define My 2 to be a point. 35 The isomorphisms in the banana-cycle (1.e. inessential)

case where shown in the Lemmas 5.24 and 5.25. O

5.4.2 Chen-Ruan cohomology of R;, as Q vector space

We use the notation

. % n :
hn = dlmQH (MO,n—f—l), klh\ |I2] —dlmQH (B<Il I2>) <i1 L > = Y]

1!l iy!

for i1 + ... + i,y = n. The values h,, are known from [Kee92], for k‘11|7‘12| cf. Lemma 5.24
(iv). We get

Corollary 5.37 The vector space dimension of the Chen-Ruan cohomology of Ry is:

dimg Hog(Ryn) = dimg H*(Ryp) + 4hn +3 ) <Z"j> hih;
i+j=n "’

+ 3 < )hhhk—s—i 3 (ZMl)hhhkhlju;z:(:j)km

i+j+k=n i+j+k+l=n

1 n
D SIECIED DI (R IR

m . .
4<m<n, i1+...+im=n
m even

Proof: This is obtained by starting with the decomposition of I1(R1 ) in Theorem 5.32,
and applying to it (the proof of) Corollary 5.36, the Kiinneth formula, and Lemma 5.24
(iv) (and dimg H*(P!) = 2):

_ _ — 1
dim@ HE'R(RLTL) = dimQ a* (II(Rl,n)) = dimQ H*(Rl’n) + 2h,, + Z 5 <an> thhj
itj=n " N’

1 1
+22!<’>2hh+ Z 3. 3,< k>2hhhk+

i+j=n i+j+k=n

35Since Mo,g is a point too, we can replace all Mo,z by Ho,g and obtain the corollary.
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1 n 1/ n
3 — 2h;h:hih 2-h 2. — h;h;
2 g (zykl) b2 e 20 3 g (u) J

i+j+k+l=n i+j=n
1/n m! 1 n
+ E ALY s E YT g . o hisrhig g hig
= 2\1,7 2m m! . Ty ey I
i+j=n 4<m<n, i1+ Fim=n
m even

For this, note that %(“"Zm) is the number of possible unordered partitions {1, ..., [, }
of n into m sets of prescribed cardinalities |I1| = i1, ..., |I;m| = im. In case of the sectors
Zz{%h’b}’l and Zill’lz}{l3’l4} Y this number has to be multiplied by 3 to account for the
partial ordering of the partitions defining the rational tails. In the last term of this sum,
the factor % is the number of ways to put a circular arrangement on a set of m elements

(cf. Lemma 5.17 (iv)).
The above formula simplifies to the formula in the Corollary. [J

Remark: One may compare this Corollary to the corresponding result for M ,, which is
Corollary 3.26 in [Pag08]. Contrary to the case of dimg H (M1 ,), the value dimg Hg (R1n),
which is part of our formula for dimg H (R1,,), is not known for large n.

5.4.3 Age grading

Notation: If L is a line bundle on a variety or orbifold /stack X, especially for X a support
of one of our 1-sectors, and we have the group u, with a fixed generator « acting on L
respecting the fibres, then o has to act on all fibres as multiplication by the same power o
for some 0 < k < n. We denote L with this given group action by (o, L). Recall that we
have identified the automorphism groups on our basic 1-sectors with p,, for n € {2,4} and
fixed generators —1 resp. i (cf. Summary 5.8 (i)). We often use C to denote the trivial line
bundle. Also recall the definition of the bundles IL; on Mg,n and the classes ¥; = ¢1(L;)

from Definition 1.41.

Sectors (X, g) with an automorphism g of order 2 always have as age half their codimension,
by the formula of Summary 5.7 (ii). The sectors coming from basic sectors Cy and C} are
the only ones carrying automorphisms g of order > 2. Their normal bundles in R, are as
g representations isomorphic to the normal bundles of the corresponding sectors of My,
which are computed in [Pag08]:

Lemma 5.38 We know that Cy = Cy x Mg 00,3 and Cil’b = O} X Mo ufer} X
Mo 1,0{0,) and we denote by py resp. pa the projections to the first resp. second My, .
in these products. Then we have the following isomorphism of line bundles as representa-
tions of the group pg generated by the automorphism i.

(1) chﬁl,n is isomorphic to (i%,C) @ (i, pf(LY,))-

(ii) NCiI,IQELn is isomorphic to (i%,C) & (i*,C) @ (3, pi (LY,)) @ (4%, p3(LL,))-

If one of the I;’s cardinality is 1, chleZRLn has the same description after cancelling the
4

corresponding component (i3,p,f(]LXi) in the direct sum.
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Proof: For [X] € Ry, let € be the stable model of X. The forgetful morphism 7 : (S, s¢) —
(B, by) between the local universal defomation spaces of X and € is an isomorphism, unless
[X] is in the boundary divisor D} (cf. Summary 1.31). Let Z be C§ or C’il’h’, then Z does
not meet Djj. Let Z’ be the 1-sector of M, to which Z is mapped (isomorphically) by
Tn @ R1 — My, (this sector is also denoted by C7 resp. Cil’l"’). Since the normal bundle
of Z resp. Z' in the orbifold sense is locally the normal bundle of the preimage of Z resp. Z’
on the local uniformising systems of the orbifolds, and since our local uniformising systems
are the deformation spaces, we obtain: The normal bundles of Z and Z’ are isomorphic,
and by Summary 1.31, the automorphisms also act on them in the same way. The normal
bundles of the sectors Z’ are computed as py representations in Prop. 4.7. of [Pag08]. O

The previous Lemma together with the fact that all sectors (X, ¢) not based on Cy or C}
have age a(X, g) = & codim(X, Ry ,,) implies:

Corollary 5.39 The following table lists for all 1-sectors (X,g) of Ri, the codimension
of X in Ry, and the age a(X, g) of the sector. The definition of each X involves a partition
LI, ..., I, of n. Define the number p < m as p:= |{; | i € m, |I;| = 1}|. (In case n =1

also set . =1 for the sectors with n in the “exponent”.)

’ X ‘ g ‘ codim(X, Ry ) ‘ a(X,g) ‘

R, 1 0 0

Ay -1 1—p $(1—p)
A" -1 3 33— 1)
apet -1 |3-p 33— n)
Al “1 |5-p 55— w)
Z;{l{fhfz}v{f:svh}} _1 71 %(7 — )
Cr i 2-p L
Ci —i 2—n §—am
;" i 4—p G- du
o —i |4-p i in
BZ}l ..... Im) tm m 3

5.4.4 CR-cohomology of Em as graded vector space

Like in [Pag08], we can encode the dimensions of the homogeneous components of the
graded vector space H R(El,n) for all n € Nin a compact way, by describing the generating

series of the Chen-Ruan Poincare polynomials

1 _
POR(s,t) = Y — dim HZR (R p)s"t".
meQ,n€Z

Obviously one can read out every value dim H,(R ) from this series, and, if we view

Plc R as a power series in s, then the coefficient of s™ is the Chen-Ruan Poincare polynomial

of Ry, divided by n!.
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We set for n, m € Ny:
Qo(n,m) := dim H2m(ﬂojn+1), Q1(n,m) := dim Hm(ﬁlyn),
Qo(n,m) == dim H*™ (Mo n12/S2),
where So acts by permuting the indices n + 1 and n + 2, and
Q'lﬂ(n, m) = dimHg};'B)(El,n), for € Q

If the right hand side in this definitions is not defined (i.e. for n <1 for Qo(n, m), and for
n = 0 in the other cases) we set the left hand side to be 0. The Qq(m,n) and Qo(m,n)
are known from [Kee92| resp. [Get98]. Define the power series:

0
Z Qo(n; S Pl S t Z Ql 7’L m) ntm
n .

n,meNg ’ n,meNg
o0 /
QO ST / L 175(n’m) nym
PO S t Z t s P175(S7t) = Z TS t
n,meNp n,meNy

Note that H™(Mont1) = H™(Mon+2/S2) = 0 for m odd, so Py and ]30 do not miss
“interesting information”. The rational numbers m for which H,(R1,) # 0 all have
fractional part (m) :==m — |m| € {0, 3} (cf. Corollary 5.39). Thus we can decompose the
Chen-Ruan Poincare series of Elﬁn as

PER(s,t) = P o(s,t) + t3 P!

(87 t)7

N

such that Py 5 and Pl’ , are power series with integer exponents. We want to make it more
easy to compare our following Proposition to Thm. 4.13. of [Pag08]. In order to do this
we define HY,,  (R1,,) as the subspace of the graded space H} (R ) coming from those
twisted 1—secto7rs of Ry, whose age a has fractional part (a) = a. Then for all n € N,
m € Q,

Y. dimHEg o (Ri) = hg(Rin) — W™ (Rin),

a€{0747é74

and we further decompose
PER(s,t) = Pi(s, t) + PC34(s, 1) + tPL (s, %) + t2 PC
’ 2

where
S dim HEGEY (Ry) s,
n,m&ENp

(Plo(s,t) = Pils,t) + tPE (s, %) + POR (s, #2), P
’2

' = PCR(s,1%) + tPCE(s, t2)>

1
)
Our Pfgf for Elm correspond roughly to what is called Pf(f' for Ml,n in Thm. 4.13. of
[Pag08].
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Theorem 5.40 The Pff, belonging to the 4 possible values of «, can be expressed in

terms of Py and ﬁo as follows

3 1 1
Pt =2(t+t%)sPy + 5(752 +t3)sP2 + §(t2 +t3)s3Py + 5(153 +t1)sPg
d 1 d

2 1 D2 v 2 2 5) v Y 2v
+(t+t°)Py+ 2t(2P0 + (OSPO) (85P0)P0) + 22;\1 (2y)!t (85P0) +Cip

1
Pf? =tPy+ 5752P02 +Cy1
3 1
Pf? =(1+t)Py+ (t+*)P3 + S+ t%)s2 Py + 5(1&2 +t3)P3
3 1
+ Z(752 +t%)s2P? + g(16” +tH P + Cp 1
1
CR _ 2
Pl:% —P0+§tPO +Cl,%
The terms Cy o correspond to some twisted sectors (the basic sectors without any attached
rational tails) that appear in Ry, only for n < 4. So they can be ignored if one wants to

read out cohomology dimensions for larger n. They are:

Cio= (35 +s)(1+1), Cl,i = §°t, CL% =2s2(1+1) +3s*(1 +¢) +2s, C 3 =5

4

Proof: If P(s,t) is some power series in two variables t, s, we denote by P[n,m| the
coefficient of the monomial s"t™ in P(s,t) multiplied by n!. With this notation, for Py as

above and r € N:

(Pnm)= Y Hiﬁ?(’(”i’mi)n!: 3 hQW(HMo,mH)(mj’m)

ni+...4+nr-=n =1 ni+...+nr=n i=1

mi+...+my=m n; >2
1 T
= (EPS)[na m| = Z h2m(H Mo 1,5(0:})
{Ilv"'vlr}v ‘Il|22 =1
IlH:J...H'JIT:[TL]

Also we obtain for r,l € N:

1 , n! 1. A
(WSZPO)[nvm] = m(ﬁpo)[n —l,m] = Z h? (H Mo 1,9(0:})
o R {1, I}, J i=1
L. . Wh.=[n|\J

If we multiply by (1 + ) we get, using the Kiinneth formula,

1, . L
(D5 P)mml = > W < [ Mopue)
’ {In,..I.}, |I;|>2 i=1
I1ErJ...LﬂIT:[n]

and an analogous expression for ((1+ t)-f;s'Pg)[n, m].
Now we start computing Plc f. The other series can be determined analogously. We use the
2

decomposition of I1(R;,) into sectors given in Theorem 5.32 and the table of Corollary
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5.39, containing the age for each twisted sector. Also we need Corollary 5.36 and its proof.
We work through the decomposition in Theorem 5.32 looking for components (X, g) such
that the age a := a(X, g) has fractional part (a) = 3. The first contribution comes from
the sectors (Z[ln}, —1) for n > 2, with age a = 3. The 2m-th cohomology dimension of

these sectors is
B (AL = W2 (P x Moper) = ((1+ €)Po)ln,m]

The sectors of the form (A[ " —1) contribute th(Z[ln]) to the number

2(m+a) _ pCR 1
dlmHCR ! (Rin) = Pl,% [n,m+ (a— 5)]

In this case a — 3 = 0, so this means that the sectors (Z[ln}, —1) for n > 2, contribute
(14 t)Py to the series PCR, otherwise we would have had to shift by multiplying with

L3
Ha—3)

The next contribution comes from the two single sectors (Aa,, —1) = (Zglj {2}7 -1) C
L1 (R12), z € {a,b}, with age 3. The contribution is 2s?(1 + t), since Ay = P, and belongs
to Olé' Another term of Cl,% comes from the sectors (Cy, i) and (Cy,4%), with age 3. It
is 2s, since Cy is a point in Ry j.

The sectors of the form (Agléb, —1) with |I;| > 2, « € {a, b}, have age 3. They contribute

2t(1+ 1) 2,PO This is since A2 2~ pl M, Tiw{or} X M, 12u{02}7 the coefficient 2 stems

from the two possible choices of x, and we have to shift by ¢ = (53— ), for age reasons.

A{J} Ak, 13>7 where j # k € [n] and |I3] > 2, z = a,b, ¢, have age 3

Sectors of the form (
and contribute 3¢(1 + ) 2,52P0.

—11,12,13

The other sectors contributing to PCR are those of the forms (A3, """, —1), (A4q, —1),
’2
—11,12,13,14

(A;Ej Ak 13’14, —1) and (4, ,—1), and their contributions can be determined in the

same way.

Some of the contributions to other series Pff are of a somewhat different type as those

encountered before. We will compute some of them as examples:
The sectors of the form (C{J} 1 ,1), 7 € [n], |[I2| > 2 have age 2. Since Cij}’lz = Mo|n)+1
these sectors contribute t2sPy to Plc R,

The sectors of the form (B(I1 L) ;L) for an even v > 4, and |I;| > 1 have age 5. We have

Bl = [1i_y Mg, 1,+2- Now we use that
0 2m (g
(%PO)[nam] = h""(Mon+2),

to be able to describe the contribution of all sectors (BZIL...,IV)’LV) for a fixed v as
L2 (L)

Using the formula for hm(Bzh,Iz)) = ki1,|,|o)(m) from Lemma 5.24 (iv), we get that the
sectors of the form BZh,Iz) contribute %t (2ﬁg + (%PO)Q — (%PO)]S()) to Pﬁf%. O
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5.5 Multiplicative structure of H} (R )

As one can see from Definition 5.5 (iv), to compute the product * on H}p(R1,,), we have
to determine the second inertia stack Iy (Rl,n), and we have to compute pullbacks and

pushforwards along the forgetful morphisms py,pa, p3 : Io(R1,) — I1(Rin) -

In our case the support X of a 2-sector (X, g, h) is usually the set-theoretic intersection
X = X; N X5 of the supports of the 1-sectors (X1, g) and (Xa, h). Therefore we will try
to determine all set theoretic intersections of supports of 1-sectors. Then we will calculate
the necessary pullbacks and pushforwards. These are the things the next few subsections
will be concerned with. Several times the following notation will be used.

Notation 5.41 Let X be a 1-sector of Elyn, let f:X — El,n be the inclusion of the
subvariety X in El’n.

(i) Suppose X is of the form X = Z

Z C Ry by attaching rational tails (cf. Lemma&Def. 5.13). Then we have that f is the

restriction of the gluing morphisms (7, . 1,)) to

I . . .
’“), k € 4, i.e. X obtained from a basic sector

X = 7 X Mﬁ,hu{ol} X ... X MO,IkU{ok}‘

We denote by 77 : X — Z the projection to the first factor, by 7; : X — MO,Iiu{oi} the

projection to the ¢ + 1-st factor.

(ii) Otherwise we have X = BJ, for some circular partition P = (I, ..., I,;,) of n with m

even. Then we write

MF(P) = M0711U{017.2} X MO,IQ{OQ,.?,} X ... X MO,ImU{Om,Ol}

and let n; be the projection to the ¢-th factor. As seen in section 5.3.2, in this case f = fpr,
can be identified with the gluing morphism (pr, if |P| > 2 and in case [P| = 2 can be
identified with the embedding Mr( P) /S2 — Ry p, through which ¢ pr, factors in this case.

5.5.1 Intersections of supports of 1-sectors and the second inertia stack

Lemma 5.42 If X # X' are the supports of sectors of Iy (Ri,), with X # Ry, # X',
then the set-theoretic intersection X N X' is either empty, or specified in the following list:

(1) CEn AL =0}

(2) cihr aAbE = ofhel)

(3) Z;I;JQ} n Zg,lbl’b} = Zg,{;?h} NBi Ly = Zé%’b} NBi, 1y = gyt
(4) Zéh,lz},lg ﬂZéh,h},h _ Zgh,lz},lg Bl = Zgh,fg},fz Bl = Eg,{.rQ,Ig},Il

(5) 22{1{117[2}7{137[4}} mZi{Ilvl3}v{12714}} — 21{1{11712}7{]3714}} N BT

(IQU]3,11UI4>
—{{I ,I‘ ,I ,I r T, I ,I’ ,I ,I
A{{ 1 d}{ 2 4}} N B< JUlsIy 4) E {{ 2 5}{ 1 4}}
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(6) Intersections of the form Bz11,...,lm>ﬂBZ Lol ) can be non-empty and are determined
i Lemma 5.22.

Proof: Recall the notation of Definitions 5.12 and 5.13. If P = (Iy,...,I;) and P’ =
(I{,....I},) for k, k' € 4 are two ordered partitions of n and Z, 7' are two basic 1-sectors

/

of Ry resp. Ry, then ZP,ZIP C Ri,, can only meet if k = &’ and (I1,...,I},) can be
obtained from ([i,...,I;) by permuting the indices in k. To meet without fulfilling this
condition, WLOG Z~ would have to parametrise a curve with a rational tree carrying the
marked points from at least two different sets I;, and I;,. But the curves in Z" can not
degenerate in this way: Otherwise by construction of Z" there would have to be a curve
in Z with a rational tail carrying the points i1 and is. But we know that the basic sectors
Z do not parametrise curves with rational tails. 36

By Theorem 5.32 we know that each of X and X' is either of the form Z" for some basic
sector Z € {Cy,C}, Ay = El,hZQ,aaZ2,baz3,a7z4,a} 37 or of the form Bp.

Since Cf and (C)F do not parametrise curves with non-disconnecting nodes, they do not
meet any BY%,. Together with the discussion above this shows that the only intersections
involving C{ and (C})? which could be non-empty are those in (1) and (2) and possibly
A;Ibl’b} N C’ih’b}. The equation in (1) is clear since Cy C Ay = Ry1. We know that
C) C Azq U Agy. To get (2) and show A;Ibl’b} N C’ih’b} = () it thus suffices to prove
Cy N Asp = 0. Let (64, p1,p2,L) be a prym curve parametrised by the point C, then
the elliptic involution > = —1 fixes the two marked points pi1,p2 and two other points
q1, q2- We can see using the Weierstrass representation from Theorem 3.8 of [Pag08], that

i interchanges ¢ and go. Hence we must have £ = Og, (p1 — p2), i.e. [(€4,p1,p2, L)] & Aap.

If X = (A4)F, X' = (ijx/)P/ for any k € {2,3,4}, and z,2" € {a,b} for k = 2, and
x =1a' = a for k € {3,4}, then by the discussion above, the intersection X N X’ can be
non-empty only if it appears in (3), (4) or (5). To see that these intersections are described
correctly in (3) — (5) note that, by Lemma&Definition 5.13 (iii), we can always rewrite
them in the form (Ay ) N (A, )F where now y # ¢/ and y, 3y’ € {a,b,c} for any k. But

(Zk,y)P N (Zk,y’)P = CP(FEI(Zk,y N Zk,y’))a

and the intersections Zkyy N Zk’y/ can be found in Lemma 5.31.

To come to the last case (except (6)), X = (Ay.) and X' = BY, can only meet in-
side Cp(Fp (A \ Akz)), since the rest of (A )" parametrises no curves with non-
disconnecting nodes. But the boundary Zk,x N Aj , is described in Lemma 5.31, and using
this together with Lemma&Definition 5.13 (iii) we can check that all remaining equations
in (3) — (5) are correct. In this way we also see that all other intersection of the form
(Ak)¥ N By, are empty. O

It is easy to check that the following lemma is true:

36The sectors Cy, CY are points parametrising smooth curves, and we know the boundary points of the
remaining basic sectors by Lemma 5.31.
37The basic sectors ngb, Zgyc, 24717, 24@ are not needed by Lemmad&Definition 5.13 (iii)
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Lemma 5.43 Let Py, P> be circular partitions of n, and P a coarsest common refinement
of P and P». Let P be the circular partition obtained from P = (Iy, Ia, ..., I,) by replacing
in (I, Ia, ..., Iy) each pair I;, 111 such that {I;,I;11} € CN(Py, Py; P) by I; U I;1q (cf.
Definition 5.27). (As usual m +1 =1 here.)

Then P is also a coarsest common refinement of the pairs Py, P and P, P.

Proposition 5.44 (i) If (Y;g,h) is a 2-sector of Ry, for any (z;9,h) € (Y;g,h), let
(X1,9) and (X2,h) be the 1-sectors parametrising (z,g) resp. (z,h). Then Y C Ry, is
one of the connected components of X1 N Xo. Furthermore (Y;g,h) =Y as orbifolds.

(ii) Often we denote a 2-sector (Y; g, h) instead by (Y, (g, h, (gh)™Y)). This is a trick (from
[Pag08]) to reduce the bookkeeping effort: We allow two actions on the labels (g, h, (gh)™!).
Sy acts by sending (g, h, (gh)™") to (g7, h=1, gh), and S3 acts by permuting the three
entries. For each of the 12 labels (¢',h', (¢'h')~') obtained from (g, h, (gh)~') in this way,
there exists a 2-sector (Y, (g, 1, (¢'W)™Y)) of Ri, (whereY is the same subvariety of Ry »,
as before). 38

This also reduces the effort when dealing with the Chen-Ruan excess intersection bundles on
the 2-sectors, since Ery, (g 1 (gh)1)) = Ey,(g,h,(gh)-1)) for a label (¢, I/, (¢'h)~1) obtained
from (g, h, (gh)~1) by applying the S action. (This is not true for the Sy action,).

(iii) The following table lists all 2-sectors (Y, (g,h,(gh)™1)) of I2(Riy), up to the two
operations on the labels allowed in (ii). We also list the corresponding 1-sectors (X1, g),
(X2,h) and (X3, (gh)™'). For the rows of the table, listing 2-sectors supported on an E;’,
note that by Remark 5.33, a general object X of EZ has one inessential automorphism
Ly and two non-inessential automorphisms which act on the cotangent space at the first
marked point of X by —1, and which we call —1, and —1; here. Concerning which of
—14 and —1; denotes which automorphism: Read this off from the listed (X1, g), (X2, h),
(X3, (gh)™1). In the last row of the table let P, Py, P> and P be as in Lemma 5.43.

38These are not 12 different 2-sectors, since transposition of the first two entries does not change the
sector.
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Support Y (g:h, (gh)™Y) | ((X1,9), (X2, h), (X3, (gh)™h))

Rin (1,1,1) (Ri,n,1), (R1n, 1), (Rins 1))

ar (1,-1,-1) | ((Ruw. D). (A}, 1), (A7, 1))

AL refany] (1,-1,-1) | (Bun, ), @ 1), @& 1))

Ay (1,-1,-1) | (R0, @0 o, @m0 )
Zi{h’b}’{l3’[4}} (1,-1,-1) ((El,na 1), (Zi{h’b}’{h’h}}, 1), (Zi{h’h}’{ls’h}}, _1))
Ct (1,4, —1) (R1,n,1), (CF,9), (CF, —1))

Ci (i,4,~1) ((CF,1), (CF4), (AT, —1))

cpl (1,4, i) (Rins1), (C1"2,0), (C112, i)

cpt (i,i,~1) (CI2,0), (CIoT i), (AYe ™)~ 1))

gy (~La,—1po00) | (@AY 1), @5 1), (B, 10 00))
gyt (~1a,—Tpo00) | (A0 ), @ 1) (Br g )
EZ,{{JQ,Ig},{Il,u}} (—1a, —1p, 2) ((Zi{h’lz},{h,h}}, 1), (Zi{ll’ja}’{lz’l“}}, 1), (BTIQUIg,IlLJL;)’ LQ))
Bp (1,ep,ep) ((Rin,1),(Bp,tp), (Bp,tp))

Bp (tpsirastp) | ((Bper), (Bp,tr,), (B tp))

Proof: Let as in Definition 5.3, py, pe : Ia(R1,,) — I1(R1.,) be the forgetful morphisms cor-
responding on points (z; g, h) of Io(Ry ) to (x5 9, h) — (x5 9), (z;9,h) — (z; k), and let pj :
I (R1,) — Ii(R1y) be the forgetful morphism corresponding to (x;g,h) — (z;(gh)™1).
Let x2 : Io(Rin) — Rin, x1 ¢ I1(R1n) — Ri, be the usual forgetful morphisms. Then

the diagram

p1
— X\

I(Riy) L,2> Li(Riy) X Ry,
\p—/\/
X2

commutes. Furthermore by Summary 5.7 (iv) all the morphisms in it become closed em-
beddings of orbifolds when restricted to any sector of Io(Ri1 ) resp. I1(Rin).

(i): If one looks at the definition of the structure of the orbifolds Iy (Elm) and Iy (El,n)
locally around each point, it is clear that for every point (z,g,h) € (Y, g,h) the image
Y = x2((Y, g, h)) is locally around x2((z,g,h)) = x equal to the intersection X; N Xs. So
Y is a connected component of X; N X5, and since y2 restricted to (Y, g,h) is a closed
embedding, (Y, g,h) =Y.

(ii): Everything here should be clear but maybe the fact that for all labels (g, h, (gh)~!) in
the same orbit of the Sz-action the CR-excess intersection bundles E(y., 5) are isomorphic.
But this is easy to see by the definition of E(y.g ) (cf. Definition 5.5 (v)): The group G
does not change under this action, and a permutation of g, h, (gh)~! corresponds for C
and the G action on H'(C, O¢) to a permutation of the marked points 0,1, 00 € P! which
clearly does not change the isomorphism class.

(iii): Which 2-sectors exist, follows from (i) together with Lemma 5.42. The third entry
in the label, i.e. the corresponding I-sector (X3, (gh)~!), is in most cases obvious. For
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the 2-sectors supported on a E,:, X3 is determined by the information from Remark
5.33. For the last line of the table, let X be a general object of B, P = (I, ...I),). Then
the inessential automorphisms ¢; resp. to2 act on X by multiplying the fibres of the prym
sheaf over each non exceptional component X; (i € m) by a number a;; € {1, —1} resp.
a;2 € {1,—1} (cf. Proof of Theorem 5.32). Now check that for two neighbouring I; || Iy,
a;1 = a1 and a;2 = ay o can never happen simultaneously since P is a coarsest common
refinement of P; and P. Furthermore a;1 # ay 1 and a;2 # ay 2 happen simultaneously
if and only if {I;, Iy} € CN(Py, Py; P). Hence if b; € {1,—1} are the numbers by which
(t102)71 = 1109 acts, then b; = by iff {I;, I;;} € CN(Py, P2; P). So (112) ! extends exactly
to B3 (cf. Proof of Theorem 5.32). O

Lemma 5.45 (i) If (Y, (g, h, (gh)™1)) is a 2-sector of Is(R1.,) then the excess intersection
bundle E(y, g n,(gn)-1)) €ither has rank 0, or is listed in the following table. The table lists the
2-sectors up to permutation of the three entries of the label, as E(y, g pn,(gn)-1)) 1S tnvariant
under such a permutation by Proposition 5.44 (ii). We identify (Y, (g, h, (gh)™1)) with Y
by the isomorphism of 5.44 (i) to be able to express the bundle Ey,g.h,(gh)-1))- Then:

Support Y ‘ Label (g, h, (gh)™1)) ‘ By (g.h,(gh)-1)) ‘
C(4@ (iaia _1) UT(LXJ
Cy" (i i, —1) ConilLy) @nsLy,).

For the n;, cf. Notation 5.41. For the L. and ¢, cf. Def. 1.41.

(i) The top Chern class of E(y,gp,gh)-1)) 18 either 1 = [Y]q, or listed in the following
table (again up to permutation of the three label-entries):

’ Support Y ‘ Label (g, h,(gh)™")) ‘ ctop(E(y,(g,n,(gh)~1))) ‘
Czlﬂ (7’7 Z.7 _1) _WT(Q/JW)
ot (i,i,—1) 0

Proof: (i): Let (Y, (g,h,(gh)™!)) be a 2-sector, and let (Xi,g), (X2,h), (X3,(gh)™!) be
corresponding 1-sectors. Recall from Summary 5.7 the two formulas

tk(E(y, (g.h,(h)-1))) = a((X1,9)) + a((X2, 1)) + a((Xs, (gh)™1)) — codim(Y, Rin) ()

codim(X, Fr.0) = a((X, ) + a((X, ™)) (s4)

where in the second formula (X, ¢) is any 1-sector. These two formulas imply that if the
label (g, h, (gh)™") contains an entry 1, then rk(E(y,yn (gn)-1))) = 0, for then the other
two automorphisms in the label are inverse to each other, and are supported exactly on
Y. This already proves (i) for the most of the 2-sectors. The remaining 2-sectors for which
we have to show that the rank of the excess intersection bundle is 0 are in the last 4 rows
of the table of Prop. 5.44 (iii). In the labels of these sectors only automorphisms of order
2 appear. Thus inverting all entries does not change the label. From this we conclude by
Prop. 5.44 (ii), that all 2-sectors we obtain by applying the So X S3 action of 5.44 (ii) to
the label have isomorphic excess intersection bundles. Now take for example the 2-sector
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(E, ot} , (=14, —1p,12)). The 1l-sectors relevant in formula (*) are then (A{I1 12}, —1a),

(A{Il’lg} —1p) and (B} TNAY ,t2). Using (x) and the table of Corollary 5.39 we get:

3 3

2
k(B prannd (g, 1) =3T3t 4=0

The 2-sectors in the second and third last row of the table of Prop. 5.44 (iii) are shown to
have excess intersection bundles of rank 0 in the same way. In the last row there appear
sectors of the form (Y, (g, h, (gh) ™)) = (Bp, (tpy, Py, t55)). In this case (x) reads:

tk(E(By, (up, ip, up)) = W((Bpystpy)) +a((Bp,s tpy)) + a((Bgs tp)) — codim(Bp,, Ri )

1 1 1~
IRt + 5 1Pl + 5 1P| - |

where we used Corollary 5.39 for the second line. With CN := d(P) CN(Py, P»; P) and
equation (5.2) from section 5.3.3 we can continue the equation by

1
=5+ !P2|+ (!P1|+\P2|—2CN) (|P1] + [P = CN) =

It remains to compute the excess intersection bundle on the 2-sectors supported on C’f
and CI1 2. By Prop. 5.44 (ii) it suffices to consider the sectors (Cy;i,4), (CF; —i, —i),
(C{[l’lz}, i,4) and (Cih’lz}; —i,—1). For (C}; —i,—i) and (C{Il’IZ} —i,—1), we see that the
rank is 0 by (%) and Corollary 5.39.

By definition (cf. Def. 5.5 (v))
_ (gl 5. \Grp(g;h)
E(Y»g’h) - (H (Cgvh’ ch,h) ®(C NY‘R].,TL) 9 (’l‘)

where Grp(g, h) is the group generated by the automorphisms g and h, and C,j, the
curve C from Def. 5.5 (v). We have Grp(i,i) = Grp(—i, —i) = p4. From Proposition 6.12.
of [Pag08] we know that H'(Ci;,Oc,,) = (i,C) as a representation of py (Cf. Lemma
5.38, and the paragraph before, for the notation (i,C)) . Lemma 5.38 gives us the normal
bundles chﬁlyn and N Cf“?}RL” as representations of 4. Plugging this into (f) yields:

En g = [5,C) @ (i, nj (L))"

E(Cill’lz},i,i) = [(7’37£) D (247Q) D ( yTh (L\/ )) ( 7772(1[“\/ ))]
Which gives the results in the table.

(ii): If rk(E) = 0 we have cop(E) = 1. Since E(C{Jl,IQ} ) contains a trivial sub-bundle,
4 113

we have ctop(E(Cizng},m)) =0. .

5.5.2 The classes of supports of 2-sectors, expressed in the usual gener-
ators of Hj(R:,)

The class of a support of a 1-sector is a priori a class in H*(R;y,). But in this section we
will show that all these classes actually lie in Hjo,(R1n) (cf. Def. 1.40). We are going
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to express each of these classes explicitly as a polynomial in the usual generators of the
Q-algebra Hp (R1.), i.e. the boundary divisors and the simple banana cycles. We will

calculate these expression following section 3.d of [Pag08].

First we will express the supports of the basic sectors as polynomials in the boundary
divisor classes of Ry, for n € 4. Recall that dfj = d, € H*(R;,,). We will use only dfj in

our formulas.
Lemma 5.46 (i) For the supports in Ry1:

1 — _
[Cie = 3d5,  [Ailg = [Riale = 1.
(ii) For the supports in Ry o:
/ 1 /! A 1 /! A 1 /!
[Cilq = Qdod{lz}, [A24]q = Zdo + d{i9y, [A2]q = Qdo + 2dgy9y.
(i4i) For the supports in Ry 3:

[A34lq = [Asplg = [A3clq = Z d‘dd{w}Jr > dydijy + 5 d0d3
{z,J}CS {z,]}CB

(iv) For the supports in Ry 4:

[le]Q = [Zél,b]Q = [24,8]62 =
1 1 1
5 2 Ddundun g > dididay+ 5 Y dodgdigy
{ijrc{ijk}ica {ijtca {ij}c{ijk}ica

Proof: Here I follow the proof of Theorem 3.33. of [Pag08].

(i): Cy4 is a point parametrising a curve with 4 automorphisms, while D is a point with 2
automorphisms.

(ii): Also Cj and Dy N D9y are points. The latter is a transversal intersection.

Since the two classes on the right hand side form a basis of A'(R;2) = H?(R:2), it is

clear that we can write
[Asp]q = ady + by, for some a,b € Q (%)

Let 7 : RLQ — El,l be the morphism forgetting the last marked point. Since 7 is 2 : 1 on
Z2,b and 1:1 on Dyyoy, while the dimension of D{ drops by 1 under 7, we obtain

Ty [ZZ()]Q = 2[?131}@ =al + b[ﬁl,l]Q = b=2

If we intersect any class [A, ]o (n € 4,2 € {a,b,c}), with any boundary divisor of Ry ,,
except dfj or dfj, the result is 0 by Lemma 5.31. Intersect (x) with df12y- We know (5{12} 1
(Example 1.43) from which we conclude d%u} = % using the projection formula. With thls

we get:
1 1 1
0 = adgigydg + 2d7 5y = ag+2(-g) = a=j3
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The formula for [A2,]g can be obtained exactly the same way.

(iii): One can obtain these formulas by expressing [A3.]g as a polynomial in a basis
of A? (R13), and calculating pushforwards by morphisms forgetting one of the 3 marked
points, and/or by intersecting with boundary divisors. To shorten the proof, we make the
more special ansatz

[A?),w]Q = a1v1 + agvz + asvs, where

vi=dy | Y dygy |, vei=dids, wsi=ds | > dgy
{i.}c3 {i5}c3
We intersect with all boundary divisor classes, and since the intersection pairing on
A*(Ry 3) is perfect, this will not only determine the coefficients, but, if it does not impose

contradictory conditions on the coefficients, will also ensure that our ansatz was correct.
39

If we intersect both sides of our ansatz with all the boundary divisors of RLg we obtain
the following equations of intersection numbers which are independent of = € {a, b, c}:

— 3 2
dg[Agw]Q =1=a10+ a0+ a3§, = ag = g

. — 1 1
V{i,j} C3: djldszle :O:al(—§)+a2§+a30, = a1 =a
— 1 3 1
A p— = _— —_—— —_—— [ —
d3[Aselo =0=a1g +ax(—5) +as(~g), = a=

These equations obtained for the coefficients do not contradict each other and determine
the coefficients.

The intersection numbers in these equations are determined as follows: The first equation
in every row is obtained using the description of the boundary of the As , from Lemma 5.31
(i), which gives us Df N[A3.]o = B3, Dy;jy N[Asz]g = D3N [A3,]g = 0. By Summary
1.34 (v) we can locally calculate proper intersections of ()-classes on the deformation
spaces. Now (compare to Remark 5.33) Eg is a point, parametrising a prym curve X
with two (not blown up) nodes e; and ez, and the automorphism —1 interchanges e; and es.
We get by Lemma 1.32 (ii) that on the deformation space S of X which coincides with the
deformation space of the stable model €, since X has no exceptional components, the fixed
point set Fix(—1) which is the preimage of As ,, can be written as Fix(—1) = spang(¥., +

ay /!

e, ). The preimage of D on S'is {ye, = 0}U{ye, = 0}. So we get [D(]q-[A3:]0 = 2[E3 |0,

and due to automorphisms [E3"]g = 3[p], where [p] is the class of a general point.

The other intersection numbers in the first line are djv; = djva = 0 since (dj)? = 0 by
Lemma 4.8, and djvs = %, since for all three {ij} C 3, DgN D3N Dy, jy is a point, hence the
intersection is proper, and this point parametrises a prym curve with two automorphisms.

The intersection numbers dy; 3v2 and dzvy in the next lines are computed analogously.

39We could, as suggested by Nicola Pagani, also justify the ansatz beforehand, by showing that the
classes [A3 ] are invariant under the action of S permuting the indices of marked point, and by noting
that Getzler’s results on the equivariant cohomology of H*(M1,,,) ([Get98]) implie that v, v2, vs is a basis

of A%(Ry3)%. The same is true for the ansatz used in (iv).
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The remaining d{ij}vl, d{ij}vg, d3va, d3vs are excess intersections which we compute using
: : . . _ g2 _ N 2

the projection | formula and section 1.7: For example d;;yv1 = dydy, ;, = dg7307, 54, Where

73 1 R13 — M3 is the forgetful morphism. By the projection formula this is the same

number as (Tg)*dg(s%ij} = 505%”.}. Now d0dy;;) is a transversal intersection, and we use the

excess intersection formula (1.6) of section 1.7 to compute (Jody;5} )93 - Here the relevant

graphs are:
r= <).< I = ?‘< A= D—(
k J k J k j

Grr has only one element (A, ¢, ') and the edge in A which we have drawn thick and red
is the only element of CE. With

éA : Mov{kz.lvol’.Q} X MO,{i,j,OQ} - M1737

the gluing morphism, and p a point in MO,{k,q,omz} = MOA, q a point in Ml’g we have
thus:

(300(5))005) = €0 (—ar@1=1883) = 3 (E0)e(—thas®1) = 3(E0)+(~[p@1) = —5[d

To determine dy;;yv3, d3vg resp. dzvs 40 in the same way, we have to compute (535{ij})5{ij}a
(0003)d3 resp. (304;51)d3. The corresponding graphs A, with elements of CE marked red
are in this order

oo (os epa

The excess intersection formula yields:

(Fdii)osy =0, (Bodo)ds = 3, (Bsdpy)ds =~
(iv) Here we again make a special ansatz:
[A42]0 = biwt + baws + bsws + bywy, where
wi= Y dadggydyy, wa= ) dodadgyy,

{ij}c{ijk}c4 {ij}c4

49For the last case: dsvs = Z{i,j}c§ dgd{ij} and d%d{ij} =713 (6§)d{ij} = 6%(7'3)*d{“-} = 3656{”}.
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{ijk}c4 {ijyc{ijk}tca

Intersecting with all boundary divisor classes gives:

_ 12 1
dg[AzL,m]Q =1= blg + b20 + b30 + b40, = b1 == 6
— 3
V{i,j} C4: d{z’j}[A4,:c]Q :0:b10+520+b3§—|—b40, = b3=0
. — 3 1 2

\V/{Z,],k} Cé: d{ijk}l:A47$:|Q :0:b10+b2§+b3(—§)+b4(—§), = bg :b4
— 12 6 12 1
A T e fr e — —_— —_, = —
d4[ 4, ]Q 0 b1( 3 ) +b2( 2) + b30 + by 5 = b 2

To give another example of how such an intersection number is calculated: The number
df12yw2 = 0, appearing in the second line, is obtained by observing that the only two
terms in the sum ws that meet dgi9y as sets, are dydadyiy and dydadzsy. With the first
term, dyi9y has excess intersection —%, calculated as above. With the second term the

intersection is transversal and contributes % O

Lemma 5.47 Let Z C El’k, k € 4, be a basic 1-sector, let (I, ..., I) be a partition of n,

and let Z Ul be defined as in Definition 5.183.

(i) In Lemma 5.46 we expressed [Z]g € H*(Rix) as a polynomial in the classes of the
form dfj and dj for J C k. Let = H*(Ry,) be the class one obtains by replacing in
this formula each dj by the class of the same name in H*(Ry,) and by replacing each
dj by d; € H*(Ry), where J = Uics Li- Then the class [7(11""’Ik)]Q € H*(Ry,) can be
expressed as:

Z" N =Z dyy - dy

PR

(it)For P a circular partition of n with |P| > 2, by definition [Bp)g = b, which already
is one of the generators of Hpyey(Rin)-

(i4i) In particular the classes of all supports of 1-sectors of Ry, lie inside Hyey (Rin)-

Proof: (i): With Definition 5.13 it is easy to show, using the projection formula and the
fact that ((7, . 1,) is a closed embedding, that

5.5.3 Pullbacks from H*(R,;,) to the l-sectors.

Let (X, g) be a l-sector of I1(Ry,), let f: X < Ry, be the inclusion of the subvariety
X in Ry ;. In this section we study the pull-back homomorphism

£ Y (Run) — HY(X).
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This is a part of our attempt to determine the structure of H}(R1,) as an H*(Ryp)-
algebra.

For this recall Notation 5.41. Furthermore in the case X = B}, we use the identification of
H*(B},) with H*(Mpp)) resp. with H*(Mr(p))SQ C H*(Mp(p)) introduced in Corollary
5.26, to express the pullback f*.

First we determine f* on the subalgebra Hp;(R1,) (cf. Def. 1.40). As we know from
Remark 4.6 (i), the Q-algebra Hp,(R1,,) is generated by the boundary divisors together
with the classes of the simple banana cycles. Hence the pullbacks f* : Hpo(Rin) —
H*(X) are for all 1-sectors X determined by the following two Propositions.

Lemma 5.48 In case (X, ) is a sector (711""’Ik, a), k € 4, obtained from a basic sector
Z by attaching rational tails (cf. Definition 5.13), we get the following results, analogous

to those in section 7.a. of [Pag08].

(i) If B is the class of any banana cycle, then f*(8) =0

(ii) Since dj = dfy, always f*(df) = f*(djy). We have f*(dj) =0 if Z is Cy or C}. For the
other possible X ’s, the pullback f*(dy) is given in the following table. There 1, : X — A
is the projection as defined in Notation 5.41 (i), and p is the cycle class of a point in the

cohomology of the basic sector H*(Z):

’ Sector X ‘ [ (dy) (=f*(dy)) ‘
At 35 (p)
A" 35 (p)
A" 175(p)
AL 5(p)
Zi{l1,l2}7{13714}} n*i(p)

(iii) For J C n we have that f*(dy) = 0 if J is not contained in any of the I, ..., I. If
J G I; then, with n; as in Notation 5.41,

frdy) = n; (1)),
where [J] denotes a divisor in MO,I,L-U{O,L-} (cf. Notation 1.47). If J = I; then
frdy) = _Zf (do) — i (¥o,)-

(For the definition of 1o, cf. Def. 1.41 (iii))
(iv) From these results together we can conclude that f* : H*(Ry ) — H*(X) is surjective
for all X of the form 7(11""’Ik).

Proof: (i): By Lemma 5.42 we see that (i) could only possibly be wrong for Z = Ay,
for k € {2,3,4}, and § = B ;, for a certain partition (J1,J2) of n depending on X. If



5.5 Multiplicative structure of Hg z(R1,n) 209

T Rlyn — El,kz is a morphism forgetting all marked points except one from each set I,
there is a commutating diagram

I I) f o+
Ak,z ¢ RLn )B€J1,J2>

|

_ g _
C R
Ak,x Rl,k B(Kl,K2>

where (K7, K3) is the partition of k obtained from (Jy,J2) by forgetting the mentioned
points. Then

n*?g*b?KLKz) - f*ﬂ*b?KLIQ) = f*b?Jth)’
where the second equality is obtained by checking with Lemma 5.42, that BZ J1,Ja) is the
onlyfomponent of ﬂ_l(BzKLKQ)) meeting Z,(CI’;’""I'“) as a set. But n%g*b?Kl’Kﬂ = 0, since
dim Ay e =1 <2 = codim By 1, (cf. the table of Corollary 5.39).
(ii): That f*(dj) = 0if Z is Cy or C}, can be shown using a similar argument, by forgetting
all but 1 resp. 2 marked points, and then arguing by dimension of the intersected classes on
Ry resp. Rio. Incase Z € (AT, Apz | k€{1,2,3},z € {a,b,c}}, again define morphisms
of the same names as in the proof of (i), forgetting all but & marked points, and obtain
that f*dj = n3g*dy where on the right hand side dj is the divisor class dj on Ry . We
compute g*dj by determining how the preimages of Z and D{ meet on the deformation
spaces of their finitely many common objects, like in the computation of dj [Zgw]Q in the
proof of Lemma 5.46 (iii).

(iii): That f*(ds) = n;([J]) for J S I; is clear. Now consider the commutative diagram

Rl,{.h.,,’.k} X Mﬁ,hu{m} X ... X MO,IkU{ok} Hﬁl,n
wi i
Ml,{.h“_’.k} X MOJlU{Ol} X ... X M07Iku{0k} Hﬂl,n

in the notation of Definition 5.12, the horizontal arrows are ((z, . 1,) respectively {1, . 1.)-
Now use formula 1.5 from section 1.7 together with Summary 1.42 to compute that

rydn) = —(Ye, ®1®..01) - (1®..010 1%, ®1®..®1)

1
:—(550®1®...®1)—(1®...®1®¢0i®1®...®1).

Pulling this back via ¢ gives:

1 1
_(Z 191®..901)-(1®..0101Y,01®...01)= —Zf*(d{)’)—n;‘(woi.)

0

Lemma 5.49 Here we look at the remaining 1-sectors (X, g), whose supports are of the
form X = B}, for some circular partition P = (I1, ..., In,) of n. For them:

(i) f*(dg) = f*(dp) = 0.
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(i) For J C n we have that f*(dy) = 0 if I is not contained in any of the I, ..., I. If
J C I; then

fr(dy) = n; ([J]),

where n; is as defined in Notation 5.41 (ii), and [J] denotes a divisor in M 1, o,
(cf. Notation 1.47).

i1}

(iii) It remains to determine f*(B) if B is a simple banana cycle class. Then B is either of
the form 8 = [Bp,]lq = bp, or B = [Bp,|q = by, for some circular partition P> of n. In the
first case f*(B) = 0. For the second case note that f = fpr, and that fglg (B) = fg}rj (bp,)
is computed in Lemma 5.28 (v).

Proof: From Lemma 4.8, we get (i) as well as f*(b,) = 0 from (iii).

(ii): This can be easily seen using formula 1.5 from section 1.7, since the graphs I' of B},
and I” of D; allow only one common specialisation (A, ¢, '), and the corresponding CE
is empty. In case of m = 2 this argument only computes the pullback CE;(C[ J), but we
obtain with the projection formula

1

1)),

Fds) = () Ci () =

g

Lemma 5.50 For any twisted 1-sector X of Ri, i.e. X # Ry, the pullback f* maps
the whole odd part of H*(Ry,) to 0. Le. f*(H**(Ry,)) = {0} C H*(X).

Proof: Using the description of the twisted sectors in Corollary 5.36 as products of
spaces whose cohomology is well known, and applying the Kiinneth formula, one gets
that H2**1(X) = 0 for any twisted 1-sector X. O

Summing up the results of this section, for any 1-sector X we know the pullback f* :
H*(Ry,) — H*(X) on the subspaces H*V1(Ry,) and Hpy/(R1,) € H*(Rin) of
H*(Ry,). It seems possible, but it is not known, that Hj(R1,) = H**(R1,,) for all
n, in which case the results of this section would determine f* completely. For M ,,
Hjo(My,,) = H*(M,,) is an old claim of Getzler (cf. Claim 5.1) for which no proof has

appeared so far.

5.5.4 The H*(R,,)-module H},(R,,)

Definition 5.51 (i) For R a ring and S a set, denote by R[(S)] the polynomial ring over
R in all the elements of S and by R(®) the free R-algebra generated by the elements of S.

(ii) If M is an R-module which is generated by a finite subset G C M, let ¢ : RY) — M
be the surjective homomorphism of R-modules defined by sending each element of G to
the element of the same name in M. We call ¢ the G-evaluation, and we call the R-module
ker ¢ the module of relations (with respect to the set of generators G).



5.5 Multiplicative structure of Hg z(R1,n) 211

(iii) Similarly for M an R-algebra generated by G we again call the surjective homomor-
phism of R-algebras ¢ : R[(G)] — M, sending G to G, the G-evaluation, and we call ker ¢

the ideal of relations.

(iv) We say that a set of generators G of an R-module or algebra M is minimal if no

proper subset of G generates M.

We regard H},(R1,,) as an H*(Ry ,)-module as follows: Let x be the product on Hf, (R 5,).
For each l-sector (X,g), H*((X,g)) C H{p(Ri1,) is, as Q vector space identified with
H*(X) by the definition of Hfp, Summary 5.7 (iv), and Remark 5.15. For any 1-sector
(X,g), and f: X — Ry, the inclusion as in the previous section, we know by Summary
5.7 (iv) that f can also be identified with the restricted forgetful morphism (x2)|(x,4,1) :
(X,9,1) = Ry, form the 2-sector (X, g,1). Then for o € H*((Ryn, 1)) C Hip(R1,n) and
g€ H*((X,g)), we have by definition of the CR-product % (Def. 5.5 (iv)):

axf=fa) - € H((X,9)), (5-4)

where on the right hand side - is the usual (cup) product on H*(X), which space we
identified with H*((X,g)) as above for this purpose. 4! If also 8 € H*((R1x,1)), then
axf=a-B € H*(Ry1,), so on the untwisted sector * restricts to -. So by (5.4), H*(R1 ) =
H*((R1,1)) is a subring of H}p(R1y), and Hip(R1,) as well as every H*((X,g)) C
H} p(Ry ) is a H*(Ry,)-module via .

Of course, this makes all the H*((X, g)) and H p(R1,,) also into modules over the subring
H%o(Rin) € H*(Ry ) (cf. Definition 1.40).

Notation 5.52 For a 1-sector (X,g) we will in the following often consider its funda-
mental class [(X,g)] € HEp(R1,n). By this we mean the fundamental class of the orbifold
(X,g) in H*((X,9)) C Hfx(R1). Under the identification of H*((X, g)) with H*(X) it
coincides with the Q-class [X]g € H*(X).

Lemma 5.53 Let (X, g) be a 1-sector of Ry, which is of the form Z )

5.48, then:

as in Lemma

(i) As Hjoy(Rin)-module, the submodule H*((X,g)) C Hfg(R1,) is generated by the
fundamental class [(X, g)].

(ii) Let FB((X,g)) be the free Hj)(R1n)-module in the generator [(X,g)], and denote
the scalar multiplication in this module by the same symbol * as in H*((X,g)). Let q :
FB((X,g9)) — H*((X,g)) be the evaluation sending [(X,g)] € FB((X,g)) to [(X,9)] €
H*((X,g)) *2. The module of relations RB((X,g)) := kerq is generated by the elements
in the following list:

(1) For all simple banana cycles B € Hyoy(Riy): B * [(X, 9)].

“INote that - is not part of the structure of H&g(Ri1,») so it is defined on H*((X,g)) C H&r(R1,n) only
by making this identification.

“2We have of course FB((X,g)) = Hjc,((X,g)) and ¢ corresponds (using the notation of 5.48) to the
pullback homomorphism f* and RB((X, g)) & ker f*.
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(2) If Z € {C4,C)}: dg (X, ).
(3) For each J C n which is not contained in any of the Iy, ..., Ix: dj * [(X, g)]

(4) For each set I; of the partition (I1, ..., Ix) and a;, b; the two smallest numbers in I;:

1

(5) From the Keel relations on H*(MO,I,L-U{O,L-})-' For all i € k and q,r,s € I; with

{q,r, s} = 3:
(Y - Y d)edxg)]
JCI;, JCI;,
q,red, s¢J r,sed, q¢J

Proof: (i): Follows from equation (5.4) above and Lemma 5.48 (iv).

(ii): It is clear that in the free module FB((X, g)) we have RB((X, g)) = (ker f*) x[(X, g)],
where f* : Hio(Ri,) — H*((X,g)) is as in Lemma 5.48. (1)-(5) list elements of the
form v * [(X, g)] with v € Hj,(R1,n), and proving (ii) is equivalent to showing that the
collection of the «’s generates the ideal ker f* C Hp, (R1,). Denote by G the ideal in
H¥% oy (R1 ) generated by these 7.

That the «4’s in (1), (2), (3) are contained in ker f* follows from (i)-(iii) of Lemma 5.48.
For the +’s from (4) the same follows from the equation

* 1 * *
frdy) = _Zf (do) =} (¥o,),
of Lemma 5.48, if one applies Summary 1.42 and f*(d;) = n}([J]) of 5.48 (iii).

In general an a € HECl(RLn) can be expressed as a Q-polynomial in the classes dJ,
dy for J C n and simple banana cycle classes (cf. Remark 4.6 (i)). By now we know
that ker f* as well as G contain the 7’s listed in (1)-(4). So if we want to check whether
a € G & «ac€kerf* by (1) and (3) we can WLOG assume that « is a polynomial in
only the class dj and classes d; with J contained in some I;. Furthermore by adding to
our « suitable multiples of 4’s from (4) we may WLOG assume that only classes d; with
J g I; for some ¢ € k appear in the polynomial a. Let S be the set containing as elements
dy and those d; we did not WLOG exclude yet. We continue our proof for the case that
Z ¢ {Cy,C}}. Otherwise (2) would furthermore allow us to assume that « is a polynomial
only in classes dj. This would make the rest of the proof only easier than in the cases we
will treat.

Let H(S) C Hp(R1,,) be the sub-Q-algebra of Hj;(R1,,) generated by the classes in
S. It is clear that G N H(S) is generated by the +’s in (5). With this notation our WLOG
assumptions above tell us that it suffices to show that ker f* N H(S) is also generated by
these elements.

Since Z ¢ {Cy4,C}} we have Z =2 P! by the proof of Corollary 5.36. Then H*((X,g)) =
H*(Z)® H* (Mo,hu{ol}) ®R...0 H*(MOJ;CU{%}) is generated as Q-algebra 43 by the class

BH*((X,g)) as a subspace of H: z(Ri1,») has of course no Q-algebra structure in general, but we identified
it with H*(X) which has.
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77*7(]9) for p the class of a point in Z, together with the classes of the form n}([J]) where
i € kand J G I;, with [J] > 2. Call the set of these generators S’, and let 7 : Q[(S")] —
H*((X,g)) be the evaluation. The ideal of relations ker 7 is generated by the relations one
obtains by pulling back the Keel-relations via 7; from each MO’ LU{o;}> 1-e. (cf. Summary
1.48 (iii)) ker 7 is generated by the following collection of elements:

(a) Fori € k and all q,r, s € I; with |{q,r, s}| = 3:

Yoo - Yo w .

JCL;, JCL;,
q,red, s¢J rs€J, q¢J

(b) For all i € k and all J,J" C I; such that neither J C J' nor J' C J: nf([J]) - n; ([J']).

Define a bijection p : S" — S by p(n([p])) := dy and p(n; ([J])) := d;. Let ¢ : Q[(S")] —
H(S) be the morphism of Q-algebras, induced by extending p to polynomials in elements
of S’. Now 5.48 tells us that m = f* o . Hence ker f* N H(S) = ¢(ker 7). So ker f*N H(S)
is generated by the images of the classes from (a) and (b) under . From (a) one obtains
exactly the +’s of (5). From (b) one obtains that d; - dy € ker f* N H(S) for certain J,
J'. But it is easy to see that for these pairs J,J’, one has dj-dy =0 € HEC[(ELH)’ SO
ker ¢ N H(S) is already generated by (5) alone. O

The twisted 1-sectors (X, g) which are not of the form assumed in the previous Lemma,
are of the form (X, g) = (B}p,tm) and are treated in the next Lemma.

Lemma 5.54 Let P = (Iy,...,I,), with m > 2 even, be a circular partition of n, recall
the definition of the classes B"(P', P) € H*(B}) = H*((Bp,tm)) from Lemma 5.28 (v).
(i) The Hyey(Riy)-module H*((Bp,im)) C HEg(Riy) is generated by the following
(larger than necessary) collection of classes: All classes B"(P', P) € H*((Bp, tm)) for re-
finements P’ of P. Here P' = P is allowed and defines the fundamental class B" (P, P) =
[(Bp, tm)]-

(ii) Set FB((Bh,tm)) = Hiey(R1,,) 9 for G the set of generators listed in (i). Let
q : FB((Bp,tm)) = H*((Bp,tm)) be the G-evaluation. Let RB((Bp,tm)) = kerq be
the module of relations. Then RB((Bp, tm)) is generated by the set A containing for each
refinement P’ = (J1, ..., Jy) of P:

(1) d!+B"(P,P)c A
(2) For all circular partitions Py of n: by, * B"(P', P) € A.

(3) For every K C n which is not contained in any of the sets Ji, ..., J),: dg*B"(P', P) €
A.

(4) For Py a circular partition of n, using the notation of Lemma 5.28:

B B(PLP)— Y (-)ONEEPL ST g PEPRIBP P e A
PeCCR(P,,P") PEV(P',P,,P)
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Before we describe the remaining elements of A, note that we can write each refinement
P’ of P with refinement map p : P' — P, in the form

P/ = <J1,17J1,27 "‘7<]17;L1)J2,17 --‘-7Jm,um>a (T)

such that p~Y(I;) = {Ji1,..., Jip; }. For any P’ as above denote for a ordered partition
(L1, La) of Jij by P'(L1, L2) the refinement one obtains by replacing in (t) the symbol J; ;
by L1, Lo (in this order). With this notation, include in our set A for every P’ the classes:

(5) For each J; j and for each two distinct elements x,y € J; ;:

> dyxB(P\P)-4- Y B(P(L1,Ly),P) €A,
{mvy}ngJi,j LlLﬂL2=Ji’j
z€Lli,y€Llo

(6) For each J;j and pairwise different x,y,z € J; j, denote for each set L C J;; by L
the set one obtains by replacing y by z and vice versa. Then A contains:

> (dy — dz)ax B"(P', P)
{z,y}CLCJ; j~{z}
+4- Y B(P(Li, L), P) - B’”(P’(El,EQ),P))

LiWLo=J; j
{$7y}gL17 ZGLQ

(7) For eachi € m and each 1 < j < p;, and for any x € J; j andy € J; j41, A contains:

( > B(P'(Ly,Ly),P)+ > B'(P'(L1,Ly),P)

LiWLo=J; ; LiwLlo=J; j11
xz€Lq, Lo#) yELo, L1#0
/ /
- Y B(P'(L1,Lp),P)- ) = B(P (Ll,Lz),P)>,
LIH_'JLZZJZ‘J LleZZJi7j+1
v(Ji,j)€L1 v(Ji,j+1)€L2

where v(J) stands for the smallest number in J.

Proof: We again identify H*((B}p,tm)) with H*(B}p) to be able to use in our proof the
multiplication - from this ring. Beside B"(P’, P) we also use the cycles B(P’, P) as defined
in Lemma 5.28 (i).

As Q-algebra H*(Mp(py) = @i~ H*(Mg 1,0{0;,0,4,}) 15 generated by the elements of the
form 77 ([o;, J]) and 0 ([K]) for all i € m, and 0 # J G I;, K C I, |K| > 2, since each
H*(Mo 1,0{0;,8,.1}) 18 generated by boundary divisor classes of the form [o;, J] and [K].
Call K the set of all classes of the form 7} ([K]), and J the set of all classes of the form
1; ([oi; J1)-

Let A : Q((KUJ)] = ®i%y H* (Mg 1,{0;,e;,,}) be the evaluation. The ideal of relations
between these generators, ker A\, is generated by pulled back (Keel) relations from each
H*(MO,DU{%%H})‘ Le., for all i € m:
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(a) For all z,y € I;:
Z n;([olava]) _n;([xa%L])

LClin{=zy}

(b) For all z,y,z € I;:

Z nj([m,y,L]) + n;([oiaxaya L]) - U?([fE,ZvLD - n;([oiv‘%z?[’])
LCI~{z,y,z}

(¢) For all ;K C I;,unless K C Jor K CI;\ J:
ni ([K]) - mi ([04, J])
(d) Forall K, K’ C I;;unless K CK'or KC;NK or KK CKor K' CI;\ K:
n; ([KT) -7 ([K'])
(e) For all J,J’ g I;, unless J C J' or J' C J:
m; (04, J]) - i[04, J'])

For 2, H*(Mrp)) = @i~y H* (Mo 1,u{o;,0:,1}) — H*(B}) the surjective pushforward
via zpr. In Corollary 5.26 we identified H*(B}p) with H*(Mpp)) if [P| > 4 and with
H*(Myp(py)® if |P| = 2, and have scen that then 2, acts on the part of H*(Mr(p))
identified with H*(B}) as multiplication by d(P)2/PI=1. Let » be the homomorphism
obtained from z*BITD by dividing through d(P)2/F1=1, i.e. z acts as identity on the part
identified with H*(B}%). Then z acts as identity on K always, and acts as identity on J

in case |P| > 4. For |P| = 2 we have

20 foi, 1)) = 5 (o1, T) + (i1, J1)) = 50 (o1, 7)) + (o1, ),

where J¢ := I; . J. So if we set ' := zo\, then ker(zo\) = ker 7’ is generated by (a) — (e)
together with

(9) If |IP| =2, for all i € m and all J C I;: nf ([0, J]) — 0} ([os, J¢])-

Let MJ be the set of all monomials in elements of 7. As Q[(K)]-modules, we can naturally
identify Q[(7UK)] with Q[(K)]™7). Then we can regard 7’ as a homomorphism of Q[(K)]-
modules, 7' : Q[(K)]M7) — H*(BY,). We obtain a set of generators of ker 7’ as a Q[(K)]
module by multiplying each relation from a (a)-(g) by each element of M.J. We refer to
the resulting new list of generators by (a’)-(¢’).

Let G’ be the subset of M7 consisting of all monomials of the form

m pi—1

72 =11 11 % (fess Ji) ()

i=1 j=1
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for some numbers u; > 1, with the empty product considered as 1, fulfilling the condition
that for all ¢ € m,

(Z) ; JZ'J ; Jl‘,g g ; Ji,m

1 G L (®)
For each 2 let & be the monomial obtained by replacing in the product each [o;, j”] by
[04, jZCJ] We also denote 2 resp. 2 by 9(P', P) resp. .@(P’, P), where P’ the refinement

of P defined as follows: Set ji,O =0, Jiu, = 1I; and for each j € {1,...,p;} set J;; :=
ji,j ~ ji,j_l, and define

P/ = <<]1,17J1,27 ceey Jl,u17<]2,17 "'7J2,;L27 "")Jm7um>' (&)

In MJ we formally write B(P', P) := 2(FP',P) if |P| > 4 and B(P',P) := 2(P',P) +
9(P',P) if |P| = 2. This is justified by Lemma 5.28 (i), which implies that each so
defined B(P',P) € MJ is mapped by A to the class B(P’, P) of the same name in
H*(Mrp(p)) = Qi) H* (Mo, 1,00, 0:11})-

Let G* be the subset of M7 consisting of all those classes B(P’, P). (For |P| > 4, G* = G'.)

We can check using (a’) —(¢'), or more easily by excess intersection theory (also cf. Lemma
5.28 (vi) 4 proof), that ker 7’ contains for any refinement P’ of P as above, and each i € m
and each class 1} ([o;, J; j]) for 1 < j < p; — 1 as above, the relation 44,

‘@(PGP)(’)’]:[OZ’:]\;’J]) = - Z -@(P/(LlaLQ)’P)_ Z -@(P/(LlaL?)vP)’ (i)
L1L+JL2:J1‘7J' LleQZJi,j+1
v(Ji,j)€L1 v(Jij+1)€L2

where for a set J C n, v(J) is the smallest number in J.

Using €’ we can see that every element of M7 is in the same fibre of 7’ as an element of
the form

where the j” fulfil (#) with €;; € Z>1. Then using () on finds inductively that each
element of M7 is even in the same fibre of 7’ as a linear combination of elements 2 € G'.
By (g’) there is even a linear combination of elements B(P’, P) € G* in the same fibre.
This shows firstly that 7 : Q[(K)]9") — H*(B}), which we define as the restriction of
7/, is still surjective. Secondly it shows that we can obtain a different list of generators
of ker v’ as follows: Let (a*)-(d*) be the relations obtained by multiplying each relation
from (a)-(d) by each element B(P’, P) € G*. Then (a*)-(d*) together with (1), (¢/), and
(¢') generate ker 7’ as a Q[(K)]-module.

We claim that ker7m = kern’ N Q[(K)]9") is generated by (a*)-(d*) alone: Indeed the

elements from (a*)-(b*) are obviously in Q[K]("), and it is also easy to check that there is
no Q[(K)]-linear combination of the relations described in (f) and (e’) and (¢g’) which lies

in Q[(K)]97) ~ {0}
We write down the relations from (a*) and (b*) explicitly, we used also (¢*) to simplify
them: For all B(P’, P):

“Written here in form of an equation a = b not as the corresponding element a — b € ker 7’
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(a*) For all J;; € P' and all z,y € J; ; with = # y:

> BP(Lufa}, L°U{y}), P) — i ([z.y, L]) - B(P', P),
LCJ; j~{=z,y}

where L¢:= J;; \ L. And for all 1 < j < j' < p; and all € J; ; and y € J; ji:

S B(P(L,LY), P+ Y B(P(LLUY.P)+ > Y B(P(LLY), P)+

z€LCJ; ; LQJi’j/\{y} j<r<j’ LCJ; ,

+ Z (- Z B(P'(L1, L), P) — Z B(P'(L1, La), P)).
j<r<g’ LiWLa=J; ; L1¥WLo=J; j11
v(Ji;)ELy v(Ji j41)€L2

(b*) For all J; ; € P' and all z,y,z € J; ;:

Z ((77?([%(% L]) —n;([m,Z,LD) ‘B(PI?P) + Z B(PI(LDL?)?P)

LCJ; j~{zy,z} Llw[[:2:JiE
x,yely, zela

- > B(P(L1,Ly),P).
LlLﬂLQZJi’j
x,2€L1,y€L>

And for all 1 < j < j' < p; and all ,2z € J;; and z € J; j:

> + Y B(P'(Li, L), P)
LCJ; i~z 2}y ([zy,L]) B(P',P)  LiWLa=J;
x7yEL1
+ Y. B(P(Li, L), P)+ Y. Y. B(P'(Li, L), P)+
LlH:JLQZJi’j/ J<r<j' Li¥WLo=J;
z€Lsg
+ 3 (= > BP(LnLa)P)— Y, B(P(L1,La),P)).
j<r<y’ LiwLao=J; L1@L2:Ji7r+1
V(Ji,T)ELl V(Ji7j+1)€L2

And for all 1 < j <j <p; and all z € J;; and y, z € J; j:

Z B(P,(LbLQ)vP) - Z B(P/(LlaLQ)vp)'
Ll&JLQZJi’j/ L1®L2:Ji1j/
z€Lly1,y€Lls ye€Ly,xz€Ll2
For z, y, z, lying in three different sets J; ; € P’ one obtains again the relations of

the second type listed in (a*).

Now let H be the Q-sub algebra of Hp, (R1,n) generated by the boundary divisor classes
dg for all K C n (|K| > 2), and let p' : Q[(K)] — H be the homomorphism of Q-
algebras induced by sending each 7} ([K]) € K to dx € H. Recall that G is the set of
generators listed in (i), i.e. the set of all classes B"(P’, P). Let p : Q[(K)]9") — H9) be
the homomorphism of Q[(K)]-modules induced by p’ and by sending each B(P’, P) € G*
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to 217'I=IPIB"(P’. P). Now by definition of 7 and n’ = z o A, by Lemma 5.28 (iv), and the
discussion of the properties of z at the beginning of the proof, we see that 7w factors as
QI(K)) @) F— H'9) "> H*(Bp) (©)

\/

™

where ¢’ is the restriction of ¢ to H9) ¢ Hyp (R1,0)9) = FB((B}, tm)). The fact that 7
is surjective so implies that ¢ is surjective, i.e. part (i) of our Lemma.

(ii): Let M C FB((Bp,tm)) be the submodule generated by the collection of relations
listed in (1)-(7). *> We use the shorthand RB := RB((B%, t)) and have to show that
M = RB. The classes listed in (1)-(3) are contained in RB by Lemma 5.49. Concerning
(4): Let i : B}, — B} the inclusion. Then using the notation of Lemma 5.28:

by BT (P, P) = fiy (0,) - B'(P', P) = iui* [, () = s Sy (B,

Now (4) follows from Lemma 5.28 (v) together with the obvious fact that for every refine-
ment P of P’ we have i, (B"(P, P')) = B"(P, P).

We know by now that the classes from (1)-(4) are contained in RB and M. Similar to
the proof of Lemma 5.53 (i) this allows to reduce to showing that RB’ := RBNH9) =
MNH9 =: M'. Note that RB’ = ker ¢ for the ¢’ appearing in (). Hence RB’ = p(ker ).
So RB’ is generated by the relations one obtains by applying p to (a*)-(d*), i.e. formally
by replacing in them each 77 ([K]) by dk, and each B(P’, P) by 2/F'I=IPIBr (P’ P).

Now one can check that the relations from (5), (6), (7) are direct translations of some of
the relations from (a*) and (b*). Furthermore the other relations coming from (a*) and (b*)
are all H-linear combinations of those in (5)-(7). (3) is the translation of (¢*). Finally (d*)
translates to relations which hold in H C Hp (R1.,) anyway 46, so they are contained in
RB’ trivially. Hence RB' = M’. O

By the Lemmas 5.53 and 5.54 we know for every twisted 1-sector (X,g) of Ry, the
structure of H*((X,g)) C H}z(Rin) as an Hj(R1,,)-module. (Since we have explic-
itly described the two modules FB((X,g)) and RB((X,g)) € FB((X,g)), and obviously
H*((X,g)) 2 FB((X,9))/RB((X,g)) as an Hp,(R1,) module.) So the only information
missing to describe Hfp(R1,,) as an Hjyo (R1,,)-module is a description of H*(Ry ) as
an Hpq,(R1,,)-module, to account for the untwisted sector (Rj,,,1). Unfortunately this
module structure is not known, we do not even know generators of the module. 4" To

avoid this problem we only attempt to give the coarser description of H, R(Elﬂ) as an
H*(R1 ,,)-module:

45 Contrary to what we did in the proof of Lemma, 5.53, here M really contains the elements v B" (P, P)
listed in (1)-(5) and not only the +’s. This is since we do not have FB((Bp, tm)) = Hpci(R1,,) in this
case.

46Cf. the end of the proof of Lemma 5.53 (ii)

4"The same problem exist in case of Ml,n instead of El,n. Such a description seems to be difficult to
obtain. For example on the way one would obviously either have to proof or falsify Claim 5.1 (i) (by
Getzler), and would need additional information about the odd part of H*(M1,,).
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For every l-sector (X,g) # (Ri,) of Ry, the generators of H*((X,g)) as Hjo(Ri)-
module listed in Lemma 5.53 resp. 5.54 of course also generate it as H*(Rj,)-module.
So denote by F((X,g)) the free H*(R;,)-module in the same generators as FB((X, g)).
(So F((X,9)) = FB((X,9)) ®py (&, H*(Rin)) Let Q : F((X,g)) — H*((X,g)) be
the evaluation. Let R((X,g)) := ker@ be the H*(R;,)-module of relations. For the
untwisted sector let F((R1,1)) be the free H*(R;,) module generated by [(Rin,1)],
then F((R1,1)) & H*(Ri,) & H*((Rin,1)), and R((R1n,1)) = {0}. Since for any
v € H*((R1n,1)) and B € H*((X, g)) for any 1-sector (X, g), we have a * 3 € H*((X, g))
by definition of the Chen-Ruan product , it is clear that as H*(R; ,,)-modules:

HEp(Rip) = D F((X,9))/R((X,9))
(X,g) 1l-sector of El,n

Let P/{E((X, g)) be the submodule of F((X, g)) generated by the same list of relations as the
Hj}o(R1,n)-module RB((X, g)). It is clear that f/{E((X, 9)) CR((X,g)). Let H*(Ry,,) ®
H*TY(Ry,) = H*(Ry,) be the decomposition of H*(R;,) into the even and odd part.
Denote by RBT((X,g)) € F((X,g)) the H*(R ,)-module generated by the set

RB((X,g))U{y*f |~ e H* (Ry,), B€H (X, 9)}

Using Lemma 5.50, we see that also RBT((X,g)) C R((X,g)).

Now we claim that for all (X,g) # (Rin.1): RBY((X,9)) = R((X,9)) if Hye(R1n) =
H**(Ryy). If 4, ..., %, are our generators of F((X,g)), then we have to show that for all
Viyeoyyr € H*(R1p), Yoty Vi %% = 0 € H*((X,g)) implies >.I_, v *¥% € RBT((X,¢g))
under the condition HF (R1n) = H*(Ry1,). Let 7; be the part of v; lying in H?*, i.e. by
our assumption ¥; € Hj;(R1,,). Then using in this order Lemma 5.50, the definition of
RB((X,g)) and the definition of RBT((X, g)):

T T T T
D =0 = > Fx% =0 = Y F+% cRB((X,9)) = > 7i*% € RB™((X,9))
i=1 i=1 i=1 =1
From this discussion our next proposition follows quite directly:

Proposition 5.55 (i) The H*(R,)-module H},p(R1,,) is generated by the set G consist-

ing of the following classes:

(1) For every l-sector (X,g), the fundamental class [(X,g)]. (Cf. Theorem 5.32 for a
complete list of the 1-sectors.)

(2) For all circular partitions P of n with |P| > 2 even, and all refinements P’ of P,
the classes B"(P', P).

(i) Set H' := H*(R1,)9), and let 7 : H — Hjp(Ri,) be the evaluation. Then the

module of relations ker m contains the following relations:

(1) For every 1-sector (X,g) with X = AL

listed for this sector in Lemma 5.53 (ii).

Te) for some basic sector Z, all relations
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(2) For every 1-sector (X, g) with X a banana cycle, all relations listed for this sector
in Lemma 5.54 (ii).

(3) For all classes v € H**1(Ry,,) and all generators 4 listed in (i), v+ ¥ = 0. 48

For a given n € N the module of relations of ker q is generated by the listed relations as

an H*(Ry,,)-module, if H*(R1,,) = Hcy(Rin)-

5.5.5 The H*(R,,)-algebra H}y(R;,)

In this section we try to determine the ring structure of H(Ri,). Since not even

49 we have no chance of determining

H*(Ry,,) is known as a Q-algebra for larger n
H} p(R1,) as a Q-algebra. What we can do is to give a set of independent generators
of the H*(Ry,)-algebra HYp(R1,), and many relations in these generators holding on
H} p(Ry,). I was not able to prove that these relations span the whole ideal of relations.
One can say that they span the ideal if the whole even part of H*(Ry ), i.e. H**(Ry,) is
generated by boundary cycle classes, for all n 0 . In this regard we are in an analogous
situation for Ry, as for M1, in [Pag08]. But the analogy is broken by the fact that it is
an old, but yet unproven, claim of Getzler that H**(M ,,) is generated by boundary cycle
classes (cf. Claim 5.1). In the case of Ry ,, I do not know whether one should expect the

same.

First we compute the products of the fundamental classes of 1-sectors of Ry .

Proposition 5.56 (i) If (X1,g), (X2,h) are 1-sectors of I1(R1.), such that not both of
X1, X9 are banana cycles, then there is a sector (Xs, gh) such that [(X1,9)] * [(X2,9)] €
H%((X3,gh)), for some d € Ng. Furthermore in our case we always have

(X1, 9)] % [(X2,9)] = v+ D

for some v € Hyy(Rin), and a D € HY((X3,gh)), such that D is one of the generators
of the H*(R1,,)-module HYp(R1,,) listed in Proposition 5.55 (). ®1

For each pair ((X1,9),(Xo,h)), either [(X1,9)] * [(X2,h)] = 0, or the pair appears (up
to swapping [(X1,9)] and [(X2,h)]) in the table on the next page. (Or X1 = Bp and
Xo = Bp,, which case is treated in (ii)) Then this table lists the corresponding sector
(X3, gh), and a geometric class cl = [(X1, g)|*[(X2, h)] € H* (X3, gh). If we write cl = [V]g
for some subvariety V of X3 we mean by this the Q-class taken inside X3, not in Ry .
(This explanation will be continued after the table on the next page.)

48 Actually these are infinitely many relations, but of course, as soon as one knows a finite generating
system S of H**T'(R;,,,), one can replace these by the finitely many relations v * & for v € S.

““Here, contrary to the case of H*(Mji,,), not even the Betti number are known.

50More precisely our relations span the ideal of relations if and only if H*(R1.,) is generated as Q-algebra
by HECZ(RLTL) @® HQ*“(ELTL), which is formally a weaker condition.

5180 if X3 is an essential 1-sector, the only possibility is D = [(X3,gh)]. Otherwise X3 = B} and
D = B"(P’, P) for some refinement P’ of P.
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Furthermore the table lists the degree d such that [(X1,g)] * [(X2,h)] € HY(X3,gh) , and
an expression of the form v+ D as above, such that v+ D = [(X1,9)] * [(X2, h)]. In row
(17) also in v D a class of the form [X|q appears, and here this means the Q-class of X
taken on Ry, so here [X|g € H*(Ry1,). Note that the classes [X|g appearing there are
described explicitly as polynomials in the usual generators of HECZ(RLH) in section 5.5.2,
so we always know vy explicitly as such a polynomial. If there appears a p in the expression
of d it means the number of sets containing only one element among the sets I, ..., I of
a the partition defining the sectors. In the expression for v x D the symbol d; has to be
interpreted as 1, if |I| = 1. (Otherwise it denotes the boundary divisor class dr, as usual.)
For the class nf(—1o,) appearing, m is as defined in Notation 5.41.

(ii) Let Py, Py be two circular partitions of n with |Py|, | Ps| even, Py a refinement of Pa. Re-
call the notation of Lemma 5.28 and Definition 5.27, and the definition of P from Lemma
5.43. For any P € CCR(P1, P2) and any P’ € CCR(P,, P), define CN(P, Py; P'; P5) and

~

U(P, P}; P'; Py) like in Lemma 5.28 (vi). Then:
[(B};’lv [’P1)] * BT(P2/7 PZ)

oN /. pr. Dl_|pl_|p! ~ ~
= Z Z (—1)ICN(PP5;P/iFo)l Z oI+ PI=IPI=IP5l pr(p p) 52
PeCCR(Py,P2) P'eCCR(P,P}) ﬁe(f/(p7p2/;P/;p2)

Proof: (i): Recall that

(61, 9)) 5 (X2, )] = (p3)- (11X, 9)) - P3(Xa, ) - cuop () ) (1)

where E is the Chen-Ruan excess intersection bundle. Since we exclude in (i) the case that
X1 and X5 are both banana cycles, we know X7 N Xy explicitly from Lemma 5.42 and
see that it is irreducible and possibly empty. From Proposition 5.44 we then know that
the only 2-sector of R;, whose images under both p; and ps meet (X1, g) resp. (X2, h) is
(X1 N Xa;g,h), if X1NXy#0. If X3 N Xe =0, then there is no such 2-sector and hence
[(X1,9)]*[(X2,h)] = 0. For this reason, by 5.42, all products [(X1, g)]*[(Xz2, k)] not listed in
the table are 0. In the remaining cases, in (1) we can restrict the domains of p;, p2 and p3 to
(X1NXa; g, h). Furthermore p; : (X1NX2;9,h) — (X1,9) and pa : (X1NX2;9,h) — (Xo,h)
are closed embeddings, and so

P1([(X1, 9)]) = pa([ X2, h]) = (X1 N Xa;3 9, h)] = p1([(X1, 9)]) - pa([ X2, R]).

Hence: — [(X1, 9)] * [(X2, h)] = (P3) (Crop(E(x1nx259,m)))- (1)

The 1-sector (X3, gh) into which (X; N X2) is mapped by p3 is known from Proposition
5.44 (iii). One only has to take into account that one finds (X3, (gh)~!) instead of (X3, gh)
in that table. Furthermore for all 2-sectors (Y; g, h) of Ry, the class Ctop(B(xnx7g,h)) 18
determined in Lemma 5.45. With this and () one directly computes the entries ¢l and d

52Note that in the “generic case” already the first sum is empty, and in the generic nonempty case,
| CCR(P1, P;)| = |CCR(P, P3)| = 1, and |CN(P’)| = 0, and then this long sum consists only of one term
of the form B"(P’, P).
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in the table of (ii). To write ¢l in the form « % D in the last column of the table one also

has to use information from section 5.5.3. We explicitly compute some examples:

In row (1): (X1 N Xa;9,h) = (C};—1,4), or alternatively (C7;(—1,4,7)) in the nota-
tion of Proposition 5.44 with automorphism label (g, h, (gh)~!). So X3 = (C}, —i), and
p3 ¢ (CF;—1,i) — (CF,—i) is an isomorphism in this case. With CtOp(E(Cf;(—l,i,i))) =
CtOP(E(Cf;(i,i,—l))) = —n] (1o, ) from Lemma 5.45 we thus already know all entries in row
(1), except v * D. To obtain this last entry use Summary 1.42 (iv), Lemma 5.48 and
equation (5.4), to write, for f: (C}, —i) — Ry, the closed embedding:

(o) =—ni( Y UD=— D fd)=- Y dr«[(C} i)l

{1,2}CIGn {1,2}CIGn {1,2}CIGn

In row (2) everything is very similar, except that CtOP(E(Cf;(—l,—i,—i))) =1=[(C}—1,—1)],

by Lemma 5.45. In row (4) we get cl = 0 since ciop(E = 0. For row (6) we

12 (-1
obtain [(X1, g)] *[(X2,h)] = [E;’{h’b}]@ € H*((Z;Ibl’b}, —1)) as before. Now from the def-
initions of Eg’[bl’b} and E;’{Il’h} it is clear that [E;’{Il’l2}]Q = 77%27b([E§]Q) (using Notation

5.41). We know that E7 is a point in Zg,b parametrising an object with 4 automorphisms
(cf. section 5.4.1). Hence with Lemma 5.48 (ii), and equation (5.4)

N " 1., 1 —{I,I —{I,I —
s, (B3l = 3 £ (df) = i« [(AL™, D], where [ (A3, ~1) > R,
is the closed embedding. We remark that all the djj appearing in the last column arise in

a way similar to this.

As a last example, in row (8), we have ¢l = [Eg’{12’13}’11]Q € H*((B{p,ur, 1,y))- Use
ZBZ[2U131]1) : MOJQUIBU{OL.Q} X M0711U{°2,.1} — B?IgUIg,h)? a'nd

h: M0712U{A2} X MOJBU{AS} X Mﬂ:{lzls,ol,%} X MO,{A1,O2,°1} X MO,EU{M}
— MO,IQUIgU{Ol,OQ} X MO,IlLJ{OQ,.l}
the morphism gluing each A; to A;. Then

(I1gUI3,17)

where ¢ is the class of the special point on MO’{AQ’A&OI’,Q} which parametrises P! with
points Ay, A3, 01, e in such a position, that there is an automorphism of P! fixing Ag, and

A3 and swapping o; and es. Now on MQ{AQ’A& o} = P!, ¢ is equivalent to the divisor

o1,

class [o1, Ag]. So

T, I ,I 1I 1
b 1B ) (181 [0, As] @1 @ 1)
1
- Z(ZBZIzulg,Iﬂ)*(([Iﬂ ’ [13] ) [01712]) ® ([Il])>

= 15 (&) 5] - o1 L)) © (L)) + (2] - (1] - [e2. 1)) © ((11]))
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L. r
= gf (dndrdry) - B((I1, 1o, I3), (I2 U I3, 1)) = dj, di,dig * B"((I1, I2, I3), (I2 U I3, I1))
using projection formula, Lemma 5.48 (ii), equation (5.4) and Lemma 5.28 (iv). For (10),
additionally use that

b1<ﬂ11U12713U14> * [(BZ,IQUI3,11UI4>7 L2)] = Br(<I27I37I17I4>7 <I2 U 137 Il U I4>)
by Lemma 5.28 (v).

(ii): Here Bp N Bjp,, may have several components, namely all B, where P are all the
elements of CCR(P;, P). The 2-sectors to which the pull back of both of our classes
might be nonzero are all the corresponding (Bp;tp,,tp,). So with ipp,ipp,,ipp the
closed embeddings of B} into Bp, , Bp, and B% we have, by Proposition 5.44, Lyemma
5.45 and () :

[(Bp.ep)* B' (P, Po) = Y (ipp)s((ihp (B (P, P1))) - (ipp, (BT (Py, P2))))
PeCCR(P1,P2)

= Y (ipp)lipp,(B" (P, P)).
PECCR(Pl 7P2)

Now (ii) follows from Lemma 5.28 (vi) together with (i, 5)«(B" (]3, P)) = Br(ﬁ, P), which
is clear. ]

Lemma 5.57 Here we use the shorthand %p, = [(BEQ,LQ)] for any circular partition Q
of n, with |Q| > 2 even.

(i) Let P = (I, ..., I,) be a circular partition of n with m > 2 even, let P’ be a refinement
of P with refinement map p : P — P. Write

/
P = <J1,17 J1727 ceey J17V17 J2,17 weey J2,V27 ceey Jm,17 ceey Jm,l/m>7

such that for each i € m, p~t(L;) = {Ji1, oy Jin; }- Also for m' := |P'| set Jy == Jy1,
Jz = JLQ,...,Jm/ = val,m.

In the following, regard the indices of the I; resp. J; in m and m/ as elements of Z/mZ

resp. Z/m'Z, when adding numbers to them. We distinguish two cases:

(a) If |[P'| = m/ is even, set for | =1,2,...,%-:

Pl = (JU T U Uy Ty U U Udppmi—1).

/ m/!
oy Yy I+ +1

Furthermore if P’ # P, let
P* = (K1, Ks, ..., K,,)

be the partition obtained from P' = (Jy, Jo, ..., Jy) by contracting each edge between each

two {J;,,Jj2} € ON(P,P') (c¢f. Def. 5.27), i.e. by replacing in P' = (Ji, Ja, ..., Jyy) the

“ 7 between J; and Jji1 by a “U 7 if {Jj, Jir1} € ON(P, P') 53. Note that p=m' —m
m

is then even. For s =1,2,..., % set

Pr=(KsUKg1U...U Koo g, Koo UKgn UL U Koypu—1).

%Here WLOG assume that {J,,,/, J1} ¢ ON(P, P')
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Then we have
B'(P,P) = %1, * %%2, Kk %%,ml * %;;1* * 93%2* Kk @%ﬁ (5.5)
5 2
(b) If |P'| = m/ is odd, there is at least one v; > 2, WLOG vy > 2, i.e. {J1,Ja} ¢
ON(P,P'). Then set J, := Jy U Jy, and J; := Jj11 for j = 2,3,...,m' — 1. Set Q' :=
<<71, jg, v jm/_1>. Then Q' is still a refinement of P. Define forl =1,2, ..., %, treating
the indices of the j] as elements of Z.)(m' — 1)Z:

QE = <Jl U Jl—i—l Uu...u Jl+m,2_1—1’ Jl+m/2_1 @] ‘]l+m'2_1+1 Uu...u Jl+m’—2>-
Let Q* = (INQ,IN(Q....,IN(,{) be the partition obtained from Q' by contracting all edges be-
longing to ON(P, Q") like in the definition of P*. Note that k = m’ —m — 1 is even. For
s=1,2,...,5 set

Q= (K;UKgp1 U U Kors 1, Kops UK 54U U Kgip1).

With Q' := (Jy, JoUJ3U...U Tty Ty U U ) 54, we have
2 2
r(pl _priN A T N T T
B"(P',P)=B"(Q',Q)) * %’@,2 k.. ok %leul * %QT ..ok '%)Q*% (5.6)

(i1) If P = (11, I2) is a circular partition of n, and P' = (Jy, Ja, I2) is a refinement of P,
r.e. J1WJy =11, 55 then:

B'(P',P) = Bp* B}, pun) — Z Bk o, Kooy * BLHUK,, LUK, (5.7)

K WKp=Jo
K1#0#K>

Proof: (i): One shows this by induction, using Proposition 5.56 (ii) and Lemma 5.20. Note
that the f’l’ , 13;, and @;, @:, have been chosen such that for all steps of the multiplication
the right hand side of the formula of 5.56 (ii) reduces to something of the form B" (P, P).

(ii): This follows from Proposition 5.56 (ii) together with Lemma 5.20 (ii). O

Theorem 5.58 (i) The following collection of classes forms a minimal system of gener-
ators of the H*(R1,,)-algebra H}, p(R1,):

(1) Include the fundamental class [(X,g)] for every essential 1-sector (X,g) (cf. Def
5.35), except the class [(Cy,1)] and classes of the form [(Cih’b}, i)], which we exclude
from our set of generators.

(2) For each circular partition (I1,I3) of n into two sets, include the fundamental class

%Zjhb) = [(Bz[17[2>7b2)]'

54 Note that )’ is a refinement of Q.
% Note that the pair of partitions @} and Q' from (i) is of this form.
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(ii) In the H*(Ryy)-algebra Hf (R1,) the following relations hold, and so the elements
a — b corresponding to these equations a = b lie in the ideal of relations J 96 :

(1) For each pair [(X1,9)], [(X2,h)] of fundamental classes of 1-sectors, such that not
both of X1 and Xo are banana cycles, the equation of the form [(X1, g)] * [(X2, h)] =
~v* D, which can be read out of the table of Proposition 5.56 (i), or, if the pair is not
to be found in the table, then [(X1,g)] * [(X2,h)] = 0.

(2) From Proposition 5.56 (ii) for each pair Py, Py of circular partitions of n, such that
|P1| = 2 and |Py| even, and each refinement Py of Ps, the equation

[(B};l,[,pl)] * BT(PZIﬂ PQ)

= 3 3 (—1)/CN(P.P5PsP2)| 3 9| Pol+IPI=IPI=IP5| gr (P, P).

PECCR(Pl,PQ) P’ECCR(P,P%) ﬁe(fj(P,Pé;P,;PQ)

(3) All relations between the generators of the H*(Ry ,)-module HER(RLH) from Propo-
sition 5.55 (i) are also included in the list.

Now many of these relations contain terms that are mot written as polynomials over
H*(Ry,,) in the generators listed in (i). Firstly these are relations containing classes of
the form [(CY, )] or [(Cih’b}, i)]. This is remedied by substituting via [(A])] = [(CT, —1)] =
[(CF,1)] resp. [(A;I;’IQ}, —1]* [(Cfl’b}, —i)] = [(Cfl’b}, i)]. Secondly there appear classes
of the form B"(P', P) with |P'| > 3. Substitute each B"(P', P) by a polynomial in classes
of the form ‘@ZILM’ using equation (5.5) from Lemma 5.57, if |P'| is even, or using equa-
tions (5.6) and (5.7) from 5.57, if |P'| is odd. After this procedure all relations in the list
are explicit relations between polynomials in the generators listed in ().

(iii) The relations described in (ii) generate the complete ideal of relations J between the
generators given in (i), if Hycy(R1n) = H*(Riy).

Proof: First note that (ii) is only a collection of relations we have already proven to hold
on Hf p(Ry,) earlier.

Let G be the set of the generators listed in (i), let G’ be the larger set of generators of the
H*(Ry)-module H} »(Ry ) listed in 5.55 (i). Let I the ideal in H*(R;,,)[(G)] generated
by the relations listed in (ii) (using the notation from the proof of Lemma 5.54).

Let ¢ : H*(R1.,)9) — HEp(Rin), q : H*(R1,)[(G)] — Hyp(Rin) be the evaluations.
Let m: H*(R1,,)9) — H*(Ry,)[(G)] be the surjective homomorphism defined by sending

every B"(P', P) € G’ to the unique polynomial in classes of the form <%’< L) B which it
can be expressed using the formulas (5.5), (5.6) and (5.7) from Lemma 5.57 57 | and sending

*Swhere J = ker q for ¢ : H*(R1,,)[(G)] = H}»(R1,») the evaluation with respect to the set of generators
G as specified in (i).

5TA B"(P', P) can in H¢ x(R1,,) usually be expressed as a polynomial in classes B(1, 1, in several ways,
but there is only one way to do it using only the mentioned formulas.



5.5 Multiplicative structure of Hg z(R1,n) 227

()] t0 [(AD)]*[(CF )] and each [(C5™"*),i)] to (A5 ™), 1] [(C}""), ~i)]. Since
these formulas hold on H},p(R1,,) we have a commutating diagram:

H*(Ry1,,)9) —"= H*(R1,,)[(G)] —— HEp(Ru) -
\/

!

q

By Proposition 5.55, ¢’ is surjective, so ¢ is too, which proves (i), except the claim that G is
minimal. For (iii): The equations of (ii) (1) and (2), after the substitution via Lemma 5.57
suffice to express each element of H*(R;,,)[(G)] as an element in H := n(H*(R;,)9)) C
H*(Ry1,)[(G)]. Since these equations are contained in I as well as J = kergq, for (iii) it
suffices to show that I N H = kerq N H if Hj(R1,n) = H**(R1,,). By (ii) we already
know that I C ker ¢. The diagram also tells us that ker N H = m(ker ¢'). Proposition 5.55
(ii) lists relations which generate ker ¢’ if Hqy(R1,n) = H?*(Ry,,). But we included the
images under 7 of these relations into I as part (3) of our list in (ii). So mw(kerq) C I,

which concludes the proof of (iii).

It remains to show that G is a minimal set of generators: First note that G consists only
of fundamental classes of 1-sector. Suppose there was a class [(X, ¢g)] € G which could be
expressed over H*(Ry,) as a polynomial in the other classes from G. Like every element

of H} z(R1,) we can express such a polynomial in the form

v((X',h))

DO DR L

[(X",h)] a l-sector i=1

for some v((X', h)) € Z>p and homogeneous classes a(xs p); € H*((X’, h)). Here all sum-

X,9))

mands have to cancel except Ziﬁ(l Q(X,qg),i» and in this sum at least one of the a(x gy ;

has to have degree 0 in H*((X,g)) °® , while all summands of higher degree cancel out.

Now let [(X',h')] # [(X, g)] be the fundamental class of a 1-sector, and look at a product
B* [(X',h')], where j is either also the class of a fundamental 1-sector, or 8 € H*(Ry,,):
As we check with Proposition 5.56 the product is a Q-linear combination of classes of the

following 4 types:

type 1: [(X', 1/)] itself.

type 2: Classes of form [(CT,4)] or [(C’ih’lg},i)].

type 3: Classes of form [(B}p,tp)] with |P| > 4.

type 4: Classes « € H*((X"”,h")) with (X", h") a 1-sector, & homogeneous of degree > 1.

One can subsume types 1, 2 and 3 under: Fundamental classes of form [(X”, h")] # [(X, g)]
(type A), since G does not contain classes of type 2 and 3. Now by multiplying a class of
type A or of type 4 again with a fundamental class of a 1-sector or a class from H*(Rj ),
we again obtain a @Q-linear combination of classes of these types. Starting with a class
of type A this is just repeating the same step as before, to see this for classes of type 4

%®Here and in the rest of the proof we always mean by degree in a H*((X’,h')) the degree without
adjustment by the age number.
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is suffices to check, using the definition of the product x, that for o € H% ((X,h)) and
B e H%((X', 1)) the product « * 3 is a sum of classes of the form v € H%((X” h")) for

dsz > dy + do ®° . Obviously classes of type A or type 4 are not homogeneous of degree 0
in H*((X,g))- O

How “explicit” are the relations in Theorem 5.58 (ii) ? What would one have to
do to write down all the relations from (ii) for a given n € N “really explicitly”? After
gathering the relations together along the various backward references and before doing
the substitutions mentioned in (ii), one has to plug in all the various possible partitions of
n which enter into the relations. Then one has to deal with the many relations involving
sums over the coarsest common refinements of certain given circular partitions, i.e. one
has to determine all these coarsest common refinements. This is no problem in principle,
because we have given a recipe of how to do this in Remark 5.21. Then substitute via
Lemma 5.57, as indicated in Theorem 5.58 (ii). After that the relations are as explicit as
one could wish for. The only problem is that for all but very small n there are so many of
them that one would not want to do all this work.

Here we also remark that the generating set of relations we gave in Theorem 5.58 (iii) is far
from minimal. The main reason why it is “too large” is that in determining the relations
we worked with sectors (Bp,tp) for arbitrary large |P|, and only later, by substitution,
adapted the obtained relations to our smaller set of generators of the algebra H, R(Rl,n)
which contains only sectors (B%, tp) for |P| = 2. (It seems to me that, using the results of
Theorem 5.58, one can work out a simpler set of relations, which only contains polynomials
of small degree in the (Bp,tp) with |P| = 2, and which can be determined for each
given Ry, without calculating coarsest common refinements for large circularly arranged
partitions P. This is something which I would like to finish after handing in this thesis.)

Comparison of H,(R1,) and H} (M1 ,)

We conclude our examination of Hf,(R1,,) by a short discussion of the main differences
between our results on this ring, and the results on Hf 5 (M1,,) in [Pag08].

e It is clear that the main differences between Hf, R(EL”) and Hf, R(ML”) arise from
the existence of inessential automorphisms on ELn. Since a prym curve with m dis-
joint non-exceptional components has 2™~ ! inessential automorphisms, and since
more marked points allow a curve to acquire more non-exceptional rational compo-
nents, the maximal size of Aut(X) for [X] € Ry, tends towards infinity with growing
n. This is a phenomenon which can not occur for Mg,n for any g: On the contrary,
for n’ <n, € € M, and € obtained from € by forgetting all but n’ marked points,
one always has | Aut(€)| < | Aut(¢’)|. For larger g the 1-sectors of Ry, parametris-
ing inessential automorphisms will become more diverse, since then the underlying

curves may contain several "loops” of rational components connected by blown up

59Note that it is not the degree in Hr(R1,n) (adjusted by age) we are talking about here, which of
course behaves additively under .
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nodes, not only one single loop as for the banana cycle sectors of El,n. Since a prod-
uct of two inessential automorphisms is inessential, like for Rj,, the subspace of

H{ p(Ry ) coming from inessential automorphisms, will always form a subring.

e For Ry, this subring has compared to Hf, (M1 ,,) a relatively “rich” multiplicative
structure. One respect in which this shows up is the following: While Hf 5 (M1,)
is generated by the fundamental classes of 1-sectors as a H*(M1,)-module, the
H*(R1,) module Hp(R1y) is not. On the other hand, Hfp(R1,,) is generated
by a collection of fundamental classes of 1-sectors as H*(Rj,)-algebra, which is
considerably smaller than the set of all fundamental classes of 1-sectors, while for
the algebra HJp(M1,,) most of the fundamental classes are needed as generators.

e Since much less is known about H*(R;,) then about H*(Mi,) (Betti-numbers,
Getzler’s claims), our results on Hf (R ,) depending on H*(Ry ;) give less concrete
information than the analogous results in [Pag08].

5.5.6 Remarks on HER(gin)
The isomorphism ) : ?In — Rlﬂn which holds on the level of varieties (as seen in the
introduction of Chapter 4) is not induced by an isomorphism of the stacks of the two
moduli problems, and accordingly the natural orbifold structures on R;, and ?In as
defined in section 5.1.1 are not isomorphic. A smooth pointed spin curve of genus 1 is the
same as a smooth pointed prym curve of genus 1 since wg = O¢ for an elliptic curve.
But this does not hold for the singular spin and prym curves X = (X;p1,...,pn; £, b).
On a non-exceptional component X; =2 P! of X (i.e. X; carries at last 3 special points),
L)x, = Ox, in the prym case but £|x, = O(—1) in the spin case. More important for
us, every disconnecting node of X is exceptional in the spin case, while in the prym case
no such node can be exceptional (cf. Summary 1.13 (iii)). Hence the objects of Sy, have
more inessential automorphisms then the objects of Ry ,. To make this more precise: If
[X] € gfn and [X'] = ¥([X]) € Ri, then for (S,sg) resp. (9,s)) the local universal
deformation spaces of X resp. X’ there are morphism:

P — -1 _

s Lo TR, LS, with f(so) = s, 7(sh) = [¥],

such that f is a ramified cover of complex balls and 7/ and 7 := 7’ o f 04y~ ! are the usual
quotient maps from deformation space to moduli space. Choose a standard basis 1, ..., Zp,
on (S, sg) in the sense of Summary 1.31, such that with r the number of disconnecting nodes
of the stable model C of X and X', 71, ..., ¥, are the basis vectors corresponding to these
nodes. Set @, := f(&;). Then f is the map f(3 /L, ;@) = > i_; &2F+> " .| T, So the
orbifold gin is in a sense a cover of Rl,n. There are inessential automorphisms ¢4, ..., &, on
X such that g; acts non-trivial only on the exceptional component corresponding to the i-th
disconnecting node of C. They generate a subgroup Auto(X)™ C Auto(X) C Aut(X), such
that Aut(X)/ Aute(X)T = Aut(X’), and such that f : S — S’ is the quotient morphism
S — S/ Auto(X)*.
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Accordingly there are more 1-sectors of gin then of Rj,: The banana cycle sectors
(B}p, tp) lift to isomorphic sectors of gin. Furthermore there are the following new inessen-
tial 1-sectors: Let, for each I C n, D; C gg,n be the divisor defined analogously to
the divisor of the same name on Ry, (cf. section 4.1.1 and Def. 4.5). For an object
X = (X'sp1,...,pn; L, V) parametrised by a point of Dy, X contains a rational tree X
which carries exactly the marked points with index in I. Let £; be the inessential auto-
morphism of X which acts nontrivially only on the exceptional component connecting X7
to the rest of X. Then (Dy,er) is a 1-sector, and so is every (Dy, . 1...€1,,....I,,) for each
Dy, .1, =D N..NDyp, # 0 wither, ;. :=c¢ep .. €, It is not difficult to show
that together these are all inessential 1-sectors of gin and that [(Dr,,. 1,..€n,..1.)] =
[(Dy,,e1,)] * ... * [(Dr,,,¢1,,)]. The non inessential sectors (Z%, g) of Ry, all lift to gin,
but not 1 : 1. As one can check, for example using the summaries of section 1.5, the
automorphisms on such sectors Z¥ which we denoted by —1 resp. i and —i lift to au-
tomorphism of order 4 resp. 8. The second resp. fourth power of these lifings ~Tandi
is inessential. More precisely for the second resp. forth power of classes in H R<§1,n):
(AR, =D € H* (D, pyen,.0,)) and [(C77 04 € HY((Dry,psen,en))- Tt
does not seem to be a problem to determine the additive Chen-Ruan cohomology of ?in
applying the same methods as for El,n and also to produce a multiplication table for
the fundamental classes of 1-sectors like the one in Proposition 5.56. But determining
H¢, R(?In) as a H*(S1,,)-algebra will probably be much more difficult: Since for a given
n, Dr = gfn—\ll—i—l X Mo, j41, for n—[I| +1 > 11 the cohomology H*((Dy,e7)) will have
a non-vanishing odd part. (Because H'(M11) # 0.) So one can not expect the odd co-
homology of ?In to pull back to 0 on every twisted 1-sector. Thus one will probably need
much more information about the odd part of H *(girn) than we have now to be able to
obtain a generating set of relations of the H *(?in)-algebra H, R(?in).

5.6 Singularities and Kodaira dimension of Em = gin

Thematically this section would have fitted better into the previous chapter 4, but it uses

information from this chapter and was therefore put here.

5.6.1 Singularities of Ml,n and }_%l,n = gin

In order to compute the Chen-Ruan cohomology, N. Pagani determined all automorphisms
that exist on Mlyn, the loci on which they exist, and the way they act on the tangent space
of the stack M, i.e. on the local deformation spaces. We adapted his result for Ry .
But with this information at hand it is quite easy to determine the singular locus of these
moduli spaces (as varieties), and the locus of (non-) canonical singularities, using the
generalised Reid-Tai-Criterion. The idea how to do this basically comes from [HM82]. The
method was refined by taking into account so called quasi-reflections and applied to S,
and Ry, for g > 4, by Katharina Ludwig in [Lud07], [Lud10] and [FL10].

We will cite some definitions and theorems for which we take section 4.1. of [Lud07] as a
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reference.

Definition 5.59 (i) For a normal quasiprojective variety, let Kx be the Weil divisor such

that wx = Ox(Kx) (for its existence cf. [Rei87]). X is said to have canonical singularities
if:

(1) For some integer r > 1, rKx is a Cartier divisor, and

(2) if f: X — X is a desingularisation of X and {E;} is the family of all exceptional
prime divisors of f, then for Kx and K5 the canonical divisors:

T‘K;{ = f*(TKx) + ZaiEi

where all a; > 0.

Now let V be an m-dimensional C vector space, ¢ an automorphism of finite order n on
V. Then:

(ii) ¢ is called a quasi-reflection if 1 is a eigenvalue of ¢ of order exactly m — 1.

(iii) One can choose a basis of V' relative to which ¢ is represented by a diagonal matrix
M (p). If ¢ is any primitive n-th root of unity, then

¢om
for appropriate 0 < b; < n. We define the age of ¢ with respect to  to be

m

age(, () := %sz

=1

This is also called the Reid-Tai sum of ¢ with respect to (. Note that this sum depends
on ¢ but not on the chosen basis of V.

We will apply the following criteria:

Theorem 5.60 Let V' be a finite dimensional C vector space, and let G C GL(V) be a
finite subgroup. Let V//G be the quotient. Then:

(i) V/G is non-singular if and only if G is generated by quasi-reflections (or by the iden-
tity).

(i) V/G has only canonical singularities, if for every ¢ € G, and for every primitive n-th
root of unity ( we have

age(p, ) > 1.
This is called the Reid-Tai criterion.

(11i) If G contains no quasi-reflections, the “if” in (ii) can be replaced by “if and only if”.
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Theorem 5.61 (i) The singular locus of M1, forn >1 is

1,1 I, Is,13 I, I2,13,14
U 4=u U a®cu U 4

{I1,12}, {I1,12,13}, {I1,.-, 14},
LWlo=n LWl Wlz=n L. Wli=n

UCA% U U Cil,fz U 06@ U U Cél,fz U U CélJst
{I1,12}, {I1,I2}, {I,12,15},
LWls=n LWls=n LWlsWlz=n
(In all the unions all the I; are required to be non-empty.)

(i) The singular locus of Ry, forn > 1 is

U Aéh’b} U U A§11,12}J3 U U A;{L{h,b},{fs,h}}

{I1,12}, {{I1,I2},13}, {1112} {I3,14}},
IWls=n LWiaWis=n LW, . Wli=n
n {I1,12} r
ucr v |J ¢ u U Bl
{I,I2}, {I,I2},
I1Wlo=n I1Wlo=n

(Again the I; are all required to be nonempty.)

(i4i) M1, has non-canonical singularities for all n > 2. For these n, the locus of non-

canonical singularities on M1, is Cg.

(iv) Ry has only canonical singularities.

Proof: First we note that describing the action of a automorphisms on a deformation
space of a pointed stable curve € or prym curve X, is the same as describing the action
on the tangent space of the moduli stack at the point [€] resp. [X]. So we can use the
description of the action of automorphisms on this tangent space in [Pag08] (for €) and

in this chapter (for X) to prove the theorem.

(i): By Theorem 3.24. of [Pag08], the locus of curves with nontrivial automorphisms in
M ,, consists of the locus we claim to be the singular locus, and of Agn]. First note that an
automorphism of order m acts as a quasireflection if an only if it acts with age % So by the
table in Corollary 4.8. of [Pag08] the only 1-sector of M1, belonging to a quasi-reflection
is (A[ln]7 —1). For a general object € of A[ln}, —1 is the only nontrivial automorphism, and
hence generates Aut(€). So M, is nonsingular at a general point of A[ln], while at every

[n]

point outside A]"” parametrising objects with non-trivial automorphisms, M1 ,, is singular.

(ii): Here one argues analogously to (i), using instead of the results of [Pag08] our results
Thm. 5.32 and Corollary 5.39.

(iii): For an automorphism of order 2 there is only one possible choice of the root of
unity appearing in the Reid-Tai sum, and the Reid-Tai sum equals the age by which
the automorphism acts. So for all objects X of My, for which Aut(X) is generated by
automorphisms of order 2 one sees by the table in Corollary 4.8. of [Pag08] that they
fulfill the Reid-Tai criterion, except in the case [X] € AT, in which Aut(X) is generated by
a quasi-reflection. So, using the list of the 1-sectors of M, in Theorem 3. 24 of [Pag08],

the only candidates for non-canonical singularities are the points [€] in Cz[ln], C’il’b, C’én],
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C’él’b, C’él’h’]s. For these we know the action of Aut(€) on the deformation space explicitly

by [Pag08] Prop. 4.7. Using this one can check that for objects in C’él’b and 0611’12’13 the
automorphisms all have Reid-Tai sums which are > 1, so there are no non-canonical
singularities in these loci, by the Reid-Tai criterion. For C’Z[ln], C M, and in the special case
of 0411’12 with [[;| = 1 and |[2| = 1, there are automorphisms for which not all Reid-Tai
sums are > 1. But for a € in one of these three loci, the automorphism —1 = i? € Aut(€)
resp. —1 = €3 € Aut(€) acts as a quasireflection. Thus we can not directly conclude by
the Reid-Tai criterion that these loci are non-canonical singularities. Instead we have to
quotient the deformation space by the quasi-reflection first, and then have to consider the

action of Aut(€) on the resulting smooth quotient:

First consider the case [€] € Cz[ln} (n > 2). On the deformation space B we can (by [Pag08]
Prop. 4.7) choose a basis® 771, ..., Z, such that the automorphisms i, 3 and —1 = 72 of €
act by diagonal matrices of the form

where 1,,_9 denotes a identity matrix of size (n — 2) x (n —2). Now if 7 : B — B/M(—1)
is the quotient-morphism, B/M (—1) is again isomorphic to a open complex n-ball, and
(Z1y .oy Zn) i= (w(Z1), ..., (%)) is a basis of B/M(—1). The map 7 can be described with
respect to these bases by

" = - = = 25 = =
(1T +eZo+as®s...+an®y) = 121+ a2+ asZs...+apZ,, forall (ai,...,a,) € C".

Now it is clear that the actions of i and i descend to actions on the quotient B/M(—1)
which are relative to the basis 2, ..., Z,, represented by the matrices:

So both automorphism act by the same matrix on B/M(—1) and one can check that the
Reid-Tai sums of this Matrix are 1 for both primitive second roots of unity i and 3. Hence
the quotient B/ Aut(¢) =2 (B/M(—1))/M i) has canonical singularities.

The case of [€] € Cil’b with [I1] =1 and |I2| = 1 can analogously be shown to yield only

canonical singularities.

If [¢] € C’én] we have Aut(€) = pg = (¢). Here the automorphisms ¢, €2 and €3 = —1 act
relative to a suitably chosen basis by

80Cf. Notation 1.29 (i)
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We do not have to consider the actions of €* and €?, since an automorphism and its inverse
yield the same sets of Reid-Tai sums. On B/M(—1), € and €? act by

If we choose the primitive 6-th root of unity e then M(e) yields the Reid-Tai sum % >1,
but if we choose the primitive root € instead, the Reid-Tai sum of M((e) is % < 1, since

(€)? = €*. So all points of C’én] are non-canonical singularities of My, (for n > 2).

(Note that CAE"], Cé"] can be said to parametrise objects with special elliptic tails, and
C’ih’b} to parametrise objects with special elliptic bridges. In case of gg with ¢ > 4
such loci are investigated in [LudO7] section 4.3, and shown to contain non-canonical
singularities exactly in the case analogous to Cé"]. Our proof above is probably the same
as the proof given for the analogous cases there.)

(iv): Here we argue analogously to (iii) but use Lemma 5.38 instead of [Pag08] Prop. 4.7.
O

Part (iv) of Theorem 5.61 directly implies:
Corollary 5.62 Let Elﬁn be a desingularisation of the variety Elm, let R{fg C El,n be
the open subvariety of nonsingular points. Then:

(i) Every pluricanonical form on R}"’i‘j extends to ﬁl,n, i.e.

HO(ETeg Oﬁl’n (mKELn)) = HO(ELTL’ Oﬁl,n (mKélr"))

1,n>»
for all m and n.

(i) Thus for the Kodaira dimension k(R ,) we have:

R(le) = "?(ﬁl,m Kﬁl,n) = ﬁ(El,m Kﬁl,n) 61

Remark: It should be possible to prove a complete analogue of Corollary 5.62 for Mlm,
by applying the method on page 40-44 of [HM82] to the non-canonical singularities in Cg
(like in [Lud07], section 5.2). But we will not attempt this here. Furthermore, Corollary
5.62 (ii) and its analogue for M, seem to be implicitly applied in [BF06].

5.6.2 The Kodaira Dimension
The Kodaira dimension (cf. Def. 1.51) of M1, is computed in [BF06] for all n € N. It is

—o00, 1<n<10
K)(MLn) = 0) n=11
1, n>12

'The direction £(R1,n) < k(R1,n, K5, ) follows from the fact that for a normal variety X of dimension
n with 7 : X" — X the embedding, wx = j«(Q%req).
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By Thm. 3 of [BF06] and Belorousski’s result that M, is rational for n < 10.

For Ry, = ?In the Kodaira dimension x(R; ) is computed for all n # 11 in [BF06], and
turns out to be equal to k(M1 ,,) in these cases. For n = 11 it is shown that 0 < k(Ry11) <
1. (Lemma 2, Proposition 4 and Proposition 5 of [BF06].)

We will show (R 11) = 1, and therefore xk(Ry111) # #(M7.11). This answers Question 1
asked in [BF06].

In order to compute (M7 ,,) the following Proposition was shown:

Proposition 5.63 (Prop. 3 in [BFO06]) For any integer n > 3, and for Kg7  the
canonical divisor of My ,:

Ky, = —1DA+(n=3)5,+ S (1] -2
ICn,
|1\22C777éﬂ

where X as usual denotes is the first Chern class of the Hodge bundle on M.
(In [BFO06] a different notation for the boundary divisors is used.)

Lemma 5.64 The ramification divisor of the forgetful morphism 7, : Rin — Min,

viewed as a morphism of varieties, is the boundary divisor Dy.

Proof: By Summary 1.31 (vi) and Summary 1.13 (i) we know that for every [X] € Ry, the
forgetful morphism 7 : (S, sg) — (B, bo) between the local universal deformation spaces of
X and of its stable model € is an isomorphisms if [X] ¢ Dy (case 1). For a general [X] € Dy,
one can choose standard bases (¥i)ien, (Zi)ien of (S, s0) and (B, by) (cf. Summary 1.31)
such that for the coordinate y; corresponding to %, {y1 = 0} is the subspace of (.S, s¢)
parametrising objects of Df. Then for all z = aq@i + a2yo + ... + anyn € S, 7(z) =
a%fl +andy + ...+ o, Ty, Since a general point of D{j has no non-trivial automorphisms by
Theorem 5.32, we can conclude with Summary 1.31 (iii) that locally analytically around
general points of D{), 7, can be identified with 7= and hence the ramification divisor of 7,
indeed contains Dy with multiplicity 1.

We again use Summary 1.31 (iii), to see that in case 1, [X] € Ry, can only lie on a
component of the ramification divisor if there is a g € Aut(€) such that firstly g does not
lift to X, and secondly the set of fixed points Fix(g) C (B, bg) is of codimension 1. But
we know that all pairs (€, g) € I;(M;,,) fulfilling the second part of this condition are
parametrised by (A7, —1). %2 But the automorphism —1 lifts to all objects X in 7, ' (A])
63 so the first part of the condition can not be fulfilled if the second part is. Hence the

ramification divisor of 7, is supported entirely on Dy. O

52This is for example clear by the fact that among the supports of 1-sectors of M ,, AT is the only one

of codimension 1.

637{1(21&) C Ri . is the locus we denoted again by AT. This is just the boundary divisor D,.
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Corollary 5.65 For any integer n > 3:

Kg,, =dy+ (=10 A+ (n=3)da+ ) (| -2)d;
ICn,
1122, T#n

where A denotes the first Chern class of the Hodge bundle on Ry .
Proposition 5.66 The Kodaira dimension of Ry 11 = gill is k(R 11) = 1.

Proof: We already know that x(R1,11) < 1 from [BF06]. Thus it suffices to show (R 11) >
1. This works similar to the proof that k(Mj,) > 1 for n > 12 in [BF06].

By Corollary 5.65 we have

K, ,, = dp+8du + > (1 -2)d;
ICl11,

11>2, T£11
Thus Kz, ,, is the sum of dj = [Dglg = [Dg] and an effective divisor. Hence we have
an inequality of Iitaka dimensions x(Ry11, K, 11> > k(Ry111, Df), and together with
Corollary 5.62 (ii) this yields x(Ry11) > x(R111, Dj).

Let 7 : El,ll — El,l be the morphism forgetting the last 10 marked points. Denote by Dg’l
the boundary divisor D of Rl,l to distinguish it from the boundary divisor Dy of ELH.
Then df = 7* dg’l. But d6’1 = [Dg’l]Q = %[Dg’l], and D(l)’r is a point on Ry ; = P!. Hence
a multiple of dg’l is ample. (For Ry = P!, cf. Prop. 4.15.) Thus the Iitaka dimension
k(Ri1, dg’l) is 1. Since 7 is surjective, /{(Rm,dg’l) = /ﬁ(ﬁl’ll,w*dg’l) by Theorem 5.13 of
[Uen75]. Hence we have x(Ry11) > #(Ry11, dj) = w(Ru1, dy') = 1. O

5.7 Euler characteristic and Cohomology of }_%Ln = gin for

small n

In this section we use previous results of this chapter for some simple observations about
the Euler characteristic of Ry, = gin. Using them we compute the Euler characteristic
for n < 5. This result implies that for n < 4, the Chow-Rings A*(R;,,) we computed in
section 4.4 are isomorphic to the cohomology rings H*(Rj ,,).

We denote the Euler characteristic of a space X by x(X). Recall that y behaves multiplica-
tive under cartesian products, and that for f : X — Y a unramified finite morphism of de-
gree m (i.e. covering of degree m), x(X) = mx(Y"). Furthermore for subvarieties Xy, ..., X,
of a complex algebraic variety, but not in general, y fulfils the inclusion-exclusion principle,
Le. x(X1 U UXy) = Y0 (= D)FH YT oo S s X(Xi 0N XG,) (cf. the exercise on
page 95 of [Ful93] and the corresponding endnote 13 on page 141).

Summary 5.67 Let M(’)’n = Mo /Sy be the quotient of My, by the Sa-action transposing
the indices n and n — 1 of marked points. For (Mo m x Mo,)" = (Mom X Mor)/S2 let Sy

act by simultaneously transposing m with m — 1 and n with n — 1. Then:



5.7 Euler characteristic and Cohomology of Ry, = §1+,n for small n 237

(i) For alln > 3: x(Mo,,) = (=1)""3(n — 3)! (with 0! := 1).
(i1) X(M(/),zg) =1, X(M6,4) =0, for alln > 5: X(Mé,n) = %X(Mo,n) = %(—1)"‘3(71 —3).
(i) X((Mos x Mo4)') =0, X((Moa x Moa)') =1, and for all m >3, n > 5:

1

X(Mom % Moy)") = 5(—1)m+"(m —3)!(n —3).

(iv) x(Mi1) = x(Mi2) = 1, x(M13) = x(M1,4) = 0, x(M15) = =2, and for all n > 5:
X(Mip) = %(—1)71(” - 1L
(v) For alln € N, Hl(ﬁl,n) = HS(RLn) =0.

Proof: For (i) cf. [AC98] page 121, for (iv) cf. [Get99] Proposition 5.7., for (v) cf. [BF09b].
Also (ii) is more or less from [AC98]: For (ii) and (iii) note that the quotient maps My, —
M(’]’n and Mo, X Mon — (Mom x My,)" are 2 : 1 covers which are ramified exactly
at the fixed points of the Sy action. If we denote by Fixs,(Mo,,) the set of fixed points
on My, then Fixs, (Mo, X Mo,) = Fixs, (Mom) x Fixs, (Mo,,). Since Fizg,(Myy) = 0
for n > 5 (there is no automorphism of P! fixing three points and exchanging two), the
quotient maps are unramified in this case and x(Mon) = 2x(Mj,,), X(Mom)x(Mon) =
X (Mo X Mo.p) = 2x((Mo m>xMor)"). There is one isomorphism class of configurations of 4
points on P! allowing an automorphism which fixes two and exchanges two, so Fixg, (Mo.n)

is a point p. Hence x(Mj 4) = 0:

2X(Mp ) — 2 =2x(Mo4 ~p) = x(Moa ~ p) = x(Mo4) — 1 = —2.
The rest of (iii) is proven analogously. O
We remark that for n < 3 the results of the next Proposition where already computed in

[BFO9D).

Proposition 5.68 (i) x(Ri11) = x(Ri12) =0, x(R13) = =2, x(R14) = 0, and for all
n>>5:

X(Run) = 3x(My.) = i(—l)”(n .

(i) x(R1,1) = 2, x(R12) =4, x(R1,3) =12, x(R1,4) = 50, x(R1,5) = 270.
(’iii} Define AIlquk- = Ah N...N Afk- and DIL”-JI@ =Dy N..N D[k. Forn > 5:

X(Miy) = i(*1)"(71*1)'#”“2”: e > —
i 12 ’ ’ 2m 1T Ty
m=1 ri+re+..rm=n
n
+Z<—1)k+l Z X(An,..1.) o
k=1 {1, Ii}
I;Cn, [1;]>2
_ 1 ~ (-~ 1
Bin) = (=1 — 1) +m S —
X( 1,774) 4( ) (n ) +n Z m Z rR-rog: .. - T'm
m=1 ri+re+..rm=n

54Note that x(M1,,) is calculated in [Get98], so the formula given here is only needed for comparison
with the next formula for X(El,n)~
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~I—Z(—1)"Cle Z x(Drp,,..1,) 5.

k=1 {I,..I;}
I;Cn, [1;]>2
Proof: (i): The forgetful morphism 7, : R1, — Mi, is of degree 3 and for a point
[€] € My, we have |7, 1([€])] < 3 if and only if € = (C;p1,..,p,) has an automorphism
which does not fix all three isomorphism classes of prym sheaves on C. By the proof
of Lemma 5.9 the only such points are Cy,Cs € M1, C},C§ € M1 and Cf € M.
Furthermore we have seen there that the automorphisms of Cy and C) transpose two
classes of prym sheaves and fix one, while the automorphism €2 of Cg, C§,Cy cyclically
permutes all three isomorphism classes. Hence |7, (Cy)| = |75, *(C4)| = 2, and |7, *(Cs)| =
17, H(CH)| = |75 1 (C¥)| = 1. With this:

X(R11) = 3x(M1,1 ~ {C4, Cs}) + x (77 1 (Ca)) + x(71 ' (C6)) = 3x(M11) — 3

similarly:  x(Ri2) = 3x(Mi12)—-3, x(Ri3) =3x(M13)-2, Vn=4x(Rin)=3x(Min).
This together with Summary 5.67 (iv) yields (i).

For each n, set inside Ml,n resp. Rl,n

Tin= |J An Jn= |J D Ao=20~ (T1nNA),
ICn, |I|>2 ICn,|1|>2
DY := DY~ (Zi.,N DY), Dy:= Dy~ (FinNDp).
Then we have

Ml,n = Ml,n ) Zo ) Tl,n» Rl,n = Rl,n ) 56’ ) ES ) <71,n-

Let S be the set of all circular partitions P of n with |P| > 2, denote by Up the boundary
stratum of M ,, parametrising curves with dual graph I'(P), i.e. the interior of the banana
cycle Bp, denote by Uy the interior of Ag. Then with Uy, U, U, Uj, defined analogously,

Ao=Upw [ Up, Df=Uw|H Up, Dj=Usw |H Up.
pes pes pes
By the proof of Lemma 4.4 there are bijective morphisms 5[’)’ — Ay and 56 — Ap. So
with Lemma 4.11, Ay & D{ = D{,. Hence, using notation of Summary 5.67, and results

from section 5.3.2 in the second line, and notation and arguments similar to the proof of
Corollary 5.37:

X(M1) = x(Mi1z) + x(B0) + X(T10),  x([Bin) = X(Rin) + 2x(B0) + (i) (1)

~ 1 n
X(Ao) = x(Uo) + > x(Up) = X(Mp 0 + Y B <T1 TQ)X((MO,TH-? X Mo,y +2)")
Pes ritro=n " ’

55If one wants to compute numbers x(Ri1,,) for larger n, it would not be difficult to write a computer
program which does this recursively using this formula (although this program might be quite slow). For
this note that every non-empty Dy, ... s, is isomorphic to a certain Riq X Mo, X ... X Moy, fora ¢ <n,

and that x(Mo,») is known by [Kee92]
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n ‘ m
+ Z Z TrlL!<7“1 ! r >;:;HX(M0M+2)' (1)
sy T Pl

m=37r1+...+rm=n

The last term can for all n be rewritten with 5.67 as:

DI D

o S 2mmry Ty
< " (1 !
and for n > 5: x(Ag) = n! —_— Z _ ()
2m T1-T9 . " T
m=1 ri+ro4..rm=n
By the inclusion-exclusion principle we get:
n n

X(Tin) = Z(—l)kJrl Z X(An,..0) X(Tim) = Z(—l)kH Z X(Dn,....1.)-

k=1 {117'“7116} k=1 {Il»"'ylk}

I;Cn, |1;]>2 I;Cn, |I;]>2

()

With Summary 5.67, we obtain (iii) from our previous observations.

Now we compute X (R ) for n < 5. One may do this directly using (), (1) and Summary
5.67 and [Kee92], but it is easier to compute the difference d(n) := x(R1,) — x(M1,,) and
then add it to the value of x(M7,,) known by [Get98] (page 8). By (), x(Z1.n) — x(T1,n)
is a sum over terms x(Dy, . 1.) — x(Ar,..1,)- But, if non-empty, Dy, j = El,q X M yest
and Ay, g, = Ml’q X M yest, where ¢ < n and M ,.s is a product of some ngli. Hence

X(Dll,..‘,fk) - X(Ah,...,]k) = (X(Rl,q - X(Ml,q))X(Mrest) = d(Q)X(Mrest)- (‘)

So if for an n € N, d(q) = 0 for all ¢ < n, then by (7)
d(n) = e(n) = X(Rl,n) - X(Ml,n) =+ X(AO)'

We compute e(n) for n < 4 using () and 5.67, and obtain e(1) = e(2) = e(3) = 0 and
e(4) = 1, hence these are also the values for d(n). For n = 5 for the first time there may be
a contribution from x (71 »)—x(T1 »), coming from those terms x(Dry, ... 1,)—Xx(Arp,..1,.) for
which ¢ = 4 in (#). It is easy to check that this is only the case for k = 1 and |I;| = 2. There
are (g) = 10 such sets I1, and in these cases, M,cs = Mo 3. Hence x(715) — x(T1,5) = 10.
Since, using (&), e(5) = =4+ 12 — 25+ 35 — 30 + 12 = 0, we have d(5) = 10. O

Corollary 5.69 Forn <4, H*(Ry,) = A*(Ry,) via the cycle map. So in particular the
Betti numbers h'(Ry ) = h"(gin) forn < 4 are:

[ mt[n 00 et [0 n0 AT

Rii|| 1] 0

Ria|| 1] 0] 2] 0|1

Ris|| 1050|501

Rig|| 1| 0]12]0/|2/|0]|12] 0] 1




240 Orbifold cohomology of R .,

Proof: By Summary 5.67 (v), Ry, has no odd cohomology for n < 4, hence in this
range dim H*(R1,,) = x(Rin). % In our computation of the Chow rings we bounded
the dimension of each homogeneous part Ad(RLn) from below by means of computing
an intersection matrix %7. Hence the Q vector space A%(R;,) for every d has a basis
of dim Ad(ﬁlm)—many numerically independent elements. Since numerical equivalence is
weaker then homological equivalence, the cycle map A*(Ry ) — H*(R1,,) is thus injective
(cf. Chapter 19 of [Ful98]). Since the dimensions of A*(R; ;) computed in section 4.4 agree
with x(R1 ) as computed in Proposition 5.68 (ii) for all n < 4 the cycle map is then also
surjective. (|

Remark 5.70 If we assume that for R; 5 the cycle map surjects on the even cohomology
H?(Ry5) (which is in this case equivalent to H**(R1,) = H}p;(Ri1s)), then it is not
difficult to show that the Betti numbers of Ry 5 are 1,0,27,0,105,0,105,0,27,0,1. This
would use the above results, and the knowledge of the Betti numbers of M 5 from [Get98].
But since I do not know how to proof H**(Ry5) = Hpoy(Ri15), I will not give any details
here. (One can check that dim A%(R;5) < 105 in the style of section 4.4, then with the
assumption everything follows quickly. Also one obtains the mentioned Betti numbers

quite directly if one assumes instead that the even cohomology vanishes. 98)

56From this, together with Proposition 5.68 (i), and the knowledge of all Betti numbers h*(M,,) for
n < 4 ([Get98], page 10), one can compute the Betti numbers h'(R1 ) without knowing the Chow ring: It is
clear that h*(R1.,) > h*(M1,,) always. For n < 3, x(R1,n) = X(M1,n), 50 h*(R1,n) = h*(M1,,) for all i here.
For n =4, x(R1,4) = x(M1,4) + 1, and hence by Poincare duality we must have h*(Ry4) = h*(M1.4) + 1
and h*(R1,4) = h*(M1,4) for all i # 4. This would though not determine the ring structure of H*(R1.4), so
the work in section 4.4 was not completely gratuitous.

570r, in many cases we showed that A%(Ry,) = 7, (A4(M1,,)) and so can use, that the dimension of
A*(M ) is bounded from below in [Bel98] by computing an intersection matrix.

%To me both assumptions seem very plausible, since R 5 is a rational variety, and since for M1 , the
analogous assumptions hold for all n < 11 which is also the range in which M ,, is rational. If these Betti
numbers are correct H?(R1,5) = 0, and with the same inductive arguments as used in [BF09b] to show
H'(R:1.,) = H*(R1,,) = 0, it would follow that H(R; ) = 0 for all n.
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